

UNIVERSITE SULTAN MOULAY SLIMANE

Faculté des Sciences et Techniques

Béni-Mellal

N° d'ordre 175/18

Centre d'Études Doctorales : Sciences et Techniques Formation Doctorale : **Ressources Naturelles Environnement et santé**

THÈSE

Présentée par

Mohamed EL-GHOZLANI

Pour l'obtention du grade de

DOCTEUR

Spécialité : Chimie

Option : Chimie Bio-Organique

REDUCTION DES NITROHETEROARYLES : SYNTHESE, ETUDE BIOLOGIQUE ET ELECTROCHIMIQUE DE NOUVEAUX SYSTEMES HETEROCYCLIQUES

Soutenue le 07/09/2018 à 9h devant la commission d'examen:

E.M. ESSASSI	Professeur Université Mohammed V,F.S Rabat Maroc	Président	
Y. KANDRI RODI	Professeur Université Sidi Mohammed	Rapporteur	
N.H. AHABCHANE	Professeur Université Mohammed V, F.S Rabat, Maroc	Rapporteur	
A. HAFID	Professeur, Université Sultan Moulay Slimane, F.S.T. Beni-Mellal, Maroc	Rapporteur	
M. BENCHIDMI	Professeur Université Mohammed V, F.S Rabat, Maroc	Examinateur	
M. KHOUILI	Professeur, Université Sultan Moulay Slimane, F.S.T. Beni-Mellal, Maroc	Examinateur	
A.M.ALAOUI	Professeur, Université Sultan Moulay Slimane, F.S.T. Beni-Mellal, Maroc	Co-Directeur de thèse	
E.M.RAKIB	Professeur, Université Sultan Moulay Slimane, F.S.T. Beni-Mellal, Maroc	Directeur de thèse	

Avant-propos

Cette thèse a été effectuée au Laboratoire de Chimie Organique et Analytique de la Faculté des Sciences et Techniques de Béni-Mellal sous la direction du Professeur El Mostapha RAKIB.

Le présent travail a fait l'objet de sept (07) publications et quatorze (14) communications internationales.

A-Liste des publications:

- P-1) H. Boubekraoui, M.El Ghozlani, I. Forsal ,A. Medaghri Alaoui, E.M Rakib « New hybrid molecules containing indazole, Pyrrole and 2-pyrone moieties as corrosion inhibitors of mild steel in 1M HCl» Corrosion Science, soumis, 2018.
- P-2) M.El Ghozlani, H.Chicha, S.Mojahidi, L.Bouissane, M.Baltas, E.M Rakib "An Efficient Synthesis of New Hybrid Molecules Containing Indazole and 2-Pyrone Moieties". Synthetic Communications, soumis, 2018.
- P-3) Y. Elkhotfi, M. El Ghozlani, Y.Hakmaoui, I. Forsal, E.M Rakib, B. Mernari. Optimization of the Inhibitor Efficiency of a 1-allyl-5-nitro-2,7a-dihydro-1Hbenzo[d]imidazole-2-thiol on Corrosion of Ordinary Steel in 0.5M H₂SO₄ American Journal of Engineering Research, 2017, vol. 6 (11), 247-252.
- P-4) M.El Ghozlani, A.Rais, E.M Rakib, S.Mojahidi, L.El Ammari, M.Saadi IUCrData (2016). 1, x161121
- P-5) M.El Ghozlani, H.Chicha, N.Abbassi, M.Chigr, L.El Ammari, M.Saadi, D. Spinelli, E.M.Rakib. One-pot synthesis of new 6-pyrrolyl-N-alkyl-indazoles from reductive coupling of N-alkyl-6-nitroindazoles and 2,5-hexadione. Tetrahedron Letters, 2016, 57, 113–117
- P-6) M. El Ghozlani, E.M.Rakib, A.M.Alaoui, M.Saadi and L.El Ammari. Acta Cryst. (2014). E70, 0407.
- P-7) M. El Ghozlani, E. M. Rakib, A. Gamouh, M. Saadi and L. El Ammari Acta Cryst. (2014). E70,01256

B- Liste des communications :

> Orales

- CO-1)- M.El Ghozlani, H.Chicha, M.Viale, R.Gangemi, I.Maric, E.M.Rakib «discovery of novel indazole derivatives with cytotoxic and antibacterial activities as highly potent » 3^{eme} Workshop international Chimie Moléculaire, Plantes et Hémisynthése 12 Mai 2017 Béni Mellal Maroc.
- CO-2)- M.El Ghozlani, H.Chicha, M.Viale, R.Gangemi, I.Maric, E.M.Rakib « Facile Synthesis and Antiproliferative Activity of Novel Fused Indazole Derivatives" 2^{éme} Edition CISPharm 17-18 février 2017 FST Béni Mellal Morocco.

- **CO-3)-M.El Ghozlani,** R.El Ajlaoui, A.Hannioui ,M.Viale D.Spinelli, E.M Rakib" synthesis and potential cytotoxic activity of new substituted indazole derivatives bearing pyrrole and 2-pyrone" 27th ECHC 3-6 July 2016 Amsterdam, Netherlands.
- **CO-4)-M.El Ghozlani,** R.El Ajlaoui, A.Hannioui ,M.Viale D.Spinelli, E.M Rakib" Synthesis and biological evaluation of novel substitueted indazole derivatives bearing 2,5-hexadione and 2-pyrone" *SMSOC-5*.10th 12th March 2016, Casablanca, Morocco,
- **CO-5)-M.El Ghozlani,**A.Kouakou, A.Hannioui,M.Chigr,M.Viale, E.M.Rakib"Synthesii and potential anticancer activity of new substituted indzaole derivatives bearing pyrrole and 2-pyrone" *CISPharm* 25-26 février 2016 FST Béni Mellal Morocco.
- **CO-6)-**A.Kouakou, M.Viale, L.El Ammari, M.Saadi, **M.ElGhozlani**, L.Bouissane, E.M.Rakib" Synthesis and biological evaluation of novel polysubstituted indazoles as anticancer agents" *1^{ere} Edition CISPharm 25-26 février 2016 FST Béni Mellal Morocco*.
- **CO-7)-M.El Ghozlani**, L.Bouissane, A.M.Alaoui, A.Hannioui, E.M.Rakib « Synthesis of novel indazole derivatives bearing pyrrole and 2-pyrone » 2^{eme}éditionJDOC 26-28 Mars 2015 FST Béni Mellal.
- CO-8)- M.El Ghozlani, E.M.Rakib, R.ElAjlaoui, A.M.Alaoui, «Synthesis, Chemical Study of New Fused Compounds based on 6-Nitroindazole and it's Derivatives» 1^{ere} édition JDOC, 10-11 Juin 2014 à l'FST Béni Mellal Maroc.

> AFFICHES

- CA-1)-M.El Ghozlani, R.El Ajlaoui, S.Jarrari, A.Hannioui M.Viale, E.M.Rakib, "synthesis of benzimidazolethiol derivatives and their medicinal importance: an overview"2^{eme} Edition CISPharm 17-18 février 2017 FST Béni Mellal Morocco.
- **CA-2)-**R.El Ajlaoui, O.Amiri,**M.El Ghozlani**,S.Mojahidi,M.Viale, E.M.Rakib"Synthesis and antiproliferartive evaluation of novel heterocyclic systems based on rhodanine moiety as potential anticancer agents" 27th ECHC 3-6 July 2016 Amsterdam, Netherlands
- CA-3)-M.ElGhozlani, A.kouakou, A.Hannioui, H.Chicha, M.Chigr E.M.Rakib"Induim/SnCl₂mediated one-pote pyrrole synthesis fom 5,6-nitroindazoles and 1,4-diketones" 6th IMCQMC 21-22 April 2016, FST Béni Mellal Morocco.
- **CA-4)-M.ElGhozlani**, A..hannioui.M.Chigr, E.M.Essassi, M.Benchidmi, E.M Rakib" Synthesis of new 6-heteroaryl-n-alkyl-indazoles from reductive coupling of 6-nitroindazole with 2,5-hexadione and 2-pyrone" *SMSOC-5.10th -12th Mach 2016*, *Casablanca, Morocco*,
- **CA-5)-M.El Ghozlani**, A.Hannioui, Chigr.M, E.M.Essassi, M.Benchidmi, E.M.Rakib"SnCl₂mediated one pot substituted indazoles synthesis from nitroindazoles with 2,5hexanedione and 2-pyrone"TRAMECH-8), November 11-15, 2015, Antalya, TURKEY.
- **CA-6)-M.ElGhozlani**, E.M.Rakib, R.ElAjlaoui, A.M.Alaoui, "Synthesisof Novel Benzimidazole Heterocyclic Derivatives" 1^{ere} édition JDOC RSI&D, 10-11 Juin 2014 à l'FST Béni Mellal Maroc.

Avant-Propos

Aux sacrifices de ma mère, mes oncles et tantes A ma famille et à tous ceux qui me sont chers

Ce travail a été réalisé au Laboratoire de Chimie Organique et Analytique (LCOA), À l'Université Sultan Moulay Slimane, Faculté des Sciences et Techniques de Béni-Mellal sous la direction du Professeur **El Mostapha RAKIB**, directeur du Laboratoire de Chimie Organique et Analytique de la Faculté des Sciences et Techniques, et Vice-président de l'Université Sultan Moulay Slimane de Béni-Mellal.

En premier lieu, je tiens à exprimer ma profonde reconnaissance et remerciement au Professeur **El Mostapha RAKIB**, mon directeur de thèse, pour m'avoir accueilli au sein de son laboratoire et pour m'avoir permis de mener ce travail dans d'excellentes conditions, et de m'avoir donner la liberté nécessaire à l'accomplissement de mes travaux, tout en y gardant un œil critique et avisé de plus je lui adresse également mes sincères remerciements pour son permanent soutien, sa grande disponibilité et pour les conseils qu'il m'a prodigués durant cette période. Je tiens à lui témoigner mon plus grand respect. Je le remercie également pour son aide inestimable lors de la rédaction de mon manuscrit de thèse.

J'adresse également mon remerciement au Professeur Monsieur A.M.ALAOUI pour son implication dès le début de mon initiation à la recherche jusqu'à la correction de ce manuscrit, pour ses qualités humaines, son enthousiasme et son soutien moral permanent tout au long de cette thèse.

Mes vifs remerciements vont à l'endroit du professeur **B.MERNARI** Président de l'Université Sultan Moulay Slimane, Béni-Mellal et au professeur **A.ZEGHAL** Doyen de la Faculté des Sciences et Techniques, pour leur soutien à la recherche scientifique au sein des différentes structures de l'Université Sultan Moulay Slimane.

Qu'il me soit permis de remercier, en outre, Monsieur **El Mokhtar ESSASSI** professeur à L'Université Mohammed V de Rabat, de m'avoir fait l'honneur de présider le jury de ma thèse.

Mes remerciements s'adressent, également, à Monsieur **Youssef KANDRI RODI** professeur à l'Université Sidi Mohammed Ben Abdellah, Fès à Monsieur **Noureddine Hammou AHABCHANE** professeur à l'Université Mohammed V de Rabat, et à Monsieur **Abderrafia HAFID** professeur à l'Université Sultan Moulay Slimane de Béni-Mellal qui en tant que rapporteurs ont accepté d'évaluer mon travail de thèse et ont consacré un temps précieux à l'étude de ce manuscrit.

Par ailleurs, je remercie Monsieur **Mohammed BENCHIDMI** professeur à l'Université Mohammed V de Rabat, Monsieur **Mostafa KHOUILI** professeur à l'Université

Sultan Moulay Slimane de Béni-Mellal, de m'avoir fait l'honneur d'examiner ce travail et de participer à mon jury de thèse.

J'adresse mes remerciements au professeur **Said MELLIANI** Directeur du Centre des Etudes Doctorales à la FST, Béni Mellal, pour son collaboration au bon déroulement de la procédure administrative aboutissant à la soutenance de ma thèse.

Mes remerciements vont également à tous les professeurs du département de chimie et environnement à la Faculté des Sciences et Techniques de Beni Mellal. Qu'ils trouvent ici l'expression de mon plus profond respect.

Mes remerciements sont adressés aux membres du Centre National de la Recherche Scientifique et Technique à Rabat, pour la réalisation des analyses spectroscopiques RMN, RX, IR et Analyse élémentaire.

Mes remerciements vont également au Professeur **L.EL AMMARI** qui m'a permis de confirmer certaines structures par radiocristallographie

Je tiens à remercier vivement tous mes collègues du CED et particulièrement mes collègues du laboratoire pour leur présence, leur encouragement, leur humour, leur gentillesse, leur humanisme.

Je ne saurais terminer sans adresser un remerciement profond et sincère à ma Famille, ma mère **AMMAR Fatima**, à mon grand père **Mohamed**, à ma grande mère **Fatna** mes oncles et tantes adorés, **Ahmed**, **abderahim**, **mustafa**, **khadija** et **zineb**, qui m'ont toujours soutenu. Leur enthousiasme et leur prière ont su me préserver des difficultés de la recherche, et de la vie.

NOTE PRELIMINAIRE

Dans le but d'alléger la lecture de ce manuscrit, certains composés ou appareillage ne seront pas désignés par leurs noms chimiques systématiques ou complets mais uniquement par leurs formules ou abréviations.

Principales abréviations :

ADN :	Acide désoxyribonucléique
Akt :	Protéine kinase
Ar. :	Aromatique
CCM :	Chromatographie sur couche mince
CDCl ₃ :	Chloroforme deutérié
Chk1:	Check point kinases 1
Coll. :	Collaborateurs
d :	Doublet
δ:	Déplacement chimique
DCM :	Dichlorométhane
dd :	Doublet de doublet
DFT :	Density Functional Theory
DMF :	Diméthylformamide
DMPBAC:	Chlorure de diméthylphénylbenzylammonium
DMSO-d ₆ :	Diméthylsulfoxyde deutérié
Et:	Ethyle
IC ₅₀ :	Concentration inhibitrice de 50 % de la prolifération
m :	Multiplet
MCP-1 :	Monocyte chemoattractant protein 1
Me :	Méthyle
MM :	Masse molaire
MO :	Microande
MS :	Spectroscopie de masse
NBS :	N-bromosuccinimide
Pd-C:	Paladium sur charbon
PEG600 :	Polyéthylène glycol 600
PF:	Point de fusion
ppm :	Partie par million
Pr:	Propyle
q :	Quadruplet
Rdt :	Rendement
RMN :	Résonance Magnétique Nucléaire
Rx :	Rayons X
s :	Singulet
t :	Triplet

Ta :	Temperature ambiante
TBAC :	Chlorure de tetrabutylammonium
t-BuOK :	Tertiobutylate de potassium
TENAB:	Bromure de triéthylnonylammonium
THA	Tetrahydroacetic acide
THF :	Tétrahydrofurane
TMAB:	Bromure de tetraméthylammonium
TMS :	Tétraméthylsilane
TRPV1:	Récepteur vanilloïde 1
UV :	Ultra-violet
VIH :	Virus de l'immunodéficience humaine

Table des matières

Introduction Générale	1
PREMIERE PARTIE	4
ÉTUDE DE LA CONDENSATION REDUCTRICE DES NITROHETEROARYLE	S
VIS-A-VIS DES REACTIFS DIFONCTIONNELS	4
CHAPITRE I :	5
Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl ₂ :	
Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole	5
I- Etude bibliographique sur l'intérêt biologique, la synthèse et la réactivité de l'ind	azole
6	
I-1 Intérêt biologique des indazoles	6
I.1.1. Indazoles en tant que produits naturels	6
I-2. Synthèse et réactivité des indazoles	10
I.2.1.Principales méthodes de synthèse de l'indazole	10
II. Etat de la littérature sur les réactions d'alkylation de l'indazole	10
III. Synthèse des N-alkyl-nitroindazoles et leurs dérivés 3-chloroindazoles	14
III-1. Synthèse des 4-nitro-, 5-nitro-, 6-nitro- et 7-nitroindazoles	14
III-2. Synthèse des 3-chloro-nitroindazoles	14
III-3. Synthèse des N-alkyl-nitroindazoles	15
IV. Etude de la réduction des N-alkyles-nitroindazoles avec In et/ou SnCl ₂	24
IV-1. Etat de la littérature sur les réactions de réduction des dérivés nitrés	24
IV-2. Réduction des N-alkyl-6-nitroindazoles par le chlorure d'étain et/ou In en présence de 2, hexanedione	,5- 34
IV-2-1. Optimisation de la réaction de condensation réductrice des N-alkyl-6 nitroindazoles	35
IV-3 Réduction des N-alkyl-5-nitroindazoles par le chlorure d'étain et/ou In en présence de 2, hexanedione	5- 45
IV-4. Synthèse des 4- et 7-pyrrolyl-N-alkyl-indazoles via la réduction des N-alkyl (4)-7- nitroindazoles en présence de 2,5-hexanedione.	48
V- Conclusion	52

CHAPITRE II :	77
Etude de la réduction des N-alkyl-nitroindazoles en présence de 4-hydroxy-6-méthyl-	-2-
pyrone: Synthèse des 3-[1-(N-alkyl-indazol-5(6)-ylamino)éthylidène]-6-méthyl-2,4-	
pyrandiones	77
I. Etat de la littérature	80
II. Etude de la réduction des N-alkyl-6-nitroindazoles en présence de 4-hydroxy-6-	
méthyl-2-pyrone	90
II-1. Synthèse des N-alkyl-6-nitroindazoles	90
II-2. Synthèse des 3-[1-(N-alkyl-indazol-6-ylamino)éthylidène]-6-méthyl-2.4-pyrandiones	91
II-3. Etude de la réduction des N-alkyl-5-nitroindazoles en présence de 4-hydroxy-6-méthyl-2- pyrone.	97
II-4. Etude de la réduction des N-alkyl-5-nitrobenzimidazolthiols en présence de 4-hydroxy-6- méthyl-2-pyrone	. 101
III. Conclusion	102
Partie Expérimentale	103
DELIVIENTE DA DTIE	116
DEUAIENIE PARTIE	110
ETUDE ELECTROCHIMIQUE ET EVALUATION PHARMACOLOGIQUE DES	
COMPOSES SYNTHETISES	116
CHAPITRE I Etude électrochimiques de nouveaux indazoles_polysubstitués	117
I. Introduction	118
II. Etat de la littérature sur la corresion	110
II. Etat de la interature sur la corrosion	119
III. Etude électrochimique de nouvelles molécules hybrides contenant le motif	
indazolique	123
III-1. Introduction	. 123
III-2. Préparation des matériaux et des échantillons	. 124
III-3. Expérience électrochimique	. 124
III-4. Microscope à force atomique (AFM)	. 125
III-5. Étude de polarisation Tafel.	. 125
III-6. Mesures de spectroscopie d'impédance électrochimique.	. 128
III-7. Effet de la température	. 131
III-8. Effet du temps d'immersion.	. 134
III-9. Examen de surface de microscopie à force atomique (AFM)	. 135

III-10. Calcule théorique
IV. Conclusion
CHAPITRE II Etude de l'activité anticancéreuse et antimicrobienne de nouvelles
molécules hétérocycliques hybrides à base d'indazole143
I.Rappel bibliographique sur l'activité anticancéreuse des dérivès de l'indazole
II. Détermination des activités antiprolifératives (Test MTT)150
II-1.Evaluation antiproliférative des N-alkyl-N-pyrollyl-indazoles et N-alkyl-N-pyrone-indazoles
III. Evaluation antimicrobienne des dérivés de l'indazole
III-1. Rappel bibliographique sur l'adhésion microbienne en présence des dérivès indazoliques 154
IV. Etude de l'activité antimicrobienne des N-pyrrolyl-N-alkyl-indazoles
V.Conclusion164
Conclusion Générale

Introduction Générale.

La chimie hétérocyclique a connu un essor considérable grâce à l'importance physicochimique et pharmacologique que présente la majorité des composés hétérocycliques, notamment les hétérocycles azotés qui constituent la source privilégiée de nombreux sujets de recherche au laboratoire. Dans cette optique, notre groupe de recherche développe depuis une dizaine d'années des méthodes de synthèse s'appuyant sur la réduction des nitrogènes catalysé par les agents reducteurs contenant des métaux, avec un double objectif :

1) L'élaboration de nouveaux hétérocycles polyfonctionnalisés

2) L'étude de leurs propriétès physicochimique et biologique.

L'essentiel du présent travail de thèse s'inscrit dans ce cadre, avec comme cible principale l'utilisation des réactions de couplage réducteur régiosélective, avec l'élaboration de nouveaux composés hétérocycliques azotés possédant des motifs pyrrole et 2-pyrone.

Le manuscrit proposé se divise en deux parties:

Dans le premier chapitre de la première partie, nous décrivons une étude bibliographique sur l'importance biologique du noyau indazole, les différentes voies de synthèse de ses dérivés ainsi que leur réactivité. Puis nous passerons aux synthèses des Npyrrolyl-N-alkyl-indazoles (schéma 1) par des réactions de condensation réductrice des Nalkyl-nitroindazoles selon une procédure « One Pot ».

Schéma 1

Dans le second chapitre de cette partie, nous développerons la synthèse de nouvelles molécules hybrides contenant des motifs d'indazole et de 2-pyrone selon la même procédure décrite dans le chapitre I, via des réactions de couplage réducteur mettant en œuvre les N-alkyl-nitroindazoles et le 4-hydroxy-6-méthyl-2-pyrone (schéma 2).

Schéma 2

Concernant la deuxième partie, le premier chapitre sera consacré à l'étude et la performance d'inhibition de trois molécules hybrides contenant des motifs indazole, pyrrole et 2-pyrone synthétisés dans les chapitres I et II (figure 1) envers l'acier doux dans la solution d'acide chlorhydrique 1M avec des techniques électrochimiques.

Figure 1

Le dernier chapitre sera réservé à l'évaluation pharmacologique de nouveaux indazoles polysubstitués en tant qu'agents anticancéreux (figure 2). Puis à l'évaluation de l'activité antibactérienne de nos composés ou la plupart des molécules ont montré des concentrations inhibitrices très faibles en termes d'inhibition de la prolifération microbienne (figure 3).

IC₅₀ A2780 = 52,9±1,4 μM

IC₅₀ A2780 = 55,9±3,6 μM IC₅₀ A549 = 86,8±4,8 μM

IC₅₀ A2780 = 99,7±23,1 μM

CI

Figure 2

Figure 3

PREMIERE PARTIE ÉTUDE DE LA CONDENSATION REDUCTRICE DES NITROHETEROARYLES VIS-A-VIS DES REACTIFS DIFONCTIONNELS

CHAPITRE I :

Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de 6-pyrrolyl-N-alkylindazole Dans ce chapitre, il nous a semblé intéressant, dans un premier temps, de décrire brièvement une étude bibliographique de quelques propriétés pharmacologiques des dérivés de l'indazole et leur réactivité via des réactions d'alkylation. Dans la seconde partie, nous présenterons nos résultats expérimentaux de la synthèse de nouveaux systèmes hétérocycliques de type : N-alkyl-6-pyrrolyl-indazoles à partir de la réduction catalytique des N-alkyles-nitroindazoles avec In et/ou SnCl₂ en présence de 2,5-héxanedione.

I- Etude bibliographique sur l'intérêt biologique, la synthèse et la réactivité de l'indazole

I-1 Intérêt biologique des indazoles

Le terme indazole a été défini la première fois par le scientifique Emil Fisher comme «un noyau pyrazole fusionné avec le noyau de benzène». L'indazole, largement étudié vu ses propriétés chimiques et biologiques intéressantes, appartient à la famille des azoles, molécules contenant des atomes de carbone, d'hydrogène et d'azote. Les indazoles, également appelés benzopyrazoles ou isoindazolones, appartiennent aux systèmes aromatiques possédant 10 électrons.

I.1.1. Indazoles en tant que produits naturels

La Nigellicine, la Nigeglanine et la Nigellidine, entités possèdant une structure indazolique, sont des alcaloïdes naturels (figure 4). Le premier membre de cette famille la Nigellicine,¹ a été isolé en 1985 à partir de la plante *Nigella sativa*, plante à fleurs annuelles originaire d'Asie du Sud-Ouest. Les graines de cette plante ont été utilisées depuis des milliers d'années dans l'alimentation comme épice et pour le traitement de diverses maladies^{2,34} telles que l'arthrite, les troubles gynécologiques, l'hypercholestérolémie, les rhumes et les inflammations. La Nigeglanine et la Nigellidine ont été isolées à partir d'extraits de *Nigella glandulifera* et de *N. sativa*. A noter que ces trois composés pouvent également être représentés sous leurs formes zwittérioniques.⁵

¹ Y. M. Liu, J.S. Yang, Q.U. Liu, *Chem. Pharm. Bull.* **2004**, *52*, 454.

² E. A. I. Barakat, U. A. Fatma, *J. Ethnopharmacol.* **2003**, *89*, 193.

³ M. Eddouks, M. Maghrani, A. Lemhadri, M.L. Quahidi, H. Jouad, J. Ethnopharmacol. 2002, 82, 97.

⁴ O. Said, K. Khali, S. Fulder, H. Azaizeh, J. Ethnopharmacol. 2002, 83, 251.

⁵ R. Attaur, S. Malik, S. S. Hasan, M. I. Choudharry, C. Z. Ni, J. Clardy, *Tetrahedron Lett.* 1995, 36, 1993.

Figure 4

I.1.2. Principales activités pharmacologiques des indazoles

Les dérivés d'indazoles sont pharmacologiquement importants car constituant la structure de base de plusieurs médicaments, tels que le Granisetron (composé L1, figure 5) antagoniste du récepteur 5HT₃ utilisé comme antiémétique en chimiothérapie, ^{6,7,8} ou la Benzydamine (composé L2, figure 5), qui est un agent anti-inflammatoire.⁹ A noter que le Granisetron existe également sous forme de médicament générique commercialisé sous le nom de Kytril®.

Sachant que la majeure partie des médicaments commerciaux sont des hétérocycles possédant un ou plusieurs atomes d'azote, ¹⁰ de nombreux chimistes, académiques ou industriels ont commencé à développer différentes méthodes pour la synthèse de ces hétérocycles.^{11,12,13,14}

Figure 5

¹⁰ A. D. Mills, M. Z. Nazer, M. J. Haddadin, M. J. Kurth, J. Org. Chem. 2006, 71, 2687.

- ¹³ N. Cankařováa, J. Hlaváča, V. Krchňákb, Org. Prep. Proced. Int. 2010, 42, 433.
- ¹⁴ D. D. Gaikwad, A. D. Chapolikar, C. G. Devkate, K. D. Warad, A. P. Tayade, R. P. Pawar, A. J. Domb, *Eur. J. Med. Chem.* **2015**, *90*, 707.

⁶ a) P.I. Hesketh, D.R. Gandara, J. Natl. *Cancer Inst.* **1991**, *83*, 613. b) M. Nakane, Clin. *Chem. Lab. Med.* **2003**, *41*, 865.

⁷ P. Li, C. Wu, J. Zhao, Donald C. Rogness, F.Shi, J. Org. Chem. 2012, 77, 3149.

⁸ C.Spiteri, S.Keeling, John E. Moses, Org. Lett. 2010, 12, 3368.

⁹ M. Sironi, L. Massimiliano, P. Transidico, M. Pinza, S. Sozzani, A. Mantovani, A. vecchi, *Int. J. Clin. Lab. Res.* **2000**, *30*, 17.

¹¹ T. Zhang, W. Bao, J. Org. Chem. 2013, 78, 1317.

¹² M. R. Kumar, A. Park, S. Lee, *Org. Lett.* **2011**, *13*, 3543.

Parmi les composés décrits dans la littérature possédant le motif indazole, nous pouvons citer le Bendazac L3 (figure 6) qui est un agent anti-inflammatoire non stéroïdien utilisé pour le traitement topique de l'inflammation ainsi que celui des douleurs musculaires et articulaires.¹⁵ Un dérivé d'indazole YC-1 L4 (figure 6) a été synthétisé et évalué pour son activité de transcription HIF-1 in vivo (régulateur central de l'hypoxie).¹⁶ En outre, ces dérivés, montrent une activité antiproliférative significative contre les cellules cancéreuses humaines. D'autre part, l'indazole 1,3,5-trisubstitué L5 (figure 6) est décrit comme un antioxydant extrêmement efficace.¹⁷ L'utilisation de la lonidamine L6 (figure 6) en combinaison avec la radiothérapie a montré des propriétés antitumorales en phase II, d'où son passage en phase III pour le traitement du cancer du sein, du cancer des ovaires et de celui du poumon.¹⁸ Le 7-nitroindazole L7 (figure 6) a été examiné pour ces propriétés antioxydantes.¹⁹ De même, le dérivé pipéridinique indazole L8 (figure 6) a été trouvé comme possédant des propriétés analgésiques et antipsychotiques.²⁰

¹⁵ H. Cerecetto, A. Gerpe, M. Gonzalez, V. J. Aran, Ocariz C. Ochoa de, *Mini. Rev. Med. Chem.* 2005, 5, 869.

¹⁶ A. Takeuchi, M. Hori, S. Sato, H. S. Ban, T. Kuchimaru, S. Kizaka-Kondoh, T. Yamori, H. Nakamura, *Med. Chem. Commun.* **2012**, *3*, 1455.

¹⁷ S. Brian, R. K. Brown, J. P. Richard, D. Stanley, R. K. John, K. J. Tammie, M. H. Steven, A. M. Heath, R. B. Bruce, P. S. P. Honore, R. B. M. Puttfarcken, C. M. Kennan, R. F. Connie, L. Chih-Hung, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3291

¹⁸ S. Di Cosimo, G. Ferretti, P. Papaldo, P. Carlini, A. Fabi, F. Cognetti, *Drugs Today Barc.* 2003, *39*, 157.

¹⁹ S. S. Matthew, J. S. Mitchell, *Org. Biomol. Chem.* **2004**, *2*, 2551.

²⁰ K.W. Locke, R.W. Dunn, J. W. Hubbard, C. L. Vanselous, M. Cornfeldt, F. Stuart, J. T. Strupczewski, *Drug Dev. Res.* **1990**, *19*, 239.

Figure 6

D'autres travaux de recherche développés ces dernières années sur l'indazole ont montré que les dérivés de l'indazole sont doués des propriétès biologiques diverses 21,22,23,24,25,26,27,28,29,30,31

²¹ H. Rehwinkel, A. Haegebarth, O. Politz, R. Neuhaus, U. Boemer. Patent WO 2012080237, June 21, **2012**.

²² M. Michels, M. Follmann, A. Vakalopoulos, K. Zimmermann, M. Lobell, N. Teusch, S.Yuan. Patent WO 2010094405. August 26, **2010.**

²³ M. Michels, M. Follmann, A. Vakalopoulos, K. Zimmermann, N. Teusch, M. Lobell. Patent WO 2011003604. January 13, **2011**

²⁴ P.A. Renhowe, C.M. Shafer, C. McBride, J. Silver, S. Pecchi, T. Machajewski, B. Mccrea, D. Poon, T. Thomas. Patent WO 2003004488. January 16, **2003**.

²⁵ J.M. Jansen, C. McBride, P.A. Renhowe, C.M. Shafer. Patent US 20060079564. Apryl 13,**2006.**

²⁶ F. Halley, M. Tabart, H. Bouchard, C. Souaille, A. Le Brun, F. Viviani, L. Gauzy, P.Desmazeau. Patent FR 2871158. December 09, **2005**.

²⁷ Y, Zhao, H.D. Thomas, M.A. Batey, I.G. Cowell, C.J. Richardson, R.J. Griffin, A.H. Calvert, D.R. Newell, G.C.M. Smith, N.J. Curtin. Cancer Res. 66 , **2006**, 5354–5362.

²⁸ K. Kusakabe, H. Hashizume. Patent JP 2011246389. December 08, **2011**

²⁹ G. Moroy, J.P. Alix, J. Sapi, W. Hornebeck, E. Bourguet. Anticancer Agents Med. Chem. 12,2012, 565–579.

³⁰ A.K. Raviraj, R. Manesh. Intern. J. Life science and Pharma Res. 3 ,2013, 6–10.

³¹ H. Cerecetto, A. Gerpe, M. Gonzalez, V.J. Atan, C.O. de Ocariz. Mini-Rev. Med. Chem. 5,2005, 869–878.

I.2 – Synthèse et réactivité des indazoles

Les indazoles polyfonctionnalisés présentent des activités biologiques intéressantes et variées. Par conséquent, de nombreuses méthodologies de synthèse ont été développées afin d'accéder à ces nouvelles familles de molécules.

I.2.1- Principales méthodes de synthèse de l'indazole

Les indazoles peuvent exister sous trois formes tautomères (figure 7). Suite aux calculs des énergies de tautomérie entre les formes 1H et 2H, divers auteurs ont conclu que le tautomère 1H est énergétiquement plus stable que le tautomère 2H, les 3H 2-indazoles s'avérant rares.¹³

Quelle que soit la structure de la cible finale, le cycle à cinq chaînons pyrazolique est classiquement formé à partir de dérivés benzéniques 1,2-disubstitués. Deux approches pour la synthèse de N-alkyl/aryl 1*H-2H*-indazoles sont fréquemment rapportées dans la littérature. La première est basée sur la synthèse d'indazoles non substitués sur l'azote, suivie de la N alkylation. La seconde voie est basée sur l'introduction du substituant sur l'azote lors de la synthèse du noyau pentagonal de l'indazole.

II-Etat de la littérature sur les réactions d'alkylation de l'indazole

L'indazole a deux atomes d'azote (N-1, N-2) et présente une tautomérie annulaire en ce qui concerne la position de l'atome d'hydrogène NH. Plusieurs études concernant l'alkylation de l'indazole révèlent que l'acidité ou la basicité du milieu, l'utilisation des solvants protiques ou aprotiques, ainsi que les effets électroniques et stériques affectent tous le rapport des isomères N-1 et N-2 alkylés formés. Généralement, les isomères N-1 sont thermodynamiquement plus stables, alors que les isomères N-2 sont favorisés cinétiquement.

Nous pouvons citer la méthode décrite par Teixeira et coll³², qui ont synthétisé les dérivés d'esters d'indazole **L10** et **L11** avec des rendements et des proportions différents à partir de l'indazole **L9** par des réactions d'alkylation des esters halogénés correspondants avec différentes longueurs de chaînes hydrocarbonées (Schéma 3)

Schéma 3

Chakrabarty et coll.³³ ont décrit la réaction d'alkylation des iodures d'alkyles sur les 5-,6-nitroindazoles dans THF en présence de l'hydroxyde de sodium et Bu₄NHSO₄ comme catalyseur de la réaction. Ces conditions ont conduit à la formation de deux isomères N-1 et N-2 alkylés avec des rendements proportionnels (Schéma 4).

Schéma 4

Une autre méthode de synthèse sélective de 1-alkyl-1H-indazole a été décrite par Hunt et coll³⁴. La réaction consiste à faire réagir le 6-nitroindazole **L18** avec le bromoacétate de méthyle dans le DMF en présence du carbonate de césium comme base de la réaction d'alkylation (Schéma 5). Le méthyl 2-(6-nitro-1H-indazol-1-yl) acétate **L19** est obtenu avec un rendement de 87%.

³² Teixeira, F.C., Ramos, H., Antunes, I.F., M. João M. Curto, M.J.M., Duarte, M.T., Bento, I. *Molecules* **2006**, 11, 867-889.

