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Abstract

This thesis concerns the study of some elliptic, nonlinear singular problems. In the model
problems considered in this work, we place ourselves on a bounded domain Ω of RN , with homogeneous
Dirichlet boundary conditions. The singular character of the various problems encountered is then
reflected by the presence in the equation of a non-linear term of the form u−γ, with 0 < γ ≤ 1, which
tends to infinity at the edge of the Ω domain. This poses a certain number of difficulties, linked to the
lack of regularity and therefore compactness of the solutions, which do not allow us to use directly the
classical methods of non-linear analysis. Through Chapters 3 to 7, we have shown how these difficulties
can be overcome and demonstrated new results concerning the existence, regularity and asymptotic
behaviour of weak solutions. The general idea used to overcome these obstacles is to first introduce a
class of approximate problems, then by using the Fixed Point Theorem we will prove the existence of
approximate solutions and then we will establish some estimates for the solutions by taking appropriate
test functions, and finally, we will use compactness results in Sobolev spaces to pass to the limit in
approximation problems.
Keywords: Elliptic PDEs, Singular elliptic problem, Coercivity , Schauder fixed point theorem,

Sobolev spaces.
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Résumé

Cette thèse concerne l’étude de certains problèmes elliptiques, non linéaires singuliers. Dans les
problèmes-modèles considérés au cours de ce travail, nous nous plaçons sur un domaine borné Ω de
RN , avec des conditions aux limites de type Dirichlet homogène. Le caractère singulier des différents
problèmes rencontrés, se traduit alors par la présence dans l’équation d’un terme non-linéaire de la
forme u−γ, avec 0 < γ ≤ 1, qui tend vers l’infini au bord du domaine Ω. Ceci pose un certain nombre
de difficultés, liées au manque de régularité et donc de compacité des solutions, qui ne nous permettent
pas d’utiliser directement les méthodes classiques de l’analyse non-linéaire. A travers les Chapitres
3 à 7, nous avons montré comment ces difficultés peuvent être surmontées et démontré de nouveaux
résultats concernant l’existence, la régularité et le comportement asymptotique des solutions faibles.
Pour pallier ces obstacles, nous introduirons d’abord une classe de problèmes approchés, en suite par
utilisation de Théorème de point fixe on arrivera à démontrer l’existence des solutions approximées puis
nous établirons certaines estimations pour les solutions en prenant des fonctions test appropriées, et
enfin, nous utiliserons des résultats de compacité dans les espaces de Sobolev pour passer à la limite
dans les problèmes d’approximation.
Mots clefs: EDP non linéaire, problème elliptique singulier, coercivité, théorème du point fixe de
Schauder, espaces de Sobolev.
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Notations

Everywhere in the sequel we use the following notations:

• N : the set of all positive natural numbers.

• RN : theN -dimensional Euclidean space with the distance |x| =
(∑N

i=1 x
2
i

) 1
2

where x = (x1, . . . , xn)

is an element of RN .

• Ω : open bounded set of RN .

• ∂Ω : boundary of Ω.

• U ⊂⊂ Ω : means that the closure of U is compact and Ū ⊂ Ω.

• |E| or meas (E) : Lebesgue measure of the subset E.

• a.e. : abbreviation for almost everywhere (with respect to the Lebesgue measure).

• s.t. : abbreviation for such that.

• V ′ : the dual space of V (i.e., space of linear and continuous functionals on V ) where V is a
Banach space.

• 〈·, ·〉 : the duality pairing between V and V ′.
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CONTENTS 9

• ∇u = (D1u, . . . , DNu) : the gradient of u.

• ∆u =
∑N

i=1
∂2u
∂x2
i

: the Laplacian of u.

• div v =
∑N

i=1Divi : the divergence of the vector v = (v1, . . . , vN).

• χE =

{
1, if x ∈ E;
0, elsewhere,

the characteristic function of the set E.

• ∆pu = div(|∇u|p−2∇u) : the p-Laplacian operator for 1 < p < N .

• {u ≥ (≤, <,>,=)k} = {x ∈ Ω, u(x) ≥ (≤, <,>,=)k} for a given function u : Ω→ R.

• supp(u) = {x ∈ Ω : u(x) 6= 0} : the support of a function u.

• esssup(u) : the essential supremum of a measurable function u.

• sign(t) = t
|t| : the sign of t 6= 0.

• C(Ω) : the space of continuous real-valued functions on Ω.

• Ck(Ω), k ∈ N : the space of k times differentiable functions on Ω with continuity.

• Ck
0 (Ω) : the space of k times differentiable functions on Ω with continuity, 0 on ∂Ω.

• C∞0 (Ω) or D(Ω) : the space of smooth functions with compact support in Ω.

• D′(Ω) : the dual space of D(Ω); space of real distributions on Ω.

• L∞(Ω) = {u : Ω→ R mesurable, esssup
Ω

(u) <∞}.

• C0
+(Ω̄) =

{
h ∈ C(Ω̄) : minx∈Ω̄ h(x) > 0

}
and C+(Ω̄) =

{
h ∈ C(Ω̄) : minx∈Ω̄ h(x) > 1

}
.
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• h+ = maxx∈Ω̄ h(x) and h− = minx∈Ω̄ h(x) for h ∈ C0
+(Ω̄). We will also use the following functions

Vδ,k(s) =


1 if s ≤ k
k+δ−s
δ

if k < s < k + δ,
0 if s ≥ k + δ

(1)

and
Sδ,k(s) := 1− Vδ,k(s). (2)

• For the sake of implicity we will often use the simplified notation∫
Ω

f :=

∫
Ω

f(x)dx,

when referring to integrals when no ambiguity on the variable of integration is possible. If no
otherwise specified, we will denote by c serval constants whose value may change from line to line
and, sometimes, on the same line. These values will only depend on the data (for instance c can
depend on Ω, γ, N, k, ...) but the will never depend on the indexes of the sequences we will often
introduce.
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Chapter 1

Introduction

A partial differential equation (PDEs) describes a relationship between an unknown function and
its partial derivatives. PDEs frequently appear in all fields of physics and engineering. In addition, in
recent years we have seen a dramatic increase in the use of PDEs in fields such as biology, chemistry,
computer science (especially image processing and graphics) and economics (finance). In fact, in each
field where there is an interaction between several independent variables, we try to define functions in
these variables and model various processes by constructing equations for these functions. When the
value of where unknown functions at a certain point depend only on what happens in the neighbourhood
of that point, we will generally obtain PDEs.

There are many facets to the analysis of PDEs. The classical approach that dominated the 19th
century was to develop methods for finding explicit solutions. Because of the immense importance of
PDEs in the various branches of physics, any mathematical development that solved a new class of PDEs
was accompanied by significant progress in physics. Thus, the method of characteristics invented by
Hamilton led to major advances in optics and analytical mechanics. Fourier’s method solved the problem
of heat transfer and wave propagation, and Green’s method was instrumental in the development of the
theory of electromagnetism.

The most spectacular progress in PDEs has been made in the last 50 years with the introduction
of numerical methods for using computers to solve PDEs of all types, in general geometry and under
arbitrary external conditions (at least in theory; in practice there are still a large number of obstacles to
overcome). Technical progress has been followed by theoretical progress in understanding the structure
of the solution.

The aim is to discover certain properties of the solution before calculating it, and sometimes even
without a complete solution. Theoretical analysis of PDEs is not only of academic interest but has
many applications. It should be pointed out that there are very complex equations that cannot be
solved even with the help of supercomputers. In these cases, all we can do is try to obtain qualitative
information about the solution.

In addition, a very important question concerns the formulation of the equation and the associated
(limit or boundary) conditions. In general, the equation is derived from a model of a physical or
engineering problem. It is not automatically evident that the model is coherent in the sense that it
leads to solvable PDEs.

Furthermore, it is desirable in most cases that the solution is unique and stable, even in the presence

11



CHAPTER 1. INTRODUCTION 12

of small perturbations in the data. A theoretical understanding of the equation allows us to check
whether these conditions are fulfilled. As we will see in the following, there are many ways of solving
PDEs, each of which is applicable to a certain class of equations. Therefore, it is important to carry
out a thorough analysis of the equation before (or during) the solving.

The fundamental theoretical question is whether the problem constituted by the equation and its
associated conditions is well-posed. The French mathematician Jacques Hadamard (1865-1963) invented
the notion of well-posedness. According to his definition, a problem is said to be well-posed if it satisfies
all the following criteria
1. Existence: “A solution exists”.
2. Uniqueness: “The solution is unique” and
3. Continuous dependence: “A small change in data imply a small change in solution”.

If one or more of the above conditions are not fulfilled, we say that the problem is ill-posed. It can
be said that the fundamental problems of mathematical physics are all well-posed. However, in some
engineering applications, we may tackle ill-posed problems. In practice, these problems are unsolvable.

Therefore, when we are faced with an ill-posed problem, the first step should be to modify it
appropriately to make it well-posed.

As for as PDEs are concerned, in Physics, there is a famous equation known as ” Reaction-diffusion
equations”. These types of equations have played an important role in the study of many different phe-
nomena related to applications. These applications include, among many others, population dynamics
(Lotka-Volterra systems), chemical reactions, combustion, morphogenesis, nerve impulses (Fitzhugh-
Nagumo system), genetics, etc. Very often positive solutions are the only physically meaningful solu-
tions or, at least, the more interesting ones. A very simple, but already interesting model problem is
the semilinear parabolic equation,

∂u

∂t
−∆u = g(x, u) in Ω (1.1)

u = 0 , on ∂Ω (1.2)

together with an initial condition. Here Ω is a smooth bounded domain in the space RN , the ordinary
Laplacian is used to model diffusion and the nonlinearity g represents a reaction term in each physical
situation. One of the main problems which is considered is the asymptotic (i.e., when time t goes to
infinity) behavior of solutions to (1.1) and (1.2). Many different (and difficult to deal with) possibilities
are available as, for example, traveling waves, but here we will focus on the situation where the unique
positive solution to the parabolic problem (1.1) and (1.2) tends to one of the steady-state positive
solutions, i.e., to a solution to the stationary elliptic problem

−∆u = g(x, u) in Ω, (1.3)

u = 0 on ∂Ω. (1.4)

In general the nonlinear term g(x, u) is smooth and frequently satisfies the condition g(x, 0) > 0.
(The so-called nonpositone problems, where g(x, 0) < 0 have been also studied recently, but they are
less attractive and applicable than the former ones). Problems with nonlinearities going to infinity
when u > 0 tends to 0 appear in some applications (see [44, 54, 55, 58], see also [45, 64]), like non-
Newtonian fluids, chemical heterogeneous catalysts and nonlinear heat equations, and have intrinsic
mathematical interest. These kind of problems (1.3) have been thoroughly studied during the last
decades since the pioneer works by Stuart [82] and by Crandall, Rabinowitz and Tartar [35]. In the

ABDELAAZIZ SBAI



CHAPTER 1. INTRODUCTION 13

first one, the author considered a function g(x, s) which ”blows-up at s = 0 ” when x goes to a point
belonging to the boundary of Ω. On the other hand, in the second one, the authors considered a singular
function g(x, s) = g(s) independent of x and they proved the existence of a solution together with some
regularity properties of it. Afterwards, in 1991, Lazer and McKenna [66] studied the existence of a
classical solution for the Dirichlet problem associated to the above equation in the case

g(x, u) =
f(x)

uγ

where f is an Hölder continuous function which is strictly positive in Ω̄ and γ is a strictly positive
parameter. In particular, they proved that ”If for some 0 < α < 1 one has that ∂Ω ∈ C2,α,
f ∈ C0,α(Ω̄), f(x) > 0 in Ω̄ and γ > 0, then there exists an unique solution u of the Dirichlet problem−∆u =

f(x)

uγ
in Ω,

u = 0 on ∂Ω,
(1.5)

such that u ∈ C2,α(Ω)∩C(Ω̄) and u > 0 in Ω”. Observe that the prescribed boundary condition in (1.5)
makes the study of these singular equations hard. Actually, the assumption ” u = 0 on ∂Ω” together
with the singular nonlinearity implies that, for every solution u, the term 1/u(x)γ diverges as x goes to
the boundary of Ω.
In contrast with [66], we are interested in the study of distributional solutions for the problem (1.5).
As usual, this means that we look for distributional solutions u of the differential equation

−∆u =
f(x)

uγ
, in Ω, (1.6)

which satisfy, in some sense, ” u = 0 on ∂Ω”. Specifically, we search for solutions u ∈ W 1,1
loc (Ω) such

that u > 0 a.e. in Ω, f(x)
uγ
∈ L1

loc (Ω) and moreover they satisfy (1.6) in a distributional sense, i.e.,∫
Ω

∇u∇φ =

∫
Ω

f(x)

uγ
φ, ∀φ ∈ C1

c (Ω).

With the aim of establishing what the condition ” u = 0 on ∂Ω” means, we point out the surprising
result obtained by Lazer and McKenna in [66]. More precisely, the authors proved that

”The unique solution u of the Dirichlet problem (5.18) belongs to the Sobolev space W 1,2
0 (Ω) if and

only if the parameter γ < 3.”
As a consequence, in the distributional context, one would not expect to find solutions belonging to

the Sobolev space W 1,2
0 (Ω) for any value of γ > 0. Therefore, it is necessary to introduce a new concept

for the condition ” u = 0 on ∂Ω”.
Precisely, in 2010 , Boccardo and Orsina [11] studied the existence of one distributional solution for

the problem (5.18). With respect to the boundary condition ” u = 0 on ∂Ω”, in contrast with [33, 61]
where this condition is understood under the assumption (u−ε)+ ∈ W 1,2

0 (Ω) for all ε > 0, they followed
the ideas of [6]. That is, an even stronger requirement is imposed based on the fact that some positive
powers of the solution of the differential equation (1.6) belong to the Sobolev space W 1,2

0 (Ω). In this
paper, the authors needed to study the cases γ < 1, γ = 1, γ > 1, separately, connecting each one
with the regularity of f . In particular, they proved the following result ”Assume that f ∈ Lm(Ω) with
m ≥ 1. The following assertions hold:

ABDELAAZIZ SBAI



CHAPTER 1. INTRODUCTION 14

• γ < 1 and m ≥ 2N
N+2+γ(N−2)

, then there exists a positive solution u of (1.5) such that u ∈ W 1,2
0 (Ω).

• If γ = 1 and m = 1, then there exists a positive solution u of (1.5) such that u ∈ W 1,2
0 (Ω).

• If γ > 1 and m = 1, then there exists a positive solution u of (1.5) such that u
γ+1

2 ∈ W 1,2
0 (Ω).

Afterwards, L.M. De Cave studied [41] the generalization of (1.5) to the case with an operator of
Leray-Lions kind, i.e., the singular elliptic problem was simplest example is the following:

−∆pu = f(x)
uγ

in Ω

u > 0 in Ω

u = 0 on ∂Ω.

In this context, this thesis contributes to the study of relevant questions in the theory of quasilin-
ear and non linear elliptic equations. In particular, most of the results we present here are stated for
problems with a singular nonlinearity. By singularity, we mean that the problems that we have con-
sidered, involve a nonlinearity in the right-hand side which blows up near the boundary. This singular
pattern gives rise to a lack of regularity and compactness that prevent the straighforward applications
of classical methods in nonlinear analysis used for proving existence of solutions and for establishing
the properties and the asymptotic behaviour of these solutions. We have shown in the Chapters 3, 4,5,
6 and 7 how to overcome these difficulties and brought new results about existence and regularity of
weak solutions.

We stress that the singular problems we have studied in this thesis arise in different contexts: kinetics
models in heterogeneous chemical catalysis (seeAris [7]), NonNewtonian flows models, population dy-
namics models. We would like to quote two nice surveys about singular problems Hernandez-Mancebo
[60] and Ghergu-Radulescu [57] where a detailed bibliography and a presentation of the different physical
models are available. In the present manuscript, more precisely, in Chapter 3, we discusses the existence
and regularity of solutions for the following elliptic singular problems with degenerate coercivity

−div(a(x, u,∇u)) = fh(u) in Ω
u ≥ 0 in Ω
u = 0 on ∂Ω,

(1.7)

with Ω a bounded open subset of IRN , N ≥ 2, N > p > 1, f is non-negative and it belongs to Lm(Ω)
for some m ≥ 1. Finally the singular sourcing h : [0,∞) −→ [0,∞] is continuous, bounded outside the
origin with h(0) 6= 0 and such that the following propertie hold true

∃C, γ > 0 s.t h(s) ≤ C

sγ
∀s ∈ (0,+∞). (1.8)

Let us give the precise assumptions on the problems that we will study. Let a : Ω×IR×IRN −→ IRN

be Carathéodory function (that is a(., t, ξ) is measurable on Ω for every (t, ξ) in IR × IRN and a(x, ., .)
is continuous on IR× IRN for almost every x in Ω), such that the following assumptions hold :

a(x, t, ξ).ξ ≥ b(|t|)|ξ|p, (1.9)

ABDELAAZIZ SBAI



CHAPTER 1. INTRODUCTION 15

for almost every x in Ω and for every (t, ξ) in IR × IRN , where b : (0,∞) −→ (0,∞) is a decreasing
continuous. For the sake of simplicity, we take the function

B(t) =

∫ t

0

b(s)
1
p−1ds, (1.10)

is unbounded, we take in (1.9)

b(t) =
α

(1 + t)θ(p−1)
, (1.11)

for some real number 0 ≤ θ ≤ 1 and some α > 0.

|a(x, t, ξ)| ≤ β
[
a0(x) + |t|p−1 + |ξ|p−1

]
, (1.12)

for almost every x in Ω, for every (t, ξ) in IR × IRN , where a0 is non-negative function in Lp
′
(Ω), with

1
p

+ 1
p′

= 1 and β ≥ α. [
a(x, t, ξ)− a(x, t, ξ

′
)
]
(ξ − ξ′) > 0, (1.13)

for almost every x in Ω and for every t in IR, for every ξ,ξ
′

in IRN , with ξ 6= ξ
′

we will then define, for
u in W 1,p

0 (Ω) the nonlinear elliptic operator

A(u) = −div(a(x, u,∇u)).

The degenerate coercivity has, in some way, bad effects on both the existence and summability of
the solutions. Indeed, the phenomenon of non-existence of solutions appears for large values of θ. But
the presence of some lower-order terms may change the nature of the existence results. Recently, the
influence of different lower-order terms in non-coercive elliptic problems was the goal of many studies,
see, among others, [10, 17, 34, 36, 37, 42, 43, 62, 69, 72, 79]. Starting from paper of Croce [36], where
she considered the problem {

− div(a(x, u)∇u) + |u|s−1u = f in Ω
u = 0 on ∂Ω,

(1.14)

where Ω is a bounded open subset of RN with N ≥ 3 and a : Ω × R → R is a Carathéodory function
such that for a.e. x ∈ Ω and for every t ∈ R

α

(1 + |t|)γ
≤ a(x, t) ≤ β, (1.15)

with α > 0, β > 0 and γ ≥ 0 are constants. The author showed that, the presence of the lower-order
term |u|s−1u not only breaks down the lack of solvability, but also can have a regularizing effects on the
solutions. In particular, she obtained the existence results for Problem (1.14) without any additional
restriction on γ. The main results of [36] can be summarised as follows:
1) Let f ∈ L1(Ω).

• If s > γ + 1, then there exists a distributional solution u to Problem (1.14) such that
u ∈ W 1,q

0 (Ω) ∩ Ls(Ω) with q < 2s
s+1+γ

.
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• If 0 < s ≤ γ+ 1, then there exists an entropy solution u to Problem (1.14) such that |u|s ∈ L1(Ω)

and |∇u| ∈M
2s

s+1+γ (Ω).

2) Let f ∈ Lm(Ω),m > 1.

• If s ≥ γ+1
m−1

, then there exists a distributional solution u to Problem (1.14) such that
u ∈ H1

0 (Ω) ∩ Lms(Ω).

• If γ
m−1

< s < γ+1
m−1

, then there exists a distributional solution u to Problem (1.14) such that

|u|ms ∈ L1(Ω) and u ∈ W
1, 2ms
s+1+γ

0 (Ω).

• If 0 < s ≤ γ
m−1

, then there exists an entropy solution u to Problem (1.14) such that |u|ms ∈ L1(Ω)

and |∇u| ∈M
2ms
s+1+γ (Ω).

Subsequently, these results were extended to p-Laplacian case in [34]. Therefore, the chapter 4
generalizes some results as described before. More precisely, it deals with the existence and regularity
results for distributional and entropy solutions of nonlinear singular elliptic equations with principal
part having degenerate coercivity. −div

(
a(x, u)|∇u|p−2∇u

)
+ |u|s−1u = h(u)f in Ω

u ≥ 0 in Ω
u = 0 on δΩ

(1.16)

where 1 < p < N, Ω is bounded set in IRN and a : Ω× IR −→ IR is a carathéodory function such that
for a.e. x ∈ Ω and for every t ∈ IR, we have

a(x, t) ≥ α

(1 + |t|)θ
(1.17)

a(x, t) ≤ β, (1.18)

for some real positive constants α, β and 0 ≤ θ ≤ 1. Moreover, f is a non negative Lm(Ω) function,
with m ≥ 1 and h satisfied (1.8).

In chapter 3 and 4 we deal with problems as in (1.7) and (1.16) possibly in presence of both a
noncoercive principal operator and a general lower order term; in particular the function h may be
singular and without any monotonicity property. In this case, to the best of our knowledge, there are
no results in literature about existence and regularity of solutions. Our aim is to extend and improve
both the existence and regularity results listed above. The existence of a solution is obtained by the
means of an approximation process to (1.7) and (1.16). As one can image, the result follows by unifying
truncation techniques typical of noncoercive operators with methods employed in dealing with functions
possibly blowing up at the origin.
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Going ahead the study of singular elliptic problems (ie. θ = 0), we turn your attention to singular
elliptic problems involving a Hard potential. In the paper [2], Abdellaoui et al proved an existence and
summability result on the solutions of the Dirichlet problem−∆pu = λ

up−1

|x|p
+
h(x)

uγ
in Ω

u = 0 on ∂Ω,

(1.19)

where 1 < p < N,Ω ⊂ RN is a bounded regular domain containing the origin and γ > 0. h is a
nonnegative measurable function with suitable hypotheses. Problems of the form (1.19) in the case
γ = 0 are introduced as models for several physical phenomena related to the equilibrium of anisotropic
continuous media which possibly are somewhere ’perfect’ insulators (see [46]). One can see the results
for these problems in the papers [1, 8, 29, 32] and the references therein.

When λ ≡ 0, the equations in the form of (1.19) have been widely studied in the last few decades.
We refer to the papers [41] and the references therein. For λ > 0 and p = 2, J. Tyagi studied in [85]
the existence and regularity of solutions to the following semilinear elliptic problem with a singular
nonlinearity 

− div(M(x)∇u)− λ u
|x|2 = f(x)

uθ
in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.20)

where θ > 0, 0 ≤ f ∈ Lm(Ω), 1 < m < N
2
, 0 < λ <

(
N−2

2

)2
, and M is a bounded elliptic matrix. On

the other hand, the authors studied in [74] the existence and regularity of solutions to the following
problem : 

−∆pu+ uq = f
uγ

in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω is an open bounded subset of RN(N ≥ 2), q > 0, γ ≥ 0 and f is a nonnegative function in
Lm(Ω) for some m ≥ 1. We refer the readers to Refs.[23, 49, 52, 77, 78]. Motivated by such works on
this topic, in chapter 5 we study the existence and regularity of distributional solutions for the following
problem, in order to improve the results obtained in [4] and [85]

− div(M(x)|∇u|p−2∇u) + b|u|r−2u = au
p−1

|x|p + f
uγ

in Ω

u > 0 in Ω

u = 0 on ∂Ω.

(1.21)

Let Ω be a bounded, open subset of RN , N ≥ 2, 1 < p < N. We assume that M : Ω→ R, is a Lipschitz
continuous function such that for some positive constants α and β

M(x)ξp−1ξ ≥ α|ξ|p, |M(x)| ≤ β for all ξ ∈ RN and almost every x in Ω. (1.22)

Assume that
r > p∗ and a > 0, b > 0, (1.23)
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where p∗ is the Sobolev conjugate exponent of p, that is,

p∗ =
Np

N − p
∀p ∈ (1, N).

and

0 ≤ f ∈ Lm(Ω), 1 < m <
N

p
. (1.24)

In a natural way, one can consider another kind of non-linear singular problems presenting new
challenges such as the following model problem − div a(x,∇u) + µ|u|p−1u = b(x) |∇u|

q

uθ
+ f(x)

uγ
in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(1.25)

where Ω is an open and bounded subset of RN , f is a nonnegative Lm(Ω) function with m ≥ 1 and,
given a real number p such that 2 ≤ p < N, we have that a : Ω×RN → RN is a Carathéodory function
such that the following holds: there exist α, β ∈ R+ such

that
(a(x, ξ)− a(x, η)) · (ξ − η) > 0 for a.e. x ∈ Ω and ∀ξ, η ∈ RN s.t. ξ 6= η (1.26)

a(x, ξ) · ξ ≥ α|ξ|p for a.e. x ∈ Ω and ∀ξ ∈ RN (1.27)

|a(x, ξ)| 6 β|ξ|p−1 for a.e. x ∈ Ω and ∀ξ ∈ RN (1.28)

and we assume that
0 < γ ≤ 1, (1.29)

0 ≤ b(x) ∈ L∞(Ω), (1.30)

0 < θ ≤ 1, (1.31)

and
0 ≤ µ, p− 1 ≤ q < p. (1.32)

The assumptions on the function a imply that the differential operator A acting between W 1,p
0 (Ω)

and W−1,p′(Ω) and defined by
A(u) = − div(a(x,∇u)),

is coercive, monotone, surjective and satisfies the maximum principle. The simplest case is the p-
Laplacian, which corresponds to the choice a(x, ξ) = |ξ|p−2ξ.

In the literature we find several papers about elliptic problems with lower order terms having a
quadratic growth with respect to the gradient (see [17, 18, 27, 76], for example and the references
therein), that is, for problem{

− div(M(x)∇u) = g(x, u)|∇u|+ f in Ω
u = 0 on ∂Ω.

In these works it is assumed that M : Ω → RN2
is a bounded elliptic Carathéodory map, so that

there exists α > 0 such that α|ξ|2 ≤ M(x)ξ · ξ for every ξ ∈ RN . Various assumptions are made on
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g with no attempt of being exhaustive, we will describe some recent results where a singular g has
been considered, namely g(x, u) = b(x) 1

|u|θ . The case where 0 < θ ≤ 1, introduced in [37], has been

studied positive source f ∈ Lm(Ω), if 1 < m < N
2

there exists a strictly positive solution u ∈ Lm∗∗(Ω),
with m∗∗ = Nm

N−2m
, if m > N

2
then the solution u belongs to L∞(Ω). Furthermore, if 0 < θ < 1

2
, and

r = Nm
N(1−θ)−m(1−2θ)

, then

|∇u|
uθ

belongs to

{
Lr(Ω) if 1 < m < 2N(1−θ)

N+2−4θ

L2(Ω) if m ≥ 2N(1−θ)
N+2−4θ

.

Later, in [71] it is proved the existence result of solutions for the nonlinear Dirichlet problem of the
type  − div(M(x)∇u) + γup = B |∇u|

q

uθ
+ f in Ω

u > 0 in Ω
u = 0 on ∂Ω,

where Ω is a bounded open subset of RN , N > 2 ,M(x) is a uniformly elliptic and bounded matrix,
γ > 0, B > 0, 1 ≤ q < 2, 0 < θ ≤ 1 and the source f is a nonnegative (not identicaly zero) function
belonging to L1(Ω).

