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Abstract  

The present thesis focuses on the application of chemometrics and spectroscopic methods to 

evaluate the quality of food (olive and argan oil). The study aims to evaluate spectroscopic sensors 

combined with chemometric algorithms for the identification of geographical origin, classification 

according to freshness, and the determination of adulteration.  

In this thesis the capability of UV-visible and FT-MIR in coupling with recognition algorithms was 

evaluated to determinate the geographical traceability of olive oils coming from various provinces 

of the Beni Mellal Khenifra region. PCA was applied to the spectral data set to represent the data 

in a small space, then classification methods were applied to the main components synthesized by 

the PCA. The application of the PCA-LDA approach on the UV-Visible and ATR-FTMIR spectral 

data demonstrates a strong efficiency in classifying olive oils according to their geographical origin 

with a correct classification rate (CCR) of 90.24% and 85.87%, respectively. While the use of the 

PCA-SVM method shows a CCR of 100% and 97.56% respectively. Next, laser-induced 

fluorescence spectroscopy at 400 nm was evaluated with multivariate analysis methods, supervised 

and unsupervised, to establish a rapid analytical approach to distinguish freshly produced olive oils 

from oils that have been stored for a period of time ranging from 12 to 24 months. The spectral 

fluorescence data were first processed by PCA in order to visualize the samples in a reduced space. 

This method displays a strong clustering of the three oil groups using the first three components 

that summarize 96% of overall variability. Subsequently, three discrimination methods were 

applied on the emission fluorescence data, these approaches indicate a strong ability to classify the 

three classes of olive oil according to their degree of freshness. Finally, a comparative study of 

three multivariate approaches to detect the argan oil adulteration by olive oil was performed using 

fluorescence, UV-Visible, and FT-MIR spectroscopy coupled to chemometric tools such as PLS 



  

 
 

regression and PLS-DA. The application of PLS-DA shows a strong ability to discriminate between 

pure argan oils and falsified oils. The Validation of the approaches developed by PLS-DA indicates 

a sensitivity, specificity, and CCR of 100% in all spectroscopic methods. For the quantification of 

the adulteration rate, the application of PLS also shows a high performance expressed by the high 

value of R-square and low value of RMSE. The validation of the models developed by PLS using 

the accuracy profile shows that the PLS approaches guarantee reliable and valid results between 

0.5% to 32%, 7% to 32%, and 10% to 32% using respectively fluorescence, FT-MIR, and UV-

Visible spectroscopies. 

Keywords: chemometrics, spectroscopy, quality control, classification, oils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

Résumé 

La présente thèse porte sur l'application des méthodes chimiométriques et spectroscopiques pour 

évaluer la qualité des aliments (huile d'olive et huile d'argan). L'étude se concentre sur l'évaluation 

de capteurs spectroscopiques combinés à des algorithmes chimiométriques pour l'identification de 

l'origine géographique, la classification selon la fraîcheur et la détermination de l'adultération.  

Dans cette thèse, la capacité des UV-visible et FT-MIR en couplage à des algorithmes de 

reconnaissance a été évaluée pour la détermination de la traçabilité géographique des huiles d'olive 

provenant de différentes provinces de la région de beni mellal khenifra. L'ACP a été appliquée à 

l'ensemble de données spectrales pour représenter les données dans un petit espace, puis des 

méthodes de classification ont été appliquées aux principales composantes synthétisées par l'ACP. 

L'application de l'approche PCA-LDA sur les données spectrales UV-Visible et ATR-FTMIR 

montre une forte capacité à classer les huiles d'olive en fonction de leur origine géographique avec 

un taux de classification correcte de 90,24% et 85,87%, respectivement. Alors que l'utilisation de 

la méthode PCA-SVM montre un taux de classification correcte de 100 % et 97,56, respectivement. 

Ensuite, la spectroscopie de fluorescence induite par laser à 400 nm a été évaluée avec des 

méthodes d'analyse multivariée, supervisée et non supervisée, afin d'établir une approche 

analytique rapide pour distinguer les huiles d'olive fraîchement produites des huiles qui ont été 

stockées pendant une période de temps allant de 12 à 24 mois. Les données de fluorescence 

spectrale ont d'abord été traitées par PCA afin de visualiser les échantillons dans un espace réduit. 

Cette méthode montre un fort regroupement des trois groupes d’huiles d’olive en utilisant les trois 

premières composantes qui résument 96% de la variabilité globale. Par la suite, trois méthodes de 

discrimination ont été appliquées sur les données de fluorescence d'émission, ces approches 

indiquent une capacité forte à classer les trois classes d'huile d'olive selon leur degré de fraîcheur. 



  

 
 

Enfin, une étude comparative pour la détection de l'adultération de l'huile d'argan par l'huile d'olive 

a été réalisée en utilisant la spectroscopie de fluorescence, UV-Visible et FT-MIR combinée avec 

des outils chimiométriques tels que la régression PLS et la discrimination PLS-DA. L'application 

de la PLS-DA montre une forte capacité à discriminer entre l'huile d'argan pure et les huiles 

falsifiées. La validation de l'approche développée par le PLS-DA indique un taux de sensibilité, de 

spécificité et de classification correcte de 100 % pour toutes les méthodes spectroscopiques. En 

quantifiant le taux d'adultération, l'application du PLS montre également une performance élevée 

exprimée par la valeur élevée de R-carré et la valeur faible de RMSE. La validation des modèles 

développés par PLS à l'aide du profil de précision montre que les approches PLS garantissent des 

résultats fiables et valides entre 0,5 % à 32 %, 7 % à 32 % et 10 % à 32 % en utilisant respectivement 

les spectroscopies de fluorescence, FT-MIR et UV-Visible. 

Mots clés : chimiométrie, spectroscopie, contrôle qualité, classification, huiles 

 

 

 

 

 

 

 

 



  

 
 

 ملخص

 بحيث (.نرغاالأ وزيت الزيتون زيت) الطعام جودة لتقييم الطيفية والطرق الكيميائية القياسات تطبيق على الاطروحة هذه تركز

 الزيوت نيفوتص الجغرافي المنشأ لتحديد الكيميائي القياس خوارزميات مع الطيفية الاستشعار أجهزة تقييم على الدراسة تركز

 الثاني الجزء أما عامة، مقدمة عن عبارة هو الأطروحة من الأول الجزء. المغشوشة الأركان زيوت وكشف طراوتها حسب

 .شاملة خاتمة فيقدم الثالث الجزء ومناقشتها، أما الأطروحة نتائج فيعرض

 عم بالإقتران الحمراء تحت الأشعة ومتوسط المرئية البنفسجية فوق الأشعة قدرة تقييم تم الأطروحة لهذه الأول الجزء في

 التحليل طبيقت تم. خنيفرة ملال بنيجهة  أقاليم مختلف من القادمة الزيتون لزيوت الجغرافي التتبع لتحديد التعرف خوارزميات

 طرق تطبيق تم دلك بعد ثم صغيرة، مساحة في البيانات لتمثيل الطيفية البيانات مجموعة على الرئيسية للمكونات الإحصائي

 تطبيق يبين .سيةالرئي للمكونات الإحصائي التحليل بواسطة عليها الحصول تم التي الرئيسية المكونات على الإحصائية التصنيف

 البنفسجية فوق للأشعة الطيفية البيانات على (PCA-LDA) وخوارزميات التصنيف الرئيسية للمكونات الإحصائي التحليل نهج

 صحيح فتصني بمعدل الجغرافي لأصلها وفقًا الزيتون زيوت تصنيف في جيدة نتائج الحمراء تحت الأشعة متوسطو المرئية

 و ٪022 ( بنسبةص.ت.م) معدل PCA-SVM طريقة استخدام يظهر بينما. التوالي على ٪58.58و ٪42.09 يبلغ( ص.ت.م)

 .التوالي على %48.89

 مكني سريع تحليلي نهج لإنشاء الإحصائي، التحليل طرق باستخدام نانومتر 922 عند الإشعاعي الطيفي التحليل تقييم تم ذلك، بعد

 البيانات معالجة تمت شهرًا. 09 إلى 00 من تتراوح زمنية لفترة تخزينها تم التي والزيوت الطازجة الزيتون زيوت بين التمييز من

ا تجميعًا الطريقة هذه تعرض .جيد بشكل البيانات تحليل أجل من الرئيسية للمكونات الإحصائي التحليل بواسطة أولاً  الطيفية  قويً

 تم ذلك، بعد. الكلي التباين من ٪49 تلخص التي الأولى الثلاثة المكونات باستخدام تخزينها مدة حسب الثلاث الزيت لمجموعات

 هذه طبيقت ويشير الجديدة، والزيوت القديمة الزيوت تمييز أجل من الإشعاعي الانبعاث بيانات على إحصائية طرق ثلاث تطبيق

 .تهانضار لدرجة وفقًا الزيتون لزيت الثلاثة الأصناف تصنيف على قوية قدرة إلى البيانات لتحليلالإحصائية  الطرق

 مرئي سجيبنف )فوق الطيفي التحليل طرق باستخدام الزيتون بزيت الأرغان زيت غش عن للكشف مقارنة دراسة إجراء تم أخيرًا،

 قدرة PLS-DA تطبيق يظُهر. PLS-DAو PLSالكيميائي  القياس أدوات مع جنب إلى جنبًا( الحمراء تحت بالأشعة ومتوسط

 إلى PLS-DA طوره الذي النهج صحة من التحقق يشير. المغشوشة والزيوت الخالص الأرغان زيت بين التمييز على قوية



  

 
 

 لغش،ا لمعدل الكمي بالتقدير يتعلق فيما. الطيفي التحليل طرق لجميع ٪022 بنسبة صحيح تصنيف ومعدل وخصوصية حساسية

 حةص من التحقق يُظهر. المنخفضة الخطأ وقيمة الانحدار لـمعامل العالية بالقيمة عنه يعبر عاليًا أداءً  أيضًا PLS تطبيق يظُهر

 ،٪20 إلى ٪2.8 بين وصحيحة موثوقة نتائج تضمن PLS مناهج أن ,الدقة تعريف ملف باستخدام PLS طورتها التي النماذج

 الحمراء والأشعة فوق تحت بالأشعة متوسط الإشعاعي، الطيف طريقة باستخدام التوالي على ٪20إلى ٪02و ٪20 إلى 8٪

 .المرئية البنفسجية

والزيوت التصنيفٍ   الجودة مراقبة الطيفي، التحليل الكيميائي، القياس: الأساسية الكلمات  
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Introduction 

The science of analytical chemistry can be defined as a field of chemistry that aims at the 

identification, characterization, and quantification of chemical substances and the development of 

methods necessary for this analysis. Furthermore, it is also interested in understanding the 

phenomena involved in analytical practices and techniques in order to continuously improve them. 

The sample under investigation may be solid, liquid, or gaseous compounds, and the results of the 

analysis are expressed as data related to the initial question raised on the sample. Based on the data 

collected during the analysis, information about the sample can be extracted. This information may 

be either qualitative or quantitative (or both). 

Olive oil and argan oil are considered among the most important oils from a nutritional point of 

view. Olive oil is considered as an important element of the Mediterranean diet, since it is the main 

source of fat of the Mediterranean diet. It provides essential fatty acids and its high proportion of 

unsaturated fatty acids gives it beneficial properties for health. Argan oil is considered as a very 

valuable cosmetic or edible oil, which has been used for centuries as the main ingredient of the 

Moroccan Amazigh diet. Nowadays, the origin, freshness, and purity of these oils constitute an 

important criterion for the import and export market in order to guarantee their traceability and 

their quality, because many consumers require pure, fresh products and from a specific origin. The 

information concerning the origin of food is needed to ensure its quality since products of different 

origins can have different qualities.  

The traceability and the control of oil falsification (olive oil and argan oil) have been the subject 

of the Moroccan authority to protect consumers and increase its economic value. To answer this 
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question, accurate and rapid analytical approaches are required to establish and evaluate the 

geographical origin, authenticity, and freshness of oils. 

Spectroscopic techniques are generally fast and the analysis requires only a few seconds to a few 

minutes. Moreover, spectroscopy produces a considerable amount of data for each sample scanned. 

The use of chemometric tools with many variables provides many advantages in qualitative and 

quantitative spectroscopic analysis. Generally, methods become more reliable, more accurate, and 

less sensitive to spectral artifacts. Therefore, the multivariate analysis could be considered as the 

optimal choice for the evaluation of spectroscopic data in order to develop analytical tools able to 

assess food quality. 

The general objective of the present PhD thesis is to develop rapid multivariate analysis methods 

and their validation for quality authentication. This includes the investigation and application of 

various spectroscopic methods that are generally used with spectral pre-treatment and new 

approaches of classification and quantification in the area of food. 

The experimental developments that determine this overall purpose lead to three different sub-

objectives: 

 Evaluate the UV-Visible and FT-MIR signal for its use in multivariate approaches to 

determine the geographical traceability of olive oil. 

Due to the increasing interest of many scientists towards the development of rapid analytical 

methods for the determination of food traceability using spectroscopic methods. This present work 

evaluates the ability of two spectroscopic techniques in combination with chemometrics 

classification tools to answer the question of geographical traceability. 
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 Develop multivariate approaches based on non-targeted modeling for studying the 

freshness of olive oils. 

Most studies based on multivariate qualitative analysis have been focusing on the multi-class 

approach to address the analytical problems of classifying foods according to their freshness. This 

PhD thesis exploits the important potential of the single-class approach to deal with food safety 

issues. For this purpose, well-established class modeling techniques such as PLS-DA, PCA-LDA, 

and SVM have been used to classify olive oils according to their storage time based on fluorescence 

spectroscopy. 

 Establish and validate rapid chemometric approaches for the detection and 

quantification of argan oil adulteration based on spectroscopic sensors. 

The use of multivariate methods in combination with spectroscopic sensors is continuously 

increasing. This thesis applies three spectroscopic approaches for the detection of adulteration 

through the development of qualitative and quantitative models. However, there are no established 

criteria for their validation at a global level. For this purpose, a classical validation approach has 

been established for the validation of the qualitative model while a statistical approach named 

"accuracy profile" has been applied for the validation of the quantitative models. 

Structure of the thesis 

This thesis is organized into three parts: Part I: Introduction, Part II encompasses the experimental 

part, results, and discussion and the third part contains conclusions and perspectives. 

The first part: It includes the section "State of the art", containing a bibliographical overview of 

recent literature. In addition, conceptual backgrounds that the authors consider insufficiently 
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exposed or established in the documents, which are relevant for a proper understanding of the 

current work, are presented in the sub-section on the state of the art. 

The second part: includes the results obtained during this thesis work on the spectral 

characterization of olive oil and argan oil, geographical classification, authentication, freshness and 

quality control. This part also evaluates practical aspects of implementation and the use of 

chemometric tools in the context of oil quality control.  

This part is generally divided into three chapters 

Chapter 1 describes a study that focuses on the evaluation of the capability of horizontal ATR-

FTMIR and UV-Visible spectroscopy in the discrimination of virgin olive oils from the Moroccan 

region of Beni Mellal-Khenifra 

Chapter 2 investigates the feasibility to use fluorescence emission spectroscopy for rapid 

determination of olive oil freshness. 

Chapter 3 compares three multivariate approaches based on three spectroscopic methods for the 

detection and quantification of argan oil falsification. 

The third part is a concluding section, which summarizes the results achieved, future trends and 

perspectives regarding the application of multivariate analysis and spectroscopy for food control.  
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I. Plants materials 

1. Olive tree 

The olive tree is a sub-tropical evergreen tree and its edible fruit. The fruit of the olive tree and its 

oil are considered as key elements of the Mediterranean diet and are appreciated outside the region 

[1], [2]. The cultivation of the olive tree has several aspects: wood (fuel), livestock food, as 

fertilizer, utilization in the diet (use of oil), as cosmetics, and the economic importance of the tree 

and its fruits [3]. All these issues have been the subject of vigorous discussion in recent decades. 

For this reason, olive tree cultivation has spread to all countries bordering the Mediterranean, and 

the tree is also planted as an ornamental plant in appropriate climates. 

The olive tree measures between 3 and 12 meters in height and has many branches. Its leaves, are 

dark green on top and silvery on the underside and are paired opposite each other on the branch, 

its wood is resistant to rot. If the top dies, a new trunk will often be born from the roots [4].  

Olive trees bloom in late spring; small whitish flowers are born in loose clusters in the axils of the 

leaves. The flowers are divided into two types: perfect, containing both male and female parts, 

which can grow to give the fruits of the olive tree; and male, containing only the pollen-producing 

parts, the olive is pollinated by the wind. The fruit formation of the olive is often irregular. In some 

regions, particularly where irrigation and fertilization are not carried out, alternate fruiting is the 

rule. Trees may produce a plentiful crop one year and not bloom the following year [5]. 

In Morocco, olive cultivation (olive growing) is an important source of employment providing 

more than 51 million working days per year, the equivalent of 380,000 permanent jobs. With good 

reason, the olive tree is the main cultivated fruit sector and represents 65% of the national 

arboricultural sole. Olives are cultivated mainly for the production of olive oil. 
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2. Argan tree 

The argan tree Known as the "tree of life" by the Berbers for its numerous health benefits, Argania 

spinosa L. Skeels is a tropical plant and is the single endemic species of the Argania genus in 

Morocco. This tree is considered an important socio-economic pillar of southern Morocco. Since 

antiquity, it has played an important role in the culture and symbolic customs, economy, healthcare 

and gastronomy of the Moroccan Amazigh people [6]. As the only home of this rare and 

endangered species, the argan grove was classified as an International Biosphere Reserve by 

UNESCO in 1998 [7]. 

