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Abstract 

The present thesis work investigates numerically and analytically double-diffusive 

mixed convection in closed rectangular cavities filled with non-Newtonian fluids and 

subjected to uniform heat and mass fluxes. The well-known finite difference and finite 

volume methods are used for their advantages to numerically solve the two-dimensional 

governing equations, while the analytical solution is developed based on the parallel 

flow assumption valid in the case of a shallow cavity. For shallow enclosures 

( aspect ratio 𝐴 >> 1) and providing that Prandtl number 𝑃𝑟 ≥ 10, the problem is 

found to be mainly governed by: Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, 

Lewis number 𝐿𝑒, buoyancy ratio 𝑁, and power-law behavior index 𝑛. Both solutions 

show a good agreement for inclusive ranges of governing parameters; thus, validating 

the analytical approach and the numerical codes. 

To gain further insight into convection phenomena, the dominance regions of 

convective regimes, namely natural, mixed, and forced convection are defined, where 

the ratio 
𝑅𝑎𝑇

𝑃𝑒𝛾, strongly correlated to index 𝑛,  accurately delineates the three regimes. 

As a result, the effects of governing parameters are amply discussed in each governing 

regime in terms of the stream function, the average Nusselt number, the average 

Sherwood number, streamlines, isotherms, and iso-concentrations along with velocity, 

temperature, and concentration profiles.  

Péclet and Lewis numbers are found to enhance forced regime input in overall 

convection, while thermal Rayleigh number and buoyancy ratio strengthens natural 

convective regime. Finally, the rheological behavior of non-Newtonian fluids leads to 

some unforeseen effects on flow characteristics directly related to the dominant 

convective regime and the direction of imposed heat and mass fluxes. 

Keywords: Double-diffusive mixed convection, Heat and Mass transfer, Non-

Newtonian fluids, Lid-driven cavities, Parallel flow, Finite difference and finite volume 

methods. 

 



 

 

Résumé 

Le présent travail de thèse étudie numériquement et analytiquement la convection mixte 

doublement diffusive dans des cavités rectangulaires confinant des fluides non-

Newtoniens et soumises à des flux de chaleur et de masse uniformes. Les méthodes des 

différences finies et des volumes finis sont utilisées pour leurs avantages pour résoudre 

numériquement les équations gouvernantes, tandis que la solution analytique est 

développée sur la base de l'hypothèse d'écoulement parallèle valable dans le cas d'une 

cavité avec un rapport de forme assez large. Pour les cavités avec un rapport de forme 

𝐴 >> 1 et à condition que le nombre de Prandtl 𝑃𝑟 ≥ 10, le problème se trouve être 

régi principalement par : nombre de Péclet 𝑃𝑒, nombre de Rayleigh thermique 𝑅𝑎𝑇, 

nombre de Lewis 𝐿𝑒, rapport des forces de volume 𝑁, et l'indice de comportement 𝑛. 

Les deux solutions montrent un bon accord pour des plages inclusives des paramètres 

directeurs ce qui valide l'approche analytique et les codes numériques. 

Pour mieux comprendre les phénomènes de convection, les régions de dominance des 

régimes convectif, à savoir la convection naturelle, mixte, et forcée, sont définies, où le 

rapport 
𝑅𝑎𝑇

𝑃𝑒𝛾, qui dépend fortement de l’indice 𝑛, délimite avec précision les trois 

régimes. En conséquence, les effets des paramètres directeurs sont amplement discutés 

dans chaque régime en termes de la fonction de courant, le nombre moyen de Nusselt, 

le nombre moyen de Sherwood, les lignes de courant, les isothermes, et les 

isoconcentrations ainsi que les profils de vitesse, de température, et de concentration. 

Les nombres de Péclet et de Lewis améliorent la contribution du régime forcé dans la 

convection, tandis que le nombre de Rayleigh thermique et le rapport des forces de 

volume renforcent le régime de convection naturelle. Enfin, le comportement 

rhéologique des fluides non-Newtoniens conduit à des effets imprévus sur les 

caractéristiques d'écoulement directement liés au régime convectif dominant et à la 

direction des flux de chaleur et de masse imposés. 

Mots-clés : Convection mixte doublement-diffusive, Transfert de chaleur et de masse, 

Fluides non-Newtoniens, Cavités avec parois entrainées, Écoulement parallèle, 

Méthodes des différences finies et des volumes finis. 

 



 

 

 ملخص 

مزدوج الانتشار  (  في ان واحد حمل طبيعي وحمل قسريالمختلط )  لالحم  الذي بين أيدينا لدراسةالبحث    يتطرق

 .  لفيض حراري وكتلي منتظم  بالسوائل غير النيوتونية ومعرضة  مملوءةمغلقة    عدديًا وتحليليًا في تجاويف مستطيلة

المحدودة   اتالفروق  تين واسعتي الانتشار وهما تقنيةقياستخدام طرب  قمنا  المعادلات الحاكمة ثنائية الأبعاد عدديًالحل  

على    المحدود،الحجم    وتقنية بناءً  التحليلي  الحل  تطوير  يتم  الصالح  جريانال  فرضيةبينما  حالة    ةالمتوازي  في 

<< 𝐴  للتجاويف ذاتبالنسبة    .الكفايةبما فيه    ةكبير  𝐴  عرض إلى الارتفاع  نسبة  ذات  ويفاالتج  ورقم براندتل  1 

𝑃𝑟 ≥   : رقم الحرارة والكتلة هي   في جريان المائع وانتقال  بشكل أساسيوجدنا ان المتغيرات التي تتحكم  ،  10

يظُهر كلا     𝑛.التدفق  سلوك  ومؤشر،  𝑁الطفو  قوى  ، نسبة   𝐿𝑒لويس، رقم  𝑅𝑎𝑇الحراري    رايليه، رقم  𝑃𝑒   بيكليه

التحقق    الذي يمكن من  ءالمتحكمة، الشي  المتغيرات  ضمن نطاقات شاملة لقيم، اتفاقًا جيداً  العددي والتحليلي  الحلين،

 . البرامج المعلوماتية المستخدمة في الحل العدديمن صحة النهج التحليلي و

حيث   والقسري،الحمل الطبيعي، المختلط،    :لفهم اوضح لظواهر الحمل، يتم تحديد مناطق الهيمنة للأنظمة الثلاث

النسبة  
𝑅𝑎𝑇

𝑃𝑒𝛾  التي ترتبط ارتباطًا وثيقًا بالمؤشر ،𝑛   نتيجة لذلك، تمت مناقشة تأثيرات    الثلاثة.، تؤطر بدقة الأنظمة

رقم رقم نسلت، متوسط  ، متوسط  السريانباستعمال دالة    الثلاثةالمتغيرات المتحكمة بإسهاب في كل من الأنظمة  

زيع  خطوط التركيز المتساوي بالإضافة إلى منحنيات تو  المتساوية،  الحرارة  خطوط،  الجريان  خطوطشيروود،  

 التركيز. الحرارة، وتوزيعالسرعة، توزيع 

ان   النتائج  الحرارة رقم  بيكليه و  رقمتظهر  وانتقال  المائع  في جريان  القسري  الحمل  بتعزيز دور  يقومان  لويس 

 الريولوجي السلوكيؤدي    أخيرًا،يعززان دور الحمل الطبيعي.  الطفو  قوى  الحراري ونسبة    رايليهرقم   والكتلة بينما

النيوتونية المتوقعةالنتائج    بعضالى    للسوائل غير  التدفق  غير  الحمل    المرتبطة مباشرةو  على خصائص  بنظام 

 . الفيض الحراري والكتلي المطبق واتجاهالمهيمن 

التجاويف ذات  النيوتونية،لسوائل غير  ا  ،انتقال الحرارة والكتلة مزدوج الانتشار،المختلط    الحمل :مفتاحية كلمات

 . المحدودالحجم  وتقنيةالمحدودة  اتالفروق تقنية المتوازي،  جريانال ،السطح المتحرك

 

 

 

 

 

 

 



 

 

Nomenclature 

𝐴 aspect ratio of the cavity, Eq. (3.26) 

𝐶𝑇 dimensionless temperature gradient in the 𝑥-direction 

𝐶𝑆 dimensionless concentration gradient in the 𝑥-direction  

𝐷 mass diffusivity (𝑚2 ∕ 𝑠) 

𝑔 gravitational acceleration (𝑚2 ∕ 𝑠) 

𝐺𝑟 Grashof number 

𝐻′ height of the enclosure (𝑚) 

𝑗′ constant mass flux per unit area (𝑘𝑔/𝑚2 𝑠) 

𝑘 consistency index for a power-law fluid (𝑃𝑎. 𝑠𝑛) 

𝐿𝑒 Lewis number, Eq. (3.26) 

𝐿′ length of the rectangular enclosure (𝑚) 

𝑁 buoyancy ratio, Eq. (3.26) 

𝑛 flow behavior index for a power-law fluid 

𝑁𝑢ℎ  local horizontal Nusselt number, Eqs. (3.27), (3.29), and 

(3.101) 

𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  mean horizontal Nusselt number, Eqs. (3.31) and (3.101) 

𝑁𝑢𝑣 local vertical Nusselt number, Eqs. (3.33) and (3.102) 

𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  mean vertical Nusselt number, Eqs. (3.35) and (3.102) 

𝑃𝑒 Péclet number, Eq. (3.26) 

𝑃𝑟 generalized Prandtl number, Eq. (3.26) 

𝑞′ constant heat flux per unit area (𝑊/𝑚2) 

𝑅𝑎𝑇 generalized thermal Rayleigh number, Eq. (3.26) 

𝑅𝑒 Reynolds number 

𝑆 dimensionless concentration [= (𝑆′ − 𝑆0
′) ∕ 𝛥𝑆∗] 

𝑆′0 reference concentration (𝑘𝑔/𝑚3) 

𝑆ℎℎ local horizontal Sherwood number, Eqs. (3.28), (3.30), and 

(3.101) 

𝑆ℎℎ
̅̅ ̅̅ ̅ mean horizontal Sherwood number, Eqs. (3.32) and (3.101) 

𝑆ℎ𝑣 local vertical Sherwood number, Eqs. (3.34) and (3.102) 

𝑆ℎ𝑣
̅̅ ̅̅ ̅ mean vertical Sherwood number, Eqs. (3.36) and (3.102) 

𝑇 dimensionless temperature [= (𝑇′ − 𝑇0
′)/𝛥𝑇∗] 



 

 

𝑇′0 reference temperature (𝐾) 

𝛥𝑆∗ characteristic concentration [= 𝑗′𝐻′/𝐷]  (𝑘𝑔/𝑚3) 

𝛥𝑇∗ characteristic temperature [𝑞′𝐻′/ 𝜆] (𝐾) 

(𝑢, 𝑣) dimensionless horizontal and vertical velocities  

[(𝑢′, 𝑣′)/(𝛼 𝐻′⁄ )] 

(𝑥, 𝑦) dimensionless horizontal and vertical coordinates  

[= (𝑥′, 𝑦′)/𝐻′] 

Greek symbols 

𝛼 fluid thermal diffusivity (𝑚2/𝑠) 

𝛽𝑇 fluid thermal expansion coefficient (1/𝐾) 

𝛽𝑆 fluid solutal expansion coefficient (𝑚3/𝑘𝑔) 

�̅̅̇� rate of deformation tensor (𝑠−1) 

𝜆 fluid thermal conductivity (𝑊/𝑚 𝐾) 

𝜇 Newtonian fluid dynamic viscosity (𝑃𝑎. 𝑠) 

𝜇𝑎 fluid dimensionless apparent viscosity, Eq. (3.25) 

𝜎 stress tensor (𝑃𝑎) 

𝜏̅̅ viscous stress tensor (𝑃𝑎) 

𝜌 fluid density (𝑘𝑔/𝑚3) 

𝛺 dimensionless vorticity [=𝛺′/(𝛼 𝐻′2⁄ )] 

𝜓 dimensionless stream function [= 𝜓′ ∕ 𝛼] 

Superscript 

′ dimensional variable 

Subscript  

𝑐 value in center of the cavity (𝑥 = 𝐴/2, 𝑦 = 1/2) 

𝑐𝑟 critical value 
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Introduction 

Convective fluid flows generated when only one component affects the density – for 

example, temperature gradient – are largely investigated and are very well understood. 

When the fluid density is determined by the gradients of more than one diffusing 

property, the intuition gained based on thermal convection (convection is generally 

categorized by the main effect driving fluid flow) can be misleading as an entire range 

of new phenomena can emerge. Double-diffusive convection occurs for fluids 

containing two components diffusing at different rates (the different diffusivity rates of 

heat and mass). In the early beginnings of the subjects around 1956, there was little 

indication that in couple decades the described phenomenon, and associated processes, 

would become a new field of fluid dynamics and play a significant role in oceanography 

and more recently in astrophysics, geology, and engineering applications. The parallel 

development in these fields outside the realm of oceanic science allowed to overcome, 

to some extent, the delay in the advancement of double-diffusive convection compared 

to many other, less critical, branches of fluid dynamics. This delay can generally be 

attributed to two mean reasons, the relatively small size of the oceanography 

community and the lack of practical motivations that usually drive the progress in fluid 

mechanics as in meteorology, aircraft industry, and ship hydrodynamics. These 

limitations are now of the past; however, many of double-diffusive convection aspects 

are still surrounded by confusion and controversy where the need to invest more effort 

in investigating all the aspects of the problem is essential to adequately understand the 

physics and consequences of double-diffusion. 

In the present thesis work, and while natural and forced mechanisms of convection will 

be investigated, the focus will be on the more challenging double-diffusive mixed 

convection. This cross field of natural and forced convection presents more difficulties 

to deal with compared to pure natural or pure forced convections. Mixed convection 

fluid flow occurs due to combined buoyancy force (i.e., natural convection) and some 

external applied forces (i.e., forced convection), resulting in a large range of 

applications including the cooling of nuclear reactors during emergency shutdowns, 

heat exchangers, solar energy systems exposed to wind, and electronic components 

cooling. The optimal design of such systems along with the control of heat and mass 

transfer processes requires accurate simulation of mixed convective fluid flow and heat 
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and mass transfer. Therefore, and given the difficulties attached to the field, engineers 

still have several unanswered questions due to the lack of studies establishing a reliable 

theoretical background for double-diffusive mixed convection. Furthermore, fluid 

properties differ from one application to another as they are chosen according to the 

specific operating requirements of each application. Accordingly, such applications 

largely require the use of non-Newtonian fluids given their engineered viscosity 

properties which are essential to fulfill operation requirements. However, the non-linear 

behavior of non-Newtonian fluids adds to the complexity of the problem at hand, 

double-diffusive mixed convection, as the governing equations become highly coupled 

and non-linear explaining the small number of published papers considering this kind 

of fluids. All these prescribed shortcomings and motivations encourage the present 

work where the focus will be on: (i) developing an adequate mathematical model for 

non-Newtonian double-diffusive mixed convection; (ii) establishing rigorous 

numerical solutions; (iii) exploring the existence of analytical solution; and (iv) on these 

bases, outlining limits separating natural, forced, and mixed regimes and investigating 

fluid flow, heat and mass transfer processes, and instabilities that could occur in non-

Newtonian double-diffusive mixed convection with different applied dynamical, 

thermal, and solutal boundary conditions. The separation of convective regimes’ 

dominance regions is key to better understanding the different convection phenomena 

that emerge in the mixed regime. The boundaries splitting the regimes need to be well-

defined, take into account the non-Newtonian rheological behavior, and be practical for 

scientific and engineering fields as to address the inconsistency encountered in the 

literature.  

Mixed convection is generally divided into aiding flow where natural and forced 

convection act in the same direction and opposing flow where both natural and forced 

convection are in opposite directions. In this work, the aiding flow case is presented 

given the importance of convection intensification while the opposing case, which can 

be of significance for applications where suppressing fluid flow and heat and mass 

transfer is beneficial, is well under investigation and is not presented here. 

To accomplish the aforementioned research objectives, the present work is split into six 

chapters. The first chapter is an inclusive literature review to see how our research 

questions fit within the field of fluid dynamics. 
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In chapter two, the rheological model adopted to characterize viscous fluids flow is 

described briefly while introducing non-Newtonian fluids behavior. The choice of an 

adequate model is of importance for this study, especially being suitable for engineering 

applications and allowing the establishment of an analytical solution. 

In the third chapter, we begin by setting the mathematical model to simulate non-

Newtonian double-diffusive mixed convection fluid flows. The governing equations 

are then written in the dimensionless form and presented in two different formulations 

to solve the problem: 

• The primitive variables form. 

• The Stream function-vorticity formulation. 

Next, we present the numerical approach for solving the two-dimensional governing 

equations with two methods, the finite difference method using the stream function-

vorticity formulation and the finite volume method using the primitive variables form. 

Finally, we establish an analytical solution based on the parallel flow approximation. 

In chapters four, five, and six, the results of the two approaches, numerical and 

analytical, are compared for different configurations. Chapter four investigates a single 

lid-driven rectangular cavity filled with Newtonian fluid and submitted to uniform heat 

and mass fluxes along the vertical walls. Chapter five considers double lid-driven 

rectangular cavities filled with non-Newtonian fluids and subjected to uniform 

horizontal heat and mass fluxes. The sixth chapter investigates Rayleigh-Bénard 

double-diffusive mixed convection inside double lid-driven rectangular cavities filled 

with non-Newtonian fluids. For the three separate convective regimes: natural, mixed, 

and forced convection, the effects of governing parameters on fluid flow and heat and 

mass transfer are illustrated and amply discussed for each configuration in terms of 

stream function, average Nusselt number, average Sherwood number, streamlines, 

isotherms, and iso-concentrations along with velocity, temperature, and concentration 

profiles. 

Finally, a general conclusion summarizing the key findings of the study and sets the 

perspectives for future works. 
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CHAPTER 1  Literature Review 

 

1.1 Introduction 

As the present thesis investigates double-diffusive mixed convection within rectangular 

cavities filled with non-Newtonian fluids and subjected to uniform heat and mass 

fluxes, and in order to see how our research fits within the field of thermo-fluids, an 

inclusive review of published literature on the topic of convective fluid flow is essential. 

The importance of the present work for scientific and engineering purposes is also 

highlighted. 

1.2 Double-diffusive natural convection 

1.2.1 Definition and significance 

Fluid flows driven by buoyancy effect due to combined temperature and concentration 

gradients are widely-known as thermosolutal convection, while when their associated 

diffusion rates are different (Lewis number 𝐿𝑒 ≠ 1), the flow is referred to as double-

diffusive. The significance of double-diffusive flows comes from the need to 

understand systems with varying density due to both applied temperature and 

concentration gradients and given that in practice, heat and mass transfer generally 

occur together as seen in many industrial fields.  

Solidification processes is one of the fields where both temperature and species 

concentration affect the liquid phase as described by Nishimura et al. [1] who discussed 

the appearance and evolution of double-diffusive convection during the solidification 

process liquid phase within enclosed cavity. Ghenai et al. [2] studied the effect of the 

initial concentration of a binary mixture on solidification as increasing it slowed down 

the process. Crystal growth is Another field where heat and mass transfer during the 

fluid phase has been proven to play a key role in the resulting crystal morphology and 

quality [3]. Singh et al. [4] carried out experiments to investigate such influence on the 

homogeneity of crystals grown using the Bridgman method. They found that crystals 

grown at larger values of thermal and solutal Rayleigh numbers showed more optical 

distortion. Zhou and Zebib [5] also numerically inspected crystal growth in a 
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rectangular enclosure subjected to horizontal temperature and concentration gradients. 

They showed that the onset of double-diffusive oscillatory convection in the opposing 

mode (Grashof number 𝐺𝑟 = 104) decreased significantly when compared to the case 

of pure thermal convection. Furthermore, the applied gradients promoted the onset of 

oscillations and enhanced heat and mass transfer. Solar energy applications 

increasingly attract more attention in this renewable energy era, such systems design 

and thermal efficiency are directly related to heat and mass transport phenomena. Rghif 

et al. [6] inspected the effect of Soret and Dufour numbers on storage efficiency in a 

salt gradient solar pond. They reported that increasing Dufour number enhanced heat 

and mass transfer leading to a gain of storage (5.56%) and reducing heat losses through 

the pond free surface (8.53%), while the Soret number had less significant role. Saleem 

et al. [7] numerically investigated natural double-diffusive convection in a trapezoidal 

solar distiller using the finite volume method. The study showed a significant heat and 

mass transfer enhancement while increasing Rayleigh number (104 ≤ 𝑅𝑎 ≤ 106), 

buoyancy ratio (𝑁 =  1, 2,5 and 10), and free stream Reynolds number 

(102 ≤  𝑅𝑒∞ ≤ 105). Similarly, the design of thermally comfortable closed spaces 

requires controlling heat and mass transport processes within such spaces. Arellano et 

al. [8] investigated double-diffusive convection within a ventilated cavity. They found 

that in order to compile with temperature and contaminant concentrations regulations 

and attain best performance, mixed convection with Reynolds number 𝑅𝑒 = 104 is 

required. Double-diffusive convection importance manifests in many other 

applications: food processing [9], oceanography [10], dynamics of lakes [11], storage 

reservoirs [12], etc. 

1.2.2 Published works  

Given the applied thermal and solutal boundary conditions, two cases arise: 

• Cavities submitted to horizontal temperature and concentration gradients along 

the vertical walls. 

• Cavities where the horizontal walls are differentially-heated and salted and the 

sufficiently distanced vertical ones are considered adiabatic. This configuration 

is also known as ‘‘Rayleigh–Bénard’’ convection. 



6 

 

For the sake of simplicity, the first case will be referred to as “double-diffusive 

convection” and the second case as “Rayleigh–Bénard double-diffusive convection”. 

1.2.2.1 Double-diffusive natural convection 

Double-diffusive natural convection is by far one of the most studied subjects in 

thermo-fluids. Ostrach [13] conducted a review of the phenomenon. Arani et al. [14] 

studied numerically double-diffusive natural convection in a square enclosure with 

active vertical walls while the horizontal ones are insulated. They showed that the 

lowest heat and mass transfer occur in the case of pure thermal convection (buoyancy 

ratio of zero). Furthermore, increasing Rayleigh number or the buoyancy ratio led to 

the same result of enhancing average Nusselt and Sherwood numbers. Aly et al. [15] 

investigated the same phenomenon, but this time in a rectangular enclosure. Similar 

results to [14] were found, where the convection in double diffusive mode was higher 

compared to the mono-diffusive one for both nanofluid and regular fluid. They also 

showed that increasing Soret number while decreasing Dufour number increased heat 

transfer while decreasing mass transfer. Ranganathan and Viskanta [16] investigated 

analytically and numerically natural convection in a two-dimensional square cavity 

filled with a binary gas due to combined temperature and concentration gradients. They 

identified and applied a concentration parameter to binary gases. For buoyancy ratio 

𝑁 =  1, the temperature and concentration distributions as well as the heat and mass 

transfer rates were found to depend strongly on the concentration parameter for values 

smaller than 1. The velocities at vertical walls were inversely proportional to the said 

parameter. Trevisan and Bejan [17] also investigated numerically and analytically the 

same phenomenon of natural convection in a rectangular enclosure with uniform heat 

and mass fluxes applied along the vertical walls. Esfahani and Bordbar [18] performed 

a numerical study of laminar thermosolutal convection inside a square cavity filled with 

nanofluid. The finite volume SIMPLE algorithm was used to solve the dimensionless 

form of the governing equations. The results showed that for a constant value of 

Rayleigh number, increasing Lewis number improved mass transfer but reduced heat 

transfer. Hussain et al. [19] numerically investigated double-diffusive nanofluid flow 

in a duct with cavity heated from bottom side using the Galerkin finite element method 

to solve the governing equations. It was observed that while increasing Reynolds 

number, a circulating cell is formed inside the cavity and convection domination 
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enhanced. Furthermore, they concluded similar conclusions as the previously 

mentioned references where increasing buoyancy ratio or Lewis number resulted in 

stronger convection. Darbhasayanam and Barman [20] numerically investigated 

double-diffusive convection in a porous layer saturated by a viscous fluid, but the focus 

this time was on the inception of the convection regime. They reported the effect of 

Rayleigh number and Lewis number along with gravity variation parameter, Soret 

parameter, and viscous dissipation on the onset of convection. Liang et al. [21] 

investigated numerical results of double-diffusive convection in a slim rectangular 

enclosure with horizontal temperature and concentration gradients. They found that 

with the buoyancy ratio 𝑁 increasing from 1 to 2, the flow of transition is a complex 

series of changes from the periodic to quasi-periodic, chaotic, periodic, and finally to 

laminar with dominating concentration. Recently, Hu et al. [22] inspected the effects of 

both cavity inclination and magnetic field on double-diffusive convection. They found 

that for vertical and inclined enclosures, increasing thermal Rayleigh number and 

buoyancy ratio resulted in the enhancement of overall heat and moisture transfer rates. 

As for the magnetic field, they showed that its presence caused the suppressing of the 

convection currents; hence, reduced heat and moisture transfer. 

1.2.2.2 Rayleigh–Bénard double-diffusive natural convection 

Despite the importance of double-diffusive convection discussed above, the literature 

review reveals fewer investigations compared to pure thermal convection (mono-

diffusive convection), such observation becomes even more noticeable for Rayleigh-

Bénard convection. Zhang et al. [23] numerically studied double-diffusive Rayleigh-

Bénard convection in cylindrical cavities for governing parameters: Prandtl number 

fixed at 13.2, aspect ratio varied from 0.5 to 4, and buoyancy ratio 𝑁 between −1 to 2. 

The study showed that both aspect ratio and buoyancy ratio influence the critical 

Rayleigh number characterizing the convection onset. For aiding buoyancy convection 

(𝑁 > 0), the concentration gradient accelerated flow destabilization with the critical 

Rayleigh number decreasing as 𝑁 increased. For opposing mode (𝑁 < 0), the opposite 

occurred as the gradient promoted the fluid steady-state with the critical Rayleigh 

number increasing as the absolute value of 𝑁 increased. Furthermore, the study 

compared the bifurcation sequences and flow patterns formation between thermally 

driven case (𝑁 = 0) and double-diffusive aiding and opposing cases.  Rana and Chand 
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[24] studied double-diffusive convection in an infinite horizontal porous medium layer 

of couple-stress nanofluid heated and salted from below using Darcy model. The study 

showed that couple-stress parameter, Soret and Dufour numbers, thermo-nanofluid 

Lewis number, and thermo-solutal Lewis number stabilized stationary convection, 

while the system became steadier for equal Soret and Dufour numbers. Li et al. [25] 

conducted three-dimensional numerical simulations to investigate double-diffusive 

Rayleigh–Bénard convection in a vertical cylindrical cavity heated from the bottom and 

cooled at the top. The cavity was filled with a Newtonian binary mixture with initial 

mass fraction of 10% and Prandtl and Lewis numbers were fixed at 13.2 and 140.2, 

respectively. The authors reported that the initial condition used to perform simulations 

strongly affects the flow pattern formation. As for average Nusselt number, it increased 

with Rayleigh number while the flow pattern had a minor influence. Besides, compared 

to pure thermal case (𝑁 = 0), the cooperative buoyancy case (𝑁 > 0) enhanced flow 

intensity and heat transfer while the opposing case (𝑁 < 0) reduced them. Malashetty 

et al. [26] investigated convection onset in a horizontal rotating porous layer saturated 

with a couple-stress fluid with imposed temperatures and concentrations on the bottom 

and top boundaries. The results showed that Lewis number played a stabilizing role in 

stationary and finite amplitude modes while a destabilizing effect is observed in 

oscillatory mode. Further, Lewis number was found to reduce heat transfer and enhance 

mass transfer while increasing solute Rayleigh number strengthened both. 

1.3 Non-Newtonian fluids  

Non-Newtonian fluids flow is also another area of fluid dynamics suffering a shortage 

of investigations, despite recognizing that non-Newtonian fluids behavior is essential 

to fulfill operational requirements and maximize production efficiency in most 

engineering applications. This lack of dedicated investigations is mostly attributed to 

the high non-linearity and modeling complexity of such fluids. In food industries, 

understanding non-Newtonian fluids is critical for handling foods and beverages 

behavior under processing conditions in order to maintain strict product properties and 

to ensure the cleanness of equipment such as pipes for efficient food transport. In this 

context, Krishnan and Aravamudan [27] studied the use of non-Newtonian fluids to 

sterilize food particles suspended in holding pipe for controlling parameters:  power-

law index (𝑛 = 0.57, 0.76 and 0.94), blockage ratio: ratio of particle diameter to pipe 
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diameter (𝐵𝑅 = 0.02 and 0.4), and particle Reynolds number (Rep = 0.1, 1, and 40). 

They found that hydrodynamics and heat transfer on the fluid particle surface are 

greatly influenced by the variations in 𝑛 value. They also reported that under specific 

conditions (low Rep, intermediate 𝑛, and high 𝐵𝑅), local variations in heat transfer 

around the particle can lead to non-uniform heating of the particle, which can damage 

the nutritional values and cause non-uniform sterilization within the same food particle. 

Cooling problems is another field of interest for non-linear behavior of non-Newtonian 

fluids. Khani et al. [28] focused on the efficiency of turbines cooling system in order 

for disks to endure higher temperatures as increasing the gas temperature entering a 

turbine enhances the thermal efficiency of the engine. The authors considered non-

Newtonian fluids with 𝑛 = 0, 2, 4 and 8 and concluded that viscoelastic fluids show the 

highest heat transfer rate while reducing the drag. Medical research especially related 

to blood flow is also an active area of investigations given the non-Newtonian 

proprieties of blood.  Sriram et al. [29] inspected the influence of non-Newtonian blood 

properties on the micro vessels wall shear stress measurements and proposed a two-

layer non-Newtonian model to predict blood flow characteristics. Foong et al. [30] 

focused on biomedical drug engineering. Numerical simulations of blood circulation 

inside the artery showed a change from non-Newtonian to Newtonian behavior in blood 

flow properties due to medical treatment through body vessels, which can lead to health 

problems due to the change in body temperature. Therefore, authors suggested the use 

of mechanical engineering to design safer drugs for human blood. The same goes for 

drag reduction problems, where reducing friction and strengthening the lift of a body 

submerged in a non-Newtonian fluid is a key research question for many engineering 

fields. Akçay et al [31] studied drag reduction by fluid injection on a moving wall for 

different non-Newtonian fluids (𝑛 = 0.01, 0.5, 1.0, 1.5, and 2). They reported that 

except for 𝑛 = 0.01 where the reduction was insignificant, the wall mass injection 

reduced drag for all considered power-law indexes. 

1.4 Mixed convection 

1.4.1 Definition and importance 

Double-diffusive mixed convection occurs due to combined buoyancy force, driven by 

temperature and concentration gradients, and some external forces applied to the cavity. 
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Recently, researchers focused mostly on lid-driven cavities system with applied shear 

force due to the walls’ movement. The growing attention arises from the configuration 

wide range of scientific and engineering applications. In the scientific field, the lid-

driven cavity is widely-used for studying fundamental aspects of incompressible flows 

within confined volumes and serves as a benchmark for validating numerical methods 

[32, 33]. As for engineering sector, the lid- driven cavity is found in many applications 

including indoor ventilation, electronic components cooling, solar ponds, nuclear 

reactors, heat exchangers, contaminant transport, lakes and reservoirs, and crystal 

growth [34-35]. 

1.4.2 Published works  

1.4.2.1 Mono-diffusive mixed convection 

The vast share of conducted Mixed convection studies cover flow and heat transfer 

considering different combinations of imposed temperature gradient and cavity 

configurations [36–42]. Munshi et al. [43] examined mixed convection in a square lid-

driven cavity with internal elliptic body and constant heat flux on the bottom wall. They 

concluded that the mixed convection is governed by the dimensionless parameters: 

Richardson number (𝑅𝑖), Grashof number (𝐺𝑟), and Reynolds number (𝑅𝑒). Aydm 

[44] numerically investigated laminar mixed convection in a square cavity with left 

wall moving from bottom to top at a constant velocity. The mixed convection parameter 

𝐺𝑟/𝑅𝑒2 was used to delineate the natural, forced, and mixed heat transport regimes. 