³³ Chakrabarty, M., Kundu, T., Arima, S., Harigaya, Y. *Tetrahedron* **2008**, 64, 6711–6723

³⁴ Hunt, K. W., Moreno, D. A., Suiter, N., Clark, C. T., Kim, G. Org. Lett., 2009, 11(21), 5054-5057

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Schéma 5

En 2013, Bandichhor et coll ³⁵ ont décrit une méthode d'alkylation sélective de l'indazole. L'utlisation de 2,5 équivalent de $CCl_3CNHOCH_3$ et 1 équivalent de $CF_3SO_3HCH_2Cl_2$ n'a permis d'obtenir que les dérivés N-2 alkylés avec d'excellents rendements (schéma 6).

Schéma 6

L'alkylation sélective de l'indazole avec la 4-vinylpyridine en position N-1 a été observé récemment par l'équipe de Yu³⁶.

Schéma 7

³⁵ Baddam, S.R., Kumar, N. U., Reddy, A. P., Bandichhor, R. *Tetrahedron Lett.* **2013**, 54, 1661–1663

³⁶ D.Ge, X-Z.Zhang, S-Yong Chen, Lin Pu, Xiao-Qi Yu Tetrahedron Lett. 2015, 56, 4811–4814

Dans notre laboratoire, Rakib et coll³⁷ ont décrit la synthèse des N-alkyl-4,6nitroindazoles, en élaborant différentes conditions d'alkylation. Ils ont montré que l'alkylation du 4-nitroindazole, dans une solution basique (KOH) d'acétone, conduit aux isomères N-1 et N-2 avec une sélectivité modérée pour la position N-1. Par contre, l'utilisation de THF en présence du t-BuOK comme condition d'alkylation, accroit considérablement la sélectivité de l'isomère N-1 (schéma 8).

Schéma 8

La même équipe ³⁸ a examinée la réaction d'alkylation de la 5-nitroindazole. L'alkylation par différents agents alkylants (iodométhane, iodoéthane et bromure de propargyle) dans le térahydrofurane (THF) en présence de carbonate de césium à une température de 0°C a conduit à un mélange de deux isomères (Schéma 9). Les deux produits N-alkylés sont obtenus avec des proportions variables, une sélectivité meilleure a été observée en faveur de l'isomère N-1 alkylé. Le rendement global des deux isomères est excellent.

Schéma 9

³⁷ Abbassi, N.; Rakib, E. M.; Hannioui, A.; Alaoui, M.; Benchidmi, M.; Essassi, E. M.;Geffken, D. Heterocycles **2011**, 83, 891–900

³⁸ H. Chicha, L. Bouissane, L. El Ammari, M. Saadi, M. Baltas, E. M. Rakib. *Synthetic Communications*, **2015**,45,17, 2005-2013.

Ces données de la littérature montrent que les derivés de l'indazole sont doués des propriétès biologiques diverses et l'alkylation de l'indazole en N-1 et N-2 depend de plusieurs facteurs: l'agent alkylant, la base, le solvant et la tempèrature. Sur la base de ces travaux de recherche, nous nous sommes interessés à la synthèse de nouvelles molécules hybrides contenant l'indazole et le pyrrole via la rèduction catalytique des N-alkyl-nitroindazoles suivi du couplage de l'amine correspondante avec le 2,5-hexanedione.

III- Synthèse des N-alkyl-nitroindazoles et leurs dérivés 3chloroindazoles

III-1 Synthèse des 4-nitro-, 5-nitro-, 6-nitro- et 7-nitroindazoles

La première étape de cette séquence réside dans la préparation des indazoles de départ. Les produits **1**, **2**, **3** et **4** sont préparés par traitement de la 2-méthyl-3,4,5,6-nitroaniline L27 avec du nitrite de sodium dans l'acide acétique à température ambiante. Cette réaction est basée sur la diazotation du groupe amino et le couplage subséquent avec le substituant méthyle en position ortho. Tous les produits sont obtenus avec de bons rendements (schéma 10).

Schéma 10

III-2 Synthèse des 3-chloro-nitroindazoles

L'étape suivante de cette séquence réactionnelle consiste en une réaction de chloration. Cette réaction est conduite dans les conditions déjà décrites par notre équipe³⁹ et celle de Vichard⁴⁰ en utilisant 1,5 équivalent de N-chlorosuccinimide (NCS) à reflux de l'acétonitrile. Les composés chlorés sont générés avec de bons rendements.

³⁹ S. El Kazzouli, L. Bouissane, M. Khouili, G. Guillaumet, *Tetrahedron Lett.* **2005**, *46*, 6163.

⁴⁰ B. Cottyn, F. Acher, B. Ramassamy, L. Alvey, M. Lepoivre, Y. Frapart, D. Stuehr, D. Mansuy, J-L. Boucher, D. Vichard, *Bioorg. Med. Chem.* **2008**, *16*, 5962.

III-3. Synthèse des N-alkyl-nitroindazoles

Dans le paragraphe de la littérature^{41,42}, nous avons signalé que l'alkylation de l'indazole conduit génèralement à deux produits N-1-alkylé et N-2-alkylé. La réaction d'alkylation dépend tant des conditions expérimentales que de la nature de l'halogénure d'alkyle utilisé.

Dans le cadre de nos travaux, nous nous sommes intéressés à la synthèse des N-alkylnitroindazoles utilisés comme prècurseurs de départ pour la réaction de reduction catalytique et le couplage avec 2,5-hexanedione pour accéder aux nouveaux dérivés de type N-alkylpyrrolyl-indazoles.

Pour ce faire, nous avons utilisé des conditions couramment employées au sein de notre laboratoire^{37,43,44}, à savoir 1.5 équivalents de K_2CO_3 , 2 équivalents d'halogénures d'alkyles dans l'acétone à reflux pendant 2 heures (schéma 11). Ces conditions opératoires ont conduit aux deux produits régioisomères **N1** et **N2** avec des rendements globaux meilleurs et une meilleure sélectivité est observée aussi en faveur de l'isomère N-1 alkylé.

⁴¹ K. V. Auwers, F. V. Meyenburg. *Chem. Ber.* **1891**, *24*, 2370.

⁴² a) A. Stafford, M. Cheung, A. Boloor. J. Org Chem, 2003, 68, 4093. b) S. Gamage, J. A. Spicer, G. W. Rewcastle, J. Milton, S. Sohal, W. Dangerfield, P. Mistry, N. Vicker, P. A. Charlton, W. A. Denny. J. Med. Chem. 2002, 45, 740. c) A. Vasudevan, A. J. Souers, J. C. Freeman, M. K. Verzal, J. Gao, M. M. Mulhern, D. Wodka, J. K. Lynch, K. M. Engstrom, S. H. Wagaw, S. Brodjian, B. Dayton, D. H. Falls, E. Bush, M. Brune, R. D. Shapiro, K. C. Marsh, L. E. Hernandez, C. A. Collins, P. R. Kym, *Bioorg. Med. Chem. Lett.* 2005, *15*, 5293. d) H. C. Zhang, C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C. E. Smith, Q. Li, W. M. Cheung, B. R. Conway, S. Emanuel, K. T. Demarest, P. Andrade-Gordon, B. P. Damiano, B. E. Maryanoff, J. Med. Chem. 2005, *48*, 1725. e) D. J. Slade, N. F. Pelz, W. Bodnar, J. W. Lampe, P. S. Watson, J. Org. Chem. 2009, *74*, 6331. f) G. Luo, L. Chen, G. Dubowchik, J. Org. Chem., 2006, *71*, 5392.

 ⁴³ L. Bouissane, S. El Kazzouli, E.M.; Rakib, M. Khouili, G. Guillaumet, *Tetrahedron.* 2005, *61*, 8218.
⁴⁴ L. Bouissane, S. El Kazzouli, S. Léonce, B. Pfeiffer, E.M. Rakib, M. Khouili, G. Guillaumet, *Bioorg. Med. Chem.* 2006, *14*, 1078.

Schéma 11

Entrée	X	R	Rdt de 5a-h	Rdt de 6a-h
3a	Н	CH ₃	5a (55%)	6a (44%)
3a	Н	CH ₂ CH ₃	5b (53%)	6b (46%)
3a	Н	Allyl	5c (65%)	6c (34%)
3a	Н	4-Me-benzyl	5d (45%)	6d (31%)
3b	Cl	CH ₃	5e (56%)	6e (42%)
3b	Cl	CH ₂ CH ₃	5f (64%)	6f (32%)
3b	Cl	Allyl	5g (62%)	6g (36%)
3b	Cl	4-Me-benzyl	5h (65%)	6h (31%)

Tableau 1: Rendements des dérivés alkylés de 6-nitroindazole 5a-h et 6a-h.

Comme le montre le tableau 1, l'alkylation des 6-nitroindazoles **3a,b** avec des halogénures d'alkyle donne naissance à un mélange de deux produits d'alkylation N1 et N2 avec une sélectivité meilleure en faveur de l'isomère N1. Dans nos travaux antérieurs³⁷ et dans la littérature⁴⁵⁻⁴⁶ il a été démontré que la nature de l'agent d'alkylation et les conditions expérimentales utilisées (solvant, base et température) affectent de manière significative la régiosélectivité d'alkylation de N-1 ou N-2 du cycle indazole.

Pour mener à bien cette étude, nous avons envisagé aussi l'alkylation des 4,5,7nitroindazoles et le 5-nitrobenzimidazolthiol avec plusieurs agents alkylants dans les mêmes conditions opératoires citées précédemment. Les N-alkyl-4,5,7-nitroindazoles sont obtenus avec de bons rendements (Schéma 12). Une meilleure sélectivité est observée aussi en faveur de l'isomère N-1 alkylé.

⁴⁵ Cheung, M.; Boloor, A.; Stafford, J. A. J. Org. Chem. **2003**, 68, 4093–4095.

⁴⁶ Hunt, K. W.; Moreno, D. A.; Suiter, N.; Clark, C. T.; Kim, G. Org. Lett. **2009**, 11,5054–5057.

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Schéma 12

Tableau 2: Rendements des dérivés alkylés des 4,5,7-nitroindazoles.

	R	X	Rdt N1	Rdt N2	Rdt N1+N2
5NI	Allyl	Н	46%	33%	79%
	CH ₃ -	Н	55%	30%	85%
	CH ₃ CH ₂ -	Н	53%	40%	93%
7NI	Allyl	Н	42%	31%	73%
	CH ₃ -	Н	63%	29%	92%
	CH ₃ CH ₂ -	Н	37%	26%	63%
4NI	CH ₃ -	Н	63%	32%	95%
	CH ₃ CH ₂ -	Н	40%	28%	68%

Les meilleures conditions choisies sont : K_2CO_3 (1.5 mol), halogénures d'alkyles (2 mol) dans l'acétone à reflux pendant une à deux heures.

Pour élargir notre étude, nous avons aussi envisagé l'alkylation du 5-nitro-1Hbenzimidazole-2-thiol (schéma 13). La réaction d'alkylation avec l'iodure d'éthyle a conduit à un mélange de deux produits : le S-éthyl 5-nitrobenzimidazolthiol **13b** avec un rendemnet de 30% et le bis alkylé **14b** avec un rendement de 54%. Par contre l'alkylation de 5-nitro-1H- benzimidazole-2-thiol avec le '4-methylbenzylchloride' conduit exclusivement à l'isomère bis alkylé **14c** avec un rendement de 77%.

Schéma 13

Les structures des dérivés N-alkyl-4,5,6,7-nitroindazoles, 3-chloro-N-alkyl-4,5,6,7nitroindazoles et les dérivés N-alkyl-5-nitro-1H-benzimidazole-2-thiols sont confirmées par des données spectrales RMN ¹H, ¹³C. Nous rapportons dans les figures ci-dessous les spectres RMN¹H, RMN¹³C et DEPT des composés **5a** et **6f**.

Figure 8: Spectre RMN¹H (300MHz, DMSO-d6) du composé 5a

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Figure 9: Spectre RMN¹³C (75MHz, DMSO-d6) du composé 5a

Figure 10: Spectre RMN¹³C (DEPT) du composé 5a

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Figure11: Spectre RMN¹H (300MHz, DMSO-d6) du composé 6f

Figure12: Spectre RMN¹³C (75MHz, DMSO-d₆) du composé 6f

Figure 13. Spectre RMN¹³C (DEPT) du composé 6f

Figure 14: Spectre RMN¹H (300MHz, DMSO-d₆) du composé 13d

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Figure15: Spectre RMN¹³C (75MHz, DMSO-d₆) du composé 13d

Figure 16. Spectre RMN¹³C (DEPT) du composé 13d

IV- Etude de la réduction des N-alkyles-nitroindazoles avec In et/ou SnCl₂

IV-1 Etat de la littérature sur les réactions de réduction des dérivés nitrés

La réduction des dérivés nitrés est l'une des réactions les plus étudiées en chimie organique, elle s'effectue généralement au moyen d'une hydrogénation catalytique ou réduction chimique avec des agents réducteurs dont ceux contenant des métaux comme **Zn**, **Sn** ou **Pd**, qui sont les plus fréquemment utilisés.

La conversion d'un dérivé nitro en amine passe généralement par différentes étapes comme représenté dans le schéma 14.

Schéma 14

Nombreuses voies de synthèse ont été développées afin d'obtenir un produit réduit à l'étape désirée, la plus importante étant la réduction totale en amines aromatiques en raison de l'importance de ces composés comme intermédiaires dans le développement des produits à visée thérapeutique.

La réduction des groupements nitro des cycles aromatiques en amines est d'une importance capitale en chimie organique. En effet, le groupe nitro a un effet désactivant sur le noyau aromatique et réduit sa capacité à effectuer des substitutions électrophiles. La raison de cette désactivation est due à l'attraction des électrons du noyau aromatique vers le groupe nitro, ce qui cause une déficience électronique en position para et ortho; la position méta est dès lors favorisée. En revanche, les amines offrent une réactivité plus avancée permettant une poly-fonctionnalisation des molécules.

Dans le cas de l'hydrogénation catalytique, plusieurs méthodes ont été développées pour accéder à l'amine aromatique correspondante. La plus ancienne méthode est la réduction catalytique des groupements nitro par l'hydrogène en présence de Pd, Ni ou Pt (schéma 15)⁴⁷.

⁴⁷ (a) March, J. Advanced Organic Chemistry. John Wiley & Sons: New York, **1985**. (b) Rylander, P. N. Hydrogenation Methods. A. P.: New York, **1985**. (c) Siegel, S. In Comprehensive Organic Synthesis ; Trost, B. M., Flemming, I. Eds.; Pergamon Press: Oxford, **1991**, 8, pp 418-442. (d) Hudlicky, M. Reductions in Organic Chemistry. Ellis Horwood Ltd: Chichester, **1984**, pp 1-13. (f) Smith, G. V., Nothesiz, F. Heterogeneous Catalysis in Organic Chemistry. A. P.: New York, **1999**, pp 71-79.

Schéma 15

Cette méthode de l'hydrogénation catalytique a été adoptée par notre groupe de recherche⁴⁸ sur la réduction des 7-nitroindazoles en présence de palladium sur charbon (Pd/C) comme catalyseur de la réaction (schéma 16). Les 7-aminoindazoles sont obtenus avec des excellents rendements 95%.

Schéma 16

D'autres méthodes de réduction catalytique par l'hydrogène qui tiennent compte de la nature du catalyseur ainsi que la sélectivité de la réduction ont été signalé dans la littérature.

Ainsi, Evangelisti et coll ⁴⁹, ont étudié l'hydrogénation catalytique du parachloronitrobenzène en présence de différents catalyseurs (schéma 17). Ils ont montré qu'en présence de Pt/γ -Fe₂O₃, seul le produit **L35** est isolé avec un excellent rendement (100%), par contre la réduction du composé **L34** en présence de Pt/γ -Al₂O₃ conduit à un mélange de deux produits: l'amine correspondante **L35** avec un rendement de 96% et l'amine aromatique déhalogénée **L36** avec un rendement 4%.

⁴⁸ E.M Rakib ; M. Benchidmi ; E.M Essassi ; A. El Bouadili ; M. Khouili ; M. Visseaux et M. Dolors. Heterocycles; 2000, 53 (12); 2617. E.M Rakib, M. Benchidmi, E.M Essassi, Y.K Rodi, J. Bellan, L. Lopez. Bull. Soc. Chim. Belg., **1996**, 105 (6), 345-347.

⁴⁹ Evangelisti, C., Aronica, L. A., Botavina, M., Martra, G., Battocchio, C., Polzonetti, G. J. Mol. Catal. A: Chem. 2013, 366, 288–293

Schéma 17

Cette régio-sélectivité de la réduction catalytique par l'hydrogène a été observée aussi par l'équipe de Kasparian⁵⁰ lors de la réduction du 1-chloro-6-méthyl-5-nitroisoquinoline **L37** (schéma 18). En présence de platine dopé par le soufre Pt(S)/C, seul l'amine correspondante **L38** est isolé, par contre en présence de Pd/C deux produits ont été identifiés: le 5-amino-1-chloro-6-méthyl isoquionoline et le produit réduit déhalogéné 5-amino-6-méthyl isoquinoline.

Schéma 18

Le 2-cyano-2-(2-nitrophényl) acétate **L40** a été utilisé comme intermédiaire clé dans la synthèse des dérivés de l'indole (schéma 19). L'hydrogénation catalytique du composé **L40** dans l'acétate d'éthyle en présence de palladium sur charbon conduit à l'amine correspondante qui réagit via une cyclisation intramoléculaire pour donner l'indole-3-carboxylate **L41**⁵¹.

Schéma 19

Pour la réduction catalytique chimique, plusieurs stratégies de synthèse utilisant différents métaux comme catalyseurs de la réduction des groupements nitro ont été largement

⁵⁰ Kasparian, A. J., Savarin, C., Allgeier, A. M., Walker, S. D. J. Org. Chem. **2011**, 76, 9841–9844.

⁵¹ Belley, M., Sauer, E., Beaudoin, D., Duspara, P., Trimble, L. A., Dube, P. Tetrahedron Lett. **2006**, 47, 159162.

détaillées dans la littérature. Le chlorure stanneux $SnCl_2$ est un des réactifs utilisé pour la réduction chimique du groupement nitro en amine correspondante. L'usage du chlorure stanneux permet la réduction et présente l'avantage d'être un catalyseur intermédiaire pour plusieurs transformations observées dans les systèmes hétérocycliques.

Ainsi, Kurth et coll⁵² ont synthétisé une série de 2,3-dihydro-1H-quinazoline-4-ones L43 à partir de 2-nitro-N-arylbenzamides L42 par action du chlorure d'étain en solution de 0,02M de HCl dans l'alcool sous atmosphère d'oxygène. Le chlorure d'étain en solution provoque une oxydation de l'alcool en aldéhyde qui intervient après la réduction du groupement nitro dans la réaction de synthèse des quinazolines (schéma 20).

Schéma 20

Les produits cyclisés issus de transformation et/ou de réarrangement suite à la réduction du groupement nitro par $SnCl_2$ sont obtenus avec d'excellents rendements. Ainsi, le 4-méthyl-2-(2-nitrobenzyl)-2H-1,4-benzothiazin-3(4H)-one L44 traité avec $SnCl_2$ dans l'éthanol n'a pas donné lieu au dérivé d'aniline attendu, mais au 6-méthyl-11,12-dihydro-6H-quino[3,2-b] [1,4]benzothiazine L45 avec un excellent rendement, issu de la réduction du produit de départ suivi d'une cyclisation intramoléculaire (schéma 21)⁵³.

Schéma 21

Les mêmes conditions de réduction⁴⁰ appliquées au 2-(2-nitrophényl)-thiochroman-4one **L46** ont conduit à la formation d'éthyl-5,11-dihydrodibenzo[b,e][1,4]thiazepin-11-yl-

⁵² Yoo, C. L., Fettinger, J. C., Kurth, M. J. J. Org. Chem. 2005, 70, 6941-6943

⁵³ Bates, D. K., Li, K. J. Org. Chem. 2002, 67, 8662-8665

acétate L47 avec un excellent rendement issu d'un réarrangement intramoléculaire suite à la réduction du groupement nitro du produit de départ (schéma 22).

Fletcher et $coll^{54}$ ont synthétisé les 2,1-benzisoxazoles **L49** via la réduction catalytique chimique de 2-nitroacylbenzènes **L48** par SnCl₂ dans un mélange équimolaire méthanol/acétate d'éthyle (schéma 23). La réduction du produit de départ est suivie par une hétérocyclisation intramoléculaire pour aboutir au composé **L49**.

Schéma 23

De leur côté, Jiang et coll⁵⁵ ont étudié la réduction de 2-(3-chlorophényl)-4nitroquinoline **L50** par l'étain en présence d'un mélange de l'acide chlorhydrique et de l'éthanol à une température de 70°C. Ils ont obtenu le 2-(3-chlorophényl)quinoline **L52** non substitué en position 4 avec un bon rendement (schéma 24). Le 2-(3-chlorophényl)-4aminoquinoline **L51** issu de la réduction du composé **L50** avec Sn en solution dans l'acide chlorhydrique et éthanol n'a pas été isolé.

⁵⁴ Chauhan, J., Fletcher, S. *Tetrahedron Lett.* **2012**, 53, 4951–4954

⁵⁵ Zhou, Y., Li, J., Liu, H., Zhao, L., Jiang, H. Tetrahedron Lett. 2006, 47, 8511–8514

Schéma 24

Une autre méthode de synthèse, développée par Bijoy et $coll^{56}$ consiste à faire cycliser les 1-(2-nitrophényl)-3,4-dihydroisoquinolines **L53** vers les diméthoxy-5,6-dihydroindazolo [3,2-a]isoquinolines **L54** en présence SnCl₂ et Et₃N dans le mélange PhSH/CH₃CN (schéma 25). L'originalité de cette procédure réside dans la formation d'une nouvelle liaison N-N via une cyclisation intramoléculaire.

Schéma 25

Courant 2013, Rakib et coll⁵⁷ ont développé une nouvelle voie d'accès aux alkyl-1,3dihydro- 3-oxo-2,1-benzisoxazole-4-carboxylates **L56**, et du 3-aminophtalique **L57** et ce, *via* une simple réduction du 3-nitrophtalique anhydride **L55** par le chlorure d'étain anhydre dans différents alcools (Schéma 26).

Schéma 26

⁵⁶ Devesh, S., Rishi, K., Prakas, R. M., Bijoy, K. Org. Lett. 2006. 8, 8, 1525

⁵⁷ Chicha, H., Abbassi, N., Rakib, E. M., Khouili, M., El Ammari, L., Spinelli, D. *Tetrahedron Lett.* **2013**, 54, 1569-1571.

Alors que 2006, Kim⁵⁸ a développé la synthèse des benzoisoxazoles et des 2,3-diarylindazoles par simple réduction des 2-nitroaryl-aldéhydes, -cétones et -imines avec In couplé à l'iode. Cette réaction de réduction suivie de l'hétérocyclisation a conduit aux produits escomptés avec de bons rendements (schéma 27)

Schéma 27

En série des nitroindazoles, dans des travaux antérieurs notre équipe s'est intéressée à la réduction des dérivés des nitroindazoles avec SnCl₂ anhydre dans différents alcools suivie du couplage de l'amine correspondante par le chlorure d'arylsulfonyle en présence de la pyridine^{59,60} (schémas 28-32). Un nouveau type de transformation a été observé lors de la réduction des 4-,6 et 7-nitroindazoles par SnCl₂ dans différents alcools. Deux produits ont été identifiés: les 4-,6 et 7-aminoindazoles attendus et les 4- et 7-alkoxyaminoindazoles observés pour la première fois dans cette série de composé. Dans cette réaction de réduction l'alcool réagit en tant que nucléophile suite à la réduction des dérivés de nitroindazole par SnCl₂. Les aminoindazoles obtenus sont généralement instables, ils sont couplés immédiatement avec les chlorures d'arylsulfonyles pour accéder aux sulfonamides indazoliques qui ont montré des activités antiprolifératives très importantes.

Plusieurs facteurs ont été étudiés pour orienter la réaction de réduction des nitroindazoles vers la synthèse des aminoindazoles fonctionnalisés par un groupement alkoxy, nous citons en particulier l'effet de l'atome d'halogène en position 3 de l'indazole, l'effet de

⁵⁸ Rongbi, H., Kee, I. S., Gil, H. A., Young, M. Jun., Byung, M. L., Younbong, P., Kim, B., H. *Tetrahedron Lett.* **2006**, 47, 7295.

⁵⁹ Bouissane, L., El Kazzouli, S., Leger, J-M., Jarry, C., Rakib, E.M., Khouili, M., Guillaumet, G. Tetrahedron. **2005**, 61, 8218

⁶⁰ Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C., Viale, M.*Eur. J. Med. Chem.* **2012**, 57, 240

la protection des azotes pyrazoliques N-1 et N-2 de l'indazole et l'effet de la position du groupe nitro sur l'indazole.

a) Réduction des N-alkyl-7-nitroindazoles par SnCl₂/ROH

Dans cette réaction de réduction du 7-nitroindazole par $SnCl_2$ dans ROH, notre groupe de recherche a remarqué que la présence d'un atome d'halogène en position 3 de l'indazole et la protection de l'azote pyrazolique N-1 favorise uniquement l'obtention des dérivés 4-alkoxyindazoles avec de bons rendements⁶⁰.

Schéma 28

b) Réduction des N-alkyl-7-nitroindazoles par SnCl₂/RSH

Le traitement de 1-alkyl-7-nitroindazoles L61a,b par $SnCl_2$ dans le thioalcane RSH, suivi du couplage de l'amine correspondante par le chlorure de 4-methoxybenzenesulfonyle, nous a permis d'isoler un mélange de deux produits⁶¹: le sulfonamide indazolique substitué en position 4 par un groupe alkylsulfanyle L63a-d et le sulfonamide attendu non substitué L64a,b (schéma 29). Les rendements des deux produits L63a-d et L64a,b sont proportionnels, on observe une sélectivité meilleur en faveur des dérivés 4alkylsulfanylindazoles L63a-d

Schéma 29

⁶¹ A. Kouakou, H. Chicha, E. M. Rakib, A. Gamouh, A. Hannioui, M. Chigr, M. Viale. Journal of Sulfur Chemistry, **2015**, Vol. 36 (1), 86–95

c) Réduction des N-alkyl-4-nitroindazoles par SnCl₂/ROH

Dans la série des 4-nitroindazoles, l'équipe de Rakib et coll 61,62 ont constaté que la protection de l'azote pyrazolique N-2 de l'indazole joue un rôle fondamental pour orienter la réaction de réduction vers la synthèse des dérivés 7-éthoxyindazoles **L65**. Ainsi, la réaction de réduction des 2-alkyl-4-nitroindazoles par SnCl₂ en présence de l'éthanol suivie du couplage de l'amine correspondant par le chlorure de tosyle conduit à un mélange de deux produits avec une selectivité meilleur en faveur des composés **L65**. Dans le cas ou R=CH₃, seul le 7-éthoxyindazole **L65** est isolé avec un rendement de 80%.

Schéma 30

d) Réduction des N-alkyl-6-nitroindazoles par SnCl₂/ROH

Un résultat similaire est observé dans le cas des 6-nitroindazoles. La réduction des 2alkyl-6-nitroindazoles par $SnCl_2$ dans différent alcools suivie du couplage de l'amine correspondant par le chlorure de 4-méthoxyphénylsulfonyle conduit à un mélange de deux produits^{63,64} avec une légère sélectivité de point de vue rendement en faveur des composés 7alkoxyindazoles **L68**.

⁶²Abbassi, N., Rakib, E. M., Bouissane, L., Hannioui, A., Khouili, M., El Malki, A., Benchidmi, M., Essassi, E. M. *Synth. Commun.***2011**, 41, 7, 999.

⁶³ Abbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M., Geffken, D. *Heterocycles*. **2011**, 83, 4, 891

⁶⁴ Abbassi, N.; Rakib, E. M.; Chicha, H.; Bouissane, L.; Hannioui, A.; Aiello, C.; Gangemi, R.; Castagnola, P.; Rosano, C.; Viale, M. Arch. Pharm. Chem. Life Sci. **2014**, 347, 423–431

Schéma 31

e) Réduction des N-alkyl-5-nitroindazoles par SnCl₂/ROH

Récemment⁶⁵, dans une étude de la réduction des dérivés de 5-nitroindazole, notre équipe a remarqué que la réduction de 5-nitroindazole protégé en position 2 par un groupe alkyle favorise en plus de l'obtention des 4-éthoxyindazoles **L70** et les 4-chloroindazoles **L69** qui sont isolés pour la première fois dans cette série des 5-nitroindazoles avec des rendements moyens.

Schéma 32

Pour la synthèse des molécules contenant le noyau pyrrolique préparé à partir de la réduction catalytique des nitroaromatiques, peu d'exemples ont été signalé dans la littérature, nous citons l'exemple de la réaction de réduction des nitrobenzènes en présence d'indium suivie de la réaction de condensation de type Paal-Knorr selon une procédure « One Pot » qui a été publié en 2013 par Kim et coll⁶⁶ (shéma 33)

Schéma 33

⁶⁵ Hakima, C., Latifa, B., Lahcen, E. A., Mohamed, S., Michel, B., Rakib, E. M. Synth. Commun.**2015**, 45: 2005–2013

⁶⁶ H. Lee, B. H. Kim. *Tetrahedron*, **2013**, 69, 6698-6708

Une synthèse simple de pyrroles N-substitués utilisant la méthode Paal-Knorr a été publié en 2005 par Banik et coll⁶⁷, mettant en oeuvre la condensation de différents amines hétéroaromatiques avec le 2,5-héxanedione.

Ces données de la littérature montrent que les réactions de réduction des groupements nitro constituent une stratégie de synthèse importante pour la préparation de nouveaux systèmes hétérocycliques difficiles à obtenir par d'autres voies de synthèse. Plusieurs transformations ont été observées lors de la réduction des nitro hétéroaryles par le chlorure d'étain. Suite aux travaux réalisés par notre groupe de recherche dans l'étude de la réaction de réduction des nitroindazoles, nous nous sommes intéressés dans le présent travail à élargir notre étude de la réduction des N-alkyl-nitroindazoles par le chlorure d'étain et/ou In en présence de 2,5-hexanedione comme réactif de couplage pour accéder à la synthèse de nouveaux systèmes hétérocycliques de type : N-pyrrolyl-N-alkyl-indazoles.

IV-2. Réduction des N-alkyl-6-nitroindazoles par le chlorure d'étain et/ou In en présence de 2,5-hexanedione

Dans le sens de la continuité des travaux de recherche initié par notre équipe sur les réactions de réduction catalytique, de notre côté nous avons exposé une nouvelle voie d'accès aux composés 6-pyrrolyl-N-alkyl-indazoles et ceux via une procédure « One Pot ».

Pour ce faire nous avons exploré la réactivité des N-alkyl-6-nitroindazoles et 3-chloro-N-alkyl-6-nitroindazoles, avec le 2,5-hexadione en présence d'indium comme catalyseur à reflux de THF (80 °C) en présence d'acide acétique (schéma35). Dans tous les cas, les Nalkyl-6-(2,5-diméthyl-1H-pyrrol)-indazoles **15a-h et 16a-h**, ont été obtenues avec de bons rendements 64 à 88 % (tableau 3).

⁶⁷ Bimal K. Banik, I.Banik, Mercy Renteriaa, and Swapan K. Dasguptab., Tetrahedron Letters 46, **2005**, 2643–2645.

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Scł	néma	35
-	IVIIIU	$\omega \omega$

Tableau 3: Rendement des N-alkyl-6-(2,5-diméthyl-1H-pyrrol)-indazoles par In

Entrée	X	R	Temps (h)	Rdt de 15a-h	Rdt de 16a-h
5a/6a	Н	CH ₃	3	15a (76%)	16a (70%)
5b/6b	Н	CH ₂ CH ₃	4	15b (64%)	16b (68%)
5c/6c	Н	Allyl	4	15c (76%)	16c (73%)
5d/6d	Н	4-Me-benzyl	5	15d (76%)	16d (74%)
5e/6e	Cl	CH ₃	4	15e (75%)	16e (70%)
5f/5f	Cl	CH ₂ CH ₃	3	15f (75%)	16f (67%)
5g/6g	Cl	Allyl	4	15g (88%)	16g (64%)
5h/6h	Cl	4-Me-benzyl	4	15h (83%)	16h (79%)

IV-2-1. Optimisation de la réaction de condensation réductrice des N-alkyl-6 nitroindazoles

Dans le recherche de l'optimisation des conditions expérimentales, en vue d'améliorer les rendements, nous avons étudié la réduction hétérocyclique des N-alkyl-6-nitroindazoles et 3-chloro-N-alkyl-6-nitroindazoles avec le 2,5-hexadione en présence de chlorure d'étain anhydre en présence d'acide acétique dans le THF à 80 °C (Schéma 36). Les composés **15a-h**, et **16a-h** sont obtenus avec de bons à excellents rendements allant de 74% à 95% (tableau 4).

Schéma 36

Tableau 4: Rendement des N-alkyl-6-(2,5-diméthyl-1H-pyrrol)-indazoles par SnCl₂

Entrée	X	R	Temps(h)	Rdt de 15a-h	Rdt de 16a-h
5a/6a	Н	CH ₃	3	15a (84%)	16a (76%)
5b/6b	Н	CH ₂ CH ₃	4	15b (80%)	16b (75%)
5c/6c	Н	Allyl	4	15c (80%)	16c (78%)
5d/6d	Н	4-Me-benzyl	5	15d (84%)	16d (80%)
5e/6e	Cl	CH ₃	4	15e (84%)	16e (80%)
5f/5f	Cl	CH ₂ CH ₃	3	15f (85%)	16f (74%)
5g/6g	Cl	Allyl	4	15g (95%)	16g (76%)
5h/6h	Cl	4-Me-benzyl	4	15h (90%)	16h (88%)

Les tableaux 5 et 6 regroupent les résultats des rendements des produits finaux issus de la réduction de N-1 et N-2 alkylé de l'indazole et son homologue chloré par l'indium ou le chlorure d'étain. La conversion s'avère totale et les produits finaux ont été obtenus avec de bons rendements oscillant entre (64%-88%) en utilisant l'indium comme catalyseur et entre (74% - 90 %) en utilisant SnCl₂, et ce, après 3 à 5 heures de temps de la réaction de réducttion catalytique.

Entrée	Substrat	Temps(h)	Produits	Rdt	Rdt
				In (%)	$SnCl_2(\%)$
5a	O ₂ N CH ₃	3	H ₃ C N CH ₃ CH ₃	76	84
ба	O ₂ N N-CH ₃	3	H ₃ C N CH ₃ N-CH ₃	70	76
5b	O ₂ N N	4	H ₃ C N CH ₃	64	80
бb	O ₂ N N	4	H ₃ C N CH ₃	68	75
5c	O ₂ N N	4	H ₃ C N CH ₃	76	80
бс	O ₂ N N	4	H ₃ C N CH ₃	73	78
5d	O ₂ N N H ₃ C	5	H ₃ C N CH ₃ CH ₃ CH ₃	76	84
6d	O ₂ N N	5	H ₃ C N CH ₃	74	80

Tableau 5: Rendement des produits finaux issus de la réduction des N-1 et N-2-alkyl-6nitroindazoles avec In/et ou SnCl₂ en présence de 2,5-hexadione.

