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 ABSTRACT 

In the Moroccan High Atlas Mountains, snowpack constitutes a vital source of water for the 

surrounding population. Its melting plays an important role in the water balance by providing 

freshwater to irrigate large arid plains downstream, drinking water, and hydropower production. 

A good estimate of snowmelt contribution to runoff is, therefore, highly relevant for water 

management purposes. In this context, assessment of snowmelt and snow water equivalent (SWE) 

using modeling techniques provides useful guidance to decision-makers and managers about water 

budget calculation and runoff prediction. 

Due to the large spatiotemporal variability of the seasonal snow cover and the lack of field 

observations, estimating snowmelt remains a challenging task. In this sense, the use of simple 

conceptual snow models combined with remote sensing data constitutes a useful approach for 

snow studies. In this thesis, four empirical snowmelt models were tested and compared to simulate 

snowmelt and snow water equivalent (SWE) at both scales: (i) local at Oukaimeden-SM station 

and (ii) spatial at Rheraya basin. These models are the classical temperature-index model (TI) and 

three enhanced temperature index models that respectively include the potential clear-sky direct 

radiation (HTI), the incoming solar radiation (ETI-A), and net solar radiation (ETI-B). The key 

aspects of the methodology implemented in this thesis include: (a) the use of different model 

calibration and validation approaches, (b) model parameter sensitivity analysis, (c) distribution of 

forcing meteorological data over the Rheraya basin through a combined interpolation method, (d) 

the merge of both Moderate-Resolution Imaging Spectroradiometer (MODIS) snow cover area 

(SCA) products (Terra and Aqua), (e) the sensibility analysis of SWE-SCA conversion threshold. 

The results, at the local scale, revealed that snowmelt models enhanced with solar radiation 

outperformed the simple temperature-index (TI) model and were also more transferable between 

years, when model parameters were calibrated over a single year. However, model performances 

were more similar when models were calibrated for a longer period. At the basin scale, differences 

in model performance were overall small, as were the differences in basin averaged simulated 

SWE and melt rates. This occurs because topographically-induced variations in melt rates 

simulated by the enhanced models tend to average out, and the aggregation of model outputs to 

MODIS resolution, which suppresses key spatial variability related to solar radiation. This 

highlights the need for caution when using medium resolution satellite products to validate 

spatially distributed snow models, a widely used practice in snow hydrological modeling. Our 

results addresses central considerations about model performances, scale-dependent processes and 

model validation. This research should be of particular interest for the snow and hydrology 

communities. 

Keywords: snowmelt, snow water equivalent (SWE), snow cover area (SCA), temperature-index 

models, solar radiation, MODIS, High Atlas, Morocco.  
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 RÉSUMÉ 

En montagnes du Haut Atlas Marocain, le manteau neigeux constitue une source d'eau vitale pour 

la population avoisinante. Sa fonte joue un rôle incontournable dans l'approvisionnement en eau; 

tout en fournissant de l'eau douce, pour l’irrigation des plaines arides en aval, de l'eau potable, et 

pour la production d’énergie hydroélectrique. Cependant, une bonne estimation de la contribution 

de la fonte des neiges au ruissellement est pertinente pour la gestion de l'eau. Dans ce contexte, 

l'évaluation de la fonte des neiges et de son équivalent en eau à l’aide des techniques de 

modélisation représente une approche utile pour le calcul du bilan hydrique ainsi que la prévision 

du ruissellement. 

En raison de la grande variabilité spatiotemporelle de la couverture neigeuse et du manque 

d'observations sur le terrain, l’estimation de la fonte des neiges reste une tâche complexe. Dans ce 

sens, l'utilisation de modèles conceptuels simples de la neige combinée à des données de 

télédétection constitue une approche fructueuse pour les études de neiges. Dans cette thèse, quatre 

modèles empiriques de neige sont testés et comparés pour simuler la fonte et l'équivalent en eau 

de la neige (EEN) sur deux échelles : (i) local à la station Oukaimeden-SM et (ii) spatial sur le 

bassin de Rheraya. Ces modèles sont : le modèle classique d'indice de température (TI) et trois 

modèles d'indice de température amélioré qui incluent respectivement le rayonnement potentiel en 

ciel dégagé (HTI), le rayonnement solaire incident (ETI-A) et le rayonnement solaire net (ETI-B). 

Les principaux aspects de la méthodologie mise en œuvre dans cette thèse sont les suivants (a) 

l'utilisation de différentes approches de calibration et de validation des modèles, (b) l'analyse de la 

sensibilité des paramètres des modèles, (c) la distribution des données météorologiques de forçage 

sur le bassin de Rheraya par une méthode d'interpolation combinée, (d) la combinaison des deux 

produits de surfaces de neige ’Terra et Aqua’ du spectroradiomètre imageur à résolution modérée 

(MODIS), (e) l'analyse de la sensibilité du seuil de conversion SWE-SCA. 

Les résultats obtenus à l'échelle locale, soulignent que les modèles améliorés par le rayonnement 

solaire sont plus performants du simple modèle d'indice de température (TI), en outre, qu’ils sont 

plus transférables d'une année à l'autre, lorsque les paramètres du modèle sont calibrés sur une 

seule année. Toutefois, les performances de l’ensemble des modèles sont plutôt similaires, quand 

ils sont calibrés sur une période plus longue. À l'échelle du bassin, les différences de performance 

du modèle sont globalement faibles, tout comme les différences de l’équivalent en eau et des taux 

de fonte simulés moyen du bassin. Cela s’explique par le fait que les variations topographiques 

des taux de fonte simulées par les modèles améliorés ont tendance à s'estomper, en plus de 

l'agrégation des sorties des modèles à la résolution MODIS, qui supprime la variabilité spatiale 

liée au rayonnement solaire. Cela souligne la nécessité de faire preuve de prudence lors de 

l'utilisation de produits satellitaires à moyenne résolution pour valider des modèles de neige 

spatialement distribués, une pratique largement utilisée dans la modélisation hydrologique de la 

neige. Nos résultats abordent des considérations centrales sur les performances des modèles, les 
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processus dépendant de l'échelle et la validation des modèles. Cette recherche devrait alors 

présenter un intérêt particulier pour les communautés de la neige et de l'hydrologie. 

Mots clés : fonte de neige, équivalent en eau de neige (EEN), surfaces enneigées, modèles d’indice 

de température, rayonnement solaire, MODIS, Haut Atlas, MAROC. 
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 ملخص 

يلعب ذوبانه دورًا مهمًا في توازن بحيث  ج مصدرًا حيويًا للمياه للسكان المحيطين. وفي جبال الأطلس الكبير المغربية، تشكل الثل

المياه من خلال توفير المياه العذبة لري السهول القاحلة الكبيرة في اتجاه مجرى النهر، ومياه الشرب، وإنتاج الطاقة الكهرومائية. 

بأغراض إدارة المياه. في هذا السياق، يوفر تقييم  قةيد في الجريان السطحي له صلة وثين التقدير الجيد لمساهمة ذوبان الجللذلك فإ

باستخدام تقنيات النمذجة إرشادات مفيدة لصانعي القرار والمديرين حول حساب ميزانية  (SWE) ذوبان الجليد ومكافئ مياه الثلج

 .المياه وتنبؤ الجريان

ل تظيد المكاني الكبير للغطاء الثلجي الموسمي ونقص الملاحظات الميدانية، فإن تقدير عمليات ذوبان الجلو ا للتغير الزمانينظرً 

المعنى، فإن استخدام نماذج مفاهيمية بسيطة للثلج مع بيانات الاستشعار عن بعد يشكل نهجًا مفيداً لدراسات  في هدامهمة صعبة. و

حة، تم اختبار أربعة نماذج ذوبان الجليد التجريبية ومقارنتها لمحاكاة ذوبان الجليد ومكافئ ماء الثلج الثلوج. في هذه الأطرو

(SWE( :على كلا المقياسين )محلي في محطة 1 )Oukaimeden-SM ( 2و )حوض  فضائي فيRheraya هذه النماذج .

لمؤشر درجة الحرارة والتي تشمل على التوالي إشعاع ( وثلاثة نماذج مُحسّنة TIهي نموذج مؤشر درجة الحرارة الكلاسيكي )

. تشمل (ETI-B)، والإشعاع الشمسي الصافي (ETI-Aالوارد ) (، والإشعاع الشمسيHTIالسماء الصافية المباشر المحتمل )

)ب(  ،وذج المختلفةحقق من النمالجوانب الرئيسية للمنهجية المطبقة في هذه الأطروحة ما يلي: )أ( استخدام أساليب المعايرة والت

، ن خلال طريقة الاستيفاء المشتركةم Rheraya، )ج( توزيع بيانات الأرصاد الجوية فوق حوض تحليل حساسية معلمة النموذج

، )هـ(  ( MODISلمقياس طيف التصوير ذي الدقة المتوسطة ) Terraو Aqua يل من منتجات منطقة الغطاء الجليد)د( دمج ك

 .SWE-SCAيل تحليل حساسية عتبة تحو

تشير النتائج على المستوى المحلي إلى أن نماذج ذوبان الجليد المعززة بالإشعاع الشمسي تفوقت على نموذج مؤشر درجة الحرارة 

عام واحد. ومع  عندما تمت معايرة معلمات النموذج على مدارخاصة  ،ا أكثر قابلية للنقل بين السنوات( وكانت أيضً TIالبسيط )

نماذج لفترة أطول. من ناحية أخرى، فإن إدراج أنماط الإشعاع، على النموذج أكثر تشابهًا عندما تمت معايرة ال ، كان أداءذلك

( مقارنة SCAالمحاكي على مستوى الحوض ومنطقة الغطاء الثلجي )ثير ضئيل بشكل عام على المتوسط ، له تأمقياس الحوض

غيرات الطبوغرافية في الإشعاع الشمسي وتجميع مخرجات النموذج التمتوسط  المرجعي. يحدث هذا بسبب حساب TIبنموذج 

، والتي تمنع التباين المكاني الرئيسي المتعلق بالإشعاع الشمسي. تستدعي نتائجنا توخي الحذر عند استخدام MODISإلى دقة 

 ، فإن النتائجعة مكانيًا. وبالتاليالثلج الموزمن صحة نماذج  قو التحقأ ةية ذات الدقة المتوسطة لمعايرمنتجات الأقمار الصناع

، وهي صحة نماذج الثلج الموزعة مكانيًاتوخي الحذر عند استخدام منتجات الأقمار الصناعية متوسطة الدقة للتحقق من على  كدتو

النموذج  ممارسة مستخدمة على نطاق واسع في نمذجة الثلج الهيدرولوجي. تتناول نتائجنا الاعتبارات المركزية المتعلقة بأداء

يجب أن يكون هذا البحث ذا أهمية خاصة لمجتمعات الثلج بهذا والعمليات المعتمدة على المقياس والتحقق من صحة النموذج. 

 والهيدرولوجيا.

، (، نماذج مؤشر درجة الحرارةSCA، منطقة الغطاء الثلجي )(SWE، مكافئ مياه الثلج ): ذوبان الجليدالكلمات المفتاحية .

 ، الأطلس الكبير ، المغرب. MODIS، شمسيالإشعاع ال
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 INTRODUCTION  

Snow constitutes a key element in determining water availability in mountainous catchments, 

especially in arid and semiarid regions, where water stress, drought, and chronic water shortages 

are the most common problems. In such contexts, hydrological processes are extremely 

heterogeneous, due to the marked temporal variability in hydro-climatic conditions, combined with 

the strong topographic gradients (Cudennec et al. 2007, De Jong et al. 2008, Muñoz et al. 2012, 

Fayad et al. 2017). According to model projections, future climate conditions in these areas will 

strongly affect water availability due to: (i) a reduction of snowfall and rainfall amounts, and (ii) 

snowpack depletion driven mainly by warmer temperatures (Barnett et al. 2005, López-Moreno et 

al. 2009, López-Moreno et al. 2017). A good understanding of snowpack processes is therefore 

crucial to support water management strategies in these arid and semiarid regions (Barnett et al. 

2005, Viviroli and Weingartner 2008, De Jong et al. 2009, Vicuña et al. 2011). 

In Morocco, the Atlas mountain range plays an important role in socio-economic development. It 

is considered as a water tower for the surrounding arid plains, producing a large proportion of the 

water supply for agriculture activities, dam storage, hydropower production, and groundwater 

recharge (Chehbouni et al. 2008, Jarlan et al. 2015). In the headwater basins of this mountain 

range, streamflow is largely generated from meltwater supplied by the snowpack during spring 

and early summer (Schulz and de Jong 2004, Boudhar et al. 2009, Hajhouji et al. 2018, Boudhar 

et al. 2020). In winter, 20 to 80 % of precipitation is stored temporarily as snow (Boudhar et al. 

2009) that controls river runoff during the snowmelt period (Chehbouni et al. 2008). Moreover, in 

the Tensift River basin, which is the region of interest in this study, snowmelt was found to 

contribute about 15 to 50 % of the annual river discharge in the main headwater catchments, this 

proportion varying between hydrological years and among catchments (Boudhar et al. 2009). As 

in other semiarid mountain ranges of the world, the snow cover in the Atlas range is highly variable 

at annual and inter-annual time scales (Boudhar et al. 2011, Marchane et al. 2015), which greatly 

affects the storage capacity of catchments and the hydrological contribution of snowmelt to total 

runoff.  

 



Indroduction  

 

2 

Various prior studies have used the High Atlas Range as an experimental site for mountain 

hydrological studies, particularly on snow hydrology. Schulz and de Jong (2004) highlighted the 

impact of the sublimation process on the snowpack energy balance in the mountain of M'Goun 

during cold and dry seasons by quantifying 44 % of losses simulated with the Utah Energy Balance 

(UEB) model. In the northern side of the High Atlas, numerous studies have been conducted in the 

framework of the International Mixt Laboratory (LMI-TREMA) (https://www.lmi-trema.ma/). 

These were focused specifically on snowpack evolution and monitoring through either satellites 

data (Chaponnière et al. 2005, Boudhar et al. 2009, Marchane et al. 2015), or modeling techniques 

(Boudhar et al. 2009, Boudhar et al. 2016, Bouamri et al. 2018, Baba et al. 2019) to assess snow 

water equivalent (SWE) and snowmelt for water budget calculation and runoff prediction. 

Although all these studies, it is worth noting that the lack of ground observations along with the 

high temporal and spatial heterogeneity of snow cover driven by highly variable temperatures, 

orographic precipitation, and complex topography still represent challenging limitations for snow 

studies in the Atlas range (Chaponnière et al. 2005, Boudhar et al. 2010, Marchane et al. 2015, 

Boudhar et al. 2016). In this context, the use of simple conceptual snow models is highly relevant 

and useful for water managers. 

The traditional approaches used to calculate snowmelt range from simple empirical models using 

simplified process representations with lower data requirements (e.g. Hock 2003, Kustas and 

Rango, 1994) to more sophisticated, physically-based models that resolve the full energy balance 

at the snow surface (Tarboton and Luce 1996, Liston and Elder 2006, DeWalle and Rango 2008, 

Herrero and Polo 2016). These latter models describe all major processes controlling snowpack 

evolution and quantify melt as the residual of the energy balance equation. They require a large 

amount of input meteorological variables, usually at an hourly time step, which are typically either 

not available or scarce in high mountain catchments. In such conditions, conceptual models with 

lower data requirements than physically based models, are thus preferred and widely used for 

large-scale applications in high mountain catchments (Singh and Bengtsson 2003, Schneider et al. 

2007, Fassnacht et al. 2017). 

Several previous studies have shown that temperature-index models, the most commonly used type 

of models which depend solely on air temperature, provide satisfactory estimates of melting rates 

in various locations and climates (Singh and Jain 2003, Schneider et al. 2007, Boudhar et al. 2016, 

Fassnacht et al. 2017). The strong correlation between air temperature and snowmelt can be 

https://www.lmi-trema.ma/
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explained by the dependence of the sensible heat and atmospheric long-wave radiation fluxes to 

air temperature (Ohumura 2001, Hock 2003). Despite their simplicity, these models can perform 

generally well both at the point scale and within distributed or lumped hydrological models 

(Vincent 2002, Abudu et al. 2012, Kampf and Richer 2014, Senzeba et al. 2015, Hublart et al. 

2016, Réveillet et al. 2017).  

The net solar radiation is one of the main components of the surface energy balance, representing 

between 50 and 90 % of the energy available for snowmelt (e.g.Willis et al. 2002, Mazurkiewicz 

et al. 2008). As such, air temperature and solar radiation have been the two main meteorological 

variables used to predict snowmelt rates (Brubaker et al. 1996, Richard and Gratton 2001, Hock 

2003). Many attempts have been made to improve the physical foundation of empirical melt 

models and enhance their performance, by incorporating additional predictive variables such as 

wind speed, vapor pressure or radiation (e.g. Zuzel and Cox 1975, Willis et al. 1991, Kustas and 

Rango 1994, Rango and Martinec 1995, Franz et al. 2010). These models have been broadly 

referred to as 'enhanced' temperature-index (ETI) models and represent a trade-off between simple 

degree-day models and explicit energy balance models (Hock 2003). Most enhanced melt models 

include a solar radiation term, either in the form of potential clear-sky direct (Hock 1999), global 

(Kustas and Rango 1994), or net (Pellicciotti et al. 2005) solar radiation. These enhanced 

temperature-index models including solar radiation can outperform classical degree-day models 

on a daily or even hourly basis (Hock 1999, Pellicciotti et al. 2005, Carenzo et al. 2009, Homan et 

al. 2011, Raleigh and Lundquist 2012, Gabbi et al. 2014, Bouamri et al. 2018).  

In the semiarid, subtropical context of the Atlas Range, solar radiation is expected to be significant 

especially for spatial SWE modeling (López-Moreno et al. 2017) considering that; (i) solar 

radiation strikes the Earth surface at a large elevation angle during spring over subtropical regions, 

delivering more heat per unit area; (ii) the arid climate favors the transmissivity of solar radiation 

and the sparse vegetation favors high absorption of solar irradiance by the surface; (iii) the 

pronounced topographic variability should cause heterogeneous radiation loading on slopes (Baba 

et al. 2019). However, the seasonal variability of solar radiation is less pronounced than at higher 

latitudes. In this context, the use of enhanced temperature-index (ETI) including solar radiation, 

combined with remote sensing data constitutes a useful approach to assess and quantify snowmelt 

and SWE distribution at the basin scale. 
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There have been few studies that have looked at the respective performance of empirical models 

in semiarid mountainous areas, particularly no study have been carried in High Atlas to explore 

the added value of including different treatments of solar radiation within temperature-index (TI) 

models to predict snowmelt and snow water equivalent (SWE). Such models could become most 

useful in the operational framework of water management given the lack of ground data in the 

High Atlas to run energy-balance models. In this sense, a detailed study on investigating the 

contribution of solar radiation components on snowmelt and SWE simulations in the Atlas range 

is needed. 

1. Main objectives  

This research has been done at both scales: (1) local at the Oukaimeden-SM automatic weather 

station (AWS), and (2) spatial at the Rheraya sub-basin in the High Atlas range.  

Within the aforementioned context, the purpose of this thesis is: 

  Estimate and quantify snowmelt and snow water equivalent (SWE) in both Oukaimeden-

SM (AWS) and Rheraya sub-basin, through different snowmelt modeling approaches. 

The following two objectives were defined to pursue the mentioned purpose.  

1. Assess the performance of four simplified approaches, ranging from simple temperature-

index (TI) method to enhanced temperature-index (ETI) methods that include the incoming 

radiation and albedo to simulate snowmelt and snow water equivalent (SWE) at 

‘Oukaimeden-SM’ station. 

This first objective looked at (a) the respective performance of empirical models through two 

different cross calibration-validation methods: annual and multiannual over the period 2003-2010. 

(b) The parameter sensitivities for each model were further examined to investigate their 

transferability in time and their dependency on climate conditions. In addition, (c) the influence of 

mean sublimation rate on yearly calibrated model coefficients is explicitly investigated. 

2. Benchmark the performance of enhanced models (ETI) including different treatments of 

solar radiation, relative to the reference temperature-index (TI) model to simulate spatially-

distributed snowmelt, snow water equivalent (SWE), and snow cover area (SCA) within 

the Rheraya basin from 2003 to 2016. 
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We hypothesized that including solar radiation would explain more of the snow cover spatial 

heterogeneity; i.e. allows to explicitly include the effect of topography on melt and as such to better 

represent the snow cover heterogeneity. Therefore, it is important to assess their relevance for 

estimating snowmelt with conceptual models allowing to later improve hydrological forecasts. 

This second objective aims to answer the following research questions: 

a) How temperature-index models enhanced with different solar radiation components 

impact the simulated spatiotemporal variability of SWE and snowmelt? 

b) Are the available MODIS SCA maps suitable for snow model validation?  

2. Content of report 

The various steps and methods to fulfill the above-defined objectives are described in this Ph.D. 

dissertation which is composed of four chapters as follow:  

The first chapter provides a review of theoretical notions and literature on which the Ph.D. thesis 

is based. It introduces the snow mass balance components with a focus on ablation processes, .i.e. 

snowmelt, sublimation, and resulting changes in snow water equivalent. A short description of the 

radiative theory is also included to underline the necessity of energy budget knowledge in 

snowmelt modeling. The comparison between simple conceptual models, physically based, and 

energy balance models are reviewed and compared, in the perspective of identifying and 

highlighting the interest of using the simplest models in a scarce data context. Finally, a brief 

review of the importance of snow monitoring for hydrologic applications is presented.  

The second chapter describes the High Atlas Mountain context, particularly the Rheraya 

catchment case study and the dataset we have used in this Ph.D. thesis. A full description and more 

details about in-situ and satellite data are presented. The pre-and post-processing, analyses are also 

given in this chapter.  

The third chapter is based on results published article in the Hydrological Science Journal (HSJ), 

introduced by an introduction of a key point in which the elements of novelty are highlighted. This 

chapter addresses the evaluation of the performance of four conceptual snowmelt models at the 

locale scale of the Oukaimeden-SM AWS station. The methodology and the obtained results are 

also presented and discussed. 
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The fourth chapter is also introduced by the key points of research. This chapter investigates the 

added value of solar radiation using the same conceptual snowmelt models used in the previous 

chapter, but this time at the basin scale, showing and discussing all obtained results. Finally, the 

overall conclusion of this work and perspectives are given.  
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 CHAPTER I.  

THEORETICAL BACKGROUND 

A good understanding of snow characteristics, physical and optical, is crucial to hydrological snow 

modeling, and also in many practical applications of snowpack monitoring and modeling. A short 

discussion of main snow priorities is presented here.  

1. Snow mass-balance 

One of the most common priorities of snowpack monitoring and modeling, and the most important 

snow metric is the snow water equivalent (SWE). It is considered a key parameter in snow 

hydrology and highly relevant for water management purposes. SWE is defined as the amount of 

liquid water present in the snowpack that would be released upon complete melting of the 

snowpack (Singh 2001, DeWalle and Rango 2008, Egli et al. 2009). It can be measured (i) directly 

by specific instrumentation, or (ii) retrieved through different remote-sensing techniques, or (iii) 

computed from measurements of depth and density of the snowpack, as presented in equation (1).  

