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Abstract:  
 
Cloud computing has become a dominant paradigm in the IT environment 
in recent years. Its principle is to provide services to customers on demand, 
and allows them to pay only for what they need.  The increasing need for 
this type of service brings the providers to increase the size of their 
infrastructure, as energy consumption and associated costs become very 
significant. 
A cloud service provider must provide all the different types of requests.  
Infrastructure managers need then to host all the types of services together.  
That's why during this thesis, we focus on the modeling and analysis of 
management resources in data center environments in cloud computing. 
Analytical models are developed to improve the quality of services 
deployed in the cloud and minimize the energy consumption. Two great 
analytical tools have been used to achieve this purpose, queuing theory and 
dynamic programming.  
To achieve this, we first modeled and studied the problem of initial 
resource allocation, proposing two algorithms approached via heuristics, 
and then exploiting the concept of virtual machine migration in a cloud data 
center. 
The notion of reserve servers is implemented in our models in order to 
manage energy consumption. Servers are divided into two types: In run 
mode and in sleep mode as a reserve when there is no work to be done. 
Usually, the service receives customers in one way or another, we have 
focused on M/M/K queue system with a setup cost that describes a delay 
when a new reserve server is turning on. In another approach, a controller 
is placed in front of the arriving clients to manage their placement in the 
system and he is the one who decides whether to turn on a reserved server 
or not depending on the client's needs. 
Typically, services have to deal with different load levels. This is why we 
have developed the resource allocation models including the dynamical 
nature of requests and resource usage, as well as the notion of the cost of 
switching servers ON and OFF and the cost of migrating services from one 
server to another.  
The results of the models used during the works have been validated by 
both analytical and numerical solutions and some of them are compared 
qualitatively with other recent works. 
 
Keywords: Queueing theory, Dynamic programming, Resource allocation 
and management, Cloud computing, Performance evaluation. 
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Abstract

Cloud computing has become a dominant paradigm in the IT environment in recent years. Its
principle is to provide services to customers on demand, and allows them to pay only for what
they need. The increasing need for this type of service brings the providers to increase the size
of their infrastructure, as energy consumption and associated costs become very significant. A
cloud service provider must provide all the different types of requests. Infrastructure managers
need then to host all the types of services together. That’s why during this thesis, we focus
on the modeling and analysis of management resources in data center environments in cloud
computing. Analytical models are developed to improve the quality of services deployed in
the cloud and minimize the energy consumption. Two great analytical tools have been used
to achieve this purpose, queuing theory and dynamic programming. To achieve this, we first
modeled and studied the problem of initial resource allocation, proposing two algorithms ap-
proached via heuristics, and then exploiting the concept of virtual machine migration in a cloud
data center. The notion of reserve servers is implemented in our models in order to manage
energy consumption. Servers are divided into two types: In run mode and in sleep mode as
a reserve when there is no work to be done. Usually the service receives customers in one
way or another, we have focused on M/M/K queue system with a setup cost that describes a
delay when a new reserve server is turning on. In another approach, a controller is placed in
front of the arriving clients to manage their placement in the system and he is the one who
decides whether to turn on a reserved server or not depending on the client’s needs. Typically,
services have to deal with different load levels. This is why we have developed the resource
allocation models including the dynamical nature of requests and resource usage, as well as
the notion of the cost of switching servers ON and OFF and the cost of migrating services from
one server to another. The results of the models used during the works have been validated
by both analytical and numerical solutions and some of them are compared qualitatively with
other recent works.

Keywords: Queueing theory, Dynamic programming, Resource allocation and management,
Cloud computing, Performance evaluation.
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Résumé

Ces dernières années le cloud computing est devenu un paradigme dominant dans l’environne-
ment informatique. Son principe est de fournir des services aux clients à la demande, et leur
permettre de payer seulement ceux dont ils ont besoin. Le développement de ce type de
services amène les fournisseurs à augmenter la taille de leur infrastructure, à tel point que
la consommation d’énergie et les coûts associés deviennent très importants. Un fournisseur
de cloud services doit fournir toutes les différentes demandes. De leur côté, les gestion-
naires d’infrastructure doivent héberger tous les types de services ensemble. C’est pourquoi, au
cours de cette thèse, nous nous concentrons sur la modélisation et l’analyse de la gestion des
ressources dans les environnements de centres de données dans le cadre de l’informatique en
nuage. Des modèles analytiques sont développés pour améliorer la qualité des services dé-
ployés dans le nuage et minimiser la consommation d’énergie. Deux grands outils analytiques
ont été utilisés à la réalisation de cet objectif, la théorie des files d’attente et la programmation
dynamique. Dans ce but, nous avons dans un premier temps modélisé et étudié le problème
de l’allocation initiale des ressources, en proposant deux algorithmes abordées via des heuris-
tiques, puis en exploitant le concept de migration des machines virtuelles dans un centre de
données en nuage. La notion de serveurs de réserve est implémentée dans nos modèles afin de
gérer la consommation d’énergie. Les serveurs sont divisés en deux types : En mode exécution
et en mode veille comme réserve lorsqu’il n’y a pas de tâches à exécuter. Généralement, le
service reçoit des clients d’une manière ou d’une autre, nous nous sommes concentrés sur les
files d’attente M/M/K avec un coût de setup qui désigne un délai lorsqu’un nouveau serveur
de réserve est mis en service. Dans une autre approche, un contrôleur est placé devant les
clients qui arrivent pour gérer leur placement dans le système et c’est lui qui décide de mettre
en marche ou non un serveur de réserve en fonction des besoins du client. En général, les
services doivent gérer différents niveaux de demande. C’est pourquoi nous avons développé les
modèles d’allocation des ressources incluant la nature dynamique des demandes et l’utilisation
des ressources, ainsi que la notion de coût de mise en fonction et d’arrêt des serveurs et le
coût de migration des services d’un serveur à l’autre. Les modèles mathématiques proposés sont
validés numériquement et certains d’entre eux sont comparés qualitativement à d’autres travaux
récents.

Mots-clés: Théorie des files d’attente, Programmation dynamique, Allocation et gestion des
ressources, Cloud computing, Évaluation des performances.
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1 Thesis context
Cloud computing has become an important part of the IT environment in recent years. Its

principle role is to provide a distributed service and enable customers to consume resources on
a pay-per-use model. The growing need for this type of service is leading service providers to
increase the size of their infrastructures, to the extent that energy consumption and operating
costs are becoming significant. However, cloud computing environment have attracted a lot
of attention in recent years, a lot of researches have been interested in this topic and many
algorithms have been proposed to manage cloud resources to balance QoS and energy cost of
the system. Although, the virtualization of resources and migration are among basic techniques
used to improve the energy efficiency of cloud computing. The virtual machine (VM) allocation
problem: determining the best placement of VMs on Physical machines (hosts) taking into
account the Quality of Service (QoS) guarantees, the cost associated with using the hosts
and the energy consumed takes a lot of interest in this field. This mainly concerns for the
owner looking to maximize revenue or minimize operating costs, for example to reduce energy
consumption in data centers, just turning off unused PM, even a significant amount of energy
is consumed when the Physical Machine (PM) is turned off. But in reality, it is not as simple
as it seems. Cloud data centers are very complex and highly dynamic systems, so we do not
know which PMs need to be off or not . . . , so that is a real cloud management system that
must deal with uncertainty aspect of either demand and behavior of cloud computing.

2 Problem statement and objectives
The growing demand for infrastructure in cloud computing environments is increasing the

energy consumed by data centers, which has become a critical issue. High energy consumption
translates into lower supplier revenue costs and CO2 emissions, and much research has been
done on the energy consumption of data centers. If this consumption continues unchecked, the
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cost of energy consumed by a server over its lifetime exceeds the cost of the equipment. As a
result, effective solutions are needed to minimize the impact of cloud provider profits as well
as ensuring the reliable quality of service (QoS) defined by Service Level Agreements (SLAs)
is essential for cloud computing environments, so cloud providers have to find a compromise
between the energy performance of data centers and SLA contracts.

The objective of this thesis is to study the state of the art in dynamic allocation of VMs in
Cloud Data Centers (CDCs). This research aims to present new techniques, models, algorithms
and policies for distributed dynamic allocation of virtual machines in CDCs. The goal is to
improve the use of IT resources and reduce power consumption under workload-independent
QoS constraints, Dynamic VM allocation takes into account the characteristics of data centers
in a cloud computing system, while considering the random aspects of incoming service demand
from customers and those of the functioning of the data center architecture.

To achieve this objective mathematical modeling tools, namely Queuing theory and dynamic
programming, as models that can take into account, the dynamic and stochastic aspect of cloud
computing environment are used to analytically study this concerns.

3 Contributions
The contributions of this thesis can be mainly divided into three categories: Novel algorithms

for distributed dynamic VM allocation, a formulation of the dynamic virtual machine management
problem as a Markov decision process problem using reserves servers and an analysis of a
M/M/k system with exponential setup times and reserves servers. The main contributions are:

1. An overview of the previous dynamic VM allocation algorithms and discussion about
their advantages and inconvenients, lead to propose an algorithm that has been a result
of a numerous algorithms in literatures. Dynamic VM consolidation exploits the highly
workloads and continuously reallocates VMs using migration to minimize the number of
active physical nodes to serve the current resources demand. The proposed algorithm is
based on double thresholds that manages the selection and placement of VMs in PMs,
this management deals with power/performance trade off. Numerical results demonstrate
that it could be enable to reduce the energy consumed and minimize the execution time
in CDC.
This contribution has been subject of publications :

– A.Ouammou, M.Hanini, S.El Kafhali, A.Ben Tahar, Energy Consumption and Cost
Analysis for Data Centers with Workload Control International Conference on Inno-
vations in Bio-Inspired Computing and Applications, (2017), pp.92-101. Springer.

– A.Ouammou, A.Ben Tahar, M.Hanini, S.El Kafhali, Modeling and Analysis of Qual-
ity of Service and Energy Consumption in Cloud Environment International Journal
of Computer Information Systems and Industrial Management Applications, ISSN
2150-7988, vol.10, (2018),pp. 98–106.

2. Turning off the unused PMs is one of effective and old way to reduce energy but what
happens if we think differently, if we start with a minimum number of active PMs and
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depending on the state of the system, we turn on another PM, consider the M/M/K/Setup,
the K servers are divided in two types: In run mode and in sleep mode as a reserve, the
reserves PM could be in run mode in any time with a setup cost in form of a delay. The
proposed mechanism and its performance parameters are described by a mathematical
model, in addition the effect of the proposed mechanism on energy consumption behavior
is assessed.
This contribution has been subject of publication :

– A. Ouammou, A. Ben Tahar, M. Hanini, S. El Kafhali, Analysis of a M/M/k system
with exponential setup times and reserves server, BDIoT’19: Proceedings of the 4th
International Conference on Big Data and Internet of Things October 2019 Article
No.:58 Pages 1–5

3. A stochastic model is proposed while controlling the flow of customers into the system,
using dynamic programming and heuristic algorithm to assess the best management of
system resources. The proposed mechanism helps to manage the resources by improving
QoS and minimizing energy consumption based on a “PM reserves” approach. That trade-
off can be evaluated by analyzing and solving a Semi Markov Decision Process (SMDP)
model of the system. However, the optimal policy of the requests is dynamically achieved
by applying the value iteration algorithm (VI). As an implementation of our algorithm,
we studied the optimal choice of the controller in order to control the performance of the
system and to minimize energy consumed.
This contribution has been subject of publications :

– A. Ouammou, A. Ben Tahar, M. Hanini, S. El Kafhali, A dynamic programming
approach to manage virtual machines allocation in cloud computing, International
Journal of Engineering and Technology, ISSN: 2227-524X, vol.7, No 4.6 (2018),
pp. 128-132.

– Abdellah Ouammou, Abdellah Zaaloul, Mohamed Hanini, and Abdelghani Bentahar,
"Modeling Decision Making to Control the Allocation of Virtual Machines in a
Cloud Computing System with Reserve Machines," IAENG International Journal of
Computer Science, vol. 48, no.2, pp285-293, 2021

4 Thesis organization
The structure of this thesis is organized into five chapters.

• Chapter 1 is devoted to mathematical modeling tools including queuing theory and
dynamic programming for modeling different system behaviors.

• Chapter 2 represents a survey on cloud computing technology and related to management
resources issues. This chapter will also present some of the scientific works being done
by researchers working on the same research area.

Chapters 3, 4 and 5 are intended to address the three research contributions described
in the above sections.
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• Chapter 3 presents the algorithms proposed and describe the operating principle of
the two phases "selection and allocation". In the same chapter, We will describe the
architecture of the proposed model, the mechanisms used which are necessary to compare
the results obtained with other existing approaches.

• Chapter 4 introduces the concept of reserve server and consider the M/M/k queuing
system with setup costs: M/M/k/Setup to deal with coming clients. The proposed
mechanism and its performance parameters are described by a mathematical model.

• Chapter 5 presents a modeling decision to control the allocation of VM and its resolution
using dynamic programming and heuristic algorithm to assess the best management of
system resources.

• Finally, a conclusion gives a summary of this thesis contributions and presents possible
lines of research to refine this work and continue the research.
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Chapter 1

Mathematical Modelling tools of
performance evaluation of IT systems
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1.4 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The purpose of this chapter is to provide an overview of queuing theory and dynamic
programming and also briefly discuss the problems of computer system performance modelling.
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Chapter 1. Mathematical Modelling tools of performance evaluation of IT systems

1.1 Introduction

Today, some IT systems are so complex so that intuition alone is not enough to predict
their performance. Thus, various tools, such as simulation and mathematical modelling, play an
important role in the model of these systems. Performance is a key factor that must be taken
into account. Several methods can be used to evaluate this performance. For example, hard-
ware and/or software monitors can be used, either in a user environment or under controlled
conditions (test facility). However, it is necessary to make performance predictions based on
statistical measures using models. In addition to quantitative predictions, modelling also pro-
vides a better understanding of the structure and behaviour of the system during development.
This can ultimately help to discover and correct model failures.

The development of a performance model consists of characterising the hardware and soft-
ware resources that make up the system by means of parameters. The choice of these parameters
and a way to represent them are the basic elements of the modeling. It should be noted that
during the development of performance models, several hypotheses can be introduced in order
to simplify the complexity of a system. The validation of these models becomes essential.
Often several models with different levels of detail are developed to represent a system. For
example, there may be a very detailed simulation model and a simpler analytical model. If the
system has not yet been realized, then the validity of the simpler model could be obtained by
comparing its predictions with those obtained with the more detailed model.

A set of machines can be considered as a collection of hardware (CPUs, memories, etc.)
and software (system programs, compilers, etc.) as a resources. The performance of a system
depends directly on the organisation and management of these resources. A task (an element
of the program located in the machine’s memory) is the processing of a transaction. Usually
only one task can use a resource at any one time. Therefore, all other tasks that need to use
that resource must wait in a queue. Queuing theory is particularly well suited to analyzing
the performance of IT systems. For example, it is possible, using this theory, to estimate the
time required for tasks to be waiting in queues on a system. These waiting times can then be
analyzed to predict the response time of the system. Note that response time is generally an
important indicator of system performance. An introduction to queue theory will be presented in
the next section 1.2. Therefore, in order to carry out this work, we will provide the theoretical
background for dynamic programming and Markov decision processes in section 1.3 and 1.4.

1.2 Queuing theory

Queueing can be considered a typical phenomenon of contemporary life. They can be
found in the most diverse fields of activity (post office counters, road traffic, call centers,...etc.).

6



Chapter 1. Mathematical Modelling tools of performance evaluation of IT systems

The mathematical study of waiting phenomena constitutes an important field of application of
stochastic processes. We speak of waiting phenomena whenever certain units called " clients
" present themselves in a random way to " service stations " in order to receive a service, the
duration is generally random. The objective of this lecture is to discuss the structure and
calculate characteristic values to describe the performance of such systems.

1.2.1 Simple file
A simple queue (or station) is a system made up of one or more servers and a waiting

space as shown in figure 1.1. Customers arrive from outside, eventually wait in the queue,
receive service, and then leave the station. In order to completely specify a simple queue, we
must characterize the customer arrival process, the service time, and the structure and service
discipline of the queue.

Source 
Queuing System

Waiting System

Customer Arrivals Treatement Order
Server

Customer Departure

Figure 1.1 – General structure of a queuing system

1.2.2 Arrival process
The arrival of customers at the station will be described using a stochastic counting process.

(N� ≥ 0). [Note indifferently N� or N(�)]. If A� designates the random variable measuring the
time of arrival of the ��� customer in the system, we will have: A0 = 0 (by agreement) and
A� = inf{�; N� = �}�

If W� designates the random variable measuring the time separating the arrival of the
(� − 1)�� customer and the ���, then we have: W� = A� − A�−1�

Definition : A counting process (N�)� ≥ 0 is a renewal process if and only if the random
variables (W�) are independent and identically distributed variables. The law describing the
interarrival time is then sufficient to characterize the renewal process.

Most of the time, the arrival of customers to a simple queue is assumed to be described
by a renewal process. The simplest and most commonly arrival process used is the Poisson

7



Chapter 1. Mathematical Modelling tools of performance evaluation of IT systems

process. It is a renewal process where the arrivals are distributed according to an exponential
process.
We note λ the rate of arrivals: 1

λ is the average interval between two successive arrivals.

1.2.3 Service time

First of all, consider a single-server queue. Note D� the random variable measuring the
starting time of the ��� client of the system and W� the random variable measuring the service
time of the ��� client (time between the beginning and the end of the service). A start time
always corresponds to an end of service, but does not necessarily correspond to a beginning of
service. It is possible that a customer who leaves the service station may leave it empty. The
server is then unoccupied until the next client arrives. Only stations with continuous service
times described by independent and identically distributed (i.i.d.) variables will be considered.
Note that µ is the service rate: 1

µ is the average time of service.

The simplest service time distribution to study is the exponential distribution. However, the
"memoryless" property of the exponential distribution makes it generally not very realistic for
modeling real phenomena. We are therefore often obliged to use other service distributions.

1.2.4 Queue structure and discipline

A. Number of servers

A station can have several servers in parallel. Let C be the number of servers. As soon as a
client arrives at the station, either one server is free and the client instantly goes into service,
or all the servers are occupied and the client is placed in the queue waiting for one of the
servers to be released. Most of the time, the servers are supposed to be identical (they have
the same distribution) and independent from each other. A special station is the infinite servers
IS station in which the number of servers is infinite. This station does not have a queue. As
soon as a client comes to this station, he can find an available server instantaneously and
directly enter in service. It allows to represent systems with more servers than the number of
clients that can be present.

B. Queue capacity

The queue capacity for making customers wait the service can be finite or infinite. Let K be
the capacity of the queue (including the customers in service). A queue with finite capacity
: customer arrives and if the queue is full, the customer is rejected. In other hand the queue
with infinite capacity K = +∞ there is no reject.
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C. Service Discipline

Service discipline determines the order in which customers are placed in the queue and allowed
to be served. The most common disciplines are :

• FIFO (first in, first out) or FCFS (first come first served): this is the standand queue
in which customers are served in their order of arrival. Note that the FIFO and FCFS
disciplines are not equivalent when the queue contains several servers. In the first one,
the first arrived client will be the first to leave the queue while in the second one, it
will be the first to start its service. Nothing prevents a client who starts his service after
him, in another server, finishes before him.

• LIFO (last in, first out) or LCFS (last come, first served). In which the last client arrived
will be the first processed. Again, the LIFO and LCFS disciplines are only equivalent
for a single-server queue.

• RANDOM The next customer to be served is randomly selected from the queue.

• Round-Robin (cyclic). All customers in the queue take turns in the service, taking a
portion Q of the service time and then are returned to the queue again until their service
is fully completed. This service discipline was introduced to model computer systems.

• Processor Sharing. This is the limiting case of the Round Robin distribution when the
time Q tends towards 0. All customers are served at the same time, but with a speed
inversely proportional to the number of customers simultaneously present. If the server
rate is equal to µ and that at a given time, there are � clients at the station, all the
clients are served simultaneously with a µ

� rate (Be careful, saying that the � clients are
served simultaneously does not mean that they will be released simultaneously).

D. Kendall’s Notations

Kendall’s notation normalizes the description of a single queue :

T /Y /C /K /�/Z

Where :

• T : Interarrival distribution

• Y : Service distribution

• C : Number of servers

• K : Capacity of the queue
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• � : User population

• Z : Service discipline.

When the last three elements of Kendall’s notation are not specified, it is assumed that
K = +∞, � = +∞, and Z= FIFO. The parameter � specifies the maximum number of users
expected to arrive in the queue.

E. Notion of customer classes

A queue can be run by different classes of customers. These different classes will be distin-
guished by :

• Different arrival processes ;

• Different service times;

• A different order in the queue according to their class.

To define a multi-class queue, you need to define for each customer class the arrival process
and the associated service time distribution. It is also necessary to specify how the customers
of the different classes are ordered in the queue. This allows the implementation of new priority
service disciplines: PR (preemption) and HOL (hold on line). For example, in a queue with two
classes of customers, the customers in class 1 will always be "in advance" of the customers in
class 2. To characterize a priority service discipline, it is also necessary to specify if the service
is prioritized: when a class 2 client is in service and a class 1 client arrives in the queue,
does the client have to wait for the class 2 client to finish its service (without preemption:
HOL) or is the class 2 client instantly put back in the queue (with preemption: PR) in order
to leave the server for the clients of class 1 client. In the latter case, two further cases must
be distinguished. Does the client of class 2 report the time of service performed or not?

F. Some examples of waiting systems

• T /Y /C : 1 queue and C stations offering the same service; the waiting customer goes
to the first one that becomes free.
Example: Toilets in a public place, post office counters...

• T /Y / + ∞ : Infinity of servers; no waiting.
Example: Telephone lines.

• 2 different stations, one faster than other.
If both stations are free, the client goes with the probability � on one station and with
the probability 1 − � on the other.
→ If � = 1

2 , passing customers : they do not see the difference.
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→ If � = 1, for all customers have the same choice
→ In fact, � ∈ [0� 1] : There are several factors that define the choice (quality of service,
execution time ...)

• No waiting T /Y /C /C
Example: Telephone exchange where unanswered calls are rejected.

• Systems T /Y /C /K where K > C : limited queue length, depending on capacity.
Example: Gas station, waiting room...

• Closed systems: number of customers is constant.
Example: � machines running or broken down, C workers to repair them, � broken
down.
→ � > C : most frequent case ;
→ � < C : not very interesting because there would be workers who might never be
busy;
→ � = C : one worker per machine.

1.2.5 Operational performance parameters

A. Transient performance parameters

Considering the behavior of the system over a given period of time, for example between � = 0
and � = Θ. Let X� be the total number of customers in the system at the moment � . Looking
at the behavior of the system over the time interval [0� Θ] is like looking at the "transient state"
of the system as presented in figure 1.2.

The following "operational parameters" are defined :

• W� : Stay time of the ��� client in the system: W� = D� − A� .

• Θ : Total observation time.

• T (�� Θ) : Total time during which the system contains � clients; of course we have:
�

�≥0

T (�� Θ) = Θ (1.1)

• P(�� Θ) = T (��Θ)
Θ : Proportion of time when the system contains � customers.

• α(Θ) : number of clients arriving in the system during the period [0� Θ].

• δ (Θ) : number of clients departing the system during the period [0� θ ].
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Figure 1.2 – The number of clients in the system in a period of time

From these parameters, the following transient performance parameters are defined:

Average incoming rate: The average incoming throughput is the average number of customers
entering the system per unit of time. Over the observation period [0� Θ], it is then :

��(Θ) = α(Θ)
Θ (1.2)

Average output rate: The average output rate is the average number of customers leaving the
system per unit of time. Over the observation period [0� Θ], it is then :

��(Θ) = δ (Θ)
Θ (1.3)

Average number of customers : The average number of clients present in the system is the
time average of X� (or X (�)) over the observation period [0� Θ], so it is the area under the curve
of X� :

L(Θ) = 1
Θ

+∞�

�=0

�T (�� Θ) =
+∞�

�=0

�P(�� Θ) (1.4)
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Average stay time : The average stay time of a client in the system is, by definition, the
average times of the clients who arrived in the system during the time interval. [0� Θ]:

W (Θ) = 1
α(Θ)

α(Θ)�

�=1

W� (1.5)

Rate of utilization U : For a single queue with a single server, in addition to the above
parameters, average incoming rate, average output rate, average number of clients, average stay
time, an additional performance parameter can be defined: the server utilization rate. It is
defined as the proportion of time the server is occupied during the time [0� Θ]:

U (Θ) =
+∞�

�=1

P(�� Θ) = 1 − P(0� Θ) (1.6)

B. Steady-state performance parameters

All of the above parameters define the performance of the system in the transient state (after
a finite Θ time). In steady state, we will be interested in the existence and (possible) values
of the limits when Θ tends towards infinity of all these parameters:

�� = lim
θ→+∞

��(Θ)� �� = lim
θ→+∞

��(Θ)

L = lim
θ→+∞

L(Θ)� W = lim
θ→+∞

W (Θ) (1.7)

U = lim
θ→+∞

U (Θ)

C. Stability

Definition : A system is stable if and only if the average asymptotic output rate of the
customers in the system is equal to the average input rate of the customers in the system:

lim
θ→+∞

��(Θ) = lim
θ→+∞

��(Θ) = � (1.8)

Based on the previous relation, this implies that the total number of clients arriving α(Θ)
in the system during the interval [0�Θ], does not grow faster than the total number of clients
departing the system δ (Θ) when θ tends towards infinity:

lim
θ→+∞

δ (Θ)
α(Θ) = 1 (1.9)
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Example : In order to fully understand the notion of stability of a single queue, we will
consider the example of a D/D/1 queue (interarrivals and services are deterministic, meaning
that customers arrive exactly every �� = 1

λ units of time and all remain in service for a time
�� = 1

µ .
First consider the case where �� > �� (λ < µ), for example: �� = 10�, i.e. λ = 0�1
clients/second, �� = 5�, i.e. µ = 0�2 clients/second. Over the observation period [0�100[, the
average output rate �� = δ (Θ)

Θ = 10
100 = 0� 1 is well equal to the average input rate �� = λ.

The queue is stable: when � tends towards infinity, the number of customers in the queue X�

remains finite (and in this case equal alternately to 0 or 1).
Now consider the case where �� < �� (λ > µ), for example : �� = 10�, which λ = 0� 1
clients/second, �� = 20, and µ = 0� 05 clients/second. Over the observation period [0� 100[, the
average output rate �� = δ (θ)

Θ = 5
100 = 0� 05 is different from the average input rate �� = λ.

The queue is unstable: when � tends towards infinity, the number of customers in the queue,
X� tends towards infinity.

The problem is exactly the same if, instead of considering deterministic times, we consider
random times (for example if we consider a G/G/1 queue, for which the interarrival time and
the service time have a general distribution). The clients are grouped in the queue and the
server cannot serve them. This phenomenon occurs when �� < �� (so when λ > µ) and is
known as instability.

D. Ergodicity

Ergodicity is a very important concept in the field of stochastic processes. On the one hand,
operational analysis is interested in a particular evolution of a system between two instants
� = 0 and � = Θ. This means that making Θ tend towards infinity and considering the limits
of all the operational performance parameters is equivalent to being interested in the steady
state of the system. In fact, it means looking at the steady state of a particular evolution of
the system. Then it is possible to study different evolutions of the system. The question that
must be asked of course: Do all the performance parameters considered have the same limit
whatever the evolution of the system under consideration?

