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Preface

“All epidemiology, conceived as it is with the vari-
ation of disease from time to time and from place
to place, must be considered mathematically, however
many variables are implicated, if it is to be considered
scientifically at all”.(Sir Ronald Ross1, Ross [106])

Mathematical epidemiology has a long history dating back to Daniel Bernoulli’s model of small-
pox in 1760 (see Bernoulli [18]). Much of the basic theory was developed as early as 1900 and
has been progressing steadily since that time. Recently, models for evaluating the effect of con-
trol measures have been used to inform policy development, particularly with regard to the foot
and mouth disease outbreak in Great Britain in 2001. Since the first cases of AIDS (Acquired
Immune Deficiency Syndrome) epidemic caused by the Human Immunodeficiency Virus (HIV),
were identified in 1981, it has become one of the most urgent public-health problems in devel-
oping countries. A general interest of the use of mathematical models is to predict the course
of an infectious disease and compare the effects of different control strategies.

Mathematical epidemiology differs from most sciences because it does not lend itself to ex-
perimental validation of models. Experiences are generally impossible and would probably be
unethical. This places great importance on mathematical models as a possible tool for compar-
ing planning strategies for an expected epidemic or pandemic and for dealing with a real-time
epidemic.

This thesis consist of HIV dynamic model in an heterosexual population. Firstly, we formulate
the stochastic diffusion approximations process associated to the discrete model using the con-
vergence of the master equation. Our main aim is to infer the model parameters of interest. To
deal with this task, we use two approaches for estimating these parameters. The one approach
consist to use a contrast function associated to the likelihood derived from the approximation of
the continuous process using Euler-Maruyama scheme. The consistency and asymptotic normal-
ity of the estimator are well established. In the other contribution, we use a Bayesian approach
with MCMC methods adopting the data-augmentation technique. We prove that the posterior
distribution follows to a GIG density, and we give an algorithm to estimate the model param-
eters. The theoretical results are illustrated by numerical simulations. A real application to
Morocco’s case will be discussed.

This dissertation is composed by six chapters, conclusions and future directions and some sup-
plementary proofs in the appendices; the first chapter is a general introduction to the topic of

1Sir Ronald Ross (13 May 1857 – 16 September 1932) was a British medical doctor who received the Nobel
Prize for Physiology or Medicine in 1902 for his work on the transmission of malaria. His discovery of the malarial
parasite in the gastrointestinal tract of a mosquito in 1897 proved that malaria was transmitted by mosquitoes,
and laid the foundation for the method of combating the disease.
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this thesis. The necessary mathematical background varies from chapter to chapter, but the es-
sential materials are given in Chapter 2.The third chapter describes the studied model and gives
the detailed technique to approximate this model by a diffusion process. The fourth and fifth
chapters constitute our main contribution to parameters estimation. While the sixth chapter is
concerned with numerical simulations and real application to Morocco’s data-set.
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Chapter 1

General introduction

1.1 Generalities

From the earliest times to the present, epidemics1 and pandemics2 have affected human history
in multiple ways: demographically, culturally, politically, financially, and biologically. Humans
have never known a time in history when epidemics did not loom large. The Black Death or
plague burst in Europe in 1348, and is estimated to have killed over 25 million people in just five
years (see, Siettos and Russo [112]). The pandemic influenza virus of 1918–1919 swept through
America, Europe, Asia, and Africa smashing the globe: the death toll was around 40 million
people. In the next decades: the 1957 and the 1963 influenza pandemics resulted to two and one
million deaths respectively (World Health Organization CDC [27]). In the last decades emerging
and re-emerging epidemics such as Acquired Immune Deficiency Syndrome (AIDS), measles,
malaria, Influenza and tuberculosis cause death to millions of people each year. According to
the UNAIDS [126] report on the global AIDS epidemic, an estimated more than 36.9 million
people, including 1.8 millions children, were living with Human Immunodeficiency Virus (HIV)
worldwide at the end of 2017, while the related deaths is around one million and new infections
were 1.8 millions.

To describe and explain the behavior or results of what happening in the real world; or to predict
the future behaviors or results, the mathematical modeling is the key tool for doing these tasks.

“ Modeling is an attempt to describe, in a precise way, an understanding of the elements of a
system of interest, their states, and their interactions with other elements. The model should
be sufficiently detailed and precise so that it can in principle be used to simulate the behavior
of the system on a computer. Often the most basic aim is to make clear the current state
of knowledge regarding a particular system, by attempting to be precise about the elements
involved and the interactions between them. Doing this can be a particularly effective way of

1An epidemic is generally considered to be an unexpected, widespread rise in disease incidence at a given
time.

2A pandemic is best thought of as a very large epidemic. Pandemic can be either discrete events or persistent
pandemics (see, McMillen [88] for a detailed definitions and history of pandemics)
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highlighting gaps in understanding. In addition, having a detailed model of a system allows
people to test that their understanding of a system is correct, by seeing if the implications of
their models are consistent with observed experimental data1 ”. Mathematical modeling can
play an important role in helping to quantify possible disease control strategies by focusing on
the important aspects of a disease, determining threshold quantities for disease survival, and
evaluating the effect of particular control strategies.

The very first epidemiological model was formulated by Daniel Bernoulli in 1766, to analyze the
mortality due to smallpox2 in England and evaluating the impact of variolation on human life
expectancy (see Bernoulli [18]). The last century has seen a rapid development and emergence
of epidemic theory. The Kermack-McKendrick epidemic model introduced by Kermack et al.
[72], which describes the relationship between susceptible, infected and immune individuals in
a population. Kermack et al. [72] derived the celebrated threshold theorem, which is one of the
key results in epidemiology. It predicts, depending on the transmission potential of the infection,
the critical fraction of susceptibles in the population that must be exceeded if an epidemic is
to occur. Following up the work of Kermack et al. [72], Bartlett [16] published a classic work,
in which he examined models and data to expose the factors that determine disease persistence
in large populations. It can be said that the first reference book on mathematical modeling
of epidemiological systems was published by Bailey [13], which led to the recognition of the
importance of modeling in public health decision-making.

After the publication of Bailey’s book Bailey [13], the mathematical theory of epidemic models
was progressively developed, but gained importance in the eighteenth of last century, with the
advent of HIV epidemics. Since then, a very large number of Mathematical models have been
created and employed to help explain, to study and to make predictions of epidemics behaviors.

1.2 Mathematical modeling of infectious diseases

Mathematical modeling of infectious disease is simplified by using the compartmental models
techniques. The population is divided into non-intersecting compartments, with the assumption
that every individual in the same compartment has the same characteristics. The first compart-
mental models proposed by Kermack et al. [72], a model known as the SIR epidemic model;
a compartment model with three states:(Susceptible → Infectious → Removed). A susceptible

1D. J. Wilkinson. Stochastic Modelling for Systems Biology. 2nd ed. Boca Raton: CRC Press, Dec. 14, 2011.
363 pp.

2Smallpox was an infectious disease caused by one of two virus variants, variola major and variola minor. The
last naturally occurring case was diagnosed in October 1977 and the World Health Organization (WHO) certified
the global eradication of the disease in 1980. The risk of death following contracting the disease was about 30%,
with higher rates among babies. Often those who survived had extensive scarring of their skin and some were left
blind.
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individual becomes a disease transmitter by changing to the infectious state. When an infec-
tious individual is cured or in other ways cannot contribute to the spread of the disease anymore
(e.g.dies or is isolated), it is regarded as recovered.

The disease spreads in a population, it divides the population into exclusives classes; There are
many classes depending on the structure and the transmission way of the disease. We find in
the literature:

• The class of individuals who are healthy but can contract the disease. These are called
susceptible individuals or susceptibles. The size of this class is usually denoted by S.

• The class of individuals who have contracted the disease and are now sick with it and also
infectious. The size of the class of infectious is denoted by I.

• The class of individuals who have recovered and cannot contract the disease again are called
removed/recovered individuals. The class of recovered individuals is usually denoted by
R.

• For many important infections there is a significant incubation period during which the
individual has been infected but is not yet infectious themselves. During this period the
individual is in compartment E (for exposed).

• For some disease, a class for vaccinated individuals is considered, it is usually denoted by
V .

We focus our study, in the present thesis, on a particular SIR model in which the classes S and
I are divided into two sub classes. Thus, we present here the general SIR model.

1.3 General SIR model

The SIR model is one of the simplest compartmental models, and many models are derivations
of this basic form. The model consists of three compartments: S for the number of susceptibles,
I for the number of infectives, and R for the number of recovered (or immune). This model is
reasonably predictive for infectious diseases which are transmitted from human to human, and
where recovery confers lasting resistance, such as measles, mumps, rubella and AIDS.

To formulate a model, we have to make assumptions to simplify reality. The first assumption for
Kermack et al. [72] model is that infected individuals are also infectious. The second assumption
of the model is that the total population size remains constant (equal N). The number of
individuals in each of these classes changes with time t, that is, S(t), I(t), and R(t) are real
variables of time t. The total host population size N is the sum of the sizes of these three classes:

N = S(t) + I(t) +R(t).
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In the literature of SIR model there are two approaches as presented in Bailey [13] to modeling
the epidemic, the deterministic model and stochastic model (see, Brauer et al. [20] and Martcheva
[85] for a survey of stochastic epidemic models). In the present thesis, we are interested to
formulate a stochastic model of the dynamic of HIV/AIDS in a closed dynamic heterosexual
community and estimate the keys parameters.

1.3.1 Basic deterministic model

In deterministic basic general epidemic model; we consider that the community is being homoge-
neously mixed and only susceptible individuals can get infected and, after having been infectious
for some time, an individual recovers and becomes completely immune for the remainder of the
study period. Finally, we assume there are no births, deaths, immigration or emigration during
the study period; the community is said to be closed. A consequence of the assumptions is that
individuals can only make two moves: from S to I and from I to R. Then, the deterministic
basic general epidemic model is defined by the following set of differential equations:

dS

dt
= −βSI

dI

dt
= βSI − µI

dR

dt
= µI

(1.1)

Where the term βSI in Equation (1.1) comes from the fact that susceptibles must have contact
with infectives in order to get infected, so the number of susceptibles who become infected and
move to the class I is βSI, where β is the infection rate. The number of infectives who recover
or die and leave the infected class I to recover class R is µI with µ is the recovery rate.

The ratio R0 = β

µ
is hence of fundamental importance and can be interpreted as the average

number of new infections caused by an infectious individual before recovering. The ratio is often
referred to as the basic reproduction number (a term with its origin in demography – the average
number of individuals that one individual reproduces). When R0 > 1 the epidemic takes off and
when R0 < 1 there is no (big) epidemic (the reader is referred to Bailey [13] for more descriptions
and details).

1.3.2 Stochastic model

“Deterministic models are those in which there is no element of chance or uncertainty. As such,
they can be thought to account for the mean trend of a process only. Stochastic models, on
the other hand, account not only for the mean trend but also for the variance structure around
it. In an epidemiological context, there are two main kinds of stochasticity: demographic and
environmental. Demographic stochasticity reflects the fact that while all individuals may be
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subject to the same possible events with the exact same probabilities, chance events may result
in differences in the fates of individuals. When a phenomenon is the sum of a large number
of small individual effects (as disease propagation in large population), the weak law of large
numbers diminishes the effects of demographic stochasticity and a deterministic model becomes
appropriate. In contrast, when the population is small, random events cannot be neglected
and a stochastic model is necessary. Environmental stochasticity refers to the situation where
there is variation in the probability associated with an event. Consequently, some parameters
of stochastic models may be uncertain and characterized by a probability distribution instead
of a constant value. For fixed starting values, a deterministic model will always produce the
same result whereas a stochastic model will produce many different outputs, depending on the
actual values the random variables take”1. A generalization of the initial simple deterministic
epidemic model is given by the stochastic epidemic models. Needless to say, both deterministic
and stochastic epidemic models have their important roles to play. Here, we give a brief to the
simple stochastic SIR epidemic models in a closed population (see, O’Neill and Roberts [91],
Brauer et al. [20], and El Maroufy et al. [38, 36] for more details).

Mathematically the model is defined as follows, we consider a closed population of N + a indi-
viduals. At time t, there are S(t) susceptibles, I(t) ineffectives and R(t) = N + a− S(t)− I(t)
removed individuals with N and a are positive integers. At time t = 0 the population only
contains susceptible and infected individuals with S(0) = N , I(0) = a. The epidemic process is
thus completely determined by the bi-variate process {(S(t), I(t)), t ≥ 0}, which is supposed to
be a continuous-time Markov chain on the state space,

E = {(s, i), 0 ≤ s ≤ N, 0 ≤ i ≤ (N − s) + a}

with the following transitions and associated probabilities from time t to t+ δt:

Transition Probability

(s, i) −→ (s− 1, i+ 1) β

N
(s+ 1)(i− 1)δt+ o(δt)

(s, i) −→ (s, i− 1) µ(i+ 1)δt+ o(δt)

(s, i) −→ (s, i) −
(
β

N
si+ µi

)
δt+ o(δt)

(1.2)

all other transitions having probability o(δt), and the parameter β being known as the infection
rate and µ as the removal rate.

For (s, i) ∈ E, we define
p(s,i)(t) = Prob {S(t) = s, I(t) = i} .

1M. Tibayrenc. Encyclopedia of Infectious Diseases: Modern Methodologies. John Wiley & Sons, July 31,
2007. 807 pp.
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It follows directly from Eq. (1.2) that these transition probabilities satisfy the set of Kolmogorov
equations:

∂p(s,i)(t)
∂t

= p(s+1,i−1)(t)
β

N
(i− 1)(s+ 1) + p(s,i+1)µ(i+ 1)− p(s,i)(t)

(
β

N
is+ µi

)
. (1.3)

for (s, i) ∈ E, with p(s,i)(t) ≡ 0 if (s, i) /∈ E and p(N,a)(0) = 1.

A Markov process with the above described dynamics determines the general stochastic epidemic.

Instead of using S and I, we use the normalized process x(t) = S(t)/N and y(t) = I(t)/N . By
setting f(x, y) = Nβxy = (β/N)SI and g(x, y) = Nµy = µI the Kolmogorov’s equations (1.3)
become

∂

∂t
p(x, y, t)= f(x+ε, y−ε)p(x+ε, y−ε, t)+g(x, y+ε)p(x, y+ε, t)−[f(x, y)+g(x, y)] p(x, y, t), (1.4)

where ε = 1/N and p(x, y, t) = p(x, y)(t). By subtracting and adding terms to Eq. (1.4) and
letting ε −→ 0, we establish, by setting z = (x, y) (see Fuchs [46] for a rigorous proof), that

∂

∂t
p(z, t) = − ∂

∂z [U(z, θ)p(z, t)] + 1
2
∂2

∂z2 [Σ(z, θ)p(z, t)] , (1.5)

with θ = (β;µ), U(z, θ) =
(
−βxy

βxy − µy

)
and Σ(z, θ) = 1

N

(
βxy −βxy
−βxy βxy + µy

)
. Eq. (1.5) is

the Fokker–Planck equation associated to the diffusion process (x(t), y(t)) which is solution,
according to Øksendal [78] (see also Kloeden and Platen [75] and Fuchs [46]), to the nonlinear
bi-variate Itô stochastic differential equation:(

dx

dy

)
=
(
−βxy

βxy − µy

)
dt+ σ(x, y)

(
dW1

dW2

)
(1.6)

where σ(x, y) = 1√
N

( √
βxy 0

−
√
βxy

√
βy

)
and W1, W2 are two independent Brownian motions.

Another approach to derive the stochastic diffusion process Eq. (1.6) is, using the infinitesimal
mean and covariance (see Brauer et al. [20]), since the stochastic SIR epidemic model is a time
homogeneous, diffusion process1.

1The reader is referred to the book of Brauer et al. [20] for the explicit details of calculus.
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Let ∆S(t+∆t)−S(t) and ∆I(t+∆t)−I(t) which supposed normally distributed approximately.
Let ∆X(t) (∆S,∆I)T . Then, the expectation of ∆X(t) to order ∆t is

E (∆X(t)) =

 − β
N
SI

β

N
SI − µI

∆t
The covariance matrix of ∆X(t) is

V (∆X(t)) =E
(
∆X(t) [∆X(t)]T )

)
− E (∆X(t))E (∆X(t))T

≈E
(
∆X(t) [∆X(t)]T )

)
because the elements in the second term are o([∆t]2). Then the covariance matrix of ∆X(t) to
order ∆t is

V (∆X(t)) =

 β

N
SI − β

N
SI

− β
N
SI

β

N
SI + µI

∆t.
The random vector X(t+∆t) can be approximated as follows:

X(t+∆t) = X(t) +∆X(t) ≈ X(t) + E(∆X(t)) + V (∆X(t)). (1.7)

The covariance matrix is symmetric and positive definite, then, it has a unique square root
B
√
∆t =

√
V . The system of equations Eq. (1.7) are an Euler approximation to a system of

Itô SDEs. For sufficiently smooth coefficients, the solution X(t) of Eq. (1.7) converges to the
solution of the following system of Itô SDEs:

dX(t) =
(
dS

dI

)
=

 − β
N
SI

β

N
SI − µI

 dt+
(
B11 B12

B21 B22

)(
dW1

dW2

)
.

where W1 and W2 are two independent Brownian motions and B = (Bij).

1.3.3 Parameter inference for epidemic models

One often wishes of the epidemiology modeling is to statistically infer model parameters. In case
the whole path is observed, parametric inference for diffusion type processes is well developed
using maximum likelihood estimations. A powerful technique to overcome this problem is to
estimate the model parameters in a Bayesian framework. A well-known approach is based on
the idea to introduce auxiliary data points as additional observations. Most Bayesian inference
methods rely on Markov chain Monte Carlo (MCMC) techniques which alternately update the
auxiliary data and the model parameter. The Bayesian approach of epidemic model has been
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treated by several authors, in particular see, Britton [21], Eraker [41], Britton and O’Neill [22],
Demiris and O’Neill [32], El Maroufy et al. [36], and Qaffou et al. [100] and references therein.

Most of the proposed models, in the literature about the mathematical modeling of HIV/AIDS
epidemics, may be seen as extensions of existing classical epidemic models, by including neces-
sary modifications so as to consider different features of the transmission mechanism of HIV.
Among those, we may mention the substantial variability of the infection rates for different
subpopulations at risk (homosexuals, heterosexuals, intravenous drug users, etc.), the long in-
cubation period before the exhibition of symptoms, the variability of the infection with respect
to the evolution of the infection in each individual, etc. Mathematical models for the spread
of HIV/AIDS has been discussed by many authors, see in particular Isham [69], Perelson and
Nelson [94], and Perelson [95] and see the book of Tan and Wu [119] for a general review of some
deterministic and stochastic models. Recently, many authors steal study HIV/AIDS models,
see, for example, Punyacharoensin et al. [99] and Rivadeneira et al. [102], together with the
substantial bibliography they contain. However, in the present dissertation, we are focused in
stochastic modeling and inference of the model parameters of the HIV/AIDS epidemic in an
heterosexual population.

1.4 An overview of the thesis

In this thesis, we consider a dynamic of HIV in a closed heterosexual population. We model it by
a stochastic multidimensional SIR epidemic model. This dissertation consider two approaches,
contrast function and Bayesian method, used to study dynamic of HIV epidemic model. The
focus is on assimilating observed data by estimating relevant model parameters. The rest of the
dissertation is organized as follows.