At present, the Moroccan argan tree forest occupies an overall area of 840,000 ha, including the 

fertile Souss Valley area, the Anti-Atlas foothills, and the coastal area between Essaouira and 

Agadir [8]. Since antiquity, argan oil has been a basic material for cosmetics, hair care, skin 

treatments, and body beauty. 

The argan tree is extremely resistant to unfavorable environmental factors and grows in arid and 

semi-arid regions, although agricultural production is affected consequently [9]. Therefore, suitable 

care and monitoring of the crop (irrigation or rainfall, appropriate harvesting and ripening 

practices) are crucial to achieving high fruit and oil yield. Argan fruit weight increases and attains 

its maximum maturity between June and August, but it fluctuates depending on the latitude of the 

cultivation area, soil quality, temperature, and water availability [10]. Argan oil is extracted from 

the argan fruit (stones), while the extraction process differs between edible and cosmetic oil.  

The cultivation of argan fruit represents economic importance in Morocco, enabling the subsistence 

of part of the Moroccan population during centuries. Its socio-economic pattern has stayed 

traditional, structured first around a particular socio-legal structure that operates on the basis of 

various productions. Today, it is a source of additional income for local rural populations, the major 
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part of the population is involved in agriculture, in general, the different sectors of the argan tree's 

activity became an opportunity for sustainable development. 

The argan forest formerly extended over 1.5 million hectares. Nowadays it covers an area of more 

than 800,000 hectares, while less than half of the forest has disappeared and around 600 hectares 

of forest are removed each year. However, the Moroccan agriculture and forestry authorities are 

initiating the reforestation of those areas with argan trees [11]. The argan tree provides a livelihood 

for 3 million people, 2.2 million of whom live in rural areas. The diverse productions of the argan 

tree ensure more than 20 million days of work, of which 7.5 million days are mainly for females to 

extract argan oil alone [12]. 

II. Oil extraction 

1. Olive oil extraction  

The process of producing olive oil is relatively simple but requires careful adherence to the 

following steps. The extraction process is outlined briefly in Figure 1. 

 Washing, crushing and mixing. 

The olives destined for the production of oil, they are sorted to remove twigs, leaves and then 

washed with cold water. Afterward, the olives are immediately crushed to avoid oxidation, with 

the pits containing antioxidants, considered as natural preserving agents. Crushing constitutes the 

first phase of the actual extraction process, which causes the rupture of cell walls and membranes 

resulting in the release of cell juices and oil. This operation can be carried out with stone grinders 

or with a metal grinder. Grinding is not enough to break all the vacuoles containing the oil, a mixing 

is then applied to the dough until a smooth dough is obtained to facilitate oil extraction. 

The grinding and mixing allow obtaining a paste that contains solid matter (fragments of kernels, 

epidermis, and cell walls ...) and fluid (oil and plant fluids of the cell content). 
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 Extraction. 

The extraction of the oil is always carried out cold (27° C according to the international standard) 

either by centrifugation or by pressure. The centrifugation is done in a decanter, a metal cylinder 

rotating at high speed (4000 rpm), in which the different components are separated based on the 

difference in density between water, oil and residue, centrifugation separates the oil (about 20%) 

from the water and the pomace. pressure or solid-liquid extraction is the oldest process which is 

often used to obtain olive oil. Generally, the pressure is obtained in an open hydraulic press by 

arranging the oil paste in thin layers alternating with fiber discs, called scourtins, in a mobile tower. 

The scourtins consist of a synthetic fiber disc pierced in the center so that it can be threaded onto 

the needle. On the first scourtin, placed on the bottom of the tray, a 3 cm thick layer of paste is 

placed, a second scourtin and a second layer of paste are superimposed, and so on. For every three 

layers of dough, we superimpose a scourtin without dough and a steel disc to distribute the pressure 

evenly. Finally, the liquid part composed of vegetation water (margine) and oil flows out while the 

solid part (cores and pulp) remains between the scourtins, this is what is known as the pomace, it 

is during this process that the bitter-tasting oleuropein is eliminated in the vegetation water. 

 Separation 

It is done by difference in density between fluids (olive oil being lighter than water). 

To isolate the oil from the margins, natural decantation or centrifugation separation can be used. 

Once the separation process is complete, the olive oil is immediately stored in stainless steel tanks 

to avoid oxidation. The oil can then be filtered to make it clear and shiny, and then bottled. Once 

bottled, the olive oil should be stored in the dark and protected from heat and light. 
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Figure 1: General process for the extraction of olive oil. 

2. Argan oil extraction 

Basically, the argan oil extraction is carried out using the unroasted argan kernels or the roasted 

kernels to produce respectively cosmetic oil or edible oil. Argan oil is produced through two 

techniques; traditional extraction or mechanical extraction (figure 2). The roasting operation is used 
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only for the production of edible quality oil. The roasting process allows eliminating the bitterness 

of the oil by reducing the moisture content of the kernels and gives the oil a hazelnut taste and a 

dark brown color. The artisanal process of extraction is only used to produce edible argan oil. The 

kernels obtained from the crushing are put in a container usually made of terracotta (Taflounte), 

then they are heated over a low fire. From time to time, the kernels are stirred so that they take on 

a brown tint. According to the women, the purpose of this operation is to develop the color, smell, 

and taste of the oil to be extracted. If the fire is increased, the color of the oil becomes browner. 

Then the roasted kernels are crushed using a stone grinder, usually similar to the one used in the 

artisanal milling of cereals (Azerg). The extracted paste is accumulated in a pottery container for 

mixing. The mixing is carried out manually with the addition of a small amount of warm water to 

obtain a creamy paste (Tazguemmoute). However, this operation conditioning the quality of the 

oil. Therefore, a significant increase in water will reduce the quality of the oil. The resulting paste 

is pressed by hand, releasing oil in the form of droplets. 

The mechanical process is performed on both roasted and unroasted kernels to produce an edible 

or cosmetic grade oil, respectively. During this process the kernels are crushed in a press that 

separates the argan oil from the residue (cake). 

The oil is then decanted and filtered to remove the suspended particles generated by the crushing. 

A summary of the various stages of argan oil extraction is shown in Figure 2. 

Fruit pulping by hand 

There are two ways of pulping, either it is done by women, in this case it consists of a light crushing 

of the whole fruit against a stone that serves as a support, then the separation of the pulp from the 

nut is done manually. 
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Figure 2: production process of argan oil. 

III. Plant oil composition and sensory properties 

1. Olive oil 

Olive oil is considered one of the most important elements from a nutritional and cosmetic aspect 

since it contains chemical compounds highly beneficial for human health. Olive oil is also rich in 

phenolic compounds known for their antioxidant properties that could delay the development of 
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certain cardiovascular or degenerative diseases [13]. Its composition in fatty acids and phenolic 

compounds is strongly correlated to the varietal origin, geographical origin, and ripeness degree. 

In addition, the quality of olive oil depends on several factors such as environmental and agronomic 

factors, the manufacturing process, and also the packaging. Generally, its quality can be evaluated 

by Physico-chemical parameters and organoleptic characteristics regulated by international 

standards. Limit values are set to define different quality categories, the best of which is "extra 

virgin oil". Although it is of very good quality, during its use or storage, an oil deteriorates and 

loses its properties [14]. Table 1 provides information on the composition of 100 g of olive oil 

based on the United States Department of Agriculture (USDA) National Nutrient Database for 

standard reference. 

Table 1: The nutritional composition contained in 100 of olive oil. 

Nutrients name Units Amount 

Energy Kcal 884 

Calcium, Ca mg 1 

Iron, Fe mg 0.56 

Sodium, Na mg 2 

Potassium, K mg 1 

Choline, total mg 0.3 

Vitamin E (alpha-tocopherol) mg 14.35 

Vitamin K (phylloquinone) µg 60.2 

Fatty acids, total saturated g 13.808 

Fatty acids, total monounsaturated g 72.961 

Fatty acids, total polyunsaturated g 10.523 
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Olive oil is approximately composed of 99% fat. The remaining 1% represents minor compounds; 

they are mainly made up of: squalene, triterpene alcohols, sterols, phenols and tocopherol 

derivatives (Respectively in order of importance). 

Olive oil fat is composed mainly of triglycerides. These are made up of different kinds of fatty 

acids, whose distribution is characteristic of olive oil and with a more detailed level regarding the 

varieties or the geographical origin. The content in each of these fatty acids (table 2), especially 

oleic acid, should not be confused with the acidity of an oil, which is expressed in grams of free 

oleic acid per 100 grams of oil. 

Sensory analysis is an essential technique for characterizing olive oils and studying consumer 

preferences. International cooperative studies, supported by the International Olive Council (IOC), 

have provided a codified sensory methodology for virgin olive oils, known as the "COI Panel test".  

Assessing exactly the way in which various factors affect the sensory quality of the final product 

is crucial in distinguishing between different types of oil. The following factors all play an 

important role in the production of high quality olive oil: cultivar, cultivation techniques and 

maturation of the olive, harvest and storage of the olive, de-leafing and washing of the olive, 

pressing, centrifugation. Kneading, extraction and conservation conditions of the oil [15]. 
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Table 2: Fatty acid composition of olive oils (%) 

Fatty acids Denomination Average centered Minimum value Maximum value 

C16:0 Palmitic acid 11.8 8.53 14.49 

C16:1ω9 Hypogeic acid 0.12 0.09 0.20 

C16:1ω7 Palmitoleic acid 0.81 0.26 1.76 

C17:0 Margaric acid 0.08 0.03 0.20 

C17:1ω8 Margaroleic acid4 0.15 0.06 0.36 

C18:0 Stearic acid 2.2 1.3 3.3 

C18:1ω9 Oleic acid 72.6 64.5 80.3 

C18:1ω7 Vaccenic acid 2.3 1.2 3.9 

C18:2ω6 Linoleic acid 7.9 3.6 16.8 

C18:3ω3 Linolenic acid 0.65 0.39 0.98 

C20:0 Arachidic acid 0.37 0.23 0.49 

C20:1ω9 Gondoic acid 0.28 0.21 0.40 

C22:0 Behenic acid 0.11 0.07 0.16 

C24:0 Lignoceric acid 0.05 0.03 0.08 

Saturated fatty acids 14.8 11.75 17.77 

Monounsaturated fatty acids 76.6 68.5 83.4 

Polyunsaturated fatty acids 8.6 4.23   17.46 
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2. Argan oil 

argan oil is considered among the most well-used oils for food consumption due to its balanced 

chemical composition. Argan oil has numerous pharmacological activities and health benefits due 

to its chemical composition profile. This oil is therefore composed of a glyceric fraction (99%) and 

an unsaponifiable fraction. It is an oil of the oleic-linoleic group, composed of 80% unsaturated 

fatty acids. Compared to olive oil, argan oil is more unsaturated and contains less oleic acid (45%); 

its low content of unstable linoleic acid, and its high content (35%) of linoleic acid, 

polyunsaturated, make it an oil of high food value, with hypocholesterolemic and anti-atherogenic 

properties.  

The unsaponifiable fraction (about 1%) contains carotenes (37.5%), tocopherols (7.5%), sterols 

and methyl sterols (20%), triterpene alcohols (20%) and xanthophylls (6.5%). the color of argan 

oil is mainly due to carotenoids and particularly xanthophylls. Argan oil is particularly rich in 

phenolic compounds and tocopherols (620 mg/kg vs. olive oil: 320 mg/kg). These tocopherols 

make it an excellent source of vitamin E, which is well known for its eutrophic properties that 

contribute to organ development. The richness of argan oil in vitamin E leads to the stimulation of 

cellular enzymatic activities related to detoxification and antioxidant defenses. 

Quality aspects being more and more crucial for customers purchasing decisions, it is necessary 

for manufacturers and marketers of argan oil to have in-depth knowledge of the factors that can 

influence the quality of the oil during the treatment, storage, and transport. They include the 

oxidation state and shelf life of the oils, but especially the sensory quality because only products 

that fulfill the expectations of the consumer can be successful commercially. This is especially true 

for a high priced product such as argan oil. The study of the sensory properties of argan oil showed 

that the extraction process has an important effect on the sensory quality of argan oil, because the 
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roasting step of the kernels and the argan oil extraction technique play a determining role on the 

quality and quantity of the aroma fraction. 

IV. Fingerprinting concept for food control. 

Fraudulent food scammers employ a variety of techniques to make financial gains. Such methods 

include mislabeling, falsifying or not documenting, performing unauthorized processes, and 

substituting, diluting, or incorporating ingredients in a product without declaring it. As ingredients 

from national suppliers or specific regions are often expensive, fraudsters can use ingredients from 

lower-priced regions or alternatively substitute synthetic substances. Food products that are 

commonly adulterated or misrepresented include olive oil, milk, honey, orange juice, fish, coffee, 

and herbs and spices. 

Food fingerprints could be understood as analytical molecular markers that represent a 

characteristic food quality state or condition, enabling better identification of products. Basically, 

it is a label or set of labels that help us to address many questions about the authenticity of food, 

such as "Are these oils really organic? Is this oil really from Morocco? Can we distinguish between 

adulterated and non-adulterated olive, and argan oil? Can we discriminate between fresh and 

expired oil? Unfortunately, looking for these fingerprints is not only concerned with the quality of 

the products, but also with their innocuity for human health. The ability to authenticate and verify 

food products is currently a major focus for the food industry, but also for governments. This is 

why there is extensive legislation concerning food safety and authenticity around the world, of 

which the United States and the European Union have the most comprehensive and strictest 

directives. In the United States, the Food Safety Modernization Act (FSMA) [16] defined by the 

Food and Drug Administration (FDA) establishes several rules to prevent the adulteration of food. 



  

18 
 

On the other hand, the European Food Safety Authority (EFSA) [17] includes a set of laws and 

guidelines for food quality and safety assurance, designed as general food laws. 

1. Foods and their untargeted/targeted fingerprints 

In the field of food authentication, we can find different analysis techniques that can be based on 

targeted and non-targeted approaches. The first approach mainly focuses on the analysis of a 

particular metabolite or group of metabolites, while in the non-targeted approach, the main 

objective is to discriminate between foods which may change regarding many factors such as 

environmental, variety or human modifications which is often the case of adulteration. 

The right choice of a fingerprinting technique depends on the characteristics of the constituents of 

the food. Several targeted techniques, as UPLC, HPLC, GC, CE, and TLC coupled to many 

detectors, eg. UV-DAD, UV-PDA, UV-FID, MS / MS are applied to develop fingerprints based 

on the study of the chemical composition of food. While spectroscopic techniques, eg. FTIR, NIR, 

NMR and UV can also be used to construct food-based fingerprints.  

The implementation of chemometric tools on fingerprint data shows potential performance to 

assess the complex composition of foods such as oils. Chemometric tools including experimental 

designs, exploratory multivariate data analysis, mathematical and statistical data preprocessing 

tools, variable selection, regression tools, discrimination, and pattern recognition techniques form 

the basis for managing fingerprints of food and other products. 

The general procedure of analysis operations and the chemometric tools used for fingerprint 

analysis are summarized in the figure 4. It gives a graphical overview of the analysis of foods (oils) 

using non-targeted and targeted fingerprint techniques coupled with multivariate data analysis 

methods or chemometric methods to assess geographical origin, genetic background, and 

falsification. 
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Vegetable oils (olive oil and argan oil) have been widely used for hundreds of years in food, 

prevention, and treatment of human diseases. A specific chemical profile or fingerprint of oil can 

be obtained using spectroscopic, chromatographic, or electronic techniques. This food fingerprint 

can be crucial for quality assessment, identification of adulteration, and classification of oils 

according to varietal and geographical origin. The exploitation of analytical data (spectroscopic, 

chromatographic ...) by multivariate data analysis tools such as exploratory analysis, modeling, and 

pattern recognition is useful for obtaining typical chemical information.  

The fingerprinting approach has become an extremely powerful investigative tool for these 

purposes. Although the use of fingerprints in non-targeted/targeted approaches remains limited for 

the analysis of oils, it provides possibilities of discrimination according to geographical origin, 

taxonomic identification, control of adulteration, optimization, and quality control of oils by the 

determination of physicochemical parameters. 

Figure 3 shows a brief summary of the general analytical procedure and the chemometric tools 

employed in fingerprint analysis. It gives a graphical insight of plant analysis using non-targeted 

and targeted fingerprinting techniques in combination with multivariate data analysis. 
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Figure 3: general procedure of analytical operation and chemometric tools used in the 

analysis of fingerprints of foodstuffs (oils). 
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The choice of an adequate approach (non-targeted or targeted) must be established to build the 

required fingerprint from a specific foodstuff material (oil, plant extract, food), and the result 

should comply with several performance criteria (reproducibility, efficiency, robustness, time and 

cost...). The literature provides clear proof of the applicability of the fingerprint concept for the 

development of analytical methods to achieve multiple purposes at the laboratory and industry 

levels [18], [19]. The development of fingerprint methods, combined with chemometric tools and 

their validation, can contribute to providing robust analytical results that answer many questions 

related to food safety certification. Besides qualitative and quantitative applications, the developed 

fingerprint can be implemented as a key element in food quality assurance for international 

marketing. In addition, further instrumental enhancements could improve the sensitivity and 

specificity of fingerprint tests.  