On the other hand, stochastic analysis will associate random variables and stochastic
processes to the system:

• A� : Random variable measuring the arrival time of the ��� client in the system;

• D� : Random variable measuring the starting time of the ��� client of the system;

• W� : Random variable measuring the time of stay of the ��� client in the system:

W� = D� − A�
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• (α�) : Process measuring the number of customers arriving in the system at the moment
� .

• (δ�) : Process measuring the number of customers who have left the system at the moment
� .

• (X�) : Stochastic process measuring the number of customers in the system at the moment
�:

X� = α� − δ�

• π�(�) : Probability that the system contains � clients at the moment � :

π�(�) = P([X� = �])�

Then, as was done in the operational analysis, all stochastic performance parameters can be
calculated, in both steady state and transient conditions. The average number of customers
present in the system at time � is calculated, for example, as follows:

L(�) =
+∞�

�=0

�π�(�) (1.10)

1.2.6 Little’s Law

Little’s law is a very general relation that applies to a large class of systems. It concerns only
the permanent regime of the system. No hypothesis on the random variables that characterize
the system (interarrival time, service time,...) is necessary. The only condition for the application
of Little’s law is that the system be stable. The flow rate of the system is then indifferently
either the input rate or the output rate: �� = �� = �. Little’s law is expressed as in the
following property :

Theorem 1.1. The average number of customers, the average time spent in the system, and the
average throughput of a steady-state system are related as follows :

L = W × � (1.11)

Proof. Consider, first of all, an observation duration Θ such that the system is empty at the
beginning and at the end of the observation. Under these conditions, the number of clients who
left the system during [0� Θ] is equal to the number of clients who arrived: δ (Θ) = α(Θ). The
quantities L(Θ) and W (Θ) can then be described as follows:

L(Θ) =
+∞�

�=0

�P(�� Θ) = 1
Θ

+∞�

�=0

�T (�� Θ) (1.12)
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W (Θ) = 1
δ (θ)

δ (Θ)�

�=1

W� (1.13)

Little’s formula is based on the following result:

+∞�

�=0

�T (�� Θ) =
δ (Θ)�

�=1

W� (1.14)

It can be formally demonstrated that the two summations involved in this equality represent
two ways of calculating the area under the X� curve. Since the system debit �(Θ) is the ratio
of the number of customers exiting δ (Θ) to the average observation time Θ , we immediately
deduce from the three relations giving L(Θ)� W (Θ) and �(Θ) that: L(Θ) = W (Θ) × �(Θ). We
can finally get rid of the hypothesis that the system is empty at the beginning and at the end
of observation, making Θ tend towards infinity and reminding that if the system is stable.

lim
Θ→+∞

δ (Θ)
α(Θ = 1 (1.15)

⌅

Little’s Law is very important in the analysis of queuing systems. It makes it possible to
deduce one of the three quantities (L� W � �) according to the knowledge of the two others. It is
applied in a wide variety of ways. Considering here the case of a simple queue with a single
server, the Little’s law can be applied in different ways.
Little’s Law tells us that there is a relationship between the average number of clients in the
queue (waiting or in service) and the average total time that a client stays in the queue (waiting
time + service time):

L = W × � (1.16)

Little’s law can also be applied by considering only the waiting in the queue (without the
service). It then allows to link the average number of customers waiting L�, to the average time
of waiting of a customer before service W�, by the relation:

L� = W� × �

Also, we can apply Little’s law by considering only the server. In this case, it connects the
average number of clients in service LS , to the average time of stay of a client in the server
which is nothing else than the average time of service 1

µ , by the relation:

LS = 1
µ × � (1.17)
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Since there is never more than one client in service, LS is simply expressed as:

LS (Θ) = 0P(0� Θ) + 1[P(1� Θ) + P(2� Θ) + P(3� Θ) + ���] = 1 − P(0� Θ)� (1.18)

LS is nothing more than the server utilization rate, U , defined as the probability that the
server is busy (or the proportion of time the server is busy). Thus, in this case, Little’s law is
written :

U = 1
µ × �

Three relations were obtained by applying Little’s law successively to the whole system, to
the queue alone and, finally, to the server alone. These three relations are of course not
independent. We can indeed deduce one of them from the two others by noticing that :

W = W� + 1
µ and L = L� + LS = L� + U (1.19)

1.3 Markovian queue
The mathematical study of a waiting system is most often done by introducing an appropriate
stochastic process.
→ First, we are interested in the number X� of clients in the system at the moment � . According
to the parameters that define the structure of the system, we try to calculate:

• The state probabilities π�(�) = P([X� = �]) which define the transitional regime of the
process (X�)� ≥ 0 ;

• The stationary regime of the process, defined by:
π� = lim

�→+∞
π�(�) = lim

�→+∞
P([X� = �])�

→ From the stationary process distribution (X�) � ≥ 0, we can obtain other operating charac-
teristics of the system such as :

• The average number of customers L in the system ;

• The average number of customers L� in the queue;

• The average waiting time of a customer W� ;

• Average stay time in the system W (waiting + service) ;

• The occupation rate of the service stations;

• Percentage of clients who could not be served;
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• The duration of an active period, i.e. the time interval during which there is always at
least one customer in the system...

It is important to note that the explicit calculation of the transitional regime is difficult, not
to say impossible, for most of the models considered. With the exception of certain models
that are particularly simple to manipulate, we will limit ourselves to determining the stationary
regime of this waiting phenomenon.
The analysis results are basically average values, in particular, the minimum and maximum
values, are not significant, for example, for the size of storage areas. In this case, the knowledge
of the state probabilities π�, can be very useful.

Markovian queues

The Makovian queues are those for which the interarrivals and service times are exponential.
Their Kendall notation will be in the form M/M/��� (M for markovian ...)

A. Process of birth and death in general

This process was discussed in the previously indirectly. Recall that it is characterized by a
number � of entities that evolves as follows:

- The arrivals and departures of entities follow exponential laws of λ(�) and µ(�) rates
respectively

- The probability of two events occurring in a time interval �� is very small (regularity
hypothesis: two events cannot occur at the same time).

There is a transition to a nearby state, either by the arrival of a client (birth) or by the
departure of a client (death).
If π�(�) is the probability that there are � clients in the system at time � , Kolmogorov’s equation
is written, for � > 0 :

π�(� + ��) = (1 − (λ� + µ�) ��) π�(�) + µ�+1π�+1(�)�� + λ�−1π�−1(�)�� + �(��) (1.20)

that is to say, by making �� tend towards 0, for � > 0 :

�
�� π�(�) = − (λ� + µ�) π�(�) + µ�+1π�+1(�) + λ�−1π�−1(�) (1.21)

In the same way, we obtain for � = 0 :

�
�� π0(�) = −λ0π0(�) + µ1π1(�) (1.22)
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It is practically impossible to calculate the general expression of π�(�)� except by simulation
from the values π�(0) which characterize the initial state of the system. However, if we assume
that a steady state can be established, the probabilities become independent of time and we
then have :

π� = π0

�−1�

�=0

λ�

µ�+1
(1.23)

with
π0 = 1

1 +
+∞�

�=1

�−1�

�=0

λ�

µ�+1

(1.24)

The Poisson process is a special case of the process of birth and death for which µ� = 0
and λ� = C �� = λ but, in this case, there is no stationary regime.
The differential equations are then written:

�
�� π0(�) = −λπ0(�) (1.25)

where π0(�) = �−λ�

�
�� π�(�) = −λ (π�(�) − π�−1(�)) (1.26)

whose solution is π�(�) = (λ�)��−λ�

�!

B. The Queue M/M/1

This queue is characterized by an arrival poissonian rate λ and a service time with exponential
rate µ. Let ρ = λ

µ � Queuing can be seen as a process of birth and death, for which :

λ� = λ

µ� =
�

µ if � �= 0
0 if � = 0

(1.27)

The probability of state (taking into account that ρ < 1 to be a permanent regime) is given
by : 





π� = π0ρ�

π0 = 1
+∞�

�=0

ρ�
= 1 − ρ (1.28)

So
π� = (1 − ρ)ρ� (1.29)

All performance parameters are calculated if the queue is stable. (λ < µ i,e ρ < 1) and
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for the stationary regime of the queue.

Throughput d: Here � = λ as λ� = λ for any � ≥ 0. Another way of looking at things is to
notice that the service is carried out with a µ rate in each state where the system contains at
least one client :

� = Proba([file not empty] )µ =
∞�

�=1

π�µ = [1 − π0] µ = ρµ = λ (1.30)

We find that if the queue is stable, the average output flow rate is equal to the average
input flow rate.

Server utilization rate U : By definition, the utilization rate is the probability that the server
in the queue will be busy.

U =
+∞�

�=1

π� = 1 − π0 = ρ = λ
µ (1.31)

Average number of customers L: The average number of customers is calculated from the
stationary probabilities in the following way:

L =
+∞�

�=1

�π� =
+∞�

�=1

�(1 − ρ)ρ� = ρ(1 − ρ)
+∞�

�=0

(� + 1)ρ� = ρ(1 − ρ)
�
1 + 2ρ + 3ρ2 + · · ·

�

= ρ(1 − ρ) �
�ρ

�
ρ + ρ2 + ρ3 + · · ·

�
= ρ(1 − ρ) �

�ρ

�
1

1 − ρ − 1
�

(1.32)
So

L = ρ
1 − ρ (1.33)

Average stay time W : This parameter is obtained using Little’s law:

W = L
� = 1

µ(1 − ρ) (1.34)

which can be decomposed into :

W = 1
µ + ρ

µ(1 − ρ) (1.35)

The average time spent in the queue is calculated as follows W� :

W� = ρ
µ(1 − ρ) (1.36)

20



Chapter 1. Mathematical Modelling tools of performance evaluation of IT systems

Average number of customers in the queue L� :

L� = λW� = ρ2

1 − ρ (1.37)

Proof of Little’s formulas in the case of M/M/1 : We are looking for the average waiting time
W� = E(T�) of an individual: this is a function of the number of customers already present
when he arrives. Either In the event "there are � customers in the system when the individual
arrives". In this case the following occurs

W� = E
�
T�

�
=

+∞�

�=0

E
�
T�/E�

�
P (E�) (1.38)

with E
�
T�/E�

�
= �

µ (no memory of the exponential law) and P (E�) = π� = (1 − ρ)ρ�

where ρ = λ
µ . Then we have

W� =
+∞�

�=1

�
µ (1 − ρ)ρ� = L

µ and W = W� + 1
µ = L + 1

µ � (1.39)

Where

L� =
+∞�

�=1

(� − 1)π� =
+∞�

�=1

�π� −
+∞�

�=1

π� = L − (1 − π0) = L − ρ (1.40)

as

L =
+∞�

�=1

�π� = ρ
1 − ρ � (1.41)

So
L = ρ(L + 1) = ρµW (1.42)

and we have
L = λW (1.43)

then,
L� = L − λ

µ = λ
�

W − 1
µ

�
= λW�� (1.44)

C. The Queue M/M/1/K

Consider a single-server system identical to the M/M/1 queue except that the capacity of the
queue is finite. So we still have the following assumptions: the process of arriving clients in
the queue is a poisson process with rate λ and the service time of a client is an exponential
random variable of rate µ.
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Let K be the capacity of the queue: this is the maximum number of customers that can be
present in the system, either waiting or in service. When a customer arrives while there are
already K customers present in the system, he is rejected. This system is known as the
M/M/1/K queue. The E state space is now finite: E = {0� 1� 2� ���� K }. As the capacity of
the queue is limited. The number of clients in the queue can therefore never go to infinity.
Moreover, as soon as a client is allowed to enter, he will leave and his time in the queue is
finite, since it corresponds to the service time of all the clients in front of him and this number
is limited by K .
Over a very long time, the exit flow will be equal to the entry flow, which corresponds well to
the unconditional stability of the system.

The birth and death process modelling this type of queue defined as follows:

λ� =
�

λ if � < K
0 if � = K

µ� =
�

µ if � �= 0
0 if � = 0

(1.45)

The integration of the recurrent equation to calculate π� is then done as follows:

π� =
�

π0ρ� if � ≤ K
0 if � > K

(1.46)

π0 = 1
K�

�=0

ρ�

= 1 − ρ
1 − ρK +1 if λ �= µ

�
and 1

K + 1 if λ = µ
�

(1.47)

Throughput d : The system throughput can be calculated in two equivalent ways: either by
measuring the rate at which customers leave the server ��, or by measuring the actual rate at
every customers are accepted into the system ��. Of course, it is expected that these two rates
will be equal.

The output rate of the server is equal to µ as soon as the queue is not empty:

�� = Proba ([ file not empty ])µ =
K�

�=1

π�µ = [1 − π0] µ = ρ − ρK +1

1 − ρK +1 µ (1.48)

The effective rate of entry into the queue is equal to λ as soon as a customer arrives when
the queue is not full:

�� = Proba([queue not full at the moment of arrival] (1.49)
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λ =
K −1�

�=0

π�λ = [1 − πK ] λ = 1 − ρK

1 − ρK +1 λ (1.50)

Since ρ = λ
µ � we have �� = �� = �� where � is the average throughput of the queue

(entry or exit):

� = 1 − ρK

1 − ρK +1 λ (1.51)

Note that when K tends towards the infinite, We find the results of the M/M/1� i.e. � = λ�
provided that ρ < 1� which corresponds to the condition of stability of the M/M/1.

Server utilization rate U (K ):

U (K ) =
K�

�=1

π� = 1 − π0 = ρ − ρK +1

1 − ρK +1 = ρ 1 − ρK

1 − ρK +1 (1.52)

Thus, in the case of a queue with limited capacity, the utilisation rate is no longer equal
to ρ. Indeed, the utilisation rate is always equal to the ratio of the average input flow rate to
the average service rate (Little’s law): U = �

µ . But here � is no longer equal to λ.
Note that when K → +∞� U (K ) tends towards ρ if ρ < 1, and towards 1 if ρ > 1.

Average number of customers L:

L =
K�

�=0

�π� = 1 − ρ
1 − ρK +1

K�

�=0

�ρ� = ρ(1 − ρ)
1 − ρK +1

K�

�=1

�ρ�−1

= ρ(1 − ρ)
1 − ρK +1

�
�ρ

�
1 − ρK +1

1 − ρ − 1
�

= ρ(1 − ρ)
1 − ρK +1

1 − (K + 1)ρK + K ρK +1

(1 − ρ)2

= ρ
1 − ρ

1 − (K + 1)ρK + K ρK +1

1 − ρK +1

(1.53)

Again, when K tends towards infinity and ρ < 1, the results of the Queue M/M/1 :

L = ρ
1 − ρ (1.54)

Average stay time W : Here we consider the average stay of a client actually admitted to the
queue. This value can be obtained by application of Little’s law:

W = L
� (1.55)
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Particular case where λ = µ : π� = π0 = 1
K +1 for � ≤ K

U (K ) = 1 − π0 = K
K + 1 and � = K λ

K + 1 (1.56)

Average number of customers in the queue : L =
K�

�=0

�
K + 1 = K

2

Average time in the waiting system: W = L
� = K +1

2λ

Proof of Little’s formulas in the case of M/M/1/K :

Proof. Here we have

E
�
T�

�
=

K −1�

�=1

�
µ π∗

� = 1
µ

�
L − K πK

1 − π�

�
� (1.57)

with π∗
� = π�

1−πK
(rejected customer if there is already K ) �������

L − K πK =ρ1 − (K + 1)ρK + K ρK +1 − K ρK −1(1 − ρ)2
(1 − ρ) (1 − ρK +1)

=ρ
1 − (K + 1)ρK + K ρK +1 − K ρK −1 �

1 − 2ρ + ρ2�

(1 − ρ) (1 − ρK +1) = ρ1 − K ρK −1 + (K − 1)ρK

(1 − ρ) (1 − ρK +1)

1 − πK = 1 − ρK (1 − ρ)
1 − ρK +1 = 1 − ρK +1 − ρK + ρK +1

1 − ρK +1 = 1 − ρK

1 − ρK +1

(1.58)

W = W� + 1
µ = 1

µ

�
ρ

�
1 − K ρK −1 + (K − 1)ρK �

(1 − ρ) (1 − ρK ) + 1 − ρ − ρK + ρK +1

(1 − ρ) (1 − ρK )

�

= 1
µ

�
1 − (K + 1)ρK + K ρK +1

(1 − ρ) (1 − ρK )

�
=

L
�
1 − ρK +1�

ρµ (1 − ρK ) = L
λ (1 − πK )

(1.59)

Where � = λ
K −1�

�=0

π� = λ (1 − πK ) and we have L = � × W

Also, L − L� =
K�

�=1

�π� −
K�

�=1

(� − 1)π� =
K�

�=1

π� = 1 − π0 so, as λ̄ = µ̄ = µ (1 − π0) = �,

L� = L − (1 − π0) = � × W − �
µ = �

�
W − 1

µ

�
= � × W� (1.60)

⌅
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D. The Queue M/M/C

We consider a system identical to the M/M/1 queue except that it has C identical and
independent servers. We keep the hypotheses: arrival of clients with λ rate and the exponential
service time with µ rate (for each of the servers). This system is known as the M/M/C queue.
The state space E is, as for the infinite M/M/1: E = {0� 1� 2� ���}� We have a birth and death
process of rate :

λ� = λ (1.61)

µ� =






0 if � = 0
�µ if 0 < � < C
Cµ if � ≥ C

(1.62)

Indeed, when the process is in a state � < C , all clients are in service and are able to quit
the queue. To pass from � clients to � − 1 clients in a �� time, it is necessary that one of the
� clients finishes his service and the others do not finish theirs, this can happen for the first
client, second client ,..., or ��� client. To be precise, it is also necessary to add that no client
arrives during this time �� . The characteristic property of the exponential law tells us that the
probability that a client will complete his service in a time �� is µ�� + �(��), the probability
that a client will not complete his service is 1 − µ�� + �(��) and the probability that no client
arrives is 1 − λ�� + �(��). The required probability is calculated as follows:

����−1(��) =




��

�=1

(µ�� + �(��))(1 − µ�� + �(��))�−1



 (1 − λ�� + �(��)) (1.63)

A Taylor polynomial to the first order immediately gives us that

����−1(��) = �µ�� + �(��) (1.64)

The transition rate from the � state to the � − 1 state is therefore equal to �µ. Similarly,
when � ≥ C , only C clients are in service and are able to leave the queue, thus switching the
process from the � state to the � − 1 state. The corresponding transition rate is equal to Cµ.
In all cases, a transition from a state � to a state � + 1 corresponds to a client arrival, that is
to say in a time �� , with a probability λ�� + �(��)� The transition rate is equal to λ .

The stability condition here is λ < Cµ and expresses the fact that the average number of
clients arriving in the queue per unit of time must be less than the average number of clients
that the servers in the queue are able to process per unit of time.

25



Chapter 1. Mathematical Modelling tools of performance evaluation of IT systems

The π� can be calculated as follows:





π�−1λ = π��µ for � = 1� · · · � C − 1

π�−1λ = π�Cµ for � = C � C + 1� · · ·
(1.65)

Let 




π� = ρ
�π�−1 for � = 1� · · · � C − 1

π� = ρ
C π�−1 for � = C � C + 1� · · ·

where ρ = λ
µ (1.66)

We can then express all the probabilities as a function of π0 :





π� = ρ�

�! π0 for � = 1� · · · � C − 1

π� = ρ�

C !C �−C π0 for � = C � C + 1� · · ·
(1.67)

The normalization condition allows us to calculate the probability π0. We can easily verify
that the convergence condition of this series is identical to the stability condition of the queue,
i.e. λ < Cµ.

π0 = 1
C−1�

�=0

ρ�

�! + ρC

(C − 1)!(C − ρ)

(1.68)

When C = 1, We find well the results of the queue M/M/1 :

π� = (1 − ρ)ρ� (1.69)

All performance parameters can be calculated if the queue is stable. (λ < Cµ) so ρ < C .

Throughput d : The service is performed with a rate of �µ in each state where the system
contains less than C customers and with a rate of Cµ in each state where the system contains
more than C customers :

� =
C−1�

�=1

π��µ +
+∞�

�=C

π�Cµ (1.70)

By replacing the expressions obtained for the probabilities π� and π0, we find that the
queue is stable, the average output rate is equal to the average input rate:

� = λ

For the M/M/C queue, it is simpler (in terms of the calculations involved) to first calculate the
average stay time and then deduct the average number of clients.
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Average stay time W : The average stay of a client can be divided into the average time in
the queue and the average service time. It is then sufficient to apply Little’s law to the queue
alone:

W = W� + S = L�

� + 1
µ = L�

λ + 1
µ (1.71)

It then remains to calculate the average number of customers waiting in the queue, L� :

L� =
+∞�

�=C

(� − C )π� =
+∞�

�=C

(� − C ) ρ�

C !C �−C π0 = ρC+1

C !C

+∞�

�=C

(� − C )
� ρ

C

��−C−1
π0

= ρC+1

C !C
1

�
1 − ρ

C
�2 π0 = ρC+1

(C − 1)!(C − ρ)2 π0

(1.72)

The average stay time can be calculated as follows

W = ρC

µ(C − 1)!(C − ρ)2 π0 + 1
µ (1.73)

Average number of customers L: The average number of clients is then obtained by applying
Little’s law to the whole queue:

L = W × � = W × λ = ρC+1

(C − 1)!(C − ρ)2 π0 + ρ (1.74)

E. The Queue M/M/ + ∞

A system is considered to be composed of an unlimited number of identical and independent
servers. As soon as a customer arrives, it is instantly in service. In this specific queue, there
is no waiting time. It is always assumed that the customer arrival process is poissonian of rate
λ and that the service times are exponential of rate µ (for all servers). This system is known
as the M/M/∞ queue. As was done for the M/M/C queue, it can easily be shown that the
transition rate from any � state to the � − 1 state is equal to �µ and corresponds to the exit
rate of one of the � clients in service. Similarly, the rate of transition from any � state to the
� + 1 state is equal to λ and corresponds to the rate of arrival of a client.
Intuitively, the processing capacity of the queue is infinite as any new customer arriving at the
entrance of the queue is instantly processed. The stability condition that "the average number
of customers arriving in the queue per unit of time must be less than the capacity of the queue"
is always verified.
Let π� be the stationary probability of being in the � state. The equilibrium equations give us:

π�−1λ = π��µ for � = 1� 2� · · · (1.75)
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Let
π� = ρ

�π�−1 for � = 1� 2� · · · � where ρ = λ
µ (1.76)

All probabilities can then be expressed in terms of π0 :

π� = ρ�

�! π0 for � = 1� 2� · · ·

The condition of normalization gives us immediately π0 :

π0 = 1
+∞�

�=0

ρ�

�!

= �−ρ (1.77)

Note that the series
+∞�

�=0

ρ�

�! converges for all values of ρ (so to λ and to µ), which is

consistent with the unconditional stability of the queue. The final result is :

π� = ρ�

�! �−ρ for � = 1� 2� · · · (1.78)

Throughput d : The service is provided at a rate of �µ in each state where the system contains
� clients:

� =
+∞�

�=1

π��µ = �−ρ
+∞�

�=1

ρ�

(� − 1)!µ = �−ρρ�ρµ = ρµ = λ (1.79)

The unconditional stability of the queue is refound.

Average number of customers L:

L =
+∞�

�=1

�π� = �−ρ
+∞�

�=1

ρ�

(� − 1)! = �−ρρ�ρ = ρ (1.80)

Average stay time W : Intuitively, the average time spent in the system is reduced to the
average service time, which is 1

µ . We can demonstrate this result again by using Little’s law:

W = L
� = ρ

λ = 1
µ (1.81)

1.4 Dynamic programming
Every day, we interact with our environment and learn something from it. In some situations,

we are supposed to take decisions, regarding the state of our environment. dynamic programming
explore a computational approach to learning from this interaction. Precisely, it can be defined
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as a sub-area of machine learning concerned with how to take a decision according to a
specific situation in order to maximise the reward obtained by taking the decision. In dynamic
programming, the entity which takes the decision is called agent or controller . It can be
a human, a robot, a part of a machine or anything susceptible to take a decision, and the
environment is what is all around the agent and which can influence its decision. A good way
to understand the concept of dynamic programming is to see some examples of situations at
which it can be applied.

In a chess game, the agents are the players and they act by considering a goal which is to
win. So, every action of a player is considered as a decision which influences its environment
by putting the game at a new state. dynamic programming can be applied to learn how to
make good decision in every possible states of the game. dynamic programming can also be
used in a more technical situation, like the approach of learning a performant decision strategy
to control the functioning of allocation of virtual Machines. We will discuss this example of use
of dynamic programming in this work. In these examples, the agent has a goal to be reached
and acts according to it and the available state of its environment.

dynamic programming has two main features [1]:

• Trial and error search:

The agent has to discover by itself which actions lead to the biggest reward, by trying
them.

• Delayed reward:

It considers more strongly the goal of a long term reward , rather than maximising the
immediate reward.

1.4.1 Elements of dynamic programming

Dynamic programming has four principal elements:

1. The policy: It is a map from the perceived states of the environment to the set of actions
that can be taken.

2. The reward function: It is a function that assigns a real number to each pair (�� �) where
� is a state in the set of possible states S and � is an action in the actions set A.

R : S × A −→ R
(�� �) �−→ R (�� �)

R (�� �) represents the reward obtained by the agent when performing the action � at
state �. Generally, we note the value of the reward at time � as �� .

29



Chapter 1. Mathematical Modelling tools of performance evaluation of IT systems

3. The value function: It is the total amount of expected rewards from a specific state of
the system, from a specific time, and over the future. It is an evaluation of what is good
in the long term. The value taken by this function is generally named return and is
denoted R� at time � .

We have two ways to count the return:

• We can sum up all the rewards. This is especially used for episodic tasks, when
there is a time stop T . In that case:

R� = ��+1 + ��+2 + ��� + �T

• Concept of discounting: It is used to weight present reward more heavily than
future ones with a discount rate γ� 0 < γ ≥ 1. The discount rate γ is necessary
to have a present value of the future rewards. In this case, the return is given by
the infinite sum:

R� = ��+1 + γ��+2 + γ2��+3 + · · · =
∞�

�=0

γ���+�+1

Since the discount rate γ is less than 1 and the series of rewards �� bounded, this
infinite sum has a finite value. If γ tends to 0, this agent is said to be myopic:
it sees only immediate rewards. When γ tends to 1, the future rewards are more
taken into account.

4. A model of environment: It is set to plan the future behaviour of the environment.

The most important task of dynamic programming is determining a good policy which
maximises the return. Markov Decision Processes (MDPs) are a mathematical model
for dynamic programming that is commonly used nowadays. Current theories of dynamic
programming are usually restricted to finite MDPs.

1.4.2 Markov decision processes

A. Definition and characteristics

A learning process is said to have the Markov property when it is retaining all relevant
information about the future. Precisely, when all needed information to predict the future
can be available at the present, and the state of the system at the present can resume past
information. So, in that case, we can predict the future values of the rewards simply by iteration.
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This statement can be written as:

P
�

S �+1 = ��� ��+1 = � | S � � ��� �� � S �−1� ��−1� ��−1� � � �
�

= P
�

S �+1 = ��� ��+1 = � | S � � ��� ��
�

(1.82)
where

P
�

S �+1 = ��� ��+1 = � | S � � ��� �� � S �−1� ��−1� ��−1� � � �
�

(1.83)

is the probability that at time (� + 1) , we are at the state ��, wining a reward � given that
we took the action ��� ��−1� ��−2� � � � at the states S � � S �−1� S �−2� � � � respectively.