Observe that, in this context. Olivia [73] studied the existence and uniqueness of nonnegative
solutions to a problem which is modeled by{

−∆pu = u−θ|∇u|p + fu−γ in Ω
u = 0 on ∂Ω

where Ω is an open bounded subset of RN(N ≥ 2),∆p is the p -Laplacian operator (1 < p < N),
f ∈ L1(Ω) is nonnegative and θ, γ ≥ 0.

The main novelty in the chapter 6 is to show that the quadratic lower order term and the singular
term has a ” regularizing effect ” in the sense that the problem (1.25) has a distributional solution for
all f ∈ Lm with m ≥ 1.

Summarizing, we have shown in the previous chapters how the approximation tools combined with
a priori estimates are very useful in the study of singular elliptic problems. Of course, these tools are
also useful to address problems of a different nature.

The last chapter is devoted to the study the existence and regularity on the following class of singular
elliptic systems 

− div(a(x)∇u) + ψur−1 = f(x)
uθ

in Ω,

− div(M(x)ψ) = ur in Ω,

u, ψ > 0 in Ω,

u = ψ = 0 on ∂Ω,

(1.33)

we will suppose that Ω is a bounded open set of RN , N > 2, that r > 1 and that f nonnegative (not
identically zero) function belongs to Lm(Ω), for some m > 1, 0 < θ < 1. Furthermore, the function
a : Ω→ R will be a measurable function, such that there exist 0 < α ≤ β such that:

0 < α ≤ a(x) ≤ β almost everywhere in Ω, (1.34)
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while M : Ω→ RN2
will be a measurable matrix, such that:

M(x)ξ · ξ ≥ α|ξ|2, |M(x)| ≤ β, (1.35)

for almost every x in Ω, and for every ξ in RN .
We have been motivated by the work of Benci and Fortunato [13]. In that work the authors,

investigating the eigenvalue problem for the Schrödinger operator coupled with the electromagnetic
field, studied the existence for the following system of Schrödinger-Maxwell equations in R3{

−1
2
∆u+ ϕu = ωu

−∆ϕ = 4πu2.
(1.36)

The existence of a solution of (1.36) is proved by using a variational approach: the equations of the
system are the Euler-Lagrange equations of a suitable functional that is neither bounded from below
nor from above but has a critical point of saddle type.

More recently, taking inspiration from the structure of (1.36), a series of papers (see for instance
[14, 15, 47]) studied the existence and the regularizing effect of the problem

− div(a(x)u) +Bv|u|r−2u = f(x) in Ω

− div(M(x)v) = |u|r in Ω

u = v = 0 on ∂Ω,

(1.37)

where B > 0, f ∈ Lm(Ω) with m > 1, and a(x),M(x) satisfies (7.2) and (7.3). One of the main feature
of (1.37) is that the interplay of the two equation enhances the regularizing effect of the system with
respect of the one of the single equation. The main techniques used in [14, 15, 47] are approximation
scheme, a priori estimates through a test function based approach and fixed point theorems. These
tools can be used for more general system that do not necessarily have a variational structure. On
the other hand, the authors proved in [47] the existence of solutions for the following nonlinear elliptic
system that generalizes (1.37){

− div (|∇u|p−2∇u) + Aϕ|u|r−2u = f, u ∈ W 1,p
0 (Ω)

− div (|∇ϕ|p−2∇ϕ) = |u|r, ϕ ∈ W 1,p
0 (Ω)

(1.38)

where Ω is an open bounded subset of RN (N ≥ 2), 1 < p < N,A > 0, r > 1.
Inspired by the above articles, the main novelty in the last chapter is to show that the term 1

uθ
has a

”regularizing effect” in the sense that the problem (1.33) has a distributional solution for all f ∈ Lm(Ω)
with m > 1. This term provokes some mathematical difficulties, which make the study of system (1.33)
particularly interesting. To our knowledge, the Schrödinger–Maxwell system with singular term has not
been studied.
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Chapter 2

Mathematical preliminaries

This chapter is meant to provide an overview of the real and functional analysis results that will
be used afterwards. Moreover, we present some basic facts concerning the necessary function spaces.

Unless otherwise required, in this chapter, Ω ⊂ RN is a bounded open set equipped with N -
dimensional Lebesgue measure. Note that the results in this chapter are not given in full generality,
these will be presented as needed in our study.

1 Standard Lebesgue , Sobolev spaces and Marcinkiewicz spaces

In this section we recall some basic facts on classical Lebesgue and Sobolev spaces with constant
exponent that we will use in the remainder of this thesis. For further details on this topic, we refer to
[20, 30, 39, 53, 67].

1.1 Lebesgue spaces

We say that a measurable function φ : Ω → R belongs to the Lebesgue space Lp(Ω), p ∈ [1,∞], if the
quantity ||φ||Lp(Ω) is finite.

||φ||Lp(Ω) =

{
inf{C ∈ (0,∞) : ||φ|| ≤ C a.e. on Ω} if p =∞(∫

Ω
|φ|p
) 1
p if p ∈ [1,∞).

Endowed with the norm ‖ · ‖Lp(Ω), L
p(Ω) is a Banach space which turns out to be separable if p ∈ [1,∞)

and reflexive if p ∈ (1,∞).
For an exhaustive treatment on Lebesgue spaces we refer to [3] and [30]. We only recall the following

fundamental facts.

- Hölder’s inequality: if p ∈ [1,∞] and p′ is the Hölder conjugate exponent of p, that is

p′ =


1 if p =∞
p
p−1

if p ∈ (1,∞)

∞ if p = 1,

21
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then ∣∣∣∣∫
Ω

φψ

∣∣∣∣ ≤ ‖φ‖Lp(Ω)‖ψ‖Lp′ (Ω) ∀φ ∈ Lp(Ω),∀ψ ∈ Lp′(Ω).

- Young inequality: For all non-negative real numbers a, b and every 1 < p < ∞, the Young
inequality holds

ab ≤ ap

p
+
bp
′

p′
, p′ =

p

p− 1
,

which will be used in the following form: for every ε > 0, 1 < p <∞ and real nonnegative numbers
a, b

ab ≤ εap + Cεb
p′ with Cε = ε

−1
p−1 .

1.2 Sobolev spaces

We say that a measurable function φ : Ω→ R belongs to the local Lebesgue space Lploc (Ω), p ∈ [1,∞],
if φ ∈ Lp(U) for every open subset U ⊂⊂ Ω.

If φ ∈ L1
loc(Ω), the distributional partial derivative φxi of (the Schwartzian distribution on Ω induced

by) φ in the direction xi is the Schwartzian distribution on Ω defined by

φxi(ζ) = −
∫

Ω

φζxi ∀ζ ∈ C∞c (Ω).

The distributional gradient of φ is the vector field ∇φ = (φx1 , . . . , φxN ). We recall that if φ ∈ C1(Ω),
the distributional partial derivatives of φ coincide with the usual ones, hence the notation is consistent.
We say that a measurable function φ : Ω → R belongs to the Sobolev space W 1,p(Ω), p ∈ [1,∞], if
φ ∈ Lp(Ω) and φxi ∈ Lp(Ω) for every i ∈ {1, . . . , N}. Endowed with the norm

‖φ‖W 1,p(Ω) = ‖φ‖Lp(Ω) + ‖|∇φ|‖Lp(Ω),

W 1,p(Ω) is a Banach space which turns out to be separable if p ∈ [1,∞) and reflexive if p ∈ (1,∞).
For p ∈ [1,∞), the closure in W 1,p(Ω) of the subspace C∞c (Ω) will be denoted by W 1,p

0 (Ω) and its
dual space by W−1,p′(Ω). Hence, W 1,p

0 (Ω) is a separable Banach space with the same norm of W 1,p(Ω)
and it is reflexive if p ∈ (1,∞). The local Sobolev space W 1,p

loc (Ω), p ∈ [1,∞], consists of functions
belonging to W 1,p(U) for every open subset U ⊂⊂ Ω. We set H1(Ω) = W 1,2(Ω), H1

0 (Ω) = W 1,2
0 (Ω),

H−1(Ω) = W−1,2(Ω) and H1
loc (Ω) = W 1,2

loc (Ω).
For an exhaustive treatment on Sobolev spaces we refer to [3] and [30]. We only recall the following

fundamental facts.

- Sobolev’s inequality: there exists a positive constant S0 which depends only on N and p, such
that {

‖φ‖L∞ ≤ S0|Ω|
1
N
− 1
p‖|∇φ|‖Lp(Ω) if p ∈ (N,∞),

‖φ‖Lp∗ (Ω) ≤ S0‖|∇φ|‖Lp(Ω) if p ∈ (1, N),
∀φ ∈ W 1,p

0 (Ω),

where p∗ is the Sobolev conjugate exponent of p, that is,

p∗ =
Np

N − p
∀p ∈ [1, N).
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In general, W 1,p
0 (Ω) cannot be replaced by W 1,p(Ω) in the previous embedding result. However,

this replacement can be made for a large class of open sets Ω, which includes for example open
sets with Lipschitz boundary. More generally, if Ω satisfies a uniform interior cone condition (that
is, there exists a fixed cone UΩ of height h and solid angle ω such that each x ∈ Ω is the vertex of
a cone UΩ(x) ⊂ Ω̄ and congruent to UΩ), then there exists a positive constant S which depends
only on N and p, such that{

‖φ‖L∞ ≤ S
ωh

N
p

(
||φ||Lp(Ω) + ‖|∇φ|‖Lp(Ω)

)
if p ∈ (N,∞),

‖φ‖Lp∗ (Ω) ≤ S
ω

(
1
h
||φ||Lp(Ω) + ‖|∇φ|‖Lp(Ω)

)
if p ∈ (1, N),

∀φ ∈ W 1,p
0 (Ω).

- Rellich-Kondrachov’s Theorem: the embedding

W 1,p
0 (Ω) ⊂

{
L∞(Ω) if p ∈ (N,∞),

Lq(Ω) ∀q ∈ [1, p∗) if p ∈ [1, N).

is compact. Moreover, if Ω satisfies a uniform interior cone condition, then also the embedding

W 1,p(Ω) ⊂

{
L∞(Ω) if p ∈ (N,∞),

Lq(Ω) ∀q ∈ [1, p∗) if p ∈ (1, N).

is compact.

- Poincaré’s inequality: there exists a positive constant P which depends only on N, p and Ω,
such that

‖φ‖Lp(Ω) ≤ P‖|∇φ|‖Lp(Ω) ∀φ ∈ W 1,p
0 (Ω).

Accordingly, the quantity ‖|∇·|‖Lp(Ω) defines a norm on W 1,p
0 (Ω) which is equivalent to ‖·‖W 1,p(Ω).

- Stampacchia’s Theorem (see [80]): if Φ ∈ W 1,∞(R) is such that Φ(0) = 0, then, for every
φ ∈ W 1,p

0 (Ω), the composition Φ(φ) belongs to W 1,p
0 (Ω) and

∇Φ(φ) = Φ′(φ)∇φ a.e. on Ω.

Moreover, one has that

∇φ = 0 a.e. on {φ = σ} ∀φ ∈ W 1,p
0 (Ω),∀σ ∈ R

Accordingly, we are able to consider compositions of functions in W 1,p
0 (Ω) with some useful auxiliary

functions, such as, for any positive σ, the truncation function at level σ, that is,

Tσ(s) =

{
s if |s| ≤ σ

sign(s)σ if |s| > σ

and
Gσ(s) = s− Tσ(s) = (|s| − σ)+ sign(s) ∀s ∈ R.

In particular, for every φ ∈ W 1,p
0 (Ω) and σ ∈ (0,∞), Tσ(φ), Gσ(φ) belong to W 1,p

0 (Ω) and satisfy

∇Tσ(φ) = ∇φχ{|φ|<σ}, ∇Gσ(φ) = ∇φχ{|φ|>σ} a.e. on Ω.

ABDELAAZIZ SBAI



CHAPTER 2. MATHEMATICAL PRELIMINARIES 24

1.3 Convergence Theorems

Throughout this subsection we provide some definitions and results on the convergence of sequences of
measurable functions, which can be found, for example, in [31, 38, 39, 59, 63].

Definition 2.1. Let (un) be a sequence of measurable functions on Ω and u a measurable function on
Ω.

1. The sequence (un) is said to converge almost everywhere on Ω to u if and only if meas {x ∈ Ω : un(x)
does not converge to u(x)} = 0, and we write un → u a.e. in Ω.

2. The sequence (un) is said to converge in measure on Ω to u if for every η > 0

lim
n→+∞

meas {x ∈ Ω : |un(x)− u(x)| > η} = 0.

3. The sequence (un) is said to be Cauchy if for every ε > 0 and every η > 0 there exists N ∈ N
such that for all m,n ≥ N , then

meas {x ∈ Ω : |un(x)− um(x)| > η} < ε.

The following proposition shows that if a sequence is Cauchy in measure then it must converge in
measure.

Proposition 2.2. ([63]) Let (un) be a sequence of measurable functions on Ω, then the following state-
ments are equivalent.

1. (un) is Cauchy in measure.

2. There exists a measurable function u (uniquely determined almost everywhere) such that (un)
converges to u in measure.

The next proposition describes the relation between different modes of convergence.

Proposition 2.3. ([39]) Let (un) be a sequence of measurable functions on Ω .

1. If un → u a.e. in Ω then un → u in measure (here Ω is bounded).

2. If un → u in measure, then there exists a subsequence (unk) such that unk → u a.e. in Ω as
k →∞.

We now give the definition of a Carathéodory function.

Definition 2.4. Let m ≥ 1. A function a = a(x, ξ) : Ω×Rm → R is a Carathéodory function if for all
ξ ∈ Rm the function

f(·, ξ) : Ω→ R,

is measurable and for almost every x ∈ Ω the function

f(x, ·) : Rm → R,

is continuous.
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Proposition 2.5. ([20]) Let a = a(x, ξ) : Ω×R→ R be a Carathéodory function. Let un be a sequence
of functions and u be a measurable function such that un → u in measure. Then a (x, un)→ a(x, u) in
measure.

We frequently use the following convergence results.

Theorem 2.6. (Monotone convergence theorem [67] ) Let (un) be an increasing sequence of non-
negative measurable functions on Ω, which converges pointwise to u. Then∫

Ω

undx −→
∫

Ω

udx when n→∞.

Theorem 2.7. (Fatou’s Lemma [67] ) Let (un) be a sequence of non-negative measurable functions
on Ω. Then ∫

Ω

(
lim inf
n→∞

un

)
dx ≤ lim inf

n→∞

∫
Ω

undx.

The next result is the analog of Fatou’s Lemma.

Proposition 2.8. ([38]) Let 1 ≤ p <∞. Suppose the sequence (un) ⊂ Lp(Ω) is such that un → u a.e.
in Ω. If

lim inf
n→∞

‖un‖Lp(Ω) <∞,

then u ∈ Lp(Ω) and
‖u‖Lp(Ω) ≤ lim inf

n→∞
‖un‖Lp(Ω) ,

Theorem 2.9. (Lebesgue’s dominated convergence Theorem [67]) Let the sequence (un) of Lp(Ω)
with 1 ≤ p < ∞, converge a.e. to u, and be dominated by v ∈ Lp(Ω), in the sense that |un(x)| ≤ v(x)
a.e. in Ω. Then un → u (strongly) in Lp(Ω), that is, u ∈ Lp(Ω) and

‖un − u‖Lp(Ω) → 0 as n→∞.

The partial converse of the dominated convergence theorem is stated in the following lemma.

Proposition 2.10. ([67]) If un −→ u in Lp(Ω) with 1 ≤ p < ∞. Then we can extract a subsequence
(unk) such that unk → u a.e. in Ω as k →∞.

Theorem 2.11. (Vitali’s convergence Theorem [30]) Let (un) be a sequence of functions in Lp(Ω)
with 1 ≤ p <∞ such that

• un → u a.e. on Ω.

• (un) is equi-integrable, that is, for every ε > 0, there exists δ > 0 such that∫
E

|un(x)|p dx ≤ ε,

for all n and for every measurable set E ⊂ Ω with meas (E) ≤ δ.

Then un → u in Lp(Ω).
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Proposition 2.12. (Weak compactness [53]) Assume 1 < p <∞ and the sequence (un) is bounded
in Lp(Ω). Then there exists a subsequence (unk) and a function u ∈ Lp(Ω) such that unk → u weakly in
Lp(Ω), i.e., ∫

Ω

unkvdx −→
∫

Ω

uvdx, as k →∞, for all v ∈ Lp′(Ω).

Similarly, if (un) is bounded in L∞(Ω). Then there exists a subsequence (unk) and a function u ∈ L∞(Ω)
such that unk → u weakly-* in L∞(Ω), i.e.,∫

Ω

unkvdx −→
∫

Ω

uvdx, as k →∞, for all v ∈ L1(Ω).

We remark that when Ω is bounded, the weak-convergence of (un) in L∞(Ω) to some u ∈ L∞(Ω) implies
weak convergence of (un) to u in any Lp(Ω), 1 ≤ p <∞. It is important to note that the above theorem
is false when p = 1, since a bounded sequence in L1(Ω) has in general no weak convergence property.
The following lemma shows the boundedness of weakly convergent sequences.

Proposition 2.13. ([53]) Let 1 ≤ p ≤ ∞. Assume un → u weakly in Lp(Ω) (weakly ? if p =∞). Then

i) (un) is bounded in Lp(Ω).

ii) ‖u‖Lp(Ω) ≤ lim infn→∞ ‖un‖Lp(Ω).

In view of (i) it result that un → u weakly in Lp(Ω) (weakly- ? if p =∞ ) and vn → v in Lp
′
(Ω) then∫

Ω

unvndx −→
∫

Ω

uvdx, as n→∞.

Proposition 2.14. ([20]) Let (un) be a sequence of functions in Lp(Ω) with 1 < p <∞. Assume that

• (un) is bounded in Lp(Ω);

• un → u a.e. on Ω.
Then un → u in Lq(Ω), for every 1 ≤ q < p and weakly in Lp(Ω).

We have the following characterization of weak convergence in W 1,p(Ω).

Proposition 2.15. ([20]) A sequence (un) weakly converges to u in W 1,p(Ω), if and only if there exist
vi ∈ Lp(Ω) such that un → u weakly in Lp(Ω) and Diun → vi weakly in Lp(Ω), i = 1, . . . , N . In this
case, vi = Diu.

Proposition 2.16. ([67]) If u ∈ Lp(Ω), then Tk(u)→ u in Lp(Ω) strong when k → +∞. If
u ∈ W 1,p(Ω), then Tk(u)→ u in W 1,p(Ω) strong.

The following results concerns the superposition operators.

Proposition 2.17. ([67]) Let T be a globally Lipschitz continuous function from R to R piecewise C1

and with only a finite number of points of non differentiability c1, c2, . . . ., ck. Assume that T (0) = 0.
Then
1) for all u ∈ W 1,p

0 (Ω) :
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(i) T (u) ∈ W 1,p
0 (Ω).

(ii) ∇(T (u)) = T ′(u)∇u on Ω\ ∪ki=1 Eci and ∇(T (u)) = 0 a.e. on ∪ki=1Eci, where Eci = u−1 (ci) ,
i = 1, . . . , k.

2) the mapping u 7→ T (u) is

(i) continuous from W 1,p(Ω) strong to W 1,p(Ω) strong for all p <∞.

(ii) sequentially continuous from W 1,p(Ω) weak to W 1,p(Ω) weak ( weak-* for p =∞).

1.4 Marcinkiewicz spaces

We say that a measurable function φ : Ω → R belongs to the Marcinkiewicz space Mp(Ω), p ∈ (0,∞),
if there exists a positive constant C such that

|{|φ| > σ}| ≤ C

σp
∀σ ∈ (0,∞).

Endowed with the quasinorm

‖φ‖Mp(Ω) = sup
σ∈(0,∞)

{
|{|φ| > σ}|

1
pσ
}
,

Mp(Ω) is a quasi-Banach space. We recall that the Marcinkievicz spaces are intermediate spaces between
Lebesgue spaces, in the sense that the following continuous embeddings hold:

Lp(Ω) ⊂Mp(Ω) ⊂ Lp−ε(Ω) ∀p ∈ (1,∞), ε ∈ (0, p− 1].

Moreover, if p ∈ (1,∞), for every φ ∈Mp(Ω) there exists a positive constant C which depends only on
p and ‖φ‖Mp(Ω) such that ∫

U

|φ| ≤ C|U |
1
p′ ∀ measurable subset U ⊂ Ω.

2 Rearrangements and related properties

In this section we recall a few notions about rearrangements. Let Ω be an open bounded set of IRN .
If u is a measurable function in Ω, we define the distribution function µ of u as follows

µu(t) = | {x ∈ Ω : |u(x)| > t} |, t ≥ 0.

Where |E| denotes the Lebesgue measure of a measurable subset E of IRN . The function µ is decreasing
and right-continuous. The decreasing rearrangement of u is defined by

u∗(s) = inf {t ≥ 0 : µu(t) ≤ s} for s ∈ [0, |Ω|].

Recall that the following inequality
u∗(µu(t)) ≤ t, (2.1)

ABDELAAZIZ SBAI



CHAPTER 2. MATHEMATICAL PRELIMINARIES 28

holds for every t > 0 (see [23],[83]). We also have (see [[84],page 3])

u∗(0) = ess sup |u|. (2.2)

If f is any continuous increasing map from [0,∞] into [0,∞] such that f(0) = 0, then [84]∫
Ω

f(|u(x)|)dx =

∫ ∞
0

f(u∗(t))dt.
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Chapter 3

Degenerate elliptic problem with a
singular nonlinearity

In this chapter we prove some existence and regularity results for a nonlinear elliptic problem with
degenerate coercivity via Schauder’s fixed point theorem. The results of this chapter, which have been
published in [77].

1 Introduction

In this chapter we are concerned with the existence of a distributional solution for a singular degenerate
elliptic problem modelled by 

−div(a(x, u,∇u)) = fh(u) in Ω
u ≥ 0 in Ω
u = 0 on ∂Ω,

(3.1)

with Ω a bounded open subset of IRN , N ≥ 2 , N > p > 1, f is non negative and it belongs to Lm(Ω)
for some m ≥ 1. Finally the singular sourcing h : [0,∞) −→ [0,∞] is continuous, bounded outside the
origin with h(0) 6= 0 and such that the following propertie hold true

∃C, γ > 0 s.t h(s) ≤ C

sγ
∀s ∈ (0,+∞). (3.2)

Let us give the precise assumptions on the problems that we will study. Let Ω be a bounded open
subset of IRN ,N ≥ 2, let N > p > 1 and let a : Ω× IR × IRN −→ IRN be Carathéodory function (that
is a(., t, ξ) is measurable on Ω for every (t, ξ) in IR × IRN and a(x, ., .) is continuous on IR × IRN for
almost every x in Ω), such that the following assumptions hold :

a(x, t, ξ).ξ ≥ b(|t|)|ξ|p, (3.3)

for almost every x in Ω and for every (t, ξ) in IR × IRN , where b : (0,∞) −→ (0,∞) is a decreasing
continuous. For the sake of simplicity, we take the function

B(t) =

∫ t

0

b(s)
1
p−1ds, (3.4)

29
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is unbounded, for the sake of simplicity, we take in (3.3)

b(t) =
α

(1 + t)θ(p−1)
, (3.5)

for some real number 0 ≤ θ ≤ 1 and some α > 0.

|a(x, t, ξ)| ≤ β
[
a0(x) + |t|p−1 + |ξ|p−1

]
, (3.6)

for almost every x in Ω, for every (t, ξ) in IR × IRN , where a0 is non-negative function in Lp
′
(Ω), with

1
p

+ 1
p′

= 1 and β ≥ α, [
a(x, t, ξ)− a(x, t, ξ

′
)
]
(ξ − ξ′) > 0, (3.7)

for almost every x in Ω and for every t in IR, for every ξ,ξ
′

in IRN , with ξ 6= ξ
′

we will then define, for
u in W 1,p

0 (Ω) the nonlinear elliptic operator

A(u) = −div(a(x, u,∇u)).

In the study of problem (3.1), there are two difficulties, the first one is the fact that, due to hypothesis
(3.3), the differential operator A(u) though well defined between W 1,p

0 (Ω) and its dual, but it fails to
be coercive on W 1,p

0 (Ω) when u is unbounded. Due to the lack of coercivity, the classical theory for
elliptic operators acting between spaces in duality (see [70]) can not be applied even if the data f are
sufficiently regular(see [76]). The second difficulty comes from the right-hand side is singular in the
variable u. We overcome these difficulties by replacing operator A by another one defined by means of
truncations, and approximating the singular term by non singular one.
Now, we give our definitions of solution for problem (3.1).

Definition 3.1. Let f be in Lm(Ω) ,m ≥ 1. A measurable function u is a weak solution of (3.1) if
a(x, u,∇u) ∈ (L1(Ω))N , fh(u) ∈ L1(Ω) and if∫

Ω

a(x, u,∇u)∇ϕdx =

∫
Ω

fh(u)ϕdx, for every ϕ ∈ L∞(Ω) ∩W 1,p
0 (Ω). (3.8)

Our first result is the following:

Theorem 3.2. Let f ∈ Lm(Ω) with m > N/p, assume that (3.3), (3.5), (3.6) and (3.7) hold true then,
there exists a function u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) solution of (3.1).

Theorem 3.3. Assume that (3.3), (3.5),(3.6),(3.7) and 0 < γ < 1 hold true. Let f ∈ Lm(Ω) with

m1 =

(
p∗

θ(p− 1) + 1− γ

)′
=

Np

Np− (N − p)[θ(p− 1) + 1− γ]
≤ m < N/p, (3.9)

then, there exists at least one solution u in W 1,p
0 (Ω) ∩ Lr(Ω) of (3.1)

r =
Nm[(p− 1)(1− θ) + γ]

N − pm
. (3.10)

Remark 3.4. If 0 < γ < 1, we explicitly note that m = m1 ⇐⇒ r = p∗, and If θ = 1, γ → 0, then
m1 → N/p, in this case. Observe that, for every 0 ≤ θ ≤ 1, we have m1 ≥ (p∗)′ ⇒ f ∈ W−1,p′(Ω), it is
classical to expect a W 1,p

0 (Ω) solution.
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Theorem 3.5. Assume that (3.3), (3.5),(3.6),(3.7) and 0 < γ < 1 hold true. Let f ∈ Lm(Ω) with

1 < m <
Np

Np− (N − p)[θ(p− 1) + 1− γ]
, (3.11)

then, there exists at least one solution u in W 1,σ
0 (Ω), that is

σ =
Nm[(p− 1)(1− θ) + γ]

N −m((p− 1)θ + 1− γ)
. (3.12)

Remark 3.6. If γ → 0+, the result of Theorem 3.3, Theorem 3.5 coincides with regularity results for
elliptic equation with coercivity (see([5],Theorem 1.3 and Theorem 1.7)).

Remark 3.7. If 0 < γ < 1, under some condition on f , the summability of the solution to (3.1) is better
than or equal to that of solution in ([5], Theorem 1.7 and Theorem 1.9) (see [5]).

The last result deals with the case where the source f belongs to L1(Ω) and 0 < γ < 1.

Theorem 3.8. Let us consider 0 < γ < 1 and f ∈ L1(Ω) then the problem (3.1) admits a solution u
belonging to W 1,q

0 (Ω), with

q =
N [(p− 1)(1− θ) + γ]

N − ((p− 1)θ + 1− γ)
. (3.13)

The chapter is organized as follows: in the next section we will give a priori estimates for solutions
of approximate equation, while the third section will be devoted to the proof of the results.