2. Spectroscopic fingerprinting 

Spectroscopy is the study of how light (electromagnetic waves) interacts with matter. 

Spectroscopic analysis methods allow us to investigate the matter by various methods (FT-IR, UV-

Visible, NMR…) to obtain information on the structure of the molecules that make up this matter.  

The energy of a molecule results from four contributions: Electron energy (Ee), translation energy 

(Et), vibration energy (Ev), and rotation energy (Er). These energies are quantified. Each energy 

corresponds to a type of spectroscopy, and each type of spectroscopy will give different 

information on the nature of the chemical compound studied, i.e. the mode of establishment, the 

functions, the environment of the atoms, and the number of atoms through UV-visible 

spectroscopy, fluorescence, infrared, nuclear magnetic resonance. 

The various types of molecular energies (electronic, vibrational, or nuclear spin) are quantified 

which means that only certain energies are permitted. The molecule can be excited from its lower 
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energy state (ground state) to a higher energy state (excited state) by a photon (energy quantum) of 

electromagnetic radiation of the appropriate wavelength. 

According to quantum theory, each body (atom, ion or molecule) can only exist in certain discrete 

energy states. Moreover, the transition of a body from its ground state to its excited state can only 

be done by absorption of the energy quantum which represents the energy difference between the 

ground state and the excited state. Thus, a body crossed by electromagnetic radiation will only 

absorb the photons having the energy allowing this body to reach an excited state. It will then 

remain in this state for a brief moment (10-13 s) before relaxing to its ground state by re-emitting 

the absorbed energy in the form of heat and/or an electromagnetic wave. 

Food analysis using spectroscopic fingerprinting techniques has become more and more common 

and widespread. These approaches are very practical and easy to apply at the laboratory and 

industrial levels since they are typically fast, inexpensive, and non-destructive. For many purposes, 

the application of spectroscopic methods requires no sample pre-treatment and the acquisition of 

the spectrum can be performed in about one minute without the use of solvents and reagents. 

Consequently, the investment in this spectroscopic approach for the development of rapid food 

authentication instruments has attracted many industries and laboratories. 

Various quick and non-destructive instrumental approaches have been proposed to overcome the 

challenges faced by food control units in the implementation of the process analytical technology 

(PAT). These include UV-Visible, Mid-infrared, Near-infrared, and fluorescence spectroscopy 

which have proven to be successful analytical approaches for food analysis due to a number of 

important advantages [20]. 

The chemical information contained in the spectral data located in the positions, intensities, and 

shapes of the bands, provide information about the molecular structure and properties of the 

chemical compounds, the intensities of the bands are correlated with the concentration of these 
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compounds, as demonstrated by the Lambert-Beer law. However, this is possible for a purely 

component system, but in the case of foods containing numerous components leading to complex 

spectra with overlapping peaks.  

Indeed, in order to take advantage of these spectroscopic fingerprinting techniques, it is necessary 

to overcome the sensitivity and selectivity limitations that result from the bands being relatively 

weak and strongly overlapping at the spectral level.  

Therefore, in order to carry out a successful analytical procedure, and to obtain the maximum 

amount of information, it is fundamental to use chemometric methods which are based on 

mathematical and statistical algorithms to extract as much information as possible from the spectra 

of the sample. 

3. UV-Visible spectroscopy 

UV-Vis spectroscopy is an analytical method for monitoring and measuring the interactions of UV-

visible light with different chemical compounds in the wavelength range between 200 and 800 nm. 

The technique exploits different physical responses of light and analytes in the sample, such as 

absorption, scattering, diffraction, refraction, and reflection [21]. The aim of this method is to study 

the transitions between the electronic levels of the molecule. These transitions take place when the 

molecule absorbs a photon of the same energy as the difference in energy between the electronic 

levels. Therefore, characteristic absorption spectra can be obtained for individual molecules as the 

electrons of these chromophores are excited [21]. Quantitative analysis based on UV-Vis 

spectroscopy has been described by Beer-Lambert's law. The method can be used to determine and 

quantify the concentration of the target molecule in the food matrix. 
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4. Fluorescence spectroscopy 

Fluorescence is the phenomenon that results from the emission of photons by a molecule excited 

by light radiation in the ultraviolet and visible [22]. When a photon encounters a molecule, an 

electron absorbs this energy and passes from the fundamental singlet level S0 to a singlet level S1 

Figure 4. The excited state persists for a finite characteristic time of the molecule. Following 

collisions with other molecules, a deactivation takes place and the electron returns to the first 

vibrational level S1. If the molecule has enough energy, after a short time that is characteristic of 

each molecule (10-9, 10-7 seconds), the electron returns to the S0 level by emitting a photon. This 

photon emission is called fluorescence and the signal recorded at different wavelengths constitutes 

the fluorescence emission spectrum. The emitted photon will thus have lower energy than the 

excitation photon: for a given molecule, the emission wavelengths will thus be higher than the 

excitation wavelengths and the energy of the fluorescence photons will be lower than that of the 

excitation photons. The whole of the radiation emitted during fluorescence deactivation constitutes 

the emission spectrum. 

Fluorescence spectroscopy is a sensitive, rapid and non-invasive method of analysis. It provides 

information on the presence of fluorescent molecules and their environment in analyzed samples.  

Thus, the fluorescence properties of aromatic amino acids in proteins [22]–[24] and of the 

fluorescent products resulting from the oxidation of lipids. It is also used for the evaluation of the 

quality of olive oils, geographical origin, detection of adulteration and monitoring the degradation 

of oils according to their shelf-life [25]–[30]. 
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Figure 4: Deactivation of molecules and emission of fluorescence or phosphorescence. 

5. FT-MIR spectroscopy  

The infrared range is subdivided into three categories according to frequency: near-infrared (NIR) 

which ranges from 750 nm to 2500 nm, mid-infrared (MIR) ranging from 2500 nm to 25000 nm, 

and far-infrared at wavelengths above 25000 nm. 

MIR is considered to be the most informative part of the infrared spectrum. The absorption bands 

observed in MIR are mainly associated to fundamental valence bond vibrations (ν) of functional 

groups of molecules. The MIR spectra of many molecules are already known. The allocations of 

the spectral bands in MIR are described by luna et al and Gouvinhas et al [31], [32]. 

In the field of food processing, MIR spectroscopy has been used less for on-line measurements 

than PIR. This is explained by the fact that water is a major constituent of these products and 

contributes strongly to the MIR spectrum. 
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However, the development of Fourier Transform Infrared Spectroscopy (FTIR) in recent years has 

given the possibility of obtaining interesting information on lipid structures, fatty acid composition, 

and proteins [33]. The development of the Attenuated Total Reflection (ATR) technique has proved 

to be very useful for the acquisition of MIR spectra of solid, liquid, and pasty food products simply 

spread on a crystalline slide of zinc selenide (ZnSe), silicon (Si), or germanium (Ge). 

V. Chemometric tools applied in fingerprint analysis 

Chemometrics or multivariate data analysis is defined as the science of data acquisition, validation, 

and processing in the field of analytical chemistry. It includes mathematical signal processing and 

statistical methods for extracting information from spectral data. The development of analytical 

methods (particularly those based on spectroscopic techniques) is closely linked to chemometric 

progress. Indeed, the analysis of spectral collections with small differences requires the use of 

chemometric methods to evaluate the data, an approach that has been successfully used in the field 

of infrared spectroscopy for many years. Applying these statistical tools to data collections 

containing a large number of variables measured for a large number of samples allows the 

extraction of relevant information and provides conclusions on the level of statistical significance 

of the small spectral differences observed. 

Chemometrics covers several objectives such as the application of pretreatments to experimental 

data to improve signal quality, the construction of models for pattern recognition, and quantitative 

determination [20]. There are many chemometric techniques that can be used to carry out these 

objectives; this section describes those that have been used in this report. 

 Exploratory Analysis 

 Quantitative Predictive Modelling 

 Classification 



  

27 
 

To perform chemometric studies, the first step of the analysis involves performing exploratory 

analysis of the multivariate data, this chemometric processing known as qualitative analysis or 

unsupervised analysis, which is performed without prior knowledge about the nature and group 

membership of the samples. Before processing exploratory analysis, the data must be pre-processed 

or "cleaned". This operation is often performed using various algorithms. 

1. Data Preprocessing 

Chemometric pretreatment of data is commonly used before performing modeling in order to 

reduce noise and undesirable signal interference. Several pretreatment methods have been 

developed in spectroscopy (MIR, PIR ...), due to its sensitivity to the external environment 

(temperature, humidity, etc.) [20]. Consequently, pretreatment of the fingerprint data is often 

required to obtain accurate results for the desired purpose. Among the main pretreatments applied 

to multivariate data are mean centering and scaling. 

When performing a PCA, PLSR, or PLS-DA analysis it is usually necessary to center the data on 

the mean. This pre-treatment calculates the average value of each column of the data matrix and 

subtracts this value from the column, moving the axes of the coordinate system to the center of the 

data and makes each sample display only the differences it has with respect to the average of the 

original data sample. 

 Standard normal variate (SNV). 

SNV is a transformation that is usually applied to spectroscopic data to minimize the effects of 

light scattering. It uses centering and scaling of each individual spectrum (i.e., it standardizes each 

spectrum by manipulating only the data of that spectrum). The practical result of the SNV is that it 

minimizes the multiplicative scattering interferences in the spectral data produced by the different 
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particle sizes in the sample; one effect of the SNV is that, on the vertical scale, each spectrum is 

centered at zero. 

 Normalization. 

In many analytical methods, the variables measured for a given sample are increased or decreased 

from their authentic value by a multiplication factor. Normalization methods attempt to correct 

these types of effects by identifying some aspect of each sample that should be substantially 

constant from one sample to another and to correct the scale of all variables using that 

characteristic. When building discriminant analysis models such as PLS-DA (partial least squares 

- discriminant analysis) or SIMCA (soft independent modeling of class analogy), normalization is 

performed if the relationship between the variables and not the absolute magnitude of the response 

that is the most critical aspect of the data for the identification of a species; for example, the 

concentration of a compound is not so relevant, just the fact that it is in a detectable quantity. The 

use of normalization under these conditions should be considered after evaluating how the response 

of the variables for the different classes of interest changes. 

 Scaling 

The scaling of the data of a matrix between a minimum and a maximum value is a particular case 

of normalization that can be applied before the construction of the mathematical models. This pre-

treatment can be useful to avoid the presence of extreme values in the scaling of data in some 

samples of natural origin and is preferred when it comes to quantitative applications. 

 Baseline correction. 
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There are different ways to make the baseline correction; in the present memory, the Weighted 

Least Squares (WLS) method has been used. This method is commonly used in spectroscopic (or 

chromatographic) applications where the signal of some variables is due only to the background 

signal. These variables serve as a reference to determine how much background signal should be 

removed from the nearby variables. The WLS algorithm uses an automatic approach to determine 

which points are most likely to be baseline only; it does this by iteratively adjusting a baseline to 

each spectrum (or chromatogram) and determining which variables are clearly above the baseline 

(i.e., the signal) and which are below it. It is assumed that the points below the baseline are more 

significant in adjusting the signal from the bottom of the spectrum.   

 Smoothing (Savitzky-Golay ) 

In spectrometry, the most common noise reduction algorithm is the Savitzky-Golay (SG) algorithm 

[34]. It is a polynomial smoothing applied on a moving window. At each point i of the spectrum, 

the raw value Xi is replaced by the value Zi of a polynomial fitted on a window around point i, as 

shown in figure 5. The spectrum is not replaced by a piece of polynomial. It is the central ordinate 

of the window that is replaced by the central ordinate of the polynomial.  

Two parameters must be set for this algorithm: the window width w, and the degree of the 

polynomial d. The higher w is larger more the resulting spectrum will be smoothed. The higher d 

is larger less the resulting spectrum will be smoothed. Note that for computational purposes, we 

must have w > d. 
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Figure 5: Examples of Smoothing by the Savitsky-Golay algorithm. 

 Detrend correction  

Detrend correction is applied to spectra to eliminate curvilinearity and baseline shifts. It consists 

of removing from the spectrum its global trend modeled by a polynomial. This polynomial can be 

of different degrees: 

Detrend of order 0: the polynomial removed in this case is a constant which is equal to the average 

of the spectrum. In the case of the maize spectra figure 6, pre-processing is clearly not sufficient. 

Detrend of order 1: by linear regression, the line which fits best to all points of the spectrum are 

identified and subtracted. In the case of figure 6, the residuals on this line are the absorption peaks 

corresponding to the chemical compounds in the sample. Applying it to the whole dataset allows 

observing that the transformation has highlighted the differences in absorption. 

Detrends of order 2 or higher: a parabola, cube, etc. are identified and then removed from the 

spectrum. These polynomial degrees are rarely used. 
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Figure 6: From left to right; shows the detrend effect for orders 0, 1 and 2 on the maize 

spectra. We can clearly see that order 0 reduces pure vertical translations, then order 1 

reduces affine baselines (of the form aλ + b). Finally, we see that order 2 does not bring 

much[35]. 

2. Exploratory analysis  

 Principal component analysis (PCA) 

The Principal Component Analysis (PCA) is one of the most widely used methods of multivariate 

data analysis. It allows the exploration of multidimensional data sets constituted by quantitative 

variables. It is widely used in biostatistics, chemistry, social sciences and other fields. PCA also 

named factorial analysis, in the sense that it produces the factors (or main axes) that are derived 

from linear combinations of initial variables, hierarchical and independent of the others. In some 

cases, these factors are called variables latent. Not all main components contain the same 

information; the first ones are those that describe the major variability of data, which is associated 

with the most relevant information, while the last ones describe variations in the data that can be 
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due to noise or experimental error, or to an over-fit of the model and can be discarded, thus 

achieving a significant reduction in the number of variables. The following equation applies:  

𝑋 =∑𝑡𝑖 ∗ 𝑃𝑖
𝑇

𝑖=0

+ 𝐸 

where X is the data matrix to be treated (in this thesis it will be spectral data after its pre-treatment), 

a is the number of main components that contain the desired information, t i is the scores for each 

main component and Pi is the loadings and E is an error matrix, meaning the residual variation of 

X that is not explained by the model with the main component. The superscript T indicates the 

transposed matrix. The equation can be expressed as follows: 

X = T × 𝑃𝑇 +  E 

The X matrix, is written as the product between the T matrix of scores (or factorial coordinates), 

and the transposed P matrix of loadings. To this is added the matrix E corresponding to the residual 

variance. 

PCA decomposition is also considered in the specific case of spectral data. A spectrum measured 

and belonging to the spectral database is thus decomposed component by component as the product 

of a score (or factorial coordinate) and loading, which looks like a spectrum. This represents useful 

information. The residual variance matrix recovers the unexplained part of the signal, i.e. the noise. 

3. Discriminant analysis  

The discriminant analysis can be a predictive method (linear discriminant analysis - LDA) and a 

descriptive method (discriminant factor analysis - DFA). It aims at explaining and predicting the 

membership of individuals to groups (classes), represented by a categorical target variable, from a 

collection of explanatory/descriptive variables, mainly quantitative, but which can be qualitative 
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through an adjustment. When the differences between two or more given classes are greater, the 

Mahalanobis distance between them increases. The discrimination of the samples is achieved by 

calculating the Mahalanobis distance from each one of them to the centers of the groups considered 

[36]. An unknown sample is classified as belonging to the group with which it has a closer distance 

to the center [37]. The DA can be considered similar to the PCA only in the sense that both 

determine a hyperplane with a smaller number of variables in which the sample data are projected 

from a plane with more variables. However, the PCA selects the direction that retains the maximum 

structure between the data, while the DA selects the direction in which a maximum separation 

between the defined groups is achieved [38]. In the construction of this model, it is important to 

take into account the fact that it requires a larger number of samples than variables. 

Among the methods used to conduct this thesis work we found the Linear Discriminant Analysis 

(LDA) and the support vector machine (SVM). 

The LDA method consists of finding linear combinations of the p variables ( X matrix), called 

discriminant variables, allowing to realize representations of the K groups as compact as possible 

but also as far from each other as possible (the most separable). It should be noted that the 

separation of groups in the LDA is done using hyperplanes. For this purpose, the total variability 

of the data (the X matrix) is decomposed into inter-group and intra-group variability. Good 

discrimination is obtained when there is high inter-group variability and low intra-group variability. 

One of the main problems in the application of LDA on spectral data is the collinearity of the 

variables used in the models. For this reason, spectral selection or spectral reduction methods such 

as PCA have been used to perform discriminative studies by LDA [39]. 

 Support vector machine SVM 
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SVM is a supervised machine learning method that can be applied to classification issues. SVM 

uses a tool called "kernel trick" for transforming input data, and based on these transformations, it 

finds an optimal limit between the possible outputs [40]. 

To clarify, the data are transformed into a new space, called the kernel, which allows to the model 

of non-linearity. In calibration, this matrix is of dimension N×N. Practically there are different 

kernels (linear, polynomial, radial basis function, and sigmoid) the most common one is the radial 

basis function which requires a parameter to optimize the width of the gaussian (sigma) for linearity 

adjustment. To avoid overlearning an optimization of the regularization parameter must be done 

(C or cost). The adjustment of these two parameters is crucial to obtain efficient and robust models. 