Entrée	Substrat	Temps(h)	Produits	Rdt	Rdt
				In (%)	$\operatorname{SnCl}_2(\%)$
5e	O ₂ N CI N CH ₃	4	H ₃ C N CH ₃ CH ₃	70	84
бе	O ₂ N N-CH ₃	4	H ₃ C N CH ₃ CH ₃	75	80
5f		3	H ₃ C N CH ₃ C	70	85
6f	O ₂ N N	3	H ₃ C N CH ₃	67	74
5g		4	H ₃ C N CH ₃	88	95
бg		4	H ₃ C N CH ₃	64	76
5h		4	CI H ₃ C N CH ₃ CH ₃ CH ₃	83	90
бh	CI N O ₂ N N	4	CI H ₃ C N CH ₃ CH ₃	79	88

Tableau 6: Rendement des produits finaux issus de la réduction des N-1 et N-2 alkyl-3chloro-6-nitroindazoles avec In/et ou SnCl₂ en présence de 2,5-hexadione.

En regardant les deux tableaux, on remarque que l'influence de la protection de l'azote en position N-1 ou N-2 de la molécule de départ N-alkyl-6-nitro-indazole a une influence sur les rendements des réactions, les dérivés de 1-alkyl-6-nitroindazoles (alkylés en position N-1) donnent des rendements plus élevés que les 2-alkyl-6-nitroindazoles (alkylés en position N-2). Nous avons également remarqué que les composés substitués en position C-3 par un atome de chlore et en N-1 par un allyle ou un groupe 4-méthylbenzyl ont donné les 1-alkyl-6-pyrrolylindazoles avec excellents rendements (95% et 90% respectivement). Le rendement de l'obtention des N-alkyl-6-pyrrolyl-indazoles est influencé aussi par le choix de l'agent reducteur utilisé, nous avons remarqué que la réduction avec SnCl₂ conduit aux produits finaux avec des rendemments meilleurs par rapport à l'utilisation de l'indium comme agent de réduction catalytique des N-alkyl-6-nitroindazoles.

Pour expliquer la formation des N-alkyl-6-pyrrolylindazoles, le mecanisme de la reaction de la reaction et le suivant : Les N-alkyl-6-nitroindazoles sont transformés en amine correspondant par les agents réducteurs en premier temps, puis l'amine formée réagit avec le 2,5-héxanedione en présence de l'acide acétique selon la fameuse condensation de Paal-Knorr⁶⁸ pour conduire après cyclisation et aromatisation du cycle pyrrolique aux produits escomptés (Schéma 37).

Schéma 37

Les structures des composés 6-pyrrolyl-N-alkyl-indazoles⁶⁹ ont été établies sur la base des données spectrales RMN¹H, RMN¹³C.

⁶⁸ Ferreira, V. F.; de Souza, M. C. B. V.; Cunha, A. C.; Pereira, L. O. R.; Ferreira, M. L.G. Org. Prep. Proced. Int. **2001**, 33, 411–454.

⁶⁹ M. El Ghozlani, H.Chicha, N.Abbassi, M.Chigr, L.El Ammari, M.Saadi, D. Spinelli, E.M.Rakib, Tetrahedron Letters 57, **2016**,113–117

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

Figure 17:Spectre RMN¹H (300MHz, DMSO-d₆) du composé 15b

Figure 18: Spectre RMN¹³C (75 MHz, CDCl₃) du composé 15b

Figure 19: Spectre RMN13C (75 MHz, CDCl₃ DEPT) du composé15b

Figure 20: Spectre RMN¹H (300MHz, DMSO-d₆) du composé 16d

Figure 21: Spectre RMN¹³C (75 MHz, CDCl₃) du composé 16d

Figure 22: Spectre RMN¹³C (75 MHz, CDCl₃ DEPT) du composé 16d

Outre les analyses spectroscopiques certains composés ont été confirmés grâce aux analyses cristallographiques.

Les structures cristallines du composé **15a**, $C_{14}H_{15}N_3$, ont été identifie par des méthodes directes et raffinées avec des carrés minimaux de matrice complète sur F² en utilisant SHELXS-2013 et SHELXL-2013, respectivement. Les données cristallographiques et les résultats de raffinement de cette structure sont énumérés dans le tableau 7. Les deux anneaux fusionnés à cinq et six chaînons sont pratiquement coplanaires, la plus grande déviation par rapport au plan moyen étant de -0.019 (2) Å à l'atome C₁₁ et fait un angle dièdre de 64.83 (7) avec le plan moyen à travers le Cycle pyrrolidine (figure 23).

Figure 23: Diagramme Ortep de la structure du composé 15a

Tableau 7: Les données cristallographiques et les résultats de raffinement de la structure cristalline de C₁₄H₁₅N₃

$C_{14}H_{15}N_3$	F(000) = 480
Mr = 225.29	$Dx = 1.198 Mg m^{-3}$
Monoclinic, P21/c	Mo K_{α} radiation, $\lambda = 0.71073$ Å
a = 9.7237(6) Å	Cell parameters from 2759 reflections
b = 11.3183 (6) Å	$\theta = 2.5 - 27.1^{\circ}$
$c = 11.4048 (7) \text{ \AA}$	$\mu = 0.07 \ mm^{-1}$
$\beta = 95.595 \ (3)^{\circ}$	T = 296 K
$V = 1249.18(13) \text{ Å}_3$	Block, colourless
Z = 4	$0.37 \times 0.34 \times 0.26$ mm
Bruker X ₈ APEX II Diffractometer	2759 independent reflections
Radiation source: fine-focus sealed tube	2165 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int}=0.030$
ϕ and ω scans	$\theta max = 27.1^\circ, \ \theta min = 2.5^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2009)	
Tmin = 0.700, Tmax = 0.746	$k = -14 \rightarrow 14$
14029 measured reflections	$l = -11 \rightarrow 14$
Refinement on F_2	0 restraints
Least-squares matrix: full	Hydrogen site location: inferred from
	neighbouring sites

Chapitre I : Etude de la réduction catalytique des N-alkyl-nitroindazoles avec In et/ou SnCl₂: Synthèse de nouveaux dérivés de N-alkyl-6-pyrrolyl-indazole

$R[F2 > 2\sigma(F2)] = 0.043$	H-atom parameters constrained
wR(F2) = 0.131	$w = 1/[\sigma 2(Fo2) + (0.0612P)2 + 0.199P]$
	where $P = (Fo2 + 2Fc2)/3$
S = 1.11	$(\Delta \sigma) max < 0.001$
2759 reflections	$\Delta max = 0.22 \ e \ Å^{-3}$
163 parameters	Δ min = -0.20 e Å ⁻³

Les structures cristallines du composé **16e**, $C_{14}H_{14}ClN_3$, ont été identifie par des méthodes directes et raffinées avec des carrés minimaux de matrice complète sur F² en utilisant SHELXS-2013 et SHELXL-2013, respectivement. Les données cristallographiques et les résultats de raffinement de cette structure sont listés dans tableau 8. Les deux anneaux fusionnés à cinq et six chaînons sont presque coplanaires, la plus grande déviation par rapport au plan moyen étant de -0.020 (2) Å à l'atome N3. Le système des anneaux fusionnés est presque perpendiculaire au plan moyen à travers le cycle pyrrolidine comme indiqué par l'angle dièdre S35 de 78,36 (7) ° entre eux (figure 24).

Figure 24: Diagramme Ortep de la structure du composé 16e

$C_{14}H_{14}ClN_3$	Z = 4
Mr = 259.73	F(000) = 544
Monoclinic,	$P21/c Dx = 1.281 Mg m^{-3}$
a = 12.2174 (6) Å	Mo K_{α} radiation, $\lambda = 0.71073$ Å
b = 10.2839(6) Å	$\mu = 0.27 \ mm^{-1}$
c = 11.6842 (6) Å	T = 296 K
$\beta = 113.484 \ (2)^{\circ}$	Block, colourless
$V = 1346.44 \ (13)$	Å3 $0.37 \times 0.35 \times 0.28$ mm
Bruker X8 APEX II Diffractometer	3207 independent reflections
Radiation source: fine-focus sealed tube	2609 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int}=0.028$
ϕ and ω scans	$\theta max = 27.9^\circ, \ \theta min = 2.7^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 16$
(SADABS; Bruker, 2009)	
Tmin = 0.700, Tmax = 0.746	$k = -13 \rightarrow 13$
27248 measured reflections	$l = -15 \rightarrow 15$

Tableau 8: Les données cristallographiques et les résultats de raffinement de la
structure cristalline de C14H14ClN3

IV-3 Réduction des N-alkyl-5-nitroindazoles par le chlorure d'étain et/ou In en présence de 2,5-hexanedione.

Encouragé par les résultats précedents, nous avons décidé d'élargir la méthodologie de synthèse à d'autres nitroindazoles substitués. Nous faisons réagir les N-alkyl-5-nitroindazoles **8a-c** et **9a-c** avec le 2,5-hexanedione en utilisant les conditions optimales de la réaction décrit précédemment. Comme prévu, la réaction a permis d'isoler les N-alkyl-5-pyrrolylindazoles **17a-b** et **18c** correspondants avec de bons rendements (schéma 38).

Schéma 38

Les structures des composés **17a-b** et **18c** ont été établies sur la base des données spectrales RMN¹H, RMN¹³C (DEPT). Dans la figure ci-dessous, nous présentons un exemple des spectres RMN¹H, RMN¹³C (DEPT) du composé **17a**.

Figure 25: Spectre RMN¹H (300MHz, CDCl₃) étalé du composé 17a

Figure 26: Spectre RMN¹³C (75 MHz, CDCl₃) du composé 17a

Figure 27: Spectre RMN¹³C (75 MHz, CDCl₃ DEPT) du composé 17a

En plus des données spectroscopiques de la RMN, la structure du composé **17c** a été confirmée sans ambigüité par diffraction des rayons X (figure 28). Le diagramme ortep du composé **17c** montre bien le cycle pyrrolique en position 5 de l'indazole.

Figure 28: Diagramme Ortep du 1-Allyl-5-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-indazole 17c⁷⁰

⁷⁰ M.El Ghozlani, A.Rais, E.M Rakib, S.Mojahidi, L.El Ammari, M.Saadi *IUCrData*, 2016. 1, x161121

IV-4. Synthèse des 4- et (7)-pyrrolyl-N-alkyl-indazoles via la réduction des Nalkyl (4)-7-nitroindazoles en présence de 2,5-hexanedione.

Nous avons géneralisé nos résultats, en utilisant cette fois comme substrat de départ les N-alkyl-4(7)-nitroindazole **10a-c/11a-c** dans des conditions de réaction similaires à celles développées préalablement. Nous avons, pu réaliser la réaction de condensation réductrice sur les dérivés indazoliques avec succès, ce qui nous a permis d'accéder aux produits attendu (4)-7-pyrrolyl-N-alkyl-indazoles avec des rendements satisfaisants (tableau 10). Diverses modifications de certains paramètres de la réaction (par exemple, substrat de départ) se sont traduites par une diminution souvent spectaculaire du rendement.

Schéma 39

Les structures des composés **19** et **20-22** ont été identifiées grâce à la RMN¹H, RMN¹³C (DEPT). Nous rapportons dans les figures ci-dessous, les spectres RMN¹H, RMN¹³C (DEPT) de deux composés **19** et **22**.

Figure 29 : Spectre RMN¹H (300MHz, CDCl₃) du composé 19

Figure 30: Spectre RMN¹³C (75 MHz, CDCl₃) du composé 19

Figure 31: Spectre RMN¹³C (75 MHz, CDCl₃ DEPT) du composé 19

Figure 32 : Spectre RMN¹H (300MHz, CDCl₃) du composé 22

Figure 33: Spectre RMN¹³C (75 MHz, CDCl₃) du composé 22

Figure 34: Spectre RMN¹³C (75 MHz, CDCl₃ DEPT) du composé 22

V- Conclusion

Au cours de ce chapitre, nous avons mis au point une nouvelle stratégie de synthèse rapide et efficace permettant l'accès à diverses pyrrolyl-N-alkyl-indazoles (Schéma 40).

Notre stratégie fait appel à la réaction de condensation réductrice de type Paal-Knorr au départ de la N-alkyl-6-nitroindazole et 3-chloro-N-alkyl-6-nitroindazoles avec le 2,5hexanedione en présence d'acide acétique à reflux du tétrahydrofurane (80°C). Cette séquence réactionnelle catalysée par l'induim/et ou SnCl₂ est révélée très prometteuse car elle permit d'obtenir les N-alkyl-N-pyrrolyl-indazoles avec de bon à excellent rendements.

Nous avons montré que la réduction des N-alkyl-6-nitroindazoles avec SnCl₂ en présence de 2,5-héxanedione, conduit aux N-alkyl-N-pyrrolyl-indazoles avec excellent rendements par rapport à l'utilisation de l'indium. De même la protection de l'azote en position N-1 de l'indazole donne des rendements meilleurs par rapport à l'azote protégé en position N-2.

Notre étude a été élargie via la réduction catalytique des N-alkyl-5-nitroindazoles, Nalkyl-7-nitroindazoles et N-alkyl-4-nitroindazoles en utilisant les mêmes conditions de la réduction des N-alkyl-6-nitroindazoles. Les N-alkyl-N-pyrrolyl-indazoles sont isolés avec de bons rendements.

Schéma 40

Partie expérimentale

Caractéristiques physico-chimiques et spectrales des composés synthétisés

Les points de fusion non corrigés ont été pris en tube capillaire sur l'appareil Buchi-Tottoli. Toutes les masses molaires (MM) qui sont indiquées dans la partie expérimentale sont exprimées en grammes par mole.

Les spectres RMN ¹H et ¹³C ont été enregistrés dans CDCl₃, DMSO-d₆ et solution (sauf indication contraire) avec TMS comme référence interne en utilisant un appareil Bruker AC 300 (1H) ou 75 MHz instruments (¹³C). Les déplacements chimiques sont donnés en ppm par rapport au tétraméthylsilane (TMS) pris comme référence interne. La multiplicité des ressources de RMN ¹³C ont été affectés par la mise en valeur sans distorsion par transfert des expériences de polarisation (DEPT).

Les spectres de masse à faible résolution (MS) ont été enregistrés sur un spectromètre Sciex API 3000 Perkin-Elmer.

La chromatographie sur couche mince (CCM) a été réalisée sur des feuilles d'aluminium recouvertes de silice E.Merck 60 F254 (épaisseur 0,063-0.2 mm). La révélation des taches se fait sous une lampe UV. Les séparations chromatographiques flash sont effectuées sur gel de silice.

Les réactifs du commerce ont été utilisés sans aucune purification, sauf mention contraire.

Synthèse du 6-nitroindazole :

On dissout 10g de 5-nitro-2-méthylaniline dans 500 ml d'acide acétique. On ajoute la quantité stœchiométrique du nitrite de sodium dissoute dans un minimum d'eau. Après 24 heures d'agitation à température ambiante, la solution acide est concentrée au 1/3 de son volume initial. On ajoute 500 ml d'eau bouillante et on chauffe jusqu'à ce que le précipité soit dissout. Après refroidissement la solution est filtrée, le précipité formé est recristallisé dans l'éthanol.

6-Nitro-1H-indazole (3a)	
	Rdt : 88
4 3	PF : 180-182°C
$O_2 N \stackrel{\frown}{}_{6} \stackrel{\frown}{_{7}} \stackrel{\frown}{_{1}} \stackrel{N}{_{1}} ^2$ Formule brute : C ₇ H ₅ N ₃ O ₂	RMN ¹ H (CDCl ₃): 7.91 (dd, 1H; H-5, $J_{ortho} = 8.8Hz$, $J_{met} = 1.8Hz$), 8.00 (d, 1H, H-4, $J_{ortho} = 8.8Hz$), 8.32 (s, 1H, H-3), 8.44 (d, 1H, H-7, $J_{met} = 1.8Hz$), 14.12 (s, 1H, NH).
Masse moléculaire : 163.13 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): 107.5 (CH-4), 115.1 (CH- 5) 122.2 (CH 7) 126.4 (C) 124.5 (CH 2)
	3), 122.5 (CH-7), 120.4 (C), 134.5 (CH-3), 138.9 (C), 146.2 (C).

Réaction d'alkylation du 6-nitroindazole

0,5 g (1 mol) du 6-nitroindazole est dissout dans 20 ml d'acétone analytique. La solution est portée à reflux. On ajoute 2 g (2 mol) K_2CO_3 , puis on laisse le mélange sous agitation pendant 15 min. Après on ajoute la quantité équivalente des agents alkylants (Iodo-méthane, Iodoéthane, Bromure d'allyl et le 4-methlbenzylchloride) avec un léger excès (10%). Après 2 heures d'agitation à température ambiante, le solvant est évaporé sous la pression réduite. Le résidu est purifié par chromatographie sur gel de silice (éluant : acétate d'éthyle/hexane).

	• /
1-Méthyl-6-nitro-1H-indazole (5a)	
	Rdt : 55
N	PF : 126–128 °C
O_2N CH_3 Formule brute : $C_8H_7N_3O_2$. Masse moléculaire : 177.16 g.mol ⁻¹	RMN ¹ H (DMSO-d ₆): δ 4.16 (s, 3H, NCH ₃), 7.90 (dd, 1H, J = 9.0 Hz, J = 1.8 Hz), 7.97 (d, 1H, J = 9.0 Hz), 8.25 (s, 1H), 8.67 (d, 1H, J = 1.8 Hz); RMN ¹³ C (DMSO-d ₆): δ 36.5 (NCH ₃), 107.4 (CH), 115.2 (CH), 122.5 (CH), 127.0 (C), 133.6 (CH-3), 138.7 (C), 146.2 (C).
2-Méthyl-6-nitro-2H-indazole (6a)	
	Rdt : 44
O_2N Formule brute : $C_8H_7N_3O_2$. Masse moléculaire : 177.16 g.mol ⁻¹	PF: 164–166 °C. RMN ¹ H (DMSO-d ₆): δ 4.25 (s, 3H, CH ₃), 7.77 (dd, 1H, J = 9.0 Hz, J = 1.8 Hz), 7.95 (d, 1H, J = 9.0 Hz), 8.57 (d, 1H, J = 1.2 Hz) ,8.58 (s, 1H). RMN ¹³ C (DMSO-d ₆): δ 41.2 (NCH ₃), 114.9 (CH), 115.0 (CH), 122.9 (CH), 124.7 (C), 126.7 (CH), 146.1 (C), 146.3 (C).
1-Ethyl-6-nitro-1H-indazole (5b)	
	Rdt : 53
	PF : 98–100 °C
O_2N N N N N N N N N N	RMN ¹ H (CDCl ₃): δ 1.56 (t, 3H, CH ₃ ,J=7.2 Hz), 4.52 (q, 2H, NCH ₂ , J = 7.2 Hz), 7.85 (d, 1H, J = 9.0 Hz), 8.03 (dd, 1H, J = 9.0 Hz,J = 1.2 Hz), 8.14 (d, 1H, J = 1.2 Hz), 8.38 (s, 1H);
Masse moléculaire : 191.19 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 15.4 (CH ₃), 44.6(NCH ₂), 106.1 (CH), 115.6 (CH), 122.2 (CH), 127.5 (C), 133.4 (CH-3), 138.0 (C), 146.8 (C).

2-Ethyl-6-nitro-1H-indazole (6b)		
	Rdt : 46	
	PF : 84–86 °C.	
Formule brute : $C_9H_9N_3O_2$. Masse moléculaire : 191 19 g mol ⁻¹	RMN ¹ H (CDCl ₃): δ 1.64 (t, 3H, CH ₃ , J = 7.2Hz), 4.57 (q, 2H, NCH2, J = 7.2 Hz), 7.76 (d, 1H, J = 9.0 Hz), 7.87 (dd, 1H, J = 9.0 Hz, J = 1.5 Hz), 8.05 (1H, s), 8.67 (1H, d, J = 1.5 Hz);	
	RMN ¹³ C (CDCl ₃): δ 15.8 (CH ₃), 49.7 (NCH ₂), 115.8 (CH), 116.0 (CH), 121.6 (CH), 123.3 (CH), 124.5 (C), 146.9 (C), 147.3(C).	
1-Allyl-6-nitro-1H-indazole (5c)		
	Rdt : 65	
	PF: 56-58 °C.	
O ₂ N N	RMN ¹ H (CDCl ₃): δ 5,10-5,13 (m, 2H, NCH ₂), 5,16-5,30 (m, 2H, =CH ₂), 6,01-6,10 (m, 1H, =CH), 7,84 (d, 1H, <i>J</i> = 9,1 Hz), 8,01 (dd, 1H, <i>J</i> = 9,1 Hz, 1,8 Hz), 8,13 (s, 1H), 8,37 (d, 1H, <i>J</i> = 1,6 Hz).	
Formule brute : $C_{10}H_9N_3O_2$. Masse moléculaire : 203.2 g.mol ⁻¹	RMN ¹³ C(CDCl ₃): δ 52,3 (NCH ₂), 106,1 (CH), 115,5 (CH), 118,7 (=CH ₂), 121,9 (CH), 127,3 (C-3a), 131,9; 133,6 (CH-3, =CH), 138,2 (C), 146,5 (C).	
2 allel 6 nitro 111 indogolo (6a)		
	Rdt : 34	
	PF : 48-50 °C.	
$\mathbf{Formule \ brute}: C_{10}H_9N_3O_2.$ $\mathbf{Masse \ mol\acute{eculaire}: } 203.2 \ g.mol^{-1}$	RMN¹H (CDCl ₃): δ 5,10-5,12 (m, 2H, NCH ₂), 5,34-5,43 (m, 2H, =CH ₂), 6,13-6,18 (m, 1H, =CH), 7,75 (d, 1H, <i>J</i> = 9,3 Hz), 7,88 (dd, 1H, <i>J</i> = 9,3 Hz, 2,1 Hz), 8,08 (s, 1H), 8,68 (d, 1H, <i>J</i> = 1,8 Hz).	
-	RMN¹³C (CDCl ₃): δ 56,8 (NCH ₂), 115,5 (CH), 115,9 (CH), 120,7 (=CH ₂), 121,5 (CH), 123,7 (CH-3), 124,4 (C), 131,2 (=CH), 146,6 (C), 146,8 (C).	

1-(4-Méthyl-benzyl)-6-nitro-1H-indazole (5d)		
	Rdt : 45	
N	PF : 96-98 °C	
O ₂ N H ₃ C	RMN¹H (CDCl ₃): δ 2,31 (s, 3H, CH ₃), 5,63 (s, 2H, NCH ₂), 7,14 (m, 4H, H-Ar), 7,82 (d, 1H, $J = 8,7$ Hz), 7,99 (dd, 1H, $J = 8,7$ Hz , 1,5 Hz), 8,15 (s, 1H), 8,31 (d, 1H , $J = 1,5$ Hz).	
Formule brute : $C_{15}H_{13}N_3O_2$. Massa maléculaira : 267.28 g mal ⁻¹	RMN¹³C (CDCl ₃): δ 21,1 (CH ₃), 53,5	
Wasse moleculaire : 207.28 g.mol	(NCH ₂), 106,1 (CH), 115,5 (CH), 121,9 (CH), 127,1 (C), 127,3 (2CH), 129,7 (2CH), 132,7 (C), 133,6 (CH-3), 138,1 (C), 146,5 (C).	
2-(4-Méthyl-benzyl)-6-nitro-1H-indazole (6d)		
	Rdt : 31	
CH ₃	PF: 84-86 °C	
O ₂ N N	RMN¹H (CDCl ₃): δ 2,34 (s, 3H, CH ₃), 5,61 (s, 2H, NCH ₂), 7,21 (m, 4H, H-Ar), 7,70 (d, 1H, <i>J</i> = 9,0 Hz), 7,87 (dd, 1H, <i>J</i> = 8,7 Hz, 1,8 Hz), 7,97 (s, 1H), 8,71 (d, 1H, <i>J</i> = 1,8 Hz).	
Formule brute : $C_{15}H_{13}N_3O_2$. Masse moléculaire : 267.28 g.mol ⁻¹	RMN ¹³ C(CDCl ₃): δ 21,2 (CH ₃), 58,1 (NCH ₂), 115,6 (CH), 115,8 (CH), 121,5 (CH), 123,6 (CH-3), 124,5 (C), 128,4 (2CH), 129,8 (2CH), 131,6 (C), 138,9 (C), 146,6 (C), 146,8 (C).	

Réaction de chloration du 6-nitroindazole

On dissout 1g de 6-nitroindazole (1 mol) dans 25 ml d'acétonitrile et on ajoute 2.46 g (3 mmol) de N-chlorosuccinimide. Le mélange réactionnel est porté à reflux pendant 2h. Après refroidissement, le solvant est évaporé et le résidu est lavé plusieurs fois avec l'eau. Le solvant est évaporé et le produit formé est recristallisé dans le méthanol.

3-Chloro-6-nitro-1H-indazole (3b)	
	Rdt : 91%
CI	PF : 206-208°C
O ₂ N N	RMN¹H (CDCl₃) : δ 7,85 (d, 1H, J = 9,0 Hz); 8,10 (dd, 1H, J = 9,0 Hz, 1,6 Hz); 8,45 (d, 1H, J = 1,6 Hz); 10,55 (s, 1H, NH).
Formule brute : $C_7H_4ClN_3O_2$. Masse moléculaire : 197.58 g.mol ⁻¹	RMN¹³C (CDCl₃) :δ 107,0 (CH); 110,6 (C) ; 116,6 (CH); 120,8 (CH); 124,3 (C); 139,4 (C); 143,6 (C).

3-chloro-1-methyl-6-nitro-1H-indazole (5e)	
	Rdt : 56%
CI /	PF: 156–158 °C
O ₂ N N CH ₃	RMN ¹ H (CDCl ₃): δ 4.13 (s, 3H, NCH ₃), 7.75 (d, 1H, J = 8.7Hz), 8.01 (1H, dd, J = 8.7 Hz, J = 1.5 Hz), 8.33 (d, 1H, J = 1.5 Hz).
Formule brute : $C_8H_6ClN_3O_2$. Masse moléculaire : 211.61 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 36.4(NCH ₃), 106.2 (CH), 115.8 (CH), 120.8 (CH), 123.9 (C), 133.1 (C), 139.8 (C), 147.3 (C).
3-chloro-2-methyl-6-nitro-1H-indazole (6e)	
	Rdt : 42%
CI	PF: 170–172 °C;
O_2N N $-CH_3$ Formule brute : $C_8H_6ClN_3O_2$. Masse moléculaire : 211.61 g.mol ⁻¹	RMN ¹ H (CDCl ₃): δ 4.23 (s, 3H, NCH ₃), 7.64 (d, 1H, J = 8.7Hz), 7.88 (1H, dd, J = 8.7 Hz, J = 1.2 Hz), 8.59 (d, 1H, J = 1.2 Hz);
	RMN ¹³ C (CDCl ₃): δ 38.3(NCH ₃), 115.8 (CH), 116.1 (CH), 120.1 (CH), 121.2 (C), 121.3 (C), 145.7 (C), 147.2 (C).

3-Chloro-1-éthyl-6-nitro-1H-indazole (5f) $\begin{split} & \qquad $	Rdt : 64% PF : 102–104 °C; RMN ¹ H (CDCl ₃): δ 1.56 (t, 3H, CH ₃ , J = 7.2 Hz), 4.46 (q, 2H, NCH2, J = 7.2 Hz), 7.77 (d, 1H, J = 9.0 Hz), 8.03 (dd, J = 9.0 Hz, J = 1.8 Hz), 8.35 (d, J= 1.8Hz); RMN ¹³ C (CDCl ₃): δ 15.0 (CH ₃), 44.8 (NCH ₂), 106.2 (CH), 115.8 (CH), 120.9 (CH), 124.1 (C), 133.3 (C), 139.0 (C), 147.3 (C).
3-Chloro-2-éthyl-6-nitro-1H-indazole (6f)	
	Rdt : 32%
CI	PF : 91–93 °C
O ₂ N N	RMN ¹ H (CDCl ₃): δ 1.53 (t, 3H, CH ₃ , J = 7.2 Hz), 4.50 (q, 2H, NCH ₂ , J = 7.2 Hz), 7.66 (d, 1H, J = 9.0 Hz), 7.85 (dd, J = 9.0 Hz, J = 1.8 Hz), 8.52 (d, J= 1.8 Hz).
Formule brute : $C_9H_8ClN_3O_2$. Masse moléculaire : 225.63g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 15.4 (CH ₃), 47.2 (NCH ₂), 115.6 (CH), 116.4 (CH), 120.6 (CH), 121.0 (C), 121.7 (C), 146.0 (C), 147.5 (C).
1-Allyl-3-chloro-6-nitro-1H-indazole (5g)	
	Rdt : 62%
ÇI	PF: 80-82°C
$\begin{array}{c} & \overbrace{O_2N} \\ & \overbrace{V} \\ & \overbrace{V} \\ & \end{array} \\ & \hline{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \hline{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ & \overbrace{N} \\ & \overbrace{N} \\ & \overbrace{O_2N} \\ \\ & \overbrace{O_2N} \\ & \overbrace{O_2N} \\ \\ & \overbrace{O_2N} \\ \\ & \overbrace{O_2N} \\ \\ & \overbrace{O_2N} \\ \\ \\ & \overbrace{O_2N} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	RMN ¹ H (CDCl ₃): δ 5,04-5,07 (m, 2H, NCH ₂), 5,22-5,35 (m, 2H, =CH ₂), 5,97-6,10 (m, 1H, =CH), 7,80 (d, 1H, <i>J</i> = 9,0 Hz), 8,05 (dd, 1H, <i>J</i> = 9,0 Hz, 1,8 Hz), 8,35 (d, 1H, <i>J</i> = 1,8 Hz). RMN ¹³ C (CDCl ₃): δ 52,7 (NCH ₂), 106,5 (CH), 116,1 (CH), 119,3 (=CH ₂), 121,0 (CH), 124,4 (C), 131,4 (CH), 133,7 (C), 139,4 (C), 147,4 (C).

2-Allyl-3-chloro-6-nitro-2H-indazole (6g)	
	Rdt : 36%
CI	PF : 72-74°C.
$O_2 N$	RMN¹H (CDCl ₃): δ 5,11-5,14 (m, 2H, NCH ₂), 5,21-5,38 (m, 2H, =CH ₂), 6,02-6,11 (m, 1H, =CH), 7,68 (d, 1H, <i>J</i> = 9,3 Hz), 7,92 (dd, 1H, <i>J</i> = 9,3 Hz, 1,8 Hz), 8,65 (d, 1H, <i>J</i> = 1,8 Hz).
Masse moléculaire: 237.64 g.mol ⁻¹	RMN¹³C (CDCl ₃): δ 53,8 (NCH ₂), 116,1 (CH), 116,3 (CH), 119,9 (CH), 120,3 (=CH ₂), 121,3 (C), 123,4 (C), 130,4 (=CH), 145,9 (C).
1-(4-Méthyl-benzyl)-3-chloro-6-nitro-1H- indazole (5h)	
	Rdt : 65%
CI	PF : 104-106°C
O ₂ N N	RMN¹H (CDCl ₃): δ 2,32 (s, 3H, CH ₃), 5,56 (s, 2H, NCH ₂), 7,13-7,19 (m, 4H, H-Ar), 7,78 (d, 1H, J = 9,0 Hz), 8,03 (dd, 1H, J = 9,0 Hz), 2,0 Hz), 8,27 (d, 1H, J = 1,8 Hz).
H_3C Formule brute: $C_{15}H_{12}ClN_3O_2$. Masse moléculaire: 301.73 g.mol ⁻¹	RMN¹³C (CDCl ₃): δ 21,1 (CH ₃), 53,9 (NCH ₂), 106,6 (CH), 116,0 (CH), 121,0 (CH), 124,6 (C), 127,5 (2CH), 129,7 (2CH), 132,1 (C), 133,7 (C), 138,5 (C), 139,3 (C), 147,4 (C).
2-(4-Méthyl-benzyl)-3-chloro-6-nitro-1H- indazole (6h)	
	Rdt : 31%
CH ₃	PF: 122–124°C
	RMN ¹ H (CDCl ₃): δ 2.32 (s, 3H, CH ₃), 5.65 (s, 2H, NCH ₂), 7.15 (d, 2H, J = 8.7 Hz), 7.24 (d, 2H, J = 8.7 Hz), 7.65 (d, 1H, J = 9.3 Hz), 7.90 (dd, 1H, J = 9.3 Hz, 1.8 Hz), 8.65 (d, 1H, J = 1.8 Hz).
Formule brute: $C_{15}H_{12}ClN_3O_2$. Masse moléculaire: 301.73 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 21.1 (CH ₃), 55.0(NCH ₂), 116.1 (CH), 116.3 (CH), 120.3 (CH), 121.1 (C), 121.5 (C), 128.0 (2CH), 129.7 (2CH), 131.2 (C), 138.6 (C), 145.9 (C), 147.3 (C).
Réaction d'alkylation du de 5, 4 et 7-nitroindazole

Les produits N-alkyl-5-nitroindazoles, N-alkyl-4-nitroindazoles, N-alkyl-7-nitro indazoles et N- alkyl -5-nitrobenzimidazole sont préparés par simple alkylation de 5, 4 et 7-nitroindazole et de 2-mercapto-5-nitrobenzimidazole en adoptant le même mode opératoire utilisé pour l'alkylation du 6-nitroindazole.

1-Méthyl-5-nitro-1 <i>H</i> -indazole (8a)	
	Rdt : 55%
O ₂ N	PF : 139-141 °C
CH ₃ Formule brute: C ₈ H ₇ N ₃ O ₂	RMN ¹ H (CDCl ₃): δ 4,13 (s, 3H, NCH ₃), 7,44 (d, 1H, $J = 9,3$ Hz), 8,17 (s, 1H, H-3), 8,25 (dd, 1H, $J = 9,3$ Hz, 1,8 Hz), 8,69 (d, 1H, $J = 1,8$ Hz).
Masse moleculaire: 177,16 g/mol	RMN ¹³ C (CDCl ₃): δ 36,0 (NCH ₃), 109,2 (CH), 118,9 (CH), 121,4 (CH), 123,0 (C), 135,6 (CH-3, =CH), 141,5 (C), 142,3 (C).
2-Méthyl-5-nitro-2H-indazole (9a)	
	Rdt : 30%
O ₂ N	PF : 112-114 °C
Formule brute: C ₈ H ₇ N ₃ O ₂ Masse moléculaire: 177,16 g/mol	RMN¹H (CDCl₃): δ 4,27 (s, 3H, NCH ₃), 7,72 (d, 1H, $J = 9,2$ Hz), 8,06 (dd, 1H, $J = 9,2$ Hz, 2,4 Hz), 8,19 (s, 1H, H-3), 8,68 (d, 1H, $J = 2,1$ Hz).
	RMN¹³C (CDCl ₃): δ 40,9 (NCH ₃), 118,1 (CH), 119,2 (CH), 120,2 (CH), 121,0 (C), 127,7 (CH-3, =CH), 143,1 (C), 149,9 (C).

