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In this thesis, we consider a nonlinear and multidimensional stochastic differential

mixed effects model, which enables the simultaneous representation of variability be-

tween experiments using mixed-effects approach, and the stochasticity in real pro-

cesses dynamics using stochastic differential equations; considered as stochastic enti-

ties and containing random effects. Nevertheless, coupled stochastic differential equa-

tions with random effects often inherit a poorly posed estimation problem, since tran-

sition densities of most real processes are unknown, making all statistical approaches

difficult and computationally expensive. Here, we propose a flexible and straight-

forward modelling framework to estimate the transition density using Fokker Planck

equation. Finally, simulations from the two-dimensional Ornstein–Uhlenbeck (OU)

process are addressed to evaluate the proposed methodology. Then, we assess the

performance of our approach to estimate the stochastic minimal model with three cou-

pled SDEs describing insulin-glucose kinetics, Such a stochastic approach for glucose-

insulin modelling has to our knowledge not yet been studied in literature.
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Chapter 1

General Introduction

1.1 Motivation

Motivation for the Statistical Methodology Research

An SDME model is established from the SDEs with the incorporation of random effects
and stochastic components driven by the Weiner process, which can be understood as
an extension of an ordinary differential equation model. For a deterministic differen-
tial equation model, the solution is a deterministic function, while the solution of an
SDE is a continuous stochastic process called the diffusion process, which is a continuous
time Markov process. The behaviour of a diffusion process is governed by its transition
density, that is in turn governed by the values of the parameters in the SDME model.
So, the inference on these parameters constitutes a central statistical interest around
the SDME models.

The nonlinear mixed effects model incorporating random effects has become an increasingly
popular choice for modeling real processes, due to its inherent incorporation of uncer-
tainty, allowing simultaneous representations of randomness in dynamics of real pro-
cesses and variability between experimental units. Therefore, it provides a powerful
modeling tool with immediate applications. However, statistical inference for SDME
models is not straightforward, since a closed form solution to many SDME models used
in practice is not known, except for a few cases, and then the transition density for most
others is not known. Moreover, in SDME models, explicit estimating equations for the
ML estimators can be found after solving the integral in the marginal likelihood func-
tion of the parameters given the random effects. However, in general it is not possible
to solve analytically and explicitly this integral.
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Motivation for the Applied Research

The applied case of the research in this thesis concerns the disease of diabetes, which
is affecting more and more people around the world. The World Health Organization
(WHO) estimates that, in 2019, diabetes affected more than 463 million people world-
wide , and that this number is presumably to increase to 578 million by 2030 and to
700 million by 2045. In 2005, around 1.1 million people died of diabetes. After can-
cer, injury and cardiovascular disease, diabetes is the fifth leading cause of death when
classified by cause of death, of which nearly 80% of deaths occur in low- and middle-
income countries. WHO predicts that deaths from diabetes will increase by more than
50% over the next ten years without urgent action. In addition, diabetes and its compli-
cations is one of the epidemics having a significant impact on the economics of health
systems and countries. Also, WHO estimates that over the next ten years, China will
lose 558 billion dollars of the value of its national income due to heart disease, stroke
and diabetes alone. Indeed, given the complexity of the disease, recourse to the tools
of applied mathematics is highly needed for the intervention and control of this epi-
demic, like the case of any other epidemic. Thus, models of dynamic systems are one
of the essential mathematical tools to be able to develop strategies, whether it is from
cell biology to pathophysiology, including pharmacology, chemistry, physics and engi-
neering, transplantation and patient management and health care. Here, we will focus
on classes of mechanistic models based on physiology; which is the minimal model
describing the key components of the system’s functionality, and which is able to mea-
sure the crucial processes of glucose metabolism and insulin control.

Earlier in the literature, the glucose-insulin kinetics described by the minimal model
has solely been modeled as a deterministic model with only measurement errors. How-
ever, we believe that the processes of glucose and insulin should be described by
stochastic differential equations, because in the deterministic version, they may not
comply to the actual processes that take place inside the body. Therefore, here, we
propose a stochastic version of the minimal model by adding stochastic components
to the processes. Furthermore, we combine both the glucose and insulin parts of the
minimal model to get a unified model, which is more physiologically sound but also
more complex and highly ill-posed estimation problem.

So, modeling the disease of diabetes using an SDE model incorporating random ef-
fects, could in fact allow a more succinct modeling of system dynamics and individual
deviation, with the advantage of estimating the metabolic portrait for an entire popu-
lation. Such a problem could be analysed using a stochastic differential mixed effects
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model.

1.2 Problem Statement

In statistical inference, the classical estimation procedure consists of maximizing the
likelihood of the sample. However, a closed-form expression of the likelihood function
for a stoachastic differential mixed effects model is rarely available, since the transition
densities of the process are rarely known. Hence, exact maximum likelihood (ML)
estimation is generally unrealizable, which is a problem often inherited in coupled
stochastic differential equations. The problem then is that estimating parameters in
SDME models is not straightforward, except for a few simple cases. In addition, the
more the dimension of the random effects increases, the more the difficulties increase,
both for the calculation of the transition density and for the integral of the density
given random effects in the marginal likelihood of the parameters.

In this thesis, we deal with the development of a generic estimation approach, precise
and achievable based on the ML estimation, which can be implemented in the absence
of a closed expression of the transition density. In addition, as the case study of this the-
sis concerns the metabolism of diabetes, coupling the dynamics of glucose and insulin
processes is more physiologically sound but also more complex and insoluble on the
statistical-computer level, in particular when using the population-based approach.

1.3 Applied mathematics and Pharmacokinetics

The contribution of applied mathematics to biology and medicine is now evident. In-
deed, the mathematical models in medicine concern very diverse subjects, for exam-
ple, they are widely used for the treatments of cancer, in order to integrate the bio-
logical complexity and to provide algorithmic tools to the physicians to optimize the
effectiveness of the anticancer treatments, while limiting their toxic effects. More pre-
cisely, statistics are an essential tool to validate the results of research in biology and
medicine, e.g. study of the genome, spatial structure of living molecules (DNA, pro-
teins), study of ecosystems, population genetics, phylogenetics, epidemiology, theory
of evolution,...etc, while making it possible to quantify the hypotheses previously as-
sumed. This is also the case for the current global situation regarding the corona virus,
we firmly believe that statistical tools will have great results to study the behaviour of
this pandemic in several dimensions: medical, economic, social and political, and that
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the mathematical modelling will bring great results to the management of this health
crisis by providing answers about the virus behaviour and its effects on the human
body.

Among mathematical modelling tools in natural science, we have the pharmacokinetic
(PK) model, which is built to predict the ADME phase: absorption (A), distribution
(D), metabolism (M) and excretion (E) of natural or synthetic chemicals in humans
or animals. Thus, pharmacokinetics (PK) presents a set of techniques which make it
possible to generate and analyse the time-concentration relationship following the ad-
ministration of a drug. The analysis of these relationships makes it possible to quantify
by parameters the different processes following the course of some injections in blood.
In this context, four methods of data analysis are generally used: 1) non-compartment
analysis, 2) individual compartment analysis, 3) population compartment analysis and
4) physiology-based pharmacokinetics.

The last three methods are based on a compartmental modeling approach, because
the characterization of ADME phases is done through a compartmental mathematical
model. For methods 2 and 3, these are simple models, with a generally low num-
ber of compartments. In addition, the PK models describe the organism in a more
mechanistic way, where each organ can be represented by one or more compartments.
The models can thus reach several hundred compartments. It is therefore necessary to
have more diversified data to identify the parameters. Thus, the differential equations
are then used to describe the dynamic relationships determined by the PK methods,
where the parameters model are estimated using appropriate statistical models. For
example, for the individual compartment analysis method, where the data are studied
on each individual, a statistical model is then added to describe variations in the value
of parameters in the whole population. So, in general, the need to determine both po-
sitional parameters (i.e. fixed effects) and dispersion parameters (i.e. random effects)
necessitates the use of nonlinear mixed effects models, see the following paragraphs.

Here, we focus on the individual compartment analysis method which is a modelling
technique widely used in biology. It has a lot of applications in pharmacokinetics,
metabolism, epidemiology and population dynamics, and which we will use later to
describe glucose-insulin kinetics in the human body after a glucose injection, in or-
der to formulate a suitable model for the metabolism of diabetes. Thus, compartmen-
tal model is the most complete model (Holz and Fahr 2001; Aarons 2005), it aims to
contribute to researches, development of new drugs, to the assessment of chemical
substance’s toxicity risks and to biology. It can be classified into mechanistic models,
which relate its parameters to physiological processes, but does not necessarily reflect
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all functional entities of the organism, it is also physiologically based on well-defined
and structured compartments interconnected by blood, biochemical and other lym-
phatics flows. As mechanistic model, it can be subdivided into compartments; desig-
nated as mammillary, where there is a central compartment interacting with a number
of peripheral compartments that surround it; or as catenary compartment model which
consists of a chain of interconnected compartments.

Moreover, in all areas, and there are many, where we can assess materials, the basic
element is the compartment. By compartment, we designate two types of abstraction:

- Consider a region of space limited by barriers and a physical magnitude which has a
property of homogeneity in this region.

- Or a substance or a physical quantity, without precise localization.

the compartment can therefore be something fictitious. For example, it can be a drug
present in the blood or in an organ, or in a given population of all individuals carrying
a particular pathogen. In the case of a drug administered orally, a distinction can be
made, depending on the case, between the stomach, intestine, blood, kidneys, etc.

1.3.1 Population approach

The population approach treats simultaneously a group of individuals instead of a
single individual by sharing information with all the entities in the population. This
approach makes it possible to estimate the metabolic portrait of the entire population
instead of individual metabolic portraits, which can prove very useful for studying
the spread of an epidemy between individuals, as well as it leads to have statistical
informations for each individual. In the literature, both Vicini and Cobelli 2001; Agbaje
et al. 2003 have treated the minimal model describing the diabetes disease using the
population approach, but only the kinetic glucose was taken into account in the model.

1.4 NonLinear Mixed Effects model

In some study contexts of certain phenomena, the experiment requires data on an en-
tire population and not only on a single individual to obtain complete information on
the phenomenon, as well as several repeated measurements of a quantitative variable
for each unit, in order to model correctly the progression and development of a dis-
ease or an economic or a financial aggregate. Thus, for each individual, many repeated
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measurements are taken at different points of time. This type of sampling is required
in various fields, especially in pharmacokinetic/pharmacodynamic (PK/PD) applica-
tions and in biomedical researches. Thus, this kind of modelling leads to describing
the common side of the phenomenon in a whole population and the specificity of each
individual in relation to this phenomenon, which is deduced from the observations
taken on each individual. It allows, therefore, to model the global behaviour of a phe-
nomenon for a group of units and also its dynamic side.

It is often reasonable to consider that responses follow the same model structure for
all experimental units, however, model parameters vary randomly among individu-
als. Therefore, there is an increasing popularity and an extreme need for mixed effects
models, where both random and fixed effects are incorporated into the model, in var-
ious research fields. So, the introduction of mixed effects model occurred in PK/PD
modeling, where we introduce fixed effects as common parameters for the whole pop-
ulation, and random parameters to model the specific behaviour of each unit having
the same overall behaviour as the population with individual variants. Thus, both
variations within and between groups are modeled, leading to a more precise estima-
tion of population parameters, which is recommended especially in PK/PD studies,
leading to considerable savings in both resources than human or animal discomfort.
The population-based approach is then necessary in PK/PD data, where data from
several subjects are considered simultaneously because it allows simultaneous estima-
tion between individuals which gives a more robust estimation of parameters that may
vary between groups depending on an underlying distribution.

In the theory, the stochastic differential equations (SDE)s have proved to be more
useful than deterministic differential equations (ODE)s to describe the dynamic side
of real processes in, e.g., the PK/PD phenomenon, finance studies (See: Brandt and
Santa-Clara 2002), and other processes in different fields (See: Lánskỳ, Lánská, and
Weiss 2004; Andersen and Højbjerre 2005; Ditlevsen and De Gaetano 2005b; Picchini,
Ditlevsen, and De Gaetano 2006a; Picchini, GAETANO, and Ditlevsen 2010; Ditlevsen
et al. 2007; Overgaard et al. 2007). In Choi and Rempala 2011, some examples of the ap-
plication of the SDEs in the biomedical field are treated by the author, as well as other
examples in pharmacokinetic field are discussed in Sheiner and Beal 1980; Sheiner and
Beal 1981; Donnet and Samson 2013.

However, statistical inference for such model is not an obvious procedure, especially
when the exact transition density of the process does not exist or cannot be available
or approximated in a closed form. Moreover, even when the exact density exists, other
constraints may occur which will not allows to get the exact estimators; when, for
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example, the integral of the likelihood function cannot be analytically solved or it is
complicated to obtain the gradient terms analytically; and the more the dimension
random effects increase the more the degree of difficulty increases also.

1.4.1 Random effects

The need to incorporate random effects in modeling is required more and more, partic-
ularly in PK/PD modelling, because of their ability to model total variation, splitting
it into its within- and between-individual components; and where responses of re-
peated measurements follow the same model form for all experimental subjects. But
model parameters vary randomly among individuals, which involves incorporating
random effects into the model. In other words, the fixed effects are used to describe
the common population behaviour, while the random effects are used to account for
the population variation on parameters for each individual. In general, it is of inter-
est to obtain not only individual parameters but also a quantitative description of the
parameter distribution across a population.

Since the population approach is increasingly used to analyse the PK/PD data, the
random effects are used to account for the population variation on parameters of each
individual in the population, these deviations can be explained in some way by dif-
ference in covariate values among groups. Therefore, these individual deviations are
more efficient and useful in PK/PD modeling where data from several subjects of a
population are considered simultaneously, since, in general, the estimation of indi-
vidual parameters only may be insufficient. So, it is useful to obtain a quantitative
description of the distribution of parameters in a population. Otherwise, combining
stochastic fluctuations with a population approach is quite appealing but raises infer-
ence challenges as explained and discussed in the following sections. In general, the
random effects are often assumed to be (multi)normally distributed, but it could be
any well-behaved density function.

In addition, random effects modelling is an important task in the estimation approaches
of mixed effects models, linear or not. In the literature, we sometimes see that the es-
timation of random effects is not interesting, and that the analyst is more interested
in fixed effects and their estimation as well as in the parameters of the distribution of
the random effects across the population. This view of the characterization of random
effects is rather narrow, because, to precisely estimate the fixed effects in a model, the
random effects have to be properly accounted for. Moreover, as random effects are
useful for quantifying the variability in a population, and although we are generally
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more interested in estimates of the population mean for a parameter, sometimes we are
equally interested in the variability of the parameter between subjects in a population.
Indeed, to do any type of Monte Carlo simulation of a model, we need both the mean
and the variance estimate of the parameter. However, it is not the variance or the stan-
dard error of the estimate of a parameter being discussed, but how much the value of
that parameter varies from one individual to another because, indeed, such variabil-
ity makes the parameter a random effect, as opposed to a fixed effect with which no
variability is associated.

1.4.2 NonLinear Mixed Effects model

The mixed effects model is a statistical model that is used for modeling responses of
individuals that have the same global behaviour with individual variations, contain-
ing both fixed and random effects. In this kind of models, all the responses follow a
common known functional form that depends on unknown effects, some of them are
fixed representing the fixed effects for all individuals in a given population, and the
others are random in order to account for individual deviations, and that can be due
to the difference in covariate values in a population, with an underlying distribution.
In addition, the Nonlinear mixed effects (NLME) models are useful in describing and
modelling a nonlinear relationship between a response variable and parameters. They
give information about variation of parameter values between groups and allow pa-
rameter estimates to vary among groups. Therefore, using NLME models within the
population approach is an important tool to describe variability within the population.

Moreover, this kind of models allows by their flexible covariance for nonconstant cor-
relation among observations and unbalanced data, which makes them a good choice
in PK/PD modeling where it is expected to have both variabilities within and between
individuals (See: Searle and McCulloch 2001a; Pinheiro and Bates 2006). In biomedi-
cal researchs, repeated measurements taken on a series of individuals or experimental
units play an important role, and it is often reasonable to assume that responses fol-
low the same structure of model for all experimental units, while parameters vary
randomly among individuals. In this thesis, the NLME model will be applied later
to estimate insulin sensitivity and other key parameters for modeling diabetes (See
section 4). Thus, a nonlinear mixed effects model can be defined as:

zij = f (Φi, tij) + εij, i = 1..N, j = 1...ni (1.1)
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where zij is the jth observation at the moment tij of ith individual, and f (·) is a nonlin-
ear function describing the relationship between response variable y and the individual
specific parameter vector Φi, N is the number of subjects (units) and ni is the number
of repeated measurements taken for each subject, εij is the residue of this individual
model assumed independently and identically distributed according to the normal dis-
tribution with mean zero and variance σ2, and represents the noise term of the model.
Thus, we define the population model representing parameters of each individual as
the following:

Φi = Aijβ + Bijbi (1.2)

where β represents the fixed effects vector described by the matrix Aij, and bi is the
random effects vector that vary across individuals, determined by the matrix Bij, its
components vary between individuals independently and identically according to a
distribution P(bi/Ψ) depending on a population parameters Ψ, which is usually as-
sumed to be multivariate normal distribution with parameter vector Ψ. So, from (1.1)
and (1.2), as noted before, we conclude that this type of model leads to having a com-
mon model structure for all the subjects of the experiment, where the parameters of
the model vary randomly among the individuals. The introduction of random effects
is very interesting in several studies, it also has many advantages for so-called joint
modeling, in which we can study certain phenomenon together with the variables in-
cluded in the model as covariates including random effects (See: Mamontov 2008).

1.4.3 Dynamical NLME model

To model the dynamics of biological processes, financial and economic data, it is nec-
essary to incorporate systems of deterministic differential equations based on ordinary
differential equations (ODE), partial (PDE) or delay (DDE). In this case, the mixed ef-
fects model with dynamic system can be written in the following form under two sub-
models. The first represents the continuous state equation defining the dynamics of
the system, and the second is the discrete measurement equation, which defines the
relationship between the states of the system and the obtained measurements. So, the
NLME model with ODEs can be described as follows:
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dyt = f (yt, Φi, t, ut)dt (1.3)

zij = g(yij, Φij, tij, uij) + eij

where yt is the state of the model at time t, ut represents optional inputs at time t and et

is a Gaussian white noise measurement error, with mean zero and variance-covariance
matrix depending on Φi, eij ∼ N (0, S(Φi)). However, real processes in different ar-
eas cannot be derived from deterministic mechanisms and be completely modeled,
because, they are exposed to influences that are ignored or difficult to model explic-
itly and which the deterministic systems do not take into account; ignoring this effect
in the modeling may affect the estimation of parameters and the derived conclusions.
So, there is an increasing need to extend the deterministic models to models includ-
ing stochastic components. A natural extension of deterministic differential equations
model is a system of stochastic differential equations (SDE)s, by incorporating stochas-
tic processes to the driving system equations or by modelling relevant parameters as
suitable stochastic processes.

Moreover, the extension of ODEs to the SDEs makes it possible to explain the differ-
ences between the observations and the predictions by two types of noise: dynamic
noise, that enters through the dynamics of the system and that can result from its ran-
dom fluctuations or from the shortages of model, and the measurements error which
are added in the case of an indirectly observed process, which may be due to a test error
or to the existence of a disturbance and represent the uncorrelated part of the residual
variability. In the theory, there are a rich and developed resources for mixed effects
models whether deterministic (See: Vonesh and Chinchilli 1996; Searle and McCulloch
2001b; Kuhn and Lavielle 2005; Guedj, Thiébaut, and Commenges 2007; Wang 2007)
or stochastic, linear or nonlinear models. For many applications of stochastic NLME
models in biomedical field, see: Picchini, Ditlevsen, and De Gaetano 2006a; Picchini,
GAETANO, and Ditlevsen 2010; Ditlevsen et al. 2007, and for the pharmacokinetic
applications, see: Sheiner and Beal 1980; Sheiner and Beal 1981; Donnet and Samson
2013.
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1.4.4 Stochastic NLME model

Extending to stochastic version of NLME models is achieved by adding an additional
Wiener noise component (See next section). In fact, this additional noise allows han-
dling of autocorrelated residuals originating from natural variation or systematic model
error. Thus, models defined through stochastic differential equations allow for the rep-
resentation of random variability in dynamical systems. So, incorporating a random
component in NLME models remains an important method of analysis (See: Allen
2007a) to get good estimates. The stochastic version of nonlinear model mixed effects
model is defined as follows:

dyt = f (yt, Φi, t, ut)dt + σ(t, ut, Φi)dWt (1.4)

zij = g(yij, Φij, tij, uij) + eij

where σ is the diffusion term, and Wt is the Weiner process term.

Therefore, for a considered phenomenon, this class of models enables the simulta-
neous representation of randomness in the dynamics of the process and variability
between experimental subjects, the stochastic NLME model is then a good applied
mathematics tool for a powerful modelling that can be used in PK modeling. The first
papers encouraging the introduction of stochastic components in PK/PD were pub-
lished by D’Argenio and Park 1997; Ramanathan 1999b; Ramanathan 1999a, where
authors underline that both deterministic and stochastic components have contribu-
tions in PK/PD: e.g. drug concentrations in the blood follow determinable trends,
but the exact concentration at any given time cannot be fully determined. Also, a
stochastic one-compartment PK model was proposed with a variable elimination rate
in Ramanathan 1999a and more sophisticated PK models have then been proposed
with multiple compartments, nonlinear or time-inhomogeneous absorption or elimi-
nation (See for example: Ferrante, Bompadre, and Leone 2003; Tornøe, Jacobsen, and
Madsen 2004; Ditlevsen and De Gaetano 2005c; Ditlevsen, Yip, and Holstein-Rathlou
2005; Picchini, Ditlevsen, and De Gaetano 2006b). Moreover, parameter estimation
for the NLME model with stochastic differential equations has been highly tackled in
the literature, also motivated by financial applications (See: Sørensen 2004). However,
many suggested solutions were proposed, but require high frequency data which is
not suited for PK/PD data where designs are usually sparse.
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1.5 An overview of the thesis

In this thesis, we are interested in the statistical inference of the mixed effects model
with stochastic differential equations. We thus consider the glucose-insulin kinetics to
study the metabolism of diabetes using the population approach by considering a set of
individuals simultaneously, based on the multidimensional, nonlinear and stochastic
minimal model. For this reason, we consider the Risken approximation using Fokker-
Planck equation, giving two approximate closed forms for the estimation of the transi-
tion density of the process. The proposed estimate approach is then addressed by sim-
ulation studies to demonstrate that the proposed method provides accurate estimates.
So, the main is to assimilate the observed data by estimating the relevant parameters
of the model. The rest of the thesis is organized as follows:

Chapter 2– Background. : This chapter is devoted to some necessary concepts and
mathematical objects for a good understanding of this manuscript. Then, we focus
on the basics of the problem by giving a brief introduction to stochastic differential
equations and Itô diffusion processes. Furthermore, we give a brief introduction to
statistical inference tools and MCMC sampling methods.