A decision making which has this property can be treated by MDPs. When the space of the
states is finite, the process is referred to as finite MDP, and consists of a 4-tuple: (S� A� R � P)

• The set of states S : It is the finite set of all possible states of the system.

• The finite set of actions A.

• The reward function: R (�� �) depends on the state of the system and the action taken.
We assume that the reward function is bounded.

• The Markovian transition model: It is represented by the probability of going from a
state � to another state �� by doing the action �: P(��|�� �).

B. Policy and value functions

Recall that the main task of a dynamic programming is finding a policy that optimises the value
of rewards. This policy can be represented by a map π:

π : S −→ A
� �−→ π(�)

(1.84)

where π(�) is the action the agent takes at the state �.
Most MDP algorithms are based on estimating value functions. The state-value function
according to a policy π is given by:

νπ : S −→ R
� �−→ νπ(�)

(1.85)

If we note here and in the remaining of this work N = S , the cardinal of the set of states
S , the state-value function can be represented as a vector V ∈ RN where each component
corresponds respectively to the value �π(�) at each state � ∈ S .

Let us note Eπ{R�}, the expected value of the return R� when the policy π is followed in
the process. The value of the state-value function �π(�) at a particular state � is in fact the
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expected discounted return when starting at the state � and following the policy π .

νπ(�) = Eπ
�

R� | S � = �
�

= Eπ

� ∞�

�=0

γ���+�+1 | S � = �
�

(1.86)

The return R� has the recursive property that:

R� =
∞�

�=0

γ���+�+1 = ��+1 +
∞�

�=1

γ���+�+1

= ��+1 +
∞�

�=0

γ�+1��+(�+1)+1 = ��+1 + γ
∞�

�=0

γ���+(�+1)+1

= ��+1 + γR�+1

(1.87)

Thus,
νπ(�) = Eπ

�
R� | S � = �

�
= Eπ

�
��+1 + γR�+1 | S � = �

�

= Eπ
�

��+1 | S � = �
�

+ γEπ
�

R�+1 | S � = �
� (1.88)

But Eπ{��+1|S� = �} is the expected value of the reward ��+1 when the policy π is followed
and such that at time � , the state is �. This is the same as the reward obtained by doing the
action π(�) at the state � : R (�� π(�)). Therefore, equation 1.88 becomes:

νπ(�) = R (�� π(�)) + γEπ
�

R�+1 | S � = �
�

(1.89)

But Eπ{R�+1|S � = �} is the expected value of R�+1 known that S � = �. and by definition of
the conditional expectation, we get:

Eπ
�

R�+1 | S � = �
�

=
�

��

�
P

�
�� | �� π(�)

�
Eπ

�
R�+1 | S �+1 = ����

(1.90)

Putting the equation 1.90 into the equation 1.89 yields to:

νπ(�) = R (�� π(�)) + γ
�

��

�
P

�
�� | �� π(�)

�
Eπ

�
R�+1 | S �+1 = ����

(1.91)

And in fact,
Eπ

�
R�+1 | S �+1 = ��� = νπ �

��� (1.92)

Finally, we define the state-value function:

νπ(�) = R (�� π(�)) + γ
�

��

�
P

�
�� | �� π(�)

�
νπ �

����
(1.93)

One can also define another form of value function called state-action value function according
to a policy π : Qπ(�� �) which depends not only on the state but on the action taken as well.
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Definition : [2] The decision process operator Tπ for a policy π is defined by:

Tπν(�) = R (�� π(�)) + γ
�

��

�
P

�
�� | �� π(�)

�
ν

�
����

(1.94)

It yields from the definition of the state-value function in equation 1.93 that �π(�) is the
fixed point of the decision process operator Tπ . That is to say, Tπ�π(�) = �π(�)

Definition : [2] The Bellman operator T ∗ is defined as:

T ∗ν(�) = max
�

�
R (�� �) + γ

�

��

P
�
�� | �� �

�
ν

�
���

�
(1.95)

We denote �∗ , the fixed point of the Bellman operator. So, T ∗�∗(�) = �∗(�). And �∗(�)
is the maximum, according to actions, of � (�) for a particular state �. When considering this
maximum for every state � ∈ S , we can therefore define �∗, which is called the optimal
state-value function.

Then, finding the appropriate action � which maximises the reward at each state is equiv-
alent to find an action � verifying T ∗�∗(�) = �∗(�). We denote this action ������(� )(�)

greedy(ν)(�) = arg max
�

�
R (�� �) + γ

�

��

P
�
�� | �� �

�
ν

�
���

�
(1.96)

It is worth nothing that for each state s of the system, we have one equation like 1.96.
Therefore, finding the policy π to get the right action to do for every state of the system is
now equivalent to solving N equations, each given by 1.96, with N unknowns.
Solving a MDP consists of looking for an efficient algorithm to solve this system.

1.4.3 Dynamic programming methods

A. Solving a MDP by value iteration algorithm

Recall that solving a MDP is equivalent to solving a system of N Bellman equations with N
unknowns, where N is the number of possible states of the system. That is solving non linear
equations. Then, iterative approach is suitable. Value iteration, also called Backward induction
is one of the simplest method to solve a finite MDP. It was established by Bellman in 1957.
Because our main objective in MDP is to find an optimal policy, value iteration works on it by
finding the optimal value function first, and then the corresponding optimal policy.

The basic idea is to set up a sequence of state-value functions {�� (�)}� such that this
sequence converges to an optimal state-value function �∗(�). In fact, a state-value function �
can be written as a vector in RN : each component corresponds to � (�) where � is a particular
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state. Recall that the Bellman operator T ∗ is defined by:

T ∗ν(�) = max
�

�
R (�� �) + γ

�

��

P
�
�� | �� �

�
ν

�
���

�
(1.97)

The Bellman operator is in fact a max-norm contraction with contraction factor γ [3].
It implies that

��T ∗ν − T ∗µ
��

∞ ≤ ν − µ∞∀ν and µ state-value functions ∈ RN

Theorem 1.2 (Banach fixed point theorem (contraction mapping principle)). Let T be a mapping
T : X → X from a non-empty complete metric space X to itself. If T is a contraction, it admits
one and only one fixed point.

Furthermore, this fixed point can be found as follows: starting with an arbitrary element
�0 ∈ X , an iteration is defined by : �1 = T (�0) and so on ��+1 = T (�� ). This sequence
converges and its limit is the fixed point of T .

In our case, RN is a non-empty complete metric space and the Bellman operator T ∗ is
a contraction. So, from theorem, the sequence �� � converges to the fixed point �∗ of Bellman
equation. We have already proven previously that the fixed point of the Bellman operator is in
fact the optimal policy for our MDP. That is why the value iteration converges to the optimal
policy. The whole algorithm is described in Algorithm 1.

Algorithm 1: Value Iteration Algorithm
Input: Set of states S , set of action A, vector of reward for every action R (�� �),

transition probability matrices for every action P(��|�� �), the discount rate γ , a
very small number θ near to 0

Initialise �0 arbitrarily for every state � ∈ S�(Example : �0(�) = 0� ∀� ∈ S);
while |�� (�) − ��−1(�)| < θ� ∀� ∈ S do

forall � ∈ S do
forall � ∈ A do

Q�+1(�� �) = R (�� �) + γ
�

��

P(��|�� �)�� (��) ;

��+1(�) = max
�

Q�+1(�� �);
π� (�) = argmax

�
Q�+1(�� �) {Gives the action � that has given ��+1 }

Output: �� { Takes the �� at the last iteration of the While Loop: Which is the
optimal statue-value function

Output: π� { Takes the π� at the last iteration of the While Loop: Which is the
optimal policy
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1.5 Conclusion
In this chapter, the two approaches of Markov chains and dynamic programming are introduced
in detail. To model the best management decision, the use of dynamic programming provides
the correct strategy to be chosen by the agent to control the system. In the following chapters,
the contributions in terms of modeling management resources issues in cloud computing will
be developed, starting with static and then dynamic defense measures.
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In this chapter, the cloud computing environment is introduced by citing its architecture, its
characteristics, its service and deployment models as well as its associated technologies for its
implementation. In addition, the treatment related to this environments are treated in term of
managing its resources and its uses. Based on this, there are several dynamic techniques for
management of resources in cloud computing as the two most known technologies are described:
Virtualization and migration. Some research work are presented at the end of this chapter,
which aim to manage the resource and tasks in order to minimizing the energy consumption
and ensuring the QoS.
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2.1 Introduction
Cloud computing is one of the technologies modeled to provide a service [4] rather than a

product. Services such as computing, software, data access and storage are provided to its user
without any prior knowledge of the physical location and configuration of the server providing
these services. Large virtualized data centers are established to meet this requirement. In
general, we mention "Cloud Computing" when it is possible to access data or programs from the
internet, or at least when this data is synchronized with other information on the Internet.

Cloud platform can deploy new digital customer experiences in days rather than months
and can support analytic that would be uneconomical or simply impossible with traditional
technology platforms. and the managers need to accelerate their business to the cloud in order
to digitize quickly and effectively in the wake of Covid-19.

However, cloud computing is a complex system composed of a set of IT resources to respond
the needs of customers. The realization of this service/need requires effective algorithms to use
its resource as well as the deployment of specific security. These services are divided into
three types as described in figure 2.1.

2.1.1 Types of cloud computing services
There are three main forms of as-a-service cloud computing :

End Users

Developers
Data Scientist

IT Administrators

SaaS
User Service

Given Application

PaaS
Development Platform

O/S, Middleware

IaaS
Infrastructure
Servers,
Virtualization,
Storage, 
Network

“Build”

“Host”
     AWS Elastic Compute Cloud (EC2),
                  Microsoft Azure, 
             Google Compute Engine

     AWS Elastic Beanstalk,
     Microsoft Azure, Google
               App Engine

Resource Control

Strong

Weak
“Consume”

Office 365, Google Docs, Gmail,
              Salesforce CRM, ...

Figure 2.1 – Cloud Service Models

• Infrastructure as-a-service (IaaS) : As the most basic form of cloud computing, IaaS
allows users to access the basic elements of the infrastructure, such as server space,
data storage and network, which can be provisioned through an Application Programming
Interface (API). This model comes closest to replicating the functionality of a traditional
data center in a hosted environment.
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• Plateform as-a-service (PaaS) : This model provides a complete development environ-
ment, eliminating the need for developers to deal directly with the infrastructure layer
when deploying or updating applications.

• Software as a Service (SaaS) : SaaS applications are designed for end-users, with
provisioning and infrastructure development taking place entirely in the background.
From popular applications such as word processing and spreadsheets, photo editing
suites, and video hosting platforms, SaaS applications offer a wide range of functionality
in the cloud.

2.1.2 Deployment models
Three basic models of cloud computing are available as shown in figure 2.2:

• Public cloud: The public cloud is a shared cloud infrastructure that is owned, managed
and maintained by a cloud provider, such as Amazon Web Services or Microsoft Azure.
The main advantages of the public cloud are on-demand scalability and pay-per-use
pricing.

• Private cloud: This type of cloud runs behind a firewall on a the company’s IT network and
is hosted in a data center dedicated to the organization. The private cloud infrastructure
can be configured and managed according to an organization’s individual needs.

• Hybrid cloud: As its name says, the hybrid cloud model allows enterprises to take
advantage of both private and public cloud solutions. With the hybrid cloud, organizations
can leverage the strengths of each cloud model - the flexibility and scalability associated
with protecting operations and sensitive data.

Three Types of cloud Computing
Hybrid cloudPrivate cloudPublic cloud

Cloud for everyone. Resources 
are owned and managed by a
cloud provider, hosted remotely
and shared with many other
customers.

Cloud for one customer only.
Resources are (typically) owned 
and managed by the customer,
hosted on premises, and not
shared outside the firewall.

Combined public and private 
cloud resources, orchestrated
so that workloads can be moved
between cloud for maximum
business benefit

Figure 2.2 – Types of Clouds
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2.1.3 The characteristics of cloud computing
According to the National Institute for Standards and Technology (NIST), the cloud offers
several services with essential characteristics such as the elasticity of the resources offered by
cloud services, their ease of access via the network, the pooling of resources, the increased
agility of cloud information systems as well as billing for the use of cloud services:

• Elasticity of resources: In the cloud, new capacities can be automatically made available
to users in the event of an increase in demand. Conversely, they can be quickly stop the
use when they are no longer needed. This elasticity of cloud services creates the illusion
of infinite capacity for the end user, which can be put into service at any time. All these
operations can be performed automatically by scripts. These management mechanisms
enable you to take full advantage of pay-per-use billing by adapting computing power
to instantaneous traffic.

• Invoicing per use: With the cloud, a new way of invoicing usage is being implemented,
which can be summarized simply: you only pay for what you actually use. So in the
infrastructure cloud, you pay according to the number of processor cores consumed, the
amount of memory used, the number of input/output operations performed or the amount
of data stored. And in a SaaS mode, you pay according to the number of users and their
use of resources. There is generally no cost for commissioning (the user carries out the
operations). Invoicing is calculated according to the duration and quantity of resources
used. A stopped treatment unit is not charged.

• Access to services by the user on demand: The implementation of the systems is fully
automated, and the user accesses to the services on demand through a control console,
which sets up and menages the configuration remotely.

• Broadband network access: These processing centers are usually connected directly to
the internet for excellent connectivity. Major providers are allocating processing centers
around the globe to provide access to systems in less than 50 ms from any location.

• Resource pool (not localized): Most of these centers have tens of thousands of servers
and storage to allow for rapid scalability. It is often possible to choose a geographical
area to put the data "close" to the users.

2.1.4 Advantages and disadvantages of cloud computing
This technology offers several advantages and benefits, including the following:

• Low initial investment: With cloud computing, a large part of the IT budget becomes an
operating expense instead of a capital expenditure. Enterprises no longer need to build
expensive data centers before opening their doors or undertaking new initiatives.

• Cost-effectiveness : Whether you’re a small or large enterprise, you can reap the same
benefits from the economies of scale of cloud service providers. Communication service
providers are able to get the most out of the amount of hardware they use, save energy
and other costs, and then pass the savings on to their customers.
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• Easier innovation: Within the IT team as well as within the enterprise, cloud computing
often facilitates the path to innovation. Freed from the operational burdens of racking and
stacking, IT departments have the bandwidth they need to improve business processes,
generating improvement with far-reaching effects. Meanwhile, their management-side
counterparts are able to quickly and inexpensively find experimental resource programs
and then build or scale them down without having to do detailed infrastructure planning
or an initial long-term investment.

• Better continuity of activities: Due to the virtualized nature of the Cloud computing
infrastructure, the creation of data and operating system backups and the switching of
the switch over procedures can be automated. This provides much better data protection
and availability than most on-premise systems can provide.
- The security of data guaranteed by the provider cloud computing gives additional
security guarantees. Indeed, the storage and backup of data is not done locally but on
an external server and the services run on it.
- The client does not have to worry about hardware issues anymore.
- Moreover, the confidentiality and protection of data are sensitive points.

• Ideal support for working in collaborative mode: Clients are always more mobile and
their objectives are achieved collectively. Thanks to the cloud, the information, services
and applications they need to perform their tasks are easily accessible from anywhere
and on any type of device. If the clients are a team, so they are connected to each other
via a platform that centralizes all the channels they use. They communicate better and
share their files and comments from anywhere. Document updates are made in real time.
(Planning, storage, management, execution, project monitoring, cloud computing is the
ideal choice for efficient collaborative work.)

• Continuous innovation: To keep your business at the forefront of innovation and perfor-
mance, cloud service providers regularly update their offerings. They ensure you get the
latest technologies across all your tools and applications. For example, the client can :

- Always get the latest version of an application.
- There is no risk of obsolescence
- Tool upgrades are automatic and transparent

However, it is important to choose a service provider offering serious guarantees to ensure the
confidentiality and integrity of data.

Despite all these advantages, the cloud computing system reveals some problems:

• Its computer networks are potentially attackable and virtual services can be shut down.

• The client depends on a service provider (Google Cloud Platform, AWS, Azure, etc.). It is
fundamental to ensure that it offers the necessary guarantees and knows the expectations
of their business.

• All services depend on the internet connection. An outage can disrupt the business of
such organizations .
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• The client lose part of the control of his computer system.

• As the Arabic proverb says: "One rotten fish ruins everything in the basket": that means
a wrong client can destroy a large system.

2.2 Resources management
Task management is a discipline that is well known and can used in many different area, It

is applied when there is a set of tasks to be managed, and these tasks are to be performed
under constraints. These constraints can be of different kinds, they can be temporal constraints,
when tasks must be performed before a defined deadline. Tasks can be also under resources
constraints when the they must be completed using a limited resources.

In our case, all tasks are not identical, some are finite and others infinite, and they are
not characterized by the same parameters. However, there is one characteristic common to all
tasks: they all need a certain resources to be running, either explicitly when the task requires
a certain number of machines or access to define resources, or implicitly when the task just
requires the possibility to run on a specific resources.

Looking at the world of cloud, there are tasks that are weakly constrained by time, but
strongly constrained by the resource they use such as the CPU and power that tasks will use.

In this thesis, we will focus on tasks as VM running in a cloud environment, these tasks
will be interested in time constraints and by the energy consumption of the infrastructure, as
well as the consumption of requested machine resources (CPU, memory, disk, etc.).

The management of these tasks will be based on different types of inputs, and need to
solve several different problems. In addition, it may have different aims, different objectives, and
therefore different forms. In the following sections, we will attempt to describe in detail the
tools, virtualization and migration.

2.3 Virtualization
As systems become more and more complex, and architectures more and more diverse, it

becomes obvious that some services need to be made available in a transparent way. It thus
becomes necessary to facilitate development to have access to different resources in common.
This is where virtualization comes in, representing the idea of making access identical to several
different architectures. virtualization technologies represent a key factor in cloud computing. The
most important characteristic is the possibility to install on the same physical machine (server)
more than one operating systems on different virtual machines. In addition, this technology
has the extra benefit of reducing overall cost by using a minimal equipment and consequently
reducing the energy consumption.
The virtual machine (VM) concept was introduced in the 1960s by IBM as a way to provide
simultaneous, interactive access to their mainframe computers. A VM is an projection of the
physical machine and it gives the impression that users have direct access to a physical

41



Chapter 2. Survey on Management task in cloud computing environment

machine (PM). VMs are used to enable resource sharing of very expensive hardware. Each
VM is a fully protected and isolated copy of the system. Virtualization is an important tool
for reducing material costs and improving global productivity by allowing multiple users to
work simultaneously on the same PM. This allows virtualization to increase utilization of
the machine. The main objective of virtualization is to share the physical characteristics of

Virtualisation Layer

Hardware

OS
OS OSApp App App

Virtual Architecture

Operating System

Hardware

Applications

Traditional Architecture
Figure 2.3 – Virtualisation

computing resources, so other systems, applications or end users interact with these resources.
A main operating system (called the "host system") is installed on a single physical server. This
system is used to host other operating systems. A virtualization software called "hypervisor"
or VMM (Virtual Machine Monitor) is installed between the two hardware layers and the
operating system (See figure 2.3 ) on the main operating system. It allows the creation of
separate, independent operating system environments ("guest systems"). These environments
are "virtual machines". A guest system is installed in a VM that runs independently of other
guest systems in other virtual machines. Each VM has access to the physical server resources
(CPU, memory, disk space, ...). The VMM takes control of resource management and is also
used for system power management. This energy management is done either by applying
Dynamic Voltage Frequency Scaling (DVFS) techniques or by applying energy management
policies and approaches at the application level.

According to [5], DVFS is adjustment of power and speed. It successfully used in energy
management of real-time system domain. DVFS is technique that aim at decreasing the dynamic
power utilization by progressively altering voltage and recurrence of a CPU. The procedure
of purposefully restricting the execution of the processor when it expending a lot of intensity
while the errand can be practiced handling at lower frequency. Voltage and recurrence have
an immediate relationship. It has been seen that server expend about 70% power when it is
inert sparing this vitality will have incredible effect on energy reduction. DVFS can deal with
this issue adequately DVFS is fundamentally expected and structure for vitality effectiveness
in embedded system. DVFS methods generally consider homogeneous physical machine while
less intrigue is appeared by analyst toward heterogeneity.

According to this flowchart of DVFS techniques 2.4 it can be creating a host and then
crated virtual machine on host, balance the load of the user request and allocated host to
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Figure 2.4 – Flowchart of DVFS

virtual machine. After completed this process calculating the energy then get proper result
according that result it automatically shut down host and consume the energy.

2.3.1 Virtualization techniques
Before using virtualization in a cloud computing environment, the user must be aware of basic
virtualization techniques such as emulation, hypervisor, full virtualization and paravirtualization
[6].

A. Emulation

This is the oldest virtualization approach, usually called binary virtualization. In this technique,
the hypervisor presents a complete virtual hardware (CPU, network interface, video card, ...) to
the guest system which can be a completely different CPU architecture than the host system.
The hypervisor then converts the CPU instructions from the virtual machine into instructions
understandable by its CPU. Guest operating systems believe they are connecting directly to
the hardware (See figure 2.5).
The emulation allows to properly isolate the guest operating systems. It provides great flexibility
to the guest operating system, but the speed of the process is low compared to the hypervisor
and requires a high configuration of hardware resources to run the software[7].

B. Full virtualization

In this virtualization technique, the Hypervisor creates an isolated environment between the
guest or virtual server and the host or server hardware (See figure 2.6). Operating systems
access directly to hardware and controller devices without being aware of the virtualized
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Figure 2.5 – Emulation

environment and the changes required. This virtualization intercepts and emulates privileged
and sensitive instructions at runtime.
The main problem with full virtualization is the poor performance of the binary conversion and
it is difficult to accelerate it [8].

HardwareHypervisor 
Control  Software

OS Guest OS Guest

Abstraction Layer

Figure 2.6 – Full Virtualization

C. Paravirtualization

Paravirtualization is the type of virtualization invented by the Xen project. This type of virtu-
alization was made possible by free software, because it was possible to modify and adapt the
Linux or BSD or Solaris kernel. Microsoft has put this method into practice with its Hyper-V
product integrated into Windows Server 2008.
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When guests are para-virtualized, they are supported by an intelligent compiler, which
replaces non-virtualized OS instructions with hypercalls (See figure 2.7). It concerns the com-
munication between the hypervisor and the guest operating system to improve efficiency and
performance. Para virtualization resource access is better than the full virtualization model
where all resources must be emulated in a full virtualization model.
Paravirtualization must modify the guest OS. It tries to reduce the processor resource consump-
tion of virtualization and thus improve performance by changing only the guest OS core.

The disadvantage of this technique is that it modifies the Core of the guest exploitation
system using hypercalls. This model is only suitable in open source operating systems. Many
virtualization products use paravirtualization architecture. Popular products include: Xen, KMV
and VMware ESX .

Unlike the full virtualization architecture, paravirtualization is not the same to manages
instructions at compile time. Although paravirtualization reduces the consumption of processor
resources, it leads to other problems. Firstly, its compatibility and portability may be ques-
tioned, as it must also support the unmodified OS. Second, the cost of managing paravirtualized
OS is high, as they may need to retain OS core modifications. Finally, the performance benefits
of paravirtualization can vary considerably depending on the load. Compared to full virtualiza-
tion, paravirtualization is relatively easy and more convenient. As a result, many virtualization
products employ the paravirtualization architecture [8].

HardwareHypervisor 

Application Application

OS Guest
OS Guest

Figure 2.7 – Paravirtualization

D. Hypervisor

The hypervisor or VMM is a low-level program that allows multiple operating systems to run
simultaneously on a single host machine. VMM creates isolated virtual machines, each one
with its own operating system. The hypervisor manages requests for virtual machines to access
the hardware. It creates an environment for VMs that is similar to the real environment. As
an example of hypervisors, we have the Xen hypervisor which is an open source virtualization

45



Chapter 2. Survey on Management task in cloud computing environment

technology, VMware which supports power management at the physical machine level using
the DVFS technique, the Kernel-based virtual machine (KMV) which is a platform implemented
as a module of the Linux kernel. Hypervisors can be classified into two types:

1. Hypervisor type 1 (Bare Metal) : In this type, the virtualization layer is installed directly
on top of the hardware and controls the OS running above the hypervisor (See figure
2.8). This configuration provides response times similar to the non-virtualized case, as
there is only one additional layer to go through. It is the only type of virtualization that
can be used in production because it is robust and scalable. It currently offers better
performance and security [9]. Its main task is the sharing and management of hardware
resources between different operating systems. A main advantage is that not all problems
of a virtual machine or guest operating system affect the other guest operating systems
running on the hypervisor[10].
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Figure 2.8 – Hypervisor type1 Bare Metal

2. Hypervisor type 2 (Host Based) : The use of this technique is limited to development
(software for example). It is installed and run as an application. Indeed, the virtualization
layer is installed on an operating system and not directly on the hardware layer and it
supports other operating systems on it, while having a basic operating system that allows
better policy specification (See figure 2.9). Problems in the base operating system affect
the entire system even if the hypervisor running on top of the base operating system is
secure [11],[10].

2.3.2 Advantages and disadvantages of virtualization
Virtualization offers several advantages, among them we cite [12]:

• Ability to install multiple operating systems on a single server (Windows, Linux, . . . ),
which reduces the number of hardware and the maintenance of multiple devices.

• Easily test, deploy and migrate virtual machines from one physical machine to another.

• Cost reduction of electricity and air conditioning: Many servers require electricity and
produce a lot of heat. If the number of physical servers is reduced, the cost of electricity
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Figure 2.9 – Hypervisor type2 Host Based

is automatically reduced, and if heat production is reduced, air conditioning does not
cost as much.

• High speed to deploy a new server: The installation of a physical server requires
hardware and an OS license which is very expensive in time and money. Using this
technology, we can create templates that are basic OS installations that are used to
create servers. These models can be installed as desired. Deploying a new server is
now counted in minutes rather than days or weeks.

• Microsoft, for example, offers a good advantage in terms of Windows Server licenses
for virtual environments. If a data center license is purchased, it allows to install an
unlimited number of windows OS in virtual mode. This is very practical when license
management is not easy to get. We only need fewer licenses to be as efficient. Microsoft
enables proactive management of license requirements.

• Portability : A VM can be transferred from one server to another using Migration
techniques.

• Virtualization allows to reduce the time and cost of server management, which is usually
high. The management of virtual machines is more manageable, thus helping to reduce
the workload for system operators.

Despite all these advantages, there are a few inconveniences around virtualization:

• Important cost: To make a virtualized architecture work properly, the company must
invest in a physical server with multiple processors and memory.

• Generalized breakdowns: if the physical server fails, the virtual machines also fail.

• Generalized vulnerability: if the hypervisor is corrupted or vulnerable to a security issue,
the virtual machines may be corrupted as well and are no longer protected. By increasing
the software layers, virtualization increases the company’s attack surface.
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2.4 Virtual machine migration
Virtualization allows the creation of multiple copies on the host machine so that several appli-
cations can run independently. It separates the operating system from the physical hardware
using a hypervisor. Each VM has its own operating system called guest OS. Migration of
operating system instances (VMs) from one physical machine to another is an important feature
of virtualization. VM migration also includes the transfer of memory, CPU from a machine to
another.