SWE =  (𝜌𝑠 𝜌𝑤  ⁄ ) ×  𝑑 (1) 

Where SWE is the snow water equivalent (mm), 𝜌𝑤 is the density of liquid water (1000 kg m-3),  

d is snowpack depth (mm) and 𝜌𝑠 is snowpack density, (kg m−3). 

The snow-mass balance represents the difference between snow accumulation (gains) and snow 

ablation (losses) throughout a time period. It consists to quantify and analyse the main processes 

determining snow accumulation, evaporation, and melting within a snowpack. Quantifying snow-

mass balance processes remains crucial for predicting current and future water supply rates. 

Therefore, the snow mass-balance can be expressed by the following equation (e.g. King et al. 

2008, Herrero et al. 2009).  

dSWE d𝑡⁄ = 𝑃 − 𝑀 − 𝐸 ± 𝑊 (2) 

Where dSWE d𝑡⁄  is the change in snow mass per unit time (d), P is the snow precipitation rate 

(accumulation), M is the melt rate, E is the sum of sublimation and evaporation rates at the surface, 
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and W is an advective wind transport term, which can be positive (deposition) or negative 

(erosion). 

Snow accumulation and ablation are two main hydrological processes for any hydrological study 

in snow-affected basins. A detailed outline of these processes is given on the following sections. 

 Accumulation processes 

Generally, precipitation occurs as snow when the air temperature over the surface is below the 

freezing point. The snow will accumulate on the surface as long as the air temperature remains 

below the freezing point. Then, several transformations occur on the snowpack depending on time 

and local parameters and climatic conditions, especially, diurnal air temperature fluctuations. 

However, it is worth noting that the accumulated snowfall on a site can be quite variable on a 

microscale, i.e. as weather conditions change, the snowpack can change as well. 

 Ablation processes  

Ablation is the process of removing snow-mass from a snowpack surface, due to a combination of 

processes : melting, sublimation, and wind erosion. The ablation rates are largely controlled by the 

energy budget at the snowpack surface. Thus, the processes characterized the snow ablation in arid 

regions are: 

 Snowmelt process: Defined as the phase transition of solid snow into liquid water with 

energy transfer expressed as latent heat. It is determined by the energy balance of the 

snowpack, which basically depends on atmospheric and climatic conditions. The necessary 

energy quantity, to raise the snow temperature to the melting point, corresponds to the cold 

content of the snowpack. After satisfying this cold content the snowpack reaches isothermal 

(0°C) conditions, each further energy input causes melt. 

 Sublimation process: Defined as the phase transition of solid ice or/and snow into water 

vapor with consuming energy. It is mainly driven by a vapor pressure deficit in the air 

above the snow layer, i.e. an imbalance between the saturation vapor pressure at a given 

temperature, and the vapor pressure of the air above the snow surface. When the former 

exceeds the latter, snow sublimates to eliminate the imbalance (Neumann et al. 2009). 

Sublimation is considered an important component of the ablation process, especially in 

mountain areas with dry climates, where high elevations provide favorable conditions for 
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sublimation due to a decrease in vapor pressure and an increase in wind speed with 

elevation (Ginot et al. 2001, Schulz and de Jong 2004, Gascoin et al. 2013, MacDonell et 

al. 2013).  

 Wind transport  

Because of its density, snow is often transported or redistributed by wind (W in equation (2)) for a 

long distance, before its sublimates or/and deposited in a snowpack surface (DeWalle and Rango 

2008). Thus, the wind has a strong effect on snow distribution in mountainous terrain, most likely 

in dry climates (Liston et al. 2007, Gascoin et al. 2013). The probability of blowing snow increases 

with wind speed and decreases with snow age and air temperature (Li and Pomeroy 1997).  

Three modes of wind transport are commonly distinguished for transported snow or as called 

‘blowing snow’: (a) creep, in which snow particles simply move by sliding, rolling, or creeping at 

the surface due to the force of the wind. (b) Saltation occurs when snow particles move with 

repeated leaping up and colliding with a snow surface, and (c) suspension when particles are 

transported upwards by turbulent eddies and transported far downwind, and generally involves the 

transport of smaller ice and snow particles (Figure 1). Generally, the dominant mode and the 

magnitude of blowing-snow transport depends upon the interaction of climate, snow surface 

conditions, and topographic features, but in general, transport is dominated by the suspension. 

 

Figure 1: Transport modes for blowing snow (Tominaga et al. 2011) 
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2. Energy balance 

All physical processes within a snowpack are considered highly complex, including mass and 

energy balances as well as heat (Tarboton and Luce 1996, Singh 2001, DeWalle and Rango 2008). 

Accordingly, to determine the rate of snowpack losses; including melt or sublimation, a good 

understanding of the energy exchanges between snowpack and the snow-atmosphere interface is 

crucial for our work. The energy exchanges primarily occur at the snowpack surface through the 

exchange of shortwave and longwave radiations, turbulent or convective transfer of latent heat due 

to vapor exchange, and sensible heat due to differences in temperature between the air and snow. 

The sum of all these energy exchanges over a determined time period constitute the energy balance 

for the snowpack and can be written as the algebraic sum of energy gains and losses as:  

𝑄𝑀 =  𝑆𝑊𝐼𝑁 +  𝑆𝑊𝑂𝑈𝑇 + 𝐿𝑊𝐼𝑁 + 𝐿𝑊𝑂𝑈𝑇 + 𝑄𝑆 + 𝑄𝐿 + 𝑄𝑅 + 𝑄𝐺  (3) 

Where 𝑄𝑀 is the energy at the surface available for melt (W m-2),  𝑆𝑊𝐼𝑁 and 𝑆𝑊𝑂𝑈𝑇 are incoming 

and outgoing shortwave solar radiation, respectively; 𝐿𝑊𝐼𝑁, 𝐿𝑊𝑂𝑈𝑇 are longwave radiation, 

incoming and outgoing respectively; 𝑄𝑆 is the sensible-heat flux, 𝑄𝐿 is the latent-heat flux, 𝑄𝑅  is 

the energy supplied by rain on snowpack and 𝑄𝐺 is the ground heat flux. All fluxes are positive 

toward the snowpack surface and calculated in W m-2. 

 Shortwave radiation  

The net shortwave radiation is the major source of energy for snowmelt. The incoming solar 

radiation (𝑆𝑊𝐼𝑁) emits ~1368 W m-2 at the top of the atmosphere (TOA). Although not all amount 

of this solar radiation from the Sun reaches the snowpack, some of this is reflected off clouds, 

some is absorbed by atmospheric constituents (water vapor, aerosols, gases), and some passes 

through the snowpack surface (Figure 2). Thus, various variables control the amount of solar 

radiation reaching a snowpack surface such as the slope and aspect of the surface, the solar angle, 

cloud cover, aerosols content of the atmosphere. 

The incoming shortwave radiation received on horizontal surfaces is ideally obtained by direct 

measurement using radiometers at nearby index stations. Pyranometers are radiometers used to 

measured total incoming shortwave radiation. Generally, the shortwave instruments respond to 
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wavelengths between 0.2 - 4 μm, which includes the majority of solar radiant energy received at 

the Earth-surface. However, empirical methods are available for the estimation of incoming 

shortwave radiation when direct measurements are unavailable. 

2.1.1. Net shortwave radiation 

The net shortwave radiation (𝑆𝑊𝑁𝐸𝑇) is an important component of the energy balance, which is 

equal to the incoming shortwave radiation (𝑆𝑊𝐼𝑁) received at the snowpack-surface minus the 

amount reflected by the snowpack-surface; thus 𝑆𝑊𝑁𝐸𝑇 would be:  

  𝑆𝑊𝑁𝐸𝑇 =  𝑆𝑊𝐼𝑁 (1 − 𝛼) (4) 

Where 𝛼 is the albedo or the fraction reflected by the snowpack-surface that will be described in 

the next section. 

2.1.2. Albedo 

Albedo is defined as the fraction of shortwave radiation reflected by the snowpack-surface. It 

ranges from above 0.95 for a fresh snowfall down to below 0.40 for shallow, dirty snow as 

presented in Table 1. Generally, fresh snow has a high albedo of 0.75 to 0.98, while darker 

materials have lower values of 0.6 to 0.30 depending on the material. Albedo is considered a 

crucial variable in climatology; i.e. its characteristics related to atmospheric parameters, solar 

radiation and the properties of the Earth's surface makes it special for the detection of spatial and 

temporal climate changes. The snowpack albedo is affected by many factors (Warren 1982, Kustas 

and Rango 1994, Hock 1998, DeWalle and Rango 2008) that make a precise prediction of 

snowpack albedo difficult, such as grain size, impurity content, and surface roughness. Although 

it is worth mentioning that low albedo supports, consequently, the absorbed shortwave radiation 

available for melt, which is increasingly important for energy budget (Pomeroy and Brun 2001).  

Table 1: Characteristic values for snow albedo (Marshall and Oglesby 1994) 

Surface Type Recommended Minimum Maximum 

Fresh dry snow 0.85 0.75 0.98 

Old clean dry snow  0.80 0.70 0.85 

Old clean wet snow 0.60 0.46 0.70 

Old debris-rich dry snow 0.50 0.30 0.60 

Old debris-rich wet snow 0.40 0.30 0.50 



CHAPTER I. Theoretical background 

12 

 Longwave radiation  

The heat resulting from the absorption of incoming shortwave radiation by aerosol particles in the 

atmosphere is emitted as longwave radiation (𝐿𝑊𝐼𝑁) to the Earth. It is infrared thermal radiation 

(4 - 100 μm) that occurs both days and night which greatly contributes to accelerate the melting 

process (Figure 2). Net longwave radiation at a snow surface is largely controlled by overhead 

back radiation from the earth’s atmosphere, clouds, and forest canopies. The snowpack emit 

infrared radiation (𝐿𝑊𝑂𝑈𝑇) depending on its surface temperature.  

Unlike shortwave radiation, measurements of longwave radiation are much less common, but in 

recent years radiometers have been developed that can be used for routine monitoring. Regardless, 

computations of longwave exchange are often using the Stefan–Boltzmann equations (DeWalle 

and Rango 2008). 

  

Figure 2: Descriptive schema of net SW and LW (source (https://science.nasa.gov/)) 

 

 

https://science.nasa.gov/)
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 Turbulent energy fluxes  

The sensible heat flux (𝑄𝑆) corresponds to the transfer of heat between the atmosphere and 

snowpack surface whenever a temperature difference exists between both. The transfer direction 

depends primarily on the sign (±) of the temperature difference, i.e. positive if the atmosphere is 

warmer than snowpack-surface and negative in the opposite case. In addition to temperature 

difference, wind speed, surface roughness and the stability of the air also influence the direction 

and magnitude of this heat transfer (Figure 3).  

The latent-heat (𝑄𝐿)  is associated with the energy used or released during water phase changes; 

i.e. water vapor exchange between the snowpack and atmosphere also occurs due to turbulent 

mixing in the boundary layer. Transfer of vapor from the snowpack to the atmosphere constitutes 

a loss of latent heat of vaporization if the liquid water is present at the snowpack surface, and a 

loss of latent heat of sublimation if subfreezing temperatures prevail.  

The transfer of turbulent heat on the snowpack can be expressed by the bulk aerodynamic 

equations (Kustas and Rango 1994): as follow:  

𝑄𝑆 =  𝜌𝑎  𝑐𝑝 𝐶ℎ 𝑢𝑎(𝑇𝑎 − 𝑇𝑠) (5) 

𝑄𝐿 = (𝜌𝑎 0.622 𝐿 𝑃) ⁄ 𝐶𝑒 𝑢𝑎(𝑒𝑎 −  𝑒𝑠) (6) 

Where 𝜌𝑎 is the density of air in kg m-3, 𝑐𝑝 specific heat of the air in J kg−1 K−1, 𝐶ℎ bulk transfer 

coefficient for sensible heat, and 𝐶𝑒 the bulk coefficient for vapor exchange, 𝑢𝑎 wind speed in m 

s−1, 𝑇𝑎 is the air temperature in Kelvin (K), 𝑇𝑠 is the air temperature at the snowpack surface (K), 

𝐿 is the latent heat of vaporization or sublimation in J kg−1, 𝑒𝑎 is the atmospheric vapor pressure 

in pascals (Pa) and 𝑒𝑠 is vapor pressure at the snowpack surface (Pa), and finally, P is the total 

atmospheric pressure (Pa). 

It is worth underlying here, that the snowmelt process is determined by the energy balance at the 

snowpack-atmosphere interface, which is controlled mainly by the meteorological conditions 

above the snowpack and the physical proprieties of the snowpack. The amount of energy required, 

in order to raise the snow temperature to the melting point, corresponds to the cold content of the 

snowpack. After reaching isothermal conditions within the regarded snowpack at 0°C, any surplus 
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of energy causes melt. 

 

Figure 3: Energy and snow-mass balance 

3. Snowmelt Modeling  

A model is a simplified representation of the real-world system, and the ideal model is the one that 

generates results very close to reality. Each model requires specific parameters and variables 

(inputs) to generate simulated variables (outputs).  

Modeling differs from one context to others and depends on purpose and field of study. In our 

case, snow modeling is used to provide decision-makers and managers the amounts of snowmelt 

contribution to water balance for a better preventive and forecast of floods, through estimating the 

hydrological variables (SWE, melt). On the other hand, they are used to assess the influence and 

direct impact of climate change on water availability in mountain regions. Generally, various 
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modeling approaches may be used as follow:  

 Punctual approach: it consists of modeling all snowpack characteristics at a specific 

location which is usually a weather station. Generally, this type performs well taking into 

account that all forcing parameters at forced in the same location of measurements. 

However, the extrapolating of simulated results over a large area remains difficult taking 

into account the snowpack variability.  

 Semi-distributed: Consists in splitting the study area into different elevation ranges which 

are assumed to have the same characteristics (for instance; altitudes, slopes, and aspects). 

This modeling approach is suitable for capture snowpack variability in mountainous areas. 

 Distributed: the study area is subdivided into several grid points, each grid is characterized 

by its specific properties (e.g. altitude, slope, orientation, and land use). This discretization 

makes it possible to take into account more explicitly the spatial variability of physical 

processes related to topography in particular. 

 Snow models 

Over the last decade, a wide variety of snow models have been developed with many levels of 

complexity for different purposes. Therefore, the choice of a model remains critical and depends 

mainly on (i) the availability of data which is today the most limiting factor, (ii) the objective of 

the study, and (iii) computer power; i.e. each model has its specific characteristics depending on 

the degree of complexity and the degree of accuracy desired. These approaches range from simple 

empirical models (e.g. Kustas and Rango 1994, Hock 2003), to more sophisticated, physically-

based models (e.g. Liston and Elder 2006, Herrero and Polo 2016) , and thus they can be organized 

into categories, as follow; 

3.1.1. Temperature-index models  

The temperature-index (TI) models or so-called degree-day models remain the most classical and 

simplest conceptual models used for snowmelt modeling, due to the widespread availability of air 

temperature data and their computational simplicity (Hock 1999, Hock 2003). They use simplified 

process representations with lower data requirements than physically-based models and are thus 

widely used for large-scale applications, i.e. they depend solely on air temperature and use it as a 
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proxy for the energy available above the snowpack. The reason for the success of air temperature 

as the sole index of melt energy is related to the strong correlation between air temperature and 

snowmelt, which can be explained by the dependence of the sensible heat and atmospheric 

longwave radiation fluxes to air temperature (Ohumura 2001, Hock 2003). It is worth mentioning 

that most operational runoff models use temperature-index methods for melt modeling,  e.g. HBV 

model (Bergström 1976), SRM-model (Martinec and Rango 1986), and UBC-model (Quick and 

Pipes 1977). 

3.1.2. Enhanced temperature-index (ETI) 

The enhanced temperature-index (ETI) models have an ‘intermediate complexity’ between both 

TI and energy balance models (Hock 1999, Pellicciotti et al. 2005). They have been developed to 

improve the physical foundation of empirical melt models and enhance their performance, by 

incorporating additional predictive variables such as wind speed, vapor pressure or radiation (e.g. 

Zuzel and Cox 1975, Willis et al. 1991, Kustas and Rango 1994, Rango and Martinec 1995, Franz 

et al. 2010). These models have been broadly referred to as 'enhanced' temperature-index models 

and represent a trade-off between simple degree-day models and explicit energy balance models 

(Hock 2003). Most enhanced melt models include a solar radiation term, either in the form of 

potential clear-sky direct (Hock 1999), global (Kustas and Rango 1994), or net (Pellicciotti et al. 

2005) solar radiation. 

3.1.3. Energy balance models 

Energy balance (EB) models resolve the full energy balance at the snow surface and describe all 

major processes controlling snowpack evolution (Tarboton and Luce 1996, Liston and Elder 2006, 

DeWalle and Rango 2008, Herrero and Polo 2016). The melt is quantified as residual from the 

balance of heat flux exchanged between snowpack-surface and the atmosphere as well as between 

the base of the snowpack and the ground. They account for all the processes that produce spatial 

and temporal variability of snowmelt and thus can be argued to be the most appropriate approaches 

for simulating snowmelt. However, for operational applications, these models present some 

disadvantages; (i) they require a large amount of input meteorological variables than routinely 

available (air temperature, precipitation relative humidity wind speed, and incoming solar 

radiation) and usually at an hourly time step, (ii) difficulties in interpolation and/or extrapolation 

of some meteorological variable at the catchment scale, such as wind speed and incoming radiative 
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fluxes that especially require sophisticated and expensive sensors to measure, which hinder their 

applicability on larger scales.  

 Models benchmark review 

Many studies have compared the performance between empirical and physical models (Pellicciotti 

et al. 2005, Carenzo et al. 2009, Gabbi et al. 2014) and highlighted that physical models are more 

accurate at the point scale than empirical models (Pellicciotti et al. 2008). However, at the 

catchment scale, their performance is questioned depending on required and available data 

(Carenzo 2012). 

Despite their simplicity, several previous studies have shown that temperature-index (TI) models, 

provide satisfactory estimates of melting rates in various locations and climates (Singh and Jain 

2003, Schneider et al. 2007, Boudhar et al. 2016, Fassnacht et al. 2017), and perform generally 

well both at the point scale and within distributed or lumped hydrological models (Vincent 2002, 

Li and Williams 2008, Abudu et al. 2012, Kampf and Richer 2014, Senzeba et al. 2015, Hublart 

et al. 2016, Réveillet et al. 2017). On the other hand, it has been demonstrated that enhanced 

temperature-index (ETI) models including solar radiation can outperform classical degree-day 

models on a daily or even hourly basis (Pellicciotti et al. 2005, Carenzo et al. 2009, Homan et al. 

2011, Raleigh and Lundquist 2012, Gabbi et al. 2014, Bouamri et al. 2018). 

4. Snow remote sensing  

Snow is considered the second natural surface after clouds which is well captured, suited, or 

mapped by satellites, due to its physical proprieties, presenting a good contrast. Therefore, it has 

opened up possibilities of exploiting widely different parts of the electromagnetic spectrum to 

learn more about the snowpack proprieties (DeWalle and Rango 2008). The importance of 

monitoring snow cover, duration, and melt at local, regional, and global scales for climate and 

hydrologic applications have been documented in many studies worldwide (Romanov 2003, 

Dozier and Painter 2004, Song et al. 2008, Pimentel et al. 2015, Dozier et al. 2016). The spatially 

explicit snow cover information can support either modeling of runoff or can help to understand 

the influence of climate change on snow cover dynamics (Dressler et al. 2006).  
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Snow typically has a very high reflectance in visible wavelengths (VIS) across the 0.3 - 1.0 µm 

spectrum and very low reflectance in the shortwave infrared wavelengths (SWIR) to ~ 1.6 µm. 

This characteristic is used to detect snow on the landscape, by distinguishing between snow and 

cloud using satellite sensors with spectral bands in these cited wavelength regions. However, the 

reflectance of snow may decreases over time, because of natural aging or/and other factors (e.g. 

atmospheric conditions, snow metamorphism, solar elevation angle) (Riggs et al. 2015). 

  Normalized Difference Snow Index  

The Normalized Difference Snow Index (NDSI) is generally used to indicate the presence of snow 

cover on the surface (Hall et al. 1995, Gupta et al. 2007). It measures the difference in reflectance 

between VIS and SWIR bands, ideally under sunlight conditions of fresh snow and high solar 

elevation angle and clear atmosphere to avoid lower reflectance as possible. NDSI is defined as:  

𝑁𝐷𝑆𝐼 =  
𝑉𝐼𝑆 (𝑏𝑎𝑛𝑑 4) − 𝑆𝑊𝐼𝑅 (𝑏𝑎𝑛𝑑 6)

𝑉𝐼𝑆 (𝑏𝑎𝑛𝑑 4) + 𝑆𝑊𝐼𝑅 (𝑏𝑎𝑛𝑑 6)
 

(7) 

The NDSI values range from -1 to 1, which is the theoretically possible range for snow. A pixel 

with 𝑁𝐷𝑆𝐼 > 0 is considered to have some snow present, while a pixel with 𝑁𝐷𝑆𝐼 ≤ 0 is a snow-

free land surface (Riggs and Hall 2015). In general, an NDSI threshold value of 0.4 has been the 

consensus value for making SCA maps, first suggested by Dozier (1989) based on visual 

inspection of imagery. However recent research has demonstrated that the selection of an NDSI 

threshold for SCA can vary depends on many factors (Yin et al. 2013, Riggs and Hall 2015). 

 Snow cover area  

Snow cover area (SCA) is considered an important variable for understanding, modeling, and 

predicting hydrological processes in snowmelt-dominated regions (Tekeli et al. 2005). It is a useful 

means of tracking spatiotemporal patterns in snowpack across variable mountain terrain. 

Additionally, the application of SCA for snowmelt modeling studies becomes indispensable for 

inaccessible and large basins particularly where meteorological data are scarce or not available 

(Singh and Jain 2003). SCA is one of the three fundamental features, along with snow water 

equivalent (SWE) distribution and melt rate, required to describe the spatial evolution of snow 

cover from the end of accumulation through melt (Liston 1999). Moreover, SCA is considered as 

a major and sensitive input into operational snowmelt runoff models since knowledge of the snow-
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covered area is crucial for these models (Martinec and Rango 1986). This is exactly why the daily 

snow cover information is very valuable also for model calibration and validation purposes (Franz 

and Karsten 2013, He et al. 2014). Accordingly, such information can be extremely helpful when 

modeling available water resources in mountainous areas where snowmelt in spring or summer 

becomes a valuable source for energy production. 

