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ABSTRACT

Stochastic differential equation models with random effects are increasingly used in

the biomedical fields and have proved to be adequate tools for the study of repeated mea-

surements collected on series of subjects. These models allow the quantification of both

between and within subject variation. Performing parametric inference for such models,

using discrete (or continuous) time data, is a challenging problem for two reasons: First,

the state likelihood is a product of transition densities which are rarely known. Second,

the marginalization required to construct this likelihood is an (often multidimensional)

integral, which rarely has a closed-form solution.

We provide a class of estimators for Stochastic differential equations (SDE’s) with

random effects and examine their asymptotic behaviour. We are concerned with SDE’s

with nonlinear drift and generalized random effects, for which a simulation study is given

to highlight the performance of the proposed estimators. We extend the existing results

of statistical inference for random effects models to include the SDE’s with random effects

driven by fractional Brownian motion (fBm). The incorporation of the fBm within our

models is of great interest, since it accounts for dependency of increments of the noisy

term. This is the case of long-memory phenomena arising in variety of different scientific

fields, including hydrology, biology, medicine, economics and traffic network. We consider

linear fractional stochastic differential equations with random effects, provide estimators

of the common density of random effects, and examine their asymptotic properties. Two

types of estimators are considered: kernel density estimators and histogram estimators.

Most of our results are illustrated by relevant examples.
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ABBREVIATIONS, NOTATIONS AND SYMBOLS

ABBREVIATIONS

RHS Right hand side

LHS Left hand side

REM Random effects models

ODE Ordinary differential equation

SDE Stochastic differential equation

MLE Maximum likelihood estimator

FSDE Fractional stochastic differential equation

O-U Ornstein-Uhlenbeck

Bm Brownian motion

fBm Fractional Brownian motion

r.v Random variable

i.i.d Independent and identically distributed

w.r.t With respect to

BDG Burkholder-Davis-Gundy

GL Globally Lipschitz

LL Locally Lipschitz

Std. dev. Standard deviation
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NOTATIONS AND SYMBOLS

a∧ b, a∨ b min{a, b}, max{a, b}

Ω, F , B Sample space, σ-field and Borel σ-field

σ(F ), (F t) σ-field generated by the set F and the filtration

P, E, Var, Cov Probability measure, expectation, variance and covariance

χA Indicator function of the set A

supp g support of the function g

Lp(R), Lp([a, b]), Lp(Ω) Spaces of p-integrable functions

L2(P), L2(dν(ϕ)) Spaces of square integrable functions w.r.t the measures P and

ν, respectively

Cλ(E) Space of Holder continuous functions on E with exponent λ

Ck
b (E) Space of k-times continuously differentiable functions with bounded deriva-

tives

Br(x) The closed ball centered at x with radius r

‖g‖, ‖g‖p Euclidian norm and Lp-norm of the function g

g⊗n The nth power tensor of the function g

N (µ,σ2), B(k, θ) Normal and Beta distributions

N ∗(β,L) Nikol’ski class of functions

o(·), O(·), oP (·), OP (·) Usual and stochastic order symbols

L
=⇒ Convergence in law

P−as
=⇒ Convergence almost surely (under P)

P
=⇒ Convergence in probability (under P)

−→ Simple convergence

�, ∼ Absolute continuity and equivalence of measures
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... Smaller than up to a nonnegative constant

dµ

dν
The Radon-Nikodym derivative of the measure µ w.r.t measure ν

∂

∂x
Partial derivative operator

< X >, < X,Y > Quadratic variation process of X and Cross-variation of X

and Y

M ′, M−1 The transpose of the matrix M and its inverse
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CHAPTER 1

INTRODUCTION

Throughout history, interest has lain in understanding and modelling the dynamics

of systems evolving through time. Instances include (but are not limited to) the growth

of populations, the interactions between certain species, the spread of epidemics and more

recently, intra-cellular processes. Initially the dynamics of these systems were captured

through the use of ordinary differential equations (ODE’s); for example, Kermack and

McKendrick [62] describe the spread of a disease through a population using three ODEs.

These three ODE’s model the changes in the number of individuals who are Susceptible

(those who could catch the disease), Infectious (those who have the disease) and Recovered

(those who no longer have the disease). This model is known as the SIR model. However,

the evolution of these systems is not entirely predictable and is subject to random varia-

tion. The deterministic nature of the ODE description is unable to capture this random

variation and so has proved to be an unsatisfactory means through which to capture the

true dynamics of such systems. Hence an alternative modelling framework is required,

which can account for random behaviour. There are two types of randomness which may

be considered in the system:

Intrinsic noise, the unexplained variability within the system itself, such as fluctua-

tions in blood pressure, metabolic processes, or varying stress levels. This type of noise can

be substantial in biomedical data, because the underlying data generating process is often

too complex to be modeled exactly or is not understood well enough. Such internal random

fluctuations can be accounted for by including stochasticity in the dynamical model itself.

Accounting for this kind of randomness extend the ODE’s to stochastic differential equa-

tions (SDE’s). A system where the introduction of intrinsic noise appears fundamental is

the stock market, specifically the pricing of options and shares. Black and Scholes [14] and

Merton [78] developed a framework for the fair pricing of options. SDEs consist of both a

deterministic and stochastic part, and capture the dynamics of a system through a solution

which fluctuates around the deterministic solution. However, it should be noted that the

mean of the stochastic solution is not the ODE solution. Some application areas and in-

dicative references where SDEs have been used include finance [23, 12, 18, 59, 106], systems

biology [49, 43, 65, 45, 40, 48], population dynamics [47, 53], physics [114, 96, 111], medicine

[115, 44, 16], epidemics [24, 3, 51], biology [72], epidemiology [8, 17, 4], genetics [41, 108]

and traffic control [76]. The solution of an SDE gives a continuous-time, continuous-valued

stochastic process typically referred to as a diffusion process.
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Inter-subject fluctuation, that is, the unexplained systematic differences of data

dynamics between subjects. Individuals share an overall model structure, or base model,

but the values of the model parameters differ between subjects. Parts of that inter-subject

variability can generally be captured by including subject-specific covariate information in

the model, such as adjustments for gender, age, body weight or treatment group. However,

due to the sheer complexity of real systems, a certain amount of unexplained inter-subject

variations will remain. The common way to account for them is by imposing random effects

on some (or all) parameters. Models that contain both fixed (parameters that are the

same across subjects) and random effects are known as mixed-effects models [103, 70, 91].

Accounting only for this kind of randomness leads to ODE’s with random effects.

Ordinary differential equations with random effects have frequently been applied to

model biomedical data, [97, 58]. Their formulation is intuitive, the random effects capture

inter-individual deviations from the population dynamics, and todays computational power

renders parameter estimation feasible. Well-known applications of this model framework

are pharmacokinetic compartment models [109, 71], which are used to describe the flow of

a substance between multiple spatially separated entities (different organs in the human

body). Biological systems are, however, incredibly complex. Their variability is driven by

the interplay of numerous internal (genetic variations, metabolic fluctuations, etc.) and

external factors (stress factors, room temperature, time of day, etc.). The bulk of them can

not be measured directly, or can not be included in the model, because it would prohibitively

scale up the models complexity. However, ignoring those inadequacies or uncertainties in

the model structure lead, if they are substantial, to biased estimates and false inference

[30]. In those cases one can achieve a more robust estimation by considering SDE’s with

random effects. The certainly powerful merging of random effects and SDE’s into one single

model comes with a considerable challenge for inference based on the data likelihood: its

intractability. This now has two sources. First of all, the state likelihood is a product of

transition densities which are generally unknown. But even if the transition densities are

known, this likelihood has to be marginalized over the distribution of the random effects,

because the random effects are practically not observed. Second, the marginalization is

an (often multidimensional) integral, which rarely has a closed-form solution. This makes

explicit likelihood inference impossible and leaves many research opportunities for finding

well-performing numerical or analytical approximation techniques. In fact, numerous ways

of tackling this challenge have been explored.

Methods to overcome this difficulty have been proposed, including simulated maximum

likelihood estimation [88, 32], closed-form expansion of the transition density [2, 1, 89,
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106, 90], exact simulation approaches [11, 10, 9, 102] and Bayesian imputation approaches

[35, 39, 98, 49, 107, 66, 100]. The latter method replaces an intractable transition density

with a first order Euler-Maruyama approximation, and uses data augmentation to limit

the discretisation error incurred by the approximation. Whilst exact algorithms that avoid

discretisation error are appealing, they are limited to diffusions which can be transformed

to have unit diffusion coefficient, known as reducible diffusions. On the other hand, the

Bayesian imputation approach has received much attention in the recent literature due to

its wide applicability.

The MLE is usually used to make inference for unknown parameters, since it has a

number of desirable properties, such as consistency, asymptotic normality and efficiency.

However, as appealing the properties of the MLE may be, it comes with the challenge of an

often intractable likelihood. This is the case of nonlinear mixed effects models, where nu-

merical approximations are required (Solving the Kolmogorov forward equations, Gaussian

approximations, Hermite expansion, etc.). For theoretical properties of the MLE in the

context of mixed effects models, rigorous proofs are less available. the main contribution

to our knowledge is due to Nie and Yang[83, 82, 81]. The authors provide the consis-

tency result under several asymptotic frameworks, depending on whether the number of

subjects and/or the number of observations per subject goes to infinity. As starting point,

we consider SDE’s with generalized random effects and study the asymptotic behaviour of

the MLE. Then, we provide statistical methods that permit inference for a class of linear

FSDE’s with random effects. The asymptotic behaviour of our proposed estimators is ex-

amined, when the common density of random effects belongs to a class of functions which

may not be parametrized. Our results are illustrated by numerical examples.

Outline of thesis :

In the following we outline the subsequent chapters contained within this thesis. Chapter

2 provides preliminary results about stochastic calculus: Itô Calculus and Wiener Integrals

w.r.t the fBm. Chapter 3 is devoted to the literature review about random-effects models,

which are the main subject of our thesis. A general model gathering specific cases treated

separately in Chapter 4 & 5 is presented. This chapter contains also some auxiliary results

(of great interest) used systematically in Chapter 4 to establish the asymptotic behaviour of

our estimators. In Chapter 4 we discuss the problem of parametric estimation for diffusion

processes with generalized random effects. This chapter is split into two sections. Section

4.1 provides a class of estimators of the population parameters, which satisfy the consistency

and the asymptotic normality; while Section 4.2 is devoted to weakening the imposed

assumptions. An expasion of the likelihood function is established for this purpose.
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A class of linear FSDE’s with random effects is presented in Chapter 5. We distinguish

two problems of inference: parametric estimation in Section 5.2 and non parametric estima-

tion in Sections 5.3-5.4; while Section 5.1 presents the general model considered within this

chapter. The asymptotic behaviour of our estimators is studied in detail for both types of

inference. We initially discuss the challenging problem of constructing the likelihood. The

main obstacle is the non Markovian and nonsemimartingale nature of the fBm. Thus the

classical techniques used in Chapter 4 are not applicable. However, we consider a simple

model that is of great interest in finance, and derive explicit estimators of random effects

parameters. Our results and numerical simulations for this model are given in Section

5.2. In Section 5.3 we provide estimators of the commun density f of random effects, for

which we study the Lp-risk (p = 1, or 2). Two types of estimators are considered: kernel

density estimators and histogram estimators. Our results are discussed and implemented

for an O-U process. Section 5.4 is devoted to the problem of non parametric estimation

for a linear FSDE with small diffusion. Both L2-risk and pointwise-risk of our estimators

are examined and enhanced by numerical examples. Our examples are implemented for

different drift terms and different density functions of random effects. Finally, concluding

remarks and perspectives are given in Chapter 6. For the clarity of exposure some results

and tedious computations are gathered in Appendix.
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CHAPTER 2

PRELIMINARIES

We assume the reader is familiar with basic concepts of probability theory and theory

of statistics. Such background material can be found in [105, 101, 113]. This chapter pro-

vides auxiliary results about Itô calculus and stochastic calculus for fBm that are employed

throughout this thesis. Most are well known and stated without proof, as they can be

found in standard literature, such as [73, 69, 33] and [94, 84, 80], respectively.

2.1 ITÔ CALCULUS

2.1.1 The Kolmogorov-Chentsov Theorem

Theorem 2.1.1. (Karatzas,[60, p. 53]) Suppose that a process X = (Xt : 0 ≤ t ≤ T )

on a probability space (Ω,F ,P) satisfies the condition

E |Xt −Xs|α ≤ C |t− s|1+β , 0 ≤ s, t ≤ T, (2.1)

for some nonnegative constants α, β and C. Then there exists a continuous modification

X̃ =
(
X̃t : 0 ≤ t ≤ T

)
of X, which is locally Hölder-continuous with exponent γ for every

γ ∈ (0, β/α), i.e.,

P

ω : sup
0≤|t−s|≤h(ω)

s,t∈[0,T ]

∣∣∣X̃t − X̃s

∣∣∣
|t− s|γ

≤ δ

 = 1, (2.2)

where h(ω) is P-a.s nonnegative r.v and δ > 0 is an appropriate constant.

A random field is a collection of r.v’s X = (Xt : t ∈ A) , where A is partially ordered.

An example of random field is X =
(
Xt : t ∈ [0, T ]d) , with d ≥ 2 is an integer. In this

case the Kolmogorov-Chentsov criterion [20, p. 36] is given by

E |Xt −Xs|α ≤ C ‖t− s‖d+β , 0 ≤ s, t ≤ T. (2.3)

2.1.2 Brownian Motion Processes

In 1828 the Scottish botanist Robert Brown discovered Brownian motion after exam-

ining pollen from a plant suspended in water under the lens of a microscope (see, [15]).

He noted that minute particles ejected from the pollen grain displayed a continuous irreg-

ular motion. In 1900 the French mathematician Louis Bachelier [7] considered Brownian
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motion as a model for stock, mathematically defining Brownian motion in the process.

The governing laws of Brownian motion were established by Albert Einstein [34]. Norbert

Wiener [116] proved the existence (and provided the construction) of Brownian motion,

and it is for this reason that Brownian motion is also referred to as the Wiener process.

The univariate stochastic process (Wt : t ≥ 0) is defined to be Brownian motion if Wt ∈ R
depends continuously on t and the following conditions hold

i) P (W0 = 0) = 1;

ii) W is a process with stationary independent increments, i.e., for all times 0 ≤ t0 <

t1 < t2, the r.v’s (Wt2 −Wt1) and (Wt1 −Wt0) are independent;

iii) increments Wt2 −Wt1 have a Gaussian normal distribution with

E(Wt2 −Wt1) = 0 and Var (Wt2 −Wt1) = σ2 |t2 − t1| . (2.4)

In the case σ2 = 1, the process W is often called the standard Brownian motion process.

The existence of such a process on (fairly ’rich’) probability spaces may be established in

a constructive way (see, [73, Theorem 1.13]).

Remark. The Brownian motion satisfies many properties, such as, the law of the iterated

logarithm and the Hölder condition of Lévy (e.g., [73, p. 32]). We focus here on properties

which will allow us to construct stochastic integrals of the form

∫
Ys(ω)dWs, where Yt(ω)

belongs to some class of random functions. This kind of integrals cannot be defined as

Lebesgue-Stieltjes or Riemann-Stieltjes integrals, since realizations of a Bm have unbounded

variation in any arbitrary small interval of time. However, the following result shows

that Bm trajectories have some properties which in some sense are analogous to bounded

variation.

Proposition 2.1.2. Let 0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n = t be a subdivision of the interval

[0, t], with π(n) = max
i

{
t
(n)
i+1 − t

(n)
i

}
→ 0, as n→∞. Then

< W >t := Lim
n→∞

2n∑
i=1

(
W

(
it

2n

)
−W

(
(i− 1)t

2n

))2

(2.5)

exists P-a.s and < W >t= t. The limit < W >t is the value of the quadratic variation of

the Brownian motion W at time t.

6



We will later define the quadratic variation of a right-continuous martingale. The

definition will be given as a result of Doob-Meyer decomposition (for more details about

this topic, we refer the reader to [60, p. 24]).

Corollary 2.1.3. The Brownian motion is not of finite variation, i.e.,

Lim
n→∞

2n∑
i=1

∣∣∣∣W (
it

2n

)
−W

(
(i− 1)t

2n

)∣∣∣∣ = ∞, P-a.s (2.6)

2.1.3 Martingales and Related Processes

Martingales are a very important subject in their own right as well as by their rela-

tionship with analysis. Their kinship to Bm and their contribution to the construction of

stochastic integrals will make them one of our foremost tools. This section describes some

of their basic properties.

Definition. A real-valued process M = (Mt : 0 ≤ t ≤ T ) adapted to (Ft)t is a super-

martingale (w.r.t (Ft)t ) if

i) For any t ∈ [0, T ], E |Mt| <∞;

ii) For any pair s, t such that s < t, we have E (Mt|Fs) ≤Ms, P-a.s.

A process M such that −M is supermartingale is called submartingale and a process

which is both a sub and a supermartingale is a martingale.

In other words, a martingale is an adapted family of integrable r.v’s M such that∫
A

MsdP =

∫
A

MtdP, for every pair s, t with s < t and A ∈ Fs. (2.7)

In particular, E(Ms) = E(Mt) for all t ≥ s. A simple example we give here is the process

M = (E (X|Ft) : 0 ≤ t ≤ T ), where X is a r.v with E(|X|) <∞.

Proposition 2.1.4. Let W be a Brownian motion. Then the following processes are mar-

tingales w.r.t the filtration generated by W

i) Wt itself;

ii) The process W 2
t − t;

iii) The nonnegative process Mα
t = exp

(
αWt −

α2

2
t

)
, α ∈ R.
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Let M2 be the set of right-continuous martingales such that EM2 <∞ and M0 = 0.

Let Sa denotes the set of stopping times (see, [60, p. 6]) bounded almost surely by a given

number a > 0, we say that M is of class DL if the familly {MT}T∈Sa is uniformly inte-

grable. We define the quadratic variation of M as the unique (up to indistinguishability)

adapted, natural nondecreasing process < M >, for wich < M >0= 0 a.s and M2− < M >

is a martingale.

Remark. It is also convenient to define the quadratic variation < M > of a continuous

martingale M = (Mt,Ft) at time t > 0 as the limit in probability of the following sums

V
(2)
t :=

m∑
k=1

∣∣Mtk −Mtk−1

∣∣2 , as ‖π‖ → 0, (2.8)

where ‖π‖ = max
1≤k≤m

∣∣∣t(m)
k − t(m)

k−1

∣∣∣ and 0 = t
(m)
0 < t

(m)
1 < · · · < t(m)

m = t is a subdivision of the

interval [0, t].

Let Z
(1)
t and Z

(2)
t be two martingales, we define the bracket of Z

(1)
t and Z

(2)
t by

< Z(1), Z(2) >t=
1

4

{
< Z(1) + Z(2) >t − < Z(1) − Z(2) >t

}
. (2.9)

Obviously, the process < Z(1), Z(2) >t is the limit in probability of
m∑
k=1

(
Z

(1)
tk
− Z(1)

tk−1

)(
Z

(2)
tk
− Z(2)

tk−1

)
.

The following results provide a strong bridge between the Brownian motions processes

and the class of contintuous square integrable martingales. Thus, it is possible to extend

the stochastic integrals w.r.t Bm to integrals with martingale as integrator process.

Theorem 2.1.5. (P. Lévy [73, p. 85]). Let X = (Xt,Ft)t≥0 be a continuous, adapted

process in R such that Mt = Xt−X0 is a continuous martingale w.r.t (Ft) and < X >t= t

for all t ≥ 0. Then X is a Brownian motion.

Theorem 2.1.6. Let W = (Wt,Ft) be a Brownian motion. Suppose that M = (Mt,Ft)
is a continuous square integrable martingale (w.r.t P). then there exists a unique process

Yt(ω) such that E
∫ t

0

Y 2
s ds < ∞ and Mt(ω) = E(M0) +

∫ t

0

Ys(ω)dWs, P-a.s for all t ≥ 0,

where

∫ t

0

Ys(ω)dWs is an Itô integral defined in the next subsection.
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Theorem 2.1.7. (Burkholder-Davis-Gundy [60, p. 166]). Let M be a continuous

martingale. For any m > 0, there exist universal nonnegative constants cm, Cm (depending

only on m) such that

cmE (< M >m
T ) ≤ E

(
sup

0≤t≤T
M2m

t

)
≤ CmE (< M >m

T ) , (2.10)

provided that E (< M >m
T ) <∞.

2.1.4 The Itô Integral

Let us now introduce the class of random functions Yt(ω), for which the stochastic

integral It(Y ) :=

∫ t

0

Ys(ω)dWs is well defined.

Definition. The measurable (w.r.t a pair of variables (t, ω)) function Y = Yt(ω), t ≥
0, ω ∈ Ω is called nonanticipative w.r.t the family F = (Ft), t ≥ 0, if for each t, it is

Ft-measurable.

Definition. The nonanticipative function Y = Yt(ω) is said to be of class PT if

P
(∫ T

0

Yt(ω)2dt <∞
)

= 1. (2.11)

Definition. The nonanticipative function Y = Yt(ω) is said to be of class VT if

E
∫ T

0

Yt(ω)2dt <∞. (2.12)

The nonanticipative functions defined above are measurable random processes,

adapted to the family (Ft). Obviously, for any T ≥ 0, VT ⊆ PT . By analogy with

the conventional integration theory it is natural to define first the stochastic integral It(Y )

for a certain set of “elementary ”functions Y . this set has to be sufficiently “rich”; so

that It(Y ) can be easily constructed on this set, and any function from PT or VT can be

approximated by functions of this set. Such set of “elementary ”functions is denoted by ET
and consists of simple functions introduced in the definition below.

Definition. The function e = e(t, ω), 0 ≤ t ≤ T is called simple if there exist a finite

subdivision 0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n = T of the interval [0, T ] , random variables

α, α0, · · · , αn−1, where α is F0-measurable and αi are Fti-measurable, i = 1, · · · , n−1 such

that

e(t, ω) = αχ{0}(t) +
n−1∑
i=0

αiχ(ti,ti+1](t),

where χA denotes the chracteristic function of the set A and e(t, ω) ∈ VT .
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With these arguments, the integral It(e) is given by

It(e) =
∑

0≤i≤m
tm+1<t

αi
(
Wti+1

−Wti

)
+ αm+1

(
Wt −Wtm+1

)
. (2.13)

Instead of the sums given in (2.13), we shall use the following notation It(e) :=∫ t

0

e(s, ω)dWs. The integral

∫ t

s

e(u, ω)dWu will be understood as

∫ t

s

e(u, ω)dWu =∫ t

0

e(u, ω)χ(u>s)dWu. The main properties of the stochastic integral (Itô integral) It(·)
for simple functions are summarized below

1. Linearity : For all a, b ∈ R and e1, e2 ∈ ET ,

It(ae1 + be2) = aIt(e1) + bIt(e2);

2. It(e) is a continuous function over t, t ∈ [0, T ];

3. Martingale property : For all s ≤ t, we have

E (It(e)|Fs) = Is(e); In particular E
(∫ t

s

e(u, ω)dWu

)
= 0, for all s ≤ t;

4. Generalized Itô isometry : For all s, t, we have

E
(∫ s

0

e1(u, ω)dWu

∫ t

0

e2(u, ω)dWu

)
= E

∫ s∧t

0

e1(u, ω)e2(u, ω)du

For the case where Yt(ω) ∈ VT (or Yt(ω) ∈ PT ), the stochastic integral (Itô integral) It(Y )

is defined as the limit of

∫ t

0

Yu(ω)(n)dWu, Yt(ω)(n) ∈ ET in L2-sense (with probability one),

respectively (see, [73]). For simple functions Yt(ω), the Itô integral It(Y ) can be verified

directly using (2.13). As an illustration, consider the case Y = c ∈ R. We have∫ t

0

cdWs = l.i.m
n→∞

n∑
i=1

c
(
W

(n)
ti −W

(n)
ti−1

)
= l.i.m

n→∞
c (Wt −W0) = cWt,

where 0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n = t is a subdivision of the interval [0, t] with

max
i

∣∣∣t(n)
i − t

(n)
i−1

∣∣∣→ 0 as n→∞ and l.i.m denotes the limit with probability one. Another
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interesting example is the case where Y is a Brownian motion W itself. straightforward

computations lead to∫ t

0

WsdWs = l.i.m
n→∞

n∑
i=1

W
(n)
ti−1

(
W

(n)
ti −W

(n)
ti−1

)
= l.i.m

n→∞

[
−1

2

n∑
i=1

(
W

(n)
ti −W

(n)
ti−1

)2

+
1

2

n∑
i=1

(
(W

(n)
ti )2 − (W

(n)
ti−1

)2
)]

= −1

2
t+

1

2
W 2
t .

Remark.

1. If Y ∈ VT , then the Itô integral It(Y ) is continuous square integrable martingale with

quadratic variation

< I·(Y ) >t=

∫ t

0

Ys(ω)2ds, (2.14)

but not necessarily Gaussian;

2. The process It(Y ), 0 ≤ t ≤ T in the case Y ∈ PT , is, generally speaking, not a

martingale.

Theorem 2.1.8. (Integration by parts formula [99, p. 59]). If Z(1) and Z(2) are

two continuous martingales. Then

d
(
Z

(1)
t Z

(2)
t

)
= Z

(1)
t dZ

(2)
t + Z

(2)
t dZ

(1)
t + d < Z(1), Z(2) >t . (2.15)

In particular, d
(

[Z
(1)
t ]2

)
= 2Z

(1)
t dZ

(1)
t + d < Z(1) >t.

2.1.5 The Itô Formula

Throughout this section, we consider the diffusion processes of the form

ξt = ξ0 +

∫ t

0

A(s, ξs)ds+

∫ t

0

B(s, ξs)dWs, 0 ≤ t ≤ T,

where P
(∫ T

0

|A(s, ξs)|+B2(s, ξs)ds

)
= 1.

In differential form, we write

dξt = A(t, ξt)dt+B(t, ξt)dWt, 0 ≤ t ≤ T. (2.16)
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Theorem 2.1.9. (Itô formula [73, p. 124]). Let f(t, x) be a continuous function

and have partial derivatives f ′t(t, x), f ′x(t, x) and f ′′xx(t, x). Assume the random process

ξ = (ξt,Ft), 0 ≤ t ≤ T has the stochastic differential form given by (2.16). Then

df(t, ξt) = f ′t(t, ξt)dt+ f ′x(t, ξt)dξt +
1

2
f ′′xx(t, ξt)B

2(t, ξt)dt (2.17)

The Itô formula is powerful tool in stochastic calculus. It is usually applied to solve

SDE’s or compute integrals. For example, one can compute the integral

∫ t

0

W 2
s dWs by

applying Itô formula to the function f(t,Wt) = W 3
t . In fact d

(
W 3
t

)
= 3W 2

t dWt + 3Wtdt.

Thus

∫ t

0

W 2
s dWs =

1

3
W 3
t −

∫ t

0

Wsds.

Consider the SDE

dξt = αξtdWt, 0 ≤ t ≤ T, α ∈ R, ξ0, (2.18)

where ξ0 and (Wt,Ft) are F0-measurable r.v and Bm, respectively. It is easy to see that

Xt = ξ0 exp

(
αWt −

1

2
α2t

)
, 0 ≤ t ≤ T solves (2.18). To prove uniqueness, Let Y = (Yt,Ft)

be another solution to (2.18) starting at Y0 = ξ0 and set Zt = exp

(
−αWt +

1

2
α2t

)
. By

the integration by parts formula (2.15), we have

d (ZtYt) = ZtdYt + YtdZt + d < Z, Y >t

= Zt (αYtdWt) + Yt

[
1

2
α2Ztdt− αZtdWt +

1

2
α2Ztdt

]
− α2ZtYtdt

= 0.

Thus ZtYt is constant, and so Yt = Z0Y0/Zt = Xt.

2.1.6 Strong Solutions of Stochastic Differential Equations

In this section, we are interested in homogeneous diffusion processes defined as solu-

tions to the SDE

dξt = A(ξt)dt+B(ξt)dWt, ξ0, 0 ≤ t ≤ T, (2.19)

where A(x), B(x) are nonrandom functions and are called trend coefficient and diffusion

coefficient, respectively. The equation (2.19) should be understood as a short version of

the following integral equation

ξt = ξ0 +

∫ t

0

A(ξs)ds+

∫ t

0

B(ξs)dWs, 0 ≤ t ≤ T,

provided that P
(∫ t

0

(|A(ξs)|+B2(ξs))ds <∞
)

= 1.
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Let us introduce a family of σ-algebras F ξ0,Wt := σ {ξ0, Ws, 0 ≤ s ≤ t}, 0 ≤ t ≤ T gener-

ated by the initial value ξ0 and by the given Wiener process up to time t.

Definition. Equation (2.19) has a strong solution ξ = (ξt : 0 ≤ t ≤ T ) on the given

probability space (Ω,F ,P) w.r.t the fixed Wiener process W = (Wt : 0 ≤ t ≤ T ) and

initial condition ξ0 if the process ξ satisfies the equality (2.19), has continuous sample

paths and ξt is F ξ0,Wt -measurable for all t ∈ [0, T ].

We say that the SDE (2.19) has unique strong solution if for any two solutions ξ(1) =(
ξ

(1)
t : 0 ≤ t ≤ T

)
and ξ(2) =

(
ξ

(2)
t : 0 ≤ t ≤ T

)
the following equality holds true

P
(

sup
0≤t≤T

∣∣∣ξ(1)
t − ξ

(2)
t

∣∣∣ > 0

)
= 0.

There are two type of solutions to (2.19). We focus here on strong solutions, for which

many conditions insuring their existence and uniqueness are given below.

GL. (Globally Lipschitz condition). There exists a constant L > 0 such that

|A(x)− A(y)|+ |B(x)−B(y)| ≤ L |x− y| , for all x, y ∈ R

Theorem 2.1.10. (Kutoyants [69, p. 25]) Let the condition GL be fulfilled

and P (|ξ0| <∞) = 1. Then the equation (2.19) has a unique (strong) solution

(ξt : 0 ≤ t ≤ T ), continuous P-a.s. If moreover E |ξ0|2m < ∞, then E |ξt|2m ≤(
1 + E |ξ0|2m

)
ecmt − 1, where cm is some nonnegative constant.

LL. (Locally Lipschitz condition). For any M < ∞ and |x| , |y| ≤ M there

exists a constant LM > 0 such that |A(x)− A(y)| + |B(x)−B(y)| ≤ LM |x− y| and

2xA(x) +B2(x) ≤ L
(
1 + x2

)
, for some constant L > 0.

Of course the condition LL is less restrictive and is fulfilled for many examples, such

as the Double-Well Potential diffusion, i.e.,

dXt =
(
v1Xt − v2X

3
t

)
dt+ v3dWt, X0, 0 ≤ t ≤ T,

where vi, i = 1, 2, 3 are nonnegative parameters in compact space.

