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Abstract

The aim of Blind Source Separation (BSS) is to recover unobserved mixed sig-
nals from their mixtures, assuming that no or minimal knowledge about the source
signals and/or the mixing system is available. BSS is used in multiple scientific fields
such as Image denoising, Bio-medical signals and even Machine learning. In this the-
sis, we present BSS algorithms in order to separate linear instantaneous mixtures for
independent and dependent sources. The principle of our approach is to generalize
the proposed algorithm that minimizes the Kullback-Leibler divergence between the
copula densities of the source components, creating a new separation criteria based
on the mutual information (MI). Copulas are the tool used to model the depen-
dency model of random variable, hence, we deployed it in the case of mixtures of
statistically dependent sources. This approach gave very satisfying results, however
to have even better results with a faster divergence, we proposed to use the alpha-
divergence. Note that the kullback-leibler divergence is just a special case of the
alpha-divergence. We show that the proposed approaches can magnificently separate
instantaneous mixtures of dependent sources with unknown copula model and/or
unknown parameter which is the case in many real applications. Additionally, we
tackled the case where the mixture is done in a noise contaminated environment,
which make the BSS problem trickier then usual. Finally we illustrated some of
these BSS applications such as image denoising, using our proposed approaches.

2



Resume

Le but de la séparation aveugle des sources (SAS) est de récupérer des signaux
mixtes non observés à partir de leurs mélanges, en supposant qu’aucune connaissance
ou une connaissance minimale des signaux sources et/ou du système de mélange est
disponible. La SAS est utilisée dans de nombreux domaines scientifiques tels que le
débruitage d’images, les signaux bio-médicaux et même l’apprentissage automatique.
Dans cette thèse, nous présentons des algorithmes BSS afin de séparer des mélanges
linéaires instantanés pour des sources indépendantes et dépendantes. Le principe de
notre approche est de généraliser l’algorithme proposé qui minimise la divergence
de Kullback-Leibler entre les densités de copules des composants de la source, en
créant un nouveau critère de séparation basé sur l’information mutuelle (MI). Les
copules sont les outils utilisés pour modéliser la structure de dépendance d’une vari-
able aléatoire, d’où son déploiement dans le cas de mélanges de sources statistique-
ment dépendantes. Cette approche a donné des résultats très satisfaisants, cepen-
dant pour avoir des résultats encore meilleurs avec une divergence plus rapide, nous
avons proposé d’utiliser l’alpha-divergence. Notez que la divergence de Kullback-
Leibler n’est qu’un cas particulier de la divergence alpha. Nous montrons que les
approches proposées peuvent magnifiquement séparer des mélanges instantanés de
sources dépendantes avec un modèle de copule inconnu et/ou un paramètre inconnu,
ce qui est le cas dans de nombreuses applications réelles. De plus, nous avons abordé
le cas où le mélange est effectué dans un environnement contaminé par le bruit, ce
qui rend le problème BSS plus délicat que d’habitude. Nous illustrons également
certaines de ces applications réelles telles que le débruitage d’images.
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Chapter 1

General introduction

Blind source separation (BSS) is a challenging yet highly required field of research
in signal and image processing, in Artificial Intelligence and Big Data Analytics.
It is considered one of the unsupervised Machine Learning problems. The main
distinction between the supervised and the unsupervised approaches is the use of
labeled datasets. To put it simply, supervised learning uses labeled input and output
as data, while an unsupervised learning algorithm does not. In supervised learning,
the algorithm ”learns” from the training dataset by iteratively making predictions
on the data and adjusting for the correct answer. Unsupervised learning models,
in contrast, work on their own to discover the inherent structure of unlabeled data.
For BSS where the aim is to recover original sources from their mixtures otherwise
called observations, when the knowledge about the source signals and/or the mixing
system is very limited or even close to non existing, the nature of this problem
makes it an unsupervised machine learning problem. Even though BSS and its
related methods were first introduced for signal processing, they are now promising
in many application, especially data analysis and data mining including: redundancy
reduction, denoising, feature extraction, preprocessing for various classification and
recognition tasks. Furthermore, BSS approaches are useful in modelling higher
mechanisms of the brain, including modelling of olfactory bulb, auditory system,
selective attention and sparse coding [28, 33, 110]. BSS typically handles a mixing
model of the following form:

x(.) = A[s(.)] + v,

where s and x represent respectively the source signals and the observed signals,
v represents an additive noise if it exists in case of noise-contaminated mixing sys-
tems and A is a transformation, which can be instantaneous (operating on each s
to produce x), or global (operating on the whole sequence s(.) of source vectors).
The mixing occurs during the propagation of a number of source signals to a collec-
tion of sensors each measures a mixture of the original sources with slightly different
weights. The output of each sensor is what we call the observations x. These sensors
can be a microphone, an antenna, a camera, etc. The signals can be, from radio
waves emitted by cell phones, electrical signals from the heart, or by the brain,
sound recordings of people having a discussion in the same room, or could even be
images, etc. One of the concrete examples where we encounter this phenomenon is
the one that happens daily to the human being when his ear receives the different
sounds (signals) that are in his environment. In reality, the human being receives
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a mixture of sources from the environment. However, the human brain is able to
separate the source of interest from the mixtures naturally and easily without extra
work from the person.

Blind Source Separation tries to imitate the human brain by studying the unmixing
and separation of signals or pattern mixtures within a complex multivariate system,
having minimal to no a priori knowledge of the target or original sources. The orig-
inal source is usually a buried pattern of valuable data into a mixture of different
sorts of patterns, generally considered independent, but can be dependent. Despite
the tremendous effort being put into the development of BSS algorithms, this field
area is still being developed for customized techniques that are precisely designed
for specific classes of data and specific use cases.

The nature of the BSS problem, makes it an ill posed problem. It is difficult, or even
impossible to reconstruct the sources without making a few assumptions or hypothe-
ses. the most common assumptions are the statistical independence of the source
vector components and the condition that at most one of the components could be
Gaussian. These assumptions makes BSS equivalent to Independent Component
Analysis (ICA). ICA would provide the independent sources up to permutation and
scaling indeterminacies. Multiple algorithms of this technique were introduced, such
as FastICA [79], projection pursuit [84], Infomax [17] etc. The extraction of the orig-
inal sources can be either done by minimizing the mutual information [11, 55, 128],
maximizing the likelihood [25] or maximizing non-Gaussianity [82]. A good detailed
review of this issue is provided in [38, 123]. There is another framework used for
BSS called Sparse Component Analysis (SCA), it has been most successfully applied
if the sources could be represented sparsely in a given basis [95, 129, 160, 161].

For most cases, BSS was particularly solved for mixtures of statistically indepen-
dent sources, however, the independence property of sources may not hold in some
real-world situations, especially in biomedical signal processing and image process-
ing, etc. Some extensions for ICA were then introduced for separating mixtures of
dependent sources. These approaches are called Dependent Component Analysis
(DCA) as a whole. The first extended ICA model is the Multidimensional Inde-
pendent Component Analysis (MICA) [24] where the components are not assumed
to be all mutually independent, instead, it is assumed that the source signals can
be divided into i-tuples, such that the source signals inside a given i-tuple may be
dependent on each other, but the i-tuples should be independent on each other. We
also have variance dependent BSS [81], where they simply assume that the sources
are dependent only through their variances and that the sources have temporal cor-
relation. We also have, Tree-dependent component analysis [12], topographic ICA
[80], subband decomposition ICA(SDICA) [141, 164], etc. The paper [105], gives an
overview on the early approaches used for dependent BSS. Nonnegative matrix fac-
torization was also used for independent and dependent sources [67, 159], Another
approach is the window-disjoint orthogonality [145, 146]. Later on, Copula was used
to model the dependency structure of the sources [1, 111], this framework was pro-
posed as a generalization on ICA, and then in [69, 70, 96] these copula approaches
were improved and gave more details on how to achieve the separation for different
types of samples.
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As we said previously, the problem of Blind Source Separation is to reconstitute
sources from unknown mixtures of sources. Many algorithms have been proposed in
the literature to obtain the solution. These algorithms are sometimes very different,
in terms of hypotheses and principles of separation, but in most cases, the general
criterion of source separation is under the hypothesis of statistical independence
and non-gaussianity of the sources. However, in many situations and real-world
problems, these assumptions are not satisfied. The natural question is: is there a
solution to this problem when the components of the source signals are dependent?
If so, is it the best the solution we can get? If not, how do we get the solution?
The use of the copula theory and the divergence criteria, will allow us to meet all
these expectations. The work being presented throughout this thesis is a contribu-
tion into the field of Blind Source Separation, and more specifically for mixtures of
statistically dependent sources, which was not studied as much as for the indepen-
dent case. Upon reviewing the available techniques we improved the best techniques
and even proposed a new BSS procedure that handles noise-contaminated mixtures.
Throughout this thesis the dependency structure of the component sources will be
modeled using copulas. The thesis not only presents the theoretical aspect of the
method, but also presents the results of applying the proposed methods for real life
problems such as image denoising and images separation.

This document is organized as follows. The first part presents the problem of blind
source separation and a state of the art of the most widespread methods, a summary
on the copula theory and an introduction to the divergence used as a cost function
for our new proposed approach. The second part of this document is devoted to
the development of a new method of source separation, using copulas, and the the-
oretical and experimental study of its performance and its applications. A general
conclusion complete this document.

Part 1: Background information

This part of the dissertation consists of three chapters. In the first chapter, we will
begin by defining BSS in more detail. Then we explain the mixing and separation
procedures, distinguishing between the different types of mixtures used in blind
source separation. Then we model this problem for instantaneous and convolutional
mixtures, and end this chapter with a set of various methods used in BSS. The
second chapter is devoted to the theory of copula. It provides an introduction to
the notion of copula. We begin by giving a history of copula and explaining the
choice of the copula to model the dependency structure, then we recall the main
theorems and the most important properties of the copula and its role in the study of
the dependency of random variables. We will also present the main types of copulas
frequently used in practice, as well as their properties. Next, we will introduce two
methods to estimate the copula. The first method is non-parametric. The second
approach is semi-parametric which assumes a parametric model for the copula and
non-parametric for the marginal distributions. Then, we are going to explain the
methods used to generate vectors, according to the various copulas. Finally, we will
present a method in order to select the most appropriate copula for a certain data
set. The last chapter of the first part is about the Alpha-divergence, first we present
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what is a divergence in general, then showcase the Kullback-Leibler divergence and
its properties and how it is just a special case of the alpha-divergence and we finish
the chapter by giving more details about the alpha-divergence, its most important
definition and properties.

Part 2: Blind source separation

The second part consist of four chapters. In the fist chapter we introduce how we
can use Copula to solve the instantaneous BSS problem using the kullback-leibler
divergence. The second chapter is dedicated to our new Blind Source Separation
methodology for instantaneous linear mixing in the presence of additive noise. This
approach is based on the minimization of a regularized criterion. Precisely, it con-
sists in combining the total variation method to de-noise the observations, with the
Kullback-Leibler divergence between the copula densities to separate the mixtures.
In chapter 7, we propose the main results of the article published in the scientific
journal Circuits, Systems and Signal Processing (CSSP), where we developed a new
method, based on the optimization of a criterion between copula using the alpha-
divergence. The novelty lies in the consideration of dependent sources and using a
new criterion that converge faster and better then other divergences. This chapter
also presents separation results on various types of synthetic data. And finally we
showcase various applications of BSS using our approach such as Image denoising
and bio-medical signals separation.
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Chapter 2

State of Art

2.1 Introduction

In this chapter we will begin by giving a brief history on BSS and defining it in
more details. Then we explain the mixing and separation procedures, distinguishing
between the different types of mixtures that happens. Then we model this problem
for instantaneous and convolutional mixtures. After that, we will present different
existing techniques for solving the blind source separation problem focusing on Inde-
pendent Component Analysis, Non-negative Matrix Factorization and finally Sparse
Component Analysis.

2.2 Bref history

The source separation problem was first proposed by Bernard Ans, Jeanny Her-
ault and Christian Jutten around 1982, for motion decoding in vertebrates, in the
context of neural modeling [133]. In the context of communications, the problem
appears to have been sketched separately [15]. The first related contributions to
Signal Processing conferences [78] and Neural Networks conferences [8, 78] were
made around 1985. These articles quickly drew the attention of signal processing
academics, primarily in France and later on in Europe. Since the mid-1990s, the
interest in neural networks was huge and a large number of academics with expertise
in a variety of domains, including signal processing, statistics, and neural networks,
have been working on the BSS problem. At international conferences, a number of
special sessions on these topics have taken place.

Instantaneous linear mixtures (memoryless mixtures) were the first model that were
researched for source separation [78]. Later on, at the beginning of the 90s a gener-
alization to convolutive mixtures was studied [39], and by the end of 1990s nonlinear
mixtures were addressed [21, 86, 140]. Furthermore, in 1987, independent compo-
nent analysis (ICA) [92] was introduced, which is a general method for solving BSS
problems based on statistical independence of unknown sources, that later was for-
malized for linear mixtures by Comon in 1991 [40].

The number of papers written on the topic of BSS or ICA is enormous: Google
Scholar records 1.810.000 research papers in Engineering, Computer Science, and
Mathematics as of may 2021. Only a few books, on the other hand, cover the BSS
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2.3. PROBLEM STATEMENT

problem and the key concepts for solving it. In particular, the book [85], written by
experts in Neural Networks, contains only algorithms built by the Machine Learning
community. Another rather complete book appeared slightly later [28]. However,
some ways of addressing the problem were still missing (semi-blind approaches,
Bayesian approaches, Sparse Components Analysis, etc.). More specific problems,
i.e. separation of audio sources [113], or separation in nonlinear mixtures [7], have
been the subject of other contributions. And in 2010, [41] was published giving a
complete state of art.

2.3 Problem statement

Generally, in our environment, source signals propagate to an end point (sensor). In
this environment called propagation medium, the sources naturally undergo different
transformations. Consequently the sources will be transformed then superimposed,
thus building the mixtures we receive on the sensors. By placing ourselves on the
sensors, we will observe (measure) more or less complex mixtures of these origi-
nal/initial sources. To study the effects of each source on all the signals and to
discern the original signals in order to find the components of the mixtures, it is
necessary to separate the sources. The problem of blind source separation is a fun-
damental and very general problem. It is generally modelled independently of the
field of application. The paragraphs below equate the problem by explaining the
mixing and separation procedures.

2.3.1 The mixing process

To formulate the mixing process of blind source separation, let s(t) := (s1(t), s2(t), · · · ,
sq(t))

>, be the original sources, where sj(t) is the tth sample of the jth source element,
with j = 1, · · · , q and q the number of sources, and let x(t) := (x1(t), x2(t), · · · , xp(t))
be the observation vectors, where xi(t) is the tth sample from the observation source
coming from the ith sensor, where i = 1, · · · , p and p is the number of sensors or
observations, the following figure explains the mixing process

Figure 2.1: The mixing process

The mixing process between the sources and the observations (which are the mixed
sources) is formed as follow:

x(t) := A[s(t)] (2.1)

where A is the mixing system. If we have T samples from each source and each
observation, then the source and observation samples can be grouped into the S
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and X matrices respectively. The mixing process between sources and observations
can be rewritten in the following matrix form:

X := A[S] (2.2)

where X ∈ Rp×T is the observations matrix and S ∈ Rq×T is the sources matrix.

In the problem of blind source separation, the sources and the mixing system are
not known a priori, only observations are available.

2.3.2 The separation

From the sole knowledge of the observations (source mixtures), blind source sep-
aration consists in constructing a separation system, denoted B, which allows the
best possible estimation of the initial sources s. The following figure illustrates the
separation procedure:

Figure 2.2: The separation process

Let y(t) := (y1(t), y2(t), · · · , yj(t)) be the estimated sources, where where yj(t) is
the tth sample of the jth estimated source element, with j = 1, · · · , q. the separation
formula is giving by

y(t) := B[x(t)] (2.3)

In matrix form the above relation can be written as follows:

Y := B[X] (2.4)

where B ∈ Rq×p is the matrix for the estimated sources.

The ideal solution for the blind source separation problem is when B = A−1, how-
ever due to the process being blind, in other words we have no knowledge about the
nature of the mixing process and environment nor the nature of the original sources,
BSS is considered an ill posed problem. In fact every couple (A′, s′) where A′[s′] = x
could be an acceptable solution to the problem , without any a priori information
on the sources and on the mixing system, it is not justified to privilege a solution el-
igibly compared to another. Given these ambiguities, solving this problem therefore
requires assumptions about the sources and the mixing system in order to arrive at
a single solution or at least reduce the number of allowable solutions.

Thus, BSS has several degrees of difficulty, depending on the characteristics of the
sources and, more importantly, how the mixing system is being considered. The
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model of the mixing system must match the physical phenomenon linking the sources
to the observations. Therefore, the choice of an appropriate model is necessary
because it allows the selection of the separation structure to adapt to the problem
being addressed.

2.4 BSS Method Categorization

From the available literature concerning Blind Source Separation, we can say that
Linearity, Time-delay, and Determinism are three key characteristics that can be
used to classify the BSS problem. This classification leads to the following cate-
gories: Linear versus Non-linear BSS, Instantaneous versus Convolutive BSS, and
Overcomplete / Overdetermined versus Underdetermined BSS.

2.4.1 Linearity in BSS Problems

Owing to its simplicity of study and explicit separability, the linear time-invariant
(LTI) model is the most extensively studied and investigated topic of BSS. The
Linear BSS model assumes that the source mixture can be characterized using a
linear combination, as illustrated in the equation below:


x1(t)
x2(t)

...
xn(t)

 =


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
. . .

...
an1 an2 · · · anp



s1(t)
s2(t)

...
sp(t)

+


u1(t)
u2(t)

...
up(t)

 (2.5)

Unless extra information is provided as a priori features of the sources, which is
common in linear systems where multiplication is no longer commutative and the
mixing coefficients according to which the mixing process occurred are non-evident,
the scale and order of the separated sources will remain imprecise and unclear.

As for the Non-linear model, a more realistic environment is considered, where the
observed signals are non-linear distorted signals. Despite the fact that literature
holds a large number of studies and proposed algorithms on Linear BSS, nonlinear
BSS has not been well developed, a review of which is presented in [94]. Linear
BSS techniques have shown their inability to separate the sources which are non-
linearly mixed, which led to the emerging of the Non-linear techniques, of which
we state Post Non-linear (PNL) [165] and Bi-Linear (or Linear Quadratic) mixtures
[48], Convolutive Post Non-linear Mixtures [168] and Conformal mappings. The
mathematical representation of such Non-linear models is stated below

x(t) = f(s(t)) (2.6)

where f : RM → RN is the unknown non-linear mixing function, N and M are the
number of source and observation signals, respectively. The BSS problem may also
be written in the following form:

Find g such that: g(x(t)) = g(f(s(t))) = ŝ(t) (2.7)
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where g : RN → RM is the separating function to be estimated and x(t) the vector
of reconstructed sources, which is the output of the BSS algorithm.

2.4.2 Mixing Delay in BSS Problems

In terms of the time-wise mixing element of the sources, BSS can be built to either
deal with sources that are simultaneously mixed, i.e. with the absence of time de-
lays, as defined by the Instantaneous Mixture Model, or to deal with mixtures that
were formed out of different source signals in form of combinations of several time-
delayed versions of the sources themselves and/or mixed signals themselves which
defines the Convolutive Mixture Model (CMM).

In more simplistic mixing models, the mixture is thought to be the sum of variably
weighted source signals, but in most real-world implementations, such as acous-
tics, the various sources are weighted and delayed, adding to the sum or mixture
with many delays, implying, for example, the manifestation of the numerous path-
ways through which acoustic impulses flow to a microphone. Such mixtures are
termed convolutive mixtures that vary in the number of delay elements, which are
application-specific, reaching thousands of delay elements in acoustics. The men-
tioned acoustic signals might be speech or music or underwater sonar signals, radio
signals captured by antenna arrays as mixtures, astronomical data, functional brain
imaging data and bio-potentials.

The mathematical mixing model of the Instantaneous Mixture Model is as follows

x(t) = As(t) + u(t) (2.8)

This model is also known as the linear mixture model, where A = A0 is an M ×N
matrix containing the mixing coefficients. As for the delayed sources’ case, assuming
a reverberation-free environment with propagation delays, the mixing model may
be represented as follows in:

xm(t) =
N∑
n=1

amnsn(t− kmn) + um(t) (2.9)

where kmn is the propagation delay between source n and sensor m.

x(t) =
K−1∑
k=0

Aks(t− k) + u(t) (2.10)

However, in the derivation of many algorithms, for simplification purposes, the en-
vironment is considered to be noise-free, which reduces to (2.11):

y(t) =
K−1∑
k=0

Akx(t− k) (2.11)

2.4.3 Determinism in BSS Problems

Determinism, on the other hand, is a classification criterion for BSS situations in
which the number of sources N is compared to the number of observations M. As a
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result, there are three alternative outcomes:

� N > M: The number of sources is greater than the number of observations.

Such systems are called over-determined systems and are easily solved using
linear BSS methods, the mixing matrix being invertible.

� N = M: The number of sources is equal to the number of observations.

Such systems are denoted determined systems and are also easily solved using
linear BSS methods, the mixing matrix being an invertible square matrix.

� N < M: The number of sources is greater than the number of observations.

Such systems are called over-determined systems and may not be solved using
linear methods even under perfect knowledge of the mixing system, i.e. the
sources may never be recovered via linear methods.

2.5 BSS Techniques

Throughout the years and since Blind source separation first appearance, various
approaches were proposed in literature. In this section, we present some of the most
famous and commonly used methods, giving a brief summary on which cases of BSS
they are used and how they are applied to achieve the separation.

2.5.1 Independent Component Analysis

Independent component analysis (ICA) is a statistical and computational method-
ology for uncovering hidden components that lie behind a set of random variables,
observations, or signals.

In the ICA model, the data variables are assumed to be linear mixtures of some un-
known latent variables, and the mixing system is also unknown. The latent variables
are assumed nongaussian and mutually independent. They are called the indepen-
dent components of the observed data.

Although ICA appears to be connected to principal component analysis and factor
analysis, it is a far more powerful methodology capable of identifying underlying
factors or sources when these traditional methods fail.

The ICA concept was initially proposed by Comon [37] and was initially proposed
to solve the blind source separation (BSS). The source separation problem cannot
be solved if there is no knowledge of either A or S, apart from the observed mixed
data X. If the mixing matrix A is known and the additive noise v is negligible, then
the original sources can be estimated by evaluating the pseudo inverse of the matrix
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A, which is known as the unmixing matrix B.

Estimation of the underlying independent sources is the primary objective of the BSS
problem in the case of mixtures of statisticaly independent sources. The problem is
solvable with the following restrictions:

� The sources are statistically independent.

� At most, one of the sources is Gaussian distributed.

� The mixing matrix is of full rank.

The above discussions make it clear that statistical independence is the key founda-
tion of independent component analysis (ICA). For the case of two different random
variables x and y, x is independent of the value of y, if knowing the value of y
does not give any information on the value of x. Statistical independence is defined
mathematically in terms of the probability densities as - the random variables x and
y are said to be independent, if and only if

px,y(x, y) = px(x)py(y) (2.12)

where px,y(x, y) is the joint density of x and y, px(x) and py(y) are marginal prob-
ability densities of x and y respectively. Generalizing this for a random vector
s = [s1, ..., sN ]T with multivariate density p(s) has statistically independent compo-
nents, if the density can be factorized as

p(s) =
N∏
i=1

pi(si) (2.13)

When two variables s1 and s2 are independent, the density of s1 is unaffected by
s2. Statistical independence is a far more stronger property than uncorrelatedness,
which only considers second order statistics. The variables are uncorrelated if they
are independent, but not if they are correlated.

The data model for independent component analysis is estimated by formulating a
function which is an indicator of independence in some way and then minimizing or
maximizing it. Such a function is often called a contrast function or cost function
or objective function. The optimization of the contrast function enables the esti-
mation of the independent components. The ICA method combines the choice of
an objective function and an optimization algorithm. The statistical properties like
consistency, asymptotic variance, and robustness of the ICA technique depend on
the choice of the objective function and the algorithmic properties like convergence
speed, memory requirements, and numerical stability depends on the optimization
algorithm. The contrast function in some way or the other is a measure of in-
dependence. One of the common contrast function used for ICA is the Mutual
Information, which is a natural measure of dependency between random variables
i.e. it is a measure of the information that a member of a set of random variables
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has on the other random variable in the set.