Chapter 2, introduce some necessary concepts and mathematical objects for a good understand-
ing of this manuscript. Then, we give a short introduction to stochastic differential equations
and Itô diffusion processes. Furthermore, we give a brief introduction to Bayesian theory and
MCMC methods.

In the Chapter 3, we model the epidemic of HIV by a multidimensional SIR epidemic model,
which is a four-dimensional continuous-time Markovian jump process. In which each individual
can find himself at a given time in one of five mutually exclusive health states named SF (SM )
susceptible female (male), IF (IM ) infected female (male) and R(t) the AIDS cases.

We approximate the Markov jump process by a multidimensional Itô diffusion process, exploiting
the transition from a state to another by the Master equation and using Fokker-Planck equation
to construct the diffusion process.
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The Chapter 4, represents our first approach to estimate the model parameters of interest,
constructed in Chapter 3. We present the minimum contrast estimator (MCE) corresponding
to our model. The consistency and normal asymptotic of the MCE estimator are well discussed.

In Chapter 5, we present the second major approach to estimate parameters of the stochastic
model of HIV dynamic in a closed heterosexual population, that is Bayesian approach. In this
chapter we begin by a short introduction to Bayesian inference for non linear diffusion model
using the augmented data method. We update the path of data in the one hand, and on the
other hand, we find the posterior distribution of parameters . We close the chapter by presenting
an algorithm which summarize the given procedure.

In Chapter 6, we give the numerical simulations for both approaches discussed in Chapters 4
and 5. We simulate data of a discrete Markovian stochastic process, using the Gillespie algo-
rithm, which generates a statistically correct trajectory of a stochastic equation. In a first step,
we validate the model by using the simulated data. In a second step we apply these methods
presented in Chapters 4 and 5, to real application of data from Morocco.

A summary of the major contributions of this dissertation is presented in the concluding chapter.
Some proofs of some key results used as tools in the Chapters 4 and 5, are given in Appendices A
to C. Appendix D contain the HIV/AIDS data-set of sexually active population in Morocco,
which will be applied in the real application.
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Chapter 2

Preliminaries

In this chapter, we introduce briefly some necessary concepts and mathematical objects for
a good understanding of this dissertation. Then, we give a short introduction to stochastic
differential equations and Itô diffusion processes. Furthermore, we give a brief introduction
to Bayesian theory and MCMC methods. The note of this chapter is essentially based on
the following documents Kloeden and Platen [75], Karatzas and Shreve [71], Øksendal [78],
Kutoyants [82], Klebaner [74], and Fuchs [46].

2.1 Aspects of General Probability Theory

In this section, we recall some concepts from the general probability theory and stochastic
processes, which lead us to define an Itô stochastic integral. For more details, the reader is
referred to the book of Øksendal [78, Chap. 2].

2.1.1 Stochastic processes

Definition 2.1 (Stochastic process). A stochastic process can be defined as a parameterized col-
lection (family) (Xt)t∈T of random variables on the same probability space (Ω,F ,P). Therefore,
the stochastic process (Xt)t∈T, can be written as a function:

X : T×Ω −→ Rd

(t, ω) 7−→ X(t, ω)

with d ≥ 1.

But generally, we omit the dependency on ω in the notation (Xt)t∈T. The parameter space T is
usually the half-line [0;∞), but it may also be an interval [a; b], the non-negative integers and
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even subsets of Rn for n ≥ 1. Note that for each t ∈ T fixed we have a random variable

ω −→ Xt(ω); ω ∈ Ω.

On the other hand, fixing ω ∈ Ω we can consider the function

t −→ Xt(ω); t ∈ T.

which is called a path of Xt.
Definition 2.2 (Filtration). Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P) is an
increasing family (Ft)t≥0 of sub σ-algebras of F . In other words, for each t, Ft is a σ-algebras
included in F and if s ≤ t, Fs ⊂ Ft. A probability space (Ω,F , (Ft)t≥0,P) endowed with a
filtration (Ft)t≥0 is called a filtered probability space.
Definition 2.3. A stochastic process (Xt)t∈T is adapted to the filtration (Ft)t≥0 if, for every
t ∈ T, the random variable Xt is Ft-measurable.

A stochastic process X is always adapted to its natural filtration (Bt)t≥0 (the last notation
meaning that Ft is the smallest σ-algebra with respect to which all the variables (Xs, s ≤ t) are
measurable). FXt is hence the smallest filtration to which X is adapted.

An important class of stochastic processes is the Martingale.
Definition 2.4 (Martingale). A stochastic process (Xt)t≥0 on a probability space (Ω,F ,P) is
called a martingale with respect to the filtration (Ft)t≥0 (and with respect to P) if:

i− Xt is Ft-measurable for all t ≥ 0,

ii− E [Xt] <∞ for all t ≥ 0,

iii− E [Xt|Fs] = Xs for all s ≤ t.

2.1.2 Brownian Motion

Brownian motion is the random movement of particles in a fluid resulting from the impact of
molecules of the surrounding medium. It was named for the Scottish botanist Robert Brown1,
the first to study such fluctuations. The mathematical description of Brownian motion is a
relatively simple probability calculation, of importance in many fields, physics, chemistry, biology
and others. A modern model is the Wiener process, named in honor of Norbert Wiener2, who
described the function of a continuous-time stochastic process.

1Robert Brown (21 December 1773 – 10 June 1858) was a Scottish botanist and palaeobotanist who made
important contributions to botany largely through his pioneering use of the microscope. His contributions include
one of the earliest detailed descriptions of the cell nucleus and cytoplasmic streaming; the observation of Brownian
motion;

2Norbert Wiener (November 26, 1894 – March 18, 1964), was an American mathematician and philosopher.
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Definition 2.5 (Brownian Motion). A real-valued F-adapted process (Bt)t≥0 is a Brownian
motion, also called a Wiener process, if it satisfies the following conditions:

i− B0 = u almost surly for a fixed u ∈ R,

ii− All paths (Bt)t≥0 are almost surly continuous,

iii− All paths have independent and stationary increments,

iv− Bt ∼ N
(
0, σ2t

)
, for all t ≥ 0 and constant volatility parameter σ ∈ R+.

The assertion iii− in the last definition means that the increments of the Brownian motion are
statistically independent on non-overlapping intervals, i.e. Bt1 − Bt0 , Bt2 − Bt1 , Bt3 − Bt2 , . . .,
0 ≤ t0 < t1 < t2 < . . ., are pairwise independent. And stationary increments means that,
the probability distribution function for Bs+t − Bs is fixed (the same) for all s ∈ T such that
s+ t ∈ T.

The process (Bt)t≥0 is called standard Brownian motion when u = 0 and σ = 1. A vector-
valued process is said to be d − dimensional (standard) Brownian motion if its d components
are mutually independent one − dimensional (standard) Brownian motions. The existence
of such process was first proven by Wiener [128]. The probability law induced by standard
Brownian motion is thus called Wiener measure.

Note that a Brownian motion (Bt)t≥0 is a martingale with respect to its natural filtration Ft
generated by {Bs, s ≤ t}; Ft = σ (Bs, 0 ≤ s ≤ t). (The reader is referred to Øksendal [78,
Chap 3], for the proof).

2.2 Itô Integral and Stochastic Differential Equations

The beginnings of the theory of stochastic integration were motivated and intertwined with the
theory of Markov processes, in which Kolmogorov1 played a fundamental role. In the fifties
of the 20th-century, Kiyosi Itô2, developed the theory of stochastic integration and stochastic
differential equations by developing the Itô calculus.

Throughout the rest of this dissertation,
(
Ω,F , (Ft)t≥0 ,P

)
is considered as a filtered probability

space with sample space Ω, σ-algebra F , (Ft)t≥0 the natural filtration and P a probability
measure on (Ω,F). The Borel σ-algebra of Lebesgue subsets of R will be denoted by B.

1Andrey Nikolaevich Kolmogorov (25 April 1903 – 20 October 1987) was a Soviet mathematician who made
significant contributions to the mathematics of probability theory, topology, intuitionistic logic, turbulence, clas-
sical mechanics, algorithmic information theory and computational complexity.

2Kiyosi Itô, (September 7, 1915 – 10 November 2008) was a Japanese mathematician. He pioneered the theory
of stochastic integration and stochastic differential equations, now known as the Itô calculus. Its basic concept is
the Itô integral, and among the most important results is a change of variable formula known as Itô’s lemma or
formula.
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2.2.1 Itô Integral

The Itô (Stochastic) integral can be defined in similar manner to the Riemann–Stieltjes integral
(see for example, Surhone et al. [118]), that is as a limit in probability of Riemann sums; such a
limit does not necessarily exist pathwise. Now, we describe the class of functions for which the
Itô integral will be defined :
Definition 2.6. ( Øksendal [78, Defenition 3.1.4.]) Let define the class V = V(S, T ) of functions

f(t, ω) : [0;∞)×Ω −→ R

such that

i− (t, ω) −→ f(t, ω) is jointly B × F-measurable, where B denotes the Borel σ- algebra on
[0;∞).

ii− f(t, ω) is Ft-adapted,

iii−
∫ T

S
E
[
(f(u, ω))2

]
du <∞.

Here, E(.) is the expectation operator with respect to the probability measure P. Now, we give
the definition ( Øksendal [78, Defenition 3.1.6]) of Itô Integral,
Definition 2.7 (The Itô Integral ). Let f ∈ V(S, T ). Then the Itô integral of f , from S to T ,
is defined by ∫ t

t0
f(s, ω)dBs(ω) = lim

n→∞

∫ t

t0
φn(s, ω)dBs(ω) (limit in L2

P(Ω)), (2.1)

where {φn} is a sequence of elementary functions1 such that

E
[∫ T

S
(f (s, ω)− φn (s, ω))2 ds

]
−→ 0, as n→∞. (2.2)

Note that such a sequence {φn} satisfying (2.2) exists (see, Øksendal [78] and Klebaner [74] for
more details). Moreover, the limit in (2.1) exists and does not depends on the actual choice of
{φn}. Furthermore, the Itô integral satisfies the following properties:
Corollary 2.1. Let f, g ∈ V(T)

i− E
[(∫ t

t0
f(s, ω)dBs

)2]
= E

[∫ t

s
f2(s, ω)ds

]
( The Itô isometry).

ii− E
[∫ t

t0
f(s, ω)dBs

]
= 0,

1A function φn ∈ V is called elementary function, if it has the form φn =
∑
j

ξj(ω)χ[tj ,tj+1)(t), where χ is

the indicator function of the interval [tj , tj+1). Since φn ∈ V each function ξj must be Ftj -measurable.
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iii−
∫ t

t0
f(s, ω)dBs is adapted process to the filtration (Ft)t≥0.

An important property of the Itô integral is that it is a martingale, then, it verifies the property
of the Definition 2.4 (see, Øksendal [78] and Klebaner [74], for more details).

2.2.2 Stochastic differential equations

Generally, a stochastic differential equation (SDE) is a differential equation with terms contain-
ing both deterministic and stochastic differentials and whose solution is a stochastic process.
SDEs are a powerful and natural tool for the modeling of complex systems that change roughly
in continuous time. Application areas include econometrics and finance (Aït-Sahalia [6], Aït-
Sahalia and Jacod [8], Eraker and Wang [42], Aït-Sahalia and Hurd [7], Aït-Sahalia et al. [9],
and Eraker and Wu [43]), physics (Ramshaw [101], Tuckwell and Williams [124], and Seifert
[111]), biology (Leung [83], Elf and Ehrenberg [40], and Sjöberg et al. [113]), systems biology
(Golightly and Wilkinson [59, 58] and Golightly Andrew and Wilkinson Darren J. [60]), medicine
(Walsh [127] and Capasso and Morale [23]), epidemiology (Barbour [15] and Alonso et al. [3]),
population biology (Ferm et al. [44]), genetics (Tian et al. [122]) and many other authors are
used the SDEs in other fields.
Definition 2.8 (Itô process). Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, then an Itô
process (Xt)t≥0 is a process which satisfies:

Xt(ω) = Xs(ω) +
∫ t

s
µ (u,Xt) du+

∫ t

s
σ (u,Xt) dBu, (2.3)

for any [s, t] ⊆ T , where the functions µ and σ are jointly B × Ft-measurable, F-adapted and
satisfies the following criteria:∫ t

s
|µ (u,Xt)| du <∞ and

∫ t

s
(σ (u,Xt))2 du <∞.

An Itô process is a stochastic process that can be, formally, written as

dXt = µ (Xt, t) dt+ σ (Xt, t) dBt. (2.4)

Equipped with the definition of the Itô integral, a stochastic process X is a solution of the
stochastic differential equation (2.4), if and only if, X satisfies the stochastic integral equation
(SDE) (2.3) almost surely. Then X is an Itô process and one can prove that it is Markovian.

The existence and uniqueness of solutions to the stochastic differential equations (2.4) is guar-
anteed by the following theorem ( Øksendal [78, Theorem 5.2.1.]),
Theorem 2.1 (Existence and uniqueness theorem for stochastic differential equations). Let
T > 0 and µ(·) : [0, T ] × Rn −→ Rm, σ(·, ·) : [0, T ] × Rn −→ Rn×m be measurable functions
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satisfying
‖µ(t, x)‖2 + ‖σ(t, x)‖2 ≤ C

(
1 + ‖x‖2

)
, ( Linear growth ) (2.5)

‖µ(t, x)− µ(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ D ‖x− y‖ , ( Lipschitz continuity ) (2.6)

for x, y ∈ Rn, t ∈ [0, T ] and some constants C and D.

Let Z be a random variable which is independent of the σ-algebra F∞ = σ(Bs, s ≥ 0) and such
that E|Z|2 <∞.

Then the stochastic differential equation

dXt = µ (Xt, t) dt+ σ (Xt, t) dBt, t ∈ [0, T ], X0 = Z (2.7)

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to the filtration
FZt = σ (Z,Bs, 0 ≤ s ≤ t) and

E
[∫ T

0
|Xt|2 dt

]
<∞ (2.8)

The solution (Xt)t≥0 found above is called a strong solution, because the version (Bt)t≥0 of
Brownian motion is given in advance and the solution (Xt)t≥0 constructed from it is FZt -adapted.

However, it is generally not possible to find an explicit solution of an SDE. An explicit solution
to a family of stochastic differential equations is well discussed in Kouritsin and Deli [76].

2.2.3 Itô formula for diffusion processes

The Itô’s formula is for stochastic calculus what the Newton-Leibnitz formula1 is for (the classi-
cal) calculus. Not only does it relate differentiation and integration, it also provides a practical
method for computation of stochastic integrals. The Itô formula is very useful for evaluating Itô
integrals and it serves as the stochastic calculus counterpart of the chain rule. The 1-dimensional
Itô formula is given in following theorem (see, Klebaner [74, Theorem 4.16], Øksendal [78, The-
orem 4.1.2] ).
Theorem 2.2. Let (Xt, t ≥ 0) be an Itô process given by

dXt = µ (Xt, t) dt+ σ (Xt, t) dBt,
1The formula expressing the value of a definite integral of a given integrable function f over an interval as

the difference of the values at the endpoints of the interval of any primitive F of the function f :∫ b

a

f(x)dx = F (b)− F (a)

It is named after I. Newton and G. Leibniz, who both knew the rule expressed by the above equation. It is also
known as "Fundamental theorem of calculus".
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Let g : R× [0,∞) −→ R be a twice continuously differentiable on R× [0,∞). Then the process
Yt = g(Xt, t) is again an Itô process, and

dYt = ∂g

∂t
(Xt, t)dt+ ∂g

∂x
(Xt, t)dXt + 1

2
∂2g

∂x2 (Xt, t) (dXt)2 , (2.9)

where (dXt)2 = dXtdXt is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0 and dBt · dBt = dt.

Using the above rules Eq. (2.9) becomes

dYt =∂g

∂t
(Xt, t)dt+ ∂g

∂x
(Xt, t)dXt + 1

2
∂2g

∂x2 (Xt, t)σ2 (Xt, t) dt

=
(
∂g

∂t
(Xt, t) + ∂g

∂x
(Xt)µ (Xt, t) + 1

2
∂2g

∂x2 (Xt, t)σ2 (Xt, t)
)
dt+ ∂g

∂x
(Xt)σ (Xt, t) dBt.

For the general situation in higher dimensions, let (Bt)t≥0) denote d-dimensional Brownian
motion and (Xt)t≥0 an n-dimensional Itô process, Then the general Itô formula is given by the
following theorem (Øksendal [78, Theorem 4.2.1])
Theorem 2.3 (The general Itô formula). Let

dXt = µ (Xt, t) dt+ σ (Xt, t) dBt,

be an n-dimensional Itô process, as defined in Definition 2.8. Let g(x, t) = (g1(x, t), . . . , gd(x, t))
be a C2 map from Rn × [0,∞) into Rd. Then the process

Y (ω, t) = g(Xt, t)

is again an Itô process, whose component number k, Yk, is given by

dYk =
∂g(k)
∂t

(X, t)dt+
d∑
i=1

∂gk
∂xi

(X, t)dXi + 1
2

d∑
i,j=1

∂2gk(X, t)
∂xi∂xj

dXidXj , (2.10)

where dBi
tdB

j
t = δijdt, dt · dBi

t = dBi
t · dt = 0 and δij is the Kronecker delta.

For more details and proof, the reader is referred to e.g. Øksendal [78, Chap4].
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2.3 Approximation of solutions to stochastic differential equa-
tions

Generally, it may not be possible to determine an explicit or closed-form solution to the Itô’s
stochastic differential equation

dXt = µ (Xt, t) dt+ σ (Xt, t) dBt, X0 = x0.

Hence, the employment of numerical methods for calculating approximations to problems such
as (2.4) is preferred. In this regard, we must use a discrete-time approximation to iteratively
approximate a solution to (2.4). This method utilizes a recursive algorithm that produces
the values of a discrete-time approximation at the given discretization points of a finite sub-
interval [t0, t] ⊂ T. While the approximation is made only at the discretization points, we will
always view a discrete-time approximation as a "continuous-time process" defined on [t0, t] In this
dissertation, we present two schemes to approximate (2.4), that is Euler–Maruyama and Milstein
approximations. The reader is referred to Panik [92, Chap.7] for more details of approximating
methods.

2.3.1 The Euler–Maruyama approximation

The simplest discrete-time recursive routine used to approximate an Itô process of the form
(2.4) is the Euler–Maruyama approximation scheme. Given the time discretization t0 < t1 <

t2 < . . . < tN = t of [t0, t] , the Euler–Maruyama approximation is a continuous-time stochastic
process X = (Xt)t∈[t0,t] satisfying the iterative scheme

Xi+1 = Xi + µ (Xi, ti) (ti+1 − ti) + σ (Xi, ti)
(
Bti+1 −Bti

)
= Xi+ µ (Xi, ti)∆ti + σ (Xi, ti)∆Bti , i = 1, 2, . . . , N − 1,

(2.11)

where Xti ≡ Xi, X0 = x0, ∆ti = ti+1 − ti, and ∆Bti = Bti+1 − Bti . To obtain a "good"
approximate solution, the time increments ∆i, i = 0, 1, 2, . . . , should be "sufficiently small".
Particularly, under a regime of equidistant discretization times, we have ∆ti ≡ ∆ = (t− t0)/N .

