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Pr. M. El Kahoui, Professeur, Faculté des Sciences Semlalia, Marrakech, Président/Rapporteur;
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Résumé

Soit D un anneau commutatif intègre et Γ un monoide commutatif simplifiable

et sans torsion. On désigne par D[Γ ] l’anneau de semi-groupe de Γ sur D. Au

cours des dernières années, plusieurs auteurs se sont intéressés par les propriétés

de factorisation dans D[Γ ]. Ce qui a conduit à la construction de nouvelles classes

d’exemples originaux en algèbre commutative et en théorie de factorisation.

L’objectif principal de cette thèse est l’étude de certaines propriétés de factorisation

dans les anneaux de semi-groupes. Ainsi, les chapitres 2 et 3 sont consacrés à

l’étude de la propriété de Schreier. Dans le chapitre 2 nous étudions la primalité et

la propriété de Schreier dans le contexte plus général des anneaux gradués. Ensuite,

nous appliquons cela aux anneaux de semi-groupes. Le chapitre 3 est dévoué aux

anneaux de type A + B[Γ ∗], où A ⊆ B est une extension d’anneaux intègres et Γ

est un monoide commutatif simplifiable et sans torsion, avec Γ ∩ −Γ = {0}. Nous

donnons des conditions nécessaires et suffisantes pour que A + B[Γ ∗] soit de (pré–

)Schreier. Dans le cas où B est un anneau de fractions de A ou Γ contient un élément

irréductible, notre caractérisation généralise celle connue dans le cas des anneaux

de polynômes (Γ = N). D’autre part, si B n’est pas un anneau de fractions de A,

nous montrons que si l’anneau A + B[Γ ∗] est de Schreier, alors Γ est un monoide

sans atomes.

Dans le chapitre 4, nous essayons d’étendre, aux anneaux A + B[Γ ∗], une variété

de propriétés de factorisation (atomique, ACCP, BFD) plus faibles que celles des

anneaux factoriels.

Mots clés : Monoide, anneau de semi-groupe, primal, complètement pri-

mal, anneau pré–Schreier, anneau de Schreier, factorisation, atomique, UFD, ACCP,

BFD.
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Abstract

Let D be an integral domain and Γ a cancellative torsion–free commutative monoid.

The semigroup ring of Γ over D is denoted by D[Γ ]. During last few years, several

authors have been interested in the factorization properties in D[Γ ]. Then, with the

help of these domains, they constructed crucial examples in commutative algebra

and factorization theory.

The main focus of this thesis is to study certain factorization properties in semigroup

rings. Chapters 2 and 3 are devoted to the study of the Schreier property. In

Chapter 2, we study the concepts of primality and Schreier property in the more

general context of graded domains, then we specialize to semigroup rings. This leads

us to shed more light on the Schreier property in semigroup rings.

In Chapter 3, letting A ⊆ B be an extension of integral domains and Γ a monoid

with Γ ∩ −Γ = {0}, our main result deals with the characterization of when the

construction A+ B[Γ ∗] is (pre–)Schreier. In the case where B is a quotient ring of

A or Γ is not antimatter, our characterization recovers the case of polynomial rings

(Γ = Z+). If B is not a quotient ring of A, we show that A+B[Γ ∗] is Schreier implies

that the monoid Γ must be antimatter. In Chapter 4, we attempt to extend various

factorization properties (Atomic, ACCP, BFD), weaker than unique factorization,

to A+B[Γ ∗] domains.

Keywords : Monoid, monoid domain, primal, completely primal, pre–Schreier

domain, Schreier domain, factorization, atomic, UFD, ACCP, BFD.
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Introduction (French)

Dans un anneau commutatif, la factorisation est une opération qui consiste à décomp-

oser un élément en un produit d’éléments. En théorie des nombres, la factorisation

a été traitée par plusieurs mathématiciens tels que Euler, Fermat, Dedekind, Gauss

et d’autres.

Les grands progrès connus en cryptographie ont été source de motivation et de de-

veloppement de la recherche sur la factorisation en théorie des nombres. En effet,

cela est dû au fait que la sécurité de la cryptographie à clé publique dépend de la

difficulté à factoriser les nombres entiers. De plus, la capacité à factoriser des grands

nombres fournirait un mécanisme pour casser les cryptages à clé publique.

D’après le théorème fondamental de l’arithmétique, tout nombre entier n > 1

possède une factorisation unique en produit de nombres premiers (UFD). Cependant,

il existe des anneaux qui ne possèdent pas cette propriété de factorisation unique par

exemple, l’anneau Z[
√
−5] n’est pas factoriel. Pour comprendre ce défaut de la non

unicité de factorisation dans certains anneaux, les chercheurs étendirent la notion de

factorisation aux polynômes et aux idéaux. En fait, la factorisation des polynômes

remonte au XVIIe siècle avec le procédé de Newton et Leibniz qui avaient pris comme

facteurs les polynômes quadratiques et linéaires. Ensuite, Bernouilli introduisit la

notion de polynômes irréductibles. Vers 1876, Dedekind proposa la possibilté de

factoriser un idéal en un produit d’idéaux premiers. C’est dans ce cadre que l’étude

de la factorisation dans les anneaux commutatifs, trouve ses origines.

Tous les anneaux considérés dans cette thèse sont supposés commutatifs, uni-

taires et intègres.

Soit D un anneau intègre. Un élément a ∈ D \ {0} est dit primal si, pour tout

x1, x2 ∈ D \ {0} tels que a | x1x2, alors il existe a1, a2 ∈ D, vérifiant a = a1a2,

avec ai | xi pour i = 1, 2. Cette notion remonte à 1967 avec les travaux de Cohn

[14] qui a ensuite introduit la notion d’anneau de Schreier pour citer tout anneau
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intégralement clos dont tout élément non nul est primal. Par exemple, tout anneau

à PGCD est de Schreier [14, Theorem 2.4], mais la réciproque est, en général, fausse

[8, Example 2.10]. Cohn a également étudié le transfert de la propriété de Schreier

aux anneaux de fractions [14, Theorem 2.6]. Ceci lui a permi d’établir la propeiété

de Schreier pour les anneaux de polynômes [14, Theorem 2.7].

Vers 1987, Zafrullah dans son article [42] a défini le concept d’anneau pré–Schreier

pour désigner un anneau dont tout élément non nul est primal. Donc, un anneau

de Schreier est un anneau pré–Schreier qui est intégralement clos. L’étude de ces

propriétés a été developpée par plusieurs auteurs [7, 8, 37].

Une partie importante de cette thèse est consacrée à l’étude de la propriété

de Schreier dans les anneaux de semi-groupes. Le livre de Gilmer [25] sera notre

référence principale pour la théorie des anneaux de semi-groupes.

En 1988, Matsuda a étudié la propriété de Schreier pour un anneau de semi-

groupe D[S], où S est un monoide commutatif simplifiable et sans torsion. Il a

établit que l’anneau de groupe D[G], où G est un groupe abélien, est un anneau

de Schreier si, et seulement si, D est un anneau de Schreier [35, Proposition 4.5].

Ensuite, il a donné des conditions nécessaires et suffisantes pour que l’anneau de

semi-groupe D[S] soit de Schreier [35, Proposition 4.6].

Soit R = ⊕α∈ΓRα un anneau Γ–gradué, où Γ est un monoide commutatif sim-

plifiable et sans torsion et H l’ensemble des éléments homogènes non nuls de R.

Dans leur article [13] publié en 2005, les auteurs ont étudié la propriété de Schreier

dans les anneaux gradués et ils ont obtenu une caractérisation en termes d’éléments

homogènes [13, Theorems 2.1 et 2.2]. Dans ce contexte, ils ont introduit la notion

de gr–pré–Schreier pour les anneaux gradués comme suit: l’anneau gradué R est

dit gr–pre–Schreier si, tout élément x ∈ H est gr–primal. C’est-à-dire, pour tout

y1, y2 ∈ H tels que x | y1y2, alors il existe x1, x2 ∈ H, vérifiant x = x1x2 avec xi | yi
pour i = 1, 2. Entre autre, leurs résultats recouvrent les travaux de Matsuda sur les

anneaux de semi-groupes [35, 36].

Soient A ⊆ B une extension d’anneaux intègres et Γ un monoide commutatif

(additif), simplifiable et sans torsion tel que Γ ∩ −Γ = {0}. Alors R = A + B[Γ ∗]

est un sous–anneau de l’anneau de semi-groupe B[Γ]. Notons que R peut s’obtenir

comme un produit fibré avec B[Γ∗] un ideal commun de R et B[Γ ]. Si Γ ∩−Γ 6= {0}
ou si A = B, l’anneau R coincide avec B[Γ ]. Si Γ = N, alors R = A + XB[X],
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et si Γ = Nn, alors R = A + (X1, . . . , Xn)B[X1, . . . , Xn]. D’après [25, Corollary

3.4], le monoide Γ admet un ordre total ≺ compatible avec l’addition. Puisque

Γ ∩ −Γ = {0}, nous pouvons supposer que α < 0 pour tout α ∈ Γ . Donc tout

élément f ∈ R s’écrit d’une manière unique sous la forme f = a+b1X
α1+· · ·+bnXαn ,

où a ∈ A, bi ∈ B et αi ∈ Γ ∗, avec α1 ≺ · · · ≺ αn. Si bn 6= 0, il est appelé le coefficient

dominant de f et αn son degré. La construction A + B[Γ ∗] a été intensivement

étudiée par plusieurs auteurs et s’est avérée utile pour construire des exemples et

des contre-exemples en théorie des anneaux commutatifs [17, 21, 31, 32].

Motivés par le travail fait dans [13, 20], nous considérons la question suivante; déjà

posée par Zafrullah dans [43]:

(Q1) Quand est-ce que l’anneau A+B[Γ ∗] est de (pré–)Schreier?

D’autre part, à la base de toute propriété de factorisation nous trouvons la notion

d’atome: on dit qu’un élément non nul et non inversible x ∈ D est irréductible

(atome) si, à chaque fois que x = ab dans D, alors a ou b est inversible. L’anneau

D est dit atomique si, tout élément non nul et non inversible de D se factorise en

produit fini d’atomes [14]. La classe des anneaux factoriels et celle des anneaux

noethériens sont des exemples importants d’anneaux atomiques.

La factorialité des anneaux de semi-groupes a été étudiée par Gilmer et Parker dans

[26, Theorem 7.17]. Pour un anneau de semi-groupe D[S], ils ont établi que:

D[S] est factoriel si et seulement si D et factoriel, S est un monoide fac-

toriel et tout élément du groupe maximal H de S est de type (0, 0, 0, ...).

Pour les anneaux atomiques, Gilmer a posé le problème suivant [25]:

(Q2) Si D et S sont atomiques, l’anneau de semi-groupe D[S] est-il

atomique?

La réponse négative à cette question [16, 40] a donné lieu à de nouveaux problèmes

de recherche dans la théorie de la factorisation dans les anneaux de polynômes et

les anneaux de semi-groupes.

Notons que dans le cadre de factorisation non unique de nouvelles propriétés ont

été introduites. Parmi ces propriétés que nous allons étudier, citons la condition

de chaine ascendante sur les ideaux principaux (ACCP) et la notion d’anneau à

factorisation bornée (BFD): les longueurs des factorisations d’un élément donné en

produits d’atomes sont bornées, voir [3]. Nous avons les implications suivantes:

UFD =⇒ BFD =⇒ ACCP =⇒ Atomique
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Pour les anneaux de semi-groupes, ces différentes propriétés ont été étudiées dans

[30, 34]. Ceci nous amène à poser la question suivante:

(Q3) Sous quelles conditions l’anneau A+B[Γ ∗] est atomique, satisfait

la condition ACCP ou possède la propriété BFD?

Pour les anneaux A + XB[X] (Γ = N), cette question a été étudiée par plusieurs

auteurs [6, 12, 20].

Le but de cette thèse est d’étudier et étendre certains résultats bien connus sur

différents concepts de factorisation cités ci-dessus pour les anneaux de polynômes,

aux anneaux de semi–groupes. Entre autre, nous allons répondre aux questions

(Q1) et (Q3).

La thèse est divisée en quatre chapitres recouvrant le contenu de trois articles.

Le chapitre 1 fournit les résultats de base et établit les notations nécessaires à

notre étude. On y rappelle des définitions et des résultats sur la propriété de Schreier

ainsi que quelques propriétés de factorisation dans les anneaux intègres.

Dans le chapitre 2, nous étudions la notion de primalité et la propriété de (pré–

)Schreier dans les anneaux gradués, puis nous appliquons ces résultats aux anneaux

de semi-groupes. Ainsi, dans la section 2.1, nous caractérisons les éléments primals

(resp., la propriété d’être (pre–)Schreier) pour un monoide multiplicatif. Ensuite,

nous étendons le théorème (Nagata type theorem) dû à Cohn [14, Theorem 2.6]

au cas des monoides. La section 2.2 est réservée à l’étude de la primalité dans les

domaines gradués. En fait, nous montrons quand un élément homogène non nul est

primal ou complètement primal. Comme application, dans la dernière section, nous

caractérisons les éléments primals dans les anneaux de semi-groupes. Les résultats

de ce chapitre sont publiés dans [9].

Le chapitre 3 a pour but de caractériser les constructions de type A + B[Γ ∗]

qui sont (pré–)Schreier. Ces résultats sont publiés dans [10]. Nous commençons la

section 3.1 par une caractérisation de la propriété de (pré–)Schreier en termes de

la propriété gr–pré–Schreier pour A + B[Γ ∗]. Dans la section 3.2, nous étudions la

primalité des éléments homogènes non nuls dans l’anneau A+AS[Γ ∗], où S est une

partie multiplicative de A. Ensuite, nous donnons des conditions nécessaires et suff-

isantes pour que cette construction soit (pré–)Schreier (Theorem 3.2.7 et Corollary

3.2.8). La section 3.3 est consacrée à l’étude de la propriété d’être (pré–)Schreier

dans les anneaux de type A+B[Γ ∗], où B n’est pas nécessairement un anneau de frac-
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tions de A (Theorem 3.3.16 et Corollary 3.3.17). Enfin, pour illustrer nos résultats,

nous donnons des exemples originaux d’anneaux de Schreier et pré–Schreier.

Le chapitre 4 est dédié à la généralisation de certaines propriétés de factorisation

non unique aux anneaux de type A+B[Γ ∗] [11]. Ainsi, la section 4.1 est dévouée à la

propriété ACCP et dans la section 4.2, sous certains conditions, nous caractérisons

les anneaux A + B[Γ ∗] qui sont atomiques (Theorem 4.2.1). La section 4.3 est

consacrée au concept de factorisation bornée dans les anneaux A + B[Γ ∗]. Nos

résultats généralisent le cas bien connu des constructions de type A+XB[X].
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Introduction

In a commutative ring, a factorization is an operation that consists of decomposing

an element into a product. In number theory, factorization has been dealt with by

several mathematicians such as Euler, Fermat, Dedekind, Gauss and others.

With the advent of public key cryptography, research in factoring integers was in-

vigorated. The security of public key cryptography depends on the difficulty of

factoring integers, and the ability to factor large integers would provide a mecha-

nism for breaking public key ciphers.

By the fundamental theorem of arithmetic, every positive integer n > 1 has a unique

factorization into prime elements (UFD). However, there are some integral domains

that fails to be UFD such as Z[
√
−5]. In order to understand a non-unique factor-

ization, the mathematicians studied the factorization in the case of polynomials and

ideals.

The factorization of the polynomials with integer coefficients, back to theXV IIth

century, starting by the Newton and Leibniz processes which had taken as factors

the quadratic and linear polynomials, then Bernoulli introduced irreducible elements

in factorization. In 1876, Dedekind proposed the possibility to factorize an ideal to

product of ideals. It was in this setting that the study of factorization in integral

domains arose.

All rings considered in this thesis are integral domains, that is unitary commu-

tative rings without zero divisors.

Let D be an integral domain. In [14], Cohn called an element a ∈ D\{0} primal

if for all x1, x2 ∈ D\{0}, a | x1x2 implies that a = a1a2 for some ai ∈ D with

ai | xi, i = 1, 2. Then he called D a Schreier domain, if D is integrally closed and

every nonzero element of D is primal. For instance any GCD domain is Schreier

[14, Theorem 2.4], but the converse is false in general, as asserted in [8, Example

2.10]. Cohn studied also the behaviour of the Schreier property under localization
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[14, Theorem 2.6]. This allowed him to extend the Schreier property to polynomial

rings [14, Theorem 2.7].

In his 1987 paper [42], Zafrullah called D pre–Schreier if every nonzero element

of D is primal. So a Schreier domain is an integrally closed pre–Schreier domain.

The study of these two concepts was continued in [7] and [37].

The purpose of this thesis is to explore some topics in factorization theory in semi-

group rings. The book of Gilmer [25] will be our main reference for the theory of

semigroup rings.

