
 

  N° d’ordre 

Z
ah

ra E
l M

ajo
u
ti 

A
d
a
p

tiv
e 

m
o
v
in

g
 le

a
s
t 

s
q
u
a
re

s 
m

e
s
h
le

s
s
 m

e
th

o
d
s
 a

n
d
 its

 
a
p
p
lic

a
tio

n
s
 fo

r 
s
o
lv

in
g
 a 

c
la

s
s
 o

f m
ix

e
d
 in

te
g
ra

l e
q
u
a
tio

n
s
 

a
n
d 

in
te

g
ro

-
d
iffe

re
n
tia

l 
e
q
u
a
tio

n
s 

 

A
n

n
ée, 2

0
2
1
/2

0
2

2
 

Fo
rm

atio
n

 D
o

cto
rale

: M
ath

ém
atiq

u
es, 

In
fo

rm
atiq

u
e et A

p
p

licatio
n
s 

 

Université Hassan 1er 

Centre d’Études Doctorales en Sciences  
et Techniques & Sciences Médicales  

 
 

Faculté des Sciences et Techniques 
Settat 

 

THÈSE DE DOCTORAT 
 

Pour l’obtention de grade de Docteur en Sciences et Techniques   

Formation Doctorale: Mathématiques, Informatique et Applications 

Spécialité: Mathématiques Appliquées 

 

Sous le thème 

Adaptive moving least squares meshless 
methods and its applications for solving a 

class of mixed integral equations and 
integro-differential equations 

 

Présentée par : 
Zahra El Majouti 

 

Soutenue le: ............................27\06\2022……….. 
 

A la Faculté des Sciences et Techniques de Settat devant le jury composé de : 
 
Mr. ZAKKARI Mohammed        Professeur de l’Enseignement Supérieur                          Président 
 

                                                       Université Hassan 1er , FST Settat 
 

Mr. MANIAR Lahcen          Professeur de l’Enseignement Supérieur                 Rapporteur 
 

                                                       Université Cadi Ayyad, FS semlalia Marrakech 
 

Mr. ALAOUI Mohammed         Professeur de l’Enseignement Supérieur                     Rapporteur 
                                                       Université Hassan 1er , FST Settat 
 

Mr.  HANINI Mohamed          Professeur Habilité                                 Rapporteur 
                                                       Université Hassan 1er , FST Settat 
 

Mr. FAKHAR Rachid           Professeur Habilité                                 Examinateur 
                                                        Université Sultan Moulay Slimane, FP Khouribga 
 

Mr. HAJJAJ Abdelkarim           Professeur de l’Enseignement Supérieur                          Co-Encadrant 
                                                        Université Hassan 1er , FST Settat 
 

Mr. El JID Rachid           Professeur Habilité                                                              Directeur de thèse          
                           Université Hassan 1er , FST Settat 

 

Année Universitaire: 2021/2022 
 

      L'objectif principal de cette thèse est de contribuer au développement et applications 

d'une méthode sans maillage qui se base sur le principe des moindres carrés mobiles (MLS). 

Dans le but de se libérer des problèmes dus à la singularité de la matrice moment dans 

l'approximation MLS, nous construisons une approximation des moindres carrés mobiles 

modifiée (MMLS) et une approximation des moindres carrés mobiles régularisée (RMLS) et 

nous appliquons ces méthodes pour résoudre différentes classes des équations intégrales et 

intégro-différentielles dans des domaines rectangulaires et non rectangulaires et en 

dimension deux et trois. 

 

      Dans la première partie de cette thèse, nous avons développé une méthode sans maillage 

qui se base sur le principe des moindres carrés mobiles modifié et nous l’avons appliqué 

pour résoudre les équations intégrales mixtes du second type en dimension deux et trois.  

Dans le Chapitre 2, nous appliquons cette nouvelle approche pour la résolution des 

équations intégrales mixtes linéaires et non linéaires de Fredholm-Volterra, et aussi pour la 

résolution des équations intégrales de Fredholm-Hammerstein dans des domaines non 

rectangulaires. Étant donné que les méthodes sans maillage sont très efficaces en raison de 

leur indépendance de dimension, dans le Chapitre 3, nous étendons  cette méthode à la 

dimension trois pour la résolution numérique des équations intégrales linéaires  et non 

linéaires  de Volterra-Fredholm de deuxième type. Une étude d’erreur a été faite et des tests 

numériques sont présentés pour  mettre en évidence le gain en précision des résultats en 

comparaison avec l’approche MLS classique et pour montrer la fiabilité  de notre approche. 