Chapter 3– Statistical inference for stochastic differential mixed effects model. :
In this chapter, we present the formulation of the stochastic differential mixed effects
model, then we propose a fast approximate maximum likelihood procedure for the
computation of the estimation of random and non-random parameters, since in most
cases the likelihood function is not available. In addition, a review on practical meth-
ods for estimating the nonlinear stochastic differential mixed effects model is given.

Chapter 4– Insulin sensitivity modelling. : In this chapter, we model the glucose-
insulin kinetics by a three-dimensional stochastic process, through three differential
stochastic equations established from the compartmental analysis based on the mini-
mal model. The aim is to estimate the parameters of the model, since the transition
density of the process is unknown, we then proceed to the Risken approximation de-
scribed in Chapter 3 in order to have an approximate closed form of the likelihood
function of the diabetes model in a closed form.

Chapter 5– Implementation issues and numerical applications. : Finally, in this chap-
ter, the parameter estimation method proposed in Chapter 3 is evaluated using simu-
lations from a standard model; it is the two-dimensional Ornstein-Uhlenbeck (OU),
which is one of the few stochastic processes with an exact transition density; it is then
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applied to the stochastic minimal model where the process transition density is ap-
proximated using the two proposed forms, one of which leads to an explicit likelihood
function.

Section 5.2.3– Conclusions and future directions. : The main contributions of this the-
sis are reported, with the discussion of the limits of the approach from there, we con-
clude some points for further research such as: model hypotheses, measurement tech-
niques, modeling, numerical methods, calculation software, Probability and statistics.
Then, a perspective overview is briefly presented by the following for the formulation
of an epedimic SDE model using the forward Kolmogorov differential equations.
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Chapter 2

Background

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Applied mathematics and Pharmacokinetics . . . . . . . . . . . . . . . 3

1.3.1 Population approach . . . . . . . . . . . . . . . . . . . . . . . . . 5
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In this section, we present briefly a list of preliminary concepts and mathematical
objects necessary to a good understanding of this dissertation. Therefore, we give a
short introduction to stochastic differential equations and Îto process, then we present
shortly the Markov chain Monte Carlo methods with the necessary references and doc-
uments.

2.1 General Probability Theory

In this section, we present definitions and concepts necessary for the rest of our topic,
that are related to probability theory and stochastic processes to define an Îto stochastic
integral. For more details, the reader is referred to the book Øksendal 2003, Chap. 2.
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Definitions and notions

Definition 2.1.1 (σ-algebra). If Ω is a given set, then a σ-algebra F on Ω is a family F of
subsets of Ω with the following properties:

i− ∅ ∈ F

ii− F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

iii− A1, A2, . . . ∈ F ⇒ A :=
∞⋃

i=0

Ai ∈ F .

The pair (Ω,F ) is called a measurable space.
Definition 2.1.2 (Probability measure). A probability measure P on a measurable space
(Ω,F ) is a function P : F −→ [0, 1] such that:

i− P(∅) = 0, P(Ω) = 1

ii− A1, A2, . . . ∈ F and {Ai}∞
i=0 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j) then

P

(
∞⋃

i=0

Ai

)
=

∞

∑
i=0
P (Ai) .

The triple (Ω,F ,P) is called a probability space, and when F contains all subsets P–
null, it is called a complete probability space. Given any family U of subsets of Ω there
is a smallest σ-algebra FU = σ(U ) containing U , namely:

FU =
⋂
{F ;F σ-algebra of Ω, U ⊂ F}

.

where FU is the σ-algebra generated by U , and it is called the Borel σ-algebra on Ω if U
is the collection of all open subsets of a topological space Ω, and its elements are called
Borel sets.

If (Ω,F ,P) is a given probability space, then a function ν : Ω −→ Rn is called F -
measurable if

ν−1(U) := {ω ∈ Ω; ν(ω) ∈ U} ∈ F

for all Borel sets U ⊂ Rn. A random variable Y is an F -measurable function Y : Ω −→
Rn
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If Y : Ω −→ Rn is any function, then the σ-algebra FY generated by Y is the smallest
σ-algebra on Ω containing all the sets

Y−1(U); U ⊂ Rn open.

Definition 2.1.3 (Stochastic process). A stochastic or random process (Yt)t∈T can be de-
fined as a parametrized collection (family) of random variables on the same probability space
(Ω,F , P) that is indexed by non-empty time set T ⊆ R+. Therefore, the stochastic process Y
can be written as a function:

Y : T×Ω −→ Y
(t, ω) 7−→ Y(t, ω)

with state space Y ⊆ Rd, d ≥ 1.

But generally, dependency on ω is considered in the notation Y = (Yt)t∈T. In addition,
for each t ∈ T fixed we have a random variable

ω −→ Yt(ω); ω ∈ Ω.

and that a path of Y is considered by fixing ω ∈ Ω defined by the following function

t −→ Yt(ω); t ∈ T.

Definition 2.1.4 (Filtration). Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P)
is an increasing family (Ft)t≥0 of sub σ-algebras of F . In other words, for each t, Ft is a σ-
algebras included inF and if s ≤ t, Fs ⊂ Ft. A probability space (Ω,F , (Ft)t≥0,P) endowed
with a filtration (Ft)t≥0 is called a filtered probability space.
Definition 2.1.5. A stochastic process (Yt)t∈T is adapted to the filtration (Ft)t≥0 if, for every
t ∈ T, the random variable Yt is Ft-measurable.

A stochastic process Y is always adapted to its natural filtration FY
t = σ(Ys, s ≤ t),

which is at the same time the smallest filtration to which Y is adapted. Then, one of
the most important classes of stochastic processes is the Martingale
Definition 2.1.6 (Martingale). A stochastic process (Yt)t≥0 on a probability space (Ω,F , P)

is called a martingale with respect to the filtration (Ft)t≥0 (and with respect to P) if:

i− Yt is Ft-measurable for all t ≥ 0,

ii− E [Yt] < ∞ for all t ≥ 0,
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iii− E [Yt|Fs] = Ms for all s ≤ t.

2.2 Brownian motion

2.2.1 The Wiener noise - Brownian motion

The Wiener process, named in honour of Norbert Wiener 1, is one of the most famous
continuous stochastic processes {W(t)}(t≥0), and it is a modern model that describes
the Brownian motion. It’s similar to a random walk with a time step go to 0 in a proper
way and can be defined by the following three conditions:

i) W(0) = 0

ii) {W(t)}(t≥0) has independent increments, the random variables: Wt1 ; Wt2−Wt1 ; ...; Wtk −
Wtk−1 are independent for all 0 ≤ t1 ≤ t2 ≤ ... ≤ tk.

iii) W(t + s)−W(s) ∼ N (0, t) for all t > 0

Thus, from i), ii) and iii) the Wiener process is also Gaussian with mean zero and vari-
ance proportional to the time, which implies that the Wiener process cannot be station-
ary because its variance depends on t.

In many fields such as: physics, chemistry, biology and others, the mathematical de-
scription of Brownian motion is of importance. It was named for the Scottish botanist
Robert Brown, the first to study such fluctuations (1827), and describes the random
movement of particles by impacting the surrounding medium in a fluid.
Definition 2.2.1 (Brownian Motion). A real-valued F -adapted process B = (Bt)t≥0 is a
Brownian motion if it satisfies the following conditions:

i− B0 = c almost surly for all c ∈ R fixed,

ii− All paths are almost surly continuous,

iii− All paths have independent and stationary increments,

iv− Bt ∼ N
(

0, σ2t
)

for all t ≥ 0 and constant volatility parameter σ ∈ R+.

(Bt)t≥0 is a martingale with respect to its natural filtration Ft generated by {Bs, s ≤ t}
Øksendal 2003, Chap 3. From iii− in Definition 2.2.1, the increments of the Brownian
motion are statistically independent on non-overlapping intervals, i.e Bt1 − Bt0 , Bt2 −

1Norbert Wiener (November 26, 1894 – March 18, 1964), was an American mathematician and
philosopher.
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Bt1 , Bt3 − Bt2 , . . ., 0 ≤ t0 < t1 < t2 < . . ., are pairwise independent, which means
that the probability distribution function for Bs+t − Bs is fixed for all s ∈ T such that
s + t ∈ T. When c = 0 and σ = 1 we talk about the standard Brownian motion, and
d-dimensional (standard) Brownian motion if its d components are mutually indepen-
dent. The probability law induced by standard Brownian motion is thus called Wiener
measure.

2.2.2 Stochastic Differential Equations

Definition

Generally, a stochastic differential equation (SDE) is a generalization of the notion of
differential equation taking into account a white noise term and which solution is a
stochastic process. Using the SDE allows for the representation of random variability
in dynamical systems, which is becoming more and more important (e.g. see: Allen
2007b; Øksendal 2003) and constitutes a standard tool for modelling biological, finan-
cial, neuronal and population growth dynamics. Thus, for phenomena whose dynam-
ics are affected by random noise as in physics, SDEs are an established tool for mod-
elling. So, the introduction of stochastic components to deterministic models is an
important tool of analysis (See: Aït-Sahalia 2002), and is more appropriate to model
the intra-individual variations rather than ODEs. As noted before, dynamical biologi-
cal processes are usually modeled by means of systems of ODEs which do not account
for the noisy components of the system dynamics often present in biological systems.
The cumulative effect on the actual state; which cannot be individually included in the
model description of the system of a host of mechanisms (like hormonal oscillations,
variations of the stress level, variable muscular activity etc.); is represented by what
is called system error (or system noise). Noise in the differential equations describing
the behaviour of the system requires an extension to the class of stochastic differential
equation (SDE) models. For application areas including econometrics and finance (See:
Aït-Sahalia 2009; Aït-Sahalia and Jacod 2012; Eraker and Wang 2015; Aït-Sahalia and
Hurd 2016; Aït-Sahalia et al. 2017; Aït-Sahalia and Xiu 2017; Eraker and Wu 2017).
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Ito integral and stochastic differential equations

Definition 2.2.2 (Itô process). Let (Ω,F , P) be a probability space, then an Itô process Y =

(Yt)t≥0 is a process which satisfies:

Yt(ω) = Ys(ω) +
∫ t

s
µ (u, Yt) du +

∫ t

s
σ (u, Yt) dBu, (2.1)

for any [s, t] ⊆ T , where the functions µ and σ are jointly B ×F -measurable, F -adapted and
satisfies, the criteria ∫ t

s
|µ (u, Yt)| du < ∞,

∫ t

s
(σ (u, Yt))

2 du < ∞,

An Itô process is a stochastic process that can be, formally, written as:

dYt = µ (t, Yt) dt + σ (t, Yt) dBt.

and using the definition of the Itô integral, a stochastic process Y can also be defined
as a solution of the stochastic differential equation (2.2)

dYt = µ (t, Yt) dt + σ (t, Yt) dBt, (2.2)

if and only if Y satisfies the stochastic integral equation (2.3)

Yt(ω) = Ys(ω) +
∫ t

s
µ (u, Yt) dt +

∫ t

s
σ (u, Yt) dBu, (2.3)

almost surely. Then Y is an Itô process and one can prove that it is Markovian.

Existence and uniqueness

The existence and uniqueness of solutions to stochastic differential equations (2.2) is
guaranteed by the following theorem:
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Theorem 2.2.1 (Existence and uniqueness theorem for stochastic differential equations).
Let T

′ ⊂ T and µ(·) : T
′ ×Rn −→ Rm, σ(·, ·) : T

′ ×Rn −→ Rn×m be measurable func-
tions satisfying

‖µ(t, x)‖2 + ‖σ(t, x)‖2 ≤ C
(

1 + ‖x‖2
)

, ( Linear growth ) (2.4)

‖µ(t, x)−µ(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ D ‖x− y‖ , ( Lipschitz continuity ) (2.5)

for x, y ∈ Rn, t ∈ T′ and some constants C and D.

Let Z be a random variable which is independent of the σ-algebra F∞ = σ(Bs, s ≥ 0) and such
that E|Z|2 < ∞.

Then, the stochastic differential equation

dYt = µ (t, Yt) dt + σ (t, Yt) dBt, t ∈ T′ , Y0 = Z (2.6)

has a unique t-continuous solution Yt(ω) with the property that Yt(ω) is adapted to the filtra-
tion FZ

t = σ (Z, Bs, 0 ≤ s ≤ t) and:

E

[∫
T
′ |Yt|2 dt

]
< ∞ (2.7)

The solution Y is FZ
t -adapted and it is called a strong solution. However, an explicit

solution of an SDE is usually not found, but an explicit solution to a family of stochastic
differential equations is well discussed in Kouritsin and Deli 2000.

2.3 Likelihood function and Markov process

Markov process, named for the Russian mathematician Andrey Andreyevich Markov
(1856 – 1922), is one of the most important of all random processes. It defines as fol-
lows:
Definition 2.3.1 (Markov process). Let (Ω,F ,P) be a probability space, and Y = (Yt)t≥0

be a stochastic process defined on this space. The σ-algebra Ft = σ(Ys, 0 ≤ s < t), t ≥ 0,
presents process states on the past of the process and time t.

The real-valued, Ft-adapted stochastic process Y is called a Markov process if the Markov prop-
erty

P (Yt|Fs) = P (Yt|Ys) holds a.s. for all 0 ≤ s ≤ t < ∞
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Therefore, by knowing the past states of the process one can predict the probabilities
related to the values of the states of its future, as well as by knowing all the past in-
formation of the process before the time s. The future states of the process depend on
those of the past through the present because the process only knows Ys and does not
know how it got there, that is, once the present is known, the past and the future are
independent.

Transition density

For an Itô process Y being a solution of the SDE (2.2), it verifies the Markov property
above and its transition density p(s, y, t, z) is defined as:

p(s, y; t, A) = P(Yt ∈ A|Ys = y) =
∫

A
p(s, y; t, z)dz, (2.8)

for all F -measurable sets A ⊆ Y . The density p(s, y; t, z) of a Markov process Y, from
state y ∈ Y at time s ≥ 0 to z ∈ Z at time t > s, is defined as:

p(s, y; t, z) = δ (y− z)

where δ denotes the Dirac delta function. Moreover, when Y is homogeneous in time,
the transition density depends on s and t only by their difference t− s, we also write
p(t− s; y, z).

Likelihood function for discretely observed processes

The availability of the likelihood function in an explicit form is one of the most impor-
tant issues in statistical inference, which requires the existence and knowledge of the
form of the probability density function.

For a given realizations y1, y2, . . . , yn of sample random variables Y1, . . . , Yn which are
independents and identically distributed from a population with probability density
function p(y; θ), the likelihood function of the sample has the form:

L(θ; y1, y2, . . . , yn) =
n

∏
i=1

p (yi; θ) . (2.9)
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For computational expedience, L will be transformed to the logarithmic-likelihood func-
tion

lnL(θ; y1, y2, . . . , yn) =
n

∑
i=1

ln p (yi; θ) . (2.10)

the logarithmic likelihood function (2.10) is a function of θ which presents the proba-
bility of the observed random sample. To obtain an estimate of some unknown popu-
lation parameters θ ∈ Θ, the method ML based upon the principle of maximum likelihood
is applied. This method consists of maximizing the probability of observing the given
random sample, by selecting the value of the parameter θ̂ as an estimate of θ . So, to
find the estimates value of the parameters θ̂, we maximize (2.10) with respect to θ. The
given value of maximum likelihood estimate θ̂ = arg max

θ
L(θ; y1, y2, . . . , yn) represents

the most likely value of the parameter θ, to have generated the sample realizations
yi, i = 1, . . . , n.

For a continuously observed diffusion processes on a finite interval, the statistical in-
ference is based on the likelihood of the diffusion obtained using the Girsanov formula
(See e.g. Liptser and Shiryaev 2001; Kutoyants 2004). For discretely observed dif-
fusion processes, their likelihood depends on the transition densities of the diffusion
P(Y(tk) ∈ A|Y(tk− 1) = y), but in the most cases the likelihood is unavailable because
these transition densities with respect to the parameters θ are not explicit and have no
closed form (See for example, El Maroufy, Omari, and Taib 2012). So, since it is usu-
ally impossible to give a general formal solution of stochastic differential equations,
this approach based on ML could be one of the serious challenges, as it involves the
calculation of the transition density for this process which is often complicated or im-
possible. This problem is one of the most important questions to be addressed in this
thesis.

2.4 Corresponding forward equation of Itô diffusion

The stochastic process has many fluctuations that its exact position cannot be deter-
mined but can be known for a region by its probability density; using the Fokker–Planck
equation, such a probability density can be determined. The Fokker–Planck equation is
a differential equation for the distribution function describing a Brownian motion by
which the probability density of the stochastic process can be calculated in a much sim-
pler way by solving this equation. This motion equation is usually used for variables
describing a macroscopic but small system, where the fluctuations are important as
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for some cases in physics, e.g., the position and the speed of the Brownian motion of a
small particle. However, it can be also used for the larger system where, in spite of their
small fluctuations, the stochastic description remains necessary when the deterministic
equations may not be stable for this type of system.

Let Y be an Itô diffusion process :

dYt = µ(t, Yt)dt + σ(t, Yt)dBt, Yt0 = y0,

Under some regularity conditions on the coefficients µ and σ to ensure the existence
and uniqueness. The Fokker–Planck equation associated with the Itô process is given by
the following formula:

∂p
∂t

= −∂ (pµ)
∂y

+
1
2

∂2 (pσ2)
∂y2 .

Assuming that the derivatives of its transition density p = p(t, y, z) in this partial dif-
ferential equations exist and are continuous. Then, the equivalent Kolmogorov forward
equation is:

∂p(s,y, t, z)
∂t

= −
d

∑
i=1

∂

∂yi
(µi(t, z)p(s,y, t, z)) +

1
2

d

∑
i,j=1

∂2

∂yiyj
(Σi,j(t, z)p(s,y, t, z)),

(2.11)

for fixed z and t, where y, z ∈ Y and t > s ≥ 0, and i, j denote the respective compo-
nents of y, z, µ and Σ = σσT, where σT is the transposed vector of σ.

We notice that the equation only determines the transition density p, and therefore the
diffusion processes are already completely defined by their instantaneous mean and
variance µ and Σ . Moreover, the reverse implication of the property is valid, when
the transition density of a stochastic process satisfies the Fokker-Plank equation (2.11),
then it is an Itô diffusion process.

2.5 Markov chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods are a class of methods of sampling prob-
ability distribution functions or probability density functions (pdfs), based on the path
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of Markov chains. It can be applied either in discrete or continue spaces sampling,
these pdfs may then be either probability mass functions or probability densities. One
of the advantages of MCMC methods, which makes them widely used, is that in prob-
abilistic inferences a full analytic description of the properly normalized pdf is not
required for sampling to proceed, We need only to compute ratios of the pdf at pairs of
locations. This makes MCMC methods ideal when we want to sample the pdf for the
parameters θ given the data x defining their posterior pdfs. The posterior pdf p(θ | x) is
constructed from the pdf for the data given the parameters; presented by the likelihood
p(x | θ); and by the prior pdf p(θ) for the parameters using the famous Bayes formula
known as "Bayes rule":

p(θ | x) =
1
Z

p(x | θ) p(θ) .

where Z is a constant often written as p(x) and known by the names "evidence",
"marginal likelihood", "Bayes integral", and " prior predictive probability". Among
the major problems encountered in this context, is that the likelihood (or the prior)
is extremely hard to calculate, because it can have extremely complex structure, with
multiple arbitrarily compact modes, arbitrarily positioned in a high dimensional pa-
rameter space θ. Therefore, the factor Z is often difficult to compute, and the function
p(θ | x) is often up to a constant factor. So, this leads to compute ratios of the pdf at
pairs of points but not the precise value at any individual point.

Moreover, one of the most important property of the MCMC method is the normalization-
insensitive property. It means that it can be run without computing any derivatives or
integrals of the function, in its simplest forms it is extremely easy to implement. For
all these reasons, MCMC methods are still one of the very interesting statistical tools
for scientists to sample posterior pdfs in real and complex situations where they find
themselves. Here, we restrict our study to Gibbs Sampler and Metropolis-Hastings
algorithms.

2.5.1 Gibbs Sampling Algorithm

This method is a Markov chain Monte Carlo method which allows us to sample a
sequence of observations which are approximated from a specified multivariate prob-
ability distribution using only the conditional distributions (See: Casella and George
1992 for an explanation of Gibbs sampler with theory and examples, and Wilkinson
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2006 for a review of Gibbs sampler). The reader can refer to Wilkinson 2006 for a
simple application example of Gibbs sampling algorithm. Gibbs sampling was first
used by Geman and Geman 1984 to study image processing models, before becoming
a very popular MCMC method used in different fields (See: Carter and Kohn 1994;
Gilks, Best, and Tan 1995; Arminger and Muthén 1998; Porteous et al. 2008; Damlen,
Wakefield, and Walker 1999).

In Algorithm 1, we provide an algorithm for Gibbs sampler which generates samples
of θ and x iteratively, from the conditional distributions π (θ | x) and π (x | θ, y), re-
spectively.

Algorithm 1 Gibbs Sampler

1: Given an observed-data y.
2: Initialize x by sampling x ∼ π (. | y)
3: repeat
4: Sample θ ∼ π (θ | x) using current x . π (θ | x) is known analytically
5: Sample x ∼ π (x | y, θ) using current θ
6: Store θ as a sample
7: until the desired number of samples for θ is reached

2.5.2 The Metropolis Hastings Algorithm

The Metropolis-Hastings algorithm is also one of the Markov chain Monte Carlo sam-
pling methods, which is also widely used by scientists in many applications and one
of the most needed statistical tools in situations difficult and complicated (See: Jeli-
azkov 2001; Geweke and Tanizaki 2001; Roberts and Stramer 2001; Cauchemez et al.
2004; Demiris and O’Neill 2005; Pratola 2016; Adaszewski et al. 2018). At first, it was
proposed by Metropolis et al. 1953 in the field of statistical mechanics, and generalized
later by Hastings 1970, the reader can refer to Hitchcock 2003; Chib and Greenberg
2012 for more descriptions of the Metropolis-Hastings sampling.

In contrast to Gibbs Sampler, the true conditional distribution π (θ|x) is not required in
Metropolis-Hastings sampling, which makes this algorithm perfectly suited in many
complicated cases, as it is generally not possible to sample from the true conditional
distribution as is required for the Gibbs sampler. In Metropolis-Hastings algorithm, we
consider a proposal function q(.|θ) from which we generate samples of θ iteratively and
then accept the proposal sample with an acceptance probability. Given the posterior
density π (θ|x) and a proposal density q(.|θ), then the Metropolis-Hastings is provided
by the Algorithm 2 (For more details, see: Hastings 1970; Robert and Casella 2004).
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Algorithm 2 Metropolis-Hastings algorithm Robert and Casella 2004

1: Given an observed-data x.
2: Initialize θ(0)

3: for i = 1, . . . , N do
4: Sample a candidate θ̃ v q

(
θ | θ(i−1), x

)
( using a Gibbs sampler step given

in Algorithm 1 )

5: Calculate α = min

1,
π
(

θ̃|x
)

π
(
θ(i−1)|x

) q
(

θ(i−1) | θ̃|x
)

q
(

θ̃ | θ(i−1), x
)


6: Accept or reject θ̃ with probability α

7: Update θ(i) =

{
θ̃ with probabilityα

θ(i−1) else

8: Store θ(i) as a sample
9: end for

2.6 Numerical methods for solving stochastic differential

equations

Usually, a formal general solution of the Itô’s stochastic differential equation (2.2) can
not be available in a closed form. Therefore, using numerical methods to calculate ap-
proximations is extremely needed (See Panik 2017, Chap.7 for more knowledge about
approximating methods). In this case, a discrete-time approximation is used to itera-
tively approximate a solution to (2.2), as in this method, the purpose is to discretize
the data, using a recursive algorithm which produces the values in discrete time on a
finite subinterval [t0, t] ⊂ T. While the approximation is made only at the discretiza-
tion points, we will always view a discrete-time approximation as a "continuous-time
process" defined on [t0, t]. We deal in this thesis with two famous numerical methods
which are widely used to approximate the process in (2.2), that is Euler-Maruyama
(EM) and Milstein approximations (See Øksendal 2003; Elerian 1998 for more details
on the description of the methods).