In 1988, Matsuda studied the Schreier property for a semigroup ring D[S], where

S is a cancellative torsion–free commutative monoid. He showed that D[G], where

G is an abelian group, is Schreier if and only if D is Schreier [35, Proposition 4.5].

Then, he established necessary and sufficient conditions for D[S] to be Schreier [35,

Proposition 4.6].

Let R = ⊕α∈ΓRα be a Γ–graded domain, where Γ is a cancellative torsion-free

commutative monoid and H the set of nonzero homogeneous elements of R. In

[13], the authors investigated the (pre–)Schreier property in a graded domain. They

obtained a nice characterization of this property in terms of homogeneous elements

[13, Theorems 2.1 and 2.2]. In this setting, they called a domain R gr–pre–Schreier

if every element of H is gr–primal, that is: for each x ∈ H, if whenever x | y1y2,

with y1, y2 ∈ H, then x = x1x2, x1, x2 ∈ H, where xi | yi, i = 1, 2. In the case of a

semigroup rings R = D[S], their results recover the work of Matsuda [35, 36].

Let A ⊆ B be an extension of integral domains and Γ a cancellative torsion–

free commutative monoid such that Γ ∩ −Γ = {0}. Then R = A + B[Γ∗] is a

subring of the semigroup ring B[Γ]. Note that R can be obtained as a pullback

and B[Γ∗] is a common ideal of R and B[Γ]. If Γ ∩ −Γ 6= {0} or A = B, the

ring R coincides with B[Γ]. If Γ = Z+, then R = A + XB[X], and if Γ = Zn+,

then R = A + (X1, . . . , Xn)B[X1, . . . , Xn]. The monoid Γ admits a total order ≺
compatible with its semigroup operation [25, Corollary 3.4], and since Γ∩−Γ = {0},
we may assume that α < 0 for all α ∈ Γ. Hence each f ∈ R is uniquely expressible

in the form f = a + b1X
α1 + · · · + bnX

αn , where a ∈ A, bi ∈ B and αi ∈ Γ∗, with

α1 ≺ · · · ≺ αn. If bn 6= 0, it is called the leading coefficient of f and αn the degree.

The construction A+B[Γ∗] has been studied by many authors and has proven to be

useful in constructing examples and counterexamples in many areas of commutative
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ring theory [17, 21, 31, 32].

Motivated by the work in [13, 20], we consider the following question:

(Q1) When is A+B[Γ ∗] a (pre–)Schreier domain?

Notice that this question was asked by Zafrullah in [43].

Another important factorization property that we deal with in semigroup rings

is the property of being atomic. By an irreducible element or atom we mean a

nonzero nonunit x ∈ D such that x = ab in D, implies that a or b is a unit. A

domain D is said to be atomic if each nonzero nonunit of D is a product of a finite

number of atoms of D [14]. Noetherian domains and UFDs are two important well

known examples of atomic domains. The UFD property for monoid domains was

studied by Gilmer and Parker in [26, Theorem 7.17]. For a semigroup ring D[S],

they provide the following characterization:

D[S] is a UFD if and only if D is a UFD, the monoid S is a UFM and

each element of the maximal subgroup H of S is of type (0,0,0,...).

For the atomic property, Gilmer asked the following question [25]:

(Q2) Is the semigroup ring D[S] atomic provided that both D and S are

atomic?.

The negative answer to this question [16, 40] gave rise to new research problems

in the theory of factorization in polynomial rings and semigroup rings. Various

properties related to atomic domains have been studied extensively. In this work, we

will mainly focus on the atomic property, the ascending chain condition on principal

ideals (ACCP), and bounded factorization property (BFD), that is an atomic domain

in which each nonzero nonunit element has a bound on the length of factorizations

into products of atoms see [3]. We have the following implications:

UFD =⇒ BFD =⇒ ACCP =⇒ Atomic

For semigroup rings, these properties were studied in [30, 34]. Also, for the con-

struction A + XB[X], these questions were studied by several authors [6, 12, 20].

This leads us to ask the following question:

(Q3) Under which conditions is A+B[Γ ∗] an atomic domain, satisfies

ACCP or has the BFD property?
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The purpose of this thesis is to investigate and extend some well known results

on different concepts of factorization in the case of polynomial rings, to semigroup

rings. Among other things, this leads to an answer of the questions (Q1) and (Q3).

The thesis is divided into four chapters and it recovers the results of three papers,

as follows:

Chapter 1 provides the background information and sets up the notations needed

in our study. We recall some definitions and results on the Schreier property and

some factorization properties in an integral domain.

In Chapter 2 we investigate the primality and the (pre–)Schreier property in

graded domains and then specialize to semigroup rings. Thus, in Section 2.1, we

characterize the primal elements (resp., the (pre–)Schreier property) in a multi-

plicative monoid. Then we extend the well known Nagata type theorem for Schreier

domains, due to Cohn [14, Theorem 2.6], to monoids. In Section 2.2, we study

the primality in graded domains. So we determine when a nonzero homogeneous

element is primal or completely primal. Then, as an application, in the last section

of Chapter 2 we characterize the primal elements in semigroup rings. The results

of this chapter are published in [9].

Chapter 3 has the goal of characterizing when a construction of type A+B[Γ ∗]

is (pre–)Schreier and these results are published in [11]. We begin Section 3.1 by a

characterization of the pre–Schreier property in terms of the gr–pre–Schreier prop-

erty for A + B[Γ ∗]. In Section 3.2, we investigate the primality of the nonzero

homogeneous elements in A + AS[Γ ∗] domains, where S is a multiplicative subset

of A. Then, necessary and sufficient conditions for this construction to be (pre–

)Schreier are given (Theorem 3.2.7 and Corollary 3.2.8). Section 3.3 is devoted to

the study of the (pre–)Schreier property in A+B[Γ ∗], where B is not necessarily a

quotient ring of A (Theorem 3.3.16 and Corollary 3.3.17). Lastly, we give original

and new examples of (pre–)Schreier domains.

Chapter 4 focuses on generalizing some factorization properties, weaker than

unique factorization, to constructions of the form A + B[Γ ∗] [10]. Thus, Section

4.1 is devoted to the ACCP property. In Section 4.2, with the assumption that Γ

satisfies ACCP and of rank≥ 2, we characterize domains A+B[Γ ∗] that are atomic

(Theorem 4.2.1). In Section 4.3, we investigate the BFD property. The results

obtained generalize the case of polynomial rings A+XB[X].

9



Chapter 1

Preliminaries

In this chapter, we recall some basic concepts and present some known results, in

the literature, that we will need in this work. For more details, the references are

systematically given.

1.1 Commutative monoids

A semigroup is a nonempty set closed under an associative binary operation. If

(S, ?) is a semigroup, then S is commutative (or abelian) if it is commutative under

the operation ?, and S has an identity element if there exists an identity element

with respect to ?. A semigroup with identity is called a monoid. In this work all

semigroups are commutative monoids.

Let S be an additive monoid. We let S∗ denote the set of all nonzero elements

of S while we let U(S) denote the set of invertible elements of S.

Definition 1.1.1. 1. If U(S) = {0}, we say that S is reduced.

2. S is cancellative if for x, y, s ∈ S; x+ s = y + s implies that x = y.

3. S is torsion–free if for all x, y ∈ S and n ∈ N∗; nx = ny implies that x = y.

An ideal of S is a nonempty subset I of S such that I ⊇ s+ I = {s+ i | i ∈ I}
for each s ∈ S. An ideal I of S is proper if I 6= S.

Proposition 1.1.2 ([25, Corollary 1.5]). A monoid S admits a total order compat-

ible with its semigroup operation if and only if S is cancellative and torsion–free.
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For M ⊆ S, we let 〈M〉 denote the smallest submonoid of S containing M , and

we call it the submonoid of S generated by M .

Let T ⊆ S be an additive closed subset of S, we have the quotient monoid ST =

{s− t, s ∈ S, t ∈ T}. If T = S, we get G = 〈S〉 the quotient group of S.

Definition 1.1.3. We say that S is integrally closed if, for each n ∈ N∗ and x ∈ G,

nx ∈ S implies that x ∈ S.

For a monoid S, the rank of S, denoted by rank(S), is defined to be the rank of

the quotient group 〈S〉.
Several results in multiplicative ideal theory for rings can be translated into the

language of monoids. For more details, see [25].

1.2 Semigroup rings

Let S be an additive monoid and R be an integral domain.

In 1951, N. Jacobson defined in [29] the semigroup ring of S over R to be the set of

functions f from S to R that are finitely nonzero with addition and multiplication

defined as follows:

(f + g)(s) = f(s) + g(s)

(fg)(s) =
∑
t+u=s

f(t)g(u)

where the symbol
∑

t+u=s is taken over all pair (t, u) of elements of S such that

t+ u = s.

In this thesis, we adopt the notation of Northcott [39] and write R[S] for the semi-

group ring of S over R. If S is cancellative torsion–free monoid ordered by ≺, then

an element f of R[S] is uniquely expressible as f = r1X
s1 + r2X

s2 + · · · + rnX
sn ,

where each ri ∈ R and si ∈ S with s1 ≺ · · · ≺ sn. If rn 6= 0 it is called the leading

coefficient of f and denoted by lc(f) and sn is called the degree.

A polynomial ring over R is a semigroup ring over R with S coincide with the

set of nonnegative integers Z+. For more details on semigroup rings see [25, 26].

We recall the following basic properties of a semigroup ring (cf. [25]).

Proposition 1.2.1. Let R be an integral domain and S an additive monoid.

1. R[S] is an integral domain if and only if S is a cancellative torsion-free com-

mutative monoid.
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2. R[S] is integrally closed if and only if both R and S are integrally closed.

3. The units of R[S] are the units of R and the monomials aXs where a and s

are respectively units of R and S.

1.3 Graded domains

By a graded domain R = ⊕α∈ΓRα, we mean an integral domain R graded by an

arbitrary cancellative torsion–free monoid Γ . We denote by H the multipilcative

monoid of nonzero homogeneous elements of R.

The semigroup rings A[Γ ], where A is an integral domain, constitute perhaps the

most important class of Γ–graded domains with deg(Xα) = α.

If S ⊆ H, is a multiplicative set of R, that is, a submonoid of H. The ring of

fractions RS is graded by some quotient monoid of Γ with the nonzero homogeneous

elements are of the form h
s
, where h ∈ H and s ∈ S. In particular, the quotient ring

H(R) := RH is a 〈Γ 〉–graded domain, called the homogeneous quotient field of R.

We have:

Proposition 1.3.1 ([2, Proposition 2.1]). H(R) is a completely integrally closed

GCD–domain.

Let x ∈ R = ⊕α∈ΓRα, and x = x1 + · · · + xn be the unique representation of x

as a sum of homogeneous elements. We define the content of x, denoted by C(x),

to be C(x) = (x1, ..., xn). Thus C(x) is a finitely generated homogeneous ideal of R.

A fractional ideal I of R is homogeneous if uI ⊆ R is a homogeneous ideal of

R for some u ∈ H. Clearly, a homogeneous fractional ideal of R is a submodule

of H(R). The content of an element can be extended as follows. Let x ∈ H(R),

x = x1 + · · · + xn with deg(xi) ≺ deg(xj) for i < j. The content of x is the R–

submodule of H(R), C(x) = (x1, ..., xn). Note that a fractional ideal I ⊆ H(R) of

R is homogeneous if and only if C(x) ⊆ I for every x ∈ I. The content satisfies the

Dedekind–Mertens lemma for graded domains [38].

Proposition 1.3.2 ([1, Theorem 2.1]). Let R = ⊕α∈ΓRα be a Γ–graded integral

domain. For every x, y ∈ H(R), there is a positive integer n such that C(x)nC(xy) =

C(x)n+1C(y).

Following [1], we say that the graded domain R is almost normal if for each

homogeneous element x ∈ RH of nonzero degree which is integral over R is actually

12



in R. Notice that almost normality is weaker than the integrally closed property.

We have the following proposition:

Proposition 1.3.3. Let R = ⊕α∈ΓRα be a graded integral domain. Then R is

integrally closed if and only if R is almost normal and R0 is integrally closed in

(RH)0.

Notice that if we put all together [1, Section 1, Theorems 3.2 and 3.5] and

Proposition 1.3.3, we characterize when the graded domain R is almost normal and

integrally closed.

Recall that an extension of domains A ⊆ B is inert if whenever bb′ ∈ A for some

b, b′ ∈ B, then b = au and b′ = a′u−1 for some a, a′ ∈ A and u a unit of B.

Proposition 1.3.4. Let R = ⊕α∈ΓRα be a graded integral domain. We consider

the following statements:

(i) R is integrally closed;

(ii) For h ∈ H and x ∈ R, (h) : (x) is homogeneous;

(iii) R is almost normal.

Then (i)⇒(ii)⇒(iii). If moreover, R contains a (homogeneous) unit of nonzero

degree, the three conditions are equivalent, and if R0 ⊆ R is inert, then (ii)⇔(iii).

An important case of when the extension R0 ⊆ R is inert is when the monoid Γ

satisifies the condition Γ ∩ −Γ = {0} [1].

Let A ⊆ B be an extension of integral domains and Γ a cancellative torsion–

free commutative monoid. Let Γ ∗ = Γ\{0}. Assume that Γ ∩ −Γ = {0}. Then

R = A+B[Γ ∗] is a subring of B[Γ ]. Note that R can be obtained as pullback with

B[Γ ∗] is a common ideal of R and B[Γ ]. If Γ = Z+, then R = A + XB[X], and if

Γ = Zn+, then R = A + (X1, ..., Xn)B[X1, ..., Xn]. By Proposition 1.1.2, Γ admits

a total order 4, so we may assume that α < 0 for all α ∈ Γ . Hence, each f ∈ R is

uniquely expressible in the form f = a+ b1X
α1 + · · ·+ bnX

αn , where a ∈ A, bi ∈ B
and αi ∈ Γ ∗, with α1 ≺ · · · ≺ αn. If bn 6= 0, it is called the leading coefficient of f

and αn the degree. These constructions were studied by several authors [21, 31, 32].

The construction R = A + B[Γ ∗] is an interesting example of graded domains,

with the monoid of nonzero homogeneous elements is H = A∗∪{bXα | b ∈ B∗, α ∈
Γ ∗}.

13



1.4 Schreier domains

Let R be an integral domain. Following Cohn [14], an element x ∈ R is called:

- Primal, if whenever x | a1a2 with a1, a2 ∈ R, x can be written in R as

x = x1x2 such that xi | ai, i = 1, 2.

- Completely primal, if every factor of x is primal.

In 1987, Zafrullah [42] introduced a pre–Schreier domain as a domain in which ev-

ery element is (completely) primal. Thus an integrally closed pre–Schreier domain

is called a Schreier domain [14]. The Schreier property generalizes the GCD property.

The behaviour of Schreier rings under localization was described by the following:

Proposition 1.4.1. ([14, Theorem 2.6]) Let R be an integrally closed integral do-

main and S a multiplicative subset of R.

1. If R is a Schreier domain, so is RS.

2. If RS is a Schreier domain and S is generated by the completely primal ele-

ments of R, then R is a Schreier domain (Nagata type Theorem).

As an application of the Proposition 1.4.1, Cohn proved the following result:

Proposition 1.4.2. ([14, Theorem 2.7]) Let R be a Schreier domain and X an

indeterminate, then R[X] is a Schreier domain.

1.5 Factorization properties in an integral domain

The aim of this section is to recall some definitions about some factorization prop-

erties that we will deal with in this thesis.

Let R be an integral domain. We denote by U(R) the multiplicative group of

units of R.

A nonzero nonunit a ∈ R is said to be irreducible or atom if a = bc

implies b ∈ U(R) or c ∈ U(R). Two elements a, b ∈ R are said to be

associated, denoted a ∼ b, if a | b and b | a. Note that a ∼ b if and only

if b = ua for some u ∈ U(R).

A nonzero element p ∈ R is called prime if p | ab implies p | a or p | b,
for a, b ∈ R.
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Every prime element is irreducible but an irreducible element need not be prime. A

domain in which the notions of irreducible and prime coincide is called AP-domain

[18]. Examples of such domains are GCDs and pre–Schreier domains.

Recall that R is said to be a unique factorization domain (UFD) if every nonzero,

nonunit has a unique factorization into a finite product of irrecucibles, up to order

of the factors and associates.

Definition 1.5.1. 1. We say that R is atomic if every nonzero nonunit element

of R has a factorization into a finite number of irreducibles (atoms).

2. We say that R satisfies the ascending chain condition on principal ideals

(ACCP) if there does not exist an infinite strictly ascending chain of prin-

cipal ideals of R.

3. Wa say that R is a bounded factorization domain (BFD) if it is atomic and

for each nonzero element there is a bound on the lengths of factorizations into

products of atoms.

