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ABSTRACT

Stochastic differential equation models with random effects are increasingly used in
the biomedical fields and have proved to be adequate tools for the study of repeated mea-
surements collected on series of subjects. These models allow the quantification of both
between and within subject variation. Performing parametric inference for such models,
using discrete (or continuous) time data, is a challenging problem for two reasons: First,
the state likelihood is a product of transition densities which are rarely known. Second,
the marginalization required to construct this likelihood is an (often multidimensional)

integral, which rarely has a closed-form solution.

We provide a class of estimators for Stochastic differential equations (SDE’s) with
random effects and examine their asymptotic behaviour. We are concerned with SDE’s
with nonlinear drift and generalized random effects, for which a simulation study is given
to highlight the performance of the proposed estimators. We extend the existing results
of statistical inference for random effects models to include the SDE’s with random effects
driven by fractional Brownian motion (fBm). The incorporation of the fBm within our
models is of great interest, since it accounts for dependency of increments of the noisy
term. This is the case of long-memory phenomena arising in variety of different scientific
fields, including hydrology, biology, medicine, economics and traffic network. We consider
linear fractional stochastic differential equations with random effects, provide estimators
of the common density of random effects, and examine their asymptotic properties. Two
types of estimators are considered: kernel density estimators and histogram estimators.

Most of our results are illustrated by relevant examples.



ABBREVIATIONS, NOTATIONS AND SYMBOLS

ABBREVIATIONS

RHS  Right hand side

LHS  Left hand side

REM  Random effects models

ODE  Ordinary differential equation

SDE  Stochastic differential equation

MLE  Maximum likelihood estimator

FSDE Fractional stochastic differential equation
O-U  Ornstein-Uhlenbeck

Bm Brownian motion

fBm  Fractional Brownian motion

r.v Random variable

i.i.d Independent and identically distributed
w.r.t  With respect to

BDG  Burkholder-Davis-Gundy

GL Globally Lipschitz

LL Locally Lipschitz

Std. dev. Standard deviation
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NOTATIONS AND SYMBOLS

aAb avb min{a, b}, max{a,b}

Q, F, B Sample space, o-field and Borel o-field

o(F), (F:)  o-field generated by the set F' and the filtration

P, E, Var, Cov  Probability measure, expectation, variance and covariance
Xa Indicator function of the set A

supp g  support of the function g

LP(R), L?([a,b]), LP(2)  Spaces of p-integrable functions

L*(P), L?(dv(p))  Spaces of square integrable functions w.r.t the measures P and

v, respectively
C*(E)  Space of Holder continuous functions on E with exponent A

CE(E)  Space of k-times continuously differentiable functions with bounded deriva-

tives
B,.(x) The closed ball centered at x with radius r
llgll, llgll,  Euclidian norm and LP-norm of the function g

®"  The nth power tensor of the function g

g
N (p,0?), B(k,0) Normal and Beta distributions
N*(B,L) Nikol’ski class of functions

o(+), O(+), op(+), Op(-)  Usual and stochastic order symbols

c )
= Convergence in law
]P’_
= Convergence almost surely (under P)

= Convergence in probability (under PP)

——  Simple convergence

&, ~ Absolute continuity and equivalence of measures
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<  Smaller than up to a nonnegative constant

d

d—“ The Radon-Nikodym derivative of the measure y w.r.t measure v
v

0 : .

——  Partial derivative operator

Oox

< X > < X,Y > Quadratic variation process of X and Cross-variation of X
and Y

M’ M~ The transpose of the matrix M and its inverse
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CHAPTER 1
INTRODUCTION

Throughout history, interest has lain in understanding and modelling the dynamics
of systems evolving through time. Instances include (but are not limited to) the growth
of populations, the interactions between certain species, the spread of epidemics and more
recently, intra-cellular processes. Initially the dynamics of these systems were captured
through the use of ordinary differential equations (ODE’s); for example, Kermack and
McKendrick [62] describe the spread of a disease through a population using three ODEs.
These three ODE’s model the changes in the number of individuals who are Susceptible
(those who could catch the disease), Infectious (those who have the disease) and Recovered
(those who no longer have the disease). This model is known as the SIR model. However,
the evolution of these systems is not entirely predictable and is subject to random varia-
tion. The deterministic nature of the ODE description is unable to capture this random
variation and so has proved to be an unsatisfactory means through which to capture the
true dynamics of such systems. Hence an alternative modelling framework is required,
which can account for random behaviour. There are two types of randomness which may

be considered in the system:

Intrinsic noise, the unexplained variability within the system itself, such as fluctua-
tions in blood pressure, metabolic processes, or varying stress levels. This type of noise can
be substantial in biomedical data, because the underlying data generating process is often
too complex to be modeled exactly or is not understood well enough. Such internal random
fluctuations can be accounted for by including stochasticity in the dynamical model itself.
Accounting for this kind of randomness extend the ODE’s to stochastic differential equa-
tions (SDE’s). A system where the introduction of intrinsic noise appears fundamental is
the stock market, specifically the pricing of options and shares. Black and Scholes [14] and
Merton [78] developed a framework for the fair pricing of options. SDEs consist of both a
deterministic and stochastic part, and capture the dynamics of a system through a solution
which fluctuates around the deterministic solution. However, it should be noted that the
mean of the stochastic solution is not the ODE solution. Some application areas and in-
dicative references where SDEs have been used include finance [23, 12, 18, 59, 106], systems
biology [49, 43, 65, 45, 40, 48], population dynamics [47, 53], physics [114, 96, 111], medicine
[115, 44, 16], epidemics [24, 3, 51], biology [72], epidemiology [8, 17, 4], genetics [41, 108]
and traffic control [76]. The solution of an SDE gives a continuous-time, continuous-valued

stochastic process typically referred to as a diffusion process.



Inter-subject fluctuation, that is, the unexplained systematic differences of data
dynamics between subjects. Individuals share an overall model structure, or base model,
but the values of the model parameters differ between subjects. Parts of that inter-subject
variability can generally be captured by including subject-specific covariate information in
the model, such as adjustments for gender, age, body weight or treatment group. However,
due to the sheer complexity of real systems, a certain amount of unexplained inter-subject
variations will remain. The common way to account for them is by imposing random effects
on some (or all) parameters. Models that contain both fixed (parameters that are the
same across subjects) and random effects are known as mixed-effects models [103, 70, 91].

Accounting only for this kind of randomness leads to ODE’s with random effects.

Ordinary differential equations with random effects have frequently been applied to
model biomedical data, [97, 58]. Their formulation is intuitive, the random effects capture
inter-individual deviations from the population dynamics, and todays computational power
renders parameter estimation feasible. Well-known applications of this model framework
are pharmacokinetic compartment models [109, 71], which are used to describe the flow of
a substance between multiple spatially separated entities (different organs in the human
body). Biological systems are, however, incredibly complex. Their variability is driven by
the interplay of numerous internal (genetic variations, metabolic fluctuations, etc.) and
external factors (stress factors, room temperature, time of day, etc.). The bulk of them can
not be measured directly, or can not be included in the model, because it would prohibitively
scale up the models complexity. However, ignoring those inadequacies or uncertainties in
the model structure lead, if they are substantial, to biased estimates and false inference
[30]. In those cases one can achieve a more robust estimation by considering SDE’s with
random effects. The certainly powerful merging of random effects and SDE’s into one single
model comes with a considerable challenge for inference based on the data likelihood: its
intractability. This now has two sources. First of all, the state likelihood is a product of
transition densities which are generally unknown. But even if the transition densities are
known, this likelihood has to be marginalized over the distribution of the random effects,
because the random effects are practically not observed. Second, the marginalization is
an (often multidimensional) integral, which rarely has a closed-form solution. This makes
explicit likelihood inference impossible and leaves many research opportunities for finding
well-performing numerical or analytical approximation techniques. In fact, numerous ways

of tackling this challenge have been explored.

Methods to overcome this difficulty have been proposed, including simulated maximum

likelihood estimation [88, 32|, closed-form expansion of the transition density [2, 1, 89,
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106, 90], exact simulation approaches [11, 10, 9, 102] and Bayesian imputation approaches
[35, 39, 98, 49, 107, 66, 100]. The latter method replaces an intractable transition density
with a first order Euler-Maruyama approximation, and uses data augmentation to limit
the discretisation error incurred by the approximation. Whilst exact algorithms that avoid
discretisation error are appealing, they are limited to diffusions which can be transformed
to have unit diffusion coefficient, known as reducible diffusions. On the other hand, the
Bayesian imputation approach has received much attention in the recent literature due to

its wide applicability.

The MLE is usually used to make inference for unknown parameters, since it has a
number of desirable properties, such as consistency, asymptotic normality and efficiency.
However, as appealing the properties of the MLE may be, it comes with the challenge of an
often intractable likelihood. This is the case of nonlinear mixed effects models, where nu-
merical approximations are required (Solving the Kolmogorov forward equations, Gaussian
approximations, Hermite expansion, etc.). For theoretical properties of the MLE in the
context of mixed effects models, rigorous proofs are less available. the main contribution
to our knowledge is due to Nie and Yang[83, 82, 81]. The authors provide the consis-
tency result under several asymptotic frameworks, depending on whether the number of
subjects and/or the number of observations per subject goes to infinity. As starting point,
we consider SDE’s with generalized random effects and study the asymptotic behaviour of
the MLE. Then, we provide statistical methods that permit inference for a class of linear
FSDE’s with random effects. The asymptotic behaviour of our proposed estimators is ex-
amined, when the common density of random effects belongs to a class of functions which

may not be parametrized. Our results are illustrated by numerical examples.

Outline of thesis :
In the following we outline the subsequent chapters contained within this thesis. Chapter
2 provides preliminary results about stochastic calculus: 1t6 Calculus and Wiener Integrals
w.r.t the fBm. Chapter 3 is devoted to the literature review about random-effects models,
which are the main subject of our thesis. A general model gathering specific cases treated
separately in Chapter 4 & 5 is presented. This chapter contains also some auxiliary results
(of great interest) used systematically in Chapter 4 to establish the asymptotic behaviour of
our estimators. In Chapter 4 we discuss the problem of parametric estimation for diffusion
processes with generalized random effects. This chapter is split into two sections. Section
4.1 provides a class of estimators of the population parameters, which satisfy the consistency
and the asymptotic normality; while Section 4.2 is devoted to weakening the imposed

assumptions. An expasion of the likelihood function is established for this purpose.



A class of linear FSDE’s with random effects is presented in Chapter 5. We distinguish
two problems of inference: parametric estimation in Section 5.2 and non parametric estima-
tion in Sections 5.3-5.4; while Section 5.1 presents the general model considered within this
chapter. The asymptotic behaviour of our estimators is studied in detail for both types of
inference. We initially discuss the challenging problem of constructing the likelihood. The
main obstacle is the non Markovian and nonsemimartingale nature of the fBm. Thus the
classical techniques used in Chapter 4 are not applicable. However, we consider a simple
model that is of great interest in finance, and derive explicit estimators of random effects
parameters. Our results and numerical simulations for this model are given in Section
5.2. In Section 5.3 we provide estimators of the commun density f of random effects, for
which we study the LP-risk (p = 1, or 2). Two types of estimators are considered: kernel
density estimators and histogram estimators. Our results are discussed and implemented
for an O-U process. Section 5.4 is devoted to the problem of non parametric estimation
for a linear FSDE with small diffusion. Both L*risk and pointwise-risk of our estimators
are examined and enhanced by numerical examples. Our examples are implemented for
different drift terms and different density functions of random effects. Finally, concluding
remarks and perspectives are given in Chapter 6. For the clarity of exposure some results

and tedious computations are gathered in Appendix.



CHAPTER 2
PRELIMINARIES

We assume the reader is familiar with basic concepts of probability theory and theory
of statistics. Such background material can be found in [105, 101, 113]. This chapter pro-
vides auxiliary results about It6 calculus and stochastic calculus for fBm that are employed
throughout this thesis. Most are well known and stated without proof, as they can be
found in standard literature, such as [73, 69, 33] and [94, 84, 80], respectively.

2.1 ITO CALCULUS

2.1.1 The Kolmogorov-Chentsov Theorem
Theorem 2.1.1. (Karatzas,[60, p. 53]) Suppose that a process X = (X; : 0<t<T)
on a probability space (Q, F,P) satisfies the condition

E|X, — X, < Clt—s|"", 0<s,t<T, (2.1)

for some nonnegative constants o, 5 and C. Then there exists a continuous modification

X = ()NQ 0<t<L T> of X, which is locally Holder-continuous with exponent vy for every
v €(0,8/a), ie.,

‘)?t—)?s
Plw : sup ——— <0 | =1, (2.2)
0<[t—s|<h(w) |t — 5]
$,6€[0,T]

where h(w) is P-a.s nonnegative r.v and 6 > 0 is an appropriate constant.

A random field is a collection of r.v's X = (X; : t € A), where A is partially ordered.
An example of random field is X = (X, : ¢ € [0, T]%), with d > 2 is an integer. In this

case the Kolmogorov-Chentsov criterion [20, p. 36] is given by

E|X, — X,|* < C|t—s|™", 0<s,t<T (2.3)

2.1.2 Brownian Motion Processes

In 1828 the Scottish botanist Robert Brown discovered Brownian motion after exam-
ining pollen from a plant suspended in water under the lens of a microscope (see, [15]).
He noted that minute particles ejected from the pollen grain displayed a continuous irreg-

ular motion. In 1900 the French mathematician Louis Bachelier [7] considered Brownian

5



motion as a model for stock, mathematically defining Brownian motion in the process.
The governing laws of Brownian motion were established by Albert Einstein [34]. Norbert
Wiener [116] proved the existence (and provided the construction) of Brownian motion,
and it is for this reason that Brownian motion is also referred to as the Wiener process.
The univariate stochastic process (W, : t > 0) is defined to be Brownian motion if W, € R

depends continuously on ¢ and the following conditions hold

ii) W is a process with stationary independent increments, i.e., for all times 0 < ¢, <
t1 < tg, the r.v’s (W), — Wy,) and (W;, — W,,) are independent;

iii) increments Wy, — W;, have a Gaussian normal distribution with

E(W,, — W) = 0 and Var (W, — W) = o2 |te — 1] . (2.4)

In the case 0? = 1, the process W is often called the standard Brownian motion process.
The existence of such a process on (fairly 'rich’) probability spaces may be established in

a constructive way (see, [73, Theorem 1.13]).

Remark. The Brownian motion satisfies many properties, such as, the law of the iterated
logarithm and the Holder condition of Lévy (e.g., [73, p. 32]). We focus here on properties
which will allow us to construct stochastic integrals of the form [ Yi(w)dWs, where Y;(w)
belongs to some class of random functions. This kind of integrals cannot be defined as
Lebesgue-Stieltjes or Riemann-Stieltjes integrals, since realizations of a Bm have unbounded
variation in any arbitrary small interval of time. However, the following result shows

that Bm trajectories have some properties which in some sense are analogous to bounded

variation.

Proposition 2.1.2. Let 0 =t < " < ... <t =t be a subdivision of the interval
[0,¢], with 7™ = max {tﬁ)l — t(n)} — 0, asn — oco. Then

)

<W > = fi@i (W <;—i) - W <(i ;)t))? (2.5)

exists P-a.s and < W >;=1t. The limit < W >; s the value of the quadratic variation of

the Brownian motion W at time t.



We will later define the quadratic variation of a right-continuous martingale. The
definition will be given as a result of Doob-Meyer decomposition (for more details about

this topic, we refer the reader to [60, p. 24]).

Corollary 2.1.3. The Brownian motion is not of finite variation, i.e.,
z it (i — 1)t
nL_zg; W (2—n> -W <2—n>‘ = oo, P-a.s (2.6)

2.1.3 Martingales and Related Processes

Martingales are a very important subject in their own right as well as by their rela-
tionship with analysis. Their kinship to Bm and their contribution to the construction of
stochastic integrals will make them one of our foremost tools. This section describes some

of their basic properties.

Definition. A real-valued process M = (M, : 0 <t <T) adapted to (F;), is a super-
martingale (w.r.t (F), ) if

i) For any ¢ € [0,T], E|M;| < oc;
ii) For any pair s,t such that s < t, we have E (M;|F,) < M,, P-a.s.

A process M such that —M is supermartingale is called submartingale and a process

which is both a sub and a supermartingale is a martingale.

In other words, a martingale is an adapted family of integrable r.v’'s M such that
/ MdP = / M,dP, for every pair s,t with s < t and A € F,. (2.7)
A A

In particular, E(M,) = E(M,) for all ¢ > s. A simple example we give here is the process
M= (F (X|F) : 0<t<T), where X is a r.v with E(|.X|) < oo.

Proposition 2.1.4. Let W be a Brownian motion. Then the following processes are mar-

tingales w.r.t the filtration generated by W
i) Wy itself;
ii) The process W7 —t;

2
a
iii) The nonnegative process My = exp (ont — ?t) , a € R.



Let M, be the set of right-continuous martingales such that EM? < co and M, = 0.
Let S, denotes the set of stopping times (see, [60, p. 6]) bounded almost surely by a given
number a > 0, we say that M is of class DL if the familly {Mr}res, is uniformly inte-
grable. We define the quadratic variation of M as the unique (up to indistinguishability)
adapted, natural nondecreasing process < M >, for wich < M >¢= 0 a.s and M*— < M >

is a martingale.

Remark. It is also convenient to define the quadratic variation < M > of a continuous

martingale M = (M,, F;) at time ¢ > 0 as the limit in probability of the following sums

2 - 2
V=3 My, — M, |7 as |Ix] =0, (2.8)
k=1
where ||r| = max [t{™ — /™| and 0 = t{™ < ¢{™ < ... <t = is a subdivision of the
Jmax ity k—1 0 1 m

interval [0, ¢].
Let Zt(l) and Zt(Q) be two martingales, we define the bracket of Zt(l) and Zt(2) by
1
<20, 2% 5= {< 20+ 2% >, — <20 - 720 >} (2.9)

Obviously, the process < 2ZWU, z® >, is the limit in probability of

1 1 2 2
S (2 - a,) (2 - 22,
k=1
The following results provide a strong bridge between the Brownian motions processes

and the class of contintuous square integrable martingales. Thus, it is possible to extend

the stochastic integrals w.r.t Bm to integrals with martingale as integrator process.

Theorem 2.1.5. (P. Lévy [73, p. 85]). Let X = (Xy, F),5 be a continuous, adapted
process in R such that My = Xy — X is a continuous martingale w.r.t (F;) and < X >=1

for allt > 0. Then X is a Brownian motion.

Theorem 2.1.6. Let W = (W, F;) be a Brownian motion. Suppose that M = (M, F;)

is a continuous square integrable martingale (w.r.t P). then there exists a unique process

t t
Yi(w) such that ]E/ YZids < oo and M;(w) = E(My) +/ Yi(w)dWs, P-a.s for all t > 0,
0 0

t
where / Yi(w)dWy is an Ito integral defined in the next subsection.
0



Theorem 2.1.7. (Burkholder-Davis-Gundy [60, p. 166]). Let M be a continuous
martingale. For any m > 0, there exist universal nonnegative constants ¢,,, Cy, (depending

only on m) such that
cmE(< M >7) < E ( sup Mf’”) < CLE(< M >, (2.10)
0<t<T

provided that E (< M >7) < oo.

2.1.4 The Ito Integral

Let us now introduce the class of random functions Y;(w), for which the stochastic

¢
integral I;(Y) := / Ys(w)dWs is well defined.
0

Definition. The measurable (w.r.t a pair of variables (¢,w)) function ¥ = Yj(w), t >
0, w € Q is called nonanticipative w.r.t the family F' = (F;),t > 0, if for each ¢, it is

Fi-measurable.

Definition. The nonanticipative function Y = Y;(w) is said to be of class Pr if

P (/OTYt(w)?dt < oo) =1 (2.11)

Definition. The nonanticipative function ¥ = Y;(w) is said to be of class Vr if
T
E/ Yi(w)?dt < oo. (2.12)
0

The nonanticipative functions defined above are measurable random processes,
adapted to the family (F;). Obviously, for any T" > 0, Vy C Pr. By analogy with
the conventional integration theory it is natural to define first the stochastic integral I;(Y")
for a certain set of “elementary ”functions Y. this set has to be sufficiently “rich”; so
that I;(Y") can be easily constructed on this set, and any function from Py or Vr can be
approximated by functions of this set. Such set of “elementary ”functions is denoted by Er

and consists of simple functions introduced in the definition below.

Definition. The function e = e(t,w), 0 < t < T is called simple if there exist a finite

subdivision 0 = t((]n) <t <. < t" = T of the interval [0,7] , random variables
a,qp, -+, -1, Where « is Fp-measurable and «; are F;-measurable, 7 = 1,--- ,n—1 such
that

n—1
e(ta w) = aX{o} (t) + Z O‘iX(ti,ti+1}(t)>
=0
where x4 denotes the chracteristic function of the set A and e(t,w) € Vr.

9



With these arguments, the integral I;(e) is given by

]t(e) = Z a; (Wti+1 - Wtz) + Omt1 (Wt — thJrl) . (213)
e

Instead of the sums given in (2.13), we shall use the following notation [;(e) :=

¢ ¢
/ e(s,w)dWs. The integral / e(u,w)dW, will be understood as / e(u,w)dW, =
0 s

s
t

e(t, w)X(u>s)dWy. The main properties of the stochastic integral (Ito integral) I;(:)

0
for simple functions are summarized below

1. Linearity : For all a,b € R and e, ey € &7,

Ii(aey + bes) = ali(er) + bly(es);

2. Ii(e) is a continuous function over ¢, ¢t € [0,7];

3. Martingale property : For all s < ¢, we have

t
E (Ii(e)|Fs) = Is(e); In particular E (/ e(u,w)qu> =0, forall s<t;

4. Generalized Ito6 isometry : For all s, ¢, we have

E ( /O ey ()W, /0 ol w)qu) _E /0 " s, w)ea (. w)d

For the case where Y;(w) € Vr (or Yi(w) € Pr), the stochastic integral (It integral) I;(Y")
t
is defined as the limit of / Y, (w)™MdW,, Yi(w)™ € & in L*sense (with probability one),

0
respectively (see, [73]). For simple functions Y;(w), the Ito integral I,(Y') can be verified
directly using (2.13). As an illustration, consider the case Y = ¢ € R. We have

n n
/ cdW, = lim Z c (VVtSn) — Wéﬂ)
0 n—00 P

= lim ¢ (W, — Wy) = cW,,

n—0o0

where 0 = t{" < (" < ... < t™ = ¢ is a subdivision of the interval [0,#] with
(n) (n)
t =t

max — 0 as n — oo and Li.m denotes the limit with probability one. Another

(2

10



interesting example is the case where Y is a Brownian motion W itself. straightforward

computations lead to

t n
/ WeW, = Lim > W (Wi —w)

. 1 & n 2\ 1o n n
= dim |y 2 (- ey 3 (o )>2—<Wtf—)1>2>]
i=1 i=1
o1,
= gt W

Remark.

1. If Y € Vy, then the It6 integral I,(Y) is continuous square integrable martingale with

quadratic variation

t
<L(Y) >= / Y (w)?ds, (2.14)
0
but not necessarily Gaussian;

2. The process I;(Y), 0 <t < T in the case Y € Pr, is, generally speaking, not a

martingale.

