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RØsumØ

Au cours de la derniŁre dØcennie, une importante littØrature traite de diffØrents aspects des

EDP dont la partie principale de l’opØrateur a une croissance de type puissance, l’exemple

principal Øtant le p-Laplacien. Il existe un large Øventail de directions dans lesquelles le cas

de la croissance polynomiale a ØtØ dØveloppØ, notamment les approches à exposant vari-

able, avec poids, double phase à exposant variable et des approches faisant intervenir un

opØrateur "p(x)-Laplacian-like" et un opØrateur "p(x)-Kirchhoff-Laplacian".

Dans la prØsente monographie, nous traitons les questions de la thØorie de l’existence et

de l’unicitØ aux problŁmes elliptiques et paraboliques de type Dirichlet ou Neumann dans

diffØrents cadres fonctionnels. L’originalitØ de ce travail consiste en la prØsence d’une classe

d’opØrateurs ØtudiØs permettant de regarder l’importance du cadre fonctionnel, et impli-

quant des espaces de Lebesgue-Sobolev avec poids et des espaces de Lebesgue-Sobolev à

exposant variable. Cette thŁse est composØe de deux parties principales :

La premiŁre partie concerne l’Øtude de l’existence et de l’unicitØ de la solution faible

de certains problŁmes de Dirichlet rØgis par une Øquation elliptique non linØaire dØgØnØrØe

dans le cadre des espaces de Sobolev avec poids oø les donnØes sont dansLp 0
(
; ! 1- p 0

) ou

dans Lp 0
(
; ! 1- p 0

) +
nQ

j= 1
Lp 0

(
; ! 1- p 0
). Notre outil principal, dans cette partie, est basØ sur le

thØorŁme de Browder-Minty et la thØorie des espaces de Sobolev avec poids.

La deuxiŁme partie de cette thŁse est consacrØe à l’Øtude de deux classes de problŁmes

non linØaires, la premiŁre classe des problŁmes qu’ils discutent dans cette partie sont des

problŁmes aux limites de Dirichlet ou de Neumann impliquant l’opØrateur p(x)-Laplacian-

like ou l’opØrateur p(x)-Kirchhoff-Laplacian ou l’opØrateur (p(x); q(x)) -laplacien avec des

conditions de croissance non standard. Sous des hypothŁses appropriØes, ils Øtablissent

plusieurs nouveaux rØsultats concernant l’existence et l’unicitØ de la solution faible dans le

cadre des espaces de Sobolev à exposant variable. Ces rØsultats sont obtenus par une com-

binaison de la thØorie des espaces de Sobolev à exposant variable et la thØorie des degrØs

topologiques pour une classe d’opØrateurs dØmicontinus de type(S+ ) gØnØralisØ. La deux-

iŁme classe est un problŁme parabolique associØ à l’Øquation :
@u
@t

- div A(x; t; r u) = � (x; t ) + div B(x; t; u; r u);

x
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ce problŁme vise à prØsenter des rØsultats d’existence d’une solution faible dans l’espace

Lp(0; T;W1;p
0 (
; ! )) par l’utilisation d’une thØorie des degrØs topologiques pour les opØra-

teurs du type T + S, oø S est une application dØmicontinue bornØe de classe(S+ ) et T est une

application monotone maximale linØaire dØ�nie de maniŁre dense par rapport à un domaine

de T .

Mots clØs : ProblŁme de Dirichlet, problŁme de Neumann, problŁme elliptique, problŁme

parabolique, Øquation elliptique non linØaire dØgØnØrØe, thØorie des degrØs topologiques,

solution faible, espaces de Sobolev avec poids, existence et unicitØ, espaces de Sobolev

à exposant variable, opØrateur de type p(x)-Kirchhoff-Laplacian, opØrateur de type p(x)-

Laplacian-like, opØrateur à double phase avec des exposants variables.
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Abstract

Over the last decade, a large literature describes various aspects of PDEs whose main part

of the operator has power-type growth with the leading example of the p-Laplacian. There

is a wide range of directions in which the polynomial growth case has been developed, in-

cluding variable exponent, weighted, double phase with variable exponents and approaches

involving p(x)-Laplacian-like operator and p(x)-Kirchhoff-Laplacian operator.

In the following monograph we deal with the questions from existence and uniqueness

theory to elliptic and parabolic problems of Dirichlet or Neumann type in different settings.

The originality of this work consists of the presence of a class of studied operators allowing

to look the importance of the functional framework involves weighted Lebesgue-Sobolev

spaces and variable exponent Lebesgue-Sobolev spaces. This thesis covers two main parts :

The �rst part concerns the study the existence and uniqueness of weak solution to cer-

tain Dirichlet problems governed by nonlinear degenerate elliptic equation in the setting of

weighted Sobolev spaces with the right-hand side term in Lp 0
(
; ! 1- p 0

) or in Lp 0
(
; ! 1- p 0

)+
nQ

j= 1
Lp 0

(
; ! 1- p 0
). Our main tool , in this part, is based on the Browder-Minty theorem and

the theory of weighted Sobolev spaces.

The second part of this thesis is devoted to study two classes of nonlinear problems, the

�rst classe of problems that we discuss in this part are Dirichlet or Neumann boundary value

problems involving the the p(x)-Laplacian-like operator or the p(x)-Kirchhoff-Laplacian op-

erator or (p(x); q(x)) -Laplacian operator with nonstandard growth conditions. Under suit-

able assumptions, we establish new several results concerning the existence and uniqueness

of weak solution in the setting of variable exponent Sobolev spaces. These results are ob-

tained by combining the theory of the variable exponent Sobolev spaces and the topological

degree theory for a class of demicontinuous operator of generalized (S+ ) type. The second

classe of problem is a parabolic problem associated with the equation :

@u
@t

- div A(x; t; r u) = � (x; t ) + div B(x; t; u; r u);

this problem aim to present an existence result of a weak solution in the spaces Lp(0; T;W1;p
0 (
; ! ))

by using a topological degree theory for operators of the type T + S, where S is a bounded

xii
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demicontinuous map of class (S+ ) and T is a linear densely de�ned maximal monotone map

with respect to a domain of T .

Key words : Dirichlet problem, Neumann problem, elliptic problem, parabolic problem,

degenerate nonlinear elliptic equation, topological degree theory, weak solution, weighted

Sobolev spaces, existence and uniqueness, variable exponent Sobolev spaces,p(x)-Kirchhoff-

Laplacian operator, p(x)-Laplacian-like operator, double phase operator with variable expo-

nents.
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Symbol description

8 for all

9 there exists

� equivalent
P

summation
Q

product

R set of real numbers

N set of natural numbers

N positive integer greater than or equals to 1

RN N -dimensional Euclidean space of points x = ( x1; x2; � � � ; xN )


 open bounded subset of RN

@
 boundary of 


� = ( � 1; � 2; � � � ; � N ) an multiindex with � i 2 N

j� j =
NP

i= 1
� i the length of the multiindex �

D � = @j � j

@x� 1
1 :@x� 2

2 ���@x� N
N

partial derivative of order j� j

C(
 ) the spaces of continuous functions on 


C1 (
 ) the spaces of in�nitely differentiable functions on 


C1
0 (
 ) in�nitely differentiable functions with compact support on 


r u gradient of a function u

a.e almost everywhere

� ! strong convergence

� weak convergence

,! continuous embedding

,! ,! compact embedding

X arbitrary Banach space

X� dual space of the Banach spaceX

h�; �i scalar product of RN , duality between X and X�
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 closure of 
 (i.e., 
 plus its boundary)

[0; T] closed interval 0 � t � T in R


 T the time-space cylinder 
 � (0; T) with T 2 (0;1 )

@
 T boundary of 
 T

j
 j measure of the set


x (x1; :::; xN ) point in RN

dx dx 1; :::; dxN Lebesgue measure in


div f
NX

i= 1

@f
@xi

p real number such that 1 � p < 1

p 0 the Hölder conjugate of p

Lp(
 ) usual Lebesgue space

Lp 0
(
 ) dual space of Lp(
 )

L1 (
 ) essentially bounded measurable functions on 


W1;p(
 ) usual Sobolev space

W1;p
0 (
 ) closure of C1

0 (
 ) in W1;p(
 ) (i.e. w.r.t. the norm jj � jjW1;p (
 ))

W - 1;p0
(
 ) dual space of W1;p

0 (
 )

Lp(
; ! ) weighted Lebesgue Sobolev space

Lp 0
(
; ! 1- p 0

) dual space of Lp(
; ! )

W1;p(
; ! ) weighted Sobolev space

W1;p
0 (
; ! ) closure of C1

0 (
; ) in W1;p(
; ! )

W - 1;p0
(
; ! 1- p 0

) dual space of W1;p
0 (
; ! )

p(�) measurable function (variable exponent)

p+ essential sup of p(�)

p- essential inf of p(�)

p 0(�) Sobolev conjugate ofp(�)

Lp(�)(
 ) variable exponent Lebesgue space (generalized Lebesgue space)

W1;p(�)(
 ) variable exponent Sobolev space (generalized Sobolev space)

W1;p(�)
0 (
 ) closure of C1

0 (
 ) in W1;p(�)(
 )

W - 1;p0(�)(
 ) dual space of W1;p(�)
0 (
 )
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General introduction

Historical and motivation

Boundary value problems for elliptic and parabolic equations, more precisely, the con-

cept of weak (generalized) solutions, have their background in applications (namely, in the

variational approach connected with the critical level of a certain energy functional as well

as in numerical methods like FEM etc). This type of approach is closely related to the concept

of Sobolev spaces and is well elaborated for both linear and nonlinear equations.

In various applications, we can meet boundary value problems for elliptic and parabolic

equations whose ellipticity is "disturbed" in the sense that some degeneration or singularity

appears. This "bad" behaviour can be caused by the coef�cients of the corresponding dif-

ferential operator as well as by the solution itself. The so-called p-Laplacian is a prototype

of such an operator and its character can be interpreted as a degeneration or as a singular-

ity of the classical (linear) Laplace operator (with p = 2). There are several very concrete

problems from practice which lead to such differential equations, e.g. from glaceology, non-

Newtonian �uid mechanics, �ows through porous media, differential geometry, celestial

mechanics, climatology, petroleum extraction, reaction-diffusion problems, etc.

Let ! be a weight on RN , i.e., a locally integrable function on RN such that ! (x) > 0 for

a.e. x 2 RN . Let 
 � RN be open, 1 � p < 1 , and k a nonnegative integer. The weighted

Sobolev spaceWk;p (
; ! ) consists of all functions u with weak derivatives D � u , j� j � k,

satisfying

jju jjWk;p (
;! ) =

0

@
X

j� j� k

Z



jD � u jp! (x) dx

1

A

1
p

< 1 :

In the case ! = 1, this space is denoted Wk;p (
 ). In general, Sobolev spaces without

weights occur as spaces of solutions for elliptic and parabolic partial di�erential equations

(see [28, 34]). Typically, 2k is the order of the equation and the case p = 2 corresponds to

linear equations. Details can be found in almost any book on partial differential equations.

For degenerate partial differential equations, where we have equations with various types of

singularities in the coef�cients, it is natural to look for solutions in weighted Sobolev spaces

1
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[87, 88], we mention some works in this direction [7, 11, 12, 130].

The type of a weight depends on the equation type. A class of weights, which is par-

ticularly well understood, is the class of Ap weights (or Muckenhoupt class) that was intro-

duced by Muckenhoupt in the early 1970’s [113, 114]. This class consists of precisely those

weights ! for which the Hardy-Littlewood maximal operator is bounded from Lp(RN ; ! )

to Lp(RN ; ! ), when 1 < p < 1 , and from L1(RN ; ! ) to wk- L1(RN ; ! ), when p = 1. These

classes have found many useful applications in harmonic analysis [138]. Another reason for

studying Ap weights is the fact that powers of distance to submanifolds of RN often belong

to Ap [102].

It is well-known that classical potential theory is connected to linear partial differential

equations and the Sobolev spaceW1;2(
 ). The most striking manifestation of this connection

is the Dirichlet principle, which states that the solution to Dirichlet’s problem for the Laplace

equation in a domain 
 : 8
><

>:

�u = 0 in 
;

u = f on @
;

where the boundary function f is assumed to belong to W1;2(
 ), can be obtained by mini-

mizing the energy integral Z



r u dx

over all functions u 2 W1;2(
 ) for which u - f 2 W1;2
0 (
 ). A corresponding nonlinear poten-

tial theory, connected to nonlinear partial differential equations and the space Wk;p , has been

developed. The theory originated in the work by V. G. Maz’ya and J. Serrin. Excellent ac-

counts of this theory and its history are the monographs Adams-Hedberg [6], Maz’ya [111],

and Ziemer [155]. A lot of the corresponding weighted theory can be found in Heinonen,

Kilpelainen, and Martio [95].

In recent years, partial differential equations with nonlinearities and nonconstant expo-

nents have received a lot of attention (see [119, 120]). The impulse of this topic would come

from the new search �eld that re�ects a new type of physical phenomenon is a class of

nonlinear problems with variable exponents. Modeling with classic Lebesgue and Sobolev

spaces has been demonstrated to be limited for a number of materials with inhomogeneities.

In the subject of �uid mechanics, for example, great emphasis has been paid to the study of

electrorological �uids, which have the ability to modify their mechanical properties when

exposed to an electric �eld (see [5, 125, 126]). Rajagopal and R�uzicka recently developed

a very interesting model for these �uids in [129] (see also [132]), taking into account the

delicate interaction between the electric �eld E(x) and the moving liquid. This type of prob-
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lem’s energy is provided by
Z



jr u jp(x)dx. This type of energy can also be found in elas-

ticity problems [149]. The natural energy space in which such problems can be studied is

the variable exponent Sobolev spaceW1;p(x)(
 ). Also, we can �nd other applications relate

to image processing [2, 40], elasticity [150], the �ow in porous media [17, 96], and prob-

lems in the calculus of variations involving variational integrals with nonstandard growth

[1, 4, 21, 22, 109, 122, 121, 123, 150].

For several years, great efforts have been devoted to the study of nonlinear elliptic equa-

tions with an operator described by polynomial growth, which is motivated, for example,

in the classical Sobolev space, not only by the description of many phenomena appearing in

the applied sciences, due to the study of �uid �ltration in porous media, constrained heat-

ing, elasto-plasticity, optimal control, �nancial mathematics, and others. Interested readers

may refer to [14, 24, 27, 40] and the references therein for more background of applications.

But also by the mathematical importance in the theory of this space. In addition, there is

a vast literature describing various aspects of PDEs whose main part of the operator has a

power-like growth with the preeminent example of the p-Laplacian. There is a wide range of

directions in which the polynomial growth case has been developed, including variable ex-

ponent, p(x)-Laplacian-like operator, p(x)-Kirchhoff-Laplacian operator, and double-phase

with variable exponent.

The study of various mathematical problems involving double-phase operator has be-

come very attractive in recent decades. Zhikov was the �rst who studied this type of prob-

lem in order to describe models of strongly anisotropic materials by studying the functional

u 7!
Z




�
jr u jp + a(x)jr u jq

�
dx (0.0.1)

where the integrand switches two different elliptic behaviours. For more results see [151,

152, 153]. Then, several interesting works have been carried out on the double phase prob-

lem with a Dirichlet boundary condition. For a deeper comprehension, we refer the reader

to [3, 107, 110, 118, 134, 144, 145, 146] and the references therein.

The double phase operator has been used in the modelling of strongly anisotropic ma-

terials [150] and in Lavrentiev’s phenomenon [151]. In the one hand, we have the physical

motivation; since the double phase operator has been used to model the steady-state solu-

tions of reaction-diffusion problems, that arise in biophysic, plasma-physic and in the study

of chemical reactions. In the other hand, these operators provide a useful paradigm for

describing the behaviour of strongly anisotropic materials, whose hardening properties are

linked to the exponent governing the growth of the gradient change radically with the point,

where the coef�cient a(�) determines the geometry of a composite made of two different ma-
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terials (see [23, 148] and the references given there).

Moving on to another novel aspect; the double phase problem with variable exponents

that few author consider. Ragusa and Tachikawa in [124, 125, 126, 127, 128] and reference

therein, are the frst ones who have achieved the regularity theory for minimizers of (0.0.1)

with variable exponents (see also [65, 66, 67]). Moreover, in [136] Tachikawa, provides the

Hölder continuity up to the boundary of minimizers of so-called double phase functional

with variable exponents, under suitable Dirichlet boundary conditions.

In the context of the study of p(x)-Laplacian-like problems, arising from capillarity phe-

nomena, Ni and Serrin [115, 116] initiated the study of ground states for equations of the

form

- div
� r u

p
1 + jr u j2

�
= f (u) in RN ; (0.0.2)

with very general right hand side f . The operator - div
� r u

p
1 + jr u j2

�
is usually denoted as

the prescribed mean curvature operator. Radial (singular) solutions of the problem (0.0.2)

has been studied in the context of the analysis of capillary surfaces for a function f of the

form f (u) = ku , for k > 0 (for more details see [46, 84, 97]).

Capillarity can be brie�y explained by considering the effects of two opposing forces:

adhesion, i.e. the attractive (or repulsive) force between the molecules of the liquid and

those of the container; and cohesion, i.e. the attractive force between the molecules of the

liquid. The study of capillary phenomenon has gained some attention recently. This increas-

ing interest is motivated not only by fascination in naturally occurring phenomena such

as motion of drops, bubbles, and waves but also its importance in applied �elds ranging

from industrial and biomedical and pharmaceutical to micro�uidic systems. Recently, the

study of capillarity phenomena has begun to receive more and more attention, for instance

[60, 61, 62, 64, 19, 90, 98, 131, 135, 140, 154].

Elliptic boundary value problems involving the mean curvature operator play apivotal

role in the mathematical analysis of several physical or geometrical issues, such as capillarity

phenomena for incompressible or compressible �uids, mathematical models in physiology

or in electrostatics, �ux-limited diffusion phenomena, prescribed mean curvature problems

for Cartesian surfaces in the Euclidean space: relevant references on these topics include

[45, 47, 85, 92].

Let’s move on to another innovative aspect; the study of Kirchhoff type problems has

already been extended to the case involving the p(x)-Laplacian operator. We would like to

draw attention to the fact that the p(x)-Laplacian operator has more complicated nonlinear-

ity than the p-Laplacian operator. For example, they are non-homogeneous, which prove
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that the problems involving the p(x)-Laplacian operator is more dif�cult than the problems

with p-Laplacian operator.

Kirchhoff [100] has investigated an equation of the form

�
@2u
@t2

-
� P0

h
+

E
2L

ZL

0

�
�
�
@u
@x

�
�
�
2
dx

� @2u
@x2

= 0; (0.0.3)

which is called the Kirchhoff equation and which extends the classical D’Alembert’s wave

equation, by considering the effect of the changing in the length of the string during the

vibration. A distinguishing feature of the Kirchhoff equation (0.0.3) is that the equation con-

tains a nonlocal coef�cient
�

P0
h + E

2L

RL
0

�
�
� @u

@x

�
�
�
2
dx

�
which depends on the average 1

2L

RL
0

�
�
� @u

@x

�
�
�
2
dx

of the kinetic energy 1
2

�
�
� @u

@x

�
�
�
2

on [0; L], and hence the equation is no longer a pointwise identity.

The parameters in (0.0.3) have the following meanings: L is the length of the string, h

is the area of the cross-section,E is the Young modulus of the material, � is the mass den-

sity and P0 is the initial tension. Lions [106] has proposed an abstract framework for the

Kirchhoff-type equations. After the work by Lions [106], various equations of Kirchhoff-type

have been studied extensively, for instance see [15, 18, 20, 38, 39, 42, 49, 50, 51, 52, 73, 76, 78].

Objective

Following the development of nonlinear elliptic and parabolic problems, in this thesis we

deal with the existence (and uniqueness) results for some elliptic and parabolic of partial

differential equations (PDEs) in different settings.

The �rst proposals of this thesis is devoted to investigate the existence and unique-

ness of the weak solution for some Dirichlet problems governed by nonlinear degenerate

elliptic equation in the setting of weighted Sobolev spaces with the right-hand side term

in Lp 0
(
; ! 1- p 0

) or in Lp 0
(
; ! 1- p 0

) +
nQ

j= 1
Lp 0

(
; ! 1- p 0
). The needed results are obtained by

means of the Browder-Minty theorem and the theory of weighted Sobolev spaces.

The second part of this thesis is devoted to study two classes of nonlinear problems, the

�rst classe of problems that we discuss in this part are Dirichlet or Neumann boundary value

problems involving the p(x)-Laplacian-like operator or the p(x)-Kirchhoff-Laplacian opera-

tor or (p(x); q(x)) -Laplacian operator with nonstandard growth conditions. Under suitable

assumptions, we establish new several results concerning the existence and uniqueness of

weak solution in the setting of variable exponent Sobolev spaces. These results are obtained

by combining the theory of the variable exponent Sobolev spaces and the topological degree

theory for a class of demicontinuous operator of generalized (S+ ) type. The second classe of

problem is a parabolic problem associated with nonlinear degenerate elliptic equation, this
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problem aim to present an existence result of weak solution in the space Lp(0; T;W1;p
0 (
; ! ))

by using the topological degree theory for operators of the type T + S, where S is a bounded

demicontinuous map of class (S+ ) and T is a linear densely de�ned maximal monotone map

with respect to a domain of T .

Outline

This thesis consists of two parts. Both parts are self-contained and can be studied inde-

pendently. The parts of this thesis are organized as follows:

Main results of part I

The �rst part focuses on the study of some nonlinear degenerate elliptic problems in

weighted Sobolev spaces with the right-hand side term in Lp 0
(
; ! 1- p 0

) or in Lp 0
(
; ! 1- p 0

)+
nQ

j= 1
Lp 0

(
; ! 1- p 0
).

Let us begin by considering the following nonlinear elliptic of Dirichlet type
8
><

>:

Lu(x) = f (x) in 
;

u(x) = 0 on @
;
(0.0.4)

where L is the partial differential operator given by Lu := - div
�

A (x; u; r u)
�

with

A : 
 � R � RN � ! RN is a CarathØodory function such that

jB(x; �; � )j �  (x) + j� jp- 1 + j� jp- 1;  2 Lp 0
(
 ); (0.0.5)

hA(x; �; � ) - A (x; �
0
; �

0
); � - �

0
i > 0 with � 6= �

0
and � 6= �

0
; (0.0.6)

hA(x; �; � ); � i � � j� jp; � > 0; (0.0.7)

for all x 2 
 and whenever (�; � ); (� 0; � 0) 2 R � RN . In (0.0.4), the source termf belongs to

W - 1;p0
(
 ) the dual space of W1;p

0 (
 ). The classical monotone operator methods developed

by Minty [112], Browder [36], BrØzis [35], Lions [106], Vi�ik [141] and others imply that

problem (0.0.4) has at least one weak solutionu 2 W1;p
0 (
 ).

The Part I is composed of four chapters. First, we begin by a preliminary chapter in

which we present all the necessary ingredients thereafter on weight functions, weighted

Lebesgue-Sobolev spaces and monotone operators that help us in our analysis. Second,

we prove, in Chapter 2, the existence and uniqueness of weak solution u in W1;p
0 (
; � 1)

for a Dirichlet problem associated to (0.0.4) given in the form Lu := - div
�

� 1A(x; r u) +
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� 2B(x; u; r u)
�

+ � 3g(x; u ), where � 1, � 2 and � 3 are Ap-weight functions, and A : 
 � RN � !

RN , B : 
 � R� RN � ! RN and g : 
 � R � ! R are CarathØodory functions allowed to satisfy

some conditions similar to (0.0.5), (0.0.6) and (0.0.7) with the right-hand side term f belongs

to Lp 0
(
; � 1- p 0

1 ) (cf. [68]). The needed result follows by applying the the Browder-Minty

theorem and the theory of the weighted Sobolev spaces.

Thirdly, the aim of the Chapter 3 is to extend the �rst model given in Chapter 2 to a

general form given by Lu := - div
�

! 1A(x; r u) + ! 2B(x; u; r u)
�

+ ! 3g(x; u ) + ! 4ju jp- 2u

with 1 < p < 1 . Here A : 
 � RN � ! RN , B : 
 � R � Rn � ! RN , g : 
 � R � ! R are

assumed to satisfy some assumptions stated in the sense of (0.0.5), (0.0.6) and (0.0.7), and

the source term f belongs to Lp 0
(
; ! 1- p 0

1 ) (cf. [56]). We prove that this problem admits a

unique weak solution u in W1;p
0 (
; ! 1; ! 4). The needed result follows also relying on the

Browder-Minty theorem and the theory of the weighted Sobolev spaces.

Finally, in Chapter 4, we prove the existence and the uniqueness of weak solution for

the problem which has been discussed in the last chapter with the right-hand side term is a

measure that decomposes inLp 0
(
; ! 1- p 0

2 ) +
nQ

j= 1
Lp 0

(
; ! 1- p 0

1 ) (cf. [58, 59]) by using the same

approach which has been used in the last chapter.

Main results of Part II

The purpose of this part is to study some nonlinear elliptic and parabolic problems in

different framework. This part consists of six chapters :

In the �rst chapter, we present all necessary and relevant ingredients thereafter (de�ntions,

properties, lemmas, theorems ...) about the variable exponent Lebesgue-Sobolev spaces and

the topological degree theory.

In the second chapter, we study a Neumann problem with p(x)-Laplacian-like operator of

the following form
8
>>>><

>>>>:

- div
�

jr u jp(x)- 2r u +
jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
= � ju j� (x)- 2u + �f (x; u; r u) in 
;

�
jr u jp(x)- 2r u + jr u j2p ( x )- 2 r up

1+ jr u j2p ( x )

�
@u
@� = 0 on @
;

(0.0.8)

in the setting of the generalized Sobolev spacesW1;p(x)(
 ), where 
 is a smooth bounded

domain in RN , p(�); � (�) 2 C+ (
 ), @u
@� is the exterior normal derivative, � and � are two

real parameters. Based on the topological degree for a class of demicontinuous operators of

generalized (S+ ) type, under appropriate assumptions on f : 
 � R � RN ! R, we obtain a

result on the existence of weak solution to the considered problem (cf. [60]).
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The third chapter studies an extension of the problem (0.0.8) to a model given in the form
8
>><

>>:

- � l
p(x)u + � ju j� (x)- 2u = �g (x; u ) + �f (x; u; r u) in 
;

u = 0 on @
;

(0.0.9)

where � l
p(x) is the p(x)-Laplacian-like operator, �; � and � are three real parameters,p(�); � (�) 2

C+ (
 ). Under some conditions on the functions f : 
 � R � RN ! R and g : 
 � R ! R,

we establish the existence of weak solution for (0.0.9) in variable exponent Sobolev spaces

W1;p(x)
0 (
 ) by using also the theory of topological degree and the theory of variable exponent

Sobolev spaces (cf. [61]).

In the fourth chapter, we deal with the question of the existence and uniqueness of weak so-

lution for the following Neumann problem involving the p(x)-Kirchhoff-Laplacian operator
8
>>><

>>>:

- M
� Z




1
p(x)

(jr u jp(x) + ju jp(x)) dx
��

div (jr u jp(x)- 2r u) - ju jp(x)- 2u
�

= f (x; u; r u) in 
;

jr u jp(x)- 2 @u
@� = 0 on @
:

(0.0.10)

where @u
@� is the exterior normal derivative, p(x) 2 C+ (
 ), M (t ) is a continuous function

with t :=
Z




1
p(x)

(jr u jp(x) + ju jp(x)) dx and f : 
 � R � RN ! R is a CarathØodory function.

By means of a topological degree of Berkovits for a class of demicontinuous operators of

generalized (S+ ) type and the theory of the variable exponent Sobolev spaces, under appro-

priate assumptions on f and M , we obtain a results on the existence and uniqueness of weak

solution to the considered problem (cf. [15]). Note that, the problem (0.0.10) is a generaliza-

tion of the model (0.0.3) introduced by Kirchhoff.

In chapter �ve, we study the existence of weak solution to a new class of the approximat-

ing problems corresponding to a quasilinear elliptic and parabolic equations involving the

(p(x); q(x)) -Laplacian operator, called double phase operator with variable exponents, of

the following form8
>><

>>:

@u
@t - � p(x)u - � q(x)u = � (x; t ) in 
 T := 
 � (0; T);

u(x; t ) = 0 on @
 T;

u(x; 0) = u0(x) in 
;

(0.0.11)

and
8
<

:
- � p(x)u - � q(x)u + ! ju j� (x)- 2u = � A(x; u ) + � B(x; u; r u) in 
;

u = 0 on @
;
(0.0.12)

where � 2 W � ( W � denote the dual space of the W , see (5.1.13)),A : 
 � R ! R and

B : 
 � R � RN ! R are CarathØodory functions that satisfy the assumption of growth, !; �

FACULTY OF SCIENCE AND TECHNIQUES 8 SULTAN M OULAY SLIMANE UNIVERSITY
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and � are three real parameters,T > 0 is a given �nal time, and the variables exponents p; q 2

C+ (
 ) satisfy the assumption (9.0.3). Using the topological degree theory for operators

of the type T + S (see Subsection 5.2.2), we demonstrate the existence of weak solution

u 2 W for (0.0.11), and based on the topological degree theory for a class of demicontinuous

operator of generalized (S+ ) type (see Subsection 5.2.1), we prove that the Problem (0.0.12)

possesses at least one weak solutionu 2 W1;p(x)
0 (
 ).

In the �nal chapter, we investigate the parabolic case of (0.0.4), where the partial differential

operator L given by Lu := - div
�

a(x; t; r u) + b(x; t; u; r u)
�

(cf. [69]). The main problem

is given in the following form
8
>><

>>:

@u
@t - div b(x; t; u; r u) = � (x; t ) + div a(x; t; r u) in Q := 
 � (0; T);

u(x; t ) = 0 on @Q;

u(x; 0) = u0(x) in 
;

(0.0.13)

where 
 is a bounded open domain of RN and T > 0. Here � is taken in Lp 0
(0; T;W - 1;p0

(
; ! 1- p 0
))

the dual space of Lp(0; T;W1;p
0 (
; ! )) . The problem (0.0.13) aim to present an existence re-

sult of weak solution in the space Lp(0; T;W1;p
0 (
; ! )) by using a topological degree theory

for operators of the type T + S (see Subsection 5.2.1).
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Part I

Study of some nonlinear degenerate
elliptic problems in weighted Sobolev
spaces with or without right-hand side

measure

10



Chapter 1

Preliminaries

In this chapter we collect several basic tools on weight functions, weighted Lebesgue-Sobolev

spaces and monotone operators, which will be needed throughout this work. The common

link between all the results in this chapter is that they are preparatory for the main results,

which are contained in the following chapters.

1.1 Weighted Sobolev spaces

The Sobolev spacesWk;p (
 ) without weights, in general, occur as spaces of solutions for

elliptic and parabolic partial di�erential equations. For degenerate partial differential equa-

tions, where we have equations with various types of singularities in the coef�cients, it is

natural to look for solutions in weighted Sobolev spaces [87, 88, 102, 138]. The type of a

weight depends on the equation type. This section will be devoted to introduce too the no-

tion of weighted Lebesgue and Sobolev spaces, and some interesting de�nitions and proper-

ties, which are essential to prove some results of existence for weak solutions of the nonlinear

elliptic problems studied in this thesis.

1.1.1 Basic results concerning weights

In this section, we review some properties of weights and, in particular, Ap weights, that

will be used throughout this thesis. Complete expositions can be found in the monographs

by J. Garcia-Cuerva and J. L. Rubio de Prancia [89] and A. Torchinsky [138].

1.1.1.1 General weights

By a weight, we shall mean a locally integrable function ! on Rn such that ! (x) > 0 for a.e.

x 2 Rn . Every weight ! gives rise to a measure on the measurable subsets onRn through

11



M OHAMED EL OUAARABI D OCTORAL THESIS LABORATORY : LMACS

integration. This measure will also be denoted by ! . Thus,

! (E) =
Z

E

! (x) dx for measurable subset E � Rn :

De�nition 1.1.1 Let ! be a weight, and let
 � Rn be open. For1 < p < 1 , we de�neLp(
; ! )

as the set of measurable functionsf on 
 such that

jjf jjLp (
;! ) =
� Z



jf (x)jp! (x) dx

� 1
p

< 1 :

We also de�ne wk-L1(
; ! ), as the set of measurable functionsf on 
 satisfying

jjf jjwk - Lp (
;! ) = sup
�>0

�! (fx 2 
 : jf (x)j > � g) < 1 :

Remark 1.1.2 1. For! � 1, we obtain the usual Lebesgue spaceLp(
 ).

2. It is a well-known fact that the spaceLp(
; ! ) is a Banach space (uniformly convex and hence

re�exive if p > 1 ) equipped with the normjj � jjLp (
;! ). We also have that the dual space of

Lp(
; ! ), if p > 1 , is the spaceLp 0
(
; ! 1- p 0

) with 1
p + 1

p 0 = 1.

3. If � is a positive Borel measure on an open set
 , we shall more generally denote byLp(
; � ),

0 < p < 1 , the set of� -measurable functionsf on 
 for which
� Z



jf (x)jpd�

� 1
p

< 1 :

We now determine conditions on the weight ! that guarantee that functions in Lp(
; ! )

are locally integrable on 
:

Proposition 1.1.3 Let1 � p < 1 and let! be a weight such that

!
- 1

p - 1 2 L1
loc (
 ) if p > 1; (1.1.1)

ess sup
x2 B

1
! (x)

< + 1 if p = 1; (1.1.2)

for every ballB � 
: Then,

Lp(
; ! ) � L1
loc (
 ):

Proof. Let 1 � p < 1 . Suppose that f 2 Lp(
; ! ) and let B � Rn be a ball. Then we have

the following two cases :

First case : If p = 1, then we have
Z

B

jf (x)j dx =
Z

B

jf (x)j
! (x)
! (x)

dx

� ess sup
x2 B

1
! (x)

Z

B

jf (x)j! (x) dx < 1 :

FACULTY OF SCIENCE AND TECHNIQUES 12 SULTAN M OULAY SLIMANE UNIVERSITY
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Hence f 2 L1
loc (
 ).