In general, we have the following implications [3]:

UFD =⇒ BFD =⇒ ACCP =⇒ Atomic

The converse of these implications do not hold in general [3, 4, 27, 41].

Important examples of atomic domains are UFDs and Noetherian domains.

Notice that an atomic Schreier domain is a UFD [14, Theorem 2.3].

Finally, a domain with no atoms will be called an antimatter domain. These

domains were studied in [15].
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Chapter 2

The Schreier property in

semigroup rings

2.0 Introduction

Let A be an integral domain. Following P.M. Cohn [14], an element x ∈ A is primal

if whenever x | a1a2 with a1, a2 ∈ A, x can be written as x = x1x2 such that xi | ai,
i = 1, 2, and x is completely primal if every factor of x is primal. A ring in which

every element is (completely) primal is called a pre-Schreier domain [42] and an

integrally closed pre-Schreier domain is called a Schreier domain [14]. The Schreier

property generalizes the GCD property.

The primality of an element in a domain depends only on the multiplicative

semigroup of nonzero elements of that domain. This led several authors to study

the primality in the more general context of semigroups. Let S be a commutative

multiplicative cancellative monoid. For s, t ∈ S, s | t if t = sr for some r ∈ S. An

element s ∈ S is primal if for t1, t2 ∈ S, s | t1t2 implies s = s1s2 where s1, s2 ∈ S
and si | ti for i = 1, 2. Completely primal elements and the (pre–)Schreier property

for monoids are defined similarly.

In a polynomial ring, in the indeterminate X, over a ring A, the powers Xn,

n ∈ N, are primal, i.e., Xn | fg for some f, g ∈ A[X], then f = Xrf1 and g = Xn−rg1

for some r ∈ N, f1, g1 ∈ A[X]. This fact is crucial when working with polynomials.

This raises the question of whether this result can be extended to powers Xα, α ∈ S,

S a semigroup. Note that in this case Xα is not necessarily a power of a prime

element like in the polynomial rings. On the other hand, an intersting work on the
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Schreier property for semigroup rings was made by Matsuda [36], and Brookfield

and Rush [13] . In [13], the authors showed that a semigroup ring is pre-Schreier if

and only if it is Schreier.

The aim of this chapter is to deepen and shed new light on primality in semigroup

rings. In Section 2.1, we write some well known results on primal elements and

Schreier property, in domains and ordered groups, in the language of monoids. In

Section 2.2, we study primality in the more general context of graded domains. In

[13] it was shown that in graded domains the investigation of the Schreier property

can be reduced to the study of the primality of the homogeneous elements. In

this section we characterize the (completely) primality of an homogeneous element

in terms of its (completely) primality in the multiplicative semigroup of nonzero

homogeneous elements. In the integrally closed case, we get an equivalence between

these two primalities. As an application, in Section 2.3, we characterize primal

elements in semigroup rings. In particular, we investigate the primality of the powers

Xα in a semigroup ring and recover the case of polynomial rings.

2.1 Primal elements in Monoids

Throughout this section a monoid means a multiplicative cancellative unitary com-

mutative semigroup. Let S be a monoid. If T ⊆ S is a multiplicative subset of S,

then we get the fraction monoid ST := {s/t | s ∈ S, t ∈ T}. If T = S, we have the

quotient group of S, G = 〈S〉.

The aim of this section is to translate and adapt the proofs of some well known

results on primality and the Schreier property in domains and partially ordered

groups, by using the language of monoids. These results will be needed next in the

case of graded domains and semigroup rings.

Let s, t ∈ S. We say that s divides t, denoted s | t if t = sr for some r ∈ S. We

make use of the preorder on S: s ≤ t if s | t. An element s ∈ S is called primal if

for t1, t2 ∈ S, s ≤ t1t2 implies s = s1s2, where s1, s2 ∈ S and si ≤ ti, i = 1, 2, and

s is completely primal if every factor of s is primal. As for domains, a monoid in

which every element is (completely) primal is called a pre–Schreier monoid and an

integrally closed pre–Schreier monoid is called a Schreier monoid. Note that in the

case of a domain A, the monoid in question is the multiplicative monoid A∗, and in
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the case of an ordered group G, it is the positive cone G+.

In [7], the authors believe that completely primal elements are the building

blocks of the Schreier property. In what follows we give some characterizations of

completely primal elements in monoids. For x1, ..., xn ∈ S, let U(x1, ..., xn) = {g ∈
S | g ≥ x1, ..., xn}. A nonempty subset U ⊆ S is lower directed if for s1, s2 ∈ U ,

there exists s ∈ U with s ≤ s1, s2. The following lemma is well known in ordered

groups [7, Theorem 2.1].

Lemma 2.1.1. Let S be a monoid. An element s of S is completely primal if and

only if for each x ∈ S, the set U(s, x) is lower directed. Moreover, if {s1, ..., sn} is

a set of completely primal elements of S, then U(s1, ..., sn) is lower directed.

Proof. The proof of the first part is similar to that of [7, Theorem 2.1 (1)⇔(2)].

For the second part, note that the case n = 1 is clear and n = 2 follows from the

first part. Suppose that U(s1, ..., sn−1) is lower directed. Let r1, r2 ∈ U(s1, ..., sn).

Then r1, r2 ∈ U(s1, ..., sn−1) and by induction there exists t ∈ U(s1, ..., sn−1) such

that t ≤ r1, r2. But then r1, r2 ∈ U(t, sn) and since sn is completely primal there is

s ∈ U(t, sn) such that s ≤ r1, r2. Hence s ∈ U(t, sn) ⊆ U(s1, ..., sn).

The following key characterization of completely primal elements in monoids was

proved in [8, Lemma 4.6] for domains. Here we give a short proof in the case of

monoids.

Proposition 2.1.2. Let S be a monoid. An element s of S is completely primal if

and only if s 6 ritj, ri, tj ∈ S, for i = 1, ...,m and j = 1, ..., n implies that s = s1s2

where s1 6 ri for each i and s2 6 tj for each j.

Proof. Let s be a completely primal element and s 6 ritj for i = 1, ...,m and

j = 1, ..., n. Then, for each i = 1, ...,m, s = rijtji, where rij 6 ri and tji 6 tj

for j = 1, ..., n. Since for each i, rij is completely primal (a factor of s), and

s, ri ∈ U(ri1, ..., rin), there exists di ∈ S such that rij 6 di 6 ri, s for every j =

1, ..., n. Now, s, t1, ..., tn ∈ U(s/d1, ..., s/dn), then there exists t ∈ S such that

s/d1, ..., s/dn 6 t 6 s, t1, ..., tn. Let r ∈ S such that s = rt. One can easily check

that r 6 ri for i = 1, ...,m.

For the converse, let s ∈ S satisfying the condition as in the proposition, and let

x ∈ S. We show that U(s, x) is lower directed. Let r1, r2 ∈ U(s, x). For i = 1, 2,

write ri = xti, so s ≤ xti. By our hypothesis s = s1s2 such that s1 ≤ x and s2 ≤ ti
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for i = 1, 2. But d = xs2 ∈ U(s, x) and d ≤ r1, r2. Thus U(s, x) is lower directed

and by the previous lemma s is completely primal.

To sum up, we get the following characterization of pre-Schreier monoids, see

[42, Theorem 1.1].

Corollary 2.1.3. Let S be a monoid. The following are equivalent:

(i) S is a pre-Schreier monoid;

(ii) For all s, t, x, y ∈ S with s, t | x, y there exists r ∈ S such that s, t | r | x, y;

(iii) For all s1, ..., sm ∈ S and t1, ..., tn ∈ S such that si | tj, for i = 1, ...,m and

j = 1, ..., n, then there exists r ∈ S such that si | r | tj for each i, j;

(iv) For all s, r1, ..., rm ∈ S and t1, ..., tn ∈ S such that s | ritj for each i = 1, ...,m

and j = 1, ..., n, then s = s1s2 for some s1, s2 ∈ S such that s1 | ri and s2 | tj,
for each i, j.

We end this section by translating to monoids the well known Nagata type

theorem for Schreier domains due to Cohn [14, Theorem 2.6]. Our proof is slightly

different from that in [14], for we use the characterization of completely primal

elements in Proposition 2.1.2.

Let S be a monoid and T a multiplicative subset of S. The set T is called

divisor-closed if T is saturated.

Proposition 2.1.4. Let S be a monoid and T a multiplicative subset of S.

(1) If S is pre-Schreier, then ST is pre-Schreier.

(2) Assume that T is a divisor-closed subset of S such that every element of T is

primal in S. If the monoid ST is pre-Schreier, then S is pre-Schreier.

Proof. (1) Similar to the case of domains [42, Corollary 1.3].

(2) Assume that ST is pre-Schreier and let s, x1, x2 ∈ S such that s 6 x1x2 in

S. So s 6 x1x2 in ST . Since ST is pre-Schreier, s is completely primal in ST .

Then s = (s1t
−1
1 )(s2t

−1
2 ) for some s1, s2 ∈ S and t1, t2 ∈ T such that s1t

−1
1 6 x1

and s2t
−1
2 6 x2 in ST . So x1 = (s1t

−1
1 )(s′1r

−1
1 ) and x2 = (s2t

−1
2 )(s′2r

−1
2 ) for some

s′1, s
′
2 ∈ S and r1, r2 ∈ T . We put r = t1r1t2r2, then r is an element of T which

satisfies :

rs = (s1r2)(s2r1)
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rx1 = (s1r2)(s′1t2)

rx2 = (s2r1)(s′2t1)

r((x1x2)/s) = (s′1t2)(s′2t1)

So r 6 to the elements in the set product {s1r2, s
′
2t1}{s2r1, s

′
1t2}. As r is

completely primal in S and by Proposition 2.1.2, there exist u, v ∈ S such that

r = uv with u 6 s1r2, s
′
2t1 and v 6 s2r1, s

′
1t2. Then s = (s1r2u

−1)(s2r1v
−1)

with s1r2u
−1 6 x1 and s2r1v

−1 6 x2, hence s is primal in S. Consequently, S

is pre-Schreier.

2.2 Primal elements in a graded domain

Throughout, a monoid means a torsionless grading monoid, that is, a (additive)

cancellative torsion–free commutative semigroup.

In this section, we study primality in a graded integral domain R = ⊕α∈ΓRα,

graded by a torsionless grading monoid Γ. We denote by H the multiplicative set

(monoid) of nonzero homogeneous elements of R.

Recall that an element x ∈ H is called:

gr-primal [13] if whenever x | y1y2 with y1, y2 ∈ H, then x = x1x2, where

x1, x2 ∈ H and xi | yi, i = 1, 2, and x is completely gr-primal if every

homogeneous factor of x is gr-primal.

These two definitions are equivalent, respectively, to x primal and completely primal

in the multiplicative monoid H.

The graded domain R is called gr-pre-Schreier if every element of H is (completely)

gr-primal.

In [13], Brookfield and Rush introduced gr-pre-Schreier domains and character-

ized pre-Schreier graded domains in terms of the gr-pre-Schreier property. In the

integrally closed case, they showed that the Schreier property is equivalent to the

gr-pre-Schreier property.

For an integral domain A with quotient field K and fractional ideals I, J , define

[I : J ] = {x ∈ K, xJ ⊆ I}, I−1 = [A : I] and I : J = [I : J ] ∩ A. A homogeneous
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(fractional) ideal I of the graded domain R is called H-locally cyclic if every fi-

nite subset of homogeneous elements of I is contained in a (homogeneous) principal

sub-ideal of I. We start this section with some characterization of gr-pre-Schreier

domains.

Proposition 2.2.1. Let R = ⊕α∈ΓRα be a graded domain. The following statements

are equivalent:

(i) R is a gr-pre-Schreier domain;

(ii) H is a pre-Schreier monoid;

(iii) For every nonzero homogeneous element u ∈ H(R), (1, u)−1 is H–locally

cyclic;

(iv) For every nonzero x ∈ H(R), C(x)−1 is H–locally cyclic.

Proof. (i)⇔(ii) is obvious. For (ii)⇔(iii), note that for a, b ∈ H, we have (a, b)−1 =

(ab)−1(aR ∩ bR), and for a homogeneous element u ∈ H(R), u = a/b for some

a, b ∈ H. Then apply Corollary 2.1.3 (ii) in H. For (iii)⇔(iv), note that C(x)−1 is

a finite intersection of homogeneous principal fractional ideals.

Also, we get the following Nagata type theorem for gr-pre-Schreier domains

analogue to that of Schreier property due to P. M. Cohn [14, Theorem 2.6].

Proposition 2.2.2. Let R = ⊕α∈ΓRα be a graded domain and S ⊆ H a multiplica-

tive subset of R. Then:

(1) If R is a gr-pre-Schreier domain, then RS is a gr-pre-Schreier domain.

(2) Assume that S is saturated, generated by completely gr-primal elements, and

RS is a gr-pre-Schreier domain, then R is a gr-pre-Schreier domain.

Proof. Apply Proposition 2.1.4 to the quotient monoid HS.

Example 2.2.3. (1) Let R = A[X] be the polynomial ring over a ring A. One can

easily see that A[X] is gr-pre-Schreier if and only if A is pre-Schreier. By [13,

Theorem 3.2], A[X] is pre-Schreier if and only if it is Schreier, if and only if A is

Schreier.

(2) Let A ⊆ B be an extension of integral domains and set R = A + XB[X].

Primality and the Schreier property for A+XB[X] domains were studied in [19, 20].
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We claim that R = A+XB[X] is gr-pre-Schreier if and only if A is pre-Schreier and

B = AS, where S = U(B) ∩ A, U(B) denotes the set of invertible elements of B.

Suppose that R is gr-pre-Schreier. Clearly A is pre-Schreier. On the other hand, by

using the primality of X and the fact that X | (bX)2, b ∈ B, it was shown in [19,

Remark 1.1] that B = AS, where S = U(B) ∩ A.

Conversely, we use the Proposition 2.2.2. The quotient ring RS = AS[X] is gr-pre-

Schreier since A, and hence AS, is pre-Schreier. The elements of S are gr-primal in

R = A + XAS[X]. Indeed, let a ∈ S and h1, h2 ∈ H such that a | h1h2. Since A

is pre-Schreier, the case where h1, h2 ∈ A is clear. Assume that h2 = bXn for some

b ∈ AS and n 6= 0. Then a | h2 in R, and write a = 1× a.

By [20, Theorem 2.7 and Corollary 2.9], R is a pre-Schreier (resp., Schreier)

domain if and only if A is a pre-Schreier (resp., Schreier) domain, B = AS, where

S = U(B) ∩ A, and AS is a Schreier domain.

Inspired by the work in [13], in the following we study (completely) primal ele-

ments in a graded domain in terms of (completely) gr-primality.

Let h ∈ H; we say that h is degree gr-primal if h | xiyj, xi, yj ∈ H, for i = 1, ...,m

and j = 1, ..., n, with deg(xk) < deg(xl) and deg(yk) < deg(yl) for all k < l, then

h = h1h2 such that h1 | xi for each i and h2 | yj for each j. The degree gr-primality

is a weak form of the completely gr-primality in H.

Theorem 2.2.4. Let R = ⊕α∈ΓRα be a graded domain, and h ∈ H. Then:

(1) h is primal in R if and only if h is degree gr-primal and (h) : (x) is homoge-

neous for each x ∈ R.

(2) h is completely primal in R if and only if h is completely gr-primal and (h) : (x)

is homogeneous for each x ∈ R.

Proof. (1) For the “only if”condition, assume that h | xiyj, xi, yj ∈ H, for i =

1, ...,m and j = 1, ..., n, with deg(xk) < deg(xl) and deg(yk) < deg(yl) for all

k < l. Then h | xy in R, where x = x1 + · · · + xm and y = y1 + · · · + yn. By

the primality h = h1h2, h1, h2 ∈ H, with h1 | x and h2 | y. Clearly, h1 | xi and

h2 | yj for each i, j. To see that (h) : (x) is homogeneous, let y ∈ (h) : (x).

Then h | xy. Now, h = h1h2, h1, h2 ∈ H, with h1 | x and h2 | y. It follows

that C(y) ⊆ (h) : (x).

For the “if”condition, let x = x1 + · · · + xm and y = y1 + · · · + yn be two

nonzero elements of R, with deg(xk) < deg(xl) and deg(yk) < deg(yl) for all
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k < l, such that h | xy. Now, y ∈ (h) : (x), a homogeneous ideal, then h | xiyj
for i = 1, ...,m and j = 1, ..., n. On the other hand, h is degree gr-primal

implies that h = h1h2, where h1 | xi and h2 | yj for each i, j. Then h = h1h2

with h1 | x and h2 | y, so h is primal in R.