Theorem 2.1.11. (Kutoyants [69, p. 26]) Let the condition LL be fulfilled

and P (|ξ0| <∞) = 1. Then the equation (2.19) has a unique (strong) solution

(ξt : 0 ≤ t ≤ T ), continuous P-a.s.
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For multidimensional case, where x ∈ Rn, A(x) = (A1(x), A2(x), · · · , An(x))′ and

B(x) = (Bi,j(x))1≤i,j≤n, the locally Lipschitz condition LL is given by

(i) For any M <∞ and ‖x‖ , ‖y‖ ≤M , there exists a constant LM > 0 such that∑
i

|Ai(x)− Ai(y)|+
∑
i,j

|Bi,j(x)−Bi,j(y)| ≤ LM ‖x− y‖ ;

(ii) There exists L > 0 such that∑
i

(2xiAi(x) + bii(x)) ≤ L
(
1 + ‖x‖2) , where b(x) = B(x)B(x)′.

2.1.7 Nonnegative Supermartingales and Girshanov Theorem

Let (Ω,F ,P) be a complete probability space and let (Ft), 0 ≤ t ≤ T be a nondecreas-

ing of sub-σ-algebras of F , augmented by sets from F of probability zero. Let W = (Wt,Ft)

be a Wiener process and let γ = (γt,Ft) be a random process with P
(∫ T

0

γ2
sds <∞

)
= 1.

The investigation of the problem of absolute continuity of measures of diffusion processes

w.r.t a Wiener measure relies on the Girshanov theorem. In establishing Girshanov theorem

(which provides a powerful tool for change of measures), an essential role is played by non-

negative continuous (P-a.s) processes κ = (κt,Ft), 0 ≤ t ≤ T permitting the representation

κt = 1 +

∫ t

0

γsdWs. (2.20)

Proposition 2.1.12. Let γ = (γt,Ft), t ≤ T satisfy (2.20) and κt ≥ 0, (P-a.s), 0 ≤ t ≤ T .

Then the process κ = (κt,Ft) is a nonnegative supermartingale.

An important particular case of nonnegative continuous (P-a.s) supermartingales per-

mitting representation given by (2.20) is represented by processes ψ of the form

ψt = exp

(∫ t

0

αsdWs −
1

2

∫ t

0

α2
sds

)
, t ≤ T, (2.21)

where the process α = (αt,Ft) is such that P
(∫ T

0

α2
s <∞

)
= 1. By virtue of Itô formula

it follows that ψ admits the representation (2.20), with γt = αtψt. The following theorems

provide conditions for which supermartingales of the form (2.20) are true martingales.

Theorem 2.1.13. (Liptser [73, p. 228]) Let κ = (κt,Ft), t ≤ T be a supermartingale

of the form (2.20) such that E(κT ) = 1. Then κ is a true martingale.
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Theorem 2.1.14. (Novikov condition [73, p. 229]). Let α = (αt,Ft), t ≤ T be a

random process such that

E exp

(
1

2

∫ T

0

α2
sds

)
<∞.

Then the process ψ given in (2.21) is a true martingale, and in particular E(ψt) = 1, t ≤ T .

Let κ = (κt,Ft), t ≤ T be a nonnegative continuous supermartingale with κt =

1 +

∫ t

0

γsdWs and E(κT ) = 1. The process κ is a nonnegative martingale, and on the

measurable space (Ω,FT ), we can define the measure P̃ by dP̃ = κT (ω)dP. We denote by

κ+
s the process defined by

κ+
s =


1/κs , κs > 0;

0 , κs = 0.

Theorem 2.1.15. (Girshanov theorem [73, p. 238]). On the probability space(
Ω,FT , P̃

)
the random process W̃ = (W̃t,Ft), t ≤ T , with

W̃t = Wt −
∫ t

0

κ+
s γsds

is a Wiener process under the measure P̃.

2.1.8 Absolute Continuity of Measures Corresponding to Diffusion Processes

The following theorem is of great interest for the construction of likelihood functions.

This theorem will be systematically used in Chapter 4. As an illustration the problem of

parametric estimation for the ergodic O-U process is investegated below.

Theorem 2.1.16. (Liptser [73, p. 294]) Let ξ = (ξt,Ft) and η = (ηt,Ft), 0 ≤ t ≤ T

be two processes of the diffusion type with
dξt = A1(ξt)dt+B(ξt)dWt, ξ0 = η0,

dηt = A2(ηt)dt+B(ηt)dWt,

(2.22)

where ξ0 is F0-measurable r.v and W = (Wt,Ft) is a Wiener process. Let the following

assumptions be fulfilled.
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I) The functions Ai(x), i = 1, 2 and B(x) satisfy any conditionds providing the existence

and uniqueness of a strong solution to the system (2.1.16);

II) For any t, 0 ≤ t ≤ T , the equation B(ξt)αt(ω) = A1(ξt) − A2(ξt) has (w.r.t αt(ω))

P-a.s solution;

III) The following equality holds

P
(∫ T

0

(B+(ξs))
2
(
A2

1(ξs) + A2
2(ξs)

)
ds <∞

)
= P

(∫ T

0

(B+(ηs))
2
(
A2

1(ηs) + A2
2(ηs)

)
ds <∞

)
= 1.

Then µξ ∼ µη and the density
dµξ
dµη

(η) is given by

dµξ
dµη

(η) = exp

[∫ T

0

(B+(ηs))
2 (A1(ηs)− A2(ηs)) dηs

−1

2

∫ T

0

(B+(ηs))
2
(
A2

1(ηs)− A2
2(ηs)

)
ds

]
. (2.23)

Example. Let us consider the problem of parameter estimation by the observations X =

(Xt : 0 ≤ t ≤ T ) of the O-U process

dXt = −λXtdt+ dWt, X0, 0 ≤ t ≤ T,

where the unknown parameter belongs to [λ, λ] ⊂ (0,∞). Let λ0 be true value of the

parameter λ. Applying Theorem 2.1.16 to the processes ξt = X
(λ)
t and ηt = X

(λ0)
t , we

obtain (by formula (2.23)) as likelihood

LT (λ) = exp

[
−(λ− λ0)

∫ T

0

X
(λ0)
t dX

(λ0)
t − 1

2
(λ2 − λ2

0)

∫ T

0

(X
(λ0)
t )2dt

]
.

Thus the MLE is given by λ̂T = −
∫ T

0

XtdXt/

∫ T

0

X2
t dt, and

√
T
(
λ̂T − λ0

)
=

(
1

T

∫ T

0

X2
t dt

)−1(
1√
T

∫ T

0

XtdWt

)
L

=⇒ N (0, 2λ0) .
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2.2 STOCHASTIC INTEGRATION WITH RESPECT TO FBM AND RE-

LATED TOPICS

2.2.1 Intrinsic Properties of the Fractional Brownian Motion

In this subsection we review the main properties that make fractional Brownian motion

interesting for many applications in different fields. The main references for this subsection

are [74, 85, 99, 104]. For further details concerning the theory and the applications of

long-range dependence from a more statistical point of view, we also refer to [31]. The

fBm was first introduced within a Hilbert space framework by Kolmogorov in 1940 in [64],

where it was called Wiener Helix. It was further studied by Yaglom in [118]. The name

fractional Brownian motion is due to Mandelbrot and Van Ness, who in 1968 provided in

[74] a stochastic integral representation of this process in terms of a standard Brownian

motion.

Definition. A centered Gaussian process W =
(
WH
t : t ≥ 0

)
, H ∈ (0, 1) is called stan-

dard fractional Brownian motion of Hurst parameter H if it has the covariance function

RH(t, s) := E
(
WH
t W

H
s

)
=

1

2

{
t2H + s2H − |t− s|2H

}
, t, s ≥ 0 (2.24)

For H = 1/2, the fBm is then a standard Bm known as the Wiener process. For

H 6= 1/2 the fBm is niether a semimartingale nor a Markov process. By definition, it is

easy to see that fBm has the following properties

1. P(WH
0 = 0) = 1, E(WH

t ) = 0 and E[(WH
t )2] = t2H for all t ≥ 0.

2. The fBm WH has homogeneous increments, i.e., WH
t+s − WH

s has the same law of

WH
t , for all t, s ≥ 0.

3. The fBm is self-similar with index H, that is, for any a > 0, the processes(
a−HWH

t : t ≥ 0
)

and
(
WH
at : t ≥ 0

)
have the same law.

4. The fBm WH admits a continuous modification, which is locally Hölder with exponent

γ ∈ (0, H).

5. The sample paths of the fBm WH are nowhere differentiable in the L2-sense.
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6. For the fBm
(
WH
t : 0 ≤ t ≤ T

)
, with Hurst parameter H ∈ (0, 1), we have (P-a.s)

l.i.m
n→∞

2n−1∑
j=0

∣∣∣∣WH

(
j + 1

2n
T

)
−WH

(
j

2n
T

)∣∣∣∣p = 0 , if pH > 1,

= ∞ , if pH < 1,

= T , if pH = 1.

In particular

l.i.m
n→∞

2n−1∑
j=0

∣∣∣∣WH

(
j + 1

2n
T

)
−WH

(
j

2n
T

)∣∣∣∣1/H = T

2.2.2 Wiener Integrals w.r.t Fractional Brownian Motion

It is known that, in order to develop the theory of stochastic integration of a random

process with respect to another stochastic process satisfying the usual properties of integrals

such as linearity and dominated convergence theorem, it is necessary for the integrator to

be a semimartingale. This can be seen from Theorem VIII.80 in [26]. Semimartingales can

also be characterized by this property. Since fBm is not a semimartingale, it is not possible

to define stochastic integration of a random process with respect to fBm starting with

the usual method of limiting arguments based on Riemann-type sums for simple functions

as in the case of Itô integrals. However, the special case of a stochastic integration of a

deterministic integrand with respect to fBm as the integrator can be developed using the

theory of integration w.r.t general Gaussian processes as given in [57] and more recently in

[5]. There are other methods of developing stochastic integration of a random process with

respect to fBm using the notion of Wick product and applying the techniques of Malliavin

calculus. We do not use these approaches throughout this work.

Let WH =
(
WH
t : t ∈ R

)
be a standard fBm with Hurst index H > 1/2 and suppose

Y = (Yt : t ∈ R) is a simple process in the sense that Yt =
k∑
j=1

αjχ(Tj−1,Tj ](t), where

−∞ < T0 < T1 < · · · < Tk <∞ and αj are FTj -measurable r.v’s. We define the stochastic

integral of the process Y w.r.t WH as∫
R

YtdW
H
t =

k∑
j=1

αj

(
WH
Tj
−WH

Tj−1

)
. (2.25)

If the process Y is of locally bounded variation, then we can define this integral by using

the integration by parts formula∫ t

s

YudW
H
u = YtW

H
t − YsWH

s −
∫ t

s

WH
u dYu, −∞ < s ≤ t <∞, (2.26)
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and the integral on the RHS of (2.26) can be defined using the theory of Lebesgue-Stieltjes

integration. Suppose that the process Y is non random. Under suitable conditions on the

non random function Y , the integral on the LHS of (2.26) can be defined as an L2-limit

of Riemann sums of the type defined in (2.25) with nonrandom sequence Tj . Gripenberg

and Norros [52] give an example of a random process Y illustrating the problem of non

continuity in extending the above method of stochastic integration w.r.t fBm for random

integrands. An alternate way of defining the stochastic integral of a non random function

Yt w.r.t fBm WH is by the formula∫
R

YtdW
H
t := cH

∫
R

(∫ ∞
u

(t− u)H−3/2Ytdt

)
dWu, (2.27)

where W is a standard Wiener process and cH is a nonnegative constant to be specified

later. The integral defined on the RHS of (2.27) exists provided the function∫ ∞
u

(t− u)H−3/2Ytdt

as a function of u is square integrable. A sufficient condition for this to hold is that

Yt ∈ L2(R) ∩ L1(R). This condition is obviously satisfied by the function Ys = χ[0,t](s),

which leads to

WH
t = cH

∫ 0

−∞

(
(t− u)H−1/2 − (−u)H−1/2

)
dWu + cH

∫ t

0

(t− u)H−1/2dWu

= cH

∫ t

−∞

[
(t− u)H−1/2 − ((−u)+)H−1/2

]
dWu := cHZt, (2.28)

where x+ = max{0, x}. The equality (2.28) makes sense as an integral representation of

the fBm, if it provides the correct covariance function RH(t, s) given in (2.24). First note

that the RHS of (2.28) is well defined. In fact, for t ≥ 0, we have∫ t

−∞

[
(t− u)H−1/2 − ((−u)+)H−1/2

]2
du

=

∫ 0

−∞

[
(t− u)H−1/2 − (−u)H−1/2

]2
du+

∫ t

0

(t− u)2H−1du

= t2H
[∫ ∞

0

(
(1 + v)H−1/2 − vH−1/2

)2
du+

1

2H

]
= E(Z2

t ). (2.29)

In the last equality we used change of variables (v = −u/t). The integral presented in

(2.29) is finite, since

(
(1 + v)H−1/2 − vH−1/2

)2 ∼
(
H − 1

2

)2

v2H−3, as v →∞. (2.30)
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It is then convenient to set cH =

[∫ ∞
0

(
(1 + v)H−1/2 − vH−1/2

)2
du+

1

2H

]−1/2

, so that

E[(WH
t )2] = c2

HE(Z2
t ) = t2H . Similarly, for any s < t, we obtain

E |Zt − Zs|2 = c−2
H |t− s|

2H .

Hence,

E (cHZtcHZs) = c2
HE(ZtZs)

=
c2
H

2

{
EZ2

t + EZ2
s − E |Zt − Zs|2

}
= RH(t, s).

It is easy to see that the random variable

∫
R

YtdW
H
t is a Gaussian with zero mean,

whenever Yt ∈ L2(R) ∩ L1(R). The following theorem provides more general covariance

formula, for which RH(t, s) is a special case. The proof of such a formula can be found

in [52, 94]. Throughout this thesis we restrict ourselves to the range H ∈ (1/2, 1) and

the stochastic integrals of random functions {ut : t ∈ [0, T ]} should be understood in

path-wise sense, whenever the integrands (ut)t have γ-Hölder continuous trajectories with

γ > 1−H. The existence of such integrals is justified by Young’s results [119].

Theorem 2.2.1. For nonrandom functions Y 1
t , Y

2
t ∈ L2(R) ∩ L1(R), we have

E
(∫

R

Y 1
t dW

H
t

∫
R

Y 2
t dW

H
t

)
= H(2H − 1)

∫ ∫
R2

Y 1
t Y

2
s |t− s|

2H−2 dtds.

In most of our non-parametric procedures, we used the following result which is due

to Mémin et al.,[77].

Theorem 2.2.2. Let {Yt : t ∈ [0, T ]} be a non random function such that

∫ b

a

YtdW
H
t

exists. There exist two nonnegative constants C(H, r) and c(H, r) such that for every r > 0

and 0 ≤ a < b <∞, we have

E
∣∣∣∣∫ b

a

YtdW
H
t

∣∣∣∣r ≤ C(H, r) ‖Y·‖rL1/H(a,b) , for all H > 1/2

and

E
∣∣∣∣∫ b

a

YtdW
H
t

∣∣∣∣r ≥ c(H, r) ‖Y·‖rL1/H(a,b) , for all H < 1/2.
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2.2.3 Stochastic Differential Equations driven by fBm

Consider the functions A(t, x), B(t, x) : [0, T ] × R −→ R satisfying the following

assumptions

(i) The function B(t, x) is differentiable in x with derivative Bx(t, x), there exist M > 0,

0 < γ, κ ≤ 1 and for any R > 0, there exists MR > 0 such that

|B(t, x)−B(t, y)| ≤M |x− y| , for all t ∈ [0, T ], x, y ∈ R

|Bx(t, x)−Bx(t, y)| ≤MR |x− y|κ , for all t ∈ [0, T ], |x| , |y| ≤ R

|B(t, x)−B(s, x)|+ |Bx(t, x)−Bx(s, x)| ≤ M |t− s|γ , for all s, t ∈ [0, T ], x ∈ R.

(ii) For any R > 0 there exists LR > 0 such that

|A(t, x)− A(t, y)| ≤ LR |x− y| , for all t ∈ [0, T ], |x| , |y| ≤ R

(iii) There exists a function A0(t) ∈ Lp ([0, T ]) and L > 0 such that |A(t, x)| ≤ L |x|+A0(t)

for all (t, x) ∈ [0, T ]×R

Theorem 2.2.3. (Mishura [80, p. 201]) Let the coefficients A(·), B(·) satisfy the

assumptions (i)-(iii) with p = (1−H + ε)−1, 0 < ε < H − 1/2, γ > 1−H, κ > H−1 − 1

(the constants M , MR, R, LR and the funcion A0(t) can depend on ω). Then the following

SDE

Xt = X0 +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dW
H
s , t ∈ [0, T ], H ∈ (1/2, 1). (2.31)

admits a unique strong solution X = (Xt : 0 ≤ t ≤ T ) with trajectories from CH−ε ([0, T ])

P-a.s.

Remark. Theorem 2.2.3 admits evident generalization to multidimensional case. Con-

sider the SDE on Rd given by

X i
t = X i

0 +

∫ t

0

Ai(s,Xs)ds+
m∑
j=1

∫ t

0

Bi,j(s,Xs)dW
Hj
s , 1 ≤ i ≤ d, 0 ≤ t ≤ T. (2.32)

where WHj are fBm’s with Hurst parameters Hj ∈ (1/2, 1), j = 1, · · · ,m. Denote by B =

(Bi,j)
d,m
i,j=1 the matrix of “diffusions”and A = (Ai)

d
i=1 the “drift ”vector, |A| :=

(
d∑
i=1

A2
i

)1/2

,

|B| :=

(∑
i,j

B2
i,j

)1/2

, and suppose that assumptions (i)-(iii) hold with these notations,

H = min1≤j≤mHj. Then there exists a unique vector solution Xt of equation (2.32) with

trajectories from CH−ε ([0, T ]) P-a.s.
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CHAPTER 3

LITERATURE REVIEW AND THE MODEL

Parameteric and nonparameteric estimation in the context of random effects models

has ben recently investigated by many authors (see, e.g. [29, 25, 89, 90, 83, 82, 81, 6, 22]).

In these models, the noise is represented by a Brownian motion known by independence

property of its increments. Such a property may not be valid for many phenomena arising

in a variety of different scientific fields, including hydrology [75], biology [21], medicine [68],

economics [50] or traffic network [117]. As a result self-similar processes have been used

to successfully model data exhibiting long-range dependence. Among the simplest models

that display long-range dependence, one can consider the fractional Brownian motion,

introduced in the statistics community by Mandelbrot and Van Ness[74]. A normalized

fBm with the Hurst index H ∈ (0, 1) is centered Gaussian process
(
WH
t , t ≥ 0

)
having the

covariance defined by (2.24).

In modeling, the problems of statistical estimation of model parameters are of par-

ticular importance, so the growing number of papers devoted to statistical methods for

equations with fractional noise is not surprising. We will cite only few of them; further

references can be found in [80] and [94]. In [63], the authors proposed and studied maxi-

mum likelihood estimators for fractional OrnsteinUhlenbeck process. Related results were

obtained in [95], where a more general model was considered. In [56] the authors proposed a

least squares estimator for fractional OrnsteinUhlenbeck process and proved its asymptotic

normality.

It is worth to mention that papers [55] and [112] deal with the whole range of Hurst

parameter H ∈ (0, 1), while other papers cited here investigate only the case H > 1/2

(which corresponds to long range dependence); recall that in the case H = 1/2, we have a

classical diffusion, and there is a huge literature devoted to it; we refer to books: [69], and

[73](Vol II) for the review of the topic. Chepter 4 is concerned with this case, for which we

consider a nonlinear homogeneous model with generalized random effects. In this chapter

both consistensy and asymptotic normality of our proposed estimators are established and

illustrated by various examples.

In the context of stochastic differential equation models with random effects, which are

increasingly used in the biomedical field and have proved to be adequate tools for the study

of repeated measurements collected on a series of subjects, parametric and non parametric

inference has recently been investigated by many authors (see, e.g.[6, 22, 89, 90]). However,
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there is no reference at present related to inference for SDE’s with random effects driven

by fBm, except our recent papers [36, 37, 38]. Chapter 5 is based on these papers, and

concerns different models driven by fBm and treated by different approachs. Compared

to the parametric framework, the problem of non parametric estimation for FSDE’s has

gained less attention. For the theoretical study of this problem, the main contribution to our

knowledge is due to Prakasa[93]. In[79], the authors studied the problem of nonparametric

estimation for a fractional process with small diffusion, when H ∈ (1/2, 3/4) as ε→ 0. An

other recent work[92] tackled the same problem when the fractional Brownian motion is

replaced by a mixed one.

In this thesis we are concerned with a general model described by N stochastic pro-

cesses of the following form:

dX i(t) = Σ(t,X i(t), φi)dt+ Λ(t,X i(t))dWH,i(t)

X i(0) = xi ∈ R, i = 1, · · · , N,

where φi are random effects with common density (parametric or not) to be estimated.

Σ(·) and Λ(·) denote here the drift and the diffusion terms. In each chapter (Chapter 4 &

5) the drift and the diffusion are specified, and existence and uniqueness of the processes

X i are discussed. For that purpose, Theorems 2.1.10-2.1.11 and Theorem 2.2.3 are used in

Chapter 4 & 5 respectively. The following theorems are of great interest and systematically

used in Chapter 4 to establish the asymptotic behaviour of the proposed estimators.

Theorem 3.0.4. (Schervish (1995)[101, p. 415]) Let {Xn}∞n=1 be conditionally i.i.d

given θ with density fX1|Θ(.|θ) w.r.t a measure ν on a space (X 1,B1). Fix θ0 ∈ Θ and

define, for each M ⊆ Θ and x ∈ X 1,

Z(M,x) = inf
ψ∈M

log
fX1|Θ(x|θ0)

fX1|Θ(x|ψ)

Assume that for each θ 6= θ0 there is an open set Nθ such that θ ∈ Nθ and Eθ0Z (Nθ, Xi) > 0.

If Θ is not compact, assume further that there is a compact C ⊆ Θ such that θ0 ∈ C and

Eθ0Z (Θ \ C,Xi) > 0. Then, lim θ̂n = θ0, a.s. [Pθ0 ].

Theorem 3.0.5. (Schervish (1995)[101, p. 418]) Assume the same conditions as in

Theorem 3.0.4, Except that we now only require that Eθ0Z (Nθ, Xi) > −∞. Assume further

that fX1|Θ(x|θ) is continuous in θ for every x, a.s [Pθ0 ]. Then, lim θ̂n = θ0, a.s. [Pθ0 ].

Theorem 3.0.6. (Schervish (1995)[101, p. 421]) Let Θ be a subset of Rp, and let

{Xn}∞n=1 be conditionally i.i.d given θ with density fX1|Θ(.|θ). Let θ̂n be an MLE. Assume
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that θ̂n
P−→ θ under Pθ for all θ. Assume that fX1|Θ(x|θ) has continuous second partial

derivatives with respect to θ and that differentiation can be passed under the integral sign.

Assume that there exists Hr(x, θ) such that, for each θ0 ∈ Θ̇ (in the interior) and for each

k, j,

sup
‖θ−θ0‖≤r

∣∣∣∣ ∂2

∂θk∂θj
log fX1|Θ(x|θ0)− ∂2

∂θk∂θj
log fX1|Θ(x|θ)

∣∣∣∣ ≤ Hr(x, θ0),

with

lim
r→0

Eθ0Hr(X, θ0) = 0.

Assume that the Fisher Information matrix IX1 is finite and nonsingular. Then, under

Pθ0, √
N
(
θ̂N − θ0

)
L

=⇒ N
(
0, I−1

X1
(θ0)

)
.
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CHAPTER 4

STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES WITH

GENERALIZED RANDOM EFFECTS

The goal of this chapter is to provide statistical methods of parametric estimation for

SDE’s given by

dX i(t) = H1

(
X i(t), φi

)
dt+H2

(
X i(t)

)
dW i(t), t ≤ T, (4.1)

X i(0) = xi ∈ R, i = 1, · · · , N,

where φi are random variables (random effects) with common density g(ϕ, θ) and θ ∈ Θ

(compact set) are parameters to be estimated. The results we provide here extend those

previously available in the literature. This chapter is split into two sections. First, we

derive a class of estimators θ̂
(ε)
N converging toward the true value θ0, as N → ∞ for a

nonlinear drift coefficient with generalized random effects. Asymptotic properties of the

proposed estimators are established and illustrated by numerical examples as well. Second,

we try to weaken the assumptions and show the asymptotic results for the case ε = 0. To

do this, we have expanded the likelihood function by means of iterated Itô integrals.

4.1 PARAMETRIC ESTIMATION OF THE POPULATION PARAME-

TERS

4.1.1 Problem Outline

Consider N subjects X1, · · · , XN defined on a complete probability space (Ω,F ,P)

by (4.1). Let
(
F it
)
t≥0

be a collection of nondecreasing families of sub-σ-algebras of F and(
W i,F it , t ≤ T

)
, i = 1, · · · , N are independent Wiener processes. Let also φ1, · · · , φN be

N i.i.d Rp-valued random variables on the common probability space (Ω,F ,P) independent

of
(
W i,F it , t ≤ T

)
. We introduce assumptions ensuring that the processes (4.1) are well

defined and allow us to compute the likelihood function based on the observations. Consider

the family of sub-σ-algebras of F , defined by σ (φj, j ≤ N)
∨
F it . Each W i is Ft-Brownian

motion. Furthermore, the random variables φi are F0-measurable. Denote by g(ϕ, θ)dν(ϕ)

the common density of the variables φ1, · · · , φN , where ν is some dominating measure on

Rp, and θ is unknown parameter belonging to a set Θ ⊂ Rd, with interior Θ̇ containing

the true parameter θ0. We also assume that Θ is compact and the function H2(x) has a

support such that, R \ suppH2 is countable set in R.
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A1: The functions H1(x, ϕ) and H2(x) are nonanticipative functionals satisfying the local

lipschitz condition: For any R <∞ and max {|x|+ ‖ϕ‖ ; |x̃|+ ‖ϕ̃‖} ≤ R there exists

a constant LR > 0 such that

|H1(x, ϕ)−H1(x̃, ϕ̃)|2 + |H2(x)−H2(x̃)|2 ≤ LR
(
|x− x̃|2 + ‖ϕ− ϕ̃‖2) ,

and satisfying also the following monotone condition: There exists a nonnegative

constant K such that for all (x, ϕ) ∈ R×Rp

xH1(x, ϕ) +
1

2
|H2(x)|2 ≤ K

(
1 + |x|2 + ‖ϕ‖2) .

Under A1, the system (4.1) admits a unique continuous strong solution
(
(X i, φi); t ≥ 0

)
,

with probability one (see, Theorem 2.1.11). Moreover, there exists a function hi : R ×
Rp × C(R+,R) with X i = hi

(
xi, φi,W

i
)

(see, e.g., [60, p. 310]). Let CTi denote

the space of real continuous functions (x(t) : t ∈ [0, Ti]) defined on [0, Ti] endowed with

σ-field BTi . The last σ-field is associated with the topology of uniform convergence

on [0, Ti]. Under A1, we introduce the distribution µXi
ϕ,xi

on (CTi ,BTi) of the process(
X i, xi|φi = ϕ

)
. On Rp × CTi , Qi

θ = g(ϕ, θ)dν(ϕ) ⊗ µXi
ϕ,xi

denotes the joint distribution

of (φi, X
i) and Piθ denotes the marginal distribution of

(
X i(t); 0 ≤ t ≤ Ti

)
on (CTi ,BTi).

Since R \ suppH2 is countable, for all ϕ 6= ϕ̃, we may define the process αit(ω), t ≤ Ti by

αit = H+
2 (X i(t))

(
H1(X i(t), ϕ)−H1(X i(t), ϕ̃)

)
, where

h+(x) =


1

h(x)
, h(x) 6= 0,

0 , h(x) = 0.

Let us consider the following assumptions insuring the equivalence of the measures

(µXi
ϕ,xi

, ϕ ∈ Rp) and µXi
ϕ0,x

i
, where ϕ0 is fixed.

A2: E
(
e−

∫ Ti
0 αitdW

i(t)− 1
2

∫ Ti
0 αit

2
dt
)

= 1, i = 1 · · · , N .

A3: For i = 1 · · · , N and for all ϕ ∈ Rp,

P
(∫ Ti

0

[
H+

2 (X i(t))H1(X i(t), ϕ)
]2
dt <∞

)
= 1 .

Since the individuals X i are independent (this is inherited from the independence of φi and

W i). The distribution of the whole sample (X i(t), t ≤ Ti; i = 1, · · · , N) on C =
N∏
i=1

CTi is
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defined by Pθ = ⊗Ni=1Piθ. Now we can define the likelihood function as

Λ(θ) =
dPθ
dP

=
N∏
i=1

dPiθ
dPi

,where P = ⊗Ni=1Pi and Pi = µXi
ϕ0,x

i
.

4.1.2 Contrast Functions

In this subsection, we construct the likelihood function from which we derive a class

of contrast functions. We have the following propositions for which the proof is relegated

to the Appendix A.

Proposition 4.1.1. Let the conditions A1- A3 be satisfied and let ϕ, ϕ0 ∈ Rp. Then

µXi
ϕ,xi

∼ µXi
ϕ0,x

i
, and

dµXi
ϕ,xi

dµXi
ϕ0,x

i

(X i) = LTi(X
i, ϕ, ϕ0) = elTi (X

i,ϕ,ϕ0), where

lTi(X
i, ϕ, ϕ0) =

∫ Ti

0

H+
2 (X i(s))2

[
H1(X i(s), ϕ)−H1(X i(s), ϕ0)

]
dX i(s)

− 1

2

∫ Ti

0

H+
2 (X i(s))2

[
H2

1 (X i(s), ϕ)−H2
1 (X i(s), ϕ0)

]
ds.

Moreover, the exact likelihood of the whole sample (X i(t); t ∈ [0, Ti], i = 1 · · · , N) can be

expressed as

Λ(θ) =
N∏
i=1

Λi(X
i, θ),

where

Λi(X
i, θ) =

dPiθ
dPi

=

∫
LTi(X

i, ϕ, ϕ0)g(ϕ, θ)dν(ϕ).

Denote by Γ(θ) the log-likelihood of the whole sample (X i(t); t ∈ [0, Ti], i = 1 · · · , N).

Proposition 4.1.2. For i = 1, · · · , N the likelihood function Λi(X
i, θ) can be expressed

as follows:

Λi(X
i, θ) = 1 +

∫ Ti

0

γs(X
i, θ)dW i(s)

where X i −→ γs(X
i, θ) is a measurable function on CTi with explicit expression given in

Appendix A (see the proof). Furthermore, if E
∫ Ti

0

γ2
s (X

i, θ)ds <∞. Then Γ(θ) has the

following form :

Γ(θ) =
N∑
i=1

∫ Ti

0

Ψi(s, θ)dW i(s)− 1

2

∫ Ti

0

Ψi(s, θ)2ds,
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where Ψi(s, θ) is a function of γt(X
i, θ) such that P

(∫ Ti

0

Ψi(t, θ)2dt <∞
)

= 1. An explicit

expression of Ψi(s, θ) is given in Appendix A (see the proof).