2.3.2 The Milstein approximation

The Milstein scheme is an amelioration of the Euler–Maruyama method by introducing a cor-
rection to the stochastic increment in (2.11), by introducing the term

1
2σ(Xi, ti)

∂σ

∂x

[
∆Bi

2 −∆i

]
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from the Itô–Taylor expansion. Therefore, the Milstein scheme appears as

Xi+1 =Xi + µ(Xi, ti)∆i + σ(Xi, ti)∆Bi + 1
2σ(Xi, ti)

∂σ

∂x

[
∆Bi

2 −∆i

]
. (2.12)

2.3.3 Strong and weak convergence of approximation schemes1

Let Y = (Yt)t∈[t0,t] be the Euler–Maruyama approximation of Itô process X = (Xt)t∈[t0,t].
Since X(t) and Y (t) are both random variables, it is reasonable to use an expression such as
E [Xt − Yt] to measure the degree of precision (error) of the approximation. More specifically,
a time-discretized approximation (Yt) of a continuous-time process (Xt) converges with strong
order γ to the solution (Xt) at time t if there exists a constant C (not depending on ∆) such
that

E |Xt − Yt| ≤ C∆γ (2.13)

for N chosen large enough so that ∆ = (t− t0)/N (0, 1), where Xt is the true solution at time
t and Yt the approximation. The strong order of convergence criterion (2.13) indicates the rate
at which the "mean endpoint error" decreases as ∆→ 0.

The weak convergence is a less restrictive criterion of the (2.13), which considers the rate of
decrease of the "error of means". Specifically, a discrete-time approximation (Yt) of a continuous
time process (Xt) converges weakly of order β to the solution (Xt) at time t if there exists a
continuously differentiable polynomial function h and a constant Ch (independent of ∆) such
that

|E (h (Xt))− E (h (Yt))| ≤ Ch∆β (2.14)

Given these error bounds, one can prove that the strong order of convergence for the Eu-
ler–Maruyama scheme is γ = 1

2 (if µ and σ satisfy uniform growth and Lipschitz conditions),
however, for Milstein scheme the strong order of convergence is γ = 1. The Euler–Maruyama
routine converges with weak order β = 1.

2.4 Transition density and likelihood function

2.4.1 Markov process and transition density

Let (Xt)t≥0 be a stochastic process defined on a probability space (Ω,F ,P). The σ-algebra
Ft = σ(Xs, 0 ≤ s < t), t ≥ 0, is the history of the process up to and including time t. The
real-valued, Ft-adapted stochastic process (Xt)t≥0 is called a Markov process2 if the following

1The reader is referred to Iacus [67] and Panik [92], as well as to the famous book of Kloeden and Platen [75]
for more information and rigorous studies of such schemes .

2Markov process is named for the Russian mathematician Andrey Andreyevich Markov (1856 – 1922).



20 Chapter 2. Preliminaries

property holds almost surly; Markov property

P (Xt ∈ B|Fs) = P (Xt ∈ B|Xs) for all 0 ≤ s ≤ t <∞ and Borel set B.

So given Xs, one can predict the probabilities of future values Xt just as well as if we knew the
entire history of the process prior to time s. The process only knows Xs and is not aware of
how it got there so that the future depends on the past only through the present, that is, once
the present is known, the past and future are independent.

The Itô process (Xt)t≥0 solution of the SDE (2.4) is a Markov process and its transition density
p(s, x, t, y) is defined by

p(s, x; t, A) = P(Xt ∈ A|Xs = x) =
∫
A
p(s, x; t, y)dy, (2.15)

for all F-measurable sets A ⊆ Rn. p(s, x; t, y) is the density of a Markov process (Xt)t≥0 for
going from state x ∈ Rn at time s ≥ 0 to y ∈ Rn at time t > s. For s = t, we define

p(s, x; t, y) = δ (x− y)

where δ denotes the Dirac delta function. If (Xt)t≥0 is homogeneous in time, i.e. the transition
density depends on s and t solely through their difference t− s, we also write p(t− s;x, y).

2.4.2 Itô diffusion process

A diffusion process is defined as a Markov process whose transition probability function p meets
the following three properties for all x ∈ R (Rn), s ≥ 0 and ε > 0 one has uniformly

lim
t→s

1
t− s

∫
‖y−x‖>ε

p(s, x, t, y)dy = 0. (2.16)

µ(s, x) = lim
t→s

1
t− s

∫
‖y−x‖≤ε

p(s, x, t, y)(y − x)dy, (2.17)

Σ(s, x) = lim
t→s

1
t− s

∫
‖y−x‖≤ε

p(s, x, t, y)(y − x)(y − x)Tdy, (2.18)

where the limits (2.17) and (2.18) exist.

The vector-valued function µ in (2.17) is called the drift and the symmetric and positive semi-
definite matrix-valued function Σ is called the diffusion matrix. A matrix σ with Σ = σσT is
called the diffusion coefficient, where σT is the transpose of σ. Such a decomposition exists due
to the positive semi-definiteness of Σ, but is not necessarily unique. However, the particular
choice of the diffusion coefficient does not influence the distribution of the process X as long as
it is a square root of the diffusion matrix.
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An F-adapted process X satisfying the Itô SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, xt0 = x0,

is an Itô diffusion with drift µ and diffusion matrix Σ = σσT if the coefficients µ and σ fulfill
the Lipschitz condition (2.6) and linear growth (2.5) and are continuous in time.

2.4.3 Fokker–Plank equation associated to an Itô diffusion

Let X be an Itô diffusion process

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, xt0 = x0.

Under some regularities on the coefficients µ and σ are fulfilled to ensure the existence and
uniqueness as defined in Theorem 2.1. If in addition µ and σ have two partial derivatives with
respect to x, which are bounded and satisfy a Hölder condition with respect to x, then the
transition density p = p(t, x, y) as a function in y and t, satisfies the following partial differential
equations (PDF),

− ∂p

∂t
+ 1

2
∂2

∂x2

(
σ(y, t)2p

)
− ∂

∂x
(µ(y, t)p) = 0. (2.19)

The Eq. (2.19) is a PDE in the forward variables (y, t) and is therefore called the forward
equation, also known as Fokker-Plank equation, diffusion equation, or Kolmogorov’s forward
equation. Explicitly, it can be written as,

∂p(s, x, t, y)
∂t

= −
d∑
i=1

∂

∂xi
(µi(t, y)p(s, x, t, y)) + 1

2

d∑
i,j=1

∂2

∂xixj
(Σi,j(t, y)p(s, x, t, y)),

for fixed y and t, where x, y ∈ X and t > s ≥ 0, and i, j denote the respective components of x,
y, µ and Σ = σσT , where σT is the transposed vector of σ. We remark that equation uniquely
determines the transition density p, and hence diffusion processes are already completely defined
by their instantaneous mean and variance µ and Σ. Furthermore, if the transition density of a
stochastic process fulfills the Fokker–Plank equation (2.4.3), then it is an Itô diffusion process.

2.4.4 Likelihood function for discretely observed processes

The method of maximum likelihood is a technique of data reduction, it requires the knowledge
of the form of probability density function. The statistical estimation of the possibly vector-
valued parameter θ from an open set Θ ⊂ Rd, d ∈ N? is the objective of the maximum likelihood
(ML) method. The transition density Eq. (2.15) further depends on a parameter θ from a
parameter space Θ. For discrete observations xt1 , . . . , xtn and given starting value xt0 at time
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points t0 < . . . < tn, as diffusion processes are Markovian, the likelihood function of θ is given
by

Ln (θ;xt1 , . . . , xtn) =
n−1∏
k=0

pθ
(
tk, xtk , tk+1, xtk+1

)
=

n−1∏
k=0

pθ
(
tk+1 − tk;xtk , xtk+1

)
. (2.20)

The log-likelihood function of θ is then given by

ln = logLn (θ;xt1 , . . . , xtn) =
n−1∑
k=0

log pθ
(
tk+1 − tk;xtk , xtk+1

)
. (2.21)

The logarithmic likelihood function (2.21) expresses the probability of the observed random
sample as a function of θ. So with θ treated as a variable in (2.21). The ML method is
based upon the principle of maximum likelihood: select as an estimate of θ that value of the
parameter, θ̂ML, that maximizes the probability of observing the given random sample. So
to find θ̂ML, we need only maximize (2.21) with respect to θ. Then, the maximum likelihood
estimators (MLE) are defined to be estimators that maximize the likelihood function θ̂ML =
arg max

θ
Ln (θ;xt1 , . . . , xtn). That is, an MLE of θ after observing a sample xt1 , . . . , xtn is any θ

at which Ln achieves its maximum, if there are any such θ.

In general, for a particular class of probability densities, as exponential parametric families,
under some strict conditions, the MLE, is consistent and asymptotically normal (see, Schervish
[110, Chap. 7] ). But for more general parametric families, the proofs of these properties are
more complicated.

The statistical inference for continuously observed diffusion processes on a finite interval is based
on the likelihood of the diffusion and obtained using the Girsanov formula (see e.g. Liptser and
Shiryaev [84] and Kutoyants [82]. Discretely observed diffusion processes are discrete time
Markov processes and thus their likelihood depends on the transition densities of the diffusion
P(X(tk) ∈ A|X(tk − 1) = x). Since the dependence with respect to the parameters θ of these
transition densities is not explicit, then, the likelihood is intractable (see for example, El Maroufy
et al. [38], the authors tried to find a closed form of the transition probability, but in a very
restrictive case, of the SIR model.). Thus, other approaches have been proposed (the reader is
referred to Fuchs [46, Chap. 6] for a survey of alternative methods to ML approach). Since,
we are interested only by stochastic diffusion processes, then, instead of using the likelihood
function, we use a contrast processes with associated minimum contrast estimators (MCE).
They have to satisfy a series of conditions to lead to good estimators. have adopted in this
dissertation the terminology of contrast processes and minimum contrast estimators. The details
of this alternative approach is the subject of the Chapter 4.
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2.5 Bayesian inference for diffusion with discrete observation1

2.5.1 Bayes theorem

Bayesian statistics was named after Thomas Bayes2, who formulated a specific case of Bayes’
theorem in his paper published in 1763. Many Bayesian methods were developed by later au-
thors, but the term was not commonly used to describe such methods until the 1950s. During
much of the 20th century, Bayesian methods were unfavorable with many statisticians due to
philosophical and practical considerations. Many Bayesian methods required a lot of compu-
tation to complete, and most methods that were widely used during the century were based
on the frequentist interpretation. However, with the advent of powerful computers and new
algorithms like Markov chain Monte Carlo(MCMC), Bayesian methods have seen increasing use
within statistics coming into the 21st century.

Let π generally denote all posterior densities, p all prior densities and q all proposal densities.
Let θ be parameter to be estimated and x be the given observed data. Then the Bayes’ theorem
is given by the following formula:
Theorem 2.4 (Bayes’ Theorem). Let θ and x be two events such that P (x) > 0, then

π(θ|x) = p(θ)π(x|θ)
p(x) . (2.22)

In Bayesian statistics, most of the terms in Bayes’ rule have special names. Some of them even
have more than one name, with different scientific communities preferring different terminology.
Here is a list of the various terms and the names we will use for them:

• π(θ|x) is the posterior probability. It describes how certain or confident we are that hy-
pothesis θ is true, given that we have observed data x. Calculating posterior probabilities
is the main goal of Bayesian statistics.

• p(θ) is the prior probability, which describes how sure we were that θ was true, before we
observed the data x.

• π(x|θ) is the likelihood. If we assume that θ is true, this is the probability that we would
have observed data x.

• p(x) is the marginal likelihood. This is the probability that we would have observed data
x, whether θ is true or not.

1the contents of this section are inspired by the two following works, Robert [103] and Robert and Casella
[104].

2Thomas Bayes (c. 1701 – 7 April 1761) was an English statistician, philosopher and Presbyterian minister
who is known for formulating a specific case of the theorem that bears his name: Bayes’ theorem. Bayes never
published what would become his most famous accomplishment; his notes were edited and published after his
death by Richard Price.
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This can be written in three ways as follows:

π(θ|x) = p(θ)π(x|θ)
p(x)

π(θ|x) ∝ p(θ)π(x|θ)

posterior ∝ prior ? likelihood.

given the prior distribution p(θ) and the likelihood p(x|θ). Then we can get the posterior
distribution by the equation

π (θ | x) = π (x | θ) p (θ)∫
Θ π (x | θ) p (θ) dθ . (2.23)

2.5.2 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are methods for sampling probability distribution
functions or probability density functions (pdfs). These pdfs may be either probability mass
functions on a discrete space, or probability densities on a continuous space. MCMC methods
don’t require that we have a full analytic description of the properly normalized pdfs for sampling
to proceed; they only require that we are able to compute ratios of the pdfs at pairs of locations.
This makes MCMC methods ideal for sampling posterior pdfs in probabilistic inferences:

In a probabilistic inference, the posterior density π(θ |x), or density of parameters θ given data
x, is constructed from the likelihood π(x | θ) and the prior density p(θ) of parameters, it is often
known as "Bayes rule" (2.23),

π(θ |x) = 1
Z
π(x | θ) p(θ).

In these contexts, the constant Z, sometimes written as p(x), is known by the names "evidence",
"marginal likelihood", "Bayes integral" and "prior predictive probability". It is usually extremely
hard to calculate the marginal likelihood 1. That is, we often know the function π(θ |x) up to a
constant factor; we can compute ratios of two pdfs at pairs of points, but not the precise value
at any individual point.

In addition to this normalization-insensitive property of MCMC, in its simplest forms it can be
run without computing any derivatives or integrals of the function, and in its simplest forms it
is extremely easy to implement. For all these reasons, MCMC is ideal for sampling posterior pdfs
in the real situations in which scientists find themselves. In this thesis, our study is restricted
to using Gibbs Sampler and Metropolis-Hastings algorithms.

1The factor Z is often difficult to compute, because the likelihood (or the prior) can have extremely complex
structure, with multiple arbitrarily compact modes, arbitrarily positioned in the ( high dimensional) parameter
space θ.
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2.5.3 Gibbs sampling algorithm

Gibbs sampling allows us to sample from a joint multivariate distribution using only the con-
ditional distributions (see Wilkinson [129] for a simple example). Gibbs sampling was first
proposed by Geman and Geman [47], who used it to study image-processing models. Since
then, Gibbs sampling has become a very popular MCMC method with many fields Carter and
Kohn [24], Gilks et al. [53], Arminger and Muthén [5], Porteous et al. [97], and Damlen et al.
[30]. A first explanation of Gibbs sampler contain theory and examples (see,Casella and George
[25] and the references therein) and the reader can find a review of Gibbs sampler and other
MCMC methods in the paper of Smith and Roberts [114]. An algorithm for Gibbs sampler is
provided in Algorithm 1, which generates samples of θ and x iteratively, from the conditional
distributions π (θ | x) and π (x | θ, y), respectively.

Algorithm 1 Gibbs Sampler
1: Given an observed-data y.
2: Initialize x by sampling x ∼ π (. | y)
3: repeat
4: Sample θ ∼ π (θ | x) using current x . π (θ | x) is known analytically
5: Sample x ∼ π (x | y, θ) using current θ
6: Store θ as a sample
7: until the desired number of samples for θ is reached

2.5.4 The Metropolis Hastings algorithm

Metropolis-Hastings is a Markov chain Monte Carlo sampling method, proposed firstly by
Metropolis et al. [89], who used it to do calculations in the field of statistical mechanics, and
later generalized by Hastings [63]. Some descriptions of the Metropolis-Hastings sampling may
be found in Hitchcock [65] and Chib and Greenberg [28].

Metropolis-Hastings have been used extensively in many variations and by many authors in
different fields, cite here Jeliazkov [70], Geweke and Tanizaki [50], Roberts and Stramer [105],
Cauchemez et al. [26], Demiris and O’Neill [32], Pratola [98], and Adaszewski et al. [2].

It is usually not possible to sample from the true conditional distribution, π (θ|x), such condi-
tion is unfavorite for the Gibbs Sampler. In contrast, Metropolis-Hastings algorithm is aptly
suitable, in which we consider a proposal function q(.|θ) from which we generate samples of
θ iteratively and then accept the proposal sample with an acceptance probability. Given the
posterior density π (θ|x) and a proposal density q(.|θ), then the Metropolis-Hastings is provided
by the Algorithm 2. The reader is referred to Hastings [63] and Robert and Casella [104].
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Algorithm 2 Metropolis-Hastings algorithm (see: Robert and Casella [104])
1: Given an observed-data x.
2: Initialize θ(0)

3: for i = 1, . . . , N do
4: Sample a candidate θ̃ v q

(
θ | θ(i−1), x

)
( using a Gibbs sampler step given in

Algorithm 1 )

5: Calculate α = min

1,
π
(
θ̃|x
)

π
(
θ(i−1)|x

) q
(
θ(i−1) | θ̃|x

)
q
(
θ̃ | θ(i−1), x

)


6: Accept or reject θ̃ with probability α

7: Update θ(i) =
{
θ̃ with probabilityα
θ(i−1) else

8: Store θ(i) as a sample
9: end for

2.5.5 Bayesian inference for epidemic diffusion processes

Various alternative methods have been proposed to estimate parameters for epidemiological
systems, the more sophisticated of which rely on the calculation of a likelihood function (e.g.
Becker [17], Andersson and Britton [4], and Ionides et al. [68]). Likelihood based inference for
epidemic models poses many challenges, not least because available epidemic data are often
censored or incomplete. In this case the unobserved data must often be inferred from the
observed data. Alternatively, approximations can be made in order to match the model structure
to the form of the data (e.g. using discrete-time models).

A popular and particularly effective solution is to use the Bayesian paradigm to estimate pa-
rameters, using numerical techniques such as Markov Chain Monte Carlo (MCMC) algorithms
(e.g. Gibson and Renshaw [51], O’Neill and Roberts [91], Eraker [41], Streftaris and Gibson
[116], El Maroufy et al. [36], and Qaffou et al. [100]. Bayesian methodology provides a useful
means to infer unobserved or missing data, since it treats all unknown parameters and data
alike as random variables, for which full posterior distributions can be estimated. However, as
the population gets larger and/or the process gets more intricate, the likelihood can become
mathematically or computationally intractable (e.g. Deardon et al. [31]).

There are various potential advantages of this system for modeling epidemic processes. Firstly,
since it is based on simulation models it provides a natural method for imputing missing data.
Secondly, the simulated data are matched to the observed data through the use of metrics,
usually based on some form of summary (or sufficient) statistic. This allows key features of
the epidemic to be used to drive the model fit, even though information on individual events
or event times may be incomplete or unobserved. Thirdly, the use of a Bayesian framework
allows prior information about the parameters to be easily incorporated into the model. This is
particularly useful in epidemic systems where there is often a high degree of correlation between
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parameters, but for which prior information about some of the sub-processes (such as the length
of the infectious period) are sometimes known (e.g. through experimental studies or historical
data).

Another major motivation for using these approaches for inference in epidemic models is that
in many situations simulation algorithms are much faster to program and perform (Gillespie
[55]) than repeated calculation of the likelihood function. Speed is particularly important in the
face of an ongoing epidemic, where model predictions would need to be regularly updated and
refined as new data emerge, and having a reliable but quick model-fitting algorithm is essential.
The ability to combine elements of model and parameter uncertainty into model predictions is
also an attractive property.
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Chapter 3

Mathematical Modeling of HIV
epidemic model

3.1 Introduction

The HIV dynamic is very complex and there is no other human infection, in a similar mode
of transmission, that has the same epidemiological characteristics. For example, the incubation
period, after HIV infection, is known that is long. During this period, individuals remain in
good health and can transmit the disease to others without knowing it. Moreover, even if the
disease is known as a sexually transmitted disease, but it is also transmitted by infected mothers
to their babies and through the sharing of infected needles, which is common among injecting
drug users. All of these factors made it difficult to understand the spread of this epidemic in
the population.