2.4.1 VM migration techniques
Migration techniques are basically classified into two types [13]: Live Migration and Non Live
Migration.

A. Non live migration "Stop and copy migration"

Non live migration "stop and copy method" is a technique where the VM stops running on the
original machine and its execution with its memory is migrated to the destination machine.
Once all memory pages have been transferred, the VM is activated in the destination machine.
The VM stays in a disabled state until all pages are transferred to the destination machine.
In this type of migration, the total migration time is equal to the downtime.
Figure 2.10 illustrates the stop and copy migration steps. We take as an example the steps of
migration of the black VM from source machine to destination machine :

1. The execution of the black VM is stopped in the source machine.

2. The black VM execution status and memory pages are transferred to Machine

3. The black VM is enabled in the destination machine.

1 2 3

Source machine Destination machine

Figure 2.10 – Non Live Migration process

48



Chapter 2. Survey on Management task in cloud computing environment

B. Live migration

Live migration is a valuable tool for the migration of complete operating systems and their
applications between physical machines located far from data centers [14]. It is an impressive
technology that facilitates load balancing, breakdown management, system maintenance and
energy reduction. live migration of virtual machines is the process of moving one or more virtual
machines from one physical machine or server to another without interrupting other VMs.
This technique is useful in several scenarios, including [15] :

• A VM in a crashed physical node can be migrated to another non-crashed node.

• VMs in idle mode on a physical machine can be migrated to other hosts to optimize
resource utilization.

• VMs on a loaded physical node can be migrated to different nodes to balance loads.

Live migration techniques are characterized by 2 types based on the memory copy process.
These techniques are: "Post-copy" and "Pre-copy".

a. Live migration "Post-copy" : In this technique, the VM is suspended in the source machine
and its execution status (CPU, registers and memory pages needed to activate the VM
in the destination machine) is transferred to the destination machine. The VM starts
running on the destination machine even if the memory pages have not been copied
completely. The page defects can occur when the memory pages of the VM are not
available on the destination host. The disadvantage of this method is the appearance
of memory page failures in the destination machine. Figure 2.11 shows how Post-copy
migration works. We take the black VM migration as an example:

1. The black VM is suspended in the source machine.
2. The black VM execution status is transferred to the destination machine.
3. The black VM is enabled in the destination machine.
4. Generate memory page defects.
5. Transfer the corresponding default pages.
6. Steps 4 and 5 are repeated until all memory pages are transferred to the destination

machine and the black VM runs.

b. Live migration "Pre-copy" : This is a technique of live migration used by hypervisors
such as XEN, KMV and VMware. It sends the entire VM to the destination machine
during the first iteration and then iteratively transfers the modified memory pages. This
process continues until all sufficient memory pages are copied to the destination host.
Figure 2.12 summarizes the principle of the black VM pre-copy migration in 5 steps as
follows :

1. Send all black VM memory pages from the source machine to the destination
machine.

2. Transfer modified memory pages in an iterative manner.
3. Stop the black VM in the source machine.
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Figure 2.11 – Post-Copy Migration Process
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Figure 2.12 – Pre-Copy Migration Process

4. Send the remaining states of the black VM.
5. Activate black VM in the destination machine.

In case of a failure of the destination machine, the Pre-copy technique is much better
than the Post-copy. The recovery of the black VM is possible by the Pre-Copy method
because the last memory copy is kept in a safe place on the source machine including
the CPU state.
The following measures are generally used to measure the performance of live migration
[15] :

– Preparation : In this phase, the appropriate resources are reserved on the desti-
nation machine and various operations are performed on the source machine.

– Holding time: is the time when the virtual machine is suspended on the source
host.

– Time summary: This step involves installing the VM on the destination host with
the same state as the suspended VM. The time required to complete this phase
varies according to different approaches.

– Total migration time : The total time taken after completion of all these phases is
called total migration time.
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2.4.2 Advantages of migration
The benefits of virtual machine migration include [14]:

• Trouble-sensitive: Trouble-sensitive allows virtual machines to continue their tasks even
if any part of the system fails. This technique migrates the virtual machine from one
physical server to another based on the prediction of the failure. The trouble-sensitive
migration technique improves the availability of the physical server and prevents appli-
cation performance degradation.

• Load balancing: The load-balancing migration technique aims to balance the workload
on physical servers to improve the scalability of physical servers in a cloud environment.

• Reduction of energy consumption: The energy consumption of Data Centers is mainly
based on the use of servers and their cooling systems. These servers typically use up to
70% of their maximum power consumption, even with low resource utilization. Therefore,
migration techniques must be used that conserve the energy consumed by the servers
through optimal use of resources.

Virtualization is a technology that enables cloud providers to solve the problem of energy inef-
ficiency by creating multiple instances of virtual machines (VMs) on a single server. As a result,
aggressive consolidation of virtual machines can lead to performance degradation when an ap-
plication is subject to increasing demand, resulting in increased resource utilization. Ensuring
the reliable quality of service (QoS) defined by Service Level Agreements (SLA) is essential
for cloud computing environments, so cloud providers have to find a compromise between the
energy performance of the data centers and SLAs.

2.5 Task allocation
Task allocation is also a way to manage the energy consumption of a system. So by allocating
tasks wisely, we can use the infrastructures that consume the least amount of electricity.

This is the case of the consolidation techniques. The idea is to consolidate the task at the
same place in order to reduce energy consumption. Consolidating tasks on a few machines can
have adverse effects. it is also necessary to take into account the interactions that tasks can
have with each other when they run on the same machine. In [16]the authors show that by
profiling the resource consumption of a task running among others, the resource and energy
consumption of each transaction of the task increases compared to the case when the task is
running alone on the machine. The authors then show that it is possible to find an optimal
zone where each task running on the machine will consume the least energy. Then they pro-
pose a consolidation algorithm based on the task interaction profile, to determine the optima
consolidation, and to characterize which types of workloads should be combined.

Allocation can also be used as a tool for achieving the desired results, as a characterization
of the different material resources can make a significant difference. Not all servers consume
the same amount of power to run the same application, so using the task allocation is important.
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Different techniques can be observed to take into account the different consumptions at different
levels, whether at the processor level or at the machine itself.

2.5.1 Complexity of task allocation
In the context of all the tools available to us, it appears that the allocation of tasks has de-
veloped into something much more complex. Allocating tasks is no longer just deciding where
to allocate a task on a set of machines, it is also the management of these machines, taking
into account all the resources available to us after the allocation. We now also have to take
into account the different available resources on the different hosts, the power consumption of
these hosts, predict the needs over time, in order to have a sufficient supply of machines on.

To that, it must add the fact that there is a difference of scale in the different tools, which
implies a potentially different management of the different mechanisms. For example, DVFS
is done at the processor level, while switching on and off is done at the host level. Cooling
must be managed at the machine level, while migration is done at the host level. So we have
a multi-level approach, which has to take into account the whole set of possible approaches to
reduce power consumption, from the Machine level.

It is easy to think of the case where the consolidation of virtual machines on a physical
machine will have an unwanted effect on the provisioning of virtual machines (for example, in
the case of too aggressive consolidation of virtual machines). Thus, if many virtual machines
are allocated on a single physical machine, it will be difficult to increase the share of resources
allocated to virtual machines, since few will remain idle, without counting on the interference
between virtual machines when they are the same physical machine [17].

2.5.2 Tasks allocation under certain constraints
Task allocation can be applied in a variety of ways. Indeed, the same techniques can be used
to optimize a system for one or more different objectives as well as to the type of management
algorithms that will be used. Everything will depend on the constraints that we take into
account for the management of our system.

The main idea is to have a management of resources that will be done according to certain
parameters. This can include a monetary cost to maximize profits, or the use of a certain
type of resource such as the use of renewable energy. We can also very well have internal
considerations for applications running on the physical infrastructure, for example, tasks are
strongly constrained in memory, or constrained in time by deadlines.

A. Constrained resource allocation

The management of tasks with resource constraints, which we will call resource-aware, rep-
resents the idea that we have a set of resources and these resources are not accessible from
everywhere, at least not in the same way.

Task management will then give each task a place to be performed, for example to consume
as much renewable energy as possible. The idea here is to optimize the overall electricity

52



Chapter 2. Survey on Management task in cloud computing environment

consumption, in a particular direction, which is that of renewable energy. This is the case in
[18], where will allocate HPC tasks according to different metrics such as CO2 emissions, cost
of electricity, or processor efficiency.

However, this is just one example of what can happen. We could have also a set of geo-
graphically distributed servers, and want to carry out task management that takes this location
into account, in order to bring a task as close as possible to its user, to improve the quality
of service [19]. This will often be the case in content delivery networks, due to the volume of
data to be transferred, the distance between the client and the server needs to be reduced as
much as possible.

In general, the constrained allocation of tasks in resources allows the resulting allocation
without a precise direction, according to the needs. Thus, the allocation will have to solve the
various problems related to the different possible constraints.

B. Constrained energy allocation

The constrained energy allocation is related to the management of resource-aware tasks, since
it can be defined as a constrained resource allocation, with the energy consumed or to be
consumed as a resource. Task management can try to optimize the power consumption of the
infrastructure on several levels. We refer to this allocation of tasks as power-awar or energy-
awar (remember that power-awar is based on the instantaneous electrical power, and therefore
optimizes at a given moment, while energy-awar is based on the energy consumed over a
period of time, therefore is the integral of the instantaneous power).

We also have approaches at the machine level. In this case, it is necessary to manage the
placement of tasks on the different machines, according to their consumption. It will also be
necessary to manage the switching on and off of hosts, in order to reduce the overall consump-
tion of the machines.

In [20] an optimization strategy is developed based on a formulation in a mixed integer
linear program (MILP, Mixed Integer Linear Programming), in order to dynamically consolidate
services in a virtual machine. This approach takes into account the cost of switching machines
ON/OFF and is used in the context of an oversized system to be able to meet peak load
requirements, leading to a 50% reduction in the energy consumed in the cluster.

A similar approach is developed by Viswanathan et al. in [21], where virtual machine
allocation algorithms are based on an empirical model. A compromise is made between power
and makespan (time between the beginning and the end of a set of tasks), and thus approaches
manages to save 12% of power while reducing the makespan by 18% on average compared to
a standard first fit approach (Algorithm where each task is allocated to the first host).

C. Constrained cost allocation

The cost constraint can mean two things. It means allocating tasks in a way that reduces
the cost of maintenance for the infrastructure owner. It can also mean managing the way that
reduces the cost of performing the tasks in order to improve the quality of service. In order to
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reduce these costs, it is first necessary to understand them, as they can be complicated to take
as a whole.

In [22], the authors attempt to assess the impact of data centers in terms of energy and
cost by evaluating the energy consumed and the equipment used. They show that larger
facilities often have a smaller carbon footprint, and that containerized data centers (servers,
power and cooling are in a standard size container) have lower operational energy consumption.

In [23] on the contrary, the approach observed the maximization of the profit for service
providers, using energy savings through the allocation of customer requests. This approach re-
quires the implementation of policies for dynamic workloads, taking into account errors due to
workload prediction. The first policy is to maximize revenue by calculating the optimal number
of servers to turn on, taking into account the cost of changing state, as well as the revenue
generated by each task. A policy based on a heuristic called QED (Quality and Efficiency
Driven) allows to calculate a sub-optimal value of the number of servers to be turned on to
answer the demand.

The cost of migration can be taken into account in the decision, so as not to make re-
allocations of virtual machines against performance. This is the case in GreenCloud [24], a
management architecture for virtual machines with limited performance. It defines a heuristic of
efficient replacement taking into account the cost of migration, the cost of energy consumption
(here modeled by the number of machines turned on), as well as the cost of quality of service
(modeled by the number of servers with a utilization of more than 90%).

In the following sections, a state of the art is presented by briefly describing the approaches
proposed in the literature whose aim is to reduce the energy consumption of data centers or
to improve QoS or to find a trade off between theme.

2.6 State of the art in energy management techniques
A. Energy-aware resource allocation heuristics for efficient management of data centers for

cloud computing : In order to manage efficiently the energy consumed in the cloud, the
authors [25] proposed a model of the system architecture and three energy management
policies. In cloud computing, power consumption is determined by the CPU, RAM, storage
memory and network interfaces. In this work, the authors focused on the management
of the energy consumption of processors. The technique DVFS was used. When virtual
machines are not using all the resources provided, they can be logically grouped and
transferred to the minimum number of physical nodes and inactive machines are powered
down to eliminate unused power and reduce the total power consumption used by the
data centers.
In this article, the authors have proposed two phases in order to optimize the allocation of
virtual machines. The first is the selection of VMs to migrate. In this phase, three policies
were proposed: Minimisation of Migration Policy (MM), Highest Potential Growth policy
(HPG) and Random Choice policy (RC).
The basic idea of the three policies is to consider the upper and lower thresholds of
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utilization as related to host utilization. If the host CPU usage is below the lower
threshold, all virtual machines must be migrated and the machine is put into sleep mode
to eliminate power consumption. If utilization exceeds the upper threshold, some virtual
machines must be transferred from the host to reduce CPU usage. The second step is
the implementation of the virtual machine selected by the proposed policies. The MBFD
(Modified Best Fit Decreasing) algorithm was used in this second allocation phase.
To compare the efficiency of the algorithms, the authors used several performance metrics:
the first metric is the total energy of the resources, the second performance metric is the
percentage of Service Level Agreement (SLA) violation. SLA violations occur when a given
VM cannot obtain the sufficient quantity of millions of instructions per second (MIPS).
The third performance is the number of VM migrations. To evaluate the performance
of the proposed heuristics, the CloudSim framework was used as a simulation platform.
Several experiments have been implemented.
The authors compared power consumption by applying the NPA policy (all hosts run
at 100% CPU usage and consume maximum power all the time). Another VM selection
technique based on a single threshold is used called ST (Single Threshold). The results
show that the energy consumption can be significantly reduced compared to NPA and
DVFS policies by 77% and 53% respectively with 5.4% of SLA violations.

B. Energy efficient utilization of resources in cloud computing systems : In this article
[26], the authors proposed two heuristics (ECTC and MaxUtil) for task consolidation in
order to maximize the use of resources and to consider the energy of active and inactive
resources. These heuristics assign each task to a resource on which the energy required
to perform that task is explicitly or implicitly minimized without degrading performance.
Virtualization was used and each server has several virtual machines. The objective of
this work is to estimate the energy consumption. An energy model is used to calculate
this energy consumption of a task. The consolidation technique allows to assign a set
of tasks to a number of resources without violating the time constraint. For a given task,
the heuristic checks each resource and identifies the resource that is the most energy
efficient for that task. The ECTC heuristic calculates the actual energy consumption of
the current task by subtracting the minimum energy consumption required to complete
a task if there are other tasks running in parallel. The MaxUtil heuristic reduces both
power consumption and the number of active resources.
The authors compared the results between algorithms applied to a set of tasks (ECTC,
MaxUtil and Random) and algorithms with task migration (ECTC-m, MaxUtil-m and
Random-m). Task consolidation is applied to a different number of resource uses (high
resource use, low or random). Experimental results show that the ECTC and MaxUtil
heuristics reduce consumption of energy.

C. Multi-criterion optimization for the allocation of distributed resources taking into account
the energy : In [27], the authors studied the problem of reducing energy consumption and
CO2 emissions. Maximizing profit and ensuring quality of service (QoS) are the objectives
of this article. They proposed a meta-scheduler that uses a multi-objective genetic MOGA
algorithm to find the best scheduling for applications over time. The objective functions
of the approach are designed to minimize energy consumption and CO2 emissions while
maximizing the profit of the provider. Different parameters were used in the experiments:
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the variation in the cost of arrivals customer and the price of the scheduling cycle. Four
types of arrival rates were used (low, medium, high and very high speed). The experiments
were conducted on realistic tracks from Feitelson’s Parallel Workload Archives (PWA). A
comparison was made between multi-objective genetic algorithms. The authors proposed
a heuristic approach that maximizes the number of applications. . Experiments show that
this heuristic reduces energy consumption by 4.66%, CO2 emissions by 10.85%, profit
maximization by 1.62% and scheduling is improved by an average of 2.67%.

D. Energy efficient management in virtualized cloud data centers : The objective of this
paper [28] is the management of energy resources. The authors proposed a decentralized
architecture for resource management in the cloud. The technique of live migration of
virtual machines was used. To save power, nodes are put in an enabled/disabled state
using DVFS technique. This algorithm is applied to a cloud infrastructure consisting
of several heterogeneous physical nodes. Each node has a CPU with high-performance
processors and several virtual machines. The node in the Data Center is characterized
by the amount of RAM and network bandwidth.
The architecture of the proposed system consists of two managers located in each physical
machine and a dispatcher. As soon as a user makes a request, the dispatcher distributes
the request to the global manager. The global manager exchanges information on resource
usage and virtual machines that need to be allocated and the placement of VM migration
orders. Local managers send information to global managers about resource usage and
virtual machines selected for migration. They also allow to commands to resize VMs.
The VMM performs resizing, ordering and migration of virtual machines according to the
orders received. Migration is used when: resource usage is too low or reaches 100%, the
VM is in communication with another VM-intensive network located in another location
or the temperature of a resource is too high.
The problem of reallocating virtual machines is divided into two issues. The first is to
select the virtual machine to migrate and the second is the implementation of this VM. For
the selection of VMs, the authors proposed several heuristics. For the placement of the
VMs, they applied the multidimensional bin packing problem (backpack problem). The
authors simulated the policies: NPA (No Power Aware), DVFS, ST (Single Threshold)
and TT (Two Thresholds) using the CloudSim simulator. The experimental results show
the flexibility of the MM-policy.

E. Energy efficient VM live migration in cloud data centers : In [29], the authors proposed
a method to detect over and under CPU utilization. When CPU "over-utilization" occurs,
some virtual machines are migrated to another host to reduce server utilization below
a specified threshold. In the case of CPU “under-utilization", all virtual machines are
migrated from the source host to another to reduce the power consumed by these ma-
chines. The host in use is shut down after the migration is completed. For the allocation
of VMs, they used heuristics. Migration policy and heuristics are implemented using
the CloudSim simulator. The results obtained are better in energy performance than the
heuristics already used in the literature.

F. Designing and evaluating an energy efficient cloud : The authors in [30] attempt
to determine the energy cost of a virtual machine by measuring the cost when a task
is running, the cost when the virtual machine has no task, and the cost of migration.
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Virtualization is used to reduce energy consumption in large-scale distributed systems.
The authors proposed a model called OGC (Open Green Cloud). The OGC architecture
enables storage, computing and network resources to be put in an "OFF" state. To validate
this infrastructure, two scheduling schemes were used: "Round-Robin" and "unbalanced".
In the first scheduling, the first job is put in the first node, the second job in the second
node, and so on. In the second scheduling, all jobs are put in the first node and if there
are other jobs in the cloud, they use the second node.
For the experiments, four scenarios were run for each schedule to calculate the amount
of energy consumed by the individual nodes in the cloud. The basic scenario has
no technique to reduce energy. The "Balanced" scenario uses migration. In the third
"ON/OFF" scenario, the unused nodes are switched to the "OFF" state. In the "Green"
scenario, unused nodes are put in a "locked" state and the migration is used to balance
the workload between the different nodes in the cloud.
To make a comparison between the different scenarios, the authors calculated the av-
erage energy consumption per node and for each schedule. Experiments show that the
"Green" scenario is the scenario that consumes less energy in both types of scheduling.
The "Green" Scenario with "unbalanced" scheduling consumes 25% less energy than the
scenario with "Round-Robin" scheduling.

G. Energy efficient allocation of virtual machines in cloud computing environments based
on demand forecast : Infrastructure in cloud computing consumes an enormous amount
of energy. The requests for service from this system are often varied over time. The
authors in [31] try to reduce this energy by making a prediction of the demands and
an allocation of virtual machines. The first step is to use the Holt-Winter method to
predict the different demands. The second step is to use the modified knapsack algorithm
for the allocation of virtual machines in the different nodes. This algorithm takes into
account two resources: CPU cores and memory capacity. In the third step, the self
optimizing method was used to update the parameters of the Holt-Winter method and
to find a reasonable prediction frequency. The authors compared the proposed approach
with other approaches to find the most reasonable prediction period with low energy
consumption and less iteration. Experimental results show that the proposed approach
can save up to 60% of energy costs.

H. Energy efficient dynamic integration of thresholds for migration at cloud data centers :
The authors in [32] proposed a dynamic threshold based on the use of the processor for a
dynamic and unpredictable workload. They defined two phases: the migration phase and
the placement phase. For the first phase, they proposed the Dynamic Threshold (Dyt)
algorithm where they propose mathematical formulas to calculate this threshold and for
the placement of virtual machines, they used the BFD (Best Fit Decreasing) algorithm.
After the simulation, they compared the proposed approach (DyT) with different types of
algorithms (DVFS, NPA, Single Threshold and Double Threshold). The results showed
that the proposed Dyt approach attempted to minimize SLA violation by 35% to 40% and
used 0.22 kWh of energy.

I. Server farms with setup costs : In this article [33], the authors consider server farms with
an installation cost. This model is common in manufacturing systems and data centers,
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where there is a cost to get the servers up and running. The setup cost always takes
the form of a delay, and sometimes a power penalty, as in the case of data centers. Any
server can be either ON, OFF, or in configuration mode. Although the authors analyze
variants of server farms with configuration, such as models of server farms with staggered
server startup, where a maximum of one server can be in configuration mode at a time,
or server farms with an infinite number of servers. For some variants, the authors find
that the response time distribution can be decomposed into the sum of the response time
for a server farm without any configuration.

J. Performance analysis of multi-core VMs hosting cloud SaaS applications: Software-
as-a-Service (SaaS) is the most popular cloud service model in use today, in which
multi-core VMs are allocated efficiently to meet the workload offered, and in a way
that avoids any violation of the agreed Service Level Agreement (SLA). This involves the
need to model SaaS services in order to predict overall system performance and cost,
and to estimate the required number of VM resources and their respective multi-core
capacity prior to actual deployment. To this end, this paper [34] presents a mathematical
queuing model to study and analyze the performance of multi-core VMs hosting SaaS
applications in the cloud. There analytical model estimates, for any proposed workload,
the number of instances of multi-core VMs required to meet the quality of service (QoS)
parameters. The mathematical model is validated using Discrete Event Simulator (DES)
simulations. The results obtained from there analysis and simulation models show that
the proposed model is powerful and capable of correctly and efficiently predicting system
performance and cost, as well as determining the number of VM cores needed for SaaS
services to meet QoS objectives under different workload conditions.

K. Energy efficient utilization of resources in cloud computing systems : The energy con-
sumption of unused resources, especially in a cloud environment, represents a significant
part of the actual energy consumption. Inherently, a resource allocation strategy that
takes into account resource usage would lead to greater energy efficiency; this, in the
cloud, is further extended with virtualization technologies as tasks can be easily consol-
idated. Task consolidation is an effective method of increasing resource utilization and
therefore reducing energy consumption. However, many studies have shown that server
power consumption changes linearly with resource (CPU) usage. This encouraging fact
underlines that task consolidation makes a significant contribution to reducing energy
consumption. However, task consolidation can also lead to the release of resources that
can remain inactive while continuing to consume energy. Notable efforts have been made
to reduce power consumption in idle mode, typically by putting IT resources in standby
or power-saving mode. In this paper [35], the authors present two power-conscious task
consolidation heuristics that aim to maximize resource utilization and explicitly consider
active and idle power consumption. the heuristics proposed assign each task to the
resource on which energy consumption for the execution of the task is explicitly or im-
plicitly minimized without degrading the performance of the task. On the basis of our
experimental results, the heuristics demonstrate their promising energy-saving capacity.

L. Dynamic VM allocation and traffic control to manage QoS and energy consumption in
cloud computing environment : In [36] Guaranteeing the desired quality of service (QoS)
and controlling power consumption are two of the major challenges facing the cloud en-
vironment. In this paper, a mechanism is proposed that combines a virtual machine usage
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scheme with a controlling access of incoming requests to the virtual machine monitor.
The number of activated virtual machines is defined according to the workload, and the
access control is based on the number of requests. The studied mechanism and its per-
formance parameters are described by a mathematical model, and a power consumption
model is built and evaluated. Numerical examples evaluating the parameters of quality
of service. In addition, the impact of the proposed mechanism on the energy consumption
behaviour is evaluated. The analysis of the results obtained shows the positive impact
of the proposed mechanism.

M. An SMDP-based resource allocation in vehicular cloud computing systems : Among
the task applications that can be handled by a cloud is Vehicle Ad-hoc Networks and
should significantly improve road safety and transportation efficiency while providing
a comfortable driving experience. However, the available communication, storage, and
computing resources of connected vehicles are not well utilized to meet the service
requirements of intelligent transportation systems (ITS). Cloud computing for vehicles
(VCC) is a successful approach that takes the benefits of cloud computing and applies
them to vehicle networks. In this paper, an optimal scheme for allocating computing
resources to maximize the total reward expected from the VCC system in the long term
is proposed. The system reward is obtained by taking into account both the revenues
and costs of the VCC system as well as the variability of the available resources. Then,
the optimization problem is formulated as a semi-markovian decision process (SMDP)
with an infinite horizon with the defined state space, action space, reward model and
transition probability distribution of the VCC system. The iteration algorithm is used
to develop the optimal scheme that describes the action to be taken in a certain state.
The numerical results show that the significant performance gain can be obtained by the
SMDP-based scheme within an acceptable complexity.

N. A utility-based resource allocation scheme in cloud-assisted vehicular network archi-
tecture : Once again, in the area of the Internet of Vehicles (IoV), all components of an
Intelligent Transportation System (ITS) can be connected to improve traffic safety and
transportation efficiency. In order to maximize the use of resources, such as computing,
communication, and storage resources, cloud computing technology could be integrated
into vehicle networks. In the meantime, a cloud-assisted vehicle network could be pro-
posed for efficient resource management. In this paper, the problem of resource allocation
in the architecture of the Cloud Assisted Vehicle Network is studied. Each cloud in the
architecture has its own specific characteristics, for example, the remote cloud has suffi-
cient resources but suffers a high end-to-end delay, while the local cloud and the vehicle
cloud have limited resources but a lower transmission delay is achieved. The optimal
problem for maximizing the average reward expected by the system is formulated as a
semi-markovian decision process (SMDP). Therefore, the corresponding optimal scheme
is obtained by solving the SMDP problem by an iteration algorithm. The proposed
scheme can provide guidelines that will be useful to decide in which cloud an applica-
tion should be admitted and how many resources should be allocated. The numerical
results indicate that the proposed system outperforms other resource allocation systems
and improves system rewards and the experience of vehicle users.
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O. Managing performance and power consumption in a server farm : where the author in
[37] studied the problem of energy use when servers are powered up and down in a
frame of the data centers, this means that after the setup time, all servers start running
simultaneously even if the system does not require all servers. This gives us reason to
reconsider the case where the configuration time of each server is considered different.
A subset of servers is referred to as a "pool". Reserves are powered up when the number
of jobs in the system is high enough, and are powered down when the number is low
enough. Powering up takes a period of time during which the reserves consume power
but do not serve the jobs. The answer to the question of how to choose the number of
reserves and the rise and fall thresholds is to analyze an appropriate queuing model
and minimize an appropriate cost function. Heuristic and numerical results are also
presented.