Theorem 2.1.8. (Integration by parts formula [99, p. 59]). If ZY and Z2 are

two continuous martingales. Then

d (Zt(l)Zt(Q)) =704z + 7Paz® v d < 70,20 >, | (2.15)

In particular, d ([Zt(l)]2> = 2Zt(1)dZt(1) +d<2ZW >,

2.1.5 The It6 Formula

Throughout this section, we consider the diffusion processes of the form
t t
& = & +/ A(s, &s)ds +/ B(s,&)dWs, 0<t<T,
0 0

T
where P (/ |A(s, &) + 32(5758)ds> =1
0

In differential form, we write

11



Theorem 2.1.9. (Ité formula [73, p. 124]). Let f(t,x) be a continuous function
and have partial derivatives f[(t,z), fi.(t,x) and flz(t,z). Assume the random process
&= (&, F), 0 <t <T has the stochastic differential form given by (2.16). Then

G (1,6) = (&)t + L4 €)dg + 3 falt, €)B (1, &)t (217)
The Ito formula is powerful tool in stochastic calculus. It is usually applied to solve
SDE’s or compute integrals. For example, one can compute the integral / t W2dW, by
applying It6 formula to the function f(t,W;) = W2. In fact d (Wt?’) = 3Wt26(3Wt + 3W,dt.
Thus /t W2dW, = lwf’ — /t Wds.
0 3 0
Consider the SDE
A& = a&dWy, 0 <t <T, a € R, &, (2.18)
where & and (W;, F;) are Fo-measurable r.v and Bm, respectively. It is easy to see that
X, =& exp (aWt — %a%), 0 <t < T solves (2.18). To prove uniqueness, Let Y = (Y}, F;)
be another solution to (2.18) starting at Yy = & and set Z; = exp (—aWt + %a%)- By
the integration by parts formula (2.15), we have
d(ZYy) = 2y dYi+ Y dZ,+d < Z,)Y >
= Z;(aY,dW;) + Y, BaQtht — aZ,dW, + %oﬁztdt] — a?Z,Y,dt
= 0.

Thus Z,Y; is constant, and so Y; = ZyYy/Z; = X;.

2.1.6 Strong Solutions of Stochastic Differential Equations
In this section, we are interested in homogeneous diffusion processes defined as solu-
tions to the SDE
d& = A(&)dt + B(&)dWy, &, 0<t<T, (2.19)

where A(x), B(x) are nonrandom functions and are called trend coefficient and diffusion
coefficient, respectively. The equation (2.19) should be understood as a short version of

the following integral equation

¢ = A(&)d B(&)dWs, 0 <t < T,
& = Gt [ Alg)ds+ [ Be)av. o< <
provided that P (/ (JA(&)| + B2(&,))ds < oo) =1

0

12



Let us introduce a family of o-algebras ]_-tgo,w =0 {&, Ws, 0<s<t},0<t<T gener-

ated by the initial value & and by the given Wiener process up to time ¢.

Definition. Equation (2.19) has a strong solution £ = (& : 0 <t <T) on the given
probability space (2, F,P) w.r.t the fixed Wiener process W = (W; : 0<t<T) and
initial condition &, if the process ¢ satisfies the equality (2.19), has continuous sample
paths and & is F" -measurable for all ¢ € [0, 7).

We say that the SDE (2.19) has unique strong solution if for any two solutions e =
(gf” 08t T) and £?) = <§t(2) :0<t< T> the following equality holds true

P ( sup > 0) =0.
0<t<T

There are two type of solutions to (2.19). We focus here on strong solutions, for which

et — e

many conditions insuring their existence and uniqueness are given below.
GL. (Globally Lipschitz condition). There exists a constant L > 0 such that
|A(z) — A(y)| + [B(z) = By)| < L|zr —y|, forallz,yeR

Theorem 2.1.10. (Kutoyants [69, p. 25]) Let the condition GL be fulfilled
and P(|&| <oo) = 1. Then the equation (2.19) has a unique (strong) solution
(& : 0<t<T), continuous P-a.s. If moreover E || < oo, then E|&[P™ <

(1 +E ]50]27”) et — 1, where ¢, is some nonnegative constant.

LL. (Locally Lipschitz condition). For any M < oo and |z|,|y| < M there
exists a constant Ly, > 0 such that |A(x) — A(y)| + |B(z) — B(y)| < Ly |z —y| and
2¢A(z) + B*(z) < L (1 + 2?), for some constant L > 0.

Of course the condition LL is less restrictive and is fulfilled for many examples, such
as the Double-Well Potential diffusion, i.e.,

dXy = (1X; — v X}) dt + vzdWy, X, 0 <t <T,

where v;, 1 = 1,2, 3 are nonnegative parameters in compact space.

Theorem 2.1.11. (Kutoyants [69, p. 26]) Let the condition LL be fulfilled
and P(|&| <o0) = 1. Then the equation (2.19) has a wunique (strong) solution
(& : 0<t<T), continuous P-a.s.

13



For multidimensional case, where x € R", A(x) = (Ai(z), As(x), -+, A,(2))" and
B(z) = (Bi;()),<; j<,- the locally Lipschitz condition LL is given by

(i) For any M < oo and ||z, ||y|| < M, there exists a constant Ly, > 0 such that

Z | Ai(2) — As(y)| + Z |Bij(x) = Bij(y)] < L lz — yll;

(ii) There exists L > 0 such that

Z (22, A4;(x) + bis(2)) < L (1+ ||2[|*), where b(z) = B(z)B(x)'.

(2

2.1.7 Nonnegative Supermartingales and Girshanov Theorem
Let (Q, F,P) be a complete probability space and let (F;), 0 < ¢t < T be a nondecreas-
ing of sub-o-algebras of F, augmented by sets from F of probability zero. Let W = (W, F;)
T
be a Wiener process and let v = (74, ;) be a random process with P (/ Vids < oo) =1.
0

The investigation of the problem of absolute continuity of measures of diffusion processes
w.r.t a Wiener measure relies on the Girshanov theorem. In establishing Girshanov theorem
(which provides a powerful tool for change of measures), an essential role is played by non-

negative continuous (P-a.s) processes k = (K, Ft), 0 < t < T permitting the representation

¢
Ke = 1+/ ~vsdWs. (2.20)
0

Proposition 2.1.12. Let v = (v, F), t < T satisfy (2.20) and r; > 0, (P-a.5), 0 <t <T.

Then the process k = (ky, Fi) is a nonnegative supermartingale.

An important particular case of nonnegative continuous (P-a.s) supermartingales per-

mitting representation given by (2.20) is represented by processes 1) of the form

t 1 t
Yy = exp (/ agdW, — 5/ agds) , t<T, (2.21)
0 0

T
where the process a = (ay, F;) is such that P (/ a? < oo | = 1. By virtue of It6 formula
0

it follows that i) admits the representation (2.20), with 74 = a41);. The following theorems

provide conditions for which supermartingales of the form (2.20) are true martingales.

Theorem 2.1.13. (Liptser [73, p. 228]) Let k = (ky, Fy), t < T be a supermartingale
of the form (2.20) such that B(kr) = 1. Then k is a true martingale.

14



Theorem 2.1.14. (Novikov condition [73, p. 229]). Let a = (o, Fy), t < T be a

random process such that
1 T
E exp (—/ aids) < 00.
2 Jo

Then the process 1 given in (2.21) is a true martingale, and in particular E(yy) =1, t <T.

Let k = (K, Ft), t < T be a nonnegative continuous supermartingale with x; =
t

1+ / vsdWs and E(kp) = 1. The process k is a nonnegative martingale, and on the
0

measurable space (€2, Fr), we can define the measure P by dP = rp(w)dP. We denote by
k7 the process defined by

1/ks, ks> 0;

0, ks=0.

Theorem 2.1.15. (Girshanov theorem [73, p. 238]). On the probability space
<Q, Fr, IF’) the random process W= (/W/t, F), t < T, with

t
W, =W, — / Kl 7ysds
0

1s a Wiener process under the measure IP.

2.1.8 Absolute Continuity of Measures Corresponding to Diffusion Processes
The following theorem is of great interest for the construction of likelihood functions.
This theorem will be systematically used in Chapter 4. As an illustration the problem of

parametric estimation for the ergodic O-U process is investegated below.

Theorem 2.1.16. (Liptser [73, p. 294]) Let € = (&, F;) and n = (n, F), 0 <t <T
be two processes of the diffusion type with

d§y = Ay(&)dt + B(§)dWe,  §o = mo,
(2.22)

dnt = AQ(nt)dt+B<nt)tha

where & is Fo-measurable r.v and W = (W, F;) is a Wiener process. Let the following

assumptions be fulfilled.
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I) The functions A;(x), i = 1,2 and B(z) satisfy any conditionds providing the existence

and uniqueness of a strong solution to the system (2.1.16);

II) For anyt, 0 <t < T, the equation B(&)o(w) = A1(&) — Ax(&) has (w.r.t ay(w))

P-a.s solution,

III) The following equality holds

P(f LB (A2E) + A2(E) ds < )
= 2 ([ B () + A3 s <o0) =1

d
Then e ~ 1, and the density d—'ug(n) 15 given by
U

B = o U (B (12))* (41 () = Aa())

1

-5 | B0 (M)~ ) ds| . 22

Example. Let us consider the problem of parameter estimation by the observations X =
(X: : 0<t<T) of the O-U process

dXt - —)\Xtdt + th, X(), 0 S t S T,

where the unknown parameter belongs to [A, A] C (0,00). Let Ag be true value of the
parameter A. Applying Theorem 2.1.16 to the processes & = Xt(’\) and 1, = Xt()‘(’), we
obtain (by formula (2.23)) as likelihood

T 1 T
Lr(\) = exp [—(A—AO) / Xt(AO)dXt(AO)—§()\2—)\§) / (Xt(AO))th}.
0 0

T T
Thus the MLE is given by A\r = —/ Xtht// X?2dt, and
0 0

VT (3= %) = <% /OTdet)_l (% /OTXtth>

£ N(0,2)).
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2.2 STOCHASTIC INTEGRATION WITH RESPECT TO FBM AND RE-
LATED TOPICS

2.2.1 Intrinsic Properties of the Fractional Brownian Motion

In this subsection we review the main properties that make fractional Brownian motion
interesting for many applications in different fields. The main references for this subsection
are [74, 85, 99, 104]. For further details concerning the theory and the applications of
long-range dependence from a more statistical point of view, we also refer to [31]. The
fBm was first introduced within a Hilbert space framework by Kolmogorov in 1940 in [64],
where it was called Wiener Helix. It was further studied by Yaglom in [118]. The name
fractional Brownian motion is due to Mandelbrot and Van Ness, who in 1968 provided in
[74] a stochastic integral representation of this process in terms of a standard Brownian

motion.

Definition. A centered Gaussian process W = (WtH D> O), H € (0,1) is called stan-

dard fractional Brownian motion of Hurst parameter H if it has the covariance function

1
Ry(t,s) :=E (W/'W[) = 3 {tQH + 8 — |t — 3\2H} , t,s>0 (2.24)

For H = 1/2, the fBm is then a standard Bm known as the Wiener process. For
H # 1/2 the fBm is niether a semimartingale nor a Markov process. By definition, it is

easy to see that fBm has the following properties
L PWH =0)=1, E(WH) =0 and E[(WF)?] = t*# for all t > 0.

2. The fBm W* has homogeneous increments, i.e., Wﬁs — WH has the same law of
W for all t,s > 0.

3. The fBm is self-similar with index H, that is, for any a > 0, the processes
(a_HWtH t> 0) and (W(ﬁ Dt > 0) have the same law.

4. The fBm W admits a continuous modification, which is locally Hélder with exponent
v € (0, H).

5. The sample paths of the fBm W are nowhere differentiable in the L*-sense.
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6. For the fBm (W, : 0 <t <T), with Hurst parameter H € (0, 1), we have (P-a.s)

on_1 . .
gfJ+1 v
J i) - I

lim E
n—oo
J=0

p

= 0, ifpH >1,

= oo, IifpH <1,

= T, ifpH=1.
In particular
2" —1 ]+ 1 j 1/H
Li. wh T)-wH (=T =T
L D () -wr (57)

2.2.2 Wiener Integrals w.r.t Fractional Brownian Motion

It is known that, in order to develop the theory of stochastic integration of a random
process with respect to another stochastic process satisfying the usual properties of integrals
such as linearity and dominated convergence theorem, it is necessary for the integrator to
be a semimartingale. This can be seen from Theorem VIIL.80 in [26]. Semimartingales can
also be characterized by this property. Since fBm is not a semimartingale, it is not possible
to define stochastic integration of a random process with respect to fBm starting with
the usual method of limiting arguments based on Riemann-type sums for simple functions
as in the case of Ito integrals. However, the special case of a stochastic integration of a
deterministic integrand with respect to fBm as the integrator can be developed using the
theory of integration w.r.t general Gaussian processes as given in [57] and more recently in
[5]. There are other methods of developing stochastic integration of a random process with
respect to fBm using the notion of Wick product and applying the techniques of Malliavin

calculus. We do not use these approaches throughout this work.
Let WH = (WtH Cte R) be a standard fBm with Hurst index H > 1/2 and suppose
k
Y = (Y; : teR) is a simple process in the sense that Y; = ZO&jX(Tjith}(t), where
j=1

—o00 < Ty <Ty <--- <Tj < oo and a; are Fr,-measurable r.v’s. We define the stochastic
integral of the process Y w.r.t W# as
k

/RytthH =Y q (Wg - W{f) . (2.25)

j=1
If the process Y is of locally bounded variation, then we can define this integral by using

the integration by parts formula

t t
/ Y, dWH = y,wH — Yy wH —/ WHdy,, —oo<s<t< oo, (2.26)

S
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and the integral on the RHS of (2.26) can be defined using the theory of Lebesgue-Stieltjes
integration. Suppose that the process Y is non random. Under suitable conditions on the
non random function Y, the integral on the LHS of (2.26) can be defined as an L*-limit
of Riemann sums of the type defined in (2.25) with nonrandom sequence 7 . Gripenberg
and Norros [52] give an example of a random process Y illustrating the problem of non
continuity in extending the above method of stochastic integration w.r.t fBm for random
integrands. An alternate way of defining the stochastic integral of a non random function
Y, w.r.t fBm W# is by the formula

/ Y dWH = cy / ( / (t—u)H—3/2y;dt) AWy, (2.27)
R R u

where W is a standard Wiener process and cy is a nonnegative constant to be specified
later. The integral defined on the RHS of (2.27) exists provided the function

/ (t —u)=32Y,dt

as a function of u is square integrable. A sufficient condition for this to hold is that
Y, € L*(R) N L'(R). This condition is obviously satisfied by the function Y; = y[o4(s),
which leads to

0 t
wH = CH/ ((t— w) =12 (—u)H_l/g) dw, + CH/O (t —u)=124w,

—00

t
= CH/ [(t — )2 ((_u)+)H—l/2] AW, = cuZ,, (2.28)
where 7 = max{0,2}. The equality (2.28) makes sense as an integral representation of
the fBm, if it provides the correct covariance function Ry (t,s) given in (2.24). First note
that the RHS of (2.28) is well defined. In fact, for ¢ > 0, we have

/ [(t _ U)H—I/Q . ((—u)+)H_1/2}2 du

—00

0 t
_ / [(t _ U)H_1/2 _ (—U)H_1/2]2 du + / (t — u)QH—ldu
o 0
o 1
_ p2H {/ ((1 _H})H—l/z _ val/2)2du+ ﬁ] =E(Z}). (2.29)
0
In the last equality we used change of variables (v = —u/t). The integral presented in

(2.29) is finite, since
2
(1+ )12 UH_1/2)2 ~ (H — —) v as v — oo (2.30)
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—-1/2

o 1
It is then convenient to set cy = [/ ((1 + v)H1/2 _ UH_I/Q)Qdu—i— ¥ , so that
0

E[(W/)?] = &E(Z2) = t*". Similarly, for any s < ¢, we obtain
E|Z, — Z,)* = 2|t — s .
Hence,

E(cyZicuZs) = cLE(Z,Z,)
2
C
— 7H{EZE+EZSQ—E|Zt—ZS]2}
= RH(t,S).

It is easy to see that the random variable / Y, dWH is a Gaussian with zero mean,
R
whenever Y; € L*(R) N L'(R). The following theorem provides more general covariance

formula, for which Rpy(t,s) is a special case. The proof of such a formula can be found
in [52, 94]. Throughout this thesis we restrict ourselves to the range H € (1/2,1) and
the stochastic integrals of random functions {u; : ¢ € [0,7]} should be understood in
path-wise sense, whenever the integrands (u;); have y-Ho6lder continuous trajectories with

v >1— H. The existence of such integrals is justified by Young’s results [119].

Theorem 2.2.1. For nonrandom functions Y;',Y,? € L*(R) N L*(R), we have

E(/ y;lthH/ }QQthH) :H(QH—l)// Y'Y2 |t — s dtds.
R R R2

In most of our non-parametric procedures, we used the following result which is due
to Mémin et al.,[77].

b
Theorem 2.2.2. Let {Y; : t € [0,T]} be a non random function such that / Y, dWw}l

exists. There exist two nonnegative constants C(H,r) and c¢(H,r) such that for everyr >0

and 0 < a < b < oo, we have

T

b
E / YidWH| < CUHL ) Y [y for all H > 1/2

and
T

b
E / Y dWH| > c(H,r) 1Y\ 21/ o gy for all H < 1/2.

a
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2.2.3 Stochastic Differential Equations driven by fBm
Consider the functions A(t,z), B(t,z) : [0,7] x R — R satisfying the following

assumptions

(i) The function B(t, z) is differentiable in x with derivative B,(t, z), there exist M > 0,
0 <7, k<1 and for any R > 0, there exists Mg > 0 such that

|B(t,x) — B(t,y)| <M |x—y| , forallte0,T], z,y e R
|Ba(t, ) = Bo(t,y)l < Mg |z —y[" , forallt €0, 7], [z],|y] <R
|B(t,x) — B(s,x)| + |B.(t,z) — Bu(s,z)] < M|t—s[", foralls,tel0,T], z€R.
(ii) For any R > 0 there exists Lr > 0 such that
|A(t,x) — A(t,y)| < Lr|z —vy|, forallte0,T], |z|,|ly] <R
(iii) There exists a function Ay(t) € LP ([0,7]) and L > 0 such that |A(t, )| < L|z|+Ao(t)
for all (t,z) € [0,7] x R

Theorem 2.2.3. (Mishura [80, p. 201]) Let the coefficients A(-), B(:) satisfy the
assumptions (i)-(#i) withp=(1—H +¢) ', 0<e<H—-1/2,y>1—-H, x> H ' -1
(the constants M, Mg, R, Lr and the funcion Ao(t) can depend on w). Then the following
SDE

t t
Xt:X0+/ A(s,Xs)der/ B(s, X)dW?H, t € [0,T), H € (1/2,1). (2.31)
0 0

admits a unique strong solution X = (X, : 0 <t < T) with trajectories from C*=< ([0, T))
P-a.s.

Remark. Theorem 2.2.3 admits evident generalization to multidimensional case. Con-
sider the SDE on R¢ given by

t mo
X! :Xg+/ Ai(s,Xs)derZ/ Bij(s, X)dWHhi 1<i<d 0<t<T. (232
where W' are fBm’s with Hurst parameters H; € (1/2,1), j = 1,--- ,m. Denote by B =

ij=1

J 1/2
(Bi;)&™ | the matrix of “diffusions”and A = (A;)?_, the “drift ”vector, |A| := (Z Af) :
i=1

1/2
|B| = (Z B§j> , and suppose that assumptions (i)-(iii) hold with these notations,
,J

H = miny<;<,, H;. Then there exists a unique vector solution X, of equation (2.32) with
trajectories from C~ ([0, 7)) P-a.s.
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CHAPTER 3
LITERATURE REVIEW AND THE MODEL

Parameteric and nonparameteric estimation in the context of random effects models
has ben recently investigated by many authors (see, e.g. [29, 25, 89, 90, 83, 82, 81, 6, 22]).
In these models, the noise is represented by a Brownian motion known by independence
property of its increments. Such a property may not be valid for many phenomena arising
in a variety of different scientific fields, including hydrology [75], biology [21], medicine [68],
economics [50] or traffic network [117]. As a result self-similar processes have been used
to successfully model data exhibiting long-range dependence. Among the simplest models
that display long-range dependence, one can consider the fractional Brownian motion,
introduced in the statistics community by Mandelbrot and Van Ness[74]. A normalized
fBm with the Hurst index H € (0,1) is centered Gaussian process (WtH , t> O) having the
covariance defined by (2.24).

In modeling, the problems of statistical estimation of model parameters are of par-
ticular importance, so the growing number of papers devoted to statistical methods for
equations with fractional noise is not surprising. We will cite only few of them; further
references can be found in [80] and [94]. In [63], the authors proposed and studied maxi-
mum likelihood estimators for fractional OrnsteinUhlenbeck process. Related results were
obtained in [95], where a more general model was considered. In [56] the authors proposed a
least squares estimator for fractional OrnsteinUhlenbeck process and proved its asymptotic

normality.

It is worth to mention that papers [55] and [112] deal with the whole range of Hurst
parameter H € (0,1), while other papers cited here investigate only the case H > 1/2
(which corresponds to long range dependence); recall that in the case H = 1/2, we have a
classical diffusion, and there is a huge literature devoted to it; we refer to books: [69], and
[73](Vol IT) for the review of the topic. Chepter 4 is concerned with this case, for which we
consider a nonlinear homogeneous model with generalized random effects. In this chapter
both consistensy and asymptotic normality of our proposed estimators are established and

illustrated by various examples.

In the context of stochastic differential equation models with random effects, which are
increasingly used in the biomedical field and have proved to be adequate tools for the study
of repeated measurements collected on a series of subjects, parametric and non parametric

inference has recently been investigated by many authors (see, e.g.[6, 22, 89, 90]). However,
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there is no reference at present related to inference for SDE’s with random effects driven
by fBm, except our recent papers [36, 37, 38]. Chapter 5 is based on these papers, and
concerns different models driven by fBm and treated by different approachs. Compared
to the parametric framework, the problem of non parametric estimation for FSDE’s has
gained less attention. For the theoretical study of this problem, the main contribution to our
knowledge is due to Prakasa[93]. In[79], the authors studied the problem of nonparametric
estimation for a fractional process with small diffusion, when H € (1/2,3/4) as e — 0. An
other recent work[92] tackled the same problem when the fractional Brownian motion is

replaced by a mixed one.

In this thesis we are concerned with a general model described by N stochastic pro-

cesses of the following form:

dX'(t) = 3(t, X'(t), ¢s)dt + A(t, X (t))dW ™ (t)
X0) = 2'€R,i=1,---,N,

where ¢; are random effects with common density (parametric or not) to be estimated.
¥(-) and A(-) denote here the drift and the diffusion terms. In each chapter (Chapter 4 &
5) the drift and the diffusion are specified, and existence and uniqueness of the processes
X" are discussed. For that purpose, Theorems 2.1.10-2.1.11 and Theorem 2.2.3 are used in
Chapter 4 & 5 respectively. The following theorems are of great interest and systematically

used in Chapter 4 to establish the asymptotic behaviour of the proposed estimators.

Theorem 3.0.4. (Schervish (1995)[101, p. 415]) Let {X,}>2, be conditionally i.i.d
given 0 with density fx,e(.|0) w.r.t a measure v on a space (X*,B'). Fiz 6, € © and
define, for each M C © and r € X*,

0
Z(M,z) = inf long”@—(x’())

veM 7 fxyje(2ly)

Assume that for each 0 # 0y there is an open set Ny such that 6 € Ny and Eg,Z (Ng, X;) > 0.
If © is not compact, assume further that there is a compact C' C © such that 6y € C' and
Eo,Z (©\ C, X;) > 0. Then, lim#, = 6y, a.s. [Pg,).

Theorem 3.0.5. (Schervish (1995)[101, p. 418]) Assume the same conditions as in
Theorem 3.0.4, Except that we now only require that By, Z (Ng, X;) > —o0. Assume further

that fx,je(x|0) is continuous in 0 for every x, a.s [Pg,]. Then, lim 79\” =0y, a.s. [Pp,].

Theorem 3.0.6. (Schervish (1995)[101, p. 421]) Let © be a subset of R?, and let
{Xn}o2, be conditionally i.i.d given 0 with density fx,e(.|0). Let 0, be an MLE. Assume
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that 0, - 0 under Py for all 6. Assume that fxye(x]0) has continuous second partial
derivatives with respect to 0 and that differentiation can be passed under the integral sign.

