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THE SCHREIER PROPERTY AND
FACTORIZATION IN SEMIGROUP RINGS




Résumé

Soit D un anneau commutatif inteégre et I un monoide commutatif simplifiable
et sans torsion. On désigne par D[I'] 'anneau de semi-groupe de I' sur D. Au
cours des dernieres années, plusieurs auteurs se sont intéressés par les propriétés
de factorisation dans D[I']. Ce qui a conduit a la construction de nouvelles classes
d’exemples originaux en algebre commutative et en théorie de factorisation.
L’objectif principal de cette these est I’étude de certaines propriétés de factorisation
dans les anneaux de semi-groupes. Ainsi, les chapitres et sont consacrés a
I’étude de la propriété de Schreier. Dans le chapitre [2l nous étudions la primalité et
la propriété de Schreier dans le contexte plus général des anneaux gradués. Ensuite,
nous appliquons cela aux anneaux de semi-groupes. Le chapitre |3| est dévoué aux
anneaux de type A + B[I™*], ou A C B est une extension d’anneaux integres et I
est un monoide commutatif simplifiable et sans torsion, avec I' N —I" = {0}. Nous
donnons des conditions nécessaires et suffisantes pour que A + B[] soit de (pré—
)Schreier. Dans le cas ot B est un anneau de fractions de A ou I" contient un élément
irréductible, notre caractérisation généralise celle connue dans le cas des anneaux
de polynomes (I" = N). D’autre part, si B n’est pas un anneau de fractions de A,
nous montrons que si 'anneau A + B[I™*] est de Schreier, alors I" est un monoide
sans atomes.

Dans le chapitre , nous essayons d’étendre, aux anneaux A + B[I™], une variété
de propriétés de factorisation (atomique, ACCP, BFD) plus faibles que celles des
anneaux factoriels.

Mots clés : Monoide, anneau de semi-groupe, primal, completement pri-
mal, anneau pré—Schreier, anneau de Schreier, factorisation, atomique, UFD, ACCP,
BFD.



Abstract

Let D be an integral domain and I" a cancellative torsion—free commutative monoid.
The semigroup ring of I" over D is denoted by D[I']. During last few years, several
authors have been interested in the factorization properties in D[I']. Then, with the
help of these domains, they constructed crucial examples in commutative algebra
and factorization theory.

The main focus of this thesis is to study certain factorization properties in semigroup
rings. Chapters [2] and [3] are devoted to the study of the Schreier property. In
Chapter [2] we study the concepts of primality and Schreier property in the more
general context of graded domains, then we specialize to semigroup rings. This leads
us to shed more light on the Schreier property in semigroup rings.

In Chapter 3| letting A C B be an extension of integral domains and I’ a monoid
with I' N —I" = {0}, our main result deals with the characterization of when the
construction A + B[[™] is (pre—)Schreier. In the case where B is a quotient ring of
A or I' is not antimatter, our characterization recovers the case of polynomial rings
(I' =7, ). If B is not a quotient ring of A, we show that A+ B[I*] is Schreier implies
that the monoid I" must be antimatter. In Chapter |4, we attempt to extend various
factorization properties (Atomic, ACCP, BFD), weaker than unique factorization,
to A+ B[] domains.

Keywords : Monoid, monoid domain, primal, completely primal, pre—Schreier
domain, Schreier domain, factorization, atomic, UFD, ACCP, BFD.
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Introduction (French)

Dans un anneau commutatif, la factorisation est une opération qui consiste a décomp-
oser un élément en un produit d’éléments. En théorie des nombres, la factorisation
a été traitée par plusieurs mathématiciens tels que Euler, Fermat, Dedekind, Gauss
et d’autres.

Les grands progres connus en cryptographie ont été source de motivation et de de-
veloppement de la recherche sur la factorisation en théorie des nombres. En effet,
cela est dii au fait que la sécurité de la cryptographie a clé publique dépend de la
difficulté a factoriser les nombres entiers. De plus, la capacité a factoriser des grands
nombres fournirait un mécanisme pour casser les cryptages a clé publique.

D’apres le théoreme fondamental de l'arithmétique, tout nombre entier n > 1
possede une factorisation unique en produit de nombres premiers (UFD). Cependant,
il existe des anneaux qui ne possedent pas cette propriété de factorisation unique par
exemple, 'anneau Z[/—5] n’est pas factoriel. Pour comprendre ce défaut de la non
unicité de factorisation dans certains anneaux, les chercheurs étendirent la notion de
factorisation aux polynomes et aux idéaux. En fait, la factorisation des polynomes
remonte au XVII® siecle avec le procédé de Newton et Leibniz qui avaient pris comme
facteurs les polynomes quadratiques et linéaires. Ensuite, Bernouilli introduisit la
notion de polynomes irréductibles. Vers 1876, Dedekind proposa la possibilté de
factoriser un idéal en un produit d’idéaux premiers. C’est dans ce cadre que 1’étude

de la factorisation dans les anneaux commutatifs, trouve ses origines.

Tous les anneaux considérés dans cette these sont supposés commutatifs, uni-
taires et integres.

Soit D un anneau integre. Un élément a € D \ {0} est dit primal si, pour tout
x1,x2 € D\ {0} tels que a | zyzo, alors il existe aj,as € D, vérifiant a = ajas,
avec a; | x; pour ¢ = 1,2. Cette notion remonte a 1967 avec les travaux de Cohn

[14] qui a ensuite introduit la notion d’anneau de Schreier pour citer tout anneau



intégralement clos dont tout élément non nul est primal. Par exemple, tout anneau
a PGCD est de Schreier [14, Theorem 2.4], mais la réciproque est, en général, fausse
[8, Example 2.10]. Cohn a également étudié le transfert de la propriété de Schreier
aux anneaux de fractions [14, Theorem 2.6]. Ceci lui a permi d’établir la propeiété

de Schreier pour les anneaux de polynomes [14, Theorem 2.7].

Vers 1987, Zafrullah dans son article [42] a défini le concept d’anneau pré—Schreier
pour désigner un anneau dont tout élément non nul est primal. Donc, un anneau
de Schreier est un anneau pré—Schreier qui est intégralement clos. L’étude de ces
propriétés a été developpée par plusieurs auteurs |7, 8, 37].

Une partie importante de cette these est consacrée a 1’étude de la propriété
de Schreier dans les anneaux de semi-groupes. Le livre de Gilmer [25] sera notre
référence principale pour la théorie des anneaux de semi-groupes.

En 1988, Matsuda a étudié la propriété de Schreier pour un anneau de semi-
groupe D[S], ou S est un monoide commutatif simplifiable et sans torsion. Il a
établit que 'anneau de groupe D[G], ou G est un groupe abélien, est un anneau
de Schreier si, et seulement si, D est un anneau de Schreier [35, Proposition 4.5].
Ensuite, il a donné des conditions nécessaires et suffisantes pour que I'anneau de

semi-groupe D[S] soit de Schreier [35, Proposition 4.6].

Soit R = ®aer R, un anneau ['—gradué, ou I' est un monoide commutatif sim-
plifiable et sans torsion et H l’ensemble des éléments homogenes non nuls de R.
Dans leur article [I3] publié en 2005, les auteurs ont étudié la propriété de Schreier
dans les anneaux gradués et ils ont obtenu une caractérisation en termes d’éléments
homogenes [13, Theorems 2.1 et 2.2]. Dans ce contexte, ils ont introduit la notion
de gr—pré—Schreier pour les anneaux gradués comme suit: I'anneau gradué R est
dit gr-pre—Schreier si, tout élément x € H est gr—primal. C’est-a-dire, pour tout
y1,y2 € H tels que x | yyys, alors il existe xq1,xo € H, vérifiant © = x1x9 avec x; | y;
pour ¢ = 1, 2. Entre autre, leurs résultats recouvrent les travaux de Matsuda sur les
anneaux de semi-groupes [35], 30].

Soient A C B une extension d’anneaux integres et I' un monoide commutatif
(additif), simplifiable et sans torsion tel que I'N —I" = {0}. Alors R = A+ B[]
est un sous—anneau de 'anneau de semi-groupe B[I'|. Notons que R peut s’obtenir
comme un produit fibré avec B[I™*] un ideal commun de R et B[I']. Si I'N—1I" # {0}
ou si A = B, 'anneau R coincide avec B[I']. Si I’ = N, alors R = A + XB[X],



et si I' = N* alors R = A+ (Xy,...,X,)B[Xy,...,X,]. Dapres [25, Corollary
3.4], le monoide I admet un ordre total < compatible avec 1'addition. Puisque
I'n —I" = {0}, nous pouvons supposer que « = 0 pour tout @ € I'. Donc tout
élément f € R s’écrit d'une maniere unique sous la forme f = a+b; X*' +- - -4b, X",
ona €A b € Beta; € I'*,avec a; < -+ < . Sib, # 0, il est appelé le coefficient
dominant de f et «a, son degré. La construction A + B[] a été intensivement
étudiée par plusieurs auteurs et s’est avérée utile pour construire des exemples et
des contre-exemples en théorie des anneaux commutatifs [17, 21, BT, 32].

Motivés par le travail fait dans [13] 20], nous considérons la question suivante; déja
posée par Zafrullah dans [43]:

(Q1) Quand est-ce que 'anneau A + B[I™*] est de (pré—)Schreier?

D’autre part, a la base de toute propriété de factorisation nous trouvons la notion
d’atome: on dit qu’'un élément non nul et non inversible x € D est irréductible
(atome) si, a chaque fois que x = ab dans D, alors a ou b est inversible. L’anneau
D est dit atomique si, tout élément non nul et non inversible de D se factorise en
produit fini d’atomes [I4]. La classe des anneaux factoriels et celle des anneaux
noethériens sont des exemples importants d’anneaux atomiques.

La factorialité des anneaux de semi-groupes a été étudiée par Gilmer et Parker dans

[26, Theorem 7.17]. Pour un anneau de semi-groupe D[S], ils ont établi que:

D[S] est factoriel si et seulement si D et factoriel, S est un monoide fac-

toriel et tout élément du groupe mazimal H de S est de type (0,0,0,...).
Pour les anneaux atomiques, Gilmer a posé le probleme suivant [25]:

(Q2) Si D et S sont atomiques, 'anneau de semi-groupe DI[S] est-il

atomique?

La réponse négative a cette question [16] 40] a donné lieu & de nouveaux problemes
de recherche dans la théorie de la factorisation dans les anneaux de polynomes et
les anneaux de semi-groupes.

Notons que dans le cadre de factorisation non unique de nouvelles propriétés ont
été introduites. Parmi ces propriétés que nous allons étudier, citons la condition
de chaine ascendante sur les ideaux principaux (ACCP) et la notion d’anneau a
factorisation bornée (BFD): les longueurs des factorisations d’un élément donné en

produits d’atomes sont bornées, voir [3]. Nous avons les implications suivantes:

UFD — BFD — ACCP — Atomique



Pour les anneaux de semi-groupes, ces différentes propriétés ont été étudiées dans

[30, 34]. Ceci nous amene a poser la question suivante:

(Qs) Sous quelles conditions 'anneau A + B[I™] est atomique, satisfait
la condition ACCP ou possede la propriété BED?

Pour les anneaux A + X B[X] (I" = N), cette question a été étudiée par plusieurs
auteurs [0, [12] 20].

Le but de cette these est d’étudier et étendre certains résultats bien connus sur
différents concepts de factorisation cités ci-dessus pour les anneaux de polynomes,
aux anneaux de semi-groupes. Entre autre, nous allons répondre aux questions
(Q1) et (Qs).

La these est divisée en quatre chapitres recouvrant le contenu de trois articles.

Le chapitre [I] fournit les résultats de base et établit les notations nécessaires a
notre étude. On y rappelle des définitions et des résultats sur la propriété de Schreier
ainsi que quelques propriétés de factorisation dans les anneaux integres.

Dans le chapitre , nous étudions la notion de primalité et la propriété de (pré—
)Schreier dans les anneaux gradués, puis nous appliquons ces résultats aux anneaux
de semi-groupes. Ainsi, dans la section 2.1, nous caractérisons les éléments primals
(resp., la propriété d’étre (pre—)Schreier) pour un monoide multiplicatif. Ensuite,
nous étendons le théoreme (Nagata type theorem) dia a Cohn [I4) Theorem 2.6]
au cas des monoides. La section 2.2 est réservée a 1’étude de la primalité dans les
domaines gradués. En fait, nous montrons quand un élément homogene non nul est
primal ou completement primal. Comme application, dans la derniere section, nous
caractérisons les éléments primals dans les anneaux de semi-groupes. Les résultats
de ce chapitre sont publiés dans [9].

Le chapitre [3| a pour but de caractériser les constructions de type A + B[]
qui sont (pré-)Schreier. Ces résultats sont publiés dans [10]. Nous commengons la
section 3.1 par une caractérisation de la propriété de (pré-)Schreier en termes de
la propriété gr—pré-Schreier pour A + B[I™]. Dans la section 3.2, nous étudions la
primalité des éléments homogenes non nuls dans I'anneau A + Ag[I™], out S est une
partie multiplicative de A. Ensuite, nous donnons des conditions nécessaires et suff-
isantes pour que cette construction soit (pré—)Schreier (Theorem et Corollary
3.2.8). La section 3.3 est consacrée & I'étude de la propriété d’étre (pré-)Schreier

dans les anneaux de type A+ B[I™], ou B n’est pas nécessairement un anneau de frac-



tions de A (Theorem et Corollary . Enfin, pour illustrer nos résultats,
nous donnons des exemples originaux d’anneaux de Schreier et pré—Schreier.

Le chapitre [d] est dédié a la généralisation de certaines propriétés de factorisation
non unique aux anneaux de type A+ B[] [11]. Ainsi, la section 4.1 est dévouée a la
propriété ACCP et dans la section 4.2, sous certains conditions, nous caractérisons
les anneaux A + B[I™*] qui sont atomiques (Theorem [4.2.1). La section 4.3 est
consacrée au concept de factorisation bornée dans les anneaux A + B[I™]. Nos

résultats généralisent le cas bien connu des constructions de type A + X B[X].



Introduction

In a commutative ring, a factorization is an operation that consists of decomposing
an element into a product. In number theory, factorization has been dealt with by
several mathematicians such as Euler, Fermat, Dedekind, Gauss and others.

With the advent of public key cryptography, research in factoring integers was in-
vigorated. The security of public key cryptography depends on the difficulty of
factoring integers, and the ability to factor large integers would provide a mecha-
nism for breaking public key ciphers.

By the fundamental theorem of arithmetic, every positive integer n > 1 has a unique
factorization into prime elements (UFD). However, there are some integral domains
that fails to be UFD such as Z[v/=5]. In order to understand a non-unique factor-
ization, the mathematicians studied the factorization in the case of polynomials and
ideals.

