

Centre d'Études Doctorales : Sciences et Techniques

Formation Doctorale : Mathématiques et Physique Appliquée THÈSE Présentée par **AL-HATTAB MOHAMED** Pour l'obtention du grade de DOCTEUR Discipline : Physique Spécialité : Physique des Matériaux et Energie

Etude des propriétés structurales, électroniques, optiques et élastiques du semi-conducteur lamellaire (GaSe)

Soutenue le Mercredi 29 Juin 2022 à 10h devant la commission d'examen:

Pr. Izeddine ZORKANI	Professeur, Faculté des Sciences Dhar El Mahraz, Fès	Président
Pr. Ahmed LIBA	Professeur, Faculté des Sciences et Techniques, Béni Mellal	Rapporteur
Pr. Haddou ELGHAZI	Professeur, Ecole Nationale d'Arts et Métiers, Casablanca	Rapporteur
Pr. Mohamed DRIOUICH	Professeur, Université Sultan Moulay Slimane, F.S.T. Béni-Mellal, Maroc	Rapporteur
Pr. Mimoun ZAZOUI	Professeur, Faculté des Sciences et Techniques, Mohammadia	Examinateur
Pr. Bouzid MANAUT	Professeur, Faculté Polydisciplinaire, Béni Mellal	Examinateur
Pr. Mohammed KHENFOUCH	Professeur, Faculté des Sciences Appliquées, Ait Melloul	Invité
Pr.Khalid RAHMANI	Professeur, Faculté Poly-disciplinaire, Béni-Mellal	Directeur de Thèse

AL-HATTAB MOHAMED

Etude des propriétés structurales, électroniques, optiques et élastiques du semi-

conducteur lamellaire (GaSe).

RESUME

Dans les dernières années, la révolution technologique a ouvert la voie à une génération des matériaux appelés : matériaux lamellaires. Les composés binaires semi-conducteurs lamellaires III-VI, tel que le Séléniure de Gallium (GaSe) et le Séléniure d'Indium (InSe) bénéficient d'un grand intérêt scientifique qui émane de leurs applications technologiques variées. Ce mémoire présente une contribution scientifique à l'étude fondamentale des différentes propriétés des polytypes de GaSe. Nous avons déterminé les propriétés structurales, électroniques et élastiques en présence et en absence de la pression pour tous les polytypes de **GaSe**. Une compression dans les plans de couche n'affecte pas le caractère "bidimensionnel" du séléniure de gallium, tandis que la compression le long de l'axe c conduit à un rétrécissement de l'espacement inter-couche. Les calculs de la structure de bande électronique montrent une augmentation progressive de la bande interdite aux contraintes bi-axiales jusqu'à σ⊥>8 GPa. Au contraire, sous une contrainte de compression uni-axiale le long de l'axe c, les énergies de transition inter-bande diminuent continuellement avec le chargement. Les propriétés optiques des différents polytypes de GaSe, sont calculées dans l'énergie des photons jusqu'à 35 eV. Nous pouvons constater que nos matériaux étudiés GaSe présentent un caractère anisotrope vis-à vis du rayonnement électromagnétique selon l'incidence // ou ⊥ au plan de couches. Notre calcul ainsi montre que le composé GaSe est mécaniquement stable à pression nulle et sous une pression allant jusqu'à 10 GPa. Ce mémoire est terminé par une simulation de deux cellules photovoltaïques, ITO/GaSe/CIGS et ITO/GaSe/CIGS/CIGS-P+, par le logiciel de simulation SCAPS-1D, nous avons trouvé un rendement de 23.06%, et un rendement de 33.36% après l'ajout d'une couche de CIGS-P+.

Mots clés : GaSe, polytype, propriété structurale, propriété optique, propriété électronique, propriété élastique, Biovia Materiel studio 2017.

N° d'ordre : 440/22

UNIVERSITE SULTAN MOULAY SLIMANE Faculté des Sciences et Techniques

Remerciements

Je remercie ALLAH le Tout-puissant de m'avoir donné le courage, la volonté et la patience de terminer ce travail.

Ce travail de thèse a été effectué au sein du laboratoire de recherche en physique et sciences pour l'ingénieur (LRPSI) de la Faculté Poly-disciplinaire de Béni-Mellal en étroite collaboration avec ''UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa''.

Je tiens tout d'abord à remercier mon directeur de thèse le Professeur KHALID RAHMANI de m'avoir accueilli au sein de son équipe et de mettre à ma disposition ses ressources matérielles et financières, puis pour son aide, ses conseils ainsi que la gentillesse et la patience qu'il a manifesté à mon égard durant cette thèse. Je le prie de trouver ici l'expression de ma très profonde gratitude. Mes remerciements vont également à mon co-directeur de thèse le Professeur MOHAMMAD KHENFOUCH de la Faculté des Sciences appliquées Ait-Melloul, université Ibn Zohr, Agadir de m'avoir confié des thèmes scientifiques d'actualité. Je tiens à le remercier de m'avoir guidé, encouragé, conseillé et surtout de me faire bénéficier à la fois de ses compétences scientifiques et de sa grande disponibilité. Je lui exprime toute ma reconnaissance pour le grand intérêt qu'il a toujours manifesté pour mes recherches. Je voudrais remercier chaleureusement le Professeur OMAR BAJJOU de l'Université Sultan Moulay Slimane, Faculté des Science et Technique de Béni Mellal, pour sa disponibilité et les longues discussions qu'on a échangé le long de l'élaboration de ces résultats. Je tiens à le remercier de m'avoir guidé, encouragé, conseillé et surtout de m'avoir fait bénéficier à la fois de ses compétences scientifiques et de sa grande disponibilité.

Je tiens à remercie également ''UNESCO UNISA Africa Chair in Nano-sciences & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa'' en la personne de **MOHAMMAD KHENFOUCH**, qui a mise à notre disposition le logiciel de simulation Biovia materiel studio 2017.

Je remercie ensuite l'ensemble des membres du jury, qui m'ont fait l'honneur de bien vouloir examiner avec attention mon travail.

Je tiens à remercier Monsieur **IZEDDINE ZORKANI**, Professeur à la Faculté des Sciences Dhar El Mahraz, Fès pour l'honneur qu'il me fait en acceptant la présidence du jury.

Je tiens à exprimer mes sincères remerciements au Professeur **AHMED LIBA**, Professeur à la Faculté des Sciences et Techniques, Béni Mellal, pour avoir accepté de participer à ce jury en tant que rapporteur.

Je tiens à exprimer mes sincères remerciements au Professeur **HADDOU ELGHAZI**, Professeur à l'Ecole Nationale d'Arts et Métiers (ENSAM), Casablanca, pour avoir accepté de participer à ce jury en tant que rapporteur.

Je tiens à exprimer mes sincères remerciements au Professeur **MOHAMED DRIOUICH**, Professeur d'enseignement supérieur à la Faculté Polydisciplinaire, Béni Mellal, pour avoir accepté de participer à ce jury en tant que rapporteur.

Je tiens à exprimer mes sincères remerciements au professeur **BOUZID MANAUT**, Professeur d'enseignement supérieur à la Faculté des Sciences et Techniques, Mohammadia, d'avoir accepté de participer à ce jury en tant qu'examinateur.

Je tiens à exprimer mes sincères remerciements au professeur **MIMOUN ZAZOUI**, Professeur d'enseignement supérieur à la Faculté des Sciences et Techniques, Mohammadia, d'avoir accepté de participer à ce jury en tant qu'examinateur.

Mes remerciements s'imposent également pour tous les membres du laboratoire (LRPSI) de Béni Mellal pour leurs soutiens et les contributions que chacun m'a apporté. L'esprit d'équipe entre les doctorants a favorisé considérablement les échanges constructifs. Pour leurs encouragements et leur assistance aussi bien matérielle que morale qui m'ont permis de faire cette thèse dans de bonnes conditions.

Je remercie chaleureusement mes très chers parents, mes chères sœurs, mon frère ainsi que toute ma famille et tous mes amis.

Merci

Liste des publications

A. Bassou, A. Rajira, <u>M. Al-Hattab</u>, J. El Haskouri, S. Murcia-Mascaros, A. Almaggoussi, A. Abounadi, Structural and optical properties of a layered ε-GaSe thin film under elastic deformation from flexible PET substrate, **Superlattices and Microstructures**. (2022) 107152. https://doi.org/10.1016/j.spmi.2022.107152.

L. Moudou, <u>M. AL-Hattab</u>, O. Bajjou, M. Boulghallat, M. Khenfouch, K. Rahmani, Improvement of intersubband absorption in asymmetric quantum wells based on GaN/AlInN, **Physica E: Low-Dimensional Systems and Nanostructures**. 139 (**2022**) 115168. https://doi.org/10.1016/j.physe.2022.115168.

O. Bajjou, <u>M. Al-Hattab</u>, A. Najim, L. Moulaoui, A. Bakour and K. Rahmani, "Modeling and simulation of a solar cell based on CIGS/CdS/ZnO," 2022 **2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)**, **2022**, pp. 1-5, https://doi:10.1109/IRASET52964.2022.9737875.

<u>M. Al-Hattab</u>, L. Moudou, M. Khenfouch, O. Bajjou, Y. Chrafih, K. Rahmani, Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software, **Solar Energy**. 227 (**2021**) 13–22. <u>https://doi.org/10.1016/j.solener.2021.08.084</u>.

<u>M. Al-hattab</u>, L.H. Moudou, K. Rahmani, M. Khenfouch, O. Bajjou, First-principles calculation of the structural, electronic and optical properties of GaSe _(1-x) S _(x) (x = 0, 0.25, 0.5 and 1 compounds, Advances in Materials and Processing Technologies. 00 (2021) 1–13. https://doi.org/10.1080/2374068X.2021.1939991.

<u>M. Al-Hattab</u>, L. Moudou, Y. Chrafih, M. Khenfouch, O. Bajjou, K. Rahmani, The anisotropic optical properties of different polytypes (ε , β , δ , γ) of GaSe lamellar materials, **The European Physical Journal Applied Physics**. 91 (**2020**) 30102. https://doi.org/10.1051/epjap/2020200136.

L. MOUDOU, <u>M. AL-HATTAB</u>, K. RAHMANI, M. KHENFOUCH, M. BOULGHALLAT (2022)."Quantum confinement in GaInN/AlInN asymmetric quantum wells". Journal of Physics: Advances in Physics International Online Conference (APIOC), 2020. Accepté.

<u>M. Al-Hattab</u>, L. Moudou, L. Moulaoui, M. Khenfouch, O. Bajjou, K. Rahmani, "DFT study of the electronic and elastic properties of $\varepsilon - GaSe$ and $\beta - GaSe$ lamellar materials" Journal of Physics: Advances in Physics International Online Conference (APIOC), (2020). Accepté.

<u>M. AL-hattab</u>, M. Khenfouch, O. Bajjou, K. Rahmani, Structural, electronic and elastic properties of different polytypes of GaSe lamellar materials under compressive stress: Insights from DFT study, **journal of nanoparticle research**. <u>Submissions Being Processed</u>

Liste des abréviations et des symboles

Abréviations les plus couramment utilisées :

DFT Théorie de la fonctionnelle de la densité (Density Functional Theory) LDA Approximation de la densité locale (Local Density Approximation) LSDA Approximation de la densité de spin locale (Local Spin Density Approximation) GGA Approximation du gradient généralisé (Generalized Gradient Approximation) **APW** Onde plane augmentée (Augmented Plane Wave) **PP** Pseudopotentiel (Pseudo-potential) **US-PP** Pseudopotentiels ultradoux (Ultrasoft pseudopotential) **PW** Onde plane (Plane Wave) **ZB** Zone de Brillouin (Brillouin zone) **E**_{Cut-off} Energie de coupure (Cut-off energy) **Exc** Energie d'échange-corrélation (Exchange-Correlation energy) **B** Module de compressibilité (Bulk modulus) G Module de cisaillement (Shear modulus) E Module de Young (Young Modulus) v Coefficient de Poisson (Poisson coefficient) Cijkl Tenseur des constantes élastiques S_{ijkl} Tenseur des constantes de déformabilités **A**^U Facteur d'anisotropie universel **E**_F Energie de Fermi (Fermi energy) **E**_g Bande interdite (Energy band gap) **DOS** Densité d'états (Density of states) **TDOS=PDOS** Densité d'états totale/partielle (Total/Partial density of states) **ITO** Oxyde d'étain et d'indium CIGS Cuivre-indium-gallium-séléniure GaSe Séléniure de gallium **PV** Photovoltaïque TF Température de fonctionnement

- **PCE (η(%))** Efficacité de conversion de puissance
- $\mathbf{P}_{\mathbf{m}}$ Puissance maximum
- $\mu_n (cm^2/Vs)$ Mobilité d'électron
- μ_p (*cm*²/Vs) Mobilité des trous
- N_D (cm^{-3}) Densité des donneurs
- N_A (cm^{-3}) Densité d'accepteurs
- Ve(cm/s) Vitesse thermique des électrons
- Vh(cm/s) Vitesse thermique du trou
- Nt (*cm*⁻³) Densité des défauts
- $\varphi(eV)$ Travail de sortie
- $Se(^{CM}/_{S})$ Vitesse de recombinaison de surface pour les électrons
- $Sh(^{CM}/_{S})$ Vitesse de recombinaison de surface pour les trous
- Voc(V) Tension en circuit ouvert
- J_{sc}(mA/cm²) Densité de courant de court-circuit
- Qe(%) Efficacité quantique
- Rs $(\Omega. cm^2)$ Résistance série
- $\mathbf{R}_{sh}(\boldsymbol{\Omega}. \boldsymbol{cm}^2)$ Résistance de dérivation
- **W**(μm) Épaisseur
- χ (eV) Affinité électronique
- εr Permittivité diélectrique (relative)
- N_c (cm^{-3}) Densité effective des états CB
- N_v (*cm*⁻³) Densité effective d'états VB

Liste des figures

Figure 1 Structure en feuillet de la structure lamellaire de GaSe
Figure 2 Vue en plan du réseau hexagonal de GaSe [16]
Figure 3 [20] a) Empilement β b) Empilement ϵ c) Empilement γ d) Empilement δ
Figure 4 Structure de bande de GaSe [14]
Figure 5 Coefficient d'absorption de différentes polytypes de GaSe à la température ambiante [21].9
Figure 6 Spectre de transmission d'un monocristal GaSe à différents températures [22]9
Figure 7 Schéma du FET basé sur des feuillets de GaS/GaSe [26]11
Figure 8 Micro-batterie avec une cathode en matériaux lamellaire
Figure 9 Jonction p-n à l'équilibre thermodynamique
Figure 10 Schéma simplifié d'une photopile en couches mince à base de (CIGSe) 14
Figure 11 Interdépendance des équations de Kohn et sham
Figure 12 Organigramme de la n ^{ième} itération dans la procédure de resolution des équations de
Hartree-Fock ou Kohn-Sham
Figure 13 Représentation de la pseudo-fonction d'onde et le pseudo-potentiel
Figure 14 Schéma de principe de détermination de l'état fondamental géométrique d'un système 47
Figure 15 Cellule unitaire de ε -GaSe, β -GaSe, γ -GaSe, δ -GaSe
Figure 16 Test de la stabilité de convergence de l'énergie totale en fonction des k-points, pour ϵ -
GaSe, β-GaSe, γ-GaSe, δ-GaSe
Figure 17 Test de la stabilité de convergence de l'énergie totale en fonction du $E_{cut-off}$, pour ϵ -GaSe, β -
GaSe, γ-GaSe, δ-GaSe
Figure 18 Paramètres structuraux des différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en
fonction des contraintes bi-axiales σ_{\perp}
Figure 19 Paramètres structuraux des différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en
fonction des contraintes uni-axiales σ_{\parallel}
Figure 20 Distance interatomique Ga-Se et Ga-Ga (Å) de différents polytypes, ϵ -GaSe, β -GaSe, γ -
GaSe, δ -GaSe en fonction des contraintes bi-axiales σ_{\perp}
Figure 21 Distance interatomique Ga-Se et Ga-Ga (Å) de différents polytypes, ε -GaSe, β -GaSe, γ -
GaSe, δ -GaSe en fonction des contraintes uni-axiales σ_{\parallel}
Figure 22 Distance interatomique Se-Se(Intracouche) et Se-Se(Intercouche) (Å) de différents
polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction de la contrainte uni-axiale σ_{\parallel} contraintes 58
Figure 23 Distance interatomique Se-Se(Intracouche) et Se-Se(Intercouche) (Å) de différents
polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction de la contrainte bi-axiale σ_{\perp} contraintes 59
Figure 24 Densité des états totale et partielle; Structures de bande calculées le long des directions de
haute symétrie dans DFT-LDA de différents polytypes, ϵ -GaSe, β -GaSe. L'origine de l'énergie est
prise au niveau de Fermi (E _F)

Figure 25 Densité des états totale et partielle; Structures de bande calculées le long des directions de
haute symétrie dans DFT-LDA de différents polytypes, γ -GaSe, δ -GaSe. L'origine de l'énergie est
prise au niveau de Fermi (EF)
Figure 26 L'évolution de l'énergie de gap dans différents polytypes de GaSe en fonction des
contraintes bi-axiales σ_{\perp} et uni-axiales σ_{\parallel}
Figure 27 Variation de la constante diélectrique (partie réelle et imaginaire) avec une polarisation // et
⊥ à l'axe c pour différents empilements de GaSe
Figure 28 Coefficient d'absorption de différents empilements de GaSe // et 1 à l'axe c
Figure 29 Les courbes de la réflectivité en fonction d'énergie de différent empilement de GaSe // et 1
à l'axe c
Figure 30 Conductivité optique (partie réelle et imaginaire) des différents polytypes du matériau
lamellaire GaSe // et ⊥ avec l'axe c
Figure 31 Indices de réfraction et coefficients d'extinction des différents empilements de GaSe, // et 1
à l'axe
Figure 32 Fonction de perte d'énergie de différents empilements de GaSe // et 1 à l'axe c
Figure 33 Relation reliant v et les dimensions initiales et finales de l'éprouvette
Figure 34 Coefficients de rigidité élastique de différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe
en fonction de la contrainte uniaxiale σ_{11} contraintes de compression
Figure 35 Coefficients de rigidité élastique de différents polytypes, ε -GaSe, β -GaSe, γ -GaSe, δ -GaSe
en fonction de la contrainte bi-axial σ_{\perp} contraintes de compression
Figure 36 Représentation de la cellule solaire ITO/GaSe/CIGS
Figure 37 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche d'absorbeur
CIGS et de la concentration de porteurs sur les performances des cellules solaires 102
Figure 38 Efficacité quantique en fonction de a) l'épaisseur, et b) la concentration en porteurs de la
couche absorbante CIGS
Figure 39 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche tampon de
GaSe et de la concentration de porteurs sur les performances des cellules solaires
Figure 40 Performances des cellules simulées en fonction a) de la résistance R_s et b) de la résistance
R _{Sh}
Figure 41 Performances cellulaires simulées de ITO/GaSe/CIGS/ en fonction de la température de
fonctionnement
fonctionnement
fonctionnement.107Figure 42 Représentation structurelle de la cellule solaire ITO/GaSe/CIGS/CIGS-P+108Figure 43 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche CIGS-P+ et
fonctionnement. 107 Figure 42 Représentation structurelle de la cellule solaire ITO/GaSe/CIGS/CIGS-P ⁺ 108 Figure 43 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche CIGS-P+ et de la concentration de porteurs sur les performances des cellules solaires. 109
fonctionnement

Liste des Tableaux

Tableau 1 Largeurs de la bande interdite directe et indirecte de GaSe. 10
Tableau 2 Informations sur les structures et paramétrisation utilisées dans nos calculs pour ϵ -GaSe, β -
GaSe, γ-GaSe, δ-GaSe
Tableau 3 Paramètres de réseau et distances interatomiques (en angströms Å) de ϵ -GaSe, β -GaSe, γ -
GaSe, δ-GaSe calculés à pression nulle
Tableau 4 Comparaison des bandes interdites (eV) calculées pour différents polytypes de GaSe, par
rapport aux données expérimentales et théoriques tirée de la littérature
Tableau 5 Valeurs maximales de la partie réelle et la partie imaginaire de la constante diélectrique des
différents polytypes des matériaux lamellaires GaSe en polarisation // et 1 avec l'axe c
Tableau 6 Valeurs de la partie réelle de la constante diélectrique en polarisation // et⊥ avec l'axe c, de
diffèrents polytypes des matériaux lamellaires GaSe à très basses et à hautes énergies
Tableau 7 Positions des pics principaux du coefficient d'absorption des différents polytypes du
matériau lamellaire GaSe
Tableau 8 Pourcentages de la réflectivité des différents empilements du matériau lamellaire GaSe // et
\perp avec l'axe c
Tableau 9 Valeurs maximales de la conductivité optique (partie réelle et imaginaire) des diffèrents
polytypes de matériau lamellaire GaSe // et ⊥ avec l'axe c
Tableau 10 Indices de réfraction maximale et coefficient d'extinction maximale des différents
empilements de matériau lamellaire GaSe // et ⊥ avec l'axe c
Tableau 11 Valeurs maximales de la fonction de perte d'énergie des différents empilements de
matériau lamellaire GaSe // et 1 avec l'axe c
Tableau 12 Nombre des constantes élastiques indépendantes pour différentes structures [99]
Tableau 13 Constantes élastiques C _{ij} calculées à l'aide de la DFT-LDA à 0 GPa, pour différents
polytypes de GaSe ont été comparées aux données expérimentales et théoriques
Tableau 14 Grandeurs mécaniques des différents polytypes de GaSe calculées à l'aide de la DFT-LDA
à 0 GPa, ont été comparées aux données expérimentales et théoriques
Tableau 15 Grandeurs mécaniques des différents polytypes de GaSe calculées à l'aide de la DFT-LDA
en fonction des contraintes de compression uni-axiales σ_{II}
Tableau 16 Grandeurs mécaniques des différents polytypes de GaSe calculées à l'aide de la DFT-LDA
en fonction des contraintes de compression bi-axiales σ
Tableau 17 Ensemble des paramètres utilisés dans les simulations des cellules proposées [147–150]99
Tableau 18 Les propriétés des contacts électriques
Tableau 19 Performance de la cellule simulée avec et sans CIGS-P ⁺ (Optimisé)
Tableau 20 Comparaison des caractéristiques photovoltaïques de cellules solaires basées sur CIGS
avec différentes couches tampons

Résumé

Dans les dernières années, la révolution technologique a ouvert la voie à une génération des matériaux appelés : matériaux lamellaires. Les composés binaires semi-conducteurs lamellaires III-VI, tel que le Séléniure de Gallium (GaSe) et le Séléniure d'Indium (InSe) bénéficient d'un grand intérêt scientifique qui émane de leurs applications technologiques variées. Ce mémoire présente une contribution scientifique à l'étude fondamentale des différentes propriétés des polytypes de GaSe. Nous avons déterminé les propriétés structurales, électroniques et élastiques en présence et en absence de la pression pour tous les polytypes de GaSe. Une compression dans les plans de couche n'affecte pas le caractère "bidimensionnel" du séléniure de gallium, tandis que la compression le long de l'axe c conduit à un rétrécissement de l'espacement inter-couche. Les calculs de la structure de bande électronique montrent une augmentation progressive de la bande interdite aux contraintes bi-axiales jusqu'à $\sigma \perp > 8$ GPa. Au contraire, sous une contrainte de compression uni-axiale le long de l'axe c, les énergies de transition inter-bande diminuent continuellement avec le chargement. Les propriétés optiques des différents polytypes de GaSe, sont calculées dans l'énergie des photons jusqu'à 35 eV. Nous pouvons constater que nos matériaux étudiés GaSe présentent un caractère anisotrope vis-à vis du rayonnement électromagnétique selon l'incidence // ou 1 au plan de couches. Notre calcul ainsi montre que le composé GaSe est mécaniquement stable à pression nulle et sous une pression allant jusqu'à 10 GPa. Ce mémoire est terminé par une simulation de deux cellules photovoltaïques, ITO/GaSe/CIGS et ITO/GaSe/CIGS/CIGS-P+, par le logiciel de simulation SCAPS-1D, nous avons trouvé un rendement de 23.06%, et un rendement de 33.36% après l'ajout d'une couche de CIGS-P+.

Mots clés : GaSe, polytype, propriété structurale, propriété optique, propriété électronique, propriété élastique, Biovia Materiel studio 2017.

Unité de recherche

Université Sultan Moulay Slimane, Faculté Poly-disciplinaire Beni Mellal-Maroc, Laboratoire de Recherche en physique et science pour l'Ingénieur (LRPSI).

Abstract

In recent years, the technological revolution has opened the way to a generation of materials called: lamellar materials. The III-VI lamellar semiconductor binary compounds, such as Gallium Selenide (GaSe) and Indium Selenide (InSe), benefit from a great scientific interest arising from their varied technological applications. This thesis presents a scientific contribution to the fundamental study of the different properties of **GaSe** polytypes. We have determined the structural, electronic and elastic properties in the presence and absence of pressure for all polytypes of GaSe. Compression in the layer planes does not affect the "twodimensional" character of gallium selenide, while compression along the c-axis leads to a narrowing of the interlayer spacing. Calculations of the electronic band structure show a progressive increase in the band gap at bi-axial stresses up to $\sigma \perp > 8$ GPa. On the contrary, under uniaxial compressive stress along the c-axis, the interband transition energies continuously decrease with loading. The optical properties of the different polytypes of **GaSe** are calculated in the photon energy up to 35 eV. We can see that our studied GaSe materials have an anisotropic character with respect to electromagnetic radiation according to the incidence // or \perp at the layer plane. Our calculation thus shows that the **GaSe** compound is mechanically stable at zero pressure and under a pressure of up to 10 GPa. This thesis ends with a simulation of two photovoltaic cells, ITO/GaSe/CIGS and ITO/GaSe/CIGS/CIGS-**P**⁺, by the SCAPS 1D simulation software, we found a yield of **23.06%**, and a yield of **33.36%** after adding a layer of CIGS-P+.

Keywords: GaSe, polytype, structural property, optical property, electronic property, elastic property, Biovia Materiel studio 2017.

Research Unit

Sultan Moulay Slimane University, Beni Mellal-Morocco Polydisciplinary Faculty, Research Laboratory in Physics and Engineering Science (LRPSI).

Remerciements Liste des publicationsii Liste des abréviations et des symbolesii Liste des figures		
Liste des publicationsii Liste des abréviations et des symbolesii Liste des figures		
Liste des abréviations et des symbolesi Liste des figures		
Liste des figures		
Liste des Tableauxvi Résuméi Abstract		
Résuméi Abstract Introduction générale		
Abstract Introduction générale		
Introduction générale		
Chapitre I : Etat de l'art		
1 Introduction		
2 Propriétés de base du matériau GaSe		
2.1 Propriétés cristallographiques		
2.2 Structure de bande		
2.3 Propriétés optiques		
3 Applications technologiques du matériaux GaSe1		
3.1 Introduction1		
3.2 Domaine de l'électronique1		
3.3 Stockage d'énergie 1		
3.4 Domaine photovoltaïque1		
4 Conclusion		
Chapitre II Calculs des premiers principes : Aperçu sur le modèle théorique de recherche		
1 Introduction		
 Problème à N corps 1 		
2 1 Equation d'un solide cristallin		
2.2 Approximation de Born-Oppenheimer		
2.2 Approximation de Bartree (électron libre)		
2.4 Approximation de Hartree-Fock		
3 Théorie de la Fonctionnelle de la Densité (DFT) 2		
3.1 Origine de la DET		
3.2 Cadre générale de la DFT		
3.3 Densité électronique		
3.4 Théorèmes de Hohenberg-Kohn (1964)		

	3.5	Equa	itions de Kohn–Sham	28
	3.6	Appr	oximations d'échange-corrélation	31
	3.6	5.1	Approximation de la densité locale (LDA)	31
	3.6	5.2	Introduction du spin (LSDA)	32
	3.6	5.3	Méthode du gradient généralisé (GGA)	32
	3.6	5.4	Approximation LDA+U	33
4	Ré	ésoluti	on de l'équations de Kohn et Sham	34
C	hapit	re III	: Propriétés structurales, électroniques et optiques du matériaux lamellair	:es
1	ase	trodu		33
1		ndos n	long	30
4	2 1	Thác	ràme de Bloch	37
	2.1	Echa	ntillonnage de la première zone de Brillouin	38
	2.2	Base	d'ondes planes	28
3	2.5 M	óthode	de Pseudo-potentiel	<u> </u>
5	3 1	Mod	tèles des nseudos notentiels	42
	3.1	11	Modèles des Pseudo-notentiels semi-empirique	42
	3.1	1.2	Pseudo notentiels ab-initio	43
	32	Choi	x du pseudo-potentiel	45
4	C	ode de	calcul	45
1	4.1	Intro	duction	45
	4.2	Aper	cu sur le code CASTEP	45
	4.3	Opti	misation de la géométrie avec CASTEP	46
5	Pa	ramèt	re de calcul : Test de convergence	47
6	Ré	ésultat	s et discussion	52
	6.1	Prop	riétés structurales	52
	6.2	Prop	riétés électroniques	59
	6.2	2.1	Introduction	59
	6.2	2.2	Propriétés électroniques à pression nulle	60
	6.2	2.3	Propriétés électroniques étudiées à pression non nulle	64
	6.3	Prop	riétés optiques	65
	6.3	3.1	Introduction	65
	6.3	3.2	Constante diélectrique	67
	6.3	3.3	Coefficient d'absorption	69

	6.3.4	4 Réflectivité
	6.3.5	5 Conductivité optique
	6.3.6	6 Indice de réfraction et coefficient d'extinction72
	6.3.7	7 Fonction de perte d'énergie74
7	Con	nclusion
Ch	apitr	e IV : Propriétés mécaniques et élastiques du matériaux lamellaire GaSe
1	Intr	roduction77
2	Rés	ultat et discussion
2	.1	Propriétés élastiques et mécaniques étudiées à pression nulle
2	.2	Propriétés élastiques et mécaniques à pression non nulle
3	Con	nclusion
Cha CI	apitr GS/G	e V : Simulation numérique d'un nouveau système de cellules solaires hétérogènes aSe96
1	Intr	oduction
2	Stru	acture de la cellule solaire et simulation numérique
3	Rés	ultats et discussions
3	.1	Influence de la concentration en porteurs et de l'épaisseur de la couche d'absorbeur CIGS
3	.2	Influence de la concentration en porteurs et de l'épaisseur de la couche tampon de GaSe 103
3	.3	Effets de la résistance parasitaire104
3	.4	Influence de la température de fonctionnement106
3	.5	Influence du CIGS-P ⁺
3	.6	Étude comparative
4	Con	nclusion
Co	nclus	ion générale114
Réf	féren	ces bibliographiques116
An	nexe	

Introduction générale

Les composés binaires semi-conducteurs lamellaires III-VI, tel que GaSe, GaS, InSe, disposent actuellement d'un grand intérêt scientifique qui émane de leurs applications technologiques variées. Dans ce travail, on se concentre sur l'étude des propriétés structurales, électroniques, optiques et élastiques des matériaux lamellaire GaSe. En effet, une investigation menée sur ces propriétés révèle son attractivité dans des applications à base de composants à hétérojonctions ainsi que de composants photo-électroniques dans le domaine du photovoltaïque. En outre, parmi les nouveaux matériaux testés pour la détection d'impulsion laser (optique non linéaire). Il a été aussi utilisé comme détecteur de radiations opérant à température ambiante, détecteur de rayons X et comme générateur d'ondes Térahertz ce qui peut se révéler très utile dans le domaine de la spectroscopie THz et de la technologie de l'imagerie.

Pour l'étude fondamentale des propriétés des matériaux, les théoriciens ont développé différentes méthodes basées sur des modèles différents, les uns dits semi-empiriques aux paramètres ajustables, les autres appelés des premiers principes (ab-initio), puisent leur fondement de la théorie quantique fondamentale et utilisent seulement les constantes atomiques comme paramètres d'entrées pour la résolution de l'équation de **Schrödinger**. Ces méthodes sont devenues aujourd'hui un outil de base pour l'étude des propriétés physiques, électroniques, optiques, et thermodynamiques des molécules et des matériaux. Elles sont aussi des outils de choix pour l'étude de certains effets impossibles, difficiles ou même très couteux à déterminer par voie expérimentale.

La puissance des calculs ab-initio a pour origine le formalisme de **Hartree-Fock**, ou celui de la théorie de la fonctionnelle de la densité (DFT) qui stipule que l'énergie totale d'un système est une fonctionnelle de sa densité d'électrons. Pour les calculs des propriétés à base de DFT, on utilise le code CASTEP (Cambridge Serial Total Energy Package) est un programme de pointe basé sur la mécanique quantique (Voir plus de détail dans le chapitre 3).

Dans ce travail, nous nous sommes proposé d'investir le composé binaire à intérêts technologiques remarquables de la famille des semi-conducteurs lamellaires du groupe III-VI, qui sont le séléniure de gallium (GaSe). Notre choix est motivé par le caractère *«Polytypes»* de ce composé, chose qui a fait naître un débat intéressant.

Nous nous sommes proposés d'étudier le composé GaSe, dans le cadre de la DFT, dans quatre poly-types avec deux structures cristallines (*Hexagonale* et *Rhomboédrique*), en utilisant le code **CASTEP** ;

Ce mémoire regroupe cinq chapitres :

- Le premier chapitre présente un état de l'art des travaux déjà réalisés pour le composé semi-conducteurs lamellaires (III-VI) GaSe.
- Le deuxième chapitre à aspect théorique, traite le problème lié à l'étude d'un solide et présente, de ce fait, le fondement de la théorie de la fonctionnelle de la densité (DFT) et les différentes approximations adoptées pour venir à bout de cette théorie.
- Le troisième chapitre présente les méthodes et le code de calcul dans la première partie. Dans le deuxième, on s'intéresse d'assurer la stabilité de la convergence de l'énergie totale *E* vers sa valeur minimale, et cela pour chaque *poly-type* de GaSe. Nous avons déterminé le nombre des k-points minimum représentant le maillage de la 1^{ère} zone de Brillouin et le seuil minimum pour le paramètre de coupure, et on termine par la présentation des résultats obtenus pour les propriétés structurales, électroniques et optiques des matériaux lamellaires GaSe.
- Le quatrième chapitre se concentre sur l'étude théorique des propriétés mécaniques, et élastiques du composé III–VI (GaSe).
- Le cinquième chapitre est dédié à l'application des cellules photovoltaïques à base de GaSe. Une nouvelle structure de cellule solaire à base de CIGS comprenant une couche tampon GaSe et une couche antireflet ITO. Nous examinons l'effet de la concentration, de l'épaisseur, des résistances et de la température de fonctionnement.

