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Résumé

Au cours de la dernière décennie, une importante littérature traite de différents aspects des

EDP dont la partie principale de l’opérateur a une croissance de type puissance, l’exemple

principal étant le p-Laplacien. Il existe un large éventail de directions dans lesquelles le cas

de la croissance polynomiale a été développé, notamment les approches à exposant vari-

able, avec poids, double phase à exposant variable et des approches faisant intervenir un

opérateur "p(x)-Laplacian-like" et un opérateur "p(x)-Kirchhoff-Laplacian".

Dans la présente monographie, nous traitons les questions de la théorie de l’existence et

de l’unicité aux problèmes elliptiques et paraboliques de type Dirichlet ou Neumann dans

différents cadres fonctionnels. L’originalité de ce travail consiste en la présence d’une classe

d’opérateurs étudiés permettant de regarder l’importance du cadre fonctionnel, et impli-

quant des espaces de Lebesgue-Sobolev avec poids et des espaces de Lebesgue-Sobolev à

exposant variable. Cette thèse est composée de deux parties principales :

La première partie concerne l’étude de l’existence et de l’unicité de la solution faible

de certains problèmes de Dirichlet régis par une équation elliptique non linéaire dégénérée

dans le cadre des espaces de Sobolev avec poids où les données sont dans Lp ′(Ω,ω1−p ′) ou

dans Lp ′(Ω,ω1−p ′) +
n∏
j=1

Lp
′
(Ω,ω1−p ′). Notre outil principal, dans cette partie, est basé sur le

théorème de Browder-Minty et la théorie des espaces de Sobolev avec poids.

La deuxième partie de cette thèse est consacrée à l’étude de deux classes de problèmes

non linéaires, la première classe des problèmes qu’ils discutent dans cette partie sont des

problèmes aux limites de Dirichlet ou de Neumann impliquant l’opérateur p(x)-Laplacian-

like ou l’opérateur p(x)-Kirchhoff-Laplacian ou l’opérateur (p(x), q(x))-laplacien avec des

conditions de croissance non standard. Sous des hypothèses appropriées, ils établissent

plusieurs nouveaux résultats concernant l’existence et l’unicité de la solution faible dans le

cadre des espaces de Sobolev à exposant variable. Ces résultats sont obtenus par une com-

binaison de la théorie des espaces de Sobolev à exposant variable et la théorie des degrés

topologiques pour une classe d’opérateurs démicontinus de type (S+) généralisé. La deux-

ième classe est un problème parabolique associé à l’équation :
∂u

∂t
− div A(x, t,∇u) = φ(x, t) + div B(x, t, u,∇u),

x
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ce problème vise à présenter des résultats d’existence d’une solution faible dans l’espace

Lp(0, T ;W1,p
0 (Ω,ω)) par l’utilisation d’une théorie des degrés topologiques pour les opéra-

teurs du type T +S , où S est une application démicontinue bornée de classe (S+) et T est une

application monotone maximale linéaire définie de manière dense par rapport à un domaine

de T .

Mots clés : Problème de Dirichlet, problème de Neumann, problème elliptique, problème

parabolique, équation elliptique non linéaire dégénérée, théorie des degrés topologiques,

solution faible, espaces de Sobolev avec poids, existence et unicité, espaces de Sobolev

à exposant variable, opérateur de type p(x)-Kirchhoff-Laplacian, opérateur de type p(x)-

Laplacian-like, opérateur à double phase avec des exposants variables.
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Abstract

Over the last decade, a large literature describes various aspects of PDEs whose main part

of the operator has power-type growth with the leading example of the p-Laplacian. There

is a wide range of directions in which the polynomial growth case has been developed, in-

cluding variable exponent, weighted, double phase with variable exponents and approaches

involving p(x)-Laplacian-like operator and p(x)-Kirchhoff-Laplacian operator.

In the following monograph we deal with the questions from existence and uniqueness

theory to elliptic and parabolic problems of Dirichlet or Neumann type in different settings.

The originality of this work consists of the presence of a class of studied operators allowing

to look the importance of the functional framework involves weighted Lebesgue-Sobolev

spaces and variable exponent Lebesgue-Sobolev spaces. This thesis covers two main parts :

The first part concerns the study the existence and uniqueness of weak solution to cer-

tain Dirichlet problems governed by nonlinear degenerate elliptic equation in the setting of

weighted Sobolev spaces with the right-hand side term in Lp ′(Ω,ω1−p ′) or in Lp ′(Ω,ω1−p ′)+
n∏
j=1

Lp
′
(Ω,ω1−p ′). Our main tool , in this part, is based on the Browder-Minty theorem and

the theory of weighted Sobolev spaces.

The second part of this thesis is devoted to study two classes of nonlinear problems, the

first classe of problems that we discuss in this part are Dirichlet or Neumann boundary value

problems involving the the p(x)-Laplacian-like operator or the p(x)-Kirchhoff-Laplacian op-

erator or (p(x), q(x))-Laplacian operator with nonstandard growth conditions. Under suit-

able assumptions, we establish new several results concerning the existence and uniqueness

of weak solution in the setting of variable exponent Sobolev spaces. These results are ob-

tained by combining the theory of the variable exponent Sobolev spaces and the topological

degree theory for a class of demicontinuous operator of generalized (S+) type. The second

classe of problem is a parabolic problem associated with the equation :

∂u

∂t
− div A(x, t,∇u) = φ(x, t) + div B(x, t, u,∇u),

this problem aim to present an existence result of a weak solution in the spaces Lp(0, T ;W1,p
0 (Ω,ω))

by using a topological degree theory for operators of the type T + S, where S is a bounded
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demicontinuous map of class (S+) and T is a linear densely defined maximal monotone map

with respect to a domain of T .

Key words : Dirichlet problem, Neumann problem, elliptic problem, parabolic problem,

degenerate nonlinear elliptic equation, topological degree theory, weak solution, weighted

Sobolev spaces, existence and uniqueness, variable exponent Sobolev spaces, p(x)-Kirchhoff-

Laplacian operator, p(x)-Laplacian-like operator, double phase operator with variable expo-

nents.
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Symbol description

∀ for all

∃ there exists

≡ equivalent∑
summation∏
product

R set of real numbers

N set of natural numbers

N positive integer greater than or equals to 1

RN N-dimensional Euclidean space of points x = (x1, x2, · · · , xN)
Ω open bounded subset of RN

∂Ω boundary ofΩ

α = (α1, α2, · · · , αN) an multiindex with αi ∈ N

|α| =
N∑
i=1

αi the length of the multiindex α

Dα = ∂|α|

∂x
α1
1 .∂x

α2
2 ···∂x

αN
N

partial derivative of order |α|

C(Ω) the spaces of continuous functions onΩ

C∞(Ω) the spaces of infinitely differentiable functions onΩ

C∞0 (Ω) infinitely differentiable functions with compact support onΩ

∇u gradient of a function u

a.e almost everywhere

−→ strong convergence⇀ weak convergence

↪→ continuous embedding

↪→↪→ compact embedding

X arbitrary Banach space

X∗ dual space of the Banach space X

〈·, ·〉 scalar product of RN, duality between X and X∗
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Ω closure ofΩ (i.e.,Ω plus its boundary)

[0, T ] closed interval 0 ≤ t ≤ T in R
ΩT the time-space cylinderΩ× (0, T) with T ∈ (0,∞)

∂ΩT boundary ofΩT

|Ω| measure of the setΩ

x (x1, ..., xN) point in RN

dx dx1, ..., dxN Lebesgue measure inΩ

div f
N∑
i=1

∂f

∂xi

p real number such that 1 ≤ p <∞
p ′ the Hölder conjugate of p

Lp(Ω) usual Lebesgue space

Lp
′
(Ω) dual space of Lp(Ω)

L∞(Ω) essentially bounded measurable functions onΩ

W1,p(Ω) usual Sobolev space

W1,p
0 (Ω) closure of C∞0 (Ω) inW1,p(Ω) (i.e. w.r.t. the norm || · ||W1,p(Ω))

W−1,p ′(Ω) dual space ofW1,p
0 (Ω)

Lp(Ω,ω) weighted Lebesgue Sobolev space

Lp
′
(Ω,ω1−p ′) dual space of Lp(Ω,ω)

W1,p(Ω,ω) weighted Sobolev space

W1,p
0 (Ω,ω) closure of C∞0 (Ω, ) inW1,p(Ω,ω)

W−1,p ′(Ω,ω1−p ′) dual space ofW1,p
0 (Ω,ω)

p(·) measurable function (variable exponent)

p+ essential sup of p(·)
p− essential inf of p(·)
p ′(·) Sobolev conjugate of p(·)
Lp(·)(Ω) variable exponent Lebesgue space (generalized Lebesgue space)

W1,p(·)(Ω) variable exponent Sobolev space (generalized Sobolev space)

W
1,p(·)
0 (Ω) closure of C∞0 (Ω) inW1,p(·)(Ω)

W−1,p ′(·)(Ω) dual space ofW1,p(·)
0 (Ω)
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General introduction

Historical and motivation

Boundary value problems for elliptic and parabolic equations, more precisely, the con-

cept of weak (generalized) solutions, have their background in applications (namely, in the

variational approach connected with the critical level of a certain energy functional as well

as in numerical methods like FEM etc). This type of approach is closely related to the concept

of Sobolev spaces and is well elaborated for both linear and nonlinear equations.

In various applications, we can meet boundary value problems for elliptic and parabolic

equations whose ellipticity is "disturbed" in the sense that some degeneration or singularity

appears. This "bad" behaviour can be caused by the coefficients of the corresponding dif-

ferential operator as well as by the solution itself. The so-called p-Laplacian is a prototype

of such an operator and its character can be interpreted as a degeneration or as a singular-

ity of the classical (linear) Laplace operator (with p = 2). There are several very concrete

problems from practice which lead to such differential equations, e.g. from glaceology, non-

Newtonian fluid mechanics, flows through porous media, differential geometry, celestial

mechanics, climatology, petroleum extraction, reaction-diffusion problems, etc.

Let ω be a weight on RN, i.e., a locally integrable function on RN such that ω(x) > 0 for

a.e. x ∈ RN. Let Ω ⊂ RN be open, 1 ≤ p < ∞, and k a nonnegative integer. The weighted

Sobolev space Wk,p(Ω,ω) consists of all functions u with weak derivatives Dαu, |α| ≤ k,

satisfying

||u||Wk,p(Ω,ω) =

∑
|α|≤k

∫
Ω

|Dαu|pω(x)dx

 1
p

<∞.
In the case ω = 1, this space is denoted Wk,p(Ω). In general, Sobolev spaces without

weights occur as spaces of solutions for elliptic and parabolic partial difierential equations

(see [28, 34]). Typically, 2k is the order of the equation and the case p = 2 corresponds to

linear equations. Details can be found in almost any book on partial differential equations.

For degenerate partial differential equations, where we have equations with various types of

singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces

1
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[87, 88], we mention some works in this direction [7, 11, 12, 130].

The type of a weight depends on the equation type. A class of weights, which is par-

ticularly well understood, is the class of Ap weights (or Muckenhoupt class) that was intro-

duced by Muckenhoupt in the early 1970’s [113, 114]. This class consists of precisely those

weights ω for which the Hardy-Littlewood maximal operator is bounded from Lp(RN,ω)

to Lp(RN,ω), when 1 < p < ∞, and from L1(RN,ω) to wk-L1(RN,ω), when p = 1. These

classes have found many useful applications in harmonic analysis [138]. Another reason for

studying Ap weights is the fact that powers of distance to submanifolds of RN often belong

to Ap [102].

It is well-known that classical potential theory is connected to linear partial differential

equations and the Sobolev spaceW1,2(Ω). The most striking manifestation of this connection

is the Dirichlet principle, which states that the solution to Dirichlet’s problem for the Laplace

equation in a domainΩ: ∆u = 0 in Ω,

u = f on ∂Ω,

where the boundary function f is assumed to belong to W1,2(Ω), can be obtained by mini-

mizing the energy integral ∫
Ω

∇u dx

over all functions u ∈W1,2(Ω) for which u−f ∈W1,2
0 (Ω). A corresponding nonlinear poten-

tial theory, connected to nonlinear partial differential equations and the spaceWk,p, has been

developed. The theory originated in the work by V. G. Maz’ya and J. Serrin. Excellent ac-

counts of this theory and its history are the monographs Adams-Hedberg [6], Maz’ya [111],

and Ziemer [155]. A lot of the corresponding weighted theory can be found in Heinonen,

Kilpelainen, and Martio [95].

In recent years, partial differential equations with nonlinearities and nonconstant expo-

nents have received a lot of attention (see [119, 120]). The impulse of this topic would come

from the new search field that reflects a new type of physical phenomenon is a class of

nonlinear problems with variable exponents. Modeling with classic Lebesgue and Sobolev

spaces has been demonstrated to be limited for a number of materials with inhomogeneities.

In the subject of fluid mechanics, for example, great emphasis has been paid to the study of

electrorological fluids, which have the ability to modify their mechanical properties when

exposed to an electric field (see [5, 125, 126]). Rajagopal and Ru̇zicka recently developed

a very interesting model for these fluids in [129] (see also [132]), taking into account the

delicate interaction between the electric field E(x) and the moving liquid. This type of prob-
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lem’s energy is provided by
∫
Ω

|∇u|p(x)dx. This type of energy can also be found in elas-

ticity problems [149]. The natural energy space in which such problems can be studied is

the variable exponent Sobolev space W1,p(x)(Ω). Also, we can find other applications relate

to image processing [2, 40], elasticity [150], the flow in porous media [17, 96], and prob-

lems in the calculus of variations involving variational integrals with nonstandard growth

[1, 4, 21, 22, 109, 122, 121, 123, 150].

For several years, great efforts have been devoted to the study of nonlinear elliptic equa-

tions with an operator described by polynomial growth, which is motivated, for example,

in the classical Sobolev space, not only by the description of many phenomena appearing in

the applied sciences, due to the study of fluid filtration in porous media, constrained heat-

ing, elasto-plasticity, optimal control, financial mathematics, and others. Interested readers

may refer to [14, 24, 27, 40] and the references therein for more background of applications.

But also by the mathematical importance in the theory of this space. In addition, there is

a vast literature describing various aspects of PDEs whose main part of the operator has a

power-like growth with the preeminent example of the p-Laplacian. There is a wide range of

directions in which the polynomial growth case has been developed, including variable ex-

ponent, p(x)-Laplacian-like operator, p(x)-Kirchhoff-Laplacian operator, and double-phase

with variable exponent.

The study of various mathematical problems involving double-phase operator has be-

come very attractive in recent decades. Zhikov was the first who studied this type of prob-

lem in order to describe models of strongly anisotropic materials by studying the functional

u 7→ ∫
Ω

(
|∇u|p + a(x)|∇u|q

)
dx (0.0.1)

where the integrand switches two different elliptic behaviours. For more results see [151,

152, 153]. Then, several interesting works have been carried out on the double phase prob-

lem with a Dirichlet boundary condition. For a deeper comprehension, we refer the reader

to [3, 107, 110, 118, 134, 144, 145, 146] and the references therein.

The double phase operator has been used in the modelling of strongly anisotropic ma-

terials [150] and in Lavrentiev’s phenomenon [151]. In the one hand, we have the physical

motivation; since the double phase operator has been used to model the steady-state solu-

tions of reaction-diffusion problems, that arise in biophysic, plasma-physic and in the study

of chemical reactions. In the other hand, these operators provide a useful paradigm for

describing the behaviour of strongly anisotropic materials, whose hardening properties are

linked to the exponent governing the growth of the gradient change radically with the point,

where the coefficient a(·) determines the geometry of a composite made of two different ma-
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terials (see [23, 148] and the references given there).

Moving on to another novel aspect; the double phase problem with variable exponents

that few author consider. Ragusa and Tachikawa in [124, 125, 126, 127, 128] and reference

therein, are the frst ones who have achieved the regularity theory for minimizers of (0.0.1)

with variable exponents (see also [65, 66, 67]). Moreover, in [136] Tachikawa, provides the

Hölder continuity up to the boundary of minimizers of so-called double phase functional

with variable exponents, under suitable Dirichlet boundary conditions.

In the context of the study of p(x)-Laplacian-like problems, arising from capillarity phe-

nomena, Ni and Serrin [115, 116] initiated the study of ground states for equations of the

form

− div
( ∇u√

1+ |∇u|2
)
= f(u) in RN, (0.0.2)

with very general right hand side f. The operator −div
( ∇u√

1+ |∇u|2
)

is usually denoted as

the prescribed mean curvature operator. Radial (singular) solutions of the problem (0.0.2)

has been studied in the context of the analysis of capillary surfaces for a function f of the

form f(u) = ku, for k > 0 (for more details see [46, 84, 97]).

Capillarity can be briefly explained by considering the effects of two opposing forces:

adhesion, i.e. the attractive (or repulsive) force between the molecules of the liquid and

those of the container; and cohesion, i.e. the attractive force between the molecules of the

liquid. The study of capillary phenomenon has gained some attention recently. This increas-

ing interest is motivated not only by fascination in naturally occurring phenomena such

as motion of drops, bubbles, and waves but also its importance in applied fields ranging

from industrial and biomedical and pharmaceutical to microfluidic systems. Recently, the

study of capillarity phenomena has begun to receive more and more attention, for instance

[60, 61, 62, 64, 19, 90, 98, 131, 135, 140, 154].

Elliptic boundary value problems involving the mean curvature operator play apivotal

role in the mathematical analysis of several physical or geometrical issues, such as capillarity

phenomena for incompressible or compressible fluids, mathematical models in physiology

or in electrostatics, flux-limited diffusion phenomena, prescribed mean curvature problems

for Cartesian surfaces in the Euclidean space: relevant references on these topics include

[45, 47, 85, 92].

Let’s move on to another innovative aspect; the study of Kirchhoff type problems has

already been extended to the case involving the p(x)-Laplacian operator. We would like to

draw attention to the fact that the p(x)-Laplacian operator has more complicated nonlinear-

ity than the p-Laplacian operator. For example, they are non-homogeneous, which prove
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that the problems involving the p(x)-Laplacian operator is more difficult than the problems

with p-Laplacian operator.

Kirchhoff [100] has investigated an equation of the form

ρ
∂2u

∂t2
−
(P0
h

+
E

2L

∫L
0

∣∣∣∂u
∂x

∣∣∣2 dx)∂2u
∂x2

= 0, (0.0.3)

which is called the Kirchhoff equation and which extends the classical D’Alembert’s wave

equation, by considering the effect of the changing in the length of the string during the

vibration. A distinguishing feature of the Kirchhoff equation (0.0.3) is that the equation con-

tains a nonlocal coefficient
(
P0
h
+ E

2L

∫L
0

∣∣∣∂u∂x ∣∣∣2 dx)which depends on the average 1
2L

∫L
0

∣∣∣∂u∂x ∣∣∣2 dx
of the kinetic energy 1

2

∣∣∣∂u∂x ∣∣∣2 on [0, L], and hence the equation is no longer a pointwise identity.

The parameters in (0.0.3) have the following meanings: L is the length of the string, h

is the area of the cross-section, E is the Young modulus of the material, ρ is the mass den-

sity and P0 is the initial tension. Lions [106] has proposed an abstract framework for the

Kirchhoff-type equations. After the work by Lions [106], various equations of Kirchhoff-type

have been studied extensively, for instance see [15, 18, 20, 38, 39, 42, 49, 50, 51, 52, 73, 76, 78].

Objective

Following the development of nonlinear elliptic and parabolic problems, in this thesis we

deal with the existence (and uniqueness) results for some elliptic and parabolic of partial

differential equations (PDEs) in different settings.

The first proposals of this thesis is devoted to investigate the existence and unique-

ness of the weak solution for some Dirichlet problems governed by nonlinear degenerate

elliptic equation in the setting of weighted Sobolev spaces with the right-hand side term

in Lp ′(Ω,ω1−p ′) or in Lp ′(Ω,ω1−p ′) +
n∏
j=1

Lp
′
(Ω,ω1−p ′). The needed results are obtained by

means of the Browder-Minty theorem and the theory of weighted Sobolev spaces.

The second part of this thesis is devoted to study two classes of nonlinear problems, the

first classe of problems that we discuss in this part are Dirichlet or Neumann boundary value

problems involving the p(x)-Laplacian-like operator or the p(x)-Kirchhoff-Laplacian opera-

tor or (p(x), q(x))-Laplacian operator with nonstandard growth conditions. Under suitable

assumptions, we establish new several results concerning the existence and uniqueness of

weak solution in the setting of variable exponent Sobolev spaces. These results are obtained

by combining the theory of the variable exponent Sobolev spaces and the topological degree

theory for a class of demicontinuous operator of generalized (S+) type. The second classe of

problem is a parabolic problem associated with nonlinear degenerate elliptic equation, this
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problem aim to present an existence result of weak solution in the space Lp(0, T ;W1,p
0 (Ω,ω))

by using the topological degree theory for operators of the type T +S, where S is a bounded

demicontinuous map of class (S+) and T is a linear densely defined maximal monotone map

with respect to a domain of T .

Outline

This thesis consists of two parts. Both parts are self-contained and can be studied inde-

pendently. The parts of this thesis are organized as follows:

Main results of part I

The first part focuses on the study of some nonlinear degenerate elliptic problems in

weighted Sobolev spaces with the right-hand side term in Lp ′(Ω,ω1−p ′) or in Lp ′(Ω,ω1−p ′)+
n∏
j=1

Lp
′
(Ω,ω1−p ′).

Let us begin by considering the following nonlinear elliptic of Dirichlet typeLu(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,
(0.0.4)

where L is the partial differential operator given by Lu := −div
(
A(x, u,∇u)

)
with

A : Ω× R× RN −→ RN is a Carathéodory function such that

|B(x, η, ξ)| ≤ γ(x) + |η|p−1 + |ξ|p−1, γ ∈ Lp ′(Ω), (0.0.5)

〈A(x, η, ξ) −A(x, η ′ , ξ ′), ξ− ξ ′〉 > 0 with η 6= η ′ and ξ 6= ξ ′ , (0.0.6)

〈A(x, η, ξ), ξ〉 ≥ β|ξ|p, β > 0, (0.0.7)

for all x ∈ Ω and whenever (η, ξ), (η ′, ξ ′) ∈ R × RN. In (0.0.4), the source term f belongs to

W−1,p ′(Ω) the dual space of W1,p
0 (Ω). The classical monotone operator methods developed

by Minty [112], Browder [36], Brézis [35], Lions [106], Višik [141] and others imply that

problem (0.0.4) has at least one weak solution u ∈W1,p
0 (Ω).

The Part I is composed of four chapters. First, we begin by a preliminary chapter in

which we present all the necessary ingredients thereafter on weight functions, weighted

Lebesgue-Sobolev spaces and monotone operators that help us in our analysis. Second,

we prove, in Chapter 2, the existence and uniqueness of weak solution u in W1,p
0 (Ω,ν1)

for a Dirichlet problem associated to (0.0.4) given in the form Lu := −div
(
ν1A(x,∇u) +
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ν2B(x, u,∇u)
)
+ν3g(x, u), where ν1, ν2 and ν3 areAp-weight functions, andA : Ω×RN −→

RN, B : Ω×R×RN −→ RN and g : Ω×R −→ R are Carathéodory functions allowed to satisfy

some conditions similar to (0.0.5), (0.0.6) and (0.0.7) with the right-hand side term f belongs

to Lp ′(Ω,ν1−p
′

1 ) (cf. [68]). The needed result follows by applying the the Browder-Minty

theorem and the theory of the weighted Sobolev spaces.

Thirdly, the aim of the Chapter 3 is to extend the first model given in Chapter 2 to a

general form given by Lu := −div
(
ω1A(x,∇u) + ω2B(x, u,∇u)

)
+ ω3g(x, u) + ω4|u|

p−2u

with 1 < p < ∞. Here A : Ω × RN −→ RN, B : Ω × R × Rn −→ RN, g : Ω × R −→ R are

assumed to satisfy some assumptions stated in the sense of (0.0.5), (0.0.6) and (0.0.7), and

the source term f belongs to Lp ′(Ω,ω1−p ′

1 ) (cf. [56]). We prove that this problem admits a

unique weak solution u in W1,p
0 (Ω,ω1,ω4). The needed result follows also relying on the

Browder-Minty theorem and the theory of the weighted Sobolev spaces.

Finally, in Chapter 4, we prove the existence and the uniqueness of weak solution for

the problem which has been discussed in the last chapter with the right-hand side term is a

measure that decomposes in Lp ′(Ω,ω1−p ′

2 ) +
n∏
j=1

Lp
′
(Ω,ω1−p ′

1 ) (cf. [58, 59]) by using the same

approach which has been used in the last chapter.

Main results of Part II

The purpose of this part is to study some nonlinear elliptic and parabolic problems in

different framework. This part consists of six chapters :

In the first chapter, we present all necessary and relevant ingredients thereafter (defintions,

properties, lemmas, theorems ...) about the variable exponent Lebesgue-Sobolev spaces and

the topological degree theory.

In the second chapter, we study a Neumann problem with p(x)-Laplacian-like operator of

the following form
−div

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
= µ|u|α(x)−2u+ λf(x, u,∇u) inΩ,

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+|∇u|2p(x)

)
∂u
∂η

= 0 on ∂Ω,

(0.0.8)

in the setting of the generalized Sobolev spaces W1,p(x)(Ω), where Ω is a smooth bounded

domain in RN, p(·), α(·) ∈ C+(Ω), ∂u
∂η

is the exterior normal derivative, µ and λ are two

real parameters. Based on the topological degree for a class of demicontinuous operators of

generalized (S+) type, under appropriate assumptions on f : Ω× R× RN → R, we obtain a

result on the existence of weak solution to the considered problem (cf. [60]).
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The third chapter studies an extension of the problem (0.0.8) to a model given in the form
−∆lp(x)u+ δ|u|α(x)−2u = µg(x, u) + λf(x, u,∇u) inΩ,

u = 0 on ∂Ω,

(0.0.9)

where∆lp(x) is the p(x)-Laplacian-like operator, δ, µ and λ are three real parameters, p(·), α(·) ∈
C+(Ω). Under some conditions on the functions f : Ω × R × RN → R and g : Ω × R → R,

we establish the existence of weak solution for (0.0.9) in variable exponent Sobolev spaces

W
1,p(x)
0 (Ω) by using also the theory of topological degree and the theory of variable exponent

Sobolev spaces (cf. [61]).

In the fourth chapter, we deal with the question of the existence and uniqueness of weak so-

lution for the following Neumann problem involving the p(x)-Kirchhoff-Laplacian operator
−M

( ∫
Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)(
div(|∇u|p(x)−2∇u) − |u|p(x)−2u

)
= f(x, u,∇u) inΩ,

|∇u|p(x)−2 ∂u
∂η

= 0 on ∂Ω.
(0.0.10)

where ∂u
∂η

is the exterior normal derivative, p(x) ∈ C+(Ω), M(t) is a continuous function

with t :=
∫
Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx and f : Ω × R × RN → R is a Carathéodory function.

By means of a topological degree of Berkovits for a class of demicontinuous operators of

generalized (S+) type and the theory of the variable exponent Sobolev spaces, under appro-

priate assumptions on f andM, we obtain a results on the existence and uniqueness of weak

solution to the considered problem (cf. [15]). Note that, the problem (0.0.10) is a generaliza-

tion of the model (0.0.3) introduced by Kirchhoff.

In chapter five, we study the existence of weak solution to a new class of the approximat-

ing problems corresponding to a quasilinear elliptic and parabolic equations involving the

(p(x), q(x))-Laplacian operator, called double phase operator with variable exponents, of

the following form
∂u
∂t

− ∆p(x)u− ∆q(x)u = φ(x, t) inΩT := Ω× (0, T),

u(x, t) = 0 on ∂ΩT ,

u(x, 0) = u0(x) inΩ,

(0.0.11)

and  −∆p(x)u− ∆q(x)u+ω|u|ξ(x)−2u = υA(x, u) + σB(x, u,∇u) inΩ,

u = 0 on ∂Ω,
(0.0.12)

where φ ∈ W∗ ( W∗ denote the dual space of the W , see (5.1.13)), A : Ω × R → R and

B : Ω×R×RN → R are Carathéodory functions that satisfy the assumption of growth,ω,υ

FACULTY OF SCIENCE AND TECHNIQUES 8 SULTAN MOULAY SLIMANE UNIVERSITY



MOHAMED EL OUAARABI DOCTORAL THESIS LABORATORY : LMACS

and σ are three real parameters, T > 0 is a given final time, and the variables exponents p, q ∈
C+(Ω) satisfy the assumption (9.0.3). Using the topological degree theory for operators

of the type T + S (see Subsection 5.2.2), we demonstrate the existence of weak solution

u ∈ W for (0.0.11), and based on the topological degree theory for a class of demicontinuous

operator of generalized (S+) type (see Subsection 5.2.1), we prove that the Problem (0.0.12)

possesses at least one weak solution u ∈W1,p(x)
0 (Ω).

In the final chapter, we investigate the parabolic case of (0.0.4), where the partial differential

operator L given by Lu := −div
(
a(x, t,∇u) + b(x, t, u,∇u)

)
(cf. [69]). The main problem

is given in the following form
∂u
∂t

− div b(x, t, u,∇u) = φ(x, t) + div a(x, t,∇u) in Q := Ω× (0, T),

u(x, t) = 0 on ∂Q,

u(x, 0) = u0(x) inΩ,

(0.0.13)

whereΩ is a bounded open domain of RN and T > 0. Hereφ is taken in Lp ′(0, T ;W−1,p ′(Ω,ω1−p ′))

the dual space of Lp(0, T ;W1,p
0 (Ω,ω)). The problem (0.0.13) aim to present an existence re-

sult of weak solution in the space Lp(0, T ;W1,p
0 (Ω,ω)) by using a topological degree theory

for operators of the type T + S (see Subsection 5.2.1).

FACULTY OF SCIENCE AND TECHNIQUES 9 SULTAN MOULAY SLIMANE UNIVERSITY



Part I

Study of some nonlinear degenerate
elliptic problems in weighted Sobolev
spaces with or without right-hand side

measure
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Chapter 1

Preliminaries

In this chapter we collect several basic tools on weight functions, weighted Lebesgue-Sobolev

spaces and monotone operators, which will be needed throughout this work. The common

link between all the results in this chapter is that they are preparatory for the main results,

which are contained in the following chapters.

1.1 Weighted Sobolev spaces

The Sobolev spaces Wk,p(Ω) without weights, in general, occur as spaces of solutions for

elliptic and parabolic partial difierential equations. For degenerate partial differential equa-

tions, where we have equations with various types of singularities in the coefficients, it is

natural to look for solutions in weighted Sobolev spaces [87, 88, 102, 138]. The type of a

weight depends on the equation type. This section will be devoted to introduce too the no-

tion of weighted Lebesgue and Sobolev spaces, and some interesting definitions and proper-

ties, which are essential to prove some results of existence for weak solutions of the nonlinear

elliptic problems studied in this thesis.

1.1.1 Basic results concerning weights

In this section, we review some properties of weights and, in particular, Ap weights, that

will be used throughout this thesis. Complete expositions can be found in the monographs

by J. Garcia-Cuerva and J. L. Rubio de Prancia [89] and A. Torchinsky [138].

1.1.1.1 General weights

By a weight, we shall mean a locally integrable functionω on Rn such thatω(x) > 0 for a.e.

x ∈ Rn. Every weight ω gives rise to a measure on the measurable subsets on Rn through

11
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integration. This measure will also be denoted byω. Thus,

ω(E) =

∫
E

ω(x)dx for measurable subset E ⊂ Rn.

Definition 1.1.1 Let ω be a weight, and let Ω ⊂ Rn be open. For 1 < p <∞, we define Lp(Ω,ω)

as the set of measurable functions f onΩ such that

||f||Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x)dx

) 1
p

<∞.
We also define wk-L1(Ω,ω), as the set of measurable functions f onΩ satisfying

||f||wk−Lp(Ω,ω) = sup
λ>0

λω({x ∈ Ω : |f(x)| > λ}) <∞.
Remark 1.1.2 1. Forω ≡ 1, we obtain the usual Lebesgue space Lp(Ω).

2. It is a well-known fact that the space Lp(Ω,ω) is a Banach space (uniformly convex and hence

reflexive if p > 1) equipped with the norm || · ||Lp(Ω,ω). We also have that the dual space of

Lp(Ω,ω), if p > 1, is the space Lp ′(Ω,ω1−p ′) with 1
p
+ 1

p ′
= 1.

3. If ν is a positive Borel measure on an open set Ω, we shall more generally denote by Lp(Ω,ν),

0 < p <∞, the set of ν-measurable functions f onΩ for which(∫
Ω

|f(x)|pdν

) 1
p

<∞.
We now determine conditions on the weight ω that guarantee that functions in Lp(Ω,ω)

are locally integrable onΩ.

Proposition 1.1.3 Let 1 ≤ p <∞ and letω be a weight such that

ω
−1
p−1 ∈ L1loc(Ω) if p > 1, (1.1.1)

ess sup
x∈B

1

ω(x)
< +∞ if p = 1, (1.1.2)

for every ball B ⊂ Ω. Then,

Lp(Ω,ω) ⊂ L1loc(Ω).

Proof. Let 1 ≤ p < ∞. Suppose that f ∈ Lp(Ω,ω) and let B ⊂ Rn be a ball. Then we have

the following two cases :

First case : If p = 1, then we have∫
B

|f(x)|dx =

∫
B

|f(x)|
ω(x)

ω(x)
dx

≤ ess sup
x∈B

1

ω(x)

∫
B

|f(x)|ω(x)dx <∞.
FACULTY OF SCIENCE AND TECHNIQUES 12 SULTAN MOULAY SLIMANE UNIVERSITY
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Hence f ∈ L1loc(Ω).

Second case : If p > 1, then we have∫
B

|f(x)|dx =

∫
B

|f(x)|(ω(x))
1
p (ω(x))−

1
p dx

≤

∫
B

|f(x)|(ω(x))
1
p dx

 1
p
∫
B

(
(ω(x))−

1
p

)p ′
dx

 1

p
′

=

∫
B

|f(x)|(ω(x))
1
p dx

 1
p
∫
B

(ω(x))−
p
′

p dx

 1

p
′

.

Since p ′ = p
p−1

, then

∫
B

|f(x)|dx ≤ ||f||Lp(Ω,ω)

∫
B

(ω(x))
−1
p−1 dx

 1

p
′

<∞.
Hence f ∈ L1loc(Ω).

It follows that

Lp(Ω,ω) ⊂ L1loc(Ω).

Remark 1.1.4 1. As a consequence of Proposition 1.1.3, we have the convergence in Lp(Ω,ω)

implies local convergence in L1(Ω). Moreover, if Ω is bounded, one obtains in the same way

that Lp(Ω,ω) is continuously embedded in L1(Ω).