 

        La deuxième partie concerne l'étude numérique des équations intégrales stochastiques 

et des équations intégro-différentielles fractionnaires. Des phénomènes non déterministes 

apparaissent de plus en plus dans de nombreux domaines et cela peut être naturellement 

modélisé par des équations intégrales stochastiques qui dépendent généralement du temps 

et des termes aléatoires. Étant donné que la résolution analytique des équations intégrales 

stochastiques est très difficile et n'est pas disponible dans la plupart des cas, il est donc 

indispensable de donner des approximations  numériques. Dans le Chapitre 4, une nouvelle 

adaptation du schéma basé sur l'approximation des moindres carrés mobiles régularisée 

(RMLS) est utilisée pour résoudre des équations intégrales stochastiques en dimension 

deux. Cette approche est proposée pour éviter la singularité de la matrice moment qui 

apparaît dans   la méthode MLS classique. Le but du calcul fractionnaire est de généraliser 

les dérivées d’ordre entier à d’ordre non-entier. L’étude des problèmes fractionnaires est 

d’actualité, et de plus en plus les recherches se concentrent sur l'étude des équations 

fractionnaires stochastiques en raison de leur applicabilité pour modéliser des trajectoires 

aléatoires. Dans le Chapitre 5, nous utilisons l'approximation des moindres carrés mobiles 

(MLS) pour résoudre certaines classes des équations différentielles fractionnaires 

stochastiques et pour estimer l'intégrale singulière et stochastique obtenue dans le schéma, 

nous avons utilisé la formule composite de Gauss Legendre et la somme de Riemann. Des 

exemples numériques sont traités pour valider notre approche. 

 

Mots clés: Approximation des moindres carrés mobiles modifiée (MMLS), approximation 

des moindres carrés mobiles régularisée (RMLS), équation intégrale, équation intégro-

différentielle, équation intégrale stochastique, équation intégro-différentielle stochastique 

fractionnaire, estimation d’erreur. 



FICHE PRÉSENTATIVE DE LA THÈSE
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Je tiens tout d’abord à remercier ALLAH le tout puissant de m’avoir donné la santé et la
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Abstract

Based on the meshless method, this thesis aims to ameliorate the concept of moving least square
(MLS) method and develop the approximations for cases when the MLS quadratic base func-
tions fail because of a non invertible moment matrix. These schemes are applied for solving a
class of integral equations and integro-differential equations to prove the theoretical findings.

The first part consists of implementing the modified moving least square method (MMLS) on
two- and three-dimensional mixed integral equations. In Chapter 2, the modified MLS method is
proposed to approximate the solution of two-dimensional linear and nonlinear Fredholm-Volterra
integral equations. Since the MMLS method does not depend on the geometry of the domain,
we employed some irregular domains and we solve two-dimensional Fredholm-Hammerstein inte-
gral equations of the second kind. Since the meshless methods perform very efficiently because
of their independence of dimension, in Chapter 3, we expand the three-dimensional modified
moving least square method for the numerical solution of three-dimensional linear and nonlin-
ear Volterra-Fredholm integral equations of the second kind. The numerical experiments of the
MMLS and classical MLS techniques are presented to show the difference between both methods.

The second part concerns the numerical study of stochastic integral equations and fractional
integro-differential equations. Non deterministic phenomena appear increasingly in many fields
and they can be naturally modeled by stochastic integral equations which are usually dependent
on time and a random factor. Since solving analytically stochastic integral equations is very
difficult and not available in some cases, it is essential to give their numerical solutions. In
Chapter 4, a new adaptive scheme based on the regularized MLS approximation is employed to
solve stochastic integral equations. This approach is proposed for handling a singular moment
matrix in the context of MLS method. Recently, more and more researchers focus on stochastic
fractional equations due to their applicability to model the memory and randomness of many
noise systems problems. In Chapter 5, we develop moving least square approximation to solve
stochastic fractional integro-differential equations. To establish the scheme; we apply the com-
posite Gauss-Legendre integration rule to compute the singular-fractional integral giving in the
scheme and the Riemann sum for estimating Itô integral.