2.7 Conclusion
Currently data centers provide to the global community an indispensable service, almost

unlimited access to any type of information by supporting internet services such as: web
hosting and e-commerce services. Energy/power consumption and QoS are the main concerns
of data centers. Research into managing the power and energy consumed by data centers can
make it easier to set up data centers, reduce costs and protect the environment. Given these
benefits, researchers have made significant progress in conserving and reducing data center
energy. In this chapter, we have presented a few techniques cited in the literature that enable
the reduction of energy consumption in data centers. We are describe the two technologies,
virtualization and migration used in our proposed approaches, their types, advantages and
disadvantages. A state of the art on the approaches and models proposed by some of the
research work was then presented. These researchers have the same goal, which is to obtain
better energy consumption from data centers in order to reduce CO2 emissions and increase
supplier revenues.
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In this chapter, we study techniques to manage resources utilization by exploiting the concept
of virtual machine migration in a cloud data center (CDC). The goal is to improve the QoS
of the system, maximize resources utilization and reduce the overall energy consumption. Two
algorithms are presented and studied (Combinations of Migrations (CM) and High Priority
(HP)). The obtained numerical results demonstrate the effectiveness of the proposition in terms
of makespan and energy efficiency while ensuring the quality of service.
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3.1 Introduction
Cloud computing is an innovative technology that poses several challenges to all organi-

zations around the world. The primary role of cloud providers is to provide a high quality
of service (QoS) to their customers as long as they do not consume a lot of energy[38]. A
Cloud data center (or CDC) is a focal and critical concept in cloud computing; it is a facility
composed of networked servers or physical machines (PMs) used to organize, process, store and
disseminate large amounts of data. Each PM can house a group of multiple virtual machines
(VMs) [39]. The most important is the energy consumption concern. Indeed, the energy con-
sumption of CDC worldwide is estimated at 26GW corresponding to about 1.4% of the global
electrical energy consumption with a growth rate of 12% per year [40]. Depending on a recent
study, data centers are the most energy consumers in the ICT ecosystem. Moreover, the initial
cost of purchasing equipment for data center already exceeds the cost of its ongoing electricity
consumption [41].

On other hand, the virtualization technique plays a central role in cloud environment, and it
can be used to reduce the energy and improve the time efficiency [42]. This technology enables a
single physical machine to run multiple VMs simultaneously. Moreover, through VMs migration
and consolidation, virtualization reduces the total CDC energy consumption. It is known that a
significant amount of power is consumed even when the PM is idle (approximately 70% of the
power consumed by the PM running at full CPU utilization) [43, 44]. So, by migrating VMs
and turns off the inactive PMs we can reduce energy cost. In addition, it can help to reduce
the whole number of idle hosts and optimize task waiting time, execution time and operating
costs [45]. Nevertheless, an aggressive consolidation of VMs can cause a delay in the execution
time of a set of tasks. Therefore, could providers have to deal with energy consumption and
Quality of Service trade-off. The achievement of this balance is the main objective of the work
presented in this chapter. For that, we propose capacity balancing algorithms to improve system
operation, reduce the waiting time, and minimize the makespan of the system. We also make
a comparative analysis between our algorithms (Combination Migration Policy (CM) and the
High Priority Policy (HP)) and random selecting algorithm.

This proposal technique is based on a double thresholds that manages the selection and
placement of VMs in PMs, this management deal with power/performance trade-off. This
chapter focused on the customer service in the system, especially the waiting time as well
as the execution time and we try to minimize them with the same concept to designate two
thresholds and keep the total CPU utilization between them. Furthermore, we provide numerical
results with new figures and substantial discussion.

The rest of the chapter is organized as follows: Section 3.2 summarizes the General con-
text and related work. The proposed model is presented in section 3.3. Section 3.4 presents
the analysis of the proposed model. Section 3.5 presents the performance analysis and the
numerical results. Finally, section 3.6 is devoted to the conclusion.

The results obtained in this chapter are presented in the research articles [46] and [47].

3.2 General context and related work
Some studies about cloud energy consumption and QoS analysis were proposed recently.
For instance, Srikantaiah et al. [16] presented an energy-aware consolidation technique to
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decrease the total energy consumption of a cloud computing system. The authors modeled the
energy consumption of servers in CDC as a function of CPU and disk utilization. For that,
they described a simple heuristic algorithm to consolidate the processing works in the cloud
computing system. Performance of the proposed solution is evaluated only for very small input
size. In [48], authors proposed a mathematical model for server consolidation in which each
service was implemented in a VM to reduce number of used PM. Verma et al. [49] proposed
and formulated a problem of energy consumption for heterogeneous CDC with workload control
and dynamic placement of applications. They applied a heuristic for bin packing problem with
variable bin sizes. In addition, they introduced the notion of cost of VM live migration, but the
information about the cost calculation is not provided. The proposed algorithms do not handle
SLA requirements.

A heuristic algorithm for dynamic adaption of VM allocation at run-time is proposed by
Beloglazov et al. [25]. This algorithm based on the current resources utilization by applying live
migration and switching idle nodes to sleep mode. The simulation results show that the pro-
posed algorithm reduces significantly the global energy consumption. Authors in [50], proposed
energy consumption formulas calculating the total energy consumption in cloud environments.
They provided empirical analysis and generic energy consumption models for idle server and
active server states. In [51], the authors proposed a dynamic and adaptive energy-efficient VM
consolidation mechanism considering SLA constraints for CDC. Using live migration and switch-
ing idle servers to the sleep mode allow cloud providers to optimize resource utilization and
reduce energy consumption, considering CPU as the main power consumers in servers. Arroba
et al. [52] proposed an algorithm based on bin packing problem to minimize the number of bins
used. The algorithm speeds up consolidation and the elastic scale out of the IT infrastructure,
presenting a global utilization increase of up to 23.46% by reducing the number of active hosts
by 44.91%. In [53], authors introduced a unique replication solution which considers both energy
efficiency and bandwidth consumption of the geographically CDC systems. The proposed solu-
tion improves communication delay and network bandwidth between geographically dispersed
CDC as well as inside of each CDC.

Other recent works in the literature focused on Markov chain and queueing theory to
evaluate the performance of cloud systems. For example, Hanini et al. [54, 36] presented a
scheme based on Continuous Markov Chain (CTMC) to manage VMs utilization in a PM with
a workload control of the system. They analyzed the proposed scheme using mathematical
evaluations of the QoS parameters of the system. Also, they modeled and evaluated the power
consumption of the system under the proposed mechanisms. The obtained results demonstrate
the usefulness of the proposed model to prevent overload in the system and to enhance its
performances such as loss probability, number of jobs, and sojourn time in the system and
throughput. In terms of power consumption, the proposed mechanism saves power significantly,
and gives a command tool for this which is the arrival rate control parameter. Salah et al.
[55] proposed a queuing model to predict the needed number of VMs to satisfy a predefined
SLA requirement. They conducted experimental measurement on the AWS platform to validate
the proposed model. The obtained results show that the proposed model can be extremely
useful in achieving proper elasticity for cloud clients. In [34], the authors proposed a queuing
mathematical model to study and analyze the performance of multi-core VMs hosting cloud
SaaS applications. The proposed model estimates under any incoming workload the number
of proper multi-core VM instances required to satisfy the QoS parameters. The queuing
model is validated by simulation. The obtained results from analysis and simulation show that
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the proposed model is powerful and able to predict the system performance and cost and to
determine the number of VMs cores needed for SaaS services in order to achieve QoS targets
under different workload conditions.

In contrast to the discussed studies, we propose efficient heuristics for dynamic adaption of
allocation of VMs in runtime applying live migration according to current utilization of resources
and thus minimizing energy consumption. The proposed approach can effectively handle strict
QoS requirements, heterogeneous infrastructure and heterogeneous VMs. In addition, in our
proposed model we have considered the time evolution of the system. The algorithms do not
depend on a particular type of workload and do not require any knowledge about applications
executed on VMs.

3.3 Proposed Model

3.3.1 Problem statement
In this work, we consider a data center with � homogeneous PMs, each PM contains a
number of heterogeneous VMs, In order to manage the CDC, there are many objectives that
have been defined in the literature, among theme, minimizing the number of PMs required or
minimizing the number of VMs executed per unit of time. All these objectives contribute to
minimize energy consumption or to increase the level of performance. The proposed model in
this chapter aims to optimally consolidate VMs in a minimum number of PMs while minimizing
the energy consumption. In addition, we aim to optimize the execution time of each PM as well
as to minimize the withing time for each VM. However, consideration should be given to avoid
excessive consolidation that gives us a minimal use of energy but also has a negative impact
on the quality of service.

When the provider allocates several tasks to the overloaded PMs, the performance of the
CDC system degrades. The idea is to define double thresholds in each PM; namely, the upper
threshold and the lower threshold. These thresholds are used to keep the total CPU usage of
all VMs in the PM between these two values. If the total use of a PM is below the lower
threshold, then all of the VMs running in this PM must be migrated from that host, and that
host must be disabled to eliminate active power consumption (Figure.3.1), in the other case if
total CPU usage exceeds the upper threshold, some VMs must be migrated from that host to
reduce usage and to avoid potential contract violation at the service level (Figure.3.2).

3.3.2 Mathematical formulation
In this section, we formulate our proposed solution using a mixed integer linear programming
model. The notation used in this chapter are given in the Table 3.1 below.

The objective of this proposed problem is to balance the total execution time on each
physical machine and minimize the number of PMs as much as possible. The objective function
can be expressed as follows

min
��

�=1

� T

0
���d� (3.1)
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Figure 3.1 – A use case of the Lower threshold to control VM migration

Table 3.1 – Notation and Terminology

Notation Description
� Number of physical machines (M1� M2� ���� M�)
� Number of virtual machines in all physical machines
�� Number of physical machines (M1� M2� ���� M�� ) possible to host the VM
�� Maximum number of virtual machines allocated to a physical machine M�
���� bivalent variable indicating that V M� is assigned to a M�
C�� Capacity of each virtual machine � mapped in physical machine �
U����� Up Threshold for each physical machine �
L����� Down Threshold for each physical machine �
C��� Total capacity of the physical machines �
U���� Up Threshold for the total physical machines
P� Processing time of virtual machine �
�� Starting time of virtual machine �
T The total execution time

where ��� are intermediate variables defined by the following equation
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Figure 3.2 – A use case of the Upper threshold to control VM migration

��� =
�

1� Machine M� is used at time �
0� otherwise (3.2)

∀� ∈ [1� �] ∀� ∈ [0� T ]
This optimization is subject to a number of linear constraints depending on the capacity of

the host; the VM can exist only on one server at time �; and a server can host VMs according
not only the amount of remaining capacity but also according to the effect of this hosting on
the system [56].

• The total capacity does not exceed the capacity of system
��

�=1

C������ ≤ U����� ∀� ∈ [0� T ] (3.3)

• Total capacity of virtual machines used for each physical machine M� must be between
the thresholds U����� and L�����

L�������� ≤
��

�=1

C�� ���� ≤ U�������� � (3.4)

∀� ∈ [1� �]� ∀� ∈ [0� T ]
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• No virtual machine can exist in two physical machines at the same time �

��

�=1

���� ≤ 1� ∀� ∈ [1� �]� ∀� ∈ [0� T ] (3.5)

where ���� are decision variables defined by

���� =
�

1� ��� VM mapped to � �� at time �
0� otherwise (3.6)

∀� ∈ [1� �]� ∀� ∈ [1� �]� ∀� ∈ [0� T ]

These can be summarized by combining the objective function with all constraints in the
following set of equations

min
��

�=1

� T

0
���d�

subject to
��

�=1

C������ ≤ U�����

L�������� ≤
��

�=1

C�� ���� ≤ U��������

��

�=1

���� ≤ 1�

��

�=1

���� ≤ �� �

(3.7)

∀� ∈ [1� �]� ∀� ∈ [1� �]� ∀� ∈ [0� T ]

3.4 Model analysis
The proposed mechanism attempts to optimize the current state of the VMs in two phases. In
the first phase, we select the VMs to be migrated. In the second step, using Bin Packing
algorithm, the selected VMs are moved to another host that verify all constraints defined above.

A. VM selection:

When the total CPU utilization is no longer limited within the two thresholds, by either
exceeding the upper threshold or being beneath the lower. Within the last case in redistributing,
all the VMs must be moved to another host, while in the other case we choose just some VMs
in order to migrate them to bring back the balance between the thresholds. This selection is
acquainted with two policies: the Combinations of Migrations (CM) and High Priority (HP).
The CM policy is an improvement of that proposed in [47] and HP is a new proposed policy
based on VM utilization. The two policies are described below:
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1. The Combinations of Migrations (CM) : This policy selects the necessary number of VMs
to migrate from a host based on combination between the machines and choosing the
minimum VMs they can return the CPU utilization below the upper threshold if the upper
threshold is exceeded. The CM policy finds a set R� of VMs which must be migrated
from the host � . Let V� the set of VMs currently allocated to the host � . For each VM�
in the host � , C�� is its capacity. The R� as a subset of V� is defined by the following
equations:
�� U���� < U���� :

R� =






V�� ∈ V� | min
1≤�≤|V� |



 �
�





�

�=1
C�� ��� ≥ Ucurr� · ��� − Upper� · ���






(3.8)

�� U���� < L���� :
R� = V� (3.9)

2. High Priority (HP) : This policy specifies a set R� of VMs where the most used VMs have priority
to stay in the same PM. All VMs having the lowest CPU usage are ordered from smallest to
largest until we reach the value that exceeds the threshold are migrated. We can assume V�� so
that C1� < C2� � ���

R� =






{V1� � ���� V��} if U���� < U����
V� if U���� < L����
∅ Otherwise

(3.10)

where
� = argmin1≤�≤|V� |

��

�=1
C�� ���� ≥ U�������� − U��������

B. VM Migration :

Finding the best location of the selected VMs can require a list of information about the latter,
their number, capacity, and the former replacement of the VMs. To provide all that we need to
define a bivalent variable D��� expressing replacement of VM� from PM� to PM� . This bivalent
variable D��� guide us to propose inequalities that have to be respected during the migration
of VMs.

1. Once a VM is migrated to a server, we can not migrate it again from that server
(Figure.3.3). This is reflected by the following inequality

D��� + D� �� ≤ 1� ∀� (3.11)

2. To reinforce the previous condition, an inequality is added to ensure that when a VM�
is migrated from PM� to PM� at time � , the migration to the other nodes �(� �= � ) is
forbidden, in other words each machine has one and only one destination (Figure.3.4).
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Mi Mj ML

Figure 3.3 – The first constraint on VM migration

���

�=1�� �=�

D��� ≤ 1� (3.12)

Mi Mj ML

Figure 3.4 – The second constraint on VM migration

3. If a PM� indicates that its usage is below the lower threshold, then it must migrate all
of its hosted virtual machines to turn it off permanently:

if U���� < L�����
���

�=1�� �=�

���

�=1

D��� = ����� � (3.13)

To solve this part we apply a First Fit Decreasing Scheduling (FFDS) bin packing algorithm.
In favor of the heterogeneity of the nodes it is possible to choose the most effective power to
suit the rhythm of the system. The pseudo code for the algorithm is presented in algorithm 2.

C. Decision problem :

In order to determine status of NP-hardness of this optimization problem, we describe decision
problem VM-Migration as follow.
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Proposition 3.1. Given � VMs, VM1, . . . , VM� have to be executed without preemption and
without interruption on � physical machines. Each machine is described by a starting time ��
and processing time ��. All machines can support a number of virtual machines �� .

Question: Is there an allocation of virtual machines with different capacities such that the
total execution time on each physical machine is does not exceed a certain value � ?

Theorem 3.1. This decision problem will be proved to be NP-complete.

Theorem 3.2. Problem VM-Migration is NP-complete.

Proof. We prove that Partition ∝ VM-Migration, i.e. decision problem VM-Migration belongs
to NP-complete class by a reduction to Partition which is know to be is "NP-complete" [2
execution time]. . .
Recall that problem Partition is described as follow.
A finite set A of � elements �1� �2� ���� �� with integer sizes �(�� )

∀�� 1 ≤ � ≤ ��
��

�=1

�(�� ) = 2B� (3.14)

Question: Is there a subset A1 of indices such that
�

�∈A1

�(�� ) =
�

�∈{1�2������}\A1

�(�� ) = B (3.15)

Proposition 3.2. Given an arbitrary instance of Partition, we construct an instance of VM-
Migration as follows:

• � = � ,

• for each V M� with � ∈ {1� 2� ���� �} �� = 1 �(��) = C�� ,

• for physical machine M� with � ∈ {1� 2� ���� �} : �� = B�

• � = 2

(⇒) Given a feasible solution to Partition, we can define a solution to VM-Migration by
assigning a physical machine M1 a subset of VMs corresponding to A1, the remaining VMs
will be allocated from M2. This assignment satisfies the conditions and the answer to problem
VM-Migration is ’Yes’ since the execution time on M1 (and on M2 resp.) is 1.

(⇐) If there exists a feasible solution to problem VM-Migration, then there exists a virtual
machine allocation such that all virtual machines are allocated from two machines at most (due
to � = 2 and all VMs allocated at the same time). Moreover, the maximum number of virtual
machines could be used from these two machines is �1 + �2 = B + B = 2B which corresponds
exactly to the number of virtual machines allocated in PM. So, there is no redundant resource
from these two machines. Hence, the total virtual machines executed on M1 is equal to �1 = B
and the subset of VMs defines then A1. Consequently, the answer to Partition is ’Yes’ ⌅
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Algorithm 2: First Fit Decreasing Scheduling (FFDS)
Input: List of PMs
Output: List of VMs
SortDecreasing all virtual machines;
for Each VM in List of VMs do

for Each PM in List of PMs do
if Utilization of PM has not exceed upper threshold and has enough capacity
for VM then

Utilization of PM = Utilization of PM + Utilization of VM;
Remain=Upper-Utilization of PM;

if Remain is the minimum between the values provided by all VMs then
Allocated VM in PM;
Remove VM in List of VM;

return VMs allocation

3.5 Performance analysis
In migration algorithm, the upper threshold is set to avoid the SLA violations and ensure
smooth task continuity. Each PM periodically executes an overload detection strategy to
trigger migration. A PM is overload, when the resource utilization reaches the upper threshold.
The upper threshold should be adjusted, depending on the specific system requirements, to
avoid performance degradation and SLA violations. A PM is considered to be under loaded,
when the resource utilization is under the lower threshold. The lower threshold significantly
affects the energy efficiency and the amount of migrations.

We perform modelization to evaluate our model. Modelization has been chosen to evaluate
the performance of the proposed algorithms, we have fixed the number of heterogeneous VMs
to 100 and the number of PMs ranges from 10 to 100 by 10. Runs were performed to compare
our methods with the one where no policy is used.

3.5.1 Analysis of energy consumption
To evaluate the efficiency of the proposed model, we evaluate the amount energy consumed in
CDC. To achieve this end, the following formula is used to calculate the energy

ET �� = E +
�

������PM�

(P� +
�

V M�� ∈V�

α × U (V M�� )) (3.16)

where E is the power needed for monitoring the CDC in idle state, P� is the power
consumption in idle state for a PM� , U (V M�� ) is the utilization of the V M�� and α is a power
weight coefficient.

The influence of high and low thresholds is evaluated on energy efficiency in data center
which consists of 100 VMs.

In Figure 3.5, we plot the amount of energy consumed under our proposed algorithms
compared to the case where a random selecting algorithm is used. As the Figure 3.5 shows,
the system energy consumption vary with the value of number of PMs. The tendencies of the
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system energy consumption obtained from the two experiences are almost similar. We remark
that, when the number of PM is more than 10, CM policy and HP policy are both minimizing
the total consumed energy. However, it increases faster from 70 to 90 and the total energy
consumption is always lower when using our algorithm, in this case of energy consumption,
CM policy outperform HP policy by minimized more energy. The total consumed energy is
minimizing by an average of 20% (respectively 16%) by applying CM policy (respectively HP
policy), the saved energy is due to the way of migration proposed in our algorithm that turn
off unneeded PMs.
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Figure 3.5 – Comparison of the system energy consumption

3.5.2 Analysis of execution time and CPU utilization
In this part, our prime aim is to minimize the makespan which is the time required to complete
the execution of all input tasks by the system. It can be represented as follow

M������� = max
1≤�≤�

���

�=1

A���T ����� (3.17)

where, A���T ����� is the accomplishment time of ��� VM on � �� PM [57]. During the
execution of task, our proposed algorithm is about minimizing the total execution time on each
physical machine. We assume that all the VMs are running respectively from he highest to
smallest and each VM/task could be executed in the period [��� � ��� + ��� ].

where ��� is the starting time and ��� is the processing time.
The total running capacity of PM � is the sum of capacity of all VMs running in this PM.
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C��� =
���

�=1

C�� (3.18)

Now, the duration time of ��� VM is estimated using

A���T ����� = C�� × S (3.19)

Where S is the time needed to implement a unit capacity
To analyze the performance of our proposed algorithm FFDS in function of the waiting time

earned by applying the HP policy, we perform an evaluation with 10 PMs and 60 VMs with
S = 0�02 ms. Figure 3.6 illustrates the execution time in two cases: (1) in case of random
selecting (2) in case of HP policy. We remark that the execution time has been decreased
significantly by an average of 69%. These results show one other great advantage of our
algorithm regrading the execution time of VMs in CDC.
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Figure 3.6 – The execution time vs migrated VMs

The next experiment focuses on the impact of our algorithm applying both policies CM and
HP to manage the CPU utilization between 10 PMs mapping 60 VMs. As shown in Figure 3.7,
the selecting random deal with allocation the VMs in a wrong way, where some PMs exceed
the upper threshold while other PMs are active just to serve some VMs that have a small
capacities, and that poses two problems, the first depends on the energy consumed, which will
be higher because all the PMs are active, the second concerns the overload on some PMs
which can have a negative impact on the quality of service (Figure 3.6). On the other hand,
both policies find a way to improve significantly the CPU utilization of the system, and this is
done by keeping the CPU utilization of all PMs between the upper and lower thresholds that
are in our experiment 70% and 30% respectively.
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Figure 3.7 – Variation of CPU utilization on each physical machine

3.5.3 Cost of VM migration
VMs migrate at the beginning of each monitor period. It has negative impacts on performance of
the running tasks. We assume that each VM migration costs the same amount of resources. So it
is crucial to minimize the number of VM migrations ensuring the QoS and energy conservation.
In this work we are interested in evaluating the cost of migration with a view to study and
minimize it in future work. Each migration has a cost in QoS. However, when the migration is
monitored due to exceeding of the upper threshold, the QoS of the migrated machine and of
remained VMs in the PM where the migration is performed from is improved. Then, the total
cost of this operation can be computed using the following formula

C���M�� = β × NMT �� − γ × NM�� (3.20)
where NMT �� is the total number of migrated V M , NM�� is the number of V M migrated due
to exceeding of the upper threshold, β is the cost of a migration and γ is the gain in QoS
when the migration is monitored due to exceeding of the upper threshold.
Moreover, we can suppose that β is very small compared to γ based to the fact that migration
techniques used in CDC are developed and permits minimizing the cost due to this operation.
In our experimentation, we use β = 2 and γ = 4
Table 3.2 shows the cost of migration when the number of VMs is varying. We remark that
when the number of VMs is increasing, the cost becomes not positive, which means that we
gain at the QoS. This is due to the fact that there is more chance to have an exceeding of the
upper threshold.

Figure 3.8 shows that when the number of PMs increases the provider has more gain than
loss (negative cost). When we compare the two proposed policies (CM and HP), we remark
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Table 3.2 – Cost of migration

Number of VM Number of migration due to exceeding upper
threshold

Cost

10 1 30
20 8 -32
30 12 -26
40 17 -50
50 14 -10
60 25 -80
70 29 -100
80 25 -58
90 38 -130
100 40 -122
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Figure 3.8 – The comparison of the double threshold policies in terms of cost

that HP policy performs better with lower number of PMs, and CM policy is better with large
number of PMs.

3.6 Conclusion
In this chapter we have proposed a capacity balancing algorithm to manage the VM migration
between the PM in a CDC in order to deal with power-performance trade-off. Our proposition
is based on double thresholds that manage the selection and placement of VMs in physical

75



Chapter 3. Modeling and Analysis of Quality of Service and Energy Consumption ...

machines using both policies CM and HP. This model is presented as a mixed integer linear
mathematical model. The numerical evaluation of the proposed technique showed that our
model enables to save energy consumed and minimizes the execution time in CDC. However,
this work has to be detailed in terms of QoS performances.
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In this chapter, we introduce the concept of reserve server and we consider the M/M/k
queuing system with setup costs: M/M/k/Setup to deal with coming clients. The proposed
mechanism and its performance parameters are described by a a mathematical model. In
addition, the effect of the proposed mechanism on energy consumption behaviour is assessed.
The discussion on the results shows the role of the consideration of reserves in the system.
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4.1 Introduction

Cloud computing is now one of the major issues in the evolution of information technology by
allowing the possibility of reserving IT resources online. Some commercial offers are already
in existence for customers (residential or professional) supported by large data centres such as
Amazon or Azure [58]. The amount of power consumed by server represents more than 1.5% of
all electricity consumption in the United States, at a price of approximately $4.5 billion [59].
The cost of energy and the huge growth of data centres will lead to more energy consumption
spending [60]. Most of the time, only 20 to 30% of the servers’ total storage capacity of energy
is used on average. The main cause of this wastage is the inactive machines in the server
farms that are too large. A critical issue in modern server farm system architecture is to know
how to efficiently allocate the number of servers to manage unpredictable demand patterns., in
order to get the best performance without wasting energy.
Although it is demanded to shut down servers when they become inactive to save energy, the
high configuration cost (in terms of setup time and energy consumption) required to restart
the server can affect performance. The problem is even more complicated since today’s servers
offer several states of sleep or standby that allow the setup cost to be balanced by the power
consumed while the server is "in sleep". The idle servers use about 60% of their maximum power
[61], although it is possible to save a lot of energy by switching off the inactive servers when
we don’t need them [46, 44]. However, turning on an off server has a major cost. The setup
cost may take the form of a time delay, which we call it the setup time. The option that we
suggest in this work is to start with the minimum of servers and we put the others in a set
of reserves and we turn on one by one when we need them and their situations are on sleep
state. Although a server in idle state consumes more power than a server in off state, but the
cost of setting up a server in idle state is lower than that of a server in off state state [62].

In this chapter, we focus on an M/M/k queue system with setup costs M/M/k/Setup. Servers
are divided in two types: in run mode and in sleep mode as a reserve when there is no work
to be done, but when the system needs more server to be on the state on we turning on a
server among the reserves from in sleep mode and this involves setup costs. The setup cost is
in the form of a delay. Since a reserve server consume a lot of energy, the number of servers
that can be as a reserve at any time is often limited. In the configuration model, a maximum
of one server can be configured at any one time. Although recent literature has analyzed an
M/M/k system with exponentially distributed setup times [63], no closed-form solutions have
been obtained. Because in our work we add the concept of reserves, we supply the primary
analytic expressions for the limiting distribution of system states, response time distribution
and average energy consumption for the system.