The mixed regime range of 𝐺𝑟/𝑅𝑒2 for the opposing-buoyancy case was found to be 

broader than that of the aiding-buoyancy case. Lamarti et al. [45] investigated thermal 

characteristics of a Newtonian fluid in a square cavity driven by a periodically 

oscillating lid. The results showed that Reynolds and Grashof numbers have an effect 

on energy transport and drag force depending on the velocity cycle. Also, the variation 

of Rayleigh number affected heat transfer on convective structures. Cheng [46] studied 

numerically mixed convection in a two-dimensional square cavity with adiabatic 

vertical walls, while the top moving-wall and bottom wall were maintained 

isothermally with higher temperature on the bottom. The goal was to explore how the 

heat transfer will be influenced when increasing simultaneously Grashof and Reynolds 

numbers. Additionally, a validation of the Nusselt number (𝑁𝑢) correlations from the 
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literature was given. Gangawane and Manikandan [47] analyzed numerically laminar 

mixed convection in a square enclosure filled with Newtonian fluid with top wall 

moving from left to right, while a centered triangular block was maintained either at 

constant wall temperature or constant heat flux. The dependence of Nusselt number on 

governing parameters: Reynolds, Prandtl, and Grashof numbers was elaborated and 

presented for design purposes. Oztop et al. [48] considered laminar mixed convection 

flow in the presence of uniform magnetic field inside a square enclosure with top lid-

driven heated by a corner heater. They found that the dimensions of the heater strongly 

altered the dominance of the natural convective regime. While the magnetic field 

governed heat transfer and fluid flow as increasing the Hartmann number (the magnetic 

parameter) decreased heat transfer, with higher reduction rate for high values of the 

Grashof number. Nosonov and Sheremet [49] studied mixed convection due to the 

effect of a local heater in a rectangular cavity. They reported that increasing Richardson 

number strengthened the convection inside the cavity while deforming the forced flow 

owing to the rise of buoyancy force magnitude. Bozorg and Siavashi [50] studied mixed 

convection in a square cavity containing non-Newtonian nanofluid. The results showed 

that shear-thinning or shear-thickening behavior fluid can noticeably change the effect 

of forced convection on the heat transfer efficiency. Gangawane and Oztop [51] 

numerically studied flow and heat transfer characteristics due to combined natural and 

forced convection inside semi-oval, top lid-driven cavity filled with non-Newtonian 

fluid. They found that the power-law index has a significant effect on flow 

characteristics at low Richardson number. Siddiqui et al. [52] conducted numerical 

simulations of mixed convection thermal transfer within a lid-driven square geometry. 

They concluded that a larger Grashof number enhances the stability of streamline 

circulations, whereas the enhancement in Reynolds number produced the opposite 

effect. Zhou et al. [53] numerically investigated mixed convection in a double lid-

driven cubic enclosure. The results showed that  Reynolds and Richardson numbers 

have great effects on both velocity profiles and Nusselt number. Gangawane and Gupta 

[54] examined thermal characteristics due to combined free and forced convection in a 

rectangular enclosure with one of the vertical walls moving. They found that the 

direction of the moving lid affects strongly the heat transfer characteristics. Mukherjee 

et al. [55] inspected the effect of viscous dissipation on power-law fluids forced 

convection through microchannels of different geometries. The trading between 

https://www.sciencedirect.com/topics/engineering/reynolds-number
https://www.sciencedirect.com/science/article/abs/pii/S1290072916316209#!
https://www.sciencedirect.com/science/article/abs/pii/S1290072916316209#!
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fluid rheology and viscous dissipation effect has given rise to significant variation in 

the net convective transport. Manchanda and Gangawane [56] numerically studied 

laminar 2-D mixed convection inside a double lid-driven square cavity with a 

decentered heated triangular block for non- Newtonian power-law fluids. The 

governing equations were solved using finite volume approach and SIMPLE algorithm. 

The results showed that for a power-law index 𝑛 = 0.2, mixed convection parameter 

had a negligible impact on fluid and thermal structures inside the cavity, while for      

𝑛 ≥ 0.6, streamline profiles were observed to be inclined along the right side given the 

forced convection effect generated by top and bottom walls. 

1.4.2.2 Double-diffusive mixed convection 

Most of the published researches on double-diffusive mixed convection investigated 

square cavities filled with Newtonian fluids.  Arani et al. [57] numerically investigated 

double-diffusive mixed convection of Newtonian nanofluid confined in a single lid-

driven square cavity with differentially heated and salted vertical walls using finite 

volume method. The results showed that decreasing Richardson number 𝑅𝑖 enhanced 

both heat and mass transfer rates, while for the same absolute value of buoyancy ratio, 

Nusselt and Sherwood numbers in the case of cooperating thermal and mass buoyancy 

forces were higher compared to the opposing case. For dominating forced convection 

regime at low Richardson numbers, authors reported that heat-lines structure became 

similar to that of streamlines, while mass-lines were always similar to streamlines due 

to important mass transfer rate caused by high Lewis number. As for fluid nature effect, 

the nanofluid enhanced heat transfer compared to pure fluid. Nithyadevi and 

Rajarathinam [58] investigated the problem in a double-lid driven cavity filled with 

nanofluid and subjected to constant temperatures and concentrations at the vertical 

walls while taking into account Soret and Dufour effects. Similar to [57], introducing 

nanoparticles to pure fluid enhanced heat and mass transfer which authors attributed to 

better thermal conductivity of nanofluids; whereas Dufour number strengthened heat 

transfer and Soret number enhanced mass transfer. Nath and Krishnan [59] numerically 

studied the same phenomenon within a Newtonian nanofluid filled backward facing 

channel. While the study also concluded that increasing nanoparticles volume fraction 

enhances heat transfer rate independently of the buoyancy ratio, conflicting conclusions 

were made for mass transfer, where introducing nanoparticles slowed down mass 
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transport due to mass diffusion coefficient decreasing as nanoparticles volume fraction 

increased. Such effect strengthened for negative buoyancy ratios compared to positive 

ratios given the retarding role of solutal gradient. Sivasankaran et al. [60] numerically 

investigated sinusoidal thermal boundary conditions influence on double-diffusive 

mixed convection characteristics inside a square lid-driven enclosure with vertical walls 

kept at a constant concentration. The authors found that for all considered values of 𝑅𝑖, 

both phase deviation and amplitude ratio affected heat and mass transfer. Further, the 

amplitude of wall temperature enhanced heat transfer while having small effect on mass 

transfer. Sheremet and Pop [61] investigated the phenomenon in a square cavity with 

sliding horizontal walls kept at constant temperatures and nanoparticle volume 

fractions. Two cases for dynamic boundary conditions were considered, where moving 

walls either slide in the same direction or in opposite directions. The study confirmed 

the established strong effect of Lewis number 𝐿𝑒 on strengthening mass transfer while 

heat transfer slightly enhanced. However, Nusselt number was found to decrease with 

𝐿𝑒 when walls slided in opposite directions while increasing buoyancy ratio noticeably 

affected temperature and concentration fields for the opposing case only. Ababaei et al. 

[62] considered a right-angled trapezoidal enclosure partially heated and salted from 

the bottom and occupied with a Newtonian fluid to numerically investigate entropy 

generation. They found that for negative buoyancy ratios, heat and mass transfer rates 

and entropy generation enhanced for top wall sliding to the left compared to sliding to 

the right, while the opposite occurred for positive buoyancy ratios. Moreover, the three 

characteristics increased as the heat source approached the cold wall. Al-Amiri et al. 

[63], Kumar et al. [64], and Hussain et al. [65] also investigated double-diffusive mixed 

convection numerically in square cavities filled with Newtonian fluids and subjected to 

different thermal, solutal, and dynamical boundary conditions. 

1.4.2.3 Non-Newtonian double-diffusive mixed convection 

This attention given to double-diffusive mixed convection falls short when it comes to 

including the non-linear behavior of non-Newtonian fluids. Yapicia et al. [66] 

considered steady laminar flow inside a lid-driven cavity to study Reynolds number 

effect for a viscoelastic fluid with and without inertia effect. They found that Reynolds 

number affects largely the stress fields at the upper section of the cavity. Kefayati [67] 

numerically inspected the effect of horizontal magnetic field in a double lid-driven 
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square enclosure filled with shear thinning fluids using finite difference lattice 

Boltzmann method for governing parameters: Richardson number, Hartmann number, 

Lewis number, buoyancy ratio, and power-law index while fixing thermal Grashof 

number at 𝐺𝑟𝑇  =  100. The author reported that for 𝑅𝑖 = 0.0062 and 𝑅𝑖 = 0.01, 

increasing 𝑛 from 0.2 to 1.0 enhanced heat and mass transfer, while for 𝑅𝑖 = 1 an 

opposite trend is observed. As for Hartmann number, increasing it reduced heat and 

mass transfer rates and significantly weakened the influence of 𝑛 on transport 

processes. Hajesfandiari et al. [68] studied two-dimensional flow in a square single lid-

driven cavity using couple stress theory to investigate non-Newtonian size-dependent 

flows while varying size-dependent parameter and Reynolds number. The prescribed 

additional boundary conditions for couple stress theory significantly influenced flow 

structure and critical Reynolds number after which a non-stationary flow behavior 

occurs. Kefayati [69] investigated laminar convection in a single lid-driven square 

cavity filled with shear thinning fluid and subjected to sinusoidal temperature and 

concentration boundary conditions along the right wall while keeping the left wall at 

high temperature and concentration. The study found that while increasing 𝐿𝑒 enhanced 

mass transfer, it also changed the effect of 𝑛 on mass transfer for various 𝑅𝑖 values. 

Nayak et al. [70] numerically investigated mixed convection within square enclosures 

confining pseudoplastic power-law fluids with partially heated and salted horizontal 

walls while the vertical ones slide in opposite directions. The results revealed that the 

position and the length of the active zones greatly affect fluid flow and heat and mass 

transfer; further, increasing 𝑅𝑖 decreased heat and mass transfer. Kefayati [71] reported 

similar result as increasing 𝑅𝑖 reduced heat and mass transfer for different values of 

governing parameters. This time considering active vertical walls where the left and 

right walls were kept at high and low temperature and concentration, respectively, while 

the adiabatic and impermeable horizontal walls slide in the same direction from left to 

right.  

1.5 Horizontal channels  

1.5.1 Real world applications 

The significance of horizontal channels comes from the wide range of micro and macro 

engineering applications where such configurations are found including turbines’ 
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components internal cooling, heat exchangers, and electronic components cooling [72, 

73]. The progress in circuit integration and the ever-rising miniaturization trend in 

manufacturing lead to highly sophisticated components requiring highly controlled 

environment to operate. Consequently, detailed investigation of fluid circulation and 

heat and mass transfer inside rectangular cavities becomes indispensable to fulfil the 

operating conditions of the aforementioned systems, especially the strict cooling 

requirements in order to extend their life cycle while maintaining the highest 

performance. Enhancing heat and mass transport processes have been the main research 

focus being the key to efficient compact systems where various intensification methods 

can be considered: working fluid nature, external forces, and boundary conditions.  The 

present study investigates the effects of all these factors on fluid flow and heat and mass 

transfer. First, for non-Newtonian fluids, and given what we mentioned above about 

their importance in engineering fields, investigating the effect of fluids’ rheological 

behavior on heat and mass transfer is key. Second, and while exploiting natural 

convection is an attractive idea, the driving buoyancy force is responsible for flow 

instabilities going from steady laminar to turbulent flows. Thus, enhancing natural 

convection is a restricted solution, where introducing forced convection usually 

becomes essential to achieve system requirements. The results of the present study can 

be useful for other applications for a couple of reasons. One is the inclusive range of 

considered governing parameters (𝑃𝑒 ≤ 103, 𝑅𝑎𝑇 ≤ 107, 10−5 ≤ 𝐿𝑒 ≤ 105,     

10−5 ≤ 𝑁 ≤ 105, and 0.6 ≤ 𝑛 ≤ 1.4) allowing to cover different convective regimes 

(natural, mixed, and forced convection). Two, when it comes to enhancing heat and 

mass transfer, the obtained answers in one field can be applied to other fields giving 

that the main questions are the same; hence, many components that can be modeled as 

rectangular cavities can be considered. One of the many examples is the storage units 

for renewable energy systems, where simulating fluid flow and understanding 

temperature and concentration distributions are key for optimal design as strengthening 

heat and mass transport processes cut heat losses and allows gain of storage capacity 

[6]. 

1.5.2 Published works  

The literature review revealed an even serious lack of investigations when it comes to 

double-diffusive mixed convection inside rectangular cavities. Bettaibi et al. [74] 
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numerically studied the phenomenon in a rectangular cavity with top lid-driven using 

lattice Boltzmann method to compute fluid flow and finite difference method to 

compute temperature and concentration fields. The authors discussed the accuracy of 

the proposed model to simulate mixed convection heat and mass transfer in driven 

cavities. Teamah and El-Maghlany [75] investigated steady laminar mixed convection 

in a rectangular enclosure due to combined thermal and solutal buoyancy forces. Two 

cases were considered, where the top wall slides from left to right (assisting flow) or in 

the opposite direction (opposing flow), while the motionless vertical walls maintained 

at different constant temperatures and concentrations. As expected, higher heat and 

mass transfer were reported for assisting flow compared to opposing flow; while for 

both cases, decreasing 𝑅𝑖 enhanced heat and mass transfer rates.  

1.6 Conclusion 

All things considered, the shortage of works investigating non-Newtonian double-

diffusive mixed convection within lid-driven horizontal channels becomes obvious, 

despite what we mentioned about the significance of each of the four research axes: 

double-diffusive convection, non-Newtonian fluids, lid-driven cavities, and horizontal 

channels for both scientific and engineering fields. Furthermore, the literature review 

shows that double-diffusive mixed convection inside rectangular lid-driven cavities 

subjected to uniform heat and mass fluxes and filled with non-Newtonian fluids has not 

been studied thus far. 

To address this gap and taking into account the singularity and complexity of imposed 

boundary conditions and non-Newtonian fluids rheological behavior, the present study 

can lead to new findings about non-Newtonian fluids flow and heat and mass transport 

given all the considered driving factors. 
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CHAPTER 2  Theoretical Framework: Rheological Model 

 

2.1 Introduction 

Chemistry Professor Eugene Bingham invented the term rheology while working on 

some new materials showing strange flow behavior such as paints. Rheology, which 

can be applied to all materials from gases to solids, refers to flow and deformation of 

matter theory that characterizes the interrelation between force, deformation, and time. 

For the case of fluids flow, many working conditions can influence the rheological 

behavior; specifically: type of loading, degree of loading, duration of loading, 

temperature, concentration, and magnetic field for magnetorheological fluids (MRF). 

Fluids differ from solids as they continuously deform under an applied stress, while 

solids deform and stop giving their elastic response that enable them to resist such 

stress. 

2.2 Rheology model 

The main question is how to model the different fluid behaviors. Flow models are 

mathematical equations that can describe rheological data such as shear stress-shear 

rate curves (𝜎 − �̇�) in a fitting and concise form with few model parameters. The 

rheological models can be separated into three groups based on their background: 

1. Empirical model: straightforward fitting of the experimental data. Power-law 

model, discussed later, is an example of empirical models. 

2. Theoretical model: deduced from fundamental concepts in statistical 

mechanics, such as the extension of kinetic theory application to the liquid state, 

which can help understand the role of structure. An example of theoretical 

models is the Krieger-Dougherty model for relative viscosity. 

3. Structural model: deduced from considering the structure and kinetics of 

changes in it. Such structure-based analysis, along with experimental data, can 

be used to characterize the rheological behavior and can offer crucial 

understanding of a dispersed system structure role. Cross model is an example 
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of structural models used to describe the flow behavior of polymer dispersions 

and other shear-thinning fluids. 

Many rheological models have been reported in the literature, with varying form and 

complexity, to model fluids’ behaviors. The said models have been also successfully 

used to derive velocity profiles and flow rates in tube and channel fluid flows, along 

with the study of heat and mass transfer phenomena. 

2.3 Constitutive equation 

For viscous fluids, a simple model of a liquid can be obtained by assuming that the 

stress tensor 𝜎 depends exclusively on the current value of the rate of deformation 

tensor �̅̅̇�. 

 𝜎 = 𝑓(𝐴1
̅̅ ̅̅̅ ̅);  𝐴1

̅̅ ̅̅̅ ̅ = 2�̅̅̇� (2.1) 

where 𝐴1
̅̅ ̅̅̅ ̅ is the first Rivlin-Ericksen kinematic tensor.  

A proposed constitutive equation needs to fulfil a set of principles before being 

considered admissible. One of the main principles restricting the form of the 

constitutive equation is 'material frame-indifference' principle, also called 'principle of 

objectivity', which states that a valid constitutive equation should be independent of the 

frame of reference or the motion of the observer. The material frame-indifference 

imposes that 𝜎 be an isotropic tensor function (tensor components remain invariant for 

all rotated coordinate systems); thus, it can be expressed as follows ([76], p. 233):  

 𝜎(𝐴1
̅̅ ̅̅̅ ̅) = 𝜑0𝐼 ̅

̅ + 𝜑1𝐴1
̅̅ ̅̅̅ ̅ + 𝜑2𝐴1

̅̅ ̅̅̅ ̅2
 (2.2) 

where the scalar functions 𝜑0, 𝜑1, and 𝜑2 depend on the principal invariants of 𝐴1
̅̅ ̅̅̅ ̅ given 

by: 

 𝑖1(𝐴1
̅̅ ̅̅̅ ̅) = 𝑡𝑟(𝐴1

̅̅ ̅̅̅ ̅);  𝑖2(𝐴1
̅̅ ̅̅̅ ̅) = −

1

2
𝑡𝑟 (𝐴1

̅̅ ̅̅̅ ̅2
) ; 𝑖3(𝐴1

̅̅ ̅̅̅ ̅) =
1

3
𝑡𝑟 (𝐴1

̅̅ ̅̅̅ ̅3
) (2.3) 

The symbol 𝑡𝑟(. ) designates the trace of the tensor.  

For an incompressible fluid, i.e., 𝑖1(𝐴1
̅̅ ̅̅̅ ̅) = 𝑡𝑟(𝐴1

̅̅ ̅̅̅ ̅) = 0. Equation (2.2) can be rewritten 

as follows: 

 𝜎 = −𝑝𝐼 ̅̅ + 𝜏̅̅ (2.4) 
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with 𝜏̅̅ is the viscous stress tensor: 

 𝜏̅̅ = 𝜑1𝐴1
̅̅ ̅̅̅ ̅ + 𝜑2𝐴1

̅̅ ̅̅̅ ̅2
 (2.5) 

for which 𝜑1 and 𝜑2 depend only on the invariants 𝑖2 and 𝑖3: 

 𝜑1 = 𝜑1(𝑖2, 𝑖3) (2.6) 

 𝜑2 = 𝜑2(𝑖2, 𝑖3) (2.7) 

On the one hand, the constitutive equation (2.4) represents a general viscous model and 

describes Reiner-Rivlin fluids (RR). On the other hand, a constitutive equation is 

thermodynamically valid if it satisfies the 'Clausius–Duhem inequality', also called 

'dissipation inequality', stating that in a real material, the dissipation should be non-

negative. As a result, the dissipation inequality imposes the following condition: 

 𝜑1𝑡𝑟 (𝐴1
̅̅ ̅̅̅ ̅2

) + 𝜑2𝑡𝑟 (𝐴1
̅̅ ̅̅̅ ̅3

) ≥ 0 (2.8) 

The viscous stress tensor expression connecting viscous stresses and strain rates 

(𝜏̅̅ = 𝑓(�̅̅̇�))  define a fluid rheological behavior law. Based on such flow behavior, 

fluids are generally divided into three main groups: 

• Newtonian fluids  

• Time independent non-Newtonian fluids 

• Time dependent non-Newtonian fluids 

The present work focuses on the first two groups. 

2.3.1 Newtonian fluids  

Fluids obeying the Newton’s linear law of viscosity (fluids whose viscous stresses at 

each point are linearly correlated to the strain rate at that point) are called Newtonian 

fluids. Gases and some of the common liquids such as water, oils, and hydrocarbons 

display Newtonian flow characteristics, i.e., at constant temperature and pressure. 

Accordingly, for Newtonian fluids, Eq. (2.5) reduces to:  

 𝜏̅̅ = 𝜑1𝐴1
̅̅ ̅̅̅ ̅ = 2𝜑1�̅̅̇� = 2𝜇𝑎

′ �̅̅̇� (2.9) 

As Eq. (2.9) shows, the Newtonian fluid is a special case of the Reiner-Rivlin fluids 

with 𝜑1 = 𝜇𝑎
′ , the apparent viscosity constant for a Newtonian fluid, and 𝜑2 = 0. The 

scalar function 𝜑2 is generally discarded as the term containing it generates normal 
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stresses that doesn’t qualitatively agree with experimental observations in the case of 

simple shearing flows. 

For simple shear flows, Eq. (2.9) becomes: 

 𝜏 = 𝜇𝑎
′ �̇� (2.10) 

with 𝜏 and �̇� are shear stress and shear rate, respectively. 

2.3.2 Time independent non-Newtonian fluids 

In a non-Newtonian fluid, the relation between shear stress and shear rate is not linear, 

where the viscosity is a variable and not a constant scalar. Such fluids are frequently 

encountered in industrial applications where the fluids viscosity can change by a factor 

of 10, 100, and in some cases even 1000. Thus, engineers cannot ignore such enormous 

change, leading to a modification of Newton’s law where the viscosity is allowed to 

vary. Among the non-Newtonian fluids, the time independent non-Newtonian fluids 

(known also as generalized Newtonian fluids) are the most popular where the viscosity 

is a function of the shear rate: 

 𝜏̅̅ = 2𝜇𝑎
′ (�̇�)�̅̅̇� (2.11) 

For simple shear flows 

 𝜏 = 𝜇𝑎
′ (�̇�)�̇� (2.12) 

The time independent non-Newtonian fluids can be separated into two main categories: 

fluids exhibiting a yield stress, i.e., a shear stress above a critical value must be applied 

before flow occurs, and fluids with no yield stress. This last category, considered in the 

present work, can be further subdivided into shear thinning and shear thickening fluids 

depending on how the apparent viscosity changes with shear rate. 

2.3.2.1 Shear thinning or pseudoplastic fluids 

The most frequently encountered time independent non-Newtonian fluid behavior in 

engineering applications is shear thinning or pseudoplasticity characterized by a 

decreasing apparent viscosity with increasing shear rate. Most shear thinning polymer 

melts and solutions displays Newtonian plateaus at very low and very high shear rates, 

where the viscosity becomes independent of shear rate. The apparent viscosity at the 

limiting cases of very low and very high shear rates are known as zero shear viscosity 
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𝜇0  and infinite shear viscosity 𝜇∞, respectively. Accordingly, the apparent viscosity 

decreases from 𝜇0 to 𝜇∞ with increasing shear rate for a shear thinning fluid (Figure 

2.1). 

2.3.2.2 Shear thickening or dilatant fluids 

Dilatant and pseudoplastic fluids are similar in that they display no yield stress; 

however, dilatant fluids apparent viscosity increases with increasing shear rate, giving 

rise to the name shear thickening. Among the time independent fluids, this sub-class 

attracted less attention as their behavior was considered to rarely manifest in chemical 

and processing industries. However, the case is no longer the same with the growing 

interest in handling and processing systems with high solids loadings as confirmed by 

the increasing number of recent scientific articles on the matter. Given the scarcity of 

rheological data for dilatant fluids owing to what is mentioned above, we cannot say 

with confidence whether such fluids also display Newtonian plateaus in the limits of 

very low and very high shear rates. 

 

 

Figure 2.1. Viscosity-shear rate plot for pseudoplastic fluids at different temperatures. 
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2.3.3 Power-law model 

Several models have been proposed by scientists to approximate the rheological data of 

non-Newtonian fluids through observing, studying, and characterizing their flow 

behavior. These mathematical models have been extensively and successfully used in 

fluid dynamics calculations for several decades as mentioned before. The power-law 

model, also known as Ostwald-de Waele model [77, 78], is one of the most well-known 

and widely-adopted rheological models especially for engineering purposes. The 

power-law model can be expressed mathematically as follows: 

 𝜏 = 𝑘(�̇�)𝑛 (2.13) 

Thus, the apparent viscosity of the power-law fluid is given by: 

 𝜇𝑎
′ (�̇�) = 𝑘(�̇�)𝑛−1 (2.14) 

where the positive constants 𝑘 and 𝑛 are the flow consistency index and behavior index, 

respectively.  

We mentioned before the scarcity of currently available data (mostly limited to simple 

shear flows) for shear thickening fluids; however, the available information shows that 

it is possible to approximate shear stress-shear rate data for dilatant fluids by the power-

law model with 𝑛 greater than unity. Accordingly, based on the dimensionless flow 

behavior index 𝑛 refelecting the closeness to Newtonian flow: 

• 0 < 𝑛 < 1: the fluid shows pseudoplastic behavior, where smaller values of 𝑛 

lead to higher degrees of shear thinning. 

• 𝑛 = 1: the fluid shows Newtonian behavior. 

• 𝑛 > 1: the fluid behavior is said to be dilatant, where higher values of 𝑛 yield 

greater thickening.   

Many reasons are behind the popularity of the power-law model. One is its simplicity, 

as it only has two fitting parameters compared to other more complex models that fit 

non-Newtonian fluids such as Cross model and Carreau-Yasuda model containing four 

and five fitting constants, respectively. This is due to the fact that for many fluids, the 

shear stress-shear rate plots on 𝑙𝑜𝑔 − 𝑙𝑜𝑔 coordinates can be approximated by a straight 

line for a given range of shear rate. Another advantage is allowing analytical solutions 

in a wide range of flow geometries, explaining the extensive practice of power-law 

https://blog.rheosense.com/modeling-non-newtonian-fluids
https://blog.rheosense.com/modeling-non-newtonian-fluids
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model in engineering fields as it allows to test the accuracy of numerical methods, 

which is the case for the present work. However, the power-law model presents one 

important limitation, it cannot describe neither the upper nor the lower Newtonian 

plateau observed experimentally for non-Newtonian fluids at very low and very high 

shear rates (Figure 2.1), respectively, where the power-law model gives: 

 𝜇0 ≡ 𝜇(0) = ∞ for 𝑛 < 1 and = 0 for 𝑛 > 1 (2.15) 

 𝜇∞ ≡ 𝜇(∞) = 0 for 𝑛 < 1 and = ∞ for 𝑛 > 1 (2.16) 

which does not agree with what is always found in experiments with non-Newtonian 

fluids: 

 𝜇0 ≡ 𝜇(0) = finite value > 0; 𝜇∞ ≡ 𝜇(∞) = finite value > 0 (2.17) 

 

Yet, for many flow problems, the regions of very low and very high shear rates are of 

lesser importance especially for process engineering applications (Figure 2.1) where 

most fluids’ behaviors are accurately captured using the power-law model. 

2.4 Conclusion 

General Rheological model characterizing, under all flow conditions, viscous fluids 

flow behavior is described briefly while focusing on the essential. The power-law 

model is chosen given its many advantages, especially the possibility of establishing an 

analytical solution, which is one of the main assets of the present study. 
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CHAPTER 3  Methodology 

 

3.1  Introduction 

In this chapter, we first begin by establishing the mathematical model to simulate 

double-diffusive mixed convection of power-law non-Newtonian fluids. The problem’s 

boundary conditions along with the adopted simplifying assumptions are defined, 

considering the investigated geometry, and the equations are written in dimensionless 

form in the Cartesian coordinate system. Two formulations of governing equations are 

exploited to solve the convection problem: the primitive variables (𝑢, 𝑣, 𝑝, 𝑇, 𝑆) form 

and the stream function-vorticity formulation (𝜓,𝛺, 𝑇, 𝑆). 

Next, two separate approaches are presented for solving fluid flow and heat and mass 

transfer. First, a numerical approach to solve the two-dimensional governing equations, 

where two methods are chosen for their advantages, the finite difference method using 

the stream function-vorticity formulation and the finite volume method using the 

primitive variables form. Second, an analytical solution derived based on the parallel 

flow approximation. 

3.2 Mathematical formulation 

3.2.1 General governing equations 

Equations governing Double-diffusive fluid convection describe conservation of mass 

(3.1), momentum (3.2), energy (3.3), and concentration (3.4) and can be written as 

follows: 

 
𝜕𝜌

𝜕𝑡′ + 𝑑𝑖𝑣(𝜌𝑉′⃗⃗⃗⃗ ) = 0 (3.1) 

 
𝜕(𝜌𝑉′⃗⃗ ⃗⃗  )

𝜕𝑡′
+ 𝑑𝑖𝑣(𝜌𝑉′⃗⃗⃗⃗ ⊗ 𝑉′⃗⃗⃗⃗ − 𝜎) = 𝜌𝑓  (3.2) 

 
𝜕(𝜌𝑐𝑝𝑇′)

𝜕𝑡′
+ 𝑑𝑖𝑣(𝜌𝑐𝑝𝑇′𝑉′⃗⃗⃗⃗ + 𝑞 ) = 𝛽𝑇𝑇′ 𝜕𝑝′

𝜕𝑡′
+ 𝜏̅̅ ∶  𝑔𝑟𝑎𝑑𝑉′̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (3.3) 

 
𝜕(𝜌𝑆′)

𝜕𝑡′
+ 𝑑𝑖𝑣(𝜌𝑆′𝑉′⃗⃗⃗⃗ + 𝑗 ) = 0 (3.4) 
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with density 𝜌, specific heat capacity at constant pressure 𝑐𝑝, external forces applied to 

fluid parcels 𝑓 , velocity 𝑉′,pressure 𝑝′, temperature 𝑇′, concentration 𝑆′ are the main 

variables. To close the system, we need to establish relations defining stress tensor 𝜎, 

viscous stress tensor 𝜏̅̅, heat flux vector 𝑞 , and mass flux vector 𝑗  in terms of the above-

mentioned variables. Equation (2.4) defines 𝜎 while equations (2.9) and (2.11) express 

𝜏̅̅. Heat flux vector is defined using the classical Fourier conduction law relating  𝑞  to 

temperature gradient �⃗� 𝑇′  while the mass flux vector is defined with Fick's first law of 

diffusion relating 𝑗  to concentration gradient �⃗� 𝑆′: 

 𝑞 = −𝜆�⃗� 𝑇′;  𝑗 = −𝐷�⃗� 𝑆′ (3.5) 

where the material constants 𝜆 and 𝐷 are the fluid thermal conductivity and mass 

diffusivity, respectively. The negative signs show that heat and mass fluxes move from 

regions of higher temperature and concentration to regions of lower temperature and 

concentration with a magnitude that is proportional to temperature and concentration 

gradients, respectively. 

3.2.2 Physical configuration 

Enclosures are finite spaces confined by walls and filled with fluid. In fluid mechanics, 

a rectangular enclosure is by far one of the most investigated configurations. The 

characterization of fluid flows in such rectangular domains is a fundamental problem 

in fluid dynamics given the relevance to numerous important physical applications 

including but not limited to: cavity flows [79], polymers extrusion [80], and 

microfluidics [81, 82]. Convection phenomenon in rectangular enclosures, also known 

as internal convection, manifests in many micro and macro engineering applications 

ranging from electronic components cooling [72] to thermally comfortable and 

sustainable buildings design. Internal convection, unlike external convection, is a 

complex flow phenomenon that usually cannot be modeled using the simple classical 

boundary layer theory given that the entire fluid within the enclosure engages to the 

convection.  