1-Ethyl-5-nitro-1 <i>H</i> -indazole (8b)	
O ₂ N V CH ₃ Formule brute: C ₉ H ₉ N ₃ O ₂ Masse moléculaire: 191,19 g/mol	Rdt : 53% PF : 135-137 °C RMN ¹ H (CDCl ₃): δ 1,54 (t, 3H, CH ₃ , J = 7,2 Hz), 4,47 (q, 2H, NCH ₂ , J = 7,2 Hz), 7,45 (d, 1H, J = 9,3 Hz), 8,18 (s, 1H, H-3), 8,23 (dd, 1H, J = 9,3 Hz, 2,1 Hz), 8,69 (d, 1H, J = 2,0 Hz). RMN ¹³ C (CDCl ₃): δ 14,8 (CH ₃), 44,3 (NCH ₂), 109,1 (CH), 119,0 (CH), 121,2 (CH), 123,1 (C), 135,4 (CH-3, =CH), 140,7 (C), 142,2 (C).
2-Ethyl-5-nitro-2 <i>H</i> -indazole (9b)	
O ₂ N N CH ₃ Formule brute: C ₉ H ₉ N ₃ O ₂ Masse moléculaire: 191,19 g/mol	Rdt : 40% PF : 55-57 °C RMN ¹ H (CDCl ₃): δ 1,64 (t, 3H, CH ₃ , J = 7,2 Hz), 4,53 (q, 2H, NCH ₂ , J = 7,2 Hz), 7,72 (d, 1H, J = 9,2 Hz), 8,06 (dd, 1H, J = 9,2 Hz, 2,4 Hz), 8,23 (s, 1H, H-3), 8,68 (d, 1H, J = 2,1 Hz).
	RMN ¹³ C (CDCl ₃): δ 15,6 (CH ₃), 49,3 (NCH ₂), 118,1 (CH), 119,3 (CH), 120,4 (CH), 120,9 (C), 126,4 (CH-3, =CH), 143,1 (C), 149,5 (C).
1-Allyl-5-nitro-1 <i>H</i> -indazole (8c)	
	Rdt : 54%
O-N ^	PF: 57-59 °C

N N

Formule brute: C₁₀H₉N₃O₂ Masse moléculaire: 203,20 g/mol **RMN** ¹**H** (**CDCl**₃): δ 5,05-5,13 (m, 2H, NCH₂), 5,18-5,31 (m, 2H, =CH₂), 5,97-6,01 (m, 1H, =CH), 7,45 (d, 1H, *J* = 9,0 Hz), 8,21 (s, 1H, H-3), 8,25 (dd, 1H, *J* = 9,3 Hz et 2,4 Hz), 8,72 (d, 1H, J = 1,8 Hz).

RMN ¹³C (CDCl₃): δ 52,2 (NCH₂), 109,6 (CH), 118,6 (=CH₂), 119,0 (CH), 121,5 (CH), 123,4 (C), 131,8 (CH), 135,9 (CH-3, =CH), 141,2 (C), 142,4 (C).

2-Allyl-5-nitro-2 <i>H</i> -indazole (9c)	
	Rdt :39%
O ₂ N	PF : 46-48 °C
Formule brute: C ₁₀ H ₉ N ₃ O ₂ Masse moléculaire: 203,20 g/mol	RMN¹H (CDCl ₃): δ 5,07-5,11 (m, 2H, NCH ₂), 5,34-5,43 (m, 2H, =CH ₂), 6,07-6,12 (m, 1H, =CH), 7,73 (d, 1H, <i>J</i> = 9,2 Hz), 8,07 (dd, 1H, <i>J</i> = 9,2 Hz, 1,8 Hz), 8,24 (s, 1H, H-3), 8,70 (d, 1H, <i>J</i> = 1,8 Hz). RMN¹³C (CDCl ₃): δ 56,7 (NCH ₂), 118,4
	(CH), 119,4 (CH), 120,4 (CH), 120,8 (=CH2), 121,2 (C), 126,8 (CH-3, =CH), 131,1 (CH), 143,2 (C), 149,7 (C).
1-Méthyl-4-nitro-1H-indazole (7a)	
	Rdt : 63 %
NO ₂	PF : 123-125 °C
CH ₃	RMN¹H (CDCl ₃): δ 8.60 (s, 1H, H-3), 8.10 (d, 1H, H-5, J= 7.6 Hz), 7.49 (t, 1H, H-6, J= 8.3 Hz), 7.75 (d, 1H, H-7, J= 7.6 Hz), 4.16 (s, 3H, NCH ₃).
Masse moléculaire: 177,16 g/mol	RMN¹³C (CDCl ₃): δ 132.4 (C-3), 140.6 (C-4), 118.0 (C-5), 125.3 (C-6), 116.0 (C-7), 141.4 (C-7a), 116.9(C-3a), 36.0 (NCH ₃).
2-Méthyl-4-nitro-2 <i>H</i> -indazole (7b)	
	Rdt : 28 %
NO ₂	PF : 75-77 °C
N-CH ₃	RMN¹H (CDCl₃): δ 8.54 (s, 1H, H-3), 8.17 (d, 1H, H-5, J= 7.6 Hz), 7.39 (dd, 1H, H-6, J ₁ = 8.4 Hz, J ₂ = 7.6 Hz), 8.06 (d, 1H, J= 8.4 Hz), 4.31 (s, 3H, NCH ₃).
Formule brute: C ₈ H ₇ N ₃ O ₂ Masse moléculaire: 177,16 g/mol	RMN¹³C (CDCl₃) : δ124.3 (C-3), 140.5 (C-4), 120.5 (C-5), 125.8 (C-6), 125.2 (C-7), 150.0 (C-7a), 115.1 (C-3a), 40.9 (NCH ₃).

1-Méthyl-7-nitro-1 <i>H</i> -indazole (10a)	
	Rdt: 42 %
	PF : 98_100 °C
NO ₂ CH ₃	RMN¹H (CDCl₃): δ 8.13 (s, 1H, H-3), 8.01 (dd, 1H, H-4, J ₁ = 7.7 Hz, J ₂ = 0.8 Hz), 7.21 (t, 1H, H-5, J= 7.8 Hz), 8.10 (dd, 1H, H-6, J= 7.9, J ₂ = 0.8 Hz), 4.24 (s, 3H, CH ₃).
Formule brute: C ₈ H ₇ N ₃ O ₂ Masse moléculaire: 177,16 g/mol	RMN¹³C (CDCl₃): δ 134.0 (C-3), 127.9 (C-4), 119.7 (C-5), 124.6 (C-6), 135.1 (C-7), 131.1 (C-7a), 128.9 (C-3a), 40.9 (CH ₃).
2-Méthyl-7-nitro-2H-indazole (11a)	
	Rdt : 38 %
	PF : 132- 134 °C
NO ₂ Formule brute: C ₈ H ₇ N ₃ O ₂ Masse moléculaire: 177,16 g/mol	RMN¹H (CDCl₃): δ 8.18 (s, 1H, H-3), 8.01 (d, 1H, H-4, J= 8.0 Hz), 7.15 (t, 1H, H-5, J= 8.0 Hz), 8.28 (d, 1H, H-6, J= 7.6 Hz), 4.32 (s, 3H, CH ₃).
	RMN¹³C (CDCl₃): δ126.2 (C-3), 128.8 (C-4), 120.0 (C-5), 125.0 (C-6), 137.1 (C-7), 140.6 (C-7a), 125.6 (C-3a), 41.0 (CH ₃).
1-Méthyl-2-méthylsulfanyl-5- nitrobenzimidazole (14a)	
	Rdt : 47%
O ₂ N N	PF :199-201°C
N CH ₃	RMN¹H (CDCl ₃): δ 2.90 (s, 3H, SCH ₃), 3.75 (s, 3H, NCH ₃), 7.77 (d, 1H, J = 9.0 Hz), 8.20 (dd, 1H, J = 9.0 Hz, J = 1.5 Hz), 8.57 (d, 1H, J = 1.5 Hz).
Formule brute: C ₉ H ₁₁ N ₃ O ₂ S Masse moléculaire: 225,27 g/mol	RMN ¹³ C (CDCl ₃): δ 30.3 (SCH ₃), 41.5 (NCH ₃), 108.3 (CH), 113.9 (CH), 118.8 (CH), 135.5 (C), 140.4 (C), 143.3 (C), 157.9 (SC).

1-Allylsulfanyl-5-nitrobenzimidazole (13d)	
	Rdt : 70%
	PF :84-86°C
Formule brute: C10H11N3O2S	RMN¹H (CDCl ₃): δ 4.05 (d, 2H, SCH ₂ , J = 6.9 Hz), 5.20 (ddd, 2H, =CH ₂ , J = 16.8 Hz, J = 9.9 Hz, J = 1.4 Hz), 5.91-6.03 (m, 1H, =CH), 7.60 (d, 1H, J = 9.0 Hz), 8.14 (dd, 1H, J = 9.0 Hz, J = 2.1 Hz), 8.47 (d, 1H, J = 2.1 Hz), 10.93 (s, 1H, NH).
Masse moléculaire: 237,28 g/mol	DMN 13 C (CDCI): \$ 25.9 (SCII) 109.0
	KMIN C (CDCI ₃): 6 35.8 (SCH ₂), 108.9 (CH), 113.7 (CH), 118.9 (CH), 119.8 (=CH ₂), 131.9 (CH), 138.1 (C), 142.7 (C), 143.5 (C), 155.8 (SC).
2-Ethylsulfanyl-5-nitrobenzimidazole (13b)	
	Rdt : 26%
O₂N ∧ ∧ −CH₂	PF : 81-83°C
s s	RMN ¹ H (DMSO-d ₆): δ 1.37 (t, 3H, CH ₃ , J = 7.2 Hz), 3.31 (q, 2H, SCH ₂ , J = 7.2 Hz), 7.56 (d, 1H, J = 9.0 Hz), 8.04 (dd, 1H, J = 9.2 Hz, J = 1.5 Hz), 8.48 (d, 1H, J = 1.5 Hz), 10.84 (s, 1H, NH).
Formule brute: C ₉ H ₉ N ₃ O ₂ S Masse moléculaire: 223,25 g/mol	RMN ¹³ C (DMSO-d ₆): δ 15.4 (CH ₃), 26.1 (SCH ₂), 110.5 (CH), 113.8 (CH), 118.0 (CH), 139.5 (C), 142.6 (C), 143.9 (C), 156.9 (SC).

1-Ethyl-2-éthylsulfanyl-5-nitrobenzimidazole (14b) **Rdt**: 43% **PF**: 98-100°C CH₃ **RMN¹H** (CDCl₃): δ 1.49 (t, 3H, CH₃, J = 7.2 Hz), 1.54 (t, 3H, CH₃, J = 7.5 Hz), 3.68 (q, 2H, SCH₂, J = 7.2 Hz), 4.24 (q, 2H, SCH₂, J = 7.5 Hz), 7.37 (d, 1H, J = 9.0 Hz), 8.00 (dd, 1H, J = 9.0 Hz, J = 1.5 Hz), 8.71 (d, 1H, J = 1.8 Hz). Formule brute: C₁₁H₁₅N₃O₂S **RMN** ¹³C (CDCl₃): δ 14.1 (CH₃), 14.6 Masse moléculaire: 253,33 g/mol (CH₃), 28.0 (SCH₂), 40.5 (NCH₂), 108.8 (CH), 113.5 (CH), 119.1 (CH), 139.1 (C), 140.9 (C), 141.6 (C), 154.1 (SC).

1-(4-Méthylbenzyl)-2-(4- méthylbenzylsulfanyl)-5-nitro-1H- benzimidazole (14c)	
	Rdt :75%
	PF : 135-137°C
O ₂ N N S CH ₃	RMN¹H (CDCl ₃): δ 2.32 (s, 6H, 2CH ₃), 4.95 (s, 2H, SCH ₂), 5.32 (s, 2H, NCH ₂), 6.98 (d, 2H, J = 8.4 Hz), 7.11 (d, 2H, J = 7.8 Hz), 7.33-7.40 (m, 4H), 8.01 (d, 1H, J = 9.0 Hz), 8.28 (dd, 1H, J = 9.0 Hz, J = 1.5 Hz), 8.80 (d, 1H, J = 1.8 Hz).
H ₃ C	RMN ¹³ C (CDCl ₃): δ 21.1 (CH ₃), 21.2 (CH ₃),
Formule brute: C ₂₃ H ₂₃ N ₃ O ₂ S Masse moléculaire: 405,52 g/mol	38.5 (SCH ₂), 49.1 (NCH ₂), 110.5 (CH), 112.9 (CH), 120.1 (CH), 129.3 (2CH), 129.4 (2CH), 130.0 (2CH), 130.2 (2CH), 138.6 (C), 139.4 (C), 140.8 (C), 142.8 (C), 144.8 (C), 156.2 (SC).

Réaction de réduction des N-alkyl-6-nitroindazoles

Sous atmosphère inerte, (1.0 mmol) les N-alkyl-6-nitro-1H-indazoles ont été ajouté à un mélange de poudre d'indium ou de SnCl₂ (460 mg, 4,0 mmol) et d'acide acétique (0,572 ml, 10 mmol) dans le THF (2 ml), puis l'addition de 2,5-hexadione (1,0 mmol) dans du THF (3 ml). Le mélange réactionnel porté à reflux 80°C pendant 3h à 5h. Puis le mélange réactionnel est ramené à température ambiante et dilué avec de l'acétate d'éthyle (30 ml), filtré à travers de la Celite, hydrolysé avec une solution aqueuse de NaHCO₃ à 10% (30ml) jusqu'à pH 7-8, puis extrait avec de l'acétate d'éthyle (30 ml x 3). Les extraits organiques combinés ont été séchés sur MgSO₄, filtrés et concentrés. Le résidu a été élué avec un mélange acétate d'éthyle / hexane pour la plupart des dérivés à travers une colonne de gel de silice neutre pour donner les pyrroles correspondants.

2-Méthyl-6-(2,5-diméthyl-1H-pyrrol-1-yl)-2H- indazole (16a)	
` _ <i>` _ ` /</i>	Rdt : 70%
	PF: 81–83 °C
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 2.05 (s, 6H, 2CH ₃), 4.40 (s, 3H, NCH ₃), 5.92(s, 2H, =CH), 7.03 (dd, 1H, J = 8.7 Hz, J = 1.5 Hz), 7.63 (d, 1H, J = 1.2 Hz), 7.77 (d, 1H, J =8.7 Hz), 8.14 (s, 1H, H-3).
Formule brute: $C_{14}H_{15}N_3$. Masse moléculaire: 225.29 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 40.3 (NCH ₃), 106.2 (2CH), 114.6 (CH), 120.3 (C), 121.1 (CH), 124.4 (CH), 126.1 (CH-3), 128.9 (2C), 139.4 (C), 145.6 (C).

1-Ethyl-6-(2,5-diméthyl-1H-pyrrol-1-yl)-1H-	
indazole (15b)	Rdt : 64%
	PF: 105–107 °C
Formule brute: $C_{15}H_{17}N_3$. Masse moléculaire: 239 32 g mol ⁻¹	RMN ¹ H (CDCl ₃): δ 1.57 (t, 3H, CH ₃ , J = 7.2 Hz), 2.07 (s, 6H,2CH ₃), 4.56 (q, 2H, NCH ₂ , J = 7.2 Hz), 5.95 (s, 2H, =CH), 7.08 (dd, 1H, J = 8.4 Hz, J = 1.2Hz), 7.32 (d, 1H, J = 1.2 Hz), 7.85 (d, 1H, J = 8.4 Hz), 8.19 (s, 1H, H-3).
Wasse more unanter 259.52 g.mor	KMN ¹ C (CDCl ₃): 3 13.1 (2CH ₃), 14.1 (CH ₃), 44.1 (NCH ₂), 106.3 (2CH), 108.7 (CH), 122.2 (CH), 122.7 (CH), 129.3 (2C), 130.8 (C), 131.6 (CH-3), 132.5 (C), 138.9 (C).
2-Ethyl-6-(2,5-diméthyl-1H-pyrrol-1-yl)-2H- indazole (16b)	
	Rdt : 68%
	PF : 116–118 °C
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 1.68 (t, 3H, CH ₃ , J = 7.2 Hz), 2.07 (s, 6H, 2CH ₃), 4.54 (q, 2H, NCH ₂ , J = 7.2 Hz), 5.92 (s, 2H, =CH), 6.92 (dd, 1H, J = 8.4 Hz, J = 1.2Hz), 7.60 (d, 1H, J = 1.2 Hz), 7.71 (d, 1H, J = 8.4 Hz), 8.03 (s, 1H, H-3).
Formule brute : $C_{15}H_{17}N_3$. Masse moléculaire: 239.32 g mol ⁻¹	RMN ¹³ C (CDCl ₃):δ 13.0 (2CH ₃), 15.8
Wasse more unanter 259.52 g.mor	(CH3), 48.8 (NCH ₂), 105.7 (2CH), 115.9 (CH), 120.7 (C), 120.9 (CH),123.0 (CH), 123.3 (CH-3), 129.0 (2C), 137.5 (C), 147.6 (C).

1-Allyl-6-(2,5-dimethyl-1H-pyrrol-1-yl)-1H- indazole (15c)	
	Rdt : 76%
	Huile
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 2.06 (s, 6H, 2CH ₃), 5.02–5.05 (m, 2H, NCH ₂), 5.14–5.27 (m, 2H, =CH2), 5.95 (s, 2H, =CH), 5.99–6.09 (m, 1H, =CH), 7.01 (dd, 1H, J = 8.4 Hz, J=1.2 Hz), 7.29 (d, 1H, J = 1.5 Hz), 7.79 (d, 1H, J = 8.4 Hz), 8.08 (s, 1H, H-3).
Formule brute : C ₁₆ H ₁₇ N ₃ . Masse moléculaire: 251.33 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.1 (2CH ₃), 51.7 (NCH ₂), 106.1 (2CH), 109.4 (CH), 119.1 (=CH ₂), 120.2 (CH), 121.4 (CH), 123.5 (C), 129.0 (2C), 132.5 (CH), 133.5 (CH-3), 137.4 (C), 139.5 (C).
2-Allyl-6-(2,5-diméthyl-1H-pyrrol-1-yl)-2H- indazole (16c)	
	Rdt : 74%
	PF: 104–106°C
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 2.06 (s, 6H, 2CH ₃), 5.16–5.19 (m, 2H, NCH ₂), 5.42–5.48 (m, 2H,=CH ₂), 5.92 (s, 2H, =CH), 6.11–6.21 (m, 1H, =CH), 6.97 (dd, 1H,J = 8.7 Hz, J = 1.5 Hz), 7.62 (d, 1H, J = 1.5 Hz), 7.74 (d, 1H, J = 8.7 Hz), 8.10 (s, 1H, H-3).
Formule brute : C ₁₆ H ₁₇ N ₃ . Masse moléculaire: 251.33 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.1 (2CH ₃), 56.1 (NCH ₂), 105.9 (2CH), 115.6 (CH), 120.5 (=CH ₂), 121.1 (CH), 123.6 (CH), 120.5 (C), 124.1 (CH), 128.9 (2C), 131.1 (CH), 138.3 (C), 146.9 (C).
6-(2,5-Diméthyl-pyrrol-1-yl)-1-(4 méthylbenzyl)-1H-indazole (15d)	
	Rdt : 76%
H ₃ C	PF : 106–108°C
Formule brute: $C_{21}H_{21}N_3$.	RMN ¹ H (CDCl ₃): δ 2.06 (s, 6H, 2CH ₃), 5.02–5.05 (m, 2H,NCH ₂), 5.14–5.27 (m, 2H, =CH2), 5.95 (s, 2H, =CH), 5.99–6.09 (m, 1H, =CH), 7.01 (dd, 1H,J = 8.4 Hz, J = 1.2 Hz), 7.29 (d, 1H, J = 1.5 Hz), 7.79 (d, 1H, J = 8.4 Hz), 8.08 (s, 1H, H-3).
Masse moléculaire: 315.41 g.mol ⁻¹	RMN¹³C (CDCl ₃): δ 13.1 (2CH ₃), 51.7 (NCH ₂), 106.1 (CH), 109.4 (CH), 119.1 (=CH ₂), 120.2 (CH), 121.4 (2CH), 123.5 (C),

129.0 (2C), 132.5 (CH), 133.5 (CH-3), 137.4 (C), 139.5(C).

Réaction de réduction des 3-chloro-N-alkyl-6-nitroindazoles

Sous pression atmosphérique, (1.0 mmol) de 3-Chloro-N-alkyl-6-nitro-1H-indazoles ont été ajouté à un mélange de poudre d'indium /SnCl₂ (460 mg, 4,0 mmol) et d'acide acétique (0,572 ml, 10 mmol) dans le THF (2 ml), puis l'addition de 2,5-héxanedione (1,0 mmol) dans du THF (3 ml). Le mélange réactionnel porté à reflux 80 °C pendant 3h à 5h. Puis le mélange réactionnel est ramené à température ambiante et dilué avec de l'acétate d'éthyle (30 ml), filtré à travers de la Celite, hydrolysé avec une solution aqueuse de NaHCO₃ à 10% (30ml) jusqu'à pH 7-8, puis extrait avec de l'acétate d'éthyle (30 ml x 3). Les extraits organiques combinés ont été séchés sur MgSO₄, filtrés et concentrés. Le résidu a été élué avec un mélange acétate d'éthyle /l'hexane pour la plupart des dérivés à travers une colonne de gel de silice neutre pour donner les pyrroles correspondants.

3-Chloro-1-methyl-6-(2,5-dimethyl-1H-pyrrol- 1-yl)-1H-indazole (15e)	
	Rdt : 75%
CI	PF: 105–107 °C
H ₃ C N N CH ₃ CH ₃	RMN ¹ H (CDCl ₃): δ 2.05 (s, 6H, 2CH ₃), 4.03 (s, 3H, NCH ₃),5.94 (s, 2H, =CH), 7.05 (dd, 1H, J = 8.4 Hz, J = 1.5 Hz), 7.23 (d, 1H, J = 1.5 Hz), 7.73 (d, 1H,J = 8.4 Hz).
Formule brute : C ₁₄ H ₁₄ ClN ₃ . Masse moléculaire: 259.73 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 35.9 (NCH ₃), 106.1 (2CH), 108.9 (CH), 120.4(CH), 122.1 (CH), 125.5 (C), 130.9 (2C), 132.5 (C), 138.7 (C), 141.3 (C).
3-Chloro-2-methyl-6-(2,5-dimethyl-1H-pyrrol- 1-vl)-2H-indazole (16e)	
	Rdt : 70%
ÇI	PF: 112–114 °C
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 2.06 (s, 6H, 2CH ₃), 4.25 (s, 3H, NCH ₃), 5.93 (s, 2H, =CH), 7.00 (dd, 1H, J = 8.4 Hz, J = 1.2 Hz), 7.54 (d, 1H, J = 0.9 Hz), 7.65 (d, 1H, J = 8.4 Hz).
Formule brute: $C_{14}H_{14}ClN_3$. Masse moléculaire: 259.73 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 37.5 (NCH ₃), 106.1 (2CH), 115.8 (CH), 117.9(C), 119.6 (CH), 124.2 (CH), 128.9 (2C), 130.9 (C), 139.0 (C), 146.2 (C).
3-Chloro-1-ethyl-6-(2,5-dimethyl-1H-pyrrol-1-	
yı)-111-inuazore (151)	Rdt : 75%
ÇI	PF: 49–51 °C;
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 1.52 (t, 3H, CH ₃ , J = 7.2 Hz), 2.05 (s, 6H,2CH ₃), 4.40 (q, 2H, NCH ₂ , J = 7.2 Hz), 5.92 (s, 2H, =CH), 7.08 (dd, 1H, J = 8.4 Hz, J = 1.5Hz), 7.21 (d, 1H, J = 1.5 Hz), 7.76 (d, 1H, J = 8.4 Hz).
Formule brute: $C_{15}H_{16}ClN_3$. Masse moléculaire: 273.76 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.2 (2CH ₃), 15.4 (CH ₃), 44.5 (NCH ₂), 106.2 (2CH), 109.1 (CH), 120.6 (CH), 122.3 (CH), 125.1 (C), 131.0 (2C), 132.7 (C), 138.8 (C), 141.8 (C).

3-Chloro-2-ethyl-6-(2,5-dimethyl-1H-pyrrol-1- yl)-2H-indazole (16f)	
yi) 211 mazore (101)	Rdt : 67%
CI /	PF: 102–104 °C;
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 1.50 (t, 3H, CH3, J = 7.2 Hz), 2.04 (s, 6H,2CH ₃), 4.48 (q, 2H, NCH ₂ , J = 7.2 Hz), 5.95 (s, 2H, =CH), 7.08 (dd, 1H, J = 8.4 Hz, J = 1.2Hz), 7.60 (d, 1H, J = 0.9 Hz), 7.67 (d, 1H, J = 8.4 Hz);
Formule brute : C ₁₅ H ₁₆ ClN ₃ . Masse moléculaire: 273.76 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.1 (2CH ₃),15.6 (CH ₃), 47.5 (NCH ₂), 106.2 (2CH), 116.0 (CH), 117.8 (C), 119.4 (CH), 124.5 (CH),129.0 (2C), 131.1 (C), 138.9 (C), 146.5 (C)
3-Chloro-1-allyl-6-(2,5-dimethyl-1H-pyrrol-1- yl)-1H-indazole (15g)	
	Rdt : 88%
CI	PF : 58–60°C
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 2.05 (s, 6H, 2CH ₃), 4.94–4.97 (m, 2H, NCH ₂),5.18–5.28 (m, 2H, =CH ₂), 5.94 (s, 2H, =CH), 5.96–6.02 (m, 1H, =CH), 7.01 (dd, 1H, J = 8.4Hz, J = 1.2 Hz), 7.24 (d, 1H, J = 1.2 Hz), 7.74 (d, 1H, J = 8.4 Hz).
Formule brute: $C_{16}H_{16}ClN_3$. Masse moléculaire: 285.76 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.1 (2CH ₃), 52.4 (NCH ₂), 105.5 (2CH), 109.4 (CH), 118.7 (=CH ₂), 120.5 (CH), 122.3 (CH), 121.1 (C), 128.9 (2C), 131.7 (CH), 133.2 (C), 138.5 (C), 140.8 (C).
3-Chloro-2-allyl-6-(2,5-diméthyl-1H-pyrrol-1- yl)-1H-indazole (16g)	
JI) III Induzore (105)	Rdt : 64%
	PF: 110–112 °C
H ₃ C N CH ₃	RMN ¹ H (CDCl ₃): δ 2.06 (s, 6H, 2CH ₃), 4.90–4.95 (m, 2H, NCH ₂), 5.16–5.27 (m, 2H, =CH2), 5.95 (s, 2H, =CH), 5.97–6.03 (m, 1H, =CH), 7.04 (dd, 1H,J = 8.4 Hz, J = 1.2 Hz), 7.58 (d, 1H, J = 0.9 Hz), 7.66 (d, 1H, J = 8.4 Hz).
Formule brute: $C_{16}H_{16}ClN_3$. Masse moléculaire: 285.76 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.1 (2CH ₃), 53.6 (NCH ₂), 105.8 (2CH), 116.0 (CH), 117.8 (C), 118.5 (=CH ₂), 119.4 (CH), 124.7 (CH), 129.1 (2C), 131.0 (C), 131.8 (CH), 139.2 (C), 146.8 (C).

3-Chloro-6-(2,5-Diméthyl-pyrrol-1-yl)-1- (4-méthylbenzyl)-2H-indazole (15h)	
(Rdt : 83%
CI	PF : 92–94°C;
H ₃ C N CH ₃ CH ₃ CH ₃	RMN ¹ H (CDCl ₃): δ 1.98 (s, 6H, 2CH ₃), 2.31 (s, 3H, CH ₃), 5.48 (s,2H, NCH ₂), 5.92 (s, 2H, =CH), 7.01 (dd, 1H, J = 8.4 Hz, J = 1.2 Hz), 7.09–7.16 (m, 5H), 7.72 (d, 1H, J= 8.4 Hz);
Formule brute: $C_{21}H_{20}ClN_3$. Masse moléculaire: 349.86 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 21.1 (CH ₃), 53.7 (NCH ₂), 106.1(2CH), 109.5 (CH), 120.4 (CH), 120.8 (C), 122.2 (CH), 127.5 (2CH), 128.9 (2C), 129.5(2CH), 132.6 (C), 133.2 (C), 138.0 (C), 138.4 (C), 140.6 (C)
3-Chloro-6-(2,5-Diméthyl-pyrrol-1-yl)-2-	
(4-méthylbenzyl)-2H-indazole (16h)	
(4-méthylbenzyl)-2H-indazole (16h)	Rdt : 79%
(4-méthylbenzyl)-2H-indazole (16h)	Rdt : 79% PF: 92–94°C
(4-méthylbenzyl)-2H-indazole (16h) H_3C N N	Rdt : 79% PF: 92–94°C RMN ¹ H (CDCl ₃): δ 1.98 (s, 6H, 2CH ₃), 2.31 (s, 3H, CH ₃), 5.48 (s, 2H, NCH ₂), 5.92 (s, 2H, =CH), 7.01 (dd, 1H, J = 8.4 Hz, J = 1.2 Hz), 7.09-7.16 (m, 5H), 7.72(d, 1H, J = 8.4 Hz).

Synthèse des N-alkyl-5-(2,5-dimethyl-pyrrol-1-yl)-indazoles.

Ces composés ont été préparés à partir de N-alkyl-5-nitroindazole en utilisant le même mode opératoire appliqué pour les N-alkyl-6-nitroindazoles.

5-(2,5-Diméthyl-pyrrol-1-yl)-1-méthyl-1H- indazole (17a)	
	Rdt : 78%
	PF 120-122°C.
N N CH ₃	RMN ¹ H (CDCl ₃): δ 2.02 (s, 6H, 2CH ₃), 4.18 (s, 3H, NCH ₃), 5.95 (s, 2H, =CH), 7.28 (dd, 1H, J = 9.0 Hz, J = 1.8 Hz), 7.49 (d, 1H, J = 9.0 Hz), 7.60 (d, 1H, J = 1.8 Hz), 8.09 (s, 1H, H-3).
Formule brute: $C_{14}H_{15}N_3$. Masse moléculaire: 225.29 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 35.7 (NCH ₃), 105.6 (2CH), 109.6 (CH), 120.6 (CH), 123.6 (C), 127.7 (CH), 129.2 (2C), 131.0 (C), 132.4 (CH-3), 138.9 (C).

5-(2,5-Diméthyl-pyrrol-1-yl)-1-éthyl-1H- indazole (17b)	
	Rdt : 84%;
/	PF 85-87°C.
N N N	RMN ¹ H (CDCl ₃): δ 1.59 (t, 3H, CH ₃ , J = 7.2 Hz), 2.02 (s, 6H, 2CH ₃), 4.52 (q, 2H, NCH ₂ , J = 7.2 Hz), 5.92 (s, 2H, =CH), 7.24 (dd, 1H, J = 9.0 Hz, J = 1.8Hz), 7.50 (d, 1H, J = 9.0 Hz), 7.59 (d, 1H, J = 1.8 Hz), 8.09 (s, 1H, H-3).
Formule brute: $C_{15}H_{17}N_3$. Masse moléculaire: 239.32 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 15.0 (CH ₃), 44.1 (NCH ₃), 105.5 (2CH), 109.5 (CH), 120.7 (CH), 127.6 (CH), 128.8 (C), 129.2 (2C), 130.9 (C), 132.4 (CH-3), 137.9

(C).

2-Allyl-5-(2,5-Diméthyl-pyrrol-1-yl)-2-H- indazole (18c)	
	Rdt : 72%.
	PF : 86-88 °C.
	RMN ¹ H (CDCl ₃): δ 2.03 (s, 6H, 2CH ₃), 5.20-5.23 (m, 2H, NCH ₂), 5.44-5.50 (m, 2H, =CH ₂), 5.91 (s, 2H, =CH), 6.11-6.24 (m, 1H, =CH), 7.09 (dd, 1H, J = 9.0Hz, J = 1.8 Hz), 7.55 (d, 1H, J = 1.8 Hz), 7.84 (d, 1H, J = 9.0 Hz), 8.13 (s, 1H, H-3).
Formule brute : C ₁₆ H ₁₇ N ₃ . Masse moléculaire: 251.33 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 56.1 (NCH ₂), 105.7 (2CH), 117.0 (CH), 119.5 (CH), 121.2(C), 121.5 (CH), 124.8 (CH), 129.1 (CH), 129.1 (2C), 129.4 (C), 130.8 (CH), 133.9 (C), 145.3 (C).
7-(2,5-Diméthyl-pyrrol-1-yl)-2-méthyl-2H- indazole (19)	
7-(2,5-Diméthyl-pyrrol-1-yl)-2-méthyl-2H- indazole (19)	Rdt : 17,63%;
7-(2,5-Diméthyl-pyrrol-1-yl)-2-méthyl-2H- indazole (19)	Rdt: 17,63%; PF 159-161°C
7-(2,5-Diméthyl-pyrrol-1-yl)-2-méthyl-2H- indazole (19)	Rdt : 17,63%; PF 159-161°C RMN ¹ H (DMSO-d ₆): δ 1.88 (s, 6H, 2CH ₃), 4.12 (s, 3H, NCH ₃), 5.78 (s, 2H, =CH), 7.05- 7.13 (m, 2H, H-Ar), 7.75 (dd, 1H, J = 7.8 Hz, J = 1.5 Hz), 8.42 (s, 1H, H-3).
7-(2,5-Diméthyl-pyrrol-1-yl)-2-méthyl-2H- indazole (19) (f+) = (f+) = (f+) = (f+) + (f+) + (f+) = (f+) +	Rdt: 17,63%; PF 159-161°C RMN ¹ H (DMSO-d ₆): δ 1.88 (s, 6H, 2CH ₃), 4.12 (s, 3H, NCH ₃), 5.78 (s, 2H, =CH), 7.05- 7.13 (m, 2H, H-Ar), 7.75 (dd, 1H, J = 7.8 Hz, J = 1.5 Hz), 8.42 (s, 1H, H-3). RMN ¹³ C (DMSO-d ₆): δ 13.2 (2CH ₃), 40.6 (NCH ₃), 105.9 (2CH), 121.2 (CH), 121.3 (CH), 123.7 (C), 125.4 (CH), 126.1 (CH), 127.6 (C), 128.7 (2C), 145.8 (C).

4-(2,5-Diméthyl-pyrrol-1-yl)-1-méthyl-1H- indazole (21)	
	Rdt:55%
	PF 120-122°C
N N CH ₃	RMN ¹ H (CDCl ₃): δ 2.03 (s, 6H, 2CH ₃), 4.30 (s, 3H, NCH ₃), 5.91 (s, 2H, =CH), 7.12 (dd, 1H, J = 9.0 Hz, J = 1.8 Hz), 7.51 (d, 1H, 8.4 Hz), 7.77 (d, 1H, 9.0 Hz), 8.02 (s, 1H, H- 3).
Formule brute: $C_{14}H_{15}N_3$. Masse moléculaire: 225.29 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 13.0 (2CH ₃), 39.4 (NCH ₃), 105.5 (2CH), 117.6 (CH), 119.2 (CH), 123.5 (C), 124.9 (CH), 130.7 (CH), 129.1 (2C), 133.2 (C), 145.1 (C).