 Fractional snow cover  

The fractional snow cover (FSC) is considered as the viewable fraction of snow in a pixel (Nolin 

2010). Considered as a more useful measure of snow cover, FSC ranges from 0 to 100 % and 

conveys information about the amount of snow visible on the landscape. Various methods have 

been used to estimate FSC including; spectral mixture analysis primarily for alpine landscapes; 

(Dozier and Painter 2004, Painter et al. 2009, Rittger et al. 2013), semi-empirical modeling of 

snow reflectance (Metsämäki et al. 2005), and regression of empirical relationship between a low-

resolution sensor and a higher resolution sensor such as MODIS with Landsat TM (Salomonson 

and Appel 2004, Salomonson and Appel 2006) to estimate snow fraction based on the NDSI.  

 



CHAPTER II. Site description, data and methods 

20 

 CHAPTER II.  

SITE DESCRIPTION, DATA AND METHODS  

1. Study area  

The study area considered in this work is the Rheraya sub-basin located in the headwater part of 

the Tensift River basin. It covers an area of 228 km² with elevations from 1060 to 4174 meters 

above sea level (a.s.l). The latter was selected due to the data availability at a set of weather 

stations, in terms of both temporal and spatial scales. Also, it has been used as an experimental site 

for mountain hydrological studies in the Tensift River basin (Jarlan et al. 2015), leading to a 

concentration of studies on snow and hydrology in this basin (Boudhar et al. 2016, Baba et al. 

2018, Bouamri et al. 2018, Hajhouji et al. 2018, Baba et al. 2019).  

The Rheraya basin is located in the Western part of the High Atlas Mountain chain in central 

Morocco, between latitudes 30° 10' and 30° 20', and longitudes 7° 40' and 8° (Figure 4). The Atlas 

range extends over 60 km in width and 800 km in length aligned along a NE–SW axis. It reaches 

a maximum elevation at the summit of Jbel Toubkal, the highest summit of North Africa, which 

culminates at 4167 m a.s.l. This mountainous zone constitutes the water tower of the Haouz plain 

and all surrounding downstream regions (Chaponnière et al. 2005, Rochdane et al. 2012, Hajhouji 

et al. 2018). 

The area has a semiarid climate with two contrasting seasons: a wet season from October to May 

and a dry season from June to September. Characterized by a mixed snow-rain regime, annual 

cumulative precipitation can exceed 800 mm at high elevations, due to orographic uplift of cold 

and moist air masses from the North Atlantic Ocean. 50% of precipitation events, during 1989 - 

2010 period, occurred as snow during the winter months (Boudhar et al. 2016). The snow cover is 

highly variable at annual and inter-annual time scales, and the snowmelt was found, between 2002 

and 2005, to contribute from 28 to 48% of the of total streamflow volume (Boudhar et al. 2009). 

According to a long-term analysis of snow-covered area using remote sensing data (Marchane et 

al. 2015), snow cover dynamics in the High Atlas mountains is strongly heterogeneous and exhibits 

marked annual, seasonal and even weekly variability in response to meteorological variability.  
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Figure 4: Geographical location of the Rheraya basin and weather stations network 

In terms of topography, the slopes are steep with a mean of ~24 degree from a 100 m resolution 

DEM. Additionally, the Rheraya, has sparse vegetation especially during spring, located in the 

lowest elevations, which quickly disappear due to aridity. 

2. Experimental and spatial datasets  

 Meteorological data  

2.1.1. Data availability  

All meteorological data used in this thesis were provided by the International Mixt Laboratory 

(LMI-TREMA). The available meteorological series were obtained from ten stations at various 

locations within the Rheraya watershed (Figure 4). The type of variable measured and record 

length of available observations varied between the stations over the studied period 2003-2016, 
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set for this work, taking into account the availability of all meteorological data (Figure 5). Further 

data availability details are summarized in Figure 5, Table 2. All main pre-processing and filters 

applied to original observations are described in the “3.1.1 Filters and pre-processing ” section. 

  

Figure 5: Available observations during the study period (2003-2016) for the different weather stations 

in the Rheraya catchment. RH: relative humidity; T: air temperature; P: total precipitation; WS: wind 

speed; GR: global radiation; SW: shortwave; SD: snow depth and S: snowfall 

Table 2: Characteristic and geographic coordinates  (WGS-84) of weather stations in the Rheraya 

catchment, with available observations: total precipitation (P), air temperature (T), relative humidity 

(RH), wind speed (WS), snowfall (S), shortwave (SW) and runoff (Q).  

Stations 
Latitude 

(°) 

Longitude 

(°) 

Elevation 

GPS (m) 

Elevation 

DEM (m) 
Available data 

Aremd 31.12 -7.92 1940 1938 P, T, RH, WS,GR 

Asni 31.25 -7.98 1170 1183 P 

Imskerbour 31.20 -7.94 1404 1426 P, T, RH. 

Neltner 31.07 -7.94 3207 3120 P, T, RH, WS 

Oukaimeden-SM 31.18 -7.87 3230 3239 
P, T, RH, WS, 

SW, GR 

Tachedert 31.16 -7.94 2343 2321 T, RH 

Tamatarte 31.14 -7.90 1924 1913 P 

Matate 31.16 -7.85 1825 1800 P 

CAF 31.21 -7.86 2612 2635 P, T, S 

Tahanaout 31.29 -7.96 925 1069 P, Q 
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2.1.2. Weather stations 

All meteorological series were collected from ten stations at various locations and different 

elevations within the Rheraya catchment. Previously some of these stations (Asni, Tamatert, and 

Matate) disposed only of classical rain gauges, non-autonomous (Figure 6A), where rain 

observations are recorded after each event by an observer present on site. While now they are 

equipped by autonomous tipping bucket for half-hourly cumulative values for rain (Figure 6B). It 

is worth mentioning that both Oukaimeden-SM and Aremd were the only two automatic weather 

stations that disposed of half-hourly measurements for most variables (T, P, and RH), and also the 

recorded solar radiations (SW, GR) in Rheraya over the studied period (2003-2016) (Figure 5, 

Table 2). 

  

A- Classical rain gauge B- Tipping bucket rain gauge 

Figure 6: Different type of rain gauges at Rheraya weather stations (pictures from Cheggour 2008) 

A description of the main stations used in this work is presented below, and Figure 7 shows the 

instruments available at some stations in Rheraya.  

2.1.2.1. Oukaimeden SM 

Oukaimeden-SM is a fully equipped automatic weather station (AWS) installed since 2003 (Figure 

7E). The station is located at an altitude of 3200 m a.s.l., on the northern side of the High Atlas in 

the headwaters of the Rheraya sub-catchment, near to Oukaimdem ski resort and ~70 km south of 

Marrakech city. Recorded data include precipitation, incoming and outgoing shortwave radiation, 
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incoming and outgoing longwave radiation, air temperature, relative humidity and wind speed 

(Table 17). All historic set up and detailed meteorological instrumentation about Oukaimeden-SM 

AWS is given by Boudhar et al. (2016) (Table 16).  

Despite the availability of all main meteorological variables in this station, it remains an unreliable 

and unconfident station due to an unheated tipping-bucket rain gauge (besides lack of either anti-

freeze or anti-evaporation oil) which yields unreliable precipitation data in winter. Hence, it is 

worth noting in this study that, precipitation data of the Oukaimeden-SM station was excluded in 

the spatial distribution of precipitation taking into account the unreliable historic precipitation data. 

2.1.2.2. Club Alpin Français  

Despite its location outside, but near the catchment boundary, the Club Alpin Français (CAF) 

station is proven to be crucial in this study, especially to distribute precipitation at high elevations. 

The lower altitude of the CAF station (2612 m a.s.l.) has more reliable manual precipitation 

observations since rainfall and snowfall are independently and manually measured since 1988 

(Figure 5, Table 2). It is located 600m lower than Oukaimeden-SM. 
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B- Imskerbour 

C-Aremd D- Neltner  

 

Figure 7: Photos of different weather stations at Rheraya   

E- Oukaimeden-SM 

A- Tachdirt 
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 Satellite data  

2.2.1. Digital elevation model  

A Digital Elevation Model (DEM) derived from Pleiades stereoscopic imagery at 4 m spatial 

resolution was used to represent the basin topography of this study. Pleiades is an optical satellite 

constellation of two twin satellites (Pléiades 1A and Pléiades 1B), launched on 6 December 2011 

and 2 December 2012 respectively. The main satellite mission was to deliver a very high spatial 

resolution data equal to 50 cm after pre-processing, with a 20 km swath, and offering a daily revisit 

capability to any point on the globe. The image acquisition is characterized by two images in the 

same area with different angles which are then combined to drive the DEM. Three different stereo-

pairs covering the Rheraya catchment were selected on three summer dates 04-08-2015, 17-08-

2015, and 18-08-2015 to avoid the presence of snow. Further details about these images and DEM 

processing are provided in Baba et al. (2019).  

2.2.2. MODIS daily snow cover product  

2.2.2.1. MODIS description  

MODIS snow cover data products have been widely used at local, regional and global scales by 

numerous studies worldwide (Hall et al. 2002, Klein and Barnett 2003, Tekeli et al. 2005, Parajka 

and Blöschl 2006, Liang et al. 2008, Zhang et al. 2010, Dietz et al. 2012, Gao et al. 2012, Dietz et 

al. 2013, Gascoin et al. 2015, Marchane et al. 2015). With its high time and free access, MODIS 

snow cover products are considered a benefit for hydrologists because the data have been improved 

for spatial resolution comparing to others such as NOAA and Advanced Very High-Resolution 

Radiometer (AVHRR) (1 km). Moreover, the MODIS products are (i) readily available for users 

without further classification (Hall et al. 2002, Tekeli et al. 2005, Hall and Riggs 2007), (ii) the 

snow/cloud discrimination capabilities, (iii) the geolocation accuracy and the frequent global 

coverage (daily coverage up to 500m).  

Various studies have tested the accuracy of MODIS snow cover data, e.g Klein and Barnett (2003) 

reported an 88% agreement when comparing to measurements of the Upper Rio Grande Basin. 

Parajka and Blöschl (2006) compared snow cover data with in-situ information over the whole of 

Austria and reported an agreement of 95% on cloud-free pixels. A similar agreement has been 

reported by Hall and Riggs (2007) with an emphasis on the misclassification errors between cloud 

and snow pixels. However, Maurer et al. (2003) concluded less cloud-free misclassification (4% 
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and 5% fewer overall for the Columbia and Missouri basins, respectively) for MODIS than with 

National Operational Hydrologic Remote Sensing Center (NOHRSC) under cloud-free conditions.  

2.2.2.2. MOD10A1 and MYD10A1  

Snow cover maps used in this thesis were derived from the MODIS daily snow cover products 

MOD10A1 and MYD10A1 (MODIS Snow Cover Daily L3 Global 500 m SIN GRID V006), 

respectively generated from the Terra and Aqua MODIS satellites, and acquired from the National 

Snow and Ice Data Center (NSIDC) (Hall and Riggs 2016). The MODIS snow products from the 

Terra and Aqua satellites are available since February 2000 and February 2002, respectively. The 

satellites pass over the equator in the morning (Terra at 10:30 a.m. in a descending mode) and 

afternoon (Aqua at 1:30 p.m. in an ascending mode), capturing the earth’s current state and provide 

two snow cover images for the same location per day. The MODIS uses 36 spectral bands to 

estimate 44 globally available data products with a spatial resolution of 250 m, 500 m, and 1 km. 

Moreover, it also provides a grid of snow cover information at 500 m spatial and daily temporal 

resolutions. The daily gridded snow cover product contains the NDSI snow cover, snow albedo, 

and QA observation selected from all the MOD10_L2 and MYD10_L2 swaths mapped into a grid 

cell. The snow cover is identified using the Normalized Difference Snow Index (NDSI) (Hall et 

al. 1995), which captures the high contrast between the characteristically high reflectance of snow 

in the visible (VIS) spectrum and its low reflectance in the shortwave near-infrared (SWIR) 

spectrum.  

Starting in MODIS Collection 6 (C6), various changes have been made to increase data content 

and accuracy compared to older Collection 5 (C5) (Riggs and Hall 2015, Riggs et al. 2015). These 

changes include:  

 The Fractional Snow Cover (FSC) has been replaced by the Normalized Difference Snow 

(NDSI) providing more flexible data to the user (Riggs et al. 2015).  

 The binary Snow-Covered Area (SCA) map has been discontinued. 

 Data screens designed to reduce snow detection errors of omission and commission have 

been revised and several new screens have been added for mapping snow cover extent 

(SCE) accurately on the global scale. 

 Data screen results are provided in a new QA bit flag, including snow detection reversals 

and detections with increased uncertainty. 
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 Basic pixel-level QA uses new criteria to indicate the overall quality of the algorithm result. 

 The snow cover algorithms and data sets are significantly revised in Version 6 

However, the main significant change or revision in C6 was in Aqua products. Since dysfunction 

of band 6 on Aqua (about 75% of the detectors are non-functional), this band is therefore 

considered useless in the snow algorithm. A specific Aqua processing was made through an 

integrated Quantitative Image Restoration (QIR) algorithm (Gladkova et al. 2012) in the MYD10 

to restore the missing Aqua MODIS band 6 data and obtain the same snow detection algorithm in 

both Terra and Aqua using band 6 data in C6, to scientifically usable data for snow detection 

(Riggs and Hall 2015, Riggs et al. 2015). 

3. Methodology  

 

Figure 8: Flowchart of key aspects of the methodology 

 Meteorological data pre- and post-processing 

3.1.1. Filters and pre-processing 

Data pre-processing remains the most important and critical step in any study, which requires 

special interest and caution. It aims to facilitate the analysis process and to improve the quality of 

experimental data by appropriately cleaning, transforming, and scaling the entire dataset.  
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In this study, the preparation of our data was more complicated since we worked in a mountainous 

area where stations are sparse and measurements are often scarce or/and erroneous (i.e. systematic 

errors due to either presence of wind or snow, or random errors such as noisy data related to the 

instrumental measures). In this sense, a daily mean average was derived for all climatic variables 

available for different time ranges (half-hourly and hourly) at the stations. The original time series 

were adjusted to a uniform period from 2003 to 2016. Additional pre-processing was performed 

on the Oukaimeden-SM station, taking into account the large discontinues and erroneous 

observations. This, includes (i) filters to correct and/or remove any abnormal observation value, 

(ii) linear regression method to interpolate and fill missing data, and (iii) the merging of summer 

and winter data, delivered separately, into one series.  

3.1.2. Spatiotemporal analysis  

Once the data pre-processing step is completed, the data are suitable for analysis. Spatiotemporal 

variability analysis of climatic variables was performed to determine the relationship of these 

variables against elevation. Thus, identifying a lapse rate of each variable to spatially distribute 

data at unknown points when measurements are not available. The analysed variables would 

include air temperature, relative humidity, and precipitation.  

3.1.2.1. Air temperature  

Air temperature is the climatic variable most often available from in-situ measurements. In 

comparison with precipitation, air temperature measurements are much less biased and the 

interpolation methods are more robust. To investigate the variation of air temperature observations 

between stations, the inter-annual mean was calculated for all air temperature stations. Figure 9 

shows an explicit effect of topography and seasonality between the different stations. For instance, 

in the Oukaimeden-SM station, the mean monthly air temperatures vary between -2 °C in February 

to 15 °C in July with a range of 17 °C (seasonality effect). A difference of 1174 m in elevation 

between the Imskerbour and Oukaimeden-SM stations results in a decrease of 7 °C in the monthly 

average values in February (topographic effect).  

To quantify the magnitude of the lapse rate, a linear regression was conducted between the inter-

annual mean of air temperature and elevation (Z) as displayed in Figure 10. Considering that Ta is 

a linear function of elevation, a high correlation was detected in this present study. The slope value 

of this linear regression is the temperature lapse rate (TLR) or as called “altitudinal gradient”, 
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presented in Figure 11 and Table 3. It ranges from -0.59 °C 100 m-1 in October to -0.49 °C 100 m-

1 in June with an annual monthly average of -0.54 °C 100 m-1. Besides, it should be noted here that 

lapse rates vary throughout the year, it is generally high in spring-summer and low in autumn-

winter (Table 3). The mean value is close to the standard environmental temperature lapse rate of 

0.65 °C 100 m-1. 

 

 

Figure 9: Variability of mean monthly air temperature per station: topography and seasonality effect. 
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Figure 10: Elevation effect on mean monthly air temperature over Rheraya  

 

Figure 11: Mean monthly air temperature lapse rate (TLR) variability in Rheraya catchment 
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Table 3: Mean monthly air temperature lapse rate in Rheraya 

  Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 

TLR (°C 100 m-1) -0.51 -0.59 -0.54 -0.50 -0.50 -0.58 -0.59 -0.56 -0.52 -0.49 -0.56 -0.59 

Correlation coef "r" -0.99 -0.98 -0.98 -0.96 -0.97 -0.98 -0.99 -0.98 -0.99 -0.99 -0.99 -0.99 

3.1.2.2. Relative humidity  

In general, the relative humidity (RH) is a non-linear function of elevation, it is inversely 

proportional to air temperature. This is clearly represented in Figure 9 vs Figure 12, where air 

temperature decreases during the winter season from December to the end of February in contrast 

to the relative humidity that rises during the same season. Therefore, the dew point temperature 

(Td) variable is commonly used, instead of RH, for such elevation adjustments. Thereby, a 

spatiotemporal variability of Td is investigated below. 

 

Figure 12: Variability of mean monthly relative humidity per station: topography and seasonality effect 

The dew point temperature (Td) is the temperature at which the air particle would become 

saturated, i.e. the temperature at which the water vapor of an air particle condenses into liquid 

water. Its computing requires a combination of simple conversion equations from relative humidity 

(Kunkel 1989) following this order: 
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 First, the station relative humidity RH (%) is converted to dew point temperature Td (°C), 

using the air temperature T (°C). The saturation vapor pressure, (e𝑠) in Pa, at air 

temperature T (°C), is computed as : 

e𝑠  = 𝑎 𝑒𝑥𝑝 (
𝑏𝑇

𝑐 + 𝑇
) 

(8) 

Where 𝑎 = 611.21 Pa, 𝑏 =17.502, and 𝑐 = 240.97 °C (Buck 1981) 

 Using equation (8) above, the RH equation is : 

          𝑅𝐻 = 100
𝑒

e𝑠 
 

(9) 

Where 𝑒 is the vapor pressure in Pa  

 Then, the dew point temperature (𝑇𝑑)can be calculated as : 

       𝑇𝑑 =  
𝑐 ln(𝑒 𝑎)⁄

𝑏 − ln(𝑒 𝑎)⁄
 (10) 

Where 𝑎 = 611.21 Pa, 𝑏 =17.502, and 𝑐 = 240.97 °C (Buck 1981) 

The temperature dew point lapse rate should behave as air temperature, taking into account that it 

is also linear with elevation, and hence all stations in mountains would have lower dew point 

temperatures than those in the foothills. Figure 13 shows the inter-annual mean variation of dew 

point temperatures for the different stations in the basin. A difference altitude of only 400 m 

between ‘Neltner’ and ‘Tachdert’ results in a decrease of 7 °C in January. The temperature dew 

point lapse rate (DPLR) was therefore determined and displayed in Figure 15, it varies between -

0.73 in December and -0.58 °C 100 m-1s in August with an annual mean of -0.68 °C 100 m-1 (Table 

4). 
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Figure 13: Variability of mean monthly dew point per station: topography and seasonality effect 

 

Figure 14: Effect of elevation on mean monthly dew point temperature in Rheraya 
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Figure 15: Mean monthly variability of dew point temperature lapse rate in Rheraya   

Table 4: Mean monthly dew point temperature lapse rate in Rheraya 

 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 

DPLR (°C 100m-1) -0.64 -0.62 -0.69 -0.73 -0.71 -0.75 -0.70 -0.73 -0.67 -0.68 -0.63 -0.58 

Correlation coef 

"r" 
-0.99 -0.99 -0.99 -0.99 -1.00 -0.99 -1.00 -1.00 -0.99 -0.99 -0.99 -0.99 

 

3.1.2.3. Precipitation 

Due to the spatiotemporal variability of precipitations, and the lack of ground data in mountainous 

regions, particularly in the high Atlas Mountains, a special emphasis on this climatic variable will 

be placed throughout this thesis. 

a) Unreliable precipitations 

Similar to all other meteorological variables, uncertainties associated with measuring precipitation 

arises from, (i) the lack of AWS in remote and high-elevation mountain areas, and (ii) gauge 

undercatch errors. In the high-elevation stations at Rheraya, the use of unheated tipping-bucket 

rain gauges increases the likelihood of unreliable precipitations mainly during snow events. 

Because of this, a selection of proper stations has been done, where both Oukaimeden-SM and 
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Neltner precipitation records were excluded from this analysis. 

b) Precipitation lapse rate  

To investigate the relationship between precipitation and elevation, various methods were tested 

to determine a suitable precipitation lapse rate (PLR), such as linear and polynomial regressions. 

In daily time scale, no significant linear function with elevation is established. However, on a 

monthly time scale, a linear lapse rate of 1.68 mm 100 m-1 was found based on the equation 

displayed in Figure 16. 

 

Figure 16: Monthly linear precipitation lapse rate (PLR) at Rheraya 

c) Non-linear optimization of PLR 

A non-linear precipitation lapse rate was investigated at the Rheraya catchment following Liston 

and Elder (2006). Taking into account the station availability displayed in Figure 5, two different 

periods are determined depending on station coverage: (a) whole period including all stations 

(Figure 17), (b) common period (2007-2010) excluding two stations (Figure 18). As shown in both 

cases, the PLR is extremely variable within the season and even months. Table 5 summarizes the 

PLR (km-1) found in both cases with a mean of 0.21 km-1 in case (a) and 0.14 in case (b). Then, a 
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special PLR calibration is required in this thesis, further details are given in Chapter IV, 2.1 

Distributed meteorological variables. 

 

Figure 17: Precipitation lapse rate optimization over the whole period (2003-2016) at all stations 
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Figure 18: Precipitation lapse rate optimization over the common period (2007-2010) 

Table 5: Errors statistics of non-linear PLR optimization at Rheraya 

Month 

Whole period 2003-2016 Common period 2007-2010  

All stations Excluding 'Matate' and 'Tamatarte'  

PLR (km-1) RMSE (mm) R2 PLR (km-1) RMSE (mm) R2 

January 0.18 0.44 0.33 0.07 1.10 0.19 

February 0.27 0.51 0.44 0.15 0.10 0.97 

March 0.13 0.45 0.28 0.03 0.51 0.18 

April 0.07 0.59 0.14 0.36 0.94 0.28 

May 0.12 0.37 0.18 0.05 0.35 0.19 

June 0.42 0.26 0.55 0.21 0.24 0.60 

July 0.29 0.25 0.40 0.33 0.23 0.54 

August 0.31 0.40 0.53 0.27 0.17 0.65 

September 0.11 0.19 0.29 0.00 0.25 0.17 

October 0.15 0.44 0.20 0.00 0.28 0.17 

November 0.18 0.49 0.51 0.00 0.45 0.17 

December 0.33 0.47 0.38 0.18 0.34 0.49 

Mean 0.21 0.40 0.35 0.14 0.41 0.38 

Std 0.11     0.13     
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3.1.2.4. Solar radiations 

Regarding solar radiations at Oukaimeden-SM scale, a parameterizations for the global radiation 

and snow albedo were developed and calibrated in 2009-2010 as described in ‘Chapter III, 2.2 

Forcing variables and model calibration’ section. 