Second case :If p > 1 , then we have
Z

B

jf (x)j dx =
Z

B

jf (x)j(! (x))
1
p (! (x)) - 1

p dx

�

0

@
Z

B

jf (x)j(! (x))
1
p dx

1

A

1
p

0

@
Z

B

�
(! (x)) - 1

p

� p
0

dx

1

A

1
p 0

=

0

@
Z

B

jf (x)j(! (x))
1
p dx

1

A

1
p

0

@
Z

B

(! (x)) - p
0

p dx

1

A

1
p 0

:

Sincep 0
= p

p- 1, then

Z

B

jf (x)j dx � jjf jjLp (
;! )

0

@
Z

B

(! (x))
- 1

p - 1 dx

1

A

1
p 0

< 1 :

Hence f 2 L1
loc (
 ).

It follows that

Lp(
; ! ) � L1
loc (
 ):

Remark 1.1.4 1. As a consequence of Proposition 1.1.3, we have the convergence inLp(
; ! )

implies local convergence inL1(
 ). Moreover, if
 is bounded, one obtains in the same way

that Lp(
; ! ) is continuously embedded inL1(
 ).

2. Under the assumptions of Proposition 1.1.3, we haveLp(
; ! ) � L1
loc (
 ): Using the usual

identi�cation of a regular distribution fromD
0
(
 ) with a function fromL1

loc (
 ) we conclude

that Lp(
; ! ) � L1
loc (
 ) � D

0
(
 ).

Therefore, every function inLp(
; ! ) has weak derivatives. It thus makes sense to talk about

weak derivatives of functions inLp(
; ! ).

Note that, in the casep > 1 , if ! does not satisfy condition (1.1.1) then the injection Lp(
; ! ) �

L1
loc (
 ) not hold. This is illustrated by the following example :

Example 1.1.5 Consider
 = [ - 1
2 ; 1

2] and et! (x) = jxjp- 1 (p > 1 ).

We have(! (x))
- 1

p - 1 =
�
jxjp- 1

� - 1
p - 1 = jxj- 1 =2 L1

loc (
 ). Then! does not satisfy condition(1.1.3).

Now, consider the functionf de�ned byf (x) = jxj- 1j ln jxjj� with � 2 [- 1; - 1
p ]:

FACULTY OF SCIENCE AND TECHNIQUES 13 SULTAN M OULAY SLIMANE UNIVERSITY
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We have

jjf jjLp (
;v ) =
Z1

2

- 1
2

jxj- pj ln jxjj�p jxjp- 1 dx

= 2
Z1

2

0
jxj- 1j ln xj�p dx

= - 2
Z1

2

0
x- 1(ln x) �p dx

= - 2
Z- ln(2)

+ 1
t �p dt

= 2
Z+ 1

- ln(2)
t �p dt < 1 ; since �p < - 1:

Hencef 2 Lp(
; v ).

On another side, we havef =2 L1
loc (
 ). In fact, we have

Z1
2

- 1
2

jf (x)j dx =
Z1

2

- 1
2

jxj- 1j ln jxjj� dx

= 2
Z1

2

0
jxj- 1j ln xj� dx

= 2
Z0

1
2

x- 1(ln x) � dx

= 2
Z+ 1

- ln(2)
t � dt = 1 ; since � > - 1:

Corollary 1.1.6 Let ’ 2 C1
0 (
 ), ! be a weight such that!

- 1
p - 1 2 L1

loc (
 ) and let a multi-index

� 2 Nn be �xed. Then the formula

L� (f ) =
Z



f (x)D � ’ (x) dx (1.1.3)

de�nes a continuous linear functionalL� onLp(
; ! ).

Proof. Let f 2 Lp(
; ! ) and ’ 2 C1
0 (
 ). If we denote K = supp (’ ) , then by Hölder

inequality we obtain

jL� (f )j �
Z



jf (x)jjD � ’ (x)j dx

=
Z



jf (x)j (! (x))

1
p jD � ’ (x)j (! (x))

- 1
p dx

� jjf jjLp (
;! )

� Z



jD � ’ (x)j

p
p - 1 (! (x))

- 1
p - 1 dx

� p - 1
p

� jjf jjLp (
;! )

� Z

K
jD � ’ (x)j

p
p - 1 (! (x))

- 1
p - 1 dx

� p - 1
p

� jjf jjLp (
;! ) max
x2 K

jD � ’ (x)j
� Z

K
(! (x))

- 1
p - 1 dx

� p - 1
p

;
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here, the last integral is �nite in view of !
- 1

p - 1 2 L1
loc (
 ).

We have the following result.

Theorem 1.1.7 Let ! 2 Ap, 1 � p < 1 , and let
 be a bounded open set inRn . If un � ! u in

Lp(
; ! ), then there exist a subsequence(unm ) and 2 Lp(
; ! ) such that

(i) unm (x) � ! u(x), nm � ! 1 , a.e. on
 .

(ii) junm (x)j �  (x), a.e. on
 .

Proof. The proof of this theorem follows the lines of [88, Theorem 2.8.1].

Theorem 1.1.8 (Weighted Sobolev embedding theorem)[80, Theorem 1.2] Given1 < p < 1 and

! 2 Ap. Then there exist constantsC and � > 0 such that for all ballsBR, all u 2 C1
0 (BR), and all

numbersk satisfying1 � k � n
n - 1 + � ,

�
1

! (BR)

Z

BR

ju jkp ! dx
� 1

kp

� C R
�

1
! (BR)

Z

BR

jr u jp! dx
� 1

p

:

An immediate consequence of Theorem 1.1.8 is the following theorem :

Theorem 1.1.9 [80, Theorem 1.3] Let
 be an open bounded set inRn . Take1 < p < 1 and a

function ! 2 Ap. Then there exist positive constantsC
 and � such that for allu 2 C1
0 (
 ) and all

k satisfying1 � k � n
n - 1 + � ,

jju jjLkp (
;! ) � C
 jjr u jjLp (
;! );

whereC
 depends only onn; p , theAp constant of! and the diameter of
 .

We now turn our attention to the weighted PoincarØ inequality.

Theorem 1.1.10 [80, Theorem 1.5] Let1 < p < 1 and ! 2 Ap. Then there are positive constants

C and � such that for all Lipschitz continuous functionsu de�ned onBR and for all 1 � k �

n=(n - 1) + � ,
� 1

! (BR)

Z

BR

ju - uBR jkp ! dx
� 1=kp

� C R
� 1

! (BR)

Z

BR

jr u jp! dx
� 1=p

where uBR =
1

! (BR)

Z

BR

u(x)! (x) dx or uBR =
1

jBRj

Z

BR

u(x) dx.
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1.1.1.2 Ap weights

The class of Ap weights was introduced by B. Muckenhoupt in [113], where he showed

that the Ap weights are precisely those weights ! for which the Hardy-Littlewood maximal

operator is bounded from Lp(Rn ; ! ) to Lp(Rn ; ! ), when 1 < p < 1 , and from L1(Rn ; ! ) to

wk- L1(Rn ; ! ), when p = 1. Here, we de�ne the Hardy-Littlewood maximal function, M f ,

for a locally integrable function f on Rn by

Mf (x) = sup
r>0

1
jBr (x)j

Z

Br (x)
jf (y)jdy:

The corresponding operator, which takes f to M f , is denoted by M .

We begin by de�ning the class of Ap weights. These classes have found many useful

applications in harmonic analysis [138].

De�nition 1.1.11 Let 1 � p < 1 . A weight ! is said to be anAp weight, if there exists a positive

constantA such that, for every ballB � Rn ,
�

1
jBj

Z

B
! (x) dx

� �
1

jBj

Z

B
(! (x))

- 1
p - 1 dx

� p- 1

� A if p > 1; (1.1.4)

�
1

jBj

Z

B
! (x) dx

�
ess sup

x2 B

1
! (x)

� A if p = 1: (1.1.5)

The in�mum over all such constantsA is called theAp constant of! . We denote byAp, 1 � p < 1 ,

the set of allAp weights.

We will refer to (1.1.4) and (1.1.5) as the Ap and the A1 condition, respectively. Mucken-

houpt’s theorem is now the following [113, p. 209-222].

Theorem 1.1.12 Suppose that! 2 Ap, where1 < p < 1 . Then the Hardy-Littlewood maximal

operatorM is hounded onLp(Rn ; ! ), that is, there exists a positive constantC such that
Z

Rn
(Mf )p! dx � C

Z

Rn
jf jp! dx; (1.1.6)

for everyf 2 Lp(Rn ; ! ). The constantC depends only onn , p and theAp constant of! . If ! 2 A1

thenM is hounded fromL1(Rn ; ! ) to wk-L1(Rn ; ! ). In other words,

! (fx 2 Rn : Mf (x) > � g) �
C
�

Z

Rn
jf j! dx; (1.1.7)

for everyf 2 L1(Rn ; ! ) and every� > 0 , with a constantC that only depends onn and theA1

constant of! . Conversely, if(1.1.6)holds for everyf 2 Lp(Rn ; ! ), then ! 2 Ap, and if (1.1.7)

holds for everyf 2 L1(Rn ; ! ), then! 2 A1.
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Remark 1.1.13 Below we list some simple, but useful properties ofAp weights (see [95, 102, 139]

for more informations aboutAp weights).

1. If ! 2 Ap, 1 � p < 1 , then since!
- 1

p - 1 is locally integrable, when1 < p < 1 , and 1
! is

locally bounded, whenp = 1, we haveLp(
; ! ) � L1
loc (
 ) for every domain
 . Moreover, if

A is theAp constant of! , then by theAp condition, the right-hand sides of(1.1.1)and(1.1.2)

do not exceed

A
1
p jBj

�
1

! (B)

Z

B
jf jp! dx

� 1
p

:

2. Note that if! is a weight, then, by writing1 = !
1
p !

- 1
p , Hölder’s inequality implies that, for

every ballB,

1 �
�

1
jBj

Z

B
! dx

� �
1

jBj

Z

B
!

- 1
p - 1 dx

�
;

whenp > 1 , and similarly for the expression that gives theA1 condition. It follows that if

! 2 Ap, then theAp constant of! is � 1.

3. It also follows from Hölder’s inequality that if1 � p < q < 1 , thenAp � Aq and theAq

constant of a weight! equals theAp constant of! .

4. If ! 2 Ap, where1 < p < 1 , then !
- 1

p - 1 2 Ap 0, and conversely. When p is �xed, we shall

sometimes denote the weight!
- 1

p - 1 by ! 0.

5. TheAp condition is invariant under translations and dilations, i.e., if! 2 Ap, then the weights

x 7! ! (x + a) andx 7! ! (�x ), wherea 2 Rn and� > 0 are �xed, both belong toAp with the

sameAp constants as! .

6. As it sometimes is more convenient to work with cubes than balls, it is useful to notice that if

one replaces the balls in the de�nition ofAp with cubes, one gets the same class of weights and

the different "Ap constants" are comparable.

7. It is not so dif�cult to see that a weight! belongs toA1 if and only ifM! (x) � A! (x) a.e.

Example 1.1.14 (Examples ofAp weights)

1. If ! is a weight and there exist two positive constantsC andD such thatC � ! (x) � D for

a.e.x 2 Rn , then obviously! 2 Ap for 1 � p < 1 .

2. Suppose that! (x) = jxj� , y 2 Rn . Then! 2 Ap if and only if - n < � < n (p - 1) for

1 � p < 1 (see [138, p. 229-236]).
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3. Let 
 be an open subset ofRn . Then ! (x) = e�v (x) 2 A2, with v 2 W1;n(
 ) and � is

suf�ciently small (see Corollary 2.18 in [114]).

4. There is a connection betweenAp andBMO , the class of functions with bounded mean oscilla-

tion. In fact, if ! is a weight, thenlog ! 2 BMO if and only if ! � 2 A2 for some� > 0 (see

[138, p. 240]).

1.1.1.3 Doubling weights

We will often use the fact that Ap weights are doubling.

De�nition 1.1.15 A weight ! is said to be doubling, if there exists a positive constantC such that

! (2B) � C! (B); (1.1.8)

for every ballB � Rn . The in�mum over all constantsC, for which (1.1.8) holds, is called the

doubling constant of! .

It follows directly from the Ap condition and Hölder inequality that an Ap weight has the

following strong doubling property.

Corollary 1.1.16 (Strong doubling ofAp weight ) Let! 2 Ap with 1 � p < 1 and letE be a

measurable subset of a ballB � Rn . Then

! (B) � A
�

jBj
jEj

� p

! (E);

whereA is theAp constant of! .

Proof. Let ! 2 Ap, B � Rn be a ball and E be a measurable subset ofB. Then, by Hölder

inequality, we obtain

jEj =
Z

E
dx �

Z

E
!

- 1
p !

1
p dx

�
� Z

E
! dx

� 1
p

� Z

E
!

- p
0

p dx
� 1

p 0

= (! (E))
1
p

� Z

E
!

- 1
p - 1 dx

� p - 1
p

= (! (E))
1
p jBj

p - 1
p

�
1

jBj

Z

B
!

- 1
p - 1

� p - 1
p

:

Sincev 2 Ap, then
�

1
jBj

Z

B
!

- 1
p - 1 dx

� p- 1

� A
�

1
jBj

Z

B
! dx

� - 1

:
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Hence

jEj � (! (E))
1
p jBj

p - 1
p A

1
p

�
1

jBj

Z

B
v dx

� - 1
p

= A
1
p (! (E))

1
p jBj

p - 1
p

�
! (B)

jBj

� - 1
p

= A
1
p (! (E))

1
p (! (B))

- 1
p jBj;

and consequently

! (B) � A
�

jBj
jEj

� p

! (E):

Remark 1.1.17 1. If ! 2 Ap, then! is doubling (see [43, Corollary 15.7]).

2. If ! (E) = 0 thenjEj = 0. The measure! and the Lebesgue measurej � j are mutually absolutely

continuous, that is they have the same zero sets
�
! (E) = 0 if and only if jEj = 0

�
; so there is

no need to specify the measure when using the ubiquitous expression almost everywhere and

almost every, both abbreviated a.e..

Lemma 1.1.18 [43] If ! 2 Ap, then there are0 < q < 1 andC > 0 , depending only onn; p; and

A , such that
! (E)
! (B)

� C
�

jEj
jBj

� q

;

wheneverB is a ball inRn andE is a measurable subset ofB.

We have the following reverse Hölder inequality.

Lemma 1.1.19 [43] If ! 2 Ap, then there are numbersr > 1 andCr � 1, depending only onn; p;

andA , such that �
1

jBj

Z

B
! r dx

� 1=r

� Cr

�
1

jBj

Z

B
! dx

�
;

for all ballsB.

We have also the following open-end property of Ap.

Lemma 1.1.20 [43] Suppose that! 2 Ap for somep, 1 < p < 1 . Then there exists a numberq,

1 < q < p , such that! 2 Aq.
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1.1.1.4 A1 weights

Another important class of weights is the class of A1 weights, introduced by C. Fefferman.

The following de�nition of A1 , just one of several equivalent ones, suits our purposes best.

De�nition 1.1.21 We say that a weight! is anA1 weight, if there exist two positive constantsC

and � such that

! (Q) � C
�

jQj
jEj

� �

! (E)

for every cubeQ and every measurable subsetE ofQ. The constantsC and� are calledA1 constants

of ! and the set ofA1 weights is (of course) denotedA1 .

The relationship between Ap and A1 is clari�ed by the two theorems below, due to Muck-

enhoupt [113, p. 214] and [114, p. 104]. Together they show that

A1 =
[

1� p< 1

Ap:

Theorem 1.1.22 If ! 2 Ap, 1 � p < 1 , then! 2 A1 with A1 constants of! that only depend

onn and theAp constant of! .

Theorem 1.1.23 If ! 2 A1 , then ! 2 Ap for somep, 1 < p < 1 , and theAp constant of! is

majorized by a constant that only depends onn and theA1 constants of! .

Remark 1.1.24 A consequence of Theorem 1.1.22 and the de�ning condition forA1 is the fact thatZ

Rn
! dx = 1 for every weight! 2 Ap.

1.1.1.5 p-admissible weights

Let ! be a weight and 1 < p < 1 . We say that ! is p-admissible if the following four

conditions are satis�ed :

(I) 0 < ! (x) < 1 a.e.x 2 Rn and ! is doubling.

(II) If 
 is an open set and’ k 2 C1 (
 ) is a sequence of functions such that
Z



j’ k jp! dx !

0 and
Z



jr ’ k - #jp! dx ! 0 ask ! 1 , then # = 0.

(III) There are constants k > 1 and CIII > 0 such that
� 1

! (B)

Z

B
j’ jkp ! dx

� 1=kp
� CIII R

� 1
! (B)

Z

B
jr ’ jp! dx

� 1=p
;

whenever B = B(x0; R) is a ball in Rn and ’ 2 C1
0 (B).
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(IV) There is a constant CIV > 0 such that
Z

B
j’ - ’ Bjp! dx � CIV Rp

Z

B
jr ’ jp! dx;

whenever B = B(x0; R) is a ball in Rn and ’ 2 C1 (B) is bounded. Here

’ B =
1

! (B)

Z

B
’! dx:

Let us make some remarks on conditions (I)-(IV). It follows immediately from condi-

tion (I) that the measure ! and Lebesgue measuredx are mutually absolutely continuous.

Moreover, it easily follows from the doubling property that ! (Rn ) = 1 .

Condition (II) guarantees that the gradient of a Sobolev function is well de�ned, a con-

clusion that cannot be expected in general (Fabes et al. [80, pp. 91-92]).

Condition (III) is the weighted Sobolev embedding theorem or the weighted Sobolev

inequality and condition (IV) is the weighted PoincarØ inequality.

Example 1.1.25 (Examples ofp-admissible weights)

1. If ! 2 Ap(1 < p < 1 ) then! is ap-admissible weight.

2. ! (x) = jxj� ; x 2 Rn ; � > - n , is ap-admissible weight for allp > 1 .

3. If f : Rn ! Rn is a K -quasiconformal mapping andJf (x) is the determinant of its jacobian

matrix, then! (x) = Jf (x)1- p=n is p-admissible for1 < p < n .

4. See [32] for non-Ap examples ofp-admissible weights.

Remark 1.1.26 P. Hajlasz and P. Koskela [93] showed that conditions (I)-(IV) can be reduced to only

two : ! is ap-admissible weights(1 < p < 1 ) if and only if ! is doubling and there are constants

C > 0 and � � 1 such that

1
! (B)

Z

B
j’ - ’ Bj! dx � C R

� 1
! (�B )

Z

�B
jr ’ jp! dx

� 1=p
:

Theorem 1.1.27 Suppose that! is ap-admissible weight andq > p . Then! is q-admissible.

Proof. The steps of the proof follow along the exact lines of [95, Theorem 1.8].
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1.1.2 Weighted Sobolev spaces

This subsection explores weighted Sobolev spaces and some there properties. We will con-

sider two types of weighted Sobolev spaces, namely the spacesW1;p(
; ! ) and W1;p(
; !; v )

where !; v 2 Ap.

We begin by de�ning the weighted Sobolev space W1;p(
; ! ). Recall that if ! 2 Ap, then

Lp(
; ! ) � L1
loc (
 ) � D

0
(
 ) for every open set 
 (see Remark 1.1.4). It thus makes sense to

talk about weak derivatives of functions in Lp(
; ! ).

De�nition 1.1.28 Let 
 � Rn be a bounded open,1 � p < 1 , k be a nonnegative integer and

! 2 Ap. We de�ne the weighted Sobolev spaceWk;p (
; ! ) as the set of functionsu 2 Lp(
; ! )

with weak derivativesD � u 2 Lp(
; ! ) for j� j � k. The norm ofu in W1;p(
; ! ) is given by

jju jjWk;p (
;! ) =

0

@
Z



ju jp! (x) dx +

X

1� j� j� k

Z



jD � u jp! (x) dx

1

A

1
p

: (1.1.9)

We also de�neWk;p
0 (
; ! ) as the closure ofC1

0 (
 ) in Wk;p (
; ! ) with respect to the norm(1.1.9).

The norm ofu in W1;p
0 (
; ! ) is given by

jju jjW1;p
0 (
;! ) =

0

@
X

1� j� j� k

Z



jD � u jp! (x) dx

1

A

1
p

: (1.1.10)

Remark 1.1.29 1. When! = 1, the spacesW1;p(
; ! ) andW1;p
0 (
; ! ) will be denotedW1;p(
 )

andW1;p
0 (
 ), respectively.

2. The spaceW1;p
0 (
; ! ) is a closed subspace of the spaceW1;p(
; ! ).

3. The dual of spaceW1;p
0 (
; ! ) is the space

h
W1;p

0 (
; ! )
i �

= W - 1;p
0

0 (
; ! 1- p 0
) given by

W - 1;p
0

0 (
; ! 1- p 0
) =

�
T = f 0 - div (F) : F = ( f 1; :::; f n );

f j

!
2 Lp

0

(
; ! ); j = 0; :::; n


:

Theorem 1.1.30 The spaces(W1;p(
; ! ); jj�jjW1;p (
;! )) and(W1;p
0 (
; ! ); jj�jjW1;p (
;! )) are re�evixe

Banach spaces.

Proof. This theorem is proved exactly the same way as in the case ! = 1. Using the com-

pleteness ofLp(
; ! ) and the fact that Lp(
; ! ) � L1
loc (
 ) when ! 2 Ap (see [139, Proposi-

tion 2.1.2] and [103, p. 540-541]).

Remark 1.1.31 It is evident that a weight function! which satis�es0 < c1 � ! � c2 for x 2 


(wherec1 andc2 are constants), give nothing new (the spaceW1;p
0 (
; ! ) is then identical with the
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classical Sobolev spaceW1;p
0 (
 ) sinceW1;p

0 (
; ! ) is isomorphic to the Sobolev spaceW1;p
0 (
 )). Con-

sequently, we shall interested above all in such weight functions! which either vanish somewhere in


 [ @
 or is not bounded (or both).

Another useful consequence of the inclusions Lp(
; ! ) � L1
loc (
 ) for general 
 and Lp(
; ! ) �

L1(
 ) for bounded 
 is the next proposition.

Proposition 1.1.32 Let 
 � Rn be open,1 � p < 1 , andk a nonnegative integer. Suppose that

! 2 Ap. Then

Wk;p (
; ! ) � Wk;1
loc (
 );

and, if 
 is hounded,

Wk;p (
; ! ) � Wk;1(
 ):

Here,Wk;1
loc (
 ) denotes the set of functionsu 2 L1

loc (
 ) with weak derivativesD � u 2 L1
loc (
 ) for

j� j � k.

Proof. See [139, Proposition 2.1.3].

Remark 1.1.33 If 
 � Rn be open,m � 1, 1 � p < 1 , and ! 2 Ap, thenC1 (
 ) is dense in

Wk;p (
; ! ) (see [139, Corollary 2.1.6]).

Proposition 1.1.34 [139, Proposition 2.1.7] Let
 � Rn be open,1 � p < 1 , ! 2 Ap and

u 2 W1;p(
; ! ). Suppose thatF 2 C1(R) with F0
2 L1 (R). If F � u 2 Lp(
; ! ), thenF � u 2

W1;p(
; ! ) with D i (F � u) = F0
(u)D i u; i = 1; :::; n:

Corollary 1.1.35 [139, Corollary 2.1.8] Suppose that
 � Rn is open, and letu 2 W1;p(
; ! ),

where1 � p < 1 and ! 2 Ap. Setu+ = maxfu; 0g and u - = min fu; 0g: Thenu+ , u - and ju j

belongs toW1;p(
; ! ), and, fori = 1; :::; n,

D i u+ =

8
><

>:

D i u if u > 0;

0 if u � 0;
; D i u - =

8
><

>:

D i u if u < 0;

0 if u � 0;
and D i ju j =

8
>>>><

>>>>:

D i u if u > 0;

0 if u = 0;

- D i u if u < 0:

We now turn our attention to the weighted Sobolev inequality.

Theorem 1.1.36 Let 
 be an open bounded set inRn . Take1 < p < 1 and ! 2 Ap. Then there

exist positive constantsC
 and � such that for allu 2 W1;p
0 (
; ! ) and all k satisfying1 � k �

n
n - 1 + � ,

jju jjLkp (
;! ) � C
 jjr u jjLp (
;! ); (1.1.11)

whereC
 depends only onn; p , theAp constant of! and the diameter of
 .
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Proof. SinceW1;p
0 (
; ! ) = C1

0 (
 )
W1;p (
;! )

, then to show the result its suf�ces to prove the

inequality for functions u 2 C1
0 (
 ) (see Theorem 1.1.9). To extend the estimates (1.1.11)

to arbitrary u 2 W1;p
0 (
; ! ), we let (um) be a sequence ofC1

0 (
 ) functions tending to u in

W1;p
0 (
; ! ). Applying the estimates (1.1.11) to differences up - uq, we see that (um) will be

a Cauchy sequence inLp(
; ! ) (which is a Banach space). Consequently(um) converges to

u in Lp(
; ! ), moreover u 2 Lp(
; ! ) and u satisfy (1.1.11).

The weighted Sobolev spaceW1;p(
; !; v ) is de�ned as follows.

De�nition 1.1.37 Let 
 � Rn be a bounded open,1 � p < 1 , k be a nonnegative integer and

!; v 2 Ap. We de�ne the weighted Sobolev spaceWk;p (
; !; v ) as the set of functionsu 2 Lp(
; ! )

with weak derivativesD � u 2 Lp(
; v ) for j� j � k. The norm ofu in W1;p(
; !; v ) is given by

jju jjWk;p (
;!;v ) =

0

@
Z



ju jp! (x) dx +

X

1� j� j� k

Z



jD � u jpv(x) dx

1

A

1
p

: (1.1.12)

We also de�neWk;p
0 (
; !; v ) as the closure ofC1

0 (
 ) in Wk;p (
; !; v ) with respect to the norm

(1.1.12).

Equipped by the norm (1.1.12), the spacesW1;p(
; !; v ) and W1;p
0 (
; !; v ) are separable and

re�exive Banach spaces
�
see [103, Proposition 2.1.2.] and see [102, 113] for more informa-

tions about the spacesW1;p(
; !; v )
�
. The dual of space W1;p

0 (
; !; v ) is the space de�ned

by

h
W1;p

0 (
; !; v )
i �

=

�

f -
nX

i= 1

D i f i :
f
!

2 Lp
0

(
; ! );
f i

v
2 Lp

0

(
; v ); i = 1; :::; n

�

:

Remark 1.1.38 Let !; v 2 Ap. Then,

(i) If ! = v, thenC1
0 (
 ) is dense inW1;p

0 (
; ! ) = W1;p
0 (
; !; ! ).

(ii) If ’ 2 W1;p
0 (
; !; v ), then by Theorem 1.1.36 (withk = 1), it holds that

jj’ jjLp (
;! ) � C
 jjr ’ jjLp (
;! ) � C
 jj’ jjW1;p
0 (
;!;v ):

Hence,W1;p
0 (
; !; v ) � W1;p

0 (
; ! ).

(iii) If v � ! , thenW1;p
0 (
; ! ) � W1;p

0 (
; !; v ) � W1;p
0 (
; v ).

In this thesis, we consider also the following space

X := Lp(0; T;W1;p
0 (
; ! )) ; and T > 0:
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In this space, we de�ned the norm

ju jX =
� ZT

0
kukp

W1;p (
;! )dt
� 1=p

:

Thanks to PoincarØ inequality, the expression

kukX =
� ZT

0
kukp

W1;p
0 (
;! )

dt
� 1=p

;

is a norm de�ned on X and is equivalent to the norm j � jX :

Note that
�

X ; k � kX

�
is a separable and re�exive Banach space.

1.2 Basic results for monotone operators

In this section, we present some basic de�nitions and results on monotone operators.

De�nition 1.2.1 LetX be a Banach space and letA : X � ! X� be an operator whereX� denotes the

dual space ofX. Then :

1. A is called monotone iff

hAu - Av; u - vi > 0

for all u; v 2 X wherehf; u i denotes the value of the linear functionalf 2 X� at pointu 2 X.

2. A is called strictly monotone iff

hAu - Av; u - vi > 0 for all u; v 2 X with u 6= v:

3. A is called strongly monotone iff there is aC > 0 telle que

hAu - Av; u - vi > Cjju - vjj2; for all u; v 2 X:

4. A is called coercive iff

lim
jju jj� !1

hAu; u i
jju jj

= + 1 :

5. A is said to be hemicontinuous iff the real function

t 7�! hA (u + tv ); w i

is continuous on[0; 1] for all u; v; w 2 X.

6. A is said to be strongly continuous iff

un � u ) Au n � ! Au:
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Remark 1.2.2 Obviously, we have the following implications :

A is strongly monotone) A is strictly monotone) A is monotone:

For more informations about monotone, coercive and hemicontinuous operators see [143].

Proposition 1.2.3 LetA : X � ! X� be an operator on the real Banach spaceX. We set

f (t ) = hA (u + tv ); vi for all t 2 R:

Then the following statements are equivalent.

(a) The operatorA is monotone.

(b) The functionf : [0; 1] � ! R is monotone increasing for allu; v 2 X.

Proof. If A is monotone, then for 0 6 s < t 6 1, we have

f (t ) - f (s) = ( t - s)- 1hA (u + tv ) - A (u + sv); (t - s)vi > 0:

Hence f is monotone increasing on [0; 1].

Conversely, if f is monotone increasing on [0; 1], then for all u; v 2 X, we have

hA (u + v) - Au; v i = f (1) - f (0) > 0:

Hence A is monotone.

Now we will state the main theorem on monotone operators.

Theorem 1.2.4 (Browder(1963), Minty(1963)) Let A : X � ! X� be a monotone, coercive and

hemicontinuous operator on the real, separable, re�exive Banach spaceX. Then the following asser-

tions hold:

(a) For eachT 2 X� , the equationAu = T has a solutionu 2 X.

(b) If the operatorA is strictly monotone, then equationAu = T has a unique solutionu 2 X for

all T 2 X� .

Proof. See [143, Theorem 26.A].

FACULTY OF SCIENCE AND TECHNIQUES 26 SULTAN M OULAY SLIMANE UNIVERSITY



M OHAMED EL OUAARABI D OCTORAL THESIS LABORATORY : LMACS

1.3 Some important technical propositions and lemmas

In this section, we introduce some technical propositions lemmas that are used in this thesis.

Proposition 1.3.1 [43] Let1 < p < 1 .

(i) There exists a positive constantCp such that for all�; � 2 Rn , we have
�
�
� j� jp- 2� - j� jp- 2�

�
�
� � Cpj� - � j

�
j� j + j� j

� p- 2
:

(ii) There exist two positive constants� p and  p such that for everyx; y 2 Rn , it holds that

� p

�
jxj + jy j

� p- 2
jx - y j2 �

D
jxjp- 2x - jy jp- 2y; x - y

E
�  p

�
jxj + jy j

� p- 2
jx - y j2:

Proposition 1.3.2 [142](Principle of convergence in Banach spaces). A sequence(xn ) in a Banach

spaceX has the following convergence properties.

(1) Strong convergence. Letx be a �xed element ofX. If every subsequence of(xn ) has, in turn, a

subsequence which converges strongly tox, then the original sequence converges strongly tox.

(2) Weak convergence. Letx be a �xed element ofX. If every subsequence of(xn ) has, in turn, a

subsequence which converges weakly tox, then the original sequence converges weakly tox.

Lemma 1.3.3 [13] Let 1 < p < 1 , (f n )n � Lp(
; ! ) and f 2 Lp(
; ! ) such that

kf nkLp (
;! ) � C. If f n (y) ! f (y) a.e. in 
; then f n � f in Lp(
; ! ), where! is a

weight function on
 .
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Chapter 2

On the existence and uniqueness of
solution for a class of nonlinear
degenerate elliptic problems via
Browder-Minty theorem

The purpose of this chapter is to investigate the existence and uniqueness of weak solution

for a class of nonlinear degenerate elliptic problem, under Dirichlet condition, of the form :

- div
h
� 1a(y; r ’ ) + � 2b(y; ’; r ’ )

i
+ � 3g(y; ’ ) = � (y); (2.0.1)

where 
 is a bounded open set in RN , � 1, � 2 and � 3 are Ap-weight functions, and the func-

tions b : 
 � R � RN � ! RN , a : 
 � RN � ! RN and g : 
 � R � ! R are CarathØodory

functions that satisfy some assumptions with the right-hand side term � 2 Lp 0
(
; � 1- p 0

1 ).

2.1 Hypotheses and the concept of weak solution

2.1.1 Hypotheses

Now let us present the hypothesis on the problem (2.0.1). Assuming that the following

assumptions are true: 
 � RN (N � 2), � 1, � 2 and � 3 are Ap-weight functions, am : 
 �

RN � ! R, bm : 
 � R � RN � ! R (m = 1; :::; N), with a(y; � ) =
�

a1(y; � ); :::; aN (y; � )
�

and

b(y; �; � ) =
�

b1(y; �; � ); :::; bN (y; �; � )
�

and g : 
 � R � ! R such that

(H1) am , bm and g are CarathØodory functions.