The factorization of the polynomials with integer coefficients, back to the XV I Ith
century, starting by the Newton and Leibniz processes which had taken as factors
the quadratic and linear polynomials, then Bernoulli introduced irreducible elements
in factorization. In 1876, Dedekind proposed the possibility to factorize an ideal to
product of ideals. It was in this setting that the study of factorization in integral

domains arose.

All rings considered in this thesis are integral domains, that is unitary commu-
tative rings without zero divisors.

Let D be an integral domain. In [I4], Cohn called an element a € D\{0} primal
if for all x1,29 € D\{0}, a | z1x9 implies that a = ajay for some a; € D with
a; | x;, i = 1,2. Then he called D a Schreier domain, if D is integrally closed and
every nonzero element of D is primal. For instance any GC'D domain is Schreier
[14, Theorem 2.4], but the converse is false in general, as asserted in [8, Example

2.10]. Cohn studied also the behaviour of the Schreier property under localization



[14, Theorem 2.6]. This allowed him to extend the Schreier property to polynomial
rings [14, Theorem 2.7].

In his 1987 paper [42], Zafrullah called D pre-Schreier if every nonzero element
of D is primal. So a Schreier domain is an integrally closed pre-Schreier domain.
The study of these two concepts was continued in [7] and [37].

The purpose of this thesis is to explore some topics in factorization theory in semi-
group rings. The book of Gilmer [25] will be our main reference for the theory of
semigroup rings.

In 1988, Matsuda studied the Schreier property for a semigroup ring D[S], where
S is a cancellative torsion—free commutative monoid. He showed that D[G], where
G is an abelian group, is Schreier if and only if D is Schreier [35, Proposition 4.5].
Then, he established necessary and sufficient conditions for D[S] to be Schreier [35],
Proposition 4.6].

Let R = ®4erR, be a I'-graded domain, where [ is a cancellative torsion-free
commutative monoid and H the set of nonzero homogeneous elements of R. In
[13], the authors investigated the (pre—)Schreier property in a graded domain. They
obtained a nice characterization of this property in terms of homogeneous elements
[13, Theorems 2.1 and 2.2]. In this setting, they called a domain R gr—pre—Schreier
if every element of H is gr—primal, that is: for each z € H, if whenever x | 3o,
with y1,ys € H, then © = z129, 21,29 € H, where x; | y;, i = 1,2. In the case of a

semigroup rings R = D[S], their results recover the work of Matsuda [35, [36].

Let A C B be an extension of integral domains and I" a cancellative torsion—
free commutative monoid such that I' N —I" = {0}. Then R = A + B[['*] is a
subring of the semigroup ring B[I']. Note that R can be obtained as a pullback
and B[[*] is a common ideal of R and B[[']. If ' N —I' # {0} or A = B, the
ring R coincides with B[I']. If I' = Z,, then R = A+ XB[X], and if ' = Z7,
then R = A+ (Xy,...,X,)B[X1,...,X,]. The monoid I" admits a total order <
compatible with its semigroup operation [25, Corollary 3.4], and since T'N—T = {0},
we may assume that a = 0 for all « € I". Hence each f € R is uniquely expressible
in the form f =a+ b X +--- + b,X*, where a € A, b; € B and o; € I'*, with
ayp < - <. If b, # 0, it is called the leading coefficient of f and «,, the degree.
The construction A+ B[I™*] has been studied by many authors and has proven to be

useful in constructing examples and counterexamples in many areas of commutative



ring theory [17, 21}, 31, 32].
Motivated by the work in [I3], 20], we consider the following question:

(Q1) When is A+ B[I™] a (pre-)Schreier domain?

Notice that this question was asked by Zafrullah in [43].

Another important factorization property that we deal with in semigroup rings
is the property of being atomic. By an irreducible element or atom we mean a
nonzero nonunit x € D such that = ab in D, implies that a or b is a unit. A
domain D is said to be atomic if each nonzero nonunit of D is a product of a finite
number of atoms of D [I4]. Noetherian domains and UFDs are two important well
known examples of atomic domains. The UFD property for monoid domains was
studied by Gilmer and Parker in [20, Theorem 7.17]. For a semigroup ring D[S],

they provide the following characterization:

D[S] is a UFD if and only if D is a UFD, the monoid S is a UFM and
each element of the maximal subgroup H of S is of type (0,0,0,...).

For the atomic property, Gilmer asked the following question [25]:

(Q2) Is the semigroup ring D[S] atomic provided that both D and S are

atomic?.

The negative answer to this question [16, [40] gave rise to new research problems
in the theory of factorization in polynomial rings and semigroup rings. Various
properties related to atomic domains have been studied extensively. In this work, we
will mainly focus on the atomic property, the ascending chain condition on principal
ideals (ACCP), and bounded factorization property (BFD), that is an atomic domain
in which each nonzero nonunit element has a bound on the length of factorizations

into products of atoms see [3]. We have the following implications:
UFD = BFD — ACCP = Atomic

For semigroup rings, these properties were studied in [30, [34]. Also, for the con-
struction A + X B[X], these questions were studied by several authors [0, 12 20].

This leads us to ask the following question:

(Q3) Under which conditions is A + B[I™*] an atomic domain, satisfies
ACCP or has the BFD property?



The purpose of this thesis is to investigate and extend some well known results
on different concepts of factorization in the case of polynomial rings, to semigroup
rings. Among other things, this leads to an answer of the questions (Q;) and (Q3).
The thesis is divided into four chapters and it recovers the results of three papers,
as follows:

Chapter 1| provides the background information and sets up the notations needed
in our study. We recall some definitions and results on the Schreier property and
some factorization properties in an integral domain.

In Chapter [2[ we investigate the primality and the (pre—)Schreier property in
graded domains and then specialize to semigroup rings. Thus, in Section 2.1, we
characterize the primal elements (resp., the (pre—)Schreier property) in a multi-
plicative monoid. Then we extend the well known Nagata type theorem for Schreier
domains, due to Cohn [I4, Theorem 2.6], to monoids. In Section 2.2, we study
the primality in graded domains. So we determine when a nonzero homogeneous
element is primal or completely primal. Then, as an application, in the last section
of Chapter [2] we characterize the primal elements in semigroup rings. The results
of this chapter are published in [9].

Chapter |3| has the goal of characterizing when a construction of type A + B[I™|
is (pre—)Schreier and these results are published in [I1]. We begin Section 3.1 by a
characterization of the pre—Schreier property in terms of the gr—pre—Schreier prop-
erty for A+ B[I™]. In Section 3.2, we investigate the primality of the nonzero
homogeneous elements in A + Ag[I™*] domains, where S is a multiplicative subset
of A. Then, necessary and sufficient conditions for this construction to be (pre—
)Schreier are given (Theorem and Corollary [3.2.8). Section 3.3 is devoted to
the study of the (pre—)Schreier property in A + B[I™*], where B is not necessarily a
quotient ring of A (Theorem and Corollary . Lastly, we give original
and new examples of (pre—)Schreier domains.

Chapter |4 focuses on generalizing some factorization properties, weaker than
unique factorization, to constructions of the form A + B[I™] [10]. Thus, Section
4.1 is devoted to the ACCP property. In Section 4.2, with the assumption that I
satisfies ACCP and of rank> 2, we characterize domains A + B[I™] that are atomic
(Theorem [4.2.1)). In Section 4.3, we investigate the BFD property. The results
obtained generalize the case of polynomial rings A + X B[X].



Chapter 1

Preliminaries

In this chapter, we recall some basic concepts and present some known results, in
the literature, that we will need in this work. For more details, the references are

systematically given.

1.1 Commutative monoids

A semigroup is a nonempty set closed under an associative binary operation. If
(S,*) is a semigroup, then S is commutative (or abelian) if it is commutative under
the operation x, and S has an identity element if there exists an identity element
with respect to x. A semigroup with identity is called a monoid. In this work all
semigroups are commutative monoids.

Let S be an additive monoid. We let S* denote the set of all nonzero elements
of S while we let U(S) denote the set of invertible elements of S.

Definition 1.1.1. 1. If U(S) = {0}, we say that S is reduced.
2. S is cancellative if for x,y,s € S; v + s = y + s implies that x = y.
3. S is torsion—free if for all x,y € S and n € N*; nx = ny implies that = = y.

An ideal of S is a nonempty subset I of S such that I D s+ 1 ={s+i|ie I}
for each s € S. An ideal [ of S is proper if [ # S.

Proposition 1.1.2 (|25, Corollary 1.5]). A monoid S admits a total order compat-

ible with its semigroup operation if and only if S is cancellative and torsion—free.
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For M C S, we let (M) denote the smallest submonoid of S containing M, and
we call it the submonoid of S generated by M.
Let T" C S be an additive closed subset of S, we have the quotient monoid Sr =
{s—t,seS;teT}. IfT =25, we get G=(S) the quotient group of S.

Definition 1.1.3. We say that S is integrally closed if, for each n € N* and = € G,
nx € S implies that z € S.

For a monoid S, the rank of S, denoted by rank(S), is defined to be the rank of
the quotient group (S).
Several results in multiplicative ideal theory for rings can be translated into the

language of monoids. For more details, see [25].

1.2 Semigroup rings

Let S be an additive monoid and R be an integral domain.
In 1951, N. Jacobson defined in [29] the semigroup ring of S over R to be the set of
functions f from S to R that are finitely nonzero with addition and multiplication

defined as follows:

(f+9)(s) = f(s)+g(s)
(fo)(s) = Y f(t)g(u)

tu=s
where the symbol » 7, _ is taken over all pair (¢,u) of elements of S such that
t+u=s.
In this thesis, we adopt the notation of Northcott [39] and write R[S] for the semi-
group ring of S over R. If S is cancellative torsion—free monoid ordered by <, then
an element f of R[S] is uniquely expressible as f = ri X® + ro X% 4 -+« 4 1, X",
where each r; € R and s; € S with s; < -+ < s,. If r, # 0 it is called the leading
coefficient of f and denoted by lc(f) and s, is called the degree.

A polynomial ring over R is a semigroup ring over R with S coincide with the

set of nonnegative integers Z, . For more details on semigroup rings see [25] 26].

We recall the following basic properties of a semigroup ring (cf. [25]).

Proposition 1.2.1. Let R be an integral domain and S an additive monoid.

1. R[S] is an integral domain if and only if S is a cancellative torsion-free com-

mutative monoid.
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2. RIS| is integrally closed if and only if both R and S are integrally closed.

3. The units of R[S] are the units of R and the monomials aX® where a and s

are respectively units of R and S.

1.3 Graded domains

By a graded domain R = @, R,, we mean an integral domain R graded by an
arbitrary cancellative torsion—free monoid I'. We denote by H the multipilcative
monoid of nonzero homogeneous elements of R.

The semigroup rings A[I'], where A is an integral domain, constitute perhaps the
most important class of I'-graded domains with deg(X®) = a.

If S C H, is a multiplicative set of R, that is, a submonoid of H. The ring of
fractions Rg is graded by some quotient monoid of 1" with the nonzero homogeneous
elements are of the form %, where h € H and s € S. In particular, the quotient ring
H(R) := Ry is a (I")—graded domain, called the homogeneous quotient field of R.
We have:

Proposition 1.3.1 ([2, Proposition 2.1]). H(R) is a completely integrally closed
GCD—-domain.

Let x € R = ®qcrRa, and © = 1 + - - - 4+ x,, be the unique representation of z
as a sum of homogeneous elements. We define the content of x, denoted by C(z),
to be C(x) = (21, ...,2,). Thus C(z) is a finitely generated homogeneous ideal of R.

A fractional ideal I of R is homogeneous if ul C R is a homogeneous ideal of
R for some u € H. Clearly, a homogeneous fractional ideal of R is a submodule
of H(R). The content of an element can be extended as follows. Let z € H(R),
r = x1 + - + x, with deg(z;) < deg(z;) for i < j. The content of x is the R-
submodule of H(R), C(z) = (z1,...,x,). Note that a fractional ideal I C H(R) of
R is homogeneous if and only if C'(x) C I for every x € I. The content satisfies the
Dedekind—Mertens lemma for graded domains [3§].

Proposition 1.3.2 ([1, Theorem 2.1]). Let R = ®4erRs be a I'-graded integral
domain. For everyx,y € H(R), there is a positive integer n such that C(x)"C(xy) =
Cz)"C(y).

Following [1], we say that the graded domain R is almost normal if for each

homogeneous element x € Ry of nonzero degree which is integral over R is actually
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in R. Notice that almost normality is weaker than the integrally closed property.

We have the following proposition:

Proposition 1.3.3. Let R = ®acrRo be a graded integral domain. Then R is

integrally closed if and only if R is almost normal and Ry is integrally closed in

<RH)0.

Notice that if we put all together [I, Section 1, Theorems 3.2 and 3.5] and
Proposition we characterize when the graded domain R is almost normal and
integrally closed.

Recall that an extension of domains A C B is inert if whenever bb' € A for some

bt € B, then b = au and b’ = a’u~"! for some a,a’ € A and v a unit of B.

Proposition 1.3.4. Let R = ®,cr R, be a graded integral domain. We consider

the following statements:

(i) R is integrally closed;

(i) Forh€ H and x € R, (h) : (x) is homogeneous;
(iii) R is almost normal.

Then (i)=-(ii)=-(iii). If moreover, R contains a (homogeneous) unit of nonzero

degree, the three conditions are equivalent, and if Ry C R is inert, then (ii)<(iii).

An important case of when the extension Ry C R is inert is when the monoid I
satisifies the condition I"'N —1" = {0} [1].

Let A C B be an extension of integral domains and I" a cancellative torsion—
free commutative monoid. Let I™ = I'\{0}. Assume that I'N —I" = {0}. Then
R = A+ B[I'"] is a subring of B[I']. Note that R can be obtained as pullback with
B[I'*] is a common ideal of R and B[I'|. If I' = Z,, then R = A+ XB[X], and if
I'=7%, then R = A+ (Xy,...,X,,)B[Xy, ..., X;)]. By Proposition , I' admits
a total order <, so we may assume that « = 0 for all « € I'. Hence, each f € R is
uniquely expressible in the form f =a+ b X +--- 4+ 0,X%, wherea € A, b, € B
and o; € '™, with ay < -+ < ay,. If b, # 0, it is called the leading coefficient of f
and «,, the degree. These constructions were studied by several authors [21], 3], [32].

The construction R = A + B[[*] is an interesting example of graded domains,
with the monoid of nonzero homogeneous elements is H = A*U{bX* | b€ B*, a €
r+}.
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1.4 Schreier domains

Let R be an integral domain. Following Cohn [I4], an element x € R is called:

- Primal, if whenever = | ajay with a1,as € R, x can be written in R as
xr = z129 such that z; | a;, i = 1,2.