Finalement, ce manuscrit et terminé par une conclusion générale qui résume les principaux résultats de ce travail et ouvre une nouvelle fenêtre vers de nouveaux challenges concernant le matériau semi-conducteur lamellaires GaSe.

2

Chapitre I : Etat de l'art

Matériaux lamellaire GaSe

Les uns dísent que c'est un caíllou, les autres que c'est un oíseau. En effet, c'est un œuf.

Lanza Del Vasto.

1 Introduction

L'étude des composés lamellaires III-VI a connu de grands développements dans la dernière décennie. Parmi les plus étudiés, le séléniure de gallium GaSe de couleur rouge foncé. Il trouve son application dans plusieurs domaines principalement dans le domaine d'optique non linéaire.

En effet, une investigation menée sur les propriétés structurales, électriques et optiques du composé lamellaires GaSe révèle son attractivité dans des applications à base de composants à hétérojonctions ainsi que de composants photo-électroniques dans le domaine du photovoltaïque [1,2]. En outre, parmi les nouveaux matériaux testés pour la détection d'impulsion laser (optique non linéaire), notre composé semble être un candidat très prometteur [3]. Il a été aussi utilisé comme détecteur de radiations opérant à température ambiante , détecteur de rayons X [4] et comme générateur d'ondes Térahertz ce qui peut se révéler très utile dans le domaine de la spectroscopie THz et de la technologie de l'imagerie [5]. De plus, l'importance technologique du GaSe varie aussi bien des applications optiques [6] et photovoltaïques [7] aux fabrications de mémoire buffers [8] et cela depuis le succès rencontré dans la croissance de composés sur le silicon par la technique MBE (molecular beam epitaxy) [9].

Ce matériau possède une grande anisotropie des liaisons chimiques, ce qui permet de modifier leurs propriétés physiques par intercalation. Ils présentent aussi un intérêt particulier en raison de la possibilité de former des hétérojonctions de haute qualité avec l'utilisation de l'épitaxie de Van der Waals [10,11]. Dans ce chapitre, nous avons rappelé quelques propriétés physiques de GaSe, ainsi que ses applications les plus importantes.

2 Propriétés de base du matériau GaSe2.1 Propriétés cristallographiques

Le matériau lamellaire GaSe est un semi-conducteur qui cristallise dans la structure hexagonale. Il présente une anisotropie prononcée de ses propriétés mécaniques et électrooptiques. GaSe possède une structure lamellaire dont l'élément de base est un feuillet. Ce dernier se compose de 2 plans de Gallium intercalés entre deux plans de Sélénium (voir figure 1). Le gallium (Ga) appartient à la troisième colonne avec une couche externe de $4s^24p^1$; le sélénium (Se) appartient à la seizième colonne avec une couche externe $4s^24p^4$.

Comment se forme alors un feuillet ?

- Chaque atome (Se) possède six électrons de valence : avec trois électrons, il établit trois liaisons iono-covalentes avec le (Ga); il garde deux électrons pour saturer sa couche.
 L'électron restant sera donné au (Ga) pour faire une liaison avec un autre atome (Ga).
- Pour le Gallium, il avait trois électrons de valence ; il établit donc trois liaisons ionocovalentes avec (Se). Il prend un électron de chez (Se) de chaque couche pour atteindre huit électrons et saturer ainsi sa couche.

D'où l'existence de la structure particulière qu'est un feuillet constitué de la séquence Se–Ga–Ga–Se [12]. Il faut noter qu'à l'intérieur d'un même feuillet, on a de fortes liaisons entre les atomes (liaisons iono-covalentes) ; par contre l'ensemble des feuillets, constituant le cristal lamellaire 2D, sont reliés par des liaisons faibles de type *Van der Walls* [13–15].

Figure 1 Structure en feuillet de la structure lamellaire de GaSe

La figure 2 présente une vue en plan du réseau hexagonal de GaSe :

Figure 2 Vue en plan du réseau hexagonal de GaSe [16].

Les polytypes de GaSe

L'empilement des couches selon la direction z conduit à une différence de groupes d'espace. La forme lamellaire de ces matériaux, permet de construire divers types de structures appelées polytypes ou empilements, principalement obtenus par une simple rotation ou translation [17]. Quel que soit l'empilement considéré, les feuillets s'arrangent toujours d'une façon compacte.

L'empilement \beta (Voir Figure 3-a) : est le seul qui est centro-symétrique avec un ordre d'empilement AB [18], il est obtenu par une rotation de π (R_{π}) [17], caractérisé par l'existence de deux feuillets par maille élémentaire avec un groupe d'espace D⁴_{6h} [18]. Il constitue la forme la plus stable pour GaS. Pour GaSe les paramètres de mailles sont : a =3.585 Å et c =15.51 Å [17].

<u>L'empilement ε (Voir Figure 3-b)</u>: est caractérisé par l'existence de deux feuillets par maille élémentaire et un empilement d'ordre AB, il est obtenu par une translation $(T_{1/3}T_{2/3}, T_{1/3}T_{2/3} \dots)$ [17], avec un groupe d'espace D_{3h}^1 [18]. Il constitue la forme la plus stable pour GaSe. Ses paramètres de mailles sont [19] : a =3.755 Å et c =15.95Å.

L'empilement y (Voir Figure 3-c) : est caractérisé par l'existence d'un seul feuillet par maille. Les empilements successifs des feuillets mettent les atomes dans des positions ABC...

Son groupe d'espace est C_{3v}^3 [18] et sa structure est rhomboédrique. Il est obtenue par une translation [17] : $(T_{1/3}T_{1/3}T_{1/3}T_{1/3})$. Ses paramètres de maille sont : a =3.755 Å et c=23.92 Å.

<u>L'empilement δ (Voir Figure 3-d)</u>: est caractérisé par l'existence de quatre feuillets par maille et un empilement d'ordre ABCD avec un groupe d'espace C_{6v}^4 [18]. Il est obtenu par des rotations suivis par une translation [17]: $R_{\pi} T_{1/3} R_{\pi} T_{2/3}$. Ses paramètres de maille sont : a =3.755 Å et c=31.99Å.

Figure 3 [20] a) Empilement β b) Empilement ϵ c) Empilement γ d) Empilement δ

2.2 Structure de bande

Le composé GaSe possède une bande interdite directe dans laquelle le minimum de la bande de conduction (BC) et le maximum de la bande de valence (BV) est localise au point Γ (k=0), et une bande interdite indirecte avec le minimum de la bande de conduction (BC) est localisé au point de haut symétrie M et le maximum de la bande de valence (BV) est localisé au point Γ (k=0) (Figure 4) [19].

Figure 4 Structure de bande de GaSe [14].

2.3 Propriétés optiques Transmission et absorption

Les propriétés optiques de GaSe ont été étudiées par plusieurs techniques. Elles concernent l'étude de l'absorption optique, transmission, réflexion et la photoluminescence.

Un exemple d'évolution de la transmission en fonction de la longueur d'onde sur des monocristaux de GaSe est montré dans la figure 5. Nous pouvons constater que la transmission est maximale pour des longueurs d'onde supérieure à 600 nm dans une gamme de température entre 10 K et 280 K (figure 6) [21].

Dans les domaines du visible, GaSe à un coefficient d'absorption supérieur à $10^3 cm^{-1}$ [22]. La figure 6 montre le spectre d'absorption de GaSe en fonction de l'énergie [22].

Figure 5 Coefficient d'absorption de différentes polytypes de GaSe à la température ambiante [21]

Figure 6 Spectre de transmission d'un monocristal GaSe à différents températures [22].

Le coefficient d'absorption α est donné par la relation [23] :

$$\alpha h\nu = A(h\nu - E_g)^m$$

A est une constante, *hv* est l'énergie des photons, m est l'indice dont la valeur dépend de la nature des transitions optiques.

↓ Si l'absorption correspond à une transition directe, alors m=0.5

♣ Si l'absorption correspond à une transition indirecte, alors m=2

Les valeurs des largeurs des bandes interdites directes et indirectes obtenues dans la littérature sont reportées dans le tableau 1 :

Gape direct (ev)	Gape indirect (ev)	Référence	Méthode
2.004 à 300K	-	[22]	Absorption
2.02 à 300K	-	[6]	Absorption
2.1 à 293K	2 à 293K	[24]	Absorption
2.02 à 300K	1.995 à 300K	[25]	Absorption

Tableau 1 Largeurs de la bande interdite directe et indirecte de GaSe.

3 Applications technologiques du matériaux GaSe 3.1 Introduction

GaSe est un semi-conducteur utilisé dans un large domaine d'applications ; en particulier dans les domaines d'optoélectroniques et du photovoltaïque et aussi au niveau du stockage d'énergie. Ce dernier domaine est associé aux propriétés physiques liées à sa structure lamellaire. Dans ce qui suit, on va citer quelques exemples d'applications.

3.2 Domaine de l'électronique

Les matériaux bidimensionnels ont attiré une grande attention de la communauté scientifique au cours des dernières années en raison de leurs potentiels et leurs perspectives technologiques. Le premier matériau lamellaire étudié est le graphene dont les propriétés électriques, optiques, magnétiques et mécaniques sont inhabituelles.

Des couches minces ultrafines de GaSe ont été obtenues par la technique micromécanique dite exfoliation. Elle permet de séparer les lamelles de GaSe d'une façon facile et très rapide (figure 7). Ces couches de GaSe ont été déposées à température ambiante sous atmosphère ambiante sur des plaquettes de silicium dopées de manière dégénérée avec un oxyde thermique d'épaisseur 500 nm. Une fois ces couches identifiées et caractérisées, elles sont intégrées dans des structures transistor à effet de champ (FET). Pour se faire, un contact est rajouté aux couches de GaSe (GaS) par la méthode de la lithographie optique (faisceau d'électron) [26].

Figure 7 Schéma du FET basé sur des feuillets de GaS/GaSe [26].

3.3 Stockage d'énergie

L'un des axes de la recherche dans le domaine de stockage de l'énergie est la conception des micro-batteries solide au lithium avec des matériaux lamellaires comme cathodes d'insertion. En effet, à cause de l'existence de feuillets dans ces matériaux lamellaires, il est plus facilité d'intercaler les ions alcalins Li⁺ lors de leur diffusion entre les feuillets bidimensionnels lorsque la batterie fonctionne. Les matériaux lamellaires III-VI font partie des voies explorées, en particulier (Ga(In)Se) ont fait l'objet de plusieurs études.

Une batterie lithium-ion est un système constitué de deux électrodes séparées par un électrolyte. Ce dernier étant un conducteur ionique et un isolant électronique. Le principe de fonctionnement de cette batterie est basé sur la conversion de l'énergie chimique en énergie électrique à travers deux réactions d'oxydoréduction s'opérant aux deux électrodes négative et positive (figure 8) [27].

Figure 8 Micro-batterie avec une cathode en matériaux lamellaire.

Le choix des matériaux lamellaire comme cathode d'insertion est guidé par leur forme stratifiée ; c'est-à- dire l'existence de l'espace entre les lamelles (espace de Van Der Waals) dans lequel les atomes de lithium seront insérés.

Plusieurs études ont été faites dans ce sens. M. BALKANSKI [28] a inséré des atomes de lithium dans les matériaux lamellaire (Ga(InS)Se) par la méthode chimique d'immersion du cristal lamellaire dans une solution n-butylithium Hexane (n-C4H9Li). La réaction est la suivante :

$n - C_4 H_9 Li + InSe(GaSe) \rightarrow Li_x InSe(GaSe) + \frac{1}{2}n - C_8 H_{18}$

Les atomes de (Li) occupe à la cathode les sites de potentiels énergétiques le plus bas situés à l'espace lamellaires. Le processus d'intercalations est réversible, les atomes de Li insérés dans la cathode cédait leurs électrons à l'extérieur dans l'anode, au même temps les ions Li⁺ passe par une intermédiaire (l'électrolyte) vers anode pour neutralise la charge, puis un autre atome de lithium prend son tour, et ainsi de suite...

Inconvénient

Malgré la faisabilité d'utilisation de ces matériaux comme cathode d'insertion dans les micro-batteries, plusieurs inconvénients ont été signalés :

- ✓ La stabilité mécanique de la cathode se détériore après un grand nombre de cycles [27].
- L'inflexibilité du matériau électrolyte réduit sa capacité à s'adapter à l'expansion du volume de la cathode après l'intercalation [28].
- ✓ L'insertion de lithium dans les matériaux lamellaires (GaSe, InSe...) entraîne une modification structurale [29].
- ✓ La présence de feuilles alternées d'ions Li^+ provoque des altérations au niveau de la structure de la bande électronique à cause de l'interaction coulombienne complémentaire qui est elle-même évidente grâce à des changements dans les énergies de liaison exciton. En présence d'ions Li^+ , de nouveaux centres de recombinaison radiative sont également observés [29].

3.4 Domaine photovoltaïque

Le photovoltaïque (PV) est considéré comme la technologie la plus prometteuse pour L'énergie durable, son principe est de convertir l'énergie lumineuse en énergie électrique. La cellule photovoltaïque se compose d'un matériau semi-conducteur. Actuellement, les cellules solaires à base de plaques de silicium (Si) jouent un rôle important dans le marché des photovoltaïques. Cependant, la cherté du silicium et sa forte consommation posent un sérieux handicap pour le développement du photovoltaïque. Il faut donc diminuer considérablement la quantité de matériaux semi-conducteurs entrants dans la composition des cellules solaires. Ainsi, les Cellules solaire à base de plaquettes à film mince sont considérées comme une alternative moins coûteuse [30].

Cellules solaires à base de Cu(In, Ga)Se2

Une cellule solaire est basée sur la séparation des porteurs photo-générés qui se situent entre un contact avant et un contact arrière. Ainsi, l'absorption du matériau se mesure par la capacité du matériau à absorber l'énergie des photons incidents (hv) [31].

Figure 9 Jonction p-n à l'équilibre thermodynamique.

La création d'une jonction p-n est nécessaire pour la formation du courant qui nécessite la séparation des porteurs de charge. Quand un semi-conducteur de type p est mis en contact avec un semi-conducteur de type n les porteurs (électron, trou) se déplacent respectivement par un gradient de concentration d'une région avec une haute densité de porteurs vers une région avec une faible densité de porteurs. C'est le phénomène de **diffusion**.

Quand les électrons diffusent vers le coté p, ils laissent derrière eux des ions chargés positivement du coté n. Similairement, les trous laissent derrière eux des ions chargés négativement du coté p. Les ions fixes créés de part et d'autre de la jonction engendrent la création d'un champ électrique qui s'oppose à la diffusion. Le déplacement des porteurs libres dans le champ électrique est appelé courant de conduction [31].

A l'équilibre, les courants de diffusion et de conduction sont égaux. Le champ électrique introduit au sein de la cellule solaire par la jonction p-n fournit la force nécessaire pour la séparation des charges de telle sorte que les électrons se déplacent de la zone p vers la zone n et les trous en sens inverse. De chaque côté de la jonction, les matériaux déficitaires en porteurs libres créent par la même occasion une zone de charge espace (ZCE) (figure 9) [31].

Les dispositifs photovoltaïques à base de Cu(In,Ga)Se₂ (CIGSe: couches minces) sont constitués d'un empilement de cinq éléments principaux (figure 10).

- \rm Substrat
- 4 Une couche absorbante
- Une couche tampon afin de réaliser la jonction p-n avec le CIGSe, également pour rôle de passiver les états de surface présents à la surface du CIGSe et de le protéger.
- Une couche d'oxyde transparent conducteur afin d'assurer la transmission de la presque totalité de la lumière incidente utile à l'absorbeur.
- Un contact ohmique supérieur afin d'améliorer l'extraction des porteurs de charge photogenèses.

Figure 10 Schéma simplifié d'une photopile en couches mince à base de (CIGSe).

Les différences entre les cellules cristallines à base de $Cu(In,Ga)Se_2$ (CIGSe) et celles à base de silicium c'est que dans ces dernières, la jonction p-n est une homojonction réalisée au sein du même matériau par dopage de type p et de type n de part et d'autre de la jonction. Mais pour le CIGSe, l'hétérojonction est réalisée entre le CIGSe et une couche tampon de nature différente telle que le sulfure de cadmium (CdS).

4 Conclusion

Ce premier chapitre a été consacré à une étude bibliographique du matériau lamellaire GaSe. Nous avons reporté, dans un premier temps, ses principales propriétés structurales, cristallographiques, électroniques, et optiques afin de mieux comprendre l'intérêt de l'utilisation de ce matériau dans certains domaines.

Dans un second temps, nous avons présenté de ses applications potentielles dans divers domaines à savoir en électronique, en stockage d'énergie et en photovoltaïque.

Après cet aperçu concernant l'intérêt de ce type de matériaux, le chemin est bien ouvert pour passer au 2^{ème} chapitre consacré à la présentation des calculs des premiers principes : aperçu de la méthode de recherche.

Chapitre II Calculs des premiers principes : Aperçu sur le modèle théorique de recherche

Equation de SHRODINGER

Il s'avère en effet beaucoup plus dífficile de rendre compréhensible, de présenter rationnellement, ne serait-ce que le domaine spécialisé le plus restreint de n'importe quelle branche des sciences, si on en retire toute métaphysique.

Erwin Schrödinger

1 Introduction

Les propriétés physiques d'un système solide, illustrées par l'image d'électrons légers en mouvement autour de noyaux lourds, dépendent du comportement de sa structure électronique. La mécanique quantique fournit le cadre idéal à cette étude. Une description complète d'un système quantique à N électrons nécessite le calcul de la fonction d'onde correspondante : $\Psi(r_1, r_2, r_3 \dots, r_N)$. En principe ceci peut être obtenu à partir de l'équation de Schrödinger. Cette équation ne possède des solutions analytiques que dans le cas de l'atome d'Hydrogène. Alors le problème à N corps nécessiterait la solution d'une équation de Schrödinger avec un nombre considérable d'équations différentielles simultanées. En général, la solution de cette équation est basée sur des approximations. Le premier niveau d'approximation largement acceptable est celui de Born et Oppenheimer (1927), ou adiabatique, qui permet de séparer les mouvements des électrons et des noyaux sur la base d'une grande différence de leurs masses. A toutes fins pratiques, l'utilisation de l'approximation de Born-Oppenheimer revient à la solution de l'équation de Schrödinger pour les électrons dans le champ électrostatique des noyaux fixes. Le deuxième niveau d'approximation consiste à employer d'autre approche dans le but de simplifier la complexité résultante de l'approximation de Born-Oppenheimer pour résoudre l'équation de Schrödinger électronique, on parle souvent de l'approximation de Hartree-Fock ou le formalisme de la théorie de la fonctionnelle de la densité (**DFT**). Dans le troisième niveau, on fait appel à différent type d'approximation pour le but de déterminer le terme de la fonctionnelle d'échangecorrélation qui est la principale difficulté de la DFT.

2 Problème à N corps2.1 Equation d'un solide cristallin

La compréhension des propriétés des matériaux consiste à étudier le système de particule élémentaire : électrons et noyaux fortement interagissant qui le constituent. Le problème théorique fondamental de la physique des solides est de comprendre l'organisation intime de ces particules à l'origine de leurs propriétés. Le premier postulat de la mécanique quantique stipule que l'état et toutes les propriétés observables d'un système quantique ; atome, molécule, ensembles de molécules, ou solides sont en principe déterminés par la connaissance de sa fonction d'onde Ψ qui peut être obtenue en résolvant l'équation de **Schrödinger** généralisée [32,33] :

$$H\psi = E\psi \tag{1}$$

Avec

- *H* L'opérateur Hamiltonien,
- $\boldsymbol{\psi}$ La fonction d'onde du système,
- *E* Son propre énergie.

La simplicité de cette formulation cache plusieurs problèmes insolubles. De ce fait, plusieurs approximations ont été développées. Nous détaillons certaines d'entre elles dans la suite de ce travail.

Un solide est défini comme un ensemble de population formée de particules lourdes chargées positivement (les noyaux) et de particules légères chargées négativement (les électrons). Si nous avons N noyaux, ceci nous amène à considérer un problème de (N+NZ) particules en interaction électromagnétique. Ceci est un problème multi-corps. En effet le problème à N corps n'admettant pas de solution analytique, d'incessantes recherches, qui sont d'une importance extrême ont été effectués. Plusieurs méthodes ont été proposées afin de résoudre l'équation de Schrödinger.

L'Hamiltonien exact pour ce système multi corps quantique s'écrit :

$$H = -\frac{\hbar^2}{2} \sum_i \frac{\nabla_{\vec{R}_i}^2}{M_i} - \frac{\hbar^2}{2} \sum_i \frac{\nabla_{\vec{r}_i}^2}{m_e} - \frac{1}{4\pi\varepsilon_0} \sum_{i,j} \frac{e^2 Z_i}{|\vec{R}_i - \vec{r}_j|} + \frac{1}{8\pi\varepsilon_0} \sum_{i \neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} + \frac{1}{8\pi\varepsilon_0} \sum_{i \neq j} \frac{e^2 Z_i Z_j}{|\vec{R}_i - \vec{R}_j|}$$
(2)

Avec

- M_i est la masse du noyau à \vec{R}_i ,
- m_e est la masse de l'électron à \vec{r}_i .

Les deux premiers termes représentent l'opérateur de l'énergie cinétique pour les noyaux et l'opérateur de l'énergie cinétique pour les électrons. Les trois derniers termes décrivent les interactions coulombiennes électrons - noyaux, électrons – électrons et noyaux – noyaux.

La solution de l'équation (1) **d'Erwin Schrödinger (1926)** conduit à la résolution d'un problème à **N** corps. Il est extrêmement difficile de résoudre ce problème exactement. Effectivement lorsque l'on considère un certain nombre d'électrons **N**, ces fonctions d'ondes

dépendent de leurs **N** coordonnées tridimensionnelles. Par suite, la fonction globale dépend de **3N** variables. Afin de trouver des états propres approchées acceptables, nous avons besoin de faire des approximations. La première approximation qui peut être introduite est l'approximation de **Born-Oppenheimer** [34].

2.2 Approximation de Born-Oppenheimer

L'approximation de Born-Oppenheimer (Max Born (1882-1970) et Robert Oppenheimer (1904-1967)), constitue la première étape dans la simplification de l'équation de Schrödinger. Selon cette approximation, le traitement des électrons et des noyaux se fait d'une façon séparée, c'est à dire une partie nucléaire et une partie électronique. La fonction d'onde totale est donc égale au produit de la fonction d'onde nucléaire $\Phi(\mathbf{R})$ et la fonction d'onde électronique $\xi_R(\mathbf{r})$:

$$\psi_{tot}(\mathbf{R}, \mathbf{r}) = \Phi(\mathbf{R})\xi_{\mathbf{R}}(\mathbf{r})$$
(3)

Cette approximation est connu sous le nom « **approximation adiabatique de BO** » qui se base sur la grande différence de masse entre les électrons et noyaux. Elle consiste à supposer que les noyaux sont immobiles et permet de séparer dans un premier temps l'étude du mouvement des électrons de celui des noyaux. Le noyau est constitué des protons et de neutrons (la masse de proton est proche â celle de neutron), la masse du proton est **1836** supérieure à celle de l'électron. Par conséquent, on commence par négliger leur mouvement par rapport à celui des électrons. On peut négliger ainsi l'énergie cinétique des noyaux devant celle des électrons, et l'énergie potentielle noyaux-noyaux devient une constante qu'on peut choisir comme la nouvelle origine des énergies. Le problème passe donc d'une complexité à **N** électrons plus **M** noyaux à une complexité à **N** électrons. Le nouvel **Hamiltonien** s'écrit comme suit :

$$H = T_{\acute{e}l} + V_{nov-\acute{e}l} + V_{\acute{e}l-\acute{e}l} + Cst$$
(4)

Par un choix convenable de l'origine on peut prend la *Cst* égale à zéro.

Avec

- *T*_{él} L'énergie cinétique des électrons,
- V_{nov-él} L'énergie d'attraction noyaux électrons,
- $V_{\text{él}-\text{él}}$ L'énergie de répulsion entre des électrons.

L'Hamiltonien électronique peut ainsi être définit comme :

$$H_{\text{\acute{e}l}} = -\frac{\hbar^2}{2} \sum_i \frac{\nabla_{\vec{r}_i}^2}{m_e} - \frac{1}{4\pi\varepsilon_0} \sum_{i,j} \frac{e^2 Z_i}{|\vec{R}_i - \vec{r}_j|} + \frac{1}{8\pi\varepsilon_0} \sum_{i \neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|}$$
(5)

Avec

- $T_{\rm \acute{e}l} = -\frac{\hbar^2}{2} \sum_i \frac{\nabla_{\vec{r}_i}^2}{m_e},$

-
$$V_{\text{noy}-\acute{\text{e}l}} = -\frac{1}{4\pi\varepsilon_0}\sum_{i,j}\frac{e^2Z_i}{|\vec{R}_i-\vec{r}_j|} = V_{\text{ext}}$$
,

-
$$V_{\text{\acute{e}l}-\text{\acute{e}l}} = \frac{1}{8\pi\varepsilon_0} \sum_{i\neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|}$$

Le problème est maintenant purement électronique et néglige les vibrations du réseau; Cependant, le problème est plus simple que l'original. Malgré cette simplification, cette équation est toujours difficile à résoudre à cause de la complexité des mouvements électroniques et des interactions qui la régissent, et n'admet pas de solution analytique sauf dans le cas de l'atome d'hydrogène. Par conséquent d'autres approximations sont donc nécessaires. On s'efforcera par la suite de présenter ces différentes approches.

2.3 Approximation de Hartree (électron libre)

Malgré que l'approximation de **Born-Oppenheimer** a traité la partie électronique seulement, nous sommes devant un problème à **N** corps à cause du terme d'interaction électronélectron. Dans la suit pour pouvoir résoudre l'équation de **Schrödinger**, **Douglas Hartree** proposa en **1928** sa méthode [35]. Elle consiste à écrire une équation poly-électronique de **N** électrons en **N** équations mono-électroniques. En se basant sur l'approximation de **Born Oppenheimer**, **Hartree** exprima la fonction d'onde globale comme un produit de fonctions mono-électroniques (**produit de Hartree (Hartree Product (HP)**) :

$$\psi(r_1, r_2, \dots r_N) = \psi_1(r_1)\psi_2(r_2) \dots \psi_N(r_N)$$
(6)

L'approximation de **Hartree** est basée sur l'hypothèse d'électrons libres (les électrons se déplacent indépendamment les uns des autres, leur mouvement est dé-corrélé.) ce qui ne prend pas en considération les interactions entre les électrons et des états de spin. Un grand mérite de cette approche est d'avoir proposé une solution auto-cohérente au problème du système électronique. Par conséquences :

- La répulsion coulombienne totale $V_{\acute{el}-\acute{el}}$ du système électronique est surestimée.
- Le principe d'exclusion de **Pauli** n'est pas pris en compte.

Les équations de Schrödinger mono-électroniques s'écrivent :

$$-\frac{\hbar^2}{2m}\nabla^2\psi_i(r) + V(r)\psi_i(r) = \varepsilon_i\psi_i(r)$$
(7)

Le premier terme correspond à l'énergie cinétique de l'électron i, le deuxième terme V(r) est le potentiel que subit l'électron, ce potentiel doit tenir compte de l'interaction électron-noyau et de l'action des autres électrons.

L'interaction électron-noyau est désignée par $V_N(r)$, donnée par:

$$V_N(r) = -e^2 Z \sum_R \frac{1}{|R-r|}$$
(8)

Les vecteurs \mathbf{r} et \mathbf{R} dans l'équation (8) étant les positions spatiales de l'électron et du noyau, respectivement.

L'interaction des autres électrons est désignée par le potentiel $V_H(r)$, appelé aussi le potentiel de **Hartree**, qui est plus complexe à prendre en considération. Dans l'approximation de **Hartree** on considère que les autres électrons forment une distribution de charge négative $\rho(r')$. On peut donc dire que l'électron se déplace dans un potentiel électrostatique moyen provenant de l'ensemble des électrons voisins. Le potentiel résultant est exprimé par :

$$V_{H}(r) = -e \int d^{3} r' \rho(r') \frac{1}{|r-r'|}$$
(9)

Le potentiel effectif alors est défini comme la somme de ces deux contributions :

$$V_{eff}(r) = V_H(r) + V_N(r)$$
(10)

L'équation de Schrödinger pour un électron indépendant i devient :
$$-\frac{\hbar^2}{2m}\nabla^2\psi_i(r) + V_{eff}(r)\psi_i(r) = \varepsilon_i\psi_i(r)$$
(11)

2.4 Approximation de Hartree-Fock

Dans l'approximation de **Hartree**, le système électronique n'est pas complètement décrit. En **1930**, **Fock** [36] a montré que la fonction d'onde de **Hartree** viole le **principe d'exclusion de Pauli** parce qu'une des interactions ainsi manquantes est l'interaction **d'échange**.

L'échange est d'origine purement quantique. En effet, pour que le système décrit soit physiquement acceptable, les électrons doivent obéir au **principe d'exclusion de Pauli** (antisymétrique) c'est à dire que **l'échange** de deux électrons dans la fonction d'onde doit entraîner l'apparition d'un signe négatif : C'est cet effet qui exprime l'antisymétrie de la fonction d'onde par rapport à **l'échange** des coordonnées de n'importe quels deux électrons menant à décrire le système à **N** corps (électrons) par l'égalité :

$$\psi(r_1, r_2, ...) = -\psi(r_2, r_1, ...)$$
(12)

Dans laquelle ont été interverties les positions de *i* et de *j*.

La fonction $\psi(r_1, r_2, ...)$ est la fonction d'onde du système à N corps résultant de la combinaison linéaire de fonctions mono-électroniques.

Le principe d'exclusion de Pauli et l'échange (trou de Fermi)

Le principe **d'exclusion de Pauli** est la conséquence directe de cette antisymétrie. Ce qui implique une corrélation de mouvement des pairs d'électrons de même spin. L'antisymétrie de la fonction d'onde est caractérisée par une séparation spatiale entre les électrons de même spin. Elle est illustrée par un espace entourant l'électron dans la distribution des spins parallèles et qualifié de **trou de Fermi**. Ce trou qui accompagne l'électron dans son déplacement rend donc bien compte de **l'échange**. Au niveau énergétique, ceci conduit à une réduction de l'énergie électrostatique de Coulomb d'une quantité appelée énergie d'échange: *E_{ech}*. Elle rend compte du fait que deux électrons de même spin ne peuvent pas se rapprocher indéfiniment. Cette énergie est incluse dans les calculs par l'approximation de **Hartree-Fock (HF)**. La méthode de **Hartree Fock** est proposée en **1930** par **Fock** et **Slater**. L'aidé est de remplacer les fonctions d'onde de **Hartree** par un déterminant de **Slater** [37]; est un déterminant d'ordre **N** formé sur **N** spin orbitales distinctes qui sont des fonctions mono-électroniques des variables d'espace et de spin. Tout comme dans l'approche de **Hartree**, les fonctions d'ondes d'un système à N électron à exprimer en termes de combinaison linéaire de fonction monoélectroniques en plus la prise en compte de l'antisymétrie de l'ensemble, c'est à dire le déterminant comprend les fonctions d'onde mono-électroniques comme combinaison linéaire de toutes les fonctions de **Hartree**.

On écrit le déterminant de Slater comme :

$$\Psi(\overrightarrow{r_{1}\sigma_{1}}, \overrightarrow{r_{2}\sigma_{2}}, \dots, \overrightarrow{r_{Ne}\sigma_{Ne}}) = \frac{1}{\sqrt{Ne!}} \begin{bmatrix} \Psi_{1}(\overrightarrow{r_{1}\sigma_{1}})\Psi_{1}(\overrightarrow{r_{2}\sigma_{2}}) & \dots & \Psi_{1}(\overrightarrow{r_{Ne}\sigma_{Ne}}) \\ \Psi_{2}(\overrightarrow{r_{1}\sigma_{1}})\Psi_{2}(\overrightarrow{r_{2}\sigma_{2}}) & \dots & \Psi_{2}(\overrightarrow{r_{Ne}\sigma_{Ne}}) \\ \vdots & \vdots & \dots & \vdots \\ \Psi_{Ne}(\overrightarrow{r_{1}\sigma_{1}}) \Psi_{Ne}(\overrightarrow{r_{2}\sigma_{2}}) & \dots & \Psi_{Ne}(\overrightarrow{r_{Ne}\sigma_{Ne}}) \end{bmatrix}$$
(13)

On exprime le déterminant de **Slater** par la fonction d'onde multiélectronique Ψ .

 Ψ_i ; fonctions d'onde mono-électroniques pour tenir compte du principe d'exclusion de Pauli. $\vec{\sigma}$ représente le spin.

Les équations de Hartree-Fock s'écrivent donc :

$$-\frac{\hbar^{2}}{2m}\nabla^{2}\psi_{i}(r) + V_{N}(r)\psi_{i}(r) + V_{H}(r)\psi_{i}(r) - \sum_{j}\int\frac{d^{3}r'}{|r-r'|}\psi_{j}^{*}(r')\psi_{i}(r')\psi_{j}(r)\psi_{i}^{*}(r) = \varepsilon_{i}\psi_{i}(r)$$
(14)

La différence entre les équations de **Hartree-Fock** et celles de **Hartree** est l'introduction du terme d'échange (le quatrième terme de l'égalité).

Problème de la corrélation, (trou de Coulomb)

L'échange est décrit par une séparation spatiale (**trou de Fermi**) entre les électrons de mêmes spins (spins $\uparrow\uparrow$ ou spins $\downarrow\downarrow$), alors la question qui se pose. Qu'en est-il des électrons de spins opposés (entre spins $\uparrow\downarrow$)?