(2) For the “only if”condition, clearly, if h is completely primal in R it is com-

pletely gr-primal. The remainder is similar to (1). For the “if”condition, by

the same argument as in the proof of (1), h is primal in R. To prove that h

is completely primal in R, let k be a factor of h. Necessarily, k ∈ H. Then

k is completely gr-primal and h = kk′ for some k′ ∈ H. Let x ∈ R and

y ∈ (k) : (x), with y = y1 + · · ·+ yn and deg(yi) < deg(yj) for all i < j. Then

k′y ∈ (kk′) : (x) = (h) : (x). Since (h) : (x) is homogeneous, then, for each i,

k′yi ∈ (h) : (x), so yi ∈ (k) : (x). Thus (k) : (x) is homogeneous. Hence, like

h, k is primal in R. Therefore, h is completely primal in R.

Example 2.2.5. We give an example of a degree gr-primal element which is not

completely gr-primal.

Let R = Z+XR[X]. By [19, Example 1.7(ii)], X2 is primal in R, but X is not primal

in R, so X2 not completely primal. By Theorem 2.2.4, X2 is degree gr-primal but

not completely gr-primal.

Let R = ⊕α∈ΓRα be a graded domain, h ∈ H, and let Rh be the quotient ring of

R with respect to the multiplicative set generated by h. Note that Rh is a graded

subring of H(R).

Definition 2.2.6. Let R = ⊕α∈ΓRα be a graded domain, and h ∈ H.

(1) We say that R is Rh–almost normal if every homogeneous element x ∈ Rh of

nonzero degree which is integral over R is actually in R.

(2) We say that R is Rh–integrally closed if R is integrally closed in Rh.

Note that R is Rh–integrally closed if and only if R is integrally closed in Rh

with respect to the homogeneous elements of Rh. Thus, R is Rh–integrally closed if

and only if R is Rh–almost normal and R0 is integrally closed in (Rh)0.

Note that almost normality defined in [1], is a globalization of Rh-almost nor-

mality, h ∈ H. Thus, R is almost normal if and only if R is Rh-almost normal for

23



every h ∈ H. A similar statement is true for the integrally closed case.

Recall that an extension of domains A ⊆ B is inert if whenever bb′ ∈ A for some

b, b′ ∈ B, then b = au and b′ = a′u−1 for some a, a′ ∈ A and u a unit of B.

Proposition 2.2.7. Let R = ⊕α∈ΓRα be a graded domain, and h ∈ H. Consider

the following statements:

(i) R is Rh–integrally closed.

(ii) (h) : (x) is homogeneous for each x ∈ Rh.

(iii) R is Rh–almost normal.

Then (i)⇒(ii)⇒(iii). If moreover, R contains a (homogeneous) unit of nonzero

degree the three conditions are equivalent, and if R0 ⊆ R is inert, then (ii)⇔(iii).

Proof. The proof is inspired from [1].

(i)⇒(ii). Let x ∈ Rh and y ∈ R such that C(xy) ⊆ (h). Then C(x)nC(xy) ⊆
hC(x)n implies C(x)n+1C(y) ⊆ hC(x)n, for some integer n in the Dedekind-Mertens

lemma. Thus 1
h
C(x)C(y) ⊆ [C(x)n : C(x)n] ∩ Rh = R, since R is Rh-integrally

closed. Hence C(x)C(y) ⊆ (h). Therefore, (h) : (x) is homogeneous.

(ii)⇒(iii). Let x = a/hk ∈ Rh, a ∈ H, a homogeneous element of nonzero degree

which is integral over R. Let f(Y ) = Y n + an−1Y
n−1 + · · ·+ a0 with coefficients in

R such that f(x) = 0. Since x is homogeneous, we may assume that we have an

equation of the form xn + an−1x
n−1 + · · · + a0 = 0 with the ai’s homogeneous and

deg(ai) = (n− i)deg(x). Then f(Y ) = (Y −x)g(Y ) with g(Y ) = Y n−1 + bn−2Y
n−2 +

· · · + b0 . We may assume that the elements bi ∈ Rh are homogeneous of distinct

nonzero degree. From f(1) = (1 − x)g(1), it follows that (1 − x)g(1) ∈ R. Now,

(hk− a)(g(1)/hk−1) ∈ hR implies hk− a ∈ (h) : (g(1)/hk−1), which is homogeneous.

Since 1/hk−1 ∈ C(g(1)/hk−1), it follows that (1/hk−1)(hk − a) ∈ hR. So 1− x ∈ R.

Hence x ∈ R.

For the moreover statements, assume that R contains a (homogeneous) unit u of

nonzero degree. If x ∈ Rh is a homogeneous element of zero degree which is integral

over R, then ux ∈ Rh is a homogeneous element of nonzero degree which is integral

over R. If R is Rh-almost normal, then ux ∈ R. Hence x ∈ R. This proves that

(iii)⇒(i). For the last statement, we proceed as in [1, Theorem 3.7(2)].
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Corollary 2.2.8. Let R = ⊕α∈ΓRα be a graded domain. Assume that R is integrally

closed or R0 ⊆ R is inert and R is almost normal. Then:

(1) A homogeneous element is primal in R if and only if it is degree gr–primal.

(2) A homogeneous element is completely primal in R if and only if it is completely

gr-primal.

Proof. This follows from Theorem 2.2.4 and Proposition 2.2.7.

Remark 2.2.9. (1) In [33, Section 3], the author gave an example which show that

R may be an almost normal graded domain, that is, R is Rh–almost normal

for every h ∈ H, but there exist h ∈ H and x ∈ R such that (h) : (x) is not

homogeneous.

(2) Let h ∈ H. In Theorem 2.2.4, we can check that h is primal (resp., completely

primal) if and only if h is degree (resp., completely) gr-primal and (h) : (x) is

homogeneous for every x ∈ Rh.

Example 2.2.10. (1) Let A be an integral domain with quotient field K. Let R =

A[X], a polynomial ring. Note that the extension A ⊆ A[X] is inert. If every

element of A is primal in A[X], then, by Cohn’s Nagata type theorem for

Schreier domains [14, Theorem 2.6], A[X] is Schreier since K[X] = A[X]S,

where S = A \ {0}, is Schreier (UFD). The above results shed more light

on the primality of elements of A in A[X]. Let 0 6= a ∈ A. Clearly, a is

degree gr-primal if and only if a is completely gr-primal, if and only if a is

completely primal in A. Thus a is (completely) primal in A[X] if and only if

a is completely primal in A and A is integrally closed in Aa. For more details,

see the next section.

(2) For an extension of integral domains A ⊆ B, consider the pullback R =

A+XB[X]. Since the extension A ⊆ R is inert, then, by Theorem 2.2.4 and

Proposition 2.2.7, h = aXn is primal (resp., completely primal) in R if and

only if h is degree (resp., completely) gr–primal and B is integrally closed in

Ba (Here Rh = Ba[X,X
−1] if n ≥ 1, and Rh = Aa +XBa[X] if n = 0).

As a corollary of Theorem 2.2.4, Proposition 2.2.7, and Cohn’s Nagata type

theorem for Schreier domains, we reobtain a characterization of the Schreier property

in graded domains.
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Corollary 2.2.11 ([13, Theorem 2.2]). Let R = ⊕α∈ΓRα be a graded domain. Then

the following statements are equivalent:

(i) R is Schreier;

(ii) R is pre-Schreier and R0 is integrally closed in (RH)0;

(iii) R is gr–pre–Schreier and integrally closed.

2.3 Primal elements in semigroup rings

As an application of the previous sections, we study the primality in semigroup rings.

Throughout this section, Γ denotes a nonzero cancellative torsion–free commutative

monoid (written additively) with quotient group G, and A is an integral domain with

quotient field K. Let A[Γ ] be the semigroup ring of Γ over A. Then A[Γ ] is a Γ–

graded integral domain and each nonzero element f ∈ A[Γ ] can be written uniquely

as f = a1X
s1 + · · · + anX

sn where 0 6= ai ∈ A and si ∈ Γ with s1 ≺ · · · ≺ sn.

Note that here, H = {aXα | 0 6= a ∈ A,α ∈ Γ} and A[Γ ]H = K[G]. For more on

semigroup rings, see [25].

Proposition 2.3.1. Let A[Γ ] be the semigroup ring of Γ over A, and consider the

element of the form aXα where 0 6= a ∈ A and α ∈ Γ . The following statements

are equivalent:

(i) aXα si primal in A[Γ ];

(ii) a and Xα are both primal in A[Γ ].

Proof. (i)⇒(ii). Suppose that aXα is primal in A[Γ]. Let f, g ∈ A[Γ] such that a |
fg, then aXα | f(gXα). Since aXα is primal aXα = a1X

α1a2X
α2 where a1X

α1 | f
and a2X

α2 | gXα, so a1 | f and a2 | g. Thus a = a1a2 such that a1 | f and a2 | g, so

a is primal in A[Γ].

To prove that Xα is primal in A[Γ], let f, g ∈ A[Γ] such that Xα | fg, then aXα |
(af)g. Thus aXα = a1X

α1a2X
α2 , where a1X

α1 | af and a2X
α2 | g. Hence Xα =

Xα1Xα2 with Xα1 | f and Xα2 | g.

(ii)⇒(i). Assume that a and Xα are both primal in A[Γ] and let f, g ∈ A[Γ] such

that aXα | fg. Then a | fg and Xα | fg. Since a and Xα are primal in A[Γ], we

have a = a1a2 such that a1 | f and a2 | g for some a1, a2 ∈ A; and Xα = Xα1Xα2
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such that Xα1 | f and Xα2 | g for some α1, α2 ∈ Γ. Hence aXα = a1X
α1a2X

α2 ,

where a1X
α1 | f and a2X

α2 | g, so aXα is primal in A[Γ].

For a semigroup ring A[Γ ], let h = aXα ∈ H. Then A[Γ ]h = Aa[Γα], where Γα

is the quotient monoid with respect to the additive set generated by α. Note that

A[Γ ] is integrally closed in Aa[Γα] if and only if A is integrally closed in Aa and Γ

is integrally closed in Γα.

Proposition 2.3.2. Let A[Γ ] be the semigroup ring of Γ over A and h = aXα ∈ H.

The following statements are equivalent:

(i) A[Γ ] is Aa[Γα]–integrally closed;

(ii) (h) : (f) is homogeneous for each f ∈ Aa[Γα];

(iii) A[Γ ] is Aa[Γα]–almost normal.

Proof. By Proposition 2.2.7, it remains to show that (iii)⇒(i). Let λ ∈ Aa be

integral over A[Γ ]. Take 0 6= γ ∈ Γ . Then λXγ ∈ Aa[Γα] is a homogeneous element

of nonzero degree which is integral over A[Γ ]. So λXγ ∈ A[Γ ], hence λ ∈ A. Now,

by the Aa[Γα]–almost normality, A[Γ ] is Aa[Γα]–integrally closed.

The following lemmas characterize degree (resp., completely) gr-primality in

semigroup rings.

Lemma 2.3.3. Let A[Γ ] be the semigroup ring of Γ over A and 0 6= a ∈ A. The

following statements are equivalent:

(i) a is completely gr–primal;

(ii) a is degree gr–primal;

(iii) a is completely primal in A.

Proof. (i)⇒(ii). This is clear.

(ii)⇒(iii). Suppose that a | bicj in A for i = 1, ...,m and j = 1, ..., n. Let

0 6= α ∈ Γ ; set βi = iα and γj = jα for i = 1, ...,m and j = 1, ..., n. Then

a | (biX
βi)(cjX

γj), in A[Γ], for i = 1, ...,m and j = 1, ..., n. By (ii), there exist

a1, a2 ∈ A such that a = a1a2 where a1 | bi for each i and a2 | cj for each j. Hence

a is completely primal in A (cf. Proposition 2.1.2).
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(iii)⇒(i). Assume that a | biXβicjX
γj in A[Γ] for i = 1, ...,m and j = 1, ..., n.

Then a | bicj in A for each i, j. So a = a1a2, where a1 | bi for each i and a2 | cj for

each j. Thus a = a1a2 such that a1 | biXβi for each i and a2 | cjXγj for each j. This

proves that a is completely gr-primal.

Lemma 2.3.4. Let A[Γ ] be the semigroup ring of Γ over A and α ∈ Γ . The

following statements are equivalent:

(i) Xα is completely gr–primal;

(ii) Xα is degree gr–primal;

(iii) α is completely primal in Γ .

Proof. (i)⇒(ii). This is clear.

(ii)⇒(iii). Suppose that α | βi + γj for i = 1, ...,m and j = 1, ..., n. We may

assume that β1 ≺ · · · ≺ βm and γ1 ≺ · · · ≺ γn. Then Xα | XβiXγj for i = 1, ...,m

and j = 1, ..., n. By (ii), there exist α1, α2 ∈ Γ such that α = α1 +α2, where α1 | βi
for each i and α2 | γj for each j. Hence α is completely primal in Γ .

(iii)⇒(i). Assume that Xα | biXβicjX
γj in A[Γ ] for i = 1, ...,m and j = 1, ..., n.

Then α | βi+γj in Γ for each i, j. So α = α1 +α2, where α1 | βi for each i and α2 | γj
for each j. Thus Xα = Xα1Xα2 such that Xα1 | biXβi for each i and Xα2 | cjXγj

for each j. This proves (i).

From Proposition 2.3.1 and Lemmas 2.3.3 and 2.3.4 we get:

Proposition 2.3.5 ([13, Lemma 3.1]). Let A[Γ ] be the semigroup ring of Γ over

A. The following statements are equivalent:

(i) A[Γ ] is gr–pre–Schreier;

(ii) A and Γ are pre–Schreier.

Next, we state our main result of this section.

Theorem 2.3.6. Let A[Γ ] be the semigroup ring of Γ over A, and let 0 6= a ∈ A
and α ∈ Γ . Then:

(1) a is (completely) primal in A[Γ ] if and only if a is completely primal in A and

A is integrally closed in Aa.
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(2) Xα is (completely) primal in A[Γ ] if and only if α is completely primal in Γ

and Γ is integrally closed in Γα.

Proof. This follows from Theorem 2.2.4, Remark 2.2.9 (2), Proposition 2.3.2, and

Lemmas 2.3.3 and 2.3.4.

From Theorem 2.3.6 and Corollary 2.2.8, we get:

Corollary 2.3.7. Let A[Γ ] be the semigroup ring of Γ over A, and let 0 6= a ∈ A
and α ∈ Γ . Then:

(1) Assume that A is integrally closed. Then a is (completely) primal in A[Γ ] if

and only if a is completely primal in A.

(2) Assume that Γ is integrally closed. Then Xα is (completely) primal in A[Γ ] if

and only if α is completely primal in Γ .

Corollary 2.3.8 ([13, Theorem 3.2]). Let A[Γ ] be the semigroup ring of Γ over A.

The following statements are equivalent:

(i) A[Γ ] is pre-Schreier;

(ii) A[Γ ] is Schreier;

(iii) A and Γ are Schreier.

Proof. For (i)⇒(ii)⇒(iii) use Proposition 2.3.1 and Theorem 2.3.6, and remark that

A (resp., Γ) is integrally closed if and only if A (resp., Γ) is integrally closed in Aa

(resp., Γα) for each 0 6= a ∈ A (resp., 0 6= α ∈ Γ). For (iii)⇒(i), we need the Cohn’s

Nagata type theorem for Schreier domains.

In the case of polynomial rings, we recover some results established in [5, Propo-

sition 6] and [8, Lemma 4.7]. Note that in a polynomial ring the powers of X are

primary, so they are primal. Thus by Proposition 2.3.1, a nonzero homogeneous

element of the form aXn, a ∈ A, is primal in A[X] if and only if a is primal in A[X].

Corollary 2.3.9. Let A be an integral domain and X an indeterminate. Then:

(1) a is (completely) primal in A[X] if and only if a is completely primal in A and

A is integrally closed in Aa.

(2) A[X] is Schreier if and only if A[X] is pre–Schreier, if and only if A is Schreier.
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Chapter 3

The Schreier property and the

composite semigroup ring A+B[Γ ∗]

3.0 Introduction

All rings considered in this chapter are commutative. Let D be an integral domain

and 0 6= x ∈ D. Following P. M. Cohn [14] we say that x is primal (resp., completely

primal) if for each a1, a2 ∈ D; x | a1a2 in D implies that x can be factorized, in D,

as x = x1x2, where xi | ai, i = 1, 2 (resp., every factor of x in D is primal). The

domain D is said to be pre-Schreier if every nonzero element of D is (completely)

primal [42], and an integrally closed pre-Schreier domain is called Schreier [14]. The

Schreier property generalizes the GCD property.