If y is a n-dimensional random variable and py(u) its probability density function,
then vector y has mutually independent components, if and only if

py(u) =
n∏
i=1

pyi(ui) (2.14)

A natural way of checking whether y has Independent Components is to measure a
distance between both sides of the above equation. The average mutual information
of y as given by Comon as

MI(py) =

∫
py(u)log(

py(u)∏n
i=1 pyi(ui)

du) (2.15)

The mutual information is equal to zero if and only if the variables are mutually
independent and is otherwise strictly positive.

2.5.2 Non-negative Matrix Factorization

The second method that we are going to discus is the Non-negative Matrix Fac-
torization (NMF) method. It is a method based on the non-negative nature of the
data. Initially introduced in the mid-1990s by Paatero and Tapper [126] under the
name PMF (Positive Matrix Factorization), non-negative matrix factorization was
revisited in 2001 by Lee and Seung [104] as a means of decomposing an image on
the basis of its elementary elements.

The principle of factorization in non-negative matrices is as follows: Under the
assumptions of non-negative sources (S≥0) and mixing matrix coefficients (A≥0),
factorization into non-negative matrices consists in decomposing the non-negative
matrix of X observations into the product of two non-negative matrices, one repre-
senting the estimated sources Ŝ and the other the estimated mixing matrix Â such
that

ÂŜ :' X. (2.16)

NMF methods are iterative algorithms that generally consist in minimizing a chosen
criterion. The aim is to find the non-negative matrices Â and Ŝ that minimize the
measure of divergence or distance between the product matrices and the observation
matrix, under the constraints of positivity

(Â, Ŝ) = argA≥0minS≥0D(X,AS) (2.17)

where D designates the measure of distance (divergence, similarity, etc.) between
two matrices or vectors. The choice of the measure D often depends on the data
structure or noise [32]. The simplest and most widely used measure is the Frobenius
standard :

D(X,AS) :=
1

2
‖ X − AS ‖2

F (2.18)

The Frobenius standard is well suited when the data contains Gaussian additive
noise [32]. For non-Gaussian noise, the Kullback-Leibler divergence is often used.

23



2.5. BSS TECHNIQUES

Other measures of divergences can also be used such as alpha divergences [29],
Bregman divergences [50] and beta divergences. Many algorithms are proposed to
optimize this problem, including the multiplicative update method [104], and the
constrained least square method of non-negativity [4, 19] , the projected gradient
method [108, 163] and the Quasi Newton method [162].

Moreover, having only non-negativity as a constraint of the sources and the mix-
ing matrix is not sufficient to guarantee the uniqueness of factorization [52, 101].
Methods based on on NMF have two main drawbacks. On one hand, there is an
indeterminacy that adds to the problem, without additional constraint, the solution
can only be found at an invertible matrix M. Indeed, if (Â, Ŝ) is a solution of the

NMF then X = ÂŜ = ÂMM−1Ŝ , therefore (ÂM,M−1Ŝ) is also a solution such as

ÂM ≥ 0 and M−1Ŝ ≥ 0, in this case M is said to be an NMF indetermination. The
solution is therefore not unique.

On the other hand, in NMF, the criteria can only be convex according to one of
the two matrices produced, but not for both. The algorithms therefore only al-
low to converge to a local minimum. Consequently, the convergence result depends
strongly on the initialization of the [119] algorithm.

To make the number of solutions admissible, some NMF methods propose to add
other constraints to the sources and-or the mixing matrix. This can be done by
adding regularization terms to the initial divergence measure, in order to take into
account a priori knowledge about the problem.

2.5.3 Sparse Component Analysis

Sparse Component Analysis (SCA) is used to estimate the mixing matrix in the
case of sparing sources. This class of methods appeared over twenty years ago
[73, 130]. It is based on the hypothesis that the sources are parsimonious either in
their original representation or after decomposition on a dictionary. A signal is said
to be parsimonious if most of its coefficients in a given area of representation are
void. In the case of the blind separation of sources, the fact that the sources have
representations where most of the coefficients are zero is not sufficient to perform
the separation. In order to exploit parsimony, the simplest approach is to isolate
each of these sources individually in areas of the observed signals. The ideal is to
have a representation dictionary for which the sources have disjoint supports [93].
But in some methods it is sufficient to have for each source of the mixture, a zone in
the observed signals on which it is the only one to be non-zero, for example in the
case of spectral signals: it is a matter of having a spectral zone on which only one
of the sources is non-zero; in the images, this would correspond to having an area of
pixels where only one source is present. According to the initial assumptions about
the sources, there are three categories of methods in the SCA :

� Methods based on the hypothesis of strong parsimony conditions called W-
Disjoint-Orthogonality (WDO). Sources are said to be WDO if in each point
of the domain of analysis, only one of these sources is active. This hypothesis
assumes that the sources are completely disjoint media [91].
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� Quasi-non-parcimonious methods for which it is sufficient for each source to
be isolated in certain small areas of the analysis domain. These approaches
generally start by detecting areas where only one source is present in the
observations, in order to use them to estimate the mixing matrix [2, 49].

� Hybrid methods falling between the two previous categories of methods. Some
approaches relax the WDO hypothesis in particular cases, others use a con-
fidence measure on the mono-source quality of points in the analysis domain
[9, 106].

2.6 Conclusion

In this chapter we presented the history of Blind Source Separation while giving more
details about the mixing and the separation process, showcasing the different types
and variations of BSS such as linear, non-linear, also instantaneous or convolutive
mixtures and the determinism in the BSS problem, and finalizing the chapter with
some of the most used techniques for BSS such as ICA, NMF and SCA.
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Chapter 3

Introduction to Copula

3.1 Introduction

The separation problem of instantaneous mixtures for possibly dependent compo-
nent sources is addressed in this thesis. The dependency structure of the component
sources will be described using copulas. Therefore, in this chapter, we give defini-
tions and properties of copulas, we present some of copula models, and finally we
expose some procedures for copula model selection as well as method of statistical
parameter estimation from the data.

3.2 Definitions and properties

It is common practice to study the dependency structures between two or more
random variables. Several measuring tools, such as Pearson’s correlation coefficient,
Kendall’s tau, and Spearman’s rho, have been presented to accommodate and assess
the dependence between random variables. These measures are simple to compute
and can be easily interpreted, however they are not able to detect all of the forms
of dependency of the random variables, hence, it was necessary to find other mea-
sures capturing the entire dependency structure. In fact, the copula function has
the advantage of completely modelling the dependency structure between random
variables.

Over the last three decades, copula theory has undergone considerable improvement
in research fields such as finance, actuarial science, medicine, hydrology and biology.
The term copula comes from the Latin word ”cop˜ulae”, which means bond, link, al-
liance or union. This function was sometimes referred to by other names such as the
dependency function. In statistics, the notion of copula appears in certain works by
Frechet [64] on the study of contingency tables. For the first time, the word copula
has been used, in the theory of multivariate laws, was by Sklar [139]. The existence
theorem of copulas is generally attributed to the latter. Sklar’s theorem guarantees
the existence and uniqueness of the copula function, characterizing the dependency
between the components of the vector if the marginal distributions of the random
vector are continuous. The distribution of the random vector is perfectly defined by
the data of the marginal distributions and the copula.
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3.2. DEFINITIONS AND PROPERTIES

Copula is a function which couples a joint distribution function with its univariate
marginals. It is a multivariate distribution function on the unit cube [0, 1]p, with
uniformly distributed marginals on the interval [0, 1]. Consider a random vector
Y := (Y1, . . . , Yp)

> ∈ Rp, p ≥ 2, with joint distribution function (d.f.)

FY (·) : y ∈ Rp 7→ FY (y) := FY (y1, . . . , yp) := P(Y1 ≤ y1, . . . , Yp ≤ yp), (3.1)

and continuous marginal d.f.’s

FYi(·) : yi ∈ R 7→ FYi(yi) := P(Yi ≤ yi), ∀i = 1, . . . , p. (3.2)

Sklar characterization theorem [139] ensures the existence of a unique function
CY (·) : [0, 1]p → [0, 1] such that

FY (y) = CY (FY1(y1), . . . , FYp(yp)), ∀y := (y1, . . . , yp)
> ∈ Rp. (3.3)

The function CY (·) is called copula (of the random vector Y ). One can show that

CY (u) = P(FY1(Y1) ≤ u1, . . . , FYp(Yp) ≤ up), ∀u = (u1, . . . , up)
> ∈ [0, 1]p. (3.4)

Conversely, for any marginal d.f.’s F1(·), . . . , Fp(·), and any copula function C(·),
the function C(F1(·), . . . , Fp(·)) is a multivariate d.f. on Rp. On the other hand,
since the marginal d.f.’s FYj(·), j = 1, . . . , p, are assumed to be continuous (on
R), then the random variables FY1(Y1), . . . , FYp(Yp) are uniformly distributed on the
interval [0, 1]. Therefore, the copula CY (·) is multivariate d.f. on [0, 1]p with uniform
marginals on [0, 1]. If the components Y1, . . . , Yp are statistically independent, then
we can see from (3.4), that the corresponding copula can be written as

CY (u) =

p∏
i=1

ui =: C0(u), ∀u ∈ [0, 1]p. (3.5)

It is called the copula of independence. Let, if well defined,

cY (u) :=
∂pCY (u)

∂u1 · · · ∂up
, ∀u ∈ [0, 1]p, (3.6)

be the copula density of the random vector Y . The copula density of independence,
denote it c0(·), is the function taking one on [0, 1]p and zero otherwise. In fact, we
can write, from (3.5) and (3.6),

c0(u) :=
∂pC0(u)

∂u1 · · · ∂up
=

∂p
p∏
i=1

ui

∂u1 · · · ∂up
= 1[0,1]p(u), ∀u ∈ [0, 1]p, (3.7)

where, for any set A, the notation 1A(·) is used for the indicator function of A,
i.e., the function defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A, for all
x. Let fY (·), if it exists, be the probability density on Rp of the random vector
Y , and fY1(·), . . . , fYp(·) the marginal probability densities of the random variables
Y1, . . . , Yp, respectively. Then we have, from (3.3), the interesting relation

fY (y) =

(
p∏
i=1

fYi(yi)

)
cY (FY1(y1), . . . , FYp(yp)), ∀y ∈ Rp. (3.8)
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3.2. DEFINITIONS AND PROPERTIES

Combining the relations (3.7-3.8), one can show that cY (u) = c0(u), ∀u ∈ [0, 1]p if
and only if (iff) the components of the vector Y are independent.

Copula is intimately connected to measures of association such as Kendall’s tau,
among many others. It is defined in the bivariate case, as follows. Let Y := (Y1, Y2)>

and (Y ′1 , Y
′

2)> be i.i.d. random vectors with value in R2. The population version of
Kendall’s tau, τ(Y ) of Y , is defined as the probability of concordance minus the
probability of discordance, i.e.,

τ(Y ) := P[(Y1 − Y ′1)(Y2 − Y ′2) > 0]− P[(Y1 − Y ′1)(Y2 − Y ′2) < 0]. (3.9)

Recall that τ(Y ) ∈ [−1, 1], and that τ(Y ) = 0 if the components, Y1 and Y2 of Y ,
are statistically independent. In the bivariate case, we have the following relation
between τ(Y ) and CY , see e.g. [120],

τ(Y ) = 4

∫
[0,1]2

CY (u1, u2) dCY (u1, u2)− 1. (3.10)

Let (y1(1), y2(1))>, (y1(2), y2(2))>, . . . , (y1(N), y2(N))> be N i.i.d. realizations with
the same distribution as Y = (Y1, Y2)>. An interesting statistical estimate of τ(Y )
is the so-called empirical Kendall’s tau (of Y ), denote it τ̂(Y ), defined by

τ̂(Y ) :=
2

N(N − 1)

∑
i<j

sgn(y1(i)− y1(j)) sgn(y2(i)− y2(j)), (3.11)

where sgn(·) is the function defined by sgn(z) = 1 if z ≥ 0, and sgn(z) = −1 if
z < 0, for any z ∈ R.

Why the copula and not the correlation coefficient?

In signal processing, especially in source separation, we often evaluate the depen-
dency between two or more sources, using their correlation. However, this indicator
does not does not allow to model dependency on one hand and depends on margins
on the other. This indicator performs well when the dependency relationship is
linear and the universe under consideration is Gaussian. It is very useful for fami-
lies of elliptic distributions (because for these distributions non-correlation implies
independence). On the contrary, in source separation, the Gaussian case is rarely
used. In addition, this measure of dependence often used by practitioners has sev-
eral limitations such as:

� Correlation is a scalar measure of dependence that cannot tell us everything.
what we would like to know about the structure of addiction

� The correlation coefficient and its scope of characterization only works for the
Gaussian variables, for which correlation and dependence cover the same re-
ality
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3.2. DEFINITIONS AND PROPERTIES

� The correlation coefficient can be the same whereas the dependency structure
is totally different especially for extreme values

� The correlation coefficient is not defined if the moments of order two of the
variables random are not finished. This is not an appropriate measure of de-
pendence for the heavy tail distributions where the variances can be infinite

� The linear correlation coefficient is not invariant by transformations strictly
increasing

Other dependency indicators are proposed, based on the discrepancies and con-
cordances observed in a sample, such as non-linear and non-parametric correlation
coefficients (Kendall’s tau and Spearman’s rho). These are good overall indicators
of the dependence between random variables. However, modeling dependency using
statistical indicators is one thing, modeling it using a dependency function is an-
other. This is the case of the copula function, which meets this objective and has
the following advantages:

� The copula models the dependency structure from the distribution function
and separate dependency and marginalized behavior.

� The multivariate distribution function carries more information than the dif-
ferent marginal distributions and this generally helps us to avoid the disad-
vantages of correlation as a measure of dependency.

� Instead of summarizing the dependency structure by a single scalar such as the
coefficient of linear correlation, a model that reflects more detailed knowledge
can be used.

� We have a wide range of copula families from which a model can be selected.
This allows us to choose a particular family of copula according to the vari-
ables of the data we are trying to model.

� Copulas allow us to build non-Gaussian models, i.e. with a copula, we can
construct for example a distribution with a Gaussian marginal and another
uniform.

This explains the choice of the copula to model the dependency and not the correla-
tion coefficient. In addition, the dependency indicators (linear correlation, Kendall’s
tau and Spearman’s rho) can be defined in this framework from the parameters of
the copula.
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3.3 Copula models

We will present the main types of copula frequently used in practice, as well as their
properties: elliptical copula, archimedean copula and polynomial copula. Then, we
will introduce two methods for estimating the copula. The first method is non-
parametric. The second approach is semi-parametric which assumes a parametric
model for the copula and non-parametric for the marginal distributions. Then, we
will explain the methods used to generate vectors, according to the various copulas.
Finally, we will present a method to select the most suitable copula for the analysis
appropriate for a certain set of data.

In literature, many copula models have been proposed. An important class of those
models is the semiparametric one, which has been widely used in survival analysis
where modelling and estimating the dependency structure between survival vari-
ables are fundamental problems. A semiparametric copula model is a collection of
copulas {C(·; θ); θ ∈ Θ ⊂ R}, indexed by a parameter θ ∈ Θ ⊂ R, with unknown
nonparametric marginals.

3.3.1 Elliptical Copulas

The class of elliptical distributions provides a rich source of multivariate distributions
which share many of the properties of the multivariate normal distribution and en-
ables modelling of multivariate extremes and other forms of nonnormal dependences.
Elliptical copulas are simply the copulas of elliptical distributions. Simulation from
elliptical distributions is easy, and as a consequence of Sklar’s Theorem so is simu-
lation from elliptical copulas. Furthermore, we will show that rank correlation and
tail dependence coefficients can be easily calculated. For further details on ellipti-
cal distributions we refer to Fang, Kotz and Ng (1987) and Cambanis, Huang and
Simons (1981).

Elliptical distributions

Definition 3.3.1. If X is a n-dimensional random vector and, for some µ ∈ Rn and
some nx× n non-negative definite, symmetric matrix Σ, the characteristic function
ϕX−µ(t) of X − µ is a function of the quadratic form t>Σt, ϕX−µ(t) = ϕ(t>Σt), we
say that X has an elliptical distribution with parameters µ, Σ and ϕ, and we write
X ∼ En(µ,Σ, ϕ).

When n = 1, the class of elliptical distributions coincides with the class of one
dimensional symmetric distributions. A function ϕ as in Definition above is called
a characteristic generator.

Theorem 3.3.1. X ∼ En(µ,Σ, ϕ) with rank(Σ) = k if and only if there exist a
random variable R ≥ 0 independent of U , a k-dimensional random vector uniformly
distributed on the unit hypersphere {z ∈ Rk|z>z = 1}, and an n× k matrix A with
AA> = Σ, such that X = µ+RAU .

One practical problem with elliptical distributions in multivariate risk modelling is
that all marginals are of the same type. To construct a realistic multivariate distri-
bution for some given risks, it may be reasonable to choose a copula of an elliptical
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3.3. COPULA MODELS

distribution but different types of marginals (not necessarily elliptical). One big
drawback with such model is that the copula parameter R can no longer be esti-
mated directly from the data. Recall that for non-degenerate elliptical distributions
with finite variances, R is just the usual linear correlation matrix. In such cases,
R can be estimated using (robust) linear correlation estimators. One such robust
estimator is provided by the next theorem. For nondegenerate nonelliptical distribu-
tions with finite variances and elliptical copulas, R does not correspond to the linear
correlation matrix. However, since the Kendall’s tau rank correlation matrix for a
random vector is invariant under strictly increasing transformations of the vector
components, and the next theorem provides a relation between the Kendall’s tau
rank correlation matrix and R for nondegenerate elliptical distributions, R can in
fact easily be estimated from data.

Theorem 3.3.2. Let X ∼ En(µ,Σ, ϕ) with P (Xi = µi) < 1 and P (Xj = µj) < 1.
Then

τ(Xi, Xj) = (1−
∑
x∈R

(P (Xi = x))2)
2

π
arcsin(Rij) (3.12)

where the sum extends over all atoms of the distribution of Xi. If rank(Σ) ≥ 2,
then 3.12 simplifies to

τ(Xi, Xj) = (1− P (Xi = µi)
2)

2

π
arcsin(Rij) (3.13)

Note that if P (Xi = µi) = 0 for all i, which is true for, e.g., multivariate t-
distribution or normal distributions with strictly positive definite dispersion matrices
Σ, then

τ(Xi, Xj) =
2

π
arcsin(Rij)

for all i and j .

The nonparametric estimator of R, sin(πτ̂/2) (dropping the subscript for simplicity),
provided by the above theorem, inherits the robustness properties of the Kendall’s
tau estimator and is an efficient (low variance) estimator of R for both elliptical
distributions and nonelliptical distributions with elliptical copulas.

The Gaussian copula

The classical example of elliptic laws, it is the Gaussian distribution associated with
the choice of

φ(x) = c exp(−x
2

), (3.14)

with c is a normalization constant. The copula associated with the normal
distribution is called the Gaussian copula or the normal copula, denoted CGa

R (u)
with R the linear correlation matrix and it is written as follows

CGa
R (u) = φnR(φ−1(u1), ..., φ−1(un)) (3.15)

where φnR denotes the joint distribution function of the n-variate standard normal
distribution function with linear correlation matrix R, and φ−1 denotes the inverse
of the distribution function of the univariate standard normal distribution. Copulas

31



3.3. COPULA MODELS

of the above form are called Gaussian copulas. In the bivariate case the copula
expression can be written as

CGa
R (u, v) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1

2π
√

1−R2
12

exp{−s
2 − 2Rst

12 + t2

2(1−R2
12)

}dsdt (3.16)

Note that R12 is simply the usual linear correlation coefficient of the corresponding
bivariate normal distribution. Since elliptical distributions are radially symmetric,
the coefficient of upper and lower tail dependence are equal. Hence Gaussian copulas
do not have lower tail dependence. We now address the question of random variate
generation from the Gaussian copula CGa

R .

Student Copulas

Another example of elliptic distribution is the Student distribution with:

ϕ(z) = c
(

1 +
z

v

)− p+v
2

(3.17)

where c is a normalization constant and v ∈ R. The copula associated to the student
multivariate distribution is called the student copula CSt(.,Σ, v).

Let Z = (Z1, ..., Zp)
> ∈ Rp be a random vector following the Student law with v

the degree of liberty and Σ = (ρij), i, j = 1, ..., p the covariance matrix where ρij is
the linear correlation coefficient between Zi and Zj. Note that FSt(.) and FSt(.) are
respectively the distribution functions of Z and Zi, i = 1, ..., p. The Student copula
is defined as follows:

CSt(u1, ..., up,Σ, v) := FSt(F−1
St (u1), ..., F−1

St (up))

=

∫ F−1
St (u1)

−∞
...

∫ F−1
St (up)

−∞

Γ(v+p
2

)

(vπ)
v
2 det(Σ)

1
2 Γ(v

2
)

(
1 +

1

v
t>Σ−1t

)− v+p
2

dt1...dtp, (3.18)

where Γ is the gamma function and t = (t1, ..., tp)
> ∈ Rp.

The student copula density is of the following form

cSt(u1, ..., up,Σ, v) :=
Γ(v+p

2
)[Γ(v

2
)]p−1(1 + 1

v
β>Γ−1β)−

v+p
2

det(Σ)
1
2

[
Γ(v+1

2
)
]p∏p

i=1(1 +
β2
i

v
)−v+12

(3.19)

where β = (β1, ..., betap)
> = (F−1

St (u1), ..., F−1
St (up)) and v > 0.

3.3.2 Archimedean Copulas

This class of copula plays a very important role in the theory of parametric statis-
tics. They allow the construction of a large variety of copula families, and thus to
represent a wide variety of dependency structures. On the other hand, the copulas
thus generated have closed analytical forms and are easy to simulate. Indeed, un-
like elliptic copula, archimedean copula have the great advantage of describing very
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diverse dependency structures.

Let φ : [0, 1] 7→ [0,+∞] be a convex, strictly decreasing and a continued function,
such that φ(1) = 0 and let φ(−1) be the pseudo-inverse of φ. A copula is said to be
Archimedean with the generator function φ if it is formulated as follows

CAr(u1, ..., up) := φ(−1)(φ(u1) + ...+ φ(up)),∀u1, ..., up ∈ [0, 1] (3.20)

The idea behind the archimedean copula with a generator φ is the transformation
ϕ(t) = exp(−φ(u)) applied to the marginals, making them independent.

ϕ(CAr(u1, ..., up)) =

p∏
i=1

ϕ(u1). (3.21)

Gumbel Family

We have the function φ(t) = (−lnt)θ with θ ≥ 0 and t ∈ [0, 1]. This function is
continued, convex, strictly decreasing and is defined from [0, 1] to [0,+∞], hence it
is a generator.

The Gumbel copula is an archimedean copula where the generator function is the
one defined above, hence, The Gumbel copula is written in the following form

CGum(u1, ..., up, θ) := φ(−1)(φ(u1) + ...+ φ(up))

= exp(−[(−lnu1)θ + ...+ (−lnup)θ]
1
θ ) (3.22)

Remark:

If θ = θ0 = 1 the Gumbel copula is equivalent to the independent copula.