4. Regression tools  

 Partial least square regression (PLS-R) 

PLS regression (Partial Least Squares regression or Projection to Latent Structures), i.e. regression 

in the sense of partial least squares, also allows, like multiple linear regression, to link a set of 

dependent variables Y, to a set of independent variables X, when the number of variables 

(independent and dependent) is important. PLS regression tool is considered one of the most 

widespread regression methods in chemometrics. Instead of decomposing initially the X matrix 

into a set of loadings vectors and scores, and regressing the scores on the Y in a separate step, PLS 

uses the information from Y during the decomposition process [41], [42]. 

PLS is therefore based on the simultaneous modeling of the variability of the predictive X matrix 

and the dependent Y matrix by calculating Latent Variables (LVs) that maximize the variance 

extracted from the two matrices as well as their correlation. This procedure consists of performing 

a decomposition (often based on the NIPALS algorithm - Nonlinear Iterative Partial Least Squares) 
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of the two matrices X and Y under the constraint that the factorial coordinates T extracted from X 

are as much correlated as possible with the factorial coordinates U extracted from Y [43]. 

In order to fully understand how PLS regression works, Figure 7 shows that the matrix X is 

decomposed into a matrix T that represents the score matrix and a loading matrix P' plus an error 

matrix E. The matrix Y is also decomposed into a score matrix U and a loading matrix R' and the 

error term F. The objective of the PLS algorithm is to minimize the error while maintaining the 

strong correlation between X and Y by the internal relation U = B*T [44]. 

 

Figure 7: Decomposition of the X and Y matrix for the calculation of PLS factorial 

coordinates. 

For the development of a PLS model, it is important to decide the optimal number of latent 

variables involved in the PLS model. This optimal number of latent variables can be determined 

based on the cross-validation using an increasing number of components. The model with the 

lowest Predictive Error Sum of Squares (PRESS) or Root Mean Squared Error of Prediction 

(RMSEP) value and the highest R-square value can be considered as the "best" model [44], [45]. 
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 Partial least square discriminant analysis PLS-DA 

The partial least squares method was not originally developed for classification and discrimination 

problems, but it has often been employed for this task [46], [47]. This method, called PLS-DA, is 

a use of the PLS2 method where the Y matrix is a qualitative variable, this matrix is recoded 

internally as a block matrix that presents the belonging of each observation, in other words, each 

response category is coded using an indicator variable. PLS regression (now PLS-DA) is then 

performed as if Y were a continuous matrix and performs well in practice for large datasets as 

spectroscopy data where linear discriminant analysis faces problems of collinearity [42]. 

The first step of PLS-DA consists of constructing the coding of the response variable. This consists 

of generating a matrix Y of dimension n× K, (where K is the number of groups we want to 

discriminate) associated with the variable y, and n represents the number of observations. 

To clarify how to construct this matrix, an artificial example is given below in figure 8, where n = 

10 observations divided into K = 3 classes. 

 

Figure 8: Example of the Y-response coding procedure. 
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Obviously, it is necessary to carry out cross-validation procedures, to reduce the dimension of the 

model, the graphical representations are the usual PLS representations. Finally the assignment to 

the groups is carried out by assigning each observation to the group corresponding to the column 

of the maximum value of Ŷ (predicted value of Y). 
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Summary of chapter 1 

This chapter aims to illustrate how to explore the results of non-targeted fingerprinting technology 

such as FT-MIR, and UV visible for the determination of geographical origin and classification of 

olive oil. These results are exploited by chemometric tools in order to associate olive oil to a 

particular target (geographical origin). An assessment of two spectroscopic techniques and 

algorithms was performed, taking into account the advantages and inconveniences. These obtained 

results are mainly based on a number of olive oil samples from the same quality categories (extra 

virgin or virgin). The olive oil samples are collected from five geographical areas of the Beni Mellal 

Khenifra region (Boujaad, Fkyh Ben Saleh, Khenifra, Beni Mellal and Qsiba). The spectral 

profiling of the different olive oils was carried out using mid-infrared spectroscopy and UV-Visible 

spectroscopy. Chemometric tools (supervised techniques) have been applied to develop 

classification models regarding the origin of investigated samples. Accurate, robust and reliable 

models are created for geographic traceability identification and quality control. These results are 

described in the following document. 
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Résumé : 

Ce chapitre vise à illustrer la manière d'explorer les résultats de la technologie des empreintes 

digitales non ciblées, telles que la spectroscopie FT-MIR et UV visible, pour la détermination de 

l'origine géographique et la classification de l'huile d'olive. Ces résultats sont ensuite exploités au 

moyen d'outils chimiométriques afin d'associer l'huile d'olive à une cible particulière (origine 

géographique). Une évaluation comprenant deux techniques spectroscopiques et des algorithmes a 

été réalisée, en tenant compte des avantages et des inconvénients. Les résultats obtenus sont 

principalement basés sur un certain nombre d'échantillons d'huile d'olive de même catégorie de 

qualité (vierge extra ou vierge). Les échantillons d'huile d'olive sont prélevés de cinq zones 

géographiques de la région de Beni Mellal khenifra (Boujaad, Fkyh ben saleh, Khenifra, Beni 

Mellal et Qsiba). Le profil spectral des différentes huiles d'olive a été réalisé en utilisant la 

spectroscopie moyenne infrarouge et la spectroscopie UV-Visible. Des outils chimiométriques 

(techniques supervisées) ont été appliqués pour développer des modèles de classification 

concernant l'origine des échantillons étudiés. Des modèles précis, robustes et fiables ont été créés 

pour l'identification de la traçabilité géographique et le contrôle de la qualité. Ces résultats sont 

décrits dans le document suivant. 
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I. Introduction  

The virgin olive oil is becoming a veritable obsession in the world thanks to its taste qualities and 

its medicinal and nutritional virtues. Its consumption is increasing every year and has become an 

essential element in the diet of Mediterranean countries [1], [2]. There are four quality categories 

of olive oil; extra virgin, virgin, common virgin and lampante olive oil [3], that are determined by 

physicochemical and sensory analyses as it is described in the guide of the International Olive 

Council. 

Generally the quality of olive oil depends on several factors such as variety, edaphic factors and 

climatic factors [4], [5]. These last factors play an important role in the chemical composition of 

olive oils in terms of fatty acids, vitamin E, sterols and polyphenols. For this reason, the 

determination of geographical origin has now become an important parameter for judging the 

quality of olive oils, since it is one of the factors causing significant differences in organoleptic 

properties and chemical composition [4]. So, more and more consumers nowadays are interested 

in the origin of the food that they consume, in particular olive oils. In order to satisfy this demand, 

the control authorities have established a food traceability system. In fact, the research of the 

geographical or varietal origin of olive oils is essential and crucial for the knowledge of their 

traceability [6], [7]. The traceability must bring answers in terms of identification, localization, 

authentication and security of olive oils. 

Numerous analytical techniques have been developed to determine the geographical origin in some 

countries, such as High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC) 

[8], Infrared Spectroscopy (IR) [9], [10], Raman spectroscopy [11], Mass Spectrometry (MS) [12] 

and Nuclear Magnetic Resonance (NMR) [13], [14]. 

Several studies have used chromatography as a basic method coupled to chemometric methods 

(Principal Component Analysis, discriminant factor analysis and other discrimination algorithms). 

In these cases, to discriminate olive oils coming from various regions, the discrimination may be 

also based on the composition of fatty acids and triglycerides [15], [16], phenolic compounds [15], 

[17], [18] and pigments. Principally these basic methods are long and laborious and require the use 

of more expensive solvents and reagents that can be harmful for the environment and toxic for the 

analysts. Hence, some techniques known as coupling techniques are emerging and commonly used 
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like coupled spectroscopic techniques to chemometrics algorithms in order to ensure data 

processing and discrimination to obtain more precise and complementary information. 

Nowadays, Infrared and UV-Visible spectroscopy are widely and frequently used to study and 

reveal information about the molecular properties of foods [19]–[21]. These two spectroscopic 

techniques are ideal for rapid, accurate evaluation of raw foods without the use of reagents and 

solvents [20], [22], [23].These spectroscopic techniques have been used to develop simple and 

highly effective methods to evaluate the quality parameters of olive oils. They are frequently 

coupled to multivariate analysis methods for exploitation, classification, discrimination or 

calibration [20]. To discriminate olive oils after their different geographical regions such a 

coupling, of IR spectroscopy to chemometrics treatments and sometimes on selected spectral zones, 

has been applied in previous studies [6], [24]. However, the results remain difficult to be compared 

because the varieties, the geographical areas, the spectral range and the chemometrics treatments 

have been different from one study to another.   

To the best of our knowledge, it is necessary to carry out studies devoted to the geographical 

determination, by FTMIR and UV-Visible spectroscopy, of virgin olive oils coming from different 

provinces of the Moroccan region of Beni Mellal-Khenifra. 

The objective of the present work is to develop a rapid spectroscopic methods that could be able to 

classify virgin olive oils according to their geographical origin. Moreover, our work aimed to 

evaluate the capability of Mid-Infrared and Visible spectroscopies, when they are coupled to 

supervised and unsupervised multivariate analysis methods, for the discrimination and 

classification of virgin olive oils that come from different provinces in the Moroccan Beni Mellal 

- Khenifra area. 

II. Materials and methods 

1. Sampling 

56 samples of virgin olive oils have been collected at different industrial mills of the Beni Mellal - 

Khenifra area. The mills are located in different provinces of these area and distributed over the 

area provinces. The table 1 indicates the geographical origins of the collected samples. The 

collection is carried on oils that were produced in the November- December 2018 harvest time. 
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Table 1: Geographical origin of the collected olive oils. 

Geographical origin Number of sample 

Boujaad (BJ) 8 

Khenifra (KHN) 9 

Béni Mellal (BM) 16 

Qsiba (QSB) 8 

Fkih Ben Saleh (FKB) 15 

Total 56 

 

The collected samples were stored at a temperature not exceeding 4°C to avoid alteration of the 

virgin olive oils. The samples are divided into 41 samples for calibration and 15 samples for 

analysis. 

2. ATR-Mid Infrared Spectroscopy 

Analysis of the samples was performed by JASCO 460 plus FTMIR Spectrometer equipped with 

a horizontal ATR accessory, at a 21°C fixed temperature. Using a micropipette, each sample has 

been deposited on the crystal surface of the ATR. The spectra were collected between 4000 cm-1 

to 600 cm-1 averaging 130 scans at a resolution of 4 cm-1. For each analysis, the ATR accessory is 

cleaned using the acetone solution that allows us to dry and clean the ATR accessory.  

The spectra have been treated using Spectrum Manager to eliminate the effect of carbon dioxide 

and then transformed to a JCAMP format. 

3. UV-Visible Spectroscopy 

The olive oil samples were analyzed by Perkin Elmer UV-Visible spectroscopy at the 350 to 800 

nm range. In fact, the analysis of the olive oil samples was carried out, without centrifugation, 

using a spectrophotometer and a quartz cell of 1 cm optical path then the spectra are saved directly 

at an Excel table format. 

4. Multivariate analysis   

In this study different statistical techniques have been applied for the processing and evaluation of 

spectral data that have been obtained from ATR-FTMIR and UV-Visible spectroscopy. In order to 
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ensure exploration and representation of the data set, we started processing the results by Principal 

Component Analysis (PCA) that consists of searching for the directions of greater dispersion to 

find new synthetic variables and represents the data in a reduced dimensional space. In addition to 

reducing the dimensionality of the data set this method is often used for data cleaning by identifying 

outliers. It also serves as an effective tool for the identification of similar groups of individuals that 

behave similarly concerning the measured variables. 

These principal components can also be used in turn for many different applications that are, in our 

case, support vector machine (SVM) and linear discriminant analysis (LDA). 

The SVM method is one of the most commonly used methods for the classification of groups, the 

objective of this algorithm is to find a hyperplane in N-dimensional space (N - the number of lines) 

that distinctly classifies the data points. To separate classes of data points, many hyperplanes have 

been generated and the objective is to find a plane that has the maximum margin that separates well 

between the classes in the data point space. Maximizing the margin distance provides some 

strengthening for future data points to be classified with more confidence [25]. 

The LDA method is also considered among the effective methods used to discriminate groups or 

classes of individuals. It consists of finding linear combinations of the p variables of a data X 

matrix. These p variables make it possible to have representations of the K groups that are as 

compact as possible but also as far away from each other as possible. This separation is provided 

by hyperplanes so that the total variability is decomposed into inter-group and intra-group 

variability and the groups presenting high inter-group variability are those that are well separated 

and well discriminated [26] 

The performance parameters of the models built by PCA-SVM and PCA-LDA, such as sensitivity, 

specificity, correct classification rate (CCR) and accuracy, are used to characterize the 

classification performance of the analytical method. The best performance of any classification 

method is to minimize false positives (FP; the number of positive samples that are correctly 

identified as positive samples) and false negatives (FN; the number of positive samples that are 

misclassified as negative samples). Evaluation criteria, for a classifier method can be obtained from 

statistical measures[27]. 
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The statistical processing of the data was carried out using The Unscramble Version X 10.4 

software. 

III. Results and discussion 

The absorption spectra of the samples at the Fourier-transformed mid-infrared are shown in Figure 

1. The MIR spectra show intense bands of high intensity up to a 1.7 absorbance due to the ATR 

accessory. The intensity of the bands gives information on the concentration of functional groups 

that characterizes olive oil compounds. 

 According to the observation of the FTMIR spectra, we have observed that different bands 

characterize the usual functional groups of olive oil at wavelengths 720, 968, 1159, 1377, 1464, 

1743, 2852, 2920 and 3004 cm-1  that corresponds respectively to the functional groups: CH2 (CH 

sp3 ); C=C-H trans (CH sp2 ); C-OH;CH3 (CH sp3 ); CH2 (CH sp3 ); C=O; CH2, CH3 (CH sp3 ); 

CH2, CH3 (CH sp3 ) et C=C-H cis (CH sp2) [28]. 

 

Figure 1:  ATR-FT-MIR spectra of the collected olive oil samples. 

The visual observation of the ATR-FTMIR spectra of these 41 samples cannot be used to determine 

the similarities between individuals to differentiate between olive oils coming from different 

geographical origins. 

The spectral absorption of olive oils at the UV-Visible presents spectral bands that correspond to 

reliable information on the compounds of olive oils, in particular the pigments because they control 

the coloration of olive oils. From the observation of the UV-Visible spectra (figure 2) it can be seen 
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that there is an additive effect due to the effect of suspended particles since the olive oils have not 

been previously treated by centrifugation to eliminate the suspended particles. Light-scattering 

phenomenon are generated that introduce additive effects on the spectral database. After the 

mathematical correction of the UV-Visible spectra by base line correction .The spectra are 

processed by base line correction using the method (Weighted Least Squares). This method is 

generally used in spectroscopic applications, it iteratively adapts a base line to each spectrum and 

determines the variables that are clearly above the base line (i.e. the signal) and those that are below 

the base line. The points under the baseline are supposed to be more significant in adjusting the 

baseline to the spectrum. This method is also referred to as asymmetric weighted least squares 

method. The clear effect is the automatic suppression of the background while avoiding the creation 

of very negative spectral peaks [29].  

After the mathematical correction of the UV-Visible spectra by base line correction it can be seen 

from figure 3 that there is a difference in terms of the pigments. The spectra show an intense 

absorption between 400 nm and 500 nm. This spectral range corresponds to the absorption of blue 

light. In addition, absorptions at wavelengths 530, 615 and 670 nm correspond, respectively, to the 

following pigments: lutein, β-carotene, pheophytin a and pheophytin b, chlorophyll a and 

chlorophyll b and other pigments [30], [31]. 

 

Figure 2: Olive oil UV-Visible spectra at wavelengths between 350-800nm 
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Figure 3: Olive oil UV-Visible spectra corrected by base line correction 

1. Principal Component Analysis 

A preliminary examination of the spectral data collected was carried out by principal component 

analysis using the spectral range of 600-4000 cm-1 of FT-MIR, in order to represent the data in a 

reduced dimensional space.  

The PCA results (figure 4) show that the first two main components account for 81% of the total 

variance of the spectral data, representing 53% and 28% of the total variance of the raw data, 

respectively. It is clear that there was information on the varietal origin in the MIR spectra of virgin 

olive oil VOO samples, because the observation of score plot shows that there is a clustering of 

VOOs according to their geographical origin. The PCA also shows that the five groups of VOOs 

show small inter-group variability because these oils have the same varietal origin (Moroccan 

Picholine) and from geographical origins inside the same geographical area. In addition, climatic 

and edaphic conditions do not show significant differences in the Beni Mellal-Khenifra area. 
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The first principal component (PC1), representing the total variability, allow to classify between 

BJD oils and other oils while the second principal component (PC2) allow to classify between BM 

and FKB oils on the one hand and BM and KHN oils on the other hand.  

 

Figure 4: The PCA score plot of ATR-FTMIR spectra at the PC1-PC2 plan 

Analysis of the UV-Visible spectra by PCA shows that the total variability of the data is explained 

by the first two components PC1 and PC2 that represent respectively 86% and 12% shown in figure 

5. According to the PC1-PC2 plan of the score plot, there is a clustering of the five groups of olive 

oils according to their geographical origin. This clustering is mainly carried out by the first main 

component which contains 86% of the information available in the UV-Visible spectral database. 