For these reasons and others discussed before, the present thesis work investigates 

double-diffusive mixed convection inside lid-driven rectangular cavities, the 

corresponding physical configuration and associated boundary conditions are given in 

Figure 3.1.  A horizontal rectangular enclosure of length 𝐿′, along the 𝑥-axis, and height 

https://www.sciencedirect.com/topics/engineering/fourier-conduction
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𝐻′, along the 𝑦-axis, subjected to uniform heat and mass fluxes 𝑞′ and 𝑗′, respectively, 

with horizontal walls are either motionless or slide with a uniform velocity 𝑢0
′ . 

3.2.3 Boundary conditions 

For the boundary value problem at hand, the associated boundary conditions can be 

split into two categories: 

3.2.3.1 Dynamical boundary conditions 

For the geometry being discussed, the vertical walls present no-slip conditions while 

for the horizontal boundaries two cases are considered; first, the bottom wall is 

motionless while the top one slide with a uniform velocity (Single lid-driven boundary, 

𝑒 = 0). Second, both horizontal walls slide in opposite directions with constant velocity 

(Double lid-driven boundaries, 𝑒 = 1). These boundary conditions of Dirichlet type are 

expressed as follows: 

 {
𝑢′ = 𝑣′ = 0 for 𝑥′ = 0 and 𝑥′ = 𝐿′

𝑢′ + 𝑒𝑢0
′ = 𝑣′ = 0 for 𝑦′ = 0

𝑢′ − 𝑢0
′ = 𝑣′ = 0  for 𝑦′ = 𝐻′

 (3.6) 

 

 

 

Figure 3.1. Physical model of the investigated configuration along with coordinate 

system and associated boundary conditions. The cavity is subjected to uniform density 

of heat and mass fluxes, 𝑞′ and 𝑗′, respectively, with horizontal boundaries are 

considered either motionless or slide with uniform velocity 𝑢0
′ . 
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3.2.3.2 Thermal and solutal boundary conditions 

The cavity walls are submitted to boundary conditions of Neumann type (uniform 

density of heat and mass fluxes) which are expressed using Fourier law and Fick's first 

law: 

 {
𝑎𝑞′ = −𝜆

𝜕𝑇′

𝜕𝑥′  and  𝑐𝑗′ = −𝐷
𝜕𝑆′

𝜕𝑥′   for 𝑥′ = 0 and 𝑥′ = 𝐿′

𝑏𝑞′ = −𝜆
𝜕𝑇′

𝜕𝑦′  and  𝑑𝑗′ = −𝐷
𝜕𝑆′

𝜕𝑦′   for 𝑦′ = 0 and 𝑦′ = 𝐻′
 (3.7) 

where constants 𝑎, 𝑏, 𝑐, and 𝑑 define the active boundaries. 

Experimentally speaking, Constant heat and mass fluxes conditions are generally 

considered in heat and mass transfer problems as the input power can be easily 

controlled and adjusted, while maintaining constant wall temperature and concentration 

is difficult. 

3.2.4 Simplifying assumptions 

In order to render the problem modelling and analysis in a more tractable way, certain 

assumptions are made. The introduced simplifying assumptions need to be appropriate 

and justified to assure the accuracy and meaningfulness of the obtained results. 

• For many applications, it is adequate to consider that vector 𝑓  in Eq. (3.2) is 

only comprised of gravity 𝑔 . 

• The flow is laminar due to the low flow speed engendered by the small applied 

fluxes. 

• The fluid is incompressible. For pressures close to atmospheric, liquids are a 

good approximation of incompressible fluids providing that 
𝜕𝜌

𝜕𝑝′
≈ 0. It is 

therefore appropriate to neglect the term 𝛽𝑇𝑇′ 𝜕𝑝′

𝜕𝑡′  in Eq. (3.3) with 𝛽𝑇 =

−(
1

𝜌
) (

𝜕𝜌

𝜕𝑇′)
𝑝′

is fluid thermal expansion coefficient at constant pressure. 

• Heat generated due to viscous friction, 𝜏̅̅ ∶  𝑔𝑟𝑎𝑑𝑉′̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , described in Eq. (3.3) is 

negligeable. This remains valid as long as the viscosity of the considered non-

Newtonian fluids is relatively low (layers of a low viscosity liquid move easily 

since there is less friction between them). 
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• There is no chemical reaction or internal source of heat or mass. 

• Thermal radiation heat transfer is negligeable due to walls moderate 

temperatures [83, p. 27]. 

• Soret effect, i.e., mass flux generated by a temperature gradient, and Dufour 

effect, i.e., energy flux created by concentration differences, are negligeable. 

• The fluid physical properties are temperature and concentration independent, 

except for viscosity and density in the gravitational term. For density, the 

Boussinesq approximation [84] is adopted which essentially consist of the 

following: 

1. The density is assumed constant, except in the gravitational term of the 

momentum equation (𝜌𝑓 = 𝜌𝑔 ) . 

2. In this gravitational term, the effect of pressure on density is neglected 

compared to that of temperature and concentration. 

3. Density 𝜌(𝑇′, 𝑆′) is given as a linear function of temperature and 

concentration in the vicinity of reference values 𝑇0
′ and 𝑆0

′  : 

 𝜌(𝑇′, 𝑆′) = 𝜌0[1 − 𝛽𝑇(𝑇′ − 𝑇0
′) − 𝛽𝑆(𝑆

′ − 𝑆0
′)] (3.8) 

where, 𝜌0 is the reference fluid density at reference temperature and concentration 

(𝑇′, 𝑆′) = (𝑇0
′, 𝑆0

′), 𝛽𝑇 and 𝛽𝑆 (𝛽𝑠 = −(
1

𝜌
) (

𝜕𝜌

𝜕𝑆′)
𝑝′

) are the thermal and solutal 

expansion coefficients, respectively. 

• The cavity third dimension is sufficiently large for the three-dimensional flow 

to be reduced to a two-dimensional problem, which can provide further insight 

into the more complex three-dimensional flows [85]. 

Using the aforementioned assumptions, the governing equations can be written as 

follows: 

 
𝜕𝑢′

𝜕𝑥′ +
𝜕𝑣′

𝜕𝑦′ = 0  (3.9) 

 

𝜌0 (
𝜕𝑢′

𝜕𝑡′
+ 𝑢′

𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
)  = −

𝜕𝑝′

𝜕𝑥′
+ 𝜇ʼ𝑎 (

𝜕²𝑢′

𝜕𝑥′2
+

𝜕²𝑢′

𝜕𝑦′2
) + 

 2
𝜕𝜇ʼ𝑎

𝜕𝑥′

𝜕𝑢′

𝜕𝑥′ +
𝜕𝜇ʼ𝑎

𝜕𝑦′ (
𝜕𝑢′

𝜕𝑦′ +
𝜕𝑣′

𝜕𝑥′) (3.10) 
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𝜌0 (
𝜕𝑣′

𝜕𝑡′
+ 𝑢′

𝜕𝑣′

𝜕𝑥′
+ 𝑣′

𝜕𝑣′

𝜕𝑦′
) = −

𝜕𝑝′

𝜕𝑦′
+ 𝜇ʼ𝑎 (

𝜕²𝑣′

𝜕𝑥′2
+

𝜕²𝑣′

𝜕𝑦′2
) 

 +2
𝜕𝜇ʼ𝑎

𝜕𝑦′

𝜕𝑣′

𝜕𝑦′ +
𝜕𝜇ʼ𝑎

𝜕𝑥′ (
𝜕𝑢′

𝜕𝑦′ +
𝜕𝑣′

𝜕𝑥′) + 𝜌0𝑔[𝛽𝑇(𝑇′ − 𝑇0
′) + 𝛽𝑆(𝑆

′ − 𝑆0
′)] (3.11) 

 

 
𝜕𝑇′

𝜕𝑡′ + 𝑢′
𝜕𝑇′

𝜕𝑥′ + 𝑣′
𝜕𝑇′

𝜕𝑦′ = 𝛼 [
𝜕²𝑇′

𝜕𝑥′2
+

𝜕²𝑇′

𝜕𝑦′2
]  (3.12) 

 

 
𝜕𝑆′

𝜕𝑡′ + 𝑢′
𝜕𝑆′

𝜕𝑥′ + 𝑣′
𝜕𝑆′

𝜕𝑦′ = 𝐷 [
𝜕²𝑆′

𝜕𝑥′2
+

𝜕²𝑆′

𝜕𝑦′2
] (3.13) 

with the rate of deformation tensor �̅̅̇� expressed in the Cartesian coordinate system: 

  �̅̅̇� =

(

  
 

𝜕𝑢′

𝜕𝑥′

1

2
(
𝜕𝑢′

𝜕𝑦′
+

𝜕𝑣′

𝜕𝑥′
)

1

2
(
𝜕𝑤′

𝜕𝑥′
+

𝜕𝑢′

𝜕𝑧′
)

1

2
(
𝜕𝑢′

𝜕𝑦′ +
𝜕𝑣′

𝜕𝑥′)
𝜕𝑣′

𝜕𝑦′

1

2
(
𝜕𝑣′

𝜕𝑧′ +
𝜕𝑤′

𝜕𝑦′)

1

2
(
𝜕𝑤′

𝜕𝑥′ +
𝜕𝑢′

𝜕𝑧′)
1

2
(
𝜕𝑣′

𝜕𝑧′ +
𝜕𝑤′

𝜕𝑦′)
𝜕𝑤′

𝜕𝑧′ )

  
 

 (3.14) 

𝑢′, 𝑣′, 𝑤′ are the velocity components in 𝑥′, 𝑦′, 𝑧′ directions, respectively. Thus, and 

given the two-dimensional flow assumption, the rate of deformation tensor can be 

simplified as follows: 

  �̅̅̇� =

(

 
 

𝜕𝑢′

𝜕𝑥′

1

2
(
𝜕𝑢′

𝜕𝑦′ +
𝜕𝑣′

𝜕𝑥′) 0

1

2
(
𝜕𝑢′

𝜕𝑦′ +
𝜕𝑣′

𝜕𝑥′)
𝜕𝑣′

𝜕𝑦′ 0

0 0 0)

 
 

 (3.15) 

Considering Eq. (2.14), the apparent viscosity 𝜇ʼ𝑎 can be expressed as: 

 𝜇′𝑎 = 𝑘 [2 [(
𝜕𝑢′

𝜕𝑥′
)
2

+ (
𝜕𝑣′

𝜕𝑦′
)
2

] + [
𝜕𝑢′

𝜕𝑦′
+

𝜕𝑣′

𝜕𝑥′
]
2

]

𝑛−1

2

 (3.16) 

while 𝛼 (𝛼 =
𝜆

𝜌𝑐𝑝
) is the fluid thermal diffusivity.  

3.2.5 Nondimensionalization 

Nondimensionalization denotes the process of removing physical dimensions from the 

problem equations with a suitable change of variables in order to obtain a purely 

mathematical problem. For the present study, and in order to make dependent and 

independent variables of the problem dimensionless, the following reference quantities 

are chosen: 𝐻′, 𝐻′2/ 𝛼,  𝜌0(𝛼
2/ 𝐻′2), 𝛼/𝐻′, 𝑞′𝐻′/ 𝜆, and 𝑗′𝐻′/𝐷  corresponding to 
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length, time, pressure, velocity, characteristic temperature, and characteristic 

concentration, respectively. The dimensionless variables are given in Table 3.1. 

By introducing these variables, the dimensionless forms of governing equations (3.9) – 

(3.13) and associated boundary conditions (3.6) – (3.7) are obtained: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (3.17) 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝑃𝑟 [𝜇𝑎 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) + 2

𝜕𝜇𝑎

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝜇𝑎

𝜕𝑦
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)]

  (3.18) 

  

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝑃𝑟 [𝜇𝑎 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) + 2

𝜕𝜇𝑎

𝜕𝑦

𝜕𝑣

𝜕𝑦
+

𝜕𝜇𝑎

𝜕𝑥
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)] 

 +𝑅𝑎𝑇𝑃𝑟[𝑇 + 𝑁𝑆]  (3.19) 

 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= [

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2] (3.20) 

 

 
𝜕𝑆

𝜕𝑡
+ 𝑢

𝜕𝑆

𝜕𝑥
+ 𝑣

𝜕𝑆

𝜕𝑦
=

1

𝐿𝑒
[
𝜕2𝑆

𝜕𝑥2
+

𝜕2𝑆

𝜕𝑦2
] (3.21) 

 

 𝑢 =  𝑣 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑥
+ 𝑎 = 

𝜕𝑆

𝜕𝑥
+ 𝑐 = 0   𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐴; (3.22) 

 

 𝑢 + 𝑒𝑃𝑒 =  𝑣 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑦
+ 𝑏 =

𝜕𝑆

𝜕𝑦
+ 𝑑 = 0 𝑓𝑜𝑟 𝑦 = 0;   (3.23) 

 

Table 3.1 – Dimensionless variables. 

Coordinate 

system 
(𝑥, 𝑦) =

(𝑥′, 𝑦′)

𝐻′
  

Time 𝑡 =
𝑡′

𝐻′2/ 𝛼 
  

Pressure 𝑝 =
𝑝′

𝜌0(𝛼2/ 𝐻′2) 
  Velocity 

(𝑢, 𝑣) =
(𝑢′, 𝑣′)

𝛼 𝐻′⁄
 

Temperature 
𝑇 =

(𝑇′ − 𝑇0
′)

𝛥𝑇∗
; 

𝛥𝑇∗ =
𝑞′𝐻′

𝜆
 

Concentration 
𝑆 =

(𝑆′ − 𝑆0
′)

𝛥𝑆∗
; 

𝛥𝑆∗ =
𝑗′𝐻′

𝐷
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 𝑢 − 𝑃𝑒 =  𝑣 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑦
+ 𝑏 =

𝜕𝑆

𝜕𝑦
+ 𝑑 = 0 𝑓𝑜𝑟 𝑦 = 1    (3.24) 

where: 

 𝜇𝑎 = [2 [(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

] + [
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
]
2

]

𝑛−1

2

    (3.25) 

In the above resulting equations, six dimensionless parameters emerge, namely the 

cavity aspect ratio 𝐴, generalized Prandtl number 𝑃𝑟,  Péclet number 𝑃𝑒, thermal 

Rayleigh number 𝑅𝑎𝑇, Lewis number 𝐿𝑒, and buoyancy ratio 𝑁 expressed as follows: 

  𝐴 =
𝐿′

𝐻′ ;   𝑃𝑟 =
(
𝑘

𝜌
)𝐻′2−2𝑛

𝛼2−𝑛 ;   𝑃𝑒 =
𝑢0

′ 𝐻′

𝛼
; 𝑅𝑎𝑇 =

𝑔𝛽𝑇𝐻′2𝑛+2
𝑞′

(
𝑘

𝜌
)𝛼𝑛𝜆

;   

 𝐿𝑒 =
𝛼

𝐷
;   𝑁 =

𝛽𝑆𝛥𝑆∗

𝛽𝑇𝛥𝑇∗    (3.26) 

• Prandtl number defines the ratio of momentum diffusivity (kinematic viscosity) 

to thermal conductivity.  

• Péclet number is the ratio of thermal energy transported by fluid motion (heat 

convection) to thermal energy conducted within the fluid (heat diffusion).  

• Thermal Rayleigh number conceptually measures the relative importance 

between the effects of buoyancy forces, from Archimedes’ principle, and their 

counteracting effects: friction, due to viscosity forces, and heat diffusion which 

is by conduction. Therefore, it can determine whether buoyancy-driven flow 

(natural convection) plays an important role in heat and mass transfer. 

• Lewis number characterizes fluid flows where heat and mass transfer occur 

simultaneously and is defined as the ratio of thermal diffusivity to mass 

diffusivity. Therefore, Lewis number puts thermal and concentration boundary 

layer thicknesses in correlation.  

• Buoyancy ratio describes the relative strengths of solutal and thermal buoyancy 

forces. 

For 𝑛 = 1, 𝑃𝑟 and 𝑅𝑎𝑇 find their Newtonian expressions providing that 𝑘 is replaced 

by Newtonian viscosity 𝜇. 
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3.2.6 Heat and mass transfer 

Enhancing heat and mass transfer rates has been the key for designing efficient compact 

systems given that an increase in the transfer rates influences the design and overall 

efficiency of the system. Dimensionless Nusselt and Sherwood numbers provide a 

measure of heat and mass transfer, respectively. 

3.2.6.1 Heat and mass transfer in the horizontal direction 

Nusselt and Sherwood numbers quantifying local heat and mass transfer, respectively, 

in the horizontal direction are defined as follows: 

 𝑁𝑢ℎ(𝑦) =
𝑎 𝑞′𝐿′

𝜆𝛥𝑇ℎ
′ =

𝑎

(𝛥𝑇ℎ(𝑦)/𝐴)
    (3.27) 

 𝑆ℎℎ(𝑦) =
𝑐 𝑗′𝐿′

𝐷𝛥𝑆ℎ
′ =

𝑐

(𝛥𝑆ℎ(𝑦)/𝐴)
    (3.28) 

where 𝛥𝑇ℎ(𝑦) = 𝑇(0, 𝑦) − 𝑇(𝐴, 𝑦) and 𝛥𝑆ℎ(𝑦) = 𝑆(0, 𝑦) − 𝑆(𝐴, 𝑦)  represent the 

local dimensionless temperature and concentration difference between the two vertical 

walls 𝑥 = 0 and  𝑥 =𝐴, respectively. 

However, definitions (3.27) and (3.28) have the disadvantage of introducing 

inaccuracies into the values of 𝑁𝑢ℎ and 𝑆ℎℎ due to the edge effects where the flow is 

more complex. Further, the numerical solution will be compared to the analytical one, 

which will be established after this, valid in the core section of the cavity. As such, and 

by analogy to (3.27) and (3.28), 𝑁𝑢ℎ and 𝑆ℎℎ are evaluated far from the vertical walls 

of the cavity [86] considering two symmetrical vertical sections with respect to the 

central section at (𝑥 = 𝐴/2): 

 𝑁𝑢ℎ(𝑦) = 𝑎 𝑙𝑖𝑚
𝛿𝑥→0

𝛿𝑥

𝛿𝑇
= 𝑎 𝑙𝑖𝑚

𝛿𝑥→0

1

(
𝛿𝑇

𝛿𝑥
)
= −a/(𝜕𝑇 ∕ 𝜕𝑥)𝑥=𝐴/2    (3.29) 

 𝑆ℎℎ(𝑦) = 𝑐 𝑙𝑖𝑚
𝛿𝑥→0

𝛿𝑥

𝛿𝑆
= 𝑐 𝑙𝑖𝑚

𝛿𝑥→0

1

(
𝛿𝑆

𝛿𝑥
)
= −𝑐/(𝜕𝑆 ∕ 𝜕𝑥)𝑥=𝐴/2    (3.30) 

where, 𝛿𝑥 is the horizontal distance between the two infinitely close sections considered 

above. 

As for the average horizontal Nusselt number describing the overall horizontal heat 

transfer and the average horizontal Sherwood number describing the overall horizontal 

mass transfer, the following equations are used respectively: 
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 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ = ∫ 𝑁𝑢ℎ(𝑦)𝑑𝑦

1

0
    (3.31) 

 𝑆ℎℎ
̅̅ ̅̅ ̅ = ∫ 𝑆ℎℎ(𝑦)𝑑𝑦

1

0
    (3.32) 

 

3.2.6.2 Heat and mass transfer in the vertical direction 

Nusselt and Sherwood numbers measuring local heat and mass transfer in the vertical 

direction, respectively, are expressed as follows: 

 𝑁𝑢𝑣(𝑥) =
𝑏𝑞′𝐻′

𝜆𝛥𝑇𝑣
′ =

𝑏

𝛥𝑇𝑣(𝑥)
    (3.33) 

 𝑆ℎ𝑣(𝑥) =
𝑑𝑗′𝐻′

𝐷𝛥𝑆𝑣
′ =

𝑑

𝛥𝑆𝑣(𝑥)
    (3.34) 

with 𝛥𝑇𝑣(𝑥) = 𝑇(𝑥, 0) − 𝑇(𝑥, 1) and 𝛥𝑆𝑣(𝑥) = 𝑆(𝑥, 0) − 𝑆(𝑥, 1)  are the local 

dimensionless temperature and concentration differences between the two horizontal 

walls 𝑦 = 0 and  𝑦 =1, respectively. We note that for parallel flows, 𝑁𝑢𝑣(𝑥) and 𝑆ℎ𝑣(𝑥) 

remain unchanged in the central region of the cavity. 

By integrating Eqs. (3.33) and (3.34) along the horizontal wall, the average values of 

Nusselt and Sherwood numbers measuring the overall vertical heat and mass transfer 

rates, respectively, are obtained: 

 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ =

1

𝐴
∫ 𝑁𝑢𝑣(𝑥)𝑑𝑥

𝐴

0
    (3.35) 

 𝑆ℎ𝑣
̅̅ ̅̅ ̅ =

1

𝐴
∫ 𝑆ℎ𝑣(𝑥)𝑑𝑥

𝐴

0
    (3.36) 

3.3 Numerical approach 

Numerical methods have been indisputably the most adopted approaches for modeling 

and solving convective fluid flows and heat and mass transfer given their ability to 

handle the complex nonlinear nature of equations governing such flows, which can 

rarely be handled by other approaches in very particular cases (e.g., analytical approach 

established in the next section based on the parallel flow approximation). And while an 

analytical solution of a partial differential equation (PDE) results in the value of 𝜑 (e.g., 

𝑢, 𝑣, 𝑇, 𝑆) as a function of independent variables (𝑥, 𝑦, 𝑡), a numerical solution provides 

the value of  𝜑 at a discrete number of domain points known as grid points, which can 

also be referred to, depending on the method at hand, as nodes or cell centroids. A 
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discretization method is used to convert a governing equation into a set of equations for 

the discrete values of 𝜑. 

The numerical methods used to solve governing PDEs are characterized in terms of 

accuracy, consistency, stability, and convergence. The accuracy denotes the closeness 

of numerical solution to the exact solution. Usually however, the exact solution is 

unknown and we talk about the truncation error (caused by the numerical 

approximations of the derivatives) of a discretization method. A numerical method is 

said to be consistent if the truncation error tends to diminish with mesh refinement (step 

size 𝛥𝑡, 𝛥𝑥, or 𝛥𝑦 tends to zero). A stable numerical method is one for which the error 

does not grow with time (or number of iterations). Finally, the convergence of a 

numerical method is ensured if it is consistent and stable. 

Different numerical methods are used in the literature to solve flow problems; however, 

one of two methods is commonly encountered, Finite Difference Method (FDM) or 

Finite Volume Method (FVM). In the present study, and in order to numerically solve 

the system of governing equations (3.17) - (3.21) and associated boundary conditions 

(3.22) – (3.24), the two numerical methods are adopted.  

3.3.1 Finite Difference Method 

The finite difference method is one of the first numerical approaches applied to solve 

differential equations. It was first used by L. Euler around 1768 in one dimensional 

space then extended to two-dimensional space probably by C. Runge in 1908. The 

principle is to locally discretize the derivatives of flow variables using Taylor series 

expansion on each of the domain grid points. The finite difference method is widely 

used given its simplicity (easy to understand and implement especially for simple 

geometries), accuracy, stability, and rapid convergence. However, the range of 

applications is limited as it requires a structured grid. 

For incompressible two-dimensional flows, it is possible to recast the primitive 

variables (𝑢, 𝑣, 𝑝, 𝑇, 𝑆) form of governing equations (3.17) – (3.21) in an alternative 

stream function-vorticity formulation (𝜓,𝛺, 𝑇, 𝑆). This is done by introducing a change 

of variables that replaces velocity components with stream function 𝜓 and vorticity 𝛺 

as follows: 
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 𝑢 =
𝜕𝜓

𝜕𝑦
;           𝑣 = −

𝜕𝜓

𝜕𝑥
 (3.37) 

 𝛺 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 (3.38) 

By introducing these new variables, the dimensionless equations governing the 

convection become: 

 
𝜕𝛺

𝜕𝑡
+

𝜕(𝑢𝛺)

𝜕𝑥
+

𝜕(𝑣𝛺)

𝜕𝑦
= 𝑃𝑟 [𝜇𝑎 (

𝜕2𝛺

𝜕𝑥2 +
𝜕2𝛺

𝜕𝑦2) + 2 (
∂𝜇𝑎

∂𝑥

∂Ω

∂x
+

∂𝜇𝑎

∂𝑦

∂Ω

∂y
)] + 𝑆𝛺

  (3.39) 

 
𝜕𝑇

𝜕𝑡
+

𝜕(𝑢𝑇)

𝜕𝑥
+

𝜕(𝑣𝑇)

𝜕𝑦
= [

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2] (3.40) 

 

 
𝜕𝑆

𝜕𝑡
+

𝜕(𝑢𝑆)

𝜕𝑥
+

𝜕(𝑣𝑆)

𝜕𝑦
=

1

𝐿𝑒
[
𝜕2𝑆

𝜕𝑥2 +
𝜕2𝑆

𝜕𝑦2] (3.41) 

 

and 

 
𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 = −𝛺 (3.42) 

with 

 𝑆𝛺 = 𝑃𝑟 [(
𝜕2𝜇𝑎

𝜕𝑥2 −
𝜕2𝜇𝑎

𝜕𝑦2 ) (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) − 2

𝜕2𝜇𝑎

𝜕𝑥𝜕𝑦
(
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)] + 𝑃𝑟 𝑅𝑎𝑇 [

𝜕𝑇

𝜕𝑥
+ 𝑁

𝜕𝑆

𝜕𝑥
 ] 

  (3.43) 

The two momentum equations (3.18) and (3.19) combine into one vorticity transport 

equation (3.39) by eliminating pressure (take the 𝜕/𝜕𝑦 of the first equation and 𝜕/𝜕𝑥 

of the second equation then subtract). Further, flows for which velocity field is specified 

by a stream function automatically satisfy the continuity equation since: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=

𝜕

𝜕𝑥
(
𝜕𝜓

𝜕𝑦
) +

𝜕

𝜕𝑦
(−

𝜕𝜓

𝜕𝑥
) =

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕2𝜓

𝜕𝑥𝜕𝑦
= 0 (3.44) 

thus, the continuity equation no longer needs to be addressed. As a result, an additional 

equation for 𝜓 is required to solve the problem. For this, the Poisson equation (3.42) is 

obtained by substituting the definition of velocity components in terms of stream 

function into equation (3.38). Finally, the governing equations are replaced by a set of 

four partial differential equations instead of five. 

The associated boundary conditions are given as follows: 
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 𝑢 =  𝑣 = 𝜓 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑥
+ 𝑎 = 

𝜕𝑆

𝜕𝑥
+ 𝑐 = 0   𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐴; (3.45) 

 

 𝑢 + 𝑒𝑃𝑒 =  𝑣 = 𝜓 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑦
+ 𝑏 =

𝜕𝑆

𝜕𝑦
+ 𝑑 = 0 𝑓𝑜𝑟 𝑦 = 0; (3.46) 

 

 𝑢 − 𝑃𝑒 =  𝑣 = 𝜓 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑦
+ 𝑏 =

𝜕𝑆

𝜕𝑦
+ 𝑑 = 0 𝑓𝑜𝑟 𝑦 = 1 (3.47) 

The finite difference method is applied to solve the system of governing equations 

(3.39) – (3.42) and boundary conditions (3.45) – (3.47). The procedure is described in 

further details in [87]. One difference is that instead of using Woods approach [88] for 

evaluating vorticity along the sliding horizontal walls, which leads to inaccurate results 

in the case of driven cavities, equation (3.38) is discretized as follows: 

For bottom wall:  

 𝛺𝑖,1 =
𝑣𝑖+1,1−𝑣𝑖−1,1

2𝛥𝑥
−

4𝑢𝑖,2−𝑢𝑖,3−3𝑢𝑖,1

2𝛥𝑦
 (3.48) 

For top wall: 

 𝛺𝑖,𝑚𝑦+1 =
𝑣𝑖+1,𝑚𝑦+1−𝑣𝑖−1,𝑚𝑦+1

2𝛥𝑥
−

𝑢𝑖,𝑚𝑦−1−4𝑢𝑖,𝑚𝑦+3𝑢𝑖,𝑚𝑦+1

2𝛥𝑦
 (3.49) 

with 𝑚𝑦 is the number of intervals in the 2D rectangular uniform grid following the 𝑦 

direction. 

3.3.2 Finite Volume Method 

The finite difference method presented above is based on nodal relations for partial 

differential equations. In contrast, the finite volume method is based on the 

discretization of conservation laws (Eqs. (3.17) – (3.21)) in integral form. The finite 

volume method consists of partitioning the computational domain into a finite set of 

elementary or control volumes surrounding the mesh points on which we integrate the 

partial differential equations. In a two-dimensional case, these volumes are of size 

𝛥𝑥 × 𝛥𝑦 (Figure 3.2). The physical variables we want to compute are assumed constant 

in each control volume. 

Since the finite volume method discretize the balance equations (conservation laws) 

directly, it has an advantage over the finite difference method as it imposes conservation  
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Figure 3.2. Two-dimensional control volume for finite volume method. 

of quantities at discretized level, i.e., mass, momentum, energy, and concentration are 

locally conserved (fluxes entering a given volume are equal to those leaving the 

adjacent volume). Because of this virtue, FVM has been widely used in numerous fields 

such as fluid mechanics and petroleum engineering, as well as in heat and mass transfer. 

The conservations laws (Eqs. (3.17) – (3.21)) can be written in the following form: 

 
𝜕𝜙

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢𝜙 − Г

𝜕𝜙

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑣𝜙 − Г

𝜕𝜙

𝜕𝑦
) = 𝑆𝜙 (3.50) 

with Г and 𝑆𝜙 are the diffusion coefficient and the source term, respectively. 

Integrating Eq. (3.50) over the control volume, the two-dimensional discretization 

equation expressing the dependence of  𝜙𝑃 on the values of neighboring grid points 

𝜙𝐸 , 𝜙𝑤, 𝜙𝑁 , and 𝜙𝑆 is written as: 

 𝑎𝑃𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 + 𝑎𝑁𝜙𝑁 + 𝑎𝑆𝜙𝑆 + 𝑏 (3.51) 

For more information on the finite volume method, refer to [89]. The discretized 

equations system is then solved using a line-by-line solver combining Tri-Diagonal 

Matrix Algorithm (TDMA) and Gauss-Seidel method. 
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Unlike for compressible flows where the pressure can be obtained from density and 

temperature by using the equation of state 𝑝 = 𝑝(𝜌, 𝑇), for incompressible flows the 

density is constant and therefore independent of pressure, so we don’t have a separate 

equation for pressure. However, a correct pressure field need to be supplied into the 

momentum equations in order for the resulting velocity field to satisfy the continuity 

constraint. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

algorithm [90] is an iterative procedure adopted to solve the pressure–velocity linkage 

where a pressure correction equation is derived from the continuity equation. The 

process is iterated until convergence evaluated with the threshold: 

 𝑀𝐴𝑋 (
|𝑓𝑘+1−𝑓𝑘|

|𝑓𝑘+1|
) ≤ 10−7  (3.52) 

where, 𝑓𝑘 is the value of 𝑢, 𝑣, 𝑝, 𝑇, or 𝑆 at the 𝑘𝑡ℎ iteration level. 

3.4 Analytical approach 

The Navier-Stokes equations are highly complex partial differential equations given 

their nonlinear character, making exact analytical solutions impossible in general. 

However, it is possible to find analytical solutions in some particular cases based on 

assumptions about the fluid, the problem geometry, or about the flow structure. Parallel 

flow is one of the cases, in which only one velocity component is different from zero 

for two-dimensional flows.  