The EM Approximation

The EM approximation scheme is the simplest numerical approximation method used
to approximate an Itô process for (2.2), based on a discrete-time recursive routine, given
the time discretization t0 < t1 < t2 < . . . < tN = t of [t0, t], as follows:
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Zi+1 = Zi + f (Zi, ti) (ti+1 − ti) + g (Zi, ti)
(

Bti+1 − Bti

)
= Zi + f (Zi, ti)∆i + g (Zi, ti)∆Bi, i = 1, 2, . . . , N − 1,

(2.12)

the given process from the EM approximation Z = (Zt)t∈[t0,t] is a continuous-time
stochastic process, with Zti ≡ Zi, Z0 = y0, ∆Bi = Bti+1 − Bti , and ∆i = ti+1 − ti, and
when we have an equidistant discretization times ∆i ≡ ∆ = (t− t0)/N, this time incre-
ments ∆i, i = 0, 1, 2, . . . , should be "sufficiently small" to obtain a "good" approximate
solution.

The Milstein Approximation

We shall now introduce the Milstein scheme which is an amelioration of the EM method
by introducing a correction to the stochastic increment in (2.12), by introducing the
term

1
2

f (Zi, ti)
∂g
∂y

[
∆Bi

2 − ∆i

]
from the Itô–Taylor expansion, which gives the following scheme:

Zi+1 =Zi + f (Zi, ti)∆i + g(Zi, ti)∆Bi +
1
2

g(Zi, ti)
∂g
∂y

[
∆Bi

2 − ∆i

]
. (2.13)

The degree of precision (error) of the approximation can be measured by the expres-
sion E [Yt − Zt], since Y(t) and Z(t) are both random variables. For a continuous-time
process Y, an approximation Z discretized in time converges of high order γ towards
the solution Y at time t if:

∃C ∈ R, such as E |Yt − Zt| ≤ C∆γ (2.14)

where Yt is the true solution at time t with an approximate discretization Zt, the con-
stant C is not depending on ∆, and N is chosen large enough so that ∆ = (t− t0)/N (0, 1).
On the other hand, the process Z converges weakly of order β to the solution Y at time t
if a continuously differentiable polynomial function h and a constant Ch (independent
of ∆) exist, such that:
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|E (Yt)−E (Zt)| ≤ Ch∆β (2.15)

Therefore, for the EM scheme the strong order of convergence is γ =
1
2

(if f and g
satisfy uniform growth and Lipschitz conditions) and converges with weak order β =

1, however, for Milstein scheme the strong order of convergence is γ = 1.





31

Chapter 3

Statistical inference for stochastic
differential mixed effects model
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3.1 Introduction

When both system noise and individual differences are considered, stochastic differ-
ential mixed effects (SDME) models ensue. This chapter is concerned with estimation
methods for multidimensional and nonlinear dynamical models including stochastic
differential equations and containing random effects (random parameters). This type
of model has proved useful for describing continuous random processes, for distin-
guishing intra- and interindividual variability as well as for accounting for uncertainty
in the dynamic model itself. Pharmacokinetic modeling, as seen before, often involves
repeated measurements on a series of experimental units, and random effects are incor-
porated into the model to simulate the individual behaviour in the entire population.
Unfortunately, the estimation of this kind of models could involves some difficulties,
because in most cases, the transition density of the diffusion process given the random
effects is not available. In this work, we focus on the approximation of the transition
density of the stochastic process being solution of the SDEs model in a closed form,
in order to obtain estimates for the model parameters using the Risken approximation
using the corresponding forward equation of the process (See Section 3.5). Then, a sim-
ulation study is addressed later in Chapter 5 in order to provide results of the proposed
methodology, with a real example of an SDME model applied in the epidemiology and
based on the minimal model to describe glucose-insulin kinetics.

In the theory, there are rich and developed resources for mixed effects models whether
deterministic (See: Vonesh and Chinchilli 1996; Searle and McCulloch 2001b; Kuhn
and Lavielle 2005; Guedj, Thiébaut, and Commenges 2007; Wang 2007) or stochastic,
linear or nonlinear. In this context, the reader is referred to see many applications
of stochastic NLME models in biomedical fields in (Picchini, Ditlevsen, and De Gae-
tano 2006a; Picchini, GAETANO, and Ditlevsen 2010; Ditlevsen et al. 2007), and in
pharmacokinetic studies in (Sheiner and Beal 1980; Sheiner and Beal 1981; Donnet and
Samson 2013). Moreover, in Jelliffe, Schumitzky, and Van Guilder 2000, a review on
methods for PK/PD population modeling is established, but the authors regret that
system noise is not incorporated since it is difficult to estimate. Also, in Overgaard et
al. 2005; Tornøe et al. 2005, a proposed SDE model with lognormal distributed random
effects and a constant diffusion term is treated, but this constrains the class of models
to be SDEs with additive noise. In Ditlevsen and De Gaetano 2005c, an example with
the computation of the likelihood function in an explicit form was treated for a simple
SDE model with random effects, however, generally the likelihood function is unavail-
able. Therefore, since the SDE models are more applied to biomedical data, there is
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an increasing need for developing a general theory for parameter estimation of SDEs
models incorporating random effects.

Parameter estimation in mixed effects models with SDEs, known by Stochastic Differ-
ential Mixed-Effects (SDME) models, is not an obvious procedure except in some sim-
ple cases (See: Ditlevsen and De Gaetano 2005a), because it is often difficult to write
the likelihood function in its closed form. In the literature, the likelihood function
of a nonlinear mixed effects model was approximated with the likelihood of a linear
mixed-effects model (See Lindstrom and Bates 1990) . In this context, we propose a
review on estimation methods of SDME models in Donnet and Samson 2008; Donnet
and Samson 2013 and Bakrim and El Maroufy 2019, moreover, an example case that
treats a generalized linear mixed models was proposed in Pinheiro and Chao 2006. In
addition, to strengthen knowledge on estimation methods of SDME models, we refer
to Overgaard et al. 2005; Tornøe et al. 2005 that propose an example of stochastic mixed
effects model with random effects log-normally distributed with a constant diffusion
term.

In general, it is difficult to obtain an explicit likelihood function because the transition
density of the stochastic process is often unknown or that the integral in the marginal
likelihood given the random effects cannot be computed analytically, and although
the size of the random effects increases, the complexity of the problem increases also
rapidly. Therefore, there is a significant need for approximation methods to compute
the transition density in an approximate closed form, and also for efficient numerical
integration methods to compute or approximate the integral in the likelihood function.
For example, in the literature, the Laplacian and Gaussian quadrature approximation
was widely used to approximate the integral in the likelihood (See: Searle and Mc-
Culloch 2001b; Picchini, GAETANO, and Ditlevsen 2010; Picchini and Ditlevsen 2011)
as well as other numerical approaches (See: Fröberg 1985; Krommer and Ueberhuber
1998). Moreover, in the literature, several solutions have been proposed to approxi-
mate the transition density and have shown their effectiveness despite certain limita-
tions. For example, the transition density could be approximated by the solution of the
partial differential equations of Kolmogorov (See: Lo 1988); or by the derivation of an Hermite
expansion of closed form at the transition density (See: Aït-Sahalia 2002; Aït-Sahalia
2002; Ait-Sahalia 2008), we notice that this method has been reviewed and applied for
many known stochastic processes for one-dimensional and multi-dimensional time-
homogeneous SDME model (See: Picchini, GAETANO, and Ditlevsen 2010; Picchini
and Ditlevsen 2011); or by simulating the process to Monte-Carlo-integrate the transition
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density (See: Nicolau 2002; Hurn, Lindsay, and Martin 2003; Ripley 2009). These tech-
niques are very useful and can solve the problem, but unfortunately, they involve in-
tense calculations which make the problem always complicated.

In this section, we focus on two fundamental issues concerning the implementation
of SDEs in NLME models. The first is how the transition density of an SDME model
can be approximated when it is not known, and the second is about approximating
methods of the likelihood function when the integral given the random effects has no
analytic solution. Then, we propose an optimization algorithm to obtain maximum
likelihood estimators when the computation of gradients is so complicated or even
impossible.

3.2 Formulation of stochastic differential mixed effects

model

3.2.1 Itô formula

Itô’s formula is one of the most important mathematical tools for stochastic calculus
what the Newton-Leibnitz formula is for (the classical) calculus. It gives a practical
method for the computation of stochastic integrals, and it is also used to relate differen-
tiation and integration. Moreover, Itô’s formula is very useful to evaluate Itô integrals
and serve as a counterpart to the stochastic computation of the chain rule.
Theorem 3.2.1 (The general Itô formula). Let Y = (Yt, t ≥ 0)

dYt = µ (t, Yt) dt + σ (t, Yt) dBt,

be a d-dimensional Itô process, as defined in Definition 2.2.2. Let g : Rd × [0, 1] −→ Rl be C2

map. Then the process Z such
Zt = g(Yt, t)

is again an Itô process, and for its kth component we get the Itô formula, for k = 1, . . . , l,

dZt(k) =
∂g(k)(Yt, t)

∂t
dt +

d

∑
i=1

∂g(k)(Yt, t)
∂yi dY(i)

t +
1
2

d

∑
i,j=1

∂2g(k)(Yt, t)
∂yi∂yj dY(i)

t dY(j)
t , (3.1)

where
(dt)2 = dt · dB(i)

t = dB(i)
t · dt = 0 and dB(i)

t dB(j)
t = δijdt,
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and the upper indices denote the respective component numbers.

where δij is the Kronecker delta, in combination with the SDE defining Y. For more
details and proof, (See Øksendal 2003, Chap4).

3.2.2 Stochastic Differential Mixed Effects model

Consider an N-dimensional continuous and stochastic process Yt in the state space
E ⊂ RN described by the general first-order nonlinear stochastic differential equations
of the Itô type (See: Ramanathan 1999c):

dYi
t = µ(Yi

t , t, θ, bi)dt + Σ(Yi
t , θ, bi)dW i

t , Yi
0 = yi

0, i = 1, ..., M, (3.2)

where Yi
t is defined as the solution of the SDME model (3.2) that exists under some

conditions (See: Andersson and Britton 2012; Becker 1977; Oksendal 2003), and repre-
sents the observation of individual i from M different experimental units, (i = 1, .., M),
at the moment t ≥ ti

0, and Yi
0 = Yi

t0
is the initial state of Yt for each subject. The process

{(Yi
t )t≥0, i = 1..M} is assumed to verify the same model structure (3.2) according to the

individual deviations bi; and θ ∈ Θ ⊂ Rp is a p-dimensional fixed effects vector which
represents the same and common characteristics for all subjects; and bi ∈ B ⊆ Rq

are the q-dimensional individual random parameters assumed mutually independent,
that vary between subjects according to a distribution of density PB(bi|Ψ) depending
on a population parameter Ψ; in the population approach, this parameter vector allows
for a data from several subjects to be considered simultaneously. Each component bi

l

may follow a different distribution, (l = 1, ..., q), and a standard choice for the joint
density function PB(bi|Ψ) of the vector bi could be the Gaussian distribution; however,
any other distributions may be considered continuous or discrete:

bi ∼ i.i.d N (ϑ, φ).

The joint density function of the vector bi is parameterized by a q-dimensional param-
eter ϑ ∈ υ ⊂ Rq and a q × q-dimensional matrix φ ∈ Φ ⊂ Rq×q representing the
covariance matrix of bi and specifying the parameters of the marginal distributions of
the components bi

l, (1 ≤ l ≤ q); the components of φ and ϑ represent the population
parameters Ψ. Moreover, we notice that, for Yi

0, it is not necessarily to be known, and
when its components are unknown, they must be considered as random effects since
they often depend on measurements taken for each individual; however, in some cases
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it can be known and assumed equal to a real constant. Also, we assume that the distri-
bution of Yi

t given (bi, θ) and Yi
t′ = yt′ , t′ < t, has a strictly positive density with regard

to the Lebesgue measure on E:

y→ PY(y, t− t′|yt′ , bi, θ) > 0, y ∈ E. (3.3)

W i(t) are the standard Brownian motions, and they are assumed mutually indepen-
dent with bj for all 1 ≤ i, j ≤ M. The functions µ(·) : E × R × Θ × B −→ R and
Σ(·) : E×Θ× B −→ R+ represent, respectively, the drift and the diffusion term of the
model and are assumed to have some properties sufficiently regular to ensure a unique
solution to the model (See: Oksendal 2003).

The solution Yi
t of (3.2) can be difficult to obtain in an explicit form, in this case, we

approximate the different statistical characteristics of the process by Monte Carlo sim-
ulations that require discrete approximations of the continuous solution. In the theory,
different schemes are available (See: Klöden and Platen 1992) with different levels of
approximation quality and consumed-time. So, to approximate the solution Yi

t in the
time interval [0; T], we consider the following time discretization:

0 ≤ t1 ≤ t2 ≤ ... ≤ tj... ≤ tN = T

and let 4j = tj+1 − tj be the time step and 4Wj = W(tj+1)−W(tj) the increments of

the Wiener process with4Wj ∼ N (0,4j) which can be rewritten as: 4Wj =
√
4j · Zj

with Zj ∼ N (0, 1) for all j, which can be easily generated from the random normal
number generator by the following code in Matlab software : dW = sqrt(dt)*randn.

According to the model in (3.2), the process Y is the same and follows the same struc-
ture for each individual in the population, the model describes the dynamic side of the
individual behaviour following paths of Brownian motion. The individual deviations
in the whole population is then modeled by both the different realizations of the Brow-
nian motion paths {W i

t}t≥ti
0
, and the incorporation of the random parameters bi in the

model. Therefore, the incorporation of parameters varying randomly between subjects
allows to quantify the variability between individuals.

The goal, as it is explained before in the General Introduction, is to estimate the vector
of fixed parameters θ and the parameter vector Ψ. However, the statistical inference for
such models is a difficult issue, and the level of difficulty is not the same whether the
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transition density is explicit or not and whether the process is observed directly or with
measurement noise. In this work, we assume that the process was directly observed
and no observation noise was considered.

3.3 Maximum likelihood estimation

The likelihood function of an SDME model is defined as follows:

L(θ, Ψ) =
M

∏
i=1

P(yi|θ, Ψ) =
M

∏
i=1

∫
PY(yi|bi, θ)PB(bi|Ψ)dbi (3.4)

with :

PY(yi|bi, θ) =
ni

∏
j=1

PY(yi
j, ∆i

j|yi
j−1, bi, θ), (3.5)

where ni is the number of observations for the subject i at discrete points of time
{ti

0, ti
1, ..., ti

ni
}, i = 1, ..., M and ∆i

j = ti
j − ti

j−1, j = 1, ..., ni. The conditional density
PY(yi|·) is equal to the product of the transition densities (3.5), for a given random ef-
fects bi and θ, however, the availability of the transition density in an explicit form is
rarely possible, which makes the statistical issues for the model (3.2) often complicated
to obtain an exact likelihood function and exact ML estimators because computing the
transition density is not always obvious and requires approximation methods. Nev-
ertheless, there are some cases where the exact likelihood function is known and the
exact ML estimators of θ are easily obtained (see references in the introduction). In
fact, to compute the likelihood function in a closed-form for an SDME model, we can
encounter two types of problems that require approximate methods to overcome them:
First, when the transition density PY(yi

j, ∆i
j|yi

j−1, bi, θ) is known but the integral in (3.4)
has no solution, in this case, the numerical methods of approximation of the integral
are required. Or, second, when PY(yi

j, ∆i
j|yi

j−1, bi, θ) cannot even be expressed explic-
itly and must also be approximated (See next sections). Usually, in realistic examples,
we have both an unknown transition density and an integral that is difficult to solve
analytically. In theory, several methods for approximating transition densities and in-
tegrals have been proposed (See references cited in the introduction). Also, we notice
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that, when the random effects have a discrete distributions; in that case the integral
becomes a sum and can be easily computed when the transition density is known or
apprpximated.

3.4 Closed approximate form of transition density and

likelihood approximation

3.4.1 Likelihood approximation

When the transition density is not known, approximated solutions are required in or-
der to get the ML estimators of the parameters. In the literature, many approximated
methods to compute the transition density for the solution of an SDME model with-
out measurement noise were proposed and have shown their effectiveness in spite of
certain limitations. For example, Lo 1988 proposed to approximate the transition den-
sity by the solution of the partial differential equations of Kolmogorov, and Ait2002a,
Aït-Sahalia 2002 and Ait-Sahalia 2008 proposed to approximate the transition density
by the derivation of an Hermite expansion of closed-form. Also, in Pedersen 1995,
Brandt and Santa-Clara 2002, Durham and Gallant 2002, Nicolau 2002, Hurn, Lindsay,
and Martin 2003 and Ripley 2009 the transition density has been approximated by the
simulation of the Monte Carlo process. Although these techniques have shown some
usefulness in solving the problem, they unfortunately have drawbacks because they
involve intense calculations, so that the problem is still not easy to solve.

Let P(a)
Y (yi|bi, θ) be the approximation of (3.5), that we substitute in (3.4), where:

P(a)
Y (yi|bi, θ) =

N

∏
j=1

P(a)
Y (yi

j, ∆i
j|yi

j−1, bi, θ)

we obtain then an approximate likelihood function as follows:

L(a)(θ, Ψ) =
M

∏
i=1

∫
P(a)

Y (yi|bi, θ)PB(bi|Ψ)dbi (3.6)

Usually, the integral in (3.6) have no closed solution, so the integration numerical meth-
ods are recommended. Therefore we cannot get the exact ML estimators (θ̂, Ψ̂), but,
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by maximizing (3.6) over (θ, Ψ) we get approximate ML estimators (θ̂(a), Ψ̂(a)) that can
show good properties.

In general, the classical inference of SDME models implies the problem of the numer-
ical evaluation of the integral for the given random effects in the likelihood function,
which becomes complicated especially when the model contains more than two ran-
dom parameters. In the literature, several methods have been proposed and tested for
the approximation of the integral, see references in the introduction and the following
examples: see Fröberg 1985 and Krommer and Ueberhuber 1998 for the use of efficient
numerical integration methods, and Picchini, GAETANO, and Ditlevsen 2010 for the
Gaussian quadrature method for the case of SDME models with a single random effect,
and Picchini and Ditlevsen 2011 for a general case with several random parameters us-
ing the Laplace approximation to compute the integral in (3.4) or (3.6) numerically. For
the mixed effects framework, see Davidian and Giltinan 2003; Pinheiro and Bates 1995;
Searle and McCulloch 2001b; Pinheiro and Chao 2006.

Gaussian quadrature approximation: It was proposed in Pinheiro and Chao 2006 and
treated in Picchini, GAETANO, and Ditlevsen 2010 for the case of one random ef-
fect with normal distribution or any other continuous distribution (See Picchini, GAE-
TANO, and Ditlevsen 2010 for more details). Assuming that PY(yi|bi, θ) ∈ C2R(R), the
integral given random effect can be approximated by the Gauss-Hermite quadrature
of an order (R) as the following:

∫
PY(yi|bi, θ)PB(bi|Ψ)dbi '

R

∑
r=1

πrPY(yi|
√

2φzr + ϑ, θ) (3.7)

where zr, r = 1, ..., R are the zeros of the Hermite polynomial HR(·) of degree R and

πr =
2R−1R !

R2(HR−1(zR))2)
are adequate weights, which does not depend on the individual.

So, the likelihood (3.4) is approximated as follows:

L(R)(θ, Ψ) =
M

∏
i=1

R

∑
r=1

πrPY(yi|
√

2φzr + ϑ, θ) (3.8)

We note that L(R)(θ, Ψ) converge to the exact value of L(θ, Ψ) when the domain of
integration is compact and R −→ ∞. Then, using optimization tools on (3.8) the ap-
proximated estimators (θ̂(R), Ψ̂(R)) are obtained :
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(θ̂(R), Ψ̂(R)) = argmin(θ,Ψ){−
M

∑
r=1

log(
R

∑
r=1

πrPY(yi|
√

2φzr + ϑ, θ))} (3.9)

Laplace approximation: For a multidimensional vector of random parameters, if the
exact transition density or its closed-form approximation can exist, we can use the
Laplace approximation method (See: Picchini and Ditlevsen 2011; Pinheiro and Chao
2006; Shun and McCullagh 1995), in order to obtain an explicit expression of the ap-
proximate likelihood function to maximize. So, for a q-dimensional random vector bi,
the likelihood function (3.4) can be approximated as:

logL(θ, Ψ) '
M

∑
i=1

[
logPY(yi|b̃i, θ) + logPB(b̃i|Ψ) +

q
2

log(2π)− 1
2

log| − H(b̃i|θ, Ψ)|
]

,(3.10)

where:

b̃i = argmaxbi( f (bi|θ, Ψ)) and f (bi|θ, Ψ) = logPY(yi|bi, θ) + logPB(bi|Ψ) (3.11)

and | · | denotes the determinant of the Hessian matrix H(bi|θ, Ψ):

H(b̃i|θ, Ψ) =
∂2[logPY(yi|b̃i, θ) + logPB(b̃i|Ψ)]

∂b̃i∂b̃iT

with PY(yi|bi, θ) is as in (3.5), then (3.10) is obtained by approximating
∫

B
elog( f (bi|θ,Ψ))dbi

using a second-order Taylor series expansion, known as the Laplace approximation. In
the case of using the Laplace method, the calculation of the Hessian matrix can be
done analytically when it is possible, as for the examples in Chapter 5, or with help of
a symbolic calculus software or the automatic differentiation tools (AD)(See: Griewank
2000).
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Genetic Algorithm:

The genetic algorithm (GA) is a random search technique to look for an exact or ap-
proximated optimum points for optimization problems (See: Golberg 1989; Michalewicz
1992; Sivanandam and Deepa 2008). It is based on the concepts of natural genetic evo-
lution that contains the following stages: reproduction, crossing, and mutation of a
constantly evolving population. It sets up the evolution of a random population of po-
tential solutions of N cardinal, then, the N simultaneous iterative trajectories interact
with each other by following or imitating the biological evolution, for a convergence
of some elements of the population towards an optimal point of the fitness function.