Frank Family

The generator of the Frank family copula is as follows:

φ = −ln(
exp(−θt)− 1

exp(−θ)− 1
) (3.23)

where t ∈]0, 1[ and θ ∈ Θ := R\{0}. The Frank copula CFr(., θ) is then of the form:

CFr(u1, ..., up, θ) := −1

θ
ln(1 +

∏p
i=1(exp(−θui)− 1)

(exp(−θ)− 1)p−1
) (3.24)

Remark:

If θ = θ0 = 0 the Frank copula is equivalent to the independent copula.
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Clayton Family

The Clayton family copula is an archimedean copula with the following generator
function:

φ(t) =
t−θ − 1

θ
(3.25)

with θ ∈ Θ := [−1,+∞[\ {0} and t ∈ [0, 1]. The Clayton copula CCl(., θ) is of the
following form:

CCl(u1, ..., up, θ) := max
[(

Σp
i=1u

−θ
i − p+ 1

)
, 0
]− 1

θ (3.26)

Remark:

If θ = θ0 = 0 the Frank copula is equivalent to the independent copula, hence:

CCl(u, 0) = C⊥(u) (3.27)

Ali-Mikhail-Haq Family

The Ali-Mikhail-Haq copula (AMH) belongs to the class of archimedean copula and
for θ ∈ Θ := [−1, 1] and t ∈ [0, 1] its generator is given by

φ(t) = ln
1− θ(1− t)

t
(3.28)

The AMH copula is therefore written in the following form

CAMH(u1, ..., up, θ) :=

∏p
i=1 ui

1− θ(
∏p

i=1(1− ui))
(3.29)

Remark:

If θ = θ0 = 0 the AMH copula is equivalent to the independent copula, hence:

CAMH(u, 0) = C⊥(u) (3.30)

3.3.3 Polynomial Copulas

In this class, copulas are written as polynomials, for more details about this class,
the reader may consult [120]. One of the most common families of polynomial cop-
ula used in practice is the Farlie-Gumbel-Morgenstern (FGM) family [118]. This
copula has a very simple analytical expression, however, it remains limited due to
the small range of degree of dependence.

The FGM copula is defined in the following manner

CFGM(u1, ..., up, θ) :=

[
p∏
i=1

][
1 +

p−1∏
i=1

p∏
j=i+1

θ(1− ui)(1− uj)

]
, θ ∈ Θ := [−1, 1]

(3.31)
In addition, its density is given by
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cFGM(u1, ..., up, θ) := 1 +

p−1∑
i=1

p∑
j=i+1

θ(1− 2ui)(1− 2uj), θ ∈ Θ := [−1, 1] (3.32)

Remark:

If θ = θ0 = 0 the FGM copula is equivalent to the independent copula, hence:

CFGM(u, 0) = C⊥(u) (3.33)

3.4 Copula models summary

To conclude, in table 3.1, we give for the bivariate case, a description of the seven
semiparametric copula models stated above which are the ones used in our sim-
ulation studies : the Gaussian copula, Student (T), Ali-Mikhail-Haq (AMH) [5],
Clayton [34], Farlie-Gumbel-Morgenstern (FGM) [118], Frank [63] and Gumbel [74].

We provide, for each model, the corresponding parameter space Θ and the partic-
ular value θ0 of the parameter θ corresponding to the independence hypothesis of
marginals, i.e., the value θ0 satisfying

C (u1, u2; θ0) = C0 (u1, u2) = u1u2, ∀ (u1, u2)> ∈ [0, 1]2. (3.34)

We give also, for each copula model C(·; θ), the corresponding theoritical Kendall’s
tau, see (3.10),

τC(θ) := 4

∫
[0,1]2

C(u1, u2; θ) dC(u1, u2; θ)− 1, ∀θ ∈ Θ.

Figures 3.1-3.6 present the two-dimensional copulas densities for each model in Table
3.1 as well as the distribution of N = 3000 points generated according to each
model for different values of the parameter θ. For more details on the commonly
semiparametric used copulas, we can refer to [120] and [88].
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3.4. COPULA MODELS SUMMARY

(a) Copula density with θ = 0.2 (b) Distributions with θ = 0.2

(c) Copula density with θ = 0.8 (d) Distributions with θ = 0.8

Figure 3.1: FGM copula
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3.4. COPULA MODELS SUMMARY

(a) Copula density with ρ = 0.4 (b) Distributions with ρ = 0.4

(c) Copula density with ρ = 0.8 (d) Distributions with ρ = 0.8

Figure 3.2: Gaussian copula, ρ : correlation coefficient
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3.4. COPULA MODELS SUMMARY

(a) Copula density with θ = 0.3 (b) Distributions with θ = 0.3

(c) Copula density with θ = 0.9 (d) Distributions with θ = 0.9

Figure 3.3: AMH copula
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3.4. COPULA MODELS SUMMARY

(a) Copula density with θ = 2 (b) Distributions with θ = 2

(c) Copula density with θ = 8 (d) Distributions with θ = 8

Figure 3.4: Clayton copula

40



3.4. COPULA MODELS SUMMARY

(a) Copula density with θ = 4 (b) Distributions with θ = 4

(c) Copula density with θ = 10 (d) Distributions with θ = 10

Figure 3.5: Frank copula
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3.4. COPULA MODELS SUMMARY

(a) Copula density with θ = 2 (b) Distributions with θ = 2

(c) Copula density with θ = 10 (d) Distributions with θ = 10

Figure 3.6: Gumbel copula

42



3.5. COPULA ESTIMATION

3.5 Copula estimation

The copula has the advantage of completely modeling the dependence between ran-
dom variables. In practice, however, the copula is unknown, hence the need to
estimate it. The proposed Approaches for the estimation of a copula are divided
into parametric approaches, semi-parametric and non-parametric. The parametric
approach first proposed by Genest et al [68], assumes a specific model for the copula
and distributions marginal at the same time. Usually we use the method of the max-
imum of complete likelihood (FML) to obtain parameter estimators [22, 88]. We can
jointly estimate the parameters of the marginal distributions and the parameters of
the of copules. One disadvantage of this method is that it requires intensive calcu-
lations and sometimes the optimization problem is difficult to solve. In [89] , Joe
and Xu proposed a two-step procedure called the Margin Inference Function (MIF).
First the parameters of the marginals are estimated, then the copula parameters are
estimated using the method of maximum likelihood. As with MLF, the disadvantage
of this method is that it depends on marginal distribution assumptions [90]. This
approach is widely used in practice because of its simplicity.

Then, the semi-parametric approach, imposes a parametric model for the copula, and
non-parametric for marginal distributions. For example the CML method (Canon-
ical Maximum Likelihood) is a semiparametric approach, where we estimate the
distributions marginal by the empirical distribution, and we use the maximum-of-
average likelihood method to estimate the vector of the parameters of the parametric
copula. This approach is studied in [68, 124]. In [97], the authors compare semi-
parametric and parametric methods for copula estimation.

Finally, the non-parametric approach takes into account both the non-parametric
models for the copula and for the marginal distributions. [46] suggests the empirical
multidimensional distribution to estimate the copula function. In [71], the authors
estimate a copula using a method based on kernel smoothing. For i.i.d data, in
[135], the authors develop an estimator based on Bernstein polynomials.

In what follows, we present the two main methods of copula estimation that we will
use for our approaches. We begin with the kernel methods in the non-parametric
case to estimate a copula, then the Canonical Maximum Likelihood method in the
semi-parametric case to estimate the parameter of a copula.

3.5.1 Non-parametric estimation (Kernel methods)

Kernel estimation [136] is a non-parametric approach to estimation. It is based on
a sample of a statistical population. Let Z ∈ Rp be a random vector and FZ(.) a
distribution function, FZi(.), i = 1, ..., p the marginals and CZ(.) the copula, such as

FZ(z1, ..., zp) := CZ(FZ1(z1), ..., FZp(zp)) (3.35)

Suppose that we have N i.i.d. of Z, denoted Z(1), ..., Z(N). To build the kernel es-
timator we must introduce kernels, i.e., symmetrical, integrable ki functions defined
from R into R+ such that
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3.5. COPULA ESTIMATION

∫
R
ki(z)dz = 1, ..., p (3.36)

we have the p-dimensional kernel

k(z) =

p∏
i=1

ki(xi) (3.37)

and its distribution function

K(z) :=

p∏
i=1

∫ zi

−∞
ki(xi)dxi :=

p∏
i=1

Ki(zi) (3.38)

In the general case, we can consider

k(z, h) =

p∏
i=1

ki(
zi
hi

) and K(z, h) =

p∏
i=1

Ki(
zi
hi

) (3.39)

where h is a diagonal matrix, with elements hi, i = 1, ..., n and a determinant denoted
|h| otherwise called the smoothing window. The individual smoothing windows hi
are functions of N number of samples, such that :

hi → 0 N → +∞ (3.40)

The kernel estimator, named f̂Zi of the density fZi in the point zi is defined as
follows

f̂Zi(zi) :=
1

Nhi

N∑
n=1

ki(
zi − Zi(n)

hi
), i = 1, ..., p (3.41)

The kernel estimator, named f̂Z of the density fZ in the point z = (z1, ..., zp) is
given by:

f̂Z(z) :=
1

N |h|

N∑
n=1

k(z − Z(n), h)

=
1∏p
i=1 hi

N∑
n=1

p∏
i=1

ki(
zi − Zi(n)

hi
)

(3.42)

Therefore, an estimator of the marginal distribution function FZi , at point zi, can
be defined by

F̂Zi(zi) :=
1

N

N∑
n=1

KI(
zi − Zi(n)

hi
) (3.43)
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3.5. COPULA ESTIMATION

and the estimator of the joint distribution function FZ in the point z = (z1, ..., zp)
will be defined as:

F̂Z(z) :=
1

N

N∑
n=1

K(z − Z(n), h)

=
1

N

N∑
n=1

p∏
i=1

Ki(
zi − Zi(n)

hi
)

(3.44)

Suppose that the copula CZ(.) is p-time continuously derivable and therefore it
admits a density, denoted cZ(.). We notice that this density represents the joint
density of the vector U = (U1, ..., Up) = (FZ1(Z1), ..., FZp(Zp)) By applying the same
kind of arguments above, a simple non-parametric estimator of the density cZ(.)
could have the form of a kernel estimator, given by

ĉZ(u) :=
1

N |h|

N∑
n=1

k(u− Û(n), H)

=
1

N
∏p

i=1Hi

N∑
n=1

p∏
i=1

ki(
ui − Ûi(n)

Hi

)

(3.45)

where Û = (Ûi(1), ..., Ûi(N)) = (F̂Zi(Zi(1)), ..., F̂Zi(Zi(N))) and H designates the
matrix of the smoothing window.
The copula CZ estimator on point u = (u1, ..., up)

> is given by

ĈZ(u) :=
1

N

N∑
n=1

K(u− Û(n), H)

=
1

N

N∑
n=1

p∏
i=1

Ki(
ui − Ûi(n)

Hi

)

(3.46)

In practice, we usually chose hi and Hi according to Silverman’s [Sil86] rule, i.e., for
all i = 1, .... , p, we have

hi = (
4

3
)
1
5N

−1
5 σ̂i,

Hi = (
4

p+ 2
)

1
p+4N

−1
p+4 Σ̂i,

where σ̂i is the empirical standard deviation of the sample Zi(1), ...., Zi(N), and Σ̂i

is the empirical standard deviation of (Ûi(1), ..., Ûi(N)) = (F̂Z)
Very often, ki functions are chosen as the standard Gaussian density (null expecta-
tion and unit variance), i.e., for all i = 1, .... , p,

ki(z) = k(z) :=
1√
2π
exp(−1

2
z2) (3.47)

The study of the kernel estimator has been considered by various authors, for more
details we can consult [59, 71, 125, 155] .
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3.5.2 Semi-parametric estimation (CML method)

Let Z ∈ Rp be a random vector of a distribution function F̂Z(.), marginal func-

tions FZi(.), i = 1, ....p and a copula ĈZ . The semi-parametric approach imposes

a parametric model for the copula, ĈZ = ĈZ(., θ), of parameter θ ∈ Θ ⊂ Rp, and
non-parametric for marginal distributions. The semi-parametric estimation method
for estimating the parameters of a copula is also known as the pseudo maximum
likelihood or canonical maximum likelihood. Consider N i.i.d. samples of Z, denoted
Z(1), ...., Z(N), we describe the method as follows

� 1. Estimate the marginals using the kernel method

F̂Zi(zi) :=
1

N

N∑
n=1

Ki(
zi − Zi(n)

hi
) (3.48)

where Ki designates the kernel primitive ki and hi is the smoothing window.

� 2. Estimate the parametric copula by the maximum likelihood method. The
procedure consists in selecting the value of the parameter that maximizes the
pseudo log-likelihood.

`(θ) :=
1

N

N∑
n=1

log
[
cz(F̂Z1(Z1(n)), ..., F̂Zp(Zp(n)), θ)

]
(3.49)

where cZ(., θ) is the copula density, and F̂Zj(.) is an estimate of the marginal
distribution function FZj(.) of the random variable Zj. The maximum log-
likelihood is therefore given by

θ̂ := argθ∈Θmax `(θ) (3.50)

where Θ ⊂ Rd is the parameter space.

For more details the reader can refer to [68, 151].

3.6 Copula model selection and parameter esti-

mation

In the following lines, we briefly expose some procedures for copula model selec-
tion as well as method of estimating the parameter θ from the data. Let S :=
(S1, . . . , Sp)

> ∈ Rp, p ≥ 2, be a random vector with unknown copula CS(·). We as-
sume in this Subsection that training samples of S are available, that is, we dispose
of N i.i.d. realizations s(1), . . . , s(N) of S. The aim is to select, using these sam-
ples, the “best” copula model, among a list of candidates, modeling the dependency
structure of the components of S, and to estimate the associate parameter θ of the
selected model. Assume that CS(·) can be described through a model to be selected
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from a set of candidates

Ml := {Cl(·; θl); θl ∈ Θl ⊂ Rdl}, l = 1, . . . , L. (3.51)

Each Ml is parameterized by θl, a vector of the parameter space Θl, a subset of Rdl .
Model selection can be made using the classical Akaike information criterion (AIC)
[3] or Bayesian information criterion (BIC) [137], derived from the semiparametric
log-likelihood, see e.g. [68, 151]. For all l = 1, . . . , L, we denote by cl(·; θl) the
density of the copula Cl(·; θl); see (3.6).

The AIC, of a given model Ml, is defined by

AIC(l) := −2 sup
θl∈Θl

N∑
n=1

log
(
cl

(
F̂S1(s1(n)), . . . , F̂Sp(sp(n)); θl

))
+ 2 dl, (3.52)

where dl is the dimension of the parameter space Θl, and F̂Si(·) is the “rescaled”
empirical distribution function of the random variable (the component) Si, i =
1 . . . , p, defined by

∀x ∈ R, F̂Si(x) :=
1

N + 1

N∑
n=1

1]−∞,x](si(n)).

The rescaling by N + 1, instead of N , is often used in order to avoid difficulties of
possible unboundedness of the considered copula density cl(u, θl) when ui tends to
1. The BIC, of a given model Ml, is defined by

BIC(l) := −2 sup
θl∈Θl

N∑
n=1

log
(
cl

(
F̂S1(s1(n)), . . . , F̂Sp(sp(n)); θl

))
+log(N) dl. (3.53)

The optimal model in term of AIC (respectively, BIC) is the one minimizing the AIC
(respectively, BIC) value, namely, the density copula model

{
cl∗(·; θl∗); θl∗ ∈ Θl∗ ⊂ Rdl∗

}
,

where

l∗ = arg min
l∈{1,...,L}

AIC(l) (respectively, l∗ = arg min
l∈{1,...,L}

BIC(l)).

Denote, for simplicity,
{
cS(·, θ); θ ∈ Θ ⊂ Rd

}
instead of

{
cl∗(·; θl∗); θl∗ ∈ Θl∗ ⊂ Rdl∗

}
,

the selected model according to one of the above procedures. Following [68, 151],
the parameter θ of the considered copula model can be estimated by maximizing
the semiparametric log-likelihood

θ := arg sup
θ∈Θ

N∑
n=1

log
(
cS

(
F̂S1(s1(n)), . . . , F̂Sp(sp(n)); θ

))
. (3.54)

3.7 Conclusion

In this chapter, we have given recalls on copulas. We have examined some of semi-
parametric copula models by presenting the associated copula density and the dis-
tributions of points. Then, we have shown how we can select the best copula model
among a list of candidate copula models and finally how we can estimate the asso-
ciated parameter of the chosen copula model.
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Chapter 4

Introduction to Alpha-divergence

4.1 Introduction

The choice of an appropriate measure of distance has always been a study subject due
to its importance for many applications of probability theory. In this chapter we go
into details about divergences giving extra attention to the alpha-divergence due to
its particular importance, applicability and generality of multiple other known and
widely used divergences such as the Kullback-Leibler divergence and the Hellinger
divergence.

4.2 Divergences

The idea of divergences, which in some sense assess how ’close’ two probability dis-
tributions are from one another, has been widely employed in probability, statistics,
information theory, and related fields. However divergence is a weaker notion than
that of the distance, in particular the divergence need not be symmetric (that is, in
general the divergence from p to q is not equal to the divergence from q to p), and
need not satisfy the triangle inequality.

Suppose S is a space of all probability distributions with common support. Then a
divergence on S is a function D(. || .) : S × S → R satisfying

1. D(p || q) ≥ 0 for all p, q ∈ S,

2. D(p || q) = 0 if and only if p = q

The two most important divergences are the relative entropy (Kullback–Leibler di-
vergence, KL divergence), which is central to information theory and statistics, and
the squared Euclidean distance (SED). Minimizing these two divergences is the main
way that linear inverse problem are solved, via the principle of maximum entropy
and least squares, notably in logistic regression and linear regression.

The two most important classes of divergences are the f-divergences and Bregman
divergences; however, other types of divergence functions are also encountered in
the literature. The only divergence that is both an f-divergence and a Bregman
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4.2. DIVERGENCES

divergence is the Kullback–Leibler divergence; the squared Euclidean divergence is
a Bregman divergence.

We will talk in the following about these two families of divergences but giving more
details and insights on the divergences that interest us which are the Kullback-
Leibler divergence and the Alpha divergence.

4.2.1 f-divergences

Let f : (0,∞) → R be a convex function with f(1) = 0. Let P and Q be two
probability distributions on a measurable space (χ, F ). If P � Q then the f -
divergence is defined as

Df (P ‖ Q) , EQ
[
f

(
dP

dQ

)]
(4.1)

where dP
dQ

is a Radon-Nikodyn derivative and f(0) , f(0+). More generally, let

f ′(∞) , limx→0xf(1/x). Suppose that Q(dx) = q(x)µ(dx) and P (dx) = p(x)µ(dx)
for some common dominating µ, then we have

Df (P ‖ Q) =

∫
q>0

q(x)f

(
p(x)

q(x)

)
dµ+ f ′(∞)P [q = 0] (4.2)

with the agreement that if P [q = 0] = 0 the last term is taken to be zero regardless
of the value of f ′(∞) (which could be infinite).

For the discrete case, with Q(x) and P (x) being the respective probabilities distri-
bution functions, we can also write

Df (P ‖ Q) =
∑
x

Q(x)f

(
P (x)

Q(x)

)
(4.3)

with the understanding that

� f(0) = f(0+),

� 0f(0
0
) = 0, and

� 0f(α
0
) = limx→0xf(a

x
) = af ′(∞)for a > 0

f -divergences have been introduced in the sixties [6, 44] and then again in the sev-
enties [3]. Kullback-Leibler divergence, Hellinger distance, χ2 divergence, Csiszar
α-divergence, Squared Hellinger distance, Le Cam distance, Jensen-Shannon diver-
gence and Kolmogorov total variation distance are some well known instances of
f-divergences. Other instances may be found in [98, 99, 109].

f -divergences can usefully play the role of surrogate functions, that are functions
majorizing or minorizing the objective or the risk functions at hand. For example,
f-divergences are used for defining loss functions that yield Bayes consistency for
joint estimation of the discriminant function and the quantizer in [121], as surro-
gate functions for independence and ICA in [116], and the α-divergence is used in
[115] as a surrogate function for maximizing a likelihood in an EM-type algorithm.
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Bounds on the minimax risk in multiple hypothesis testing and estimation problems
are expressed in terms of the f-divergences in [18, 75], respectively.

f-divergences, used as general (entropic) distance-like functions, allow a non-smooth
non-convex optimization formulation of the partitioning clustering problem, namely
the problem of clustering with a known number of classes, for which a generic itera-
tive scheme keeping the simplicity of the k-means algorithm is proposed in [143, 144].

Nonnegative matrix factorization (NMF), of widespread use in multivariate analysis
and linear algebra [52], is another topic that can be addressed with f-divergences.
For example, NMF is achieved with the aid of Kullback divergence and alternating
minimization in [60], Itakura-Saito divergence in [61], f-divergences in [30], or alpha-
divergences in [31, 100]; see also [32].

4.2.2 Bergman divergences

Bregman divergences, are defined for vectors, matrices, functions and probability
distributions. The Bregman divergence between vectors is defined as:

Dϕ(x, y) = ϕ(x)− ϕ(y)− (x− y)>∇ϕ(y) (4.4)

with ϕ a differentiable strictly convex function Rd → R. The symmetrized Bregman
divergence writes:

D̄ϕ(x, y) = (∇ϕ(x)−∇ϕ(y))>(x− y) (4.5)

The Bregman matrix divergence is defined as:

Dφ(X, Y ) = φ(X)− φ(Y )− Tr((∇φ(Y ))>(X − Y )) (4.6)

for X, Y real symmetric dxd matrices, and φ a differentiable strictly convex function
Sd → R.

For φ(X) = ln | X |, the divergence (4.6) is identical to the distance between two
positive matrices defined as the Kullback-Leibler divergence between two Gaussian
distributions having those matrices as covariance matrices.

The Bregman divergence between probability densities is defined as

Dϕ(p, q) =

∫
(ϕ(p)− ϕ(q)− (p− q)ϕ′(q))dx (4.7)

One important instance of the use of Bregman divergences for learning is the case of
inverse problems [103] , where convex duality is extensively used. Convex duality is
also used for minimizing a class of Bregman divergences subject to linear constraints
in [47], whereas a simpler proof using convex analysis is provided in [16], and the
results are used in [35].

Mixture models are estimated using Bregman divergences within a modified EM
algorithm in [65]. Learning continuous latent variable models with Bregman di-
vergences and alternating minimization is addressed in [157]. The use of Bregman
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divergences as surrogate loss functions for the design of minimization algorithms
for learning that yield guaranteed convergence rates under weak assumptions is
discussed in [122]. Learning structured models, such as Markov networks or combi-
natorial models, is performed in [142] using large-margin methods, convex-concave
saddle point problem formulation and dual extra-gradient algorithm based on Breg-
man projections. Proximal minimization schemes handling Bregman divergences
that achieve message passing for graph-structured linear programs (computation of
MAP configurations in Markov random fields) are investigated in [131].

There are also many instances of application of Bregman divergences for solving
clustering problems. Used as general (entropic) distance-like functions, they allow
a non-smooth non-convex optimization formulation of the partitioning clustering
problem, for which a generic iterative scheme keeping the simplicity of the k-means
algorithm is proposed in [152]. Clustering with Bregman divergences unifying k-
means, LBG and other information theoretic clustering approaches is investigated
in [14], together with a connection with rate distortion theory.

Nonnegative matrix approximation with low rank matrices is discussed in [50],
whereas matrix approximation based on the minimum Bregman information princi-
ple (generalization to all Bregman loss functions of MaxEnt and LS principles) is the
topic of [13]. Nonnegative matrix factorization (NMF) with Bregman divergences
is addressed in [31]; see also [32]. The particular case of using the density power
divergence and a surrogate function for NMF is investigated in [62].

4.3 The Kullback-Leibler divergence

To measure the difference between two probability distributions over the same vari-
able x, a measure, called the Kullback-Leibler divergence, or simply, the KL diver-
gence, has been popularly used. The concept was originated in probability theory
and information theory.

The KL divergence, which is closely related to relative entropy, information di-
vergence, and information for discrimination, is a non-symmetric measure of the
difference between two probability distributions p(x) and q(x). Specifically, the
Kullback-Leibler (KL) divergence of q(x) from p(x), denoted DKL(p(x), q(x)), is a
measure of the information lost when q(x) is used to approximate p(x).

Let p(x) and q(x) are two probability distributions of a discrete random variable x.
That is, both p(x) and q(x) sum up to 1, and p(x) > 0 and q(x) > 0 for any x in
X. DKL(p(x), q(x)) is defined in Equation (4.8):

DKL(p(x) || q(x)) =
∑
x∈X

p(x)ln
p(x)

q(x)
(4.8)

The KL-divergence measures the expected number of extra bits required to code
samples from p(x) when using a code based on q(x), rather than using a code based
on p(x). Typically p(x) represents the ’true’ distribution of data, observations, or a
precisely calculated theoretical distribution. The measure q(x) typically represents
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4.3. THE KULLBACK-LEIBLER DIVERGENCE

a theory, model, description, or approximation of p(x). The continuous version of
the KL-divergence is

DKL(p(x) || q(x)) =

∫ ∞
−∞

p(x)ln
p(x)

q(x)
dx (4.9)

Although the KL divergence measures the ’distance’ between two distributions, it
is not a distance measure. This is because that the KL divergence is not a metric
measure. It is not symmetric: the KL from p(x) to q(x) is generally not the same as
the KL divergence from q(x) to p(x). Furthermore, it need not to satisfy triangular
inequality. Nevertheless, DKL(P || Q) is a non-negative measure. DKL(P || Q) ≥ 0
and DKL(P || Q) = 0 if and only if P = Q.