Keywords: Regularized moving least squares approximation, modified moving least squares ap-

proximation, integral equations, integro-differential equations, stochastic integral equations, fractional

stochastic integro-differential equations, error estimates.
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Résumé

L’objectif principal de cette thèse est de contribuer au développement et applications d’une
méthode sans maillage qui se base sur le principe des moindres carrés mobiles (MLS). Dans le
but de se libérer des problèmes dus à la singularité de la matrice moment dans l’approximation
MLS, nous construisons une approximation des moindres carrés mobiles modifiée (MMLS) et une
approximation des moindres carrés mobiles régularisée (RMLS) et nous appliquons ces méthodes
pour résoudre différentes classes des équations intégrales et intégro-différentielles dans des do-
maines rectangulaires et non rectangulaires et en dimension deux et trois.

Dans la première partie de cette thèse, nous avons développé une méthode sans maillage
qui se base sur le principe des moindres carrés mobiles modifié et nous l’avons appliqué pour
résoudre les équations intégrales mixtes du second type en dimension deux et trois. Dans le
Chapitre 2, nous appliquons cette nouvelle approche pour la résolution des équations intégrales
mixtes linéaires et non linéaires de Fredholm-Volterra, et aussi pour la résolution des équations
intégrales de Fredholm-Hammerstein dans des domaines non rectangulaires. Étant donné que
les méthodes sans maillage sont très efficaces en raison de leur indépendance de dimension, dans
le Chapitre 3, nous étendons cette méthode à la dimension trois pour la résolution numérique
des équations intégrales linéaires et non linéaires de Volterra-Fredholm de deuxième type. Une
étude d’erreur a été faite et des tests numériques sont présentés pour mettre en évidence le gain
en précision des résultats en comparaison avec l’approche MLS classique et pour montrer la
fiabilité de notre approche.

La deuxième partie concerne l’étude numérique des équations intégrales stochastiques et
des équations intégro-différentielles fractionnaires. Des phénomènes non déterministes appa-
raissent de plus en plus dans de nombreux domaines et cela peut être naturellement modélisé
par des équations intégrales stochastiques qui dépendent généralement du temps et des termes
aléatoires. Étant donné que la résolution analytique des équations intégrales stochastiques est
très difficile et n’est pas disponible dans la plupart des cas, il est donc indispensable de donner
des approximations numériques. Dans le Chapitre 4, une nouvelle adaptation du schéma basé
sur l’approximation des moindres carrés mobiles régularisée (RMLS) est utilisée pour résoudre
des équations intégrales stochastiques en dimension deux. Cette approche est proposée pour
éviter la singularité de la matrice moment qui apparâıt dans la méthode MLS classique. Le but
du calcul fractionnaire est de généraliser les dérivées d’ordre entier à d’ordre non-entier. L’étude
des problèmes fractionnaires est d’actualité, et de plus en plus les recherches se concentrent sur
l’étude des équations fractionnaires stochastiques en raison de leur applicabilité pour modéliser
des trajectoires aléatoires. Dans le Chapitre 5, nous utilisons l’approximation des moindres
carrés mobiles (MLS) pour résoudre certaines classes des équations différentielles fractionnaires
stochastiques et pour estimer l’intégrale singulière et stochastique obtenue dans le schéma, nous
avons utilisé la formule composite de Gauss Legendre et la somme de Riemann. Des exemples
numériques sont traités pour valider notre approche.

Mots clés: Approximation des moindres carrés mobiles modifiée (MMLS), approximation des

moindres carrés mobiles régularisée (RMLS), équation intégrale, équation intégro-différentielle, équation

intégrale stochastique, équation intégro-différentielle stochastique fractionnaire, estimation d’erreur.
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General introduction

Most physical phenomena in nature can be described by a set of integral equations or partial
differential equations (PDEs) such as the reformulation of radiative heat transfer problems [52],
finding the propagation of acoustical and elastical waves [11], the exploration of electrostatic
and low frequency electromagnetic [82], the investigation of hydrodynamic interaction among
elements of a polymer chain [9], the distribution of surface water waves by a vertical barrier
with a gap [19]. However, only limited cases with simple geometry and boundary conditions
have analytical solutions and due to the mathematical complexities, the majority cannot pro-
vide analytical solutions. Therefore, numerical methods become indispensable tools to provide
approximated solutions for a wide range of problems.