Dans le cadre de l'approximation de **Hartree-Fock**, les électrons se déplacent comme si leurs mouvements étaient indépendants (non corrélés), par conséquent, ils peuvent pénétrer le **trou d'échange de Fermi**. Les paires d'électrons de même spin et celles de spins opposés sont traitées d'une manière dissymétrique. Les corrélations ne sont donc pas bien prises en compte. La contribution à l'énergie totale due à la corrélation apparaît comme la différence entre l'énergie totale exacte du système électronique et celle de **Hartree-Fock**:

$$\boldsymbol{E_{corr}} = \boldsymbol{E_{exacte}} - \boldsymbol{E_{HF}} \tag{15}$$

 E_{HF} étant toujours supérieure à l'énergie exacte, donc E_{corr} est une quantité négative. Donc tout comme on a postulé l'existence d'un **trou d'échange (de Fermi)** excluant les électrons de mêmes spins dans une même région de l'espace, un **trou de corrélation (de Coulomb)** doit être **"imaginé"** pour les électrons de spins opposés ($\uparrow\downarrow$), car les mouvements de ceux-ci sont corrélés par des interactions coulombiennes. Intuitivement, le **trou de corrélation** doit être plus petit que celui d'échange puisque la **règle d'exclusion de Pauli** est déjà observée, mais on parlera d'un même **trou d'échange-corrélation** dont on exclura les autres électrons de même spin ainsi que de spin opposé. Étant entendu que l'approximation de **Hartree** rend compte du système sans **échange** ni **corrélation**, et en stipulant que l'on peut mettre toute l'information sur ces deux dernières quantités dans un terme que l'on qualifiera de E_{xC} (énergie **d'échange** et de **corrélation**), on peut donner l'expression de l'énergie totale E_{exacte} que l'on souhaite atteindre comme :

$$\boldsymbol{E}_{exacte} = \boldsymbol{E}_{XC} + \boldsymbol{E}_{HF} \tag{16}$$

L'énergie telle qu'elle est proposée dans la théorie de la fonctionnelle de la densité électronique (DFT) :

$$E_{exacte}[\rho(r)] = E_{XC}[\rho(r)] + E_{HF}[\rho(r)]$$
⁽¹⁷⁾

La tâche de la DFT est donc de proposer la meilleure fonctionnelle possible pour exprimer $E_{XC}[\rho(r)]$.

3 Théorie de la Fonctionnelle de la Densité (DFT) 3.1 Origine de la DFT

La théorie de la fonctionnelle de la densité (**DFT**, **Density Functional Theory**), trouve ses origines dans le modèle développé par **Llewellyn Thomas** [38] et **Enrico Fermi** [39]. Au début du vingtième siècle, il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines. Il stipule que les propriétés électroniques peuvent être décrites en terme de fonctionnelles de la densité électronique, en représentant son énergie cinétique selon une fonctionnelle de cette grandeur. Cependant, le manque de précision ainsi que l'impossibilité de traiter des systèmes moléculaires comme un modèle trop simple. En effet, le point faible de cette approche résidait dans l'expression de l'énergie cinétique qui ne prenait pas en compte les orbitales atomiques. Et aussi la précision obtenue était inférieure à celle de **Hartree-Fock** à cause de l'absence du terme **d'échange-corrélation**. **Dirac** a amélioré cette théorie en ajoutant à ce dernier une énergie **d'échange** fonctionnelle de la densité électronique [40]. Mais le terme de **corrélation électronique** restait toujours absent dans cette nouvelle approche. Néanmoins, il faudra attendre le milieu des années **1960** où les contributions de **Pierre Hohenberg**, **Walter Kohn** et **Lu Sham** qui ont établi le formalisme théorique sur lequel repose la méthode actuelle. En **1998**, **Walter Khon (1923)** fut récompensé du **prix Nobel de Chimie** pour « **Son développement de la Théorie de la Fonctionnelle de la Densité** ».

3.2 Cadre générale de la DFT

Le concept fondamental de la **DFT** est que l'énergie d'un système électronique peut être exprimée en fonction de sa densité. Alors que la fonction d'onde multiélectronique dépend de **3N** variables, la densité est en fonction de trois variables qu'elle s'agit d'une quantité plus facile à traiter tant que mathématiquement que conceptuellement.

La **DFT** nous permet de résoudre l'équation de **Schrödinger** à **N** corps en ne faisant intervenir que l'observable $\rho(\vec{r})$ définie dans un espace physique R^3 qui se substitue à une configurations à **3N** variables dans lequel est définie la fonction d'onde (**Hartree-Fock**). Le formalisme de la **DFT** est basé sur le théorème de **Hohenberg** et **Kohn**.

3.3 Densité électronique

La densité électronique $\rho(\vec{r})$ est la probabilité de trouver l'un des N électrons dans l'élément de volume $d\vec{r}$.

$$\rho(\vec{r}) = N \int \dots \int |\psi(\vec{x_1}, \dots, \vec{x_N})|^2 dr_1 dr_2 dr_2 \dots dr_N$$
(18)

 $\rho(\vec{r})$ est une fonction positive dépendant seulement des 3 coordonnées (x, y, z). Tend vers zéro quand r tend vers l'infini et dont l'intégrale sur tout l'espace donne le nombre N d'électrons :

$$\rho(\vec{r}\mapsto\infty)=0$$
$$\int \rho(\vec{r})\,d\vec{r}=N$$

Le gradient présente une discontinuité, sur chaque position atomique :

$$\lim_{r_{i,a}\to 0} (\nabla_a + 2\mathbf{Z}_a)\overline{\rho}(\vec{r})$$
⁽¹⁹⁾

 $\overline{\rho}(\vec{r})$ représente la moyenne sphérique de $\rho(\vec{r})$.

L'asymptote exponentielle pour une grande distance par rapport à un noyau est :

$$\rho(\vec{r}) = \exp(-2\sqrt{2I}|\vec{r}|) \tag{20}$$

I : l'énergie d'ionisation exacte.

3.4 Théorèmes de Hohenberg-Kohn (1964)

Une fois la densité électronique est définie, il est nécessaire de poser les fondements de la DFT. Le formalisme de la théorie de la fonctionnelle de la densité (DFT) est basé sur deux théorème fondamentaux qui ont été démontrés par **Hohenberg** et **Khon** [41].

<u>Théorème 1</u> (La densité est une variable de base)

Il y a une correspondance unique entre la densité de l'état fondamental $\rho(\vec{r})$ d'un système à plusieurs électrons (atome, molécule, solide) et le potentiel externe V_{ext}.

L'énergie totale de l'état fondamental E est une fonctionnelle unique de la densité de particules $\rho(\vec{r})$ pour un potentiel extérieur V_{ext} donné.

Ce qui revient à écrire :

$$E = E(\rho(\vec{r})) = T(\rho(\vec{r})) + V_{el-el}(\rho(\vec{r})) + V_{ext}(\rho(\vec{r}))$$
(21)
Avec $F_{HK} = T(\rho(\vec{r})) + V_{el-el}(\rho(\vec{r}))$

Avec

- $T(\rho(\vec{r}))$: la fonctionnelle d'énergie cinétique,
- $V_{el-el}(\rho(\vec{r}))$: le potentiel d'interaction qui représente l'interaction entre électronsélectrons,
- $V_{ext}(\rho(\vec{r}))$: Le potentiel externe qui représente l'interaction entre les électrons et les noyaux.

Une conséquence immédiate de ce théorème est que la densité électronique détermine de façon unique l'opérateur **Hamiltonien**. Donc, les différentes propriétés de la molécule ou du matériau peuvent être calculées. On conclut que l'importance de ce théorème est primordiale car il montre qu'il est possible d'obtenir toutes les caractéristiques d'un système électroniques grâce à sa densité.

<u>Théorème 2 (Le principe variationnel)</u>

L'énergie atteint son minimum pour la densité réelle. Par conséquent, la densité de l'état fondamental peut être obtenue à partir du principe variationnel.

Ce deuxième théorème découle du fait que, la fonctionnelle de l'énergie totale de tout système à plusieurs particules possède un minimum qui correspond à l'état fondamental. La densité de particules de l'état fondamental vérifie :

$$E(\rho_0) = \min E(\rho) \tag{22}$$

 ${oldsymbol{
ho}_0}$ densité de l'état fondamentale.

Dans un potentiel extérieur l'expression de la fonction $E(\rho)$ pour un ensemble d'électrons est:

$$E_{V_{ext}}(\rho) = \langle \psi | T_{el} + V_{el-el} + V_{ext} | \psi \rangle$$
(23)

D'après Hohenberg et Kohn, $E(\rho)$ la fonctionnelle de l'énergie totale d'un système à l'état fondamental est une fonctionnelle de la densité électronique qui s'écrit comme suit :

$$E_{V_{ext}}(\rho) = T_{el}(\rho) + V_{el-el}(\rho) + V_{ext}(\rho)$$
(24)

$$E_{V_{ext}}(\rho) = F_{HK}(\rho) + \int \rho(\vec{r}) V_{ext}(\vec{r}) d\vec{r}$$
(25)

 $F_{HK}(\rho) = T_{el}(\rho) + V_{el-el}(\rho)$ est universelle pour tout système à plusieurs électrons. La connaissance de cette fonctionnelle permet de déterminer l'énergie totale et la densité de charge de l'état fondamental pour un potentiel externe donné, en utilisant le **principe variationnel**. La fonctionnelle $E(\rho)$ atteint sa valeur minimale pour une densité électronique fondamentale $\rho_0(r)$ correspondante à V_{ext} . Malheureusement, le théorème de **Hohenberg et Kohn** ne donne aucune indication de la forme de $F_{HK}(\rho)$. Les travaux d'**Hohenberg et de Kohn** ont permis de reformuler le problème concernant la résolution de l'équation de Shrodinger, néanmoins $F_{HK}(\rho)$ reste impossible à calculer à cause de la complexité du système à **N** électrons. Les équations de **Kohn et Sham** présentent la seule solution de ce problème qui sont établies dans l'objectif de fournir des fondements nécessaires pour exploiter de façon effective les théorèmes de **Hohenberg** et **Kohn**.

3.5 Equations de Kohn–Sham

Les équations de Kohn et Sham [42] transforment la DFT en un outil pratique (la base des calculs DFT). Le problème laissé par les théorèmes de Hohenberg-Kohn fut résolu une année, plus tard par la publication du travail de Lu Jeu Sham et Walter Kohn en 1964. L'idée est de remplacer le système réel de particules en interaction par un système fictif sans interaction et qui possède une densité électronique $\rho(\vec{r})$ identique que le système réel. L'intérêt vient du fait que les expressions de l'énergie cinétique et de l'énergie potentiel pour ce système fictif sont connues. On passe ainsi d'un problème avec une fonction d'onde $\psi(\mathbf{r})$ à N_e électrons à un problème à N_e fonctions d'ondes mono-électroniques $\Phi(\mathbf{r})$ appelés états de Kohn Sham. On note T_{ind}[ρ] l'énergie cinétique du système de N_e électrons indépendants et V_{ind}[ρ] l'énergie potentielle classique qui est le terme de Hartree :

$$\mathbf{V}_{\text{ind}}(\boldsymbol{\rho}) = \frac{1}{2} \int \frac{\boldsymbol{\rho}(\mathbf{r})\boldsymbol{\rho}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$
(26)

L'énergie du système devient donc :

$$E(\rho) = T_{ind}(\rho) + V_{ind}(\rho) + E_{\rm XC}(\rho) + \int V_{e-n}(r)\rho(r)dr$$
(27)

et

$$F_{\rm HF}(\rho) = T_{ind}(\rho) + V_{ind}(\rho) + E_{\rm XC}(\rho)$$
(28)

En définissant cette nouvelle fonctionnelle, l'idée de **Kohn et Sham** est d'extraire le maximum d'information sur les termes cinétiques et potentiels, de ramener tout ce qu'il y a d'inconnu dans une seule contribution que l'on pourra approximer et ainsi minimiser l'erreur sur l'énergie totale. En minimisant (27), on obtient l'équation **d'Euler** :

$$\int \left(\frac{\delta T_{ind}(\rho)}{T(\rho)} + \int \frac{\rho(r')dr'}{|r-r'|} + V_{e-n}(r) + \left(\frac{\delta E_{XC}(\rho)}{\delta\rho(r)}\right)\right) \delta\rho(r)dr = \mathbf{0}$$
(30)

Avec le nombre de particules constant, on a :

$$\int \boldsymbol{\delta \rho(r) dr} = \mathbf{0} \tag{31}$$

$$V_{\text{eff}}(\rho(r)) = V_{e-n}(r) + V_{Hartree}(r) + V_{XC}(\rho(r))$$
(32)

Avec le potentiel de Hartree

$$V_{Hartree}(r) = \int \frac{\rho(r')dr'}{|r-r'|} dr'$$
(33)

Et le potentiel d'échange et corrélation défini par :

$$V_{XC} = \frac{\delta E_{XC}(\rho)}{\delta \rho(r)} \tag{34}$$

Avec (30) et (32) vient la seconde équation de Kohn-Sham qui est le système des Ne équations de Schrödinger mono-électroniques qui permet de trouver les Ne états Kohn Sham $\Phi_i(\mathbf{r})$:

$$\left(-\frac{\hbar^2}{2m_e}\vec{\nabla}^2 + V_{eff}(\vec{r})\right)\Phi_i(\mathbf{r}) = \varepsilon_i\Phi_i(\mathbf{r}) , \mathbf{i} = 1, \dots, \mathbf{N}$$
(35)

Avec ε_i les énergies Kohn et Sham. Munis de ces états, il ne reste plus qu'à définir la densité électronique du système. C'est la troisième équation de Kohn et Sham :

$$\rho(\mathbf{r}) = \sum_{i=1}^{N_e} |\Phi_i(\mathbf{r})|^2 \tag{36}$$

Ces trois équations interdépendantes doivent être résolues de manière auto-cohérente afin de trouver la densité de l'état fondamental (figure 11). Tous les calculs de type **DFT** sont basées sur la résolution itérative de ces trois équations. Notons que pour la **DFT**, seules l'énergie totale, l'énergie de **Fermi** et la densité électronique ont un sens physique. Les états et les énergies de **Kohn et Sham** ne sont que des intermédiaires de calcul. Néanmoins ils sont utilisés dans de nombreux travaux scientifiques, pour calculer certaines grandeurs comme les structures de bandes. Dans de nombreux cas, pour les systèmes ou les électrons sont peu corrélés, les états **Kohn et Sham** représentent une bonne approximation de la fonction d'onde ψ_e de **Ne** électrons du système.

Figure 11 Interdépendance des équations de Kohn et sham.

3.6 Approximations d'échange-corrélation

Tous les termes de l'énergie et leurs potentiels associés peuvent être évalués, sauf celui **d'échange** et de **corrélation** qui présentent la principale difficulté de la **DFT**. Le fait que la **DFT** ne donne aucune information sur la forme de la fonctionnelle **échange-corrélation**, l'approximation introduite pour sa détermination doit être applicable pour différents systèmes. Le calcul de l'énergie et du potentiel **d'échange-corrélation** repose sur un certain nombre d'approximations parmi elles : (L(S)DA), (GGA) et (LDA+U) ect...

3.6.1 Approximation de la densité locale (LDA)

LDA (Local Density Approximation) est l'approximation la plus simple qui présente la continuité de la démarche de Kohn et Sham. Cette approximation transforme la DFT, théorie à N corps exacte en une théorie approchée facile à exploiter. L'idée de LDA est de considérer le potentiel d'échange-corrélation comme une quantité locale définie en un point **r**, dépendant faiblement des variations de la densité autour de ce même point **r**.

L'énergie d'échange-corrélation s'écrit [43]:

$$\boldsymbol{E_{xc}^{LDA}[\rho]} = \int \boldsymbol{\rho}(r)\boldsymbol{\varepsilon}_{xc}(\boldsymbol{\rho})dr \tag{37}$$

 $\varepsilon_{xc}(\rho)$ désigne l'énergie d'échange-corrélation pour une particule d'un gaz homogène d'électron de densité ρ .

Le potentiel d'échange-corrélation correspondant devient :

$$V_{xc}^{LDA}[r] = \frac{\delta \mathcal{E}_{xc}^{LDA}[\rho(r)]}{\delta \rho(r)} = \mathcal{E}_{xc}(\rho(r)) + \rho(r) \frac{\delta \mathcal{E}_{xc}^{LDA}}{\delta \rho(r)}$$
(38)

Les équations de Kohn-Sham devient :

$$\left(-\frac{\hbar^2}{2m_e}\nabla_i^2 + V_{e-N}(r) + V_H(r) + V_{xc}^{LDA}(r)\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$
(39)

$$\boldsymbol{\varepsilon}_{\boldsymbol{x}\boldsymbol{c}}(\boldsymbol{\rho}) = \boldsymbol{\varepsilon}_{\boldsymbol{x}}(\boldsymbol{\rho}) + \boldsymbol{\varepsilon}_{\boldsymbol{c}}(\boldsymbol{\rho}) \tag{40}$$

L'énergie d'échange-corrélation $\varepsilon_{xc}(\rho)$ peut être séparée en un terme d'échange et un terme de corrélation.

Le terme d'échange, communément appelé échange de Dirac est connu exactement [38] :

$$\varepsilon_{\chi}(\rho) = -\frac{3}{4} \left(\frac{3}{\pi} \rho(r)\right)^{\frac{1}{3}}$$
(41)

 $\varepsilon_c(\rho)$ peut-être constante, mais dans la plupart des cas, elle est déterminée par des procédures de paramétrisation parmi les plus connues, **Ceperley**, **Alder** [44], **Hedin et Lundqvist** [45]. Il va de soi que la validité de la **LDA** suppose des systèmes où la densité électronique ne varie pas trop rapidement. L'efficacité de cette approximation est apparue à partir des années **1977** avec les travaux de **Zunger** et **Freeman** [46,47], ainsi que ceux de **Moruzzi et al** [48]. Pour les systèmes magnétiques, la (**LDA**) doit être étendue à l'Approximation de la **Densité Locale de Spin (LSDA: Local Spin Density Approximation**),

3.6.2 Introduction du spin (LSDA)

Pour les systèmes magnétiques où le spin électronique introduit un degré de liberté supplémentaire, la généralisation de la **LDA** est prise en compte conduit à la **LSDA** ('S'pour spin). Donc il faut prend en compte deux population dans la matrice densité $\rho(\downarrow)$ et $\rho(\uparrow)$. Dans cette approximation l'énergie d'échange et de corrélation s'écrit [49,50]:

$$E_{xc}^{LSDA}[\rho\uparrow,\rho\downarrow] = \int \varepsilon_{xc}(\rho\uparrow(r),\rho\downarrow(r))\rho(r)dr$$
(42)

 $\varepsilon_{xc}(\rho \uparrow (r), \rho \downarrow (r))$: l'énergie d'échange et corrélation par particule d'un gaz d'électrons homogènes.

En général, les approximations LDA et LSDA donnent des bons résultats pour des systèmes à densité lentement variable. Mais ce modèle reste insuffisant dans les systèmes inhomogènes particulièrement pour décrire correctement les systèmes fortement corrèles. Pour ces systèmes, d'autres techniques ont été adaptées.

3.6.3 Méthode du gradient généralisé (GGA)

Dans le but de rechercher de meilleures performances et des résultats bien précis, et comme une tentative de hiérarchisation des approximations de la fonctionnelle d'échangecorrélation. Une autre approximation très intéressante que la LDA est l'approximation du gradient généralisé (GGA, Generalized Gradient Approximation)[51,52]. L'approximation GGA considère le terme d'échange et de corrélation de manière plus générale comme une fonction de la densité et de sa variation locale. Kohn et Sham sont les premiers qui ont introduit l'approche (GGA) par la suit utilisée par d'autres auteurs notamment dans les travaux de Herman et al[53]. Dans cette approximation, l'énergie d'échange et de corrélation est en fonction de la densité électronique et de son gradient :

$$E_{xc}^{GGA}[\rho(r)] = \int \rho(r) \varepsilon_{xc}[\rho(r), |\nabla \rho(r)|] d^3r$$
(43)

 $\varepsilon_{xc}[\rho(r), |\nabla \rho(r)|]$ la fonction d'échange et de corrélation dépendante de la densité électronique et son gradient.

Si en tenant compte de spin, l'équation (43) s'écrit :

$$E_{xc}^{GGA}[\rho\uparrow,\rho\downarrow] = \int d^3\varepsilon_{xc}[\rho\uparrow,\rho\downarrow\rho(r),\nabla\rho\uparrow,\nabla\rho\downarrow]$$
(44)

3.6.4 Approximation LDA+U

Il est clair que la (LSDA) traite correctement les effets de la **corrélation** pour les systèmes dont la densité électronique est presque homogène. Pour le cas des composés comme les isolants de Mott tels que les oxydes de métaux de transition et de terres rares, l'approximation (LSDA) est insuffisante car il ne prend pas en compte les effets de **corrélation** existants dans les couches 3d (métaux de transition) et 4f (terres rares) partiellement remplies. Donc une modification de la LSDA est nécessaire pour ces systèmes. On ajoute aux fonctionnelles de la LSDA l'interaction coulombienne de type Hubbard plus explicitement. Ce terme est ajouté au potentiel **d'échange-corrélation** des électrons des couches d et f incomplètes.

Le paramètre de Hubbard est ajouté à l'Hamiltonien de Kohn-Sham :

$$\boldsymbol{E}_{\boldsymbol{U}} = \frac{\boldsymbol{U}}{2} \sum_{i \neq j} \boldsymbol{n}_{i} \boldsymbol{n}_{j} \tag{45}$$

 E_U : ajouté au terme d'échange et de corrélation E_{XC} , de la DFT.

 n_i : le nombre d'occupation des orbitales i={ m_i, σ } + dans l'état l.

4 Résolution de l'équations de Kohn et Sham

La résolution d'équations de **Kohn-Sham**, besoin de choisir une base pour les fonctions d'onde que l'on peut prendre comme une combinaison linéaire d'orbitales, (orbitales de **Kohn-Sham** (**KS**)), Qu'on aurait utilisé **HF** ou **DFT** comme approximation, on aboutit à la fin à un ensemble infini d'équations à un électron de la forme suivante (**m** est un entier qui énumère les membres de l'ensemble) :

$$H_{sp}\phi_m(\vec{r}) = \varepsilon_m\phi_m(\vec{r}) \tag{46}$$

H_{sp} l'**Hamiltonien** pour une particule unique (Single particle).

$$H_{sp} = -\frac{\hbar^2}{2m_e} \vec{\nabla}_m^2 + \frac{e^2}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|} d\vec{r}' + V_\alpha + V_{ext}$$
(47)

Les orbitales de Kohn-Sham (KS) écrites sous la forme suivante :

$$\boldsymbol{\phi}_{m}(\vec{r}) = \sum_{p=1}^{P} \boldsymbol{C}_{p}^{m} \boldsymbol{\phi}_{p}^{b}$$
(48)

Où les ϕ_p^b sont les fonctions de base et les C_p^m les coefficients de développement.

La résolutions de l'équation de Kohn-Sham (KS) dans la plus part des méthodes signifie qu'on veut trouver les coefficients C_p^m nécessaires pour exprimer ϕ_m dans une base donnée ϕ_p^b .

Cette résolution se fait d'une manière itérative, Nous résumons ce cycle par les étapes suivantes (figure 12) :

- 1. Commencer par une densité d'essai pour la première itération
- 2. Calculer la densité et le potentiel d'échange-corrélation pour un point.
- 3. Résoudre l'équation de Kohn-Sham
- 4. Calculer la nouvelle densité.
- 5. Vérifier le critère de convergence (en comparant l'ancienne et la nouvelle densité).
- 6. Calculer les différents grandeurs physiques (Energie, forces, ...); Fin de calcul.

Figure 12 Organigramme de la n^{ième} itération dans la procédure de resolution des équations de Hartree-Fock ou Kohn-Sham

Chapitre III : Propriétés structurales, électroniques et optiques du matériaux lamellaires GaSe

Nous nous trouvons donc dans la situation d'un homme qui ne pourrait considérer un objet qui l'intéresse qu'à travers des verres de lunettes dont il ignorait absolument les propriétés optiques.

Max planck

1 Introduction

Dans le cadre théorique, il existe plusieurs méthodes de calcul pour déterminer les propriétés des solides. Ces méthodes sont classées en trois catégories selon les données utilisées (des résultats expérimentaux ou des données fondamentales).

- Les méthodes empiriques présentent des résultats expérimentaux.
- Les méthodes semi-empiriques sont des techniques qui résolvent l'équation de Schrödinger pour les systèmes à plusieurs électrons dans lesquelles les calculs nécessitent des résultats purement expérimentaux et des données fondamentales (des données ajustées sur des résultats expérimentaux afin de simplifier les calculs).
- Les méthodes ab-initio pour lesquelles les calculs nécessitent seulement des données fondamentales.

Ces dernières années, plusieurs chercheurs ont développés des méthodes basées sur des concepts purement théoriques. Dans le cadre de la **DFT**, la résolution des équations de **Kohn Sham** nécessite, le choix des implémentations utilisées pour décrire le potentiel et les orbitales de **Kohn et Sham** (la nature de la base). Les bases de fonctions d'ondes appelées les méthodes de premier principe, parmi lesquelles on peut citer trois groupes de méthodes :

- Combinaison linéaire d'orbitales atomiques (linear combinition of atomic orbitals LCAO).
- 4 Ondes planes augmentées linéarisées (linearized augmented plane waves LAPW).
- **4** Ondes planes (**plane waves PW**).

Dans la suite, on ne s'intéresse qu'à la description des deux approches implémentées dans notre code de calcul **CASTEP**: les ondes planes pour la fonction d'onde. Cette base est en général couplée à l'utilisation du pseudo-potentiels (la méthode du pseudo-potentiel et ondes planes (**PP-PW**)).

2 Ondes planes

La base d'ondes planes est indépendante des positions atomiques, et elle est bien adaptée pour les systèmes périodiques. Ainsi utilisées dans les calculs de la structure électroniques pour améliorer la convergence sur les calculs en augmentant leurs dimensions. Quand les systèmes possèdent une ou plusieurs dimensions comme infinies, le nombre d'électrons du système est lui aussi infini. Ce problème est difficile numériquement. Pour cela, on doit revenir aux systèmes périodiques où les ions sont disposés de manière régulière. Le potentiel cristallin agissant sur les électrons possède la périodicité du réseau :

$$V(\vec{r} + \vec{R}) = V(\vec{r}) \tag{49}$$

Où $\vec{R} = \sum_{i=1}^{3} I_i \vec{a}_i$ vecteur de translation du réseau direct de Bravais;

 I_i Sont des entiers relatifs ;

 \vec{a}_i Les trois vecteurs qui définissent la maille élémentaire ;

Le potentiel effectif de **Kohn-Sham** et la densité électronique sont ainsi périodiques et ont R comme vecteur de translation :

$$V_{eff}(\vec{r} + \vec{R}) = V_{eff}(\vec{r})$$
⁽⁵⁰⁾

$$\rho(\vec{r} + \vec{R}) = \rho(\vec{r}) \tag{51}$$

2.1 Théorème de Bloch

Le théorème de **Felix Bloch** a été proposée en **1929** [54], permet d'exploiter les propriétés de symétrie du système cristalline des solides, sur les calculs des fonctions d'ondes. On dit que la fonction d'onde d'un électron dans un réseau périodique est une onde de **Bloch**, et a fait énoncer le théorème suivant :

la fonction d'onde d'un électron dans un potentiel externe périodique peut être écrite comme le produit d'une onde plane $e^{i\vec{k}\vec{r}}$ et d'une fonction $U_{n\vec{k}}$ ayant la périodicité du réseau cristallin :

$$\boldsymbol{\psi}_{n\vec{k}}(\vec{r}) = \boldsymbol{U}_{n\vec{k}}(\vec{r})\boldsymbol{e}^{ik\vec{r}}$$
(52)

$$\boldsymbol{U}_{n\vec{k}}(\vec{r}+\vec{R}) = \boldsymbol{U}_{n\vec{k}}(\vec{r})$$
(53)

Physiquement, on peut dire que la fonction de **Bloch** est la fonction d'onde d'un électron libre $e^{i\vec{k}\vec{r}}$ modulée par le potentiel périodique du réseau d'ions à travers la fonction $U_{n\vec{k}}(\vec{r})$.

et

2.2 Echantillonnage de la première zone de Brillouin

Le nombre de vecteurs d'onde \vec{k} permis dans la première zone de Brillouin est égal au nombre de sites dans le cristal. En théorie, l'équation de **Schrödinger** doit être résolue pour chaque vecteur d'onde \vec{k} dans la première zone de Brillouin, mais la difficulté réside dans le nombre infini des points k. Pour résoudre le problème de l'infinité des points k, la première zone de Brillouin doit être échantillonnée de façon à ne devoir calculer la structure électronique qu'en un nombre fini minimal de points k, et pour diminuer le nombre de points k nécessaires, on peut utiliser les symétries du système et on suppose une évolution continue des bandes entre deux points k. C'est ce qu'on désigne par le terme échantillonnage des points k. Différentes méthodes d'échantillonnage ont été proposées pour calculer le potentiel électronique dans la première zone de Brillouin comme les méthodes de **Shadi et Cohn** [55], **Joannopoulos et Cohn** [56], **Evarestov et Smirnov** [57] ou celle de **Monkhorst et Pack** [58]. C'est cette dernière méthode que nous avons utilisée dans nos calculs.

2.3 Base d'ondes planes

La fonction périodique $U_{n\vec{k}}$ peut-être décomposée par transformée de Fourier sur une base d'onde planes de vecteurs d'ondes \vec{G} du réseau réciproque :

$$\boldsymbol{U}_{\boldsymbol{n}}(\boldsymbol{r}) = \sum_{\boldsymbol{G}} \boldsymbol{C}_{\boldsymbol{n},\vec{\boldsymbol{G}}} \, \boldsymbol{e}^{i\vec{\boldsymbol{G}}\vec{\boldsymbol{r}}} \tag{54}$$

Où \vec{G} est un vecteur d'onde de l'espace réciproque.

On peut alors écrire la fonction d'onde $\psi_{n\vec{k}}$ comme une somme d'ondes planes :

$$\boldsymbol{\psi}_{n\vec{k}}(\vec{r}) = \sum_{\boldsymbol{G}} \boldsymbol{C}_{n,(\vec{G}+\vec{k})} \boldsymbol{e}^{i(\vec{G}+\vec{k})\vec{r}}$$
(55)

à partir de cette équation, les seules inconnues restant à déterminer sont les coefficients $C_{n,(\vec{G}+\vec{k})}$.

La base d'ondes planes utilisée devrait être infinie et le nombre d'ondes planes peut en principe être obtenu à partir du nombre de vecteurs G et k. Les coefficients de **Fourier** $C_{n,(\vec{G}+\vec{k})}$ pour les ondes planes de faible énergie cinétique sont plus importants que ceux associés aux ondes planes avec grande énergie cinétique. Ces coefficients diminuent avec l'augmentation de $|\vec{G} + \vec{k}|$. Ce nombre d'onde est limité par une énergie de coupure $E_{cut-off}$ qu'est l'énergie associe au vecteur de coupure $G_{cut-off}$ au-delà duquel les $C_{n,(\vec{G}+\vec{k})}$ sont considéré nulles. Cette énergie de coupure permet de limiter la base aux ondes planes dont le vecteur $\vec{G} + \vec{k}$ vérifie :

$$\frac{\hbar}{2m}|\vec{G} + \vec{k}|^2 \le E_{cut} \tag{56}$$

où \vec{k} : le vecteur du réseau réciproque appartenant à la première zone de Brillouin.

 \vec{G} : le vecteur d'onde de l'espace réciproque appartenant à la première zone de Brillouin.

Si $E_{cut-off}$ est trop faible, le nombre d'ondes planes dans le calcul n'est pas suffisant pour bien représenter les fonctions d'onde et la densité de charge. Les erreurs sur le calcul de l'énergie totale et d'autres quantités physiques peuvent être aisément manipulées en augmentant l'énergie de coupure E_{cut} , mais en conséquence le temps de calcul augmente fortement. Alors, on doit déterminer une énergie de coupure, réaliste concernant le temps de calcul, pour laquelle l'énergie totale converge avec la précision voulue. Un deuxième choix nécessité dans la résolution des équations de **Kohn-Sham** concerne la méthode qui doit être utilisée pour traiter l'interaction électrons-noyaux. Les méthodes existés pour le calcul du potentiel électrons-noyau sont :

- 4 Les méthodes tous électrons qui traitent explicitement tous les électrons dans le système.
- Les méthodes des pseudo-potentiels (Empirique + Ab-initio), qui ne traite explicitement que les électrons de valence.

Dans la suite de ce chapitre, notre étude s'intéresse qu'à l'approche pseudo-potentiel abinitio basée sur les premiers principes de la mécanique quantique, où l'ajustement à l'expérience est remplacé par une résolution auto-cohérente de l'équation de **Schrödinger**, qui ne nécessite que des paramètres libres tels que, paramètre du réseau et les numéros atomiques pour générer les pseudo-potentiels utilisée dans notre étude.

3 Méthode de Pseudo-potentiel

Dans le but d'étudier les états atomiques fortement liés, **Fermi** fût introduit, la méthode du pseudo-potentiel en **1934** [59]. D'autre part **Hellman** [60] utilise cette notion pour le calcul des niveaux énergétiques des métaux alcalins. Cependant, c'est à partir de **1950** que son utilisation fut généralisée et ceci grâce à **Phillips et al** en **1959** qui se sont basés sur la méthode des ondes planes orthogonalisées (**OPW**) [61]. L'intérêt de cette méthode est que seuls les électrons de valence sont pris en compte. Les électrons du cœur sont supposés « **gelés** » et seuls les électrons de valence se déplacent dans un potentiel électronique. Par conclusion, la méthode du pseudo-potentiel est une approximation qui permet de remplacer le potentiel d'interaction coulombien du noyau et les effets des électrons du cœur, fortement liés, par un potentiel effectif interagissant seulement avec les électrons de valence, voir la figure 13.