Let A ⊆ B be an extension of integral domains and Γ a commutative, additive,

cancellative torsion-free monoid. Let B[Γ ] be the semigroup ring of Γ over B and

set Γ ∗ = Γ \ {0}. Suppose that Γ ∩−Γ = {0}. Then R = A+B[Γ ∗] is a subring of

B[Γ ]. Note that R can be obtained as a pullback with B[Γ ∗] a common ideal of R

and B[Γ ]. If Γ ∩ −Γ 6= {0} or A = B, the ring R coincides with B[Γ ]. If Γ = Z+,

then R = A + XB[X], and if Γ = Zn+, then R = A + (X1, . . . , Xn)B[X1, . . . , Xn].

The monoid Γ admits a total order � compatible with its semigroup operation [25,

Corollary 3.4], and since Γ ∩ −Γ = {0}, we may assume that α � 0 for all α ∈ Γ .

Hence, each f ∈ R is uniquely expressible in the form f = a+ b1X
α1 + · · ·+ bnX

αn ,

where a ∈ A, bi ∈ B and αi ∈ Γ ∗, with α1 ≺ · · · ≺ αn. If bn 6= 0, it is called the

leading coefficient of f and αn the degree. The construction A + B[Γ ∗] has been

studied by many authors and has proven to be useful in constructing examples and
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counterexamples in many areas of commutative ring theory [17, 21, 31, 32].

In [13], the authors characterize the Schreier property in semigroup rings. Their

results extend the case of polynomial rings. The Schreier property in A + XB[X]

domains has been studied in [19, 20]. Also, in [31], the author investigates the GCD

property in A + B[Γ ∗]. The extension of these works to the Schreier property in

A+B[Γ ∗] domain was left open, in fact, in [43] it was asked:

When is A+B[Γ ∗] a pre–Schreier domain?

Our purpose in this chapter is to investigate this question. In Section 3.1, we

present some preliminary results about the Schreier property in monoids and graded

domains. Then apply this to the A + B[Γ ∗] domains naturally graded by Γ . In

Section 3.2, we study primal homogeneous elements and, as an application, we

characterize the Schreier property in A+AS[Γ ∗], where S is a multiplicative subset

of the domain A. As we show in Section 3.3, this particular case of our construction

is crucial; it includes the pre-Schreier domains of the general form A+B[Γ ∗] with Γ

not antimatter. In contrast, the Schreier property in the general case when B is not

a quotient ring of A forces Γ to be an antimatter monoid. Also in this latter context,

a characterization of the Schreier property is provided. The results obtained extend

those of A+XB[X] domains and lead to new examples of (pre–)Schreier domains.

Notation and terminology used in this chapter are standard as in [24, 25].

3.1 Preliminary results

Throughout this chapter a monoid means a unitary commutative cancellative torsion-

free semigroup. Let S be a multiplicative monoid. If T ⊆ S is a multiplicatively

closed subset of S, then we get the quotient monoid ST := {s/t, s ∈ S, t ∈ T}. If

T = S, we have the quotient group of S, G := 〈S〉. The monoid S is called integrally

closed if, xn ∈ S for n ∈ Z+ and x ∈ G implies x ∈ S.

The Schreier property can be defined in the more general context of monoids.

Let S be a multiplicative monoid. For s, t ∈ S, we say that s divides t, denoted

by s ≤ t, if t = sr for some r ∈ S. An element s ∈ S is primal (resp., completely

primal) if whenever s ≤ t1t2, t1, t2 ∈ S, s can be written as s = s1s2 such that

si ≤ ti, i = 1, 2 (resp., every factor of s in S is primal). A monoid S is called

pre-Schreier if every element of S is primal, and Schreier when it is pre-Schreier and
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integrally closed. Note that a domain is pre-Schreier if the multiplicative monoid of

its nonzero elements is pre-Schreier. Thus, results about pre-Schreier domains can

be written in the language of monoids. For instance, the Nagata type theorem for

Schreier domains due to Cohn [14, Theorem 2.6] can be stated for monoids.

Proposition 3.1.1. Let S be a multiplicative monoid and T a multiplicative subset

of S.

(1) If S is pre-Schreier, then ST is pre-Schreier.

(2) Assume that T is a divisor-closed subset of S such that every element of T is

primal in S. If the monoid ST is pre-Schreier, then S is pre-Schreier.

Remark 3.1.2. GCD monoids are Schreier. As a generalization of lattice ordered

groups, in [22] the author studied the Schreier property for ordered groups, such

groups were called Riesz groups. A directed ordered group G is a lattice ordered

group (resp., a Riesz group) if and only if its monoid of positive elements G+ is

a GCD (resp., Schreier) monoid [22, 23]. Examples of Schreier monoids that are

not GCD monoids can be easily constructed, see [22, Section 3]. For an elementary

example, consider the monoid S = {(s, t) ∈ Q2, s, t > 0} ∪ {(0, 0)} with the relation

(s1, t1) < (s2, t2) if and only if s1 < s2 and t1 < t2.

We next recall some results about the Schreier property for graded domains. Let

R = ⊕α∈ΓRα be a graded domain, graded by an additive monoid Γ . We denote

by H the multiplicative monoid of nonzero homogeneous elements of R. If T ⊆ H

is a multiplicative set of R, that is, a submonoid of H, the ring of quotient RT is

graded by some quotient monoid of Γ whose set of nonzero homogeneous elements

is HT . In particular, H(R) := RH is a 〈Γ 〉-graded domain, called the homogeneous

quotient field of R. Note that H(R) is a completely integrally closed GCD domain

(cf. [2]).

We say that the graded domain R is almost normal if every homogeneous element

x ∈ H(R) of nonzero degree which is integral over R is actually in R. Note that R

is integrally closed if and only if R is almost normal and R0 is integrally closed in

H(R)0 [1].

An homogeneous element x ∈ H is called gr-primal in the graded domain R [13], if

whenever x | y1y2 with y1, y2 ∈ H, then x = x1x2, x1, x2 ∈ H, where xi | yi, i = 1, 2,

and x is completely gr-primal if every (homogeneous) factor of x in R is gr-primal.

These two definitions are equivalent, respectively, to x primal and completely primal
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in the multiplicative monoid H. The graded domain R is called gr-pre-Schreier if

every element of the monoid H is (completely) gr-primal, that is H is a pre-Schreier

monoid. In [13], the authors studied (pre-)Schreier graded domains and character-

ized them in terms of the gr-pre-Schreier property. In the integrally closed case, they

proved that, in graded domains, the Schreier property is equivalent to the gr-pre-

Schreier property. For a monoid domain D[Γ ] over a domain D, naturally Γ -graded,

they showed that D[Γ ] is pre-Schreier if and only if it is Schreier, if and only if the

domain D and the monoid Γ are Schreier.

The following proposition is the Nagata type theorem for gr-pre-Schreier do-

mains.

Proposition 3.1.3. Let R = ⊕α∈ΓRα be a graded domain and T ⊆ H a multiplica-

tive set of R. Then:

(i) If R is a gr-pre-Schreier domain, then RT is a gr-pre-Schreier domain.

(ii) If RT is a gr-pre-Schreier domain and T is saturated consisting of gr-primal

elements of R, then R is a gr-pre-Schreier domain.

Proof. Apply Proposition 3.1.1 to the quotient monoid HT .

Let A ⊆ B be an extension of integral domains and Γ an additive monoid such

that Γ ∩ −Γ = {0}. Then R = A + B[Γ ∗] is naturally graded by Γ with the set

of nonzero homogeneous elements H = A∗ ∪ {bXα, b ∈ B∗, α ∈ Γ ∗}. The following

proposition characterizes the pre-Schreier property in terms of the gr-pre-Schreier

property for A+B[Γ ∗] domains.

Proposition 3.1.4. Let A ⊆ B be an extension of integral domains and R =

A+B[Γ ∗]. The following statements are equivalent.

(i) R is a pre–Schreier domain.

(ii) R is an almost normal gr-pre-Schreier domain.

(iii) R is a gr-pre-Schreier domain and both Γ and B are integrally closed.

Proof. (i)⇔(ii) The “only if” condition follows from [13, Theorem 2.1] and [1, The-

orems 3.2 and 3.5]. The converse follows from [13, Theorem 2.1] and [1, Section 2,

Theorems 3.2 and 3.7(2)], since Γ ∩ −Γ = {0}.
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(ii)⇔(iii) We show that R is almost normal if and only if Γ and B are integrally

closed. Assume that R is almost normal. To prove that Γ is integrally closed, let g

be a nonzero element of G = 〈Γ 〉 such that ng ∈ Γ for some integer n ≥ 1. Then

Xng ∈ R. Now, let f = Y n −Xng ∈ R[Y ], then f(Xg) = 0. That is Xg is integral

over R. Since R is almost normal, then Xg ∈ R. It follows that g ∈ Γ , and hence

Γ is integrally closed. We next show that B is integrally closed. For, we consider

an element c ∈ K = qf(B) integral over B. Then there exists an integer n ≥ 1 and

b0, . . . , bn−1 ∈ B such that cn + bn−1c
n−1 + · · · + b1c + b0 = 0. Multiplying by Xnγ,

γ ∈ Γ ∗, we get (cXγ)n + bn−1X
γ(cXγ)n−1 + · · · + b1X

(n−1)γ(cXγ) + b0X
nγ = 0, so

cXγ is integral over R. Hence cXγ ∈ R, because R is almost normal. Thus c ∈ B.

Hence B is integrally closed.

Conversely, assume that Γ and B are integrally closed. Note that H(R) = K[G],

where K = qf(B) and G = 〈Γ 〉. Let 0 6= b ∈ K and 0 6= g ∈ G such that bXg is

integral over R. Then bXg is also integral over B[Γ ] since R ⊆ B[Γ ]. So bXg ∈ B[Γ ]

as B[Γ ] is integrally closed. Hence bXg ∈ B[Γ ∗] ⊆ R, and we are done.

Note that by the proof of Proposition 3.1.4, the construction R = A + B[Γ ∗] is

integrally closed if and only if both Γ and B are integrally closed and A is integrally

closed in B.

Corollary 3.1.5. Let A ⊆ B be an extension of integral domains and R = A+B[Γ ∗].

The following statements are equivalent.

(i) R is a Schreier domain;

(ii) R is an integrally closed gr-pre-Schreier domain.

3.2 The Schreier property in A + AS[Γ
∗]

Throughout this section, A is an integral domain, S is a multiplicatively closed

subset of A, and Γ is a commutative, additive, cancellative torsion–free monoid

such that Γ ∩ −Γ = {0}.
Let Γ ∗ = Γ\{0}, in this section, we study the Schreier property in the domains

of type A+AS[Γ ∗]. We first characterize (completely) gr-primal elements in the ring

A + AS[Γ ∗] naturally graded by Γ , with the set of nonzero homogeneous elements

H = A∗ ∪ {cXα, c ∈ A∗S, α ∈ Γ ∗}.
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Proposition 3.2.1. Let A be an integral domain, S a multiplicative subset of A,

and 0 6= a ∈ A. Then a is gr–primal in A+ AS[Γ ∗] if and only if a is primal in A.

Proof. Clearly, if a is gr-primal in A + AS[Γ ∗], then a is primal in A. For the

converse, assume that a is primal in A. Let b, c ∈ AS be nonzero elements and

α, β ∈ Γ such that a | (bXα)(cXβ) in A+ AS[Γ ∗].

Case 1: α = 0 or β = 0

If α = β = 0, this is clear. Assume that α = 0 and β 6= 0. Then a | b(cXβ). So

a | bc in AS implies bc = aa
′

s
for some a′ ∈ A and s ∈ S. Let c = c′

t
for some c′ ∈ A

and t ∈ S. Then bsc′ = aa′t which implies that a | bsc′ in A. Hence a = a1a2 for

some a1, a2 ∈ A, a1 | b and a2 | sc′ in A. Now, cXβ = a2(
a′2
st
Xβ), where a′2 ∈ A such

that sc′ = a2a
′
2. So a = a1a2 with a1 | b and a2 | cXβ.

The case α 6= 0 and β = 0 is similar.

Case 2: α 6= 0 and β 6= 0

Then, a | (bXα)(cXβ) implies that a | bc in AS, so bc = aa
′

s
for some a′ ∈ A and

s ∈ S. Since b, c ∈ AS, there exist b′, c′ ∈ A and t1, t2 ∈ S such that b = b′

t1
and

c = c′

t2
. So b′sc′ = at1t2a

′ implies a | b′sc′ in A. Since a is primal in A, then

a = a1a2 for some a1, a2 ∈ A, a1 | b′s and a2 | c′ in A. Hence bXα = a1(
a′1
st1
Xα) and

cXβ = a2(
a′2
t2
Xβ), where b′s = a1a

′
1 and c′ = a2a

′
2. Therefore, a = a1a2 such that

a1 | bXα and a2 | cXβ, in A+ AS[Γ ∗].

Corollary 3.2.2. Let A be an integral domain, S a multiplicative subset of A, and

0 6= a ∈ A. Then a is completely gr–primal in A + AS[Γ ∗] if and only if a is

completely primal in A.

Next, we explore when Xα, for some α ∈ Γ ∗, is (completely) gr–primal in A +

AS[Γ ∗].

Definition 3.2.3. Let A be an integral domain, S a saturated multiplicative subset

of A. S is called good if for each s ∈ S, a, b ∈ A and s | ab, there exists t ∈ S such

that t | a and s | tb.

By [19, Remark 1.3(b)], if S is consisting of (completely) primal elements in A,

then S is good.

Proposition 3.2.4. Let A be an integral domain, S a saturated multiplicative subset

of A, and 0 6= α ∈ Γ . Let R = A + AS[Γ ∗], then the following statements are

equivalent:
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(i) Xα is gr–primal in R;

(ii) α is primal in Γ and S is good.

Proof. (i)⇒ (ii) Assume that Xα is gr-primal in R. Let β1, β2 ∈ Γ such that

α ≤ β1+β2, then Xα | Xβ1Xβ2 in R. Since Xα is gr-primal, then Xα = a1X
α1a2X

α2 ,

a1X
α1 | Xβ1 and a2X

α2 | Xβ2 for some a1, a2 ∈ AS and α1, α2 ∈ Γ . So α = α1 + α2,

α1 ≤ β1 and α2 ≤ β2, hence α is primal in Γ .

For the second part of (ii), let s ∈ S and a, b ∈ A such that s | ab in A. Then

Xα | a( bX
α

s
) in R. Since Xα is gr-primal, Xα = a1(b1X

α) for some a1 ∈ A and

b1 ∈ AS such that a1 | a and b1X
α | bXα

s
. So a1b1 = 1. Let b1 =

a′1
t

for some a′1 ∈ A
and t ∈ S. Then a1a

′
1 = t ∈ S implies a1 ∈ S, since S is saturated. Set s′ = a1, so

b1 = 1
s′

. Then s′ | a and s | s′b. Hence S is good.

(ii)⇒ (i) Suppose that α is primal in Γ and S is good. To prove (i), let b1, b2 ∈ AS
be nonzero elements and β1, β2 ∈ Γ such that Xα | b1X

β1b2X
β2 . Then α ≤ β1 + β2,

so α = α1 + α2 for some α1, α2 ∈ Γ such that α1 ≤ β1 and α2 ≤ β2 . We consider

the following cases:

Case 1: α1 < β1 and α2 < β2

Then Xα = Xα1Xα2 , Xα1 | b1X
β1 and Xα2 | b2X

β2 in R.

Case 2: α1 = β1 and α2 < β2

Note that since α 6= 0, then α1 6= 0 or α2 6= 0. Assume that α1 6= 0. Let s ∈ S

such that sb1 ∈ A, then Xα = (X
α1

s
)(sXα2) with Xα1

s
| b1X

β1 and sXα2 | b2X
β2 .

If α1 = β1 = 0, we consider the trivial factorization Xα = 1.Xα2 . Note that

Xα2 | b2X
β2 since α2 < β2.

Case 3: α1 = β1 6= 0 and α2 = β2 6= 0

Xα | b1X
β1b2X

β2 implies b1b2 ∈ A. Take b1 = a1
s1

and b2 = a2
s2

for some a1, a2 ∈ A
and s1, s2 ∈ S. Let s = s1s2, then a1a2

s
∈ A implies s | a1a2 in A, so there exists

t ∈ S such that t | a1 and s | ta2 in A. Hence Xα = ( t
s1
Xβ1)( s1

t
Xβ2), t

s1
Xβ1 | b1X

β1

and s1
t
Xβ2 | b2X

β2 .

Case 4: α1 = β1 = 0 and α2 = β2

Then, Xα = Xβ2 | b1(b2X
β2) with b1 ∈ A, so b1b2 ∈ A. Since b2 ∈ AS, there

exist a2 ∈ A and s ∈ S such that b2 = a2
s

. Then b1b2 = b1a2
s
∈ A, so s | b1a2.

Since S is good, there exists t ∈ S such that t | b1 and s | ta2 in A. Therefore,

Xα = Xβ2 = t(X
β2

t
), t | b1, and Xβ2

t
| b2X

β2 since b2X
β2 = (ta2)

s
(X

β2

t
).