The rest of this chapter is organized as follows. The proposed system model is presented
in Section 4.3. Section 4.4 formulates the proposed model. The performance measures are
presented in Section 4.5. Section 4.6 presents the numerical results. Finally, Section 4.7
concludes the chapter.

The results obtained in this chapter are presented in the research article [64].
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4.2 General context and related work
Setup times are a fundamental component of computer systems and manufacturing systems,
and therefore they have always played an important role in queueing theoretic analysis. In
manufacturing systems it is very common for a job that finds a server idle to wait for the server
to “warm up” before service is initiated. In retail and hospitals, the arrival of customers may
necessitate bringing in an additional human server, which requires a setup time for the server
to arrive. In computer systems, setup times are once again at the forefront of research, as they
are the key issue in dynamic capacity provisioning for data centers.
In data centers, it is desirable to turn idle servers off, or reallocate the servers, to save power.
This is because idle servers burn power at 60%_70% of the peak rate, so leaving servers on and
idle is wasteful [65]. Unfortunately, most companies are hesitant to turn off idle servers because
the setup time needed to restart these servers is very costly; the typical setup times for servers
is 200 seconds, while a job’s service requirement is typically less than 1 second [66, 67]. Not
only is the setup time prohibitive, but power is also burned at peak rate during the entire setup
period, although the server is still not functional. Thus it is not at all obvious that turning
off idle servers is advantageous. Many ideas have been proposed to minimize the number of
times that servers in a data center must undergo setup. One major line of research involves
load prediction techniques [66, 68, 69, 70]. In the case where load is unpredictable, research
has turned to looking at policies such as delayed off, which delay turning off an idle server for
some fixed amount of time, in anticipation of a new arrival [71, 72, 73]. Another line of research
involves reducing setup times by developing low power sleep modes [72, 73]. Surprisingly, for
all the importance of setup times, very little is known about their analysis. The M/G/1 with
setup times was analyzed in 1964 by Welch [74]. The analysis of an M/M/k system with setup
times, which we refer to as M/M/k/setup, however, has remained elusive, owing largely to the
complexity of the underlying Markov chain. (Figure. 1.1 shows an M/M/k/setup with exponen-
tially distributed setup times.) In 010, various analytical approximations for the M/M/k/setup
were proposed in [33]. These approximations work well provided that either load is low or the
setup time is low. The M/M/∞/setup was also analyzed in [33] and found to exhibit product
form. Other than the above, no progress has been made on the M/M/k/setup. Even less is
known about the M/M/k/setup/delayed off, where idle servers delay for a finite amount of time
before turning off, or the M/M/k/setup/sleep, where idle servers can either be turned off (high
setup time, zero power) or put to sleep (lower setup time, low power).

For the M/M/k/setup/delayed off, only iterative matrix-analytic approaches have been used
[73]. No analysis exists for M/M/k/setup/sleep. We now discuss papers that have considered
repeating Markov chains and have proposed techniques for solving these. We then comment
on how these techniques might or might not apply to the M/M/k/setup.

Matrix-analytic based approaches : Matrix-analytic methods are a common approach for
analyzing Markov chains with repeating structure. Such approaches are typically numerical,
generally involving iteration to find the rate matrix, R . These approaches do not, in general,
lead to closed forms or to any intuition, but are very useful for evaluating chains under different
parameters. There are cases where it is known that the R matrix can be stated explicitly [75].
This typically involves using a combinatorial interpretation for the R matrix. As described in
[75], the class of chains for which the combinatorial view is tractable is narrow. However, in
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[76], the authors show that the combinatorial interpretation extends to a broader class of chains.
Their class does not include the M/M/k/setup, however, which is more complicated because the
transition (setup) rates are not independent of the number of jobs in system. Much research
has been done on improving matrix-analytic methods to make the iteration faster. An example
is [77], which develops a fast iterative procedure for finding the rate matrix for a broader class
of chains than that in [76]. The authors in [77] also provide an explicit solution for the rate
matrix in terms of infinite sums.

Generating function based approaches : Generating functions have also been applied to
solve chains with a repeating structure. Like matrix-analytic methods these are not intuitive:
Generating function approaches involve guessing the form of the solution and then solving for
the coefficients of the guess, often leading to long computations. In theory, they can be used
to solve very general chains (see for example [78]). We initially tried applying a generating
function approach to the M/M/2/setup and found it to be incredibly complex and without
intuition. This led us to seek a simpler and more intuitive approach

M/M/k with vacations : Many papers have been written about the M/M/k system with
vacations, see for example [79, 80, 81, 82]. While the Markov chain for the M/M/k with
vacations looks similar to the M/M/k/setup, the dynamics of the two systems are very different.
A server takes a vacation as soon as it is idle and there are no jobs in the queue. By contrast,
a setup time is initiated by jobs arriving to the queue. In almost all of the papers involving
vacations, the vacation model is severely restricted, allowing only a fixed group of servers to go
on vacation at once. This is very different from our system in which any number of servers may
be in setup at any time. The model in [82] comes closest to our model, although the authors use
generating functions and assume that all idle servers are on vacation, rather than one server
being in setup for each job in queue, which makes the transitions in their chain independent
of the number of jobs.

Restricted models of M/M/k with setup : There have been a few papers [83, 84, 33] that
consider a very restricted version of the M/M/k/setup, where in at most one server can be in
setup at a time. There has also been prior work [37] and [85] that considers an M/M/k system
where in a fixed subset of servers can be turned on and off based on load. The underlying
Markov chains for all of these restricted systems are analytically tractable and lead to very
simple closed form expressions, since the rate at which servers turn on is always fixed. Our
M/M/k/setup system is more general, allowing any number of servers to be in setup. This
makes our problem much more challenging.

4.3 Model description
We model a server with setup time using M/M/k queuing system, with a Poisson arrival process
with rate λ, and the service time is exponentially distributed µ. Let ρ = λ/µ denote the system
load, where ρ < � , In this model a server can be in one of three states: On, in setup, or
reserve. Servers are obviously shut down when there is no work to be done, but turning on
a server that has been shut down will incur setup costs. The setup cost takes the shape of a
delay and a power penalty, event that idle servers are shut down to save on running expenses.
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Since servers in setup mode consume a lot of energy, the number of servers that can be in
setup at any given time is often limited. In the configuration model, a maximum of one server
can be setup at any time. A server is in the ON state when it is serving jobs, when the server
is on, it consumes power P��, if there are no jobs to serve, the server turns off instantaneously,
While in the reserve state, the server consumes power P� lower than P��, and to switch on a
server among the reserves, it must first put in setup mode. However, we suggest than, at most
one server can be in setup at any time, while in setup mode , the time need to turn on a server
is called the setup time, and during that entire time, power P�� is consumed and we model the
setup time as an exponentially distributed random variable I with rate α = 1
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Figure 4.1 – Markov chain for an M/M/k/Setup

As in an M/M/k queuing system, we assume a First Come First Serve queue, from which
servers serve jobs when they become available. Hence, the setup costs increase the complexity.
From a job viewpoint, if a job comes in and finds a server in setup, it simply waits in the queue.
However, if the job does not find any servers in the setup, then it randomly selects a server
from the set of the reserves and puts it in the setup state. If the task cannot find any servers
out of order, it simply waits in the queue. When a job ends the service on a server � , the
first task in the queue is moved to server � , without the need for any setup, since server � is
already enabled. Even if the job at head of the queue was already pending on another server
i to setup, the task at head of the queue is still sent to the server � ; server � is then either
reconsidered as a reserve if there is no task in the queue, or remains in setup if the queue is
not empty. We call this model the M/M/k/Setup model.

4.4 Model Analysis
In this section, we obtain the limit probabilities of the system states (theorem 1) for an
M/M/k/Setup. Due to space constraints, we only present brief proofs. Additional details
of the proofs will be found in the extending work.
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The figure 4.1 shows the Markov chain for an M/M/k/Setup. The states of the Markov chain
are designated by (�� �), where � denotes the number of servers that are powered on, and �
represents the number of tasks in the system. The Markov chain is composed of (� + 1) rows.
The first row (from the bottom) consists of states where we have that the main servers are on,
the second row consists of states where we have exactly one server in setup from the reserves,
and so on. For setup time, be reminded that only one server can be in setup at any time. Thus,
the rate of passage from state (�; � ) to state (� + 1� � ) is a constant α for all 0 ≤ � < � and
� < � .

Now we will solve the Markov chain illustrated in Figure 4.1 for the limiting probabilities
of to be in any state. Firstly, we find the limit probabilities for the 1st row states, in terms of
π0�0. Then, we determine the limiting probabilities of being in the states of the second row. In
relation to the first row solution, which in the meantime is given in terms of π0�0. By going on
in this manner, we are able to solve the limiting probabilities of all the states in the Markov
chain in terms of π0�0.

Theorem 4.1. The limiting probabilities for an M/M/k/Setup are given by :

π��� = ρ�

(� + 1)!
π0�0 · γ�

�! β� for 0 ≤ � < � and � > � + � − 1

π��� = ρ�

(� + 1)!

�
π0�0γ��µβ�

� ! · (�µ − (λ + α)) −
π0�0�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α))

�
for � > � − 1

π0�0 =




��

�=0

ρ�

� ! + ρ�

(� + 1)! · 1
(1 − β) ·

�
�

0≤�<�

ρ�

�! + ρ�µ
(� − 1)! · (�µ − λ)

�


−1

where α = 1
E[I ] � β = λ

λ+α and γ = λ+α
µ

Proof. The relevant balance equations for the 1st row are given by :

λ · π0�0 = µ · π0�1 for � = 0 (4.1)

(λ + �µ) · π0�� = λ · π0��−1 + (� + 1)µ · π0��+1

=⇒ π0�� = π0�0 · ρ�

(�)! for � = 1� ���� ��
(4.2)

(λ + α) · π0�� = λ · π0��−1

=⇒ π0�� = π0�0 · ρ�

(�)! · β� for � ≥ ��
(4.3)

The relevant balance equations for the 2nd row are given by, when j>1

(λ + α + (� + 1)µ) · π1�� = λ · π1��−1 + α · π0�� + (� + 1)µ · π1��+1 (4.4)

The right-hand side of (4.4) above consists of states of the 2nd row as well as states of the 1st
row. Thus, we use difference equation (see [63] for more information on difference equations)
to solve for π1��
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π1�� = A1�1�� + A1�2β� for � > 1 (4.5)

where x is a solution of the homogeneous equation:

� · (λ + α + (� + 1)µ) = λ + �2 · (� + 1)µ (4.6)

We now solve for A1�2 by plugging in equations. (4.3) and (4.5) into (4.4) for � > � + 2.

(A1�1��
1 + A1�2β� ) · (λ + α + (� + 1)µ) = (A1�1��−1

1 + A1�2β�−1) · λ + π0�0
ρ�

�! · β� · α + (A1�1��+1
1 + A1�2β�+1) · (� + 1)µ

A1�1��
1(λ + α + (� + 1)µ) + A1�2β� (λ + α + (� + 1)µ) = A1�1��−1

1 λ + A1�2β�−1λ + π0�0
ρ�

�! β
�α + A1�1��+1

1 (� + 1)µ + A1�2β�+1(� + 1)µ

Where
A1�1��−1

1 (�1 [λ + α + (� + 1)µ) − λ − �12(� + 1)µ] = 0

after equation (4.6)

A1�2β� (λ + α + (� + 1)µ) − A1�2β�−1λ − A1�2β�+1(� + 1)µ = π0�0
ρ�

�! β�α

A1�2(β(λ + α + (� + 1)µ) − λ − β2(� + 1)µ = π0�0
ρ�

�! βα

=⇒ A1�2
λ(� + 1)µα

(λ + α)2 = π0�0
ρ�

�! · λα
λ + α

=⇒ A1�2 = π0�0 · λ + α
(� + 1)µ

ρ�

�!

=⇒ A1�2 = ρ�

(� + 1)! · π0�0 · γ Where γ = λ + α
µ (4.7)

To get A1�1, we use the balance equation for π1��+2� which will contain π1��+1. However, we
first need to evaluate π1��+1� This requires us to use the balance equation for π0��

(λ + �µ) · π0�� = λ · π0��−1 + (� + 1)µ · π1��+1

=⇒ π1��+1 = λ + �µ
(� + 1)µ · π0�� − λ

(� + 1)µ · π0��−1

=⇒ π1��+1 = λ
(� + 1)µ · π0�0

ρ�

(� + 1)! + �
(� + 1)µ · π0�0

ρ�

(�)! − ρ
(� + 1) · π0�0

ρ�−1

(� − 1)!

=⇒ π1��+1 = π0�0 · ρ�+1

(� + 1)! · β� (4.8)

Now we use equations (4.3) and (4.5) into (4.4) for � = � + 2

(4�4) =⇒ (λ + α + (� + 1)µ) · π1��+2 = λ · π1��+1 + α · π0��+2 + (� + 1)µ · π1��+3
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=⇒ (λ + α + (� + 1)µ) · (A1�1��+2 + A1�2β�+2) = π0�0 · ρ�+1

(�+1)! · λβ� + απ0�0 · ρ�

�! · β�+2 + (� + 1)µ · (A1�1��+3 + A1�2β�+3)

=⇒ (λ + α + (� + 1)µ) · A1�1��+2 − (� + 1)µ · A1�1��+3 = π0�0 · ρ�+1

(�+1)! · λβ� + απ0�0 · ρ�

�! · β�+2 + A1�2β�+3(� + 1)µ − A1�2β�+2(λ + α + (� + 1)µ)

=⇒ (λ + α + (� + 1)µ) · A1�1��+2
1 − (� + 1)µ · A1�1��+3

1 = π0�0 · ρ�+1

(�+1)! · λβ� + απ0�0 · ρ�

�! · β�+2 + A1�2β�+2 ((� + 1)µβ − λ − α − (� + 1)µ)

(4�7) ⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0

ρ�+1

(�+1)!λβ� + απ0�0
ρ�

�! β
�+2 + ρ�

(�+1)!π0�0γβ�+2 [(� + 1)µβ − λ − α − (� + 1)µ]

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0 · ρ�+1

(�+1)! · λβ� + απ0�0 · ρ�

�! · β�+2 − ρ�

(�+1)! · π0�0 · γβ�+2
�

λ2+2λµ+α2+αµ(�+1)
λ+α

�

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0 · ρ�+1

(�+1)! · λβ� + απ0�0 · ρ�

�! · β�+2 − ρ�

(�+1)! · π0�0 · γβ�+2
�

λ2+2λµ+α2+αµ(�+1)
λ+α

�

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0 · ρ�

�!

�
λ2

(�+1)µ β� + αβ�+2
�

− ρ�

(�+1)! · π0�0 · γβ�+2
�

λ2+2λµ+α2+αµ(�+1)
λ+α

�

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0 · ρ�

�! β
�λ2

�
1

(�+1)µ + α
�

− ρ�

(�+1)! · π0�0 · γβ�+2
�

λ2+2λµ+α2+αµ(�+1)
λ+α

�

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0 · ρ�

�! β
� λ2

(λ+α)2(�+1)µ
�
(λ + α)2 + αµ(� + 1)

�
− ρ�

(�+1)! · π0�0 · γβ�+2
�

λ2+2λµ+α2+αµ(�+1)
λ+α

�

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
= π0�0 · ρ�

(�+1)!β
�+2 1

µ
�
λ2 + 2λα + α2 + αµ(� + 1)

�
− ρ�

(�+1)! · π0�0�
�λ+α
µ β�+2

�
λ2+2λµ+α2+αµ(�+1)

��λ+α

�

=⇒ A1�1
�
(λ + α + (� + 1)µ)��+2

1 − (� + 1)µ��+3
1

�
=

((((((((((((((((((((((

π0�0 · ρ�

(�+1)!β
�+2 1

µ
�
λ2 + 2λα + α2 + αµ(� + 1)

�
−

((((((((((((((((((((((
ρ�

(�+1)! · π0�0β�+2 1
µ

�
λ2 + 2λµ + α2 + αµ(� + 1)

�

=⇒ A1�1 = 0� (4.9)

Thus, we have from equations (4.5), (4.7) and (4.9)

π1�� = ρ�

(� + 1)! · π0�0 · γ · β� for � > � (4.10)
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Remarque:
π1�� = γ

(� + 1) · π0�� and π0�� = ρ�

(�)! · π0�0 · β�

Note that the above equation is valid for � = � + 1 since β · γ = ρ

π1��+1 = ρ�+1

(� + 1)! · π0�0 · β�

For row �, 3 ≤ � ≤ � , we again use difference equations, and derive the values of A1�1 and
A1�2 as above. We find that A1�1 = 0 and A1�2 = π0�0·γ�

�! . Thus:

π2�� = π0�0 · γ2

2! · ρ�

(� + 1)! · β� for � ≥ � + 1

...
(4.11)

π�−1�� = π0�0 · γ�−1

(� − 1)! · ρ�

(� + 1)! · β� for � ≥ � + � − 2 (4.12)

In general

π��� = π0�0 · γ�

�! · ρ�

(� + 1)! · β� for � ≥ � + � − 1 and 0 ≤ � < � (4.13)

For row (k+1), The relevant balance equations for the (� + 1)�� row are given by:

(λ + �µ) · π��� = λ · π���−1 + α · π�−1�� + �µ · π���+1 for � > � (4.14)

As before, the solution for such equations is given by:

π��� = A��1��
� + A��2β� for � > � (4.15)

where �� is a solution of the homogeneous equation:

�� · (λ + �µ) = λ + �2
� · �µ (4.16)

Solving Equation (4.16) for �� , we find �� = � · ρ (the other solution �� = 1 is trivially
discarded). Thus, we have:

π��� = A��1

�ρ
�

��
+ A��2β� for � > � (4.17)

We now find A��1 and A��2 as we did for 2nd row and find that, for � ≥ � :
Plugging in Equations (4.12) and (4.15) into (4.14)

(λ + �µ) ·
�

A��1��
� + A��2β�

�
= λ ·

�
A��1��−1

� + A��2β�−1
�

+ α ·
�

π0�0·γ�−1

(�−1)! · ρ�

(�+1)! · β�
�

+ �µ ·
�

A��1��+1
� + A��2β�+1

�

(λ + �µ) · A��1��
� + (λ + �µ) · A��2β� = λ · A��1��−1

� + λ · A��2β�−1 + α ·
�

π0�0·γ�−1

(�−1)! · ρ�

(�+1)! · β�
�

+ �µ · A��1��+1
� + �µ · A��2β�+1
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(4�16) =⇒ A��2 ·
�
β(λ + �µ) − λ − �µβ2� = α ·

�
π0�0 · γ�−1

(� − 1)! · ρ�

(� + 1)! · β
�

=⇒ A��2 · β
�

λ + �µ − λ − �µ λ
(λ + α)

�
= α ·

�
π0�0 · γ�−1

(� − 1)! · ρ�

(� + 1)! · β
�

=⇒ A��2 · β
(λ+α)

�
◆◆λ2 +⇢⇢λα +⇢

⇢�µλ + �µα − ◆◆λ2 − ��2λα − α2 −⇢
⇢�µλ

�
= α ·

�
π0�0·γ�−1

(�−1)! · ρ�

(�+1)! · β
�

=⇒ A��2 · ��β ·⇢α
(λ + α) (�µ − (λ + α)) =⇢α ·

�
π0�0 · γ�−1

(� − 1)! · ρ�

(� + 1)! · ��β
�

=⇒ A��2 = π0�0 · γ�−1

(� − 1)! · ρ�

(� + 1)! · (λ + α)
(�µ − (λ + α))

Since γ = λ+α
µ

=⇒ A��2 = π0�0 · µγ�

(� − 1)! (�µ − (λ + α)) · ρ�

(� + 1)! (4.18)

As before to get A��1, we need to evaluate π��� , this requires us to use the balance equation
for π�−1��−1, after a few steps of algebra, we find :

π��� = π0�0 · ρ�

� ! · ρ�

(� + 1)! (4.19)

Now, we use equations (4.12) and (4.17) into (4.14) for � = � + 1

(λ + �µ) ·
�
A��1��+1

� + A��2β�+1� = λ · π��� + α ·
�

π0�0·γ�−1

(�−1)! · ρ�

(�+1)! · β�+1
�

+ �µ ·
�
A��1��+2

� + A��2β�+2�

(4�19) =⇒ (λ + �µ) · A��1��+1
� + (λ + �µ) · A��2β�+1 = λ · π0�0·ρ�

� ! · ρ�

(�+1)! + α ·
�

π0�0·γ�−1

(�−1)! · ρ�

(�+1)! · β�+1
�

+ �µ · A��1��+2
� + �µ · A��2β�+2

=⇒ A��1 (λ + �µ − �µ�� ) · ��+1
� = λ · π0�0·ρ�

� ! · ρ�

(�+1)! + α ·
�

π0�0·γ�−1

(�−1)! · ρ�

(�+1)! · β�+1
�

+ A��2 · β�+1 (�µβ − λ − �µ)

Since �� = ρ
� and β · γ = ρ

=⇒ A��1 · �µ · ��+1
� = λ · π0�0·ρ�

� ! · ρ�

(�+1)! + α ·
�

π0�0·ρ�+1

(�−1)! · ρ�

(�+1)! · β2
�

− A��2 · β�+1 � �µα
λ+α + λ

�

=⇒ A��1 · �µ · ��+1
� = π0�0·ρ�−1

(�−1)! ·
�

λ2ρ�

�µ(�+1)! + αλ2

(λ+α)2 · ρ�

(�+1)!

�
− A��2 · β�+1 � �µα

λ+α + λ
�
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(4�18) =⇒ A��1 · �µ · ��+1
� = π0�0·ρ�−1

(�−1)! ·
�

λ2ρ�

�µ(�+1)! + αλ2

(λ+α)2 · ρ�

(�+1)!

�
− π0�0·µγ�

(�−1)!(�µ−(λ+α)) · ρ�

(�+1)!
� �µα

λ+α + λ
�

β�+1

Since β · γ = ρ

=⇒ A��1 · �µ · ��+1
� = π0�0·ρ�−1λ2

(�−1)! ·
�

ρ�

�µ(�+1)! + αρ�

(λ+α)2(�+1)!

�
− π0�0·ρ�−1µ

(�−1)! · βρ·ρ�

(�+1)!

�
�µα+λ(λ+α)

((�µ−(λ+α))(λ+α))

�

Since βρµ = λ2

λ+α

=⇒ A��1 · �µ · ��+1
� = π0�0·ρ�−1λ2

(�−1)! ·
�

ρ�

�µ(�+1)! + αρ�

(λ+α)2(�+1)!

�
− π0�0·ρ�−1

(�−1)! · λ2·ρ�

(�+1)!

�
�µα+λ(λ+α)

((�µ−(λ+α))(λ+α)2)
�

=⇒ A��1 · �µ · ��+1
� = π0�0·ρ�−1λ2

(�−1)! ·
�

ρ�

�µ(�+1)! + αρ�

(λ+α)2(�+1)! − ρ�

(�+1)!
�µα+λ(λ+α)

(�µ−(λ+α))(λ+α)2)
�

=⇒ A��1 · �µ · ��+1
� = π0�0·ρ�−1λ2

(�−1)! · ρ�

(�+1)! ·
�

(�µ−(λ+α))(λ+α)2+�αµ(�µ−(λ+α))−�µ(�µα+λ(λ+α))
�µ(�µ−(λ+α))(λ+α)2)

�

=⇒ A��1 · �µ · ��+1
� = π0�0 · ρ�−1λ2

(� − 1)! · ρ�

(� + 1)! ·
�

(�µ − (λ + α))(λ + α)2 − �µ(λ + α)2
�µ (�µ − (λ + α))(λ + α)2)

�

=⇒ A��1 · �µ · ��+1
� = π0�0 · ρ�−1λ2

(� − 1)! · ρ�

(� + 1)! ·
�

−(λ + α)3
�µ (�µ − (λ + α))(λ + α)2)

�

=⇒ A��1 · �µ · ρ�+1

��+1 = π0�0 · ρ�+1

� ! · µ · ρ�

(� + 1)! ·
�

−(λ + α)
(�µ − (λ + α)

�

=⇒ A��1 = − ρ�

(� + 1)! ·
�

π0�0��−1(λ + α)
(� − 1)!(�µ − (λ + α))

�
(4.20)

Thus, we have from equations (4.17),(4.18) and (4.20)

π��� = ρ�

(� + 1)!
π0�0γ��µβ�

� ! · (�µ − (λ + α)) − ρ�

(� + 1)!
π0�0�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α)) for � > � − 1

π��� = ρ�

(� + 1)!

�
π0�0γ��µβ�

� ! · (�µ − (λ + α)) −
π0�0�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α))

�
for � > � − 1 (4.21)

Now we need to find the π0�0 to solve the limiting probabilities of all the states of the
Markov chain, We use the equation

�

���
π��� = 1
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�

���
π��� = 1

=⇒ 1 =
�

���
�<�

π��� +
�

�
π���

=⇒ 1 =
�

0��
�≤�

π0�� +
�

���
�<�
�>�

π��� +
�

�
π���

=⇒ 1 =
�

0��
�≤�

π0�0 · ρ�

� ! +
�

���
�<�
�>�

π0�0 · γ�

�! · ρ�

(� + 1)! · β� +
�

�

ρ�

(� + 1)!

�
π0�0γ��µβ�

� ! · (�µ − (λ + α)) −
π0�0�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α))

�

=⇒ 1 = π0�0 ·
�

0��
�≤�

ρ�

� ! + π0�0
ρ�

(� + 1)! ·
�

���
�<�
�>�

γ�

�! · β� + π0�0
ρ�

(� + 1)!
�

�

�
γ��µβ�

� ! · (�µ − (λ + α)) −
�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α))

�

=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)!




�

0<�<�

γ�

�! ·
�

�≤�
β� + γ��µ

� ! · (�µ − (λ + α)) ·
�

�≤�

β� − �� (λ + α)
� ! · (�µ − (λ + α)) ·

�

�≤�

�ρ
�

��




=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)!

�
�

0<�<�

γ�

�! · β�

1 − β + γ��µ
� ! · (�µ − (λ + α)) · β�

1 − β − (λ + α)
� ! · (�µ − (λ + α)) · �µρ�

�µ − λ

�

Since γ · β = ρ

=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)!

�
1

1 − β
�

0<�<�

ρ�

�! + ρ�µ
(� − 1)! · (�µ − (λ + α)) · 1

1 − β − (λ + α)
(� − 1)! · (�µ − (λ + α)) · µρ�

�µ − λ

�

Since λ + α = α
1−β

=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)!

�
1

1 − β
�

0<�<�

ρ�

�! + ρ�µ
(1 − β)(� − 1)! · (�µ − (λ + α)) − ρ�µα

(1 − β)(� − 1)! · (�µ − (λ + α)) · (�µ − λ)

�

=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)!

�
1

1 − β
�

0<�<�

ρ�

�! + ρ�µ
(1 − β)(� − 1)! · (�µ − (λ + α)) ·

�
1 − α

�µ − λ

��

=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)!