Figure 19 displayed the annual variation of potential solar radiation received on a horizontal 

surface for Oukaimeden-SM (local scale) latitude by Julian date (01 Jan= 1). The data were 

generated with equation (15) through “Shading Hock” model  

In terms of spatial solar radiation, a distinct spatial distribution of potential solar radiation (I pot) is 

carried out using the same model mentioned above and described in section‘4.2.The potential clear 

sky radiation model’. Figure 20 shows an example of potential solar radiation maps produced by 

shading Hock model over Rheraya basin. 

 

Figure 19: Annual variation of total daily potential clear sky solar radiation ( 𝑰𝒑𝒐𝒕)  
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Figure 20: Distribution of potential solar radiation ( 𝑰𝒑𝒐𝒕) over Rheraya basin 

 Satellite data pre-and post-processing  

3.2.1. Digital elevation model   

The DEM was produced at very high spatial resolution after a sequential pre-processing including; 

alignment, stereoscopy, rasterization, mosaicing and blending, gap-filling of cloud covered area, 

ortho-image, filtering, and gap-filling of artifacts. Then the DEM was validated for the Rheraya 

catchment, showing a vertical absolute accuracy of 4.72 m. All these steps are well described by 

Baba et al. (2019). In this current study, the DEM was aggregated from original resolution 4 m to 

a coarser 100 m resolution using bilinear resampling method and was projected in World Geodetic 

System 1984 (WGS84) Universal Transverse Mercator (UTM) coordinate system 

(WGS_1984_UTM_zone 29N). This resolution was chosen as a good trade-off allowing for a 

reasonable model computation time while adequately representing the dominant topographic 

features in the Rheraya catchment. 
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3.2.2.  MOD10A1 and MYD10A1  

The datasets are produced in a Geographic projection and were re-projected to the World Geodetic 

System 1984 (WGS84) Universal Transverse Mercator (UTM) coordinate system using the data 

transformation options available at NSIDC. One MODIS tile was large enough to cover our study 

area, a total of 4734 MOD10A1 images and 4760 MYD10A1 images covering 13 years from 

September 2003 to August 2016, were used in this study (Taking account 5 days before and after 

each date of moving window).  

Many previous studies (e.g. Hall and Riggs 2007, Liang et al. 2008) have demonstrated that 

MODIS daily snow cover products in clear-sky conditions are in good agreement with ground-

based observations or other satellite-based snow cover products with snow agreement reaches 

98.2%. However, cloud obscuration remains the main obstacle to using MODIS snow cover 

products (Parajka and Blöschl 2008, Wang et al. 2008, Xie et al. 2009, Zhou et al. 2013). Getting 

cloud-free or even reduced cloud percentage of less than 10 % of daily MODIS images remains a 

challenge. In this sense, various approaches have been proposed to reduce cloud obscuration 

through numerous approaches, such as altering the cloud mask, separating cloud-masked pixels, 

and applying spatiotemporal or multi-sensor combinations.  

Various previous studies have shown that combining Terra and Aqua observations reduces cloud 

obscuration (Parajka and Blöschl 2008, Gafurov and Bárdossy 2009, Wang and Xie 2009, Xie et 

al. 2009, Gascoin et al. 2015), taking into account that the Terra and Aqua satellites have an 

approximate 3 hours average overpass time difference, during which cloud conditions can change 

significantly. For example, Gao et al. (2010) reported that combining Terra and Aqua improved 

cloud filtering, by reducing the influence of transient clouds in daily reflectance data by 11.7% 

compared to using MOD10A1 alone, and 7.7% compared to using MYD10A1 alone. In this study, 

the MOD10A1 and MYD10A1 were merged into a combined product called CMXD10A (fig) as 

follow: (i) on any given day if only one source (either Terra or Aqua) was available it was used 

for that day; (ii) for days when both products are available, priority was given to the Terra product 

(e.g. Xie et al. 2009) since the Aqua MODIS instrument provides less accurate snow maps due to 

dysfunction of band 6 on Aqua (Riggs and Hall 2004, Salomonson and Appel 2006, Gascoin et al. 

2015, Zhang et al. 2019). This means that any pixel classified as either cloud, missing, or 

unclassified in MOD10A1 was filled with the corresponding pixel in MYD10A1 if that pixel had 

an NDSI value, else the original MOD10A1 pixel classification was conserved (Figure 31). 
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Subsequently, a spatiotemporal filter was applied to the merged CMXD10A product to fill in 

missing NDSI data, i.e. pixels classified as cloud, but also those classified as either missing, 

saturated or unclassified, collectively referred to as ‘missing’ therein. A spatial filter was first 

applied only if less than 60% of the mountainous areas (elevations above 1000 m) were missing 

(Marchane et al. 2015). This filter classifies missing pixels as snow-covered when their elevations 

are higher than the average elevation of the snowy pixel for the entire basin. Then, a temporal filter 

was applied to linearly interpolate the remaining missing pixels within a moving window 

extending 3 days prior and 2 days after the current date. NDSI values in the blended and 

interpolated CMXD10A product were converted to binary maps of snow cover area (SCA) based 

on an NDSI threshold of 0.4, following previous studies (Xiao et al. 2004, Marchane et al. 2015, 

Hall and Riggs 2016), i.e., for each pixel, SCA = 1 when NDSI ≥ 0.4, otherwise SCA = 0 (Figure 

31). The blending and filtering procedure reduced the fraction of missing pixels to 0.84%, similar 

to previous results obtained in the same area by Marchane et al. (2015). The pixel classes in those 

snow cover images were reclassified into two categories: snow and cloud (Figure 31).  

4. Models  

 Snowmelt models 

Four models of increasing complexity were used to simulate snowmelt at the Oukaimeden-SM 

weather station site. Model formulation range from the simple, classical degree-day method to 

different 'enhanced' degree-day methods. Each model is outlined below. 

4.1.1. Classical temperature index (TI) melt model  

Temperature index models or so-called degree-day models are considered the most classical 

method for melt modeling due to the widespread availability of air temperature data and their 

computational simplicity. These models also perform generally well, being generally classified 

amongst the most efficient models used for melt modeling  (Hock 2003). The model has a single 

coefficient or factor of proportionality, called the “degree-day factor” (DDF, in mm °C-1 d-1):  

𝑀 =  {
DDF × 𝑇a                    𝑇a > 𝑇T

          0                           𝑇a ≤ 𝑇T
 (11) 
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Where M is the melt rate (mm d-1), 𝑇a is daily mean air temperature (°C) and 𝑇T is a threshold 

temperature beyond which snowmelt is supposed to occur, fixed at 0°C in this study.  

4.1.2. Hock’s temperature index melt model (HTI) 

To enhance the classical model (TI), the potential incoming direct solar radiation (𝐼pot) for clear-

sky conditions, was added as proposed by Hock (1999). In this structure, the melt factor (MF) 

varies seasonally according to 𝐼pot: 

𝑀 =  {
  (MF + RF × 𝐼pot)𝑇a                   𝑇a >  𝑇T

                    0                                     𝑇a ≤  𝑇T

 (12) 

where M is daily melt (mm d-1), 𝐼pot is the potential clear-sky incoming direct solar radiation (W 

m-2), and MF and RF are two empirical coefficients, respectively the melt factor and radiation 

factor (expressed in mm d–1 °C–1 and m2 mm W–1 d–1 °C–1, respectively).  

4.1.3. Enhanced temperature-index (ETI-A) melt model 

This enhanced temperature-index melt model includes global radiation (incoming shortwave 

radiation), which is an important energy source for melt (Hock 2005). This model separates 

between melting induced by solar radiation and that induced by temperature-dependent energy 

fluxes (Pellicciotti et al. 2005): 

𝑀 =  {  
 TF ×  𝑇a + SRFin ×  𝐼              𝑇a >  𝑇T  

                  0                                𝑇a ≤  𝑇T
 (13) 

Where 𝐼 is incoming shortwave radiation (W m–2), TF is the temperature factor (mm d–1 °C–1) and 

SRFin is the radiation factor (m2 mm W–1 d–1). The index ‘in’ stands for incoming shortwave 

radiation, to differentiate from the ETI-B model, described next. 

4.1.4. Enhanced temperature-index (ETI-B) melt model 

The ETI-B model structure is similar to ETI-A, but considers the net shortwave radiation instead 

of only the incoming shortwave radiation. This model, proposed by Pellicciotti et al. (2005), is 

considered the most physical-based of all the aforementioned melt models, as it includes the 

variability in snow albedo:  
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𝑀 =  {
TF ×  𝑇a + SRFnet (1 − 𝛼) 𝐼            𝑇a  >  𝑇T  

                    0                                       𝑇a  ≤  𝑇T
 (14) 

Where 𝛼 is albedo and 𝐼 the incoming shortwave radiation (W m–2), and TF and  SRFnet  are two 

empirical coefficients, respectively the temperature factor and net shortwave radiation factor 

(expressed in mm d–1 °C–1 and m2 mm W–1 d–1). 

 The potential clear sky radiation model  

4.2.1. Purpose and formulation  

The potential clear-sky direct solar radiation (𝐼pot) is calculated as a function of solar geometry, 

topography, and a constant vertical atmospheric transmissivity (Hock and Noetzli 1997, Hock 

1999) (equation (15)). Its theory involves computations to adjust energy received from the Sun for 

the time of day, time of year, slope, aspect, and latitude for the watershed or site of interest,  taking 

into account the atmospheric transmissivity (Hock and Tijm-Reijmer 2012). 

𝐼pot = 𝐼0 (𝑅𝑚 𝑅⁄ )2  𝜓𝑎(𝑃 𝑃0 cos 𝑍⁄ )  cos 𝜃 (15) 

Where 𝐼0 is the solar constant (1368 W m-2), 𝑅 is the distance Earth-Sun, the subscript m refers to 

the mean, 𝜓𝑎 is the vertical clear-sky atmospheric transmissivity (-), or as called the ‘bulk’ 

coefficient of transmissivity, generally varies between 0.6 and 0.9 (Oke 1987) (the optimal 𝜓𝑎 

value using in this study is given at ‘2.2.1Clear-sky transmissivity’ section). P is the atmospheric 

pressure in Pa and 𝑃0 is standard atmospheric pressure (101 325 Pa), Z is the solar zenith angle, 

and 𝜃 is the incidence angle of the Sun on the surface. The ratio 𝑃 𝑃0⁄  accounts for the effect of 

altitude (lower air pressure yields higher solar radiation) and the introduction of cos Z in the 

exponent expresses the variation of the path length with Sun altitude (Hock 1999, Hock and Tijm-

Reijmer 2012). Detailed information about  

4.2.2. Program « Shading.c ». 

In terms of the program, the ‘shading Hock’ model is designed to predict the spatial distribution 

of topographic shading and potential solar radiation for selected time intervals. The formulation of 

calculated potential radiation is described above (equation (15)). Hock and Tijm-Reijmer (2012) 

have made their whole mass balance model -including ‘shading.c’- available as open-source, to 

facilitate the development of new modules and improve their model. In general, this model can 
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apply to any location including high latitudes, and for any spatial resolution. Table 6 summarized 

all mainly particularities of this model. 

Table 6: Principal particularities of ‘Shading radiation’ model of HOCK  

Functions Structure Limitations 

 The potential solar radiation 

can be computed without 

any meteorological input 

data. 

 The DEM is a sufficient 

raster element required to 

calculate the topographic 

shading effects, besides 

slope and aspect. 

 The radiation effect refers to 

clear sky conditions to avoid 

the need for additional 

meteorological data.  

 The model is written in C; 

allowing ease of application. 

 All input parameters specific 

are read from a controlling 

input file (name list file: 

‘input.dat’) which needs to be 

adjusted before each location 

by the user. 

 No changes in the source code 

are required when applying 

the model to another area. 

 

 The area should not be 

too large (<5° in 

longitude and latitude 

because solar geometry 

calculations refer to the 

geographic coordinates 

of only one point inside 

the area. 

5. Spatial distribution methods  

There is a large variety of spatial interpolation methods used in different studies to estimate 

unknown meteorological values at specific locations from a specific known point data (e.g. 

Dingman et al. 1988, Phillips et al. 1992, Daly et al. 1994, Bacchi and Kottegoda 1995). These 

methods vary from simple to extremely complex. Vicente-Serrano et al. (2003) report that many 

factors control the method performance such as; the area, spatial scale, and the climatic variable 

desired .i.e. annual mean temperature is easier than minimum temperatures (Ninyerola et al. 2000, 

Daly et al. 2002). Moreover, topographic, geographic, and atmospheric factors, determine the 

spatial distribution of the climatic variable. In the snowmelt and runoff modeling, temperature and 

precipitation are considered the two most important inputs (Zhang et al. 2013), hence, the spatial 

distribution of temperature and precipitation when observations are limited is commonly 

recommended.  

 



CHAPTER II. Site description, data and methods 

46 

5.1.1.  Lapse Rate  

Considered the most used method to estimate climatic variables at different elevation zones (Dunn 

and Colohan 1999, Singh 2001), by distributing them from a reference station to the mean 

hypsometric elevation of each zone. For instance, when air temperature stations at different 

altitudes are not available or not reliable in high mountain catchments, temperature lapse rate 

predetermined from historical observations is usually used to interpolate or/and extrapolate 

temperature from existing stations. Then a linear lapse rate can be computed as shown in equation 

(16). However, lapse rates can be highly variable across space and time (Richard and Gratton 2001, 

Rolland 2003, Gupta et al. 2007). 

𝑇𝑥 =  𝑇𝑠𝑡𝑛 − 𝑇𝐿𝑅 (𝑍𝑥 −  𝑍𝑠𝑡𝑛)  (16) 

Where 𝑇𝑠𝑡𝑛 (°C) is the observed station air temperature at the station elevation, 𝑍𝑠𝑡𝑛 (m); 𝑇𝑥 (°C) 

is the air temperature at a given elevation, 𝑍𝑥 (m); and 𝑇𝐿𝑅 (°C m-1) is the temperature lapse rate. 

5.1.2. Inverse Distance Weighting (IDW)  

One of the most commonly used techniques for interpolation between stations based on the 

assumption that the interpolating surface is influenced mainly by nearby stations, and less by the 

more distant stations (Amri et al. 2011). The method concept is based on a weighting of the point 

data by the inverse of their distance to the estimated point. In other words, it is based on the 

assumption that the climatic value at an unknown point 𝑍(𝑥) is a distance weighted average of the 

climatic values at known points 𝑍(𝑥1), 𝑍(𝑥2)…, 𝑍(𝑥𝑛), included in a radius around 𝑍(𝑥). The 

distance (𝑑𝑖) between 𝑍(𝑥𝑖) and 𝑍(𝑥) is the weighting factor because, generally, climatic values 

are more alike between the nearest points than between distant points (Figure 21). This supposes 

that predictions are obtained from the nearest sampling points, i.e the method has the effect of 

giving more weight to nearby data points than those farther away (Vicente-Serrano et al. 2003, 

Hultstrand 2006).  

 𝑍(𝑥) =
∑ 𝑍(𝑥𝑖)  𝑑𝑖𝑗

−𝑟𝑛
𝑗=1

∑  𝑑𝑖𝑗
−𝑟𝑛

𝑖=1

 (17) 

Where 𝑍(𝑥) is the predicted value; 𝑍(𝑥𝑖)  is the climatic value of a neighboring weather station; 

𝑑𝑖𝑗 is the distance between 𝑍(𝑥)  and  𝑍(𝑥𝑖)  ; and r is the exponent of the distance. 



CHAPTER II. Site description, data and methods 

47 

 

Figure 21: Inverse distance weighting (IDW) method concept 

5.1.3. Barnes Objectives scheme  

The Barnes scheme is used for interpolating data from irregularly spaced observations to a regular 

grid using a two-pass scheme (Barnes 1964). It uses a Gaussian distance weighting function to 

interpolate observations to the regular grid, in which the weight that a station contributes to the 

grid point decreases with increasing distance from the point. Since the grid point values are 

weighted averages of the surrounding stations, the gridded values are always less than the 

maximum and greater than the minimum values surrounding the point, resulting in smoothed 

station data (Figure 22). The interpolation weights, w, are given by: 

𝑤 = 𝑒𝑥𝑝 [− 
𝑟2

𝑓(𝑑𝑛)
] 

(18) 

Where 𝑟 is the distance between the observation and grid point, and 𝑓(𝑑𝑛) defines a filter 

parameter whose value ultimately defines how smooth the interpolated field will be. The data 

spacing and distribution objectively determine the filter parameter value (Liston and Elder 2006). 

Furthermore, it should be noted that a combination of two interpolation methods is possible, which 

is the case in this study, we combine lapse rate with Barnes objective methods. More details are 

given in Chapter IV.  
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Figure 22: Description of Barnes interpolation method (from MicroMet guide) 

6. Evaluation metrics  

To assess model performances and calibrated parameters, different evaluation metrics are used 

throughout this study. One of the classical approaches is to calculate the residuals between 

observed and simulated through certain objective functions. The choice of the objective function 

is crucial and has important effects on model results and parameterization. Table 7 summarize all 

the performance criteria used. One of the well-known and convenient objective functions 

(Performance criteria) is the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970) which is 

generally recognized as a good criterion between other metrics such as the coefficient of 

determination (R2) or Root Mean Squared Error (RMSE) which is commonly used in the literature. 
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Table 7: Criteria equations  

Criterion Definition 
Optimal 

value 

Worst 

value 

Nash–Sutcliffe 

Efficiency (𝑵𝑺𝑬) 
𝑁𝑆𝐸 = 1 −

∑ (𝑂𝑏𝑠𝑖  − 𝑠𝑖𝑚𝑖)2𝑛
𝑖=1

∑ (𝑂𝑏𝑠  − 𝑂𝑏𝑠̅̅ ̅̅ ̅)2𝑛
𝑖=1

 1 −∞ 

Root Mean 

Squared Error 

(𝑹𝑴𝑺𝑬) 
𝑅𝑀𝑆𝐸 = √

∑ (𝑠𝑖𝑚𝑖  − 𝑂𝑏𝑠𝑖)
2𝑛

𝑖=1

𝑁
 0 ∞ 

Bias 𝐵 =
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)𝑛

𝑖=1

𝑁
  0 ∞ 

Coefficient R2 𝑅2 =  
∑ ((𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚̅̅ ̅̅ ̅)(𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅))𝑛

𝑖=1
2

∑ (𝑠𝑖𝑚𝑖
𝑛
𝑖=1 − 𝑠𝑖𝑚̅̅ ̅̅ ̅)2 ∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)𝑛

𝑖=1

2 1 -1 

 

  



CHAPTER III. Point-scale performance of temperature and radiation index models  

 

50 

 CHAPTER III.  

PERFORMANCE OF TEMPERATURE AND 

RADIATION INDEX MODELS FOR POINT-

SCALE SNOW WATER EQUIVALENT (SWE) 

SIMULATIONS IN THE OUKAIMEDEN-SM 

STATION 

The findings of this chapter were the subject of a published paper in the hydrological science 

journal (HSJ) in 2018: 

Bouamri, H., Boudhar, A., Gascoin, S., and Kinnard, C. (2018). Performance of temperature 

and radiation index models for point-scale snow water equivalent (SWE) simulations in the 

Moroccan High Atlas Mountains. Hydrological Sciences Journal, 63(12), 1844-1862. 

doi:10.1080/02626667.2018.1520391 

1. Introduction 

In this chapter, four models of increasing complexity were tested and compared to simulate 

snowmelt and snow water equivalent at the station scale in the Moroccan High Atlas Mountains. 

The classical temperature-index (TI) and the three enhanced temperature index (ETI) models 

(described all in ‘4.1 Snowmelt models’ section) that respectively include the potential clear-sky 

direct radiation (HTI), the incoming solar radiation (ETI-A), and net solar radiation (ETI-B), were 

subjected to annual and multi-annual calibration and cross-validated over the period 2003-2010.  

The calibration is a key issue in the context of limited data availability, especially in Mountain. 

Therefore, when used within hydrological models, parameters of empirical melt models are often 

calibrated at the same time as the hydrological parameters, which can give rise to equifinality 

problems and hamper the transferability of model parameters (Beven 1993, Beven 2006). There 

are, however, indications that the parameters of simple temperature-index models can depend 
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strongly on the climatic conditions of the calibration period, calling into question their 

transferability over time (Gabbi et al. 2014, He et al. 2014). This is in fact to be expected from 

simple melt models with few parameters, which do not fully account for inter-annual variations in 

energy flux partitioning between the atmosphere and the snow surface. The problem of climate 

dependency of model parameters is likely to be more acute when the period of data available for 

calibration is short, which can require recalibration of the models for individual sub-periods (Huss 

et al. 2009). The formulation of 'enhanced' melt models partly seeks to address this shortcoming, 

by considering additional processes while maintaining a simple model structure and a low data 

requirement. The increased physical realism of enhanced models may help to alleviate the climate 

dependency of the calibrated parameters, however at the cost of increased model complexity, i.e. 

the number of parameters to be calibrated. 

The application of empirical melt models in semi-arid regions is further complicated by snow 

sublimation. Several studies have shown that sublimation can reduce considerably the energy 

available for melt in such regions (e.g. Hock 2003, Froyland 2013, Gascoin et al. 2013, MacDonell 

et al. 2013, Herrero and Polo 2016), which can complicate the melt-temperature relationship and 

the calibration of simple empirical melt models. The semi-arid climate conditions of the Atlas 

Mountains favour snow sublimation, which can represent a non-negligible fraction of annual snow 

ablation. Based on energy balance calculations in earlier studies, the sublimation ratio (total 

sublimation/total ablation) was found to be as high as 44% on the south slopes of the Atlas (Schulz 

and de Jong 2004) while on the north slopes this ratio was found to be lower, varying between 7 

and 20% depending on the year (Boudhar et al. 2016). This large difference in sublimation ratios 

is consistent with the fact that the northern, windward side of the Atlas intercepts moist air masses 

from the Atlantic Ocean, while the leeward side is relatively more depleted in moisture and more 

arid (Knippertz et al. 2003, Schulz and de Jong 2004). 

There have been few studies that have explicitly explored the issues of coefficient transferability 

over time and their dependency on climate conditions. These issues are important in order to guide 

model calibration practices in a context of limited data availability, which often plagues remote 

mountain sites such as the Atlas. Therefore, the aim of the present study is twofold: 

1. Evaluate the performance of four simplified approaches, ranging from simple temperature-

index method to enhanced temperature-index methods to simulate snowmelt and snow 

water equivalent (SWE) at the Oukaimeden-SM station over the period 2003-2010. 
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2. Assess the models transferability over time and the climate dependency of the model 

parameters, using different calibration/validation strategies. 