- Completely primal, if every factor of x is primal.

In 1987, Zafrullah [42] introduced a pre-Schreier domain as a domain in which ev-
ery element is (completely) primal. Thus an integrally closed pre-Schreier domain

is called a Schreier domain [I4]. The Schreier property generalizes the GCD property.

The behaviour of Schreier rings under localization was described by the following:

Proposition 1.4.1. ([14, Theorem 2.6]) Let R be an integrally closed integral do-

main and S a multiplicative subset of R.
1. If R is a Schreier domain, so is Rg.

2. If Rg is a Schreier domain and S is generated by the completely primal ele-
ments of R, then R is a Schreier domain (Nagata type Theorem).

As an application of the Proposition [1.4.1] Cohn proved the following result:

Proposition 1.4.2. ([14, Theorem 2.7]) Let R be a Schreier domain and X an

indeterminate, then R[X] is a Schreier domain.

1.5 Factorization properties in an integral domain

The aim of this section is to recall some definitions about some factorization prop-
erties that we will deal with in this thesis.

Let R be an integral domain. We denote by U(R) the multiplicative group of
units of R.

A nonzero nonunit ¢ € R is said to be irreducible or atom if a = be
implies b € U(R) or ¢ € U(R). Two elements a,b € R are said to be
associated, denoted a ~ b, if a | b and b | a. Note that a ~ b if and only
if b = wa for some u € U(R).

A nonzero element p € R is called prime if p | ab implies p | a or p | b,
for a,b € R.
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Every prime element is irreducible but an irreducible element need not be prime. A
domain in which the notions of irreducible and prime coincide is called AP-domain
[18]. Examples of such domains are GCDs and pre-Schreier domains.

Recall that R is said to be a unique factorization domain (UFD) if every nonzero,
nonunit has a unique factorization into a finite product of irrecucibles, up to order
of the factors and associates.

Definition 1.5.1. 1. We say that R is atomic if every nonzero nonunit element

of R has a factorization into a finite number of irreducibles (atoms).

2. We say that R satisfies the ascending chain condition on principal ideals
(ACCP) if there does not exist an infinite strictly ascending chain of prin-

cipal ideals of R.

3. Wa say that R is a bounded factorization domain (BFD) if it is atomic and
for each nonzero element there is a bound on the lengths of factorizations into

products of atoms.

In general, we have the following implications [3]:
UFD = BFD = ACCP = Atomic

The converse of these implications do not hold in general [3], 4], 27, [41].
Important examples of atomic domains are UFDs and Noetherian domains.
Notice that an atomic Schreier domain is a UFD [I4, Theorem 2.3].

Finally, a domain with no atoms will be called an antimatter domain. These

domains were studied in [15].
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Chapter 2

The Schreier property in

semigroup rings

2.0 Introduction

Let A be an integral domain. Following P.M. Cohn [14], an element x € A is primal
if whenever z | ajay with aj,as € A, x can be written as x = z25 such that x; | a;,
i = 1,2, and z is completely primal if every factor of x is primal. A ring in which
every element is (completely) primal is called a pre-Schreier domain [42] and an
integrally closed pre-Schreier domain is called a Schreier domain [14]. The Schreier
property generalizes the GCD property.

The primality of an element in a domain depends only on the multiplicative
semigroup of nonzero elements of that domain. This led several authors to study
the primality in the more general context of semigroups. Let S be a commutative
multiplicative cancellative monoid. For s,t € S, s | t if ¢ = sr for some r € S. An
element s € S is primal if for ¢,y € S, s | tits implies s = s;59 where s1,59 € S
and s; | t; for i = 1,2. Completely primal elements and the (pre—)Schreier property
for monoids are defined similarly.

In a polynomial ring, in the indeterminate X, over a ring A, the powers X",
n € N, are primal, i.e., X™ | fg for some f,g € A[X], then f = X" fiand g = X" "¢
for some r € N, f1, g1 € A[X]. This fact is crucial when working with polynomials.
This raises the question of whether this result can be extended to powers X, a € S,
S a semigroup. Note that in this case X“ is not necessarily a power of a prime

element like in the polynomial rings. On the other hand, an intersting work on the
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Schreier property for semigroup rings was made by Matsuda [36], and Brookfield
and Rush [13] . In [13], the authors showed that a semigroup ring is pre-Schreier if
and only if it is Schreier.

The aim of this chapter is to deepen and shed new light on primality in semigroup
rings. In Section 2.1, we write some well known results on primal elements and
Schreier property, in domains and ordered groups, in the language of monoids. In
Section 2.2, we study primality in the more general context of graded domains. In
[13] it was shown that in graded domains the investigation of the Schreier property
can be reduced to the study of the primality of the homogeneous elements. In
this section we characterize the (completely) primality of an homogeneous element
in terms of its (completely) primality in the multiplicative semigroup of nonzero
homogeneous elements. In the integrally closed case, we get an equivalence between
these two primalities. As an application, in Section 2.3, we characterize primal
elements in semigroup rings. In particular, we investigate the primality of the powers

X% in a semigroup ring and recover the case of polynomial rings.

2.1 Primal elements in Monoids

Throughout this section a monoid means a multiplicative cancellative unitary com-
mutative semigroup. Let S be a monoid. If 7" C S is a multiplicative subset of S,
then we get the fraction monoid Sy := {s/t | s € S,;t € T}. If T = S, we have the
quotient group of S, G = (S).

The aim of this section is to translate and adapt the proofs of some well known
results on primality and the Schreier property in domains and partially ordered
groups, by using the language of monoids. These results will be needed next in the

case of graded domains and semigroup rings.

Let s,t € S. We say that s divides t, denoted s | t if t = sr for some r € S. We
make use of the preorder on S: s <t if s|¢. An element s € S is called primal if
for t1,t5 € S, s < tity implies s = $189, where 51,89 € S and s; < t;, i = 1,2, and
s is completely primal if every factor of s is primal. As for domains, a monoid in
which every element is (completely) primal is called a pre-Schreier monoid and an
integrally closed pre—Schreier monoid is called a Schreier monoid. Note that in the

case of a domain A, the monoid in question is the multiplicative monoid A*, and in
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the case of an ordered group G, it is the positive cone G*.

In [7], the authors believe that completely primal elements are the building
blocks of the Schreier property. In what follows we give some characterizations of
completely primal elements in monoids. For xy,...,x, € S, let U(xy,...,x,) = {g €
S|lg>xy,..,x,}. A nonempty subset U C S is lower directed if for s1,s9 € U,
there exists s € U with s < sq1,55. The following lemma is well known in ordered

groups [7, Theorem 2.1].

Lemma 2.1.1. Let S be a monoid. An element s of S is completely primal if and
only if for each x € S, the set U(s,x) is lower directed. Moreover, if {s1,...,sn} is

a set of completely primal elements of S, then U(sy, ..., s,) is lower directed.

Proof. The proof of the first part is similar to that of |7, Theorem 2.1 (1)<(2)].
For the second part, note that the case n = 1 is clear and n = 2 follows from the
first part. Suppose that U(sy, ..., s,_1) is lower directed. Let 1,79 € U(sq, ..., Sn)-
Then 7,79 € U($1,...,S,—1) and by induction there exists t € U(sy, ..., $,_1) such
that t < ry, 7. But then ry,ry € U(t,s,) and since s, is completely primal there is
s € U(t, s,) such that s < ry,ry. Hence s € U(t, s,) € U(s1, ..+, Sn)- O

The following key characterization of completely primal elements in monoids was
proved in [8, Lemma 4.6] for domains. Here we give a short proof in the case of

monoids.

Proposition 2.1.2. Let S be a monoid. An element s of S is completely primal if
and only if s < ritj, ri,t; €S, fori=1,...,m and j = 1,...,n implies that s = 5155

where s1 < r; for each © and sy < t; for each j.

Proof. Let s be a completely primal element and s < 7;t; for ¢ = 1,...,m and
J = 1,..,n. Then, for each ¢ = 1,...,m, s = r;;t;;, where r;; < r; and tj < {;
for j = 1,..,n. Since for each i, r;; is completely primal (a factor of s), and
s, € U(rit, ..., i), there exists d; € S such that r;; < d; < 1y, s for every j =
1,...,n. Now, s,t1,...t, € U(s/dy,...,s/d,), then there exists ¢ € S such that
s/dy,...,s/d, <t < s,tq1,....,t,. Let r € S such that s = rt. One can easily check
that r < r; fori=1,...,m.

For the converse, let s € S satisfying the condition as in the proposition, and let
x € S. We show that U(s,z) is lower directed. Let ry,ry € U(s,z). For i = 1,2,
write r; = xt;, so s < xt;. By our hypothesis s = s159 such that s; <z and s5 <'¢;
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fori = 1,2. But d = zsy € U(s,z) and d < ry,7m5. Thus U(s,x) is lower directed

and by the previous lemma s is completely primal. O

To sum up, we get the following characterization of pre-Schreier monoids, see
[42] Theorem 1.1].

Corollary 2.1.3. Let S be a monoid. The following are equivalent:
(i) S is a pre-Schreier monoid;
(ii) For all s,t,x,y € S with s,t | x,y there exists r € S such that s,t | r | z,y;

(iii) For all s1,...,8,, € S and tq,....,t, € S such that s; | t;, fori =1,...,m and

j=1,...,n, then there exists r € S such that s; | v | t; for each i,j;

(iv) For all s,r1,...;1y, € S and ty,...,t, € S such that s | r;t; for eachi=1,....,m
and j =1,...,n, then s = 515y for some s1,s9 € S such that sy | r; and s | t;,
for each i, 7.

We end this section by translating to monoids the well known Nagata type
theorem for Schreier domains due to Cohn [I4, Theorem 2.6]. Our proof is slightly
different from that in [14], for we use the characterization of completely primal
elements in Proposition [2.1.2]

Let S be a monoid and T a multiplicative subset of S. The set T is called
divisor-closed if T is saturated.

Proposition 2.1.4. Let S be a monoid and T a multiplicative subset of S.
(1) If S is pre-Schreier, then St is pre-Schreier.

(2) Assume that T is a divisor-closed subset of S such that every element of T is

primal in S. If the monoid St is pre-Schreier, then S is pre-Schreier.

Proof. (1) Similar to the case of domains [42, Corollary 1.3].

(2) Assume that Sy is pre-Schreier and let s, x1, 29 € S such that s < xyxs in
S. So s < xyx9 in Sp. Since St is pre-Schreier, s is completely primal in Sp.
Then s = (s1t;")(saty ") for some sy, 55 € S and t1,t, € T such that s;t;" < 3
and syty ' < 29 in Sy. So a1y = (s1t77) (s Y) and zy = (sot; ') (shry ) for some
sy, 85 € Sand ri,m9 € T. We put r = tyritsrs, then r is an element of 7" which

satisfies :

rs = (s179)(S2r1)
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rey = (s17r2)(8)t2)
ray = (So71)(S5t1)

r((z12)/5) = (8)t2)(s5t1)

So r < to the elements in the set product {siry, sht1}{sar1, sita}. As r is
completely primal in S and by Proposition[2.1.2] there exist u,v € S such that
r = uv with u < 8179, s5t; and v < sory, 8its. Then s = (syrou™1)(serv™t)
with s;ru™t < 21 and serv™! < 29, hence s is primal in S. Consequently, S
is pre-Schreier.

]

2.2 Primal elements in a graded domain

Throughout, a monoid means a torsionless grading monoid, that is, a (additive)
cancellative torsion—free commutative semigroup.

In this section, we study primality in a graded integral domain R = @,crR,,
graded by a torsionless grading monoid I'. We denote by H the multiplicative set

(monoid) of nonzero homogeneous elements of R.

Recall that an element © € H is called:

gr-primal [I3] if whenever x | 3y, with y1,yo € H, then z = x5, where
x1,29 € H and z; | y;, i = 1,2, and z is completely gr-primal if every

homogeneous factor of z is gr-primal.

These two definitions are equivalent, respectively, to x primal and completely primal
in the multiplicative monoid H.
The graded domain R is called gr-pre-Schreier if every element of H is (completely)

gr-primal.

In [13], Brookfield and Rush introduced gr-pre-Schreier domains and character-
ized pre-Schreier graded domains in terms of the gr-pre-Schreier property. In the
integrally closed case, they showed that the Schreier property is equivalent to the
gr-pre-Schreier property.

For an integral domain A with quotient field K and fractional ideals I,.J, define
I:J={exeKaJCI}, ' =[A:I]and [:J=[I:J NA A homogeneous
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(fractional) ideal I of the graded domain R is called H-locally cyclic if every fi-
nite subset of homogeneous elements of I is contained in a (homogeneous) principal
sub-ideal of I. We start this section with some characterization of gr-pre-Schreier

domains.

Proposition 2.2.1. Let R = @&, R, be a graded domain. The following statements

are equivalent:
(i) R is a gr-pre-Schreier domain;

(ii) H is a pre-Schreier monoid;

1

(iii) For every nonzero homogeneous element u € H(R), (1,u)™" is H-locally

cyclic;

-1

(iv) For every nonzero x € H(R), C(x)~" is H-locally cyclic.

Proof. (1)< (ii) is obvious. For (ii)<>(iii), note that for a,b € H, we have (a,b)™! =
(ab)~'(aR N bR), and for a homogeneous element v € H(R), u = a/b for some
a,b € H. Then apply Corollary (ii) in H. For (iii)<(iv), note that C(z)~! is
a finite intersection of homogeneous principal fractional ideals. n

Also, we get the following Nagata type theorem for gr-pre-Schreier domains

analogue to that of Schreier property due to P. M. Cohn [14, Theorem 2.6].

Proposition 2.2.2. Let R = ®uer Ry be a graded domain and S C H a multiplica-
tive subset of R. Then:

(1) If R is a gr-pre-Schreier domain, then Rgs is a gr-pre-Schreier domain.

(2) Assume that S is saturated, generated by completely gr-primal elements, and

Rg is a gr-pre-Schreier domain, then R is a gr-pre-Schreier domain.

Proof. Apply Proposition to the quotient monoid Hg. ]

Ezxample 2.2.3. (1) Let R = A[X] be the polynomial ring over a ring A. One can
easily see that A[X] is gr-pre-Schreier if and only if A is pre-Schreier. By [I3]
Theorem 3.2, A[X] is pre-Schreier if and only if it is Schreier, if and only if A is
Schreier.