4-(2,5-Diméthyl-pyrrol-1-yl)-2-méthyl-2H- indazole (22)	
	Rdt :34%;
	PF 107-109°C
N N N N N	RMN ¹ H (CDCl ₃): δ 1.97 (s, 6H, 2CH ₃), 4.22 (s, 3H, NCH ₃), 5.94 (s, 2H, =CH), 6.98 (d, 1H, 7.4 Hz), 7.40 (dd, 1H, J = 8.4 Hz, J = 7.2 Hz), 7.65 (s, 1H, H-3), 7.75 (d, 1H, 8.4 Hz).
Formule brute: $C_{14}H_{15}N_3$. Masse moléculaire: 225.29 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 12.7 (2CH ₃), 40.5 (NCH ₃), 105.9 (2CH), 116.7 (CH), 121.8 (CH), 1233 (CH), 126.6 (CH), 129.1 (2C), 130.9 (C), 131.2 (C), 149.0 (C).

CHAPITRE II :

Etude de la réduction des N-alkyl-nitroindazoles en présence de 4hydroxy-6-méthyl-2-pyrone: Synthèse des 3-[1-(N-alkyl-indazol-5(6)ylamino)éthylidène]-6-méthyl-2,4-pyrandiones La synthèse des molécules hybrides et leur évaluation comme une gamme variée d'agents pharmacologiques et de médicaments puissants ont été découvert depuis les deux dernières décennies. Un certain nombre de rapports sont disponibles pour l'incorporation stratégique de deux fragments synthétiques dans une molécule, conservant leurs propriétés inhérentes intactes, ajoutant à l'amélioration du profil biologique et à la réduction des effets secondaires, en particulier ceux liés au développement de la résistance. Pour les molécules hybrides contenant des systèmes hétérocycliques à base d'indazole, seuls quelques exemples ont été rapportés dans la littérature comme des agents chimio thérapeutiques polyvalents et ont trouvé de larges applications biologiques telles que les inhibiteurs de la kinase (pazopanib L76)^{71,72}, les antibactériens (L77)⁷³, les antagonistes des récepteurs 5-HT₆(L78)⁷⁴ et des agents anticancéreux (L79)⁷⁵. Dans notre laboratoire l'équipe de Rakib a synthétisé une série d'indazoles portant une fraction sulfonamide (L80 et L81) possédant des activités antiprolifératives interessantes^{76,77}.

⁷¹ Shaveta, S. Mishra, P. Singh. Eur. J. Med. Chem. 2016, 124, 500–536.

⁷² P. A. Harris, A. Boloor, M. Cheung, R. Kumar, R. M. Crosby, R. G. Davis-Ward, A. H. Epperly, K. W. Hinkle, R. N. Hunter, J. H. Johnson, V. B. Knick, C. P. Laudeman, D. K. Luttrell, R. A. Mook, R. T. Nolte, S. K. Rudolph, J. R. Szewczyk, A. T. Truesdale, J. M. Veal, L. Wang and J. A., *J. Med. Chem.*, **2008**, 51, 4632–4640.
⁷³ J. Zhang, O. Yang, L. A. C. Barrage, R. Wang, R. W. Bartziele, E. Eris, D. Barrage, Y. Wa. T. Mark, C. P. Laudeman, D. K. Luttrell, R. A. Mook, R. T. Nolte, S. K. Rudolph, J. R. Szewczyk, A. T. Truesdale, J. M. Veal, L. Wang and J. A., *J. Med. Chem.*, **2008**, 51, 4632–4640.

⁷³ J. Zhang, Q. Yang, J. A. C. Romero, J. Cross, B. Wang, K. M. Poutsiaka, F. Epie, D. Bevan, Y. Wu, T. Moy,

A. Daniel, B. Chamberlain, N. Carter, J. Shotwell, A. Arya, V. Kumar, J. Silverman, K. Nguyen, C. A. Metcalf, D. Ryan, B. Lippa, R. E. Dolle. *ACS Med. Chem. Lett.*, **2015**, 6 (10), pp 1080–1085.

⁷⁴ K. G. Liu, A. J. Robichaud, R. C. Bernotas, Y. Yan, J. R. Lo, M-Y. Zhang, Z. A. Hughe, C. Huselton, G. M. Zhang, J. Y. Zhang, D. M. Kowal, D. L. Smith, L. E. Schechter, T. A. Comery. *J. Med. Chem.*, **2010**, 53 (21), 7639–7646.

⁷⁵ A. Takeuchi, M. Hori, S. Sato, H. S. Ban, T. Kuchimaru, S. Kizaka-Kondoh, T. Yamori, H. Nakamura, Med. Chem. Commun., **2012**, *3*, 1455-146.

⁷⁶ N. Abbassi, E. M. Rakib, H. Chicha, L. Bouissane, A. Hannioui, C. Aiello, R. Gangemi, P. Castagnola, C. Rosano, M. Viale, Arch. Pharm. Chem. Life Sci. **2014**, 347, 423–431.

⁷⁷ N. Abbassi, H. Chicha, E. M. Rakib, A. Hannioui, M. Alaoui, A. Hajjaji, D. Geffken, C. Aiello, R. Gangemi, C. Rosano, M. Viale, Eur. J. Med. Chem. **2012**, 57, 240–249.

Figure 35 : Activité biologique des molécules hybrides contenant un hétérocycle à base d'indazole

Compte tenu du succès susmentionné, nous avons envisagé d'explorer la possibilité d'introduire un cycle pyranique dans l'indazole par couplage réducteur de N-alkyl-6nitroindazole en présence de 4-hydroxy-6-méthyl-2-pyrone en utilisant l'indium ou le chlorure stanneux comme catalyseur de réduction. Notre choix est porté sur la 2-pyrone car la synthèse de ces dérivés a attiré beaucoup d'attention dans le contexte des activités biologiques de ces composés induites par la fraction hétérocyclique^{78,79,80,81,82}. Ces composés présentent une large gamme d'activités biologiques telles que l'activité cytotoxique, antibiotique et antifongique.

La 2-pyrone est aussi un précurseur important dans la synthèse organique en particulier dans la préparation de nouveaux composés hétérocycliques. Elle réagit facilement avec les systèmes binucléophiles. Elle se comporte comme un composé 1,3-difonctionnalisé cyclique. Elle possède la caractéristique de s'ouvrir facilement par des attaques nucléophiles sur les centres C-2, C-4, C-6 et le groupe carbonyle dans le cas de l'acide déhydracétique. Elle se recyclise par la suite selon différentes voies en d'autres systèmes hétérocycliques.

⁷⁸ Dickinson, J. M. Natural Product Reports **1993**, 10, 71.

⁷⁹ McGlacken, G. P.; Fairlamb, I. J. S. Natural Product Reports **2005**, 22, 369.

⁸⁰ Fairlamb, I.J.S.; Marrison, L. R.; Dickinson ,J. M.; Lu, F.-J.; Schmidt, J. P. Bioorg. Med. Chem. **2004**, 12,4285 ⁸¹ Goel, A.; Ram, V. J. Tetrahedron **2009**, 65, 7865.

⁸² S. Bhat, M.A.Rather , M.Maqbool , H UL Lah , S.k. Yousuf , Z.Ahmad Biomedicine & Pharmacotherapy 91 2017 265–277

La littérature rapporte un ceratin nombre de travaux concernant les réactions de condensation de la 2-pyrone avec les amines hétérocycliques.

I- Etat de la littérature

a) Condensation de l'aminotriazole avec la 2-pyrone

Pour synthétiser de nouveaux composés de structures s-triazolo[1,5-a]pyrimidines, El Otmani et coll⁸³ ont examiné la condensation de la 4-hydroxy-6-méthylpyrone avec la 3amino-s-triazole **L82** dans différents alcools pendant des durées variées. Ils ont isolé dans chaque cas trois produits (schéma 41) : la 5,7-diméthyl-1,2,4-triazolo[1,5-a]pyrimidine **L83**, les 7-alkoxycarbonylméthylèn-5-méthyl-1,2,4-triazolo[1,5-a]pyrimidine **L84** et leurs isomères les 5-alkoxycarbonylméthylèn-7-méthyl-1,2,4-triazolo[1,5-a]pyrimidine **L85**.

Schéma 41

Les mêmes auteurs ont examiné également, la réaction du 3-amino-s-triazole **L82** avec le 3-acétyl-4-hydroxy-6-méthylpyran-2-one dans le *n*-butanol⁸⁴. Ils ont obtenu un mélange d'isomères résultant de sens de cyclisation différents et compétitifs (schéma 42):

⁸³ (a)B. El Otmani, *Thèse de troisième cycle*, **1996**, Université Mohamed V, Rabat.(b) N. R. Pearson, C. M. Carson, *P. C. O. Int Appl. W 08910, 368*, **1989**, (Chem. Abst 112, 179011k, **1990**).

⁸⁴ M. Fettouhi, A. Boukhari, B. El Otmani, E. M. Essassi, Acta. Cryst, C52, **1996**, 1031-1032

D'autre part, la condensation du 3-amino-5-hydroxytriazole **L89** avec la 4-hydroxy-6méthyl-2-pyrone porté à reflux dans différents alcools pendant des durées variées conduit dans tous les cas à un mélange de deux produits (schéma 43).

Schéma 43

Dans la même série, la réaction de condensation de 2-aminopyridine **L92** avec l'acide déhydracétique dans deux solvants différents conduit dans chaque cas à un mélange de trois produits ⁸⁵ : les β -dicétonepyrido[1,2-a]pyrimidin-4-ones **L93**, les β -énaminepyrido[1,2-a]pyrimidin-4-ones **L94** et l'intermédiaire amidique **L95** (schéma 44).

⁸⁵ M. El Mahi, *Thèse de Doctorat d'Etat*, **1998**, Université Mohamed V, Rabat.

Les centres électrophiles mis en œuvre dans la cyclisation sont le groupe carbonyle en position 3 du cycle pyranique et le carbone C-2.

b) Condensation des aminobenzimidazoles avec la 2-pyrone

El Kihel et coll⁸⁶ ont étudié la condensation des aminobenzimidazoles avec la 4hydroxy-6-methyl-2-pyrone, à reflux du n-butanol. Ils obtiennent respectivement les produits de structure 6-(méthyl-2-oxo-1-pyridyl)benzimidazole **L96** et 7-(4-hydroxy-6-méthyl-2-oxo-1-pyridyl)-benzimidazoles **L97** (schéma 45). La voie de cyclisation mise en œuvre est de type $C-2 / NH_2 / C-6$. Il est à noter qu'en aucun cas l'azote imidazolique n'a été affecté.

⁸⁶ A. El Kihel, M. Benchidmi, E. M. Essassi, R. D. Bougot, Synth. Commun., **1999**, 29, 2435–2445.

c) Condensation de 3-aminopyrazolone avec la 2-pyrone

Dans notre laboratoire, Fadel et coll⁸⁷ ont examiné la condensation de la 4-hydroxy-6méthyl-2-pyrone avec 3-aminopyrazolone à reflux du *n*-butanol, *n*-butanol/APTS et l'acide acétique. La réaction conduit à la synthèse de nouveaux dérivés de 2-phenylpyrazolo[3,4b]pyridin-3-one (schéma 46).

Schéma 46

⁸⁷ S. Fadel, Y. Hajbi, E. M. Rakib, M. Khouili, M. D. Pujol, G. Guillaumet, *Synth. Commun.*, **2004**, 34, 2195 2204.

d) Condensation des 7-amino-halogéno-indazoles avec la 2-pyrone

En 2000, Rakib et coll⁸⁸ ont examiné la condensation des 7-amino-halogéno-indazoles **L102(a-d)** avec la 4-hydroxy-6-méthyl-2-pyrone à reflux du *n*-butanol qui a conduit dans tous les cas à un mélange de deux composés les pyrazolo[4,5-h]quinolines **L103(a-d)** et les pyrazolo[1,5,4-ef][1,5]benzodiazépines **L104(a-d)** (schéma 47).

Schéma 47

Pour examiner l'effet du solvant sur le cours de la réaction, la même equipe a étudié la condensation du 7-aminoindazole **L105** avec la 2-pyrone dans le xylène. Contrairement aux résultats obtenus lorsque le *n*-butanol est utilisé comme solvant, la réaction dans le xylène leur a permis d'isoler un seul produit de structure pyrazolo-1,5-benzodiazépine, existant sous deux formes tautomères **L106a**, **L107b** résultant d'une attaque sur le carbone C_2 de la 2-pyrone (schéma 48).

Schéma 48

⁸⁸E.M.Rakib,M.Benchidmi,E.M.Essassi, A.El Bouadili,M.Khouili, M.Visseaux, M.D.Pujol,Heterocycles, **2000**, 53, 2617-2627.

e) Condensation du 7-aminoindazole avec l'acide déhydracétique

L'équipe de Rakib a examiné aussi la réaction de condensation du 7-aminoindazole avec l'acide déhydracétique⁸⁹. Cette réaction consiste à étudier l'action du 7-aminoindazole **L105** sur l'acide déhydracétique à reflux du n-butanol, en présence de l'acide paratoluène sulfonique (APTS). La réaction a conduit à un mélange de deux composés : 1-(1H-7-Indazolyl)-2,6-diméthyl-1H-pyridin-4-one **L108** et 3-butoxycarbonyl-1-(1H-7-indazolyl)-2,6-diméthyl-1H-pyridin-4-one **L109** (schéma 49). Il est à noter que l'addition de l'APTS est très importante pour cette réaction. En effet, sans APTS, aucune réaction n'a été observée entre le 7-aminoindazole et l'acide déhydracétique.

Schéma 49

f) Condensation du 7-aminoindazole avec l'éthyle isodéhydracétate et la 2-pyrone

Parallèlement, en appliquant les mêmes conditions préalablement optimisées, dans notre laboratoire, notre équipe a étudié la condensation de la 2-pyrone et de l'éthyle isodéhydracétate avec le 7-aminoindazole dans l'acide acétique, cela leur a permis d'isoler un mélange de deux composés (schéma 50).

⁸⁹ E. M. Rakib, L. Bouissane, A. Hannioui, M. Benchidmi, E.M. Essassi, *Synthetic Communication*, **2008**, 38: 3523–3529.

g) Réactivité de l'acide déshydroacétique vis à vis des amines

Recemment, George et coll⁹⁰ ont réalisé une synthèse des 4-hydroxy-2-pyridones et de 4-amino-2-pyrones par condensation de la 2-pyrone (acide triacétique lactone⁹¹) avec différentes amines en utilisant des températures variés en présence d'eau (schéma 51).

Schéma 51

Par analogie, Aït-Baziz et coll⁹² ont rapporté une méthode similaire qui fait réagir le 4-hydroxy-6-méthyl-3-(3-arylpropanoyl)-2H-pyran-2-ones L115a-c et 4-hydroxy-6-méthyl-3-(5-phénylpentanoyl)-2H-pyran-2-one L116, qui sont des analogues structurels de l'acide déshydroacétique (DHA), avec l'o-phénylènediamine dans différents conditions opératoires, de nouveaux composés hétérocycliques ont été obtenus et caractérisés (schéma 52).

 ⁹⁰ George A. Kraus, Umayangani K. Wanninayake, Jashaun Bottoms, Tetrahedron Letters, 2016, 57, 1293-1295.
 ⁹¹ Z.S. Bhat et al.Biomedicine & Pharmacotherapy 91,2017, 265–277

⁹² Nabila Aït-Baziz, Yahia Rachedi, and Artur M. S. Silva, ARKIVOC 2010, 7012, 86-97

Strakov et coll ⁹³ ont rapporté la condensation de DHA avec l'acide 4hydrazinylbenzoïque dans de l'éthanol à reflux : cette condensation a donné l'acide 4-(2-(1-(6méthyl-2,4-dioxo-2H-pyran-3(4H)-ylidène)éthyl)hydrazinyl)benzoïque (schéma 53).avec un rendement de 82%.

Le même groupe⁹⁴ a appliqué cette méthodologie sur la condensation de DHA avec la 4-hydrazinylquinazoline dans de l'éthanol bouillant pendant 2h et cela a donné du 6-méthyl-3-(1-(2-(quinazolin-4-yl) hydrazine-yl) éthylidène)-2H-pyran- 2,4 (3H)-dione avec 67% de rendement (schéma 53).

De même, ils avaient antérieurement publié^{95,96} une méthode de préparation de 2,2,6diméthyl-4-oxo-1- (2,2,6,6-tétraméthylpipéridin-4-yl)-1,4 L'acide dihydropyridine-3carboxylique a été obtenu avec un rendement de 75,6% à partir de la réaction de DHA avec la 2,2,6,6-tétraméthylpipéridine-4-amine dans divers solvants (schéma 53).

⁹³ (a)Strakov, A. Ya.; Tonkikh, N. N.; Petrova, M. V.; Strakova, I. A. Chem. Heterocycl. Comp.(New York, NY, United States) **1997**, 33, 441-444. (b)Khim. Geterotsiklicheskikh Soedin.**1997**, nb 4, 516-519.

⁹⁴ Strakov, A. Ya.; Krasnova, A. A.; Petrova, M. V. Chem. Heterocycl. Comp (New York, NY, United States) **1996**, 32 (1), 72-74; Khim. Geterotsiklicheskikh Soedin.**1996** (1), 81-83.

⁹⁵ Olin Corporation. Selected 2,2,6,6-tetramethyl-4-piperidinyl derivatives and their use as light stabilizers. Patent: EP173050, **1991**, B1.

⁹⁶ Olin Corporation. Selected 2,2,6,6-tetramethyl-4-piperidinyl derivatives and their use as light stabilizers. Patent: US4548973, **1985**, A1.

Des conditions douces de la condensation de deux moles de l'acide déshydroacétique (DHA) avec des amines primaires ont été également décrites par Wong et coll⁹⁷, à savoir la réaction du propane-1,2-diamine et la 1,2-diphényléthane-1,2-diamine dans l'éthanol a donné des dérivés cis- et trans-bispyrannes **L123a,b**, respectivement. En outre, la condensation de deux moles de (DHA) avec la cyclohexane-1,2-diamine dans l'éthanol à reflux a donné les dérivés cis- et trans-bispyranes correspondants **L124**.

De plus, Cindric et coll 98 ont établi que la condensation de (DHA) avec l'oaminoaniline et le 1,3-diaminopropane dans l'éthanol à reflux donne respectivement les dérivés bispyrannes **L125** et **L126**.

D'autres travaux ont été menés par Rao et $coll^{99}$.sur la réaction de (DHA) avec du bishydrazide dans le méthanol à reflux et qui donne le dérivé de bispyranne **L127**¹⁰⁰ avec un rendement de 78% (schéma 54).

⁹⁷ Wang, F.; Zhang, H.; Li, L.; Hao, H.-Q.; Wang, X.-Y.; Chen, J.-G.Tetrahedron Asymm. **2006**, 17, 2059-2063

⁹⁸ Cindric, M.; Novak, T.K.; Uzarevic, K. J. Molec. Struct. **2005**, 750, 135-141.

⁹⁹ Rao, P.V.; Narasaiah, A.V. Indian Journal of Chemistry Section A, **2003**, 42 (8), 1896–1899,

Kotali et coll^{101,102,103} à leur tour, ont très récemment développé une méthode pour la synthèse de nouveaux hétérocycles de bore mettant en jeux la réaction de N-aroylhydrazone avec l'acide déshydroacétique. La procédure implique la formation de nouvelles structures de bore et de tétraédrique zwitterioniques (schéma55).

Schéma 55

Ces données de la littérature montrent que la réaction de condensation de la 2-pyrone avec les diamines hétérocycliques constitue une méthodologie de synthèse de nouvelles molécules hétérocycliques de type: triazolopyrimidine, pyrazolo-1,5-benzodiazépine,

¹⁰⁰ N. Bregovic, N.Cindro, B.Bertoša, D.Barišić, L. Frkanec, K. Užarević, and Vladislav Tomišić, Chem. Eur. J. 10.1002/chem.**2017**-01677.

¹⁰¹ Kotali, A.; Dimoulaki, F.; Kotali, E.; Maniadaki, A.; Harris, P.A.; Rozycka- Sokolowska, E.; Balczewski, P.; Joule, J.A. *Tetrahedron* **2015**, 1-5.

¹⁰² Karamouzi, S.; Maniadaki, A.; Nasiopoulou, D. A.; Kotali, E.; Kotali, A.; Harris, P. A.; Raftery, J.; Joule, J. A. Synthesis **2013**, 45, 2150-2154.

¹⁰³ A.Kotali, A.Maniadaki, E.Kotali, Philip A. Harris, Ewa Ro ż.Sokołowska, P.Bałczewski, J.A. Joule Tetrahedron Letters, **2017**, 6, 512-515

pyrazolo[3,4-b]pyridine, pyrazolo[1,5-a]pyrimidine et pyrazolo[4,5-h]quinoline pouvant présenter des propriétés pharmacologiques intéressantes. Les auteurs ont montré aussi que le solvant joue un rôle important au niveau de l'orientation de la réaction de condensation de la diamine hétérocyclique avec la 2-pyrone.

Suite à ces travaux, il nous a paru intéressant de développer dans ce travail la synthèse de nouveaux 3-[1-(*N*-alkyl-indazol-5(6)-ylamino)éthylidène]-6-méthyl-2,4-pyrandiones via la réduction des *N*-alkyl-nitroindazoles avec In et/ou SnCl₂ en présence de 4-hydroxy-6-méthyl-2-pyrone:

Schéma 56

II- Etude de la réduction des N-alkyl-6-nitroindazoles en présence de 4-hydroxy-6-méthyl-2-pyrone

II-1 Synthèse des N-alkyl-6-nitroindazoles

Les N-alkyl-6-nitroindazoles (**5a-d et 6a-d**) et N-alkyl-3-chloro-6-nitroindazoles (**5e-h et 6e-h**) sont obtenus avec de bons rendements selon les conditions opératoires décrites dans le chapitre I. La réaction a été réalisée par simple alkylation de 6-nitroindazoles (**3a,b**) en utilisant des conditions expérimentales développées par notre groupe de recherche pour la synthèse des composés attendus (schéma 57)¹⁰⁴.

Schéma 57

¹⁰⁴ El Ghozlani, M.; Chicha, H.; Abbassi, N.; Chigr, M.; El Ammari, L.; Saadi, M.; Spinelli, D.; Rakib, E. M. *Tetrahedron Lett.*, **2016**, 57, 113-117.

II-2 Synthèse des 3-[1-(*N*-alkyl-indazol-6-ylamino)éthylidène]-6-méthyl-2,4-pyrandiones

La réduction catalytique des N-alkyl-6-nitroindazoles par l'indium en présence d'acide acétique dans le tétrahydrofurane (THF) suivie du couplage de l'amine générée avec le 4hydroxy-6-méthyl-2 pyrone conduit aux 3-(1- (N-alkyl-lH-indazol-6-yl) amino) éthylidène) -6-méthyl-2H-pyran-2,4 (3H) -diones **23a-h** et **24a-h** avec de bons rendements oscillant entre 68-85%.(schéma 58, tableau 11).

Schéma 58

Nous avons repris les mêmes conditions opératoires citées précédemment, mais cette fois-ci en changeant le catalyseur de reduction de l'indium par le chlorure d'étain. Les résultats sont quasi équivalents, les produits recherchés ont été isolés avec d'excellents rendements 70%-90% (schéma 59, tableau 9). Nous avons remarqué que l'utilisation du chlorure d'étain anhydre comme catalyseur se traduit par une légère augmentation du rendement comparé à celle enregistré dans le cas de l'indium.

Les meilleurs résultats sont obtenus lors de l'utilisation de 1-allyl-6-nitro-1H-indazole comme produit de départ de la réaction et le SnCl₂ comme système catalytique en présence d'acide acétique au sein du THF (schéma 59).

Schéma 59

Tableau 9: Rendement des composés 23a-h et 24a-h issus de la réduction des N-alkyl-6nitroindazoles par In/et ou SnCl2 en présence de 4-hydroxy-6méthyl-é-pyrone

En ce qui concerne l'influence de la structure des 6-nitro-N-alkyl-indazoles de départ sur les rendements de réduction/couplage en présence soit de $SnCl_2$ ou de l'Indium en tant que catalyseurs, on observe dans tous les cas que les composés **23a-h** N-1 alkylés sont obtenus avec des rendements meilleurs (78-91%) que leurs isomères N-2 alkylés **24a-h** (72-82%). Les indazoles alkylés **5d** et **5e** (substitués en position N-1 par un groupe allyle ou benzyle) donnent des molécules hybrides avec des meilleurs rendements (91% et 88%, respectivement).

Un mécanisme a été proposé pour expliquer la formation des (3E)-3-(1-((N-alkyl-1Hindazol-6-yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)-diones **23a-h** et **24a-h**. Tout d'abord, la réduction habituelle du groupe nitro génère l'amine correspondante. Par la suite, l'amine réagit avec le groupe carbonyle de l'acide déshydroacétique formé par acylation de la 4-hydroxy-6-méthyl-2-pyrone par l'acide acétique et conduit à l'intermédiaire [A]. La déshydratation de [A] conduit aux composés souhaités (schéma 60).

Schéma 60

Les structures des composés **23a-h** et **24a-h** ont été établies sur la base des données spectrales RMN¹H, RMN¹³C et DEPT. Dans la figure ci-dessous, nous présentons un exemple des spectres RMN¹H, RMN¹³C et DEPT des composés **23c** et **24e**.

Figure 37 : Spectré¹³C RMN (75 MHz, CDCl₃) du composé 23c

Figure 38: Spectré¹³C RMN (75 MHz, DEPT, CDCl₃) du composé 23c

Figure 40: Spectre ¹³C RMN (75 MHz, CDCl₃) du composé 24e

En plus des données spectroscopiques de la RMN, les structures des composés 23c et $24e^{105}$ ont été confirmée sans ambigüité par diffraction des rayons X (figure 42). Le diagramme Ortep des composés 23c et 24e montre bien le cycle pyrone en position 6 de l'indazole.

 23c :(E)-3-(1-((1-allyl-1H-indazol-6yl)amino)ethylidene)-6-methyl-2H-pyran-2,4(3H)-dione
 24e:(E)-3-(yl)amino)eth

24e:(E)-3-(1-((2-methyl-1H-indazol-6yl)amino)ethylidene)-6-methyl-2H-pyran-2,4(3H)-dione

Figure 42 : Diagramme Ortep des composés 23c et 24e^e

II-3 Etude de la réduction des N-alkyl-5-nitroindazoles en présence de 4hydroxy-6-méthyl-2-pyrone

Suite aux résultats forts encourageants, nous avons décidé d'élargir notre étude à la synthèse d'autres molécules hybrides contenant les deux motifs: indazole et 2-pyrone, en examinant la réduction des N-alkyl-**5**-nitroindazoles **10a-c** et **11a-c** en présence de 4-hydroxy-6-méthy-2-pyrone en utilisant les mêmes conditions cités précédemment. Comme prévu, nous avons obtenu exclusivement les (E)-6-méthyl-3-(1-((N-alkyl-1H-indazol-5-yl)-amino) éthylidène)-2H-pyran-2,4(3H)-diones correspondant avec de bons rendements (schéma 61, tableau 10) (76-92%).

¹⁰⁵ El Ghozlani, M.; Rakib, E. M.; Gamouh, A.; Saadi, M.; El Ammari, L. Acta Crystallogr, sect. 2014, E70, o1256

Schéma 61

Tableau 10: Rendement des composés 25a-c et 26a-c issus de la réduction des N-alkyl-5nitroindazoles par In ou par SnCl₂

Les structures des composés **25a-c** et **26a-c** sont confirmées par des données spectrales RMN¹H, ¹³C. Nous rapportons dans les figures ci-dessous, les spectres RMN¹H, RMN¹³C (DEPT) du composé **26a**.

Figure 43: Spectre RMN¹H (300 MHz, CDCl₃) du composé 26a

6.20

0.55

20.50

17.23

1.94

Figure 44: Spectre RMN¹³C (75 MHz, CDCl₃) du composé 26a

Chapitre II : Etude de la réduction des N-alkyl-nitroindazoles en présence de 4-hydroxy-6-méthyl-2pyrone: Synthèse des 3-[1-(N-alkyl-indazol-5(6)-ylamino)éthylidène]-6-méthyl-2,4-pyrandiones

Figure 45: RMN¹³C (75 MHz, CDCl₃, DEPT) du composé 26a

II-4 Etude de la réduction des N-alkyl-5-nitrobenzimidazolthiols en présence de 4-hydroxy-6-méthyl-2-pyrone

Pour généraliser les résultats obtenus dans la série des 5- et 6-nitroindazoles à d'autres types de structures nitrohétéroaryles, nous avons appliqué les mêmes conditions de réduction citées précédemment à la N-allyl-5-nitrobenzimidazolthiol, préparé par simple alkyation de 5- nitrobenzimidazolthiol (Chapitre I). La réaction de réduction de N-allyl-5 nitrobenzimidazolthiol suivi du couplage de l'amine correspondante par 4-hydroxy-6-méthyl-2-pyrone conduit aux molécules hybrides contenant les motifs : benzimidazole et 2-pyrone avec un rendement de 75% (schéma 62).

La structure du composé 27 a été établie sur la base des spectres RMN¹H, RMN¹³C (DEPT).

Dans le spectre RMN¹H du composé **27**, on note outre les signaux du fragment Nallyl-5 nitrobenzimidazolthiol, deux signaux à 2.16 ppm et 2.58 ppm dues respectivement aux protons du groupement méthyle et un signal à 5.77 ppm du au proton vinyl de la 2-pyrone.

III- Conclusion

Dans ce chapitre, nous avons préparé une nouvelle série de molécules hybrides de type : 3-(1-((N-alkyl-indazol-6-yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)-diones et <math>3-(1-((N-alkyl-indazol-5-yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)-diones via la réduction des N-alkyl-6(5)-nitroindazoles par l'indium et/ou le chlorure stanneux dans THF/acide acétique et en présence de la 4-hydroxy-6-méthyl-2-pyrone comme réactif du couplage de l'amine réduit. Nous avons montré que la réduction avec SnCl₂ donne des rendements meilleurs par rapport à l'utilisation de l'indium. Nos résultats montrent aussi que l'indazole alkylé en position N-1 donne des rendements meilleurs par à l'indazole alkylé en position N-2.

Pour généraliser ce résultat, nous avons aussi préparé de nouvelles molécules hybrides de type : 3-(1-(1-alkyl-2-(methylthio)-1H-benzimidazol-6-ylamino)éthylidène)-6-méthyl-3H-pyran-2,4-dione à partir de la réaction de reduction des N-alkyl-5-nitrobenzimidazolthiols en présence de la 4-hydroxy-6-méthyl-2-pyrone.

Partie Expérimentale

Caractéristiques physico-chimiques et spectrales des composés synthétisés

Les points de fusion non corrigés ont été pris en tube capillaire sur l'appareil Buchi-Tottoli. Toutes les masses molaires (MM) qui sont indiquées dans la partie expérimentale sont exprimées en grammes par mole.

Les spectres RMN ¹H et ¹³C ont été enregistrés dans CDCl₃, DMSO-d₆ et solution (sauf indication contraire) avec TMS comme référence interne en utilisant un appareil Bruker AC 300 (1H) ou 75 MHz instruments (¹³C). Les déplacements chimiques sont donnés en ppm par rapport au tétraméthylsilane (TMS) pris comme référence interne. La multiplicité des ressources de RMN ¹³C ont été affectés par la mise en valeur sans distorsion par transfert des expériences de polarisation (DEPT).

Les spectres de masse à faible résolution (MS) ont été enregistrés sur un spectromètre Sciex API 3000 Perkin-Elmer.

La chromatographie sur couche mince (CCM) a été réalisée sur des feuilles d'aluminium recouvertes de silice E.Merck 60 F254 (épaisseur 0,063-0.2 mm). La révélation des taches se fait sous une lampe UV. Les séparations chromatographiques flash sont effectuées sur gel de silice.

Les réactifs du commerce ont été utilisés sans aucune purification, sauf mention contraire.

Réactions de réductions des N-alkyl-6-nitroindazole

Sous atmosphère inerte, (1.0 mmol) les N-alkyl-6-nitro-1H-indazoles ont été ajouté à un mélange de poudre d'indium ou de SnCl₂ (460 mg, 4,0 mmol) et d'acide acétique (0,572 ml, 10 mmol) dans le THF (2 ml), puis l'addition de 2-pyrone (1,0 mmol) dans du THF (3 ml). Le mélange réactionnel porté à reflux pendant 3h à 5h. Puis le mélange réactionnel est ramené à température ambiante et dilué avec de l'acétate d'éthyle (30 ml), filtré à travers de la Celite, hydrolysé avec une solution aqueuse de NaHCO₃ à 10% (30ml) jusqu'à pH 7-8, puis extrait avec de l'acétate d'éthyle (30 ml x 3). Les extraits organiques combinés ont été séchés sur MgSO₄, filtrés et concentrés. Le résidu a été élue avec un mélange acétate d'éthyle /l'hexane pour la plupart des dérivés à travers une colonne de gel de silice neutre pour donner les pyrroles correspondants.

(3E)-3-(1-(1-méthyl-1H-indazol-6-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (23a)	
	Rdt : 81%
O CH ₃	PF 164-168 °C
$H_{3}C O O H CH_{3}$ Formule brute: $C_{16}H_{15}N_{3}O_{3}$.	RMN ¹ H (DMSO-d ₆): δ 2.12 (s, 3H, CH ₃), 2.55 (s, 3H, CH ₃),4.03 (s, 3H, NCH ₃), 5.85 (s, 1H, =CH), 7.08 (dd, 1H, J = 8.4 Hz, J = 1.5 Hz), 7.73 (d, 1H, J = 1.2 Hz), 7.84 (d, 1H, J = 8.4 Hz), 8.10 (s, 1H, H-3), 15.83 (s, 1H, NH)
Masse moléculaire: 297.31 g.mol ⁻¹	RMN ¹³ C (DMSO-d ₆):δ 19.8 (CH ₃), 20.6 (CH ₃), 36.0 (NCH ₃), 97.1 (C), 107.2 (CH),118.9 (CH), 122.4 (CH), 123.0(C), 133.2 (CH-3), 134.4 (C), 139.9 (C), 162.8 (C), 163.9 (C), 175.7 (CO), 184.4 (CO).