(H2) There areh1; h2; h3; h4 2 L1 (
 ) and f 1 2 Lp 0
(
; � 1), f 2 2 Lq 0

(
; � 2) and f 3 2 Ls0
(
; � 3)

such that

ja(y; � )j � f 1(y) + h1(y)j� jp- 1;

jb(y; �; � )j � f 2(y) + h2(y)j� jq- 1 + h3(y)j� jq- 1;

28
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jg(y; � )j � f 3(y) + h4(y)j� js- 1;

where (�; � ) 2 R � Rn .

(H3) 9 � > 0 such that

ha(y; � ) - a(y; �
0
); � - �

0
i > � j� - �

0
jp;

hb(y; �; � ) - b(y; �
0
; �

0
); � - �

0
i > 0;

�
g(y; � ) - g(y; �

0
)
��

� - �
0
�

> 0;

where �; � 0
2 R and �; � 0

2 Rn with � 6= � 0 and � 6= � 0:

(H4) 9 � 1; � 2; � 3 > 0 such that

ha(y; � ); � i > � 1j� jp;

hb(y; �; � ); � i > � 2j� jq + � 3j� jq;

g(y; � )� > 0:

2.1.2 The concept of weak solution

The de�nition of weak solution to (2.0.1) is stated as follows:

De�nition 2.1.1 We say that a function’ 2 W1;p
0 (
; � 1) is a weak solution of(2.0.1), if for any

v 2 W1;p
0 (
; � 1), it satis�es the following:

Z



ha(y; r ’ ); r vi � 1dy +

Z



hb(y; ’; r ’ ); r vi � 2dy +

Z



g(y; ’ )v� 3dy =

Z



�vdy:

Remark 2.1.2 For all � 1; � 2; � 3 2 Ap we have

(i) If 1 < q < p < 1 and � 2
� 1

2 Lk1 (
; � 1) wherek1 = p
p- q , then

k’ kLq (
;� 2 ) 6 #p;qk’ kLp (
;� 1 );

where#p;q = k � 2
� 1

k1=q
Lk 1 (
;� 1 )

.

(ii) Analogously, if1 < s < p < 1 and � 3
� 1

2 Lk2 (
; � 1) wherek2 = p
p- s, then

k’ kLs (
;� 3 ) 6 #p;sk’ kLp (
;� 1 );

where#p;s = k � 3
� 1

k1=s
Lk 2 (
;� 1 )

.
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2.2 Main result

Our main result of this chapter can be stated as follows.

Theorem 2.2.1 If (H1)- (H4) hold, then the problem(2.0.1)admits a unique solutionu in W1;p
0 (
; � 1).

Proof. We will reduce the problem (2.0.1) to a new one governed by an operator problem

	’ = � , and we will apply the Theorem 1.2.4.

We de�ne

� : W1;p
0 (
; � 1) � W1;p

0 (
; � 1) � ! R

and

� : W1;p
0 (
; � 1) � ! R;

with � and � are speci�ed in the following paragraphs. Hence

’ 2 W1;p
0 (
; � 1) is a weak solution of (2.0.1) , � (’; v ) = � (v); for all v 2 W1;p

0 (
; � 1):

The Theorem 2.2.1 is proved in four steps.

Step 1.

We utilize some tools and the condition (H2) to show the existence of the operator 	 and that

the problem (2.0.1) is identical to the operator equation 	’ = � . By employing the Hölder

inequality and Theorem 1.1.36, we get

j� (’ )j �
Z




j� j
� 1

j’ j� 1 dy

� k �=� 1kLp 0(
;� 1 )k’ kLp (
;� 1 )

� C
 k�=� 1kLp 0(
;� 1 )k’ kW1;p
0 (
;� 1 ):

Since� 2 Lp 0
(
; � 1- p 0

1 ), then � 2 W - 1;p0

0 (
; � 1- p 0

1 ):

The operator � can be written as

� (’; v ) = � 1(’; v ) + � 2(’; v ) + � 3(’; v );

where
� 1 : W1;p

0 (
; � 1) � W1;p
0 (
; � 1) � ! R

� 1(’; v ) =
Z



ha(y; r ’ ); r vi � 1dy;

� 2 : W1;p
0 (
; � 1) � W1;p

0 (
; � 1) � ! R

� 2(’; v ) =
Z



hb(y; ’; r ’ ); r vi � 2dy;

� 3 : W1;p
0 (
; � 1) � W1;p

0 (
; � 1) � ! R

� 3(’; v ) =
Z



g(y; ’ )v� 3dy:
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Then, we have

j� (’; v )j � j� 1(’; v )j + j� 2(’; v )j + j� 3(’; v )j: (2.2.1)

Also, by utilizing Hölder inequality, Remark 2.1.2 (i), (H2) and Theorem 1.1.36, we have

j� 1(’; v )j �
Z



ja(y; r ’ )jjr vj� 1dy

�
Z




�
f 1 + h1jr ’ jp- 1

�
jr vj� 1dy

�
Z



f 1�

1
p 0

1 jr vj�
1
p
1 dy +

Z



h1jr ’ jp- 1�

1
p 0

1 jr vj�
1
p
1 dy

� k f 1kLp 0(
;� 1 )kr vkLp (
;� 1 ) + kh1kL1 (
 )kr ’ kp- 1
Lp (
;� 1 )kr vkLp (
;� 1 )

�
�

kf 1kLp 0(
;� 1 ) + kh1kL1 (
 )k’ kp- 1
W1;p

0 (
;� 1 )

�
kvkW1;p

0 (
;� 1 );

and

j� 2(’; v )j �
Z



jb(y; ’; r ’ )jjr vj� 2dy

�
Z




�
f 2 + h2j’ jq- 1 + h3jr ’ jq- 1

�
jr vj� 2dy

�
Z



f 2�

1
q 0

2 jr vj�
1
q
2 dy +

Z



h2j’ jq- 1�

1
q 0

2 jr vj�
1
q
2 dy +

Z



h3jr ’ jq- 1�

1
q 0

2 jr vj�
1
q
2 dy

+ kh3kL1 (
 )

Z



jr ’ jq- 1�

1
q 0

2 jr vj�
1
q
2 dy

� k f 2kLq 0(
;� 2 )kr vkLq (
;� 2 ) + kh2kL1 (
 )k’ kq- 1
Lq (
;� 2 )kr vkLq (
;� 2 )

+ kh3kL1 (
 )kr ’ kq- 1
Lq (
;� 2 )kr vkLq (
;� 2 )

� k f 2kLq 0(
;� 2 )#p;qkr vkLp (
;� 1 ) + kh2kL1 (
 )Cq- 1
p;q k’ kq- 1

Lp (
;� 1 )#p;qkr vkLp (
;� 1 )

+ kh3kL1 (
 )#q- 1
p;q kr ’ kq- 1

Lp (
;� 1 )#p;qkr vkLp (
;� 1 )

�
h
#p;qkf 2kLq 0(
;� 2 ) + #q

p;q

�
Cq- 1


 kh2kL1 (
 ) + kh3kL1 (
 )

�
k’ kq- 1

W1;p
0 (
;� 1 )

i
kvkW1;p

0 (
;� 1 ):

Similarly, by using Hölder inequality, Theorem 1.1.36, (H2) and Remark 2.1.2, we get

j� 3(’; v )j �
Z



jg(y; ’ )jjvj� 3dy

�
h
C
 #p;skf 3kLs 0(
;� 3 ) + #s

p;sC
s

 kh4kL1 (
 )k’ ks- 1

W1;p
0 (
;� 1 )

i
kvkW1;p

0 (
;� 1 ):

Therefore, we have

j� (’; v )j �
h
kf 1kLp 0(
;� 1 ) + kh1kL1 (
 )k’ kp- 1

W1;p
0 (
;� 1 )

+ C
 #p;skf 3kLs 0(
;� 3 ) + #q
p;q

�
Cq- 1


 kh2kL1 (
 )

+ kh3kL1 (
 )

�
k’ kq- 1

W1;p
0 (
;� 1 )

+ #s
p;sCs


 kh4kL1 (
 )k’ ks- 1
W1;p

0 (
;� 1 )
+ #p;qkf 2kLq 0(
;� 2 )

i
kvkW1;p

0 (
;� 1 ):

Thus, � (’; : ) is linear and continuous for every ’ 2 W1;p
0 (
; � 1). As a result, there is a linear

and continuous operator on W1;p
0 (
; � 1) labeled by 	 that provides

h	’; v i = � (’; v ) for all ’; v 2 W1;p
0 (
; � 1):
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We also have

k	’ k� � k f 1kLp 0(
;� 1 ) + kh1kL1 (
 )k’ kp- 1
W1;p

0 (
;� 1 )
+ C
 #p;skf 3kLs 0(
;� 3 ) + #p;qkf 2kLq 0(
;� 2 )

+ #s
p;sCs


 kh4kL1 (
 )k’ ks- 1
W1;p

0 (
;� 1 )
+ #q

p;q

�
Cq- 1


 kh2kL1 (
 ) + kh3kL1 (
 )

�
k’ kq- 1

W1;p
0 (
;� 1 )

;

where

k	’ k� := sup
�

jh	’; v i j = j� (’; v )j : v 2 W1;p
0 (
; � 1); kvkW1;p

0 (
;� 1 ) = 1


;

is the norm in W - 1;p0

0 (
; � 1- p 0

1 ). Therefore, we get the operator

	 : W1;p
0 (
; � 1) � ! W - 1;p0

0 (
; � 1- p 0

1 )

’ 7�! 	’:

Therefore, the problem (2.0.1) is equivalent to the operator equation

	’ = �; ’ 2 W1;p
0 (
; � 1):

Step 2.

In this step, we demonstrate that 	 is strictly monotone. For all ’ 1; ’ 2 2 W1;p
0 (
; � 1) with

’ 1 6= ’ 2, we have

h	’ 1 - 	’ 2; ’ 1 - ’ 2i = � (’ 1; ’ 1 - ’ 2) - � (’ 2; ’ 1 - ’ 2)

=
Z



ha(y; r ’ 1); r (’ 1 - ’ 2)i � 1dy -

Z



ha(y; r ’ 2); r (’ 1 - ’ 2)i � 1dy

+
Z



hb(y; ’ 1; r ’ 1); r (’ 1 - ’ 2)i � 2dy -

Z



hb(y; ’ 2; r ’ 2); r (’ 1 - ’ 2)i � 2dy

+
Z



g(y; ’ 1)( ’ 1 - ’ 2)� 3dy -

Z



g(y; ’ 2)( ’ 1 - ’ 2)� 3dy

=
Z



ha(y; r ’ 1) - a(y; r ’ 2); r (’ 1 - ’ 2)i � 1dy

+
Z




�
g(y; ’ 1) - g(y; ’ 2)

��
’ 1 - ’ 2

�
� 3dy

+
R


 hb(y; ’ 1; r ’ 1) - b(y; ’ 2; r ’ 2); r (’ 1 - ’ 2)i � 2dy:

By using (H3), we obtain

h	’ 1 - 	’ 2; ’ 1 - ’ 2i �
Z



� jr (’ 1 - ’ 2)jp� 1dy � � kr (’ 1 - ’ 2)k

p
Lp (
;� 1 );

and by Theorem 1.1.36, we conclude that

h	’ 1 - 	’ 2; ’ 1 - ’ 2i �
�

(Cp

 + 1)

k’ 1 - ’ 2k
p
W1;p

0 (
;� 1 )
;

which implies that 	 is strictly monotone.

Step 3.

This step establishes the coerciveness of the operator	 . For all ’ 2 W1;p
0 (
; � 1), we get

h	’; ’ i = � (’; ’ )

=
Z



ha(y; r ’ ); r ’ i � 1dy +

Z



hb(y; ’; r ’ ); r ’ i � 2dy +

Z



g(y; ’ )u � 3dy:
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From Theorem 1.1.36 and(H4), it follows that

h	’; ’ i � � 1

Z



jr ’ jp� 1dy + � 2

Z



jr ’ jq � 2dy + � 3

Z



j’ jq � 2dy

� � 1

Z



jr ’ jp� 1dy + min (� 2; � 3)

� Z



jr ’ jq � 2dy +

Z



j’ jq � 2dy

�

= � 1kr ’ kp
Lp (
;� 1 ) + min (� 2; � 3)k’ kq

W1;q
0 (
;� 2 )

� � 1kr ’ kp
Lp (
;� 1 )

�
� 1

(Cp

 + 1)

k’ kp
W1;p

0 (
;� 1 )
:

Hence, we obtain
h	’; ’ i

k’ kW1;p
0 (
;� 1 )

�
� 1

(Cp

 + 1)

k’ kp- 1
W1;p

0 (
;� 1 )
:

Therefore, asp > 1 , we obtain

h	’; ’ i
k’ kW1;p

0 (
;� 1 )

� ! + 1 ask’ kW1;p
0 (
;� 1 ) � ! + 1 ;

which means that 	 is coercive.

Step 4.

In this step, we show that 	 is continuous. To do this, consider ’ k � ! ’ in W1;p
0 (
; � 1) as

k � ! 1 . Then ’ k � ! ’ in Lp(
; � 1) et r ’ k � ! r ’ in (Lp(
; � 1))
n . Therefore, according

to Theorem 1.1.7, there exist(’ k i );  1 2 Lp(
; � 1) and  2 2 Lp(
; � 1) in such a way that

’ k i (y) � ! ’ (y); as k i � ! 1 ; in 


j’ k i (y)j �  1(y); in 


r ’ k i (y) � ! r ’ (y); as k i � ! 1 ; in 


jr ’ k i (y)j �  2(y); in 
:

(2.2.2)

We are going to establish that 	’ k � ! 	’ in W - 1;p0

0 (
; � 1- p 0

1 ). It is proved in three steps.

Step 4.1.

Let us de�ne the operator

Bj : W1;p
0 (
; � 1) � ! Lp 0

(
; � 1)

(Bj ’ )(y) = a j (y; r ’ (y)) :

We now show that

Bj ’ k � ! Bj ’ in Lp 0
(
; � 1):
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(i) For all ’ 2 W1;p
0 (
; � 1), by Theorem 1.1.36 and(H2), we have

kBj ’ kp 0

Lp 0(
;� 1 )
=

Z



jBj ’ (y)jp

0
� 1dy =

Z



ja j (y; r ’ )jp

0
� 1dy

�
Z




�
f 1 + h1jr ’ jp- 1� p 0

� 1dy

� Cp

Z




�
f p 0

1 + hp 0

1 jr ’ jp
�

� 1dy

� Cp

h
kf 1k

p 0

Lp 0(
;� 1 )
+ kh1k

p 0

L1 (
 )kr ’ kp
Lp (
;� 1 )

i

� Cp

h
kf 1k

p 0

Lp 0(
;� 1 )
+ kh1k

p 0

L1 (
 )kukp
W1;p

0 (
;� 1 )

i
:

(ii) By (H2) and (2.2.2), we obtain

kBj ’ k i - Bj ’ kp 0

Lp 0(
;� 1 )
=

Z



jBj ’ k i (y) - Bj ’ (y)jp

0
� 1dy

�
Z




�
ja j (y; r ’ k i )j + ja j (y; r ’ )j

� p 0

� 1dy

� Cp

Z




�
ja j (y; r ’ k i )j

p 0
+ ja j (y; r ’ )jp

0
�

� 1dy

� Cp

Z




h�
f 1 + h1jr ’ k i j

p- 1� p 0

+
�
f 1 + h1jr ’ jp- 1� p 0i

� 1dy

� Cp

Z




� �
f 1 + h1 p- 1

2

� p 0

+
�

f 1 + h1 p- 1
2

� p 0�
� 1dy

� 2CpC
0

p

Z




�
f p 0

1 + hp 0

1  p
2

�
� 1dy

� 2CpC
0

p

h
kf 1k

p 0

Lp 0(
;� 1 )
+ kh1k

p 0

L1 (
 )k 2k
p
Lp (
;� 1 )

i
:

As k i � ! 1 , by using (H1), we get

Bj ’ k i (y) = a j (y; r ’ k i (y)) � ! a j (y; r ’ (y)) = Bj ’ (y); for almost all x 2 
:

Consequently, by Lebesgue’s theorem, we have

kBj ’ k i - Bj ’ kLp 0(
;� 1 ) � ! 0 , Bj ’ k i � ! Bj ’ in Lp 0
(
; � 1):

Finally, considering the principle of convergence in Banach spaces, we conclude

Bj ’ k � ! Bj ’ in Lp 0
(
; � 1): (2.2.3)

Step 4.2.

De�ne
Gj : W1;p

0 (
; � 1) � ! Lq 0
(
; � 2)

(Gj ’ )(y) = bj (y; ’ (y); r ’ (y)) :

We also have that

Gj ’ k � ! Gj ’ in Lq 0
(
; � 2):
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(i) For all ’ 2 W1;p
0 (
; � 1), by Remark 2.1.2,(i) (H2) and Theorem 1.1.36, we get

kGj ’ kq 0

Lq 0(
;� 2 )
=

Z



jbj (y; ’; r ’ )jq

0
� 2dy

�
Z




�
f 2 + h2j’ jq- 1 + h3jr ’ jq- 1� q 0

� 2dy

� Cq

Z




h
f q 0

2 + hq 0

2 j’ jq + hq 0

3 jr ’ jq
i
� 2dy

= Cq

� Z



f q 0

2 � 2dy +
Z



hq 0

2 j’ jq� 2dy +
Z



hq 0

3 jr ’ jq� 2dy
�

� Cq

� Z



f q 0

2 � 2dy + kh2k
q 0

L1 (
 )

Z



j’ jq� 2dy + kh3k

q 0

L1 (
 )

Z



jr ’ jq� 2dy

�

� Cq

h
kf 2k

q 0

Lq 0(
;� 2 )
+ kh2k

q 0

L1 (
 )k’ kq
Lq (
;� 2 ) + kh3k

q 0

L1 (
 )kr ’ kq
Lq (
;� 2 )

i

� Cq

h
kf 2k

q 0

Lq 0(
;� 2 )
+ kh2k

q 0

L1 (
 )C
q
p;qk’ kq

Lp (
;� 1 ) + kh3k
q 0

L1 (
 )C
q
p;qkr ’ kq

Lp (
;� 1 )

i

� Cq

h
kf 2k

q 0

Lq 0(
;� 2 )
+ kh2k

q 0

L1 (
 )C
q
p;qk’ kq

W1;p
0 (
;� 1 )

+ kh3k
q 0

L1 (
 )C
q
p;qkukq

W1;p
0 (
;� 1 )

i

� Cq

h
kf 2k

q 0

Lq 0(
;� 2 )
+ Cq

p;q

�
Cq


 kh2k
q 0

L1 (
 ) + kh3k
q 0

L1 (
 )

�
kukq

W1;p
0 (
;� 1 )

i
:

(ii) By usin Remark 2.1.2 (i), (H2) and the similar reasoning employed in Step 4.1 (ii) , we

get

Gj ’ k � ! Gj ’ in Lq 0
(
; � 2): (2.2.4)

Step 4.3.

We de�ne the operator
H : W1;p

0 (
; � 1) � ! Ls0
(
; � 3)

(H’ )(y) = g(y; ’ (y)) :

In this step, we show that

H’ k � ! H’ in Ls0
(
; � 3):

(i) For all ’ 2 W1;p
0 (
; � 1), by Remark 2.1.2 (ii) and (H2), we get

kH’ ks0

Ls 0(
;� 3 )
=

Z



jg(y; ’ )js

0
� 3dy

� Cs

Z




�
f s0

3 + hs0

4 j’ js
�

� 3dy

� Cs

h
kf 3ks0

Ls 0(
;� 3 ) + kh4k
p 0

L1 (
 )k’ ks
Ls (
;� 3 )

i

� Cs

h
kf 3ks0

Ls 0(
;� 3 ) + Cs
p;skh4k

p 0

L1 (
 )k’ ks
Lp (
;� 1 )

i

� Cs

h
kf 3kLs 0(
;� 1 ) + Cs

p;sC
s

 kh4ks0

L1 (
 )k’ ks
W1;p

0 (
;� 1 )

i
:
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(ii) From Remark 2.1.2 (ii) and (H2), we have

kH’ k i - H’ ks0

Ls 0(
;� 3 )
=

Z



jH’ k i (y) - H’ (y)jp

0
� 3dy

�
Z




�
jg(y; ’ k i )j + jg(y; ’ )j

� s0

� 3dy

� Cs

Z




�
jg(y; ’ k i )j

s0
+ jg(y; ’ )js

0
�

� 3dy

� Cs

Z




h�
f 3 + h4j’ k i j

s- 1
� s0

+
�

f 3 + h4j’ js- 1
� s0i

� 3dy

� Cs

Z




h�
f 3 + h4j 1js- 1

� s0

+
�

f 3 + h4 s- 1
1

� s0i
� 3dy

� 2CsC0
s

Z




�
f s0

3 + hp 0

4  s
1

�
� 3dy

� 2CsC0
s

h
kf 3ks0

Ls 0(
;� 3 ) + kh4ks0

L1 (
 )k 1ks
Ls (
;� 3 )

i

� 2CsC0
s

h
kf 3ks0

Ls 0(
;� 3 ) + #s
p;skh4ks0

L1 (
 )k 1ks
Lp (
;� 1 )

i
:

As k i � ! 1 , by using (H1), we obtain

H’ k i (y) = g(y; ’ k i (y)) � ! g(y; u (y)) = H’ (y); a.e.x 2 
:

Consequently, by means of Lebesgue’s theorem, we have

kH’ k i - H’ kLs 0(
;� 3 ) � ! 0;

that is,

H’ k i � ! H’ in Ls0
(
; � 3):

Finally, considering the principle of convergence in Banach spaces, we conclude that

H’ k � ! H’ in Ls0
(
; � 3): (2.2.5)

At last, by considering v 2 W1;p
0 (
; � 1) and with the help of Theorem 1.1.36, Hölder inequal-

ity and Remark 2.1.2, we arrive at

j� 1(’ k; v) - � 1(’; v )j = j
Z



ha(y; r ’ k) - a(y; r ’ ); r vi � 1dy j

�
nX

j= 1

Z



ja j (y; r ’ k) - a j (y; r ’ )jjD jvj� 1dy

=
nX

j= 1

Z



jBj ’ k - Bj ’ jjD jvj� 1dy

�
nX

j= 1

kBj ’ k - Bj ’ kLp 0(
;� 1 )kD jvkLp (
;� 1 )

�

 
nX

j= 1

kBj ’ k - Bj ’ kLp 0(
;� 1 )

!

kvkW1;p
0 (
;� 1 );
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j� 2(’ k; v) - � 2(’; v )j = j
Z



hb(y; ’ k; r ’ k) - b(y; ’; r ’ ); r vi � 2dy j

�
nX

j= 1

Z



jbj (y; ’ k; r ’ k) - bj (y; ’; r ’ )jjD jvj� 2dy

=
nX

j= 1

Z



jGj ’ k - Gj ’ jjD jvj� 2dy

�

 
nX

j= 1

kGj ’ k - Gj ’ kLq 0(
;� 2 )

!

kr vkLq (
;� 2 )

� #p;q

 
nX

j= 1

kGj ’ k - Gj ’ kLq 0(
;� 2 )

!

kr vkLp (
;� 1 )

� #p;q

 
nX

j= 1

kGj ’ k - Gj ’ kLq 0(
;� 2 )

!

kvkW1;p
0 (
;� 1 );

j� 3(’ k; v) - � 3(’; v )j �
Z



jg(y; ’ k) - g(y; ’ )jjvj� 3dy

=
Z



jH’ k - H’ jjvj� 3dy

� k H’ k - H’ kLs 0(
;� 3 )kvkLs (
;� 3 )

� #p;skH’ k - H’ kLs 0(
;� 3 )kvkLp (
;� 1 )

� #p;sC
 kH’ k - H’ kLs 0(
;� 3 )kvkW1;p
0 (
;� 1 ):

Hence, for all v 2 W1;p
0 (
; � 1), we have

j� (’ k; v) - � (’; v )j � j� 1(’ k; v) - � 1(’; v )j + j� 2(’ k; v) - � 2(’; v )j + j� 3(’ k; v) - � 3(’; v )j

�
h nX

j= 1

�
kBj ’ k - Bj ’ kLp 0(
;� 1 ) + #p;qkGj ’ k - Gj ’ kLq 0(
;� 2 )

�

+ #p;sC
 kH’ k - H’ kLs 0(
;� 3 )

i
kvkW1;p

0 (
;� 1 );

and consequently, we get

k	’ k- 	’ k� �
nX

j= 1

�
kBj ’ k - Bj ’ kLp 0(
;� 1 ) + #p;qkGj ’ k - Gj ’ kLq 0(
;� 2 )

�
+ #p;sC
 kH’ k- H’ kLs 0(
;� 3 ):

Combining (2.2.3), (2.2.4) and (2.2.5), we deduce that

k	’ k - 	’ k� � ! 0 asm � ! 1 ;

that is, 	’ k � ! 	’ in W - 1;p0

0 (
; � 1- p 0

1 ). Which implies that 	 is continuous.

We have now proved that 	 is strictly monotone, coercive and hemicontinuous, and � 2

W - 1;p0

0 (
; � 1- p 0

1 ). Thus, we have veri�ed all the conditions of Theorem 1.2.4. As a result,

from Theorem 1.2.4, it follows that the operator equation 	’ = � admits the unique weak

solution ’ 2 W1;p
0 (
; � 1) and it also follows that u is the unique weak solution for (2.0.1).

This completes the proof of Theorem 2.2.1.
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2.3 Example

Set 
 = f(y; z) 2 R2 : x2 + y2 < 1g, and let � 1(y; z) =
�
y2 + z2

� - 1=2, � 2(y; z) =
�
y2 + z2

� - 1=3

and � 3(y; z) =
�
y2 + z2

� - 1
�

note that � 1; � 2; � 3 2 A4, p = 4, q = 3 and s = 2
�

, and we de�ne

b : 
 � R � R2 � ! R2, a : 
 � R2 � ! R2 and g : 
 � R � ! R by

a
�

(y; z); �
�

= h1(y; z)j� j3sgn(� );

b
�

(y; z); �; �
�

= j� j2sgn(� );

g
�

(y; z); �
�

= h4(y; z)j� jsgn(� );

with h1(y; z) = 2e(y2+ z2 ) and h4(y; z) = 2 - cos2(yz): Let us look at the problem
8
><

>:

A ’ (y; z) = cos(y + z) in 
;

’ (y; z) = 0 on @
;
(2.3.1)

where,

A ’ (y; z) = - div
h
� 1a

�
(y; z); r ’ (y; z)

�
+ � 2b

�
(y; z); ’ (y; z); r ’ (y; z)

�i
+ � 3g

�
(y; z); ’ (y; z)

�
:

From Theorem 2.2.1, it follows that the problem (2.3.1) admits the unique weak solution in

W1;4
0 (
; � 1).
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Chapter 3

Existence result for a Dirichlet problem
governed by nonlinear degenerate elliptic
equation in weighted Sobolev spaces

Our aim in this chapter is to prove the existence and uniqueness of weak solution in the

weighted Sobolev space W1;p
0 (
; ! 1; ! 4) for a Dirichlet boundary value problem for the

following nonlinear degenerate elliptic equation
8
><

>:

- div
h
! 1A(x; r u) + ! 2B(x; u; r u)

i
+ ! 3b(x; u ) + ! 4ju jp- 2u = f in 
;

u(x) = 0 on @
;
(3.0.1)

where 
 is a bounded open set in Rn , ! 1, ! 2, ! 3 and ! 4 are Ap-weight functions, A :


 � Rn � ! Rn , B : 
 � R � Rn � ! Rn , b : 
 � R � ! R are CarathØodory functions

that satisfy the assumptions of growth, ellipticity and monotonicity, and the right-hand side

term f belongs to Lp 0
(
; ! 1- p 0

1 ).

3.1 Main result

3.1.1 Basic assumptions

We assume that the following assumptions: 
 be a bounded open subset of Rn ( n � 2),

1 < q; s < p < 1 , let ! 1, ! 2, ! 3 and ! 4 are a weights functions, and let A : 
 � Rn � !

Rn , B : 
 � R � Rn � ! Rn , with B(x; �; � ) =
�

B1(x; �; � ); :::; Bn (x; �; � )
�

and A(x; � ) =
�

A 1(x; � ); :::; A n (x; � )
�

and b : 
 � R � ! R satisfying the following assumptions:

(A1) For k = 1; :::; n, Bk, A k and b are CarathØodory functions.

(A2) There are positive functions h1; h2; h3; h4 2 L1 (
 ) and  1 2 Lp 0
(
; ! 1),  2 2 Lq 0

(
; ! 2)

and  3 2 Ls0
(
; ! 3) such that :

jA(x; � )j �  1(x) + h1(x)j� jp- 1;

39
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jB(x; �; � )j �  2(x) + h2(x)j� jq- 1 + h3(x)j� jq- 1;

and

jb(x; � )j �  3(x) + h4(x)j� js- 1:

(A3) There exists a constant� > 0 such that :

hA(x; � ) - A (x; �
0
); � - �

0
i � � j� - �

0
jp;

hB(x; �; � ) - B(x; �
0
; �

0
); � - �

0
i � 0;

and �
b(x; � ) - b(x; �

0
)
��

� - �
0
�

� 0;

whenever (�; � ); (� 0; � 0) 2 R � Rn with � 6= � 0 and � 6= � 0.

(A4) There are constants� 1; � 2; � 3 > 0 such that :

hA(x; � ); � i � � 1j� jp;

hB(x; �; � ); � i � � 2j� jq + � 3j� jq;

and

b(x; � )� � 0:

3.1.2 Notion of solution

The de�nition of a weak solution for problem (3.0.1) can be stated as follows.

De�nition 3.1.1 One saysu 2 W1;p
0 (
; ! 1; ! 4) is a weak solution to problem(3.0.1), provided

that Z



hA(x; r u); r vi ! 1 dx +

Z



hB(x; u; r u); r vi ! 2 dx +

Z



b(x; u ) v ! 3 dx

+
Z



ju jp- 2u v ! 4 dx =

Z



fvdx;

for all v 2 W1;p
0 (
; ! 1; ! 4).

Remark 3.1.2 We notice, for all! 1; ! 2; ! 3 2 Ap, that

(i) If ! 2
! 1

2 Lr1 (
; ! 1) wherer1 = p
p- q and1 < q < p < 1 , then, by Hölder inequality we obtain

jju jjLq (
;! 2 ) � Cp;q jju jjLp (
;! 1 );

whereCp;q = jj ! 2
! 1

jj1=q
Lr 1 (
;! 1 ).

(ii) Analogously, if! 3
! 1

2 Lr2 (
; ! 1) wherer2 = p
p- s and1 < s < p < 1 , then

jju jjLs (
;! 3 ) � Cp;sjju jjLp (
;! 1 );

whereCp;s = jj ! 3
! 1

jj1=s
Lr 2 (
;! 1 ).
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3.1.3 Existence and uniqueness result

We shall prove the following existence and uniqueness theorem.

Theorem 3.1.3 Let ! i 2 Ap(i = 1; 2; 3; 4), 1 < q; s < p < 1 and assume that the assumptions

(A1) - (A4) hold. If f 2 Lp 0
(
; ! 1- p

1 ), ! 2
! 1

2 Lp=(p- q)(
; ! 1) and ! 3
! 1

2 Lp=(p- s)(
; ! 1), then the

problem(3.0.1)has exactly one solutionu 2 W1;p
0 (
; ! 1; ! 4).

Proof. The essential one of our proof is to reduce the (3.0.1) to an operator problem Au = G

and apply the Theorem 1.2.4.

We de�ne

F : W1;p
0 (
; ! 1; ! 4) � W1;p

0 (
; ! 1; ! 4) � ! R

and

G : W1;p
0 (
; ! 1; ! 4) � ! R;

where F and G are de�ned below.

Then u 2 W1;p
0 (
; ! 1; ! 4) is a weak solution of (3.0.1) if and only if

F(u; v) = G(v); for all v 2 W1;p
0 (
; ! 1; ! 4):

The proof of Theorem 3.1.3 is divided into four steps.

Step 1: equivalent operator equation:

In this step, we prove that the problem (3.0.1) is equivalent to an operator equation Au = G.

Using Hölder inequality, Theorem 1.1.36 and Remark 3.1.2 (ii), we obtain

jG(v)j �
Z




jf j
! 1

jvj! 1 dx

� jjf=! 1jjLp 0(
;! 1 ) jjvjjLp (
;! 1 )

� C
 jjf=! 1jjLp 0(
;! 1 ) jjvjjW1;p
0 (
;! 1 ;! 4 ):

Sincef=! 1 2 Lp 0
(
; ! 1), then G 2

h
W1;p

0 (
; ! 1; ! 4)
i �

:

The operator F is broken down into the from

F(u; v) = F1(u; v) + F2(u; v) + F3(u; v) + F4(u; v);

where Fi : W1;p
0 (
; ! 1; ! 4) � W1;p

0 (
; ! 1; ! 4) � ! R, for i = 1; 2; 3; 4, are de�ned as

F1(u; v) =
Z



hA(x; r u); r vi ! 1dx; F2(u; v) =

Z



hB(x; u; r u); r vi ! 2dx;

F3(u; v) =
Z



b(x; u )v ! 3dx; and F4(u; v) =

Z



ju jp- 2u v ! 4 dx:
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Then, we have

jF(u; v)j � jF1(u; v)j + jF2(u; v)j + jF3(u; v)j + jF4(u; v)j: (3.1.1)

On the other hand, we get by using (A2), Hölder inequality, Remark 3.1.2 (i) and Theorem

1.1.36,

jF1(u; v)j �
Z



jA(x; r u)jjr vj! 1dx

�
Z




�
 1 + h1jr u jp- 1

�
jr vj! 1dx

=
Z



 1!