2. Under the assumptions of Proposition 1.1.3, we have Lp(Ω,ω) ⊂ L1loc(Ω). Using the usual

identification of a regular distribution from D ′(Ω) with a function from L1loc(Ω) we conclude

that Lp(Ω,ω) ⊂ L1loc(Ω) ⊂ D ′(Ω).

Therefore, every function in Lp(Ω,ω) has weak derivatives. It thus makes sense to talk about

weak derivatives of functions in Lp(Ω,ω).

Note that, in the case p > 1, ifω does not satisfy condition (1.1.1) then the injection Lp(Ω,ω) ⊂
L1loc(Ω) not hold. This is illustrated by the following example :

Example 1.1.5 ConsiderΩ = [−1
2
, 1
2
] and etω(x) = |x|p−1 (p > 1).

We have (ω(x))
−1
p−1 =

(
|x|p−1

) −1
p−1 = |x|−1 /∈ L1loc(Ω). Thenω does not satisfy condition (1.1.3).

Now, consider the function f defined by f(x) = |x|−1| ln |x||λ with λ ∈ [−1, −1
p
].

FACULTY OF SCIENCE AND TECHNIQUES 13 SULTAN MOULAY SLIMANE UNIVERSITY
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We have

||f||Lp(Ω,v) =

∫ 1
2

−1
2

|x|−p| ln |x||λp|x|p−1 dx

= 2

∫ 1
2

0

|x|−1| ln x|λp dx

= −2

∫ 1
2

0

x−1(ln x)λp dx

= −2

∫− ln(2)

+∞ tλpdt

= 2

∫+∞
− ln(2)

tλpdt <∞, since λp < −1.

Hence f ∈ Lp(Ω, v).
On another side, we have f /∈ L1loc(Ω). In fact, we have∫ 1

2

−1
2

|f(x)|dx =

∫ 1
2

−1
2

|x|−1| ln |x||λ dx

= 2

∫ 1
2

0

|x|−1| ln x|λ dx

= 2

∫ 0
1
2

x−1(ln x)λ dx

= 2

∫+∞
− ln(2)

tλdt =∞, since λ > −1.

Corollary 1.1.6 Let ϕ ∈ C∞0 (Ω), ω be a weight such that ω
−1
p−1 ∈ L1loc(Ω) and let a multi-index

α ∈ Nn be fixed. Then the formula

Lα(f) =

∫
Ω

f(x)Dαϕ(x)dx (1.1.3)

defines a continuous linear functional Lα on Lp(Ω,ω).

Proof. Let f ∈ Lp(Ω,ω) and ϕ ∈ C∞0 (Ω). If we denote K = supp(ϕ) , then by Hölder

inequality we obtain

|Lα(f)| ≤
∫
Ω

|f(x)||Dαϕ(x)|dx

=

∫
Ω

|f(x)| (ω(x))
1
p |Dαϕ(x)| (ω(x))

−1
p dx

≤ ||f||Lp(Ω,ω)

(∫
Ω

|Dαϕ(x)|
p
p−1 (ω(x))

−1
p−1 dx

)p−1
p

≤ ||f||Lp(Ω,ω)

(∫
K

|Dαϕ(x)|
p
p−1 (ω(x))

−1
p−1 dx

)p−1
p

≤ ||f||Lp(Ω,ω) max
x∈K

|Dαϕ(x)|

(∫
K

(ω(x))
−1
p−1 dx

)p−1
p

,

FACULTY OF SCIENCE AND TECHNIQUES 14 SULTAN MOULAY SLIMANE UNIVERSITY
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here, the last integral is finite in view ofω
−1
p−1 ∈ L1loc(Ω).

We have the following result.

Theorem 1.1.7 Let ω ∈ Ap, 1 ≤ p < ∞, and let Ω be a bounded open set in Rn. If un −→ u in

Lp(Ω,ω), then there exist a subsequence (unm) and ψ ∈ Lp(Ω,ω) such that

(i) unm(x) −→ u(x), nm −→∞, a.e. onΩ.

(ii) |unm(x)| ≤ ψ(x), a.e. onΩ.

Proof. The proof of this theorem follows the lines of [88, Theorem 2.8.1].

Theorem 1.1.8 (Weighted Sobolev embedding theorem)[80, Theorem 1.2] Given 1 < p < ∞ and

ω ∈ Ap. Then there exist constants C and δ > 0 such that for all balls BR, all u ∈ C∞
0 (BR), and all

numbers k satisfying 1 ≤ k ≤ n
n−1

+ δ,

(
1

ω(BR)

∫
BR

|u|kpω dx

) 1
kp

≤ CR
(

1

ω(BR)

∫
BR

|∇u|pω dx

) 1
p

.

An immediate consequence of Theorem 1.1.8 is the following theorem :

Theorem 1.1.9 [80, Theorem 1.3] Let Ω be an open bounded set in Rn. Take 1 < p < ∞ and a

function ω ∈ Ap. Then there exist positive constants CΩ and δ such that for all u ∈ C∞0 (Ω) and all

k satisfying 1 ≤ k ≤ n
n−1

+ δ,

||u||Lkp(Ω,ω) ≤ CΩ||∇u||Lp(Ω,ω),

where CΩ depends only on n, p, the Ap constant ofω and the diameter ofΩ.

We now turn our attention to the weighted Poincaré inequality.

Theorem 1.1.10 [80, Theorem 1.5] Let 1 < p <∞ and ω ∈ Ap. Then there are positive constants

C and δ such that for all Lipschitz continuous functions u defined on BR and for all 1 ≤ k ≤
n/(n− 1) + δ,( 1

ω(BR)

∫
BR

|u− uBR |
kpω dx

)1/kp
≤ CR

( 1

ω(BR)

∫
BR

|∇u|pω dx
)1/p

where uBR =
1

ω(BR)

∫
BR

u(x)ω(x) dx or uBR =
1

|BR|

∫
BR

u(x)dx.
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1.1.1.2 Ap weights

The class of Ap weights was introduced by B. Muckenhoupt in [113], where he showed

that the Ap weights are precisely those weightsω for which the Hardy-Littlewood maximal

operator is bounded from Lp(Rn,ω) to Lp(Rn,ω), when 1 < p < ∞, and from L1(Rn,ω) to

wk-L1(Rn,ω), when p = 1. Here, we define the Hardy-Littlewood maximal function, Mf,

for a locally integrable function f on Rn by

Mf(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)|dy.

The corresponding operator, which takes f toMf, is denoted byM.

We begin by defining the class of Ap weights. These classes have found many useful

applications in harmonic analysis [138].

Definition 1.1.11 Let 1 ≤ p <∞. A weight ω is said to be an Ap weight, if there exists a positive

constant A such that, for every ball B ⊂ Rn,(
1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

(ω(x))
−1
p−1 dx

)p−1
≤ A if p > 1, (1.1.4)

(
1

|B|

∫
B

ω(x)dx

)
ess sup

x∈B

1

ω(x)
≤ A if p = 1. (1.1.5)

The infimum over all such constantsA is called theAp constant ofω. We denote byAp, 1 ≤ p <∞,

the set of all Ap weights.

We will refer to (1.1.4) and (1.1.5) as the Ap and the A1 condition, respectively. Mucken-

houpt’s theorem is now the following [113, p. 209-222].

Theorem 1.1.12 Suppose that ω ∈ Ap, where 1 < p < ∞. Then the Hardy-Littlewood maximal

operatorM is hounded on Lp(Rn,ω), that is, there exists a positive constant C such that∫
Rn
(Mf)pωdx ≤ C

∫
Rn

|f|pωdx, (1.1.6)

for every f ∈ Lp(Rn,ω). The constant C depends only on n, p and the Ap constant ofω. Ifω ∈ A1
thenM is hounded from L1(Rn,ω) to wk-L1(Rn,ω). In other words,

ω({x ∈ Rn :Mf(x) > λ}) ≤ C
λ

∫
Rn

|f|ωdx, (1.1.7)

for every f ∈ L1(Rn,ω) and every λ > 0, with a constant C that only depends on n and the A1
constant of ω. Conversely, if (1.1.6) holds for every f ∈ Lp(Rn,ω), then ω ∈ Ap, and if (1.1.7)

holds for every f ∈ L1(Rn,ω), thenω ∈ A1.
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Remark 1.1.13 Below we list some simple, but useful properties of Ap weights (see [95, 102, 139]

for more informations about Ap weights).

1. If ω ∈ Ap, 1 ≤ p < ∞, then since ω
−1
p−1 is locally integrable, when 1 < p < ∞, and 1

ω
is

locally bounded, when p = 1, we have Lp(Ω,ω) ⊂ L1loc(Ω) for every domain Ω. Moreover, if

A is the Ap constant ofω, then by the Ap condition, the right-hand sides of (1.1.1) and (1.1.2)

do not exceed

A
1
p |B|

(
1

ω(B)

∫
B

|f|pωdx

) 1
p

.

2. Note that if ω is a weight, then, by writing 1 = ω
1
pω

−1
p , Hölder’s inequality implies that, for

every ball B,

1 ≤
(
1

|B|

∫
B

ωdx

)(
1

|B|

∫
B

ω
−1
p−1 dx

)
,

when p > 1, and similarly for the expression that gives the A1 condition. It follows that if

ω ∈ Ap, then the Ap constant ofω is ≥ 1.

3. It also follows from Hölder’s inequality that if 1 ≤ p < q < ∞, then Ap ⊂ Aq and the Aq
constant of a weightω equals the Ap constant ofω.

4. If ω ∈ Ap, where 1 < p < ∞, then ω
−1
p−1 ∈ Ap ′ , and conversely. When p is fixed, we shall

sometimes denote the weightω
−1
p−1 byω ′.

5. TheAp condition is invariant under translations and dilations, i.e., ifω ∈ Ap, then the weights

x 7→ ω(x+ a) and x 7→ ω(δx), where a ∈ Rn and δ > 0 are fixed, both belong to Ap with the

same Ap constants asω.

6. As it sometimes is more convenient to work with cubes than balls, it is useful to notice that if

one replaces the balls in the definition of Ap with cubes, one gets the same class of weights and

the different "Ap constants" are comparable.

7. It is not so difficult to see that a weightω belongs to A1 if and only ifMω(x) ≤ Aω(x) a.e.

Example 1.1.14 (Examples of Ap weights)

1. If ω is a weight and there exist two positive constants C and D such that C ≤ ω(x) ≤ D for

a.e. x ∈ Rn, then obviouslyω ∈ Ap for 1 ≤ p <∞.

2. Suppose that ω(x) = |x|η, y ∈ Rn. Then ω ∈ Ap if and only if −n < η < n(p − 1) for

1 ≤ p <∞ (see [138, p. 229-236]).

FACULTY OF SCIENCE AND TECHNIQUES 17 SULTAN MOULAY SLIMANE UNIVERSITY



MOHAMED EL OUAARABI DOCTORAL THESIS LABORATORY : LMACS

3. Let Ω be an open subset of Rn. Then ω(x) = eλv(x) ∈ A2, with v ∈ W1,n(Ω) and λ is

sufficiently small (see Corollary 2.18 in [114]).

4. There is a connection between Ap and BMO, the class of functions with bounded mean oscilla-

tion. In fact, if ω is a weight, then logω ∈ BMO if and only if ωη ∈ A2 for some η > 0 (see

[138, p. 240]).

1.1.1.3 Doubling weights

We will often use the fact that Ap weights are doubling.

Definition 1.1.15 A weightω is said to be doubling, if there exists a positive constant C such that

ω(2B) ≤ Cω(B), (1.1.8)

for every ball B ⊂ Rn. The infimum over all constants C, for which (1.1.8) holds, is called the

doubling constant ofω.

It follows directly from the Ap condition and Hölder inequality that an Ap weight has the

following strong doubling property.

Corollary 1.1.16 (Strong doubling of Ap weight ) Let ω ∈ Ap with 1 ≤ p < ∞ and let E be a

measurable subset of a ball B ⊂ Rn. Then

ω(B) ≤ A
(
|B|

|E|

)p
ω(E),

where A is the Ap constant ofω.

Proof. Let ω ∈ Ap, B ⊂ Rn be a ball and E be a measurable subset of B. Then, by Hölder

inequality, we obtain

|E| =

∫
E

dx ≤
∫
E

ω
−1
p ω

1
p dx

≤
(∫

E

ωdx

) 1
p
(∫

E

ω
−p
′

p dx

) 1

p
′

= (ω(E))
1
p

(∫
E

ω
−1
p−1 dx

)p−1
p

= (ω(E))
1
p |B|

p−1
p

(
1

|B|

∫
B

ω
−1
p−1

)p−1
p

.

Since v ∈ Ap, then (
1

|B|

∫
B

ω
−1
p−1 dx

)p−1
≤ A

(
1

|B|

∫
B

ωdx

)−1

.
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Hence

|E| ≤ (ω(E))
1
p |B|

p−1
p A

1
p

(
1

|B|

∫
B

v dx

)−1
p

= A
1
p (ω(E))

1
p |B|

p−1
p

(
ω(B)

|B|

)−1
p

= A
1
p (ω(E))

1
p (ω(B))

−1
p |B|,

and consequently

ω(B) ≤ A
(
|B|

|E|

)p
ω(E).

Remark 1.1.17 1. Ifω ∈ Ap, thenω is doubling (see [43, Corollary 15.7]).

2. Ifω(E) = 0 then |E| = 0. The measureω and the Lebesgue measure | · | are mutually absolutely

continuous, that is they have the same zero sets
(
ω(E) = 0 if and only if |E| = 0

)
; so there is

no need to specify the measure when using the ubiquitous expression almost everywhere and

almost every, both abbreviated a.e..

Lemma 1.1.18 [43] If ω ∈ Ap, then there are 0 < q < 1 and C > 0, depending only on n, p, and

A, such that
ω(E)

ω(B)
≤ C

(
|E|

|B|

)q
,

whenever B is a ball in Rn and E is a measurable subset of B.

We have the following reverse Hölder inequality.

Lemma 1.1.19 [43] If ω ∈ Ap, then there are numbers r > 1 and Cr ≥ 1, depending only on n, p,

and A, such that (
1

|B|

∫
B

ωr dx

)1/r
≤ Cr

(
1

|B|

∫
B

ω dx

)
,

for all balls B.

We have also the following open-end property of Ap.

Lemma 1.1.20 [43] Suppose that ω ∈ Ap for some p, 1 < p < ∞. Then there exists a number q,

1 < q < p, such thatω ∈ Aq.
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1.1.1.4 A∞ weights

Another important class of weights is the class of A∞ weights, introduced by C. Fefferman.

The following definition of A∞, just one of several equivalent ones, suits our purposes best.

Definition 1.1.21 We say that a weight ω is an A∞ weight, if there exist two positive constants C

and δ such that

ω(Q) ≥ C
(
|Q|

|E|

)δ
ω(E)

for every cubeQ and every measurable subset E ofQ. The constants C and δ are calledA∞ constants

ofω and the set of A∞ weights is (of course) denoted A∞.

The relationship between Ap and A∞ is clarified by the two theorems below, due to Muck-

enhoupt [113, p. 214] and [114, p. 104]. Together they show that

A∞ =
⋃

1≤p<∞Ap.

Theorem 1.1.22 If ω ∈ Ap, 1 ≤ p < ∞, then ω ∈ A∞ with A∞ constants of ω that only depend

on n and the Ap constant ofω.

Theorem 1.1.23 If ω ∈ A∞, then ω ∈ Ap for some p, 1 < p < ∞, and the Ap constant of ω is

majorized by a constant that only depends on n and the A∞ constants ofω.

Remark 1.1.24 A consequence of Theorem 1.1.22 and the defining condition for A∞ is the fact that∫
Rn
ωdx =∞ for every weightω ∈ Ap.

1.1.1.5 p-admissible weights

Let ω be a weight and 1 < p < ∞. We say that ω is p-admissible if the following four

conditions are satisfied :

(I) 0 < ω(x) <∞ a.e. x ∈ Rn andω is doubling.

(II) IfΩ is an open set andϕk ∈ C∞(Ω) is a sequence of functions such that
∫
Ω

|ϕk|
pωdx→

0 and
∫
Ω

|∇ϕk − ϑ|pωdx→ 0 as k→∞, then ϑ = 0.

(III) There are constants k > 1 and CIII > 0 such that( 1

ω(B)

∫
B

|ϕ|kpωdx
)1/kp

≤ CIIIR
( 1

ω(B)

∫
B

|∇ϕ|pωdx
)1/p

,

whenever B = B(x0, R) is a ball in Rn and ϕ ∈ C∞
0 (B).
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(IV) There is a constant CIV > 0 such that∫
B

|ϕ−ϕB|
pωdx ≤ CIVRp

∫
B

|∇ϕ|pωdx,

whenever B = B(x0, R) is a ball in Rn and ϕ ∈ C∞(B) is bounded. Here

ϕB =
1

ω(B)

∫
B

ϕωdx.

Let us make some remarks on conditions (I)-(IV). It follows immediately from condi-

tion (I) that the measure ω and Lebesgue measure dx are mutually absolutely continuous.

Moreover, it easily follows from the doubling property thatω(Rn) =∞.

Condition (II) guarantees that the gradient of a Sobolev function is well defined, a con-

clusion that cannot be expected in general (Fabes et al. [80, pp. 91-92]).

Condition (III) is the weighted Sobolev embedding theorem or the weighted Sobolev

inequality and condition (IV) is the weighted Poincaré inequality.

Example 1.1.25 (Examples of p-admissible weights)

1. Ifω ∈ Ap(1 < p <∞) thenω is a p-admissible weight.

2. ω(x) = |x|α, x ∈ Rn, α > −n, is a p-admissible weight for all p > 1.

3. If f : Rn → Rn is a K -quasiconformal mapping and Jf(x) is the determinant of its jacobian

matrix, thenω(x) = Jf(x)
1−p/n is p-admissible for 1 < p < n.

4. See [32] for non-Ap examples of p-admissible weights.

Remark 1.1.26 P. Hajlasz and P. Koskela [93] showed that conditions (I)-(IV) can be reduced to only

two : ω is a p-admissible weights (1 < p <∞) if and only if ω is doubling and there are constants

C > 0 and λ ≥ 1 such that

1

ω(B)

∫
B

|ϕ−ϕB|ωdx ≤ CR
( 1

ω(λB)

∫
λB

|∇ϕ|pωdx
)1/p

.

Theorem 1.1.27 Suppose thatω is a p-admissible weight and q > p. Thenω is q-admissible.

Proof. The steps of the proof follow along the exact lines of [95, Theorem 1.8].
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1.1.2 Weighted Sobolev spaces

This subsection explores weighted Sobolev spaces and some there properties. We will con-

sider two types of weighted Sobolev spaces, namely the spacesW1,p(Ω,ω) andW1,p(Ω,ω, v)

whereω, v ∈ Ap.
We begin by defining the weighted Sobolev spaceW1,p(Ω,ω). Recall that ifω ∈ Ap, then

Lp(Ω,ω) ⊂ L1loc(Ω) ⊂ D ′(Ω) for every open setΩ (see Remark 1.1.4). It thus makes sense to

talk about weak derivatives of functions in Lp(Ω,ω).

Definition 1.1.28 Let Ω ⊂ Rn be a bounded open, 1 ≤ p < ∞, k be a nonnegative integer and

ω ∈ Ap. We define the weighted Sobolev space Wk,p(Ω,ω) as the set of functions u ∈ Lp(Ω,ω)

with weak derivatives Dαu ∈ Lp(Ω,ω) for |α| ≤ k. The norm of u inW1,p(Ω,ω) is given by

||u||Wk,p(Ω,ω) =

∫
Ω

|u|pω(x)dx+
∑

1≤|α|≤k

∫
Ω

|Dαu|pω(x)dx

 1
p

. (1.1.9)

We also defineWk,p
0 (Ω,ω) as the closure of C∞0 (Ω) inWk,p(Ω,ω) with respect to the norm (1.1.9).

The norm of u inW1,p
0 (Ω,ω) is given by

||u||
W
1,p
0 (Ω,ω) =

 ∑
1≤|α|≤k

∫
Ω

|Dαu|pω(x)dx

 1
p

. (1.1.10)

Remark 1.1.29 1. Whenω = 1, the spacesW1,p(Ω,ω) andW1,p
0 (Ω,ω) will be denotedW1,p(Ω)

andW1,p
0 (Ω), respectively.

2. The spaceW1,p
0 (Ω,ω) is a closed subspace of the spaceW1,p(Ω,ω).

3. The dual of spaceW1,p
0 (Ω,ω) is the space

[
W1,p
0 (Ω,ω)

]∗
=W−1,p

′

0 (Ω,ω1−p ′) given by

W−1,p
′

0 (Ω,ω1−p ′) =

{
T = f0 − div(F) : F = (f1, ..., fn),

fj

ω
∈ Lp

′

(Ω,ω), j = 0, ..., n

}
.

Theorem 1.1.30 The spaces (W1,p(Ω,ω), ||·||W1,p(Ω,ω)) and (W1,p
0 (Ω,ω), ||·||W1,p(Ω,ω)) are reflevixe

Banach spaces.

Proof. This theorem is proved exactly the same way as in the case ω = 1. Using the com-

pleteness of Lp(Ω,ω) and the fact that Lp(Ω,ω) ⊂ L1loc(Ω) when ω ∈ Ap (see [139, Proposi-

tion 2.1.2] and [103, p. 540-541]).

Remark 1.1.31 It is evident that a weight function ω which satisfies 0 < c1 ≤ ω ≤ c2 for x ∈ Ω
(where c1 and c2 are constants), give nothing new (the space W1,p

0 (Ω,ω) is then identical with the
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classical Sobolev spaceW1,p
0 (Ω) sinceW1,p

0 (Ω,ω) is isomorphic to the Sobolev spaceW1,p
0 (Ω)). Con-

sequently, we shall interested above all in such weight functionsω which either vanish somewhere in

Ω ∪ ∂Ω or is not bounded (or both).

Another useful consequence of the inclusions Lp(Ω,ω) ⊂ L1loc(Ω) for generalΩ and Lp(Ω,ω) ⊂
L1(Ω) for boundedΩ is the next proposition.

Proposition 1.1.32 Let Ω ⊂ Rn be open, 1 ≤ p < ∞, and k a nonnegative integer. Suppose that

ω ∈ Ap. Then

Wk,p(Ω,ω) ⊂Wk,1
loc(Ω),

and, ifΩ is hounded,

Wk,p(Ω,ω) ⊂Wk,1(Ω).

Here, Wk,1
loc(Ω) denotes the set of functions u ∈ L1loc(Ω) with weak derivatives Dαu ∈ L1loc(Ω) for

|α| ≤ k.

Proof. See [139, Proposition 2.1.3].

Remark 1.1.33 If Ω ⊂ Rn be open, m ≥ 1, 1 ≤ p < ∞, and ω ∈ Ap, then C∞(Ω) is dense in

Wk,p(Ω,ω) (see [139, Corollary 2.1.6]).

Proposition 1.1.34 [139, Proposition 2.1.7] Let Ω ⊂ Rn be open, 1 ≤ p < ∞, ω ∈ Ap and

u ∈ W1,p(Ω,ω). Suppose that F ∈ C1(R) with F ′ ∈ L∞(R). If F ◦ u ∈ Lp(Ω,ω), then F ◦ u ∈
W1,p(Ω,ω) with Di(F ◦ u) = F

′
(u)Diu, i = 1, ..., n.

Corollary 1.1.35 [139, Corollary 2.1.8] Suppose that Ω ⊂ Rn is open, and let u ∈ W1,p(Ω,ω),

where 1 ≤ p < ∞ and ω ∈ Ap. Set u+ = max{u, 0} and u− = min{u, 0}. Then u+, u− and |u|

belongs toW1,p(Ω,ω), and, for i = 1, ..., n,

Diu
+ =

Diu if u > 0,

0 if u ≤ 0,
, Diu

− =

Diu if u < 0,

0 if u ≥ 0,
and Di|u| =


Diu if u > 0,

0 if u = 0,

−Diu if u < 0.

We now turn our attention to the weighted Sobolev inequality.

Theorem 1.1.36 Let Ω be an open bounded set in Rn. Take 1 < p < ∞ and ω ∈ Ap. Then there

exist positive constants CΩ and δ such that for all u ∈ W1,p
0 (Ω,ω) and all k satisfying 1 ≤ k ≤

n
n−1

+ δ,

||u||Lkp(Ω,ω) ≤ CΩ||∇u||Lp(Ω,ω), (1.1.11)

where CΩ depends only on n, p, the Ap constant ofω and the diameter ofΩ.
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Proof. Since W1,p
0 (Ω,ω) = C∞0 (Ω)

W1,p(Ω,ω)
, then to show the result its suffices to prove the

inequality for functions u ∈ C∞0 (Ω) (see Theorem 1.1.9). To extend the estimates (1.1.11)

to arbitrary u ∈ W1,p
0 (Ω,ω), we let (um) be a sequence of C∞0 (Ω) functions tending to u in

W1,p
0 (Ω,ω). Applying the estimates (1.1.11) to differences up − uq, we see that (um) will be

a Cauchy sequence in Lp(Ω,ω) (which is a Banach space). Consequently (um) converges to

u in Lp(Ω,ω), moreover u ∈ Lp(Ω,ω) and u satisfy (1.1.11).

The weighted Sobolev spaceW1,p(Ω,ω, v) is defined as follows.

Definition 1.1.37 Let Ω ⊂ Rn be a bounded open, 1 ≤ p < ∞, k be a nonnegative integer and

ω, v ∈ Ap. We define the weighted Sobolev spaceWk,p(Ω,ω, v) as the set of functions u ∈ Lp(Ω,ω)

with weak derivatives Dαu ∈ Lp(Ω, v) for |α| ≤ k. The norm of u inW1,p(Ω,ω, v) is given by

||u||Wk,p(Ω,ω,v) =

∫
Ω

|u|pω(x)dx+
∑

1≤|α|≤k

∫
Ω

|Dαu|pv(x)dx

 1
p

. (1.1.12)

We also define Wk,p
0 (Ω,ω, v) as the closure of C∞0 (Ω) in Wk,p(Ω,ω, v) with respect to the norm

(1.1.12).

Equipped by the norm (1.1.12), the spacesW1,p(Ω,ω, v) andW1,p
0 (Ω,ω, v) are separable and

reflexive Banach spaces
(
see [103, Proposition 2.1.2.] and see [102, 113] for more informa-

tions about the spaces W1,p(Ω,ω, v)
)
. The dual of space W1,p

0 (Ω,ω, v) is the space defined

by

[
W1,p
0 (Ω,ω, v)

]∗
=

{
f−

n∑
i=1

Difi :
f

ω
∈ Lp

′

(Ω,ω),
fi

v
∈ Lp

′

(Ω, v), i = 1, ..., n

}
.

Remark 1.1.38 Letω, v ∈ Ap. Then,

(i) Ifω = v, then C∞0 (Ω) is dense inW1,p
0 (Ω,ω) =W1,p

0 (Ω,ω,ω).

(ii) If ϕ ∈W1,p
0 (Ω,ω, v), then by Theorem 1.1.36 (with k = 1), it holds that

||ϕ||Lp(Ω,ω) ≤ CΩ||∇ϕ||Lp(Ω,ω) ≤ CΩ||ϕ||W1,p0 (Ω,ω,v).

Hence,W1,p
0 (Ω,ω, v) ⊂W1,p

0 (Ω,ω).

(iii) If v ≤ ω, thenW1,p
0 (Ω,ω) ⊂W1,p

0 (Ω,ω, v) ⊂W1,p
0 (Ω, v).

In this thesis, we consider also the following space

X := Lp(0, T ;W1,p
0 (Ω,ω)), and T > 0.
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In this space, we defined the norm

|u|X =
( ∫ T

0

‖u‖p
W1,p(Ω,ω)

dt
)1/p

.

Thanks to Poincaré inequality, the expression

‖u‖X =
( ∫ T

0

‖u‖p
W
1,p
0 (Ω,ω)

dt
)1/p

,

is a norm defined on X and is equivalent to the norm | · |X .
Note that

(
X , ‖ · ‖X

)
is a separable and reflexive Banach space.

1.2 Basic results for monotone operators

In this section, we present some basic definitions and results on monotone operators.

Definition 1.2.1 Let X be a Banach space and let A : X −→ X∗ be an operator where X∗ denotes the

dual space of X. Then :

1. A is called monotone iff

〈Au−Av, u− v〉 > 0

for all u, v ∈ X where 〈f, u〉 denotes the value of the linear functional f ∈ X∗ at point u ∈ X.

2. A is called strictly monotone iff

〈Au−Av, u− v〉 > 0 for all u, v ∈ X with u 6= v.

3. A is called strongly monotone iff there is a C > 0 telle que

〈Au−Av, u− v〉 > C||u− v||2; for all u, v ∈ X.

4. A is called coercive iff

lim
||u||−→∞

〈Au,u〉
||u||

= +∞.
5. A is said to be hemicontinuous iff the real function

t 7−→ 〈A(u+ tv), w〉

is continuous on [0, 1] for all u, v,w ∈ X.

6. A is said to be strongly continuous iff

un ⇀ u⇒ Aun −→ Au.
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Remark 1.2.2 Obviously, we have the following implications :

A is strongly monotone ⇒ A is strictly monotone ⇒ A is monotone .

For more informations about monotone, coercive and hemicontinuous operators see [143].

Proposition 1.2.3 Let A : X −→ X∗ be an operator on the real Banach space X. We set

f(t) = 〈A(u+ tv), v〉 for all t ∈ R.

Then the following statements are equivalent.

(a) The operator A is monotone.

(b) The function f : [0, 1] −→ R is monotone increasing for all u, v ∈ X.

Proof. If A is monotone, then for 0 6 s < t 6 1, we have

f(t) − f(s) = (t− s)−1〈A(u+ tv) −A(u+ sv), (t− s)v〉 > 0.

Hence f is monotone increasing on [0, 1].

Conversely, if f is monotone increasing on [0, 1], then for all u, v ∈ X, we have

〈A(u+ v) −Au, v〉 = f(1) − f(0) > 0.

Hence A is monotone.

Now we will state the main theorem on monotone operators.

Theorem 1.2.4 (Browder(1963), Minty(1963)) Let A : X −→ X∗ be a monotone, coercive and

hemicontinuous operator on the real, separable, reflexive Banach space X. Then the following asser-

tions hold:

(a) For each T ∈ X∗, the equation Au = T has a solution u ∈ X.

(b) If the operator A is strictly monotone, then equation Au = T has a unique solution u ∈ X for

all T ∈ X∗.

Proof. See [143, Theorem 26.A].
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1.3 Some important technical propositions and lemmas

In this section, we introduce some technical propositions lemmas that are used in this thesis.

Proposition 1.3.1 [43] Let 1 < p <∞.

(i) There exists a positive constant Cp such that for all η, ξ ∈ Rn, we have∣∣∣|ξ|p−2ξ− |η|p−2η
∣∣∣ ≤ Cp|ξ− η|(|ξ|+ |η|

)p−2
.

(ii) There exist two positive constants βp and γp such that for every x, y ∈ Rn, it holds that

βp

(
|x|+ |y|

)p−2
|x− y|2 ≤

〈
|x|p−2x− |y|p−2y, x− y

〉
≤ γp

(
|x|+ |y|

)p−2
|x− y|2.

Proposition 1.3.2 [142](Principle of convergence in Banach spaces). A sequence (xn) in a Banach

space X has the following convergence properties.

(1) Strong convergence. Let x be a fixed element of X. If every subsequence of (xn) has, in turn, a

subsequence which converges strongly to x, then the original sequence converges strongly to x.

(2) Weak convergence. Let x be a fixed element of X. If every subsequence of (xn) has, in turn, a

subsequence which converges weakly to x, then the original sequence converges weakly to x.

Lemma 1.3.3 [13] Let 1 < p < ∞, (fn)n ⊂ Lp(Ω,ω) and f ∈ Lp(Ω,ω) such that

‖fn‖Lp(Ω,ω) ≤ C. If fn(y) → f(y) a.e. in Ω, then fn ⇀ f in Lp(Ω,ω), where ω is a

weight function onΩ.
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Chapter 2

On the existence and uniqueness of
solution for a class of nonlinear
degenerate elliptic problems via
Browder-Minty theorem

The purpose of this chapter is to investigate the existence and uniqueness of weak solution

for a class of nonlinear degenerate elliptic problem, under Dirichlet condition, of the form :

− div
[
ν1a(y,∇ϕ) + ν2b(y,ϕ,∇ϕ)

]
+ ν3g(y,ϕ) = φ(y), (2.0.1)

where Ω is a bounded open set in RN, ν1, ν2 and ν3 are Ap-weight functions, and the func-

tions b : Ω × R × RN −→ RN, a : Ω × RN −→ RN and g : Ω × R −→ R are Carathéodory

functions that satisfy some assumptions with the right-hand side term φ ∈ Lp ′(Ω,ν1−p
′

1 ).

2.1 Hypotheses and the concept of weak solution

2.1.1 Hypotheses

Now let us present the hypothesis on the problem (2.0.1). Assuming that the following

assumptions are true: Ω ⊂ RN(N ≥ 2), ν1, ν2 and ν3 are Ap-weight functions, am : Ω ×
RN −→ R, bm : Ω× R× RN −→ R (m = 1, ...,N), with a(y, δ) =

(
a1(y, δ), ..., aN(y, δ)

)
and

b(y, µ, δ) =
(
b1(y, µ, δ), ..., bN(y, µ, δ)

)
and g : Ω× R −→ R such that

(H1) am, bm and g are Carathéodory functions.

(H2) There are h1, h2, h3, h4 ∈ L∞(Ω) and f1 ∈ Lp
′
(Ω,ν1), f2 ∈ Lq

′
(Ω,ν2) and f3 ∈ Ls

′
(Ω,ν3)

such that

|a(y, δ)| ≤ f1(y) + h1(y)|δ|p−1,

|b(y, µ, δ)| ≤ f2(y) + h2(y)|µ|q−1 + h3(y)|δ|q−1,

28
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|g(y, µ)| ≤ f3(y) + h4(y)|µ|s−1,

where (µ, δ) ∈ R× Rn.

(H3) ∃ λ > 0 such that

〈a(y, δ) − a(y, δ ′), δ− δ ′〉 > λ|δ− δ ′ |p,

〈b(y, µ, δ) − b(y, µ ′ , δ ′), δ− δ ′〉 > 0,(
g(y, µ) − g(y, µ

′
)
)(
µ− µ

′
)
> 0,

where µ, µ ′ ∈ R and δ, δ ′ ∈ Rn with µ 6= µ ′ and δ 6= δ ′ .

(H4) ∃ κ1, κ2, κ3 > 0 such that

〈a(y, δ), δ〉 > κ1|δ|p,

〈b(y, µ, δ), δ〉 > κ2|δ|q + κ3|µ|q,

g(y, µ)µ > 0.