The main idea of numerical simulation is to transform a complex practical problem into a
simple discrete form of mathematical description, recreate and solve the problem on a computer,
and finally reveal the phenomena virtually according to the requirements of the analysts. There
are many numerical methods to solve these equations such as finite difference method (FDM),
finite element method (FEM), boundary element method (BEM), and meshless methods. The
finite element method has been used with great success in many fields and widespread appli-
cations. However, it has its shortcomings and limitation. The reliance of the method on a
mesh leads to complications for certain classes of problems. Consider the modeling of large
deformation processes; considerable loss in accuracy arises when the elements in the mesh be-
come extremely skewed or compressed. The use of a mesh in modeling these problems creates
difficulties in the treatment of discontinuities that do not align with element edges. Problems
with distorted mesh always require remeshing which is costly and not trivial in three dimensions.

To overcome these problems meshfree or element-free method has been proposed and achieved
remarkable progress in recent years. The Smoothed Particle Hydrodynamics (SPH) proposed
by Gingold and Monaghan [43] and Lucy et al. [72] in 1977 is considered to be one of the earli-
est meshfree methods in the literature. In the 1990s, a new class of meshfree methods emerged
based on the Galerkin method. Among which, the first one called diffuse element method (DEM)
was proposed by Nayroles et al. [98]. Thereafter in the framework of DEM, Belytschko made
some improvements and proposed the Element Free Galerkin Method [14] (EFGM). Then in
the following few decades, a variety of new meshless methods have sprung up. These methods
are widely implemented in solid and fluid mechanics. However, only a few meshless methods
are applicable for solving integral equations and ordinary or partial differential equations. The
meshless methods consist of two main steps: the approximation of unknown functions and the
discretization of the PDE. The latter step has two main categories: Galerkin-based technique
and the collocation approach. Since background mesh and integration are required in Galerkin-
based meshless method, it leads to expensive computational cost. The collocation-based meshless
method is sometimes efficient since no integration is needed, but it is difficult to solve large-scale
problems due to ill-conditioned matrices.
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The MLS approximation was introduced firstly in the late of 1960s by Shepard [107] as
a means of generating smooth surface interpolating between specified points, then Lancaster
and Salkauskas [76] present MLS approximation as another approach to construct shape func-
tions in meshless methods. MLS method is one of the most effective meshless approaches
that has implemented a significant role in numerical analysis field, and it does not require
domain elements or background cells. This method allows an easy adaptation of the nodal
density, then the distribution of nodes could be chosen regularly or randomly in the consider-
ation domain. Here, we review some of the most recent works for the numerical solution of
integral equations and partial differential equations utilizing the meshless methods. The MLS
method has been applied for numerical solution of one and two-dimensional integral equations
[83, 5], one-dimensional Volterra–Fredholm integral equations [68], one-dimensional Fredholm-
Hammerstein integral equations [69], Volterra integral equations with proportional delay [70],
and one-dimensional non-linear integro-differential equations [25].

In MLS method a local evaluation of the approximating function is required, and then, the
compact support domain for each data point is usually chosen as a sphere box centered on the
point. Each data point has an associated dilatation parameter, which describes the size of its
compact support domain. If the degree of the polynomial base function increases, the MLS
approximation is implemented in a more validated fashion for complex data distributions. How-
ever, it becomes more difficult to ensure the independence of the shape functions on using higher
order polynomial base functions. There have been several techniques proposed for handling a
singular moment matrix in the context of meshless methods, such as perturbation of nodal posi-
tions, coordinate transformation and the matrix triangularization algorithm (MTA) [71]. These
techniques have been developed in the context of the point interpolation method (PIM), and
therefore assume that sufficient nodes exist in the support domain; they also do not ensure the
smoothness and continuity of the approximation. The Tikhonov–Miller regularization [117] is
another special technique to deal with the MLS singular moments, this technique can be easily
extended to weighted least squares regularization and higher degree polynomial basis functions.
In the context of the Tikhonov–Miller regularization, this thesis aims to develop new adaptive
schemes based on the regularized MLS approximation and modified MLS approximation for
handling a singular moment matrix in the context of meshfree methods based on Moving Least
Squares (MLS) approximation. These methods are applied for solving a class of mixed integral
equations and integro-différentiel equations in regular and irregular domains.