Assume that there exists H,(x,0) such that, for each 6y € © (in the interior) and for each

e
v s , 62
00,00, log fx,je(z|6h) — 00,00, log fx,je(x]0)| < H.(z,6),

sup
[0—0ol|<r

with
11_1)1(1)E90HT(X, 0p) = 0.

Assume that the Fisher Information matriz Iy, s finite and nonsingular. Then, under
]P@(w
~ c _
VN (O = 80) = N (0,75 (00))
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CHAPTER 4
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES WITH
GENERALIZED RANDOM EFFECTS

The goal of this chapter is to provide statistical methods of parametric estimation for
SDE’s given by

dX'(t) = Hy(X'(t),¢:)dt + Hy (X'(t)) dW'(t), t<T, (4.1)
X0) = €R, i=1,---,N,

where ¢; are random variables (random effects) with common density g(¢,6) and 6 € ©
(compact set) are parameters to be estimated. The results we provide here extend those
previously available in the literature. This chapter is split into two sections. First, we
derive a class of estimators é\(J\E,) converging toward the true value 6y, as N — oo for a
nonlinear drift coefficient with generalized random effects. Asymptotic properties of the
proposed estimators are established and illustrated by numerical examples as well. Second,
we try to weaken the assumptions and show the asymptotic results for the case ¢ = 0. To

do this, we have expanded the likelihood function by means of iterated Ito integrals.

4.1 PARAMETRIC ESTIMATION OF THE POPULATION PARAME-
TERS

4.1.1 Problem Outline

Consider N subjects X', ---, X” defined on a complete probability space (2, F,P)
by (4.1). Let (F}),,
(Wi,]-'f, t < T), t=1,---, N are independent Wiener processes. Let also ¢1,---,¢n be

N i.i.d RP-valued random variables on the common probability space (2, F,P) independent

be a collection of nondecreasing families of sub-o-algebras of F and

of (Wi, Fl,t< T). We introduce assumptions ensuring that the processes (4.1) are well
defined and allow us to compute the likelihood function based on the observations. Consider
the family of sub-o-algebras of F, defined by o (¢;,5 < N) \/ F!. Each W' is F;-Brownian
motion. Furthermore, the random variables ¢; are Fy-measurable. Denote by g(¢, 8)dv(p)
the common density of the variables ¢, --- , ¢n, where v is some dominating measure on
R”, and 6 is unknown parameter belonging to a set © C R?, with interior © containing
the true parameter 6. We also assume that © is compact and the function Hy(x) has a

support such that, R \ suppH, is countable set in R.
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A,: The functions H,(z,¢) and Hy(x) are nonanticipative functionals satisfying the local
lipschitz condition: For any R < co and max {|z| + ||¢| ;|Z| + [|¢||} < R there exists
a constant Lr > 0 such that

[Hy(2,9) = Hi(T, )" + | Ha(2) — Ha(D)|" < L (lz =" + o = 2I°) ,

and satisfying also the following monotone condition: There exists a nonnegative
constant K such that for all (z,) € R x R

1
eHy(z, ) + 5 [Ho(2)” < K (L+ |2 + [lo]*) -

Under A, the system (4.1) admits a unique continuous strong solution ((X Lol t > O),
with probability one (see, Theorem 2.1.11). Moreover, there exists a function h; : R x
R? x C(R*,R) with X' = h; (z',¢;, W') (see, e.g., [60, p. 310]). Let Cr, denote
the space of real continuous functions (z(t) : ¢ € [0,T;]) defined on [0,T;] endowed with
o-field By,. The last o-field is associated with the topology of uniform convergence
on [0,7;]. Under Ay, we introduce the distribution px: —on (Cr,Br,) of the process
(X', 2"l = ¢). On R? x Crpy, Q) = g(p,0)dv(p) @ puy W denotes the joint distribution
of (¢, X") and P} denotes the marginal distribution of%(zX"(t); 0<t<T) on (Cr,Br).
Since R \ suppH> is countable, for all ¢ # @, we may define the process ai(w), t < T; by
o} = H (X'(8)) (Hy (X'(1). ) — i (X'(1). 9)), where

Let us consider the following assumptions insuring the equivalence of the measures

(uxi , p € RP) and py: , where ¢y is fixed.
@,z w0,z
Ay E (e_ ST aiawi(p)— 1 [T a;"zdt) =1, i=1---,N.

Ajs: Fori=1--- N and for all ¢ € R?,
Tl X . 2
P (/ [Hy (X'(t)Hi(X'(t), )] dt < oo) =1.
0

Since the individuals X* are independent (this is inherited from the independence of ¢; and

N
W*). The distribution of the whole sample (X*(¢),t < Tj;i =1,--- ,N) on C = H Cr, is

=1
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defined by Py = @, Pi. Now we can define the likelihood function as

N .
dPy dP; N |
—_ — = . h ]P’ = . ]Pﬂ ]Pﬂ == 2 .
dP gpi vhere = @i, P and Xt

i=1

A()

4.1.2 Contrast Functions

In this subsection, we construct the likelihood function from which we derive a class
of contrast functions. We have the following propositions for which the proof is relegated
to the Appendix A.

Proposition 4.1.1. Let the conditions Ai- As be satisfied and let v,y € RP. Then
dpxi , , .
fxi o~y and —22 (X = Lp (X @, pp) = 1990 yhere
@zt Pzt d,qu

lTi(Xivspv 900> = /0 i H;—(XZ(S»Q [Hl(Xi(S)7§0) - Hl(Xi(S),(pO)] dXZ(S)
— 5 [ OO [0 0) — B S) ) ds

Moreover, the exact likelihood of the whole sample (X'(t);t € [0,T}], i = 1--- ,N) can be

expressed as

N
A9) = [T Mi(x7,0),
i=1
where ,
i dPy i

Denote by I'(6) the log-likelihood of the whole sample (X*(t);t € [0,T;], i =1---,N).

Proposition 4.1.2. Fori = 1,--- N the likelihood function A\;(X",0) can be expressed

as follows:

T;
A(XL0) =1 —{—/ 'yS(Xi,H)dWi(s)
0

where X' — v,(X",0) is a measurable function on Cr, with explicit expression given in

T;
Appendiz A (see the proof). Furthermore, if E/ v3(X",0)ds < co. Then I'(0) has the
0

following form :

r'(6) :Z/O i\I/i(s,Q)dWi(s)—%/o Wi(s, 0)ds,
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T,

where U'(s,0) is a function of v(X",0) such that P (/ i(t,0)dt < oo) = 1. An explicit
0

expression of W' (s, 0) is given in Appendiz A (see the proof).

N

For each ¢ > 0, we consider the contrast function A () = HAEE) (X*,0), where

=1
T

Al(-a)(Xi,Q) =1+ (1+ 5)_1/ vs(X",0)dW'(s). Our proposed estimators é}j) will be

0
defined as ) = arg max A©(B). Tt is easy to see AP (X?,0) — A;(X7,0) as € — 0. Under
S

some regularity conditions, one can show that é\(]\i) converges to the maximum likelihood

estimator as € — 0.

4.1.3 Asymptotic Behaviour of 5(]5)
To prove the consistency result of our proposed estimators, we consider for any X,
1 =1,...,N, the random functions Zg(é, X") defined by

Z. (é, Xi) = inf log A", bo) ,
ec6 A9 (X10)

where © C ©. We recall also the identifiability assumption for the marginal densities
which is a natural and even a necessary condition i.e., A;(X*,0) = Ay( X", 0) = 0 = 0.
Let T; = T, &' = x for i = 1,---, N, so that the observed processes (X'(t),t € [0,T]),
i =1,---,N, are conditionally i.i.d given § with common density A;(z,0) on Cr. In the
sequel, we will focus on statistical results under P .- We simplify our notations by setting
A®(z,0) = Af)(x, 0) and Py, = Py . Now, with these arguments, the following statements
hold :

Theorem 4.1.3. For any fixed € > 0, we have

i- If for any given 0 # 6y, there is an open set Ny such that 6 € Ny and
Eg, Z:(Ng, X*) > 0. Then lim é\(]\?) =0y, almost surely under Py,.

ii- Let the assumptions A,- Az be fulfilled. Assume also that AEE)(QT, 0) is continuous in

0 Py, —a.s. and
T A
Il'2’90/ 73(X179)d3< o0, fO’f”iZ 1a 7N all 0. (42)
0
For each 0 # 6y there is an open set Ny such that 0 € Ny and Eg,Z.(Ny, Xi) > —00.
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Proof. To prove this theorem, we follow Schervich (see, [101, Section 7.3]). So for the first
statement, we shall prove that for every § > 0,

Py, (Iimsup Héﬁ) — 6’0H > 5) = 0. (4.3)

N—oo
Let 6 > 0, and let Ny, be an open ball of radius € centered at 6. The set © \ Ny, is
compact with cover family {Ny : 6 € © \ Np,, Eg,(Z.(Np, X*)) > 0} from which we extract
the following finite subcover Np,, ..., Ny, such that © = UL N,

Let Cr = x denote the space of real continuous functions (z(s) : s € [0,7]) defined
on [0, 7], endowed with o-field Cr associated with the topology of uniform convergence on
[0,T]. Let x* be the infinite product space of copies of x. Let x = (z1,x9,...) € x™

denotes a sequence of possible values of (X', X?, ...). By the strong law of large numbers,
N
Nt ZZE(Ngj,Xi) converges to Eg,(Z:(Ng,, X')) = ¢; > 0 Py,-a.s, for all j = 1,...,m.

=1
Consider B; C x the set of data sequences such that convergence holds, and set B =
NiL,B;. Then Py, (B) = 1. For each x € B we have also :

s

{x : lim sup H@]\i)(aﬂ) — GOH > (5} C {33 09 (x) € Ny,, infinitely often}

N—oo

<.
Il
—

N
s

N
1
{x N ; Z-(Np,,x;) <0, infinitely often}

N
TCs1
=
Il
%

where A° denotes the complement of A in x*°. Since Py, (B¢) = 0, (4.3) follows and the
proof of i- is complete. ii- Let 6 # 6y and Uy C 0=06 \ {6} be an open set, which we
specify later. We have

Eg,Z:(Up, X') = Eg,log A (X", 00) + Egy 2. (Up)
13
> ] —_— Eg, 2 ¢ )
> Og(1+6)+ 00%i.c(Up)

where z;.(U) = inf [—log A(s)(Xi,Q')}. In the last inequality, we used the fact that

0'cU
. A(X1,0 —
AO(X?,8y) = = 116’ o) 5 1;. Let k > ko > 0 such that N\* = B(#,1/k) C ©,

where B(z,6) denotes the open ball centred at 2 with radius 6. Since A® (X7 6) is
continuous in # on the compact set Nék), there exists 0 € Ne(k) such that zive(Ne(k)) =
—log A®(X?,6,). By the continuity of A (X? 6) and the fact that 6, —> 6, we have

2 (N) — —1og A©O(X7,6) as k —» oo, (4.4)
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Since N(kH) - N ) C O, it follows that zw(N(k)) > zza(@). Applying Fatou lemma to
the sequence {zm(Ne(k)) - zw((:))} and (4.4), we get
k=k

lim inf Eg, ;. 6(N@(k)) > Ey, li;n inf zi,e(Ne(k)) = —Tg, log A® (X7 6). (4.5)
—00

k—o0

The condition (4.2) guarantees the martingale property of A®) (X, 8) with Eg,A®) (X? 0) =

1. Hence, by using Jensen inequality, we obtain
—Fg, log A®(X?,0) > —logEg, A® (X", 0) =0 (4.6)

From (4.5) and (4.6), we can choose k* such that Egozi,E(Ng(k*)) > 0. Then, we set Uy =
B(0,1/(k* 4+ 1)) to complete the proof. O

Let us introduce an alternative of the Kullback-Leibler information defined by

© A (X, 6) ,
v (00,0) = Eg, log AG(XL ) We have (see Appendix A. (p.104) for the proof),
TE(0y,0) > 0, for all 6 # 6. (4.7)

Theorem 4.1.4. Let the assumptions of 1i- in Theorem 4.1.3 be satisfied. Then for each
0 # 0y there is an open set Ny containing 0 such that Eg,Z.(Ny, Xi) > 0. In particular the

)

estimator 0’ is strongly consistent.

1
Proof. For each 6 # 6y in ©, let Ne(k) be a closed ball centred at 6 with radius z such
that, for each k, Ng(kﬂ) - Nék) C é, where © is an open set such that 6 € O and

By, Z-(0, X) > —co. Clearly, ﬂ Ne(k) = {0} and for each X", ZE(Ne(k),Xi) increases with
k=1
k. For each X', the function A®)(X*, ) is continuous on the compact set N . Thus, for

AG (X0
each k, we choose GkGN( so that Z. (Ne ),XZ) = log (X", 6o)

m (the sequence {Qk}zozl

may depend on X and ¢). Since 6, — 6, then

AB (X7, 6o)

: (k) i
i 2, (30.) = e S5

k—o0

(4.8)

From the fact that N{*™ C N we deduce that Z. (Ne(’“),Xi) > Z.(0,X%). If
Eg, Z.(©, X?) = oo, then our desired result holds with Ny = ©. If Eg Z.(6, X') < oo
then we apply Fatou lemma to the sequence {ZE(NQ(’C),X’) — Z.(0, X"}, and use (4.8)
to get

lim inf By, Z- (N, X') > By, lim inf (Zs(é, XZ’)) = Tx(60,60) > 0.
— 00 —00

Now, we can choose k™ so that Ey, Z. (N(f*,Xi) > 0, and apply i- in Theorem 4.1.3 to

deduce the consistency result. O]
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Remark. Note that the condition (4.2) is only used to show that Eg,Z.(Ng, X*) > —oo.
This condition may be restrictive in some particular cases, where the contrast functions are
explicit (see Examples: 4.1.2, 4.1.4 and 4.1.5). However, it is of great interest for general
cases, since it allows us to avoid the complixity of integration. (4.2) can be replaced by the

following condition and the consistency still holds true:

Fg, suplog A® (X%, 0) < 0o, where Uy is an open set containing 6.
Uy

Example 4.1.1. Consider the following SDE’s given by
dX(t) = g:b(X*(1))dt + o (X (1)) AW (1); X'(0) ==z ,i=1,--- N,

where ¢; are random variables with common density g(p,0)dv(p) = N (p,w?), 0 =
(k,w?) € ©, and © = [p,71] x [w?,w?] C R x (0,00). Let B(z) = b(z)/o(z) such that
18(x)| < C(1+ |2]*) for some nonnegative constants y, C. Assume also that E |¢;]** < oo,
for all £ > 1. Simple computations lead to

~1/2

A(X7,0) = {wg (/OTB(X"(t))?dt + 1/&)}

X exp

e ([ "B ) + u/w2>2 e " B + w)]

Clearly, A®)(X?, 0) is continuous in 6, Py,-a.s. Let Uy = O\{fy} and ¢’ = (1//,w'*). Using the
fact that for every e > 0, there exists a constant C. such that log ?_Tf < C.+(log(z))?,

31



for all z > 0, we obtain

; A(XE O
Eg, sup log A¥(X",6') = Eg, sup log (M)
0'€Us 0'cU, e+1
< C. + Eg, sup (logA(Xi,G’))2
0'eUy

1 T ) 12
< G+ ;Ey, sup {—10g (w’Q/ B(X'(t))%dt + 1) -
4 0'eUy 0 w

(/ "B + u’/W’2)2
/ "B+ 1/

<o+l {ﬁ— + @ ( [ Tﬁ(Xi(t))th)Q

+

(w?)?
8ut
(w?)?

c.+3 £+804(E)2T/TE <1+\Xi(t)|8”) dt
T (w2 0o

T
640, CN@2)2T / Ey, (1 + ]Xi(t)|8”) dt} < 0,
0

+

+ 8(w?)Eq, (/OT B(Xi(t))dWi(t)> 4}

where C} is a nonnegative constant due to BDG inequality. In the previous inequalities,

we systematically used Jensen inequality and the following facts:

(a+b+e)? < 3(a®+b*+c?), forall a,b,c € R;
la+b]" < 277Y(|a|" +|b]"), for all a,b € R and 7 > 1;

T
/ Eqg, ’Xi(t)|2k dt < oo, forall k> 1 (for th proof see Appendix A. (p.104))(4.9)
0

For nonnegative integers asq, - - - , ag, we denote d-index a = (o, -+ , ), |a] = a1 +
-+« + g and

o e

- 891011 ngf(@)

We introduce the following matrix as an alternative of Fisher information matrix:
(z060))

Proposition 4.1.5. Let v,(X',0) be three times continuously differentiable with respect to
0 such that

D f(0)

0 0
1 4 9 e A - 10w AO (X o L
Eeo{éek log A¥(X ,Q)ag'logA (X ,0)\9_90}

k.j J

2

T
[Eq, (/ (Da’Yt(lee)fdt) < oo, for all |a| < 3.
0
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The following statements hold true:
(i) The matrix Iﬁ?(@o) is finite.
(ii) There is some ro > 0 and random function H(X',0y) depending only on 6y such that

sup |D’ log A® (X1, 6,) — D? logA(e)(Xl,Q)‘ <rH(X'0y), for0<r<mg
QGBT‘(QO)

with Bg, H(X,0p) < oo0.

Theorem 4.1.6. Let the assumptions of Theorem 4.1.4 and Proposition 4.1.5 be satisfied.

Assume further that the matriz I (90) 1s nonsingular. Then,
\/N@(a —00) :>N(o 79 (0y)" )

Proof. To prove Theorem 4.1.6, we follow Schervish. Let X = (X' -, X%) and set

N
€ 1 5 7
19(x) = NE log A©(X7,0).

N

The jth coordinate of the gradient of lé‘s)/(X) is given by (Z 0/00;1og A© (X' 0))/N.
i=1

Since 6, € O, there is an open neighborhood B(fy,d) € ©. From the convergence of @\(]\?)

to o, it follows that ZNX@C(@\(]\?) — 0,(1/V'N) as N — oo for every sequence {Zy}_, of

random variables. In fact, for every ry > 0, we have

Py, (‘ZNX@C@?)/TN >g'> — Py, <|ZN/7‘N]>€’, é‘;%@)

< Py, (QA&;) ¢ B(@o,é)) — 0, as N —» oo, for all &’ > 0.

Note that lgz)/(X) — 0, for 6 € ©. Thus
N

19 (x) = ngg’(X)x@e(“ ) = 0,(1/VN)

On

/
By using one-term Taylor expansion of each coordinate lé‘iz) (X)) around 6y, we obtain
N

Z(SZ)/(X) + ((89(:&9]- léE)(X)‘HZQ;)) (5(]\;}) — b)) = op(l/\/ﬁ), (4.10)

where each 6’;‘7]- is a convex combination of é}f)j and 0 ;. Since 6 % 00, ; to,; as
well for each j under Py,. Set B](\?) equal to the matrix in (4.10). Then

19 (X) + BE (0 — 65) = 0,(1/VN). (4.11)
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We have ]EgoA(e) (X' 6y) = 1. By passing the derivatives under the integral sign in the

d ; c -
previous equation, we get 0 = E908—6A(5) (X", 00), hence Ey, <léO)I(X )) = 0. Similarly, the
J

conditional covariance matrix given 6 = 6, of léz) (X) is Igf)(ﬁo). The multivariate central
limit theorem ( see, [101, Theorem B.99]) yields \/Nléz)/(X) LN <O,I§)(00)> (since
IS)(QO) is finite by (i) in Proposition 4.1.5. Hence, by Prohorov’s theorem (see, e.g., [113,
p.8]) and (4.11), we have

VNBY (6 — 6,) = 0,(1). (4.12)
(©) ~ () yi
€ fd € ¢ _ 1 <
Note that <BN>k,j 2. 56,6, log A (X", 0)|g—g | /N + Ay, with |[Ay| <

N
r ' 6o this is justifie ii) in Proposition 4.1.5, when ||6F — 0y|| < r). The
> H(X',6,)/N (this is justified by (ii) in Prop 4.1.5, when [|02 — 6o < r). Th

i=1
N

. P
weak law of large numbers yields E H(X',0)/N == Eg, H(X',0). Let & > 0 and choose
i=1

7 to be small enough so that rEg H (X', 6y) < €’/2. Then

N
/ r i / *
Po, (|An| > €") < Py, (N;H(Xﬁobé)+]P’eo(||95—90\|2'f’)

IN

N
1 : g’
Py, (N > H(X',0p) — Ep, H(X', 6p) > 5)
=1

+ Py, <H@§§) - HOH > 7’) —0as N — oo.
P
It follows that Ay = 0,(1), hence B](\f) 4 —ng)(é’o), and B](i) = O,(1) but B](\f) # 0p(1).
As result, (4.12) gives \/N(é\(]é) —6p) = O,(1). Now, WriteB](\?) = —I§§)(90) + Cy, where
Cy = 0p(1). Then, by using the usual operations on ”big-oh” and ”small-oh”, we have
Cn (@Tj\i) - (90> — 0,(1/V/N). Substituting B](\i) by its value in (4.11), we obtain

0p(1/VN) = 15 (X) = Z9 (00) (617 — ) + O (0 — ).
which can be rewritten as
VNI (X) = ZQ00) VN BF — b5) = 0,(1).
Finally, by continuous mapping theorem and Slutsky’s lemma, we have
VN@ER —00) = 20060 [VNIE (X) - 0,(1)]
LN (O,Igf)(%)_l) under Py,

and the proof is complete. n
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Remark. Note that the matrix I;?(Qo) with small € can be seen as an approximation of
the Fisher information matrix Zy (6y). As result, if Zx(6p) is nonsingular, we may choose

e > 0 so that I§§)(90) is nonsingular as well.

4.1.4 Applications and Examples

This section is devoted to the study of a particular cases in which all basic assumptions
are met. The results are illustrated by various examples, such as Wright-Fisher diffusion
(61, p. 176] and Hyperbolic diffusion [13, p. 47].

Let B.(p) be a nonnegative deterministic (continuous) function such that

|B(X"(5), 0,90)| < Bs(y), for all s,¢

T
and / Bu(p)*du < oo, for all ¢
0

Let us consider the following conditions:

D;: For any 6 € ©, 4Ny an open set such that § € Ny and there exist 6 > 0, C' > 0 and
density function h(yp) w.r.t v so that

19(p,01) — g(p,0)| < Ch() ||6h — 05°, for alldy, b, € Np. (4.13)
Dy: For f = h(-) or g(-,0), we have

/ M B ()0 (1) < o0, for all A > 0. (4.14)

Proposition 4.1.7. Let the conditions Dy and Dy be fulfilled. We have
T '
() Eeo/ v3(X",0)ds < oo, foralli=1,---,N.
0

(i) For each i, the function A® (X' ) is continuous in 6 Pg,—a.s.

Example 4.1.2. Consider the hyporbolic diffusion X = X' with dynamics:

P2 Xy
1+ gb%XE

where ¢; and ¢y are two independent random variables with densities that satisfy D; and

dXt:(bl dt‘i‘dWm XOZZ'ER,

¢1 has compact support.
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Example 4.1.3. Consider Wright-Fisher diffusion X = X! with dynamics:

dXt = ¢Xt(1 — Xt)dt =+ / Xt(]- — Xt)tha X() =x c IR,,

where ¢ is a random variable with density having compact support and satisfies D;.

Example 4.1.4. Consider Double-Well potential diffusion X = X' with dynamics:
dX, = (01 Xy — 2 X)) dt + dW,, Xo =2z € R,
where ¢; and ¢ are normally distributed.

Example 4.1.5. Consider the diffusion process X = X' with dynamics:
dX; = ¢ Xydt + /1 + X2dW;, Xo=1x € R,
where ¢ is normally distributed.