(3E)-3-(1-(2-méthyl-2H-indazol-6-ylamino) éthylidène)-6-méthyl-3H-pyran-2,4-dione (24a)	
	Rdt : 75%
	PF 192-194 °C
Formule brute: $C_{16}H_{15}N_3O_3$.	RMN ¹ H (CDCl ₃): δ 2.21 (s, 3H, CH ₃), 2.66 (s, 3H, CH ₃), 4.43 (s, 3H, NCH ₃), 5.88 (s, 1H, =CH), 7.08 (dd, 1H, J = 8.4 Hz, J = 1.5 Hz), 7.71 (d, 1H, J = 1.2 Hz), 7.80 (d, 1H, J = 8.4 Hz), 8.21 (s, 1H, H-3), 15.81 (s, 1H, NH).
wasse moleculaire: 297.31 g.mol	RMN ¹³ C (CDCl ₃): δ 20.1(CH ₃), 20.7 (CH ₃), 46.7 (NCH ₃), 97.9 (C), 107.0 (CH), 112.0 (CH), 120.4 (C), 121.8 (CH), 122.8 (CH), 123.7 (C), 125.2 (CH-3), 139.0 (C), 164.0 (C), 175.1 (CO), 184.9 (CO).
(3E)-3-(1-(1-éthyl-1H-indazol-6-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (23b)	
	Rdt : 86%;
<u>^</u>	PF : 177-179 °C;
$H_{3}C O CH_{3} N N H_{1}T N O_{3}$	RMN ¹ H (CDCl ₃): δ 1.54 (t, 3H, CH ₃ , J= 7.2 Hz), 2.21 (s, 3H,CH ₃), 2.68 (s, 3H, CH ₃), 4.46 (q, 2H, NCH ₂ , J= 7.2 Hz), 6.07 (s, 1H, =CH), 6.96 (dd, 1H, J =8.4 Hz, J = 1.8 Hz), 7.27 (d, 1H, J = 1.2 Hz), 7.81 (d, 1H, J = 8.4 Hz), 8.07 (s, 1H, H-3), 15.57 (s, 1H, NH).
Masse moléculaire: $311.34 \text{ g mol}^{-1}$	RMN ¹³ C (CDCl ₂): δ 14.9 (CH ₂) 20.1
moreuran e. 511.54 g.mor	(CH ₃), 21.0 (CH ₃), 44.1 (NCH ₂), 98.2 (C), 106.1 (CH), 106.5 (CH), 118.7 (CH), 122.9 (CH), 123.4 (C), 132.7 (CH-3), 134.4 (C),138.7 (C), 160.1 (C), 164.0 (C), 175.8

(CO), 184.0 (CO)

(3E)-3-(1-(2-éthyl-2H-indazol-6-ylamino)	
éthylidene)-6-méthyl-3H-pyran-2,4-dione	
(24h)	

Formule brute: $C_{17}H_{17}N_3O_3$. Masse moléculaire: 311.34 g.mol⁻¹ **Rdt**: 72%

PF: 159-161 °C

RMN ¹**H** (CDCl₃): δ 1.75 (t, 3H, CH₃, J= 7.2 Hz), 2.19 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 4.72 (q, 2H, NCH₂, J= 7.2 Hz), 5.91 (s, 1H, =CH), 7.03 (dd, 1H, J = 9.0 Hz, J = 1.2 Hz), 7.65 (d, 1H, J = 1.2 Hz), 7.83 (d, 1H, J = 9.0 Hz), 8.23 (s, 1H, H-3), 15.88 (s, 1H, NH).

RMN ¹³C (CDCl₃): δ 15.6 (CH₃), 20.0 (CH₃), 20.7 (CH₃), 49.0 (NCH₂), 98.2(C), 106.8 (CH), 111.4 (CH), 120.2 (C), 121.8 (CH), 122.6 (CH), 123.4 (C), 125.6 (CH-3), 138.7 (C), 164.2 (C), 175.6 (CO), 184.5 (CO).

(3E)-3-(1-(1-allyl-1H-indazol-6-ylamino)
éthylidène)-6-méthyl-3H-pyran-2,4-dione
(23c)

CH₃

Formule brute: $C_{18}H_{17}N_3O_3$.

Masse moléculaire: 323.35 g.mol⁻¹

H₃C

N H

Rdt:91%

PF: 118-120 °C

RMN ¹**H** (CDCl₃): δ 2.21 (s, 3H, CH₃), 2.68 (s, 3H, CH₃), 5.04–5.06 (m, 2H, NCH₂), 5.13–5.28 (m, 2H, =CH₂), 5.97–6.06 (m, 1H, =CH), 6.13 (s, 1H, =CH), 6.97(dd, 1H, J = 8.4 Hz, J = 1.8 Hz), 7.27 (d, 1H, J = 1.2 Hz), 7.82 (d, 1H, J = 8.4 Hz), 8.07 (s, 1H, H-3), 15.48 (s, 1H, NH).

RMN ¹³C (CDCl₃): δ 20.1 (CH₃), 21.0 (CH₃), 52.1 (NCH₂), 98.2(C), 106.5 (CH), 110.5 (CH), 118.5 (=CH₂), 118.8 (CH), 122.7 (CH), 123.7 (C), 132.1 (CH), 133.3 (CH), 134.3 (C), 139.2 (C), 163.9 (C), 164.7 (C), 176.0 (CO), 184.0 (CO).

(3E)-3-(1-(2-allyl-2H-indazol-6-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (24c)	
	Rdt :82%
	PF: 96-98 °C
Formule brute : $C_{18}H_{17}N_3O_3$.	RMN ¹ H (CDCl ₃): δ 2.16 (s, 3H, CH ₃), 2.64 (s, 3H, CH ₃), 5.10–5.13 (m,2H, NCH ₂), 5.35–5.42 (m, 2H, =CH ₂), 5.83 (s, 1H, =CH), 6.09–6.18 (m, 1H, =CH), 6.90 (dd,1H, J = 8.4 Hz, J = 1.5 Hz), 7.54 (d, 1H, J = 1.0 Hz), 7.74 (d, 1H, J = 8.4 Hz), 8.10 (s, 1H, H-3), 15.71 (s, 1H, NH).
Masse moléculaire: 323.35 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 19.9 (CH ₃), 20.6 (CH ₃), 56.3 (NCH ₂), 97.4 (C), 107.2 (CH), 113.5 (CH), 120.5 (CH), 120.7 (=CH ₂), 122.1 (CH), 122.7 (C), 123.9 (CH),131.3 (CH), 147.3 (C), 163.4 (C), 163.8 (C), 175.6 (CO), 184.6 (CO).
(3E)-{1-[1-(4-Méthyl-benzyl)-1H-indazol-6- ylamino]-éthylidene}-6-méthylpyran-2,4- dione (23d)	
	Rdt: 88%
O CH ₃	PF :98–100 °C
H_3C	RMN ¹ H (CDCl ₃): δ 2.23 (s, 3H, CH ₃), 2.31 (s, 3H, CH ₃),2.59 (s, 3H, CH ₃), 5.58 (s, 2H, NCH ₂), 5.79 (s, 1H, =CH), 6.94 (dd, 1H, J = 8.4 Hz, J = 1.8Hz), 7.11-7.15 (m, 5H), 7.82 (d, 1H, J = 8.4 Hz), 8.11 (s, 1H, H-3), 15.37
	(s, 1H, NH).

(3E)-{1-[2-(4-Méthyl-benzyl)-1H-indazol-6- ylamino]-éthylidene}-6-méthylpyran-2,4- dione (24d)	
	Rdt : 78%
CH₂	PF 154-156 °C
$H_{3}C O O O O O O O O O O O O O O O O O O O$	RMN ¹ H (CDCl ₃): δ 2.16 (s, 3H, CH ₃), 2.34 (s, 3H, CH ₃),2.64 (s, 3H, CH ₃), 5.59 (s, 2H, NCH ₂), 5.79 (s, 1H, =CH), 6.85 (dd, 1H, J = 8.4 Hz, J = 1.0Hz), 7.17 (d, 1H, J = 7.8 Hz), 7.23 (d, 1H, J = 7.8 Hz), 7.52 (d, 1H, J = 1.0 Hz), 7.68 (d, 1H, J= 8.4 Hz), 7.95 (s, 1H, H-3), 15.72 (s, 1H, NH).
Formule brute: C ₂₃ H ₂₁ N ₃ O ₃ . Masse moléculaire: 387.43 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 19.9 (CH ₃), 20.5 (CH ₃), 21.2 (CH ₃), 57.5 (NCH ₂), 97.5 (C), 107.2 (CH), 113.2 (CH), 120.6 (C), 120.7 (CH), 122.2(CH), 124.3 (CH), 128.5 (2CH), 129.8 (2CH), 131.4 (C), 135.1 (C), 138.9 (C), 163.5 (C),163.7 (C), 175.5 (CO), 184.6 (CO).

Réactions de réduction des 3-chloro-N-alkyl-6-nitroindazoles

Sous pression atmosphérique, (1.0 mmol) de 3-Chloro-N-alkyl-6-nitro-1H-indazoles ont été ajouté à un mélange de poudre d'indium /SnCl₂ (460 mg, 4,0 mmol) et d'acide acétique (0,572 ml, 10 mmol) dans le THF (2 ml), puis l'addition de 2-pyrone (1,0 mmol) dans du THF (3 ml). Le mélange réactionnel porté à reflux à 80 °C pendant 3h à 5h. Puis le mélange réactionnel est ramené à température ambiante et dilué avec de l'acétate d'éthyle (30 ml), filtré à travers de la Celite, hydrolysé avec une solution aqueuse de NaHCO₃ à 10% (30ml) jusqu'à PH 7-8, puis extrait avec de l'acétate d'éthyle (30 ml x 3). Les extraits organiques combinés ont été séchés sur MgSO₄, filtrés et concentrés. Le résidu a été élue avec un mélange acétate d'éthyle / hexane pour la plupart des dérivés à travers une colonne de gel de silice neutre pour donner les composés correspondants.

(3E)-3-(1-(3-Chloro-2-éthyl-2H-indazol-6- ylamino)éthylidene)-6-méthyl-3H-pyran-2,4-	
dione (24f)	
	Rdt: 80%
CI	PF : 62-64 °C
$ \begin{array}{c} $	RMN ¹ H (CDCl ₃): δ 1.45 (t, 3H, CH ₃ , J= 7.2 Hz), 2.20 (s, 3H, CH ₃), 2.64 (s, 3H, CH ₃), 4.72 (q, 2H, NCH ₂ , J= 7.2 Hz), 5.81 (s, 1H, =CH), 6.91 (dd, 1H,J = 8.4 Hz, J = 1.5 Hz), 7.45 (d, 1H, J = 1.5 Hz), 7.68 (d, 1H, J = 8.4 Hz), 15.78 (s, 1H, NH).
Formule brute : C ₁₇ H ₁₇ ClN ₃ O ₃ . Masse moléculaire: 345.78 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 15.7 (CH ₃), 20.0 (CH ₃), 20.6 (CH ₃), 48.8 (NCH ₂), 97.8 (C), 107.1 (C), 113.9 (CH), 112.0 (C), 118.2 (C), 120.4 (CH), 120.8 (CH), 134.9 (C), 146.8 (C), 163.5 (C), 175.7 (CO), 184.5 (CO)
(3E)-3-(1-(3-Chloro-1-allyl-1H-indazol-6- ylamino)éthylidene)-6-méthyl-3H-pyran-2,4- dione (23g)	
(235)	Rdt: 81%;
CI	PF 146-148 °C;
$H_{3}C O O O O O O O O O O O O O O O O O O O$	RMN ¹ H (CDCl ₃): δ 2.23 (s, 3H, CH ₃), 2.66 (s, 3H, CH ₃), 4.95–4.98 (m, 2H, NCH ₂), 5.18–5.30 (m, 2H, =CH ₂), 5.82–6.02 (m, 1H, =CH), 6.14 (s, 1H,=CH), 7.02 (d, 1H, J = 8.4 Hz), 7.24 (d, 1H, J = 1.0 Hz), 7.77 (d, 1H, J = 8.4 Hz), 15.54 (s, 1H, NH);
Formule brute: C ₁₈ H ₁₆ ClN ₃ O ₃ .	RMN ¹³ C (CDCl ₃): δ 20.1 (CH ₃), 21.1

Masse moléculaire: 357.79 g.mol⁻¹

RMN ¹³C (CDCl₃): δ 20.1 (CH₃), 21.1 (CH₃), 52.5 (NCH₂), 97.1 (C), 106.3 (CH), 106.9 (CH), 118.9 (=CH₂), 119.3 (CH), 121.0 (C), 121.6 (CH), 131.7 (CH), 133.5 (C), 135.3(C), 140.5 (C), 163.8 (C), 165.0 (C), 176.2 (CO), 184.0 (CO)

(3E)-3-(1-(3-Chloro-2-allyl-2H-indazol-6- ylamino)éthylidene)-6-méthyl-3H-pyran-2,4- dione (24g)	
	Rdt: 75%
	PF 70-72 °C
H_3C O CH_3 N	RMN ¹ H (CDCl ₃): δ 2.18 (s, 3H, CH ₃), 2.67 (s, 3H, CH ₃), 5.08–5.12 (m, 2H, NCH ₂), 5.32–5.40 (m, 2H, =CH ₂), 5.86 (s, 1H, =CH), 6.10–6.17 (m, 1H,=CH), 6.92 (dd, 1H, J = 8.4 Hz, J = 1.5 Hz), 6.91 (dd, 1H, J = 8.4 Hz, J = 1.5 Hz), 7.45 (d,1H, J = 1.5 Hz), 7.61 (d, 1H, J = 8.4 Hz), 15.77 (s, 1H, NH).
Formule brute : C ₁₈ H ₁₆ ClN ₃ O ₃ . Masse moléculaire: 357.79 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 20.0 (CH ₃), 20.6 (CH ₃), 56.4 (NCH ₂), 97.6 (C), 106.8 (C), 113.6 (CH), 112.0 (C), 118.2 (C), 120.4 (CH), 120.7 (=CH ₂), 121.0 (CH), 131.5 (CH), 135.0 (C), 146.2 (C), 164.0 (C), 175.4 (CO), 184.8 (CO).
(3E)-3-(1-(3-Chloro-1-p-tolyl-1H-indazol-6- ylamino)ethylidene)-6-methyl-3H-pyran-2,4- dione (23h)	
	Rdt:88%
ÇI	PF :98–100 °C

Formule brute: $C_{23}H_{20}ClN_3O_3$. Masse moléculaire: 421.88 g.mol⁻¹ **RMN** ¹**H** (CDCl₃): δ 2.23 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 2.59 (s, 3H, CH₃), 5.58 (s, 2H, NCH₂), 5.79 (s, 1H, =CH), 6.94 (dd, 1H, J = 8.4 Hz, J = 1.8Hz), 7.11-7.15 (m, 5H), 7.82 (d, 1H, J = 8.4 Hz), 8.11 (s, 1H, H-3), 15.37 (s, 1H, NH).

RMN ¹³C (CDCl₃): δ 20.1 (CH₃), 21.1 (2CH₃), 53.3 (NCH₂), 98.2 (C), 106.0 (CH), 106.6 (CH), 118.7 (CH), 122.9 (CH), 123.8 (C), 127.3 (2CH), 129.5 (C), 129.7 (2CH), 132.7 (C), 133.2(CH), 134.2 (C), 138.1 (C), 139.2 (C), 163.4 (C), 175.1 (CO), 184.1 (CO).

Préparation des 3E-(1-(N-alkyl-H-indazol-5-ylamino)éthylidene)-6-méthyl-3Hpyran-2,4-dione

Ces composés ont été préparés à partir de N-alkyl-5-nitroindazole en utilisant le même mode opératoire appliqué pour les N-alkyl-6-nitroindazoles.

(3E)-(1-(1-Méthyl-1H-indazol-5-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (25a)	
	Rdt : 92%
H ₃ C	PF: 173-175 °C
$\mathbf{Formule \ brute:} \ C_{16}H_{15}N_{3}O_{3} \ .$ Masse moléculaire: 297.31 g.mol ⁻¹	RMN ¹ H (CDCl ₃): δ 2.23 (s, 3H, CH ₃), 2.65 (s, 3H, CH ₃), 4.13(s, 3H, NCH ₃), 6.24 (s, 1H, =CH), 7.20 (dd, 1H, J = 8.4 Hz, J = 1.8 Hz), 7.53 (d, 1H, J = 8.4Hz), 7.57 (d, 1H, J = 1.2 Hz), 8.05 (s, 1H, H-3), 15.22 (s, 1H, NH). RMN ¹³ C (CDCl ₃): δ 20.1 (CH ₃), 21.0 (CH ₃), 35.9 (NCH ₃), 98.2 (C), 106.2 (CH), 110.5 (CH), 118.1 (CH), 123.8 (C), 124.1 (CH), 128.8 (C), 133.0 (CH-3), 138.9 (C), 164.1 (C), 164.9 (C), 176.3 (CO), 183.6(CO).

(3E)-(1-(2-Méthyl-1H-indazol-5-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (26a)	
	Rdt: 84%
H ₃ C	PF 142-144 °C
Formule brute : $C_{16}H_{15}N_3O_3$.	RMN ¹ H (CDCl ₃): δ 2.16 (s, 3H, CH ₃), 2.61 (s, 3H, CH ₃), 4.29 (s, 3H, NCH ₃), 5.81 (s, 1H, =CH), 7.09 (dd, 1H, J = 8.4 Hz, J = 1.8 Hz), 7.48 (d, 1H, J = 1.8Hz), 7.77 (d, 1H, J = 8.4 Hz), 8.02 (s, 1H, H-3), 15.59 (s, 1H, NH).
Masse moléculaire: 297.31 g.mol ⁻¹	RMN ¹³ C (CDCl ₃): δ 19.9 (CH ₃), 20.5 (CH ₃), 40.6 (NCH ₃), 97.3 (C), 107.3 (CH), 116.8 (CH), 118.6 (CH), 121.4 (C), 124.9 (CH), 125.5 (CH-3), 130.5 (C), 146.8 (C), 163.4 (C), 163.8 (C), 175.7 (CO), 184.6 (CO).

(3E)-(1-(1-Ethyl-1H-indazol-5-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (25b)

Formule brute: $C_{17}H_{17}N_3O_3$. Masse moléculaire: 311.34 g.mol⁻¹ **Rdt** 87%

PF: 156-158 °C

RMN ¹**H** (CDCl₃): δ 1.54 (t, 3H, CH₃, J= 7.2 Hz), 2.22 (s, 3H,CH₃), 2.65 (s, 3H, CH₃), 4.48 (q, 2H, NCH₂, J= 7.2 Hz), 6.21 (s, 1H, =CH), 7.19 (dd, 1H, J =8.4 Hz, J = 1.8 Hz), 7.51 (d, 1H, J = 8.4 Hz), 7.58 (d, 1H, J = 1.5 Hz), 8.06 (s, 1H, H-3), 15.25(s, 1H, NH).

RMN ¹³C (CDCl₃): δ 14.9 (CH₃), 20.1 (CH₃), 20.9 (CH₃), 44.2 (NCH₂), 96.8(C), 106.3 (CH), 110.4 (CH), 118.2 (CH), 123.9 (C), 124.1 (CH), 128.8 (C), 133.0 (CH-3), 138.0 (C), 164.1 (C), 164.8 (C), 176.2 (CO), 183.7 (CO).

(3E)-(1-(2-Ethyl-1H-indazol-5-ylamino)	
éthylidene)-6-méthyl-3H-pyran-2,4-dione	
(26b)	

Formule brute: $C_{17}H_{17}N_3O_3\;$.

Masse moléculaire: 311.34 g.mol⁻¹

Rdt: 76%;

PF 113-115 °C;

RMN ¹**H** (CDCl₃): δ 1.69 (t, 3H, CH₃, J= 7.2 Hz), 2.17 (s, 3H,CH₃), 2.62 (s, 3H, CH₃), 4.59 (q, 2H, NCH₂, J= 7.2 Hz), 5.83 (s, 1H, =CH), 7.13 (dd, 1H, J =8.4 Hz, J = 1.8 Hz), 7.51 (d, 1H, J = 1.0 Hz), 7.82 (d, 1H, J = 8.4 Hz), 8.10 (s, 1H, H-3), 15.61(s, 1H, NH);

RMN ¹³C (CDCl₃): δ 15.7 (CH₃), 19.9 (CH₃), 20.5 (CH₃), 48.9 (NCH₂), 97.3(C), 107.2 (CH), 117.0 (CH), 118.3 (CH), 121.0 (C), 124.0 (CH), 125.5 (CH-3), 130.7 (C),145.7 (C), 163.5 (C), 163.8 (C), 175.7 (CO), 184.6 (CO)

(3E)-(1-(1-Allyl-1H-indazol-5-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (25c)

Formule brute: $C_{18}H_{17}N_3O_3\;$.

Masse moléculaire: 323.35 g.mol⁻¹

Rdt: 90%

PF: 90-92 °C

RMN ¹**H** (CDCl₃): δ 2.22 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 5.05–5.08 (m,2H, NCH₂), 5.15–5.26 (m, 2H, =CH₂), 5.97–6.08 (m, 1H, =CH), 6.19 (s, 1H, =CH), 7.17 (dd,1H, J = 8.4 Hz, J = 1.8 Hz), 7.50 (d, 1H, J = 9.0 Hz), 7.58 (d, 1H, J = 1.8 Hz), 8.07 (s, 1H, H-3), 15.27 (s, 1H, NH).

RMN ¹³C (CDCl₃): δ 20.1 (CH₃), 20.8 (CH₃), 52.1 (NCH₂), 96.9 (C), 106.5 (CH), 110.7 (CH), 118.1 (CH), 118.4 (=CH₂), 124.1 (CH), 124.3 (C), 128.9 (C), 132.2 (CH), 133.5 (CH), 138.5 (C), 164.1 (C), 164.7 (C), 176.2 (CO), 183.8 (CO).

(3E)-(1-(2-Allyl-1H-indazol-5-ylamino) éthylidene)-6-méthyl-3H-pyran-2,4-dione (26c)	
	Rdt: 81%
H ₃ C H	PF 78-80 °C
Formule brute: $C_{18}H_{17}N_3O_3$. Masse moléculaire: 323 35 g mol ⁻¹	RMN ¹ H (CDCl ₃): δ 2.18 (s, 3H, CH ₃), 2.63 (s, 3H, CH ₃), 5.16–5.19 (m, 2H, NCH ₂), 5.40–5.46 (m, 2H, =CH ₂), 5.92 (s, 1H, =CH), 6.05–6.20 (m, 1H, =CH),7.15 (dd, 1H, J = 8.4 Hz, J = 1.5 Hz), 7.53 (d, 1H, J = 1.0 Hz), 7.68 (d, 1H, J = 8.4 Hz), 8.12 (s, 1H, H-3), 15.56 (s, 1H, NH).
	RMN ¹³ C (CDCl ₃): δ 19.9 (CH ₃), 20.6 (CH ₃), 56.2 (NCH ₂), 97.6 (C), 106.9 (CH), 117.2 (CH), 118.3 (CH), 121.4 (=CH ₂), 124.8 (CH), 121.7 (C), 128.8(CH), 130.7 (CH), 132.4 (C), 163.8 (C), 163.9 (C), 175.8 (CO), 184.4 (CO).

Ce composé a été préparé à partir de N-alkyl-5-nitrobenzimidazoles en utilisant le même mode opératoire appliqué pour les N-allyl-5-nitroindazole.

(E)-3-(1-((1-allyl-2-mercapto-1Hbenzimidazol-5-yl)amino)éthylidene)-6méthyl-2H-pyran-2,4(3H)-dione (27d)

Formule brute: $C_{18}H_{17}N_3O_3S$. Masse moléculaire: 355,10 g.mol⁻¹

Rdt:75%

PF: 110-112 °C

RMN ¹**H** (CDCl₃): δ 2.16 (s, 3H, CH₃), 2.58 (s, 3H, CH₃), 3.96–4.22 (m, 2H, SCH₂), 5.16–5.52 (m, 2H, =CH₂), 5.77 (s, 1H, =CH), 5.87–5.98 (m, 1H, =CH), 7.16 (dd, 1H, J = 9.0 Hz, J = 1.8 Hz), 7.61 (d, 1H, J = 1.8 Hz), 7.79 (d, 1H, J = 9.0 Hz), 15.88 (s, 1H, NH).

RMN ¹³C (CDCl₃): δ 19.9 (CH₃), 20.5 (CH₃), 35.8 (SCH₂), 97.6 (C), 107.2 (CH), 111.1 (CH), 114.5 (CH), 119.9 (C), 120.9 (=CH₂), 122.6 (CH), 130.8 (CH), 131,5 (C), 132.8 (C), 133.2 (C), 134.9 (C), 151.8 (C), 163.7 (CO), 175.7 (CO).

DEUXIEME PARTIE

ETUDE ELECTROCHIMIQUE ET EVALUATION PHARMACOLOGIQUE DES COMPOSES SYNTHETISES

CHAPITRE I Etude électrochimiques de nouveaux indazoles Polysubstitués

I-Introduction

La corrosion a un énorme impact économique et environnemental sur pratiquement toutes les facettes de l'infrastructure mondiale, des routes, des ponts et des bâtiments au pétrole et au gaz, au traitement chimique et aux systèmes d'eau et d'égoût¹⁰⁶. En plus de causer des dégâts graves et des menaces pour la sécurité publique, la corrosion perturbe les opérations et nécessite une réparation et un remplacement étendus des actifs défaillants. Le coût annuel de la corrosion dans le monde est estimé à plus de 1,8 billions de dollars américains, ce qui se traduit par 3 à 4% du produit intérieur brut (PIB) des pays industrialisés¹⁰⁷.

Heureusement, il existe des professionnels de la corrosion hautement expérimentés utilisant des technologies innovantes et éprouvées qui peuvent contrôler efficacement les effets de la corrosion lorsqu'ils disposent des ressources appropriées. Cependant, de nombreux décideurs de l'industrie et du gouvernement ne comprennent pas les conséquences ni l'ampleur de la corrosion et la force de la contrôler. Ils n'apprécient pas non plus la nécessité d'une recherche et d'un développement continus (R&D) afin de réduire d'avantage les effets de la corrosion sur les personnes, les biens et l'environnement¹⁰⁸.

¹⁰⁶ G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, "Corrosion Costs and Preventive Strategies in the United States" (Washington D.C.: FHWA, **2001**).

¹⁰⁷ CIA (Central Intellegence Agency), The World Fact Book, Country Comparison of GDP (Gross Domestic Product = purchasing power parity); World GDP (2008 estimate: \$ 69,490,000,000,000, updated April 9, **2009**). https://cia.gov/library/publications/the-worldfactbook/rankorder/2001rank.html.

¹⁰⁸ Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control, May **2009** by the world corrosion organization.

II- Etat de la littérature sur la corrosion

La littérature rapporte un nombre important de la corrosion des molécules hétérocycliques qui ont marqué des effets inhibiteurs très intéressants. Nous citons quelques exemples qui ont montré des résultats remarquables.

En série de l'indazole, Yujie Qiang, et coll¹⁰⁹ ont étudié l'effet d'inhibition du 5nitroindazole (figure 46) sur la corrosion du cuivre dans une solution à 3,0% de NaCl et ce via les méthodes de perte de poids, les tests électrochimiques, la microscopie électronique à balayage (SEM) et les calculs théoriques. La perte de poids et les résultats électrochimiques ont révélé que le 5-nitroindazole est un inhibiteur de type mixte, l'efficacité d'inhibition étant de 99% à 0,4 mM, ce qui a été encore confirmé par l'observation SEM. L'adsorption de la molécule inhibitrice sur la surface du cuivre a été observée pour obéir à l'isotherme d'adsorption de Langmuir. Les calculs chimiques quantiques et la simulation de la dynamique moléculaire ont montré que le 5-nitroindazole est adsorbé fortement sur la surface de cuivre en mode parallèle à travers le cycle indazole.

Figure 46: Structure moléculaire du 5-nitroindazole.

Récemment, la même équipe¹¹⁰ a réalisé des expériences de corrosion et des calculs théoriques pour étudier le mécanisme d'inhibition de l'indazole (**L9**) et du 5-aminoindazole (**L130**) (figure 47) sur le cuivre dans la solution de NaCl. Les résultats obtenus par la méthode gravimetrique et les méthodes électrochimique sont en bon accord et révèlent que ces composés sont des inhibiteurs à haut rendement avec un ordre d'efficacité d'inhibition: L130> L9, ce résultat est aussi confirmé, par observation sur le microscope électronique à balayage et par émission de champ (FESEM). En outre, la simulation des calculs chimiques quantiques (figure 48) et de la dynamique moléculaire (MD) a montré que les deux inhibiteurs étudiés sont adsorbés fortement sur la surface de cuivre en mode parallèle.

¹⁰⁹ Y. Qiang, S. Zhang, S. Xu, L. Yin, RSC Adv. 5 2015.

¹¹⁰ Y. Qiang, S. Zhang, S. Xu, W. Li Journal of Colloid and Interface Science 472, 2016, 52–59

Figure 47: Structure moléculaire du L9 et L130

Figure 48: Structure moléculaire optimisée, carte de surface de densité électronique totale du potentiel électrostatique et orbite moléculaire frontalier de L9 et L130.

Dans un travail similaire Yujie Qiang et coll¹¹¹ ont examiné, l'inhibition de la corrosion du cuivre dans la solution de NaCl à 3,0% en poids de trois composés halogénoindazole utilisant une mesure de polarisation potentiodynamique, une spectroscopie d'impédance électrochimique et une analyse par diffraction des rayons X. Les résultats électrochimiques révèlent que toutes ces composés organiques sont des inhibiteurs mixtes avec un ordre de capacité inhibitrice: L132>L133>L131, qui a été confirmé par des observations sur le microscope électronique à balayage par émission de champ (FE-SEM) et un microscope à force atomique (AFM). Leur performance favorable est attribuée à la formation d'inhibiteurs-films d'adsorption sur le cuivre. En outre, les calculs théoriques ont montré la structure électronique des composés étudiés et leurs configurations d'adsorption optimisées sur la surface de cuivre.

¹¹¹ Y. Qiang, S. Zhang, S. Yan, X. Zou, S. Chen, *Corrosion Science*, **2017**, 126, 295-304.

Figure 49: Les structures chimiques des inhibiteurs d'indazole étudiés

Figure 50: Les structures optimisées, les distributions de densité orbitale frontalière et (ESP) de trois molécules d'halogène-indazole en phase gazeuse.

Récemment Rakib et coll¹¹² ont réalisé une étude spectroscopique et électrochimique détaillée (Résonnance Magnétique Nucléaire, Voltamétrie cyclique, Résonnance de Spins Electroniques et Calcul DFT) sur les dérivés *N*-alkylés de de 4-et 7-nitroindazoles (figure 51). Les données expérimentales ont permis de nous donner une belle image du comportement chimique et de la distribution électronique dans tous les sites des nitroindazoles étudiés: l'ensemble des données expérimentales apparaît fortement appuyée par les résultats des calculs DFT.

¹¹² G. Micheletti, A. Kouakou, C. Boga, P. Franchi, M. Calvaresi, L. Guadagnini, M. Lucarini, E.M. Rakib, D. Spinelli, D. Tonelli, I.Forsal. *Arab. J. Chem.* **2017**, 10(6), 823-836.

Figure 51: 4- et 7-nitroindazole et leurs derivès 3-chloro-, N-1 et N-2 alkylés

La même équipe¹¹³ a rapporté aussi une étude spectroscopique et électrochimique détaillée (Résonnance Magnétique Nucléaire, Voltamétrie cyclique, Résonnance de Spins Electroniques et Calcul DFT) sur les dérivés *N*-alkylés de de 5-et 6-nitroindazoles (figure 52), pour obtenir des informations concernant la distribution électronique sur les différents atomes du système indazole, en particulier l'effet de la présence d'un alkyle sur l'azote N-1 ou N-2 (qui pourrait affecter de manière significative la distribution électronique de l'anneau indazole) et d'un atome de chlore en position 3 du noyau pyrazolique de l'indazole.

Figure 52: 5- et 6-nitroindazoles et leurs dérivès N-1 et N-2 alkylés

Ces données bibliographiques montrent bien l'interêt électrochimique des dérivés de l'indazole en particulier leurs comportement en tant que inibiteurs de corrosion. Partant de là, nous avons étudié d'avantage la performance d'inibition de trois molécules hybride dans l'acier doux dans l'acide chlorhydrique 1M.

¹¹³ Kouakou, G. Micheletti, C. Boga, M. Calvaresi, H. Chicha, P. Franchi, L. Guadagnini, M. Lucarini, E. M. Rakib, D. Spinelli, D. Tonelli. Current of Organic Chemistry, **2015**, 19, 1526 – 1537.

III- Etude électrochimique de nouvelles molécules hybrides contenant le motif indazolique

III-1. Introduction.

La corrosion est un problème très important dans divers domaines de l'industrie et, par conséquent, dans l'économie. La protection des métaux et des alliages est donc d'une importance primordiale. La préoccupation de chacun d'entre nous est de connaître les processus de corrosion afin de trouver des moyens de minimiser la corrosion ou de l'empêcher de se produire. L'utilisation d'inhibiteurs de corrosion est une façon de protéger contre la corrosion. Un inhibiteur de corrosion est une substance utilisée en très petite quantité qui réduit efficacement la vitesse de corrosion. Au cours des dernières années, de nombreux inhibiteurs efficaces sont des composés organiques hétérocycliques composés d'un π et / ou d'un système contenant des hétéroatomes^{114,115,116}. (O, N ou S). L'inhibition de la corrosion par les molécules contenant ces hétéroatomes est principalement attribuée à leur capacité d'adsorption sur les surfaces métalliques et aussi à la formation d'une couche protectrice qui peut bloquer les sites actifs sur des surfaces métalliques et ainsi supprimer l'attaque de corrosion¹¹⁷. Le processus d'adsorption des molécules organiques sur la surface métallique dépend principalement de la charge superficielle du métal, de la structure chimique des molécules organiques et du type de milieu agressif¹¹⁸. Des travaux antérieurs ont montré que l'indazole peut s'absorber sur la surface métallique et présenter ainsi une puissante capacité d'inhibition de la corrosion dans la solution de NaCl à 3,0% en poids¹¹⁹. En plus de sa capacité d'inhibition, les paires d'électrons des groupes nitro et amino facilitent l'intensité d'adsorption de la molécule d'indazole sur le métal et lui donnent une meilleure performance d'inhibition

Dans la présente étude, nous avons étudié d'avantage la performance d'inhibition de trois molécules hybrides contenant des motifs indazole, pyrrole et 2-pyrone synthétisés par

¹¹⁴ S. Herrmann, M. Kostrzewa, A. Wierschem, C. Streb, Angew. Chem. 53,2014,13596–13599.

¹¹⁵ W. Chen, S. Hong, H.B. Li, H.Q. Luo, M. Li, N.B. Li, Corros. Sci. 61,2012, 53-62.

¹¹⁶ Zhihua Tao, Shengtao Zhang , Weihua Li , Baorong Hou Corrosion Science 51 , **2009**, 2588–2595

¹¹⁷ M.A. Amin, J. Appl. Electrochem. 36 ,2005, 215–226.

¹¹⁸ F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee, Appl. Surf. Sci. 253 ,2007, 3696.

¹¹⁹ Yujie Qiang, Shengtao Zhang , Shenying Xu, Wenpo Li, Journal of Colloid and Interface Science 472 ,**2016**, 52–59

notre groupe de recherche ¹²⁰ (figure 53) dans l'acier doux dans la solution d'acide chlorhydrique 1M avec des techniques électrochimiques: Les courbes de polarisation potentiodynamique, la spectroscopie d'impédance électrochimique (EIS) et le microscope à force atomique AFM., Nous avons également examiné l'effet de la concentration et de la température sur l'inhibition. Après cela, le mécanisme d'inhibition correspondant a été interprété par le modèle d'isotherme de Langmuir et les approches de calcul théoriques. Ces résultats peuvent nous aider à comprendre l'effet des molécules hybrides (pyrrol et pyrone) sur la capacité d'inhibition de la molécule d'indazole et fournir des conseils pour concevoir et développer de nouveaux dérivés d'indazole comme inhibiteurs efficaces.