2.1.2 The concept of weak solution

The definition of weak solution to (2.0.1) is stated as follows:

Definition 2.1.1 We say that a function ϕ ∈ W1,p
0 (Ω,ν1) is a weak solution of (2.0.1), if for any

v ∈W1,p
0 (Ω,ν1), it satisfies the following:∫
Ω

〈a(y,∇ϕ),∇v〉ν1dy+

∫
Ω

〈b(y,ϕ,∇ϕ),∇v〉ν2dy+

∫
Ω

g(y,ϕ)vν3dy =

∫
Ω

φvdy.

Remark 2.1.2 For all ν1, ν2, ν3 ∈ Ap we have

(i) If 1 < q < p <∞ and ν2
ν1
∈ Lk1(Ω,ν1) where k1 = p

p−q
, then

‖ϕ‖Lq(Ω,ν2) 6 ϑp,q‖ϕ‖Lp(Ω,ν1),

where ϑp,q = ‖ν2ν1‖
1/q

Lk1 (Ω,ν1)
.

(ii) Analogously, if 1 < s < p <∞ and ν3
ν1
∈ Lk2(Ω,ν1) where k2 = p

p−s
, then

‖ϕ‖Ls(Ω,ν3) 6 ϑp,s‖ϕ‖Lp(Ω,ν1),

where ϑp,s = ‖ν3ν1‖
1/s

Lk2 (Ω,ν1)
.
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2.2 Main result

Our main result of this chapter can be stated as follows.

Theorem 2.2.1 If (H1)−(H4) hold, then the problem (2.0.1) admits a unique solutionu inW1,p
0 (Ω,ν1).

Proof. We will reduce the problem (2.0.1) to a new one governed by an operator problem

Ψϕ = Υ, and we will apply the Theorem 1.2.4.

We define

Φ :W1,p
0 (Ω,ν1)×W1,p

0 (Ω,ν1) −→ R

and

Υ :W1,p
0 (Ω,ν1) −→ R,

withΦ and Υ are specified in the following paragraphs. Hence

ϕ ∈W1,p
0 (Ω,ν1) is a weak solution of (2.0.1)⇔ Φ(ϕ, v) = Υ(v), for all v ∈W1,p

0 (Ω,ν1).

The Theorem 2.2.1 is proved in four steps.

Step 1.

We utilize some tools and the condition (H2) to show the existence of the operatorΨ and that

the problem (2.0.1) is identical to the operator equation Ψϕ = Υ. By employing the Hölder

inequality and Theorem 1.1.36, we get

|Υ(ϕ)| ≤
∫
Ω

|φ|

ν1
|ϕ|ν1 dy

≤ ‖φ/ν1‖Lp ′ (Ω,ν1)‖ϕ‖Lp(Ω,ν1)
≤ CΩ‖φ/ν1‖Lp ′ (Ω,ν1)‖ϕ‖W1,p0 (Ω,ν1)

.

Since φ ∈ Lp ′(Ω,ν1−p
′

1 ), then Υ ∈W−1,p ′

0 (Ω,ν1−p
′

1 ).

The operatorΦ can be written as

Φ(ϕ, v) = Φ1(ϕ, v) +Φ2(ϕ, v) +Φ3(ϕ, v),

where
Φ1 :W

1,p
0 (Ω,ν1)×W1,p

0 (Ω,ν1) −→ R

Φ1(ϕ, v) =

∫
Ω

〈a(y,∇ϕ),∇v〉ν1dy,

Φ2 :W
1,p
0 (Ω,ν1)×W1,p

0 (Ω,ν1) −→ R

Φ2(ϕ, v) =

∫
Ω

〈b(y,ϕ,∇ϕ),∇v〉ν2dy,

Φ3 :W
1,p
0 (Ω,ν1)×W1,p

0 (Ω,ν1) −→ R

Φ3(ϕ, v) =

∫
Ω

g(y,ϕ)vν3dy.
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Then, we have

|Φ(ϕ, v)| ≤ |Φ1(ϕ, v)|+ |Φ2(ϕ, v)|+ |Φ3(ϕ, v)|. (2.2.1)

Also, by utilizing Hölder inequality, Remark 2.1.2 (i), (H2) and Theorem 1.1.36, we have

|Φ1(ϕ, v)| ≤
∫
Ω

|a(y,∇ϕ)||∇v|ν1dy

≤
∫
Ω

(
f1 + h1|∇ϕ|p−1

)
|∇v|ν1dy

≤
∫
Ω

f1ν
1
p ′

1 |∇v|ν
1
p

1 dy+

∫
Ω

h1|∇ϕ|p−1ν
1
p ′

1 |∇v|ν
1
p

1 dy

≤ ‖f1‖Lp ′ (Ω,ν1)‖∇v‖Lp(Ω,ν1) + ‖h1‖L∞(Ω)‖∇ϕ‖p−1Lp(Ω,ν1)
‖∇v‖Lp(Ω,ν1)

≤
(
‖f1‖Lp ′ (Ω,ν1) + ‖h1‖L∞(Ω)‖ϕ‖p−1

W
1,p
0 (Ω,ν1)

)
‖v‖

W
1,p
0 (Ω,ν1)

,

and

|Φ2(ϕ, v)| ≤
∫
Ω

|b(y,ϕ,∇ϕ)||∇v|ν2dy

≤
∫
Ω

(
f2 + h2|ϕ|

q−1 + h3|∇ϕ|q−1
)
|∇v|ν2dy

≤
∫
Ω

f2ν
1
q ′

2 |∇v|ν
1
q

2 dy+

∫
Ω

h2|ϕ|
q−1ν

1
q ′

2 |∇v|ν
1
q

2 dy+

∫
Ω

h3|∇ϕ|q−1ν
1
q ′

2 |∇v|ν
1
q

2 dy

+ ‖h3‖L∞(Ω)

∫
Ω

|∇ϕ|q−1ν
1
q ′

2 |∇v|ν
1
q

2 dy

≤ ‖f2‖Lq ′ (Ω,ν2)‖∇v‖Lq(Ω,ν2) + ‖h2‖L∞(Ω)‖ϕ‖q−1Lq(Ω,ν2)
‖∇v‖Lq(Ω,ν2)

+ ‖h3‖L∞(Ω)‖∇ϕ‖q−1Lq(Ω,ν2)
‖∇v‖Lq(Ω,ν2)

≤ ‖f2‖Lq ′ (Ω,ν2)ϑp,q‖∇v‖Lp(Ω,ν1) + ‖h2‖L∞(Ω)C
q−1
p,q ‖ϕ‖

q−1
Lp(Ω,ν1)

ϑp,q‖∇v‖Lp(Ω,ν1)
+ ‖h3‖L∞(Ω)ϑ

q−1
p,q ‖∇ϕ‖

q−1
Lp(Ω,ν1)

ϑp,q‖∇v‖Lp(Ω,ν1)
≤

[
ϑp,q‖f2‖Lq ′ (Ω,ν2) + ϑ

q
p,q

(
Cq−1Ω ‖h2‖L∞(Ω) + ‖h3‖L∞(Ω)

)
‖ϕ‖q−1

W
1,p
0 (Ω,ν1)

]
‖v‖

W
1,p
0 (Ω,ν1)

.

Similarly, by using Hölder inequality, Theorem 1.1.36, (H2) and Remark 2.1.2, we get

|Φ3(ϕ, v)| ≤
∫
Ω

|g(y,ϕ)||v|ν3dy

≤
[
CΩϑp,s‖f3‖Ls ′ (Ω,ν3) + ϑ

s
p,sC

s
Ω‖h4‖L∞(Ω)‖ϕ‖s−1W

1,p
0 (Ω,ν1)

]
‖v‖

W
1,p
0 (Ω,ν1)

.

Therefore, we have

|Φ(ϕ, v)| ≤
[
‖f1‖Lp ′ (Ω,ν1) + ‖h1‖L∞(Ω)‖ϕ‖p−1

W
1,p
0 (Ω,ν1)

+ CΩϑp,s‖f3‖Ls ′ (Ω,ν3) + ϑ
q
p,q

(
Cq−1Ω ‖h2‖L∞(Ω)

+‖h3‖L∞(Ω)

)
‖ϕ‖q−1

W
1,p
0 (Ω,ν1)

+ ϑsp,sC
s
Ω‖h4‖L∞(Ω)‖ϕ‖s−1

W
1,p
0 (Ω,ν1)

+ ϑp,q‖f2‖Lq ′ (Ω,ν2)
]
‖v‖

W
1,p
0 (Ω,ν1)

.

Thus,Φ(ϕ, .) is linear and continuous for everyϕ ∈W1,p
0 (Ω,ν1). As a result, there is a linear

and continuous operator onW1,p
0 (Ω,ν1) labeled by Ψ that provides

〈Ψϕ, v〉 = Φ(ϕ, v) for all ϕ, v ∈W1,p
0 (Ω,ν1).
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We also have

‖Ψϕ‖∗ ≤ ‖f1‖Lp ′ (Ω,ν1) + ‖h1‖L∞(Ω)‖ϕ‖p−1
W
1,p
0 (Ω,ν1)

+ CΩϑp,s‖f3‖Ls ′ (Ω,ν3) + ϑp,q‖f2‖Lq ′ (Ω,ν2)
+ ϑsp,sC

s
Ω‖h4‖L∞(Ω)‖ϕ‖s−1

W
1,p
0 (Ω,ν1)

+ ϑqp,q

(
Cq−1Ω ‖h2‖L∞(Ω) + ‖h3‖L∞(Ω)

)
‖ϕ‖q−1

W
1,p
0 (Ω,ν1)

,

where

‖Ψϕ‖∗ := sup
{
|〈Ψϕ, v〉| = |Φ(ϕ, v)| : v ∈W1,p

0 (Ω,ν1), ‖v‖W1,p0 (Ω,ν1)
= 1

}
,

is the norm inW−1,p ′

0 (Ω,ν1−p
′

1 ). Therefore, we get the operator

Ψ :W1,p
0 (Ω,ν1) −→W−1,p ′

0 (Ω,ν1−p
′

1 )

ϕ 7−→ Ψϕ.

Therefore, the problem (2.0.1) is equivalent to the operator equation

Ψϕ = Υ, ϕ ∈W1,p
0 (Ω,ν1).

Step 2.

In this step, we demonstrate that Ψ is strictly monotone. For all ϕ1, ϕ2 ∈ W1,p
0 (Ω,ν1) with

ϕ1 6= ϕ2, we have

〈Ψϕ1 − Ψϕ2, ϕ1 −ϕ2〉 = Φ(ϕ1, ϕ1 −ϕ2) −Φ(ϕ2, ϕ1 −ϕ2)

=

∫
Ω

〈a(y,∇ϕ1),∇(ϕ1 −ϕ2)〉ν1dy−

∫
Ω

〈a(y,∇ϕ2),∇(ϕ1 −ϕ2)〉ν1dy

+

∫
Ω

〈b(y,ϕ1,∇ϕ1),∇(ϕ1 −ϕ2)〉ν2dy−

∫
Ω

〈b(y,ϕ2,∇ϕ2),∇(ϕ1 −ϕ2)〉ν2dy

+

∫
Ω

g(y,ϕ1)(ϕ1 −ϕ2)ν3dy−

∫
Ω

g(y,ϕ2)(ϕ1 −ϕ2)ν3dy

=

∫
Ω

〈a(y,∇ϕ1) − a(y,∇ϕ2),∇(ϕ1 −ϕ2)〉ν1dy

+

∫
Ω

(
g(y,ϕ1) − g(y,ϕ2)

)(
ϕ1 −ϕ2

)
ν3dy

+
∫
Ω
〈b(y,ϕ1,∇ϕ1) − b(y,ϕ2,∇ϕ2),∇(ϕ1 −ϕ2)〉ν2dy.

By using (H3), we obtain

〈Ψϕ1 − Ψϕ2, ϕ1 −ϕ2〉 ≥
∫
Ω

λ|∇(ϕ1 −ϕ2)|pν1dy ≥ λ‖∇(ϕ1 −ϕ2)‖pLp(Ω,ν1),

and by Theorem 1.1.36, we conclude that

〈Ψϕ1 − Ψϕ2, ϕ1 −ϕ2〉 ≥
λ

(CpΩ + 1)
‖ϕ1 −ϕ2‖p

W
1,p
0 (Ω,ν1)

,

which implies that Ψ is strictly monotone.

Step 3.

This step establishes the coerciveness of the operator Ψ. For all ϕ ∈W1,p
0 (Ω,ν1), we get

〈Ψϕ,ϕ〉 = Φ(ϕ,ϕ)

=

∫
Ω

〈a(y,∇ϕ),∇ϕ〉ν1dy+

∫
Ω

〈b(y,ϕ,∇ϕ),∇ϕ〉ν2dy+

∫
Ω

g(y,ϕ)u ν3dy.
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From Theorem 1.1.36 and (H4), it follows that

〈Ψϕ,ϕ〉 ≥ κ1

∫
Ω

|∇ϕ|pν1dy+ κ2

∫
Ω

|∇ϕ|qν2dy+ κ3

∫
Ω

|ϕ|qν2dy

≥ κ1

∫
Ω

|∇ϕ|pν1dy+min(κ2, κ3)

[∫
Ω

|∇ϕ|qν2dy+

∫
Ω

|ϕ|qν2dy

]
= κ1‖∇ϕ‖pLp(Ω,ν1) +min(κ2, κ3)‖ϕ‖

q

W
1,q
0 (Ω,ν2)

≥ κ1‖∇ϕ‖pLp(Ω,ν1)
≥ κ1

(CpΩ + 1)
‖ϕ‖p

W
1,p
0 (Ω,ν1)

.

Hence, we obtain
〈Ψϕ,ϕ〉
‖ϕ‖

W
1,p
0 (Ω,ν1)

≥ κ1

(CpΩ + 1)
‖ϕ‖p−1

W
1,p
0 (Ω,ν1)

.

Therefore, as p > 1, we obtain

〈Ψϕ,ϕ〉
‖ϕ‖

W
1,p
0 (Ω,ν1)

−→ +∞ as ‖ϕ‖
W
1,p
0 (Ω,ν1)

−→ +∞,
which means that Ψ is coercive.

Step 4.

In this step, we show that Ψ is continuous. To do this, consider ϕk −→ ϕ in W1,p
0 (Ω,ν1) as

k −→ ∞. Then ϕk −→ ϕ in Lp(Ω,ν1) et ∇ϕk −→ ∇ϕ in (Lp(Ω,ν1))
n. Therefore, according

to Theorem 1.1.7, there exist (ϕki), ψ1 ∈ Lp(Ω,ν1) and ψ2 ∈ Lp(Ω,ν1) in such a way that

ϕki(y) −→ ϕ(y), as ki −→∞, inΩ

|ϕki(y)| ≤ ψ1(y), inΩ

∇ϕki(y) −→ ∇ϕ(y), as ki −→∞, inΩ

|∇ϕki(y)| ≤ ψ2(y), inΩ.

(2.2.2)

We are going to establish that Ψϕk −→ Ψϕ inW−1,p ′

0 (Ω,ν1−p
′

1 ). It is proved in three steps.

Step 4.1.

Let us define the operator

Bj :W
1,p
0 (Ω,ν1) −→ Lp

′
(Ω,ν1)

(Bjϕ)(y) = aj(y,∇ϕ(y)).

We now show that

Bjϕk −→ Bjϕ in Lp
′
(Ω,ν1).
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(i) For all ϕ ∈W1,p
0 (Ω,ν1), by Theorem 1.1.36 and (H2), we have

‖Bjϕ‖p
′

Lp
′
(Ω,ν1)

=

∫
Ω

|Bjϕ(y)|
p ′ν1dy =

∫
Ω

|aj(y,∇ϕ)|p
′
ν1dy

≤
∫
Ω

(
f1 + h1|∇ϕ|p−1

)p ′
ν1dy

≤ Cp

∫
Ω

(
fp
′

1 + hp
′

1 |∇ϕ|
p
)
ν1dy

≤ Cp

[
‖f1‖p

′

Lp
′
(Ω,ν1)

+ ‖h1‖p
′

L∞(Ω)‖∇ϕ‖
p
Lp(Ω,ν1)

]
≤ Cp

[
‖f1‖p

′

Lp
′
(Ω,ν1)

+ ‖h1‖p
′

L∞(Ω)‖u‖
p

W
1,p
0 (Ω,ν1)

]
.

(ii) By (H2) and (2.2.2), we obtain

‖Bjϕki − Bjϕ‖
p ′

Lp
′
(Ω,ν1)

=

∫
Ω

|Bjϕki(y) − Bjϕ(y)|
p ′ν1dy

≤
∫
Ω

(
|aj(y,∇ϕki)|+ |aj(y,∇ϕ)|

)p ′
ν1dy

≤ Cp

∫
Ω

(
|aj(y,∇ϕki)|p

′
+ |aj(y,∇ϕ)|p

′
)
ν1dy

≤ Cp

∫
Ω

[(
f1 + h1|∇ϕki |p−1

)p ′
+
(
f1 + h1|∇ϕ|p−1

)p ′]
ν1dy

≤ Cp

∫
Ω

[(
f1 + h1ψ

p−1
2

)p ′
+
(
f1 + h1ψ

p−1
2

)p ′]
ν1dy

≤ 2CpC
′

p

∫
Ω

(
fp
′

1 + hp
′

1 ψ
p
2

)
ν1dy

≤ 2CpC
′

p

[
‖f1‖p

′

Lp
′
(Ω,ν1)

+ ‖h1‖p
′

L∞(Ω)‖ψ2‖
p
Lp(Ω,ν1)

]
.

As ki −→∞, by using (H1), we get

Bjϕki(y) = aj(y,∇ϕki(y)) −→ aj(y,∇ϕ(y)) = Bjϕ(y), for almost all x ∈ Ω.

Consequently, by Lebesgue’s theorem, we have

‖Bjϕki − Bjϕ‖Lp ′ (Ω,ν1) −→ 0⇔ Bjϕki −→ Bjϕ in Lp
′
(Ω,ν1).

Finally, considering the principle of convergence in Banach spaces, we conclude

Bjϕk −→ Bjϕ in Lp
′
(Ω,ν1). (2.2.3)

Step 4.2.

Define
Gj :W

1,p
0 (Ω,ν1) −→ Lq

′
(Ω,ν2)

(Gjϕ)(y) = bj(y,ϕ(y),∇ϕ(y)).

We also have that

Gjϕk −→ Gjϕ in Lq
′
(Ω,ν2).

FACULTY OF SCIENCE AND TECHNIQUES 34 SULTAN MOULAY SLIMANE UNIVERSITY



MOHAMED EL OUAARABI DOCTORAL THESIS LABORATORY : LMACS

(i) For all ϕ ∈W1,p
0 (Ω,ν1), by Remark 2.1.2, (i) (H2) and Theorem 1.1.36, we get

‖Gjϕ‖q
′

Lq
′
(Ω,ν2)

=

∫
Ω

|bj(y,ϕ,∇ϕ)|q
′
ν2dy

≤
∫
Ω

(
f2 + h2|ϕ|

q−1 + h3|∇ϕ|q−1
)q ′
ν2dy

≤ Cq
∫
Ω

[
fq
′

2 + hq
′

2 |ϕ|
q + hq

′

3 |∇ϕ|
q
]
ν2dy

= Cq

[∫
Ω

fq
′

2 ν2dy+

∫
Ω

hq
′

2 |ϕ|
qν2dy+

∫
Ω

hq
′

3 |∇ϕ|
qν2dy

]
≤ Cq

[∫
Ω

fq
′

2 ν2dy+ ‖h2‖q
′

L∞(Ω)

∫
Ω

|ϕ|qν2dy+ ‖h3‖q
′

L∞(Ω)

∫
Ω

|∇ϕ|qν2dy
]

≤ Cq
[
‖f2‖q

′

Lq
′
(Ω,ν2)

+ ‖h2‖q
′

L∞(Ω)‖ϕ‖
q
Lq(Ω,ν2)

+ ‖h3‖q
′

L∞(Ω)‖∇ϕ‖
q
Lq(Ω,ν2)

]
≤ Cq

[
‖f2‖q

′

Lq
′
(Ω,ν2)

+ ‖h2‖q
′

L∞(Ω)C
q
p,q‖ϕ‖

q
Lp(Ω,ν1)

+ ‖h3‖q
′

L∞(Ω)C
q
p,q‖∇ϕ‖

q
Lp(Ω,ν1)

]
≤ Cq

[
‖f2‖q

′

Lq
′
(Ω,ν2)

+ ‖h2‖q
′

L∞(Ω)C
q
p,q‖ϕ‖

q

W
1,p
0 (Ω,ν1)

+ ‖h3‖q
′

L∞(Ω)C
q
p,q‖u‖

q

W
1,p
0 (Ω,ν1)

]
≤ Cq

[
‖f2‖q

′

Lq
′
(Ω,ν2)

+ Cqp,q

(
CqΩ‖h2‖

q ′

L∞(Ω) + ‖h3‖
q ′

L∞(Ω)

)
‖u‖q

W
1,p
0 (Ω,ν1)

]
.

(ii) By usin Remark 2.1.2 (i), (H2) and the similar reasoning employed in Step 4.1 (ii), we

get

Gjϕk −→ Gjϕ in Lq
′
(Ω,ν2). (2.2.4)

Step 4.3.

We define the operator
H :W1,p

0 (Ω,ν1) −→ Ls
′
(Ω,ν3)

(Hϕ)(y) = g(y,ϕ(y)).

In this step, we show that

Hϕk −→ Hϕ in Ls
′
(Ω,ν3).

(i) For all ϕ ∈W1,p
0 (Ω,ν1), by Remark 2.1.2 (ii) and (H2), we get

‖Hϕ‖s ′
Ls
′
(Ω,ν3)

=

∫
Ω

|g(y,ϕ)|s
′
ν3dy

≤ Cs

∫
Ω

(
fs
′

3 + hs
′

4 |ϕ|
s
)
ν3dy

≤ Cs

[
‖f3‖s

′

Ls
′
(Ω,ν3)

+ ‖h4‖p
′

L∞(Ω)‖ϕ‖
s
Ls(Ω,ν3)

]
≤ Cs

[
‖f3‖s

′

Ls
′
(Ω,ν3)

+ Csp,s‖h4‖
p ′

L∞(Ω)‖ϕ‖
s
Lp(Ω,ν1)

]
≤ Cs

[
‖f3‖Ls ′ (Ω,ν1) + C

s
p,sC

s
Ω‖h4‖s

′

L∞(Ω)‖ϕ‖sW1,p0 (Ω,ν1)

]
.
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(ii) From Remark 2.1.2 (ii) and (H2), we have

‖Hϕki −Hϕ‖s
′

Ls
′
(Ω,ν3)

=

∫
Ω

|Hϕki(y) −Hϕ(y)|
p ′ν3dy

≤
∫
Ω

(
|g(y,ϕki)|+ |g(y,ϕ)|

)s ′
ν3dy

≤ Cs

∫
Ω

(
|g(y,ϕki)|

s ′ + |g(y,ϕ)|s
′
)
ν3dy

≤ Cs

∫
Ω

[(
f3 + h4|ϕki |

s−1
)s ′

+
(
f3 + h4|ϕ|

s−1
)s ′]

ν3dy

≤ Cs

∫
Ω

[(
f3 + h4|ψ1|

s−1
)s ′

+
(
f3 + h4ψ

s−1
1

)s ′]
ν3dy

≤ 2CsC
′
s

∫
Ω

(
fs
′

3 + hp
′

4 ψ
s
1

)
ν3dy

≤ 2CsC
′
s

[
‖f3‖s

′

Ls
′
(Ω,ν3)

+ ‖h4‖s
′

L∞(Ω)‖ψ1‖sLs(Ω,ν3)
]

≤ 2CsC
′
s

[
‖f3‖s

′

Ls
′
(Ω,ν3)

+ ϑsp,s‖h4‖s
′

L∞(Ω)‖ψ1‖sLp(Ω,ν1)
]
.

As ki −→∞, by using (H1), we obtain

Hϕki(y) = g(y,ϕki(y)) −→ g(y, u(y)) = Hϕ(y), a.e. x ∈ Ω.

Consequently, by means of Lebesgue’s theorem, we have

‖Hϕki −Hϕ‖Ls ′ (Ω,ν3) −→ 0,

that is,

Hϕki −→ Hϕ in Ls
′
(Ω,ν3).

Finally, considering the principle of convergence in Banach spaces, we conclude that

Hϕk −→ Hϕ in Ls
′
(Ω,ν3). (2.2.5)

At last, by considering v ∈W1,p
0 (Ω,ν1) and with the help of Theorem 1.1.36, Hölder inequal-

ity and Remark 2.1.2, we arrive at

|Φ1(ϕk, v) −Φ1(ϕ, v)| = |

∫
Ω

〈a(y,∇ϕk) − a(y,∇ϕ),∇v〉ν1dy|

≤
n∑
j=1

∫
Ω

|aj(y,∇ϕk) − aj(y,∇ϕ)||Djv|ν1dy

=

n∑
j=1

∫
Ω

|Bjϕk − Bjϕ||Djv|ν1dy

≤
n∑
j=1

‖Bjϕk − Bjϕ‖Lp ′ (Ω,ν1)‖Djv‖Lp(Ω,ν1)

≤

(
n∑
j=1

‖Bjϕk − Bjϕ‖Lp ′ (Ω,ν1)

)
‖v‖

W
1,p
0 (Ω,ν1)

,
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|Φ2(ϕk, v) −Φ2(ϕ, v)| = |

∫
Ω

〈b(y,ϕk,∇ϕk) − b(y,ϕ,∇ϕ),∇v〉ν2dy|

≤
n∑
j=1

∫
Ω

|bj(y,ϕk,∇ϕk) − bj(y,ϕ,∇ϕ)||Djv|ν2dy

=

n∑
j=1

∫
Ω

|Gjϕk −Gjϕ||Djv|ν2dy

≤

(
n∑
j=1

‖Gjϕk −Gjϕ‖Lq ′ (Ω,ν2)

)
‖∇v‖Lq(Ω,ν2)

≤ ϑp,q

(
n∑
j=1

‖Gjϕk −Gjϕ‖Lq ′ (Ω,ν2)

)
‖∇v‖Lp(Ω,ν1)

≤ ϑp,q

(
n∑
j=1

‖Gjϕk −Gjϕ‖Lq ′ (Ω,ν2)

)
‖v‖

W
1,p
0 (Ω,ν1)

,

|Φ3(ϕk, v) −Φ3(ϕ, v)| ≤
∫
Ω

|g(y,ϕk) − g(y,ϕ)||v|ν3dy

=

∫
Ω

|Hϕk −Hϕ||v|ν3dy

≤ ‖Hϕk −Hϕ‖Ls ′ (Ω,ν3)‖v‖Ls(Ω,ν3)
≤ ϑp,s‖Hϕk −Hϕ‖Ls ′ (Ω,ν3)‖v‖Lp(Ω,ν1)
≤ ϑp,sCΩ‖Hϕk −Hϕ‖Ls ′ (Ω,ν3)‖v‖W1,p0 (Ω,ν1)

.

Hence, for all v ∈W1,p
0 (Ω,ν1), we have

|Φ(ϕk, v) −Φ(ϕ, v)| ≤ |Φ1(ϕk, v) −Φ1(ϕ, v)|+ |Φ2(ϕk, v) −Φ2(ϕ, v)|+ |Φ3(ϕk, v) −Φ3(ϕ, v)|

≤
[ n∑
j=1

(
‖Bjϕk − Bjϕ‖Lp ′ (Ω,ν1) + ϑp,q‖Gjϕk −Gjϕ‖Lq ′ (Ω,ν2)

)
+ ϑp,sCΩ‖Hϕk −Hϕ‖Ls ′ (Ω,ν3)

]
‖v‖

W
1,p
0 (Ω,ν1)

,

and consequently, we get

‖Ψϕk−Ψϕ‖∗ ≤
n∑
j=1

(
‖Bjϕk − Bjϕ‖Lp ′ (Ω,ν1) + ϑp,q‖Gjϕk −Gjϕ‖Lq ′ (Ω,ν2)

)
+ϑp,sCΩ‖Hϕk−Hϕ‖Ls ′ (Ω,ν3).

Combining (2.2.3), (2.2.4) and (2.2.5), we deduce that

‖Ψϕk − Ψϕ‖∗ −→ 0 asm −→∞,
that is, Ψϕk −→ Ψϕ inW−1,p ′

0 (Ω,ν1−p
′

1 ). Which implies that Ψ is continuous.

We have now proved that Ψ is strictly monotone, coercive and hemicontinuous, and Υ ∈
W−1,p ′

0 (Ω,ν1−p
′

1 ). Thus, we have verified all the conditions of Theorem 1.2.4. As a result,

from Theorem 1.2.4, it follows that the operator equation Ψϕ = Υ admits the unique weak

solution ϕ ∈ W1,p
0 (Ω,ν1) and it also follows that u is the unique weak solution for (2.0.1).

This completes the proof of Theorem 2.2.1.
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2.3 Example

Set Ω = {(y, z) ∈ R2 : x2 + y2 < 1}, and let ν1(y, z) =
(
y2 + z2

)−1/2, ν2(y, z) = (y2 + z2)−1/3
and ν3(y, z) =

(
y2 + z2

)−1 (note that ν1, ν2, ν3 ∈ A4, p = 4, q = 3 and s = 2
)

, and we define

b : Ω× R× R2 −→ R2, a : Ω× R2 −→ R2 and g : Ω× R −→ R by

a
(
(y, z), δ

)
= h1(y, z)|δ|

3sgn(δ),

b
(
(y, z), µ, δ

)
= |δ|2sgn(δ),

g
(
(y, z), µ

)
= h4(y, z)|µ|sgn(µ),

with h1(y, z) = 2e(y
2+z2) and h4(y, z) = 2− cos2(yz). Let us look at the problemAϕ(y, z) = cos(y+ z) in Ω,

ϕ(y, z) = 0 on ∂Ω,
(2.3.1)

where,

Aϕ(y, z) = −div
[
ν1a
(
(y, z),∇ϕ(y, z)

)
+ ν2b

(
(y, z), ϕ(y, z),∇ϕ(y, z)

)]
+ ν3g

(
(y, z), ϕ(y, z)

)
.

From Theorem 2.2.1, it follows that the problem (2.3.1) admits the unique weak solution in

W1,4
0 (Ω,ν1).
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Chapter 3

Existence result for a Dirichlet problem
governed by nonlinear degenerate elliptic
equation in weighted Sobolev spaces

Our aim in this chapter is to prove the existence and uniqueness of weak solution in the

weighted Sobolev space W1,p
0 (Ω,ω1,ω4) for a Dirichlet boundary value problem for the

following nonlinear degenerate elliptic equation−div
[
ω1A(x,∇u) +ω2B(x, u,∇u)

]
+ω3b(x, u) +ω4|u|

p−2u = f in Ω,

u(x) = 0 on ∂Ω,
(3.0.1)

where Ω is a bounded open set in Rn, ω1, ω2, ω3 and ω4 are Ap-weight functions, A :

Ω × Rn −→ Rn, B : Ω × R × Rn −→ Rn, b : Ω × R −→ R are Carathéodory functions

that satisfy the assumptions of growth, ellipticity and monotonicity, and the right-hand side

term f belongs to Lp ′(Ω,ω1−p ′

1 ).

3.1 Main result

3.1.1 Basic assumptions

We assume that the following assumptions: Ω be a bounded open subset of Rn( n ≥ 2),

1 < q, s < p < ∞, let ω1, ω2, ω3 and ω4 are a weights functions, and let A : Ω × Rn −→
Rn, B : Ω × R × Rn −→ Rn, with B(x, η, ξ) =

(
B1(x, η, ξ), ...,Bn(x, η, ξ)

)
and A(x, ξ) =(

A1(x, ξ), ...,An(x, ξ)
)

and b : Ω× R −→ R satisfying the following assumptions:

(A1) For k = 1, ..., n, Bk, Ak and b are Carathéodory functions.

(A2) There are positive functions h1, h2, h3, h4 ∈ L∞(Ω) and γ1 ∈ Lp
′
(Ω,ω1), γ2 ∈ Lq

′
(Ω,ω2)

and γ3 ∈ Ls
′
(Ω,ω3) such that :

|A(x, ξ)| ≤ γ1(x) + h1(x)|ξ|p−1,

39
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|B(x, η, ξ)| ≤ γ2(x) + h2(x)|η|q−1 + h3(x)|ξ|q−1,

and

|b(x, η)| ≤ γ3(x) + h4(x)|η|s−1.

(A3) There exists a constant α > 0 such that :

〈A(x, ξ) −A(x, ξ ′), ξ− ξ ′〉 ≥ α|ξ− ξ ′ |p,

〈B(x, η, ξ) − B(x, η ′ , ξ ′), ξ− ξ ′〉 ≥ 0,

and (
b(x, η) − b(x, η

′
)
)(
η− η

′
)
≥ 0,

whenever (η, ξ), (η ′, ξ ′) ∈ R× Rn with η 6= η ′ and ξ 6= ξ ′ .

(A4) There are constants β1, β2, β3 > 0 such that :

〈A(x, ξ), ξ〉 ≥ β1|ξ|p,

〈B(x, η, ξ), ξ〉 ≥ β2|ξ|q + β3|η|q,

and

b(x, η)η ≥ 0.

3.1.2 Notion of solution

The definition of a weak solution for problem (3.0.1) can be stated as follows.

Definition 3.1.1 One says u ∈ W1,p
0 (Ω,ω1,ω4) is a weak solution to problem (3.0.1), provided

that ∫
Ω

〈A(x,∇u),∇v〉ω1 dx+

∫
Ω

〈B(x, u,∇u),∇v〉ω2 dx+

∫
Ω

b(x, u) vω3 dx

+

∫
Ω

|u|p−2uvω4 dx =

∫
Ω

fvdx,

for all v ∈W1,p
0 (Ω,ω1,ω4).

Remark 3.1.2 We notice, for allω1, ω2, ω3 ∈ Ap, that

(i) If ω2
ω1
∈ Lr1(Ω,ω1) where r1 = p

p−q
and 1 < q < p <∞, then, by Hölder inequality we obtain

||u||Lq(Ω,ω2) ≤ Cp,q||u||Lp(Ω,ω1),

where Cp,q = ||ω2
ω1

||
1/q

Lr1 (Ω,ω1)
.

(ii) Analogously, if ω3
ω1
∈ Lr2(Ω,ω1) where r2 = p

p−s
and 1 < s < p <∞, then

||u||Ls(Ω,ω3) ≤ Cp,s||u||Lp(Ω,ω1),

where Cp,s = ||ω3
ω1

||
1/s

Lr2 (Ω,ω1)
.
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3.1.3 Existence and uniqueness result

We shall prove the following existence and uniqueness theorem.

Theorem 3.1.3 Let ωi ∈ Ap(i = 1, 2, 3, 4), 1 < q, s < p < ∞ and assume that the assumptions

(A1) − (A4) hold. If f ∈ Lp ′(Ω,ω1−p
1 ), ω2

ω1
∈ Lp/(p−q)(Ω,ω1) and ω3

ω1
∈ Lp/(p−s)(Ω,ω1), then the

problem (3.0.1) has exactly one solution u ∈W1,p
0 (Ω,ω1,ω4).