Mathematical processing of the spectral data by the Baseline correction algorithm can remove the 

additive effects caused by suspended particles in olive oil samples and improve the clustering 

between the groups. The PCA of the UV-Visible spectra also shows that olive oils of BM, FKB 

and BJD have high intra-group variability as shown in figure 6. 
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Figure 5: Score plot of UV-Visible spectral data without spectral correction at the PC1-PC2 

plan 

 

Figure 6: Score plot of UV-Visible spectral data processed with baseline correction at the 

PC1-PC2 plan. 
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2. Linear discriminant analysis and support vector machine. 

PCA is used to reduce the dimensionality of the data, especially the spectral data because they 

contain a high number of the variables. Thanks to PCA we have generated independent synthetic 

variables that can then be used for the application of linear discriminant analysis and support vector 

machine classification. 

To evaluate the discriminatory capability of olive oils that come from the Béni Mellal-Khenifra 

area using UV-Visible and ATR-FTMIR spectroscopy, the linear discriminant analysis and the 

Support Vector Machine method were applied to synthetic variables that have been generated by 

the PCA. 

The use of the PCA-LDA method on the spectral data of the UV-Visible and FT-MIR shows a 

good discrimination capacity of the 5 groups of olive oil according to their geographical origin, 

this discrimination capacity is represented by the CCR coefficient of the training data which 

represents 90.24% in the case of the UV-Visible and 85.37% for the results of FT-MIR. 

In order to evaluate the predictive performance of these classification models an external validation 

was performed using external samples (3 samples for each class). This validation procedure shows 

that 86.67% of the samples were correctly classified using the UV-Visible and FT-MIR 

spectroscopic techniques.  

Then, the sensitivity and specificity of the training and validation datasets were calculated to 

evaluate the classification performance of these algorithms, and the results are presented in Table 

2 and 3. 

Table 2: Confusion matrix of PCA-LDA results on the first two principal components of UV-

Visible spectral data. 

PCA-LDA UV-visible 

  Actual  training set Sensitivity 

(%)  

Specificity 

(%) 

Classification 

(%) accuracy 
CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 5 0 0 2 0 71 100 100 

90.24 

2-BJD 0 4 0 0 1 80 97 80 

3-KHN 0 1 6 0 0 86 100 100 

4-FKB 0 0 0 10 0 100 93 83 

5-BM 0 0 0 0 12 100 96 92 

  Actual  validation set Sensitivity 

(%) 

Specificity 

(%) 

Classification 

(%) accuracy 
CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 3 0 0 1 0 75 100 100 

86.67 

2-BJD 0 2 0 0 0 100 92 67 

3-KHN 0 1 3 0 0 75 100 100 

4-FKB 0 0 0 2 0 100 92 67 

5-BM 0 0 0 0 3 100 100 100 
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Table 3: Confusion matrix of PCA-LDA results on the first four principal components of 

ATR-FT-MIR spectral data. 

PCA-LDA FT-MIR 

  Actual  training set Sensitivity 

(%)  

Specificity 

(%) 

Classification 

(%) accuracy 
CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 5 0 0 1 4 50 100 100 

85.67 

2-BJD 0 5 0 0 0 100 100 100 

3-KHN 0 0 6 1 0 86 100 100 

4-FKB 0 0 0 10 0 100 93 83 

5-BM 0 0 0 0 9 100 87 69 

 Actual  validation set Sensitivity 

(%) 

Specificity 

(%) 
Classification 
(%) accuracy 

CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 3 0 0 1 1 60 100 100 

86.67 

2-BJD 0 3 0 0 0 100 100 100 

3-KHN 0 0 3 0 0 100 100 100 

4-FKB 0 0 0 2 0 100 92 67 

5-BM 0 0 0 0 2 100 92 67 

 

The ATR-FT-MIR and UV-Visible spectral databases were processed by the SVM method using 

a radial basis function algorithm. The application of this method was carried out on the first 

synthetic variables by the PCA. 

The application of the PCA-SVM method on the two spectroscopic techniques UV-Visible and FT-

MIR shows a good classification capacity of the 5 groups of olive oil according to their 

geographical origins, the percentage of correct classification calculated by the CCR coefficient 

reaches 100% and 97.56% for the training data using the two spectroscopic techniques UV-Visible 

and FT-MIR respectively. 

The evaluation of the predictive performance of these classification models shows a high predictive 

capacity of the five groups of virgin olive oil, this classification capacity was represented by the 

CCR coefficient which reaches 100% and 93.33% using UV-Visible and FT-MIR respectively. 

The sensitivity and specificity of the training and validation datasets were calculated to evaluate 

the classification performance of these algorithms, and the results are presented in Table 4 and 5. 
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Table 4: Confusion matrix of PCA-SVM results on the first two principal components of UV-

Visible spectral data. 

PCA-SVM UV-visible 

  Actual  training set Sensitivity 

(%)  
Specificity (%) 

Classification 

(%) accuracy 
CCR (%) 

Predicted 

  1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 5 0 0 0 0 100 100 100 

100 

2-BJD 0 5 0 0 0 100 100 100 

3-KHN 0 0 6 0 0 100 100 100 

4-FKB 0 0 0 12 0 100 100 100 

5-BM 0 0 0 0 13 100 100 100 

 Actual  validation set Sensitivity 

(%) 
Specificity (%) 

Classification 

(%) accuracy 
CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 3 0 0 0 0 100 100 100 

100 

2-BJD 0 3 0 0 0 100 100 100 

3-KHN 0 0 3 0 0 100 100 100 

4-FKB 0 0 0 3 0 100 100 100 

5-BM 0 0 0 0 3 100 100 100 

 

Table 5: Confusion matrix of PCA-SVM results on the first four principal components of 

ATR-FT-MIR spectral data 

PCA-SVM FT-MIR 

 Actual  training set Sensitivity 

(%) 

Specificity 

(%) 

Classification 

(%) accuracy 
CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 4 0 0 0 0 100 97 80 

97.56 

2-BJD 0 5 0 0 0 100 100 100 

3-KHN 0 0 6 0 0 100 100 100 

4-FKB 0 0 0 12 0 100 100 100 

5-BM 1 0 0 0 13 93 100 100 

 Actual  validation set Sensitivity 
(%) 

Specificity 
(%) 

Classification 
(%) accuracy 

CCR (%) 

Predicted 

 1-QSB 2-BJD 3-KHN 4-FKB 5-BM 

1-QSB 2 0 0 0 0 100 92 67 

93.33 

2-BJD 0 3 0 0 0 100 100 100 

3-KHN 0 0 3 0 0 100 100 100 

4-FKB 0 0 0 3 0 100 100 100 

5-BM 1 0 0 0 3 75 100 100 

 

The observation of the statistical parameters (CCR, specificity, sensitivity) of the two classification 

methods PCA-SVM and the PCA-LDA applied on the two spectroscopic techniques shows an 

efficient classification of the 5 groups of virgin olive oils. These results also show that the 
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application of the PCA-SVM method gives better results than the one obtained by the PCA-LDA 

because the PCA-SVM allows to classify the 5 groups with a high percentage of classification 

using the training data and the external validation. 

These results are compared with two study that constitutes to determine the geographical origin of 

the Moroccan olive oils the first one in the region of Fes-Meknes in which they found a percentage 

of correct classification of 100% for the training data and 94.23% for the cross-validation using 

chromatography coupled with mass spectroscopy [17], which is an efficient, expensive, laborious 

and time consuming method. The other study demonstrate 100% of correct classification using 

electronic nose and tongue combination coupled with SVM [32]. 

This study has an important advantage compared to the other methods because it allows to classify 

between the 5 groups of olive oils using UV-Visible spectroscopy and TF-MIR which are fast 

methods and does not require the use of reagents. 

IV. Conclusion.  

This work demonstrates the capability of UV-Visible and TF-MIR spectroscopy combined with 

PCA-LDA and PCA-SVM classification techniques for the rapid detection of Moroccan origin 

olive oils VOOs from the Beni-Mellal Khenifra region. This study was carried out on 41 samples 

of the Picholine VOO variety taken from five different geographical areas. The application of the 

two methods on the spectral data of UV-Visible and TF-MIR shows that the PCA-SVM method 

allows a better classification of the 5 olive oil groups with a higher sensitivity, specificity and 

correct classification rate. In view of the results obtained by the external validation, this new 

approach provides more reliable information to predict the geographical origin of Moroccan olive 

oils. Last but not least, it should be noted that the proposed method is environmentally friendly, 

fast and easy to use. 

For a rapid and reliable process of assessment and authentication of virgin olive oils on the basis 

of their geographical origin, the development of robust spectral databases is encouraged as far as 

possible. 
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Summary of chapter 2: 

This chapter aims to illustrate how to explore the results of non-targeted fingerprinting fluorescence 

spectroscopy for the characterization of olive oil freshness and classification of olive oils according 

to their shelf-life. These results processed by chemometric tools in order to associate olive oil to a 

particular target (freshness). The assessment of fluorescence spectroscopy techniques through 

various algorithms such as PLS-DA, SVM and LDA was performed, taking into account the 

advantages and inconveniences. These obtained results are mainly based on a number of olive oil 

samples. The olive oil samples are collected from five geographical areas of the Beni Mellal 

khenifra region (Boujaad, Fkyh ben saleh, Khenifra, Beni Mellal and Qsiba). The spectral profiling 

of the different olive oils was carried out using fluorescence emission spectroscopy. Chemometric 

tools (supervised techniques) have been applied to develop classification models regarding the 

shelf-life of investigated samples. Accurate, robust and reliable classification models are created 

for the classification of olive oils and quality control. These results are described in the following 

document. 
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Résumé : 

Ce chapitre vise à illustrer comment explorer les résultats de la spectroscopie de fluorescence à 

empreinte digitale non ciblée pour la caractérisation de la fraîcheur de l'huile d'olive et la 

classification des huiles d'olive en fonction de leur durée de conservation. Ces résultats sont traités 

par des outils chimiométriques afin d'associer l'huile d'olive à une cible particulière (fraîcheur). 

L'évaluation des techniques de spectroscopie de fluorescence par le biais de divers algorithmes tels 

que PLS-DA, SVM et LDA a été effectuée tout en tenant compte des avantages et des 

inconvénients. Les résultats obtenus sont principalement basés sur un certain nombre d'échantillons 

d'huile d'olive. Les échantillons d'huile d'olive sont recueillis auprès de cinq zones géographiques 

de la région de Beni Mellal khenifra (Boujaad, Fkyh ben saleh, Khenifra, Beni Mellal et Qsiba). 

Le profil spectral des diverses huiles d'olive a été établi par spectroscopie d'émission de 

fluorescence. Des outils chimiométriques (techniques supervisées) ont été appliqués pour 

développer des modèles de classification concernant la durée de conservation des échantillons 

étudiés. Des modèles de classification précis, robustes et fiables ont été créés pour la classification 

des huiles d'olive et le contrôle de la qualité. Ces résultats sont décrits dans le document suivant. 
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I. Introduction  

Olive oil is an important vegetable oil in the Mediterranean countries, currently this nutrient is 

attracting the attention of many consumers around the world thanks to its nutraceutical, sensory 

properties and for contributing to the protection of the human well-being [1]. These proprieties are 

especially related to its composition rich in fatty acids especially oleic and linoleic acid [2] , and 

its high level of minor compounds that have bioactive characteristics, principally phenolic 

compounds and tocopherol [3], [4]. 

These natural biochemical compounds of virgin olive oil, are able to delay the effects of oxidation 

by deactivating the singular oxygen [5], [6]. The greenish coloration of olive oil is attributed to the 

chlorophyll pigments formed essentially from chlorophylls and their derivatives product [7]. The 

quantification of these compounds in olive oils is considered to be very important for determining 

the quality of olive oil because the decrease in chlorophyll levels during storage indicates the 

presence of oxidation processes that affect the quality of olive oil  [4], [8]. Its concentration in olive 

oil depends on several factors such as geography, edaphic factors, climate, storage conditions, 

ripening stage and type of extraction [9]–[12] 

Moreover, these compounds are significantly decreased during the storage of olive oil, although 

new products appear due to the oxidation process [7], [13]. In many markets, the storage of olive 

oil can vary between 6 and 24 months so that it causes an alteration in the quality of olive oil. 

Nowadays, the authentication of olive oils is still a major problem. Virgin olive oil, due to its high 

price compared to other edible oils, can be the object of more or less sophisticated fraudulent 

practices. The most common ones consist of adulterating virgin olives oils with lower-priced oils 

(seed oils, refined olive oil, or olive pomace oil). These practices have been the subject of numerous 

studies aimed at combating fraud that disrupts the market and damages the importance of virgin 

olive oil (VOO) [14]–[16]. There is also another type of fraud that consists of falsifying the 

freshness of olive oil and presents to the consumer non-fresh olive oils, that have been stored for a 

period of time, as freshly produced. 

Authentication of the VOO belonging to a designation of origin often constitutes a real analytical 

challenge. For this reason, a great deal of researchers has been devoted to answering this 

authentication problem, in order to develop robust and reliable analytical tools able to retrieve all 

the information on the quality, safety and the origin of olive oil and other oil[17]. These analytical 

tools can be classified in two main categories, those based on the analysis of chemical compounds 
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of olive oils, Gas Chromatography GC [18], [19], High Performance Liquid Chromatography 

HPLC [19]–[21], and those based on spectroscopic techniques, such as Infrared spectroscopy IR 

[22]–[24], Ultraviolet-Visible spectroscopy UV-Visible [24], [25], Magnetic Nuclear Resonance 

MNR [26] and Fluorescence spectroscopy [27], [28]. Which have been used for adulteration 

detection, origin geographic determination, variety determination and the examination of the 

oxidative stability of olive oils. 

The HPLC and GC, as reference methods, are generally time-consuming, sometimes require the 

use of expensive and polluting reagents, and are only performed by qualified operators. Moreover, 

these methods are not sufficiently efficient to cover the growing demand for an analytical procedure 

that requires several hours. The use of spectroscopic methods, such as fluorescence combined with 

chemometrics tools, make possible the realization of these evaluations in a few time without using 

reagents. 

Fluorescence spectroscopy is a specific, nondestructive and rapid analytical tool for food 

authentication study [29]. It provides information on the presence of fluorescent molecules and the 

fluorescence properties of fluorophores. Recently, the application of fluorescence spectroscopy in 

combination with chemometric tools to evaluate the quality of olive oil has been increased in the 

majority of research papers [30], because the obtained fluorescence signal corresponds to specific 

fluorophores such as vitamin E and chlorophyll [31], after having defined the excitation or emission 

wavelength [32]. 

This analytical method is combined usually with chemometric approaches using multivariate data 

processing to extract information from spectroscopic data. Chemometric methods can be 

supervised or unsupervised. The applications of fluorescence spectroscopy coupled to multivariate 

analysis with more or less complex preprocessing and sometimes with different excitation and 

emission wavelengths have been developed by several authors. However, the obtained results in 

different studies are difficult to compare since the performance criteria and reference value ranges 

are different. 

The present study aims to develop a rapid method based on fluorescence spectroscopy coupled to 

supervised and unsupervised chemometric algorithms to determine the membership of virgin olive 

oil in a group of olive oils. The first aim of the work is to know if these olive oils are freshly 

produced or are stored for a period of time, since the storage of olive oil during period leads to the 
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loss in the quality of olive oils. The second aim is to evaluate the effectiveness of the chemometric 

classification tools that we have used for the determination and prediction of the olive oil category. 

II. Materials and methods. 

1. Sampling  

This study was carried out on 81 samples of monovarietal (Picholine) virgin olive oil from 

Morocco. These oils were stored in the dark at a temperature range of 10 ± 1°C. To preserve the 

molecular qualities of olive oils for a shelf life of 0 and 24 months, as shown in Table 1. During 

the storage period, the olive oil did not undergo any freezing. 

To carry out this study 63 samples were used for calibration and 18 for external validation of the 

models built.  

Table 1: Storage conditions for virgin olive oil. 

Number of 
Samples 

Origin  Type of Mills   Variety 
Light 

condition 
Temperature 

condition 

Storage 
Time 

(month ) 

3  
Beni Mellal province 

Traditional mill Picholine Darkness 10 ± 1 0 

4  Modern mill Picholine Darkness 10 ± 1 0 

7  Khenifra province Modern mill Picholine Darkness 10 ± 1 0 

2  
Khouribga province 

Traditional mill Picholine Darkness 10 ± 1 0 

5  Modern mill Picholine Darkness 10 ± 1 0 

6  Fquih Ben Salah province Modern mill Picholine Darkness 10 ± 1 0 

3  
Beni Mellal province 

Traditional mill Picholine Darkness 10 ± 1 12 

4  Modern mill Picholine Darkness 10 ± 1 12 

7  Khenifra province Modern mill Picholine Darkness 10 ± 1 12 

2  
Khouribga province 

Traditional mill Picholine Darkness 10 ± 1 12 

5  Modern mill Picholine Darkness 10 ± 1 12 

6  Fquih Ben Salah province Modern mill Picholine Darkness 10 ± 1 12 

3  
Beni Mellal province 

Traditional mill Picholine Darkness 10 ± 1 24 

4  Modern mill Picholine Darkness 10 ± 1 24 

7  Khenifra province Modern mill Picholine Darkness 10 ± 1 24 

2  
Khouribga province 

Traditional mill Picholine Darkness 10 ± 1 24 

5  Modern mill Picholine Darkness 10 ± 1 24 

6  Fquih Ben Salah province Modern mill Picholine Darkness 10 ± 1 24 
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2. Spectral fluorescence acquisition. 