2. Methodology  

The meteorological data used in this study were recorded by the automatic weather station 

‘Oukaimeden-SM’, which is already described above in ‘Chapter II, 2.1 Meteorological data 

section’. The studied period is 2003-2010, exactly over the five hydrological years: 2003-2004; 

2004-2005; 2005-2006; 2007-2008; 2009-2010.  

The 2006-2007 and 2008-2009 years were excluded from the analysis due to unreliable snow data, 

leaving a total of five hydrological years for analysis. 

As continuous SWE measurements are not available at this station, the SWE records previously 

estimated by Boudhar (2009) were used in this study. Boudhar (2009) converted the snow depth 

records to SWE using the snow density parameterization of Verseghy (1991); as follow: 

𝜌𝑠(𝑡 + ∆𝑡) = (𝜌𝑠(𝑡) − 𝜌max)  × exp{𝜏𝑓 ∆𝑡 𝜏⁄ } + 𝜌max (19) 

Where 𝜌𝑠 is the snow density, 𝜌max is the maximum snow density, set to 300 kg m-3, ∆𝑡 = 1 d, and 

𝜏𝑓 𝜏 ⁄  is the characteristic time (0.24/4800 s-1). The fresh snow density (𝜌new, in kg m-3) was 

calculated by Pomeroy et al. (1998): 

𝜌new = 67.92 + 51.25 × exp{𝑇𝑎 2.59⁄ } (20) 

Where 𝑇𝑎 is the air temperature in °C. A mean snowpack density, 𝜌�̅� , was calculated at each time 

step as the average of the old (𝜌𝑠) and new snow (𝜌new) densities weighted by their respective 

depths. A 0.5 kg m-3 °C-1 h-1 density increase was also applied during melting conditions (𝑇𝑎 > 0) 

to include the effect of meltwater refreezing on snowpack density. If the resulting density value 

rises above 𝜌max, equation (19) is not applied and the density is limited to a maximum of 450 kg 

m-3, based on observations. The density can still decrease afterward following a new fresh 

snowfall. Snow depths (mm) were converted to SWE (mm) at each half-hour time step using:  

SWE =  𝜌�̅� 𝜌𝑤 ⁄ ×  snow depth (21) 



CHAPTER III. Point-scale performance of temperature and radiation index models  

 

53 

Where 𝜌𝑤 is the density of water (1000 kg m-3). The parameterization was previously calibrated 

using in situ snow density measurements at the Oukaimeden-SM AWS site and found to give fair 

results with R2 = 0.72 and RMSE = 40 mm (Boudhar 2009). Daily estimated SWE averages were 

further used in this work and are referred to as “estimated SWE” in the remainder of the text. 

 Filtering of wind erosion events 

Since the models were forced with measured snow accumulation, any snow deposited by wind was 

already accounted for. However, as the simple snowmelt routines do not account for snow erosion, 

any such events would introduce errors in the models and exaggerate the simulated melt rates. 

While the estimated SWE records at the Oukaimeden-AWS site did not appear to be particularly 

affected by snow transport during the years studied, even small erosion events during certain years 

could strongly bias the calibration of the melt models. As our objective is to compare model 

performance and obtain representative melt parameters, a filtering step was introduced to identify 

potential wind erosion events and exclude them from the calibration of the melt equations. 

Parameterizations for blowing snow probability such as the one proposed by Li and Pomeroy 

(1997) were developed from, and for, hourly data and is thus not directly applicable to daily data. 

The filtering step used instead identifies anomalous rises in ablation rate followed by an equally 

rapid decline over a one or two-day period. The change in ablation rate over time was calculated 

as the second differential of the estimated SWE record. A threshold of 15 mm d-1, called the wind 

factor (WF), was used to discriminate 'anomalous' rises in ablation rates from normal conditions. 

This means that if the ablation rate rose and fell by more than 15 mm d-1 over a one or two-day 

period the ablation event was deemed highly probably to have been caused by wind erosion. In 

addition, because blowing snow probability decreases sharply over melting snow, only events with 

negative air temperatures were retained. This also decreases the chance that the filtered ablation 

events were caused by a rain event. The wind factor, WF, must be specified based on visual 

interpretation of the d2𝑆𝑊𝐸 d𝑡2⁄  plots, as shown in Figure 23 (A). Days that vary below (–WF) 

and above WF within one or two days are flagged as probable wind erosion events. The detected 

events correspond well with those that were visually identified on the SWE record (Figure 23 (B)). 

Sixteen events (days) were detected, which represents 2% of snow days over the 5-year period. 

Using a non-parametric Mann-Whitney U (rank-sum) test we found that the wind speed was 

significantly higher, the snow age significantly younger, and the air temperature significantly 
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lower for the 16 erosion events compared to the remaining snow days, while no significant 

difference was found for relative humidity (p < 0.05). This increases our confidence that these 

ablation events resulted from wind erosion. Melt was not simulated during these events and the 

estimated SWE was used during the calibration of the melt equations.  

 

Figure 23: Filtering of wind erosion events from the daily SWE measured in 2007/08. (a) Anomalous 

increases in ablation rate are identified as those days that successively cross the lower wind factor (–WF) 

and upper (+WF) threshold within a 1- or 2-day period (circles), which was determined from the second 

derivation of SWE (𝒅𝟐𝑺𝑾𝑬 𝒅𝒕𝟐⁄ ). (b) Detected erosion events superimposed on the SWE record. 

It is worth noting that using the observed accumulation and filtering out wind erosion events will 

yield the best SWE simulations possible by the melt models. Our goal here is to obtain the best 

melt model parameters, whose calibration is the least affected by precipitation data quality and/or 

any snow erosion. Applying these parameters within distributed or lumped hydrological models 

will thus ensure that melt is correctly simulated, understanding that errors in precipitation data 

and/or wind redistribution would further affect the spatial simulation of snow cover and result in 
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reduced model performance compared to the point-scale applications described in this chapter. 

 Forcing variables and model calibration 

As previously mentioned, some meteorological variables were not available or limited at the 

Oukaimeden-SM AWS and were thus parameterized. These parameterizations are detailed below. 

2.2.1. Clear-sky transmissivity  

The vertical clear-sky transmissivity (‘𝜓𝑎’ in equation (15), section ‘4.2 The potential clear sky 

radiation model’) was calibrated by minimizing the root mean square error (RMSE) between 𝐼pot 

and the global radiation measured on clear days, during the year 2009-2010 with reliable 

measurements. ‘Clear’ days were classified as those having a mean daily radiation value larger 

than 80% of the radiation at the top of the atmosphere (TOA). A constant direct (diffuse) fraction 

of solar radiation of 85% (15%) was assumed for the selected clear days (e.g. Hock and Holmgren 

2005). An optimal 𝜓𝑎 value of 0.75 was found (RMSE = 14.9 W m-2, NSE = 0.92). 

2.2.2. Global radiation 

The temperature index models based on incoming and net solar radiation (‘𝐼’ in equations (13) and 

(14)) require reliable measurements of global radiation, which in our case were only available for 

the 2009/2010 season. Hence parameterizations for global radiation and albedo (see next section) 

were sought in order to apply the ETI-A and B models to the full period. Global radiation was 

parameterized using the calculated potential clear-sky direct solar radiation and an R ratio: 

𝑅 = 𝐺 𝐼pot⁄  (22) 

Where R is the ratio between the global radiation (𝐺) and the potential clear-sky direct solar 

radiation (𝐼pot), and accounts for the effects of clouds and diffuse radiation (Hock 1999, Hock and 

Holmgren 2005). If measured global radiation exceeds the calculated direct radiation (R > 1), the 

difference indicates the amount of diffuse radiation. Conversely, measured global radiation less 

than calculated (R < 1) is caused by cloud cover. Atmospheric conditions, especially cloud cover, 

surrounding topography and the sun position are the major parameters influencing the R ratio. As 

variations in R are predominantly due to clouds the R ratio is akin to, but different from, the ‘cloud 

factor’ used in other studies (e.g. Pellicciotti et al. 2011). In our case, since the clear-sky 

transmissivity is assumed constant, the R ratio also reflects variations in air humidity and aerosol 
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concentration, which can yield slightly positive R values. 

Since reliable global radiation measurements were only available for one year, and in order to use 

modeling approaches as simple as possible, methods relying on commonly observed data (i.e. 

temperature, humidity, and precipitation) were used to parameterize unmeasured variables such as 

the R ratio and albedo. A parameterization of the R ratio was sought based on its relationship with 

two potential predictor variables: (i) the daily temperature range, which has been previously found 

to be a good indicator of cloud cover, and (ii) relative air humidity, which could reflect the 

attenuation by both water vapor and clouds (e.g. Dai et al. 1999, Pellicciotti et al. 2005). Several 

linear and non-linear regression equations were tested with ∆T and RH as sole predictors, and with 

both variables as potential predictors. 

2.2.3. Albedo 

Snow albedo is an important factor governing the amount of solar energy absorbed by the surface. 

Since albedo measurements were only available for 2009/2010 at the study site, the albedo 

parameterization developed by Brock et al. (2000) was used to simulate albedo for the whole study 

period. The parameterization assumes that snow albedo  (𝛼𝑠) decays as a function of time and air 

temperature, as follow:  

𝛼s = 𝑝1 − 𝑝2(log10(PDD ))  (23) 

Where  PDD (mm °C-1 d-1) is the positive degree-day sum since the last snowfall. The parameter 

𝑝1 represents a typical maximum albedo value for fresh snow, which in this work was fixed to 0.8 

based on observations. The parameter 𝑝2 was calibrated on daily albedo observations, by varying 

its value within a range between zero and one. Prior to calibration, raw hourly albedo observations 

were filtered to remove values with solar elevation angles less than 20º, or with reflected radiation 

less than 20 W m-2, this step removed all night time values as well as early/late day values, when 

low sun angles can cause a large error in radiation measurements (Abermann et al. 2014). As snow 

deposition on the upward-looking sensor can sometimes cause unrealistically high albedo values. 

Values larger than 0.9 were set at 0.9. The resulting daytime albedo data were averaged to daily 

values. 
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 Model calibration and validation 

All melt model parameters were subjected to calibration. A systematic calibration procedure was 

used, which consisted of varying each parameter value within ranges determined from previous 

studies (Hock 2003, Pellicciotti et al. 2005, Gabbi et al. 2014). The parameter ranges were then 

extended if necessary, i.e. if the optimum value found was on the range boundary. The parameter 

ranges and increments used for the calibration step are listed in Table 8.  

The SWE simulations were made at a daily time step during the snow season, from September to 

May, and compared with the measured SWE. Simulations were evaluated using the Nash–Sutcliffe 

efficiency measure (NSE). The optimum parameter values were chosen as those maximizing the 

NSE criterion during the calibration period, and the model performance was assessed during the 

independent validation period. 

Two different approaches were adopted for model calibration and validation: annual and multi-

annual calibration. The first approach, annual calibration, consisted of successively calibrating the 

models on every single year and validating on the remaining years. This is a variant of the split 

sample (SS) calibration/validation procedure (Klemeš 1986), which consists of dividing the period 

into two independent sub-periods for calibration and validation. This approach was used to 

examine the performance of each model when calibrated on a single year of measurements, and to 

detect possible model overfitting (e.g. Wagener et al. 2003) and its impact on model performance, 

as well as possible climate dependency of yearly-calibrated coefficients. In the second approach, 

multi-annual calibration, models were successively calibrated on all four-year sub-periods and 

validated on the left-out year. This ‘leave-one-year-out’ cross-validation procedure allows the 

incorporation of natural climate variability in the calibration, and thus should reduce the 

dependence of parameters on climate conditions of the calibration period (Klemeš 1986, Coron et 

al. 2012). 
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Table 8: Parameter ranges and value increments (Δ) used for the calibration of the four empirical models 

 Parameter sensitivity  

Sensitivity analysis is often used to calibrate model parameters and assess how parameter 

uncertainty affects model performance, i.e. how model performance changes when moving away 

from optimal parameter set (e.g. Paton et al. 2013). The sensitivity of the model performance, as 

measured by the NSE criterion obtained during multiyear calibration, to parameter variations 

within their calibration range, was examined graphically for the four melt models studied. 

3. Results  

 Calibration variables 

3.1.1. Global radiation 

A positive relationship was found at Oukaimeden-SM between the R ratio and ∆T, and a negative 

relationship between R and RH, however with a significant amount of scatter (Figure 24). Based 

on the coefficient of determination (R2) and variance ratio (F) tests, a second-order polynomial 

regression with relative humidity as a sole predictor was found to be the best parsimonious 

predictive model of the R ratio (R2 = 0.52, RMSE = 0.19) (Figure 24 (b)): 

𝑅 =  −0.000054RH2 − 0.0024RH + 1.3  (24) 

Previous studies (Dai et al. 1999) have reported significant relationships between ∆T and cloud 

cover. On the Arolla and Gorner glaciers, in the Swiss Alps, Pellicciotti et al. (2011) found 

significant relationships between ∆T and computed daily cloud transmittance factors, with ∆T 

explaining 33–48% of the cloud transmissivity, depending on the year and location. They also 

found significant but weaker relationships between RH and cloud transmissivity (R² = 13–41%). 

Model Parameter Description Unit Range ∆ 

TI DDF Degree-day factor mm d-1 °C-1 0.00–6.00 0.1 

HTI MF Melt factor mm d-1 °C-1 0.00–6.00 0.1 

RF Potential radiation factor  m2 mm W-1 d-1 °C-1 0.00–0.05 0.0025 

ETI-A TF Temperature factor  mm d-1 °C-1 0.00–6.00 0.1 

SRFin Global radiation factor m2 mm W-1 d-1 0.00–0.12 0.005 

ETI-B TF Temperature factor  mm d-1 °C-1 0.00–6.00 0.1 

SRFnet Net shortwave radiation factor m2 mm W-1 d-1 0.00–0.16 0.005 
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They used the ∆T relationship to parameterize the effect of cloud attenuation on the incoming 

shortwave radiation. In our case, including the diurnal temperature range did not improve the 

model and this term was thus neglected. Hence while only half the variance of R is explained by 

equation (24), this results is in line with, and even superior to, previous findings and, consequently, 

can add significant predictive power to the ETI models, as found, for example, by Pellicciotti et 

al. (2005).  

 

Figure 24: Scatter plot of the R ratio against (a) daily temperature range (∆T) and (b) relative humidity 

(RH) with second-order polynomial fit (see equation (24)) 

3.1.2. Albedo 

Globally, the agreement between modeled and measured albedo is fair during the snow season, 

except during peaks events, where the simulated albedo does not reach some peaks due to the fixed 

value of 𝑝1 at 0.8 (Figure 25). A calibrated value of 0.21 was found for the 𝑝2 coefficient, with 

RMSE of 0.098 and NSE of 0.80. 
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Figure 25: Measured and modeled daily mean albedo at Oukaimeden-SM station in 2009/2010. 

 Model calibration and validation 

3.2.1. Annual calibration 

All models performed equally well during annual calibration (NSE > 0.93) (Figure 26(a)). 

However, validation statistics show that the model performances outside the calibration period, 

and hence the parameter transferability, is very unequal among years and models, with the mean 

validation NSE across years varying from 0.56 to 0.74 (Figure 26(b)). The two models that include 

radiation (ETI-A) and albedo (ETI-B) show an overall better performance in validation mode 

(mean NSE of 0.68 and 0.74, respectively) than the TI and ETI models (mean NSE of 0.56). Hence, 

when calibrated on a single year both ETI models show better time transferability than the TI and 

HTI models, and the ETI-B model stands out as the best model. The generally poor transferability 

of yearly models can be further observed in Figure 27: the spread of SWE simulated by models 

calibrated yearly on other years is sometimes considerable (grey envelope), although it is reduced 

for the ETI models compared to both TI and HTI models. All models present the worst prediction 

performance, and hence worst transferability, when calibrated in 2005/2006 and 2009/2010, 

especially for the TI and HTI models (Figure 26(b)). These two years were the two wettest in terms 

of mean relative humidity and peak SWE and also ranked first and third, respectively, in terms of 
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total precipitation measured at the lower CAF station (Table 10, Figure 27). Closer inspection of 

the simulated SWE record in 2005/06 shows that no melting was simulated in early February while 

the observed SWE decreased; the cause of this error is unclear but could arise from an unfiltered 

erosion event, or from errors propagated from the conversion of snow depth to SWE. The positive 

bias introduced in the simulated SWE in winter was compensated by a higher-than-observed melt 

rate in the spring (Figure 27). The opposite situation arose in 2009/2010: melt rates appear 

exaggerated in winter and are compensated by slower-than-observed melt rates in the spring. In 

both instances, these biases in annual calibration resulted in poor model transferability. 

Interestingly both ETI models, while also showing a degraded performance, still performed 

significantly better than the TI and ETI models during those two years, which suggests that these 

humid years were also probably more cloudy and that models including a global radiation term are 

better suited to represent the varying energy inputs associated with changing cloud cover between 

years. 

 

Figure 26: Comparison of the performance of the four melt models using annual calibration. (a) Nash-

Sutcliffe Efficiency (NSE) coefficient for annual calibration (left) and mean NSE across years (right); 

(b) 4-year-out validation NSE corresponding to each calibration year in (a) (left) and mean validation 

NSE across years (right). 
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Figure 27: Simulated vs observed SWE using the four melt models for the 2003–2010 period. Each row 

corresponds to one model and each column to a hydrological year. Black dots: observations; red line: 

annual calibration (Method 1); blue line: multi-annual calibration (Method 2), shaded area: the range 

of SWE simulated by models calibrated yearly on other years. 
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Table 9: Error statistics for the four models from the annual calibration method: RMSE (mm) and NSE 

Calibrated years 

Models 
Validated 

years 

2003/2004 2004/2005 2005/2006 2007/2008 2009/2010 

RMSE  NSE RMSE  NSE RMSE  NSE RMSE NSE RMSE  NSE 

TI 

2003/2004 24.1 0.92 75.0 0.23 90.4 -0.12 62.1 0.47 42.2 0.76 

2004/2005 28.4 0.92 15.7 0.97 24.4 0.94 17.2 0.97 35.7 0.87 

2005/2006 110.8 0.68 65.1 0.89 55.7 0.92 72.5 0.87 133.6 0.54 

2007/2008 58.3 0.52 32.1 0.86 90.2 -0.15 20.4 0.94 78.3 0.14 

2009/2010 38.8 0.93 84.9 0.65 144.9 -0.03 68.9 0.77 34.7 0.94 

HTI 

2003/2004 13.7 0.97 75.0 0.23 90.4 -0.12 55.7 0.58 70.9 0.31 

2004/2005 23.7 0.94 15.7 0.97 24.4 0.94 16.5 0.97 47.9 0.76 

2005/2006 78.4 0.84 65.1 0.89 55.7 0.92 68.3 0.88 107.8 0.70 

2007/2008 60.0 0.49 32.1 0.86 90.2 -0.15 19.1 0.95 112.0 -0.76 

2009/2010 45.6 0.90 84.9 0.65 144.9 -0.03 74.6 0.73 20.0 0.98 

ETI-A 

2003/2004 15.6 0.97 45.5 0.72 74.5 0.24 59.8 0.51 15.6 0.97 

2004/2005 25.6 0.93 13.2 0.98 28.2 0.92 15.1 0.98 25.6 0.93 

2005/2006 137.1 0.52 78.8 0.84 38.6 0.96 69.6 0.88 137.1 0.52 

2007/2008 66.4 0.38 30.5 0.87 50.0 0.65 19.7 0.95 66.4 0.38 

2009/2010 32.9 0.95 54.2 0.86 105.9 0.45 67.2 0.78 32.9 0.95 

ETI-B 

2003/2004 15.4 0.97 38.5 0.80 76.8 0.19 60.4 0.50 15.6 0.97 

2004/2005 22.9 0.95 13.3 0.98 27.4 0.92 15.8 0.97 21.8 0.95 

2005/2006 136.1 0.52 86.2 0.81 47.4 0.94 70.8 0.87 138.3 0.51 

2007/2008 68.1 0.35 38.4 0.79 50.5 0.64 19.8 0.94 68.5 0.34 

2009/2010 30.8 0.95 47.8 0.89 105.5 0.45 67.5 0.78 30.3 0.95 

3.2.2. Multi-annual calibration 

Calibrating the models on 4-year periods forces the models to better represent inter-annual climate 

variability, which results in a poorer model fit than yearly-calibrated models (mean calibration 

NSE across years = 0.84–0.88 versus 0.93–0.94, Figure 26(a) and Figure 28(a)). However, the 

independent validation, as performed with the leave-one-year-out cross-validation, shows that 

models are more transferable, as seen by the larger mean NSE across years (0.79–0.82) (Figure 28 

(b)) and reduced variability in model performance compared to annual calibration (Figure 26(b)). 

Models calibrated on multi-annual periods (blue lines in Figure 27) yield reasonable SWE 

simulations for independent years, compared to the spread in transferred yearly-calibrated models 

(blue lines vs grey envelopes in Figure 27).  

Each model was recalibrated on the full five-year period and annual melt rates computed (Table 

11). Annual melt rates are on average higher for the HTI and ETI-A models than for the ETI-B 
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and TI models, but the ETI-B shows less variations between years than the other models, 

suggesting that including variations in snow albedo helps to better constrain inter-annual variations 

in melt rates. The sublimation ratio, using the prescribed sublimation rates (see Table 10), averaged 

5.3 ± 1.6% over the 5-year period. Due to the oversimplified representation of sublimation in the 

models, the inter-annual variability is most likely underestimated. 

 

 

Figure 28: Comparison of the performance of the four melt models using multi-annual calibration. (a) 

Nash-Sutcliffe Efficiency (NSE) coefficient for each 4-year calibration sub-period (left) and mean 

calibration NSE by the model (right); and (b) validation NSE on the year left-out from the calibration 

subset in (b) (left) and mean leave-one-year-out validation NSE by the model (right). 

 

 

 

 



CHAPTER III. Point-scale performance of temperature and radiation index models  

 

65 

Table 10: Mean climate conditions and sublimation rates calculated for days with snow on the ground. 

RH: relative humidity; TP: total precipitation. 

Year RH Air temp. TPa 
Peak 

SWE  
Wind speed Sublimationb 

 (%) (°C) (mm) (mm) (m s-1) (mm d-1) 

2003/04 42.9 1.18 466 240 2.54 0.26 

2004/05 52.3 -1.92 168 229 2.72 0.18 

2005/06 55.1 0.61 503 430 2.91 0.29 

2007/08 44.5 0.74 291 214 2.84 0.21 

2009/10 52.6 0.93 312 360 2.67 0.17 

a at CAF station.   b from Boudhar et al. (2016) 

 Parameter sensitivity and variability 

Model parameter sensitivity was analysed in terms of model error as measured by the NSE 

criterion obtained from multi-annual calibration on the whole 5-year dataset (Figure 29). For two-

parameter (enhanced) models, NSE contour plots allow assessing the effect of varying each model 

parameter on the calibration performance of the SWE simulations. The optimal parameter sets 

obtained from annual calibration were also overlain on NSE contour plots to investigate their 

variability with respect to the multi-annual calibration optimum. The three enhanced models are 

seen to be equally sensitive to both temperature and radiation. However, while an optimum was 

found for all models using multi-annual calibration, equifinality is also apparent for the two-

parameter models, with different combinations of temperature and radiation-related parameters 

resulting in a high NSE criterion. The optimum is clearest for the ETI-B model (Figure 29(d)). 