(2) Let A C B be an extension of integral domains and set R = A + X B[X].
Primality and the Schreier property for A+ X B[X] domains were studied in [T9] 20].
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We claim that R = A+ X B[X] is gr-pre-Schreier if and only if A is pre-Schreier and
B = Ag, where S = U(B) N A, U(B) denotes the set of invertible elements of B.
Suppose that R is gr-pre-Schreier. Clearly A is pre-Schreier. On the other hand, by
using the primality of X and the fact that X | (bX)?, b € B, it was shown in [19,
Remark 1.1] that B = Ag, where S = U(B) N A.
Conversely, we use the Proposition m The quotient ring Rg = Ag[X] is gr-pre-
Schreier since A, and hence Ag, is pre-Schreier. The elements of S are gr-primal in
R = A+ XAg[X]. Indeed, let a € S and hy, hy € H such that a | hihy. Since A
is pre-Schreier, the case where hq, hy € A is clear. Assume that hy = bX™ for some
be Ag and n # 0. Then a | hy in R, and write a = 1 X a.

By [20, Theorem 2.7 and Corollary 2.9], R is a pre-Schreier (resp., Schreier)
domain if and only if A is a pre-Schreier (resp., Schreier) domain, B = Ag, where

S=U(B)NA, and Ag is a Schreier domain.

Inspired by the work in [I3], in the following we study (completely) primal ele-

ments in a graded domain in terms of (completely) gr-primality.

Let h € H; we say that h is degree gr-primal if h | z;y;, x;,y; € H, fori=1,...,m
and j = 1,....,n, with deg(xy) < deg(z;) and deg(yx) < deg(y;) for all k& < [, then
h = hyhsy such that h; | x; for each ¢ and hs | y; for each j. The degree gr-primality

is a weak form of the completely gr-primality in H.
Theorem 2.2.4. Let R = @yer Ry be a graded domain, and h € H. Then:

(1) his primal in R if and only if h is degree gr-primal and (h) : (x) is homoge-

neous for each x € R.

(2) h is completely primal in R if and only if h is completely gr-primal and (h) : (x)

1s homogeneous for each x € R.

Proof. (1) For the “only if”condition, assume that h | x;y;, x;,y; € H, for i =
1,...,mand j = 1,...,n, with deg(zx) < deg(z;) and deg(yx) < deg(y;) for all
k <1. Then h | xy in R, where x = x1 4+ -+-+x,, and y =y + - -+ + y,. By
the primality h = hihs, hy, hy € H, with hy | x and hy | y. Clearly, hy | z; and
hy | y; for each 4,j. To see that (h) : (x) is homogeneous, let y € (h) : (z).
Then h | xzy. Now, h = hihg, hi,hy € H, with hy | x and hy | y. It follows
that C'(y) C (h) : ().

For the “if”condition, let z = 2y +--- + 2, and y = y; + --- + y, be two
nonzero elements of R, with deg(xy) < deg(x;) and deg(yx) < deg(y;) for all
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k <1, such that h | zy. Now, y € (h) : (z), a homogeneous ideal, then h | z;y;
fori =1,...,m and j = 1,...,n. On the other hand, h is degree gr-primal
implies that A = hyho, where hy | z; and hs | y; for each ¢,5. Then h = hih
with hy | z and hs | y, so h is primal in R.

(2) For the “only if”condition, clearly, if h is completely primal in R it is com-
pletely gr-primal. The remainder is similar to (1). For the “if”condition, by
the same argument as in the proof of (1), h is primal in R. To prove that h
is completely primal in R, let k& be a factor of h. Necessarily, k € H. Then
k is completely gr-primal and h = kk’ for some k' € H. Let x € R and
y € (k):(x), withy =y + - +y, and deg(y;) < deg(y;) for all ¢ < j. Then
k'y € (kk') : (x) = (h) : (x). Since (h) : (x) is homogeneous, then, for each 1,
Ky, € (h): (x), soy; € (k) : (z). Thus (k) : (z) is homogeneous. Hence, like
h, k is primal in R. Therefore, h is completely primal in R.

O

Fxample 2.2.5. We give an example of a degree gr-primal element which is not
completely gr-primal.

Let R = Z+ XR[X]. By [19, Example 1.7(ii)], X2 is primal in R, but X is not primal
in R, so X? not completely primal. By Theorem , X? is degree gr-primal but
not completely gr-primal.

Let R = ®ner R, be a graded domain, h € H, and let R;, be the quotient ring of
R with respect to the multiplicative set generated by h. Note that R;, is a graded
subring of H(R).

Definition 2.2.6. Let R = &, R, be a graded domain, and h € H.

(1) We say that R is Rp—almost normal if every homogeneous element z € Ry, of

nonzero degree which is integral over R is actually in R.
(2) We say that R is Rj,—integrally closed if R is integrally closed in Rj,.

Note that R is Rj—integrally closed if and only if R is integrally closed in R}
with respect to the homogeneous elements of Ry,. Thus, R is R,—integrally closed if

and only if R is Rj,—almost normal and Ry is integrally closed in (Rp,)o.

Note that almost normality defined in [I], is a globalization of Rj-almost nor-

mality, h € H. Thus, R is almost normal if and only if R is Rj-almost normal for
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every h € H. A similar statement is true for the integrally closed case.

Recall that an extension of domains A C B is inert if whenever bb’ € A for some

bt/ € B, then b = au and b’ = a’u~"! for some a,a’ € A and v a unit of B.

Proposition 2.2.7. Let R = ®,cr Ry be a graded domain, and h € H. Consider

the following statements:

(i) R is Ry—integrally closed.

(ii) (h): (x) is homogeneous for each x € Ry,.
(iii) R is Rp—almost normal.

Then (1)=-(ii)=(iii). If moreover, R contains a (homogeneous) unit of nonzero

degree the three conditions are equivalent, and if Ry C R is inert, then (ii)<(iii).

Proof. The proof is inspired from [1].

(i)=(ii). Let x € Ry, and y € R such that C(xy) C (h). Then C(z)"C(xy) C
hC'(z)™ implies C(x)" ™' C(y) C hC(x)", for some integer n in the Dedekind-Mertens
lemma. Thus +C(z)C(y) C [C(x)" : C(z)"] N Ry = R, since R is Ry-integrally
closed. Hence C(x)C(y) C (h). Therefore, (h) : (z) is homogeneous.

(ii)=(iii). Let * = a/h* € Ry, a € H, a homogeneous element of nonzero degree
which is integral over R. Let f(Y)=Y" +a, 1YY" ! + -+ + ay with coefficients in
R such that f(z) = 0. Since x is homogeneous, we may assume that we have an
equation of the form 2™ + a,_;2" ' + --- 4+ ap = 0 with the a;’s homogeneous and
deg(a;) = (n—1i)deg(z). Then f(Y) = (Y —x)g(Y) with g(Y) = Y"1 +b, oY 2+
-+« + by . We may assume that the elements b; € R;, are homogeneous of distinct
nonzero degree. From f(1) = (1 — x)g(1), it follows that (1 — z)g(1) € R. Now,
(h* —a)(g(1)/h*1) € hR implies h* —a € (h) : (g(1)/h*1), which is homogeneous.
Since 1/h*=t € C(g(1)/h*71), it follows that (1/h*~1)(h* —a) € hR. So 1 — z € R.
Hence z € R.

For the moreover statements, assume that R contains a (homogeneous) unit u of
nonzero degree. If z € Ry, is a homogeneous element of zero degree which is integral
over R, then uz € Rj, is a homogeneous element of nonzero degree which is integral
over R. If R is Rj-almost normal, then ux € R. Hence x € R. This proves that
(iii)=(i). For the last statement, we proceed as in [I, Theorem 3.7(2)]. O

24



Corollary 2.2.8. Let R = ®oer Ry be a graded domain. Assume that R is integrally

closed or Ry C R s inert and R is almost normal. Then:

(1)
(2)

A homogeneous element is primal in R if and only if it is degree gr—primal.

A homogeneous element is completely primal in R if and only if it is completely

gr-primal.

Proof. This follows from Theorem and Proposition 2.2.7] O

Remark 2.2.9. (1) In [33] Section 3|, the author gave an example which show that

(2)

R may be an almost normal graded domain, that is, R is R,—almost normal
for every h € H, but there exist h € H and = € R such that (h) : (x) is not

homogeneous.

Let h € H. In Theorem [2.2.4) we can check that h is primal (resp., completely
primal) if and only if % is degree (resp., completely) gr-primal and (h) : (z) is

homogeneous for every = € Ry,

Example 2.2.10. (1) Let A be an integral domain with quotient field K. Let R =

A[X], a polynomial ring. Note that the extension A C A[X] is inert. If every
element of A is primal in A[X], then, by Cohn’s Nagata type theorem for
Schreier domains |14, Theorem 2.6], A[X] is Schreier since K[X] = A[X]g,
where S = A\ {0}, is Schreier (UFD). The above results shed more light
on the primality of elements of A in A[X]. Let 0 # a € A. Clearly, a is
degree gr-primal if and only if a is completely gr-primal, if and only if a is
completely primal in A. Thus a is (completely) primal in A[X] if and only if
a is completely primal in A and A is integrally closed in A,. For more details,

see the next section.

For an extension of integral domains A C B, consider the pullback R =
A+ X B[X]. Since the extension A C R is inert, then, by Theorem and
Proposition 2.2.7, h = aX™ is primal (resp., completely primal) in R if and
only if h is degree (resp., completely) gr—primal and B is integrally closed in
B, (Here Ry, = B,[X, X Yifn>1, and R, = A, + XB,[X] if n = 0).

As a corollary of Theorem [2.2.4] Proposition [2.2.7, and Cohn’s Nagata type

theorem for Schreier domains, we reobtain a characterization of the Schreier property

in graded domains.
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Corollary 2.2.11 ([I3] Theorem 2.2]). Let R = ®ocrRa be a graded domain. Then

the following statements are equivalent:
(i) R is Schreier;
(ii) R is pre-Schreier and Ry is integrally closed in (Rp)o;

(iii) R is gr—pre=Schreier and integrally closed.

2.3 Primal elements in semigroup rings

As an application of the previous sections, we study the primality in semigroup rings.
Throughout this section, I denotes a nonzero cancellative torsion—free commutative
monoid (written additively) with quotient group G, and A is an integral domain with
quotient field K. Let A[I'] be the semigroup ring of I" over A. Then A[I'] is a I'—
graded integral domain and each nonzero element f € A[I'] can be written uniquely
as f = a; X*' + -+ + a, X* where 0 # a; € A and s; € ' with 51 < -+ < s,,.
Note that here, H = {aX* |0 # a € A,a € I'} and A['|]y = K[G]. For more on

semigroup rings, see [25].

Proposition 2.3.1. Let A[I'] be the semigroup ring of I over A, and consider the
element of the form aX® where 0 # a € A and o € I'. The following statements

are equivalent:
(i) aX® si primal in A[I'];
(ii) a and X* are both primal in A[I].

Proof. (1)=-(ii). Suppose that aX* is primal in A[[']. Let f,g € A[l'] such that a |
fg, then a X | f(gX*). Since aX® is primal aX® = a; X as X** where a; X' | f
and as X | gX* so a; | f and ay | g. Thus a = ajay such that a; | f and ay | g, so
a is primal in A[T].
To prove that X* is primal in A[l'], let f,g € A[l'] such that X* | fg, then a X |
(af)g. Thus aX® = a; X' ay X*?, where a; X' | af and as X** | g. Hence X =
XX with X* | f and X** | g.

(ii)=(i). Assume that a and X* are both primal in A[['] and let f,g € A[I'] such
that aX® | fg. Then a | fg and X® | fg. Since a and X are primal in A[l'], we

have a = ajay such that a; | f and as | g for some a;,as € A; and X = X1 X2

26



such that X | f and X2 | g for some ay, a0 € I'. Hence aX® = a1 X*as X2,
where a; X | f and a; X*? | g, so aX® is primal in A[[]. O

For a semigroup ring A[I'], let h = aX® € H. Then A[I'], = A,[l,], where I,
is the quotient monoid with respect to the additive set generated by «. Note that
A[I'] is integrally closed in A,[[,] if and only if A is integrally closed in A, and I’

is integrally closed in I,.

Proposition 2.3.2. Let A[I'] be the semigroup ring of I' over A and h = aX* € H.

The following statements are equivalent:

(i) Al is Au[Iw]—integrally closed;

(ii) (h): (f) is homogeneous for each f € A,[L,];
(iii) A[l] is Au[I]-almost normal.

Proof. By Proposition [2.2.7, it remains to show that (iii)=(i). Let A € A, be
integral over A[I']. Take 0 # v € I'. Then \X" € A,[[,] is a homogeneous element
of nonzero degree which is integral over A[I']. So AX" € A[I'], hence A € A. Now,
by the A,[I,]-almost normality, A[I'] is A,[],]-integrally closed. O

The following lemmas characterize degree (resp., completely) gr-primality in

semigroup rings.

Lemma 2.3.3. Let A[I'] be the semigroup ring of I' over A and 0 # a € A. The

following statements are equivalent:
(i) a is completely gr-primal;
ii) a is degree gr—primal;
gree g
(iii) a is completely primal in A.

Proof. (i)=-(ii). This is clear.

(ii)=(ili). Suppose that a | bic; in A for ¢ = 1,...,m and j = 1,...,n. Let
0 #a € Iy set f; =i and 4, = jafor ¢ = 1,...,m and j = 1,...,n. Then
a | (b:XP)(c; X)), in Al'], for i = 1,...,m and j = 1,...,n. By (ii), there exist
ai,as € A such that a = ajay where a; | b; for each i and ay | ¢; for each j. Hence
a is completely primal in A (cf. Proposition [2.1.2).

27



(iii)=>(i). Assume that a | b; X% ;X% in A[l'| fori = 1,...,m and j = 1,...,n.
Then a | bicj in A for each i,j. So a = ajay, where a; | b; for each ¢ and ay | ¢; for
each j. Thus a = ajay such that a; | b;X? for each i and ay | ¢; X" for each j. This

proves that a is completely gr-primal. O

Lemma 2.3.4. Let A[I'] be the semigroup ring of I' over A and o € I'. The

following statements are equivalent:
(i) X is completely gr—primal;
(i) X« is degree gr—primal;
(iii) « is completely primal in I.

Proof. (i)=-(ii). This is clear.

(ii)=(iii). Suppose that a | §; +; for ¢ = 1,...,m and j = 1,....,n. We may
assume that 8; < -+ < B, and v, < -+ < 74,. Then X | XA X% fori=1,...m
and j = 1,...,n. By (ii), there exist ay, as € I" such that « = aj + ay, where ;| f;
for each 7 and ay | y; for each j. Hence « is completely primal in I

(iii)=-(i). Assume that X | b; X% ;X% in A[I'] fori =1,..,m and j = 1,...,n.
Then « | B;+; in I" for each ¢, j. So o = a1+, where a4 | f5; for each i and ay | 7,
for each j. Thus X = X X2 such that X | ;X" for each i and X2 | ¢; X
for each j. This proves (i). O

From Proposition and Lemmas [2.3.3| and [2.3.4] we get:

Proposition 2.3.5 ([13l Lemma 3.1)). Let A[I'] be the semigroup ring of I' over

A. The following statements are equivalent:
(i) A[l'] is gr-pre-Schreier;
(ii) A and I' are pre=Schreier.
Next, we state our main result of this section.