The fresh and stored virgin olive oils are directly analyzed by fluorescence spectroscopy, using the 

FluoroMax-4 (Jobin Yvon) spectrophotometer. These fluorescence measurements are carried out 

using fluorescence cuvette with Polytetrafluoroethylene (PTFE) cover, UV quartz with light path 

of 10 mm. 

The acquisition of emission spectra of olive oil has been made at an excitation wavelength of 400 

nm and emission wavelength ranged from 415nm to 785nm with a step of 0.5nm. Some fluorescent 

molecules of the olive oil have been excited following the absorption of photons at this wavelength 

which allows them to enter into an electronically excited state, these molecules will return to their 

fundamental state by emitting photons with a wavelength greater than the excitation wavelength.  

3. Multivariate data analysis. 

Multivariate data analysis is a group of statistical methods that focus on the simultaneous 

observation, exploitation and processing of several statistical variables in order to extract relevant 

synthetic information. These chemometric tools are generally divided into two groups, 

unsupervised methods such as PCA and supervised methods such as PLS-DA, LDA, SVM. 

Generally these supervised methods are part of the discriminant analysis that consists in 

determining the belonging of an individual to a predefined group according to the observation of 

predictive qualitative variables. These discriminant analysis can provide additional details to the 

obtained results, such as the identification of the variables that led to the creation of the typology 

groups. The visualization of the results of this analysis can take the form of a mapping similar to 

the PCA score plot, where the different individuals are grouped together according to their group 

affiliation. 

Principal Component Analysis (PCA) is an extremely powerful unsupervised method of 

synthesizing information, very useful when there is a large amount of quantitative data to be 

processed and interpreted. As a basic tool in chemometrics, PCA serves different purposes; 

exploration and description of a dataset, preparation and cleaning of data, identification of 

individual groups and preliminary step for another chemometric treatment LDA, SVM. 

The supervised partial least squares discriminant (PLS-DA) method, is a use of the PLS2 regression 

method, where the response variable is a categorical variable expressing the membership class of 

the units. This response is coded to contain only two whole numbers. In general, 0 and 1 are used 

to indicate "outside the group" and "within the group" respectively   [33]. The components of this 
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method are constructed by trying to find an adequate compromise between two main purposes: to 

describe the whole set of explanatory variables and to predict the response variables [34]. 

Linear discriminant analysis (LDA)is one of the most important methods of discrimination, it 

consists in finding linear combinations of the discriminating variables, making it possible to 

discriminate the most compact and distant groups by using hyperplans. In the case of spectral data 

this method was often preceded by selections of variables because the model produced is often 

difficult to interpret in the absence of initial variable selections and the results are unstable in the 

case of correlations between variables, as it is always the case with spectral data [35]. 

Support Vector Machine (SVM) is a method that belongs to the family of automatic learning 

algorithms that solve both classification and regression problems. However, it is commonly applied 

in classification objectives. It consists of finding n-hyperplane with the maximum margin distance 

between the points through the use of techniques called kernel trick. The most used algorithms are 

Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel, and Sigmoid Kernel [36]. 

4. Software 

All data processing of fluorescence spectra and applications of chemometric methods, principal 

component analysis and partial least squares discriminant analysis, machine vector support and 

linear discriminant analysis have been realized thanks to The Unscrambler software, version 10.4 

camo analytic. 

III. Results and discussion 

Figure 1 shows the emission spectra of fresh olive oils produced and of stored olive oils as shown 

in table 1, these spectra present differences in the spectral intensity of the band corresponding to 

the maximum emission at 675 nm. This band corresponds notably to the emission of some 

fluorescent molecules in olive oil; chlorophyll and pheophytin [30], these molecules are 

responsible for the green coloration of the olive oil and represent an important parameter of olive 

oils quality. 
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Figure 1: Fluorescence emission spectrum of fresh virgin olive oil and stored olive oil. 

 

The fluorescence spectra show that there is a decrease of the spectral intensity during the storage 

time due to the degradation of chlorophyll [37]. In fact, the spectra also show that the behavior of 

these oils is varying because the samples belong to different origins as geographical areas and mills. 

Consequently, different contents of chlorophyll pigments [7]. The average spectrum representation 

of each group of oil allows representing the behavior of the oils during the storage time as shown 

in figure 2. 
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Figure 2: Average emission spectra of each group of olive oil (OO1=fresh olive oil, OO2= 

stored olive oil during 12 months and OO3= stored olive oil during 24 months).  

 Principal component analysis. 

To describe the data in a very small dimensional space, a PCA has been firstly performed on the 

81 spectra of olive oils, to exploit the dataset and getting pieces information on the distribution and 

the behavior of the samples concerning the measured variables that represent the wavelengths of 

the fluorescence spectral data. The following figure 3 illustrates the PCA 3D score plot.  

 

Figure 3: PCA 3D score plot of the first tree principal components PC1-PC2-PC3, 

(OO1=Fresh olive oil, OO2= stored olive oil during 12 months, OO3= stored olive oil during 

24 months). 



  

75 
 

PCA shows that the first three principal components explain 96% of the total variability in the data. 

92% for the first component and 4% for others components. Moreover, PCA shows that there is 

discrimination between the three groups of oil according to storage time, it also shows that there is 

intra-group variability for each group. This classification is ensured essentially by the first 

component which represents the majority of the spectral information. The study of the loading 

figure 4 associated with the first PC shows that all weights are negative, which is characteristic of 

chemical or biochemical effects on the spectra, and not of physical characterization of the spectra. 

This remark allows us to show that the first axis represents chlorophyll pigment content.  

The separation tendency of olive oils according to the storage time was evident on the 3D-score 

plot PC1-PC2-PC3, which demonstrated the capability to use PCA on fluorescence data to identify 

the freshness and the storage time of the virgin olive oils. 

 

Figure 4: PCA loading plot of the first principal component PC1. 

 Partial least squares discriminant analysis PLS-DA. 

In order to develop a supervised classification method capable of classifying and authenticating 

virgin olive oils according to their shelf life, the PLS-DA discrimination model has been developed 

for the three olive oil groups on 63 calibration samples using NIPALS algorithm. The performance 

of the constructed models was evaluated using the root mean square error of calibration (RMSEC), 

the root mean square error of cross-validation (RMSECV), the root mean square error of prediction 

(RMSEP) obtained by external validation and the slope of the regression R2. 
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The application of the discriminant PLS shows a high capability in the discrimination of the three 

groups of olive oils as shown in the score plot figure 5.  

 

Figure 5: 3D-PLS-DA score plots for the Fluorescence spectra of olive oils groups, 

(OO1=Fresh olive oil, OO2= stored olive oil during (12 months), OO3= stored olive oil during 

24 months).  

The discrimination quality of the constructed model is summarized in the following table 2, The 

performance evaluation of the built models shows that the correlation coefficient ranges between 

94% and 89% in the case of the calibration results, and between 94% and 86% in the case of cross-

validation results, while the mean square error of the calibration ranges between 0.11 and 0.16 and 

for the cross-validation ranges between 0.12 and 0.18. 
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Table 2: Statistical parameters of the built models with and without data preprocessing 

(PLS-DA). 

Label Preprocessing Number of 

latent variable 

Calibration Cross Validation 

R-square 
(%) 

RMSEC R-square 
(%) 

RMSECV 

OO1 Without 
preprocessing 

 
3 LV 

91 0.14 89 0.16 

OO2 94 0.12 93 0.13 

OO3 89 0.16 89 0.17 

OO1 Smoothing 
(Savitzky and 

Golay)  

 
3 LV 

90 0.15 89 0.16 

OO2 94 0.12 94 0.12 

OO3 89 0.16 87 0.17 

OO1 Detrend 
(polynomial 1) 

 
3 LV 

91 0.15 86 0.18 

OO2 95 0.11 90 0.15 

OO3 89 0.16 87 0.17 

 

The predictive performance of the constructed calibration models have been evaluated by external 

validation using external samples, (6 samples of each class). The predicted y-value of a new sample 

near to 1 (or greater than 0.5) allocates the sample to a specific category, while a sample with a 

predicted y-value less than 0.5 is allocated outside the category [33]. 

The results of external samples prediction by the constructed models mentioned in the following 

tables 3 show that these samples have been clearly assigned to their respective classes with 

perfect accuracy of 100%. 

Table 3: External validation of the classification of PLS-DA models for the fluorescence 

spectra of the three categories of olive oil. 

Confusion 
matrix 

label OO1 OO2 OO3 Accuracy of External validation 

Predicted 
external set 

OO1 6 0 0  
100% OO2 0 6 0 

OO3 0 0 6 

 

 Support vector machine classification SVM. 

SVM (type C-SVC) has been applied on the fluorescence spectral data of the three groups of olive 

oils, using a linear Kernel algorithm. The reported results in table 4, show that the model has 

provided a good classification performance for the three classes of oils according to their 
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membership (freshness and storage time). The calibration model has been validated using firstly 

cross-validation that shows a significant accuracy of classification that reached 100%. Finally we 

used an external validation by a new set of samples (6 samples of each class) to evaluate the 

predictive performance of the constructed model. The 18 samples of the sample set have clearly 

been attributed to their respective classes with perfect accuracy of 100%. The results that we have 

obtained by the SVM model confirm the predictive capability to classify the different classes of 

samples according to their freshness and storage time. 

Table 4: Confusion matrix for the classification of training and external dataset using the 

SVM method. 

Confusion 
matrix 

Actual accuracy 

label OO1 OO2 OO3 Calibration Cross-validation 

 
Predicted 

training set 

OO1 21 0 0  
100% 

 
100% OO2 0 21 0 

OO3 0 0 21 

  OO1 OO2 OO3 External validation 

Predicted 
external set 

OO1 6 0 0  
100% OO2 0 6 0 

OO3 0 0 6 

 

 Linear discriminant analysis LDA. 

The supervised discrimination method was also used, LDA has been applied on the three synthetic 

variables generated by the PCA. This method is not applicable on the data where the variables have 

a co-linearity among themselves, for this reason it is necessary to combine this method with 

methods of variable selection like the PCA method, because the PCA allows to generate 

independent synthetic variables from the initial variables. The application of the LDA method on 

the first three components of the PCA shows a very high capacity of discrimination between the 

three classes of olive oil as shown in table 5. This classification model provides a high 

discrimination performance of the three classes according to their membership. The results of 

calibration and cross-validation show that this model can correctly classify the three classes with 

an accuracy that reaches 100%. 

The predictive assessment of this model through external validation by a new set of samples (6 

samples of each category). The 18 samples of the test set are clearly assigned to their respective 

categories ensuring a perfect accuracy of 100% as it is reported in table 5.  
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Table 5: Confusion matrix for the classification of training and external dataset using the 

PCA-LDA method. 

Confusion 
matrix 

Actual accuracy 

label OO1 OO2 OO3 Calibration Cross-validation 

 
Predicted 

training set 

OO1 21 0 0  
100% 

 
100% OO2 0 21 0 

OO3 0 0 21 

  OO1 OO2 OO3 External validation 

Predicted 
external set 

OO1 6 0 0  
100% OO2 0 6 0 

OO3 0 0 6 

 

It is clear that the ideal situation occurs when all VOO samples arrive at the diagonal cells of the 

matrix. That is to say, each olive oil class was correctly classified by the SVM, PLS-DA and ACP-

LDA models, which led to a 100% success rate in the classification of the three Moroccan oil 

groups according to their freshness. This success rate was also higher than that of Sinelli et al [38], 

who found 87% by combining physicochemical data (Acidity (%), Peroxide Value, K232 and K270) 

with linear discriminant analysis and 98% by using Mid-Infrared spectroscopy. 

The improvement of this method with a wide range of olive oils by the introduction of several 

varieties of olive oil of different freshness allows to increase the analytical performance of this 

method and to use it as a routine method for the authentication of the freshness of olive oils in 

analytical laboratories. Such a process allows many control authorities to check the freshness of 

olive oils on the market in order to protect the consumer against fraudulent actions.  

IV. Conclusion. 

The present study shows the capability of fluorescence spectroscopy coupled to supervised and 

unsupervised methods for the classification and the prediction of freshly produced virgin olive oils 

and virgin olive oils that have been stored during a time. 

The obtained results by PCA as an unsupervised method of exploitation and grouping of individuals 

show that there is discrimination between the three groups of olive oils concerning the variables 

measured by fluorescence spectroscopy. 

The application of the supervised classification methods PLS-DA, SVM and LDA, shows a very 

high capacity in the discrimination between these three categories of oil. They also show a very 

accurate capacity for the prediction and correct classification of external samples in its class.  
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For a reliable process of rapid evaluation and authentication of virgin olive oils in the market to 

identify the freshness of olive oils, the development of robust spectral databases is encouraged as 

much as possible. 
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Summary of chapter 3: 

Food adulteration has emerged as a global problem. Adulteration represents not only a denial of 

the human right to safe food, but also a major menace to public health, with numerous acute and 

chronic illnesses. The physical and mental growth has been affected by food adulteration. The aim 

of this chapter is to develop methods suitable for rapid screening of argan oil adulteration by olive 

oil. These analytical methods are essentially based on the combination of spectroscopic sensors 

(fluorescence spectroscopy, UV-Visible and FT-MIR) and chemometric algorithms for 

discrimination and quantification. These obtained results are mainly based on a number of argan 

oil and olive oil samples from the same quality categories (extra virgin or virgin). The spectral 

approaches adopted during this study were validated through the accuracy profile. The results show 

that these models are efficient, accurate, and reliable for the detection of argan oil adulteration. 
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Résumé: 

La falsification des aliments est devenue un problème mondial. L'adultération représente non 

seulement un déni du droit de l'homme à une alimentation saine, mais aussi une menace majeure 

pour la santé publique, avec de nombreuses maladies aiguës et chroniques. L'adultération 

alimentaire a affecté la croissance physique et mentale. L'objectif de ce chapitre est de développer 

des méthodes adaptées au dépistage rapide de l'adultération de l'huile d'argan par l'huile d'olive. 

Ces méthodes d'analyse sont essentiellement basées sur la combinaison de capteurs 

spectroscopiques (spectroscopie de fluorescence, UV-Visible et FT-MIR) et des algorithmes 

chimiométriques pour la discrimination et la quantification de l’adultération. Les résultats obtenus 

sont principalement basés sur un certain nombre d'échantillons d'huile d'argan et d'huile d'olive de 

mêmes catégories de qualité (vierge extra ou vierge). Les approches spectrales adoptées au cours 

de cette étude ont été validées par le profil d’exactitude. Les résultats montrent que ces modèles 

sont efficaces, précis et fiables pour la détection de l'adultération de l'huile d'argan. 
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I. Introduction. 

Argan oil is one of the rarest vegetable oils in the world, this oil is extracted mainly from the argan 

tree which is an endemic tree (argania spinosa) that exists in Morocco [1]. In the south of Morocco 

the argan tree covers an area of 3200 km2 which plays an important economic role for this region 

of Morocco. Traditionally, argan oil is producing by grinding the kernels by hand, however, 

modern mechanical presses are often used these days [2]. This oil is considered as an additional 

source of income for the local population since most of the population is involved in agriculture. 

Generally, the various activity sectors of argan oil have become today an opportunity for 

sustainable development [3].   

Currently, argan oil is considered to be among the most expensive vegetable oil in the world thanks 

to its rarity, its protective cardiovascular properties and its richness in vitamins (vitamin E), 

polyunsaturated fatty acids (omega 6) and antioxidants which makes it very requested in the 

cosmetic and pharmaceutical sectors [4, 5]. The spread of argan oil has recently crossed the 

frontiers of Morocco and reached many countries [6]. This evolution is strongly encouraged 

currently by the scientific recognition of the potential pharmaceutical properties and the continuous 

discovery of new anti-cancerous substances in argan oil [7, 8].  

Argan oil has become a product of great interest due to its pharmaceutical, cosmetic and nutritional 

properties, these qualities increase its value as an export product [9], or these reasons argan oil 

subject to an increase in cases of falsification. Most common are the adulteration of argan oil with 

lower-priced oils as soybean oil or sunflower oil [10, 11]. These practices have been the subject of 

numerous studies aimed at combating fraud that disrupts the market and deteriorates the positive 

image of argan oil. These studies can be divided into two general categories: those involving the 

analysis of chemical compounds in the oil by gas chromatography (GC) [6], high performance 

liquid chromatography (HPLC) [12, 13], and inductively coupled with plasma optical emission 

spectrometry (ICP-OES) [14], and those based on the combination of spectroscopic techniques 

with chemometrics tools, as mid-infrared spectroscopy [11, 15], and visible-near infrared [16]. 

The methods based on the analysis of chemical composition are generally considered time-

consuming, expensive for routine use in the food industry, require competent personnel and can 

have a high environmental impact. The use of fast, accurate and robust analytical methods, when 

properly applied to verify the authenticity of argan oils, constitutes a valuable and essential tool for 
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authorities aiming to control food products on the market. For this reason the main 

recommendations made by the participants in the first edition of the international congress of argan 

tree, emphasizes the need to develop rapid methods able to detect the adulteration of argan oil [17]. 