Figure 13 Représentation de la pseudo-fonction d'onde et le pseudo-potentiel.

Comme dans la méthode **OPW**, la fonction ψ est donnée par la somme des ondes planes ϕ_k^v et des états atomiques occupés du cœur ϕ_k^c [62].

$$\boldsymbol{\psi}_{k} = \boldsymbol{\phi}_{k}^{v} + \sum_{c} \boldsymbol{b}_{c} \, \boldsymbol{\phi}_{k}^{c} \tag{57}$$

La fonction d'onde ψ_k doit vérifier l'orthogonalité aux états du cœur ϕ_c et l'équation de Schrödinger:

$$\langle \psi_k | \phi_k^c \rangle = 0 \tag{58}$$

$$H\psi_k = E_k \psi_k \tag{59}$$

En utilisant les expressions (57), et (59), nous pouvons démontrer que :

$$H\phi_k^{\nu} - H\sum_c \langle \phi_k^c | \phi_k^{\nu} \rangle \phi_k^c = E_k \psi_k$$
(60)

Avec

$$H\phi_k^c = E_k^c \phi_k^c$$

Donc
$$H\phi_k^v - \sum_c E_k^c < \phi_k^c | \phi_k^v > \phi_k^c = E_k \psi_k = E_k [\phi_k^v - \sum_c < \phi_k^c | \phi_k^v > \phi_k^c]$$
(61)

$$H\phi_k^{\nu} + \sum_c (E_k - E_k^c) < \phi_k^c | \phi_k^{\nu} > \phi_k^c = E_k \phi_k^{\nu}$$
(62)

Avec $\sum_{c} (E_{k} - E_{k}^{c}) < \phi_{k}^{c} | \phi_{k}^{v} > \phi_{k}^{c} = V_{R} \phi_{k}^{v}$

On peut écrire l'équation (62) d'une façon condensée :

$$(H + V_R)\phi_k^v = E_k\phi_k^v$$

$$(63)$$

$$(\frac{P^2}{2m} + V_C + V_R)\phi_k^v = E_k\phi_k^v$$

avec

Ou

V_c: potentiel attractif du cœur négatif.

 V_R : potentiel répulsif positif.

 $V_P = V_C + V_R$ représente la contribution du pseudo-potentiel (qui est faible) ; ϕ_k^{ν} est la pseudo-fonction d'onde.

Cependant, il est important de noter que la valeur de l'énergie $E_k = E(\mathbf{k})$ n'est pas une pseudoénergie mais la vraie énergie correspondante à la fonction d'onde ψ_k .

Pour résoudre l'équation de **Schrödinger**, on peut considérer le pseudo-potentiel comme une perturbation.

3.1 Modèles des pseudos potentiels3.1.1 Modèles des Pseudo-potentiels semi-empirique

Il n'existe pas de recette unique pour construire un pseudo-potentiel pour un élément particulier. Une quantité infinie de choix sont possibles.

3.1.1.1 Modèle local

Le modèle le plus simple est un potentiel local dépendant de la variable r, et plusieurs formes de ce type existent. Dans le premier modèle, le potentiel est coulombien à grandes distances et tend vers un potentiel constant dans la région du cœur. Mathématiquement on l'exprime ainsi :

$$V(\mathbf{r}) = \begin{cases} -\frac{Ze}{r}, \mathbf{r} > \mathbf{r}_{c} \\ \frac{Ze}{r_{c}}, \mathbf{r} \le \mathbf{r}_{c} \end{cases}$$
(64)

Où Z: est le nombre d'électrons de valence.

r_c: le rayon du cœur atomique.

Une autre forme de potentiel similaire et beaucoup utilisée est celle dite du cœur vide proposée par **Ashcroft** [63], le potentiel dans ce cas a la forme :

$$V(\mathbf{r}) = \begin{cases} -\frac{Ze}{r}, \, \mathbf{r} > \mathbf{r}_c \\ \mathbf{0}, \, \mathbf{r} \le \mathbf{r}_c \end{cases}$$
(65)

Abarenkov et al [64], ont introduit plus de flexibilité par l'ajout d'un potentiel *A* considéré comme constant dans la région du cœur. Leur potentiel est de la forme :

$$V(r) = \begin{cases} -\frac{Ze}{r}, r > r_c \\ A, r \le r_c \end{cases}$$
(66)

3.1.1.2 Modèle non local

Dans ce cas, on tient compte de la région du cœur et le pseudo-potentiel est essentiellement non local, dépendant aussi bien de r que de l'énergie E. La correction due au non localité apportée aux potentiels locaux précédents est donnée par [65].

$$V_{NL}(r, E) = \sum_{I} A_{I}(E) f_{I}(r) P_{I}$$
(67)

Où,

 $A_I(E)$: est une fonction dépendant de l'énergie des états du cœur.

 P_I : est le projecteur sur la I^{ème} composante des moments angulaires.

 $f_I(r)$: est la fonction qui représente l'effet de l'état du cœur. Elle peut prendre plusieurs formes telle que la forme Gaussienne, carrée de **Heine-Abarenkov** [64] ou d'**Aschroft** [63].

3.1.2 Pseudo potentiels ab-initio

Dans la suite, nous exposons brièvement les pseudo-potentiels ab-initio. Il existe deux types fondamentaux de pseudo-potentiels ab-initio qui ont chacun ses avantages et ses inconvénients, à savoir :

- Les pseudo-potentiels à norme conservée introduits par Hamann et al [66].
- Les pseudo-potentiels ultra-doux introduits par Vanderbilt[67]

3.1.2.1 Pseudo potentiels à norme conservée

Au cœur des années **1970**, le concept "**norme conservée**" occupe une place spéciale dans le développement des pseudo-potentiels ab-initio. Il a été développé par **Hamann et al** [66], (il simplifie leurs applications et les rend plus précis et transférable). Un pseudo-potentiel est construit à partir d'états atomiques pour être utilisé dans un solide. D'autre part, un pseudopotentiel est valable s'il est doux et transférable. Le terme doux veut dire que le développement des pseudo-fonctions de valence doit s'effectuer avec un petit nombre d'ondes planes. Pour la transférabilité, elle signifie qu'un pseudo-potentiel généré pour une configuration atomique particulière, devrait permettre de reproduire d'autres configurations de manière précise. A la base de Cette idée un ensemble de critères est nécessaires à la construction d'un bon pseudopotentiel "ab-initio" telles qu'elles ont été proposées par **Hamann** et d'autres (1979) sont :

- Les valeurs propres obtenues par le calcul avec tous les électrons sont égales aux pseudoénergies.

$$E_{Tout \, \acute{e}le} = E_{Pseudo-\acute{e}nergie} \tag{68}$$

- Les fonctions et les pseudo-fonctions d'onde de valence sont identiques au-delà d'un rayon r_c (à l'extérieur de la région du cœur).

- L'intégrale, entre 0 et r_c , de la densité électronique réelle et celle obtenue avec le pseudo potentiel doivent être identiques pour chaque orbitale de valence (Propriété de conservation de la norme).

$$\int_{0}^{r_{c}} |\Psi_{TE}(r)|^{2} dr = \int_{0}^{r_{c}} |\Psi_{Pseudo}(r)|^{2} dr$$
(69)

- Au-delà d'un rayon de coupure r_c , les dérivées logarithmiques de la fonction d'onde réelle et de la fonction d'onde pseudisée doivent être identiques, ainsi que leurs dérivées par rapport à l'énergie.

3.1.2.2 Pseudo potentiels ultra-doux ou ultra-soft (USPP)

L'utilisation des pseudo-potentiels a norme conservée, ne peut pas diminuer l'énergie de coupure sans perdre cette information et donc d'un temps de calcul assez élevé. Par conséquence, une énergie de coupure très élevée est nécessaire pour d'écrire les orbitales liantes ayant une partie importante de leur poids dans la région du cœur. L'utilisation des pseudopotentiels à norme conservée est très coûteuse. Pour éviter ce problème Vanderbilt (1990) [68] a construit une nouvelle classe des pseudo-potentiels dans lesquels les pseudo-fonctions d'onde peuvent être arbitrairement lisses dans la région du cœur (pseudo-potentiels ultra-soft). Le but de ce pseudo est de réduire fortement l'énergie de coupure nécessaire pour décrire des orbitales localisées en autorisant l'utilisation d'un rayon de coupure plus grand que pour le pseudo potentiel a norme conservée. D'autre part, les pseudo-potentiels d'Ultra-Soft (US-PP), est beaucoup plus doux que les potentiels à norme conservée, ce qui a comme conséquence une transférabilité et une exactitude bien meilleure que pour d'autre pseudo-potentiels. Le pseudo potentiel ultra-soft demande moins d'énergie de coupure et nombre de K points par rapport à la norme conservé. Les potentiels d'Ultra-Soft (US-PP) traitent habituellement les états peu profonds du cœur comme valences. Ceci s'ajoute également à l'exactitude et à la transférabilité élevée des Potentiels.

L'utilisation des pseudo-potentiels **ultrasofts** permet de diminuer le nombre d'ondes planes nécessaires aux calculs et par conséquent de conserver un temps de calcul raisonnable.

3.2 Choix du pseudo-potentiel

L'art de créer de bon pseudo-potentiel est de trouver des potentiels qui sont à la fois ultradoux et transférable. Un pseudo-potentiel est appelé doux ou soft lorsque seulement quelques ondes planes sont nécessaires. Une classe particulière de pseudo-potentiels est même appelée ultra-douce en raison du très faible nombre d'ondes planes qu'elle requiert. Un tel pseudo-potentiel est appelé transférable.

4 Code de calcul 4.1 Introduction

Les calculs ab-initio sont effectués en utilisant la méthode du pseudo-potentiel et ondes planes (**PP-PW**) dans le cadre de la théorie de la fonctionnelle de la densité (**DFT**). Il existe un grand nombre de codes de calculs basés sur cette méthode, on cite comme exemple : **WIEN2K** [69], **Dmol3** [70], **VASP** [71], **GAUSSIAN** [72], **ABINIT** [73], **CRYSTAL** [74], **Big DFT** [75] (...). Dans notre étude, nous utiliserons le code de calcul **CASTEP** [76], et il fait partie d'un logiciel de simulation numériques nommé **Biovia Material Studio 2017**.

4.2 Aperçu sur le code CASTEP

CASTEP (*Cambridge* Serial Total Energy *Package*) est un programme de pointe basé sur la mécanique quantique conçu spécifiquement pour la science des matériaux à l'état solide. **CASTEP** utilise la méthode pseudo-potentielle d'onde plane de la théorie fonctionnelle de la densité, qui nous permet d'effectuer des calculs de mécanique quantique de premier principes qui explorent les propriétés des cristaux et des surfaces dans des matériaux tels que les semiconducteurs, les céramiques, les métaux, les minéraux et les zéolites.

Les applications typiques impliquent des études de chimie de surface, de propriétés structurales, de structure de bande, de densité d'états et de propriétés optiques. **CASTEP** peut également être utilisé pour étudier la distribution spatiale de la densité de charge et des fonctions d'onde d'un système.

De plus, vous pouvez utiliser **CASTEP** pour calculer le tenseur complet des constants élastiques du second ordre et les propriétés mécaniques associées d'un cristal (coefficient de Poisson, constantes de Lamé, module de volume...). Les outils de recherche d'états de transition de **CASTEP** vous permettent d'étudier les réactions chimiques en phase gazeuse ou à la surface

d'un matériau à l'aide de la technologie de transit synchrone linéaire/transit synchrone quadratique. Ces outils peuvent également être utilisés pour étudier les processus de diffusion en masse et en surface.

De plus, les propriétés vibrationnelles des solides (dispersion des phonons, densité totale et projetée des états de phonons, propriétés thermodynamiques) peuvent être calculées avec **CASTEP** en utilisant soit la méthodologie de réponse linéaire, soit la technique des déplacements finis.

CASTEP a été créé par le professeur MC Payne et développé ensuite par les universitaires du Royaume-Uni, principalement de la médecine traditionnelle chinoise du groupe de Cambridge.

Le code **CASTEP** nécessite l'introduction du groupe d'espace, paramètre de maille et choix des pseudos-potentiels du matériau à simuler et le type des fonctionnelles (**LDA**, **GGA**, etc....), et le choix de calcul ultrafine tiens en compte les paramètres de convergences optimales

4.3 Optimisation de la géométrie avec CASTEP

La tâche Optimisation de la géométrie avec CASTEP vous permet d'affiner la géométrie d'un système périodique 3D pour obtenir une structure stable ou polymorphe. Cela se fait en effectuant un processus itératif dans lequel les coordonnées des atomes et éventuellement les paramètres de la cellule sont ajustés de sorte que l'énergie totale de la structure soit minimisée. Il est nécessaire de minimiser les forces internes agissant entre les atomes du solide cristallin pour arriver à une structure où la somme des forces interne est nulle. Le calcul de ces forces s'effectue grâce à **l'approximation de Born-Oppenheimer** et au théorème **d'Hellmann Feynman.**

Le processus d'optimisation de la géométrie aboutit généralement à une structure de modèle qui ressemble étroitement à la structure réelle. De plus, même si la structure choisie pour l'initialisation est proche de la structure expérimentale, une optimisation de géométrie précise est un préalable indispensable au calcul des propriétés vibrationnelles d'un système. Figure 14 présente le schéma de principe de détermination de l'état fondamental géométrique d'un système.

Figure 14 Schéma de principe de détermination de l'état fondamental géométrique d'un système.

5 Paramètre de calcul : Test de convergence

Différents codes existent pour les calculs théoriques avec différentes approximations. Dans nos calculs, nous utilisons le code **CASTEP** (**CambridgeSerial Total Energy Package**), [76]. Tous les calculs ont été exécutés à l'aide de la méthode (**DFT**) pour déterminer les paramètres de structure et les modules d'élasticité des composés considérés. La version qui a été développée et utilisée spécifiquement pour améliorer la description des termes d'échangecorrélation dans les solides c'est l'approximation de la densité locale (**LDA**). Dans tous les calculs d'énergie totale, un pseudo-potentiel de **Vanderbilt ultra-doux** a été utilisé pour traiter le potentiel observé par les électrons de valence en raison du noyau et des électrons du noyau gelé. Les configurations électroniques Ga : $4s^2 4p^1$; Se : $4s^2 4p^4$ ont été explicitement traitées comme des états électroniques de valence. Nous n'avons pas intégré l'interaction spin-orbite dans nos calculs car les effets spin-orbite devraient être modestes pour les matériaux **III-VI** [77]. Les fonctions d'onde électronique de valence ont été étendues à un ensemble de bases d'ondes planes tronquées à une énergie plane maximale (énergie de coupure) bien déterminée. La zone de Brillouin (**BZ**) a été échantillonnée en un nombre de **k-points** irréductible de **Monkhorst-Pack** [58]. Pour des k-points et l'énergie de coupure, nous avons effectué des tests de convergence de l'énergie totale E_{tot} des différents polytypes de GaSe en fonction du nombre de points k dans la première zone de Brillouin et en fonction du paramètre de coupure $E_{cut-off}$, afin d'assurer des calculs suffisamment précis. La géométrie entièrement optimisée a été réalisée avec les critères de convergence suivants :

- (i) La différence d'énergie totale entre deux itérations consécutives était inférieure à 10^{-6} eV/atome ;
- (ii) La force maximale appliquée à tout atome était inférieure à 0.05 eV/Å;
- (iii) La contrainte était inférieure à 0.05GP ;
- (iv) Le déplacement atomique était inférieur à 10^{-3} Å.

Les cellules primitives de ε -GaSe, β -GaSe, δ -GaSe et γ -GaSe sont schématisées sur la figure-15 (a, b, c, d) respectivement. La table 2, résume les paramètres et les informations utilisés dans le calcul. La méthode suivie pour le test de convergence est détaillée dans la paragraphe suivant.

Afin de s'assurer de la stabilité de la convergence de l'énergie totale E vers sa valeur minimale pour chaque polytype de GaSe, nous avons déterminé le nombre des k-points minimum représentant le maillage de la 1ère zone de Brillouin et le seuil minimum pour du paramètre de coupure. Pour évaluer le nombre de k-points assurant la stabilité de convergence de l'énergie totale E de chaque structure étudiée, on a fixé en premier temps la valeur de $E_{cut-off}$ à 400 eV et on a fait varier le nombre des k-points de 2 à 80 pour les structures Hexagonales et de 2 à 120 pour la structure orthorhombique.

L'énergie totale *E* est calculée pour chaque nombre de vecteur d'ondes choisi. Les courbes de la variation de *E* en fonction du nombre des k-points pour chacune des structures sont reportées sur la figure 16. L'analyse des courbes E(k-points) montre qu'une stabilité de converge est atteinte pour un nombre de k-points spéciaux dans la zone irréductible de Brillouin égale à : $21(\varepsilon)$, $21(\beta)$, $28(\gamma)$, et $21(\delta)$.

L'étape suivante consistait à fixer le nombre des k-points nécessaire à chaque structure à la valeur trouvée précédemment, et à faire varier la valeur de $E_{cut-off}$ de 200eV à 800eV par pas de 100eV. Pour chacune de ces valeurs l'énergie totale E est calculée. Les courbes de la variation de E en fonction des valeurs de $E_{cut-off}$ sont reportées sur la (Figure 17). Les tracés $E(E_{cut-off})$ nous montre une stabilité de convergence à la limite de $E_{cut-off} = 400$ eV pour les différents polytype des matériaux GaSe. Toutes les para-métrisations additionnelles et informations structurales sont listées dans le Tableau 2.

Tableau 2 Informations sur les structures et paramétrisation utilisées dans nos calculs pour
E-GaSe, β -GaSe, γ -GaSe, δ -GaSe.

	$\varepsilon - GaSe(2H)$	$\beta - GaSe(2H)$	$\gamma - GaSe(3H)$	$\delta - GaSe(4H)$
Groupe d'espace	$187(P\bar{6}m2(D^{1}_{3h}))$	$194(P6_3/mmc(D_{6h}^4))$	$158(R3m(C_{3v}^3))$	$186(C_{6v}^4))$
$E_{cut-off}$ (eV)	400	400	400	400
K-points mesh	6×6×6	6×6×6	6×6×6	6×6×6
K-points	21	21	28	21

Figure 15 Cellule unitaire de ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe.

Figure 16 Test de la stabilité de convergence de l'énergie totale en fonction des k-points, pour ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe

Figure 17 Test de la stabilité de convergence de l'énergie totale en fonction du $E_{cut-off}$, pour ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe

6 *Résultats et discussion* 6.1 *Propriétés structurales*

Paramètres et distances intratomiques

L'optimisation de toutes les structures (ε (D_{3h}^1), β (D_{6h}^4), γ (C_{3v}^3), et δ (C_{6v}^4)), au sein du LDA à la pression nulle nous a donné des valeurs listées dans le tableau 3, ainsi que des données théoriques et expérimentales tirées de la littérature. Dans tous les phases des matériaux GaSe, le paramètre de maille *c* est diffèrent l'un de l'autre. Ceci est dû aux positions des anions et cations de part et d'autre de l'espace de *Van der Waals* (*VdW*).

Tableau 3 Paramètres de réseau et distances interatomiques (en angströms Å) de ε -GaSe, β -GaSe, γ -GaSe, δ -GaSe calculés à pression nulle.

	$\varepsilon - GaSe(2H)$		$\beta - GaSe(2H)$		$\gamma - GaSe(3H)$		$\delta - GaSe(4H)$	
	3.110	TA	3.706	TA	3.709	TA	3.710	TA
	3.755	[78] Exp	3.751	[83] T.Th	3.752	[83] T.Th	3.756	[83] T.Th
	3.822	[79] T.Th	3.741	[83] T.Th	3.747	[83] T.Th	3.744	[83] T.Th
a , b	3.743	[80] Exp	3.755	[84] Exp	3.739	[86] Exp	3.755	[86] Exp
	3.753	[81] Exp	3.750	[85] Exp	-		-	-
	3.755	[82] Exp	3.752	[86] Exp	-	-	-	-
	15.523	TA	15.645	TA	23.489	TA	31.154	TA
	15.919	[78] Exp	16.186	[83] T.Th	24.225	[83] T.Th	32.148	[83] T.Th
С	16.281	[79] T.Th	16.003	[83] T.Th	23.853	[83] T.Th	32.044	[83] T.Th
	15.919	[80] Exp	15.940	[86] Exp	23.862	[86] Exp	31.992	[86] Exp
	15.910	[81] Exp	15.996	[85] Exp	-	-	-	-
Ga – Ga	2.403	TA	2.403	TA	2.403	TA	2.402	TA
	2.439	[87] T.Th	2.440	[87] T.Th	2.435	[87] T.Th	2.436	[87] T.Th
Ga - Se	2.435	TA	2.435	TA	2.435	TA	2.436	TA
	2.464	[87] T.Th	2.464	[87] T.Th	2.465	[87] T.Th	2.464	[87] T.Th
Se – Se Intralayer	4.720	TA	4.727	TA	4.722	TA	4.718	TA
	4.787	[87] T.Th	4.788	[87] T.Th	4.789	[87] T.Th	4.790	[87] T.Th
Se – Se Interlayer	3.720	TA	3.763	TA	3.774	TA	3.829	TA
	3.924	[87] T.Th	3.958	[87] T.Th	3.935	[87] T.Th	3.917	[87] T.Th

TA; Travail Actuel

T.Th; Travail Théorique

Exp; Expérimentale

La figure 18-19, montre les dépendances des paramètres structurels des diffèrents polytypes de GaSe sous l'effet de pression allant jusqu'à 10 GPa. Les constantes de réseau normalisées a/a_0 , c/c_0 et le volume de cellule normalisé V/V_0 sont tracés, où a_0 , c_0 et V_0 sont des paramètres correspondants à pression nulle. L'effet de contraintes de compression bi-axial (dans le plan basal) et uni-axial (selon l'axe c) sur les paramètres du réseau et les distances interatomiques de différent polytype de GaSe obtenues par LDA. Par convention un signe négatif du tenseur de contrainte correspond aux déformations compressives, nous traçons les grandeurs calculées en fonction de $-\sigma_{\perp}$ et $-\sigma_{\parallel}$.

D'après les résultats obtenus, on voit que sous la pression bi-axiale les constantes du réseau subissent des variations relatives. La contrainte de compression maximale considérée dans la présente étude est $\sigma_{\perp} = 10 \ GPa$, la constante de réseau *a* diminue de 6.56%, 6.41%, 6.49%, 6.43% pour ε , β , γ et δ respectivement et la constante de réseau *c* augmente de 4.81%, 3.63%, 4.86%, 3.62% pour ε , β , γ et δ respectivement par rapport à des valeurs initiales correspondantes (Figure 18). Au contraire, sous un chargement uni-axial, une diminution rapide de la constante *c* se produit, atteignant 13.26%, 12.39%, 15.50%, 14.15% pour ε , β , γ et δ respectivement de la constante *a* est nettement plus petite et même à la charge maximale, et ne dépasse pas 3.18%, 2.84%, 4.03%, 3.6% pour ε , β , γ et δ respectivement (Figure 19). On peut voir que dans le cas de la déformation du cristal soumis à une contrainte uni-axiale une réduction plus prononcée de la constante de réseau *c*. Bien entendu, que ce caractère obtenu est spécifié par une compressibilité élevée du séléniure de gallium selon l'axe hexagonal.

Figure 19 Paramètres structuraux des différents polytypes, ε -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction des contraintes uni-axiales σ_{\parallel} .

Afin d'analyser les déformations cristallines sous contrainte, il est nécessaire de comparer les déplacements d'atomes séparés. L'effet de la contrainte sur les distances interatomiques Ga–Ga et Ga–Se, illustrées sur les figures 20-21, décrivent les changements dans les longueurs de liaison entre les atomes de gallium les plus proches, ainsi que le gallium et le sélénium dans une couche cristalline. La distance Se–Se à l'intérieur de la couche définit l'épaisseur de la couche unique, tandis que la distance Se–Se entre les couches représente une séparation entre les atomes de sélénium les plus proches des couches adjacentes (espace de Vander walls) (voir Figure 22-23).

Dans le cas de contrainte de compression bi-axiale, les longueurs des liaisons Ga–Se ont tendance à se raccourcir pour tous les polytypes. Cependant, le changement de la distance Ga–Ga ne dépasse pas 0.010Å, 0.009Å, 0.0005Å, 0.007Å même à $\sigma_{\perp} = 10$ GPa, pour ε , β , γ et δ

respectivement ce qui ne constitue que 0.45%, 0.40%, 0.02%, 0.29% pour ε , β , γ et δ respectivement de l'espacement Ga–Ga. Le changement de la distance Ga–Se ne dépasse pas 0.061Å, 0.061Å, 0.059Å, 0.060Å même à $\sigma_{\perp} = 10$ *GPa*, pour ε , β , γ et δ respectivement ce qui ne constitue que 2.52%, 2.51%, 2.42%, 2.470% pour ε , β , γ et δ respectivement de l'espacement Ga–Se (voir Figure 20). La contrainte de compression uni-axiale donne lieu à un certain raccourcissement de 0.073Å, 0.076Å, 0.006Å, 0.085Å pour ε , β , γ et δ respectivement à $\sigma_{\parallel} = 10$ *GPa* de la longueur de la liaison Ga–Ga orientée le long de l'axe c, ce qui ne constitue que 3.041%, 3.201%, 3.287%, 3.557% pour ε , β , γ et δ respectivement de l'espacement Ga–Ga. Pour la longueur de la liaison Ga–Se, orientée principalement dans la direction transversale, est restée presque inchangé (voir Figure 21).

Figure 20 Distance interatomique Ga-Se et Ga-Ga (Å) de différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction des contraintes bi-axiales σ_{\perp} .

Figure 21 Distance interatomique Ga-Se et Ga-Ga (Å) de différents polytypes, ε -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction des contraintes uni-axiales σ_{\parallel} .

Comme on pouvait s'y attendre, sous la pression uni-axiale, une contraction de la distance Se–Se entre les couches et Se-Se à l'intérieur de la même couche se produit, ce qui conduisant une rétrécissement de l'espacement entre les couches. Le caractère presque linéaire de Se–Se entre les couches est perceptible sous contrainte uni-axiale (voir Figure 22). Cela signifie que des changements dans la structure interne des couches cristallines dans les diffèrents polytypes de GaSe commencent à se produire. D'autre part d'après les résultats obtenus, l'influence de la charge uni-axiale sur les couches séparées de diffèrents polytypes de GaSe se manifeste principalement par la diminution progressive de l'angle Ga–Ga–Se de 3.541° , 3.340° , 4.125° , 4.040° au-dessous de sa valeur initiale de 118.410° , 118.499° , 118.541° et 118.531° dans le cristal non contraint (ϵ , β , γ et δ respectivement). Pour le cas de contrainte bi-axiale, l'augmentation concomitante de l'espacement intra-couche (de 0.218Å, 0.213Å,

Figure 22 Distance interatomique Se-Se(Intracouche) et Se-Se(Intercouche) (Å) de différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction de la contrainte uni-axiale σ_{\parallel} contraintes.

Figure 23 Distance interatomique Se-Se(Intracouche) et Se-Se(Intercouche) (Å) de différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction de la contrainte bi-axiale σ_{\perp} contraintes

6.2 *Propriétés électroniques* 6.2.1 *Introduction*

Le comportement isolant ou conducteur électrique d'un matériau s'explique par la théorie des bandes, qui permet la modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites. Cette modélisation conduit à parler de bandes d'énergie ou de structure de bandes. Les bandes d'énergie donnent les états d'énergie possibles pour les

électrons en fonction de leur vecteur d'onde. On les représente donc dans l'espace réciproque et dans les directions de plus hautes symétries de la première zone de Brillouin. Elles se décomposent en bandes de valence et bandes de conduction. La bande de valence, la plus basse et la bande de conduction, la plus haute, séparées par la bande interdite déterminent principalement les propriétés de transport des électrons au sein du matériau

La densité d'états électroniques **DOS** (Density Of States) donne des informations sur l'évolution des niveaux d'énergies et de leurs densités associées en fonction de la configuration (changement de structure, variation d'énergie d'orbitale, etc....) du matériau. La densité d'états totale **TDOS** permet, d'avoir accès aux propriétés de conduction électronique d'un matériau. De plus, pour chaque atome, on définit une sphère de rayon donné à l'intérieur de laquelle on projette la densité électronique sur des harmoniques sphériques de type s, p, d ou f. On obtient ainsi les densités d'états partielles **PDOS** qui permettent de déterminer la structure des liaisons chimiques entre les atomes d'un cristal ou d'une molécule.

Dans cette partie, on s'intéresse au calcul de la structure électronique de matériaux GaSe à pression nulle et sous pression. Peu de recherche, a été fait dans ce sens. Parmi ces travaux, le calcul de structure électronique à pression ambiante à base d'une approximation bidimensionnelle en utilisant la méthode de liaison serrée fait par Bassani et al [88]. Les calculs de structure électronique du ε -GaSe sous contrainte de compression bi-axiale et uni-axiale ont été effectués dans le cadre de la théorie de la fonctionnelle de la densité (**DFT**) dans l'approximation de la densité (**LDA**), a été fait par *Kosobutsky et al* [89]. *Ghalouci et al* [79] étudie dans une partie de son travail les propriétés électroniques du GaSe dans une structure ε et β par l'application de la méthode mixte (**LAPW/APW+lo**). Autre calcul de structure de bande des polytypes ε et β ont été rapportés dans, les références [77,90–92].

6.2.2 Propriétés électroniques à pression nulle

Dans cette partie, nous avons effectué des calculs de densité d'états (**DOS**) et de structure de bande (Figure 24-25). Le niveau de Fermi E_F correspond à l'origine de l'énergie. Les résultats de ce calcul à pression nulle montre que : Les bandes interdites des semiconductrices de la structure ε -GaSe, β -GaSe, et δ -GaSe, situées au point de haut symétrie **G**, sont directes avec des valeurs 0.751 eV, 0.818 eV, 0.888 eV et pour γ -GaSe, la bande interdite est indirect et situées au point de haut symétrie **A** avec une valeur de 0.819 eV. Ces valeurs sont inférieures à celles expérimentales (2.1 eV). Cette différence est due à la limitation bien connue du **LDA**. Les résultats de nos calculs sont comparables avec ceux de la littérature sont illustrés dans le tableau 4.

Dans les quatre structure $\varepsilon - GaSe$, $\beta - GaSe$, $\gamma - GaSe$, $\delta - GaSe$, le sous-groupe I représente les quatre bandes inférieures de conduction. Ce sous-groupe est originaire de la mixture des états de haute densité p-Se et s-Ga avec les états de faible densité p-Ga et s-Se. La bande de valence se devise en trois sous bandes : une sous bande notée IV, originaire de la forte contribution des états s-Ga et p-Se, suivie par une faible contribution des états s-Se et p-Ga. La sous bande III, qui dérive aussi de la forte contribution des êtas s-Ga fortement mixées avec les orbitales p-Se. La plus large des bandes, notée II, est originaire essentiellement des états p-Se et p-Ga. Les états médians et inférieures de cette bande sont issues principalement des orbitales px-Se et py-Se, alors que les états supérieures (qui représentent aussi le haut de la bande de valence correspondent aux orbitales pz-Se.

Tableau 4 Comparaison des bandes interdites (eV) calculées pour différents polytypes deGaSe, par rapport aux données expérimentales et théoriques tirée de la littérature

	$\varepsilon - Gas$	Se(2H)	$\beta - G$	aSe(2H)	$\gamma - Gas$	Se(3H)	$\delta - GaSe(4H)$		
	0.751	TA	0.818	TA	0.819	TA	0.888	TA	
Théorique	0.745	[83]	0.934	[83]	0.924	[83]	0.853	[83]	
	0.890	[93]	0.650	[94]	-	-	-	-	
	2.120	[95]	2.169	[95]	2.120	[95]	-	-	
Expérimental	2.100	[24]	-	-	-	-	-	-	

TA; Travail Actuel

Figure 24 Densité des états totale et partielle; Structures de bande calculées le long des directions de haute symétrie dans DFT-LDA de différents polytypes, ϵ -GaSe, β -GaSe. L'origine de l'énergie est prise au niveau de Fermi (E_F).

Figure 25 Densité des états totale et partielle; Structures de bande calculées le long des directions de haute symétrie dans DFT-LDA de différents polytypes, γ -GaSe, δ -GaSe. L'origine de l'énergie est prise au niveau de Fermi (EF).

6.2.3 Propriétés électroniques étudiées à pression non nulle

L'influence des contraintes uni-axiales et bi-axiales sur l'énergie de la bande interdite de différents polytypes de GaSe est étudiée dans cette section (La figure 26). Les résultats révèlent que sous une contrainte de compression bi-axiale jusqu'à 8 GPa, l'énergie de la bande interdite croît presque linéairement. Une inflexion des courbes prédites se produit lorsque la contrainte augmente, signifiant une inversion de signe des coefficients de pression supérieure à 8 GPa et une diminution conséquente de la bande interdite. Lors d'une compression uni-axiale selon l'axe c, les énergies de transition inter-bandes et la bande interdite diminuent significativement, contrairement aux plans des couches. En conséquence, une déformation majeure du cristal le long de l'axe c peut être attribuée à la réduction dépendante de la pression observée de l'énergie de la bande interdite des polytypes GaSe distincts. Selon nos calculs basés sur DFT-LDA, une augmentation supplémentaire de la pression entraînerait la rencontre des limites des bandes de valence et de conduction, entraînant une transition de GaSe vers un état métallique. Comme illustré dans la section PDOS, les contributions partielles des atomes de gallium et de sélénium à la densité électronique globale des états ont été étudiées. Elle démontre que la bordure supérieure de la bande de valence est créée par les orbitales Se (4pz), tandis que le bas de la bande de conduction est constitué d'états Ga (4s). La diminution de la constante de réseau c s'accompagne d'une augmentation du recouvrement des orbitales Se (4pz), qui sont alignées le long de l'axe hexagonal et positionnées aux limites des couches. Le haut de la bande de valence augmente plus rapidement que le décalage comparable par rapport au bas de la bande de conduction à la suite de cela.