Remark. Many densities such as, Normal, Cauchy, Logistic and Gamma distributions sat-
isfy D;. Hence, by truncation procedure, we can derive from them densities with compact
support satisfying Dy & D,. It is worth to mention that cases where density g(¢, ) has
unbounded support are less important (since data can always be mapped monotonically to
0, 1]; and densities with unbounded support occur less often in practice). In contrast, the

densities with compact support are easy to handle numerically.

4.1.5 Implementation Issues and Numerical Applications
For the implementation issue, the contrast functions are either explicitly computed as
in Table 4.1 or approximated as in Table 4.2 and Table 4.3 by means of quadrature rules

(e.g., [42]). More precisely, we use the following quadrature formula for a nonlinear cases.
R

+oo
/ h(u)e ™ du ~ Zh(zr)wr, where z, = r — th zero of the the Hermite polynomial

o0 r=1

Hpg(u) with degree R. Three examples from previous section are numerically implemented

later for different values of ¢, N and R.

In practice, one rather disposes of discrete observations on the time interval [0, 7.
Suppose that subjects X*, i = 1,2,--- , N are discretly observed, only for simplicity, at
equidistant points ¢;, j = 1,2,--- ,n of [0,T]. Then we discretize the integrals defining the
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conditional likelihood Ly (X", ¢, @o), that is,

i ffer(Xi(S))z [H\(X(s), ) — H1(Xi(5)7900)ldXi(3)
= ;X:(s)
o~ ZAi(tjfl)(Xi(tj) — X'(tj-1))
i f[;(Xi(S))Z [HY (X (s),¢) — Hf(Xi(S)’SDO)ldS
— Bi(s)

12

Z B (t;-1)(t; — tj-1).

Hence, we can get an approximate contrast function when an explicit one is not available.
For the simulation studies, 100 dataest are generated for different numbers of subjects;
N = 50,N =100, N = 1000 with horizon time T" = 5 and for different values of ¢; ¢ = 0.02,
e = 0.002 and € = 0 when the last value corresponds to the true maximum likelihood
parameters estimation. The dataset are simulated as follows: we begin by drawing the
random effect, then for each random effect drained value, the sample paths are simulated
using Milstein scheme, at two different numbers (n = 2'° or 2%) of observations points very
close in the fixed interval of time [0, 5]. The model parameters are estimated using gaussian

density as random effects distribution.

Looking at Tables 4.1-4.3, they show that the estimations of the parameters are gen-
erally much closer to their true values; there is a considerable improvement as the value
of ¢ decreases. The results computed from 100 dataset are excellent, even both N and R
are not too large. For the Example 4.1.5, Table 4.2 shows that the estimation are much
closer to their true values rather than those found in [25, Table 4 |. For the nonlinear
case (Example 4.1.2), Table 4.3 shows that the estimations are very satisfactory, and the
accuracy can be improved by increasing only N. Compared to N (number of subjects),
increasing R have no significant impact on the quality of the estimators and consume more
time. Also the histograms in Figure 4.1 and Figure 4.2 reveal the asymptotic normality

property of the estimators.
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True parameter values

e = 0.02

Mean (Std. dev.)

e = 0.002

Mean (Std. dev.)

e=0

Mean (Std. dev.)

N =50
pw = —1
o} =0.81
Lo = 2

o3 = 0.42
N =100
pr=—1
o} =081
p2 =2

o3 = 0.42

-0.9394(0.4112)
0.7143(0.4266)
1.9955(0.5589)

0.3440(0.4585)

-0.9353(0.4421)
0.8198(0.3397)
1.9263(0.3522)

0.2718(0.2784)

-1.0127(0.3836)
0.8242(0.3839)
1.9040(0.4060)

0.2610(0.2938)

-0.9044(0.5223)
0.8431(0.2534)
1.8883(0.3751)

0.3580(0.3059)

-1.0048(0.2623)
0.7928(0.3780)
2.0011(0.3966)

0.3478(0.2786)

-0.9488(0.2232)
0.7814(0.3039)
2.0569(0.2949)

0.4066(0.2730)

Table 4.1. Example 4.1.4: dX'(t) = (¢, X'(t) — ¢2, X" (t)*) dt +
dAW'(t), ¢si~N (s,07), s=1,2. Empirical mean and Std. dev. (in
brackets) of estimators i, jiz, 0%, 05 are computed from 50 repeated
simulated data sets for different values of (N, ¢).



True parameter values

N =50,R = 50

e = 0.02

Mean (Std. dev.)

e = 0.002

Mean (Std. dev.)

e=20

Mean (Std. dev.)

p=—1
ol =1
nw=>5
o2=1

-1.0251(0.2108)

0.9659(0.3407)

4.9955(0.1630)

0.9690(0.2378)

-0.9703(0.2039)

0.9639(0.3819)

4.9995(0.1761)

0.9743(0.2443)

-1.0145(0.2214)

1.0007(0.3524)

4.9879(0.1732)

0.9784(0.2421)

p=—1 -1.0309(0.1493) 11.0234(0.1623) ~1.0036(0.1494)
o =1 0.9574(0.2587) 1.0303(0.2308) 0.9692(0.2762)
f=5 5.0081(0.1087) 5.0102(0.1093) 5.0153(0.1051)
ot =1 0.9684(0.1876) 0.9897(0.1807) 0.9665(0.1871)
Table 4.2. Example 4.1.5: dX'(t) = ¢X'(t)dt +
V1+X1(t)2dW(t), ¢ ~ N (p,0%). Empirical mean and Std.

dev. (in brackets) of estimators i and o2 are computed from 100
repeated simulated data sets for different values of (N, R,¢) and
different parameter values.



True parameter values ¢ = 0.02 e = 0.002 e=0

N =10% R =150 Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)
p=-1 -1.0335 (0.0743) -1.0055 (0.0706) -1.0034 (0.0730)
o2=1 1.0353 (0.1481) 1.0040 (0.1367) 1.0063 (0.1444)

p=—1 -1.0288 (0.0757) -1.0062 (0.0715) -0.9993 (0.0705)
o2 =1 1.0324 (0.1643) 1.0131 (0.1418) 0.9967 (0.1448)
¢ X' (t)

Table 4.3. Example 4.1.2: dX'(t) = dt+dW*(t), ¢; ~

1+ ¢7 X0(t)?
N (u,0%). Empirical mean and Std. dev. (in brackets) of estimators

it and o?are computed from hunderds of repeated simulated data sets
for different values of (IV, R, ¢) and different parameter values.

€002 £20002 €=0
T T T T T T T T

Figure 4.1. Example 4.1.2: Hyperbolic diffusion process, histograms
of 11(¢) (on the left) and o2(¢) (on the right), for different values of ¢ =
0.02,0.002, 0 and fixed parameters: (u,0°) = (—1,1) and (T, N,n, R) =
(5,1000, 2%, 50).
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£=002 £=002 =0
T T T 60 T T T T 0

Figure 4.2. Example 4.1.2: Hyperbolic diffusion process, histograms

of fi(¢) (on the left) and UAQ(s) (on the right), for different values of ¢ =
0.02,0.002, 0 and fixed parameters: (u,0?) = (—1,1) and (T, N,n, R) =
(5,1500, 2%, 100).

4.2 NEW EXPANSION OF THE LIKELITHOOD FUNCTION

We adopt notations introduced in the previous section. Set

Qi (t, st / BXI (1), . 00) -+ BX (t). 02 00)9(i0, 0)d (),

where 3(z, p, o) = Hy (z) (Hy(z,p) — Hi(z,¢0)), for all z € R and ¢, ¢y € RP. For each
subject X*, we denote by J, (6?"(0)), n > 0 the multiple integral defined as

Jo (B7°(0)) = 1
Ji (B2H(0)) = / o (ty, 0)dW' (1)

J2 (6?2(0)) / / 062 tl, t2, sz(tQ)dWl(tl)

T (BE(0) = / / / C(t,tay s tn, O)AW () - - AW (to)dW' (t1).

With these notations and argumenets, we are ready to expand the likelihood functions
Ai(X?,0) as a series of J, (87"(0)).
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Proposition 4.2.1. Let the conditions A1- As be satisfied and let @, py € RP. Then the

individual density functions Ay(X"*,0) defined in Proposition 4.1.1 can be rewritten as
= J. (B7(9)) . (4.15)
n=0

provided that / Ea! (ty,ts, ... t,, 0)%dl, - - dt, < .
[07T]n

Proof.  For a fixed subject X*, i = 1,---, N, we simplify notations by setting X' =
Xa WZ = Wa ﬁt = 5(Xl(t)7§07 @0) and L = (Lt :LT(Xiv(pa 800)|T:t7 tST) ClearlYa

t 1 t
L; = exp / BsdWy — 5 / Bgds) for t > 0. Thus L is a nonnegative supermartingale
0

permitting the following representation
t
L;=1 +/ BsLydW,, forallt <T. (4.16)
0

Note that (4.16) follows immediately from It6 formula. Applying (4.16) recursively, we

have

T
LT == 1 + / Btl Lt1 thl
0

T t1
= 1 —|—/ B, [1 + ﬁtQLthWtQ} dWy,
0

T
= 1+/ Be, AWy, + / / B, Br, {1+/ BtthSthgl AW, dW,,
0
- 1 + / Bh thl / / / Bhﬁtz thn ct thQthl +

= Z Jn(BE™), (4.17)

where 3%" is the tensor product defined by B%"(ty, - ,t,) = H/Bti and J,(f(+)) is the
i=1
multiple stochastic integral defined by

/ / / tl? t27 o 7tn)thn e thQthl

for n > 1 and Jo(f(-)) = 1. Substituting (4.17) into the expression of the individual
densities, then using the condition presented in (ii) and Fubini theorem for stochastic
integrals (see, [73, Theorem 5.15]) to get the desired result. The condition presented in
Proposition 4.2.1 holds true under the assumptions A4-As below. O
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4.2.1 Strong Consistency of the MLE

The following assumptions are needed to prove the consistency of the MLE.

A,: There exist a nonnegative constants M > 0 and v > 0 such that
18(z, ¢, p0)] < M (1+ |x|"), for all x € R and ¢ € RP.

Ajs: There exists My > 0 such that Egsup |Xi(t)‘2k < MY forall k,i=1,---,N and

t<T
0 e 0o.

Ag: For any 6§ € ©, ANy an open set such that # € Ny and there exist § > 0, C' > 0 and
density function h(y) w.r.t v so that

19(,01) — g(0,02)| < Chlp) |61 — 05]]°, V1,05 € Ny (4.18)

™ < My, for all k, i = 1,--- ,N and

Instead of Ag we may assume that Egsup |X'(¢)
t<T

6 € ©, for some fixed M; > 0. For 6 € © set &(x) = /6(:1:, 0, 00)dp’ (@) and [&(x)] =

B(z, @, 00)*du’ () where du’(p) = g(p,0)dv(p). Under the previous assumptions and

notations, we state the following results.
Proposition 4.2.2.
(i) The random functions J,(B5"(0)), n > 1 are continuous in 0, Py, -a.s.

(ii) The individual likelihood function A;(X*,0) is continuous in 0, Py, -a.s.

T
(iii) For0 e ® andi=1,--- N ]Ego/ [€0(X"(s))] ds < .
0

t
(iv) For each 0 and i = 1,--- | N, the process (/ Eo(X'(s))dW'(s); t> 0) is a true
0

martingale.
(v) Eg, log Aj(X",0) > —o0, for all § € ©.
(vi) Eg,log Aj(X*,0) <1, for all § € O.

Proof. (i) We shall only focus on the properties of A(X,6) = A;(X",0) since the same
procedures can be applied to other densities. We simplify notations by setting X' = X,
Wi=W, B =p, dt%" =dt,---dt;, AW®"(t) = dW(t,)---dW (t;) and
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Sp =A{(t1, - ,tn) €10, T]"; 0<t, <t, 1 <---<t; <T}. Let Ny be the open set such
that 8 € Ny and (4.18) holds. Let 0,05 € Ny, r > 0 and set

C91,92 = /
Sn

We shall verify the Kolmogorov-Chentsov criterion (2.3) with constants to be specified

JTIBCX 0 00) (960,680) = gl 601 )| AV="(0)
=1

latter. Applying BDG and Jensen inequalities and Fubini theorem respectively, we claim

that there exists C, > 0 such that

EGO ’Jn (ﬁ®n(01)> —Jn (5®n(02)) ‘2T = E00C921T92 < CTE‘% <C91,92>T

2r
TT 10 / E@o {/ (/HB tl ¥, Lo ( (90791) (90702))617/(30)) dW@n_l(t)} dtl

Sn—1

t 2r
(e, / / Eeo{ N (/ TIBX (0. 00) (9(,61) — <so,92>>du<sa>>dw®"—2<t>} dtadty

2r
< (T 'c,) / Eeo{/nﬁ (), ¢, %0) (g (¢,9)g(s0,9’))d7/(s0)} "

2r
< (T”Cr)”/s Eo, {/HB(X(tz),% ©0)C |64 —92H5h(<p)d1/(<p)} "
n =1

2r
< (T771C)"CPT |61 — 627" /S (/ EQO{H/& WO} h(cp)dV(w)) dt®"

(Tr 10) 2r 2rd 2r N
<Trrerio—ol [ | [E, HB (1), 2, 00) )i () ) i
d o
We can choose r > (%W and € = 2rd —d, so that the Kolmogorov-Chentsov criterion holds.

Hence, the continuity of J,(87"(6)) in 6, Py,-a.s holds true.

(ii) Let # € © and r > 1, we have A(X,0) ZJ (8"(0)) = lim A™ (X, 6)

m—>00
n>0

where A™ (X,0) = Z I 6@’" . By using Minkowski inequality, we obtain
n=0
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1/2r
m 2r /

D (B (61) — 55 (62))

n=1

1/2r

{Eg, [A™(X,01) — A™(X, 0,)7"} = (T,

1/2r

< 4 Eo, (Z | Jn (8% (61) —5®"(92))|>
<3 {Ba (10, (5700 - 507} <Z{Eeo ot
1/2r

gcnel—ezu‘;Z(T:—ﬁ{/ﬂ)T </E90H5 (1), @, 00) " )dV(sO)> dt®”} (4.19)

m 2n71/2rMnTn/2r(Trflo )n/2r
0 r
">

2r

< C||6, — b

1/2r
e
n! t<T

n=1

& 2n—1/2rMnTn/20n/27’
< C6, — 0,]° r 1+ R, sup | X2
<Cl -0’y o ( s X,

< Cx O(r, T, M, My) |61 — 05]|°

n=1

= [2mr2ct)"
where C(r, T, M, M) = Z o]

n=1

apply Fatou lemma to the sequence {|A™(X,6;) — A™(X, 62)]%}::1 to get

(1+ MJ]™) < oco. Now, we are ready to

1/2r 1/2r

{Eg, A(X, 01) — A(X,05)} < liminf {Eg, [A™(X,60,) — A™(X, 02)]*}
m—r00

< CxC(r,T, M, M) |6, — 6,]°.

Hence, Eg, |A(X,60;) — A(X, 0:)7 < C* x C(r, T, M, My)*" ||0; — 6]]*" for all 6;,60, € Np.
d

Choosing again r > [%1 V1 and € = 2rd — d, so that the Kolmogorov-Chentsov criterion

holds. Thus, A(X,#) is continuous in 0, Py -a.s.

For the proof of the statements (iii)-(iv), we use Fubini theorem

/ (X ds—EQO/ /5Xs,<p 0)?dp” (p)ds
<[ ' [ B o) < s / [ B0 (4 1X0 Y s

T
< 2M2/ Eg, (1 + Eg, |X5]27) ds < 2M°T (1 + Ey, sup |Xt]27) < 00.
0 t<T
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T
From (iii) it follows that Ego/ (€9(X,))? ds < oo. Thus the process
0

t
n= ( / Eo(Xs)dWg; t > O) is a true martingale. (v) By virtue of Jensen inequality and
0
the martingale property of n, we have
E@o IOgA(X7 0) 2 E@o log / LT<X7 2 @O)dﬂg(gp)
> Ey, /log Lo(X, ¢, 0)dp’ ()
1 T
> EQOT] — §E90/ [§9<X5)] ds > —o0.
0

(vi) follows immediately from the supermartingale property of
L= (Lr(X,p,90) : T >0) and the proof of Proposition 4.2.2 is complete. O

The most delicate task of this work is to show that A;(X*, ) is continuous in 6, Py, -
a.s. The proof of (iii)-(vi) requires weaker assumptions than those already considered in
A ,-A;. In fact, we need only that

e There exists a nonnegative polynomial P(x, ¢) of order m (which may depend on ()
such that |5(z, ¢, o)| < [P(z, )], for all x and .

e The random effects have all moments of oder k, k < 2m.

e For all £ > 0, sup Ey, }X’(t)’k < 0.
t<T

Theorem 4.2.3. Under the assumptions Ai-Ag, the MLE é\N 15 strongly consistent, i.e.,
Pgo—a

-~ .S
O = 6y, as N — o0

Proof.  The previous results (Proposition 4.2.2) combined with the compactness of the

parameter space © yield the strong consistency of the MLE (see, Theorems 3.0.4-3.0.5). [

The previous results can be extended to non homogeneous diffusions. In fact the

individual densities will be given by

Ai(X',0) = /LT(Xiyso,soo)dﬂe(w),

where
LT(Xi, ©, o) = efOT B(s,X(5),0.00)dW(s) =5 [T B(s,X7(s),0,00)%ds
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If B(s, X*(s), , o) is deterministic, that is B(s, X*(s), v, po) = A(s, , o), then the expan-
sion of A;(X",0) given in (4.15) is exactly its Wiener-Ito chaos expansion. Black-Derman-
Toy model is an example of this type (see, e.g., [13]). In this case, we have also the following

Proposition.
Proposition 4.2.4.
(i) Fori=1,--- ,N and n € N, J,(82"(0)) € L*(Py,).

(ii) If Ai(X,0) € L*(Py,) and B(s, X'(s), ¢, o) is deterministic, then the series
Z | Ja(B27(6) HLQ ) converges and
0

n>0

1A 0 ) = D T BE O oo, -

n>0

Proof. (i) Let 0,6 € ©. Making use of the notations introduced in the proof of Proposition

4.2.2, we have
" 2
C;l/ EG’ {/HB(X(tl)’QOa <P0)dﬁ¢0(90)} dt®n
Sn =1

(TM2C,)"

n!

17, (5% (0)

HLQ(PQ/)
21 (1 + Eg sup \Xt\%m) < 00.
t<T

Therefore J,, (8°"(0)) € L*(Py), for all (fixed) ¢’ € ©.

By induction (see the proof of Proposition 4.2.1), we can show that

J”(A(J ¥, 900)®n) + Ymt1 (()07 900)7

NE

LT<X7 @, ng) =

3
I
o

m—+1
where Yni1(, 00) = / 11 At @, 00) L, (X, 0, 00)dWVE 1 (1),

Smt1 =1

By virtue of It6 isometry, simple computations lead to the following results

]EQ() (Jn (A(7 SO? 900)®n¢m+1(80/7 SOO))) - 0 ) vn S m, Vgo, 90,
EGU (Jn (A(a 2 SOO)(Xm) Jk (A(a 90,7 @0)®k)) =0 ) vn 7& kv v‘ﬂ, SOI'
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Hence, for each ¢, ¢’ we have
Eg, (L7(X, 9, 00) Lr(X, ¢, 0))

= [y, { (Z (A, @, 00)%") + U (o, @o))

n

X (Z Ju(AC, @' 00)%™) + Y1 (¢ 900)> }

n=0

= ZEeo {Jn(AC 9, 900) %) Tu (A ¢ 00)%™) } + Egy (U1 (9, 00)Umir (¢, 90)) -

Which implies that

Eo, A(X,0)? = Eg, (/ Lr(X, ¢, %)du@(so))Q
— By, [ [ Lo e LX) ()i ()
//IE(,O L (X, ¢, 00) Lr(X, ¢, o)) dp’ (9)dp (')
=§://E90{J 5 0,00) %) (A @', 00) %) } dp (0)dp’ ()

+ / / Egy {¢m+1(2: 00)mi1 (¢, 00)} dp’ (0)dp’ (')
_ZE(;O{ [ [ At e Al g e ) |

1B { [ [ st bt ()i )

Z 5@71 ))HiQ(PeO) +E90¢m+1(0)27

n=0

where ¢m+1( ) = /¢m+1(907 ¢0)dﬂ6(@) Since A(X> 9) S LQ(P90)7 then
Z | 1. (B%7(6) HL2 ) < o0 and {ms1(0)}°_, converges in L*(Py,).

n>0

Set ¢(0) := lim wm+1(9). It remains to show that ¢(#) = 0. For that purpose, we use the
m—>00
same procedures as in the proof of Theorem 1.10 in [28]. For alln < m and f,, € L*([0,T]"),
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we have

E9o (Jn<fn)¢m+1(0)) = EOO {JN(fn)/¢m+1(@7900)du9(<p)}
_ &, { [ nGtmate wo)due(@}
_ / Ego {Jn(fu)ms (0, 00)} di (1) = 0.

The last equality can be ridely justified by Ito isometry.
Therefore Eq, (J,(f2)0(0)) = 0, for all n > 0 and f, € L*([0,T]"). in particular, by
Proposition 1.18 in [28], we have

fo (t)dW, . _
E(( 171 )1“9))0'

Using the fact that 2" can be expressed as a linear combination of the Hermite polynomials

T n

he(x), 0 < r < n, we get Eg, <(/ f(t)th> -¢(9)> = 0, for all n > 0, which implies
0

again that

oo

g, (e 70M () =3 E((/ I dwt) YOE

nO

Since the family { Iy f@aw. . f e LA, T])} is dense in L*(Py,) (see, [87, Lemma 4.3.2]),
we conclude that 1(f) = 0 and the proof is complete. O

Under the assumptions Aj- Ag, one can prove that the series given in (4.15) converges

in L?"(IPg,), but it may not be unique as expansion of the individual likelihood.

4.2.2 Asymptotic Normality of the MLE

For nonnegative integers asq, - - - , ag, we denote d-index a = (o, -+ , ), |a] = a5 +
-+ a4 and 5 5
a g
Dof(O) = 2 ... 9).
O = o )

In the sequel, we focus on the individual density A;(X',8). To simplify notations, we set
A(X,0) = Ay (X', 0) and X = X'. All possible values of the process X are denoted by
x and the integration of f(X) with respect to the measure P! := dux,, , is denoted by

f(z)dz. Let Dy (0o, dv(p)) denote the class of density functions g(i,#) satisfying the

following conditions:
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Ci: g(p,0) € C} (RP x ©) and D*g(p,0) € L? (dv(p)) for |a| < 4.

Csy: There exists 19 > 0 such that for all § € B,(6y) and |a| < 3, we have

/ 9,00 (0, 6) "d(p) < 0o and / (D90, )™ g0, 60) () < oo,

foralln <m and r <ry

Here are some examples of density functions that belong to the class D; (6, dp) where m

and ry are constants to be specified for each example.

1. Exponential distribution: Let the density function g(¢,A) be defined by
g(p,\) = Xe™, @ > 0, A > 0. Clearly, g(p,\) is infinitely differentiable in A with

integrable derivatives. For every integer m > 1, the conditions C;-Cy hold true if

m A m
this condition holds.

N1 1
(1 + — <22 14— Hence, we can find an e-neighborhood of Ay on which

2. Gaussian distribution: Let the density function g(p,u,0?) be defined by
1
2
g\, 1,0 ) =
( ) V2mo?
2
o

1\ 1
the conditions C;-C, hold provided that (1 + —) <5 <1+ —.
m ops m

— gz (p—n)? 2 :
e 2 , —00 < @ < oo, u € R, 0" > 0. For any integer m > 1,

1 1
3. Cauchy distribution: Let g(p,a,5) = — ——— —c0o < p < 00, a € R,

: 5,
e ()
B > 0. Clearly g(p,a, ) € D, (v, Bo, dy) for all ro >0 and m > 1.
e—SO—M
4. Logistic distribution: Let g(p, ) = m, o, 1 € R. g(p, 1) belongs to
the class D) (o, dy) for all ro > 0 and m > 1.