1
p 0

1 jr vj!
1
p
1 dx +

Z



h1jr u jp- 1!

1
p 0

1 jr vj!
1
p
1 dx

� jj 1jjLp 0(
;! 1 ) jjr vjjLp (
;! 1 ) + jjh1jjL1 (
 ) jjr u jjp- 1
Lp (
;! 1 ) jjr vjjLp (
;! 1 )

�
�

jj 1jjLp 0(
;! 1 ) + jjh1jjL1 (
 ) jju jjp- 1
W1;p

0 (
;! 1 ;! 4 )

�
jjvjjW1;p

0 (
;! 1 ;! 4 );

and

jF2(u; v)j �
Z



jB(x; u; r u)jjr vj! 2dx

�
Z




�
 2 + h2ju jq- 1 + h3jr u jq- 1

�
jr vj! 2dx

=
Z



 2!

1
q 0

2 jr vj!
1
q
2 dx +

Z



h2ju jq- 1!

1
q 0

2 jr vj!
1
q
2 dx +

Z



h3jr u jq- 1!

1
q 0

2 jr vj!
1
q
2 dx

� jj 2jjLq 0(
;! 2 ) jjr vjjLq (
;! 2 ) + jjh2jjL1 (
 ) jju jjq- 1
Lq (
;! 2 ) jjr vjjLq (
;! 2 )

+ jjh3jjL1 (
 ) jjr u jjq- 1
Lq (
;! 2 ) jjr vjjLq (
;! 2 )

� jj 2jjLq 0(
;! 2 )Cp;q jjr vjjLp (
;! 1 ) + jjh2jjL1 (
 )Cq- 1
p;q jju jjq- 1

Lp (
;! 1 )Cp;q jjr vjjLp (
;! 1 )

+ jjh3jjL1 (
 )Cq- 1
p;q jjr u jjq- 1

Lp (
;! 1 )Cp;q jjr vjjLp (
;! 1 )

�
h
Cq

p;q

�
Cq- 1


 jjh2jjL1 (
 ) + jjh3jjL1 (
 )

�
jju jjq- 1

W1;p
0 (
;! 1 ;! 4 )

+ Cp;q jj 2jjLq 0(
;! 2 )

i
jjvjjW1;p

0 (
;! 1 ;! 4 ):

Analogously, using (A2), Hölder inequality, Remark 3.1.2 (ii) and Theorem 1.1.36, we obtain

jF3(u; v)j �
Z



jb(x; u )jjvj! 3dx

�
h
C
 Cp;sjj 3jjLs 0(
;! 3 ) + Cs

p;sC
s

 jjh4jjL1 (
 ) jju jjs- 1

W1;p
0 (
;! 1 ;! 4 )

i
jjvjjW1;p

0 (
;! 1 ;! 4 ):

Next, by applying Hölder inequality and Remark 3.1.2 (ii), we get

jF4(u; v)j �
Z



ju jp- 1jvj! 4dx

�
� Z



ju jp! 4dx

� 1=p0� Z



jvjp! 4dx

� 1=p

= jju jjp- 1
Lp (
;! 4 ) jjvjjLp (
;! 4 )

� C
 jju jjp- 1
W1;p

0 (
;! 1 ;! 4 )
jjvjjW1;p

0 (
;! 1 ;! 4 ):

Hence, in (3.1.1) we obtain, for all u; v 2 W1;p
0 (
; ! 1; ! 4)

jF(u; v)j �
h
jj 1jjLp 0(
;! 1 ) + jjh1jjL1 (
 ) jju jjp- 1

W1;p
0 (
;! 1 ;! 4 )

+ C
 Cp;sjj 3jjLs 0(
;! 3 )

+ Cp;q jj 2jjLq 0(
;! 2 ) + Cq
p;q

�
Cq- 1


 jjh2jjL1 (
 ) + jjh3jjL1 (
 )

�
jju jjq- 1

W1;p
0 (
;! 1 ;! 4 )

+ Cs
p;sC

s

 jjh4jjL1 (
 ) jju jjs- 1

W1;p
0 (
;! 1 ;! 4 )

+ C
 jju jjp- 1
W1;p

0 (
;! 1 ;! 4 )

i
kvkW1;p

0 (
;! 1 ;! 4 ):
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Then F(u; :) is linear and continuous for each u 2 W1;p
0 (
; ! 1; ! 4). Thus, there exists a linear

and continuous operator on W1;p
0 (
; ! 1; ! 4) denoted by A such that

hAu; v i = F(u; v); for all u; v 2 W1;p
0 (
; ! 1; ! 4):

Moreover, we have

kAuk� � jj 1jjLp 0(
;! 1 ) + jjh1jjL1 (
 ) jju jjp- 1
W1;p

0 (
;! 1 ;! 4 )
+ C
 Cp;sjj 3jjLs 0(
;! 3 )

+ Cp;q jj 2jjLq 0(
;! 2 ) + Cq
p;q

�
Cq- 1


 jjh2jjL1 (
 ) + jjh3jjL1 (
 )

�
jju jjq- 1

W1;p
0 (
;! 1 ;! 4 )

+ Cs
p;sC

s

 jjh4jjL1 (
 ) jju jjs- 1

W1;p
0 (
;! 1 ;! 4 )

+ C
 jju jjp- 1
W1;p

0 (
;! 1 ;! 4 )
;

where

kAuk� := sup
�

jhAu; v i j = jF(u; v)j : v 2 W1;p
0 (
; ! 1; ! 4); kvkW1;p

0 (
;! 1 ;! 4 ) = 1


;

is the norm in
h
W1;p

0 (
; ! 1; ! 4)
i �

. Hence, we obtain the operator

A : W1;p
0 (
; ! 1; ! 4) � !

h
W1;p

0 (
; ! 1; ! 4)
i �

u 7�! Au:

However, the problem (3.0.1) is equivalent to the operator equation

Au = G; u 2 W1;p
0 (
; ! 1; ! 4):

Step 2: monotonicity of the operator A:

The operator A is strictly monotone. In fact. Let v1; v2 2 W1;p
0 (
; ! 1; ! 4) with v1 6= v2. We

have

hAv1 - Av2; v1 - v2i = F(v1; v1 - v2) - F(v2; v1 - v2)

=
Z



hA(x; r v1); r (v1 - v2)i ! 1dx -

Z



hA(x; r v2); r (v1 - v2)i ! 1dx

+
Z



hB(x; v1; r v1); r (v1 - v2)i ! 2dx -

Z



hB(x; v2; r v2); r (v1 - v2)i ! 2dx

+
Z



b(x; v1)(v1 - v2)! 3dx -

Z



b(x; v2)(v1 - v2)! 3dx

+
Z



jv1jp- 2v1(v1 - v2)! 4dx -

Z



jv2jp- 2v2(v1 - v2)! 4dx

=
Z



hA(x; r v1) - A (x; r v2); r (v1 - v2)i ! 1dx

+
Z



hB(x; v1; r v1) - B(x; v2; r v2); r (v1 - v2)i ! 2dx

+
Z




�
b(x; v1) - b(x; v2)

��
v1 - v2

�
! 3dx

+
Z




�
jv1jp- 2v1 - jv2jp- 2v2

��
v1 - v2

�
! 4dx:
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Thanks to (A3) and Proposition 1.3.1 (ii), we obtain

hAv1 - Av2; v1 - v2i � �
Z



jr (v1 - v2)jp ! 1 dx + � p

Z




�
jv1j + jv2j

� p- 2
jv1 - v2j2 ! 4 dx

� �
Z



jr (v1 - v2)jp! 1dx

� � kr (v1 - v2)k
p
Lp (
;! 1 ):

Therefore, the operator A is strictly monotone.

Step 3: coercivity of the operator A:

In this step, we prove that the operator A is coercive. To this purpose let u 2 W1;p
0 (
; ! 1; ! 4).

Then, we have

hAu; u i = F(u; u )

= F1(u; u ) + F2(u; u ) + F3(u; u ) + F4(u; u )

=
Z



hA(x; r u); r u i ! 1dx +

Z



hB(x; u; r u); r u i ! 2dx +

Z



b(x; u )u ! 3dx +

Z



ju jp! 4dx:

Moreover, from (A4) and Theorem 1.1.36, we obtain

hAu; u i � � 1

Z



jr u jp! 1dx + � 2

Z



jr u jq! 2dx + � 3

Z



ju jq! 2dx +

Z



ju jp! 4dx

� min (� 1; 1)
� Z



jr u jp! 1dx +

Z



ju jp! 4dx

�
+ min (� 2; � 3)

� Z



jr u jq! 2dx +

Z



ju jq! 2dx

�

= min (� 1; 1)kukp
W1;p

0 (
;! 1 ;! 4 )
+ min (� 2; � 3)kukq

Lq (
;! 2 )

� min (� 1; 1)kukp
W1;p

0 (
;! 1 ;! 4 )
:

Hence, we obtain
hAu; u i

kukW1;p
0 (
;! 1 ;! 4 )

� min (� 1; 1)kukp- 1
W1;p

0 (
;! 1 ;! 4 )
:

Therefore, sincep > 1 , we have

hAu; u i
kukW1;p

0 (
;! 1 ;! 4 )

� ! + 1 askukW1;p
0 (
;! 1 ;! 4 ) � ! + 1 ;

that is, A is coercive.

Step 4: continuity of the operator A:

We need to show that the operator A is continuous. To do this, let u i � ! u in W1;p
0 (
; ! 1; ! 4)

as i � ! 1 . Then r u i � ! r u in (Lp(
; ! 1))
n . Hence, thanks to Theorem 1.1.7, there exist a

subsequence(u i j ) and  2 Lp(
; ! 1) such that

r u i j (x) � ! r u(x); as i j � ! 1 ; a.e. in 


jr u i j (x)j �  (x); a.e. in 
:
(3.1.2)
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We will show that Au i � ! Au in
h
W1;p

0 (
; ! 1; ! 4)
i �

. In order to prove this convergence we

proceed in four steps.

Step 4.1. For k = 1; :::; n, we de�ne the operator

Bk : W1;p
0 (
; ! 1; ! 4) � ! Lp 0

(
; ! 1)

(Bku)(x) = A k(x; r u(x)) :

We need to show that Bku i � ! Bku in Lp 0
(
; ! 1). We will apply the Lebesgue’s theorem

and the convergence principle in Banach spaces.

(i) Let u 2 W1;p
0 (
; ! 1; ! 4). Using (A2) and Theorem 1.1.36, we obtain

kBkukp 0

Lp 0(
;! 1 )
=

Z



jBku(x)jp

0
! 1dx =

Z



jA k(x; r u)jp

0
! 1dx

�
Z




�
 1 + h1jr u jp- 1� p 0

! 1dx

� Cp

Z




�
 p 0

1 + hp 0

1 jr u jp
�

! 1dx

� Cp

h
k 1k

p 0

Lp 0(
;! 1 )
+ kh1k

p 0

L1 (
 )kr ukp
Lp (
;! 1 )

i

� Cp

h
k 1k

p 0

Lp 0(
;! 1 )
+ kh1k

p 0

L1 (
 )kukp
W1;p

0 (
;! 1 ;! 4 )

i
;

where the constant Cp depends only on p.

(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 4) as i � ! 1 . By (A2) and (3.1.2), we obtain

kBku i j - Bkukp 0

Lp 0(
;! 1 )
�

Z




�
jA k(x; r u i j )j + jA k(x; r u)j

� p 0

! 1dx

� Cp

Z




�
jA k(x; r u i j )j

p 0
+ jA k(x; r u)jp

0
�

! 1dx

� Cp

Z




h�
 1 + h1jr u i j j

p- 1� p 0

+
�
 1 + h1jr u jp- 1� p 0i

! 1dx

� Cp

Z




h�
 1 + h1 p- 1� p 0

+
�
 1 + h1 p- 1� p 0i

! 1dx

� 2CpC
0

p

Z




�
 p 0

1 + hp 0

1  p
�

! 1dx

� 2CpC
0

p

h
k 1k

p 0

Lp 0(
;! 1 )
+ kh1k

p 0

L1 (
 )k kp
Lp (
;! 1 )

i
:

Hence, thanks to (A1), we get, as i j � ! 1

Bku i j (x) = A k(x; r u i j (x)) � ! A k(x; r u(x)) = Bku(x); a.e.x 2 
:

Therefore, by Lebesgue’s theorem, we obtain

kBku i j - BkukLp 0(
;! 1 ) � ! 0;

that is,

Bku i j � ! Bku in Lp 0
(
; ! 1):
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Finally, in view to convergence principle in Banach spaces, we have

Bku i � ! Bku in Lp 0
(
; ! 1): (3.1.3)

Step 4.2. For k = 1; :::; n, we de�ne the operator

M k : W1;p
0 (
; ! 1; ! 4) � ! Lq 0

(
; ! 2)

(M ku)(x) = Bk(x; u (x); r u(x)) :

We will prove that M ku i � ! M ku in Lq 0
(
; ! 2).

(i) Let u 2 W1;p
0 (
; ! 1; ! 4). Using (A2), Remark 3.1.2(i) and Theorem 1.1.36, we obtain

kM kukq 0

Lq 0(
;! 2 )
=

Z



jBk(x; u; r u)jq

0
! 2dx

�
Z




�
 2 + h2ju jq- 1 + h3jr u jq- 1� q 0

! 2dx

� Cq

Z




h
 q 0

2 + hq 0

2 ju jq + hq 0

3 jr u jq
i
! 2dx

= Cq

� Z



 q 0

2 ! 2dx +
Z



hq 0

2 ju jq! 2dx +
Z



hq 0

3 jr u jq! 2dx
�

� Cq

� Z



 q 0

2 ! 2dx + kh2k
q 0

L1 (
 )

Z



ju jq! 2dx + kh3k

q 0

L1 (
 )

Z



jr u jq! 2dx

�

� Cq

h
k 2k

q 0

Lq 0(
;! 2 )
+ kh2k

q 0

L1 (
 )kukq
Lq (
;! 2 ) + kh3k

q 0

L1 (
 )kr ukq
Lq (
;! 2 )

i

� Cq

h
k 2k

q 0

Lq 0(
;! 2 )
+ kh2k

q 0

L1 (
 )C
q
p;qkukq

Lp (
;! 1 ) + kh3k
q 0

L1 (
 )C
q
p;qkr ukq

Lp (
;! 1 )

i

� Cq

h
k 2k

q 0

Lq 0(
;! 2 )
+ Cq

p;q

�
Cq


 kh2k
q 0

L1 (
 ) + kh3k
q 0

L1 (
 )

�
kukq

W1;p
0 (
;! 1 ;! 4 )

i
;

where the constant Cq depends only on q.

(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 4) as i � ! 1 . According to (A2), Remark 3.1.2 (i) and

the same arguments used in Step 4.1(ii) , we obtain analogously,

M ku i � ! M ku in Lq 0
(
; ! 2): (3.1.4)

Step 4.3. We de�ne the operator

H : W1;p
0 (
; ! 1; ! 4) � ! Ls0

(
; ! 3)

(Hu )(x) = b(x; u (x)) :

In this step, we will show that Hu i � ! Hu in Ls0
(
; ! 3).
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(i) Let u 2 W1;p
0 (
; ! 1; ! 4). Using (A2) and Remark 3.1.2 (ii), we obtain

kHu ks0

Ls 0(
;! 3 )
=

Z



jb(x; u )js

0
! 3dx

�
Z




�
 3 + h4ju js- 1� s0

! 3dx

� Cs

Z




�
 s0

3 + hs0

4 ju js
�

! 3dx

� Cs

h
k 3ks0

Ls 0(
;! 3 ) + kh4k
p 0

L1 (
 )kuks
Ls (
;! 3 )

i

� Cs

h
k 3ks0

Ls 0(
;! 3 ) + Cs
p;skh4k

p 0

L1 (
 )kuks
Lp (
;! 1 )

i

� Cs

h
k 3kLs 0(
;! 1 ) + Cs

p;sC
s

 kh4ks0

L1 (
 )kuks
W1;p

0 (
;! 1 ;! 4 )

i
;

where the constant Cs depends only on s.

(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 4) as i � ! 1 . By (A2) and Remark 3.1.2 (ii), we get

kHu i j - Hu ks0

Ls 0(
;! 3 )
=

Z




�
�
�Hu i j (x) - Hu (x)

�
�
�
p 0

! 3dx

�
Z




�
jb(x; u i j )j + jb(x; u )j

� s0

! 3dx

� Cs

Z




�
jb(x; u i j )j

s0
+ jb(x; u )js

0
�

! 3dx

� Cs

Z




h�
 3 + h4ju i j j

s- 1
� s0

+
�

 3 + h4ju js- 1
� s0i

! 3dx

� Cs

Z




h�
 3 + h4j js- 1

� s0

+
�

 3 + h4 s- 1
� s0i

! 3dx

� 2CsC0
s

Z




�
 s0

3 + hp 0

4  s
�

! 3dx

� 2CsC0
s

h
k 3ks0

Ls 0(
;! 3 ) + kh4ks0

L1 (
 )k ks
Ls (
;! 3 )

i

� 2CsC0
s

h
k 3ks0

Ls 0(
;! 3 ) + Cs
p;skh4ks0

L1 (
 )k ks
Lp (
;! 1 )

i
;

next, using condition (A1), we deduce, asi j � ! 1

Hu i j (x) = b(x; u i j (x)) � ! b(x; u (x)) = Hu (x); a.e.x 2 
:

Therefore, by the Lebesgue’s theorem, we obtain

kHu i j - Hu kLs 0(
;! 3 ) � ! 0;

that is,

Hu i j � ! Hu in Ls0
(
; ! 3):

We conclude, from the convergence principle in Banach spaces, that

Hu i � ! Hu in Ls0
(
; ! 3): (3.1.5)

Step 4.4.We de�ne the operator J : W1;p
0 (
; ! 1; ! 4) � ! Lp 0

(
; ! 4) by (Ju)(x) = ju(x)jp- 2u(x):

In this step, we will demonstrate that Jui � ! Ju in Lp 0
(
; ! 4).
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(i) Let u 2 W1;p
0 (
; ! 1; ! 4). We have

kJukp 0

Lp 0(
;! 4 )
=

Z



jJujp

0
! 4dx

=
Z



ju j(p- 1)p 0

! 4dx

=
Z



ju jp! 4dx

= kukp
Lp (
;! 4 )

� k ukp
W1;p

0 (
;! 1 ;! 4 )
:

(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 4) as i � ! 1 . Then u i � ! u in Lp(
; ! 4). Hence, thanks

to Theorem 1.1.7, there exist a subsequence(u i j ) and ’ 2 Lp(
; ! 4) such that

u i j (x) � ! u(x); as i j � ! 1 ; a.e. in 


ju i j (x)j � ’ (x); a.e. in 
:

Next, we get

kJui j - Jukp 0

Lp 0(
;! 4 )
=

Z




�
�
�Jui j (x) - Ju(x)

�
�
�
p 0

! 4dx

�
Z




�
jJui j (x)j + jJu(x)j

� p 0

! 4dx

� Cp

Z




�
jJui j (x)jp

0
+ jJu(x)jp

0
�

! 4dx

� Cp

Z




�
jju i j j

p- 2u i j j
p 0

+ jju jp- 2u jp
0
�

! 4dx

� Cp

Z




�
ju i j j

(p- 1)p 0
+ ju j(p- 1)p 0

�
! 4dx

� Cp

Z




�
ju i j j

p + ju jp
�

! 4dx

� Cp

Z




�
j’ jp + j’ jp

�
! 4dx

� 2Cp

Z



j’ jp! 4dx

� 2Cpk’ kp
Lp (
;! 4 ):

Therefore, by Lebesgue’s theorem, we obtain

kJui j - JukLp 0(
;! 4 ) � ! 0; as i j � ! 1 ;

that is,

Jui j � ! Ju in Lp 0
(
; ! 4):

We conclude, in view to convergence principle in Banach spaces, that

Jui � ! Ju in Lp 0
(
; ! 4): (3.1.6)
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Finally, let v 2 W1;p
0 (
; ! 1; ! 4) and using Hölder inequality, we obtain

jF1(u i ; v) - F1(u; v)j = j
Z



hA(x; r u i ) - A (x; r u); r vi ! 1dx j

�
nX

k= 1

Z



jA k(x; r u i ) - A k(x; r u)jjD kvj! 1dx

=
nX

k= 1

Z



jBku i - Bku jjD kvj! 1dx

�
nX

k= 1

kBku i - BkukLp 0(
;! 1 )kD kvkLp (
;! 1 )

�

 
nX

k= 1

kBku i - BkukLp 0(
;! 1 )

!

kvkW1;p
0 (
;! 1 ;! 4 );

and by Remark 3.1.2 (i), we get

jF2(u i ; v) - F2(u; v)j = j
Z



hB(x; u i ; r u i ) - B(x; u; r u); r vi ! 2dx j

�
nX

k= 1

Z



jBk(x; u i ; r u i ) - Bk(x; u; r u)jjD kvj! 2dx

=
nX

k= 1

Z



jM ku i - M ku jjD kvj! 2dx

�

 
nX

k= 1

kM ku i - M kukLq 0(
;! 2 )

!

kr vkLq (
;! 2 )

� Cp;q

 
nX

k= 1

kM ku i - M kukLq 0(
;! 2 )

!

kr vkLp (
;! 1 )

� Cp;q

 
nX

k= 1

kM ku i - M kukLq 0(
;! 2 )

!

kvkW1;p
0 (
;! 1 ;! 4 );

and by Remark 3.1.2 (ii), we get

jF3(u i ; v) - F3(u; v)j �
Z



jg(x; u i ) - g(x; u )jjvj! 3dx

=
Z



jHu i - Hu jjvj! 3dx

� k Hu i - Hu kLs 0(
;! 3 )kvkLs (
;! 3 )

� Cp;skHu i - Hu kLs 0(
;! 3 )kvkLp (
;! 1 )

� Cp;sC
 kHu i - Hu kLs 0(
;! 3 )kvkW1;p
0 (
;! 1 ;! 4 );

and by Step 4.4, we obtain

jF4(u i ; v) - F4(u; v)j �
Z




�
�
� ju i jp- 2u i - ju jp- 2u

�
�
� jvj! 4dx

=
Z



jJui - Jujjvj! 4dx

� k Jui - JukLp 0(
;! 4 )kvkW1;p
0 (
;! 1 ;! 4 ):

FACULTY OF SCIENCE AND TECHNIQUES 49 SULTAN M OULAY SLIMANE UNIVERSITY



M OHAMED EL OUAARABI D OCTORAL THESIS LABORATORY : LMACS

Hence, for all v 2 W1;p
0 (
; ! 1; ! 4), we have

jF(u i ; v) - F(u; v)j �
4X

j= 1

�
�
�Fj (u i ; v) - Fj (u; v)

�
�
�

�
h nX

k= 1

�
kBku i - BkukLp 0(
;! 1 ) + Cp;qkM ku i - M kukLq 0(
;! 2 )

�

+ Cp;sC
 kHu i - Hu kLs 0(
;! 3 ) + kJui - JukLp 0(
;! 4 )

i
kvkW1;p

0 (
;! 1 ;! 4 ):

Then, we get

kAu i - Auk� �
nX

k= 1

�
kBku i - BkukLp 0(
;! 1 ) + Cp;qkM ku i - M kukLq 0(
;! 2 )

�

+ Cp;sC
 kHu i - Hu kLs 0(
;! 3 ) + kJui - JukLp 0(
;! 4 ):

Combining (3.1.3), (3.1.4), (3.1.5) and (3.1.6), we deduce that

kAu i - Auk� � ! 0 as i � ! 1 ;

that is, Au i � ! Au in
h
W1;p

0 (
; ! 1; ! 4)
i �

. Hence,A is continuous and this implies that A is

hemicontinuous.

Therefore, by Theorem 1.2.4, the operator equation Au = G has exactly one solution

u 2 W1;p
0 (
; ! 1; ! 4) and it is the unique solution for the problem (3.0.1). With this last step

the proof of Theorem 3.1.3 is completed.

3.2 Example

Take 
 = f(x; y ) 2 R2 : x2 + y2 < 1g, and consider the weight functions ! 1(x; y ) =
�
x2 + y2

� - 1=2, ! 2(x; y ) =
�
x2 + y2

� - 1=3, ! 3(x; y ) =
�
x2 + y2

� - 1 and ! 4(x; y ) =
�
x2 + y2

� - 3=2

�
we have that ! 1, ! 2, ! 3, and ! 4 are A4- weight, p = 4, q = 3 and s = 2

�
, and the functions

B : 
 � R � R2 � ! R2, A : 
 � R2 � ! R2 and b : 
 � R � ! R de�ned by

A
�

(x; y ); �
�

= h1(x; y )j� j2�;

where h1(x; y ) = 4e(x2+ y2 ), and

B
�

(x; y ); �; �
�

= h3(x; y )j� j�;

where h3(x; y ) = 1 + cos2(xy ), and

b
�

(x; y ); �
�

= h4(x; y )�;

where h4(x; y ) = 2 - cos2(xy ):
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Let us consider the operator

Lu(x; y ) = - div
h
! 1(x; y )A

�
(x; y ); r u

�
+ ! 2(x; y )B

�
(x; y ); u; r u(x; y )

�i

+ ! 3(x; y )b
�

(x; y ); u
�

+ ! 4(x; y )ju jp- 2u:

Therefore, by Theorem 3.1.3, the problem
8
><

>:

Lu(x; y ) =
cos(xy )
x2 + y2 in 
;

u(x; y ) = 0 on @
;

has exactly one solution u 2 W1;4
0 (
; ! 1; ! 4).
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Chapter 4

Existence and uniqueness of weak
solution in weighted Sobolev spaces for a
class of nonlinear degenerate elliptic
problems with measure data

In this chapter, we discuss the existence and uniqueness of weak solution of a nonlinear

degenerate elliptic equation of the form
8
><

>:

- div
h
! 1A(x; r u) + � 2B(x; u; r u)

i
+ � 1C(x; u ) + ! 2ju jp- 2u = f - div F in 
;

u(x) = 0 on @
;
(4.0.1)

in the setting of weighted Sobolev spaces W1;p
0 (
; ! 1; ! 2), where 
 is a bounded open set

in Rn , 1 < p < 1 , ! 1, � 2, � 1 and ! 2 are Ap-weight functions, A : 
 � Rn � ! Rn and

B : 
 � R � Rn � ! Rn , C : 
 � R � ! R are CarathØodory functions that satisfy some

conditions and the right-hand side term f - div Fbelongs to Lp 0
(
; ! 1- p 0

2 ) +
nQ

j= 1
Lp 0

(
; ! 1- p 0

1 ).

4.1 Existence Result

4.1.1 Hypotheses

Let us now give the precise hypotheses on the problem (4.0.1), we assume that the following

assumptions: 
 be a bounded open subset of Rn ( n � 2), 1 < q; s < p < 1 , let ! 1, � 2,

� 1 and ! 2 are Ap-weight functions, and let A : 
 � Rn � ! Rn , B : 
 � R � Rn � ! Rn ,

with A(x; � ) =
�

A 1(x; � ); :::; A n (x; � )
�

and B(x; �; � ) =
�

B1(x; �; � ); :::; Bn (x; �; � )
�

and C :


 � R � ! R satisfying the following assumptions:

(A1) For k = 1; :::; n, A k, Bk and Care CarathØodory functions.
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(A2) There are positive functions h1; h2; h3; h4 2 L1 (
 ) and  1 2 Lp 0
(
; ! 1),  2 2 Lq 0

(
; � 2)

and  3 2 Ls0
(
; � 1) such that

jA(x; � )j �  1(x) + h1(x)j� jp- 1;

jB(x; �; � )j �  2(x) + h2(x)j� jq- 1 + h3(x)j� jq- 1;

and

jC(x; � )j �  3(x) + h4(x)j� js- 1;

where (�; � ) 2 R � Rn .

(A3) There exists a constant� > 0 such that

hA(x; � ) - A (x; �
0
); � - �

0
i > � j� - �

0
jp;

hB(x; �; � ) - B(x; �
0
; �

0
); � - �

0
i > 0;

and �
C(x; � ) - C(x; �

0
)
��

� - �
0
�

> 0;

whenever �; � 0 2 R and �; � 0 2 Rn with � 6= � 0 and � 6= � 0.

(A4) There are constants� 1; � 2; � 3 > 0 such that

hA(x; � ); � i > � 1j� jp;

hB(x; �; � ); � i > � 2j� jq + � 3j� jq;

and

C(x; � )� > 0;

for all (�; � ) 2 R � Rn .

4.1.2 Main result

First let us introduce the de�nition of a weak solution for problem (4.0.1).

De�nition 4.1.1 One saysu 2 W1;p
0 (
; ! 1; ! 2) is a weak solution to problem(4.0.1), provided

that Z



hA(x; r u); r vi ! 1 dx +

Z



hB(x; u; r u); r vi � 2 dx +

Z



C(x; u ) v � 1 dx

+
Z



ju jp- 2u v ! 2 dx =

Z



fvdx +

nX

j= 1

Z



f jD jvdx;

for all v 2 W1;p
0 (
; ! 1; ! 2).
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Remark 4.1.2 Let ! 1; � 2; � 1 2 Ap, then

(i) If � 2
! 1

2 Lr1 (
; ! 1) wherer1 = p
p- q and1 < q < p < 1 , then, by Hölder inequality we obtain

jju jjLq (
;� 2 ) 6 Cp;q jju jjLp (
;! 1 );

whereCp;q = jj � 2
! 1

jj1=q
Lr 1 (
;! 1 ).

(ii) Analogously, if � 1
! 1

2 Lr2 (
; ! 1) wherer2 = p
p- s and1 < s < p < 1 , then

jju jjLs (
;� 1 ) 6 Cp;sjju jjLp (
;! 1 );

whereCp;s = jj � 1
! 1

jj1=s
Lr 2 (
;! 1 ).

The principal result of this chapter reads as follows:

Theorem 4.1.3 Let ! i ; � i 2 Ap(i = 1; 2), 1 < q; s < p < 1 and assume that the assumptions

(A1) - (A4) hold. If

1. f 2 Lp 0
(
; ! 1- p 0

2 ) andf j 2 Lp 0
(
; ! 1- p 0

1 ) for j = 1; :::; n,

2. � 2
! 1

2 Lp=(p- q)(
; ! 1) and � 1
! 1

2 Lp=(p- s)(
; ! 1),

then the problem(4.0.1)has a unique solutionu 2 W1;p
0 (
; ! 1; ! 2).

Proof. Our proof is based on the transform of problem (4.0.1) to a new one governed by

an operator equation of the form Lu = T , in order to apply the Browder-Minty theorem

(Theorem 1.2.4). We de�ne the operators N : W1;p
0 (
; ! 1; ! 2) � W1;p

0 (
; ! 1; ! 2) � ! R and

T : W1;p
0 (
; ! 1; ! 2) � ! R by

N (u; v) :=
Z



hA(x; r u); r vi ! 1 dx +

Z



hB(x; u; r u); r vi � 2 dx +

Z



C(x; u ) v � 1 dx

+
Z



ju jp- 2u v ! 2 dx;

and

T (v) :=
Z



fvdx +

nX

j= 1

Z



f jD jvdx:

Then u 2 W1;p
0 (
; ! 1; ! 2) is a weak solution of (4.0.1) if and only if

N (u; v) = T (v); for all v 2 W1;p
0 (
; ! 1; ! 2):

The proof of Theorem 4.1.3 is divided into four steps.

Step 1.

In this step, we prove that the problem (4.0.1) is equivalent to an operator equation Lu = T .
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Let us show that T 2
h
W1;p

0 (
; ! 1; ! 2)
i �

and N (u; :) is linear and continuous, for each

u 2 W1;p
0 (
; ! 1; ! 2).

Using Hölder inequality, Theorem 1.1.36 and Remark 4.1.2 (ii), we obtain

jT (v)j �
Z



jf jvdx +

nX

j= 1

Z



jf j jD jvdx

=
Z




jf j
! 2

jvj! 2 dx +
nX

j= 1

Z




jf j j
! 1

jD jvj ! 1dx

� jjf=! 2jjLp 0(
;! 2 ) jjvjjLp (
;! 2 ) +
nX

j= 1

jjf j=! 1jjLp 0(
;! 1 ) jjD jvjjLp (
;! 1 )

�

 

C
 jjf=! 2jjLp 0(
;! 2 ) +
nX

j= 1

jjf j=! 1jjLp 0(
;! 1 )

!

jjvjjW1;p
0 (
;! 1 ;! 2 ):

According to f 2 Lp 0
(
; ! 1- p 0

2 ) and f j 2 Lp 0
(
; ! 1- p 0

1 ) for j = 1; :::; n, we deduce that T 2h
W1;p

0 (
; ! 1; ! 2)
i �

:

The operator N can be written as N (u; v) = N1(u; v) + N2(u; v) + N3(u; v) + N4(u; v); where

N i : W1;p
0 (
; ! 1; ! 2) � W1;p

0 (
; ! 1; ! 2) � ! R, for i = 1; 2; 3; 4, are de�ned as

N1(u; v) =
Z



hA(x; r u); r vi ! 1dx; N2(u; v) =

Z



hB(x; u; r u); r vi � 2dx;

N3(u; v) =
Z



C(x; u )v � 1dx; and N4(u; v) =

Z



ju jp- 2u v ! 2 dx:

Then, we have

jN (u; v)j � jN1(u; v)j + jN2(u; v)j + jN3(u; v)j + jN4(u; v)j: (4.1.1)

Also, by utilizing (A2), Hölder inequality, Remark 4.1.2 (i) and Theorem 1.1.36, we have

jN1(u; v)j �
Z



jA(x; r u)jjr vj! 1dx

�
Z




�
 1 + h1jr u jp- 1

�
jr vj! 1dx

=
Z



 1!