Having defined KL-divergence, we may now describe the information content be-
tween two random variables X and Y . The mutual information I(X, Y ) between
X and Y is the KL-divergence between their joint distribution and their products
(marginal) distributions. More mathematically,

I(X, Y ) =
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)
(4.10)

We can rewrite this in several ways. First, using Bayes’ rule, we have p(x, y)/p(y) =
p(x | y), so

I(X, Y ) =
∑
x,y

p(y)p(x | y)log
p(x | y)

p(x)

= −
∑
x

∑
y

p(y)p(x | y)logp(x) +
∑
y

p(y)
∑
x

p(x | y)logp(x | y)

= H(X)−H(X | Y ).

(4.11)

Similarly, we have I(X, Y ) = H(Y ) − H(Y | X), so mutual information can be
thought of as the amount of entropy removed (on average) in X by observing Y .
We may also think of mutual information as measuring the similarity between the
joint distribution of X and Y and their distribution when they are treated as inde-
pendent.

Comparing the definition (4.10) to that for KL-divergence, we see that if PXY is the
joint distribution of X and Y , while PX and PY are their marginal distributions
(distributions when X and Y are treated independently), then

I(X, Y ) = Dkl(PXY || PXPY ) ≥ 0. (4.12)

Moreover, we have I(X, Y ) > 0 unless X and Y are independent.
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4.4 The α-divergence

The alpha-divergence also known as the Renyi divergence is related to Renyi entropy
much like Kullback-Leibler divergence is related to Shannon’s entropy, and comes
up in many settings. It was introduced by Renyi as a measure of information that
satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a
parameter that is called its order. In particular, the Renyi divergence of order 1
equals the Kullback-Leibler divergence. so in a way the alpha divergence is a gen-
eralization of the kullback-leibler divergence

Shannon entropy and Kullback-Leibler divergence (also known as information di-
vergence or relative entropy) are perhaps the two most fundamental quantities in
information theory and its applications. Because of their success, there have been
many attempts to generalize these concepts, and in the literature one will find nu-
merous entropy and divergence measures. Most of these quantities have never found
any applications, and almost none of them have found an interpretation in terms of
coding. The most important exceptions are the Renyi entropy and Renyi divergence.
Renyi divergence appears as a crucial tool in proofs of convergence of minimum de-
scription length and Bayesian estimators, both in parametric and nonparametric
models. and one may recognize it implicitly in many computations throughout in-
formation theory. It is also closely related to Hellinger distance, which is commonly
used in the analysis of nonparametric density estimation.

4.4.1 Definition and properties

Denote by L and G be two probabilities on RM where G is absolutely continuous
with respect to P . Given a convex function ϕ : [0,+∞] → [0,+∞] such that
ϕ(1) = 0, we define the ϕ-divergence between G and L as follows:

Dϕ(G,L) :=

∫
RM

ϕ

(
dG

dL
(t)

)
dP (t), (4.13)

where

(
dG

dL

)
(·) stands for the Radon-Nikodym derivative of G with respect to L.

We define ϕ(0/0) = 0 and ϕ(b/0) = lim
t→0

t ϕ(b/t) = lim
s→∞

ϕ(s)/s. If G is not absolutely

continuous with respect to L, then we set Dϕ(G,L) = +∞. Note that if g(·) and
l(·) are respectively the densities of G and L, with respect to the Lebesgue measure
on RM , the α-divergence between the two probabilities (4.13) is formulated in this
case as follows:

Dϕ(G,L) :=

∫
RM

ϕ

(
q(t)

l(t)

)
l(t)d(t). (4.14)

We are interested in the class of the so-called ”power divergences” especially the
α-divergence that belongs to ϕ-divergences which was introduced by [43], using the
following real convex functions ϕα(y) for different values of α

yα − αy + α− 1

α(1− α)
, ∀α ∈ R \ {0, 1}, (4.15)

− log(y) + y − 1, α = 0, (4.16)
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y log(y)− y + 1, α = 1. (4.17)

The ϕ−divergence has many properties such as:

• Nonnegativity The ϕ−divergence is always nonnegative, and equal to zero if
and only if probability densities p(x) = q(x). This can be done by the Jensens
inequality

Dϕ(Q,P ) =

∫
RM

ϕ

(
q(t)

p(t)

)
p(t)d(t) ≥ ϕ

(∫
RM

q(t)

p(t)
p(t)d(t)

)
ϕ(1) = 0. (4.18)

• Convexity ∀ 0 ≤ β ≤ 1 we have

Dϕ(βQ1 + (1− β)Q2, βP1 + (1− β)P2) ≤ βDϕ(Q1, P1) + (1− β)Dϕ(Q2, P2). (4.19)

• Scaling ∀λ > 0 we get

λDϕ(Q,P ) = Dλϕ(Q,P ). (4.20)

• Invariance The ϕ−divergence is invariant to bijective transformations [6], i.e. Let
f = k(t) be a bijective transformation, P (t) and P̃ (f) be respectively the probability
distribution of t and f ,then

Dϕ(Q,P ) = Dϕ(Q̃, P̃ ). (4.21)

• Boundedness If the following limit exists and it is finite, ϕ−divergence for pos-
itive densities is bounded see [107, 153]

0 ≤ Dϕ(Q,P ) ≤ lim
t→0+

(ϕ(t) + tϕ(1/t)). (4.22)

Furthermore we have the following inequality see [53]

0 ≤ Dϕ(Q,P ) ≤
∫

(q(t)− p(t))ϕ′(q(t)
p(t)

)d(t). (4.23)

• Symmetricity It is possible to construct a symmetric divergence from the ϕ−
divergence by

ϕs(t) = ϕ(t) + ϕ∗(t). (4.24)

In the following, we denote by Dα the alpha-divergence. Similar to the KL
divergence, these properties allow us to minimize the α-divergence in order to find
the best approximating distribution q(x) in some class of potential approximations.
There are several special cases for various values of α that are of interest to us.
The most important cases are The well known Kullback Leibler divergence and its
modified version:

limα→0Dα(p ‖ q) = KL(q ‖ p) (4.25)

limα→1Dα(p ‖ q) = KL(p ‖ q) (4.26)

Hence the α-divergences include the KL divergences as a special case. Other special
cases are
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D−1(p ‖ q) =
1

2

∫
(q(x)− p(x))2

q(x)
dx (4.27)

D2(p ‖ q) =
1

2

∫
(q(x)− p(x))2

p(x)
dx (4.28)

D 1
2
(p ‖ q) = 2

∫
(
√
p(x)−

√
q(x))2dx (4.29)

D 1
2

is known as the Hellinger distance.
√
D 1

2
is a valid distance metric (it satisfies

both the traingle inequality and symmetric properties).

Table 4.1 gives, according to the choice of ϕα, the associated Dα-divergence.

The function ϕα ϕ−1 ϕ0 ϕ1/2 ϕ1 ϕ2

The divergence Dα X 2
m KLm H KL X 2

Table 4.1: Examples of standard divergences.

4.4.2 α-divergence as a cost function

Let Z := (Z1, . . . , Zp)
> ∈ Rp, p ≥ 1, a random vector. The α-divergence Dα

between the product density
p∏
i=1

fZi(·) of the marginal densities fZi of the components

Zi, i ∈ {1, . . . , p}, and the joint density fZ(·) of the random vector Z, is given as
follows:

Dα

(
p∏
i=1

fZi , fZ

)
:=

∫
Rp
ϕα


p∏
i=1

fZi(zi)

fZ(z)

 fZ(z)dz1, . . . , dzp,

:= E

ϕα


p∏
i=1

fZi(Zi)

fZ(Z)


 ,

(4.30)

with E corresponds to the mathematical expectation.

This measure Dα

(
p∏
i=1

fZi , fZ

)
is always positive and only reaches zero, the minimum

value, if
p∏
i=1

fZi(·) = fZ(·), in other words, when the components of the random vector

Z are mutually independent.
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4.5 Conclusion

In this chapter we gave an overview on α-divergences and its properties. It should
be stated that it has been proved that the use of α-divergences lead to better results
compared with mutual information especially for noisy mixture signals [54]. We
expect that we have the same results for dependent sources.
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Blind source separation for
independent and dependent

sources
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Chapter 5

Instantaneous BSS via copulas

5.1 Introduction

For separating linear instantaneous mixtures of independent/dependent source com-
ponents, a new blind source separation (BSS) technique was proposed. The proposed
approaches are based on minimizing the kullback-leibler divergence between copula
densities. They cover the more general case in which the source components’ depen-
dency structure and/or the associated parameter are unknown. Many simulation
results are presented, demonstrating that the proposed algorithms ensure accurate
separation in situations where other approaches fail.

5.2 The proposed methodology

Let Y = (Y1, . . . , Yp)
> ∈ Rp be any random vector, with continuous marginal dis-

tribution functions FY1(·), . . . , FYp(·), joint probability density fY (·), and marginal
probability densities fY1(·), . . . , fYp(·). It has been shown in [96] that the Mutual
Information (MI) of Y can be written as the Kullback-Leibler divergence between
the copula density cY of the random vector Y and the copula density c0 of inde-
pendence. In fact, by changing variables in the integral and using the relation (3.8),
we can write

MI(Y ) :=

∫
Rp

log

 fY (y)
p∏
i=1

fYi(yi)

 fY (y) dy

=

∫
[0,1]p

log

(
cY (u)

1

)
cY (u) du

=

∫
[0,1]p

log

(
cY (u)

c0(u)

)
cY (u) du (5.1)

=: KL (cY , c0)

= E
[
log
(
cY (FY1(Y1), . . . , FYp(Yp))

)]
, (5.2)

where E(·) denotes the mathematical expectation. By definition the integral in
(5.1) is, the Kullback-Leibler divergence between cY and c0. Note that the criterion
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KL (cY , c0) is always nonnegative, and

KL (cY , c0) = 0 iff cY (u) = c0(u), ∀u ∈ [0, 1]p. (5.3)

To put it another way, KL (cY , c0) ≥ 0, and KL (cY , c0) = 0 if and only if the
components of the vector Y are independent.

We present three different BSS procedures, depending on whether or not training
samples of the sources are available, and/or whether or not prior knowledge about
their dependency structure is available. In what follows

• We assume that the random (vector) processes s(t), x(t) and y(t) = Bx(t),
t ∈ [0, T ], are stationary, so that the corresponding sampled versions, with
certain time period, say Te, ∀n = 1, . . . , Nt,

s(n) := s(nTe), x(n) := x(nTe) and y(n) := y(nTe) = Bx(n), (5.4)

can be viewed as realizations of random vectors in Rp, which will be denoted,
respectively, by

S, X and Y := BX; (5.5)

• The source components may be statistically dependent with unknown semi-
parametric copula density {cS(·; θ); θ ∈ Θ ⊂ R}. We introduce the following
objective function

B 7→ KL (cY , cS(·; θ)) :=

∫
[0,1]p

log

(
cY (u)

cS(u; θ)

)
cY (u) du (5.6)

= E

[
log

(
cY
(
FY1(Y1), . . . , FYp(Yp)

)
cS
(
FY1(Y1), . . . , FYp(Yp); θ

))] . (5.7)

The integral (5.6) is, by definition, the Kullback-Leibler divergence between
the copula density of the random vector Y and the copula density of the ran-
dom source vector S.

• For the proposed algorithms dealing with linear instantaneous mixtures of
dependent source components (we limit ourselves to the case of two mix-
tures/two sources), we provide numerous simulation results. As synthetic
source signals, we will use two RGB images,“Lena” and “Barbara”. For es-
timating the proposed criteria and the demixing matrix, each image will be
converted to grayscale, and will be considered as 1d-signal of dimension Nt =
512 × 512 = 562144 pixels. To select a model of the semiparametric copula
density {cS(FS1(·), FS2(·); θ); θ ∈ Θ ⊂ R} of the source vector S = (S1, S2)>,
we apply the AIC model selection step, see Subsection 3.6, among seven cop-
ula models : T, Gaussian, Clayton, FGM, AMH, Frank, and Gumbel. We
mixed the image sources using the mixing matrix A = [1 0.7; 0.7 1]. In order
to estimate the proposed separation criteria and the demixing matrix, we use
N = 3000 � Nt = 512 × 512 (vector) observations randomly sampled with
replacement from the whole (vector) signal y(n), n = 1 . . . , Nt.
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The simulation results will be compared to some well-known instantaneous
ICA approaches results under the same conditions: [54] (MI), [23] (JADE),
[83] (FastICA), [117] (RADICAL) and [17] (InfoMax). All simulations are
repeated 100 times.

The signal-to-noise ratio SNR (dB) and the peak signal-to-noise ratio PSNR (dB)
are used to assess the accuracy of source estimation, and they are defined re-
spectively by:

SNRi := 10 log10

∑N
n=1 si(n)2∑N

n=1 (ŝi(n)− si(n))2

and

PSNRi := 10 log10

max
n=1,...,Nt

si(n)2

1
Nt

∑Nt
n=1 (ŝi(n)− si(n))2

, i = 1, 2.

5.2.1 Procedure 1 : Both the copula model and the param-
eter are known

We assume that the copula density model of the sources is known and has a known
parameter. If it is not the case, We assume that we have training samples s(1), . . . , s(N) ∈
Rp of the source vector S.

We may use the model selection procedure described in Subsection 3.6 to select a
model from these training samples, among a collection of semiparametric copula
density models Ml := {cl(·; θl); θl ∈ Θl ⊂ R}, ∀ l = 1, . . . , L. Denote {cS(·; θ); θ ∈
Θ ⊂ R}, the selected model, and θ the corresponding estimated parameter; see
(4.27). The criterion function B 7→ KL

(
cY , cS(·; θ)

)
is nonnegative, and achieves

its minimum value zero iffB = A−1 (up to scale and permutation indeterminacies of
rows), i.e., A−1 = arg inf

B
KL

(
cY , cS(·; θ)

)
, provided that the copula density cS(·; θ)

of the random vector source S satisfies the following assumption (A.1): for any
regular matrix M , if the copula density of MS is equal to cS(·; θ), then M = DP ,
for some diagonal matrix D and permutation matrix P . To achieve separation, we
propose to minimize with respect to B some statistical estimate K̂L

(
cY , cS(·; θ)

)
,

to be defined below, of the criterion

KL
(
cY , cS(·; θ)

)
= E

[
log

(
cY (FY1(Y1), . . . , FYp(Yp))

cS(FY1(Y1), . . . , FYp(Yp); θ)

)]
, (5.8)

constructed from the data y(1), . . . ,y(N). The demixing matrix is then estimated
by

B̂ := arg inf
B
K̂L

(
cY , cS(·; θ)

)
. (5.9)

In view of (5.8), using a “plug-in” statistical estimation method, we propose the
following estimate of the above criterion KL

(
cY , cS(·; θ)

)
K̂L

(
cY , cS(·; θ)

)
:=

1

N

N∑
n=1

log

(
ĉY (F̂Y1(y1(n)), . . . , F̂Yp(yp(n)))

cS(F̂Y1(y1(n)), . . . , F̂Yp(yp(n)); θ)

)
, (5.10)
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where

ĉY (u) :=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1

k

(
F̂Yj(yj(m))− uj

Hj

)
,∀u ∈ [0, 1]p, (5.11)

is the kernel estimate of the copula density cY (·), and F̂Yj(x), j = 1, . . . , p, is the
smoothed estimate of the marginal distribution function FYj(x) of the random vari-
able Yj, at any real value x ∈ R, defined by

F̂Yj(x) :=
1

N

N∑
m=1

K

(
yj(m)− x

hj

)
, ∀j = 1, . . . , p, (5.12)

where K(·) is the primitive of a kernel k(·), a symmetric centered probability density.
In our forthcoming simulation study, we will use the triangular kernel

k(x) = (1− |x|)1[−1,1](x),∀x ∈ R.

A more appropriate choice of the kernel k(·), for estimating the copula density, can
be done according to [125], which copes with the boundary effect. The bandwidth
parameters H1, . . . , Hp and h1, . . . , hp in (5.11) and (5.12) will be chosen according
to Silverman’s rule of thumb, see [138], i.e., for all j = 1, . . . , p, we take

Hj =

(
4

p+ 2

) 1
p+4

N
−1
p+4 Σ̂j, and hj =

(
4

3

) 1
5

N
−1
5 σ̂j,

where σ̂j and Σ̂j are, respectively, the empirical standard deviation of the data

yj(1), . . . , yj(N) and F̂Yj(yj(1)), . . . , F̂Yj(yj(N)). The solution B̂, the estimate of the
demixing matrix, can be computed by a descent gradient algorithm, taking as initial
matrix B0 = Ip, the p × p identity matrix. The gradient in B of K̂L

(
cY , cS(·; θ)

)
can be computed from the proper definitions of the estimates as follows

dK̂L
(
cY , cS(·; θ)

)
dB

=
1

N

N∑
n=1

d

dB
ĉY (F̂Y1(y1(n)), . . . , F̂Yp(yp(n)))

ĉY (F̂Y1(y1(n)), . . . , F̂Yp(yp(n)))

−

d

dB
cS(F̂Y1(y1(n)), . . . , F̂Yp(yp(n)); θ)

cS(F̂Y1(y1(n)), . . . , F̂Yp(yp(n)); θ)
,

where
d

dB
:=

(
∂

∂Bij

)
ij

, i, j = 1, . . . , p, and

∂ĉY (F̂Y1(y1(n)), . . . , F̂Yp(yp(n)))

∂Bij

=

1

NH1 · · ·Hp

N∑
m=1

p∏
j=1,j 6=i

k

(
F̂Yj(yj(m))− F̂Yj(yj(n))

Hj

)

× k′
(
F̂Yi(yi(m))− F̂Yi(yi(n))

Hi

)
1

Hi

∂(F̂Yi(yi(m))− F̂Yi(yi(n)))

∂Bij
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with

∂(F̂Yj(yj(m))

∂Bij

=
1

Nhi

N∑
l=1

k

(
yi(l)− yi(m)

hi

)
(xj(l)− xj(m)), ∀i, j = 1, . . . , p.

Simulation results

We present some simulation results to demonstrate the efficacy of procedure 1
mentioned above. In order to choose a copula density model. We apply the
AIC model selection step among seven candidate models : T, Gaussian, FGM,
Clayton, AMH, Frank, and Gumbel, in order to select a copula density model
{cS(FS1(·), FS2(·); θ); θ ∈ Θ ⊂ R} for the source vector S. The parameter θ will be

estimated by θ given in (4.27). The separating matrix B̂, defined in (5.9), is com-
puted using descent gradient algorithm taking the identity matrix for initialization,
and descent gradient parameter µ = 0.1. In order to assess the visual quality, part
of each image has been zoomed.

As sources, we consider the two well-known images “Lena” and “Barbara” shown
in Figures 5.1a and 5.1b, respectively. The corresponding empirical Kendall’s tau
is τ̂(S) = −0.1420. The AIC model selection step provides AMH copula with
θ = −0.7300 for modeling the dependency structure of the components of S. The
Kendall’s tau of the selected copula is τC(θ) = −0.1403. The mixtures x(n), n =
1, . . . , Nt, using the mixing matrix A = [1 0.8; 0.8 1] are shown in Figures 5.2a and
5.2b. The empirical Kendall’s tau, of the mixtures, is τ̂(X) = 0.9999. Figure 5.3
show the estimated images obtained by applying procedure 1. These results are com-
pared with the ones obtained by MI method, see Figure 5.4. For more assessment,
the mean of the SNRs reached by, procedure 1 and MI method, are also plotted; see
Figure 5.5a. Figure 5.5b and 5.6a illustrate, respectively, the separation criterion
and τ̂(Y ) values vs iterations; we can see that the proposed separation criterion
converges to zero, and τ̂(Y ) converges to τ̂(S), when the separation is achieved.
Table 5.1 shows the PSNR and the SNR final values for each method. The proposed
one provides better results.
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(a) Lena (b) Barbara

Figure 5.1: The source images: Lena and Barbara

(a) Mixed image 1 (b) Mixed image 2

Figure 5.2: The mixed ones
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(a) (b)

Figure 5.3: Image separation results: Procedure 1 with AMH copula

(a) (b)

Figure 5.4: Image separation results: MI method
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(a) (b)

Figure 5.5: (a) SNRs versus iterations. (b) Criterion values vs iterations

(a)

Figure 5.6: (a) τ̂(Y ) values vs iterations

SNR (dB) PSNR (dB)

MethodsSources Lena Barbara Lena Barbara

AMH copula 37.0974 37.2727 42.7985 43.2834

MI 25.4432 25.2853 35.1233 34.7318

JADE 23.670 24.2969 31.6743 32.9167

RADICAL 26.5644 21.9602 33.7704 31.1324

FastICA 32.6820 14.6023 24.8379 9.68362

InfoMax 6.4597 6.3073 13.0119 11.5812

Sobi 15.6025 15.0689 19.7859 20.5176

Table 5.1: PSNR and final values of SNR for Procedure 1: Lena and Barbara
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5.2.2 Procedure 2 : The copula model is known and the
parameter is unknown

In this Subsection, we have not at hand training samples of the source vector S.
We assume that the copula density model of the source components is known with
unknown parameter θ; denote it {cS(·; θ); θ ∈ Θ ⊂ R}. Since θ is unknown, we
propose to consider, instead of (5.9), the following estimate of the demixing matrix

B̂ = arg inf
B

inf
θ∈Θ

K̂L (cY , cS(·; θ)) , (5.13)

which can be computed using gradient descent algorithm on both B and θ of the
criterion function (B, θ) 7→ K̂L (cY , cS(·; θ)). Note that B 7→ inf

θ∈Θ
KL (cY , cS(·; θ))

is nonnegative and achieves its minimum value zero iff B = A−1 (up to scale and
permutation indeterminacies), provided that the copula density model {cS(·; θ); θ ∈
Θ ⊂ R} of S satisfies the following assumption (A.2): for any regular matrix M ,
if the copula density, of MS, belongs to {cS(·; θ); θ ∈ Θ ⊂ R}, then M = DP ,
where D is diagonal and P is a permutation. The estimates of copula density and
the marginal distribution functions are defined as before. The gradient in B can be
explicitly computed in similar way as in Subsection 5.2.1.

Simulation results

The efficiency of the separation approach described in procedure 2 is illustrated
through the example using the same source images as above.