2 A priori estimates

Here we provide our a priori estimates for the approximate solutions to problem (3.1).
Approximating problems. For n ∈ IN, let fn = Tn(f) and we consider the following problem:{

−div (a(x, Tn(un),∇un)) = fnhn(un) in Ω
un = 0 on ∂Ω.

(3.14)

Moreover, we set

hn(s) =

{
Tn(h(s)) for s > 0,
min(n, h(0)) otherwise,

(3.15)

where Tn(h(un)) ≤ C
(|un|+ 1

n
)γ

. The right hande side of (3.14) is nonnegative, that un is nonnegative.

Observe that we have ”truncated” the degenerate coercivity of the operator term and the singularity of
the right hand side. The weak formulation of (3.14) is∫

Ω

a(x, Tn(un),∇un).∇ϕdx =

∫
Ω

fnhn(un)ϕdx ∀ϕ ∈ L∞(Ω) ∩W 1,p
0 (Ω). (3.16)

Proposition 3.9. For each n ∈ N there exists un ∈ W 1,p
0 (Ω)∩ L∞(Ω) weak solution of problem (3.14).

ABDELAAZIZ SBAI



CHAPTER 3. DEGENERATE ELLIPTIC PROBLEM WITH A SINGULAR NONLINEARITY 32

Proof. The proof is based on standard Schauder’s fixed point argument. Let n ∈ IN be fixed and
v ∈ Lp(Ω) be fixed. we know that the following nonsingular problem{

−div (a(x, Tn(w),∇w)) = fnhn(v) in Ω
w = 0 on ∂Ω,

has a unique solution w ∈ W 1,p
0 (Ω) ∩ L∞(Ω) follows from the classical results (see [68] and [5]). In

particular, it is well defined a map
G : Lp(Ω)→ Lp(Ω),

where G(v) = w. Again, thanks to regularity of the datum hn(v)fn, we can take w as test function and
obtain ∫

Ω

a(x, Tn(w),∇w)∇w =

∫
Ω

fnhn(v)w, (3.17)

then, it follows from (3.3)

α

∫
Ω

|∇w|p

(1 + n)θ(p−1)
dx ≤

∫
Ω

|∇w|p

(1 + |Tn(w)|)θ(p−1)
dx ≤ n2

∫
Ω

|w|dx

using the Poincaré inequality we have∫
Ω

|∇w|p

(1 + n)θ(p−1)
dx ≤ c1n

2

∫
Ω

|∇w|dx,

by Hölder’s inequality on the right hand side, we obtain∫
Ω

|∇w|pdx ≤ c1(1 + n)θ(p−1)n2

∫
Ω

|∇w|dx ≤ c(n)|Ω|
1

p
′

(∫
Ω

|∇w|pdx
) 1

p

we deduce ∫
Ω

|∇w|pdx ≤ c(n)p
′ |Ω|,

Using the Poincaré inequality on the left hand side

||w||Lp(Ω) ≤ c(n, |Ω|)(= c
p′
p (n)|Ω|

1
p ),

where c(n, |Ω|) is a positive constant independent form v and w, thus, we have that the ball B of Lp(Ω)
of radius c(n, |Ω|) is invariant for the map G.

Now we prove that the map G is continuous in B. Let us choose a sequence vk that converges strongly
to v in Lp(Ω), the by dominated convergence theorem

fnhn(vk)→ fnhn(v) in Lp(Ω),

then we need to prove that G(vk) converge to G(v) in Lp(Ω). By compactness we already know that
the sequence wk = G(vk) converge to some function w in Lp(Ω). We only need to prove that w = G(v).
Firstly, we have the datum fnhn(vk) are bounded, we have that wk ∈ L∞(Ω) and there exists a positive
constant d, independent of vk and wk (but possibly depending on n ), such that ||wk||L∞(Ω) ≤ d. We

know the sequence wk is bounded in W 1,p
0 (Ω). Hence, by uniqueness, one deduces that G(vk) converge
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to G(v) in Lp(Ω). Lastly we need to check that the set G(B) is relatively compact. Let vk be a bounded
sequence in B and let wk = G(vk). we proved before that∫

Ω

|∇w|pdx =

∫
Ω

|∇G(v)|pdx ≤ c(n, |Ω|),

for any v ∈ Lp(Ω), then for v = vk we obtain∫
Ω

|∇wk|pdx =

∫
Ω

|∇G(vk)|pdx ≤ c(n, |Ω|),

so that G(v) is relatively compact in Lp(Ω) by Rellich-kondrachov Theorem. We can then apply
Schauder fixed point theorem there exist a fixed point of the map G, say un will exist in B such
that G(un) = un and we will have that un ∈ W 1,p

0 (Ω) ∩ L∞(Ω) is solution of problem (3.14). Moreover,
taking ϕ = −u−n in (3.16) and recalling that hn (un) fn is nonnegative, we obtain

α

(1 + n)θ(p−1)

∥∥u−n∥∥pW 1,p
0 (Ω)

≤ α

∫
Ω

|∇u−n |
p

(1 + Tn (u−n ))θ(p−1)

(3.5),(3.3)

≤
∫

Ω

a (x, Tn (un) ,∇un) · ∇
(
−u−n

)
= −

∫
Ω

hn (un) fnu
−
n ≤ 0.

It follows that ‖u−n ‖W 1,p
0 (Ω) = 0 which means that un is nonnegative.

Theorem 3.10. Let f be in Lm(Ω) with m > N/p, 0 ≤ θ ≤ 1 and let un be solution of (3.14). Then
the norm of un in L∞(Ω). Indeed, we have

‖un‖L∞(Ω) < B−1

C 1
p−1 |Ω|

p
′

N
− p
′

pm

(NC
1
N
N )p

′

Nm(p− 1)

pm−N
‖f‖

p
′

p

Lm(Ω)

 , (3.18)

where B−1 denotes the inverse function of B. Furthermore, if 0 < γ < 1, the norm of un in W 1,p
0 (Ω) is

bounded by a constant continuously depending on the norm of f in (Lm(Ω))N .

Proof. For ε > 0 and t > 1, we use in the formulation (3.16). Let the test function v = Tε(Gt(un))
where {t < |un| < t+ ε} denotes the test set {x ∈ Ω : t < |un(x)| < t+ ε}. Assumption (3.3) yields

α

∫
{t<|un|<t+ε}

|∇un|p

(1 + |un|)θ(p−1)
dx ≤ ε

∫
{t<|un(x)|}

fnhn(un)dx

≤ ε sup
un∈[t,+∞]

(hn(un))

∫
t<|un(x)|

fndx

≤ ε sup
un∈[t,+∞]

(
C

(|un(x)|+ 1
n
)γ

)∫
{t<|un(x)|}

fdx,

in the set {t < |un(x)|}, we have that |un(x)|+ 1
n
> t > 1 and dividing both sides by ε we get

α

ε

∫
{t<|un(x)|<t+ε}

|∇un|p

(1 + |un|)θ(p−1)
dx ≤ C

∫
{t<|un(x)|}

fdx.
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The above inequality and Hölder’s inequality(
α

ε

∫
{t<|un(x)|<t+ε}

|∇un|
(1 + |un|)θ(p−1)

dx

)p
≤ C

(
α

ε

∫
{t<|un(x)|<t+ε}

1

(1 + |un|)θ(p−1)
dx

)p−1 ∫
{t<|un(x)|}

fdx. (3.19)

We can pass to the limit as ε goes to 0+ in (3.19) to get, after simplification

α

(1 + t)θ(p−1)

(
d

dt

∫
{|un|≤t}

|∇un|dx
)p
≤ C(−µ′un(t))

p−1

(∫ µun (t)

0

|f ∗n(τ)|dτ

)
. (3.20)

On the other hand, from Fleming-Rishel Coera Formula and isoperimetric inequality (see [83] and [84])
we have for almost every t > 0

NC
1
N
N (µun(t))

N−1
N ≤ d

dt

∫
{|un|≤t}

|∇un|dx, (3.21)

where CN is the measure of the unit ball in IRN . Then (3.20) and (3.21) give

α
1
p−1

(1 + t)θ
≤ C

1
p−1(

NC
1
N
N

)p′
(∫ µun (t)

0

f ∗(τ)dτ

) p′
p −µ′un(t)

(µun(t))(1− 1
N

)p′
. (3.22)

Integrating both sides of (3.22) between 0 and σ, we obtain

B(σ) ≤ C
1
p−1(

NC
1
N
N

)p′ ∫ σ

0

(∫ µun (t)

0

f ∗(τ)dτ

) p′
p −µ′un(t)

(µun(t))(1− 1
N

)p′
dt. (3.23)

Making a change of variables in the last integral, we get

B(σ) ≤ C
1
p−1(

NC
1
N
N

)p′ ∫ |Ω|
un(σ)

(∫ ρ

0

f ∗(τ)dτ

) p′
p dρ

ρ(1− 1
N

)p′
dρ. (3.24)

Let us denote by u∗n the decreasing rearrangement of un. By (2.1), one has

B(u∗n(v)) ≤ C
1
p−1(

NC
1
N
N

)p′ ∫ |Ω|
v

(∫ ρ

0

f ∗(τ)dτ

) p′
p dρ

ρp
′ (1− 1

N
)
.

Taking into account (2.2), by evaluating B(u∗n(0)) we get(3.18). Let us denote in what follows by c∞
the constant on the right in (3.18), that is

||un||∞ ≤ c∞, (3.25)
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it is easy to get an estimation in W 1,p
0 (Ω). Taking un as test function in formulation (3.8) then using

(3.3),(3.25) and Hölder inequality, we get

bp(c∞)

∫
Ω

|∇un|pdx ≤
∫

Ω

fu1−γ
n dx ≤ ||u1−γ

n ||L∞(Ω)

∫
Ω

fdx ≤ c∞

∫
Ω

fdx

≤ c∞|Ω|1−
1
m ||f ||Lm(Ω),

then ∫
Ω

|∇un|pdx ≤
c∞|Ω|1−

1
m

bp(c∞)
||f ||Lm(Ω). (3.26)

Theorem 3.11. On suppose that 0 < γ < 1 and the datum f ∈ Lm(Ω), with

Np

Np− (N − p)[θ(p− 1) + 1− γ]
≤ m < N/p,

let

r =
Nm[(p− 1)(1− θ) + γ]

N − pm
.

Then, the solution un to (3.16) are uniformly bounded in Lr(Ω) ∩W 1,p
0 (Ω).

Proof. Let us choose (1 + un)ν − 1 as a test function by the hypotheses on a, one has

ν

(
p

(p− 1)(1− θ) + ν

)p ∫
Ω

∣∣∇[(1 + un)
−θ(p−1)+ν+p−1

p ]
∣∣p dx

= ν

∫
Ω

|∇un|p

(1 + un)θ(p−1)−ν+1
dx ≤ ν

∫
Ω

|∇un|p

(1 + Tn(un))θ(p−1)
(1 + un)ν−1dx

≤ C

∫
Ω

Tn(f)

(un + 1
n
)γ
(
(un + 1)ν − 1

)
dx ≤ C + C

∫
Ω

|f |
(un + 1)−ν+γ

dx. (3.27)

By Sobolev’s inequality on the left hand side and Hölder’s inequality on the right one we have(∫
Ω

(
(1 + un)

−θ(p−1)+ν+p−1
p

)p∗
dx

) p
p∗

≤ C||f ||Lm(Ω)

(∫
Ω

(un + 1)m
′(ν−γ)dx

) 1
m′

. (3.28)

Let ν > γ be such that
−θ(p− 1) + ν + p− 1

N − p
N = (

ν − γ
m− 1

)m

and p
p∗
> 1

m′
, that is

ν =
N(m− 1)(1− θ)(p− 1) + γm(N − p)

N − pm
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and m < N
p

, we observe that

p∗

p
(−θ(p− 1) + ν + p− 1) =

mN

N − pm
[(p− 1)(1− θ) + γ] = r > 1

This implies that un is bounded in Lr(Ω).

By (3.27), (3.28) and ν ≥ 1 + θ(p− 1)
(
⇔ Np

Np−(N−p)[θ(p−1)+1−γ]
≤ m

)
, we get∫

Ω

|∇un|pdx ≤
∫

Ω

|∇un|p

(1 + un)θ(p−1)−ν+1
dx ≤ C||f ||Lm(Ω)

∫
Ω

|un|rdx ≤ Cst.

Theorem 3.12. On suppose that 0 < γ < 1 and (3.11) holds true. Let σ be as in (3.12) then the
solution un to (3.16) are uniformly bounded in W 1,σ

0 (Ω).

Proof. Let us choose (1 + un)λ − 1 with λ = N(m−1)(1−θ)(p−1)+γm(N−p)
N−pm as a test function in (3.16) with

the summer arguments as before we have(∫
Ω

[(1 + un)
−θ(p−1)+λ+p−1

p ]p
∗
dx

) p
p∗

≤ C

∫
Ω

|∇un|p

(1 + un)θ(p−1)−λ+1
dx

≤ C||f ||Lm(Ω)

(∫
Ω

(1 + un)m
′(λ−γ)dx

) 1
m′

.

As above, we infer that un is bounded in L
N((p−1)(1−θ)+λ)

N−p (Ω). This choice of λ gives that λ > γ thanks to

the fact that θ(p− 1)− λ+ 1 > 0 and 0 < σ = Nm[(p−1)(1−θ)+γ]
N−m(θ(p−1)+1−γ)

, by the assumptions on m, writing∫
Ω

|∇un|σdx =

∫
Ω

|∇un|σ

(1 + un)
θ(p−1)−λ+1

p

(1 + un)
θ(p−1)−λ+1

p dx.

Now let 1 < σ < p and using Hölder’s inequality with exponent p
σ
, we obtain∫

Ω

|∇un|σdx ≤
[∫

Ω

|∇un|σ

(1 + un)θ(p−1)−λ+1
dx

]σ
p
[∫

Ω

(1 + un)σ
θ(p−1)−λ+1

p−σ dx

] p−σ
p

.

The above estimates imply that the sequences un is bounded in W 1,σ
0 (Ω) if

σ
θ(p− 1)− λ+ 1

p− 1
=
N [(p− 1)(1− θ) + λ]

N − p
,

that is

σ =
Nm[(p− 1)(1− θ) + γ]

N −m[θ(p− 1) + 1− γ]
.

By virtue of λ < 1 + θ(p− 1) or σ < p, therefore we have m < Np/[Np− (N − p)(θ(p− 1) + 1− γ)].

Theorem 3.13. Assume that 0 < γ < 1 and f ∈ L1(Ω), let q be as in (3.13), then the solution un to
(3.14) are uniformly bounded in W 1,q

0 (Ω).
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Proof. Choosing ϕ = (1 + un)γ − 1 in (3.16). Using assumption (3.3), we can write∫
Ω

|∇un|p

(1 + un)1+θ(p−1)−γ dx ≤ c

∫
Ω

|f |dx. (3.29)

Let q < p, writing∫
Ω

|∇un|qdx =

∫
Ω

|∇un|q

(1 + un)
q(1+θ(p−1)−γ)

p

(1 + un)
q(1+θ(p−1)−γ)

p dx.

≤
[ ∫

Ω

|∇un|p

(1 + un)(1+θ(p−1)−γ)
dx

] q
p
[ ∫

Ω

(1 + un)
r(1+θ(p−1)−γ)

p−q dx

]1− q
p

≤ c

[ ∫
Ω

(1 + un)
q(1+θ(p−1)−γ)

p−q dx

]1− q
p

. (3.30)

By Sobolev inequality, we obtain(∫
Ω

uq
∗

n dx

) q
q∗

≤
∫

Ω

|∇un|qdx ≤ c

[ ∫
Ω

(1 + un)
q(1+θ(p−1)−γ)

p−q dx

]1− q
p

. (3.31)

Now choose q in order to have

q∗ =
q(1 + θ(p− 1)− γ)

p− q
, (3.32)

we point out that q
q∗
> p−q

p
, thus from (3.31), (3.30) and (3.32), we deduce that the sequence un is

bounded in W 1,q
0 (Ω).

3 Proof of the results

In this section we are going to use the results of section 2 in order to prove Theorem 3.2, Theorem 3.3
and Theorem 3.5.

Proof of Theorem 3.2.
Step 1: We prove that

lim
n→+∞

∫
Ω

hn(un)fnϕdx =

∫
Ω

h(u)fϕdx, (3.33)

for all non negative ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). First we observe that from the Young inequality and the

ABDELAAZIZ SBAI



CHAPTER 3. DEGENERATE ELLIPTIC PROBLEM WITH A SINGULAR NONLINEARITY 38

hypotheses in (3.6), one gets∫
Ω

hn(un)fnϕ =

∫
Ω

a(x, Tn(un),∇un)∇ϕdx ≤
∫

Ω

a0(x)∇ϕdx

+

∫
Ω

|un|p−1∇ϕdx+

∫
Ω

|∇un|p−1∇ϕdx ≤
∫

Ω

a0(x)∇ϕdx+
p− 1

p

∫
Ω

|un|p

+
1

p

∫
Ω

|∇ϕ|pdx+
p− 1

p

∫
Ω

|∇un|pdx+
1

p

∫
Ω

|∇ϕ|pdx ≤ 1

p′

∫
Ω

a0(x)p
′

dx+

1

p

∫
Ω

|∇ϕ|pdx+
p− 1

p

∫
Ω

|un|p +
1

p

∫
Ω

|∇ϕ|pdx+
p− 1

p

∫
Ω

|∇un|pdx

+
1

p

∫
Ω

|∇ϕ|pdx ≤ c+ c

[∫
Ω

|∇ϕ|pdx+

∫
Ω

|un|pdx+

∫
Ω

|∇un|pdx
]
,

then ∫
Ω

hn(un)fnϕ ≤ c+ c[||ϕ||W 1,p
0 (Ω) + ||un||W 1,p

0 (Ω)]. (3.34)

From now we consider a non negative ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). An application of the Fatou Lemma in

(3.34) with respect to n gives ∫
Ω

h(u)fϕ ≤ c, (3.35)

where c does not depend on n. Hence fh(u)ϕ ∈ L1(Ω) for any non negative ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). As

a consequence, if h(s) is unbounded as s tends to 0, we deduce that

{u = 0} ⊂ {f = 0}, (3.36)

up to a set of zero Lebesgue measure.
From now on, we assume that h(s) is unbounded as s tends to 0. Let ϕ be a non negative function in
W 1,p

0 (Ω) ∩ L∞(Ω), choosing it as test function in the weak formulation of (3.14), we have∫
Ω

a(x, Tn(un),∇un)∇ϕdx =

∫
Ω

fnhn(un)ϕdx. (3.37)

We want to pass to the limit in the right hand side of (3.37) as n tends to infinity. we fix δ > 0, and
we decompose the right hand side in the following way∫

Ω

hn(un)fnϕdx =

∫
{un≤δ}

hn(un)fnϕdx+

∫
{un>δ}

hn(un)fnϕdx. (3.38)

Therefore we have, thanks to Lemma 1.1 contained in [71], that Vδ(un) belongs to W 1,p
0 (Ω), where Vδ is

defined by

Vδ(s) =


1 if s ≤ δ
2δ−s
δ

if δ < s < 2δ,
0 if s ≥ 2δ.

(3.39)
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So we take it is test function in the weak formulation of (3.14), using (3.39), (3.3) and (3.6) we obtain∫
{un≤δ}

hn(un)fnϕdx ≤
∫

Ω

hn(un)fnVδ(un)ϕdx

=

∫
Ω

a(x, Tn(un),∇un)∇ϕVδ(un)dx− 1

δ

∫
{δ<un<2δ}

a(x, Tn(un),∇un)ϕ∇undx,

by using (3.3) and (3.6), we have∫
{un≤δ}

hn(un)fnϕdx ≤ β

∫
Ω

[
a0(x) + |un|p−1 + |∇un|p−1

]
∇ϕVδ(un)dx

− 1

δ(n+ 1)θ(p−1)

∫
{δ<un<2δ}

|∇un|pϕdx

≤ β

∫
Ω

[
a0(x) + |un|p−1 + |∇un|p−1

]
∇ϕVδ(un)dx.

Using that Vδ is bounded we deduce that |∇un|p−1∇ϕVδ(un) converges to
|∇u|p−1∇ϕVδ(u) weakly in Lp

′
(Ω)N as n tends to infinity. This implies that

lim
n→+∞

∫
{un≤δ}

hn(un)fnϕdx ≤ β

∫
Ω

[
a0(x) + |u|p−1 + |∇u|p−1

]
∇ϕVδ(u)dx. (3.40)

Since Vδ(u) converges to χ{u=0} a.e in Ω as δ tends to 0 and since u ∈ W 1,p
0 (Ω), then[

a0(x) + |u|p−1 + |∇u|p−1
]
∇ϕVδ(u) converges to 0 a.e. in Ω as δ tends to 0. Applying the Lebesgue

Theorem on the right hand side of (3.40) we obtain that

lim
δ→0+

lim
n→+∞

∫
{un≤δ}

hn(un)fnϕdx = 0. (3.41)

As regards the second term in the right hand side of (3.38) we have

0 ≤ hn(un)fnϕχ{un>δ} ≤ sup
s∈]δ,∞)

[h(s)]fϕ ∈ L1(Ω), (3.42)

we remark that we need to choose δ 6= {η; |u = η| > 0}, which is at most a countable set. As a
consequence χ{un>δ} converges to χ{u>δ} a.e in Ω, we deduce first that hn(un)fnχ{un>δ}ϕ converges to
h(u)fχ{u>δ}ϕ strongly in L1(Ω) as n tends to infinity, then, since h(u)fχ{u>δ}ϕ belongs to L1(Ω), that
fh(u)χ{u>δ}ϕ converges to fh(u)χ{u>0}ϕ strongly in L1(Ω) as δ tend to 0.
and then, once again by the Lebesgue Theorem, one gets

lim
δ→0+

lim
n→+∞

∫
{un>δ}

hn(un)fnϕdx =

∫
{u>0}

h(u)fϕdx. (3.43)

By (3.43) and (3.41), we deduce that

lim
n→+∞

∫
Ω

hn(un)fnϕdx =

∫
Ω

h(u)fϕdx ∀ 0 ≤ ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). (3.44)
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Moreover, decomposing any ϕ = ϕ+ − ϕ−, with ϕ+ = max(ϕ, 0), ϕ− = −min(ϕ, 0)
the positive and the negative part of a function ϕ, and using that (3.44) is linear in ϕ, we deduce that

(3.44) holds for every ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). We treated h(s) unbounded as s tends to 0, as regards

bounded function h the proof is easier and only difference deals with the passage to the limit in the left
hand side of (3.44). We can avoid introducing δ and we can substitute (3.42) with

0 ≤ fnhn(un)ϕ ≤ f ||h||L∞(Ω)ϕ.

Using the same argument above we have that fnhn(un)ϕ converges to fh(u)ϕ strongly in L1(Ω) as n
tends to infinity. This concludes (6.4).
Step 2: Thanks to (3.26), the sequence un is bounded in W 1,p

0 (Ω). Therefore, there exist a subsequence
of un still denoted by un, and a measurable function u such that

un ⇀ u weakly in W 1,p
0 (Ω) and a.e in Ω. (3.45)

We shall prove that, up to a subsequence

un −→ u strongly in W 1,p
0 (Ω). (3.46)

We take un − u test function in the weak formulation of (3.16), we obtain for n > c∞∫
Ω

a(x, un,∇un)∇(un − u)dx =

∫
Ω

fnhn(un)(un − u)dx, (3.47)

the right hand side tends to zero when n tends to infinity. On the other hand we write∫
Ω

a(x, un,∇un)− a(x, un,∇u)∇(un − u)

=

∫
Ω

a(x, un,∇un)∇(un − u)dx−
∫

Ω

a(x, un,∇u)∇(un − u), (3.48)

by (3.45) one has

lim
n→+∞

∫
Ω

a(x, un,∇un)∇(un − u)dx = 0,

As regards the second term on the right in (3.48) and see step 1 in the proof of Theorem 3.2, using
(3.6) and Vitali’s Theorem we obtain that

a(x, un,∇u) −→ a(x, u,∇u) strongly in (Lp
′
(Ω))N .

Therefore, we obtain

lim
n→+∞

∫
Ω

(a(x, un,∇un)− a(x, un,∇u))∇(un − u)dx = 0, (3.49)

thanks to (3.7), the integrand function in the left hand side in (3.49) is non negative, therefore

(a(x, un,∇un)− a(x, un,∇u))∇(un − u) −→ 0 strongly in L1(Ω).
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Thus, up a subsequence still indexed by un, one has

a((x, un,∇un)− a(x, un,∇u))∇(un − u) −→ 0,

for almost every x in Ω, there exists a subset Z of Ω zero measure, such that for all x in Ω\Z we have

Dn(x) = (a(x, un(x),∇un(x))− a(x, un(x),∇u(x)∇(un − u)(x))) −→ 0 (3.50)

|u(x)| <∞,|∇u(x)| <∞,|a0(x)| <∞ and un(x) −→ u(x), then by the growth condition (3.6),(3.3) and
||un||∞ ≤ c

Dn(x) ≥ 1

(1 + c)θ(p−1)
|∇un(x)|p−1 − c(x)

(
1 + |∇un(x)|+ |∇un(x)|p−1

)
,

where c(x) is a constant depends on x but does not depend on n, which schows thanks to (3.50), that
the sequence |∇un(x)| is unformly bounded in RN , with respect to n, we argue simililary as in Lemma
5 in [21], to obtain (3.46).

We can now pass to the limit going back to the equation (3.16), to do this, let ϕ ∈ W 1,p
0 (Ω)∩L∞(Ω).

For every n > c∞ one has ∫
Ω

a(x, un,∇un)∇ϕdx =

∫
Ω

hn(un)fnϕdx, (3.51)

by (3.46), we have ∇un −→ ∇u strongly in (Lp(Ω))N and a.e in Ω, so that Vitali’s Theorem implies
that

a(x, un,∇un) −→ a(x, u,∇u) strongly in (Lp
′
(Ω))N .

Then, passing to the limit in (3.51) and using the result in the Step 1, we obtain∫
Ω

a(x, u,∇u)∇ϕdx =

∫
Ω

fh(u)ϕdx,

for all ϕ in W 1,p
0 (Ω) ∩ L∞(Ω), moreover, from (3.25), we have

u ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Proof of Theorems 3.3 and 3.5. Because the proofs of Theorems 3.5 are similar to that of Theorem 3.3
, we restrict to the proof of Theorem 3.3

Proof of Theorems 3.3. As consequence of Theorem 3.11 there exist a subsequence, still indexed by n,
and a measurable function u in W 1,p

0 (Ω) ∩ Lr(Ω) such that un converges weakly to u. Moreover, by
Rellich Theorem we have

un −→ u a.e in Ω. (3.52)

Fix k > 0, we will prove that

Tk(un) −→ Tk(u) strongly in W 1,p
0 (Ω). (3.53)

By Theorem 3.11, the sequence Tk(un) is bounded in W 1,p
0 (Ω). Therefore, by (3.52) we get

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω). (3.54)
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Using Tk(un)− Tk(u), which belongs to W 1,p
0 (Ω), as test function in formulation (3.51), we get∫

Ω

a(x, Tn(un),∇un)∇(Tk(un)− Tk(u))dx =

∫
Ω

hn(un)fn(Tk(un)− Tk(u))dx.

Thanks to (3.54) and (3.44), we have

lim
n→+∞

∫
Ω

a(x, Tn(un),∇un)∇(Tk(un)− Tk(u))dx = 0. (3.55)

By the growth condition (3.6) and Theorem 3.11, the sequence a(x, Tn(un),∇un) is bounded in (Lp
′
(Ω))N .