�
1

1 − β
�

0<�<�

ρ�

�! + ρ�µ
(1 − β)(� − 1)! · (�µ − λ)

�

=⇒ π−1
0�0 =

��

�=0

ρ�

� ! + ρ�

(� + 1)! · 1
1 − β

�
�

0<�<�

ρ�

�! + ρ�µ
(� − 1)! · (�µ − λ)

�

=⇒ π0�0 =




��

�=0

ρ�

� ! + ρ�

(� + 1)! · 1
(1 − β) ·

�
�

0≤�<�

ρ�

�! + ρ�µ
(� − 1)! · (�µ − λ)

�


−1

(4.22)

⌅

4.5 Performance Measures
Theorem 4.2. The Mean number of jobs E[N ] :

E[N ] = π0�0ρ




�−1�

�=0

ρ�

� ! + ρ�

(� + 1)! · (1 − β)

�−1�

�=0

ρ�

� ! + ρ�

(� + 1)! · (1 − β)2
��

�=0

ρ�

� ! + ρ�+�−1�µ
(� + 1)!� ! · (� − 1)(1 − β)(�µ − λ) + �µ − λβ

(1 − β)2(�µ − λ)2
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Proof. After we get π��� , ∀�� � , We will proceed to calculate the mean number of jobs E [N ] in
the M/M/K/Setup,

E
�
NM/M/� /setup� =

�

0≤�≤�
�≤�

� · π���

=⇒ E[N ] =
��

�=0

� · π0�� +
�

0≤�<�




�

�≤�
�>�

� · π���



 +
�

�≤�
�>�

� · π���

From equations (4.13), (4.14) and (4.21)

=⇒ E[N ] =
��

�=0

� · π0�� +
�

0≤�<�




�

�≤�
�>�

� · π0�0 · γ�

�! · ρ�

(� + 1)! · β�



 +
�

�≤�
�>�

� · ρ�

(� + 1)!

�
π0�0γ��µβ�

� ! · (�µ − (λ + α)) −
π0�0�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α))

�

=
��

�=0

� · π0�� + ρ�

(� + 1)!




�

0≤�<�

π0�0 · γ�

�! · (
�

�≤�
�β� ) +

�

�≤�

�
�

π0�0γ��µβ�

� ! · (�µ − (λ + α)) −
π0�0�� (λ + α)

� ρ
�
��

� ! · (�µ − (λ + α))

�



=
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!
�

0≤�<�

π0�0 · γ�

�! ·
�

�≤�
�β� + ρ�

(� + 1)!
π0�0γ��µ

� ! · (�µ − (λ + α)) ·
�

�≤�

�β� − ρ�

(� + 1)!
π0�0�� (λ + α)

� ! · (�µ − (λ + α)) ·
�

�≤�

� ·
�ρ

�

��

(4.23)
Now we find a closed form expression for

�

�≤�
�β� which will be useful for simplifying Eq

(4.23).

Z = � · �� + (� + 1) · ��+1 + (� + 2) · ��+2 + (� + 3) · ��+3 + � � �
Z · � = 0 · �� + (� + 0) · ��+1 + (� + 1) · ��+2 + (� + 2) · ��+3 + � � �

Z · (1 − �) = � · �� + 1 · ��+1 + 1 · ��+2 + 1 · ��+3 + � � �

=⇒ Z = (� − 1) · ��

1 − � + ��

(1 − �)2

So
=⇒

�

�≤�
� · �� = (� − 1) · ��

1 − � + ��

(1 − �)2 (4.24)

Using the equations (4.23) and (4.24).

E[N ] =
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!
�

0≤�<�

π0�0 · γ�β�

�! ·
�

� − 1
1 − β + 1

(1 − β)2

�

+ ρ�

(� + 1)!
π0�0γ��µβ�

� ! · (�µ − (λ + α)) ·
�

� − 1
1 − β + 1

(1 − β)2

�
− ρ�

(� + 1)!
π0�0���� (λ + α)

� ! · (�µ − (λ + α)) · ρ�

����
·
�

�µ(� − 1)
(�µ − λ) + �2µ2

(�µ − λ)2

�

=
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!

�
�

0≤�<�

π0�0 · ρ�

�! ·
�

� − 1
1 − β + 1

(1 − β)2

�
+ π0�0ρ��µ

� ! · (�µ − (λ + α)) ·
�

� − 1
1 − β + 1

(1 − β)2

�

− π0�0ρ� (λ + α)
� ! · (�µ − (λ + α)) ·

�
�µ(� − 1)
(�µ − λ) + �2µ2

(�µ − λ)2

� �
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=
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!

�
�

0≤�<�

π0�0 · ρ�

�! ·
�

� − 1
1 − β + 1

(1 − β)2

�

+ π0�0ρ� (�µ)
� ! · (�µ − (λ + α)) ·

� �
� − 1
1 − β + 1

(1 − β)2

�
− (λ + α) ·

�
(� − 1)
(�µ − λ) + �µ

(�µ − λ)2

� ��

=
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!
�

0≤�<�

π0�0 · ρ�

�! ·
�

�
1 − β + β

(1 − β)2

�

+ ρ�

(� + 1)! · π0�0ρ� (�µ)
� ! · (�µ − (λ + α)) ·

� �
� − 1
1 − β + 1

(1 − β)2

�
− (λ + α) ·

�
(� − 1)
(�µ − λ) + �µ

(�µ − λ)2

� ��

=
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!
�

0≤�<�

π0�0 · ρ�

(� − 1)! · 1
1 − β + ρ�

(� + 1)!
�

0≤�<�

π0�0 · ρ�

�! · 1
(1 − β)2

+ π0�0ρ� (�µ)
� ! · (�µ − (λ + α)) ·

� �
� − 1
1 − β + 1

(1 − β)2

�
− (λ + α) ·

�
(� − 1)
(�µ − λ) + �µ

(�µ − λ)2

� ��

= π0�0ρ� (�µ)
� ! · (�µ − (λ + α)) ·

� �
� − 1
1 − β + 1

(1 − β)2

�
− (λ + α) ·

�
(� − 1)
(�µ − λ) + �µ

(�µ − λ)2

� ��

+
��

�=0

� · π0�0
ρ�

� ! + ρ�

(� + 1)!
π0�0

(1 − β)
�

0≤�<�

ρ�

(� − 1)! + ρ�

(� + 1)!
π0�0

(1 − β)2
�

0≤�<�

ρ�

�!

=

(�)
� �� �

��

�=0

� · π0�0
ρ�

� ! + ρ�+1π0�0

(� + 1)!(1 − β)
�

0≤�<�

ρ�−1

(� − 1)! + ρ�

(� + 1)!
π0�0

(1 − β)2
�

0≤�<�

ρ�

�!

+ π0�0ρ� (�µ)
� ! · (�µ − (λ + α)) ·

� �
� − 1
1 − β + 1

(1 − β)2

�
− (λ + α) ·

�
(� − 1)
(�µ − λ) + �µ

(�µ − λ)2

� ��
<

� �� �
(��)

We start to develop (��)

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
�−1

(λ+α)(1−β) + 1
(λ+α)(1−β)2 − �−1

(�µ−λ) + �µ
(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)(�µ−λ)−(�−1)(λ+α)(1−β)

(λ+α)(1−β)(�µ−λ) + (�µ−λ)2−�µ(λ+α)(1−β)2
(λ+α)(1−β)2(�µ−λ)2

�
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=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)((�µ−λ)−(λ+α)(1−β))

(λ+α)(1−β)(�µ−λ) + �2µ2+λ2−2�µλ−�µα(1+β2−2β)−�µλ(1+β2−2β)
(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

� (�−1)

�
�µ−⇤λ−(λ+α)+

=λ� �� �
⇠⇠⇠⇠⇠(λ + α)β

�

(λ+α)(1−β)(�µ−λ) + �2µ2+λ2−2�µλ−�µα−�µαβ2+2�µαβ−�µλ−�µλβ2+2�µλβ
(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) + �µ
�

�µ−(λ+α)
�

−2�µλ−β2�µ(λ+α)+2�µβ(λ+α)+λ2

(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) + �µ
�

�µ−(λ+α)
�

−2�µλ−β·

=λ� �� �
β(λ + α) �µ+2�µ

=λ� �� �
β(λ + α)+λ2

(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) + �µ
�

�µ−(λ+α)
�

−��2�µλ−β�µλ+��2�µλ+λ2

(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) + �µ
�

�µ−(λ+α)
�

−��2�µλ−β�µλ+��2�µλ+

=λβ(λ+α)����
λ2

(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) + �µ
�

�µ−(λ+α)
�

−β�µλ+λβ(λ+α)
(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) + �µ
�

�µ−(λ+α)
�

−λβ
�

�µ−(λ+α)
�

(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !·(�µ−(λ+α)) ·

�
(�−1)

�
�µ−(λ+α)

�

(λ+α)(1−β)(�µ−λ) +
�

�µ−(λ+α)
��

�µ−λβ
�

(λ+α)(1−β)2(�µ−λ)2

�

91



Chapter 4. Analysis of a M/M/k system with exponential setup times and reserves ...

=⇒ ρ�+� π0�0�µ(λ+α)⇠⇠⇠⇠⇠�
�µ−(λ+α)

�

(�+1)!� !·⇠⇠⇠⇠⇠�
�µ−(λ+α)

� ·
�

(�−1)
(λ+α)(1−β)(�µ−λ) +

�
�µ−λβ

�

(λ+α)(1−β)2(�µ−λ)2

�

=⇒ ρ�+� π0�0�µ(λ+α)
(�+1)!� !(λ+α)(1−β)(�µ−λ) ·

�
(� − 1) +

�
�µ−λβ

�

(1−β)(�µ−λ)

�

=⇒ ρ�+� π0�0�µ⇠⇠⇠(λ+α)
(�+1)!� !⇠⇠⇠(λ+α)(1−β)2(�µ−λ)2 ·

�
(� − 1)(1 − β)(�µ − λ) + �µ − λβ

�

=⇒ ρ�+� π0�0�µ
(�+1)!� !(1−β)2(�µ−λ)2 ·

�
(� − 1)(1 − β)(�µ − λ) + �µ − λβ

�
(��)’

For (�) from Mathematica where Γ(�� �) is the upper incomplete gamma function
��

�=0

ρ�

� ! = exp(ρ) · Γ(� + 1� ρ)
�!

So

(�) =⇒ π0�0ρ
��

�=0

ρ�−1

(� − 1)! + ρ�+1

(� + 1)! · π0�0

(1 − β)

��

�=1

ρ�−1

(� − 1)! + ρ�

(� + 1)! · π0�0

(1 − β)2
��

�=0

ρ�−1

(�)!

(�) =⇒ π0�0ρ exp(ρ)·Γ(��ρ)
(�−1)! + ρ�+1

(�+1)! · π0�0
(1−β)

exp(ρ)·Γ(��ρ)
(�−1)! + ρ�

(�+1)! · π0�0
(1−β)2

exp(ρ)·Γ(�+1�ρ)
� ! (�)’

From (�)’ and (��)’

E[N ] = π0�0ρ
�

exp(ρ)·Γ(��ρ)
(�−1)! + ρ�

(�+1)!·(1−β)
exp(ρ)·Γ(��ρ)

(�−1)! + ρ�

(�+1)!·(1−β)2
exp(ρ)·Γ(�+1�ρ)

(� )! + ρ�+�−1�µ
(�+1)!� ! · (�−1)(1−β)(�µ−λ)+�µ−λβ

(1−β)2(�µ−λ)2

�

E[N ] = π0�0ρ




�−1�

�=0

ρ�

� ! + ρ�

(� + 1)! · (1 − β)

�−1�

�=0

ρ�

� ! + ρ�

(� + 1)! · (1 − β)2
��

�=0

ρ�

� ! + ρ�+�−1�µ
(� + 1)!� ! · (� − 1)(1 − β)(�µ − λ) + �µ − λβ

(1 − β)2(�µ − λ)2





(4.25)
⌅
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Corollary 4.1. The Mean response time E[T ]

E[T ] = π0�0
µ




�−1�

�=0

ρ�

� ! + ρ�

(� + 1)! · (1 − β)

�−1�

�=0

ρ�

� ! + ρ�

(� + 1)! · (1 − β)2
��

�=0

ρ�

� ! + ρ�+�−1�µ
(� + 1)!� ! · (� − 1)(1 − β)(�µ − λ) + �µ − λβ

(1 − β)2(�µ − λ)2





(4.26)

Proof. We invoke Little’s law to obtain the mean response time

E
�
T M/M/� /setup� =

E
�
NM/M/� / setup�

λ

⌅

4.5.1 The expected number of servers either ON or in setup

We know that a server can be in any of the following three state : i/ OFF, ii/ ON and iii/
Setup, We are interested in the expected number of servers not in the OFF state. Let B����
value to each of the states in the M/M/� Markov chain shown in the figure .
For example , in the state (0� 0)� B����(0� 0) = 0, in the state (0� 1)� B����(0� 1) = 1, for
state (0� � )� where 1 < � ≤ �� B����(0� � ) = � , since we only allow one server to be in the
setup mode at any time. In general, for state (�� � ), we have :

B����(�� � ) =






� �� � = 0� 0 ≤ � ≤ �
� �� � = 0� � ≥ �
� + � �� � > 0� � ≥ � + 1
� �� � = �� � ≥ � + �

(4.27)

Thus, the expected number of servers either ON or in Setup, is given by :

E[B����] =
�

���
π���B����(�� � ) (4.28)

Using Eqs 4.2, 4.3, 4.13 and 4.21 in the above equation, we get :
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E[B����] =
�

���
π���B����(�� � )

=
�−1�

�=0

+∞�

�=0

π���B����(�� � ) +
+∞�

�=�+�
�=�

π���B����(�� � )

=
��

�=0

π0�� · � +
+∞�

�=�+1

π0�� · � +
�−1�

�=1

+∞�

�=�+1

π��� (� + �) +
+∞�

�=�+�

π��� �

=
��

�=0

π0�0
ρ�

� ! · � +
+∞�

�=�+1

π0�0
ρ�

�! β� · � +
�−1�

�=1

+∞�

�=�+1

π0�0
γ�

�!
ρ�

(� + 1)!β
� (� + �) + �

+∞�

�=�+�

π���

= π0�0ρ
��

�=1

ρ�−1

(� − 1)! + π0�0
ρ�

(� − 1)!

+∞�

�=�+1

β� + π0�0
ρ�

(� + 1)!

�−1�

�=1

γ�

�! (� + �)
+∞�

�=�+1

β�

+ ρ�

(� + 1)!�
+∞�

�=�+�

�
π0�0γ��µ

� !(�µ − (λ + α)) · β� − π0�0�� (λ + α)
� !(�µ − (λ + α)) ·

�
ρ
�

��
�

= π0�0ρ
��

�=0

ρ�

� ! + π0�0
ρ�

(� − 1)!
β�+1

1 − β + π0�0
ρ�

(� + 1)!

�−1�

�=1

γ�

�! (� + �) β�+1

1 − β

+ ρ�

(� + 1)!�
�

π0�0γ��µ
� !(�µ − (λ + α)) ·

+∞�

�=�+�

β� − π0�0�� (λ + α)
� !(�µ − (λ + α)) ·

+∞�

�=�+�

�
ρ
�

��
�

= π0�0ρ
��

�=0

ρ�

� ! + π0�0
ρ�

(� − 1)!
β�+1

(1 − β) + π0�0
ρ�

(� + 1)! · β�+1

(1 − β)

�−1�

�=1

γ�

�! (� + �)

+ ρ�

(� + 1)!

�
π0�0γ��2µ

� !(�µ − (λ + α)) · β�+�

(1 − β) − � π0�0�� (λ + α)
� !(�µ − (λ + α)) ·

( ρ
� )�+�

(1 − ( ρ
� ))

�

= π0�0ρ
� �−1�

�=0

ρ�

� ! + ρ�−1

(� − 1)!
β�+1

(1 − β) + ρ�−1

(� + 1)! · β�+1

(1 − β)γ
�−1�

�=1

γ�−1

(� − 1)! + ρ�−1

(� + 1)! · β�+1

(1 − β)�
�−1�

�=1

γ�

�!

�

+ β�

(� + 1)!
π0�0ρ�+�

� !(�µ − (λ + α))

�
�µ

γ�(1 − β) − (λ + α)
(1 − ρ

� )��

�

E[B����] = π0�0ρ
� �−1�

�=0

ρ�

� ! + β�+1

(1 − β)

�
ρ�−1

(� − 1)! + ρ�−1

(� + 1)! · γ
�−1�

�=1

γ�−1

(� − 1)! + ρ�−1

(� + 1)! · �
�−1�

�=1

γ�

�!

��

+ ρ� · � · ρ�+�π0�0

(� + 1)! · � !(�µ − (λ + α))

�
���µ − µ��ρ − γ�λ − γ�α + γ�β(λ + α)

γ�(1 − β)(1 − ρ
� )��

�

= π0�0ρ
� �−1�

�=0

ρ�

� ! + β�+1

(1 − β)

�
ρ�−1

(� − 1)! + ρ�−1

(� + 1)! · γ
�−1�

�=1

γ�−1

(� − 1)! + ρ�−1

(� + 1)! · �
�−1�

�=1

γ�

�!

��

+ β� · � · ρ�+�π0�0

(� + 1)! · � !(�µ − (λ + α))

�
��(�µ − λ) − γ�α
(1 − β)(1 − ρ

� )��

�

Since(�)
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E[B����] = π0�0ρ
�

exp(ρ) · Γ(�� ρ)
(� − 1)! + β�+1

(1 − β)

�
ρ�−1

(� − 1)! + ρ�−1

(� + 1)! · γ exp(γ) · Γ(� − 1� γ)
(� − 2)! + ρ�−1

(� + 1)! · �exp(γ) · Γ(�� γ)
(� − 1)!

��

+ β� · � · ρ�+�π0�0

(� + 1)! · � !(�µ − (λ + α))

�
��(�µ − λ) − γ�α
(1 − β)(1 − ρ

� )��

�

4.5.2 The mean power consumption
As stated earlier, our M/M/k with setup costs model is motivated by the problem of power
management in server farms. Most server farm operators today are interested in minimizing
both power usage and mean response time. While minimizing mean response time points to
turning on many servers, minimizing power usage points to turning on few servers. To save
on power usage, it is customary to turn servers OFF when they are not in use. However, this
means that a setup cost is required every time a server needs to be turned on. This setup
cost is both wasteful with respect to mean response time and with respect to power usage,
since power is needed during the whole setup period. Since the setup cost can have a big
effect on both power and response time, it is important that we take it into account when
optimizing the configuration of our server farm. The performance metric we consider in this
section is a weighted sum of the mean response time, E[T ], and the mean power consumption,
E

�
PM/M/� /setup�, given by

P��� = E
�
PM/M/� /setup� + � · E

�
T M/M/� /setup�

The weight parameter � has units of Watts/sec, and can be thought of as the price required,
in Watts, to lower the mean response time of the server farm by 1 second. A similar weighted
linear combination has previously been used in literature [86], [87] and [88].

we know that a server can be in any of the following three states: (i) OFF, (ii) ON or
(iii) SETUP. While in the OFF state, we assume that the power consumption of a server is 0.
While in the ON or SETUP states, the power consumption of the server is assumed to be a
constant, P��� . Given this information,we see that

E
�
PM/M/� /setup� = P����E[B����]

4.6 Numerical results
In this section, we present some numerical results obtained from the proposed mechanism,
illustrating and quantifying the performance of the studied system under different loading
conditions and system parameters. Validation is performed based on numerical data presented.

We consider a M/M/K/Setup .where The maximum number of requests in the system is
18, the number of reserves is 8. To evaluate the power consumption, the power weight in the
principal server and the idle state are 100 watts and 10 watts, respectively.

Figure 4.2 and 4.3 show the energy consumption behaviour of the system when the proposed
mechanisms M/M/k/Setup is used and compares it to the M/M/k system.

For figure 4.2 shows that the M/M/K case is the worst case in terms of energy consumption.
In addition, energy consumption becomes lower when we use the reserves. An M/M/k/Setup
configuration is more efficient and saves power. Indeed, in this case the energy of the system
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Figure 4.2 – Mean power consumption curves as functions of requests arrival rate
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Figure 4.3 – Mean power consumption curves as functions of requests arrival rate without reserves
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is low and the maximum capacity in the system is not reached. As far as the figure 4.3 shows a
comparison of power consumption when we don’t use any reserve in our system M/M/k/Setup
and M/M/k, and that gives us a confirmation that our mechanism can reduce energy .
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4.7 Conclusion
In this chapter, we began by examining the M/M/k queuing system with setup times. We
provided the first analytical expressions of the closed forms for the average response time,
limiting the distribution of the number of tasks in the system M/M/k/Setups.

The proposed mechanism is analyzed using a mathematical analyses of the system’s parame-
ters are derived. In addition, the system’s energy consumption within the suggested mechanisms
is modeled and evaluated. As future work, we plan to determine the optimal number of servers
to use in a server farm with setup time, so as to reduce a weighted sum of the average power
and the average response time.
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In this chapter, we propose an optimal model for allocating computing resources to assess
the best management of system resources where a group of physical machines is defined as
"reserves", the controller activates them one by one when the system has a high number of
tasks. The objective is to maximize the reward of the cloud computing system, this reward is
calculated based on the energy and execution time of each customer and the characteristics of
the system. Finding the best allocation for such a complex system is a challenge. For this,
we used a heuristic algorithm and dynamic programming. The results analysis showed the
advantage of using our model to control the use of reserve machines to get a high quality of
service and low energy consumption.
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5.1 Introduction

Due to the complex and dynamic nature of virtual machine allocation in the cloud, it is difficult
to manage and control the resources or to choose the best allocation of these resources[89].
Managing resources in such an environment is a difficult task, but it is an essential function of
any dynamic system[90]. It demands sophisticated policies and decisions to manage complex
multi-dimensional objectives such as CPU, memory and network bandwidth. Therefore, for
the correct use of resources, efficient resource management can control the system resources
and try to find an optimal balance between the QoS requirement and the quantity of energy
consumption [91].

The energy consumption in the cloud data centers has grown exponentially in the IT sector in
recent years. Data centres, as a principal component of current information and communication
technology, have grown at an unprecedented rate as IT developers[92]. These data centers are
loaded with thousands of servers and switches that consume huge amounts of energy, increasing
operating costs and increasing carbon dioxide emissions into the environment[93]. On the other
hand, cooling equipment must be used to manage the heat released by these data centres,
which also consume energy [94, 95].

The idea in this work is to consider a group of physical machines (PM) as "reserve". The
reserve status is controlled by the number of clients in the system on which they are turned
on when the number of tasks in the system becomes large enough. The question, of course, is
how many reserves we have to use and when we turn on a new PM. The answer depends on
the demand parameters and the cost function to minimize, and this function should include both
a performance cost (e.g. execution time) and the energy consumed by the physical machines
of the server. Obviously, there is a compromise between the two parameters, as performance
is improved by increasing the number of physical machines powered, while power consumption
is improved by increasing the number of physical machines powered off. That trade-off can be
evaluated by analyzing and solving a Semi Markov Decision Process (SMDP) model of the
system. The solution provides average performance and average consumption measurements
[96]. This makes it easy to calculate the cost function and minimize it by maximizing the
total expected reward of the cloud computing system. However, the resolution of the SMDP
problem on a large scale depends on the dimensionality constraint. Therefore, we make
better use of the problem’s characteristic and propose a dynamic resource management method.
Since the system model contains a controller for allocation demand, the optimal policy of the
requests is dynamically achieved by applying the value iteration algorithm (VI) [97]. As an
implementation of our algorithm, we studied the optimal choice of the controller in order to
control the performance of the system and to minimize energy consumed, and also to answer
the question when we turn on a new physical machine.

The content of this chapter is organized as follows. It begins with a literature review in
Section 5.2, followed by the development of the System Model in Section 5.3. Section 5.4 is
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reserved for the formulation of the system using the semi-Markov decision process, and the
reward of the system is calculated and solved in section 5.5, followed by a numerical analysis
of the performance in section 5.6. Finally, in section 5.7 a conclusion.

The results obtained in this chapter are presented in the research article [98] and [99].

5.2 General context and related work
In the literature, there are some recent efforts devoted to managing resources in a cloud
computing environment [100]. Gandhi et al. [33] analyse an ON-OFF policy in which a server
is switched on if there is a pending task and is switched off if there are no pending tasks.
The work in [60] Proposed a novel fitness function to maximize the energy efficiency (i.e.,
profit) of cloud data centers while minimizing the overall energy consumption with reserved
VM requests. Several studies combining the quality of service analysis and cloud energy
consumption were proposed recently. Ouammou et al [46] have suggested an energy-efficient
load balancing algorithm. They used a policy to determine the upper and lower thresholds for
each physical machine. This approach has managed the number of migrations. But the main
problem with this approach is that they used fixed values of the upper and lower thresholds.
In [34], the authors have presented a mathematical queuing model to study the performance of
multi-core virtual machines hosting SaaS cloud services. The authors in [26]Maximize the use
of resources by using two heuristics of consolidation noted energy-conscious taking into account
both active and inactive energy consumption; the suggested model can be used to estimate the
number of multi-core virtual machine instances needed to reach the QoS parameters under any
additional workload. Another recent work in the research area has addressed Markov chain
theory to estimate the efficiency of queues in the cloud servers. Hanini et al [36] introduced
a continuous Markov chain (CTMC) approach to managing the use of virtual machines in an
MP with a controlled system workload. They examined the proposed model on the base of
mathematical analysis of the QoS parameters of the system. Also, there is some published
work on the resources managements as [101], [102] and [103] they formulated their work using
the Semi Markov decision process to manage the optimal action that will be taken under some
conditions.The authors of [104] are interested in proposing an algorithm to schedule the client
tasks to the resources of a data center in cloud computing. Their proposed solution, called
OSACO algorithm, is concentrated on client QoS requirements and aimed to reduce the energy,
cost and time.

In general, the majority of dynamic approaches are focused on heuristics, and consequently
do not have sufficient theoretical guarantees of performance and, to our knowledge, a dynamic
policy of the type proposed here has not been studied before. and perhaps the model closest
to the one presented here is that examined by Isi mitarini [37] where the author studied the
problem of energy use when servers are powered up and down in a frame of the data centers,

101



Chapter 5. Modeling Decision Making to Control the Allocation of Virtual Machines ...

this means that after the setup time, all servers start running simultaneously even if the system
does not require all servers. This gives us reason to reconsider the case where the configuration
time of each server is considered different.

In this chapter, we consider resources management as a stochastic optimization problem.
Our purpose in this work can be summarized as follows:

• To propose a mechanism that helps to manage the resources by improving QoS and
minimizing energy consumption based on a "PM reserve" approach.

• To formulate the dynamic virtual machine management problem as a Markov decision
process problem, in order to maximize the reward of the cloud computing system.

Based on the advanced algorithm, we show that our approach can significantly reduce the
evaluation time of VM allocation solutions in each scalable iteration.

5.3 System model

5.3.1 Problem statement

The studied system is a server containing M physical machines, of which Q are designated
as Main Physical Machines (MPM) and (M − Q) considered as Reserves Physical Machines
(RPM) 0 ≤ Q ≤ M . Considering that each PM can host many Virtual machines (VM). In
order to minimize the energy consumption even when we serve many clients at the same time,
we optimally consolidate VMs in a minimum number of PMs. Clients arrive at the server in
a Poisson process λ� and find a controller in front of them that takes them through an MPM
until the system gets � clients (Jobs) (� is called a "controller number"). At that time, the
controller sends a feedback to the administrator to informe him to reduce the rate of clients
sent to the servers from λ� to λ�, and then the controller must decide whether to send it to
one of the MPMs that contain customers or to any of the RPM, based on system conditions.
The service times are independent and distributed exponentially with the following parameters
µ1� µ2� ���� µM � such that µ� = µ� with � = 1� ���� Q and µ� = µ� with � = Q + 1� ���� M with
Q < M .