By commutativity, the remaining cases also hold.

Let A be an integral domain and S a multiplicative subset of A. For α ∈ Γ , note
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that the divisors of Xα in R = A + AS[Γ ∗] are the elements of S and the elements

uXβ, where u is a unit in AS and β ≤ α, β ∈ Γ . On the other hand, as we shall

see in a general case (Lemma 3.3.12), one can check that if Xα is gr-primal in R,

then uXα is gr-primal in R for every unit u in AS such that uXα ∈ R. Thus by

Propositions 3.2.1 and 3.2.4 and Lemma 3.3.12, we get:

Corollary 3.2.5. Let A be an integral domain, S a multiplicative subset of A, and

α a nonzero element of Γ . Let R = A + AS[Γ ∗], then the following statements are

equivalent:

(i) Xα is completely gr–primal in R;

(ii) α is completely primal in Γ and S consists of primal elements of A.

As a consequence of the above results, we characterize the gr-pre-Schreier prop-

erty in A+ AS[Γ ∗] domains graded naturally by Γ .

Theorem 3.2.6. Let A be an integral domain and S a multiplicative subset of A.

The following statements are equivalent:

(i) R = A+ AS[Γ ∗] is gr–pre–Schreier;

(ii) A and Γ are pre–Schreier.

Proof. Let S be the saturation of S in A. Then AS = AS, so we may assume that

S is saturated.

(i)⇒(ii). This follows from Propositions 3.2.1 and 3.2.4.

(ii)⇒(i). We use Proposition 3.1.3. We have RS = AS[Γ ] is gr–pre–Schreier (cf.

Proposition 2.3.5). On the other hand, by Proposition 3.2.1, the elements of S are

gr–primal in R. Hence R is gr–pre–Schreier.

By Proposition 3.1.4 and Theorem 3.2.6 , we get our main results of this section.

This recovers the case of A+XAS[X] domains [19, 20].
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Theorem 3.2.7. Let A be an integral domain and S a multiplicative subset of A.

The following statements are equivalent:

(i) R = A+ AS[Γ ∗] is pre–Schreier;

(ii) A is pre–Schreier and both AS and Γ are Schreier.

Corollary 3.2.8. Let A be an integral domain and S a multiplicative subset of A.

The following statements are equivalent:

(i) R = A+ AS[Γ ∗] is Schreier;

(ii) A and Γ are Schreier.

Example 3.2.9. Let A be a pre–Schreier domain which is not Schreier, see for in-

stance, [37]. Let Γ be a Schreier monoid (e.g., Γ = Zn+ a GCD monoid.) Then

by the above results, A + K[Γ ∗], K the quotient field of A, is an almost normal

pre–Schreier domain which is not Schreier.

3.3 The general case

In this section, A ⊆ B is an extension of integral domains, S = U(B) ∩A, and Γ is

a commutative, additive, cancellative torsion–free monoid such that Γ ∩−Γ = {0}.
We next investigate the Schreier property in the general case of A+B[Γ ∗] domains.

For, we study the (completely) gr–primal elements inR = A+B[Γ ∗] graded naturally

by Γ .

The following proposition characterizes gr-primal constant elements (elements of

A) in R = A+B[Γ ∗].

Proposition 3.3.1. Let A ⊆ B be an extension of integral domains. Let R =

A+B[Γ ∗] and 0 6= a ∈ A. The following statements are equivalent:

(1) a is gr–primal in R;

(2) (i) a is primal in A and in B;

(ii) For every d ∈ A such that d | a, say a = dd′ for some d′ ∈ A, whenever

db ∈ A for some b ∈ B, there exists 0 6= c ∈ B such that cd, c−1d′, c−1b ∈
A;

38



(iii) Whenever a = b1b2 for some b1, b2 ∈ B, there exists u ∈ U(B) such that

b1u, b2u
−1 ∈ A.

Proof. (1)⇒(2). Assume that a is gr–primal in R. (i) is clear. To prove (ii), let

d, d′ ∈ A such that a = dd′ and db ∈ A, b ∈ B. So a | (db)(d′Xα), α ∈ Γ ∗. Then,

there exist a1, a2 ∈ A such that a = a1a2 with a1 | db and a2 | d′Xα in R. Let a′1 ∈ A
and a′2 ∈ B such that db = a1a

′
1 and d′ = a2a

′
2. Then b = a′1a

′
2. One can easily check

that c = a′2 satisfies the desired conditions.

For (iii), let b1, b2 ∈ B such that a = b1b2. In R, we have a | (b1X
α)(b2X

α),

α ∈ Γ ∗. Since a is gr–primal in R, there exist a1, a2 ∈ A such that a = a1a2;

a1 | b1X
α and a2 | b2X

α in R. So b1 = a1b
′
1 and b2 = a2b

′
2 for some b′1, b

′
2 ∈ B.

Then b1b2 = a1a2b
′
1b
′
2 implies a = ab′1b

′
2, so b′1b

′
2 = 1. Hence b′1, b

′
2 ∈ U(B) with

b1b
′
2 = a1 ∈ A and b2b

′
1 = a2 ∈ A.

(2)⇒(1). Assume that the conditions in (2) hold. Let b1, b2 ∈ B\{0} and

β1, β2 ∈ Γ such that a | (b1X
β1)(b2X

β2). To prove the gr–primality of a, we consider

the following cases.

Case 1: β1 6= 0 and β2 6= 0.

We have a | (b1X
β1)(b2X

β2), then a | b1b2 in B. As a is primal in B, there exist

c1, c2 ∈ B such that a = c1c2, with c1 | b1 and c2 | b2 in B. Since (iii) holds and

a = c1c2 ∈ A, we can choose c1 and c2 in A with c1 | b1 and c2 | b2 in B. Hence

c1 | b1X
β1 and c2 | b2X

β2 in R.

Case 2: β1 = 0 or β2 = 0

If β1 = β2 = 0, then b1, b2 ∈ A and a | b1b2 in A. Since a is primal in A, we are

done.

Suppose that β1 6= 0 and β2 = 0. In this case, a | (b1X
β1)b2 with b2 ∈ A. Then

a | b1b2 in B. Since a is primal in B, there exist a1, a2 ∈ B such that a = a1a2, a1 | b1

and a2 | b2 in B. Again by (iii), a1 and a2 can be chosen in A. Let b1 = a1a
′
1 and

b2 = a2a
′
2 for some a′1, a

′
2 ∈ B. Now, apply (ii) for d = a2, d′ = a1 and b = a′2, we get

c ∈ B such that ca2, c
−1a1, c

−1a′2 ∈ A. Write a = (c−1a1)(ca2), also b1 = (c−1a1)(ca′1)

and b2 = (ca2)(c−1a′2). Thus a = c1c2, c1 = c−1a1, c2 = ca2 ∈ A, with c1 | b1X
β1 and

c2 | b2 in R.

By commutativity, the case β1 = 0 and β2 6= 0 is similar.

As a consequence of the previous proposition, we next characterize completely

gr-primal constant element in R = A+B[Γ ∗].
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Definition 3.3.2. Let A ⊆ B be an extension of integral domains and a ∈ A. We

say that a is A–completely primal in B if every d ∈ A such that d | a in A, d is

primal in B.

Corollary 3.3.3. Let A ⊆ B be an extension of integral domains and S = U(B)∩A.

Let R = A+B[Γ ∗] and 0 6= a ∈ A. The following statements are equivalent:

(1) a is completely gr–primal in R;

(2) (i) a is completely primal in A and A–completely primal in B;

(ii) For every a′ ∈ A such that a′ | a, whenever a′b ∈ A for some b ∈ B, there

exists t ∈ S such that t−1a′, tb ∈ A;

(iii) For every a′ ∈ A such that a′ | a in A, whenever a′ = b1b2 for some

b1, b2 ∈ B, there exists u ∈ U(B) such that b1u, b2u
−1 ∈ A.

Proof. This follows from Proposition 3.3.1. For (1)⇒(2) (ii), remark that a′ is gr–

primal in R and apply Proposition 3.3.1 (2) (ii) for a′ with d = a′ and d′ = 1. Then

we get 0 6= c ∈ B such that cd, c−1d′, c−1b ∈ A. So c−1 ∈ A. Hence t = c−1 ∈ S and

t−1a′, tb ∈ A.

The next result gives necessary and sufficient conditions for Xα, α ∈ Γ ∗, to be

gr–primal in A+B[Γ ∗]. We start with the following lemma which recovers the case

of A+XB[X] domains [19].

Recall that a monoid is called antimatter if it does not contain any atoms. The

additive monoid of nonnegative rationals is an antimatter monoid. For examples of

non antimatter monoids, consider the monoids Zn+, n ≥ 1 an integer.

Lemma 3.3.4. Let A ⊆ B be an extension of integral domains and R = A+B[Γ ∗].

Suppose that Γ is not an antimatter monoid and let α be an atom of Γ . If Xα is

gr-primal in R, then B = AS where S = U(B) ∩ A.

Proof. Assume that Xα is gr-primal in R and let b ∈ B. Then Xα | (bXα)(bXα).

Hence there exist g, h ∈ R such that Xα = gh, g | bXα and h | bXα. Since α is

an atom, we may assume that g = a ∈ A and h = b′Xα for some b′ ∈ B. Then

Xα = ab′Xα, with b′Xα | bXα. Thus 1 = ab′, so a ∈ S. Let a′ ∈ A such that

bXα = a′(b′Xα). Then, b = a′b′ = a′a−1 ∈ AS, so B ⊆ AS. Hence B = AS.
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Corollary 3.3.5 (cf. [20, Theorem 2.7 and Corollary 2.9]). Let A ⊆ B be an

extension of integral domains, S = U(B) ∩ A, and R = A + B[Γ ∗]. Suppose that

Γ is not an antimatter monoid. Then R is a pre-Schreier domain (resp., Schreier

domain) if and only if A is pre-Schreier, B = AS, and both AS and Γ are Schreier

(resp., B = AS and both A and Γ are Schreier).

Proof. This follows from Lemma 3.3.4, Theorem 3.2.7 and Corollary 3.2.8.

The characterization of the gr-primality of Xα, α ∈ Γ ∗, in A + B[Γ ∗] domains

depends on whether B is a quotient ring of A or not. Note that B is a quotient ring

of A if and only if B = AS, where S = U(B) ∩ A. The case where B is a quotient

ring ofA was studied in Section 3.2, we next focus on the caseB 6= AS, S = U(B)∩A.

To state our next results we need some definitions and notations.

Definition 3.3.6. Let A ⊆ B be an extension of integral domains and S = U(B)∩A.

We say that the extension A ⊆ B is A–inert if whenever ab ∈ A for some nonzero

elements a ∈ A, b ∈ B, there exists t ∈ S such that at−1, bt ∈ A.

Definition 3.3.7. Let A ⊆ B be an extension of integral domains. We say that B

is associate to A if every element of B is associate to an element of A. That is, for

every b ∈ B, there exists u ∈ U(B) and an element a ∈ A such that b = ua.

Remark 3.3.8. (1) Let A ⊆ B be an extension of rings with B = AS, where

S = U(B) ∩ A. Then, one can check that, the extension A ⊆ AS is A-inert if

and only if S is good, and in this case A ⊆ AS is also inert.

(2) For a domain A every quotient ring of A is associate to A. For an example

of an associate extension which is not a quotient ring, let A be an integral

domain and K a field strictly containing the quotient field of A. Let T be a

domain of the form T = K+ I, where I is an ideal of T such that I ∩A = {0}.
Then the classical pullback R = A+ I is a subring of T with T associate to R.

Let α ∈ Γ ∗. Recall that α is called reducible in Γ if α = α1 + α2 for some

α1, α2 ∈ Γ ∗. The element α will be called completely reducible if every divisor of α

is reducible. We say that α is Γ -lower directed (resp., completely Γ -lower directed)

if for each β ∈ Γ ∗, α (resp., every nonzero divisor of α in Γ ) and β have a common

divisor in Γ ∗. Finally, the monoid Γ will be called lower directed if every two ele-

ments of Γ ∗ have a common divisor in Γ ∗.
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Lemma 3.3.9. Let A ⊆ B be an extension of integral domains and let α ∈ Γ ∗ such

that Xα is gr–primal in A+B[Γ ∗]. Then:

(1) Either α is completely reducible or B is associate to A.

(2) Either α is completely Γ–lower directed or B is associate to A.

Proof. (1) Assume that there exits an atom γ ≤ α. Then α = γ+γ′ for some γ′ ∈ Γ .

Let 0 6= b ∈ B. ThenXα | (bXγ)(bXα). SinceXα is gr-primal, Xα = (b1X
α1)(b2X

α2)

for some b1, b2 ∈ B and α1, α2 ∈ Γ , with b1X
α1 | bXγ and b2X

α2 | bXα. Then α1 ≤ γ.

So α1 = 0 or α1 = γ.

If α1 = 0, then b1 ∈ A and α2 = α. Hence b = ab2 for some a ∈ A, with b1b2 = 1,

and we are done in this case.

If α1 = γ, clearly b = a′b1 for some a′ ∈ A. Hence, also in this case b is associate to

an element of A.

(2) Assume that α is not completely Γ -lower directed. Let γ ≤ α such that γ is

prime to some δ ∈ Γ ∗. Let 0 6= b ∈ B and γ′ ∈ Γ such that α = γ + γ′. Then Xγ |
(bXγ)Xδ implies Xα | (bXγ)Xδ+γ′ . Since Xα is gr-primal, Xα = (b1X

α1)(b2X
α2)

for some b1, b2 ∈ B and α1, α2 ∈ Γ , with b1X
α1 | bXγ and b2X

α2 | Xδ+γ′ . We have

α = α1 + α2 = γ + γ′, so α2 − γ′ = γ − α1 ∈ Γ , since b1X
α1 | bXγ. Thus α2 − γ′

is a common divisor of γ and δ. So α2 = γ′ and α1 = γ. Now, b1X
γ | bXγ implies

b = b1a for some a ∈ A, with b1b2 = 1. Hence B is associate to A.

Proposition 3.3.10. Let A ⊆ B be an extension of integral domains such that B

is not a quotient ring of A. Let S = U(B) ∩ A and α ∈ Γ ∗. Then Xα is gr–primal

in R = A+B[Γ ∗] if and only if the following conditions hold:

(a) α is a reducible primal element of Γ ;

(b) α is Γ–lower directed;

(c) Either α is completely reducible or B is associate to A;

(d) Either α is completely Γ–lower directed or B is associate to A;

(e) The extension A ⊆ B is inert and A–inert.

Proof. (⇒): Assume that Xα is gr–primal in R.

(a) Clearly, α is primal in Γ , and by Lemma 3.3.4, α is reducible.
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(b) Suppose that α is not Γ–lower directed. Then there exists β ∈ Γ ∗ which

is prime to α in Γ . Let 0 6= b ∈ B. Then Xα | (bXα)Xβ. Since Xα is gr–

primal, Xα = (b1X
α1)(b2X

α2) for some b1, b2 ∈ B and α1, α2 ∈ Γ , b1X
α1 | bXα and

b2X
α2 | Xβ. Thus α2 is a common divisor of α and β, so α2 = 0 and α = α1. Hence

Xα = (b1X
α)b2, with b2 ∈ A. Note that b2 ∈ S since b1b2 = 1. Now, b = b1b

′
1 for

some b′1 ∈ A, so b = b−1
2 b′1 ∈ AS. Hence B = AS, a contradiction.

(c)–(d) This is Lemma 3.3.9.

(e) To prove that A ⊆ B is an inert extension, let b1, b2 be nonzero elements

of B such that b1b2 ∈ A. Since α is reducible, then α = β1 + β2 with βi ∈ Γ ∗ for

i = 1, 2. So Xα | (b1X
β1)(b2X

β2). As Xα is gr–primal, Xα = (c1X
α1)(c2X

α2) for

some c1, c2 ∈ B and α1, α2 ∈ Γ , c1X
α1 | b1X

β1 and c2X
α2 | b2X

β2 .

Now α = α1 + α2 = β1 + β2 with αi ≤ βi, for i = 1, 2, hence αi = βi, i = 1, 2.

This implies b1X
β1 = a1(c1X

β1) and b2X
β2 = a2(c2X

β2) for some a1, a2 ∈ A. Thus

b1 = a1c1 and b2 = a2c2 with c1c2 = 1. Hence A ⊆ B is an inert extension.

It remains to show that the extension A ⊆ B is A–inert. For, let a ∈ A and b ∈ B
be nonzero elements such that ab ∈ A. Then Xα | a(bXα) in R. So Xα = t(b′Xα)

for some t ∈ A and b′ ∈ B, t | a and b′Xα | bXα in R. We have tb′ = 1, so t ∈ S.