Then, it converges weakly to some l in (Lp
′
(Ω))N and we obtain

lim
n→+∞

∫
|un|≥k

a(x, Tn(un),∇un)∇Tk(u)dx =

∫
|u|≥k

l∇Tk(u)dx = 0. (3.56)

The continuity of the function a, (3.52) and Vitali’s theorem allow us to have

a(x, Tn(un),∇Tk(u)) −→ a(x, u,∇Tk(u)) strongly in (Lp
′

(Ω))N .

Therefore, by Theorem 3.11 and (3.54) we get

lim
n→+∞

∫
Ω

a(x, Tn(un),∇Tk(un))∇(Tk(un)− Tk(u))dx = 0. (3.57)

On the other hand, we write for n > k∫
Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)))∇(Tk(un)− Tk(u))dx

=

∫
Ω

(a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))dx

−
∫

Ω

(a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))dx

=

∫
|un|<k

(a(x, Tn(un),∇un)∇(Tk(un)− Tk(u))dx

−
∫

Ω

(a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))dx

=

∫
Ω

(a(x, Tn(un),∇un)∇(Tk(un)− Tk(u))dx

−
∫
|un|≥k

(a(x, Tn(un),∇un)∇(Tk(un)− Tk(u))dx

−
∫

Ω

(a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))dx.
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Observing that ∇Tk(un) = 0 on the set |un| ≥ k, we get∫
Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)))∇(Tk(un)− Tk(u))dx

=

∫
Ω

(a(x, Tn(un),∇un)∇(Tk(un)− Tk(u))dx

+

∫
|un|≥k

(a(x, Tn(un),∇un)∇(Tk(u))dx

−
∫

Ω

(a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))dx.

Thus,it follows from (3.55),(3.56) and (3.57) that∫
Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)))∇(Tk(un)− Tk(u))dx→ 0.

when n tends to +∞. By Lemma 5 of [21], we obtain (3.53). The strong convergence (3.53) implies, for
some subsequence still indexed by n, that

∇un −→ ∇u a.e in Ω,

which yields , since (a(x, Tn(un),∇un) is bounded in (Lp
′
(Ω))N , that

a(x, Tn(un),∇un) ⇀ a(x, u,∇u) weakly in (Lp
′
(Ω))N .

Therefore ,passing to the limit in (3.51) we obtain (3.8).

Proof of Theorem 3.8. By Theorem 3.13 the sequence un is uniformly bounded in W 1,q
0 (Ω). Therefore

we can obtain a solution passing to the limit, namely arguing exactly as in Theorem 3.3.
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Chapter 4

Regularizing effect of absorption terms in
singular and degenerate elliptic problems

In this chapter, we study a nonlinear singular elliptic equation with degenerate coercivity, lower
order term and non-regular data. We discuss the existence and regularity of solutions in Sobolev spaces.
The results of this chapter generalize the corresponding ones in the coercive case, given in [34].

1 Introduction

Let us consider the following problem −div
(
a(x, u)|∇u|p−2∇u

)
+ |u|s−1u = h(u)f in Ω

u ≥ 0 in Ω
u = 0 on ∂Ω,

(4.1)

where 1 < p < N, Ω is bounded open subset in R and a : Ω×R −→ R is a Carathéodory function such
that for a.e. x ∈ Ω and for every s ∈ R, we have

a(x, s) ≥ α

(1 + |s|)θ
(4.2)

a(x, s) ≤ β, (4.3)

for some real positive constants α, β and 0 ≤ θ ≤ 1. Moreover, f is a non negative Lm(Ω) function,
with m ≥ 1 and the term h : [0,∞) −→ [0,∞) is continuous, bounded outside the origin with h(0) 6= 0
and such that the following propertie hold true

∃c, γ > 0 s.t h(s) ≤ c

sγ
∀s ∈ (0,+∞), (4.4)

for some real number γ such that 0 < γ ≤ 1.
Concerning the non-singular elliptic problems with lower order terms we have introduced in the

introduction this type of problems, now we turn our attention to recalling some results when the
authors had added the singular sourcing term. Problems of the p-Laplacian type (i.e θ = 0), have
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been well studied in both the existence and regularity aspects with f having different summability (see
[41]). This framework has been extended to the problems with a lower order, considering −∆u+ us = f

uγ
in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(4.5)

with f ∈ Lm(Ω), m ≥ 1, 0 < γ ≤ 1. Existence and regularity were established in [40]. Recently Oliva
[74] have proved the existence and regularity of the solution to the problem

−∆pu+ g(u) = h(u)f in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(4.6)

f is a nonnegative and it belongs to f ∈ Lm(Ω), m ≥ 1, for some 0 ≤ γ < 1. While g(s) is
continuous, g(0) = 0 and, as s → ∞, could act as sq with q ≥ −1, the p-Laplacian operator is
∆pu := div(|∇u|p−2∇u) and h is continuous, it possibly blows up at the origin and it is bounded at
infinity. In chpiter 3, we studied the degenerate elliptic problem with a singular nonlinearity. Following
this way in this work, we are interested again in the regularity results. By adding the singular term
to the right of (3.1), we investigate the regularity of solutions of problems of kind (4.1) in light of the
influence of some lower order terms.

We will prove in section(3) that these problems admit a bounded W 1,p
0 (Ω) solution un, n ∈ N by

using Schauder’s fixed point theorem. In section 4 we will get some a priori estimates and convergence
results on the sequence of approximating solutions. In the end, we pass to the limit in the approximate
problems.

2 Statement of definitions and the main results

2.1 Statement of definitions

In this context we deal with some class of solutions

Definition 4.1. A nonnegative measurable function u is a weak solution to problem (4.1) if u ∈ W 1,1
0 (Ω)

and if
a(x, u)|∇u|p−2∇u ∈ (L1(Ω))N , h(u)f ∈ L1(Ω), |u|s−1u ∈ L1(Ω),∫

Ω

a(x, u)|∇u|p−2∇u∇ϕdx+

∫
Ω

|u|s−1uϕ =

∫
Ω

fh(u)ϕ ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). (4.7)

Definition 4.2. A nonnegative measurable function u is an entropy solution to problem (4.1) if
Tk(u) ∈ W 1,p

0 (Ω) for every k > 0 and

a(x, Tk(u))|∇Tk(u)|p−2∇Tk(u) ∈ (L1(Ω))N , |u|s ∈ L1(Ω), h(u)f ∈ L1(Ω),

and if ∫
Ω

a(x, u)|∇u|p−2∇u∇Tk(u− ϕ)dx+

∫
Ω

|u|s−1uTk(u− ϕ)dx (4.8)

≤
∫

Ω

fh(u)Tk(u− ϕ)dx,

ABDELAAZIZ SBAI



CHAPTER 4. REGULARIZING EFFECT OF ABSORPTION TERMS IN SINGULAR AND
DEGENERATE ELLIPTIC PROBLEMS 46

for every k > 0 and for any ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Let

p0 := 1 +
(1 + θ − γ)(N − 1)

N(1− γ) + γ
. (4.9)

2.2 Statement of the main results

The main results of this paper are stated as follows:

Theorem 4.3. Let a satisfy (4.2) and (4.3). Let h satisfy (4.4) with 0 < γ ≤ 1 and let f be a positive
function in Lm(Ω), m > 1, 1 < p < N .

i) If s ≥ 1+θ−γ
m−1

, then there exists a weak solution u to problem (4.1) such that

u ∈ W 1,p
0 (Ω) ∩ Lms+γ(Ω).

ii) If 1+θ−γ
pm−1

< s < 1+θ−γ
m−1

, then there exists a weak solution u to problem (4.1) such that

ums+γ ∈ L1(Ω) and u ∈ W 1,σ
0 (Ω) , 1 < σ =

pms

1 + θ + s− γ
.

iii) If 0 < s ≤ 1+θ−γ
pm−1

, then there exists an entropy solution u to problem (4.1) such that

ums+γ ∈ L1(Ω) and |∇u| ∈M
pms

1+θ+s−γ (Ω).

Remark 4.4. If p = 2 and γ = 0; the result of Theorem 4.3 coincides with regularity results in the case
of an elliptic operator with degenerate coercivity ( see [21], Theorem 1.5).

Theorem 4.5. Under the assumptions (4.2)-(4.3) and h satisfy (4.4), with 0 < γ ≤ 1 and let
f ∈ Lm(Ω)be non negative function, with, m > 1, p0 < p < N.

i) If 0 < s ≤ N(1−γ)+γ
m(N−1)

, then there exists a weak solution u to problem (4.1) such that

ums+γ ∈ L1(Ω) and u ∈ W 1,σ
0 (Ω), where 1 < σ = N [p+s(m−1)−1−θ+γ]

N+s(m−1)−1−θ+γ .

ii) If s ≥ N(1−γ)+γ
m(N−1)

, then item(ii) of Theorem 4.3 holds.

Remark 4.6. If γ = 0; the result of Theorem 4.3 coincides with regularity results in the case of an
elliptic operator with degenerate coercivity ( see [34], Theorem 3) and Theorem 4.5 coincides with ([34],
Theorem 4).

Theorem 4.7. Let a satisfy (4.2) and (4.3). Let h satisfy (4.4) with 0 < γ ≤ 1 and let f be a positive
function in L1(Ω), 1 < p < N.

a) If s > 1+θ−γ
p−1

, then there exists a weak solution u to problem (4.1) such that

us+γ ∈ L1(Ω) and u ∈ W 1,r
0 (Ω), where 1 < r < ps

s+1+θ−γ .
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b) If 0 < s ≤ 1+θ−γ
p−1

, then there exists an entropy solution u to problem (4.1) such that

us+γ ∈ L1(Ω) and |∇u| ∈M
ps

s+1+θ−γ (Ω).

Remark 4.8. If p = 2 and γ = 0; the result of Theorem 4.7 coincides with regularity results in the case
of an elliptic operator with degenerate coercivity ( see [36], Theorem 1.4).

Theorem 4.9. Assume that (4.2) and (4.3) hold true. Let h satisfy (4.4) with 0 < γ ≤ 1. Let

p0 = 1+ (1+θ−γ)(N−1)
N(1−γ)+γ

< p < N and let f be positive function in L1(Ω). Then there exists a weak solution

u to problem (4.1) such that if 0 < s ≤ N(1−γ)+γ
N−1

then u belong to W 1,r
0 (Ω), with 1 < r <

N [p− θ − 1 + γ]

N − θ + γ − 1
.

Remark 4.10. If γ = 0; the result of Theorem 4.7 coincides with regularity results in the case of an
elliptic operator with degenerate coercivity ( see [34], Theorem 1) and Theorem 4.9 coincides with ([34],
Theorem 2).

3 A priori estimates and Preliminary facts

Let us introduce the following scheme of approximation{
−div

(
a(x, Tn(un))|∇un|p−2∇un

)
+ |un|s−1un = hn(un)fn, in Ω

un = 0 on ∂Ω,
(4.10)

where fn = Tn(f). Moreover, we set

hn(s) =

{
Tn(h(s)) for s > 0,
min(n, h(0)) otherwise.

(4.11)

The right hand side of (4.10) is non negative, that un is non negative. The existence of weak solution
un ∈ W 1,p

0 (Ω) is guaranteed by the following lemma.

Lemma 4.11. Problem (4.10) has a non negative solution un in W 1,p
0 (Ω), such that∫

Ω

|un|ms+γdx ≤ c

∫
Ω

|f |mdx (4.12)

and the solution un satisfies∫
Ω

a(x, Tn(un))|∇un|p−2∇un∇ϕdx+

∫
Ω

|un|s−1unϕ =

∫
Ω

fnhn(un)ϕ, (4.13)

where 0 < γ ≤ 1 and ϕ in W 1,p
0 (Ω) ∩ L∞(Ω).

ABDELAAZIZ SBAI



CHAPTER 4. REGULARIZING EFFECT OF ABSORPTION TERMS IN SINGULAR AND
DEGENERATE ELLIPTIC PROBLEMS 48

Proof. This proofs derived from Schauder’s fixed point argument in [75]. For fixed n ∈ IN let us
define a map

G : Lp(Ω)→ Lp(Ω),

such that, for any v be a function in Lp(Ω) gives the weak solution w to the following problem

− div(a(x, Tn(w))|∇w|p−2∇w) + |w|s−1w = fnhn(v). (4.14)

The existence of a unique w ∈ W 1,p
0 (Ω) corresponding to a v ∈ Lp(Ω) follows from the classical result

of [[5], [68]]. Moreover, since the datum fnhn(v) bounded, we have that w ∈ L∞(Ω) and there exists a
positive constant d1, independents of v and w (but possibly depending in n), such that
||w||L∞(Ω) ≤ d1. Again, thanks to the regularity of the datum fnhn(v), we have can choose w as test
function in the weak formulation (4.13), we have∫

Ω

a(x, Tn(w))|∇w|p−2∇w∇w +

∫
Ω

|w|s−1w.w =

∫
Ω

fnhn(v)w, (4.15)

then, it follows from (4.2)

α

∫
Ω

|∇w|p

(1 + n)θ
dx ≤ n2

∫
Ω

|w|dx,

using the Poincaré inequality we have∫
Ω

|∇w|p

(1 + n)θ
dx ≤ c1

α
n2

∫
Ω

|∇w|dx,

then ∫
Ω

|∇w|pdx ≤ c1

α
(1 + n)θ+2

∫
Ω

|∇w|dx ≤ c(n, α)|Ω|
1
p′

(∫
Ω

|∇w|pdx
) 1

p

, (4.16)

we obtain ∫
Ω

|∇w|pdx ≤ cp
′
(n, α)|Ω|,

using the Poincaré inequality on the left hand side

||w||Lp(Ω) ≤ c
p′
p |Ω|

1
p = c(n, α, |Ω|), (4.17)

where c(n, α, |Ω|) is a positive constant independent form v, thus, we have that the ball S of radius
c(n, α, |Ω|) is invariant for G.
Now, we are going to prove that the map G is continuous in S. Consider a sequence (vk) that converges
to v in Lp(Ω). We recall that wk = fnhn(vk) are bounded, we have that wk ∈ L∞(Ω) and there
exists a positive constant d, independent of vk and wk, such that ||wk||L∞(Ω) ≤ d. Then by dominated
convergence theorem

||fnhn(vk)− fnhn(v)||Lp(Ω) −→ 0.

Hence, by the uniqueness of the weak solution, we can say that wk = G(vk) converges to w = G(v) in
Lp(Ω). Thus G is continuous over Lp(Ω).
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What finally needs to be checked is that G(S) is relatively compact in Lp(Ω). Let vk be a bounded
sequence, and let wk = G(vk). Reasoning as to obtain (4.17), we have∫

Ω

|∇wk|pdx =

∫
Ω

|∇G(vk)|pdx ≤ c(n, α, γ),

where c is clearly independent from vk , so that, G(Lp(Ω)) is relatively compact in Lp(Ω). Now,
applying the Schauder’s fixed point theorem that G has a fixed point un ∈ S that is solution to (4.10)
in W 1,p

0 (Ω) ∩ L∞(Ω).
To show (4.12), we will consider the cases m > 1 and m = 1.
Case m > 1, choosing ϕ = |un|s(m−1)+γ in (4.13), we have∫

Ω

|un|sm+γdx ≤
∫

Ω

|f ||un|s(m−1)dx,

therefore ∫
Ω

|un|sm+γ ≤ c

(∫
Ω

|f |m
) 1

m
(∫

Ω

|un|sm+γ

)1− 1
m

,

wish implies (4.12).

Case m = 1. Choosing ϕ = uγn, then∫
Ω

|un|s−1unu
γ
ndx ≤

∫
Ω

f

uγn
uγndx ≤ fdx,

which the estimate (4.12), as desired.

Lemma 4.12. [76] Let u be a measurable function in M r(Ω), r > 0, and suppose that there exists a
positive constant ρ > 0 such that ∫

Ω

|∇Tk(u)|pdx ≤ Ckρ ∀k > 0.

Then |∇u| ∈M
pr
ρ+r (Ω).

Proof. Let λ be fixed positive real number. For every k > 0, we have

meas{|∇u| > λ} = meas{|∇u| > λ, |u| ≤ k}+meas{|∇u| > λ, |u| > k}

≤ meas{|∇u| > λ, |u| ≤ k}+meas{|u| > k}
and

meas{|∇u| > λ, |u| ≤ k} ≤ 1

λp

∫
Ω

|∇Tk(u)|pdx ≤ C
kρ

λp
.

Since u ∈M r(Ω), it follows that

meas{|∇u| > λ} = C
kρ

λp
+
C

kr
,

and this latter inequality holds for every k > 0. Minimizing with respect to k, we easily obtain

meas{|∇u| > λ} =
C

λ
pr
ρ+r

.

Thus, |∇u| ∈M
pr
ρ+r (Ω).
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Lemma 4.13. Let un be a sequence of measurable functions such that Tk(un) is bounded in W 1,p
0 (Ω)

for every k > 0. Then there exists a measurable function u such that Tk(u) ∈ W 1,p
0 (Ω) and, moreover,

Tk(un) −→ Tk(u) weakly in W 1,p
0 (Ω) and un −→ u a.e.in Ω.

Proof. Let us prove that un −→ u locally in measure. To begin with, we observe that, for t, ε > 0,
we have

{|un − um| > t} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un)− Tk(um)| > t}.

Therefore,
meas{|un − um| > t} ≤ meas{|un| > k}+meas{|um| > k}

+meas{|Tk(un)− Tk(um)| > t}.

Choosing k large enough, we obtain

meas{|un| > k} < ε and meas{|um| > k} < ε.

We can assume that {Tk(un)} is a Cauchy sequence in Lq(Ω) for every
q < p∗ = Np

N−p . Then ∀n,m ≥ n0(k, t) :

meas{|Tk(un)− Tk(um)| > t} ≤ t−q
∫

Ω

|Tk(un)− Tk(um)|qdx ≤ ε

This proves that {un} is a Cauchy sequence in measure in Ω. Therefore, there exists a measurable
function u such that un −→ u in measure. Hence that un −→ u a.e.in Ω, and so

Tk(un) −→ Tk(u) weakly in W 1,p
0 (Ω).

4 Proof of the results

This section is devoted to proving theorems cited above. We start with
Proof of Theorem 4.3. We separate our proof into three parts, according to the values of s

Part I. Let s ≥ 1+θ−γ
m−1

and we take ϕ = (1 + un)1+θ − 1 as a test function in (4.13), using (4.2),
we obtain

α

∫
Ω

|∇un|pdx+

∫
Ω

usn[(1 + un)1+θ − 1] ≤ c

∫
Ω

fu1+θ−γ
n dx.

In the following, we dropping the second positive term, and we get

α

∫
Ω

|∇un|pdx ≤ c

∫
Ω

fu1+θ−γ
n dx.

Applying Hölder’s inequality in the right-hand side of above estimate, we obtain∫
Ω

fu1+θ−γ
n dx ≤ c

[∫
Ω

u
m(1+θ−γ)
m−1

n dx

]1− 1
m

.
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Then, we get ∫
Ω

|∇un|pdx ≤ c

[∫
Ω

u
m(1+θ−γ)
m−1

n dx

]1− 1
m

. (4.18)

The condition m(1+θ−γ)
m−1

≤ ms, ensure that s ≥ 1+θ−γ
m−1

. Then by (4.12) the right-hand side of (4.18) is
uniformly bounded, so we can get ∫

Ω

|∇un|pdx ≤ c. (4.19)

In order to prove that the limit function u is a solution of (4.1) in the sense of Definition 4.1, we need
to show that we can pass to the limit in the weak formulation of the approximating problems (4.10).

Now we focus on the left-hand side of (4.13), by (4.19) we conclude that there exists a subsequence,
still indexed by n, and a measurable function u in W 1,p

0 (Ω), such that un ⇀ u weakly in W 1,p
0 (Ω) and

un −→ u a.e in Ω. Fatou’s lemma implies u ∈ Lms+γ(Ω). We see that (see [[21], Lemma 5] and see also
[48, 77])

∇un −→ ∇u a.e in Ω. (4.20)

Next, we pass to the limit in (4.13). By (4.20), we can easily obtain

|∇un|p−2.|∇un|⇀ |∇u|p−2.|∇u| weakly in Lp
′
(Ω).

Moreover,
a(x, Tn(un))∇ϕ −→ a(x, u)∇ϕ in Lp(Ω).

Consequently, we have∫
Ω

a(x, Tn(un))|∇un|p−2.∇un∇ϕdx −→
∫

Ω

a(x, u)|∇u|p−2.∇u∇ϕdx.

Therefore, we can pass to the limit in the first term of the left-hand side of (4.13). We will show that

|un|s−1un → |u|s−1u in L1(Ω). (4.21)

We take Sη,k(un) as a test function in the weak formulation (4.10), we deduce∫
Ω

a(x, Tn(un))|∇un|pS ′η,k(un)dx+

∫
Ω

|un|s−1unSη,k(un)dx

≤ sup
s∈[k,∞)

[h(s)]

∫
Ω

fnSη,k(un),

which, observing that the first term on the left hand side is non negative and taking the limit with
respect to η → 0, implies ∫

{un≥k}
|un|s−1undx ≤ sup

s∈[k,∞)

[h(s)]

∫
{un≥k}

fndx,

which, since fn converges to f in Lm(Ω), easily implies that |un|s−1un is equi-integrable and so it
converges to |u|s−1u in L1(Ω), this concludes (4.21).
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The next step we want to pass to the limit in the right hand side of (4.13).
Let us take 0 ≤ ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω) as test function in the weak formulation of (4.10), by using the
young inequality and the hypotheses in (4.2) and (4.3), we have∫

Ω

hn(un)fnϕ =

∫
Ω

a(x, Tn(un))|∇un|p−2.∇un∇ϕdx+

∫
Ω

us−1
n unϕdx

≤ C||ϕ||L∞(Ω) + β

∫
Ω

|∇un|p−1∇ϕdx+
1

s

∫
Ω

usndx+
1

s′

∫
Ω

ϕs
′
dx

≤ C||ϕ||L∞(Ω) + β
p− 1

p

∫
Ω

|∇un|pdx+ β
1

p

∫
Ω

|∇ϕ|pdx+
1

s

∫
Ω

usndx+
1

s′

∫
Ω

ϕs
′
dx

≤ C||ϕ||L∞(Ω) + C

[∫
Ω

|∇ϕ|pdx+

∫
Ω

|∇un|pdx
]

+
1

s
‖un‖Ls(Ω) +

1

s′
‖ϕ‖Ls′ (Ω),

then ∫
Ω

hn(un)fnϕ ≤ C||ϕ||L∞(Ω) + C[||ϕ||W 1,p
0 (Ω) + ||un||W 1,p

0 (Ω)] +
1

s
‖un‖Ls(Ω) +

1

s′
‖ϕ‖Ls′ (Ω). (4.22)

From now on, we assume that h(s) is unbounded as s tends to 0. An application of the Fatou Lemma
in (4.22) with respect to n gives ∫

Ω

h(u)fϕ ≤ c, (4.23)

where c does not depend on n.
Hence fh(u)ϕ ∈ L1(Ω) for any nonnegative ϕ ∈ W 1,p

0 (Ω). As a consequence, if h(s) is unbounded as s
tends to 0, we deduce that

{u = 0} ⊂ {f = 0} (4.24)

up to a set of zero Lebesgue measure.
Now, for δ > 0, we split the right hand side of (4.13) as∫

Ω

hn(un)fnϕdx =

∫
{un≤δ}

hn(un)fnϕdx+

∫
{un>δ}

hn(un)fnϕdx, (4.25)

and we pass to limit as n→ +∞ and then δ → 0, we remark that we need to choose δ 6= {η; |u = η| > 0},
which is at most a countable set, for the second term (4.25) we have

0 ≤ hn(un)fnϕχ{un>δ} ≤ sup
s∈]δ,∞)

[h(s)]fϕ ∈ L1(Ω), (4.26)

which precis to apply the Lebesgue Theorem with respect n. Hence on has

lim
n→+∞

∫
{un>δ}

hn(un)fnϕdx =

∫
{u>δ}

h(u)fϕdx.

Moreover it follows by (5.21)that

lim
δ→0+

lim
n→+∞

∫
{un>δ}

hn(un)fnϕdx =

∫
{u>0}

h(u)fϕdx. (4.27)

ABDELAAZIZ SBAI



CHAPTER 4. REGULARIZING EFFECT OF ABSORPTION TERMS IN SINGULAR AND
DEGENERATE ELLIPTIC PROBLEMS 53

Now in order to get rid of the first term of the right hand side of (4.25), we take Vδ(un)ϕ is a test
function in the weak formulation of (4.10),where
Vδ(un) := Vδ,δ(un) is defined in (3.39) and by Lemma 1.1 contained in [34], we have Vδ(un) belongs to
W 1,p

0 (Ω), then (recall V
′

δ (un) ≤ 0 for s ≥ 0)∫
{un≤δ}

hn(un)fnϕdx ≤
∫

Ω

hn(un)fnVδ(un)ϕdx

=

∫
Ω

a(x, Tn(un))|∇un|p−2∇un∇ϕVδ(un)dx

− 1

δ

∫
{δ<un<2δ}

a(x, Tn(un))|∇un|p−2∇unϕ∇undx+

∫
Ω

|un|s−1unVδ(un)ϕdx,

by using (4.2) and (4.3), we have

∫
{un≤δ}

hn(un)fnϕdx ≤ β

∫
Ω

|∇un|p−2∇un∇ϕVδ(un)dx

+

∫
Ω

|un|s−1unVδ(un)ϕdx,

using that Vδ is bounded we deduce that |∇un|p−2∇unVδ(un) converges to |∇u|p−2∇uVδ(u) weakly in
Lp
′
(Ω)N as n tends to infinity. This implies that

lim
n→+∞

∫
{un≤δ}

hn(un)fnϕdx ≤ β

∫
Ω

|∇u|p−2∇u∇ϕVδ(u)dx (4.28)

+

∫
Ω

|u|s−1uVδ(u)ϕdx.

Since Vδ(u) converges to χ{u=0} a.e in Ω as δ tends to 0 and since u ∈ W 1,p
0 (Ω), then |∇u|p−2∇u∇ϕVδ(u)

converges to 0 a.e. in Ω as δ tends to 0. Applying the Lebesgue Theorem on the right hand side of
(4.28) we obtain that

limδ→0+ limn→+∞

∫
{un≤δ}

hn(un)fnϕdx (4.29)

≤ β

∫
{u=0}

|∇u|p−2∇u∇ϕdx+

∫
{u=0}

|u|s−1uϕdx = 0,

by (4.27) and (4.29), we deduce that

lim
n→+∞

∫
Ω

hn(un)fnϕdx =

∫
Ω

h(u)fϕdx ∀0 ≤ ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). (4.30)

Moreover, decomposing any ϕ = ϕ+ − ϕ−, and using that (4.30) is linear in ϕ, we deduce that (4.30)
holds for every ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω).
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We treated h(s) unbounded as s tends to 0, as regards bounded function h the proof is easier and only
difference deals with the passage to the limit in the left hand side of (4.30). We can avoid introducing
δ and we can substitute (4.26) with

0 ≤ fnhn(un)ϕ ≤ f ||h||L∞(Ω)ϕ.

Using the same argument above we have that

lim
n→+∞

∫
Ω

fnhn(un)ϕdx =

∫
Ω

fh(u)ϕdx, (4.31)

whence one deduces (4.7). This concludes the proof of part I.
Part II. Let

1 + θ − γ
pm− 1

< s <
1 + θ − γ
m− 1

.