Proof. The essential one of our proof is to reduce the (3.0.1) to an operator problem Au = G

and apply the Theorem 1.2.4.

We define

F :W1,p
0 (Ω,ω1,ω4)×W1,p

0 (Ω,ω1,ω4) −→ R

and

G :W1,p
0 (Ω,ω1,ω4) −→ R,

where F and G are defined below.

Then u ∈W1,p
0 (Ω,ω1,ω4) is a weak solution of (3.0.1) if and only if

F(u, v) = G(v), for all v ∈W1,p
0 (Ω,ω1,ω4).

The proof of Theorem 3.1.3 is divided into four steps.

Step 1: equivalent operator equation:

In this step, we prove that the problem (3.0.1) is equivalent to an operator equation Au = G.

Using Hölder inequality, Theorem 1.1.36 and Remark 3.1.2 (ii), we obtain

|G(v)| ≤
∫
Ω

|f|

ω1

|v|ω1 dx

≤ ||f/ω1||Lp ′ (Ω,ω1)||v||Lp(Ω,ω1)

≤ CΩ||f/ω1||Lp ′ (Ω,ω1)||v||W1,p0 (Ω,ω1,ω4)
.

Since f/ω1 ∈ Lp
′
(Ω,ω1), then G ∈

[
W1,p
0 (Ω,ω1,ω4)

]∗
.

The operator F is broken down into the from

F(u, v) = F1(u, v) + F2(u, v) + F3(u, v) + F4(u, v),

where Fi :W
1,p
0 (Ω,ω1,ω4)×W1,p

0 (Ω,ω1,ω4) −→ R, for i = 1, 2, 3, 4, are defined as

F1(u, v) =
∫
Ω

〈A(x,∇u),∇v〉ω1dx, F2(u, v) =
∫
Ω

〈B(x, u,∇u),∇v〉ω2dx,

F3(u, v) =
∫
Ω

b(x, u)vω3dx, and F4(u, v) =
∫
Ω

|u|p−2uvω4 dx.
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Then, we have

|F(u, v)| ≤ |F1(u, v)|+ |F2(u, v)|+ |F3(u, v)|+ |F4(u, v)|. (3.1.1)

On the other hand, we get by using (A2), Hölder inequality, Remark 3.1.2 (i) and Theorem

1.1.36,

|F1(u, v)| ≤
∫
Ω

|A(x,∇u)||∇v|ω1dx

≤
∫
Ω

(
γ1 + h1|∇u|p−1

)
|∇v|ω1dx

=

∫
Ω

γ1ω
1
p ′

1 |∇v|ω
1
p

1 dx+

∫
Ω

h1|∇u|p−1ω
1
p ′

1 |∇v|ω
1
p

1 dx

≤ ||γ1||Lp ′ (Ω,ω1)||∇v||Lp(Ω,ω1) + ||h1||L∞(Ω)||∇u||p−1Lp(Ω,ω1)
||∇v||Lp(Ω,ω1)

≤
(
||γ1||Lp ′ (Ω,ω1) + ||h1||L∞(Ω)||u||

p−1

W
1,p
0 (Ω,ω1,ω4)

)
||v||

W
1,p
0 (Ω,ω1,ω4)

,

and

|F2(u, v)| ≤
∫
Ω

|B(x, u,∇u)||∇v|ω2dx

≤
∫
Ω

(
γ2 + h2|u|

q−1 + h3|∇u|q−1
)
|∇v|ω2dx

=

∫
Ω

γ2ω
1
q ′

2 |∇v|ω
1
q

2 dx+

∫
Ω

h2|u|
q−1ω

1
q ′

2 |∇v|ω
1
q

2 dx+

∫
Ω

h3|∇u|q−1ω
1
q ′

2 |∇v|ω
1
q

2 dx

≤ ||γ2||Lq ′ (Ω,ω2)||∇v||Lq(Ω,ω2) + ||h2||L∞(Ω)||u||
q−1
Lq(Ω,ω2)

||∇v||Lq(Ω,ω2)
+||h3||L∞(Ω)||∇u||q−1Lq(Ω,ω2)

||∇v||Lq(Ω,ω2)
≤ ||γ2||Lq ′ (Ω,ω2)Cp,q||∇v||Lp(Ω,ω1) + ||h2||L∞(Ω)C

q−1
p,q ||u||

q−1
Lp(Ω,ω1)

Cp,q||∇v||Lp(Ω,ω1)
+||h3||L∞(Ω)C

q−1
p,q ||∇u||

q−1
Lp(Ω,ω1)

Cp,q||∇v||Lp(Ω,ω1)
≤
[
Cqp,q

(
Cq−1Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W
1,p
0 (Ω,ω1,ω4)

+ Cp,q||γ2||Lq ′ (Ω,ω2)

]
||v||

W
1,p
0 (Ω,ω1,ω4)

.

Analogously, using (A2), Hölder inequality, Remark 3.1.2 (ii) and Theorem 1.1.36, we obtain

|F3(u, v)| ≤
∫
Ω

|b(x, u)||v|ω3dx

≤
[
CΩCp,s||γ3||Ls ′ (Ω,ω3) + C

s
p,sC

s
Ω||h4||L∞(Ω)||u||

s−1

W
1,p
0 (Ω,ω1,ω4)

]
||v||

W
1,p
0 (Ω,ω1,ω4)

.

Next, by applying Hölder inequality and Remark 3.1.2 (ii), we get

|F4(u, v)| ≤
∫
Ω

|u|p−1|v|ω4dx

≤
( ∫

Ω

|u|pω4dx
)1/p ′( ∫

Ω

|v|pω4dx
)1/p

= ||u||p−1Lp(Ω,ω4)
||v||Lp(Ω,ω4)

≤ CΩ||u||
p−1

W
1,p
0 (Ω,ω1,ω4)

||v||
W
1,p
0 (Ω,ω1,ω4)

.

Hence, in (3.1.1) we obtain, for all u, v ∈W1,p
0 (Ω,ω1,ω4)

|F(u, v)| ≤
[
||γ1||Lp ′ (Ω,ω1) + ||h1||L∞(Ω)||u||

p−1

W
1,p
0 (Ω,ω1,ω4)

+ CΩCp,s||γ3||Ls ′ (Ω,ω3)

+ Cp,q||γ2||Lq ′ (Ω,ω2) + C
q
p,q

(
Cq−1Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W
1,p
0 (Ω,ω1,ω4)

+ Csp,sC
s
Ω||h4||L∞(Ω)||u||

s−1

W
1,p
0 (Ω,ω1,ω4)

+ CΩ||u||
p−1

W
1,p
0 (Ω,ω1,ω4)

]
‖v‖

W
1,p
0 (Ω,ω1,ω4)

.
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Then F(u, .) is linear and continuous for each u ∈W1,p
0 (Ω,ω1,ω4). Thus, there exists a linear

and continuous operator onW1,p
0 (Ω,ω1,ω4) denoted by A such that

〈Au, v〉 = F(u, v), for all u, v ∈W1,p
0 (Ω,ω1,ω4).

Moreover, we have

‖Au‖∗ ≤ ||γ1||Lp ′ (Ω,ω1) + ||h1||L∞(Ω)||u||
p−1

W
1,p
0 (Ω,ω1,ω4)

+ CΩCp,s||γ3||Ls ′ (Ω,ω3)

+ Cp,q||γ2||Lq ′ (Ω,ω2) + C
q
p,q

(
Cq−1Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W
1,p
0 (Ω,ω1,ω4)

+ Csp,sC
s
Ω||h4||L∞(Ω)||u||

s−1

W
1,p
0 (Ω,ω1,ω4)

+ CΩ||u||
p−1

W
1,p
0 (Ω,ω1,ω4)

,

where

‖Au‖∗ := sup
{
|〈Au, v〉| = |F(u, v)| : v ∈W1,p

0 (Ω,ω1,ω4), ‖v‖W1,p0 (Ω,ω1,ω4)
= 1

}
,

is the norm in
[
W1,p
0 (Ω,ω1,ω4)

]∗
. Hence, we obtain the operator

A :W1,p
0 (Ω,ω1,ω4) −→ [

W1,p
0 (Ω,ω1,ω4)

]∗
u 7−→ Au.

However, the problem (3.0.1) is equivalent to the operator equation

Au = G, u ∈W1,p
0 (Ω,ω1,ω4).

Step 2: monotonicity of the operator A:

The operator A is strictly monotone. In fact. Let v1, v2 ∈ W1,p
0 (Ω,ω1,ω4) with v1 6= v2. We

have

〈Av1 − Av2, v1 − v2〉 = F(v1, v1 − v2) − F(v2, v1 − v2)

=

∫
Ω

〈A(x,∇v1),∇(v1 − v2)〉ω1dx−

∫
Ω

〈A(x,∇v2),∇(v1 − v2)〉ω1dx

+

∫
Ω

〈B(x, v1,∇v1),∇(v1 − v2)〉ω2dx−

∫
Ω

〈B(x, v2,∇v2),∇(v1 − v2)〉ω2dx

+

∫
Ω

b(x, v1)(v1 − v2)ω3dx−

∫
Ω

b(x, v2)(v1 − v2)ω3dx

+

∫
Ω

|v1|
p−2v1(v1 − v2)ω4dx−

∫
Ω

|v2|
p−2v2(v1 − v2)ω4dx

=

∫
Ω

〈A(x,∇v1) −A(x,∇v2),∇(v1 − v2)〉ω1dx

+

∫
Ω

〈B(x, v1,∇v1) − B(x, v2,∇v2),∇(v1 − v2)〉ω2dx

+

∫
Ω

(
b(x, v1) − b(x, v2)

)(
v1 − v2

)
ω3dx

+

∫
Ω

(
|v1|

p−2v1 − |v2|
p−2v2

)(
v1 − v2

)
ω4dx.
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Thanks to (A3) and Proposition 1.3.1 (ii), we obtain

〈Av1 − Av2, v1 − v2〉 ≥ α
∫
Ω

|∇(v1 − v2)|p ω1 dx+ βp

∫
Ω

(
|v1|+ |v2|

)p−2
|v1 − v2|

2 ω4 dx

≥ α
∫
Ω

|∇(v1 − v2)|pω1dx

≥ α‖∇(v1 − v2)‖pLp(Ω,ω1).

Therefore, the operator A is strictly monotone.

Step 3: coercivity of the operator A:

In this step, we prove that the operator A is coercive. To this purpose letu ∈W1,p
0 (Ω,ω1,ω4).

Then, we have

〈Au, u〉 = F(u, u)

= F1(u, u) + F2(u, u) + F3(u, u) + F4(u, u)

=

∫
Ω

〈A(x,∇u),∇u〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇u〉ω2dx+

∫
Ω

b(x, u)u ω3dx+

∫
Ω

|u|pω4dx.

Moreover, from (A4) and Theorem 1.1.36, we obtain

〈Au, u〉 ≥ β1
∫
Ω

|∇u|pω1dx+ β2

∫
Ω

|∇u|qω2dx+ β3

∫
Ω

|u|qω2dx+

∫
Ω

|u|pω4dx

≥ min(β1, 1)
[∫
Ω

|∇u|pω1dx+

∫
Ω

|u|pω4dx

]
+min(β2, β3)

[∫
Ω

|∇u|qω2dx+

∫
Ω

|u|qω2dx

]
= min(β1, 1)‖u‖p

W
1,p
0 (Ω,ω1,ω4)

+min(β2, β3)‖u‖qLq(Ω,ω2)

≥ min(β1, 1)‖u‖p
W
1,p
0 (Ω,ω1,ω4)

.

Hence, we obtain
〈Au, u〉

‖u‖
W
1,p
0 (Ω,ω1,ω4)

≥ min(β1, 1)‖u‖p−1
W
1,p
0 (Ω,ω1,ω4)

.

Therefore, since p > 1, we have

〈Au, u〉
‖u‖

W
1,p
0 (Ω,ω1,ω4)

−→ +∞ as ‖u‖
W
1,p
0 (Ω,ω1,ω4)

−→ +∞,
that is, A is coercive.

Step 4: continuity of the operator A:

We need to show that the operator A is continuous. To do this, letui −→ u inW1,p
0 (Ω,ω1,ω4)

as i −→∞. Then∇ui −→ ∇u in (Lp(Ω,ω1))
n. Hence, thanks to Theorem 1.1.7, there exist a

subsequence (uij) and ψ ∈ Lp(Ω,ω1) such that

∇uij(x) −→ ∇u(x), as ij −→∞, a.e. inΩ

|∇uij(x)| ≤ ψ(x), a.e. inΩ.
(3.1.2)
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We will show that Aui −→ Au in
[
W1,p
0 (Ω,ω1,ω4)

]∗
. In order to prove this convergence we

proceed in four steps.

Step 4.1. For k = 1, ..., n, we define the operator

Bk :W
1,p
0 (Ω,ω1,ω4) −→ Lp

′
(Ω,ω1)

(Bku)(x) = Ak(x,∇u(x)).

We need to show that Bkui −→ Bku in Lp ′(Ω,ω1). We will apply the Lebesgue’s theorem

and the convergence principle in Banach spaces.

(i) Let u ∈W1,p
0 (Ω,ω1,ω4). Using (A2) and Theorem 1.1.36, we obtain

‖Bku‖p
′

Lp
′
(Ω,ω1)

=

∫
Ω

|Bku(x)|
p ′ω1dx =

∫
Ω

|Ak(x,∇u)|p
′
ω1dx

≤
∫
Ω

(
γ1 + h1|∇u|p−1

)p ′
ω1dx

≤ Cp
∫
Ω

(
γp
′

1 + hp
′

1 |∇u|
p
)
ω1dx

≤ Cp
[
‖γ1‖p

′

Lp
′
(Ω,ω1)

+ ‖h1‖p
′

L∞(Ω)‖∇u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖γ1‖p

′

Lp
′
(Ω,ω1)

+ ‖h1‖p
′

L∞(Ω)‖u‖
p

W
1,p
0 (Ω,ω1,ω4)

]
,

where the constant Cp depends only on p.

(ii) Let ui −→ u inW1,p
0 (Ω,ω1,ω4) as i −→∞. By (A2) and (3.1.2), we obtain

‖Bkuij − Bku‖
p ′

Lp
′
(Ω,ω1)

≤
∫
Ω

(
|Ak(x,∇uij)|+ |Ak(x,∇u)|

)p ′
ω1dx

≤ Cp
∫
Ω

(
|Ak(x,∇uij)|p

′
+ |Ak(x,∇u)|p

′
)
ω1dx

≤ Cp
∫
Ω

[(
γ1 + h1|∇uij |p−1

)p ′
+
(
γ1 + h1|∇u|p−1

)p ′]
ω1dx

≤ Cp
∫
Ω

[(
γ1 + h1ψ

p−1
)p ′

+
(
γ1 + h1ψ

p−1
)p ′]

ω1dx

≤ 2CpC
′

p

∫
Ω

(
γp
′

1 + hp
′

1 ψ
p
)
ω1dx

≤ 2CpC
′

p

[
‖γ1‖p

′

Lp
′
(Ω,ω1)

+ ‖h1‖p
′

L∞(Ω)‖ψ‖
p
Lp(Ω,ω1)

]
.

Hence, thanks to (A1), we get, as ij −→∞
Bkuij(x) = Ak(x,∇uij(x)) −→ Ak(x,∇u(x)) = Bku(x), a.e. x ∈ Ω.

Therefore, by Lebesgue’s theorem, we obtain

‖Bkuij − Bku‖Lp ′ (Ω,ω1) −→ 0,

that is,

Bkuij −→ Bku in Lp
′
(Ω,ω1).
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Finally, in view to convergence principle in Banach spaces, we have

Bkui −→ Bku in Lp
′
(Ω,ω1). (3.1.3)

Step 4.2. For k = 1, ..., n, we define the operator

Mk :W
1,p
0 (Ω,ω1,ω4) −→ Lq

′
(Ω,ω2)

(Mku)(x) = Bk(x, u(x),∇u(x)).

We will prove thatMkui −→Mku in Lq ′(Ω,ω2).

(i) Let u ∈W1,p
0 (Ω,ω1,ω4). Using (A2), Remark 3.1.2 (i) and Theorem 1.1.36, we obtain

‖Mku‖q
′

Lq
′
(Ω,ω2)

=

∫
Ω

|Bk(x, u,∇u)|q
′
ω2dx

≤
∫
Ω

(
γ2 + h2|u|

q−1 + h3|∇u|q−1
)q ′
ω2dx

≤ Cq
∫
Ω

[
γq
′

2 + hq
′

2 |u|
q + hq

′

3 |∇u|
q
]
ω2dx

= Cq

[∫
Ω

γq
′

2 ω2dx+

∫
Ω

hq
′

2 |u|
qω2dx+

∫
Ω

hq
′

3 |∇u|
qω2dx

]
≤ Cq

[∫
Ω

γq
′

2 ω2dx+ ‖h2‖q
′

L∞(Ω)

∫
Ω

|u|qω2dx+ ‖h3‖q
′

L∞(Ω)

∫
Ω

|∇u|qω2dx

]
≤ Cq

[
‖γ2‖q

′

Lq
′
(Ω,ω2)

+ ‖h2‖q
′

L∞(Ω)‖u‖
q
Lq(Ω,ω2)

+ ‖h3‖q
′

L∞(Ω)‖∇u‖
q
Lq(Ω,ω2)

]
≤ Cq

[
‖γ2‖q

′

Lq
′
(Ω,ω2)

+ ‖h2‖q
′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1)

+ ‖h3‖q
′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖γ2‖q

′

Lq
′
(Ω,ω2)

+ Cqp,q

(
CqΩ‖h2‖

q ′

L∞(Ω) + ‖h3‖
q ′

L∞(Ω)

)
‖u‖q

W
1,p
0 (Ω,ω1,ω4)

]
,

where the constant Cq depends only on q.

(ii) Let ui −→ u in W1,p
0 (Ω,ω1,ω4) as i −→ ∞. According to (A2), Remark 3.1.2 (i) and

the same arguments used in Step 4.1 (ii), we obtain analogously,

Mkui −→Mku in Lq
′
(Ω,ω2). (3.1.4)

Step 4.3. We define the operator

H :W1,p
0 (Ω,ω1,ω4) −→ Ls

′
(Ω,ω3)

(Hu)(x) = b(x, u(x)).

In this step, we will show that Hui −→ Hu in Ls ′(Ω,ω3).
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(i) Let u ∈W1,p
0 (Ω,ω1,ω4). Using (A2) and Remark 3.1.2 (ii), we obtain

‖Hu‖s ′
Ls
′
(Ω,ω3)

=

∫
Ω

|b(x, u)|s
′
ω3dx

≤
∫
Ω

(
γ3 + h4|u|

s−1
)s ′
ω3dx

≤ Cs

∫
Ω

(
γs
′

3 + hs
′

4 |u|
s
)
ω3dx

≤ Cs

[
‖γ3‖s

′

Ls
′
(Ω,ω3)

+ ‖h4‖p
′

L∞(Ω)‖u‖
s
Ls(Ω,ω3)

]
≤ Cs

[
‖γ3‖s

′

Ls
′
(Ω,ω3)

+ Csp,s‖h4‖
p ′

L∞(Ω)‖u‖
s
Lp(Ω,ω1)

]
≤ Cs

[
‖γ3‖Ls ′ (Ω,ω1) + C

s
p,sC

s
Ω‖h4‖s

′

L∞(Ω)‖u‖sW1,p0 (Ω,ω1,ω4)

]
,

where the constant Cs depends only on s.

(ii) Let ui −→ u inW1,p
0 (Ω,ω1,ω4) as i −→∞. By (A2) and Remark 3.1.2 (ii), we get

‖Huij −Hu‖s
′

Ls
′
(Ω,ω3)

=

∫
Ω

∣∣∣Huij(x) −Hu(x)∣∣∣p ′ω3dx

≤
∫
Ω

(
|b(x, uij)|+ |b(x, u)|

)s ′
ω3dx

≤ Cs
∫
Ω

(
|b(x, uij)|

s ′ + |b(x, u)|s
′
)
ω3dx

≤ Cs
∫
Ω

[(
γ3 + h4|uij |

s−1
)s ′

+
(
γ3 + h4|u|

s−1
)s ′]

ω3dx

≤ Cs
∫
Ω

[(
γ3 + h4|ψ|

s−1
)s ′

+
(
γ3 + h4ψ

s−1
)s ′]

ω3dx

≤ 2CsC ′s
∫
Ω

(
γs
′

3 + hp
′

4 ψ
s
)
ω3dx

≤ 2CsC ′s
[
‖γ3‖s

′

Ls
′
(Ω,ω3)

+ ‖h4‖s
′

L∞(Ω)‖ψ‖sLs(Ω,ω3)
]

≤ 2CsC ′s
[
‖γ3‖s

′

Ls
′
(Ω,ω3)

+ Csp,s‖h4‖s
′

L∞(Ω)‖ψ‖sLp(Ω,ω1)
]
,

next, using condition (A1), we deduce, as ij −→∞
Huij(x) = b(x, uij(x)) −→ b(x, u(x)) = Hu(x), a.e. x ∈ Ω.

Therefore, by the Lebesgue’s theorem, we obtain

‖Huij −Hu‖Ls ′ (Ω,ω3) −→ 0,

that is,

Huij −→ Hu in Ls
′
(Ω,ω3).

We conclude, from the convergence principle in Banach spaces, that

Hui −→ Hu in Ls
′
(Ω,ω3). (3.1.5)

Step 4.4. We define the operator J :W1,p
0 (Ω,ω1,ω4) −→ Lp

′
(Ω,ω4) by (Ju)(x) = |u(x)|p−2u(x).

In this step, we will demonstrate that Jui −→ Ju in Lp ′(Ω,ω4).
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(i) Let u ∈W1,p
0 (Ω,ω1,ω4). We have

‖Ju‖p
′

Lp
′
(Ω,ω4)

=

∫
Ω

|Ju|p
′
ω4dx

=

∫
Ω

|u|(p−1)p
′
ω4dx

=

∫
Ω

|u|pω4dx

= ‖u‖pLp(Ω,ω4)
≤ ‖u‖p

W
1,p
0 (Ω,ω1,ω4)

.

(ii) Let ui −→ u inW1,p
0 (Ω,ω1,ω4) as i −→∞. Then ui −→ u in Lp(Ω,ω4). Hence, thanks

to Theorem 1.1.7, there exist a subsequence (uij) and ϕ ∈ Lp(Ω,ω4) such that

uij(x) −→ u(x), as ij −→∞, a.e. inΩ

|uij(x)| ≤ ϕ(x), a.e. inΩ.

Next, we get

‖Juij − Ju‖
p ′

Lp
′
(Ω,ω4)

=

∫
Ω

∣∣∣Juij(x) − Ju(x)∣∣∣p ′ω4dx

≤
∫
Ω

(
|Juij(x)|+ |Ju(x)|

)p ′
ω4dx

≤ Cp
∫
Ω

(
|Juij(x)|

p ′ + |Ju(x)|p
′
)
ω4dx

≤ Cp
∫
Ω

(
||uij |

p−2uij |
p ′ + ||u|p−2u|p

′
)
ω4dx

≤ Cp
∫
Ω

(
|uij |

(p−1)p ′ + |u|(p−1)p
′
)
ω4dx

≤ Cp
∫
Ω

(
|uij |

p + |u|p
)
ω4dx

≤ Cp
∫
Ω

(
|ϕ|p + |ϕ|p

)
ω4dx

≤ 2Cp
∫
Ω

|ϕ|pω4dx

≤ 2Cp‖ϕ‖pLp(Ω,ω4).

Therefore, by Lebesgue’s theorem, we obtain

‖Juij − Ju‖Lp ′ (Ω,ω4) −→ 0, as ij −→∞,
that is,

Juij −→ Ju in Lp
′
(Ω,ω4).

We conclude, in view to convergence principle in Banach spaces, that

Jui −→ Ju in Lp
′
(Ω,ω4). (3.1.6)
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Finally, let v ∈W1,p
0 (Ω,ω1,ω4) and using Hölder inequality, we obtain

|F1(ui, v) − F1(u, v)| = |

∫
Ω

〈A(x,∇ui) −A(x,∇u),∇v〉ω1dx|

≤
n∑
k=1

∫
Ω

|Ak(x,∇ui) −Ak(x,∇u)||Dkv|ω1dx

=

n∑
k=1

∫
Ω

|Bkui − Bku||Dkv|ω1dx

≤
n∑
k=1

‖Bkui − Bku‖Lp ′ (Ω,ω1)‖Dkv‖Lp(Ω,ω1)

≤

(
n∑
k=1

‖Bkui − Bku‖Lp ′ (Ω,ω1)

)
‖v‖

W
1,p
0 (Ω,ω1,ω4)

,

and by Remark 3.1.2 (i), we get

|F2(ui, v) − F2(u, v)| = |

∫
Ω

〈B(x, ui,∇ui) − B(x, u,∇u),∇v〉ω2dx|

≤
n∑
k=1

∫
Ω

|Bk(x, ui,∇ui) − Bk(x, u,∇u)||Dkv|ω2dx

=

n∑
k=1

∫
Ω

|Mkui −Mku||Dkv|ω2dx

≤

(
n∑
k=1

‖Mkui −Mku‖Lq ′ (Ω,ω2)

)
‖∇v‖Lq(Ω,ω2)

≤ Cp,q

(
n∑
k=1

‖Mkui −Mku‖Lq ′ (Ω,ω2)

)
‖∇v‖Lp(Ω,ω1)

≤ Cp,q

(
n∑
k=1

‖Mkui −Mku‖Lq ′ (Ω,ω2)

)
‖v‖

W
1,p
0 (Ω,ω1,ω4)

,

and by Remark 3.1.2 (ii), we get

|F3(ui, v) − F3(u, v)| ≤
∫
Ω

|g(x, ui) − g(x, u)||v|ω3dx

=

∫
Ω

|Hui −Hu||v|ω3dx

≤ ‖Hui −Hu‖Ls ′ (Ω,ω3)‖v‖Ls(Ω,ω3)
≤ Cp,s‖Hui −Hu‖Ls ′ (Ω,ω3)‖v‖Lp(Ω,ω1)
≤ Cp,sCΩ‖Hui −Hu‖Ls ′ (Ω,ω3)‖v‖W1,p0 (Ω,ω1,ω4)

,

and by Step 4.4, we obtain

|F4(ui, v) − F4(u, v)| ≤
∫
Ω

∣∣∣|ui|p−2ui − |u|p−2u
∣∣∣|v|ω4dx

=

∫
Ω

|Jui − Ju||v|ω4dx

≤ ‖Jui − Ju‖Lp ′ (Ω,ω4)‖v‖W1,p0 (Ω,ω1,ω4)
.
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Hence, for all v ∈W1,p
0 (Ω,ω1,ω4), we have

|F(ui, v) − F(u, v)| ≤
4∑
j=1

∣∣∣Fj(ui, v) − Fj(u, v)
∣∣∣

≤
[ n∑
k=1

(
‖Bkui − Bku‖Lp ′ (Ω,ω1) + Cp,q‖Mkui −Mku‖Lq ′ (Ω,ω2)

)
+Cp,sCΩ‖Hui −Hu‖Ls ′ (Ω,ω3) + ‖Jui − Ju‖Lp ′ (Ω,ω4)

]
‖v‖

W
1,p
0 (Ω,ω1,ω4)

.

Then, we get

‖Aui − Au‖∗ ≤
n∑
k=1

(
‖Bkui − Bku‖Lp ′ (Ω,ω1) + Cp,q‖Mkui −Mku‖Lq ′ (Ω,ω2)

)
+Cp,sCΩ‖Hui −Hu‖Ls ′ (Ω,ω3) + ‖Jui − Ju‖Lp ′ (Ω,ω4).

Combining (3.1.3), (3.1.4), (3.1.5) and (3.1.6), we deduce that

‖Aui − Au‖∗ −→ 0 as i −→∞,
that is, Aui −→ Au in

[
W1,p
0 (Ω,ω1,ω4)

]∗
. Hence, A is continuous and this implies that A is

hemicontinuous.

Therefore, by Theorem 1.2.4, the operator equation Au = G has exactly one solution

u ∈ W1,p
0 (Ω,ω1,ω4) and it is the unique solution for the problem (3.0.1). With this last step

the proof of Theorem 3.1.3 is completed.

3.2 Example

Take Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and consider the weight functions ω1(x, y) =(
x2 + y2

)−1/2, ω2(x, y) =
(
x2 + y2

)−1/3, ω3(x, y) =
(
x2 + y2

)−1 and ω4(x, y) =
(
x2 + y2

)−3/2(
we have thatω1,ω2,ω3, andω4 areA4−weight, p = 4, q = 3 and s = 2

)
, and the functions

B : Ω× R× R2 −→ R2, A : Ω× R2 −→ R2 and b : Ω× R −→ R defined by

A
(
(x, y), ξ

)
= h1(x, y)|ξ|

2ξ,

where h1(x, y) = 4e(x
2+y2), and

B
(
(x, y), η, ξ

)
= h3(x, y)|ξ|ξ,

where h3(x, y) = 1+ cos2(xy), and

b
(
(x, y), η

)
= h4(x, y)η,

where h4(x, y) = 2− cos2(xy).

FACULTY OF SCIENCE AND TECHNIQUES 50 SULTAN MOULAY SLIMANE UNIVERSITY



MOHAMED EL OUAARABI DOCTORAL THESIS LABORATORY : LMACS

Let us consider the operator

Lu(x, y) = −div
[
ω1(x, y)A

(
(x, y),∇u

)
+ω2(x, y)B

(
(x, y), u,∇u(x, y)

)]
+ ω3(x, y)b

(
(x, y), u

)
+ω4(x, y)|u|

p−2u.

Therefore, by Theorem 3.1.3, the problem
Lu(x, y) =

cos(xy)

x2 + y2
in Ω,

u(x, y) = 0 on ∂Ω,

has exactly one solution u ∈W1,4
0 (Ω,ω1,ω4).
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Chapter 4

Existence and uniqueness of weak
solution in weighted Sobolev spaces for a
class of nonlinear degenerate elliptic
problems with measure data

In this chapter, we discuss the existence and uniqueness of weak solution of a nonlinear

degenerate elliptic equation of the form−div
[
ω1A(x,∇u) + ν2B(x, u,∇u)

]
+ ν1C(x, u) +ω2|u|

p−2u = f− divF in Ω,

u(x) = 0 on ∂Ω,
(4.0.1)

in the setting of weighted Sobolev spaces W1,p
0 (Ω,ω1,ω2), where Ω is a bounded open set

in Rn, 1 < p < ∞, ω1, ν2, ν1 and ω2 are Ap-weight functions, A : Ω × Rn −→ Rn and

B : Ω × R × Rn −→ Rn, C : Ω × R −→ R are Carathéodory functions that satisfy some

conditions and the right-hand side term f−divF belongs to Lp ′(Ω,ω1−p ′

2 )+
n∏
j=1

Lp
′
(Ω,ω1−p ′

1 ).

4.1 Existence Result

4.1.1 Hypotheses

Let us now give the precise hypotheses on the problem (4.0.1), we assume that the following

assumptions: Ω be a bounded open subset of Rn( n ≥ 2), 1 < q, s < p < ∞, let ω1, ν2,

ν1 and ω2 are Ap-weight functions, and let A : Ω × Rn −→ Rn, B : Ω × R × Rn −→ Rn,

with A(x, ξ) =
(
A1(x, ξ), ...,An(x, ξ)

)
and B(x, η, ξ) =

(
B1(x, η, ξ), ...,Bn(x, η, ξ)

)
and C :

Ω× R −→ R satisfying the following assumptions:

(A1) For k = 1, ..., n, Ak, Bk and C are Carathéodory functions.
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(A2) There are positive functions h1, h2, h3, h4 ∈ L∞(Ω) and γ1 ∈ Lp
′
(Ω,ω1), γ2 ∈ Lq

′
(Ω,ν2)

and γ3 ∈ Ls
′
(Ω,ν1) such that

|A(x, ξ)| ≤ γ1(x) + h1(x)|ξ|p−1,

|B(x, η, ξ)| ≤ γ2(x) + h2(x)|η|q−1 + h3(x)|ξ|q−1,

and

|C(x, η)| ≤ γ3(x) + h4(x)|η|s−1,

where (η, ξ) ∈ R× Rn.

(A3) There exists a constant α > 0 such that

〈A(x, ξ) −A(x, ξ ′), ξ− ξ ′〉 > α|ξ− ξ ′ |p,

〈B(x, η, ξ) − B(x, η ′ , ξ ′), ξ− ξ ′〉 > 0,

and (
C(x, η) − C(x, η ′)

)(
η− η

′
)
> 0,

whenever η, η ′ ∈ R and ξ, ξ ′ ∈ Rn with η 6= η ′ and ξ 6= ξ ′ .

(A4) There are constants β1, β2, β3 > 0 such that

〈A(x, ξ), ξ〉 > β1|ξ|p,

〈B(x, η, ξ), ξ〉 > β2|ξ|q + β3|η|q,

and

C(x, η)η > 0,

for all (η, ξ) ∈ R× Rn.

4.1.2 Main result

First let us introduce the definition of a weak solution for problem (4.0.1).

Definition 4.1.1 One says u ∈ W1,p
0 (Ω,ω1,ω2) is a weak solution to problem (4.0.1), provided

that ∫
Ω

〈A(x,∇u),∇v〉ω1 dx+

∫
Ω

〈B(x, u,∇u),∇v〉ν2 dx+
∫
Ω

C(x, u) v ν1 dx

+

∫
Ω

|u|p−2uvω2 dx =

∫
Ω

fvdx+

n∑
j=1

∫
Ω

fjDjvdx,

for all v ∈W1,p
0 (Ω,ω1,ω2).
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Remark 4.1.2 Letω1, ν2, ν1 ∈ Ap, then

(i) If ν2
ω1
∈ Lr1(Ω,ω1) where r1 = p

p−q
and 1 < q < p <∞, then, by Hölder inequality we obtain

||u||Lq(Ω,ν2) 6 Cp,q||u||Lp(Ω,ω1),

where Cp,q = || ν2
ω1

||
1/q

Lr1 (Ω,ω1)
.

(ii) Analogously, if ν1
ω1
∈ Lr2(Ω,ω1) where r2 = p

p−s
and 1 < s < p <∞, then

||u||Ls(Ω,ν1) 6 Cp,s||u||Lp(Ω,ω1),

where Cp,s = || ν1
ω1

||
1/s

Lr2 (Ω,ω1)
.