For each ε > 0, we consider the contrast function Λ(ε)(θ) =
N∏
i=1

Λ
(ε)
i (X i, θ), where

Λ
(ε)
i (X i, θ) = 1 + (1 + ε)−1

∫ Ti

0

γs(X
i, θ)dW i(s). Our proposed estimators θ̂

(ε)
N will be

defined as θ̂
(ε)
N = arg max

θ∈Θ
Λ(ε)(θ). It is easy to see Λ

(ε)
i (X i, θ)→ Λi(X

i, θ) as ε→ 0. Under

some regularity conditions, one can show that θ̂
(ε)
N converges to the maximum likelihood

estimator as ε→ 0.

4.1.3 Asymptotic Behaviour of θ̂
(ε)
N

To prove the consistency result of our proposed estimators, we consider for any X i,

i = 1, . . . , N , the random functions Zε(Θ̃, X
i) defined by

Zε

(
Θ̃, X i

)
:= inf

θ∈Θ̃
log

Λ
(ε)
i (X i, θ0)

Λ
(ε)
i (X i, θ)

,

where Θ̃ ⊂ Θ. We recall also the identifiability assumption for the marginal densities

which is a natural and even a necessary condition i.e., Λi(X
i, θ) = Λi(X

i, θ′) =⇒ θ = θ′.

Let Ti = T , xi = x for i = 1, · · · , N , so that the observed processes
(
X i(t), t ∈ [0, T ]

)
,

i = 1, · · · , N , are conditionally i.i.d given θ with common density Λ1(x, θ) on CT . In the

sequel, we will focus on statistical results under P1
θ0

. We simplify our notations by setting

Λ(ε)(x, θ) = Λ
(ε)
1 (x, θ) and Pθ0 = P1

θ0
. Now, with these arguments, the following statements

hold :

Theorem 4.1.3. For any fixed ε > 0, we have

i- If for any given θ 6= θ0, there is an open set Nθ such that θ ∈ Nθ and

Eθ0Zε(Nθ, X
i) > 0. Then lim θ̂

(ε)
N = θ0, almost surely under Pθ0.

ii- Let the assumptions A1- A3 be fulfilled. Assume also that Λ
(ε)
i (x, θ) is continuous in

θ Pθ0−a.s. and

Eθ0
∫ Ti

0

γ2
s (X

i, θ)ds <∞, for i = 1, · · · , N all θ. (4.2)

For each θ 6= θ0 there is an open set Nθ such that θ ∈ Nθ and Eθ0Zε(Nθ, X
i) > −∞.
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Proof. To prove this theorem, we follow Schervich (see, [101, Section 7.3]). So for the first

statement, we shall prove that for every δ > 0,

Pθ0
(

lim sup
N→∞

∥∥∥θ̂(ε)
N − θ0

∥∥∥ ≥ δ

)
= 0. (4.3)

Let δ > 0, and let Nθ0 be an open ball of radius ε centered at θ0. The set Θ \ Nθ0 is

compact with cover family
{
Nθ : θ ∈ Θ \Nθ0 , Eθ0(Zε(Nθ, X

i)) > 0
}

from which we extract

the following finite subcover Nθ1 , . . . , Nθm such that Θ = ∪mj=0Nθj .

Let CT = χ denote the space of real continuous functions (x(s) : s ∈ [0, T ]) defined

on [0, T ], endowed with σ-field CT associated with the topology of uniform convergence on

[0, T ]. Let χ∞ be the infinite product space of copies of χ. Let x = (x1, x2, . . .) ∈ χ∞

denotes a sequence of possible values of (X1, X2, . . .). By the strong law of large numbers,

N−1

N∑
i=1

Zε(Nθj , X
i) converges to Eθ0(Zε(Nθj , X

i)) = cj > 0 Pθ0-a.s, for all j = 1, . . . ,m.

Consider Bj ⊂ χ∞ the set of data sequences such that convergence holds, and set B =

∩mj=1Bj. Then Pθ0(B) = 1. For each x ∈ B we have also :{
x : lim sup

N→∞

∥∥∥θ̂(ε)
N (x)− θ0

∥∥∥ ≥ δ

}
⊂

m⋃
j=1

{
x : θ̂

(ε)
N (x) ∈ Nθj , infinitely often

}
⊂

m⋃
j=1

{
x :

1

N

N∑
i=1

Zε(Nθj , xi) ≤ 0, infinitely often

}

⊂
m⋃
j=1

Bc
j = Bc.

where Ac denotes the complement of A in χ∞. Since Pθ0(Bc) = 0, (4.3) follows and the

proof of i- is complete. ii- Let θ 6= θ0 and Uθ ⊂ Θ̃ = Θ \ {θ0} be an open set, which we

specify later. We have

Eθ0Zε(Uθ, X i) = Eθ0 log Λ(ε)(X i, θ0) + Eθ0zi,ε(Uθ)

≥ log

(
ε

1 + ε

)
+ Eθ0zi,ε(Uθ),

where zi,ε(U) = inf
θ′∈U

[
− log Λ(ε)(X i, θ′)

]
. In the last inequality, we used the fact that

Λ(ε)(X i, θ0) =
ε+ Λ(X i, θ0)

1 + ε
≥ ε

1 + ε
. Let k ≥ k0 > 0 such that N

(k)
θ = B(θ, 1/k) ⊆ Θ̃,

where B(x, δ) denotes the open ball centred at x with radius δ. Since Λ(ε)(X i, θ) is

continuous in θ on the compact set N
(k)
θ , there exists θk ∈ N

(k)
θ such that zi,ε(N

(k)
θ ) =

− log Λ(ε)(X i, θk). By the continuity of Λ(ε)(X i, θ) and the fact that θk −→ θ, we have

zi,ε(N
(k)
θ ) −→ − log Λ(ε)(X i, θ) as k −→∞. (4.4)
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Since N
(k+1)
θ ⊆ N

(k)
θ ⊆ Θ̃, it follows that zi,ε(N

(k)
θ ) ≥ zi,ε(Θ̃). Applying Fatou lemma to

the sequence
{
zi,ε(N

(k)
θ )− zi,ε(Θ̃)

}∞
k=k0

and (4.4), we get

lim inf
k→∞

Eθ0zi,ε(N
(k)
θ ) ≥ Eθ0 lim inf

k→∞
zi,ε(N

(k)
θ ) = −Eθ0 log Λ(ε)(X i, θ). (4.5)

The condition (4.2) guarantees the martingale property of Λ(ε)(X i, θ) with Eθ0Λ(ε)(X i, θ) =

1. Hence, by using Jensen inequality, we obtain

−Eθ0 log Λ(ε)(X i, θ) ≥ − logEθ0Λ(ε)(X i, θ) = 0 (4.6)

From (4.5) and (4.6), we can choose k∗ such that Eθ0zi,ε(N
(k∗)
θ ) ≥ 0. Then, we set Uθ =

B(θ, 1/(k∗ + 1)) to complete the proof.

Let us introduce an alternative of the Kullback-Leibler information defined by

J (ε)
X (θ0, θ) = Eθ0 log

Λ(ε)(X1, θ0)

Λ(ε)(X1, θ)
. We have (see Appendix A. (p.104) for the proof),

J (ε)
X (θ0, θ) > 0, for all θ 6= θ0. (4.7)

Theorem 4.1.4. Let the assumptions of ii- in Theorem 4.1.3 be satisfied. Then for each

θ 6= θ0 there is an open set Nθ containing θ such that Eθ0Zε(Nθ, X
i) > 0. In particular the

estimator θ̂
(ε)
N is strongly consistent.

Proof. For each θ 6= θ0 in Θ, let N
(k)
θ be a closed ball centred at θ with radius

1

k
such

that, for each k, N
(k+1)
θ ⊆ N

(k)
θ ⊆ Θ̃, where Θ̃ is an open set such that θ ∈ Θ̃ and

Eθ0Zε(Θ̃, X i) > −∞. Clearly,
∞⋂
k=1

N
(k)
θ = {θ} and for each X i, Zε(N

(k)
θ , X i) increases with

k. For each X i, the function Λ(ε)(X i, θ) is continuous on the compact set N
(k)
θ . Thus, for

each k, we choose θk ∈ N (k)
θ so that Zε

(
N

(k)
θ , X i

)
= log

Λ(ε)(X i, θ0)

Λ(ε)(X i, θk)
(the sequence {θk}∞k=1

may depend on X i and ε). Since θk −→ θ, then

lim
k→∞

Zε

(
N

(k)
θ , X i

)
= log

Λ(ε)(X i, θ0)

Λ(ε)(X i, θ)
. (4.8)

From the fact that N
(k+1)
θ ⊆ N

(k)
θ , we deduce that Zε(N

(k)
θ , X i) ≥ Zε(Θ̃, X

i). If

Eθ0Zε(Θ̃, X i) = ∞, then our desired result holds with Nθ = Θ̃. If Eθ0Zε(Θ̃, X i) < ∞,

then we apply Fatou lemma to the sequence {Zε(N (k)
θ , X i) − Zε(Θ̃, X i)}∞k=1 and use (4.8)

to get

lim inf
k→∞

Eθ0Zε(N
(k)
θ , X i) ≥ Eθ0 lim inf

k→∞

(
Zε(Θ̃, X

i)
)

= JX(θ0, θ) > 0.

Now, we can choose k∗ so that Eθ0Zε
(
Nk∗

θ , X
i
)
> 0, and apply i- in Theorem 4.1.3 to

deduce the consistency result.
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Remark. Note that the condition (4.2) is only used to show that Eθ0Zε(Nθ, X
i) > −∞.

This condition may be restrictive in some particular cases, where the contrast functions are

explicit (see Examples: 4.1.2, 4.1.4 and 4.1.5). However, it is of great interest for general

cases, since it allows us to avoid the complixity of integration. (4.2) can be replaced by the

following condition and the consistency still holds true:

Eθ0 sup
Uθ

log Λ(ε)(X i, θ) <∞, where Uθ is an open set containing θ.

Example 4.1.1. Consider the following SDE’s given by

dX i(t) = φib(X
i(t))dt+ σ(X i(t))dW i(t); X i(0) = x , i = 1, · · · , N,

where φi are random variables with common density g(ϕ, θ)dν(ϕ) = N
(
µ, ω2

)
, θ =

(µ, ω2) ∈ Θ, and Θ = [µ, µ] × [ω2, ω2] ⊂ R × (0,∞). Let β(x) = b(x)/σ(x) such that

|β(x)| ≤ C(1 + |x|2γ) for some nonnegative constants γ, C. Assume also that E |φi|2k <∞,

for all k ≥ 1. Simple computations lead to

Λ(X i, θ) =

[
ω2

(∫ T

0

β(X i(t))2dt+ 1/ω2

)]−1/2

× exp

[
−µ2/2ω2 +

(∫ T

0

β(X i(t))dW i(t) + µ/ω2

)2

/2

(∫ T

0

β(X i(t))2dt+ 1/ω2

)]

Clearly, Λ(ε)(X i, θ) is continuous in θ, Pθ0-a.s. Let Uθ = Θ\{θ0} and θ′ = (µ′, ω′
2
). Using the

fact that for every ε > 0, there exists a constant Cε such that log

(
ε+ x

ε+ 1

)
≤ Cε+(log(x))2,
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for all x > 0, we obtain

Eθ0 sup
θ′∈Uθ

log Λ(ε)(X i, θ′) = Eθ0 sup
θ′∈Uθ

log

(
ε+ Λ(X i, θ′)

ε+ 1

)
≤ Cε + Eθ0 sup

θ′∈Uθ

(
log Λ(X i, θ′)

)2

≤ Cε +
1

4
Eθ0 sup

θ′∈Uθ

{
− log

(
ω′

2

∫ T

0

β(X i(t))2dt+ 1

)
− µ′2

ω′2

+

(∫ T

0

β(X i(t))dW i(t) + µ′/ω′
2

)2

∫ T

0

β(X i(t))2dt+ 1/ω′
2


2

≤ Cε +
3

4

{
µ4

(ω2)2
+ (ω2)2Eθ0

(∫ T

0

β(X i(t))2dt

)2

+
8µ4

(ω2)2
+ 8(ω2)2Eθ0

(∫ T

0

β(X i(t))dW i(t)

)4
}

≤ Cε +
3

4

{
9µ

4

(ω2)2
+ 8C4(ω2)2T

∫ T

0

Eθ0
(

1 +
∣∣X i(t)

∣∣8γ) dt
+64C4C

4(ω2)2T

∫ T

0

Eθ0
(

1 +
∣∣X i(t)

∣∣8γ) dt} <∞,

where C4 is a nonnegative constant due to BDG inequality. In the previous inequalities,

we systematically used Jensen inequality and the following facts:

(a+ b+ c)2 ≤ 3(a2 + b2 + c2), for all a, b, c ∈ R;

|a+ b|r ≤ 2r−1(|a|r + |b|r), for all a, b ∈ R and r > 1;∫ T

0

Eθ0
∣∣X i(t)

∣∣2k dt < ∞, for all k ≥ 1 (for th proof see Appendix A. (p.104)).(4.9)

For nonnegative integers α1, · · · , αd, we denote d-index α = (α1, · · · , αd), |α| = α1 +

· · ·+ αd and

Dαf(θ) =
∂α1

∂θα1
1

· · · ∂
αd

∂θαdd
f(θ).

We introduce the following matrix as an alternative of Fisher information matrix:(
I(ε)
X (θ0)

)
k,j

= Eθ0
{

∂

∂θk
log Λ(ε)(X1, θ)

∂

∂θj
log Λ(ε)(X1, θ)|θ=θ0

}
.

Proposition 4.1.5. Let γt(X
1, θ) be three times continuously differentiable with respect to

θ such that

Eθ0
(∫ T

0

(Dαγt(X
1, θ))2dt

)2

<∞, for all |α| ≤ 3.
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The following statements hold true:

(i) The matrix I(ε)
X (θ0) is finite.

(ii) There is some r0 > 0 and random function H(X1, θ0) depending only on θ0 such that

sup
θ∈Br(θ0)

∣∣D2 log Λ(ε)(X1, θ0)−D2 log Λ(ε)(X1, θ)
∣∣ ≤ rH(X1, θ0), for 0 < r < r0

with Eθ0H(X1, θ0) <∞.

Theorem 4.1.6. Let the assumptions of Theorem 4.1.4 and Proposition 4.1.5 be satisfied.

Assume further that the matrix I(ε)
X (θ0) is nonsingular. Then,

√
N
(
θ̂

(ε)
N − θ0

)
L

=⇒ N
(

0, I(ε)
X (θ0)−1

)
.

Proof. To prove Theorem 4.1.6, we follow Schervish. Let X = (X1, · · · , XN) and set

l
(ε)
θ (X) =

1

N

N∑
i=1

log Λ(ε)(X i, θ).

The jth coordinate of the gradient of l
(ε)
θ

′
(X) is given by (

N∑
i=1

∂/∂θj log Λ(ε)(X i, θ))/N .

Since θ0 ∈ Θ̇, there is an open neighborhood B(θ0, δ) ⊂ Θ̇. From the convergence of θ̂
(ε)
N

to θ0, it follows that ZNχΘ̇c(θ̂
(ε)
N ) = op(1/

√
N) as N → ∞ for every sequence {ZN}∞N=1 of

random variables. In fact, for every rN > 0, we have

Pθ0
(∣∣∣ZNχΘ̇c(θ̂

(ε)
N )/rN

∣∣∣ > ε′
)

= Pθ0
(
|ZN/rN | > ε′ , θ̂

(ε)
N /∈ Θ̇

)
≤ Pθ0

(
θ̂

(ε)
N /∈ B(θ0, δ)

)
−→ 0, as N −→∞, for all ε′ > 0.

Note that l
(ε)

θ̂
(ε)
N

′
(X) = 0, for θ̂

(ε)
N ∈ Θ̇. Thus

l
(ε)

θ̂
(ε)
N

′
(X) = l

(ε)

θ̂
(ε)
N

′
(X)χΘ̇c(θ̂

(ε)
N ) = op(1/

√
N)

By using one-term Taylor expansion of each coordinate l
(ε)

θ̂
(ε)
N

′
(X) around θ0, we obtain

l
(ε)
θ0

′
(X) +

((
∂2

∂θk∂θj
l
(ε)
θ (X)|θ=θ∗ε

))
(θ̂

(ε)
N − θ0) = op(1/

√
N), (4.10)

where each θ∗ε,j is a convex combination of θ̂
(ε)
N,j and θ0,j. Since θ̂

(ε)
N

Pθ0=⇒ θ0, θ̂
(ε)
N,j → θ0,j as

well for each j under Pθ0 . Set B
(ε)
N equal to the matrix in (4.10). Then

l
(ε)
θ0

′
(X) +B

(ε)
N (θ̂

(ε)
N − θ0) = op(1/

√
N). (4.11)
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We have Eθ0Λ(ε)(X i, θ0) = 1. By passing the derivatives under the integral sign in the

previous equation, we get 0 = Eθ0
∂

∂θj
Λ(ε)(X i, θ0), hence Eθ0

(
l
(ε)
θ0

′
(X)

)
= 0. Similarly, the

conditional covariance matrix given θ = θ0 of l
(ε)
θ0

(X) is I(ε)
X (θ0). The multivariate central

limit theorem ( see, [101, Theorem B.99]) yields
√
Nl

(ε)
θ0

′
(X)

L
=⇒ N

(
0, I(ε)

X (θ0)
)

(since

I(ε)
X (θ0) is finite by (i) in Proposition 4.1.5. Hence, by Prohorov’s theorem (see, e.g., [113,

p.8]) and (4.11), we have √
NB

(ε)
N (θ̂

(ε)
N − θ0) = Op(1). (4.12)

Note that
(
B

(ε)
N

)
k,j

=

(
N∑
i=1

∂2

∂θk∂θj
log Λ(ε)(X i, θ)|θ=θ

)
/N + ∆N , with |∆N | ≤

r

N∑
i=1

H(X i, θ0)/N (this is justified by (ii) in Proposition 4.1.5, when ‖θ∗ε − θ0‖ < r). The

weak law of large numbers yields
N∑
i=1

H(X i, θ0)/N
Pθ0=⇒ Eθ0H(X1, θ0). Let ε′ > 0 and choose

r to be small enough so that rEθ0H(X1, θ0) < ε′/2. Then

Pθ0 (|∆N | > ε′) ≤ Pθ0

(
r

N

N∑
i=1

H(X i, θ0) > ε′

)
+ Pθ0 (‖θ∗ε − θ0‖ ≥ r)

≤ Pθ0

(
1

N

N∑
i=1

H(X i, θ0)− Eθ0H(X1, θ0) >
ε′

2r

)
+ Pθ0

(∥∥∥θ̂(ε)
N − θ0

∥∥∥ ≥ r
)
−→ 0 as N −→∞.

It follows that ∆N = op(1), hence B
(ε)
N

Pθ0=⇒ −I(ε)
X (θ0), and B

(ε)
N = Op(1) but B

(ε)
N 6= op(1).

As result, (4.12) gives
√
N(θ̂

(ε)
N − θ0) = Op(1). Now, writeB

(ε)
N = −I(ε)

X (θ0) + CN , where

CN = op(1). Then, by using the usual operations on ”big-oh” and ”small-oh”, we have

CN

(
θ̂

(ε)
N − θ0

)
= op(1/

√
N). Substituting B

(ε)
N by its value in (4.11), we obtain

op(1/
√
N) = l

(ε)
θ0

′
(X)− I(ε)

X (θ0)(θ̂
(ε)
N − θ0) + CN(θ̂

(ε)
N − θ0),

which can be rewritten as
√
Nl

(ε)
θ0

′
(X)− I(ε)

X (θ0)
√
N(θ̂

(ε)
N − θ0) = op(1).

Finally, by continuous mapping theorem and Slutsky’s lemma, we have
√
N(θ̂

(ε)
N − θ0) = I(ε)

X (θ0)
−1
[√

Nl
(ε)
θ0

′
(X)− op(1)

]
L

=⇒ N
(

0, I(ε)
X (θ0)−1

)
under Pθ0 ,

and the proof is complete.
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Remark. Note that the matrix I(ε)
X (θ0) with small ε can be seen as an approximation of

the Fisher information matrix IX(θ0). As result, if IX(θ0) is nonsingular, we may choose

ε > 0 so that I(ε)
X (θ0) is nonsingular as well.

4.1.4 Applications and Examples

This section is devoted to the study of a particular cases in which all basic assumptions

are met. The results are illustrated by various examples, such as Wright-Fisher diffusion

[61, p. 176] and Hyperbolic diffusion [13, p. 47].

Let βu(ϕ) be a nonnegative deterministic (continuous) function such that∣∣β(X i(s), ϕ, ϕ0)
∣∣ ≤ βs(ϕ), for all s, ϕ

and

∫ T

0

βu(ϕ)2du <∞, for all ϕ

Let us consider the following conditions:

D1: For any θ ∈ Θ, ∃Nθ an open set such that θ ∈ Nθ and there exist δ > 0, C > 0 and

density function h(ϕ) w.r.t ν so that

|g(ϕ, θ1)− g(ϕ, θ2)| ≤ Ch(ϕ) ‖θ1 − θ2‖δ , for allθ1, θ2 ∈ Nθ. (4.13)

D2: For f = h(·) or g(·, θ), we have∫
eλ

∫ T
0 βu(ϕ)2duf(ϕ)dν(ϕ) <∞, for all λ > 0. (4.14)

Proposition 4.1.7. Let the conditions D1 and D2 be fulfilled. We have

(i) Eθ0
∫ Ti

0

γ2
s (X

i, θ)ds <∞, for all i = 1, · · · , N.

(ii) For each i, the function Λ(ε)(X i, θ) is continuous in θ Pθ0−a.s.

Example 4.1.2. Consider the hyporbolic diffusion X = X1 with dynamics:

dXt = φ1
φ2Xt√

1 + φ2
2X

2
t

dt+ dWt, X0 = x ∈ R,

where φ1 and φ2 are two independent random variables with densities that satisfy D1 and

φ1 has compact support.
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Example 4.1.3. Consider Wright-Fisher diffusion X = X1 with dynamics:

dXt = φXt(1−Xt)dt+
√
Xt(1−Xt)dWt, X0 = x ∈ R,

where φ is a random variable with density having compact support and satisfies D1.

Example 4.1.4. Consider Double-Well potential diffusion X = X1 with dynamics:

dXt =
(
φ1Xt − φ2X

3
t

)
dt+ dWt, X0 = x ∈ R,

where φ1 and φ2 are normally distributed.

Example 4.1.5. Consider the diffusion process X = X1 with dynamics:

dXt = φXtdt+
√

1 +X2
t dWt, X0 = x ∈ R,

where φ is normally distributed.

Remark. Many densities such as, Normal, Cauchy, Logistic and Gamma distributions sat-

isfy D1. Hence, by truncation procedure, we can derive from them densities with compact

support satisfying D1 & D2. It is worth to mention that cases where density g(ϕ, θ) has

unbounded support are less important (since data can always be mapped monotonically to

[0, 1]; and densities with unbounded support occur less often in practice). In contrast, the

densities with compact support are easy to handle numerically.

4.1.5 Implementation Issues and Numerical Applications

For the implementation issue, the contrast functions are either explicitly computed as

in Table 4.1 or approximated as in Table 4.2 and Table 4.3 by means of quadrature rules

(e.g., [42]). More precisely, we use the following quadrature formula for a nonlinear cases.∫ +∞

−∞
h(u)e−u

2

du '
R∑
r=1

h(zr)wr, where zr = r − th zero of the the Hermite polynomial

HR(u) with degree R. Three examples from previous section are numerically implemented

later for different values of ε, N and R.

In practice, one rather disposes of discrete observations on the time interval [0, T ].

Suppose that subjects X i, i = 1, 2, · · · , N are discretly observed, only for simplicity, at

equidistant points tj, j = 1, 2, · · · , n of [0, T ]. Then we discretize the integrals defining the
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conditional likelihood LT (X i, ϕ, ϕ0), that is,∫ T

0

H+
2 (X i(s))2

[
H1(X i(s), ϕ)−H1(X i(s), ϕ0)

]︸ ︷︷ ︸
= Ai(s)

dX i(s)

'
n∑
j=1

Ai(tj−1)(X i(tj)−X i(tj−1))

∫ T

0

H+
2 (X i(s))2

[
H2

1 (X i(s), ϕ)−H2
1 (X i(s), ϕ0)

]︸ ︷︷ ︸
= Bi(s)

ds

'
n∑
j=1

Bi(tj−1)(tj − tj−1).

Hence, we can get an approximate contrast function when an explicit one is not available.

For the simulation studies, 100 dataest are generated for different numbers of subjects;

N = 50,N = 100, N = 1000 with horizon time T = 5 and for different values of ε; ε = 0.02,

ε = 0.002 and ε = 0 when the last value corresponds to the true maximum likelihood

parameters estimation. The dataset are simulated as follows: we begin by drawing the

random effect, then for each random effect drained value, the sample paths are simulated

using Milstein scheme, at two different numbers (n = 210 or 28) of observations points very

close in the fixed interval of time [0, 5]. The model parameters are estimated using gaussian

density as random effects distribution.

Looking at Tables 4.1-4.3, they show that the estimations of the parameters are gen-

erally much closer to their true values; there is a considerable improvement as the value

of ε decreases. The results computed from 100 dataset are excellent, even both N and R

are not too large. For the Example 4.1.5, Table 4.2 shows that the estimation are much

closer to their true values rather than those found in [25, Table 4 ]. For the nonlinear

case (Example 4.1.2), Table 4.3 shows that the estimations are very satisfactory, and the

accuracy can be improved by increasing only N . Compared to N (number of subjects),

increasing R have no significant impact on the quality of the estimators and consume more

time. Also the histograms in Figure 4.1 and Figure 4.2 reveal the asymptotic normality

property of the estimators.
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True parameter values ε = 0.02 ε = 0.002 ε = 0

N = 50 Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)

µ1 = −1

σ2
1 = 0.81

µ2 = 2

σ2
2 = 0.42

-0.9394(0.4112)

0.7143(0.4266)

1.9955(0.5589)

0.3440(0.4585)

-1.0127(0.3836)

0.8242(0.3839)

1.9040(0.4060)

0.2610(0.2988)

-1.0048(0.2623)

0.7928(0.3780)

2.0011(0.3966)

0.3478(0.2786)

N = 100

µ1 = −1

σ2
1 = 0.81

µ2 = 2

σ2
2 = 0.42

-0.9353(0.4421)

0.8198(0.3397)

1.9263(0.3522)

0.2718(0.2784)

-0.9044(0.5223)

0.8431(0.2534)

1.8883(0.3751)

0.3580(0.3059)

-0.9488(0.2232)

0.7814(0.3039)

2.0569(0.2949)

0.4066(0.2730)

Table 4.1. Example 4.1.4: dX i(t) =
(
φ1,iX

i(t)− φ2,iX
i(t)3

)
dt +

dW i(t), φs,i ∼ N
(
µs, σ

2
s

)
, s = 1, 2. Empirical mean and Std. dev. (in

brackets) of estimators µ̂1, µ̂2, σ̂2
1, σ̂2

2 are computed from 50 repeated
simulated data sets for different values of (N, ε).
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True parameter values ε = 0.02 ε = 0.002 ε = 0

N = 50,R = 50 Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)

µ = −1

σ2 = 1

-1.0251(0.2108)

0.9659(0.3407)

-0.9703(0.2039)

0.9639(0.3819)

-1.0145(0.2214)

1.0007(0.3524)

µ = 5

σ2 = 1

4.9955(0.1630)

0.9690(0.2378)

4.9995(0.1761)

0.9743(0.2443)

4.9879(0.1732)

0.9784(0.2421)

N = 100,R = 100

µ = −1

σ2 = 1

-1.0309(0.1493)

0.9574(0.2587)

-1.0234(0.1623)

1.0303(0.2308)

-1.0036(0.1494)

0.9692(0.2762)

µ = 5

σ2 = 1

5.0081(0.1087)

0.9684(0.1876)

5.0102(0.1093)

0.9897(0.1807)

5.0153(0.1051)

0.9665(0.1871)

Table 4.2. Example 4.1.5: dX i(t) = φiX
i(t)dt +√

1 +X i(t)2dW i(t), φi ∼ N
(
µ, σ2

)
. Empirical mean and Std.

dev. (in brackets) of estimators µ̂ and σ̂2 are computed from 100
repeated simulated data sets for different values of (N,R, ε) and
different parameter values.
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True parameter values ε = 0.02 ε = 0.002 ε = 0

N = 103, R = 50 Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)

µ = −1

σ2 = 1

-1.0335 (0.0743)

1.0353 (0.1481)

-1.0055 (0.0706)

1.0040 (0.1367)

-1.0034 (0.0730)

1.0063 (0.1444)

N = 103, R = 100

µ = −1

σ2 = 1

-1.0288 (0.0757)

1.0324 (0.1643)

-1.0062 (0.0715)

1.0131 (0.1418)

-0.9993 (0.0705)

0.9967 (0.1448)

Table 4.3. Example 4.1.2: dX i(t) =
φiX

i(t)√
1 + φ2

iX
i(t)2

dt+dW i(t), φi ∼

N
(
µ, σ2

)
. Empirical mean and Std. dev. (in brackets) of estimators

µ̂ and σ̂2are computed from hunderds of repeated simulated data sets
for different values of (N,R, ε) and different parameter values.
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Figure 4.1. Example 4.1.2: Hyperbolic diffusion process, histograms

of µ̂(ε) (on the left) and σ̂2(ε) (on the right), for different values of ε =
0.02, 0.002, 0 and fixed parameters: (µ, σ2) = (−1, 1) and (T,N, n,R) =
(5, 1000, 28, 50).
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Figure 4.2. Example 4.1.2: Hyperbolic diffusion process, histograms

of µ̂(ε) (on the left) and σ̂2(ε) (on the right), for different values of ε =
0.02, 0.002, 0 and fixed parameters: (µ, σ2) = (−1, 1) and (T,N, n,R) =
(5, 1500, 28, 100).

4.2 NEW EXPANSION OF THE LIKELIHOOD FUNCTION

We adopt notations introduced in the previous section. Set

αin(t1, t2, . . . , tn, θ) =

∫
β(X i(t1), ϕ, ϕ0) · · · β(X i(tn), ϕ, ϕ0)g(ϕ, θ)dν(ϕ),

where β(x, ϕ, ϕ0) = H+
2 (x) (H1(x, ϕ)−H1(x, ϕ0)), for all x ∈ R and ϕ, ϕ0 ∈ Rp. For each

subject X i, we denote by Jn
(
β⊗ni (θ)

)
, n ≥ 0 the multiple integral defined as

J0

(
β⊗0
i (θ)

)
= 1

J1

(
β⊗1
i (θ)

)
=

∫ T

0

αi1(t1, θ)dW
i(t1)

J2

(
β⊗2
i (θ)

)
=

∫ T

0

∫ t1

0

αi2(t1, t2, θ)dW
i(t2)dW i(t1)

...
...

...
...

Jn
(
β⊗ni (θ)

)
=

∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

αin(t1, t2, . . . , tn, θ)dW
i(tn) · · · dW i(t2)dW i(t1).