The GA can search in multiple directions to explore all the search space by the possibil-
ity of jumping across them, so that the seeds spread uniformly over the whole search
space. In this algorithm, we have a diversity of initial populations which gives the
global optimum faster than other algorithms, where the initial value is very important
and should be enough close to the global optimum. All of these features allows the GA
to be regarded as a driving tool of evolution giving good results for optimization pro-
cesses (See: De Jong 2006; Michalewicz 1992). In the literature, there were many works
on the application of GA in optimization problems as well as on the likelihood func-
tion (See: Yalçınkaya, Şenoğlu, and Yolcu 2018; Petrovski, Wilson, and McCall 1998).
To generate the GA, we must first define some parameters of the algorithm: Population
size N, EN, SR, CP, MP, fitness function, and convergence criteria. In the following we
present the GA steps:

Steps of GA:

1. Generate initial population {β(0)
1 , β

(0)
2 , ..., β

(0)
N }, m = 0 via an initialization strategy (

random generation), in our case β = (θ, Ψ).

For m = 0:

2. Evaluate the Fitness function log(−L(a)(θ(m), Ψ(m))) .

3. While (convergence criteria are not satisfied):

Do:

4. Replacement step ( by using SR and EN): At the SR rate, individuals with the worst
results in step 2 of Fitness function are replaced by new ones randomly generated , and
a number EN of individuals is selected and accepted for the next step.

5. Selection Operator by using: Roulette Wheel Method, based on the fact that the more
the individual has a good result of fitness function, the more likely he will be selected.
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6. Crossover Operator by using CP & Mutation Operator by using MP: it is a mecha-
nism of perturbation on the candidate individuals (parents) according to CP and MP
to generate new groups of individuals and we obtain a new (m + 1)nd population
{β(m+1)

1 , β
(m+1)
2 , ..., β

(m+1)
N }.

Else:

7. Evolution stops, get GA output

8. m = m + 1

End For.

In this work, in Chapter 5, the GA is implemented using Matlab software, where the
function "ga", to generate the Genetic algorithm, requires inputs that are chosen ac-
cording to the constraints of each example (See the help window in Matlab). Further-
more, the algorithm parameters are chosen according to: De Jong 2006, as follows:
EN = 4, MP = 0.2, CP = 0.8 and SR = 1/3, and the search spaces are around the
confidence interval of the minimal model parameters (See: Andersen and Højbjerre
2005 and references therein).

3.5 An approach for a closed-form transition density

Here, we propose to approximate the transition density for a N-dimensional time-
inhomogeneous SDME model (3.2) in a closed form using the Risken approximaton,
the reader is referred to the book: Risken 1996, which is based on the Fokker-Planck (FP)
equation characteristics or the forward Kolmogrov equation. The proposed method-
ology is then based on the Kramers-Moyal expansion that represents a motion equation
verified by the probability density. Under some assumptions (See: Risken 1996), the
probability density ϕ(y, t) of a N-dimentional SDME model obeys the Kramers-Moyal
(KM) expansion:

∂ϕ(yj, tj)

∂tj
= LKM ϕ(yj, tj) (3.12)

where:

LKM =
∞

∑
n=1

(− ∂

∂yj
)(n)T(n)(yj, ∆j|yj−1, b, θ) (3.13)
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where the development coefficients are the moments, when the equation (3.13) stops
after the second term, the obtained equation is then the Fokker Planck equation:

∂ϕ(yj, tj)

∂tj
= LFP ϕ(yj, tj) (3.14)

with LFP is the Fokker Planck operator:

LFP = − ∂

∂yj
T(1)(yj, ∆j|yj−1, b, θ) +

∂2

∂y(l)j y(k)j

T(2)(yj, ∆j|yj−1, b, θ) (3.15)

where T(1) and T(2) are the drift and the diffusion term respectively, and l and k are
the lth and kth componeneet of y respectively.

According to the special intitial condition: δ(y1 − y0) = PY(y1, ∆1|y0, b, θ), with the
initial condition δ(yi

j − yi
j−1) is the Dirac-delta generalized function centered at yi

j−1,
the transiton density is the distribution ϕ(yj, tj), thus, it must also obeys the equation
(3.12). It represents therefore the solution of the motion equation. So, with respect
to the special initial condition, the solution of the Fokker Planck equation (3.14) is the
transition density for the model (3.2) (see: Risken 1996 and Lo 1988):

∂PY(yj, ∆j|yj−1, b, θ)

∂tj
= LFPPY(yj, ∆j|yj−1, b, θ) (3.16)

with:

LFP = − ∂

∂y(l)j

µ(l)(yj, tj, θ, b) +
∂2

∂y(l)j y(k)j

Σlk(yj, tj, θ, b) (3.17)

The equation (3.16) represents the motion equation of the process Y, and the resolution
of this equation, when it is possible, leads to have an explicit form of the transition
density. Then, for a small ∆j, we get:
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PY(yj, ∆j|yj−1, b, θ) = [1 + LFP(yj, tj)∆j + ◦(∆2
j )]δ(yj − yj−1) (3.18)

So, bu inserting (3.17) in (3.18) then we may write up to terms of the order ∆2
j :

PY(yj, ∆j|yj−1, b, θ) = [1− ∂

∂y(l)j

µ(l)(yj, tj, θ, b) +
∂2

∂y(l)j y(k)j

Σlk(yj, tj, θ, b)]δ(yj − yj−1)(3.19)

and by introducing δ in terms of Fourier integral, we get:

PY(yj, ∆j|yj−1, b, θ) = [1− ∂

∂yj
µ(yj, tj, θ, b)∆j +

∂2

∂y(l)j y(k)j

Σ(yj, tj, θ, b)∆j]
1

2π

∫ +∞

−∞
eiu(yj−yj−1)du

After a classical computation using the Gaussian integral properties such in Appendix
A, and by replacing yj by yj−1 in drift and diffusion terms, since: δ(yj − yj−1) f (yj) =

δ(yj − yj−1) f (yj−1) we get the following:

PY(yj, ∆j|yj−1, b, θ) = (2
√

Π∆j)
−N[DetΣ]−

1
2 ∗ exp(− 1

4∆j
[Σ−1]lk[(yi

j)
l − (yi

j−1)l −

µl(yi
j−1, t, θ, bi)∆i

j][(y
i
j)k − (yi

j−1)k − µk(yi
j−1, tj−1, θ, bi)∆i

j])(3.20)

In reality, the form (3.20) is not unique, we can deduce a class of equivalent forms, we
can for example get the following expression that we will use in Chapter 5 (See the
proof in the appendix) :

PY(yj, ∆j|yj−1, b, θ) = (2
√

Π∆j)
−N[DetΣ]−

1
2 exp(

∂

∂yjl
µl(yj, tj, θ, b)∆j +

∂2

∂yj
2
l

Σl(yj, tj, θ, b)∆j

− 1
4∆j

[Σ(yj, tj, θ, b)−1]lk[yjl − yj−1l − µ(yj, tj, θ, b)∆j][yjk − yj−1k −

µ(yj, tj, θ, b)∆j]) (3.21)
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The advantages of this approach, compared to those proposed in the literature for mul-
tidimensional SDME models with more than one random parameter Ait-Sahalia 2008,
are that the computation of the approximate density is very easy and does not require
a lot of time to compute in a software. Moreover, the proposed method is also effec-
tive even with large data, see the applied examples in Chapter 5. Also, the only task
that can be time-consuming for the present methodology is in the optimization step to
search for the optimum solution of the likelihood. The reader is referred to see other
methods existing in the estimation methods literature in the following section of this
chapter. Nevertheless, the method suffers some limitations, for example: when the
conditions to use (3.20) or (3.21) are not verified when e.g. the inverse of the diffusion
term does not exist or/and when the time step ∆j is not sufficiently small, which re-
quire high frequency data and which is not suited for PK/PD data where designs are
usually sparse.

Approximated estimators:

For a nonlinear SDME model with Gaussian random effects; using (3.6), (3.10) and
(3.20); we obtain the following approximated likelihood function :

logL(a)(θ, Ψ) '
M

∑
i=1

[−q
2

log((2π))− 1
2

log(det(φ))− ni

2
log(det(Σ)) + (

ni

∑
j=1

log((2
√

Π∆j)
−N)

− 1
4∆j

[Σ−1]lk[(Yi
j )l − (Yi

j−1)l − µl(Yi
j−1, t, θ, b̃i)∆i

j][(Y
i
j )k − (Yi

j−1)k − µk(Yi
j−1, tj−1, θ, b̃i)∆i

j])

−1
2
(b̃i − ν)′φ−1(b̃i − ν) +

q
2

log(2π)− 1
2

log(det(−H(b̃i|θ, Ψ)))]. (3.22)

The ML estimators of (θ, Ψ) can be obtained using one of the optimization tools and
numerical computation software, especially, when it is complicated to compute ana-
lytically the gradients of the likelihood. Here, we propose to use the genetic algorithm
as an optimization tool to maximize the approximate likelihood function (3.22) using
Matlab software:

(θ̂, Ψ̂) = argminGA(−log(L(a)(θ, Ψ))). (3.23)
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3.6 Practicale estimation methods of NonLinear stochas-

tic differential Mixed Effects model

3.6.1 SDME model without measurements noise

The model in (3.2) is considered as an SDME model without measurement noise, where
we assume that the process (Yi

t )t≥t0 is directly observed for all i = 1...M at different
time points tij for j = 1...ni. This type of measurements represents the difference be-
tween two measurements taken simultaneously, which may be due to a test error or to
existence of a disturbance element (for example a drug administered during a concen-
tration measurement in plasma).

Estimation methods:

Hermite expansion of the approximated transition density: This method was origi-
nally proposed as an approximated method of transition density by ait2002numerical
for unidimensional model with time-homogeneous equations, and was extended by
Egorov, Li, and Xu 2003 to inhomogeneous equations, then to multidimensional equa-
tions by the original author Ait-Sahalia 2008. This method consists in transforming Yt

by the Lamperti transform ι, which exists when the diffusion is reducible and is de-

fined as: Xt ≡ ι(Yt) =
∫

Yt

1
Σ(u, θ, b)

du. The resulting process Xt is the solution of an

SDME model with constant diffusion term equal to one and drift term defined as:

µ
(l)
X (Xt) =

d

∑
i=1

(Σ−1
li (ι−1(Xt))µ

(i)(ι−1(Xt)))−
1
2

d

∑
i,j,k

(Σ−1(ι−1(Xt)) (3.24)

∂Σ
∂Yj

(ι−1(Xt))Σ−1(ι−1(Xt)))liΣik(ι
−1(Xt))Σjk(ι

−1(Xt)).

Then we consider the transition density of the process Xt that is expanded in closed-
form using an order J = +∞ Hermite series, and approximated by a Taylor expansion
up to order S. We assume that the functions µ(·) and Σ(·) are infinitely differentiable in
Yi

t and three times continuously differentiable in θ and bi, ∀Yi
t ∈ E, (θ, bi) ∈ Θ× B; and

that Σ(·) is bounded below by a strictly positive function. So, we obtain the following
explicit sequence:
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lnP(S)
Y (yi

j,4i
j|yi

j−1, bi, θ) = −d
2

ln(2π4i
j)−

1
2

ln(det(Σ(yi
j, θ, bi)Σ(yi

j, θ, bi)T)) +

C(−1)
X (ι(yi

j)|ι(yi
j−1))

4i
j

+
S

∑
s=0

C(s)
X (ι(yi

j)|ι(yi
j−1))

4s,i
j

( !s)
(3.25)

where: C(−1)
X (x|x0) = −

1
2

d

∑
h=1

(x(h) − x(h)0 )2 , C(0)
X (x|x0) =

d

∑
h=1

(x(h) − x(h)0 )
∫ 1

0
µ
(h)
X (x0 +

u(x − x0))du, C(k)
X (x|x0) = k

∫ 1

0
G(k)

X (x0 + u(x − x0)|x0)uk−1du, for k = 1 we have:

G(1)
X (x|x0) = −

d

∑
h=1

∂µX(h)(x)
∂x(h)

−
d

∑
h=1

µX(h)(x)
∂C(0)

X (x|x0)

∂x(h)
+

1
2

d

∑
h=1

∂2C(0)
X (x|x0)

∂x(h)2 +

(
∂C(0)

X (x|x0)

∂x(h)

)2
,

and for k ≥ 2 we have: G(k)
X (x|x0) = −

d

∑
h=1

µX(h)(x)
∂C(k−1)

X (x|x0)

∂x(h)
+

1
2

d

∑
h=1

∂2C(k−1)
X (x|x0)

∂x(h)2 +

1
2

d

∑
h=1

k−1

∑
h′=0

(
k− 1

h′

)
∂C(h′)

X (x|x0)

∂x(h)
∂C(k−1−h′)

X (x|x0)

∂x(h)

Then, we obtain the following approximated log likelihood function of order S as fol-
lows:

logL(S)(θ, Ψ) =
M

∑
i=1

∫
logP(S)

Y (yi|bi, θ)PB(bi|Ψ)dbi (3.26)

with P(S)
Y (yi|bi, θ) =

ni

∏
j=1

P(S)
Y (yi

j, ∆i
j|yi

j−1, bi, θ). So, the approximated estimators of pa-

rameters (θ, Ψ) are defined as:

(θ̂(S), Ψ̂(S)) = argmin(θ,Ψ)(−log(L(S)(θ, Ψ))) (3.27)

Kolmogrov equation approximation: This method consists in approaching the transi-
tion density of a a continuous time stochastic process in an SDME model using Kol-
mogrov equations. It was was proposed by Lo 1988, who shows that under certain
assumptions (See page: 6-8 in Lo 1988), the transition density satisfies the functional
partial differential equation:
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∂

∂t
(PY(yi

j,4i
j|yi

j−1, bi, θ)) = − ∂

∂Y
[µ(Yi

j , tj, θ, bi)PY(yi
j,4i

j|yi
j−1, bi, θ)] +

1
2

∂2

∂Y2 [Σ(Y
i
j ,

θ, bi)2PY(yi
j,4i

j|yi
j−1, bi, θ)] (3.28)

with the initial condition PY(yi
j,4i

j|yi
j−1, bi, θ) = δ(yi

j − yi
j−1) where δ(yi

j − yi
j−1) is

the Dirac-delta generalized function centered at yi
j−1, and with boundry condition:

PY(0,4i
j|yi

j−1, bi, θ) = 0. The cited reference has shown the utility of this approxima-
tion method by dealing with illustrated examples, and asserts the asymptotic proper-
ties of the obtained estimators. However, a limit of the efficiency of this method could
be the possibility of being able to solve the particular partial differential equation of
the process in question .

3.6.2 SDME model with measurement noise

In this paragraph, we consider that the process Yi
t , i = 1...M, is not directly observed

and we take into account the existence of a measurement error, we consider Zi
tj
= Zi

j

the jth observation of the individual i at the instant tj, the whole of the model is then
defined as:

Zi
j = h(Yi

j , tj, θ, bi) + g(Yi
j , tj, θ, bi)εij, εij ∼ N (0, IS), S < N

dYi
j = µ(Yi

j , tj, θ, bi)dt + Σ(Yi
j , θ, bi)dW i(t), Yi

0 = yi
0, i = 1, ..., M, (3.29)

bi ∼ i.i.dPB(·|Ψ)

For an SDME model with measurement noise, the parameters to be estimated are
(θ, Ψ, Ω). The likelihood function is then defined as:

L(θ, Ψ, Ω) =
M

∏
i=1

∫
B
(
∫

Y
PZ(zi|yi, Ω)PY(yi|bi, θ)dYi)PB(bi|Ψ)dbi (3.30)

where: PZ(zi|yi, Ω) =
ni

∏
i=1

P(zi
j|Yi

j , Ω) is the conditional density of the observations z
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given the diffusion Y. Here, for an SDME model with measurement noise, the difficul-
ties encountered for the model without measurement noise with direct observations
are still present and are exacerbated by integration with hidden trajectories Yi. The
main objective is to estimate the parameters of the model, many estimation methods
developed for an SDME model with measurement noise are suggested in the theory, in
the following we will revise the most famous of them.

Firstly, we present the Bayesian approach adopted to an SDME model with a popula-
tion approach proposed by: S Donnet 2010. Secondly, we present the extended Kalman
Filter (EKF) method coupled with the First Order Conditional Estimate (FOCE) algo-
rithm, this combined methodology was proposed by Overgaard et al. 2005 and Tornøe
et al. 2005. Finally, we develop the Expectation-Maximization algorithm (E-M) in its
stochastic version adopted to NLME model proposed by Walker 1996 and Kuhn and
Lavielle 2005. As for the case of an SDME model without measurement noise, the
choice of an estimation method depends on the availability of an explicit transition
density.

Estimation methods:

Bayesian inference: Recurring difficulties of classical inference to maximize and have
the likelihood function in a closed-form, that requires the existence of the transition
density in explicit form, could be exceeded by using Bayesian inference. This method
consists to set a prior distribution of the parameters and then to estimate the poste-
rior distribution of these parameters (θ, Ψ, Ω) given the observations z according to
the Bayes formula P(θ, Ψ, Ω|Z) ∝ f (z; θ, Ψ, Ω)π(θ, Ψ, Ω). So, the obtained estimators
of (θ, Ψ, Ω) are characterized by statistical characteristics of the posterior distribution
p(θ, Ψ, Ω|z) (posterior mean or median). But, usually, the posterior distribution has
no explicit expression, especially for nonlinear models, so iterative estimation proce-
dures are needed. The recommended strategy is to use the Monte Carlo Markov Chain
(MCMC) algorithm (See: Robert and Casella 2004) to generate a Markov chain sample
from the posterior distribution as its marginal stationary distribution. This algorithm
simply consists in generating alternately, at the iteration k:

(1) b(k)|Y(k−1), z, θ(k−1), Ψ(k−1), Ω(k−1)

(2) Y(k)|b(k), z, θ(k−1), Ψ(k−1), Ω(k−1).

(3) (θ(k), Ψ(k), Ω(k))|Y(k), b(k), z.
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when it is assumed that there is no measurement noise and that the process is observed
directly, the second step is removed. The Markov Chain produced by this algorithm
has a stationary distribution p(b, Y, θ(k), Ψ(k), Ω(k)|z), and after a high number of iter-
ations, we get a sampled parameters (θ(k), Ψ(k), Ω(k)) that are assumed to have this
interest distribution p(θ, Ψ, Ω|z) as its marginal posterior distribution, which responds
to the goal. Moreover, as the conditional densities used in this algorithm are not ex-
plicit, we need to use the Metropolis-Hastings simulation algorithm.

Stochastic Expectation-Maximization (SAEM) algorithm: Stochastic Expectation-Maximization
algorithm is another suggested method to estimate parameters of a nonlinear SDME
model. This method was originally proposed by Dempster, Laird, and Rubin 1977, and
treated in Wang 2007 for NLME models, then it was adopted to population SDEs by
Donnet and Samson 2008, Donnet and Samson 2011 and Delattre and Lavielle 2013.
This algorithm is a suitable method for an SDME model with noise measurement, it
allows to avoid the problem of the integration in the likelihood function when it is
possible to maximize the conditional expectation of the probability of the complete
data (z, y, b):

Q(θ, Ψ, Ω|θ′, Ψ′, Ω′) = E[logP(z, y, b; θ, Ψ, Ω)|z; θ′, Ψ′, Ω′)] (3.31)

The original Expectation-Maximization (EM) method is based on two steps: The first
is the Expectation-step (E-step) which is an iterative procedure, where Ql(θ, Ψ, Ω) is
evaluated at the l-iteration given the current value of the parameters θl−1, Ψl−1, Ωl−1.
Then, the second is the Maximization-step (M-step) where the likelihood function
Q(θ, Ψ, Ω|θ′l−1, Ψ′l−1, Ω′l−1) is maximized and θl−1, Ψl−1, Ωl−1 are updated. Moreover,
when the conditional distribution P(y, b|z; θ, Ψ, Ω) is not explicit this algorithm cannot
be applied, which is generally the case in population SDEs. So, the E-step is not an
obvious step for the case of an SDME model, in this context, the stochastic version of
the EM algorithm has been proposed by the authors above.

In the SAEM algorithm, the E-step is split into a simulation step (SM-step) and a
stochastic approximation step (SA-step). The first simulates the non-observed data
(y(l), b(l)) according to the conditional distribution P(y, b|z; θ̂l−1, Ψ̂l−1, Ω̂l−1), this sim-
ulation step might not be easy to perform exactly, so other algorithms are required
as: MCMC algorithm, when the transition density is explicit as in the Bayesian frame-
work, or Particle MCMC (PMCMC) algorithm, which coupled the MCMC algorithm
with particle filter techniques (See Andrieu, Doucet, and Holenstein 2010 and Donnet
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and Samson 2011). These algorithms proved their convergence theoretically when the
complete log-likelihood belongs to the exponential family with respect to the parame-
ters (θ, Ψ, Ω). Then, the second step (SA-step) is based on the following approximated
equation:

Ql(θ, Ψ, Ω) = Ql−1(θ, Ψ, Ω) + ηl[logP(z, y(l), b(l); θ, Ψ, Ω)−Ql−1(θ, Ψ, Ω)] (3.32)

where (ηl)l∈N is a sequence of positive numbers decreasing towards zero. However,
in the simulation step only the individual parameters bi are simulated according to
P(bi|zi; θ), the diffusion trajectories are not simulated but are directly used in this con-
ditional distribution. Thus, this distribution cannot be directly simulated so the MCMC
algorithm with a Metropolis-Hastings algorithm is recommended. But, to compute the
probability of acceptance, the expression of P(zi|bi, Ω) is necessary, whereas, it does
not have a closed-form. Thus, following all these constraints, an alternative method to
avoid such problems has been proposed by Delattre and Lavielle 2013, based on the
EKF algorithm described below to approximate the conditional likelihood to a Gaus-
sian function.

EM-Bayesian inference: Here, we resume the Bayesian method seen above when the
density of transition is not explicit. In this case, we consider an approximate model
resulting from the Euler-Maruyama approximation of the SDE solution according to
a size h step as proposed in Donnet and Samson 2011, then we perform the Bayesian
inference on the model obtained as it was treated previously.

EM-SAEM: The SAEM algorithm can be adopted to the case of an SDME model with
measurement noise but without an explicit transition density, using the approximate
solution of the SDME model obtained by the Euler-Maruyama approximation. In this
case, the transition density can be approximated by a Gaussian distribution if the time
interval between two observations is small, if it is large we need to introduce a set of
auxiliary latent data between every pair of observations in order to get a good approx-
imation to the transition density as it was proposed by Donnet and Samson 2008. So,
in practice, this introduction of unobserved data is generally recommended, which can
slow down the convergence rate.

Extended Kalmen Filter (EKF) coupled with First-Order Conditional Estimation (FOCE)
algorithm: This method is an approximate method to estimate a nonlinear SDME
model with unknown transition density, it is constructed, as it is mentioned in the title,
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by the combination of two techniques and that is valid only for models with measure-
ment noise. The First-Order Conditional Estimation (FOCE) is a linearization tool that
allows a nonlinear mixed-effect model to be compared to a linear model, see: Lind-
strom and Bates 1990. Overgaard et al. 2005 and Tornøe et al. 2005, that proposed to
adapt this method to the population SDEs model. For the Extended Kalman approach,
it has been proposed by Tornøe et al. 2005 for a time-homogeneous SDME model with
measurement noise, the main idea is to approximate the transition density by a Gaus-
sian distribution, therefore, the combination of these methods could be effective for the
inference problems for a nonlinear SDME model with an unknown transition density.