The dependency structure of the sources (Lena and Barbara) is modeled by AMH
copula model with unknown parameter θ ∈ Θ = [−1, 1]. From Figure 5.10b, we
can see that the iterated values of θ, in the descent gradient, converges to the value
θ = −0.7834, which is close to θ = −0.7300. The separation results are illustrated
in Figure 5.7. see Figure 5.9a for the corresponding SNR’s. In Table 5.2, are
listed, PSNR and SNR final values, for all methods. Our separation criterion, as in
procedure 1, converges to 0; see Figure 5.9b.
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(a) (b)

Figure 5.7: Separation results: procedure 2 with AMH copula model

(a) (b)

Figure 5.8: Separation results: MI method

67



5.2. THE PROPOSED METHODOLOGY

(a) (b)

Figure 5.9: (a) SNRs vs iterations. (b) Criterion values vs iterations

(a) (b)

Figure 5.10: (a) τ̂(Y ) values vs iterations. (b) θ values vs iterations

SNR (dB) PSNR (dB)

MethodsSources Lena Barbara Lena Barbara

AMH copula 36.8855 37.7672 41.5766 42.8188

MI 25.2245 25.9652 34.6609 34.8630

JADE 23.7372 24.3083 31.7770 32.8642

RADICAL 26.5328 22.0524 33.7738 31.1744

FastICA 33.4141 14.7283 21.3899 9.3695

InfoMax 6.4384 6.2929 13.0407 11.6043

Sobi 15.5965 15.0662 19.6044 20.0678

Table 5.2: PSNR and final values of SNR for Procedure 2: Lena and Barbara
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5.2.3 Procedure 3 : The model and the parameter are un-
known

We consider now the case where there is no prior information neither about the
copula density model, of the source components, nor about the parameter θ. We
propose the following methodology. We consider a set of K candidate models, for
the source copula density,

Mk := {ck(·; θk); θk ∈ Θk ⊂ R}, k = 1, . . . , K. (5.14)

Assume that each model Mk, k = 1, . . . , K, satisfies the identifiability condition
(A.2) of Subsection 5.2.2. Then the criterion function

B 7→ min
k=1,...,K

inf
θk∈Θk

KL (cY , ck(·; θk)) (5.15)

is nonnegative and achieves its minimum value zero iff B = A−1 (up to scale and
permutation indeterminacies). As a result, we suggest that for each model, we
use the method described in Subsection 5.2.2 and then choose the solution that
minimizes the criterion across all models, i.e., to estimate the demixing matrix by

B̂ := arg inf
B

inf
θk∗∈Θk∗

K̂L (cY , ck∗(·; θk∗)) , (5.16)

where
k∗ = arg min

k=1,...,K
inf
B

inf
θk∈Θk

K̂L (cY , ck(·; θk)) . (5.17)

Simulation results

The efficiency of procedure 3 will be illustrated through three examples. We con-
sider the same source images as above. Moreover, we will deal with a real case from
the recto-verso separation problem.

For separating the mixtures of Lena and Barbara, we apply procedure 3 using the
seven candidate models mentioned in Section 5.2. It follows that the best separation
has been obtained through AMH copula model with θ = −0.7284. Figure 5.11 shows
the restored images using procedure 3 and MI method, while Figure 5.13a illustrate
the SNR mean of each copula model compared to the MI one. We can see that all
copula models give better results than the MI method, and that the AMH copula
model leads to the best separation. Figures 5.13b and 5.14a illustrate, respectively,
the convergence to 0 of the criterion value, and the convergence of τ̂(Y ) values to
τ̂(S). Table 5.3 summarizes the PSNR and the SNR final values of each copula
model and the other methods. The final separation criterion and τ̂(Y ) values are
listed in Table 5.4.
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(a) (b)

Figure 5.11: Separation results: Procedure 3 with no prior information

(a) (b)

Figure 5.12: Separation results: MI method
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(a) (b)

Figure 5.13: (a) SNRs vs iterations. (b) Criterion values vs iterations

(a) (b)

Figure 5.14: (a) τ̂(Y ) values vs iterations. (b) θ values vs iterations
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SNR (dB) PSNR (dB)

Methods Lena Barbara Lena Barbara

MI 25.5387 24.9402 34.6560 34.1124

FGM 34.6091 33.8686 40.1410 40.4089

AMH 37.6272 37.2252 42.7882 42.7286

Clayton 27.2660 26.5751 36.7647 36.2616

Frank 34.1103 33.7709 9.9866 38.9037

Gumbel 27.5979 26.7573 35.6664 35.1592

Gaussian 34.0399 33.3673 39.5270 38.1801

T 33.8032 33.1856 38.7655 37.6198

JADE 23.7238 24.3171 31.7751 32.8690

RADICAL 26.5265 22.0898 33.7739 31.17679

FastICA 34.3417 14.9425 21.4409 9.3497

InfoMax 6.4371 6.2938 13.0413 11.6051

Sobi 15.1169 15.4384 19.9217 20.7224

Table 5.3: PSNR and final values of SNR for Procedure 3 : Lena and Barbara

Final values Criterion τ̂(Y )

MI 0.1123 -0.0659

FGM 0.0422 -0.1372

AMH 0.0204 -0.1489

Clayton 0.0575 -0.0340

Frank 0.0422 -0.1261

Gumbel 0.0674 -0.0307

Gaussian 0.0456 -0.1236

T 0.0524 -0.1123

Table 5.4: Final values of the criterion and τ̂(Y ) for each method : Lena and
Barbara

5.3 Conclusion

A new method for separating independent and dependent sources has been pre-
sented. Iterative algorithms are used to distinguish the copula densities, with
the aim of minimizing appropriate criteria. Even when the dependency struc-
ture of the source components and/or the relevant parameter are unknown, the
proposed algorithms will magnificently separate instantaneous mixtures of indepen-
dent/dependent source components. The proposed methodology’s ability to separate
dependent sources is shown by experimental results.
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Chapter 6

BSS for noisy mixtures using BTV

6.1 Introduction

The BSS issue BSS in the noisy environment is much more complex and difficult then
the noise free environment, therefore some regularization techniques needed to be
implemented to overcome this problem. Hence the idea here is to fuse the estimation
of Kullback–Leibler divergence between the copula densities and the total variation
(TV) regularization, the authors in [69] introduced a new BSS technique to separate
statistically dependent or independent sources that were mixed in presence of noise,
however, using total variation in order to remove noise has its deficiencies as the
sensitivity to noise and easiness to blur. Therefore, in order to overcome this issues,
we proposed an extension of the said work in [69] by introducing a method based
on the bilateral total variation regularization (BTV) which is generated from the
bilateral filter [149]. This filter eliminates the noise completely and retains the edge
information. The suggested method relies on denoising the observed signals by using
a bilevel minimization where firstly we minimize the observed signals by adding the
BTV term then minimizing the Kullback–Leibler divergence between the copula
densities.

6.2 Proposed approach

Our method is split into two parts: firstly, we employ the BTV regularization
technique in order to denoise the observed o(t) signals, and secondly, we use the
Kullback–Leibler divergence between copulas densities after the regularization cri-
terion based on BTV to find the approximate z sources. More details are given
below regarding these two phases.

6.2.1 Denoising the observed data

Denoising is a signal processing method that extracts signal from a mixture of signal
and noise thus preserving the useful information. The commonly used models for
denoising problems is stated as follows. We consider

o(t) := (o1(t), . . . , op(t))
>, t ∈ [0, T ], (6.1)

denotes the observations contaminated by noise, which takes the following form:

o := o+ ν, (6.2)
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where o(t) := (o1(t), . . . , op(t))
>, t ∈ [0, T ], present the noise-free observed signal,

and ν denotes the additive noise. The aim of this first step is to extract the noise-free
signal o(t) from the noise contaminated data o(t), under the condition of having the
smallest error. To do so, we can use the criterion of the mean squared error, that is
to say, we’ll reach an approximation of o(t) by solving the least-square problem:

inf
o

1

2

∫
[0,T ]

|o(t)− o(t)|2dt, (6.3)

As far as (6.3) is an ill-posed problem, obviously the remedy to this issue is to
add a regularization that allows us to fulfil the Hadamard’s conditions in order
of having a well-posed problem. Lately, several regularization technique with the
aim of noise free signals as well as images that are contaminated by the noise have
been proposed in the literature, namely, the Tikhonov regularization [148] and total
variation regularization [26, 134]. We present in this article, a regularization based
on BTV-term which has been extracted from the bilateral filter. This last was
firstly introduced in [149] as an efficient one-pass filter with the aim of denoising and
simultaneously preserving edges. In similar way to Gaussian convolution, it is known
as a weighted average of nearby points. The difference resides on the consideration
taken by the bilateral filter of the difference in value with the neighbours to preserve
edges while smoothing. More precisely the key idea of the bilateral filter is that for
a point to influence another point, it should not only occupy a nearby location but
also have a similar value. The robust regularizer, called BTV and denoted BTV (·),
suggested by [58], is considered in the upcoming lines due to several advantages
namely, the ability to smooth away the noise and small variation in a signal while
preserving the major edges or discontinuity, and the ability of handling and removing
high level noise unlike total variation TV , see for instance [58]. The BTV is then
expressed as follows:

BTV (o) :=
m∑

j=−m

α|j|‖o−Gjo‖1, (6.4)

where the matrix Gj entails a shift right of j samples and m is the spatial window
size. To give a spatial decay effect, one can deploy a scalar weight α (0 < α < 1)
to the sum of the regularization terms. One can easily demonstrate that the BTV
regularization is a generalization of the other regularizations, for instance if took
m = 1, with α = 1, and define the operator Q = I −G as a first derivative term,
then equation (8.17) becomes

BTV (o) := ‖Qo‖1, (6.5)

which coincides with the total variation regularization. by minimizing the following
objective function after applying the BTV regularization, one can easily obtain the
noise free signals o (1)

inf
o

{
1

2

∫
[0,T ]

‖ō− o‖2dt+ λ
m∑

j=−m

α|j|‖o−Gjo‖1

}
, (6.6)

where λ is the regularization parameter, and also denotes a positive constant that
measures the performance of the smoothing effect. The objective function (6.6) is
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divided into two parts the first one is the fidelity term, while the second one is a
smoothing term which has the role of controlling the variations of o. Since we use
the BTV as a regularizer, the suitable space to minimize the objective function is
the space of functions of bounded variations (BV ), we refer the readers to [10], for
more details and also the modelling theory and the treatment of the problem.

6.2.2 BSS-separation procedure

Once having the noise-free observed signals o(t) := (o1(t), . . . , op(t))
> deduced from

(6.6), our aim now is restoring an estimate for the source signals ŝ(t) := Ŵ o(t).
Therefore, our model consists in finding the separating matrix, thus estimating the
source signals, with a minimal noise, by minimizing, in regards toW an approximate
with a functional, who has the following form

W 7→ C(W ) := Csep(W ) + Creg(z), (6.7)

where z(t) := W o(t) ∈ Rp,, as mentioned above,this method contains two terms,
the first one Csep(·) is dedicated to the separating part, while the second one is
Creg(z) employed for the regularization part, and this last is applicable in both cases
whether we have an independent or dependent source components, and it’s expressed
as follows:

Creg(z) :=
γ

2T

∫ T

0

‖z(t)−z(t)‖2 dt+µ
m∑

j=−m

α|j|‖z(t)−Gjz(t)‖1, γ > 0, µ > 0, (6.8)

where Creg(z) is divided into two terms the first one is a data fidelity term and the
second one is a regularization term. The numbers γ and µ presented as regularization
parameters that should be adopted carefully by the authors, while the separating
term Csep(·), in (6.7), measures the dependency between the copula densities, its
form relays on whether the source components are dependent or independent. In
the upcoming lines, we will study carefully both cases to better understand the BSS
process. Firstly, we’ll assume the next stochastic modelling of the continuous time
signals s(t) ∈ Rp, o(t) ∈ Rp and z(t) := W o(t), t ∈ [0, T ]. The aforementioned last
random procedures are considered to be stationary, thereby the matching sampled
versions, with specific time period Te ,

s(i) := s(iTe), o(i) := o(iTe) and z(i) := z(iTe) = W o(i), i = 1, . . . , N, (6.9)

may be assumed as random vectors’s realizations in Rp, that will be denoted respec-
tively:

S, O and Z := WO, (6.10)

The estimation of the mixing matrix and the sources for the both cases ( dependent
/ independent), can be easily achieved by having a prior knowledge on the copula
density of the random source vector S, as it is proven by the authors in [69, 96].
The joint d.f. of the random vector Z := (Z1, . . . , Zp)

> ∈ Rp, and its marginal d.f.’s,
that are continuous, and expressed respectively as follows:

FZ(·) : z ∈ Rp 7→ FZ(z) := FZ(z1, . . . , zp) := P(Z1 ≤ z1, . . . , Zp ≤ zp), (6.11)

FZi(·) : zi ∈ R 7→ FZi(zi) := P(Zi ≤ zi), ∀i = 1, . . . , p. (6.12)
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We denote by fZ(·) the probability density of the random variable Z, which may
exist or not, and also fZ1 , . . . , fZp are the marginal probability densities of Z1, . . . , Zp
respectively, then we are allowed to define the mutual information (MI) of Z given
as follows:

MI(Z) :=

∫
Rp

log
fZ(z)∏p
i=1 fZi(zi)

fZ(z) dz = E
(

log
fZ(z)∏p
i=1 fZi(Zi)

)
= K

(
fZ ,

p∏
i=1

fZi

)
,

(6.13)
where E(·) denotes the mathematical expectation, and as we can notice, the mutual
information equals to the Kullback–Leibler divergence between the joint density
fZ(·) and the marginal probability densities Moreover, the term MI(Z) is non-
negative and contains a logarithm function that means it reached its minimum value

zero if and only if fZ(·) =
p∏
i=1

fZi(·), that is to say, we reached the independence

between the vector Z’s elements. In the upcoming lines, we will express the form of
the separating term Csep(·) of the objective function (6.7) taking into consideration
whether the source components are independent or dependent.

The case of independent source components

In this paragraph, we are considering the case where the source components are
statistically independent. Hence, we can show that the Mutual Information (MI) of
Z, MI(Z), can be written as the Kullback-Leibler divergence between the copula
density cZ of the random vector Z and the copula density c∏ of independence. In fact,
by changing variables in the integral and using the relation (3.8) for the equation
(6.13), we can write

MI(Z) :=

∫
Rp

log

 fZ(z)
p∏
i=1

fZi(zi)

 fZ(z) dz

:=

∫
[0,1]p

log

(
cZ(u)

1

)
cZ(u) du

:=

∫
[0,1]p

log

(
cZ(u)

c∏(u)

)
cZ(u) du (6.14)

:= KL (cZ , c∏)

:= E
[
log
(
cZ(FZ1(Z1), . . . , FZp(Zp))

)]
, (6.15)

with cZ(·) the copula density of Z, c∏(·) := 1[0,1]p(·) the copula density of in-
dependence. As aforementioned, the Mutual information of a r.v. Z may be
viewed as the divergence of Kullback–Leibler between the copula density cZ(·) of
the r.v. Z and the copula density c∏(·) of independence. Additionally, we have
MI(Z) = K (cZ , c∏) is always positive, and only reaches the minimum, zero if and
only if cZ(v) = c∏(v), ∀v ∈ [0, 1]p, in other words, if and only if we reach the inde-
pendence of the elements of the vector Z. Consequently the term of separation is
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expressed in this case as follows:

Csep(W ) := Cind
sep(W ) := K (cZ , c∏) (6.16)

Hence the function W 7→ Cind
sep(W ) is also non-negative and reaches its minimum

value zero iff the estimate W reaches the inverse of the mixing matrix M , in other
words W = M−1 with indeterminacies of scale and permutation of rows.

The dependent source components case

For the case of statistical dependence between the source components, the prior
knowledge about the random source vector S copula density is assumed to be ob-
tained. To do so, one must train the sample S through a model selection procedure,
for instance see [27], amid semiparametric copula density models {cθ(·); θ ∈ Θ ⊂
Rd}, that are well known by a multivariate parameter θ, we refer the readers to [88]
and [120] for more details. In order to estimate the multivariate parameter θ, one
must use the maximum semiparametric likelihood, see for instance [68] and [151].
We designate by cθ̂(·) the copula density that models the dependency between the

source elements where θ̂ is the resulted value of θ. As we did in the previous case
where we had the independence structure of the source components, we will replace
the copula density of independence (6.15), c∏(·) by the semiparametric copula model
that estimates the copula density of the signals source cθ̂(·) and provide the following
separating term Csep(·) :

Csep(W ) := Cdep
sep (W ) :=

∫
[0,1]p

log

(
cZ(v)

cθ̂(v)

)
cZ(v) dv := E

(
log

cZ(FZ1(Z1), . . . , FZp(Zp))

cθ̂(FZ1(Z1), . . . , FZp(Zp))

)
,

(6.17)
One can easily deduce that the separating term Csep(·) equals to the Kullback–Leibler
divergence K(cZ , cθ̂) between the copula densities cZ(·) and cθ̂(·). Therefore, one
may easily prove the non-negativity of the function W 7→ Cdep

sep (W ) and reaches

its minimum value iff W = M−1 with indeterminacies of scale and permutation
of rows, provided that the following assumption on the copula density cθ̂(·) of the
source S is satisfied: if the copula density of the r.v. BS for any regular matrix
B, matches cθ̂(·), it means that B = DP , where D is some diagonal matrix and
P a permutation matrix.

The demixing matrix, can be computed using three approaches, depending on our
knowledge about the dependency structure of the source components.

• The model and the parameter are known
In this case, we estimate W the de-mixing matrix in a straightforward way, as

follows:

W := arg inf
W
Cdep

sep (W ). (6.18)

• The model is known and the parameter is unknown

In the second case where the parameter θ of the dependency model is unknown,
we propose to estimate the separation matrix W by
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W = arg inf
W

inf
θ∈Θ
Cdep

sep (W ). (6.19)

• The model and the parameter are unknown

Finally, when we have no knowledge about the parameter or the model, we
consider L1 := {csθ1 (·); θ1 ∈ Θ1 ⊂ Rd}, · · · , LT := {csθT (·); θT ∈ ΘT ⊂ Rd} to
be T models of copula densities of the source components. After that we apply the
method described in the second case for each model, and lastly take the model that
minimizes the criterion over all considered models, in other words:

W = arg inf
W

inf
θ∈Θk∗

KL
(
cs
θk

∗ , cZ

)
. (6.20)

where
k∗ = arg min

k=1···T
inf
W

inf
θk∈Θk

Csep(W ). (6.21)

We propose to estimate the separation criterion defined by

Csep(W ) := inf
θ∈Θ

E
(

log
cZ(FZ1(Z1), . . . , FZp(Zp))

cθ(FZ1(Z1), . . . , FZp(Zp))

)
. (6.22)

6.3 Discretization and Statistical estimation

Having outlined our method earlier, we will explain how to turn it practical in this
paragraph. This can be achieved using numerical techniques as well as statistical
ones. We will therefore include the discrete versions of statistical estimates of the
separating part of both cases (dependent/independent) (6.16), (6.17), and also their
regularization part (6.6), (6.8) in the following

6.3.1 Denoising the discrete observed data

In the following, the transformation of the noise-contaminated observations o(i) =
(o1(i), . . . , op(i))

> , i = 1, . . . , N to a noise-free observed signals o(i) = (o1(i), . . . , op(i))
> ,

i = 1, . . . , N is presented.

This phase is reached by finding the solution of the optimization problem 6.6 in
its discrete version. As far as the convergence is hardly guaranteed by using the
Euler-Lagrange equation, one must use the primal dual algorithm to overcome this
issue, therefore, we set the notations presented bellow:

K = λ

m∑
j=−m

α|j|(I −Gj), (6.23)

and

F(Ko) = λ
m∑

j=−m

α|j|‖o−Gjo‖1, (6.24)

G(o) =
1

2

∫
[0,T ]

|o(t)− ō(t)|2dt. (6.25)
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The problem (6.6), after using the notations cited earlier, is expressed as follows:

inf
o
{ G(o) + F(Ko)}. (6.26)

After that, to minimize the problem (6.26) one could use the Primal-Dual algorithm,
with F and G the convex functions and K the linear operator. Hence, we obtain
the following primal-dual problem by the use of the saddle point problem:

inf
o

sup
p
{〈Ko,p〉+ G(o) + F∗(p)}, (6.27)

with F∗ representing the Fenchel-Legendre transform of the function F and it is
expressed in the following manner:

F∗(p) = sup
o
〈p,o〉 − F(o), (6.28)

and p present a dual variable with p ∈ Rp. After that, we verify that

F∗(p) = δP (p) =

{
0 p ∈ P
+∞ p 6∈ P ,

(6.29)

where P = {p : ‖p‖∞ ≤ 1}, yet, one must determine the proximity operator
functions F∗ and G before continuing with the Primal-Dual algorithm. First, we
present the operator (I + σ∂F∗)(p) by applying a projection on P , denoted as ΠP ,
in the following manner:

(I + σ∂F∗)−1(p) = ΠP (p),

where
ΠP (p) =

p

max(||p||∞, 1)
,

and
||p||∞ = max

i,j
|pi,j|.

By relying on the definition of the function G, one can express the operator (I +
τ∂G)−1(o) as

(I + τ∂G)−1(o) =
o+ τ ō

1 + τ
. (6.30)

After specifying all we need, we are now ready to implement the problem-associated
Primal-Dual algorithm (6.26). We detail this algorithm below

Data: ō the noisy observed signal.
Result: z the noise-free obtained signal.
Initialization: Given τ, σ > 0, η ∈ [0, 1], (p0,o0) ∈ Rn × Rn and set z0 = o0.
Do:

pn+1 =(I + σ∂F∗)−1(pn + σKzn)

on+1 =(I + τ∂G)−1(on − τKᵀpn+1)

zn+1 =on+1 + η(on+1 − on)

Algorithm 1: The denoising step using Primal-Dual algorithm.
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and we note by Kᵀ the adjoint of the operator K presented as the following

Kᵀ = λ
m∑

j=−m

α|j|(I −G−j)

After the end of the denoising part, in which we used the primal-dual algorithm,
we obtained the de-noised signals o which are assumed to be our observed signals
in the BSS part.

6.3.2 Statistical estimates of the separation terms

The case of independent source components

As stated above, the criterion function (6.7) for independent source components is
expressed as follows:

Cind(·) : W 7→ Cind(W ) := Cind
sep(W ) + Creg(z), (6.31)

where Cind
sep(W ) is given by, see (8.10),

Cind
sep(W ) := K (cZ , c∏) = E

(
log cZ

(
FZ1(Z1), . . . , FZp(Zp)

))
and

Creg(z) :=
γ

2T

∫ T

0

‖z(t)− z(t)‖2 dt+ µ
m∑

j=−m

α|j|‖z(t)−Gjz(t)‖1, γ > 0, µ > 0,

with z(t) = W o(t) and z = W o(t). By fusing the stochastic modeling (6.9) with
the relation (8.10), we estimate the principle (6.31) by

W 7→ Ĉind(W ) := Ĉind
sep(W ) + Creg,d(z), (6.32)

where

Creg,d(z) :=
γ

2N

N∑
i=1

| z(i)− z(i) |2 +µ
N∑
i=1

m∑
j=−m

α|j| | z(i)−Gjz(i) |, (6.33)

denotes the discrete version of Creg(z), and W 7→ Ĉind
sep(W ), the statistical approxi-

mate of the separation term W 7→ Cind
sep(W ), and is defined by:

W 7→ Ĉind
sep(W ) :=

1

N

N∑
i=1

log
(
ĉZ(F̂Z1(z1(i)), . . . , F̂Zp(zp(i)))

)
, (6.34)

where

ĉZ(F̂Z1(z1(i)), . . . , F̂Zp(zp(i))) :=
1

NH1 · · ·Hp

N∑
`=1

p∏
j=1

k

(
F̂Zj(zj(i))− F̂Zj(zj(`))

Hj

)
,

denotes the kernel approximate that correspond to the copula density cZ(·), and

F̂Zi(·), ∀i = 1, . . . , p, are the smooth estimates of the marginal d.f. FZi(·) of the r.v.
Zi, expressed for any number such as r ∈ R, by

F̂Zi(r) :=
1

N

N∑
`=1

K

(
r − zi(`)

hi

)
,
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where K(·) denotes the kernel k(·)’s primitive, which is a symmetric centered prob-
ability density.

We picked up the standard Gaussian probability density as our kernel k(.) in
the numerical simulations. However, referring to [125] a better selected choice of
the kernel can be employed as long as it survives with the boundary effect. By
the use of Silverman’s rule of thumb, the bandwidth parameters H1, . . . , Hp and
h1, . . . , hp will be selected, see for instance [138], i.e., for all i = 1, . . . , p, we assume

Hi =

(
4

p+ 2

) 1
p+4

N
−1
p+4 Σ̂i, and hi =

(
4

3

) 1
5

N
−1
5 σ̂i, with Σ̂i and σ̂i present the

empirical standard deviation of the signals, respectively, F̂Zi(zi(1)), . . . , F̂Zi(zi(N))
and zi(1), . . . , zi(N). one can estimate the source signal vector s(j), j = 1, . . . , N ,
by

ŝ(j) = Ŵ o(j), j = 1, . . . , N,

where
Ŵ := arg inf

W
Ĉind(W ),

which can be resolved by the use of a gradient descent algorithm. Actually, simple
calculus indicate that, the gradient in W of the approximated principle W 7→

Ĉind(W ), may be expressed as follows
dĈind(W )

dW
=

1

N

N∑
n=1

d
dW

ĉZ(v(n))

ĉZ(v(n))
+
γ

N

N∑
n=1

(z(n)−z(n))(o(n)−o(n))>+
µ

N

N∑
n=1

m∑
j=−m

α|j|
(
I −G−j

)
sign(z(n)−Gjz(n)).