Figure 53

III-2. Préparation des matériaux et des échantillons

Le milieu agressif (HCl 1M) a été préparé par dilution de HCl à 37% analytique. La plage de concentration de l'inhibition utilisée a été modifiée de 10⁻⁵ M à 10⁻² M dans HCl 1 M. Avant chaque expérience, l'échantillon d'acier doux a été abradé consécutivement avec une série de papier abrasif (180, 400, 600, 800, 1200 grit). Ensuite, l'échantillon a été soigneusement nettoyé à l'aide d'eau distillée, puis il a été dégraissé avec de l'éthanol et séché.

III-3 Expérience électrochimique.

Nous utilisons pour tous les tests électrochimiques un type de **potentiostat type OrigaStat 100** contrôlé par un logiciel d'analyse (**OrigaMaster**). La cellule de corrosion utilisée avait trois électrodes. L'électrode de référence était une électrode saturée de calomel. Une électrode en platine a été utilisée comme électrode auxiliaire placée devant l'électrode de travail. L'électrode de travail était en acier au carbone de la surface 1 cm². La température est contrôlée thermostatiquement. L'électrode de travail a été immergée dans une solution d'essai au potentiel de circuit ouvert (OCP) pendant 1 heure pour établir un potentiel de circuit ouvert

¹²⁰ El Ghozlani, M.; Chicha, H.; Abbassi, N.; Chigr, M.; El Ammari, L.; Saadi, M.; Spinelli, D.; Rakib, E. M. *Tetrahedron Lett.*, **2016**, 57, 113-117.

 (E_{ocp}) . Les essais de spectroscopie d'impédance électrochimique (EIS) ont été effectués au potentiel de circuit ouvert (OCP) avec une amplitude de 5 mV dans la gamme de fréquence de 1 kHz à 100 mHz à 20 points par décennie. Les diagrammes d'impédance ont été donnés dans la représentation de Nyquist. Après le test d'impédance, les mesures de Tafel ont été numérisées de la direction cathodique à la direction anodique, de -750 à -100 mV avec un taux de balayage de 20 mV.s⁻¹.

III-4.Microscope à force atomique (AFM).

Les échantillons d'acier doux de taille 1- 5- 0,1 cm ont été préparés comme décrit cidessus Après l'immersion dans une solution de HCl 1 M sans et avec des inhibiteurs de 10⁻² à 25°C pendant 24 h, les échantillons ont été nettoyés avec de l'eau distillée, séchés avec un agent d'arrosage d'air froid, puis utilisés pour les examens, **le mode de bande Nanosurf Easyscan 2AFM**.

III-5.Étude de polarisation Tafel.

Les courbes de polarisation Tafel cathodiques et anodiques de l'acier doux dans la solution de HCl 1 M en présence et en absence des composes organiques testé dans différentes concentrations sont présentées dans la figure 54. Les différents paramètres électrochimiques sont présentés dans le tableau 14, comme le potentiel de corrosion (E_{corr}), La densité de courant de corrosion (i_{corr}), la pente anodique de Tafel (Ba), la pente cathodique de Tafel (Bc) et l'efficacité inhibitrice (E_{I} (%). La relation suivante détermine E_{I} (%):

$$E_I(\%) = \frac{i_{corr} - i_{corr/inh}}{i_{corr}} \times 100$$

 i_{corr} et i_{corr} / $_{inh}$ sont les valeurs de densité de courant de corrosion sans et avec l'inhibiteur, déterminées respectivement par extrapolation des lignes cathodiques Tafel au potentiel de corrosion.

Figure 54:Les courbes de polarisation potentiométriques de l'acier doux dans la solution de HCl 1 M en l'absence et en présence de différentes concentrations de R_1 (a), R_2 (b) et R_3 (c) à 298 K.

La présence de chaque inhibiteur entraîne une diminution remarquable de la densité de courant et diminue avec la concentration d'inhibiteur. De manière correspondante, E_I augmente avec la concentration d'inhibiteur, E_I atteint des valeurs maximales pour la concentration de 10^{-2} en termes d'inhibition pour les trois composés organiques. L'efficacité inhibitrice augmente dans le sens suivant: R_2 (60%) $< R_1$ (67%) $< R_3$ (86%).

Ces résultats confirment bien que les trois dérivés d'indazole sont de bons inhibiteurs dans HCl 1 M.

D'après la figure 54, l'ajout des trois molécules R_1 , R_2 et R_3 dans une solution acide, modifie les branches de polarisation cathodique et anodique et déplace légèrement le potentiel de corrosion vers des potentiels plus positifs, par rapport au résultat obtenu en absence d'inhibiteurs. Ce résultat indique que l'ajout d'inhibiteurs réduit la dissolution cathodique en acier doux et retarde également la réduction de l'hydrogène. Ces composés agissent comme des inhibiteurs de type mixte et montrent une influence plus conséquente dans les parcelles de polarisation cathodique par rapport aux parcelles anodiques¹²¹.

Tableau 11: Paramètres de polarisation et les efficacités d'inhibition correspondantes pour l'acier doux dans la solution de HCl 1,0 M en l'absence et la présence de différentes concentrations de R₁, R₂ et R₃ à 298 K.

	С	E(mV)	$I_{acc}(\mu A/cm^2)$	$-B_{o}(mV)$	$B_{o}(mV)$	$E_{I}(\%)$
HC1	1M	- 511	87	_99	111	-
nei	10^{-5}	- 512	55	- 88	112	37
Ρ.	10^{-4}	- 512	55 17	- 86	112	57 46
R ₁	10^{-3}	- 510 500	+7 26	- 80	101	40 70
	10^{-2}	- 309	20	- 91	101	70
	10	- 495	23	- 99	108	/4
	10-5	- 503	34	- 97	114	61
R_2	10^{-4}	- 513	30	- 94	109	65
	10^{-3}	- 491	28	-97	106	68
	10^{-2}	- 477	25	-91	89	71
	10-5	- 494	38	-83	110	56
R_3	10^{-4}	- 512	32	-106	117	63
	10^{-3}	- 472	16	-102	102	81
	10^{-2}	- 514	12	-110	116	86

¹²¹ M.A. Hegazy, Corrosion. Science. 51 ,2009, 2610–2618

III-6.Mesures de spectroscopie d'impédance électrochimique.

La figure 55 représente les diagrammes de Nyquist d'acier doux après 1 heure d'immersion dans la solution de HCl 1 M en présence et en absence des différentes concentrations de $R_1(a)$, $R_2(b)$ et $R_3(c)$ à 298 K, respectivement. Les paramètres tels que la résistance au transfert de charge (Rt), la résistance à la solution (Rs) et la capacité double couche (Cdl) sont calculés à partir des parcelles de Nyquist comme indiqué ailleurs¹²² et résumés dans le tableau 12. L'efficacité d'inhibition (ER) est calculée à partir de l'équation suivante¹²³

$$\eta_R(\%) = \frac{R_t - R_t^0}{R_t} \times 100$$

 R_t^0 et R_t sont des résistances de transfert de charge en l'absence et en présence de l'inhibiteur, respectivement.

Il ressort clairement de cette figure que tous les spectres d'impédance présentent une seule boucle capacitive, ce qui indique que la corrosion de l'acier est principalement contrôlée par le processus de transfert de charge et généralement liée au transfert de charge du processus de corrosion et du comportement à double couche^{124,125}. En outre, ces diagrammes ont une forme similaire pour toutes les concentrations testées, ce qui indique qu'il n'y a pas beaucoup de changement dans le mécanisme de corrosion¹²⁶.

En outre, le diamètre des demi-cercles en présence des trois inhibiteurs augmente par rapport à la solution vierge (HCl 1M) et augmente aussi avec la concentration croissante des inhibiteurs, ce qui indique la formation continue d'un film d'adsorption sur une surface d'acier doux. L'augmentation du diamètre pour R_3 est plus rapide que celle de R_1 et R_2 , et le diamètre des trois composés est également plus important lorsque les concentrations sont approximatives. Le résultat indique que la propriété d'inhibition de R_3 est meilleure que celle des autres composés, ce qui est cohérent avec celui obtenu à partir des mesures de polarisation.

¹²² H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Electrochim. Acta 50 ,2005, 3446–3452

¹²³ M. Moradi, J.Z. Duan, X.Q. Du, Corros. Sci. 69 ,2013, 338–345.

¹²⁴ C.N. Cao, J.Q. Zhang, An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, **2002**. p. 172 .

¹²⁵ M. Behpour, S.M. Ghoreishi, N. Mohammadi, N. Soltani, M. Salavati-Niasari, Corros. Sci. 52 **,2010**, 4046–4057.

¹²⁶ N. Labjar, M. Lebrini, F. Bentiss, N.E. Chihib, S. El Hajjaji, C. Jama, Chem. Phys. 119, **2010**, 330–336.

Les paramètres électrochimiques dérivés des mesures EIS telles que; $RS(\Omega.Cm^2)$, $Rt(\Omega.Cm^2)$, $Cdl(\mu F.cm^{-2})$ et Ep(%) sont résumés dans le tableau 12. On ne constate que l'efficacité d'inhibition (E %) augmente avec des concentrations croissantes à 298 K. Les résultats d'EIS montrent également que les valeurs de Rct augmentent tandis que les valeurs de Cdl diminuent en présence d'inhibiteurs. L'augmentation des valeurs de Rct peut être attribuée à la formation des films protecteurs sur l'interface métal/solution¹²⁷. On peut supposer que la diminution des valeurs de Cdl est causée par le remplacement progressif des molécules d'eau par l'adsorption des molécules inhibitrices sur la surface métallique¹²⁸.Cela suggère que les inhibiteurs R₁, R₂ et R₃ agissent par adsorption à l'interface métal-solution.

Les valeurs de l'efficacité d'inhibition augmentent avec la concentration de R₁ et R₃, d'autre part, le R₂ reste presque efficace pour toutes les concentrations, en général lorsque la concentration atteint 10^{-2} M. Ces dérivés d'indazole présentent une bonne performance inhibitrice pour l'acier doux dans la solution d'acide chlorhydrique, et suivez la commande: ER (R₃)> ER (R₁)>ER (R₂). L'efficacité d'inhibition obtenue à partir de mesures électrochimiques est raisonnablement en accord avec celles obtenues à partir des courbes de polarisation potentiodynamique (E_p).

¹²⁷ Hjouji M. Y., Djedid M., Elmsellem H., Kandri Rodi Y., Benalia M., Steli H., Ouzidan Y., Ouazzani Chahdi F., Essassi E. M., Hammouti B., Der Pharma Chemica. 8(4) **,2016** ,85-95.

¹²⁸ Elmsellem H., Elyoussfi A., Sebbar N. K., Dafali A., Cherrak K., Steli H., Essassi E. M., Aouniti A. and Hammouti B., Maghr. J. Pure & Appl. Sci.1 ,**2015**, 1-10.

Figure 55: Nyquist d'acier doux dans du HCl 1M sans et avec différentes concentrations de R₁ (a), R₂ (b) et R₃ (c) à 298 K.

	С	C_{dl} (μ F.Cm ⁻²)	Rs (Ω .Cm ²)	$R_t(\Omega.Cm^2)$	$\mathrm{E}_{\mathrm{P}}\left(\% ight)$
HCl	1M	79.7	2.5	251	-
	10^{-5}	51.5	2.9	389	36
	10-4	62.9	2.7	400	37
R_1	10^{-3}	53.3	4.8	749	67
	10^{-2}	29.8	1.6	1193	79
	10-5	60.9	6.1	655	62
	10-4	23.9	4.7	666	62
\mathbf{R}_2	10^{-3}	26.9	10.3	932	73
	10^{-2}	22.1	-4.8	1136	78
	10^{-5}	84.1	-2.5	474	47
	10-4	31.1	9.4	644	61
R_3	10^{-3}	27.6	2.1	1153	78
	10^{-2}	13.3	-9.7	2669	91

Tableau 12: Paramètres EIS pour la corrosion de l'acier doux dans le HCl 1,0 M sans et avec différentes concentrations de R₁, R₂ et R₃ à 298K.

III-7.Effet de la température.

L'effet de la température sur l'efficacité d'inhibition de R_1 , R_2 et R_3 a été étudié par des expériences de polarisation à différentes températures comprises entre 25 et 50°C, en présence et en absence d'inhibiteurs à 10^{-2} M. Les courbes de polarisation obtenues à différentes températures avec et sans composés à 10^{-2} M sont représentées sur les figures 56-59 Les valeurs des paramètres électrochimiques et E (%) sont données dans le tableau13.

Nous constatons que l'augmentation de la densité du courant de corrosion est plus prononcée avec la montée en température de la solution vierge. En présence des composés indazole testés, l'i_{corr} est réduit. Nous notons que l'efficacité de ces dérivés d'indazole dépend parfaitement de la température et diminue avec la montée en température de 25 à 50°C.

	Température°C	E(mV)	$I_{corr}(\mu A/cm^2)$	Ei(%)
HCl	25	- 511	87	-
	30	- 531	85	-
	40	- 536	104	-
R ₁	50	- 534	242	-
	25	- 495	23	74
	30	- 524	33	61
	40	- 536	73	50
	50	-541	199	18
	25	- 477	25	71
\mathbf{R}_2	30	- 436	185	?!
	40	- 453	255	?!
	50	- 495	345	?!
	25	- 514	12	86
R ₃	30	- 549	16	81
C	40	- 552	20	81
	50	- 511	25	90

Tableau 13: L'influence de la température sur les paramètres électrochimiques pour une électrode en acier doux immergée dans du HCl 1 M sans et avec des inhibiteurs

III-8. Effet du temps d'immersion.

		-	
	Temps (heure)	$R_t(\Omega.cm^2)$	Ei(%)
HCl	1	251	
	1	1193	79
	2	1186	79
R_1	4	1117	78
	6	1113	77
	1	1136	78
	2	1083	77
R_2	4	1184	79
	6	1198	79
	1	2669	91
	2	2816	91
R ₃	4	2369	89
	6	2167	88

Tableau 14: Effet du temps d'immersion sur les diagrammes d'impédance électrochimique de l'acier doux en présence de 10⁻² M d'inhibiteurs

La Figure 60, indique la variation de l'efficacité d'inhibition de l'acier en fonction du temps d'immersion, en l'absence et en présence de 10^{-2} M de R₁, R₂ et R₃. Pour les trois composés, l'efficacité inhibitrice n'a pas varié sensiblement avec le temps d'immersion, ce qui suggère la formation d'un film protecteur stable au fil du temps, et l'action de R₁, R₂ et R₃ était indépendante du temps d'immersion.

Figure 60: Relation entre l'efficacité d'inhibition (E) et le temps d'immersion (t) dans le HCl 1 M à 25 °C (mesures de spectroscopie d'impédance électrochimique).

III-9. Examen de surface de microscopie à force atomique (AFM).

Le microscope à force atomique (AFM) fournit un puissant outil de caractérisation de la microstructure¹²⁹. La figure 61 montre les images AFM de la surface de l'acier dans une solution de HCl 1,0 M sans et avec les composés organiques à 25 °C après 24 h d'immersion. La figure 61(a) révèle que la surface de l'acier avant l'immersion semble plus uniforme et même les lignes de polissage peuvent être observées. Cependant, dans 1 M HCl (Fig.61 (b), la morphologie de la surface est strictement corrodée en l'absence d'inhibiteur. En présence d'inhibiteurs (figure 61c, d et e), il existe une formation d'un film adsorbé sur la surface de l'acier dans 1 M HCl, entraînant une diminution du contact entre le métal et la solution chlorhydrique. Il en résulte une diminution du contact entre le métal et la solution chlorhydrique.

¹²⁹ A.A. Gewirth, B.K. Niece, Electrochemical applications of in-situ scanning probe microscopy, Chem. Rev. 97, **1997**, 1129–1162

Figure 61: Images AFM de surface en acier doux à 25 °C: (a) abrasives sans immersion dans les solutions d'essai; (B) après 24 h d'immersion dans du HCl 1 M sans inhibiteur; (C) après 24 h d'immersion dans du HCl 1 M contenant 10⁻² R1; (D) après 24 h d'immersion

III-10. Calcule théorique

a) Méthode de calcule

Les calculs DFT ont été effectués en utilisant la fonction B3LYP¹³⁰, avec l'ensemble de base 6-31 (d) standard¹³¹. Les optimisations ont été réalisées en utilisant le gradient analytique de Berny. Tous les calculs ont été montrés avec la suite de programmes Gaussian 09^{132} . L'indice global d'électrophilie¹³³ ω , μ et η , a été donné par les expressions suivantes $\omega = \frac{\mu^2}{2\eta}$, $\mu = \frac{\varepsilon_H + \varepsilon_L}{2}$ and $\eta = \varepsilon_L - \varepsilon_H$ en termes de potentiel chimique électronique μ et de dureté chimique η . Les deux quantités peuvent être approchées en termes d'énergies à un électron de l'orbitale moléculaire frontière HOMO et LUMO, respectivement ε_H *et* ε_L

b) Analyse des indices de réactivité DFT des composés R1, R2 et R3

Des calculs chimiques quantiques ont été effectués pour comprendre le mécanisme d'inhibition de R_1 , R_2 et R_3 pour l'acier doux dans les milieux de corrosion à 303 K. En particulier, les structures géométriques optimisées, le potentiel de surface électrostatique et l'orbitale moléculaire frontière de R_1 , R_2 et R_3 , y compris les distributions de densité électronique HOMO et LUMO pour R_1 (molecule 1), R_2 (molecule 2), et R_3 (molecule 3), (figure 62). Ensuite, les calculs chimiques sont illustrés dans le tableau 15.

¹³⁰ Yanai T., Tew D. P., Handy N. C., Chemical Physics Letters, 393, **2004**, 51 – 57.

¹³¹ Francl M. M., Pietro W. J., Hehre W. J., J. Chem. Phys. 77,**1982** ; 3654-3665.

¹³² Gaussian 09, Revision A.02, M. J. Frisch.

¹³³ Parr R. G., Szentpaly L. V., Liu S., J Am ChemSoc, 121 ;1999, 1922-1924.

Figure 62:Représentation en 3D de l'orbitale moléculaire HOMO, LUMO et de la carte de potentiel électrostatique des trois molécules

Tableau 15: Paramètres chimiques quantiques pour R_1 , R_2 et R_3 obtenus en p	phase
gazeuse à l'aide du DFT au niveau B3LYP / 6-31G	

Paramètres	R1	R2	R3
E _{HOMO} (eV)	-5.737774	-5.716277	-4.863748
E _{LUMO} (eV)	-1.597403	-1.587062	-1.062396
Gap ΔE (eV)	4.140371	4.129215	3.801352
Moment dipolaire (μ in Debye)	5.492600	5.694000	5.156800
Potentiel d'ionisation (<i>I</i> in eV)	5.737774	5.716277	4.863748
Affinité Electronique (A)	1.597403	1.587062	1.062396
Electronegativité (χ)	3.667585	3.651669	2.963072
Hardness (η)	4.140371	4.129215	3.801352
Index d'electrophilicité (ω)	1.624396	1.614676	1.154825
Fractions des electrons transferer (ΔN)	0.885811	0.884349	0.779478

La plus haute valeur orbitale moléculaire occupée, E_{HOMO} , des trois inhibiteurs R_3 , R_2 et R_1 sont, respectivement -4.863748, -5.716277 et -5.737774, montrent que la tendance des inhibiteurs R_1 à donner des électrons à la molécule accepteur avec un vide, le énergie orbitale. E_{LUMO} des trois inhibiteurs R_3 , R_2 et R_1 est -1,062396, -1,587062 et -1,597403 indique la tendance de la molécule R_1 à accepter des électrons.

La tendance étant souvent que le E_{LUMO} inférieur est le plus grand; la capacité de ces molécules à accepter des électrons est plus grande. L'écart d'énergie AE est un paramètre important lié à la réactivité de la molécule d'inhibiteur par rapport à la surface du métal. Les écarts d'énergie ΔE de R₃, R₂ et R₁ sont, respectivement 3.801352, 4.129215 et 4.140371, un ΔE élevé de l'inhibiteur R2 et R1 sont associés à une plus faible tendance à la réactivité, alors qu'un ΔE faible de la molécule R3 indique une forte tendance à réactivité.

A partir de la Figure.62on note que l'orbitale HOMO et l'orbitale LUMO des molécules R_2 et R_1 sont réparties sur les groupes indazole et pyrone, contrairement à la molécule R_3 , l'orbitale HOMO est très localisée sur le groupe pyrrole et l'orbitale LUMO est très localisée sur l'indazole groupe. La carte du potentiel électrostatique montre que le groupe pyrone des inhibiteurs R_2 et R_1 est de couleur rouge, ce qui montre que le groupe pyrone est très négatif, conférant les grandes valeurs des moments dipolaires de ces molécules μ_2 = 5.694000 et μ_3 = 5.492600. Au contraire, dans la molécule R_3 , les deux groupes pyrrole et indazole ont une couleur rouge, ce qui indique que ces deux groupes portent des électrons, cette distribution sur toute la molécule abbesse le moment dipolaire de cette molécule μ_1 = 5.156800.

Les études actuelles indiquent que l'interaction la plus favorable est celle qui implique l'interaction entre le centre le plus électrophile de l'électrophile et le centre le plus nucléophile du nucléophile. Récemment, Domingo¹³⁴ a exposé une nouvelle approche trouvée sur les fonctions de Parr électrophiles et nucléophiles P_k^+ et P_k^- , qui se trouvent à partir des changements de densité d'électrons de spin du nucléophile à l'électrophile. Cette méthode se révèle être un instrument dominant pour l'étude de la réactivité locale. Les cartes de l'ASD de ces trois inhibiteurs R₁, R₂ et R₃ sont données sur la figure 63et les valeurs des fonctions Parr nucléophiles et les fonctions Parr électrophiles de ces trois inhibiteurs R₁, R₂ et R₃ sont données dans le tableau 16.

¹³⁴ L. R. Domingo, M. Rios-Gutierrez, S. Emamian, RSC Adv., 6 ,2016,17064-17073.

Figure 63: Les ASD de l'anion radicalaire et des cations radicalaires ainsi que les fonctions électrophiles de Parr et les fonctions de Parr nucléophiles des trois inhibiteurs R₁, R₂ et R₃.

Tableau 16: Les valeurs des fonctions Parr électrophiles et des fonctions Par	r
nucléophiles des trois inhibiteurs R1, R2 et R3	

	Inhibiteur R ₃			Inhibiteur R ₂		Inhibiteur R ₁		
	P	\mathbf{P}^+		P ⁻	\mathbf{P}^+		P	\mathbf{P}^+
C1	0.384	0.014	C1	-0.052	0.030	C1	-0.053	0.031
C2	-0.013	0.009	C2	0.270	-0.080	C2	0.276	-0.084
C3	0.156	-0.003	C3	-0.034	0.094	C3	-0.035	0.098
C4	0.293	0.019	C4	0.039	-0.035	C4	0.040	-0.036
N5	-0.068	-0.011	C5	0.028	0.123	C5	0.028	0.129
C8	0.050	0.288	O7	-0.002	-0.009	O7	-0.002	0.001
C9	-0.020	-0.077	08	0.032	0.068	08	0.032	-0.010
C10	0.013	0.072	O9	0.129	0.021	09	0.133	0.071
C11	-0.022	-0.072	C10	-0.001	-0.012	C10	-0.001	-0.012
C12	0.002	-0.011	C14	-0.094	0.306	C14	-0.096	0.316
C13	0.049	0.267	C15	0.006	-0.026	C15	0.006	-0.027
C14	0.079	0.175	N19	0.160	0.011	N19	0.163	0.015
N8	0.091	0.153	C21	0.239	0.200	C21	0.234	0.202
N19	-0.021	0.189	C22	-0.060	-0.043	C22	-0.057	-0.043
C20	0.001	-0.015	C23	0.023	0.033	C23	0.025	0.028
C27	-0.016	0.009	C24	-0.034	-0.012	C24	-0.033	-0.009
C31	-0.024	0.0008	C25	-0.017	-0.032	C25	-0.019	-0.029
			C26	0.087	0.103	C26	0.086	0.097
			C27	0.109	0.041	C27	0.106	0.033
			N31	0.220	0.082	N31	0.211	0.080
			N32	-0.024	0.087	N32	-0.021	0.088
			C34	0.0002	-0.010	C34	-0.0004	-0.009
			37C	-0.001	0.004			
			C38	0.002	0.0000			

Figure 64: Numérotation des atomes des trois inhibiteurs R1, R2 et R3

Les valeurs calculées de P_k^+ pour l'inhibiteur R₁ sont pour la plupart localisées sur le cycle indazole (Tableau 18). Plus précisément, les valeurs des centres C8, C13, C14, N8 et N19 sont respectivement de 0,288, 0,267, 0,175, 0,153 et 0,189, indiquant que ces centres de l'anneau indazole sont un site très préféré pour l'attaque nucléophile. Les plus grandes valeurs de P_k^- pour l'inhibiteur R₃ sont celles portées par les atomes C1 (0.384), C3 (0.156) et C4 (0.293), indiquant que ces centres de l'anneau pyrrole sont très préférés pour l'attaque électrophile.

Les fonctions de Parr nucléophiles calculées sur les sites réactifs de l'inhibiteur R₃, les atomes centraux C2, O9, N19, C21, C27 et N31 sont les sites les plus nucléophiles possédant respectivement 0.270, 0.129, 0.160, 0.239, 0.109 et 0.220. la totalité de la nucléophilie globale de l'inhibiteur R₃ est accumulée au niveau de ces centres et ces sites sont très préférés pour l'attaque électrophile. De même, les fonctions de Parr électrophiles calculées sur les sites réactifs de l'inhibiteur R3 révèlent que les centres les plus électrophiles de cette espèce sont les atomes C5, C14, C21 et C26 possédant une valeur P_k^+ de 0,123, 0,306, 0,200 et 0,103 respectivement, nous pouvons conclure que ces centres sont très favorisés pour l'attaque électrophile.

La présence du groupement méthyle dans la molécule R1 diminue les valeurs des fonctions Parr dans le cycle indazole et augmente les valeurs des fonctions sur le cycle 2-pyrone et les valeurs des fonctions Parr nucléophiles deviennent C2 (0,276), O9 (0,133), N19 (0,163), C21 (0,234), C27 (0,106) et N31 (0,211) et les fonctions Parr électrophiles deviennent C5 (0,129), C14 (0,316), C21 (0,202) et C26 (0,097), La présence du groupe méthyle dans la molécule R1 diminue l'efficacité d'inhibition de cet inhibiteur.

IV. Conclusion.

Au cours de ce chapitre nous avons teste l'effets inhibiteur de deux serie de molecules contenant les fraction indazole,pyrrole et pyrone par defferents technique electrochimiques . On note que les molecules de structure R_1 et R_3 et qui ont une concentration supérieure à 0,8 mM peuvent prévenir efficacement la corrosion de l'acier doux en milieu acide en comparaison avec R_2 . Cependant, R_1 et R_3 présentent une efficacité d'inhibition plus élevée dans la plage de concentration de cette étude.

La presente etude permet aussi de conclure que les trois composés peuvent à la fois adsorber sur la surface du métal par le biais du don d'électrons ou de l'acceptation entre les hétéroatomes et les atomes de fer.

CHAPITRE II

Etude de l'activité anticancéreuse et antimicrobienne de nouvelles molécules hétérocycliques hybrides à base d'indazole

I-Rappel bibliographique sur l'activité anticancéreuse des dérivès de l'indazole.

Le cancer fait actuellement partie des trois principales causes de décès dans le monde¹³⁵, avec les maladies cardiovasculaires et les maladies infectieuses : il représentait, en 2008, 13% de la mortalité mondiale (7,6 millions de victimes).

Le mot "Cancer" provient du grec karkinos qui signifie «crabe » ou « pince ». Il aurait été donné par Hippocrate (460-377 avant J.C), par analogie à l'aspect des tumeurs du sein avec cet animal lorsqu'elles s'étendent à la peau. Le cancer qui est donc connu depuis l'antiquité a très longtemps été une maladie incurable, dû à une prolifération cellulaire anormale au sein d'un tissu normal de l'organisme. Ces cellules dérivent toutes d'un même clone, la cellule initiatrice du cancer qui a acquis certaines caractéristiques lui permettant de se diviser indéfiniment et de pouvoir former des métastases.

En fait, la capacité de se diviser, de se spécialiser mais aussi de mourir est inscrite dans le génome de chacune des cellules qui composent l'organisme humain. Le déclenchement et l'arrêt de la prolifération cellulaire, l'entrée dans un processus de différenciation ou dans un programme de mort cellulaire (apoptose) résulte de l'intégration au niveau cellulaire de multiples boucles de régulations enchevêtrées (figure 65).

Figure 65: Etapes du cycle cellulaire et ses principaux points de contrôle

¹³⁵ The History of Cancer. American Cancer Society. **2012**.

Mais ces systèmes de régulation permettant un maintien de l'homéostasie* sont parfois, comme c'est le cas pour les cancers, déficients. En effet, suite à l'agression de facteurs de l'environnement tels que le tabac, les rayons ionisants¹³⁶, certains agents chimiques¹³⁷ ou physiques, certains virus, ou spontanément¹³⁸, le génome humain subit constamment des lésions qui sont réparées¹³⁹ ou non. La cellule conserve alors certaines altérations qui touchent parfois les systèmes de régulation de la prolifération. Ne répondant plus correctement aux signaux environnants, elle échappe à toute régulation. La cellule s'engage alors dans un processus anarchique qui conduit, par accumulation successive d'anomalies génétiques, au développement d'une cellule cancéreuse.

La biologie moléculaire et la génétique ont permis d'établir que les altérations génétiques surviennent précisément sur les éléments de régulation de la différenciation, de la division et de la mort cellulaire. L'objectif aujourd'hui est donc de comprendre au mieux les mécanismes particuliers de prolifération des cellules cancéreuses pour permettre la découverte de nouveaux traitements plus spécifiques. L'efficacité de ces nouvelles stratégies n'est pas encore toujours totalement établie, mais il est clair qu'elle dépendra de la connaissance des différents niveaux de régulation cellulaire et de leurs interactions.

Présentement, les principales méthodes utilisées dans le traitement du cancer comprennent des associations de chirurgie, radiothérapie et chimiothérapie^{140,141}. Cependant, dans la majorité des cas, ces dernières demeurent inefficaces étant donné les caractères silencieux (diagnostiques tardifs) et récidiviste du cancer. Aussi, face à cette grande incidence mondiale, la nécessité de nouveaux agents anticancéreux plus sûrs, et efficaces dans le traitement ou la prévention de cette maladie devient cruciale.

L'indazole est un précurseur important pour le développement d'agents anticancéreux. Ce système bi-cyclique est connu pour être un pharmacophore très efficace en chimie médicinale.

* désigne la capacité d'un système à conserver son milieu intérieur en équilibre.

¹³⁶ Hall, J., Angele, S. *Mol. Med. Today.* **1999**, *5*, 157-164.

¹³⁷ Miller, J. A., Miller, E. C. *Mutation Res.* **1975**, 33, 25-26.

¹³⁸ Lindahl, T., Nyberg, B. *Biochem.* **1972**, 11, 3610-3618.

¹³⁹ Frosina, G. *Eur. J. Biochem.* **2000**, 267, 2135-2149.

¹⁴⁰ Sawyers, C. *Nature*. **2004**, 432, 294-297.

¹⁴¹ DeVita, V. T., Lawrence, T. S., Rosenberg, S. A. Cancer: Principles and Practice of Oncology. Lippincott Williams & Wilkins Publisher. **2001**, 1084-1126

En effet, la particularité structurale de l'indazole lui offre une large gamme d'activités biologiques^{142,143}. Cependant, l'élaboration de nouvelles structures indazoliques pourvues d'activités pharmacologiques demeure un domaine de recherche laborieux.

Toutefois, certains agents anticancéreux à base indazolique ont été décrits dans la littérature. A titre d'exemples, Benedetta et coll¹⁴⁴ ont synthétisé des 3-amino-*N*-phényl- 1*H*-indazole-1-carboxamides doués d'activités antiprolifératives importantes contre des cellules cancéreuses humaines. La détermination de la concentration inhibitrice minimale(CI₅₀) a montré que le composé **L134** (figure 66) est le plus actif de toute la série (CI₅₀ variant de 0.041-33.6 μ M).

Figure 66

Parallèlement, Paola Barraja et son équipe¹⁴⁵ ont synthétisé et évalué *in vitro* l'activité antiproliférative d'une quarantaine d'oxazolo[5,4-*e*]indazoles contre des cellules tumorales d'origine humaines. La molécule **L135** (figure 67) est la plus active de la série, avec des concentrations inhibitrices comprises entre 3.17-6.85 μ M et 3.02-7.28 μ M, respectivement pour le cancer du poumon et le cancer ovarien.

Figure 67

¹⁴² a) Cerecetto, H., Gerpe, A., Gonzalez, M., Aran, V. J., De Ocariz, C. O. *Mini-Rev. Med. Chem.* 2005, 5, 869-878. (b) Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P.,Domb, A. J. *Eur. J. Med. Chem.* 2015, 90, 707-731.

¹⁴³ Jennings, A., Tennant, M. J. Chem. Info. Mod. 2007, 47, 1829-1838.

¹⁴⁴ Benedetta, M., Maria, V. R., Demetrio, R., Fabiana, P., Stella, C., Salvatore, P., Manlio, T., Antonietta, D.

C., Rosaria, M. P., Stefania, G., Giuseppe, D. Eur. J. Med. Chem. 2011, 46, 168-174.

¹⁴⁵ Paola, B., Virginia, S., Daniele, G., Patrizia, D., Alessandra, M., Anna, C., Barbara, P., Girolamo, C. *Tetrahedron.* **2013**, 69, 6474-6477.

Très récemment Alan.R.Cabrera et coll¹⁴⁶ ont explicité l'activité anticancéreuse du dérivès indazolique à base de Pt(II) (figure 68) sur certaines cellules cancéreuses humaines (H1975, HL-60, HCT116 et HeLa utilisant des cellules Vero non néoplasiques comme contrôle) toutes les composes ont presente des CI_{50} tres faible comprises entre 0.61±0.60 µM et 4.68±2.92 µM.

Figure 68

En 2017 Jian Liu¹⁴⁷ ont synthétisé et évalué in vitro l'activité antiproliférative d'une série de molecule hybride portant des acides 1H-indazol-3-amine et benzohydroxamique contre des cellules tumorales d'origine humaines, le composé **L137** est le plus active de la série (figure 69), avec des concentrations inhibitrices 34 nM et 9 mM respectivement pour l'activité HDAC6 et le cancer du sein humain (MCF-7).

Figure 69

En 2006, dans notre laboratoire, l'équipe de Rakib¹⁴⁸ a étudié l'activité anticancéreuse de nouveaux dérivés de l'indazole possédant un groupement sulfonamide en position 7. Ces composés ont montré des activités antiprolifératives importantes vis-à-vis de diverses lignées cellulaires cancéreuses humaines (cancers du côlon et de la prostate) que de cellules cancéreuses murines (leucémie). La molécule la plus active **L137** (figure 70) posséde une concentration inhibitrice de l'ordre de 0.44μ M.