Fourier-transform infrared spectroscopy (FT-IR) has been successfully used with chemometric 

techniques to monitor food adulteration. It has been used in many different authentication studies 

to classify argan oil according to its quality and for the detection of food adulteration [18–21], and 

the quantification of oils that has been adulterated by low cost oil such as argan oil by sunflower 

and soybean oils, or olive oil by soybean, sunflower, canola, corn, peanut, sesame, and camellia 

oils [22]. 

Ultraviolet-visible spectroscopy (UV-vis) comes as a fairly easy to use technique. However, there 

are no studies in the literature concerning the detection of argan oil adulteration by UV-visible 

spectroscopy, but there are relatively few studies in the literature on the adulteration of olive oils. 

This technique has been used to quantify low-quality of old olive oil in extra virgin olive oil as 

well as different mixtures of olive oil with corn, soybean, and sunflower oil [23]. 

Fluorescence spectroscopy is a non-destructive method that requires no sample preparation and is 

reliable enough for an authentic and accurate analysis. This technique is gaining the attention of 

many industries in the application of food authentication, especially in the case of oils, because it 

reveals the presence of intrinsic fluorophores such as carotenoids, tocopherol, phenols, oxidation 

products of fatty acids and in particular chlorophyll, which have made it a choice for the detection 

of virgin olive oil adulteration [22, 24]. Fluorescence spectroscopy has been also implemented for 

the characterization of edible oils during the oxidation [25, 26]. 

In the literature there are only few studies that investigate the argan oil adulteration based on 

spectroscopic methods. However, there are no studies that compare the performance of these 

spectroscopic sensors on this emerging issue. 

The aim and novelty of the current study were to investigate the capacity of these spectroscopic 

sensors to classify argan oils according to their purity and the prediction of the adulteration rate. 

This study demonstrates also the feasibility of using the accuracy profile as a reliable approach for 

the validation of PLS models. The combination of spectroscopy with multivariate analysis will 
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allow a quantitative comparison of fluorescence, UV-visible, and FT-MIR spectroscopy for the 

authentication of argan oil. 

II. Material and methods. 

1. Sample preparation  

The samples of argan oil were taken directly from farmers located in the region of Tafraout 

(southwestern Morocco) with the guarantee of their geographical origin and purity. The quality of 

olive oil used for adulteration was also guaranteed. The samples of argan oil and olive oil were 

maintained in the dark at a temperature of 10 ± 3°C until their analysis. 

In order to study the falsification, different sets of adulterated samples were provided. The samples 

were prepared by mixing argan oil with an adulterant (olive oil) at different levels of adulteration. 

The samples were stirred and analyzed directly by fluorescence spectroscopy, UV-visible and FT-

MIR. All levels of adulteration involved are recorded as w/w percentages like described in the 

following equation:   

% 𝐀𝐝𝐮𝐥𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 =
(𝐦𝐚𝐬𝐬 𝐨𝐟 𝐄𝐱𝐭𝐫𝐚 𝐯𝐢𝐫𝐠𝐢𝐧 𝐨𝐥𝐢𝐯𝐞 𝐨𝐢𝐥 𝐢𝐧 𝐀𝐫𝐠𝐚𝐧 𝐨𝐢𝐥)

𝐭𝐨𝐭𝐚𝐥 𝐦𝐚𝐬𝐬 𝐨𝐟 𝐬𝐚𝐦𝐩𝐥𝐞
∗ 𝟏𝟎𝟎                                             (1) 

To perform the discrimination study, a total of 55 samples were used, and are randomly divided 

into calibration and validation samples. 45 samples were selected for calibration (15 corresponded 

to pure argan oil and 30 to falsified argan oil at different levels: 0.5, 0.8, 1.2, 3.2, 4.2, 5.6, 8, 10.6, 

13, 16, 18, 22, 24, 26.6, 30, and 32%) and 10 samples were selected for external validation (5 

corresponded to pure argan oil and 5 to falsified argan oil at different levels 0.5, 8, 10, 20 and 32%). 

For the quantification model, a total of 42 samples were used for the construction of calibration 

models. In general two samples were prepared for each level of concentration 0.5, 0.8, 1.2, 2.3, 3.2, 

4.2, 5.6, 6.6, 8, 8.9, 10.6, 13, 16, 18, 19.6, 22, 24, 26.6, 30, and 32%, then a cross-validation was 

used on the basis of the leave-one-out cross-validation procedure for the selection of the optimal 

number of latent variables needed for a good prediction. 

For the full validation of these multivariate approaches developed for the quantification of argan 

oil adulteration, accuracy profile was applied, for this reason samples of argan oil adulterated at 4 

concentration levels of 0.5, 10, 20 and 32% were chosen. Accuracy and intermediate precision 

were determined by analyzing these samples on three different days: three replicates on each day 
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for each level of concentration. The total number of samples used for the validation of the PLS 

quantification models was 36. (3(days)*3(replicate)*4(concentration levels)). 

2. Spectral acquisition  

2.1. Fluorescence spectroscopy 

The samples of adulterated and non-adulterated argan oil are directly analyzed by fluorescence 

spectroscopy, using the FluoroMax-4 spectrophotometer (Jobin Yvon). These measurements are 

carried out using a cuvette with a polytetrafluoroethylene (PTFE) cover, a quartz UV with a light 

path of 10 mm. The acquisition of the emission spectra of argan oil was carried out at an excitation 

wavelength of 400 nm and the emission wavelength was recorded between 415 nm to 785 nm with 

a step of 0.5 nm and slit of 0.5. 

2.2. FT-MIR spectroscopy 

The samples of adulterated and non-adulterated Argan oils are analyzed by mid-infrared 

spectrophotometer (JASCO FTIR 460 PLUS (Pike Technologies, Madison, USA)) using the 

attenuated total reflectance (ATR) accessory with Germanium crystal. The resolution was adjusted 

at 4cm-1. Finally, the spectra are recorded in JCAMP format between 4000 and 600 cm-1.After each 

use the ATR accessory is cleaned with acetonitrile and then dried with a mild paper and a new 

background spectra has been taken. 

2.3. UV–visible spectroscopy 

The analysis of the adulterated and non-adulterated argan oil was carried out using UV-visible 

spectrophotometer of Perkin Elmer type and a quartz cell with an optical path of 1cm. The spectrum 

obtained is recorded between 250 nm and 800 nm region. Duplicate spectra were collected for each 

sample of adulterated and non-adulterated argan oil and those replicates were treated as different 

samples. 

3. Multivariate data analysis 

In order to properly process the spectral data corresponding the three spectroscopic techniques; 

fluorescence, mid-infrared and UV-visible, multivariate data analysis were used to build 

classification and quantification models.  For the validation of different quantification models of 

adulteration, the accuracy profile approach based on the calculation of β-content tolerance limits 

was used [27]. 
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3.1. Partial least squares regression (PLS-R) 

PLS regression is a recent technique in chemometrics that extends and combines the features of 

principal component analysis and multiple regression. Its goal is to predict or investigate a set of 

dependent variables from a set of independent variables or predictors. This prediction is made by 

extracting from the predictors a set of orthogonal factors known as latent variables that have the 

best predictive power [28–30].  

For the quantification of the different levels of adulteration (0.5% to 32% v/v) the partial least 

squares regression (PLS) was performed. Basically, the PLS regression has been used to correlate 

the spectral intensity of each adulterated and non-adulterated sample (block X) with the 

percentages of argan oil adulteration (block Y) [31]. The predictive capability of the generated PLS 

models has been studied with several statistical performance parameters such as R-square of 

calibration and R-square of cross-validation. Error-values such as RMSEC (root mean square error 

of calibration), RMSECV (root mean square error of cross-Validation) were also used in the 

evaluation of the predictive performance of the built models. R2 values must be close to 1, while 

the error values must be small and close to each other so as to reduce the error as much as possible 

by maintaining the balance between the error values created in terms of amplitude and to obtain a 

reliable prediction model. 

𝑅𝑀𝑆𝐸𝐶 = √
∑(𝑌𝑖−Ŷ𝑖)

2

𝐴−1
                                                                                                             (1.a) 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
∑(𝑌𝑖−Ŷ𝑖)

2

𝐵−1
                                                                                                           (1.b) 

Where, Yi and Ŷi indicate the actual and predicted values. While A and B indicate the number of 

samples used in the calibration and cross-validation data sets. 

3.2. Partial least squares-discriminant analysis (PLS-DA) 

Partial least squares-discriminant analysis (PLS-DA) is one of the most frequently applied 

classification methods in chemistry [32]. PLS-DA is a linear classification technique that integrates 

the properties of partial least squares regression and the discrimination capability of a classification 

approach. PLS-DA is based on the PLS regression algorithm (PLS1 when dealing with a single 

dependent Y variable and PLS2 when dealing with several dependent Y variables), this algorithm 
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looks for latent variables with maximum covariance with the Y variables [33]. The principal 

advantage of PLS-DA is that the relevant sources of data variability are modeled by the latent 

variables (LV), which represent the linear combinations of the original variables, and consequently, 

it allows the visualization and comprehension of the different data patterns and relationships 

through LV scores and loads. The optimal number of LVs is generally determined by a cross-

validation method, which minimizes the error of classification. 

In order to evaluate the discriminating ability of the three chemometrics approaches of PLS-DA, 

external validation was applied and several parameters have been calculated such as specificity, 

sensitivity and accuracy [33, 34]. A new sample with a predicted y-value close to 1 or greater than 

0.5 assigns the sample to a specific category, while a sample with a predicted y-value less than 0.5 

is assigned outside the category [35]. 

Sensitivity also known as the true positive rate, is defined as the ability of the model to correctly 

identify samples that resulted in the assignment of true positives. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                (2) 

Specificity measures the correctly classified negative observations with respect to the sum of all 

negative observations: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                                (3) 

Accuracy indicates the proportion of the observations that are correctly classified in relation to the 

total number of observations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                       (4) 

Were TP, FP, TN and FN are: 

TP: number of true positive classifications 

FP: number of false positive classifications 

TN: number of true negative classifications 

FN: number of false negative classifications 

3.3. β-content tolerance interval 
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To properly demonstrate the reliability of this method developed in routine application and to 

demonstrate the accuracy (i.e. accuracy and precision) of the obtained results with an acceptable 

guarantee. We have been using a full validation methodology by introducing a simple and efficient 

graphical decision tool so called accuracy profile based on statistical tolerance intervals such as β-

content, γ-confidence tolerance interval (βγ-CCTI) [36, 37]. 

The principle of this validation strategy can be translated by the equation Probability (X-Z < λ) ≥ 

β which stipulates that the difference between a measurement (X: the value found by the developed 

model) and its true value (Z: reference value) must be less than the acceptance limit (λ) defined a 

priori, and β represents the probability of the dispersion/tolerance interval [37].  

The tolerance interval used in this validation approach, defined as an interval within which it is 

able to predict that on average a known proportion of the measurements are within. This interval 

can be calculated by several methods. In general its determination is made by the calculation 

method proposed by Mee [38]. 

The tolerance interval (TI) is calculated for each concentration level according to the following 

formula based on the parameters calculated previously; bias (%), SW
2 (Standard deviation intra-

days), SB
2 (Standard deviation inter-days), and RSDIP (Relative standard deviation of intermediate 

precision). 

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝐵𝑖𝑎𝑠 ± 𝑡
(𝑑𝑓,

1+𝛽

2
)
× √

1

𝑝×𝑛×𝐵2
× 𝑅𝑆𝐷𝐼𝑃                                           (5) 

Where p, n, t are respectively the numbers of days, repetition for each concentration level, and the 

Student's statistical test in relation to the number of degrees of freedom (df) and the expected 

probability (β) of the tolerance interval. The coefficient B2 and df are calculated by the following 

equations.  

𝐵2 =
(
𝑆𝐵
2

𝑆𝑊
2 )+1

(
𝑆𝐵
2

𝑆𝑊
2 )×𝑛+1

𝑅𝑆𝐷𝐼𝑃                                                                                                           (6) 
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𝑑𝑓 =
((

𝑆𝐵
2

𝑆𝑊
2 )+1)

2

(

 
 
(
𝑆𝐵
2

𝑆𝑊
2 )+

1
𝑛

𝑝−1

)

 
 
(
1−
1
𝑛

𝑝×𝑛
)

𝑅𝑆𝐷𝐼𝑃                                                                                                  (7) 

3.4. Data pre-processing 

To enhance the performance and to build optimal chemometric models, spectral pre-treatments 

were applied to the data. The data is mean-centered. Then spectral smoothing was carried out to 

minimize noise randomness. For the smoothing, the Savitzky-Golay polynomial fitting algorithm 

was used, having a second polynomial order [39]. For the correction of the systemic baseline 

deviation, slope and curve-linearity, which could occur due to the variation in oils properties and 

viscosity, the detrend correction was applied using first and second polynomial, resulting in 

improved spectral resolution [40]. Standard normal variation correction (SNV) has been also 

applied to reduce interferences or scattering variation between samples [40]. 

3.5. Software 

The spectral processing of the data and the chemometric analyses (PLS-DA and PLS) were applied 

using the Unscrambler software 10.4. For the validation, an Excel table was used to calculate all 

statistical parameters needed for the construction of the accuracy profile. 

III. Results and discussion 

1. Spectral evaluation 

Typical spectra, of all pure and adulterated argan oil samples studied, obtained using the 

spectroscopic techniques, are presented in Figure. 1. The FT-MIR spectra of the samples (Figure. 

1a) are characterized by bands at different wavenumbers of 2924, 2852, 1743, 1463, 1377, 1238, 

1163, 1114, 1099 and 721 cm-1   [41]. The absorptions at 2924 and 2852 cm-1 are respectively 

related to asymmetrical and symmetrical stretching vibrations of -CH2. The major bands at 1743, 

1463 and 1377 cm-1 are respectively associated with C=O stretching, CH2 and CH3 scissor 

vibrations. The remaining bands at 1238, 1163, 1114, 1099 cm-1 are correlated with C-O stretching 

vibrations, while a small band at 721 cm-1 is associated to CH2 rocking model [41]. 
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The UV-vis spectra of pure and adulterated argan oil samples are shown in figure 1b. The 

absorption spectra of argan oil samples show specific bands around 250-270 nm indicating the 

presence of conjugated dienes and trienes of unsaturated fatty acids, in addition the band between 

300-400 nm is correlated with a variety of polyphenols compounds [42]. The Low absorption 

observed in the visible zone between 400 and 550 nm is associated to carotenoids [22]. 

Fluorescence emission spectra of the adulterated and non-adulterated argan oil samples are shown 

in Figure 1c. These spectra indicate two regions of interest around 400–625 nm, and 650-750 nm. 

The emission bands between 650 and 750 nm showed a well-known relationship with chlorophylls 

a and b and pheophytins a and b. The emission spectral bands range from 400 nm to 600 nm could 

be attributed to vitamin E ( Tocopherol) and carotenoids, as well as oxidation products of fatty 

acids, especially conjugated hydroperoxides that are found in the range of 440–480 nm [24, 25, 43, 

44]. 

The spectra obtained by these three spectroscopic methods were further examined in order to 

observe any visual trace differences between a pure argan sample and adulterated samples. The 

differences in the FT-MIR spectra were difficult to recognize visually. On the other hand, visual 

inspection revealed a weak visible differences between the spectra of adulterated and non-

adulterated argan oil samples obtained by UV-visible and a strong difference for the fluorescence 

spectroscopy. 

The fluorescence emission spectra of argan oil samples at different levels of adulteration are 

provided in Figure 1c. Upon the addition of olive oil on argan oil, it was observed a decrease in the 

intensity of the emission signal over the spectral region (425-525 nm), this decrease could be 

correlated with the decrease of fatty acid oxidation products such as hydroperoxides emitted around 

450 nm on the one hand, and a decrease of vitamin E emitted around 525 nm on the other hand 

[45] . However, samples of argan oil adulterated with olive oil have a higher intensity at 650-750 

nm compared to samples of pure argan oil which presents a low intensity, this difference could be 

attributed to the change in chlorophyll content having a negative linear relationship with the 

oxidation products because olive oil is very rich in chlorophyll [45]. 
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Figure 1: visualization of FT-MIR (A), UV-Visible (B) and fluorescence (C) spectra of pure 

argan oil (0%) and adulterated argan oil at different levels (from 0.5% to 32%). 
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2. Discrimination of argan oil adulterated and non-adulterated. 

The PLS-DA classification method has been generally applied to the spectral data obtained for 

each spectroscopic method. Therefore, several models have been generated using raw data without 

preprocessing and data that undergo mathematical correction to improve predictive capability. 

Based on the obtained data in Figure 2, we notice a good discrimination between adulterated and 

non-adulterated argan oil. The statistical parameters for each approach summarized in the table 1 

show that the application of the PLS-DA method provides good results using the data transformed 

by SNV in the case of fluorescence in which we observe an R2 of 0. 99 for calibration and cross-

validation with a low RMSE of 0.01 for calibration and cross-validation. For the approach 

developed by UV-visible and FT-MIR, the good results were obtained using the raw spectral data 

without mathematical transformation as shown in table 1. 