Taking ϕ = (1 + un)s(m−1)+γ − 1 as a test function in (4.13). Using assumption (4.2) and dropping the
nonnegative term, we get ∫

Ω

|∇un|p

(1 + un)1+θ−s(m−1)−γ dx ≤ c

∫
Ω

|f ||un|s(m−1)dx. (4.32)

Applying Hölder’s inequality in the right-hand side of the estimate (4.32), we get∫
Ω

|f ||un|s(m−1)dx ≤ c

[∫
Ω

ums+γn dx

]1− 1
m

≤ c.

Then, we obtain ∫
Ω

|∇un|p

(1 + un)1+θ−s(m−1)−γ dx ≤ c. (4.33)

Let 1 ≤ σ < p. Writing ∫
Ω

|∇un|σdx =

∫
Ω

|∇un|σ(1 + un)
σ
p

(1+θ−s(m−1)−γ)

(1 + un)
σ
p

(1+θ−s(m−1)−γ)
dx

and using Hölder’s inequality, we get∫
Ω

|∇un|σ(1 + un)
σ
p

(1+θ−s(m−1)−γ)

(1 + un)
σ
p

(1+θ−s(m−1)−γ)
dx ≤ c

[∫
Ω

(1 + un)
σ
p−σ [1+θ−s(m−1)−γ]dx

]1−σ
p

.

Then by (4.33), we arrive at∫
Ω

|∇un|σdx ≤ c

[∫
Ω

(1 + un)
σ
p−σ [1+θ−s(m−1)−γ]dx

]1−σ
p

. (4.34)

We now choose σ in order to have

σ

p− σ
[1 + θ − s(m− 1)− γ] ≤ ms.
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The last inequality is equivalent to

σ ≤ pms

s+ 1 + θ − γ
.

Thanks to Lemma 7.6, if implies that

1 + θ − γ
pm− 1

< s implies
pms

s+ 1 + θ − γ
> 1.

In that case, the right- hand side of (4.34) is uniformly bounded and so we have∫
Ω

|∇un|σdx ≤ c, σ =
pms

1 + θ + s− γ
.

Up to a subsequence, there exists a function u ∈ W 1,σ
0 (Ω) such that

un ⇀ u weakly inW 1,σ
0 (Ω) and un −→ u a.e in Ω.

By Lemma 5 (see[21]), we have ∇un −→ ∇u a.e in Ω. Fatou’s Lemma implies ums+γ ∈ L1(Ω) we will
now pass to the limit in (4.13). We can easily obtain

|∇un|p−2∇un −→ |∇u|p−2∇u weakly in L
σ
p−1 (Ω),

and
a(x, Tn(un))∇ϕ −→ a(x, u)∇ϕ, in L( σ

p−1
)′(Ω).

Therefore,we have∫
Ω

a(x, Tn(un))|∇un|p−2∇un∇ϕdx −→
∫

Ω

a(x, u)|∇u|p−2∇u∇ϕdx.

The remaining two parts in (4.13) are the same as part I.
PART III. Suppose that 0 < s ≤ 1+θ−γ

pm−1
. We show that there exists an entropy solution to problem

(4.10). Estimate (4.33) implies that∫
Ω∩{|un|<k}

|∇un|p

(1 + un)1+θ−s(m−1)−γ dx ≤ c,

and consequently ∫
Ω

|∇Tk(un)|pdx =

∫
Ω∩{|un|<k}

|∇Tk(un)|pdx ≤ c(1 + k)1+θ−s(m−1)−γ. (4.35)

Thanks to Lemma 4.13 there exists a function u such that Tk(u) ∈ W 1,p
0 (Ω) for any k > 0, besides,

passing if necessary to subsequence, we obtain

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω) and a.e.in Ω.

Then, we can pass to the limit in (4.35), to get∫
Ω

|∇Tk(u)|pdx ≤ c(1 + k)1+θ−s(m−1)−γ.
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Lemma 4.12 gives us, if

s ≤ 1 + θ − γ
pm− 1

≤ 1 + θ − γ
m− 1

,

then, we obtain
|∇u| ∈M

pms
1+θ+s−γ (Ω).

Since |un|ms+γ is uniformly bounded in L1(Ω), by applying Fatou Lemma implies that |u|ms+γ ∈ L1(Ω).
We will show that u is an entropy solution of (4.1). Indeed, let us choose

Tk(un − ϕ), ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

as a test function in (4.13), then we have∫
Ω

a(x, Tn(un))|∇un|p−2∇un∇Tk(un − ϕ)dx+

∫
Ω

|un|s−1unTk(un − ϕ)

=

∫
Ω

fnhn(un)Tk(un − ϕ). (4.36)

Let us pass to the limit in (4.36). For the second term on the left-hand side and for the right-hand side,
we can use (4.31)to obtain the limit. For the first term on the left-hand side, we will first show that
∇Tk(un)→ ∇Tk(u) a.e. in Ω. Let ϕ = Tk(un)− Tk(u) in (4.13), then we obtain∫

Ω

a(x, Tn(Tk(un)))|∇un|p−2∇un[∇Tk(un)−∇Tk(u)]dx

+

∫
Ω

|un|s−1un[Tk(un)− Tk(u)] =

∫
Ω

fnhn(un)[Tk(un)− Tk(u)].

As a consequence, we have∫
Ω

a(x, Tn(Tk(un)))[|∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u)]

×[∇Tk(un)−∇Tk(u)]dx

=

∫
Ω

fnhn(un)[Tk(un)− Tk(u)]dx−
∫

Ω

|un|s−1un[Tk(un)− Tk(u)]dx

−
∫

Ω

a(x, Tn(Tk(un)))|∇Tk(u)|p−2∇Tk(u)][∇Tk(un)−∇Tk(u)]dx. (4.37)

We are going to show that the three terms of the right-hand side in (4.37) all converge to zero. For the
first term, we can use the (4.31) to take the limit. As the result of the proof in part one, we obtain

usn → us in L1(Ω). (4.38)

Again, by (4.38), we deduce ∫
Ω

usn[Tk(un)− Tk(u)]dx→ 0 as n→∞.
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We can easily know the fact that a(x, Tn(Tk(un)))|∇Tk(u)|p−2∇Tk(u) ∈ Lp′(Ω). Thus, for every measur-
able set E ⊂ Ω, we can write∫

E

|a(x, Tn(Tk(un)))|∇Tk(u)|p−1|p′dx→ 0 asmeasE → 0.

Because
a(x, Tn(Tk(un)))|∇Tk(u)|p−2∇Tk(u)→ a(x, Tk(u))|∇Tk(u)|p−2∇Tk(u) a.e.in Ω,

using Vitali’s Theorem, we obtain

a(x, Tn(Tk(un)))|∇Tk(u)|p−2∇Tk(u)→ a(x, Tk(u))|∇Tk(u)|p−2∇Tk(u) in Lp
′
(Ω).

Hence one can apply By Lemma 4.13, obtaining that

∇Tk(un)−∇Tk(u) ⇀ 0 weakly in Lp(Ω).

Therefore, ∫
Ω

a(x, Tn(Tk(un)))|∇Tk(u)|p−2∇Tk(u)][∇Tk(un)−∇Tk(u)]dx→ 0 as n→∞.

Therefore from the previous we deduce∫
Ω

a(x, Tn(Tk(un)))|∇Tk(u)|p−2∇Tk(u)][∇Tk(un)−∇Tk(u)]dx→ 0.

So we can apply Lemma 5 in [21] (see also [77, 48]) obtaining ∇Tk(un)→ ∇Tk(u) in Lp(Ω). Therefore,

∇Tk(un)→ ∇Tk(u) a.e. in Ω.

Let m = k + |ϕ|. The first term on the left-hand side in (4.36) can be rewritten as∫
Ω

a(x, Tn(un))|∇Tm(u)|p−2∇Tm(u)∇Tk(un − ϕ)dx.

Since ∇Tm(un)→ ∇Tm(u) a.e.in Ω, as a result of the Fatou’s Lemma, we have

lim inf
n→∞

∫
Ω

a(x, Tn(un))|∇Tm(u)|p−2∇Tm(u)∇Tk(un − ϕ)dx

≥
∫

Ω

a(x, u)|∇Tm(u)|p−2∇Tm(u)∇Tk(un − ϕ)dx

=

∫
Ω

a(x, u)|∇u|p−2∇u∇Tk(un − ϕ)dx.

So we see that u is an entropy solution of (4.1).
Proof of Theorem 4.5. We separate our proof in two parts, according to the values of s

Part I. Suppose 0 < s ≤ N(1−γ)+γ
m(N−1)

. It is obvious that s ≤ N(1−γ)+γ
m(N−1)

, which implies ms + γ ≤ σ∗ for

σ ≥ 1. Thus, from (4.34) and applying Sobolev’s embedding Theorem, we obtain∫
Ω

|un|σ
∗
dx ≤ c

[∫
Ω

(1 + un)
σ
p−σ [1+θ−s(m−1)−γ]dx

] (p−σ)σ∗
pσ

.
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On other hand, if σ
p−σ [1 + θ − s(m− 1)− γ] ≤ σ∗ implies that

σ ≤ N [p+ s(m− 1)− 1− θ + γ]

N + s(m− 1)− 1− θ + γ
.

Therefore, since m > 1 and p > p0 > 1 + (N−1)[1+θ−s(m−1)−γ]
N

, we have

N [p+ s(m− 1)− 1− θ + γ]

N + s(m− 1)− 1− θ + γ
> 1.

∫
Ω

|un|σ
∗
dx ≤ c+ c

(∫
Ω

|un|σ
∗
dx

) (p−σ)σ∗
pσ

. (4.39)

In other hand by Young’s inequality and from (4.39), can get∫
Ω

|un|σ
∗
dx ≤ c.

We now observe that, by (4.34) and since σ
p−σ [1 + θ − s(m− 1)− γ] ≤ σ∗, we have∫

Ω

|∇un|σdx ≤ c, σ ≤ N [p+ s(m− 1)− 1− θ + γ]

N + s(m− 1)− 1− θ + γ
.

The remaining proof of this part is the same as part II in Theorem 4.3, we have can show that u is a
distributional solution to problem (4.1).

Part II. Let s ≥ N(1−γ)+γ
m(N−1)

. Since p > p0, it follows that

N(1− γ) + γ

m(N − 1)
>

1 + θ − γ
pm− 1

,

thus, we can show that u is a distributional solution to the problem (4.1) by the same method as in
Part II of Theorem 4.3.
Proof of Theorem 4.7. We separate our proof in two parts, according to the values of s
Part a. Let s > 1+θ−γ

p−1
. If we choose ϕ = (1 + un)γ − 1 as a test function in (4.13). Using assumption

(4.2) and dropping the non negative term, we can write∫
Ω

|∇un|p

(1 + un)1+θ−γ dx ≤ c+ c

∫
Ω

|f |dx ≤ c. (4.40)

From the other hand, let r < p, writing∫
Ω

|∇un|rdx =

∫
Ω

|∇un|r

(1 + un)
r(1+θ−γ)

p

(1 + un)
r(1+θ−γ)

p dx.

≤
(∫

Ω

|∇un|p

(1 + un)(1+θ−γ)
dx

) r
p
(∫

Ω

(1 + un)
r(1+θ−γ)
p−r dx

)1− r
p
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≤ c

(∫
Ω

(1 + un)
r(1+θ−γ)
p−r dx

)1− r
p

.

Thanks to Lemma 7.6, if

r

p− r
(1 + θ − γ) ≤ s , ie r <

ps

1 + θ + s− γ
.

Then

s >
1 + θ − γ
p− 1

implies ,
ps

1 + θ + s− γ
> 1.

In that case, the right-hand sides is uniformly bounded and so we get∫
Ω

|∇un|rdx ≤ c , r <
ps

1 + s+ θ − γ
.

As a consequence, there exists a function u ∈ W 1,r
0 (Ω) such that

un ⇀ u weakly in W 1,r
0 (Ω) and un −→ u a.e in Ω.

Let
gn = fnhn(un)− Tn(|un|s−1un).

Because gn is bounded in L1(Ω), and un is a solution of{
−div

(
a(x, Tn(un))|∇un|p−2∇un

)
= gn,

un ∈ W 1,p
0 (Ω),

then use the argument of Lemma 1 (see[22]), one may get

∇un −→ ∇u a.e in Ω. (4.41)

We are going to show that u is a distributional solution to problem (4.1) by passing to the limit in
(4.13). We suppose that ϕ ∈ C∞0 (Ω). Since
|∇un|p−2∇un ∈ L

r
p−1 (Ω) and (4.41) hold, we have

|∇un|p−2∇un −→ |∇u|p−2∇u weakly in L
r
p−1 (Ω).

Using Vitali’s Theorem, we obtain

a(x, Tn(un))∇ϕ −→ a(x, u)∇ϕ in L( r
p−1

)′(Ω),

where ( r
p−1

)′ = p−1−r
p−1

. Therefore, we can pass to the limit in the first term on the left-hand side of

(4.13). For the second term on the left hand-side and the first term on the right-hand side in (4.13) we
can namely arguing exactly as part I in Theorem 4.3. Therefore, we conclude that u is a distributional
solution to problem (4.1).
Part b. Let 0 < s ≤ 1+θ−γ

p−1
. Let us choose Tk(un) as a test function in (4.13), using assumption (4.2)

and removing the second term non negative, we get∫
Ω

|∇Tk(un)|pdx ≤ ck1−γ(1 + k)θ ≤ c(1 + k)1−γ+θ. (4.42)
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Now by Lemma 4.13, there exists a function u such that Tk(u) ∈ W 1,p
0 (Ω). Moreover,

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω) ∀k > 0 and un −→ u a.e in Ω.

Fatou’s Lemma implies that |u|s+γ ∈ L1(Ω). We can pass to the limit in (4.42),to obtain∫
Ω

|∇Tk(u)|pdx ≤ c(1 + k)1+θ−γ.

As a result of the Lemma 4.12, we obtain |∇u| ∈M
ps

1+θ+s−γ (Ω).
By the same method as in part II of Theorem 4.3, we can show that u is an entropy solution of

(4.1).

Proof of Theorem 4.9. Let 0 < s ≤ N(1−γ)+γ
N−1

. Then s ≤ N(1−γ)+γ
N−1

implies s + γ ≤ r∗. Using (4.40),
we get ∫

Ω

|∇un|p

(1 + un)1+θ−γ dx ≤ c.

Let 1 ≤ r < p, let us write∫
Ω

|∇un|rdx =

∫
Ω

|∇un|r

(1 + un)
r(1+θ−γ)

p

(1 + un)
r(1+θ−γ)

p dx.

Then it follows from Hölder’s inequality that∫
Ω

|∇un|rdx ≤ c

(∫
Ω

(1 + un)
r(1+θ−γ)
p−r dx

)1− r
p

. (4.43)

On other hand by Sobolev embedding Theorem and from (4.43), we can get(∫
Ω

|un|r
∗
dx

) 1
r∗

≤ c

(∫
Ω

|∇un|rdx
) 1

r

, r∗ =
Nr

N − r
.

Which implies, (∫
Ω

|un|r
∗
dx

) 1
r∗

≤ c

(∫
Ω

(1 + un)
r(1+θ−γ)
p−r dx

) (p−r)r∗
pr

.

being r(1+θ−γ)
p−r ≤ r∗, so that

r ≤ N [p− 1− θ + γ]

N − 1− θ + γ
.

Then, by m = 1 we have p0 = 1 + (1+θ−γ)(N−1)
N(1−γ)+γ

. By virtue of p > p0 > 1 + (N−1)[1+θ−γ]
N

, ensures that

N [p− 1− θ + γ]

N − 1− θ + γ
> 1.

Then, we can obtain∫
Ω

ur
∗

n dx ≤ c

(∫
Ω

(1 + un)r
∗
dx

) (p−r)r∗
p−r

≤ c+ c

(∫
Ω

ur
∗

n dx

) (p−r)r∗
pr

.
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Using Young inequality in the above estimate gives∫
Ω

|un|r
∗
dx ≤ c.

Which together with (4.43) and r
p−r (θ + 1− γ) ≤ r∗ implies∫

Ω

|∇un|rdx ≤ c , r <
N [p− 1− θ + γ]

N − 1− θ + γ
.

Just as in the proof of part I in the Theorem 4.7, we can conclude that u is a distributional solution of
(4.1).
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Chapter 5

Singular elliptic problem involving a
Hardy potential and lower order term

1 Introduction and main results

In the present chapter we will analyze the interaction between b|u|r−2u as an absorption term in
the equation and the term a (up−1/|x|p) involving the Hardy potential in order to prove the existence
and regularity of solution to problem (5.1), for every a > 0 (and not only for a smaller than the Hardy
constant).

Let us consider the following singular elliptic problem
− div(M(x)|∇u|p−2∇u) + b|u|r−2u = au

p−1

|x|p + f
uγ

in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(5.1)

where 1 < p < N ; Ω ⊂ RN is a bounded regular domain containing the origin and 0 < γ ≤ 1.
We assume that M : Ω→ R, is a Lipschitz continuous function such that for some positive constants

α and β
M(x)ξp−1ξ ≥ α|ξ|p, |M(x)| ≤ β for all ξ ∈ RN and almost every x in Ω. (5.2)

Assume that
r > p∗ and a > 0, b > 0 (5.3)

0 ≤ f ∈ Lm(Ω), 1 < m <
N

p
, (5.4)

Now, we give our definition of solution for problem (5.1)

Definition 5.1. We say that u ∈ W 1,1
0 (Ω) is a distributional solution to problem (5.1) if

|∇u|p−1 ∈ L1
loc(Ω), a

up−1

|x|p
+

f

uγ
∈ L1

loc(Ω), b|u|r−2u ∈ L1
loc(Ω) (5.5)
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and for all ϕ ∈ C1
c (Ω), we have∫

Ω

M(x)|∇u|p−2∇u∇ϕdx+ b

∫
Ω

|u|r−2uϕ =

∫
Ω

(
a
up−1

|x|p
+

f

uγ

)
ϕdx. (5.6)

The main result of this paper is the following theorems:

Theorem 5.2. Assume that (5.2), (5.3) and 0 < γ ≤ 1 holde true. Let f be nonnegative function in
Lm(Ω), with

r

r − 1 + γ
≤ m <

N

p

r − p
r − 1 + γ

.

Then there exists a distributional solution u of (5.1), which belongs to W 1,p
0 (Ω) ∩ Lm(r−1+γ)(Ω).

Remark 5.3. Observe that the interval
[

r
r−1+γ

, N
p

r−p
r−1+γ

)
is not empty if r > p∗.

Remark 5.4. Thanks to the presence of the lower order term b|u|r−2u, the result of Theorem 2.1 improves
that of [85] (where b = 0 and p = 2) in several directions. First of all, if

r

r − 1 + γ
≤ m <

2N

N + 2 + γ(N − 2)
,

we have finite energy solutions (instead of infinite energy ones). Furthermore, we have that solutions
exist for every a > 0 (and not only for a smaller than the Hardy constant). Finally, the summability in
Lebesgue spaces, m(r − 1 + γ), is better than the summability (1 + γ)m∗∗ obtained in [85].

Theorem 5.5. Assume that (5.2), (5.3) and 0 < γ ≤ 1 hold true. Let f be nonnegative function in
Lm(Ω), with

1 < m <
r

r − 1 + γ
.

Then there exists a distributional solution u of (5.1), which belongs to W 1,q
0 (Ω) ∩ Lm(r−1+γ)(Ω), where

q is given by

q = pm
r − 1 + γ

r
.

Remark 5.6. In the case p = 2 we can observe also that the result of Theorem 5.5 improves the
result of [85]. Once again we have solutions for every a > 0, and the summability of the gradients

in Lebesgue spaces, i.e., 2m(r−1+γ)
r

, is better than the summability q = Nm(θ+1)
m(1+θ)+(N−2m)

obtained in [85],

since m < N
2

r−2
r−1+γ

. Note that q < 2 because m < r
r−1+γ

.

Remark 5.7. If p = 2 and γ → 0+, the result of Theorem 5.2, Theorem 5.5 coincides with regularity
results for elliptic equation problems involving Hardy potential (see([4],Theorem 2.1 and Theorem 3.1)).

We organize the work as follows. In Section 2, we introduce an approximation of problem (5.1), we
prove the uniform positivity of the approximating solutions. In Section 3, we give the a priori estimates
valid for the case of finite and infinite energy solutions. Finally, in Section 4, we prove Theorems 5.2
and 5.5.
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2 The approximation scheme

To prove our existence results, we work with an approximation of (5.1). Let n ∈ N, fn(x) := Tn(f).
Let us consider the approximate problem:{

− div (M(x)|∇un|p−2∇un) + b|un|r−2un = a (Tn(|un|))p−1

(|x|p+ 1
n

)
+ fn(x)

(|un|+ 1
n)

γ in Ω

un = 0 on ∂Ω.
(5.7)

Lemma 5.8. For each integer n ∈ N, the problem (5.7) admits a non-negative solution W 1,p
0 (Ω) for all

1 < p < N.

Proof. Let n ∈ N be fixed and let v ∈ Lp(Ω). We define the map

S : Lp(Ω)→ Lp(Ω)

v 7→ S(v),

where w = S(v) is the weak solution to the following problem{
− div (M(x)|∇w|p−2∇w) + b|w|r−2w = a (Tn(|w|))p−1

(|x|p+ 1
n

)
+ fn(x)

(|v|+ 1
n)

γ in Ω

w = 0 on ∂Ω.

The existence of a solution w ∈ W 1,p
0 (Ω) follows from the classical results of [68]. Let us take w as a

test function and by (5.2), we get∫
Ω

M(x)|∇w|p−2 · ∇wdx+ b

∫
Ω

|w|r−2w =

∫
Ω

a
(Tn(|w|))p

(|x|p + 1
n
)

+

∫
Ω

fn(x) · w(
|v|+ 1

n

)γ dx,
dropping the second positive order term, we obtain

α

∫
Ω

|∇w|pdx ≤
∫

Ω

a
(Tn(|w|))p−1

(|x|p + 1
n
)

+

∫
Ω

fn(x) · w(
|v|+ 1

n

)γ dx.
Therefore, using the Sobolev inequality on the left hand side and the Hölder inequality on the right
hand side one has [∫

Ω

|w|p∗
]p/p∗

≤ C(a, n, α, γ)

(∫
Ω

|w|p∗
) 1

p∗

,

for some constant C independent on v. This implies

‖w‖Lp∗ (Ω) ≤ C(a, n, α, γ) = R,

so that the ball of Lp
∗
(Ω) of radius R is invariant for S. It is easy to prove, using the Sobolev embedding,

that S is both continuous and compact on Lp
∗
(Ω), so that by Schauder’s fixed point theorem there there

exists un ∈ W 1,p
0 (Ω) such that un = T (un), i.e., un solves{
− div (M(x)|∇un|p−2∇un) + b|un|r−2un = a (Tn(|un|))p−1

(|x|p+ 1
n

)
+ fn(x)

(|un|+ 1
n)

γ in Ω

un = 0 on ∂Ω.
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Moreover, since fn

(|un|+ 1
n)

γ ≥ 0, taking u−n = min (un, 0) test function in (5.7) and using (5.2), then we

get

α

∫
Ω

∣∣∇u−n ∣∣p +

∫
Ω

|un|r−2 (u−n )2
= a

∫
Ω

(Tn(|un|))p−1

(|x|p + 1
n
)
u−n +

∫
Ω

fn(
|un|+ 1

n

)γ u−n ≤ 0,

we obtain

α

∫
Ω

∣∣∇u−n ∣∣p ≤ 0,

so that un ≥ 0 almost everywhere in Ω.
The next step consists in the proof that un is uniformly bounded from below on the compact subsets
of Ω.

Lemma 5.9. Let un be a solution of (5.7). Then for every subset ω ⊂⊂ Ω there exists a positive
constant cω, independent on n, such that

un(x) ≥ cω > 0, for every x ∈ ω and for every n ∈ N.

Proof. Since un solution of (5.7), then

− div
(
M(x)|∇un|p−2∇un

)
+ bur−1

n = a
(Tn(un))p−1

|x|p + 1
n

+
fn(

un + 1
n

)γ ,
as a > 0, then we obtain

− div
(
M(x)|∇un|p−2∇un

)
+ bur−1

n ≥ fn(
un + 1

n

)γ ,
this implies that the sequence un is a supersolution to problem

− div
(
M(x) |∇v|p−2∇v

)
+ b |v|r−2 v = fn

(|v|+ 1
n)

γ in Ω

v > 0 in ∂Ω
v = 0 on ∂Ω.

Thanks to Lemma 2.2 in [23], ∃cω > 0 (independent of n ) such that v ≥ cw in ω,∀n ∈ N,∀ω ⊂⊂ Ω,
since un ≥ v, so

un ≥ cω in ω,∀n ∈ N,∀ω ⊂⊂ Ω.

3 A priori estimates

In order to prove the existence of solutions for problem (5.1), we first need some a priori estimates on
un. We start by proving the following lemma

Lemma 5.10. Let un be the solution of problem (5.7), with 0 < γ ≤ 1. Assume that f be a nonnegative
function in Lm(Ω) with r

r−1+γ
≤ m < N

p
r−p

r−1+γ
and suppose that (5.2) and (5.3) hold. Then, un is

bounded in W 1,p
0 (Ω) ∩ Lm(r−1+γ)(Ω).
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Proof. Let un be a solution of (5.7). We use uλ+1
n with λ = (m − 1)(r − 1) − 1 + γm (λ ≥ 0, since

m ≥ r
r−1+γ

) as test function in (5.7) and using (5.2), we get

α(λ+ 1)

∫
Ω

|∇un|p uλn + b

∫
Ω

uλ+r
n ≤ a

∫
Ω

uλ+p
n

|x|p + 1
n

+

∫
Ω

fuλ+1−γ
n , (5.8)

dropping the positive first term, then the last inequality becomes

b

∫
Ω

uλ+r
n ≤ a

∫
Ω

uλ+p
n

|x|p + 1
n

+

∫
Ω

fuλ+1−γ
n . (5.9)

In addition, using the Hölder inequality with exponent m and taking into account that
(λ+ 1− γ)m′ = λ+ r, we arrive at∫

Ω

fuλ+1−γ
n ≤ ‖f‖Lm(Ω)

(∫
Ω

u(λ+1−γ)m′

n

) 1
m′

= ‖f‖Lm(Ω)

(∫
Ω

uλ+r
n

) 1
m′

.

Under condition, r > p∗ we have λ+ p < λ+ r. Thus, since(
λ+ r

λ+ p

)′
=
λ+ r

r − p
,

we can write ∫
Ω

uλ+p
n

|x|p + 1
n

≤
(∫

Ω

uλ+r
n

)λ+p
λ+r

(∫
Ω

1

|x|p
λ+r
r−p

) r−p
λ+r

.

Since pλ+r
r−p < N, gives m < N

p
r−p

r−1+γ
. Therefore, we deduce that

∫
Ω

uλ+p
n

|x|p + 1
n

≤ C

(∫
Ω

uλ+r
n

)λ+p
λ+r

.

By the fact that λ+ r = m(r− 1 + γ), removing the positive first term of (5.8) and using the fact that
λ+ r = m(r − 1 + γ), we find that

b

∫
Ω

um(r−1+γ)
n ≤ aC

(∫
Ω

um(r−1+γ)
n

)λ+p
λ+r

+ ‖f‖Lm(Ω)

(∫
Ω

um(r−1+γ)
n

) 1
m′

,

the above estimate implies ∫
Ω

um(r−1+γ)
n ≤ C. (5.10)

By (5.10) and going to back to (5.8) we conclude that∫
Ω

|∇un|p uλn ≤ C.