Optimal parameters obtained from annual calibration (Method 1) show considerable inter-annual 

variability, with the respective contribution of the radiation and temperature terms changing 

between years for a given model (Figure 29). Several of the optimal annual parameter sets are 

found along the high NSE diagonal band found from multi-annual calibration, which suggests that 

at least some of the inter-annual variability in annual coefficients could be due to equifinality. 

However, deviations also occur, especially for the additive ETI models, which also suggests that 

the respective contribution of temperature and radiation to snowmelt may change between years 

in response to climatic conditions, as found for example by Gabbi et al. (2014). 
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Figure 29: Sensitivity of model performance to parameter variations (see Table 1). The model 

performance is assessed with the NSE criterion using calibration over the full 5-year period. (a) TI 

model; (b) HTI model; (c) ETI-A model; (d) ETI-B model. Optimal parameter values from multi-annual 

calibration are indicated by a black dot; yearly-calibrated parameters are overlaid onto the contour plot 

and indicated by asterisks (*). 

The inter-annual variability of model parameters values resulting from the annual calibration 

(Method 1) is further investigated in Figure 30. The temperature factor of both the TI and HTI 

models exhibit a similar tendency over the five studied seasons, increasing until 2005/2006 and 

decreasing afterward. The pattern is different for the ETI models. Both models show a maximum 

TF value (3 mm d-1 °C-1) in 2007/2008. The TF factor is nil in 2004/2005 for ETI-A and in 

2005/2006 for both models. The radiation factor (SRFin, SRFnet) varies inversely with the 

temperature factor. Whether these annual variations in model parameters are related to climate 

conditions prevailing in a given year, or are simply caused by overfitting the models in each single 

year and/or parameter compensation (i.e. equifinality) is investigated in the next section.  



CHAPTER III. Point-scale performance of temperature and radiation index models  

 

67 

 

Figure 30: Yearly-calibrated model parameters for the (a) TI, (b) HTI, (c) ETI-A and (d) ETI-B models 

for five hydrological years. 

 Relationship between annual parameters and climate 

The dependence of model parameters on climatic conditions was investigated using simple 

bivariate correlation analysis between the yearly-calibrated model parameters and annual averages 

of measured meteorological variables (air temperature, relative humidity, total precipitation, wind 

speed) as well as with the mean daily sublimation rate used in the model formulation (Table 10). 

The averages were calculated for days with snow on the ground only. The scope of this analysis is 
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evidently limited by the small number of observations (5 years), but is nonetheless instructive to 

reveal possible climate control on annual parameters variations. The TF and SRFin factors in the 

ETI-A model show statistically significant (p < 0.05) negative and positive correlation with 

relative humidity, respectively. The same pattern is found for the ETI-B model, albeit with weaker 

correlations (p < 0.10). For the three enhanced models, the temperature and radiation factors are 

inversely correlated, reflecting the pattern seen in Figure 30. This parameter compensation is 

strongest for the HTI and weakest for the ETI-B model.  

Table 11: Mean daily melt rates for each year, calculated using the five-year calibrated models. The 

constant daily sublimation rates listed in Table 10 were used to calculate the sublimation ratios. SD: 

standard deviation 

Year 

Melt All models 

 TI  HTI ETI-A  ETI-B Mean sublimation 

ratio ± SD (%) (mm d-1) (mm d-1) (mm d-1)   (mm d-1) 

2003/04 5.6 6.1 6.1 5.0 4.9 ± 0.4 

2004/05 2.8 2.7 3.4 3.4 6.2 ± 0.7 

2005/06 4.9 5.3 5.3 5.3 5.6 ± 0.2 

2007/08 3.3 3.3 3.7 3.5 7 ± 0.3 

2009/10 5.6 5.7 5.8 5.2 2.7 ± 0.1 

Mean ± SD 4.4 ± 1.3 4.6 ± 1.5 4.8 ± 1.2 4.5 ± 1 5.3 ± 1.6 

4. Discussion and conclusion  

 Model performance and transferability 

Taken together our results show that when calibrating models on a restricted dataset such as a 

single year of measurement, a situation not uncommon at remote sites, enhanced additive models 

such as ETI are more transferable than simpler models such as TI and HTI, which are 

predominantly temperature-based models (Figure 26). At a point scale, the sole effect of including 

a potential radiation term in the HTI is to progressively augment the TF factor as solar radiation 

increases toward its summer maximum. But, explicit consideration of the atmospheric 

transmissivity (via the R ratio in both ETI models), and snow albedo in the ETI-B, appears to better 

capture the intra-season variability in melt rate arising from changes in the contribution of 

shortwave radiation versus temperature-dependent longwave and sensible heat fluxes to the snow 

surface energy balance. The fact that the additive ETI models are better transferred from one year 

to another is somewhat surprising given the significant variability of the yearly calibrated 
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parameters. The explanation may reside in the fact that several combinations of the temperature 

and radiation factors give similarly acceptable model performance (Figure 29), i.e. equifinal 

solutions (Beven 2006), and hence a given combination of parameters fitted to one particular year 

has a good chance to give acceptable predictions when applied to a different year. Conversely, the 

simpler temperature-dependent TI and HTI models are less able to represent changes in energy 

fluxes induced by varying cloud cover and albedo, and will thus exacerbate model overfitting when 

calibrated on short intervals, making them less transferable between years.  

However, when calibration is performed on a longer period which incorporates at least some inter-

annual climatic variability, all models perform equally well, and no model clearly stands out as 

optimal (Figure 28). It is noteworthy, however, that the simplest model TI has the second highest 

performance (NSE = 0.81) behind the ETI-B model (NSE = 0.82). These results are in agreement 

with those of Pellicciotti et al. (2005), who suggested that ETI models are more transferable over 

time, whereas e.g. Réveillet et al. (2017) concluded instead that TI models are the most efficient 

models overall for predicting snow and ice melt on glaciers, when calibrated on a long period (>10 

years). Our results tend to corroborate these findings, i.e. that simple TI models, when calibrated 

on a period long enough to capture inter-annual climate variability, offer good performance at the 

station scale, comparable and even superior to some enhanced models.  

 Parameter variability and climate dependency 

Our results showed pronounced inter-annual variability in yearly-calibrated model parameters. 

Lang and Braun (1990) and Hock (2003) report that under otherwise similar conditions, degree-

day factors are expected to increase in response to increased solar radiation input and decreased 

albedo, and that higher shares of sensible heat flux in the heat balance are generally associated 

with low degree-day factors and vice versa. No such simple relation emerged between the 

temperature factor of the TI model and climate conditions at the Oukaimeden site. For the ETI-A 

model, and the ETI-B model to a lesser extent, a positive and negative correlation emerged 

between relative humidity and the radiation and temperature factor, respectively. Inter-parameter 

correlations show that radiation and temperature factors in enhanced models compensate each 

other; this effect is most pronounced for the HTI model, which is rather expected since both factors 

are used as the multiplier of the temperature (see Equation (12)), different from the two ETI 

models.  



CHAPTER III. Point-scale performance of temperature and radiation index models  

 

70 

Strong parameter compensation (equifinality) was observed for all the enhanced models (Figure 

29, Table 12). The same compensation between temperature and radiation-based parameters was 

previously reported and discussed by Gabbi et al. (2014) and Réveillet et al. (2017). However, 

Gabbi et al. (2014) attributed inter-annual variations in parameters to climate conditions, finding 

for the ETI-B model that the temperature factor was higher and the radiation factor lower in years 

with reduced solar radiation. They interpreted this relationship to result from a decreased influence 

of solar radiation, and respective increased influence of incoming longwave and sensible heat 

fluxes on melt during more humid and cloudy years, in line with previous findings by Carenzo et 

al. (2009). No such relationship emerged in our analyses; moreover, more humid conditions, which 

are associated with reduced solar radiation via the R ratio parameterization (see Equation (24)), 

were found to promote a larger radiation factor and smaller temperature factor in the ETI models, 

which is opposite to the aforementioned results found by Gabbi et al. (2014). Interestingly, the 

correlation between relative humidity and both TF and SRF is reduced in the ETI-B model when 

the albedo is considered (Table 12).  

In light of these results, we suggest that much of the inter-annual variability in the yearly-calibrated 

coefficients are due to model overfitting errors in a given year. Including a solar radiation term 

(incoming or net) seems to reduce this phenomenon and allows the calibrated models to better 

transferred to other years. This improved transferability is in part inherited from the equifinality 

of the temperature and radiation factors, whereas several pairs of parameters give similarly 

acceptable predictions. However, it also implies that parameters are not well defined, and hence 

that year-to-year climate variations and/or measurement errors can cause significant differences in 

the contribution of the melt and radiation factors to snowmelt. This phenomenon may be explained 

by the partial collinearity of air temperature and incoming solar radiation, an aspect that has been 

overlooked in the literature when discussing the calibration of empirical melt models. In statistics, 

collinearity is a phenomenon in which one predictor variable in a multiple regression model can 

be linearly predicted from the others with a substantial degree of accuracy. It does not reduce the 

predictive power or reliability of the model as a whole, at least within the sample data, but will 

increase the uncertainty of model parameters. In such situation, the standard error for the regression 

coefficient of a given predictor increases by a factor equal to √VIF, where VIF is the variance 

inflation factor of the predictor, equal to 1 (1 − 𝑅2)⁄ , and 𝑅2 is the coefficient of determination of 

the regression of the predictor against all other predictors (e.g. Draper and Smith 1998). Variables 
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with VIF > 5 are typically flagged as collinear. The presence of collinear variables in a linear 

model makes the model more prone to overfitting, i.e. the model coefficients can vary significantly 

between different calibration samples. However, such model can still yield a good predictive 

performance outside the calibration interval, especially if the collinearity between the predictors 

is maintained. Statistical theory does not strictly apply in this case as the model parameters were 

not derived using the least square method. Nonetheless, the linear structure of the additive ETI 

models and the systematic calibration procedure that minimizes prediction errors is much akin to 

the multiple regression framework. Over the whole study period, air temperature was found to be 

positively and significantly (p < 0.01) correlated with the potential (r = 0.44), global (r = 0.65) and 

net shortwave (r = 0.74) radiation, considering only the days with snow on the ground. This gives 

VIF factors of 1.73 and 2.21 for the ETI-A and ETI-B models, respectively. This is of course to 

be expected, as apart from the heat flux from advected air masses the air temperature depends on 

the longwave radiation emitted from the surface and upward convection of sensible and latent heat, 

all of which depend, albeit in a complex manner, on the surface shortwave radiation balance. Hence 

air temperature and solar radiation 'share' a significant fraction of the snowmelt predictive power 

and as such are partly redundant predictors. The VIF factors only point to moderate, but still 

significant collinearity of these two variables in the linear ETI models. This may confuse the 

identifiability of parameters and increase their uncertainty when calibrated on short intervals. This 

collinearity explains the parameter compensation and equifinality observed in this study (Figure 

30, Table 12) and probably that observed in previous ones (Gabbi et al. 2014). The fact that both 

ETI models were found to be better transferred to other years when calibrated yearly can be 

explained on the one hand by the true, non-redundant predictive contribution of the solar radiation 

term, and on the other by the fact that the collinearity between air temperature and solar radiation 

is maintained in other years.  
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Table 12: Pearson correlation coefficients between climatic variables and annual model parameters. 

Climatic variables & 

Parameters 

TI HTI ETI-A ETI-B 

DDF TF RF TF SRFin TF SRFnet 

Air temperature (°C) –0.19 –0.38 0.61 0.41 -0.37 –0.03 –0.06 

Relative humidity (%) 0.47 0.31 –0.31 –0.93** 0.93** –0.87* 0.88* 

Total precipitation (mm)a 0.74 0.68 –0.64 -0.11 0.47 –0.18 0.52 

Wind speed (m s-1) 0.39 0.20 0.10 0.08 0.15 –0.25 0.39 

Sublimation (mm d-1) 0.65 0.64 –0.44 0.40 0.04 0.24 0.16 

Inter-parameter correlation n.a. –0.95** –0.87* –0.86* 

a at CAF station.  **p < 0.05   *p < 0.10 
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 CHAPTER IV. 

 ADDED VALUE OF SOLAR RADIATION IN 

SNOWMELT MODELS OVER THE RHERAYA 

SUB-BASIN 

The results of this chapter were subjected to a submitted paper in the Frontiers in Earth Science 

journal.  

Bouamri. H, Kinnard, C, Boudhar, A., Gascoin, S., L. Hanich, and A. Chehbouni. (2020). 

MODIS does not capture the spatial heterogeneity of snow cover induced by solar radiation.  

Frontiers in Earth Science DOI: 10.3389/feart.2021.640250. 

1. Introduction 

Representing the spatial variability of snow cover within distributed snowmelt models for 

hydrological applications remains challenging, especially in mountainous areas where the snow 

distribution depends on complex relationships between meteorological conditions and the 

surrounding landscape, primarily topography (Anderton et al. 2004, Molotch et al. 2005, DeBeer 

and Pomeroy 2009, Grünewald et al. 2010, Clark et al. 2011). In this sense, various studies have 

shown that elevation, slope, and aspect play a crucial role in determining the spatial variability of 

snow processes (Lehning et al. 2006, Letsinger and Olyphant 2007, López-Moreno and Stähli 

2008). Interactions between topography and solar radiation strongly modulates the shortwave 

radiation balance and produce considerable shading effects, especially in high relief landscapes 

(e.g. Olyphant 1984). While simple TI models only consider the elevation dependence of 

temperature to model the heterogeneity of snowmelt rates, adding solar radiation allows to 

explicitly include the effect of topography on melt and as such to better represent the snow cover 

heterogeneity (e.g. Cazorzi and Dalla Fontana 1996, Zaramella et al. 2019). Indeed, previous 

studies have shown that including solar radiation improved the performance of spatially-

distributed melt models for predictions of glacier mass balance (Gabbi et al. 2014), snow cover 

area (Cazorzi and Dalla Fontana 1996, Follum et al. 2015) and streamflow from snow-fed basins 

(Brubaker et al. 1996, Follum et al. 2019). Given the larger computational cost entailed to calculate 
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spatially distributed radiation fields, it is important to assess their relevance for estimating 

snowmelt with conceptual models aimed for operational hydrological applications. 

Including solar radiation in distributed snowmelt models raises the question about the appropriate 

scale (resolution) to run models and the suitability of available data to validate them (Baba et al. 

2019). While distributed empirical models can be run at high spatial resolutions (<1 km) over large 

catchments (> 1000 km2), few observations are usually available to validate spatial simulations 

explicitly. Snow depth maps from repeat lidar surveys (Painter et al. 2016) and satellite 

photogrammetry (Marti et al. 2016) are becoming increasingly available, but they remain rare, so 

that snow cover area (SCA) maps often represent the sole source of spatially-distributed snow 

information to validate distributed snow models. Snow cover maps derived from the Moderate-

Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites, 

available since 2000 and 2002 respectively, have been at the forefront of distributed snow model 

calibration and validation efforts (Parajka and Blöschl 2008, Finger et al. 2011, Franz and Karsten 

2013, Gascoin et al. 2013, Duethmann et al. 2014, He et al. 2014). However, its spatial resolution 

(~500 km) may often be larger than the resolution of key processes, such as topographic radiation 

loading and snow drifting.  

The following chapter examines the added value of including different treatments of solar radiation 

within empirical snowmelt models with a focus on:  

1. Benchmark the performance of enhanced temperature index (ETI) models including 

different parametrizations of solar radiation, relative to the reference temperature index 

model (TI) to simulate snowmelt, SWE and SCA within the Rheraya basin over the 2003-

2016 period. 

2. Investigate scale issues arising when using MODIS snow cover area maps for model 

validation. 

This study can be used to complete our previous results at the local scale in Oukaimeden-SM 

station, and helps our understanding of the spatial variability of snow cover in the Moroccan High 

Atlas Range.  
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2. Methodology 

The half-hourly meteorological observations retrieved from the different weather stations in the 

Rheraya catchment were averaged to daily interval for the entire study period, from 2003 to 2016; 

all the pre- and post-processing steps followed are detailed in ‘Chapter II, 3.1 Meteorological data 

pre- and post-processing’ section. 

 Distributed meteorological variables  

Relative humidity (RH) observations were converted to dew point temperature (DP) following 

Liston and Elder (2006) (Equations (8),(9) and (10)), since RH is considered a non-linear function 

of elevation. Then the mean monthly lapse rates for air temperature (Ta) and dew point temperature 

(DP) were determined by linear regression of these variables against elevation. The both lapse 

rates used are described in ‘3.1.2 Spatiotemporal analysis’ section. 

To distribute Ta and DP observations, station observations were first adjusted to a common 

elevation using the calculated lapse rate for each variable, and then spatially interpolated to the 

entire basin using the Barnes objective analysis scheme, following Liston and Elder (2006) 

(method description in ‘5.1.3 Barnes Objectives scheme’ section). It is worth noting that the Barnes 

method was chosen in this study after a comparative analysis over Rheraya basin of both 

interpolation methods, the nearest neighbor and Inverse Distance Weighting. The results showed 

that Barnes method results in smoother gridded fields and reduced errors compared to other 

mentioned methods. The interpolated values (Ta and DP) are then lapsed back to their original 

grid elevation using the same lapse rate, and the DP reconverted to RH.  

Precipitation was spatially distributed by combining spatial interpolation with a non-linear lapse 

rate, following Liston and Elder (2006). First, precipitation observations are interpolated to the 

model grid using the Barnes objective analysis scheme. A reference topographic surface is 

constructed by interpolating the station true elevations (as measured by GPS) using the same 

method. The modeled precipitation rate 𝑃𝑥 (mm d-1), at a grid point 𝑥 with elevation 𝑍𝑥 is computed 

as: 

𝑃𝑥 = 𝑃0  ×  
[1 + 𝒳 (𝑍𝑥 − 𝑍0)]

[1 − 𝒳 (𝑍𝑥 − 𝑍0)]
 (25) 
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Where 𝑃0  is the interpolated station precipitation, 𝑍0 is the interpolated station elevation, and 

𝒳 (mm km-1) is the precipitation lapse rate, or ‘correction factor’ (Liston and Elder 2006). This 

enhancement factor 𝒳 is referred to as the ‘precipitation lapse rate’ (PLR) hereafter. An 

interpolated topographic reference surface (Zx) is used rather than a fixed reference because the 

precipitation adjustment function (equation (25)) is a nonlinear function of elevation (Liston and 

Elder 2006). 

Due to the large spatial and temporal heterogeneity of observed precipitation in Rheraya, a specific 

calibration of PLR was sought. A range of 0.21- 0.35 km-1 was used based on the lapse rate value 

fitted to station observations (described in sub-section ‘4.1.2 Spatiotemporal analysis (c), Chapter 

II’) and the highest typical winter value set by Liston and Elder (2006) and also found by Baba et 

al. (2019) in the Rheraya basin. The calibration-validation procedure was performed on the 

simulated snow accumulation, derived from positives SWE changes at the Oukaimeden-SM AWS 

and compared with in-situ SWE observations available at the same station. PLR was calibrated 

over a lumped 3-years period (2003 until 2006) and validated separately on the remaining two 

years (2007-2008, 2009-2010). 

The extrapolation of precipitation using equation (25) can result in unrealistically large 

accumulation rates at high elevations where there are few stations to constrain precipitation. 

Several studies have shown that while precipitation typically increases with elevation in mountain 

basins due to orographic uplifting of air masses, this increase can cease and precipitation even 

decreases passed a certain elevation (Alpert 1986, Roe and Baker 2006, Eeckman et al. 2017, 

Collados‐Lara et al. 2018). This is caused by the progressive depletion of moisture available for 

condensation within the rising air mass. As such, it is crucial in hydrological modeling to limit the 

vertical extrapolation of precipitation to avoid artificial snow build up at high elevations. In this 

sense, Liston and Elder (2006) limited the difference between the actual (𝑍𝑥) and interpolated (𝑍0) 

station elevation (∆𝑍 =  𝑍𝑥 −  𝑍0) to a default maximum value (∆𝑍𝑚𝑎𝑥) of 1800 m. In this study, 

this parameter was subjected to a calibration/validation procedure against the MODIS SCA maps 

for all melt models. ∆𝑍𝑚𝑎𝑥 was calibrated on odd years within a 300-1800 m range and validated 

on even years for each model in order to reduce the climate dependency of the calibration period 

(Arsenault et al. 2018). The validation was done using the optimal parameter for each model as 

well as with the mean of the optimal parameters of each model (mean ∆𝑍𝑚𝑎𝑥). 
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Regarding the potential clear-sky direct solar radiation, it was calculated as a function of solar 

geometry, topography, and a constant vertical atmospheric transmissivity following Hock (1999), 

and includes topographic shading (Equation (15)). Global radiation is calculated using a cloud 

factor parameterization based on relative humidity (Equation (22) and (24)) and the net radiation 

uses an albedo parameterisation based on accumulated positive degree days (Equation (23)) 

(further details are given in Chapter III). 

 Rain/snow partition  

Determination of the precipitation phase has a large influence in hydrological modeling, especially 

in mountain areas (Yasutomi et al. 2011, Marks et al. 2013). Various approaches based on air 

temperature variable have been used, such as a single air temperature threshold (e.g. Fassnacht et 

al. 2013) or a varying snowfall fraction between two air temperature thresholds (e.g. Marks et al. 

2013, Feiccabrino et al. 2015). This linear transition technique was used for the rain-snow partition 

in this work. The snowfall fraction is linearly interpolated between a temperature threshold for rain 

𝑇𝑟𝑎𝑖𝑛 (°C), and a temperature threshold for snow 𝑇𝑠𝑛𝑜𝑤 (°C) (Tarboton and Luce 1996, McCabe 

and Wolock 1999, Moore et al. 2012). The daily snowfall (SF) and rainfall (RF) are computed as: 

𝑆𝐹 = 𝑃𝑥  (𝑇𝑟𝑎𝑖𝑛 − 𝑇𝑥)/(𝑇𝑟𝑎𝑖𝑛 − 𝑇𝑠𝑛𝑜𝑤 ) (26) 

𝑅𝐹 = 𝑃𝑥 − 𝑆𝐹 (27) 

Where 𝑃𝑥 is total precipitation and 𝑇𝑥 is the air temperature at gridpoint x. If the daily air 

temperature is above the 𝑇𝑟𝑎𝑖𝑛 threshold then 𝑅𝐹 = 𝑃𝑥  and 𝑆𝐹 = 0, while if  𝑇𝑥 < 𝑇𝑠𝑛𝑜𝑤 then 𝑅𝐹 = 

0 and 𝑆𝐹 =𝑃𝑥. The two fixed temperature threshold, 𝑇𝑟𝑎𝑖𝑛 and 𝑇𝑠𝑛𝑜𝑤, were calibrated on odd years 

and validated on even years using manual observations of snowfall and rainfall available at the 

CAF station. A range of -3 to 3°C was selected for calibration based on observed temperatures 

during recorded precipitations at the CAF station.  