Mathematical models based on the mechanism of HIV transmission might help scientific com-
munity to better understand how the disease spreads in the community. By developing such
mathematical models, we can, in a certain way, predict its spread in different populations and
evaluate the potential effectiveness of different approaches for bringing the epidemic under con-
trol, and thus help to devise effective strategies to minimize the destruction caused by this
epidemic.

Since the first cases of the HIV/AIDS were recognized in the late 80s, mathematical models for
the spread of this epidemic have been widely studied; see for example May and Anderson [86],
Dietz [33], Tan and Zhu [121], Kremer and Morcom [77], Mode and Sleeman [90], and Tan and
Wu [119] and the reference therein. However, this field of study is still challenging. Majority
of the articles have focused on only a single population of constant size, while some works have
concerned on variable population size in epidemic dynamics Dietz [33] and May et al. [87].
Note that, many models have only focused on a single homosexual population Tan and Xiang
[120]. Whilst, heterosexual contact is the predominant mode of transmission in much of the
world UNAIDS [126]. In this context, we are interested, in this dissertation, on modeling of the
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spread of HIV/AIDS epidemic in a heterosexual closed population with size N ; the population
is divided into compartments. The epidemic of HIV is modeled by a multidimensional SIR
process, which is a four-dimensional continuous-time Markovian jump process. In which each
individual can find himself at a given time in one of five mutually exclusive health states named
SF (SM ) susceptible female (male), IF (IM ) infected female (male) and R(t) the AIDS cases, as
presented in Fig. 3.1. Our model is motivated mostly by the work of Sani et al. [109], who used
time dependence to approximate the diffusion model; while, here we use the convergence of the
master equation and Fokker–Plank equation to derive the diffusion process.

The rest of this chapter is organized as follow; in section 2 we give the description of the adopted
model. In section 3 we formulate the discrete space Markov chain and the deterministic model.
While, in the section 4 we give a detailed formulation of the SDE epidemic model. A brief
conclusion is in the last section.

3.2 Model description

We consider a closed and well mixed heterosexual population of size N . We assume that the
infection can be made only by heterosexual contact. A single female or male selects her/his
partner randomly from the whole population. We denote by SF (t), IF (t), SM (t), IM (t) and
Z(t) respectively, the sizes of susceptible females, infected females, susceptible males, infected
males, and AIDS cases at time t. The population can be divided on compartments as presented
in Fig. 3.1. The rate λF (λM ) of infection of a female (male) susceptible is assumed to be

proportional to the fraction of infected males (females) in their sub-population: λF = β
IM (t)
NM (t)(

λM = β
IF (t)
NF (t)

)
, λF and λM are called the forces of infection, where NF (t) = SF (t) + IF (t)

and NM (t) = SM (t) + IM (t). The parameter β is the product of the contact rate k and the
probability p that a successive number of contacts leads to infection (k = 1

T
per unit time;

p = 1 − (1 − h)CT ) where T is the time interval per partnership, C is the average number
of sexual contact per partnership and h is the probability that one sexual contact between
a susceptible and an infected individual leads to infection. We assume that all individuals,
including AIDS people, leave the random mixing sexually active population at rate µ (due to
natural death or for reasons other than dying). An individual at stage AIDS dies from the
disease at rate δ. The individuals that leave the system are replaced by inflow of susceptible, at
a proportion 0 ≤ α ≤ 1 for females and (1− α) for males. Thus, the inflow rates for susceptible
females and males are BF = α(µN+δZ) and BM = (1−α)(µN+δZ) respectively. The infected
individuals develop AIDS at rate γ.
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Figure 3.1: State diagram for the model of HIV. λF and λM are forces of
infection, BF and BM are the inflow rates for susceptible females and males, µ is
the mortality rate, γ is the removal rate, δ is the mortality rate from the disease

. Dashed arrows indicate that infections are made via sexual contact only.

3.3 Deterministic model and formulation of discrete space Markov
chain

The situation as described in Fig. 3.1, can be viewed as a multidimensional SIR model. Since,
we have considered a closed population that is, SF (t) + IF (t) +SM (t) + IM (t) +Z(t) is constant
and equal to N for all t. The dynamic of epidemic is then, completely determined by the discrete
process Y(t) = (SF (t), IF (t), SM (t), IM (t)), which is supposed to be a continuous time Markov
process with discrete space DN =

{
(a, b, c, d) ∈ N4; a+b+c+d ≤N

}
.

For a small time interval [t, t+∆t] only one of the following events occurs; Birth of a susceptible
female (male), infection of a susceptible female (male), natural death of a susceptible female
(male) and a recovery or natural death of an infected female (male), all these events are resumed
in the following schema:

k − l pk−l,k∆t k

(SF − 1, IF , SM , IM ) −→ (SF , IF , SM , IM )
(SF , IF , SM − 1, IM ) −→ (SF , IF , SM , IM )

(SF + 1, IF − 1, SM , IM ) −→ (SF , IF , SM , IM )
(SF , IF , SM + 1, IM − 1) −→ (SF , IF , SM , IM )

(SF + 1, IF , SM , IM ) −→ (SF , IF , SM , IM )
(SF , IF , SM + 1, IM ) −→ (SF , IF , SM , IM )
(SF , IF + 1, SM , IM ) −→ (SF , IF , SM , IM )
(SF , IF , SM , IM + 1) −→ (SF , IF , SM , IM )

(SF , IF , SM , IM ) −→ (SF , IF , SM , IM )
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k − l pk−l,k∆t k

Table 3.1: All events in the pattern of the HIV epidemic, that can occur in a
small time step.

Explicitly the process Y jumps from state k − l at time t to state k = (SF , IF , SM , IM ) at time
t + ∆t with transition pk−l,k∆t. The rates pk−l,k = lim

∆t→0
P(Yt+∆t = k|Yt = k − l) are given in

details in Eq. (3.1), which resume all jumps.

pk−l,k =



α(µN + δ(Z + 1)), l = e1,

βIM (SF + 1)
SM + IM

, l = −e1 + e2,

µ(SF + 1), l = −e1,

(µ+ γ)(IF + 1), l = −e2,

(1− α)(µN + δ(Z + 1)) l = e3
βIF (SM + 1)
SF + IF

, l = −e3 + e4,

µ(SM + 1), l = −e3,

(µ+ γ)(IM + 1), l = −e4,

1−
(
(µN+δZ)+β(IMSF+IFSM)

SM +IM
+µ (SF +SM)+(µ+γ) (IF +IM)

)
l = 0,

0, otherwise.

(3.1)

With (e1, e2, e3, e4) is the standard basis of R4.

The deterministic approximation of the corresponding multidimensional SIR model of the dy-
namic of HIV, as described in Fig. 3.1, and using the transition rates Eq. (3.1) is given by the
following set of ordinary equations ODE (see, May et al. [87] and Sani et al. [109]):

dsF
dt

= α(µ+ δz)− µsF − β
iM

sM + iM
sF

diF
dt

= β
iM

sM + iM
sF − (µ+ γ)iF

dsM
dt

= (1− α)(µ+ δz)− µsM − β
iF

sF + iF
sM

diM
dt

= β
iF

sF + iF
sM − (µ+ γ)iM

(3.2)

Since, the number of infective peoples is a stochastic quantity and the process posses the Markov
property, then, the transitions from one state to another are well described by the master
equation. Which can be obtained directly from Eq. (3.1). Let P(Y(t) = k) be the probability
for the process Y to be at state k at time t. Then, applying the Markov property, the difference
equation satisfied by the probability P(Y(t) = k) can be expressed in terms of the transition
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probabilities. Then, the forward master equation is given by the sum over all jumps l,

dP(Y(t)=k)
dt

=
∑
l

P(Yt = k|Yt−∆t = k − l)P(Yt−∆t = k − l)

=α (µN+δ(Z+1))P(SF−1, IF , SM , IM)+βIM (SF +1)
SM+IM

P(SF +1, IF−1, SM , IM)

+ µ(SF + 1)P(SF + 1, IF , SM , IM ) + (µ+ γ)(IF + 1)P(SF , IF + 1, SM , IM )

+(1−α)(µN+δ(Z+1))P (SF , IF , SM−1, IM)+βIF (SM+1)
SF +IF

P (SF , IF , SM+1, IM−1)

+ µ(SM + 1)P (SF , IF , SM + 1, IM ) + (µ+ γ)(IM + 1)P (SF , IF , SM , IM + 1)

−
(
α(µN + δZ) + βIMSF

SM + IM
+ µSF + (µ+ γ)IF + (1− α)(µN + δZ)

+ βIFSM
SF + IF

+ µSM + (µ+ γ)IM
)
P (SF , IF , SM , IM ) . (3.3)

3.4 Formulation of SDE Epidemic Model

Instead of tracking the states by the discrete process Y in Eq. (3.3); we will shift to the continuous
states process X by normalizing the process Y, for large size of population (N sufficiently large),

we have X(t) = Y(t)
N

=
(
x1(t) = SF (t)

N
, y1(t) = IF (t)

N
, x2(t) = SM (t)

N
, y2(t) = IM (t)

N

)
and set

z(t) = 1− (x1 + y1 + x2 + y2). The approximation of pure Markov jump processes by diffusion,
has been widely discussed by some authors, who use martingale characterizations of Markov
processes, convergence of solutions of stochastic equations and the theory of semi-group, let cite
Kurtz [79] and Pollard [96] and recently this approach is well discussed in Øksendal [78] and
Fuchs [46]. The Kolmogorov’s Eq. (3.3) becomes,

1
N

∂

∂t
P(Xt = x) = α (µ+δ(z+ε))P(x1−ε, y1, x2, y2)+ βy2

x2 + y2
(x1+ε)P(x1+ε, y1−ε, x2, y2)

+ µ(x1 + ε)P(x1 + ε, y1, x2, y2) + (µ+ γ)(y1 + ε)P(x1, y1 + ε, x2, y2)

+(1−α) (µ+δ(z + ε))P (x1, y1, x2−ε, y2)+ βy1x2
x1 + y1

P(x1, y1, x2+ε, y2−ε)

+ µ(x2 + ε)P(x1, y1, x2 + ε, y2) + (µ+ γ)(y2 + ε)P(x1, y1, x2, y2 + ε)

−
(
(µ+δz)+ βy2x1

x2+y2
+µ(x1+x2)+(µ+γ)(y1+y2)+ βy1x2

x1 + y1

)
P(x1, y1, x2, y2),

(3.4)
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where ε = 1
N

. By regrouping, adding and removing terms in Eq. (3.4), it can be written:

1
N

∂

∂t
P(Xt = x) = α

(
(µ+ δ(z + ε))P(x1 − ε, y1, x2, y2)− (µ+ δz)P(x1, y1, x2, y2)

)
+ β

y2
x2 + y2

(
(x1 + ε)P (x1 + ε, y1 − ε, x2, y2)− (x1 + ε)P (x1 + ε, y1, x2, y2)

−x1P (x1, y1−ε, x2, y2)+x1P (x1, y1, x2, y2)
)

+β y2
x2+y2

(x1 + ε)P (x1+ε, y1, x2, y2)

+β y2
x2+y2

(
x1P (x1, y1−ε, x2, y2)−2x1P (x1, y1, x2, y2)

)
+µ(x1 + ε)P(x1+ε, y1, x2, y2)

+µx1P(x1, y1, x2, y2)+(µ+γ)
(
(y1 + ε)P(x1, y1 + ε, x2, y2)−y1P(x1, y1, x2, y2)

)
+ (1− α)

(
(µ+ δ(z + ε))P(x1, y1, x2 − ε, y2)− (µ+ δz)P(x1, y1, x2, y2)

)
+ βy1
x1 + y1

(
(x2 + ε)P(x1, y1, x2 + ε, y2 − ε)− (x2 + ε)P(x1, y1, x2 + ε, y2)

−x2P(x1, y1, x2, y2 − ε)+x2P(x1, y1, x2, y2)
)

+β y1
x1 + y1

(
(x2+ε)P(x1, y1, x2 + ε, y2)

+ x2P(x1, y1, x2, y2 − ε)− 2x2P(x1, y1, x2, y2)
)

+ µ
(
(x2 + ε)P(x1, y1, x2 + ε, y2)

− x2P(x1, y1, x2, y2)
)

+ (µ+ γ)
(
(y2 + ε)P(x1, y1, x2, y2 + ε)− y2P(x1, y1, x2, y2)

)
.

(3.5)

This passage to continuum allows us to use standard tools of calculus. Then, the Taylor expan-
sions up to the second order for multivariate functions (see, Azencott [12]). Let N → ∞, thus
ε→ 0, We have then, the approximations of expressions between big brackets, are given in the
following approximations. For the expression between big brackets in the first line on the right
side of the Eq. (3.5) above is approximated by,

(µ+ δ(z + ε))P(x1 − ε, y1, x2, y2)− (µ+ δz)P(x1, y1, x2, y2)

' (µ+ δz)
(
−ε ∂

∂x1
+ 1

2ε
2 ∂

∂x1

)
P(x1, y1, x2, y2).

The expression between big brackets in the second and third lines has approximated by,

(x1 + ε)P (x1 + ε, y1 − ε, x2, y2)− (x1 + ε)P(x1 + ε, y1, x2, y2)− x1P(x1, y1 − ε, x2, y2)

+ 2x1P(x1, y1, x2, y2) ' −ε2 ∂2

∂x1∂y1
x1P(x1, y1, x2, y2).

The same thing for the expression, inside big brackets in the fourth line, we have,

((x1 + ε)P(x1 + ε, y1, x2, y2) + x1P(x1, y1 − ε, x2, y2)− 2x1P(x1, y1, x2, y2))

'
(
ε

(
∂

∂x1
− ∂

∂y1

)
+ ε2

(
∂2

∂x2
1

+ ∂2

∂y2
1

))
x1P(x1, y1, x2, y2).
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For the fifth line, the expression has the following approximations,

(x1 + ε)P(x1 + ε, y1, x2, y2)− x1P(x1, y1, x2, y2) '
(
ε
∂

∂x1
+ 1

2ε
2 ∂

∂x1

)
P(x1, y1, x2, y2).

The fifth between expression is approximated by,

(y1 + ε)P(x1, y1 + ε, x2, y2)− y1P(x1, y1, x2, y2) '
(
ε
∂

∂y1
+ 1

2ε
2 ∂

∂y1

)
y1P(x1, y1, x2, y2)

For the remaining expressions in Eq. (3.5), they have the same development by exchanging x1,
y1 and α by x2, y2 and 1− α respectively.

Integrate these approximations into the Eq. (3.5), let ε = N−1, then, the Eq. (3.5) becomes,

1
N

∂

∂t
P(x1, y1, x2, y2) = 1

N

[
∂

∂x1

(
−α(µ+δz)+µx1+ βy2x1

x2+y2

)
+ ∂

∂y1

(
(µ+γ)y1+ βy2x1

x2+y2

)

+ ∂

∂x2

(
−(1−α)(µ+δz)+µx2+ βy1x2

x1+y1

)
+ ∂

∂y2

(
(µ+γ)y2+ βy1x2

x1+y1

)]
P(x1, y1, x2, y2)

+ 1
2N2

[
∂2

∂x2
1

(α(µ+ δz) + µx1) + ∂2

∂y2
1

((µ+ γ)y1) + ∂2

∂x2
2

(
(1− α)(µ+ δz) + µx2

)

+ ∂2

∂y2
2

((µ+ γ)y2)− 2 ∂2

∂x1∂y1
( βy2x1
x2 + y2

)− 2 ∂2

∂x2∂y2
( βy1x2
x1 + y1

x2)
]
P(x1, y1, x2, y2)

(3.6)

simplifying by N−1 in two sides of the equality in Eq. (3.6) and writing it in vectorial form

using the arguments: ∂

∂x =
(
∂

∂xi

)
1≤i≤4

and ∂2

∂x2 =
(

∂2

∂xi∂xj

)
1≤i,j≤4

, the Eq. (3.6) can be

rewritten as
∂

∂t
P(Xt = x) = − ∂

∂x [ξ(x)P(x, t)] + 1
2
∂2

∂x2

[ 1
N

Σ(x)P(x, t)
]
, (3.7)

where,

ξ(x) =



α(µ+ δz)− µx1 −
βy2x1
x2 + y2

−(µ+ γ)y1 + βy2x1
x2 + y2

(1− α)(µ+ δz)− µx2 −
βy1x2
x1 + y1

−(µ+ γ)y2 + βy1x2
x1 + y1


, (3.8)
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Σ(x)=



α(µ+δz)+µx1+ βy2x1

x2+y2
− βy2x1

x2 + y2
0 0

−βy2x1

x2 + y2
(µ+γ)y1+ βy2x1

x2+y2
0 0

0 0 (1−α)(µ+δz)+µx2+ βy1x2

x1+y1

−βy1x2

x1 + y1

0 0 −βy1x2

x1 + y1
(µ+ γ)y2 + βy1x2

x1 + y1


.

(3.9)

Since Σ, as defined in Eq. (3.9), positive definite then the Eq. (3.7) is the forward diffusion.
This equation corresponds to a diffusion process with drift vector ξ and diffusion matrix Σ

N
,

i.e. the intensive Markov jump process (Xt, t ≥ 0) can be approximated by a diffusion (see,
Øksendal [78] and Fuchs [46] for more details) satisfying the SDE :

dXt =



α(µ+ δz)− µx1 −
βy2x1
x2 + y2

−(µ+ γ)y1 + βy2x1
x2 + y2

(1− α)(µ+ δz)− µx2 −
βy1x2
x1 + y1

−(µ+ γ)y2 + βy1x2
x1 + y1


dt+ 1√

N
σ(Xt, θ)


dW1

dW2

dW3

dW4



So, that
dXt = ξ(Xt, θ)dt+ 1√

N
σ(Xt, θ)dW (t), (3.10)

where σ is such that σσT = Σ, here σT is transposed matrix of the matrix σ. A cholesky

decomposition yields σ =
(
σ1 0
0 σ2

)
with

σ1 =


√
α(µ+ δz) + µx1 + βy2x1

x2 + y2
0

− βy2x1
x2+y2√

α(µ+ δz) + µx1 + βy2x1
x2+y2

√
(µ+γ)y1

[
α(µ+δz)+µx1+ βy2x1

x2+y2

]
+ βy2x1
x2+y2

[α(µ+δz)+µx1]
α(µ+ δz) + µx1 + βy2x1

x2+y2



σ2 =


√

(1−α)(µ+δz)+µx2+ βy1x2

x1 + y1
0

− βy1x2
x1+y1√

(1−α)(µ+δz)+µx2+ βy1x2
x1+y1

√
(µ+γ)y2

[
(1−α)(µ+δz)+µx2+ βy1x2

x1+y1

]
+ βx2y1
x1+y1

[(1−α)(µ+δz)+µx2]
(1− α)(µ+ δz) + µx2 + βy1x2

x1+y1

.
The stochastic components W1,W2,W3 and W4 are standard independent Brownian motions,
representing the stochastic effect in disease transmission and recovers.

Hence, we had well modeled the dynamic of HIV in a heterosexual population, studied in this
dissertation, presented in Fig. 3.1 by a stochastic diffusion process Eq. (3.10). We recall that,
our main goal is to illustrate an efficient method to estimate θ = (µ, β, γ, δ), which is the goal
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of two following chapters.