Figure 26 L'évolution de l'énergie de gap dans différents polytypes de GaSe en fonction des contraintes bi-axiales σ_{\perp} et uni-axiales σ_{\parallel} .

6.3 *Propriétés optiques* 6.3.1 *Introduction*

Les propriétés optiques d'un semi-conducteur peuvent être définies comme une propriété qui implique l'interaction entre le rayonnement électromagnétique ou la lumière et le semiconducteur c'est à dire, les différentes manières dont la lumière interagit avec la matière dans la physique de l'état solide, (l'absorption, la transmission, la réflexion, la diffusion et l'émission). L'étude des propriétés optiques des solides s'est avérée être un puissant outil dans notre compréhension des propriétés électroniques des matériaux. Les phénomènes optiques (diffusion, émission et absorption), sont liés à la réponse du composé absorbeur lorsqu'il est soumis à un rayonnement électromagnétique. Il nous faut donc étudier la réponse d'un milieu diélectrique à un champ électromagnétique sinusoïdal et plus précisément au champ électrique de cette onde.

Constante diélectrique

La constante diélectrique, est un facteur qui permet de détecter la polarisabilité des matériaux et de contrôler la capacité des dispositifs et aussi elle peut indiquer la rapidité avec laquelle les dispositifs préparés répondent au signal appliqué. Par exemple, les matériaux à faible constante diélectrique démontrent une faible capacité et un temps de réponse court, ce qui rend ces matériaux appropriés pour une utilisation comme photo-détecteur rapide.

Le constante diélectrique $\varepsilon(\omega)$ est une fonction complexe de la fréquence du champ électrique, s'écrit comme suit:

$$\boldsymbol{\varepsilon}(\boldsymbol{\omega}) = \boldsymbol{\varepsilon}_{\mathbf{r}}(\boldsymbol{\omega}) + \mathbf{i}\boldsymbol{\varepsilon}_{\mathbf{i}}(\boldsymbol{\omega}) \tag{70}$$

Pour $\varepsilon_r(\omega)$, il y a deux types de transitions qui contribuent, l'une est intra-bande plus importante pour les métaux et l'autre inter-bande, directe ou indirecte.

La partie imaginaire $\varepsilon_i(\omega)$ de la fonction diélectrique peut être calculée comme étant la somme de toutes les transitions directes entre les états électroniques occupés et non occupés.

$$\varepsilon_{i}(\omega) = \frac{e^{2}\hbar}{\pi m^{2}\omega^{2}} \sum_{\nu,c} \int |\langle u_{c\nu} | u. \nabla | u_{ck} \rangle|^{2} \,\delta[\omega_{c\nu}(k) - \omega] d^{3}k \tag{71}$$

m et *e* la masse et la charge d'électron, *k* est le vecteur de réseau réciproque, *u* est le vecteur unitaire, *v* et *c* sont les élément de matrice de transition des état de band de conduction u_{ck} a des état de bande de valence u_{cv}

La partie réelle peut être déduite à partir de la partie imaginaire en utilisant la transformation de *Kramers – Kronig*:

$$\varepsilon_r(\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\omega_{\varepsilon_i}'(\omega')}{\omega'^2 - \omega^2} d\omega'$$
(72)

L'indice de réfraction et coefficient d'extinction

La connaissance de la dispersion des constantes optiques du milieu est nécessaire pour une modélisation et une conception précises de matériaux optiques pour les dispositifs. Ces constantes optiques peuvent être trouvées en utilisant les équations suivant :

$$n(\omega)^* = n(\omega) + ik(\omega) \tag{73}$$

$$n(\omega) = \left(\frac{\varepsilon_r(\omega)}{2} + \frac{\sqrt{\varepsilon_r^2(\omega) + \varepsilon_l^2(\omega)}}{2}\right)^{\frac{1}{2}}$$
(74)

$$k(\omega) = \left(-\frac{\varepsilon_r(\omega)}{2} + \frac{\sqrt{\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega)}}{2}\right)^{\frac{1}{2}}$$
(75)

 $\mathbf{n}(\boldsymbol{\omega})$ L'indice de réfraction

$\mathbf{k}(\boldsymbol{\omega})$ Le coefficient d'extinction

Fonction de perte d'énergie et réflectivité

La fonction de perte d'énergie signifie la perte d'énergie des électrons qui traversent le matériau, et la réflectivité est la proportion d'énergie électromagnétique réfléchie à la surface d'un matériau, les deux paramètres peuvent être calculés par le biais des relations suivantes :

$$L(\omega) = \frac{\varepsilon_i(\omega)}{\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega)}$$
(76)

$$R(\omega) = \frac{k^{2}(\omega) + [n(\omega) - 1]^{2}}{k^{2}(\omega) + [n(\omega) + 1]^{2}}$$
(77)

Coefficient d'absorption et conductivité optique

Le premier paramètre indique la capacité d'un matériau à absorber l'énergie d'une onde, pour la conductivité optique il dépend de la partie imaginaire de la fonction diélectrique. On peut trouver ces paramètres à partir des relations suivantes :

$$\alpha(\omega) = \frac{\sqrt{2}\omega}{c} \left[\left(\epsilon_{\rm r}^2(\omega) + \epsilon_{\rm i}^2(\omega) \right)^{\frac{1}{2}} - \epsilon_{\rm r}(\omega) \right]^{\frac{1}{2}}$$
(78)

$$\sigma(\omega) = \frac{\omega}{2\pi} \cdot \varepsilon_i(\omega) \tag{79}$$

6.3.2 Constante diélectrique

En raison de leurs importance pour les applications basées sur les matériaux lamellaires, nous avons étudié sur une plage d'énergie de 10 meV jusqu'à 35 eV les propriétés optiques des cellules unitaires des différents polytypes de GaSe en utilisant la méthode DFT. La figure 27 présente la variation des fonctions diélectriques (partie réelle et imaginaire) pour tous les empilements des matériaux lamellaires GaSe, polarisés dans les direction (100) et (001). On remarque l'existence d'un seul pic soit dans la partie réelle ou dans la partie imaginaire. Les valeurs maximales sont illustrées dans le tableau 5 suivant :

Tableau 5 Valeurs maximales de la partie réelle et la partie imaginaire de la constantediélectrique des différents polytypes des matériaux lamellaires GaSe en polarisation // et \perp avec l'axe c.

Polytype	$\boldsymbol{\varepsilon}_{rxx}$	$\boldsymbol{\varepsilon}_{ixx}$	$\boldsymbol{\varepsilon}_{rzz}$	${m arepsilon}_{izz}$
$\varepsilon - GaSe$	(E=3.47eV)8.43	(E=4.56eV)12.5	(E=3.11eV)=7.95	(E=3.98eV)6.73
β – GaSe	(E=3.41eV)11.28	(E=4.54eV)12.46	(E=3.12eV)10.15	(E=3.96eV)9.13
γ – GaSe	(E=3.42eV)15.02	(E=4.42eV)17.05	(E=2.97eV)=13.05	(E=3.90eV)11.96
$\delta - GaSe$	(E=2.99eV)14.95	(E=3.95eV)16.92	(E=2.03eV)11.91	(E=3.12eV)10.70

Ces pics sont dus principalement à une transition directe d'électron de la bande de valence à la bande de conduction. D'autre part, ces sommets montrent que la constante diélectrique se déplace vers les basses énergies, par conséquence les photons incidents se reflètent complètement dans cette région c'est le phénomène de *Redshift*. La différence des positions et l'intensités de ces maximas exhibent le caractère anisotrope de ces matériaux lamellaires. Dans la partie réelle, on remarque l'existence des valeurs négatives dans tous les cas, ceci suggère la nature métallique de ces matériaux dans la région spectrale Ultra-violet. Les matériaux lamellaire *GaSe* étudiés présentent un caractère anisotropie ce qui est important

pour les applications optiques non linaires. Nos résultats sont en bon accord avec les références [96,97].

Nous donnons dans le tableau 6, les valeurs illustratives de $\varepsilon_r(\omega)$ pour les basses et les hautes énergies:

Tableau 6 Valeurs de la partie réelle de la constante diélectrique en polarisation // et⊥ avec l'axe c, de diffèrents polytypes des matériaux lamellaires GaSe à très basses et à hautes énergies.

Polytype	ε_{r0xx}	$\mathcal{E}_{r\infty xx}$	ε_{r0zz}	$\mathcal{E}_{r\infty zz}$
$\varepsilon - GaSe$	4.86	0.82	11.29	0.81
β – GaSe	6.52	0.82	15.11	0.81
γ – GaSe	8.30	0.77	10.63	0.77
$\delta - GaSe$	9.48	0.83	11.76	0.83

6.3.3 Coefficient d'absorption

La figure 28 présente le coefficient d'absorption des différents empilements des matériaux lamellaires *GaSe* dans les deux cas de polarisation // et \perp avec l'axe *c*. Les positions des pics principaux sont illustrées dans le tableau 7.

Tableau 7 Positions des pics principaux du coefficient d'absorption des différents polytypes du matériau lamellaire GaSe.

Polytype	$lpha_{xx}$. $10^5~cm^{-1}$	$lpha_{zz}$. $10^5~cm^{-1}$
ε – GaSe	(E=7.26eV)=1.87	(E=6.97eV)=1.20
β – GaSe	(E=7.25eV)=2.49	(E=7.00eV)=2.20
γ – GaSe	(E=7.05eV)=2.74	(E=7.09eV)=2.44
δ – GaSe	(E=7.94eV)=2.47	(E=7.02eV)=2.27

En se basant sur les valeurs précédentes du coefficient d'absorption (α), on remarque que les pics sont similaires pour tous les empilements et que le matériau *GaSe* présente une absorption importante dans le domaine *UV*, ce qui indique que *GaSe* absorbent fortement les rayonnements *Ultra* – *Violet*. Ceci est très important pour les applications des dispositifs photoélectriques. Notre résultat est en accord avec *Bhagwati et al* [98].

Figure 28 Coefficient d'absorption de différents empilements de GaSe // et \perp à l'axe c.

6.3.4 Réflectivité

La réflectivité en fonction de l'énergie est illustrée dans la Figure 29. Pour des énergies presque nulles dans lesquelles les porteurs libres sont dominés, la réflectivité prend des valeurs très petites, puis augmente avec l'augmentation de l'énergie jusqu'un maximum dans lequel le pic principal de réflexion sera produit. Les positions de ces pics sont illustrées dans le tableau 8 ci-dessous.

Tableau 8 Pourcentages de la réflectivité des différents empilements du matériau lamellaire
GaSe // et \perp avec l'axe c.

Polytype	R _{xx} . %	R _{zz} .%
ε−GaSe	(E=7.77eV)=41	(E=7.34eV)=33
β — GaSe	(E=7.77eV)=55	(E=7.36eV)=45
γ — GaSe	(E=7.46eV)=55	(E=7.39eV)=48
δ – GaSe	(E=8.36eV)=53	(E=7.29eV)=45

La majorité de ces valeurs apparait dans le domaine UV moyen et lointain proche du visible. Dans la région IR (entre zéro et 1.9 eV), on remarque une faible absorption ce qui montre que ces matériaux lamellaires n'absorbent pas la chaleur alors on peut les utiliser dans des applications potentielles tel que les fibres optiques et les séparateurs de faisceau. La réflectivité R_{zz} est plus faible que R_{xx} , ce qui prouve en pratique que le clivage perpendiculaire au plan de couches de ces matériaux est difficile.

Figure 29 Les courbes de la réflectivité en fonction d'énergie de différent empilement de GaSe // et \perp à l'axe c.

6.3.5 Conductivité optique

Dans la figure 30, nous avons présenté la conductivité optique pour une gamme énergétique allant de 10 meV jusqu'en 35 eV. Les différents empilements de GaSe présentent une meilleur conductivité optique dans le domaine proche de UV. La conductivité optique sera réduite progressivement (après la longueur d'onde du pic principal) avec l'augmentation d'énergie pour tous les empilements. Les valeurs maximales des partie réelles et imaginaires de la conductivité optique sont illustrées dans le tableau 9, ci-dessous :

Tableau 9 Valeurs maximales de la conductivité optique (partie réelle et imaginaire) des
diffèrents polytypes de matériau lamellaire GaSe // et ⊥ avec l'axe c.

Polytype	σ_{rxx}	σ_{ixx}	σ_{rzz}	σ_{izz}
ε – GaSe	(E=4.71eV)5.25	(E=7.45eV)2.95	(E=6.21eV)4.09	(E=7.26eV)2.19
β – GaSe	(E=4.69eV)6.97	(E=7.47eV)3.92	(E=6.27eV)6.44	(E=7.25eV)2.91
γ — GaSe	(E=4.49eV)9.15	(E=7.24eV)4.53	(E=4.49eV)9.15	(E=7.35eV)3.43
$\delta - GaSe$	(E=4.10eV)8.25	(E=8.06eV)3.81	(E=6.16eV)5.60	(E=7.25eV)3.01

Figure 30 Conductivité optique (partie réelle et imaginaire) des différents polytypes du matériau lamellaire GaSe // et ⊥ avec l'axe c.

6.3.6 Indice de réfraction et coefficient d'extinction

La connaissance de la dispersion d'indice de réfraction dans la région de transparence constitue un élément important de la conception de divers dispositifs optoélectroniques. Les indices de réfraction statiques produisent à une énergie de photon nulle égale à n_{xx}=1.91, 2.55, 2.88, 3.07, n_{zz}=2.92, 3.90, 3.26, 3.43 pour ε , β , γ , δ , respectivement. Les valeurs maximales de l'indice de réfraction et les coefficients d'extinction des matériaux lamellaires (β , ε , δ , γ) *GaSe* sont illustrés dans le tableau 10.

D'après la Figure 31, on constate que les indices de réfraction diminuent avec l'augmentation d'énergie dans tous les cas jusqu'à la valeur proche de 20 *eV*, dans laquelle ces matériaux deviennent isotropes. Ces matériaux lamellaires possèdent une *birefringence*

dans laquelle la lumière se propage de façon anisotrope. Alors l'indice de réfraction dépend de la direction de polarisation.

Tableau 10 Indices de réfraction maximale et coefficient d'extinction maximale des différents empilements de matériau lamellaire GaSe // et \perp avec l'axe c.

Polytype	Polytype n_{xx}		n _{zz}	k _{zz}
ε – GaSe	(E=3.69eV)2.60	(E=4.97eV)1.71	(E=3.25eV)2.45	(E=6.68eV)1.50
β – GaSe	(E=3.67eV)3.47	(E=4.95eV)2.27	(E=3.26eV)3.27	(E=6.78eV)1.98
γ – GaSe	(E=3.68eV)4.03	(E=4.79eV)2.68	(E=3.16eV)3.70	(E=6.68eV)2.20
$\delta - GaSe$	(E=3.20eV)4.03	(E=4.39eV)2.70	(E=2.24eV)3.53	(E=6.77eV)2.04

Figure 31 Indices de réfraction et coefficients d'extinction des différents empilements de GaSe, // et \perp à l'axe

6.3.7 Fonction de perte d'énergie

Autre facteur important, c'est la fonction de perte. Les pics principaux de ces propriétés sont illustrés dans le tableau 11. Ses énergies sont les points de transition entre la propriété métallique et diélectrique des différents polytypes de matériaux lamellaires *GaSe*. D'après la Figure 32, on constate qu'après ces pics, la fonction de perte diminue avec l'augmentation d'énergie. Pour tous les cas, les pics principaux sont situés dans le domaine spectrale Ultra – *violet*, alors ces matériaux sont de bons absorbeurs de faible spectre Ultra-violet alors ils sont des bons matériaux pour des applications photovoltaïques.

Tableau 11 Valeurs maximales de la fonction de perte d'énergie des différents empilements dematériau lamellaire GaSe // et \perp avec l'axe c.

Polytype	L_{xx}	L _{zz}
ε – GaSe	(E=14.05eV)2.23	(E=15.58eV)1.86
β – GaSe	(E=13.99eV)3.00	(E=15.64eV)2.38
$\gamma - GaSe$	(E=16.40eV)2.89	(E=17.66eV)2.36
$\delta - GaSe$	(E=15.73eV)2.67	(E=15.66eV)2.20

Figure 32 Fonction de perte d'énergie de différents empilements de GaSe // et \perp à l'axe c.

7 Conclusion

Les séléniures de gallium (GaSe) sont des composés semi-conducteurs lamellaires de la famille (III-VI) à gap électronique direct. Ils ont suscité beaucoup d'intérêt de par leurs applications dans le domaine de l'optoélectronique et du photovoltaïque. L'étude théorique des propriétés électroniques et optiques, est réalisée par le biais de calcul ab-initio. Dans ce chapitre, nous avons présenté les paramétrages et les étapes de calcul adoptées pour mener à bien notre étude, et cela pour les quatres polytypes de matériaux GaSe. Les résultats obtenus ont été discutés et comparés à la littérature. Nous avons calculé les propriétés optiques des différents polytypes de GaSe, à savoir les constantes diélectriques, les coefficients d'absorption, les conductivités optiques, les indices de réfraction et le coefficient d'extinction, les réflectivités et les fonctions de perte dans un domaine de l'énergie des photons allant jusqu'à 35 eV. Les calculs ont été effectués dans les deux sens de polarisation xx et zz.

Pour les propriétés structurales les modifications des paramètres de réseau *a* et *c* sont essentiellement déterminées par deux facteurs : la modification de la largeur de la bande interdite et la modification de l'angle de liaison Ga-Ga-Se, influençant l'épaisseur des couches cristallines et la taille de la cellule unitaire dans le plan de base. Une compression dans les plans de couche n'affecte pas le caractère "bidimensionnel" du séléniure de gallium (il en résulte un espacement inter-couche encore plus grand), tandis que la compression le long de l'axe c conduit à un rétrécissement de l'espacement inter-couches et à une réduction de l'anisotropie cristalline.

Les calculs de la structure de bande électronique montrent une augmentation progressive de la bande interdite aux contraintes bi-axiales jusqu'à $\sigma \perp > 8$ GPa. À une compression supplémentaire, une inflexion des dépendances de contrainte des principales transitions interbandes se produit, ce qui entraîne l'inversion de signe des coefficients de pression correspondants de positif à négatif à $\sigma \perp > 8$ GPa. Au contraire, sous une contrainte de compression uni-axiale le long de l'axe c, les énergies de transition inter-bandes diminuent continuellement avec le chargement. Compte tenu des dépendances de pression calculées des bandes interdites directes et indirectes, une transition vers le type de conductivité métallique peut se produire à une pression uni-axiale d'environ 10 GPa.

Chapitre IV : Propriétés mécaniques et élastiques du matériaux lamellaire GaSe

une grandeur physique se définit bien plus exactement par une équation que par une mesure ; mais en procédant de la sorte on renonce au fond à connaître la signification propre de la grandeur en cause, tout en lui conservant son nom, ce qui entraîne facilement des imprécations et des malentendus.

Max Planck.

1 Introduction

Dans ce chapitre, nous nous concentrons sur l'étude mécanique et élastique de matériau GaSe. Par conséquent, le but de ce travail est de fournir une étude complémentaire et comparative aux travaux expérimentaux et théoriques de ces propriétés physiques, en utilisant la méthode pseudo-potentielle d'onde plane décrite au sein de la théorie fonctionnelle de la densité (DFT). Dans la première partie, nous décrivons les propriétés et les paramètres à calculer. Dans la deuxième, nous rapportons et discutons nos résultats pour les propriétés calculées et nous terminons par une conclusion.

Propriétés élastique

Les propriétés élastiques définissent la réponse en termes d'énergie d'un corps solide sous l'effet de légère déformation quand il est soumis à des contraintes mécaniques externes. Ces propriétés jouent un rôle très important parce qu'elles sont liées à diverses propriétés de l'état fondamental du solide, tels que les potentiels interatomiques, l'équation d'état et les spectres de phonons. Elles sont également liées de manière thermodynamique à la chaleur spécifique, la dilatation thermique, la température de Debye et au point de fusion. Les constants élastiques jouent évidemment un rôle important dans la détermination de la résistance des matériaux. Les valeurs des constants élastiques fournissent des informations précieuses sur la stabilité mécanique, la caractéristique de liaison entre plans atomiques adjacents et le caractère anisotrope de la liaison.

<u>Contrainte</u>

Une contrainte mécanique est l'état de pression dans lequel se trouve un matériau lorsqu'on lui applique une force (changement de forme et de volume). La contrainte est définie par :

$$\boldsymbol{\sigma} = \frac{F}{S} \tag{80}$$

Avec *F* la force qui s'exerce sur une surface d'un matériau solide, et *S* la surface d'un matériau solide.

Les contraintes sont décrites par des tenseurs qui déterminent la direction des forces et le plan sur lequel elles s'appliquent.

$$\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$
(81)

 $\sigma_{11}, \sigma_{22}, \sigma_{33}$ contraintes normales suivant les directions x, y, z le reste si les contraintes tangentielles de cisaillement

Dans la notation σ_{ij} , l'indice *i* indique la direction de la force, et l'indice *j* réfère la normale au plan sur lequel s'applique la force. En raison de la symétrie du tenseur de contrainte, $\sigma_{ij} = \sigma_{ji}$, le nombre de leur composantes indépendantes se réduit de neuf (9) à six (6) $(\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12} = \sigma_{21}, \sigma_{13} = \sigma_{31}, \sigma_{23} = \sigma_{32}).$

$$\sigma_{ij} = \sigma_{ji} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$$
(82)

Déformation

Les déformations d'un objet sont mesurées à partir d'une position initiale, qui est généralement la position de repos de l'objet dans laquelle aucune force n'est appliquée à l'objet.

Les déformations appliquées à un cristal (corps à trois dimensions) résultantes sont représentées par les tenseurs suivants :

$$\boldsymbol{\varepsilon}_{ij} = \begin{pmatrix} \boldsymbol{\varepsilon}_{11} & \boldsymbol{\varepsilon}_{12} & \boldsymbol{\varepsilon}_{13} \\ \boldsymbol{\varepsilon}_{21} & \boldsymbol{\varepsilon}_{22} & \boldsymbol{\varepsilon}_{23} \\ \boldsymbol{\varepsilon}_{31} & \boldsymbol{\varepsilon}_{32} & \boldsymbol{\varepsilon}_{33} \end{pmatrix}$$
(83)

 $\boldsymbol{\varepsilon}_{ij}, \, \boldsymbol{i} = \boldsymbol{j}$ définissent les déformations d'allongement selon les axes principaux ;

 ε_{ij} , $i \neq j$ définissent les déformations de cisaillement ;

De même, le tenseur les déformations est symétrique, $\varepsilon_{ij} = \varepsilon_{ji}$, et par conséquent le nombre de composantes indépendantes se réduit à 6 :

$$\boldsymbol{\varepsilon}_{ij} = \boldsymbol{\varepsilon}_{ji} = \begin{pmatrix} \boldsymbol{\varepsilon}_{11} & \boldsymbol{\varepsilon}_{12} & \boldsymbol{\varepsilon}_{13} \\ \boldsymbol{\varepsilon}_{21} & \boldsymbol{\varepsilon}_{22} & \boldsymbol{\varepsilon}_{23} \\ \boldsymbol{\varepsilon}_{31} & \boldsymbol{\varepsilon}_{32} & \boldsymbol{\varepsilon}_{33} \end{pmatrix}$$
(84)

Loi de Hooke

La loi de Hooke est décrite sous sa forme générale par :

$$\boldsymbol{\sigma}_{ij} = \sum_{k,l} \boldsymbol{C}_{ijkl} \boldsymbol{\varepsilon}_{kl} \tag{85}$$

Ou encore sous la forme :

$$\boldsymbol{\varepsilon}_{ij} = \sum_{k,l} \boldsymbol{S}_{ijkl} \boldsymbol{\sigma}_{kl} \tag{86}$$

 C_{ijkl} (*i*, *j*, *k* et l = 1, 2, 3) sont les modules élastiques ou les constantes élastiques.

*S*_{*ijkl*}, les coefficients de déformabilités.

 $[S_{ijkl}]$ est un tenseur de rang quatre qui contient 81 constantes d'élasticité S_{ijkl} , et $[C_{ijkl}]$ est un tenseur de rang quatre qui contient 81 constantes de rigidité C_{ijkl} .

Des considérations de symétries sur les tenseurs de contrainte et de déformation,

$$S_{ijkl} = S_{ijlk} = S_{jikl} = S_{jilk}$$
(87)

$$\boldsymbol{C}_{ijkl} = \boldsymbol{C}_{ijlk} = \boldsymbol{C}_{jikl} = \boldsymbol{C}_{jilk} \tag{88}$$

Le nombre des composantes S_{ijkl} et des composantes C_{ijkl} indépendantes sera réduit de 81 à 36. Les composantes C_{ijkl} et S_{ijkl} deviennent C_{ij} et S_{ij} par la transformation des indices suivante (notation de **Voigt**)

Notation tensorielle	11	22	33	23	32	13	31	12	21
Notation matricielle	1	2	3	4	4	5	5	6	6

Donc les contraints et les déformations devient :

$$\sigma_{11} = \sigma_1, \quad \sigma_{22} = \sigma_2, \quad \sigma_{33} = \sigma_3, \quad \sigma_{23} = \sigma_4, \quad \sigma_{32} = \sigma_4, \quad \sigma_{13} = \sigma_5$$

$$\sigma_{31} = \sigma_5, \quad \sigma_{12} = \sigma_6, \quad \sigma_{21} = \sigma_6$$

$$\varepsilon_{11} = \varepsilon_1, \quad \varepsilon_{22} = \varepsilon_2, \quad \varepsilon_{33} = \varepsilon_3, \quad \varepsilon_{23} = \varepsilon_4, \quad \varepsilon_{32} = \varepsilon_4, \quad \varepsilon_{13} = \varepsilon_5,$$

$$\varepsilon_{31} = \varepsilon_5, \quad \varepsilon_{12} = \varepsilon_6, \quad \varepsilon_{21} = \varepsilon_6$$

$$\sigma_{1} = C_{11}\varepsilon_{1} + C_{12}\varepsilon_{2} + C_{13}\varepsilon_{3} + C_{14}\varepsilon_{4} + C_{15}\varepsilon_{5} + C_{16}\varepsilon_{6}$$

$$\sigma_{2} = C_{21}\varepsilon_{1} + C_{22}\varepsilon_{2} + C_{23}\varepsilon_{3} + C_{24}\varepsilon_{4} + C_{25}\varepsilon_{5} + C_{26}\varepsilon_{6}$$

$$\sigma_{3} = C_{31}\varepsilon_{1} + C_{32}\varepsilon_{2} + C_{33}\varepsilon_{3} + C_{34}\varepsilon_{4} + C_{35}\varepsilon_{5} + C_{36}\varepsilon_{6}$$

$$\sigma_{4} = C_{41}\varepsilon_{1} + C_{42}\varepsilon_{2} + C_{43}\varepsilon_{3} + C_{44}\varepsilon_{4} + C_{45}\varepsilon_{5} + C_{46}\varepsilon_{6}$$

$$\sigma_{5} = C_{51}\varepsilon_{1} + C_{52}\varepsilon_{2} + C_{53}\varepsilon_{3} + C_{54}\varepsilon_{4} + C_{55}\varepsilon_{5} + C_{56}\varepsilon_{6}$$

$$\sigma_{6} = C_{61}\varepsilon_{1} + C_{62}\varepsilon_{2} + C_{63}\varepsilon_{3} + C_{64}\varepsilon_{4} + C_{65}\varepsilon_{5} + C_{66}\varepsilon_{6}$$

Par conséquent, la loi de Hooke peut être écrite sous la forme suivante :

$$\begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{pmatrix} = \begin{pmatrix} \mathcal{C}_{11} \ \mathcal{C}_{12} \ \mathcal{C}_{13} \ \mathcal{C}_{14} \ \mathcal{C}_{15} \ \mathcal{C}_{16} \\ \mathcal{C}_{21} \ \mathcal{C}_{22} \ \mathcal{C}_{23} \ \mathcal{C}_{24} \ \mathcal{C}_{25} \ \mathcal{C}_{26} \\ \mathcal{C}_{31} \ \mathcal{C}_{32} \ \mathcal{C}_{33} \ \mathcal{C}_{34} \ \mathcal{C}_{35} \ \mathcal{C}_{36} \\ \mathcal{C}_{41} \ \mathcal{C}_{42} \ \mathcal{C}_{43} \ \mathcal{C}_{44} \ \mathcal{C}_{45} \ \mathcal{C}_{46} \\ \mathcal{C}_{51} \ \mathcal{C}_{52} \ \mathcal{C}_{53} \ \mathcal{C}_{54} \ \mathcal{C}_{55} \ \mathcal{C}_{56} \\ \mathcal{C}_{61} \ \mathcal{C}_{62} \ \mathcal{C}_{63} \ \mathcal{C}_{64} \ \mathcal{C}_{65} \ \mathcal{C}_{66} \end{pmatrix} \begin{pmatrix} \boldsymbol{\varepsilon}_{1} \\ \boldsymbol{\varepsilon}_{2} \\ \boldsymbol{\varepsilon}_{3} \\ \boldsymbol{\varepsilon}_{4} \\ \boldsymbol{\varepsilon}_{5} \\ \boldsymbol{\varepsilon}_{6} \end{pmatrix}$$
(89)

Les éléments de symétrie du cristal réduisent encore le nombre des constantes indépendantes S_{ij} et C_{ij} .

Pour un matériau *Hexagonal*, le nombre de constantes d'élasticité indépendantes est réduit à 05 composantes indépendantes dans les matrices (C_{ij}) et (S_{ij}) :

Pour un matériau *Rhomboédrique*, le nombre de constantes d'élasticité indépendantes est réduit à 07 composantes indépendantes dans les matrices (C_{ij}) et (S_{ij}) :

Le nombre des coefficients C_{ij} indépendants dépend de la symétrie du matériau (Tableau 12).

Système cristallin	Nombre des constantes indépendantes	Les constants élastiques
Cubique	03	C ₁₁ , C ₁₂ , C ₄₄
Hexagonal	05	C ₁₁ , C ₃₃ , C ₄₄ , C ₁₂ , C ₁₃
Trigonal	06	$C_{11}, C_{33}, C_{44}, C_{12}, C_{13}, C_{14}$
Rhomboédrique	07	$C_{11}, C_{33}, C_{44}, C_{12}, C_{13}, C_{14}, C_{15}$
Tétragonal	06	$C_{11}, C_{33}, C_{44}, C_{66}, C_{12}, C_{13}$
quadratique	07	$C_{11}, C_{33}, C_{44}, C_{66}, C_{12}, C_{13}, C_{16}$
Orthorhombiqe	09	$C_{11}, C_{22}, C_{33}, C_{44}, C_{55}, C_{66}, C_{12}, C_{13}, C_{23}$
Monoclinique	13	$C_{11}, C_{22}, C_{33}, C_{44}, C_{55}, C_{66}, C_{12}, C_{13}, C_{15}, C_{23}, C_{25}, C_{35}, C_{46}$
Triclinique	21	$C_{11}, C_{22}, C_{33}, C_{44}, C_{55}, C_{66}, C_{12}, C_{13}, C_{14}, C_{15}, C_{16},$
		${\mathcal C}_{23}, {\mathcal C}_{24}, {\mathcal C}_{25}, {\mathcal C}_{26}, {\mathcal C}_{34}, {\mathcal C}_{35}, {\mathcal C}_{36}, {\mathcal C}_{45}, {\mathcal C}_{46}, {\mathcal C}_{56}$

 Tableau 12 Nombre des constantes élastiques indépendantes pour différentes structures [99].

Propriété mécaniques

Module de Young E

Le module de Young (noté E) ou module d'élasticité longitudinale ou encore module de traction, est la constante qui relie la contrainte de traction (ou de compression) et la déformation pour un matériau élastique isotrope. Tant que la limite d'élasticité du matériau n'est pas atteinte, la loi d'élasticité est la loi de Hooke :

$$\boldsymbol{\sigma} = \boldsymbol{E}\boldsymbol{\varepsilon} \tag{92}$$

Où :

 σ est la contrainte (en unité de pression),

E est le module de Young (en unité de pression),

 ϵ est l'allongement relatif

Coefficient de Poisson

Le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. Le coefficient de Poisson v caractérise la variation de la largeur perpendiculaire à la direction d'une tension appliquée par rapport à celle de la longueur. Selon la figure 33, le coefficient de Poisson est définit par [100]:

$$\boldsymbol{\nu} = \frac{(l_0 - l)/l_0}{(L_0 - L)/L_0} = -\frac{\frac{\Delta l}{l_0}}{\frac{\Delta L}{L_0}} = -\frac{\varepsilon_{22}}{\varepsilon_{11}}$$
(92)

Figure 33 Relation reliant v et les dimensions initiales et finales de l'éprouvette.

On note que le coefficient de Poisson v est sans dimension. Le changement de volume $\frac{\Delta v}{v}$ dû à la déformation du matériau peut être donné par la formule (uniquement valable pour de petites déformations) :

$$\frac{\Delta V}{V_0} = (1 - 2\nu) \cdot \frac{\Delta L}{L_0} \tag{93}$$

Le coefficient de Poisson est théoriquement compris entre les deux valeurs 0.25 et 0.5, s'il est égal à 0.25 ou très proche de cette valeur, le matériau parfaitement isotrope et s'il est égal à 0.5 le matériau est parfaitement incompressible [100].

Module de compression B et module de cisaillement G

Le module de compression B (B est appelé aussi Module de rigidité à la compression) est défini comme la variation relative de volume sous l'effet d'une pression appliquée, qui peut être s'exprimé comme suit :

$$\boldsymbol{B} = -\boldsymbol{V}\frac{d\boldsymbol{P}}{d\boldsymbol{V}} \tag{94}$$

Avec : V est le volume du corps à une pression appliquée P.

Plus B augmente plus le matériau est peu compressible. Le module de compressibilité donc, mesure la résistance du solide à une modification du volume et donne ainsi une estimation de la réponse élastique d'un matériau à une pression hydrostatique.

Le module de cisaillement isotrope G, qui est une mesure de la résistance aux déformations, relie la contrainte de cisaillement et la déformation pour un matériau élastique isotrope.