1
p 0

1 jr vj!
1
p
1 dx +

Z



h1jr u jp- 1!

1
p 0

1 jr vj!
1
p
1 dx

� jj 1jjLp 0(
;! 1 ) jjr vjjLp (
;! 1 ) + jjh1jjL1 (
 ) jjr u jjp- 1
Lp (
;! 1 ) jjr vjjLp (
;! 1 )

�
�

jj 1jjLp 0(
;! 1 ) + jjh1jjL1 (
 ) jju jjp- 1
W1;p

0 (
;! 1 ;! 2 )

�
jjvjjW1;p

0 (
;! 1 ;! 2 );
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and

jN2(u; v)j �
Z



jB(x; u; r u)jjr vj� 2dx

�
Z




�
 2 + h2ju jq- 1 + h3jr u jq- 1

�
jr vj� 2dx

=
Z



 2�

1
q 0

2 jr vj�
1
q
2 dx +

Z



h2ju jq- 1�

1
q 0

2 jr vj�
1
q
2 dx +

Z



h3jr u jq- 1�

1
q 0

2 jr vj�
1
q
2 dx

� jj 2jjLq 0(
;� 2 ) jjr vjjLq (
;� 2 ) + jjh2jjL1 (
 ) jju jjq- 1
Lq (
;� 2 ) jjr vjjLq (
;� 2 )

+ jjh3jjL1 (
 ) jjr u jjq- 1
Lq (
;� 2 ) jjr vjjLq (
;� 2 )

� jj 2jjLq 0(
;� 2 )Cp;q jjr vjjLp (
;! 1 ) + jjh2jjL1 (
 )Cq- 1
p;q jju jjq- 1

Lp (
;! 1 )Cp;q jjr vjjLp (
;! 1 )

+ jjh3jjL1 (
 )Cq- 1
p;q jjr u jjq- 1

Lp (
;! 1 )Cp;q jjr vjjLp (
;! 1 )

�
h
Cq

p;q

�
Cq- 1


 jjh2jjL1 (
 ) + jjh3jjL1 (
 )

�
jju jjq- 1

W1;p
0 (
;! 1 ;! 2 )

+ Cp;q jj 2jjLq 0(
;� 2 )

i
jjvjjW1;p

0 (
;! 1 ;! 2 ):

Similarly, by using (A2), Hölder inequality, Remark 4.1.2 (ii) and Theorem 1.1.36, we get

jN3(u; v)j �
Z



jC(x; u )jjvj� 1dx

�
h
C
 Cp;sjj 3jjLs 0(
;� 1 ) + Cs

p;sC
s

 jjh4jjL1 (
 ) jju jjs- 1

W1;p
0 (
;! 1 ;! 2 )

i
jjvjjW1;p

0 (
;! 1 ;! 2 ):

Next, by applying Hölder inequality and Remark 4.1.2 (ii), we get

jN4(u; v)j �
Z



ju jp- 1jvj! 2dx

�
� Z



ju jp! 2dx

� 1=p0� Z



jvjp! 2dx

� 1=p

= jju jjp- 1
Lp (
;! 2 ) jjvjjLp (
;! 2 )

� C
 jju jjp- 1
W1;p

0 (
;! 1 ;! 2 )
jjvjjW1;p

0 (
;! 1 ;! 2 ):

Hence, in (4.1.1), we obtain

jN (u; v)j �
h
jj 1jjLp 0(
;! 1 ) + jjh1jjL1 (
 ) jju jjp- 1

W1;p
0 (
;! 1 ;! 2 )

+ C
 Cp;sjj 3jjLs 0(
;� 1 )

+ Cp;q jj 2jjLq 0(
;� 2 ) + Cq
p;q

�
Cq- 1


 jjh2jjL1 (
 ) + jjh3jjL1 (
 )

�
jju jjq- 1

W1;p
0 (
;! 1 ;! 2 )

+ Cs
p;sC

s

 jjh4jjL1 (
 ) jju jjs- 1

W1;p
0 (
;! 1 ;! 2 )

+ C
 jju jjp- 1
W1;p

0 (
;! 1 ;! 2 )

i
kvkW1;p

0 (
;! 1 ;! 2 );

for all u; v 2 W1;p
0 (
; ! 1; ! 2). Therefore, the operator N (u; :) is linear and continuous

for every u 2 W1;p
0 (
; ! 1; ! 2). As a result, there is a linear and continuous operator on

W1;p
0 (
; ! 1; ! 2) labeled by L that provides hLu; v i = N (u; v) for all u; v 2 W1;p

0 (
; ! 1; ! 2):

We also have

kLuk� � jj 1jjLp 0(
;! 1 ) + jjh1jjL1 (
 ) jju jjp- 1
W1;p

0 (
;! 1 ;! 2 )
+ C
 Cp;sjj 3jjLs 0(
;� 1 )

+ Cp;q jj 2jjLq 0(
;� 2 ) + Cq
p;q

�
Cq- 1


 jjh2jjL1 (
 ) + jjh3jjL1 (
 )

�
jju jjq- 1

W1;p
0 (
;! 1 ;! 2 )

+ Cs
p;sC

s

 jjh4jjL1 (
 ) jju jjs- 1

W1;p
0 (
;! 1 ;! 2 )

+ C
 jju jjp- 1
W1;p

0 (
;! 1 ;! 2 )
;
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where

kLuk� := sup
�

jhLu; v i j = jN (u; v)j : v 2 W1;p
0 (
; ! 1; ! 2); kvkW1;p

0 (
;! 1 ;! 2 ) = 1


;

is the norm in
h
W1;p

0 (
; ! 1; ! 2)
i �

. Therefore, we get the operator

L : W1;p
0 (
; ! 1; ! 2) � !

h
W1;p

0 (
; ! 1; ! 2)
i �

u 7�! Lu:

Hence, the problem (4.0.1) is equivalent to the operator equation

Lu = T ; u 2 W1;p
0 (
; ! 1; ! 2):

Step 2.

In this step, we demonstrate that A is strictly monotone. Let v1; v2 2 W1;p
0 (
; ! 1; ! 2) with

v1 6= v2, then we have

hLv1 - Lv2; v1 - v2i = N (v1; v1 - v2) - N (v2; v1 - v2)

=
Z



hA(x; r v1); r (v1 - v2)i ! 1dx -

Z



hA(x; r v2); r (v1 - v2)i ! 1dx

+
Z



hB(x; v1; r v1); r (v1 - v2)i � 2dx -

Z



hB(x; v2; r v2); r (v1 - v2)i � 2dx

+
Z



C(x; v1)(v1 - v2)� 1dx -

Z



C(x; v2)(v1 - v2)� 1dx

+
Z



jv1jp- 2v1(v1 - v2)! 2dx -

Z



jv2jp- 2v2(v1 - v2)! 2dx

=
Z



hA(x; r v1) - A (x; r v2); r (v1 - v2)i ! 1dx

+
Z



hB(x; v1; r v1) - B(x; v2; r v2); r (v1 - v2)i � 2dx

+
Z




�
C(x; v1) - C(x; v2)

��
v1 - v2

�
� 1dx

+
Z




�
jv1jp- 2v1 - jv2jp- 2v2

��
v1 - v2

�
! 2dx:

By using (A3) and Proposition 1.3.1 (ii), we obtain

hLv1 - Lv2; v1 - v2i � �
Z



jr (v1 - v2)jp ! 1 dx + � p

Z




�
jv1j + jv2j

� p- 2
jv1 - v2j2 ! 2 dx

� �
Z



jr (v1 - v2)jp! 1dx

� � kr (v1 - v2)k
p
Lp (
;! 1 ):

Therefore, the operator L is strictly monotone.

Step 3.

This step establishes the coerciveness of the operatorL . For all u 2 W1;p
0 (
; ! 1; ! 2), we
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have

hLu; u i = N (u; u )

= N1(u; u ) + N2(u; u ) + N3(u; u ) + N4(u; u )

=
Z



hA(x; r u); r u i ! 1dx +

Z



hB(x; u; r u); r u i � 2dx +

Z



C(x; u )u � 1dx +

Z



ju jp! 2dx:

From (A4) and Theorem 1.1.36, it follows that

hLu; u i � � 1

Z



jr u jp! 1dx + � 2

Z



jr u jq� 2dx + � 3

Z



ju jq� 2dx +

Z



ju jp! 2dx

� min (� 1; 1)
� Z



jr u jp! 1dx +

Z



ju jp! 2dx

�
+ min (� 2; � 3)

� Z



jr u jq� 2dx +

Z



ju jq� 2dx

�

� min (� 1; 1)kukp
W1;p

0 (
;! 1 ;! 2 )
:

Hence, we obtain
hLu; u i

kukW1;p
0 (
;! 1 ;! 2 )

� min (� 1; 1)kukp- 1
W1;p

0 (
;! 1 ;! 2 )
:

Therefore, asp > 1 , we get

hLu; u i
kukW1;p

0 (
;! 1 ;! 2 )

� ! + 1 askukW1;p
0 (
;! 1 ;! 2 ) � ! + 1 ;

which means that L is coercive.

Step 4.

In this step, we show that L is continuous. To do this, consider u i � ! u in W1;p
0 (
; ! 1; ! 2)

as i � ! 1 . Then r u i � ! r u in (Lp(
; ! 1))
n . Therefore, according to Theorem 1.1.7, there

exist a subsequence(u i j ) and  2 Lp(
; ! 1) in such a way that

r u i j (x) � ! r u(x); as i j � ! 1 ; a.e. in 


jr u i j (x)j �  (x); a.e. in 
:

(4.1.2)

We are going to establish that Lu i � ! Lu in
h
W1;p

0 (
; ! 1; ! 2)
i �

. It is proved in four steps.

Step 4.1.

We de�ne the operator Bk : W1;p
0 (
; ! 1; ! 2) � ! Lp 0

(
; ! 1) by (Bku)(x) = A k(x; r u(x)) for

k = 1; :::; n. We need to show that Bku i � ! Bku in Lp 0
(
; ! 1). We will apply the Lebesgue’s

theorem and the convergence principle in Banach spaces.
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(i) Let u 2 W1;p
0 (
; ! 1; ! 2). Using (A2) and Theorem 1.1.36, we obtain

kBkukp 0

Lp 0(
;! 1 )
=

Z



jBku(x)jp

0
! 1dx =

Z



jA k(x; r u)jp

0
! 1dx

�
Z




�
 1 + h1jr u jp- 1� p 0

! 1dx

� Cp

Z




�
 p 0

1 + hp 0

1 jr u jp
�

! 1dx

� Cp

h
k 1k

p 0

Lp 0(
;! 1 )
+ kh1k

p 0

L1 (
 )kr ukp
Lp (
;! 1 )

i

� Cp

h
k 1k

p 0

Lp 0(
;! 1 )
+ kh1k

p 0

L1 (
 )kukp
W1;p

0 (
;! 1 ;! 2 )

i
;

where the constant Cp depends only on p.

(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 2) as i � ! 1 . By (A2) and (4.1.2), we obtain

kBku i j - Bkukp 0

Lp 0(
;! 1 )
=

Z



jBku i j (x) - Bku(x)jp

0
! 1dx

�
Z




�
jA k(x; r u i j )j + jA k(x; r u)j

� p 0

! 1dx

� Cp

Z




�
jA k(x; r u i j )j

p 0
+ jA k(x; r u)jp

0
�

! 1dx

� Cp

Z




h�
 1 + h1jr u i j j

p- 1� p 0

+
�
 1 + h1jr u jp- 1� p 0i

! 1dx

� Cp

Z




h�
 1 + h1 p- 1� p 0

+
�
 1 + h1 p- 1� p 0i

! 1dx

= 2Cp

Z




�
 1 + h1 

p
p 0

� p 0

! 1dx

� 2CpC
0

p

Z




�
 p 0

1 + hp 0

1  p
�

! 1dx

� 2CpC
0

p

h
k 1k

p 0

Lp 0(
;! 1 )
+ kh1k

p 0

L1 (
 )k kp
Lp (
;! 1 )

i
:

Hence, thanks to (A1), we get, as i j � ! 1

Bku i j (x) = A k(x; r u i j (x)) � ! A k(x; r u(x)) = Bku(x); a.e.x 2 
:

Therefore, by Lebesgue’s theorem, we obtain

kBku i j - BkukLp 0(
;! 1 ) � ! 0;

that is,

Bku i j � ! Bku in Lp 0
(
; ! 1):

Finally, in view to convergence principle in Banach spaces, we have

Bku i � ! Bku in Lp 0
(
; ! 1): (4.1.3)

Step 4.2.

Let us de�ne the operator M k : W1;p
0 (
; ! 1; ! 2) � ! Lq 0

(
; � 2) by (M ku)(x) = Bk(x; u (x); r u(x))

for k = 1; :::; n, We will prove that M ku i � ! M ku in Lq 0
(
; � 2).
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(i) Let u 2 W1;p
0 (
; ! 1; ! 2). Using (A2), Remark 4.1.2(i) and Theorem 1.1.36, we obtain

kM kukq 0

Lq 0(
;� 2 )
=

Z



jBk(x; u; r u)jq

0
� 2dx

�
Z




�
 2 + h2ju jq- 1 + h3jr u jq- 1� q 0

� 2dx

� Cq

Z




h
 q 0

2 + hq 0

2 ju jq + hq 0

3 jr u jq
i
� 2dx

= Cq

� Z



 q 0

2 � 2dx +
Z



hq 0

2 ju jq� 2dx +
Z



hq 0

3 jr u jq� 2dx
�

� Cq

� Z



 q 0

2 � 2dx + kh2k
q 0

L1 (
 )

Z



ju jq� 2dx + kh3k

q 0

L1 (
 )

Z



jr u jq� 2dx

�

� Cq

h
k 2k

q 0

Lq 0(
;� 2 )
+ kh2k

q 0

L1 (
 )kukq
Lq (
;� 2 ) + kh3k

q 0

L1 (
 )kr ukq
Lq (
;� 2 )

i

� Cq

h
k 2k

q 0

Lq 0(
;� 2 )
+ kh2k

q 0

L1 (
 )C
q
p;qkukq

Lp (
;! 1 ) + kh3k
q 0

L1 (
 )C
q
p;qkr ukq

Lp (
;! 1 )

i

� Cq

h
k 2k

q 0

Lq 0(
;� 2 )
+ Cq

p;q

�
Cq


 kh2k
q 0

L1 (
 ) + kh3k
q 0

L1 (
 )

�
kukq

W1;p
0 (
;! 1 ;! 2 )

i
;

where the constant Cq depends only on q.

(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 2) as i � ! 1 . According to (A2), Remark 4.1.2 (i) and

the same arguments used in Step 1(ii) , we obtain analogously,

M ku i � ! M ku in Lq 0
(
; � 2): (4.1.4)

Step 4.3.

We de�ne the operator H : W1;p
0 (
; ! 1; ! 2) � ! Ls0

(
; � 1) by (Hu )(x) = C(x; u (x)) . In this

step, we will show that Hu i � ! Hu in Ls0
(
; � 1).

(i) Let u 2 W1;p
0 (
; ! 1; ! 2). Using (A2) and Remark 4.1.2 (ii), we obtain

kHu ks0

Ls 0(
;� 1 )
=

Z



jC(x; u )js

0
� 1dx

�
Z




�
 3 + h4ju js- 1� s0

� 1dx

� Cs

Z




�
 s0

3 + hs0

4 ju js
�

� 1dx

� Cs

h
k 3ks0

Ls 0(
;� 1 ) + kh4k
p 0

L1 (
 )kuks
Ls (
;� 1 )

i

� Cs

h
k 3ks0

Ls 0(
;� 1 ) + Cs
p;skh4k

p 0

L1 (
 )kuks
Lp (
;! 1 )

i

� Cs

h
k 3kLs 0(
;! 1 ) + Cs

p;sC
s

 kh4ks0

L1 (
 )kuks
W1;p

0 (
;! 1 ;! 2 )

i
;

where the constant Cs depends only on s.
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(ii) By (A2) and Remark 4.1.2 (ii), we get

kHu i j - Hu ks0

Ls 0(
;� 1 )
=

Z




�
�
�Hu i j (x) - Hu (x)

�
�
�
s0

� 1dx

�
Z




�
jC(x; u i j )j + jC(x; u )j

� s0

� 1dx

� Cs

Z




�
jC(x; u i j )j

s0
+ jC(x; u )js

0
�

� 1dx

� Cs

Z




h�
 3 + h4ju i j j

s- 1
� s0

+
�

 3 + h4ju js- 1
� s0i

� 1dx

� Cs

Z




h�
 3 + h4j js- 1

� s0

+
�

 3 + h4 s- 1
� s0i

� 1dx

� 2CsC0
s

Z




�
 s0

3 + hp 0

4  s
�

� 1dx

� 2CsC0
s

h
k 3ks0

Ls 0(
;� 1 ) + kh4ks0

L1 (
 )k ks
Ls (
;� 1 )

i

� 2CsC0
s

h
k 3ks0

Ls 0(
;� 1 ) + Cs
p;skh4ks0

L1 (
 )k ks
Lp (
;! 1 )

i
;

next, using condition (A1), we deduce, asi j � ! 1

Hu i j (x) = C(x; u i j (x)) � ! C(x; u (x)) = Hu (x); a.e.x 2 
:

Therefore, by the Lebesgue’s theorem, we obtain

kHu i j - Hu kLs 0(
;� 1 ) � ! 0;

that is,

Hu i j � ! Hu in Ls0
(
; � 1):

We conclude, from the convergence principle in Banach spaces, that

Hu i � ! Hu in Ls0
(
; � 1): (4.1.5)

Step 4.4.

We de�ne the operator J : W1;p
0 (
; ! 1; ! 2) � ! Lp 0

(
; ! 2) by (Ju)(x) = ju(x)jp- 2u(x). In this

step, we will demonstrate that Jui � ! Ju in Lp 0
(
; ! 2).

(i) Let u 2 W1;p
0 (
; ! 1; ! 2). We have

kJukp 0

Lp 0(
;! 2 )
=

Z



jJujp

0
! 2dx

=
Z



ju j(p- 1)p 0

! 2dx

=
Z



ju jp! 2dx

� k ukp
W1;p

0 (
;! 1 ;! 2 )
:
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(ii) Let u i � ! u in W1;p
0 (
; ! 1; ! 2) as i � ! 1 . Then u i � ! u in Lp(
; ! 2). Hence, thanks

to Theorem 1.1.7, there exist a subsequence(u i j ) and ’ 2 Lp(
; ! 2) such that

u i j (x) � ! u(x); as i j � ! 1 ; a.e. in 


ju i j (x)j � ’ (x); a.e. in 
:

Next, we get

kJui j - Jukp 0

Lp 0(
;! 2 )
=

Z




�
�
�Jui j (x) - Ju(x)

�
�
�
p 0

! 2dx

�
Z




�
jJui j (x)j + jJu(x)j

� p 0

! 2dx

� Cp

Z




�
jJui j (x)jp

0
+ jJu(x)jp

0
�

! 2dx

� Cp

Z




�
jju i j j

p- 2u i j j
p 0

+ jju jp- 2u jp
0
�

! 2dx

� Cp

Z




�
ju i j j

(p- 1)p 0
+ ju j(p- 1)p 0

�
! 2dx

� Cp

Z




�
ju i j j

p + ju jp
�

! 2dx

� Cp

Z




�
j’ jp + j’ jp

�
! 2dx

� 2Cp

Z



j’ jp! 2dx

� 2Cpk’ kp
Lp (
;! 2 ):

Therefore, by Lebesgue’s theorem, we obtain

kJui j - JukLp 0(
;! 2 ) � ! 0;

that is,

Jui j � ! Ju in Lp 0
(
; ! 2):

We conclude, in view to convergence principle in Banach spaces, that

Jui � ! Ju in Lp 0
(
; ! 2): (4.1.6)

Finally, let v 2 W1;p
0 (
; ! 1; ! 2) and using Hölder inequality, we obtain

jN1(u i ; v) - N1(u; v)j = j
Z



hA(x; r u i ) - A (x; r u); r vi ! 1dx j

�
nX

k= 1

Z



jA k(x; r u i ) - A k(x; r u)jjD kvj! 1dx

=
nX

k= 1

Z



jBku i - Bku jjD kvj! 1dx

�
nX

k= 1

kBku i - BkukLp 0(
;! 1 )kD kvkLp (
;! 1 )

�

 
nX

k= 1

kBku i - BkukLp 0(
;! 1 )

!

kvkW1;p
0 (
;! 1 ;! 2 );
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and by Remark 4.1.2 (i), we get

jN2(u i ; v) - N2(u; v)j = j
Z



hB(x; u i ; r u i ) - B(x; u; r u); r vi � 2dx j

�
nX

k= 1

Z



jBk(x; u i ; r u i ) - Bk(x; u; r u)jjD kvj� 2dx

=
nX

k= 1

Z



jM ku i - M ku jjD kvj� 2dx

�

 
nX

k= 1

kM ku i - M kukLq 0(
;� 2 )

!

kr vkLq (
;� 2 )

� Cp;q

 
nX

k= 1

kM ku i - M kukLq 0(
;� 2 )

!

kr vkLp (
;! 1 )

� Cp;q

 
nX

k= 1

kM ku i - M kukLq 0(
;� 2 )

!

kvkW1;p
0 (
;! 1 ;! 2 );

and by Remark 4.1.2 (ii), we obtain

jN3(u i ; v) - N3(u; v)j �
Z



jg(x; u i ) - g(x; u )jjvj� 1dx

=
Z



jHu i - Hu jjvj� 1dx

� k Hu i - Hu kLs 0(
;� 1 )kvkLs (
;� 1 )

� Cp;skHu i - Hu kLs 0(
;� 1 )kvkLp (
;! 1 )

� Cp;sC
 kHu i - Hu kLs 0(
;� 1 )kvkW1;p
0 (
;! 1 ;! 2 ):

and by Step 4.4, we have

jN4(u i ; v) - N4(u; v)j �
Z




�
�
� ju i jp- 2u i - ju jp- 2u

�
�
� jvj! 2dx

=
Z



jJui - Jujjvj! 2dx

� k Jui - JukLp 0(
;! 2 )kvkW1;p
0 (
;! 1 ;! 2 ):

Hence, for all v 2 W1;p
0 (
; ! 1; ! 2), we have

jN (u i ; v) - N (u; v)j �
4X

j= 1

�
�
�N j (u i ; v) - N j (u; v)

�
�
�

�
h nX

k= 1

�
kBku i - BkukLp 0(
;! 1 ) + Cp;qkM ku i - M kukLq 0(
;� 2 )

�

+ Cp;sC
 kHu i - Hu kLs 0(
;� 1 ) + kJui - JukLp 0(
;! 2 )

i
kvkW1;p

0 (
;! 1 ;! 2 ):

Then, we get

kLu i - Luk� �
nX

k= 1

�
kBku i - BkukLp 0(
;! 1 ) + Cp;qkM ku i - M kukLq 0(
;� 2 )

�

+ Cp;sC
 kHu i - Hu kLs 0(
;� 1 ) + kJui - JukLp 0(
;! 2 ):
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Combining (4.1.3), (4.1.4), (4.1.5) and (4.1.6), we deduce that

kLu i - Luk� � ! 0 as i � ! 1 ;

that is, Lu i � ! Lu in
h
W1;p

0 (
; ! 1; ! 2)
i �

. Hence, L is continuous and this implies that L is

hemicontinuous.

Therefore, by Theorem 1.2.4, the operator equation Lu = T has exactly one solution

u 2 W1;p
0 (
; ! 1; ! 2) and it is the unique solution for the problem (4.0.1).

4.2 Example

Take 
 = f(x; y ) 2 R2 : x2 + y2 < 1g, and consider the weight functions ! 1(x; y ) =
�
x2 + y2

� - 1=2, � 2(x; y ) =
�
x2 + y2

� - 1=3, � 1(x; y ) =
�
x2 + y2

� - 1 and ! 2(x; y ) =
�
x2 + y2

� - 3=2

�
we have that ! 1, � 2, � 1, and ! 2 are A4- weight, p = 4, q = 3 and s = 2

�
, and the functions

B : 
 � R � R2 � ! R2, A : 
 � R2 � ! R2 and C : 
 � R � ! R de�ned by

A
�

(x; y ); �
�

= h1(x; y )j� j2�;

where h1(x; y ) = 4e(x2+ y2 ), and

B
�

(x; y ); �; �
�

= h3(x; y )j� j�;

where h3(x; y ) = 1 + cos2(xy ), and

C
�

(x; y ); �
�

= h4(x; y )�;

where h4(x; y ) = 2 - cos2(xy ):

Let us consider the operator

Lu(x; y ) = - div
h
! 1(x; y )A

�
(x; y ); r u

�
+ � 2(x; y )B

�
(x; y ); u; r u(x; y )

�i

+ � 1(x; y )C
�

(x; y ); u
�

+ ! 2(x; y )ju jp- 2u

Therefore, by Theorem 4.1.3, the problem
8
><

>:

Lu(x; y ) = cos(x+ y)
(x2+ y2 ) - @

@x

�
sin (x+ y)
(x2+ y2 )

�
- @

@y

�
sin (x+ y)
(x2+ y2 )

�
in 
;

u(x; y ) = 0 on @
;

has exactly one solution u 2 W1;4
0 (
; ! 1; ! 2).

FACULTY OF SCIENCE AND TECHNIQUES 64 SULTAN M OULAY SLIMANE UNIVERSITY



Part II

Some elliptic and parabolic problems of
Dirichlet or Neumann type via the theory
of topological degrees in functional spaces

65



Chapter 5

Preliminaries

In the present chapter we introduce the notations and present all necessary and relevant

properties about variable exponent Lebesgue-Sobolev spaces and topological degree theory.

5.1 Preliminaries about the functional framework

In recent years, the nonlinear problems with variable exponential growth is a new research

�eld that drew the interest of many mathematical researcher. The principal interest of these

problems come mainly from their applications, such in image processing (remove noise,

edge detection and image restoration) and in the modelisation of the movement for a elec-

trorheological �uids. This section will be devoted to introduce too the notion of variable ex-

ponent Lebesgue-Sobolev spacesLp(x)(
 ) and W1;p(x)(
 ), and some interesting de�nitions

and properties, which are essential to prove some results of existence for solutions of the

nonlinear elliptic problems studied in this thesis. For more details on these spaces, we refer

the reader to [82, 101].

Let 
 � RN (N > 1 ) be an open with a Lipschitz boundary denoted by @
 . Denote

C+ (
 ) =



p : 
 � ! [1;+ 1 [ continous such that p(x) > 1
�

:

We de�ne

p+ := max



p(x); x 2 

�

and p- := min



p(x); x 2 

�

for every p 2 C+ (
 ):

We de�ne the Lebesgue space with a variable exponent p 2 C+ (
 ) by

Lp(x)(
 ) =



f : 
 ! R is measurable such that
Z



jf (x)jp(x)dx < + 1

�
:

Lp(x)(
 ) is endowed with the following Luxembourg-type norm

jf jp(x) = inf



� > 0 : � p(x)

� f
�

�
� 1

�
;
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with

� p(x)(f ) =
Z



jf (x)jp(x)dx for all f 2 Lp(x)(
 ):

Proposition 5.1.1 [101] For any sequence(f n ) and allf 2 Lp(x)(
 ), we have

jf jp(x) < 1 (resp. = 1;> 1 ) , � p(x)(f ) < 1 (resp. = 1;> 1 ); (5.1.1)

jf jp(x) > 1 ) jf jp
-

p(x) � � p(x)(f ) � jf jp
+

p(x); (5.1.2)

jf jp(x) < 1 ) jf jp
+

p(x) � � p(x)(f ) � ju jp
-

p(x); (5.1.3)

lim
n !1

jf n - f jp(x) = 0 , lim
n !1

� p(x)(f n - f ) = 0: (5.1.4)

Remark 5.1.2 From(5.1.2)and(5.1.3), we can infer that

jf jp(x) � � p(x)(f ) + 1; (5.1.5)

� p(x)(f ) � jf jp
-

p(x) + jf jp
+

p(x): (5.1.6)

Proposition 5.1.3 [101] The space
�

Lp(x)(
 ); j � jp(x)

�
is a separable and re�exive Banach space.

Proposition 5.1.4 [101] Let f 2 Lp(x)(
 ) andg 2 Lp 0(x)(
 ). Then, we have the following Hölder-

type inequality �
�
�
Z



fg dx

�
�
� �

� 1
p-

+
1

p 0-

�
jf jp(x) jgjp 0(x) � 2jf jp(x) jgjp 0(x): (5.1.7)

Remark 5.1.5 If p; q 2 C+ (
 ) with p(x) � q(x) thenLq(x)(
 ) ,! Lp(x)(
 ).

Now, we de�ne the Sobolev space with a variable exponent p 2 C+ (
 ) by

W1;p(x)(
 ) =



f 2 Lp(x)(
 ) : jr f j 2 (Lp(x)(
 ))N
�

;

and it is a Banach space under the norm

jjf jj1;p(x) = jf jp(x) + jr f jp(x):

Furthermore, we have the compact embedding W1;p(x)(
 ) ,! ,! Lp(x)(
 )(see [101]).

We also de�ne W1;p(x)
0 (
 ) as the subspace ofW1;p(x)(
 ) which is the closure of C1

0 (
 ) with

respect to the norm jj � jj1;p(x).
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Proposition 5.1.6 [101] If the exponentp(x) satisfy the log-Hölder continuity condition, i.e. there

is a constanta > 0 such that for everyx; y 2 
; x 6= y with jx - y j �
1
2

one has

jp(x) - p(y)j �
a

- log jx - y j
; (5.1.8)

then, there existsC > 0 depending only on
 and the functionp such that

jf jp(x) � Cjr f jp(x) for all f 2 W1;p(x)
0 (
 ): (5.1.9)

In this thesis, we shall use the following norm on W1;p(x)
0 (
 )

jf j1;p(x) = jr f jp(x);

and is equivalent to the norm jj � jj1;p(x) (thanks PoincarØ inequality (5.1.9)).

Proposition 5.1.7 [101] The spaces
�

W1;p(x)(
 ); jj� jj1;p(x)

�
and

�
W1;p(x)

0 (
 ); j � j1;p(x)

�
are separable

and re�exive Banach spaces.

Remark 5.1.8 The dual space ofW1;p(x)
0 (
 ) is the spaceW - 1;p0(x)(
 ) de�ned by

W - 1;p0(x)(
 ) :=

�

f = f 0 -
NX

i= 1

D i f i with (f 0; f 1; : : : ; f N ) 2 (Lp 0(x)(
 ))N

�

;

equipped with the norm

jf j- 1;p0(x) = inf



jf 0jp 0(x) +
NX

i= 1

jf i jp 0(x)

�
:

Remark 5.1.9 Note that for allf 2 W1;p(x)(
 ), we have

jf jp(x) � jjf jj1;p(x) and jr f jp(x) � jjf jj1;p(x):

Next, for all f 2 W1;p(x)(
 ), we introduce the following notation

� 1;p(x)(f ) = � p(x)(f ) + � p(x)(r f ):

Then, from [82, Theorem 1.3], we have the following result.

Proposition 5.1.10 If f 2 W1;p(x)(
 ), then the following properties hold true

jjf jj1;p(x) < 1 (resp. = 1;> 1 ) , � 1;p(x)(f ) < 1 (resp. = 1;> 1 ); (5.1.10)

jjf jj1;p(x) > 1 ) jjf jjp
-

1;p(x) � � 1;p(x)(f ) � jjf jjp
+

1;p(x); (5.1.11)

jjf jj1;p(x) < 1 ) jjf jjp
+

1;p(x) � � 1;p(x)(f ) � jjf jjp
-

1;p(x): (5.1.12)
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We may also consider the generalized Lebesgue space

Lp(x)(
 T) =



f : 
 T ! R is measurable with
ZT

0

Z



jf (x; t )jp(x)dxdt < 1

�
;

endowed with the norm

jf jLp ( x ) (
 T ) = inf



� > 0 :
ZT

0
� p(x)

� f
�

�
dt � 1

�
;

which, of course, shares the same type of properties asLp(x)(
 ).

As in [25], we introduce the functional space

W :=



f 2 Lp-
(0; T;W1;p(x)

0 (
 )) : jr f j 2 Lp(x)(
 T)N
�

; (5.1.13)

which is a separable and re�exive Banach space endowed with the norm

jf jW := jf jLp - (0;T;W1;p ( x )
0 (
 )) + jr f jLp ( x ) (
 T ):

Thanks to PoincarØ inequality (5.1.9), the expression

jf jW := jr f jLp ( x ) (
 T );

is a norm de�ned on W and is equivalent to the norm j � jW :

Some interesting properties of the spaceW are stated in the following lemma.