Theorem 2.3.6. Let A[I'] be the semigroup ring of I over A, and let 0 # a € A
and o € I'. Then:

(1) a is (completely) primal in A[I'] if and only if a is completely primal in A and
A is integrally closed in A,.
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(2) X* is (completely) primal in A[I'] if and only if a is completely primal in I’
and I is integrally closed in I,.

Proof. This follows from Theorem [2.2.4] Remark (2), Proposition 2.3.2, and
Lemmas [2.3.3 and [2.3.4] O

From Theorem [2.3.6{ and Corollary [2.2.8| we get:

Corollary 2.3.7. Let A[I'] be the semigroup ring of I over A, and let 0 # a € A
and o € I'. Then:

(1) Assume that A is integrally closed. Then a is (completely) primal in A[I'] if

and only if a is completely primal in A.

(2) Assume that I' is integrally closed. Then X* is (completely) primal in A[I] if

and only if o is completely primal in I.

Corollary 2.3.8 ([13, Theorem 3.2]). Let A[I] be the semigroup ring of I' over A.

The following statements are equivalent:
(i) A[I'] is pre-Schreier;

(ii) A[I"] is Schreier;

(iii) A and I' are Schreier.

Proof. For (i)=-(ii)=(iii) use Proposition and Theorem [2.3.6 and remark that
A (resp., I') is integrally closed if and only if A (resp., I') is integrally closed in A,
(resp., I'y) for each 0 # a € A (resp., 0 # a € I'). For (iii)=-(i), we need the Cohn’s

Nagata type theorem for Schreier domains. O

In the case of polynomial rings, we recover some results established in [5, Propo-
sition 6] and [8, Lemma 4.7]. Note that in a polynomial ring the powers of X are
primary, so they are primal. Thus by Proposition [2.3.1| a nonzero homogeneous
element of the form aX™, a € A, is primal in A[X] if and only if a is primal in A[X].

Corollary 2.3.9. Let A be an integral domain and X an indeterminate. Then:

(1) a is (completely) primal in A[X] if and only if a is completely primal in A and
A is integrally closed in A,.

(2) A[X] is Schreier if and only if A[X] is pre-Schreier, if and only if A is Schreier.
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Chapter 3

The Schreier property and the
composite semigroup ring A+ B|[™]

3.0 Introduction

All rings considered in this chapter are commutative. Let D be an integral domain
and 0 # x € D. Following P. M. Cohn [14] we say that x is primal (resp., completely
primal) if for each ai,as € D; x | ajay in D implies that x can be factorized, in D,
as xr = 1Ty, where z; | a;, i = 1,2 (resp., every factor of x in D is primal). The
domain D is said to be pre-Schreier if every nonzero element of D is (completely)
primal [42], and an integrally closed pre-Schreier domain is called Schreier [14]. The
Schreier property generalizes the GCD property.

Let A C B be an extension of integral domains and I" a commutative, additive,
cancellative torsion-free monoid. Let B[I'] be the semigroup ring of I" over B and
set I = I"\ {0}. Suppose that I'N—I" = {0}. Then R = A+ B[] is a subring of
B[I']. Note that R can be obtained as a pullback with B[I™*] a common ideal of R
and B[I']. If ' —1I"# {0} or A = B, the ring R coincides with B[I']. If ' = Z,.,
then R = A+ XB[X], and if I' = Z%, then R = A+ (Xy,..., X,,)B[Xy,..., X,].
The monoid I" admits a total order < compatible with its semigroup operation [25]
Corollary 3.4], and since I' N —I" = {0}, we may assume that o = 0 for all o € I".
Hence, each f € R is uniquely expressible in the form f =a+b; X +---+ b, X,
where a € A, b; € B and o; € '™, with ay < -+ < a,,. If b, # 0, it is called the
leading coefficient of f and «, the degree. The construction A + B[I™*] has been

studied by many authors and has proven to be useful in constructing examples and
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counterexamples in many areas of commutative ring theory [17, 21, 31], 32].

In [13], the authors characterize the Schreier property in semigroup rings. Their
results extend the case of polynomial rings. The Schreier property in A + X B[X]
domains has been studied in [19] 20]. Also, in [31], the author investigates the GCD
property in A + B[I™*]. The extension of these works to the Schreier property in
A+ B[I'*] domain was left open, in fact, in [43] it was asked:

When is A + B[I™*] a pre-Schreier domain?

Our purpose in this chapter is to investigate this question. In Section 3.1, we
present some preliminary results about the Schreier property in monoids and graded
domains. Then apply this to the A + B[I™*] domains naturally graded by I". In
Section 3.2, we study primal homogeneous elements and, as an application, we
characterize the Schreier property in A+ Ag[I™*], where S is a multiplicative subset
of the domain A. As we show in Section 3.3, this particular case of our construction
is crucial; it includes the pre-Schreier domains of the general form A+ B[I™] with I’
not antimatter. In contrast, the Schreier property in the general case when B is not
a quotient ring of A forces I to be an antimatter monoid. Also in this latter context,
a characterization of the Schreier property is provided. The results obtained extend
those of A+ X B[X]| domains and lead to new examples of (pre—)Schreier domains.

Notation and terminology used in this chapter are standard as in [24, 25].

3.1 Preliminary results

Throughout this chapter a monoid means a unitary commutative cancellative torsion-
free semigroup. Let S be a multiplicative monoid. If 7" C S is a multiplicatively
closed subset of S, then we get the quotient monoid Sy := {s/t,s € S,t € T'}. If
T = S, we have the quotient group of S, G := (S). The monoid S is called integrally
closed if, " € S forn € Z, and x € GG implies z € S.

The Schreier property can be defined in the more general context of monoids.
Let S be a multiplicative monoid. For s,t € S, we say that s divides ¢, denoted
by s < t,if t = sr for some r € S. An element s € S is primal (resp., completely
primal) if whenever s < titq, t1,to € S, s can be written as s = s;15, such that
s;i < t;, i = 1,2 (resp., every factor of s in S is primal). A monoid S is called

pre-Schreier if every element of S is primal, and Schreier when it is pre-Schreier and
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integrally closed. Note that a domain is pre-Schreier if the multiplicative monoid of
its nonzero elements is pre-Schreier. Thus, results about pre-Schreier domains can
be written in the language of monoids. For instance, the Nagata type theorem for

Schreier domains due to Cohn [14, Theorem 2.6] can be stated for monoids.

Proposition 3.1.1. Let S be a multiplicative monoid and T a multiplicative subset

of S.
(1) If S is pre-Schreier, then St is pre-Schreier.

(2) Assume that T is a divisor-closed subset of S such that every element of T is

primal in S. If the monoid St is pre-Schreier, then S is pre-Schreier.

Remark 3.1.2. GCD monoids are Schreier. As a generalization of lattice ordered
groups, in [22] the author studied the Schreier property for ordered groups, such
groups were called Riesz groups. A directed ordered group G is a lattice ordered
group (resp., a Riesz group) if and only if its monoid of positive elements G is
a GCD (resp., Schreier) monoid [22, 23]. Examples of Schreier monoids that are
not GCD monoids can be easily constructed, see [22], Section 3]. For an elementary
example, consider the monoid S = {(s,t) € Q% s,t > 0} U{(0,0)} with the relation
(s1,t1) < (s2,1t2) if and only if s1 < s9 and t; < ts.

We next recall some results about the Schreier property for graded domains. Let
R = ®.cr R, be a graded domain, graded by an additive monoid I'. We denote
by H the multiplicative monoid of nonzero homogeneous elements of R. If T' C H
is a multiplicative set of R, that is, a submonoid of H, the ring of quotient R is
graded by some quotient monoid of I" whose set of nonzero homogeneous elements
is Hy. In particular, H(R) := Ry is a (I")-graded domain, called the homogeneous
quotient field of R. Note that H(R) is a completely integrally closed GCD domain
(cf. [2]).

We say that the graded domain R is almost normal if every homogeneous element
x € H(R) of nonzero degree which is integral over R is actually in R. Note that R
is integrally closed if and only if R is almost normal and Ry is integrally closed in
H(R)o [1I.
An homogeneous element = € H is called gr-primal in the graded domain R [13], if
whenever x | 1192 with y1,ys € H, then z = x1x9, 21,29 € H, where z; | y;, i = 1, 2,
and z is completely gr-primal if every (homogeneous) factor of x in R is gr-primal.

These two definitions are equivalent, respectively, to x primal and completely primal

32



in the multiplicative monoid H. The graded domain R is called gr-pre-Schreier if
every element of the monoid H is (completely) gr-primal, that is H is a pre-Schreier
monoid. In [13], the authors studied (pre-)Schreier graded domains and character-
ized them in terms of the gr-pre-Schreier property. In the integrally closed case, they
proved that, in graded domains, the Schreier property is equivalent to the gr-pre-
Schreier property. For a monoid domain D[I"] over a domain D, naturally I"-graded,
they showed that D[I'] is pre-Schreier if and only if it is Schreier, if and only if the

domain D and the monoid [ are Schreier.
The following proposition is the Nagata type theorem for gr-pre-Schreier do-
mains.

Proposition 3.1.3. Let R = ©,cr R, be a graded domain and T C H a multiplica-
tive set of R. Then:

(i) If R is a gr-pre-Schreier domain, then Ry is a gr-pre-Schreier domain.

(ii) If Ry is a gr-pre-Schreier domain and T is saturated consisting of gr-primal

elements of R, then R is a gr-pre-Schreier domain.
Proof. Apply Proposition to the quotient monoid Hrp. O

Let A C B be an extension of integral domains and I" an additive monoid such
that I' N —I" = {0}. Then R = A + B[I*] is naturally graded by I" with the set
of nonzero homogeneous elements H = A* U {bX* b € B*,a € I'*}. The following
proposition characterizes the pre-Schreier property in terms of the gr-pre-Schreier

property for A + B[I™*] domains.

Proposition 3.1.4. Let A C B be an extension of integral domains and R =

A+ B[I'™*]. The following statements are equivalent.
(i) R is a pre-Schreier domain.
(ii) R is an almost normal gr-pre-Schreier domain.
(iii) R is a gr-pre-Schreier domain and both I' and B are integrally closed.

Proof. (i)<(ii) The “only if” condition follows from [I3, Theorem 2.1] and [1, The-
orems 3.2 and 3.5]. The converse follows from [I3, Theorem 2.1] and [Il Section 2,
Theorems 3.2 and 3.7(2)], since I' N —I" = {0}.
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(ii)<(iii)) We show that R is almost normal if and only if I" and B are integrally
closed. Assume that R is almost normal. To prove that I is integrally closed, let ¢
be a nonzero element of G = (I') such that ng € I" for some integer n > 1. Then
X" € R. Now, let f =YY" — X" € R[Y], then f(X9) = 0. That is X7 is integral
over R. Since R is almost normal, then X9 € R. It follows that g € I', and hence
I' is integrally closed. We next show that B is integrally closed. For, we consider
an element ¢ € K = ¢f(B) integral over B. Then there exists an integer n > 1 and
bo, ... ,bn_1 € B such that ¢ + b,_1c" ' 4+ - + bic+ by = 0. Multiplying by X™,
v € I* we get (cX?)" 4+ by 1 X7(eX?)" 1 4o 4 b XDV X) 4 hoX™ = 0, so
cX7 is integral over R. Hence cX” € R, because R is almost normal. Thus ¢ € B.
Hence B is integrally closed.

Conversely, assume that I" and B are integrally closed. Note that H(R) = K[G],
where K = qf(B) and G = (I'). Let 0 # b € K and 0 # g € G such that bX9 is
integral over R. Then bX7 is also integral over B[] since R C B[I']. So bXY € B[I'|
as B[I'] is integrally closed. Hence bX?¢ € B[I™*] C R, and we are done. O

Note that by the proof of Proposition [3.1.4) the construction R = A + B[I™*] is
integrally closed if and only if both I" and B are integrally closed and A is integrally

closed in B.

Corollary 3.1.5. Let A C B be an extension of integral domains and R = A+B[I[™].

The following statements are equivalent.
(i) R is a Schreier domain;

(ii) R is an integrally closed gr-pre-Schreier domain.

3.2 The Schreier property in A+ Ag[I™]

Throughout this section, A is an integral domain, S is a multiplicatively closed
subset of A, and I' is a commutative, additive, cancellative torsion—free monoid
such that I'N —1I" = {0}.

Let I'™* = I'\{0}, in this section, we study the Schreier property in the domains
of type A+ Ag[I™]. We first characterize (completely) gr-primal elements in the ring
A + Ag[I™] naturally graded by I', with the set of nonzero homogeneous elements
H=A"U{cX%ce Ay,a e I'"}.
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Proposition 3.2.1. Let A be an integral domain, S a multiplicative subset of A,
and 0 # a € A. Then a is gr—primal in A + Ag[I™] if and only if a is primal in A.

Proof. Clearly, if a is gr-primal in A + Ag[I™], then a is primal in A. For the
converse, assume that a is primal in A. Let b,c € Ag be nonzero elements and
a, B € I' such that a | (bX)(cX?) in A+ Ag[I™].

Case 1: a=0or =0

If « = 3 = 0, this is clear. Assume that o = 0 and 3 # 0. Then a | b(cX”). So
a | bc in Ag implies be = a%/ for some @’ € Aand s € S. Let ¢ = %/ for some ¢ € A
and t € S. Then bs¢’ = aa’t which implies that a | bs¢’ in A. Hence a = ajay for
some ay,as € A, ay | b and ag | s¢ in A. Now, cX? = ag(Z—%Xﬁ), where a}, € A such
that s¢’ = apal. So a = ayay with a; | b and ay | cXP.

The case a # 0 and g = 0 is similar.

Case 2: a#0and 5 #0

Then, a | (bX*)(cX?) implies that a | bc in Ag, so bc = a%/ for some o’ € A and
s € 5. Since b,c € Ag, there exist ¥, ¢ € A and t1,t, € S such that b = ¥ and

t1
¢ = . Solb'sc = atita’ implies a | U'sc in A. Since a is primal in A, then
!
a = ajay for some ay, a9 € A, ay | V's and ay | ¢ in A. Hence bX* = al(:TllXo‘) and
!
cXP = ag(i—;Xﬁ), where b's = aja) and ¢ = agal,. Therefore, a = ajas such that

a; | bX® and ay | cX?, in A+ Ag[I™]. O

Corollary 3.2.2. Let A be an integral domain, S a multiplicative subset of A, and
0 # a € A Then a is completely gr-primal in A + Ag[™*] if and only if a is

completely primal in A.