In the present work and for shallow rectangular cavities (𝐴 >> 1), the analytical 

solution is derived based on the flow parallel aspect and the stratification of temperature 

and concentration fields leading to the following simplifications: 

𝑢(𝑥, 𝑦) = 𝑢(𝑦), 𝑣(𝑥, 𝑦) = 0, 𝜓(𝑥, 𝑦) = 𝜓(𝑦), 

  𝑇(𝑥, 𝑦) = 𝐶𝑇 (𝑥 −
𝐴

2
)+𝜃𝑇(𝑦) 𝑎𝑛𝑑 𝑆(𝑥, 𝑦) = 𝐶𝑆 (𝑥 −

𝐴

2
)+𝜃𝑆(𝑦)      

  (3.53) 

where, 𝐶𝑇 = (
𝜕𝑇

𝜕𝑥
)
𝑥=𝐴/2

 and 𝐶𝑆 = (
𝜕𝑆

𝜕𝑥
)
𝑥=𝐴/2

 are the unknown constant temperature 

gradient and the unknown constant concentration gradient in the 𝑥-direction, 

respectively.  
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3.4.1 Approximate governing equations 

The non-dimensional governing equations (3.17) – (3.21) are simplified using the 

above approximations as follows: 

 
𝑑2

𝑑𝑦2 [|
𝑑𝑢

𝑑𝑦
|
𝑛−1 𝑑𝑢

𝑑𝑦
] = 𝐸𝑅𝑎𝑇    (3.54) 

 

 𝐶𝑇𝑢 =
𝑑2𝜃𝑇(𝑦)

𝑑𝑦2     (3.55) 

 

 𝐶𝑆𝑢 =
1

𝐿𝑒

𝑑2𝜃𝑆(𝑦)

𝑑𝑦2     (3.56) 

with: 

 𝐸 = 𝐶𝑇 + 𝑁𝐶𝑆    (3.57) 

The associated boundary conditions reduce to:  

 𝑢 + 𝑒𝑃𝑒 = 𝜓 =
𝑑𝜃𝑇(𝑦)

𝑑𝑦
+ 𝑏 =

𝑑𝜃𝑆(𝑦)

𝑑𝑦
+ 𝑑 = 0 for 𝑦 = 0;    (3.58) 

 

 𝑢 − 𝑃𝑒 = 𝜓 =
𝑑𝜃𝑇(𝑦)

𝑑𝑦
+ 𝑏 =

𝑑𝜃𝑆(𝑦)

𝑑𝑦
+ 𝑑 = 0 for 𝑦 = 1    (3.59) 

with: 

 ∫ 𝑢(𝑦)𝑑𝑦 = 0
1

0
    (3.60) 

 

 ∫ 𝜃𝑇(y)𝑑𝑦 = 0
1

0
   (3.61) 

 

 ∫ 𝜃𝑆(y)𝑑𝑦 = 0
1

0
   (3.62) 

as return flow, mean temperature, and mean concentration conditions, respectively. 

3.4.2 Integration of approximate governing equations for double lid-driven 

cavities  

Integrating the system of equations (3.54) – (3.56) and conditions (3.58) – (3.62) leads 

to the analytic expressions of velocity, temperature, and concentration. However, taking 

into account the nature of the governing equations, such complex calculations require 

special numerical treatment. The fluids’ nonlinear behavior and 𝑑𝑢/𝑑𝑦 sign change 
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induced by the return flow cause the velocity expression to be different according to 

the value of 𝑦:  0 ≤ 𝑦 ≤ 𝑦0,  𝑦0 ≤ 𝑦 ≤ 𝑦1, or 𝑦1 ≤ 𝑦 ≤ 1, where  𝑦0 and  𝑦1  are the 

values of 𝑦 for which 
𝑑𝑢

𝑑𝑦
= 0 ( 𝑦1 = 1 −  𝑦0 because the flow is centro-symmetric in 

the core region for double lid-driven cavities). To simplify the analytical equations, the 

function 𝑓(𝑦) =
𝑦2

2
−

𝑦

2
+

𝑦0𝑦1

2
  is introduced. Accordingly, for: 

• 0 ≤ 𝑦 ≤ 𝑦0 

 𝑢(𝑦) = 𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛𝐹(𝑦) − 𝑃𝑒   (3.63) 

 

 𝜃𝑇(𝑦) = 𝐶𝑇𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛 [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦
1

0
] − 𝐶𝑇𝑃𝑒

𝑦2

2
+ 

 𝐶𝑇
𝑃𝑒

6
− 𝑏(𝑦 −

1

2
)   (3.64) 

 

 𝜃𝑆(𝑦) = 𝐿𝑒𝐶𝑆𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛 [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦
1

0
] − 𝐿𝑒𝐶𝑆𝑃𝑒

𝑦2

2
+ 

 𝐿𝑒𝐶𝑆
𝑃𝑒

6
− 𝑑(𝑦 −

1

2
)   (3.65) 

where:  

 𝐹(𝑦) = ∫ 𝑓(𝑦)1/𝑛𝑑𝑦
𝑦

0
 (3.66) 

 

 𝐺(𝑦) = ∫ ∫ ∫ 𝑓(𝑦)
1

𝑛𝑑𝑦𝑑𝑦𝑑𝑦
𝑦

0

𝑦

0

𝑦

0
 (3.67) 

 

• 𝑦0 ≤ 𝑦 ≤ 𝑦1 

 𝑢(𝑦) = 𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛𝐹(𝑦) − 𝑃𝑒   (3.68) 

 

 𝜃𝑇(𝑦) = 𝐶𝑇𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛 [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦
1

0
] − 𝐶𝑇𝑃𝑒

𝑦2

2
+ 

 𝐶𝑇
𝑃𝑒

6
− 𝑏(𝑦 −

1

2
)   (3.69) 

 

 𝜃𝑆(𝑦) = 𝐿𝑒𝐶𝑆𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛 [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦
1

0
] − 𝐿𝑒𝐶𝑆𝑃𝑒

𝑦2

2
+ 

 𝐿𝑒𝐶𝑆
𝑃𝑒

6
− 𝑑(𝑦 −

1

2
)   (3.70) 
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where:  

 𝐹(𝑦) = ∫ 𝑓(𝑦)
1

𝑛𝑑𝑦 +
 𝑦0

0
∫ [−𝑓(𝑦)]

1

𝑛𝑑𝑦
 𝑦0

𝑦
 (3.71) 

 

𝐺(𝑦) =  
(𝑦 − 𝑦0)

2

2
∫ 𝑓(𝑦)

1
𝑛𝑑𝑦 + ∫ [∫ [∫ [−𝑓(𝑦)]

1
𝑛𝑑𝑦 

𝑦0

𝑦

] 𝑑𝑦
𝑦

𝑦0

] 𝑑𝑦
𝑦

𝑦0

 𝑦0

0

 

+(𝑦 − 𝑦0)∫ [∫ 𝑓(𝑦)
1
𝑛𝑑𝑦 

𝑦

0

]  𝑑𝑦
𝑦0

0

+ ∫ [∫ [∫ 𝑓(𝑦)1/𝑛𝑑𝑦
𝑦

0

] 𝑑𝑦
𝑦

0

] 𝑑𝑦
𝑦0

0

  

  (3.72) 

 

• 𝑦1 ≤ 𝑦 ≤ 1 

 𝑢(𝑦) = 𝐸
1

𝑛𝑅𝑎𝑇

1

𝑛 (𝐹(𝑦) − 𝐹(1)) + 𝑃𝑒   (3.73) 

 

𝜃𝑇(𝑦) = 𝐶𝑇𝐸
1
𝑛𝑅𝑎𝑇

1
𝑛

[
 
 
 
 𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0

+

(
1

2
− 𝑦)∫ 𝐹(𝑦)𝑑𝑦

1

0

− 𝐹(1) (
𝑦2

2
− 𝑦 +

1

3
)
]
 
 
 
 

 

+𝐶𝑇𝑃𝑒(
𝑦2

2
− 𝑦 +

1

3
) − 𝑏(𝑦 −

1

2
)  

  (3.74) 

 

𝜃𝑆(𝑦) = 𝐿𝑒𝐶𝑆𝐸
1
𝑛𝑅𝑎𝑇

1
𝑛

[
 
 
 
 𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0

+

(
1

2
− 𝑦)∫ 𝐹(𝑦)𝑑𝑦

1

0

− 𝐹(1) (
𝑦2

2
− 𝑦 +

1

3
)
]
 
 
 
 

 

+𝐿𝑒𝐶𝑆𝑃𝑒(
𝑦2

2
− 𝑦 +

1

3
) − 𝑑(𝑦 −

1

2
) 

  (3.75) 

where:  

 𝐹(𝑦) = ∫ 𝑓(𝑦)1/𝑛𝑑𝑦 +
 𝑦0

0
∫ [−𝑓(𝑦)]

1

𝑛𝑑𝑦 + ∫ 𝑓(𝑦)
1

𝑛𝑑𝑦
 𝑦

𝑦1

 𝑦0

𝑦1
 (3.76) 

 

 𝐹(1) = ∫ 𝑓(𝑦)1/𝑛𝑑𝑦 +
 𝑦0

0
∫ [−𝑓(𝑦)]

1

𝑛𝑑𝑦 + ∫ 𝑓(𝑦)
1

𝑛𝑑𝑦
 1

𝑦1

 𝑦0

𝑦1
 (3.77) 
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𝐺(𝑦) =  
(𝑦 − 𝑦1)(𝑦 + 𝑦1 − 2)

2
[∫ 𝑓(𝑦)

1
𝑛𝑑𝑦  + ∫ [−𝑓(𝑦)]

1
𝑛𝑑𝑦 

 𝑦0

𝑦1

 𝑦0

0

] 

+∫ [∫ [∫ 𝑓(𝑦)
1
𝑛𝑑𝑦

𝑦

𝑦1

] 𝑑𝑦
𝑦

1

] 𝑑𝑦
𝑦

𝑦1

+ ∫ [∫ [∫ [−𝑓(𝑦)]
1
𝑛𝑑𝑦 

𝑦0

𝑦

] 𝑑𝑦
𝑦

𝑦0

] 𝑑𝑦
 𝑦1

𝑦0

 

+
(𝑦1 − 𝑦0)

2

2
∫ 𝑓(𝑦)

1
𝑛𝑑𝑦 

 𝑦0

0

+ (𝑦1 − 𝑦0)∫ [∫ 𝑓(𝑦)
1
𝑛𝑑𝑦 

 𝑦

0

] 𝑑𝑦
𝑦0

0

 

+∫ [∫ [∫ 𝑓(𝑦)1/𝑛𝑑𝑦
𝑦

0

] 𝑑𝑦
𝑦

0

] 𝑑𝑦
𝑦0

0

  

  (3.78) 

The expression of 𝜓 can be obtained by integrating Eq. (3.37) while taking into account 

the corresponding boundary conditions. As a result, the stream function at the center of 

the cavity 𝜓𝑐 can be expressed as follows:  

 𝜓𝑐 = 𝜓 (
𝐴

2
,

1

2
) =

𝐸1/𝑛𝑅𝑎𝑇
1/𝑛

𝑅
− 

𝑃𝑒

2
 (3.79) 

with: 

 𝑅 = [
(
1

2
− 𝑦0) ∫ 𝑓(𝑦)

1

𝑛𝑑𝑦  
 𝑦0

0
+ ∫ [∫ [−𝑓(𝑦)]

1

𝑛𝑑𝑦
𝑦0

𝑦
] 𝑑𝑦

1

2
𝑦0

+

 ∫ [∫ 𝑓(𝑦)
1

𝑛𝑑𝑦
𝑦

0
] 𝑑𝑦

𝑦0

0

]

−1

     (3.80) 

Using Eq. (3.79), 𝑢(𝑦), 𝜃𝑇(𝑦), and 𝜃𝑆(𝑦) are expressed as follows:  

• 0 ≤ 𝑦 ≤ 𝑦0 

 𝑢(𝑦) = 𝑅 (𝜓𝑐 +
𝑃𝑒

2
)𝐹(𝑦) − 𝑃𝑒 (3.81) 

 

 𝜃𝑇(𝑦) = 𝐶𝑇𝑅 (𝜓𝑐 +
𝑃𝑒

2
) [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0
] − 𝐶𝑇𝑃𝑒

𝑦2

2
+ 

 𝐶𝑇
𝑃𝑒

6
− 𝑏(𝑦 −

1

2
)   (3.82) 

 

 𝜃𝑆(𝑦) =  𝐿𝑒𝐶𝑆𝑅 (𝜓𝑐 +
𝑃𝑒

2
) [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0
] − 𝐿𝑒𝐶𝑆𝑃𝑒

𝑦2

2
+ 

 𝐿𝑒𝐶𝑆
𝑃𝑒

6
− 𝑑(𝑦 −

1

2
)   (3.83) 
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• 𝑦0 ≤ 𝑦 ≤ 𝑦1 

 𝑢(𝑦) = 𝑅 (𝜓𝑐 +
𝑃𝑒

2
)𝐹(𝑦) − 𝑃𝑒   (3.84) 

 

 𝜃𝑇(𝑦) = 𝐶𝑇𝑅 (𝜓𝑐 +
𝑃𝑒

2
) [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0
] − 𝐶𝑇𝑃𝑒

𝑦2

2
+ 

 𝐶𝑇
𝑃𝑒

6
− 𝑏 (𝑦 −

1

2
) (3.85) 

 

 𝜃𝑆(𝑦) = 𝐿𝑒𝐶𝑆𝑅 (𝜓𝑐 +
𝑃𝑒

2
) [𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0
] − 𝐿𝑒𝐶𝑆𝑃𝑒

𝑦2

2
+ 

 𝐿𝑒𝐶𝑆
𝑃𝑒

6
− 𝑑 (𝑦 −

1

2
)   (3.86) 

 

• 𝑦1 ≤ 𝑦 ≤ 1 

 𝑢(𝑦) =  𝑅 (𝜓𝑐 +
𝑃𝑒

2
) (𝐹(𝑦) − 𝐹(1)) + 𝑃𝑒   (3.87) 

 

𝜃𝑇(𝑦) =  𝐶𝑇𝑅 (𝜓𝑐 +
𝑃𝑒

2
)

[
 
 
 
 𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0

+ (
1

2
− 𝑦)∫ 𝐹(𝑦)𝑑𝑦

1

0

−𝐹(1) (
𝑦2

2
− 𝑦 +

1

3
)

]
 
 
 
 

 

+𝐶𝑇𝑃𝑒 (
𝑦2

2
− 𝑦 +

1

3
) − 𝑏 (𝑦 −

1

2
)  

   (3.88) 

𝜃𝑆(𝑦) =  𝐿𝑒𝐶𝑆𝑅 (𝜓𝑐 +
𝑃𝑒

2
)

[
 
 
 
 𝐺(𝑦) − ∫ 𝐺(𝑦)𝑑𝑦

1

0

+ (
1

2
− 𝑦)∫ 𝐹(𝑦)𝑑𝑦

1

0

−𝐹(1) (
𝑦2

2
− 𝑦 +

1

3
)

]
 
 
 
 

 

+𝐿𝑒𝐶𝑆𝑃𝑒 (
𝑦2

2
− 𝑦 +

1

3
) − 𝑑 (𝑦 −

1

2
) 

    (3.89) 

The parallel flow approximation builds upon observations made in the core region away 

from the more complicated flow near the vertical edges of the cavity. Therefore, the 

exact thermal and solutal boundary conditions in the 𝑥-direction shown in Eq. (3.45) 

cannot be reproduced with this approximation. However, equivalent energy and 

concentration flux conditions across a transversal direction, at any 𝑥, can be obtained 

[91]:  
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 ∫ −
𝜕𝑇

𝜕𝑥
𝑑𝑦 + ∫ 𝑢𝑇𝑑𝑦 = ∫ −(

𝜕𝑇

𝜕𝑥
)
𝑥=0 𝑜𝑟 𝑥=𝐴

𝑑𝑦
1

0

1

0

1

0
 (3.90) 

 

 ∫ −
𝜕𝑆

𝜕𝑥
𝑑𝑦 + 𝐿𝑒 ∫ 𝑢𝑆𝑑𝑦 = ∫ −(

𝜕𝑆

𝜕𝑥
)
𝑥=0 𝑜𝑟 𝑥=𝐴

𝑑𝑦
1

0

1

0

1

0
 (3.91) 

In the parallel flow region and given conditions (3.45), Eqs. (3.90) and (3.91) become: 

 −𝐶𝑇 + ∫ 𝑢(𝑦)𝜃𝑇(𝑦)𝑑𝑦
1

0
= 𝑎 (3.92) 

 

 −𝐶𝑆 + 𝐿𝑒 ∫ 𝑢(𝑦)𝜃𝑆(𝑦)𝑑𝑦
1

0
= 𝑐 (3.93) 

Replacing 𝑢(𝑦), 𝜃𝑇(𝑦), and 𝜃𝑆(𝑦) by their respective expressions: 

 𝐶𝑇 =
𝑎−𝑏(𝑅(𝜓𝑐+

𝑃𝑒

2
)𝑍+𝑃𝑒(𝑦1

2−𝑦1))

𝑅2(𝜓𝑐+
𝑃𝑒

2
)
2
𝑋+𝑃𝑒𝑅(𝜓𝑐+

𝑃𝑒

2
)𝑌+𝑃𝑒2(

𝑦1
2−𝑦1
2

)−1
 (3.94) 

 

 𝐶𝑆 =
𝑐−𝑑(𝐿𝑒𝑅(𝜓𝑐+

Pe

2
)𝑍+𝐿𝑒𝑃𝑒(𝑦1

2−𝑦1))

𝐿𝑒2𝑅2(𝜓𝑐+
Pe

2
)
2
𝑋+𝐿𝑒2𝑃𝑒𝑅(𝜓𝑐+

Pe

2
)𝑌+𝐿𝑒2𝑃𝑒2(

𝑦1
2−𝑦1
2

)−1
 (3.95) 

where:  

𝑋 = 𝐴 − 𝐷(𝐶1 + 𝐶2 + 𝐶3) + 𝐿𝐻5 

−𝐹(1)

[
 
 
 
 𝐻6 + 𝐵3 − 𝐷(1 − 𝑦1) + 𝐿 (

𝑦1
2 − 𝑦1

2
)

−𝐹(1) (
−𝑦1

3 + 3𝑦1
2 − 2𝑦1

6
)

]
 
 
 
 

 

   (3.96) 

𝑌 = 𝐻1 + 𝐻3 + 𝐻6 − 𝐵1 − 𝐵2 + 𝐵3 − 𝐷(1 − 2𝑦1) + 𝐿 (
𝑦1

2 − 𝑦1

2
)

− 𝐹(1) (
−𝑦1

3 + 3𝑦1
2 − 2𝑦1

3
) 

    (3.97) 

 𝑍 = 𝐻2 + 𝐻4 + 𝐻5 − 𝐹(1) (
𝑦1

2−𝑦1

2
) (3.98) 

with:  
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𝐴 = ∫ 𝐹(𝑦)𝐺(𝑦)𝑑𝑦
1

0

;  𝐵1 = ∫ 𝐺(𝑦)𝑑𝑦
𝑦0

0

;  𝐵2 = ∫ 𝐺(𝑦)𝑑𝑦
𝑦1

𝑦0

; 

𝐵3 = ∫ 𝐺(𝑦)𝑑𝑦
1

𝑦1

;  𝐶1 = ∫ 𝐹(𝑦)𝑑𝑦
𝑦0

0

;  𝐶2 = ∫ 𝐹(𝑦)𝑑𝑦
𝑦1

𝑦0

; 

 𝐶3 = ∫ 𝐹(𝑦)𝑑𝑦
1

𝑦1

;  𝐷 = ∫ 𝐺(𝑦)𝑑𝑦
1

0

;  𝐻1 = ∫ (
1

6
−

𝑦2

2
)𝐹(𝑦)𝑑𝑦

𝑦0

0

;  

𝐻2 = ∫ (
1

2
− 𝑦)𝐹(𝑦)𝑑𝑦

𝑦0

0

;  𝐻3 = ∫ (
1

6
−

𝑦2

2
)𝐹(𝑦)𝑑𝑦

𝑦1

𝑦0

;  

𝐻4 = ∫ (
1

2
− 𝑦)𝐹(𝑦)𝑑𝑦

𝑦1

𝑦0

;  𝐻5 = ∫ (
1

2
− 𝑦)𝐹(𝑦)𝑑𝑦

1

𝑦1

; 

𝐻6 = ∫ (
3𝑦2 − 6𝑦 + 2

6
)𝐹(𝑦)𝑑𝑦

1

𝑦1

and 𝐿 = ∫ 𝐹(𝑦)𝑑𝑦
1

0

 

    (3.99) 

Finally, with 𝐸 = 𝐶𝑇 + 𝑁𝐶𝑆, Eq. (3.79) leads to the following transcendental equation: 

𝐿𝑒2𝑋2𝑅𝑛+4 (𝜓𝑐 +
𝑃𝑒

2
)
𝑛+4

+ 2𝐿𝑒2𝑃𝑒𝑋𝑌𝑅𝑛+3 (𝜓𝑐 +
𝑃𝑒

2
)
𝑛+3

 

+(−𝑋(1 + 𝐿𝑒2) + 𝐿𝑒2𝑃𝑒2𝑌2 + 2𝐿𝑒2𝑃𝑒2𝑋 (
𝑦1

2 − 𝑦1

2
))𝑅𝑛+2 (𝜓𝑐 +

𝑃𝑒

2
)

𝑛+2

 

+(2𝐿𝑒2𝑃𝑒3𝑌 (
𝑦1

2 − 𝑦1

2
) − (1 + 𝐿𝑒2)𝑃𝑒𝑌)𝑅𝑛+1 (𝜓𝑐 +

𝑃𝑒

2
)
𝑛+1

 

+(𝐿𝑒2𝑃𝑒4 (
𝑦1

2 − 𝑦1

2
)

2

− (1 + 𝐿𝑒2)𝑃𝑒2 (
𝑦1

2 − 𝑦1

2
) + 1)𝑅𝑛 (𝜓𝑐 +

𝑃𝑒

2
)
𝑛

 

+ 𝑅𝑎𝑇(𝑏𝐿𝑒2 + 𝑑𝑁𝐿𝑒)𝑋𝑍𝑅3 (𝜓𝑐 +
𝑃𝑒

2
)

3

 

−𝑅𝑎𝑇 [
((𝑎 − 𝑏𝑃𝑒(𝑦1

2 − 𝑦1))𝐿𝑒2 + 𝑁(𝑐 − 𝑑𝐿𝑒𝑃𝑒(𝑦1
2 − 𝑦1)))𝑋

−(𝑏𝐿𝑒2 + 𝑑𝑁𝐿𝑒)𝑃𝑒𝑌𝑍
]𝑅2 (𝜓𝑐 +

𝑃𝑒

2
)
2

 

−𝑅𝑎𝑇 [

((𝑎 − 𝑏𝑃𝑒(𝑦1
2 − 𝑦1))𝐿𝑒2 + 𝑁(𝑐 − 𝑑𝐿𝑒𝑃𝑒(𝑦1

2 − 𝑦1)))𝑃𝑒𝑌

−(𝑏𝐿𝑒2 + 𝑑𝑁𝐿𝑒)𝑃𝑒2 (
𝑦1

2 − 𝑦1

2
)𝑍 + (𝑏 + 𝑑𝑁𝐿𝑒)𝑍

] 𝑅 (𝜓𝑐 +
𝑃𝑒

2
) 

−𝑅𝑎𝑇[(𝑎 − 𝑏𝑃𝑒(𝑦1
2 − 𝑦1))𝐿𝑒2 + 𝑁(𝑐 − 𝑑𝐿𝑒𝑃𝑒(𝑦1

2 − 𝑦1))]𝑃𝑒2 (
𝑦1

2 − 𝑦1

2
) 

+𝑅𝑎𝑇[(𝑎 − 𝑏𝑃𝑒(𝑦1
2 − 𝑦1)) + 𝑁(𝑐 − 𝑑𝐿𝑒𝑃𝑒(𝑦1

2 − 𝑦1))] = 0 

   (3.100) 
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Coefficients 𝐴, 𝐵1, 𝐵2, 𝐵3, 𝐶1, 𝐶2, 𝐶3, 𝐷, 𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5, 𝐻6, 𝐿, 𝑅, and 𝐹(1) from 

equations (3.77), (3.80), and (3.99) which depend on the governing parameters 

𝑃𝑒, 𝑅𝑎𝑇 , 𝐿𝑒, 𝑁, and 𝑛 are computed using the Gauss–Legendre integration method. 

Newton-Raphson method is used to solve Eq. (3.100), the resulting 𝜓𝑐 value is then 

used to calculate 𝐶𝑇 and 𝐶𝑆 values using Eqs. (3.94) and (3.95), respectively, for given 

values of 𝑃𝑒, 𝑅𝑎𝑇 , 𝐿𝑒, 𝑁, and  𝑛. 

3.4.3 Heat and mass transfer 

For Nusselt and Sherwood numbers, and while considering Eqs. (3.29) – (3.36), 

simplifications in Eq. (3.53), and the centro-symmetric nature of the problem, their 

expressions are simplified as follows: 

 𝑁𝑢ℎ =
−𝑎

𝐶𝑇
= 𝑁𝑢ℎ

̅̅ ̅̅ ̅̅ ;  𝑆ℎℎ =
−𝑐

𝐶𝑆
= 𝑆ℎℎ

̅̅ ̅̅ ̅ (3.101) 

 

 𝑁𝑢𝑣 =
𝑏

2𝜃𝑇(0)
= 𝑁𝑢𝑣

̅̅ ̅̅ ̅̅ ;  𝑆ℎ𝑣 =
𝑑

2𝜃𝑆(0)
= 𝑆ℎ𝑣

̅̅ ̅̅ ̅ (3.102) 

with: 

 𝜃𝑇(0) = −𝐶𝑇𝑅 (𝜓𝑐 +
𝑃𝑒

2
)𝐷 + 𝐶𝑇

𝑃𝑒

6
+

𝑏

2
   (3.103) 

 

 𝜃𝑆(0) =  −𝐿𝑒𝐶𝑆𝑅 (𝜓𝑐 +
𝑃𝑒

2
)𝐷 + 𝐿𝑒𝐶𝑆

𝑃𝑒

6
+

𝑑

2
   (3.104) 

We note that heat and mass transfer rates in the horizontal direction are related by the 

following equation:  

 𝑆ℎℎ
̅̅ ̅̅ ̅ = 𝐿𝑒2(𝑁𝑢ℎ

̅̅ ̅̅ ̅̅ − 1) + 1 (3.105) 

which can be verified numerically in the next two chapters. 

3.4.4 Pure forced and pure natural convection 

On the one hand, pure forced convective regime is obtained by setting 𝑅𝑎𝑇 = 0, where 

the convection is driven by shear force only. On the other hand, the results for pure 

natural convection are obtained by considering a new cavity configuration with 

motionless walls (𝑢′ = 0 for 𝑦′ = 0 and 𝑦′ = 𝐻′). The governing equations are given 

by (3.17) – (3.21) with dimensionless dynamic boundary conditions                         
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(𝑢(0) = 𝑢(1) = 0). Following the same procedure as before, the parallel flow 

approximation results in the following expressions: 

 𝐶𝑇 =
𝑎−𝑏𝑅𝜓𝑐𝐵

𝑅2𝜓𝑐
2𝐴−1

 (3.106) 

 

 𝐶𝑆 =
𝑐−𝐿𝑒𝑅𝜓𝑐𝐵

𝐿𝑒2𝑅2𝜓𝑐
2𝐴−1

 (3.107) 

with: 

 𝐵 = ∫ (
1

2
− 𝑦)𝐹(𝑦)𝑑𝑦

1

0
 and 𝜓𝑐 =

𝐸1/𝑛𝑅𝑎𝑇
1/𝑛

𝑅
 (3.108) 

The ensuing transcendental equation is written as follows: 

𝐿𝑒2𝐴2𝑅𝑛+4𝜓𝑐
𝑛+4 − (1 + 𝐿𝑒2)𝐴𝑅𝑛+2𝜓𝑐

𝑛+2 + 𝑅𝑛𝜓𝑐
𝑛

 

+ 𝑅𝑎𝑇(𝑏𝐿𝑒2 + 𝑑𝑁𝐿𝑒)𝐴𝐵𝑅3𝜓𝑐
3 − 𝑅𝑎𝑇(𝑎𝐿𝑒2 + 𝑐𝑁)𝐴𝑅2𝜓𝑐

2
 

 −𝑅𝑎𝑇(𝑏 + 𝑑𝑁𝐿𝑒)𝐵𝑅𝜓𝑐 + 𝑅𝑎𝑇(a + c𝑁) = 0 (3.109) 

Nusselt and Sherwood numbers are computed using Eqs. (3.101) and (3.102). 

3.4.5 Single lid-driven cavities 

As mentioned before, the introduction of characteristic coordinates 𝑦0 and 𝑦1 is due to 

the sign change of 𝑑𝑢/𝑑𝑦 and the nonlinear nature of governing equation (3.54) making 

a direct integration impossible. The values of 𝑦0 and 𝑦1 are computed by injecting 

equations (3.81), (3.84), and (3.87) in the return flow condition (3.60) and exploiting 

the centro-symmetric nature of the flow expressed by: 

  𝑦0 + 𝑦1 = 1 (3.110) 

which is true for problems with symmetrical boundary conditions. Therefore, for single 

lid-driven cavities (𝑒 = 0), Eq. (3.110) is no longer valid and an additional equation is 

needed to analytically solve the problem for non-Newtonian fluid flows described by 

Eq. (3.54). However, for a Newtonian fluid (𝑛 = 1), Eq. (3.54) becomes:  

 
ⅆ3𝑢(𝑦)

ⅆ𝑦3
= 𝐸𝑅𝑎𝑇    (3.111) 

As a result, and given the linear nature of governing equations (3.111), (3.55), and 

(3.56), the aforementioned limitation is removed and the integration of the equations is 

straightforward: 
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 𝑢(𝑦) =
𝑅𝑎𝑇𝐸

12
(2𝑦3 − 3𝑦2 + 𝑦) + 𝑃𝑒(3𝑦2 − 2𝑦) − 𝑒𝑃𝑒(3𝑦2 − 4𝑦 + 1)

  (3.112) 

𝜃𝑇(𝑦) =
𝐶𝑇𝑅𝑎𝑇𝐸

1440
(12𝑦5 − 30𝑦4 + 20𝑦3 − 1) + 

 
𝐶𝑇𝑃𝑒

60
[(15𝑦4 − 20𝑦3 + 2) − 𝑒(15𝑦4 − 40𝑦3 + 30𝑦2 − 3)] − 𝑏(𝑦 −

1

2
)

  (3.113) 

𝜃𝑆(𝑦) =
𝐿𝑒𝐶𝑆𝑅𝑎𝑇𝐸

1440
(12𝑦5 − 30𝑦4 + 20𝑦3 − 1) + 

 
𝐿𝑒𝐶𝑆𝑃𝑒

60
[(15𝑦4 − 20𝑦3 + 2) − 𝑒(15𝑦4 − 40𝑦3 + 30𝑦2 − 3)] − 𝑑(𝑦 −

1

2
)

  (3.114) 

Following the same steps as before, we find: 

 𝜓(𝑦) =
𝑅𝑎𝑇

24
𝐸(𝑦⁴ − 2𝑦3 + 𝑦2) + 𝑃𝑒(𝑦3 − 𝑦2) − 𝑒𝑃𝑒(𝑦3 − 2𝑦2 + 𝑦)    

  (3.115) 

 𝐶𝑇 =
𝑎+

𝑏

12
(−

𝑅𝑎𝑇
60

𝐸+𝑃𝑒(1+𝑒))

−
𝑅𝑎𝑇

2

362,880
𝐸2+

𝑅𝑎𝑇𝑃𝑒

3360
(1+𝑒)𝐸−

𝑃𝑒2

210
(2𝑒2+3𝑒+2)−1

 (3.116) 

 𝐶𝑆 =
𝑐+

𝑑𝐿𝑒

12
(−

𝑅𝑎𝑇
60

𝐸+𝑃𝑒(1+𝑒))

−
𝐿𝑒2𝑅𝑎𝑇

2

362,880
𝐸2+

𝐿𝑒2𝑅𝑎𝑇𝑃𝑒

3360
(1+𝑒)𝐸−

𝐿𝑒2𝑃𝑒2

210
(2𝑒2+3𝑒+2)−1

  (3.117) 

where the following transcendental equation is obtained: 

  
𝐿𝑒2𝑅𝑎𝑇

4

362,8802 𝐸5 −
𝐿𝑒2𝑅𝑎𝑇

3𝑃𝑒

609,638,400
(1 + 𝑒)𝐸4 + 𝑅𝑎𝑇

2 [
𝐿𝑒2𝑃𝑒2

38,102,400
(2𝑒2 + 3𝑒 + 2) +

(1+𝐿𝑒2)

362,880
+

𝐿𝑒2𝑃𝑒2

11,289,600
(1 + 𝑒)2 −

𝑅𝑎𝑇

261,273,600
(𝑏𝐿𝑒2 + 𝑁𝑑𝐿𝑒)] 𝐸3 + 𝑅𝑎𝑇 [−

𝐿𝑒2𝑃𝑒3

352,800
(1 + 𝑒)(2𝑒2 +

3𝑒 + 2) −
𝑃𝑒(1+𝐿𝑒2)

3360
(1 + 𝑒) +

𝑅𝑎𝑇

362,880
(𝑎𝐿𝑒2 + 𝑁𝑐) + (

𝑅𝑎𝑇

2,419,200
+

𝑅𝑎𝑇

4,354,560
)𝑃𝑒(𝑏𝐿𝑒2 + 𝑁𝑑𝐿𝑒)(1 + 𝑒)] 𝐸2 + [

𝐿𝑒2𝑃𝑒4

44,100
(2𝑒2 + 3𝑒 + 2)2 +

𝑃𝑒2(1+𝐿𝑒2)

210
(2𝑒2 + 3𝑒 + 2) −

𝑅𝑎𝑇𝑃𝑒

3360
(𝑎𝐿𝑒2 + 𝑁𝑐)(1 + 𝑒) −

𝑏𝑅𝑎𝑇

720
(
𝐿𝑒2𝑃𝑒2

210
(2𝑒2 + 3𝑒 +

2) + 1) −
𝑁𝑑𝐿𝑒𝑅𝑎𝑇

720
(
𝑃𝑒2

210
(2𝑒2 + 3𝑒 + 2) + 1) −

𝑅𝑎𝑇𝑃𝑒2

40,320
 (𝑏𝐿𝑒2 + 𝑁𝑑𝐿𝑒)(1 + 𝑒)2 +

1] 𝐸 + [𝐿𝑒2 (𝑎 +
𝑏𝑃𝑒

12
(1 + 𝑒)) + 𝑁 (𝑐 +

𝑑𝐿𝑒𝑃𝑒

12
(1 + 𝑒))]

𝑃𝑒2

210
(2𝑒2 + 3𝑒 + 2) + 𝑎 +

𝑏𝑃𝑒

12
(1 + 𝑒) + 𝑁 (𝑐 +

𝑑𝐿𝑒𝑃𝑒

12
(1 + 𝑒)) = 0                

  (3.118) 
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Mean Nusselt and Sherwood numbers are computed using Eqs. (3.101) and (3.102). 