Lemma 5.1.11 [25] LetW be the space de�ned as above andW � denote its dual space, then:

1. We have the following continuous dense embedding

Lp+
(0; T;W1;p(x)

0 (
 )) ,! W ,! Lp-
(0; T;W1;p(x)

0 (
 )) : (5.1.14)

2. In particular, sinceC1
0 (
 T) is dense inLp+

(0; T;W1;p(x)
0 (
 )) , it is dense inW and for the

corresponding dual spaces we have

L(p- ) 0
(0; T;W - 1;p0(�)(
 )) ,! W � ,! L(p+ ) 0

(0; T;W - 1;p0(�)(
 )) : (5.1.15)

3. Under the assumption(9.0.3), we have

jf jq
-

Lq ( � ) (
 T )
- 1 �

Z


 T

jf jq(x)dxdt � jf jq
+

Lq ( � ) (
 T )
+ 1 � jf jp

-

Lp ( x ) (
 T )
- 1 �

Z


 T

jf jp(x)dxdt � jf jp
+

Lp ( x ) (
 T )
+ 1:

(5.1.16)

5.2 Topological degree theory

Now, we give some results and properties from the theory of topological degree. The readers

can �nd more information about the history of this theory in [9, 10, 30, 31, 99].
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5.2.1 Topological degree theory for operators of the type T + S

In what follows, let Y is a real re�exive and separable Banach space with dual Y� and con-

tinuous pairing h.,.i , and given a nonempty subset D of Y, @D and D represent the boundary

and the closure of D in Y, respectively.

De�nition 5.2.1 We consider a mappingT de�ned fromY to Y� and its graph is given by

G(T ) =



(u; v) 2 Y � Y� : v 2 T (u)
�

:

1. T is said to be monotone if for all(u1; v1), (u2; v2) in G(T ), we get thathv1 - v2; u1 - u2i � 0:

2. T is said to be maximal monotone if it is monotone and maximal in the sense of graph inclusion

among monotone mappings fromY to Y� , or for any(u0; v0) 2 Y � Y� for whichhv0 - v; u0 -

u i � 0, for all (u; v) 2 G(T ), we have(u0; v0) 2 G(T ).

De�nition 5.2.2 LetZ be a real Banach space. A operatorT : D � Y ! Z is said to be

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any sequence(un ) � D ; un ! u implies thatT (un ) � T (u).

3. compact, if it is continuous and the image of any bounded set is relatively compact.

De�nition 5.2.3 A mappingS : D (S) � Y ! Y� is said to be

1. of type(S+ ), if for any (un ) � D (S) with un � u and lim sup
n !1

hSun ; un - u i � 0, it follows

that un ! u:

2. quasimonotone, if for any sequence(un ) � D (S) with un � u , we havelim sup
n !1

hSun ; un -

u i � 0:

In the sequel, let L be a linear maximal monotone map from D (L ) � Y to Y� , and we consider

the following classes of operators for each open and bounded subset G on Y:

FG :=



L + S : G \ D (L ) ! Y� : S is bounded, demicontinuous

map of type (S+ ) with respect to D (L ) from G to Y�
�

;

H G :=



L + S(t ) : G \ D (L ) ! Y� : S(t ) is a bounded homotopy of type

map of type (S+ ) with respect to D (L ) from G to Y�
�

:
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De�nition 5.2.4 Let E be a bounded open subset of a real re�exive Banach spaceY, T 2 F 1(E) be

continuous and letF;S 2 F T (E). The af�ne homotopy� : [0; 1] � E ! Y de�ned by

� (t; u ) := ( 1 - t )Fu + tSu; for all (t; u ) 2 [0; 1] � E

is called an admissible af�ne homotopy with the common continuous essential inner mapT .

Remark 5.2.5 Note that the classH G includes all af�ne homotopies

L + ( 1 - t )S1 + tS2; with (L + Si ) 2 F G; i = 1; 2:

Now, we introduce the Berkovits and Mustonen topological degree for the class FG, and see

[31, 30] for more informations.

Theorem 5.2.6 Let L a linear maximal monotone densely de�ned map fromD (L ) � Y to Y� , and

let

E =



(F; G; � ) : F 2 F G; G an open bounded subset inY; � 62F(@G\ D (L ))
�

:

Then, there exists a topological degree functiond : E ! Z satisfying the following properties:

1. (Existence) ifd(F; G; � ) 6= 0, then the equationFu = � has a solution inG \ D (L ).

2. (Additivity) If G1 andG2 are two disjoint open subsets ofG such that� 62F[(Gn(G1 [ G2)) \

D (L )], then we have

d(F; G; � ) = d(F; G1; � ) + d(F; G2; � ):

3. (Homotopy invariance) IfF(t ) 2 H G andf (t ) 62F(t )(@G\ D (L )) for all t 2 [0; 1], wheref (t )

is a continuous curve inY� , then

d(F(t ); G; f (t )) = C; 8t 2 [0; 1]:

4. (Normalization)L + J is a normalising map, whereJ is the duality mapping ofY into Y� ,

that is,

d(L + J ; G; � ) = 1; for all � 2 (L + J )(G \ D (L )) :

The following theorem plays an important role in the proof of the existence results in the

next chapters.

Theorem 5.2.7 LetL + S 2 F Y and � 2 Y� and assume that there exists a radiusr > 0 such that

hLu + Su - �; u i > 0; (5.2.1)

for all u 2 @Br (0) \ D (L ). Then the equationLu + Su = � has a solutionu in D (L ).
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Proof. To show this theorem, it suf�ces to prove that (L + S)(D (L )) = Y� .

Let F! (t; u ) = Lu + ( 1 - t )J u + t (Su + ! J u - � ); for all ! > 0 and t 2 [0; 1]:

From (5.2.1) and since0 2 L (0), we obtain

hF! (t; u ); u i = ht (Lu + Su - �; u i + h(1 - t )Lu + ( 1 - t + ! )J u; u i

� h (1 - t )Lu + ( 1 - t + ! )J u; u i

= ( 1 - t )hLu; u i + ( 1 - t + ! )hJ u; u i

� (1 - t + ! )ju j2

= ( 1 - t + ! )r2 > 0:

Which implies that 0 62F! (t; u ).

SinceJ and S + ! J are continuous, bounded and of type (S+ ), then fF! (t; �)gt2 [0;1] is an ad-

missible homotopy. Therefore, applying the homotopy invariance and normalisation prop-

erty of the degree d stated in Theorem 5.2.6, we obtain

d(F! (t; �); Br (0); 0) = d(L + J ; Br (0); 0) = 1 6= 0:

Consequently, by existence property of the degree d there exists a point u ! 2 D (L ) such that

0 2 F! (t; �). In particular, by setting ! ! 0+ and t = 1, we get � 2 (L + S)(D (L )) for some

u 2 D (L ) and that for all � 2 Y� (� is arbitrary). Which implies that (L + S)(D (L )) = Y� .

5.2.2 Topological degree theory for a class of demicontinuous operators
of generalized (S+ )

We start by de�ning some classes of mappings. In what follows, let X be a real separable

re�exive Banach space and X� be its dual space with dual pairing h �; � i .

De�nition 5.2.8 LetY be another real Banach space. A operatorF : D � X ! Y is said to be

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any sequence(un ) � D ; un ! u impliesF(un ) � F(u).

3. compact, if it is continuous and the image of any bounded set is relatively compact.

De�nition 5.2.9 A mappingF : D � X ! X� is said to be

1. of type(S+ ), if for any sequence(un ) � D with un � u and lim sup
n !1

hFun ; un - u i � 0, we

haveun ! u:
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2. quasimonotone, if for any sequence(un ) � D with un � u , we havelim sup
n !1

hFun ; un - u i �

0:

De�nition 5.2.10 LetT : D1 � X ! X� be a bounded operator such thatD � D 1. For any operator

F : D � X ! X, we say that

1. F is of type (S+ )T; if for any sequence(un ) � D with un � u; y n := Tun � y and

lim sup
n !1

hFun ; yn - y i � 0; we haveun ! u .

2. F has the property(QM )T, if for any sequence(un ) � D with un � u; y n := Tun � y , we

havelim sup
n !1

hFun ; y - yn i � 0:

Consider the different types of operators as follows:

F1(D) :=



F : D ! X� : F is bounded, demicontinuous and of type (S+ )
�

;

FT(D) :=



F : D ! X : F is demicontinuous and of type (S+ )T

�
;

FT;B(D) :=



F 2 F T(D) : F is bounded
�

;

for any D � D (F), where D (F) denotes the domain of F, and any T 2 F 1(D).

Now, let O be the collection of all bounded open sets in X and we de�ne

F (X) :=



F 2 F T(E) : E 2 O ; T 2 F 1(E)
�

;

where, T 2 F 1(E) is called an essential inner map to F.

Lemma 5.2.11 [99, Lemma 2.3] LetT 2 F 1(E) be continuous andS : D (S) � X� ! X be demicon-

tinuous such thatT(E) � D (S), whereE is a bounded open set in a real re�exive Banach spaceX.

Then the following statements are true :

1. If S is quasimonotone, thenI + S � T 2 F T(E), whereI denotes the identity operator.

2. If S is of type(S+ ), thenS � T 2 F T(E).

De�nition 5.2.12 Suppose thatE is bounded open subset of a real re�exive Banach spaceX, T 2

F1(E) is continuous andF; S2 F T(E). Then the af�ne homotopy� : [0; 1] � E ! X de�ned by

� (t; u ) := ( 1 - t )Fu + tSu; for (t; u ) 2 [0; 1] � E

is called an admissible af�ne homotopy with the common continuous essential inner mapT.

Remark 5.2.13 [99, Lemma 2.5]The above af�ne homotopy is of type (S+ )T:
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Now, we give the topological degree for the class F (X) (see [99]).

Theorem 5.2.14 Let

M =



(F; E; h) : E 2 O ; T 2 F 1(E); F 2 F T;B(E); h 62F(@E)
�

:

Then, there exists a unique degree functiond : M � ! Z that satisfy the following properties:

1. (Normalization ) For anyh 2 F(E), we have

d(I; E; h ) = 1:

2. (Additivity ) Let F 2 F T;B(E). If E1 and E2 are two disjoint open subsets ofE such that

h 62F(En(E1 [ E2)) , then we have

d(F; E; h) = d(F; E1; h) + d(F; E2; h):

3. (Homotopy invariance ) If � : [0; 1] � E ! X is a bounded admissible af�ne homotopy with a

common continuous essential inner map andh: [0; 1] ! X is a continuous path inX such that

h(t ) 62� (t; @E) for all t 2 [0; 1], then

d(� (t; �); E; h(t )) = C for all t 2 [0; 1]:

4. (Existence) If d(F; E; h) 6= 0, then the equationFu = h has a solution inE:

5. ( Boundary dependence) If F; S2 F T(E), F = S on@E, andh 62F(@E), then

d(F; E; h) = d(S; E; h):

De�nition 5.2.15 [99, De�nition 3.3] The above degree is de�ned as follows:

d(F; E; h) := dB(FjE0
; E0; h);

wheredB is the Berkovits degree [29] andE0 is any open subset ofE with F- 1(h) � E0 and F is

bounded onE0.
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Chapter 6

Existence result for Neumann problem
with p(x)-Laplacian-like operators in
generalized Sobolev space

This chapter studies the existence of a weak solutions for Neumann problem with p(x)-

Laplacian-like operators, originated from a capillary phenomena, of the following form
8
>>>><

>>>>:

- div
�

jr u jp(x)- 2r u +
jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
= � ju j� (x)- 2u + �f (x; u; r u) in 
;

�
jr u jp(x)- 2r u + jr u j2p ( x )- 2 r up

1+ jr u j2p ( x )

�
@u
@� = 0 on @
;

(6.0.1)

in the setting of the generalized Sobolev spacesW1;p(x)(
 ), where 
 is a smooth bounded

domain in RN , p(�); � (�) 2 C+ (
 ), @u
@� is the exterior normal derivative, � and � are two

real parameters. Based on the topological degree for a class of demicontinuous operators

of generalized (S+ ) type, under appropriate assumptions on f , we obtain a result on the

existence of weak solutions to the considered problem.

6.1 Assumptions and notion of weak solution

We assume that 
 � RN (N � 2) is a bounded domain with a Lipschitz boundary @
; p 2

C+ (
 ) satisfy the log-Hölder continuity condition (5.1.8), � 2 C+ (
 ) with 2 � � - � � (x) �

� + < p - � p(x) � p+ < 1 and f : 
 � R � RN ! R is a function such that:

(A1) f is a CarathØodory condition.

(A2) There existsC1 > 0 and  2 Lp 0(x)(
 ) such that

jf (x; �; � )j � C1( (x) + j� jq(x)- 1 + j� jq(x)- 1)

75



M OHAMED EL OUAARABI D OCTORAL THESIS LABORATORY : LMACS

for a.e. x 2 
 and all (�; � ) 2 R � RN , where q 2 C+ (
 ) with 2 � q- � q(x) � q+ < p - .

The de�nition of a weak solutions for problem (6.0.1) can be stated as follows.

De�nition 6.1.1 We call thatu 2 W1;p(x)(
 ) is a weak solution of(6.0.1)if
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx =

Z




�
� ju j� (x)- 2u + �f (x; u; r u)

�
’dx;

for all ’ 2 W1;p(x)(
 ):

Remark 6.1.2

� Note that
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx is well de�ned (see [131]).

� � ju j� (x)- 2u 2 Lp 0(x)(
 ) and �f (x; u; r u) 2 Lp 0(x)(
 ) under u 2 W1;p(x)(
 ) and the given

hypotheses about the exponentsp; � andq and (A2) because: 2 Lp 0(x)(
 ), r(x) = ( q(x) -

1)p 0(x) 2 C+ (
 ) with r(x) < p (x) and� (x) = ( � (x)- 1)p 0(x) 2 C+ (
 ) with � (x) < p (x).

Then, by Remark 5.1.5 we can conclude thatLp(x) ,! Lr(x) andLp(x) ,! L� (x).

Hence, since’ 2 Lp(x)(
 ), we have
�

� ju j� (x)- 2u + �f (x; u; r u)
�

’ 2 L1(
 ). This implies

that, the integral
Z




�
� ju j� (x)- 2u + �f (x; u; r u)

�
’dx exist.

6.2 Main result

We are now in the position to get the existence result of weak solutions for (6.0.1).

Theorem 6.2.1 If the assumptions(A1) - ( A2) hold, then the problem(6.0.1)possesses at least one

weak solutionsu in W1;p(x)(
 ).

Proof. First, we give several lemmas that will be used later.

Let us consider the following functional :

J (u) :=
Z




1
p(x)

�
jr u jp(x) +

q
1 + jr u j2p(x)

�
dx:

From [131], it is obvious that J is a continuously Gâteaux differentiable and T := J 0(u) 2

W - 1;p0(x)(
 ) such that

hTu; ’ i =
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx;

for all u; ’ 2 W1;p(x)(
 ) where h�; �i means the duality pairing between W - 1;p0(x)(
 ) and

W1;p(x)(
 ). In addition, the following lemma summarizes the properties of the operator T

(see [131, Proposition 3.1.]).
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Lemma 6.2.2 The mapping

T : W1;p(x)(
 ) � ! W - 1;p0(x)(
 )

hTu; ’ i =
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx;

is a continuous, bounded, strictly monotone operator and is a mapping of class(S+ ).

Lemma 6.2.3 Assume that the assumptions(A1) - ( A2) hold, then the operator

S : W1;p(x)(
 ) ! W - 1;p0(x)(
 ) de�ned by

hSu; ’ i = -
Z




�
� ju j� (x)- 2u + �f (x; u; r u)

�
’dx; for all u; ’ 2 W1;p(x)(
 );

is compact.

Proof. In order to prove this lemma, we proceed in three steps.

First step: Let us de�ne the operator 	 : W1;p(x)(
 ) ! Lp 0(x)(
 ) by

	u (x) := - � ju(x)j� (x)- 2u(x):

In this step, we will prove that 	 is bounded and continuous. It is clear that 	 is continuous.

Next we show that 	 is bounded. Let u 2 W1;p(x)(
 ), and using (5.1.5) and (5.1.6) we obtain

j	u jp 0(x) � � p 0(x)(	u ) + 1

=
Z



j� ju j� (x)- 2u jp

0(x)dx + 1

=
Z



j� jp

0(x) ju j(� (x)- 1)p 0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

�
� � (x)(u) + 1

�
�

j� jp
0-

+ j� jp
0+

��
ju j�

-

� (x) + ju j�
+

� (x)

�
+ 1:

Hence, we deduce from Lp(x) ,! L� (x) and Remark 5.1.9 that

j	u jp 0(x) � C
�

jju jj�
-

1;p(x) + jju jj�
+

1;p(x)

�
+ 1:

Consequently, 	 is bounded on W1;p(x)(
 ).

Second step: We de�ne the operator � : W1;p(x)(
 ) ! Lp 0(x)(
 ) by

�u (x) := - �f (x; u; r u):
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We will show that � is bounded and continuous.

Let u 2 W1;p(x)(
 ). According to (A2) and the inequalities (5.1.5) and (5.1.6), we obtain

j�u jp 0(x) � � p 0(x)(�u ) + 1

=
Z



j�f (x; u (x); r u(x)) jp

0(x)dx + 1

=
Z



j� jp

0(x) jf (x; u (x); r u(x)) jp
0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

� Z



jC1

�
 (x) + ju jq(x)- 1 + jr u jq(x)- 1

�
jp

0(x)dx + 1

� C
�

j� jp
0-

+ j� jp
0+

� Z




�
 (x)p 0(x) + ju j(q(x)- 1)p 0(x) + jr u j(q(x)- 1)p 0(x)

�
dx + 1

� C
�

j� jp
0-

+ j� jp
0+

��
� p 0(x)( ) + � r(x)(u) + � r(x)(r u)

�
+ 1

� C
�

j� jp
0-

+ j� jp
0+

��
j jp

0+

p(x) + j jp
0-

p(x) + ju jr
+

r(x) + ju jr
-

r(x) + jr u jr
+

r(x) + jr u jr
-

r(x)

�
+ 1:

Taking into account the continuous embedding Lp(x) ,! Lr(x) and Remark 5.1.9, we have then

j�u jp 0(x) � C
�

j jp
0+

p(x) + j jp
0-

p(x) + jju jjr
+

1;p(x) + jju jjr
-

1;p(x)

�
+ 1;

and consequently � is bounded on W1;p(x)(
 ).

Let us show that � is continuous. To this purpose, let us assume un ! u in W1;p(x)(
 ), we

need to show that �u n ! �u in Lp 0(x)(
 ). We will apply the Lebesgue’s theorem.

Note that if un ! u in W1;p(x)(
 ), then un ! u in Lp(x)(
 ) and r un ! r u in (Lp(x)(
 ))N .

Consequently, there exist a subsequence(uk) of (un ) and � in Lp(x)(
 ) and  in (Lp(x)(
 ))N

such that

uk(x) ! u(x) and r uk(x) ! r u(x); ask � ! 1 ; (6.2.1)

juk(x)j � � (x) and jr uk(x)j � j (x)j; for all k 2 N; (6.2.2)

and for a.e. x 2 
 .

Hence, from (A2) and (6.2.2), we have

jf (x; u k(x); r uk(x)) j � C1( (x) + j� (x)jq(x)- 1 + j (x)jq(x)- 1):

On the other hand, thanks to (A1) and (6.2.1), we get, ask � ! 1

f (x; u k(x); r uk(x)) ! f (x; u (x); r u(x)) a.e. x 2 
:

Seeing that

 + j� jq(x)- 1 + j (x)jq(x)- 1 2 Lp 0(x)(
 );

and

� p 0(x)(�u k - �u ) =
Z



jf (x; u k(x); r uk(x)) - f (x; u (x); r u(x)) jp

0(x)dx;
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then, from the Lebesgue’s theorem and the equivalence (5.1.4), we have

�u k ! �u in Lp 0(x)(
 );

and since � is single-valued, then

�u n ! �u in Lp 0(x)(
 ):

Third step: Let I � : Lp 0(x)(
 ) ! W - 1;p0(x)(
 ) be the adjoint operator of the natural embed-

ding mapping I : W1;p(x)(
 ) ! Lp(x)(
 ). We then de�ne

I � � 	 : W1;p(x)(
 ) ! W - 1;p0(x)(
 );

and

I � � � : W1;p(x)(
 ) ! W - 1;p0(x)(
 ):

On the other hand, due to the compactness of I , I � also becomes compact. Thus, the compo-

sitions I � � 	 and I � � � are compact, and consequently,S = I � � 	 + I � � � is compact. With

this last step the proof of Lemma 6.2.3 is completed.

Now we give the proof of the Theorem 6.2.1. The basic idea of our proof is to reformulate

the problem (6.0.1) to an abstract formula governed by a Hammerstein equation, and apply

the theory of topological degree introduced in Subsection 5.2.1 to show the existence of weak

solution to (6.0.1).

First, for all u; ’ 2 W1;p(x)(
 ), we de�ne the operators T and S, as de�ned in Lemmas

6.2.2 and 6.2.3 respectively,

T : W1;p(x)(
 ) � ! W - 1;p0(x)(
 )

hTu; ’ i =
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx;

S : W1;p(x)(
 ) � ! W - 1;p0(x)(
 )

hSu; ’ i = -
Z




�
� ju j� (x)- 2u + �f (x; u; r u)

�
’dx:

Consequently, the problem (6.0.1) is equivalent to the equation

T u = - Su; u 2 W1;p(x)(
 ): (6.2.3)

Taking into account that, by Lemma 6.2.2, the operator T is a continuous, bounded, strictly

monotone and of class (S+ ), then, by [143, Theorem 26 A], the inverse operator

L := T - 1 : W - 1;p0(x)(
 ) ! W1;p(x)(
 );
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is also bounded, continuous, strictly monotone and of class (S+ ).

On the other hand, according to Lemma 6.2.3, we have that the operator S is bounded,

continuous and quasimonotone.

Consequently, following Zeidler’s terminology [143], the equation (6.2.3) is equivalent to the

following abstract Hammerstein equation

u = L ’ and ’ + S � L ’ = 0; u 2 W1;p(x)(
 ) and ’ 2 W - 1;p0(x)(
 ): (6.2.4)

Due to the equivalence of (6.2.3) and (6.2.4), it will be suf�cient to solve (6.2.4). In order to

solve (6.2.4), we will apply the Berkovits topological degree introduced in Subsection 5.2.1.

First, let us set

B :=



’ 2 W - 1;p0(x)(
 ) : 9 t 2 [0; 1] such that ’ + tS � L ’ = 0
�

:

Next, we show that B is bounded in 2 W - 1;p0(x)(
 ). Let us put u := L ’ for all ’ 2 B .

Taking into account that jL ’ j1;p(x) = jju jj1;p(x), then we have the following two cases:

First case : If jju jj1;p(x) � 1, then jL ’ j1;p(x) � 1, that means



L ’ : ’ 2 B
�

is bounded.

Second case :If jju jj1;p(x) > 1 , then, we deduce from (5.1.11),(A2), the inequalities (5.1.6) and

(5.1.7), and the Young’s inequality that

jjL ’ jjp
-

1;p(x) = jju jjp-
1;p(x)

� � 1;p(x)(u)

= � p(x)(u) + � p(x)(r u)

� hT u; u i

= h’; L ’ i

= - t hS � L ’; L ’ i

= t
Z




�
� ju j� (x)- 2u + �f (x; u; r u)

�
udx

� t max(j� j; C1j� j)
� Z



ju j� (x)dx +

Z



j (x)u(x)jdx +

Z



ju(x)jq(x)dx +

Z



jr u jq(x)- 1ju jdx

�

= t max(j� j; C1j� j)
�

� � (x)(u) +
Z



j (x)u(x)jdx + � q(x)(u) +

Z



jr u jq(x)- 1ju jdx

�

� C
�

ju j�
-

� (x) + ju j�
+

� (x) + j jp 0(x) ju jp(x) + ju jq
+

q(x) + ju jq
-

q(x) +
1

q 0-
� q(x)(r u) +

1
q-

� q(x)(u)
�

� C
�

ju j�
-

� (x) + ju j�
+

� (x) + ju jp(x) + ju jq
+

q(x) + ju jq
-

q(x) + jr u jq
-

q(x) + jr u jq
+

q(x)

�
:

Then, according to Remark 5.1.9, and the continuous embedding Lp(x) ,! L� (x) and Lp(x) ,!

Lq(x), we get

jjL ’ jjp
-

1;p(x) � C
�

jjL ’ jj�
+

1;p(x) + jjL ’ jj1;p(x) + jjL ’ jjq
+

1;p(x)

�
;
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what implies that



L ’ : ’ 2 B
�

is bounded.

On the other hand, we have that the operator is S is bounded, then S �L ’ is bounded. Thus,

thanks to (6.2.4), we have thatB is bounded in W - 1;p0(x)(
 ). However, there exists a constant

b > 0 such that

j’ j- 1;p0(x) < b for all ’ 2 B ;

which leads to

’ + t S � L ’ 6= 0; ’ 2 @Bb(0) and t 2 [0; 1];

where Bb(0) is the ball of center 0 and radius b in W - 1;p0(x)(
 ).

Moreover, by Lemma 5.2.11, we conclude that

I + S � L 2 F L (Bb(0)) and I = T � L 2 F L (Bb(0)) :

On another side, taking into account that I , S and L are bounded, then I + S � L is bounded.

Hence, we infer that

I + S � L 2 F L ;B(Bb(0)) and I = T � L 2 F L ;B(Bb(0)) :

Next, we de�ne the homotopy

H : [0; 1] � Bb(0) ! W - 1;p0(x)(
 )

(t; ’ ) 7! H (t; ’ ) := ’ + t S � L ’:

Hence, thanks to the properties of the degree d as in Theorem 5.2.14, we obtain

d(I + S � L ; Bb(0); 0) = d(I; Bb(0); 0) = 1 6= 0;

what implies that there exists ’ 2 Bb(0) which veri�es

’ + S � L ’ = 0:

Finally, we infer that u = L ’ is a weak solutions of (6.0.1). Thus, the proof of Theorem 6.2.1

is completed.
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Chapter 7

On a class of p(x)-Laplacian-like Dirichlet
problem depending on three real
parameters

7.1 Position of the problem and hypotheses

This chapter establishes the existence of weak solution for a Dirichlet boundary value prob-

lem involving the p(x)-Laplacian-like operator depending on three real parameters, origi-

nated from a capillary phenomena, of the following form:
8
>><

>>:

- � l
p(x)u + � ju j� (x)- 2u = �g (x; u ) + �f (x; u; r u) in 
;

u = 0 on @
;

(7.1.1)

where � l
p(x) is the p(x)-Laplacian-like operator, 
 is a smooth bounded domain in RN , �; �

and � are three real parameters, p(�); � (�) 2 C+ (
 ) and g; f are CarathØodory functions.

Under suitable nonstandard growth conditions on g and f and using the topological degree

for a class of demicontinuous operator of generalized (S+ ) type and the theory of variable-

exponent Sobolev spaces, we establish the existence of weak solution for the above problem.

We assume that 
 � RN (N � 2) is a bounded domain with a Lipschitz boundary @
;

p 2 C+ (
 ) satisfy the log-Hölder continuity condition (5.1.8), � 2 C+ (
 ) with

2 � � - � � (x) � � + < p - � p(x) � p+ < 1 , g : 
 � R ! R and f : 
 � R � RN ! R are

functions such that:

(A1) f is a CarathØodory function.

(A2) There existsC1 > 0 and  2 Lp 0(x)(
 ) such that

jf (x; �; � )j � C1( (x) + j� jq(x)- 1 + j� jq(x)- 1):

(A3) g is a CarathØodory function.
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(A4) There areC2 > 0 and � 2 Lp 0(x)(
 ) such that

jg(x; � )j � C2(� (x) + j� js(x)- 1);

for a.e. x 2 
 and all (�; � ) 2 R � RN , where q; s 2 C+ (
 ) with 2 � q- � q(x) � q+ < p -

and 2 � s- � s(x) � s+ < p - .

Remark 7.1.1 First. Note that, for allu; ’ 2 W1;p(x)
0 (
 ),

Z




�
jr u jp(x)- 2r u+

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx

is well de�ned (see [131]). Second, we have� ju j� (x)- 2u 2 Lp 0(x)(
 ), �g (x; u ) 2 Lp 0(x)(
 ) and

�f (x; u; r u) 2 Lp 0(x)(
 ) under u 2 W1;p(x)
0 (
 ), the assumptions(A2) and (A4) and the given

hypotheses about the exponentsp; �; q ands because:r(x) = ( q(x) - 1)p 0(x) 2 C+ (
 ) with r(x) <

p(x), � (x) = ( � (x) - 1)p 0(x) 2 C+ (
 ) with � (x) < p (x) and � (x) = ( s(x) - 1)p 0(x) 2 C+ (
 )

with � (x) < p (x).

Then, by Remark 5.1.5 we can conclude thatLp(x) ,! Lr(x), Lp(x) ,! L� (x) andLp(x) ,! L� (x).

Hence, since’ 2 Lp(x)(
 ), we have
�

- � ju j� (x)- 2u + �g (x; u ) + �f (x; u; r u)
�

’ 2 L1(
 ):

This implies that, the integral
Z




�
- � ju j� (x)- 2u + �g (x; u ) + �f (x; u; r u)

�
’dx

exists.

Then, we shall use the de�nition of weak solution for problem (7.1.1) in the following sense:

De�nition 7.1.2 We say that an elementu 2 W1;p(x)
0 (
 ) is a weak solution of(7.1.1)iff

Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx =

Z




�
- � ju j� (x)- 2u + �g (x; u ) + �f (x; u; r u)

�
’dx;

for all ’ 2 W1;p(x)
0 (
 ):

7.2 Main result

Before giving our main result we �rst give two lemmas that will be used later.

Let us consider the following functional:

J (u) :=
Z




1
p(x)

�
jr u jp(x) +

q
1 + jr u j2p(x)

�
dx:

From [131], it is obvious that J is a continuously Gâteaux differentiable and

T := J 0(u) 2 W - 1;p0(x)(
 ) such that

hTu; ’ i =
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx;
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for all u; ’ 2 W1;p(x)
0 (
 ) where h�; �i means the duality pairing between W - 1;p0(x)(
 ) and

W1;p(x)
0 (
 ). In addition, the following lemma summarizes the properties of the operator T

(see [131, Proposition 3.1.]).

Lemma 7.2.1 The mappingT : W1;p(x)
0 (
 ) � ! W - 1;p0(x)(
 ) de�ned by

hTu; ’ i =
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx; for all u; ’ 2 W1;p(x)

0 (
 );

is a continuous, bounded, strictly monotone operator, and is of class(S+ ).

Lemma 7.2.2 Assume that the assumptions(A1) - ( A4) hold. Then the operator

S : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 ) de�ned by

hSu; ’ i = -
Z




�
- � ju j� (x)- 2u + �g (x; u ) + �f (x; u; r u)

�
’dx; for all u; ’ 2 W1;p(x)

0 (
 );

is compact.

Proof. In order to prove this lemma, we proceed in four steps.

Step 1 : Let � : W1;p(x)
0 (
 ) ! Lp 0(x)(
 ) be an operator de�ned by

�u (x) := - �g (x; u ):

In this step, we prove that the operator � is bounded and continuous.

First, let u 2 W1;p(x)
0 (
 ), bearing (A4) in mind and using (5.1.5) and (5.1.6), we infer

j�u jp 0(x) � � p 0(x)(�u ) + 1

=
Z



j�g (x; u (x)) jp

0(x)dx + 1

=
Z



j� jp

0(x) jg(x; u (x)jp
0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

� Z



jC2

�
� (x) + ju js(x)- 1

�
jp

0(x)dx + 1

� C
�

j� jp
0-

+ j� jp
0+

� Z




�
j� (x)jp

0(x) + ju j� (x)
�

dx + 1

� C
�

j� jp
0-

+ j� jp
0+

��
� p 0(x)(� ) + � � (x)(u)

�
+ 1

� C
�

j� jp
0+

p(x) + ju j�
+

� (x) + ju j�
-

� (x)

�
+ 1:

Then, we deduce from (5.1.9) andLp(x) ,! L� (x), that

j�u jp 0(x) � C
�

j� jp
0+

p(x) + ju j�
+

1;p(x) + ju j�
-

1;p(x)

�
+ 1;

that means � is bounded on W1;p(x)
0 (
 ).

Second, we show that the operator � is continuous. To this purpose let un ! u in W1;p(x)
0 (
 ).

FACULTY OF SCIENCE AND TECHNIQUES 84 SULTAN M OULAY SLIMANE UNIVERSITY



M OHAMED EL OUAARABI D OCTORAL THESIS LABORATORY : LMACS

We need to show that �u n ! �u in Lp 0(x)(
 ). We will apply the Lebesgue’s theorem.

Note that if un ! u in W1;p(x)
0 (
 ), then un ! u in Lp(x)(
 ). Hence there exist a subsequence

(uk) of (un ) and � in Lp(x)(
 ) such that

uk(x) ! u(x) and juk(x)j � � (x); (7.2.1)

for a.e. x 2 
 and all k 2 N. Hence, from (A2) and (7.2.1), we have

jg(x; u k(x)) j � C2(� (x) + j� (x)js(x)- 1);

for a.e. x 2 
 and for all k 2 N.

On the other hand, thanks to (A3) and (7.2.1), we get, ask � ! 1

g(x; u k(x)) ! g(x; u (x)) a.e. x 2 
:

Seeing that

� + j� js(x)- 1 2 Lp 0(x)(
 ) and � p 0(x)(�u k - �u ) =
Z



jg(x; u k(x)) - g(x; u (x)) jp

0(x)dx;

then, from the Lebesgue’s theorem and the equivalence (5.1.4), we have

�u k ! �u in Lp 0(x)(
 );

and consequently

�u n ! �u in Lp 0(x)(
 );

that is, � is continuous.

Step 2 : We de�ne the operator 	 : W1;p(x)
0 (
 ) ! Lp 0(x)(
 ) by

	u (x) := � ju(x)j� (x)- 2u(x):

We will prove that 	 is bounded and continuous.

It is clear that 	 is continuous. Next we show that 	 is bounded.