First, we apply the EKF method in order to approximate the individual likelihood func-
tions by a Gaussian distribution, then, the FOCE algorithm is applied in order to facili-
tate and approximate the computation of the likelihood function of the population and
parameter estimates. So, the likelihood function (3.30) of model (3.29) can be rewritten
according to the idea of recursive conditioning in the following formula:

L(θ, Ψ) =
M

∏
i=1

∫
B
[

N

∏
j=1

PZ(zi
j, ∆i

j|zi
j−1, bi, θ)]PB(bi|Ψ)dbi (3.33)

In EKF algorithm, the transition density PZ(zi
j, ∆i

j|zi
j−1, bi, θ) is approximated by a Gaus-

sian distribution, with mean mi
j|1:j−1(b

i, Ωθ) and variance Ri
j|1:j−1(b

i, Ω, θ) which are
not explicit when h is nonlinear, and depend on bi, Ω and θ :

mi
j|1:j−1 = E(zj|z1:j−1) = E(h(Yi

j , θ|z1:j−1)

Ri
j|1:j−1 = Var(zj|z1:j−1) = Var(h(Yi

j , θ|z1:j−1) + g(Yi
j , Ω)2

So, for the model (3.29), the approximate individual likelihood function can be rewrit-
ten as:

LEKF
i (θ, Ψ, Ω; zi) =

∫
B
[

ni

∏
j=1

exp(−1
2 (zi

j −m(i)
j|1:j−1)

T(Ri
j|1:j−1)

(−1)(zi
j −mi

j|1:j−1))√
|2πRi

j|1:j−1|
]

PB(bi|Ψ)dbi =
∫

B
eli(bi)dbi (3.34)
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with li is the approximate conditional log-density of bi given the observations.

4li ≈ −
ni

∑
j=1

(5εT
ijR
−1
i(j|j−1)5 εij −Ψ−1) (3.35)

Then, we approximate li by a second-order Taylor expansion (using Laplacian approx-
imation), the gradient of li with respect to the random effects will vanishes because in
FOCE algorithm the expansion is evaluated around the true minimum b̂i of li. So, we
get the following approximated likelihood from EKF algorithm and Taylor expansion:

logLEKF,FOCE(θ, Ψ, Ω; z) =
M

∏
i=1

1√
2π
| − H(li)|

−1
2 exp(li)|

b̂i
(3.36)

So, it remains only the computation of the Hessian term H(li) to deduce the likelihood
function of the population, which cannot be calculated exactly but it could be approxi-
mated using the FOCE algorithm. For more information on the implementation of the
FOCE method in computer software (See Tornøe et al. 2005, Mortensen et al. 2007 and
Klim et al. 2009). This method is not yet defended theoretically since no theoretical
convergence has been proved.

3.7 Conclusion

In this chapter, we have proposed an estimate procedure of a mixed effects model
containing stochastic differential equations, known by the SDME models, to get the
likelihood function in an approximate closed form to obtain the ML estimators. Then,
we have presented a review on estimation methods existing in the literature for more
knowledge on the estimation procedures already existing in this context. The proposed
method will be evaluated, in Chapter 5, using simulation studies on two examples of
SDME models: the two-dimensional Ornstein-Uhlenbeck process and stochastic mini-
mal model describing the glucose-insulin kinetics.

Generally, in models with SDEs instead of ODEs with random effects, the estimation
of parameters still not obvious even for one individual (one trajectory), because of the
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difficulties in deriving the transition densities. These difficulties become more interest-
ing when using the population approach which treats the entire population simultane-
ously. In fact, the derivation of the exact density is not always possible for a stochastic
and continuous process in an SDME model, so looking for an approximation is an im-
portant step and requires expensive calculation. This task is very interesting to give
good results with good statistical properties of the estimators obtained by maximizing
the likelihood function. Here, we have proposed an approximation method to obtain
the transition density in a closed form, based on the Risken approximation for the for-
mal solution of the Fokker-Planck equation proposed by Risken in Risken 1996.

In the theory, many methods have been proposed depending on the observed pro-
cess in the model whether it includes measurement noise or not, we can summarize
the whole described procedure, as mentioned above, in the following way: (1) For
an SDME model without measurement noise: i) if the exact transition density exists,
this is the simplest but the rarest case, model parameters could be estimated by giv-
ing the exact ML estimators; ii) otherwise, we propose to use our estimation method-
ology proposed in this section, or the Hermit expansion, or the solution of the Kol-
mogorov equations as approximate methods to estimate the transition density. (2)
When the model includes measurements noise: i) Bayesian inference and Stochastic
Expectation-Maximization (SAEM) algorithm are recommended when the transition
density is known ii) if not, these methods are applied on the approximated solution de-
rived by Euler-Maruyama (EM) scheme or replaced by Extended Kalmen Filter (EKF)
coupled with First-Order Conditional Estimation (FOCE) algorithm. Indeed, the choice
and use of each of these methods is restricted according to the case of the application
of each of them. For example: when the model includes measurements noise, the Her-
mite expansion cannot be directly used while the EKF method coupled to FOCE is
suitable, however, the Bayesian approach is adapted for any model (with or without
measurement noise) and when also the transition density is not known. In addition,
for the EM approximation, it must be performed with the introduction of latent data
between each pair of observations to increase the convergence of the algorithm and the
quality of the estimators.

Moreover, the statistical inference for SDME models implies the problem of the numer-
ical evaluation of the integral given random effects in the likelihood function, which
becomes complicated especially when the model contains more than two random pa-
rameters. In the literature, several methods have been proposed and tested for the
approximation of the integral (See references in the introduction).

Finally, we notice that researches are still in progress for more efficient and reliable
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estimation methods for SDME models, as these models are still of interest to scientists
who believe that, this type of model will have increasing popularity, as it combines
the right characteristics of mixed effects theory, with the possibility of considering the
system noise in the intra-subject dynamics, thus leading to a flexible and powerful
modelling approach.
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4.1 Background

4.1.1 About glucose and insulin:

Insulin is a hormone naturally secreted by the pancreas. When food is ingested, carbo-
hydrates are broken down into glucose. Glucose, in turn, serves as a source of energy
for the body. The pancreas produces and releases insulin to help the body use and



58 Chapter 4. Insulin sensitivity modelling

/ or store this glucose. Insulin works in combination with other hormones including
amylin and glucagon. There are two main types of insulin: Slow-acting insulin: which
balances blood sugar levels throughout the day. It is the insulin that the body needs
to function properly, and Fast-acting insulin (or rapid insulin) is the insulin the body
needs to cover carbohydrate intake from meals. This insulin lowers blood sugar in
hyperglycemia (high blood sugar level).

4.1.2 Diabetes

Diabetes mellitus is a common metabolic disease that spreads in an interesting way
among people around the world. The study of this disease is based on observations
of the body’s responses to the insulin produced by the pancreas, that should be used
properly to take advantage of glucose in the tissues. The diabetes disease is one of
the most prevalent diseases between individuals for both sexes, its affectation degree
depends on certain characteristics which depend on each individual and manifests in
different ways between individuals according to two types of diabetes (See: Alberti
and Zimmet 1998): Type 1 Diabetes (T1D): when the body fails to produce insulin at
all, which involves the injection of insulin to regulate the level of glucose in the blood,
and Type 2 Diabetes (T2D): when the cells do not react to the secreted insulin, because
they do not use insulin properly or if the produced insulin is insufficient.

The glucose is produced mainly by the liver, distributed and used both in the blood
system and red blood cells on the one hand; constituting insulin-independent; and
in muscles and tissues on the other hand; constituting insulin-dependent. Insulin is
secreted by the pancreatic beta cells and then it enters the circulation of the system af-
ter liver degradation, then it is eliminated primarily by the kidneys, these controlling
interactions are called insulin sensitivity and beta cell sensitivity. However, the incom-
patibility or insufficiency of the produced insulin causes a dysfunction of the insulin
role in favour of glucose, resulting in an inability to remove glucose from the blood at
the normal rate. These abnormalities can be explained by a low sensitivity to insulin
(See: Pacini and Bergman 1986), which means the insulin’s ability to reduce glucose
levels in the muscles, liver and tissues, or by a weak glucose effectiveness that means
the ability of glucose to improve its own elimination at the basal insulin level, or by the
failure of the pancreatic β-cells to secrete insulin in response to glucose stimuli. The
quantitative assessment of these critical factors is possible from the minimal model
(See: Bergman et al. 1979a) that could improve the identification and diagnosis of the
glucose-insulin kinetics in blood to describe the diabetes disease and its corresponding
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treatments (See: Martin et al. 1992), the aim being therefore to investigate how good
estimates of these factors can be obtained.

The idea is to use the minimal model and to explore the Intra Venous Glucose Tol-
erance Test (IVGTT) dataset, which includes measurements of glucose and insulin
concentrations in the blood before and after an intravenous glucose injection at dif-
ferent time points, in order to model and estimate the key diabetes parameters. The
minimal model is composed by ordinary differential equations (ODEs) sets describing
the glucose-insulin kinetics simultaneously, it is based on a compartment model struc-
ture similar to what is commonly used for modelling within Pharmacokinetics (PK). In
Pacini and Bergman 1986, the glucose and insulin kinetics were described separately
by two sets of differential equations, but this approach leads to estimate, separately,
the parameters which often provide unrealistic parametric estimates, and in Pillonetto
et al. 2002, the Bayesian approach is adopted to estimate glucose kinetics parameters
by considering the insulin sensitivity parameter as known, however, this assumption
leads to the loss of important information. So, it is of interest to couple the dynamics of
the kinetics of glucose and insulin concentrations in a single model as assumed in the
minimal model structure. Nevertheless, as pointed out by the authors in De Gaetano
and Arino 2000, this coupled model can lead to a very poorly posed and complicated
parameter estimation problem, this is the targeted purpose of the present work. In
the following, the estimated approach proposed above will be applied to the minimal
model in its stochastic version, where the empirical results will be reported later in
Chapter 5.

4.1.3 Insulin sensitivity

Insulin sensitivity is an important parameter for diabetes diagnosis. It is one of the
parameters that describe the insulin-glucose kinetics in the body and predict whether
a person has a high risk of developing Type 2 diabetes. Moreover, it indicates how the
body responds to the secreted insulin by measuring the ability of insulin to increase
the efficiency of glucose to cells or tissues such as muscles and liver. This parameter
therefore makes it possible to describe the body’s sensitivity to the effects of insulin.
For a person with a normal insulin sensitivity, a smaller amount of insulin is sufficient
to lower his blood glucose level than someone who has low sensitivity, whereas, a
person with low sensitivity requires larger amount of insulin either secreted by the
pancreas or from injections to keep blood glucose stable in a normal rate. Moreover,
when the insulin sensitivity is lower we can talk about insulin resistance. So, this
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parameter is very important to determine the abnormalities in the insulin metabolism,
however, it can be quantified only if we are able to assess insulin action in the pancreas
and to measure the glucose and insulin entering and leaving the system. In this work,
we mainly aim to quantify this parameter by estimating minimal model parameters
describing the glucose-insulin control system (See next paragraphs).

4.1.4 C-peptide and insulin kinetics

The C-peptide is a substance made in the pancreas and secreted by beta cells, passes
through the liver before appearing in plasma without being extracted by the liver. One
of the major problems encountered in estimating insulin sensitivity is the measurement
of insulin secretion, because it is not possible to infer pancreatic secretion from data on
plasma insulin concentration; it is only possible to derive its component appearing in
plasma or the secretion of posthpatic insulin, which is approximately equal to 50% of
the pancreatic secretion. However, the C-peptide pancreatic secretion coincides with
insulin secretion because it is secreted equimolarly to insulin. In other words, plasma
C-peptide concentration offers o classical way to estimate the insulin secretion during
perturbation from plasma concentration measurements. So, the noted constraint can
be easily overcome if we have an available data on C-peptide measurements.

4.2 Minimal model of glucose-insulin kinetics

4.2.1 Presentation

The minimal model is based on a compartmental system outcome from individual
compartment analysis, which is one of the methods used in PK analysis as mentioned
before (See General Introduction). It was proposed in the late 1970s by Bergman et
al. 1979b and later developed in Toffolo, De Grandi, and Cobelli 1995 and Bergman,
Phillips, and Cobelli 1981, it describes the glucose-insulin kinetics and the dynamic
of these processes, in order to illustrate the mechanisms of diabetes disease, where
the measurements are based on data from IVGTT. Moreover, the minimal model was
originally specified for a single individual and does not combine several individuals,
however, using population-based approach with the aim of estimating the metabolic
portrait for a whole population can be very useful in the study of diabetes, with the
advantage of estimating the metabolic portrait for a whole population.
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As mentioned earlier, diabetes is one of the most prevalent diseases in individuals, the
degree and type of its affectation varies from individual to individual and depends on
certain individual characteristics, which implies that the concepts of stochastic mod-
elling with random effects could be a good approach for diabetes modelling. Moreover,
as seen before, there are two principal types of diabetes; T1D due to the insufficient in-
sulin production or to the fact that the cells do not respond to the secreted insulin,
and T2D where the patients tend to have substantially lower insulin sensitivity than
healthy individuals. Thus, to model the T2D, we observe how a person’s body re-
sponds to insulin in the process of transporting glucose to tissues, by measuring his
insulin sensitivity. In this chapter, we deal with the estimation of the minimal model
which represents a powerful model describing the glucose-insulin kinetics in three dif-
ferential equations simultaneously, see the mathematical formulation of the model in:
Bergman et al. 1979b; Bergman, Phillips, and Cobelli 1981; Toffolo, De Grandi, and Co-
belli 1995; Cobelli et al. 2009. Therefore, it might already be clear that the model should
take into account the variability between and within individuals by containing both
fixed and random effects, since the diabetes disease analysis takes into account the re-
sponse of each individual according to his own parameters as well as others which are
common and which describe the process of glucose-insulin for the entire population,
see Figure (4.1).

At first, glucose and insulin concentrations in the blood are described by two sets of
differential equations (See: Pacini and Bergman 1986); at a rate p1, glucose leaves and
enters the glucose space in proportion to the difference between the plasma glucose
concentration G(t) and the basal plasma concentration Gb, which is known and rep-
resent the pre-injection glucose level for each individual. Therefore, the parameter
p1 represents the glucose’s own ability to be eliminated in muscles, liver, and tissues
independently of insulin and which is called glucose efficiency and denoted by SG.
Then, the glucose disappears from the glucose space at a rate proportional to insulin
concentration in the insulin compartment X(t), which represents the dynamic of in-
sulin response according to the two rates p2 and p3. These two parameters represent,
respectively, the decreased glucose absorption capacity in tissues and its increased
insulin dependency, the insulin sensitivity is defined by combining these two rates
where SI = p3/p2, representing insulin’s ability to increase the net glucose utilization,
Bergman et al. 1979a. For insulin secretion I(t), it is secreted by the pancreas indepen-
dently of the glucose concentration, and proportional to a rate n to its own level already
in the body and to the glucose level deferred from a threshold h at a rate γ when G(t)
is above h, the insulin secretion then depends not only on the hyperglycemia level but
also to the time spent since glucose injection.
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FIGURE 4.1: The minimal model: Scheme of the glucose-insulin system.

Beforehand, in the rest of our work, the population is considered to be non-diabetic,
so that the reactions of the subjects do not influence the results in order to validate
the estimation procedure proposed while avoiding any confusion. However, nothing
prevents studying a diabetic population in a real application.

4.2.2 Stochastic minimal model

As mentioned earlier, the insulin and glucose processes, like all actual pharmacologi-
cal processes, could not be deterministic because they are exposed to many other un-
known factors. So, stochastic modelling with random individual parameters seems to
be a good analytical tool for diabetes disease modelling and insulin sensitivity esti-
mation for each person. In this study, we use measurements obtained from the intra-
venous glucose tolerance test (IVGTT), see: De Gaetano and Arino 2000 for a mathe-
matical modeling of the test where glucose and insulin concentrations in plasma are
subsequently sampled after an intravenous glucose injection), where a small amount
of glucose is administered intravenously to the subjects and then the concentration of
glucose and insulin in plasma are observed after different points of time, in this context,
we refer the reader to De Gaetano and Arino 2000 which describes the mathematical
modeling of the IVGTT.

In the literature, including the above-mentioned papers, the minimal model has been
considered as a deterministic model with only measurement errors, but we believe
that the dynamic of glucose and insulin processes modelized by the ODEs may not
correspond to the real dynamics of these processes in the body. So, there is an increas-
ing need to extend the deterministic minimal model to its stochastic version using the
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stochastic differential equations by adding stochastic components of Brownian motion
to the system of the ODEs. In this chapter, we deal with the use of a stochastic differen-
tial mixed effects model for the diabetes diseases modelling, using the minimal model
in its stochastic version.

The mathematical formulation of the system is presented by three differential equa-
tions describing the glucose-insulin kinetics according to the parameters appearing in
Figure (4.1), and describes through three SDEs how a person’s body responds to in-
sulin in the process of transporting glucose to tissues, and defines the mechanism of
the glucose-insulin kinetics (See: Bergman et al. 1979b; Bergman, Phillips, and Cobelli
1981; Toffolo, De Grandi, and Cobelli 1995; Cobelli et al. 2009).

From the mentioned literature and Figure (4.1), the glucose-insulin disposal can be
presented, with respect to time, by the following nonlinear stochastic differential equa-
tions, perturbed by the stochastic components σ1dw1(t), σ2dw2(t) and σ3dw3(t):

dG(t) = [−(p1 + X(t))G(t) + p1Gb]dt + σ1dw1(t), G(0) = G0

dX(t) = [−p2X(t) + p3(I(t)− Ib)]dt + σ2dw2(t), X(0) = 0

where G(t) and I(t) are, respectively, the concentration of glucose and insulin at time t
in the blood. Gb and Ib indicate the basal level of glucose and insulin concentration be-
fore the glucose injection. This injection will cause a disturbance of the concentrations
according to the mechanism described in these equations, these values are assumed
known for each individual. Also, G0 and I0 are the theoretical measure of the concen-
trations at glucose injection moment at the beginning of the experiment.

For the insulin secretion, measured by I(t), it is secreted by the pancreas proportionally
to its own level already in the body at a rate n, and also to the glucose level deferred
from a threshold h at a rate γ, and to the time spent since glucose injection. Thus,
the kinetic of the insulin is directly dependent on time and can be presented by the
following SDE:

dI(t) = [−n(I(t)− Ib) + γ(G(t)− h)t]dt + σ3dw3(t), I(0) = I0

where I0 is the theoretical initial insulin concentration in plasma.
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Finally, the stochastic minimal model based on the population approach in the sense
of Itô formula; and reparametrized by SG and SI ; can be defined as:

dYi(t) = ξ(Yi
t , t, θ, bi)dt + ΣdW(t) ; Yi

0 =

Gi
0

0
Ii
0

 (4.1)

where : Yi(t) =

G(t)i

X(t)i

I(t)i

, and ξ(Yi
t , t, θ, bi) =

 −(S
i
G + X(t)i)G(t)i + Si

GGi
b

−p2(X(t)i + Si
I(I(t)i − Ii

b))

−n(I(t)i − Ii
b) + γ(G(t)i − h)t

which

represents the drift term , and the diffusion term Σ is a diagonal matrix of elements σ1,
σ2 and σ3.

The ξ and Σ fulfil the Lipschitz (2.5) and linear growth (2.4) conditions (See Appendix
A.1 for more details). The parameters Si

G, p2, Si
I , n, γ, h, Gi

0 and Ii
0 are unknown in the

model and should be estimated. The parameters Si
G, Si

I , Ii
0 and Gi

0 are assumed ran-
dom, because they represent individual parameters that change from an individual to
another. Indeed, each subject has its own insulin sensitivity Si

I which allows to know if
the cells of his body react correctly or not to the insulin; and if the insulin produced by
the pancreas is sufficient or not, that can make some people with T2D and others with-
out diabetes. Also, for glucose effectiveness Si

G, which represents the glucose’s own
ability to be eliminated independently of insulin, it is unique to each individual and
changes from a person to another, as well as for the measurement of glucose and in-
sulin concentrations. For the rest of the parameters, we consider them fixed since they
describe the common side of the glucose-insulin kinetics for the entire population. So,
we have the following random effects vector bi = (Si

G, Si
I , Ii

0, Gi
0), and we assume that

:

Si
G ∼ N (µSG , σSG), Si

I ∼ N (µSI , σSI ), Ii
0 ∼ N (µI0 , σI0), Gi

0 ∼ N (µG0 , σG0). (4.2)

Random effects are assumed to be independent and identically distributed with a
multinormal joint density function, with the mean ϑ = (µSG , µSI , µI0 , µG0), and the co-
variance matrix φ = diag(σSG , σSI , σI0 , σG0), so we have: Ψ = (µSG , µSI , µI0 , µG0 , σSG , σSI , σI0 , σG0)

and θ = (p2, n, γ, h, σ1, σ2, σ3).
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Traditionally, the minimal model has been analysed in a deterministic setup with only
error terms on the measurements, however, the statistical inference of its stochastic ver-
sion is not an obvious procedure, since the transition density of the stochastic process
is usually unknown.

In this work, the processes are considered stochastic instead of deterministic because,
as explained before, the actual pharmacological processes are always exposed to in-
fluences that are not completely understood or that it is impossible to model explicitly,
and ignoring these phenomena in the modeling may affect the estimation result. More-
over, the minimal model was already described for a single individual and does not
combine several individuals, but we are interested in estimating the metabolic portrait
of an entire population instead of a single individual using the population approach.
For this purpose, two types of parameters have been incorporated in the model: fixed
effects to capture general and common behavior for the whole population and random
effects varying between individuals to account for individual deviation. However, the
obtaind mixed-effects model, considering both glucose and insulin dynamics simulta-
neously, is an extremely poorly estimated estimation problem where the reconstruc-
tion was most often performed using non-linear least squares techniques separately
for each entity.

4.2.3 Insulin sensitivity estimation

From the description of the minimal model above, we deal then here with a time-
inhomogeneous NLME model with SDEs describing the glucose-insulin kinetics; see:
Egorov, Li, and Xu 2003 for the implementation of SDE time-inhomogeneous model,
and Picchini, Ditlevsen, and De Gaetano 2008 where the maximum likelihood estima-
tion for a time-inhomogeneous stochastic differential model of glucose dynamics was
treated. We notice that the measurements in the model (4.1) are assumed observed
directly without measurement errors.

So, we wish to estimate (θ, Ψ) given the observations y = (y1, ..., yM) from model (4.1).
By using the approximated transition density (3.20) we get the following approximated
likelihood function for model (4.1):

L(a)(θ, Ψ) =
M

∏
i=1

(2π)−2(σSGσSIσI0σG0)
−1
2

ni

∏
j=1

((2
√

Π∆j)
−3)[σ1σ2σ3]

− 1
2 )
∫

R4
exp(

ni

∑
j=1

[
−1
4∆j

[
1
σ1
(Ai

1j)
2 +

1
σ2
(Ai

2j)
2 +

1
σ3
(Ai

3j)
2)]− 1

2
(σ−1

SG
(Si

G − µSG)
2 − σ−1

SI
(Si
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σ−1
I0

(Ii
0 − µI0)

2 − σ−1
G0

(Gi
0 − µG0)

2))dSG
idSI

idI0
idG0

i (4.3)

with:

Ai
l j = [(Yi

j )l − (Yi
j−1)l − ξl(Yi

j−1, tj−1, θ, bi)∆i
j], l = 1, 2, 3.