Clearly, at−1 ∈ A. Moreover, t−1Xα | bXα in R implies that bt ∈ A. Hence, the

extension A ⊆ B is A–inert.

(⇐): Suppose that Xα | (b1X
β1)(b2X

β2) for some b1, b2 ∈ B∗ and β1, β2 ∈ Γ .

Then α ≤ β1 + β2. Thus α = α1 + α2 for some α1, α2 ∈ Γ , α1 ≤ β1 and α2 ≤ β2.

We have many cases.

Case 1: α1 < β1 and α2 < β2

Then Xα = Xα1Xα2 , Xα1 | b1X
β1 and Xα2 | b2X

β2 .

Case 2: α1 = β1 6= 0 and α2 < β2

2.1 Suppose that B is associate to A.

Assume that α2 6= 0, and let a1 ∈ A such that b1 = u1a1 for some

u1 ∈ U(B). Then Xα = (u1X
α1)(u−1

1 Xα2) with u1X
α1 | b1X

β1 and

u−1
1 Xα2 | b2X

β2 .

We next assume that α2 = 0. Since α is Γ–lower directed, there exists

γ ∈ Γ ∗ such that γ ≤ α and γ ≤ β2.

(i) If γ 6= α, let a2 ∈ A such that b2 = u2a2, for some u2 ∈ U(B). Then

Xα = (u−1
2 Xα−γ)(u2X

γ), with u−1
2 Xα−γ | b1X

β1 and u2X
γ | b2X

β2 .
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(ii) Suppose that γ = α. Since α is reducible, then α = γ1 + γ2 for some

0 < γ1 < α and 0 < γ2 < α. Thus Xα = Xγ1Xγ2 with Xγ1 | b1X
β1 and

Xγ2 | b2X
β2 .

2.2 Assume that B is not associate to A.

Since α2 < β2, there exists α′2 ∈ Γ ∗ such that β2 = α2 +α′2. By (d), there

exists γ ∈ Γ ∗ such that γ ≤ β1 and γ ≤ α′2. So β1 = γ + γ′ for some

γ′ ∈ Γ . Moreover, by (c) γ is reducible since γ ≤ α. Then γ = γ1 + γ2,

for some γ1, γ2 ∈ Γ ∗. Set δ1 = γ1 + γ′ and δ2 = γ2 + α2. One can easily

check that δ1 < β1 and δ2 < β2. Hence Xα = Xδ1Xδ2 , Xδ1 | b1X
β1 and

Xδ2 | b2X
β2 .

Case 3: α1 = β1 = 0 and α2 < β2

Consider the trivial factorization Xα = 1.Xα = 1.Xα2 .

Case 4: α1 = β1 6= 0 and α2 = β2 6= 0

Note that Xα | (b1X
β1)(b2X

β2) implies b1b2 ∈ A. Since A ⊆ B is inert,

there exists u ∈ U(B) such that b1u, b2u
−1 ∈ A. So Xα = (u−1Xβ1)(uXβ2),

u−1Xβ1 | b1X
β1 and uXβ2 | b2X

β2 .

Case 5: α1 = β1 = 0 and α2 = β2

We have Xα | b1(b2X
β2), so b1b2 ∈ A with b1 ∈ A. Since the extension A ⊆ B

is A–inert, there exists t ∈ S such that b1t
−1, b2t ∈ A. Hence Xα = t(t−1Xβ2)

such that t | b1 and t−1Xβ2 | b2X
β2 in R.

Since our rings are commutative, the other cases hold. Finally, Xα is gr–primal.

As a corollary of Proposition 3.3.10, we next characterize when Xα, α ∈ Γ , is

completely gr-primal in A+B[Γ ∗]. For this, we need the following lemmas.

Lemma 3.3.11. Let A ⊆ B be an extension of domains and S = U(B) ∩ A. Then

a ∈ S is gr-primal in A+B[Γ ∗] if and only if a is primal in A.

Proof. Clearly, if a is gr-primal in A + B[Γ ∗], then a is primal in A. Conversely,

assume that a is primal in A. Let b1, b2 ∈ B∗ and β1, β2 ∈ Γ such that a |
(b1X

β1)(b2X
β2). If β1 6= 0, for the gr-primality of a, we consider the trivial fac-

torization a = a.1. The case β2 6= 0 is similar. Suppose that β1 = β2 = 0. Then

b1, b2 ∈ A∗ and a | b1b2. Thus, also in this case, we are done by using the primality

of a in A.
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Lemma 3.3.12. Let A ⊆ B be an extension of domains and S = U(B) ∩ A. Let

α ∈ Γ ∗ such that Xα is gr-primal in A+B[Γ ∗]. Then uXα is gr-primal in A+B[Γ ∗]

for every u ∈ U(B).

Proof. Let u ∈ U(B) such that uXα | (b1X
β1)(b2X

β2), where b1, b2 ∈ B∗ and

β1, β2 ∈ Γ . We consider the following cases:

Case 1: β1 6= 0 and β2 6= 0

Then Xα | (u−1b1X
β1)(b2X

β2) and Xα | (b1X
β1)(u−1b2X

β2). Since Xα is gr-

primal, then Xα = (c11X
α11).(c12X

α12) = (c21X
α21).(c22X

α22), where cij ∈ B,

αij ∈ Γ , i, j ∈ {1, 2}, with cijX
αij | (u−1bj)X

βj if i = j, and cijX
αij | bjXβj if

i 6= j. If α11 6= 0, we get the factorization uXα = (uc11X
α11).(c12X

α12). Sim-

ilarly, if α22 6= 0, we consider the factorization uXα = (c21X
α21).(uc22X

α22).

We next suppose that α11 = α22 = 0. Then α = α12 = α21. We consider

two cases. (i) Assume that B = AS. Set u = a
s

for some a ∈ A and s ∈ S.

Thus uXα = (ac11).( c12
s
Xα). One can easily check that ac11 | b1X

β1 and
c12
s
Xα | b2X

β2 . (ii) If B 6= AS, by Proposition 3.3.10, α is reducible. Then

there exist α1, α2 ∈ Γ ∗ such that α = α1 + α2. Note that, for i = 1, 2,

αi < α ≤ βi. Thus uXα = (uXα1).Xα2 , uXα1 | b1X
β1 and Xα2 | b2X

β2 .

Case 2: β1 = 0

Then β2 6= 0 and Xα | b1(u−1b2X
β2). Since Xα is gr-primal, then Xα =

c1.(c2X
α), where c1 ∈ A and c2 ∈ B, with c1 | b1 and c2X

α | u−1b2X
β2 . Thus

uXα = c1.(uc2X
α), c1 | b1 and uc2X

α | b2X
β2 .

Case 3 : β2 = 0

This case is similar to the Case 2.

Let A ⊆ B be an extension of integral domains and S = U(B)∩A. The divisors

of Xα, α ∈ Γ ∗, in R = A + B[Γ ∗] are the elements of S and terms of the form

uXβ, where u is a unit in B and β ∈ Γ , β ≤ α. Thus, from Proposition 3.3.10 and

Lemmas 3.3.11 and 3.3.12, we get the following proposition:

Proposition 3.3.13. Let A ⊆ B be an extension of integral domains and S =

U(B) ∩ A such that B 6= AS. Let α ∈ Γ ∗, the following statements are equivalent:
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(i) Xα is completely gr-primal in A+B[Γ ∗];

(ii) α is a completely, reducible, Γ–lower directed, primal element of Γ , S consists

of primal elements of A, and the extension A ⊆ B is inert and A–inert.

Remark 3.3.14. 1) Let A ⊆ B be an extension of domains such that B is not

a quotient ring of A. As an application of the above results, in A + XB[X]

domains, Xn, n ≥ 2 an integer, is gr-primal if and only if B is associate to A

and the extension A ⊆ B is inert and A-inert, see [19, Theorem 1.5].

2) Let A ⊆ B be an extension of domains such that B is not associate to A. If

in the monoid Γ , there exists an α which has an atom as a divisor, then Xα

is never (gr-) primal in A+B[Γ ∗].

3) Consider the construction R = Z +XR[X]. Since the integer 1 is an atom in

the additive monoid Z+, X is not gr-primal. However, X2 is gr-primal, but

not completely gr-primal, see [19, Examples 1.7(ii)].

Theorem 3.3.15. Let A ⊆ B be an extension of integral domains such that B is

not a quotient ring of A. The following statements are equivalent:

(i) R = A+B[Γ ∗] is gr–pre–Schreier;

(ii) A is pre–Schreier, Γ is an antimatter lower directed pre–Schreier monoid, B

is pre–Schreier and the extension A ⊆ B is inert and A–inert.

Proof. (i)⇒(ii). Almost all of the results in (ii) follow from Propositions 3.3.1 and

3.3.10. We need only to show that B is pre–Schreier. Consider the multiplicative

set of R, T = {Xα, α ∈ Γ}. Then RT = B[〈Γ 〉] is gr–pre–Schreier. Hence B is

pre–Schreier (cf. Proposition 2.3.5).

(ii)⇒(i). We use the Nagata type theorem for gr-pre-Schreier domains (cf. Propo-

sition 3.1.3). Consider the saturated multiplicative set of R, T = S ∪ {uXα, u ∈
U(B), α ∈ Γ ∗}, where S = U(B)∩A. By Propositions 3.3.1 and 3.3.10 and Lemma

3.3.12, T consists of gr–primal elements of R. The quotient ring RT = B[〈Γ 〉] is

gr–pre–Schreier. Hence by Proposition 3.1.3, R is gr–pre–Schreier.

Theorem 3.3.16. Let A ⊆ B be an extension of integral domains such that B is

not a quotient ring of A. The following statements are equivalent:

(i) R = A+B[Γ ∗] is pre–Schreier;
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(ii) A is pre–Schreier, Γ is an antimatter lower directed Schreier monoid, B is

Schreier and the extension A ⊆ B is inert and A–inert.

Proof. This follows from Proposition 3.1.4 and Theorem 3.3.15.

Corollary 3.3.17. Let A ⊆ B be an extension of integral domains such that B is

not a quotient ring of A. The following statements are equivalent:

(i) R = A+B[Γ ∗] is Schreier;

(ii) A and B are Schreier with A integrally closed in B, Γ is an antimatter lower

directed Schreier monoid and the extension A ⊆ B is inert and A–inert.

Corollary 3.3.18. Let A ⊆ B be an extension of integral domains such that B is

an overring of A which is not a quotient ring of A. The following statements are

equivalent:

(i) R = A+B[Γ ∗] is Schreier;

(ii) A and B are Schreier, Γ is an antimatter lower directed Schreier monoid and

the extension A ⊆ B is inert and A–inert.

Example 3.3.19. 1) Let K ⊂ L be an extension of fields. Then R = K +L[Γ ∗] is

pre–Schreier if, and only if, Γ is an antimatter lower directed Schreier monoid.

For an illustration, consider the additive monoid Γ = Q+.

2) Let Γ = {(s, t) ∈ Q2, s, t > 0}∪ {(0, 0)} with the relation as in Remark 3.1.2.

Then Γ is an antimatter lower directed Schreier monoid. Consider the domain

R = Z + Z[Y ][Γ ∗], Y an indeterminate. By the above results, R is a Schreier

domain. However, R is not a GCD domain [31].
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Chapter 4

Some factorization properties in

A +B[Γ ∗] domains

4.0 Introduction

We adopt the following definitions and notation. A monoid means a commutative

cancellative torsion-free monoid. Let A ⊆ B be an extension of integral domains

and Γ a commutative, additive, cancellative torsion-free monoid. Let B[Γ ] be the

semigroup ring of Γ over B and set Γ ∗ = Γ \ {0}. Suppose that Γ ∩ −Γ = {0}.
Then R = A + B[Γ ∗] is a subring of B[Γ ]. Note that R can be obtained as a

pullback and B[Γ ∗] is a common ideal of R and B[Γ ]. If Γ ∩ −Γ 6= {0} or A = B,

the ring R coincides with B[Γ ]. If Γ = Z+, then R = A + XB[X], and if Γ = Zn+,

then R = A + (X1, . . . , Xn)B[X1, . . . , Xn]. The monoid Γ admits a total order ≺
compatible with its semigroup operation [25, Corollary 3.4], and since Γ∩−Γ = {0},
we may assume that α < 0 for all α ∈ Γ . Hence each f ∈ R is uniquely expressible

in the form f = a + b1X
α1 + · · · + bnX

αn , where a ∈ A, bi ∈ B and αi ∈ Γ ∗, with

α1 ≺ · · · ≺ αn. If bn 6= 0, it is called the leading coefficient of f and αn the degree.

The construction A+B[Γ ∗] has been studied by many authors and has proven to be

useful in constructing examples and counterexamples in many areas of commutative

ring theory [17, 21, 31, 32].

Let S denote a multiplicative monoid and U(S) the set of units of S. We will

freely use results about multiplicative ideal theory in semigroups analogues of those

of commutative rings. For more details, the reader can refer to [25]. For s, t ∈ S,

s | t if t = sr for some r ∈ S. If s1, s2 ∈ S with s1 | s2 and s2 | s1, then s2 = us1 for

u ∈ U(S), in which case we say that s1 and s2 are associate. An irreducible element
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(or atom) of S is an element s ∈ S such that if s = tr in S, then either t or r is

a unit of S. The monoid S is called atomic if each nonunit of S is a product of a

finite number of irreducible elements of S. We say that S satisfies the ascending

chain condition on principal ideals (ACCP) if there does not exist an infinite strictly

ascending chain of principal ideals of S. The monoid S is a bounded factorization

monoid (BFM) if S is atomic and for each element there is a bound on the length

of factorizations into products of atoms.

For a domain D, the set of its nonzero elements, units and nonzero nonunits

are denoted by D∗, U(D) and D#, respectively. If the multiplicative monoid D∗ is

atomic (resp., satisfies the ACCP, BFM), the domain D is called an atomic domain

(resp., satisfies the ACCP, BFD). Atomic domains where defined in [14] and BFDs

were introduced in [3]. For a monoid S, unique factorization property (UF) and the

properties BF, ACCP, and atomic satisfy the implications:

UF ⇒ BF ⇒ ACCP ⇒ Atomic.

Examples given in [3] for domains show that the reverse of these implications is not

possible. For more details on these factorization properties, we refer the reader to

[3] for domains and to [28] for monoids.

The above factorization properties for Γ = Z+, i.e., R = A+XB[X], were inten-

sively studied by several authors, see for instance, [6, 12]. In [30], Kim investigated

these factorization concepts in the monoid domains. The purpose of this chapter

is to determine necessary and sufficient conditions for the domain R = A + B[Γ ∗],

where Γ is an additive monoid such that Γ ∩ −Γ = {0}, to be atomic, satisfy

the ACCP- or BF-property. The results obtained extend and recover the case of

A+XB[X] domains.

General references for any undefined terminology or notation are [24, 25].

4.1 ACCP condition

The ACCP property for A + XB[X] domains was studied in [6, 12, 20]. In [20,

Proposition 1.2], the authors showed that A + XB[X] satisfies the ACCP if and

only if
⋂
n≥1 a1 · · · anB = (0) for each infinite sequence (an)n≥1 of nonunits of A.

This result was extended to A + B[Γ ∗] domains in [32, Theorem 3.4], where it was

showed that R = A+B[Γ ∗] satisfies the ACCP if and only if Γ satisfies the ACCP
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and for each infinite sequence (an)n≥1 of nonunits of A⋂
n≥1

a1 · · · anB = (0).

In the following, we give a characterization of the ACCP property for A+B[Γ ∗] in

the spirit of [6, Proposition 1.1].

Let A ⊆ B be an extension of integral domains. We say that B satisfies the

A-ACCP property if every chain of cyclic A-submodules of B terminates. Note that

the ACCP for B coincides with the B-ACCP. We have the following lemma whose

proof is similar to [20, Remark 1.1].

Lemma 4.1.1. Let A ⊆ B be an extension of integral domains. Then the following

statements are equivalent:

(i) B satisfies the A-ACCP condition.

(ii) For every infinite sequence (an)n≥1 of nonunits of A,⋂
n≥1

a1 · · · anB = (0).

In the following proposition, the equivalence (i)⇔(ii) extends [6, Proposition 1.1]

and the equivalence (i)⇔(iii) is [32, Theorem 3.4].

Proposition 4.1.2. Let A ⊆ B be an extension of integral domains and Γ an

additive monoid such that Γ ∩−Γ = {0}. The following statements are equivalent:

(i) R = A+B[Γ ∗] satisfies the ACCP.

(ii) Γ satisfies the ACCP and B satisfies the A-ACCP condition.

(iii) Γ satisfies the ACCP and for every infinite sequence (an)n≥1 of nonunits of

A, ⋂
n≥1

a1 · · · anB = (0).