 Model validation 

The daily snow cover area (SCA) from the merged CMXD10A product (previously described in 

section ‘4.3. Processing and combined MOD10A1 and MYD10A1’, Chapter II) was used to assess 

the ability of each model to simulate the spatiotemporal variability of snow cover in the Rheraya 

basin over the 2013-2016 period. A conversion of the simulated SWE to SCA was required in 
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order to compare the simulated SCA with MODIS SCA. This conversion was performed using a 

constant threshold (𝑆𝑊𝐸0), i.e. for each grid, SCA = 1 when SWE ≥ SWE0 and SCA = 0 otherwise. 

The conversion was done at the model resolution (100 m). The use of this fixed threshold avoids 

more complex snow depletion curves that require more parameters unknown in our area (Magand 

et al. 2014, Pimentel et al. 2017). Therefore, 𝑆𝑊𝐸0 was subjected to the same 

calibration/validation procedure as for ∆𝑍𝑚𝑎𝑥, using a range of values from 1 to 20 mm following 

previous studies (Gascoin et al. 2015, Baba et al. 2019) 

Confusion matrices were used to assess the classification accuracy of the simulated SCA maps 

relative to MODIS SCA. Confusion matrices are two-dimensional contingency tables that display 

the discrete joint distribution of simulated and observed data frequencies (Zappa 2008). Model 

skill scores were derived from the confusion matrix (Table 13). The Heidke Skill Score (HSS) 

(Heidke 1926) which is equivalent to the Kappa coefficient proposed by Cohen (1960), measure 

the classification accuracy relative to that expected by chance and has been extensively used for 

imbalanced datasets, including snow remote-sensing studies (e.g. Zappa 2008, Notarnicola et al. 

2013, Baba et al. 2019). The HSS was thus the preferred global metrics used for model assessment. 

Still, because no global metric is able to completely depict the types of classification errors 

committed by a model, four metrics based on marginal ratios of the confusion matrix were also 

used to investigate model errors, as done in several previous studies (e.g. Parajka and Blöschl 

2012, Rittger et al. 2013, Zhou et al. 2013, Zhang et al. 2019). The true positive rate (TPR) 

measures the proportion of MODIS snow-covered pixels correctly identified as such by the model.  

Oppositely, the true negative rate (TNR) measures the proportion of MODIS snow-free pixels 

correctly simulated by the model. The false-negative rate (FNR) measures the proportion of 

MODIS snow-covered pixels incorrectly identified as snow-free by the model. Complementarily, 

the false-positive rate (FPR) or ‘False Alarm Rate’ (FAR) as called by Zappa (2008) is the 

proportion of MODIS snow-free pixels incorrectly identified as snow-covered by the model. 

Further descriptions of these metrics are given in (Figure 31).  
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Table 13: Description of confusion matrix between simulated and MODIS SCA, and the evaluation 

metrics used for model assessment. TP: true positive, TN: true negative, FP:  false positive, FN: false 

negative. 

 SCA MODIS 

SCA sim Snow Snow free 

Snow TP FP 

Snow free FN TN 

Metrics Definitions 

TPR  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁⁄ ) 

TNR 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄  

FNR 𝐹𝑁 (𝐹𝑁 + 𝑇𝑃⁄ ) 

FPR 𝐹𝑃 (𝐹𝑃 + 𝑇𝑁⁄ ) 

HSS 
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
 



CHAPTER IV. Performance of distributed temperature and radiation index models  

 

80 

 

Figure 31: Flowchart describing the steps for processing MODIS data and comparing MODIS and 

simulated snow cover area (SCA). Purple color: data source, pink: sub-results, and gray: main results. 

3. Results 

 Point scale model calibration and validation 

3.1.1. Rain/snow partition  

The optimal values of 𝑇𝑠𝑛𝑜𝑤  and 𝑇𝑟𝑎𝑖𝑛  thresholds (Equations (26), (27)) found from calibration 

were -2.5 °C and 2.5 °C respectively. Overall, the agreement between simulated and measured 

precipitation is fair with a moderate performance for rainfall (NSE = 0.54; r = 0.75), and higher 

performance for snowfall (NSE= 0.77, r= 0.88) (Figure 32a). The frequency analysis of 

precipitation events at the CAF station shows that snowfall-only events occurred at air 

temperatures up to +5°C, while rainfall-only events can occur at temperature down to -5°C, with 
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mixed events occurring within this -5°C to +5°C range (Figure 32b). The -2.5°C to +2.5°C 

calibrated range thus stands out as the best compromise to predict most accurately absolute rain 

and snowfall quantities within this sensitive -5°C to +5°C interval. The better performance for 

snowfall is encouraging for the ensuing SWE modeling. 

 

Figure 32: Partition of precipitation into snowfall and rainfall. (a) Simulated vs. observed precipitation 

after calibration of the fixed rain-snow partition temperature thresholds. (b) Observed frequencies of 

snow, rain, and mixed precipitation events per one-degree temperature bin at CAF weather station over 

the 2003-2016 period. 

3.1.2. Calibration of PLR 

The optimal value for the precipitation lapse rate (PLR) found from calibration against SWE 

measurements at the Oukaimeden-SM station was 0.35 km-1. The performance among models is 

relatively similar during the lumped three-year calibration period (2003-2006) (Figure 33). The TI 

and HTI models show slightly better performances (NSE =0.85) than the models including 

radiation (ETIA, NSE = 0.78) and albedo (ETIB, NSE = 0.83). All models present the worst 

prediction performances during the calibration year 2003-2004, during which all models 

exaggerated ablation from mid-December to mid-February, especially for the ETIB model, while 

this model performed better than others in late spring (Figure 33a). Independent validation shows 

different results. In 2006-2007 the models performed unequally, particularly during the ablation 

period, with models that include radiation (ETIA) and albedo (ETIB) showing an overall better 

performance (NSE values of 0.60 and 0.78, respectively) than TI (NSE = -0.10) and HTI (NSE = 

0.19) (Figure 33). In 2009-2010 all models underestimated accumulation, with slight differences 

in ablation, and the TI model performed slightly better than other models (NSE = 0.58).  
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Overall, these results show that the simpler TI and HTI models performed slightly better in 

calibration than additive ETI models, but they transfer less well to independent validation years. 

This agrees with previous findings by Bouamri et al. (2018) who showed that enhanced ETI models 

transfer better to other years when calibrated over a short time period. However, Bouamri et al. 

(2018)  used the observed accumulation rate to calibrate and validate the different melt models, in 

order to remove the influence of precipitation uncertainties on the calibration of the melt model 

coefficients (Table 14). The comparatively worst performance observed at the Oukaimeden-SM 

station in this study can thus be attributed to uncertainties in precipitation observations, rain-snow 

partition, and the spatial interpolation of precipitation, and highlights the notorious difficulties in 

distributing precipitations observations in mountainous basins (Gottardi et al. 2012). 

 

Figure 33: Calibration and validation of precipitation lapse rate (PLR) on observed SWE at AWS 

Oukaimeden-SM. (a-c) calibrated years, respectively 2003-2004, 2004-2005, 2005-2006; (d-e) validated 

years, respectively, 2007-2008 and 2009-2010. 
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Table 14: Summary of model parameters values previously calibrated by Bouamri et al. (2018) and 

prescribed in this study. 

Prescribed 

parameter 
Description 

Optimal 

value 
Unit 

Calibrated 

parameter 
Description 

Optimum 

value 
Unit 

DDF 
Degree-day 

factor 
2.7 

mm d-1 

°C-1 
TLP 

Temperature 

lapse rate 
-0.56 

°C  

100 m-1 

MF Melt factor 1.8 
mm d-1 

°C-1 
DPLR 

Dew point 

lapse rate 
-0.68 

°C 

100 m-1 

RF 

Potential 

radiation 

factor 

0.005 

m2 mm 

W-1 d-1 

°C-1 

PLR 
Precipitation 

lapse rate 
0.35 km-1 

TF 
Temperature 

factor 
1.1 

mm d-1 

°C-1 
SWE0 

SWE-SCA 

threshold  
4 mm 

SRF in 

Global 

radiation 

factor 

0.025 
m2 mm 

W-1 d-1 
∆𝑍𝑚𝑎𝑥 

Maximum 

elevation 

difference 

1000 m 

TF 
Temperature 

factor 
0.6 

mm d-1 

°C-1 
Tsnow 

Temperature 

threshold for 

snow  

-2.5 °C 

SRF net 

Net shortwave 

radiation 

factor 

0.07 
m2 mm 

W-1 d-1 
Train 

Temperature 

threshold for 

rain  

2.5 °C 

𝑝1 
Fresh snow 

albedo 
0.8 -     

𝑝2 
Albedo decay 

parameter 
0.21 -     

Subli 

Constant 

sublimation 

rate 

0.244 mm d-1     

 Catchment-wide snow cover area  

3.2.1. Parameter sensitivity and variability  

The sensitivity of SCA model performance to the maximum elevation difference (∆𝑍𝑚𝑎𝑥) and 

SWE-SCA conversion threshold (𝑆𝑊𝐸0) was assessed using the mean daily HSS metric computed 

over the calibration period, i.e. the odd years of the 2003-2016 period (Figure 34). Generally, the 

model performance increases with model complexity, i.e. the HSS is lowest for TI and highest for 

ETIB. All four models are more sensitive to ∆Zmax than the 𝑆𝑊𝐸0 parameter. The mean optimal 

𝑆𝑊𝐸0varies between 3 mm for TI to 6 mm for ETIB, with little variations in HSS score within 

this range as well as within each model. A mean optimal 𝑆𝑊𝐸0 value of 4 mm was thus used for 

validation on even years and for further inter-model comparisons. This value is small compared to 

the 40 mm threshold used by Baba et al. (2019) and Gascoin et al. (2015) but 𝑆𝑊𝐸0 is resolution 

dependent, increasing with pixel resolution. The optimal ∆𝑍𝑚𝑎𝑥 shows more variability between 
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models, increasing with model complexity, i.e. lowest for TI and highest for ETIB. This is in fact 

to be expected from this parameter, which should also partly correct errors in ablation.  A mean 

∆𝑍𝑚𝑎𝑥of 1000m, which is within the zone of maximum performance for each model (Figure 34), 

was used for validation across models and for further inter-model comparisons.  

Table 15 summarizes the calibration and validation metrics using the optimal parameter sets of 

each model and the mean optimal parameters. Generally, HSS increases slightly with model 

complexity, where the enhanced ETI (A&B) performs slightly better than the simpler TI and HTI 

models. Choosing the multi-model average parameter set over the model-specific optimal 

parameters affects little the performance in validation (Table 15a, b). In fact, some increases in 

performance are even noted, which suggests that the model-specific values may be slightly 

overfitted and less transferable compared to the multi-model average parameters. The slight overall 

differences in performance between models suggest that, on average, all models have similar 

abilities to classify snow vs. snow-free MODIS pixels, as assessed by the HSS metric. The small 

differences could be partly attributed to the fact that performance metrics are averaged over the 

whole calibration period. Hence, inter-annual and seasonal differences in model performance are 

investigated next. 
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Figure 34: Sensitivity of model SCA simulation performance to ∆𝒁𝒎𝒂𝒙 and 𝑺𝑾𝑬𝟎 parameters. The 

model performance is assessed with the mean HSS index over the calibrated period. Optimal parameter 

values are indicated by asterisks (*). (a) TI; (b) HTI; (c) ETIA; (d) ETIB. 

Table 15: HSS index and optimal 𝑺𝑾𝑬𝟎 and ∆𝒁𝒎𝒂𝒙 parameters obtained in calibration-validation 

CALIBRATION 

Models TI HTI ETIA ETIB 

HSS 0.45 0.47 0.47 0.48 

VALIDATION 

 A- Optimal parameters sets of each model [𝑆𝑊𝐸0 (mm), ∆𝑍𝑚𝑎𝑥(m)] 

 
TI 

[3, 700] 

HTI 

[4, 900] 

ETIA 

[4, 1000] 

ETIB 

[6, 1400] 

HSS 0.46 0.47 0.47 0.47 

 B- Mean optimal parameter [𝑆𝑊𝐸0 = 4 mm, ∆𝑍𝑚𝑎𝑥 = 1000 m] 

HSS 0.45 0.47 0.47 0.48 
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3.2.2. Basin-wide SWE and SCA  

Time series of daily simulated basin-wide SWE and fractional snow cover (fSCA) show significant 

intra and inter-annual variability over the period (2003-2016) (Figure 35). The fSCA simulated by 

the four models are in good agreement overall with MODIS observations, both in terms of timing 

and magnitude. In some years, however, the simulated snow covers lasts longer than observed in 

MODIS (2004, 2007, 2008, 2009, and 2012). These years had above average basin-wide simulated 

SWE (Figure 35a), so that overestimated accumulation in the upper basin during these wetter years 

could be the cause for the longer-lasting simulated SCA. In contrast, in years with scarce snowfall 

and thinner simulated snowpack (e.g. 2011, 2013, 2014, and 2016), the agreement between 

simulated and observed fSCA is better.  

All four models show slight differences in their basin-wide fSCA and SWE predictions. Error 

metrics for the whole period (2003-2016) show that increasing model complexity slightly 

improves the correlation (r) and predictive skill (NSE) for basin-wide fSCA (Figure 35c). Both the 

root mean squared error (RMSE) and mean absolute error (MAE) also decrease with model 

complexity, but a larger bias for the ETIB model slightly increases its overall error relative to the 

ETIA model (Figure 35d). Hence, overall, the best performance is primarily observed for both 

enhanced radiative models ETIA and ETIB followed by the HTI and the classical TI models. Still, 

given the slight differences between models and the increased computational cost associated with 

enhanced radiative models, it is tempting to conclude at this point that the simplest temperature-

based TI model offers a satisfactory performance to simulate SWE for hydrological applications 

in the High Atlas range. The causes for inter-model differences in model performance and in 

simulated SWE and melt are explored in the next sections. 
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Figure 35: Time series of (a) simulated mean snow water equivalent (SWE), and (b) simulated mean 

SCA (fractional snow cover area: fSCA) of all models vs MODIS and (c) errors statistics over the entire 

period 2003-2016 in the Rheraya catchment. 

3.2.3. Seasonality 

The seasonality of the simulated SWE and fSCA was investigated to better understand seasonal 

inter-model differences (Figure 36). Models with a radiation term (HTI, ETIA, and ETIB) were 

contrasted to the classical TI model to highlight the effect of the different radiation terms to the 

simulated snow cover and model performance relative to MODIS (Figure 36d-f). The mean basin 

SWE seasonal cycle calculated over snow-covered areas only shows similar variations among 

models, particularly during the accumulation season (October-March) (Figure 36a). The mean 

simulated peak occurs in April and varies from 172 mm to 195 mm between models. Increasing 

differences between the ETI models and TI from March to May indicates increasing ablation rates 

simulated by these models relative to TI, while the HTI model differs significantly from TI only 

from May onward (Figure 36d). Maximum differences are reached at peak SWE in April for ETIA 

(-24 mm) and ETIB (-14 mm) and in June for HTI (-21 mm) (Figure 36d). When considering mean 

SWE over the whole basin surface, differences between the enhanced models and TI are more 

positive during winter and occur at different times. ETIB stands out with the largest mean peak 
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SWE of 37 mm in March, following by HTI and the other models. In contrast to the classical TI, 

all radiative models simulate higher mean basin SWE in accumulation, while ETIA and HTI 

simulate lower SWE in late spring compared to TI.  

The different seasonal behaviors in the mean basin SWE (‘SWEbasin’) and mean SWE over snow-

covered areas (‘SWESCA’) can be explained by differences in simulated SCA, since SWEbasin = 

fSCA / 100 × SWESCA. All models, except ETIB, underestimated MODIS fSCA during 

accumulation, whereas all models overestimated MODIS fSCA during the ablation period, by 

4.2% for ETIB and TI, and by 3.4% for HTI and ETIA (Figure 36c, f). This confirms the tendency 

identified in Figure 35 for wet years to have a longer-lasting snow cover simulated by all models, 

relative to MODIS. Inter-model differences show that all enhanced models simulate a larger snow 

cover than TI during the accumulation period, with ETIB being the most different and also most 

in line with MODIS, followed by HTI and ETIA. This explains the positive differences in SWEbasin 

between these models and TI during the accumulation period (Figure 36b, e). 

 

Figure 36: Seasonal cycle of mean simulated snow water equivalent (SWE) (a) over snow-covered area 

only; (b) over the whole basin; (c) mean simulated fSCA vs MODIS; (d-e) difference between radiative 

models and reference TI model for a-b panels; (f) difference between modeled and MODIS fSCA. 
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Seasonal variations in SCA model performance, as measured by the HSS index, were investigated 

over the calibration, validation, and entire period (Figure 37a-c). Globally, the HSS metric is 

highest (~0.6-0.75) during winter and spring (December-April) but decreases sharply during the 

shoulder season (Oct.-Nov. and May-June). This shows that the model performance is generally 

good during most of the snow season, but that classification errors increase when the snow cover 

is restricted in the basin. All radiative models performed better than TI especially in the 

accumulation period, with ETIB performing best, with a maximum increase in HSS of 0.05 in 

calibration and 0.03 for both the validation and entire period. The models become gradually more 

similar in late spring (May-June).  

 

Figure 37: Seasonal cycle of HSS index over (a) calibration; (b) validation; (c) entire period. Lower row: 

corresponding differences between enhanced radiative models and classical temperature index (TI) 

model. 

3.2.4. Spatial performance 

Model performance in predicting spatial variations in SCA was investigated by plotting the HSS 

metric against elevation bins (Figure 38). Overall, the HSS index increases with elevation for all 

models (Figure 38b). The mean fractional snow cover area (fSCA) also increases with elevation, 

in line with MODIS fSCA, but all models start overestimating fSCA above 3500 m (Figure 38a). 

The lowest HSS values are thus associated with the marginal and transient snow conditions found 

at the lowest elevations of the basin. Since these elevation areas represent a large share of the basin 
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hypsometry (Figure 38a), the increased classification errors in these areas have a large influence 

on the basin-wide and time-averaged performance metrics displayed in Figure 29 and Table 15  

All enhanced models perform generally better than TI, although the gains in performance remain 

overall small (c-e). Elevation trends also differ between the radiative models. ETIB performs best, 

but the improvement is most pronounced at lower elevations (Z<3000m), which represent a large 

portion of the total basin but where there is less snow present throughout the year (Figure 38a). At 

high elevations (Z>3000m) where mean SCA is above 30%, the gain in performance becomes 

more marginal for ETIB, while it is somewhat more pronounced for HTI and ETIA. While the 

bulk of the elevation bands show increased performance relative to TI, a small portion of grid 

points, in some cases up to ~20% (left side of boxes in Figure 38 boxplots), suffered increased 

errors relative to TI. 

 

Figure 38: (a) Distribution of mean SCA per elevation range, and hypsometric curve at 100 m. (b) 

Median of HSS index of all models per elevation, (c, d, and e) HSS differences between radiative and 

classical model per elevation range over Rheraya basin. 

Further insights into the performance behavior between models can be obtained by looking at 

classification success (TPR, TNR) and error (FPR, FNR) rates by altitude (Figure 39). Overall, 

TPR increases with elevation, reaching a maximum value of ~0.9 around 3600 m. (Figure 39, row 

1). The enhanced models better classify snow presence than TI in the more transient snow zones 

(~1500-3200m), with ETIB clearly performing best. The improvement for HTI is small but rather 

consistent with altitude, whereas ETIA shows more variations with even losses in performance in 

the highest and lowest altitudes relative to TI. Opposite to TPR, the true negative rate (TNR) 

decreases with altitude. Both ETI models show the largest deviations with TI, but decreased 
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accuracy is seen at medium elevations, especially for ETIB (Figure 39, row 2). The elevation 

profile of the FPR error rate shows that all models tend to over predict snow presence towards 

higher altitudes (Figure 39, rows 3). Conversely, models rarely overpredict snow-free conditions 

at high elevations, but do so at the lower altitudes (Figure 39, rows 4). Enhanced models can be 

seen to reduce both the FPR and FNR errors on average, but large scatter occurs within elevation 

bands. The clearer improvement relative to TI is the decreased FNR error for ETIB (Figure 39 d, 

rows 4).  

 

Figure 39: SCA classification errors per elevation range in the Rheraya watershed; 1st row: true positive 

rate (TPR); 2nd row: true negative rate (TNR); 3rd row: false positive rate (FPR); 4th row: false negative 

rate. (a) Median error rate; (b, c, and d) differences between radiative and classical TI model. 
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3.2.5. Snow cover duration (SCD) 

The simulated snow cover duration (SCD) was also compared to the observed SCD from MODIS 

(Figure 40) during calibration (odd years) and validation (even years). The radiative models that 

include global radiation (ETIA) and albedo (ETIB), slightly outperform (r = 0.96, RMSE = 17 

days) the HTI and TI models (r = 0.95, RMSE = 18-19 days) in validation. Overall ETIB performed 

best, with the lowest RMSE in calibration and in validation (equal to ETIA) and lower bias in 

validation. However, differences between models do no stand out clearly for SCD, despite 

significant spatial differences in SCA predictions and errors between models (Figure 38, Figure 

39).  

 

Figure 40: Annual average simulated snow cover duration (SCD) vs MODIS SCD during calibration 

(light blue) and validation (dark blue), with statistic errors for all model (a) TI; (b) HTI; (c) ETIA; (d) 

ETIB.  
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4. Discussion and conclusion 

 Difference in model performance 

The enhanced radiative models, especially ETIB, showed increased performance relative to the 

simplest TI model for predicting basin wide SCA over time (Figure 35). In particular, the peak 

SCA in February was notably better simulated by the ETIB model compared to the other models 

(Figure 36c). However, overall differences in model performance were small. More contrasts 

between models were found in their ability to simulate the spatial heterogeneity of the snow cover. 

While all radiative models improved SCA predictions, the ETIB model showed the most 

improvement, with the largest gains in performance at mid to low elevations (Figure 38). The 

increasing FPR and decreasing FNR with elevations suggest that there may be a persistent 

elevation bias in the simulated SCA (Figure 39), which is partly alleviated by radiative models, in 

particular ETIB. This suggests that increasing global radiation with altitude (due to higher 

atmospheric transmissivity) and the consideration of snow albedo result in steeper ablation 

elevation profiles relative to temperature-only melt calculations with the TI model. However, the 

remaining elevation trends in the error rates point to lingering problems with the distribution of 

precipitation in the basin.  