We have no closed form solution to this integral, so exact estimators of θ and Ψ are un-
available. Therefore, we use the Laplace approximation method described in Chapter 3
to obtain an approximate closed form of the log-likelihood function log(L(a)(θ, Ψ)) for
the model (4.1); then by applying the GA, we get the approximate estimators θ̂ and Ψ̂.

Otherwise, using (3.21) instead of (3.20), we obtain a likelihood function with an inte-
gral that we can solve analytically, and which allows to obtain the exact ML estimators
of the parameters (θ, Ψ) giving a system of 15 gradient equations (See Appendix A).
Indeed, to have several forms of solution for the motion equation (3.16) of the tran-
sition density, allows to choose according to each example the best one which leads
to obtain the exact estimators. The formulas of the fifteen exact estimators of (θ, Ψ)

are obtained analytically by deriving the likelihood gradient. We give below some of
the ML estimators representing the main parameters to estimate the insulin sensitivity,
other details and estimators are reported in Appendix A.1.2:

µ̂SI =
∑M

i=1
Ê21
2Ê3

M−∑M
i=1

1
2Ê3σ̂SI

σ̂SI =
M
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∑
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2Mâ1
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+

1
2Mâ1

+
M

∑
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d̂2
1 − 4d̂1 â1µ̂SG

4Mâ2
1
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Ê21 =
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2∆jσ̂22
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Chapter 5

Implementation issues and numerical
applications
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In this section, we deal with numerical simulations of SDME models through two ex-
amples: In the first one, as a famous stochastic process, we consider trajectories of the
Ornstein–Uhlenbeck process incorporating random effects, and the second one is the
stochastic version of the minimal model that we have already presented in previous
sections. The main of this section is to check the feasibility and effectiveness of the es-
timation procedure proposed above, and to apply the theoretical approaches and tools
that we have presented and defined previously, when it is necessary. Data points from
the trajectories were retrieved and the parameters were estimated on the obtained ar-
tificial data sets, which are generated with different sample sizes, e.g. (M=10, 20, 40

1The main results in this chapter are published in Fadwa, El Maroufy, and Mousse 2020
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subjects and m=10, 20, 60 observations collected on each subject). Then, the applica-
tions with real data are given later in this chapter.

For each SDME model, artificial data sets of dimensions m×M were generated using
different sets of parameters and different values of M and m, and the correspond-
ing exact and/or approximated ML estimators were obtained. Finally, the purpose in
this chapter is to stress the usefulness of the approximate closed-form of the transition
density proposed above, either when the ML estimators are exact or approximated.
Moreover, we notice that the numerical simulations of thousands of trajectories of the
process are not required in each step of the optimized program, however, the search
for optimization points can be considered as moderately expensive computationally
since it takes a few hours (18 hours) depending on the size (M, m) of the sample. In
our instances the parameter estimates were all obtained using a Matlab program.

5.1 Example 1: The two-dimensional Ornstein–Uhlenbeck

process

To apply the proposed methodology and evaluate its effectiveness, we consider the
two-dimensional stochastic OU process that is very useful in pharmacokinetic/pharmacodynamic
studies, biology (See: Favetto and Samson 2010), physics, engineering, finance, and
neuroscience applications (Picchini, Ditlevsen, and De Gaetano 2008; Ditlevsen and
De Gaetano 2005a). Indeed, the choice of this process is due to the fact that it is one
of the few known multivariate SDME models with known transition density. For this
reason, we choose the OU process to evaluate the methodology presented above, by
performing a comparison study between the results obtained using the proposed tran-
sition density in (3.20) and those obtained using its exact density. The model is defined
as follows:

dY(1)i(t) = −(β11bi
11(Y

(1)i(t)− α1) + β12bi
12(Y

(2)i(t)− α2))dt + Σ11dW(1)i(t), Yi
0 = y(1)i0

dY(2)i(t) = −(β21bi
21(Y

(1)i(t)− α1) + β22bi
22(Y

(2)i(t)− α2))dt + Σ22dW(2)i(t), Yi
0 = y(2)i0

(5.1)

i = 1, ..., M
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With: Yi(t) =

(
Y(1)i(t)
Y(2)i(t)

)
; β =

(
β11 β12

β21 β22

)
; α =

(
α1

α2

)
; Σ =

(
Σ11 0
0 Σ22

)
; W i(t) =(

W(1)i(t)
W(2)i(t)

)
; Yi(0) =

(
Y(1)i(0)
Y(1)i(0)

)
and bi =

(
bi

11 bi
12

bi
21 bi

22

)
where: bi

ll′ i.i.d ∼ Γ(rll′ , r−1
ll′ ), l, l′ =

1, 2; i = 1, ..., M.

We rewrite the system in matrix notation under the Itô formula; we denote by (·) the
elementwise multiplication:

dYi(t) = β · bi(α−Yi(t))dt + ΣdW i(t), Yi
0 = yi

0, i = 1, ..., M. (5.2)

Here, the random effects bi are a matrix and not a vector in order to have a uniform
dimension in writing of the (5.1) and are assumed mutually independent and indepen-
dent of Yi

0 and W i. The fixed parameters vector is θ = ( β11, β12, β21, β22, α1, α2, Σ11, Σ22)

and the population parameters vector is Ψ = ( r11, r12, r21, r22). The exact transition
density of model (5.2) for a given realization of the random effects is a bivariate Nor-
mal:

PY(Yi
tj

, ∆i
j|Yi

tj−1
, bi, θ) = (2π)−1|ς|−1

2 exp

(
−(Yi

tj
− µ)′ς−1(Yi

tj
− µ)

2

)
, (5.3)

with mean vector µ = α + (Yi
tj−1
− α)exp(−(β.bi)∆i

j) and covariance matrix ς = τ −
(exp(−(β.bi)∆i

j) τ exp(−(β.bi)′∆i
j))), where:

τ =
1

2tr(β.bi)|β.bi|
(|β.bi|ΣΣ′ + (β.bi − tr(β.bi).I)ΣΣ′(β.bi − tr(β.bi).I)′),

We assume that the matrices β.bi and Σ have full rank and the real parts of the eigen-
values of β.bi are positive definite in order that a stationary solution to (5.2) exists.
Under these assumptions, we derive from (5.1) and (3.20) the following approximated
transition density of Y:

P(a)
Y (Yi

tj
, ∆i

j|Yi
tj−1

, bi, θ) = (2
√

Π∆j)
−2(Σ11Σ22)

− 1
2 ∗ exp(− 1

4∆j
(Σ−1

11 )[Y
(1)i
tj
−Y(1)i

tj−1
+
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(β11bi
11(Y

(1)i
tj−1
− α1) + β12bi

12(Y
(2)i
tj−1
− α2))∆i

j]
2 + (Σ−1

22 )[Y
(2)i
tj
−Y(2)i

tj−1
+ (β21bi

21(Y
(1)i
tj−1
− α1) +

β22bi
22(Y

(2)i
tj−1
− α2))∆i

j]
2). (5.4)

FIGURE 5.1: A sample path of the OU process is in the third graph of (a) for
the given parameters set with the initial condition: Y0 = (3, 3) and time interval

[3, 10]; and the transition density for a transition from Yj to Yj+1 is in (b).

In Figure (5.1), the simulation of the OU process is presented using the Euler scheme
(See: Klöden and Platen 1992) and the following set of parameters: (β11 = 2.8, β12 =

2.5, β21 = 1.8, β22 = 2, α1 = 0.8, α2 = 1.5, Σ11 = 0.3, Σ22 = 0.5, r11 = 45, r12 = 100, r21 =

100, r22 = 125) with a time step of ∆j = 0.001; then we represent in (b) the graph of
the two transition densities given by (5.3) and (5.4) for Yj to Yj+1 using the same set of
parameters and time step.

5.1.1 Simulation study

In this simulation study, we generate 1000 artificial datasets of dimension 2 × (m +

1)× M from (5.2), where M is the number of subjects and m presents the number of
repetitions of the experiment for each subject; then we estimate the parameters using
the proposed approximated method and we obtain 1000 sets of parameter estimates.
The observations are obtained by linear interpolation from simulated trajectories using
the Euler-Maruyama scheme with step size equal to 10−3.

By plugging (5.3) in (3.4) and (5.4) in (3.6), we obtain a huge expression of the likeli-
hood function but without a closed solution of integrals, so the exact estimators of θ

and Ψ are unavailable. Therefore, in both cases, either using the exact or the approxi-
mated transition density, the Hessian matrix in Laplace approximation can be obtained
analytically after a tedious calculation; then we apply the GA to obtain parameter es-
timates, which was expansively time-consuming to get the results because of the long
and complex expressions formulas.
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True values Mean and (Std) (M = 40,m = 10)
β11 β12 β21 β22 β̃11 β̃12 β̃21 β̃22
2.8 2.5 1.8 2 3.10-3.25 2.48-2.56 1.72-1.65 2.11-2.37

(0.164)-(0.283) (0.015)-(0.283) (0.095)-(0.189) (0.153)-(0.255)
α1 α2 Σ11 Σ22 α̃1 α̃2 Σ̃11 Σ̃22
0.8 1.5 0.3 0.5 1.06-1.13 1.57-1.64 0.28-0.37 0.56-0.45

(0.071)-(0.102) (0.109)-(0.158) (0.026)-(0.073) (0.023)-(0.061)
r11 r12 r21 r22 r̃11 r̃12 r̃21 r̃22
45 100 100 25 44.75-52.43 100-112.75 102.35-89.64 24.72-31.02

(0.523)-(9.372) (1.166)-(28.11) (01.04)-(22.05) (2.297)-(11.20)

TABLE 5.1: Ornstein-Uhlenbeck model: Maximum likelihood estimates from
1000 simulations of model (5.2), using the exact and the -approximated transition

density.

The Table 5.1 shows that, for the given sample size, the results can be correctly iden-
tified using our proposed estimation approach; even if some parameters are overes-
timated or underestimated, the results remain acceptable as the results belong to the
confidence interval. However, we believe that these results could be further proven by
using other sample sizes and by adding some of alternative assumptions for the model
that we did not consider in the methodology proposed in this work, which could fur-
ther complicate the estimate problem and be more time-consuming. For the random
parameters, the estimates can be provided using the optimization algorithm on (3.11)
using the obtained estimate results of the population parameters vector Ψ. Moreover,
we conduct this simulation study by the following Figure (5.2), which shows that the
empirical distribution of the most approximated estimators seems to be reasonably
close to a normal distribution.

FIGURE 5.2: Empirical distribution of parameters estimates obtained using the
exact and approximated transition density.

5.2 Example 2: The stochastic minimal model

The stochastic minimal model is structured by three differential equations, describing
the dynamics of glucose and insulin processes in order to model the kinetics of their
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measurements over time for a single individual (See Chapter 4). Here, the purpose is
to estimate the stochastic minimal model to estimate the fixed and random parameters
which include the insulin sensitivity as a key parameter defining the type 2 diabetes.

In this context, the approximate estimate approach proposed above is used to estimate
the transition density of the continuous process in the model, that leads to obtain ap-
proximate and exact ML estimators. The estimate methodology is addressed here by
simulation studies performed on healthy subjects, then a real case is achieved by us-
ing real data from the Research-Based BioPharmaceutical Company-Astrazeneca. We
thus obtain a powerful and flexible modeling framework to regularize the inaccura-
cies of the estimation problem, often inherited from the coupled stochastic differential
equations.

5.2.1 Simulation study

We start this study with an application on artificial datasets, we generate 5000 sets
of simulated artificial data of dimension 3× (ni + 1)× M from (4.1) using the Euler-
Maruyama scheme Klöden and Platen 1992 with step size of 10−3 and a set of the
true value of parameters, that are chosen according to De Gaetano and Arino 2000;
Makroglou, Li, and Kuang 2006, representing the normal range of parameters values
to simulate healthy subjects (without diabetes), with M being the number of units and
ni being the number of observations or repeated measurements collected on each unit
i.

For each data from 5000 generated data sets, we estimate (θ, Ψ) by applying the pro-
posed method. We first assume that the number of repeated measurements collected
on each unit is constant ni = m and ∆i

j = ∆ for all 1 ≤ i ≤ M and 1 ≤ j ≤ ni; then
we apply the methodology proposed above to estimate the SMM parameters for each
dataset and we get 5000 sets of parameters estimates. We repeat this for large and small
data; where we have a small number of subjects with a small number of repetitions of
the experiment on each subject, as it is often the case in biomedical applications; with
different possibilities of repetition of the experiment (M, m) = (40, 60); (40, 10) and
(10, 20); for each parameter the sample mean and standard deviation are reported in
tables below.

The simulation study on small data has been considered in order to check if a small



5.2. Example 2: The stochastic minimal model 75

number of subjects or of the repetition of the experiment have an effect on the ob-
tained results in using our proposed estimate methodology, and if the number of mea-
sures taken over time has a neglect effect or not, in other words, to see if it is possible
to select only the essential measuring moments without repeating the measurements
several times to well simulate an individual trajectory. We treat this issue in relation to
our model and its study context, since in epidemiology the availability of data (mea-
surements) at any point of time is an interesting constraint. We note that quantities of
Gb and Ib are randomly simulated from the normal range of healthy subjects.

Approximate ML estimators :

To estimate the SMM parameters (θ, Ψ), we apply the methodology proposed above by
incorporating (3.20) in (3.5). Then, the obtained log-likelihood function log(L(a)(θ, Ψ))

is approximated using Laplace approximation in order to obtain it in a closed form
because the integral in the likelihood has no solution, then a numerical optimization
tool is needed. So, we apply the GA and then we get the parameters estimates θ̂ and Ψ̂
after choosing the right algorithm parameters (N, EN, SR, CP, MP). Finally, we obtain
5000 sets of parameters estimates. We repeat this for different possibilities of data
size: (M, m) = (40, 60), (40, 10) and (20, 10), then, we report the mean and standard
deviation (std) of each parameter in Table 5.2.

True values (M,m) Mean and (Std)

p2 n γ h p̂2 n̂ γ̂ ĥ

0.074 0.10 0.0007 90 (40,60): 0.0737 (0.0014) 0.100 (0.0013) 0.00073 (2.02e−4) 89.08 (0.031)

(40,10): 0.0784 (0.0059) 0.209 (0.0295) 0.00068 (2.54e−4) 91.34 (0.712)

(10,20): 0.0794 (0.0402) 0.156 (0.046) 0.00054 (0.0016) 62.11 (1.130)

σ1 σ2 σ3 σSG σ̂1 σ̂2 σ̂3 σ̂SG

0.01 0.06 0.03 0.006 (40,60): 0.009 (0.0012) 0.0616 (0.0011) 0.0343 (0.0027) 0.0061 (0.00010)

(40,10): 0.014 (0.0023) 0.0708 (0.0060) 0.0340 (0.0035) 0.0073 (0.00030)

(10,20): 0.015 (0.0031) 0.0938 (1.0196) 0.0480 (0.0108) 0.0067 (0.00060)

σSI σI0 σG0 µSG σ̂SI σ̂I0 σ̂G0 µ̂SG

0.000025 46 50 0.03 (40,60): 0.000021 (3e−6) 44.98 (1.25) 45.96 (2.11) 0.0315 (0.0007)

(40,10): 0.000029 (4.4e−6) 43.94 (1.75) 45.16 (2.53) 0.0349 (0.0036)

(10,20): 0.000016 (0.8e−5) 41.09 (2.82) 44.64 (3.07) 0.0178 (0.0051)

µSI µI0 µG0 µ̂SI µ̂I0 µ̂G0

0.0002 95 320 (40,60): 0.00021 (1.2e−6) 94.20 (1.12) 321.2 (1.07)

(40,10): 0.00025 (1.6e−6) 92.05 (2.25) 318.6 (3.11)

(10,20): 0.00037 (1.35e−5) 122.51 (2.51) 281.5 (4.88)

TABLE 5.2: Approximated ML estimates and standard deviation from simula-
tions of model (4.1), using the approximated transition density (3.20) for large

and small DATA.
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In Table 5.2, we report the approximate ML estimates obtained on large and small
data by using the optimised algorithm GA. We notice that, when the sample size is
large, the true values of the parameters are well identified with the exception of some
in which, in all the simulations and samples, the true value does not belong to the
estimated confidence interval, such as: σSI , σI0 and σG0 ; nevertheless, the results are
more satisfactory when the sample size M is large for all parameters. However, the
results are still satisfactory even for a sample of M = 10 with at least 20 measures taken
on each subject. Although we can relatively accept these results for a small number
of measurements, we need to know how to choose the time points to perform the
measurements in the blood, as this could, physiologically, affect the observations and
the selected results. Thus, it is specified here that the essential task is to know how to
choose the right measurement times after the injection, even in small numbers, chosen
according to the medical bases.

FIGURE 5.3: SMM: Empirical distribution of population parameter estimates
obtained using (3.20) for (M, m) = (40,60).

The Figure (5.3) shows that, in the case of (M; m) = (40; 60), the empirical distribution
of the most approximated estimates seems to be reasonably close to a normal distribu-
tion.

Exact ML estimators :

Here, we estimate the transition density of the SMM using the expression (3.21) which
leads to an explicit likelihood function (See Appendix A.1.2) where the integral can
be solved analytically using Gauss integral properties, and then we obtain exact ML
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estimators. We thus get a gradient system of fifteen equations, and then we use the
Matlab function "fsolve" to obtain parameter estimates using the following appropriate
initial values:

Parameters p2 n h γ σ1 σ2 σ3 µSI

Values 0.9 0.10 90 0.00007 0.01 0.06 0.001 0

Parameters µI0 µG0 σSG σSI σI0 σG0 µSG

Values 110 320 0.006 0.0000225 50 50 0.03

TABLE 5.3: Initial values.

then we obtain 5000 sets of parameters estimates. We repeat this for different possi-
bilities of data size: (M, m) = (40, 60) and (20, 10). Then, we report the mean and
standard deviation (std) of each parameter in Table 5.4.
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Mean and (Standard Deviation: Std)

True values :

p2 n γ h p̂2 n̂ γ̂ ĥ

0.074 0.10 0.0007 90 M=40,m=60: 0.0799 (0.0015) 0.100 (0.0006) 0.00068 (0.00026) 90.05 (0.002)

M=20,m=10: 0.0796 (0.0024) 0.107 (0.0134) 0.00641 (0.00048) 90.74 (0.327)

σ1 σ2 σ3 σSG σ̂1 σ̂2 σ̂3 σ̂SG

0.01 0.06 0.09 0.006 M=40,m=60: 0.015 (0.0036) 0.0600 (0.0063) 0.125 (0.0038) 0.006 (0.00023)

M=20,m=10: 0.008 (0.0058) 0.0600 (0.0137) 0.126 (0.0198) 0.006 (0.00046)

σSI σI0 σG0 µSG σ̂SI σ̂I0 σ̂G0 µ̂SG

0.000025 46 50 0.03 M=40,m=60: 0.000025 (2.1e−006) 46.08 (1.32) 10.05 (1.97) 0.030 (0.0026)

M=20,m=10: 0.000025 (5.2e−006) 46.14 (1.81) 5.006 (3.74) 0.030 (0.0153)

µSI µI0 µG0 µ̂SI µ̂I0 µ̂G0

0.0008 95 320 M=40,m=60: 0.0009 (0.8e−006) 95.20 (2.39) 320.0 (2.97)

M=20,m=10: 0.0117 (1.3e−006) 95.72 (2.60) 319.9 (3.46)

TABLE 5.4: Exact maximum likelihood estimates of (4.1).

The Table 5.4 shows that the parameter estimates are better identified when the size
is large and most of the estimated values are close to the true values of the parame-
ters, and while some are overestimated and others underestimated, they still belong
to the estimated confidence interval. Thus, most parameters remain well identified
whether in small samples, and the obtained results still acceptable. Therefore, we can
conclude that the proposed estimation method appears to be suitable for pharmacoki-
netic/pharmacodynamic applications where data are generally scarce.

In epidemic models such as the SMM, it is important to pay attention to the appropriate
timing of the measurements, as the concentration measurements change over time and
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must be selected according to certain physiological criteria. We must therefore select
the moments of the significant peaks, even if it is at the limit of 10 observations accord-
ing to the results of our study, in order to have good interpretations. In Figure (5.4), we
report the empirical distribution of the estimates, and from the vioplots below, it seems
reasonable to assume that the estimates have an asymptotic normal distribution.

FIGURE 5.4: Empirical distribution of population parameter estimates obtained
using (3.21) for (M, m) = (40,60).

In Figure (5.5) and (5.6), the boxplots of the estimates of the two key parameters of di-
abetes ŜI and ŜG are reported for the case of (M, m) = (40, 60) and (M, m) = (10, 20),
respectively, where the estimates are generated from (3.11) for different units. From
Figure (5.5), the empirical mean and the standard deviation (std) of the estimated ran-
dom effects are, respectively: 0.0011(0.000025) and 0.03(0.006) for ŜI and ŜG.

FIGURE 5.5: Boxplots of the random effects estimates of ŜI and ŜG from (3.11)
for (M, m) = (40,60).
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Whereas, for (M, m) = (10, 20), the empirical mean and the standard deviation (std) of
the estimated random effects are: 0.010(0.000025) and 0.03(0.006) for ŜI and ŜG respec-
tively. Thus, the empirical parameters of the distribution of ŜI and ŜG in both cases are
very close to their true values, which proves our simulation results.

FIGURE 5.6: Boxplots of the random effects estimates of ŜI and ŜG from (3.11)
for (M, m) = (10,20).

Finally, from the simulation study where we have considered two examples of SDME
models, we can conclude that the parameters values of the models appear to be cor-
rectly identified using the proposed approach, based on the Risken approximation to
approximate the transition density of a continuous stochastic process.

5.2.2 Real study

Real DATA Description

In this paragraph, the stochastic minimal model is estimated on real data, from the
Research-Based BioPharmaceutical Company-Astrazeneca, which is obtained using an
intravenous glucose tolerance test (IVGTT), where glucose and insulin concentrations
in plasma are subsequently sampled after an intravenous glucose injection. The DATA
report the glucose concentrations, insulin concentrations, and the C-peptide measures.
The data is collected on 20 healthy subjects and 46 T2D patients. For the T2D patients,
they were 15 - 34 years old with disease durations two to ten years, and classified as
having T2D by the reporting physician and Hb1Ac < 10% ; which is the amount of
glucose that sticks to the red blood cells; and for the healthy subjects they were 25-
50 years old with no diabetes. Measurements of glucose and insulin concentration
are measured before injection of 0.3 g /kg of the glucose and after according to the
following time points for each individual: 3, 4, 5, 7, 10, 15, 20, 25, 30, 60, 115 and 120
minutes, and the µU/ml was the measure unit.
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At first, we estimate the parameters model for the healthy population and then for
the T2D population, in order to compare the results of parameters model estimates
describing the glucose-insulin process in two different populations (healthy and di-
abetic). Also, to avoid confusion about the results, the estimation procedure is per-
formed on each population separately because they are not homogeneous and the con-
cepts of random effects and fixed effects are then related to the same population.