5. Gamma distribution: I'(p,a,8), « > 0, § > 0, ¢ > 0 belongs to
the class Dy (o, fo,dyp) if 1o > 0 and m > 1 are chosen such that (% ﬁ) €

» ) a’ B
((1+i) ;1+i>
m m

For the asymptotic normality of the MLE, we make the following assumptions:
A;: There exist ro > 0 such that g(p,0) € DS (6, dv(e))

Ag: The Fisher information matrix Zx(6y) is nonsingular.
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The following statements hold:

Proposition 4.2.5.

(i) For|a| <3, D*A(X,0) € L*(Py,) is continuous in 0, Py -a.s

(ii) The Fisher information matriz is finite.

(iii) There is some ro > 0 and random function H(X,6y) depending only on 0y such that

sup ‘DQ log A(X,6p) — D*log A(X, 9)‘ <rH(X,0), for0O<r<mg
QEBT(OO)

with Eg, H (X, 6y) < 00.

Proof. (i) Observe that DA(X, 0) = Z J.(D*B®™(0)) if this equality makes sense, that
n>0
is, the differentiation can be passed under the integral sign and the series Z J. (DB (0))

n>0
is convergent in L*(Py,). First, we shall show that .J, (D*8%"(6)) € L*(Py,) for |a| < 4.

By using BDG inequality, we obtain

E, { / n / [Ts0xt.e soO)Dag(so,e)dv(w)dW@”(t)}

< (J;?/S /Eeo {H 5(X(tl)7907900)2} (Dg(p,0))*dv()dt™"
n =1

(TM2C,)"

< 277,71
- n!

(1 By, sup W”") [0rgte0)ante) < o
t<T

Thus, the differentiation can be passed under the integral sign and
D, (B%™(0)) = J, (D*5®"(0)) where

DB ) (tr, -+, t) = / [T 8(Xt, 0. 00) D*g(0,0)du()

We have also

2y 1/2 . 9y 1/2
{Ego ZJn(DaB@m(g)) } < gﬂg{lﬁleo ZJH(Daﬁ@m(ﬁ)) }
n>0 n=0

IN

st S [0 (D3 O3,

1/2 201 \n/2
([@0rateonatn) ¥ ERE 0 g < .
n>0 :

IN
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Which implies that Z Jn(D*3%™(0)) is convergent in L*(IPs,). The aforementioned in-
n>0
equalities are respectively justified by Fatou lemma, Minkowski inequality and the previous

result. Since the formula (4.18) holds true for any function f(p,0) = D%g(¢,0), |a| < 3,
then in similar fashion, we can prove that D*A(X,#) is continuous in 6, Py -a.s (see the

proof of (ii) in Proposition 4.2.2).
(ii) Let 7o > 0, so that g(¢, 0) € DS (6, dv(ip)). This condition enables us to show that

D*log A(X,0) € L*(Py,) for 1 < a < 2 and § € ©. In particular the Fisher information

matrix is finite. In what follows, we will systematically use Holder’s inequality and Fubini

dg(p,0)

theorem. Let j, k.l € {1,--- ,d} and set ¥(p) := Yi(p, 0o) = 50
k

lo=6,- We have

(/ L (X, ¢, @o)w(w)dl/@))?
A(X, 0p)2

dlog A(X, 0 2
Eg, (891)‘9:90) = Ey,

( J@r(X g 09(e,80) 2 [(La(X. 0, 0)9( 00) 2 0D 00) ) de)
A(X, 6p)?

= E90

<k f LT(Xv 2 (PO) (¢(¢)29(% 90)71) dl/(gp)
= A(X, 6o) '

Hence,

By, (%f“’ﬂ) < [ [ mreeo0) e oo ) dn(ohia

//LT z,¢,%0) (V(9)*g(p,00) ") dwdv(p)
[ @erato.00™) dvie) < o

IN

IN

We know that

2 2 2
92A(X.9) oA(X.0)\* [ 9A(X.0)
(82 log A(X, 9))2 < 2A(X, 9)2< 86,00, ) +< 90, ) < 0, )

06,00, = A(X,0)
2A(X.0)\ 2 anx.0)\? [ oA(X.0)\>
() (wyessy
T AX0)? A(X,0) '
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We shall prove that the RHS of (4.20) evaluated at 6 is of finite expactaion under Py, .

2
We simplify notations by setting ¢y (p,0) = % and Yy (p,0) = 89(((;5’@, for
k00 k

ke {1,---,d}. Simple computations yield

(%)2 /LT(X7 s 20) (Vea(e,0)°g(p, 00)7") dv ()
A0 © A(X,0)

Which implies

2
92A(X,0)
Eq M’e—e </("¢’kl(90 00)%9(¢,60)") dV(SO)/LT(QS #, ¢o)dz < o0.
Y] Ao TR T | -

Similarly, we have

(aA(X,a) ) 2 (aA(x,e) ) 2
0 09

2

y ( / LT<x,soxz’)zj)i,eo)du(w))z X ( / LT<x,¢A,s(o;’>Z)<:;eo>dv<so>) N

/LT(xa ©,¢0) (Y, 00)9(p,00) ") du(p)

/ Lr(z, 0, 90) (€r(p,00)29(0, 60) ") dv(ip)

d
g A(z, )"/ ’

But we know that for f =k,

/ Ly (x, 0, 00) (107(0, 80)29(0.00) 1) du(p)

1/2
A(x, 00)1/? = [ / Ly (@, ¢, ¢0) (V5 (#,00)" (0, 00) %) dv ()
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Hence,

(8A(X,9) ) 2 (8A(X,9) ) 2
90y 90,
<

0 A(X7 9)4 |9=90 =

Eq

§/|:/LT<$790a o) (Vi(e,00)"g(p, 00)°) dV(sO)} 1/2

1/2

. [ [ trtepien) (it 00,0 ) o) da
< %//LT($7907900) (%(%90)49(%0»90)_3) dzdv(p)
+%//LT(%%S@0) (i, 00)*g(,00)°) dadv ()
1

< 5/ (%(%90)49(%90)*3) dv(p) + % / (1/11(@, 90)4g(¢,90)*3) dv(yp) < oc.

(iii) Let 0 € B,.(0y). For sufficiently small r, the mean value theorem yields for each
kaj S {17 7d}

D3 log A(X,0) ot
96,00,00; "~

sup
9637'(90)

Y

0*log A(X,0y)  9*log A(X,0) - zd:
86,00, 96,00

d
where 0* is the maximizer of E
=1

3log A(X
%’ which depends only on B,.(fy) (that is,
100,00

d

3
it depends only on 6#y). Set H(X,0)) = Z 0*log A(X,0)
=1

—o+|. We will that
90:00:90, lo=o e will prove tha

Eg, H(X,6y) < oo. First, note that

P log A(X,0) >

“ononan, 2 G0
e G(X,0) = A0 A0
Ga(X,0) = —A(X,0) aiaj\efgéf) ‘9Aé?9<; )
Ga(X,0) = —A(X,0)? 025;522& 8Aé2 0)
Gi(X.0) = —A(X,G)—2az;g9’f) 8Ag@i,e>

LON(X,0) OA(X, 0) OA(X, 0)
00, 00, 00

Gs(X,0) = 2A(X,0)"
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We are going to show that Ey, |G1(X,0)|, Eg, |G2(X,0)| and Eg, |G5(X,0)| are finite for

all 0 € B,(6p) and 0 < r < ry. To simplify notations, we set ¢(p,0) = 1 (p,0) =
(¢, 0)
00,00,00;

. By using Holder’s inequality, we obtain

(/ LT(Xmo,sf)o)iP(so,@)dV(SO))Q
A(X, 0)

G1(X, 9)2 =
(/[LT(X, ©,90)9(¢, 00)]**[(L7(X, 0, 90)9(¢, 00)) ¥ (¢, 0)g(e, 90)‘1]d7/(90))
= A(X,0)

(/ Lr(X, o, @0)g(g0,90)du(90)>3/2 </ Lr(X, o, @o)w(%9)49(%90)‘3@(90))
A(X, 0)?

1/2

<

Thus

A(z,6)° { / Lr(z, ¢, 00)t (9, 6) g(, 90)3d1/(90)] "

Az, 07 e

Eo,G1(X,0)? <

<5 [ Rl //waw (.6)"9(p,00) (o)

= / (%90) 90, 00) (i / b, 0) (0, 00) i (0).

The first term on the RHS of the last inequality is obtained by using Holder’s inequality

as follows
Az, 00)° (/LT(”C’907900)9(90,90)61%@))
A0 A d)
{/ Lyp(z, o, SOO)Q(SO,Qo)dV(gO)} /LT(L@, ©0)9(, 00)° g (0, 60) *dv ()
<
a A(z, 0)?

< / Lr(z,0,900)9(,00)°g(, 00) " *dv ().

Hence, Eq,G1(X,0)* < oo for all § € B,(6p) and 0 < r < 7. Similarly we have

82A(X, 0) OA(X, 0)

E X,0)| < Egy § [AX,0) 7 — | [A(X,0) T

00 |G2(X, 0)] < Ey, {’ (X.6) 06,00, ‘ (%,9) 90, ‘}
| PAX, 0\ 1 ON(X,0)\>

< —Ey, [ A(X,0) ) 4 CERy, (A(X,0)

=5 0o ( ( ?0) aelaek ) 2 0o ( ( 70) 89j )

< %/g(w,eofg(w,@o)“‘dww) + %/ [k, 0)* + ¥i(, 0)*] g, 00) dr (i) < oo,
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where

2
% = Y1(p,0) and 89((3?’ f) = 1j(p,0). By using the same techniques, we

prove that G3(X, 0) and G4(X, 0) are of finite expectation for all € B,.(6p) and 0 < r < 7.

99(,0) dg(¢, 0) 9(p,6) ‘
o0 g = — (. 0). B h
Set 26, Yi(ep, 0), 26, Yr(p,0) and 26, — ¥;(,0). By using the

fact that 2ab < a® + b, a,b € R, we obtain

2 2
By, Gs(X,0)] < Eqy (A(x,0) 220N g, (4(x, g2 2250 OALE6)
a6, 96, 00,

Then, with the same techniques used previously, we state

1
IE90 |G5(X’ 9)| < 5/9(@790)59( 2 4dV /¢l SO? QO,Q()) Sd’/(@)
OA(X,0 OA(X,0
+1E < a(ek )> ) ( 0; )> (4.21)
2% | TA(X, )" 2| AKX 0 | '

It remains to show that the last two terms on the RHS of (4.21) are finite. Again, by using

Holder’s inequality, we obtain

(m@(giﬂ))“ ) (/ LT(X,so,wo)wk(¢,9)dV(90)>4

A(X,0)4 - A(X,0)*
7/2 1/2
( [rtxs %)g(so,eo)dv(so)) ( [txs %wmmgg(s@,eg)7dv<so>>
= ACX, 6)
Therefore
1/2
(22’ A 002 | [ Lrtao oo, ol 00) Tav()
E N TR S < dx
ol ALt | T Az, 0)*
T 9
< 5 [Aegedts [ [ Lre e 0ate. o T
(4.22)
Since

A(z,0p)° = (/LT(ﬂf,so,soo)g(so,Qo)dV(@)
< A(ﬂfﬂ)g/LT(fv,%wo)g(% 00)’g(, 0) Pdv(p),
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then

/ A”O dz < / / L (z, 0, 90)9(¢, 00)°9 (9, 0)~Sdadu(ip) < / 9(,00)°9(2,0) Sl ().

Hence, from (4.22) it follows that

m(x,e))‘*
( 005, 1 9 -8 =7
Eo, AX.O)T < 2/g(go, 60)”g9(¢, dv(p /wk ©,0)°g(e0,00) " "dv(p) < .

Similarly, if we replace k by 7 we obtain

<aA(X,9) ) 4
90,
EQ ~ 7 7

| AL 9T | T

which completes the proof of Proposition 4.2.5. n

At this stage, all conditions needed in Theorem 3.0.6 to establish the asymptotic
normality of the MLE are fulfilled (Proposition 4.2.5, Theorem 4.2.3 and the hypothesis
Ay). Thus the following result holds.

Theorem 4.2.6. Under the assumptions Ai-Ag, the MLE éN 1s asymptotically normal.
1.e.,

VN <¢/9\N — 90> LN (O,IX1(90)_1) ., under Py,

As mentioned before, the most delicate task in proving the main previous results was
to show that A(X 0) is continous in 6, Py, -a.s; the difficulty relies on finding an upper-

bound of E,, Hﬁ ), 0, 00)% (see the inequality (4.19)). However, it is possible to

1=1
prove that A(X,0) is continous in 6, Py, -a.s under weakned assumptions (see Appendix B.

(p.111)), in the sense that A, and Aj are replaced by the following assumptions

A’;: There exist a nonnegative constants M (which may depend on ¢y), 71 and -, such
that

1B(z, 0, 00)] < M (1+[z™ +[lel™)

and for all ¢ > 0, Z Q\T/_u,ll/?{;”r < 00, where fiy ., = /||g0||272m" h(p)dv(p) with
n>0

2rd —d > 0 and h(yp) is the density function appearing in Ag.

A’5 There exists M3 > 0 such that sup Eg, ‘XZ | < MF forallk>0andi=1,---,N.
t<T
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CHAPTER 5
STATISTICAL INFERENCE FOR FRACTIONAL STOCHASTIC
PROCESSES WITH RANDOM EFFECTS

In this chapter, we try to extende the results given in Chapter 4 to fractional diffusion
processes with random effects. To do this, we begin with fractional stochastic differential
equations (FSDE) with general linear drift containing random effects. More precisely, we
focuss on two kind of FSDE’s

e 'SDE’s with additive random effects in the drift.

e FSDE’s with multiplicative random effects in the drift and small fractional diffusion.

5.1 PROBLEM OUTLINE
Consider the following FSDE’s

dX'(t) = (a(X*(t)) 4+ ¢:b(t, X'(t)) dt + o(t, X (t))dW ™' (t), t <T, (5.1)
X0) = z€R, i=1,---,N,

where ¢1,- -+, ¢n are i.i.d R-valued random variables (random effects) with comon density
f, (WH A WHEN ) are independent standard fractional Brownian motions with common
Hurst parameter H € (0,1) and ¢y, -, ¢n are independent of (WH’l, e ,WH’N). First,
we consider the case (Section 5.2) where b(t,z) = o(t,z) = 1 and f = N(u,w?). The
estimators H , 1 and W2 of H , 1 and w? are constructed and examined. The asymptotic
properties are studied as the number of subjects tends to infinity. Our results are illustrated
by numerical examples. Second, when f is non-parametric, we provide a class of estimates
(Sections 5.3 - 5.4) and study their LP-risk (p = 1, or 2) and/or pointwise-risk for both

cases
e Case 1 : b(t,z) =b(t) and o(t,z) = o(t) with N, T — oo

e Case 2 : a(x) =0, b(t,x) = b(z) and o(t,z) = € with N — oo and € — 0.

5.2 PARAMETRIC ESTIMATION OF POPULATION PARAMETERS IN

FSDE’S WITH ADDITIVE RANDOM EFFECTS
This section deals with the problem of inference associated with linear fractional dif-

fusion process with random effects in the drift. In particular we are concerned with the
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maximum likelihood estimators (MLE) of the random effect parameters. First of all, we
estimate the Hurst parameter H € (0, 1) from one single subject. Second, assuming the
Hurst index H € (0,1) is known, we derive the MLE’s and examine their asymptotic be-
haviour as the number of subjects under study becomes large, with random effects normally
distributed.

5.2.1 Model, Notations and Preliminary Results

Consider the N subjects (X'(t), F;,t < T) with dynamics ruled by (5.1) with b(t, z) =
o(t,x) = 1. The functions a(-) and b(-) are supposed to be known in their own spaces.
Let the random effects ¢; be Fi-measurable with common density f(p,#)dv(p), where v
is some dominating measure on R and € is unknown parameter. Set § € U, where U is
an open set in RY. Sufficient conditions for the existence and uniqueness of solutions to
(5.1) are given in Theorem 2.2.3, and more details can be found in [80, p. 197], [86], and

references therein.

Let C7 denote the space of real continuous functions (z(t) : ¢t € [0,7]) defined on

[0, T] endowed with o-field Br. The o-field By is associated with the topology of uniform

convergence on [0,7]. We introduce the distribution fixi , on (Cp, Br) of the process

(X°|¢s = ¢). OnRxCr, Qy 5 = f (e, 0)du®/¢X;7H denote the joint distribution of (¢;, X*).

Let Py 5 be the marginal distribution of (X*(t) : ¢t <T) on (Cr, Br). Since the subjects

are independent (this is inherited from the independence of ¢; and W), the distribution

of the whole sample (X'(t) : t < T, i=1,---,N) on C¥" is defined by Py g = @~ Py ;.
Thus the likelihood can be defined as

o 77 Pon
MOH) ==~ = 11 gpi

i=1

where P = @Y P! and P! = puy .o brovided that pxi < pxi for some fixed ¢y € R.
©0> ®, 0> )
It is well known that yixi  coincides with the distribution of the process X"? defined by:
@,

dX"?(t) = (a(X'(t)) + pb(X () dt + dW™*(t), X"#(0) = 2,

when H = 1/2, since in this case the process (X*, ¢;) is markovian (e.g., [46]); hence, the
Hxi
Girshanov formula can be applied to get the derivative 7 2% When H # 1/2, the non
Hxi
w0, H

Markovian property of the coupled process (X", ¢;) makes the construction of the likelihood

very difficult. But in our case, the process X" is transformed into a Y for which the law of
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(Yi|<;§i = go) coincides with the distribution of a p-parametrized fractional diffusion process
Yo,

5.2.2 Construction of Estimators and their Asymptotic Properties

Consider the following process
Yi(t) = Xi(t)—a' — / Ca(X(s))ds, 30 (5.2)
=t + WHi(1) i/\f (tp, Pw® + 7)), t>0. (5.3)
Since ¢; and W' are independent (Y'(¢) : t € [0,T7) is a Gaussian process. Furthermore,
for each ¢ € R, we have E (Y'(t)|¢; = ¢) = tp and Cov (Y'(1),Y"(s)|¢s = ¢) = 1(752H +

2
— s[*™). For each subject Y, we consider n observations Y := (Yi(t),- - ,Yi(tn))/

where 0 =ty < t; < --- < t, =T is a subdivision of [0, T]. The density of Y* given ¢; = ¢

is expressed as
, 1
I(Y'\¢; =, H) =
Vo= 1) = v
where u = (t1,-- ,t,)" and (V(H))y = Cov (Y'(ty,),Y'(t;)|¢; = ) is the common covari-
ance matrix of the subjects Y, ¢ = 1,---,N. The log-likelihood of the whole sample

(Yl, e ,YN) is defined as

Yi—pu)'V=HH) (Y ~pu)

Y

1
6_5(

N
16.1) = Yo [ TI(Y[61 = o, ) (. O)dv ). (5.4)
i=1
For a specific distribution (say f(p,0)dv(v) = N (i, w?)), we can solve the integrals given

in (5.4). Indeed,

[ 165 = o )1 (0,0)d(e) = (2) V2 et (V(H)) 2 (V- (#u+ 1)

COmIUIEERY
W'V H)u+ 1/w? '

<u2 J+ YV Y H)Y - (5.5)

N | =

X exp [—

5.2.3 Estimation of the Hurst Parameter H
Using data induced by one single subject (without loss of generality, say Y' with

tj = l,j =1,--+,n, T =1), we may construct a class of estimators of the Hurst index H.
n
More precisely, for all k£ > 0 and for any filter v = (7o, - -y) of order p > 2, that is,
! !
for all indices 0 < r < p; Zj“yj =0 and ij’yj #0, (5.6)
=0 =0
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we set

H(n,p kv, Y') = g1 (Sn(k,7)),

k

n—1]| 1 .

1 1—q 1

where Sn(k,7) = — ST ! ( - ) y Gnkn () = W{WZ(O)}k/QEk, and

i=l |q=0

1 l

m () = =5 ewlg—r ", with By = 25°T(k +1/2)/T(1/2)
q,r
and I'(x) is the usual gamma function.

For invertibility of the function g, x(-), we refer to [19, p. 7].

Theorem 5.2.1. As the number of observations n — oo, the following statements holds

true,

(i) Hn,p kv, Y) =8 H

~ A(H
(ii) n~Y2log(n) (H(n,p,k,’y,Yl) — H) LN <O, M), where

)
Alt ky) = > (2NN pl ()Y, with
j>1 i€z
= Ljl:[l(/’{:—ZQ) andpv(i):WZ(i)
T @) ’ Y m(0)

! .
Proof. Following Coeurjolly [19], we set V7 (i/n) = Z”quH’l (%) Jfori=1,--- ,n—1.
q=0

I
Since the filter v is of order p > 2 (see, (5.6)), we have Z ﬂ’yq = 0. Then, substituting
n

q=0
y! (Z ; q> by %qﬁl + Wit (Z ; q>’ we obtain

n—1 l . k
1 1—q
sk = 2l ()
q=0

n—1 l

. l .
1 1—q g1(t—q
pr— — |/1/ b

i=l | q=0 q=0

k

Hence, our estimators coincide with estimators H based on k-variations of the fBm (see,

[19, Proposition 2]) and the proof is complete. ]
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5.2.4 Estimation of the Population Parameter 6 = (u, w?)
Now, assume that H is known. From the log-likelihood given by (5.4) and (5.5), we

derive an estimator pi defined by

N
L Z WV H)Y?
=1

= Z'v—l(H)u ' (5.7)

For the parameter w? it sounds very difficult to derive an estimator. However, we can
construct an alternative estimator and study its asymptotic behaviour. Observing that f

is a sample mean drawn from a sequence of i.i.d random variables, one might think that

2

sample variance could also be used to estimate w”. Unfortunately, simple computations

shows that such a sample variance is not consistent. Thus, as an alternative we propose

the following estimator for w?:

o X evimynN: 1 (Swviayd\T .
w2:N;<u’V—1(H)u> _N?<;U’V—1(H)u — WV H)W) . (5.8)

Theorem 5.2.2. The estimator ji is unbaised, ﬁ@ p and Var(p) — 0 as N — oo.

Proof. Set € (WH’i(tl), e ,WH’i(tn))/. Substituting Y* by ¢;u + €', we have i =

N ¥ WV H)E

1 = m .
N ;¢i + Z;/lv_l(HW , so, E(i1) = p. For the second statement, we consider the
random variables &;(H) defined by
W'V (H)Y!
i) = — 5.9
SUH) = T i (5.9)

Clearly, &(H) are i.i.d random variables with E(¢;(H)) = p < oo, then by strong law of

large numbers (e.g., [101, Corollary 1.63]), i converges almost surely to p as N — oo. Set
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1 N 1 N n . n ;
= WVGT<Z¢Z>+]VQ(Z(}[)U)QZE{<Z ( WH tk)(Z WH tl>}

1 . i=1 1 Nz,jn k=1 | l'l
= = > Var(é:) + N )R SN w(H)za(H)E (WH (L) Wi (¢))
i=1 ij Kkl

w? 1 N n . .

= N N 2 2 A AEE (V)W )
vkl

w? 1 &1 °H | ,2H 2H
= N+J\WZ‘;2&€(H)21(H) (tk +tl _‘tk_tl’ )

w? 1 , Nu'V-YH)V(H)V Y H)u
= N + N2(=(H) U)QNZ(H)V(H>Z(H> = w? N(Q(Z)(HE) )u)2 <
= w? + ! —+0 as N — o0

[]

Before, we establish the bias of w? the estimator of w?, we first give the following

result:
Lemma 5.2.3.
1 ’ N
2_ 2. 2 , A2 2 2
Bl&(H))” =™+ u+ 'V (H)u and E (Z&(H)> Newm+ N+ uw'V-HH)u’
where & (H) are random variables defined in (5.9).