(6.35)

where
d

dW
:=

(
∂

∂W ij

)
ij

, i, j = 1, . . . , p, v(n) := (F̂Z1(z1(n)), . . . , F̂Zp(zp(n)))>

and,

∂ĉZ(F̂Z1(z(n)), . . . , F̂Zp(zp(n)))

∂W ij

=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1,j 6=i

k

(
F̂Zj(zj(n))− F̂Zj(zj(m))

Hj

)

× k′
(
F̂Zi(zi(m))− F̂Zi(zi(n))

Hi

)
1

Hi

∂(F̂Zi(zi(m))− F̂Zi(zi(n)))

∂W ij

,

(6.36)
with

∂(F̂Zi(zi(m))

∂W ij

=
1

Nhi

N∑
n=1

k

(
zi(n)− zi(m)

hi

)
(oj(n)− oj(m)). (6.37)

Arriving at this stage, we present the Algorithm of the proposed approach as follows:
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Data: o the noise free observed signal
Result: ŝ the approximated source signal
Initialization: Calculate o = o−

∏
λG o from Algorithm 1, W (0) = Ip,

z(0) = W (0) o.
Given ε > 0, ν > 0.
Do: Update W and z:

W (q+1) = W (q) − ν dĈ
ind(W )

dW
z(q+1) = W (q+1) o.
Until ||W (q+1) −W (q)|| < ε
ŝ = z(q+1).

Algorithm 2: BSS using gradient descent algorithm for separation of noise-
free independent source components.

The case of dependent source components

Now, we assume that the source elements are dependent, then the criterion (6.7) is
given as follows

Cdep(·) : W 7→ Cdep(W ) := Cdep
sep (W ) + Creg(z), (6.38)

where Cdep(W ) is expressed by, see (8.28),

Cdep
sep (W ) :=

∫
[0,1]p

log

(
cZ(v)

cθ̂(v)

)
cZ(v) dv := E

(
log

cZ(FZ1(Z1), . . . , FZp(Zp))

cθ̂(FZ1(Z1), . . . , FZp(Zp))

)
.

and

Creg(z) :=
γ

2T

∫ T

0

‖z(t)− z(t)‖2 dt+ µ
m∑

j=−m

α|j|‖z(t)−Gjz(t)‖1, γ > 0, µ > 0,

By pairing the stochastic modelling (6.9) and the relation (6.17), we suggest to
estimate the principle (6.38) as follows:

W 7→ Ĉdep(W ) := Ĉdep
sep (W ) + Creg,d(z), (6.39)

where

Creg,d(z) :=
γ

2N

N∑
i=1

| z(i)− z(i) |2 +µ
N∑
j=1

m∑
j=−m

α|j| | z(n)−Gjz(n) |, (6.40)

denotes Creg(z)’s discrete version, and Ĉdep
sep (·) : W 7→ Ĉdep

sep (W ) present the statistical
approximate, of the principle Cdep

sep (·) : W 7→ Cdep
sep (W ), which we present as follows

Ĉdep
sep (·) : W 7→ Ĉdep

sep (W ) :=
1

N

N∑
i=1

log

(
ĉZ(F̂Z1(z(i)), . . . , F̂Zp(zp(i)))

ĉθ̂(F̂Z1(z(i)), . . . , F̂Zp(zp(i)))

)
. (6.41)

The source signal vector s(i), i = 1, . . . , N , will be approximated as follows:

ŝ(i) = Ŵ o(i), i = 1, . . . , N,
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where
Ŵ := arg inf

W
Ĉdep(W ),

which will be resolvable by relying on a gradient descent algorithm. As a matter of
fact, simple calculus indicate that, the gradient of the approximated criterion, with

respect to W , W 7→ Ĉdep(W ), is calculated as follows

dĈdep(W )

dW
=

1

N

N∑
n=1

[
d
dW

ĉZ(v(n))

ĉZ(v(n))
−

d
dW

ĉθ̂(v(n))

ĉθ̂(v(n))

]

+
γ

N

N∑
n=1

(z(n)− z(n))(o(n)− o(n))> + +
µ

N

N∑
n=1

m∑
j=−m

α|j|
(
I −G−j

)
sign(z(n)−Gjz(n)),

(6.42)

where v(n) := (F̂Z1(z(n)), . . . , F̂Zp(zp(n))); the gradients d
dW

ĉZ(v(n)) and d
dW

ĉθ̂(v(n))
can be calculated, in a likewise manner as aforementioned in Subsection 6.3.2. Then,
one can easily deduce the following Algorithm 4.

Data: o the noise free observed signal
Result: ŝ the approximate source signal
Initialization: Calculate o = o −

∏
λG o from Algorithm 1, W (0) = Ip, z

(0) =

W (0) o.
Given ε > 0, ν > 0.
Do: Update W and z:

W (q+1) = W (q) − ν dĈ
dep(W )

dW
z(q+1) = W (q+1)o.

Until ||W (q+1) −W (q)|| < ε
ŝ = z(q+1).

Algorithm 3: BSS algorithm for separating noise-free dependent source com-
ponents.

6.4 Simulation results

In order to test the performance of the suggested approach and prove its efficiency,
we will expose the outcomes of various simulations that were conducted and we’ll
measure them with those obtained by a TV , BTV regularization versions of [54]
(MI), [23] (JADE), [83] (FastICA), [117] (RADICAL) and [17] (InfoMax) under the
same conditions, and those obtained by [69].

In this section we will adopt the number of samples at N = 3000, while the mixing
matrix is given as follows:

M := [1 0.7 0.7 ; 0.7 1 0.7 ; 0.7 0.7 1]

In addition, we will adopt a Gaussian noise that is centred where its deviation is
equal to 0.01 was appended to the normalized mixtures, to gain two different signal-
to-noise ratio (SNR) values: −25dB and −15dB. ν = 0.1 is the chosen gradient
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descent parameter, while the denoising part, see the above Algorithm 1, we adopt
τ = 0.1, σ = 0.01 and η = 0.01.

Meantime in the other part, we take γ = 0.01, µ = 0.01 and ε = 0.001, see Algorithm
2 or Algorithm 3, while the number of iterations is settled at 100 iterations for all
the simulations, and we adopt the following signal-to-residue-ratio criterion, also
called the signal-to-noise-ratio, in order to calculate the effectiveness of the source
estimation, presented as follows:

SNRj := 10 log10

∑N
m=1 zj(m)2∑N

m=1(ẑj(m)− zj(m))2
, j = 1, 2, 3. (6.43)

With the aim of exposing the competence of our proposed method, we accomplished
numerical simulations for four test signals:

� Uniform i.i.d sources with independent components.

� Uniform i.i.d sources with dependent elements extracted from AMH copula
with θ = 0.75.

� Uniform i.i.d sources with dependent elements extracted from Clayton copula,
with θ = 1.5

� Uniform i.i.d sources with dependent elements extracted from Frank copula,
with θ = 2.

Fig.6.1 shows that our proposed approach ( obtained by using algorithm 1 and
algorithm 2) is a noise removal technique and well estimating the sources in the
independent components case, accompanied with delightful performance at differ-
ent noise level. When the separation is successfully reached, Fig.6.2 shows that the

criterion values (of Ĉind(·)) converge to the minimum 0.

The results of our method are compared with the Copula-TV algorithm presented
in [69] and also compared with those of [54], [23] (JADE), [83] (FastICA), [117]
(RADICAL) and [17] (InfoMax) penalized by the same BTV and TV-regularization
term. Table 6.1 shows the resulted SNR gained for each source

(a) Noise value -25 (b) Noise value -15

Figure 6.1: SNRs values versus iteration number for independent source components
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(a) Noise value -25 (b) Noise value -15

Figure 6.2: Criterion values versus iteration number for independent source compo-
nents

Noise -25 -15

Sources S1 S2 S3 S1 S2 S3

Our method 36.5471 36.5954 36.4158 28.2438 28.2780 28.1510

Copula-TV 34.8081 34.8543 34.8827 26.7540 26.7878 26.6622

MI-BTV 34.7684 34.7297 34.7244 26.3500 26.3231 26.3194

MI-TV 33.7045 33.6673 33.6622 25.8572 25.8306 25.8269

FastICA-BTV 33.4641 33.8923 30.8436 26.1685 25.7622 24.6918

FastICA-TV 32.9945 32.8525 29.5444 26.0232 25.2849 24.2389

JADE-BTV 34.6533 34.2516 33.4077 26.9526 26.9433 26.9651

JADE-TV 33.6222 33.2407 33.1620 26.1526 26.0425 26.9641

RADICAL-BTV 34.9930 33.5704 34.0972 26.2299 25.9483 26.0727

RADICAL-TV 34.0718 32.9523 34.2743 25.8552 25.7189 25.3581

InfoMax-BTV 35.4062 34.8745 34.9221 26.7912 26.4683 26.3730

InfoMax-TV 34.4247 34.1689 34.5282 26.1014 25.8752 26.0800

Table 6.1: Output SNR’s for independent source components

On the other hand, even with the noised dependent source components, our method
(obtained by using algorithm 1 and algorithm 3) shows its efficiency by denoising
and separating the mixtures dependent source components from Fig.6.3 to Fig.6.5.

The convergence of the principle Ĉdep(·) to 0 when we obtain the separation is shown
in Fig.6.6.

We also compare our experimental result with the result of [69] and those of [54],
[23] (JADE), [83] (FastICA), [117] (RADICAL) and [17] (InfoMax), penalized by
the same BTV and TV -regularization versions. The comparison results obtained
by each method for each source are summarized in Table 6.2 to Table 6.4 .
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(a) Noise value -25 (b) Noise value -15

Figure 6.3: SNRs values versus iteration number for dependent source components
(AMH copula)

Noise -25 -15

Sources S1 S2 S3 S1 S2 S3

Our method 35.4457 35.6201 35.5215 28.1162 28.2098 28.1162

Copula-TV 33.7363 33.7695 33.7507 26.1224 26.2838 26.1926

MI-BTV 13.0724 13.0872 13.0774 10.6702 10.8095 10.6419

MI-TV 12.8616 12.8759 12.8664 10.1909 10.2717 10.2179

FastICA-BTV 32.3677 8.3796 6.9618 25.6886 8.2546 6.5094

FastICA-TV 31.6124 8.0572 6.7939 24.5366 7.9771 6.4478

JADE-BTV 12.8532 12.2388 12.3677 11.0552 10.9488 10.5114

JADE-TV 12.5622 12.1087 12.0597 10.6551 10.4486 10.2116

RADICAL-BTV 12.3677 12.3796 12.9618 11.3589 11.7601 11.2248

RADICAL-TV 12.6124 12.0572 12.7939 11.0552 11.4581 11.0046

InfoMax-BTV 8.3558 8.3269 8.3479 7.8050 7.8691 7.8910

InfoMax-TV 8.3478 8.3189 8.3400 7.7164 7.6805 7.7024

Table 6.2: Output SNR’s (dependent components generated from AMH copula)
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(a) Noise value -25 (b) Noise value -15

Figure 6.4: SNRs values versus iteration number for dependent source components
(Clayton copula)

Noise -25 -15

Sources S1 S2 S3 S1 S2 S3

Our method 34.4175 34.4566 34.9370 27.3750 27.2740 27.1677

Copula-TV 32.7252 32.7326 32.8239 25.3364 25.3726 25.8170

MI-BTV 9.3787 9.5195 9.4826 7.8156 8.4903 8.1958

MI-TV 9.1836 9.3203 9.2845 7.2549 8.0250 7.8233

FastICA-BTV 24.3500 6.3672 3.9238 22.6489 5.4379 3.7233

FastICA-TV 23.9612 5.6319 3.6257 22.6293 5.3838 3.4151

JADE-BTV 9.0835 9.0632 9.7930 8.3348 8.3037 8.4995

JADE-TV 8.3835 8.4631 8.8930 8.1349 8.0037 8.2994

RADICAL-BTV 8.8629 8.3840 9.9952 8.0636 8.7793 8.4024

RADICAL-TV 8.3323 7.9013 9.7054 7.7358 8.4084 8.1157

InfoMax-BTV 2.3558 2.3269 2.3479 2.0396 2.0490 2.0841

InfoMax-TV 2.3478 2.3189 2.3400 2.0318 2.0412 2.0762

Table 6.3: Output SNR’s (dependent components generated from Clayton copula)
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(a) Noise value -25 (b) Noise value -15

Figure 6.5: SNRs values versus iteration number for dependent source components
(Frank copula)

Noise -25 -15

Sources S1 S2 S3 S1 S2 S3

Our method 36.0128 36.1876 36.0888 28.2641 28.4388 28.3400

Copula-TV 34.0558 34.0891 34.0703 26.3192 26.3061 26.3135

MI-BTV 15.6846 15.7053 15.6915 12.4442 12.5147 12.3668

MI-TV 15.4543 15.4744 15.4610 11.8674 11.8589 11.8645

FastICA-BTV 34.9595 10.5616 8.3832 24.9059 9.5946 8.1635

FastICA-TV 34.5843 10.1445 7.9430 24.3964 9.7748 7.7252

JADE-BTV 14.3312 14.4466 14.7004 13.2157 13.2842 12.9108

JADE-TV 13.5313 13.6468 13.8002 13.2157 13.2841 12.9108

RADICAL-BTV 14.8603 14.4040 14.6389 12.5809 14.3538 12.6422

RADICAL-TV 13.9417 13.7839 14.0200 13.1350 14.0523 12.4450

InfoMax-BTV 9.6526 9.5702 9.6092 9.4765 9.3793 9.4124

InfoMax-TV 9.5392 9.4571 9.4959 9.4633 9.3664 9.3994

Table 6.4: Output SNR’s (dependent components generated from Frank copula)

Fig.6.6 shows that the criterion values (of Ĉdep(·)) converge to the minimum 0.
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(a) FGM (b) Clayton

(c) AMH (d) Frank

Figure 6.6: Criterion values versus iteration number for Dependent source compo-
nents

The figures Fig.6.3 to Fig.6.6 and the tables Table 6.2 to Table 6.4 show clearly
that our approach can perfectly handle the dependent sources case with good per-
formance.

We would like to end this section by giving a real example to showcase the perfor-
mance of our approach . In this example, we deal with the recto-verso separation
problem. The observations (”image1” and ”image2”), see Fig.6.7, are obtained by
scanning a recto-verso document (at which we have added centered gaussian noise
with standard deviation σ = 0.01). These observations are obviously unknown
mixtures of the recto (source 1) and the verso (source 2).
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(a) image 1 (b) image 2

Figure 6.7: The scanned recto and verso of a document contaminated by a Gaussian
noise

Procedures 1 and 2 can not be applied in this case, since the dependency structure of
the sources is unknown and no training samples of the sources is available. Therefore,
we will apply procedure 3 using the same three candidate copula models as before.
The optimal model in this case follows the AMH copula with θ = 0.7. Fig.6.8 present
the restored images, using procedure 3, the noise was reduced and we can say that
the separation was successful.

(a) Estimated source 1 (b) Estimated source 2

Figure 6.8: The estimated sources (recto-verso) using the BTV approach

6.5 Conclusion

In this paper a new BSS approach is applied for noisy environments, with a new
regularized criterion being minimised. This technique will distinguish and elimi-
nate noise from instantaneous linear mixtures of independent and dependent source
components. The method consists of minimizing a criterion that incorporates two
types of information: a separation part and a regularization part. The first one
is given by Kullback-Leibler divergence between copula densities for separating the
observed signals. The second one is the BTV for de-noising the observed data.
Various literature’s methods are evaluated against our proposed approach, and this
last performs far better than the other methods, as experimental results show. In
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addition, the proposed framework can be enlarged to function in future interchanges
with convolutive mixtures, which are independent / dependent.
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Chapter 7

Copula based BSS using
Alpha-divergence

7.1 Introduction

In this chapter, we will be detailing on our new approach that uses α-divergence
as a cost function for the blind source separation problem. As we saw in the pre-
vious chapter, minimizing the Kullback-Leibler divergence between copula densities
have shown magnificent results, however the Kullback-Leibler divergence is just a
special case of the Alpha-divergence. Consequently, we come up with the idea to
replace the Kullback-Leibler divergence by the alpha-divergence as our cost function
to minimize, considering its superiority to handle noisy data as well as its ability
to converge faster. We test our approach for various values of alpha and give a
comparative study between the proposed methodology and other existing methods.
This method outperformed the others in terms of quality and accuracy, especially
when α is set to 1

2
, which corresponds to the Hellinger divergence.

7.2 The proposed approach

As stated in the State of art chapter, in section 2.3, the goal of BSS consists in con-
structing a separation system, denoted B, which allows the best possible estimation
of the initial sources s from the sole knowledge of the observations (source mixtures).
The ideal solution for this problem is when W = A−1, where A is the mixing matrix,
in other words, finding the demixing matrix W . To achieve a solution that is as
close as possible to A−1 we will use the α-divergence as our cost function. Applying
the change variable formula for multiple integrals, using the copula formula (3.8),

the alpha divergence Dα

(
p∏
i=1

fZi , fZ

)
could be defined as follows

Dα

(
p∏
i=1

fZi , fZ

)
:=

∫
[0,1]p

ϕα

(
1

cZ(v)

)
cZ(v)dv,

:= E
[
ϕα

(
1

cZ(FZ1(Z1), . . . , FZp(Zp)

)]
.

(7.1)

where the α-divergence between the product density of the marginal densities and
the joint density of the random vector Z is equivalent to the α-divergence between
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the copula density of independent c∏, and copula density cZ of the random vector
Z.

Dα

(
p∏
i=1

fZi , fZ

)
:= Dα (c∏, cZ) (7.2)

In the following, we study the case of mixture of independent source components
and mixture of dependent source components, separately.

7.2.1 Independent source components

The α-divergence Dα (c∏, cZ) of independent source components, is always non-
negative and reaches its minimum value zero if and only if W = A−1 with indeter-
minacies up to scale and permutation:

A−1 := arg inf
W
Dα (c∏, cZ) . (7.3)

Minimizing upon W a nonparametric estimate D̂α (c∏, cZ) from Z(1) · · ·Z(N),

will lead to estimate the source signals Ẑ(n) := ŴY (i),∀i = 1 · · ·N. where Ŵ :=

arg inf
W
D̂α (c∏, cZ) , is the estimated unmixing matrix. We suggest estimating the

α−divergence Dα (c∏, cZ) by:

D̂α (c∏, cZ) :=
1

N

N∑
i=1

ϕα

(
1

ĉZ(F̂Z1(Z1(i)), . . . , F̂Zp(Zp(i)))

)
, (7.4)

where the kernel estimate of the copula density is calculated as follows,

ĉZ(v) :=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1

k

(
F̂Zj(Zj(m))− vj

Hj

)
,∀v ∈ [0, 1]p, (7.5)

and F̂Zj(v), are the smoothed estimate of the marginal distribution functions of the
random variables Zj for all j = 1, . . . , p , which are defined as shown below

F̂Zj(u) :=
1

N

N∑
m=1

K

(
Zj(m)− u

hj

)
, ∀j = 1, . . . , p v ∈ R, (7.6)

with K(.) a symmetric and centered probability density and the primitive of a kernel
k(.). For our computational study we chose the standard Gaussian density as the
kernel k(.). Further information on the kernel option k(.) can be found in [125] to
approximate the copula density, which copes with the boundary effect. To determine
the parameters of the bandwidth H1, . . . , Hp and h1, . . . , hp which are present in
(8.12), for every j = 1, . . . , p, the Silverman’s rule of thumb [138] is adopted :

Hj =

(
4

p+ 2

) 1
p+4

N
−1
p+4 Σ̂j,

hj =

(
4

3

) 1
5

N
−1
5 σ̂j,

(7.7)
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where Σ̂j and σ̂j are, the empirical standard deviation of F̂Zj(Zj(1)), . . . , F̂Zj(Zj(N))

and Zj(1), . . . ,Zj(N), respectively. The estimate of the de-mixing matrix Ŵ is
computed using a descent gradient algorithm, where the initial matrix W 0 = Ip, is
the p× p identity matrix.

In the following we detail the computations of the gradient in W of D̂α (c∏, cZ)

dD̂α (c∏, cZ)

dW
:=

1

N

N∑
n=1

d

dW

(
ϕα

(
1

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

))
,

:=
−1

N

N∑
n=1

ϕ′α

(
1

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

)

×
d
dW

(ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n))))

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))
× 1

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))
,

(7.8)

where d/dW = ∂/∂Wij; i, j = 1 · · · p

∂ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

∂Wij

:=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1,j 6=i

k

(
F̂Zj(Zj(m))− F̂Zj(Zj(n))

Hj

)

× k′
(
F̂Zj(Zj(m))− F̂Zj(Zj(n))

Hj

)
1

Hi

∂(F̂Zj(Zj(m))− F̂Zj(Zj(n)))

∂Wij

.

(7.9)

To summarize, we have the following algorithm

• Data: x the observed source signals
• Result: z the estimated source signals
• Initialization W 0 = Ip, z

0 = W 0x, µ > 0, ε > 0.
• Do Update W and z

W q+1 = W q − µdD̂α(c∏,cZ)
dW

(7.8).
zq+1 = W q+1 y.

• Repeat until |W q+1 −W q| < ε
z = zq+1

Algorithm 4: Separation of independent source components using α-
divergence

7.2.2 Dependent source components

In this section, we will analyse the case where the component sources S may be
dependent, in this instance we model the dependency by a certain structure which
is represented by an unknown semiparametric copula {CS(·,θ); θ ∈ Θ ⊂ Rd} where
its density is denoted by csθ . It can be seen that the copula density csθ differ
from the density copula of independence c∏. So as a criterion function we take
W → Dα (csθ , cZ) instead of W → Dϕα (c∏, cZ), this criterion function is always
positive and is only equals to its minimum value zero if and only if W = A−1 with
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indeterminacies up to scale and permutation:

A−1 = arg inf
W
Dα (csθ , cZ) . (7.10)

Hence the α-divergence in the case of dependency takes the form of

Dα (csθ , cZ) :=

∫
[0,1]p

ϕα

(
csθ(v)

cZ(v)

)
cZ(v)dv,

:= E
[
ϕα

(
csθ(FZ1(Z1), . . . , FZp(Zp))

cZ(FZ1(Z1), . . . , FZp(Zp))

)]
.

(7.11)

To estimate this new criterion, three approaches are used depending on our knowl-
edge about the dependency structure of the source components. In the following we
will describe these three approaches:

• The model and the parameter are known
When both the model and the parameter are known, we propose to adapt the above
criterion and estimate W the de-mixing matrix as follows

W := arg inf
W
Dα (csθ , cZ) . (7.12)

• The model is known and the parameter is unknown

In the case where the parameter θ of the dependency model is unknown the separa-
tion matrix W will be computed by

W = arg inf
W

inf
θ∈Θ

Dϕα (csθ , cZ) . (7.13)

• The model and the parameter are unknown
The last case where the model in unknown, we consider L1 := {csθ1 (·); θ1 ∈ Θ1 ⊂
Rd}, · · · , LT := {csθT (·); θT ∈ ΘT ⊂ Rd} to be T models of copula densities of
the source components. Then we apply the method described in the second case
for each model, and finally choose the model that minimizes the criterion over all
considered models, that means

W = arg inf
W

inf
θ∈Θk∗

Dα

(
cs
θk

∗ , cZ

)
. (7.14)

where
k∗ = arg min

k=1···T
inf
W

inf
θk∈Θk

Dα

(
cs
θk
, cZ

)
. (7.15)

We propose to estimate the separation criterion defined in 7.11 by

D̂α (csθ , cZ) :=
1

N

N∑
n=1

ϕα

(
ĉsθ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

)
. (7.16)

The definitions of the marginal distribution functions and the estimates of the copula
density are exactly similar to the previous section and the solution W is computed
by a descent gradient algorithm.
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The gradient in W of D̂α (c∏, cZ) is calculated as follows:

dD̂α (csθ , cZ)

dW
:=

1

N

N∑
n=1

d

dW

(
ϕα

(
ĉsθ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

))
,

:=
1

N

N∑
n=1

ϕ′α

(
ĉsθ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

)

×

 d[ĉsθ (F̂Z1
(Z1(n)),...,F̂Zp (Zp(n)))]

dW
ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))2

−
d[ĉZ(F̂Z1

(Z1(n)),...,F̂Zp (Zp(n)))]

dW
ĉsθ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))

ĉZ(F̂Z1(Z1(n)), . . . , F̂Zp(Zp(n)))2


(7.17)

where d/dW = ∂/∂Wij; i, j = 1 · · · p.
The derivation ∂ĉZ(F̂Z1(Z1(n)),...,F̂Zp(Zp(n)))

∂Wij
is calculated exactly as (7.9) and

d[ĉsθ(F̂Z1(Z1(n)),...,F̂Zp(Zp(n)))]

dW
is calculated by a direct derivation from the well known

copulas. Finally W is estimated by Ŵ = arg inf
W
D̂α (csθ , cZ), eventually leading to

estimation of the source signals Ẑ(n) = ŴY (n),∀n = 1 · · ·N. To summarize the
method we have the following algorithm

• Data: x the observed source signals
• Result: z the estimated source signals
• Initialization W 0 = Ip, z

0 = W 0x, µ > 0 , ε > 0.
• Do Update W and z

Compute D̂ϕα (csθ , cZ) (7.17).