FIGURE 5.7: Plots of the insulin and glucose concentration for each healthy sub-
ject (a) and T2D patients (b), where the glucose concentration is shown in blue

and the insulin concentration is shown in red µU/ml.
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Augmented data

In this section, we deal with the transformation of the process in (4.1) using Lamperti

transform ν: ν(Y) =
∫ Yt du

Σ(u)
which by definition exists when the diffusion is re-

ducible; condition for reducibility in (4.1) is obvious; then using Itô’s lemma, the trans-
formation Yt = ν(Yt) defines a new 3-dimentional diffusion process Yt, being the solu-
tion of the following SDME model, where the existence and the uniqueness conditions
of the solution are fulfilled (See appendix A.2):

dYt
i
t = ξL(Yi

t, t, θ, bi)dt + dW i
t , i = 1, ..., M, (5.5)

where the hth element of ξL is given by (h = 1, . ., 3):

ξ
(h)
L (Yi

t, t, θ, bi) =
3

∑
p=1

((Σ−1)hpξ(p)(ν−1(Yt), t, θ, bi))− 1
2

3

∑
p,q,s
{Σ−1 ∂Σ

∂Ys
(ν−1(Yt))Σ−1}hpΣpsΣqs

Thus, in the following real study, the proposed estimate approach is applied on (5.5)
to obtain θ̂ and Ψ̂. Considering the Risken approximation proposed in Chapter 3 to
approximate the transition density, we need high frequency data with a small time
step, however, in our available data as in the epidimic studies, the designs are usually
sparse. To overcome this constraint, we impute intermediate points between each pair
of observations in order to augment the observed data Yobs, using the Eraker approach
developed by Eraker 2001.

Augmented data algorithm:

The data augmentation method consists of imputing m− 1 latent data points between
each pair of observations Yobs. To ensure that discretization bias is arbitrary small we

put ∆t =
1
m

and N = mM for a chosen positive integer m. Therefore [0, T] is divided
into N + 1 equidistant points t0 = 0 < t1 < ... < tm < tm+1 < ... < tN = T, then
the diffusion process is in state Ytk at time tk which is only known on times tj when j
is an integer multiple of m and all points Ytk , k 6= j are treated as missing data. Let
denotes by Ŷ the 3× (N + 1) matrix obtained by stacking all elements of augmented
data (observed and missing), that is :

Ŷ =

ŷ1t0
ŷ1t1

. . . ŷ1tm
ŷ1tm+1 . . . ŷ1tN

ŷ2t0
ŷ2t1

. . . ŷ2tm
ŷ2tm+1 . . . ŷ2tN

ŷ3t0
ŷ3t1

. . . ŷ3tm
ŷ3tm+1 . . . ŷ3tN

 .
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Let Ŷr denotes the rth column of Ŷ ( if r is a multiple of m, ŷi is an observed data).

For the nonlinear SDME model (5.5), with drift and diffusion functions satisfying eas-
ily the assumptions Al-A4 in Øksendal 2003 (See Appendix A.1) the Ŷr can be up-
dated using AR-MH algorithm with normal proposal density q(./Ŷr−1, Ŷr+1) with

mean
Ŷr−1 + Ŷr+1

2
and variance

∆t

2
, as is proved in Eraker 2001. So, we consider the

following algorithm:

Algorithm:

1. Initialize Ŷr, using linear interpolation between observed values of Yr ,

2. Choose j multiple of m, [tj, tj+m], the time interval of size m, in whose the path
interior is to be updated,

Repeat

3. For all r = 1, 2, ..., N − 1, at iteration h draw Ŷ(h)
r /Ŷ(h−1)

r−1 , Ŷ(h−1)
r+1 , θ, bi) using the

AR-MH algorithm with proposal density N (
Ŷi−1 + Ŷi+1

2
,

∆t

2
).

4. Increase the value of h

End

Real results

Applying the proposed estimation approach for Y, we obtain a likelihood function
where the integral have no solution. Then, we use therefore the Laplace method and
the optimization GA algorithm for the obtained likelihood function on real data, we
finally obtain the following estimation results (mean and standard deviation (std)) in
Table 5.5.
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Mean and (Std) for healthy Mean and (Std) for patients
p̂2 n̂ γ̂ ĥ p̂2 n̂ γ̂ ĥ
0.069 0.103 0.00072 91.05 402684 0.107 0.00065 90.84
(0.013) (0.0118) (0.1e−4) (0.08) (0.022) (0.00121) (0.3 e−4) (0.10)

σ̂1 σ̂2 σ̂3 σ̂SG σ̂1 σ̂2 σ̂3 σ̂SG

0.0142 0.0716 0.0385 0.005 0.013 0.079 0.0328 0.0025
(0.001) (0.0130) (0.00049) (0.00032) (0.006) (0.012) (0.00065) (0.0003)

σ̂SI σ̂I0 σ̂G0 µ̂SG σ̂SI σ̂I0 σ̂G0 µ̂SG

0.000023 44.12 45.05 0.0342 0.00002 42.013 41 0.0156
(6e−7) (1.86) (1.21) (0.00053) (0.33e−5) (2.61) (1.55) (0.0007)

µ̂SI µ̂I0 µ̂G0 µ̂SI µ̂I0 µ̂G0

0.0003 87.69 342.32 0.00002 41.472 380.38
(6.3e−6) (0.621) (0.923) (0.07e−4) (1.21) (0.78)

TABLE 5.5: Real results.

For healthy data :The estimate value of the parameter p2, which represents the de-
creased glucose absorption capacity in tissues, is weak for healthy subject, which ex-
plains why healthy individuals have a significant insulin sensitivity that is not negligi-
ble of values varying from 0.00028 to 0.000312. This considerable sensitivity to insulin
allows these persons not to have a high glucose level in the blood, because it is well
converted into energy in the cells and then not to become infected with Type 2 diabetes,
because, a sufficient amount of insulin is produced and well used.

So, healthy people are safe from this disease thanks to a considerable insulin capability
to increase glucose utilization to muscles and liver, and to have also an interesting
ability of glucose to enhance its own disposal independently of the insulin level which
is measured by SG. The estimates of the insulin sensitivity SI for 20 healthy persons
belongs to: [0.00028; 0.00033], that we have obtained for each subject in the healthy
population from (3.11).

For T2D patient data : We note that there is a divergence for the parameter p2 which
becomes of a great value, this can be interpreted by an interesting decrease in glucose
uptake capacity in tissues for T2D patients, because of a significant decrease in insulin
sensitivity for patients. These conclusions may also justify the mathematical relation-
ship between the two parameters SI = p3/p2. So, the value of p2 changes from the
healthy to the patient population but the parameter is not random in each population,
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it changes by changing the physical characteristics of the elements constituting each
population. In addition, the glucose efficiency SG which represents the ability of glu-
cose to be eliminated in the muscles has been decreased, so for the T2D patients, the
glucose level in the blood cannot disappear easily. Also, we can note that the initial
glucose concentration is higher in the T2D patients with a lower insulin concentration
than in healthy subjects, this result can be explained by the fact that the T2D patient has
a higher blood glucose level that is not eliminated because of the insufficient insulin
secretion or of the low insulin sensitivity. From (3.11), the values of SI for T2D indi-
viduals belongs to: [0.000018; 0.000029]; they are lower than those of healthy subjects,
which shows that the T2D patients are actually less sensitive to insulin than healthy
patients, which involves medical interventions to regulate their insulin levels.

5.2.3 Discussion about the stochastic minimal model

In this thesis, we adopt an estimation method as a flexible modeling framework to
regularize the ill-posed problem of the stochastic minimal model, by coupling three
stochastic differential equations of glucose-insulin kinetics. The processes are consid-
ered stochastics by including Brownian motion compenents to the ODEs, representing
the noise of the process increments, because we believe that, physiologically, these real
processes could not be deterministic. In this work, we consider all the three differential
equations of the glucose and insulin concentrations in the minimal model simultane-
ously, the system becomes then computationally very complex. In the literature, this
kind of modelling of the minimal model has been analysed in a simpler way in the late
of the 1970s, where we consider the insulin part as known. However, we believe that
both glucose and insulin processes constitute a single dynamic system and important
information is lost when we consider the insulin as known, nevertheless, the infer-
ence statistic of the proposed stochastic minimal model is not an obvious procedure.
Here, the proposed parameter estimation method is based on the statistical inference
by maximizing the likelihood function of the model, for the estimation of the quantita-
tive portrait metabolic processes for a population.

Moreover, in this thesis, the stochastic minimal model is treated using population ap-
proach, which raises inference challenges, where data from several subjects are con-
sidered simultaneously in order to study the behaviour of the entire population. So,
we incorporate two types of parameters in the model, fixed effects: to represent the
common parameters for all subjects and describe the common physiological side of
the glucose-insulin kinetics, and random effects: which vary between individuals and
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represent the inter- and intra-variability in the population. So, the obtained model is
a stochastic differential mixed effects model of insulin-glucose kinetics, with an un-
known transition density, that requires approximated methods in order to have the
likelihood function in an approximate closed form. Therefore, we propose to derive
the transition density of the process using the Fokker Planck equation and based on
Risken approximation in Risken 1996, that we perform otherwise in order to get an
explicit form of the likelihood function and obtain exact estimators of the parameters.
Finally, the proposed approach is addressed by simulation studies on large and small
data, to evaluate the obtained results for both cases, since, in the epidemic field the
data are not sufficiently large and are usually sparse.

The main result of our methodology is to regularize the ill-posed estimation problem
of the stochastic and coupled minimal model, by characterizing the transition den-
sity of the stochastic process via the forward or Fokker-Planck equation. Moreover,
this work presents a general framework for parameter estimation of an SDME model
with unknown transition density, by deriving a particular functional partial differen-
tial equation which characterizes the exact likelihood function, in order to approxi-
mate the transition density for a continuous-time stochastic process described by first-
order nonlinear stochastic differential equations of the generalized ltô type. The use
of continuous-time process described by ltô stochastic differential equations is now an
integral part of such diverse fields as stochastic optimal control theory, financial, eco-
nomics, and statistical thermodynamics. So, the proposed methodology looks like a
promising framework that can be used in similar stochastic differential mixed effects
models, but, we notice that although the results are acceptable using small data, it is
desirable to have more large data to have more satisfactory results.
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Conclusions and future directions

In this thesis, a nonlinear mixed effects model with stochastic differential equations
incorporating multiple random effects, namely stochastic differential mixed effects
model, has been studied; and an estimation method for such population models has
been proposed and evaluated through simulations and real studies. In the applied side
of the research in our thesis, the construction of a mathematical model using SDEs and
the mixed effects model was tried, in order to describe the whole blood glucose-insulin
system, based on Bergman’s minimal model. Such a coupled stochastic model is more
physiologically valid but also more complex and highly ill-posed estimation problem.

From a theoretical point of view, analysing repeated measurements data, where it is
necessary to take into account the variability between experiments and the stochas-
ticity in the individual dynamics, the SDME modelling is required in order to obtain
more precise estimates of population characteristics. So, we hope that the contributing
results, given in this work, be helpful to more knowledge of the stochastic mixed ef-
fects modelling, especially, in areas where mixed-effects theory is used routinely, e.g.
in biomedical and pharmacokinetic/pharmacodynamic studies. Thus, we believe that
such class of models provides a flexible and powerful modelling approach that will
undergo increasing popularity.

Before achieving the aim, we began our thesis by presenting the preliminaries con-
cepts that we could need for the comprehension of the theoretical and applied subjects.
Then, we have explored a computationally achievable estimation approach based on
the ML estimation for a nonlinear and multidimensional SDME models, by proposing
an approximate closed form of the transition density of the process for such model
which is usually unknown, inspired from the solution of Fokker-Planck equation pro-
posed in Risken 1996. In this context, we have introduced all tools and algorithms nec-
essary for the implementation of the methodology, which we can consider as a propor-
tionately simple and flexible framework used in the estimation of this kind of models.
Then, this research attempted to model the dynamics of insulin-glucose kinetics using
the SDME model by giving exact estimators of key parameters of diabetes metabolism,
which to our knowledge have not yet been studied in the literature.
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This work has a number of limitations, mostly due to the difficulty in carrying out
the closed form approximation of the likelihood for multidimensional SDME models,
when the dimension of random vector parameter is rather than 2. Moreover, the pro-
posed methodology is even more difficult when the diffusion term is not reducible,
and also when it is complicated to derive the gradients and Hessians terms of the like-
lihood. As well as, the measurement errors are not considered in this work, which it
can present a real constraint when dealing with real cases, when this noise source could
not be negligible compared to the noise of the system, because, for a good stochastic
version, it will be better to include noise on process increments and noise on observa-
tions that may be significant compared to system noise. However, all of these limits
can provide a guideline on our future directions and perspectives, to study and gen-
eralize the proposed estimation methodology to a larger framework of application of
SDME models in the study of other epidemics.

As mentioned before, insulin is secreted by the beta-cells in the portal vein and ex-
tracted by the liver before it appears in plasma. An indirect measurement approach is
essential to quantify hepatic insulin extraction, as it was proposed in the thesis by us-
ing the C-peptide substance, since the direct measurement requires invasive protocols,
with catheters placed in a artery and hepatic vein. So, in our future direction work,
we consider that this substance is unobserved in the model which leads to consider a
semi-observed SDME model, that we are interested to estimate which can give a com-
parable framework for the alternative approach which uses the measurements of the
C-peptide.

Moreover, to improve our proposed glucose-insulin modeling and the estimation of its
associated parameters, we propose a formulation of an SDME model where the drift
and diffusion coefficients depend on the fixed and random parameters, as presented
below in the overviwe of our future persective.

So, in our future work, we are interested in the modeling of the kinetics of glucose
and insulin molecules in the organism, considered as a closed population having a to-
tal number of molecules equal to the size N. The organism is then considered to be
divided into five compartments presented by organs and disposals having an impor-
tant role in glucose-insulin homeostasis. Thus, the diabetes epidemic is modeled by
a multidimensional SDME model where the stochastic process is a continuous-time
three-dimensional Markovian jump process. In which each molecule can be found at a
given moment in one of the five compartments: GS: the glucose space compartment, M:
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muscles-compartment, IP: Insulin plasma compartment, IA: Remote insulin compart-
ment, as presented in Figure (5.8). In this jump model there are four parameters of in-
terest. Subsequently, we approximate the Markov jump process by a three-dimensional
Itô diffusion process, then we describe the transitions from a state to another by a mas-
ter equation, transformed after tedious calculus to a Fokker-Planck equation.

GS

IP

M

IA

p1

γt

Inj

p2

X

p3

X

p3

FIGURE 5.8: State diagram for glucose-inulin kinetics modelling, where GS:
presents the glucose space compartment, M: muscles, IP: Insulin plasma com-

partment, IA: Remote insulin compartment.

Explicitly, we will assume that the time variable is continuous, t ∈ [0, ∞[ and that G(t),
X(t), and I(t) are continuous random variables, that is:

G(t), X(t), I(t) ∈ [0, N]

where: G(t): Number of glucose molecule in plasma; X(t): Number of insulin molecule
in action; I(t): Number of insulin molecule in plasma.

The process Y jumps from state j =

g
x
i

 at time t to state j + lk with l ∈ R3, k = 1, ..7

at time t + ∆t with transition Pj,j+lk(t)∆t.

Denote the transition pdf for the stochastic process as:
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p(y, t + ∆t; y′, t),

where at time t, Y(t) = y′, and at time t + ∆t, Y(t + ∆t) = y. In the following, we
consider that the pdf satisfies a forward Kolmogorov differential equation for the SDE
model of glucose-insulin kinetics, which is a second order partial differential equation.
The rates pj,j+lk(t) are given in details in the following system which resume all jumps.

pj,j+lk (∆t) =



C.(g + 1)
N

∆t, l1 = (1, 0, 0),(
p1
(g + 1)− gb

N
+

x(g + 1)
N

)
∆t, l2 = (−1, 0, 0),

p3
(i− 1)− ib

N
∆t, l3 = (0, 1,−1),

p2
x− 1

N
∆t, l4 = (0,−1, 0),

γ.t(g− h)− n((i− 1)− ib)

N
∆t, l5 = (0, 0, 1),

1− C.g + p1 (g− gb) + xg + p3 (i− ib) + p2x
N

∆t l6 = (0, 0, 0),

+
γ.t(g− h)− n(i− ib)

N
∆t,

0, otherwise,

Let denote: b1(g, x, i) =
C.g
N

∆t, b2(g, x, i) =
p1 (g− gb) + xg

N
∆t, b3(g, x, i) = p3

i− ib
N

∆t,

b4(g, x, i) = p2
x
N

∆t, and b5(g, x, i) =
γ.t(g− gb)− n(i− ib)

N
∆t.

Then, the forward Kolmogorov differential equations is as follows:

∆p(g, x, i)
∆t

=p(g + 1, x, i)b1(g + 1, x, i)− p(g, x, i)b1(g, x, i) + p(g− 1, x, i)b2(g− 1, x, i)

− p(g, x, i)b2(g, x, i) + p(g, x + 1, i− 1)b3(g, x + 1, i− 1)− p(g, x, i)b3(g, x, i)

+ p(g, x− 1, i)b4(g, x− 1, i)− p(g, x, i)b4(g, x, i) + p(g, x, i + 1)b5(g, x, i + 1)

− p(g, x, i)b5(g, x, i).

Now, we consider g =
g
N

, x =
x
N

and i =
i
N

are proportions (concentrations) of G, X
and I, where N is the total number of molecules in the considered system. As N → ∞,
we have the following Taylor expansion approximations:
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∂P(g, x, i)
∂t

=

[
∂

∂g
((b1 − b2) (g, x, i)) +

∂

∂x
((b3 − b4) (g, x, i)) +

∂

∂i
((−b3 + b5) (g, x, i))

]
p(g, x, i)

+
1
2

[
∂2

∂g2 b2(g, x, i) +
∂2

∂x2 (b3 − b4)(g, x, i)− 2
∂2

∂x∂i
b3(g, x, i) +

∂2

∂i2 (b3 − b5)(g, x, i)
]

p(g, x, i)(5.6)

then using the arguments:
∂

∂Y
= (

∂

∂yk
)yk∈{g,x,i} and

∂2

∂Y2 = (
∂2

∂yk∂yj
)yk,yj∈{g,x,i}, then

the equation (5.6) can be rewritten as:

∂

∂t
P(y(t)) = − ∂

∂y
[µ(x)P(y, t)] +

1
2

∂2

∂y2 [Σ(y)P(y, t)] , (5.7)

where:

µ(Yt, t, θ, bi) =

 c− p1(g− gb) + xg
p3(i− ib)− p2x

−n(i− ib) + γ(g− h)t− p3(i− ib)



Σ(Yt, t, θ, bi) =

p1(g− gb)− xg 0 0
0 p3(i− ib) + p2x −p3(i− ib)

0 −p3(i− ib) p3(i− ib)− n(i− ib) + γ(g− h)t


The equation (5.7) is the Fokker-Plank equation associated to a diffusion process Y =

(Yt, t ≥ 0) which is solution, according to Øksendal 2003, chap.7, to the following non-
linear three-dimensional Itô stochastic differential equation:

dYt =

 −p1(g− gb) + xg
p3(i− ib)− p2x

−n(i− ib) + γ(g− h)t− p3(i− ib)

 dt + σ(Yt, b, θ, t)

dW1

dW2

dW3


So, that:

dYt = µ(Yt, θ, b, t)dt + σ(Yt, θ, b, t)dW(t), (5.8)
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where σ is such that σσT = Σ, here σT is transposed matrix of the matrix σ. The
SDME model obtained in (5.8) is more realistic where variations are incorporated into
the diffusion term through the variables and parameters on which the term depends.
So, by using the Bayesian inference to explore discrete data using a diffusion approx-
imation, what estimation constraint can we have when the model is semi-observed?
what degree of similarity can we have between the estimated measures of X and the
measures used previously? Can the transition density approximation based on the
Risken approximation, previously used, lead to effective results in this case?
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.1 Appendix A

.1.1 Verification of assumptions

A.1

The uniqueness and existence of a strong solution of the equation (4.1), with a constant
diffusion term, are guaranteed by two conditions, local Lipschitz and linear growth of
both coefficients drift and diffusion, see Liptser and Shiryaev 2001; Kutoyants 2004 for
details. To verify the local Lipschitz for ξ, let Y1 and Y2 be in R3, we have after some
simple calculus:

‖ ξ(Y1)− ξ(Y2) ‖≤ K ‖ Y1 −Y2 ‖

where K = maxK1, K2, K3 and K1 = SG + 1, K2 = p2 and K3 = n. for the linear growth
of ξ coefficient we have after simple calculus:

‖ ξ(Y, θ, b) ‖2≤ C(1+ ‖ Y ‖2)

where C = maxC1, C2, C3 and C1 = S2
G, C2 = p2

2 and C3 = n2.