The principal result of this chapter reads as follows:

Theorem 4.1.3 Let ωi, νi ∈ Ap(i = 1, 2), 1 < q, s < p < ∞ and assume that the assumptions

(A1) − (A4) hold. If

1. f ∈ Lp ′(Ω,ω1−p ′

2 ) and fj ∈ Lp
′
(Ω,ω1−p ′

1 ) for j = 1, ..., n,

2. ν2
ω1
∈ Lp/(p−q)(Ω,ω1) and ν1

ω1
∈ Lp/(p−s)(Ω,ω1),

then the problem (4.0.1) has a unique solution u ∈W1,p
0 (Ω,ω1,ω2).

Proof. Our proof is based on the transform of problem (4.0.1) to a new one governed by

an operator equation of the form Lu = T , in order to apply the Browder-Minty theorem

(Theorem 1.2.4). We define the operators N : W1,p
0 (Ω,ω1,ω2) ×W1,p

0 (Ω,ω1,ω2) −→ R and

T :W1,p
0 (Ω,ω1,ω2) −→ R by

N (u, v) :=

∫
Ω

〈A(x,∇u),∇v〉ω1 dx+

∫
Ω

〈B(x, u,∇u),∇v〉ν2 dx+
∫
Ω

C(x, u) v ν1 dx

+

∫
Ω

|u|p−2uvω2 dx,

and

T (v) :=
∫
Ω

fvdx+

n∑
j=1

∫
Ω

fjDjvdx.

Then u ∈W1,p
0 (Ω,ω1,ω2) is a weak solution of (4.0.1) if and only if

N (u, v) = T (v), for all v ∈W1,p
0 (Ω,ω1,ω2).

The proof of Theorem 4.1.3 is divided into four steps.

Step 1.

In this step, we prove that the problem (4.0.1) is equivalent to an operator equation Lu = T .

FACULTY OF SCIENCE AND TECHNIQUES 54 SULTAN MOULAY SLIMANE UNIVERSITY



MOHAMED EL OUAARABI DOCTORAL THESIS LABORATORY : LMACS

Let us show that T ∈
[
W1,p
0 (Ω,ω1,ω2)

]∗
and N (u, .) is linear and continuous, for each

u ∈W1,p
0 (Ω,ω1,ω2).

Using Hölder inequality, Theorem 1.1.36 and Remark 4.1.2 (ii), we obtain

|T (v)| ≤
∫
Ω

|f|vdx+

n∑
j=1

∫
Ω

|fj|Djvdx

=

∫
Ω

|f|

ω2

|v|ω2 dx+

n∑
j=1

∫
Ω

|fj|

ω1

|Djv| ω1dx

≤ ||f/ω2||Lp ′ (Ω,ω2)||v||Lp(Ω,ω2) +

n∑
j=1

||fj/ω1||Lp ′ (Ω,ω1)||Djv||Lp(Ω,ω1)

≤

(
CΩ||f/ω2||Lp ′ (Ω,ω2) +

n∑
j=1

||fj/ω1||Lp ′ (Ω,ω1)

)
||v||

W
1,p
0 (Ω,ω1,ω2)

.

According to f ∈ Lp ′(Ω,ω1−p ′

2 ) and fj ∈ Lp
′
(Ω,ω1−p ′

1 ) for j = 1, ..., n, we deduce that T ∈[
W1,p
0 (Ω,ω1,ω2)

]∗
.

The operatorN can be written asN (u, v) = N1(u, v) +N2(u, v) +N3(u, v) +N4(u, v),where

Ni :W1,p
0 (Ω,ω1,ω2)×W1,p

0 (Ω,ω1,ω2) −→ R, for i = 1, 2, 3, 4, are defined as

N1(u, v) =
∫
Ω

〈A(x,∇u),∇v〉ω1dx, N2(u, v) =
∫
Ω

〈B(x, u,∇u),∇v〉ν2dx,

N3(u, v) =
∫
Ω

C(x, u)v ν1dx, and N4(u, v) =
∫
Ω

|u|p−2uvω2 dx.

Then, we have

|N (u, v)| ≤ |N1(u, v)|+ |N2(u, v)|+ |N3(u, v)|+ |N4(u, v)|. (4.1.1)

Also, by utilizing (A2), Hölder inequality, Remark 4.1.2 (i) and Theorem 1.1.36, we have

|N1(u, v)| ≤
∫
Ω

|A(x,∇u)||∇v|ω1dx

≤
∫
Ω

(
γ1 + h1|∇u|p−1

)
|∇v|ω1dx

=

∫
Ω

γ1ω
1
p ′

1 |∇v|ω
1
p

1 dx+

∫
Ω

h1|∇u|p−1ω
1
p ′

1 |∇v|ω
1
p

1 dx

≤ ||γ1||Lp ′ (Ω,ω1)||∇v||Lp(Ω,ω1) + ||h1||L∞(Ω)||∇u||p−1Lp(Ω,ω1)
||∇v||Lp(Ω,ω1)

≤
(
||γ1||Lp ′ (Ω,ω1) + ||h1||L∞(Ω)||u||

p−1

W
1,p
0 (Ω,ω1,ω2)

)
||v||

W
1,p
0 (Ω,ω1,ω2)

,
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and

|N2(u, v)| ≤
∫
Ω

|B(x, u,∇u)||∇v|ν2dx

≤
∫
Ω

(
γ2 + h2|u|

q−1 + h3|∇u|q−1
)
|∇v|ν2dx

=

∫
Ω

γ2ν
1
q ′

2 |∇v|ν
1
q

2 dx+

∫
Ω

h2|u|
q−1ν

1
q ′

2 |∇v|ν
1
q

2 dx+

∫
Ω

h3|∇u|q−1ν
1
q ′

2 |∇v|ν
1
q

2 dx

≤ ||γ2||Lq ′ (Ω,ν2)||∇v||Lq(Ω,ν2) + ||h2||L∞(Ω)||u||
q−1
Lq(Ω,ν2)

||∇v||Lq(Ω,ν2)
+||h3||L∞(Ω)||∇u||q−1Lq(Ω,ν2)

||∇v||Lq(Ω,ν2)
≤ ||γ2||Lq ′ (Ω,ν2)Cp,q||∇v||Lp(Ω,ω1) + ||h2||L∞(Ω)C

q−1
p,q ||u||

q−1
Lp(Ω,ω1)

Cp,q||∇v||Lp(Ω,ω1)
+||h3||L∞(Ω)C

q−1
p,q ||∇u||

q−1
Lp(Ω,ω1)

Cp,q||∇v||Lp(Ω,ω1)
≤
[
Cqp,q

(
Cq−1Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W
1,p
0 (Ω,ω1,ω2)

+ Cp,q||γ2||Lq ′ (Ω,ν2)

]
||v||

W
1,p
0 (Ω,ω1,ω2)

.

Similarly, by using (A2), Hölder inequality, Remark 4.1.2 (ii) and Theorem 1.1.36, we get

|N3(u, v)| ≤
∫
Ω

|C(x, u)||v|ν1dx

≤
[
CΩCp,s||γ3||Ls ′ (Ω,ν1) + C

s
p,sC

s
Ω||h4||L∞(Ω)||u||

s−1

W
1,p
0 (Ω,ω1,ω2)

]
||v||

W
1,p
0 (Ω,ω1,ω2)

.

Next, by applying Hölder inequality and Remark 4.1.2 (ii), we get

|N4(u, v)| ≤
∫
Ω

|u|p−1|v|ω2dx

≤
( ∫

Ω

|u|pω2dx
)1/p ′( ∫

Ω

|v|pω2dx
)1/p

= ||u||p−1Lp(Ω,ω2)
||v||Lp(Ω,ω2)

≤ CΩ||u||
p−1

W
1,p
0 (Ω,ω1,ω2)

||v||
W
1,p
0 (Ω,ω1,ω2)

.

Hence, in (4.1.1), we obtain

|N (u, v)| ≤
[
||γ1||Lp ′ (Ω,ω1) + ||h1||L∞(Ω)||u||

p−1

W
1,p
0 (Ω,ω1,ω2)

+ CΩCp,s||γ3||Ls ′ (Ω,ν1)

+ Cp,q||γ2||Lq ′ (Ω,ν2) + C
q
p,q

(
Cq−1Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W
1,p
0 (Ω,ω1,ω2)

+ Csp,sC
s
Ω||h4||L∞(Ω)||u||

s−1

W
1,p
0 (Ω,ω1,ω2)

+ CΩ||u||
p−1

W
1,p
0 (Ω,ω1,ω2)

]
‖v‖

W
1,p
0 (Ω,ω1,ω2)

,

for all u, v ∈ W1,p
0 (Ω,ω1,ω2). Therefore, the operator N (u, .) is linear and continuous

for every u ∈ W1,p
0 (Ω,ω1,ω2). As a result, there is a linear and continuous operator on

W1,p
0 (Ω,ω1,ω2) labeled by L that provides 〈Lu, v〉 = N (u, v) for all u, v ∈ W1,p

0 (Ω,ω1,ω2).

We also have

‖Lu‖∗ ≤ ||γ1||Lp ′ (Ω,ω1) + ||h1||L∞(Ω)||u||
p−1

W
1,p
0 (Ω,ω1,ω2)

+ CΩCp,s||γ3||Ls ′ (Ω,ν1)

+ Cp,q||γ2||Lq ′ (Ω,ν2) + C
q
p,q

(
Cq−1Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W
1,p
0 (Ω,ω1,ω2)

+ Csp,sC
s
Ω||h4||L∞(Ω)||u||

s−1

W
1,p
0 (Ω,ω1,ω2)

+ CΩ||u||
p−1

W
1,p
0 (Ω,ω1,ω2)

,
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where

‖Lu‖∗ := sup
{
|〈Lu, v〉| = |N (u, v)| : v ∈W1,p

0 (Ω,ω1,ω2), ‖v‖W1,p0 (Ω,ω1,ω2)
= 1

}
,

is the norm in
[
W1,p
0 (Ω,ω1,ω2)

]∗
. Therefore, we get the operator

L :W1,p
0 (Ω,ω1,ω2) −→ [

W1,p
0 (Ω,ω1,ω2)

]∗
u 7−→ Lu.

Hence, the problem (4.0.1) is equivalent to the operator equation

Lu = T , u ∈W1,p
0 (Ω,ω1,ω2).

Step 2.

In this step, we demonstrate that A is strictly monotone. Let v1, v2 ∈ W1,p
0 (Ω,ω1,ω2) with

v1 6= v2, then we have

〈Lv1 − Lv2, v1 − v2〉 = N (v1, v1 − v2) −N (v2, v1 − v2)

=

∫
Ω

〈A(x,∇v1),∇(v1 − v2)〉ω1dx−

∫
Ω

〈A(x,∇v2),∇(v1 − v2)〉ω1dx

+

∫
Ω

〈B(x, v1,∇v1),∇(v1 − v2)〉ν2dx−
∫
Ω

〈B(x, v2,∇v2),∇(v1 − v2)〉ν2dx

+

∫
Ω

C(x, v1)(v1 − v2)ν1dx−
∫
Ω

C(x, v2)(v1 − v2)ν1dx

+

∫
Ω

|v1|
p−2v1(v1 − v2)ω2dx−

∫
Ω

|v2|
p−2v2(v1 − v2)ω2dx

=

∫
Ω

〈A(x,∇v1) −A(x,∇v2),∇(v1 − v2)〉ω1dx

+

∫
Ω

〈B(x, v1,∇v1) − B(x, v2,∇v2),∇(v1 − v2)〉ν2dx

+

∫
Ω

(
C(x, v1) − C(x, v2)

)(
v1 − v2

)
ν1dx

+

∫
Ω

(
|v1|

p−2v1 − |v2|
p−2v2

)(
v1 − v2

)
ω2dx.

By using (A3) and Proposition 1.3.1 (ii), we obtain

〈Lv1 − Lv2, v1 − v2〉 ≥ α
∫
Ω

|∇(v1 − v2)|p ω1 dx+ βp

∫
Ω

(
|v1|+ |v2|

)p−2
|v1 − v2|

2 ω2 dx

≥ α
∫
Ω

|∇(v1 − v2)|pω1dx

≥ α‖∇(v1 − v2)‖pLp(Ω,ω1).

Therefore, the operator L is strictly monotone.

Step 3.

This step establishes the coerciveness of the operator L. For all u ∈ W1,p
0 (Ω,ω1,ω2), we
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have

〈Lu, u〉 = N (u, u)

= N1(u, u) +N2(u, u) +N3(u, u) +N4(u, u)

=

∫
Ω

〈A(x,∇u),∇u〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇u〉ν2dx+
∫
Ω

C(x, u)u ν1dx+
∫
Ω

|u|pω2dx.

From (A4) and Theorem 1.1.36, it follows that

〈Lu, u〉 ≥ β1
∫
Ω

|∇u|pω1dx+ β2

∫
Ω

|∇u|qν2dx+ β3
∫
Ω

|u|qν2dx+

∫
Ω

|u|pω2dx

≥ min(β1, 1)
[∫
Ω

|∇u|pω1dx+

∫
Ω

|u|pω2dx

]
+min(β2, β3)

[∫
Ω

|∇u|qν2dx+
∫
Ω

|u|qν2dx

]
≥ min(β1, 1)‖u‖p

W
1,p
0 (Ω,ω1,ω2)

.

Hence, we obtain
〈Lu, u〉

‖u‖
W
1,p
0 (Ω,ω1,ω2)

≥ min(β1, 1)‖u‖p−1
W
1,p
0 (Ω,ω1,ω2)

.

Therefore, as p > 1, we get

〈Lu, u〉
‖u‖

W
1,p
0 (Ω,ω1,ω2)

−→ +∞ as ‖u‖
W
1,p
0 (Ω,ω1,ω2)

−→ +∞,
which means that L is coercive.

Step 4.

In this step, we show that L is continuous. To do this, consider ui −→ u in W1,p
0 (Ω,ω1,ω2)

as i −→∞. Then ∇ui −→ ∇u in (Lp(Ω,ω1))
n. Therefore, according to Theorem 1.1.7, there

exist a subsequence (uij) and ψ ∈ Lp(Ω,ω1) in such a way that

∇uij(x) −→ ∇u(x), as ij −→∞, a.e. inΩ

|∇uij(x)| ≤ ψ(x), a.e. inΩ.

(4.1.2)

We are going to establish that Lui −→ Lu in
[
W1,p
0 (Ω,ω1,ω2)

]∗
. It is proved in four steps.

Step 4.1.

We define the operator Bk : W
1,p
0 (Ω,ω1,ω2) −→ Lp

′
(Ω,ω1) by (Bku)(x) = Ak(x,∇u(x)) for

k = 1, ..., n. We need to show that Bkui −→ Bku in Lp ′(Ω,ω1). We will apply the Lebesgue’s

theorem and the convergence principle in Banach spaces.
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(i) Let u ∈W1,p
0 (Ω,ω1,ω2). Using (A2) and Theorem 1.1.36, we obtain

‖Bku‖p
′

Lp
′
(Ω,ω1)

=

∫
Ω

|Bku(x)|
p ′ω1dx =

∫
Ω

|Ak(x,∇u)|p
′
ω1dx

≤
∫
Ω

(
γ1 + h1|∇u|p−1

)p ′
ω1dx

≤ Cp

∫
Ω

(
γp
′

1 + hp
′

1 |∇u|
p
)
ω1dx

≤ Cp

[
‖γ1‖p

′

Lp
′
(Ω,ω1)

+ ‖h1‖p
′

L∞(Ω)‖∇u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖γ1‖p

′

Lp
′
(Ω,ω1)

+ ‖h1‖p
′

L∞(Ω)‖u‖
p

W
1,p
0 (Ω,ω1,ω2)

]
,

where the constant Cp depends only on p.

(ii) Let ui −→ u inW1,p
0 (Ω,ω1,ω2) as i −→∞. By (A2) and (4.1.2), we obtain

‖Bkuij − Bku‖
p ′

Lp
′
(Ω,ω1)

=

∫
Ω

|Bkuij(x) − Bku(x)|
p ′ω1dx

≤
∫
Ω

(
|Ak(x,∇uij)|+ |Ak(x,∇u)|

)p ′
ω1dx

≤ Cp
∫
Ω

(
|Ak(x,∇uij)|p

′
+ |Ak(x,∇u)|p

′
)
ω1dx

≤ Cp
∫
Ω

[(
γ1 + h1|∇uij |p−1

)p ′
+
(
γ1 + h1|∇u|p−1

)p ′]
ω1dx

≤ Cp
∫
Ω

[(
γ1 + h1ψ

p−1
)p ′

+
(
γ1 + h1ψ

p−1
)p ′]

ω1dx

= 2Cp

∫
Ω

(
γ1 + h1ψ

p

p ′
)p ′
ω1dx

≤ 2CpC
′

p

∫
Ω

(
γp
′

1 + hp
′

1 ψ
p
)
ω1dx

≤ 2CpC
′

p

[
‖γ1‖p

′

Lp
′
(Ω,ω1)

+ ‖h1‖p
′

L∞(Ω)‖ψ‖
p
Lp(Ω,ω1)

]
.

Hence, thanks to (A1), we get, as ij −→∞
Bkuij(x) = Ak(x,∇uij(x)) −→ Ak(x,∇u(x)) = Bku(x), a.e. x ∈ Ω.

Therefore, by Lebesgue’s theorem, we obtain

‖Bkuij − Bku‖Lp ′ (Ω,ω1) −→ 0,

that is,

Bkuij −→ Bku in Lp
′
(Ω,ω1).

Finally, in view to convergence principle in Banach spaces, we have

Bkui −→ Bku in Lp
′
(Ω,ω1). (4.1.3)

Step 4.2.

Let us define the operatorMk :W
1,p
0 (Ω,ω1,ω2) −→ Lq

′
(Ω,ν2) by (Mku)(x) = Bk(x, u(x),∇u(x))

for k = 1, ..., n, We will prove thatMkui −→Mku in Lq ′(Ω,ν2).
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(i) Let u ∈W1,p
0 (Ω,ω1,ω2). Using (A2), Remark 4.1.2 (i) and Theorem 1.1.36, we obtain

‖Mku‖q
′

Lq
′
(Ω,ν2)

=

∫
Ω

|Bk(x, u,∇u)|q
′
ν2dx

≤
∫
Ω

(
γ2 + h2|u|

q−1 + h3|∇u|q−1
)q ′
ν2dx

≤ Cq
∫
Ω

[
γq
′

2 + hq
′

2 |u|
q + hq

′

3 |∇u|
q
]
ν2dx

= Cq

[∫
Ω

γq
′

2 ν2dx+

∫
Ω

hq
′

2 |u|
qν2dx+

∫
Ω

hq
′

3 |∇u|
qν2dx

]
≤ Cq

[∫
Ω

γq
′

2 ν2dx+ ‖h2‖
q ′

L∞(Ω)

∫
Ω

|u|qν2dx+ ‖h3‖q
′

L∞(Ω)

∫
Ω

|∇u|qν2dx
]

≤ Cq
[
‖γ2‖q

′

Lq
′
(Ω,ν2)

+ ‖h2‖q
′

L∞(Ω)‖u‖
q
Lq(Ω,ν2)

+ ‖h3‖q
′

L∞(Ω)‖∇u‖
q
Lq(Ω,ν2)

]
≤ Cq

[
‖γ2‖q

′

Lq
′
(Ω,ν2)

+ ‖h2‖q
′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1)

+ ‖h3‖q
′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖γ2‖q

′

Lq
′
(Ω,ν2)

+ Cqp,q

(
CqΩ‖h2‖

q ′

L∞(Ω) + ‖h3‖
q ′

L∞(Ω)

)
‖u‖q

W
1,p
0 (Ω,ω1,ω2)

]
,

where the constant Cq depends only on q.

(ii) Let ui −→ u in W1,p
0 (Ω,ω1,ω2) as i −→ ∞. According to (A2), Remark 4.1.2 (i) and

the same arguments used in Step 1 (ii), we obtain analogously,

Mkui −→Mku in Lq
′
(Ω,ν2). (4.1.4)

Step 4.3.

We define the operator H : W1,p
0 (Ω,ω1,ω2) −→ Ls

′
(Ω,ν1) by (Hu)(x) = C(x, u(x)). In this

step, we will show that Hui −→ Hu in Ls ′(Ω,ν1).

(i) Let u ∈W1,p
0 (Ω,ω1,ω2). Using (A2) and Remark 4.1.2 (ii), we obtain

‖Hu‖s ′
Ls
′
(Ω,ν1)

=

∫
Ω

|C(x, u)|s ′ν1dx

≤
∫
Ω

(
γ3 + h4|u|

s−1
)s ′
ν1dx

≤ Cs

∫
Ω

(
γs
′

3 + hs
′

4 |u|
s
)
ν1dx

≤ Cs

[
‖γ3‖s

′

Ls
′
(Ω,ν1)

+ ‖h4‖p
′

L∞(Ω)‖u‖
s
Ls(Ω,ν1)

]
≤ Cs

[
‖γ3‖s

′

Ls
′
(Ω,ν1)

+ Csp,s‖h4‖
p ′

L∞(Ω)‖u‖
s
Lp(Ω,ω1)

]
≤ Cs

[
‖γ3‖Ls ′ (Ω,ω1) + C

s
p,sC

s
Ω‖h4‖s

′

L∞(Ω)‖u‖sW1,p0 (Ω,ω1,ω2)

]
,

where the constant Cs depends only on s.
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(ii) By (A2) and Remark 4.1.2 (ii), we get

‖Huij −Hu‖s
′

Ls
′
(Ω,ν1)

=

∫
Ω

∣∣∣Huij(x) −Hu(x)∣∣∣s ′ν1dx
≤
∫
Ω

(
|C(x, uij)|+ |C(x, u)|

)s ′
ν1dx

≤ Cs
∫
Ω

(
|C(x, uij)|s

′
+ |C(x, u)|s ′

)
ν1dx

≤ Cs
∫
Ω

[(
γ3 + h4|uij |

s−1
)s ′

+
(
γ3 + h4|u|

s−1
)s ′]

ν1dx

≤ Cs
∫
Ω

[(
γ3 + h4|ψ|

s−1
)s ′

+
(
γ3 + h4ψ

s−1
)s ′]

ν1dx

≤ 2CsC ′s
∫
Ω

(
γs
′

3 + hp
′

4 ψ
s
)
ν1dx

≤ 2CsC ′s
[
‖γ3‖s

′

Ls
′
(Ω,ν1)

+ ‖h4‖s
′

L∞(Ω)‖ψ‖sLs(Ω,ν1)
]

≤ 2CsC ′s
[
‖γ3‖s

′

Ls
′
(Ω,ν1)

+ Csp,s‖h4‖s
′

L∞(Ω)‖ψ‖sLp(Ω,ω1)
]
,

next, using condition (A1), we deduce, as ij −→∞
Huij(x) = C(x, uij(x)) −→ C(x, u(x)) = Hu(x), a.e. x ∈ Ω.

Therefore, by the Lebesgue’s theorem, we obtain

‖Huij −Hu‖Ls ′ (Ω,ν1) −→ 0,

that is,

Huij −→ Hu in Ls
′
(Ω,ν1).

We conclude, from the convergence principle in Banach spaces, that

Hui −→ Hu in Ls
′
(Ω,ν1). (4.1.5)

Step 4.4.

We define the operator J :W1,p
0 (Ω,ω1,ω2) −→ Lp

′
(Ω,ω2) by (Ju)(x) = |u(x)|p−2u(x). In this

step, we will demonstrate that Jui −→ Ju in Lp ′(Ω,ω2).

(i) Let u ∈W1,p
0 (Ω,ω1,ω2). We have

‖Ju‖p
′

Lp
′
(Ω,ω2)

=

∫
Ω

|Ju|p
′
ω2dx

=

∫
Ω

|u|(p−1)p
′
ω2dx

=

∫
Ω

|u|pω2dx

≤ ‖u‖p
W
1,p
0 (Ω,ω1,ω2)

.
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(ii) Let ui −→ u inW1,p
0 (Ω,ω1,ω2) as i −→∞. Then ui −→ u in Lp(Ω,ω2). Hence, thanks

to Theorem 1.1.7, there exist a subsequence (uij) and ϕ ∈ Lp(Ω,ω2) such that

uij(x) −→ u(x), as ij −→∞, a.e. inΩ

|uij(x)| ≤ ϕ(x), a.e. inΩ.

Next, we get

‖Juij − Ju‖
p ′

Lp
′
(Ω,ω2)

=

∫
Ω

∣∣∣Juij(x) − Ju(x)∣∣∣p ′ω2dx

≤
∫
Ω

(
|Juij(x)|+ |Ju(x)|

)p ′
ω2dx

≤ Cp
∫
Ω

(
|Juij(x)|

p ′ + |Ju(x)|p
′
)
ω2dx

≤ Cp
∫
Ω

(
||uij |

p−2uij |
p ′ + ||u|p−2u|p

′
)
ω2dx

≤ Cp
∫
Ω

(
|uij |

(p−1)p ′ + |u|(p−1)p
′
)
ω2dx

≤ Cp
∫
Ω

(
|uij |

p + |u|p
)
ω2dx

≤ Cp
∫
Ω

(
|ϕ|p + |ϕ|p

)
ω2dx

≤ 2Cp
∫
Ω

|ϕ|pω2dx

≤ 2Cp‖ϕ‖pLp(Ω,ω2).

Therefore, by Lebesgue’s theorem, we obtain

‖Juij − Ju‖Lp ′ (Ω,ω2) −→ 0,

that is,

Juij −→ Ju in Lp
′
(Ω,ω2).

We conclude, in view to convergence principle in Banach spaces, that

Jui −→ Ju in Lp
′
(Ω,ω2). (4.1.6)

Finally, let v ∈W1,p
0 (Ω,ω1,ω2) and using Hölder inequality, we obtain

|N1(ui, v) −N1(u, v)| = |

∫
Ω

〈A(x,∇ui) −A(x,∇u),∇v〉ω1dx|

≤
n∑
k=1

∫
Ω

|Ak(x,∇ui) −Ak(x,∇u)||Dkv|ω1dx

=

n∑
k=1

∫
Ω

|Bkui − Bku||Dkv|ω1dx

≤
n∑
k=1

‖Bkui − Bku‖Lp ′ (Ω,ω1)‖Dkv‖Lp(Ω,ω1)

≤

(
n∑
k=1

‖Bkui − Bku‖Lp ′ (Ω,ω1)

)
‖v‖

W
1,p
0 (Ω,ω1,ω2)

,
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and by Remark 4.1.2 (i), we get

|N2(ui, v) −N2(u, v)| = |

∫
Ω

〈B(x, ui,∇ui) − B(x, u,∇u),∇v〉ν2dx|

≤
n∑
k=1

∫
Ω

|Bk(x, ui,∇ui) − Bk(x, u,∇u)||Dkv|ν2dx

=

n∑
k=1

∫
Ω

|Mkui −Mku||Dkv|ν2dx

≤

(
n∑
k=1

‖Mkui −Mku‖Lq ′ (Ω,ν2)

)
‖∇v‖Lq(Ω,ν2)

≤ Cp,q

(
n∑
k=1

‖Mkui −Mku‖Lq ′ (Ω,ν2)

)
‖∇v‖Lp(Ω,ω1)

≤ Cp,q

(
n∑
k=1

‖Mkui −Mku‖Lq ′ (Ω,ν2)

)
‖v‖

W
1,p
0 (Ω,ω1,ω2)

,

and by Remark 4.1.2 (ii), we obtain

|N3(ui, v) −N3(u, v)| ≤
∫
Ω

|g(x, ui) − g(x, u)||v|ν1dx

=

∫
Ω

|Hui −Hu||v|ν1dx

≤ ‖Hui −Hu‖Ls ′ (Ω,ν1)‖v‖Ls(Ω,ν1)
≤ Cp,s‖Hui −Hu‖Ls ′ (Ω,ν1)‖v‖Lp(Ω,ω1)
≤ Cp,sCΩ‖Hui −Hu‖Ls ′ (Ω,ν1)‖v‖W1,p0 (Ω,ω1,ω2)

.

and by Step 4.4, we have

|N4(ui, v) −N4(u, v)| ≤
∫
Ω

∣∣∣|ui|p−2ui − |u|p−2u
∣∣∣|v|ω2dx

=

∫
Ω

|Jui − Ju||v|ω2dx

≤ ‖Jui − Ju‖Lp ′ (Ω,ω2)‖v‖W1,p0 (Ω,ω1,ω2)
.

Hence, for all v ∈W1,p
0 (Ω,ω1,ω2), we have

|N (ui, v) −N (u, v)| ≤
4∑
j=1

∣∣∣Nj(ui, v) −Nj(u, v)∣∣∣
≤
[ n∑
k=1

(
‖Bkui − Bku‖Lp ′ (Ω,ω1) + Cp,q‖Mkui −Mku‖Lq ′ (Ω,ν2)

)
+Cp,sCΩ‖Hui −Hu‖Ls ′ (Ω,ν1) + ‖Jui − Ju‖Lp ′ (Ω,ω2)

]
‖v‖

W
1,p
0 (Ω,ω1,ω2)

.

Then, we get

‖Lui − Lu‖∗ ≤
n∑
k=1

(
‖Bkui − Bku‖Lp ′ (Ω,ω1) + Cp,q‖Mkui −Mku‖Lq ′ (Ω,ν2)

)
+Cp,sCΩ‖Hui −Hu‖Ls ′ (Ω,ν1) + ‖Jui − Ju‖Lp ′ (Ω,ω2).
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Combining (4.1.3), (4.1.4), (4.1.5) and (4.1.6), we deduce that

‖Lui − Lu‖∗ −→ 0 as i −→∞,
that is, Lui −→ Lu in

[
W1,p
0 (Ω,ω1,ω2)

]∗
. Hence, L is continuous and this implies that L is

hemicontinuous.

Therefore, by Theorem 1.2.4, the operator equation Lu = T has exactly one solution

u ∈W1,p
0 (Ω,ω1,ω2) and it is the unique solution for the problem (4.0.1).

4.2 Example

Take Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and consider the weight functions ω1(x, y) =(
x2 + y2

)−1/2, ν2(x, y) =
(
x2 + y2

)−1/3, ν1(x, y) =
(
x2 + y2

)−1 and ω2(x, y) =
(
x2 + y2

)−3/2(
we have that ω1, ν2, ν1, and ω2 are A4−weight, p = 4, q = 3 and s = 2

)
, and the functions

B : Ω× R× R2 −→ R2, A : Ω× R2 −→ R2 and C : Ω× R −→ R defined by

A
(
(x, y), ξ

)
= h1(x, y)|ξ|

2ξ,

where h1(x, y) = 4e(x
2+y2), and

B
(
(x, y), η, ξ

)
= h3(x, y)|ξ|ξ,

where h3(x, y) = 1+ cos2(xy), and

C
(
(x, y), η

)
= h4(x, y)η,

where h4(x, y) = 2− cos2(xy).

Let us consider the operator

Lu(x, y) = −div
[
ω1(x, y)A

(
(x, y),∇u

)
+ ν2(x, y)B

(
(x, y), u,∇u(x, y)

)]
+ ν1(x, y)C

(
(x, y), u

)
+ω2(x, y)|u|

p−2u

Therefore, by Theorem 4.1.3, the problemLu(x, y) = cos(x+y)
(x2+y2)

− ∂
∂x

(
sin(x+y)
(x2+y2)

)
− ∂

∂y

(
sin(x+y)
(x2+y2)

)
in Ω,

u(x, y) = 0 on ∂Ω,

has exactly one solution u ∈W1,4
0 (Ω,ω1,ω2).
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Chapter 5

Preliminaries

In the present chapter we introduce the notations and present all necessary and relevant

properties about variable exponent Lebesgue-Sobolev spaces and topological degree theory.

5.1 Preliminaries about the functional framework

In recent years, the nonlinear problems with variable exponential growth is a new research

field that drew the interest of many mathematical researcher. The principal interest of these

problems come mainly from their applications, such in image processing (remove noise,

edge detection and image restoration) and in the modelisation of the movement for a elec-

trorheological fluids. This section will be devoted to introduce too the notion of variable ex-

ponent Lebesgue-Sobolev spaces Lp(x)(Ω) and W1,p(x)(Ω), and some interesting definitions

and properties, which are essential to prove some results of existence for solutions of the

nonlinear elliptic problems studied in this thesis. For more details on these spaces, we refer

the reader to [82, 101].

LetΩ ⊂ RN(N > 1) be an open with a Lipschitz boundary denoted by ∂Ω. Denote

C+(Ω) =
{
p : Ω −→ [1,+∞[ continous such that p(x) > 1

}
.

We define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
for every p ∈ C+(Ω).

We define the Lebesgue space with a variable exponent p ∈ C+(Ω) by

Lp(x)(Ω) =
{
f : Ω→ R is measurable such that

∫
Ω

|f(x)|p(x)dx < +∞}.
Lp(x)(Ω) is endowed with the following Luxembourg-type norm

|f|p(x) = inf
{
λ > 0 : ρp(x)

( f
λ

)
≤ 1
}
,
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with

ρp(x)(f) =

∫
Ω

|f(x)|p(x)dx for all f ∈ Lp(x)(Ω).

Proposition 5.1.1 [101] For any sequence (fn) and all f ∈ Lp(x)(Ω), we have

|f|p(x) < 1(resp. = 1;> 1) ⇔ ρp(x)(f) < 1(resp. = 1;> 1), (5.1.1)

|f|p(x) > 1 ⇒ |f|p
−

p(x) ≤ ρp(x)(f) ≤ |f|p
+

p(x), (5.1.2)

|f|p(x) < 1 ⇒ |f|p
+

p(x) ≤ ρp(x)(f) ≤ |u|p
−

p(x), (5.1.3)

lim
n→∞ |fn − f|p(x) = 0 ⇔ lim

n→∞ ρp(x)(fn − f) = 0. (5.1.4)

Remark 5.1.2 From (5.1.2) and (5.1.3), we can infer that

|f|p(x) ≤ ρp(x)(f) + 1, (5.1.5)

ρp(x)(f) ≤ |f|p
−

p(x) + |f|p
+

p(x). (5.1.6)

Proposition 5.1.3 [101] The space
(
Lp(x)(Ω), | · |p(x)

)
is a separable and reflexive Banach space.

Proposition 5.1.4 [101] Let f ∈ Lp(x)(Ω) and g ∈ Lp ′(x)(Ω). Then, we have the following Hölder-

type inequality ∣∣∣ ∫
Ω

fg dx
∣∣∣ ≤ ( 1

p−
+

1

p ′−

)
|f|p(x)|g|p ′(x) ≤ 2|f|p(x)|g|p ′(x). (5.1.7)

Remark 5.1.5 If p, q ∈ C+(Ω) with p(x) ≤ q(x) then Lq(x)(Ω) ↪→ Lp(x)(Ω).

Now, we define the Sobolev space with a variable exponent p ∈ C+(Ω) by

W1,p(x)(Ω) =
{
f ∈ Lp(x)(Ω) : |∇f| ∈ (Lp(x)(Ω))N

}
,

and it is a Banach space under the norm

||f||1,p(x) = |f|p(x) + |∇f|p(x).