Les modules de compression et de cisaillement sont liés aux modules d'élasticités et de complaisances par trois approximations [101] :

4 Approximation de Voigt : Dans cette approximation la déformation est uniforme :

$$B_V = \frac{1}{9} (2C_{11} + 2C_{12} + C_{33} + 4C_{14})$$
(95)

$$G_V = \frac{1}{30} \left(7C_{11} - 5C_{12} - 4C_{13} + 2C_{33} + 12C_{44} \right) \tag{96}$$

Approximation de Reuss : Dans cette approximation c'est la contrainte qui est distribuée uniformément dans le cristal :

$$\boldsymbol{B}_{\boldsymbol{R}} = \frac{(\mathcal{C}_{11} + \mathcal{C}_{12})\mathcal{C}_{33} - 2\mathcal{C}_{13}^2}{\mathcal{C}_{11} + \mathcal{C}_{12} + 2\mathcal{C}_{33} - 4\mathcal{C}_{13}} \tag{97}$$

$$G_R = 15\left(4\left(\frac{2}{c_{11}} + \frac{1}{c_{33}} - \frac{1}{c_{12}} - \frac{2}{c_{13}}\right) + \frac{6}{c_{44}} + \frac{6}{c_{11} - c_{12}}\right)^{-1}$$
(98)

4 Approximation de Hill : Hill prend la moyenne des deux approximations précédentes :

$$\boldsymbol{B}_{H} = \frac{1}{2} \left(\boldsymbol{B}_{V} + \boldsymbol{B}_{R} \right) \tag{99}$$

$$\boldsymbol{G}_{H} = \frac{1}{2} \left(\boldsymbol{G}_{V} + \boldsymbol{G}_{R} \right) \tag{100}$$

<u>Anisotropie</u>

L'anisotropie dans les cristaux et une description correcte du comportement anisotrope, ainsi que l'anisotropie élastique, constituent un autre paramètre physique intéressant en ce qui concerne les propriétés élastiques des solides. L'anisotropie reflète dans la liaison entre les atomes dans différentes directions cristallographiques. Les caractères anisotropes de liaison et de stabilité structurelle sont généralement définis par les constantes élastiques C_{ijs}. Ces constantes ont souvent été associées au module de cisaillement G et au module de Young E.

Il est important d'évaluer l'anisotropie élastique d'un solide pour comprendre facilement les microfissures induites dans les matériaux en raison de l'anisotropie importante du coefficient de dilatation thermique et de l'anisotropie élastique [102]. Différentes approches ont été développées pour décrire l'anisotropie élastique des matériaux :

Une méthode de mesure de l'anisotropie élastique consiste à considérer le pourcentage d'anisotropie dans les modes de compression et de cisaillement proposé par Chung et Buessem [103] :

$$\begin{cases} A_B = \frac{B_V - B_R}{B_V + B_R} \times 100\\ A_G = \frac{G_V - G_R}{G_V + G_R} \times 100 \end{cases}$$
(101)

Où B et G sont les modules de compression et de cisaillement, respectivement, et les indices V et R représentent les bornes de Voigt et de Reuss.

Généralement une valeur de zéro (0%) représente une isotropie élastique et une valeur de (100%) représente la plus grande valeur possible d'anisotropie élastique.

(ii) Ranganathan et Ostoja-Starzewski [104] ont proposé un indice A^U d'anisotropie universel permettant de quantifier l'anisotropie des cristaux tenant compte des contributions les deux modules de compression B et cisaillement G. L'indice A^U est défini comme suit :

$$A^{U} = 5\frac{G_{V}}{G_{R}} + \frac{B_{V}}{B_{R}} - 6 \tag{102}$$

Pour les cristaux isotropes, l'indice universel est égal à zéro ($A^U = 0$); l'écart de A^U à zéro définit l'étendue de l'anisotropie d'un cristal.

Vitesses de propagation des ondes élastiques et température de Debye

La température de Debye peut être calculée en fonction des vitesses de propagation du son. Ces dernières sont données à travers les constantes élastiques et la densité ρ par les équations suivantes :

$$La vitesse longitudinale : V_l = \left(\frac{3B+4G}{3\rho}\right)^{\frac{1}{2}}$$
 (103)

4 La vitesse moyenne :
$$V_m = \left(\frac{1}{3}\left(\frac{2}{V_t^3} + \frac{2}{V_l^3}\right)\right)^{-\frac{1}{3}}$$
 (105)

La température de Debye θ_D est utilisée pour distinguer les températures hautes et basses d'un solide dans le modèle de Debye, au-dessus de laquelle un certain cristal se comporte classiquement (les vibrations thermiques sont plus importantes que les effets quantiques). Elle est corrélée à de nombreuses propriétés physiques, telles que la dilatation thermique, le point de fusion et le paramètre de **Grüneisen**. La température de départ θ_D peut être estimée numériquement à partir de la vitesse moyenne de l'onde sonore V_m comme suit [105] :

$$\theta_D = \frac{h}{k_b} \left(\frac{3n}{k\pi} \left(\frac{N_a \rho}{M}\right)^{\frac{1}{3}} V_m \right)$$
(106)

- où, h est la constante de Planck (h = $6.6262.10^{-34}$ js)
- k_B la constante de Boltzmann ($k_B = 1.38062.10^{-23} \text{ j.deg}^{-1}$),
- NA le nombre d'Avogadro,
- ρ la masse volumique,
- M la masse moléculaire
- n le nombre d'atomes dans la molécule.

2 Résultat et discussion 2.1 Propriétés élastiques et mécaniques étudiées à pression nulle

Les constantes élastiques C_{ij} des matériaux sont des paramètres importants, car ils fournissent des informations sur leur réponse lorsqu'une contrainte est appliquée sur le matériau. Le comportement élastique d'un monocristal Hexagonale et Rhomboédrique se caractérise complètement et respectivement par 5 et 7 constantes élastiques indépendantes [106,107], $C_{11}, C_{33}, C_{44}, C_{12}, C_{13}$ pour la structure Hexagonale et C₁₁, C₃₃, C₄₄, C₁₂, C₁₃, C₁₄, C₁₅ pour la structure Rhomboédrique. Dans le présent travail, les constants élastiques à la pression zéro ont été obtenues sur la base de la théorie fonctionnelle de la densité. Les résultats de nos calculs de C_{ij} à pression nulle utilisant LDA sont listés dans le tableau 13 en comparaison avec d'autres données disponibles. La connaissance des constantes élastiques nous a permis de déduire d'autre grandeurs mécaniques telles que le module de cisaillement, l'anisotropie, le module d'Young et le coefficient de Poisson. Les résultats de nos calculs de tous ces modules à pression nulle sont listés dans le tableau 14.

Les constantes élastiques C_{11} , C_{33} reflètent respectivement la rigidité en contrainte uniaxiale selon le long des axes cristallographiques OX et OZ, pour C_{44} représente la résistance à la contrainte de cisaillement appliquée sur le plan X selon l'axe Y. À partir des résultats obtenus, pour les quartes polytypes nous pouvons constater que les matériaux étudiés sont caractérisés par de grandes valeurs de C_{11} , C_{33} par rapport à C_{44} , C_{12} , C_{13} , C_{14} et C_{15} ce qui indique que les systèmes considérés résistent mieux à la compression unidirectionnelle qu'aux déformations de cisaillement. Aucun signification physique pour les constant C_{12} , C_{13} , C_{14} et C_{15} .

Les constantes élastiques indépendantes, sont employées souvent pour caractériser le comportement élastique des matériaux. Pour décrire complètement le comportement mécanique d'un matériau polycristallin, on utilise le module de compressibilité B(GPa) et le module de cisaillement G(GPa). Le module de Young E(GPa), anisotropie A(%) et coefficient de Poisson **v**. Les valeurs des différents modules élastiques isotropes calculés sont regroupées dans le tableau 14.

Le coefficient de Poisson v fournit plus d'informations sur les caractéristiques des forces de liaison. La valeur v = 0.25, est une valeur typique du coefficient de Poisson pour la liaison ionique. Les valeurs autour de 0.33 sont un indicatif de liaison métallique. Les valeurs obtenues sont proches à 0.25 (tableau 14), donc une contribution ionique plus élevée de la liaison intraatomique peut être soulevée. Pour les matériaux isotropes $A^U = 0$, ; l'écart de A^U à zéro définit l'étendue de l'anisotropie d'un cristal. Les facteurs d'indice d'anisotropie universel calculés pour les quatres polytypes sont 0.75, 0.83, 0.89, 0.75, 1.21 pour ε , β , γ et δ respectivement. Alors nos composés on ont un certain degré d'anisotropie élastique. D'autre part selon le critère de **Pugh**, un matériau est fragile si le rapport *B/G* est inférieur ou égal 1,75. Nos résultats à pression nulle montrent que le rapport *B/G* est d'ordre de 1.33, 1.44, 1.67, et 1.44 pour ε -GaSe, β -GaSe, γ -GaSe et δ -GaSe respectivement, ce qui signifie que tous les polytypes de cristal GaSe sont fragiles.

Tableau 13 Constantes élastiques C_{ij} calculées à l'aide de la DFT-LDA à 0 GPa, pour différents polytypes de GaSe ont été comparées aux données expérimentales et théoriques.

			ε – GaSe			β – GaSe		$\gamma - GaSe(3H)$	δ – GaSe
	This	[10	[109]	[110]	[89]	This	[79]	This work	This work
	work	8]				work			
<i>C</i> ₁₁	105.18	105	103.56	100.9	100.8	105.64	127.40	105.04	99.49
<i>C</i> ₁₂	27.08	27.4	27.35	27	26.9	28.79	20.90	25.59	25.79
<i>C</i> ₁₃	17.26	12.2	10.91	9.7	12.6	18.33	14.82	24.95	11.55
<i>C</i> ₃₃	44.06	35.7	28.86	33.9	32.8	43.60	35.16	52.42	45.56
<i>C</i> ₄₄	23.69	10.1	17.50	8.3	10.6	21.79	9.05	18.80	15.26
<i>C</i> ₁₄	-	_	-	_	_	-	_	2.25	_
<i>C</i> ₁₅	-	_	-	-	-	-	-	0	-

		<i>E</i> –	GaSe			β – GaSe		$\gamma - GaSe(3H)$	$\delta - GaSe$
	ТА	[79]	[108]	[111]	[112]	ТА	[79]	ТА	ТА
B _{Voight}	41.96	46.07	38.81	40.06	41.44	42.86	43.45	45.94	38.03
B _{Reuss}	34.57	33.88	28.57	28.66	28.38	34.99	29.97	41.30	31.97
B _{Hill}	38.26	39.98	33.69	34.36	33.82	38.92	36.71	43.62	35.00
G _{Voight}	30.14	18.73	24.73	23.90	23.88	29.03	30.23	27.93	26.51
G _{Reuss}	27.21	13.69	16.55	16.62	15.64	25.85	15.97	24.15	21.99
G _{Hill}	28.67	16.21	20.64	20.26	19.76	27.44	23.10	26.04	24.25
Ε	68.83	-	-	-	-	66.66	-	65.16	59.11
ν	0.20	-	-	-	-	0.21	-	0.25	0.21
B_H/B_G	1.33	-	-	-	-	1.44	-	1.67	1.44
AU	0.75	-	-	-	-	0.83	-	0.89	1.21
$\theta_D(\mathbf{K})$	262.29	-	-	-	-	256.52	-	250.56	238.79
Velocity	2512.52	-	-	-	-	2461.76	-	2407.01	2289.80

Tableau 14 Grandeurs mécaniques des différents polytypes de GaSe calculées à l'aide de laDFT-LDA à 0 GPa, ont été comparées aux données expérimentales et théoriques.

Stabilité mécanique à pression nulle

La condition de stabilité dynamique ou mécanique d'un réseau implique que la variation d'énergie sous toute petite déformation est positive. Cette condition peut être formulée en termes des constantes élastiques C_{ij} . Les coefficients de rigidité élastiques obtenus peuvent être utilisés pour tester la stabilité mécanique du cristal tendu. Les conditions mécaniques traditionnelles de stabilité dans les cristaux *Hexagonale* et *Rhomboédrique* à pression nulle sont exprimées en fonction des constantes élastiques comme indiquent les expressions suivantes [106,113,114]:

$$Hexagonale \begin{cases} C_{44} > 0 \\ C_{11} > |C_{12}| \\ 2C_{11}C_{13} > (C_{13})^2 \\ C_{33}(C_{11} + C_{12}) > 2(C_{13})^2 \end{cases} Rhomboédrique \begin{cases} C_{44} > 0 \\ C_{11} > |C_{12}| \\ 2C_{11}C_{13} > (C_{13})^2 \\ C_{44}(C_{11} - C_{12}) > 2(C_{14})^2 + 2(C_{15})^2 \end{cases}$$

Les valeurs trouvées pour les C_{ij} de tous les polytypes obéissent à ces conditions, ce qui indique que ces polytypes de la structure *Hexagonale* et *Rhomboédrique* sont élastiquement stables.

2.2 Propriétés élastiques et mécaniques à pression non nulle

Dans la partie suivantes, nous avons examiné les modifications des valeurs du C_{ij} de différents polytypes de GaSe dans des conditions de stress uni-axiales et bi-axiales. Les résultats calculés de C_{ij} sont présentés à la Figure 34-35. Afin d'étudier l'effet de la pression sur les polytypes ε -GaSe, β -GaSe, γ -GaSe et δ -GaSe, nous avons calculé en fonction de la pression, l'évolution des constantes élastiques pour la structure *Hexagonale* et pour la structure *Rhomboédrique*, le rapport de Pugh B/H, ainsi que tous les autres coefficients liés à l'élasticité du matériau (Tableau 15-16). Les calculs ont été réalisés pour des pressions allant de 0GPa jusqu'à 10GPa.

Les figures 34-35, présentent la variation des constantes élastiques indépendantes des structures *Hexagonale* et *Rhomboédrique* dans des conditions de contraintes uniaxiales $\sigma_{//}$ et biaxiales σ_{\perp} pour les polytypes ε -GaSe, β -GaSe, γ -GaSe et δ -GaSe. C_{11} et C_{33} ce sont des coefficients de rigidité déterminent les contraintes internes générées dans le matériau lors de l'application de déformations dans le plan basal et le long de l'axe c. ces paramètres diffèrent les uns des autres d'un facteur presque de 2 à pression externe nulle, ce qui indique une anisotropie élevée de l'élasticité de différents polytypes GaSe. Dans tous les polytypes, l'effet de pression uni-axial conduit à une augmentation du coefficient C_{33} , alors que C_{11} ne varie que faiblement. La réponse de C_{33} sur la contrainte uni-axiale pour ε -GaSe, β -GaSe, γ -GaSe et δ -GaSe est augmenté d'une façon quasi-linéaire, d'autre part à $\sigma_{||}=6$ GPa, C_{33} augmente à une valeur devenant égal à la valeur de C_{11} pour tous les polytypes.

Sous l'effet d'une contrainte bi-axiale le coefficient de C_{11} , croit d'une façon linéaire tout en maintenant les C_{33} , C_{44} presque inchangés (Figure 35). La croissance rapide du rapport C_{11}/C_{33} indique une augmentation du degré d'anisotropie et provient du raccourcissement de la longueur de la liaison Ga-Se et de l'augmentation de l'angle Ga-Ga-Se à la compression dans le plan basal.

Figure 34 Coefficients de rigidité élastique de différents polytypes, ϵ -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction de la contrainte uniaxiale $\sigma_{||}$ contraintes de compression.

Figure 35 Coefficients de rigidité élastique de différents polytypes, ε -GaSe, β -GaSe, γ -GaSe, δ -GaSe en fonction de la contrainte bi-axial σ_{\perp} contraintes de compression.

Stabilité mécanique à pression non nulle

La connaissance des propriétés physiques de matériaux sous l'effet de la pression procure une vue pénétrante sur leur performance dans des applications pratiques ont montré que sous la pression extérieure, les critères de stabilité mécanique pour un cristal *Hexagonale* et *Rhomboédrique* sont [115–117]:

$$Hexagonale \begin{cases} \widetilde{C_{44}} > 0\\ \widetilde{C_{11}} > |\widetilde{C_{12}}|\\ 2\widetilde{C_{11}}\widetilde{C_{13}} > (\widetilde{C_{13}})^{2}\\ \widetilde{C_{33}}(\widetilde{C_{11}} + \widetilde{C_{12}}) > 2(\widetilde{C_{13}})^{2} \end{cases}$$

$$Avec \ \widetilde{C_{xx}} = C_{xx} - P(x = 1, 3, 4) \ et \ \widetilde{C_{1x}} = C_{1x} + P(x = 2, 3)$$

$$Rhomboédrique \begin{cases} \widetilde{C_{44}} > 0\\ \widetilde{C_{11}} > |\widetilde{C_{12}}|\\ 2\widetilde{C_{11}}\widetilde{C_{13}} > (\widetilde{C_{13}})^{2}\\ \widetilde{C_{44}}(\widetilde{C_{11}} - \widetilde{C_{12}}) > 2(\widetilde{C_{14}})^{2} + 2(\widetilde{C_{15}})^{2} \end{cases}$$

$$Avec \ \widetilde{C_{xx}} = C_{xx} - P(x = 1, 4) \ et \ \widetilde{C_{1x}} = C_{1x} + P(x = 2, 3, 4, 5)$$

Nous avons calculé les constantes élastiques sous l'effet de la pression, comprises entre 0 et 10 GPa, pour les différents polytypes de GaSe par l'approximation LDA. Les valeurs obtenues sous l'effet de la pression des composés étudiés montrent généralement un comportement presque quasi-linéaire, ce qui signifie que les matériaux étudiés obéissent bien à ces conditions donc tiennent leurs stabilités mécaniques sous une pression comprise entre 0 et 10 GPa.
	$\varepsilon - GaSe$					β – GaSe						
P(GPa)	0	2	4	6	8	10	0	2	4	6	8	10
B _{Voight} (GPa)	41.96	47.98	58.10	61.60	70.79	71.58	42.86	53.36	57.26	61.46	64.53	72.78
B _{Reuss} (GPa)	34.57	44.36	57.71	61.58	70.13	70.45	34.99	52.59	57.02	60.88	63.71	68.22
B _{Hill} (GPa)	38.26	46.17	57.91	61.59	70.46	71.01	38.92	52.97	57.14	61.17	64.12	70.50
G _{Voight} (GPa)	30.14	31.00	33.15	31.83	32.93	32.19	29.03	32.12	32.79	33.30	32.87	30.93
G _{Reuss} (GPa)	27.21	29.34	32.63	31.59	32.60	31.36	25.85	31.06	32.13	32.99	32.69	30.46
G _{Hill} (GPa)	28.67	29.34	32.89	31.71	32.76	31.77	27.44	31.59	32.46	33.15	32.78	30.70
E(GPa)	34.57	44.36	57.71	61.58	70.13	70.45	34.99	52.59	57.02	60.88	63.71	68.22
$\nu(GPa)$	0.20	0.23	0.26	0.28	0.29	0.30	0.21	0.25	0.26	0.27	0.28	0.30
B_H/B_G	1.33	1.53	1.76	1.94	2.15	2.23	1.41	1.67	1.76	1.84	1.95	2.29
\mathbf{A}^{U}	0.75	0.36	0.08	0.03	0.06	0.14	0.83	0.18	0.10	0.05	0.04	0.14
$\theta_D(\mathbf{k})$	262.29	271.25	285.43	280.72	285.50	280.99	256.52	279.94	283.96	287.20	285.67	276.81
Velocity(m/s)	2512.5	2571.8	2688.5	2632.0	2667.9	2622.5	2461.7	2660.3	2683.5	2702.72	2680.2	2591.46
											8	
											0	
			$\delta - \delta$	GaSe					γ-	– GaSe	0	
P(CP ₂)	0	2	$\delta - \epsilon$	GaSe	8	10	0	2	γ- 1	- GaSe	8	10
$\frac{P(GPa)}{B_{W} \cdots (GPa)}$	0 /5.9/	2	$\delta - \epsilon$	GaSe 6	8 69.22	10 71 75	0 38.03	2	γ - 4 60 58	- GaSe	8 65.08	10 74 13
P(GPa) B _{Voight} (GPa)	0 45.94	2 51.69	$\delta - 0$ 4 62.96 62.72	6 66.05	8 69.22	10 71.75	0 38.03	2 44.80	γ - 4 60.58	- GaSe 6 61.00	8 65.08	10 74.13
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa)	0 45.94 41.30	2 51.69 49.87	δ - 0 4 62.96 62.73	6 66.05 65.79	8 69.22 68.46	10 71.75 66.25	0 38.03 31.97	2 44.80 38.14	γ - 4 60.58 60.56	- GaSe 6 61.00 61.00	8 65.08 63.90	10 74.13 71.61
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa)	0 45.94 41.30 43.62 27.03	2 51.69 49.87 50.78	δ - 6 4 62.96 62.73 62.85 26.70	6 66.05 65.79 65.92	8 69.22 68.46 68.84	10 71.75 66.25 69.00 20.17	0 38.03 31.97 35.00	2 44.80 38.14 41.47	γ - 4 60.58 60.56 60.57 20.18	- GaSe 6 61.00 61.00 61.00	8 65.08 63.90 64.49	10 74.13 71.61 72.87 28.25
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa)	0 45.94 41.30 43.62 27.93 24.15	2 51.69 49.87 50.78 32.75 21.26	δ - 6 4 62.96 62.73 62.85 36.70 25.50	6 66.05 65.79 65.92 35.97	8 69.22 68.46 68.84 35.79	10 71.75 66.25 69.00 29.17 21.02	0 38.03 31.97 35.00 26.51 21.00	2 44.80 38.14 41.47 28.35 25.84	γ - 4 60.58 60.56 60.57 30.18 20.46	- GaSe 6 61.00 61.00 61.00 30.94 20.77	8 65.08 63.90 64.49 31.40	10 74.13 71.61 72.87 28.35 27.26
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa) G _{Reuss} (GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04	2 51.69 49.87 50.78 32.75 31.26 22.00	δ - 6 4 62.96 62.73 62.85 36.70 35.50 26.10	6 66.05 65.79 65.92 35.97 34.20	8 69.22 68.46 68.84 35.79 32.94 24.27	10 71.75 66.25 69.00 29.17 21.92 25.55	0 38.03 31.97 35.00 26.51 21.99 24.25	2 44.80 38.14 41.47 28.35 25.84 27.10	γ - 4 60.58 60.56 60.57 30.18 29.46 20.82	- GaSe 6 61.00 61.00 61.00 30.94 30.77 20.85	8 65.08 63.90 64.49 31.40 31.23	10 74.13 71.61 72.87 28.35 27.26
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04 41.20	2 51.69 49.87 50.78 32.75 31.26 32.00	δ - 6 6 2.96 6 2.73 6 2.85 3 6.70 3 5.50 3 6.10 6 2.72	6 66.05 65.79 65.92 35.97 34.20 35.09	8 69.22 68.46 68.84 35.79 32.94 34.37	10 71.75 66.25 69.00 29.17 21.92 25.55 66.25	0 38.03 31.97 35.00 26.51 21.99 24.25 21.07	2 44.80 38.14 41.47 28.35 25.84 27.10 28.14	γ - 4 60.58 60.56 60.57 30.18 29.46 29.82 60.56	- GaSe 6 61.00 61.00 61.00 30.94 30.77 30.85 61.00	8 65.08 63.90 64.49 31.40 31.23 31.32	10 74.13 71.61 72.87 28.35 27.26 27.80 71.61
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa) E(GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04 41.30 0.25	2 51.69 49.87 50.78 32.75 31.26 32.00 49.87 0.23	δ - 0 4 62.96 62.73 62.85 36.70 35.50 36.10 62.73 0.25	GaSe 6 66.05 65.79 65.92 35.97 34.20 35.09 65.79 0.27	8 69.22 68.46 68.84 35.79 32.94 34.37 68.46 0.28	10 71.75 66.25 69.00 29.17 21.92 25.55 66.25 0.23	0 38.03 31.97 35.00 26.51 21.99 24.25 31.97	2 44.80 38.14 41.47 28.35 25.84 27.10 38.14 0.23	γ - 4 60.58 60.56 60.57 30.18 29.46 29.82 60.56 0.28	- GaSe 6 61.00 61.00 30.94 30.77 30.85 61.00 0.28	8 65.08 63.90 64.49 31.40 31.23 31.32 63.90 0.20	10 74.13 71.61 72.87 28.35 27.26 27.80 71.61 0.32
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa) E(GPa) v(GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04 41.30 0.25	2 51.69 49.87 50.78 32.75 31.26 32.00 49.87 0.23	δ - 6 4 62.96 62.73 62.85 36.70 35.50 36.10 62.73 0.25 1.74	6 66.05 65.79 65.92 35.97 34.20 35.09 65.79 0.27 1.87	8 69.22 68.46 68.84 35.79 32.94 34.37 68.46 0.28 2.00	10 71.75 66.25 69.00 29.17 21.92 25.55 66.25 0.33 2.70	0 38.03 31.97 35.00 26.51 21.99 24.25 31.97 0.21	2 44.80 38.14 41.47 28.35 25.84 27.10 38.14 0.23	γ - 4 60.58 60.56 60.57 30.18 29.46 29.82 60.56 0.28 2.02	- GaSe 6 61.00 61.00 61.00 30.94 30.77 30.85 61.00 0.28 1.07	8 65.08 63.90 64.49 31.40 31.23 31.32 63.90 0.29 2.05	10 74.13 71.61 72.87 28.35 27.26 27.80 71.61 0.33 2.62
$\begin{array}{c} P(GPa) \\ B_{Voight}(GPa) \\ B_{Reuss}(GPa) \\ B_{Hill}(GPa) \\ G_{Voight}(GPa) \\ G_{Reuss}(GPa) \\ G_{Hill}(GPa) \\ E(GPa) \\ \nu(GPa) \\ B_{H}/B_{G} \\ A_{U} \end{array}$	0 45.94 41.30 43.62 27.93 24.15 26.04 41.30 0.25 1.67 0.80	2 51.69 49.87 50.78 32.75 31.26 32.00 49.87 0.23 1.58 0.27	δ - 6 4 62.96 62.73 62.85 36.70 35.50 36.10 62.73 0.25 1.74 0.17	GaSe 6 66.05 65.79 65.92 35.97 34.20 35.09 65.79 0.27 1.87 0.26	8 69.22 68.46 68.84 35.79 32.94 34.37 68.46 0.28 2.00 0.44	10 71.75 66.25 69.00 29.17 21.92 25.55 66.25 0.33 2.70	0 38.03 31.97 35.00 26.51 21.99 24.25 31.97 0.21 1.44	2 44.80 38.14 41.47 28.35 25.84 27.10 38.14 0.23 1.53	γ - 4 60.58 60.56 60.57 30.18 29.46 29.82 60.56 0.28 2.03 0.12	- GaSe 6 61.00 61.00 61.00 30.94 30.77 30.85 61.00 0.28 1.97 0.02	8 65.08 63.90 64.49 31.40 31.23 31.32 63.90 0.29 2.05	10 74.13 71.61 72.87 28.35 27.26 27.80 71.61 0.33 2.62
$\begin{array}{c} P(GPa) \\ B_{Voight}(GPa) \\ B_{Reuss}(GPa) \\ B_{Hill}(GPa) \\ G_{Voight}(GPa) \\ G_{Reuss}(GPa) \\ G_{Reuss}(GPa) \\ G_{Hill}(GPa) \\ E(GPa) \\ \nu(GPa) \\ B_{H}/B_{G} \\ A^{U} \\ c_{H}(D) \\ \end{array}$	0 45.94 41.30 43.62 27.93 24.15 26.04 41.30 0.25 1.67 0.89	2 51.69 49.87 50.78 32.75 31.26 32.00 49.87 0.23 1.58 0.27 280.24	δ - 6 4 62.96 62.73 62.85 36.70 35.50 36.10 62.73 0.25 1.74 0.17 208.62	6 66.05 65.79 65.92 35.97 34.20 35.09 65.79 0.27 1.87 0.26 292.92	8 69.22 68.46 68.84 35.79 32.94 34.37 68.46 0.28 2.00 0.44	10 71.75 66.25 69.00 29.17 21.92 25.55 66.25 0.33 2.70 1.73 247.81	0 38.03 31.97 35.00 26.51 21.99 24.25 31.97 0.21 1.44 1.21 228.70	2 44.80 38.14 41.47 28.35 25.84 27.10 38.14 0.23 1.53 0.65 255.21	γ - 4 60.58 60.56 60.57 30.18 29.46 29.82 60.56 0.28 2.03 0.12 272.82	- GaSe 6 61.00 61.00 30.94 30.77 30.85 61.00 0.28 1.97 0.02	8 65.08 63.90 64.49 31.40 31.23 31.32 63.90 0.29 2.05 0.04	10 74.13 71.61 72.87 28.35 27.26 27.80 71.61 0.33 2.62 0.23 262 27
$\begin{array}{c} P(GPa) \\ B_{Voight}(GPa) \\ B_{Reuss}(GPa) \\ B_{Hill}(GPa) \\ G_{Voight}(GPa) \\ G_{Reuss}(GPa) \\ G_{Hill}(GPa) \\ E(GPa) \\ \nu(GPa) \\ P_{H}/B_{G} \\ A^{U} \\ \theta_{D}(\mathbf{k}) \end{array}$	0 45.94 41.30 43.62 27.93 24.15 26.04 41.30 0.25 1.67 0.89 250.56	2 51.69 49.87 50.78 32.75 31.26 32.00 49.87 0.23 1.58 0.27 280.24	δ - 6 4 62.96 62.73 62.85 36.70 35.50 36.10 62.73 0.25 1.74 0.17 298.63	6 66.05 65.79 65.92 35.97 34.20 35.09 65.79 0.27 1.87 0.26 293.93	8 69.22 68.46 68.84 35.79 32.94 34.37 68.46 0.28 2.00 0.44 290.19	10 71.75 66.25 69.00 29.17 21.92 25.55 66.25 0.33 2.70 1.73 247.81	0 38.03 31.97 35.00 26.51 21.99 24.25 31.97 0.21 1.44 1.21 238.79	2 44.80 38.14 41.47 28.35 25.84 27.10 38.14 0.23 1.53 0.65 255.31	γ - 4 60.58 60.56 60.57 30.18 29.46 29.82 60.56 0.28 2.03 0.12 272.82	- GaSe 6 61.00 61.00 61.00 30.94 30.77 30.85 61.00 0.28 1.97 0.02 277.14	8 65.08 63.90 64.49 31.40 31.23 31.32 63.90 0.29 2.05 0.04 279.30	10 74.13 71.61 72.87 28.35 27.26 27.80 71.61 0.33 2.62 0.23 263.27

Tableau 15 Grandeurs mécaniques des différents polytypes de GaSe calculées à l'aide de la DFT-LDA en fonction des contraintes de
compression uni-axiales σ_{II}.