 ¹⁴⁶ Alan R. Cabrera, Christian Espinosa-Bustos, Mario Faúndez, Jaime Meléndez, Pablo Jaque, Constantin G.
 Daniliuc, Adam Aguirre, Rene S. Rojas, Cristian O. SalasJournal of Inorganic Biochemistry, 174, 2017,90-101

¹⁴⁷ Jian Liu, Chengbo Qian, Yehua Zhu, Jianguo Cai, Yufang He, Jie Li, Tianlin Wang, Haohao Zhu, Zhi Li, Wei Li, Lihong Hu Bioorganic & Medicinal Chemistry 26 (**2018**) 747–757.

¹⁴⁸ L. Bouissane, S. El Kazzouli, S. Léonce, B. Pfeiffer, E.M. Rakib, M. Khouili, G. Guillaumet, *Bioorg. Med. Chem.* **2006**, *14*, 1078.

Figure 70

Afin d'élargir cette étude pharmacologique, notre équipe a testé également les *N*-(7indazolyl)-arylsulfonamides sur des lignées cellulaires humaines : DU_{145} (carcinome de la prostate), HCT₁₁₆ (carcinome du côlon) et HT₂₉ (adénocarcinome du côlon). Les concentrations inhibitrices de ces molécules varient entre 0.38 et 1.18 µM (figure 71).

La même équipe^{149,150} a étudié aussi l'activité anticancéreuse sur d'autre dérivés de *N*-(4-indazolyl)-arylsulfonamides, elles ont mis en évidence d'excellentes activités antiprolifératives et apoptiques pour les composés **L142** et **L143**. En prolongation de cette chimie, les composés **L144** et **L145** issus des *N*-(6-indazolyl)-arylsulfonamides (figure 72) se sont révélés être de bons inhibiteurs de la prolifération cellulaire des souches tumorales A2780 (cancer ovarien) et A549 (carcinome du poumon) à des faibles doses (CI₅₀ variant entre 4.21 μ M et 18.6 μ M).

¹⁴⁹ Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C., Viale, M. Arch. Pharm. – Chem. Life Sci. **2014**, 347, 423-431.

¹⁵⁰ Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C., Viale, M. *Eur. J. Med. Chem.* **2012**, 57, 240-249.

Figure 72

Une autre étude ¹⁵¹ de l'activité anticancéreuse a été réalisée aussi sur les *N*-(5indazolyl)-arylsulfonamides le composé N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl benzenesulfonamide **L146** (figure 73) qui s'est révélé un agent anticancéreux potentiel inhibant la prolifération des cellules A2780 et A549 avec des IC₅₀ de 15.9 et 65.5 μ M.

Figure 73

En essayant de développer des agents anticancéreux puissants et sélectifs, une série de nouveaux indazoles polysubstitués a été synthétisé par notre groupe¹⁵² de recherche et évalué pour leurs activités antiprolifératives et apoptotiques in vitro contre deux lignées cellulaires cancéreuses humaines sélectionnées (A2780 et A549). Plusieurs composés ont montré une activité antiproliférative intéressante avec IC₅₀ allant de 0,64 à 21 μ M sur les deux lignées cellulaires cellulaires. Les indazoles les plus actifs sont : L147a, L147c, L147f et L148c (figure 74).

¹⁵¹ Chicha, H. Thèse de Doctorat National, **2014**, FST Béni-Mellal.

¹⁵² Kouakou. A Thèse de Doctorat National, **2016**, FST Béni-Mellal.

Les résultats prometteurs obtenus dans ces différentes études, nous ont incités à tester l'activité anticancéreuse de quelques dérivés de N-pyrollyl-N-alkyl-6-nitroindazole et N-pyrone-N-alkyl-indazole (Figures 76 et 77). Les tests anticancéreux ont été réalisés à l'institut de cancérologie de Geneva, Italie sous la direction du Dr. Maurizio Viale.

L'objectif principal de ces tests est d'étudier l'effet du substituant et la nature des structures moléculaires sur l'inhibition des cellules cancéreuses.

II- Détermination des activités antiprolifératives (Test MTT).

Les activités antiprolifératives de nos molécules ont été évaluées de deux manières différentes. Dans un premier temps, tous les composés ont été dilués dans le DMSO à une concentration de 100 mM, puis dilués dans le sérum de veau foetal afin d'obtenir des concentrations finales en DMSO de 0.1% - 0.6%.(Méthode A).

Après sélection des composés les plus actifs, ces derniers ont été à nouveaux testés sur les lignées cellulaires A2780 (carcinome de l'ovaire), A549 (adénocarcinome pulmonaire à petites cellules). Dans ce dernier cas, la dilution des composés fut réalisée à partir du DMSO, puis dilués dans une solution contenant 1% de cremophor/éthanol (1:1) et finalement dilués dans une solution saline normale pour atteindre une concentration finale en DMSO de 0.1% ou 0.2% (Méthode B).

Par ailleurs, les cellules utilisées dans cette étude ont été incubées pendant 6-8h dans des plaques de 96 puits avant d'être traitées par nos composés. Après 72h d'incubation en

présence de nos produits, le test MTT a été réalisé au moyen de la procédure décrite par notre groupe de recherche¹³⁴.

Les résultats sont exprimés en CI_{50} laquelle représente la concentration (en μ M) de la drogue inhibant 50% de la prolifération des cellules. Les CI_{50} ont été calculées à partir de l'analyse des courbes de relation dose-effet, chaque valeur finale étant la moyenne de 3-7 expérimentations. Il convient de noter qu'un composé est considéré comme actif lorsque sa CI_{50} est inférieure à 10μ M.

La prolifération des cellules est évaluée par la mesure de l'activité enzymatique succinyl-déshydrogénase mitochondriale des cellules vivantes, laquelle est capable de cliver un sel de tétrazolium de couleur jaune (le bromure de 3-(4,5-diméthylthiazolyl)-2,5-diphényltétrazolium (ou MTT)) en un dérivé formazan de couleur bleue violet, insoluble dans l'eau (figure 75).

3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl-2*H*-tetrazol-3-ium bromide

Figure 75 : Principe de la méthode colorimétrique au MTT.

La prolifération cellulaire est marquée par l'augmentation de l'absorbance (Spectrophotométrie). En effet, plus il reste des cellules vivantes, plus il se forme de dérivés formazan de couleur bleu-violet.

II.1- Evaluation antiproliférative des N-alkyl-N-pyrollyl-indazoles et N-alkyl-N-pyroneindazoles

Les molécules testées sont repertoriés dans les figures 76 et 77.

Chapitre II : Etude de l'activité anticancéreuse et antimicrobienne de nouvelles molécules hétérocycliques hybrides à base d'indazole

Figure 76: Première série des molécules testées

Figure 77: Deuxieme série des molécules testées

Lignées cellulaires IC ₅₀ µM							
Ν	Composés	A2780	A549				
1	G1	>100	>100				
2	G2	>100	>100				
3	G3	>100	>100				
4	G4	>100	>100				
5	G5	52,9±1,4	>100				
6	G6	57,9±7,3	>100				
7	G7	>100	>100				
8	G8	55,9±3,6	86,8±4,8				
9	G9	>100	>100				
10	G10	99,7±23,1	>100				
11	G11	>100	>100				
12	G12	>100	>100				

 Tableau 17: Activités antiprolifératives des composés des deux séries

A la lumière des résultats de l'activité antiproliférative des deux séries des dérivés de N-pyrollyl-N-alkyl-indazole et de 3E-(1-(N-alkyl-lH-indazol-6-yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)–diones, on peut s'apercevoir que sur la lignée A549, tous les composés testés présentent une activité cytotoxique faible avec des CI₅₀ supérieures à 100 μ M, sauf le composé **G8** qui a un effet relativement significatif avec un CI₅₀ de 86.8 μ M. Le spectre d'activité biologique de molécules testées contre la lignée cellulaire tumorale A2780 est interessant. Parmi les N-pyrollyl-N-alkyl-indazoles et les 3E-(1-(N-alkyl-lH-indazol-6-yl) amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)–diones, les structures **G5, G6, G8 et G10,** possédaient des activités anticancéreuses prometteuses en termes de cytotoxicité. Ces composés inhibent la prolifération des cellules A2780 avec une CI₅₀ variant de 52 à 99,7 μ M.

Les meilleurs résultats sont obtenus avec les dérivés de l'indazole substitués en position 3 par l'atome de chlore et un cycle pyrone en position 6 d'indazole ainsi que le groupe benzyle substitué sur l'azote pyrazolique. Ce résultat, montre que la nature des

substituants de l'indazole joue un rôle primordial dans l'activité antiproliférative de ce type de structure.

III- Evaluation antimicrobienne des dérivés de l'indazole

III-1 Rappel bibliographique sur l'adhésion microbienne en présence des derivès indazolique

Les microbes sont des micro-organismes indispensables à l'homme et à l'environnement, car ils accomplissent un rôle vital dans presque tous les écosystèmes, mais ils peuvent aussi être la cause de nombreuses maladies infectieuses. Certains microorganismes tels que les bactéries et les levures peuvent être pathogènes et causer des maladies chez l'homme, les plantes ou les animaux. Les bactéries pathogènes sont responsables de plusieurs maladies épidémiques et pandémiques, dès lors la quète de substance antiinfectieuse est devenue un problème de santé publique. A partir d'une succession d'observations et de travaux de nombreux chercheurs dont Pasteur, Joubert, Duchesne puis Fleming, cette quête a abouti à la découverte des antibiotiques¹⁵³. L'avènement de ces nouvelles molécules au lendemain de la seconde guerre mondiale fut un avantage important pour l'homme dans sa lutte contre les maladies infectieuses car elles ont permis de sauver de nombreuses vies. Ainsi l'introduction des antibiotiques dans le domaine thérapeutique a fait progresser l'espérance de vie de l'homme de plus de dix années, sans doute plus qu'aucun autre traitement médical¹⁵⁴. Après moins d'un demi-siècle d'existence, ce brillant tableau affiché par ces anti-infectieux s'est assombri progressivement. Du fait de l'apparition progressive des bactéries pathogènes résistantes aux antibiotiques durant ces 30 dernières années, les infections microbiennes sont devenues récurrentes. De même, la consommation non contrôlée et exagérée des antibiotiques a aidé ces bactéries, dotées d'un incroyable pouvoir d'adaptation, à prendre progressivement le dessus sur les antibiotiques. Dès lors, en plus des mesures de surveillance des résistances bactériennes, le renouvellement de l'arsenal des molécules anti-infectieux est devenu une des priorités pour faire face à ce problème de santé publique émergent.

¹⁵³ (a) Pasteur, L. ; Joubert, J. "Charbon et septicémie" Les Comptes Rendus de l'Académie des Sciences, **1877**, 85, 101-105; (b) Duchesne, E. "Contribution à l'étude de la concurrence vitale chez les microorganismes ; antagonisme entre les moisissures et les microbes", Faculté de Médecine et de Pharmacie de Lyon. France. Thèse de doctorat, **1897**, p.64; (c) Fleming, A. British Journal of Experimental Pathology. **1929**, 10, 229-236; (d) Rosset, R. "Pasteur et les vétérinaires" Bulletin de la société Française d'histoire de la Médecine et des Sciences Vétérinaires, **2003**, vol 2, pp.1-25.

¹⁵⁴ McDermott, W.; Rogers. D. E. The Johns Hopkins Medical Journal, **1982**, 151, 302-312.

Le développement de nouvelles méthodologies de synthèse et la recherche de nouvelles molécules à activité thérapeutique potentielle constitue une préoccupation majeure et permanente pour de nombreux chercheurs.

Avant de présenter nos résultats expérimentaux, nous donnons tout d'abord un aperçu bibliographique sur l'activité antimicrobienne effectuée sur quelques dérivés de l'indazole.

Tanitame et coll¹⁵⁵ ont étudié les relations de conception, de synthèse et de structureactivité de nouveaux dérivés de l'indazole comme inhibiteurs de l'ADN gyrase avec une activité antibactérienne Gram-positive. Parmi les composés testé, ils ont identifié le 3-[(3-Méthoxycarbonyl)cyclohexylaminométhyl] indazole (tableau18) **L149d** comme ayant une activité inhibitrice contre l'ADN gyrase avec un effet antibactérien exceptionnellement bon activité contre les staphylocoques et les entérocoques, y compris les souches multi-pharmaco résistantes.

Tableau 18: Activité inhibitrice contre l'ADN gyrase de E. coli (IC_{50}) et la concentration inhibitrice minimale (MIC) de 3-[(3-méthoxycarbonyl) cyclohexylaminométhyl] indazoles.

N°	\mathbb{R}^2	IC ₅₀	MIC (ug/ml)			
		(ug/ml)	S.aur	eus	E.faecalis	
		Gyrase	FDA 209P	KMP9	ATCC	KU
					29212	1777
L149a		8	64	64	64	64
L149b	F	16	128	128	128	128
L149c	CI	16	32	32	64	32
L149d	CI	1	4	4	4	4
L149d	CI N CI	64	>128	>128	>128	>128

¹⁵⁵ Akihiko Tanitame, Yoshihiro Oyamada, Keiko Ofuji, Yoko Kyoya, Kenji Suzuki, Hideaki Ito, Motoji Kawasaki, Kazuo Nagai, Masaaki Wachid and Jun-ichi Yamagishib. Bioorg. Med. Chem. Lett. 14, **2004**, 2857–2862

Minu et coll¹⁵⁶ ont rapporté l'activité antimicrobienne des dérivés 2,3-disubstitués 3,3a,4,5,6,7-héxahydro-2H-indazole. Ils ont indiqué que la 3-(4-chlorophényl)-2-(4nitrophénylsulfonyl)-3,3a,4,5,6,7-hexahydro-2H-indazole (**L150**) et 3-(4-fluorophényl)-2-(4nitrophénylsulfonyl)-3,3a,4,5,6,7-hexahydro-2H-indazole (**L151**) étaient les composés les plus actifs (figure 78).

Figure 78

Une méthode « One pot » a été développée par Yakaiah et $coll^{157}$ pour la synthèse d'indazoles fusionnées par pyrimidine avec du GdCl₃ comme catalyseur. Des exemples (figure 79) représentatifs ont été criblés contre les bactéries Gram-positives, gram-négatives, les levures et les champignons filamenteux. Le composé **L152** a montré une activité prometteuse contre les bactéries et le composé **L153** contre les champignons.

Figure 79

Le 4-fluoro-6-phényl-1H-indazoles¹⁵⁸ L154-L157 portant le fragment aminométhyl-[(1,3,4-oxadiazol-2-yle) en position 3 a été criblé pour leur activité antibactérienne contre B .subtilis et E.coli avec Ciprofloxacine comme composé de référence, et pour l'activité

¹⁵⁶ Maninder Minu, Ananda Thangadurai,Sharad Ramesh Wakode,Shyam Sundar Agrawal,Balasubramanian Narasimhan. Bioorg. Med. Chem. Lett. 19, **2009**, 2960–2964.

¹⁵⁷ T. Yakaiah, B.P.V. Lingaiah, B. Narsaiah, K. Pranay Kumar, U.S.N. Murthy. European Journal of Medicinal Chemistry 43 ,**2008**, 341e347

¹⁵⁸ Galina N. Lipunova, Emiliya V. Nosova, Valery N. Charushin, Oleg N. Chupakhin, Journal of Fluorine Chemistry, 192, **2016**, 1-21

antifongique contre A.niger avec Grisiofulvin, comme norme¹⁵⁹. Le composé **L156**, ne portant aucun substituant dans le cycle de l'oxadiazole a montré l'activité la plus élevée de cette série, ce qui est comparable à la norme.

Composés	R	Zone relative d'inhibition, mm (%)				
		B. subtilis	E. coli	A. niger		
L154	SH	19(72.2)	19(72.2)	15(50.0)		
L155	Ph	16(55.5)	16(55.5)	17(61.1)		
L156	Н	23(94.4)	23(94.4)	15(50.0)		
L157	NH_2	15(50.0)	15(50.0)	23(94.4)		
Ciprofloxacine		24(100)	24(100)	-		
Grisiofulvin		-	-	24(100)		

Tableau 19: Activité antimicrobienne des composés L154-L157

La conception structurale d'une série d'inhibiteurs de nucléosidase¹⁶⁰ de SAH / MTA à base d'indazole a conduit à la découverte de **L158**, un inhibiteur puissant et de faible poids moléculaire avec une puissance nanomolaire dans un dosage d'inhibition enzymatique. Dans les analyses antimicrobiennes, ce composé inhibe la croissance de trois espèces pathogènes importantes, avec MIC d'une valeur inférieure à 10 μ M.

¹⁵⁹ A.K. Raviraj, R. Manesh. Intern. J. Life science and Pharma Res. 3 ,**2013**, 6–10.

¹⁶⁰Xiaoming Li,Sam Chu,Victoria A. Feher, Mitra Khalili,Zhe Nie,§ Stephen Margosiak,Victor Nikulin,James Levin,Kelly G. Sprankle,Martina E. Tedder,Robert Almassy,Krzysztof Appelt, and Kraig M. Yager,*J. Med. Chem.* **2003**, *46*, 5663-5673

Figure 80

Ali et coll¹⁶¹ ont rapporté pour la première fois la synthèse des α -aminophosphonates contenant un groupe indazole en deux étapes. Dans la première étape, on synthétise des imines de N-benzylidène-1-méthyl-lH-indazole-3-carbohydrazide substitué et, à l'étape suivante, il s'est converti en α -aminophosphonates en utilisant du chlorotriméthylsilane (TMSCl) et du phosphite de triéthyle. Certains dérivés synthétisés sont évalués pour l'activité antibactérienne contre différentes souches bactériennes.

Tableau 20: Activités antibactériennes des composés (L159a-d)

Activité antibactérienne en termes de zone d'inhibition (mm) lorsqu'elle est testée à 40 mcg / disque										
Entrée	R	R1	R2	R3	K.pneumonia	S.typh	P.aurogino	В,	Е.	S.auerues
						У	sa	Subtilis	coli	
L159a	Η	Η	Η	Н	3	2	1	5	0	2
L159b	Н	Η	CF ₃	Н	7	5	6	4	3	5
L159c	Н	F	Η	Н	8	4	7	4	5	3
L159d	Br	Η	Н	Η	2	3	4	7	1	1
Gentamicin(40					13	11	17	15	11	7
mcg/disc)										
Kanamycin(40					18	14	21	15	13	9
mcg/disc)										

Par ailleurs Asha V.Chate et coll ¹⁶² ont développé un protocole écologique respectueux de l'environnement à quatre composants pour la synthèse des dérivés de 2H-indazolo[2,1-b]pthalazinetrione catalysés par la β -cyclodextrine supramoleculaire, biodégradable et réutilisable. Parmi les composés synthétisés (figure 81) **L160c, L160d,**

¹⁶¹ N.ali S. Ali, European Journal of Medicinal Chemistry 50, 2012, 39-43

¹⁶² Asha V. Chate, Priyanka K. Bhadke, Manisha A. Khande, Jaiprakash N. Sangshetti, Charansingh H. Gill, Chinese Chemical Letters, 28, **2017**, 1577-1582.

L160e, L160f, L160i et L161o, qui présentent des activitès antibactériennes intéressantes contre plusieurs souches bactériennes (E. coli, P. aeurginosa, Staphylococcus aureus, S.aureus et B. subtilis).

Figure 81

Ces données bibliographiques montrent bien l'interêt des dérivés de l'indazole en tant qu'agents antibactériens. Dans ce sens, nous avons étudié l'effet de certains dérivés indazoliques sur la croissance microbienne et l'adhésion d'une série de bactérie de référence et d'autres isolées des milieux industriels (*Escherichia coli, Staphylococus aureus...*).

IV- Etude de l'activité antimicrobienne des N-pyrrolyl-N-alkyl-indazoles

Nous avons examiné l'évaluation préliminaire de l'activité antimicrobienne des Npyrrolyl-N-alkyl-indazoles (figure 82) sélectionnés arbitrairement vis-à-vis de quelques micro-organismes Pour surmonter ce problème, des agents antibactériens nouveaux et efficaces sont nécessaires.

Les micro-organismes étudiés sont composés de trois (03) bactéries pathogènes pour l'être humain. Les souches utilisées sont les suivantes :

Escherichia coli (*E. coli*) : c'est une bactérie colibacille à Gram négatif de la famille des entérobactéries intestinales présente chez les mammifères et très commune chez l'être humain. Découverte en 1885 par *Théodore Escherich* dans des selles de nourrissons, c'est un coliforme fécal généralement commensal.

Staphylococcus aureus (*S. aureus*) : est un bacille à Gram positif appartenant à la famille des *Staphylococcus*. C'est l'espèce la plus pathogène, elle est responsable d'intoxications alimentaires, d'infections localisées suppurées, et dans certains cas extrêmes, de septicémie.

Chapitre II : Etude de l'activité anticancéreuse et antimicrobienne de nouvelles molécules hétérocycliques hybrides à base d'indazole

Figure 82: Molécules sélectionnées pour l'évaluation antimicrobienne

Le suivi de la croissance microbienne sous l'effet de différentes concentrations des 5et 6-pyrrolyl-N-alkyl-indazoles est réalisé par la technique des microplaques basée sur la mesure de la densité optique^{163,164,165} elle a pour objectif de déterminer la concentration CI_{50} , qui réduit le taux de la population microbienne de 50% par rapport à celle du contrôle.

Le test d'adhésion microbienne est réalisé d'après les protocoles de Kolter¹⁶⁶ et Hamadi¹⁶⁷ par la technique des microplaques, pour quantifier la biomasse bactérienne adhérée en présence des (5),6-pyrrolyl-N-alkyl-indazoles (avec une concentration de 150ug/ml équivalente à IC_{50}), l'absorbance est ainsi mesurée à l'aide d'un spectrophotomètre (Lecteur ELISA) à 405nm.

En outre, deux concentrations du peroxyde d'hydrogène (1,5%) et l'hypochlorite de sodium (12°Chl), déjà prouvées par des travaux antérieurs être relativement insuffisantes pour éliminer l'adhésion microbienne, ont été testées sur l'adhésion microbienne en présence des molécules G21, G22 et G23 pour améliorer leurs efficacités de désinfection. Nous avons

¹⁶³ Karina F. Devienne; Maria Stella G. Raddi Brazilian Journal of Microbiology ,2002, 33:166-168

¹⁶⁴ Leonel Mendoza, John W. Taylor, Libero Ajello Annu. Rev. Microbiol. 2002. 56:315–44

¹⁶⁵ Anita Atwal Kay Caldwell, Australian Occupational Therapy Journal 2003, 244–251

¹⁶⁶ George A,O'toole and robertp kolter, *Molecular Microbiology*, **1998**, 28.3.449-461

¹⁶⁷ F.Hamadi, H.Latrache ,H.Zahir. Journal of Pure and Applied Microbiology 2008 2.295-302

réalisé cette étude en utilisant un temps moyen de contact (15 min) en se référant aux différents temps utilisés réellement en industrie.

IC ₅₀ μM							
molécules	E.coli ATCC	Staph. aureus ATCC	E.coli aliment				
G13	87,6±3,6	>100	96,12±1,2				
G14	16,8±2,1	20,7±2,5	44,9±5,3				
G15	89,1±3,4	76,9±4,9	68,3±0,7				
G16	>100	>100	>100				
G17	>100	>100	>100				
G18	14,9±1,9	24,7±3,1	34,0±2,4				
G19	>100	>100	>100				
G20	>100	>100	>100				
G21	1,79±2,6	3,2±0,68	0,37±6,1				
G22	3,9±5,7	29,2±3,8	1,2±0,88				
G23	2,13±0,4	1,66±2,4	0,93±1,2				
G24	91,2±1,52	90,7±5,9	>100				
G25	88,9±6,01	73,9±9,3	>100				
G26	74,6±3,3	77,4±4,5	99,5±0,45				

Tableau 21: Activité antibactérienne des 5- et 6-pyrrolyl-N-alkyl-indazoles

L'analyse des résultats (tableau21) de l'effet antibactérien des (5),6-pyrrolyl-N-alkylindazoles montre que les molécules G21, G22 et G23 ont un effet très significatif sur la prolifération bactérienne des souches *Escherichia coli* ATCC, *Escherichia coli* industriels et *Staphylococcus aureus* inhibant ainsi 50 % de leurs croissances, à l'exception de la molécule G22 qui a montré un effet moins important sur *Staphylococcus aureus* par rapport aux autres bactéries.

Figure 83: L'adhésion microbienne de 150µg/ml des 5- et 6-pyrrolyl-N-alkyl-indazoles.

Les résultats de l'adhésion microbienne des bactéries (figure 83) ont montré que, d'une part toutes les molécules qui représentent un effet remarquable sur la prolifération microbienne, ont également réduit la densité optique relative au pourcentage de l'adhésion bactérienne.

D'autre part, l'addition des molécules G14, G18, G21, G22 et G23 ont diminué l'adhésion des *Escherichia coli* ATCC à environ 50% de sa valeur initial. Cependant, les molécules G21, G22 et G23 ont un effet antiadhésif relativement important des souches *Escherichia coli* industriel et *staphylococcus aureus* par rapport à celles de G14 et G18.

Figure 84 : L'effet des désinfectants en présence des dérivès indazoliques (G21, G22, G23)

Ces effets importants antibactériens et antiadhésifs nous ont incités à travailler l'amélioration de l'efficacité des désinfectants (peroxyde d'hydrogène, hypochlorite de sodium) sur l'adhésion bactérienne des souches étudiées.

A l'exception des combinaisons du peroxyde d'hydrogène et de l'hypochlorite de sodium avec G21, G22 et G23 appliquées sur la souche *Escherichia coli* ATCC, tous les dérivés indazoliques (G21, G22 et G23) n'ont pas pu améliorer significativement l'efficacité de la désinfection face à l'adhésion microbienne des souches étudiés. (Figure 84).

Les résultats obtenus ont permis d'identifier les molécules et les concentrations qui ont un effet inhibiteur et antiadhésif de ces bactéries. Ceci, nous a amené à étudier l'efficacité des mélanges désinfectants et dérivés indazoliques sur la croissance et l'adhésion bactérienne.

V-Conclusion

En résumé, nous avons décrit dans un premier temps, l'activité anti-proliférative de nouveaux dérivés N-pyrollyl-N-alkyl-indazole et de 3-(1-(N-alkyl-lH-indazol-6-yl)amino) éthylidène) -6-méthyl-2H-pyran-2,4 (3H)-diones. Certains composés ont montré des activités anti-proliférative prometeuses contre les lignées cellulaires A2780 et A549.

Dans un second temps nous avons étudié aussi l'effet de certains dérivés N-pyrollyl-N-alkyl-indazole sur la croissance microbienne et l'adhésion d'une série de bactérie de référence et d'autres isolées des milieux industriels (*Escherichia coli, Staphylococus aureus*...). L'analyse des résultats de l'effet antibactérien des 5- et 6-pyrrolyl-N-alkylindazoles montre que la majorité des molécules ont un effet d'inhibition très significatif avec des CI_{50} de l'ordre de 0.37 µM, 0.93 µM, 1.2 µM etc..., sur la prolifération bactérienne des souches *Escherichia coli ATCC*, *Escherichia coli* industriels et *Staphylococcus aureus*.

Ces résultats biologiques suggèrent que nos indazoles peuvent constituer des composés principaux pour d'autres études visant la synthèse de nouveaux agents anticancéreux et antibactérienes.

Conclusion Générale

Le sujet de thèse qui m'a été confié se place dans un contexte de recherche des stratégies de synthèse simple pour préparer de nouveaux systèmes hétérocycliques comportant le motif indazole et étudier leurs propriétès électrochimiques et biologiques. Ce travail est composé de deux grandes parties, la première a été consacrée au développement de nouvelles stratégies s'appuyant sur l'étude de la condensation réductrice des nitrohétéroaryles vis-à-vis des réactifs difonctionnels, tandis que la deuxième a été réservée à l'étude électrochimique, à l'activité anticancéreuse et antibactérienne des composés synthétisés.

Dans le premier chapitre de la première partie, nous nous sommes concentrés sur l'étude de la réduction des N-alkyl-6-nitroindazoles avec In et/ou SnCl₂ en présence de 2,5-héxanedione. Cette séquence réactionnelle réalisée à reflux de THF et en présence de quelques gouttes d'acide acétique a permis d'accéder à la synthèse des N-alkyl-6-pyrrolylindazoles avec de bons à excellents rendements. Nous avons montré que la réduction des Nalkyl-6-nitroindazoles avec SnCl₂ en présence de 2,5-héxanedione, conduit aux N-alkyl-Npyrrolyl-indazoles avec excellent rendements par rapport à l'utilisation de l'indium. De même la protection de l'azote en position N-1 de l'indazole donne des rendements meilleurs par rapport à l'azote protégé en position N-2. Notre étude a été élargie via la réduction catalytique des N-alkyl-5-nitroindazoles, N-alkyl-7-nitroindazoles et N-alkyl-4-nitroindazoles en utilisant les mêmes conditions de la réduction des N-alkyl-6-nitroindazoles. Les N-alkyl-N-pyrrolylindazoles sont isolés avec de bons rendements.

Dans le chapitre 2, nous avons préparé une nouvelle série de molécules hybrides de type : 3E-(1-((N-alkyl-indazol-6-yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)-diones et 3E-(1-((N-alkyl-indazol-5-yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)-diones via la réduction des N-alkyl-6(5)-nitroindazoles par l'indium et/ou le chlorure stanneux dans THF/acide acétique et en présence de la 4-hydroxy-6-méthyl-2-pyrone comme réactif du couplage de l'amine réduit. Nous avons montré que la réduction avec SnCl₂ donne des rendements meilleurs par rapport à l'utilisation de l'indium. Nos résultats montrent aussi que l'indazole alkylé en position N-1 donne des rendements meilleurs que l'indazole alkylé en position N-2.

Pour géneraliser ce résultat, nous avons aussi préparé de nouvelles molécules hybrides de type : 3E-(1-(1-alkyl-2-(methylthio)-1H-benzimidazol-6-ylamino)éthylidène)-6-méthyl-3H-pyran-2,4-dione à partir de la réaction de réduction des N-alkyl-5-nitrobenzimidazolthiols en présence de la 4-hydroxy-6-méthyl-2-pyrone. Dans la deuxième partie de ce mémoire, nous nous sommes concentrés sur l'étude électrochimique et l'évaluation anticancéreuse et antibatérienne des composés synthétisés.

Dans le premier chapitre de cette partie, nous avons testé l'effet inhibiteur des composés hétérocycliques à base d'indazole sur la corrosion de l'acier doux dans la solution d'acide chlorhydrique 1M via différentes méthodes expérimentales: Les courbes de polarisation potentiodynamique, la spectroscopie d'impédance électrochimique (EIS) et le microscope à force atomique (AFM). Les résultats montrent que les composés sont des très bons inhibiteurs dans le HCl 1 M. Des calculs chimiques quantiques utilisant la (DFT) ont été effectués sur des dérivés d'indazole pour déterminer la relation entre les structures moléculaires et leur efficacité d'inhibition.

Le dernier chapitre était consacré à l'évaluation pharmacologique des nouveaux indazole polysusbstitués. A la lumière des résultats de l'activité antiproliférative des deux séries des dérivés de N-pyrollyl-N-alkyl-indazole et de 3-(1-(N-alkyl-lH-indazol-6yl)amino)éthylidène)-6-méthyl-2H-pyran-2,4(3H)-diones, nous avons observé que sur la lignée A549, tous les composés testés présentent une activité cytotoxique faible avec des CI50 supérieure à 100 µM, sauf un composé qui a un effet relativement significatif avec un CI50 de 86,8 µM. Nous avons testé aussi les deux séries indazoliques alkylés et chlorés contre la lignée cellulaire tumorale A2780. Certaines molécules possédaient des activités anticancéreuses prometteuses en termes de cytotoxicité. Ces composés inhibent la prolifération des cellules A2780 avec une CI₅₀ variant de 52 à 99,7 µM. Les meilleurs résultats sont obtenus avec les dérivés de l'indazole substitués en position 3 par l'atome de chlore et un cycle pyrone en position 6 d'indazole ainsi que le groupe benzyle substitué sur l'azote pyrazolique. Ce résultat, montre que la nature des substituants de l'indazole joue un rôle important dans l'activité antiproliférative de ce type de structure. Dans un second temps nous avons étudié aussi l'effet de certains dérivés N-pyrollyl-N-alkyl-indazole sur la croissance microbienne et l'adhésion d'une série de bactérie de référence et d'autres isolées des milieux industriels (Escherichia coli, Staphylococus aureus...). L'analyse des résultats de l'effet antibactérien des 5- et 6-pyrrolyl-N-alkyl-indazoles montres que la majorité des molécules ont un effet d'inhibition très significatif avec des CI₅₀ varient de 0,37 µM à 1.2 µM etc.., sur la prolifération bactérienne des souches Escherichia coli ATCC, Escherichia coli industriels et Staphylococcus aureus.

En perspectives, nous souhaiterons développer d'autres stratégies de synthèse basé pricipalement sur des réactions de substitution nucléophiles des nitroindazoles suivi des réactions de cyclisation intramoléculaires.

D'autres alternatives sont actuellement en cours de développement au sein de notre laboratoire, avec en particulier, l'adaptation de ces méthodologies à d'autres systèmes hétérocycliques. Ces séquences pouvant être mises en œuvre pour élaborer la synthèse de nouveaux systèmes hétérocycliques dotées d'activités pharmacologiques potentielles.
Mohamed EL GHOZLANI

REDUCTION DES NITROHETEROARYLES : SYNTHESE, ETUDE BIOLOGIQUE ET ELECTROCHIMIQUE DE NOUVEAUX SYSTEMES HETEROCYCLIQUES ».

Résumé :

L'indazole et ses dérivés ont gagné une importance considérable dans la chimie médicinale grâce à leurs propriétés pharmacologiques prometteuses. Ceci nous a amené à développer la synthèse, l'étude électrochimique et l'évaluation biologique de nouveaux systèmes hétérocycliques comportant le motif indazole.

Dans la première partie de ce mémoire, nous avons synthétisé de nouveaux systèmes hétérocycliques de type : N-pyrrolyl-N-alkyl-indazoles et N-pyrone-N-alkyl-indazoles via la réduction catalytique des N-alkyl-nitroindazoles par In et/ou SnCl₂ en présence de 2,5-héxanedione ou de 4-hydroxy-6-méthyl-2-pyrone. Afin d'améliorer le rendement de la réaction de réduction, nous avons étudié l'effet du catalyseur et celui de l'agent alkylant de l'indazole. Nous avons montré que la réduction avec SnCl₂ et la protection de l'indazole en position N-1 donnent des excellents rendements.

Dans la deuxième partie, les tests antiprolifératifs et antibactériens effectués sur certains composés, ont mis en évidence des activités cytotoxiques significatives contre les lignées cellulaires tumorales (A2780 et A549) et des effets inhibitrices antimicrobiens importants sur la prolifération bactérienne des souches *Escherichia coli ATCC*, *Escherichia coli industriels et Staphylococcus aureus* (CI50 varie de 0.37μ M à 1.2μ M).

De plus, l'étude préliminaire électrochimique effectué sur trois composés a montré des résultats importants en termes d'inhibition de la corrosion des aciers doux.

Mots-clés : N-alkyl-6-nitroindazoles, réduction catalytique, SnCl₂/In, N-pyrrolyl-N-alkyl-indazoles, N-pyrone-N-alkyl-indazoles, agents anticancéreux et antibactériens, étude électrochimique

Laboratoire de Chimie Organique et Analytique Mghila B.P.523, Béni Mellal-Maroc.