For pure natural convection regime: 

 𝐶𝑇 = −
(𝑎−

𝑏𝑅𝑎𝑇
720

𝐸)

𝑅𝑎𝑇
2

362,880
𝐸2+1

 (3.119) 

 

 𝐶𝑆 = −
(𝑐−

𝑑𝐿𝑒𝑅𝑎𝑇
720

𝐸)

𝐿𝑒2𝑅𝑎𝑇
2

362,880
𝐸2+1

  (3.120) 

 

and the resulting transcendent equation is:   

 

  
𝐿𝑒2𝑅𝑎𝑇

4

362,8802 𝐸5 + 𝑅𝑎𝑇
2 [

(1+𝐿𝑒2)

362,880
−

𝑅𝑎𝑇

261,273,600
(𝑏𝐿𝑒2 + 𝑁𝑑𝐿𝑒)] 𝐸3 + [

𝑅𝑎𝑇
2

362,880
(𝑎𝐿𝑒2 +

𝑁𝑐)] 𝐸2 + [−
𝑏𝑅𝑎𝑇

720
−

𝑁𝑑𝐿𝑒𝑅𝑎𝑇

720
+ 1]𝐸 + a + 𝑁𝑐+= 0                

  (3.121) 

As for pure forced convection, we get the following expressions:          

 𝐶𝑇 = −
(𝑎+

𝑏𝑃𝑒

12
(1+𝑒))

𝑃𝑒2

210
(2𝑒2+3𝑒+2)+1

 (3.122) 

 

 𝐶𝑆 = −
(𝑐+

𝑑𝐿𝑒𝑃𝑒

12
(1+𝑒))

𝐿𝑒2𝑃𝑒2

210
(2𝑒2+3𝑒+2)+1

  (3.123) 

 

with the transcendent equation: 

[
𝐿𝑒2𝑃𝑒4

44,100
(2𝑒2 + 3𝑒 + 2)2 +

𝑃𝑒2(1 + 𝐿𝑒2)

210
(2𝑒2 + 3𝑒 + 2) + 1] 𝐸 + 

[𝐿𝑒2 (𝑎 +
𝑏𝑃𝑒

12
(1 + 𝑒)) + 𝑁 (𝑐 +

𝑑𝐿𝑒𝑃𝑒

12
(1 + 𝑒))]

𝑃𝑒2

210
(2𝑒2 + 3𝑒 + 2) + 𝑎 +

𝑏𝑃𝑒

12
(1 + 𝑒) + 𝑁 (𝑐 +

𝑑𝐿𝑒𝑃𝑒

12
(1 + 𝑒)) = 0                

  (3.124) 
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CHAPTER 4  Double-Diffusive Mixed Convection in a 

Single Lid-Driven Cavity Filled with Newtonian Fluid 

 

4.1 Introduction 

In this chapter we consider a horizontal rectangular cavity (Fig. 4.1) filled with 

Newtonian fluid and submitted to uniform heat and mass fluxes along the vertical walls 

while the horizontal ones are insulated and impermeable to mass transfer (𝑎 = 𝑐 = 1  

and 𝑏 = 𝑑 = 0). The cavity top wall slides from left to right (i.e., acting in the same 

direction as imposed heat and mass fluxes) with a constant velocity 𝑢0
′ ; while the 

remaining walls are motionless (𝑒 = 0). Double-diffusive mixed convection in the 

described configuration is investigated numerically and analytically. To better 

understand convection phenomena, the dominance regions of convective regimes, 

namely natural, mixed, and forced convection are defined. Next, the effects of 

governing parameters on flow structure and heat and mass transfer are illustrated and 

amply discussed for each regime in terms of stream function 𝜓, average horizontal 

Nusselt number 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , average horizontal Sherwood number 𝑆ℎℎ

̅̅ ̅̅ ̅, streamlines, 

isotherms, and iso-concentrations along with velocity, temperature, and concentration 

profiles. The numerical results presented in this chapter and the next two chapters are 

obtained using finite volume method. 

4.2 Effect of Prandtl number 

The generalized Prandtl number expressed in Eq. (3.26) is not a fluid property alone 

given its dependence on 𝐻′ and 𝑛; however, the parameter reduces to conventional 𝑃𝑟 

for a Newtonian fluid (𝑛 = 1). For the present study, almost all fluids of interest have 

a 𝑃𝑟 value much larger than unity. Conducted Numerical tests show that for 𝑃𝑟 ≥ 10, 

increasing Prandtl number does not affect fluid flow and heat and mass transfer. Such 

result can be confirmed while referring to governing equations (3.18) and (3.19), where 

increasing Prandtl number results in diminishing the convective terms (terms on the 

left-hand side of the equations) compared to the diffusive terms (terms on the right-

hand side of the equations). Another confirmation of this finding is that the analytical  
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Figure 4.1. Geometry of the investigated configuration along with coordinate system 

and associated boundary conditions. The vertical walls are submitted to uniform density 

of heat and mass fluxes, while the horizontal ones are insulated and impermeable. The 

top wall slides continuously from left to right with a constant velocity, while the 

remaining boundaries are motionless. 

solution, established in the previous chapter, is independent of 𝑃𝑟. Similar conclusions 

about the asymptotic value of Prandtl number are reported in previously published 

works [92-94]. 

4.3 Numerical code validation 

The present finite volume numerical code is verified using benchmark results from the 

literature to assess its accuracy. Table 4.1 compares the obtained results with previously 

published studies on mixed convection inside a lid-driven cavity. The good agreement 

is obvious in terms of the computed average Nusselt number; thus, confirm the 

capability of our numerical method to accurately model mixed convection within lid-

driven cavities. 

4.4 Mesh size choice 

The choice of the grid size is made based on numerical trail-and error tests as to get the 

best tradeoff between solutions accuracy and convergence time. Table 4.2 shows that 

for 𝐴 = 24 (the reasons for choosing this value for the cavity aspect ratio will be 

discussed later), a uniform grid size of 341 × 81 is found sufficient to accurately 

simulate fluids’ flow and temperature and concentration distributions within the cavity. 
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Table 4.1 – Comparison of average Nusselt number with published results in the 

literature for a lid-driven enclosure with 𝐺𝑟 =  100, 𝑃𝑟 =  0.71, and different values 

of 𝑅𝑒. 

𝑹𝒆 Present 

work 

Ref. 

[71] 

Ref. 

[36] 

Ref. 

[37] 

Ref. 

[40] 

Ref.  

[41] 

Ref. 

[42] 

1 1.0073 1.0094 1.00033 - - - - 

100 2.0534 2.09 2.03116 1.94 2.10 1.985 2.01 

400 4.1273 4.08082 4.0246 3.84 3.85 3.8785 3.91 

1000 6.7267 6.54687 6.48423 6.33 6.33 6.345 6.33 

 

Table 4.2 – Convergence tests using 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  for 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5,𝑁 = 1, and 

different values of 𝑃𝑒 in a single lid-driven cavity. 

 

4.5 Value of 𝑨 satisfying the large aspect ratio approximation 

In order for numerical results to be in agreement with analytical ones, and given that 

the parallel flow approximation is valid for shallow enclosures 𝐴 >> 1, we need to 

define the value of aspect ratio 𝐴 after which the flow characteristics computed 

numerically are invariant to 𝐴. Figure 4.2 illustrates the variation of 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  with 𝐴 for 

 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5, 𝑁 =  1 and several values of 𝑃𝑒. The heat transfer rate reaches 

an asymptotic state as the aspect ratio keeps increasing, we also detect the forced regime 

𝑷𝒆 Grids Analytical 

Solution 
(301,81) (321,81) (341,81) (341,121) (361,81) 

0.1 31.601 31.658 31.689 31.660 31.722 31.401 

1.0 31.909 31.968 32.000 31.967 32.033 31.706 

5.0 33.343 33.408 33.444 33.418 33.479 33.131 

25.0 42.4 42.506 42.572 42.555 42.633 42.143 

50.0 59.638 59.839 59.977 59.942 60.096 59.364 

100.0 123.072 123.711 124.197 124.133 124.597 123.308 

150.0 233.249 234.808 236.045 235.906 237.045 235.538 
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(𝑃𝑒 = 200) retarding role as it delays the reach of such asymptotic state compared to 

natural regime. The figure shows that 𝐴 = 24 is the smallest value that leads to 

numerical results independent of the aspect ratio and in good agreement with analytical 

results, and that for different values of governing parameters. Mamou et al. [95] showed 

that such findings can be generalized to a wide range of 𝐿𝑒 and 𝑁 values. Furthermore, 

Table 4.2 shows a perfect agreement between analytical and numerical results which 

validates both the analytical approach and the numerical code and justifies the choice 

of 𝐴 = 24 as an asymptotic value. Further confirmation of such facts for a wide range 

of governing parameters can be gained from comparing numerical and analytical curves 

portrayed below. 

Accordingly, Newtonian double-diffusive mixed convection in shallow rectangular 

cavities is mainly governed by: Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, 

Lewis number 𝐿𝑒, and buoyancy ratio 𝑁. In this chapter, the effects of said parameters 

on fluids’ flow and heat and mass transport phenomena are investigated in details for 

three separate convective regimes: natural, mixed, and forced convection. 
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Figure 4.2. Evolution of numerical average horizontal Nusselt number (𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ ) with the 

cavity aspect ratio (𝐴 =
𝐿′

𝐻′
) for 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5,𝑁 = 1, and different 𝑃𝑒 values in 

a single lid-driven enclosure. 
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4.6 Mixed convection parameter 

The modified Richardson number 𝐺𝑟/𝑅𝑒𝛾 (otherwise called the mixed convection 

parameter with 𝑃𝑒 = 𝑅𝑒𝑃𝑟  and  𝑅𝑎𝑇 = 𝐺𝑟𝑃𝑟   ) compares the effect of buoyancy 

forces generated by applied heat and mass fluxes to that of shear force induced by 

sliding walls on the convective regime. Thus, compares the strengths of natural and 

forced convection and allows us to separate three convective regimes. First, dominant 

natural convection regime characterized by strong buoyancy force and insignificant 

contribution of shear force to the overall convective regime. Second, mixed convection 

regime with buoyancy force and shear force are of comparable magnitudes as both 

contribute to the overall convection. Third, dominant forced regime where shear force 

dominates buoyancy effect. The exponent 𝛾 depends on the working fluid nature, the 

enclosure geometry, and the associated thermal and solutal boundary conditions. 

The separation of convective regimes is crucial when investigating mixed convection 

as it offers a better understanding of different convection phenomena and sets 

boundaries for each regime in terms of the governing parameters. Clearly the governing 

equations do not specify any physical boundaries that separate the three convective 

regimes, making the procedure purely numerical where a practically suitable threshold 

needs to be defined to separate natural, mixed, and forced regimes. Based on the 

assumptions above, a threshold of 5% is chosen. If heat and mass transfer rates deviate 

from the values computed in the case of pure natural or pure forced regime by less than 

5%, the regime is flagged as dominant natural or dominant forced regime, respectively, 

if not the regime is considered mixed. 

For the purpose of focusing on the effect of mixed convection parameter alone, we set 

𝐿𝑒 =  1. In this case, the temperature and concentration have similar diffusion 

characteristics, meaning that the computed deviations from the pure regimes’ values 

will be the same as 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ =  𝑆ℎℎ

̅̅ ̅̅ ̅. Accordingly, the following ratios are used to define 

the mixed convection parameter:  

 휀𝑁𝑢ℎ,𝑛
=

|𝑁𝑢ℎ̅̅ ̅̅ ̅̅ −𝑁𝑢ℎ,𝑛̅̅ ̅̅ ̅̅ ̅̅  |

𝑁𝑢ℎ,𝑛̅̅ ̅̅ ̅̅ ̅̅
 ;            휀𝑁𝑢ℎ,𝑓

=
|𝑁𝑢ℎ̅̅ ̅̅ ̅̅ −𝑁𝑢ℎ,𝑓̅̅ ̅̅ ̅̅ ̅̅  |

𝑁𝑢ℎ,𝑓̅̅ ̅̅ ̅̅ ̅̅
 (4.1) 

with 𝑁𝑢ℎ,𝑛
̅̅ ̅̅ ̅̅ ̅ and 𝑁𝑢ℎ,𝑓

̅̅ ̅̅ ̅̅ ̅ are the average horizontal Nusselt numbers for pure natural and 

pure forced convections, respectively. The regime is designated as dominant natural 
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convection for 휀𝑁𝑢ℎ,𝑛
< 5%, while the regime is qualified as dominant forced 

convection for 휀𝑁𝑢ℎ,𝑓
< 5%. Otherwise, the regime is flagged as mixed convection. 

Figure 4.3 is drawn with points (𝑙𝑜𝑔 (𝑅𝑎𝑇), 𝑙𝑜𝑔(𝑃𝑒)) that verify  휀𝑁𝑢ℎ,𝑛
= 5%  and 

휀𝑁𝑢ℎ,𝑓
= 5% obtained analytically (solid lines) and numerically (symbols). A good 

agreement can be seen between both solutions where two parallel straight lines split the 

domain defined with 𝑅𝑎𝑇 and 𝑃𝑒 values into three separate regions. The region on the 

left of line (1) corresponds to dominant natural convection (휀𝑁𝑢ℎ,𝑛
< 5%) . The second 

region on the right of line (2) corresponds to dominant forced convection           

(휀𝑁𝑢ℎ,𝑓
< 5%). The third region, enclosed by lines (1) and (2), exhibits a mixed 

convection regime. Lines (1) and (2) can be correlated in the form of mixed 

convection parameter as follows: 

 
𝑅𝑎𝑇

𝑃𝑒3.0 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒3.0 = 𝜂𝑓 (4.2) 
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Figure 4.3. Natural, forced, and mixed convection dominance regions for 𝐿𝑒 = 1 and 

𝑁 = 1 inside a single lid-driven rectangular cavity.  



56 

 

outlining dominant natural and dominant forced convective regime limits, respectively. 

The values of coefficients 𝜂𝑛  and 𝜂𝑓 are presented in Table 4.3 and shown in Figure 

4.3 with dashed lines. 

Finally, for the considered cavity configuration, the associated boundary conditions, 

and for 𝐿𝑒 = 1 and 𝑁 = 1, the mixed convection regime is delimited as follows: 

 0.0079 <
𝑅𝑎𝑇

𝑃𝑒3.0 < 584.83 (4.3) 

 

4.7 Dynamical, thermal, and solutal structures 

Streamlines (top), isotherms (middle), and iso-concentrations (bottom) are shown in 

Figure 4.4 for 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5, 𝑁 = 1, and various values of 𝑃𝑒. As the wall is 

sliding from left to right in the same direction as the imposed temperature and 

concentrations gradients, the buoyancy and shear effects work together (assisting flow) 

causing the flow to be unicellular and clockwise. Plus, except for the edges of the cavity 

near the vertical walls where the flow experiences a rotation of 180˚, fluid flow parallel 

to the horizontal direction while the thermal and solutale fields are linearly stratified in 

the 𝑥-direction. 

For low values of 𝑃𝑒 (i.e., 
𝑅𝑎𝑇

𝑃𝑒3.0 > 𝜂𝑛), dynamical, thermal, and solutale fields are 

similar to the ones obtained in pure natural convection case (Figure 4.5), where the 

dynamical field is Centro-symmetric with horizontal parallelism while isotherms and 

iso-concentrations display stratification in the core region of the enclosure. Thus, 

confirming that buoyancy force dominates the shear one. As 𝑃𝑒 increases, streamlines, 

isotherms, and iso-concentrations become more sensitive to the effect of the moving 

wall since the Centro-symmetric pattern starts to disappear and the inclinations of the 

isotherms and iso-concentrations with respect to the 𝑦-direction increases. For large  

Table 4.3 – Correlation coefficients 𝜂𝑛 and 𝜂𝑓. 

Convection 

regime 

Natural 

convection 

𝜼𝒏 

Forced 

convection  

𝜼𝒇 

 584.83  0.0079  
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𝑷𝒆 = 𝟎. 𝟏 

 

 

 

𝑷𝒆 = 𝟐𝟎 

 

 

 

𝑷𝒆 = 𝟏𝟎𝟎 

 

 

 

Figure 4.4. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5 and 𝑁 = 1 while varying Péclet number to account for the 

different convective regimes (natural, mixed, and forced convection) inside a single lid-

driven cavity. (Scale not respected). 

 

 

 

 

Figure 4.5. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pure natural convection at 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5, and 𝑁 = 1 inside a single lid-

driven cavity. (Scale not respected). 
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enough 𝑃𝑒 values (i.e., 
𝑅𝑎𝑇

𝑃𝑒3.0
< 𝜂𝑓), we end up with patterns similar to the ones found 

in pure forced convection for 𝑃𝑒 = 100 and 𝑃𝑒 = 200 (Figure 4.6) where the 

streamlines are more packed near the top moving wall showing that the flow is powerful 

in that region, while isotherms and iso-concentrations become more tilted and 

practically linear in the center of the cavity. In this case it is obvious that the sliding 

wall’ shear force dominates the convection. 

It’s worth to note that as 𝑃𝑒 increases, a boundary layer of isotherms and iso-

concentrations starts to form near the vertical walls, indicating that heat and mass 

transfer strengthen in the region. The layer is more noticeable near the left wall. 

4.8 Effect of Péclet number 

The evolutions of |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ with Péclet number 𝑃𝑒 are presented in Figure 

4.7 for 𝐿𝑒 =  5, 𝑁 =  1, and different values of 𝑅𝑎𝑇. For low values of 𝑃𝑒, flow 

characteristics are invariant to 𝑃𝑒 while depending on 𝑅𝑎𝑇, plus the results match the 

ones obtained in the case of pure natural convection regime indicating that fluid flow 

and heat and mass transfer are mainly assured by natural convection. After a given 

value of 𝑃𝑒, |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ start to increase slowly due to the contribution of shear  

𝑷𝒆 = 𝟏𝟎𝟎 

 

 

 

𝑷𝒆 = 𝟐𝟎𝟎 

 

 

 

Figure 4.6. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pure forced convection (𝑅𝑎𝑇 = 0) at 𝐴 = 24, 𝐿𝑒 = 5,𝑁 = 1 and different 𝑃𝑒 values 

inside a single lid-driven cavity. (Scale not respected). 
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Figure 4.7. Evolutions of the stream function at the center of the cavity 

(𝑥 =
𝐴

2
, 𝑦 = 1/2) (top), horizontal Nusselt number (middle), and horizontal 

Sherwood number (bottom) with Péclet number (𝑃𝑒) for  𝐿𝑒 =  5, 𝑁 =  1, and 

different values of 𝑅𝑎𝑇 inside a single lid-driven cavity. 
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effect generated by the moving wall. The said value of Péclet number can be correlated 

by (
𝑅𝑎𝑇

𝜂𝑛
)

1

3.0
, where it increases as 𝑅𝑎𝑇 increases owing to the well-established effect of 

thermal Rayleigh number in reinforcing natural convection; thus, delaying the 

transition from natural regime to mixed one. Finally, as 𝑃𝑒 keeps increasing, the shear 

effect dominates the buoyancy one and flow characteristics increase linearly with 𝑃𝑒 

indicating a dominant forced convection (
𝑅𝑎𝑇

𝑃𝑒3.0
< 𝜂𝑓). Such fact can be further 

confirmed as the results agree with the ones obtained for pure forced convection. 

Pure natural convection results are given by Eqs. (4.4) and (4.5) for 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  and  𝑆ℎℎ

̅̅ ̅̅ ̅, 

respectively. For pure forced convection regime, the results are defined by Eqs. (4.6) 

and (4.7) for  𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  and  𝑆ℎℎ

̅̅ ̅̅ ̅, respectively. These results are shown in Figure 4.7 as 

dashed lines. 

  𝑁𝑢ℎ,𝑛
̅̅ ̅̅ ̅̅ ̅ =

𝑅𝑎𝑇
2

362,880
𝐸2 + 1 (4.4) 

 

  𝑆ℎℎ,𝑛
̅̅ ̅̅ ̅̅ ̅ =

𝐿𝑒2𝑅𝑎𝑇
2

362,880
𝐸2 + 1 (4.5) 

 

  𝑁𝑢ℎ,𝑓
̅̅ ̅̅ ̅̅ ̅ =

𝑃𝑒2

105
+ 1 (4.6) 

 

 𝑆ℎℎ,𝑓
̅̅ ̅̅ ̅̅ ̅ =

𝐿𝑒2𝑃𝑒2

105
+ 1 (4.7) 

4.9 Effect of thermal Rayleigh number 

To further illustrate the influence of thermal Rayleigh number 𝑅𝑎𝑇, the variations of 

|𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ as a function of 𝑅𝑎𝑇 are depicted in Figure 4.8 for 𝐿𝑒 =  5,        

𝑁 =  1,  and various values of 𝑃𝑒. The evolution patterns of |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ are 

similar to those with Péclet number discussed above considering buoyancy effect and 

shear force respective magnitudes. For small values of 𝑅𝑎𝑇, flow characteristics are 

invariant as forced convection dominates (results agree with the ones obtained for pure 

forced convection regime), where increasing 𝑃𝑒 increases the extent of the invariability 

range as it strengthens the shear effect. After which they first experience a slight  
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Figure 4.8. Evolutions of the stream function at the center of the cavity (𝑥 =
𝐴

2
, 𝑦 =

1

2
) 

(top), horizontal Nusselt number (middle), and horizontal Sherwood number (bottom) 

with thermal Rayleigh number (𝑅𝑎𝑇) for  𝐿𝑒 =  5, 𝑁 =  1, and different values of 𝑃𝑒 

inside a single lid-driven cavity. 
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increase (mixed convection regime), the threshold signaling this change in behavior is 

defined by (𝑃𝑒3.0𝜂𝑓) where forced convection no longer dominates fluid flow and heat 

and mass transfer, which agrees with the mixed convection regime limits given by Eq. 

(4.3). Next, after the transition phase, all quantities increase monotonically (dominating 

natural convection for 
𝑅𝑎𝑇

𝑃𝑒3.0
> 𝜂𝑛) due to the role of enhancing buoyancy force in 

promoting convection. The dashed lines describing pure forced convection results are 

defined by Eqs. (4.6) and (4.7) for 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  and  𝑆ℎℎ

̅̅ ̅̅ ̅, respectively. As for pure natural 

convection, asymptotic limits of the results are defined by Eqs. (4.4) and (4.5) for 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  

and  𝑆ℎℎ
̅̅ ̅̅ ̅, respectively.  

There are two points that deserve mentioning. First, for low values of 𝑃𝑒 (𝑃𝑒 ≤ 1) and 

when 𝑅𝑎𝑇 is small enough (𝑅𝑎𝑇 < 10), fluid flow and heat and mass transfer are 

governed by diffusion  (|𝜓𝑐| ≤ 10−1, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ ≈ 1, and 1 < 𝑆ℎℎ

̅̅ ̅̅ ̅ < 2). Outside this zone, 

increasing  𝑅𝑎𝑇 results in increasing  |𝜓𝑐| and 𝑆ℎℎ
̅̅ ̅̅ ̅ without affecting 𝑁𝑢ℎ

̅̅ ̅̅ ̅̅  at first, which 

increases only when 𝑅𝑎𝑇 ≥ 100. Second, because 𝐿𝑒 = 5, mass transfer is more 

important than heat transfer. 

4.10 Effect of Lewis number 

Variations of |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ with Lewis number 𝐿𝑒 are reported in Figure 4.9 for 

𝑅𝑎𝑇 = 105, 𝑁 = 1, and different values of 𝑃𝑒. For low values of 𝐿𝑒,  the upper plateaus 

for |𝜓𝑐| and 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  indicate that thermal convection dominates thermal conduction, while 

the lower plateau characterized by 𝑆ℎℎ
̅̅ ̅̅ ̅ ≈ 1 indicate the diffusive nature of mass 

transfer. Furthermore, increasing 𝑃𝑒 has no effect on flow characteristics showing that 

thermal convection also dominates the shear effect induced by driven wall. As 𝐿𝑒 

increases, a descent in the values of |𝜓𝑐| and 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  while 𝑆ℎℎ

̅̅ ̅̅ ̅ starts to rise slowly 

indicate a change in the heat and mass transport mechanisms. Finally, for 𝐿𝑒 > 1,  𝑆ℎℎ
̅̅ ̅̅ ̅ 

increases monotonically knowing that Sherwood number depends strongly on Lewis 

number as increasing it strengthens convective mass transfer. In contrast, a lower 

plateau is observed for |𝜓𝑐| and 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  as heat transfer is mainly by diffusion (i.e., heat 

conduction). Further, the effect of varying 𝑃𝑒 on flow characteristics becomes obvious 

signaling that shear force impacts the convective regime. 
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Figure 4.9. Evolutions of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2) (top), horizontal Nusselt number (middle), and horizontal 

Sherwood number (bottom) with Lewis number (𝐿𝑒) for  𝑅𝑎𝑇 = 105, 𝑁 =  1, and 

different values of 𝑃𝑒 inside a single lid-driven cavity. 
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4.11 Effect of buoyancy ratio 

The results of varying 𝑁 on  |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ are reported in Figure 4.10 for           

𝑅𝑎𝑇 = 105, 𝐿𝑒 = 5, and various values of 𝑃𝑒. For buoyancy aiding flow case (𝑁 > 0) 

discussed here, three convective regimes appear: 

• for a range of small values of 𝑁 (𝑁 < 10) , thermal buoyancy force dominates 

convection resulting in |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ being indifferent to changes in 𝑁 

value as solutal buoyancy force input is insignificant; thus, only the effect of the 

moving wall can be seen. 

• an intermediate regime, for which the increase of |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ begins to 

be seen, the solutal buoyancy force starts to take importance compared to the 

thermal buoyancy one. As a result, the effect of the moving wall, acting in the 

same direction as the buoyancy forces to enhance convection, starts to diminish.    

• a regime where |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ increase in a monotonous and pronounced 

way with 𝑁; further, the effect of the moving wall shear force vanishes 

indicating a convective regime where solutal buoyancy force is predominant. 

We note that, beyond 𝐿𝑒 = 103 and 𝑁 = 103, the numerical code cannot generate 

stable results. 

4.12 Horizontal velocity, Temperature, and Concentration 

Horizontal velocity (top), temperature (middle), and concentration (bottom) profiles at 

mid-length of the enclosure (𝑥 =
𝐴

2
) are shown in Figure 4.11 for  𝑃𝑒 = 25, 𝐿𝑒 = 5,

𝑁 = 1, and various representative values of  𝑅𝑎𝑇. The critical value of thermal 

Rayleigh number 𝑅𝑎𝑇𝑐𝑟 defines the onset of buoyancy-driven fluid flow.  For dominant 

forced convection regime (𝑅𝑎𝑇 < 𝑅𝑎𝑇𝑐𝑟), the illustrated profiles are asymmetric given 

the fact that horizontal dynamical boundary conditions are of asymmetric nature (only 

the top wall is moving). For the velocity, as 𝑅𝑎𝑇 increases the extremum values 

augments where the minimum value becomes more amplified and the maximum value 

increases as it moves far from the moving wall (𝑦 = 1). Thus, indicating that the flow 

becomes faster and more intense in that region away from the moving wall, which 

shows that buoyancy force dominates convection (𝑅𝑎𝑇 > 𝑅𝑎𝑇𝑐𝑟). The threshold that  
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Figure 4.10. Evolutions of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2)  (top), horizontal Nusselt number (middle), and horizontal 

Sherwood number (bottom) with buoyancy ratio (𝑁) for  𝑅𝑎𝑇 = 105, 𝐿𝑒 =  5, and 

different values of 𝑃𝑒 inside a single lid-driven cavity. 
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Figure 4.11. Horizontal velocity 𝑢 (top), temperature 𝑇 (middle), and concentration 𝑆 

(bottom) profiles at mid-length of the cavity (𝑥 = 𝐴/2) along the vertical coordinate 

(𝑦) for 𝑃𝑒 = 25, 𝐿𝑒 =  5, 𝑁 =  1, and various values of 𝑅𝑎𝑇 inside a single lid-driven 

cavity. 𝑅𝑎𝑇(𝑐𝑟) signals the onset of buoyancy-driven flow. 
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results in these extremums and indicates that the flow is buoyancy-driven (𝑅𝑎𝑇𝑐𝑟) is 

given by (see Figure 4.11): 

 𝑅𝑎𝑇𝑐𝑟 =
1

[
19

630
(𝐿𝑒2+𝑁)𝑃𝑒2+1+𝑁]

[
1444

33075
𝐿𝑒2𝑃𝑒5 +

152

105
(1 + 𝐿𝑒2)𝑃𝑒3 + 48𝑃𝑒]

  (4.8) 

The fact that both shear and buoyancy effects work in the same direction from left to 

right results in monocellular clockwise flow, where the velocity is positive on the top 

region of the cavity while negative on the bottom. As for the temperature and 

concentration profiles, they also present two zones. The one with positive signs in the 

top and the one with negative signs in the bottom with extremum values that increases 

as 𝑅𝑎𝑇 decreases indicating that the flow is losing its intensity, as confirmed by the 

velocity profiles and the values of heat and mass transfer rates that decrease as 𝑅𝑎𝑇 

decreases.  