Next, we explore when X@, for some o € I'*, is (completely) gr—primal in A +

Ag[I].

Definition 3.2.3. Let A be an integral domain, S a saturated multiplicative subset
of A. S is called good if for each s € S, a,b € A and s | ab, there exists t € S such
that ¢ | a and s | tb.

By [19, Remark 1.3(b)], if S is consisting of (completely) primal elements in A,
then S is good.

Proposition 3.2.4. Let A be an integral domain, S a saturated multiplicative subset
of A, and 0 # « € I'. Let R = A+ Ag[I™], then the following statements are

equivalent:
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(i) X is gr-primal in R;
(ii) « is primal in I" and S is good.

Proof. ()= (ii) Assume that X is gr-primal in R. Let (1,52 € [ such that
a < 1+, then X | XA X5 in R. Since X is gr-primal, then X = a; X' a, X2,
a1 X | XP and a, X2 | XP2 for some a1, ay € Ag and ay, a3 € I'. So a = oy + an,
a1 < p1 and ay < (B9, hence « is primal in I

For the second part of (ii), let s € S and a,b € A such that s | ab in A. Then
X | a(®2) in R. Since X* is gr-primal, X® = a;(b;X®) for some a; € A and

by € Ag such that ay | a and b; X | I’XTa So a;by = 1. Let by = aT/l for some a} € A

and t € S. Then a,a} =t € S implies a; € 9, since S is saturated. Set s’ = aq, so

by = . Then s’ | a and s | s'b. Hence S is good.

(ii)= (i) Suppose that « is primal in I" and S is good. To prove (i), let by, by € Ag
be nonzero elements and 3y, 8, € I such that X | by X 1h, X2, Then o < By + B,
SO o = a1 + ap for some aq,an € I' such that oy < f; and ay < (5 . We consider
the following cases:
Case 1: a; < 1 and ag <
Then X® = X“ X% X | b XA and X | X" in R.
Case 2: a3 = 1 and as < [
Note that since v # 0, then a; # 0 or as # 0. Assume that ay # 0. Let s € S
such that sb; € A, then X* = (£2)(sX?) with £ | b;X? and sX°? | by X2,
If a; = B = 0, we consider the trivial factorization X* = 1.X*2. Note that
X2 | by XP2 since ap < Po.
Case 3: ay =1 #0and as = 3 # 0
X | b1 XP1hy, X2 implies biby, € A. Take by = % and by = Z—; for some aq,a, € A
and 51,52 € S. Let s = 518, then “%2 € A implies s | ajas in A, so there exists
t € S such that t | a; and s | tas in A. Hence X® = (éXﬁl)(%X@), X b X5
and X7 | by XP2.
Case 4: a; = 1 =0 and as = 35
Then, X® = X | b (b, X") with by € A, so biby € A. Since by € Ag, there
exist a; € A and s € S such that by = 2. Then biby, = bl% € A, so s | bas.
Since S is good, there exists ¢ € S such that ¢ | b; and s | tag in A. Therefore,
X = XP2 = t(X2) ¢ | by, and X2 | b X% since by X2 = 1920 (X72),

By commutativity, the remaining cases also hold. O]

Let A be an integral domain and S a multiplicative subset of A. For o € I', note
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that the divisors of X* in R = A + Ag[I™] are the elements of S and the elements
uX”?, where u is a unit in Ag and 3 < «, 8 € I'. On the other hand, as we shall
see in a general case (Lemma , one can check that if X is gr-primal in R,
then uX® is gr-primal in R for every unit u in Ag such that uX® € R. Thus by

Propositions |3.2.1) and |3.2.4] and Lemma [3.3.12 we get:

Corollary 3.2.5. Let A be an integral domain, S a multiplicative subset of A, and
a a nonzero element of I'. Let R = A+ Ag[I™*], then the following statements are

equivalent:
(i) X* is completely gr-primal in R;
(ii) « is completely primal in I' and S consists of primal elements of A.

As a consequence of the above results, we characterize the gr-pre-Schreier prop-

erty in A 4+ Ag[I™*] domains graded naturally by I

Theorem 3.2.6. Let A be an integral domain and S a multiplicative subset of A.

The following statements are equivalent:
(i) R= A+ Ag[I'™*] is gr-pre-Schreier;
(ii) A and I' are pre-Schreier.

Proof. Let S be the saturation of S in A. Then Ag = Ag, so we may assume that
S is saturated.

(i)=(ii). This follows from Propositions [3.2.1] and |3.2.4]

(ii)=-(i). We use Proposition We have Rg = Ag|[I'] is gr—pre—Schreier (cf.
Proposition . On the other hand, by Proposition , the elements of S are
gr-primal in R. Hence R is gr—pre—Schreier. O

By Proposition and Theorem [3.2.6], we get our main results of this section.
This recovers the case of A+ X Ag[X]| domains [19] 20].

37



Theorem 3.2.7. Let A be an integral domain and S a multiplicative subset of A.

The following statements are equivalent:
(i) R= A+ Ag[I™] is pre-Schreier;
(ii) A is pre-Schreier and both Ag and I" are Schreier.

Corollary 3.2.8. Let A be an integral domain and S a multiplicative subset of A.

The following statements are equivalent:
(i) R= A+ Ag[I™] is Schreier;
(ii) A and I' are Schreier.

FExample 3.2.9. Let A be a pre—Schreier domain which is not Schreier, see for in-
stance, [37]. Let I" be a Schreier monoid (e.g., I' = Z% a GCD monoid.) Then
by the above results, A + K[I'*], K the quotient field of A, is an almost normal

pre—Schreier domain which is not Schreier.

3.3 The general case

In this section, A C B is an extension of integral domains, S = U(B) N A, and I is
a commutative, additive, cancellative torsion-free monoid such that I'N—1" = {0}.
We next investigate the Schreier property in the general case of A+ B[I™*] domains.
For, we study the (completely) gr—primal elements in R = A+ B[I™*] graded naturally
by I'.

The following proposition characterizes gr-primal constant elements (elements of
A)in R = A+ B[I'"].

Proposition 3.3.1. Let A C B be an extension of integral domains. Let R =
A+ B[I'™*] and 0 # a € A. The following statements are equivalent:

(1) a is gr—primal in R;

(2) (i) a is primal in A and in B;

(ii) For every d € A such that d | a, say a = dd' for some d' € A, whenever
db € A for some b € B, there exists 0 # ¢ € B such that cd, ¢ d’',c7tb €
A.

)
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(iii) Whenever a = biby for some by,by € B, there exists u € U(B) such that
blu, b2u_1 < A.

Proof. (1)=-(2). Assume that @ is gr-primal in R. (i) is clear. To prove (ii), let
d,d € A such that « = dd' and db € A, b € B. So a | (db)(d'X?*), a € I'*. Then,
there exist a;, as € A such that a = ajas with a; | dband as | X in R. Let a} € A
and aj € B such that db = a;a| and d’ = asa)y,. Then b = a}a}. One can easily check
that ¢ = af, satisfies the desired conditions.
For (iii), let b1,b € B such that a = biby. In R, we have a | (b;X)(baX?),
o € I'*. Since a is gr—primal in R, there exist a;,as € A such that a = aqao;
a; | b1 X and ag | bo X in R. So by = aib] and by = ayb, for some b},0, € B.
Then biby = ajasbi b, implies a = abb), so b, = 1. Hence by, b, € U(B) with
bib, = a; € A and byb| = ay € A.

(2)=(1). Assume that the conditions in (2) hold. Let by,bo € B\{0} and
B, B2 € I' such that a | (by X?)(b,X"?). To prove the gr-primality of a, we consider

the following cases.

Case 1: (B # 0 and [y # 0.

We have a | (b; XP1)(byX"?), then a | biby in B. As a is primal in B, there exist
¢1,02 € B such that a = ¢yc9, with ¢; | by and ¢ | by in B. Since (iii) holds and
a = cicy € A, we can choose ¢; and ¢y in A with ¢; | by and ¢y | by in B. Hence
c1 | biXPrand ¢y | b X2 in R.

Case 2: g1 =00r 3o =0

If 8y = By =0, then b;,by € A and a | b1be in A. Since a is primal in A, we are
done.
Suppose that 3; # 0 and S, = 0. In this case, a | (byX")by with by € A. Then
a | biby in B. Since a is primal in B, there exist a1, as € B such that a = ajas, a1 | by
and as | by in B. Again by (iii), a; and as can be chosen in A. Let b; = a;a} and
by = aqaly, for some af, ay € B. Now, apply (ii) for d = as, d = a; and b = a}, we get
¢ € B such that cay, ¢ tay, c7td), € A. Write a = (¢71ay)(cay), also by = (¢7tay)(ca})
and by = (cay)(c™tah). Thus a = cicz, ¢ = ¢ Lay, ¢y = cay € A, with ¢; | b X?' and
¢a | by in R.
By commutativity, the case f; = 0 and (35 # 0 is similar. O

As a consequence of the previous proposition, we next characterize completely

gr-primal constant element in R = A + B[I™*].
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Definition 3.3.2. Let A C B be an extension of integral domains and a € A. We
say that a is A-completely primal in B if every d € A such that d | a in A, d is

primal in B.

Corollary 3.3.3. Let A C B be an extension of integral domains and S = U(B)NA.
Let R= A+ B[I'*] and 0 # a € A. The following statements are equivalent:

(1) a is completely gr-primal in R;

(2) (i) a is completely primal in A and A-completely primal in B;

(ii) For every o’ € A such that a' | a, whenever a'b € A for some b € B, there
exists t € S such that t~1d’,th € A;

(iii) For every o' € A such that @’ | a in A, whenever a’ = biby for some
b1, by € B, there exists u € U(B) such that byu,byu™! € A.

Proof. This follows from Proposition [3.3.1] For (1)=-(2) (ii), remark that o’ is gr—
primal in R and apply Proposition [3.3.1] (2) (ii) for ' with d = o’ and @’ = 1. Then
we get 0 # ¢ € B such that cd,c7'd’,c7'b€ A. Soc™' € A. Hencet = ¢! € S and
t~la' th € A. O

The next result gives necessary and sufficient conditions for X, a € I'*, to be

gr-primal in A+ B[I'*]. We start with the following lemma which recovers the case
of A+ X B[X] domains [19].

Recall that a monoid is called antimatter if it does not contain any atoms. The
additive monoid of nonnegative rationals is an antimatter monoid. For examples of

non antimatter monoids, consider the monoids Z, n > 1 an integer.

Lemma 3.3.4. Let A C B be an extension of integral domains and R = A+ B[I™].
Suppose that I' is not an antimatter monoid and let o be an atom of I'. If X< is
gr-primal in R, then B = Ag where S = U(B) N A.

Proof. Assume that X is gr-primal in R and let b € B. Then X | (bX%)(bX®).
Hence there exist g,h € R such that X® = gh, g | bX* and h | bX*. Since « is
an atom, we may assume that ¢ = a € A and h = v/ X for some v/ € B. Then
X = abl/ X, with ¥YX* | bX® Thus 1 = ab/, so a € S. Let a’ € A such that
bX* =da (b'X?). Then, b =a'bl =d'a™! € Ag, so B C Ag. Hence B = Ag. O
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Corollary 3.3.5 (cf. [20, Theorem 2.7 and Corollary 2.9]). Let A C B be an
extension of integral domains, S = U(B)N A, and R = A+ B[I'*]. Suppose that
I' is not an antimatter monoid. Then R is a pre-Schreier domain (resp., Schreier
domain) if and only if A is pre-Schreier, B = Ag, and both Ag and I are Schreier
(resp., B = Ag and both A and I" are Schreier).

Proof. This follows from Lemma [3.3.4] Theorem and Corollary [3.2.8 O

The characterization of the gr-primality of X®, o € I'*, in A + B[] domains
depends on whether B is a quotient ring of A or not. Note that B is a quotient ring
of A if and only if B = Ag, where S = U(B) N A. The case where B is a quotient
ring of A was studied in Section 3.2, we next focus on the case B # Ag, S = U(B)NA.

To state our next results we need some definitions and notations.

Definition 3.3.6. Let A C B be an extension of integral domains and S = U(B)NA.
We say that the extension A C B is A-inert if whenever ab € A for some nonzero
elements a € A, b € B, there exists t € S such that at™!, bt € A.

Definition 3.3.7. Let A C B be an extension of integral domains. We say that B
is associate to A if every element of B is associate to an element of A. That is, for
every b € B, there exists u € U(B) and an element a € A such that b = ua.

Remark 3.3.8. (1) Let A C B be an extension of rings with B = Ag, where
S =U(B)N A. Then, one can check that, the extension A C Ag is A-inert if
and only if S is good, and in this case A C Ag is also inert.

(2) For a domain A every quotient ring of A is associate to A. For an example
of an associate extension which is not a quotient ring, let A be an integral
domain and K a field strictly containing the quotient field of A. Let T be a
domain of the form T" = K + I, where [ is an ideal of T" such that /N A = {0}.
Then the classical pullback R = A+ [ is a subring of T" with T associate to R.

Let o« € I'*. Recall that « is called reducible in I' if &« = «a; + a9 for some
a1, an € I'™. The element a will be called completely reducible if every divisor of «
is reducible. We say that « is I'-lower directed (resp., completely I'-lower directed)
if for each 8 € I'*, « (resp., every nonzero divisor of « in I") and [ have a common
divisor in I'™*. Finally, the monoid I" will be called lower directed if every two ele-

ments of 1™ have a common divisor in ™.
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Lemma 3.3.9. Let A C B be an extension of integral domains and let o € I™ such
that X* is gr-primal in A+ B[I™*]. Then:

(1) Either « is completely reducible or B is associate to A.
(2) Either o is completely I'~lower directed or B is associate to A.

Proof. (1) Assume that there exits an atom v < «. Then o = v+~ for some 7' € I".
Let 0 # b € B. Then X | (bX7)(bX®). Since X is gr-primal, X = (b; X ') (b X*?)
for some by, by € B and o, a9 € 1", with by X | XY and by X*? | bX®. Then a; < 7.
Soa; =0o0r a; =17.

If oy =0, then b; € A and oy = . Hence b = aby for some a € A, with biby = 1,
and we are done in this case.

If oy = 7, clearly b = a’b; for some a’ € A. Hence, also in this case b is associate to
an element of A.