We notice that when the client arrives, and at least one of the MPM is available to host
this client under some conditions related to the workload in these MPs, the controller send it
directly to one of the MPM, In the other case, when all MPM are noted empties, the controller
can either send the customer to any of the MPMs. In this scenario, the system controller
chooses to allocate multiple customers to a limited number of MPM in an attempt to reduce
the total energy consumed, alternatively, the controller can use a new physical machine from
the reserves, thus increasing the consumption of energy and in return improving the quality of
service. To help the controller to decide what decision should be made for the benefits of the
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Figure 5.1 – Illustration of the proposed model

system, a decision policy is proposed in this chapter. For this, two thresholds are considered
for each PM in order to maintain capacity below the upper threshold and above the lower, the
details of this idea have been described in [46]. So if a client comes into the system, a VM
describes the request of this client (job) and it has to be mapped to one of the available MPM
as long as the capacity of this PM after allocation will not exceed the Upper threshold, and if
this client has no place to mapped to any MPM, then the controller decides to turn on a new
physical machine among the reserves and so on.

For our analysis, we assumed that the arrival rate of the clients follows a Poisson arrival
and the service times are exponentially distributed. These assumptions has been usually used
in the literature and can provide adequate approximation of real systems such cloud computing
environment [105, 106, 107, 108].

The notations used in this document are listed in Table 5.1. and a graphical illustration
for the considered model is presented in the figure 5.1.

5.3.2 Mathematical formulation

In this sub-section, using integer mixed linear programming, we will mathematically formulate
the model that we have proposed. The objective is to reduce as much as possible the number
of machines used from reserves.

The objective function is expressed as follows:

min
��

M�

�=1

�� (5.1)
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Table 5.1 – List of important notations

.

Notation Meaning
M Number of all physical machines in the server
Q Number of the PMs designated as Main PM
K Maximal number of the VMs that the system can support
l Number of the VMs that each PM can support
n Number of clients used to decide when the system

can turn on a new PM
��

� Number of service requests that have been allocated in the
� PM among the MPM

��
� Number of service requests that have been allocated in the

� PM among the RPM
λ� Arrival rate of a VM in MPM
µ� Service rate of a VM in MPM
λ� Arrival rate of a VM in RPM
µ� Service rate of a VM in RPM
C�� Capacity of the VM � located in � �� PM

U����� Upper threshold for PM �
L����� Down threshold for PM �

where �� are integer variables defined by the following equation

∀� ∈ [1� M ] �� =
�

1� The � �� PM is used
0� Otherwise

(5.2)

This optimization is based on linear constrains; each VM can be hosted just on a PM, and
each PM is able to host VMs not only based on the amount of remaining capacity but also on
the impact of hosting them on the performance of the system [99].

• C� : The sum of the capacity in all VMs used in a PM� must be between its U����
and L���� thresholds.

L������� ≤ C� =
��

�=1

C��V�� ≤ U������� � ∀� ∈ [1� M ]� (5.3)

where V�� are decision variables defined by
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V�� =





1�

�
The VM � is mapped to � ��PM

∀� ∈ [1� M ]� ∀� ∈ [1� �]
0� Otherwise

(5.4)

Note that if for a given � and � V�� = 1 then �� = 1

• The number of VMs that exist in a physical machines j as long as the sum of their
capacities does not exceed the upper threshold is :

�� =
��

�=1

V�� ≤ �� ∀� ∈ [1� M ] (5.5)

• The number of VMs that exist in all MPM as long as the sum of their capacities does
not exceed the upper threshold of each PM is:

� =
Q�

�=1

�� ≤ � × Q (5.6)

• No virtual machine can exist in two physical machines.

M�

�=1

V�� ≤ 1� ∀� ∈ [1� �]� (5.7)

We can summarize these by adding the objective function to all the constraints in the follows
set of equations:

min
��

M�

�=1

�� subject to





L������� ≤
��

�=1

C��V�� ≤ U������� ∀� ∈ [1� M ]�

M�

�=1

V�� ≤ 1� ∀� ∈ [1� �]�

�� =
��

�=1

V�� ≤ �� ∀� ∈ [1� M ]�

� =
Q�

�=1

�� ≤ � × Q�

(5.8)

The system must always satisfy the constraints defined in the above equation. However,
taking into account the dynamic character of the studied environment, it is also necessary that
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the actions are chosen at any particular time be designed to minimise the cost caused by the
operation of the system. For this, we will consider an expected reward to be maximized in the
long run of the system. This maximization makes it possible to determine the optimal policy
for deciding what action to take, this can be done using a Markov Decision Process [109],
[110]. The resolution of such a problem will require an approach from the theory of dynamic
programming. This is the purpose of the following in this chapter.

5.4 System formulation using Semi Markov Decision process

5.4.1 System states
Let S be the set of states that present the current requests with a variable number of VMs
available in the system :

S = {�|� = (��� �� � Q� �) = (��
1 � ��

2 � �����
Q � ��

Q+1� ���� ��
M � Q� �)}

Both ��
� and ��

� are described in Table 1, and let Υ represents the set of events such as � ∈ Υ =
{A�� A� � D} Where A� is the arrival of the customer when at least one of the MPMs is available, A�

is the arrival of the customer when all the MPMs already have at least one customer, D denotes the
leaving of a request allocated to one of the MPMs or RPMs.

5.4.2 Set of actions
We note that in our analysis model, a number of actions are possible to be taken as part of the set of
actions A , i.e:

A = {−1� 0� R � P�}

At the occurrence of an event, the system controller takes an action �(�) from the set of actions A under
system conditions.

�(�) =






−1 � = D ∈ {D�� D�}
0 or R � = A�

P� � = A�

(5.9)

When the system receives a new client, the following actions are determined by the system.

- �(�) = P� : means that the request was accepted directly into an MPM before the system had
� clients.

- �(�) = R : when the request became after the Q MPM have already been used by at least one
client, and that client has been accepted.

- �(�) = −1 : represents the instances when the service request terminated and leaves the system,
and no service is requested, only that the information of the number of virtual machines available
in the system must be updated.
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- �(�) = 0 : when the request is rejected.

5.4.3 Decision time

When a state � and an action � are given, then the service time to get the next state is indicated by
τ(�� �). That determine by the average rate γ(�� �) of the events, which is the opposite of the time
interval between two decisions τ(�� �) = γ(�� �)−1.

So the average rate γ(�� �) of the events is the sum of the rate of all system that can be expressed
by:

γ(�� �) =





Qλ� + �λ� +
Q�

�=1
µ� +

M�

�=Q+1
µ� �(�) = 0� � = A�

Qλ� + �λ� +
Q�

�=1
��µ� +

M�

�=Q+1
��µ� �(�) = −1� � = D

Qλ� + �λ� +
Q�

�=1
��µ� +

M�

�=Q+1
��µ� + µ�






�(�) = R � � = A� �
Q�

�=1
V�� > �

Qλ� + �λ� +
Q�

�=1
��µ� + µ�






�(�) = P�� � = A�
Q�

�=1
V�� ≤ �

(5.10)

In Eq (5.10), If the system does not accept any requests, there is
Q�

�=1
�� services that exist in the

system, then the service rate of the global system is
Q�

�=1
��µ�. If a request is admitted, then there are

Q�

�=1
�� + 1 services in the system, if the number of clients does not reach � clients, so the leaving rate

is
Q�

�=1
��µ� + µ�. Similarly, when the system have already received � clients and start to use the RPM;

then the rate of leaving is
Q�

�=1
��µ� +

M�

�=Q+1
��µ� + µ�

5.4.4 Transition probability

Now that the average event rate is calculated, the transition probability �(�̄/�� �) can be calculated from
the state � to the next state �̄ when the action � is happens, in the following we will discuss possible
cases of �(�̄/�� �) according to the � statements as listed below.

When � = (��� �� � Q� A�) where �(�) = P� :
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P(�̄/�� �) = 




(��−I�)µ�
γ(���)

�
�̄ = (�� − I�� �� � Q� D�)
�(�) = −1� � = 1� 2� ���� Q�

λ�
γ(���)

�
�̄ = (��� �� + I� � Q� A� )
�(�) = R � � = 1� 2� ���� (M − Q)�

λ�
γ(���)

�
�̄ = (�� + I�� �� � Q� A�)
�(�) = P� � � = 1� 2� ���� Q�

(5.11)

We note that the vector I� is a null vector with Q elements, except the ��� element which is 1, and
the vector I� is also a null vector of M − Q elements, except the � �� element which is 1.

When � = (��� �� � Q� A� ) where �(�) = 0 :
P(�̄/�� �) = 





(��−I�)µ�
γ(���)

�
�̄ = (�� − I�� �� � Q� D�)
�(�) = −1� � = 1� 2� ���� Q�

(��−I� )µ�
γ(���)

�
�̄ = (��� �� − I� � Q� D� )
�(�) = −1� � = 1� 2� ���� (M − Q)�

λ�
γ(���)

�
�̄ = (��� �� � Q� A� )
�(�) = 0�

(5.12)

When � = (��� �� � Q� A� ) where �(�) = R :
P(�̄/�� �) = 





(��−I�)µ�
γ(���)

�
�̄ = (�� − I�� �� � Q� D�)
�(�) = −1� � = 1� 2� ���� Q�

(��−I� )µ�
γ(���)

�
�̄ = (��� �� − I� � Q� D� )
�(�) = −1� � = 1� 2� ���� (M − Q)�

λ�
γ(���)

�
�̄ = (��� �� � Q� A� )
�(�) = 0�

λ�
γ(���)

�
�̄ = (��� �� + I� � Q� A� )
�(�) = R � � = 1� 2� ���� (M − Q)�

(5.13)

When the state � = (��� �� � A�), where � = D, no specific action is required except an update of
active VMs, where �(�) = −1,The associated transition probabilities are given as follows
P(�̄/�� �) = 





(��−I�)µ�
γ(���)

�
�̄ = (�� − I�� �� � Q� D�)
�(�) = −1� � = 1� 2� ���� Q�

(��−I� )µ�
γ(���)

�
�̄ = (��� �� − I� � Q� D� )
�(�) = −1� � = 1� 2� ���� (M − Q)�

λ�
γ(���)

�
�̄ = (��� �� + I� � Q� A� )
�(�) = R � � = 1� 2� ���� (M − Q)�

λ�
γ(���)

�
�̄ = (�� + I�� �� � Q� A�)
�(�) = P� � � = 1� 2� ���� Q�

(5.14)

5.5 Cost and optimal solution
The system cost under the state � and the taken action � is noted by :

�(�� �) = �(�� �)τ(�� �) (5.15)
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The �(�� �) is the system cost estimated by taking the � action under the state � in the event � happens.
This combines both the revenue and the cost of the system. The main benefit of the system is to conserve
energy consumption and ensure the quality of service. The function must reflect the impact of both [111].
To calculate the energy consumed in the system, the following equation is used :

E���� = EQ +
M�

�=1

��

�=1
δ × C�� +

M�

�=Q+1
P� �� (5.16)

where EQ is the power needed for monitoring the system when just the MPM is running, P� is the
power consumption to start a new PM from RPM, and δ is a powerful weight coefficient.
Besides, �(�� �) is defined by the number of occupied VMs in the PMs taking into account the total
capacity of the system i.e.

�(�� �) =






EQ +
M�

�=1
C�δ +

M�

�=Q+1
P� �(�) = 0� � = A�

EQ +
M�

�=1
C���δ +

M�

�=Q+1
P��� �(�) = −1� � = D

EQ +
M�

�=1
C���δ +

M�

�=Q+1
P��� + C�� δ






�(�) = R � � = A� �

� = 1� ���� Q�
Q�

�=1
V�� ≤ ��

EQ +
Q�

�=1
C�δ + C�� δ






�(�) = P� � = A��

� � = 1� ���� Q�
Q�

�=1
V�� > ��

(5.17)

5.5.1 Discounted cost model

Let us consider τ� = �� − ��−1 the ��� time of stay, between two successive instants of transition, and
�� is the decision taken at the moment �� to get the moment ��+1.
For a given policy π , each instant � , a cost �(�� � �� ) is assumed and is defined by :

�(�� � �� ) = �(�� � �� )τ(�� � �� ) (5.18)

(�� )�∈R+ is a Markov process of decision making for state spaces. F = NM and actions A =
{−1� 0� P� R}.

V δ (�� π) = Eπ

�� ∞

0
�−δ�� (�� � �� ) ��/�0 = �

�
(5.19)

where Eπ is the Mean under the policy π , δ > 0 and � is an initial state of the system. the optimal
policy exists because the cost function is positive so the set of actions is finite; according to assumption
2 of the following proposition (Existence of the optimal policy) [112].
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5.5.2 Discretization of the problem
In this section, we’re going to look for a transformation of the problem into an equivalent dynamic
programming problem in discrete-time as the normalization procedure[113].
let ν = λ� + λ� + Qµ� + (M − Q)µ��
We define 0 < �0 < �1 < ��� < �� < ��� as the moments of transition in the state of the system. The
time intervals are independents and exponentially distributed:

P (��+1 − �� > �) = �−�ν � = 0� 1� 2� � � � (5.20)

Proposition 5.1. The cost V δ (�� π) for any policy π and any initial condition s is :

Eπ

�� +∞

0
�−δ�� (�� � �� ) ��

�
= 1

δ + ν

+∞�

�=0

� ν
δ + ν

��
Eπ (�) (��� ��)) (5.21)

where �� = ��� et �� = ��� .

Proof. For any couple (�� �), and any policy π and any initial condition s, the cost V δ (�� π) is :

Eπ
�� +∞

0 �−δ�� (�� � �� ) ��
�

= Eπ
��+∞

�=0
� ��+1

�� �−δ�� (�� � �� ) ��
�

=
�+∞

�=0 Eπ
�� ��+1

�� �−δ�� (��� ��) ��
�

=
�+∞

�=0 Eπ
�� ��+1

�� �−δ���
�

Eπ (� (��� ��))

(5.22)

The equality (5.22) results from the fact that the sequence of states are independents of the stay
times because the policy π is deterministic: it does not depend on τ�.
So, we have got

Eπ
�� +∞

0 �−δ�� (�� � �� ) ��
�

=
�+∞

�=0 Eπ
�� ��+1

�� �−δ���
�

Eπ (� (��� ��))
(5.23)

Since the variables τ� are independents, so:

Eπ
�� ��+1

�� �−δ�
�

= Eπ
�
�−δ��

� τ�+1
0 �−δ���

�

= 1
δ Eπ

�
�−δ��

� �
1 − Eπ

�
�−δτ�+1

��

= 1
δ

� ν
δ+ν

�� �
1 − ν

δ+ν
�

(5.24)

Indeed, for all

� ≥ 0� τ�+1 ∼ exp(ν) =⇒ Eπ
�

�−δτ�+1
�

= ν
δ + ν

and
Eπ

�
�−δ��

�
= Eπ

�
�−δ(��

�=1 �� −��−1)
�

=
��

�=1 Eπ
�
�−δτ�

�
=

� ν
δ+ν

�� (5.25)

hence

110



Chapter 5. Modeling Decision Making to Control the Allocation of Virtual Machines ...

Eπ
�� +∞

0 �−δ�� (�� � �� ) ��
�

= 1
δ+ν

�+∞
�=0

� ν
δ+ν

�� Eπ (� (��� ��))
(5.26)

⌅

Based on this proposal, we write:

V δ (�� π) = 1
δ + ν Eπ

�+∞�

�=0

� ν
δ + ν

��
� (��� ��) /�0 = �

�
(5.27)

which is an expression of the discrete-time discounted cost under the policy π , with the discount
rate β = �

δ+ν � (0 < β < 1) and the cost function �(��;��)
δ+ν . Then the cost is defined by:

V β
N (�� π) = Eπ

�N−1�

�=0
β�� (��� ��) /�0 = �

�
(5.28)

and the cost β-discounted for infinite horizon is defined by :

V β (�� π) = Eπ

�+∞�

�=0
β�� (��� ��) /�0 = �

�
(5.29)

5.5.3 Existence of the optimal policy

Proposition 5.2.

i.) For all � ∈ F � we have:




V β

N (�) = min
�∈A(�)

�
�(�� �) + β

�

�̄∈F
�(�̄/�� �)V β

N−1(�̄)
�

� ∀N ≥ 1�

V0(·) = 0

ii.) If the cost is positive and the set of actions is finite, then:

lim
N→+∞

V β
N (�) = V β

∞(�) = V β (�)

and V β so the only solution is given by the following equation:

V β (�) = min
�∈A(�)

�
�(�� �) + β

�

�̄∈F
P (�̄/�� �) V β (�̄)

�

For the demonstration of this proposition, see [112, 113].
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5.6 Numerical results and analysis
In this section, the suggested scheme (SMDP) is compared with other schemes and the numerical results
are obtained and then discussed to support our performance analysis. In the meantime, the principal
parameters of our analysis are given in Table 5.2.

Parameter K M n λ� λ� µ� µ� P� ��

Value 64 16 8-32 1-9 7 8 6 40W 15W

Table 5.2 – System parameters

In order to compare, we evaluate the performance of the following two reference schemes.
Greedy Algorithm (GA) scheme: This algorithm is designed to maximize the reward of the system at
each moment in any decision [114].
Location Precedence (LP) scheme:which is a heuristic algorithm that applies a priority policy to send
requests to the MPM or RPM. The LP scheme always assigned the more virtual machines in a physical
machine that can support [112].
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Figure 5.2 – System reward under different arrival rates for studied schemes.

The system reward under several schemes is illustrated in figure 5.2. When λ� is low, the differences
between the schemes are slight, because the virtual machines in the MPM and RPM are sufficient.
However, with the increase of λ�, the reward of all schemes increases gradually and the benefit of the
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SMDP scheme becomes more evident. Besides, the LP scheme is less efficient, while the SMDP scheme
is more efficient than the GA scheme. This is because the LP scheme does not consider the state of the
reserves at all. However, the SMDP scheme sends the request to the RPM, which reduces the workload
of the MPM in order to improve the quality of service expected from the system.
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Figure 5.3 – System energy consumption of each scheme under different number of active machines .

In figure 5.3, we present the mean energy consumption in the system in relation to the number
of activated machines. For all the three schemes, the system starts with a minimum consumption EQ

equal to 800 W. According to the decisions made by the algorithms GA and LP to use a new machine
among the reserves, their energy consumption increases rapidly, because even if a machine is not fully
loaded, the algorithm prefers to use a new machine for new customers until all machines are activated
and then it recycles the possibility to send the incoming customers to the machines that still have the
capacity. For our SMDP approach we observe that the energy consumption remains minimal by using
an optimal number of MPMs, after that the controller decides to use the RPMs one by one until all
machines are activated. The fourth graph shows the energy consumption without using the concept of
reserve machines and it is clear that the consumption is high from the start. From this, we can say that
our algorithm can conserve more energy consumption over time compared to other approaches.

Figure 5.4 presents the probability to send new clients to MPM for the three schemes. For our
SMDP scheme we notice that the probability that the controller uses the main machines until the system
has � clients is equal to 1. That means that the only decision possible for the controller is to use the
MPM until he gets � clients. After that, the possibility to send the customers to any MPM is decreased
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Figure 5.5 – The optimal policy for controlling the arrivals of customers with LP Scheme.

nearly to 0�3, which means that the probability to use a machine among the reserves is increased to
0�6. This means that the controller prefer to use new machine from RPM to ensure the QoS rather
than use only the MPM to save energy. When all the RPM are busy and the customers still arrive, the
probability to send uniformly to one of the PM is increased until all the MPM are full and then the
probability to send to any MPM is equal to 0. For the other two algorithms their probabilities decision
results are presented in the same figure (orange color and red color). It is clear that the GA algorithm
is not stable; it means that it is zigzag between the choices of decision to maximize the instantaneous
cost of the system until all the MPM are full. For the LP scheme, it is noted that it has no interest to
use new machines reserved, except the already used, until all MPM are filled and that is obvious in the
figure as the probability to send to MPM equal 1 when there is all MPM are full and then equal to 0.

For the probability to send to RPM for the three schemes, it is the compliment of the probabilities
to send to PMP (1 − �) for each scheme presented in figure 5.4.

The probabilities of decision to make each one from the two possible actions for our proposed
scheme are presented in figure 5.5. This latter shows that before having � Customers, the obvious
decision is to choose the main MPM machines with a probability equal to 1 and to use an RPM with a
probability equal to 0. After, when the system has � clients the controller allows the possibility to turn
on the reserve machines, in this case we notice that the probability of sending a new client to RPM
is increasing. On the contrary the probability of sending clients to MPM is decreasing until a certain
number of clients (when all MPM and RPM machines have at least � ∗ Q clients) where the controller
chooses one more time to use the MPMs depending on the state of the system and taking into account
the QoS. Towards the end, the probability to send to RPM is 1 and to send to MPM is 0, and this is
normal because all the MPMs are busy and it only remains the possibility to install the VMs in RPM.
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Figure 5.6 – Means power consumption curves as function of number of reserves .
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Figure 5.7 – Means power consumption curves as function of set of active machines .

Figure 5.6 shows the variation in the system’s power consumption when the number of reserves
� = M − Q is changed and compares it to the static mode when all MPs are executed for the
first time (there are no reservations). This figure shows that the last case is the worst in terms of
energy consumption when all particles are running, even if they are not necessary. In addition, energy
consumption becomes lower when a few PM are left in reserve. As shown in the figure, we notice that
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when the number of reserves increases, the energy use is saved, and for example, when we use 8 PMs
as reserves, we can save up to 50% of energy (with 32 customers) and 37.5% when we reserve 6 PMs
and 12.5% when we reserve 2PMs. This reservation of PM leads to a reduction in energy consumption
and optimal use of resources.

The variation in energy consumption as a function of the set of active VMs is illustrated in figure 5.7,
this variation is presented in the form of intervals which present the role numbers of machines reserved
in the system.

This figure confirms the effect of the number of active machines on system performance as well as
the effect of the reservation of physical machines on energy consumption. But the most important fact
deduced from this figure is that the number of RPMs has a good effect on the performance when the
system load is not very large. However, the more the number of active machines increases the more the
energy consumption tends to become independent of the number of reserved physical machines. This
can be explained by the fact that, in order to ensure good performance, and when the number of requests
increases, the system is forced to put RPMs in on mode, and these RPMs consume energy in the same
way as the MPMs, which increases the energy consumption. In the case, without reserves (the green
bar) the consumption remains high even if we have only one customer.

5.7 Conclusion
The mapping of virtual machines to physical machines in a cloud computing system poses several
challenges due to the dynamic nature of such an environment and to energy and performance constraints
in the system. In this chapter, we have been interested in modeling and evaluating the performance of a
cloud computing system where some physical machines were considered as reserves and a controller turn
them on one by one under some conditions. The optimal resource allocation problem with the objective
of maximizing the expected reward is formulated as a Markov Decision Process problem. The optimal
policy for controlling customer arrivals has been proven by the theory of dynamic programming. The
numerical results show that the proposed scheme significantly outperforms all the considered schemes
and improves the expected reward. Moreover, the proposed approach can significantly reduce the energy
consumption of the system. These results are demonstrated in various scenarios. In perspective, it will
be more interesting to be able to determine the optimal number of physical machines that should be
reserved for a given system workload.
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6.1 Summary of research contributions
Cloud computing is growing rapidly and is becoming one of the most important paradigms

in the world dominant in the IT environment. The Infrastructures offering the services and
the number and size of computing systems are becoming more and more bigger and larger to
respond to the needs of the consumer and the business world. This increase leads to a growing
demand for decentralized services. Obviously, that leads issues such as energy consumption,
or the efficient use of energy and other resources. Consequently, techniques and tools must be
developed to respond to these new needs.

In this thesis, several mathematical models based stochastic decision and Queuing theory
were proposed. The idea is to help the provider of cloud computing to manage their resources.
For this purpose we have attempted to solve some aspects of the problem by focusing on the
management of virtual machines, more specifically on the allocation and reallocation of virtual
machines.
In Chapter 3 we introduced a model of VM reallocation based on a combination of linear
constraints. This model is based on double thresholds that manage the selection and placement
of VMs in physical machines using both CM and HP policies related to resource usage
thresholds. The proposed approaches are divided into two phases. The first phase called
"selection phase", it allows to select a set of VMs to migrate them. The second phase is called
"allocation phase", in this phase an allocation of the list of VMs is applied. The CM and HP
algorithms are based on the upper and lower thresholds of CPU usage. The choice of the
different CPU usage thresholds is fixed in the CM and HP approach. Our energy minimization
policies solve the problem of Upper and Lower utilization of server resources. This reduces
power consumption and also ensures a good quality of service described as execution time.

In chapter 4 we are focused on an M/M/k queue system with setup costs M/M/k/Setup. The
servers are divided in two types: in run mode and in sleep mode as a reserve when there is
no work to be done. The setup cost is in the form of a delay. Since a reserve server consume
a lot of energy, the number of servers that can be as a reserve at any time is often limited. In
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the configuration model, a maximum of one server can be configured at any time. We provided
the first analytical expressions of the closed forms for the average response time, limiting
distribution of the number of tasks in the system M/M/k/Setups. The proposed mechanism is
studied using a mathematical analysis and the system’s parameters are derived. In addition,
the system’s energy consumption within the suggested mechanisms is evaluated.

The mapping of virtual machines to physical machines in a cloud computing system poses
several challenges due to the dynamic nature of such an environment and to energy and
performance constraints in the system. In chapter 5, we have been interested in modeling and
evaluating the performance of a cloud computing system where some physical machines were
considered as reserves and a controller turn them on one by one under some conditions. The
optimal resource allocation problem with the objective of maximizing the expected reward is
formulated as a Markov Decision Process problem. The optimal policy for controlling customer
arrivals has been proven by the theory of dynamic programming.

6.2 Further work
The works in this thesis had taken a small step towards modeling dynamic management

resources in Cloud computing environments. However, during the preparation and writing of
this thesis, we realized that many of the presented works open up new research questions and
perspectives that require more attention. Some of these research tracks are:

• Add the dynamism of threshold to control the release of heat by physical machines in
order to minimize the energy consumption of servers and cooling systems.

• Consider other types of resources in the two phases of selection and allocation, such as
storage capacity and bandwidth.

• Study of the migration time will be interesting. The migration time plays a crucial role
problems related to the reallocation of virtual machines. Test the impact of the migration
time, with the impact of the virtual machine behavior and how implement during the
migration, is necessary to adapt the algorithms, to be able to take some decision in an
appropriate manner.

• Implement the two proposed approaches developed in chapter 3, in a real Cloud envi-
ronment.

• One could think of extending the present model by introducing K blocks of reserves,
of sizes �1� �2� ���� �K , with associated upper and lower thresholds. Reserves 1 are
powered ON when the queue passes level U1, reserves 2 are powered ON when the
queue passes level U2 > U1, etc. That would be an interesting topic for future work.

• Determine the optimal number of physical machines that should be reserved for a given
system workload.
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