For temperature, the clockwise flow makes the top of the cavity warm and the bottom 

cold by transferring heat from the hot left wall and discharging it along the right wall. 

The concentration profiles are similar given that mass transfer exhibits similar 

phenomenon. 

4.13 Conclusions 

Double-diffusive mixed convection in a single lid-driven rectangular cavity filled with 

Newtonian fluid and subjected to uniform heat and mass fluxes applied to the vertical 

short sides (i.e., Neumann type conditions) while the long horizontal boundaries are 

insulated and impermeable is studied numerically and analytically. In the case of 

shallow enclosures (𝐴 ≥ 24), the flow characteristics become indifferent to aspect ratio 

𝐴 variation. Likewise, for Prandtl numbers 𝑃𝑟 ≥ 10, varying 𝑃𝑟 does not influence 

fluid flow and heat and mass transfer characteristics. As a result, the main parameters 

governing convection reduce to: Péclet number 𝑃𝑒,  thermal Rayleigh number 𝑅𝑎𝑇, 

Lewis number 𝐿𝑒, buoyancy ratio 𝑁. Numerical solutions, using finite volume method, 

are given for wide ranges of governing parameters  (10−2 ≤ 𝐿𝑒 ≤ 102, 10−2 ≤ 𝑁 ≤

102, 0.1 ≤ Pe ≤ 500, 1 ≤ RaT ≤ 107). Further, using the parallel flow 

approximation valid for shallow enclosures, an analytical solution is established. Both 

solutions show good agreement within the explored ranges of the governing parameters. 
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The finite difference method also shows a perfect agreement with the numerical results 

obtained by the finite volume method.  

The parameter 𝑅𝑎𝑇/𝑃𝑒3.0 is found to perfectly outline natural, forced, and mixed 

convective regimes, where the following boundaries: 

0.0079 <
𝑅𝑎𝑇

𝑃𝑒3.0
< 584.83 

delimit the mixed regime for shallow single lid-driven rectangular cavity filled with 

Newtonian fluid and for governing parameters 𝐿𝑒 = 1 and 𝑁 = 1. Whereas natural and 

forced regimes are found to dominate outside these limits.  

The effects of governing parameters on fluid flow and heat and mass transfer are 

investigated, where increasing Péclet number results in stronger shear effect; thus, 

enhances flow intensity and heat and mass transfer rates. While increasing Rayleigh 

number results in a similar effect, but this time due to reinforced buoyancy force which 

leads to a more active convection. Lewis number affects strongly mass transfer while 

no change is noticed on flow intensity and heat transfer. As for increasing buoyancy 

ratio, it enhances flow characteristics as a beneficial result of dominant mass buoyancy 

force. 
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CHAPTER 5  Double-Diffusive Mixed Convection in Double 

Lid- Driven Rectangular Cavities Filled with Non-

Newtonian Fluids  

 

5.1 Introduction 

In this chapter we investigate, both numerically and analytically, rectangular cavities 

(Fig. 5.1) confining non-Newtonian fluids and subjected to uniform density of heat and 

mass fluxes along the short vertical walls, whereas the long horizontal ones are 

insulated and impermeable (𝑎 = 𝑐 = 1 𝑎𝑛𝑑 𝑏 = 𝑑 = 0). As for the kinematic 

boundary conditions, both horizontal walls move in opposite directions with the same 

uniform velocity 𝑢0
′  acting in the same direction as imposed heat and mass fluxes     

(𝑒 = 1), while the vertical ones are motionless. Numerical tests show that for Prandtl 

numbers 𝑃𝑟 ≥ 10, increasing it further does not affect non-Newtonian fluids flow and 

heat and mass transfer. The effects of governing parameters on double-diffusive mixed 

convection fluid flow and heat and mass transfer characteristics are thoroughly 

inspected for the three separate regimes: natural, mixed, and forced convection. 

 

Figure 5.1. Geometry of the investigated configuration along with coordinate system 

and associated boundary conditions. Uniform density of heat and mass fluxes are 

applied to motionless vertical walls, while the horizontal ones are insulated, 

impermeable, and move in opposite directions with the same uniform velocity. 
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5.2 Numerical code validation 

In chapter 4, we confirm the accuracy of our numerical code for modeling mixed 

convection inside lid-driven cavities. Additionally, and in order to examine the 

numerical code ability to generalize to non-Newtonian flows, Table 5.1 shows a 

comparison with published results for different power-law indexes in terms of the 

relative average Nusselt number 𝑁𝑢𝑟 (ratio of the average Nusselt number for non-

Newtonian fluid 𝑁𝑢𝑛#1 to that of Newtonian fluid 𝑁𝑢𝑛=1). Here again, the present 

results are fully consistent with the benchmark results justifying the use of the present 

numerical code to simulate non-Newtonian fluids’ flow characteristics. It is worth 

mentioning that Prandtl number and Rayleigh number used in Table 5.1 benchmark 

studies are given by [96, 97]: 

 𝑃𝑟∗ =
(𝑘/𝜌)1/(2−𝑛)𝐻′2(1−𝑛)/(2−𝑛) 

𝛼
 and 𝑅𝑎∗ =

𝑔𝛽ₜ𝐻′4𝑞′

(𝑘/𝜌)1/(2−𝑛)𝐻′2(1−𝑛)/(2−𝑛)
𝛼𝜆

 (5.1) 

linked to 𝑃𝑟 and 𝑅𝑎𝑇 defined in Eq. (3.26) by the following expressions: 

 𝑃𝑟 = 𝑃𝑟∗(2−𝑛) and 𝑅𝑎𝑇 = 𝑅𝑎∗𝑃𝑟 
𝑛−1

2−𝑛 (5.2) 

5.3 Mesh size choice 

As before, the choice of the grid size is made in order to get the best tradeoff between 

the computation time and the solutions accuracy. Tables 5.2, 5.3, and 5.4 show that for 

𝐴 = 24 (value after which the flow characteristics become independent of the aspect 

ratio 𝐴) a uniform grid size of 381 × 121 is sufficient to model accurately non- 

Newtonian fluids flow and temperature and concentration distributions inside double 

lid-driven rectangular cavities. 

Table 5.1 – Comparison of relative average Nusselt number (𝑁𝑢𝑟 = 𝑁𝑢𝑛#1/𝑁𝑢𝑛=1) 

for 𝑃𝑟∗ = 100, 𝑅𝑎∗ = 104 𝑎𝑛𝑑 105 and different values of 𝑛. 

 𝑹𝒂∗ 𝒏 = 𝟎. 𝟔 𝒏 = 𝟎. 𝟖 𝒏 = 𝟏. 𝟎 𝒏 = 𝟏. 𝟐 𝒏 = 𝟏. 𝟒 

Present work 104 1.06 1.03 1 0.97 0.94 

Present work 105 1.45 1.16 1 0.89 0.82 

Ref. [96] 104 1.04 1.02 1 0.97 0.93 

Ref. [96] 105 1.48 1.18 1 0.89 0.82 

Ref. [97] 104 - - - - - 

Ref. [97] 105 1.46 1.17 1 - - 
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Table 5.2 – Convergence tests for 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10,𝑁 = 1, 𝑛 = 0.6, and 

different values of 𝑃𝑒 in a double lid-driven cavity. 

𝑷𝒆 Grids Analytical 

solution (241,61) (321,81) (381,121) (421,121) (481,181) 

|𝝍𝒄| 

0.1 20.472 19.514 19.069 18.91 18.691 18.77988 

25 24.402 20.736 20.303 20.138 19.8344 19.43714 

100 32.352 31.731 31.533 31.434 31.338 31.99374 

𝑵𝒖𝒉
̅̅ ̅̅ ̅̅  

0.1 141.28 142.993 142.247 142.704 142.256 145.412 

25 169.328 171.575 174.113 174.747 173.489 181.2176 

100 439.057 462.393 473.12 479.579 486.51 483.02 

𝑺𝒉𝒉
̅̅ ̅̅ ̅ 

0.1 14021 14211.2 14252.5 14330.5 14270.8 14442.2 

25 16835.2 17056.5 17525.6 17623.8 17449.7 18022.76 

100 43808.4 46138.5 47213 47857 48549.2 48203 

 

Table 5.3 – Convergence tests for 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10,𝑁 = 1, 𝑛 = 1.0, and 

different values of 𝑃𝑒 in a double lid-driven cavity. 

𝑷𝒆 Grids Analytical 

solution (241,61) (321,81) (381,121) (421,121) (481,181) 

|𝝍𝒄| 

0.1 8.617 8.514 8.492 8.485 8.466 8.559681 

25 10.915 10.82 10.789 10.792 10.784 10.63974 

100 25.726 25.696 25.687 25.684 25.683 26.73264 

𝑵𝒖𝒉
̅̅ ̅̅ ̅̅  

0.1 30.673 31.011 31.057 31.088 31.098 30.82649 

25 56.118 57.19 57.447 57.57 57.568 59.92474 

100 336.895 350.14 354.323 356.217 357.226 361.091 

𝑺𝒉𝒉
̅̅ ̅̅ ̅ 

0.1 2872.06 2920.249 3001.5 3005.2 3006.4 2983.649 

25 5512.8 5620 5738.7 5758 5757.2 5893.474 

100 33590.5 34915 35330 35525 35620.3 36010.1 
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Table 5.4 – Convergence tests for 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10,𝑁 = 1, 𝑛 = 1.4, and 

different values of 𝑃𝑒 in a double lid-driven cavity. 

𝑷𝒆 Grids Analytical 

solution (241,61) (321,81) (381,121) (421,121) (481,181) 

|𝝍𝒄| 

0.1 4.581 4.617 4.61 4.591 4.471 4.664025 

25 7.616 7.57 7.55 7.587 7.616 7.640985 

100 25.028 25.052 25.054 25.052 24.916 25.00425 

𝑵𝒖𝒉
̅̅ ̅̅ ̅̅  

0.1 9.746 9.941 9.797 9.855 10.275 9.805278 

25 31.192 31.1 32.095 31.78 31.228 30.77634 

100 332.656 341.368 334.097 333.4 324.861 339.618 

𝑺𝒉𝒉
̅̅ ̅̅ ̅ 

0.1 795.151 865.09 860.853 833.234 790.289 881.5278 

25 3052.157 3120.496 3099.7 3075 3020.5 2978.634 

100 33155.6 34020.8 33350.2 33215 32350.7 33862.8 

 

5.4 Value of 𝑨 satisfying the large aspect ratio approximation 

Figure 5.2 show the evolutions of 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  with 𝐴 for  𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10, 𝑁 =  1, and 

various values of 𝑃𝑒 and 𝑛. As the aspect ratio increases, an asymptotic behavior of 

𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  can be seen with forced convection regime (𝑃𝑒 ≥ 100) playing a role in delaying 

the reach of the asymptotic state which is more obvious for pseudoplastic fluids 

(0 < 𝑛 < 1). Thus, for all considered values of governing parameters, 𝐴 = 24 is the 

smallest value of the cavity aspect ratio for which numerical results become 

independent of 𝐴 and match the results obtained analytically.  

All things considered, double-diffusive mixed convection in shallow lid-driven 

rectangular cavities filled with non-Newtonian fluids is mainly governed by: Péclet 

number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, Lewis number 𝐿𝑒, buoyancy ratio 𝑁, and 

power-law behavior index 𝑛. 

5.5 Mixed convection parameter 

The literature proposes many disconnected indications to distinct natural, mixed, and 

forced regimes. Further, the proposed mixed convection parameters do not take into 

account the working fluid nature especially the non-linear behavior of non-Newtonian  
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Figure 5.2. Variation of numerical horizontal Nusselt number (𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ ) with the cavity 

aspect ratio (𝐴 =
𝐿′

𝐻′
) while varying Péclet number (𝑃𝑒) to account for the different 

convective regimes (natural, mixed, and forced convection) for: (a) pseudoplastic fluid 

(𝑛 = 0.6), (b) Newtonian fluid (𝑛 = 1.0), and (c) dilatant fluid (𝑛 = 1.4) at          

𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10, and 𝑁 = 1 inside double lid-driven cavities. 

fluids despite their importance for both academic and industrial sectors. Consequently, 

the limits between convective regimes need to be defined with a clear and practical 

criterion taking into account non-Newtonian fluids nature. The same numerical 

procedure as explained in the previous chapter, with a threshold of 5%, is adopted to 

separate the three convective regimes. 
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Figure 5.3 is built using Eq. (4.1) where the points (𝑙𝑜𝑔 (𝑅𝑎𝑇), 𝑙𝑜𝑔(𝑃𝑒)) that verify 

휀𝑁𝑢ℎ,𝑛
= 5%  and 휀𝑁𝑢ℎ,𝑓

= 5%  are obtained analytically (solid lines) and numerically 

(symbols). The agreement between both solutions is obvious. For each considered value 

of the power-law behavior index 𝑛, two parallel straight lines split the domain of 

explored ranges of 𝑅𝑎𝑇 and 𝑃𝑒 into three distinct zones as discussed in the previous 

chapter. The shift from dominant natural regime to dominant forced regime for the same 

value of 𝑅𝑎𝑇 requires higher values of 𝑃𝑒 as 𝑛 decreases, indicating that the transition 

requires higher shear force as the fluid behavior changes from shear thickening to shear 

thinning. Such result is to be expected as decreasing 𝑛 enhances natural convection 

flow characteristics; thus, delaying the transition toward dominant forced regime. Lines 

(1) and (2) can be correlated in the form of the mixed convection parameter as follows: 

• For 𝑛 = 0.6: 

 
𝑅𝑎𝑇

𝑃𝑒2.6 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒2.6 = 𝜂𝑓 (5.3) 

 

• For 𝑛 = 1.0: 

 
𝑅𝑎𝑇

𝑃𝑒3.0 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒3.0 = 𝜂𝑓 (5.4) 

 

• For 𝑛 = 1.4: 

 
𝑅𝑎𝑇

𝑃𝑒3.4 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒3.4 = 𝜂𝑓 (5.5) 

representing the limits for natural and forced regime, respectively. The fluid nature 

affects the exponent 𝛾 as it increases with the power-law behavior index. The values of 

coefficients 𝜂𝑛  and 𝜂𝑓 are given in Table 5.5 and illustrated in Figure 5.3 with dashed 

lines for different values of 𝑛. Accordingly, and for 𝐿𝑒 = 1 and 𝑁 = 1, mixed 

convection regime in the case of double-lid driven rectangular cavities filled with non-

Newtonian fluids and subjected to horizontal uniform density of heat and mass fluxes 

is delimited as follows: 

0.0259 <
𝑅𝑎𝑇

𝑃𝑒2.6
< 452.21;  0.0299 <

𝑅𝑎𝑇

𝑃𝑒3.0
< 7085; 

 0.0225 <
𝑅𝑎𝑇

𝑃𝑒3.4 < 86710 (5.6) 

 

for 𝑛 = 0.6, 𝑛 = 1.0, and 𝑛 = 1.4, respectively. 
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Figure 5.3. The dominance regions of the three convective regimes: natural, forced, 

and mixed convection for different values of flow behavior index  𝑛 at 𝐿𝑒 = 1 and    

𝑁 = 1 inside double lid-driven rectangular cavities. 

Table 5.5 – Correlation coefficients 𝜂𝑛 and 𝜂𝑓 for characteristic values of 𝑛. 

Power-law behavior index 

𝒏 

Natural convection 

 𝜼𝒏 

Forced convection 

 𝜼𝒇 

0.6 452.21 0.0259 

1.0 7085 0.0299 

1.4 86710 0.0225 

 

 

5.6 Dynamical, thermal, and solutal structures 

Representative streamlines (top), isotherms (middle), and iso-concentrations (bottom) 

are displayed in Figures 5.4, 5.5, and 5.6 for 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10,𝑁 = 1, and several 

characteristic values of 𝑃𝑒 and 𝑛. As expected, the flow is unicellular and clockwise 

owing to the fact that buoyancy force and moving walls shear effect are acting in the 

same direction from left to right. Furthermore, excluding the end sides near the vertical  
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𝑷𝒆 = 𝟎. 𝟏 

 

 

 

𝑷𝒆 = 𝟐𝟓 

 

 

 

𝑷𝒆 = 𝟏𝟎𝟎 

 

 

 

Figure 5.4. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pseudoplastic fluid (𝑛 = 0.6) at 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10 and 𝑁 = 1 while 

varying Péclet number (𝑃𝑒) inside double lid-driven rectangular cavity. (Scale not 

respected). 

walls where the flow undergoes a rotation of 180°, streamlines exhibit a parallel aspect 

in the central part of the cavity. The isotherms and iso-concentrations are linearly 

stratified in the 𝑥-direction, where they become less inclined with regard to the vertical 

direction as 𝑛 increases. 

For low values of 𝑃𝑒, the profiles are similar to the ones obtained in the case of pure 

natural convection (see Figure 5.7). The streamlines are shifted away from horizontal 

walls indicating the absence of fluid circulation due to moving walls. Accordingly, 

natural convection predominates fluid flow  (
𝑅𝑎𝑇

𝑃𝑒𝛾 > 𝜂𝑛). As 𝑃𝑒 increases, the 

streamlines become more crowded near the sliding horizontal walls signaling a strong 

flow circulation in that region and confirm that forced convection dominates natural 

convection (
𝑅𝑎𝑇

𝑃𝑒𝛾 < 𝜂𝑓). This occurs first for dilatant fluids, given that decreasing the  
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𝑷𝒆 = 𝟎. 𝟏 
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𝑷𝒆 = 𝟏𝟎𝟎 

 

 

 

Figure 5.5. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

Newtonian fluid (𝑛 = 1.0) at 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10 and 𝑁 = 1 while varying 

Péclet number (𝑃𝑒) inside double lid-driven rectangular cavity. (Scale not respected). 

power-law index strengthens natural convection fluid flow and heat and mass transfer 

characteristics leading to delay the dominance of the forced regime. As for temperature 

and concentration fields, we observe that as 𝑃𝑒 rises, thinner boundary layers appear 

near both vertical walls indicating a strong temperature and concentration gradients in 

these end regions. The layers’ widths grow and become more noticeable as 𝑛 increases.  

For high enough values of 𝑃𝑒 (𝑃𝑒 = 100), the isotherms and iso-concentrations 

become practically linear in the center of the cavity where the results match the ones 

found in the case of pure forced convection (see Figure 5.8). 

5.7 Effect of Péclet number 

The evolutions of flow characteristics |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ with Péclet number 𝑃𝑒 are 

shown in Figure 5.9, for  𝐿𝑒 =  10, 𝑁 =  1, and different values of 𝑅𝑎𝑇 and 𝑛. For low  
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Figure 5.6. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

dilatant fluid (𝑛 = 1.4) at 𝐴 = 24, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10 and 𝑁 = 1 while varying 

Péclet number (𝑃𝑒) inside double lid-driven rectangular cavity. (Scale not respected). 

values of 𝑃𝑒, the natural convection regime is clearly dominating (
𝑅𝑎𝑇

𝑃𝑒𝛾 > 𝜂𝑛) as the 

intensity of fluid circulation and heat and mass transfer rates are not affected while 

increasing 𝑃𝑒. Plus, the obtained results are identical to those obtained in the case of 

pure natural convection shown as dashed lines. After a given value of 𝑃𝑒, a slow 

increase of the illustrated quantities begins to show denoting a regime change from 

natural to mixed convection. The said value of 𝑃𝑒 depends on 𝑅𝑎𝑇 and 𝑛, as increasing 

thermal Rayleigh number or decreasing the power-law index delays the transition from 

natural regime to mixed one. The former strengthens buoyancy force while the latter 

enhances convective flow characteristics in natural regime; therefore, the transition 

requires greater 𝑃𝑒 values (higher shear force). Finally, for high values of Péclet 

number, the three quantities rise in a monotonous way matching the results obtained in 

pure forced convection regime, illustrated as dashed lines; thus, indicating that forced  
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Figure 5.7. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pure natural convection at 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10, and 𝑁 = 1. The results are presented 

for different fluid behaviors: pseudoplastic (𝑛 = 0.6), Newtonian (𝑛 = 1.0), and 

dilatant (𝑛 = 1.4) inside double lid-driven rectangular cavity. (Scale not respected). 

convection dominates fluid flow and heat and mass transfer. The observed effect of 𝑃𝑒 

can be further confirmed from Fig. 10(a) showing that as 𝑃𝑒 increases, the value of 𝑦0 

decreases until it reaches zero, meaning that the effect of moving walls dominates the 

convection (
𝑅𝑎𝑇

𝑃𝑒𝛾 < 𝜂𝑓). The fluids with shear-thickening behavior are the first to reach 

the forced regime compared to shear-thinning ones. 

One key finding is that, as forced convection contribution in the convective regime 

begins to strengthen while increasing 𝑃𝑒, the effect of 𝑛 on flow characteristics begins 

to shrink until it vanishes totally as forced convection fully dominates the convective 

regime. Therefore, the strength of sliding walls shear force can affect non-Newtonian 

fluids rheological behavior.  
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Figure 5.8. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pure forced convection (𝑅𝑎𝑇 = 0) at 𝑃𝑒 = 100, 𝐿𝑒 = 10, and 𝑁 = 1. The results are 

presented for different fluid behaviors: pseudoplastic (𝑛 = 0.6), Newtonian (𝑛 = 1.0), 

and dilatant (𝑛 = 1.4) inside double lid-driven rectangular cavity. (Scale not 

respected). 

5.8 Effect of thermal Rayleigh number  

The effects of thermal Rayleigh number 𝑅𝑎𝑇 on quantities |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ are 

illustrated in Figure 5.11 for 𝐿𝑒 =  10, 𝑁 =  1, and several 𝑃𝑒 and 𝑛 values. For the 

first interval of small values of  𝑅𝑎𝑇 ,  no change is observed on the presented flow 

characteristics and the fluids power-law behavior index does not affect the results. 

These observations are similar to the ones made in the previous section where forced 

convection dominates fluid flow and heat and mass transfer and diminish the effect of 

non-Newtonian fluids behavior (
𝑅𝑎𝑇

𝑃𝑒𝛾 < 𝜂𝑓). Moreover, the results agree with the ones 

obtained for pure forced convection (𝑅𝑎𝑇 = 0) presented as dashed lines. The range of 

the interval characterized by forced convection dominance depends on the values of  
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Figure 5.9. Evolutions of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2) (left), horizontal Nusselt number (middle), and horizontal 

Sherwood number (right) with Péclet number (𝑃𝑒) for  𝐿𝑒 =  10, 𝑁 =  1, and different 

values of 𝑅𝑎𝑇 and 𝑛 inside double lid-driven cavities. 

both Péclet number and power-law index. Increasing 𝑃𝑒 increases the range as it 

strengthens the shear force driving forced convection, while decreasing 𝑛 does the 

opposite as it enhances natural convection flow characteristics which accelerates the 

transition. Next, the quantities start to rise slowly as 𝑅𝑎𝑇 increases indicating a phase 

change, this time shifting from dominant forced regime to mixed convection regime as 

natural convection starts to contribute in overall convection resulting in a more active 

convection. Finally, |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ increase linearly with 𝑅𝑎𝑇 and the effect of 𝑛 

becomes noticeable as shear-thinning fluids have higher heat and mass transfer rates  
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Figure 5.10. Effects of governing parameters on 𝑦0 values (defining the vertical 

distance between the point with maximum velocity and the sliding wall): (𝑎) effect of 

𝑃𝑒 (𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10,𝑁 = 1), (𝑏) effect of 𝑅𝑎𝑇 (𝑃𝑒 = 25, 𝐿𝑒 = 10, 𝑁 = 1),      

(𝑐) effect of 𝐿𝑒 (𝑃𝑒 = 25, 𝑅𝑎𝑇 = 105, 𝑁 = 1), and (𝑑) effect of 𝑁                               

(𝑃𝑒 = 25, 𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10) all for different values of 𝑛. 

with respect to Newtonian and shear-thickening fluids. The enhancing effect of 

decreasing 𝑛 amplifies while increasing 𝑅𝑎𝑇 showing that the convective regime is now 

governed by natural convection (
𝑅𝑎𝑇

𝑃𝑒𝛾
> 𝜂𝑛) where the results match the pure natural 

convection ones for all considered values of power-law index (dashed lines). 
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Figure 5.11. Evolutions of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2) (left), horizontal Nusselt number (middle), and horizontal 

Sherwood number (right) with thermal Rayleigh number (𝑅𝑎𝑇) for  𝐿𝑒 =  10, 𝑁 =  1, 

and different values of 𝑃𝑒 and 𝑛 inside double lid-driven cavities. 

The previous conclusions are well confirmed by the variation of 𝑦0 with  𝑅𝑎𝑇 given in 

Fig. 10(b). The value of 𝑦0 increases from zero to a value close to the one obtained in 

the case of pure natural convection as thermal Rayleigh number keeps increasing, 

indicating a shift from pure forced regime to pure natural one via the mixed regime. 

5.9 Effect of Lewis number 

The variations of |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ with Lewis number 𝐿𝑒 are presented in Figure 

5.12 for 𝑅𝑎𝑇 = 105, 𝑁 = 1, and different values of 𝑃𝑒 and 𝑛. Fluid flow intensity and  
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Figure 5.12. Evolutions of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2) (left), horizontal Nusselt number (middle), and horizontal 

Sherwood number (right) with Lewis number (𝐿𝑒) for  𝑅𝑎𝑇 = 105, 𝑁 =  1, and 

different values of 𝑃𝑒 and 𝑛 inside double lid-driven cavities. 

Nusselt number display similar trends and we can discuss the influence of Lewis 

number on illustrated quantities separately for three zones. First, for low values of 𝐿𝑒, 

higher plateaus for |𝜓𝑐| and 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  are observed while 𝑆ℎℎ

̅̅ ̅̅ ̅ ≈ 1  owing to the fact that 

heat transfer dominates mass transfer which is almost by diffusion given the high mass 

diffusivity related to small values of Lewis number. At this stage, the variation of 𝑃𝑒 

has no effect on all quantities and the values of 𝑦0 are close to the ones obtained for 

pure natural regime (Fig. 10(c)) which indicates that the regime is governed by natural 

convection. Next, as 𝐿𝑒 keeps rising, a descent from the higher plateaus is observed for 

|𝜓𝑐| and 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  while 𝑆ℎℎ

̅̅ ̅̅ ̅ starts to rise slowly, signaling a change in the transport 
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mechanism as heat transfer hand it’s leading role to mass transfer. Finally, for high 

values of 𝐿𝑒, |𝜓𝑐| and 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  reach lower plateaus and remain unchanged owing to high 

thermal diffusivity related to high values of 𝐿𝑒. In contrast, 𝑆ℎℎ
̅̅ ̅̅ ̅ rises in a monotonous 

way due to the well-established effect of Lewis number on strengthening mass transfer 

as the corresponding diffusivity reduces significantly. 

As 𝐿𝑒 keeps increasing, the non-Newtonian fluids behavior is affected as the influence 

of 𝑛 reduces especially for high values of 𝑃𝑒. The shear thickening fluids (𝑛 > 1) are 

the first to be influenced as illustrated in figure 5.12 and confirmed from Fig. 10(c). 

The 𝑦0 values of shear thickening fluids are the fastest to reach zero meaning that forced 

convection starts to dominate the fluid flow and heat and mass transfer. The results 

reveal the interesting role of 𝐿𝑒 in promoting forced convection contribution in the 

overall convective regime. 

5.10 Effect of buoyancy ratio 

The effects of buoyancy ratio 𝑁 on |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ are illustrated in Figure 5.13 

for  𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10, and different values of 𝑃𝑒 and 𝑛. The mass buoyancy force 

acts in the same direction as the thermal buoyancy one (𝑁 > 0). For small values of 𝑁 

(𝑁 < 10) where thermal buoyancy force dominates, |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ are invariant 

due to small participation of mass buoyancy force. It is also observed at this point that 

as 𝑃𝑒 increases, the rheological behavior of non-Newtonian fluids is clearly affected 

especially for shear thickening fluids. Indicating that the moving walls shear force 

influences fluid flow and heat and mass transfer, which can be confirmed from Fig. 

10(d) where the values of 𝑦0 are closer to zero for small values of 𝑁 as 𝑛 increases. As 

the buoyancy ratio keeps rising, the quantities begin to increase slowly at first, owing 

to the fact that mass buoyancy force starts to take importance; before all quantities 

increase in a monotonous way as mass buoyancy force fully dominates both thermal 

one and shear effect of sliding walls. The enhancing role of decreasing 𝑛 become more 

pronounced for large values of 𝑃𝑒 and the values of 𝑦0 are far from the moving walls 

(Fig. 10(d)); thus, confirm the increasing contribution of natural regime in overall 

convection.  
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Figure 5.13. Evolutions of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2)  (left), horizontal Nusselt number (middle), and horizontal 

Sherwood number (right) with buoyancy ratio (𝑁) for  𝑅𝑎𝑇 = 105, 𝐿𝑒 =  10, and 

different values of 𝑃𝑒 and 𝑛 inside double lid-driven cavities. 

It’s worth to note that mass transfer rate is more important than heat transfer rate 

because of the difference in diffusion rates as 𝐿𝑒 = 10. 

5.11 Horizontal velocity, temperature, and concentration 

The horizontal velocity (left), temperature (middle), and concentration (right) profiles, 

at mid-length of the cavity (𝑥 =
𝐴

2
), are shown in Figure 5.14 for 𝑃𝑒 = 25,                 

𝐿𝑒 = 10,𝑁 = 1, and several characteristic values of 𝑅𝑎𝑇 and 𝑛. A good agreement 

between analytical and numerical results is observed. All profiles are separated into 

symmetrical negative and positive zones due to the symmetry of applied boundary  
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Figure 5.14. Horizontal velocity 𝑢 (left), temperature 𝑇 (middle), and concentration 𝑆 

(right) profiles at mid-length of the cavity (𝑥 = 𝐴/2)  along the vertical coordinate (𝑦) 

for 𝑃𝑒 = 25, 𝐿𝑒 =  10, 𝑁 =  1, and various characteristic values of 𝑅𝑎𝑇 and 𝑛 inside 

double lid-driven cavities. 𝑅𝑎𝑇(𝑐𝑟) signals the onset of buoyancy-driven flow. 

conditions, which agrees with the monocellular clockwise flow generated by moving 

walls and buoyancy effect acting in the same direction (from left to right). For the 

purpose of identifying the contribution of each convective regime in flow inception, we 

introduced the value 𝑅𝑎𝑇(𝑐𝑟). For this critical value of thermal Rayleigh number, the 

velocity minimum and maximum are at 𝑦 = 0 and 𝑦 = 1, respectively, which 

correspond to the moving horizontal walls’ velocities. Thus, for 𝑅𝑎𝑇 ≤ 𝑅𝑎𝑇(𝑐𝑟), forced 

convection dominates natural convection due to dominating shear effect, leading to a 

more intense flow circulation near the driven walls. Furthermore, the profiles of 

𝑢, 𝑇, and 𝑆 confirm how the forced regime impacts non-Newtonian fluids rheological 
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behavior influence on flow characteristics as 𝑛 effect becomes negligible. For higher 

values of  𝑅𝑎𝑇 (𝑅𝑎𝑇 > 𝑅𝑎𝑇(𝑐𝑟)), the two extremums of velocity (maximum and 

minimum) begin to shift away from the moving walls and become more amplified, 

which implies that the flow is stronger in that region. Plus, the effect of 𝑛 becomes 

more noticeable indicating that the flow becomes buoyancy-driven as natural 

convection dominates forced convection. The values of  𝑅𝑎𝑇(𝑐𝑟) signalling the shift 

from shear force-driven flow to buoyancy-driven flow are given in Table 5.6 for 

different values of 𝑛. The value increases with 𝑛; thus, delaying the transition to 

buoyancy-driven flow. 