Let u 2 W1;p(x)
0 (
 ) and using (5.1.5) and (5.1.6), we obtain

j	u jp 0(x) � � p 0(x)(	u ) + 1

=
Z



j� ju j� (x)- 2u jp

0(x)dx + 1

=
Z



j� jp

0(x) ju j(� (x)- 1)p 0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

� Z



ju j� (x)dx + 1

=
�

j� jp
0-

+ j� jp
0+

�
� � (x)(u) + 1

�
�

j� jp
0-

+ j� jp
0+

��
ju j�

-

� (x) + ju j�
+

� (x)

�
+ 1:
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Hence, we deduce from Lp(x) ,! L� (x) and (5.1.9) that

j	u jp 0(x) � C
�

ju j�
-

1;p(x) + ju j�
+

1;p(x)

�
+ 1;

and consequently, 	 is bounded on W1;p(x)
0 (
 ).

Step 3 : Let us de�ne the operator � : W1;p(x)
0 (
 ) ! Lp 0(x)(
 ) by

�u (x) := - �f (x; u (x); r u(x)) :

We will show that � is bounded and continuous.

Let u 2 W1;p(x)
0 (
 ). According to (A2) and the inequalities (5.1.5) and (5.1.6), we obtain

j�u jp 0(x) � � p 0(x)(�u ) + 1

=
Z



j�f (x; u (x); r u(x)) jp

0(x)dx + 1

=
Z



j� jp

0(x) jf (x; u (x); r u(x)) jp
0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

� Z



jC1

�
 (x) + ju jq(x)- 1 + jr u jq(x)- 1

�
jp

0(x)dx + 1

� C
�

j� jp
0-

+ j� jp
0+

� Z




�
j (x)jp

0(x) + ju jr(x) + jr u jr(x)
�

dx + 1

� C
�

j� jp
0-

+ j� jp
0+

��
� p 0(x)( ) + � r(x)(u) + � r(x)(r u)

�
+ 1

� C
�

j jp
0+

p(x) + ju jr
+

r(x) + ju jr
-

r(x) + jr u jr
+

r(x) + jr u jr
-

r(x)

�
+ 1:

Taking into account that Lp(x) ,! Lr(x) and (5.1.9), we have then

j�u jp 0(x) � C
�

j jp
0+

p(x) + ju jr
+

1;p(x) + ju jr
-

1;p(x)

�
+ 1;

and consequently � is bounded on W1;p(x)
0 (
 ).

It remains to show that � is continuous. Let un ! u in W1;p(x)
0 (
 ), we need to show that

�u n ! �u in Lp 0(x)(
 ). We will apply the Lebesgue’s theorem.

Note that if un ! u in W1;p(x)
0 (
 ), then un ! u in Lp(x)(
 ) and r un ! r u in (Lp(x)(
 ))N .

Hence, there exist a subsequence(uk) and � in Lp(x)(
 ) and  in (Lp(x)(
 ))N such that

uk(x) ! u(x) and r uk(x) ! r u(x); juk(x)j � � (x) and jr uk(x)j � j (x)j; (7.2.2)

for a.e. x 2 
 and all k 2 N. Hence, thanks to (A1) and (7.2.2), we get, ask � ! 1

f (x; u k(x); r uk(x)) ! f (x; u (x); r u(x)) a.e. x 2 
:

On the other hand, from (A2) and (7.2.2), we can deduce the estimate

jf (x; u k(x); r uk(x)) j � C1( (x) + j� (x)jq(x)- 1 + j (x)jq(x)- 1);
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for a.e. x 2 
 and for all k 2 N. Seeing that

 + j� jq(x)- 1 + j (x)jq(x)- 1 2 Lp 0(x)(
 );

and taking into account the equality

� p 0(x)(�u k - �u ) =
Z



jf (x; u k(x); r uk(x)) - f (x; u (x); r u(x)) jp

0(x)dx;

then, we conclude from the Lebesgue’s theorem and (5.1.4) that

�u k ! �u in Lp 0(x)(
 )

and consequently

�u n ! �u in Lp 0(x)(
 );

and then � is continuous.

Step 4 : Let I � : Lp 0(x)(
 ) ! W - 1;p0(x)(
 ) be the adjoint operator of the operator

I : W1;p(x)
0 (
 ) ! Lp(x)(
 ). Next, we de�ne

I � o� : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 );

I � o	 : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 );

and

I � o� : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 ):

On another side, taking into account that I is compact, then I � is compact. Thus, the com-

positions I � o� , I � o	 and I � o� are compact, that meansS = I � o� + I � o	 + I � o� is compact.

With this last step the proof of Lemma 7.2.2 is completed.

We are now in the position to get the existence result of weak solution for (7.1.1).

Theorem 7.2.3 Assume that the assumptions(A1) - ( A4) hold, then the problem(7.1.1)possesses

at least one weak solutionu in W1;p(x)
0 (
 ).

Proof. The basic idea of our proof is to reduce the problem (7.1.1) to a new one governed by

a Hammerstein equation, and apply the topological degree theory to show the existence of

weak solution to the state problem. First, for all u; ’ 2 W1;p(x)
0 (
 ), we de�ne the operators

T : W1;p(x)
0 (
 ) � ! W - 1;p0(x)(
 ) and S : W1;p(x)

0 (
 ) � ! W - 1;p0(x)(
 ) by

hTu; ’ i =
Z




�
jr u jp(x)- 2r u +

jr u j2p(x)- 2r u
p

1 + jr u j2p(x)

�
r ’dx;

hSu; ’ i = -
Z




�
- � ju j� (x)- 2u + �g (x; u ) + �f (x; u; r u)

�
’dx:
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Consequently, the problem (7.1.1) is equivalent to the equation

T u = - Su; u 2 W1;p(x)
0 (
 ): (7.2.3)

Taking into account that, by Lemma 7.2.1, the operator T is a continuous, bounded, strictly

monotone and of class (S+ ), then, by [143, Theorem 26 A], the inverse operator

L := T - 1 : W - 1;p0(x)(
 ) ! W1;p(x)
0 (
 );

is also bounded, continuous, strictly monotone and of class (S+ ).

On another side, according to Lemma 7.2.2, we have that the operator S is bounded, contin-

uous and quasimonotone.

Consequently, following Zeidler’s terminology [143], the equation (7.2.3) is equivalent to the

following abstract Hammerstein equation

u = L ’ and ’ + SoL ’ = 0; u 2 W1;p(x)
0 (
 ) and ’ 2 W - 1;p0(x)(
 ): (7.2.4)

Seeing that (7.2.3) is equivalent to (7.2.4), then to solve (7.2.3) it is thus enough to solve

(7.2.4). In order to solve (7.2.4), we will apply the Berkovits topological degree introducing

in Subsection 5.2. First, let us set

B :=



’ 2 W - 1;p0(x)(
 ) : 9 t 2 [0; 1] such that ’ + t SoL ’ = 0
�

:

Next, we show that B is bounded in 2 W - 1;p0(x)(
 ).

Let us put u := L ’ for all ’ 2 B . Taking into account that jL ’ j1;p(x) = jr u jp(x), then we have

the following two cases:

First case : If jr u jp(x) � 1, then jL ’ j1;p(x) � 1, that means



L ’ : ’ 2 B
�

is bounded.

Second case : If jr u jp(x) > 1 , then, we deduce from (5.1.2), (A2) and (A4), the inequalities
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(5.1.7) and (5.1.6) and the Young’s inequality that

jL ’ jp
-

1;p(x) = jr u jp-
p(x)

� � p(x)(r u)

� hT u; u i

= h’; L ’ i

= - thSoL ’; L ’ i

= t
Z




�
- � ju j� (x)- 2u + �g (x; u ) + �f (x; u; r u)

�
udx

� t max(j� j; C2j� j; C1j� j)
� Z



ju j� (x)dx +

Z



j� (x)u(x)jdx +

Z



ju(x)js(x)dx

+
Z



j (x)u(x)jdx +

Z



ju(x)jq(x)dx +

Z



jr u jq(x)- 1ju jdx

�

= t max(j� j; C2j� j; C1j� j)
�

� � (x)(u) +
Z



j� (x)u(x)jdx +

Z



j (x)u(x)jdx

+ � s(x)(u) + � q(x)(u) +
Z



jr u jq(x)- 1ju jdx

�

� C
�

ju j�
-

� (x) + ju j�
+

� (x) + j� jp 0(x) ju jp(x) + j jp 0(x) ju jp(x) + ju js
+

s(x) + ju js
-

s(x) + ju jq
+

q(x) + ju jq
-

q(x)

+
1

q 0-
� q(x)(r u) +

1
q-

� q(x)(u)
�

� C
�

ju j�
-

� (x) + ju j�
+

� (x) + ju jp(x) + ju js
+

s(x) + ju js
-

s(x) + ju jq
+

q(x) + ju jq
-

q(x) + jr u jq
+

q(x)

�
;

then, according to Lp(x) ,! L� (x), Lp(x) ,! Ls(x) and Lp(x) ,! Lq(x), we get

jL ’ jp
-

1;p(x) � C
�

jL ’ j�
+

1;p(x) + jL ’ j1;p(x) + jL ’ js
+

1;p(x) + jL ’ jq
+

1;p(x)

�
;

what implies that



L ’ : ’ 2 B
�

is bounded.

On the other hand, we have that the operator is S is bounded, then SoL ’ is bounded. Thus,

thanks to (7.2.4), we have thatB is bounded in W - 1;p0(x)(
 ).

However, there exists � > 0 such that

j’ j- 1;p0(x) < � for all ’ 2 B ;

which leads to

’ + tSoL ’ 6= 0; ’ 2 @B� (0) and t 2 [0; 1];

Moreover, by Lemma 5.2.11, we conclude that

I + SoL 2 F L (B� (0)) and I = T oL 2 F L (B� (0)) :

On another side, taking into account that I , S and L are bounded, then I + SoL is bounded.

Hence, we infer that

I + SoL 2 F L ;B(B� (0)) and I = T oL 2 F L ;B(B� (0)) :
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Next, we de�ne the homotopy

H : [0; 1] � B� (0) ! W - 1;p0(x)(
 )

(t; ’ ) 7! H (t; ’ ) := ’ + tSoL ’:

Hence, thanks to the properties of the degree d seen in Theorem 5.2.14, we obtain

d(I + SoL ; B� (0); 0) = d(I; B � (0); 0) = 1 6= 0;

which implies that there exists ’ 2 B� (0) verifying

’ + SoL ’ = 0:

Finally, we infer that u = L ’ is a weak solution of (7.1.1). The proof is completed.
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Chapter 8

Existence and uniqueness results for a
class of p(x)-Kirchhoff-type problems
with convection term and Neumann
boundary data

We establish an existence and uniqueness results for a homogeneous Neumann boundary

value problem involving the p(x)-Kirchhoff-Laplacian operator of the following form
8
>>><

>>>:

- M
� Z




1
p(x)

(jr u jp(x) + ju jp(x)) dx
��

div (jr u jp(x)- 2r u) - ju jp(x)- 2u
�

= f (x; u; r u) in 
;

jr u jp(x)- 2 @u
@� = 0 on @
:

(8.0.1)

where 
 is a smooth bounded domain in RN , @u
@� is the exterior normal derivative, p(x) 2

C+ (
 ) with p(x) � 2. By means of a topological degree of Berkovits for a class of demicon-

tinuous operators of generalized (S+ ) type and the theory of the variable exponent Sobolev

spaces, under appropriate assumptions on f and M , we obtain a results on the existence and

uniqueness of weak solution to the considered problem.

8.1 Hypothesis and notion of weak solution

In this chapter we will discuss the existence and uniqueness of weak solution of (8.0.1). For

this, we list our assumptions on f and M associated with our problem to show the existence

result.

From new on, we always assume that 
 � RN (N � 2) is a bounded domain with a

Lipschitz boundary @
; p 2 C+ (
 ) with 2 � p- � p(x) � p+ < 1 and f : 
 � R � RN ! R

is a function such that:

(A1) f satis�es the CarathØodory condition.
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(A2) There exists � 1 > 0 and  2 Lp 0(x)(
 ) such that

jf (x; �; � )j � � 1

�
 (x) + j� jq(x)- 1 + j� jq(x)- 1

�

for a.e. x 2 
 and all (�; � ) 2 R � RN , where 2 � q- � q(x) � q+ < p - .

Furthermore,

(M 0) M : [0;+ 1 ) ! (m0; + 1 ) is a continuous and increasing function with m0 > 0 .

Let us recall that the de�nition of a weak solution for problem (8.0.1) can be stated as follows.

De�nition 8.1.1 A function u 2 W1;p(x)(
 ) is called a weak solution of(8.0.1)if

M
� Z




1
p(x)

(jr u jp(x) + ju jp(x))dx
� Z




�
jr u jp(x)- 2r ur ’ + ju jp(x)- 2u ’

�
dx =

Z



f (x; u; r u)’ dx;

for all ’ 2 W1;p(x)(
 ):

8.2 Existence and uniqueness results

We are now in the position to get the existence result of weak solution for (8.0.1).

Theorem 8.2.1 If the assumptions(A1) - ( A2) and (M 0) hold, then the problem(8.0.1)admits at

least one weak solutionu in W1;p(x)(
 ).

Proof. First, we give several lemmas that will be used later.

Let us consider the following functional:

� (u) := cM
� Z




1
p(x)

(jr u jp(x) + ju jp(x)) dx
�

;

where cM (s) =
Zs

0
M (� )d�; such that M (s) satis�es the condition (M 0).

It is obvious that the functional � is a continuously Gâteaux differentiable whose Gâteaux

derivative at the point u 2 W1;p(x)(
 ) is the functional T := � 0(u) 2 W - 1;p0(x)(
 ), given by

hTu; ’ i = M
� Z




1
p(x)

(jr u jp(x) + ju jp(x))dx
� Z




�
jr u jp(x)- 2r ur ’ + ju jp(x)- 2u ’

�
dx;

for all u; ’ 2 W1;p(x)(
 ) where h�; �i means the duality pairing between W - 1;p0(x)(
 ) and

W1;p(x)(
 ). Furthermore, the properties of the operator T are summarized in the following

lemma (see [51, Theorem 2.1])

Lemma 8.2.2 If (M 0) holds, then

1. T : W1;p(x)(
 ) ! W - 1;p0(x)(
 ) is a continuous, bounded and strictly monotone operator.
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2. T is a mapping of type(S+ ).

Lemma 8.2.3 Assume that the assumptions(A1) - ( A2) hold, then the operator

S : W1;p(x)(
 ) ! W - 1;p0(x)(
 ) de�ned by

hSu; ’ i = -
Z



f (x; u; r u)’ dx; for all u; ’ 2 W1;p(x)(
 )

is compact.

Proof. Let � : W1;p(x)(
 ) ! Lp 0(x)(
 ) be an operator de�ned by

�u (x) := - f (x; u; r u) for u 2 W1;p(x)(
 ) and x 2 
:

Next, we split the proof in several steps.

We �rst show that � is bounded and continuous. By using (A2), the inequalities (5.1.5) and

(5.1.6), we obtain

j�u jp 0(x) � � p 0(x)(�u ) + 1

=
Z



jf (x; u (x); r u(x)) jp

0(x) dx + 1

� C
�

� p 0(x)( ) + � r(x)(u) + � r(x)(r u)
�

+ 1

� C
�

j jp
0+

p(x) + ju jr
+

r(x) + ju jr
-

r(x) + jr u jr
+

r(x) + jr u jr
-

r(x)

�
+ 1;

for all u 2 W1;p(x)(
 ) where r(x) = ( q(x) - 1)p 0(x) < p (x).

Then, by the continuous embedding Lp(x) ,! Lr(x) and Remark 5.1.9, we have

j�u jp 0(x) � C
�

j jp
0+

p(x) + ju jr
+

1;p(x) + ju jr
-

1;p(x)

�
+ 1:

This implies that � is bounded on W1;p(x)(
 ).

To show that � is continuous, let un ! u in W1;p(x)(
 ) . Then un ! u in Lp(x)(
 ) and

r un ! r u in (Lp(x)(
 ))N . Hence there exist a subsequence(uk) of (un ) and measurable

functions � in Lp(x)(
 ) and  in (Lp(x)(
 ))N such that

uk(x) ! u(x) and r uk(x) ! r u(x);

juk(x)j � � (x) and jr uk(x)j � j (x)j; (8.2.1)

for a.e. x 2 
 and all k 2 N.

Hence, thanks to (A1), we get, ask � ! 1

f (x; u k(x); r uk(x)) ! f (x; u (x); r u(x)) a.e. x 2 
:
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On the other hand, it follows from (A2) and (8.2.1) that

jf (x; u k(x); r uk(x)) j � � 1

�
 (x) + j� (x)jq(x)- 1 + j (x)jq(x)- 1

�
;

for a.e. x 2 
 and for all k 2 N.

Since

 + j� jq(x)- 1 + j (x)jq(x)- 1 2 Lp 0(x)(
 );

and

� p 0(x)(�u k - �u ) =
Z




�
�
�f (x; u k(x); r uk(x)) - f (x; u (x); r u(x))

�
�
�
p 0(x)

dx;

therefore, the Lebesgue’s theorem and the equivalence (5.1.4) implies that

�u k ! �u in Lp 0(x)(
 ):

Thus the entire sequence(�u n ) converges to �u in Lp 0(x)(
 ) .

Moreover, let I � : Lp 0(x)(
 ) ! W - 1;p0(x)(
 ) be the adjoint operator for the embedding of

I : W1;p(x)(
 ) ! Lp(x)(
 ). Let us de�ne

I � � � : W1;p(x)(
 ) ! W - 1;p0(x)(
 );

which is well-de�ned by assumption (A2).

Since the embedding I is compact, it is known that the adjoint operator I � is also compact.

Therefore, I � � � is compact. This completes the proof.

Now we give the proof of the Theorem 8.2.1. For that, we transform this Neumann boundary

value problem into a new one governed by a Hammerstein equation, so by using the theory

of topological degree introduced in Section 5.2, we show the existence of weak solution to

the state problem.

First, for all u; ’ 2 W1;p(x)(
 ), we de�ne the operators T and S, as de�ned in Lemmas

8.2.2 and 8.2.3 respectively,

T : W1;p(x)(
 ) � ! W - 1;p0(x)(
 )

hTu; ’ i = M
� Z




1
p(x)

(jr u jp(x) + ju jp(x))dx
� Z




�
jr u jp(x)- 2r ur ’ + ju jp(x)- 2u ’

�
dx;

S : W1;p(x)(
 ) � ! W - 1;p0(x)(
 )

hSu; ’ i = -
Z



f (x; u; r u)’ dx:

Then u 2 W1;p(x)(
 ) is a weak solution of (8.0.1) if and only if

T u = - Su: (8.2.2)
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Thanks to the properties of the operator T seen in Lemma 8.2.2 and in view of Minty-

Browder Theorem (see [143, Theorem 26 A], the inverse operator

L := T - 1 : W - 1;p0(x)(
 ) ! W1;p(x)(
 );

is bounded, continuous and of type (S+ ). Moreover, note by Lemma 8.2.3 that the operator

S is bounded, continuous and quasimonotone.

Consequently, Equation (8.2.2) is equivalent to the abstract Hammerstein equation

u = L ’ and ’ + S � L ’ = 0: (8.2.3)

To solve Equation (8.2.3), we will apply the degree theory introduced in Subsection 5.2.2. To

do this, set

B :=



’ 2 W - 1;p0(x)(
 ) : 9 t 2 [0; 1] such that ’ + t S � L ’ = 0
�

Next,we prove that B is bounded in 2 W - 1;p0(x)(
 ).

Let ’ 2 B and set u := L ’ , then jL ’ j1;p(x) = ju j1;p(x):

If ju j1;p(x) � 1, then jL ’ j1;p(x) is bounded.

If ju j1;p(x) > 1 , then by (5.1.11), the growth condition (A2), the Hölder inequality (5.1.7), the

inequality (5.1.6) and the Young inequality, we get

jL ’ jp
-

1;p(x) = ju jp-
1;p(x)

� � 1;p(x)(u)

= � p(x)(u) + � p(x)(r u)

� hT u; u i

= h’; L ’ i

= - thS � L ’; L ’ i

= t
Z



f (x; u; r u)u dx

� C
� Z



j (x)u(x)j dx + � q(x)(u) +

Z



jr u jq(x)- 1ju j dx

�

� C
�

j jp 0(x) ju jp(x) + ju jq
+

q(x) + ju jq
-

q(x) +
1

q 0-
� q(x)(r u) +

1
q-

� q(x)(u)
�

� C
�

ju jp(x) + ju jq
+

q(x) + ju jq
-

q(x) + jr u jq
+

q(x)

�
:

From Remark 5.1.9 and the continuous embedding Lp(x) ,! Lq(x), we conclude that

jL ’ jp
-

1;p(x) � C
�

jL ’ j1;p(x) + jL ’ jq
+

1;p(x)

�
:
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So, we infer that



L ’ j’ 2 B
�

is bounded.

Since the operatorS is bounded, it is obvious from (8.2.3) that B is bounded in W - 1;p0(x)(
 ).

Consequently, there existsR > 0 such that

j’ j- 1;p0(x) < R for all ’ 2 B :

Therefore

’ + tS � L ’ 6= 0 for all ’ 2 @BR(0) and all t 2 [0; 1];

where BR(0) is the ball of center 0 and radius R in W - 1;p0(x)(
 ).

Moreover, from Lemma 5.2.11 we conclude that

I + S � L 2 F L (BR(0)) and I = T � L 2 F L (BR(0)) :

Next, consider a homotopy � : [0; 1] � BR(0) ! W - 1;p0(x)(
 ) given by

� (t; ’ ) := ’ + tS � L ’ for (t; ’ ) 2 [0; 1] � BR(0):

Hence, by using the normalization property and the homotopy invariance of degree d seen

in Theorem 5.2.14, we obtain

d(I + S � L ; BR(0); 0) = d(I; BR(0); 0) = 1 6= 0:

Then, there exists ’ 2 BR(0) such that

’ + S � L ’ = 0:

Thus, we conclude that u = L ’ is a weak solution of (8.0.1). The proof is completed.

Next, we consider the uniqueness of solution of (8.0.1). To this end, we also need the follow-

ing hypothesis:

(A3) There existsC2 � 0 such that
�

f (x; t; � ) - f (x; s; � )
�

(t - s) � C2jt - sjp(x)

for a.e. x 2 
 and all t; s 2 R, �; � 2 RN .

We are now in the position to state our uniqueness result.

Theorem 8.2.4 If the assumptions(A1) - ( A3) and(M 0) hold, then the weak solution of(8.0.1)is

unique provided
2p+ C2

m0
< 1 .
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Proof. Let u1; u2 2 W1;p(x)(
 ) be two weak solutions of (8.0.1). Then, by taking ’ = u1 - u2

in the De�nition 8.1.1, we get

	 1 := M
� Z




1
p(x)

(jr u1jp(x) + ju1jp(x))dx
� Z




�
jr u1jp(x)- 2r u1r (u1 - u2)

+ ju1jp(x)- 2u1(u1 - u2)
�

dx =
Z



f (x; u 1; r u1)(u1 - u2) dx;

and

	 2 := M
� Z




1
p(x)

(jr u2jp(x) + ju2jp(x))dx
� Z




�
jr u2jp(x)- 2r u2r (u1 - u2)

+ ju2jp(x)- 2u2(u1 - u2)
�

dx =
Z



f (x; u 1; r u1)(u1 - u2) dx:

Subtracting the above two equations, we obtain

	 1 - 	 2 =
Z




�
f (x; u 1; r u1) - f (x; u 2; r u2)

�
(u1 - u2) dx: (8.2.4)

Denote � 1;p(x)(u) =
Z




�
jr u jp(x) + ju jp(x)

�
dx; 8 u 2 W1;p(x)(
 ):

By the same proof as [82], we can show that the Theorem 1.4 of [82] hold for � 1;p(x)(u). In

particular, if we take uk � v in Theorem 1.4 of [82], we can easily see thatu = v in W1;p(x)(
 )

if and only if � 1;p(x)(u) = � 1;p(x)(v). Hence, for any u; v 2 W1;p(x)(
 ) with u 6= v in W1;p(x)(
 ),

we can see that� 1;p(x)(u) 6= � 1;p(x)(v).

Without loss of generality, we may assume that � 1;p(x)(u1) > � 1;p(x)(u2). It follows that

M
� Z




1
p(x)

�
jr u1jp(x) + ju1jp(x)

�
dx

�
� M

� Z




1
p(x)

�
jr u2jp(x) + ju2jp(x)

�
dx

�
: (8.2.5)

sinceM (t ) is a monotone function.

If ju1j > ju2j, using (8.2.5) and the assumption (M 0), we obtain

	 1 - 	 2 � M
� Z




1
p(x)

�
jr u2jp(x) + ju2jp(x))dx

� Z




�
jr u1jp(x)- 2r u1r (u1 - u2)

+ ju1jp(x)- 2u1(u1 - u2)
�

dx - 	 2

� M
� Z




1
p(x)

�
jr u2jp(x) + ju2jp(x)

�
dx

� � Z




h�
jr u1jp(x)- 2r u1

- jr u2jp(x)- 2r u2

�
r (u1 - u2) +

�
ju1jp(x)- 2u1 - ju2jp(x)- 2u2

�
(u1 - u2)

i
dx

i

� m0

� Z




h�
jr u1jp(x)- 2r u1 - jr u2jp(x)- 2r u2

�
r (u1 - u2)

+
�

ju1jp(x)- 2u1 - ju2jp(x)- 2u2

�
(u1 - u2)

i
dx

i
:

(8.2.6)

On the other hand, since p(x) � 2, then we have the following inequalities (see [82]):
�

ju1jp(x)- 2u1 - ju2jp(x)- 2u2

�
(u1 - u2) �

� 1
2

� p(x)
ju1 - u2jp(x); (8.2.7)
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�
jr u1jp(x)- 2r u1 - jr u2jp(x)- 2r u2

�
r (u1 - u2) �

� 1
2

� p(x)
jr u1 - r u2jp(x): (8.2.8)

So, by (8.2.7) and (8.2.8), we get

	 1 - 	 2 � m0

� 1
2

� p+ Z




�
jr u1 - r u2jp(x) + ju1 - u2jp(x)

�
dx

� m0

� 1
2

� p+ Z



ju1 - u2jp(x) dx:

(8.2.9)

Using (8.2.9) in (8.2.4), we obtain

m0

� 1
2

� p+ Z



ju1 - u2jp(x) dx �

Z




�
f (x; u 1; r u1) - f (x; u 2; r u2)

�
(u1 - u2) dx: (8.2.10)

Then it follows from the assumption (A3) that

m0

� 1
2

� p+ Z



ju1 - u2jp(x) dx � C2

Z



ju1 - u2jp(x) dx: (8.2.11)

If ju2j > ju1j, changing the role of u1 and u2 in (8.2.4)-(8.2.11), we obtain

m0

� 1
2

� p+ Z



ju2 - u1jp(x) dx � C2

Z



ju2 - u1jp(x) dx: (8.2.12)

Consequently, when
2p+ C2

m0
< 1 , then u1 = u2 and so the solution of (8.0.1) is unique. This

completes the proof.
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Chapter 9

Weak solutions for a quasilinear elliptic
and parabolic problems involving the
(p(x); q(x)) -Laplacian operator

In this chapter, we study the existence of weak solution to the following quasilinear prob-

lems: 8
>>>>>>>><

>>>>>>>>:

@u
@t - � p(x)u - � q(x)u = � (x; t ) in 
 T := 
 � (0; T);

u(x; t ) = 0 on � := @
 � (0; T);

u(x; 0) = u0(x) in 
;

(9.0.1)

and
8
>><

>>:

- � p(x)u - � q(x)u + ! ju j� (x)- 2u = � A(x; u ) + � B(x; u; r u) in 
;

u = 0 on @
;

(9.0.2)

where � 2 W � , u0 2 L2(
 ), A : 
 � R ! R and B : 
 � R � RN ! R are CarathØodory

functions that satisfy the assumption of growth, and the variables exponents p; q 2 C+ (
 )

are assumed to satisfy the following assumption:

1 < q - � q � q+ < p - � p � p+ < + 1 : (9.0.3)

9.1 Quasilinear parabolic problem involving the (p(x); q(x)) -
Laplacian operator

In this section, we will prove the existence of weak solution of the problem (9.0.1). First we

will state a lemma that will be used later.
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Lemma 9.1.1 The operatorS := - � p(x)u - � q(x)u de�ned fromW into W � by

hSu; v i W � ;W =
Z


 T

�
jr u jp(x)- 2r ur v + jr u jq(x)- 2r ur v

�
dxdt;

is bounded, continuous and of type(S+ ).

Proof. Let t 2 ] 0; T[ and denote by A the operator de�ned from W1;p(x)
0 (
 ) into W - 1;p0(x)(
 )

by

hAu(x; t ); v(x; t )i := hA1u(x; t ); v(x; t )i + hA2u(x; t ); v(x; t )i ;

where

hA1u(x; t ); v(x; t )i :=
Z




�
jr u(x; t )jp(x)- 2r u(x; t )r v(x; t )

�
dx;

and

hA2u(x; t ); v(x; t )i :=
Z




�
jr u(x; t )jq(x)- 2r u(x; t )r v(x; t )

�
dx;

for all u(�; t ), v(�; t ) 2 W1;p(x)
0 (
 ), with h�; �i is the duality pairing between W - 1;p0(x)(
 ) and

W1;p(x)
0 (
 ).

Then, we obtain

hSu; v i W � ;W =
ZT

0
hAu(x; t ); v(x; t )i dt; for all u; v 2 W ;

with h�; �i W � ;W is the duality pairing between W � and W .

Next, it follows from [81, Lemma 3.1] that A 1 and A 2 are bounded, continuous and of type

(S+ ); so the operator A := A 1+ A 2 is bounded, continuous and of type (S+ ) and consequently

the operator S is bounded, continuous and of type (S+ ).

We are now in the position to get existence result of weak solution for (9.0.1).

Theorem 9.1.2 Let � 2 W � and u0 2 L2(
 ), then the problem(9.0.1)admits at least one weak

solutionu 2 D (L ), whereD (L ) =



u 2 W : du
dt 2 W � and u(0) = 0

�
.

Proof. First, let us de�ne the operator L :=
d
dt

with domain D (L ) given by

D (L ) = fu 2 W :
du
dt

2 W � and u(0) = 0g;

where the time derivative
du
dt

is understood in the sense of vector-valued distributions, i.e.,

hLu; v i W � ;W =
ZT

0
hu 0(t ), v(t )i dt; 8 v 2 W ;
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with h�; �i W � ;W means the duality pairing between W � and W , and h�; �i means the duality

pairing between W - 1;p0(x)(
 ) and W1;p(x)
0 (
 ).

Second, we de�ne the operator S : W ! W � as de�ned in Lemma 9.1.1

hSu; v i W � ;W =
Z


 T

�
jr u jp(x)- 2r ur v + jr u jq(x)- 2r ur v

�
dxdt:

Consequently, the weak formulation of the problem (9.0.1) is given by the operator equation

u 2 D (L ) : Lu + Su = �:

Next, it follows from lemma 9.1.1 that S is bounded, continuous and of type (S+ ), and the

operator L is well known to be closed, densely de�ned, and maximal monotone [143, Theo-

rem 32.L, pp.897-899].

Let u 2 W . Using the monotonicity of L and the inequality (5.1.16), we obtain

hLu + Su; u i � hS u; u i

=
Z


 T

(jr u jp(x) + jr u jq(x))dxdt

� 2(jr u jp
-

Lp ( x ) (
 T )
- 1)

� 2(ju jp
-

W - 1):

Because the right-hand side of the previous inequality approximates to 1 when ju jW ! 1 ,

then the operator L + S is coercive. Thus for each� 2 W � there is a radius r = r(� ) > 0 such

that

hLu + Su - �; u i > 0; for each u 2 Br (0) \ D (L ):

So all the conditions of Theorem 5.2.7 are satis�ed. Consequently, Theorem 5.2.7 leads us to

the conclusion that the equation Lu + Su = � has a weak solution in D (L ), which implies

that the problem (9.0.1) has a weak solution u 2 D (L ). This completes the proof.

9.2 Quasilinear elliptic problem involving the (p(x); q(x)) -
Laplacian operator

In this section, we will discuss the existence of weak solution of (9.0.2). In the beginning,

let us assume that p 2 C+ (
 ) satisfy the log-Hölder continuity condition (5.1.8), � 2 C+ (
 )

with 2 � � - � � (x) � � + < p - � p(x) � p+ < 1 , A : 
 � R ! R and B : 
 � R � RN ! R

are functions such that:

(A1) B is a CarathØodory function.
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(A2) There exists � 1 > 0 and f 2 Lp 0(x)(
 ) such that

jB(x; y; z)j � � 1(f (x) + jy jk(x)- 1 + jzjk(x)- 1):

(A3) A is a CarathØodory function.

(A4) There are � 2 > 0 and g 2 Lp 0(x)(
 ) such that

jA(x; y )j � � 2(g(x) + jy js(x)- 1);

for a.e. x 2 
 and all (y; z) 2 R � RN , where q; s 2 C+ (
 ) with 2 � k- � k(x) � k+ <

p- and 2 � s- � s(x) � s+ < p - .

Remark 9.2.1

1. Let# 2 W1;p(x)
0 (
 ), then

Z




�
jr u jp(x)- 2r ur # + jr u jq(x)- 2r ur #

�
dx

is well de�ned (see [81]).