	$\varepsilon - GaSe$				β – GaSe							
	0	-			0	10	0	2	-		0	10
P(GPa)	0	2	4	6	8	10	0	2	4	6	8	10
$B_{Voight}(GPa)$	41.96	43.80	50.01	50.44	56.18	60.10	42.86	44.20	47.00	54.83	53.70	62.94
B _{Reuss} (GPa)	34.57	30.42	37.08	29.41	36.77	37.16	34.99	33.97	35.04	40.54	35.32	41.14
B _{Hill} (GPa)	38.26	37.11	43.54	39.92	46.47	48.63	38.92	39.09	41.02	47.69	44.51	52.04
G _{Voight} (GPa)	30.14	29.77	31.23	31.35	33.15	33.71	29.03	28.97	30.92	33.18	33.99	35.63
G _{Reuss} (GPa)	27.21	24.68	26.27	23.48	25.34	24.70	25.85	24.14	25.23	27.38	27.52	28.24
G _{Hill} (GPa)	28.67	27.23	28.75	27.42	29.24	29.21	27.44	26.56	28.07	30.28	30.76	31.93
E(GPa)	68.83	65.64	70.70	66.93	72.53	73.01	66.66	64.97	68.58	74.97	75.00	79.54
$\nu(GPa)$	0.20	0.20	0.22	0.22	0.23	0.24	0.21	0.22	0.22	0.23	0.21	0.24
B_H/B_G	1.33	1.36	1.51	1.45	1.58	1.66	1.41	1.47	1.46	1.57	1.44	1.62
A ^U	0.75	1.47	1.29	2.39	2.06	2.44	0.83	1.30	1.46	1.41	1.69	1.83
$\theta_D(\mathbf{k})$	262.29	250.28	257.97	244.22	253.62	250.66	256.52	248.55	253.42	263.34	262.51	266.28
Velocity(m/s)	2512.5	2383.7	2441.1	2299	2372.9	2333.2	2461.7	2368.7	2397.8	2476.4	2454.6	2475.9
	$\frac{\delta - GaSe}{\delta}$				$\gamma - GaSe$							
			δ –	GaSe		•			γ –	GaSe		
P(GPa)	0	2	δ- 4	GaSe	8	10	0	2	γ - 1 4	GaSe 6	8	10
P(GPa) B _{Voight} (GPa)	0 45.94	2 51.70	<u>δ</u> - <u>4</u> 56.04	GaSe 6 59.02	8 63.73	10 61.71	0 38.09	2 44.67	γ - 4 46.85	GaSe 6 48.54	8 41.51	10 39.62
P(GPa) B _{Voight} (GPa) B _{Reuse} (GPa)	0 45.94 41.30	2 51.70 45.80	$\delta - \frac{4}{56.04}$	GaSe 6 59.02 52.68	8 63.73 56.36	10 61.71 48.59	0 38.09 31.97	2 44.67 33.06	γ – 4 46.85 33.18	GaSe 6 48.54 26.67	8 41.51 21.58	10 39.62 10.09
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa)	0 45.94 41.30 43.62	2 51.70 45.80 48.75	δ – 4 56.04 50.31 53.18	GaSe 6 59.02 52.68 55.85	8 63.73 56.36 60.05	10 61.71 48.59 55.15	0 38.09 31.97 35.00	2 44.67 33.06 38.87	$\gamma - \frac{4}{46.85}$ 33.18 40.01	6 48.54 26.67 37.60	8 41.51 21.58 31.55	10 39.62 10.09 24.86
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa)	0 45.94 41.30 43.62 27.93	2 51.70 45.80 48.75 36.10	δ – 4 56.04 50.31 53.18 36.42	GaSe 6 59.02 52.68 55.85 37.24	8 63.73 56.36 60.05 38.98	10 61.71 48.59 55.15 35.18	0 38.09 31.97 35.00 26.51	2 44.67 33.06 38.87 29.84	$\gamma - \frac{4}{46.85}$ 33.18 40.01 31.58	6 48.54 26.67 37.60 33.68	8 41.51 21.58 31.55 36.34	10 39.62 10.09 24.86 35.93
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa) G _{Reuss} (GPa)	0 45.94 41.30 43.62 27.93 24.15	2 51.70 45.80 48.75 36.10 33.34	δ – 4 56.04 50.31 53.18 36.42 33.98	GaSe 6 59.02 52.68 55.85 37.24 34.15	8 63.73 56.36 60.05 38.98 35.54	10 61.71 48.59 55.15 35.18 28.42	0 38.09 31.97 35.00 26.51 21.99	2 44.67 33.06 38.87 29.84 26.11	$\gamma - \frac{4}{46.85}$ 33.18 40.01 31.58 26.73	6 48.54 26.67 37.60 33.68 26.42	8 41.51 21.58 31.55 36.34 28.40	10 39.62 10.09 24.86 35.93 20.67
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04	2 51.70 45.80 48.75 36.10 33.34 34.72	δ – 4 56.04 50.31 53.18 36.42 33.98 35.20	GaSe 6 59.02 52.68 55.85 37.24 34.15 35.70	8 63.73 56.36 60.05 38.98 35.54 37.26	10 61.71 48.59 55.15 35.18 28.42 31.80	0 38.09 31.97 35.00 26.51 21.99 24.25	2 44.67 33.06 38.87 29.84 26.11 27.98	$\gamma - \frac{4}{46.85}$ 33.18 40.01 31.58 26.73 29.15	6 48.54 26.67 37.60 33.68 26.42 30.05	8 41.51 21.58 31.55 36.34 28.40 32.37	10 39.62 10.09 24.86 35.93 20.67 28.30
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Voight} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa) E(GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04 65.16	2 51.70 45.80 48.75 36.10 33.34 34.72 84.18	δ – 4 56.04 50.31 53.18 36.42 33.98 35.20 86.53	GaSe 6 59.02 52.68 55.85 37.24 34.15 35.70 88.29	8 63.73 56.36 60.05 38.98 35.54 37.26 92.63	10 61.71 48.59 55.15 35.18 28.42 31.80 80.03	0 38.09 31.97 35.00 26.51 21.99 24.25 59.11	2 44.67 33.06 38.87 29.84 26.11 27.98 67.69	γ - 4 46.85 33.18 40.01 31.58 26.73 29.15 70.37	6 48.54 26.67 37.60 33.68 26.42 30.05 71.19	8 41.51 21.58 31.55 36.34 28.40 32.37 72.36	10 39.62 10.09 24.86 35.93 20.67 28.30 61.54
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa) E(GPa) v(GPa)	0 45.94 41.30 43.62 27.93 24.15 26.04 65.16 0.25	2 51.70 45.80 48.75 36.10 33.34 34.72 84.18 0.21	δ – 4 56.04 50.31 53.18 36.42 33.98 35.20 86.53 0.22	GaSe 6 59.02 52.68 55.85 37.24 34.15 35.70 88.29 0.23	8 63.73 56.36 60.05 38.98 35.54 37.26 92.63 0.24	10 61.71 48.59 55.15 35.18 28.42 31.80 80.03 0.25	0 38.09 31.97 35.00 26.51 21.99 24.25 59.11 021	2 44.67 33.06 38.87 29.84 26.11 27.98 67.69 0.20	γ - 4 46.85 33.18 40.01 31.58 26.73 29.15 70.37 0.20	6 48.54 26.67 37.60 33.68 26.42 30.05 71.19 0.18	8 41.51 21.58 31.55 36.34 28.40 32.37 72.36 0.11	10 39.62 10.09 24.86 35.93 20.67 28.30 61.54 0.08
P(GPa) B _{Voight} (GPa) B _{Reuss} (GPa) B _{Hill} (GPa) G _{Reuss} (GPa) G _{Hill} (GPa) E(GPa) V(GPa) B _H /B _G	0 45.94 41.30 43.62 27.93 24.15 26.04 65.16 0.25 1.67	2 51.70 45.80 48.75 36.10 33.34 34.72 84.18 0.21 1.40	δ – 4 56.04 50.31 53.18 36.42 33.98 35.20 86.53 0.22 1.51	GaSe 6 59.02 52.68 55.85 37.24 34.15 35.70 88.29 0.23 1.56	8 63.73 56.36 60.05 38.98 35.54 37.26 92.63 0.24 1.61	10 61.71 48.59 55.15 35.18 28.42 31.80 80.03 0.25 1.73	0 38.09 31.97 35.00 26.51 21.99 24.25 59.11 021 144	2 44.67 33.06 38.87 29.84 26.11 27.98 67.69 0.20 138	$\gamma - \frac{4}{46.85}$ 33.18 40.01 31.58 26.73 29.15 70.37 0.20 137	6 48.54 26.67 37.60 33.68 26.42 30.05 71.19 0.18 125	8 41.51 21.58 31.55 36.34 28.40 32.37 72.36 0.11 097	10 39.62 10.09 24.86 35.93 20.67 28.30 61.54 0.08 087
$\begin{array}{c} P(GPa) \\ \hline B_{Voight}(GPa) \\ \hline B_{Reuss}(GPa) \\ \hline B_{Hill}(GPa) \\ \hline G_{Voight}(GPa) \\ \hline G_{Reuss}(GPa) \\ \hline G_{Hill}(GPa) \\ \hline E(GPa) \\ \hline \nu(GPa) \\ \hline B_{H}/B_{G} \\ \hline A^{U} \end{array}$	0 45.94 41.30 43.62 27.93 24.15 26.04 65.16 0.25 1.67 0.89	2 51.70 45.80 48.75 36.10 33.34 34.72 84.18 0.21 1.40 0.54	δ - 4 56.04 50.31 53.18 36.42 33.98 35.20 86.53 0.22 1.51 0.47	GaSe 6 59.02 52.68 55.85 37.24 34.15 35.70 88.29 0.23 1.56 0.57	8 63.73 56.36 60.05 38.98 35.54 37.26 92.63 0.24 1.61 0.61	10 61.71 48.59 55.15 35.18 28.42 31.80 80.03 0.25 1.73 1.45	0 38.09 31.97 35.00 26.51 21.99 24.25 59.11 021 144 1.21	2 44.67 33.06 38.87 29.84 26.11 27.98 67.69 0.20 138 1.06	$\begin{array}{r} \gamma - \\ 4 \\ 46.85 \\ 33.18 \\ 40.01 \\ 31.58 \\ 26.73 \\ 29.15 \\ 70.37 \\ 0.20 \\ 137 \\ 1.31 \end{array}$	6 48.54 26.67 37.60 33.68 26.42 30.05 71.19 0.18 125 2.19	8 41.51 21.58 31.55 36.34 28.40 32.37 72.36 0.11 097 2.32	10 39.62 10.09 24.86 35.93 20.67 28.30 61.54 0.08 087 6.61
$\begin{array}{c} P(GPa) \\ \hline B_{Voight}(GPa) \\ \hline B_{Reuss}(GPa) \\ \hline B_{Hill}(GPa) \\ \hline G_{Voight}(GPa) \\ \hline G_{Reuss}(GPa) \\ \hline G_{Hill}(GPa) \\ \hline E(GPa) \\ \hline \nu(GPa) \\ \hline B_{H}/B_{G} \\ \hline A^{U} \\ \hline \theta_{D}(\mathbf{k}) \end{array}$	0 45.94 41.30 43.62 27.93 24.15 26.04 65.16 0.25 1.67 0.89 250.5	2 51.70 45.80 48.75 36.10 33.34 34.72 84.18 0.21 1.40 0.54 290.09	δ - 4 56.04 50.31 53.18 36.42 33.98 35.20 86.53 0.22 1.51 0.47 292.08	GaSe 6 59.02 52.68 55.85 37.24 34.15 35.70 88.29 0.23 1.56 0.57 292.85	8 63.73 56.36 60.05 38.98 35.54 37.26 92.63 0.24 1.61 0.61 298.28	10 61.71 48.59 55.15 35.18 28.42 31.80 80.03 0.25 1.73 1.45 269.42	0 38.09 31.97 35.00 26.51 21.99 24.25 59.11 021 144 1.21 238.79	2 44.67 33.06 38.87 29.84 26.11 27.98 67.69 0.20 138 1.06 257.22	$\gamma -$ 4 46.85 33.18 40.01 31.58 26.73 29.15 70.37 0.20 137 1.31 259.12	6 48.54 26.67 37.60 33.68 26.42 30.05 71.19 0.18 125 2.19 257.96	8 41.51 21.58 31.55 36.34 28.40 32.37 72.36 0.11 097 2.32 265.70	10 39.62 10.09 24.86 35.93 20.67 28.30 61.54 0.08 087 6.61 236.88

Tableau 16 Grandeurs mécaniques des différents polytypes de GaSe calculées à l'aide de la DFT-LDA en fonction des contraintes de compression bi-axiales σ

3 Conclusion

Dans ce chapitre, nous avons déterminé les propriétés mécaniques, et élastiques à pression nulle et sous pression de tous les polytypes de GaSe. La méthode du pseudo-potentiel a été utilisée pour calculer les constantes élastiques $C_{11}, C_{33}, C_{44}, C_{12}, C_{13}$ pour la structure hexagonale et $C_{11}, C_{33}, C_{44}, C_{12}, C_{13}, C_{14}, C_{15}$ pour la structure rhomboédrique. Nos constantes élastiques sont en bon accord avec les résultats obtenus à partir de la littérature. Notre calcul montre que le composé GaSe est mécaniquement stable à pression nulle et sous pression. Nos résultats à pression nulle montrent que le rapport B/G est de l'ordre de 1.33, 1.44, 1.67 et 1.44 pour ε -GaSe, β -GaSe, γ -GaSe et δ -GaSe respectivement, ce qui signifie que tous les polytypes de cristal de GaSe sont fragile.

Chapitre V : Simulation numérique d'un nouveau système de cellules solaires hétérogènes CIGS/GaSe

La connaissance s'acquiert par l'expérience, tout le reste n'est que de l'information.

Albert Einstein

1 Introduction

Depuis des décennies, les scientifiques travaillent sur les énergies renouvelables, car les énergies fossiles, en plus d'être polluantes, sont épuisables. La recherche d'une source d'énergie alternative est inévitable. Les sources de combustibles fossiles se font de plus en plus rares. Par conséquent, la recherche scientifique s'est tournée vers l'énergie durable, et la source la plus importante de ces énergies reste le soleil. L'effet photovoltaïque convertit directement le rayonnement solaire en électricité, c'est ainsi que l'énergie solaire est exploitée [118–120]. De ce fait, les énergies renouvelables font l'objet de multiples recherches pour trouver des matériaux qui, d'une part, donneront le meilleur rendement de conversion énergétique et d'autre part, respecteront l'environnement. Parmi les types de cellules qui font encore l'objet de recherche et développement, on retrouve celles réalisées à partir de matériaux III-VI tels que ; InSe, GaSe, GaS, [121,122]. Le rapport efficacité/coût est le facteur le plus essentiel dans la plupart des recherches, et des matériaux de cellules solaires à couche mince sont actuellement développés pour obtenir une valeur élevée de ce rapport. Les cellules solaires composées de matériaux de chalcopyrite ont une couche absorbante épaisse ($\leq 2 \mu m$) qui absorbe la partie utile du spectre solaire.[123]. Les technologies photovoltaïques au chalcogénure offrent un nouveau choix technologique par rapport aux technologies conventionnelles au silicium [124].

Le CIGS présente de nombreux avantages, comme une bande interdite réglable selon le rapport (Ga/Ga+In) [125–127], coefficient d'absorption élevé d'ordre $3-6\times10^5 \ cm^{-1}$ [128] et une grande stabilité extérieure. Green et al. [129] ont constaté que les cellules solaires CIGS ont une efficacité de conversion de plus de 20 %, tandis qu'Amin et al. [130] ont trouvé une efficacité de conversion de 17,26 %, en utilisant une épaisseur de couche absorbante de 1 µm CIGS. En laboratoire, diverses techniques ont été utilisées pour créer des cellules solaires CIGS ultra-minces avec des rendements de 12 à 13%. [131,132]. Vermang et al. [133] a utilisé une épaisseur de couche absorbante Cu(In,Ga)Se2 ultra-mince de 0,385 µm pour augmenter l'efficacité des cellules solaires de 13,5%. Cette efficacité est inférieure à celle des cellules solaires CIGS classiques avec des couches absorbantes dont l'épaisseur varie de 2,5 µm à 4 µm. Un inconvénient des cellules fabriquées à partir de matériaux CIGS est le coût élevé des composants d'indium et de gallium. En conséquence, l'utilisation des cellules solaires à couche mince CIGS a été limitée. Afin de compenser la perte, il a été pensé pour réduire l'utilisation d'indium et de gallium en réduisant l'épaisseur de la couche absorbante CIGS. Dans ce travail de très faibles épaisseurs ont été utilisées et ont conduit à des rendements jusqu'à 33%.

Le séléniure de gallium est un semi-conducteur III-VI, a une structure lamellaire dont l'élément de base est une feuille. Ce dernier est constitué de deux plans de Gallium intercalés entre deux plans de Sélénium avec une séquence Se–Ga–Ga–Se [134]. Il est à noter qu'à l'intérieur des mêmes feuillets, il existe des liaisons fortes entre atomes (liaisons iono covalentes). En revanche, tous les feuillets constituant le cristal lamellaire 2D sont liés par des liaisons faibles de type *Van der Walls* [16,135,136]. Il convient de rappeler que le composé binaire cristallin lamellaire (III-VI) GaSe, se présente sous différents polytypes, à savoir ε , β , γ [6,134,137]. Tous ces polytypes sont des semi-conducteurs à large bande avec une valeur de 2,004 eV [22], 2,16 eV [138]. L'utilisation de séléniure de gallium (GaSe) comme couche tampon, comme les matériaux stratifiés bidimensionnels, a attiré l'attention. Ce semi-conducteur chalcogénure (III-VI) est largement utilisé dans la détection des rayonnements[4]. optique non linéaire et optoélectronique[139,140]. Les couches de GaSe sont très bien photoréactives. Cette caractéristique leur permet d'être utilisées comme photo-détecteurs [141].

Dans ce travail, une nouvelle structure de cellule solaire à base de CIGS comprenant une couche tampon GaSe et un film antireflet ITO est proposée. Deuxièmement, un CIGS-P⁺ est ajouté pour réduire les pertes de porteurs de charge sur la face arrière, augmentant ainsi l'efficacité de la cellule solaire. Nous examinons également l'effet de la concentration, de l'épaisseur, des résistances et de la température de fonctionnement sur les cellules solaires structurelles à base de GaSe. Le plan de notre travail se présente comme suit : Les méthodes de calcul sont présentées dans la section 2. La section 3 est consacrée à la discussion des données numériques et à nos interprétations, tandis que la section 4 est consacrée aux conclusions de notre étude.

2 Structure de la cellule solaire et simulation numérique

L'importance de la modélisation numérique pour comprendre les propriétés physiques et la conception des cellules solaires à base de matériaux cristallins, poly-cristallins et amorphes est actuellement très élevée, et très importante [142–144]. Les mesures avancées sur des structures complexes, ainsi que la conception et l'optimisation de systèmes cellulaires avancés, nécessitent l'utilisation de simulations numériques. Sans modèle précis, l'analyse des mesures est difficile. Pour étudier quantitativement les performances de l'hétérostructure ITO/GaSe/CIGS suggérée, le simulateur SCAPS-1D a été utilisé dans cette étude. Le professeur Marc Burgelman du Département d'électronique et de systèmes d'information (ELIS) de l'Université de Gand en Belgique a développé un programme de simulation graphique pour les cellules solaires appelé SCAPS-1D, utilisant LabWindows/CVI de National Instruments. Dans ce travail, nous étudierons l'effet de l'épaisseur, de la concentration en porteurs, de la température de fonctionnement et du résistance parasite sur les caractéristiques photovoltaïques des hétéro-structures proposées. Dans toutes nos simulations, nous avons pris une intensité d'éclairage de $1000W/m^2$, et la température de fonctionnement a été maintenue à 300 K.

À n'importe quel endroit de l'appareil, SCAPS-1D peut résoudre l'équation de Poisson, ainsi que les équations de continuité des électrons et des trous, tout en tenant compte des conditions aux limites. Les statistiques de recombinaison Shockley-Read-Hall (SRH) sont utilisées par SCAPS-1D pour imiter le fonctionnement de l'appareil [145,146].

$$\frac{d^2}{dx^2}V(x) = \frac{e}{\varepsilon_0\varepsilon_r}(p(x) - n(x) + N_D^+ - N_D^-)$$
(107)

Où

V: Potentiel électrostatique ;

e: Charge électrique ;

 ε_0 et ε_r : Permittivité du vide et permittivité relative ;

p et n: Concentrations de trous et d'électrons respectivement ;

 N_D et N_A : Concentrations des impuretés de type donneur et accepteur respectivement ;

Les équations de continuité des électrons et des trous sont :

$$\frac{dJ_n}{dt} = e(R-G) + e\frac{dn}{dt} \tag{108}$$

$$\frac{dJ_P}{dt} = e(R-G) + e\frac{dp}{dt} \tag{109}$$

Où

 J_n et J_P : Densité de courant d'électrons et de trous,

R: Taux de recombinaison

G: Taux de génération

La dérive et la diffusion déplacent les porteurs dans les semi-conducteurs, qui peuvent être représentés à l'aide d'équations :

$$J_n = e(D_n \frac{dn}{dx} + \mu_n nE) \tag{110}$$

$$J_p = e(\mu_p p E - D_p \frac{dp}{dx}) \tag{111}$$

SCAPS-1D est un solveur unidimensionnel en régime permanent pour les équations fondamentales des semi-conducteurs. La nouvelle structure cellulaire simulée (ITO/GaSe/CIGS) est représentée schématiquement sur la Figure 36. Les tableaux 17 et 18 fournissent les paramètres semi-conducteurs de chaque couche, ainsi que les propriétés électriques des contacts, qui ont été utilisés dans la simulation.

Figure 36 Représentation de la cellule solaire ITO/GaSe/CIGS

Tableau 17 Ensemble des paramètres	utilisés dans	s les simulations	des cellules	proposées
	[147–150]			

Paramètres	CIGS	GaSe	ITO	CIGS-P ⁺
W(µm)	0.2-2	0.002-0.02	0.04	0.002-0.02
E _g (eV)	1.4	2.2	3.6	1.4
χ (eV)	4.5	4.5	4.5	4.5
ε_r (relative)	13.6	8	8.9	13.6
$N_{c}(cm^{-3})$	2.2×10 ¹⁸	1.4×10^{18}	2.2×10^{18}	2.2×10^{18}
$N_v (cm^{-3})$	1.8×10 ¹⁹	1.49×10 ¹⁹	1.8×10 ¹⁹	1.8×10 ¹⁹
$\mu_n (cm^2/Vs)$	100	250	10	100
$\mu_p (cm^2/Vs)$	25	25	10	25
$N_D (cm^{-3})$	-	$10^{17} - 10^{20}$	10 ¹⁸	-
$N_A (cm^{-3})$	$10^{13} - 10^{17}$	-	-	$10^{16} - 10^{21}$
V _e (cm/s)	107	107	107	107
V _h (cm/s)	107	107	107	107
$N_t(cm^{-3})$	1014	1014	1014	1014

Paramètres	Contact avant	Contact arrière
$\varphi(eV)$	4.52	5.64
$Se(^{cm}/_{s})$	107	10 ⁵
$Sh(^{cm}/_{s})$	10 ⁵	107

 Tableau 18 Les propriétés des contacts électriques.

3 Résultats et discussions 3.1 Influence de la concentration en porteurs et de l'épaisseur de la couche d'absorbeur CIGS

Le défi de l'énergie solaire est de produire des cellules solaires respectueuses de l'environnement, peu coûteuses en termes de prix et offrant un $\eta(\%)$ élevé en utilisant des couches absorbantes ultra-minces [151]. La concentration en porteurs de la couche absorbante et l'épaisseur sont des paramètres importants impactant la conception structurelle des cellules solaires. Par conséquent, l'optimisation de ces deux facteurs aide à obtenir des performances cellulaires optimales. La figure 37 illustre l'influence de la concentration et de l'épaisseur sur les performances photovoltaïques de la cellule solaire suggérée.

La concentration et l'épaisseur de la couche absorbante CIGS ont été modifiées entre 10^{13} à 10^{17} cm^{-3} et 0.2 µm à 2 µm, respectivement. Dont le but d'explorer les performances des cellules. Selon la figure 37, l'épaisseur de la couche absorbante CIGS est un paramètre clé pour les performances de la cellule, et la modification de l'épaisseur de cette couche peut limiter l'efficacité de conversion de puissance de la cellule. Au fur et à mesure que l'épaisseur et la concentration de la couche absorbante CIGS augmentent, V_{oc} augmente marginalement. Avec l'augmentation de l'épaisseur de la couche CIGS entre 0.2 µm et 2 µm, J_{sc} augmente de 21.05 à 32.65 mA/ cm^2 . Ceci est attribué à une augmentation de l'absorption des photons de longueur d'onde plus longue dans cette couche, qui est conforme aux conclusions de *Tariq AlZoubi et al* [148]. La zone de contour du J_{sc} le plus élevé s'étend dans la région dont l'épaisseur est la plus grande d'une part et la concentration en accepteurs reste quasiment indépendante de la couche d'absorption d'autre part. Le dispositif simulé peut produire un J_{sc} élevé avec une épaisseur de couche absorbante CIGS augmente, l'absorption des photons de porteurs accepteurs de $10^{13}cm^{-3}$. Au fur et à mesure que l'épaisseur de la couche absorbante CIGS augmente, l'absorption des photons de grande longueur d'onde augmente, ce qui entraîne une

augmentation de J_{sc} . Au fur et à mesure de l'augmentation de la concentration en porteurs accepteurs, la durée de vie des électrons photo-générés est raccourcie, ce qui réduit la collection de porteurs à l'interface, de sorte que J_{sc} est faiblement diminué. Le facteur de forme (FF) a diminué de manière significative à mesure que l'épaisseur du CIGS augmentait en raison d'une augmentation de la résistance en série du dispositif. Avec une concentration allant de 10^{16} à $10^{17}cm^{-3}$ et une épaisseur supérieure à 1.4 µm, le dispositif simulé est capable d'avoir un $\eta(\%) > 24\%$. Un PCE maximum ($\eta(\%)$) de 25.5% a été obtenu avec une concentration d'utilisateur de $10^{17}cm^{-3}$ avec une épaisseur de couche absorbante CIGS de 2µm, selon cette enquête. Les performances de l'appareil sont affectées négativement par une augmentation de la concentration en porteurs de la couche absorbante (CIGS > $10^{17}cm^{-3}$) (augmentation de la recombinaison Auger).

La réponse spectrale du dispositif est illustrée sur la figure 38 en fonction de l'épaisseur de l'absorbeur CIGS et de la concentration en porteurs. Lorsque l'épaisseur de l'absorbeur est augmentée, l'efficacité quantique (QE) augmente de manière significative (Figure 38-a). À des épaisseurs d'absorbeur CIGS comprises entre 0.2 μ m et 2 μ m, l'efficacité quantique s'est améliorée à l'aide de ce modèle. Cela est dû au fait que les longueurs d'onde plus longues collectent plus de photons. Le dispositif génère plus de paires électron-trou lorsque des photons de longueur d'onde plus longue sont absorbés. En raison de l'augmentation du processus de recombinaison, l'efficacité quantique est réduite à des densités d'accepteurs plus élevées (Figure 38-b)[152].

Figure 37 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche d'absorbeur CIGS et de la concentration de porteurs sur les performances des cellules solaires.

Figure 38 Efficacité quantique en fonction de a) l'épaisseur, et b) la concentration en porteurs de la couche absorbante CIGS.

3.2 Influence de la concentration en porteurs et de l'épaisseur de la couche tampon de GaSe

Les paramètres photovoltaïques d'une cellule solaire simulée sont représentés sur la figure 39 en fonction de l'épaisseur et de la concentration de la couche de GaSe. La concentration en porteurs et l'épaisseur de la couche tampon de GaSe variaient entre 10^{17} et 10^{20} cm⁻³ et 0.002 et 0.02µm, respectivement. On observe sur la figure que le V_{oc} augmente avec la concentration du porteur GaSe et indépendamment de l'épaisseur. V_{oc} augmente à mesure que la concentration en porteurs GaSe augmente, montrant que la recombinaison des porteurs de charge minoritaires diminue avec l'augmentation de la concentration de porteurs GaSe. J_{sc} a montré un comportement similaire à celui de V_{oc} à une concentration de porteurs de GaSe, mais il augmente considérablement avec la concentration de porteurs de GaSe (voir Figure 39). La diminution de la résistance série (R_s), qui s'est reflétée dans l'efficacité de conversion de puissance, était responsable de l'augmentation de FF avec l'augmentation de la concentration de la concentration de porteurs de GaSe. À une concentration de porteurs de 10¹⁷ cm⁻³ et une épaisseur de couche tampon de GaSe de 0.002 µm, un maximum de $\eta(\%)$ de 23.06 % a été observé.

Figure 39 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche tampon de GaSe et de la concentration de porteurs sur les performances des cellules solaires.

3.3 Effets de la résistance parasitaire

La résistance série R_S , n'a pas d'effet sur la tension en circuit ouvert, mais réduit le courant de court-circuit, à l'inverse, la résistance shunt R_{Sh} n'a pas d'effet significatif sur le courant de court-circuit, mais elle augmente la tension en circuit ouvert [153]. Les performances des cellules solaires ont été étudiées en faisant varier le R_S entre 2 et 20 Ω . cm^2 .

 V_{oc} est indépendant de R_S tandis que J_{sc} diminue légèrement (voir Figure 40-a). Le FF et $\eta(\%)$ chutent lorsque R_S augmente en raison d'une perte de puissance accrue, comme le montre la figure 40-a. Le R_{Sh} a un impact considérable sur les performances des cellules solaires étudiées. Entre 100 et 1000 Ω .cm² de R_{Sh} a été utilisé (voir Figure 40-b). On observe sur la figure 40-b que V_{oc} et J_{sc} ne sont pas influencés par la variation de R_{Sh} . tandis que FF et PCE diminuent avec de faibles valeurs de R_{Sh} . De ce fait, un R_{Sh} faible a un impact considérable sur les performances de la cellule, tandis que $R_{Sh} > 500 \ \Omega$. cm^2 a peu d'effet sur $\eta(\%)$. On peut conclure que de bonnes performances des cellules solaires sont obtenues pour des valeurs faibles de R_S et des valeurs élevées de R_{Sh} .

 $\label{eq:Figure 40} \mbox{ Performances des cellules simulées en fonction a) de la résistance R_S et b) de la résistance R_{Sh}.$

3.4 Influence de la température de fonctionnement

Les cellules solaires sont généralement exposées à une plage de température de 288K à 323K selon leurs applications [154], et même à des températures plus élevées dans le désert pendant l'été [155], dans les systèmes spatiaux et les concentrateurs [156]. Etudiant ainsi leur température (T), le comportement est critique. Les performances photovoltaïques de nos cellules solaires simulées ont été atteintes à des températures allant de 280 à 400 K; les résultats sont illustrés à la Figure 41. Lors de la simulation, tous les paramètres variables de nos cellules sont supposés être les valeurs précédemment optimisées. La vitesse du porteur de charge est influencée par la température de travail. Lorsqu'elle augmente la vitesse des trous et des électrons augmente également, ce qui entraîne directement une réduction de l'énergie de liaison et de la bande interdite (modèle de liaison des semi-conducteurs). Les porteurs de charge photogénérés entrent en collision avec des atomes vibrationnels constituant le semi-conducteur. Ces collisions augmentent en TF élevé, ce qui entraîne activement des pertes de puissance.

La caractéristique photovoltaïque de la cellule solaire à hétérojonction ITO/GaSe/CIGS est illustrée sur la figure 41 en fonction de la température de fonctionnement (TF). TF a peu d'effet sur J_{sc} , comme le montre le graphique. En revanche, V_{oc} montre un comportement très décroissant en fonction du température de fonctionnement (TF), en raison de l'augmentation du courant de saturation inverse causé par des taux de recombinaison interne et une concentration de porteurs plus élevés [157]. De plus, la température de travail a un impact sur la conductivité du matériau. Lorsque TF augmente, le phénomène de diffusion des porteurs de charge augmente avec les phonons activés thermiquement, ce qui diminue les performances des cellules solaires. Dans cette simulation le travail η (%) de la cellule étudiée décroît linéairement entre 280 et 400 K.

Figure 41 Performances cellulaires simulées de ITO/GaSe/CIGS/ en fonction de la température de fonctionnement.

3.5 Influence du CIGS-P⁺

Dans cette partie on ajoute une couche p fortement dopée sur la structure photovoltaïque précédente (voir Tableau 16). Le CIGS-P⁺ a été inséré pour réduire les pertes de porteurs de charge sur la face arrière, améliorant ainsi l'efficacité de la cellule solaire à l'étude. La structure modélisée (ITO/GaSe/CIGS/CIGS-P⁺) est visible sur la Figure 42. L'objectif de cette partie est l'étude de l'influence de l'épaisseur et de la concentration en porteurs après ajout d'une couche fortement dopée p (CIGS-P⁺). La concentration et l'épaisseur des porteurs CIGS-P⁺ varient de $10^{16}cm^{-3}$ à $10^{21}cm^{-3}$ et de 0.002μ m à 0.02μ m, respectivement. Nous commençons par une couche de CIGS de 1.4 µm d'épaisseur dans la première étape de la simulation. La figure 43 montre l'effet de l'épaisseur de la couche CIGS-P⁺ et de la concentration de porteurs sur les paramètres de performance photovoltaïque de la cellule solaire simulée. Selon l'épaisseur et la

concentration en porteurs de la couche CIGS-P⁺, les paramètres photovoltaïques (V_{oc} , J_{sc} et $\eta(\%)$) de la cellule simulée présentent un comportement comparable. Les caractéristiques photovoltaïques (Figure 43) présentent des variations mineures en fonction de l'épaisseur de la couche CIGS-P⁺, mais elles croissent en fonction de la concentration en porteurs ; l'augmentation de la concentration en porteurs conduit à des valeurs plus élevées de V_{oc} et cela démontre activement une réduction de la recombinaison des porteurs de charge photo-générés, également J_{sc} et $\eta(\%)$ augmentent avec l'augmentation de la concentration en porteurs sans aucun effet épais. Avec des concentrations de porteurs CIGS-P⁺ >10²¹ cm⁻³, le $\eta(\%)$ maximum enregistré s'est avéré être supérieure à 33%.

Figure 42 Représentation structurelle de la cellule solaire ITO/GaSe/CIGS/CIGS-P⁺

Figure 43 Tracé du contour illustrant l'effet de l'augmentation de l'épaisseur de la couche CIGS-P+ et de la concentration de porteurs sur les performances des cellules solaires.

L'effet de l'introduction de la couche CIGS-P⁺ sur les caractéristiques courant-tension (J-V) et l'efficacité quantique (QE) est illustré à la Figure 44-(a,b). La présence d'une couche CIGS-P⁺ sur la face arrière de la structure de la cellule solaire ITO/GaSe/CIGS/CIGS-P⁺ se traduit par une amélioration significative des caractéristiques photovoltaïques de la cellule étudiée. Avec l'ajout de la couche CIGS-P⁺, la tension en circuit ouvert a augmenté de 37.1 %. L'alignement de bande approprié de CIGS-P⁺ dans l'hétéro-structure proposée se traduira par un potentiel intégré plus élevé en raison d'un décalage de bande plus élevé, augmentant ainsi la tension en circuit ouvert. [158,159].

Le FF de la cellule solaire est passé de 85.10 % pour la cellule sans CIGS-P⁺ à 89.39 % pour la cellule avec CIGS-P⁺. Cette augmentation, de l'ordre de 4,29 %, peut être interprétée par une augmentation plus importante de la puissance maximale P_m générée par la cellule solaire à structure ITO/GaSe/CIGS/CIGS-P⁺. Cette amélioration de la puissance maximale est due à l'ajout de la couche à base de CIGS-P⁺, qui réduit les pertes par recombinaison des porteurs de charge sur la face arrière, ce qui est clairement approuvé par les courbes d'efficacité quantique QE (voir Figure 44-b). Ces améliorations ont conduit à une augmentation remarquable du rendement de conversion photovoltaïque de la cellule en passant de 23.06 % pour la cellule sans CIGS-P⁺ à 33.36 % pour la cellule avec insertion de couche CIGS-P⁺, compte tenu de la stabilité et de la bonne génération de porteurs de charges assurés par la présence de cette dernière couche. Le tableau 19 résume les différents résultats obtenus pour les deux cellules. Par rapport aux efforts récemment publiés, cela indique une nouvelle valeur record dans la simulation numérique de la technologie des cellules solaires CIGS. [160–163]. L'efficacité quantique de la cellule solaire à base de CIGS en fonction de la longueur d'onde est illustrée à la Figure 44-b. La cellule solaire a une forte absorption qui atteint 100%, ce qui conduit à une forte génération de paires électron-trou avec une perte de réflexion minimale sur la face avant. Pour les longueurs d'onde inférieures à 400 µm, les pertes enregistrées sur la figure QE sont probablement dues à la réflexion sur la face avant. Pour les longueurs d'onde supérieures à 1000 µm, une forte baisse du rendement quantique est observée du fait des pertes de recombinaison sur la face arrière de la cellule solaire.