Since λ ≥ 0, we obtain ∫
{un≥1}

|∇un|p ≤ C. (5.11)
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Observe now that, since {un} is bounded in Lm(r−1+γ)(Ω), and since 1
|x|p belongs to Lρ(Ω) for every

ρ < N
p

, the sequence
{

(Tn(un))p−1/
(
|x|p + 1

n

)}
is bounded in Ls(Ω) for every s such that

1

s
>

p

N
+

p− 1

m(r − 1 + γ)
,

that, implies

s <
Nm(r − 1 + γ)

N(p− 1) + pm(r − 1 + γ)
.

Taking into consideration that
Nm(r − 1 + γ)

N(p− 1) + pm(r − 1 + γ)
> 1,

is equivalent to

m >
N

N − p
p− 1

r − 1 + γ
,

which is true, since N
N−p

p−1
r−1+γ

< 1, by the assumption r > p∗. Therefore,

the sequence

{
(Tn(un))p−1/

(
|x|p +

1

n

)}
is bounded in L1(Ω). (5.12)

On other choosing Tk (un) as test function in (5.7), we obtain, dropping a positive term,

α

∫
Ω

|∇Tk (un)|p ≤ C, (5.13)

which, together with (5.11), yields that {un} is bounded in W 1,p
0 (Ω) for every a > 0.

We now deal with the case of f belonging to Lm(Ω), 1 < m < r
r−1+γ

. In this case, one cannot expect

to have solutions in W 1,p
0 (Ω), but in a larger space

Lemma 5.11. Let un be the solution of problem (5.7), with 0 < γ ≤ 1. Assume that f be a nonnegative
function in Lm(Ω) with 1 < m < r

r−1+γ
and suppose that (5.2) and (5.3) hold. Then, un is bounded in

W 1,q
0 (Ω) ∩ Lm(r−1+γ)(Ω), where

q = pm
r − 1 + γ

r
.

Proof. As in the proof of Lemma 6.10, we consider the approximate problems (5.7). Let ε > 0, since
1 < m < r

r−1+γ
, we have 0 < µ := 1− γm− (m− 1)(r − 1) < 1 and define

v =
un

(un + ε)µ
, (5.14)

then, we can write

∇v =
∇un

(un + ε)µ
− µ ∇unun

(un + ε)µ+1 =
(1− µ)un + ε

(un + ε)µ+1 ∇un,

by using (5.2), we deduce that

M(x)|∇un|p−2∇un∇v ≥ α
(1− µ)un + ε

(un + ε)µ+1 |∇un|
p ≥ α(1− µ)

|∇un|p

(un + ε)µ
. (5.15)
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Now testing (5.7) by(5.14) and observe that (5.15), we obtain

α(1− µ)

∫
Ω

|∇un|p

(un + ε)µ
+ b

∫
Ω

urn
(un + ε)µ

≤ a

∫
Ω

up−µn

|x|p + 1
n

+

∫
Ω

fu1−µ−γ
n . (5.16)

Dropping the positive first term, and then letting ε tend to zero, we thus have

b

∫
Ω

ur−µn ≤ a

∫
Ω

up−µn

|x|p + 1
n

+

∫
Ω

fu1−µ−γ
n ,

which is nothing but (5.9), since µ = −λ. Starting from this inequality, and working as in the proof of
Lemma 6.10, we prove the boundedness of {un} in Lm(r−1+γ)(Ω). Using this fact and (5.16), we obtain∫

Ω

|∇un|p

(un + ε)µ
≤ C. (5.17)

Let q < p, applying Hölder inequality and by (5.17), we find∫
Ω

|∇un|q =

∫
Ω

|∇un|q

(un + ε)
µq
p

(un + ε)
µq
p ≤ C

(∫
Ω

(un + ε)
µq
p−q

) p−q
p

.

Finally we choose q such that µq
p−q = m(r − 1 + γ), it is easy to verify that q = pm r−1+γ

r
. Therefore,

{un} is bounded in W 1,q
0 (Ω), with q = pm r−1+γ

r
.

4 Proofs of Theorems 5.2 and 5.5

We are ready to prove the existence of at least a solution of (5.1) in the sense of Definition 7.1
Proof of Theorem 5.2. Thanks to Lemma 5.10, the sequence {un} is bounded in W 1,p

0 (Ω). Therefore,
there exists a function u ∈ W 1,p

0 (Ω) such that (up to a subsequence){
un ⇀ u in W 1,p

0 (Ω)

un → u a.e. in Ω.
(5.18)

We use the fact that, thanks to (5.12), (5.10)) and Lemma 5.9, we have that the right-hand side

a
(Tn(|un|))p−1

(|x|p + 1
n
)

+
fn(x)(
|un|+ 1

n

)γ − b|un|r−2un is bounded in L1
loc(Ω).

Therefore, thanks to Remark 2.2 after Theorem 2.1 of [26], we have that

∇un → ∇u a.e. in Ω. (5.19)

For the first term, by (5.19) we have that

M(x) |∇un|p−2∇un →M(x)|∇u|p−2∇u a.e. in Ω,
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furthermore M(x) |∇un|p−2∇un is majorette by β |∇un|p−1 and by Vitali’s Theorem, we have

lim
n→∞

∫
Ω

M(x) |∇un|p−2∇un · ∇ϕ =

∫
Ω

M(x)|∇u|p−2∇u · ∇ϕ.

On other hand, by (5.18) we can see also that, the sequence {un} converges to u strongly in Lp(Ω)
and almost everywhere in Ω. As for the sequence

{
Tn(un)p−1/

(
|x|p + 1

n

)}
, since it is bounded in Ls(Ω)

for some s > 1, it strongly converges to up−1

|x|p in L1(Ω). Since {un} is bounded in Lm(r−1+γ)(Ω) and
m > 1, we also have that

|un|r−2 un strongly converges to |u|r−2u in L1(Ω). (5.20)

Next, let ω = {ϕ 6= 0} the by Lemma 5.9, one has, for every ϕ ∈ C1
c (Ω)∣∣∣∣∣ fnϕ(

un + 1
n

)γ
∣∣∣∣∣ 6 ‖ϕ‖L∞(Ω)

cγω
f,

then from the later estimate, (5.18) and applying Lebesgue Theorem, we obtain

lim
n→∞

∫
Ω

fnϕ(
un + 1

n

)γ =

∫
Ω

fϕ

uγ
. (5.21)

Therefore, if ϕ belongs to C1
c (Ω), we can pass to the limit in the identities∫

Ω

M(x)|∇un|p−2∇un∇ϕ+ b

∫
Ω

|un|r−2 unϕ

= a

∫
Ω

(Tn(un))p−1

|x|p + 1
n

ϕ+

∫
Ω

fn
(un + 1

n
)γ
ϕ.

Hence, we conclude that the solution u satisfes the conditions (5.5) and (5.6) of Definition 7.1, so that
the proof of Theorem 5.2 is now completed.
Proof of Theorem 5.5. In virtue of the Lemma 5.11, the sequence of approximated solutions un is
bounded in W 1,q

0 (Ω), with q = pm r−1+γ
r

, so that it weakly converges (up to sub-sequences) to a function
u in the same space. Observing that p− 1 < q. Therefore, we can obtain a solution passing to the limit,
namely arguing exactly as in Theorem 5.2.
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Chapter 6

Existence and Regularity of solutions to a
singular elliptic equation with natural

growth in the gradient

1 Introduction

In this chapter we investigate the interaction between two regularizing terms in the following
nonlinear elliptic equation − div a(x,∇u) + µ|u|p−1u = b(x) |∇u|

q

uθ
+ f(x)

uγ
in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(6.1)

where Ω is an open and bounded subset of RN , f is a nonnegative Lm(Ω) function with m ≥ 1 and,
given a real number p such that 2 ≤ p < N, we have that a : Ω×RN → RN is a Carathéodory function
such that the following holds: there exist α, β ∈ R+ such that

(a(x, ξ)− a(x, η)) · (ξ − η) > 0 fora.e. x ∈ Ω and ∀ξ, η ∈ RN s.t. ξ 6= η (6.2)

a(x, ξ) · ξ > α|ξ|p (6.3)

for a.e. x ∈ Ω and ∀ξ ∈ RN

|a(x, ξ)| 6 β|ξ|p−1 (6.4)

for a.e. x ∈ Ω and ∀ξ ∈ RN and we assume that

0 < γ ≤ 1, (6.5)

0 ≤ b(x) ∈ L∞(Ω), (6.6)

0 < θ ≤ 1, (6.7)

and

0 ≤ µ, p− 1 ≤ q <
p(p+ β)

p+ 1
. (6.8)
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The assumptions on the function a imply that the differential operator A acting between W 1,p
0 (Ω) and

W−1,p′(Ω) and defined by
A(u) = − div(a(x,∇u))

is coercive, monotone, surjective and satisfies the maximum principle. The simplest case is the p-
Laplacian, which corresponds to the choice a(x, ξ) = |ξ|p−2ξ.

In section 2 we construct an approximate problem of (1), the existence of weak solution of the last
one is proved by Schauder’s fixed point Theorem. In section 3.1 is devoted to prove to the existence
and regularity results both in case q = p − 1,µ = 0 and f ∈ Lm(Ω)with m > 1. In the last section we
deal with the case p − 1 < q < p, µ > 0 and f ∈ L1(Ω), we prove the existence of solution of problem
(6.1). Note that the presence of the lower order term µ|u|p−1u is crucial in the sense that it guarantees
the existence of solution when the data f belongs only in L1(Ω).

2 A priori estimates

We will prove the existence of solutions of problem (6.1) by a standard approximation procedure which
avoids singularities. To this end, we consider for n ∈ N the following approximate problem

− div (a (x,∇un)) + µ|un|p−1un
= b(x) |∇un|q

(1+ 1
n
|∇un|q)( 1

n
+un)

θ + fn
( 1
n

+un)γ
inΩ

un ≥ 0 inΩ
un = 0 on∂Ω

(6.9)

where fn = Tn(f). The weak formulation of (6.9) is∫
Ω

a(x,∇un)∇ϕ+

∫
Ω

µ|un|p−1unϕ =

∫
Ω

b(x)
|∇un|q(

1 + 1
n
|∇un|q

) (
1
n

+ un
)θϕ (6.10)

+

∫
Ω

fn
( 1
n

+ un)γ
ϕ, ∀ϕ ∈ C1

c (Ω).

Now, we briefly sketch how to deduce the existence of a nonnegative solution un ∈ W 1,p
0 (Ω)∩L∞(Ω) of

problem (6.9) . Firstly, let us observe that it follows from [22] that there exists a nonnegative solution
to 

− div (a (x,∇w)) + µ|w|p−1w

= b(x) |∇w|q

(1+ 1
n
|∇w|q)( 1

n
+w)

θ + fn
( 1
n

+v)γ
in Ω

w = 0 on ∂Ω

(6.11)

for any nonnegative v belonging to Lp(Ω) and such that ‖w‖L∞(Ω) ≤ cn for some positive constant cn
which does not depend on v. Now, through an application of the Schauder theorem, one can show that
the application T : Lp(Ω) 7→ Lp(Ω) such that T (v) = w admits a fixed point. Hence, let us show an
invariant ball for T on which the application is both continuous and compact. Indeed, taking w as a
test function in (6.11), one has

α

∫
Ω

|∇w|p ≤ cp||b||L∞(Ω)c(n, θ, γ)|Ω|p′
( ∫

Ω

|∇w|pdx
) 1
p (6.12)
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Then, an application of the Poincaré inequality gives that

‖w‖Lp(Ω) ≤

(
cp||b||L∞(Ω)c(n, θ, γ)|Ω|p′

α

)p′

= r

where cp is the Poincaré constant. Therefore the ball of the radius r is invariant for T . Now, let vk a
sequence in the ball of radius r which converges to v in Lp(Ω) as k → ∞ and let wk = T (vk). Then,
in order to show the continuity of T, one needs to prove that wk converges to w = T (v) in Lp(Ω) as
k → ∞. To this aim, let us observe that an application of (6.12) gives that wk is bounded in W 1,p

0 (Ω)
with respect to k; moreover, it follows from Lemma 2 of [21] that wk is also bounded in L∞(Ω) with
respect to k. Now, under the above assumptions, Lemma 4 of [21] gives that, up to subsequences,
wk converges to a function w in W 1,p

0 (Ω). This is sufficient to pass to the limit as k → ∞ the weak
formulation of the equation solved by wk in order to deduce that w = T (v). For the compactness, it is
sufficient to underline that if vk is bounded in Lp(Ω) then one can recover that wk is bounded in W 1,p

0 (Ω)
with respect to k thanks to (6.12); this implies that, up to subsequences, it converges to a function in
Lp(Ω). Then, we are in position to apply the Schauder theorem in order to deduce the existence of
un. Moreover, due to the fact that the right-hand side is positive and that the operator A satisfies the
maximum principle, we can conclude that un ≥ 0.

Lemma 6.1. let unbe a solution to (6.9) then for every ω ⊂⊂ Ω there exists a constant cω > 0 which
does not depend on n and such that

un ≥ cω a.e. in ω (6.13)

Proof. Let µ ≥ 0, 0 ≤ fn and let us now consider v ∈ W 1,p
0 (Ω) ∩ L∞(Ω) solution to − div(a(x,∇v)) + µ|v|p−1v = f

vγ
in Ω

v > 0 in Ω
v = 0 on ∂Ω

and we observe that by Lemma 2.2 of [23] one has that for any ω ⊂⊂ Ω there exists cω > 0 such that

v ≥ cω a.e. in ω (6.14)

Now, let us take (v − un)+ as a test function in the difference of weak formulations solved by v and un;
it yields ∫

Ω
(a(x,∇v)− a (x,∇un)) · ∇ (v − un)+ +

∫
Ω

(|v|p−1v − |un|p−1un) (v − un)+

≤
∫

Ω
fn

(un+ 1
n)

γ
−(v+ 1

n)
γ

(un+ 1
n)

γ
(v+ 1

n)
γ (v − un)+

−
∫

Ω
|∇un|q

( 1
n

+un)γ(1+ 1
n
|∇un|q)

(v − un)+ ≤ 0

which, since the second term on the left hand side is nonnegative, implies∫
Ω

(a(x,∇v)− a (x,∇un)) · ∇ (v − un)+ ≤ 0

and this gives that un ≥ v almost everywhere in Ω. Consequently, the desired conclusion is a direct
consequence of (6.14).
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3 The main results and their proof

3.1 The case q = p− 1, µ = 0 and f ∈ Lm(Ω) with m > 1

In this subsection, we want to analyse the case 0 < γ ≤ 1, µ = 0, 0 ≤ f ∈ Lm(Ω)(m > 1). We first
give the definition of a distributional solution to problem (6.1)

Definition 6.2. Let f be a nonnegative (not identically zero) function in Lm(Ω) function, with m > 1.
A positive and measurable function u is a distributional solution to problem (6.1) if u ∈ W 1,1

0 (Ω), if

|a(x,∇u)|, |∇u|
p−1

uθ
∈ L1

loc (Ω),

∀ω ⊂⊂ Ω, ∃cω > 0 : u ≥ cω in ω (6.15)

and if ∫
Ω

a(x,∇u)∇ϕ =

∫
Ω

b(x)
|∇u|p−1

uθ
ϕ+

∫
Ω

f(x)

uγ
ϕ, ∀ϕ ∈ C1

c (Ω). (6.16)

The main results of this subsection are as follows:

Theorem 6.3. Assume (6.3),(6.4) and (6.5). Then, if m1 = mN(p−1+γ)
N−pm and m̃ = Nm(p−1+γ)

N+m(1−γ)
there exists

a distributional solution u of (7.4)

u ∈
{
Lm1(Ω) if 1 < m < N/p,
L∞(Ω) if m > N/p,

|∇u| ∈
{
Lm̃(Ω) if 1 < m < pN/[N(p− 1 + γ) + p(1− γ)]
Lp(Ω) if m ≥ pN/[N(p− 1 + γ) + p(1− γ)]

and if r = m̃
p−1

, we have

|∇u|p−1

uθ
∈
{
Lrloc(Ω) if 1 < m < pN/[N(p− 1 + γ) + p(1− γ)]

Lp
′

loc(Ω) if m ≥ pN/[N(p− 1 + γ) + p(1− γ)].

Furthermore, if 0 < θ < (p− 1)(1− γ)/p and r = Nm(p− 1 + γ)/[N(p− 1− θ)−m[(p− 1)(1− γ)− pθ],
then

|∇u|p−1

uθ
∈

{
Lr(Ω) if 1 < m < p(p−1)N(1−θ)

N(p−1)(p−1+γ)+p(p−1)(1−γ)−p2θ

Lp
′
(Ω) if m ≥ p(p−1)N(1−θ)

N(p−1)(p−1+γ)+p(p−1)(1−γ)−p2θ
.

Remark 3.1. In the case where the lower order term does not exist (i.e., b(x) = 0), the results of previous
theorem coincide with regularity results obtained in ([41, Theorem 4.4]).

Remark 3.2. If p = 2 and γ = 0; the result of Theorem 6.3 coincides with regularity results of [24].

Now, we can prove the following existence and regularity result

Lemma 6.4. Let un be a solution of problem (6.9) and suppose that (6.3)–(6.7) hold true, let f be a
nonnegative function in Lm(Ω), with 1 < m < N/p, σ = min (m̃, p) , r = m̃

p−1
. Then we have

• The sequence {un} is bounded in Lm1(Ω) ∩W 1,σ
0 (Ω). (6.17)

• The sequence

{
|∇un|p−1

uθn

}
is bounded inLrloc(Ω) ∩ Lp

′

loc(Ω), (6.18)

with m̃ and m1 are defined in the Theorem 6.3.
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Proof. Here, and in the following, we will denote by C the generic constant which is independent of
n ∈ N. Define, for k > 0 and s > 0

ηk(s) =
1

k
Tk (G1(s)) =


0, if 0 ≤ s < 1
s−1
k
, if 1 ≤ s < 1 + k

1, if s ≥ 1 + k.

We choose vn = u
pλ−(p−1)
n ηk (un) as test function in the weak formulation of (6.10) (this choice is possible

since every un belong to W 1,p
0 (Ω)∩L∞(Ω)). Noting that since fn ≤ f and let λ > 1/p′, dropping a first

non negative term, we obtain

α(pλ− (p− 1))

∫
Ω

|∇un|p upλ−pn ηk (un)

≤
∫

Ω

b(x)
|∇un|p−1 u

pλ−(p−1)
n(

1 + 1
n
|∇un|p−1) ( 1

n
+ un

)θ ηk (un) +

∫
Ω

fnu
pλ−(p−1)−γ
n ηk (un)

≤ ‖b‖L∞(Ω)

∫
Ω

|∇un|p−1 u(p−1)(λ−1)
n ηk (un)uλ−θn +

∫
Ω

fupλ−(p−1)−γ
n ηk (un) .

Let ε > 0 be such that 0 < ε‖b‖L∞(Ω) < α(pλ− (p− 1)). By Young inequality with ε, we deduce that

[α(pλ− (p− 1))− ‖b‖L∞(Ω)]

∫
Ω

|∇un|p upλ−pn ηk (un)

≤ C‖b‖pL∞(Ω)

∫
Ω

ηk (un)up(λ−θ)n +

∫
Ω

fupλ−(p−1)−γ
n ηk (un) .

Letting k tend to zero, and Lebesgue Theorem in the right-hand side using and Fatou Lemma in the
left-hand side, we get

C

∫
{un≥1}

|∇un|p upλ−pn ≤
∫
{un≥1}

up(λ−θ)n +

∫
{un≥1}

fupλ−(p−1)−γ
n . (6.19)

We now remark that for every t ≥ 1 and δ > 0, there exists Cδ > 0 such that

tp(λ−θ) ≤ δtpλ + Cδ. (6.20)

The inequality is trivially true if θ ≥ λ, while is a consequence of Young inequality if λ > θ. Recall that
the estimate (6.19), we have∫

{un≥1}
|∇un|p upλ−pn ≤ δ

∫
{un≥1}

upλn + |Ω|Cδ +

∫
{un≥1}

fupλ−(p−1)−γ
n . (6.21)

Taking into account that 0 ≤ un = T1 (un) + G1 (un) ≤ 1 + G1 (un) , and using Poincaré inequality, we
conclude that

C

∫
Ω

∣∣∣∇G1 (un)λ
∣∣∣p ≤ δ

∫
Ω

G1 (un)pλ + C +

∫
Ω

fG1 (un)pλ−(p−1)−γ

≤ δ

λ1

∫
Ω

∣∣∣∇G1 (un)λ
∣∣∣p + C +

∫
Ω

fG1 (un)pλ−(p−1)−γ ,
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where λ1 is the Poincaré constant for Ω (i.e. the first eigenvalue of the Laplacian with homogeneous
Dirichlet boundary conditions). Choosing δ small enough, we thus have∫

Ω

|∇G1 (un)λ |p ≤ C + C

∫
Ω

fG1 (un)pλ−(p−1)−γ .

Following the same technique as in [22], choosing λ = m1

p∗
, it is easy to see that if

λ = m(N−p)[p−1+γ]
p(N−pm)

> (N−p)[p−1+γ]
p(N−p) = p−1+γ

p
if only if m > 1. Note that with such a choice, we have that

λp∗ = m1, and (pλ − (p − 1) − γ)m′ = λp∗ = m1 = Nm[p−1+γ]
N−pm . Therefore, using Sobolev and Hölder

inequalities, we get

S
(∫

Ω

G1 (un)m1

) p
p∗

≤
∫

Ω

∣∣∣∇G1 (un)λ
∣∣∣p ≤ C + C

∫
Ω

fG1 (un)pλ−(p−1)−γ

≤ C + C‖f‖Lm(Ω)

(∫
Ω

G1 (un)m1

) 1
m′

,

where S is the Sobolev constant, thanks to the assumption m < N/p, we have p/p∗ > 1/m′, putting to
gather all the previous estimates we conclude that

‖G1 (un)‖Lm1 (Ω) ≤ C‖f‖Lm(Ω). (6.22)

Note that from the boundedness of {G1 (un)} in Lm1(Ω) it trivially follows the boundedness of {un} in
Lm1(Ω) since, as before, 0 ≤ un ≤ 1 +G1 (un) .
Now we point out that m ≥ pN

N(p−1)+p(1−γ)+γN
, since λ ≥ 1. Therefore from (6.21) and (6.22) (note that

the right-hand side is bounded), we have that∫
Ω

|∇G1 (un)|p ≤
∫
{un≥1}

|∇un|p upλ−pn ≤ C,

we deduce that the sequence {G1 (un)} is bounded in W 1,p
0 (Ω). If on the other hand 1 < m <

pN
N(p−1)+p(1−γ)+γN

, then λ < 1 and we have to proceed differently. Let now σ be such that the use
of by Hölder inequality, σ < p we obtain∫

Ω

|∇G1 (un)|σ =

∫
Ω

|∇G1 (un)|σ

u
σ(1−λ)
n

uσ(1−λ)
n

≤
(∫
{un≥1}

|∇un|p upλ−pn

)σ
p
(∫
{un≥1}

u
pσ(1−λ)
p−σ

n

) p−σ
p

.

Imposing σ = Nm(p+γ−1)
N−m(1−γ)

(= m̃), we obtain pσ(1−λ)
p−σ = m1, so that the above inequality becomes, thanks

to (6.21) and (6.22) ∫
Ω

|∇G1 (un)|m̃ ≤ C.

Summing up, we have therefore proved that the sequence:

{G1 (un)} is bounded in Lm1(Ω) ∩W 1,σ
0 (Ω), σ = min (m̃, p) . (6.23)
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On the other hand, taking T1 (un) as test function in (6.9) , we have

α

∫
Ω

|∇T1 (un)|p ≤‖b‖L∞(Ω)

∫
Ω

|∇T1 (un)|p−1(
1
n

+ un
)θ T1 (un)

+ ‖b‖L∞(Ω)

∫
Ω

|∇G1 (un)|p−1 +

∫
Ω

f

≤ ‖b‖L∞(Ω)

∫
Ω

|∇T1 (un)|p−1

+ ‖b‖L∞(Ω)

∫
Ω

|∇G1 (un)|p−1 +

∫
Ω

f,

which implies (thanks to (6.23) ) that the sequence {T1 (un)} is bounded in W 1,p
0 (Ω). This estimate and

the estimate (6.23) give (6.17). First case: The proof of (6.18) is then a simple consequence of (6.13)
and (6.17), if w ⊂⊂ Ω, then

∫
w

(
|∇un|p−1

uθn

)p′

≤ 1

cp
′θ
w

∫
Ω

|∇un|p ≤ C (6.24)

In the second case, we take r = m̃
p−1

, then by (6.13) and (6.17), we have

∫
w

(
|∇un|p−1

uθn

)r

≤ 1

crθw

∫
Ω

|∇un|m̃ ≤ C (6.25)

Using (6.24) and (6.25), we deduce that (6.18) holds true.

Lemma 6.5. Let un be a solution of (6.9) under assumptions(6.3)–(6.7) and let f be a nonnegative
function in Lm(Ω). Then, if m > N/p

The sequence {un} is bounded inL∞(Ω) ∩W 1,p
0 (Ω) (6.26)

The sequence

{
|∇un|p−1

uθn

}
is bounded inLp

′

loc(Ω). (6.27)

Proof. We take vn = Gk (un) as test function in (6.9). We obtain, using (6.3),(6.4) and (6.5)

α

∫
{un≥k}

|∇un|p ≤ ‖b‖L∞(Ω)

∫
{un≥k}

|∇un|p−1 Gk (un)

uθn
+

∫
{un≥k}

fGk (un)

(un + 1
n
)γ

≤ 1
kθ
‖b‖L∞(Ω)

∫
{un≥k}

|∇un|p−1Gk (un) +

∫
{un≥k}

f(x)Gk (un)

(un + 1
n
)γ

.

Noting that un + 1
n
≥ k ≥ 1 on the set An,k, where Gk (un), we have

α

∫
{un≥k}

|∇un|p ≤
1

kθ
‖b‖L∞(Ω)

∫
{un≥k}

|∇un|p−1Gk (un) +

∫
{un≥k}

fGk (un) .
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and by Young and Poincaré inequalities, we have that∫
{un≥k}

|∇un|p−1Gk (un) ≤ 1

p′

∫
{un≥k}

|∇un|p +
1

p

∫
{un≥k}

Gk (un)p

≤ 1 + λ1(p− 1)

pλ1

∫
{un≥k}

|∇un|p .

Therefore, (
α− 1

kθ

‖b‖(1+λ1(p−1))
L∞(Ω)

pλ1

)∫
{un≥k}

|∇un|p ≤
∫
{un≥k}

fGk (un) .

Next, we can take k > k0, with

k0 =

(
‖b‖L∞(Ω) (1 + λ1(p− 1))

αλ1

) 1
θ

, (6.28)

we have
α

p′

∫
{un≥k}

|∇un|p ≤
∫
{un≥k}

fGk (un) .

From this point outwards we can proceed as in the proof of [25, Theorem 1.1], to prove that the sequence
{un} is bounded in L∞(Ω), as desired and the proof of (6.27) is essentially the same technique used in
(6.24).

If 0 < θ < (1−γ)/p′, the estimates on the right-hand side |∇un|
p−1

uθn
are not only local but also global.