Furthermore, we have the compact embeddingW1,p(x)(Ω) ↪→↪→ Lp(x)(Ω)(see [101]).

We also define W1,p(x)
0 (Ω) as the subspace of W1,p(x)(Ω) which is the closure of C∞

0 (Ω) with

respect to the norm || · ||1,p(x).
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Proposition 5.1.6 [101] If the exponent p(x) satisfy the log-Hölder continuity condition, i.e. there

is a constant a > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| ≤ 1
2

one has

|p(x) − p(y)| ≤ a

− log |x− y|
, (5.1.8)

then, there exists C > 0 depending only onΩ and the function p such that

|f|p(x) ≤ C|∇f|p(x) for all f ∈W1,p(x)
0 (Ω). (5.1.9)

In this thesis, we shall use the following norm onW1,p(x)
0 (Ω)

|f|1,p(x) = |∇f|p(x),

and is equivalent to the norm || · ||1,p(x) (thanks Poincaré inequality (5.1.9)).

Proposition 5.1.7 [101] The spaces
(
W1,p(x)(Ω), || · ||1,p(x)

)
and

(
W

1,p(x)
0 (Ω), | · |1,p(x)

)
are separable

and reflexive Banach spaces.

Remark 5.1.8 The dual space ofW1,p(x)
0 (Ω) is the spaceW−1,p ′(x)(Ω) defined by

W−1,p ′(x)(Ω) :=

{
f = f0 −

N∑
i=1

Difi with (f0, f1, . . . , fN) ∈ (Lp
′(x)(Ω))N

}
,

equipped with the norm

|f|−1,p ′(x) = inf
{
|f0|p ′(x) +

N∑
i=1

|fi|p ′(x)

}
.

Remark 5.1.9 Note that for all f ∈W1,p(x)(Ω), we have

|f|p(x) ≤ ||f||1,p(x) and |∇f|p(x) ≤ ||f||1,p(x).

Next, for all f ∈W1,p(x)(Ω), we introduce the following notation

ρ1,p(x)(f) = ρp(x)(f) + ρp(x)(∇f).

Then, from [82, Theorem 1.3], we have the following result.

Proposition 5.1.10 If f ∈W1,p(x)(Ω), then the following properties hold true

||f||1,p(x) < 1(resp. = 1;> 1) ⇔ ρ1,p(x)(f) < 1(resp. = 1;> 1), (5.1.10)

||f||1,p(x) > 1 ⇒ ||f||p
−

1,p(x) ≤ ρ1,p(x)(f) ≤ ||f||p
+

1,p(x), (5.1.11)

||f||1,p(x) < 1 ⇒ ||f||p
+

1,p(x) ≤ ρ1,p(x)(f) ≤ ||f||p
−

1,p(x). (5.1.12)
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We may also consider the generalized Lebesgue space

Lp(x)(ΩT) =
{
f : ΩT → R is measurable with

∫ T
0

∫
Ω

|f(x, t)|p(x)dxdt <∞},
endowed with the norm

|f|Lp(x)(ΩT ) = inf
{
λ > 0 :

∫ T
0

ρp(x)

( f
λ

)
dt ≤ 1

}
,

which, of course, shares the same type of properties as Lp(x)(Ω).

As in [25], we introduce the functional space

W :=
{
f ∈ Lp−(0, T ;W1,p(x)

0 (Ω)) : |∇f| ∈ Lp(x)(ΩT)
N
}
, (5.1.13)

which is a separable and reflexive Banach space endowed with the norm

|f|W := |f|
Lp

−
(0,T ;W

1,p(x)
0 (Ω))

+ |∇f|Lp(x)(ΩT ).

Thanks to Poincaré inequality (5.1.9), the expression

|f|W := |∇f|Lp(x)(ΩT ),

is a norm defined onW and is equivalent to the norm | · |W .
Some interesting properties of the spaceW are stated in the following lemma.

Lemma 5.1.11 [25] LetW be the space defined as above andW∗ denote its dual space, then:

1. We have the following continuous dense embedding

Lp
+

(0, T ;W
1,p(x)
0 (Ω)) ↪→W ↪→ Lp

−

(0, T ;W
1,p(x)
0 (Ω)). (5.1.14)

2. In particular, since C∞
0 (ΩT) is dense in Lp+(0, T ;W1,p(x)

0 (Ω)), it is dense in W and for the

corresponding dual spaces we have

L(p
−) ′(0, T ;W−1,p ′(·)(Ω)) ↪→W∗ ↪→ L(p

+) ′(0, T ;W−1,p ′(·)(Ω)). (5.1.15)

3. Under the assumption (9.0.3), we have

|f|q
−

Lq(·)(ΩT )
− 1 ≤

∫
ΩT

|f|q(x)dxdt ≤ |f|q
+

Lq(·)(ΩT )
+ 1 ≤ |f|p

−

Lp(x)(ΩT )
− 1 ≤

∫
ΩT

|f|p(x)dxdt ≤ |f|p
+

Lp(x)(ΩT )
+ 1.

(5.1.16)

5.2 Topological degree theory

Now, we give some results and properties from the theory of topological degree. The readers

can find more information about the history of this theory in [9, 10, 30, 31, 99].
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5.2.1 Topological degree theory for operators of the type T + S

In what follows, let Y is a real reflexive and separable Banach space with dual Y∗ and con-

tinuous pairing 〈.,.〉, and given a nonempty subsetD of Y, ∂D andD represent the boundary

and the closure of D in Y, respectively.

Definition 5.2.1 We consider a mapping T defined from Y to Y∗ and its graph is given by

G(T ) =
{
(u, v) ∈ Y × Y∗ : v ∈ T (u)

}
.

1. T is said to be monotone if for all (u1, v1), (u2, v2) inG(T ), we get that 〈v1−v2, u1−u2〉 ≥ 0.

2. T is said to be maximal monotone if it is monotone and maximal in the sense of graph inclusion

among monotone mappings from Y to Y∗, or for any (u0, v0) ∈ Y × Y∗ for which 〈v0 − v, u0 −
u〉 ≥ 0, for all (u, v) ∈ G(T ), we have (u0, v0) ∈ G(T ).

Definition 5.2.2 Let Z be a real Banach space. A operator T : D ⊂ Y → Z is said to be

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any sequence (un) ⊂ D, un → u implies that T (un)⇀ T (u).
3. compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 5.2.3 A mapping S : D(S) ⊂ Y → Y∗ is said to be

1. of type (S+), if for any (un) ⊂ D(S) with un ⇀ u and lim sup
n→∞ 〈Sun, un − u〉 ≤ 0, it follows

that un → u.

2. quasimonotone, if for any sequence (un) ⊂ D(S) with un ⇀ u, we have lim sup
n→∞ 〈Sun, un −

u〉 ≥ 0.

In the sequel, letL be a linear maximal monotone map fromD(L) ⊂ Y to Y∗, and we consider

the following classes of operators for each open and bounded subset G on Y:

FG :=
{
L+ S : G ∩D(L)→ Y∗ : S is bounded, demicontinuous

map of type (S+) with respect to D(L) from G to Y∗
}
,

HG :=
{
L+ S(t) : G ∩D(L)→ Y∗ : S(t) is a bounded homotopy of type

map of type (S+) with respect to D(L) from G to Y∗
}
.
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Definition 5.2.4 Let E be a bounded open subset of a real reflexive Banach space Y, T ∈ F1(E) be

continuous and let F,S ∈ FT (E). The affine homotopy Π : [0, 1]× E→ Y defined by

Π(t, u) := (1− t)Fu+ tSu, for all (t, u) ∈ [0, 1]× E

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 5.2.5 Note that the classHG includes all affine homotopies

L+ (1− t)S1 + tS2, with (L+ Si) ∈ FG, i = 1, 2.

Now, we introduce the Berkovits and Mustonen topological degree for the class FG, and see

[31, 30] for more informations.

Theorem 5.2.6 Let L a linear maximal monotone densely defined map from D(L) ⊂ Y to Y∗, and

let

E =
{
(F,G,φ) : F ∈ FG, G an open bounded subset in Y, φ 6∈ F(∂G ∩D(L))

}
.

Then, there exists a topological degree function d : E → Z satisfying the following properties:

1. (Existence) if d(F,G,φ) 6= 0, then the equation Fu = φ has a solution in G ∩D(L).

2. (Additivity) If G1 and G2 are two disjoint open subsets of G such that φ 6∈ F[(G\(G1 ∪G2))∩
D(L)], then we have

d(F,G,φ) = d(F,G1, φ) + d(F,G2, φ).

3. (Homotopy invariance) If F(t) ∈ HG and f(t) 6∈ F(t)(∂G∩D(L)) for all t ∈ [0, 1], where f(t)

is a continuous curve in Y∗, then

d(F(t), G, f(t)) = C, ∀t ∈ [0, 1].

4. (Normalization) L + J is a normalising map, where J is the duality mapping of Y into Y∗,

that is,

d(L+ J , G,φ) = 1, for all φ ∈ (L+ J )(G ∩D(L)).

The following theorem plays an important role in the proof of the existence results in the

next chapters.

Theorem 5.2.7 Let L+ S ∈ FY and φ ∈ Y∗ and assume that there exists a radius r > 0 such that

〈Lu+ Su− φ,u〉 > 0, (5.2.1)

for all u ∈ ∂Br(0) ∩D(L). Then the equation Lu+ Su = φ has a solution u in D(L).
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Proof. To show this theorem, it suffices to prove that (L+ S)(D(L)) = Y∗.
Let Fω(t, u) = Lu+ (1− t)Ju+ t(Su+ωJu− φ), for allω > 0 and t ∈ [0, 1].

From (5.2.1) and since 0 ∈ L(0), we obtain

〈Fω(t, u), u〉 = 〈t(Lu+ Su− φ,u〉+ 〈(1− t)Lu+ (1− t+ω)Ju, u〉

≥ 〈(1− t)Lu+ (1− t+ω)Ju, u〉

= (1− t)〈Lu, u〉+ (1− t+ω)〈Ju, u〉

≥ (1− t+ω)|u|2

= (1− t+ω)r2 > 0.

Which implies that 0 6∈ Fω(t, u).
Since J and S +ωJ are continuous, bounded and of type (S+), then {Fω(t, ·)}t∈[0,1] is an ad-

missible homotopy. Therefore, applying the homotopy invariance and normalisation prop-

erty of the degree d stated in Theorem 5.2.6, we obtain

d(Fω(t, ·), Br(0), 0) = d(L+ J , Br(0), 0) = 1 6= 0.

Consequently, by existence property of the degree d there exists a point uω ∈ D(L) such that

0 ∈ Fω(t, ·). In particular, by setting ω→ 0+ and t = 1, we get φ ∈ (L+ S)(D(L)) for some

u ∈ D(L) and that for all φ ∈ Y∗(φ is arbitrary). Which implies that (L+ S)(D(L)) = Y∗.

5.2.2 Topological degree theory for a class of demicontinuous operators
of generalized (S+)

We start by defining some classes of mappings. In what follows, let X be a real separable

reflexive Banach space and X∗ be its dual space with dual pairing 〈 · , · 〉.

Definition 5.2.8 Let Y be another real Banach space. A operator F : D ⊂ X→ Y is said to be

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any sequence (un) ⊂ D, un → u implies F(un)⇀ F(u).

3. compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 5.2.9 A mapping F : D ⊂ X→ X∗ is said to be

1. of type (S+), if for any sequence (un) ⊂ D with un ⇀ u and lim sup
n→∞ 〈Fun, un − u〉 ≤ 0, we

have un → u.
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2. quasimonotone, if for any sequence (un) ⊂ D with un ⇀ u, we have lim sup
n→∞ 〈Fun, un−u〉 ≥

0.

Definition 5.2.10 Let T : D1 ⊂ X→ X∗ be a bounded operator such that D ⊂ D1. For any operator

F : D ⊂ X→ X, we say that

1. F is of type (S+)T , if for any sequence (un) ⊂ D with un ⇀ u, yn := Tun ⇀ y and

lim sup
n→∞ 〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) ⊂ D with un ⇀ u, yn := Tun ⇀ y, we

have lim sup
n→∞ 〈Fun, y− yn〉 ≥ 0.

Consider the different types of operators as follows:

F1(D) :=
{
F : D → X∗ : F is bounded, demicontinuous and of type (S+)

}
,

FT(D) :=
{
F : D → X : F is demicontinuous and of type (S+)T

}
,

FT,B(D) :=
{
F ∈ FT(D) : F is bounded

}
,

for any D ⊂ D(F), where D(F) denotes the domain of F, and any T ∈ F1(D).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{
F ∈ FT(E) : E ∈ O, T ∈ F1(E)

}
,

where, T ∈ F1(E) is called an essential inner map to F.

Lemma 5.2.11 [99, Lemma 2.3] Let T ∈ F1(E) be continuous and S : D(S) ⊂ X∗ → X be demicon-

tinuous such that T(E) ⊂ D(S), where E is a bounded open set in a real reflexive Banach space X.

Then the following statements are true :

1. If S is quasimonotone, then I+ S ◦ T ∈ FT(E), where I denotes the identity operator.

2. If S is of type (S+), then S ◦ T ∈ FT(E).

Definition 5.2.12 Suppose that E is bounded open subset of a real reflexive Banach space X, T ∈
F1(E) is continuous and F, S ∈ FT(E). Then the affine homotopy Λ : [0, 1]× E→ X defined by

Λ(t, u) := (1− t)Fu+ tSu, for (t, u) ∈ [0, 1]× E

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 5.2.13 [99, Lemma 2.5] The above affine homotopy is of type (S+)T .
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Now, we give the topological degree for the class F(X) (see [99]).

Theorem 5.2.14 Let

M =
{
(F, E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F(∂E)

}
.

Then, there exists a unique degree function d :M −→ Z that satisfy the following properties:

1. (Normalization) For any h ∈ F(E), we have

d(I, E, h) = 1.

2. (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of E such that

h 6∈ F(E\(E1 ∪ E2)), then we have

d(F, E, h) = d(F, E1, h) + d(F, E2, h).

3. (Homotopy invariance) IfΛ : [0, 1]×E→ X is a bounded admissible affine homotopy with a

common continuous essential inner map and h: [0, 1]→ X is a continuous path in X such that

h(t) 6∈ Λ(t, ∂E) for all t ∈ [0, 1], then

d(Λ(t, ·), E, h(t)) = C for all t ∈ [0, 1].

4. (Existence) If d(F, E, h) 6= 0, then the equation Fu = h has a solution in E.

5. ( Boundary dependence) If F, S ∈ FT(E), F = S on ∂E, and h 6∈ F(∂E), then

d(F, E, h) = d(S, E, h).

Definition 5.2.15 [99, Definition 3.3] The above degree is defined as follows:

d(F, E, h) := dB(F|E0 , E0, h),

where dB is the Berkovits degree [29] and E0 is any open subset of E with F−1(h) ⊂ E0 and F is

bounded on E0.
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Chapter 6

Existence result for Neumann problem
with p(x)-Laplacian-like operators in
generalized Sobolev space

This chapter studies the existence of a weak solutions for Neumann problem with p(x)-

Laplacian-like operators, originated from a capillary phenomena, of the following form
−div

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
= µ|u|α(x)−2u+ λf(x, u,∇u) inΩ,

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+|∇u|2p(x)

)
∂u
∂η

= 0 on ∂Ω,

(6.0.1)

in the setting of the generalized Sobolev spaces W1,p(x)(Ω), where Ω is a smooth bounded

domain in RN, p(·), α(·) ∈ C+(Ω), ∂u
∂η

is the exterior normal derivative, µ and λ are two

real parameters. Based on the topological degree for a class of demicontinuous operators

of generalized (S+) type, under appropriate assumptions on f, we obtain a result on the

existence of weak solutions to the considered problem.

6.1 Assumptions and notion of weak solution

We assume that Ω ⊂ RN(N ≥ 2) is a bounded domain with a Lipschitz boundary ∂Ω, p ∈
C+(Ω) satisfy the log-Hölder continuity condition (5.1.8), α ∈ C+(Ω) with 2 ≤ α− ≤ α(x) ≤
α+ < p− ≤ p(x) ≤ p+ <∞ and f : Ω× R× RN → R is a function such that:

(A1) f is a Carathéodory condition.

(A2) There exists C1 > 0 and γ ∈ Lp ′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ C1(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1)
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for a.e. x ∈ Ω and all (ζ, ξ) ∈ R× RN, where q ∈ C+(Ω) with 2 ≤ q− ≤ q(x) ≤ q+ < p−.

The definition of a weak solutions for problem (6.0.1) can be stated as follows.

Definition 6.1.1 We call that u ∈W1,p(x)(Ω) is a weak solution of (6.0.1) if∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx =

∫
Ω

(
µ|u|α(x)−2u+ λf(x, u,∇u)

)
ϕdx,

for all ϕ ∈W1,p(x)(Ω).

Remark 6.1.2

• Note that
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx is well defined (see [131]).

• µ|u|α(x)−2u ∈ Lp ′(x)(Ω) and λf(x, u,∇u) ∈ Lp ′(x)(Ω) under u ∈ W1,p(x)(Ω) and the given

hypotheses about the exponents p, α and q and (A2) because: γ ∈ Lp ′(x)(Ω), r(x) = (q(x) −

1)p ′(x) ∈ C+(Ω) with r(x) < p(x) and β(x) = (α(x)−1)p ′(x) ∈ C+(Ω) with β(x) < p(x).

Then, by Remark 5.1.5 we can conclude that Lp(x) ↪→ Lr(x) and Lp(x) ↪→ Lβ(x).

Hence, since ϕ ∈ Lp(x)(Ω), we have
(
µ|u|α(x)−2u + λf(x, u,∇u)

)
ϕ ∈ L1(Ω). This implies

that, the integral
∫
Ω

(
µ|u|α(x)−2u+ λf(x, u,∇u)

)
ϕdx exist.

6.2 Main result

We are now in the position to get the existence result of weak solutions for (6.0.1).

Theorem 6.2.1 If the assumptions (A1) − (A2) hold, then the problem (6.0.1) possesses at least one

weak solutions u inW1,p(x)(Ω).

Proof. First, we give several lemmas that will be used later.

Let us consider the following functional :

J (u) :=
∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1+ |∇u|2p(x)

)
dx.

From [131], it is obvious that J is a continuously Gâteaux differentiable and T := J ′(u) ∈
W−1,p ′(x)(Ω) such that

〈T u,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx,

for all u,ϕ ∈ W1,p(x)(Ω) where 〈·, ·〉 means the duality pairing between W−1,p ′(x)(Ω) and

W1,p(x)(Ω). In addition, the following lemma summarizes the properties of the operator T
(see [131, Proposition 3.1.]).
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Lemma 6.2.2 The mapping

T :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

〈T u,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx,

is a continuous, bounded, strictly monotone operator and is a mapping of class (S+).

Lemma 6.2.3 Assume that the assumptions (A1) − (A2) hold, then the operator

S :W1,p(x)(Ω)→W−1,p ′(x)(Ω) defined by

〈Su,ϕ〉 = −

∫
Ω

(
µ|u|α(x)−2u+ λf(x, u,∇u)

)
ϕdx, for all u,ϕ ∈W1,p(x)(Ω),

is compact.

Proof. In order to prove this lemma, we proceed in three steps.

First step: Let us define the operator Ψ : W1,p(x)(Ω)→ Lp
′(x)(Ω) by

Ψu(x) := −µ|u(x)|α(x)−2u(x).

In this step, we will prove that Ψ is bounded and continuous. It is clear that Ψ is continuous.

Next we show that Ψ is bounded. Let u ∈W1,p(x)(Ω), and using (5.1.5) and (5.1.6) we obtain

|Ψu|p ′(x) ≤ ρp ′(x)(Ψu) + 1

=

∫
Ω

|µ|u|α(x)−2u|p
′(x)dx+ 1

=

∫
Ω

|µ|p
′(x)|u|(α(x)−1)p

′(x)dx+ 1

≤
(
|µ|p

′−
+ |µ|p

′+
)
ρβ(x)(u) + 1

≤
(
|µ|p

′−
+ |µ|p

′+
)(

|u|β
−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) ↪→ Lβ(x) and Remark 5.1.9 that

|Ψu|p ′(x) ≤ C
(
||u||β

−

1,p(x) + ||u||β
+

1,p(x)

)
+ 1.

Consequently, Ψ is bounded onW1,p(x)(Ω).

Second step: We define the operatorΦ : W1,p(x)(Ω)→ Lp
′(x)(Ω) by

Φu(x) := −λf(x, u,∇u).
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We will show thatΦ is bounded and continuous.

Let u ∈W1,p(x)(Ω). According to (A2) and the inequalities (5.1.5) and (5.1.6), we obtain

|Φu|p ′(x) ≤ ρp ′(x)(Φu) + 1

=

∫
Ω

|λf(x, u(x),∇u(x))|p ′(x)dx+ 1

=

∫
Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p ′(x)dx+ 1

≤
(
|λ|p

′−
+ |λ|p

′+
) ∫

Ω

|C1

(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|p
′(x)dx+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
) ∫

Ω

(
γ(x)p

′(x) + |u|(q(x)−1)p
′(x) + |∇u|(q(x)−1)p ′(x)

)
dx+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
)(
ρp ′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
)(

|γ|p
′+

p(x) + |γ|p
′−

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r+r(x) + |∇u|r−r(x)
)
+ 1.

Taking into account the continuous embedding Lp(x) ↪→ Lr(x) and Remark 5.1.9, we have then

|Φu|p ′(x) ≤ C
(
|γ|p

′+

p(x) + |γ|p
′−

p(x) + ||u||r
+

1,p(x) + ||u||r
−

1,p(x)

)
+ 1,

and consequentlyΦ is bounded onW1,p(x)(Ω).

Let us show that Φ is continuous. To this purpose, let us assume un → u in W1,p(x)(Ω), we

need to show thatΦun → Φu in Lp ′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W1,p(x)(Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N.

Consequently, there exist a subsequence (uk) of (un) and φ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N

such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x), as k −→∞, (6.2.1)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, for all k ∈ N, (6.2.2)

and for a.e. x ∈ Ω.

Hence, from (A2) and (6.2.2), we have

|f(x, uk(x),∇uk(x))| ≤ C1(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1).

On the other hand, thanks to (A1) and (6.2.1), we get, as k −→∞
f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.

Seeing that

γ+ |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp ′(x)(Ω),

and

ρp ′(x)(Φuk −Φu) =

∫
Ω

|f(x, uk(x),∇uk(x)) − f(x, u(x),∇u(x))|p
′(x)dx,
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then, from the Lebesgue’s theorem and the equivalence (5.1.4), we have

Φuk → Φu in Lp
′(x)(Ω),

and since Φ is single-valued, then

Φun → Φu in Lp
′(x)(Ω).

Third step: Let I∗ : Lp ′(x)(Ω) → W−1,p ′(x)(Ω) be the adjoint operator of the natural embed-

ding mapping I :W1,p(x)(Ω)→ Lp(x)(Ω). We then define

I∗ ◦ Ψ :W1,p(x)(Ω)→W−1,p ′(x)(Ω),

and

I∗ ◦Φ :W1,p(x)(Ω)→W−1,p ′(x)(Ω).

On the other hand, due to the compactness of I, I∗ also becomes compact. Thus, the compo-

sitions I∗ ◦Ψ and I∗ ◦Φ are compact, and consequently, S = I∗ ◦Ψ+ I∗ ◦Φ is compact. With

this last step the proof of Lemma 6.2.3 is completed.

Now we give the proof of the Theorem 6.2.1. The basic idea of our proof is to reformulate

the problem (6.0.1) to an abstract formula governed by a Hammerstein equation, and apply

the theory of topological degree introduced in Subsection 5.2.1 to show the existence of weak

solution to (6.0.1).

First, for all u,ϕ ∈ W1,p(x)(Ω), we define the operators T and S, as defined in Lemmas

6.2.2 and 6.2.3 respectively,

T :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

〈T u,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx,

S :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

〈Su,ϕ〉 = −

∫
Ω

(
µ|u|α(x)−2u+ λf(x, u, ∇u)

)
ϕdx.

Consequently, the problem (6.0.1) is equivalent to the equation

T u = −Su, u ∈W1,p(x)(Ω). (6.2.3)

Taking into account that, by Lemma 6.2.2, the operator T is a continuous, bounded, strictly

monotone and of class (S+), then, by [143, Theorem 26 A], the inverse operator

L := T −1 :W−1,p ′(x)(Ω)→W1,p(x)(Ω),
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is also bounded, continuous, strictly monotone and of class (S+).

On the other hand, according to Lemma 6.2.3, we have that the operator S is bounded,

continuous and quasimonotone.

Consequently, following Zeidler’s terminology [143], the equation (6.2.3) is equivalent to the

following abstract Hammerstein equation

u = Lϕ and ϕ+ S ◦ Lϕ = 0, u ∈W1,p(x)(Ω) and ϕ ∈W−1,p ′(x)(Ω). (6.2.4)

Due to the equivalence of (6.2.3) and (6.2.4), it will be sufficient to solve (6.2.4). In order to

solve (6.2.4), we will apply the Berkovits topological degree introduced in Subsection 5.2.1.

First, let us set

B :=
{
ϕ ∈W−1,p ′(x)(Ω) : ∃ t ∈ [0, 1] such that ϕ+ tS ◦ Lϕ = 0

}
.

Next, we show that B is bounded in ∈W−1,p ′(x)(Ω). Let us put u := Lϕ for all ϕ ∈ B.

Taking into account that |Lϕ|1,p(x) = ||u||1,p(x), then we have the following two cases:

First case : If ||u||1,p(x) ≤ 1, then |Lϕ|1,p(x) ≤ 1, that means
{
Lϕ : ϕ ∈ B

}
is bounded.

Second case : If ||u||1,p(x) > 1, then, we deduce from (5.1.11), (A2), the inequalities (5.1.6) and

(5.1.7), and the Young’s inequality that

||Lϕ||p
−

1,p(x) = ||u||p−1,p(x)

≤ ρ1,p(x)(u)

= ρp(x)(u) + ρp(x)(∇u)

≤ 〈T u, u〉

= 〈ϕ, Lϕ〉

= −t〈S ◦ Lϕ, Lϕ〉

= t

∫
Ω

(
µ|u|α(x)−2u+ λf(x, u, ∇u)

)
udx

≤ tmax(|µ|, C1|λ|)
( ∫

Ω

|u|α(x)dx+

∫
Ω

|γ(x)u(x)|dx+

∫
Ω

|u(x)|q(x)dx+

∫
Ω

|∇u|q(x)−1|u|dx
)

= tmax(|µ|, C1|λ|)
(
ρα(x)(u) +

∫
Ω

|γ(x)u(x)|dx+ ρq(x)(u) +

∫
Ω

|∇u|q(x)−1|u|dx
)

≤ C
(
|u|α

−

α(x) + |u|α
+

α(x) + |γ|p ′(x)|u|p(x) + |u|q
+

q(x) + |u|q
−

q(x) +
1

q ′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)
≤ C

(
|u|α

−

α(x) + |u|α
+

α(x) + |u|p(x) + |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
−

q(x) + |∇u|q
+

q(x)

)
.

Then, according to Remark 5.1.9, and the continuous embedding Lp(x) ↪→ Lα(x) and Lp(x) ↪→
Lq(x), we get

||Lϕ||p
−

1,p(x) ≤ C
(
||Lϕ||α+

1,p(x) + ||Lϕ||1,p(x) + ||Lϕ||q
+

1,p(x)

)
,
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what implies that
{
Lϕ : ϕ ∈ B

}
is bounded.

On the other hand, we have that the operator is S is bounded, then S ◦Lϕ is bounded. Thus,

thanks to (6.2.4), we have that B is bounded inW−1,p ′(x)(Ω). However, there exists a constant

b > 0 such that

|ϕ|−1,p ′(x) < b for all ϕ ∈ B,

which leads to

ϕ+ tS ◦ Lϕ 6= 0, ϕ ∈ ∂Bb(0) and t ∈ [0, 1],

where Bb(0) is the ball of center 0 and radius b inW−1,p ′(x)(Ω).

Moreover, by Lemma 5.2.11, we conclude that

I+ S ◦ L ∈ FL(Bb(0)) and I = T ◦ L ∈ FL(Bb(0)).

On another side, taking into account that I, S and L are bounded, then I+S ◦L is bounded.

Hence, we infer that

I+ S ◦ L ∈ FL,B(Bb(0)) and I = T ◦ L ∈ FL,B(Bb(0)).

Next, we define the homotopy

H : [0, 1]× Bb(0)→W−1,p ′(x)(Ω)

(t, ϕ) 7→ H(t, ϕ) := ϕ+ tS ◦ Lϕ.

Hence, thanks to the properties of the degree d as in Theorem 5.2.14, we obtain

d(I+ S ◦ L,Bb(0), 0) = d(I,Bb(0), 0) = 1 6= 0,

what implies that there exists ϕ ∈ Bb(0) which verifies

ϕ+ S ◦ Lϕ = 0.

Finally, we infer that u = Lϕ is a weak solutions of (6.0.1). Thus, the proof of Theorem 6.2.1

is completed.
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Chapter 7

On a class of p(x)-Laplacian-like Dirichlet
problem depending on three real
parameters

7.1 Position of the problem and hypotheses

This chapter establishes the existence of weak solution for a Dirichlet boundary value prob-

lem involving the p(x)-Laplacian-like operator depending on three real parameters, origi-

nated from a capillary phenomena, of the following form:
−∆lp(x)u+ δ|u|α(x)−2u = µg(x, u) + λf(x, u,∇u) inΩ,

u = 0 on ∂Ω,

(7.1.1)

where ∆lp(x) is the p(x)-Laplacian-like operator, Ω is a smooth bounded domain in RN, δ, µ

and λ are three real parameters, p(·), α(·) ∈ C+(Ω) and g, f are Carathéodory functions.

Under suitable nonstandard growth conditions on g and f and using the topological degree

for a class of demicontinuous operator of generalized (S+) type and the theory of variable-

exponent Sobolev spaces, we establish the existence of weak solution for the above problem.

We assume that Ω ⊂ RN(N ≥ 2) is a bounded domain with a Lipschitz boundary ∂Ω,

p ∈ C+(Ω) satisfy the log-Hölder continuity condition (5.1.8), α ∈ C+(Ω) with

2 ≤ α− ≤ α(x) ≤ α+ < p− ≤ p(x) ≤ p+ < ∞, g : Ω × R → R and f : Ω × R × RN → R are

functions such that:

(A1) f is a Carathéodory function.

(A2) There exists C1 > 0 and γ ∈ Lp ′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ C1(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1).

(A3) g is a Carathéodory function.
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(A4) There are C2 > 0 and ν ∈ Lp ′(x)(Ω) such that

|g(x, ζ)| ≤ C2(ν(x) + |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R × RN, where q, s ∈ C+(Ω) with 2 ≤ q− ≤ q(x) ≤ q+ < p−

and 2 ≤ s− ≤ s(x) ≤ s+ < p−.

Remark 7.1.1 First. Note that, for all u,ϕ ∈W1,p(x)
0 (Ω),

∫
Ω

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+ |∇u|2p(x)
)
∇ϕdx

is well defined (see [131]). Second, we have δ|u|α(x)−2u ∈ Lp ′(x)(Ω), µg(x, u) ∈ Lp ′(x)(Ω) and

λf(x, u,∇u) ∈ Lp ′(x)(Ω) under u ∈ W1,p(x)
0 (Ω), the assumptions (A2) and (A4) and the given

hypotheses about the exponents p, α, q and s because: r(x) = (q(x)−1)p ′(x) ∈ C+(Ω) with r(x) <

p(x), β(x) = (α(x) − 1)p ′(x) ∈ C+(Ω) with β(x) < p(x) and κ(x) = (s(x) − 1)p ′(x) ∈ C+(Ω)

with κ(x) < p(x).

Then, by Remark 5.1.5 we can conclude that Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lβ(x) and Lp(x) ↪→ Lκ(x).

Hence, since ϕ ∈ Lp(x)(Ω), we have(
− δ|u|α(x)−2u+ µg(x, u) + λf(x, u,∇u)

)
ϕ ∈ L1(Ω).

This implies that, the integral∫
Ω

(
− δ|u|α(x)−2u+ µg(x, u) + λf(x, u,∇u)

)
ϕdx

exists.

Then, we shall use the definition of weak solution for problem (7.1.1) in the following sense:

Definition 7.1.2 We say that an element u ∈W1,p(x)
0 (Ω) is a weak solution of (7.1.1) iff∫

Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx =

∫
Ω

(
− δ|u|α(x)−2u+ µg(x, u) + λf(x, u,∇u)

)
ϕdx,

for all ϕ ∈W1,p(x)
0 (Ω).

7.2 Main result

Before giving our main result we first give two lemmas that will be used later.

Let us consider the following functional:

J (u) :=
∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1+ |∇u|2p(x)

)
dx.

From [131], it is obvious that J is a continuously Gâteaux differentiable and

T := J ′(u) ∈W−1,p ′(x)(Ω) such that

〈T u,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx,
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for all u,ϕ ∈ W1,p(x)
0 (Ω) where 〈·, ·〉 means the duality pairing between W−1,p ′(x)(Ω) and

W
1,p(x)
0 (Ω). In addition, the following lemma summarizes the properties of the operator T

(see [131, Proposition 3.1.]).

Lemma 7.2.1 The mapping T :W
1,p(x)
0 (Ω) −→W−1,p ′(x)(Ω) defined by

〈T u,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx, for all u,ϕ ∈W1,p(x)

0 (Ω),

is a continuous, bounded, strictly monotone operator, and is of class (S+).

Lemma 7.2.2 Assume that the assumptions (A1) − (A4) hold. Then the operator

S :W
1,p(x)
0 (Ω)→W−1,p ′(x)(Ω) defined by

〈Su,ϕ〉 = −

∫
Ω

(
− δ|u|α(x)−2u+ µg(x, u) + λf(x, u,∇u)

)
ϕdx, for all u,ϕ ∈W1,p(x)

0 (Ω),

is compact.

Proof. In order to prove this lemma, we proceed in four steps.

Step 1 : Let Υ : W1,p(x)
0 (Ω)→ Lp

′(x)(Ω) be an operator defined by

Υu(x) := −µg(x, u).

In this step, we prove that the operator Υ is bounded and continuous.

First, let u ∈W1,p(x)
0 (Ω), bearing (A4) in mind and using (5.1.5) and (5.1.6), we infer

|Υu|p ′(x) ≤ ρp ′(x)(Υu) + 1

=

∫
Ω

|µg(x, u(x))|p
′(x)dx+ 1

=

∫
Ω

|µ|p
′(x)|g(x, u(x)|p

′(x)dx+ 1

≤
(
|µ|p

′−
+ |µ|p

′+
) ∫

Ω

|C2

(
ν(x) + |u|s(x)−1

)
|p
′(x)dx+ 1

≤ C
(
|µ|p

′−
+ |µ|p

′+
) ∫

Ω

(
|ν(x)|p

′(x) + |u|κ(x)
)
dx+ 1

≤ C
(
|µ|p

′−
+ |µ|p

′+
)(
ρp ′(x)(ν) + ρκ(x)(u)

)
+ 1

≤ C
(
|ν|p

′+

p(x) + |u|κ
+

κ(x) + |u|κ
−

κ(x)

)
+ 1.