(2) Assume that « is not completely I'-lower directed. Let v < « such that + is
prime to some § € I'*. Let 0 #£ b € B and «' € I" such that « = v ++’. Then X7 |
(bXM)X? implies X | (bX7) X, Since X is gr-primal, X® = (b X1)(hyX*?)
for some by, by € B and ay, s € ', with by X | bX7 and by X2 | X' We have
a=o1t+ay=v+7,s0a—v =v—a; € I', since by X* | bX"7. Thus ay — v/
is a common divisor of v and . So ay =4/ and «; = . Now, b X7 | bX" implies
b = bya for some a € A, with b1by = 1. Hence B is associate to A. O

Proposition 3.3.10. Let A C B be an extension of integral domains such that B
is not a quotient ring of A. Let S=U(B)NA and o € I'*. Then X® is gr—primal
in R= A+ B[] if and only if the following conditions hold:

(a) « is a reducible primal element of I';

(b) « is I'-lower directed;

(c) Fither a is completely reducible or B is associate to A;

(d) FEither « is completely I'-lower directed or B is associate to A;
(e) The extension A C B is inert and A—inert.

Proof. (=): Assume that X“ is gr—primal in R.
(a) Clearly, « is primal in ", and by Lemma [3.3.4] « is reducible.
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(b) Suppose that a is not I'-lower directed. Then there exists § € ['* which
is prime to a in I'. Let 0 # b € B. Then X* | (bX%)X”. Since X° is gr-
primal, X = (b; X*1)(byX*?) for some by, by € B and a1, a3 € I', b1 X* | bX* and
by X | X#. Thus ay is a common divisor of « and /3, so ap = 0 and o = ;. Hence
X = (01 X )by, with by € A. Note that by € S since bjby = 1. Now, b = byl for
some b, € A, so b= b,'b, € Ag. Hence B = Ag, a contradiction.

(¢)~(d) This is Lemma [3.3.9]

(e) To prove that A C B is an inert extension, let by, by be nonzero elements
of B such that b;by € A. Since « is reducible, then o = 3 4+ 85 with §; € I'* for
i =1,2. So X | (b XP)(byX"). As X is gr-primal, X® = (c; X)(caX*?) for
some ¢, ¢ € B and ag, a0 € I', 1 X | 0, X5t and ¢ X9 | by X P2,

Now a = a1 + ag = [ + [ with a; < §;, for 1 = 1,2, hence o; = 5;, i = 1,2.
This implies b; X' = a;(c; X"1) and by X = ay(c, X?2) for some ay,a; € A. Thus
b1 = a;cq and by = agce with ¢ico = 1. Hence A C B is an inert extension.

It remains to show that the extension A C B is A-inert. For, let « € A and b € B
be nonzero elements such that ab € A. Then X | a(bX®) in R. So X = t(b'X?)
for somet € Aand ¥’ € B, t | a and ¥ X* | bX* in R. We have tt/ = 1,s0t € S.
Clearly, at™' € A. Moreover, t71 X | bX* in R implies that bt € A. Hence, the
extension A C B is A-inert.

(«<): Suppose that X< | (byXP1)(byX?2) for some by,b, € B* and 31,5, € I
Then a < By + f5. Thus a = ay + s for some aj, a0 € ', a; < [ and as < fs.

We have many cases.

Case 1: a1 < 1 and as < B

Then X = X“ X X | b X" and X2 | X",
Case 2: a3 =1 #0 and as < B9

2.1 Suppose that B is associate to A.

Assume that ay # 0, and let a; € A such that by = wja; for some
u; € U(B). Then X = (u; X°)(u;'X*?) with w1 X | b, X% and
uy X2 | by X P2,

We next assume that as, = 0. Since « is ['-lower directed, there exists
~v € I'* such that v < o and v < fs.

(i) If v # a, let ay € A such that by = usas, for some uy € U(B). Then
X = (uz ' X (ug X7), with uy ' X7 | b X5 and us X7 | by X%,

43



Case 3:

Case 4:

Case 5:

(ii) Suppose that v = «. Since « is reducible, then o = y; 4 v, for some
0<y <aand 0 <7 < a. Thus X = X" X" with X7 | b X" and
X2 | by X P2,
2.2 Assume that B is not associate to A.

Since ap < [y, there exists ai, € I'* such that £y = ag + o). By (d), there
exists v € ™ such that v < ) and v < 5. So f; = v + 7 for some
v € I'. Moreover, by (c) 7 is reducible since v < a. Then v = 71 + s,
for some 1,72 € I'™*. Set ; = 71 + 7/ and 05 = 73 + 3. One can easily
check that §; < 8, and Jy < 3. Hence X = X% X% X% | by X5 and
X2 | by X P2,

ap =1 =0 and ay < By
Consider the trivial factorization X% = 1.X% = 1.X°2,

a; =B #0and ay = B2 # 0

Note that X | (b;XP)(byX72) implies bjby € A. Since A C B is inert,
there exists u € U(B) such that bju,byu™! € A. So X* = (u1XP)(uX?2),
u XA | b XP and uXP2 | by X2

Oélzﬁlzoanda2:52

We have X | by (b, X"?), so biby € A with b; € A. Since the extension A C B
is A-inert, there exists t € S such that byt~ byt € A. Hence X = t(t71X")
such that ¢ | by and 71X | b, X"? in R.

Since our rings are commutative, the other cases hold. Finally, X“ is gr-primal.

[]

As a corollary of Proposition [3.3.10, we next characterize when X%, o € I', is

completely gr-primal in A + B[I™*]. For this, we need the following lemmas.

Lemma 3.3.11. Let A C B be an extension of domains and S = U(B) N A. Then
a € S is gr-primal in A + B[] if and only if a is primal in A.

Proof. Clearly, if a is gr-primal in A + B[I™], then a is primal in A. Conversely,
assume that a is primal in A. Let b;,bo € B* and (1,8, € I such that a |
(b1 XP1)(byXP2). If B # 0, for the gr-primality of a, we consider the trivial fac-
torization a = a.1. The case [y # 0 is similar. Suppose that 5, = S5 = 0. Then

bi,be € A* and a | biby. Thus, also in this case, we are done by using the primality
of a in A. [
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Lemma 3.3.12. Let A C B be an extension of domains and S = U(B) N A. Let
a € I' such that X* is gr-primal in A+ B[I™*]. Then uX® is gr-primal in A+ B[I"™]
for every u € U(B).

Proof. Let u € U(B) such that uX® | (bjX?)(byX??), where by,by € B* and
B1, B2 € I'. We consider the following cases:

Case 1:

Case 2:

Case 3 :

B1# 0 and By # 0

Then X< | (u=th; XP1)(byXP2) and X | (b; X)) (u"1h, X72). Since X* is gr-
primal, then X = (¢1; X*).(c12X*?) = (ca1. X*?").(c22X*??), where ¢;; € B,
a; €, 0,5 € {1,2}, with ¢;; X% | (u='b;) X% if i = j, and ¢;; X% | b; X5 if
i # j. If aqp # 0, we get the factorization uX* = (uc;; X*).(c12X*2). Sim-

ilarly, if agg # 0, we consider the factorization uX® = (21 X *!).(ucon X *?2).

We next suppose that ay;; = ags = 0. Then a = a9 = ag;. We consider
two cases. (i) Assume that B = Ag. Set u = ¢ for some a € A and s € §.
Thus uX® = (acip).(22X?). One can easily check that aci; | 5 X? and
g2 X | hyX®. (i) If B # Ag, by Proposition B.3.10] a is reducible. Then
there exist ai,ay € '™ such that o = «a; + ay. Note that, for i = 1,2,
a; < a < B Thus uX® = (uX). X% yX* | b X% and X2 | by X",

Bi=0

Then 3y # 0 and X | by(u"'b,X?). Since X® is gr-primal, then X =
c1.(c2X?), where ¢; € A and ¢, € B, with ¢; | by and ¢, X | u='b, X2, Thus
uX® = c;.(uca X®), ¢ | by and ucy X | by X2,

B2 =0

This case is similar to the Case 2.

]

Let A C B be an extension of integral domains and S = U(B) N A. The divisors
of X* a € I'*, in R = A+ B[I'*] are the elements of S and terms of the form

uX?,

where v is a unit in B and § € I', § < a. Thus, from Proposition |3.3.10| and

Lemmas [3.3.11] and [3.3.12 we get the following proposition:

Proposition 3.3.13. Let A C B be an extension of integral domains and S =
U(B)N A such that B # As. Let o € I'*, the following statements are equivalent:
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(i) X is completely gr-primal in A + B[I™*|;

(ii) « is a completely, reducible, I'-lower directed, primal element of I, S consists

of primal elements of A, and the extension A C B is inert and A—inert.

Remark 3.3.14. 1) Let A C B be an extension of domains such that B is not
a quotient ring of A. As an application of the above results, in A + X B[X]
domains, X", n > 2 an integer, is gr-primal if and only if B is associate to A

and the extension A C B is inert and A-inert, see [19, Theorem 1.5].

2) Let A C B be an extension of domains such that B is not associate to A. If
in the monoid I, there exists an a which has an atom as a divisor, then X

is never (gr-) primal in A + B[I™].

3) Consider the construction R = Z + XR[X]. Since the integer 1 is an atom in
the additive monoid Z,, X is not gr-primal. However, X? is gr-primal, but

not completely gr-primal, see [19, Examples 1.7(ii)].

Theorem 3.3.15. Let A C B be an extension of integral domains such that B is

not a quotient ring of A. The following statements are equivalent:
(i) R= A+ BI[I'*] is gr—pre-Schreier;

(ii) A is pre-Schreier, I' is an antimatter lower directed pre-Schreier monoid, B

18 pre=Schreier and the extension A C B is inert and A—inert.

Proof. (i)=-(ii). Almost all of the results in (ii) follow from Propositions and
We need only to show that B is pre-Schreier. Consider the multiplicative
set of R, T'= {X* o € I'}. Then Ry = BI[(I')] is gr-pre-Schreier. Hence B is
pre-Schreier (cf. Proposition [2.3.5)).

(ii)=-(i). We use the Nagata type theorem for gr-pre-Schreier domains (cf. Propo-
sition . Consider the saturated multiplicative set of R, T = S U {uX*,u €
U(B),a € I'*}, where S = U(B)NA. By Propositions |3.3.1jand |3.3.10]and Lemma
3.3.12) T' consists of gr-primal elements of R. The quotient ring Ry = B[(I')] is

gr—pre—Schreier. Hence by Proposition [3.1.3] R is gr—pre—Schreier. n

Theorem 3.3.16. Let A C B be an extension of integral domains such that B is

not a quotient ring of A. The following statements are equivalent:
(i) R= A+ BI[I'*| is pre-Schreier;
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(ii) A is pre-Schreier, I' is an antimatter lower directed Schreier monoid, B is

Schreier and the extension A C B is inert and A—inert.
Proof. This follows from Proposition and Theorem [3.3.15] O

Corollary 3.3.17. Let A C B be an extension of integral domains such that B is

not a quotient ring of A. The following statements are equivalent:
(i) R= A+ BI[I*] is Schreier;

(ii) A and B are Schreier with A integrally closed in B, I is an antimatter lower

directed Schreier monoid and the extension A C B is inert and A—inert.

Corollary 3.3.18. Let A C B be an extension of integral domains such that B is
an overring of A which is not a quotient ring of A. The following statements are

equivalent:
(i) R = A+ B[I'*] is Schreier;

(ii) A and B are Schreier, I' is an antimatter lower directed Schreier monoid and

the extension A C B is inert and A—inert.

Example 3.3.19. 1) Let K C L be an extension of fields. Then R = K + L[I™*] is
pre—Schreier if, and only if, I" is an antimatter lower directed Schreier monoid.

For an illustration, consider the additive monoid I" = Q...

2) Let I' = {(s,t) € Q% s,t > 0}U{(0,0)} with the relation as in Remark [3.1.2]
Then I is an antimatter lower directed Schreier monoid. Consider the domain

R =7+ Z[Y]|[I'*], Y an indeterminate. By the above results, R is a Schreier

domain. However, R is not a GCD domain [31].
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Chapter 4

Some factorization properties in
A+ B|I'*] domains

4.0 Introduction

We adopt the following definitions and notation. A monoid means a commutative
cancellative torsion-free monoid. Let A C B be an extension of integral domains
and I' a commutative, additive, cancellative torsion-free monoid. Let B[I'] be the
semigroup ring of I" over B and set I = I"\ {0}. Suppose that I' N —I" = {0}.
Then R = A + B[[™] is a subring of B[I']. Note that R can be obtained as a
pullback and B[I™] is a common ideal of R and B[I']. If ' —1" # {0} or A = B,
the ring R coincides with B[I']. If I' = Z,, then R = A+ XB[X], and if I' = Z",
then R = A+ (Xy,...,X,)B[X1,...,X,]. The monoid I" admits a total order <
compatible with its semigroup operation [25 Corollary 3.4], and since I'N—1" = {0},
we may assume that « = 0 for all & € I'. Hence each f € R is uniquely expressible
in the form f =a+ b6 X* + -+ 4+ 0, X, where a € A, b; € B and «; € [, with
a1 < - < . If b, # 0, it is called the leading coefficient of f and «,, the degree.
The construction A+ B[] has been studied by many authors and has proven to be
useful in constructing examples and counterexamples in many areas of commutative
ring theory [17, 21} 31, 32].

Let S denote a multiplicative monoid and U(S) the set of units of S. We will
freely use results about multiplicative ideal theory in semigroups analogues of those
of commutative rings. For more details, the reader can refer to [25]. For s,t € S,
s |tift =srfor some r € S. If 51,59 € S with s1 | s5 and s | 51, then sy = us; for

u € U(S), in which case we say that s; and sy are associate. An irreducible element
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(or atom) of S is an element s € S such that if s = ¢tr in S, then either ¢ or r is
a unit of S. The monoid S is called atomic if each nonunit of S is a product of a
finite number of irreducible elements of S. We say that S satisfies the ascending
chain condition on principal ideals (ACCP) if there does not exist an infinite strictly
ascending chain of principal ideals of S. The monoid S is a bounded factorization
monoid (BFM) if S is atomic and for each element there is a bound on the length
of factorizations into products of atoms.

For a domain D, the set of its nonzero elements, units and nonzero nonunits
are denoted by D*, U(D) and D¥, respectively. If the multiplicative monoid D* is
atomic (resp., satisfies the ACCP, BFM), the domain D is called an atomic domain
(resp., satisfies the ACCP, BFD). Atomic domains where defined in [I4] and BFDs
were introduced in [3]. For a monoid S, unique factorization property (UF) and the

properties BF, ACCP, and atomic satisfy the implications:
UF = BF = ACCP = Atomic.