Lemma 6.6. Let un be a solution of (6.9), let us assume that (6.3)–(6.6) and 0 < θ < (1− γ)/p′, hold
true and that f be a nonnegative function in Lm(Ω), with

m ≥ p(p− 1)N(1− θ)
N(p− 1)(p− 1 + γ) + p(p− 1)(1− γ)− p2θ

(6.29)

then,

The sequence

{
|∇un|p−1

uθn

}
is bounded in Lp

′
(Ω). (6.30)

Proof. We fix λ > (p − 1 + γ)/p, let 0 < ε < 1/n, and choose vn = (un + ε)pλ−(p−1) − εpλ−(p−1) as test
function in (6.9) this choice is possible since every un belong to W 1,p

0 (Ω)∩L∞(Ω). We obtain, dropping
some negative terms

α(pλ− (p− 1))

∫
Ω

|∇un|p (un + ε)pλ−p

≤
∫

Ω

b(x)
|∇un|p−1 (un + ε)pλ−(p−1)(
1 + 1

n
|∇un|p−1) ( 1

n
+ un

)θ +

∫
Ω

fn (un + ε)pλ−(p−1)−γ

≤ ‖b‖L∞(Ω)

∫
Ω

|∇un|p−1 (un + ε)(p−1)(λ−1)+(λ−θ) +

∫
Ω

f (un + ε)pλ−(p−1)−γ .
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In view of the latter estimate we have used that 0 ≤ fn ≤ f. We can apply Young inequality, we
thus obtain

cα(pλ− (p− 1))/p

∫
Ω

|∇un|p (un + ε)pλ−p

≤ C

∫
Ω

(un + ε)p(λ−θ) + C

∫
Ω

f (un + ε)pλ−(p−1)−γ .

Letting ε tend to zero, and using Lebesgue theorem (in the right one, recall that un is in L∞(Ω)) and
Fatou Lemma (in the left-hand side), we arrive at∫

Ω

|∇un|p upλ−pn ≤ C

∫
Ω

up(λ−θ)n + C

∫
Ω

fupλ−(p−1)−γ
n ,

since now our assumption is 0 < θ < (p − 1 + γ)/p and λ > (p − 1 + γ)/p, we have that λ > θ; thus,
using Young inequality we have that, for δ > 0∫

Ω

|∇un|p upλ−pn ≤ δ

∫
Ω

upλn + |Ω|Cδ + C

∫
Ω

fupλ−(p−1)−γ
n

≤ δ

λ1

∫
Ω

|∇un|p upλ−pn + C + C

∫
Ω

fupλ−(p−1)−γ
n ,

where in the last inequality we have used Poincaré inequality. Thus if δ is small enough, we have∫
Ω

|∇un|p upλ−pn ≤ C + C

∫
Ω

fupλ−(p−1)−γ
n .

If 1 < m < pN
N(p−1)+p(1−γ)+γN

, the choice λ(m) = m(N−p)(p−1+γ)
p(N−pm)

implies p−1+γ
p

< λ(m) < 1 and (reasoning

as in the proof of Lemma 6.4 ) ∫
Ω

|∇un|p

u
p(1−λ(s))
n

≤ C
(
‖f‖Lm(Ω)

)
. (6.31)

Let m̄ be a real number, such that

m̄ =
pN(1− θ)

N(p− 1)(p− 1 + γ) + p(p− 1)(1− γ)− p2θ
,

we have that λ(m) = 1− θ
p−1

, and so (6.31) becomes

∫
Ω

(
|∇un|p−1

uθn

)p′

≤ C‖f‖Lm̄(Ω), (6.32)

which is (6.30) if m = m̄. Since Ω has finite measure, if m > m̄ and if f belong to Lm(Ω), then it is
also inLm̄(Ω), so that (6.32) still holds for these values of m.
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Lemma 6.7. Let un be a solution of (6.9). Suppose that (6.3)–(6.6) and 0 < θ < (1− γ)/p′ hold true.

Then if r = Nm(p−1+γ)
N(p−1−θ)−m[(p−1)(1−γ)−pθ] and that 0 ≤ f ∈ Lm(Ω), with

1 < m <
pN(p− 1− θ)

N(p− 1)(p− 1 + γ) + p(p− 1)(1− γ)− p2θ
, (6.33)

then,

The sequence

{
|∇un|p−1

uθn

}
is bounded in Lr(Ω). (6.34)

Proof. Let θ > 0 and N > p, we have m < pN
N(p−1)+p(1−γ)+γN

.

Let 1 < r < p′; then, we used Hölder inequality with exponents p′

r
and p′

p′−r , we obtain∫
Ω

(
|∇un|p−1

uθn

)r

=

∫
Ω

|∇un|r(p−1)

u
r(p−1)(1−λ(m))
n

u
r(p−1)(1−λ(m)− θ

p−1
)

n

≤
(∫

Ω

|∇un|p

u
p(1−λ(m))
n

) r
p′
(∫

Ω

u

pr(1−λ(m)− θ
p−1 )

p′−r
n

) p′−r
p′

.

Moreover, using (6.31) which is admissible since m < pN
N(p−1)+p(1−γ)+γN

, we thus obtain

∫
Ω

(
|∇un|p−1

uθn

)r

≤ C‖f‖Lm(Ω)

(∫
Ω

u

pr(1−λ(m)− θ
p−1 )

p′−r
n

) p′−r
p′

. (6.35)

Taking r = r(m) such that
pr(m)(1−λ(m)− θ

p−1
)

p′−r(m)
= Nm(p−1+γ)

N−pm , that is r(m) = Nm(p−1+γ)
N(p−1−θ)−m[(p−1)(1−γ)−pθ] ; the

assumptions on m, and the fact that r(m) is increasing, imply that

1 < N(p−1+γ)
N(1−θ)−(1−γ−pθ) < r(m) < r

(
pN(p−1−θ)

N(p−1)(p−1+γ)+p(p−1)(1−γ)−p2θ

)
= p′, hence by (6.35) we derive that

∫
Ω

(
|∇un|p−1

uθn

)r

≤ C‖f‖Lm(Ω),

as desired.

Now, we are going to prove Theorem 6.3.

Proof of Theorem 6.3. Thanks to (6.17) ( or (6.26)), the sequence {un} of solutions of (6.9) is bounded
in W 1,σ

0 (Ω), with σ = min (m̃, p) . Thus, up to subsequences, un weakly converges to some function u
in W 1,σ

0 (Ω), with σ as above and therefore u satisfies the boundary condition. However, due to the
nonlinear nature of the lower order term, the weak convergence of un is not enough to pass to the limit
in the distributional formulation of (6.9). In order to proceed, we use the fact that, thanks to (6.18) (
or (6.27)), we have that the right-hand side

b(x)
|∇un|p−1(

1 + 1
n
|∇un|p−1) ( 1

n
+ un

)θ is bounded in (at least) L1
loc(Ω).
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Therefore, thanks to Remark 2.2 after Theorem 2.1 of [26] (see also [23] and [68]), we have that ∇un(x)
almost everywhere converges to ∇u(x) in Ω; this implies that

lim
n→+∞

|∇un|p−1(
1 + 1

n
|∇un|p−1) ( 1

n
+ un

)θ =
|∇u|p−1

uθ
almost everywhere in Ω.

This almost everywhere convergence, and the local boundedness of the sequence in Lr(Ω), with

r =
m̃

p− 1
or r = p′, yield that

lim
n→+∞

|∇un|p−1(
1 + 1

n
|∇un|p−1) ( 1

n
+ un

)θ =
|∇u|p−1

uθ
locally weakly in Lr(Ω).

Next we note that, for all 0 < γ ≤ 1 and ϕ ∈ C1
0(Ω), if ω = {x ∈ Ω : |ϕ| > 0}, we have∣∣∣∣ fnϕ

(un + 1/n)γ

∣∣∣∣ 6 ‖ϕ‖∞fcγω
∈ L1(Ω)

and that, for n→∞
fnϕ

(un + 1/n)γ
−→ fϕ

uγ
a.e in Ω.

Here we use the convention that if u = +∞, then fϕ
uγ

= 0. Therefore, by Lebesgue Theorem, it follows
that

lim
n→∞

∫
Ω

fnϕ

(un + 1/n)γ
=

∫
Ω

fϕ

uγ
. (6.36)

Concerning the left hand side of (6.10), we can use the assumption (6.4) on a and the generalized
Lebesgue Theorem, we can pass to the limit for n −→∞ obtaining

lim
n→∞

∫
Ω

a(x,∇un)∇ϕ =

∫
Ω

a(x,∇u)∇ϕ.

We now take ϕ in C1
c (Ω) as test function in (6.9), to have that∫

Ω

a(x,∇un) · ∇ϕ =

∫
Ω

b(x)
|∇un|p−1(

1 + 1
n
|∇un|p−1) ( 1

n
+ un

)θϕ+

∫
Ω

fn
( 1
n

+ un)γ
ϕ.

Passing to the limit in n we obtain∫
Ω

a(x,∇u) · ∇ϕ =

∫
Ω

b(x)
|∇u|p−1

uθ
ϕ+

∫
Ω

f

uγ
ϕ,

for every ϕ in C1
c (Ω), so that u is a solution in the sense of distributions.
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3.2 The case p− 1 ≤ q < p(p+β)
p+1 , µ > 0 and 0 ≤ f ∈ L1(Ω).

In this subsection, we treat the case where 0 ≤ f ∈ L1(Ω), µ > 0, β = min(θ, γ) and p− 1 ≤ q < p(p+β)
p+1

.
Here, we give our main existence result for this subsection

Theorem 6.8. Assume that (6.3)–(6.7) hold true and let f be a nonnegative function in L1(Ω). Then
there exists a solution u for (6.1), in the sense that: u ∈ W 1,r

0 (Ω) ∩ Lp+β(Ω), with β = min(θ, γ),

1 ≤ r < p(p+β)
p+1

, |∇u|
q

uθ
∈ L1

loc(Ω)

∀ω ⊂⊂ Ω, ∃cω > 0 : u ≥ cω in ω (6.37)

and that ∫
Ω

a(x,∇u)∇ϕ+ µ

∫
Ω

upϕ =

∫
Ω

b(x)
|∇u|q

uθ
ϕ+

∫
Ω

f

uγ
ϕ, ∀ϕ ∈ C1

c (Ω).

In the next Lemma well be used in the proof of Theorem 6.8, we state some a priori estimates on
the solution un and on the lower order term of the approximate problem (6.9)

Lemma 6.9. Let un be a solution of (6.9). Suppose that f be a nonnegative function in L1(Ω) and
(6.3)–(6.7) hold true. Then the sequence un is bounded in W 1,r

0 (Ω) ∩ Lp+β(Ω), with β = min(θ, γ),

1 ≤ r < p(p+β)
p+1

and |∇un|q
uθn

is bounded in L1
loc(Ω).

Proof. In the case θ ≥ γ, let
(
G1(un)

)γ
as test function in (6.9), using (6.3),(6.4) and the fact that

0 ≤ fn ≤ f, we thus have

γα

∫
{un≥1}

|∇un|p

u1−γ
n

+

∫
{un≥1}

up+γn ≤ ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

uθ−γn

+

∫
Ω

f (6.38)

and then, by Young inequality, we deduce that

||b||L∞(Ω)

∫
{un≥1}

|∇un|q

uθ−γn

≤ ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

= ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

u
q(1−γ)
p

n

u
q(1−γ)
p

n ≤ γα

p

∫
{un≥1}

|∇un|p

u1−γ
n

+ C

∫
{un≥1}

u
q(1−γ)
p−q

n ,

which implies from (6.38) that

γα

p′

∫
{un≥1}

|∇un|p

u1−γ
n

+

∫
{un≥1}

up+γn ≤ C

∫
{un≥1}

u
q(1−γ)
p−q

n +

∫
{un≥1}

f, (6.39)

thanks to (6.39) we have

γα

p′

∫
{un≥1}

|∇un|p

u1−γ
n

+
1

p

∫
{un≥1}

up+γn ≤ C

∫
{un≥1}

u
q(1−γ)
p−q

n + C.

Since, q(1−γ)
p−q < p+ γ the above estimate implies that∫

{un≥1}

|∇un|p

u1−γ
n

≤ C (6.40)
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and ∫
{un≥1}

up+γn ≤ C. (6.41)

Now we choose ε < 1/n and use (T1 (un) + ε)θ − εθ as test function, dropping the positive term and
using (6.3), (6.4) we obtain

αθ

∫
Ω

|∇T1 (un)|p

(T1 (un) + ε)1−θ ≤ ||b||L∞(Ω)

∫
Ω

|∇un|q(
un + 1

n

)θ (T1 (un) + ε)θ (6.42)

+

∫
Ω

fn (T1 (un) + ε)θ−γ ≤ ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

+ ||b||L∞(Ω)

∫
{un<1}

|∇un|q + (1 + ε)θ−γ
∫

Ω

f.

Using Young inequality together with (6.40) and (6.41) and the fact that q(1−γ)
p−q < p+ γ, yield that∫

{un≥1}
|∇un|q =

∫
{un≥1}

|∇un|q

u
(1−γ)q
p

n

u
(1−γ)q
p

n ≤ C

∫
{un≥1}

|∇un|p

u
(1−γ)
n

+ C

∫
Ω

up+γn ≤ C.

Then we deduce from (6.42) and the above estimate, using again young inequality, we obtain

αθ

∫
Ω

|∇T1 (un)|p

(T1 (un) + ε)1−θ

≤ ||b||L∞(Ω)

∫
Ω

|∇T1 (un)|q

(T1 (un) + ε)
q
p

(1−θ) (T1 (un) + ε)
q
p

(1−θ) + (1 + ε)θ−γ
∫

Ω

f + C

≤ αθ

p

∫
Ω

|∇T1 (un)|p

(T1 (un) + ε)1−θ + C(1 + ε)
q
p−q (1−θ) + (1 + ε)θ−γ

∫
Ω

f + C,

(6.43)

it follows that ∫
Ω

|∇T1 (un)|p

(T1 (un) + ε)1−θ ≤ C
(

(1 + ε)
q
p−q (1−θ) + (1 + ε)θ−γ

)
.

Thus, we obtain ∫
Ω

|∇T1 (un)|p =

∫
Ω

|∇T1 (un)|p

(T1 (un) + ε)1−θ (T1 (un) + ε)1−θ

≤ C(1 + ε)1−θ
(

(1 + ε)
q
p−q (1−θ) + (1 + ε)θ−γ

)
.

Hence, taking ε tends to 0, we deduce that∫
Ω

|∇T1 (un)|p ≤ C, (6.44)

from (6.40) and (6.44) we conclude that∫
Ω

|∇un|p

(1 + un)1−γ ≤
∫
{un≥1}

|∇un|p

u1−γ
n

+

∫
Ω

|∇T1 (un)|p ≤ C. (6.45)
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Let 1 ≤ r < p, using the estimate (6.45) together with Hölder inequality we arrive at∫
Ω

|∇un|r ≤
∫

Ω

|∇un|r

(1 + un)
r(1−γ)
p

(1 + un)
r(1−γ)
p ≤ C

(∫
Ω

(1 + un)
r(1−γ)
p−r

)1− r
p

, (6.46)

starting from (6.46) and thanks to (6.41) noticing that r(1−γ)
p−r ≤ p + γ is equivalent to r ≤ p(p+γ)

p+1
, we

Thus obtain ∫
Ω

|∇un|r ≤ C, ∀1 ≤ r ≤ p(p+ γ)

p+ 1
< p (6.47)

Thus, recalling (6.13),(6.5), estimate (6.47) and by means of Hölder inequality, it follows for every
ω ⊂⊂ Ω that ∫

ω

|∇un|q

uθn
≤ |Ω|

r−q
r

cθω
‖un‖qW 1,r

0 (Ω)
≤ C. (6.48)

In the case γ ≥ θ, we can obtaining the results, changing γ by θ in the exponents of the test functions
and namely arguing exactly as above. Then Lemma 6.9 is completely proved.

We prove now the following convergence result.

Proposition 6.10. Under assumption (6.3), we have

upn → up strongly in L1(Ω).

Proof. We take T1 (un − Th (un)) as test function in (6.9) dropping the positive term, using (6.3), (6.4)
and we then have

α

∫
{h≤un≤h+1}

|∇un|p + µ

∫
{un≥h+1}

upn ≤ ||b||L∞(Ω)

∫
{h≤un≤h+1}

|∇un|q

+||b||L∞(Ω)

∫
{un>h+1}

|∇un|q +
1

hγ

∫
{un≥h}

f,

which implies using (6.47), Young together with Hölder inequalities that

α

p

∫
{h≤un≤h+1}

|∇un|p + µ

∫
{un≥h+1}

upn

≤ C|un > h|1−
q
p + ||b||L∞(Ω) ‖un‖qW 1,r

0 (Ω)
|un > h|

r−q
r +

1

hγ

∫
{un≥h}

f

≤ C|un > h|1−
q
p + C|un > h|

r−q
r +

1

hγ

∫
{un≥h}

f.

Letting n→ +∞ and then h→ +∞, we obtain∫
{un≥h+1}

upn ≤ w(n, h), (6.49)

where w(n, h) tends to zero when n→ +∞ and h→ +∞. Let E be a measurable subset of Ω, we have∫
E

upn ≤
∫
{un>h}

upn + hp|E|.

Then, thanks to (6.49), we take the limit as |E| tends to zero, h tends to infinity and since upn converges
to up almost everywhere, we easily conclude by Vitali’s Theorem the proof of Proposition 6.10.
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Proof of Theorem 6.8. Using Proposition 6.10 and Lemma 6.9, we can obtain a solution passing to the
limit, namely arguing exactly as in Theorem 6.3.
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Chapter 7

Existence and regularity of positive
solutions for Schrodinger-Maxwell system

with singularity

1 Introduction and main results

In this chapter, we consider the following Schrödinger-Maxwell system with singular term
− div(a(x)∇u) + ψur−1 = f(x)

uθ
in Ω

− div(M(x)∇ψ) = ur in Ω

u, ψ > 0 in Ω

u = ψ = 0 on ∂Ω,

(7.1)

we will suppose that Ω is a bounded open set of RN , N > 2, that r > 1 and that f nonnegative (not
identically zero) function belongs to Lm(Ω), for some m > 1, 0 < θ < 1. Furthermore, the function
a : Ω→ R will be a measurable function, such that there exist 0 < α ≤ β such that:

0 < α ≤ a(x) ≤ β almost everywhere in Ω, (7.2)

while M : Ω→ RN2
will be a measurable matrix, such that:

M(x)ξ · ξ ≥ α|ξ|2, |M(x)| ≤ β, (7.3)

for almost every x in Ω, and for every ξ in RN .
In this work we want to prove existence and regularity results for problem (7.1) in case Ω is an open

bounded subset of RN (N > 2), 0 < θ < 1, r > 1 and 0 ≤ f ∈ Lm(Ω), with m > 1. In particular, we
show how the coupling between the equations in the system gives rise to a regularizing effect producing
the existence of finite energy solutions.
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In the last part of this Section, we prove the existence of a saddle point (u, ϕ) of the following
functional

J(u, ϕ) =


1

2

∫
Ω

a(x)|∇u|2 − 1

2r

∫
Ω

M(x)∇ϕ∇ϕ

+
1

r

∫
Ω

ϕ+|u|r − 1

1− θ

∫
Ω

f(u+)1−θ if ϕ+|u|r ∈ L1(Ω),

+∞, otherwise,

(7.4)

defined on W 1,2
0 (Ω)×W 1,2

0 (Ω). Finally, in the Appendix, we give the proof of an existence result for the
first equation of approximating system and some results allowing to prove the existence of system (7.1).

Now, we give our definition of solution for problem (7.1).

Definition 7.1. A couple of functions (u, ψ) ∈ W 1,2
0 (Ω)×W 1,2

0 (Ω) is a energy solution to system (7.1)
if

u, ψ > 0 a.e in Ω, (7.5)

fφ

uθ
∈ L1

loc(Ω) ∀φ ∈ C1
c (Ω), (7.6)

and hold 
∫

Ω

a(x)∇u∇φ+

∫
Ω

ψur−1φ =

∫
Ω

fφ

uθ
∀φ ∈ C1

c (Ω)∫
Ω

M(x)∇ψ∇v =

∫
Ω

urv ∀v ∈ W 1,2
0 (Ω).

(7.7)

Our main result is the following.

Theorem 7.2. Let us assume (7.2) and (7.3). Given 0 < θ < 1, r > 1,m∗∗ = Nm
N−2m

and let f be a
nonnegative (not identically zero) function in Lm(Ω). We have the following

(i) if r ≥ 2N
θ(N−2)+N+2

, and if m ≥
(
r+1
1−θ

)′
, there exist u and ψ in W 1,2

0 (Ω), solutions of (7.1) in the
sense of Definition 7.1, furthermore

(a) if m > N
2

, then u belongs to L∞(Ω),

(b) if
(
r+1
1−θ

)′ ≤ m < N
2

, then u belongs to Lσ(Ω), with

σ = max

(
(1 + θ)m∗∗,

m(2r + 1 + θ)

m+ 1

)
.

(ii) if 1 < r < 2N
θ(N−2)+N+2

, and if m ≥ 2N
θ(N−2)+N+2

, there exist u and ψ in W 1,2
0 (Ω), solutions of (7.1)

in the sense of Definition 7.1, furthermore

(a) if m > N
2

, then u belongs to L∞(Ω),

(b) if 2N
θ(N−2)+N+2

≤ m < N
2

, then u belongs to L(1+θ)m∗∗(Ω).
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2 The Approximated Problem and a priori estimates

2.1 The Approximated Problem

Let n in N, and let fn = Tn(f), so that {fn} is a sequence of L∞(Ω) functions, which strongly
converges to f in Lm(Ω), and satisfies the inequality 0 ≤ fn ≤ f. Thanks to Theorem 7.9 (see the
Appendix), for every n in N, there exist weak solutions un and ψn in W 1,2

0 (Ω) ∩ L∞(Ω)( with un ≥ 0
and ψn ≥ 0) of the approximate system:

− div (a(x)∇un) + ψnu
r−1
n = fn

( 1
n

+un)θ
in Ω (I)

− div (M(x)∇ψn) = urn in Ω (II)

un, ψn ≥ 0 in Ω

un = ψn = 0 on ∂Ω.

(7.8)

2.2 A Priori Estimates

We are now going to prove some a priori estimates on the sequence of approximated solutions un.

Lemma 7.3. Let k > 0 be fixed. The sequence {Tk (un)} , where un is a solution to (I) of (7.8), is
bounded in W 1,2

0 (Ω).

Proof. Taking Tk (un) as a test function in (I) of problems (7.8) and using the assumption (7.2)
and fn ≤ f, we obtain

α

∫
Ω

|∇Tk (un)|2 +

∫
Ω

ψnu
r−1
n Tk (un) 6

∫
Ω

f (Tk (un))1−θ . (7.9)

Dropping the second nonnegative terms in the left hand side of (7.9), we have

α

∫
Ω

|∇Tk (un)|2 6
∫

Ω

f (Tk (un))1−θ .

Since θ < 1, we have

α

∫
Ω

|∇Tk (un)|2 6 k1−θ
∫

Ω

f,

so that Tk (un) is bounded in W 1,2
0 (Ω) with respect to n. �

Lemma 7.4. Assume that 0 < θ < 1, r > 1 and let f be a nonnegative function in Lm(Ω) with

m ≥ max
((

r+1
1−θ

)′
, 2N
θ(N−2)+N+2

)
. Let (un, ψn) be a couple solutions of (7.8), then :

• The sequences {un} and {ψn} are bounded in W 1,2
0 (Ω).

• The sequence {un} is bounded in Lσ(Ω), where σ is defined in Theorem 7.2 if m < N
2
, and σ = +∞

if m > N
2

.

Proof. L∞(Ω) estimate. Suppose that m > N
2

, let k > 1. Choosing Gk (un) as test function in
(7.8), we obtain, recalling (7.2),

α

∫
Ω

|∇Gk (un)|2 ≤
∫

Ω

M(x)∇Gk (un)×∇Gk (un)
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=

∫
Ω

fnGk (un)

(un + 1
n
)θ
≤
∫

Ω

fGk (un) , (7.10)

where in the last passage we have used that un + 1
n
≥ k ≥ 1, on the set {un ≥ k} where Gk (un) 6= 0.

Starting from inequality (7.10) and arguing as in [80], Theorem 4.2, we have that there exists a constant
C (independent on n ), such that

‖un‖L∞(Ω) ≤ C‖f‖Lm(Ω).

Since un is bounded in L∞(Ω), as well.�
Estimates using the lower order term.
In this step, we will suppose that m ≥

(
r+1
1−θ

)′
. Taking un as test function in the first equation of (7.8),

using (7.2) and dropping a positive term, we obtain

α

∫
Ω

|∇un|2 +

∫
Ω

ψnu
r
n ≤

∫
Ω

fnu
1−θ
n ,

while using ψn as test function in (II) and (7.3), we can see that

α

∫
Ω

|∇ψn|2 ≤
∫

Ω

ψnu
r
n.

Thus we have, once again, that

α

∫
Ω

|∇un|2 + α

∫
Ω

|∇ψn|2 ≤
∫

Ω

fnu
1−θ
n . (7.11)

We now follow [76], let γ ≥ 1 to be determined later, and choose u2γ−1
n as test function in the first

equation of (7.8); using (7.2), and dropping two positive terms, we obtain, since fn ≤ f

α(2γ − 1)

∫
Ω

|∇un|2 u2γ−2
n ≤

∫
Ω

fnu
2γ−1−θ
n ≤

∫
Ω

fu2γ−1−θ
n . (7.12)

On the other hand, taking uγn as a test function in (II), by estimate (7.3) and using Young inequality,
we can see that ∫

Ω

ur+γn = γ

∫
Ω

M(x)∇ψn∇unuγ−1
n

≤ βγ

∫
Ω

|∇ψn ‖∇un‖un|γ−1

≤ C

∫
Ω

|∇ψn|2 + C

∫
Ω

|∇un|2 u2γ−2
n .

Using (7.11) and (7.12) with this inequality, we deduce that∫
Ω

ur+γn ≤ C

∫
Ω

fu1−θ
n + C

∫
Ω

fu2γ−1−θ
n ,

so that we have ∫
Ω

ur+γn ≤ C

∫
Ω

fu1−θ
n + C

∫
Ω

fu2γ−1−θ
n , (7.13)
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where in the last passage, we have used that 2γ − 1 − θ ≥ 1 − θ, since γ ≥ 1. We now choose
γ = r(m−1)+m(θ+1)

m+1
, so that γ ≥ 1 since m ≥ r+1

r+θ
= ( r+1

1−θ )
′. With this choice of γ, we obtain

r + γ = m(2r+1+θ)
m+1

= (2γ − 1− θ)m′, so by Hölder inequality, we deduce from (7.13) that

∫
Ω

u
m(2r+1+θ)

m+1
n ≤ C‖f‖Lm(Ω)

([∫
Ω

u
m(1−θ)
m−1

n

] 1
m′

+

[∫
Ω

u
m(2r+1+θ)

m+1
n

] 1
m′
)
.

Thanks to the fact that m > 1, we therefore obtain (after simplifying equal terms) that:[∫
Ω

u
m(2r+1+θ)

m+1
n

] 1
m

≤ C‖f‖Lm(Ω),

that is, the sequence {un} is bounded in Ls(Ω), with s = m(2r+1+θ)
m+1

. As a consequence of this estimate,
and of the fact that s ≥ m′, we have that ∫

Ω

fu1−θ
n ≤ C,

from the last inequality and going back to (7.11), we obtain that the sequences {un} and {ψn} are
bounded in W 1,2

0 (Ω). �
Estimates not using the lower order term.
In this step, we will suppose that m ≥ 2N

θ(N−2)+N+2
. Let un and ψn be solutions of (7.8), let γ ≥ 1, and

take u2γ−1
n as test function in (I) of (7.8), we have, dropping two positive terms, and using (7.2),

α(2γ − 1)

∫
Ω

|∇un|2 u2γ−2
n ≤

∫
Ω

fnu
2γ−2
n u1−θ

n .