Then, we deduce from (5.1.9) and Lp(x) ↪→ Lκ(x), that

|Υu|p ′(x) ≤ C
(
|ν|p

′+

p(x) + |u|κ
+

1,p(x) + |u|κ
−

1,p(x)

)
+ 1,

that means Υ is bounded onW1,p(x)
0 (Ω).

Second, we show that the operatorΥ is continuous. To this purpose let un → u inW1,p(x)
0 (Ω).
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We need to show that Υun → Υu in Lp ′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W1,p(x)
0 (Ω), then un → u in Lp(x)(Ω). Hence there exist a subsequence

(uk) of (un) and φ in Lp(x)(Ω) such that

uk(x)→ u(x) and |uk(x)| ≤ φ(x), (7.2.1)

for a.e. x ∈ Ω and all k ∈ N. Hence, from (A2) and (7.2.1), we have

|g(x, uk(x))| ≤ C2(ν(x) + |φ(x)|s(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.

On the other hand, thanks to (A3) and (7.2.1), we get, as k −→∞
g(x, uk(x))→ g(x, u(x)) a.e. x ∈ Ω.

Seeing that

ν+ |φ|s(x)−1 ∈ Lp ′(x)(Ω) and ρp ′(x)(Υuk − Υu) =

∫
Ω

|g(x, uk(x)) − g(x, u(x))|
p ′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (5.1.4), we have

Υuk → Υu in Lp
′(x)(Ω),

and consequently

Υun → Υu in Lp
′(x)(Ω),

that is, Υ is continuous.

Step 2 : We define the operator Ψ : W1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψu(x) := δ|u(x)|α(x)−2u(x).

We will prove that Ψ is bounded and continuous.

It is clear that Ψ is continuous. Next we show that Ψ is bounded.

Let u ∈W1,p(x)
0 (Ω) and using (5.1.5) and (5.1.6), we obtain

|Ψu|p ′(x) ≤ ρp ′(x)(Ψu) + 1

=

∫
Ω

|δ|u|α(x)−2u|p
′(x)dx+ 1

=

∫
Ω

|δ|p
′(x)|u|(α(x)−1)p

′(x)dx+ 1

≤
(
|δ|p

′−
+ |δ|p

′+
) ∫

Ω

|u|β(x)dx+ 1

=
(
|δ|p

′−
+ |δ|p

′+
)
ρβ(x)(u) + 1

≤
(
|δ|p

′−
+ |δ|p

′+
)(

|u|β
−

β(x) + |u|β
+

β(x)

)
+ 1.
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Hence, we deduce from Lp(x) ↪→ Lβ(x) and (5.1.9) that

|Ψu|p ′(x) ≤ C
(
|u|β

−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ is bounded onW1,p(x)
0 (Ω).

Step 3 : Let us define the operatorΦ : W1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Φu(x) := −λf(x, u(x),∇u(x)).

We will show thatΦ is bounded and continuous.

Let u ∈W1,p(x)
0 (Ω). According to (A2) and the inequalities (5.1.5) and (5.1.6), we obtain

|Φu|p ′(x) ≤ ρp ′(x)(Φu) + 1

=

∫
Ω

|λf(x, u(x),∇u(x))|p ′(x)dx+ 1

=

∫
Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p ′(x)dx+ 1

≤
(
|λ|p

′−
+ |λ|p

′+
) ∫

Ω

|C1

(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|p
′(x)dx+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
) ∫

Ω

(
|γ(x)|p

′(x) + |u|r(x) + |∇u|r(x)
)
dx+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
)(
ρp ′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ C
(
|γ|p

′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r+r(x) + |∇u|r−r(x)
)
+ 1.

Taking into account that Lp(x) ↪→ Lr(x) and (5.1.9), we have then

|Φu|p ′(x) ≤ C
(
|γ|p

′+

p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)
+ 1,

and consequentlyΦ is bounded onW1,p(x)
0 (Ω).

It remains to show that Φ is continuous. Let un → u in W1,p(x)
0 (Ω), we need to show that

Φun → Φu in Lp ′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W1,p(x)
0 (Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N.

Hence, there exist a subsequence (uk) and φ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x), |uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (7.2.2)

for a.e. x ∈ Ω and all k ∈ N. Hence, thanks to (A1) and (7.2.2), we get, as k −→∞
f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (7.2.2), we can deduce the estimate

|f(x, uk(x),∇uk(x))| ≤ C1(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),
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for a.e. x ∈ Ω and for all k ∈ N. Seeing that

γ+ |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp ′(x)(Ω),

and taking into account the equality

ρp ′(x)(Φuk −Φu) =

∫
Ω

|f(x, uk(x),∇uk(x)) − f(x, u(x),∇u(x))|p
′(x)dx,

then, we conclude from the Lebesgue’s theorem and (5.1.4) that

Φuk → Φu in Lp
′(x)(Ω)

and consequently

Φun → Φu in Lp
′(x)(Ω),

and thenΦ is continuous.

Step 4 : Let I∗ : Lp ′(x)(Ω)→W−1,p ′(x)(Ω) be the adjoint operator of the operator

I :W
1,p(x)
0 (Ω)→ Lp(x)(Ω). Next, we define

I∗oΥ :W
1,p(x)
0 (Ω)→W−1,p ′(x)(Ω),

I∗oΨ :W
1,p(x)
0 (Ω)→W−1,p ′(x)(Ω),

and

I∗oΦ :W
1,p(x)
0 (Ω)→W−1,p ′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus, the com-

positions I∗oΥ, I∗oΨ and I∗oΦ are compact, that means S = I∗oΥ+ I∗oΨ+ I∗oΦ is compact.

With this last step the proof of Lemma 7.2.2 is completed.

We are now in the position to get the existence result of weak solution for (7.1.1).

Theorem 7.2.3 Assume that the assumptions (A1) − (A4) hold, then the problem (7.1.1) possesses

at least one weak solution u inW1,p(x)
0 (Ω).

Proof. The basic idea of our proof is to reduce the problem (7.1.1) to a new one governed by

a Hammerstein equation, and apply the topological degree theory to show the existence of

weak solution to the state problem. First, for all u,ϕ ∈ W1,p(x)
0 (Ω), we define the operators

T :W
1,p(x)
0 (Ω) −→W−1,p ′(x)(Ω) and S :W

1,p(x)
0 (Ω) −→W−1,p ′(x)(Ω) by

〈T u,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1+ |∇u|2p(x)

)
∇ϕdx,

〈Su,ϕ〉 = −

∫
Ω

(
− δ|u|α(x)−2u+ µg(x, u) + λf(x, u,∇u)

)
ϕdx.
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Consequently, the problem (7.1.1) is equivalent to the equation

T u = −Su, u ∈W1,p(x)
0 (Ω). (7.2.3)

Taking into account that, by Lemma 7.2.1, the operator T is a continuous, bounded, strictly

monotone and of class (S+), then, by [143, Theorem 26 A], the inverse operator

L := T −1 :W−1,p ′(x)(Ω)→W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of class (S+).

On another side, according to Lemma 7.2.2, we have that the operator S is bounded, contin-

uous and quasimonotone.

Consequently, following Zeidler’s terminology [143], the equation (7.2.3) is equivalent to the

following abstract Hammerstein equation

u = Lϕ and ϕ+ SoLϕ = 0, u ∈W1,p(x)
0 (Ω) and ϕ ∈W−1,p ′(x)(Ω). (7.2.4)

Seeing that (7.2.3) is equivalent to (7.2.4), then to solve (7.2.3) it is thus enough to solve

(7.2.4). In order to solve (7.2.4), we will apply the Berkovits topological degree introducing

in Subsection 5.2. First, let us set

B :=
{
ϕ ∈W−1,p ′(x)(Ω) : ∃ t ∈ [0, 1] such that ϕ+ tSoLϕ = 0

}
.

Next, we show that B is bounded in ∈W−1,p ′(x)(Ω).

Let us put u := Lϕ for all ϕ ∈ B. Taking into account that |Lϕ|1,p(x) = |∇u|p(x), then we have

the following two cases:

First case : If |∇u|p(x) ≤ 1, then |Lϕ|1,p(x) ≤ 1, that means
{
Lϕ : ϕ ∈ B

}
is bounded.

Second case : If |∇u|p(x) > 1, then, we deduce from (5.1.2), (A2) and (A4), the inequalities
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(5.1.7) and (5.1.6) and the Young’s inequality that

|Lϕ|p
−

1,p(x) = |∇u|p−p(x)
≤ ρp(x)(∇u)

≤ 〈T u, u〉

= 〈ϕ, Lϕ〉

= −t〈SoLϕ, Lϕ〉

= t

∫
Ω

(
− δ|u|α(x)−2u+ µg(x, u) + λf(x, u,∇u)

)
udx

≤ tmax(|δ|, C2|µ|, C1|λ|)
( ∫

Ω

|u|α(x)dx+

∫
Ω

|ν(x)u(x)|dx+

∫
Ω

|u(x)|s(x)dx

+

∫
Ω

|γ(x)u(x)|dx+

∫
Ω

|u(x)|q(x)dx+

∫
Ω

|∇u|q(x)−1|u|dx
)

= tmax(|δ|, C2|µ|, C1|λ|)
(
ρα(x)(u) +

∫
Ω

|ν(x)u(x)|dx+

∫
Ω

|γ(x)u(x)|dx

+ ρs(x)(u) + ρq(x)(u) +

∫
Ω

|∇u|q(x)−1|u|dx
)

≤ C
(
|u|α

−

α(x) + |u|α
+

α(x) + |ν|p ′(x)|u|p(x) + |γ|p ′(x)|u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x) + |u|q
−

q(x)

+
1

q ′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)
≤ C

(
|u|α

−

α(x) + |u|α
+

α(x) + |u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)

)
,

then, according to Lp(x) ↪→ Lα(x), Lp(x) ↪→ Ls(x) and Lp(x) ↪→ Lq(x), we get

|Lϕ|p
−

1,p(x) ≤ C
(
|Lϕ|α+

1,p(x) + |Lϕ|1,p(x) + |Lϕ|s+1,p(x) + |Lϕ|q
+

1,p(x)

)
,

what implies that
{
Lϕ : ϕ ∈ B

}
is bounded.

On the other hand, we have that the operator is S is bounded, then SoLϕ is bounded. Thus,

thanks to (7.2.4), we have that B is bounded inW−1,p ′(x)(Ω).

However, there exists τ > 0 such that

|ϕ|−1,p ′(x) < τ for all ϕ ∈ B,

which leads to

ϕ+ tSoLϕ 6= 0, ϕ ∈ ∂Bτ(0) and t ∈ [0, 1],

Moreover, by Lemma 5.2.11, we conclude that

I+ SoL ∈ FL(Bτ(0)) and I = T oL ∈ FL(Bτ(0)).

On another side, taking into account that I, S and L are bounded, then I+ SoL is bounded.

Hence, we infer that

I+ SoL ∈ FL,B(Bτ(0)) and I = T oL ∈ FL,B(Bτ(0)).
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Next, we define the homotopy

H : [0, 1]× Bτ(0)→W−1,p ′(x)(Ω)

(t, ϕ) 7→ H(t, ϕ) := ϕ+ tSoLϕ.

Hence, thanks to the properties of the degree d seen in Theorem 5.2.14, we obtain

d(I+ SoL, Bτ(0), 0) = d(I, Bτ(0), 0) = 1 6= 0,

which implies that there exists ϕ ∈ Bτ(0) verifying

ϕ+ SoLϕ = 0.

Finally, we infer that u = Lϕ is a weak solution of (7.1.1). The proof is completed.
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Chapter 8

Existence and uniqueness results for a
class of p(x)-Kirchhoff-type problems
with convection term and Neumann
boundary data

We establish an existence and uniqueness results for a homogeneous Neumann boundary

value problem involving the p(x)-Kirchhoff-Laplacian operator of the following form
−M

( ∫
Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)(
div(|∇u|p(x)−2∇u) − |u|p(x)−2u

)
= f(x, u,∇u) inΩ,

|∇u|p(x)−2 ∂u
∂η

= 0 on ∂Ω.
(8.0.1)

where Ω is a smooth bounded domain in RN, ∂u
∂η

is the exterior normal derivative, p(x) ∈
C+(Ω) with p(x) ≥ 2. By means of a topological degree of Berkovits for a class of demicon-

tinuous operators of generalized (S+) type and the theory of the variable exponent Sobolev

spaces, under appropriate assumptions on f andM, we obtain a results on the existence and

uniqueness of weak solution to the considered problem.

8.1 Hypothesis and notion of weak solution

In this chapter we will discuss the existence and uniqueness of weak solution of (8.0.1). For

this, we list our assumptions on f andM associated with our problem to show the existence

result.

From new on, we always assume that Ω ⊂ RN(N ≥ 2) is a bounded domain with a

Lipschitz boundary ∂Ω, p ∈ C+(Ω) with 2 ≤ p− ≤ p(x) ≤ p+ <∞ and f : Ω× R× RN → R
is a function such that:

(A1) f satisfies the Carathéodory condition.
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(A2) There exists β1 > 0 and γ ∈ Lp ′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ β1
(
γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1

)
for a.e. x ∈ Ω and all (ζ, ξ) ∈ R× RN, where 2 ≤ q− ≤ q(x) ≤ q+ < p−.

Furthermore,

(M0) M : [0,+∞)→ (m0,+∞) is a continuous and increasing function withm0 > 0.

Let us recall that the definition of a weak solution for problem (8.0.1) can be stated as follows.

Definition 8.1.1 A function u ∈W1,p(x)(Ω) is called a weak solution of (8.0.1) if

M
( ∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

) ∫
Ω

(
|∇u|p(x)−2∇u∇ϕ+ |u|p(x)−2u ϕ

)
dx =

∫
Ω

f(x, u,∇u)ϕdx,

for all ϕ ∈W1,p(x)(Ω).

8.2 Existence and uniqueness results

We are now in the position to get the existence result of weak solution for (8.0.1).

Theorem 8.2.1 If the assumptions (A1) − (A2) and (M0) hold, then the problem (8.0.1) admits at

least one weak solution u inW1,p(x)(Ω).

Proof. First, we give several lemmas that will be used later.

Let us consider the following functional:

Φ(u) := M̂
( ∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
,

where M̂(s) =

∫ s
0

M(τ)dτ, such thatM(s) satisfies the condition (M0).

It is obvious that the functional Φ is a continuously Gâteaux differentiable whose Gâteaux

derivative at the point u ∈W1,p(x)(Ω) is the functional T := Φ ′(u) ∈W−1,p ′(x)(Ω), given by

〈T u,ϕ〉 =M
( ∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

) ∫
Ω

(
|∇u|p(x)−2∇u∇ϕ+ |u|p(x)−2u ϕ

)
dx,

for all u,ϕ ∈ W1,p(x)(Ω) where 〈·, ·〉 means the duality pairing between W−1,p ′(x)(Ω) and

W1,p(x)(Ω). Furthermore, the properties of the operator T are summarized in the following

lemma (see [51, Theorem 2.1])

Lemma 8.2.2 If (M0) holds, then

1. T :W1,p(x)(Ω)→W−1,p ′(x)(Ω) is a continuous, bounded and strictly monotone operator.
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2. T is a mapping of type (S+).

Lemma 8.2.3 Assume that the assumptions (A1) − (A2) hold, then the operator

S :W1,p(x)(Ω)→W−1,p ′(x)(Ω) defined by

〈Su,ϕ〉 = −

∫
Ω

f(x, u,∇u)ϕdx, for all u,ϕ ∈W1,p(x)(Ω)

is compact.

Proof. Let Φ : W1,p(x)(Ω)→ Lp
′(x)(Ω) be an operator defined by

Φu(x) := −f(x, u, ∇u) for u ∈W1,p(x)(Ω) and x ∈ Ω.

Next, we split the proof in several steps.

We first show that Φ is bounded and continuous. By using (A2), the inequalities (5.1.5) and

(5.1.6), we obtain

|Φu|p ′(x) ≤ ρp ′(x)(Φu) + 1

=

∫
Ω

|f(x, u(x),∇u(x))|p ′(x) dx+ 1

≤ C
(
ρp ′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ C
(
|γ|p

′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r+r(x) + |∇u|r−r(x)
)
+ 1,

for all u ∈W1,p(x)(Ω) where r(x) = (q(x) − 1)p ′(x) < p(x).

Then, by the continuous embedding Lp(x) ↪→ Lr(x) and Remark 5.1.9, we have

|Φu|p ′(x) ≤ C
(
|γ|p

′+

p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)
+ 1.

This implies thatΦ is bounded onW1,p(x)(Ω).

To show that Φ is continuous, let un → u in W1,p(x)(Ω) . Then un → u in Lp(x)(Ω) and

∇un → ∇u in (Lp(x)(Ω))N. Hence there exist a subsequence (uk) of (un) and measurable

functions φ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x),
|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (8.2.1)

for a.e. x ∈ Ω and all k ∈ N.

Hence, thanks to (A1), we get, as k −→∞
f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.
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On the other hand, it follows from (A2) and (8.2.1) that

|f(x, uk(x),∇uk(x))| ≤ β1
(
γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1

)
,

for a.e. x ∈ Ω and for all k ∈ N.

Since

γ+ |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp ′(x)(Ω),

and

ρp ′(x)(Φuk −Φu) =

∫
Ω

∣∣∣f(x, uk(x),∇uk(x)) − f(x, u(x),∇u(x))∣∣∣p ′(x) dx,
therefore, the Lebesgue’s theorem and the equivalence (5.1.4) implies that

Φuk → Φu in Lp
′(x)(Ω).

Thus the entire sequence (Φun) converges toΦu in Lp ′(x)(Ω) .

Moreover, let I∗ : Lp ′(x)(Ω) → W−1,p ′(x)(Ω) be the adjoint operator for the embedding of

I :W1,p(x)(Ω)→ Lp(x)(Ω). Let us define

I∗ ◦Φ :W1,p(x)(Ω)→W−1,p ′(x)(Ω),

which is well-defined by assumption (A2).

Since the embedding I is compact, it is known that the adjoint operator I∗ is also compact.

Therefore, I∗ ◦Φ is compact. This completes the proof.

Now we give the proof of the Theorem 8.2.1. For that, we transform this Neumann boundary

value problem into a new one governed by a Hammerstein equation, so by using the theory

of topological degree introduced in Section 5.2, we show the existence of weak solution to

the state problem.

First, for all u,ϕ ∈ W1,p(x)(Ω), we define the operators T and S, as defined in Lemmas

8.2.2 and 8.2.3 respectively,

T :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

〈T u,ϕ〉 =M
( ∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

) ∫
Ω

(
|∇u|p(x)−2∇u∇ϕ+ |u|p(x)−2uϕ

)
dx,

S :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

〈Su,ϕ〉 = −

∫
Ω

f(x, u,∇u)ϕdx.

Then u ∈W1,p(x)(Ω) is a weak solution of (8.0.1) if and only if

T u = −Su. (8.2.2)
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Thanks to the properties of the operator T seen in Lemma 8.2.2 and in view of Minty-

Browder Theorem (see [143, Theorem 26 A], the inverse operator

L := T −1 :W−1,p ′(x)(Ω)→W1,p(x)(Ω),

is bounded, continuous and of type (S+). Moreover, note by Lemma 8.2.3 that the operator

S is bounded, continuous and quasimonotone.

Consequently, Equation (8.2.2) is equivalent to the abstract Hammerstein equation

u = Lϕ and ϕ+ S ◦ Lϕ = 0. (8.2.3)

To solve Equation (8.2.3), we will apply the degree theory introduced in Subsection 5.2.2. To

do this, set

B :=
{
ϕ ∈W−1,p ′(x)(Ω) : ∃ t ∈ [0, 1] such that ϕ+ tS ◦ Lϕ = 0

}
Next,we prove that B is bounded in ∈W−1,p ′(x)(Ω).

Let ϕ ∈ B and set u := Lϕ, then |Lϕ|1,p(x) = |u|1,p(x).

If |u|1,p(x) ≤ 1, then |Lϕ|1,p(x) is bounded.

If |u|1,p(x) > 1, then by (5.1.11), the growth condition (A2), the Hölder inequality (5.1.7), the

inequality (5.1.6) and the Young inequality, we get

|Lϕ|p
−

1,p(x) = |u|p−1,p(x)

≤ ρ1,p(x)(u)

= ρp(x)(u) + ρp(x)(∇u)

≤ 〈T u, u〉

= 〈ϕ,Lϕ〉

= −t〈S ◦ Lϕ,Lϕ〉

= t

∫
Ω

f(x, u,∇u)udx

≤ C
( ∫

Ω

|γ(x)u(x)|dx+ ρq(x)(u) +

∫
Ω

|∇u|q(x)−1|u|dx
)

≤ C
(
|γ|p ′(x)|u|p(x) + |u|q

+

q(x) + |u|q
−

q(x) +
1

q ′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)
≤ C

(
|u|p(x) + |u|q

+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)

)
.

From Remark 5.1.9 and the continuous embedding Lp(x) ↪→ Lq(x), we conclude that

|Lϕ|p
−

1,p(x) ≤ C
(
|Lϕ|1,p(x) + |Lϕ|q

+

1,p(x)

)
.
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So, we infer that
{
Lϕ|ϕ ∈ B

}
is bounded.

Since the operator S is bounded, it is obvious from (8.2.3) that B is bounded inW−1,p ′(x)(Ω).

Consequently, there exists R > 0 such that

|ϕ|−1,p ′(x) < R for all ϕ ∈ B.

Therefore

ϕ+ tS ◦ Lϕ 6= 0 for all ϕ ∈ ∂BR(0) and all t ∈ [0, 1],

where BR(0) is the ball of center 0 and radius R inW−1,p ′(x)(Ω).

Moreover, from Lemma 5.2.11 we conclude that

I+ S ◦ L ∈ FL(BR(0)) and I = T ◦ L ∈ FL(BR(0)).

Next, consider a homotopy Λ : [0, 1]× BR(0)→W−1,p ′(x)(Ω) given by

Λ(t, ϕ) := ϕ+ tS ◦ Lϕ for (t, ϕ) ∈ [0, 1]× BR(0).

Hence, by using the normalization property and the homotopy invariance of degree d seen

in Theorem 5.2.14, we obtain

d(I+ S ◦ L,BR(0), 0) = d(I,BR(0), 0) = 1 6= 0.

Then, there exists ϕ ∈ BR(0) such that

ϕ+ S ◦ Lϕ = 0.

Thus, we conclude that u = Lϕ is a weak solution of (8.0.1). The proof is completed.

Next, we consider the uniqueness of solution of (8.0.1). To this end, we also need the follow-

ing hypothesis:

(A3) There exists C2 ≥ 0 such that(
f(x, t, ξ) − f(x, s, ζ)

)
(t− s) ≤ C2|t− s|p(x)

for a.e. x ∈ Ω and all t, s ∈ R, ξ, ζ ∈ RN.

We are now in the position to state our uniqueness result.

Theorem 8.2.4 If the assumptions (A1) − (A3) and (M0) hold, then the weak solution of (8.0.1) is

unique provided
2p

+
C2

m0

< 1.
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Proof. Let u1, u2 ∈W1,p(x)(Ω) be two weak solutions of (8.0.1). Then, by taking ϕ = u1 − u2

in the Definition 8.1.1, we get

Ψ1 :=M
( ∫

Ω

1

p(x)
(|∇u1|p(x) + |u1|

p(x))dx
) ∫

Ω

(
|∇u1|p(x)−2∇u1∇(u1 − u2)

+ |u1|
p(x)−2u1(u1 − u2)

)
dx =

∫
Ω

f(x, u1,∇u1)(u1 − u2)dx,

and

Ψ2 :=M
( ∫

Ω

1

p(x)
(|∇u2|p(x) + |u2|

p(x))dx
) ∫

Ω

(
|∇u2|p(x)−2∇u2∇(u1 − u2)

+ |u2|
p(x)−2u2(u1 − u2)

)
dx =

∫
Ω

f(x, u1,∇u1)(u1 − u2)dx.

Subtracting the above two equations, we obtain

Ψ1 − Ψ2 =

∫
Ω

(
f(x, u1,∇u1) − f(x, u2,∇u2)

)
(u1 − u2)dx. (8.2.4)

Denote ρ1,p(x)(u) =
∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx, ∀ u ∈W1,p(x)(Ω).

By the same proof as [82], we can show that the Theorem 1.4 of [82] hold for ρ1,p(x)(u). In

particular, if we take uk ≡ v in Theorem 1.4 of [82], we can easily see that u = v inW1,p(x)(Ω)

if and only if ρ1,p(x)(u) = ρ1,p(x)(v). Hence, for any u, v ∈W1,p(x)(Ω) with u 6= v inW1,p(x)(Ω),

we can see that ρ1,p(x)(u) 6= ρ1,p(x)(v).
Without loss of generality, we may assume that ρ1,p(x)(u1) > ρ1,p(x)(u2). It follows that

M
( ∫

Ω

1

p(x)

(
|∇u1|p(x) + |u1|

p(x)
)

dx
)
≥M

( ∫
Ω

1

p(x)

(
|∇u2|p(x) + |u2|

p(x)
)

dx
)
. (8.2.5)

sinceM(t) is a monotone function.

If |u1| > |u2|, using (8.2.5) and the assumption (M0), we obtain

Ψ1 − Ψ2 ≥M
( ∫

Ω

1

p(x)

(
|∇u2|p(x) + |u2|

p(x))dx
) ∫

Ω

(
|∇u1|p(x)−2∇u1∇(u1 − u2)

+ |u1|
p(x)−2u1(u1 − u2)

)
dx− Ψ2

≥M
( ∫

Ω

1

p(x)

(
|∇u2|p(x) + |u2|

p(x)
)

dx
)[∫

Ω

[(
|∇u1|p(x)−2∇u1

− |∇u2|p(x)−2∇u2
)
∇(u1 − u2) +

(
|u1|

p(x)−2u1 − |u2|
p(x)−2u2

)
(u1 − u2)

]
dx
]

≥ m0

[∫
Ω

[(
|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2

)
∇(u1 − u2)

+
(
|u1|

p(x)−2u1 − |u2|
p(x)−2u2

)
(u1 − u2)

]
dx
]
.

(8.2.6)

On the other hand, since p(x) ≥ 2, then we have the following inequalities (see [82]):(
|u1|

p(x)−2u1 − |u2|
p(x)−2u2

)
(u1 − u2) ≥

(1
2

)p(x)
|u1 − u2|

p(x), (8.2.7)
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(
|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2

)
∇(u1 − u2) ≥

(1
2

)p(x)
|∇u1 −∇u2|p(x). (8.2.8)

So, by (8.2.7) and (8.2.8), we get

Ψ1 − Ψ2 ≥ m0

(1
2

)p+ ∫
Ω

(
|∇u1 −∇u2|p(x) + |u1 − u2|

p(x)
)
dx

≥ m0

(1
2

)p+ ∫
Ω

|u1 − u2|
p(x) dx.

(8.2.9)

Using (8.2.9) in (8.2.4), we obtain

m0

(1
2

)p+ ∫
Ω

|u1 − u2|
p(x) dx ≤

∫
Ω

(
f(x, u1,∇u1) − f(x, u2,∇u2)

)
(u1 − u2)dx. (8.2.10)

Then it follows from the assumption (A3) that

m0

(1
2

)p+ ∫
Ω

|u1 − u2|
p(x) dx ≤ C2

∫
Ω

|u1 − u2|
p(x) dx. (8.2.11)

If |u2| > |u1|, changing the role of u1 and u2 in (8.2.4)-(8.2.11), we obtain

m0

(1
2

)p+ ∫
Ω

|u2 − u1|
p(x) dx ≤ C2

∫
Ω

|u2 − u1|
p(x) dx. (8.2.12)

Consequently, when
2p

+
C2

m0

< 1, then u1 = u2 and so the solution of (8.0.1) is unique. This

completes the proof.
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Chapter 9

Weak solutions for a quasilinear elliptic
and parabolic problems involving the
(p(x), q(x))-Laplacian operator

In this chapter, we study the existence of weak solution to the following quasilinear prob-

lems: 

∂u
∂t

− ∆p(x)u− ∆q(x)u = φ(x, t) inΩT := Ω× (0, T),

u(x, t) = 0 on Γ := ∂Ω× (0, T),

u(x, 0) = u0(x) inΩ,

(9.0.1)

and 
−∆p(x)u− ∆q(x)u+ω|u|ξ(x)−2u = υA(x, u) + σB(x, u,∇u) inΩ,

u = 0 on ∂Ω,

(9.0.2)

where φ ∈ W∗, u0 ∈ L2(Ω), A : Ω × R → R and B : Ω × R × RN → R are Carathéodory

functions that satisfy the assumption of growth, and the variables exponents p, q ∈ C+(Ω)

are assumed to satisfy the following assumption:

1 < q− ≤ q ≤ q+ < p− ≤ p ≤ p+ < +∞. (9.0.3)

9.1 Quasilinear parabolic problem involving the (p(x), q(x))-
Laplacian operator

In this section, we will prove the existence of weak solution of the problem (9.0.1). First we

will state a lemma that will be used later.
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Lemma 9.1.1 The operator S := −∆p(x)u− ∆q(x)u defined fromW intoW∗ by

〈Su, v〉W∗,W =

∫
ΩT

(
|∇u|p(x)−2∇u∇v+ |∇u|q(x)−2∇u∇v

)
dxdt,

is bounded, continuous and of type (S+).

Proof. Let t ∈] 0, T [ and denote by A the operator defined fromW
1,p(x)
0 (Ω) intoW−1,p ′(x)(Ω)

by

〈Au(x, t), v(x, t)〉 := 〈A1u(x, t), v(x, t)〉+ 〈A2u(x, t), v(x, t)〉,

where

〈A1u(x, t), v(x, t)〉 :=
∫
Ω

(
|∇u(x, t)|p(x)−2∇u(x, t)∇v(x, t)

)
dx,

and

〈A2u(x, t), v(x, t)〉 :=
∫
Ω

(
|∇u(x, t)|q(x)−2∇u(x, t)∇v(x, t)

)
dx,

for all u(·, t), v(·, t) ∈ W1,p(x)
0 (Ω), with 〈·, ·〉 is the duality pairing between W−1,p ′(x)(Ω) and

W
1,p(x)
0 (Ω).

Then, we obtain

〈Su, v〉W∗,W =

∫ T
0

〈Au(x, t), v(x, t)〉dt, for all u, v ∈ W,

with 〈·, ·〉W∗,W is the duality pairing betweenW∗ andW .

Next, it follows from [81, Lemma 3.1] that A1 and A2 are bounded, continuous and of type

(S+); so the operatorA := A1+A2 is bounded, continuous and of type (S+) and consequently

the operator S is bounded, continuous and of type (S+).

We are now in the position to get existence result of weak solution for (9.0.1).

Theorem 9.1.2 Let φ ∈ W∗ and u0 ∈ L2(Ω), then the problem (9.0.1) admits at least one weak

solution u ∈ D(L), where D(L) =
{
u ∈ W : du

dt
∈ W∗ and u(0) = 0

}
.

Proof. First, let us define the operator L :=
d

dt
with domain D(L) given by

D(L) = {u ∈ W :
du

dt
∈ W∗ and u(0) = 0},

where the time derivative
du

dt
is understood in the sense of vector-valued distributions, i.e.,

〈Lu, v〉W∗,W =

∫ T
0

〈u ′(t), v(t)〉dt, ∀ v ∈ W,

FACULTY OF SCIENCE AND TECHNIQUES 100 SULTAN MOULAY SLIMANE UNIVERSITY



MOHAMED EL OUAARABI DOCTORAL THESIS LABORATORY : LMACS

with 〈·, ·〉W∗,W means the duality pairing between W∗ and W , and 〈·, ·〉 means the duality

pairing betweenW−1,p ′(x)(Ω) andW1,p(x)
0 (Ω).

Second, we define the operator S :W →W∗ as defined in Lemma 9.1.1

〈Su, v〉W∗,W =

∫
ΩT

(
|∇u|p(x)−2∇u∇v+ |∇u|q(x)−2∇u∇v

)
dxdt.

Consequently, the weak formulation of the problem (9.0.1) is given by the operator equation

u ∈ D(L) : Lu+ Su = φ.

Next, it follows from lemma 9.1.1 that S is bounded, continuous and of type (S+), and the

operator L is well known to be closed, densely defined, and maximal monotone [143, Theo-

rem 32.L, pp.897-899].

Let u ∈ W . Using the monotonicity of L and the inequality (5.1.16), we obtain

〈Lu+ Su, u〉 ≥ 〈Su, u〉

=

∫
ΩT

(|∇u|p(x) + |∇u|q(x))dxdt

≥ 2(|∇u|p
−

Lp(x)(ΩT )
− 1)

≥ 2(|u|p
−

W − 1).

Because the right-hand side of the previous inequality approximates to∞ when |u|W →∞,

then the operator L+S is coercive. Thus for each φ ∈ W∗ there is a radius r = r(φ) > 0 such

that

〈Lu+ Su− φ,u〉 > 0, for each u ∈ Br(0) ∩D(L).

So all the conditions of Theorem 5.2.7 are satisfied. Consequently, Theorem 5.2.7 leads us to

the conclusion that the equation Lu + Su = φ has a weak solution in D(L), which implies

that the problem (9.0.1) has a weak solution u ∈ D(L). This completes the proof.

9.2 Quasilinear elliptic problem involving the (p(x), q(x))-
Laplacian operator

In this section, we will discuss the existence of weak solution of (9.0.2). In the beginning,

let us assume that p ∈ C+(Ω) satisfy the log-Hölder continuity condition (5.1.8), ξ ∈ C+(Ω)

with 2 ≤ ξ− ≤ ξ(x) ≤ ξ+ < p− ≤ p(x) ≤ p+ <∞, A : Ω× R→ R and B : Ω× R× RN → R
are functions such that:

(A1) B is a Carathéodory function.
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(A2) There exists α1 > 0 and f ∈ Lp ′(x)(Ω) such that

|B(x, y, z)| ≤ α1(f(x) + |y|k(x)−1 + |z|k(x)−1).

(A3) A is a Carathéodory function.

(A4) There are α2 > 0 and g ∈ Lp ′(x)(Ω) such that

|A(x, y)| ≤ α2(g(x) + |y|s(x)−1),

for a.e. x ∈ Ω and all (y, z) ∈ R× RN, where q, s ∈ C+(Ω) with 2 ≤ k− ≤ k(x) ≤ k+ <
p− and 2 ≤ s− ≤ s(x) ≤ s+ < p−.

Remark 9.2.1

1. Let ϑ ∈W1,p(x)
0 (Ω), then∫

Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx

is well defined (see [81]).