Different diffusion approximation techniques are investigated in literature, let introduce: the
convergence of the Master Equation, this technique has been used e.g. by Goel and Richter-Dyn
[57] and Gillespie [54]. The convergence of the infinitesimal generator of the jump process (see
the book Kurtz [79] ). The Langevin approach has been studied by many authors Ramshaw
[101], Golightly and Wilkinson [59], Wilkinson [129], Tian et al. [122], Golightly and Wilkinson
[58], and Seifert [111]. The Kramers-Moyal expansion has been applied by Strumik and Macek
[117], Hufnagel et al. [66], and Capasso and Morale [23]. The reader is referred to the book of
Fuchs [46, Chap. 4] for a review.

3.5 Conclusion

In this chapter, we have been introduced and described the adopted model, which correspond
to the transmission of the HIV dynamic in a closed heterosexual population. This model has
been presented in its deterministic form firstly. Finally, we obtained the SDE epidemic model,
using convergence of the master equations. Such modeling could be adopted for a family of
other infectious diseases.
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Chapter 4

Minimum contrast estimator of HIV
epidemic model’s parameters 2

4.1 Introduction

Parameter estimation for diffusion processes with small noise based on continuous-time observa-
tions, case where the whole path is observed has mainly developed in the literature. The asymp-
totic statistical theory has been well studied by Kutoyants [81] and Kutoyants [80], Yoshida
[131] showed the validity of asymptotic expansions for statistical estimators; see also Sørensen
and Uchida [115] and the reference therein. Since the process {Xt, t ≥ 0} is Markovian, hence
if the transition densities of {Xt, t ≥ 0} are known, one can use the log-likelihood function for
estimation of θ. In the context of the SDE’s, the maximum likelihood estimate (MLE) is known
to have usual good properties (see, Dacunha-Castelle and Florens-Zmirou [29] and Bibby et al.
[19]).

Consider the diffusion process {Xt, t ≥ 0} defined by the stochastic differential equation

dXt = ξ(Xt, θ)dt+ εσ(Xt, θ)dW (t), t ≥ 0 (4.1)

where {Wt, t ≥ 0} is a four-dimensional standard Brownian, ε = 1√
N

(N is the population size)
, θ ⊂ Θ is the unknown parameter which is to be estimated on the basis of observations of the
process {Xt, t ≥ 0} at times 0 = t0 < t1 < ... < tn and ξ and σ are known smooth functions as
defined in Eqs. (3.8) and (3.9). Unfortunately, the transition densities of {Xt, t ≥ 0} are usually
unknown except in some very special cases. In recent years, the more realistic case of parametric
estimation for discretely observed diffusion processes has also been studied by many researchers;
see Pedersen [93], Andersson and Britton [4], Aït-Sahalia [10], and Bibby et al. [19].

Statistical methods associated to discrete data have been developed in the asymptotics of a small
diffusion coefficient by Kessler [73]. The asymptotic properties of estimators were largely studied

2Part of this chapter appears in Abou-Bakre and El Maroufy [1]
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over the two last decades (e.g. Genon-Catalot [48]; Sørensen and Uchida [115]; Gloter and
Sørensen [56]). Sørensen and Uchida obtained consistent and normally asymptotic estimators
of drift and diffusion coefficients. Uchida [125] obtained consistent and normal asymptotic
estimators of both drift and diffusion coefficients. In this chapter, we treat a particular case of
multidimensional diffusion processes defined by the SDE (2.4) for which the model parameters
are in both drift and diffusion coefficients. We prove consistency and asymptotic-normality of
estimators of the parameter θ in both drift and diffusion coefficients.

This chapter is organized as follows. After this introductory section, we formulate and establish
the contrast function and the corresponding minimum estimator in the second section. The third
section treats the asymptotic properties of the estimator, that is the consistency and asymptotic
normality of the minimum contrast estimator. In the fourth section, we present the proofs of
some essential results. Finally, in the last section we present numerical results and simulations.

4.2 Minimum contrast estimator for diffusion

The statistical inference for continuously observed diffusion processes on a finite interval is
based on the likelihood of the diffusion which is obtained using the Girsanov formula (see e.g.
Kutoyants [82] and Liptser and Shiryaev [84]). Discretely observed diffusions are discrete time
Markov processes and thus their likelihood depends on the transition probabilities densities of
the diffusion. However, in our case, these densities are unavailable in simple closed form (see,
El Maroufy et al. [38, 37]), the likelihood is then intractable. As an alternative we will adopt the
approach given by Kessler [73], based on approximation of the log-likelihood. They are often
called contrast function with their associated minimum contrast estimators (MCE).

From now on, the following notations will be used, let Θ be a compact subset of R4, θ0 the true
value of parameter θ = (µ, β, γ, δ) belongs to Θ̊ the interior of Θ. Let ε = 1√

N
and X0

t solution

of the ordinary differential equation, dX0
t = ξ(X0

t , θ0)dt. Let Pθ0 the law of the solution of the
process (2.4), W (t) be a four−dimensional standard Brownian on the filtered probability space(
Ω,Ft, (Ft)t≥0 ,Pθ0

)
where F is the natural filtration ofX. Let make the following assumptions:

Assumption 1. i. Equation (2.4) has an unique and strong solution in [0, T ].

ii. ∀m > 0, sup
t
E(|Xt|m) <∞.

Assumption 2. i. ξ(x, θ) ∈ C3(R4 × Θ̄;R4) and σ(x, θ) ∈ C2(R4 × Θ̄;R4 ⊗R4).

ii. inf
x,θ

det[σσT ] > 0 and [σσT ]−1(x, θ) ∈ C2(R4 × Θ̄;R4 ⊗R4).

Assumption 3. θ 6= θ0 =⇒ ξ(x, θ) 6= ξ(x, θ0) and σ(x, θ) 6= σ(x, θ0) .

The uniqueness and existence of a strong solution of the equation (2.4) are guaranteed by two
conditions, local Lipschitz (2.6) and linear growth (2.5) of both coefficients drift and diffusion, for
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more details (see the proof in Appendix A). In order to obtain an estimator of the model param-
eter θ, we construct the contrast function based on a Gaussian approximation of the transition
density in the same way as Kessler [73] and Sørensen and Uchida [115]. Thereby, using an n-
sample of time equidistant observations of the processX,

{
Xtk , k = 1 . . . n; tk+1 = tk +∆,∆ = 1

n

}
.

Then, we have the following contrast function

Uε,n(θ) =
n∑
k=1

[
log (det [Σk−1]) + 1

∆
ε−2Pk(θ)TΣ−1

k−1Pk(θ)
]
, (4.2)

where Pk(θ) = Xtk −Xtk−1 −
1
n
ξ(Xtk−1 , θ) and Σk = Σ(Xtk , θ) = σTσ(Xtk , θ). After a tedious

algebraic calculus, and let
∆1

2 = (µ+ γ)y1

(
α(µ+ δz) + µx1 + βy2x1

x2 + y2

)
+ βy2x1
x2 + y2

(α(µ+ δz) + µx1) and

∆2
2 = (µ+ γ)y2

(
(1− α)(µ+ δz)+µx2+ βy1x2

x1 + y1
x2

)
+ βy1x2
x1 + y1

((1− α)(µ+ δz)+µx2).

The explicit form of the contrast function (4.2), is finally given by the following expression:

Un,ε(θ) = 1
2

n∑
k=1

[log (∆1) + log (∆2)] + nε−2
n∑
k=1

P1
2

(µ+ γ)yk−1
1 + β y2k−1x1k−1

x2k−1+yk−1
2

∆1
2


+2P1P2

β y2k−1

x2k−1+y2k−1x1
k−1

∆1
2

+P2
2

(1−α)(µ+δzk−1)+µx2
k−1+β y1k−1x2k−1

x1k−1+y1k−1

∆1
2



+ P3
2

(µ+ γ)yk−1
2 + β

xk−1
1

x1k−1+yk−1
1

y2
k−1

∆2
2

+ 2P3P4

β y1k−1

x1k−1+y1k−1x2
k−1

∆2
2



+ P4
2

α(µ+ δzk−1) + µx2
k−1 + β y1k−1

x1k−1+y1k−1x2
k−1

∆2
2

 , (4.3)

where the arguments P1, P2, P3 and P4 are given by:

P1 =∆xk1 −
1
n

(
α(µ+ δzk−1)− µx1

k−1 − βy2
k−1x1

k−1

x2k−1 + y2k−1

)
,

P2 =∆yk2 −
1
n

(
−(µ+ γ)y2

k−1 + βy1
k−1x2

k−1

x1k−1 + y1k−1

)
,

P3 =∆xk2 −
1
n

(
(1− α)(µ+ δzk−1)− µx2

k−1 − βy1
k−1x2

k−1

x1k−1 + y1k−1

)
,

P4 =∆yk2 −
1
n

(
(µ+ γ)y2

k−1 + βy1
k−1x2

k−1

x1k−1 + y1k−1

)
.
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4.3 Consistency and asymptotic normality of MCE

Let define the following arguments B(x, θ0, θ) = ξ(x, θ0)− ξ(x, θ),

I(θ0) =
(∫ 1

0

(
∂

∂θi
ξ(X0

s , θ0)
)

Σ−1(X0
s , θ0)

(
∂

∂θj
ξ(X0

s , θ0)
)
ds

)
1≤i,j≤4

and

U(θ0, θ) =
∫ 1

0
log det Σ(X0

s , θ)ds+
∫ 1

0
tr
[
Σ(X0

s , θ0)Σ−1(X0
s , θ)

]
ds

+ ε2

n

∫ 1

0
BT (X0

s , θ0, θ)Σ−1(X0
s , θ)B(X0

s , θ0, θ)ds.

Let θ̂ε,n be a minimum contrast estimator defined by θ̂ε,n = arg min
θ∈Θ̄

Uε,n(θ)1. We have the
following result.
Theorem 4.1. Suppose that the Assumption 1-3 are fulfilled. Then we have, when ε −→ 0 and
n −→∞

i. θ̂ε,n −→ θ0 in Pθ0-probability

ii. ε−1
(
θ̂ε,n − θ0

)
−→ N (0, I−1(θ0)), in distribution under Pθ0 if the matrix I(θ0) is non-

singular.

The first statement of the theorem means that the MCE estimator is consistent and converge to
the true value of the parameter θ as ε −→ 0 and n −→∞, while the second property means the
normal asymptotic property of the estimator, which let build the confidence intervals. In order
to prove the previous statements we will need the following Lemmas,
Lemma 4.1. Suppose that Assumption 1-3 hold true. Then,

sup
θ∈Θ̄

∣∣∣∣ 1nUε,n(θ)− U(θ, θ0)
∣∣∣∣ −→ 0,

in Pθ0 − probability, as ε −→ 0 and n −→∞.

Proof. The detailed proof is given in Uchida [125, Poposition 3.1]

Lemma 4.2. If Assumption 1-3 are fulfilled. Then,

−ε ∂
∂θ
Uε,n(θ0) −→ N (0, 4I(θ0)),

in distribution, under Pθ0, as ε −→ 0 and n −→∞.
1The notation arg max is an abbreviation of "the argument of the minimum". It is the set of points of a given

argument for which the given function attains its lowest value.
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Proof of Lemma 4.2. Our proof starts with observation that for i = {1, 2, 3, 4}

∂

∂θi
U(θ0) =

n∑
k=1

∂

∂θi
log (det Σk−1(θ0)) + 2ε−2n

n∑
k=1

∂

∂θi
PT
k (θ0)Σ−1

k−1(θ0)Pk(θ0)

+ ε−2n
n∑
k=1

PT
k (θ0)

[
∂

∂θi
Σ−1
k−1(θ0)

]
Pk(θ0),

It follows that

−ε ∂
∂θi

U(θ0) =− ε
n∑
k=1

∂

∂θi
log (det Σk−1(θ0)) + 2ε−1

n∑
k=1

∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0)Pk(θ0)

− ε
n∑
k=1

PT
k (θ0)
ε
√
∆

[
∂

∂θi
Σ−1
k−1(θ0)

] Pk(θ0)
ε
√
∆

=− ε
n∑
k=1

∂

∂θi
log (det Σk−1(θ0))︸ ︷︷ ︸

T i1

+2
√
∆

n∑
k=1

[
∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0)
] Pk(θ0)
ε
√
∆︸ ︷︷ ︸

T i2

− ε
n∑
k=1

PT
k (θ0)
ε
√
∆

[
∂

∂θi
Σ−1
k−1(θ0)

] Pk(θ0)
ε
√
∆︸ ︷︷ ︸

T i3

=− εT i1 + 2
√
∆T i2 − εT i3. (4.4)

Since the differentiability of Σ−1 with respect to θ and inf
x,θ

(det Σ) > 0 (Assumption 2 on

page 40), and the fact that the process Pk(θ0)
ε
√
∆

is a Gaussian process with mean 0 and Σ as

covariance matrix, hence the arguments T i1, T i2 and T i3 in Eq. (4.4) are bounded with respect to
the probability Pθ0 , for each i, as ε −→ 0 and n −→∞.

So in Pθ0-probability as ε −→ 0 and n −→∞,

T i2 =
n∑
k=1

[
∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0)
] Pk(θ0)
ε
√
∆

,

has a normal distribution with zero mean and covariance matrix
n∑
k=1

∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0) ∂

∂θi
ξ(Xtk−1 , θ0).

Finally,

2
√
∆T i2 −→ N

(
0, 4∆

n∑
k=1

∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0) ∂

∂θi
ξ(Xtk−1 , θ0)

)
, (4.5)
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as ε −→ 0 and n −→∞ in distribution.
By Eq. (4.4), we have, as ε −→ 0 and n −→∞.

−ε ∂
∂θi

U(θ0) −→ lim
ε−→0,n−→∞

2
√
∆T i2

and Eq. (4.5) implies that,
T i2 −→ N (0, I(θ0)).

This finishes the proof of Lemma 4.2.

Lemma 4.3. If Assumption 1-3 are fulfilled. Then,

−ε2 ∂2

∂θi∂θj
Uε,n(θ0) −→ 2I(θ0)i,j ,

in Pθ0 − probability, as ε −→ 0 and n −→∞.

Proof of Lemma 4.3. We begin seeing that for each i, j = {1, 2, 3, 4}

∂2

∂θi∂θj
U(θ0) =

n∑
k=1

∂2

∂θi∂θj
log (det Σk−1(θ0)) + 2ε−2n

n∑
k=1

∂2

∂θi∂θj
PT
k (θ0)Σ−1

k−1(θ0)Pk(θ0)

+ 2ε−2n
n∑
k=1

∂

∂θi
PT
k (θ0)

[
∂

∂θj
Σ−1
k−1(θ0)

]
Pk(θ0)

+ 2ε−2n
n∑
k=1

∂

∂θi
PT
k (θ0)Σ−1

k−1(θ0) ∂

∂θj
Pk(θ0)

+ ε−2n
n∑
k=1

PT
k (θ0)

[
∂2

∂θi∂θj
Σ−1
k−1(θ0)

]
Pk(θ0).

The main idea of the proof is to separate the previous sum as follows

ε2
∂2

∂θi∂θj
U(θ0) = ε2

[
n∑
k=1

∂2

∂θi∂θj
log (det Σk−1(θ0)) +

n∑
k=1

PT
k (θ0)
ε
√
∆

[
∂2

∂θi∂θj
Σ−1
k−1(θ0)

]
Pk(θ0)
ε
√
∆

]
︸ ︷︷ ︸

T i,j1

+ 2
n∑
k=1

∂2

∂θi∂θj
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0)Pk(θ0)︸ ︷︷ ︸
T i,j2

+ 2
n∑
k=1

∂

∂θi
ξ(Xtk−1 , θ0)T

[
∂

∂θj
Σ−1
k−1(θ0)

]
Pk(θ0)︸ ︷︷ ︸

T i,j3
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+ 2 1
n

n∑
k=1

∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0) ∂

∂θj
ξ(Xtk−1 , θ0)︸ ︷︷ ︸

T i,j4

= ε2T1
i,j + 2T2

i,j + 2T3
i,j + 2 1

n
T4

i,j . (4.6)

Putting ∆ = 1
2 , The Lemma B.1 ensures that arguments T2

i,j and T3
i,j tend to 0 as ε −→ 0 and

n −→∞. Since T1
i,j defined in Eq. (4.6), are bounded in Pθ0-probability, then, ε2T1

i,j −→ 0. For

the term T4
i,j , since the conditions of Lemma B.1 are guaranteed for ∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0) ∂

∂θj
ξ(Xtk−1 , θ0),

it follows that, for each i and j

2 1
n
T4

i,j = 2 1
n

n∑
k=1

∂

∂θi
ξ(Xtk−1 , θ0)TΣ−1

k−1(θ0) ∂

∂θj
ξ(Xtk−1 , θ0) −→ 2 (I(θ0))i,j

as ε −→ 0 and n −→∞. This completes the proof.

4.4 Proof of Theorem 4.1

Proof. For the first statement of Theorem 4.1, which treats the consistency of estimator θ̂ε,n,
we have, from a version of Lemma 17 in Genon-Catalot [48],

log det[Σ(X0
t , θ)] + tr

[
[Σ(X0

t , θ0)][Σ−1(X0
t , θ)]

]
≥ log det[Σ(X0

t , θ)] + d,

where d is the dimension of the process, here d = 4, with equality if,

Σ(X0
t , θ0) = Σ(X0

t , θ).

By assumption A2, we obtain,∫ 1

0
BT (X0

t , θ, θ0)
[
Σ−1(X0

t , θ)
]
B(X0

t , θ, θ0)ds > 0,

with equality if and only if ξ(X0
t , θ) = ξ(X0

t , θ0). Thus, it follows from Assumption 3 that,

U(θ, θ0) ≥ U(θ0, θ0),

with equality if θ = θ0. Therefore for any η > 0,

inf
θ:|θ−θ0|≥η

U(θ, θ0) > U(θ0, θ0). (4.7)
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Moreover from the definition of θ̂ε,n we have,

Uε,n(θ̂ε,n) = inf
θ∈Θ̄

Uε,n(θ),

and the fact θ0 ∈ Θ̄ then, for any η > 0 and ε −→ 0, n −→∞,

Pθ0

[
Ūε,n(θ̂ε,n) ≤ Ūε,n(θ0) + η

]
−→ 1, (4.8)

where Ūε,n(θ) = 1
n
Uε,n(θ).

From Eq. (4.7), for every η > 0, there exist η′ > 0 such that

inf
θ:|θ−θ0|≥η

U(θ, θ0) > U(θ0, θ0) + η
′
.

Furthermore, for every η there exists η′ > 0 such that∣∣∣θ̂ε,n − θ0
∣∣∣ ≥ η then,U(θ̂ε,n, θ0) ≥ inf

θ:|θ−θ0|≥η
U(θ, θ0) > U(θ0, θ0) + η

′
.

Hence,

Pθ0

(∣∣∣θ̂ε,n − θ0
∣∣∣ ≥ η) ≤ Pθ0

(
U(θ̂ε,n, θ0) > U(θ0, θ0) + η

′)
≤Pθ0

(∣∣∣U(θ̂ε,n, θ0)−Ūε,n(θ̂ε,n)
∣∣∣≥ η′3

)
+Pθ0

(̄
Uε,n(θ̂ε,n)−Ūε,n(θ0)≥ η

′

3

)

+ Pθ0

(∣∣∣Ūε,n(θ0)− U(θ, θ0)
∣∣∣ ≥ η

′

3

)
.