As for temperature profiles, they also show negative and positive zones, where the 

amplitude depends on 𝑅𝑎𝑇 and 𝑛. The clockwise flow makes warm the top of the cavity 

by transferring heat from the left hot wall, while carrying the coldest fluxes to the 

bottom after discharging the heat along the right vertical wall. The mass exhibits similar 

transfer phenomenon to heat; hence, we get similar profiles for concentration. 

5.12 Effect of power-law behavior index 

Effects of non-Newtonian fluids rheological behavior on flow structure, temperature, 

and concentration can be inspected from the profiles in Figures 5.4, 5.5, and 5.6 

illustrated for  𝑅𝑎𝑇 = 105, 𝐿𝑒 = 10, 𝑁 = 1, and various values of 𝑃𝑒 and 𝑛. In the 

case where natural convection dominates  (
𝑅𝑎𝑇

𝑃𝑒𝛾 > 𝜂𝑛), even though the streamlines do 

not show changes in the global structure where the flow is unicellular with a parallel 

aspect in the center of the cavity independently of the value of 𝑛, the flow intensifies 

as 𝑛 decreases from 1.4 to 0.6 indicating a faster fluid circulation as confirmed by the  

Table 5.6 – 𝑅𝑎𝑇(𝑐𝑟) values signaling buoyancy-driven flow onset for 𝑃𝑒 = 25,         

𝐿𝑒 = 10,𝑁 = 1 and different values of 𝑛 inside double lid-driven cavities. 

𝒏 𝑹𝒂𝑻(𝒄𝒓) 

𝟎. 𝟔 4117.4967 

𝟎. 𝟖 8791.4151 

𝟏. 𝟎 18857.7351 

𝟏. 𝟐 40589.992 

𝟏. 𝟒 87595.275 
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velocity profiles in Figure 5.14 for 𝑅𝑎𝑇 = 105 and 𝑅𝑎𝑇 = 106. In contrast, the effects 

of the rheological behavior on the global structure of isotherms and iso-concentrations 

are more obvious, where they become less inclined with respect to the vertical direction 

as 𝑛 increases. As for temperature and concentration profiles, the absolute values 

increase as 𝑛 increases (see Figure 5.14) signaling that the flow loses intensity. Similar 

outcomes on heat and mass transfer rates are observed where 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅  and  𝑆ℎℎ

̅̅ ̅̅ ̅ decrease 

as 𝑛 increases. Consequently, in dominating natural convection regime, shear thinning 

behavior (0 <  𝑛 <  1) enhances convection compared to Newtonian case (𝑛 =  1), 

while shear thickening behavior (𝑛 >  1) does the opposite. This can be explained 

from Eq. (3.25) where increasing 𝑛 leads to increasing the apparent viscosity of the 

fluid; thus, the fluid becomes more resistant to motion.  

As we begin shifting to mixed convection regime, the effect of 𝑛 starts to diminish until 

it totally vanishes when forced convection takes the leading role (
𝑅𝑎𝑇

𝑃𝑒𝛾 < 𝜂𝑓). At this 

point, |𝜓𝑐|, 𝑁𝑢ℎ
̅̅ ̅̅ ̅̅ , and  𝑆ℎℎ

̅̅ ̅̅ ̅ are invariant as 𝑛 goes from 0.6 to 1.4 (see Figures 5.9 and 

5.11). The same can be confirmed from Figure 5.14 for 𝑅𝑎𝑇 = 𝑅𝑎𝑇(𝑐𝑟) where the 

velocity, temperature, and concentration profiles are practically identical for different 

values of 𝑛. Thus, for non-Newtonian fluids, the strength of shear force generated by 

the sliding walls significantly impacts fluids viscosity in a way that results in 

demolishing the effect of power-law behavior index on convection characteristics 

observed in natural regime. 

5.13 Conclusions 

The present chapter studied double-diffusive mixed convection both numerically and 

analytically in a double lid-driven rectangular cavity filled with non-Newtonian fluids, 

and subjected to uniform heat and mass fluxes along its vertical short sides while the 

horizontal moving walls are insulated and impermeable. For shallow enclosures, the 

flow intensity and heat and mass transfer rates are found to be insensitive to any change 

in the cavity aspect ratio when 𝐴 ≥  24. Numerical tests also show that for 𝑃𝑟 ≥ 10, 

varying Prandtl has no effect on flow characteristics. Accordingly, non-Newtonian 

double-diffusive mixed convection in shallow lid-driven rectangular cavities is mainly 

controlled by: Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, Lewis number 𝐿𝑒, 

buoyancy ratio 𝑁, and power-law behavior index 𝑛. A wide range of these controlling 
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parameters is examined (𝑃𝑒 ≤ 103, 𝑅𝑎𝑇 ≤ 5 × 106, 10−3 ≤ 𝐿𝑒 ≤ 103,  10−3 ≤ 𝑁 ≤

103 and 0.6 ≤ 𝑛 ≤ 1.4) . Numerical results obtained using finite volume and finite 

difference methods are found to agree perfectly. Both solutions, numerical and 

analytical, show good agreement within the explored ranges of governing parameters; 

thus, validating each of the numerical code and the analytical approach.  

The dominance regions of each of the three convective regimes, namely natural, mixed, 

and forced convection are defined for more insight on the effects of governing 

parameters. The mixed convection parameter 
𝑅𝑎𝑇

𝑃𝑒𝛾
 , strongly correlated to fluid power-

law behavior index, is used to delineate the three regimes. The following bounds delimit 

the mixed convection regime for 𝐿𝑒 = 1 and 𝑁 = 1, while natural and forced 

convection are found to be dominant outside these limits: 

0.0259 <
𝑅𝑎𝑇

𝑃𝑒2.6
< 452.21;  0.0299 <

𝑅𝑎𝑇

𝑃𝑒3.0
< 7085;  0.0225 <

𝑅𝑎𝑇

𝑃𝑒3.4
< 86710 

 for 𝑛 = 0.6, 𝑛 = 1.0, and 𝑛 = 1.4, respectively. Accordingly, in natural convection 

predominance area, the behavior index affects strongly fluid flow and heat and mass 

transfer, as shear-thinning behavior enhances convection compared to Newtonian case, 

while shear-thickening behavior reduces it. In contrast, for forced convection 

dominance region, the strong shear force due to dominating effect of moving walls 

affects fluid viscosity, leading to eliminate the power-law behavior index effect on flow 

characteristics observed in natural regime. As for the outcome on flow characteristics, 

increasing Péclet number or thermal Rayleigh number increases fluid circulation and 

heat and mass transfer rates. The first promotes the contribution of forced convection 

(higher shear effect) while the second enhances natural convection input in overall 

convection (higher buoyancy force), resulting in both cases in a more active convection.  

Increasing Lewis number strongly enhances mass transfer while no effect is noticed on 

flow intensity and heat transfer. Furthermore, increasing 𝐿𝑒 is found to promote the 

contribution of forced regime in overall convection, especially as the power-law index 

increases. Regarding buoyancy ratio effects, increasing it enhances fluid flow and heat 

and mass transfer as a beneficial result of dominant mass buoyancy force which 

improves natural convection contribution. In contrast, decreasing 𝑁 leads to a more 

dominating forced regime due to small contribution of mass buoyancy force, which 

becomes more obvious for shear-thickening fluids. 
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CHAPTER 6  Rayleigh-Bénard Double-Diffusive Mixed 

Convection in Double Lid-Driven Rectangular Cavities 

Filled with Non-Newtonian Fluids  

 

6.1 Introduction 

Double-diffusive mixed convection in the famous Rayleigh-Bénard configuration is 

investigated in the present chapter. Rectangular cavities (Fig. 6.1) filled with non-

Newtonian fluids are subjected to uniform heat and mass fluxes along the sliding 

horizontal walls, while the vertical ones are considered insulated and impermeable (𝑎 =

𝑐 = 1 𝑎𝑛𝑑 𝑏 = 𝑑 = 0). The horizontal walls continuously slide in opposite directions 

with the same uniform velocity 𝑢0
′  (𝑒 = 1), while the vertical ones are motionless. 

Taking into account the singularity and complexity of Rayleigh-Bénard convection, this 

chapter results can lead to new findings regarding mixed non-Newtonian fluids flow 

and heat and mass transport given all the involved driving factors.  

As before, Numerical trial-and-error tests show that for 𝑃𝑟 ≥ 10, mixed convection 

flow characteristics become independent of Prandtl number. As for the grid size, 

numerical results show that for 𝐴 = 28 (value after which the results become 

independent of the cavity aspect ratio 𝐴), a uniform mesh size of 320 × 80 allows to 

accurately simulate the flow problem. The agreement between the analytical approach 

based on the parallel flow approximation and the numerical code can be gained from 

comparing numerical and analytical results for inclusive ranges of governing 

parameters in what follows. The effects of said parameters on fluid flow and heat and 

mass transfer characteristics are discussed in light of the dominant convective regime, 

namely natural, mixed, or forced convection. 

6.2 Value of 𝑨 satisfying the large aspect ratio approximation 

Figure 6.2 illustrates the variations of 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅   with 𝐴 for  𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 =  1 

and several values of 𝑃𝑒 and 𝑛. 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  reaches an asymptotic state as the aspect ratio 

keeps increasing; we also notice, as in the previous chapter, the forced regime  
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Figure 6.1. Physical model of the investigated configuration along with coordinate 

system and associated boundary conditions. The horizontal walls are subjected to 

uniform density of heat and mass fluxes and move in opposite directions with the same 

uniform velocity, while the vertical boundaries are motionless, insulated, and 

impermeable. 

(𝑃𝑒 = 200) retarding role as it delays the reach of such asymptotic state compared to 

natural and mixed regimes. The figure shows that 𝐴 = 28 is the smallest value that 

leads to numerical results independent of the cavity aspect ratio and in good agreement 

with analytical results, and that for different values of governing parameters. This value 

reduces to 𝐴 =  24 in the case of applied horizontal heat and mass fluxes as shown in 

chapter 5 signifying that Rayleigh-Bénard configuration delays reaching the asymptotic 

state which can be attributed to the nature of applied thermal and solutal boundary 

conditions. 

Consequently, Rayleigh-Bénard double-diffusive mixed convection is mainly governed 

by: Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, Lewis number 𝐿𝑒, buoyancy 

ratio 𝑁, and power-law behavior index 𝑛. The effects of said parameters on fluids flow 

and heat and mass transport phenomena are investigated in details for three separate 

convective regimes: natural, mixed, and forced convection. 

6.3 Mixed convection parameter 

The same numerical procedure discussed before is adopted to separate the dominance 

regions of natural, mixed, and forced convection regimes. The results are illustrated in 

Figure 6.3 where a good agreement can be seen between both solutions, numerical and  



93 

 

(a) 

 

(b) 

 

4 8 12 16 20 24 282 30

10

20

30

0

40

       

Nu
v

A

   Analytical

       

   Numerical

 Pe=0,1

 Pe=25

 Pe=200

 

4 8 12 16 20 24 282 30

10

20

30

0

40

       

Nu
v

A

   Analytical

       

   Numerical

 Pe=0,1

 Pe=25

 Pe=200

 

                                          

                            (c) 

 

4 8 12 16 20 24 282 30

10

0

15

       

Nu
v

A

   Analytical

       

   Numerical

 Pe=0,1

 Pe=25

 Pe=200

 

Figure 6.2. Variation of numerical vertical Nusselt number (𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ ) with the cavity 

aspect ratio (𝐴 =
𝐿′

𝐻′) while varying Péclet number (𝑃𝑒) to account for the different 

convective regimes (natural, mixed, and forced convection) for: (a) pseudoplastic fluid 

(𝑛 = 0.6), (b) Newtonian fluid (𝑛 = 1.0), and (c) dilatant fluid (𝑛 = 1.4) at          

𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, and 𝑁 = 1 inside double lid-driven Rayleigh-Bénard 

configuration. 

analytical. The separating limits can be written in the form of mixed convection 

parameter as follows: 

• For 𝑛 = 0.6: 

 
𝑅𝑎𝑇

𝑃𝑒1.57 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒1.57 = 𝜂𝑓 (6.1) 
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• For 𝑛 = 1.0: 

 
𝑅𝑎𝑇

𝑃𝑒1.92 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒1.92 = 𝜂𝑓 (6.2) 

 

• For 𝑛 = 1.4: 

 
𝑅𝑎𝑇

𝑃𝑒2.27 = 𝜂𝑛 and 
𝑅𝑎𝑇

𝑃𝑒2.27 = 𝜂𝑓 (6.3) 

 

describing the limits for dominant natural and dominant forced regimes, respectively. 

Similar to chapter 5, it is obvious that the fluid rheological behavior plays a key role in 

characterizing the dominant convective regime as coefficient 𝛾 increases with the 

power-law behavior index. The ratios 𝜂𝑛  and 𝜂𝑓 are given in Table 6.1 and shown in 

Figure 6.3 with dashed lines for different values of 𝑛. Thus, for 𝐿𝑒 = 1 and 𝑁 = 1, 

double-diffusive mixed convection regime within double-lid driven rectangular cavities 

subjected to uniform heat and mass fluxes along the horizontal walls and filled with 

non-Newtonian fluids is bounded as follows: 
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Figure 6.3. Natural, forced, and mixed convection dominance regions with 

pseudoplastic (𝑛 = 0.6), Newtonian (𝑛 = 1.0), and dilatant (𝑛 = 1.4) working fluids 

for 𝐿𝑒 = 1 and 𝑁 = 1 inside double lid-driven Rayleigh-Bénard configuration. 
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Table 6.1 – Correlation coefficients 𝜂𝑛 and 𝜂𝑓 for characteristic values of 𝑛 in 

Rayleigh-Bénard configuration. 

Power-law behavior index 

𝒏 

Natural convection 

𝜼𝒏 

Forced convection 

𝜼𝒇 

0.6 102.19 1.54 

1.0 1121.21 3.46 

1.4 8203.57 5.80 

 

1.54 <
𝑅𝑎𝑇

𝑃𝑒1.57 < 102.19;  3.46 <
𝑅𝑎𝑇

𝑃𝑒1.92 < 1121.21;  5.80 <
𝑅𝑎𝑇

𝑃𝑒2.27 < 8203.57

  (6.4) 

for 𝑛 = 0.6, 𝑛 = 1.0, and 𝑛 = 1.4, respectively. 

The minor deviations of the separating limits from the straight correlating lines are 

observed for low values of 𝑃𝑒 and 𝑅𝑎𝑇, especially for higher values of power-law index 

(𝑛 = 1.4) which corresponds to a feeble convection regime. Such deviations can be 

attributed to a change in the transport mechanism. 

6.4 Dynamical, thermal, and solutal structures 

Illustrative streamlines (top), isotherms (middle), and iso-concentrations (bottom) are 

presented in Figures 6.4, 6.5, and 6.6 for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10,𝑁 = 1, and different 

values of 𝑃𝑒 and 𝑛. Here again, similar observations to the case of applied horizontal 

uniform heat and mass fluxes can be made. The flow is unicellular and clockwise, 

where except for regions near the cavity vertical boundaries at which the flow 

experiences a rotation of 180°, the streamlines display a parallel behavior within the 

enclosure. As for the isotherms and iso-concentrations, they show a linear stratification 

in the 𝑥-direction where they become more inclined with respect to the vertical direction 

as the fluid behavior shifts from dilatant to pseudoplastic or while increasing Péclet 

number, signaling that convection strengthens leading to enhance fluid flow and heat 

and mass transfer rates. It is worth to note that given the high diffusion rate of 

concentration compared to that of heat (𝐿𝑒 = 10), mass transfer is more important than 

heat transfer explaining the iso-concentrations’ higher inclination compared to 

isotherms. 
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𝑷𝒆 = 𝟎. 𝟏 

 

 

 

𝑷𝒆 = 𝟐𝟓 

 

 

 

𝑷𝒆 = 𝟏𝟎𝟎 

 

 

 

Figure 6.4. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) 

while varying Péclet number (𝑃𝑒) for a pseudoplastic fluid (𝑛 = 0.6) at                         

𝐴 = 28, 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10 and 𝑁 = 1 inside double lid-driven Rayleigh-Bénard 

configuration. (Scale not respected). 

The effects of shear force magnitude on the three profiles are also displayed in terms of 

𝑃𝑒 value. For low values of Péclet number, indicating feeble shear force, the contours 

are similar to the ones obtained for pure natural convection regime (see Figure 6.7). No 

fluid circulation is induced by the moving walls as the streamlines shift away from the 

horizontal boundaries indicating that fluid flow is buoyancy-driven with dominating 

natural regime (
𝑅𝑎𝑇

𝑃𝑒𝛾 > 𝜂𝑛). As 𝑃𝑒 keeps increasing, the streamlines get more crowded 

near the sliding horizontal walls as the fluid circulation intensifies in that region, 

meaning that forced convection contributes to the overall convective regime. Such 

change occurs first for dilatant fluids, as increasing 𝑛 weakens natural convection flow 

and heat and mass transfer characteristics; hence, accelerates the transition from natural 

to mixed regime. For higher values of 𝑃𝑒, the streamlines are packed near the horizontal  
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𝑷𝒆 = 𝟎. 𝟏 
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Figure 6.5. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) 

while varying Péclet number (𝑃𝑒) for a Newtonian fluid (𝑛 = 1.0) at 𝐴 = 28,       

𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10 and 𝑁 = 1 inside double lid-driven Rayleigh-Bénard 

configuration. (Scale not respected). 

boundaries indicating strong fluid circulation due to moving walls, while isotherms and 

iso-concentrations are practically linear within the cavity. These observations match the 

profiles found in pure forced convection regime as shear force dominates buoyancy 

force (
𝑅𝑎𝑇

𝑃𝑒𝛾
< 𝜂𝑓) (see Figure 6.8). 

Finally, temperature and concentration fields show that as 𝑛 decreases or 𝑃𝑒 increases, 

boundary layers appear near the cavity walls with growing width indicating strong 

temperature and concentration gradients in that region. This is more noticeable in the 

case of iso-concentrations given the concentration higher diffusion rate (𝐿𝑒 > 1).  
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Figure 6.6. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) 

while varying Péclet number (𝑃𝑒) for a dilatant fluid (𝑛 = 1.4) at 𝐴 = 28, 𝑅𝑎𝑇 = 104, 

𝐿𝑒 = 10 and 𝑁 = 1 inside double lid-driven Rayleigh-Bénard configuration. (Scale 

not respected). 

6.5 Effect of Péclet number 

The variations of |𝜓𝑐|, 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , and  𝑆ℎ𝑣

̅̅ ̅̅ ̅ with Péclet number 𝑃𝑒 are shown in Figure 6.9 

for 𝐿𝑒 =  10,  𝑁 =  1, and different values of 𝑅𝑎𝑇 and 𝑛. At first, increasing Péclet 

number does not affect flow characteristics as the shear force input is insignificant (low 

𝑃𝑒 values) when compared to the effect of buoyancy force. Such conclusion can be 

confirmed from the range of 𝑃𝑒 values for which the flow characteristics are invariant, 

as it increases while strengthening the buoyancy force by increasing 𝑅𝑎𝑇 or by 

decreasing the power-law index 𝑛 given its well-established effect on intensifying 

natural convection flow characteristics. Furthermore, the results match the ones 

obtained in the case of pure natural convection portrayed with dashed lines. All these 

observations confirm that natural convection dominates the convective regime. After a  
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Figure 6.7. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pure natural convection at 𝐴 = 28, 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, and 𝑁 = 1. The results are 

illustrated for the three fluid behaviors: pseudoplastic (𝑛 = 0.6), Newtonian (𝑛 = 1.0), 

and dilatant (𝑛 = 1.4) inside double lid-driven Rayleigh-Bénard configuration. (Scale 

not respected). 

given value of 𝑃𝑒, the flow characteristics start to rise slowly indicating that the regime 

shifts from dominant natural to mixed convection as the shear force, generated by the 

moving walls, starts to contribute to the overall convection. The 𝑃𝑒 value initiating such 

transition can be defined by (
𝑅𝑎𝑇

𝜂𝑛
)
1/𝛾 

, confirming what we mentioned before as 

increasing 𝑅𝑎𝑇 or decreasing 𝑛 delays the transition where higher values of 𝑃𝑒 (higher 

shear force) are needed to make the shift. As 𝑃𝑒 keeps increasing, 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and  𝑆ℎ𝑣

̅̅ ̅̅ ̅ display 

interesting results. Unlike the natural regime where pseudoplastic fluids (0 < 𝑛 < 1) 

enhance convection compared to Newtonian fluid while dilatant fluids (𝑛 > 1) 

diminish it, opposite effects are observed as dilatant fluids enhance convection while 

pseudoplastic fluids reduce it, such effects become more pronounced while 𝑅𝑎𝑇  
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Figure 6.8. Streamlines (top), isotherms (middle), and iso-concentrations (bottom) for 

pure forced convection (𝑅𝑎𝑇 = 0) at 𝐴 = 28, 𝑃𝑒 = 150, 𝐿𝑒 = 10, and 𝑁 = 1. The 

results are illustrated for the three fluid behaviors: pseudoplastic (𝑛 = 0.6), Newtonian 

(𝑛 = 1.0), and dilatant (𝑛 = 1.4) inside double lid-driven Rayleigh-Bénard 

configuration. (Scale not respected). 

increases. For high values of 𝑃𝑒, flow intensity increases in a monotonous way while 

𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and  𝑆ℎ𝑣

̅̅ ̅̅ ̅ first increase rapidly before reaching a higher plateau where they become 

constant. The results match the ones obtained for pure forced convection, shown with 

dashed lines, given that shear force dominates buoyancy force leading to fluid flow and 

heat and mass transfer mainly ensured by forced convection.  

Introducing shear force to the convective regime leads to some unforeseen 

consequences on the effect of non-Newtonian fluids behavior. As 𝑃𝑒 increases, mixed 

convection regime dominates and the effect is reversed as shear thickening fluids 

strengthens convection compared to Newtonian fluid while the opposite is observed for 

shear thinning fluids. Such change can be attributed to the delaying role of decreasing  
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Figure 6.9. Variations of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2)  (left), vertical Nusselt number (middle), and vertical Sherwood 

number (right) with Péclet number 𝑃𝑒 for 𝐿𝑒 =  10, 𝑁 =  1, and various values of 𝑅𝑎𝑇 

and 𝑛 inside double lid-driven Rayleigh-Bénard configuration. 

𝑛 on the transition from natural to mixed regime, as shear thickening fluids are the first 

to make the shift while shear thinning fluids transition is delayed owing to associated 

strong natural convection, especially as buoyancy force strengthens while increasing 

𝑅𝑎𝑇. Hence, strengthening natural regime suppresses the enhancing role of moving 

walls where higher shear force (higher 𝑃𝑒 values) is needed to influence flow 

characteristics (mixed regime), leading to the observed change in the effect of non-

Newtonian fluids behavior. For high values of 𝑃𝑒, forced convection dominates 

(
𝑅𝑎𝑇

𝑃𝑒𝛾 < 𝜂𝑓) and the effect of power-law index keeps diminishing until it totally 
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vanishes denoting that the dominating convective regime changes how non-Newtonian 

fluids rheological behavior influences convection heat and mass transfer. 

The previous conclusions regarding 𝑃𝑒 effect can be further confirmed from Figure 

6.10(a) showing that as 𝑃𝑒 increases, the value of 𝑦0 decreases until it reaches zero 

signaling that moving walls effect dominates the overall convection. The shear 

thickening fluids are more sensitive to small variations of Péclet number compared to 

shear thinning ones that necessitate higher 𝑃𝑒 values to reach the forced regime as 

established by 𝑦0 values and confirmed from Figure 6.3. 

6.6 Effect of thermal Rayleigh number 

The effects of thermal Rayleigh number 𝑅𝑎𝑇 on flow characteristics |𝜓𝑐|,  𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , and  

𝑆ℎ𝑣
̅̅ ̅̅ ̅ are shown in Figure 6.11 for 𝐿𝑒 =  10, 𝑁 =  1, and different values of 𝑃𝑒 and 𝑛. 

The figures can be separated into three regimes; first, increasing 𝑅𝑎𝑇 or varying the 

fluid power-law index have no significant effects on the investigated quantities, 

especially as the intensity of shear force increases with 𝑃𝑒. Moreover, the results agree 

with the ones obtained in pure forced convection presented with dashed lines, which 

clearly indicates that forced regime dominates the overall convection. The extent of 

such dominance depends on 𝑃𝑒 and 𝑛 values, where it increases with Péclet number 

due to higher shear force and reduces with decreasing power-law index due to its role 

in intensifying natural convection characteristics resulting in pseudoplastic fluids being 

the first to leave the dominant forced regime. As 𝑅𝑎𝑇 keeps increasing; on the one hand, 

|𝜓𝑐| increases slowly denoting a change in the convective regime as we shift from 

dominant forced convection to mixed one (the value of 𝑅𝑎𝑇 signaling the shift can be 

correlated by (𝜂𝑓 . 𝑃𝑒𝛾)). The flow intensity finally increases in a monotonous way and 

joins the results obtained for pure natural convection (dashed lines) indicating that 

natural regime dominates. On the other hand, the effects of thermal Rayleigh number 

on 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and  𝑆ℎ𝑣

̅̅ ̅̅ ̅ are more complicated. For low values of 𝑃𝑒 (𝑃𝑒 = 0.1) indicating 

feeble shear force, the enhancing role of increasing 𝑅𝑎𝑇 on Nusselt and Sherwood 

numbers is obvious as both quantities increase owing to the rising contribution of 

buoyancy force, before finally reaching a higher plateau where further intensifying the 

buoyancy force does not improve transfer rates. Here the fluid rheological behavior is 

not affected as decreasing 𝑛 enhances flow characteristics. For higher values of  
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Figure 6.10. Effects of governing parameters on 𝑦0 values (defining the vertical 

distance between the point with maximum velocity and the sliding wall) considering 

Rayleigh-Bénard configuration: (𝑎) effect of 𝑃𝑒 (𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10,𝑁 = 1),        

(𝑏) effect of 𝑅𝑎𝑇 (𝑃𝑒 = 25, 𝐿𝑒 = 10,𝑁 = 1), (𝑐) effect of 𝐿𝑒                                        

(𝑃𝑒 = 25, 𝑅𝑎𝑇 = 104, 𝑁 = 1), and (𝑑) effect of 𝑁 (𝑃𝑒 = 25, 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10) 

all for different values of 𝑛. 

𝑃𝑒 (𝑃𝑒 ≥ 25 for 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and 𝑃𝑒 ≥ 5 for 𝑆ℎ𝑣

̅̅ ̅̅ ̅), the enhancing roles of increasing 𝑅𝑎𝑇 and 

decreasing 𝑛 are inverted. For low 𝑅𝑎𝑇 values characterizing a dominant forced 

convection, 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and  𝑆ℎ𝑣

̅̅ ̅̅ ̅ start from upper plateaus given the strength of shear force 

where the plateaus elevations increase with 𝑃𝑒 while the effect of 𝑛 vanishes along such 

plateaus. As 𝑅𝑎𝑇 increases, Nusselt and Sherwood numbers start to decrease indicating  
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Figure 6.11. Variations of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2)  (left), vertical Nusselt number (middle), and vertical Sherwood 

number (right) with thermal Rayleigh number 𝑅𝑎𝑇 for  𝐿𝑒 =  10, 𝑁 =  1, and various 

values of 𝑃𝑒 and 𝑛 inside double lid-driven Rayleigh-Bénard configuration. 
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that strengthening buoyancy force hurts heat and mass transport instead of enhancing 

them. The effect of 𝑛 is similar to what we observed in the section before for the mixed 

regime, where dilatant fluids (𝑛 > 1) enhance convection compared to pseudoplastic 

ones (0 < 𝑛 < 1). Finally, for high values of 𝑅𝑎𝑇, the natural convection regime 

dominates and heat and mass transfer rates become constant as the results reach a lower 

plateau and match the results obtained in the case of pure natural regime (
𝑅𝑎𝑇

𝑃𝑒𝛾
> 𝜂𝑛). 

Pseudoplastic fluids are the first to reach the dominant natural regime where the 

rheological behavior finds its classical role as decreasing 𝑛 enhances convection 

characteristics. These observations confirm the conclusions made in the section above, 

as the dominating regime changes the way non-Newtonian fluids rheological behavior 

influences heat and mass transfer with a critical value of Péclet number 𝑃𝑒𝑐𝑟 after which 

the effect of decreasing 𝑛 on enhancing transfer rates is reversed (which will be defined 

and discussed later). Plus, for 𝑃𝑒 > 𝑃𝑒𝑐𝑟, enhancing buoyancy force leads to the 

undesired effect of reducing heat and mass transfer. The value of 𝑃𝑒𝑐𝑟 is affected by 

the difference in diffusion rate between temperature and concentration gradients as 

Figure 6.11 shows (𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , and  𝑆ℎ𝑣

̅̅ ̅̅ ̅ profiles for 𝑃𝑒 = 5). 

The dominant convective regime changes are well confirmed by the variations of 𝑦0 

with  𝑅𝑎𝑇 given in Figure 6.10(b). The 𝑦0 value increases from zero to a value close to 

the one obtained in the case of pure natural convection while thermal Rayleigh number 

increases, indicating the shift from dominant forced to dominant natural regime via the 

mixed regime. The figure also confirms that shear thinning fluids are the first to leave 

the dominant forced regime and first to reach the dominant natural convective regime 

compared to shear thickening fluids.  

6.7 Effect of Lewis number 

The variations of quantities |𝜓𝑐|, 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , and 𝑆ℎ𝑣

̅̅ ̅̅ ̅ with Lewis number 𝐿𝑒 are given in 

Figure 6.12, for  𝑅𝑎𝑇 = 104, 𝑁 = 1, and different values of 𝑃𝑒 and 𝑛. For flow 

intensity, we can distinguish between three phases; first, a lower plateau is observed for 

small values of 𝐿𝑒 with the plateau elevation increasing as 𝑛 decreases. Second, fluid 

circulation reaches a peak value with the position shifting right and the amplitude 

decreasing as fluid behavior changes from pseudoplastic to dilatant. Finally, a second 

lower plateau for high values of Lewis number with the same elevation as the first  
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Figure 6.12. Variations of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2)  (left), vertical Nusselt number (middle), and vertical Sherwood 

number (right) with Lewis number 𝐿𝑒 for 𝑅𝑎𝑇 = 104, 𝑁 =  1, and various values of 

𝑃𝑒 and 𝑛 inside double lid-driven Rayleigh-Bénard configuration. 



107 

 

plateau. Further, as 𝑃𝑒 increases the power-law index influence on |𝜓𝑐| weakens, 

confirming the forced convection abolishing effect on the rheological behavior 

influence. As for 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , when the shear force contribution is insignificant                     

(𝑃𝑒 = 0.1 and 5), the evolution is similar to that of  |𝜓𝑐| as the natural convection 

dominates the convective regime. However, as Péclet number increases and forced 

regime starts to influence the convective regime (mixed convection), 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  displays two 

higher plateaus for small and large values of 𝐿𝑒 while hitting a minimum value in-

between which decreases and shifts left as 𝑛 decreases. The effect of power law-index 

is also reversed compared to dominant natural convection regime, as now decreasing 𝑛 

reduces heat transfer confirming the previous similar conclusion. Such results can be 

explained while referring to Figure 6.10(c) showing the variation of  𝑦0 with 𝐿𝑒. Figure 

6.12 shows that the value of 𝐿𝑒 for which  |𝜓𝑐| and 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  hit extremum values between 

the two plateaus is the same for different 𝑛 values, which corresponds in Figure 6.10(c) 

to a significant increase in 𝑦0 value indicating that natural convection contribution 

enhances. For |𝜓𝑐|, enhancing natural convection always promotes fluid circulation 

independent of shear force strength.  As for Nusselt number, strengthening natural 

regime promotes heat transfer for low 𝑃𝑒 values (𝑃𝑒 = 0.1 and 5), while after a critical 

𝑃𝑒 value the opposite happens as heat transfer reduces and the enhancing role of 

decreasing 𝑛 is inverted, confirming what we mentioned about 𝑃𝑒𝑐𝑟. 