2. Let u ∈ W
1,p(x)
0 (Ω), then we have ω|u|ξ(x)−2u ∈ Lp

′(x)(Ω), υA(x, u) ∈ Lp
′(x)(Ω) and

σB(x, u,∇u) ∈ Lp ′(x)(Ω) under the assumptions (A2) and (A4) and the given hypotheses

about the exponents p, ξ, q and s because: f ∈ Lp ′(x)(Ω), g ∈ Lp ′(x)(Ω), r(x) = (k(x) −

1)p ′(x) ∈ C+(Ω) with r(x) < p(x), and β(x) = (ξ(x)−1)p ′(x) ∈ C+(Ω) with β(x) < p(x)

and κ(x) = (s(x) − 1)p ′(x) ∈ C+(Ω) with κ(x) < p(x).

Then, using Remark 5.1.5, we conclude that Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lβ(x) and Lp(x) ↪→ Lκ(x).

Therefore, with ϑ ∈ Lp(x)(Ω), we have(
−ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
ϑ ∈ L1(Ω).

This means that ∫
Ω

(
−ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
ϑdx <∞.

Then, let us introduce the definition of a weak solution for (9.0.2).

Definition 9.2.2 We say that a function u ∈ W1,p(x)
0 (Ω) is a weak solution of (9.0.2), if for any

ϑ ∈W1,p(x)
0 (Ω), it satisfy the following:∫

Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx =

∫
Ω

(
−ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
ϑdx.
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Let us now give some lemmas that will be used later. First, let us consider the following

functional:

C(u) :=
∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
Ω

1

q(x)
|∇u|q(x)dx.

From [81], it is clear that the derivative operator of the functional C in the weak sense at the

point u ∈W1,p(x)
0 (Ω) is the functional G(u) := C ′(u) ∈W−1,p ′(x)(Ω) given by

〈Gu, ϑ〉 =
∫
Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx,

for all u, ϑ ∈ W1,p(x)
0 (Ω) where 〈·, ·〉 means the duality pairing between W−1,p ′(x)(Ω) and

W
1,p(x)
0 (Ω). Furthermore, we have the following properties of the operator G.

Lemma 9.2.3 [81, Theorem 3.1.]The mapping

G :W
1,p(x)
0 (Ω) −→W−1,p ′(x)(Ω)

〈Gu, ϑ〉 =
∫
Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx,

(9.2.1)

is a continuous, bounded, strictly monotone operator and is of type (S+).

Lemma 9.2.4 If (A1) − (A2) hold, then the operator

N :W
1,p(x)
0 (Ω)→W−1,p ′(x)(Ω)

〈Nu, ϑ〉 = −

∫
Ω

(
−ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
ϑdx,

(9.2.2)

is compact.

Proof. We follow four steps to prove this lemma.

Step 1 : Let Ψ1 : W1,p(x)
0 (Ω)→ Lp

′(x)(Ω) be an operator defined by

Ψ1u(x) := −υA(x, u).

We wiil prove that the operator Ψ1 is bounded and continuous. Let u ∈ W1,p(x)
0 (Ω), bearing

(A4) in mind and using (5.1.5) and (5.1.6), we infer

|Ψ1u|p ′(x) ≤ ρp ′(x)(Ψ1u) + 1

=

∫
Ω

|υA(x, u(x))|p ′(x)dx+ 1

=

∫
Ω

|υ|p
′(x)|A(x, u(x)|p ′(x)dx+ 1

≤
(
|υ|p

′−
+ |υ|p

′+
) ∫

Ω

|α2

(
g(x) + |u|s(x)−1

)
|p
′(x)dx+ 1

≤ C
(
|υ|p

′−
+ |υ|p

′+
) ∫

Ω

(
|g(x)|p

′(x) + |u|κ(x)
)
dx+ 1

≤ C
(
|υ|p

′−
+ |υ|p

′+
)(
ρp ′(x)(g) + ρκ(x)(u)

)
+ 1

≤ C
(
|g|p

′+

p(x) + |u|κ
+

κ(x) + |u|κ
−

κ(x)

)
+ 1.
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Then, we deduce from (5.1.9) and Lp(x) ↪→ Lκ(x), that

|Ψ1u|p ′(x) ≤ C
(
|g|p

′+

p(x) + |u|κ
+

1,p(x) + |u|κ
−

1,p(x)

)
+ 1,

that means Ψ1 is bounded onW1,p(x)
0 (Ω).

Second, we show that the operatorΨ1 is continuous. To this purpose letun → u inW1,p(x)
0 (Ω).

We need to show that Ψ1un → Ψ1u in Lp ′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W1,p(x)
0 (Ω), then un → u in Lp(x)(Ω). Hence there exist a subsequence

(um) of (un) and φ in Lp(x)(Ω) such that

um(x)→ u(x) and |um(x)| ≤ φ(x), (9.2.3)

for a.e. x ∈ Ω and all k ∈ N.

Hence, from (A2) and (9.2.3), we have

|A(x, um(x))| ≤ α2(g(x) + |φ(x)|s(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.

On the other hand, thanks to (A3) and (9.2.3), we get, as k −→∞
A(x, um(x))→ A(x, u(x)) a.e. x ∈ Ω.

Seeing that

g+ |φ|s(x)−1 ∈ Lp ′(x)(Ω) and ρp ′(x)(Ψ1um − Ψ1u) =

∫
Ω

|A(x, um(x)) −A(x, u(x))|p
′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (5.1.4), we have

Ψ1um → Ψ1u in Lp
′(x)(Ω),

and consequently

Ψ1un → Ψ1u in Lp
′(x)(Ω),

that is, Ψ1 is continuous.

Step 2 : We define the operator Ψ2 : W1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ2u(x) := ω|u(x)|ξ(x)−2u(x).

We will prove that Ψ2 is bounded and continuous.

It is clear that Ψ2 is continuous. Next we show that Ψ2 is bounded.
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Let u ∈W1,p(x)
0 (Ω) and using (5.1.5) and (5.1.6), we obtain

|Ψ2u|p ′(x) ≤ ρp ′(x)(Ψ2u) + 1

=

∫
Ω

|ω|u|ξ(x)−2u|p
′(x)dx+ 1

=

∫
Ω

|ω|p
′(x)|u|(ξ(x)−1)p

′(x)dx+ 1

≤
(
|ω|p

′−
+ |ω|p

′+
) ∫

Ω

|u|β(x)dx+ 1

=
(
|ω|p

′−
+ |ω|p

′+
)
ρβ(x)(u) + 1

≤
(
|ω|p

′−
+ |ω|p

′+
)(

|u|β
−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) ↪→ Lβ(x) and (5.1.9) that

|Ψ2u|p ′(x) ≤ C
(
|u|β

−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ2 is bounded onW1,p(x)
0 (Ω).

Step 3 : Let us define the operator Ψ3 : W1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ3u(x) := −σB(x, u(x),∇u(x)).

We will show that Ψ3 is bounded and continuous.

Let u ∈W1,p(x)
0 (Ω). According to (A2) and the inequalities (5.1.5) and (5.1.6), we obtain

|Ψ3u|p ′(x) ≤ ρp ′(x)(Ψ3u) + 1

=

∫
Ω

|σB(x, u(x),∇u(x))|p ′(x)dx+ 1

=

∫
Ω

|σ|p
′(x)|B(x, u(x),∇u(x))|p ′(x)dx+ 1

≤
(
|σ|p

′−
+ |σ|p

′+
) ∫

Ω

|α1

(
f(x) + |u|k(x)−1 + |∇u|k(x)−1

)
|p
′(x)dx+ 1

≤ C
(
|σ|p

′−
+ |σ|p

′+
) ∫

Ω

(
|f(x)|p

′(x) + |u|r(x) + |∇u|r(x)
)
dx+ 1

≤ C
(
|σ|p

′−
+ |σ|p

′+
)(
ρp ′(x)(f) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ C
(
|f|p

′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r+r(x) + |∇u|r−r(x)
)
+ 1.

Taking into account that Lp(x) ↪→ Lr(x) and (5.1.9), we have then

|Ψ3u|p ′(x) ≤ C
(
|f|p

′+

p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)
+ 1,

and consequently Ψ3 is bounded onW1,p(x)
0 (Ω).

It remains to show that Ψ3 is continuous. Let un → u in W1,p(x)
0 (Ω), we need to show that
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Ψ3un → Ψ3u in Lp ′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W1,p(x)
0 (Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N.

Hence, there exist a subsequence (um) and Ψ3 in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

um(x)→ u(x) and ∇um(x)→ ∇u(x), (9.2.4)

|um(x)| ≤ φ(x) and |∇um(x)| ≤ |ψ(x)|, (9.2.5)

for a.e. x ∈ Ω and all k ∈ N.

Hence, thanks to (A1) and (9.2.4), we get, as k −→∞
B(x, um(x),∇um(x))→ B(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (9.2.5), we can deduce the estimate

|B(x, um(x),∇um(x))| ≤ α1(f(x) + |φ(x)|k(x)−1 + |ψ(x)|k(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.

Seeing that

f+ |φ|k(x)−1 + |ψ(x)|k(x)−1 ∈ Lp ′(x)(Ω),

and taking into account the equality

ρp ′(x)(Ψ3um − Ψ3u) =

∫
Ω

|B(x, um(x),∇um(x)) − B(x, u(x),∇u(x))|p
′(x)dx,

then, we conclude from the Lebesgue’s theorem and (5.1.4) that

Ψ3um → Ψ3u in Lp
′(x)(Ω)

and consequently

Ψ3un → Ψ3u in Lp
′(x)(Ω),

and then Ψ3 is continuous.

Step 4 : Let I∗ : Lp ′(x)(Ω)→W−1,p ′(x)(Ω) be the adjoint operator of the operator

I :W
1,p(x)
0 (Ω)→ Lp(x)(Ω). Hence, we define the operators

I∗ ◦ Ψ1 :W1,p(x)
0 (Ω)→W−1,p ′(x)(Ω),

I∗ ◦ Ψ2 :W1,p(x)
0 (Ω)→W−1,p ′(x)(Ω),

and

I∗ ◦ Ψ3 :W1,p(x)
0 (Ω)→W−1,p ′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus, the compo-

sitions I∗ ◦ Ψ1, I∗ ◦ Ψ2 and I∗ ◦ Ψ3 are compact, that means N = I∗ ◦ Ψ1 + I∗ ◦ Ψ2 + I∗ ◦ Ψ3 is

compact. With this last step the proof of Lemma 9.2.4 is completed.

We are now in the position to get the existence result of weak solution for (9.0.2).
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Theorem 9.2.5 Assume that the assumptions (A1) − (A4) hold, then the problem (9.0.2) possesses

at least one weak solution u inW1,p(x)
0 (Ω).

Proof. The basic idea of our proof is to reduce the problem (9.0.2) to a new one governed by a

Hammerstein equation, and apply the theory of topological degree introduced in Subsection

5.2.2 to show the existence of a weak solution to the state problem.

First, for all u, ϑ ∈W1,p(x)
0 (Ω), we define the operators G and N by

G :W
1,p(x)
0 (Ω) −→W−1,p ′(x)(Ω)

〈Gu, ϑ〉 =
∫
Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx,

N :W
1,p(x)
0 (Ω) −→W−1,p ′(x)(Ω)

〈Nu, ϑ〉 = −

∫
Ω

(
−ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
ϑdx.

Consequently, the problem (9.0.2) is equivalent to the equation

Gu = −Nu, u ∈W1,p(x)
0 (Ω). (9.2.6)

Taking into account that, by Lemma 9.2.3, the operator G is a continuous, bounded, strictly

monotone and of type (S+), then, by [143, Theorem 26 A], the inverse operator

M := G−1 :W−1,p ′(x)(Ω)→W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of type (S+).

On another side, according to Lemma 9.2.4, we have that the operator N is bounded, con-

tinuous and quasimonotone.

Consequently, following Zeidler’s terminology [143], the equation (9.2.6) is equivalent to the

following abstract Hammerstein equation

u =Mϑ and ϑ+N ◦Mϑ = 0, u ∈W1,p(x)
0 (Ω) and ϑ ∈W−1,p ′(x)(Ω). (9.2.7)

Seeing that (9.2.6) is equivalent to (9.2.7), then to solve (9.2.6) it is thus enough to solve

(9.2.7). In order to solve (9.2.7), we will apply the Berkovits topological degree introduced

in Subsection 5.2.2.

First, let us set

R :=
{
ϑ ∈W−1,p ′(x)(Ω) such that there exists t ∈ [0, 1] such that ϑ+ tN ◦Mϑ = 0

}
.

Next, we show thatR is bounded inW−1,p ′(x)(Ω).

Let us put u := Mϑ for all ϑ ∈ R. Taking into account that |Mϑ|1,p(x) = |∇u|p(x), then we
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have the following two cases:

First case : If |∇u|p(x) ≤ 1.
Then |Mϑ|1,p(x) ≤ 1, that means

{
Mϑ : ϑ ∈ R

}
is bounded.

Second case : If |∇u|p(x) > 1.
Then, we deduce from (5.1.2), (A2) and (A4), the inequalities (5.1.7) and (5.1.6) and the

Young’s inequality that

|Mϑ|p
−

1,p(x) = |∇u|p−p(x)
≤ ρp(x)(∇u)

≤ 〈Gu, u〉

= 〈ϑ, Mϑ〉

= −t〈N ◦Mϑ, Mϑ〉

= t

∫
Ω

(
−ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
udx

≤ tmax(|ω|, α2|υ|, α1|σ|)
( ∫

Ω

|u|ξ(x)dx+

∫
Ω

|g(x)u(x)|dx+

∫
Ω

|u(x)|s(x)dx

+

∫
Ω

|f(x)u(x)|dx+

∫
Ω

|u(x)|k(x)dx+

∫
Ω

|∇u|k(x)−1|u|dx
)

= tmax(|ω|, α2|υ|, α1|σ|)
(
ρξ(x)(u) +

∫
Ω

|g(x)u(x)|dx+

∫
Ω

|f(x)u(x)|dx

+ ρs(x)(u) + ρk(x)(u) +

∫
Ω

|∇u|k(x)−1|u|dx
)

≤ C
(
|u|ξ

−

ξ(x) + |u|ξ
+

ξ(x) + |g|p ′(x)|u|p(x) + |f|p ′(x)|u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|k
+

k(x) + |u|k
−

k(x)

+
1

k ′−
ρk(x)(∇u) +

1

k−
ρk(x)(u)

)
≤ C

(
|u|ξ

−

ξ(x) + |u|ξ
+

ξ(x) + |u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|k
+

k(x) + |u|k
−

k(x) + |∇u|k+k(x)
)
.

Then, according to Lp(x) ↪→ Lξ(x), Lp(x) ↪→ Ls(x) and Lp(x) ↪→ Lk(x), we get

|Mϑ|p
−

1,p(x) ≤ C
(
|Mϑ|ξ

+

1,p(x) + |Mϑ|1,p(x) + |Mϑ|s
+

1,p(x) + |Mϑ|k
+

1,p(x)

)
,

what implies that
{
Mϑ : ϑ ∈ R

}
is bounded.

On the other hand, we have that the operator is N is bounded, then N ◦Mϑ is bounded.

Thus, thanks to (9.2.7), we have thatR is bounded inW−1,p ′(x)(Ω).

However, there exists r > 0 such that

|ϑ|−1,p ′(x) < r for all ϑ ∈ R,

which leads to

ϑ+ tN ◦Mϑ 6= 0, ϑ ∈ ∂Rr(0) and t ∈ [0, 1],
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whereRr(0) is the ball of center 0 and radius r inW−1,p ′(x)(Ω).

Moreover, by Lemma 5.2.11, we conclude that

I+N ◦M ∈ FM(Rr(0)) and I = G ◦M ∈ FM(Rr(0)).

On another side, taking into account that I, N and M are bounded, then I + N ◦ M is

bounded. Hence, we infer that

I+N ◦M ∈ FM,B(Rr(0)) and I = G ◦M ∈ FM,B(Rr(0)).

Next, we define the homotopy

H : [0, 1]×Rr(0)→W−1,p ′(x)(Ω)

(t, ϑ) 7→ H(t, ϑ) := ϑ+ tN ◦Mϑ.

Hence, thanks to the properties of the degree d seen in Theorem 5.2.14, we obtain

d(I+N ◦M,Rr(0), 0) = d(I,Rr(0), 0) = 1 6= 0,

what implies that there exists ϑ ∈ Rr(0) which verifies

ϑ+N ◦Mϑ = 0.

Finally, we infer that u =Mϑ is a weak solution of (9.0.2). The proof is completed.
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Chapter 10

Existence of weak solutions to a class of
nonlinear degenerate parabolic equations
in weighted Sobolev spaces by
Topological degree methods

In this chapter, we prove the existence of a weak solutions for the initial boundary value

problem associated with the nonlinear degenerate parabolic equations

∂u

∂t
− divb(x, t, u,∇u) = φ(x, t) + diva(x, t,∇u). (10.0.1)

We will use the topological degree theory for operators of the type T + S to study this

problem in the space Lp(0, T ;W1,p
0 (Ω,ω)), where Ω is a bounded domain in RN(N ≥ 2),

p ≥ 2 andω is a vector of weight functions.

10.1 Hypotheses and technical lemmas

we focus our attention on the basic assumptions and the operators associated with our prob-

lem to prove the existence results, and we introduce some useful technical lemmas to prove

existence results.

Throughout this paper, we assume that the operators a : ΩT × RN −→ RN and b : ΩT ×
R× RN −→ RN are Carathéodory’s functions satisfying the following assumptions:

(A1) There exists c1, c2 positive consts and k1, k2 ∈ Lq(ΩT) such that

|ai(x, t, ζ)| ≤ c1ω1/p
i

(
k1(x, t) +

N∑
i=1

ω
1/q
i |ζi|

p−1
)
,

|bi(x, t, η, ζ)| ≤ c2ω1/p
i

(
k2(x, t) +

N∑
i=1

ω
1/q
i |ζi|

p−1
)
,

for all i ∈ {1, · · · , N}.

(A2)(a(x, t, ζ) − a(x, t, ζ
′))(ζ− ζ ′) > 0, (b(x, t, η, ζ) − b(x, t, η, ζ ′))(ζ− ζ ′) > 0.
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(A3) There exists α1, α2 positive constants such that
N∑
i=1

ai(x, t, ζ)ζi ≥ α1
N∑
i=1

ωi|ζi|
p,

N∑
i=1

bi(x, t, η, ζ)ζi ≥ α2
N∑
i=1

ωi|ζi|
p,

for all (x, t) ∈ ΩT , η ∈ R and (ζ ′, ζ) ∈ RN × RN with ζ ′ 6= ζ.

Now, we give the property of the related operator which will be used later.

Lemma 10.1.1 Assume that the assumptions (A1)−(A3) hold. Then the operator S defined from X
to X ∗ by

〈Su, v〉 =
N∑
i=1

∫
ΩT

(
ai(x, t,∇u) + bi(x, t, u,∇u)

)
∂ivdxdt, u, v ∈ X

is bounded, continuous and of class (S+).

Proof. Firstly, let us show that the operator S is bounded.

Let u, v ∈ X . By using the Hölder’s inequality, we get

|〈Su, v〉|

≤
∫ T
0

[ N∑
i=1

∫
Ω

|ai(x, t,∇u) + bi(x, t, u,∇u)|ω−1/p
i |∂iv|ω

1/p
i dx

]
dt

≤
∫ T
0

[ N∑
i=1

∫
Ω

|ai(x, t,∇u)|ω−1/p
i |∂iv|ω

1/p
i dx

]
dt

+

∫ T
0

[ N∑
i=1

∫
Ω

|bi(x, t, u,∇u)|ω−1/p
i |∂iv|ω

1/p
i dx

]
dt

≤
∫ T
0

[ N∑
i=1

( ∫
Ω

∣∣ai(x, t,∇u)ω−1/p
i

∣∣qdx)1/q( ∫
Ω

|∂iv|
pωidx

)1/p]
dt

+

∫ T
0

[ N∑
i=1

( ∫
Ω

∣∣bi(x, t, u,∇u)ω−1/p
i

∣∣qdx)1/q( ∫
Ω

|∂iv|
pωidx

)1/p]
dt

≤
∫ T
0

[( N∑
i=1

∫
Ω

∣∣ai(x, t,∇u)ω−1/p
i

∣∣qdx)1/q( N∑
i=1

∫
Ω

|∂iv|
pωidx

)1/p]
dt

+

∫ T
0

[( N∑
i=1

∫
Ω

∣∣bi(x, t, u,∇u)ω−1/p
i

∣∣qdx)1/q( N∑
i=1

∫
Ω

|∂iv|
pωidx

)1/p]
dt

=

∫ T
0

[( N∑
i=1

∫
Ω

|ai(x, t,∇u)|qω1−q
i dx

)1/q( N∑
i=1

∫
Ω

|∂iv|
pωidx

)1/p]
dt

+

∫ T
0

[( N∑
i=1

∫
Ω

|bi(x, t, u,∇u)|qω1−q
i dx

)1/q( N∑
i=1

∫
Ω

|∂iv|
pωidx

)1/p]
dt

=

∫ T
0

N∑
i=1

[
‖ai(x, t,∇u)‖Lq(Ω,ω1−qi ) + ‖bi(x, t, u,∇u)‖Lq(Ω,ω1−qi )

]
‖v‖dt.
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Thanks to (A1) and for all i ∈ {1, ...,N}, we can easily prove that ‖ai(x, t,∇u)‖Lq(Ω,ω1−qi ) and

‖bi(x, t, u,∇u)‖Lq(Ω,ω1−qi ) are bounded for all u ∈W1,p
0 (Ω,ω). Therefore

|〈Su, v〉| ≤ const
∫ T
0

‖v‖dt = const‖v‖
L1(0,T ;W1,p0 (Ω,ω)).

From the continuous embedding X ↪→ L1(0, T ;W1,p
0 (Ω,ω)), we concludes that

|〈Su, v〉| ≤ const‖v‖X .

Hence, the operator S is bounded.

Secondly, we show that S is continuous. Let un → u in X . We need to show that Sun →
Su. By using the Hölder’s inequality, we have for all v ∈ X

|〈Sun − Su, v〉| ≤
∫ T
0

( ∫
Ω

|a(x, t,∇un) − a(x, t,∇u)|ω−1/p · |∇v|ω1/pdx
)
dt

+

∫ T
0

( ∫
Ω

|b(x, t, u,∇un) − b(x, t, u,∇u)|ω−1/p · |∇v|ω1/pdx
)
dt

≤
∫ T
0

‖a(x, t,∇un) − a(x, t,∇u)‖Lq(Ω,ω1−q)‖∇v‖Lp(Ω,ω)dt

+

∫ T
0

‖b(x, t, un,∇un) − b(x, t, u,∇u)‖Lq(Ω,ω1−q)‖∇v‖Lp(Ω,ω)dt

≤
[
‖a(x, t,∇un) − a(x, t,∇u)‖Lq(ΩT ,ω1−q)

+ ‖b(x, t, un,∇un) − b(x, t, u,∇u)‖Lq(ΩT ,ω1−q)
]
‖v‖X ,

so, we need to show that

‖a(x, t,∇un) − a(x, t,∇u)‖Lq(ΩT ,ω1−q) → 0,

and

‖b(x, t, un,∇un) − b(x, t, u,∇u)‖Lq(ΩT ,ω1−q) → 0.

On the other hand, note that if un → u in X , then ∇un → ∇u in
N∏
i=1

Lp(ΩT ,ωi). Hence,

by Theorem 1.1.7, there exist a subsequence (uk) and functions ϕ in Lp(ΩT ,ω0) and ψ in
N∏
i=1

Lp(ΩT ,ωi) such that

uk → u and ∇uk → ∇u,
|uk(x, t)| ≤ ϕ(x, t) and |∇uk(x, t)| ≤ |ψ(x, t)|, (10.1.1)

for a.e. (x, t) ∈ ΩT and all k ∈ N.

Then, in the light of the operators a and b are Carathéodory functions, we deduce that

a(x, t,∇uk(x, t))→ a(x, t,∇u(x, t)) a.e. (x, t) ∈ ΩT , (10.1.2)
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b(x, t, uk,∇uk(x, t))→ b(x, t, u,∇u(x, t)) a.e. (x, t) ∈ ΩT . (10.1.3)

On another side, in view of (A1), we get for all i = 1, · · · , N

|ai(x, t, ζ)| ≤ c1ω1/p
i

(
k1(x, t) +

N∑
i=1

ω
1/q
i |ψi(x, t)|

p−1
)
,

|bi(x, t, η, ζ)| ≤ c2ω1/p
i

(
k2(x, t) +

N∑
i=1

ω
1/q
i |ψi(x, t)|

p−1
)
,

for a.e. (x, t) ∈ ΩT .

As

c1ω
1/p
i

(
k1(x, t) +

N∑
i=1

ω
1/q
i |ψi(x, t)|

p−1
)
∈

N∏
i=1

Lq(ΩT ,ω
1−q
i ),

and

c2ω
1/p
i

(
k2(x, t) +

N∑
i=1

ω
1/q
i |ψi(x, t)|

p−1
)
∈

N∏
i=1

Lq(ΩT ,ω
1−q
i ),

therefore, thanks to (10.1.2), (10.1.3) and the dominated convergence theorem, we obtain

a(x, t,∇uk(x, t))→ a(x, t,∇u(x, t)) in Lq(ΩT ,ω
1−q),

b(x, t, uk,∇uk(x, t))→ b(x, t, u,∇u(x, t)) in Lq(ΩT ,ω
1−q).

Thus, in view to convergence principle in Banach spaces, we conclude that

a(x, t,∇un(x, t))→ a(x, t,∇u(x, t)) in Lq(ΩT ,ω
1−q), (10.1.4)

b(x, t, un,∇un(x, t))→ b(x, t, u,∇u(x, t)) in Lq(ΩT ,ω
1−q). (10.1.5)

According to (10.1.4) and (10.1.5), we deduce that

〈Sun − Su, v〉→ 0, for all v ∈ X ,

that means, the operator S is continuous.

Next, we prove that the operator S is of class (S+). Let (un)n ⊂ X such that un ⇀ u in X ,
lim sup
n→∞ 〈Sun, un − u〉 ≤ 0.

(10.1.6)

We will prove that

un → u in X .

Since un ⇀ u in X , then un ⇀ u in W1,p
0 (Ω,ω), then there exist a subsequence still denoted

by (un) such that un ⇀ u inW1,p
0 (Ω,ω),

un → u in Lp(Ω,ω0) and a.e in Ω.
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On the other hand, we have

lim sup
n→∞ 〈Sun, un − u〉

= lim sup
n→∞ 〈Sun − Su, un − u〉

= lim sup
n→∞

[ ∫
ΩT

(
a(x, t,∇un(x, t)) − a(x, t,∇u(x, t))

)
.
(
∇un −∇u

)
dxdt

+

∫
ΩT

(
b(x, t, un,∇un(x, t)) − b(x, t, u,∇u(x, t))

)
.
(
∇un −∇u

)
dxdt

]
≤ 0.

From (A2) and (10.1.6), we obtain

lim
n→∞〈Sun, un − u〉 = lim

n→∞〈Sun − Su, un − u〉 = 0. (10.1.7)

Let

Θn(x, t) =
(
a(x, t,∇un) − a(x, t,∇u)

)
.
(
∇un −∇u

)
,

Under (10.1.7), we have

Θn → 0 in L1(ΩT) and a.e. inΩT ,

Since Θn → 0 a.e in ΩT , then there exists a subset B of ΩT ( mes(B) = 0) such that for all

(x, t) ∈ Ω\B,

|u(x, t)| <∞, |∇u(x.t)| <∞, un → u, Θn → 0.

Thanks to (A1) and (A3), if we pose ζn = ∇un and ζ = ∇u, we get

Θn(x, t) =
(
a(x, t, ζn) − a(x, t, ζ)

)
.
(
ζn − ζ

)
= a(x, t, ζn).ζn + a(x, t, ζ).ζ− a(x, t, ζn).ζ− a(x, t, ζ).ζn

≥ α1
N∑
i=1

ωi|ζ
i
n|
p + α1

N∑
i=1

ωi|ζ
i|p

−

N∑
i=1

c1ω
1/p
i

(
k1(x, t) +

N∑
j=1

ω
1/q
j |ζjn|

p−1
)
|ζin|

−

N∑
i=1

c1ω
1/p
i

(
k1(x, t) +

N∑
j=1

ω
1/q
j |ζjn|

p−1
)
|ζi|

≥ α1
N∑
i=1

ωi|ζ
i
n|
p − C

(
1+

N∑
i=1

ω
1/q
i |ζin|

p−1 +

N∑
i=1

ω
1/q
i |ζin|

)
where C is a const which depends only on x.

Then by a standard argument (ζn)n is bounded a.e. ΩT , we deduce that

Θn(x, t) ≥
N∑
i=1

|ζin|
p
(
α1ωi −

C

N|ζin|
p
−
Cω

1/q
i

|ζin|
−
Cω

1/q
i

|ζin|
p−1

)
.
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Hence, if |ζn|→∞, then Θn →∞; what is contradiction with Θn → 0 in L1(ΩT)..

Next, for ζ∗ be an adherent point of ζn, we have |ζ∗| < ∞ and the continuity of a, with

respect to the last two variables, we will obtain(
a(x, t, ζn) − a(x, t, ζ)

)(
ζ∗ − ζ

)
= 0. (10.1.8)

Analogously, if we choose

Λn(x, t) =
(
b(x, t, un,∇un) − b(x, t, u,∇u)

)
.
(
∇un −∇u

)
,

and we take ζn = ∇un and ζ = ∇u, then, by the same arguments used above, we obtain(
b(x, t, η, ζn) − b(x, t, η, ζ)

)(
ζ∗ − ζ

)
= 0. (10.1.9)

Then, according to (10.1.8), (10.1.9) and (A2) we get ζ∗ = ζ. Hence, by the uniqueness of the

adherent point, we deduce that

∇un −→ ∇u a.e. in ΩT . (10.1.10)

On the other hand, seeing that a(x, t,∇un) and b(x, t, un,∇un) are bounded in
N∏
i=1

Lq(Ω,ω1−q),

and

a(x, t,∇un) −→ a(x, t,∇u) a.e. inΩT ,

b(x, t, un,∇un) −→ b(x, t, u,∇u) a.e. inΩT ,

then, by Lemma 1.3.3, we have

a(x, t,∇un)⇀ a(x, t,∇u) in
N∏
i=1

Lq(Ω,ω1−q
i ),

b(x, t, u,∇un)⇀ b(x, t, u,∇u) in
N∏
i=1

Lq(Ω,ω1−q
i ).

If we pose

ρn =
(
a(x, t,∇un) + b(x, t, un,∇un)

)
· ∇un,

ρ =
(
a(x, t,∇u) + b(x, t, u,∇u)

)
· ∇u,

we can write

ρn → ρ in L1(ΩT).

Thanks to (A3), we obtain

ρn ≥ (α1 + α2)

N∑
i=1

ωi|∂iun|
p and ρ ≥ (α1 + α2)

N∑
i=1

ωi|∂iu|
p.
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In view of τn =

N∑
i=1

ωi|∂iun|
p, τ =

N∑
i=1

ωi|∂iu|
p, ρn =

ρn
(α1 + α2)

and

ρ =
ρ

(α1 + α2)
, we have

ρn ≥ τn and ρ ≥ τ.

Then by Fatou’s lemma, we get∫
ΩT

2 ρdxdt ≤ lim inf
n→∞

∫
ΩT

ρ+ ρn − |τn − τ|dxdt,

i.e.,

0 ≤ − lim sup
n→∞

∫
ΩT

|τn − τ|dxdt.

So

0 ≤ lim inf
n→∞

∫
ΩT

|τn − τ|dxdt ≤ lim sup
n→∞

∫
ΩT

|τn − τ|dxdt ≤ 0,

consequently

∇un −→ ∇u in
N∏
i=1

Lp(Ω,ωi). (10.1.11)

According to (10.1.10) and (10.1.11), we have

un −→ u inW1,p
0 (Ω,ω),

this implies

un → u in X ,

what implies that S is of type (S+), which completes the proof.

10.2 Main result

First, let us recall that the definition of a weak solution for problem (10.0.1) can be stated as

follows.

Definition 10.2.1 We say that the function u ∈ X is a weak solution of (10.0.1) if

−

∫
ΩT

uvtdxdt+

N∑
i=1

∫
ΩT

(
ai(x, t,∇u) + bi(x, t, u,∇u)

)
∂ivdxdt =

∫
ΩT

φvdxdt,

for all v ∈ X .

We are now in the position to get existence result of weak solution for (10.0.1).

Theorem 10.2.2 Let φ ∈ X ∗, u0 ∈ L2(Ω) and assume that the assumptions (A1) − (A3) hold.

Then, the problem (10.0.1) admits at least one weak solution u ∈ D(T ), where D(T ) = {v ∈ X :

v ′ ∈ X ∗, v(0) = 0}.
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Proof. Let S and T be the operators defined from D(T ) ⊂ X to X ∗, by

〈Su, v〉 =
N∑
i=1

∫
ΩT

(
ai(x, t,∇u) + bi(x, t, u,∇u)

)
∂ivdxdt,

〈T u, v〉 = −

∫
ΩT

uvt dxdt,

for all u ∈ D(T ), v ∈ X . Then u ∈ D(T ) is a weak solution for (10.0.1) if and only if

T u+ Su = φ for all u ∈ D(T ).

One can verify, as in Zeidler [143], that the operator T is linear densely defined and maximal

monotone [143, Theorem 32.L, pp.897-899].

Next, it follows from Lemma 10.1.1 that S is bounded, continuous and of class (S+).

Let u ∈ X . Using the monotonicity of T
(
〈Lu, u〉 ≥ 0 for all u ∈ D(L)

)
and the assumption

(A2), we deduce that

〈T u+ Su, u〉 ≥ 〈Su, u〉

=

∫
ΩT

(
a(x, t,∇u) + b(x, t, u,∇u)

)
· ∇vdxdt

≥
∫
ΩT

α1

N∑
i=1

ωi|∇u|pdxdt+
∫
ΩT

α2

N∑
i=1

ωi|∇u|pdxdt

≥ min(α1, α2)
∫
ΩT

N∑
i=1

ωi|∇u|pdxdt

= min(α1, α2)
∫ T
0

‖u‖pdt

= min(α1, α2)‖u‖pX .

Because the right-hand side of the previous inequality approximates to∞when ‖u‖X →∞,

then for every φ ∈ X ∗ there is a radius r = r(φ) > 0 such that

〈T u+ Su− φ,u〉 > 0, for each u ∈ Br(0) ∩D(T ).

So, all the conditions of Theorem 5.2.7 are satisfied. Consequently, Theorem 5.2.7 leads us to

the conclusion that the equation T u + Su = φ has a weak solution in D(T ), which implies

that the problem (10.0.1) admits at least one weak solution. This completes the proof.
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