With these notations and argumenets, we are ready to expand the likelihood functions

Λi(X
i, θ) as a series of Jn

(
β⊗ni (θ)

)
.
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Proposition 4.2.1. Let the conditions A1- A3 be satisfied and let ϕ, ϕ0 ∈ Rp. Then the

individual density functions Λi(X
i, θ) defined in Proposition 4.1.1 can be rewritten as

Λi(X
i, θ) =

∞∑
n=0

Jn
(
β⊗ni (θ)

)
, (4.15)

provided that

∫
[0,T ]n

Eαin(t1, t2, . . . , tn, θ)
2dt1 · · · dtn <∞.

Proof. For a fixed subject X i, i = 1, · · · , N , we simplify notations by setting X i =

X, W i = W , βt = β(X i(t), ϕ, ϕ0) and L =
(
Lt = LT (X i, ϕ, ϕ0)|T=t , t ≤ T

)
. Clearly,

Lt = exp

(∫ t

0

βsdWs −
1

2

∫ t

0

β2
sds

)
for t ≥ 0. Thus L is a nonnegative supermartingale

permitting the following representation

Lt = 1 +

∫ t

0

βsLsdWs, for all t ≤ T. (4.16)

Note that (4.16) follows immediately from Itô formula. Applying (4.16) recursively, we

have

LT = 1 +

∫ T

0

βt1Lt1dWt1

= 1 +

∫ T

0

βt1

[
1 +

∫ t1

0

βt2Lt2dWt2

]
dWt1

= 1 +

∫ T

0

βt1dWt1 +

∫ T

0

∫ t1

0

βt1βt2

[
1 +

∫ t2

0

βt3Lt3dWt3

]
dWt2dWt1

...
...

...
...

...

= 1 +

∫ T

0

βt1dWt1 + · · ·+
∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

βt1βt2 · · · βtndWtn · · · dWt2dWt1 + · · ·

=
∞∑
n=0

Jn(β⊗n), (4.17)

where β⊗n is the tensor product defined by β⊗n(t1, · · · , tn) =
n∏
i=1

βti and Jn(f(·)) is the

multiple stochastic integral defined by

Jn(f(·)) =

∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

f(t1, t2, · · · , tn)dWtn · · · dWt2dWt1

for n ≥ 1 and J0(f(·)) = 1. Substituting (4.17) into the expression of the individual

densities, then using the condition presented in (ii) and Fubini theorem for stochastic

integrals (see, [73, Theorem 5.15]) to get the desired result. The condition presented in

Proposition 4.2.1 holds true under the assumptions A4-A5 below.
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4.2.1 Strong Consistency of the MLE

The following assumptions are needed to prove the consistency of the MLE.

A4: There exist a nonnegative constants M > 0 and γ > 0 such that

|β(x, ϕ, ϕ0)| ≤M (1 + |x|γ), for all x ∈ R and ϕ ∈ Rp.

A5: There exists M2 > 0 such that Eθ sup
t≤T

∣∣X i(t)
∣∣2k ≤ Mk

2 , for all k, i = 1, · · · , N and

θ ∈ Θ.

A6: For any θ ∈ Θ, ∃Nθ an open set such that θ ∈ Nθ and there exist δ > 0, C > 0 and

density function h(ϕ) w.r.t ν so that

|g(ϕ, θ1)− g(ϕ, θ2)| ≤ Ch(ϕ) ‖θ1 − θ2‖δ , ∀θ1, θ2 ∈ Nθ. (4.18)

Instead of A6 we may assume that Eθ sup
t≤T

∣∣X i(t)
∣∣2k ≤ M1, for all k, i = 1, · · · , N and

θ ∈ Θ, for some fixed M1 > 0. For θ ∈ Θ set ξθ(x) =

∫
β(x, ϕ, ϕ0)dµθ(ϕ) and [ξθ(x)] =∫

β(x, ϕ, ϕ0)2dµθ(ϕ) where dµθ(ϕ) = g(ϕ, θ)dν(ϕ). Under the previous assumptions and

notations, we state the following results.

Proposition 4.2.2.

(i) The random functions Jn(β⊗ni (θ)), n ≥ 1 are continuous in θ, Pθ0-a.s.

(ii) The individual likelihood function Λi(X
i, θ) is continuous in θ, Pθ0-a.s.

(iii) For θ ∈ Θ and i = 1, · · · , N Eθ0
∫ T

0

[
ξθ(X

i(s))
]
ds <∞.

(iv) For each θ and i = 1, · · · , N , the process

(∫ t

0

ξθ(X
i(s))dW i(s); t ≥ 0

)
is a true

martingale.

(v) Eθ0 log Λi(X
i, θ) > −∞, for all θ ∈ Θ.

(vi) Eθ0 log Λi(X
i, θ) ≤ 1, for all θ ∈ Θ.

Proof. (i) We shall only focus on the properties of Λ(X, θ) = Λ1(X1, θ) since the same

procedures can be applied to other densities. We simplify notations by setting X i = X,

W i = W , β = β1, dt⊗n = dtn · · · dt1, dW⊗n(t) = dW (tn) · · · dW (t1) and
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Sn = {(t1, · · · , tn) ∈ [0, T ]n ; 0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ T}. Let Nθ be the open set such

that θ ∈ Nθ and (4.18) holds. Let θ1, θ2 ∈ Nθ, r > 0 and set

ζθ1,θ2 =

∫
Sn

[∫ n∏
l=1

β(X(tl), ϕ, ϕ0) (g(ϕ, θ1)− g(ϕ, θ2)) dν(ϕ)

]
dW⊗n(t).

We shall verify the Kolmogorov-Chentsov criterion (2.3) with constants to be specified

latter. Applying BDG and Jensen inequalities and Fubini theorem respectively, we claim

that there exists Cr > 0 such that

Eθ0
∣∣Jn (β⊗n(θ1)

)
− Jn

(
β⊗n(θ2)

)∣∣2r = Eθ0ζ
2r
θ1,θ2 ≤ CrEθ0〈ζθ1,θ2〉

r

≤ T r−1Cr

∫ T

0
Eθ0

{∫
Sn−1

(∫ n∏
l=1

β(X(tl), ϕ, ϕ0) (g(ϕ, θ1)− g(ϕ, θ2)) dν(ϕ)

)
dW⊗n−1(t)

}2r

dt1

≤ (T r−1Cr)
2

∫ T

0

∫ t1

0
Eθ0

{∫
Sn−2

(∫ n∏
l=1

β(X(tl), ϕ, ϕ0) (g(ϕ, θ1)− g(ϕ, θ2)) dν(ϕ)

)
dW⊗n−2(t)

}2r

dt2dt1

...

≤ (T r−1Cr)
n

∫
Sn

Eθ0

{∫ n∏
l=1

β(X(tl), ϕ, ϕ0)
(
g(ϕ, θ)− g(ϕ, θ′)

)
dν(ϕ)

}2r

dt⊗n

≤ (T r−1Cr)
n

∫
Sn

Eθ0

{∫ n∏
l=1

β(X(tl), ϕ, ϕ0)C ‖θ1 − θ2‖δ h(ϕ)dν(ϕ)

}2r

dt⊗n

≤ (T r−1Cr)
nC2r ‖θ1 − θ2‖2rδ

∫
Sn

∫ Eθ0

{
n∏
l=1

β(X(tl), ϕ, ϕ0)

}2r

h(ϕ)dν(ϕ)

 dt⊗n

≤ (T r−1Cr)
n

n!
C2r ‖θ1 − θ2‖2rδ

∫
[0,T ]n

(∫
Eθ0

n∏
l=1

β(X(tl), ϕ, ϕ0)2rh(ϕ)dν(ϕ)

)
dt⊗n .

We can choose r ≥ d d
2δ
e and ε = 2rδ−d, so that the Kolmogorov-Chentsov criterion holds.

Hence, the continuity of Jn(β⊗n1 (θ)) in θ, Pθ0-a.s holds true.

(ii) Let θ ∈ Θ and r ≥ 1, we have Λ(X, θ) =
∑
n≥0

Jn
(
β⊗n(θ)

)
= lim

m−→∞
Λ(m)(X, θ)

where Λ(m)(X, θ) =
m∑
n=0

Jn
(
β⊗n(θ)

)
. By using Minkowski inequality, we obtain
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{
Eθ0 |Λm(X, θ1)− Λm(X, θ2)|2r

}1/2r
=

Eθ0

∣∣∣∣∣
m∑
n=1

Jn
(
β⊗n(θ1)− β⊗n(θ2)

)∣∣∣∣∣
2r


1/2r

≤

Eθ0

(
m∑
n=1

∣∣Jn (β⊗n(θ1)− β⊗n(θ2)
)∣∣)2r


1/2r

≤
m∑
n=1

{
Eθ0
(∣∣Jn (β⊗n(θ1)− β⊗n(θ2)

)∣∣)2r
}1/2r

≤
m∑
n=1

{
Eθ0ζ2r

θ1,θ2

}1/2r

≤ C ‖θ1 − θ2‖δ
m∑
n=1

(T r−1Cr)
2r
√
n!

{∫
[0,T ]n

(∫
Eθ0

n∏
l=1

β(X(tl), ϕ, ϕ0)2rh(ϕ)dν(ϕ)

)
dt⊗n

}1/2r

(4.19)

≤ C ‖θ1 − θ2‖δ
m∑
n=1

2n−1/2rMnT n/2r(T r−1Cr)
n/2r

2r
√
n!

(
1 + Eθ0 sup

t≤T
|Xt|2γnr

)1/2r

≤ C ‖θ1 − θ2‖δ
∞∑
n=1

2n−1/2rMnT n/2C
n/2r
r

2r
√
n!

(
1 + Eθ0 sup

t≤T
|Xt|2γnr

)
≤ C × C(r, T,M,M2) ‖θ1 − θ2‖δ ,

where C(r, T,M,M2) =
∞∑
n=1

[
2MT 1/2C

1/2r
r

]n
2r
√
n!

(1 +Mγnr
2 ) <∞. Now, we are ready to

apply Fatou lemma to the sequence
{
|Λm(X, θ1)− Λm(X, θ2)|2r

}∞
m=1

to get{
Eθ0 |Λ(X, θ1)− Λ(X, θ2)|2r

}1/2r ≤ lim inf
m−→∞

{
Eθ0 |Λm(X, θ1)− Λm(X, θ2)|2r

}1/2r

≤ C × C(r, T,M,M2) ‖θ1 − θ2‖δ .

Hence, Eθ0 |Λ(X, θ1)− Λ(X, θ2)|2r ≤ C2r ×C(r, T,M,M2)2r ‖θ1 − θ2‖2rδ for all θ1, θ2 ∈ Nθ.

Choosing again r ≥ d d
2δ
e ∨ 1 and ε = 2rδ − d, so that the Kolmogorov-Chentsov criterion

holds. Thus, Λ(X, θ) is continuous in θ, Pθ0-a.s.

For the proof of the statements (iii)-(iv), we use Fubini theorem

Eθ0
∫ T

0

[ξθ(Xs)] ds = Eθ0
∫ T

0

∫
β(Xs, ϕ, ϕ0)2dµθ(ϕ)ds

≤
∫ T

0

∫
Eθ0β(Xs, ϕ, ϕ0)2dµθ(ϕ)ds ≤M2

∫ T

0

∫
Eθ0 (1 + |Xs|γ)2

dµθ(ϕ)ds

≤ 2M2

∫ T

0

Eθ0
(
1 + Eθ0 |Xs|2γ

)
ds ≤ 2M2T

(
1 + Eθ0 sup

t≤T
|Xt|2γ

)
<∞.
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From (iii) it follows that Eθ0
∫ T

0

(ξθ(Xs))
2 ds <∞. Thus the process

η =

(∫ t

0

ξθ(Xs)dWs; t ≥ 0

)
is a true martingale. (v) By virtue of Jensen inequality and

the martingale property of η, we have

Eθ0 log Λ(X, θ) ≥ Eθ0 log

∫
LT (X,ϕ, ϕ0)dµθ(ϕ)

≥ Eθ0
∫

logLT (X,ϕ, ϕ0)dµθ(ϕ)

≥ Eθ0η −
1

2
Eθ0
∫ T

0

[ξθ(Xs)] ds > −∞.

(vi) follows immediately from the supermartingale property of

L = (LT (X,ϕ, ϕ0) : T ≥ 0) and the proof of Proposition 4.2.2 is complete.

The most delicate task of this work is to show that Λi(X
i, θ) is continuous in θ, Pθ0-

a.s. The proof of (iii)-(vi) requires weaker assumptions than those already considered in

A4-A5. In fact, we need only that

• There exists a nonnegative polynomial P(x, ϕ) of order m (which may depend on ϕ0)

such that |β(x, ϕ, ϕ0)| ≤ |P(x, ϕ)|, for all x and ϕ.

• The random effects have all moments of oder k, k ≤ 2m.

• For all k > 0, sup
t≤T

Eθ0
∣∣X i(t)

∣∣k <∞.

Theorem 4.2.3. Under the assumptions A1-A6, the MLE θ̂N is strongly consistent, i.e.,

θ̂N
Pθ0−a.s=⇒ θ0, as N −→∞

Proof. The previous results (Proposition 4.2.2) combined with the compactness of the

parameter space Θ yield the strong consistency of the MLE (see, Theorems 3.0.4-3.0.5).

The previous results can be extended to non homogeneous diffusions. In fact the

individual densities will be given by

Λi(X
i, θ) =

∫
LT (X i, ϕ, ϕ0)dµθ(ϕ),

where

LT (X i, ϕ, ϕ0) = e
∫ T
0 β(s,Xi(s),ϕ,ϕ0)dW i(s)− 1

2

∫ T
0 β(s,Xi(s),ϕ,ϕ0)2ds
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If β(s,X i(s), ϕ, ϕ0) is deterministic, that is β(s,X i(s), ϕ, ϕ0) = A(s, ϕ, ϕ0), then the expan-

sion of Λi(X
i, θ) given in (4.15) is exactly its Wiener-Itô chaos expansion. Black-Derman-

Toy model is an example of this type (see, e.g., [13]). In this case, we have also the following

Proposition.

Proposition 4.2.4.

(i) For i = 1, · · · , N and n ∈ N, Jn(β⊗ni (θ)) ∈ L2(Pθ0).

(ii) If Λi(X, θ) ∈ L2(Pθ0) and β(s,X i(s), ϕ, ϕ0) is deterministic, then the series∑
n≥0

∥∥Jn(β⊗ni (θ))
∥∥2

L2(Pθ0 )
converges and

‖Λi(X, θ)‖2
L2(Pθ0 ) =

∑
n≥0

∥∥Jn(β⊗ni (θ))
∥∥2

L2(Pθ0 )
.

Proof. (i) Let θ, θ′ ∈ Θ. Making use of the notations introduced in the proof of Proposition

4.2.2, we have

∥∥Jn (β⊗n(θ)
)∥∥2

L2(Pθ′ )
≤ Cn

r

∫
Sn

Eθ′
{∫ n∏

l=1

β(X(tl), ϕ, ϕ0)dµθ(ϕ)

}2

dt⊗n

≤ 2n−1 (TM2Cr)
n

n!

(
1 + Eθ′ sup

t≤T
|Xt|2γn

)
<∞.

Therefore Jn
(
β⊗n(θ)

)
∈ L2(Pθ′), for all (fixed) θ′ ∈ Θ.

By induction (see the proof of Proposition 4.2.1), we can show that

LT (X,ϕ, ϕ0) =
m∑
n=0

Jn(A(·, ϕ, ϕ0)⊗n) + ψm+1(ϕ, ϕ0),

where ψm+1(ϕ, ϕ0) =

∫
Sm+1

m+1∏
l=1

A(tl, ϕ, ϕ0)Ltm+1(X,ϕ, ϕ0)dW⊗m+1(t).

By virtue of Itô isometry, simple computations lead to the following results

Eθ0
(
Jn
(
A(·, ϕ, ϕ0)⊗nψm+1(ϕ′, ϕ0)

))
= 0 , ∀n ≤ m, ∀ϕ, ϕ′

Eθ0
(
Jn
(
A(·, ϕ, ϕ0)⊗n

)
Jk
(
A(·, ϕ′, ϕ0)⊗k

))
= 0 , ∀n 6= k, ∀ϕ, ϕ′.
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Hence, for each ϕ, ϕ′ we have

Eθ0 (LT (X,ϕ, ϕ0)LT (X,ϕ′, ϕ0))

= Eθ0

{(
m∑
n=0

Jn(A(·, ϕ, ϕ0)⊗n) + ψm+1(ϕ, ϕ0)

)

×

(
m∑
n=0

Jn(A(·, ϕ′, ϕ0)⊗n) + ψm+1(ϕ′, ϕ0)

)}

=
m∑
n=0

Eθ0
{
Jn(A(·, ϕ, ϕ0)⊗n)Jn(A(·, ϕ′, ϕ0)⊗n)

}
+ Eθ0 (ψm+1(ϕ, ϕ0)ψm+1(ϕ′, ϕ0)) .

Which implies that

Eθ0Λ(X, θ)2 = Eθ0
(∫

LT (X,ϕ, ϕ0)dµθ(ϕ)

)2

= Eθ0
∫ ∫

LT (X,ϕ, ϕ0)LT (X,ϕ′, ϕ0)dµθ(ϕ)dµθ(ϕ′)

=

∫ ∫
Eθ0 (LT (X,ϕ, ϕ0)LT (X,ϕ′, ϕ0)) dµθ(ϕ)dµθ(ϕ′)

=
m∑
n=0

∫ ∫
Eθ0
{
Jn(A(·, ϕ, ϕ0)⊗n)Jn(A(·, ϕ′, ϕ0)⊗n)

}
dµθ(ϕ)dµθ(ϕ′)

+

∫ ∫
Eθ0 {ψm+1(ϕ, ϕ0)ψm+1(ϕ′, ϕ0)} dµθ(ϕ)dµθ(ϕ′)

=
m∑
n=0

Eθ0
{∫ ∫

Jn(A(·, ϕ, ϕ0)⊗n)Jn(A(·, ϕ′, ϕ0)⊗n)dµθ(ϕ)dµθ(ϕ′)

}
+Eθ0

{∫ ∫
ψm+1(ϕ, ϕ0)ψm+1(ϕ′, ϕ0)dµθ(ϕ)dµθ(ϕ′)

}
=

m∑
n=0

∥∥Jn(β⊗n(θ))
∥∥2

L2(Pθ0 )
+ Eθ0ψm+1(θ)2,

where ψm+1(θ) :=

∫
ψm+1(ϕ, ϕ0)dµθ(ϕ). Since Λ(X, θ) ∈ L2(Pθ0), then∑

n≥0

∥∥Jn(β⊗n(θ))
∥∥2

L2(Pθ0 )
<∞ and {ψm+1(θ)}∞m=1 converges in L2(Pθ0).

Set ψ(θ) := lim
m−→∞

ψm+1(θ). It remains to show that ψ(θ) = 0. For that purpose, we use the

same procedures as in the proof of Theorem 1.10 in [28]. For all n ≤ m and fn ∈ L2([0, T ]n),
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we have

Eθ0 (Jn(fn)ψm+1(θ)) = Eθ0
{
Jn(fn)

∫
ψm+1(ϕ, ϕ0)dµθ(ϕ)

}
= Eθ0

{∫
Jn(fn)ψm+1(ϕ, ϕ0)dµθ(ϕ)

}
=

∫
Eθ0 {Jn(fn)ψm+1(ϕ, ϕ0)} dµθ(ϕ) = 0.

The last equality can be ridely justified by Itô isometry.

Therefore Eθ0 (Jn(fn)ψ(θ)) = 0, for all n ≥ 0 and fn ∈ L2([0, T ]n). in particular, by

Proposition 1.18 in [28], we have

Eθ0

(
hn

(∫ T
0
f(t)dWt

‖f‖

)
· ψ(θ)

)
= 0.

Using the fact that xn can be expressed as a linear combination of the Hermite polynomials

hr(x), 0 ≤ r ≤ n, we get Eθ0
((∫ T

0

f(t)dWt

)n
· ψ(θ)

)
= 0, for all n ≥ 0, which implies

again that

Eθ0
(
e
∫ T
0 f(t)dWtψ(θ)

)
=
∞∑
n=0

1

n!
Eθ0
((∫ T

0

f(t)dWt

)n
· ψ(θ)

)
= 0.

Since the family
{
e
∫ T
0 f(t)dWt ; f ∈ L2([0, T ])

}
is dense in L2(Pθ0) (see, [87, Lemma 4.3.2]),

we conclude that ψ(θ) = 0 and the proof is complete.

Under the assumptions A1- A6, one can prove that the series given in (4.15) converges

in L2r(Pθ0), but it may not be unique as expansion of the individual likelihood.

4.2.2 Asymptotic Normality of the MLE

For nonnegative integers α1, · · · , αd, we denote d-index α = (α1, · · · , αd), |α| = α1 +

· · ·+ αd and

Dαf(θ) =
∂α1

∂θα1
· · · ∂

αd

∂θαd
f(θ).

In the sequel, we focus on the individual density Λ1(X1, θ). To simplify notations, we set

Λ(X, θ) = Λ1(X1, θ) and X = X1. All possible values of the process X are denoted by

x and the integration of f(X) with respect to the measure P1 := dµXϕ0,x is denoted by∫
f(x)dx. Let Dmr0 (θ0, dν(ϕ)) denote the class of density functions g(ϕ, θ) satisfying the

following conditions:
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C1: g(ϕ, θ) ∈ C4
b (Rp ×Θ) and Dαg(ϕ, θ) ∈ L2 (dν(ϕ)) for |α| ≤ 4.

C2: There exists r0 > 0 such that for all θ ∈ Br(θ0) and |α| ≤ 3, we have∫
g(ϕ, θ0)n+1g(ϕ, θ)−ndν(ϕ) <∞ and

∫
(Dαg(ϕ, θ))n+1 g(ϕ, θ0)−ndν(ϕ) <∞,

for all n ≤ m and r ≤ r0

Here are some examples of density functions that belong to the class Dmr0 (θ0, dϕ) where m

and r0 are constants to be specified for each example.

1. Exponential distribution: Let the density function g(ϕ, λ) be defined by

g(ϕ, λ) = λe−λϕ, ϕ ≥ 0, λ > 0. Clearly, g(ϕ, λ) is infinitely differentiable in λ with

integrable derivatives. For every integer m ≥ 1, the conditions C1-C2 hold true if(
1 +

1

m

)−1

<
λ0

λ
< 1 +

1

m
. Hence, we can find an ε-neighborhood of λ0 on which

this condition holds.

2. Gaussian distribution: Let the density function g(ϕ, µ, σ2) be defined by

g(ϕ, µ, σ2) =
1√

2πσ2
e−

1
2σ2

(ϕ−µ)2 , −∞ < ϕ < ∞, µ ∈ R, σ2 > 0. For any integer m ≥ 1,

the conditions C1-C2 hold provided that

(
1 +

1

m

)−1

<
σ2

σ2
0

< 1 +
1

m
.

3. Cauchy distribution: Let g(ϕ, α, β) =
1

πβ
· 1

1 +
(
ϕ−α
β

)2 , −∞ < ϕ <∞, α ∈ R,

β > 0. Clearly g(ϕ, α, β) ∈ Dmr0 (α0, β0, dϕ) for all r0 > 0 and m ≥ 1.

4. Logistic distribution: Let g(ϕ, µ) =
e−ϕ−µ

(1 + e−ϕ−µ)2 , ϕ, µ ∈ R. g(ϕ, µ) belongs to

the class Dmr0 (µ0, dϕ) for all r0 > 0 and m ≥ 1.

5. Gamma distribution: Γ(ϕ, α, β), α > 0, β > 0, ϕ ≥ 0 belongs to

the class Dmr0 (α0, β0, dϕ) if r0 > 0 and m ≥ 1 are chosen such that

(
α0

α
,
β

β0

)
∈((

1 +
1

m

)−1

; 1 +
1

m

)2

.

For the asymptotic normality of the MLE, we make the following assumptions:

A7: There exist r0 > 0 such that g(ϕ, θ) ∈ D8
r0

(θ0, dν(ϕ))

A8: The Fisher information matrix IX(θ0) is nonsingular.
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The following statements hold:

Proposition 4.2.5.

(i) For |α| ≤ 3, DαΛ(X, θ) ∈ L2(Pθ0) is continuous in θ, Pθ0-a.s

(ii) The Fisher information matrix is finite.

(iii) There is some r0 > 0 and random function H(X, θ0) depending only on θ0 such that

sup
θ∈Br(θ0)

∣∣D2 log Λ(X, θ0)−D2 log Λ(X, θ)
∣∣ ≤ rH(X, θ0), for 0 < r < r0

with Eθ0H(X, θ0) <∞.

Proof. (i) Observe that DαΛ(X, θ) =
∑
n≥0

Jn(Dαβ⊗n(θ)) if this equality makes sense, that

is, the differentiation can be passed under the integral sign and the series
∑
n≥0

Jn(Dαβ⊗n(θ))

is convergent in L2(Pθ0). First, we shall show that Jn
(
Dαβ⊗n(θ)

)
∈ L2(Pθ0) for |α| ≤ 4.

By using BDG inequality, we obtain

Eθ0

{∫
Sn

∫ n∏
l=1

β(X(tl), ϕ, ϕ0)Dαg(ϕ, θ)dν(ϕ)dW⊗n(t)

}2

≤ Cn
r

∫
Sn

∫
Eθ0

{
n∏
l=1

β(X(tl), ϕ, ϕ0)2

}
(Dαg(ϕ, θ))2dν(ϕ)dt⊗n

≤ 2n−1 (TM2Cr)
n

n!

(
1 + Eθ0 sup

t≤T
|Xt|2γn

)∫
(Dαg(ϕ, θ))2dν(ϕ) <∞.

Thus, the differentiation can be passed under the integral sign and

DαJn
(
β⊗n(θ)

)
= Jn

(
Dαβ⊗n(θ)

)
where

Dαβ⊗n(θ)(t1, · · · , tn) =

∫ n∏
l=1

β(Xtl, ϕ, ϕ0)Dαg(ϕ, θ)dν(ϕ)

We have alsoEθ0

∣∣∣∣∣∣
∑
n≥0

Jn(Dαβ⊗n(θ))

∣∣∣∣∣∣
2

1/2

≤ lim inf
m−→∞

Eθ0

∣∣∣∣∣
m∑
n=0

Jn(Dαβ⊗n(θ))

∣∣∣∣∣
2


1/2

≤ lim inf
m−→∞

m∑
n=0

∥∥Jn(Dαβ⊗n(θ))
∥∥
L2(Pθ0 )

≤
(∫

(Dαg(ϕ, θ))2dν(ϕ)

)1/2∑
n≥0

(2TM2Cr)
n/2

√
n!

(1 +Mγn
2 ) <∞.
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Which implies that
∑
n≥0

Jn(Dαβ⊗n(θ)) is convergent in L2(Pθ0). The aforementioned in-

equalities are respectively justified by Fatou lemma, Minkowski inequality and the previous

result. Since the formula (4.18) holds true for any function f(ϕ, θ) = Dαg(ϕ, θ), |α| ≤ 3,

then in similar fashion, we can prove that DαΛ(X, θ) is continuous in θ, Pθ0-a.s (see the

proof of (ii) in Proposition 4.2.2).

(ii) Let r0 > 0, so that g(ϕ, θ) ∈ D8
r0

(θ0, dν(ϕ)). This condition enables us to show that

Dα log Λ(X, θ) ∈ L2(Pθ0) for 1 ≤ α ≤ 2 and θ ∈ Θ. In particular the Fisher information

matrix is finite. In what follows, we will systematically use Hölder’s inequality and Fubini

theorem. Let j, k, l ∈ {1, · · · , d} and set ψ(ϕ) := ψk(ϕ, θ0) =
∂g(ϕ, θ)

∂θk
|θ=θ0 . We have

Eθ0
(
∂ log Λ(X, θ)

∂θk
|θ=θ0

)2

= Eθ0


(∫

LT (X,ϕ, ϕ0)ψ(ϕ)dν(ϕ)

)2

Λ(X, θ0)2


= Eθ0


(∫

(LT (X,ϕ, ϕ0)g(ϕ, θ0))1/2
[
(LT (X,ϕ, ϕ0)g(ϕ, θ0))1/2(ψ(ϕ)g(ϕ, θ0)−1)

]
dν(ϕ)

)2

Λ(X, θ0)2


≤ Eθ0

{∫
LT (X,ϕ, ϕ0)

(
ψ(ϕ)2g(ϕ, θ0)−1

)
dν(ϕ)

Λ(X, θ0)

}
.

Hence,

Eθ0
(
∂ log Λ(X, θ)

∂θk
|θ=θ0

)2

≤
∫ ∫

LT (x, ϕ, ϕ0)
(
ψ(ϕ)2g(ϕ, θ0)−1

)
dν(ϕ)dx

≤
∫ ∫

LT (x, ϕ, ϕ0)
(
ψ(ϕ)2g(ϕ, θ0)−1

)
dxdν(ϕ)

≤
∫ (

ψ(ϕ)2g(ϕ, θ0)−1
)
dν(ϕ) <∞.

We know that

(
∂2 log Λ(X, θ)

∂θk∂θl

)2

≤ 2
Λ(X, θ)2

(
∂2Λ(X,θ)
∂θk∂θl

)2

+
(
∂Λ(X,θ)
∂θk

)2 (
∂Λ(X,θ)
∂θl

)2

Λ(X, θ)4

≤ 2

(
∂2Λ(X,θ)
∂θk∂θl

)2

Λ(X, θ)2
+ 2

(
∂Λ(X,θ)
∂θk

)2 (
∂Λ(X,θ)
∂θl

)2

Λ(X, θ)4
. (4.20)
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We shall prove that the RHS of (4.20) evaluated at θ0 is of finite expactaion under Pθ0 .

We simplify notations by setting ψk,l(ϕ, θ) :=
∂2g(ϕ, θ)

∂θk∂θl
and ψk(ϕ, θ) :=

∂g(ϕ, θ)

∂θk
, for

k ∈ {1, · · · , d}. Simple computations yield(
∂2Λ(X,θ)
∂θk∂θl

)2

Λ(X, θ)2
≤

∫
LT (X,ϕ, ϕ0)

(
ψk,l(ϕ, θ)

2g(ϕ, θ0)−1
)
dν(ϕ)

Λ(X, θ)
.

Which implies

Eθ0


(
∂2Λ(X,θ)
∂θk∂θl

)2

Λ(X, θ)2
|θ=θ0

 ≤
∫ (

ψk,l(ϕ, θ0)2g(ϕ, θ0)−1
)
dν(ϕ)

∫
LT (x, ϕ, ϕ0)dx <∞.