Examples given in [3] for domains show that the reverse of these implications is not
possible. For more details on these factorization properties, we refer the reader to
[3] for domains and to [28] for monoids.

The above factorization properties for I' = Z, i.e., R = A+ X B[X], were inten-
sively studied by several authors, see for instance, [6, [12]. In [30], Kim investigated
these factorization concepts in the monoid domains. The purpose of this chapter
is to determine necessary and sufficient conditions for the domain R = A + B[I™*],
where I is an additive monoid such that I' N —I" = {0}, to be atomic, satisfy
the ACCP- or BF-property. The results obtained extend and recover the case of
A+ X B[X] domains.

General references for any undefined terminology or notation are |24 25].

4.1 ACCP condition

The ACCP property for A + X B[X]| domains was studied in [6, 12, 20]. In [20]
Proposition 1.2], the authors showed that A + X B[X] satisfies the ACCP if and
only if (),~;a1---a,B = (0) for each infinite sequence (a,),>1 of nonunits of A.
This result was extended to A + B [I™*] domains in [32, Theorem 3.4], where it was
showed that R = A + B[I'*] satisfies the ACCP if and only if I" satisfies the ACCP
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and for each infinite sequence (a,),>1 of nonunits of A

ﬂ&l---@nB: (0).

n>1
In the following, we give a characterization of the ACCP property for A+ B[] in
the spirit of [6, Proposition 1.1].

Let A C B be an extension of integral domains. We say that B satisfies the
A-ACCP property if every chain of cyclic A-submodules of B terminates. Note that
the ACCP for B coincides with the B-ACCP. We have the following lemma whose

proof is similar to |20, Remark 1.1].

Lemma 4.1.1. Let A C B be an extension of integral domains. Then the following

statements are equivalent:
(i) B satisfies the A-ACCP condition.

(ii) For every infinite sequence (an)n>1 of nonunits of A,

ma1~~anB: (0).

n>1

In the following proposition, the equivalence (i)<(ii) extends [0, Proposition 1.1]
and the equivalence (i)« (iii) is [32, Theorem 3.4].

Proposition 4.1.2. Let A C B be an extension of integral domains and I' an

additive monoid such that I'0—I" = {0}. The following statements are equivalent:
(i) R= A+ B[I'"] satisfies the ACCP.
(i) I" satisfies the ACCP and B satisfies the A-ACCP condition.

(iii) I" satisfies the ACCP and for every infinite sequence (a,)n>1 of nonunits of

A,
ﬂal---anB = (0).
n>1
Proof. (i)=-(ii). Suppose that R satisfies the ACCP and let bA C by A C --- with
each b, € B. For a € I'*, we have by X*R C boX“R C --- is a chain of principal
ideal of R. Since R satisfies the ACCP, this chain terminates. Hence the chain
{bnA},>1 terminates. Therefore, B satisfies the A-ACCP condition. By a similar
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argument, one can easily show that I satisfies the ACCP.

(ii)=(i). Assume that (ii) holds. Let fiR C foR C --- be an ascending chain
of principal ideals of R. For each n > 1, let «, be the degree of f,,. Then () C
(ag) C -+ is an ascending chain of principal ideals of I" which satisfies the ACCP.
Moreover, since I' N —I" = {0}, there exists k& > 1 such that «,, = a4 for every
n > k. Then we may assume that all f,, have the same degree.
On the other hand, let b, be the leading coefficient of f,,, so bjA C byA C --- is
an ascending chain which terminates by hypothesis. Hence there exists £ > 1 such
that 22— € U(A) for all n > k. Consequently, f,,1R = f,R for all n > k.

brt1

(ii)<(iil). This follows from Lemma [.1.1] O

Corollary 4.1.3. Let X be a set of indeterminates over B. Then A + XB[X]
satisfies the ACCP if and only if B satisfies the A-ACCP.

Corollary 4.1.4. Let B be an integral domain and I' an additive monoid such that
I'n—I"= {0}. Then BII'] satisfies the ACCP if and only if I' satisfies the ACCP
and B satisfies the ACCP.

Remark 4.1.5. (i) If R satisfies the ACCP, then by Proposition [4.1.2](ii) one can
easily check that U(B) N A =U(A).

(ii) Assume that U(B) N A = U(A). If B satisfies the ACCP, then A + B[I™]
satisfies the ACCP if and only if I" satisfies the ACCP. But A + B[I™*] may
satisfy the ACCP and B not. For example, by Proposition if Aisa
field and I” satisfies the ACCP, then A + B[] satisfies the ACCP for every
extension rings A C B. Note that in this case the condition U(B)NA = U(A)

is satisfied.

(iii) Corollary is obtained in [26], where the authors left open the difficult

question of when an arbitrary semigroup ring satisfies the ACCP.

4.2 Atomicity condition

In this section, we study the atomic property in A + B[I"*] domains.

Let S denote a multiplicative monoid and X C S. Let CDg(X) = {s € S,Vz €
X,s | x}, the set of all common divisors of the elements of X. An element ¢ €
CDg(X) is called a maximal common divisor (MCD) of X in S if whenever d €
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CDg(X) and ¢ | d, then ¢ and d are associate. We denote by MCDg(X) the set
of all MCDs of X in S (resp. the multiplicative monoid S*, for a domain S). A
monoid (resp., a domain) S is called an MCD monoid (resp., MCD domain) if
MCDg(X) # 0 for every finite set X C S (resp., X C S*). Note that the ACCP
property implies the M C'D property. MCD domains were studied in [40)].

Let A C B be an extension of integral domains and X C B*. An element a € A
is called an A-MCD of X if a € CDg«(X) and whenever ' €CDp-(X) N A and
a | a' in A, then a and @’ are associate in A. We denote by A-MCD(X) the set of all
A-MCDs of X. We say that B is an A-MCD domain if A-MCD(X) # 0 for every
finite set X C B*.

For a monoid S, the rank of S, denoted by rank(S), is the rank of the quotient

group (.5).

Theorem 4.2.1. Let A C B be an extension of integral domains and I' an additive
monoid such that ' —I" = {0}.

Assume that I' satisfies the ACCP and rank(I") > 2. Then R = A+ B[] is atomic
if and only if A is atomic, U(B)NA=U(A) and B is an A-MCD-domain.

Proof. For the “only if”condition. Clearly an element a € A# is an atom of A if
and only if it is an atom of R. So A is atomic. Next, let a be an atom of I'. Then
X*=ay- -a,.(bX?*) with ay,...,a, € A are atoms and bX® is irreducible in R, since
R is atomic. Now, let a € U(B) N A, then bX* = a((a"'b)X*), so a € U(A). Hence
U(B)NA =U(A). We next show that B is an A-MCD domain. Let by, ...,b, € B*.
To show that A-MCD(by,...,b,) # 0, we consider two cases.
Case 1: I has finitely many atoms up to associates.
Let v1,...,7%, k& > 2, be the (non-associate) atoms of I'. Then I' = Z vy +
-+« 4+ Zik, a finitely generated monoid. Note that the quotient group (I) is a
finitely generated free abelian group, so (I') = Z™ for some integer m > 2. Since
rank(I") > 2, there exist two non-associate atoms ay, s € I'" which are Z-linearly
independent. In addition, as elements of Z™, we may assume that the gcd of the
components of a;, i = 1,2, is 1. By using the Hermite Normal form for matrices over
the integers, {1, as} can be extended into a Z-basis {ay, g, ..., an} of (I'). Now,
let V; = X% i=1,...,m, and denote by K the quotient field of B. Therefore,
K[ =K[Z™ = K[Y1,..., Y, Yy 5 Y.

m

Let f = b)Yy 4+ +b,1 Y ' 4b,Ys. Then f € Ris irreducible in K[Y1,...,Y,],
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and hence in K[(I)]. Since R is atomic, we have
f=ar-a(arYi+ -+ eV 4 e Ya),

where aq,...,a, € A are atoms in A, and ¢y, ..., ¢, € B with no nontrivial common
factors belonging to A. Then a = ay - - - a, € A-MCD(by,...,b,).
Case 2: I' has infinitely many non-associate atoms.
Let v, ...,7v, be n non-associate atoms of I', and let f = b X" +---4b,X". Since
the exponents of f are atoms, f € R has no non-constant factor in R. As above, we
have
f=a( X"+ + ¢, X™),

with @ € A, and ¢4,...,¢, € B with no common factors in A. Thus, also A-
MCD(by, . ..,b,) # 0 in this case.

For the “if” condition, note that since U(B) N A = U(A), a € I' is an atom in [ if
and only if X¢ is an atom in R. Now, let f = ag + b; X% +--- 4+ b, X € R* with
0 <a; < < a, Letaec A-MCD(ag,by,...,b,) and @ € MCDp(aq,...,ap).
Then f = aX?f;, where f = a if ag = 0, and 3 = 0 otherwise. Note that since A
and I" are atomic, aX? is a product of atoms in R. We next show that if f; € R¥,
it is also a product of finitely many atoms. Note that by the M CD property, f1 has
no nontrivial factor of the form ¢X? with ¢ € A% or v € I'\ {0}. Assume that f; is
reducible. A nontrivial factorization of f; gives rise to a strictly decreasing sequence

0<: |- v |m of divisors of § = deg(f1). Then
Mm+ICyp+I"C- -

is a chain of principal ideals in I that terminates. Since I'N—I" = {0}, there exists
an integer ko such that v, = g, for every & > ko. It follows that there exists a
factorization of f; with a maximal number of nonunit factors, hence a factorization

into atoms, in R. Hence R is atomic. O

Corollary 4.2.2. Let X be a set of indeterminates over B with | X |> 2. Then
A+ X B[X] is atomic if and only if A is atomic, U(B)N A = U(A) and B is an
A-MCD domain.

Corollary 4.2.3. Let B be an integral domain and I" an additive monoid such that
I'n—I"= {0}. Assume that I' satisfies the ACCP and rank(I") > 2. Then B[I|
is atomic if and only if B is atomic and B is an MC D-domain.
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Remark 4.2.4. (i) Note that in the proof of the “if” condition of Theorem [4.2.1we
do not need the hypothesis rank(I") > 2. For instance, if A is atomic, U(B) N
A=U(A) and B is an A-MCD domain, then R = A + X B[X] is atomic (X
an indeterminate and I" = Z, ). However, the converse of this last statement

about A + X B[X] domains is an open problem even for a polynomial ring
A[X] (A= B), see [40].

(ii) In Corollary [£.2.3] if we drop the condition I" N —I" = {0}, things get worse:
Let I'=Q x Q and K a field. Clearly, the additive group I satisfies trivially
the ACCP and rank(I") = 2. But K[I'] is not atomic since it is a GCD domain
[25, Theorem 14.2] but does not satisfy the ACCP [25, Theorem 14.17].

Ezample 4.2.5. For the ACCP hypothesis for I" in Theorem [.2.1) note that if
A + B[I'™] is atomic, then [ is at least atomic. The following example shows that
if I" is an atomic monoid that does not satisfy the ACCP, Theorem does not
hold in general. Let p be a fixed prime number and (p,),>1 a strictly increasing
sequence of prime numbers. Consider the Puiseux monoid, see [16, Example 4.2],
I, = (p%pn | pn # p). By an elementary argument of divisibility, on can easily check
that I}, is atomic. The monoid I}, does not satisfy the ACCP since the chain of
principal ideals {# + I, },, does not terminate. Atomic domains that do not satisfy
the ACCP are hard to come by. The first such example is due to A. Grams [27].
Now, let I' = I, x I}, (rank(I") = 2) and K a field of characteristic p. Like I},
I' is an atomic monoid that does not satisfy the ACCP. By [16, Theorem 4.3], the

semigroup ring K[I'] is not atomic.

4.3 BF property

In this section, we investigate bounded factorization domains. Recall that, a multi-
plicative monoid S or a domain D (S = D*) has the BF-property if there is a length
function [ : S — Z. such that:

(i) I(s) = 0if and only if s € U(S), and
(ii) I(st) > I(s) +I(¢t) for all s,t € S.

For an extension of integral domains A C B, we say that B is a bounded factor-
ization domain with respect to A (A-BFD) if for each b € B#, there is a positive
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integer N4(b) such that whenever b = byb, - - - b, with each b; € B#, then at most
N4(b) of the b;’s are in A [6]. We say that [4 : B* — Z, is an A-length function if :

(i) 1a(b) = 0 if and only if b € U(B) or b has no nontrivial factors in A, and

(ii) la(bc) = 1a(D) + La(c) for all b,c € B*.

Note that if A = B, then [4 is a length function on A. Clearly, B is an A-BFD
if and only if B has an A-length function. Note that for the domain B, A-BFD
implies A-ACCP.

Theorem 4.3.1. Let A C B be an extension of integral domains and I' an additive

monoid such that ' —I"= {0}. The following statements are equivalent:

(i) R=A+ B[] is a BFD.

(ii) I"is a BFM, U(B)NA=U(A) and B is an A-BFD.
Proof. (i)=-(ii). Suppose that R is a BFD. Clearly, I" is a BFM, and hence has at
least one atom a. Also, U(B) N A = U(A) since R satisfies the ACCP. Let b € B*
with a factorization b = ajas - - - abibs - - - b, in B where each a; € B¥ N A and
b; € B#\ A. Then, this gives rise to a factorization bX* = (ajas - - - @y, ) (by - - - b, X?)
of m+ 1 nonunit factors of R. Since R is a BFD, there exists a positive integer N (b)
such that m < N(b). So B is an A-BFD.

(ii)=(i). Denote by [, the length function of I" and by [, the A-length function

of B. Let f =by+ b0 X +---+b,X% € Rwithbd, Z0and 0 < ay < -+ < a,.
Then I(f) = l4(by) + Ir(ay,) is a length function on R. So R is a BFD. O

Corollary 4.3.2. Let X be a set of indeterminates over B. Then A+ XB[X] is a
BFD if and only if U(B)N A =U(A) and B is an A-BFD.

Corollary 4.3.3. Let B be an integral domain and I' an additive monoid such that
I'n—I"= {0}. Then B[I'] is a BFD if and only if I' is a« BFM and B is a BFD.

Remark 4.3.4. (i) If B is a BFD, then B is an A-BFD. Thus, by Theorem [4.3.1]
R = A+ B[I'*] is a BFD if and only if U(B)N A = U(A) and I" is a BFM.
But if R is a BFD, B need not be a BFD. To see this, take A a field and I
a BFM, then R = A + B[I"] is a BFD for any extension of domains A C B
(Theorem [4.3.1)).

(ii) If the condition I'N —I" = {0} is not satisfied, Corollary does not hold.
For instance, take B = K, a field, and I' = Q. Then B and I satisfy trivially
the BF-property, but K[Q] is not even atomic [25, Theorems 14.2 and 14.17].
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