Since
∣∣∣U(θ̂ε,n, θ0)− Ūε,n(θ̂ε,n)

∣∣∣ ≥ η
′

3 it implies that, sup
θ∈Θ̄

∣∣∣U(θ, θ0)− Ūε,n(θ)
∣∣∣ ≥ η

′

3

and we have
∣∣∣U(θ, θ0)− Ūε,n(θ0)

∣∣∣ ≥ η
′

3 thus, sup
θ∈Θ̄

∣∣∣U(θ, θ0)− Ūε,n(θ)
∣∣∣ ≥ η

′

3 .

Thus,

Pθ0(
∣∣∣̂θε,n−θ0

∣∣∣≥η) ≤2Pθ0

(
sup
θ∈Θ̄

∣∣∣Ūε,n(θ)− U(θ, θ0)
∣∣∣≥ η′3

)
+Pθ0

(
Ūε,n(θ̂ε,n)−Ūε,n(θ0)≥ η

′

3

)
.

Using Eq. (4.8) and the Lemma 4.1, we have

Pθ0

(
Ūε,n(θ̂ε,n)− Ūε,n(θ0) ≥ η

′

3

)
−→ 0
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and
Pθ0

(
sup
θ∈Θ̄

∣∣∣Ūε,n(θ0)− U(θ, θ0)
∣∣∣ ≥ η

′

3

)
−→ 0,

as ε −→ 0 and n −→∞. This completes the first statement of Theorem 4.1.

Now let prove the normality property of the MCE estimator. We consider the following
arguments:

Sε,n = ε−1(θ̂ε,n − θ0), Cε,n(θ0) = ε2
(

∂2

∂θi∂θj
Uε,n(θ0)

)
1≤i,j≤4

,

Λε,n = −ε
(
∂

∂θi
Uε,n(θ0)

)
1≤i≤4

and Dε,n =
∫ 1

0
Cε,n

(
θ0 + u(θ̂ε,n − θ0)

)
du.

A first order Taylor expansion with integral remainder for
(
∂

∂θi
Uε,n(θ)

)
at point θ0,

if θ̂ε,n ∈ B(θ0; ρ) = {θ ∈ Θ : |θ − θ0| ≤ ρ} yields,

(
∂

∂θi
Uε,n(θ̂ε,n)

)
−
(
∂

∂θi
Uε,n(θ0)

)
=

4∑
j=1

(∫ 1

0

(
∂2

∂θi∂θj
Uε,n(θ0 + t(θ̂ε,n− θ0))

)
dt

)
i,j

(θ̂ε,n− θ0).

Since θ̂ε,n is a minimum, then it is a root of the function ∂

∂θ
Uε,n and multiplying by ε, we obtain

−ε
(
∂Uε,n
∂θi

(θ0)
)

=
4∑
j=1

(∫ 1

0
ε2
(

∂2

∂θi∂θj
Uε,n(θ0 + t(θ̂ε,n − θ0))

)
dt

)
i,j

× ε−1(θ̂ε,n − θ0),

which can be written as

−ε
(
∂

∂θ
Uε,n(θ0)

)
=
∫ 1

0
ε2
(
∂2

∂θ2Uε,n(θ0 + t(θ̂ε,n − θ0))
)
dt× ε−1(θ̂ε,n − θ0).

Using previous arguments, we may get

Dε,nSε,n = Λε,n. (4.9)

Now the consistency of θ̂ε,n, leads to for sufficiently small ρ > 0, we have(
θ̂ε,n ∈ B(θ0; ρ)

)
⊂
(
θ̂ε,n ∈ Θ

)
, forρ > 0,

then
Pθ0(θ̂ε,n ∈ Θ) ≥ Pθ0(θ̂ ∈ B(θ0; ρ)) −→ 1,

as ε −→ 0 and n −→∞. Therefore

χ(θ̂ε,n∈Θ∩B(θ0;ρ)) −→ 1



48 Chapter 4. Minimum contrast estimator of HIV epidemic model’s parameters

in Pθ0 probability as ε −→ 0 and n −→∞.

Moreover, there exists a sequence (B(θ0; ρε,n))ε,n such that,

ρε,n −→ 0 and Pθ0(θ̂ε,n ∈ B(θ0; ρε,n)) −→ 1,

as ε −→ 0 and n −→∞. It follows that,

χ(θ̂ε,n∈Θ∩B(θ0;ρε,n)) −→ 1

in Pθ0 probability as ε −→ 0 and n −→∞. Thus

|Dε,n − Cε,n(θ0)|χ(θ̂ε,n∈Θ∩B(θ0;ρε,n)) ≤ sup
θ∈B(θ0;ρε,n)

|Cε,n(θ)− Cε,n(θ0)| .

Cε,n is continuous with respect to θ since ξ and Σ are C2 on θ, then,

sup
θ∈B(θ0;ρε,n)

|Cε,n(θ)− Cε,n(θ0)| −→ 0.

Therefore, Dε,n −→ Cε,n(θ0) in Pθ0-probability as ε −→ 0 and n −→ ∞. Hence Lemma 4.3,
ensure that

Dε,n −→ 2I(θ0), (4.10)

in Pθ0-probability as ε −→ 0 and n −→∞. Now we define

ηε,n = Dε,n − 2I(θ0). (4.11)

The Eq. (4.10) leads to ηε,n −→ 0, as ε −→ 0 and n −→∞. Combining Eq. (4.9) with Eq. (4.11),
we obtain

(ηε,n + 2I (θ0))Sε,n = Λε,n.

As Sε,n is bounded in Pθ0 by Guy et al. [62, Proposition 4.2] and Slutsky’s theorem Gut [61,
Theorem 11.4], gives

ηε,nSε,n −→ 0

in Pθ0 . It follows, using Lemma 4.2, that

2I(θ0)Sε,n −→ N (0, 4I(θ0)), (4.12)

in distribution under Pθ0 as ε −→ 0 and n −→ ∞. Finally, since 2I(θ0) is not singular, from
Eq. (4.12), we get,

ε−1(θ̂ε,n − θ0) −→ N (0, I−1(θ0)), (4.13)

which completes the proof of the second statement in Theorem 4.1.
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4.5 Conclusion

This chapter has been concerned with parameter estimation of dynamic transmission of HIV
virus in a closed heterosexual population. We have inferred the main parameter of interest for
our model using a minimum contrast estimator, for which the consistency and normal asymptotic
properties, using rigorous mathematical tools, have been established.

The inference, established in this chapter, is thus likely to be applicable to a rather wider range
of models, in which population is partitioned into more than two sub populations with general
mechanism of infection, more than what we have considered here. As well as, the approach
established here can be applied to various heterogeneous stochastic epidemic model with jumps
or driven by Levy processes. Application and simulation for this chapter are remained to the
sixth chapter.
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Chapter 5

Bayesian inference of the parameters
of HIV diffusion

5.1 Introduction

Over the last years there has been an increasable research for performing Bayesian inferential
methods of the spread of infectious diseases among populations using stochastic epidemic models.
On one hand, stochastic inference for epidemic models is generally complicated, this is due to
the highly dependent in data which is often discretely observed while the underlying true process
is time continuous. On the other hand, discretely observed diffusions are discrete-time Markov
processes, and thus, their likelihood depends on the transition probabilities densities of the
diffusion. However, these densities are unavailable in simple closed form (see, El Maroufy [35]).
In the case of continuously observed data, parameter estimates can be obtained for complete
data (see, Becker [17]), and in the case of incomplete data, estimates have also been developed
some novel methods (see, Andersson and Britton [4] and references therein). Recently, the
Bayesian inference of the SIR model has been treated by several authors using MCMC methods
(see, Britton and O’Neill [22] and Qaffou et al. [100] and references therein).

This chapter is concerned with performing Bayesian statistical inference for parameters of
stochastic epidemic controlled by the stochastic differential equation Eq. (2.4). In chapter 4,
we used a minimum contrast estimator to estimate the parameters of interest. However, in this
chapter, we present our second contribution to study the estimation of interest model parameters
. Thus, we use a Bayesian approach to do this task, especially the data augmentation method,
which is performed by the application of MCMC techniques (see, Eraker [41], El Maroufy et al.
[36], and Qaffou et al. [100]).
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5.2 Bayesian inference for non linear diffusion model

Let consider the inference for an Itô diffusion process of type,

dXt = ξ(Xt, θ)dt+ Σ
1
2 (Xt, θ)dW (t), t ≥ 0, (5.1)

where ξ and Σ are defined in Eq. (3.8) and Eq. (3.9), respectively.

We assume that the process X = (Xt, t ≥ 0) will be observed at a finite integer of times.
The purpose is to infer for the unknown parameter vector θ (α, β, γ, δ) on the basis of partial
and discrete observations Xobs = {Xtk , k = 0, . . . ,M} of the process X. In this chapter, we
assume the equi-probability of the recruitment of new female and male susceptible, which means
that α = 1

2 . To perform the inference on parameter θ, the first idea behind is to attempt to
approximate the true transition density pθ of the diffusion process using a numerical scheme,
such as the Euler–Maruyama scheme. However, this is eligible only if inter-observation times of
the observed data Xobs are small enough. Such a requirement is not generally satisfied in our
case considering the observation of HIV though.

To overcome this limitation, we will augment the observed data Xobs, using the Eraker approach
developed by Eraker [41]. The method consists of imputing intermediate points between each
pair of observations. Furthermore, to infer θ, we will employ a MCMC approach – a Gibbs
sampler in particular – to construct a Markov chain {θ(i),Ximp}i=1,...,L of length L whose el-
ements are samples form joints posterior density π(θ,Ximp|Xobs) of parameter θ and imputed
data Ximp conditional on observations Xobs. The Markov chain {θ(i)}i=1,...,L is regarded as a
draw from the marginal density π(θ|Xobs).

5.2.1 Bayesian Data Augmentation1

The objective is to obtain a sequence of Monte Carlo samples {θ(i)}Li=1, which is a sample from
the marginal posterior density, since {θ(i)}Li=1 is implicitly a sample from the marginal posterior
π(θ|X̂obs). Let π generically denote all posterior densities. Analogously, let p generically denote
all prior densities and q all proposal densities. To approximate the posterior density of parameter
θ, based on observations Xobs of a diffusion process we have,

π(θ|Xt1 , . . . , XtM ) ∝ π(Xt1 , . . . , XtM |θ)p(θ),

Since diffusion processes possess the Markov property, such complete observations divide a
sample path into segments that are mutually independent conditioned on θ. The likelihood of θ

1The reader is referred to Fuchs [46, Chap. 7], for a detailed description of this method.
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factorize as

π(Xt1 , . . . , XtM |θ) = π(Xt1 |θ)
M∏
i=1

π(Xti |Xti−1 , θ). (5.2)

The data augmentation method, consists of imputing m − 1 latent data points between each
pair of observations Xobs. To ensure that discretization bias is arbitrary small we put ∆t = 1

m
and N = mM for a chosen positive integer m. Therefore [0, T ] is divided into N + 1 equidistant
points t0 = 0 < t1 < . . . < tm < tm+1 < . . . < tN = T , then the diffusion process is in state Xtk

at time tk which is only known on times tj when j is an integer multiple of m and all points
Xtk , k 6= j are treated as missing data.

Let denote by X̂ the 4 × (N + 1) matrix obtained by stacking all elements of augmented data
(observed and missing), that is

X̂ =


x̂1t0 x̂1t1 . . . x̂1tm x̂1tm+1 . . . x̂1tN
x̂2t0 x̂2t1 . . . x̂2tm x̂2tm+1 . . . x̂2tN
ŷ1t0 ŷ1t1 . . . ŷ1tm ŷ1tm+1 . . . ŷ1tN
ŷ2t0 ŷ2t1 . . . ŷ2tm ŷ2tm+1 . . . ŷ2tN

 .

Let X̂i denote the ith column of X̂ ( if i is a multiple of m, X̂i is an observed data).

Conditioning on the first observation, the joint posterior density is given by:

π(X̂, θ) ∝
N∏
i=1

π(X̂i|X̂i−1, θ)p(θ), (5.3)

where
π(X̂i|X̂i−1, θ) = |Σ−1

i−1|
1
2 exp

{
−1

2 P̂
′
i

(
Σ−1
i−1∆t

)
P̂i
}

(5.4)

with P̂i = X̂i − X̂i−1 − ξ(X̂i−1, θ)∆t.

T construct the Markov chain {θ(i),Ximp}i=1,...,L the following two steps, which represent the
Gibbs sampler given by the Algorithm 1, as described in page 25, are alternately executed:

Path Update: Draw Ximp(i) ∝ π
(
Ximp(i)|θ(i−1),Xobs

)
.

Parameter Update: Draw θ(i) ∝ π
(
θ(i)|Ximp(i),Xobs

)
.

(5.5)

5.2.2 Path update

The first step in Gibbs sampler is the update of the whole path. Because the number of un-
observable (missing data and parameter) is large, it is not possible to obtain independent samples
of these quantities directly from (5.3). We use Gibbs sampler with a block strategy instead of
single site to overcome the poor mixing due to high correlation amongst the latent data( see,
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Elerian et al. [39]), which is based on sampling a block of elements at same time from the
posterior instead of whole path and keeping the others constant as conditioning elements. The
latent data are updated in blocks of size m. Consider times tj and tj+ , where j is an integer
multiple of m and j+ = j + m, the corresponding observation X̂j and X̂j+ which treated as
fixed (observed points), the full conditional for the latent path in (tj , tj+) is

π(X̂j+1, . . . , X̂j+−1|X̂j , X̂j+
, θ) =

j+−1∏
i=j

π(X̂i+1|X̂i, θ). (5.6)

The first step in Gibbs sampler is to appropriately perform the path update. Thus, direct
sampling from the posterior distribution of the latent data given the observed data and parameter
is not possible in our case, hence we use a M-H algorithm Hastings [63] and Robert and Casella
[104], as given by Algorithm 2 on page 26, for the general implementation of this step.

At each iteration, as a first step in path update, we choose a block of sizem that is a time interval[
tj , tj+

]
in which the path will be updated. Having decided about the block update strategy,

simulate each column of the block X̂?
(tj ,tj+ ) =

{
X̂?
tj , . . . , X̂

?
tj+

}
using a Gaussian proposal with

mean X̂?
k + µ(X̂?

k , θ)∆tk and variance matrix Σ(X̂?
k , θ)∆tk;

q(X̂?
k+1|X̂?

k , θ) = N
(
X̂?
k + µ(X̂?

k , θ)∆tk, Σ(X̂?
k , θ)∆tk

)
, (5.7)

for k = tj+1, . . . , tj+−1, with X̂?
tj = X̂tj and X̂?

tj+ = X̂tj+ are treated constants (observed data).
The acceptance probability α(X̂?

(tj ,tj+ ), X̂(tj ,tj+ )) to choose X̂?
(tj ,tj+ ) instead of X̂(tj ,tj+ ) is given

by:

α
(
X̂?

(tj ,tj+ ), X̂(tj ,tj+ )
)

= 1 ∧
π

(
X̂?

(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ

)
q

(
X̂(tj ,tj+ )|X̂?

(tj ,tj+ ), X̂−(tj ,tj+ ), X̂
obs,θ

)
π
(
X̂(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ

)
q

(
X̂?

(tj ,tj+ )|X̂(tj ,tj+ ), X̂−(tj ,tj+ ), X̂obs,θ

) ,
(5.8)

where X̂−(tj ,tj+ ) = X̂ r X̂(tj ,tj+ ) is the the complement of X̂(tj ,tj+ ). The Markov property leads

π

(
X̂?

(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ

)
π
(
X̂(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ

) =
tj+−1∏
k=tj+1

π
(
X̂?
k+1|X̂?

k , θ
)

π
(
X̂k+1|X̂k, θ

)
=

tj+−1∏
k=tj+1

pθ
(
∆tk , X̂

?
k+1, X̂

?
k

)
pθ
(
∆tk , X̂k+1|X̂k

) ,
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the time step ∆tk is now supposed to be small enough such that the Euler scheme is adopted,
then pθ may be replaced by

π
(
X̂k+1|X̂k, θ

)
= N

(
X̂k + µ(X̂k, θ)∆tk, Σ(X̂k, θ)∆tk

)
.

The proposal density for X̂?
(tj ,tj+ ), using Euler scheme for k = j, . . . , j+ − 2

X̂k+1 ∼ N
(
X̂k + µ(X̂k, θ)∆tk, Σ(X̂k, θ)∆tk

)
with X̂j = Xj , becomes

q
(
X̂?

(tj ,tj+ )|X̂tj , X̂tj+ , θ
)

=
tj+−2∏
k=tj+1

q
(
X̂?
k+1|X̂?

k , θ
)

=
tj+−2∏
k=tj+1

π
(
X̂?
k+1|X̂?

k , θ
)

(5.9)

Integrating Eq. (5.9) into Eq. (5.8), the acceptance probability to choose the proposal X̂?
(tj ,tj+ )

is reduced to the following expression

α(X̂?
(tj ,tj+ ), X̂(tj ,tj+ )) =1 ∧

 tj+−1∏
k=tj+1

π
(
X̂?
k+1|X̂?

K , θ
)

π
(
X̂k+1|X̂k, θ

)
 tj+−2∏

k=tj+1

π
(
X̂k+1|X̂K , θ

)
π
(
X̂?
k+1|X̂?

k , θ
)


=1 ∧
π
(
X̂?
tj+ |X̂

?
tj+−1

, θ
)

π
(
X̂tj+ |X̂tj+−1

, θ
) . (5.10)

This situation is summarized in the following algorithm:

Algorithm 3 Path update

1: Given an initial path X̂.
2: Choose j multiple of m, set j+ = j+m, the time interval

[
tj , tj+

]
of size m, whose the path

will be updated in its interior
3: put X̂?

tj = X̂tj and X̂?
tj+ = X̂tj+

4: for k = tj+1, . . . , tj+−1 do
5: sample q(X̂?

k+1|X̂?
k , θ) according to Eq. (5.7)

6: Accept X̂?
(tj ,tj+ ) with probability α given by Eq. (5.10)

7: end for

5.2.3 Parameter update and posterior distribution

The last step in Gibbs sampler is the update of parameter θ = (β, δ, γ) conditioning on its current
state and the augmented data. Due to the form of likelihood function derived in (5.2), a family
of independent gamma distributions is seen as a natural set of conjugate priors in the context
of epidemic model, where the parameters are positive (see Demiris and O’Neill [32]). This
choice of prior distributions is convenient in terms of Bayesian inference due to conjugacy (see,
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O’Neill and Roberts [91]). Furthermore, the flexibility of the gamma distribution means that it
is frequently used in practice as a prior distribution for rate parameters in epidemic models (see,
Cauchemez et al. [26] and Qaffou et al. [100]). When this type of priors is considered, we obtain
the Generalized Inverse Gaussian GIG distribution as a posterior distribution. In the following
proposition, we prove this claim for which the proof is left in details in Appendix C.
Proposition 5.1. If β, δ and γ follow independent gamma distributions: π(β) ∝ Γ (mβ, λβ),
π(δ) ∝ Γ (mδ, λδ) and π(γ) ∝ Γ (mγ , λγ), then

π(β|X̂i, δ, γ) ∝ βmβ−N−1 exp
{
−1

2

[
Mβ

β
+
(
M
′
β + 2λβ

)
β

]}
; (5.11)

π(δ|X̂i, β, γ) ∝ δmδ−N−1 exp
{
−1

2

[
Mδ

δ
+
(
M
′
δ + 2λδ

)
δ

]}
; (5.12)

and

π(γ|X̂i, δ, β) ∝ γmγ−N−1 exp
{
−1

2

[
Mγ

γ
+
(
M
′
γ + 2λγ

)
γ

]}
, (5.13)

where Mk,M
′
k for k = {β, δ, γ} are presented in Appendix C.