Figure 44 a) Densité de courant et b) Efficacité quantique de la cellule simulée avec et sans CIGS-P⁺ (Optimisé).

Tableau 19 Performance de la cellule simulée avec et sans CIGS-P⁺ (Optimisé).

Structure	$V_{oc}(V)$	$J_{sc}(mA/cm^2)$	FF (%)	η (%)
ITO/GaSe/CIGS	0.8350	32.448924	85.10	23.06
ITO/GaSe/CIGS/ CIGS-P ⁺	1.1441	32.619287	89.39	33.36

3.6 Étude comparative

Le tableau 20 compare plusieurs résultats de travaux antérieurs (expérimentaux/théoriques) sur les cellules solaires à base de CIGS et avec diverses couches tampons. Comme nous pouvons le voir, la valeur PCE calculée à partir de ce travail est importante par rapport aux valeurs théoriques rapportées pour d'autres cellules solaires à base de CIGS avec une couche tampon différente.

 Tableau 20 Comparaison des caractéristiques photovoltaïques de cellules solaires basées sur CIGS avec différentes couches tampons.

Structure	Exp/	Les para	Les paramètres photovoltaïques				
	In	$J_{sc}(\frac{mA}{cm^2})$	$V_{oc}(V)$	FF(%)	η(%)	Références	
ZnO:Al/i-ZnO/In2S3/CIGS/Mo	Exp	35.16	0.552	56.73	11.02	[164]	
MgF2/ZnO:B/i-ZnO/CdS/CIGS/Mo	Exp	36.80	0.645	76.00	18.00	[165]	
CdS/i-ZnO/CIGS	Exp	30.50	0.666	74.40	15.10	[166]	
ZnS/(Zn,Mg)O/CIGS	Exp	31.90	0.631	72.60	14.60	[166]	
ZnO:Al/CBD-ZnS/CIGS/Mo	Exp	34.90	0.671	77.60	18.10	[167]	
ZnO/CdS/CIGS	Th	38.82	0.670	81.49	22.49	[168]	
ZnO/SnS/CIGS	Th	38.99	0.710	81.23	21.34	[168]	
CIGS/In2S3/FTO	Th	34.35	0.637	82.59	18.08	[169]	
CdS/CIGS	Th	35.76	0.668	80.48	19.23	[170]	
ZnS/CIGS	Th	36.42	0.668	81.30	19.80	[170]	
ZnSe/CIGS	Th	36.02	0.669	50.33	12.13	[170]	
ITO/GaSe/CIGS	Th	32.44	0.835	85.10	23.06	This work	
ITO/GaSe/CIGS/ CIGS-P ⁺	Th	32.61	1.144	89.39	33.36	This work	

4 Conclusion

Dans le présent travail, la structure de cellule solaire utilisée pour cette étude de simulation est ITO/GaSe/CIGS et ITO/GaSe/CIGS/CIGS-P⁺. Elle a été simulée par le logiciel de simulation SCAPS-1D où CIGS est utilisé comme couche absorbante, GaSe est comme une couche tampon et ITO comme une couche OTC. Ce travail vise à étudier les caractéristiques d'une cellule solaire proposée, ainsi d'optimiser les paramètres (épaisseur, dopage, température...) de la structure étudiée afin d'améliorer son efficacité de conversion photovoltaïque. Il a été démontré que la concentration plus élevée de porteurs de GaSe favorise l'efficacité des cellules. L'efficacité de la cellule semble être influencée par l'épaisseur de l'absorbeur CIGS. Ainsi, après addition de CIGS-P⁺, le PCE maximum obtenu est de 33.36 % avec J_{sc} égal à 32.61 mA/cm², V_{oc} égal à 1.14 V et FF égal à 89.39 %. Enfin, notre travail est unique en ce qu'il utilise le matériau lamellaire GaSe comme couche tampon. Afin d'atteindre des performances élevées, un film mince (CIGS-P⁺) avec un fort dopage p est également utilisé. La cellule solaire proposée dans ce travail avec ces caractéristiques a présenté une meilleure performance de conversion d'énergie. Dans un avenir proche, nous prévoyons que ce travail apportera une valeur ajoutée à la production de cellules solaires à haute efficacité à base de GaSe.

Conclusion générale

Le séléniure de gallium (GaSe) est un composé semi-conducteur lamellaire de la famille (III-VI) avec un gap électronique direct. Ses polytypes suscité beaucoup d'intérêts en vertu de leurs applications dans le domaine de l'optoélectronique et du photovoltaïque.

Dans notre travail, nous avons effectué des calculs DFT de premier principe pour étudier les propriétés optiques des différents polytypes de GaSe, à savoir les constantes diélectriques, les coefficients d'absorption, les conductivités optiques, les indices de réfraction, et le coefficient d'extinction, les réflectivités et les fonctions de perte de énergies dans l'énergie des photons jusqu'à 35 eV. Les calculs ont été effectués dans les deux sens xx et zz (polarisation).

Nous avons déterminé les propriétés structurales, élastiques et électroniques en présence et en absence de la pression pour tous les polytypes de GaSe. Une compression dans les plans de couche n'affecte pas le caractère "bidimensionnel" du séléniure de gallium (il en résulte un espacement inter-couche encore plus grand), tandis que la compression le long de l'axe c conduit à un rétrécissement de l'espacement inter-couche.

Les calculs de la structure de bande électronique montrent une augmentation progressive de la bande interdite aux contraintes bi-axiales jusqu'à $\sigma \perp > 8$ GPa. Au contraire, sous une contrainte de compression uni-axiale le long de l'axe c, les énergies de transition inter-bande diminuent continuellement avec le chargement.

La méthode du pseudo-potentiel a été utilisée pour calculer les constants élastiques. Notre calcul montre que le composé GaSe est mécaniquement stable à pression nulle et sous pression. Nos résultats à pression nulle montrent que le rapport B/G est inférieur à 1.75 pour tous les empilements, ce qui signifie que tous les polytypes du cristal GaSe sont fragiles.

Nous avons simulé les deux cellules solaires ITO/GaSe/CIGS et ITO/GaSe/CIGS/CIGS-P+, par le logiciel de simulation SCAPS-1D où CIGS est utilisé comme couche absorbante, GaSe est comme une couche tampon et ITO comme une couche OTC. Nous avons démontré que la concentration plus élevée de porteurs de GaSe favorise l'efficacité des cellules. L'efficacité de la cellule semble être influencée par l'épaisseur de l'absorbeur CIGS. Ainsi, après addition de CIGS-P⁺, le PCE maximum obtenu est de 33.36 % avec J_{sc} égal à 32.61 mA/ cm^2 , V_{oc} égal à 1.14 V et FF égal à 89.39 %. En perspective, nous envisageons de calculer d'autre paramètres physiques de GaSe, et aussi d'étudier les effets de certaines excitations extérieurs comme le champ électrique, le champ magnétique sur ce matériau.

Références bibliographiques

- Lang O, Klein A, Pettenkofer C, Jaegermann W, Chevy A. Journal of Applied Physics, 1996, 80: 3817–3821
- 2. Segura A, Chevy A, Guesdon JP, Besson JM. Solar Energy Materials, 1979, 2: 159–165
- Kyazym-Zade AG, Agaeva AA, Salmanov VM, Mokhtari AG. *Technical Physics*, 2007, 52: 1611–1613
- 4. Castellano A. Applied Physics Letters, 1986, 48: 298–299
- 5. Chen C-W, Tang T-T, Lin S-H, Huang JY, Chang C-S, Chung P-K, Yen S-T, Pan C-L. *Journal of the Optical Society of America B*, 2009, 26: A58
- Allakhverdiev KR, Yetis MÖ, Özbek S, Baykara TK, Salaev EY. *Laser Physics*, 2009, 19: 1092–1104
- 7. Basol BM. Thin Solid Films, 2000, 361-362: 514-519
- 8. Romeo N. La Rivista del Nuovo Cimento, 1973, 3: 103–115
- 9. Liu KY, Ueno K, Fujikawa Y, Saiki K, Koma A. *Japanese Journal of Applied Physics*, 1993, 32: L434–L437
- 10. Eckl C, Adler C, Pavone P, Schröder U. *Physical Review B Condensed Matter and Materials Physics*, 1999, 59: 15772–15778
- 11. Wisotzki E, Klein A, Jaegermann W. Thin Solid Films, 2000, 380: 263–265
- 12. KULIBEKOV AU. Turk J Phys, 2008, 32: 227–234
- Jappor HR, Habeeb MA. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101: 251–255
- 14. Bourdon A. Journal de Physique Colloques, 1974, 35: 261–267
- Bejani M, Pulci O, Barvestani J, Vala AS, Bechstedt F, Cannuccia E. *Physical Review Materials*, 2019, 3: 1–9
- 16. Bourdon A. Journal de Physique Colloques, 1974, 35: C3-261
- Gouskov A, Camassel J, Gouskov L. Progress in Crystal Growth and Characterization, 1982, 5: 323–413
- 18. Do DT, Mahanti SD, Lai CW. Scientific Reports, 2015, 5: 1–9
- 19. Schlüter M. Il Nuovo Cimento B Series 11, 1973, 13: 313–360
- 20. Zavrazhnov AY, Zartsyn ID, Turchen DN, Naumov A V., Zlomanov VP. Inorganic

Materials, 2004, 40: S101–S127

- 21. Isik M, Tugay E, Gasanly NM. Philosophical Magazine, 2016, 96: 2564–2573
- 22. Le Toullec R, Balkanski M, Besson JM, Kuhn A. Physics Letters A, 1975, 55: 245–246
- 23. El Mandouh ZS, Selim MS. Thin Solid Films, 2000, 371: 259–263
- 24. McCanny J V., Murray RB. Journal of Physics C: Solid State Physics, 1977, 10: 1211– 1222
- 25. K. Maschke FL. Crystal and Solid State Physics, 1983, 17
- 26. Late DJ, Liu B, Luo J, Yan A, Matte HSSR, Grayson M, Rao CNR, Dravid VP. *Advanced Materials*, 2012, 24: 3549–3554
- 27. MAHER K. Deux Oxyphosphates Candidats à 1 ' Électrode Négative Des Batteries Lithium-Ion à Haute Densité d ' Énergie Propre : Deux Oxyphosphates Candidats à 1 ' Électrode Négative Des Batteries Lithium-Ion à Haute Densité d ' Énergie Propre : 2011
- 28. Balkanski M, Julien C, Emery JY. Journal of Power Sources, 1989, 26: 615-622
- 29. Balkanski M, Julien C, Jouanne M. Journal of Power Sources, 1987, 20: 213–219
- 30. Chantana J, Hironiwa D, Watanabe T, Teraji S, Minemoto T. Solar Energy Materials and Solar Cells, 2015, 143: 510–516
- Painchaud T. Mécanismes de Croissance Des Couches Minces de Cu (In, GA) Se2 Co-Évaporées : Vers Des Synthèses Rapides et à Basse Température. 2010
- 32. Schrödinger E. Annalen der Physik, 1926, 385: 437–490
- 33. Schrödinger E. Physical Review, 1926, 28: 1049–1070
- 34. Born M, Oppenheimer R. Annalen der Physik, 1927, 389: 457–484
- Hartree DR. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24: 89–110
- 36. Fock V. Zeitschrift für Physik, 1930, 61: 126–148
- 37. Slater JC. Physical Review, 1929, 34: 1293–1322
- 38. Thomas LH. Mathematical Proceedings of the Cambridge Philosophical Society, 1927,
 23: 542–548
- 39. Fermi E. Zeitschrift für Physik, 1928, 48: 73–79
- 40. Dirac PAM. Mathematical Proceedings of the Cambridge Philosophical Society, 1930,
 26: 376–385
- 41. HOHENBERGt P, KonN W. PHYSICAL REVIEW, 1964, 136: 864-871
- 42. SHAM WKALJ. PHYSICAL REVIEW, 1965, 140: A1133–A1138
- 43. Sham LJ, Kohn W. Physical Review, 1966, 145: 561–567

- 44. Ceperley DM, Alder BJ. *Physical Review Letters*, 1980, 45: 566–569
- 45. Nedint L, Lundqvistfs BI. J Phys C: Solid St Phys, 1971, 4
- 46. Zunger A, Freeman AJ. Physical Review B, 1977, 16: 2901–2926
- 47. Zunger A, Freeman AJ. *Physical Review B*, 1977, 15: 4716–4737
- 48. VL Moruzzi, JF Janak AW. Calculated Electronic Properties of Metals. 1978
- 49. Elyashar N, Koelling DD. PHYSIGAL REVIEW B, 1976, 13: 258–283
- 50. Marcus PM. International Journal of Quantum Chemistry, 1967, 1: 567–588
- 51. Perdew JP. Physical Review Letters, 1985, 55: 1665–1668
- 52. Perdew JP. Physica B: Physics of Condensed Matter, 1991, 172: 1–6
- 53. Frank Herman, f John P. Van Dyke and IBO. *PHYSICAL REVIEW LETTERS*, 1969, 22: 807–811
- 54. Bloch F. Zeitschrift für Physik, 1930, 59: 208–214
- 55. Chadi DJ, Cohen ML. Physical Review B, 1973, 8: 5747–5753
- 56. Joannopoulos JD, Cohen ML. Journal of Physics C: Solid State Physics, 1973, 6: 1572– 1585
- 57. Evarestov RA, Smirnov VP. Physica Status Solidi (B), 1983, 119: 9-40
- 58. Pack HJM and JD. Journal of Materials Chemistry A, 1976, 13: 5188–5192
- 59. Fermi E. Il Nuovo Cimento, 1934, 11: 157–166
- 60. Hellmann H. The Journal of Chemical Physics, 1935, 3: 61
- 61. Phillips JC, Kleinman L. Physical Review, 1959, 116: 287–294
- 62. Chelikowsky MLC and JR. Springer series in solid state sciences, 1988
- 63. Ashcroft NW. Physics Letters, 1966, 23: 48–50
- 64. ABARENKOV IV and VH. Philosophical Magazine, 1965, 12: 529–537
- Haynes P. Linear-Scaling Methods in Ab Initio Quantum-Mechanical Calculations. Doctoral dissertation, University of Cambridge, 1998
- 66. Hamann DR, Schlüter M, Chiang C. Physical Review Letters, 1979, 43: 1494–1497
- 67. Vanderbilt D. PHYSICAL REVIEW B, 1990, 41: 7892–7895
- 68. Bachelet GB, Hamann DR, Schlter M. Physical Review B, 1982, 26: 4199–4228
- 69. Blaha P. WIEN2k. Vol 1. 2021
- 70. Delley B. The Journal of Chemical Physics, 1990, 92: 508-517
- 71. Vargas-Hernández RA. Journal of Physical Chemistry A, 2020, 124: 4053-4061
- 72. Berry AC. Transactions of the American Mathematical Society, 1941, 49: 122
- 73. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L,

Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC. *Computational Materials Science*, 2002, 25: 478–492

- 74. Dovesi R, Pascale F, Civalleri B, Doll K, Bush I, Philippe D, Noël Y, Rérat M, Dovesi R, Pascale F, Civalleri B, Doll K, Harrison N, Dovesi R, Pascale F, Civalleri B, Doll K, Harrison NM, Bush I, Arco PD, Noël Y, Rérat M, Carbonnière P, Causà M, Salustro S, Kirtman B, Ferrari AM, Gentile FS, Baima J, Ferrero M. 2020, 1976–2020
- 75. Genovese L, Ospici M, Deutsch T, Méhaut J-F, Neelov A, Goedecker S. 2009, 1–14
- 76. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. Journal of Physics Condensed Matter, 2002, 14: 2717–2744
- 77. Camara MOD, Mauger A, Devos I. *Physical Review B Condensed Matter and Materials Physics*, 2002, 65: 1–12
- 78. De Blasi C, Manno D, Rizzo A. Il Nuovo Cimento D, 1989, 11: 1145–1163
- Ghalouci L, Benbahi B, Hiadsi S, Abidri B, Vergoten G, Ghalouci F. Computational Materials Science, 2013, 67: 73–82
- Cenzual K, Gelato LM, Penzo M, Parthé E. Acta Crystallographica Section B, 1991, 47: 433–439
- 81. Kaminskii VM, Kovalyuk ZD, Pyrlya MN, Gavrilyuk S V., Netyaga V V. *Inorganic Materials*, 2005, 41: 793–795
- 82. Adler C, Honke R, Pavone P, Schröder U. *Physical Review B Condensed Matter and Materials Physics*, 1998, 57: 3726–3728
- 83. Srour J, Badawi M, El Haj Hassan F, Postnikov A V. *Physica Status Solidi (B) Basic Research*, 2016, 253: 1472–1475
- 84. Jeliinek F, Hahn H. Zeitschrift fur Naturforschung Section B Journal of Chemical Sciences, 1961, 16: 713–715
- 85. Benazeth S, Dung NH, Guittard M, Laruelle P. *Acta Crystallographica Section C Crystal Structure Communications*, 1988, 44: 234–236
- 86. Kuhn A, Chevy A, Chevalier R. Physica Status Solidi (a), 1975, 31: 469–475
- 87. Srour JY. Electronic Structure and Competition of Phases in Cu- (In, Ga) -Se, Ga-Se and In-Se Semiconductors : First-Principles Calculations Based on Different Exchange-Correlation Potentials. 2017
- 88. Bassani F, Parravicini GP. Il Nuovo Cimento B Series 10, 1967, 50: 95–128
- Kosobutsky A V., Sarkisov SY, Brudnyi VN. Journal of Physics and Chemistry of Solids, 2013, 74: 1240–1248

- 90. Robertson J. Journal of Physics C: Solid State Physics, 1979, 12: 4777–4789
- 91. Depeursinge Y. Il Nuovo Cimento B Series 11, 1981, 64: 111–150
- 92. Nagel S, Baldereschi A, Maschke K. Journal of Physics C: Solid State Physics, 1979, 12: 1625–1639
- 93. Schwarz U, Olguin D, Cantarero A, Hanfland M, Syassen K. *Physica Status Solidi (B) Basic Research*, 2007, 244: 244–255
- 94. Rak Z, Mahanti SD, Mandal KC, Fernelius NC. Journal of Physics and Chemistry of Solids, 2009, 70: 344–355
- 95. Aulich E, Brebner JL, Mooser E. Physica Status Solidi (B), 1969, 31: 129–131
- 96. Jappor HR, Habeeb MA. *Physica E: Low-Dimensional Systems and Nanostructures*, 2018, 101: 251–255
- 97. M. Grandolfo, F. Somma and PV. Physical Review B, 1970, 5: 428-434
- Bahuguna BP, Saini LK, Sharma RO, Tiwari B. Computational Materials Science, 2017, 139: 31–38
- 99. Dieulesaint, E., & Royer D. 1974
- MISSOUM R. Etude Ab Initio Des Propriétés Structurales, Élastiques et Électroniques
 Des Composés de Zintl Ba2P7X (X = Cl; Br; I). 2020
- 101. Nye JF. Propriétés Physiques Des Cristaux: French Translation. 1961
- Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O. Journal of Applied Physics, 1998, 84: 4891–4904
- 103. H. Chung WRB. Anisotropy in Single Crystal Refractory Compound. 1968
- 104. Ranganathan SI, Ostoja-Starzewski M. Physical Review Letters, 2008, 101: 3-6
- 105. Anderson OL. J Phys Chem Solids, 1963, 24: 909–917
- 106. Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J. Physical Review B Condensed Matter and Materials Physics, 2007, 76: 1–15
- 107. Nyawere PWO, Makau NW, Amolo GO. *Physica B: Condensed Matter*, 2014, 434: 122–128
- 108. Balyts'kyi OO. Materials Science, 2003, 39: 561-565
- 109. Zhang SR, Zhu SF, Zhao BJ, Xie LH, Song KH. *Physica B: Condensed Matter*, 2014, 436: 188–192
- 110. Rak Z, Mahanti SD, Mandal KC, Fernelius NC. *Physical Review B Condensed Matter and Materials Physics*, 2010, 82: 1–10
- 111. Chiang TC, Dumas J, Shen YR. Solid State Communications, 1978, 28: 173–176

- 112. H. Yasuaki, Y. Masayoshi, Y. Keiichi AK. Journal of the Physical Society of Japan, 1983, 52: 2777–2783
- Cui S, Feng W, Hu H, Zhang G, Lv Z, Gong Z. Journal of Solid State Chemistry, 2011, 184: 786–789
- 114. Goldstein R V., Gorodtsov VA, Lisovenko DS. *Physica Status Solidi (B) Basic Research*,
 2016, 253: 1261–1269
- 115. Zeng X, Peng R, Yu Y, Hu Z, Wen Y, Song L. Materials, 2018, 11
- 116. Sin'ko G V., Smirnov NA. Journal of Physics Condensed Matter, 2002, 14: 6989-7005
- 117. Chen C, Liu L, Wen Y, Jiang Y, Chen L. Crystals, 2019, 9: 1–12
- 118. Laser A, Source L, Energie C, Télécommunications M, National I, Recherche D. 2017, 7: 37–42
- 119. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. *Renewable and Sustainable Energy Reviews*, 2018, 82: 894–900
- 120. Şen Z. Progress in Energy and Combustion Science, 2004, 30: 367–416
- 121. Al Garni SE, Darwish AAA. Solar Energy Materials and Solar Cells, 2017, 160: 335–339
- 122. Bassou A, Rajira A, El Kanouny A, Abounadi A, El Haskouri J, Almaggoussi A. Materials Today: Proceedings, 2020, 37: 3789–3792
- Heriche H, Rouabah Z, Bouarissa N. International Journal of Hydrogen Energy, 2017,
 42: 9524–9532
- 124. Heinrich M, Kuhn TE, Dimroth F, Würfel U, Goldschmidt JC, Powalla M, Neuhaus DH.2020, 7–11
- 125. Peace B, Claypoole J, Sun N, Dwyer D, Eisaman MD, Haldar P, Efstathiadis H. *Journal* of Alloys and Compounds, 2016, 657: 873–877
- 126. Asaduzzaman M, Hasan M, Bahar AN. SpringerPlus, 2016, 5
- Bär M, Bohne W, Röhrich J, Strub E, Lindner S, Lux-Steiner MC, Fischer CH, Niesen TP, Karg F. *Journal of Applied Physics*, 2004, 96: 3857–3860
- 128. Li H, Qu F, Luo H, Niu X, Chen J, Zhang Y, Yao H, Jia X, Gu H, Wang W. Results in Physics, 2019, 12: 704–711
- 129. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla and M. *Progress in Photovoltaics: Research and Applications*, 2011, 19: 894–897
- 130. Amin N, Chelvanathan P, Hossain MI, Sopian K. Energy Procedia, 2012, 15: 291–298
- 131. Naghavi N, Mollica F, Goffard J, Posada J, Duchatelet A, Jubault M, Donsanti F, Cattoni

A, Collin S, Grand PP, Greffet JJ, Lincot D. Thin Solid Films, 2017, 633: 55-60

- 132. Van Lare C, Yin G, Polman A, Schmid M. ACS Nano, 2015, 9: 9603–9613
- 133. Vermang1* B, Wätjen1 JT, Fjällström1 V, Rostvall1 F, Edoff1 M, Kotipalli2 R, Henry2 F, Flandre2 and D. *Ieee Trans Fuzzy Syst*, 2014, 22: 1023–1029
- 134. Seyhan A, Karabulut O, Akmoğlu BG, Aslan B, Turan R. Crystal Research and Technology, 2005, 40: 893–895
- 135. Abdullah MM, Bhagavannarayana G, Wahab MA. *Journal of Materials Science*, 2010, 45: 4088–4092
- Ashkhasi A, Gürbulak B, Şata M, Turgut G, Duman S. AIP Conference Proceedings, 2017, 1815
- 137. Capozzi V. Physical Review B, 1983, 28: 4620-4627
- Fan Y, Schittkowski T, Bauer M, Kador L, Allakhverdiev KR, Salaev EY. Journal of Luminescence, 2002, 98: 7–13
- 139. Al-Hattab M, Moudou L, Chrafih Y, Khenfouch M, Bajjou O, Rahmani K. *The European Physical Journal Applied Physics*, 2020, 91: 30102
- 140. Liao W, Huang Y, Wang H, Zhang H. Applied Materials Today, 2019, 16: 435–455
- 141. Lu J, Zeng X, Liu H, Zhang W, Zhang Y, Cui J, Hu C. *Materials Letters*, 2013, 93: 337–340
- 142. Arbouz H, Aissat A, Vilcot JP. International Journal of Hydrogen Energy, 2016, 41:
 20987–20992
- 143. Morales-Acevedo A, Hernández-Como N, Casados-Cruz G. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177: 1430–1435
- 144. Wang DL, Cui HJ, Su G. Solar Energy, 2015, 120: 505–513
- 145. Mouchou RT, Jen TC, Laseinde OT, Ukoba KO. *Materials Today: Proceedings*, 2021, 38: 835–841
- 146. Ihalane EH, Atourki L, Kirou H, Ihlal A, Bouabid K. Materials Today: Proceedings, 2016, 3: 2570–2577
- 147. Ahmmed S, Aktar A, Hossain J, Ismail ABM. Solar Energy, 2020, 207: 693–702
- 148. Alzoubi T, Moustafa M. International Journal of Smart Grid and Clean Energy, 2019, 8: 291–298
- 149. M. Caraman, I. Evtodiev and EC. 2007
- 150. Rai N, Dwivedi DK. 3Rd International Conference on Condensed Matter and Applied Physics (Icc-2019), 2020, 2220: 140021

- 151. Rahman MA. SN Applied Sciences, 2021, 3: 1–15
- 152. Meher SR, Balakrishnan L, Alex ZC. 2016, 100: 703–722
- Hegedus SS, Shafarman WN. Progress in Photovoltaics: Research and Applications, 2004, 12: 155–176
- S. M. Sze, Ng KK. Physics of Semiconductor Devices Physics of Semiconductor Devices. Vol 10. 1995
- 155. Kahoul N, Houabes M, Sadok M. Energy Conversion and Management, 2014, 82: 320– 326
- Landis G a, Merritt D, Raffaelle RP, Scheiman D. Nasa/Cp—2005-213431, 2005, CP-2005-21: 241–247
- 157. Sobayel K, Rahman KS, Karim MR, Aijaz MO, Dar MA, Shar MA, Misran H, Amin N. *Chalcogenide Letters*, 2018, 15: 307–315
- 158. Moon MMA, Ali MH, Rahman MF, Hossain J, Ismail ABM. *Physica Status Solidi (A) Applications and Materials Science*, 2020, 217: 1–12
- 159. Zhang L, Jiang C, Wu C, Ju H, Jiang G, Liu W, Zhu C, Chen T. ACS Applied Materials and Interfaces, 2018, 10: 27098–27105
- 160. Bouloufa A, Djessas K, Zegadi A. Thin Solid Films, 2007, 515: 6285-6287
- 161. Chelvanathan P, Hossain MI, Amin N. Current Applied Physics, 2010, 10: 387–391
- Saadat M, Moradi M, Zahedifar M. Superlattices and Microstructures, 2016, 92: 303– 307
- 163. Benmir A, Aida MS. Energy Procedia, 2013, 36: 618–627
- 164. Kim JH, Shin D, Ahn BT. 2016
- Hagiwara Y, Nakada T, Kunioka A. Solar Energy Materials and Solar Cells, 2001, 67: 267–271
- 166. Witte W, Hariskos D, Powalla M. Thin Solid Films, 2011, 519: 7549–7552
- 167. Nakada T, Mizutani M. Japanese Journal of Applied Physics, Part 2: Letters, 2002, 41: 97–100
- 168. Zaidi B, Zouagri M, Merad S, Shekhar C, Hadjoudja B, Chouial B. Acta Physica Polonica A, 2019, 136: 988–991
- 169. Ashraf MA, Alam I. Engineering Research Express, 2020, 2
- 170. Mostefaoui M, Mazari H, Khelifi S, Bouraiou A, Dabou R. *Energy Procedia*, 2015, 74:
 736–744

Annexe

Structural and optical properties of a layered ϵ -GaSe thin film under elastic deformation from flexible PET substrate

IF: 2.658

A. Bassou^a, A. Rajira^{a,*}, M. El-Hattab^{a,b}, J. El Haskouri^c, S. Murcia-Mascaros^c, A. Almaggoussi^a, A. Abounadi^a

* IMED-Lab, Cadi Ayyad University, Faculty of Sciences and Technology, BP 549, 40000, Marrakech, Morocco

^b ERPTM, Polydisciplinary Faculty, Sultan My Slimane University, B.P 592, 23000, Beni Mellal, Morocco

^c Institut de Ciencia dels Materials de la Universitat de Valencia (ICMUV), Calle Catedrático José Beltrán, 2 46980 Paterna-València, Spain

ARTICLEINFO

Keywords: GaSe Mechanical exfoliation Flexible substrate RAMAN Optical properties Biaxial compression

ABSTRACT

The present study focuses on the structural and optical characterizations of a GaSe thin-film consisting of few layers mechanically exfoliated from bulk GaSe on a flexible PET substrate. The XRD and the RAMAN spectroscopies confirm the high crystallinity of our material and show that it belongs to the hexagonal ϵ -GaSe polytype with a mean crystallite size of about 50 nm. The sample's SEM images exhibit the two-dimensional nature of the layers. The optical transmission measurements clearly show two absorbing edges. They were assigned to an indirect band gap at 1.92 eV and to a direct one at 2.2 eV. The appreciable difference between the two gaps, of about 0.28 eV, is attributed to a compressive biaxial strain. A value, as high as 10⁴ cm⁻¹, of the absorption coefficient has been obtained which demonstrates the GaSe material's great potential for optoelectronic applications.

ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES https://doi.org/10.1080/2374068X.2021.1939991

Taylor & Francis Group

Check for updates

First-principles calculation of the structural, electronic and optical properties of $GaSe_{(1-x)} S_{(x)} (x = 0, 0.25, 0.5 and 1)$ compounds

Mohamed Al-Hattab 💿^a, L'Houcine Moudou^a, younes Chrafih^a, Khalid Rahmani^a, Mohammed Khenfouch^b and Omar Bajjou^c

*ERPTM, Faculty of Polydisciplinary Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco; ^bPhysics Department, Africa Graphene Center, Gauteng, South Africa; ^cMaterial Physics Laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco

ABSTRACT

The industry has long sought ever more efficient materials, allowing it to meet market demand. For this purpose, doping remains a good choice for improving the properties of a material. The structural, electronic, optical properties of the $GaSe_{1-x}S_x$ (x = 0, 0.25, 0.5 and 1) compounds are studied using the pseudopotential method of first principles in the Density Functional Theory using CASTEP code. The calculated results show that the lattice constants of ϵ -GaSe decrease as function of the impurity concentration increases. Also, the increase of doping by the sulphur leads to a decrease of DGa-X and an increase of DGa-Ga. The values of the gap energy are increased with the increase in sulphur content. For optical calculations the results show the appearance of an absorption peak in all GaSe1-xSx (x = 0, 0.25, 0.5 and 1) structures, with different intensities and a shift of the band to lower wavelengths when the doping content by the sulphur is increased. The insertion of the sulphur atom reduces the refractive index of ε-GaSe, and increases its birefringence which is important for non-linear optics applications. Raman lines move to higher frequencies with increasing sulphur content indicating a change in the crystal structure of *ε*-GaSe.

ARTICLE HISTORY Accepted 4 June 2021

KEYWORDS

GaSe1-xSx; structural property; electronic property; optical property; DFT

IF: 1.56

Eur. Phys. J. Appl. Phys. 91, 30102 (2020)
 © EDP Sciences, 2020
 https://doi.org/10.1051/epjap/2020200136

Regular Article

THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS

IF: 0.993

The anisotropic optical properties of different polytypes $(\varepsilon, \beta, \delta, \gamma)$ of GaSe lamellar materials

Mohamed Al-Hattab¹, Lhoucine Moudou¹, Younes Chrafih¹, Mohammed Khenfouch², Omar Bajjou³, and Khalid Rahmani^{1,*}

¹ ERPTM, Polydisciplinary Faculty, Sultan My Slimane University, B.P 592, 23000 Beni Mellal, Morocco

² Africa Graphene Center, Physics department, Eureka building, CSET, UNISA-Florida Campus, Roodepoort, 1709 Gauteng, South Africa

³ Material Physics Laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco

Received: 14 May 2020 / Received in final form: 14 July 2020 / Accepted: 17 August 2020

Abstract. In this paper, we have calculated the optical properties of the different polytypes of GaSe lamellar materials. The calculations are based on the DFT method and is performed using the CASTEP code. All optical properties have been studied in a domain that extends energetically from 10 meV to 35 eV and have been measured for a polarization // and \perp with the *c* axis. A strong anisotropic was observed, which indicates that the optical properties of the GaSe material are essentially determined by the symmetry of a single layer, exactly by the symmetry resulting from the stacking of the layers. Moreover, the absorption starts in the UV–vis spectral range, the peaks appear in the UV range. The refractive index values are $n_{xx} = 2.54$, 2.55, 2.88, 10.85, $n_{zz} = 3.90$, 3.90, 3.26, 11.73 for ε , β , γ , δ , respectively at zero photon energy. Furthermore, we notice that the optical properties of different polytypes (ε , β , δ , γ) of GaSe lamellar materials are obtained both in the ultraviolet field or in the visible domain are significant and give a strong argument for the use of these materials in various applications, namely photovoltaic cells, nanoelectronic, optoelectronic, optical fiber and photo-catalytic applications.

Keywords: Quantum well Confinement Non parabolicity Oscillation force Absorption improvement

ABSTRACT

In the present work, we have considered an unconstrained asymmetric quantum wells based on GaN/AlInN with 17.7% of Indium in the barrier materiel. Three energy levels could be confined thus giving authorized transitions. Our calculations were made in parabolic and non-parabolic cases. In the case of a small well width L_w , the transition E12 is located above E23 and vice versa for large well width. We clearly record an intersection between these two transitions ($E_{12} = E_{23}$) for L_w close to 2.5 nm. This enhances the absorption of such a photon with appropriate frequency. We have studied the temperature effect on the Fermi level, and the population of load carriers in each level for this interesting structure. As well as the intersubband absorption and the oscillation force of each transitions. Such structures can be used in two photons absorption devices.