Similarly, we have

Eθ0


(
∂Λ(X,θ)
∂θk

)2 (
∂Λ(X,θ)
∂θl

)2

Λ(X, θ)4
|θ=θ0

 ≤

≤
∫ (∫

LT (x, ϕ, ϕ0)ψk(ϕ, θ0)dν(ϕ)

)2

Λ(x, θ0)3/2
×

(∫
LT (x, ϕ, ϕ0)ψl(ϕ, θ0)dν(ϕ)

)2

Λ(x, θ0)3/2
dx

≤
∫ ∫

LT (x, ϕ, ϕ0)
(
ψk(ϕ, θ0)2g(ϕ, θ0)−1

)
dν(ϕ)

Λ(x, θ0)1/2

×

∫
LT (x, ϕ, ϕ0)

(
ψl(ϕ, θ0)2g(ϕ, θ0)−1

)
dν(ϕ)

Λ(x, θ0)1/2
dx

But we know that for f = k, l∫
LT (x, ϕ, ϕ0)

(
ψf (ϕ, θ0)2g(ϕ, θ0)−1

)
dν(ϕ)

Λ(x, θ0)1/2
≤
[∫

LT (x, ϕ, ϕ0)
(
ψf (ϕ, θ0)4g(ϕ, θ0)−3

)
dν(ϕ)

]1/2

.

53



Hence,

Eθ0


(
∂Λ(X,θ)
∂θk

)2 (
∂Λ(X,θ)
∂θl

)2

Λ(X, θ)4
|θ=θ0

 ≤
≤
∫ [∫

LT (x, ϕ, ϕ0)
(
ψk(ϕ, θ0)4g(ϕ, θ0)−3

)
dν(ϕ)

]1/2

×
[∫

LT (x, ϕ, ϕ0)
(
ψl(ϕ, θ0)4g(ϕ, θ0)−3

)
dν(ϕ)

]1/2

dx

≤ 1

2

∫ ∫
LT (x, ϕ, ϕ0)

(
ψk(ϕ, θ0)4g(ϕ, θ0)−3

)
dxdν(ϕ)

+
1

2

∫ ∫
LT (x, ϕ, ϕ0)

(
ψl(ϕ, θ0)4g(ϕ, θ0)−3

)
dxdν(ϕ)

≤ 1

2

∫ (
ψk(ϕ, θ0)4g(ϕ, θ0)−3

)
dν(ϕ) +

1

2

∫ (
ψl(ϕ, θ0)4g(ϕ, θ0)−3

)
dν(ϕ) <∞.

(iii) Let θ ∈ Br(θ0). For sufficiently small r, the mean value theorem yields for each

k, j ∈ {1, · · · , d}

sup
θ∈Br(θ0)

∣∣∣∣∂2 log Λ(X, θ0)

∂θk∂θj
− ∂2 log Λ(X, θ)

∂θk∂θj

∣∣∣∣ ≤ r
d∑
l=1

∣∣∣∣∂3 log Λ(X, θ)

∂θl∂θk∂θj
|θ=θ∗

∣∣∣∣ ,
where θ∗ is the maximizer of

d∑
l=1

∣∣∣∣∂3 log Λ(X, θ)

∂θl∂θk∂θj

∣∣∣∣ which depends only on Br(θ0) (that is,

it depends only on θ0). Set H(X, θ0) =
d∑
l=1

∣∣∣∣∂3 log Λ(X, θ)

∂θl∂θk∂θj
|θ=θ∗

∣∣∣∣. We will prove that

Eθ0H(X, θ0) <∞. First, note that

∂3 log Λ(X, θ)

∂θl∂θk∂θj
=

5∑
i=1

Gi(X, θ),

where G1(X, θ) = Λ(X, θ)−1∂
3Λ(X, θ)

∂θl∂θk∂θj

G2(X, θ) = −Λ(X, θ)−2∂
2Λ(X, θ)

∂θl∂θk

∂Λ(X, θ)

∂θj

G3(X, θ) = −Λ(X, θ)−2∂
2Λ(X, θ)

∂θl∂θj

∂Λ(X, θ)

∂θk

G4(X, θ) = −Λ(X, θ)−2∂
2Λ(X, θ)

∂θk∂θj

∂Λ(X, θ)

∂θl

G5(X, θ) = 2Λ(X, θ)−3∂Λ(X, θ)

∂θl

∂Λ(X, θ)

∂θk

∂Λ(X, θ)

∂θj
.
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We are going to show that Eθ0 |G1(X, θ)|, Eθ0 |G2(X, θ)| and Eθ0 |G5(X, θ)| are finite for

all θ ∈ Br(θ0) and 0 < r < r0. To simplify notations, we set ψ(ϕ, θ) := ψl,k,j(ϕ, θ) =
∂3g(ϕ, θ)

∂θl∂θk∂θj
. By using Hölder’s inequality, we obtain

G1(X, θ)2 =

(∫
LT (X,ϕ, ϕ0)ψ(ϕ, θ)dν(ϕ)

)2

Λ(X, θ)

≤

(∫
[LT (X,ϕ, ϕ0)g(ϕ, θ0)]3/4[(LT (X,ϕ, ϕ0)g(ϕ, θ0))1/4ψ(ϕ, θ)g(ϕ, θ0)−1]dν(ϕ)

)2

Λ(X, θ)2

≤

(∫
LT (X,ϕ, ϕ0)g(ϕ, θ0)dν(ϕ)

)3/2(∫
LT (X,ϕ, ϕ0)ψ(ϕ, θ)4g(ϕ, θ0)−3dν(ϕ)

)1/2

Λ(X, θ)2
.

Thus

Eθ0G1(X, θ)2 ≤
∫ Λ(x, θ0)5/2

[∫
LT (x, ϕ, ϕ0)ψ(ϕ, θ)4g(ϕ, θ0)−3dν(ϕ)

]1/2

Λ(x, θ)2
dx

≤ 1

2

∫
Λ(x, θ0)5

Λ(x, θ)4
dx+

1

2

∫ ∫
LT (x, ϕ, ϕ0)ψ(ϕ, θ)4g(ϕ, θ0)−3dν(ϕ)dx

≤ 1

2

∫
g(ϕ, θ0)5g(ϕ, θ0)−4dν(ϕ) +

1

2

∫
ψ(ϕ, θ)4g(ϕ, θ0)−3dν(ϕ).

The first term on the RHS of the last inequality is obtained by using Hölder’s inequality

as follows

Λ(x, θ0)5

Λ(x, θ)4
=

(∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)dν(ϕ)

)5

Λ(x, θ)4

≤

[∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)dν(ϕ)

]4 ∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)5g(ϕ, θ0)−4dν(ϕ)

Λ(x, θ)4

≤
∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)5g(ϕ, θ0)−4dν(ϕ).

Hence, Eθ0G1(X, θ)2 <∞ for all θ ∈ Br(θ0) and 0 < r < r0. Similarly we have

Eθ0 |G2(X, θ)| ≤ Eθ0
{∣∣∣∣Λ(X, θ)−1∂

2Λ(X, θ)

∂θl∂θk

∣∣∣∣ ∣∣∣∣Λ(X, θ)−1∂Λ(X, θ)

∂θj

∣∣∣∣}
≤ 1

2
Eθ0
(

Λ(X, θ)−1∂
2Λ(X, θ)

∂θl∂θk

)2

+
1

2
Eθ0
(

Λ(X, θ)−1∂Λ(X, θ)

∂θj

)2

≤ 1

2

∫
g(ϕ, θ0)5g(ϕ, θ0)−4dν(ϕ) +

1

2

∫ [
ψl,k(ϕ, θ)

4 + ψj(ϕ, θ)
4
]
g(ϕ, θ0)−3dν(ϕ) <∞,
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where
∂2g(ϕ, θ)

∂θl∂θk
= ψl,k(ϕ, θ) and

∂g(ϕ, θ)

∂θj
= ψj(ϕ, θ). By using the same techniques, we

prove that G3(X, θ) and G4(X, θ) are of finite expectation for all θ ∈ Br(θ0) and 0 < r < r0.

Set
∂g(ϕ, θ)

∂θl
= ψl(ϕ, θ),

∂g(ϕ, θ)

∂θk
= ψk(ϕ, θ) and

∂g(ϕ, θ)

∂θj
= ψj(ϕ, θ). By using the

fact that 2ab ≤ a2 + b2, a, b ∈ R, we obtain

Eθ0 |G5(X, θ)| ≤ Eθ0
(

Λ(X, θ)−1∂Λ(X, θ)

∂θl

)2

+ Eθ0
(

Λ(X, θ)−2∂Λ(X, θ)

∂θk

∂Λ(X, θ)

∂θj

)2

Then, with the same techniques used previously, we state

Eθ0 |G5(X, θ)| ≤ 1

2

∫
g(ϕ, θ0)5g(ϕ, θ)−4dν(ϕ) +

1

2

∫
ψl(ϕ, θ)

4g(ϕ, θ0)−3dν(ϕ)

+
1

2
Eθ0


(
∂Λ(X,θ)
∂θk

)4

Λ(X, θ)4

+
1

2
Eθ0


(
∂Λ(X,θ)
∂θj

)4

Λ(X, θ)4

 . (4.21)

It remains to show that the last two terms on the RHS of (4.21) are finite. Again, by using

Holder’s inequality, we obtain

(
∂Λ(X,θ)
∂θk

)4

Λ(X, θ)4
=

(∫
LT (X,ϕ, ϕ0)ψk(ϕ, θ)dν(ϕ)

)4

Λ(X, θ)4

≤

(∫
LT (X,ϕ, ϕ0)g(ϕ, θ0)dν(ϕ)

)7/2(∫
LT (X,ϕ, ϕ0)ψk(ϕ, θ)

8g(ϕ, θ0)−7dν(ϕ)

)1/2

Λ(X, θ)4
.

Therefore

Eθ0


(
∂Λ(X,θ)
∂θk

)4

Λ(X, θ)4

 ≤
∫ Λ(x, θ0)9/2

[∫
LT (x, ϕ, ϕ0)ψk(ϕ, θ)

8g(ϕ, θ0)−7dν(ϕ)

]1/2

Λ(x, θ)4
dx

≤ 1

2

∫
Λ(x, θ0)9

Λ(x, θ)8
dx+

1

2

∫ ∫
LT (x, ϕ, ϕ0)ψk(ϕ, θ)

8g(ϕ, θ0)−7dxdν(ϕ).

(4.22)

Since

Λ(x, θ0)9 =

(∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)dν(ϕ)

)9

≤ Λ(x, θ)8

∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)9g(ϕ, θ)−8dν(ϕ),
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then

∫
Λ(x, θ0)9

Λ(x, θ)8
dx ≤

∫ ∫
LT (x, ϕ, ϕ0)g(ϕ, θ0)9g(ϕ, θ)−8dxdν(ϕ) ≤

∫
g(ϕ, θ0)9g(ϕ, θ)−8dν(ϕ).

Hence, from (4.22) it follows that

Eθ0


(
∂Λ(X,θ)
∂θk

)4

Λ(X, θ)4

 ≤ 1

2

∫
g(ϕ, θ0)9g(ϕ, θ)−8dν(ϕ) +

1

2

∫
ψk(ϕ, θ)

8g(ϕ, θ0)−7dν(ϕ) <∞.

Similarly, if we replace k by j we obtain

Eθ0


(
∂Λ(X,θ)
∂θj

)4

Λ(X, θ)4

 <∞,

which completes the proof of Proposition 4.2.5.

At this stage, all conditions needed in Theorem 3.0.6 to establish the asymptotic

normality of the MLE are fulfilled (Proposition 4.2.5, Theorem 4.2.3 and the hypothesis

A9). Thus the following result holds.

Theorem 4.2.6. Under the assumptions A1-A8, the MLE θ̂N is asymptotically normal.

i.e., √
N
(
θ̂N − θ0

)
L

=⇒ N
(
0, IX1(θ0)−1

)
, under Pθ0

As mentioned before, the most delicate task in proving the main previous results was

to show that Λ(X, θ) is continous in θ, Pθ0-a.s; the difficulty relies on finding an upper-

bound of Eθ0
n∏
l=1

β(X(tl), ϕ, ϕ0)2r (see the inequality (4.19)). However, it is possible to

prove that Λ(X, θ) is continous in θ, Pθ0-a.s under weakned assumptions (see Appendix B.

(p.111)), in the sense that A4 and A5 are replaced by the following assumptions

A’4: There exist a nonnegative constants M (which may depend on ϕ0), γ1 and γ2 such

that

|β(x, ϕ, ϕ0)| ≤M (1 + |x|γ1 + ‖ϕ‖γ2)

and for all c > 0,
∑
n≥0

cn

2r
√
n!
µ1/2r
n,γ2,r

< ∞, where µn,γ2,r =

∫
‖ϕ‖2γ2nr h(ϕ)dν(ϕ) with

2rδ − d > 0 and h(ϕ) is the density function appearing in A6.

A’5 There exists M3 > 0 such that sup
t≤T

Eθ0
∣∣X i(t)

∣∣2k ≤Mk
3 , for all k > 0 and i = 1, · · · , N .
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CHAPTER 5

STATISTICAL INFERENCE FOR FRACTIONAL STOCHASTIC

PROCESSES WITH RANDOM EFFECTS

In this chapter, we try to extende the results given in Chapter 4 to fractional diffusion

processes with random effects. To do this, we begin with fractional stochastic differential

equations (FSDE) with general linear drift containing random effects. More precisely, we

focuss on two kind of FSDE’s

• FSDE’s with additive random effects in the drift.

• FSDE’s with multiplicative random effects in the drift and small fractional diffusion.

5.1 PROBLEM OUTLINE

Consider the following FSDE’s

dX i(t) =
(
a(X i(t)) + φib(t,X

i(t))
)
dt+ σ(t,X i(t))dWH,i(t), t ≤ T, (5.1)

X i(0) = xi ∈ R, i = 1, · · · , N,

where φ1, · · · , φN are i.i.d R-valued random variables (random effects) with comon density

f ,
(
WH,1, · · · ,WH,N

)
are independent standard fractional Brownian motions with common

Hurst parameter H ∈ (0, 1) and φ1, · · · , φN are independent of
(
WH,1, · · · ,WH,N

)
. First,

we consider the case (Section 5.2) where b(t, x) = σ(t, x) = 1 and f ≡ N (µ, ω2). The

estimators Ĥ, µ̂ and ω̂2 of H, µ and ω2 are constructed and examined. The asymptotic

properties are studied as the number of subjects tends to infinity. Our results are illustrated

by numerical examples. Second, when f is non-parametric, we provide a class of estimates

(Sections 5.3 - 5.4) and study their Lp-risk (p = 1, or 2) and/or pointwise-risk for both

cases

• Case 1 : b(t, x) = b(t) and σ(t, x) = σ(t) with N, T →∞

• Case 2 : a(x) = 0, b(t, x) = b(x) and σ(t, x) = ε with N →∞ and ε→ 0.

5.2 PARAMETRIC ESTIMATION OF POPULATION PARAMETERS IN

FSDE’S WITH ADDITIVE RANDOM EFFECTS

This section deals with the problem of inference associated with linear fractional dif-

fusion process with random effects in the drift. In particular we are concerned with the
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maximum likelihood estimators (MLE) of the random effect parameters. First of all, we

estimate the Hurst parameter H ∈ (0, 1) from one single subject. Second, assuming the

Hurst index H ∈ (0, 1) is known, we derive the MLE’s and examine their asymptotic be-

haviour as the number of subjects under study becomes large, with random effects normally

distributed.

5.2.1 Model, Notations and Preliminary Results

Consider the N subjects
(
X i(t),F it , t ≤ T

)
with dynamics ruled by (5.1) with b(t, x) =

σ(t, x) = 1. The functions a(·) and b(·) are supposed to be known in their own spaces.

Let the random effects φi be F i0-measurable with common density f(ϕ, θ)dν(ϕ), where ν

is some dominating measure on R and θ is unknown parameter. Set θ ∈ U , where U is

an open set in Rd. Sufficient conditions for the existence and uniqueness of solutions to

(5.1) are given in Theorem 2.2.3, and more details can be found in [80, p. 197], [86], and

references therein.

Let CT denote the space of real continuous functions (x(t) : t ∈ [0, T ]) defined on

[0, T ] endowed with σ-field BT . The σ-field BT is associated with the topology of uniform

convergence on [0, T ]. We introduce the distribution µXi
ϕ,H

on (CT ,BT ) of the process(
X i|φi = ϕ

)
. On R×CT , Qi

θ,H = f(ϕ, θ)dν⊗µXi
ϕ,H

denote the joint distribution of (φi, X
i).

Let Piθ,H be the marginal distribution of
(
X i(t) : t ≤ T

)
on (CT ,BT ). Since the subjects

are independent (this is inherited from the independence of φi and WH,i), the distribution

of the whole sample
(
X i(t) : t ≤ T, i = 1, · · · , N

)
on C⊗NT is defined by Pθ,H = ⊗Ni=1Piθ,H .

Thus the likelihood can be defined as

Λ(θ,H) =
dPθ,H

dP
=

N∏
i=1

dPiθ,H
dPi

,

where P = ⊗Ni=1Pi and Pi = µXi
ϕ0,H

, provided that µXi
ϕ,H
� µXi

ϕ0,H
for some fixed ϕ0 ∈ R.

It is well known that µXi
ϕ,H

coincides with the distribution of the process X i,ϕ defined by:

dX i,ϕ(t) =
(
a(X i(t)) + ϕb(X i,ϕ(t))

)
dt+ dWH,i(t), X i,ϕ(0) = xi,

when H = 1/2, since in this case the process (X i, φi) is markovian (e.g., [46]); hence, the

Girshanov formula can be applied to get the derivative
dµXi

ϕ,H

dµXi
ϕ0,H

. When H 6= 1/2, the non

Markovian property of the coupled process (X i, φi) makes the construction of the likelihood

very difficult. But in our case, the process X i is transformed into a Y i for which the law of
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(
Y i|φi = ϕ

)
coincides with the distribution of a ϕ-parametrized fractional diffusion process

Y i,ϕ.

5.2.2 Construction of Estimators and their Asymptotic Properties

Consider the following process

Y i(t) := X i(t)− xi −
∫ t

0

a(X i(s))ds, t ≥ 0 (5.2)

= tφi +WH,i(t) ∼ N
(
tµ, t2ω2 + t2H

)
, t ≥ 0. (5.3)

Since φi and WH,i are independent
(
Y i(t) : t ∈ [0, T ]

)
is a Gaussian process. Furthermore,

for each ϕ ∈ R, we have E
(
Y i(t)|φi = ϕ

)
= tϕ and Cov

(
Y i(t), Y i(s)|φi = ϕ

)
=

1

2
(t2H +

s2H−|t− s|2H). For each subject Y i, we consider n observations Y i :=
(
Y i(t1), · · · , Y i(tn)

)′
where 0 = t0 < t1 < · · · < tn = T is a subdivision of [0, T ]. The density of Y i given φi = ϕ

is expressed as

Π(Y i|φi = ϕ,H) =
1√

(2π)ndetV (H)
e−

1
2

(Y i−ϕu)′V −1(H)(Y i−ϕu),

where u = (t1, · · · , tn)′ and (V (H))k,l = Cov
(
Y i(tk), Y

i(tl)|φi = ϕ
)

is the common covari-

ance matrix of the subjects Y i, i = 1, · · · , N . The log-likelihood of the whole sample(
Y 1, · · · , Y N

)
is defined as

l(θ,H) =
N∑
i=1

log

∫
Π(Y i|φi = ϕ,H)f(ϕ, θ)dν(ϕ). (5.4)

For a specific distribution (say f(ϕ, θ)dν(ϕ) = N (µ, ω2)), we can solve the integrals given

in (5.4). Indeed,∫
Π(Y i|φi = ϕ,H)f(ϕ, θ)dν(ϕ) = (2π)−n/2ω−1det(V (H))−1/2

(
u′V −1(H)u+ 1/ω2

)−1/2

× exp

[
−1

2

(
µ2/ω2 + Y i′V −1(H)Y i − (u′V −1(H)Y i + µ/ω2)2

u′V −1(H)u+ 1/ω2

)]
. (5.5)

5.2.3 Estimation of the Hurst Parameter H

Using data induced by one single subject (without loss of generality, say Y 1 with

tj =
j

n
, j = 1, · · · , n, T = 1), we may construct a class of estimators of the Hurst index H.

More precisely, for all k > 0 and for any filter γ = (γ0, · · · γl) of order p ≥ 2, that is,

for all indices 0 ≤ r < p;
l∑

j=0

jrγj = 0 and
l∑

j=0

jpγj 6= 0, (5.6)

60



we set

Ĥ(n, p, k, γ, Y 1) = g−1
n,k,γ (Sn(k, γ)) ,

where Sn(k, γ) =
1

n− l

n−1∑
i=l

∣∣∣∣∣∣
l∑

q=0

γqY
1

(
i− q
n

)∣∣∣∣∣∣
k

, gn,k,γ(t) =
1

ntk
{πγt (0)}k/2Ek, and

πγt (j) = −1

2

l∑
q,r

γqγr |q − r + j|2t , with Ek = 2k/2Γ(k + 1/2)/Γ(1/2)

and Γ(x) is the usual gamma function.

For invertibility of the function gn,k,γ(·), we refer to [19, p. 7].

Theorem 5.2.1. As the number of observations n −→ ∞, the following statements holds

true,

(i) Ĥ(n, p, k, γ, Y 1)
P−as
=⇒ H

(ii) n−1/2 log(n)
(
Ĥ(n, p, k, γ, Y 1)−H

)
L

=⇒ N
(

0,
A(H, k, γ)

k2

)
, where

A(t, k, γ) =
∑
j≥1

(ck2j)
2(2j)!

∑
i∈Z

ργt (i)
2j, with

ck2j =
1

(2j)!

j−1∏
q=0

(k − 2q), and ργt (i) =
πγt (i)

πγt (0)
.

Proof. Following Coeurjolly [19], we set V γ(i/n) =
l∑

q=0

γqW
H,1

(
i− q
n

)
, for i = l, · · · , n−1.

Since the filter γ is of order p ≥ 2 (see, (5.6)), we have
l∑

q=0

i− q
n

γq = 0. Then, substituting

Y 1

(
i− q
n

)
by

i− q
n

φ1 +WH,1

(
i− q
n

)
, we obtain

Sn(k, γ) =
1

n− l

n−1∑
i=l

∣∣∣∣∣
l∑

q=0

γqY
1

(
i− q
n

)∣∣∣∣∣
k

=
1

n− l

n−1∑
i=l

∣∣∣∣∣
l∑

q=0

γq
i− q
n

φ1 +
l∑

q=0

γqW
H,1

(
i− q
n

)∣∣∣∣∣
k

=
1

n− l

n−1∑
i=l

|V γ(i/n)|k .

Hence, our estimators coincide with estimators Ĥ based on k-variations of the fBm (see,

[19, Proposition 2]) and the proof is complete.
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5.2.4 Estimation of the Population Parameter θ = (µ, ω2)

Now, assume that H is known. From the log-likelihood given by (5.4) and (5.5), we

derive an estimator µ̂ defined by

µ̂ =

1
N

N∑
i=1

u′V −1(H)Y i

u′V −1(H)u
. (5.7)

For the parameter ω2 it sounds very difficult to derive an estimator. However, we can

construct an alternative estimator and study its asymptotic behaviour. Observing that µ̂

is a sample mean drawn from a sequence of i.i.d random variables, one might think that

sample variance could also be used to estimate ω2. Unfortunately, simple computations

shows that such a sample variance is not consistent. Thus, as an alternative we propose

the following estimator for ω2:

ω̂2 =
1

N

N∑
i=1

(
u′V −1(H)Y i

u′V −1(H)u

)2

− 1

N2

(
N∑
i=1

u′V −1(H)Y i

u′V −1(H)u

)2

−
(
u′V −1(H)u

)−1
. (5.8)

Theorem 5.2.2. The estimator µ̂ is unbaised, µ̂
P−as
=⇒ µ and Var(µ̂) −→ 0 as N →∞.

Proof. Set εi =
(
WH,i(t1), · · · ,WH,i(tn)

)′
. Substituting Y i by φiu + εi, we have µ̂ =

1

N

N∑
i=1

φi +

1
N

N∑
i=1

u′V −1(H)εi

u′V −1(H)u
, so, E(µ̂) = µ. For the second statement, we consider the

random variables ξi(H) defined by

ξi(H) =
u′V −1(H)Y i

u′V −1(H)u
. (5.9)

Clearly, ξi(H) are i.i.d random variables with E(ξi(H)) = µ < ∞, then by strong law of

large numbers (e.g., [101, Corollary 1.63]), µ̂ converges almost surely to µ as N →∞. Set
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z(H) := (z1(H), · · · , zn(H)) = u′V −1(H), we have

Var(µ̂) = Var

(
1

N

N∑
i=1

φi

)
+

1

N2(z(H) · u)2
Var

(
N∑
i=1

z(H) · εi
)

=
1

N2
Var

(
N∑
i=1

φi

)
+

1

N2(z(H) · u)2

N∑
i,j

E

{(
n∑
k=1

zk(H)WH,i(tk)

)(
n∑
l=1

zl(H)WH,j(tl)

)}

=
1

N2

N∑
i=1

Var(φi) +
1

N2(z(H) · u)2

N∑
i,j

n∑
k,l

zk(H)zl(H)E
(
WH,i(tk)W

H,j(tl)
)

=
ω2

N
+

1

N2(z(H) · u)2

N∑
i

n∑
k,l

zk(H)zl(H)E
(
WH,i(tk)W

H,i(tl)
)

=
ω2

N
+

1

N2(z(H) · u)2

N∑
i

n∑
k,l

1

2
zk(H)zl(H)

(
t2Hk + t2Hl − |tk − tl|

2H
)

=
ω2

N
+

1

N2(z(H) · u)2
Nz(H)V (H)z(H)′ = ω2 +

Nu′V −1(H)V (H)V −1(H)u

N2(z(H) · u)2

=
ω2

N
+

1

Nu′V −1(H)u
→ 0 as N →∞.

Before, we establish the bias of ω̂2 the estimator of ω2, we first give the following

result:

Lemma 5.2.3.

E(ξ1(H))2 = ω2 + µ2 +
1

u′V −1(H)u
and E

(
N∑
i=1

ξi(H)

)2

= Nω2 +N2µ2 +
N

u′V −1(H)u
,

where ξi(H) are random variables defined in (5.9).

Proof. Substituting Y 1 by φ1u+ ε1 and using the independence of φ1 and ε1, we have

E(ξ1(H))2 = E
(
φ1 +

u′V −1(H)ε1

u′V −1(H)u

)2

= Eφ2
1 + E

(
u′V −1(H)ε1

u′V −1(H)u

)2

= ω2 + µ2 +
1

u′V −1(H)u
.
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For the last equality we used the same techniques as in the proof of Theorem 5.2.2. For

the second statement; by using the random variables zi(H)′s defined previously, we have

E

(
N∑
i=1

ξi(H)

)2

= E

(
N∑
i=1

φi +
N∑
i=1

z(H) · εi

z(H) · u

)2

= E

(
N∑
i=1

φi

)2

+ E

(
N∑
i=1

z(H) · εi

z(H) · u

)2

=
N∑
i=1

Eφ2
i + 2

N∑
i<j

E(φiφj) +
1

(u′V −1(H)u)2
Var

(
N∑
i=1

z(H) · εi
)

= Nω2 +N2µ2 +
N

u′V −1(H)u
.

Theorem 5.2.4. The estimator ω̂2 is asymptotically unbiased, ω̂2 P−as
=⇒ ω2 and Var(ω̂2) =

2(N − 1)

N2

(
ω2 +

1

u′V −1(H)u

)2

−→ 0, as N →∞.

Proof. By vitrue of Lemma 5.2.3, we have

E(ω̂2) =
1

N

N∑
i=1

(
ω2 + µ2 +

1

u′V −1(H)u

)
− 1

N2

(
Nω2 +N2µ2 +

N

u′V −1(H)u

)
− 1

u′V −1(H)u

=
N − 1

N
ω2 − 1

N(u′V −1(H)u)
−→ ω2 as N −→∞.

Applying the strong law of large numbers and the continuous mapping theorem for almost

sure convergence, we get

ω̂2 =
1

N

N∑
i=1

ξi(H)2 −

(
1

N

N∑
i=1

ξi(H)

)2

− 1

u′V −1(H)u

P−as
=⇒ E(ξ1(H))2 − E2(ξ1(H))− 1

u′V −1(H)u
= Var(ξ1(H))− 1

u′V −1(H)u

= Var
(
φ1 +

u′V −1(H)ε1

u′V −1(H)u

)
− 1

u′V −1(H)u

= Varφ1 + Var
(
u′V −1(H)ε1

u′V −1(H)u

)
− 1

u′V −1(H)u

= ω2 + E
(
u′V −1(H)ε1

u′V −1(H)u

)2

− 1

u′V −1(H)u
= ω2.
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Similar computations lead to

Var(ω̂2) =
N − 1

N3

(
(N − 1)E(ξ1(H)− µ)4 − (N − 3)β2

)
=

2(N − 1)

N2
β2,

where β = Var(ξ1(H)) = ω2 +
1

u′V −1(H)u
. In the last equality we used the fact that

(ξ1(H)− µ) is a centered Gaussian with variance β.

For the case of continuous observation with horizon T , we propose the following esti-

mator µ̃(T,N) defined by

µ̃(T,N) =
1

NT

N∑
i=1

Y i(T ).

It is easy to see that E
∣∣∣∣ 1

T
Y i(T )− φi

∣∣∣∣2 ≤ 1

T 2−2H
−→ 0, as T −→ ∞ and µ̃(T,N) is

consistent as T,N →∞. The reason we choose this double asymptotic framework, is that

we proceed in two steps; in the first step we estimate random effects φi as the horizon T

increases to∞, then we use the empirical mean and variance to estimate θ = (µ, ω2), where

the random effects are replaced by their estimators.

Theorem 5.2.5. The estimators µ̂ and ω̂2 are asymptotically normal, i.e.

√
N (µ̂− µ)

L
=⇒ N

(
0, ω2 +

1

u′V −1(H)u

)
, as N −→∞, (5.10)

and √
N

2

(
ω̂2 − ω2

)
L

=⇒ N

(
0,

(
ω2 +

1

u′V −1(H)u

)2
)
, as N −→∞. (5.11)

Proof. Since µ̂ is the average of N i.i.d random variables with finite mean and finite

variance, (5.10) follows imediately from the central limit theorem (see, [101, Theorem

B.97]). Let ξ̃i(H) =

√
N

N − 1
(ξi(H) − µ̂), i = 1, · · · , N and set β = ω2 +

1

u′V −1(H)u
.(

ξ̃i(H) , i = 1, 2, · · ·
)

is centered Gaussian process, with Eξ̃i(H) = 0, Var(ξ̃i(H)) =

E(ξ̃i(H)2) = β, and Var(ξ̃i(H)2) = 2β2. By strong law of large numbers, we have ω̃2 =

1

N

N∑
i=1

ξ̃i(H)2 P−as
=⇒ β, and the central limit theorem yields

√
N
(
ω̃2 − β

)
L

=⇒ N (0, 2β2).

Since

√
N

2

(
ω̂2 − ω2

)
= αN

√
N
(
ω̃2 − β

)
− εN , where αN =

N − 1√
2N

and εN =
β√
2N

,

then, using Slutsky theorem, the convergence (5.11) is easily concluded.
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5.2.5 Simulations

We will implement the two population parameter estimators for the model that we

have studied to show their empirical behaviour. We will simulate the observed vectors Y i

using (5.3) for two numbers of subjects N = 50 and N = 500 with different lengths of

observations per subject; n = 22, n = 25 and n = 28. The fractional Brownian motions are

simulated as in [67]. The experiment is as follows : we set H equal to 0.15, 0.5 and 0.85.