Proof. (i)⇒(ii). Suppose that R satisfies the ACCP and let b1A ⊆ b2A ⊆ · · · with

each bn ∈ B. For α ∈ Γ ∗, we have b1X
αR ⊆ b2X

αR ⊆ · · · is a chain of principal

ideal of R. Since R satisfies the ACCP, this chain terminates. Hence the chain

{bnA}n≥1 terminates. Therefore, B satisfies the A-ACCP condition. By a similar
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argument, one can easily show that Γ satisfies the ACCP.

(ii)⇒(i). Assume that (ii) holds. Let f1R ⊆ f2R ⊆ · · · be an ascending chain

of principal ideals of R. For each n ≥ 1, let αn be the degree of fn. Then (α1) ⊆
(α2) ⊆ · · · is an ascending chain of principal ideals of Γ which satisfies the ACCP.

Moreover, since Γ ∩ −Γ = {0}, there exists k ≥ 1 such that αn = αk for every

n ≥ k. Then we may assume that all fn have the same degree.

On the other hand, let bn be the leading coefficient of fn, so b1A ⊆ b2A ⊆ · · · is

an ascending chain which terminates by hypothesis. Hence there exists k ≥ 1 such

that bn
bn+1
∈ U(A) for all n ≥ k. Consequently, fn+1R = fnR for all n ≥ k.

(ii)⇔(iii). This follows from Lemma 4.1.1.

Corollary 4.1.3. Let X be a set of indeterminates over B. Then A + XB[X]

satisfies the ACCP if and only if B satisfies the A-ACCP.

Corollary 4.1.4. Let B be an integral domain and Γ an additive monoid such that

Γ ∩−Γ = {0}. Then B[Γ ] satisfies the ACCP if and only if Γ satisfies the ACCP

and B satisfies the ACCP.

Remark 4.1.5. (i) If R satisfies the ACCP, then by Proposition 4.1.2 (ii) one can

easily check that U(B) ∩ A = U(A).

(ii) Assume that U(B) ∩ A = U(A). If B satisfies the ACCP, then A + B[Γ ∗]

satisfies the ACCP if and only if Γ satisfies the ACCP. But A + B[Γ ∗] may

satisfy the ACCP and B not. For example, by Proposition 4.1.2, if A is a

field and Γ satisfies the ACCP, then A + B[Γ ∗] satisfies the ACCP for every

extension rings A ⊆ B. Note that in this case the condition U(B)∩A = U(A)

is satisfied.

(iii) Corollary 4.1.4 is obtained in [26], where the authors left open the difficult

question of when an arbitrary semigroup ring satisfies the ACCP.

4.2 Atomicity condition

In this section, we study the atomic property in A+B[Γ ∗] domains.

Let S denote a multiplicative monoid and X ⊆ S. Let CDS(X) = {s ∈ S,∀x ∈
X, s | x}, the set of all common divisors of the elements of X. An element c ∈
CDS(X) is called a maximal common divisor (MCD) of X in S if whenever d ∈
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CDS(X) and c | d, then c and d are associate. We denote by MCDS(X) the set

of all MCDs of X in S (resp. the multiplicative monoid S∗, for a domain S). A

monoid (resp., a domain) S is called an MCD monoid (resp., MCD domain) if

MCDS(X) 6= ∅ for every finite set X ⊆ S (resp., X ⊆ S∗). Note that the ACCP

property implies the MCD property. MCD domains were studied in [40].

Let A ⊆ B be an extension of integral domains and X ⊆ B∗. An element a ∈ A
is called an A-MCD of X if a ∈ CDB∗(X) and whenever a′ ∈CDB∗(X) ∩ A and

a | a′ in A, then a and a′ are associate in A. We denote by A-MCD(X) the set of all

A-MCDs of X. We say that B is an A-MCD domain if A-MCD(X) 6= ∅ for every

finite set X ⊆ B∗.

For a monoid S, the rank of S, denoted by rank(S), is the rank of the quotient

group 〈S〉.

Theorem 4.2.1. Let A ⊆ B be an extension of integral domains and Γ an additive

monoid such that Γ ∩ −Γ = {0}.
Assume that Γ satisfies the ACCP and rank(Γ ) ≥ 2. Then R = A+B[Γ∗] is atomic

if and only if A is atomic, U(B) ∩ A = U(A) and B is an A-MCD-domain.

Proof. For the “only if”condition. Clearly an element a ∈ A# is an atom of A if

and only if it is an atom of R. So A is atomic. Next, let α be an atom of Γ . Then

Xα = a1 · · · ar(bXα) with a1, . . . , ar ∈ A are atoms and bXα is irreducible in R, since

R is atomic. Now, let a ∈ U(B)∩A, then bXα = a((a−1b)Xα), so a ∈ U(A). Hence

U(B)∩A = U(A). We next show that B is an A-MCD domain. Let b1, . . . , bn ∈ B∗.
To show that A-MCD(b1, . . . , bn) 6= ∅, we consider two cases.

Case 1: Γ has finitely many atoms up to associates.

Let γ1, . . . , γk, k ≥ 2, be the (non-associate) atoms of Γ . Then Γ = Z+γ1 +

· · · + Z+γk, a finitely generated monoid. Note that the quotient group 〈Γ 〉 is a

finitely generated free abelian group, so 〈Γ 〉 = Zm for some integer m ≥ 2. Since

rank(Γ ) ≥ 2, there exist two non-associate atoms α1, α2 ∈ Γ which are Z-linearly

independent. In addition, as elements of Zm, we may assume that the gcd of the

components of αi, i = 1, 2, is 1. By using the Hermite Normal form for matrices over

the integers, {α1, α2} can be extended into a Z-basis {α1, α2, . . . , αm} of 〈Γ 〉. Now,

let Yi = Xαi , i = 1, . . . ,m, and denote by K the quotient field of B. Therefore,

K[〈Γ 〉] = K[Zm] = K[Y1, . . . , Ym, Y
−1

1 , . . . , Y −1
m ].

Let f = b1Y1 + · · ·+bn−1Y
n−1

1 +bnY2. Then f ∈ R is irreducible in K[Y1, . . . , Yn],
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and hence in K[〈Γ 〉]. Since R is atomic, we have

f = a1 · · · ar(c1Y1 + · · ·+ cn−1Y
n−1

1 + cnY2),

where a1, . . . , ar ∈ A are atoms in A, and c1, . . . , cn ∈ B with no nontrivial common

factors belonging to A. Then a = a1 · · · ar ∈ A-MCD(b1, . . . , bn).

Case 2: Γ has infinitely many non-associate atoms.

Let γ1, . . . , γn be n non-associate atoms of Γ , and let f = b1X
γ1 + · · ·+bnX

γn . Since

the exponents of f are atoms, f ∈ R has no non-constant factor in R. As above, we

have

f = a(c1X
γ1 + · · ·+ cnX

γn),

with a ∈ A, and c1, . . . , cn ∈ B with no common factors in A. Thus, also A-

MCD(b1, . . . , bn) 6= ∅ in this case.

For the “if”condition, note that since U(B) ∩ A = U(A), α ∈ Γ is an atom in Γ if

and only if Xα is an atom in R. Now, let f = a0 + b1X
α1 + · · ·+ bnX

αn ∈ R# with

0 ≺ α1 ≺ · · · ≺ αn. Let a ∈ A-MCD(a0, b1, . . . , bn) and α ∈ MCDΓ (α1, . . . , αn).

Then f = aXβf1, where β = α if a0 = 0, and β = 0 otherwise. Note that since A

and Γ are atomic, aXβ is a product of atoms in R. We next show that if f1 ∈ R#,

it is also a product of finitely many atoms. Note that by the MCD property, f1 has

no nontrivial factor of the form cXγ with c ∈ A# or γ ∈ Γ \ {0}. Assume that f1 is

reducible. A nontrivial factorization of f1 gives rise to a strictly decreasing sequence

0 < · · · γk | · · · γ2 | γ1 of divisors of δ = deg(f1). Then

γ1 + Γ ⊆ γ2 + Γ ⊆ · · ·

is a chain of principal ideals in Γ that terminates. Since Γ ∩−Γ = {0}, there exists

an integer k0 such that γk = γk0 for every k ≥ k0. It follows that there exists a

factorization of f1 with a maximal number of nonunit factors, hence a factorization

into atoms, in R. Hence R is atomic.

Corollary 4.2.2. Let X be a set of indeterminates over B with | X |≥ 2. Then

A + XB[X] is atomic if and only if A is atomic, U(B) ∩ A = U(A) and B is an

A-MCD domain.

Corollary 4.2.3. Let B be an integral domain and Γ an additive monoid such that

Γ ∩ −Γ = {0}. Assume that Γ satisfies the ACCP and rank(Γ ) ≥ 2. Then B[Γ ]

is atomic if and only if B is atomic and B is an MCD-domain.
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Remark 4.2.4. (i) Note that in the proof of the “if”condition of Theorem 4.2.1,we

do not need the hypothesis rank(Γ ) ≥ 2. For instance, if A is atomic, U(B)∩
A = U(A) and B is an A-MCD domain, then R = A + XB[X] is atomic (X

an indeterminate and Γ = Z+). However, the converse of this last statement

about A + XB[X] domains is an open problem even for a polynomial ring

A[X] (A = B), see [40].

(ii) In Corollary 4.2.3, if we drop the condition Γ ∩ −Γ = {0}, things get worse:

Let Γ = Q×Q and K a field. Clearly, the additive group Γ satisfies trivially

the ACCP and rank(Γ ) = 2. But K[Γ ] is not atomic since it is a GCD domain

[25, Theorem 14.2] but does not satisfy the ACCP [25, Theorem 14.17].

Example 4.2.5. For the ACCP hypothesis for Γ in Theorem 4.2.1, note that if

A + B[Γ ∗] is atomic, then Γ is at least atomic. The following example shows that

if Γ is an atomic monoid that does not satisfy the ACCP, Theorem 4.2.1 does not

hold in general. Let p be a fixed prime number and (pn)n≥1 a strictly increasing

sequence of prime numbers. Consider the Puiseux monoid, see [16, Example 4.2],

Γp = 〈 1
pnpn
| pn 6= p〉. By an elementary argument of divisibility, on can easily check

that Γp is atomic. The monoid Γp does not satisfy the ACCP since the chain of

principal ideals { 1
pn

+ Γp}n does not terminate. Atomic domains that do not satisfy

the ACCP are hard to come by. The first such example is due to A. Grams [27].

Now, let Γ = Γp × Γp (rank(Γ ) = 2) and K a field of characteristic p. Like Γp,

Γ is an atomic monoid that does not satisfy the ACCP. By [16, Theorem 4.3], the

semigroup ring K[Γ ] is not atomic.

4.3 BF property

In this section, we investigate bounded factorization domains. Recall that, a multi-

plicative monoid S or a domain D (S = D∗) has the BF-property if there is a length

function l : S → Z+ such that:

(i) l(s) = 0 if and only if s ∈ U(S), and

(ii) l(st) ≥ l(s) + l(t) for all s, t ∈ S.

For an extension of integral domains A ⊆ B, we say that B is a bounded factor-

ization domain with respect to A (A-BFD) if for each b ∈ B#, there is a positive
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integer NA(b) such that whenever b = b1b2 · · · bn with each bi ∈ B#, then at most

NA(b) of the bi’s are in A [6]. We say that lA : B∗ → Z+ is an A-length function if :

(i) lA(b) = 0 if and only if b ∈ U(B) or b has no nontrivial factors in A, and

(ii) lA(bc) > lA(b) + lA(c) for all b, c ∈ B∗.

Note that if A = B, then lA is a length function on A. Clearly, B is an A-BFD

if and only if B has an A-length function. Note that for the domain B, A-BFD

implies A-ACCP.

Theorem 4.3.1. Let A ⊆ B be an extension of integral domains and Γ an additive

monoid such that Γ ∩ −Γ = {0}. The following statements are equivalent:

(i) R = A+B[Γ ∗] is a BFD.

(ii) Γ is a BFM, U(B) ∩ A = U(A) and B is an A–BFD.

Proof. (i)⇒(ii). Suppose that R is a BFD. Clearly, Γ is a BFM, and hence has at

least one atom α. Also, U(B) ∩ A = U(A) since R satisfies the ACCP. Let b ∈ B#

with a factorization b = a1a2 · · · amb1b2 · · · bn in B where each ai ∈ B# ∩ A and

bj ∈ B# \A. Then, this gives rise to a factorization bXα = (a1a2 · · · am)(b1 · · · bnXα)

of m+1 nonunit factors of R. Since R is a BFD, there exists a positive integer N(b)

such that m ≤ N(b). So B is an A-BFD.

(ii)⇒(i). Denote by lΓ the length function of Γ and by lA the A-length function

of B. Let f = b0 + b1X
α1 + · · · + bnX

αn ∈ R with bn 6= 0 and 0 ≺ α1 ≺ · · · ≺ αn.

Then l(f) = lA(bn) + lΓ (αn) is a length function on R. So R is a BFD.

Corollary 4.3.2. Let X be a set of indeterminates over B. Then A+XB[X] is a

BFD if and only if U(B) ∩ A = U(A) and B is an A-BFD.

Corollary 4.3.3. Let B be an integral domain and Γ an additive monoid such that

Γ ∩ −Γ = {0}. Then B[Γ ] is a BFD if and only if Γ is a BFM and B is a BFD.

Remark 4.3.4. (i) If B is a BFD, then B is an A-BFD. Thus, by Theorem 4.3.1,

R = A + B[Γ ∗] is a BFD if and only if U(B) ∩ A = U(A) and Γ is a BFM.

But if R is a BFD, B need not be a BFD. To see this, take A a field and Γ

a BFM, then R = A + B[Γ ∗] is a BFD for any extension of domains A ⊆ B

(Theorem 4.3.1).

(ii) If the condition Γ ∩−Γ = {0} is not satisfied, Corollary 4.3.3 does not hold.

For instance, take B = K, a field, and Γ = Q. Then B and Γ satisfy trivially

the BF-property, but K[Q] is not even atomic [25, Theorems 14.2 and 14.17].

55



References

[1] D. D. Anderson, D. F. Anderson, Divisorial ideals and invertible ideals in a

graded integral domain, J. Algebra 76(2) (1982), 549-569.

[2] D. D. Anderson, D. F. Anderson, Divisibility properties of graded domains,

Can. J. Math. 34(1) (1982), 196-215.

[3] D. D. Anderson, D. F. Anderson, M. Zafrullah, Factorization in integral do-

mains, J. Pure Appl. Algebra 69 (1990), 1–19.

[4] D. D. Anderson, D. F. Anderson, M. Zafrullah, Factorization in integral do-

mains, J. Algebra 152 (1992), 78–93.

[5] D. D. Anderson, T. Dumitrescu, M. Zafrullah, Quasi-Schreier domains II,

Comm. Algebra 35 (2007), 2096-2104.

[6] D. F. Anderson, D. Nour El Abidine, Factorization in integral domains III, J.

Pure Appl. Algebra 135 (1999), 107–127.

[7] D. D. Anderson, M. Zafrullah, P.M. Cohn’s completely primal elements. In:

Anderson, D.F., Dobbs, D. (eds.) Zero-dimensional Commutative Rings. Lec-

ture Notes in Pure and Applied Mathematics, vol. 171, pp. 115-123. Dekker,

New York (1995).

[8] D. D. Anderson, M. Zafrullah, The Schreier property and Gauss lemma, Bol-

letino U.M.I. (8)10-B (2007), 43-62.

[9] B. Boulayat, S. El Baghdadi, Primality in Semigroup Rings, V. Barucci et al.

(eds.), Numerical Semigroups, Springer INDAM Series 40 (2020), pp 27–38.

[10] B. Boulayat, S. El Baghdadi, Some Factorization Properties in A+ B[Γ ∗] Do-

mains, Algebra Colloquium 27:3 (2020), 643–650.

56



[11] B. Boulayat, S. El Baghdadi, L. Izelgue, The Schreier property and the com-

posite semigroup rings A+B[Γ ∗], accepted in J. Algebra and its Applications.

[12] V. Barucci, L. Izelgue, S. Kabbaj, Some factorization properties of A+XB[X]

domains, Lecture Notes in Pure and Appl. Math. 185, Dekker, New York, 1997,

pp: 69–78.

[13] G. Brookfield, D. E. Rush, When Graded domains are Schreier or pre-Schreier,

J. Pure Appl. Algebra 195 (2005), 225-230.

[14] P. M. Cohn, Bezout rings and their subrings, Proc. Camb. Philos. Soc. 64

(1968), 251-264.

[15] J. Coykendall, D. E. Dobbs, B. Mullins, On integral domains with no atoms,

Comm. Algebra 27 (12) (1999), 5813–5831.

[16] J. Coykendall, F. Gotti, On the atomicity of monoid algebras, J. Algebra 539

(2019), 138–151.

[17] G. W. Chang, B. G. Kang, J. W. Lim, Prüfer v-multiplication domains and
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