The results of the external validation cited in Table 2 show that all classes belong to their group 

with a specificity, sensitivity and accuracy of 100% for all chemometric approaches. Even with a 

small number of samples, the results obtained show that these approaches developed have a high 

capacity in the authentication of argan oil against falsification frauds by olive oils. 

This discrimination study represents the first study that involves the PLS-DA approach using 

spectroscopic analysis in order to classify argan oils according to their purity, as there are no studies 

in the literature that use this approach to achieve this classification target.  
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Figure 2: PLS-DA score plot of the models developed by FT-MIR (A), UV-visible (B) and 

fluorescence (C) for the discrimination of pure argan oil and adulterated argan oil.  
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Table 1: PLS-DA results of different spectroscopic methods for the classification of pure and 

adulterated argan oil. 

Preprocessing LV R2
Calibration RMSEC R2

Cross-Validation RMSECV 

FT-MIR 

Without 7 0.98 0.06 0.93 0.13 

SG 7 0.90 0.15 0.75 0.27 

SG-SNV 7 0.93 0.13 0.70 0.21 

SNV 7 0.97 0.08 0.80 0.20 

Detrend polynomial 1 7 0.95 0.10 0.78 0.22 

Detrend polynomial 2 7 0.96 0.03 0.82 0.12 

   UV-Visible 

Without 5 0.99 0.05 0.98 0.07 

SG 5 0.99 0.05 0.97 0.08 

SG-SNV 5 0.97 0.07 0.93 0.12 

SNV 5 0.98 0.06 0.93 0.12 

Detrend polynomial 1 5 0.99 0.05 0.96 0.09 

Detrend polynomial 2 5 0.99 0.04 0.96 0.09 

   Fluorescence 

without 6 0.99 0.02 0.79 0.17 

SG 4 0.96 0.09 0.81 0.15 

SG-SNV 2 0.99 0.01 0.99 0.01 

SNV 2 0.99 0.01 0.99 0.01 

Detrend polynomial 1 6 0.99 0.02 0.87 0.17 

Detrend polynomial 2 2 0.99 0.03 0.80 0.21 

 

Table 2: Confusion matrix of the external validation of the PLS-DA models of the three 

spectroscopic methods (PAO=pure Argan oil; AAO=Adulterated Argan oil) for the three 

spectroscopic approaches. 

 

Confusion matrix 

FT-MIR 

Actual validation set  

Sensitivity 

 

Specificity 

 

Accuracy 

 

%CCR PAO AAO 

 

 

 

Predicted 

set 

PAO 5 0 100% 100% 100% 100% 

AAO 0 5 100% 100% 100% 

 UV-Visible 

PAO 5 0 100% 100% 100% 100% 

AAO 0 5 100% 100% 100% 

 Fluorescence 

PAO 5 0 100% 100% 100% 100% 

AAO 0 5 100% 100% 100% 

 

3. Quantitative Analysis using PLS-R. 

The development of a quantification model based on PLS can therefore extend the potential of the 

approach proposed in this work to quantify the rate of adulteration in argan oil using spectroscopy 

sensors. 

Quantification of adulteration level (0.5% to 32%) in samples of pure argan oil was performed by 

implementing the PLS1 algorithm to the datasets of each spectroscopic method. Table 3 
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summarizes all the statistical parameters obtained for each spectroscopic technique. Different 

appropriate pre-processing techniques were used for the development of quantitative models.  

The evaluation of the spectral results found by FT-MIR using PLS regression demonstrates high 

performance for the quantification of the adulteration rate, this performance was demonstrated by 

the high values of R2 and the low values of RMSE for calibration and cross-validation. It was 

found that the model built on FT-MIR data pre-processed by SNV using 7 LV has a good 

performance with respect to other models, in which we observe an R2 value of 0.99, 0.98 and 

RMSE of 0.81%, 1.59% for calibration and cross-validation respectively as shown in table 3. There 

is only one preliminary study in the literature that predicts successfully a low grade of different 

edible oils (sunflower or soybean oils) in pure argan oil using FT-MIR spectroscopy and PLS 

regression with an R2 of 0.99 and RMSE less than 1% [11]. 

The PLS model developed on the UV-visible spectral data showed high performance in calibration 

and cross-validation, including 6 LVs, as well as acceptable values of R2 and RMSE were obtained 

in which the R2 is greater than 0.98 while the RMSE values range from 0.54% to 1.06% for 

calibration and 0.54% to 1.75% for cross-validation (Table 3). According to these results the best 

model was constructed using data preprocessing by detrend using polynomial degree 2. In the 

literature, there are no studies using UV-visible spectroscopy for the prediction of this type of 

adulteration except only one study based on the use of visible/near-infrared that has performed to 

determine the level of adulteration in argan oil with cheap vegetable oils [16]. 

For fluorescence spectroscopy, the application of PLS shows a strong ability in quantifying the 

adulteration rate, expressed by the statistical values of R2 and RMSE and the number of LVs used 

for the construction of PLS models. The PLS model built on non-preprocessed fluorescence data 

using 2 LVs is considered the best PLS model, as it provides an R2 of 0.99 and an RMSE of 0.55%, 

0.79% respectively for calibration and cross-validation. Generally, these RMSE values are 

considered to be the lowest values obtained compared to those obtained using FT-MIR and UV-

Visible as shown in table 3. The evaluation of the PLS regression plot (Figure 3) reveals a good fit 

and suggests that this analysis could be used to determine the addition of olive oil in argan oil at 

levels below 1%. This capacity is explained by the high specificity of this technique regarding the 

fluorescence compounds (chlorophyll, pheophytin and tochopherol) present in olive oil [46].  This 

study results are consistent with a very recent study using a laser beam at 532 nm [47]. 
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Table 3: PLS results of different spectroscopic methods for the quantification of olive oil in 

pure argan oil. 

Preprocessing LV R2
Calibration RMSEC R2

Cross-validation RMSECV 

FT-MIR 

Without 7 0.98 1.40 0.96 2.19 

SG 7 0.98 1.60 0.96 2.31 

SG-SNV 7 0.99 0.96 0.97 1.92 

SNV 7 0.99 0.81 0.98 1.59 

Detrend polynomial 1 7 0.99 0.96 0.97 1.81 

Detrend polynomial 2 7 0.99 0.85 0.97 1.71 

 UV-Visible 

Without 6 0.99 0.75 0.98 1.75 

SG 6 0.98 1.06 0.98 1.44 

SG-SNV 6 0.99 0.93 0.98 1.38 

SNV 6 0.99 0.54 0.99 1.03 

Detrend polynomial 1 6 0.99 0.59 0.98 1.32 

Detrend polynomial 2 6 0.99 0.55 0.98 0.99 

 Fluorescence 

without 2 0.99 0.55 0.99 0.79 

SG 2 0.99 0.82 0.99 0.81 

SG-SNV 3 0.99 2.64 0.99 2.27 

SNV 5 0.98 1.35 0.83 3.98 

Detrend polynomial 1 2 0.99 0.62 0.99 0.78 

Detrend polynomial 2 2 0.99 0.62 0.99 0.78 

 

 

Figure 3: Actual vs. predicted adulteration levels of the best PLS model obtained using 

fluorescence spectroscopy for the quantification of argan adulteration by olive oil. The model 

was constructed on two latent variables. 

 

 



  

104 
 

4. Validation of the quantification models using accuracy profile. 

In order to evaluate the predictive capacity of the three approaches developed, external validation 

was used. On the basis of the predicted concentration values obtained for the samples of the 

validation set, the accuracy profiles were calculated for each chemometric approach. In this 

approach of validation the limit of quantification (LOQ) is determined by the intercept between the 

calculated tolerance interval and the acceptance limits defined a priori. The performance and 

validation results of the models selected for each approach have been presented in Table 4. 

From the accuracy profile figure 4, it can be seen that in the case of FT-MIR (A) the upper and 

lower β expectation tolerance limit exceed the upper and lower limit of acceptability settled to 15% 

at the adulteration level of 7%. As well as the accuracy profile of UV-visible (B) demonstrate that 

the β expectation tolerance limit exceed the upper acceptable limit at 10% .This means that for a 

percentage of adulteration below 7% and 10% of adulteration rate using respectively FT-MIR and 

UV-visible spectroscopy the analyst cannot guarantee that the method is routinely capable of 

producing an average probability β (90%) of acceptable results. Whereas the accuracy profile used 

for the validation of fluorescence spectroscopy approach (C) shows that the upper and lower β 

expectation tolerance limits are included within the acceptance limits set at 15%. This means that 

the method is routinely able of producing an acceptable and valid result in an average of 0.5% to 

32%. 

Therefore, the range of linearity has been limited for all approaches between 0.5 % and 32 % range. 

Furthermore, it can be seen that the precision expressed by the relative standard deviation of 

intermediate precision (RSD) varies according to the concentration since its RSD varies from 

0.70% to 4.43%, 0.19% to 43.31%, and 0.70% to 27.09%. As well as the accuracy is also varying 

since the accuracy bias varies from 0.35% to 2.65%, 1.70% to -16.83, and 0.52% to -3.81 for 

fluorescence, UV-visible, and FT-MIR respectively. The high value of the RSD of precision 

obtained in this study corresponds to the first concentration level of 0.5% for both methods UV-

visible and FT-MIR. Although for the fluorescence method the RSD values obtained are less than 

5%.  This remark underlines the interest in performing calculations level by level.  
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Table 4: results of validation of the three spectroscopic methods developed by PLS regression 

using accuracy profile. 

  Fluorescence UV-Visible FT-MIR 

Range of linearity 0.5%-32% 0.5%-32% 0.5%-32% 

Intercept 0.045 0.1353 0.062 

Slope 0.99 0.98 0.99 

R2 0.99 0.99 0.99 

LOQ 0.5% 10% 7% 

Predicted average concentration   

Level 1 (0.5%) 0.51 0.42 0.48 

Level 2 (8%) 8.04 8.41 8.04 

Level 3 (20%) 20.07 21.12 20.10 

Level 4 (32%) 32.38 32.54 32.38 

RSD of precision (%)   

Level 1 (0.5%) 3.42 43.31 27.09 

Level 2 (8%) 4.43 5.68 4.47 

Level 3 (20%) 1.26 0.19 1.35 

Level 4 (32%) 0.70 1.12 0.70 

Relative bias (%)   

Level 1 (0.5%) 2.65 -16.83 -3.81 

Level 2 (8%) 0.48 5.14 0.50 

Level 3 (20%) 0.35 5.62 0.52 

Level 4 (32%) 1.20 1.70 1.20 

Expectation tolerance limit (%) Low Upper Low Upper Low Upper 

Level 1 (0.5%) 95.74 109.57 12.18 154.17 44.84 147.54 

Level 2 (8%) 91.71 109.25 93.37 116.91 91.65 109.36 

Level 3 (20%) 97.86 102.84 105.22 106.01 97.84 103.20 

Level 4 (32%) 99.80 102.59 99.45 103.94 99.80 102.59 

 

According to this validation approach, it can be stated that the range of validity of spectroscopic 

methods combined with PLS regression ranges from 0.5% to 32%, 7% to 32%, and 10% to 32% 

using fluorescence, FT-MIR, and UV-visible respectively. As the validity range corresponds to the 

concentrations for which the tolerance interval is within the limits of acceptability. This shows that 

the fluorescence spectroscopy coupled with PLS regression is suitable to quantify adulteration rates 

of argan oil by olive oil at small quantities starting from 0.5%. 
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Figure 4: : Accuracy profiles obtained for the validation of the three spectroscopic 

approaches FT-MIR (A), UV-visible (B), and Fluorescence (C) to quantify the adulteration 

rate of argan oil by olive oil considering PLS regression. The red dashed lines are the upper 

and lower acceptance limits(UAL and LAL) defined at 15%, the solid blue lines are the upper 

and lower calculated tolerance limits(UTL and LTL) of β expectation (with β= 90%), and the 

solid black line is the recovery rate (Accuracy). 
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IV. Conclusion 

The present study demonstrated the application of three spectroscopy sensors combined with 

multivariate analysis (chemometrics) to determine the adulteration of argan oil by olive oil. Pure 

and adulterated samples were classified by means of PLS-DA. Clear discrimination of adulterated 

and non-adulterated samples was achieved for all spectroscopic methods. PLS-R calibration 

models were applied to quantify the percentage of adulteration of argan oil by olive oil. Calibration 

and cross-validation results indicate that all three approaches are credible for the determination of 

adulteration due to their lower error values and higher regression coefficients. The validation of 

these approaches by the accuracy profile shows that the best results are obtained using fluorescence 

spectroscopy followed by FT-MIR and UV-Visible spectroscopy respectively. From these results, 

it can be deduced that the approach developed by fluorescence allows guaranteeing reliable results 

in all the validation domains between 0.5% to 32% while the other approaches allow guaranteeing 

reliable results only in the interval 7% to 32% and 10% to 32% for FT-MIR and UV-Visible 

spectroscopy respectively.  

For a robust assessment and rapid authentication of virgin Argan oils on the market in order to 

recognize their falsification, the development of reliable spectral information databases is 

encouraged as much as possible. 
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In this thesis quality control methods have been developed and validated to determine the 

geographical traceability of olive oils from the region of Beni Mellal-khenifra, the classification of 

olive oils according to their freshness, and the detection of argan oils adulteration, which are  

widely used and commercially available especially in the Moroccan market. 

In addition to the traditional criteria used to evaluate the results of classification and quantification 

models, based only on the number of samples correctly or incorrectly classified, RMSEC, 

RMSECV, and R-square, other parameters have been used to obtain more information when 

analyzing the results. A clear set of measurement criteria was established for comparing the 

effectiveness of the different classification models constructed. In particular, the overall 

classification success rate, as it is a parameter that allows to evaluate the overall efficiency of the 

models. A statistical approach was also used to assess the accuracy of the quantification model.  

The proposed classification models have been tested with an external sample, providing 

information on the performance of the different methods used for the classification of olive oils 

according to their geographical origin and their freshness using spectroscopic sensors. External 

validation has also been used to evaluate the performance of the models built to quantify the 

adulteration level accurately and reliably, in this case, a statistical approach called ''accuracy 

profile'' has been applied to demonstrate the validity of these quantification methods in various 

levels of adulteration.  . 

Firstly, the capability of UV-Visible and MIR spectroscopy combined with PCA-LDA and PCA-

SVM classification techniques was evaluated for the determination of the geographical origin of 

virgin olive oils produced in the region of Beni Mellal-Khenifra in Morocco. This study was carried 

out on 41 samples collected from five different geographical areas. The exploitation of UV-Visible 

and MIR spectroscopic data by chemometric classification tools shows that the PCA-SVM and 
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PCA-LDA method provides a good classification of the five groups of olive oil according to their 

geographical origin with high sensitivity, specificity, and correct classification rate. 

Secondly an evaluation of fluorescence spectroscopy for the classification of three classes of olive 

oil with different shelf life. The emission spectrum data were firstly processed by PCA, which 

reveals a good classification of the three groups of olive oil according to their shelf life. Application 

of discrimination approach such as LDA, SVM, and PLS-DA shows a high performance in the 

classification of olive oils according to their shelf-life. External validation of these multivariate 

approaches demonstrates high performance represented by an accuracy of 100%. 

Thirdly, rapid analytical methods have been established for the investigation of argan oil 

adulteration by olive oil, the combination of spectral data provided by MIR, UV-Visible, and 

fluorescence spectroscopy with the PLS-DA method shows a strong ability to discriminate between 

pure and adulterated argan oil at different levels of adulteration. The validation of these 

discrimination approaches shows a specificity, sensitivity, and accuracy of 100%. For the 

quantification of adulteration rate, the application of PLS provides good results, represented by the 

low RMSE, and high R-square. The validation of these three multivariate approaches by the 

accuracy profile shows that the fluorescence approach guarantees reliable results over the whole 

range of validity 0.5%-32% while the MIR and UV-Visible spectroscopy guarantees reliable results 

only in the range of validity 7% to 32% and 10% to 32% respectively. 

In this thesis, spectroscopic techniques were used to construct a spectral matrix that was used as a 

fingerprint for food quality control. However, the simultaneous use of spectral information 

contained in a data matrix is an area of opportunity for the development of rapid and advanced 

methods for food quality control using chemometric methods. 
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This represents a breakthrough for food authorities to control the traceability of foodstuffs quickly 

and reliably 

The future perspectives of research on olive and argan oil involve the application of other 

spectroscopic fingerprinting techniques such as Raman spectroscopy, nuclear magnetic reasoning, 

and near-infrared spectroscopy. Hence, chromatographic fingerprints (UPLC/DAD and 

UPLC/MS), measuring the phenolic fraction and fatty acid content, which can be combined with 

chemometric tools, to control argan and olive oils. The objective is, therefore, to study the 

possibility of using the phenolic and fatty acid profiles of argan oil, in combination with pattern 

recognition and quantification techniques, to identify the characteristic marker compounds that 

distinguish pure and adulterated argan oil, and also to classify the oils according to their 

geographical and varietal origin. Chromatographic fingerprints can also be used to classify samples 

according to their geographical and varietal origin, for authentication, and quality control of the 

oils. 

In addition, quantification studies of vitamin E (tocopherol) and polyphenol content in olive and 

argan oils can be evaluated using fluorescence spectroscopy imagery and chemometric modeling 

tools such as PLS, SVM, and ANN. This type of study could allow industry and control laboratories 

to predict the levels of these chemical compounds (markers present in argan oil and argan). 
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