A.2

With the same way, the uniqueness and existence of a strong solution of the obtained
equation in (5.5) are guaranteed by local Lipschitz and linear growth conditions of the
transformed coefficients drift ξL. let Y1 and Y2 be in R3, we have after simple calculus:

‖ ξL(Y1)− ξL(Y2) ‖≤ M ‖ Y1 − Y2 ‖

and

‖ ξL(Y, θ, b) ‖≤ S(1+ ‖ Y ‖2)
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where : M = maxM1, M2, M3 and M1 =
SG + 1

σ1
+ 1, M2 =

p2

σ2
, M3 =

n
σ3

, and S =

maxS1, S2, S3 with S1 =
S2

G
σ2

1
, S2 =

p2
2

σ2
2

and S3 =
n2

σ2
3

.1.2 Proof of (3.21)

PY(yj, ∆j|yj−1, b, θ) = [1− ∂

∂Yj
µ(Yj, tj, θ, b)∆j +

∂2

∂Yj
2 Σ(Yj, tj, θ, b)∆j]

1
2π

∫ +∞

−∞
eiu(yj−yj−1)du

=
1

2π

∫ +∞

−∞
[eiu(yj−yj−1) − iuµ(Yj, tj, θ, b)eiu(yj−yj−1)∆j −

∂

∂Yj
µ(Yj, tj, θ, b)eiu(yj−yj−1)∆j

−u2Σ(Yj, tj, θ, b)eiu(yj−yj−1)∆j +
∂2

∂Yj
2 Σ(Yj, tj, θ, b)eiu(yj−yj−1)∆j]du

=
1

2π

∫ +∞

−∞
exp(−iuµ(Yj, tj, θ, b)∆j −

∂

∂Yj
µ(Yj, tj, θ, b)∆j − u2Σ(Yj, tj, θ, b)∆j

+
∂2

∂Yj
2 Σ(Yj, tj, θ, b)∆j + iu(yj − yj−1))du

So, using the Gaussian integral, we obtain:

PY(yj, ∆j|yj−1, b, θ) =
1

2
√

πΣ(Yj, tj, θ, b)∆j

exp(
∂

∂Yj
µ(Yj, tj, θ, b)∆j +

∂2

∂Yj
2 Σ(Yj, tj, θ, b)∆j

[yj − yj−1 − µ(Yj, tj, θ, b)∆j]
2

4Σ(Yj, tj, θ, b)∆j
)

Then, we extend the formula for N variables:

PY(yj, ∆j|yj−1, b, θ) = (2
√

Π∆j)
−N[DetΣ]−

1
2 exp(

∂

∂Yjl
µl(Yj, tj, θ, b)∆j +

∂2

∂Yj
2
l

Σl(Yj, tj, θ, b)∆j

− 1
4∆j

[Σ(Yj, tj, θ, b)−1]lk[yjl − yj−1l − µ(Yj, tj, θ, b)∆j][yjk − yj−1k − µ(Yj, tj, θ, b)∆j])

.1.3 Details

Likelihood function of (4.1) using (3.21):
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lnL(a)(θ, Ψ) =
M

∑
i=1

(−2 ln(2π)− 1
2

ln(σSG σSI σI0σG0)+ ln(
ni

∑
j=1

(2
√

π∆j)
−3ni

(σ1σ2σ3)
−ni

2 exp(−(p2 +

n)ni)) + ln(Cte1) +
1
2

ln(
π

a10
) +

b2
1

4a10
+

1
2

ln(
π

a2
) + CC1 +

1
2

ln(
π

E3
) + E1 +

E2
2

4E3
)

The fifteen Gradients of the likeliood function for the model (4.1) using (3.21)

GRadp2 =
M

∑
i=1

(−4niE2
3 − 2O1A2E3 + 4E2

3O2A1 + 8E2E3(O2A2−O1A1)− 4E2
2O1A2) = 0

GRadn =
M

∑
i=1

(nni + F1 + nF2) = 0

GRadγ =
M

∑
i=1

(γ(l4 −
1

2∆1

1
σ3

l2
2 +

2l2
22

(4a2)
2 + l3 −

1
4∆1

1
σ3
(2l11 + 2I1l12) +

2l22l21

(4a2)
2 ) = 0

GRadh =
M

∑
i=1

(h(g12 + g24 +
1

2a2
g2

14) + g11 + g23 +
1

2a2
g14g13) = 0

GRadµG0
=

M

∑
i=1

(µG0(
1
2a

1
σ2

G0

− 1
σG0

) +
1
2a

C1
7

1
σG0

) = 0

GRadµSG
=

M

∑
i=1

(µSG(
1

σSG

− 1)− b1
1) = 0

GRadµSI
=

M

∑
i=1

(µSI (
1

2E3
− 1) +

E122E3σSI

)
= 0

GRadµI0
= µI0(2Ma2σI0 − 1)− b12σI0 = 0

GRadσ3 =
M

∑
i=1

(
−ni

2σ3
− D

σ3
+

B
4∆1σ2

3
+

2b2C
4∆1σ2

3
+

b2
2

∆1σ2
3

(4a2)
2 +

1
8a2∆1σ2

3
) = 0

GRadσ2 =
M

∑
i=1

(
−ni

2σ2
−

∑ni
j=1

−A2
2

8∆jσ
2
2

E3
+

ni

∑
j=1

A2
1

4∆jσ
2
2
+

8E2E3 ∑ni
j=1

A1 A2
2∆jσ

2
2
− 4E2

2 ∑ni
j=1

−A2
2

4∆jσ
2
2

16E2
3

= 0

GRadσSG
=

M

∑
i=1

(
−1

2σSG

+
µ2

SG

2σ2
SG

+
1

4a1σ2
SG

+
−2b1 + 2b2

1µSG

16a2
1σ2

SG

) = 0

GRadσI0
=

M

∑
i=1

(
−1
2σI0

+
µ2

I0

2σ2
I0

+
−8b2a2µI0 + 2b2

16a2
2σ2

I0

− −1
4a2σ2

I0

) = 0



96 Chapter 5. Implementation issues and numerical applications

GRadσSI
=

M

∑
i=1

(σSI − µ2
SI
+

8µSI E2E3 + 2E2
2

8E2
3

+
1

2E3
) = 0

GRadσ1 =
M

∑
i=1

(
−ni

2σ1
+

ni

∑
j=1

C2
5

4∆jσ
2
1
+

C7C1 + 2C2
7

32a2∆1σ2
1

+
1

8a∆1σ2
1
−

∑ni
j=1

−C2
6

4∆jσ
2
1
− 4C2∆1

(2σG0+4∆1σ1)
2

2a10
+

8a10b10(∑
ni
j=1

C5C6
2∆jσ

2
1
+ C3

4∆1σ2
1
+

4C4∆1σG0
(2σG0+4∆1σ1)

2 )− 4b2
10(∑

ni
j=1

−C2
6

4∆jσ
2
1
− 4C2∆1

(2σG0+4∆1σ1)
2 )

16a2
10

= 0

GRadσG0
=

M

∑
i=1

(
−1

2σG0

+
µ2

G0

2σ2
G0

+
−4C7µG0 + 4C2

7

32a2σ2
G0

+
1

4aσ2
G0

+
C2

a10(2σG0 + 4∆1σ1)
2

+
8a10b10(C4(2σG0 + 4∆1σ1)− 2C4σG0) + 8b2

10C2

16a2
10(2σG0 + 4∆1σ1)

2 ) = 0

where:

l1 = Ij − Ij−1 + n(Ij − Ib)∆j

l2 = (Gj − h)tj∆j

l3 = ∑
j=2

−2l1l2
4∆jσ3

l4 = ∑
j=2

2l2
2

4∆jσ3
= 0

l11 = n(I1 − Ib)∆1 l12 = −(G1 − h)t1∆1 l21 =
2I1 + 2l11

4∆1σ3
+

µI0

σI0

l22 =
2l12

4∆1σ3

g1 = l1 − γGjtj∆j g2 = γtj∆j g11 = ∑
j=2

−2(g1 + g2)

4∆jσ3
g12 = ∑

j=2

−2g2
2

4∆jσ3
g3 =

n(I1 − Ib)∆1 − γG1t1∆1 g4 = γt1∆1 g23 =
−2(I1 + g3)g4

4∆1σ3
g24 =

−2g2
4

4∆1σ3
g13 =

2I1 − g3 −
µI0
µG0

4∆1σ3
g14 =

2g4

4∆1σ3

A = [n(I1 − Ib) − γ(G1 − h)t1]∆1 C = −2(I1 + A) B = I2
1 + A2 + 2I1A B =

C2/4 D = ∑
j=2

−A2
3j

4∆jσ3
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a2 =
1

4∆1σ3
+

1
2σI0

b2 =
−C

4∆1σ3
+

µI0

σI0

CC1 = D− B
4∆1σ3

−
µ2

I0

2σI0

+
b2

2
4a2

A1 = Xj − Xj−1 + p2Xj∆j A2 = p2(Ij − Ib)∆j

E1 = ∑
j=1

−A2
1

4∆jσ2
−

µ2
SI

2σSI

E2 = ∑
j=1

−A1A2

2∆jσ2
+

µSI

σSI

E3 = ∑
j=1

A2
2

4∆jσ2
+

1
2σSI

O1 = ∑
j=1

(Ij − Ib)∆j

2∆jσ2
O2 = ∑

j=1

−Xj∆j

2∆jσ2

f1 = ∑
j=2

−(Ij − Ib)∆j(Ij − Ij−1 − γ(Gj − h)tj∆j)

2∆jσ3

f2 = ∑
j=2

(Ij − Ib)∆j
2

2∆jσ3

f3 = 2(I1 − Ib)∆1
2 f4 = 2I1(I1 − Ib)∆1 − 2(I1 − Ib)∆

2
1γ(G1 − h)t1

f5 =
(I1 − Ib)∆1

2∆1σ3

C1 = −2G1 − 2X1G1∆1 C2 =
C2

4
4

C3 = 2(G1 − Gb)∆
2
1X1G1 + 2G1(G1 − Gb)∆1 C4 =

−2(G1 − Gb)∆1 C5 = Gj − Gj−1 + XjGj∆j C6 = (Gj − Gb)∆j

a =
1

4∆1σ11
+

1
2σG0

C7 =
−C1

4∆1σ11
+

µG0

σG0

cte1 = exp(∑
j=2

−C2
5

4∆jσ1
−

µ2
SG

2σSG

− f racµ2
G0

2σG0 +
C2

7
4a

)

√
π

8

a10 = ∑
j=2

C2
6

4∆jσ1
+

1
2σSG

+
4C2∆1

2σG0 + 4∆1σ1

b10 = ∑
j=2

−C5C6

2∆jσ1
+

µSG

σSG

− C3

4∆1σ1
−

C4σG0

2σG0 + 4∆1σ1

.2 Real DATA
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G X I time

20,3 2,0191E-06 8,40346E-07 3

15,6 2,3832E-06 8,05621E-07 4

15,3 2,2177E-06 7,08391E-07 5

13,9 1,8867E-06 5,06986E-07 7

13,4 1,6219E-06 3,1947E-07 10

11,9 1,5226E-06 1,9446E-07 15

10,5 0,000001324 1,5279E-07 20

9,3 1,2578E-06 1,5279E-07 25

8,3 1,1916E-06 1,31955E-07 30

5,4 7,944E-07 6,25051E-08 60

4,9 4,965E-07 4,86151E-08 115

4,9 5,296E-07 4,86151E-08 120

19,5 1,7543E-06 4,86151E-07 3

16,7 1,5557E-06 4,09061E-07 4

17,9 1,6219E-06 3,64613E-07 5

16,3 1,5557E-06 2,76411E-07 7

15,1 1,5888E-06 2,29185E-07 10

12,2 1,4233E-06 1,76403E-07 15

12,1 1,3902E-06 1,5279E-07 20

10,9 0,000001324 1,31955E-07 25

10 1,4233E-06 1,34039E-07 30

6 1,3571E-06 5,97271E-08 60

5,3 8,937E-07 4,79206E-08 115

5,4 7,944E-07 4,79206E-08 120

13,2 0,000000993 2,20157E-07 3

14,5 1,0923E-06 2,81273E-07 4

14,8 1,0261E-06 2,31269E-07 5
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13,6 9,599E-07 1,45151E-07 7

11,8 8,937E-07 1,19454E-07 10

12 8,937E-07 1,29872E-07 15

11,3 9,268E-07 1,21538E-07 20

10,5 9,599E-07 1,3265E-07 25

8,9 1,0592E-06 1,40984E-07 30

6,3 1,1254E-06 1,40984E-07 60

4 6,289E-07 5,55601E-08 115

4 6,289E-07 5,90326E-08 120

11,5 2,0522E-06 5,31293E-07 3

12,4 2,4494E-06 8,2854E-07 4

12,5 2,4494E-06 8,55625E-07 5

10,7 2,1846E-06 5,83381E-07 7

10,5 1,9198E-06 4,08367E-07 10

8,7 1,7212E-06 2,25018E-07 15

6,9 0,000001655 1,29872E-07 20

6 1,3902E-06 8,26456E-08 25

4,6 1,0261E-06 6,18106E-08 30

4,5 8,606E-07 5,97271E-08 60

4,6 7,613E-07 4,93096E-08 115

4,6 7,282E-07 4,30591E-08 120

20,4 1,3902E-06 2,14601E-07 3

17,4 1,3902E-06 2,30574E-07 4

18,5 1,2578E-06 1,64597E-07 5

17 1,4233E-06 1,59735E-07 7

15 1,4564E-06 1,84043E-07 10

14,9 1,4564E-06 1,82654E-07 15

14,3 1,4233E-06 1,56957E-07 20
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13,5 1,5557E-06 1,65291E-07 25

11,5 1,6219E-06 1,96544E-07 30

9,6 2,0191E-06 2,5002E-07 60

6,1 1,5557E-06 9,72301E-08 115

6,1 1,5226E-06 9,93136E-08 120

18,7 2,2177E-06 4,68094E-07 3

17 1,8867E-06 5,20181E-07 4

17,4 2,0522E-06 4,43092E-07 5

16,3 1,7874E-06 3,32666E-07 7

15,9 1,8205E-06 2,51409E-07 10

13,6 1,7212E-06 2,60438E-07 15

14,1 1,8205E-06 2,36825E-07 20

13,6 1,8867E-06 2,58354E-07 25

12,9 1,9529E-06 2,54187E-07 30

8,7 2,4494E-06 3,06275E-07 60

5,4 1,7212E-06 1,45845E-07 115

5,4 1,6219E-06 1,09037E-07 120

19,3 3,3431E-06 1,4022E-06 3

19,8 2,8466E-06 1,15357E-06 4

18,2 2,2508E-06 1,08203E-06 5

15,4 2,3832E-06 9,91053E-07 7

16,4 2,4163E-06 1,04106E-06 10

15 2,7142E-06 1,16954E-06 15

14,1 2,7804E-06 1,22718E-06 20

13,1 3,1776E-06 1,44803E-06 25

12 3,2107E-06 1,56679E-06 30

8 0,00000331 1,48623E-06 60

4,8 1,5226E-06 3,91004E-07 115
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4,7 1,4564E-06 3,57668E-07 120

18,1 0,000002317 5,11153E-07 3

16,9 2,2508E-06 5,50739E-07 4

15,1 2,2508E-06 4,50731E-07 5

16,2 2,1515E-06 3,50723E-07 7

15,8 2,1515E-06 3,53501E-07 10

15,1 2,2839E-06 3,71558E-07 15

12,6 2,3832E-06 3,72253E-07 20

13,2 2,5818E-06 3,8267E-07 25

12,1 2,7804E-06 4,75039E-07 30

7,9 2,8135E-06 4,09061E-07 60

4,7 0,000001986 1,30566E-07 115

4,5 1,6219E-06 9,09796E-08 120

14,6 0,000001324 2,9933E-07 3

14,2 1,4895E-06 3,42389E-07 4

14,3 1,4564E-06 3,41E-07 5

14,4 1,5226E-06 2,63216E-07 7

12,9 1,5888E-06 2,18073E-07 10

11,5 1,5226E-06 1,50012E-07 15

10,7 0,000001324 9,93136E-08 20

9,7 1,2247E-06 8,95906E-08 25

7,9 1,1254E-06 7,77841E-08 30

6 0,000000993 4,93096E-08 60

5,3 0,000000662 3,95866E-08 115

4,7 0,000000662 3,81976E-08 120

13,4 1,5888E-06 3,16692E-07 3

13,3 1,5226E-06 3,68086E-07 4

13,2 1,3571E-06 3,11831E-07 5
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12,7 1,3902E-06 2,26407E-07 7

13,2 1,2909E-06 1,57652E-07 10

13,3 1,3902E-06 1,67375E-07 15

12,1 1,3902E-06 1,6043E-07 20

10,3 1,3571E-06 1,42373E-07 25

10,4 1,4233E-06 1,36817E-07 30

7,4 1,5888E-06 1,27788E-07 60

4,5 1,1585E-06 8,05621E-08 115

4,8 1,1916E-06 8,33401E-08 120

20 2,2508E-06 7,36866E-07 3

19,3 2,4163E-06 6,93806E-07 4

19 2,2839E-06 6,49358E-07 5

17,8 2,2508E-06 5,18792E-07 7

15,1 2,2508E-06 4,36841E-07 10

14,9 2,0853E-06 4,54204E-07 15

13,7 2,1184E-06 4,22257E-07 20

12,6 2,1515E-06 4,49342E-07 25

10,9 2,4163E-06 3,88921E-07 30

7,9 2,2508E-06 3,12525E-07 60

5,3 1,4564E-06 1,20843E-07 115

5,1 1,4233E-06 1,12509E-07 120

17,9 0,000002317 7,16031E-07 3

17,3 2,2177E-06 6,81305E-07 4

16,9 2,2839E-06 5,96576E-07 5

16,3 2,1184E-06 4,89623E-07 7

15,1 2,0191E-06 3,75031E-07 10

14,2 1,9198E-06 3,11136E-07 15

13 1,9529E-06 3,13914E-07 20
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11,9 2,0522E-06 2,90301E-07 25

11,5 2,0522E-06 2,82662E-07 30

8,1 2,6149E-06 3,07664E-07 60

4,9 1,6219E-06 1,2501E-07 115

4,9 1,5226E-06 1,02786E-07 120

21,4 3,0783E-06 1,1112E-06 3

20,1 2,9128E-06 9,86191E-07 4

18,6 2,6149E-06 7,84092E-07 5

16,4 2,2508E-06 5,79908E-07 7

15,5 1,8536E-06 3,64613E-07 10

13,8 1,8205E-06 3,00719E-07 15

12,4 1,5888E-06 2,36825E-07 20

11,5 1,5226E-06 1,85432E-07 25

10,7 1,6881E-06 2,20851E-07 30

7,5 1,6219E-06 1,90293E-07 60

5,7 1,0261E-06 7,50061E-08 115

5,6 9,268E-07 7,36171E-08 120

19 2,3501E-06 6,14633E-07 3

17,8 2,2177E-06 5,19487E-07 4

17,1 1,8867E-06 4,49342E-07 5

15,8 1,7543E-06 2,88218E-07 7

15,4 1,9529E-06 3,15998E-07 10

13,8 2,0191E-06 2,78495E-07 15

12,9 1,9529E-06 3,10442E-07 20

11,8 2,1184E-06 2,97246E-07 25

11 2,2508E-06 2,94468E-07 30

7,7 2,4494E-06 2,66688E-07 60

4,6 1,4233E-06 7,29226E-08 115
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4,4 1,4895E-06 8,75071E-08 120

20,8 2,7142E-06 9,99387E-07 3

18,9 2,6811E-06 9,08407E-07 4

18,3 2,5156E-06 7,62562E-07 5

17,2 2,3832E-06 5,83381E-07 7

16 2,1846E-06 4,69483E-07 10

14,3 2,3501E-06 5,11153E-07 15

10,1 0,000002317 4,45175E-07 20

11,7 2,1846E-06 4,07672E-07 25

10,7 2,2177E-06 3,09747E-07 30

7,2 2,2508E-06 2,5766E-07 60

5 1,0923E-06 8,05621E-08 115

4,9 1,0592E-06 7,63951E-08 120

15,2 0,000002648 7,20892E-07 3

14,7 3,0121E-06 1,08759E-06 4

14,8 3,0783E-06 9,91747E-07 5

14,2 2,8466E-06 8,10483E-07 7

13,9 2,5487E-06 6,3269E-07 10

12,8 2,4163E-06 4,62538E-07 15

11,9 2,3501E-06 3,97949E-07 20

10,9 2,2839E-06 3,65308E-07 25

10,2 2,4494E-06 3,47251E-07 30

7,4 2,4825E-06 3,03497E-07 60

4,8 1,7212E-06 1,1876E-07 115

4,7 1,5226E-06 1,05564E-07 120

22,5 2,3501E-06 9,16741E-07 3

20,1 2,3501E-06 7,57006E-07 4

19,7 2,2177E-06 6,29218E-07 5
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17,5 2,0191E-06 4,9379E-07 7

16,6 1,8205E-06 5,13236E-07 10

15,8 2,0191E-06 5,13931E-07 15

14,4 2,1846E-06 5,18098E-07 20

13,6 2,2839E-06 5,00735E-07 25

12,9 2,5487E-06 5,7088E-07 30

8,1 2,8466E-06 6,05605E-07 60

4,2 1,3571E-06 1,24316E-07 115

4,1 1,4233E-06 1,25705E-07 120

19,1 0,000003641 1,0862E-06 3

18,5 3,5748E-06 1,07648E-06 4

17,7 3,3762E-06 1,10287E-06 5

17,3 3,2769E-06 8,841E-07 7

16,2 3,5748E-06 7,7923E-07 10

14,5 3,5417E-06 7,71591E-07 15

13,7 3,5748E-06 8,6257E-07 20

13,1 3,6079E-06 8,39652E-07 25

11,8 3,7403E-06 9,32715E-07 30

7,6 3,4424E-06 5,8477E-07 60

5,3 2,1184E-06 2,78495E-07 115

5,3 1,8205E-06 2,30574E-07 120

15 2,3832E-06 0,00000087 3

15,5 2,3832E-06 8,75071E-07 4

15,2 2,4825E-06 7,81314E-07 5

15,2 2,6811E-06 7,27837E-07 7

14,9 2,2839E-06 6,52831E-07 10

13,8 2,6149E-06 7,27143E-07 15

12,4 2,4163E-06 7,27143E-07 20
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11,3 0,000002648 7,06308E-07 25

10 2,5156E-06 5,60462E-07 30

5,9 1,9198E-06 2,59049E-07 60

4,5 1,0923E-06 9,51466E-08 115

4,4 0,000000993 9,16741E-08 120

10 1,7212E-06 3,51418E-07 3

11,5 2,2177E-06 5,84075E-07 4

11,3 2,2177E-06 6,89639E-07 5

11,2 2,2839E-06 6,66026E-07 7

11 0,000002317 5,30599E-07 10

11,1 2,2177E-06 4,01422E-07 15

10,4 2,0191E-06 3,45861E-07 20

9,6 2,2508E-06 3,49334E-07 25

9 2,1184E-06 2,54882E-07 30

6,9 1,7874E-06 1,45151E-07 60

5 1,2909E-06 9,65356E-08 115

4,9 1,2578E-06 8,40346E-08 120
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Yalçınkaya, Abdullah, Birdal Şenoğlu, and Ufuk Yolcu (2018). “Maximum likelihood
estimation for the parameters of skew normal distribution using genetic algorithm”.
In: Swarm and Evolutionary Computation 38, pp. 127–138 (cit. on p. 41).

https://doi.org/10.1201/9781420010664

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Symbols & Abbreviations
	General Introduction
	Motivation
	Problem Statement
	Applied mathematics and Pharmacokinetics
	Population approach

	NonLinear Mixed Effects model
	Random effects
	NonLinear Mixed Effects model
	Dynamical NLME model
	Stochastic NLME model

	An overview of the thesis

	Background
	General Probability Theory
	Definitions and notions

	Brownian motion
	The Wiener noise - Brownian motion
	Stochastic Differential Equations
	Definition
	Ito integral and stochastic differential equations
	Existence and uniqueness


	Likelihood function and Markov process
	Transition density
	Likelihood function for discretely observed processes


	Corresponding forward equation of Itô diffusion
	 Markov chain Monte Carlo methods
	Gibbs Sampling Algorithm
	The Metropolis Hastings Algorithm

	Numerical methods for solving stochastic differential equations
	The EM Approximation
	The Milstein Approximation



	 Statistical inference for stochastic differential mixed effects model 
	Introduction
	Formulation of stochastic differential mixed effects model
	Itô formula
	Stochastic Differential Mixed Effects model

	Maximum likelihood estimation
	Closed approximate form of transition density and likelihood approximation
	Likelihood approximation

	An approach for a closed-form transition density
	Practicale estimation methods of NonLinear stochastic differential Mixed Effects model 
	SDME model without measurements noise
	SDME model with measurement noise

	Conclusion

	Insulin sensitivity modelling
	Background
	About glucose and insulin:
	Diabetes
	Insulin sensitivity
	C-peptide and insulin kinetics

	Minimal model of glucose-insulin kinetics
	Presentation
	Stochastic minimal model
	Insulin sensitivity estimation


	Implementation issues and numerical applications 
	Example 1: The two-dimensional Ornstein–Uhlenbeck process
	Simulation study 

	Example 2: The stochastic minimal model 
	Simulation study
	Real study
	Real DATA Description
	Augmented data
	Real results

	Discussion about the stochastic minimal model


	Conclusions and future directions
	Appendix A
	Verification of assumptions
	Proof of (3.21)
	Details

	Real DATA

	Bibliography