W q+1 = W q − µdD̂α(csθ ,cZ).
dW

.
zq+1 = W q+1 y.

• Repeat until ||W q+1 −W q|| < ε
z = zq+1

Algorithm 5: Separation of dependent source components using the α-
divergence

7.3 Simulation results

In the following, we present the results of various simulations of our proposed ap-
proach. The experiments are done for 3 observation mixtures of 3 sources to be esti-
mated. These sources are mixed through a mixing matrix M := [1 0.5 0.7; 0.5 1 0.7;
0.5 0.7 1], where for each source we have N = 2000 samples, and all simulations
are repeated 80 times with µ = 0.1 as the gradient descent parameter. We illus-
trate the performance of BSS-copula approach, first for independent sources then
the dependent sources and finally the noise-contaminated sources using both the
signal-noise-ratio (SNR) which is defined as follows:

SNRj = 10 log10

( ∑N
k=1 ẑj(k)∑N

k=1(ẑj(k)− sj(k)2)

)
, j = 1, 2, 3 (7.18)
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and the Performance Index [28] which is defined as such

PI =
1

N(n− 1)

N∑
i

{(
N∑
k=1

|uik|
maxjuij

− 1) + (
N∑
k=1

|uki|
maxjuji

− 1)} (7.19)

where uij is the (i,j)-element of the global system matrix U=AW, maxjuij represents
the maximum value among the elements in the ith row vector of U and maxjuji
represents the maximum value among the elements of the ith column vector of U.
When the perfect separation is achieved, the performance index is zero, index when
the index is close to 0 we can say that the quality of the separation is good. We also
compare our approach with various existing methods for the BSS problem.

7.3.1 Independent source components

We consider in this experiment three mixed signals from a uniform i.i.d with inde-
pendent components.
First we test our approach for independent components using three values of α:

• α = 0 which is equivalent to the modified Kullback-Leibler divergence.

• α = 0.5 which is equivalent to the Hellinger divergence.

• α = 2 which is equivalent to the χ2-divergence.

Figure. 7.1a presents the average SNR output in function of the number of iterations,
using our approach for α = 0, 0.5, 2. It is noticeable that the Hellinger divergence,
e.g. α = 0.5, is more accurate than the other α-divergences. On the other hand, Fig-
ure. 7.1b, represents the criterion value vs iterations. We can see that the separation
is achieved when our criterion converges to its minimum value 0.
Figure. 7.2a represents the shape of the original source signals, figure. 7.2b shows
their shape after being mixed by the mixing matrix A and finally figure. 7.2c, show-
cases the shape of the estimated original data after the separation.

(a) Average output SNRs versus iteration
number

(b) The criterion value vs iterations for α =
0.5

Figure 7.1: Uniform independent sources for the three values of α
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(a) Representation of independent sources (b) Representation of mixtures

(c) Representation of estimated
sources

Figure 7.2: Uniform independent sources for α = 0.5

We compare our method with the following methods: [128](MI), [23] (JADE), [83]
(FastICA), [117] (RADICAL) and [17] (InfoMax). Table 7.1 represents the SNR
output of the sources for the different approaches, we can see that our approach
when α = 1

2
which is the Hillenger diverence is the one with the highest SNR. Also,

table 7.2 exhibit the superiority of the Hellinger divergence compared to the other
methods because its Performance Index is the one closer to 0.

Sources S1 S2 S3
Copula α = 0 44.9898 44.4859 44.4188

Copula α = 0.5 46.6395 46.7664 46.3895
Copula α = 2 44.5414 44.0996 44.0484

MI 43.9801 43.7431 43.4067
FastICA 43.0801 43.7431 43.4067
JADE 43.6369 43.4810 43.0588

RADICAL 43.4713 43.8964 43.5151
InfoMax 43.8154 43.5161 43.2699

Table 7.1: Output SNR’s for independent source components

98



7.3. SIMULATION RESULTS

Approach PI Approach PI
Copula α = 0 0.0171 FastICA 0.0259

Copula α = 0.5 0.0122 JADE 0.0230
Copula α = 2 0.0199 RADICAL 0.0241

MI 0.0202 InfoMax 0.0251

Table 7.2: Output PI’s for independent source components

7.3.2 Dependent source components

We present within this subsection, the potential of our proposed approach (algo-
rithm 5 for dependent sources) and its capability to separate mixtures of three
dependent signals successfully. We treated instant mixtures of four types of sample
sources:

• i.i.d (with uniform marginals) dependent source components generated from
AMH copula with θ = 0.4.

• i.i.d (Binary Phase-Shift Keying (BPSK)) dependent source components gen-
erated from Clayton copula, with θ = 1.3

• i.i.d (with uniform marginals) dependent source components generated from
Frank copula, θ = 2.5.

• i.i.d (with uniform marginals) dependent source components generated from
Gaussian copula, θ = 0.2.

We test our approach for the four different dependent samples introduced above for
three values of α as done before for the independent case.
Figures. 7.3a, 7.5a, 7.7a, 7.9a, show the SNRs for dependent sources from AMH,
Clayton, Frank and Gaussian copulas, respectively in function of the number of it-
erations, using our approach for the three values of α: 0, 0.5, 2. From the simulation
results, it is noticeable that in this case also the Hellinger has the highest quality
of the separation. Moreover, Figures. 7.3b, 7.5b, 7.7b, 7.9b represent the criterion
value vs iterations for the said copulas. We can see that the separation is achieved
when our criterion converges to its minimum value 0.

Figures. 7.4a, 7.6a, 7.8a,7.10a represents the shape of the original source signals
from AMH, Clayton, Frank and Gaussian copulas respectively. Figures. 7.4b,7.6b,
7.8b, 7.10b show their shape after being mixed by the mixing matrix A and finally
figures. 7.4c,7.6c, 7.8c, 7.10c, showcase the shape of the estimated original sources
after the separation.
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(a) Average output SNRs versus iteration
number

(b) The criterion value vs iterations for α =
0.5

Figure 7.3: Uniform dependent sources from AMH copula (θ = 0.4) for the three
values of α

(a) Representation of dependent sources (b) Representation of mixtures

(c) Representation of estimated sources

Figure 7.4: Uniform dependent sources from AMH copula (θ = 0.4) for α = 0.5
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(a) Average output SNRs versus iteration
number

(b) The criterion value vs iterations for α =
0.5

Figure 7.5: BPSK dependent sources from Clayton copula (θ = 1.3)for the three
values of α

(a) Representation of dependent sources (b) Representation of mixtures

(c) Representation of estimated sources

Figure 7.6: BPSK dependent sources from Clayton copula(θ = 1.3) for α = 0.5
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(a) Average output SNRs versus iteration
number

(b) The criterion value vs iterations for α =
0.5

Figure 7.7: Uniform dependent sources from Frank copula (θ = 2.5) for the three
values of α

(a) Representation of dependent sources (b) Representation of mixtures

(c) Representation of estimated sources

Figure 7.8: Uniform dependent sources from Frank copula (θ = 2.5) for α = 0.5
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(a) Average output SNRs versus iteration
number

(b) The criterion value vs iterations for α =
0.5

Figure 7.9: Uniform dependent sources from Gaussian copula (θ = 0.2) for the three
values of α

(a) Representation of dependent sources (b) Representation of mixtures

(c) Representation of estimated sources

Figure 7.10: Uniform dependent sources from Gaussian copula (θ = 0.2) for α = 0.5

Tables 7.3 and 7.4 exhibit the superiority of the proposed approach especially for
α = 1

2
compared to the existing approaches mentioned in the previous section for

the two evaluation metrics: SNR and the Performance Index.
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Type AMH Clayton
Sources S1 S2 S3 S1 S2 S3

Copula α = 0 43.7564 43.1242 43.3107 39.3411 39.5134 38.9531
Copula α = 0.5 45.3499 45.5485 45.2925 41.7242 41.2638 41.8273
Copula α = 2 43.6874 43.0231 43.1316 39.1823 39.2651 38.5204

MI 22.3045 22.1221 22.1873 16.1335 16.6321 16.3413
FastICA 40.9576 16.8551 15.7032 20.2045 11.4156 11.3645
JADE 21.0242 21.1523 21.5396 15.3368 15.3520 15.7654

RADICAL 20.5861 21.0112 20.4135 15.8944 15.9326 15.9075
InfoMax 15.9627 16.0018 16.0121 12.0985 12.1062 12.1419

Type Frank Gaussian
Sources S1 S2 S3 S1 S2 S3

Copula α = 0 44.6787 44.4692 44.8902 43.7743 43.1553 43.3212
Copula α = 0.5 46.3790 46.1961 46.0499 45.0324 45.2317 45.1545
Copula α = 2 43.8468 44.0643 44.5799 42.5768 42.7816 43.1019

MI 22.1426 22.2120 22.3240 22.56292 22.8021 21.9356
FastICA 41.2526 11.8120 12.6400 41.0267 11.8322 11.8233
JADE 19.6022 19.6687 19.7018 18.9111 18.3361 18.1552

RADICAL 17.9526 17.7357 17.8292 17.1106 17.1933 17.1542
InfoMax 11.9645 11.9963 11.0047 10.9003 10.7977 10.8522

Table 7.3: Output SNR’s for dependent source components

AMH Clayton Frank Gaussian
Copula α = 0 0.0167 0.0965 0.0128 0.0086

Copula α = 0.5 0.0159 0.0912 0.0117 0.0070
Copula α = 2 0.0207 0.0986 0.0143 0.0093

MI 0.2887 0.3147 0.3002 0.2213
FastICA 0.3071 0.3374 0.3155 0.2156
JADE 0.3467 0.4005 0.3504 0.2331

RADICAL 0.3467 0.4743 0.3949 0.2340
InfoMax 0.3992 0.4322 0.3723 0.2342

Table 7.4: Output PI’s for dependent source components

To test our approach for the deterministic case, we took two types of sources. The
first one is the ”Waves” signals, which combine two waves and it is represented
on the far right of the figure. 7.11. The second one is a ”Bumps” source signal
represented by the second image in figure. 7.11. The number of samples of the
sources is fixed on N=2500. These two sources are lightly dependent (AMH copula
with θ = 0.4) as their Kendall’s Tau is equal to 0.102 and they were mixed linearly
by the same mixing matrix A as in the previous simulations. The mixtures are
shown in the pictures in figure. 7.12. To separate these two sources, we applied
our approach in section 7.2.2 without assuming the statistical dependency. The
two images in Figure. 7.13 are the estimated sources using the Hellinger divergence
and figures in 7.14 are the estimated sources using the MI. Figure. 7.17 represents
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different SNR outputs for the dependent sources from the AMH copula using the
Hellinger divergence and the MI, illustrating the superiority of the separation using
the Hellinger divergence.

(a) ”Waves signal” (b) ”Bumps signal”

Figure 7.11: Sources ”Waves” and ”Bumps” and their mixtures

(a) Mixture 1 (b) Mixture 2

Figure 7.12: Sources ”Waves” and ”Bumps” and their mixtures

(a) ”Waves” estimated via proposed
approach(α = .5)

(b) ”Bumps” estimated via proposed
approach(α = .5)

Figure 7.13: Estimated dependent sources from AMH copula (θ = 0.4) using the
Hellinger divergence and the MI method

105



7.3. SIMULATION RESULTS

(a) ”Waves” estimated via MI method (b) ”Bumps” estimated via MI method

Figure 7.14: Estimated dependent sources from AMH copula (θ = 0.4) using the
Hellinger divergence and the MI method

Figure 7.15: The SNR output for the Hellinger divergence and the MI

7.3.3 Noisy source components

In this subsection, we test the accuracy of our approach when a bit of noise is present
during the mixing process. We work with the same source signals used above and
the same conditions and we add white Gaussian noise to the observed signals. We
take SNR = −25dB.

Figure. 7.16a illustrates the SNR of the dependent sources from Clayton copula for
the three values of α, it can be seen that the proposed approach is able to separate
even noisy dependent sources with good performance and that the hellinger diver-
gence is again the faster to convergence. Moreover Figure. 7.16b shows that when
the separation is achieved our criterion converges to its minimum 0.

Figure. 7.17a represents the shape of the original source signals, figure. 7.17b shows
their shape after being mixed by the mixing matrix A and finally figure. 7.17c,
showcases the shape of the estimated original data after the separation for the noisy
dependent sources from the Clayton copula.
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Table 7.5 presents the output SNR values of the estimated sources using the α-
divergence and the other methods, we can see that the approaches are equivalent,
with superiority of our method, in case of noise-contaminated independent source
components. On the other hand, our approach is apt to separate even noisy mixtures
of dependent source components with higher accuracy. Table 7.7 exhibits the output
Performance Index of our approach, showcasing its superiority especially for α = 1

2
.

(a) Average output SNRs versus iteration
number

(b) The criterion value vs iterations

Figure 7.16: Uniform dependent noisy sources from Clayton-copula (θ = 1.4) for
α = 0.5

(a) Representation of dependent sources (b) Representation of mixtures

(c) Representation of estimated sources

Figure 7.17: Uniform dependent sources from Clayton copula (θ = 1.4) for α = 0.5
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Copulas Independence Clayton

Sources S1 S2 S3 S1 S2 S3

Copula α = 0 31.3267 31.4681 30.9519 29.1470 29.2910 29.5691

Copula α = 0.5 36.1882 36.2384 36.0518 34.9658 34.8174 34.6611

Copula α = 2 31.0214 31.0657 30.7131 28.9377 29.1850 29.1672

MI 30.4531 30.4178 30.4130 7.1605 7.0444 6.6586

FastICA 29.2118 29.6796 28.2773 25.5767 3.0302 3.7841

JADE 30.2331 30.2209 30.2495 6.9056 6.8649 7.1214

RADICAL 29.9161 29.9472 30.1102 6.5064 7.4440 6.9503

InfoMax 30.0881 30.6651 30.5402 5.3751 5.3627 5.3168

Table 7.5: Output SNR’s for independent and dependent noisy source components

Copulas Frank

Sources S1 S2 S3

Copula α = 0 30.9543 30.7120 30.6045

Copula α = 0.5 36.2770 36.5339 36.3887

Copula α = 2 30.4445 30.4273 30.4370

MI 12.2857 12.3780 12.1843

FastICA 28.5473 8.4895 6.6148

JADE 13.2814 13.3712 12.8820

RADICAL 12.4281 14.7506 12.5084

InfoMax 8.3977 8.2703 8.3137

Table 7.6: Output SNR’s for dependent noisy source components of Frank copula

Copulas Independence Clayton Frank

Copula α = 0 0.0137 0.0159 0.0171

Copula α = 0.5 0.0101 0.0115 0.0133

Copula α = 2 0.0191 0.0211 0.0202

MI 0.03541 0.4058 0.4440

FastICA 0.0211 0.4796 0.4773

JADE 0.0231 0.4219 0.4435

RADICAL 0.0461 0.4342 0.1102

InfoMax 0.0685 0.4561 0.4523

Table 7.7: Output PI’s for independent and dependent noisy source components

7.4 Conclusion

A new approach for Blind Source Separation (BSS), based on minimizing the α-
divergences between the copula densities of the sources have been presented in this
chapter for both independent and dependent sources as a generalization of the mu-
tual information approach. We minimize the estimate of the α-divergence for dif-
ferent values of α. In this study, we deducted that the Hellinger divergence which
is equivalent to α = 0.5 is the distance that gives the highest accuracy compared
to other values and other approaches as it was illustrated in section ”Simulation

108



7.4. CONCLUSION

results” for 3 × 3 mixture-sources of independent, dependent and even noise con-
taminated sources. The efficiency and the accuracy of the algorithms was evaluated
through both the signal-to-noise-ratio criterion and the performance index.
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Chapter 8

Applications

8.1 Introduction

In this chapter we will be introducing variety of applications of BSS that we ap-
plied. First we used BSS to denoise digital images, our approach was used for
different types of noise (gaussian, poisson and so on). We also used BSS for sepa-
rating images of mixed fingerprints which could be useful in a crime investigation to
separate a mixture of two fingerprints and finally we used BSS to remove the bleed-
through/show-through effects which is detected in the antique documents with the
aim of improving text readability and optical character recognition (OCR) efficiency.

8.2 Image denoising

Due to the influence of the environment during acquisition and transmission, images
are contaminated by additive noise, leading to distortion and loss of image infor-
mation. The main aim of image denoising is to remove noise from a noisy image,
so as to restore the original image while preserving the image features. In fact,
image denoising is a fundamental challenge in computer vision especially in image
restoration and has been widely studied in the image processing community.

During the last decade multiple algorithms were proposed for denoising images. The
wavelet transform was a popular image-denoising approach, it was first introduced
by [114] and since, it was heavily investigated in image denoising [36, 45, 66, 76,
87, 102, 154, 156]. Since the wavelet transform has many good characteristics, such
as sparseness and multi-scaling, it is still an active area of research in image de-
noising. However, the wavelet transform heavily relies on the selection of wavelet
bases. If the selection is inappropriate, image shown in the wavelet domain cannot
be well represented, which causes poor denoising effect. Therefore, this method is
not adaptive. More recently, a growing number of researchers have shifted their at-
tention to nonlocal image restoration techniques, first was [20], motivated by the key
observation that many important structures in natural images, including textures
and edges, are characterized by abundant self-repeating patterns. From here, many
improved versions have been proposed. Some studies focused on the acceleration of
the algorithm [42, 147], while others focused on how to enhance the performance
of the algorithm [57, 72, 132]. We also have the sparsity-based regularization that
has led to a variety of promising results for image restoration problems including
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image denoising [51, 56, 112, 158]. For the data adaptive transforms we have Inde-
pendent component analysis (ICA) [37] and Principal component Analysis (PCA)
[166]. Among them, the ICA method has been successfully implemented for image
denoising [77, 167].

Most denoising methods assume that the noise is white Gaussian or have prior
information about its properties. However, since noise, texture, and edge, are high-
frequency components, it is difficult to distinguish them in the process of denoising
and the denoised images could inevitably lose some details. In our previous work [96],
we used copula models to better estimate the mixing matrix along with the sources
using solely the mixtures for both independent and dependent source components.
This gives us an opportunity to omit the independence assumption that was used
for years and model the BSS problem for statistically dependent source components.
Hence in this chapter, we first start from a denoising problem to a BSS problem
by creating a second observation image from the noisy one and then applying the
copula-based BSS to separate the clean image from the noise. Then we introduce
a TGV regularization term into our cost function to eliminate the apparent blur in
the estimated image from the noise-free BSS approach.

8.2.1 The proposed approach

Our denoising approach is based on blind source separation (BSS) using copulas
(7.2). Let us first consider that the random (vector) processes s(t), x(t) and y(t) :=
W x(t), t ∈ [0, T ], are stationary, so that the corresponding discretized versions,
with certain time period say Te is,

s(m) := s(mTe), x(m) := x(mTe) (8.1)

and
y(m) := y(mTe) = W x(m), m = 1, . . . , Nt, (8.2)

can be viewed as realizations of random vectors in R2, which will be denoted, re-
spectively, by

S, X and Y := WX. (8.3)

Notice that the random vector Y , as well as the associated samples y(m), m =
1, . . . , Nt, depends on the deterministic (unknown) matrix W . Let i1, . . . , iN be N
i.i.d. realizations (in decreasing order) generated, independently, from the uniform
discrete probability distribution on the set index {1, . . . , Nt}, with N ≤ Nt. For sim-
plicity of notation, we will simply denote 1, . . . , N instead of i1, . . . , iN . Therefore,
each of s(m), x(m) and

y(m) := W x(m), m = 1, . . . , N, (8.4)

can be viewed asN i.i.d. realizations, respectively, of the random vectors S, X and Y :=
WX. We will use in what follows this i.i.d. realization (8.4), for estimating the
separating matrix, instead of the ”original” data (8.2) which my be (temporally)
dependent. In the other hand, in practice Nt may be large, and the i.i.d. data (8.4),
with N << Nt, may be enough for separating the sources with good performance.
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8.2.2 Denoising Independent noise

In this section, we will tackle down two cases of signal independent noises, the
Gaussian noise and the combination of Salt & pepper and Gaussian noise.

Gaussian noise

Gaussian noise is often used to model the noise statistics in many applications, such
as in medical imaging, as a simple approximation of more complicated noise models.
The noise is assumed to be an additive random component n, Gaussian-distributed
with zero mean and variance σ2 determining the noise intensity. In this case the
denoising problem can be simply written as

I = I0 + n (8.5)

where I is the noise-corrupted image, I0 the clean image that we want to estimate
and n the additive Gaussian noise. Our approach uses BSS to separate I0 from
n. Nonetheless, to enable BSS to work, the number of observations needs to be
equal to the number of the sources. To tackle this problem we propose to create a
second observation I

′
. The idea is to use bilateral filter [127] to decrease the noise

level in the image hence constructing a second observation with different weights for
the clear image and the noise component. The following Figure 8.1 describes our
denoising process

Figure 8.1: The BSS process for denoising images

where I and I
′

are the observations, and (I0,n) are the sources, the current BSS
model is written as follows

X =

[
I

I
′

]
=

[
m11 m12

m21 m22

]
×
[
I0

n

]
= M S (8.6)

withM the mixing matrix wherem11 = m12 = 1. The goal is to estimate y = (y1, y2)
of (I0,n) by finding a demixing matrix W that should be as close as M−1. To
separate the mixture we minimize a criterion of this form:

J : W → J (W ) := Jsep(W ) + Jreg(y) (8.7)

where y(t) = Wx(t) ∈ R2, Jsep(.) is the separating criterion, while Jreg(.) is a
regularization term.

As shown in the previous chapters the Mutual information of a random variable
Y can be regarded as the Kullback-Leibler divergence between the copula density
cY (·) of Y and the copula density of independence c0 (7.2). Moreover, MI(Y ) =
KL (cY ||c0) is non-negative and achieves its minimum value zero iff cY (u) = c0(u), ∀u ∈
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[0, 1]2, namely, iff the components of the vector Y are independent. The Kullback-
Leibler divergence is calculated as follows:

KL (cY ||c0) :=

∫
[0,1]2
− log

(
1

cY (u)

)
cY (u) du (8.8)

= E [log cY (FY1(Y1), FY2(Y2))] (8.9)

The separating term is then

Jsep(W ) := KL (cY ||c0) (8.10)

The statistical estimate Ĵsep of the separating term Jsep is defined by

Ĵsep(W ) := ̂KL (cY ||c0) =
1

N

N∑
m=1

log
(
ĉY (F̂Y1(y1(m)), F̂Y2(y2(m)))

)
. (8.11)

where, ∀u ∈ [0, 1]2,

ĉY (u) :=
1

NH1H2

N∑
m=1

k

(
F̂Y1(y1(m))− u1

H1

)
k

(
F̂Y2(y2(m))− u2

H2

)
, (8.12)

is the kernel estimate of the copula density cY (·), and F̂Yj(x), j = 1, 2, is the
smoothed estimate of the marginal distribution function FYj(x) of the random vari-
able Yj, at any real value x ∈ R, defined by

F̂Yj(x) :=
1

N

N∑
m=1

K

(
yj(m)− x

hj

)
, (8.13)

where K(·) : x ∈ R 7→ K(x) :=
∫ x
−∞ k(t) dt, is the primitive of a kernel k(·), a

symmetric centered probability density. In our forthcoming simulation study, we
will use the triangular kernel

k(x) := (1− |x|)1[−1,1](x),∀x ∈ R.