5.2.4 Implementation and simulation

To implement the described Bayesian estimation presented in this chapter, we summarize the
procedures in the following main algorithm:

Algorithm 4 Main Algorithm

1: Initialize all unknown: θ = (β, δ, γ) and the path X̂ using linear interpolation between
observed values of Xobs.

2: repeat
3: Update the path X̂? using Algorithm 3 and Eq. (5.10),
4: Update βh using (5.11),
5: Update δh using (5.12),
6: Update γh using (5.13),
7: until the desired number of samples for θ is reached.

5.3 Conclusion

This chapter has been concerned with Bayesian estimation of parameters for HIV/AIDS dynamic
in a closed heterosexual population. A stochastic diffusion approximation, which developed in
Chapter 3 is adopted. We are essentially concerned with the Bayesian analysis of nonlinear,
discretely observed stochastic diffusion. The MCMC methods have been used to infer the pa-
rameters of interest. We have proposed a Gamma distribution as prior density for parameters,
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which seems to be natural for rate parameters in epidemic models. We prove that the poste-
rior distributions of model parameters converge to a limit distribution, which are distributed
according to a Generalized Inverse Gaussian GIG density.

The inference, established here, can be likely applicable to some other compartmental models.
This work represent an alternative method to overcome discretely observed process considered
in Abou-Bakre and El Maroufy [1].
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Chapter 6

Numerical simulations with real
application to Morocco’s case

In this chapter, we illustrate the methods and results presented in previous chapters. Using
simulated data in a first step to validate the modeling procedure and applying these methods
to real data from Morocco case.

6.1 Simulation using MCE

6.1.1 Simulation

To illustrate the approach presented in Chapter 4, we consider discrete observations {Xk, k =
1, . . . , n} coming from simulation of the original Markov chain (Xt, t ≥ 0), with transitions given
by Eq. (3.1). We use the exact Gillespie algorithm developed by Gibson and Bruck [52]. Instead
of describing a general Gillespie algorithm, we only describe it as it applies to the problem of
parameter estimation in the given framework.

In our case, the implementation of the algorithm is based on two main steps. The first is the draw
of the waiting time τ until the occurrence of the next event, which is exponentially distributed

exp(λ) with rate λ =
11∑
k=1

λk. We have the rates λ1 = α(µN+δ(Z+1)), λ2 = (1−α)(µN+δ(Z+1))

for birth of a new susceptible, λ3 = β
IMSF

SM + IM
, λ4 = β

IFSM
SF + IF

infection of a susceptible,
λ5 = µSF , λ6 = µSM for death of a susceptible, λ7 = µIM , λ8 = µIF for death of an infected,
λ9 = γIM , λ10 = γIF recovery of an infected and λ11 = µZ death of a recovered. In the second
step, events are randomly selected according to the probabilities pk = λk

λ
. The Algorithm 5 is

implemented with true values of parameters, until a stopping criterion is fulfilled.

We run for 1000 iterations, the non-linear simulation using 500 observations, for three cases
N = 1000, N = 10000 and N = 100000 where N is the initial total population size. For
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Algorithm 5 Gillespie algorithm
1: At t = 0, initialize the population sizes (Sf (0), If (0), Sm(0), Im(0)) = (sf , if , sm, im).
2: repeat

3: Calculate λ =
11∑
k=1

λk.

4: Choose τ from the exponential distribution exp(λ).
5: Choose the event k = 1, ..., 11 with probability pk = λk

λ
.

6: Update time t← t+ τ
7: Update and Store (Sf (t), If (t), Sm(t), Im(t)) according to the event k chosen in step 5.
8: until t ≤ T

each case, two situations are considered depending on the value of the reproduction number
(R0 = 1

µ+ γ
), R0 ≤ 1 and R0 > 1. Considering Table 6.1 which summarize the estimates

of minimum contrast estimator and standard deviation of parameter θ = (µ, β, δ, γ). We see
that the estimations are close to the true values and the standard deviation decreases as the
population size increases. The histograms in Figures 6.1 and 6.2 reveal the asymptotic normality
property of the estimators.

Table 6.1: Minimum contrast estimation and standard deviation of parameters
µ, β, δ and γ in three cases: N = 1000, N = 10000 and N = 100000.

N = 1000 N = 10000 N = 100000
true values MCE SD MCE SD MCE SD
µ = 0.02 µ̂ = 0.0201 0.0034 µ̂ = 0.0199 0.0033 µ̂ = 0.0200 0.0033
β = 0.05 β̂ = 0.0481 0.0118 β̂ = 0.0498 0.0094 β̂ = 0.0498 0.0052
δ = 0.10 δ̂ = 0.1048 0.0361 δ̂ = 0.1005 0.0094 δ̂ = 0.1001 0.0053
γ = 0.08 γ̂ = 0.0866 0.0308 γ̂ = 0.0797 0.0167 γ̂ = 0.0798 0.0073
µ = 0.02 µ̂ = 0.0190 0.0049 µ̂ = 0.0201 0.0033 µ̂ = 0.0200 0.0033
β = 0.50 β̂ = 0.5217 0.1074 β̂ = 0.4983 0.0457 β̂ = 0.4991 0.0133
δ = 0.10 δ̂ = 0.1412 0.0975 δ̂ = 0.1005 0.0084 δ̂ = 0.0999 0.0049
γ = 0.08 γ̂ = 0.0746 0.0367 γ̂ = 0.0806 0.0244 γ̂ = 0.0794 0.0105

6.1.2 Real application: Morocco’s case

We consider the case of Morocco. We construct a database in Appendix D of HIV/AIDS in
dynamic Morocco which contains susceptible and infected males and females and AIDS cases.
This database is obtained by combining statistics and data from Moroccan High Commission of
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µ̂ β̂ δ̂ γ̂

Figure 6.1: Frequency histograms for posterior densities estimate of all param-
eters estimators µ̂, β̂, δ̂ and γ, for R0 ≤ 1 with N = 1000 (first row), N = 10000

(second row) and N = 100000 (third row)

Planing HCP1, Ministry of Public Health with the support of UNAIDS 2, the database of World
Bank 3 and the SPECTRUM software 4. We restraint our study the sexually active population
only.

Using this database and by minimizing the contrast function Eq. (4.3), we obtain in Table 6.2
the parameters estimations.

Considering these results, we can say that in Morocco, the mean time between HIV diagnosis
and the onset of AIDS is about six years and a half 1

γ̂
, we remark that this mean is improved

from one and a half in 2011 (see, El Hia et al. [34]) to six and a half in 2014 which means that
most diagnoses occur in early stages compared to 2011. Also, the results obtained show that
there is a good improvement of the mean time from AIDS diagnosis to death for the Moroccan

1Population du Maroc selon l’age et le sexe - Population marocaine selon l’age et le sexe - Données ouvertes
- Maroc available at http://www.data.gov.ma/data/fr/dataset/population-du-maroc-selon-l-age-et-le-
sexe/resource/ba4d6e16-5901-42c5-9aff-1e308ca266c8

2Mise en oeuvre de la déclaration politique sur le VIH/sida, Rapport National 2014. available at http :
//files.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2014countries/MAR_
narrative_report_2014.pdf. Mise en œuvre de la déclaration politique sur le VIH/sida. Rapport National 2015.
available at

3Maroc | Data available at https://donnees.banquemondiale.org/pays/maroc
4Available and downloadable at http://www.avenirhealth.org/software-spectrum.php

http://www.data.gov.ma/data/fr/dataset/population-du-maroc-selon-l-age-et-le-sexe/resource/ba4d6e16-5901-42c5-9aff-1e308ca266c8
http://www.data.gov.ma/data/fr/dataset/population-du-maroc-selon-l-age-et-le-sexe/resource/ba4d6e16-5901-42c5-9aff-1e308ca266c8
http://files.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2014countries/MAR_narrative_report_2014.pdf
http://files.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2014countries/MAR_narrative_report_2014.pdf
http://files.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2014countries/MAR_narrative_report_2014.pdf
https://donnees.banquemondiale.org/pays/maroc
http://www.avenirhealth.org/software-spectrum.php
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µ̂ β̂ δ̂ γ̂

Figure 6.2: Frequency histograms for posterior densities estimate of all param-
eters estimators µ̂, β̂, δ̂ and γ, for R0 > 1 and N = 1000 (first row), N = 10000

(second row) and N = 100000 (third row)

case, which is about ten years in 2014 compared to six years in 2011. For natural death rate we
obtain that µ̂ = 0.0140 which is very close to the real rate µ = 0.0145 according to World Bank
data bank [14]. However, an estimate of the basic reproductive number R0 = β

µ+ γ
≈ 1.4882

which means that the number of secondary cases, which an infected person would produce in a
completely susceptible Moroccan population, is about one and a half, that is to say, the epidemic
will grow even in Morocco.

Table 6.2: Minimum contrast estimation and standard deviation of parameters
µ, β, δ and γ

parameter µ̂ β̂ δ̂ γ̂

estimation 0.0140 0.2481 0.0999 0.1527
STD 0.0060 0.0612 0.0049 0.0096
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6.2 Simulation using Bayesian approach

6.2.1 Simulation

The MCMC scheme is applied to the diffusion stochastic epidemic model with known parameters.
The observations {Xk, k = 1, . . . , n} come from the simulation of the original Markov chain
(Xt, t ≥ 0), which is defined by its transitions rates given by Eq. (3.1). We use the exact Gillespie
algorithm given by Gibson and Bruck [52] with true values of parameters as given in the Table
6.1, see the appendix 5 for the detailed algorithm. For each data set the MCMC sampler is run
for 20000 iterations with m = 1, m = 2 and m = 5. Looking at Fig. 6.3 which gives plots of
the MCMC chains, Fig. 6.4 which summarizes the posterior distributions of parameters and the
Table 6.3 which gives posterior mean and variance of the parameter θ = (β, δ, γ); we observe
that the estimates get closer to the true values as the number of latent data (augmented data)
increases. The histograms in Fig. 6.4 reveal the convergence of the algorithm towards a limit
distributions.

Table 6.3: Posterior mean and Posterior variance for β, δ, γ and R0 for m = 1,
m = 2 and m = 5.

m = 1

true value of β β̂ true value of δ δ̂ true value of γ γ̂ R0 R̂0

mean 0.5 0.5537 0.5 0.4996 0.5 0.4976 0.5 0.5552
variance 0.1290 0.0846 0.0188
mean 1 1.0006 0.5 0.4753 0.5 0.4983 1 1.0277

variance 0.2541 0.1150 0.0051
mean 2 1.8343 0.5 0.5199 0.5 0.4934 2 1.8102

variance 0.3385 0.1054 0.0046

m = 2

true value of β β̂ true value of δ δ̂ true value of γ γ̂ R0 R̂0

mean 0.5 0.5040 0.5 0.5252 0.5 0.5070 0.5 0.4883
variance 0.0903 0.0885 0.0188
mean 1 1.0378 0.5 0.5620 0.5 0.4997 1 0.9774

variance 0.2311 0.0833 0.0042
mean 2 2.1406 0.5 0.5177 0.5 0.5101 2 2.0827

variance 0.2999 0.0598 0.0009

m = 5

true value of β β̂ true value of δ δ̂ true value of γ γ̂ R0 R̂0

mean 0.5 0.5008 0.5 0.5154 0.5 0.5004 0.5 0.4930
variance 0.0282 0.0896 0.0568
mean 1 0.9990 0.5 0.5295 0.5 0.5016 1 0.9689

variance 0.2450 0.1273 0.0051
mean 2 2.0392 0.5 0.5001 0.5 0.5047 2 2.0293

variance 0.3517 0.1001 0.0047
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β̂ δ̂ γ̂

Figure 6.3: Trace plots of the MCMC chains for the parameters after 20000
iterations. The red lines show the true values of the parameters β = {0.5, 1, 2},

which correspond to R0 < 1, R0 = 1, R0 > 1 and δ = γ = 0.5.

β̂ δ̂ γ̂

Figure 6.4: Posterior densities for the parameters of the model (after 20000
iterations), in three cases: R0 < 1(first row), R0 = 1(second row) and R0 > 1(third

row).

6.2.2 Real application: Morocco’s case

We consider the case of Morocco; the database considered here (see, Appendix D) are data of
HIV/AIDS in dynamic Morocco which contains susceptible and infected males and females and
AIDS cases in sexually active population.
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The results presented in Table 6.4, give an estimation of parameters. The estimated basic
reproductive number R̂0 bigger than one, which means that the number of secondary cases
which an infected person would produce in a completely susceptible Moroccan population is
more than two, that is to say, the epidemic will keep growing in Morocco.

Table 6.4: Posteriors mean and variance for β̂, δ̂, γ̂ and R̂0 in cases of m = 1,
m = 2, m = 5 and m = 10 , for data of Morocco, with 20000 iterations.

m β̂ δ̂ γ̂ R̂0

1 mean 0, 9619 0, 2186 0, 2288 2, 1502
variance 0, 0790 0, 0002 0, 0048

2 mean 0, 9781 0, 2145 0, 2187 2, 2578
variance 0, 0355 0, 0003 0, 0032

5 mean 0, 9795 0, 2145 0, 2166 2, 2722
variance 0, 0352 0, 0003 0, 0031

10 mean 0, 9798 0, 2145 0, 2154 2, 2791
variance 0, 0355 0, 0003 0, 0032

The Fig. 6.5 and Fig. 6.6 give the exact proportions of observed number the infected males
and females in the sexually active Moroccan population from 1985 to 2014, and the projection
of these subpopulations from 2015 up to 2020 using the estimated value of parameters given
in Table 6.4. As illustrated in Fig. 6.5 and Fig. 6.6, for example, the exact proportion of the
observed number of infected females in morocco during the years 2015 and 2016 are 4.757×10−4

and 4.833× 10−4 respectively, whereas the predicted values corresponding to these proportions
are respectively 4.703× 10−4 and 4.842 × 10−4. Then, we can affirm that the model presented
here, is well adapted to the study of transmission of HIV in heterosexual population.
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Figure 6.5: Plots of 10 trajectories of females infected proportion from 1985 to
2020. The black stars design the true observed data of females from 1985 up to
2014. The green diamonds design real data for 2015 and 2016. Well the blue
squares give the mean predicted value of the proportion of infected females. (For
interpretation of the references to color of these illustrations, the reader is referred

to the electronic version of this dissertation.)
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Figure 6.6: Plots of 10 trajectories of males infected proportion from 1985 to
2020. The black stars design the true observed data of males from 1985 up to
2014. The green diamonds design real data for 2015 and 2016. Well the blue
squares give the mean predicted value of the proportion of infected males. (For
interpretation of the references to color of these illustrations, the reader is referred

to the electronic version of this dissertation.)
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Conclusions and future directions

At the end of this thesis, we hope that the contributing results given in this dissertation be
helpful to more knowledge of the modeling of HIV/AIDS dynamic in particular, and for other
epidemics which can be modeled by a compartmental model. Which give us some insights of
future perspectives.

After presenting the essential preliminaries notions, which give us the helpful tools and neces-
sary ingredients to the comprehension of this dissertation. Foremost, we have been modeled the
HIV/AIDS dynamic in a closed heterosexual population by a multidimensional SIR model, us-
ing the convergence of its associated master equation to approximate this model by a stochastic
diffusion process.

The research studies of this thesis, which focuses on model parameter estimation, lead to
two contributions. The first one is parameter estimation by using a contrast function and
minimizing the minimum contrast estimator MCE, for which we proved the consistency and
asymptotic normality properties. Numerical simulations are well presented; we simulate the
data using a Gillespie algorithm which gives exact simulations, the results of simulation ensure
the validity of the constructed model. The results obtained in this contribution have been
published in Abou-Bakre and El Maroufy [1]. In the second contribution of this thesis, we use
Bayesian approach to infer the model parameters of interest. In this contribution, we have used
the augmented data method proposed by Eraker [41] and contributing as do El Maroufy et al.
[36] and Qaffou et al. [100], since the data is discretely observed in time. To deal with that,
an MCMC schemes are developed and used to estimate the model parameters in this case. We
prove that the posterior distributions of model parameters converge to a limit distribution, which
are distributed according to a Generalized Inverse Gaussian GIG density. Also, a numerical
simulation is discussed for this contribution which prove the convergence of the distributions
of model parameters to a GIG distribution. The developed results in this contribution are
submitted for a possible publication in an international journal.

The main goal of this thesis is to apply the methods and techniques, developed in chapter 3
and 4, to real data and application. Therefore, we have applied the methodology, algorithms
and results obtained in this dissertation, to a real data-set for Morocco’s case, for which we can
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affirm that the HIV and AIDS will persist and still increasing in the population since we find
that the reproduction number R0 is bigger than one.

The results presented in this dissertation provide some guidelines on our future directions and
perspectives. A natural first perspective is, to study the complete model with major complexities
and more realistic assumptions, that are: a population in which both types of transmission
heterosexual and homosexual, non closed population which means mobility and migration of
individuals, other ways of contamination rather than only sexual including drug users, taking
treatment and vaccination in consideration. As a second perspective is, to study the stochastic
optimal control of this model. Furthermore, generalize the study to other epidemics like H1N1,
tuberculosis, Ebola and others.
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Appendix A

To examine the first statement in Assumption 1, there are two conditions ensuring the existence
and uniqueness of the solution to the Eq. (4.1) that are local Lipschitz and the linear growth
conditions of both coefficients drift and diffusion (see for example, Liptser and Shiryaev [84] and
Kutoyants [82] for details).

To verify the local Lipschitz for ξ, let x1 and x2 be in R4, we have after some calculus

||ξ(x1)− ξ(x2)|| ≤ K||x1 − x2||,

where K = max{K1,K2,K3,K4} with K1 = 2β2 + (αδ + µ)2, K2 = (µ + γ)2 + (αδ)2, K3 =
2β2 + ((1− α)δ + µ)2 and K2 = (µ+ γ)2 + ((1− α)δ)2.

For the linear growth condition of ξ coefficient we obtain after a simple calculus:

||ξ(x, θ)||2 ≤ K ′
(
1 + ||x||2

)
,

where K ′ = max{K ′1,K ′2,K ′3,K ′4} with K ′1 = µ2 + 2β2 + (αµδ)2, K ′2 = (µ + γ)2 + (αµδ)2,
K ′3 = µ2 + 2β2 + ((1− α)µδ)2 and K ′4 = (µ+ γ)2 + ((1− α)µδ)2.

For the second statement in Assumption 1, since the process Xt is such that |Xt| ≤ 1, for all
t ≥ 0, then for all m > 0 we have: sup

t
|Xt|m <∞. Therefore Assumption 1 is assured.

For Assumption 2; looking at the drift and diffusion coefficients Eqs. (3.8) and (3.9), which are
constructed in Chapter 3. We observe that all components of these coefficients are well defined,
and built by the usual functions, then they admit continuous derivatives up to superior order.
thereby the Assumption 2 is satisfied.