For each case, replications involving 400 samples are obtained by resampling n trajectories

of Y i.

The averages of the estimators and their exact against empirical standard deviations

are reported in the Tables 5.1-5.3. The tables show that the parameter estimations are

generally much closer to their true values as the number of subjects increases. Figures 5.1-

5.3 display the histograms densities of the estimators, which reveal the convergence toward

a limit distribution also as N is sufficiently large, this confirms what was established before.

Looking at Table 5.1, we see that the estimating for ω2 is not really close to exact values

when there are very few observations (n ≤ 23) per subject when H = 0.85, this case has

been observed every time when H becomes large than 1/2. In this situation, for the real

cases where the true value of ω2 is not available, it will be better to choose n as large as

possible (n ≥ 24) but this leads to huge computational cost for large values of N . Yet, to

keep the balance between the computational cost and goodness of fit, a small values of n

and sufficiently large values of N should be considered.

True values H = 0.15 H = 0.50 H = 0.85

N = 50 Mean (Std. dev.’s) Mean (Std. dev.’s) Mean (Std. dev.’s)

µ = −2

ω2 = 1

-1.9902 (0.1456 0.1430)

0.9744 (0.2099 0.1942)

-1.9964 (0.1549 0.1594)

1.0303 (0.2376 0.2494)

-1.9820 (0.1795 0.2009)

1.3314 (0.3191 0.3891)

N = 500

µ = −2

ω2 = 1

-2.0009 ( 0.0460 0.0441)

0.9964 (0.0670 0.0689)

-1.9986 (0.0490 0.0515)

1.0442 (0.0758 0.0836)

-1.9985 (0.0568 0.0634)

1.2022 (0.1018 0.1228)

Table 5.1. The means with exact (red) and empirical (blue) standard

deviations of estimators µ̂, ω̂2 based on 400 samples, with true values
(µ0, ω

2
0) = (−2, 1), (T,n) = (5,22), and different values of N (=

50; 500).

66



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80
H = 0.15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60
H = 0.5

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

60
H = 0.85

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60
H = 0.15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60
H = 0.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60
H = 0.85

Figure 5.1. Frequency histograms of population parameter estimates
based on 400 samples for different values of (N,H). In each box of
the two rows (top N = 50 and bottom N = 500) histograms of µ̂ (in

pink) and ω̂2 (in gray) are given for fixed parameters (µ, ω2, T,n) =
(−2, 1, 5,22).

True values H = 0.15 H = 0.50 H = 0.85

N = 50 Mean (Std. dev.’s) Mean (Std. dev.’s) Mean (Std. dev.’s)

µ = −2

ω2 = 1

-2.0050 (0.1449 0.1427)

0.9713 (0.2077 0.2075)

-2.0146 (0.1549 0.1518)

1.0028 (0.2376 0.2247)

-1.9824 (0.1793 0.1920)

1.0871 (0.3181 0.3391)

N = 500

µ = −2

ω2 = 1

-2.0057 (0.0458 0.0434)

1.0005 (0.0663 0.0671)

-1.9979 (0.0490 0.0498)

1.0021 (0.0758 0.0758)

-2.0038 (0.0567 0.0596)

1.0849 (0.1015 0.1011)

Table 5.2. The means with exact (red) and empirical (blue) standard

deviations of estimators µ̂, ω̂2 based on 400 samples, with true values
(µ0, ω

2
0) = (−2, 1), (T,n) = (5,25), and different values of N (=

50; 500).
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Figure 5.2. Frequency histograms of population parameter estimates
based on 400 samples for different values of (N,H). In each box of
the two rows (top N = 50 and bottom N = 500) histograms of µ̂ (in

pink) and ω̂2 (in gray) are given for fixed parameters (µ, ω2, T,n) =
(−2, 1, 5,25).

True values H = 0.15 H = 0.50 H = 0.85

N = 50 Mean (Std. dev.’s) Mean (Std. dev.’s) Mean (Std. dev.’s)

µ = −2

ω2 = 1

-2.0015 (0.1447 0.1454)

0.9996 (0.2073 0.2008)

-1.9960 (0.1549 0.1563)

0.9764 (0.2376 0.2448)

-2.0055 (0.1792 0.1709)

0.9971 (0.3180 0.3323)

N = 500

µ = −2

ω2 = 1

-1.9997 (0.0458 0.0442)

0.9971 (0.0662 0.0650)

-2.0009 (0.0490 0.0471)

0.9993 (0.0758 0.0747)

-2.0006 (0.0567 0.0566)

1.0083 (0.1015 0.1045)

Table 5.3. The means with exact (red) and empirical (blue) standard

deviations of estimators µ̂, ω̂2 based on 400 samples, with true values
(µ0, ω

2
0) = (−2, 1), (T,n) = (5,28), and different values of N (=

50; 500).
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Figure 5.3. Frequency histograms of population parameter estimates
based on 400 samples for different values of (N,H). In each box of
the two rows (top N = 50 and bottom N = 500) histograms of µ̂ (in

pink) and ω̂2 (in gray) are given for fixed parameters (µ, ω2, T,n) =
(−2, 1, 5,28).

69



5.3 NON PARAMETRIC ESTIMATION FOR FSDE’S WITH RANDOM

EFFECTS

In this section, we propose a non-parametric estimation for a class of FSDE’s with

random effects. We precisely consider FSDE’s given in (5.1) with b(t, x) = b(t) and σ(t, x) =

σ(t). We build ordinary kernel estimators and histogram estimators and study their Lp−risk

(p = 1 or 2), when H > 1/2. Asymptotic results are evaluated as both T = T (N) and N

tend to infinity.

5.3.1 Ordinary Kernel Density Estimators

It is well known that standard kernel density estimators for the unknown density f of

φi are given by

f̂h(x) =
1

Nh

N∑
i=1

K

(
x− φi
h

)
, h > 0, (5.12)

where K is an integrable kernel that has to satisfy some regularity conditions on f . The

random effects φi are not observed; it is then natural to replace them by their estimates

and prove the consistency of the resulting kernel estimators. We introduce some statistics

which have a central role in the estimation procedure. For i = 1, · · · , N , we denote

U
(1,i)
t =

∫ t

0

b(s)

σ2(s)
dX i(s), U

(2)
t =

∫ t

0

b2(s)

σ2(s)
ds,

R
(i)
t =

∫ t

0

a(X i(s))b(s)

σ2(s)
ds and V

(i)
t =

∫ t

0

b(s)

σ(s)
dWH,i(s).

We know that V (i) =
(
V

(i)
t , t ≥ 0

)
, i = 1, · · · , N are Wiener integrals with respect to

fBm. A sufficient condition (see, [94, 80]) for the integrals V (i) to be well-defined is that

b(·)/σ(·) ∈ L2(R+)∩L1(R+). The following assumptions are needed to estimate the random

effects φi:

A1 : There exist c0, c1 > 0 such that

c2
0 ≤

b2(s)

σ2(s)
≤ c2

1, for all s ∈ R+.

A2 : For i = 1, · · · , N , Mi := E
(∫ ∞

0

a2(X i(s))

σ2(s)
ds

)2

<∞.
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Proposition 5.3.1. Let the assumptions A1-A2 be fulfilled. For i = 1, · · · , N and H >

1/2, we have

E
∣∣∣φ̂i,T − φi∣∣∣2 −→ 0 as T →∞, where φ̂i,T := U

(1,i)
T /U

(2)
T .

Proof. Equation (5.1) yields

U
(1,i)
t = R

(i)
t + φiU

(2)
t + V

(i)
t , t ≤ T, i = 1, · · · , N.

Thus

1

2
E
∣∣∣φ̂i,T − φi∣∣∣2 ≤ E

(
R

(i)
T

U
(2)
T

)2

+ E

(
V

(i)
T

U
(2)
T

)2

. (5.13)

We shall show that the expectations on the RHS in (5.13) vanish as T tends to infinity.

Applying results in [77, Theorem 1.1] and the Jensen inequality, respectively, we obtain

E

(
V

(1)
T

U
(2)
T

)2

=
1

c4
0T

2
E
(∫ T

0

b(s)

σ(s)
dWH,1(s)

)2

=
C2
Hc

2
1

c4
0T

2

(∫ T

0

∣∣∣∣ b(s)σ(s)

∣∣∣∣1/H ds
)2H

=
C2
Hc

2
1

c4
0T

2−2H
−→ 0 as T →∞,

where CH is a nonnegative constant due to the Hardy-Littlewood theorem (see, [80]). Using

the fact that |uv| ≤ 1

2

(
εu2 +

v2

ε

)
for all u, v ∈ R and ε > 0, we have

E

(
R

(1)
T

U
(2)
T

)2

=
1

4
E

{
ε
∫ T

0
a2(X1(s))/σ2(s)ds+ ε−1U

(2)
T

U
(2)
T

}2

=
1

2

{
1

ε2
+

ε2

c4
0T

2
E
(∫ ∞

0

a2(X1(s))/σ2(s)ds

)2
}
.

By choosing ε =
√
T , we get the desired result and the proof of Proposition 5.3.1 is

complete.

Now, substituting φi by its estimator φ̂i,T in (5.12), we obtain the kernel estimators

f̂
(1)
h (x) =

1

Nh

N∑
i=1

K

(
x− φ̂i,T

h

)
. (5.14)
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Proposition 5.3.2. Consider Equation (5.1) where a(·) is unknown and consider the es-

timator f̂
(1)
h given by (5.14). Assume that A1 and A2 are satisfied. If the kernel K is

differentiable with ‖K‖2 + ‖K ′‖2
<∞, then

E
∥∥∥f̂ (1)

h − f
∥∥∥2

≤ 2 ‖fh − f‖2 +
‖K‖2

Nh
+
‖K ′‖2

T 1−Hh3

(
1

TH
+

M1

c4
0T

H
+

2C2
Hc

2
1

c4
0T

1−H

)
,

where fh(x) := Kh ∗ f(x) =
1

h

∫
R

K

(
x− u
h

)
f(u)du.

Proof. Simple computations show that

E
∥∥∥f̂ (1)

h − f
∥∥∥2

=
∥∥∥f − E(f̂

(1)
h )
∥∥∥2

+ E
(∥∥∥f̂ (1)

h − E(f̂
(1)
h )
∥∥∥2
)

≤ 2 ‖f − fh‖2 + 2
∥∥∥fh − E(f̂

(1)
h )
∥∥∥2

+ E
(∥∥∥f̂ (1)

h − E(f̂
(1)
h )
∥∥∥2
)
. (5.15)

To complete the proof, we evaluate the last two terms in (5.15). Set ηi,T (x) = Kh(x −
φ̂i,T )− E

(
Kh(x− φ̂i,T )

)
, where Kh(u) =

1

h
K
(u
h

)
. ηi,T (x), i = 1, · · · , N are i.i.d random

variables with E [η1,T (x)] = 0, and with a change of variables
x− φ̂1,T

h
= y in the second

inequality below, we get

∫
R

E (η1,T (x))2 dx =

∫
R

Var
(
Kh(x− φ̂1,T )

)
dx

≤
∫
R

E
(
Kh(x− φ̂1,T )

)2

dx

≤ 1

h2
E
∫
R

(
K

(
x− φ̂1,T

h

))2

dx

≤ 1

h

∫
R

K2(y)dy.

Thus

E
(∥∥∥f̂ (1)

h − E(f̂
(1)
h )
∥∥∥2
)

= E
∫
R

(
f̂

(1)
h (x)− Ef̂ (1)

h (x)
)2

dx

=
1

N2
E
∫
R

(
N∑
i=1

ηi,T (x)

)2

dx

=
1

N

∫
R

E (η1,T (x))2 dx ≤ ‖K‖
2

Nh
.

There remains to find an upper bound of the middle term in (5.15). First, note that

fh(x) =

∫
R

f(y)Kh(x − y)dy = E (Kh(x− φ1)). Taylor’s theorem with integral remainder
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yields

Kh(x− φ̂1,T )−Kh(x− φ1) =
(φ1 − φ̂1,T )

h2

∫ 1

0

K ′
(

1

h
(x− φ1 + u(φ1 − φ̂1,T ))

)
du.

Now, set g(x, u) = K ′
(

1

h
(x− φ1 + u(φ1 − φ̂1,T ))

)
, then

∥∥∥fh − E(f̂
(1)
h )
∥∥∥2

=

∫
R

[
E
(
Kh(x− φ̂1,T )−Kh(x− φ1)

)]2

dx

≤
∫
R

E
(
Kh(x− φ̂1,T )−Kh(x− φ1)

)2

dx

≤ E

[
(φ1 − φ̂1,T )2

h4

∫
R

[∫ 1

0

g(x, u)du

]2

dx

]

≤ E

(φ1 − φ̂1,T )2

h4

[∫ 1

0

(∫
R

g2(x, u)dx

)1/2

du

]2
 .

The last inequality given above is justified by the generalized Minkowski inequality (see,

[110, Lemma A.1]). By change of variables y =
1

h

(
x− φ1 + u(φ1 − φ̂1,T )

)
, we get∫

R

g2(x, u)dx = ‖K ′‖2
h. Thus

∥∥∥fh − E(f̂
(1)
h )
∥∥∥2

≤ ‖K
′‖2

h3
E(φ1 − φ̂1,T )2, which completes

the proof (see the proof of Proposition 5.3.1).

We recall that a kernel of order l ≥ 1 (for the construction of such a kernel we refer to

[110, p.10]) satisfies

∫
R

K(u)du = 1 and

∫
R

ujK(u)du = 0, for j = 1, · · · , l. For constants

β > 0 and L > 0, we define the Nikol’ski class N ∗(β, L) as the set of functions f : R −→ R,

whose derivatives f (l) of order l = bβc exist and satisfy[∫
R

(
f (l)(x+ t)− f (l)(x)

)2
dx

]1/2

≤ L |t|β−l , ∀t ∈ R,

where bβc denotes the greatest integer strictly less than the real number β.

Corollary 5.3.3. Assume that f ∈ N ∗(β, L) and that the kernel K has order l = bβc with∫
R

|u|β |K(u)| du < ∞. Fix α > 0 and take h = αN−1/(2β+1) and T 1−H ≥ N (2β+3)/(2β+1).

Then for any N ≥ 1, the kernel estimator f̂
(1)
h satisfies E

∥∥∥f̂ (1)
h − f

∥∥∥2

. N−2β/(2β+1).

Corollary 5.3.4. Consider Equation (5.1) where a(·) is known. We introduce the estima-

tors

f̂
(2)
h (x) =

1

Nh

N∑
i=1

K

(
x− φ̃i,T

h

)
,
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where φ̃i,T := φ̂i,T −R(i)
T /U

(2)
T . Under the assumption A1, the estimators f̂

(2)
h are consistent

with the same optimal rate as for f̂
(1)
h .

Remark. The assumption A2 can be weakened as follows

A’2 : For each i, there exists δ > 0 such that

lim sup
t→∞

1

t2−δ log(t)
E
(∫ t

0

a2(X i(s))

σ2(s)
ds

)2

<∞.

5.3.2 Histogram Estimators

Consider a sequence of partitions of R of the form PN = {ANj, j = 1, 2, · · · }, N ≥ 1,

where all ANj’s are Borel sets with finite nonzero Lebesgue measure. We assume that the

sequence of partitions is rich enough such that the class of Borel sets B is equal to

∞⋂
N=1

σ

(
∞⋃

m=N

Pm

)
,

where we the symbol σ stands for the σ-algebra generated by a class of sets.

Given a sequence of i.i.d random variables X1, · · · , XN , with common density f , the

histogram estimate is (as in [27]) defined by

T (X·)(x) =
1

N

N∑
i=1

χ(Xi∈ANj)

λ(ANj)
, x ∈ ANj,

where λ denotes the Lebesgue measure. For our case, we will consider the following his-

togram estimators f̂
(3)
h (x) = T (φ̂·)(x); f̂

(4)
h (x) = T (φ̃·)(x). If the density f of the random

effects φi has compact support, then a good estimator should have compact support as

well. To guarantee such property we trim the proposed estimators by χsuppf .

Let F ′b denote the class of functions satisfying

(i) f is absolutely continuous with derivative f ′ (almost everywhere);

(ii) f ′ is bounded and continuous (

∫
R

|f ′| <∞).

We consider the partitions ANj = [hj, h(j + 1)), j ∈ Z. The following special functions will

be used later: rN(x) =
x

h
− j, zN(x) = (1− 2rN(x)) f ′(x) and

Ψ(u) =

√
2

π

(
u

∫ u

0

e−x
2/2dx+ e−u

2/2

)
, u ≥ 0.
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Proposition 5.3.5. Let f ∈ F ′b have compact support A and assume that 1, · · · , J are

nonzero indices for which λ (ANj ∩ A) 6= 0 and T = T (N), where λ is the Lebesgue measure.

Then, the following statements hold true:

(i) When a(·) is unknown, under the assumptions A1 and A2, we have

E
∥∥∥f̂ (3)

h − f
∥∥∥

1
≤ ψ1(N, h) + ψ2(h) +

dJ

h2
√
T 1−H

+ o

(
h+

1√
Nh

)
,

where d is some nonnegative constant and

ψ1(N, h)=

∫
R

√
f

Nh
Ψ

(
h

2
|zN |

√
Nh

f

)
→ 0 as h→ 0, Nh→∞,

ψ2(h)=
2

N

N∑
i=1

J∑
j=1

P (φi ∈ ANj)1/2 → 0 as h→ 0 (see Lemma 6.0.12).

(ii) When a(·) is known, we may relax the assumption A2, and the same result holds for

f̂
(4)
h .

Proof. By virtue of [27, Theorem 6], and for sufficiently small h such that Nh → ∞, we

have

E
∥∥∥f̂ (3)

h − f
∥∥∥

1
≤

∑
j

E
∫
ANj∩A

∣∣∣f̂ (3)
h (x)− f(x)

∣∣∣ dx
≤

∑
j

E
∫
ANj

|T (φ·)(x)− f(x)| dx+
∑
j≤J

E
∫
ANj

∣∣∣T (φ̂·)(x)− T (φ·)(x)
∣∣∣ dx

≤ E
∥∥∥T (φ̂·)− f

∥∥∥
1

+
1

Nh

J∑
j=1

N∑
i=1

∫ h(j+1)

hj

E
∣∣∣χ(φ̂i,T∈ANj) − χ(φi∈ANj)

∣∣∣ dx
≤ ψ1(N, h) + o

(
h+

1√
Nh

)
+

1

Nh

J∑
j=1

N∑
i=1

∫ h(j+1)

hj

E
∣∣∣χ(φ̂i,T∈ANj) − χ(φi∈ANj)

∣∣∣ dx.
Let ν(N, J, h) denote the last term in the last inequality above. The sequence φ̂i,T (N)

converges weakly to φi, since it converges in L2-sense as N tends to infinity (say T (N)→
∞). Thus, by using Lemma 6.0.11, we obtain

ν(N, J, h) ≤
√

2

N

J∑
j=1

N∑
i=1

P(φi ∈ ANj)1/2
[
P(φ̂i,T /∈ ANj)1/2 + P(φi /∈ ANj)1/2

]
.
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Let α ∈ (0, 1) to be specified later. We apply Lemma 6.0.10 to get

P
(
φ̂i,T /∈ ANj

)
≤ P

(∣∣∣φ̂i,T − h(j + 1/2)
∣∣∣ ≥ h/2

)
≤ P

(∣∣∣φ̂i,T − φi∣∣∣ ≥ (1− α)h/2
)

+ P (|φi − h(j + 1/2)| ≥ αh/2)

≤
4E
(
φ̂i,T − φi

)2

(1− α)2h2
+ P

(
φi /∈ A(α)

Nj

)
≤ d1

(1− α)2h2T 1−H + 1,

where d1 is some nonnegative constant (see the proof of Proposition 5.3.1) and

A
(α)
Nj =

(
h(j +

1− α
2

), h(j +
1 + α

2
)

)
. Similarly, one can prove that P (φi /∈ ANj) ≤

d1

(1− α)2h2T 1−H + 1. Thus

ν(N, J, h) ≤ 2

N

J∑
j=1

N∑
i=1

[
P (φi ∈ ANj)

(
d1

(1− α)2h2T 1−H + 1

)]1/2

≤ 2
√
d1J

(1− α)h
√
T 1−H

+
2

N

J∑
j=1

N∑
i=1

[P (φi ∈ ANj)]1/2 ,

where we used the fact that
√
u+ v ≤

√
u +
√
v, for all u, v ∈ R+. Set d = 2

√
d1 and

α = 1− h to complete the proof.

Proposition 5.3.6. We have

ψ2(h) = O(hδ), where δ ∈ (0, 1/2). (5.16)

Proof. Let δ, δ∗ ∈ (0, 1) such that δ + δ∗ = 1. It is easy to see that

P (φi ∈ ANj) = P (φi ∈ ANj)δ
∗

(∫ h(j+1)

hj

f(t)dt

)δ

≤
[
sup
i,j

P (φi ∈ ANj)
]δ∗

sup
t
f(t)δhδ

≤ e−jδ
∗

j!
sup
t
f(t)δhδ, h ∈ (0, h0),

where h0 is some nonnegative number independent of i and j. Thereby,

ψ2(h) = sup
t
f(t)δ/2hδ/2

∑
j≥1

e−jδ
∗/2

√
j!

<∞.
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Let T = T (N) ≥ J4/(1−H) so that

dJ

h2 4
√
T 1−H

= O
(
hδ
′
)
, and set h ∝ N−δ

′′
. (5.17)

As mentioned in [27, Theorem 6],

ψ1(N, h) + o

(
h+

1√
Nh

)
= O

(
N−1/3

)
. (5.18)

Fitting rates of convergence given in (5.16),(5.17) and (5.18), we choose δ′ = δ, δ′′ = 1/(3δ).

An arbitrary choice of δ may violate the crucial condition Nh −→ ∞ as h→ 0. Choosing

δ ∈ (1/3, 1/2), we guarantee that all conditions on T , J , N and h are fulfilled. Finally

E
∥∥∥f̂ (3)

h − f
∥∥∥

1
= O

(
N−1/3

)
. In a similar fashion, we can prove that f̂

(4)
h as well as f̂

(3)
h have

the same rates of convergence .

5.3.3 Numerical Simulations

As an example, we consider the following Langevin equation as dynamics of the subject

X i:

dX i(t) =
(
−λX i(t) + φib(t)

)
dt+ σdWH,i(t), t ≤ T (5.19)

X i(0) = xi ∈ R,

where H > 1/2, λ, σ > 0 and φi is a random variable such that E |φi|4 <∞, i = 1, . . . , N .

Assume that b2
1 ≤ b(t)2 ≤ b2

2, for all t ≤ T . The common density f of φi can be estimated

by f̂
(2)
h and f̂

(4)
h , since the condition A1 is trivial.

For illustration, we simulate model (5.19) with b(t) = σ = 1, estimate the densities

of the random effects and compare these to the true data-generating density. In detail,

we use up to 25 exact simulations with λ = 3 × 10−3, xi = 0, N = 1000 and T =

100; 10. The random effects are Gaussian distributed, N (1, 0.8), and Gamma distributed,

Γ(2, 0.9), where 2 is the shape parameter and 0.9 the scale parameter. Figures 5.4, 5.5,

5.6 and 5.7 display the estimates f̂
(2)
h and f̂

(4)
h for different values of the Hurst index,

H ∈ {0.25, 0.75, 0.85} and T = 100; 10. Improving the accuracy of our estimators requires

that both N and T be sufficiently large. However, for T being only moderately large (

say T = 10 ) and/or H < 1/2 (which is not supported by our theoretical framework), the

estimated curves match the theoretical curves satisfyingly well. In general, the estimators

f̂
(1)
h and f̂

(3)
h are recommended in the case where a(·) is unknown, but one has to verify the

condition A’2. The estimators f̂
(2)
h and f̂

(4)
h require less assumptions, but the results are

more time-consuming as we need to compute φ̂i,T and R
(i)
T /U

(2)
T ; while f̂

(1)
h and f̂

(3)
h require

only φ̂i,T .
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Figure 5.4. Kernel estimates f̂
(2)
h for Ornstein-Uhlenbeck pro-

cess with additive random effects: We drew 50 i.i.d. realizations
of model (5.19) for each of the following settings. First row: Gaussian
distributed random effects, second row: gamma distributed random ef-
fects, columns: different values for the Hurst index H. The thin green

lines show the 25 kernel estimates f̂
(2)
h . The true density is shown in

bold red, and a standard kernel density estimator for one sample of φi’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T = 100. For more details, see Section 5.3.3.
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Figure 5.5. Histogram estimates f̂
(4)
h for Ornstein-Uhlenbeck

process with additive random effects: We drew 10 i.i.d. real-
izations of model (5.19) for each of the following settings. First row:
Gaussian distributed random effects, second row: gamma distributed
random effects, columns: different values for the Hurst index H. The

thin green lines show the 10 histogram estimates f̂
(4)
h . The true density

is shown in bold red, and an exact histogram for one sample of φi’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T = 100. For more details, see Section 5.3.3.
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Figure 5.6. Kernel estimates f̂
(2)
h for Ornstein-Uhlenbeck pro-

cess with additive random effects: We drew 50 i.i.d. realizations
of model (5.19) for each of the following settings. First row: Gaussian
distributed random effects, second row: gamma distributed random ef-
fects, columns: different values for the Hurst index H. The thin green

lines show the 25 kernel estimates f̂
(2)
h . The true density is shown in

bold red, and a standard kernel density estimator for one sample of φi’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T = 10. For more details, see Section 5.3.3.
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Figure 5.7. Histogram estimates f̂
(4)
h for Ornstein-Uhlenbeck

process with additive random effects: We drew 10 i.i.d. real-
izations of model (5.19) for each of the following settings. First row:
Gaussian distributed random effects, second row: gamma distributed
random effects, columns: different values for the Hurst index H. The

thin green lines show the 10 histogram estimates f̂
(4)
h . The true density

is shown in bold red, and an exact histogram for one sample of φi’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T = 10. For more details, see Section 5.3.3.
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5.4 NON PARAMETRIC ESTIMATION FOR FSDE’S WITH RANDOM

EFFECTS AND SMALL FRACTIONAL DIFFUSION

This section deals with the non-parametric estimation problem for processes of type

(5.1) with a(x) = 0, b(t, x) = b(x) and σ(t, x) = ε. We propose a class of estimators of

random effects (common) density f , when H > 1/2. The asymptotic behaviour of the

proposed estimators is established as ε → 0 and N (the number of subjects) tends to

infinity.

5.4.1 Model, Notations and Procedures of Estimation

We are concerned with N subjects
(
X i(t),F it , t ≤ T

)
with dynamics ruled by the

following general linear stochastic differential equations:

dX i(t) = φib(X
i(t))dt+ εdW i,H(t), 0 ≤ t ≤ T, (5.20)

X i(0) = xi0 ∈ R, i = 1, · · · , N, H ∈ (1/2, 1),

where b(·) is a known function and the random effects φi are F i0-measurable with common

density f to be estimated under some regularity conditions (to be specified later). Assume

also that

µf (λ) :=

∫
eλ|u|f(u)du <∞, ∀λ > 0, (5.21)

which is obviously satisfied by Gaussian and Beta distributions. The following conditions

guarantee the existence and uniqueness of solutions to (5.20)(see, Theorem 2.2.3 or [80, p.

197]).

A1: There exists L > 0 such that |ub(x)− u′b(x′)| ≤ L (|x− x′|+ |u− u′|),
for all u, u′, x, x′ ∈ R

A2: There exists a nonnegative constant R such that

|ub(x)| ≤ R (1 + |u|+ |x|) , ∀u, x ∈ R

Consider the differential equations in the limiting system of (5.20), that is, for ε = 0, given

by

dxi(t) = φib(x
i(t))dt, xi(0) = xi0, 0 ≤ t ≤ T. (5.22)

Our procedures of estimation will be split into three steps
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1. Estimating the functions φib(x
i(t)) for any t ∈ [0, T ] from the observations

X1, · · · , XN .

2. Estimating the random effects φi.

3. Estimating the common density function f .

5.4.2 Preliminary Results

We state our main result on the density estimators of the random variable φi. Namely,

the non standard kernel density estimators for the unknown density f of unobserved φi,

and on his asymptotic property. in the sequel, gi,ε′ = (gi,ε′(t), t ≥ 0), i = 1, · · · , N be a

processes defined by

gi(t) := gi,ε′(t) =


X i(t), if ε′ = 1

xi(t), if ε′ = 0.

In many proofs below, we focuss on one single subject and simplify notations by omitting

indices.

Lemma 5.4.1. Under the assumptions A1 and A2, the following statements hold

(i) There exists a nonnegative constant V such that

sup
0≤t≤T

E(gi(t)
2) ≤ V, for all i. (5.23)

(ii) There exists a constant C > 0 such that

E
∣∣xi(t)− xi(s)∣∣2 ≤ C |t− s|2 , for all i. (5.24)

Proof. Set gt = g1(t) and xt = x1(t). For the statement (i), we fix t ∈ [0, T ] and set

Ut = Eg2
t . Using the assumption A2 in the third inequality, we obtain

Ut = E
(
x0 + φ

∫ t

0

b(gs)ds+ εε′WH
t

)2

≤ 3
(
x2

0 + (εε′)2E(WH
t )2

)
+ 3E

(
φ

∫ t

0

b(gs)ds

)2

≤ 3
(
x2

0 + (εε′)2t2H
)

+ 3t

∫ t

0

E(φb(gs))
2ds

≤ 3
(
x2

0 + (εε′)2t2H
)

+ 9R2t

∫ t

0

(1 + E(φ2) + Eg2
s)ds

≤ Vt + 9R2T

∫ t

0

Usds,
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where Vt = 3
(
x2

0 + (εε′)2t2H + 3R2(1 + Eφ2)t2
)
. Applying the Gronwall lemma (see, [73,

Lemma 4.15]) to get

Ut ≤ Vt + 9R2T

∫ t

0

e9R2T (t−s)Vsds ≤ V, ∀t ≤ T,

where V = VT + 9R2T

∫ T

0

e9R2T (T−s)Vsds. For the statement (ii), let t > s. We have

E(xt − xs)2 = E
(∫ t

s

φb(xu)du

)2

≤ (t− s)
∫ t

s

E(φb(xu))
2du

≤ 3R2(t− s)
∫ t

s

(
1 + Eφ2 + Ex2

u

)
du

(5.23)

≤ 3R2
(
1 + Eφ2 + V

)
(t− s)2.

Let K(u) be a bounded function with finite support [A,B] (A < B) and satisfies

K(u) = 0, for all u /∈ [A,B] and

∫ B

A

K(u)du = 1.

It is clear that

∫
R

|K(u)|r du <∞, for all r > 0. For i = 1, · · · , N set

Q̂i,ε(t) :=
1

h

∫ T

0

K

(
s− t
h

)
dX i(s), t ∈ [0, T ].

Theorem 5.4.2. For i = 1, · · · , N

sup
0≤t≤T

E
∣∣∣Q̂i,ε(t)− φib(xi(t))

∣∣∣2 −→ 0, (5.25)

provided that ε2h2H−2 −→ 0, as ε, h −→ 0.