Proof. Substituting Y! by ¢ u + €' and using the independence of ¢; and €', we have

61
B = B (s VD)
1 61
= E¢? +E (fé%u >
= w2 + ,u2 + m
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For the last equality we used the same techniques as in the proof of Theorem 5.2.2. For

the second statement; by using the random variables z;(H)'s defined previously, we have
N 2 N N N 2
B ' z(H) - €
E (;mm) = E (Z@ +Z v u)
N N\ 2
2(H) - €
(Z@) (2505

N
- ZE@ + QZE (¢idj) + u,l(hWVar (Z 2(H) - ei)

i<j i=1
= Nuw?+N%p?+ =T

O
Theorem 5.2.4. The estz’maz;or W2 is asymptotically unbiased, 0?2 =% 2 and Var(@) =
%((f%—m) — 0, as N — oo.
Proof. By vitrue of Lemma 5.2.3, we have
B = § Z (404 )~ e (V¥ + i) — T

= N]\_[ 1w2 — N(u’Vll(H)u) —w? as N — .

Applying the strong law of large numbers and the continuous mapping theorem for almost

sure convergence, we get

_ 1Y 1 o 2 !
2= N;jl@-(H)?—(N §2&‘<H>> T WV I(H)u

1 ].
W—V““&( ) v

=

= E(&(H))? E2(§1( ) —

1
= Va’l” <¢1 + /V u)

= Var¢; + Var (

(e 1
'V (H)u >"V(>

61 2
’LL

64




Similar computations lead to

— N -1
var@) = Yol (V- DEE ) - - (V- 3))
2(N-1) ,
-
where 3 = Var(&(H)) = w? + VI In the last equality we used the fact that
(&1(H) — p) is a centered Gaussian with variance f. O

For the case of continuous observation with horizon 7', we propose the following esti-
mator (7, N) defined by

1o, ? -
It is easy to see that E'TYZ(T) —¢i| < — 0, as T — oo and (7T, N) is

T2—2H
consistent as T, N — oo. The reason we choose this double asymptotic framework, is that
we proceed in two steps; in the first step we estimate random effects ¢; as the horizon T
increases to oo, then we use the empirical mean and variance to estimate § = (1, w?), where

the random effects are replaced by their estimators.

Theorem 5.2.5. The estimators i and W2 are asymptotically normal, i.e.

\/N@—u):%/\/(o,wuu,

—V—l(H)u> , as N — 00, (5.10)

and ,
N = 1
5} (w2 —w2> LN <O, <w2 + m) ) , as N — oo. (5.11)

Proof. Since i is the average of N i.i.d random variables with finite mean and finite

variance, (5.10) follows imediately from the central limit theorem (see, [101, Theorem
1

~ B N ~ — 2 -
B.97]). Let &(H) = ”N— 1(§Z(H) ), i =1,--- N and set f = w” + V()
<§(H) Q= 1,27...> is centered Gaussian process, with EE(H) = 0, Var(é(H)) =

E(g(H)Q) = f3, and Var(g(H)Q) = 23%. By strong law of large numbers, we have w2 =
N
1 ~ —as .. . -
N &(H)? = 5, and the central limit theorem yields vV N <w2 — ﬂ) N N(0,253%).
i=1
N /—~ — N -1 16
Since —<w2—w2>:a \/N<w2— )—5 , where ay = —— and ey = —,
V3 v 7))~ en AT Y

then, using Slutsky theorem, the convergence (5.11) is easily concluded. O]
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5.2.5 Simulations

We will implement the two population parameter estimators for the model that we
have studied to show their empirical behaviour. We will simulate the observed vectors Y
using (5.3) for two numbers of subjects N = 50 and N = 500 with different lengths of
observations per subject; n = 2%, n = 2° and n = 2°. The fractional Brownian motions are
simulated as in [67]. The experiment is as follows : we set H equal to 0.15, 0.5 and 0.85.
For each case, replications involving 400 samples are obtained by resampling n trajectories
of Y.

The averages of the estimators and their exact against empirical standard deviations
are reported in the Tables 5.1-5.3. The tables show that the parameter estimations are
generally much closer to their true values as the number of subjects increases. Figures 5.1-
5.3 display the histograms densities of the estimators, which reveal the convergence toward
a limit distribution also as N is sufficiently large, this confirms what was established before.

2 is not really close to exact values

Looking at Table 5.1, we see that the estimating for w
when there are very few observations (n < 2°) per subject when H = 0.85, this case has
been observed every time when H becomes large than 1/2. In this situation, for the real
cases where the true value of w? is not available, it will be better to choose n as large as
possible (n > 2*) but this leads to huge computational cost for large values of N. Yet, to
keep the balance between the computational cost and goodness of fit, a small values of n

and sufficiently large values of N should be considered.

True values H =0.15 H = 0.50 H =0.85

N =50 Mean (Std. dev.’s) Mean (Std. dev.’s) Mean (Std. dev.’s)
= -2 -1.9902 (0.1456 0.1430) -1.9964 (0.1549 0.1594) -1.9820 (0.1795 0.2009)
wi=1 0.9744 (0.2099 0.1942) 1.0303 (0.2376  0.2494) 1.3314 (0.3191 0.3891)
N =500

w=-=2 -2.0009 ( 0.0460 0.0441) -1.9986 (0.0490 0.0515) -1.9985 (0.0568 0.0634)
w?=1 0.9964 (0.0670 0.0689) 1.0442 (0.0758 0.0836) 1.2022 (0.1018 0.1228)

Table 5.1. The means with exact (red) and empirical (blue) standard

deviations of estimators ji, w? based on 400 samples, with true values
(po,w) = (=2,1), (T,n) = (5,22), and different values of N (=
50; 500).
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H=0.15 H=0.85

Figure 5.1. Frequency histograms of population parameter estimates
based on 400 samples for different values of (N, H). In each box of
the two rows (top N = 50 and bottom N = 500) histograms of i (in
pink) and w? (in gray) are given for fixed parameters (u,w? T,n) =
(—-2,1,5,2%).

True values

H =0.15 H = 0.50 H =0.85

N =50 Mean (Std. dev.’s) Mean (Std. dev.’s) Mean (Std. dev.’s)
w=-2 -2.0050 (0.1449 0.1427) -2.0146 (0.1549 0.1518) -1.9824 (0.1793 0.1920)
wr=1 0.9713 (0.2077 0.2075) 1.0028 (0.2376 0.2247) 1.0871 (0.3181 0.3391)
N =500

w=-2 -2.0057 (0.0458 0.0434) -1.9979 (0.0490 0.0498) -2.0038 (0.0567 0.0596)
w?=1 1.0005 (0.0663 0.0671) 1.0021 (0.0758 0.0758) 1.0849 (0.1015 0.1011)

Table 5.2. The means with exact (red) and empirical (blue) standard

deviations of estimators ji, w? based on 400 samples, with true values

(/1’07 wg) =
50; 500).
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H=0.15

0
-25 -2 -15

H=0.85

-1 05 0 05 1 15

H=0.85

Figure 5.2. Frequency histograms of population parameter estimates
based on 400 samples for different values of (N, H). In each box of
the two rows (top N = 50 and bottom N = 500) histograms of i (in
pink) and w? (in gray) are given for fixed parameters (u,w?® T,n) =
(—-2,1,5,2°%).

True values

H =0.15

Mean (Std. dev.’s)

H = 0.50

Mean (Std. dev.’s)

H =0.85

Mean (Std. dev.’s)

N =50
w=-2
wi=1
N =500
w=-2
Wwi=1

-2.0015 (0.1447 0.1454)

0.9996 (0.2073 0.2008)

-1.9997 (0.0458 0.0442)

0.9971 (0.0662 0.0650)

-1.9960 (0.1549 0.1563)

0.9764 (0.2376 0.2448)

-2.0009 (0.0490 0.0471)

0.9993 (0.0758 0.0747)

-2.0055 (0.1792 0.1709)

0.9971 (0.3180 0.3323)

-2.0006 (0.0567 0.0566)

1.0083 (0.1015 0.1045)

Table 5.3. The means with exact (red) and empirical (blue) standard

deviations of estimators ji, w? based on 400 samples, with true values
(o, wg) = (=2,1), (Tyn) = (5,2%), and different values of N (=
50; 500).
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Figure 5.3. Frequency histograms of population parameter estimates
based on 400 samples for different values of (N, H). In each box of
the two rows (top N = 50 and bottom N = 500) histograms of i (in
pink) and w? (in gray) are given for fixed parameters (u,w? T,n) =
(—-2,1,5,28).
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5.3 NON PARAMETRIC ESTIMATION FOR FSDE’S WITH RANDOM

EFFECTS
In this section, we propose a non-parametric estimation for a class of FSDE’s with
random effects. We precisely consider FSDE’s given in (5.1) with b(¢, z) = b(t) and o (t,z) =
o(t). We build ordinary kernel estimators and histogram estimators and study their L”—risk
(p=1or 2), when H > 1/2. Asymptotic results are evaluated as both T'=T(N) and N
tend to infinity.

5.3.1 Ordinary Kernel Density Estimators
It is well known that standard kernel density estimators for the unknown density f of

¢; are given by

N
ﬁz(CC):ﬁZK(x;L@), h>0, (5.12)
=1

where K is an integrable kernel that has to satisfy some regularity conditions on f. The
random effects ¢; are not observed; it is then natural to replace them by their estimates
and prove the consistency of the resulting kernel estimators. We introduce some statistics

which have a central role in the estimation procedure. For ¢ = 1,--- | N, we denote

) t b ) t b2
Uit = / UL ixi(s), U = / ) s,
0

a?(s) o 0°(s)
. t Xz ) t )
REZ) _ / a( gs))b<8)ds and V;(Z) :/ b(S) dWH’Z<S).
0 o?(s) o o(s)
We know that V) = (Vt(i), t> O), 1 = 1,---, N are Wiener integrals with respect to
fBm. A sufficient condition (see, [94, 80]) for the integrals V¥ to be well-defined is that

b(-)/o(-) € L*(R{)NL'(Ry). The following assumptions are needed to estimate the random
effects ¢;:

A : There exist ¢y, c; > 0 such that

b?(s
cg < 02((5)) < cf, for all s € R,.
*a?(X(s) , \?
Ay, : Fore=1,--- N, M; .=E / ds | < oo
o 0%(s)
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Proposition 5.3.1. Let the assumptions A,-As be fulfilled. Fori=1,--- N and H >
1/2, we have

? 2 (L) /77(2)

E — 0 as T — oo, where ¢;r:= Uz /U’ .

$i7T — ¢

Proof. Equation (5.1) yields

Ut(l,i) _ R,Ei) + ¢iUt(2) + ‘/t(i)? t<T,i=1,---,N.

2 RO\ VOA
<E(—5| +E|{ | - (5.13)
UT UT

We shall show that the expectations on the RHS in (5.13) vanish as T tends to infinity.
Applying results in [77, Theorem 1.1] and the Jensen inequality, respectively, we obtain

2 2
iy Tb(s) o owa
E (@ = C%T2E /0 O_(S) dW (8)
~ Cid /T (
AT 0
Ckct

= —0asT — o©
CéT2_2H ’

Thus

~

1
Gir — O

-E
2

where Cy is a nonnegative constant due to the Hardy-Littlewood theorem (see, [80]). Using
2

1
the fact that |uv| < 3 (5u2 + U—) for all u,v € R and € > 0, we have
£

(RPN 1 [l ) o s + 0P )
U}z) 4 U}Z)

_ % {812 4 C%%E (/Ooo a2<X1(5))/02(5)ds)2} |

By choosing ¢ = VT, we get the desired result and the proof of Proposition 5.3.1 is
complete. n

Now, substituting ¢; by its estimator q/g,-’T in (5.12), we obtain the kernel estimators

() . 1 $—$i,T
£ (m)—N—hZK< - ) (5.14)
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Proposition 5.3.2. Consider Equation (5.1) where a(-) is unknown and consider the es-
timator f;l) given by (5.14). Assume that Ay and Ao are satisfied. If the kernel K is
differentiable with | K| + || K'||> < oo, then

1" ) (1 My 2012{(;%)

TH = ¢dTH — GTH

=) 2 2
EH h _fH <2|fn = fI7 + NN

where fu(x) == Ky + f(z) = %/}RK (‘” . “) F(u)du.

Proof. Simple computations show that

e I R (AR

< 201f = full*+2||fu — EGY) 2+E<H¢”—E<ﬁ”>

2) . (5.15)

To complete the proof, we evaluate the last two terms in (5.15). Set n;r(x) = Kp(x —
~ ~ 1

¢ir) —E <Kh(x — ¢i,T))7 where Kj(u) = EK (%) nir(z),i=1,---,N are ii.d random
xr — ¢A51,T

h

variables with E [, r(z)] = 0, and with a change of variables = y in the second

inequality below, we get

/R E(pr(e)de = /R Var (Kh@—asw)) dz

< /}RE (Kh(ﬂl? — (/b\l,T))de

< %E/ (K (x _hal’T>>2da:
R

<

1

= | K?(y))dy.
h/IE{ (y)dy
Thus

e (|70 -5

2) _E /R (V@) ~EFY @) dr
_ %E /}R (iw(gx)fdx

| T
- E < —.
< /E ()P < ]

There remains to find an upper bound of the middle term in (5.15). First, note that
fn(x) = / f)Kp(x —y)dy = E (Ky(z — ¢1)). Taylor’s theorem with integral remainder
R
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yields

(61 — dr1)

o~ 1 ~
Kin(x — ¢17) — Kin(v — 1) = % /0 K’ (%(ﬁ — ¢1+ul(dr — ¢1,T))> du.

Now,set g(a,) = K (= 6+ u0r = 1)) then

Hfh—E(ﬁ(Ll))HQ /]R []E (Kh(l“—al,T) —Kh(x—gbl))rdx

/]RIE (Kh(:v — ) — Kp(z — ¢1)> dx

2|0 [ [ sisa] as

I

IN

~

< E @bl—h—fm)? [/01 (/RgQ(x,u)dar)l/QdUIz

The last inequality given above is justified by the generalized Minkowski inequality (see,

1 ~
[110, Lemma A.1]). By change of variables y = 7 (x—qbl—i—u(gzﬁl —gbLT)), we get

2 roN R LYk
/gz(m,u)dx = |K'|*h. Thus ||f, — E(F! )H <
R

the proof (see the proof of Proposition 5.3.1). m

E(¢; — qAﬁl,T)Z, which completes

We recall that a kernel of order [ > 1 (for the construction of such a kernel we refer to

[110, p.10]) satisfies / K(u)du =1 and / w K (u)du = 0, for j = 1,--- 1. For constants
R R

B> 0and L > 0, we define the Nikol’ski class N*(f3, L) as the set of functions f : R — R,

whose derivatives f) of order | = | §] exist and satisfy

1/2
U (fO +1) - FO@)) dw} <L, VteR,
R
where || denotes the greatest integer strictly less than the real number £.

Corollary 5.3.3. Assume that f € N*(8, L) and that the kernel K has order 1 = | 3] with
/ u|” | K (u)| du < co. Fiz a > 0 and take h = aN~YCHD gpg 711 > N@A+3)/C26+1),
R

2
Then for any N > 1, the kernel estimator ﬁl) satisfies & H A,(Ll) - f” S NT2B/CP+)

Corollary 5.3.4. Consider Equation (5.1) where a(-) is known. We introduce the estima-

202) 1 > T — 5@',T
B = 5 2K )
i=1
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where %,T = ai,:r — Rg)/U}”. Under the assumption A, the estimators f}LQ) are consistent

with the same optimal rate as for jA}El).
Remark. The assumption A, can be weakened as follows

A’y : For each i, there exists 0 > 0 such that
1 t 2( X7 2
limsup ———E / Mds < 0.
oo 270log(t)  \Jo  0%(s)

5.3.2 Histogram Estimators
Consider a sequence of partitions of R of the form Py = {Ay;, j=1,2,---}, N > 1,
where all Ay;’s are Borel sets with finite nonzero Lebesgue measure. We assume that the

sequence of partitions is rich enough such that the class of Borel sets B is equal to
[o¢] (o]
N=1 m=N

where we the symbol o stands for the o-algebra generated by a class of sets.

Given a sequence of i.i.d random variables Xy, -, X, with common density f, the

histogram estimate is (as in [27]) defined by

N
1 X(X;€AN; )

where A denotes the Lebesgue measure. For our case, we will consider the following his-

togram estimators ﬁ(bg) (z) = T(¢)(2); ]?,(14) (x) = T(¢.)(x). If the density f of the random
effects ¢; has compact support, then a good estimator should have compact support as

well. To guarantee such property we trim the proposed estimators by xsuppj-
Let F', denote the class of functions satisfying
(i) f is absolutely continuous with derivative f’ (almost everywhere);
(ii) f’is bounded and continuous ( / If'| < o0).
R
We consider the partitions Ax; = [hj, h(j + 1)), j € Z. The following special functions will

be used later: ry(x) = % — 7, an(x) = (1 = 2ry(2)) f'(x) and

2 u
U(u) =4/ — (u/ e Pdx + 6“2/2> , u>0.
0

™
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Proposition 5.3.5. Let f € F', have compact support A and assume that 1,---,J are
nonzero indices for which X (Ax; N A) # 0 andT = T(N), where X is the Lebesgue measure.
Then, the following statements hold true:

(i) When a(-) is unknown, under the assumptions Ay and As, we have

23) dJ 1
EHfh —le < 1(N, h) +1b2(h) T T ° (h+m> :

where d is some nonnegative constant and

1(V, h) /\/ ( |zn] Th>—>0ash—>0, Nh — oo,

ZZP gbZGANJ 250 as h — 0 (see Lemma 6.0.12).

11]1

(ii) When a(-) is known, we may relazx the assumption Ao, and the same result holds for
7(4)

Proof. By virtue of [27, Theorem 6], and for sufficiently small A such that Nh — oo, we

have
el -4, < e/ A’ﬁ(f)(:v)—f(w)‘dx
j Nl
< B[ 1T0)0 - Sl B [ |76 - Tt
J N j
< E((T($-)—f\\l+NLh;; /: +1>E’X($i’T6ANj)—X(MANJ.) dx

< W (N,h)+o <h+¢%)

(J+1)
Z / E ‘X((ﬁl TGAN] (¢LEAN])

jlzl

dx.

Let v(N,J,h) denote the last term in the last inequality above. The sequence g/b\i,T(N)
converges weakly to ¢;, since it converges in L*-sense as N tends to infinity (say T(N) —

00). Thus, by using Lemma 6.0.11, we obtain

N

J
v(N, Jh) < %5 S TP(6: € Awy)2 [P(Bir ¢ Aws)2 + P(1 ¢ Anj)'?)

j=1 i=1

5



Let a € (0,1) to be specified later. We apply Lemma 6.0.10 to get
P (QET ¢ ANj) < P < &‘,T —h(j+ 1/2)‘ > h/2>
P ( G — | > (1 — a)h/2) +P(|¢; — h(j +1/2)| > ah/2)

—~ 2
1E (Gir — 61) d
’ (a) 1
< . ) <
S ThZame T F (0 4%)) < A= apmer i

IN

where d; is some nonnegative constant (see the proof of Proposition 5.3.1) and

— 1
Agrvlj) _ (h(j+1Ta),h(j+ —1—04))' Similarly, one can prove that P(¢; ¢ Ayn;) <
dy
0= a)2heT 7 + 1. Thus
9 J N dl 1/2
v(N,Jh) < 5 ZZ {P(@ € An;) <(1 T 1)}

where we used the fact that vu+v < vu + /v, for all u,v € Ry. Set d = 21/d; and
a =1 — h to complete the proof. O

Proposition 5.3.6. We have
Yo(h) = O(R?), where § € (0,1/2). (5.16)

Proof. Let 6,0 € (0,1) such that 0 + 6" = 1. It is easy to see that

ARy o
P(¢: € An;) = P(¢i € Any) (/h f(t)dt>
4+
< {sup}P’(qbi € ANj)} sup f(t)°h?
irj t
e %"

< sup f(1)°h°, h € (0, ho),
. t

where hg is some nonnegative number independent of ¢ and j. Thereby,

=02

< 0.

a(h) = sup f ()22

|
> VI
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Let T = T(N) > JY1H) 50 that

dJ . 5’ Y
W—O(fb ), andset hO(N . (517)
As mentioned in [27, Theorem 6],
1
N,h)+o|h+—— ) =0 (N"V3). 5.18

Fitting rates of convergence given in (5.16),(5.17) and (5.18), we choose §' = §, 0" = 1/(39).
An arbitrary choice of 9 may violate the crucial condition Nh — oo as h — 0. Choosing
d € (1/3,1/2), we guarantee that all conditions on 7', J, N and h are fulfilled. Finally
E HJ/C;ES) - le =0 (N_1/3). In a similar fashion, we can prove that f}(f) as well as f}sg) have

the same rates of convergence .

5.3.3 Numerical Simulations
As an example, we consider the following Langevin equation as dynamics of the subject
X
dX'(t) = (=AX'(t) + ¢ib(t)) dt + cdW™'(t), t <T (5.19)
X{0) = 2'€R,
where H > 1/2, \, o > 0 and ¢; is a random variable such that E |¢;|* < co,i=1,..., N.

Assume that b2 < b(t)? < b3, for all t < T. The common density f of ¢; can be estimated
by A}(LQ) and ﬂ4), since the condition A is trivial.

For illustration, we simulate model (5.19) with b(t) = ¢ = 1, estimate the densities
of the random effects and compare these to the true data-generating density. In detail,
we use up to 25 exact simulations with A = 3 x 1072, 2 = 0, N = 1000 and T =
100; 10. The random effects are Gaussian distributed, N'(1,0.8), and Gamma distributed,
['(2,0.9), where 2 is the shape parameter and 0.9 the scale parameter. Figures 5.4, 5.5,
5.6 and 5.7 display the estimates /}Lg) and J/”\,(f) for different values of the Hurst index,
H € {0.25,0.75,0.85} and T' = 100; 10. Improving the accuracy of our estimators requires
that both N and T be sufficiently large. However, for T' being only moderately large (
say T'=10 ) and/or H < 1/2 (which is not supported by our theoretical framework), the
estimated curves match the theoretical curves satisfyingly well. In general, the estimators
J?,El) and f,(lg) are recommended in the case where a(-) is unknown, but one has to verify the
condition A’y. The estimators ﬂf) and ]/”}f) require less assumptions, but the results are
more time-consuming as we need to compute g/b\ij and Rg) / U}Z); while ﬁ(Ll) and ﬁgg) require

Ol’lly ai,T-
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Gaussian random effects

Gamma random effects

H=10.25 H=0.75 H=10.85

Figure 5.4. Kernel estimates f,(f) for Ornstein-Uhlenbeck pro-
cess with additive random effects: We drew 50 i.i.d. realizations
of model (5.19) for each of the following settings. First row: Gaussian
distributed random effects, second row: gamma distributed random ef-
fects, columns: different values for the Hurst index H. The thin green
lines show the 25 kernel estimates f,(f). The true density is shown in
bold red, and a standard kernel density estimator for one sample of ¢;’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T" = 100. For more details, see Section 5.3.3.
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Gaussian random effects

Gamma random effects

H=0.25 H =0.75 H =10.85

Figure 5.5. Histogram estimates f,54) for Ornstein-Uhlenbeck
process with additive random effects: We drew 10 i.i.d. real-
izations of model (5.19) for each of the following settings. First row:
Gaussian distributed random effects, second row: gamma distributed
random effects, columns: different values for the Hurst index H. The
thin green lines show the 10 histogram estimates f,(:l). The true density
is shown in bold red, and an exact histogram for one sample of ¢;’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T" = 100. For more details, see Section 5.3.3.
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Gaussian random effects

Gamma random effects

H =025 H=0.75 H=10.85

Figure 5.6. Kernel estimates f,?) for Ornstein-Uhlenbeck pro-
cess with additive random effects: We drew 50 i.i.d. realizations
of model (5.19) for each of the following settings. First row: Gaussian
distributed random effects, second row: gamma distributed random ef-
fects, columns: different values for the Hurst index H. The thin green
lines show the 25 kernel estimates f,(f). The true density is shown in
bold red, and a standard kernel density estimator for one sample of ¢;’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T = 10. For more details, see Section 5.3.3.
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Gaussian random effects

Gamma random effects

H=0.25 H =0.75 H =10.85

Figure 5.7. Histogram estimates f,54) for Ornstein-Uhlenbeck
process with additive random effects: We drew 10 i.i.d. real-
izations of model (5.19) for each of the following settings. First row:
Gaussian distributed random effects, second row: gamma distributed
random effects, columns: different values for the Hurst index H. The
thin green lines show the 10 histogram estimates f,(:l). The true density
is shown in bold red, and an exact histogram for one sample of ¢;’s
(which is unobserved in a real-case scenario) in blue bold. We chose
N = 1000 and T" = 10. For more details, see Section 5.3.3.
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54 NON PARAMETRIC ESTIMATION FOR FSDE’S WITH RANDOM

EFFECTS AND SMALL FRACTIONAL DIFFUSION

This section deals with the non-parametric estimation problem for processes of type
(5.1) with a(xz) = 0, b(t,x) = b(x) and o(t,x) = . We propose a class of estimators of
random effects (common) density f, when H > 1/2. The asymptotic behaviour of the
proposed estimators is established as € — 0 and N (the number of subjects) tends to

infinity.