The distribution of precipitation in mountainous areas is challenging (Gottardi et al. 2012, 

Grünewald et al. 2014, Nepal et al. 2014), especially in a data-scarce region such as the High Atlas 

Range. The exclusion of two high elevation stations with unreliable unheated tipping bucket 

gauges left us to rely heavily on the CAF station to extrapolate precipitations to higher elevations. 

While reliable, this station is located near the basin boundary and its elevation (2612 m) is low 

compared to the considerable amount of snow-covered terrain higher up (Figure 38a). 

Furthermore, the precipitation lapse rate calculated using the available stations up to 2612 m was 

found to be poorly defined due to the large spatial and temporal heterogeneity of observed 

precipitation, which prompted the decision to use a single and constant non-linear lapse rate 

calibrated on positive SWE changes at the Oukaimeden station (3230 m). The use of a calibrated 

maximum difference elevation (∆𝑍𝑚𝑎𝑥) to limit the vertical extrapolation of precipitation may 

have limited the errors associated with this approach, but better spatially-distributed precipitation 

fields would be needed in the future to improve snow simulations for hydrological model 

applications. Outputs from numerical weather models are increasingly used for this purpose, but 
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are still problematic for precipitation (Bellaire et al. 2011, Réveillet et al. 2020). Scaling 

precipitation inputs by measured snow distributions is another promising approach but requires 

costly airborne surveys to acquire reliable snow depth maps (Vögeli et al. 2016). Progresses in 

mapping snow depth from high-resolution stereoscopic satellite images could however open new 

avenues on this front (Marti et al. 2016). Assimilation of snow cover maps within snow models 

can also help reducing precipitations biases, but increases computation costs (Margulis et al. 2016, 

Baba et al. 2018).  

Our results show that most of the snow cover variability is driven by elevation and that this trend 

was adequately captured by all four models (Figure 38). Hence the simple TI model could be 

sufficient for melt simulations at the basin scale, due to the strong dependence of temperature and 

related melt rates on elevation, as found elsewhere (e.g. Vincent 2002, Hock 2003, Réveillet et al. 

2017). The enhanced radiative models improved the snow cover simulations, but given their 

significant extra computational cost, our results suggest that the simpler TI is adequate for 

operational snow simulations in the high Atlas Range. This contrasts previous studies that showed 

that including solar radiation improves the performance of spatially-distributed melt models for 

predictions of glacier mass balance (Gabbi et al. 2014), snow cover area (Follum et al. 2015), and 

streamflow from snow-fed basins (Brubaker et al. 1996, Follum et al. 2019). On the other hand, 

the use of a fully distributed (grid-based) model improved the simulations of SCA relative to semi-

distributed temperature index models previously applied in this basin (Boudhar et al. 2009). 

Despite the overall good performance for the simple TI model, enhanced models still explained 

more variability in SCA per elevation band, but with notable discrepancies among models (Figure 

38). To better understand these discrepancies, the simulated SWE and melt rates were compared 

by elevation band (Figure 41). The HTI model shows the smallest difference relative to TI, in line 

with its more similar performance in SCA simulations. This can be attributed to the fact that HTI 

only considers the potential clear-sky radiation and thus ignores temporal variations in atmospheric 

transmissivity and albedo. Both ETI models show significant differences in simulated SWE (c, d) 

and melt rates (Figure 41g, h) relative to TI. The best performing ETIB model simulates smaller 

melt rates and larger SWE at middle elevations (2000-3500 m), and higher melt rates and smaller 

SWE at the highest elevations (>3500 m). Interestingly, median differences in SWE and melt rates 

per elevation band are rather small, which again shows that the preponderant influence of elevation 

on the simulated SWE is well captured by the simple TI model. However, significant deviations 
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occur, up to ca. ±20 mm for SWE and ca. ±1 mm d-1 for melt rates (Figure 41c-d, g-h). Even more 

interesting is the fact that these significant differences in melt rates and SWE do not result in larger 

inter-model differences in SCA simulations. On the one hand, this shows the general limitation of 

using satellite SCA to validate and compare model performance for SWE simulations. On the other 

hand, it also points to possible adverse effect of using coarse resolution products such as MODIS 

for validation of higher-resolution models. This topic is discussed in detail next. 

 

Figure 41: SWE and melt per elevation band in the Rheraya catchment. (a) Median SWE for all models; 

(b-d) SWE differences between radiative and classical TI model; (e) median melt rate for all models; (f-

h) melt differences between radiative and TI model 

 Effect of spatial resolution on SCA validation 

In order to compare the simulated SCA with MODIS, the modeled SCA was aggregated from 100 

m to the 500 m resolution of MODIS (Figure 31). This has the potential to suppress significant 

spatial variability in the finer (100 m) scale simulated SCA. To explore this, the snow cover 

duration (SCD, equal to mean SCA × 365 days) modeled at the original 100 m resolution was 

compared to that aggregated at 500 m resolution (Figure 42). While the overall elevation trends 

remain unchanged, the aggregation of SCA from 100 m to 500 m results in significant changes in 

SCA at some elevations, especially for the ETI models (Figure 42c-d vs. g-h). The simulated 

median SCD elevation profiles at 500 m resolution are not as smooth as the original ones at 100 
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m (Figure 42a vs. e). This is explained by the considerable smoothing of SCA variability related 

to slope and aspect variations at scales finer than 500 m, as seen by the considerable noise in the 

median northern exposure index profile for the 500 m aggregated vs. original 100 m DEM (Figure 

42a vs. e). This loss, upon aggregation, of topographic-induced SCA variability simulated by the 

radiative models can partly explain why the SCD simulated at 500 m by the different models give 

overall similar results compared to MODIS (Figure 40, Figure 42i-l). 

The smoothing effect of model aggregation is particularly evident when plotting modeled 

quantities (SWE, melt rates, and SCD) by aspect (Figure 43). At the original 100 m model 

resolution, all radiative models expectedly simulate smaller melt rates and larger SWE on northern 

slopes, and vice-versa on southern slopes (Figure 43a, b), which results in longer-lasting snow on 

northern slopes compared to TI (Figure 43c). This is in line with previous studies (e.g. López-

Moreno and Stähli 2008, Comola et al. 2015, Baba et al. 2019) which found that south-facing 

slopes receive more solar radiation and generally melts faster than on north-facing slopes. 

Aggregation of simulated SCA to 500 m results in significant disruption of this pattern (Figure 

43d), which can be attributed to changes in the distribution of slopes and aspects following 

aggregation (Figure 43e). These results corroborate previous conclusions made by Baba et al. 

(2019) concerning the influence of DEM resolution on the simulation of snow cover. Using the 

physically-based model SnowModel (Liston and Elder 2006), they found a significant degradation 

of model performance when aggregating the model DEM to resolutions of 500 m and beyond, 

which disrupted the representation of slopes in the basin and affected solar radiation variability. 

Our results can be put in the context of the findings by Comola et al. (2015), who showed that the 

effects of solar radiation patterns on the hydrologic response of snow-covered basins are scale 

dependent, i.e., significant at small scales with predominant aspects and weak at larger scales 

where aspects become uncorrelated and orientation differences average out. These authors further 

found that a calibrated TI model on scales larger than the aspect correlation scale are well 

transferable. Their conclusions find support in our results:  

(i) The inclusion of radiation patterns in the large Rheraya catchment has a small influence 

overall on basin-wide simulated average SWE and SCA compared to the reference TI 

model. 
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(ii) The influence of solar radiation on simulated SWE and melt rates is greatly suppressed 

when aggregating model outputs to MODIS resolution of 500 m, which smooths out 

radiation effects and brings the radiative models closer to simulations made with a simple 

temperature-based (TI) model.  

Hence, our results support the notion that in large basins (i.e. larger than the correlation length 

of the terrain), topographic-induced variations in solar radiation tend to average out so that 

mean simulated melt rates, SWE and SCA do not differ greatly from using temperature alone 

to predict snowmelt. A more uniform distribution of slope aspects in a basin, such as observed 

here for Rheraya (cf. Figure 43), will reinforce this phenomenon. In the context of operational 

flow forecasting in the High Atlas Range, simple temperature index models could thus provide 

sufficiently accurate snowmelt estimates.  

 

Figure 42: Snow cover duration (SCD) per elevation band in the Rheraya catchment. (a) Median SCD 

and DEM median northern exposure index at 100 m resolution; (b, c, and d) SCD differences between 

radiative and classical model at 100 m. (e-h): same as (a-b) but SCD is aggregated from 100 m to 500 m 

and the northern exposure index (‘NS index’) is calculated on a DEM aggregated from 100 m to 500 m. 

(i-l) Differences between each model 500 m SCA and MODIS. 
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Figure 43: Mean SWE, melt rate, and snow cover duration (SCD) by aspect. (a) Mean SWE (mm); (b) 

melt rate (mm d-1); (c) SCD (days) at 100 m resolution; (d) SCD (days) at 500 m resolution and (e) DEM 

aspect at 100 and 500 m resolution. 
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 CONCLUSIONS AND PERSPECTIVES  

1. Conclusions 

This research highlighted the importance of understanding and quantifying snow contribution to 

catchment hydrology in the Moroccan High Atlas Mountains. There is therefore a need to better 

estimate snowmelt component contribution to runoff. In this context, modeling snowmelt and 

snow water equivalent (SWE) provides important and useful guidance for water managers and 

decisions maker in these mountainous areas, especially in a limited data availability context.  

In this sense, four empirical snowmelt models were tested and compared to simulate snowmelt and 

snow water equivalent (SWE) at both scales: (i) local at ‘Oukaimeden-SM’ station and (ii) spatial 

at ‘Rheraya’ basin in High Atlas Mountain. These empirical models used for snowmelt provides 

simplified process representations with lower data requirements. They are tested grow in 

complexity and physical realism from the simple, one-parameter TI model to the two-parameter 

ETI models while conserving a parsimonious data requirement, which is crucial for applications 

in the High Atlas.  

The model performance was tested first at local scale by simulating snowmelt and snow water 

equivalent (SWE) at Oukaimeden-SM AWS. Due to the lack of long-term meteorological data, 

especially shortwave radiation and albedo, simple parameterizations were developed to represent 

these variables in the snowmelt models. The four models were subjected to different cross 

calibration-validation methods over the 2003–2010 period, and the parameter sensitivity and 

model transferability over time were assessed. The main results suggest: (i) when calibrated on a 

yearly basis, all models performed well (NSE > 0.93) in calibration mode, but the enhanced 

additive models performed better in validation mode (NSE = 0.68–0.74) than the TI and HTI 

models (NSE = 0.56) and were thus deemed to be better transferable over time. (ii) The leave-one-

year-out cross-validation procedure showed that models are more transferable when calibrated on 

a longer period that includes some inter-annual climate variability; all models performed well in 

validation mode (NSE = 0.78–0.82), with the ETI-B model (NSE = 0.82) only slightly 

outperforming the simpler TI model (NSE = 0.81). Hence, temporal variations in snowmelt could 

be adequately reproduced when sufficiently long periods are available for calibration of the TI 
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model. (iii) Notable annual variations were found in yearly-calibrated model parameters and only 

marginal connections emerged between yearly-calibrated parameters and climate conditions. 

While the short period (5 years) inherently precludes a more conclusive analysis, it is suggested 

that the collinearity of air temperature and solar radiation are responsible for much of this 

variability; fitting collinear variables on observations affected by measurement uncertainties will 

cause large variations in calibrated parameters. This collinearity causes parameters to compensate 

each other and gives rise to equifinality between the temperature and radiation-based factors. This 

same equifinality may explain why different yearly-calibrated parameter combinations yield 

acceptable performance when transferred to other years. Despite the highlighted equifinality 

phenomenon, the ETI-B model stands out as the best model overall. While its performance was 

only marginally superior to the simple TI model when calibrated on multiyear intervals, it 

performed better than other models when calibrated on short (1-year) intervals.  

At basin scale, a benchmark of the performance of enhanced models (ETI) including different 

treatments of solar radiation, relative to the reference temperature-index (TI) model to simulate 

spatially-distributed snowmelt, snow water equivalent (SWE), and snow cover area (SCA) within 

the Rheraya basin. A spatial distribution of forcing in-situ data used at local scale was done over 

Rheraya through an optimal spatialization methods (coupling Barnes objective scheme with lapse 

rate); the merge of both MODIS SCA products (Terra and Aqua) for model validation and, (e) the 

sensibility analysis of SWE-SCA conversion threshold. The main results show: (i) most of the 

snow cover variability is driven by elevation and that this trend was adequately captured by all 

four models. Hence the simple TI model could be sufficient for melt simulations at the basin scale, 

due to the strong dependence of temperature and related melt rates on elevation. The enhanced 

radiative models (ETI) improved the snow cover simulations, but given their significant extra 

computational cost, our results suggest that the simpler TI is adequate for operational snow 

simulations in the high Atlas Range. (ii) The inclusion of radiation patterns in the large Rheraya 

catchment has a small influence overall on basin-wide simulated average SWE and SCA. (iii) The 

influence of solar radiation on simulated SWE and melt rates is greatly suppressed when 

aggregating model outputs to MODIS resolution of 500 m, which smooths out radiation effects 

and brings the radiative models closer to simulations made with a simple temperature-based (TI) 

model. Our results support also the notion that in large basins (i.e. larger than the correlation length 

of the terrain), topographic-induced variations in solar radiation tend to average out so that mean 
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simulated melt rates, SWE and SCA do not differ greatly from using temperature alone to predict 

snowmelt. A more uniform distribution of slope aspects in a basin, such as observed here for 

Rheraya, will reinforce this phenomenon. In the context of operational flow forecasting in the High 

Atlas Range, simple temperature index models will thus provide sufficiently accurate snowmelt 

estimates. 

This thesis underlined the importance of the available, longer, and higher quality data series at 

remote sites. In addition, it emphasizes the importance of the calibration period as a key in model 

parameters transferability over time. On the other hand, this dissertation outline that the simple TI 

model would be sufficient and adequate for operational snowmelt simulations at both local and 

spatial scale in High Atlas. Regarding remote sensing data, our findings call for caution when 

using medium resolution satellite products such as MODIS to validate spatially distributed snow 

models. The necessary aggregation of finer-scale model outputs to a resolution larger than key 

processes scales, such as that where interactions between topography and solar radiation are 

greatest, will suppress valid model information. According to our results, we suggest, in future 

studies, the use of other satellite data with higher resolution such as Landsat images which can 

provide more detailed snow observations to present more comprehensive evaluation and validation 

of the physical process of snow such as melt and SWE. 

2. Perspectives  

Some elements were not addressed in the framework of this Ph.D. thesis and several research 

perspectives can be proposed. The perspectives encompass the following aspects:  

1.  Due to the lack of in-situ data, particularly precipitation, the observed snow accumulation 

was derived from a previously estimated SWE, to force the models instead of measured 

precipitation, which introduces uncertainties to the snowmelt models. Therefore, there is a 

need to reinforce the network station in High Atlas Range, to better monitor, examine and 

ensure observation records, to avoid unreliable records and for better use in the outcoming 

projects. 

2. Further investigation on the impact of the collinearity and transferability of melt model 

parameters is warranted, hopefully at sites with longer and higher quality data series. 
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3.  The enhanced temperature index model that includes albedo (ETIB) was performed with 

parametrized albedo in this study. However, MODIS albedo was also investigated and 

tested, but not included. This is partly because, the snow albedo obtained from MCD43A3 

product was found to exhibit low values, with a maximum of only 0.7 in winter over the 

entire Rheraya area. Considering the high albedo of fresh snow, between 0.75 and 0.98, 

this underestimation could be attributed to the contamination of land surfaces within mixed 

snow and land pixel. Further investigation of the unmixing issue is therefore required to 

incorporate MODIS Albedo into the ETI model. 

4. The increasing availability of publicly available high-resolution snow cover maps imagery 

should progressively reduce our dependence on MODIS snow cover products and help 

crash-testing high-resolution snow models in the future. 

5. The impact of including solar radiation patterns in snowmelt calculation on streamflow 

simulations should be investigated in a future study. 
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 APPENDIX  

 

Figure 44: Inter-annual mean monthly meteorological variables available in all stations at Rheraya 

watershed starting from 2001 to 2016 

 

 

Figure 45: Daily mean variability of simulated SWE and SCA over all the period 2003-2016 in 

Rheraya 
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Figure 46: Rates of confusion matrix per elevation range in Rheraya watershed. TPR (True positive 

rate), TNR (true positive rate), FPR (false positive rate) FNR (false-negative rate). (a) TI, (b) HTI, (c) 

ETI-A, and (d) ETI-B model. 



Appendix  

 

115 

 

Figure 47: Global classification metrics assessing spatial model performances over Rheraya basin 

 

 

Figure 48: Global classification metrics assessing spatial model performances over higher elevation 

(Z>2500m) in Rheraya basin 
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Table 16: Instrumentation at the OukaimdenSM weather station and their specifications (2003–2010) given by (Boudhar et al. 2016) 

Quantity Instrument type Measurement range Period  

Air temperature, (°C)  Vaissala HMP45C (-40°C to 60°C) 2003-2010 

Humidity, (%) Vaissala HM45C 0% to 100% 2003-2010 

Rain, (mm) Pluviometer TE525WS-L 
Infinite in increments of tip (least count) 

of rainfall. 
2003-2010 

Precipitation, (mm) Geonor T-200B 600 mm 2009-2010 

SWR INCI , (W m-2) CNR1 Kipp & Zonen 0.305< λ <2.8 µm 2009-2010 

SWR REFL, (W m-2) CNR1 Kipp & Zonen 0.305< λ <2.8 µm 2009-2010 

LWR INCI, (W m-2) CNR1 Kipp & Zonen 5< λ < 50 µm 2009-2010 

LWR REFL, (W m-2) CNR1 Kipp & Zonen 5< λ < 50 µm 2009-2010 

Snow depth, (cm) Sonic CR50 0.5 to 10 m 2003-2010 

SWR INCI, (W m-2) Pyranometer Skye 0.4 < λ <1.1 µm 2003-2009 

SWR REFL, (W m-2) Pyranometer Skye 
0.4 < λ <1.1 µm 

2004-2005;  

2008-2009 

Surface temperature 

(°C) 

SI-111 Infrared 

Radiometer  
(-40°C to 70°C) 

2008-2009 

Wind speed (m s-1) Anémomètre A100R 0-45 m s-1 2003-2009 
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Table 17: All climatic parameters recorded in Rheraya weather stations 

Stations Sensors Parameters Availability 
Pas de 

temps 
Type 

Elevation 

(m) 
X Y 

Aremd  

Aremd_M_ITair_(°C) Température 

From 21/01/2003 to 25/12/2016 30 min AWS 1940 259296 61946 

Aremd_M_IRg_(W/m2) Rayonnement global 

Aremd_M_IHr_(%) Humidité relative 

Aremd_M_IDv_(°) Direction du vent 

Aremd_M_IVv_(m/s) Vitesse du vent  

Aremd_P_IP30m_(mm) Pluie 30 minutes 

Asni Asni_P_IP30m_(mm) Pluie 30 minutes From 07/01/2004 to 10/01/2017 30 min 
pluviograph

e 
1170 254025 75869 

Imskerbour 

Imskerbour_M_ITair_(°C) Température 

From 10/05/2007 to 27/04/2016 30 min 
pluviograph

e + T+HR 
1404 257883 70991 Imskerbour_M_IHr_(%) Humidité relative 

Imskerbour_P_IP30m_(mm) Pluie 30 minutes 

Neltner 

Neltner_M_IDv_(°) Direction du vent 

From 27/07/2007 to 29/10/2016 30 min 
pluviograph

e + T+HR 
3207 

257543 

 
55355 

Neltner_M_IHr_(%) Humidité relative 

Neltner_M_ITair_(°C) Température 

Neltner_M_IVv_(m/s) Vitesse du vent  

Neltner_P_IGecm_(mm) Précipitations géonor en cm 

Neltner_P_IP30m_(mm) Pluie 30 minutes 

Oukaimeden

-SM 

Oukaimeden_M_IDv_(°) Direction du vent 

From 04/11/2009 to 06/12/2016 30 min AWS 3230 264837 68057 

Oukaimeden_M_IG3d_(W/m2) 
Longue longueur d'onde réfléchie 

non corrigé 

Oukaimeden_M_IG3dc_(W/m2) 
Longue longueur d'onde réfléchie 

corrigé 

Oukaimeden_M_IG3u_(W/m2) 
Longue longueur d'onde incidente 

non corrigée 

Oukaimeden_M_IG3uc_(W/m2) 
Longue longueur d'onde incidente 

corrigé 

Oukaimeden_M_IHr_(%) Humidité relative 

Oukaimeden_M_IM3d_(W/m2) courte longueur d'onde réfléchie 

Oukaimeden_M_IM3u_(W/m2) Courte longueur d'onde incidente 

Oukaimeden_M_IRg_(W/m2) Rayonnement global 
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Oukaimeden_M_ISav_(m) Hauteur de neige moyenne 

Oukaimeden_M_ITair_(°C) Température 

Oukaimeden_M_Ivmx_(m/s) Direction du vent max 

Oukaimeden_M_IVv_(m/s) Vitesse du vent 

Oukaimeden_P_IGecm_(mm) Précipitations géonor en cm 

Oukaimeden_P_IGemm_(mm) Précipitations géonor en mm 

Oukaimeden_P_IP30m_(mm) Pluie 30 minutes 

Tachedert 

Tachedert_P_IP30m_(mm) Pluie 30 minutes 

From 12/05/2007 to 03/07/2016 30 min 
pluviograph

e + T+HR 
2343 266678 65228 Tachedert_M_ITair_(°C) Température 

Tachedert_M_IHr_(%) Humidité relative 

Tamatarte Tamatarte_Pluie H(mm) Pluie horaire (1heure) From 13/10/2012 to 03/07/2016 1heure Pluviomètre 1924 261029 63911 

Matate Matate_Pluie_H(mm) Pluie horaire (1heure) From 12/10/2012 to 13/10/2015 1heure Pluviomètre 1825 257242 65656 

Tahnaout 
Tahanaout_P_JABHT(mm) Pluie journalière (1 jour) From 01/09/1971 to 31/12/2009 1 jour Pluviomètre 

1064 255900 80400 
Tahanaout_D_JABHT(m3/s) Débit journalière (1 jour) From 01/03/1962 to 31/08/2009 1 jour Débimètre 

CAF 

Température journalière(°C) Température maximale (1 jour) From 10/03/1988 to 05/12/2009 1 jour 

pluviograph

e + T 
2612 265309 70830 

Température journalière min (°C Température minimale (1 jour) From 10/03/1988 to 05/12/2009  1 jour 

Neige équivalent eau 

journalier_(mm) 
Neige (mm) (1 jour) From 10/03/1988 to 15/06/2011  1 jour 

Pluie journalière_(mm) Pluie journalière (1 jour) From 10/03/1988 to 15/06/2011   1 jour 
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