Apart from this introduction, The first chapter is devoted to the mathematical tools nec-
essary for a better understanding of the problems studied in this thesis. More specifically, in
Chapter 1, we review the MMs methods including their approximations and classifications, we
give a detail description of MLS approximation that will be used in the sequel. We review also
the basic definitions regarding integral operator, integral equations, integro-differential equa-
tions and their classifications, numerical integrations, some basic formulations of fractional and
stochastic calculus that will be used throughout thesis.

The rest of this thesis is divided into two parts.

In the first part, which is composed of two chapters, we are interested to develop a new adap-
tive scheme based on modified MLS approximation MMLS for the case when the MLS quadratic
base functions fail because of a non invertible moment matrix. To prove the theoretical find-
ings, the MMLS and MLS methods are extended to solve a class of integral equations in 2D
and 3D domains. In Chapter 2, we apply the meshless methods based on moving least squares
(MLS) and modified moving least squares (MMLS) approximations to approximate the solu-
tion of the two-dimensional linear and nonlinear Fredholm-Volterra integral equations. These
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schemes are applied for solving Fredholm-Hammerstein integral equations on 2D irregular do-
mains. The modification is proposed on the quadratic base functions by imposing additional
terms based on the coefficients of the polynomial base functions. This approach prevents the
singular moment matrix in the context of MLS based on meshfree methods. The numerical
schemes presented are simples and effective to solve mixed integral equations and its algorithm
can be easily implemented. The convergence rate and the error bound of the presented method
are obtained. Finally, numerical examples are included to show the validity and efficiency of
the MMLS method in comparison with the MLS method and presented in various regular and
irregular domains. In addition, in Chapter 3, we expand the three-dimensional modified mov-
ing least square method for the numerical solution of three-dimensional linear and nonlinear
Volterra-Fredholm integral equations of the second kind. This method does not arise the dif-
ficulties for higher-dimensional problems because of the simple adaption of the MMLS and it
is more flexible for most classes of multi-dimensional integral equations. The numerical experi-
ments of the MMLS and classical MLS techniques are presented to show the difference between
both methods for multi-dimensional problems. The convergence analysis is provided and some
numerical tests are given to prove the applicability of this technique.

The second part consists of two chapters in which we are interested in stochastic and de-
terministic integral equations and differential equations. Many time-dependent processes in
science have elements of randomness. Modeling such phenomena naturally requires the use of
various stochastic integral equations. More recently, the development of numerical methods for
numerical solution of these equations has become a field of increasing interest, since analytical
solutions of these equations are not usually available. In Chapter 4, a new adaptive meshless
scheme based on the regularized moving least squares approximation(RMLS) combined with Itô
approximation is employed to solve two-dimensional stochastic integral equations. The compu-
tational complexity is presented to measure the usage time of the proposed approach. We also
analyzed the convergence and stability of the proposed method by specific theorems. To re-
veal the accuracy and efficiency of the proposed method some numerical examples are included.
Several real-world phenomena can be better described by a mathematical model involving frac-
tional derivatives. This is due to two reasons: first, we can choose any real derivative/integral
operator, second, as a fractional-order derivative is a non-local operator, we can model systems
with long term memory, and we know that most real world data or experimental data are noisy.
In many cases, it is not possible to find the exact solutions of stochastic functional equations.
Therefore, the need to obtain the numerical solution of stochastic fractional integro-differential
equations has increased significantly. These phenomena can be more satisfactorily modeled by
various SFIDEs. Chapter 5 is devoted to approximate solution of SFDEs using MLS method,
the problem solving turns into a linear system solution of equations that can be solved easily.
To establish the scheme; we apply the composite Gauss-Legendre integration rule to compute
the singular fractional integral appearing in the scheme and the Riemann sum for estimating
Itô integral. We have also compared different basis in terms of CPU time. The convergence
analysis of the proposed method is proved. In the end, several numerical tests are presented and
compared with the results obtained by other methods to verify that this method is accurate and
efficient.