5.4.1 Model, Notations and Procedures of Estimation
We are concerned with N subjects (X ), Fit < T) with dynamics ruled by the

following general linear stochastic differential equations:

dX'(t) = ¢b(X'(t))dt +edW (1), 0 <t <T, (5.20)
X0) = a2i€R, i=1,---,N, He(1/2,1),

where b(-) is a known function and the random effects ¢; are Fy-measurable with common
density f to be estimated under some regularity conditions (to be specified later). Assume
also that

pr(A) = /e’\“|f(u)du < o0, YA>0, (5.21)

which is obviously satisfied by Gaussian and Beta distributions. The following conditions
guarantee the existence and uniqueness of solutions to (5.20)(see, Theorem 2.2.3 or [80, p.
197]).

Aj: There exists L > 0 such that |ub(x) — u'0(z")| < L (|x — 2'| + |u — u']),

for all u,v/,z,2’ € R
Asy: There exists a nonnegative constant R such that

lub(z)| < R(1+ |u| + |z]), Yu,z € R

Consider the differential equations in the limiting system of (5.20), that is, for € = 0, given
by
dz'(t) = ¢;b(z"(t))dt, z'(0) =z}, 0 <t <T. (5.22)

Our procedures of estimation will be split into three steps
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1. Estimating the functions ¢;b(z'(t)) for any t € [0,7] from the observations
Xt .o XN

Y Y

2. Estimating the random effects ¢;.

3. Estimating the common density function f.

5.4.2 Preliminary Results
We state our main result on the density estimators of the random variable ¢;. Namely,

the non standard kernel density estimators for the unknown density f of unobserved ¢;,
and on his asymptotic property. in the sequel, ¢, = (gi(t), t >0), i =1,--- ,N be a
processes defined by

X'(t), ife' =1

gi(t) = gie(t) =

2'(t), if & = 0.

In many proofs below, we focuss on one single subject and simplify notations by omitting

indices.

Lemma 5.4.1. Under the assumptions A, and Ao, the following statements hold

(i) There exists a nonnegative constant V such that

sup E(g;(t)?) <V, for all . (5.23)

0<t<T
(ii) There exists a constant C' > 0 such that
E|2i(t) —a'(s)|* < Clt — s>, for alli. (5.24)

Proof. Set g; = ¢1(t) and z; = 2'(t). For the statement (i), we fix ¢t € [0,7] and set
U, = Eg?. Using the assumption A, in the third inequality, we obtain

t 2
Uy = E (Io+¢/ b(gs)d8+55/mH>
0

2

IN

3 (23 + () ’E(W,)?) + 3E <¢ /0 t b(gs)ds)

IN

3 (g + (ee/)*°7) + 3t /0 tE(gbb(gs))QdS

IN

t
3 (xg 4 (eg/)**™) + 9R2t/ (1+E(¢*) + Eg?)ds
0

IA

t
Vi + 9R*T / Usds,
0
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where V; = 3 (zj + (e2/)**" + 3R*(1 + E¢*)t*). Applying the Gronwall lemma (see, [73,

Lemma 4.15]) to get

t
Uy <V, +9R’T / STV ds <V, VLT,
0

T
where V = Vp + 9R2T/ TPTT=9)Y/ ds. For the statement (ii), let ¢ > s. We have

0

E(z, —x,)? = E(/std)b(xu)du)z

< (t—s)/ E(¢b(x,))*du

t
< 3R2(t—s)/ (1+E¢* + Ez) du

(5.23)

< BRP(1+EQ”+V)(t—s)

Let K(u) be a bounded function with finite support [A, B] (A < B) and satisfies

B
K(u) =0, forallué¢[A,B] and /A K(u)du = 1.

It is clear that / | K (u)|" du < oo, for all r > 0. Fori =1,--- | N set
R

Qic(t) = %/OTK (8 - t) dXi(s), te[0,T].

Theorem 5.4.2. Fori=1,--- N

sup E |Q.c() — oub(a (1) Y

0<t<T

2h2H—2

provided that € — 0, ase,h — 0.

If we assume that € = €, and h = /1) there exists hg > 0 so that
~ : 1
en(t) = 00l (1)| =0 (7)),
@0 - antw)] ., =0(:

for allt € (0,T) and n € N*, with e, < (LA h{*").
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Proof. Set Q.(t) = @1,en(t)7 ¢ = ¢, WH = W), 2, = 2'(t) and X,
sufficiently small h (say h < hg), we have [A, B] C (=t/h, (T —t)/h). Thus

t/h

Hence,

E(Qut) - b))’ = E (}1 /OTK ( - t) ax, ¢b<xt>>2
_ <f1L /OTK (S - t) (6b(X.)ds + edWH) — qbb(xt)f

(T—0)/h
- E (/ K (u)(¢b( X4 hy))du

—t/h

_ /AB K (u)(pb(a))du + Z/OTK <Sh_t> dWSH)

B
= 8 ([ K M)~ oborirn) du

(T—t)/h B
/ K(u)b (Xtyn) du = / K(u)b(Xiinu)du, forall 0 < h < hg.
_ A

= Xl(t). For

(5.27)

2

) /AB K () (6b(ps ) — db(a0))due + ;/OTK (S ; t) de)z

= E(h+hL+5)*<3(E}+EL+ED),

(5.28)

where [, I and I3 designate the integrals in the fourth equality among those above.

We have

R = ( / K () (8b(Xen) — ¢b<xt+hu>>du)2

IN

(B - A) / K2WE (6b(X1pe) — Sb(ipm))? du

< L*B-—-A) sup E(X, — z,) /K2

0<s<T

< C(L,T,H, f)e*L*(B — A)/ K*(u)du — 0 as € — 0,
R

where C'(L,T, H, f) is a nonnegative constant due to Lemma 6.0.13,
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e~ 5/ BK<u><¢b<xt+hu>—¢b<xt>>du)2

IN

B B
/ KQ(u)du/ E(pb(zisny) — gbb(avt))zdu (by Cauchy Schwarz inequality)
A A
B
< LQ/ K2(u)du/ E(1 4 — 20)°du (by Ay )
R A
(5.24) B )
< L2/ K2(u)du/ Ch? |ul” du
R A
< C(L,AB,K)h* —0ash—0, (5.30)

B

where C(L, A, B,K) = C’L2/ K2(u)du/ lu|? du, with C is the nonnegative constant
R A

appearing in (5.24).

Applying Theorem 2.2.2 and the Jensen inequality, respectively, we obtain
T 2
€ s—1
E = E(- [ K awl
e ) )
Cxe ([T .y (s—t 2
< KYH(Z )4
= TR /0 no )%
2 272H B 2H
< M / KYH (u)du
h? A

< C%2?h*H(B - A)2H1/ K*(u)du — 0 as e, h — 0, (5.31)
R

provided that e2p*~2

— 0. The second inequality above is justified by change of vari-
ables; u = S—_t Note that C'y is a nonnegative constant due to the Hardy-Littlewood
theorem (see, [80]). As we can see in (5.29), (5.30) and (5.31), the last three expectations in
(5.28) are bounded independently of ¢, thereby (5.25) follows immediately. For the state-
ment (5.26), note that (5.27) is valid if h < hg, that is &, < hi~*. Combining (5.29),

(5.30) and (5.31) with the condition € = ¢,, < 1, we get

H@% (1) = ob(a)|| = OfenVhveh™)

= 0O (Ei/(?’_QH)) , forall t €[0,T],
which completes the proof. O]

The particular cases (t = 0 and t = T') influence the choice of support [A, B], since
(5.27) is only valid if A = 0 for the first case and B = 0 for the second one. Now, we are
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ready to estimate the random effects ¢; by

~ 0. (t
¢§173 = Q—"() for some fixed ¢ € [0, 7). (5.32)

b(wi(1))’
It is natural to replace x*(t) by X*(t) in (5.32), since X*(t) — 2(t) in L*-sense, for all t as

en, — 0. Thus we propose the following estimators of ¢;

g/g@) :: @i,en(t)
)

which converge toward ¢; in probability. The following theorem gives the rate of conver-

for some fixed t € [0, 7], (5.33)

gence of &51(172 toward ¢; in probability.

Theorem 5.4.3. Fori=1,--- /N and t € [0,T], we have

(35H). (5.34)

Proof. We simplify notations by omitting ¢ in (5.32). Let and ¢ > 0 and set v* = 1/(3—2H).
By virtue of Lemma 6.0.14, we derive from (5.26) the following result

30— g =

@1 € *
en _ 1 — O Y .
gblb(:vl) P (€n )
Hence,
~ 2
sup P (5;% al,n _ ¢1‘ > C) < supP gbl + - —27 ¢le(7;nl) —1] >c
n n 1
< P(¢f p e | Qe _
< o] > c) + sup €, gblb(xl) 1| >c

ce%)

]

It is well known that standard kernel density estimators for the unknown density f of

w_¢z
Nh ( ) he >0,
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where GG is an integrable kernel that has to satisfy some regularity conditions. Since the
random effects ¢; are not observed; it is natural to replace them by their estimates to obtain

the following kernel density estimators

N (1)
ROV T—Gin )
AR (5.35)
N 2) :
1 T — @
7(2) o ,M
fs(z)_Nh5;G< hg )7

and prove their consistency as n and N become large. We focus on the estimators /E)

because the same procedures can be applied to get the asymptotic behaviour of ﬁ(j)

5.4.3 Integrated squared risk bound of the estimator /}Li)

We make the following assumptions which will be used to obtain an integrated squared

risk bound

Aj3: The kernel G is of order [ > 1, that is,

/ G(u)du =1, / W G(u)du =0, forj=1,--- 1
R R

For the construction of such a kernel we refer to [110, p. 10]. Assume also that G is
differentiable with

1G] + 16l oy < 00 and /]R ul? |G(w)] du < oo,

A,: The density function f belongs to the Nikol’ski class N (4, R) defined as the set of
functions f : R — R whose derivatives f) of order | = ] exist and satisfy

1/2

{/ (fO(z+1t) - f(l)(g:))Qda:] < Rt forall t € R,
R
where | @] denotes the greatest integer strictly less than the real number .

Theorem 5.4.4.
Let the assumptions Az and Ay be fulfilled. Assume further that there exists v > 1 such
that

lim v (v) < oo, (5.36)

V—00
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where P(v) := sup P ((Zﬁl}l —¢1)? > v52> and 6, = /B Then, by considering esti-

mator j/ﬁ) given by (5.35), we have

<o 10w | IGag
L2(]R Nh,a hg " ,

E|f- 7Y

where C' > 0 is a nonnegative constant.

Proof. By virtue of Lemmas 6.0.15 and 6.0.16, we obtain

2 2
e[, T

- s

L2(R) *(R)
e ol ) _ A
< 2l fhsan(Rﬁszhs B oy PE N —ERY L
[ellis
< 2006 RIF + P8 ol —EfY 5.37
< 2000 R+ —E = o ~ERD| (5.37)

where C(l,d, R) is a nonnegative constant due to Lemma 6.0.15.

There remains to find an upper bound of the last term in (5.37). First, note that
fn.(z / f(y)Gh.(x—y)dy = E (Gp.(x — ¢1)). Taylor’s theorem with integral remainder
yields

O -
Gl =)~ G o — 0 = LA [ (Lo = o+ uton -3 ) a
0 £

£

1 N
Now, by setting g(x,u) = G’ (h—(x — ¢1 + u(Pr — ¢§121))), we have

| —EGO)

— [ [B(Gnte =)~ Guto— o) as
< A{E(Ghe(x—afi)—Gha(z_gbl))zdx

E <¢>h_¢> [ /Olg@,u)du)zx]
E W (/01 (/}RgQ(x,u)dl')l/ZdU>2

The last inequality given above is justified by the generalized Minkowski inequality (see

1 -
110, Lemma A.1l]). By change of variables y = — (z — ¢1 + u(¢y — () , we get
h 1n

#(R)

IN

IN
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/g2(a:,u)d:c = HG'H;(R) he. Thus,
R

e IZ2 ey

L2(]R) - he 3

| —EGO)|| B (1 - 1) (5.38)

But we know that
E(g1 —d1h) = /0 P ((61— )2 > y) dy
= 62 62 ) dy
n/o <(¢1 ) >v )
< 8 <1—|—/ w(v)dv>. (5.39)
1
(

Therefore, the combination of (5.37) and (5.38) with (5.39) yields the desired result. [

Corollary 5.4.5. s
2 2448
Set he = 657 and N = [0, *® | + 1, where 6, = /1) we have

—o (o).
*(R)

The integrated squared risk bound of f,gi) is strongly related to the convergence of the

sy

estimators &52(112 in L2-sense, which is equivalent to the uniform integrability of the sequence

(o

integrability does not help us to get a precise rate of convergence of QASEQ toward ¢;, it is not

tn>1 }, since the convergence in probability was established. Even this uniform

clear how to verify it under the proposed assumptions. Thus, the pointwise risk of A,(li) is
worth being examined in the next subsection. For this end we do not need any assumption
like (5.36).

5.4.4 Pointwise risk bound of the estimator ﬂli)
In this subsection, in stead of considering A3 and A,4, we make the following assump-

tions :

A’3: The density function f satisfies the Holder condition, that is,
|fw) = f) < Dlu—0|", Vu,v€R,

where D and v are some nonnegative constants.
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A’;: The kernel G is differentiable and satisfies M := sup |G(u)| < oo, M' := sup |G’ (u)| <

oo and / lu|” |G (u)| du < oo, where 7 is nonnegative constant appearing in A’;.
R

Theorem 5.4.6.
Let the assumptions A’s and A’y be fulfilled. Then

\f,gj)(:p) _ f(x)( — Op <5nh;2 VYV B! NN)  VreR,

where 6, = /G=2H),

Proof. Let x € R and ¢ > 0, for a nonnegative sequence (\,),>; with A, — 0 (to be

specified later), we have
~ c
sup P (‘ 71:)(95) — f(x)’ > c)\n> <supP <‘ﬁ$)(3§) — fn.(z)] > 5)\”)

+supP (‘ﬁg?(x) — Ef,si)(x)‘ > E/\n>

3
1) ¢
—i—sgpP(‘]thE f(x)‘ > 3)\n)
~ c
<supP (Sup ‘ﬁ(li)(x) — fn. (x)) > 5)‘”)
2
g SWE |V (@) ~Ef V@)

+supP (Sl;p ‘Eﬁﬁﬂ?(m) - f(x)‘ > g)\n) . (5.40)

By virtue of Lemmas 6.0.17-6.0.20, the RHS in (5.40) tends to zero as ¢ — oo, provided
that A, > <6nh;2 Vh]V h;l/\/ﬁ) O

Corollary 5.4.7.
1 242y
Set he =627 and N = |6, 7 | + 1, where 6, = €/ We have

0@~ f@)] = 06 (877), vaeR

5.4.5 Implementation issues and numerical applications
In this section, we consider SDE’s given by (5.20) with ¢; are either Gaussian or Beta
random effects. In this case, all assumptions made on the associated density function are

met. For the sake of optimizing our programs, we choose K(u) to be rectangular kernel

1
given by K(u) = §X(\u\§1)- This kernel is very good for random effects taking values in
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R (Gaussian). But, in case where random effects ¢; € K (compact set), one has to trim
the proposed estimators by xk. The good choice of the kernel G(u) would be to consider
the Gaussian kernel, because it satisfies the assumptions Az and A). Two models are
x
considered : b(z) =1 and b(z) = —

5.8 and Figure 5.9 below. Results, are satisfactory overall. Increasing N and/or decreasing

with curves illustrated, respectively, by Figure

the value of € improves the accuracy of both estimates f,(i) and f}(bf)
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H =0.55 H =0.95

Figure 5.8. Kernel estimates f&) and fi(z) of f. The exact curve of f and
its estimate based on true values of random effects are given in green, blue, black
and red, respectively. The first row illustrates the case where b(z) = 1 and the
x
second row illustrates the case where b(r) = ——, with Gaussian random effects
@)=
¢; ~ N(1,0.8) and (T, N,¢) = (5,10%,1072). (For interpretation of the references

to colour the reader is referred to the electronic version of this thesis).
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Figure 5.9. Kernel estimates f}(i) and f,g) of f. The exact curve of f and

its estimate based on true values of random effects are given in green, blue, black
and red, respectively. The first row illustrates the case where b(z) = 1 and the
x
second row illustrates the case where b(r) = ———, with Beta random effects
(@) V1+ a2
¢; ~ B(5,1) and (T, N,¢) = (5,10%,1072). (For interpretation of the references to

colour the reader is referred to the electronic version of this thesis).
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CHAPTER 6
CONCLUDING REMARKS AND PERSPECTIVES

The intention of this thesis was to provide statistical methods for performing both

parametric and non parametric estimation on two classes of REM with dynamics ruled by
1. Nonlinear SDE’s with generalized random effects;
2. Linear FSDE’s with random effects, when the Hurst index H > 1/2.

In Chapter 4, we considered the first class of REM with dynamics ruled by (4.1). As starting
point, a class of estimators of the population parameters has been proposed in Section 4.1.
We note that SDE models incorporating random effects have been considered in few recent
works (e.g., [25] ) focused on models with linear drift. Other papers (see, [83, 82, 81])
considered a nonlinear models and provide only the consistency results. Our proposed
estimators concern generalized linear and nonlinear drift, and are shown to be consistent
and asymtotically normal. The conditions we provided are not necessary as general as
those conditions in the literature. These conditions can be reduced, however, the general
conditions may be very difficult to verify with mathematical rigorousness. Simulation
results for the example 4.1.5 have shown that our proposed estimators are close to the true
parameter values. Compared to Delattre’s results (Table 4 in [25]), our results computed
from 100 datasets are excellent, even both N and R are not too large. Results obtained for
nonlinear models (Example 4.1.2) are very satisfactory, and the accuracy can be improved
by increasing only N. Compared to N (number of subjects), increasing R have no significant
impact on the properties of estimators and consume more time. To weaken the imposed
assumptions on our model, we expanded the likelihood function in Section 4.2 by means
of iterated It6 integrals (with random integrands). To implement examples for which the
weakned assumptions are met, one has to overcome the problem of simulating the multiple

integrals of the form

T t1 tn—1
In(h) ::/0 /0 /O Wty ta, -t )Wy, - dW,dWi, n>2.  (6.1)

This problem is only solved in literature for a particular case where h(-) is a tensor power of
a nonrandom function in L*([0,T]) (e.g., [28]). Simulating the integral (6.1) in the classical
way, recursively, presents a computational chanllenge. In Chapter 5, we considered the
second class of REM (5.1), for which three cases are separately discussed in sections within

this chapter
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e Case 1: b(t,z) =1land o(t,z) =1
e Case 2: b(t,z) = b(t) and o(t,z) = o(t)
e Case 3: a(z) =0, b(t,z) =b(x) and o(t,z) =¢

In Section 5.2, we considered Case 1, for which we have provided a fully Likelihood
parametric estimation. We are essentially concerned with the estimation of Hurst index,
as well as with the mean and variance estimators of the random effect that has a Gaussian
distribution. All qualitative and asymptotic properties of the estimators are obtained, when
the population of subjects becomes large. The study of this case suggests several important
directions for future research. First, what are the asymptotic properties of the Maximum
Likelihood estimators for p and w? when the Hurst index H is unknown? Given that
the model is fully parameterized, one may wish to estimate H, p and w? simultaneously.
Second, the study of this case assumes that the model is linear and the diffusion is constant
and equals 1. This assumption is not verified in almost all real applications. So, one can use,
for example, Fuler schemes approximation. However, it is not clear how to get an explicit
approximation for the Maximum Likelihood function. Such extension would be worth being
studied from both theoretical and application points of view. Third, as mentioned in Section
5.2, we may estimate the population parameters by using double asymptotic framework.
Such an idea was applied in Section 5.3 to tackle the non-parametric estimation for REM of
type: Case 2. In this section, we addressed the open research question of how to estimate the
density of random effects in FSDE’s in a non-parametric fashion. To that end, we considered
N ii.d processes X“(t), 0 <t <T, i=1,---, N, where the dynamics of X" is described by
an FSDE including a random effect ¢; . The non-parametric estimation of the density of ¢;
was investigated for a general linear model of the form dX; = (a(X;) +¢b(t))dt +o(t)dW},
where b(-) and o(-) are known functions, but a(-) is possibly unknown. We studied the
asymptotic behaviour of the proposed density estimators for the whole range H € (1/2,1),
built kernel density estimators and studied their L?-risk as both N and T tended to infinity.
We also provided histogram estimators in a specific case where f has compact support,
which was for two reasons: First, we aimed to simplify technical computations, and cases
where the random effects density f has unbounded support are less important, since data
could always be mapped monotonically to [0, 1]. Second, densities with unbounded support
occur less often in practice. For the proposed histogram estimators, we provided their L'
-risk for both N and 7' = T'(IV) tending to infinity.
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With Mémin’s results (see, Theorem 2.2.2) , we can have only a lower inequality of
the form
E

T p
/ BOAWE| > Crap B2 o, » When H < 1/2.
0

This inequality would not help us to prove the convergence of both @T and @T toward

¢;, when H < 1/2. This suggests to apply more advanced techniques, such as Malliavin
calculus. As mentioned before, our results are very good even for the case H < 1/2, which
is not supported by our theoretical framework. This is can be justified by recent results of
Hu et al., [54], where the authors provided moment estimates and maximal inequality for
divergence integrals w.r.t fBm, when H € (0,1/2) U (1/2,1). It is then convenient to see

b(?)

T

our integral of interest / Tt)dVVtH as divergence integral (or Skorohod integral), so that
0 O

for H < 1/2 and p > 2, we have

T @ -
/0 )"

where C' > 0 is constant independent of 7', A € (0, H] and § > 1/2 — H, provided that

p

E < CTPH(1 4 TPP 4 TPPHPY, (6.2)

2\ ) gK(t—s)'B, forallt >s>0

Our example (b(t) = ¢ = 1) implemented in Subsection 5.3.3 satisfies Az, with any arbi-
trary §. Choosing A, f such that 1/2— H < < 1/2— )\, will guarantee the convergence of
ggi,T and ¢~5i7T toward ¢;, when H < 1/2. An interesting extension of this study would be to
consider models with nonlinear drift. In this case, one has to face the problem of estimating
random effects ¢; . Methods of parametric estimation, such as the maximum likelihood
technique, may help to estimate these random effects. The essential idea of non-parametric

estimation within this chapter is to proceed in two steps :
e Estimate random effects;

e Use classical density estimators with random effects replaced by their estimates.