We calculate the determinant of σσT = Σ, and det (Σ) = det (σ)2 where det(σ) = det(σ1) det(σ2)
with det(σ1) > 0 and det(σ2) > 0. We calculate the inverse of Σ, which is equal to:
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Σ−1 = (σ−1)Tσ−1

=



(µ+γ)y1+ βy2
x2+y2

x1

∆2
1

β y2
x2+y2

x1

∆2
1

0 0
βy2
x2+y2

x1

∆2
1

α(µ+δz)+µx1+ βy2
x2+y2

x1

∆2
1

0 0

0 0
(µ+γ)y2+ βy1

x1+y1
x2

∆2
2

βy1
x1+y1

x2

∆2
2

0 0
βy1
x1+y1

x2

∆2
2

(1−α)(µ+δz)+µx2+ βy1
x1+y1

x2

∆2
2


,

where

∆2
1 = (µ+ γ)y1

(
α(µ+ δz) + µx1 + β

y2
x2 + y2

x1

)
+ β

y2
x2 + y2

x1 (α(µ+ δz) + µx1)

∆2
2 = (µ+ γ)y2

(
(1−α)(µ+δz)+µx2+β y1

x1 + y1
x2

)
+β y1

x1 + y1
x2 ((1− α)(µ+δz)+µx2)

We check that all elements of the above matrix admit second derivatives with respect to θ and x,
because it is constrained by product of usual functions. Thus Σ−1 = (σ−1)Tσ−1 ∈ C2(R4 × Θ̄)

For the Assumption 3 is well done due to the drift and diffusion coefficients form, that ensure
the identifiability of these coefficients with respect to θ and x. Therefor ξ and σ are identifiable.
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Let introduce the following Lemma:
Lemma B.1. Let f ∈ C1,1 on Θ × Rp a differentiable with continuous derivatives. If the
Assumptions A1 −A3 are fulfilled, then under Pθ

i.
1
n

n∑
k=1

f(Xtk−1 , θ) −→
∫ 1

0
f(X0

s , θ)ds,

as ε→ 0 and n→∞ uniformly in θ.

ii.
n∑
k=1

f(Xtk−1 , θ)Pk(θ0) −→ 0

as ε→ 0 and n→∞ uniformly in θ.

To proof the result in the Lemma B.1, we need the following lemma, which their proof is given
in Sørensen and Uchida [115, Lemma 3].
Lemma B.2. Let f ∈ C2,2 on Θ × Rp a differentiable with continuous derivatives. If the
Assumptions A1 −A3 are fulfilled, then under Pθ

i.

ε−2
n∑
k=1

f(Xtk−1 , θ)P
i
kP

j
k (θ0) −→

∫ 1

0
f(X0

s , θ)Σij(X0
s , θ0)ds,

uniformly in θ ∈ Θ̄ as ε→ 0 and n→∞.

ii.

ε−2
n∑
k=1

f(Xtk−1 , θ)P
i
kP

j
k (θ0) −→

∫ 1

0
f(X0

s , θ)Σij(X0
s , θ0)ds

+M2
∫ 1

0
f(X0

s , θ)BiBj(X0
s , θ0, θ)ds,

uniformly in θ ∈ Θ̄ as ε→ 0 and n→∞.
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Proof of Lemma B.1. To prove this Lemma, we need a Taylor stochastic expansion, developed
in Azencott [12], of the process Xt, we have the approximations:

Xt = xθ(t) + εgθ(t) + ε2Rε,n(t) (B.1)

where xθ(t) is the solution of the deterministic equation dxθ(t) = ξ(xθ(t))dt verifying xθ(0) = x0,
the remainder R satisfies for ε → 0 sup

t≤1
|εRε,n(t)| → 0, and g is a continuous martingale

satisfies:
dgθ(t) = ∂ξ

∂x
(θ, xθ(t))gθ(t)dt+ σ(θ, xθ(t))dWt, with gθ(0) = 0.

The approximate process of Eq. (B.1) in discrete times tk, k ∈ {1, . . . , n} is given by:

Xtk ' xθ(tk) + εgθ(tk). (B.2)

Since X0
t , the solution of the deterministic process correspond to the case of ε = 0 in Eq. (4.1),

is indistinguishable to the deterministic process xθ.
We have

sup
t≤1
|Xt −X0

t | = sup
t≤1
|εgθ(t)|, (B.3)

which goes to zero as ε −→ 0. As f ∈ C1,1, then there exist a C such that sup
t≤0

∂

∂x
f(X0

t ) ≤ C,

thus
sup
t≤1
|f(Xt)− f(X0

t )| ≤ sup
t≤1

C|Xt −X0
t |,

therefore for all θ
sup
t≤1
|f(Xt)− f(X0

t )| −→ 0.

Moreover, sup
θ

1
n

n∑
k=1

f(Xtk−1 , θ) is bounded in Pθ0-probability as ε → 0 and n → ∞, while f is

C1 on θ. Then
sup
ε,n
Eθ

[
sup
θ

1
n

n∑
k=1

f(Xtk−1 , θ)
]
<∞.

Therefore the family
(

1
n

n∑
k=1

f(Xtk−1 , θ)
)
nN?

, is tight uniformly1 with θ.

Thus for every θ
1
n

n∑
k=1

f(Xtk−1 , θ) −→
∫ 1

0
f(X0

s , θ)ds,

as n→∞, uniformly in θ ∈ Θ̄.
1A sequence of random variables X1, X2, . . . is uniformly tight if for every ε > 0 there exists a compact K

such that P(Xn ∈ K) ≥ 1− ε for every K.
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To prove the second assertion, it is enough to check the conditions of the following in Genon-
Catalot and Jacod [49, Lemma 9].

Lemma B.3. Let χi and U be two random variables with χi being Gi-measurable, If

(i)
n∑
i

E(χi|Gi−1) −→ U in P-probability,

(ii)
n∑
i

E

[
(χi)2|Gi−1

]
−→ 0 in P-probability,

Then,
n∑
i

χni −→ U in P-probability.

where the filtration Gt generated by the Brownian process Gt = σ(Bs, s ≤ t).

Let χk = f(Xtk−1 , θ)Pk(θ0), we want to show that χk −→ 0, then it must verifies the two
conditions of the Lemma Lemma B.3.

To establish these conditions let recall the a result from Florens-Zmirou [45, Lemma1]

Lemma B.4. . Let f ∈ C2(s+1) thus,

E(f(XK∆)|Fk−1) =
s∑
l=0

∆l

l! A
lf(X(k−1)∆)

+
∫ ∆

0

∫ u1

0
. . .

∫ us

0
E

[
(As+1f)(X(K−1)∆+us+1)|Fk−1

]
du1 . . . dus+1,

where ∆ is a fixed step size and A = ξ
∂

∂x
+ σ2 ∂

2

∂x2 is the infinitesimal generator associated to

the diffusion process (Xt)t≥0. Putting Φ(x, y) = x− y and ∆ = 1
n
, so we have

E(Φ(XtK , XtK−1)|Fk−1) = Φ(XtK−1 , XtK−1) + 1
n
ξ(Xtk−1)

+
∫ 1

n

0

∫ u1

0
E

[
(A2Φ(XtK+u2 , XtK−1)|Fk−1

]
du1du2.

Lemma 1 in Kessler [73], shows that the integral remainder in Lemma B.4 is bounded in prob-
ability and goes to zero. Using the said Lemma we have,

∫ 1
n

0

∫ u1

0
E

[
(A2Φ(XtK+u2 , XtK−1)|Fk−1

]
du1du2 = R( 1

n
,Xtk−1),

where R satisfies ∃C > 0, such that R( 1
n
,Xtk−1) ≤ 1

n
C
(
1 + |Xtk−1 |

)C .
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Then we have

Eθ0 [Pk(θ0)|Fk−1] =Eθ0

[
(Xtk −Xtk−1)|Fk−1

]
− 1
n
ξ(Xtk−1 , θ0)

= 1
n
ξ(Xtk−1 , θ0)− 1

n
ξ(Xtk−1 , θ0) +R( 1

n
,Xtk−1)

≤C2C

n2 .

It follows that,

Eθ0

[
f(Xtk−1)Pk(θ0)|Gk−1

]
= f(Xtk−1)Eθ0 [Pk(θ0)|Gk−1] −→ 0,

as n→∞ and ε→ 0, which prove the first condition.

For the second condition, we see that

Eθ0

[(
f(Xtk−1)Pk(θ0)

)2 |Gk−1
]

= f2(Xtk−1)Eθ0

[
P2
k(θ0)|Gk−1

]
.

But,
Pk(θ0)2 = (Xtk −Xtk−1)2 − 2

n
(Xtk −Xtk−1)ξ(Xtk−1 , θ0) + 1

n2 ξ
2(Xtk−1 , θ0),

then,

Eθ0

[
P2
k(θ0)|Fk−1

]
=Eθ0

[
(Xtk−Xtk−1)2|Fk−1

]
+ξ(Xtk−1 , θ0)Eθ0

[
(Xtk−Xtk−1)|Fk−1

]
+ 1
n2 ξ

2(Xtk−1 , θ0).
(B.4)

Furthermore, using Lemma B.4, we have

Eθ0

[
(Xtk−Xtk−1)2|Gk−1

]
=(Xtk−1−Xtk−1)2+ 1

n
A
[
(Xtk−Xtk−1)2

]
+ 1

2n2A
2
[
(Xtk−Xtk−1)2

]
+
∫ 1

n

0

∫ u1

0

∫ u2

0
E

[
(A3

[
(Xtk−1+us+1 −Xtk−1)2

]
)|Fk−1

]
du1du2du3

=ε2

n
Σ(Xtk−1 , θ0) + 1

n2 ξ
2(Xtk−1 , θ0) +R( 1

n3 , Xtk−1)

(B.5)

By Eq. (B.5), the expectation Eθ0

[
P2
k(θ0)|Fk−1

]
in Eq. (B.4) goes to zero, as n→∞, hence

Eθ0

[(
f(Xtk−1)Pk(θ0)

)2 |Fk−1
]
−→ 0.

This completes the proof.
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The joint posterior density is given by the equation (5.3). Or the component inside the expo-
nential operator in (5.4) can be rewritten as function of β under

P̂i =β


x1iy2i

−x1iy2i

x2iy1i

−x2iy1i

∆t+



∆Yi(1)
∆t

+ µx1i − α(µ+ δzi)
∆Yi(2)
∆t

+ (µ+ γ) y1i
∆Yi(3)
∆t

+ µx2i − (1− α)(µ+ δzi)
∆Yi(4)
∆t

+ (µ+ γ) y2i


∆t

=β


x1iy2i

−x1iy2i

x2iy1i

−x2iy1i

∆t+

A(1)i
A(2)i
A(3)i
A(4)i

∆t.

Let ∆i = βC1i + C2i with C1i = x1y2 ((µ+ γ)y1 + (α(µ+ δz) + µx1)) and
C2i = (µ+ γ)y1 (α(µ+ δz) + µx1). Then,

P̂
′
i

(
Σ−1
i−1∆t

)
P̂i = 1

βC1i + C2i

(
K0i +K1iβ +K2iβ

2
)

+ 1
βC1

′
i + C2

′
i

(
K
′
0i +K

′
1iβ +K

′
2iβ

2
)
,

where

K0i = (µ+ γ) y1iA(1)2
i∆t+ (α(µ+ δZi) + µxi1)A(2)2

i∆t,

K1i = 2(µ+ γ)y1ix1iy2iA(1)i − 2x1iy2i (α(µ+ δzi) + µxi1)A(2)i + (A(1)i +A(2)i)
2∆t,

K2i =
(
(µ+ γ) y1i(x1iy2i)2 +

(
α(µ+ δzi) + µxi1(x1iy2i)2

))
∆t,

and the constants C ′1i, C
′
2i, K

′
0i, K

′
1i and K

′
2i are obtained using the above constants by ex-

changing xi1, y1i and α respectively by xi2, yi2 and 1−α, and exchanging A(1)i,A(2)i by A(3)i
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and A(4)i respectively. If C1i = 0 (C ′1i=0) that correspond to the case when we have no female
(male) infected. In this situation the study is reduced to a simple SIR model see for example
Qaffou et al. [100].
Let the following assumption hold true from now on: "the numbers of infected people female
and male are not equal to zero" which means that y1i 6= 0 and y2i 6= 0 for all i.

In this case, if p(β) ∝ βmβ−1 exp(−λββ), then we obtain

π(β|Ŷi, δ, γ) ∝ βmβ−1 exp(−λββ)
N∏
i=1

(
C1iC

′
i1

)− 1
2 (β + Cβ)−1

×exp
{
−1

2

[
1

β+Cβ

(
K0i
C1i

+K1i
C1i

β+K2i
C1i

β2
)

+ 1
β+Cβ

(
K
′
0i

C
′
i1

+K
′
1i

C
′
i1
β + K

′
2i

C
′
i1
β2
)]}

,

where Cβ = min
1≤i≤N

{
C2i
C1i

,
C
′
2i

C
′
1i

}
. Let use the same notation for the new constants Kij =

Kij

C1i

and Ki
′
j =

Ki
′
j

C
′
1i
. Then the following result is obtained:

π(β|Ŷi, δ, γ) ∝ exp(λβCβ)h(β)mβ−N−1 exp
{
−1

2

[
Mβ

h(β) +
(
M
′
β + 2λβ

)
h(β)

]}
, (C.1)

where h(β) = β + Cβ , Mβ =
N∑
i=0

(
K0i +K2iC

2
β −K1iCβ

)
+

N∑
i=0

(
K
′
0i +K

′
2iC

2
β −K

′
1iCβ

)
and

M
′
β =

N∑
i=1

K2i +K
′
2i.

We remark that h(β) has a GIG distribution form and since h(β) = β +Cβ is a linear function
with Cβ > 0 and their Jacobian equals to 1. Then, Eq. (C.1) becomes:

π(β|Ŷi, δ, γ) ∝ exp(λβCβ)βmβ−N−1 exp
{
−1

2

[
Mβ

β
+
(
M
′
β + 2λβ

)
β

]}
.

In the same manner, we construct the posterior distribution of the parameter δ we can see that:

P̂i =δ


−αzi

0
−(1− α)zi

0

∆t+



∆Yi(1)
∆t

+µx1i − αµ
∆Yi(2)
∆t

+(µ+ γ) y1i
∆Yi(1)
∆t

+µx2i − µ(1− α)
∆Yi(1)
∆t

+ (µ+ γ) y2i


∆t
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=δ


−αzi

0
−(1− α)zi

0

∆t+

F (1)i
F (2)i
F (3)i
F (4)i

∆t,

if δ ∝ δm−1 exp(−λδ) and zi 6= 0 then,

π(δ|Ŷi, γ, β) ∝ exp(λδCδ)h(δ)mδ−N−1 exp
{
−1

2

[
Mδ

h(δ) +
(
M
′
δ + 2λδ

)
h(δ)

]}
,

where Cδ = min
1≤i≤N

{
C2i
C1i

,
C
′
2i

C
′
1i

}
, Mδ=

N∑
i=0

(
E0i+E2iC

2
δ−E1iCδ

)
+

N∑
i=0

(
E
′
0i+E

′
2iCδ

2−E′1iCδ
)
and

M
′
δ =

N∑
i=1

E2i + E
′
2i with

Ei = C1iδ+C2i

= αzi ((µ+γ)y1i+βx1iy2i) δ+(µ+ γ)y1i (αµ+µx1i+βx1iy2i)+βx1iy2i (αµ+µx1i) ,

E0i = ((µ+ γ)y1i + βx1iy2i)F (1)2
i + 2βx1iy2iF (1)iF (2)i + (αµ+ µx1i + βx1iy2i)F (2)2

i ,

E1i = αzi
(
F (2)2

i − 2(F (1)i ((µ+ γ)y1i + βx1iy2i) + F (2)iβx1iy2i)
)
,

E2i = α2z2
i ((µ+ γ)y1i + βx1iy2i) ,

where the constants with prime symbol (′) are obtained from the above constants by interchang-
ing xi1, y1i and xi2, yi2, α and 1− α and interchanging F (1)i, F (2)i and F (3)i, F (4)i.

The same techniques are used for γ;

P̂i = γ


0
y1i

0
y2i

∆t+



∆Y (1)
∆t

+ µx1i − α(µ+ δz)
∆Yi(2)
∆t

+ µy1i
∆Yi(1)
∆t

+ µx2i − (1− α)(µ+ δzi)
∆Yi(1)
∆t

+ µy2i


∆t = γ


0
y1i

0
y2i

∆t+


B(1)i
B(2)i
B(3)i
B(4)i

∆t

if γ ∝ γmγ−1 exp(−λγγ) then, we have after tedious calculus that

π(γ|Ŷi, δ, β) ∝ exp(λγCγ)γmγ−N−1 exp
{
−1

2

[
Mγ

γ
+
(
M
′
γ + 2λγ

)
γ

]}
,
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where Cγ = min
1≤i≤N

{
C2i
C1i

,
C
′
2i

C
′
1i

}
, Mγ =

N∑
i=0

(
D0i+D2iC

2
γ −D1iCγ

)
+

N∑
i=0

(
D
′
0i+D

′
2iCγ

2 −D′1iCγ
)

and M ′
γ =

N∑
i=1

D2i +D
′
2i with

Di = C1iγ + C2i

= µy1i (α(µ+ δzi) + µx1i + βx1iy2i) γ + (µy1i + βx1iy2i) (α(µ+ δzi) + µx1i) + βx1iy2i

D0i = (µy1i + βx1iy2i)B(1)2
i + βx1iy2i(2B(1)2

i +B(1)iB(2)i)

D1i = 2y1i(B(1)i +B(2)i) +B(1)2
i

D2i = y1i(µy1i + βx1iy2i)

the constants D′0i, D
′
1i, D2

′
i and D

′
i are obtained using the above constants by interchanging

xi1, y1i and xi2, yi2, α and 1− α, B(1)i, B(2)i and B(3)i, B(4)i.
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The constructed database, is obtained by combining statistics and data from Moroccan High
Commission for Planing HCP [64], Ministry of Public Health with the support of UNAIDS [107,
108], the database of World Bank [14] and the SPECTRUM software [11]. We restrict the data
to the sexually active population only.

year SF SM IF IM AIDS
1986 5370920 5370920 35 110 1
1987 5515825 5515825 78 248 9
1988 5663588 5663588 132 419 14
1989 5814875 5814875 199 632 20
1990 5970053 5970053 282 894 26
1991 6128126 6128126 383 1214 28
1992 6290202 6290202 509 1612 30
1993 6457337 6457337 721 2041 44
1994 6629538 6629538 973 2555 77
1995 6806267 6806267 1266 3150 57
1996 6987697 6987697 1623 3874 66
1997 7171473 7171473 2044 4729 92
1998 7350417 7350417 2719 5553 93
1999 7515002 7515002 3518 6530 165
2000 7649765 7649765 4427 7641 112
2001 7767033 7767033 5390 8818 129
2002 7871873 7871873 6362 10006 150
2003 7971494 7971494 7367 11139 205
2004 8069812 8069812 8340 12236 271
2005 8167432 8167432 9255 13269 289
2006 8264123 8264123 10144 14270 291
2007 8357674 8357674 10999 15235 369
2008 8447147 8447147 11886 16122 416
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year SF SM IF IM AIDS
2009 8533958 8533958 12732 16968 412
2010 8621216 8621216 13564 17801 461
2011 8705203 8705203 14315 18552 350
2012 8784900 8784900 14929 19166 433
2013 8858900 8858900 15528 19764 634
2014 8926659 8926659 16109 20346 513

Table D.1: Morocco’s database of HIV/AIDS for sexually active population,
since 1986 to 2014.
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