If we assume that ε = εn and h = ε1/(3−2H)
n , there exists h0 > 0 so that∥∥∥Q̂i,εn(t)− φib(xi(t))

∥∥∥
L2(Ω)

= O

(
ε

1
3−2H
n

)
, (5.26)

for all t ∈ (0, T ) and n ∈ N∗, with εn <
(
1 ∧ h3−2H

0

)
.
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Proof. Set Q̂ε(t) = Q̂1,εn(t), φ = φ1, WH
t = W 1,H(t), xt = x1(t) and Xt = X1(t). For

sufficiently small h (say h < h0), we have [A,B] ⊂ (−t/h, (T − t)/h). Thus∫ (T−t)/h

−t/h
K(u)b (Xt+hu) du =

∫ B

A

K(u)b (Xt+hu) du, for all 0 < h < h0. (5.27)

Hence,

E
(
Q̂ε(t)− φb(xt)

)2
= E

(
1

h

∫ T

0
K

(
s− t
h

)
dXs − φb(xt)

)2

= E
(

1

h

∫ T

0
K

(
s− t
h

)(
φb(Xs)ds+ εdWH

s

)
− φb(xt)

)2

= E

(∫ (T−t)/h

−t/h
K(u)(φb(Xt+hu))du

−
∫ B

A
K(u)(φb(xt))du+

ε

h

∫ T

0
K

(
s− t
h

)
dWH

s

)2

= E
(∫ B

A
K(u) (φb(Xt+hu)− φb(xt+hu)) du

−
∫ B

A
K(u)(φb(xt+hu)− φb(xt))du+

ε

h

∫ T

0
K

(
s− t
h

)
dWH

s

)2

= E (I1 + I2 + I3)2 ≤ 3
(
EI2

1 + EI2
2 + EI2

3

)
, (5.28)

where I1, I2 and I3 designate the integrals in the fourth equality among those above.

We have

EI2
1 = E

(∫ B

A

K(u) (φb(Xt+hu)− φb(xt+hu)) du
)2

≤ (B − A)

∫ B

A

K2(u)E (φb(Xt+hu)− φb(xt+hu))2 du

≤ L2(B − A) sup
0≤s≤T

E(Xs − xs)2

∫
R

K2(u)du

≤ C(L, T,H, f)ε2L2(B − A)

∫
R

K2(u)du −→ 0 as ε −→ 0, (5.29)

where C(L, T,H, f) is a nonnegative constant due to Lemma 6.0.13,
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EI2
2 = E

(∫ B

A

K(u)(φb(xt+hu)− φb(xt))du
)2

≤
∫ B

A

K2(u)du

∫ B

A

E(φb(xt+hu)− φb(xt))2du (by Cauchy Schwarz inequality)

≤ L2

∫
R

K2(u)du

∫ B

A

E(xt+hu − xt)2du (by A1 )

(5.24)

≤ L2

∫
R

K2(u)du

∫ B

A

Ch2 |u|2 du

≤ C(L,A,B,K)h2 −→ 0 as h −→ 0, (5.30)

where C(L,A,B,K) = CL2

∫
R

K2(u)du

∫ B

A

|u|2 du, with C is the nonnegative constant

appearing in (5.24).

Applying Theorem 2.2.2 and the Jensen inequality, respectively, we obtain

EI2
3 = E

(
ε

h

∫ T

0

K

(
s− t
h

)
dWH

s

)2

≤ C2
Hε

2

h2

(∫ T

0

K1/H

(
s− t
h

)
ds

)2H

≤ C2
Hε

2h2H

h2

(∫ B

A

K1/H(u)du

)2H

≤ C2
Hε

2h2H−2(B − A)2H−1

∫
R

K2(u)du −→ 0 as ε, h −→ 0, (5.31)

provided that ε2h2H−2 −→ 0. The second inequality above is justified by change of vari-

ables; u =
s− t
h

. Note that CH is a nonnegative constant due to the Hardy-Littlewood

theorem (see, [80]). As we can see in (5.29), (5.30) and (5.31), the last three expectations in

(5.28) are bounded independently of t, thereby (5.25) follows immediately. For the state-

ment (5.26), note that (5.27) is valid if h < h0, that is εn < h3−2H
0 . Combining (5.29),

(5.30) and (5.31) with the condition ε = εn < 1, we get∥∥∥Q̂εn(t)− φb(xt)
∥∥∥
L2(Ω)

= O
(
εn ∨ h ∨ εnhH−1

)
= O

(
ε1/(3−2H)
n

)
, for all t ∈ [0, T ],

which completes the proof.

The particular cases (t = 0 and t = T ) influence the choice of support [A,B], since

(5.27) is only valid if A = 0 for the first case and B = 0 for the second one. Now, we are
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ready to estimate the random effects φi by

φ̂
(1)
i,n :=

Q̂i,εn(t)

b(xi(t))
, for some fixed t ∈ [0, T ]. (5.32)

It is natural to replace xi(t) by X i(t) in (5.32), since X i(t)→ xi(t) in L2-sense, for all t as

εn → 0. Thus we propose the following estimators of φi

φ̂
(2)
i,n :=

Q̂i,εn(t)

b(X i(t))
, for some fixed t ∈ [0, T ], (5.33)

which converge toward φi in probability. The following theorem gives the rate of conver-

gence of φ̂
(1)
i,n toward φi in probability.

Theorem 5.4.3. For i = 1, · · · , N and t ∈ [0, T ], we have∣∣∣φ̂(1)
i,n − φi

∣∣∣ = OP

(
ε

1
3−2H
n

)
. (5.34)

Proof. We simplify notations by omitting t in (5.32). Let and c > 0 and set γ∗ = 1/(3−2H).

By virtue of Lemma 6.0.14, we derive from (5.26) the following result∣∣∣∣∣ Q̂1,εn

φ1b(x1)
− 1

∣∣∣∣∣ = OP
(
εγ
∗

n

)
.

Hence,

sup
n

P
(
ε−γ

∗

n

∣∣∣φ̂1,n − φ1

∣∣∣ > c
)
≤ sup

n
P

1

2
φ2

1 +
1

2
ε−2γ∗

n

∣∣∣∣∣ Q̂1,εn

φ1b(x1)
− 1

∣∣∣∣∣
2

> c


≤ P

(
φ2

1 > c
)

+ sup
n

P

ε−2γ∗

n

∣∣∣∣∣ Q̂1,εn

φ1b(x1)
− 1

∣∣∣∣∣
2

> c


≤ Eφ2

1

c
+ sup

n
P

(∣∣∣∣∣ Q̂1,εn

φ1b(x1)
− 1

∣∣∣∣∣ > √c εγ∗n
)

−→ 0 as c −→∞.

It is well known that standard kernel density estimators for the unknown density f of

φi are given by

f̃hε(x) =
1

Nhε

N∑
i=1

G

(
x− φi
hε

)
, hε > 0,
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where G is an integrable kernel that has to satisfy some regularity conditions. Since the

random effects φi are not observed; it is natural to replace them by their estimates to obtain

the following kernel density estimators

f̂
(1)
hε

(x) =
1

Nhε

N∑
i=1

G

(
x− φ̂(1)

i,n

hε

)
;

f̂
(2)
hε

(x) =
1

Nhε

N∑
i=1

G

(
x− φ̂(2)

i,n

hε

)
,

(5.35)

and prove their consistency as n and N become large. We focus on the estimators f̂
(1)
hε

because the same procedures can be applied to get the asymptotic behaviour of f̂
(2)
hε

.

5.4.3 Integrated squared risk bound of the estimator f̂
(1)
hε

We make the following assumptions which will be used to obtain an integrated squared

risk bound

A3: The kernel G is of order l ≥ 1, that is,∫
R

G(u)du = 1,

∫
R

ujG(u)du = 0, for j = 1, · · · , l.

For the construction of such a kernel we refer to [110, p. 10]. Assume also that G is

differentiable with

‖G‖L2(R) + ‖G′‖L2(R) <∞ and

∫
R

|u|δ |G(u)| du <∞.

A4: The density function f belongs to the Nikol’ski class N (δ, R) defined as the set of

functions f : R −→ R whose derivatives f (l) of order l = bδc exist and satisfy[∫
R

(
f (l)(x+ t)− f (l)(x)

)2
dx

]1/2

≤ R |t|δ−l , for all t ∈ R,

where bφc denotes the greatest integer strictly less than the real number δ.

Theorem 5.4.4.

Let the assumptions A3 and A4 be fulfilled. Assume further that there exists γ > 1 such

that

lim
v→∞

vγψ(v) <∞, (5.36)
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where ψ(v) := sup
n

P
(

(φ̂
(1)
1,n − φ1)2 > vδ2

n

)
and δn = ε1/(3−2H)

n . Then, by considering esti-

mator f̂
(1)
hε

given by (5.35), we have

E
∥∥∥f − f̂ (1)

hε

∥∥∥2

L2(R)
≤ C

(
h2δ
ε +

‖G‖2
L2(R)

Nhε
+
‖G′‖2

L2(R)

h3
ε

δ2
n

)
,

where C > 0 is a nonnegative constant.

Proof. By virtue of Lemmas 6.0.15 and 6.0.16, we obtain

E
∥∥∥f̂ (1)

hε
− f

∥∥∥2

L2(R)
=

∥∥∥f − Ef̂ (1)
hε

∥∥∥2

L2(R)
+ E

∥∥∥f̂ (1)
hε
− Ef̂ (1)

hε

∥∥∥2

L2(R)

≤ 2 ‖f − fhε‖
2
L2(R) + 2

∥∥∥fhε − Ef̂ (1)
hε

∥∥∥2

L2(R)
+ E

∥∥∥f̂ (1)
hε
− Ef̂ (1)

hε

∥∥∥2

L2(R)

≤ 2C(l, δ, R)h2δ
ε +

‖G‖2
L2(R)

Nhε
+ 2

∥∥∥fhε − Ef̂ (1)
hε

∥∥∥
L2(R)

, (5.37)

where C(l, δ, R) is a nonnegative constant due to Lemma 6.0.15.

There remains to find an upper bound of the last term in (5.37). First, note that

fhε(x) =

∫
R

f(y)Ghε(x−y)dy = E (Ghε(x− φ1)). Taylor’s theorem with integral remainder

yields

Ghε(x− φ̂
(1)
1,n)−Ghε(x− φ1) =

(φ1 − φ̂(1)
1,n)

h2
ε

∫ 1

0

G′
(

1

hε
(x− φ1 + u(φ1 − φ̂(1)

1,n))

)
du.

Now, by setting g(x, u) = G′
(

1

hε
(x− φ1 + u(φ1 − φ̂(1)

1,n))

)
, we have

∥∥∥fhε − E(f̂
(1)
hε

)
∥∥∥2

L2(R)
=

∫
R

[
E
(
Ghε(x− φ̂

(1)
1,n)−Ghε(x− φ1)

)]2

dx

≤
∫
R

E
(
Ghε(x− φ̂

(1)
1,n)−Ghε(x− φ1)

)2

dx

≤ E

[
(φ1 − φ̂(1)

1,n)2

hε
4

∫
R

(∫ 1

0

g(x, u)du

)2

dx

]

≤ E

(φ1 − φ̂1,n)2

hε
4

(∫ 1

0

(∫
R

g2(x, u)dx

)1/2

du

)2
 .

The last inequality given above is justified by the generalized Minkowski inequality (see

[110, Lemma A.1]). By change of variables y =
1

hε

(
x− φ1 + u(φ1 − φ̂(1)

1,n)
)

, we get
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∫
R

g2(x, u)dx = ‖G′‖2
L2(R) hε. Thus,

∥∥∥fhε − E(f̂
(1)
hε

)
∥∥∥2

L2(R)
≤
‖G′‖2

L2(R)

hε
3 E(φ1 − φ̂(1)

1,n)2. (5.38)

But we know that

E(φ1 − φ̂(1)
1,n)2 =

∫ ∞
0

P
(

(φ1 − φ̂(1)
1,n)2 > y

)
dy

= δ2
n

∫ ∞
0

P
(

(φ1 − φ̂(1)
1,n)2 > vδ2

n

)
dy

≤ δ2
n

(
1 +

∫ ∞
1

ψ(v)dv

)
. (5.39)

Therefore, the combination of (5.37) and (5.38) with (5.39) yields the desired result.

Corollary 5.4.5.

Set hε = δ
2

3+2δ
n and N = bδ−

2+4δ
3+2δ

n c+ 1, where δn = ε1/(3−2H)
n , we have

E
∥∥∥f − f̂ (1)

hε

∥∥∥
L2(R)

= O

(
δ

2δ
3+2δ
n

)
.

The integrated squared risk bound of f̂
(1)
hε

is strongly related to the convergence of the

estimators φ̂
(1)
i,n in L2-sense, which is equivalent to the uniform integrability of the sequence{∣∣∣φ̂(1)

i,n

∣∣∣2 : n ≥ 1

}
, since the convergence in probability was established. Even this uniform

integrability does not help us to get a precise rate of convergence of φ̂
(1)
i,n toward φi, it is not

clear how to verify it under the proposed assumptions. Thus, the pointwise risk of f̂
(1)
hε

is

worth being examined in the next subsection. For this end we do not need any assumption

like (5.36).

5.4.4 Pointwise risk bound of the estimator f̂
(1)
hε

In this subsection, in stead of considering A3 and A4, we make the following assump-

tions :

A’3: The density function f satisfies the Hölder condition, that is,

|f(u)− f(v)| ≤ D |u− v|γ , ∀u, v ∈ R,

where D and γ are some nonnegative constants.
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A’4: The kernel G is differentiable and satisfies M := sup
u
|G(u)| <∞, M ′ := sup

u
|G′(u)| <

∞ and

∫
R

|u|γ |G(u)| du <∞, where γ is nonnegative constant appearing in A’3.

Theorem 5.4.6.

Let the assumptions A’3 and A’4 be fulfilled. Then∣∣∣f̂ (1)
hε

(x)− f(x)
∣∣∣ = OP

(
δnh

−2
ε ∨ hγε ∨ h−1

ε /
√
N
)
, ∀x ∈ R,

where δn = ε1/(3−2H)
n .

Proof. Let x ∈ R and c > 0, for a nonnegative sequence (λn)n≥1 with λn → 0 (to be

specified later), we have

sup
n

P
(∣∣∣f̂ (1)

hε
(x)− f(x)

∣∣∣ > cλn

)
≤ sup

n
P
(∣∣∣f̂ (1)

hε
(x)− f̃hε(x)

∣∣∣ > c

3
λn

)
+ sup

n
P
(∣∣∣f̃ (1)

hε
(x)− Ef̃ (1)

hε
(x)
∣∣∣ > c

3
λn

)
+ sup

n
P
(∣∣∣Ef̃ (1)

hε
− f(x)

∣∣∣ > c

3
λn

)
≤ sup

n
P
(

sup
x

∣∣∣f̂ (1)
hε

(x)− f̃hε(x)
∣∣∣ > c

3
λn

)
+

9

c2λ2
n

sup
n

E
∣∣∣f̃ (1)
hε

(x)− Ef̃ (1)
hε

(x)
∣∣∣2

+ sup
n

P
(

sup
x

∣∣∣Ef̃ (1)
hε

(x)− f(x)
∣∣∣ > c

3
λn

)
. (5.40)

By virtue of Lemmas 6.0.17-6.0.20, the RHS in (5.40) tends to zero as c → ∞, provided

that λn ≥
(
δnh

−2
ε ∨ hγε ∨ h−1

ε /
√
N
)

.

Corollary 5.4.7.

Set hε = δ
1

2+γ
n and N = bδ

− 2+2γ
2+γ

n c+ 1, where δn = ε1/(3−2H)
n . We have∣∣∣f̂ (1)

hε
(x)− f(x)

∣∣∣ = OP

(
δ

γ
2+γ
n

)
, ∀x ∈ R.

5.4.5 Implementation issues and numerical applications

In this section, we consider SDE’s given by (5.20) with φi are either Gaussian or Beta

random effects. In this case, all assumptions made on the associated density function are

met. For the sake of optimizing our programs, we choose K(u) to be rectangular kernel

given by K(u) =
1

2
χ(|u|≤1). This kernel is very good for random effects taking values in
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R (Gaussian). But, in case where random effects φi ∈ K (compact set), one has to trim

the proposed estimators by χK. The good choice of the kernel G(u) would be to consider

the Gaussian kernel, because it satisfies the assumptions A3 and A′4. Two models are

considered : b(x) = 1 and b(x) =
x√

1 + x2
with curves illustrated, respectively, by Figure

5.8 and Figure 5.9 below. Results, are satisfactory overall. Increasing N and/or decreasing

the value of ε improves the accuracy of both estimates f̂
(1)
hε

and f̂
(2)
hε

.

92



H = 0.55 H = 0.95
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Figure 5.8. Kernel estimates f̂
(1)
hε

and f̂
(2)
hε

of f . The exact curve of f and

its estimate based on true values of random effects are given in green, blue, black

and red, respectively. The first row illustrates the case where b(x) = 1 and the

second row illustrates the case where b(x) =
x√

1 + x2
, with Gaussian random effects

φi ∼ N (1, 0.8) and (T,N, ε) = (5, 102, 10−2). (For interpretation of the references

to colour the reader is referred to the electronic version of this thesis).
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Figure 5.9. Kernel estimates f̂
(1)
hε

and f̂
(2)
hε

of f . The exact curve of f and

its estimate based on true values of random effects are given in green, blue, black

and red, respectively. The first row illustrates the case where b(x) = 1 and the

second row illustrates the case where b(x) =
x√

1 + x2
, with Beta random effects

φi ∼ B(5, 1) and (T,N, ε) = (5, 102, 10−2). (For interpretation of the references to

colour the reader is referred to the electronic version of this thesis).
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CHAPTER 6

CONCLUDING REMARKS AND PERSPECTIVES

The intention of this thesis was to provide statistical methods for performing both

parametric and non parametric estimation on two classes of REM with dynamics ruled by

1. Nonlinear SDE’s with generalized random effects;

2. Linear FSDE’s with random effects, when the Hurst index H > 1/2.

In Chapter 4, we considered the first class of REM with dynamics ruled by (4.1). As starting

point, a class of estimators of the population parameters has been proposed in Section 4.1.

We note that SDE models incorporating random effects have been considered in few recent

works (e.g., [25] ) focused on models with linear drift. Other papers (see, [83, 82, 81])

considered a nonlinear models and provide only the consistency results. Our proposed

estimators concern generalized linear and nonlinear drift, and are shown to be consistent

and asymtotically normal. The conditions we provided are not necessary as general as

those conditions in the literature. These conditions can be reduced, however, the general

conditions may be very difficult to verify with mathematical rigorousness. Simulation

results for the example 4.1.5 have shown that our proposed estimators are close to the true

parameter values. Compared to Delattre’s results (Table 4 in [25]), our results computed

from 100 datasets are excellent, even both N and R are not too large. Results obtained for

nonlinear models (Example 4.1.2) are very satisfactory, and the accuracy can be improved

by increasing onlyN . Compared toN (number of subjects), increasingR have no significant

impact on the properties of estimators and consume more time. To weaken the imposed

assumptions on our model, we expanded the likelihood function in Section 4.2 by means

of iterated Itô integrals (with random integrands). To implement examples for which the

weakned assumptions are met, one has to overcome the problem of simulating the multiple

integrals of the form

IT (h) :=

∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

h(t1, t2, · · · , tn, ω)dWtn · · · dWt2dWt1 , n ≥ 2. (6.1)

This problem is only solved in literature for a particular case where h(·) is a tensor power of

a nonrandom function in L2([0, T ]) (e.g., [28]). Simulating the integral (6.1) in the classical

way, recursively, presents a computational chanllenge. In Chapter 5, we considered the

second class of REM (5.1), for which three cases are separately discussed in sections within

this chapter
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• Case 1: b(t, x) = 1 and σ(t, x) = 1

• Case 2: b(t, x) = b(t) and σ(t, x) = σ(t)

• Case 3: a(x) = 0, b(t, x) = b(x) and σ(t, x) = ε

In Section 5.2, we considered Case 1, for which we have provided a fully Likelihood

parametric estimation. We are essentially concerned with the estimation of Hurst index,

as well as with the mean and variance estimators of the random effect that has a Gaussian

distribution. All qualitative and asymptotic properties of the estimators are obtained, when

the population of subjects becomes large. The study of this case suggests several important

directions for future research. First, what are the asymptotic properties of the Maximum

Likelihood estimators for µ and ω2 when the Hurst index H is unknown? Given that

the model is fully parameterized, one may wish to estimate H, µ and ω2 simultaneously.

Second, the study of this case assumes that the model is linear and the diffusion is constant

and equals 1. This assumption is not verified in almost all real applications. So, one can use,

for example, Euler schemes approximation. However, it is not clear how to get an explicit

approximation for the Maximum Likelihood function. Such extension would be worth being

studied from both theoretical and application points of view. Third, as mentioned in Section

5.2, we may estimate the population parameters by using double asymptotic framework.

Such an idea was applied in Section 5.3 to tackle the non-parametric estimation for REM of

type: Case 2. In this section, we addressed the open research question of how to estimate the

density of random effects in FSDE’s in a non-parametric fashion. To that end, we considered

N i.i.d processes X i(t), 0 ≤ t ≤ T, i = 1, · · · , N , where the dynamics of X i is described by

an FSDE including a random effect φi . The non-parametric estimation of the density of φi

was investigated for a general linear model of the form dXt = (a(Xt)+φb(t))dt+σ(t)dWH
t ,

where b(·) and σ(·) are known functions, but a(·) is possibly unknown. We studied the

asymptotic behaviour of the proposed density estimators for the whole range H ∈ (1/2, 1),

built kernel density estimators and studied their L2-risk as both N and T tended to infinity.

We also provided histogram estimators in a specific case where f has compact support,

which was for two reasons: First, we aimed to simplify technical computations, and cases

where the random effects density f has unbounded support are less important, since data

could always be mapped monotonically to [0, 1]. Second, densities with unbounded support

occur less often in practice. For the proposed histogram estimators, we provided their L1

-risk for both N and T = T (N) tending to infinity.
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With Mémin’s results (see, Theorem 2.2.2) , we can have only a lower inequality of

the form

E
∣∣∣∣∫ T

0

h(t)dWH
t

∣∣∣∣p ≥ CH,p ‖h‖pL1/H([0,T ])
, when H < 1/2.

This inequality would not help us to prove the convergence of both φ̂i,T and φ̃i,T toward

φi, when H < 1/2. This suggests to apply more advanced techniques, such as Malliavin

calculus. As mentioned before, our results are very good even for the case H < 1/2, which

is not supported by our theoretical framework. This is can be justified by recent results of

Hu et al., [54], where the authors provided moment estimates and maximal inequality for

divergence integrals w.r.t fBm, when H ∈ (0, 1/2) ∪ (1/2, 1). It is then convenient to see

our integral of interest

∫ T

0

b(t)

σ(t)
dWH

t as divergence integral (or Skorohod integral), so that

for H < 1/2 and p ≥ 2, we have

E
∣∣∣∣∫ T

0

b(t)

σ(t)
dWH

t

∣∣∣∣p ≤ CT pH(1 + T pβ + T pβ+pλ), (6.2)

where C > 0 is constant independent of T , λ ∈ (0, H] and β > 1/2−H, provided that

U3: i) sup
t≥t

∣∣∣∣ b(t)σ(t)

∣∣∣∣ <∞
ii)

∣∣∣∣ b(t)σ(t)
− b(s)

σ(s)

∣∣∣∣ ≤ K(t− s)β, for all t > s ≥ 0

Our example (b(t) = σ = 1) implemented in Subsection 5.3.3 satisfies A3, with any arbi-

trary β. Choosing λ, β such that 1/2−H < β ≤ 1/2−λ, will guarantee the convergence of

φ̂i,T and φ̃i,T toward φi, when H < 1/2. An interesting extension of this study would be to

consider models with nonlinear drift. In this case, one has to face the problem of estimating

random effects φi . Methods of parametric estimation, such as the maximum likelihood

technique, may help to estimate these random effects. The essential idea of non-parametric

estimation within this chapter is to proceed in two steps :

• Estimate random effects;

• Use classical density estimators with random effects replaced by their estimates.

The third case of our REM was treated in Section 5.4. Both L2-risk and pointwise risk (in
probability) of our estimators are examined. The simulations were performed for different
drift term and different density of random effects (Gaussian and Beta distributions). The
inference of short-range models with random effects persists as challenge, and is worth
being studied from both theoretical and application points of view.

97



REFERENCES

[1] Ait-Sahalia, Y. Closed-form likelihood expansions for multivariate diffusions. The An-
nals of Statistics (2008),36(2), 906-937.

[2] Ait-Sahalia, Y. Maximum likelihood estimation of discretely sampled diffusions: a
closed-form approximation approach. Econometrica (2002),70(1), 223-262.

[3] Allen, L. J. S. An introduction to stochastic epidemic models. Mathematical Epi-
demiology, Vol. 1945 of Lecture Notes in Mathematics, Springer Berlin Heidelberg,
(2008),81-130.

[4] Alonso, D., McKane, A. J., Pascual, M. Stochastic amplification in epidemics. Journal
of the Royal Society Interface (2007),4(14), 575-582.

[5] Alos, E., Mazet, O., Nualart, D. Stochastic calculus with respect to Gaussian processes.
Ann. Probab. (2001), 29, 766-801.

[6] Antic, J., Laffont, C.M., Chafai, D., Condorcet, D. Comparison of nonparametric
methods in nonlinear mixed effects models, Comput. Statist. Data Anal,(2009), 53,
642-656.

[7] Bachelier, L. Theory of Speculation, the Random Character of Stock Prices, trans-
lation of Bacheliers 1900 doctoral thesis. Cambridge: MIT.(1964).

[8] Barbour, A. D. On a functional central limit theorem for Markov population processes.
Advances in Applied Probability (1974),6(1), 21-39.

[9] Beskos, A., Kalogeropoulos, K., Pazos, E. Advanced MCMC methods for sampling on
diffusion pathspace. Stochastic Processes and their Applications (2013),123(4), 1415-
1453.

[10] Beskos, A., Papaspiliopoulos, O., Roberts, G. O. Monte Carlo maximum likelihood
estimation for discretely observed diffusion processes. Annals of Statistics. (2009),37,
223-245.

[11] Beskos, A., Papaspiliopoulos, O., Roberts, G. O., Fearnhead, P. Exact and compu-
tationally efficient likelihood-based estimation for discretely observed diffusion pro-
cesses (with discussion). Journal of the Royal Statistical Society: Series B (Statistical
Methodology). (2006),68, 333-382.

[12] Bibby, B. M., Sørensen, M. Simplified estimating functions for diffusion models with a
high-dimensional parameter. Scandinavian Journal of Statistics (2001), 28(1), 99-112.

[13] Bishwal, J. P.N. Parameter estimation in stochastic differential equations. Berlin Hei-
delberg: Springer-Verlag, (2008).

[14] Black, F., Scholes, M. The pricing of options and corporate liabilities. Journal of Po-
litical Economy (1973),81(3), 637-654.

[15] Brown, R. A brief account of microscopical observations made in the months of june,
july and august 1827, on the particles contained in the pollen of plants; and on the
general existence of active molecules in organic and inorganic bodies.Philosophical
Magazine Series2 (1828),4(21), 161-173.

[16] Capasso, V., Morale, D. Stochastic modelling of tumour-induced angiogenesis. Journal
of Mathematical Biology (2009),58(1-2), 219-233.

[17] Chen, W. Y., Bokka, S. Stochastic modeling of nonlinear epidemiology. Journal of
Theoretical Biology (2005),234(4), 455-470.
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APPENDIX A.

Proof. (Proof of Proposition 4.1.1) Under A1-A4, the first part is classical result
which follows from Theorem 2.1.16 (for more details see, [73, p.292]). Now, it remains to
construct the exact likelihood based on the marginal densities of

(
X i(t), 0 ≤ t ≤ Ti

)
. Let

h be a nonnegative measurable function on CTi . Since (φi, X
i) → h(X i) is measurable on

Rp × CTi , we have EQiθ(h(X i)) = EPiθ
(h(X i)), but

EQiθ(h(X i)) = EQiθ
(
EQiθ(h(X i)|φi)

)
= EQiθ(ψ(φi)) =

∫
R

g(ϕ, θ)ψ(ϕ)dν(ϕ),

with

ψ(ϕ) = EQiθ
(
h(X i)|φi = ϕ)

)
=

∫
CTi

h(x)dµXi
ϕ,xi

(x)

=

∫
CTi

h(x)

 dµXi
ϕ,xi

dµXi
ϕ0,x

i

(x)

 dµXi
ϕ0,x

i
(x) = EPi

(
h(X i)LTi(X

i, ϕ, ϕ0)
)
.

By virtue of Fubini theorem, we have also,

EPiθ
(h(X i)) =

∫
R

g(ϕ, θ)EPi
(
h(X i)LTi(X

i, ϕ, ϕ0)
)
dν(ϕ)

= EPi

[
h(X i)

∫
R

g(ϕ, θ)LTi(X
i, ϕ, ϕ0)dν(ϕ)

]
.

Hence,
dPiθ
dPi

=

∫
LTi(X

i, ϕ, ϕ0)g(ϕ, θ)dν(ϕ), Pi-a.s. and the independence of the indi-

viduals X i yields the likelihood function.

Proof. (Proof of Proposition 4.1.2)
Let βs(X

i, ϕ, ϕ0) = H+
2 (X i(s))

(
H1(X i(s), ϕ)−H1(X i(s), ϕ0)

)
. Clearly,

LTi(X
i, ϕ, ϕ0) = exp

(∫ Ti

0

βs(X
i, ϕ, ϕ0)dW i(s)− 1

2

∫ Ti

0

βs(X
i, ϕ, ϕ0)2ds

)
.

Let kϕ =
(
LTi(X

i, ϕ, ϕ0)|Ti=t , t ∈ [0, Ti]
)
. For each ϕ ∈ Rp, kϕ is a supermartingale

permitting the following representation: kϕ(t) = 1 +

∫ t

0

kϕ(s)βs(X
i, ϕ, ϕ0)dW i(s) which

follows immediately from the Itô formula. Applying Fubini theorem for stochastic integrals

(see, [73, theorem 5.15 ]), we assert that Λi(X
i, θ) = 1 +

∫ Ti

0

γs(X
i, θ)dW i(s), with

γs(X
i, θ) =

∫
Ls(X

i, ϕ, ϕ0)βs(X
i, ϕ, ϕ0)g(ϕ, θ)dν(ϕ). (6.3)

The measurability of X i −→ γs(X
i, ϕ0) on CTi follows from the joint measurability of the

following two functions:
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• The function (X i, ϕ) → βs(X
i, ϕ, ϕ0) which is measurable since H1(x) and H2(x, ϕ)

are non anticipative functionals.

• The function (X i, ϕ)→ Ls(X
i, ϕ, ϕ0) is also measurable (see, [25, Proposition 2]).