The third case of our REM was treated in Section 5.4. Both L%-risk and pointwise risk (in
probability) of our estimators are examined. The simulations were performed for different
drift term and different density of random effects (Gaussian and Beta distributions). The
inference of short-range models with random effects persists as challenge, and is worth
being studied from both theoretical and application points of view.
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APPENDIX A.

Proof. (Proof of Proposition 4.1.1) Under A;-Ay, the first part is classical result
which follows from Theorem 2.1.16 (for more details see, [73, p.292]). Now, it remains to
construct the exact likelihood based on the marginal densities of (X'(¢), 0 <t <T;). Let

h be a nonnegative measurable function on Cr,. Since (¢;, X') — h(X") is measurable on
R? x Cr,, we have Eq; (h(X")) = Ep; (h(X")), but

Eqy(h(X') = B (Eay(h(X")|6))
~ Boy(0(6) = | ale0)u(e)av(e),
with

W) = By (X0 =9)) = [ ha)dnx. (o)

dpxi : 4
= [ ) | )| duxe, () = B () L (X0, 0)
Cr, MX; £0.

k3 07x1/

By virtue of Fubini theorem, we have also,
Bey(WX) = [ 9o 0)Bn (CX)Ln (X', 0) ()
R

= Ep {h(Xi)/Rg(QO,G)LTi(Xia% wo)dv ()

%

dP , ,
Hence, e /LT,L. (X' 0, 00)9(p,0)dv(p), P'-a.s. and the independence of the indi-

dPi
viduals X" yields the likelihood function. m

Proof. (Proof of Proposition 4.1.2) 4
Let B,(X", ¢, p0) = Hy (X'(s)) (Hl(Xz(s), ) — Hi(X'(s), gpo)). Clearly,

T T
) i ) . 1 @ :
LTi (Xl7 2 900) = exp (/ 68(X27 ¥, ()OO)sz(S) - 5/ BS(X17 2 900>2d8> :
0 0
Let ky, = (L7 (X', 0, ¢0)|1= , t €[0,T;]). For each ¢ € R”, k, is a supermartingale
¢

permitting the following representation: k,(t) = 1 + / ko (8)Bs(X", ¢, 00)dW'(s) which
0
follows immediately from the It6 formula. Applying Fubini theorem for stochastic integrals

(see, [73, theorem 5.15 ]), we assert that A;(X",0) =1 +/ vs(X*, 0)dW*(s), with
0

vs(X',0) = /LS(XW, ©0)Bs (X", ¢, 00)g(p,0)dv (). (6.3)

The measurability of X* — ~v,(X*, o) on Cr, follows from the joint measurability of the
following two functions:
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e The function (X*, ) — B,(X", ¢, vo) which is measurable since H,(x) and Hy(z, @)
are non anticipative functionals.

e The function (X", ) — L,(X", ¢, o) is also measurable (see, [25, Proposition 2]).

Now, as X' are strong solutions, then A;(f) are FWT) measurable.  Applying (73,

Theorem 5.9], we claim that there exists a process (‘Ifi(t,G), ]-"Wi(t)> such that
0<t<T;

T,
P (/ Wi(t, 0)dt < oo) =1 and for all ¢t <T;,
0

E(Ai(xi,e)\fw“t)) = exp Uotqﬂ'(s,e)dwi(s) —%/Ot \Ifi(s,H)st}
x E(A;(X",0)),

where ,
Vi (XZ7 8)

U'(t,0) = -
1t / (X7 0)dW(s)

)

T ‘

where (X", ) is given by (6.3). Under the condition E (/ V(X7 <p0)ds> < 00 we can
, r ’ 4 1 [T

use the martingale property, thus A;(X",0) = exp / U'(s,0)dW*(s) — 5/ U'(s, G)stl

0

0
and the log-likelihood function would be of the form:

r() :Z/O Wi(s, 0)d(s) —%/0 Wi(s, 0)2ds.

[]

Proof. (Proof of the statement (4.7)) Let 6 € © and set Jx(6p,0) =
AP (X, 0,)
AP (x1,0)
ishes if and only if @ = 6, (this can be easily justified by the identifiability assumption).
We wish to show that Jx (6o, ) is nonnegative for 0 # 6y. Set Apg, = {A1(0y) > A1(0)}.

For each 6 we have

0, log . We simplify notations by setting A;() = A(X',0). Tx (0, 0) van-

AT (X 6)
TIx(00,0) = Ey log —=2——2—~
K0 = B B

10 €+A1(90)
008 AL (8)

€+ A1<90) €+ A1(90>
Eq, § log | ————~+ Eq, § log | ————— c
S v RO R A ] e v ] RS

€+ A1 (90)
Eg, {log {a—l——Al(G) XAG o0 (-
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We shall show that the RHS of the last inequality is nonnegative. Using the fact that,

log (x + a) X(a<b) > log bX (a<t), for all a,b € Ry, and x € (—a,o00), we have

x+0b
TR I LT R R

If Py, (Afg,) = 1, the RHS of (6.4) is exactly the Kullback-Leibler information. Thereby
JIx(00,0) > Ix(0o,0) > 0. If Py,(Apg,) = 1, we have also Jx(6p,6) > 0. In general, using
the fact that, —log(z) > 2 — 2v/z, for all z > 0, we develop the RHS of (6.4) as

Ego{log [AAlf(H;))} XA;,BO} = - / ~ log Al(9>( w)dP} (w)

> 2—2/C 1/A1 w)A; (0p)(w)dP! (w)

Z 2_2/ \/Al Al 90 d]P)l

6,00

> Py(Aga,) + Py, (Ag,)
[ VRO - VRG] @)

Hence, the proof of (4.7) is complete. ]

Proof. (Proof of the statement (4.9)) First, we recall some notations which will be
used. Py denotes the marginal distribution of the process X' on (Cr,, Br,) dominated by
P! = py , with

©0,X
dP}
) = [ LalX o (o boin ),
dﬂxl L
and Lp(X' 0,00 = dluX—l*"X(Xl) (see Subsection 4.1.2).
@, X1

For any functional h(X"), we have

En(h(X) = [ W@ (@

£,z
1

- / /C ) h(z)dux: | ()9(p: b0)dv(p)-

On the other hand, the expectation of a functional H (X', ¢1) under P, with ¢; ~
9(p, 0o)dv(p) is given by

BH(X'6) = [ H(w)dix oo 9)

= / ; H(:c,go)duX;’zl(x)g(%go)dV((P)

106



T
By, / A(XYds < Ty sup By Ay(XY)
0

s<Ty

< Tisup | /C Ao, (gl t0)dv()

s<T1
< Ty sup EAL(XY) = Ty sup E | X ()] < oc. (6.5)
s<T1 s<Ty

In the last inequality A,(X"') is considered as functional of X' and ¢;; and the fact that

E |¢1|*" < 0o which in turn implies sup E ‘X )’% < o0 (see Theorem 2.1.16 and note
s<Ti
that (z', ¢1) is the initial condition of (4.1) with i = 1).
O

Proof. (Proof of Proposition 4.1.5) In what follows, we will systematically use BDG
inequality. We simplify notations by setting Ay(0) = A (X, 0), W, = W(t), ¥u(t,0) =

(X, 6) CPu(X1,6) DXL
8—9k’ @Z)k](te) = W’ and 77Z)lk] (t,G) = W (1) FlI‘St, note that
T
—log Ay ()| < et
‘aek og Ay ( ‘ <e /0 Ui (t, 0)dWy|

which implies

Eg, {alogAl(e)alogAl(e) }2 < % {EGO <M>4 By, ((‘Jlog—AM))”‘}

00y, 04, 04,

_51{1@90(/ Uit 0) dt) +an</ Wb;(t,0) dt) }<oo.

In particular I)(?(GO) is finite. (ii) Let 6 € B,(6p). For sufficiently small r, the mean value
theorem yields for each k,j € {1,--- ,d}

. 0*log Ai(fo) 0 log Al(e)‘ - Ti 8 1ogA1(e)|0 9
0€B,(6o) 90,00, 00,,00; = 00,00,00; " |’
03 log Ay (0)

where 6" is the maximizer of Z which depends only on B,(6y) (that is,

06,00,,00,

193 log Ay (6)
it depends only on ). Set H(X' ) = Z We will prove that
!

g0 |.
— | 90,00,00);
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Eg, H(X",6y) < co. First, note that

96,0000, 2
where - G1(6) = Alww%
) = O 5,
) = ) g
Gi(0) = _Al(g)—2%20/:1a(6i)81219(l@)
i =m0

We are going to show that Eg, |G1(0)|, Eg, |G2(0)| and Ey, |G5(0)| are finite for all § € B,.(6y)
and 0 < r < rg.

T
EQO ’G1(9>’ S €1E90/ Q/Jlkj(t,e)th
0

By, ( /0 it H)th) 2]

T 1/2
[EQO / Vi (t, 0)2dt
0

1/2

€71

IN

Ve

£

<

< 00,
where C5 is a nonnegative due to BDG inequality. Hence Eq, |G1(0)] is finite.

T T
By, |Go(0)] < e2Ey, / V(. 0)dWY, / (8, 0)dIY,
0 0

. 2%2 {Eeo (/OT¢lk(t,0)th)iEeo (/OT%(t,H)th)z}

C E ' 0)2dt + ! 0)2d
522 | o ; Ui(t, 0)°dt + Eq, ; V;(t,0)%dt » < oo,

IN
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Finally, we have

E90 |G5<0>| < 2573E90

T T T
/ (L, 0)dIV, / Olt, 0)dW, / s (t, 0)dWY
0 0 0

T 2 T T 2
<g? {Eeo </ Uit Q)th) + Egy (/ W(ta@)dwt/ ¢j(t79)th> }
0 0 0
<e3{E : ozt + S ' 0)2d 2
<e 90/0 (1, 0) t+7 0 (/0 Yi(t, 0) t)

C T 2
+74]E90 ( zpj(t,e)?dt) } < 0,
0

where () is also a nonnegative constant due to BDG inequality. O]

Proof. (Proof of Proposition 4.1.7) In this proof, we will systematically use BDG
and Jensen inequalities, and Fubini theorem. (i) Set AEE)(Q) = A9(X*0). Since
} B(X(s), ¢, gpo)’ < Bs(p), where S5(p) is nonnegative deterministic function, we have

Eg, (L (Xi @, wo)ﬁ(Xi( ); s 900))2 <

Ry /5 e

o)
< Bs(p)? exp (3 /OT 5u(90)2dU) :

Thus

Eg, / (X707 < / / Egy (Le(X*, 0, 00) BEX(5), 0. 00))” (0, 6)di(p)ds

/ /0 Tﬂs(so)gds exp (3 /0 Tﬁu(w)Qdu> g(p, 0)dv ()

= / ety Pl g (5 0)du(p) < oo,

IN

where we used Cauchy Schwarz ineguality and the martingale property in the last inequality.

For the continuity of the function AEE)(H), we use the Kolmogorov-Chentsov criterion (2.3)
with constants to be specified later. Let 01,0, € Ny, where Ny is an open set such that
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(4.13) holds true. We have

2r

g, A9 (01) — A9 (6y)] = (1+ ) 2 Eq, [A(XT,60)) — AX7,6,)|"

0

— (14¢)”E,, ( [ 12X 0s0) b, 00) = g, dV(sD))

C2r . i ’
< Axar 161 — 62 /EGO(LT(X ,©,20))* h(p)dv ()

C2T 20 T 2
< (1 T 5>2r Hel — 92” "”/e/\fo Bu() duh((ﬂ)dV(gO) < OO,Wlth \ = 47“2 .

Once again, we used Cauchy Schwarz ineguality and the martingale property in the last
inequality. By choosing r so that ¢ = 20r — d > 0, we conclude that Agg)(ﬁ) is continuous.
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APPENDIX B.

Let G,/ denote the class of nonnegative random sequences {X;}}_, on the probability space

(Q, F,P) such that for all m > 0, EX]" < co. Let P (G,") be the subclass of G, for which
the following statement holds:

n n/2m
EJ[x: < (qu EXE") .

Lemma 6.0.8. (i) Forallm >0 andn € N*, Gt C GV, where G = {u™ ; u € GI}.
(ii) For alln e N*, GF =P (G}).

Proof. The first statement (i) is trivial. (ii) By induction on n, we shall show that
G Cc P(Gy) forall n > 1. G C P(G{) follows immediately from Cauchy Schwarz

inequality. Assume that G;” C P (G) and let {YQ}?;T € G'.,. By using Cauchy Schwarz
and Lyapunov inequalities, respectively, we obtain

n+1 n
E[][vi = Evi]]vin
=1 =1 ) 1/2
s@m“@ﬂm)
=1
<

on+1 1/2n+1 & / 2
(o) (B )
i=1

where Y/, = Y;3;, i = 1,--- ,n. By (i) and hypothesis we have {Y;’H}?:l € Q:[Q cgrc
P (Q:[ ), which yields

n+1 _— 1/2n+1 on n/2"+1
E[]v < (Bv¥) (sup EY/, , >
pale 1<i<n
e 172711 o\
c o) (g,
2<i<n+1
ntll
n 2n
< < sup EY;? +1> .
1<i<n+1
Hence G, ; C P (G,5,,) and the proof is complete. O

Proposition 6.0.9. Under the weakned assumptions A’y-A’s, the individual density
Ai(X",0) given in (4.15) is continuous in 0 Py, -a.s.
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Proof.  Once again, we simplify notations by omitting indices. Let 61, 03 € Ny (Ng
is an open set containing 6). By using Lemma 6.0.8 and the fact that |a +b+¢|" <

2272 (la|]" + |b]" + |¢|"), for all a, b, ¢ € R and r > 1, we obtain

n n
Eg, [ [ B(X (1), 0 00)" < M*Eg, [T (14X (@)™ + [lel™)*
=1

=1
n/2m
< M [supBg, (14 |X,[" + ||sou”2>2”“7“]
t<T
Cn/on n/2m
< a2 [SupEeo (1+|Xt|“2"“’“+Hsoll’”z”m)]
t<T
< M2nr24nrfn/2”_1 1+supE90 ‘Xt‘%nr_i_ ||¢“272nr
| <T
< M2n7‘24nr—n/2"*l _1 _‘_Méylm“ + HQOHQWQm“] )
Thus
2r 1/2r 1) c" yinr 2y9nr 12
{EIA™(X00) - A" (X, 0)P L < Cllor =02 ,{1+M31 + [Tl h(«ﬁ)dV(cp)}
n>1 \/ni
< O — 0P S [ a2y
< 1— 02| n%:l Wl + My T e
where ¢ = 4M X/T"C,. ]
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APPENDIX C.
Lemma 6.0.10. For all ¢ > 0 and a € (0,1), we have
P(|Z1+ Zs] > ¢) <P(|Z1] > (1 —a)c) + P (|Z] > ac),
where Z1 and Zy are two random variables.

Lemma 6.0.11. Let (X,,, n > 0) be a random sequence that converges weakly to a random
variable X. Let A be a Borel set such that P(X € A) > 0 and P(X € 6A) = 0, where §A
denotes the boundary of the set A. For sufficiently large n, we have

E [X(x.en) = X(xea)| < V2P(X € A)* {P(X, ¢ A)'* +P(X ¢ A)'/*}.
Proof. Simple computations yield
E |X(xnea) — Xxea)| = E (X(xuea) — X(XGA))2
= P(XeA)-PX,X,€cA)+P(X, €A -P(X, X, €A
= E{x@xea (1 — X(xnen) } + E{X(xnea (1 — x(xen)}
< P(XeAP(X, ¢ A" +[P(X,c AP(X ¢ A)]? (6.6)

(6.6) is justified by the Cauchy-Schwarz inequality. Since {X,}, ., converges weakly to X,
then by the Portmanteau lemma (e.g., [113]) we have

P(X, € A) <2P(X € A), (6.7)
for all n > ng, where ng is sufficiently large. The desired result follows from (6.6) and
(6.7). m
Lemma 6.0.12. Let X;, i =1,--- , N, be a sequence of i.1.d random variables with common

density f. Assume that f is continuous with compact support A C R. Let A;j(h) =
[hj,h(j+1)), j=1,---,J denote all Borel sets for which A (A;(h) N A) # 0. We have

J
1 N2 =
Jim — ZZIP’ (X; € A;j(h)?=0.
i=1 j5=1
Proof. Actually,
h(i+1)
supP (X; € A;(h)) = sup/ f(t)dt
1,J J Jhj

< sup f(t)h - 0 as h — 0.
¢

Let € > 0. There exists hg > 0 such that P (X; € 4;(h)) < 2/, for all i and h € (0, hy).

Hence ;
%ZZP X, € A;()" < (g}) < o0,

=1 j=1 jZl‘]
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APPENDIX D.

Lemma 6.0.13. Let the assumptions Ay and Ay (or A’) be satisfied. We have
(i) Fori=1,--- N andt >0, we have

|Xi(t) — 2 (1) §e<|Wi’H(t)\+L(|¢i|v1) /0 eL<¢iVl><t—s>\WivH(s)|ds). (6.8)

(ii) Fori=1,--- N, we have
3LT

. 4 9 2e
E (X(t) — 2i(t < 2% (TH 4
oszeT (W -a0) = 6( °H + 1

= C(L,T,H, f)e?

LTI )

where 17 () is defined by(5.21).

It is easy to see that (ii) in Lemma 6.0.13 can be generalized as follows

sup E|X'(t) — xi(t)’2p = 0%, foralliandp>1

0<t<T
Proof. We focus on one single subject X' and simplify notations by omitting indices. Let
X; and z; be solutions to equations (5.20) and (5.22), respectively. For the statement (i),
we fix u; = | Xy — x|, so

Uy =

/ (6(X.) — db(z.)) ds + W/

t
< / |6b(X,) — ¢b(xs)| ds + & [W/|
0
¢
< L/ usds +e |[WH|  (By Ay ).
0
But, if the alternative condition A’ is considered, we use the fact that |b(z) — b(2")| <
L)z —2a'|, for all z,2" € R (L :=sup |b'(z)]). Hence,
t
w < L(|9) v1)/ wuds + e |WH].
0

By applying Gronwall inequality (see, [73, Lemma 4.15]) with ¢ = L(|¢| V 1) and v(t) =
e [W/|, the statement (6.8) follows imediately.

For the statement (ii), we set ¢' = |¢| V 1 and apply (i) to get

t 2
sup E (X, —z,)° < 2¢% sup {E(WtH)2+E (Lgb'/ eld't=9) ‘WSH‘dS) }
0

0<t<T 0<t<T

2 TLY)? 54 r
< 252{T2H+fE (%BQL‘Z’T)/ E|Wf|2ds}
0

3LT

< 2¢2 (T2H+ 2e

LTT*H
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2
where pr(\) is given in (5.21). In the last inequality, we used the fact that % <e", Vx> 0.

[]

Lemma 6.0.14. Let @), Q,, n > 1 be random wvariables on the same probability space
(Q, F, P). Assume that |Q, — Q| = Opd,, with §, — 0 as n — oo. Then,

%_1‘:()@”.
Proof. Let ¢ > 0, we have
Q@n - |
sup P 5—1 > o, = supP |—|[5n Q,— Q] > ¢

< supIP( ! +l[5_1|Q —Q|]2>c)
T o2 2t T
< Lo oY bswpr (L0, - 0P > &5
= T \ziep T2 e 2"

< P(1>clQf) +supP (|Qn — Q> Ve dy)
—0 asc— 0.
O

Lemma 6.0.15. (Tsybakov [110, p.14]) Assume that f € N (0, R) and let G be a kernel
of order | = | 0] satisfying

|’ |G (w)] du < co.
R

Then, for any h. > 0,
| fne = Fllz2y < C 6, R)RZ,

1 r—u

where fp_(x) = —/ G and C(l,6,R) = E/ lu|” |G (w)| du.
he Jr he " Jr

Lemma 6.0.16. Let G be a kernel which satisfies ||G|| 2y < 00. We have

2 ellf
EHJ?;L? _EJ?}S) < I HLQ(IR)'

2®) ~  Nh,
p _ o) 20 _la(u
roof. Set Nin(z) = Gh (v —¢;,)—E (th(x — ¢i7n)), where Gj,_(u) = h_G ) Nin (),
i=1,---,N are ii.d random variables with E [, , ()] = 0, and with a change of variables
(1)
r— gbl,n

= gy in the second inequality below, we get

he
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JEma@rde < [ E(Guie-3) ds

VAN
|
=
SN
Q
N
&
- |
™ §>
N
~_—
QL

IA
|
Q
[N}
S
Y
<

Therefore

(|7 - BG)

2 2
- E (1) _E/\(l) d
LQ(R)) /R (70@) - EFY @)’ d

1 al ’

1 ) 1G 72 gy
— = | E(pa(e)?de <

3 [ B e < 02

Lemma 6.0.17. Under the assumptions A’; and A’y, we have
sup J?}(Li)(x) — J,ths (x)‘ = Opd,h=%, as 6,h-* — 0,

where 6, = /G=2H),

For the proof of this Lemma, we recall the following technical result used systematically
througout this paper.

Lemma 6.0.18. Lets Z1,--- , Zn a sequence of random variables defined on common prob-
ability space (2, F,P) and vy, -+ ,yn a sequence of nonnegative real numbers such that with

N
Z% =1, then
i=1

P (Z \Z;| > c) < ZMZ"' > o).
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1
Proof of Lemma 6.0.17 First, we recall that Gj,_(u) = h_G hl . Let (An)n>1 be a

nonnegative sequence such that A\, — 0; to be specified later. We have

N
RO@ =] < 530 |Grlo =)~ Gule - o)

N
1 1
< — NG )] 6N — 6,
< wE X @EIA -0
M S~ |50
< L) _ 4.
g Nhg ZZ_; ¢17n ¢Z )
where 2 is convex combination of (z — g/b\glr)b) and (z — ¢;). In the second inequality above,
1
we used the mean value theorem. Therefore, for any ¢ > 0, the Lemma 6.0.18 with v; = ~

gives

N
_ M’ -
sup P <‘ A}(L:)(I) - fhe(:p)’ > c)\n> < supP (Nh2 Z gbﬁf — i > c)\n>
n € =1

n

N

< ZP(%&E—@ >cAn(]Xf)>
N

< ZP<$@2—¢1 >C5n>

i=1

M/
The last inequality is justified by letting A, = ﬁén and 9, = 5}/ (3=2H) " Thus, using
Theorem 5.4.3, we obtain )

sup P <‘]?,Ei)(:c) — ]?h(x)‘ > c)\n> — 0 as ¢ — o0.

Lemma 6.0.19. Under the assumptions A’3 and A’;, we have

f(@) ~Efi.(a)| = OR.

sup
x

Proof. First, note E[f,.(z)] = E[Gy.(x — ¢1)], since ¢; are i.i.d random variables. Hence,
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for any x

/(@) = Elfa (@) = %i E[G). (z — ¢:)] — f(x)
= [EGwl =00~ 1) [ G
< | [ Grte= sty - /R Glo)f (@)do
< | [ G)s@—h) - sl

IA

/R G| |(f(x — vhe) — f(x))|dv
< iz [ ol jG(w) i

Since the last upper bound given above is independent of z, the proof is complete.
Lemma 6.0.20. Under A’;, we have

2 —2

Sng ‘fhe(l’) ~Efy.(z)] = =0 e

In particular,

‘ﬁg(ﬂﬂ) - thg(x)‘ = OphZ'/V/N, Vz €R.

Proof. Let x € R and set ny,_;(x) = Gy (v — ¢;) —EGp_(x — ¢;). Since ny,_(x), i =1,---

are i.i.d random variables, we have

E|fo.(2) ~ Efi ()| = E(%Znhgm)

1
= mE(Uhg,l(x))
< %E(Ghs(fﬁ—%)f

1 r—v 2
<y & () 0 <
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