For  𝑆ℎ𝑣
̅̅ ̅̅ ̅, a lower plateau characterized by 𝑆ℎ𝑣

̅̅ ̅̅ ̅ ≈ 1 for small values of Lewis number, 

describing high mass diffusivity, indicates that mass transfer is entirely assured by 

diffusion. Fluids with lower power-law index are the first to leave the lower plateau 

given that increasing 𝑛 weakens convection transport mechanism. As 𝐿𝑒 gradually 

increases, mass transfer increases monotonously given the well-established effect of 

Lewis number on enhancing convective mass transfer. For larger values of 𝐿𝑒, mass 

transfer reaches a higher plateau where no further enhancement can be gained from 

increasing 𝐿𝑒. As 𝑃𝑒 rises, 𝑆ℎ𝑣
̅̅ ̅̅ ̅ reaches higher plateaus, more rapidly while increasing 

power-law index leading to reversing the rheological-behavior effect on enhancing 

convection mass transfer. Additionally, for the same value of 𝑃𝑒 it is obvious that 

increasing Lewis number promotes forced regime, where for smaller values of 𝐿𝑒 the 

effect of 𝑛 matches what we observed for dominant natural convection, while 

increasing 𝐿𝑒 leads to reverse such effect indicating a greater input of the forced regime. 
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The value of 𝐿𝑒 signaling this change decreases while increasing 𝑃𝑒 . The same can be 

concluded from Figure 6.10(c), where 𝑦0 decreases as 𝐿𝑒 rises. Finally, Figure 6.12 

shows how Lewis number and shear force magnitude can be used to enhance flow 

intensity and heat and mass transfer rates given the non-Newtonian fluids behavior. For 

mass transfer case, when increasing 𝐿𝑒 doesn’t produce any further enhancement, 𝑃𝑒 

enhances 𝑆ℎ𝑣
̅̅ ̅̅ ̅ only to a certain extent, where increasing it from 25 to 50 improves 

significantly mass transfer for 𝑛 = 1 while the gain is negligeable for 𝑛 = 1.4. 

As for flow intensity and heat transfer, the effect of 𝑛 on both characteristics reduces 

for smaller and larger values of 𝐿𝑒, more noticeably as 𝑃𝑒 increases. This can be 

confirmed from Figure 6.10(c), where 𝑦0 value decreases for small and large 𝐿𝑒, more 

rapidly for shear thickening fluids that reach lesser values (𝑦0 = 0) given the effect of 

increasing 𝑛 on weakening natural convection characteristics; therefore, accelerating 

forced convection domination of fluid circulation and heat transfer. Altogether, the 

results show the effect of increasing 𝐿𝑒 on promoting forced convection contribution 

in the overall convective regime, while decreasing 𝐿𝑒 promotes such contribution only 

for fluid circulation and heat transfer as mass transfer process is entirely by diffusion. 

6.8 Effect of buoyancy ratio 

The effects of buoyancy ratio 𝑁 on |𝜓𝑐|,  𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , and 𝑆ℎ𝑣

̅̅ ̅̅ ̅ variations are shown in Figure 

6.13 for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, and different values of 𝑃𝑒 and 𝑛. For |𝜓𝑐|, at first it 

remains constant due to dominant thermal buoyancy force and the weak contribution of 

solutale one. Next, the fluid circulation slowly intensifies as the mass buoyancy force 

input increases before fully dominating as the quantity rises exponentially. We note that 

as 𝑃𝑒 increases, the effect of power-law index on |𝜓𝑐| reduces, demonstrating the 

influence of strengthening shear force on rheological-behavior effect. Further, as the 

shear force intensifies, the value of 𝑁 signaling the onset of |𝜓𝑐| enhancement increases 

indicating that shear force magnitude delays the dominance of solutal buoyancy force 

which promotes the natural regime contribution in the overall convection. This 

competing nature manifests also as buoyancy ratio keeps increasing, where the 

diminishing influence of 𝑃𝑒 on the power-law index effect on |𝜓𝑐| vanishes and the 

effect becomes more pronounced.  
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Figure 6.13. Variations of the stream function at the center of the cavity 

(𝑥 = 𝐴/2, 𝑦 = 1/2)  (left), vertical Nusselt number (middle), and vertical Sherwood 

number (right) with buoyancy ratio 𝑁 for 𝑅𝑎𝑇 = 104, 𝐿𝑒 =  10, and various values of 

𝑃𝑒 and 𝑛 inside double lid-driven Rayleigh-Bénard configuration. 
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For 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and 𝑆ℎ𝑣

̅̅ ̅̅ ̅, we need to separate the cases based on the shear force strength. For 

𝑃𝑒 = 0.1, heat and mass transfer rates display lower and higher plateaus with an ascent 

in between. The lower level is characterized by a dominant thermal buoyancy force, the 

rise indicates the increasing contribution of solutal buoyancy force before fully 

dominating the transport phenomenon as we reach the upper level. Here, the moving-

walls clearly do not influence the convective regime, as decreasing 𝑛 intensifies heat 

and mass transfer as in natural convection regime. In contrast, for higher values of shear 

force (𝑃𝑒 ≥ 25 for 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  and 𝑃𝑒 ≥ 5 for 𝑆ℎ𝑣

̅̅ ̅̅ ̅ given the influence of diffusion rate 

difference, 𝐿𝑒 = 10,  on 𝑃𝑒𝑐𝑟 as mentioned before), the effect of 𝑛 is reversed as 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  

and 𝑆ℎ𝑣
̅̅ ̅̅ ̅ start with an upper plateau, whose extent increases with Péclet number, 

indicating the strong input of forced regime in the convection. As 𝑁 increases, Nusselt 

and Sherwood numbers descend from the upper plateau as the strengthened solutal 

buoyancy force competes with shear force which results in reducing heat and mass 

transfer. Finally, for high buoyancy ratio values, the solutal buoyancy force dominates 

the shear effect generated by sliding walls given that the influence of power-law index 

begins to reverse as decreasing it enhances the transfer rates, aligning with the 

conclusion made from the evolution of |𝜓𝑐| where 𝑁 plays a role in promoting natural 

convection regime. Such conclusion can be further confirmed while referring to Figure 

6.10(d), where increasing 𝑁 moves 𝑦0 values far from the sliding walls and closer to 

the ones obtained for pure natural regime; hence, indicating the boosted role of natural 

regime in the overall convection. 

6.9 Horizontal velocity, temperature, and concentration 

The evolutions of horizontal velocity (left), temperature (middle), and concentration 

(right) at mid-length of the enclosure (𝑥 = 𝐴/2) are presented in Figure 6.14 for     

𝑃𝑒 = 25, 𝐿𝑒 = 10,𝑁 = 1, and several values of 𝑅𝑎𝑇 and 𝑛. The profiles show a perfect 

agreement between analytical and numerical solutions. Furthermore, and given the 

symmetry of applied boundary conditions, the profiles display symmetrical negative 

and positive regions. The critical value of thermal Rayleigh number 𝑅𝑎𝑇(𝑐𝑟) is defined 

in order to further highlight the effects of buoyancy force and shear force on inducing 

fluid flow and heat and mass transfer. For 𝑅𝑎𝑇(𝑐𝑟), the velocity minimum and maximum  
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Figure 6.14. Horizontal velocity 𝑢 (left), temperature 𝑇 (middle), and concentration 𝑆 

(right) profiles at mid-length of the cavity (𝑥 = 𝐴/2)  along the 𝑦-axis for                   

𝑃𝑒 = 25, 𝐿𝑒 =  10, 𝑁 =  1, and different characteristics values of 𝑅𝑎𝑇 and 𝑛 inside 

double lid-driven Rayleigh-Bénard configuration. 𝑅𝑎𝑇(𝑐𝑟) signals the onset of 

buoyancy-driven flow. 

overlap with the velocity of sliding horizontal walls at 𝑦 = 0 and 𝑦 = 1, respectively, 

and 𝑢, 𝑇, and 𝑆 profiles show no significant influence of power-law index 𝑛. These 

observations clearly testify of shear force leading role in overall convection and agree 

with what we observed previously in forced regime dominance area. Accordingly, for 

𝑅𝑎𝑇 ≤ 𝑅𝑎𝑇(𝑐𝑟), forced regime dominates natural convection. For higher values of 𝑅𝑎𝑇 
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(𝑅𝑎𝑇 > 𝑅𝑎𝑇(𝑐𝑟)), and as the buoyancy force starts to strengthen, the velocity two 

extremums (maximum and minimum) considerably amplify while moving away from 

the sliding walls, meaning that the flow is now stronger in that region. Meanwhile, the 

effect of 𝑛 becomes more pronounced on the flow intensity as natural convection starts 

to dominate forced convection. The values of  𝑅𝑎𝑇(𝑐𝑟) indicating the transition from 

shear force-based flow into buoyancy-driven flow are given in Table 6.2 for different 

values of 𝑛. The value to make the shift reduces as 𝑛 goes down given the well-

established role of decreasing power-law index on intensifying natural convection 

characteristics, leading to accelerate the transition towards buoyancy-driven flows. 

The temperature profiles also show negative and positive regions with a warm part in 

the bottom of the cavity and a cooled upper region due to clockwise flow carrying 

coldest current to the top of the cavity after discharging the heat from the bottom region 

along the left vertical wall. As for the power-law index effect, which vanishes for 

𝑅𝑎𝑇 = 𝑅𝑎𝑇(𝑐𝑟) as forced convection dominates, increasing Rayleigh number shows a 

decreasing temperature while increasing 𝑛, meaning that dilatant fluids enhance heat 

transfer compared to pseudoplastic ones, which confirms the mixed regime influence 

on non-Newtonian fluids rheological behavior. As 𝑅𝑎𝑇 reaches higher values, it 

becomes clear that the effect of power-law index on temperature is now reversed as 

decreasing it reduces the temperature; hence, increases heat transfer confirming that 

natural convection regime dominates. The concentration experiences similar transport 

phenomenon to temperature resulting in similar profiles and conclusions. 

Table 6.2 – Critical thermal Raleigh number values 𝑅𝑎𝑇(𝑐𝑟) signaling buoyancy-driven 

flow onset for 𝑃𝑒 = 25, 𝐿𝑒 = 10,𝑁 = 1, and different values of 𝑛 inside double lid-

driven Rayleigh-Bénard configuration. 

𝒏 𝑹𝒂𝑻(𝒄𝒓) 

𝟎. 𝟔 716.644 

𝟎. 𝟖 1574.618 

𝟏. 𝟎 3453.9647 

𝟏. 𝟐 7569.0888 

𝟏. 𝟒 16576.9055 
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6.10 Effect of power-law behavior index 

Figures 6.9, 6.11, 6.12, 6.13, and 6.14 clearly show that the influence of non-Newtonian 

fluids rheological behavior on fluid flow and heat and mass transfer characteristics need 

to be discussed in light of the dominating convective regime. First, when natural 

convection dominates (
𝑅𝑎𝑇

𝑃𝑒𝛾 > 𝜂𝑛), although the streamlines given in Figures 6.4, 6.5, 

and 6.6 display no apparent difference in their global structure while varying 𝑛, as the 

flow is unicellular with a parallel aspect except for the end regions near the enclosure 

vertical walls, the flow strongly intensifies as 𝑛 decreases from 1.4 to 0.6 which can be 

confirmed from the velocity profiles in Figure 6.14 for 𝑅𝑎𝑇 = 106. In contrast, the 

isotherms and iso-concentrations global structures are more affected by the rheological 

behavior as they tend to be less inclined with regard to the vertical direction as 𝑛 

increases.  The temperature and concentration absolute values also increase as power-

law index increases (Figure 6.14 for 𝑅𝑎𝑇 = 106), these observations confirm that the 

flow loses intensity. Nusselt and Sherwood numbers reveal similar trends for dominant 

natural convection as their values decrease as 𝑛 increases. Accordingly, for dominant 

natural regime, shear thinning fluids (0 <  𝑛 <  1) strengthens convection compared 

to Newtonian fluids (𝑛 =  1), while shear thickening fluids (𝑛 >  1) produce the 

opposite effect. Such result can be explained while referring to Eq. (3.25) where 

increasing power-law index 𝑛 increases the apparent viscosity resulting in a fluid more 

resistant to motion. 

Second, when buoyancy force and shear force are of comparable magnitudes and the 

convective regime is considered mixed, the effect of 𝑛 on flow intensity is the same as 

in dominant natural regime, where decreasing power-law index enhances fluid 

circulation; however, the magnitude of the enhancement reduces as shear force 

contribution increases. In contrast, the effect of non-Newtonian behavior on heat and 

mass transfer rates reverses compared to natural regime as shear thickening behavior 

enhances transfer rates while shear thinning reduces them when compared to 

Newtonian behavior. Finally, when forced convection dominates the overall convective 

regime given the strong shear force (
𝑅𝑎𝑇

𝑃𝑒𝛾 < 𝜂𝑓), the power-law index variation ceases 

to influence the convection characteristics |𝜓𝑐|,  𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ , and 𝑆ℎ𝑣

̅̅ ̅̅ ̅ (see Figures 6.9 and 

6.11). Similar conclusion can be made from Figure 6.14 for 𝑅𝑎𝑇 = 𝑅𝑎𝑇(𝑐𝑟) as velocity, 



114 

 

temperature, and concentration profiles are nearly identical for different values of 𝑛. 

Thus, the shear force magnitude strongly affects the rheological behavior of non-

Newtonian fluids; where in the mixed convection regime, the effect of 𝑛 on convection 

enhancement is reversed compared to natural regime, while in dominant forced 

convection regime such effect totally vanishes.  

6.11 Critical Péclet number 

The values of critical Péclet number 𝑃𝑒𝑐𝑟 are given in Tables 6.3, 6.4, and 6.5 while 

varying 𝑅𝑎𝑇 , 𝐿𝑒, and 𝑁, respectively. The 𝑃𝑒𝑐𝑟 value signals the reversal in non-

Newtonian fluids rheological behavior effect on heat and mass transfer rates compared 

to natural regime; plus, it defines the magnitude of shear force after which further 

strengthening buoyancy force reduces heat and mass transfer instead of enhancing 

them. The presented values compare the different fluid behaviors: pseudoplastic 

(𝑛 =  0.6), Newtonian (𝑛 =  1.0), and dilatant (𝑛 =  1.4) and that separately for 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅  

and 𝑆ℎ𝑣
̅̅ ̅̅ ̅, where the results confirm the effect of diffusion rate difference between 

temperature and concentration gradients on 𝑃𝑒𝑐𝑟. Two cases need further clarification; 

first, in Table 6.3 and for 𝑅𝑎𝑇 = 102, given the weak natural convection regime 

associated with low thermal Rayleigh numbers while increasing power-law index, the 

heat transfer rates for 𝑛 = 1.0 and 𝑛 = 1.4 reache the plateau associated with dominant 

forced regime without a reversal in the effect of 𝑛 on enhancing 𝑁𝑢𝑣
̅̅ ̅̅ ̅̅ . Second, in Table 

6.4 and for 𝐿𝑒 = 10−3, no change in the power-law index effect is observed given that 

mass transfer is ensured entirely by diffusion (𝑆ℎ𝑣
̅̅ ̅̅ ̅ ≈ 1) as shown in Figure 6.12. 

Table 6.3 – Effect of 𝑅𝑎𝑇 on 𝑃𝑒𝑐𝑟 for  𝐿𝑒 = 10,𝑁 = 1, and different values of 𝑛. 

  𝑹𝒂𝑻 

  𝟏𝟎𝟐 𝟏𝟎𝟑 𝟏𝟎𝟒 𝟏𝟎𝟓 𝟏𝟎𝟔 𝟓 × 𝟏𝟎𝟔 

𝑵𝒖𝒗
̅̅ ̅̅ ̅̅  𝑁𝑢𝑣

̅̅ ̅̅ ̅(1.4) > 𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.0) - 26.2283 12.3531 11.8516 8.2465 11.2732 

𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.4) > 𝑁𝑢𝑣

̅̅ ̅̅ ̅(0.6) 15.0476 12.7804 13.1573 12.6053 14.7903 24.4173 

𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.0) > 𝑁𝑢𝑣

̅̅ ̅̅ ̅(0.6) 15.0476 11.1981 15.4799 13.8782 30.6503 64.2055 

𝑺𝒉𝒗
̅̅ ̅̅ ̅ 𝑆ℎ𝑣

̅̅ ̅̅ ̅(1.4) > 𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.0) 1.0729 1.3099 1.0847 2.2876 5.3453 9.8694 

𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.4) > 𝑆ℎ𝑣

̅̅ ̅̅ ̅(0.6) 1.0875 1.634 1.9579 4.7396 11.9474 22.9971 

𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.0) > 𝑆ℎ𝑣

̅̅ ̅̅ ̅(0.6) 1.0942 1.4676 3.5034 10.0078 29.5165 63.6684 
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Table 6.4 – Effect of 𝐿𝑒 on 𝑃𝑒𝑐𝑟 for  𝑅𝑎𝑇 = 104, 𝑁 = 1, and different values of 𝑛. 

  𝑳𝒆 

  𝟏𝟎−𝟑 𝟏𝟎−𝟐 𝟏𝟎−𝟏 𝟏 𝟏𝟎 𝟏𝟎𝟐 𝟏𝟎𝟑 

𝑵𝒖𝒗
̅̅ ̅̅ ̅̅  𝑁𝑢𝑣

̅̅ ̅̅ ̅(1.4)

> 𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.0) 

12.2465 12.49 13.133 13.1065 12.3532 12.2329 12.2206 

𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.4)

> 𝑁𝑢𝑣
̅̅ ̅̅ ̅(0.6) 

13.0625 12.3457 12.9409 13.9495 13.1573 13.0906 13.0835 

𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.0)

> 𝑁𝑢𝑣
̅̅ ̅̅ ̅(0.6) 

15.3206 11.9643 12.0972 14.8901 15.4799 15.4466 15.4415 

𝑺𝒉𝒗
̅̅ ̅̅ ̅ 𝑆ℎ𝑣

̅̅ ̅̅ ̅(1.4)

> 𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.0) 

- 186.9763 248.2468 13.1065 1.0847 0.7803 0.7718 

𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.4)

> 𝑆ℎ𝑣
̅̅ ̅̅ ̅(0.6) 

- 1384.855 138.2416 13.9495 1.9579 1.6261 1.6128 

𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.0)

> 𝑆ℎ𝑣
̅̅ ̅̅ ̅(0.6) 

- 1384.855 123.4425 14.8901 3.5034 3.223 3.2067 

Table 6.5 – Effect of 𝑁 on 𝑃𝑒𝑐𝑟 for  𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, and different values of 𝑛. 

  𝑵 

  𝟏𝟎−𝟑 𝟏𝟎−𝟐 𝟏𝟎−𝟏 𝟏 𝟏𝟎 𝟏𝟎𝟐 𝟏𝟎𝟑 

𝑵𝒖𝒗
̅̅ ̅̅ ̅̅  𝑁𝑢𝑣

̅̅ ̅̅ ̅(1.4)

> 𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.0) 

12.2194 12.2206 12.2331 12.3532 13.1327 11.8207 8.2127 

𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.4)

> 𝑁𝑢𝑣
̅̅ ̅̅ ̅(0.6) 

13.0829 13.0835 13.0906 13.1573 13.5226 12.6 14.5151 

𝑁𝑢𝑣
̅̅ ̅̅ ̅(1.0)

> 𝑁𝑢𝑣
̅̅ ̅̅ ̅(0.6) 

15.4413 15.4415 15.4466 15.4799 14.8876 13.9076 29.5196 

𝑺𝒉𝒗
̅̅ ̅̅ ̅ 𝑆ℎ𝑣

̅̅ ̅̅ ̅(1.4)

> 𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.0) 

1.0399 1.0406 1.0453 1.0847 1.3381 2.3297 5.187 

𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.4)

> 𝑆ℎ𝑣
̅̅ ̅̅ ̅(0.6) 

1.8698 1.8704 1.8793 1.9579 2.5081 4.8014 11.5685 

𝑆ℎ𝑣
̅̅ ̅̅ ̅(1.0)

> 𝑆ℎ𝑣
̅̅ ̅̅ ̅(0.6) 

3.3436 3.3453 3.3622 3.5034 4.6168 10.0304 28.3763 

 

6.12 Conclusions 

The present chapter investigates Rayleigh–Bénard double-diffusive mixed convection 

inside rectangular cavities filled with non-Newtonian fluids. The sliding horizontal 

walls are subjected to uniform heat and mass fluxes, while the motionless vertical 

boundaries are considered insulated and impermeable. The investigation implements 

two separate approaches to solve the governing equations, a numerical solution based 

on the finite volume method and an analytical solution derived based on the parallel 

flow approximation. The results show that for an aspect ratio 𝐴 ≥ 28, the flow intensity 
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and heat and mass transfer rates become insensitive to aspect ratio variation. Further, 

providing that 𝑃𝑟 ≥ 10, numerical results show that flow characteristics become 

independent of Prandtl number. Thus, non-Newtonian Rayleigh–Bénard double-

diffusive mixed convection in shallow rectangular cavities is mainly governed by: 

Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, Lewis number 𝐿𝑒, buoyancy ratio 

𝑁, and power-law behavior index 𝑛. The established solutions, numerical and 

analytical, agree perfectly for inclusive ranges of governing parameters validating both 

the numerical code, the analytical approach, and the choices made throughout the study. 

Furthermore, and unlike the case of applied horizontal heat and mass fluxes where finite 

volume and finite differences methods agree perfectly; for Rayleigh–Bénard 

configuration, finite difference method encounters convergence and stability issues in 

some cases compared to finite volume method that shows high accuracy. 

The mixed convection parameter 
𝑅𝑎𝑇

𝑃𝑒𝛾 is found to separate the dominance regions of the 

three convective regimes, namely natural, mixed, and forced convection. The following 

bounds delineates the mixed regime:  

1.54 <
𝑅𝑎𝑇

𝑃𝑒1.57
< 102.19;  3.46 <

𝑅𝑎𝑇

𝑃𝑒1.92
< 1121.21;  5.80 <

𝑅𝑎𝑇

𝑃𝑒2.27
< 8203.57 

for 𝑛 = 0.6, 𝑛 = 1.0 and 𝑛 = 1.4, respectively, for 𝐿𝑒 = 1 and 𝑁 = 1, while natural 

and forced regimes are found to dominate outside these limits. Péclet number 

strengthens sliding walls’ shear force leading to enhance flow intensity monotonously 

while heat and mass transfer enhance only until reaching a higher plateau associated 

with dominant forced convection regime. Thermal Rayleigh number effect on transfer 

rates depends on the shear force magnitude, where for a given range of 𝑃𝑒 values heat 

and mass transfer enhance, while after a critical value 𝑃𝑒 > 𝑃𝑒𝑐𝑟, increasing 𝑅𝑎𝑇 

reduces transfer rates as buoyancy force and shear force compete (mixed regime). For 

high 𝑅𝑎𝑇 values, natural regime dominates and heat and mass transfer hit a plateau 

where they become constant. As for Lewis number, and for a given range of its values 

correlated to 𝑛, the contribution of natural regime abruptly enhances leading to 

significantly strengthen flow intensity while the outcome on heat transfer is determined 

by 𝑃𝑒𝑐𝑟. Outside this range, forced regime contribution augments. For mass transfer, 

increasing 𝐿𝑒 increases the input of forced regime, more so as 𝑛 increases, causing the 

transfer rate to rapidly enhance until reaching a higher plateau.  In contrast, increasing 
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buoyancy ratio 𝑁 enhances natural convection input in overall convection causing fluid 

circulation to intensify exponentially; while the effect on heat and mass transfer 

depends on the shear force magnitude (𝑃𝑒𝑐𝑟). 

Non-Newtonian fluids rheological behavior effect on flow characteristics produces 

some unforeseen results directly correlated with the dominant convective regime. First, 

for dominant natural regime, decreasing power-law index significantly enhances flow 

intensity and heat and mass transfer. Second, for mixed convection regime, the effect 

of 𝑛 on heat and mass transfer is reversed, while the effect on flow intensity stays the 

same with the enhancement extent reducing as shear force strengthens. Finally, for 

dominant forced regime, the effect of power-law index on the three flow characteristics 

vanishes as shear force strongly affects fluid viscosity. The Critical Péclet number 𝑃𝑒𝑐𝑟 

signaling the reversal in 𝑛 effect on heat and mass transfer and after which further 

strengthening buoyancy force reduces the transfer rates is established as a function of 

the remaining governing parameters 𝑅𝑎𝑇 , 𝐿𝑒, 𝑁, 𝑛. 
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General Conclusions 

 

The present thesis work investigates double-diffusive mixed convection within lid-

driven rectangular cavities submitted to uniform heat and mass fluxes. Three 

configurations are considered, a single lid-driven rectangular cavity filled with 

Newtonian fluid and submitted to horizontal fluxes, double lid-driven rectangular 

cavities filled with non-Newtonian fluids and subjected to horizontal fluxes, and 

Rayleigh-Bénard configuration in double lid-driven rectangular cavities filled with 

non-Newtonian fluids. The investigation implements two separate approaches to solve 

the governing equations; first, numerically using the well-known finite difference 

method and finite volume method. Second, an analytical solution derived based on the 

parallel flow approximation. The effects of governing parameters: cavity aspect ratio 

𝐴, Prandtl number 𝑃𝑟, Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, Lewis number 

𝐿𝑒, buoyancy ratio 𝑁, and power-law behavior index 𝑛 on flow intensity and heat and 

mass transfer rates are illustrated and amply discussed for each configuration in terms 

of stream function, average Nusselt number, average Sherwood number, streamlines, 

isotherms, and iso-concentrations along with velocity, temperature, and concentration 

profiles. The key findings can be listed as follows: 

• Providing that 𝑃𝑟 ≥ 10, numerical results show that flow characteristics 

become independent of Prandtl number. 

• For an aspect ratio 𝐴 ≥ 24 or 𝐴 ≥ 28 (depending on the direction of heat and 

mass fluxes), the flow intensity and heat and mass transfer rates become 

insensitive to the cavity aspect ratio variation. Thus, double-diffusive mixed 

convection in lid-driven rectangular cavities filled with non-Newtonian fluids 

is mainly governed by: Péclet number 𝑃𝑒, thermal Rayleigh number 𝑅𝑎𝑇, Lewis 

number 𝐿𝑒, buoyancy ratio 𝑁, and power-law behavior index 𝑛. 

• For thermal and solutal boundary conditions of Neumann type (i.e., imposed 

uniform heat and mass fluxes), the flow is parallel to the horizontal boundaries 

in the core region of the enclosure and the isotherms and iso-concentrations 

show a linear stratification in the 𝑥-direction. Such observations confirm the 

existence of an analytical solution. 
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• The established solutions, numerical and analytical, agree perfectly for 

inclusive ranges of governing parameters validating both the numerical codes 

and the analytical approach. 

• The mixed convection parameter 
𝑅𝑎𝑇

𝑃𝑒𝛾 , which depends strongly on the fluid 

power-law behavior index, is found to perfectly delineate the dominance 

regions of the three convective regimes, namely natural, mixed, and forced 

convection, and that for the three configurations considered. 

• Increasing Péclet number intensifies forced regime input in overall convection 

as it strengthens sliding walls’ shear force. Consequently, flow intensity 

enhances monotonously while the effect on heat and mass transfer depends on 

the direction of imposed fluxes. For imposed horizontal fluxes, transfer rates 

enhance continuously while for applied vertical fluxes (Rayleigh–Bénard 

configuration) they enhance only until reaching a higher plateau associated with 

dominant forced convection regime. 

• Increasing thermal Rayleigh number augments the contribution of natural 

regime due to intensified buoyancy force, leading in the case of horizontal 

fluxes to enhance flow intensity and heat and mass transfer monotonically. 

However, in the case of applied vertical fluxes, the effect on transfer rates 

correlates to the shear force magnitude, where for a given range of 𝑃𝑒 values, 

heat and mass transfer enhance, while after a critical value 𝑃𝑒 > 𝑃𝑒𝑐𝑟, 

increasing 𝑅𝑎𝑇 reduces transfer rates as buoyancy force and shear force 

compete (mixed regime). For high 𝑅𝑎𝑇  values, natural regime dominates and 

heat and mass transfer hit a plateau where they become constant.    

• For cavities subjected to uniform heat and mass fluxes along the short vertical 

walls, increasing Lewis number strongly enhances mass transfer, while no effect 

is noticed on flow intensity and heat transfer. Furthermore, 𝐿𝑒 is found to play 

a role in promoting the contribution of forced regime in overall convection as it 

increases, especially as the power-law index increases. As for buoyancy ratio, 

increasing it enhances flow characteristics as a beneficial result of dominant 

mass buoyancy force which strengthens the natural convection contribution. 

While decreasing 𝑁 leads to a more dominating forced regime due to small 

contribution of mass buoyancy force, which becomes more obvious for shear-

thickening fluids. 
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• For cavities submitted to uniform heat and mass fluxes on the horizontal 

boundaries, and for a given range of Lewis number values correlated to 𝑛, the 

contribution of natural regime abruptly enhances leading to strongly strengthen 

flow intensity while the outcome on heat transfer is determined by 𝑃𝑒𝑐𝑟. Outside 

this range, forced regime contribution augments. For mass transfer, increasing 

𝐿𝑒 increases the input of forced regime, more so as 𝑛 increases, causing the 

mass transfer rate to rapidly enhance until reaching a higher plateau. In contrast, 

increasing buoyancy ratio 𝑁 enhances natural convection input in overall 

convection causing fluid circulation to intensify exponentially; while the effect 

on heat and mass transfer depends on the shear force magnitude (𝑃𝑒𝑐𝑟). 

• Non-Newtonian fluids rheological behavior effect on flow characteristics leads 

to some unforeseen results directly correlated with the dominant convective 

regime. First, for dominant natural regime, decreasing power-law index 

significantly enhances flow intensity and heat and mass transfer. Second, for 

mixed convection regime, the effect differs depending on the direction of 

imposed fluxes. For horizontal fluxes, the effects of power-law behavior index 

on flow intensity and transfer rates diminish as Péclet number increases. While 

for vertical fluxes, the effect of 𝑛 on heat and mass transfer is reversed compared 

to dominant natural regime, while the effect on flow intensity stays the same 

with the enhancement extent reducing as shear force strengthens. Finally, for 

dominant forced regime, the effect of power-law index on the three flow 

characteristics vanishes as shear force strongly affects fluid viscosity. 

• In the case of the Rayleigh–Bénard configuration, the Critical Péclet number 

𝑃𝑒𝑐𝑟 signaling the reversal in 𝑛 effect on heat and mass transfer and after which 

further strengthening buoyancy force reduces the transfer rates is established as 

a function of the remaining governing parameters 𝑅𝑎𝑇 , 𝐿𝑒, 𝑁, 𝑛. 

It is worth mentioning that the choice of governing parameters’ ranges is made in order 

to serve the aim of the paper to provide useful insights into the complex non-Newtonian 

double-diffusive mixed convection flows for both scientific field and engineering 

applications. However, and despite the originality of the obtained results, this work 

remains academic in the absence of experimental results to confirm the conclusions of 

this study. It would therefore be beneficial to conduct experiments with non-Newtonian 
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fluids, whose rheological behavior can be represented by Ostwald-de Waele rheological 

model, and to compare the results with the ones obtained numerically and analytically. 

In perspective, an investigation of double-diffusive mixed convection inside double lid-

driven rectangular cavities filled with non-Newtonian fluids and subjected 

simultaneously to horizontal and vertical heat and mass fluxes will be conducted. The 

goal is to explore the effects of governing parameters and dominant convective regimes 

(natural, mixed, and forced) on fluid flow and heat and mass transfer in such 

configuration. Furthermore, the ongoing study of opposing flow double-diffusive 

mixed convection will be expanded to account for the rheological behavior of non-

Newtonian fluids. 
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