By exploiting Sobolev and Hölder inequalities, and since fn ≤ f, we deduce

αS(2γ − 1)

γ2

[∫
Ω

u2∗γ
n

] 2
2∗

≤ α(2γ − 1)

∫
Ω

|∇un|2 u2γ−2
n

≤
∫

Ω

fnu
2γ−2
n u1−θ

n

≤ ‖f‖Lm(Ω)

[∫
Ω

u(2γ−1−θ)m′
n

] 1
m′

,

where S is the constant of the Sobolev embedding. Imposing 2∗γ = (1 + θ)m∗∗, we have γ = (1+θ)m∗∗

2∗
,

so that γ ≥ 1 ( since (1 + θ)m∗∗ ≥ 2∗) and (2γ − 1− θ)m′ = (1 + θ)m∗∗ = s, we have[∫
Ω

usn

] 2
2∗

≤ C‖f‖Lm(Ω)

[∫
Ω

usn

] 1
m′

,

so that [∫
Ω

usn

] 1
s

≤ C‖f‖Lm(Ω).
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Thus, the sequence {un} is bounded in Ls(Ω), being m ≥ 2N
N+2+θ(N−2)

, we have that the sequence{
fnu

1−θ
n

}
is bounded in L1(Ω). Taking, un as test function in the equation (I) of (7.8), to obtain, after

using (7.2) and dropping a positive term,

α

∫
Ω

|∇un|2 +

∫
Ω

ψnu
r
n ≤

∫
Ω

fnu
1−θ
n ≤ C,

so that, the sequence {un} is bounded in W 1,2
0 (Ω), and the sequence {ψnurn} is bounded in L1(Ω).

Choosing ψn as test function in (II) of (7.8), and using (7.3), we thus have:

α

∫
Ω

|∇ψn|2 ≤
∫

Ω

ψnu
r
n ≤ C,

so that also the sequence {ψn} is bounded in W 1,2
0 (Ω). �

2.3 Proof of Theorem 7.2

In virtue of the Lemma 7.4, the sequence of approximated solutions un is bounded in
W 1,2

0 (Ω) ∩ Lσ(Ω). Therefore, there exists a function u belongs to W 1,2
0 (Ω) ∩ Lσ(Ω) such that, up to

subsequences, un converges, weakly in W 1,2
0 (Ω), weakly in Lσ(Ω), and almost everywhere in Ω, to some

function u, while ψn converges, weakly in W 1,2
0 (Ω) and almost everywhere in Ω, to some function ψ.

Since the sequence {urn} is bounded in Lρ(Ω), with ρ = σ
r
> 1, it is weakly convergent in the same space

to ur. Therefore, one can pass to the limit in the identities∫
Ω

M(x)∇ψn∇w =

∫
Ω

urnw, ∀w ∈ W 1,2
0 (Ω),

to have that ψ and u are such that:∫
Ω

M(x)∇ψ∇w =

∫
Ω

urw, ∀w ∈ W 1,2
0 (Ω).

Choosing w = Tk(v), with v ≥ 0 in W 1,2
0 (Ω), we arrive at∫

Ω

M(x)∇ψ∇Tk(v) =

∫
Ω

urTk(v), ∀k > 0.

Letting k tend to infinity, using Lebesgue Theorem in the left-hand side (recall that ψ belongs to
W 1,2

0 (Ω),) and Beppo Levi Theorem in the right-hand side, we deduce that∫
Ω

M(x)∇ψ∇v =

∫
Ω

urv, ∀v ∈ W 1,2
0 (Ω), v ≥ 0.

If v belongs to C1
c (Ω), writing v = v+ − v−, and subtracting the above identities written for v+ and v−

(not that both terms are finite, because the left-hand side is finite), we have that∫
Ω

M(x)∇ψ∇v =

∫
Ω

urv, ∀v ∈ W 1,2
0 (Ω),
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that is, ψ is a weak solution of the second equation. We study now the first equation: We want to
prove that ψnu

r−1
n strongly converges to ψur−1 in L1(Ω). First of all, let ε > 0, k > 0, and choose

1
ε
u+
nTε (Gk (un)) as test function in the first equation of the system. Dropping two positive terms (those

coming from the differential part of the equation), and using that fn ≤ f, we obtain

1

ε

∫
{un≥k}

ψn
[
u+
n

]r
Tε (Gk (un)) ≤ 1

ε

∫
{un≥k}

fnu
1−θ
n Tε (Gk (un))

≤ 1

ε

∫
{un≥k}

fu1−θ
n Tε (Gk (un)) .

Letting ε tend to zero, using Fatou Lemma on the left-hand side, and Lebesgue Theorem on the right-
hand one (recall that every un is a function in L∞(Ω)), we have that∫

{un≥k}
ψn
[
u+
n

]r ≤ ∫
{un≥k}

fun ≤
[∫
{un≥k}

fm
] 1
m

||u1−θ
n ||Lm′ (Ω).

≤ C

[∫
{un≥k}

fm
] 1
m

,

since the sequence {un} is bounded in Lm
′
(Ω) being σ ≥ (1− θ)m′. Then∫

{un≥k}
ψnu

r
n ≤ C

[∫
{un≥k}

fm
] 1
m

.

Let now E be a measurable subset of Ω. So that∫
E

ψnu
r
n =

∫
E∩{un≤k}

ψnu
r
n +

∫
E∩{un≥k}

ψnu
r
n

≤ kr
∫
E

ψn + C

[∫
{un≥k}

fm
] 1
m

.

Now we choose ε > 0, and let k large enough, we obtain

C

[∫
{un≥k}

fm
] 1
m

≤ ε, ∀n ∈ N.

Such a choice of k is possible, since the measure of {un ≥ k} tends to zero as k tends to infinity, uniformly
in n, as a consequence of the boundedness of {un} in (for example) L1(Ω), and since fm belongs to
L1(Ω). Once k has been chosen, let δ > 0 be such that meas (E) ≤ δ implies that:

kr
∫
E

ψn ≤ ε, ∀n ∈ N.

Such a choice of δ is possible thanks to Vitali theorem, since the sequence {ψn} is strongly convergent
in (at least) L1(Ω) being bounded in W 1,2

0 (Ω). Thus, the sequence {ψnurn} is uniformly equi-integrable.
Since it is almost everywhere convergent, Vitali theorem implies that:

ψnu
r
n strongly converges to ψur in L1(Ω).
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With the same technique, one can prove that the sequence {ψnur−1
n } is uniformly equi-integrable, so

that ψnu
r−1
n strongly converges to ψur−1 in L1(Ω). To conclude, the proof theorem we just need to pass

to the limit in (I) of (7.8). Now, by adapting a suitable way used in [28], we can pass to the limit in
the right hand side of (I) in (7.8), then let w = {ϕ 6= 0} and by Lemma 7.7 (see the Appendix ), one
has, for ϕ in C1

c (Ω), we have that

0 ≤
∣∣∣∣ fnϕ

(un + 1
n
)θ

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)

cθω
f.

Therefore, by Lebesgue convergence Theorem, we obtain

lim
n→+∞

∫
Ω

fnϕ

(un + 1
n
)θ

=

∫
Ω

fϕ

uθ
.

On other hand, by Lemma 7.3, we deduce Tk(un) ⇀ Tk(u) weakly in W 1,2
0 (Ω). Then by Proposition 4.1

in [23] and Theorem 2.3 in [41], we obtain ∇un converges to ∇u almost everywhere in Ω. Now, we can
pass to the limit in the identities:∫

Ω

a(x)∇un∇η +

∫
Ω

ψnu
r−1
n η =

∫
Ω

fn
( 1
n

+ un)θ
η, ∀η ∈ C1

c (Ω),

to have that ∫
Ω

a(x)∇u∇η +

∫
Ω

ψur−1η =

∫
Ω

f

uθ
η, ∀η ∈ C1

c (Ω),

as desired.

3 Saddle points

In this section, we can prove that the energy solution (u, ψ) of system (7.1) given by Theorem 7.2
can be seen (under some assumptions on r and f) as a saddle point of a suitable functional.

Remark 3.1. If 1 < r ≤ N+2+(N−2)θ
N−2

, and f nonnegative function belongs to Lm(Ω), with m ≥ ( 2∗

1−θ )
′,

then not only ψ but also u is a energy solution of the first equation of (7.8). Indeed, since both u and
ψ belong to L2∗(Ω) (being W 1,2

0 (Ω) functions), we have that: ψur−1 ∈ Lρ(Ω), ρ = 2∗

r
. Since, by the

assumptions on r : 2∗

r
≥ 2N

N−2
N−2

N+2+(N−2)θ
= ( 2∗

1−θ )
′, the function ψur−1 belongs to the dual of W 1,2

0 (Ω);

therefore, one has (by density of W 1,2
0 (Ω) ∩ L∞(Ω) in W 1,2

0 (Ω))∫
Ω

a(x)∇u∇ϕ+

∫
Ω

ψur−1ϕ =

∫
Ω

f

uθ
ϕ, ∀ϕ ∈ C1

c (Ω),

as desired.

Thanks to this remark, we have the following theorem:

Theorem 7.5. Suppose that a and M satisfy (7.2) and (7.3), and that M is symmetric. Let 1 < r ≤
2N

N+2+(N−2)θ
and let f nonnegative function belongs to Lm(Ω), with m ≥ ( 2∗

1−θ )
′. Then, the energy solution

(u, ψ) of system (7.1) given by Theorem 7.2 is a saddle point of the functional J defined in (7.4); that
is

J(u, ϕ) ≤ J(u, ψ) ≤ J(v, ψ),∀v, ϕ ∈ W 1,2
0 (Ω) such that ψ|v|r ∈ L1(Ω). (7.14)
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Proof. We begin with the second equation of (7.1); by Theorem 7.2, ψ is a weak solution of the

second equation of (7.1). Choosing ψ−ϕ+

r
, with ϕ in W 1,2

0 (Ω), as test function, we get

1

r

∫
Ω

M(x)∇ψ∇
(
ψ − ϕ+

)
=

1

r

∫
Ω

|u|r
(
ψ − ϕ+

)
.

Adding and subtracting the term
1

2r

∫
Ω

M(x)∇ϕ+∇ϕ+,

we have, after straightforward passages

1

2r

∫
Ω

M(x)∇
(
ψ − ϕ+

)
∇
(
ψ − ϕ+

)
+

1

2r

∫
Ω

M(x)∇ψ∇ψ − 1

r

∫
Ω

ψ|u|r

=
1

2r

∫
Ω

M(x)∇ϕ+∇ϕ+ − 1

r

∫
Ω

ϕ+|u|r

since the first term is positive, we, therefore, have that (recall that ψ ≥ 0, so that ψ = ψ+)

1

2r

∫
Ω

M(x)∇ψ∇ψ − 1

r

∫
Ω

ψ+|u|r ≤ 1

2r

∫
Ω

M(x)∇ϕ+∇ϕ+ − 1

r

∫
Ω

ϕ+|u|r,

for every ϕ in W 1,2
0 (Ω). Changing sign to this identity, and adding to both sides the (finite, thanks to

the assumptions on f and to the fact that u belongs to W 1,2
0 (Ω)) term

1

2

∫
Ω

a(x)|∇u|2 − 1

1− θ

∫
Ω

f(u+)1−θ,

we arrive
J(u, ϕ) ≤ J(u, ψ), ∀ϕ ∈ W 1,2

0 (Ω),

which is the first half of (7.14). As for the second, by Remark 3.1, we obtain that u is a weak solution
of the first equation of (7.1). Fix ψ ∈ W 1,2

0 (Ω) and let I be the functional defined on W 1,2
0 (Ω) as

I(v) := J(v, ψ). If the matrix M(x) and a(x) is symmetric, and if f nonnegative function belongs to

Lm(Ω), with m >
(

2∗

1−θ

)′
the solution of (7.1) given by Theorem 7.2 is the minimum of the functional

I(v) =
1

2

∫
Ω

a(x)∇v ×∇v − 1

2r

∫
Ω

M(x)∇ψ∇ψ

+
1

r

∫
Ω

ψ+|v|r − 1

1− θ

∫
Ω

f(v+)1−θ, v ∈ W 1,2
0 (Ω)

which is well defined since θ < 1. Indeed, if we consider the functional

In(v) =
1

2

∫
Ω

a(x)∇v ×∇v − 1

2r

∫
Ω

M(x)∇ψ∇ψ

+
1

r

∫
Ω

ψ+|v|r − 1

1− θ

∫
Ω

fn

(
v+ +

1

n

)1−θ

, v ∈ W 1,2
0 (Ω)
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with fn = min(f(x), n), then there exists a minimum un of In. From the inequality In (un) ≤ In (u+
n )

one can prove that un ≥ 0, so that un is a solution of the Euler equation for In, i.e., of (7.1). Therefore,
by Lemma 7.7 and Remark 7.8, un is unique and increasing in n, satisfies (7.19) and, from the inequality
I (un) ≤ In(0) ≤ C, it is bounded in W 1,2

0 (Ω) (with the same proof of Lemma 7.4 ). If u is the limit of
un, letting n tend to infinity in the inequalities In (un) ≤ In(v), one finds that I(u) ≤ I(v), so that u is
a minimum of I, and u is a solution of (7.1) (by Theorem 7.2 ). Since u satisfies (7.19), Eq. (7.1) can
be seen as the Euler equation for I; note that I is not differentiable on W 1,2

0 (Ω). We obtain that:

J(u, ψ) ≤ J(v, ψ), ∀v ∈ W 1,2
0 (Ω) such that ψ|v|r ∈ L1(Ω),

which is the second part of (7.14).

4 Appendix: Basic Results and Existence for Bounded Data

In this Appendix, we will prove some results concerning the first equation of system (7.1), and the
whole system in the case of bounded data.
Now we prove the existence of a solution to the following approximating problem:

− div(a(x)∇un) + g(x) |un|r−2 un = fn(x)

(|un|+ 1
n)

θ in Ω

un ≥ 0 in Ω
un = 0 on ∂Ω,

(7.15)

where Ω is a bounded open subset of RN , N ≥ 2, f is a positive (that is f(x) ≥ 0 and not zero a.e.)
function in Lm(Ω), with m ≥ 1, 0 < θ < 1 and g(x) ∈ L1(Ω), with

0 ≤ λ ≤ g(x). (7.16)

Due to the nature of the approximation, the sequence un will be increasing with n, so that the (strict)
positivity of the limit will be derived from the (strict) positivity of any of the un (which in turn will
follow by the standard maximum principle for elliptic equations).

Lemma 7.6. Problem (7.15) has a nonnegative solution un in W 1,2
0 (Ω) ∩ L∞(Ω).

In order to prove Lemma 7.6, we will work by approximation, namely by introducing the following{
− div(a(x)un,k) + g(x)Tk

(
|un,k|r−2 un,k

)
= fn(x)

(|un,k|+ 1
n)

θ in Ω

un,k = 0 on Ω
(7.17)

where n, k ∈ N, 0 ≤ fn(x) := Tn(f(x)) ∈ L∞(Ω), 0 ≤ θ < 1 and r ≥ 1. Thanks to [80, Thoerem 2],
we know that there exists un,k ∈ W 1,2

0 (Ω) weak solution to (7.17) for each n, k ∈ N fixed. Moreover
un,k ∈ L∞(Ω) for all n, k ∈ N since, if m ≥ 1 is fixed, taking Gm (un,k) ∈ W 1,2

0 (Ω) as test function in
(7.17) and using that Gm (un,k) and Tk

(
|un,k|r−2 un,k

)
have the same sign of un,k, we immediately find

that

α

∫
Ω

|∇Gm (un,k)|2 ≤
∫

Ω

fnGm (un,k)
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and so we can proceed as in [81] to end up with un,k ∈ L∞(Ω). Moreover the previous L∞ estimate is
independent from k ∈ N. Now taking un,k as a test function in the weak formulation of (7.17), we find
that un,k is bounded in W 1,2

0 (Ω) with respect to k for n ∈ N fixed. Since un,k is bounded in L∞(Ω)
independently on k, for each n ∈ N fixed we choose kn large enough to obtain the following scheme of
approximation {

− div(a(x)un) + g(x) |un|r−2 un = fn(x)

(|un|+ 1
n)

θ in Ω

un = 0 on ∂Ω
(7.18)

where un ∈ W 1,2
0 (Ω) ∩ L∞(Ω) is given by un,kn . As concerns the sign of un, taking u−n := min (un, 0) ∈

W 1,2
0 (Ω) ∩ L∞(Ω) as test function in (7.18), we find∫

Ω

a(x)
∣∣∇u−n ∣∣2 +

∫
Ω

g(x) |un|r−2 (u−n )2
=

∫
Ω

fn(
|un|+ 1

n

)θu−n ≤ 0

and so that un ≥ 0 almost everywhere in Ω.

Lemma 7.7. The sequence un is increasing with respect to n, un > 0 in Ω, and for every ω ⊂⊂ Ω there
exists cω > 0 (independent on n ) such that

un(x) ≥ cω > 0 for every x in ω, for every n in N. (7.19)

Moreover there exists the pointwise limit u ≥ cω of the sequence un.

Proof. Since 0 ≤ fn ≤ fn+1 and θ > 0, one has

− div (a(x)∇un) + g(x) |un|r−2 un =
fn(

un + 1
n

)θ ≤ fn+1(
un + 1

n+1

)θ ,
so that

− div (a(x) (∇un −∇un+1)) + g(x)
(
|un|r−2 un − |un+1|r−2 un+1

)
≤ fn+1

(un+1+ 1
n+1)

θ
−(un+ 1

n+1)
θ

(un+ 1
n+1)

θ
(un+1+ 1

n+1)
θ .

We now choose (un − un+1)+ as test function and taking into account the monotonicity of the function
t→ |t|r−2t. For the right hand side we observe that[(

un+1 +
1

n+ 1

)θ
−
(
un +

1

n+ 1

)θ]
(un − un+1)+ ≤ 0,

recalling that fn+1 ≥ 0, we obtain

0 ≤ α

∫
Ω

∣∣∇ (un − un+1)+
∣∣2 ≤ 0.

Therefore (un − un+1)+ = 0 almost everywhere in Ω, which implies un ≤ un+1. Since u1 belongs to
L∞(Ω), and there exists a constant (only depending on Ω and N ) such that

‖u1‖L∞(Ω) ≤ C ‖f1‖L∞(Ω) ≤ C,
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one has
− div (a(x)∇u1) + g(x) |u1|r−2 u1 = f1

(u1+1)θ
≥ f1

(‖u1‖L∞(Ω)+1)
θ ≥ f1

(C+1)θ
.

Since f1

(C+1)θ
is not identically zero, the strong maximum principle implies that u1 > 0 in Ω (see [86];

observe that u1 is differentiable by Chapter 4 of [65] , and that (7.19) holds for u1 (with cω only
depending on ω,N, f1 and θ ). Since un ≥ u1 for every n in N, (7.19) holds for un (with the same
constant cω which is then independent on n ).

Remark 7.8. If un and vn are two solutions of (7.18), repeating the argument of the first part of the
proof of Lemma 7.7 shows that un ≤ vn. By symmetry, this implies that the solution of (7.18) is unique.

Theorem 7.9. Let n ∈ N, 0 < θ < 1, f be a positive function in L∞(Ω), and let r > 1. Then, there

exist a solutions (un, ϕn) ∈
(
W 1,2

0 (Ω) ∩ L∞(Ω)
)2

of the following system
− div (a(x)∇un) + ϕnu

r−1
n = f

(un+ 1
n

)θ
in Ω,

− div (M(x)∇ϕn) = urn in Ω

un, ϕn ≥ 0 in Ω,

un = ϕn = 0 on ∂Ω.

(7.20)

Proof. Fix ψn ∈ W 1,2
0 (Ω), let n ∈ N and we define S : W 1,2

0 (Ω) → W 1,2
0 (Ω) as the operator such

that vn = S(ψn). By the maximum principle, ψn ≥ 0, taking account Lemma 7.6 and Remark 7.8,
there, exists a unique solution vn of:

− div (a(x)∇vn) + ψn|vn|r−2vn =
f

(vn + 1
n
)θ
. (7.21)

Since, by Lemma 7.6, one has

‖vn‖W 1,2
0 (Ω) ≤ C1‖f‖L∞(Ω), ‖vn‖L∞(Ω) ≤ C1‖f‖L∞(Ω). (7.22)

Now we define T : W 1,2
0 (Ω) → W 1,2

0 (Ω) as the operator such that ζn = T (vn) = T (S(ψn)). Thanks to
the results in [34], ζn is the unique weak solution of the Euler-Lagrange equation

− div (M(x)|∇ζn|) = |vn|r, ζn ∈ W 1,2
0 (Ω). (7.23)

Following [5], we thus have
‖ζn‖W 1,2

0 (Ω) + ‖ζn‖L∞(Ω) ≤ C2‖vn‖rL∞(Ω),

using (7.22), we deduce that,

‖ζn‖W 1,2
0 (Ω) + ‖ζn‖L∞(Ω) ≤ C‖f‖L∞(Ω) =: R, (7.24)

where C1 and C2 are positive constants not depending on vn.
We want to prove that T ◦ S has a fixed point by Schauder’s fixed point theorem. By (7.24)

we have that BR(0) ⊂ W 1,2
0 (Ω) is invariant for T ◦ S. Let ψk =: (ψn,k)k ⊂ W 1,2

0 (Ω) be a sequence
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weakly convergent to some ψ and let vk =: (vn,k)k = S (ψk) . As a consequence of (7.22), there exists a
subsequence indexed by vk such that

vk → v weakly in W 1,2
0 (Ω), and a.e. in Ω (7.25)

vk → v weakly−∗ in L∞(Ω).

Moreover, we have

− div (a(x)∇vk) =
f

( 1
n

+ vk)θ
−
(
ψ+
k

)
|vk|r−2 vk =: gk

and, using Hölder’s inequality, the Poincaré inequality and (7.22), we obtain

‖gk‖L1(Ω) ≤ C‖f‖L∞(Ω) + ‖vk‖r−1
L∞(Ω) ‖ψk‖L1(Ω)

≤ C‖f‖L∞(Ω) + C1‖f‖r−1
L∞(Ω) ‖ψk‖W 1,2

0 (Ω) ≤ C.

Then, by Theorem 2.1 in [26], we obtain that ∇vk converges to ∇vn almost everywhere in Ω. Since

‖∇vk‖(L2(Ω))N = ‖vk‖W 1,2
0 (Ω) ≤ C1‖f‖Lm(Ω),

thus, we conclude that

∇vk → ∇vn weakly in
(
L2(Ω)

)N
. (7.26)

We recall that vk satisfies∫
Ω

a(x)∇vk · ∇w +

∫
Ω

ψk |vk|r−2 vkw =

∫
Ω

f

( 1
n

+ vk)θ
w, ∀w ∈ C1

c (Ω).

Letting k tend to infinity, by (7.25),(7.26) and Vitali’s theorem, we have that∫
Ω

|∇vn| · ∇w +

∫
Ω

ψn|vn|r−2vnw =

∫
Ω

f

( 1
n

+ vn)θ
w, ∀w ∈ C1

c (Ω),

so that v is the unique weak solution of (7.21) and it does not depend on the subsequence. Hence
vk = S (ψk) converges to vn = S(ψn) weakly in W 1,2

0 (Ω) and weakly−∗ in L∞(Ω). Then

|vk|r → |vn|r strongly in Lq(Ω) ∀q < +∞ and ‖|vk|r‖L1(Ω) ≤ C. (7.27)

Thanks to (7.24), (7.27) and proceeding in the same way, we get

ζk := ζn,k = T (vk)→ ζn = T (vn) weakly in W 1,2
0 (Ω),weakly−∗ in L∞(Ω), (7.28)

|∇ζk| ∇ζk → |∇ζn|∇ζn weakly in
(
L2(Ω)

)N
,

and ζ is the unique weak solution of (7.23). Now we want to prove that ζk converges to ζ strongly in
W 1,2

0 (Ω). In order to obtain this, by Lemma 5 in [22], it is sufficient to prove the following

lim
k→∞

∫
Ω

|∇ (ζk − ζn) |2 = 0. (7.29)
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We have that ∫
Ω

(|∇ζk| − |∇ζn|) · ∇ (ζk − ζn) =

∫
Ω

|∇ζk|2 −
∫

Ω

|∇ζn| · ∇ζk

−
∫

Ω

|∇ζk| · ∇ζn + ‖ζn‖2
W 1,2

0 (Ω)

(7.30)

The second and the third term on the right hand side of (7.30) converge, by (7.28), to ‖ζn‖2
W 1,2

0 (Ω)
. Then

it is sufficient to prove that
lim
k→∞
‖ζk‖2

W 1,2
0 (Ω) = ‖ζn‖2

W 1,2
0 (Ω)

. (7.31)

Since ζk is equal to T (vk) ≥ 0, we deduce that∫
Ω

|∇ζk|2 =

∫
Ω

|vk|r ζk.

Using Vitali’s Theorem and (7.27), we have that

lim
k→∞

∫
Ω

|vk|r ζk =

∫
Ω

|vn|rζ = ‖ζn‖2
W 1,2

0 (Ω)
,

so that (7.31) is true and (7.29) is proved. Hence we have proved that if ψk converges to ψn weakly in
W 1,2

0 (Ω) then ζk = T (S (ψk)) converges to ζn = T (S(ψn)) strongly in W 1,2
0 (Ω). As a consequence we

have that T ◦S is a continuous operator and that T
(
S
(
BR(0)

))
⊂ W 1,2

0 (Ω) is a compact subset. Then

there exists, by Schauder’s fixed point Theorem, a function ϕn in W 1,2
0 (Ω) such that ϕn = T (S(ϕn))

and, since T (vn) ≥ 0 for every vn in W 1,2
0 (Ω), ϕn is nonnegative. Moreover let un = S(ϕn), we have that

(un, ϕn) is a solution of (7.20) .

ABDELAAZIZ SBAI



Conclusion and Further Prospects

In this thesis, we have talked about the existence and regularity of solutions for a certain class
of elliptic problems. In particular, most of the results we present here are stated for problems with a
singular nonlinearity. There are several motivations for our work coming not only from problems in
applied mathematics but also from physic alphenomena and applied economical models. For instance,
nonlinear singular boundary values problems arise in the context of heterogeneous chemical catalysts and
chemical catalyst kinetics, in the theory of heat conduction in electrically conducting materials, singular
minimal surfaces, as well as in the study of non-Newtonian fluids and boundary layer phenomena for
viscous fluids. Moreover, nonlinear singular elliptic equations are also encountered in glacial advance,
in the transport of coal slurries down conveyor belts and in several other geophysical and industrial
contents.

This work raises a number of questions that researchers will need to explore in further studies,
for example, these problems can be generalised to the following spaces: Sobolev spaces with variable
exponent, anisotropic Sobolev spaces and fractional Sobolev spaces.

We hope this thesis will contribute to the theory of elliptic operators and will be useful for researchers
who wish to work in this field.
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quasi-linéaires, Port. Math. 41 (1982), 507-534.

[18] Boccardo, L., Murat, F., Puel, J.P. L∞-estimate for nonlinear elliptic partial diferential equations
and application to an existence result. SIAM J. Math. Anal. 23(2)(1992), 326-333 .

[19] Lucio Boccardo, Luigi Orsina and Ireneo Peral : A quasilinear singular elliptic problem related to the
Kardar–Parisi–Zhang equation, Applicable Analysis (2019), DOI:10.1080/00036811.2019.1634259

[20] L. Boccardo and G. Croce. Elliptic partial differential equations: existence and regularity of distri-
butional solutions. De Gruyter Stud. Math (2014), Vol. 55, De Gruyter, Berlin.

[21] L. Boccardo, F. Murat, J.P. Puel ,Existence of bounded solutions for nonlinear elliptic unilateral
problems. Ann. Mat. Pura Appl(1988). 152, 183-196.
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