2. Let u 2 W1;p(x)
0 (
 ), then we have! ju j� (x)- 2u 2 Lp 0(x)(
 ), � A(x; u ) 2 Lp 0(x)(
 ) and

� B(x; u; r u) 2 Lp 0(x)(
 ) under the assumptions(A2) and (A4) and the given hypotheses

about the exponentsp; �; q and s because:f 2 Lp 0(x)(
 ), g 2 Lp 0(x)(
 ), r(x) = ( k(x) -

1)p 0(x) 2 C+ (
 ) with r(x) < p (x), and� (x) = ( � (x) - 1)p 0(x) 2 C+ (
 ) with � (x) < p (x)

and � (x) = ( s(x) - 1)p 0(x) 2 C+ (
 ) with � (x) < p (x).

Then, using Remark 5.1.5, we conclude thatLp(x) ,! Lr(x), Lp(x) ,! L� (x) andLp(x) ,! L� (x).

Therefore, with# 2 Lp(x)(
 ), we have
�

- ! ju j� (x)- 2u + � A(x; u ) + � B(x; u; r u)
�

# 2 L1(
 ):

This means that
Z




�
- ! ju j� (x)- 2u + � A(x; u ) + � B(x; u; r u)

�
#dx < 1 :

Then, let us introduce the de�nition of a weak solution for (9.0.2).

De�nition 9.2.2 We say that a functionu 2 W1;p(x)
0 (
 ) is a weak solution of(9.0.2), if for any

# 2 W1;p(x)
0 (
 ), it satisfy the following:

Z




�
jr u jp(x)- 2r ur # + jr u jq(x)- 2r ur #

�
dx =

Z




�
- ! ju j� (x)- 2u + � A(x; u ) + � B(x; u; r u)

�
#dx:
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Let us now give some lemmas that will be used later. First, let us consider the following

functional:

C(u) :=
Z




1
p(x)

jr u jp(x)dx +
Z




1
q(x)

jr u jq(x)dx:

From [81], it is clear that the derivative operator of the functional C in the weak sense at the

point u 2 W1;p(x)
0 (
 ) is the functional G(u) := C0(u) 2 W - 1;p0(x)(
 ) given by

hGu; # i =
Z




�
jr u jp(x)- 2r ur # + jr u jq(x)- 2r ur #

�
dx;

for all u; # 2 W1;p(x)
0 (
 ) where h�; �i means the duality pairing between W - 1;p0(x)(
 ) and

W1;p(x)
0 (
 ). Furthermore, we have the following properties of the operator G.

Lemma 9.2.3 [81, Theorem 3.1.]The mapping

G : W1;p(x)
0 (
 ) � ! W - 1;p0(x)(
 )

hGu; # i =
Z




�
jr u jp(x)- 2r ur # + jr u jq(x)- 2r ur #

�
dx;

(9.2.1)

is a continuous, bounded, strictly monotone operator and is of type(S+ ).

Lemma 9.2.4 If (A1) - ( A2) hold, then the operator

N : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 )

hNu; # i = -
Z




�
- ! ju j� (x)- 2u + � A(x; u ) + � B(x; u; r u)

�
#dx;

(9.2.2)

is compact.

Proof. We follow four steps to prove this lemma.

Step 1 : Let 	 1 : W1;p(x)
0 (
 ) ! Lp 0(x)(
 ) be an operator de�ned by

	 1u(x) := - � A(x; u ):

We wiil prove that the operator 	 1 is bounded and continuous. Let u 2 W1;p(x)
0 (
 ), bearing

(A4) in mind and using (5.1.5) and (5.1.6), we infer

j	 1u jp 0(x) � � p 0(x)(	 1u) + 1

=
Z



j� A(x; u (x)) jp

0(x)dx + 1

=
Z



j� jp

0(x) jA(x; u (x)jp
0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

� Z



j� 2

�
g(x) + ju js(x)- 1

�
jp

0(x)dx + 1

� C
�

j� jp
0-

+ j� jp
0+

� Z




�
jg(x)jp

0(x) + ju j� (x)
�

dx + 1

� C
�

j� jp
0-

+ j� jp
0+

��
� p 0(x)(g) + � � (x)(u)

�
+ 1

� C
�

jgjp
0+

p(x) + ju j�
+

� (x) + ju j�
-

� (x)

�
+ 1:
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Then, we deduce from (5.1.9) andLp(x) ,! L� (x), that

j	 1u jp 0(x) � C
�

jgjp
0+

p(x) + ju j�
+

1;p(x) + ju j�
-

1;p(x)

�
+ 1;

that means 	 1 is bounded on W1;p(x)
0 (
 ).

Second, we show that the operator 	 1 is continuous. To this purpose let un ! u in W1;p(x)
0 (
 ).

We need to show that 	 1un ! 	 1u in Lp 0(x)(
 ). We will apply the Lebesgue’s theorem.

Note that if un ! u in W1;p(x)
0 (
 ), then un ! u in Lp(x)(
 ). Hence there exist a subsequence

(um) of (un ) and � in Lp(x)(
 ) such that

um(x) ! u(x) and jum(x)j � � (x); (9.2.3)

for a.e. x 2 
 and all k 2 N.

Hence, from (A2) and (9.2.3), we have

jA(x; um(x)) j � � 2(g(x) + j� (x)js(x)- 1);

for a.e. x 2 
 and for all k 2 N.

On the other hand, thanks to (A3) and (9.2.3), we get, ask � ! 1

A (x; um(x)) ! A (x; u (x)) a.e. x 2 
:

Seeing that

g + j� js(x)- 1 2 Lp 0(x)(
 ) and � p 0(x)(	 1um - 	 1u) =
Z



jA(x; um(x)) - A (x; u (x)) jp

0(x)dx;

then, from the Lebesgue’s theorem and the equivalence (5.1.4), we have

	 1um ! 	 1u in Lp 0(x)(
 );

and consequently

	 1un ! 	 1u in Lp 0(x)(
 );

that is, 	 1 is continuous.

Step 2 : We de�ne the operator 	 2 : W1;p(x)
0 (
 ) ! Lp 0(x)(
 ) by

	 2u(x) := ! ju(x)j� (x)- 2u(x):

We will prove that 	 2 is bounded and continuous.

It is clear that 	 2 is continuous. Next we show that 	 2 is bounded.
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Let u 2 W1;p(x)
0 (
 ) and using (5.1.5) and (5.1.6), we obtain

j	 2u jp 0(x) � � p 0(x)(	 2u) + 1

=
Z



j! ju j� (x)- 2u jp

0(x)dx + 1

=
Z



j! jp

0(x) ju j(� (x)- 1)p 0(x)dx + 1

�
�

j! jp
0-

+ j! jp
0+

� Z



ju j� (x)dx + 1

=
�

j! jp
0-

+ j! jp
0+

�
� � (x)(u) + 1

�
�

j! jp
0-

+ j! jp
0+

��
ju j�

-

� (x) + ju j�
+

� (x)

�
+ 1:

Hence, we deduce from Lp(x) ,! L� (x) and (5.1.9) that

j	 2u jp 0(x) � C
�

ju j�
-

1;p(x) + ju j�
+

1;p(x)

�
+ 1;

and consequently, 	 2 is bounded on W1;p(x)
0 (
 ).

Step 3 : Let us de�ne the operator 	 3 : W1;p(x)
0 (
 ) ! Lp 0(x)(
 ) by

	 3u(x) := - � B(x; u (x); r u(x)) :

We will show that 	 3 is bounded and continuous.

Let u 2 W1;p(x)
0 (
 ). According to (A2) and the inequalities (5.1.5) and (5.1.6), we obtain

j	 3u jp 0(x) � � p 0(x)(	 3u) + 1

=
Z



j� B(x; u (x); r u(x)) jp

0(x)dx + 1

=
Z



j� jp

0(x) jB(x; u (x); r u(x)) jp
0(x)dx + 1

�
�

j� jp
0-

+ j� jp
0+

� Z



j� 1

�
f (x) + ju jk(x)- 1 + jr u jk(x)- 1

�
jp

0(x)dx + 1

� C
�

j� jp
0-

+ j� jp
0+

� Z




�
jf (x)jp

0(x) + ju jr(x) + jr u jr(x)
�

dx + 1

� C
�

j� jp
0-

+ j� jp
0+

��
� p 0(x)(f ) + � r(x)(u) + � r(x)(r u)

�
+ 1

� C
�

jf jp
0+

p(x) + ju jr
+

r(x) + ju jr
-

r(x) + jr u jr
+

r(x) + jr u jr
-

r(x)

�
+ 1:

Taking into account that Lp(x) ,! Lr(x) and (5.1.9), we have then

j	 3u jp 0(x) � C
�

jf jp
0+

p(x) + ju jr
+

1;p(x) + ju jr
-

1;p(x)

�
+ 1;

and consequently 	 3 is bounded on W1;p(x)
0 (
 ).

It remains to show that 	 3 is continuous. Let un ! u in W1;p(x)
0 (
 ), we need to show that
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	 3un ! 	 3u in Lp 0(x)(
 ). We will apply the Lebesgue’s theorem.

Note that if un ! u in W1;p(x)
0 (
 ), then un ! u in Lp(x)(
 ) and r un ! r u in (Lp(x)(
 ))N .

Hence, there exist a subsequence(um) and 	 3 in Lp(x)(
 ) and  in (Lp(x)(
 ))N such that

um(x) ! u(x) and r um(x) ! r u(x); (9.2.4)

jum(x)j � � (x) and jr um(x)j � j (x)j; (9.2.5)

for a.e. x 2 
 and all k 2 N.

Hence, thanks to (A1) and (9.2.4), we get, ask � ! 1

B(x; um(x); r um(x)) ! B(x; u (x); r u(x)) a.e. x 2 
:

On the other hand, from (A2) and (9.2.5), we can deduce the estimate

jB(x; um(x); r um(x)) j � � 1(f (x) + j� (x)jk(x)- 1 + j (x)jk(x)- 1);

for a.e. x 2 
 and for all k 2 N.

Seeing that

f + j� jk(x)- 1 + j (x)jk(x)- 1 2 Lp 0(x)(
 );

and taking into account the equality

� p 0(x)(	 3um - 	 3u) =
Z



jB(x; um(x); r um(x)) - B(x; u (x); r u(x)) jp

0(x)dx;

then, we conclude from the Lebesgue’s theorem and (5.1.4) that

	 3um ! 	 3u in Lp 0(x)(
 )

and consequently

	 3un ! 	 3u in Lp 0(x)(
 );

and then 	 3 is continuous.

Step 4 : Let I � : Lp 0(x)(
 ) ! W - 1;p0(x)(
 ) be the adjoint operator of the operator

I : W1;p(x)
0 (
 ) ! Lp(x)(
 ). Hence, we de�ne the operators

I � � 	 1 : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 );

I � � 	 2 : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 );

and

I � � 	 3 : W1;p(x)
0 (
 ) ! W - 1;p0(x)(
 ):

On another side, taking into account that I is compact, then I � is compact. Thus, the compo-

sitions I � � 	 1, I � � 	 2 and I � � 	 3 are compact, that meansN = I � � 	 1 + I � � 	 2 + I � � 	 3 is

compact. With this last step the proof of Lemma 9.2.4 is completed.

We are now in the position to get the existence result of weak solution for (9.0.2).
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Theorem 9.2.5 Assume that the assumptions(A1) - ( A4) hold, then the problem(9.0.2)possesses

at least one weak solutionu in W1;p(x)
0 (
 ).

Proof. The basic idea of our proof is to reduce the problem (9.0.2) to a new one governed by a

Hammerstein equation, and apply the theory of topological degree introduced in Subsection

5.2.2 to show the existence of a weak solution to the state problem.

First, for all u; # 2 W1;p(x)
0 (
 ), we de�ne the operators Gand N by

G : W1;p(x)
0 (
 ) � ! W - 1;p0(x)(
 )

hGu; # i =
Z




�
jr u jp(x)- 2r ur # + jr u jq(x)- 2r ur #

�
dx;

N : W1;p(x)
0 (
 ) � ! W - 1;p0(x)(
 )

hNu; # i = -
Z




�
- ! ju j� (x)- 2u + � A(x; u ) + � B(x; u; r u)

�
#dx:

Consequently, the problem (9.0.2) is equivalent to the equation

Gu = - N u; u 2 W1;p(x)
0 (
 ): (9.2.6)

Taking into account that, by Lemma 9.2.3, the operator G is a continuous, bounded, strictly

monotone and of type (S+ ), then, by [143, Theorem 26 A], the inverse operator

M := G- 1 : W - 1;p0(x)(
 ) ! W1;p(x)
0 (
 );

is also bounded, continuous, strictly monotone and of type (S+ ).

On another side, according to Lemma 9.2.4, we have that the operator N is bounded, con-

tinuous and quasimonotone.

Consequently, following Zeidler’s terminology [143], the equation (9.2.6) is equivalent to the

following abstract Hammerstein equation

u = M # and # + N � M # = 0; u 2 W1;p(x)
0 (
 ) and # 2 W - 1;p0(x)(
 ): (9.2.7)

Seeing that (9.2.6) is equivalent to (9.2.7), then to solve (9.2.6) it is thus enough to solve

(9.2.7). In order to solve (9.2.7), we will apply the Berkovits topological degree introduced

in Subsection 5.2.2.

First, let us set

R :=



# 2 W - 1;p0(x)(
 ) such that there exists t 2 [0; 1] such that # + tN � M # = 0
�

:

Next, we show that R is bounded in W - 1;p0(x)(
 ).

Let us put u := M # for all # 2 R . Taking into account that jM #j1;p(x) = jr u jp(x), then we
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have the following two cases:

First case : If jr u jp(x) � 1.

Then jM #j1;p(x) � 1, that means



M # : # 2 R
�

is bounded.

Second case :If jr u jp(x) > 1 .

Then, we deduce from (5.1.2), (A2) and (A4), the inequalities (5.1.7) and (5.1.6) and the

Young’s inequality that

jM #jp
-

1;p(x) = jr u jp-
p(x)

� � p(x)(r u)

� hG u; u i

= h#; M #i

= - thN � M #; M #i

= t
Z




�
- ! ju j� (x)- 2u + � A(x; u ) + � B(x; u; r u)

�
udx

� t max(j! j; � 2j� j; � 1j� j)
� Z



ju j� (x)dx +

Z



jg(x)u(x)jdx +

Z



ju(x)js(x)dx

+
Z



jf (x)u(x)jdx +

Z



ju(x)jk(x)dx +

Z



jr u jk(x)- 1ju jdx

�

= t max(j! j; � 2j� j; � 1j� j)
�

� � (x)(u) +
Z



jg(x)u(x)jdx +

Z



jf (x)u(x)jdx

+ � s(x)(u) + � k(x)(u) +
Z



jr u jk(x)- 1ju jdx

�

� C
�

ju j�
-

� (x) + ju j�
+

� (x) + jgjp 0(x) ju jp(x) + jf jp 0(x) ju jp(x) + ju js
+

s(x) + ju js
-

s(x) + ju jk
+

k(x) + ju jk
-

k(x)

+
1

k 0-
� k(x)(r u) +

1
k-

� k(x)(u)
�

� C
�

ju j�
-

� (x) + ju j�
+

� (x) + ju jp(x) + ju js
+

s(x) + ju js
-

s(x) + ju jk
+

k(x) + ju jk
-

k(x) + jr u jk
+

k(x)

�
:

Then, according to Lp(x) ,! L� (x), Lp(x) ,! Ls(x) and Lp(x) ,! Lk(x), we get

jM #jp
-

1;p(x) � C
�

jM #j�
+

1;p(x) + jM #j1;p(x) + jM #js
+

1;p(x) + jM #jk
+

1;p(x)

�
;

what implies that



M # : # 2 R
�

is bounded.

On the other hand, we have that the operator is N is bounded, then N � M # is bounded.

Thus, thanks to (9.2.7), we have thatR is bounded in W - 1;p0(x)(
 ).

However, there exists r > 0 such that

j#j- 1;p0(x) < r for all # 2 R ;

which leads to

# + t N � M # 6= 0; # 2 @R r (0) and t 2 [0; 1];
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where R r (0) is the ball of center 0 and radius r in W - 1;p0(x)(
 ).

Moreover, by Lemma 5.2.11, we conclude that

I + N � M 2 F M (R r (0)) and I = G � M 2 F M (R r (0)) :

On another side, taking into account that I , N and M are bounded, then I + N � M is

bounded. Hence, we infer that

I + N � M 2 F M ;B(R r (0)) and I = G � M 2 F M ;B(R r (0)) :

Next, we de�ne the homotopy

H : [0; 1] � R r (0) ! W - 1;p0(x)(
 )

(t; # ) 7! H (t; # ) := # + tN � M #:

Hence, thanks to the properties of the degree d seen in Theorem 5.2.14, we obtain

d(I + N � M ; R r (0); 0) = d(I; R r (0); 0) = 1 6= 0;

what implies that there exists # 2 R r (0) which veri�es

# + N � M # = 0:

Finally, we infer that u = M # is a weak solution of (9.0.2). The proof is completed.
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Chapter 10

Existence of weak solutions to a class of
nonlinear degenerate parabolic equations
in weighted Sobolev spaces by
Topological degree methods

In this chapter, we prove the existence of a weak solutions for the initial boundary value

problem associated with the nonlinear degenerate parabolic equations

@u
@t

- div b(x; t; u; r u) = � (x; t ) + div a(x; t; r u): (10.0.1)

We will use the topological degree theory for operators of the type T + S to study this

problem in the space Lp(0; T;W1;p
0 (
; ! )) , where 
 is a bounded domain in RN (N � 2);

p � 2 and ! is a vector of weight functions.

10.1 Hypotheses and technical lemmas

we focus our attention on the basic assumptions and the operators associated with our prob-

lem to prove the existence results, and we introduce some useful technical lemmas to prove

existence results.

Throughout this paper, we assume that the operators a : 
 T � RN � ! RN and b : 
 T �

R � RN � ! RN are CarathØodory’s functions satisfying the following assumptions:

(A1) There existsc1; c2 positive consts and k1; k2 2 Lq(
 T) such that

ja i (x; t; � )j � c1!
1=p
i

�
k1(x; t ) +

NX

i= 1

! 1=q
i j� i jp- 1

�
;

jbi (x; t; �; � )j � c2!
1=p
i

�
k2(x; t ) +

NX

i= 1

! 1=q
i j� i jp- 1

�
;

for all i 2 f1; � � � ; Ng.

(A2)(a(x; t; � ) - a(x; t; � 0))( � - � 0) > 0; (b(x; t; �; � ) - b(x; t; �; � 0))( � - � 0) > 0:

110
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(A3) There exists � 1; � 2 positive constants such that
NX

i= 1

a i (x; t; � )� i � � 1

NX

i= 1

! i j� i jp;
NX

i= 1

bi (x; t; �; � )� i � � 2

NX

i= 1

! i j� i jp;

for all (x; t ) 2 
 T, � 2 R and (� 0; � ) 2 RN � RN with � 0 6= � .

Now, we give the property of the related operator which will be used later.

Lemma 10.1.1 Assume that the assumptions(A1) - ( A3) hold. Then the operatorS de�ned fromX

to X � by

hSu; v i =
NX

i= 1

Z


 T

�
a i (x; t; r u) + bi (x; t; u; r u)

�
@i vdxdt , u; v 2 X

is bounded, continuous and of class(S+ ).

Proof. Firstly, let us show that the operator S is bounded.

Let u; v 2 X . By using the Hölder’s inequality, we get

jhSu; v i j

�
ZT

0

h NX

i= 1

Z



ja i (x; t; r u) + bi (x; t; u; r u)j! - 1=p

i j@i vj! 1=p
i dx

i
dt

�
ZT

0

h NX

i= 1

Z



ja i (x; t; r u)j! - 1=p

i j@i vj! 1=p
i dx

i
dt

+
ZT

0

h NX

i= 1

Z



jbi (x; t; u; r u)j! - 1=p

i j@i vj! 1=p
i dx

i
dt

�
ZT

0

h NX

i= 1

� Z




�
�a i (x; t; r u)! - 1=p

i

�
�qdx

� 1=q� Z



j@i vjp! i dx

� 1=pi
dt

+
ZT

0

h NX

i= 1

� Z




�
�bi (x; t; u; r u)! - 1=p

i

�
�qdx

� 1=q� Z



j@i vjp! i dx

� 1=pi
dt

�
ZT

0

h� NX

i= 1

Z




�
�a i (x; t; r u)! - 1=p

i

�
�qdx

� 1=q� NX

i= 1

Z



j@i vjp! i dx

� 1=pi
dt

+
ZT

0

h� NX

i= 1

Z




�
�bi (x; t; u; r u)! - 1=p

i

�
�qdx

� 1=q� NX

i= 1

Z



j@i vjp! i dx

� 1=pi
dt

=
ZT

0

h� NX

i= 1

Z



ja i (x; t; r u)jq! 1- q

i dx
� 1=q� NX

i= 1

Z



j@i vjp! i dx

� 1=pi
dt

+
ZT

0

h� NX

i= 1

Z



jbi (x; t; u; r u)jq! 1- q

i dx
� 1=q� NX

i= 1

Z



j@i vjp! i dx

� 1=pi
dt

=
ZT

0

NX

i= 1

h
ka i (x; t; r u)kLq (
;! 1- q

i ) + kbi (x; t; u; r u)kLq (
;! 1- q
i )

i
kvkdt:
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Thanks to (A1) and for all i 2 f1; :::; Ng, we can easily prove that ka i (x; t; r u)kLq (
;! 1- q
i ) and

kbi (x; t; u; r u)kLq (
;! 1- q
i ) are bounded for all u 2 W1;p

0 (
; ! ). Therefore

jhSu; v i j � const
ZT

0
kvkdt = const kvkL1 (0;T;W1;p

0 (
;! )) :

From the continuous embedding X ,! L1(0; T;W1;p
0 (
; ! )) , we concludes that

jhSu; v i j � const kvkX :

Hence, the operator S is bounded.

Secondly, we show that S is continuous. Let un ! u in X . We need to show that Sun !

Su: By using the Hölder’s inequality, we have for all v 2 X

jhSun - Su; v i j �
ZT

0

� Z



ja(x; t; r un ) - a(x; t; r u)j! - 1=p � jr vj! 1=pdx

�
dt

+
ZT

0

� Z



jb(x; t; u; r un ) - b(x; t; u; r u)j! - 1=p � jr vj! 1=pdx

�
dt

�
ZT

0
ka(x; t; r un ) - a(x; t; r u)kLq (
;! 1- q )kr vkLp (
;! )dt

+
ZT

0
kb(x; t; u n ; r un ) - b(x; t; u; r u)kLq (
;! 1- q )kr vkLp (
;! )dt

�
h
ka(x; t; r un ) - a(x; t; r u)kLq (
 T ;! 1- q )

+ kb(x; t; u n ; r un ) - b(x; t; u; r u)kLq (
 T ;! 1- q )

i
kvkX ;

so, we need to show that

ka(x; t; r un ) - a(x; t; r u)kLq (
 T ;! 1- q ) ! 0;

and

kb(x; t; u n ; r un ) - b(x; t; u; r u)kLq (
 T ;! 1- q ) ! 0:

On the other hand, note that if un ! u in X , then r un ! r u in
NY

i= 1

Lp(
 T; ! i ). Hence,

by Theorem 1.1.7, there exist a subsequence(uk) and functions ’ in Lp(
 T; ! 0) and  in
NY

i= 1

Lp(
 T; ! i ) such that

uk ! u and r uk ! r u;

juk(x; t )j � ’ (x; t ) and jr uk(x; t )j � j (x; t )j; (10.1.1)

for a.e. (x; t ) 2 
 T and all k 2 N.

Then, in the light of the operators a and b are CarathØodory functions, we deduce that

a(x; t; r uk(x; t )) ! a(x; t; r u(x; t )) a.e.(x; t ) 2 
 T; (10.1.2)
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b(x; t; u k; r uk(x; t )) ! b(x; t; u; r u(x; t )) a.e.(x; t ) 2 
 T: (10.1.3)

On another side, in view of (A1), we get for all i = 1; � � � ; N

ja i (x; t; � )j � c1!
1=p
i

�
k1(x; t ) +

NX

i= 1

! 1=q
i j i (x; t )jp- 1

�
;

jbi (x; t; �; � )j � c2!
1=p
i

�
k2(x; t ) +

NX

i= 1

! 1=q
i j i (x; t )jp- 1

�
;

for a.e. (x; t ) 2 
 T.

As

c1!
1=p
i

�
k1(x; t ) +

NX

i= 1

! 1=q
i j i (x; t )jp- 1

�
2

NY

i= 1

Lq(
 T; ! 1- q
i );

and

c2!
1=p
i

�
k2(x; t ) +

NX

i= 1

! 1=q
i j i (x; t )jp- 1

�
2

NY

i= 1

Lq(
 T; ! 1- q
i );

therefore, thanks to (10.1.2), (10.1.3) and the dominated convergence theorem, we obtain

a(x; t; r uk(x; t )) ! a(x; t; r u(x; t )) in Lq(
 T; ! 1- q);

b(x; t; u k; r uk(x; t )) ! b(x; t; u; r u(x; t )) in Lq(
 T; ! 1- q):

Thus, in view to convergence principle in Banach spaces, we conclude that

a(x; t; r un (x; t )) ! a(x; t; r u(x; t )) in Lq(
 T; ! 1- q); (10.1.4)

b(x; t; u n ; r un (x; t )) ! b(x; t; u; r u(x; t )) in Lq(
 T; ! 1- q): (10.1.5)

According to (10.1.4) and (10.1.5), we deduce that

hSun - Su; v i ! 0; for all v 2 X ;

that means, the operator S is continuous.

Next, we prove that the operator S is of class(S+ ). Let (un )n � X such that

8
<

:

un � u in X ;

lim sup
n !1

hSun ; un - u i � 0:
(10.1.6)

We will prove that

un ! u in X :

Sinceun � u in X , then un � u in W1;p
0 (
; ! ), then there exist a subsequence still denoted

by (un ) such that un � u in W1;p
0 (
; ! ),

un ! u in Lp(
; ! 0) and a.e in 
:
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On the other hand, we have

lim sup
n !1

hSun ; un - u i

= lim sup
n !1

hSun - Su; u n - u i

= lim sup
n !1

hZ


 T

�
a(x; t; r un (x; t )) - a(x; t; r u(x; t ))

�
:
�

r un - r u
�

dxdt

+
Z


 T

�
b(x; t; u n ; r un (x; t )) - b(x; t; u; r u(x; t ))

�
:
�

r un - r u
�

dxdt
i

� 0:

From (A2) and (10.1.6), we obtain

lim
n !1

hSun ; un - u i = lim
n !1

hSun - Su; u n - u i = 0: (10.1.7)

Let

� n (x; t ) =
�

a(x; t; r un ) - a(x; t; r u)
�

:
�

r un - r u
�

;

Under (10.1.7), we have

� n ! 0 in L1(
 T) and a.e. in 
 T;

Since � n ! 0 a.e in 
 T, then there exists a subsetB of 
 T ( mes(B) = 0) such that for all

(x; t ) 2 
 nB,

ju(x; t )j < 1 ; jr u(x:t )j < 1 ; un ! u; � n ! 0:

Thanks to (A1) and (A3), if we pose � n = r un and � = r u , we get

� n (x; t ) =
�

a(x; t; � n ) - a(x; t; � )
�

:
�

� n - �
�

= a(x; t; � n ):� n + a(x; t; � ):� - a(x; t; � n ):� - a(x; t; � ):� n

� � 1

NX

i= 1

! i j� i
n jp + � 1

NX

i= 1

! i j� i jp

-
NX

i= 1

c1!
1=p
i

�
k1(x; t ) +

NX

j= 1

! 1=q
j j� j

n jp- 1
�

j� i
n j

-
NX

i= 1

c1!
1=p
i

�
k1(x; t ) +

NX

j= 1

! 1=q
j j� j

n jp- 1
�

j� i j

� � 1

NX

i= 1

! i j� i
n jp - C

�
1 +

NX

i= 1

! 1=q
i j� i

n jp- 1 +
NX

i= 1

! 1=q
i j� i

n j
�

where C is a const which depends only on x.

Then by a standard argument (� n )n is bounded a.e. 
 T, we deduce that

� n (x; t ) �
NX

i= 1

j� i
n jp

�
� 1! i -

C
N j� i

n jp
-

C! 1=q
i

j� i
n j

-
C! 1=q

i

j� i
n jp - 1

�
:
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Hence, if j� n j ! 1 , then � n ! 1 ; what is contradiction with � n ! 0 in L1(
 T)..

Next, for � � be an adherent point of � n , we have j� � j < 1 and the continuity of a, with

respect to the last two variables, we will obtain
�

a(x; t; � n ) - a(x; t; � )
� �

� � - �
�

= 0: (10.1.8)

Analogously, if we choose

� n (x; t ) =
�

b(x; t; u n ; r un ) - b(x; t; u; r u)
�

:
�

r un - r u
�

;

and we take � n = r un and � = r u , then, by the same arguments used above, we obtain
�

b(x; t; �; � n ) - b(x; t; �; � )
� �

� � - �
�

= 0: (10.1.9)

Then, according to (10.1.8), (10.1.9) and(A2) we get � � = � . Hence, by the uniqueness of the

adherent point, we deduce that

r un � ! r u a:e: in 
 T: (10.1.10)

On the other hand, seeing that a(x; t; r un ) and b(x; t; u n ; r un ) are bounded in
NY

i= 1

Lq(
; ! 1- q);

and

a(x; t; r un ) � ! a(x; t; r u) a.e. in 
 T;

b(x; t; u n ; r un ) � ! b(x; t; u; r u) a.e. in 
 T;

then, by Lemma 1.3.3, we have

a(x; t; r un ) � a(x; t; r u) in
NY

i= 1

Lq(
; ! 1- q
i );

b(x; t; u; r un ) � b(x; t; u; r u) in
NY

i= 1

Lq(
; ! 1- q
i ):

If we pose

� n =
�

a(x; t; r un ) + b(x; t; u n ; r un )
�

� r un ;

� =
�

a(x; t; r u) + b(x; t; u; r u)
�

� r u;

we can write

� n ! � in L1(
 T):

Thanks to (A3), we obtain

� n � (� 1 + � 2)
NX

i= 1

! i j@i un jp and � � (� 1 + � 2)
NX

i= 1

! i j@i u jp:
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In view of � n =
NX

i= 1

! i j@i un jp; � =
NX

i= 1

! i j@i u jp; � n =
� n

(� 1 + � 2)
and

� =
�

(� 1 + � 2)
, we have

� n � � n and � � �:

Then by Fatou’s lemma, we get
Z


 T

2 � dxdt � lim inf
n !1

Z


 T

� + � n - j� n - � jdxdt;

i.e.,

0 � - lim sup
n !1

Z


 T

j� n - � j dxdt:

So

0 � lim inf
n !1

Z


 T

j� n - � j dxdt � lim sup
n !1

Z


 T

j� n - � j dxdt � 0;

consequently

r un � ! r u in
NY

i= 1

Lp(
; ! i ): (10.1.11)

According to (10.1.10) and (10.1.11), we have

un � ! u in W1;p
0 (
; ! );

this implies

un ! u in X ;

what implies that S is of type (S+ ), which completes the proof.

10.2 Main result

First, let us recall that the de�nition of a weak solution for problem (10.0.1) can be stated as

follows.

De�nition 10.2.1 We say that the functionu 2 X is a weak solution of(10.0.1)if

-
Z


 T

uv t dxdt +
NX

i= 1

Z


 T

�
a i (x; t; r u) + bi (x; t; u; r u)

�
@i vdxdt =

Z


 T

�vdxdt;

for all v 2 X :

We are now in the position to get existence result of weak solution for (10.0.1).

Theorem 10.2.2 Let � 2 X � , u0 2 L2(
 ) and assume that the assumptions(A1) - ( A3) hold.

Then, the problem(10.0.1)admits at least one weak solutionu 2 D (T ), whereD (T ) = fv 2 X :

v0 2 X � ; v(0) = 0g:
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Proof. Let S and T be the operators de�ned from D (T ) � X to X � , by

hSu; v i =
NX

i= 1

Z


 T

�
a i (x; t; r u) + bi (x; t; u; r u)

�
@i vdxdt;

hTu; v i = -
Z


 T

u v t dx dt;

for all u 2 D (T ); v 2 X : Then u 2 D (T ) is a weak solution for (10.0.1) if and only if

T u + Su = � for all u 2 D (T ):

One can verify, as in Zeidler [143], that the operator T is linear densely de�ned and maximal

monotone [143, Theorem 32.L, pp.897-899].

Next, it follows from Lemma 10.1.1 that S is bounded, continuous and of class (S+ ).

Let u 2 X . Using the monotonicity of T
�

hLu; u i � 0 for all u 2 D (L )
�

and the assumption

(A2), we deduce that

hTu + Su; u i � hS u; u i

=
Z


 T

�
a(x; t; r u) + b(x; t; u; r u)

�
� r vdxdt

�
Z


 T

� 1

NX

i= 1

! i jr u jpdxdt +
Z


 T

� 2

NX

i= 1

! i jr u jpdxdt

� min (� 1; � 2)
Z


 T

NX

i= 1

! i jr u jpdxdt

= min (� 1; � 2)
ZT

0
kukpdt

= min (� 1; � 2)kukp
X :

Because the right-hand side of the previous inequality approximates to 1 when kukX ! 1 ,

then for every � 2 X � there is a radius r = r(� ) > 0 such that

hTu + Su - �; u i > 0; for each u 2 Br (0) \ D (T ):

So, all the conditions of Theorem 5.2.7 are satis�ed. Consequently, Theorem 5.2.7 leads us to

the conclusion that the equation T u + Su = � has a weak solution in D (T ), which implies

that the problem (10.0.1) admits at least one weak solution. This completes the proof.
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