Now, as X i are strong solutions, then Λi(θ) are FW (Ti)-measurable. Applying [73,

Theorem 5.9], we claim that there exists a process
(

Ψi(t, θ), FW i(t)
)

0≤t≤Ti
such that

P
(∫ Ti

0

Ψi(t, θ)2dt <∞
)

= 1 and for all t ≤ Ti,

E
(

Λi(X
i, θ)|FW i(t)

)
= exp

[∫ t

0

Ψi(s, θ)dW i(s)− 1

2

∫ t

0

Ψi(s, θ)2ds

]
× E(Λi(X

i, θ)),

where

Ψi(t, θ) =
γt(X

i, θ)

1 +

∫ t

0

γs(X
i, θ)dW i(s)

,

where γt(X
i, θ) is given by (6.3). Under the condition E

(∫ Ti

0

γ2
s (X

i, ϕ0)ds

)
<∞ we can

use the martingale property, thus Λi(X
i, θ) = exp

[∫ T

0

Ψi(s, θ)dW i(s)− 1

2

∫ T

0

Ψi(s, θ)2ds

]
and the log-likelihood function would be of the form:

Γ(θ) =
N∑
i=1

∫ Ti

0

Ψi(s, θ)dW i(s)− 1

2

∫ Ti

0

Ψi(s, θ)2ds.

Proof. (Proof of the statement (4.7)) Let θ ∈ Θ and set JX(θ0, θ) =

Eθ0 log
Λ

(ε)
1 (X1, θ0)

Λ
(ε)
1 (X1, θ)

. We simplify notations by setting Λ1(θ) = Λ1(X1, θ). JX(θ0, θ) van-

ishes if and only if θ = θ0 (this can be easily justified by the identifiability assumption).
We wish to show that JX(θ0, θ) is nonnegative for θ 6= θ0. Set Aθ,θ0 = {Λ1(θ0) ≥ Λ1(θ)}.
For each θ we have

JX(θ0, θ) = Eθ0 log
Λ

(ε)
1 (X1, θ0)

Λ
(ε)
1 (X1, θ)

= Eθ0 log
ε+ Λ1(θ0)

ε+ Λ1(θ)

≥ Eθ0
{

log

[
ε+ Λ1(θ0)

ε+ Λ1(θ)

]
χAθ,θ0

}
+ Eθ0

{
log

[
ε+ Λ1(θ0)

ε+ Λ1(θ)

]
χAcθ,θ0

}
≥ Eθ0

{
log

[
ε+ Λ1(θ0)

ε+ Λ1(θ)

]
χAcθ,θ0

}
.

105



We shall show that the RHS of the last inequality is nonnegative. Using the fact that,

log

(
x+ a

x+ b

)
χ(a<b) > log

a

b
χ(a<b), for all a, b ∈ R+, and x ∈ (−a,∞), we have

Eθ0
{

log

[
ε+ Λ1(θ0)

ε+ Λ1(θ)

]
χAcθ,θ0

}
≥ Eθ0

{
log

[
Λ1(θ0)

Λ1(θ)

]
χAcθ,θ0

}
. (6.4)

If Pθ0(Acθ,θ0) = 1, the RHS of (6.4) is exactly the Kullback-Leibler information. Thereby
JX(θ0, θ) ≥ IX(θ0, θ) > 0. If Pθ0(Aθ,θ0) = 1, we have also JX(θ0, θ) > 0. In general, using
the fact that, − log(x) ≥ 2− 2

√
x, for all x > 0, we develop the RHS of (6.4) as

Eθ0
{

log

[
Λ1(θ0)

Λ1(θ)

]
χAcθ,θ0

}
= −

∫
Acθ,θ0

log
Λ1(θ)

Λ1(θ0)
(ω)dP1

θ0
(ω)

≥ 2− 2

∫
Acθ,θ0

√
Λ1(θ)

Λ1(θ0)
(ω)Λ1(θ0)(ω)dP1(ω)

≥ 2− 2

∫
Acθ,θ0

√
Λ1(θ)Λ1(θ0)(ω)dP1(ω)

≥ P1
θ(Aθ,θ0) + P1

θ0
(Aθ,θ0)

+

∫
Acθ,θ0

[√
Λ1(θ)(ω)−

√
Λ1(θ0)(ω)

]2

dP1(ω).

Hence, the proof of (4.7) is complete.

Proof. (Proof of the statement (4.9)) First, we recall some notations which will be
used. P1

θ0
denotes the marginal distribution of the process X1 on (CT1 ,BT1) dominated by

P1 = µX1
ϕ0,X

1
with

dP1
θ0

dP1
(X1) =

∫
LT (X1, ϕ, ϕ0)g(ϕ, θ0)dν(ϕ),

and LT (X1, ϕ, ϕ0) =
dµX1

ϕ,X1

dµX1
ϕ0,X

1

(X1) (see Subsection 4.1.2).

For any functional h(X1), we have

Eθ0(h(X1)) =

∫
CT1

h(x)Λ1(x, θ0)dµX1
ϕ0,x

1
(x)

=

∫ ∫
CT1

h(x)dµX1
ϕ,x1

(x)g(ϕ, θ0)dν(ϕ).

On the other hand, the expectation of a functional H(X1, φ1) under P, with φ1 ∼
g(ϕ, θ0)dν(ϕ) is given by

EH(X1, φ1) =

∫
H(x, ϕ)dµ(X1,φ1)(x, ϕ)

=

∫ ∫
CT1

H(x, ϕ)dµX1
ϕ,x1

(x)g(ϕ, θ0)dν(ϕ)
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Set As(X
1) =

∣∣X1(s)
∣∣2k. We have

Eθ0
∫ T1

0

As(X
1)ds ≤ T1 sup

s≤T1
Eθ0As(X1)

≤ T1 sup
s≤T1

∫ ∫
CT1

As(x)dµX1
ϕ,x1

(x)g(ϕ, θ0)dν(ϕ)

≤ T1 sup
s≤T1

EAs(X1) = T1 sup
s≤T1

E
∣∣X1(s)

∣∣2k <∞. (6.5)

In the last inequality As(X
1) is considered as functional of X1 and φ1; and the fact that

E |φ1|2k < ∞ which in turn implies sup
s≤T1

E
∣∣X1(s)

∣∣2k < ∞ (see Theorem 2.1.16 and note

that (x1, φ1) is the initial condition of (4.1) with i = 1).

Proof. (Proof of Proposition 4.1.5) In what follows, we will systematically use BDG
inequality. We simplify notations by setting Λ1(θ) = Λ(ε)(X1, θ), Wt = W 1(t), ψk(t, θ) =
∂γt(X

1, θ)

∂θk
, ψkj(t, θ) =

∂2γt(X
1, θ)

∂θk∂θj
, and ψlkj(t, θ) =

∂3γt(X
1, θ)

∂θl∂θk∂θj
. (i) First, note that

∣∣∣∣ ∂∂θk log Λ1(θ)

∣∣∣∣ ≤ ε−1

∣∣∣∣∫ T

0

ψk(t, θ)dWt

∣∣∣∣ ,
which implies

Eθ0
{
∂ log Λ1(θ)

∂θk

∂ log Λ1(θ)

∂θj

}2

≤ 1

2

{
Eθ0
(
∂ log Λ1(θ)

∂θk

)4

+ Eθ0
(
∂ log Λ1(θ)

∂θj

)4
}

≤ C4

2ε4

{
Eθ0
(∫ T

0

ψk(t, θ)
2dt

)2

+ Eθ0
(∫ T

0

ψj(t, θ)
2dt

)2
}
<∞.

In particular I(ε)
X (θ0) is finite. (ii) Let θ ∈ Br(θ0). For sufficiently small r, the mean value

theorem yields for each k, j ∈ {1, · · · , d}

sup
θ∈Br(θ0)

∣∣∣∣∂2 log Λ1(θ0)

∂θk∂θj
− ∂2 log Λ1(θ)

∂θk∂θj

∣∣∣∣ ≤ r

d∑
l=1

∣∣∣∣∂3 log Λ1(θ)

∂θl∂θk∂θj
|θ=θ∗

∣∣∣∣ ,
where θ∗ is the maximizer of

d∑
l=1

∣∣∣∣∂3 log Λ1(θ)

∂θl∂θk∂θj

∣∣∣∣ which depends only on Br(θ0) (that is,

it depends only on θ0). Set H(X1, θ0) =
d∑
l=1

∣∣∣∣∂3 log Λ1(θ)

∂θl∂θk∂θj
|θ=θ∗

∣∣∣∣. We will prove that

107



Eθ0H(X1, θ0) <∞. First, note that

∂3 log Λ1(θ)

∂θl∂θk∂θj
=

5∑
i=1

Gi(θ),

where G1(θ) = Λ1(θ)−1 ∂3Λ1(θ)

∂θl∂θk∂θj

G2(θ) = −Λ1(θ)−2∂
2Λ1(θ)

∂θl∂θk

∂Λ1(θ)

∂θj

G3(θ) = −Λ1(θ)−2∂
2Λ1(θ)

∂θl∂θj

∂Λ1(θ)

∂θk

G4(θ) = −Λ1(θ)−2∂
2Λ1(θ)

∂θk∂θj

∂Λ1(θ)

∂θl

G5(θ) = 2Λ1(θ)−3∂Λ1(θ)

∂θl

∂Λ1(θ)

∂θk

∂Λ1(θ)

∂θj
.

We are going to show that Eθ0 |G1(θ)|, Eθ0 |G2(θ)| and Eθ0 |G5(θ)| are finite for all θ ∈ Br(θ0)
and 0 < r < r0.

Eθ0 |G1(θ)| ≤ ε−1Eθ0

∣∣∣∣∫ T

0

ψlkj(t, θ)dWt

∣∣∣∣
≤ ε−1

[
Eθ0
(∫ T

0

ψlkj(t, θ)dWt

)2
]1/2

≤
√
C2

ε

[
Eθ0
∫ T

0

ψlkj(t, θ)
2dt

]1/2

<∞,

where C2 is a nonnegative due to BDG inequality. Hence Eθ0 |G1(θ)| is finite.

Eθ0 |G2(θ)| ≤ ε−2Eθ0

∣∣∣∣∫ T

0

ψlk(t, θ)dWt

∫ T

0

ψj(t, θ)dWt

∣∣∣∣
≤ 1

2ε2

{
Eθ0
(∫ T

0

ψlk(t, θ)dWt

)2

+ Eθ0
(∫ T

0

ψj(t, θ)dWt

)2
}

≤ C2

2ε2

{
Eθ0
∫ T

0

ψlk(t, θ)
2dt+ Eθ0

∫ T

0

ψj(t, θ)
2dt

}
<∞.
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Finally, we have

Eθ0 |G5(θ)| ≤ 2ε−3Eθ0

∣∣∣∣∫ T

0

ψl(t, θ)dWt

∫ T

0

ψk(t, θ)dWt

∫ T

0

ψj(t, θ)dWt

∣∣∣∣
≤ ε−3

{
Eθ0
(∫ T

0

ψl(t, θ)dWt

)2

+ Eθ0
(∫ T

0

ψk(t, θ)dWt

∫ T

0

ψj(t, θ)dWt

)2
}

≤ ε−3

{
Eθ0
∫ T

0

ψl(t, θ)
2dt+

C4

2
Eθ0
(∫ T

0

ψk(t, θ)
2dt

)2

+
C4

2
Eθ0
(∫ T

0

ψj(t, θ)
2dt

)2
}
<∞,

where C4 is also a nonnegative constant due to BDG inequality.

Proof. (Proof of Proposition 4.1.7) In this proof, we will systematically use BDG

and Jensen inequalities, and Fubini theorem. (i) Set Λ
(ε)
i (θ) = Λ(ε)(X i, θ). Since∣∣β(X i(s), ϕ, ϕ0)

∣∣ ≤ βs(ϕ), where βs(ϕ) is nonnegative deterministic function, we have

Eθ0
(
Ls(X

i, ϕ, ϕ0)β(X i(s), ϕ, ϕ0)
)2 ≤

≤ βs(ϕ)2Eθ0 exp

(
2

∫ s

0

β(X i(u), ϕ, ϕ0)dW i(u)−
∫ s

0

β(X i(u), ϕ, ϕ0)2du

)
≤ βs(ϕ)2

[
Eθ0 exp

(
4

∫ s

0

β(X i(u), ϕ, ϕ0)dW i(u)− 16

2

∫ s

0

β(X i(u), ϕ, ϕ0)2du

)]1/2

×
[
Eθ0 exp

(
6

∫ s

0

β(X i(u), ϕ, ϕ0)2du

)]1/2

≤ βs(ϕ)2 exp

(
3

∫ T

0

βu(ϕ)2du

)
.

Thus

Eθ0
∫ T

0

γs(X
i, θ)2ds ≤

∫ T

0

∫
Eθ0
(
Ls(X

i, ϕ, ϕ0)β(X i(s), ϕ, ϕ0)
)2
g(ϕ, θ)dν(ϕ)ds

≤
∫ ∫ T

0

βs(ϕ)2ds exp

(
3

∫ T

0

βu(ϕ)2du

)
g(ϕ, θ)dν(ϕ)

≤
∫
e4

∫ T
0 βu(ϕ)2dug(ϕ, θ)dν(ϕ) <∞,

where we used Cauchy Schwarz ineguality and the martingale property in the last inequality.

For the continuity of the function Λ
(ε)
i (θ), we use the Kolmogorov-Chentsov criterion (2.3)

with constants to be specified later. Let θ1, θ2 ∈ Nθ, where Nθ is an open set such that
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(4.13) holds true. We have

Eθ0
∣∣∣Λ(ε)

i (θ1)− Λ
(ε)
i (θ2)

∣∣∣2r = (1 + ε)−2rEθ0
∣∣Λ(X i, θ1)− Λ(X i, θ2)

∣∣2r
= (1 + ε)−2rEθ0

(∫
LT (X i, ϕ, ϕ0) [g(ϕ, θ1)− g(ϕ, θ2)] dν(ϕ)

)2r

≤ C2r

(1 + ε)2r
‖θ1 − θ2‖2δr

∫
Eθ0(LT (X i, ϕ, ϕ0))2rh(ϕ)dν(ϕ)

≤ C2r

(1 + ε)2r
‖θ1 − θ2‖2δr

∫
eλ

∫ T
0 βu(ϕ)2duh(ϕ)dν(ϕ) <∞,with λ = 4r2 − r.

Once again, we used Cauchy Schwarz ineguality and the martingale property in the last

inequality. By choosing r so that ε = 2δr − d > 0, we conclude that Λ
(ε)
i (θ) is continuous.
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APPENDIX B.

Let G+
n denote the class of nonnegative random sequences {Xi}ni=1 on the probability space

(Ω,F ,P) such that for all m > 0, EXm
i <∞. Let P

(
G+
n

)
be the subclass of G+

n for which
the following statement holds:

E
n∏
i=1

Xi ≤
(

sup
1≤i≤n

EX2n

i

)n/2n
.

Lemma 6.0.8. (i) For all m > 0 and n ∈ N∗, G+
n
m ⊂ G+

n , where G+
n
m

:= {um ; u ∈ G+
n }.

(ii) For all n ∈ N∗, G+
n = P

(
G+
n

)
.

Proof. The first statement (i) is trivial. (ii) By induction on n, we shall show that
G+
n ⊂ P

(
G+
n

)
for all n ≥ 1. G+

1 ⊂ P
(
G+

1

)
follows immediately from Cauchy Schwarz

inequality. Assume that G+
n ⊂ P

(
G+
n

)
and let {Yi}n+1

i=1 ∈ G
+
n+1. By using Cauchy Schwarz

and Lyapunov inequalities, respectively, we obtain

E
n+1∏
i=1

Yi = EY1

n∏
i=1

Yi+1

≤
(
EY 2

1

)1/2

(
E

n∏
i=1

Y ′i+1

)1/2

≤
(
EY 2n+1

1

)1/2n+1
(
E

n∏
i=1

Y ′i+1

)1/2

,

where Y ′i+1 = Y 2
i+1, i = 1, · · · , n. By (i) and hypothesis we have

{
Y ′i+1

}n
i=1
∈ G+

n
2 ⊂ G+

n ⊂
P
(
G+
n

)
, which yields

E
n+1∏
i=1

Yi ≤
(
EY 2n+1

1

)1/2n+1
(

sup
1≤i≤n

EY ′i+1
2n
)n/2n+1

≤
(
EY 2n+1

1

)1/2n+1
(

sup
2≤i≤n+1

EYi2
n+1

)n/2n+1

≤
(

sup
1≤i≤n+1

EYi2
n+1

) n+1

2n+1

.

Hence G+
n+1 ⊂ P

(
G+
n+1

)
and the proof is complete.

Proposition 6.0.9. Under the weakned assumptions A’4-A’5, the individual density
Λi(X

i, θ) given in (4.15) is continuous in θ Pθ0-a.s.
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Proof. Once again, we simplify notations by omitting indices. Let θ1, θ2 ∈ Nθ (Nθ

is an open set containing θ). By using Lemma 6.0.8 and the fact that |a+ b+ c|r ≤

22r−2 (|a|r + |b|r + |c|r), for all a, b, c ∈ R and r ≥ 1, we obtain

Eθ0
n∏
l=1

β(X(tl), ϕ, ϕ0)2r ≤ M2nrEθ0
n∏
l=1

(1 + |X(tl)|γ1 + ‖ϕ‖γ2)2r

≤ M2nr

[
sup
t≤T

Eθ0 (1 + |Xt|γ1 + ‖ϕ‖γ2)2n+1r

]n/2n

≤ M2nr
[
22(2n+1r)−2

]n/2n [
sup
t≤T

Eθ0
(

1 + |Xt|γ12n+1r + ‖ϕ‖γ22n+1r
)]n/2n

≤ M2nr24nr−n/2n−1

[
1 + sup

t≤T
Eθ0 |Xt|γ1nr + ‖ϕ‖2γ2nr

]
≤ M2nr24nr−n/2n−1

[
1 +Mγ1nr

3 + ‖ϕ‖2γ2nr
]
.

Thus

{
E |Λm(X, θ1)− Λm(X, θ2)|2r

}1/2r
≤ C ‖θ1 − θ2‖δ

∑
n≥1

cn

2r
√
n!

{
1 +Mγ1nr

3 +

∫
‖ϕ‖2γ2nr h(ϕ)dν(ϕ)

}1/2r

≤ C ‖θ1 − θ2‖δ
∑
n≥1

cn

2r
√
n!

{
1 +M

γ1n/2
3 + µ1/2r

n,γ2,r

}
,

where c = 4M 2r
√
T rCr.
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APPENDIX C.

Lemma 6.0.10. For all c > 0 and α ∈ (0, 1), we have

P (|Z1 + Z2| > c) ≤ P (|Z1| > (1− α)c) + P (|Z2| > αc) ,

where Z1 and Z2 are two random variables.

Lemma 6.0.11. Let (Xn, n ≥ 0) be a random sequence that converges weakly to a random
variable X. Let A be a Borel set such that P(X ∈ A) > 0 and P(X ∈ δA) = 0, where δA
denotes the boundary of the set A. For sufficiently large n, we have

E
∣∣χ(Xn∈A) − χ(X∈A)

∣∣ ≤ √2P(X ∈ A)1/2
{
P(Xn /∈ A)1/2 + P(X /∈ A)1/2

}
.

Proof. Simple computations yield

E
∣∣χ(Xn∈A) − χ(X∈A)

∣∣ = E
(
χ(Xn∈A) − χ(X∈A)

)2

= P (X ∈ A)− P (X,Xn ∈ A) + P (Xn ∈ A)− P (X,Xn ∈ A)

= E
{
χ(X∈A)

(
1− χ(Xn∈A)

)}
+ E

{
χ(Xn∈A)

(
1− χ(X∈A)

)}
≤ [P (X ∈ A)P (Xn /∈ A)]1/2 + [P (Xn ∈ A)P (X /∈ A)]1/2. (6.6)

(6.6) is justified by the Cauchy-Schwarz inequality. Since {Xn}n≥0 converges weakly to X,
then by the Portmanteau lemma (e.g., [113]) we have

P (Xn ∈ A) ≤ 2P(X ∈ A), (6.7)

for all n ≥ n0, where n0 is sufficiently large. The desired result follows from (6.6) and
(6.7).

Lemma 6.0.12. Let Xi, i = 1, · · · , N , be a sequence of i.i.d random variables with common
density f . Assume that f is continuous with compact support A ⊂ R. Let Aj(h) =
[hj, h(j + 1)), j = 1, · · · , J denote all Borel sets for which λ (Aj(h) ∩ A) 6= 0. We have

lim
h→0

1

N

N∑
i=1

J∑
j=1

P (Xi ∈ Aj(h))1/2 = 0.

Proof. Actually,

sup
i,j

P (Xi ∈ Aj(h)) = sup
j

∫ h(j+1)

hj

f(t)dt

≤ sup
t
f(t)h→ 0 as h→ 0.

Let ε > 0. There exists h0 > 0 such that P (Xi ∈ Aj(h)) < ε2/j4, for all i and h ∈ (0, h0).
Hence

1

N

N∑
i=1

J∑
j=1

P (Xi ∈ Aj(h))1/2 ≤ ε

(∑
j≥1

1

j2

)
<∞.
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APPENDIX D.

Lemma 6.0.13. Let the assumptions A1 and A2 (or A’) be satisfied. We have

(i) For i = 1, · · · , N and t ≥ 0, we have∣∣X i(t)− xi(t)
∣∣ ≤ ε

(∣∣W i,H(t)
∣∣+ L(|φi| ∨ 1)

∫ t

0

eL(|φi|∨1)(t−s) ∣∣W i,H(s)
∣∣ ds) . (6.8)

(ii) For i = 1, · · · , N , we have

sup
0≤t≤T

E
(
X i(t)− xi(t)

)2 ≤ 2ε2

(
T 2H +

2e3LT

2H + 1
µf (3LT )T 2H

)
:= C(L, T,H, f)ε2,

where µf (λ) is defined by(5.21).

It is easy to see that (ii) in Lemma 6.0.13 can be generalized as follows

sup
0≤t≤T

E
∣∣X i(t)− xi(t)

∣∣2p = Oε2p, for all i and p ≥ 1

Proof. We focus on one single subject X1 and simplify notations by omitting indices. Let
Xt and xt be solutions to equations (5.20) and (5.22), respectively. For the statement (i),
we fix ut = |Xt − xt|, so

ut =

∣∣∣∣∫ t

0

(φb(Xs)− φb(xs)) ds+ εWH
t

∣∣∣∣
≤

∫ t

0

|φb(Xs)− φb(xs)| ds+ ε
∣∣WH

t

∣∣
≤ L

∫ t

0

usds+ ε
∣∣WH

t

∣∣ (By A1 ).

But, if the alternative condition A’ is considered, we use the fact that |b(x)− b(x′)| ≤
L |x− x′|, for all x, x′ ∈ R (L := sup

x
|b′(x)|). Hence,

ut ≤ L(|φ| ∨ 1)

∫ t

0

usds+ ε
∣∣WH

t

∣∣ .
By applying Gronwall inequality (see, [73, Lemma 4.15]) with c = L(|φ| ∨ 1) and v(t) =
ε
∣∣WH

t

∣∣, the statement (6.8) follows imediately.

For the statement (ii), we set φ′ = |φ| ∨ 1 and apply (i) to get

sup
0≤t≤T

E (Xt − xt)2 ≤ 2ε2 sup
0≤t≤T

{
E(WH

t )2 + E
(
Lφ′

∫ t

0

eLφ
′(t−s) ∣∣WH

s

∣∣ ds)2
}

≤ 2ε2

{
T 2H +

2

T
E
(

(TLφ′)2

2
e2Lφ′T

)∫ T

0

E
∣∣WH

s

∣∣2 ds}
≤ 2ε2

(
T 2H +

2e3LT

2H + 1
µf (3LT )T 2H

)
,
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where µf (λ) is given in (5.21). In the last inequality, we used the fact that
x2

2
≤ ex, ∀x ≥ 0.

Lemma 6.0.14. Let Q, Qn, n ≥ 1 be random variables on the same probability space
(Ω,F , P ). Assume that |Qn −Q| = OPδn with δn −→ 0 as n→∞. Then,∣∣∣∣Qn

Q
− 1

∣∣∣∣ = OPδn.

Proof. Let c > 0, we have

sup
n

P
(∣∣∣∣Qn

Q
− 1

∣∣∣∣ > cδn

)
= sup

n
P
(

1

|Q|
[
δ−1
n |Qn −Q|

]
> c

)
≤ sup

n
P
(

1

2 |Q|2
+

1

2

[
δ−1
n |Qn −Q|

]2
> c

)
≤ P

(
1

2 |Q|2
>
c

2

)
+ sup

n
P
(

1

2
|Qn −Q|2 >

c

2
δ2
n

)
≤ P

(
1 > c |Q|2

)
+ sup

n
P
(
|Qn −Q| >

√
c δn

)
−→ 0 as c→∞.

Lemma 6.0.15. (Tsybakov [110, p.14]) Assume that f ∈ N (δ, R) and let G be a kernel
of order l = bδc satisfying ∫

R

|u|δ |G(u)| du <∞.

Then, for any hε > 0,
‖fhε − f‖

2
L2(R) ≤ C(l, δ, R)h2δ

ε ,

where fhε(x) =
1

hε

∫
R

G

(
x− u
hε

)
and C(l, δ, R) =

R

l!

∫
R

|u|δ |G(u)| du.

Lemma 6.0.16. Let G be a kernel which satisfies ‖G‖L2(R) <∞. We have

E
∥∥∥f̂ (1)

hε
− Ef̂ (1)

hε

∥∥∥2

L2(R)
≤
‖G‖2

L2(R)

Nhε
.

Proof. Set ηi,n(x) = Ghε(x− φ̂
(1)
i,n)−E

(
Ghε(x− φ̂

(1)
i,n)
)

, where Ghε(u) =
1

hε
G

(
u

hε

)
. ηi,n(x),

i = 1, · · · , N are i.i.d random variables with E [η1,n(x)] = 0, and with a change of variables

x− φ̂(1)
1,n

hε
= y in the second inequality below, we get
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∫
R

E (η1,n(x))2 dx ≤
∫
R

E
(
Ghε(x− φ̂

(1)
1,n)
)2

dx

≤ 1

h2
ε

E
∫
R

G2

(
x− φ̂1,T

hε

)
dx

≤ 1

hε

∫
R

G2(y)dy.

Therefore

E
(∥∥∥f̂ (1)

hε
− E(f̂

(1)
hε

)
∥∥∥2

L2(R)

)
= E

∫
R

(
f̂

(1)
hε

(x)− Ef̂ (1)
hε

(x)
)2

dx

=
1

N2
E
∫
R

(
N∑
i=1

ηi,n(x)

)2

dx

=
1

N

∫
R

E (η1,n(x))2 dx ≤
‖G‖2

L2(R)

Nhε
.

Lemma 6.0.17. Under the assumptions A’3 and A’4, we have

sup
x

∣∣∣f̂ (1)
hε

(x)− f̃hε(x)
∣∣∣ = OPδnh

−2
ε , as δnh

−2
ε −→ 0,

where δn = ε1/(3−2H)
n .

For the proof of this Lemma, we recall the following technical result used systematically
througout this paper.

Lemma 6.0.18. Lets Z1, · · · , ZN a sequence of random variables defined on common prob-
ability space (Ω,F ,P) and γ1, · · · , γN a sequence of nonnegative real numbers such that with
N∑
i=1

γi = 1, then

P

(
N∑
i=1

|Zi| > c

)
≤

N∑
i=1

P (|Zi| > cγi) .
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Proof of Lemma 6.0.17 First, we recall that Ghε(u) =
1

hε
G

(
u

hε

)
. Let (λn)n≥1 be a

nonnegative sequence such that λn −→ 0; to be specified later. We have

∣∣∣f̂ (1)
hε

(x)− f̃hε(x)
∣∣∣ ≤ 1

N

N∑
i=1

∣∣∣Ghε(x− φ̂
(1)
i,n)−Ghε(x− φi)

∣∣∣
≤ 1

Nh2
ε

N∑
i=1

|G′(x∗i )|
∣∣∣φ̂(1)
i,n − φi

∣∣∣
≤ M ′

Nh2
ε

N∑
i=1

∣∣∣φ̂(1)
i,n − φi

∣∣∣ ,
where x∗i is convex combination of (x− φ̂(1)

i,n) and (x− φi). In the second inequality above,

we used the mean value theorem. Therefore, for any c > 0, the Lemma 6.0.18 with γi =
1

N
gives

sup
n

P
(∣∣∣f̂ (1)

hε
(x)− f̃hε(x)

∣∣∣ > cλn

)
≤ sup

n
P

(
M ′

Nh2
ε

N∑
i=1

∣∣∣φ̂(1)
i,n − φi

∣∣∣ > cλn

)

≤
N∑
i=1

P
(∣∣∣φ̂(1)

i,n − φi
∣∣∣ > cλn

(
Nh2

ε

M ′

))

≤
N∑
i=1

P
(∣∣∣φ̂(1)

i,n − φi
∣∣∣ > cδn

)

The last inequality is justified by letting λn =
M ′

h2
ε

δn and δn = ε1/(3−2H)
n . Thus, using

Theorem 5.4.3, we obtain

sup
n

P
(∣∣∣f̂ (1)

hε
(x)− f̃hε(x)

∣∣∣ > cλn

)
−→ 0 as c −→∞.

�

Lemma 6.0.19. Under the assumptions A’3 and A’4, we have

sup
x

∣∣∣f(x)− Ef̃hε(x)
∣∣∣ = Ohγε .

Proof. First, note E[f̃hε(x)] = E [Ghε(x− φ1)], since φi are i.i.d random variables. Hence,
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for any x

∣∣∣f(x)− E[f̃hε(x)]
∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

E[Ghε(x− φi)]− f(x)

∣∣∣∣∣
=

∣∣∣∣E[Ghε(x− φ1)]− f(x)

∫
R

G(v)dv

∣∣∣∣
≤

∣∣∣∣∫
R

Ghε(x− v)f(v)dv −
∫
R

G(v)f(x)dv

∣∣∣∣
≤

∣∣∣∣∫
R

G(v)(f(x− vhε)− f(x))dv

∣∣∣∣
≤

∫
R

|G(v)| |(f(x− vhε)− f(x))| dv

≤ Dhγε

∫
R

|v|γ |G(v)| dv.

Since the last upper bound given above is independent of x, the proof is complete.

Lemma 6.0.20. Under A’4, we have

sup
x

E
∣∣∣f̃hε(x)− Ef̃hε(x)

∣∣∣2 = O
h−2
ε

N
.

In particular, ∣∣∣f̃hε(x)− Ef̃hε(x)
∣∣∣ = OPh

−1
ε /
√
N, ∀x ∈ R.

Proof. Let x ∈ R and set ηhε,i(x) = Ghε(x−φi)−EGhε(x−φi). Since ηhε,i(x), i = 1, · · · , N
are i.i.d random variables, we have

E
∣∣∣f̃hε(x)− Ef̃hε(x)

∣∣∣2 = E

(
1

N

N∑
i=1

ηhε,i(x)

)2

=
1

N2
E(ηhε,1(x))2

≤ 1

N
E (Ghε(x− φ1))2

≤ 1

Nh2
ε

∫
R

G2

(
x− v
hε

)
f(v)dv ≤ M2

Nh2
ε

.
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