The manuscript concludes with the results obtained and an outline of possible perspectives
that are in line with the continuity of this research work.
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Chapter 1

Preliminaries

In this introductory chapter we recall some notions that will be used in the sequel. In Section
1.1, a detailed literature review on meshless methods has been given and it has been shown
that strong form-based collocation methods possess some attractive features, especially the MLS
method which is described in detail. In Section 1.2, we illustrate different criteria of classification
of integral equations, then we mention some theorems to prove existence of solutions of some kind
of integral equations. Section 1.3 is devoted to introduce some fundamental results of numerical
integration, especially those based on Gauss-Legendre and composite Gauss-Legendre methods.
Finally, in Section 1.4, we review some basic formulations of fractional and stochastic calculus.

1.1 Theoretical foundations of meshless methods

Nowadays meshless methods (MMs) have been considered as very promising alternatives to the
well known finite element method (FEM) for certain limitations: In finite element analysis,
meshing consumes too much time, large deformation, large mesh distortion or element splitting
may bring difficulties or even failure in numerical computation.

1.1.1 Classification

A classification of meshless methods is presented to provide a clear picture of the relation between
meshless methods in general and the point collocation method. According to whether or not
they use integration, the meshless methods can be divided into three categories based on

• Weak-strong form formulation (meshless weak-strong (MWS) form method).

• Strong-form formulation (collocation method).

• Weak-form formulation (element-free Galerkin method (EFGM), and meshless local Petrov-
Galerkin method (MLPG)).

1.1.1.1 Weak form meshless methods

A compact integration domain, which is required in weak form for numerical integration, can
be constructed globally or locally

• Global weak forms which based on background integration in the whole domain.

• Local weak forms (Local Petrov-Galerkin method) which based on background in a rather
small local sub-domain and no background mesh is required.

Meshfree weak-form methods, such as the EFGM. [14], have the following advantages:
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• They have very good stability and excellent accuracy.

• The Neumann boundary conditions can be naturally satisfied through the use of the weak
form.

Table 1.1: Global and local weak form-based meshless methods

Local weak form Global weak form
Method Basis functions Method Basis functions

NEM Natural neighbour DEM MLS/RK
PUFEM Local polynomials EFGM MLS
MLPG MLS/RK or smooth kernel PIM Polynomials
LBIE MLS MG-RBF RBF

In spite of the potential benefits of using weak form meshless methods (as mentioned above),
there are also some following drawbacks

• The existence of integration may lead to expansive computational costs, posing consider-
able complexities [87]. The term “meshless” only indicates that no mesh for the approxi-
mation of the field variables.

• Most weak form meshless methods have been criticised for not actually being truly meshless
as global or local background meshes have to be created to integrate the governing PDEs.

• The integral process and the introduction of the displacement boundary condition are
complicated in practical operation.

The numerical integration seems to be the most significant issue which reduces the efficiency of
weak form-based meshless methods as compared to the standard FEM for instance [106, 27]. An
alternative approach, the strong form-based point collocation method, have been investigated
to develop more efficient and accurate integration techniques for weak form meshless methods.

1.1.1.2 Strong form meshless methods

The strong form method does not need the numerical integration. Thus the background mesh
even locally is not needed for the strong form methods. A typical meshfree strong-form method is
the meshfree collocation method [122]. Compared with meshfree weak-form methods, meshfree
strong-form methods have the following attractive advantages:

• They are truly meshless methods and background mesh is not required for both field
variable approximation and integration.

• They can be applied with a simple algorithm.

• The are very efficient in constructing the final system of equations since no integration is
required and shape functions are only evaluated at nodes rather than at integration points.

• They can be discretised arbitrarily in theory using points distribution.