A more appropriate choice of the kernel k(·), for estimating the copula density, can
be done according to [125], which copes with the boundary effect. The bandwidth
parameters H1, H2 and h1, h2 in (8.12) and (8.13) will be chosen according to Silver-

man’s rule of thumb, see [138], i.e., for j = 1, 2, we takeHj =

(
4

2 + 2

) 1
2+4

N
−1
2+4 Σ̂j, and hj =(

4

3

) 1
5

N
−1
5 σ̂j, where σ̂j and Σ̂j are, respectively, the empirical standard deviation of

the data yj(1), . . . , yj(N) and F̂Yj(yj(1)), . . . , F̂Yj(yj(N)). The minimum, Ŵ , can be
computed using gradient descent algorithm on W of the criterion function Jsep(W ).

where
dĴsep
dW

is calculated as follows:

dĴsep
dW

=
1

N

N∑
i=1

d
dW

ĉY (u(i))

ĉY (u(i))
(8.14)
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with
d

dW
:=

(
∂

∂W l,j

)
, l, j = 1, 2, u(i) := (F̂Y1(y1(i)), F̂Y2(y2(i)))> and

∂ĉY (F̂Y1(y(n)), F̂Y2(y2(n)))

∂W l,j

=
1

NH1H2

N∑
i=1

2∏
j=1,j 6=l

k

(
F̂Yj(yj(i))− F̂Yj(yj(n))

Hj

)

× k′
(
F̂Yl(yl(i))− F̂Yl(yl(n))

Hl

)
1

Hl

∂(F̂Yl(yl(i))− F̂Yl(yl(n)))

∂W l,j

,

(8.15)
with

∂(F̂Yl(yl(i))

∂W l,j

=
1

Nhl

N∑
n=1

k

(
yl(n)− yl(m)

hl

)
(xj(n)− xj(i)). (8.16)

The second term of the criterion is a regularisation term, we chose the BTV-type
proposed by [58] which is derived from the bilateral filter. The idea of the bilateral
filter was first proposed in [149] as a very effective one-pass filter for denoising
purposes while keeping sharp edges. The idea behind this regularization is that the
bilateral TV is able to smooth away the noise and small variation in a signal while
preserving the major edges or discontinuity. Also, it is more robust to remove a high
level of noise, better than the total variation TV, see for example [58]. The bilateral
TV regularization term takes the following form:

BTV (y) :=
m∑

j=−m

α|j|‖y −Gjy‖1, (8.17)

where the matrix Gj implies a right shift of j samples. The scalar weight α (0 <
α < 1), is applied to give a spatially decaying effect to the summation of the reg-
ularization terms, and m is the spatial window size. It is easy to show that this
regularization method is a generalization of other popular regularization methods.
If we limit set m = 1, with α = 1, and define the operator Q = I −G as a first
derivative term, then equation (8.17) becomes

BTV (y) := ‖Qy‖1, (8.18)

which coincides with the total variation regularization.

Using the bilateral TV regularization (8.17), the second term of the criterion to
minimize will be of the form:

Jreg(y) := µ

m∑
j=−m

α|j|‖y(t)−Gjy(t)‖1, µ > 0, (8.19)

where µ are regularization parameters that should be wisely chosen by the user.
The demixing matrix W can be computed using a gradient descent type algorithm.
In fact, the gradient in W of the estimated criterion W → Ĵ (W ) is calculated as
follows:

dJ
dW

=
dJsep
dW

+
µ

N

N∑
n=1

m∑
j=−m

α|j|
(
I −G−j

)
sign(y(n)−Gjy(n)) (8.20)

We can then derive the following Algorithm:
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Data: x the two observed images
Result: ŝ the estimated source signal
Initialization: W (0) = Ip, y

(0) = W (0) x.
Given ε > 0, ν > 0.
Do: Update W and y:

W (q+1) = W (q) − ν dĴ (W )

dW
y(q+1) = W (q+1) x.
Until ||W (q+1) −W (q)|| < ε
ŝ = y(q+1).

Algorithm 6: BSS algorithm for independent source components.

Salt & pepper and Gaussian noise

Th second type of noise that we will tackle is the combination of Salt & pepper and
Gaussian noise, the new model is written as follows:

I = I0 + n+ s (8.21)

where n is the additive Gaussian noise and s is the additive Salt & pepper noise.
In this case to use BSS we need two other observations, due to having three sources
to be separated (I0,n, s). The idea here is to use two different filters to get two
different observations I1, I2. The following figure 8.2 shows our denoising process:

Figure 8.2: The BSS process for denoising Salt & pepper and Gaussian noise con-
taminated images

Hence, the current BSS model is written as follows:

X =

 II1

I2

 =

m11 m12 m13

m21 m22 m23

m31 m32 m33

×
I0

n
s

 = M S (8.22)

with M the mixing matrix where m11 = m12 = m13 = 1. The goal is to estimate
y = (y1, y2, y3) of (I0,n, s) by finding a demixing matrix W that should be as
similar as possible to M−1. To separate the mixture we minimize a criterion of this
form:

J : W → J (W ) := Jsep(W ) + Jreg(y) (8.23)

The regularization term is the same as the previous section, and the separation term
take the following form:
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Jsep(W ) := KL (cY ||c0) :=

∫
[0,1]3
− log

(
1

cY (u)

)
cY (u) du (8.24)

= E [log cY (FY1(Y1), FY2(Y2), FY3(Y3))] (8.25)

The gradient of the two previous terms can be explicitly computer using a similar
approach to (8.15) and (8.20) above.

8.2.3 Poison noise

In this case, we consider the problem of a signal-dependent noise component. In
particular, we will focus on a Poisson distributed component z having u as Poisson
parameter. In other words, we will consider the following denoising model (8.26)
with

I = I0 + z where z ∼ Pois(u) (8.26)

As in section 8.2.2, the idea is to create a second observation from I denoted I ′. Due
to the fact that Poison noise is signal dependent then the two source components
S = (I0, z)> are statistically dependent, hence we can’t use the independent copula
density as in the previous section. Denote by cS(·) the unknown copula density of
S. The source copula density cS(·) is unknown. We assume that it belongs to a set
of L candidate semiparametric models, say,

Ml := {cl(·; θl); θl ∈ Θl ⊂ R}, l = 1, . . . , L. (8.27)

We refer to [88] for many examples of semiparametric copula density models, more
details were given in the ”Introduction to copula” chapter. We assume that each
”semiparametric” model Ml, l = 1, . . . , L, satisfies the following identifiability con-
dition : for any regular matrix M , if the copula density, of MS, belongs to
{cl(·; θl); θl ∈ Θl ⊂ R}, then M = DP , where D is diagonal and P is a per-
mutation. We introduce then the following objective function

W 7→ J (W ) := Jsep(W ) + Jreg(y),

where Jreg(y) is the same as in the previous section. The new separating term of
the form:

Jsep(W ) := KL (cY ||cl(·; θl)) (8.28)

This term is nonnegative and achieves its minimum value zero iff W = M−1 (up
to scale and permutation indeterminacies). Therefore, we propose to estimate, from
the i.i.d. data (8.4), the demixing matrix by

Ŵ := arg inf
W

inf
θl∗∈Θl∗

Ĵ (W ), (8.29)

where
l∗ = arg min

l=1,...,L
inf
W

inf
θl∈Θl

K̂L (cY , cl(·; θl)) , (8.30)
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and

K̂L (cY ||cl(·; θl)) :=
1

N

N∑
n=1

log

(
ĉY (F̂Y1(y1(n)), F̂Y2(y2(n)))

cl(F̂Y1(y1(n)), F̂Y2(y2(n)); θl)

)
(8.31)

The minimum, Ŵ , in (8.31) can be computed using gradient descent algorithm

on both W and θ of the criterion function (W , θ) 7→ K̂L (cY ||cl(·; θl)) +Jreg(y) for
each model and then choose the solution minimizing the criterion over all considered
models where

dĴsep
dW

=
1

N

N∑
i=1

d
dW

ĉY (u(i))

ĉY (u(i))

ĉθ̂(u(i))
d
dW

ĉθ̂(u(i))
(8.32)

with u(i) := (F̂Y1(y1(i)), F̂Y2(y2(i)))>, and dĴreg
dW

is the same as in section 8.2.2. The

two gradients
d

dW
ĉY (u(i)) and

d

dW
ĉθ̂(u(i)) can be explicitly computer using a

similar approach to (8.15) and (8.20) above. We obtain the following estimates of
the sources, see (8.2),

ŝ(m) := Ŵ x(m), m = 1, . . . , Nt. (8.33)

We obtain then the following Algorithm 7.

Data: x the two observed images
Result: ŝ the estimated source signal
Initialization: W (0) = Ip, y

(0) = W (0) x.
Given ε > 0, ν > 0.
Do: Update W , θ and y:

θ(q+1) = θ(q) − ν dĴ
dep
sep (W )

dθ

W (q+1) = W (q) − ν dĴ
dep
sep (W )

dW
y(q+1) = W (q+1)x.

Until ||W (q+1) −W (q)|| < ε
ŝ = y(q+1).

Algorithm 7: BSS algorithm for Poison noise.

8.2.4 Results

In this section, we give simulation results for the proposed method. We dealt with
various types of images corrupted with different levels of noises. To evaluate our
approach, we use both the structural similarity (SSIM) index and the classical peak
signal to noise ratio (PSNR) measure. Although PSNR is widely used as a compar-
ative index between two images, many works have pointed out that PSNR is not a
good fit to measure the perceptual similarity between two images like the SSIM.
The PSNR is defined as:
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PSNR = 10log10
MAX2

MSE
(8.34)

where the MSE (Mean Square Root) of two monochrome images u and v of size
m× n is calculated as follows

MSE =
1

m× n

m∑
i=1

−1
n∑
j=1

−1 ‖ v(i, j)− u(i, j) ‖2 (8.35)

and the MAX is the maximum possible pixel value of the image, and because we
are using only gray-scaled image this MAX value is equal to 255.

The SSIM index is calculated on various windows of an image. The measure between
two windows x and y is

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(8.36)

where µy and µx are the average value of window x and y, respectively. σx and σy
are the variance of x and y, and σxy is the covariance of x and y. c1 = (k1R)2 and
c2 = (k2R)2 are two variables to stabilize the division with k1 and k2 set respectively
as 0.01 and 0.03 by default and R is the the dynamic range and it is equal to 255
if the image is 8-bit. The SSIM has a maximum value of 1. The maximum value of
1 indicates that the two signals are perfectly structurally similar while a value of 0
indicates no structural similarity.

In the following we present the results of denoising multiple images corrupted by
various types of noise.

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6
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Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

8.3 Separation of fingerprints

A second application in the field of digital images is the separation of mixtures of
images of fingerprints. The uniqueness of a fingerprint is one of the biological fea-
tures of humans. Fingerprints are one of these characteristics which is not changed
or changed slowly by time and is permanent moreover is it easy to test, which mean,
we can measure the similarity of two fingerprints by simple skills or equipment.

Fingerprint recognition has become an important tool in recent years, and it is used
for identification purposes for protection and privacy on a regular basis. It does,
however, have a problem when fingerprints pattern are on the same position. The
problem happens in crime scene investigation normally. Therefore, researchers were
more interested in how to repair or reconstruct overlapping fingerprints. Our pro-
posed method focus on separating and reconstructing two fingerprints mixtures.

Our idea is to use BSS as the tool to separate those fingerprint mixtures. We take
the case of two fingerprints. This problem can be modelled as follows:[

X1

X2

]
=

[
a11 a12

a21 a22

]
×
[
I1

I2

]
(8.37)

where A =

[
a11 a12

a21 a22

]
is the mixing matrix and I1, I2 are the two fingerprint images

that we want to get. We only have their mixed images X1 and X2, For estimating
the demixing matrix and the original fingerprints, each image will be converted to
grayscale, and will be considered as 1d-signal of dimension. We use the algorithm
proposed in chapter 6 to achieve the separation. To test the accuracy of our approach

119



8.3. SEPARATION OF FINGERPRINTS

we don’t use the PSNR in this case as it can contribute to some misleading results
especially because we are talking about fingerprints. Instead we used a similarity
Convolutive Neural Network (CNN) method to test the similarity. This Image
Similarity algorithm compares two images and returns a value that tells you how
visually similar they are. The lower the the score, the more contextually similar the
two images are with a score of zero being identical.

8.3.1 Simulation Results

The two original fingerprints were mixed by A =

[
1 0.8

0.8 1

]
mixing matrix. Fig-

ure.8.11 present those two mixtures. Using our algorithm on these observations leads
to the figure.8.12, where we estimated the original mixtures. And by deploying the
CNN image similarity algorithm we got the following results.

� First Fingerprint

– Similarity between original first fingerprint and the first mixture: 8

– Similarity between original first fingerprint and the BSS-retrieved finger-
print: 0

� Second Fingerprint

– Similarity between original second fingerprint and the second mixture: 7

– Similarity between original second fingerprint and the BSS-retrieved fin-
gerprint: 0

We can say that the separation was a success as we got a score of zero which
mean perfect similarity.

(a) First Mix (b) Second Mix

Figure 8.11: The mixture of the two fingerprints
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(a) The 1st FP After applying BSS (b) The 2nd FP After applying BSS

Figure 8.12: The reconstituted fingerprints

8.4 Digital document image restoration

Another application of BSS is removing the bleed-through/show-through effects
which is detected either in the antique documents due to the process of rewrit-
ing the erased parts and the intensity of the ink that appears in the reverse side of
the document, or in the double-side scanned documents, due to the transparency
of the paper. It is obvious that such intervening strokes, will get in the way if an
optical character recognition (OCR) system is to function effectively. To remedy to
this problem, we suggest a restoration method based on our approach of blind source
separation which is based on copula theory that models the dependency structure,
with the aim of improving text readability and OCR efficiency.

8.4.1 Proposed approach

In this section we assume that a document which is affected by the bleed-through/show-
through effect is viewed as the superposition of three sources called respectively
background, underwriting, and overwriting, consequently, In our BSS problem, we
have three different sources that in one way or another fused to provide the studied
image. Simultaneously, we may believe that there are three observed charts that
were divided into red, green and blue components. As stated above, we assume
having an equality between the number of sources and observations, we may also
denote that the color of each of the three sources is indexed as follow (r1, g1, b1) for
the background, (r2, g2, b2) for the overwriting, and (r3, g3, b3) for the underwriting.
Therefore, the BSS problem is stated as follows : ur(t)

ug(t)
ub(t)

 =

 r1 r2 r3

g1 g2 g3

b1 b2 b3

 s1(t)
s2(t)
s3(t)



where u(t) denotes the observations, D =

 r1 r2 r3

g1 g2 g3

b1 b2 b3

 the mixing matrix that

belongs to R3×3, and s(t) is the source that we want to deduce in the end of this
process by the next equation :

w(t) = Zu(t),

where w(t) denotes the estimate value of s(t). Notice that W , U and S are three
random variables of R3 whom realizations are respectively w, u and s.
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Under the dependency condition of the source components, we denote by cS(·) the
copula density of the random variable S which is assumed unknown. To retrieve
the de-mixing matrix which is assumed to be as close as possible to D−1, one must
introduce the following objectif function Z 7→ KL (cW , cS) , where

KL (cW , cS) : =

∫
[0,1]3

log

(
cW (y)

cS(y)

)
cW (y)dy

= E
[
log

cW (FW1 (W1) , . . . , FW3 (W3))

cS (FW1 (W1) , . . . , FW3 (W3))

],
where KL denotes the Kullback-Liebler divergence between the copula density of
the source components and the copula density of the observations. We use the
procedure explained in chapter ”Instantaneous BSS via copulas”.

8.4.2 Simulation results

In this section, we will show the efficiency of our approach dealing with the bleed-
through/show-through effect [150] by exposing the results using the BSS process
based on copulas. To do so, we used a real image of ancient document as shown in
figure 8.13.

(a) (b)

Figure 8.13: (a) Image 1, (b) Zoom on four regions

As we can notice on the four zooming regions, the image is truly affected by the
bleed-through effect, this image is the superposition of three observations ur, ug and
ub given by figure 8.14.

(a) (b) (c)

Figure 8.14: (a) Image corresponding to ur, (b) Image corresponding to ug, (c)
Image corresponding to ub
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8.5. CONCLUSION

As stated above in section 8.4.1 the dependency structure is unknown between the
source elements, that’s why we will use our approach with some copulas examples
namely : Student T, Gaussian, FGM, Clayton, AMH, Frank, and Gumbel copula, we
refer the readers to [88] for the definitions of these copula models. After simulations,
the perfect candidate that allows us to reach the separation with θ = 1.5 is Gumbel
copula. By applying our approach, we obtain the results presented in figure 8.15.

(a) (b) (c)

Figure 8.15: Restored images by our approach :(a) Image corresponding to sr, (b)
Image corresponding to sg, (c) Image corresponding to sb

As we can notice in figure 8.15, the bleed-through effect is well removed from the
image 8.15b and the image is well restored, and as a proof we zoom on four regions
in figure 8.16.

(a) (b)

Figure 8.16: (a) Restored image, (b) Zoom on four regions of the restored image

8.5 Conclusion

In this chapter we presented some of the applications of Blind Source Separation
that we conducted during our research. As we saw all of them were a success in term
of quality of results. However, they are much more advanced applications where BSS
can be very useful such as hearing aid applications and its real-time implementation
on smartphone and so on, and our goal in the future is to implement our approach
in those advanced applications and improve them even more to give perfect results.
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Chapter 9

Conclusion and perspectives

In this thesis, We have provided algorithms for blind source separation for linear
instantaneous mixtures . The idea behind all of the algorithms is to use the steep-
est descent gradient algorithm to iteratively minimize appropriate criteria based on
copula densities. The first approach uses the mutual information (MI) which is
equivalent to the Kullback-Leibler divergence between the copula of the estimated
sources and the particular copula of independence, this leads to defining a new sep-
aration criteria in order to separate instantaneous mixtures of possibly dependent
source components by finding an appropriate copula that models the dependency
structure of the sources using model selection approaches. This approach can sep-
arate dependent sources with unknown copula model and/or unknown parameter
which is the case in many real applications almost perfectly for instantaneous mix-
tures. It gave very satisfying results, however to have even greater results with a
faster divergence, we proposed to use the alpha-divergence. Note that the kullback-
leibler divergence is just a special case of the alpha-divergence. We show that the
proposed approach can magnificently separate instantaneous mixtures of dependent
sources with unknown copula model and/or unknown parameter which is the case in
many real applications. The most interesting results of the thesis are the followings:

� We introduced the concept of copula, as the statistical object, in order to
model the dependency structure between components sources.

� We introduced a new robust BSS approach for noisy mixtures of independent
and dependent sources, using the bilateral total variation regularization (BTV)
and copulas.

� We introduced the alpha-divergence, as our new cost function to minimize
considering its superiority to handle noisy data as well as its ability to converge
faster.

� We designed new methods for separating linear instantaneous mixtures of de-
pendent sources when for three case, where the parameter is known and when
only the copula model is known and when the copula model and the parame-
ter are unknown. These methods are presented in the noisy-free case and also
noisy cases, using the two concepts of copula and alpha-divergence.

� We tested our approach in multiple real-life applications, especially in the the
image processing field such as image denoising and restoration.
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In the future, we would like to test and use our new approach on more advanced
applications and even propose new approach in BSS more complicated cases such
as the convolutive case on even the non-linear case where most of the approaches
proposed in literature wont even give an average solution. BSS is such an interesting
research fiels and its applications are far more interesting and it is helping in multiple
scientific fields and not exclusive to one problem, it can be used in any problem as
long as there are sources that should be separated such as audio, images, radar-
signals, vibrations, and so forth, hence we want to use real data and real case
scenarios especially in the bio-medical field. Another extension that we can make is
to optimize our second approach by minimizing over the parameter alpha to get the
perfect separation.
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[73] Gribonval, Rémi and Sylvain Lesage. 2006. A survey of sparse component anal-
ysis for blind source separation: principles, perspectives, and new challenges,
in ESANN’06 proceedings-14th European Symposium on Artificial Neural Net-
works , d-side publi., 323–330.

[74] Gumbel, E. 1960. Bivariate exponential distributions, J. Amer. Statist. Assoc.,
55, 698–707.

[75] Guntuboyina, Adityanand. 2011. Lower bounds for the minimax risk using
f -divergences, and applications, IEEE Transactions on Information Theory ,
57(4), 2386–2399.

[76] Gupta, Vikas, Rajesh Mahle, and Raviprakash S Shriwas. 2013. Image denois-
ing using wavelet transform method, in 2013 Tenth International Conference
on Wireless and Optical Communications Networks (WOCN), IEEE, 1–4.

[77] Han, Xian-Hua, Yen-Wei Chen, and Zensho Nakao. 2003. An ica-based method
for poisson noise reduction, in International Conference on Knowledge-Based
and Intelligent Information and Engineering Systems , Springer, 1449–1454.

[78] Herault, Jeanny and Christian Jutten. 1986. Space or time adaptive signal
processing by neural network models, in AIP conference proceedings , American
Institute of Physics, vol. 151, 206–211.

[79] Hyvarinen, A. 1999. Fast and robust fixed-point algorithms for independent
component analysis, IEEE transactions on Neural Networks , 10(3), 626–634.

[80] Hyvärinen, A., P. Hoyer, and M. Inki. 2001. Topographic independent com-
ponent analysis, Neural computation, 13(7), 1527–1558.

[81] Hyvärinen, A. and J. Hurri. 2004. Blind separation of sources that have spa-
tiotemporal variance dependencies, Signal processing , 84(2), 247–254.

[82] Hyvärinen, A., J. Karhunen, and E. Oja. 2004. Independent component anal-
ysis, vol. 46. hoboken.

131



BIBLIOGRAPHY

[83] Hyvärinen, A. and E. Oja. 1997. A fast fixed-point algorithm for independent
component analysis, Neural computation, 9(7), 1483–1492.

[84] Hyvärinen, A. and E. Oja. 2000. Independent component analysis: algorithms
and applications, Neural networks , 13(4-5), 411–430.

[85] Hyvärinen, Aapo, Juha Karhunen, and Erkki Oja. 2001. Independent compo-
nent analysis, adaptive and learning systems for signal processing, communi-
cations, and control, John Wiley & Sons, Inc, 1, 11–14.

[86] Hyvärinen, Aapo and Petteri Pajunen. 1999. Nonlinear independent compo-
nent analysis: Existence and uniqueness results, Neural networks , 12(3), 429–
439.

[87] Jiang, Hui-Yan, Zhen-Yu Cheng, Yan Huo, Xiao-Jie Zhou, and Tian-You Chai.
2007. Research on image denoising methods based on wavelet transform and
rolling-ball algorithm, in 2007 International Conference on Wavelet Analysis
and Pattern Recognition, IEEE, vol. 4, 1604–1607.

[88] Joe, H. 1997. Multivariate models and dependence concepts , vol. 73 of Mono-
graphs on Statistics and Applied Probability , Chapman & Hall, London.

[89] Joe, Harry. 1996. Families of m-variate distributions with given margins and
m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series ,
120–141.

[90] Joe, Harry. 2005. Asymptotic efficiency of the two-stage estimation method
for copula-based models, Journal of multivariate Analysis , 94(2), 401–419.

[91] Jourjine, Alexander, Scott Rickard, and Ozgur Yilmaz. 2000. Blind separation
of disjoint orthogonal signals: Demixing n sources from 2 mixtures, in 2000
IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No. 00CH37100), IEEE, vol. 5, 2985–2988.

[92] Jutten, Christian. 1987. Calcul neuromimétique et traitement du signal: anal-
yse en composantes indépendantes , Ph.D. thesis, Grenoble INPG.

[93] Jutten, Christian and Pierre Comon. 2007. Séparation de sources 2. au-delà
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