Meshfree strong-form methods have been successfully used in fluid mechanics. However, they are
often unstable and less accurate for problems governed by differential equations with Neumann
(derivative) boundary conditions.
The meshfree strong-form methods and meshfree weak-form methods have their own advantages
and shortcomings, and they are complementary. The next proposed methods conbined the week
form with the strong form together in a proper manner to fully take their advantages and avoid
their disadvantages.
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Table 1.2: Strong form-based meshless methods.

Method Basis functions

RBCM Local RBF
MPS WLS
RKCM RKPM
MLSCM MLS
HCM Enriched MLS
GRKCM Diffuse RKPM

1.1.1.3 Weak-strong form meshless methods

Liu and Gu [73] proposed a novel meshfree weak-strong (MWS) form method to combine the
local weak form and the strong form together to fully take their advantages and avoid their
disadvantages. The local weak-form is used for all the nodes that are on or near boundaries
with derivative boundary conditions and the strong-form is used for all the other nodes. In the
MWS method, the problem domain and its boundary is represented by a set of points or nodes.
The strong form or collocation method is used for all the internal nodes and the nodes on the
essential (Dirichlet) boundaries. The local weak form (Petrov-Galerkin weak form) is used for
nodes on the natural (Neumann) boundaries.
The meshless local Petrov-Galerkin (MLPG) method is a representative meshless method, and
is widely applied in computational mechanics [59] and fluid mechanics [75]. But, this method
is necessary to execute the boundary integral operation, and it is always difficult to solve ir-
regular domain problems. In order to remove this kind of limitation of the MLPG method, a
meshless local strong-weak (MLSW) method [59] was proposed recently by Yang and Zheng.
The proposed method uses the MLPG method for domain discretization, adopts the meshless
intervention-point (MIP) method for imposing the natural boundary conditions, and employs a
collocation method for imposing the essential boundary conditions. Thus, the boundary integral
is completely eliminated, and it favours to solve all kinds of irregular domain problem. Theoret-
ically, the MLSW method deduced by coupling algorithm, not only has inherited the advantage
of the MLPG method, which is always stable and accurate for numerical solution, but also has
attained the superiority of the collocation-type method, which is naturally simple and flexible
to cope with the domain of complex structure. Therefore, the method realizes advantageous
complementarities of the weak-form method and the strong-form method.

1.1.2 Meshless approximation

The first and most important step in meshless methods is to approximate the field functions
and create shape functions of the problem from a cloud of points. In this section, various
approximations for meshless methods will be recalled.

1.1.2.1 Kernel particle and reproducing kernel particle approximation

The kernel methods approximate the field function uh(x) as the convolution of the original
function u(x) with a kernel function in a domain ω:

uh(x) =

∫
Ω
wh(x− y, h)u(x)dΩy

where uh(x) is the approximation of u(x), w(x− y, h) is a kernel or weight function, and h is a
measure of the size of the support. The kernel functions should satisfy the following conditions

• Positivity wh(x− y, h) > 0 in Ωi, where Ω = ∪Ωi.
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• Compact support wh(x− y, h) = 0 out of Ωi.

• Partition of unity

∫
Ω
wh(x− y, h) = 1.

• Dirac-like shape wh(x− s, h)→ δ
(
∥x− s∥

)
when h −→ 0 where δ(s) is the Dirac function.

• wh(x− s, h) is monotonically decreasing.

The kernel approximation was invoked for the first time by Lucy in the smoothed particle
hydrodynamics (SPH), which is the oldest meshfree method introduced firstly by Gingold and
Monaghan [43] and Lucy [72] in 1977 but is now used in hydraulics [23], structure dynamics
[18], solid mechanics [102].
Liu developed reproducing kernel particle method (RKPM)[74] based on SPH in order to increase
the order of completeness of the approximation, a correction function c(x, x − y) is introduced
into the approximation:

uh(x) =

∫
Ω
c(x, x− y)wh(x− y, h)u(x)dΩy,

the reproducing equation should exactly reproduce polynomials and can be expressed by a linear
combination of polynomial basis functions; α is the dilation parameter of the kernel function
Φα(x− y), it gives more accurate results because of the addition of the correction function.

1.1.2.2 Radial basis approximation

Radial basis functions (RBFs) were first developed by Hardy to represent topographical surfaces
given sets of sparse scattered measurements [47]. The main feature of the RBF approximation is
that the interpolant is a linear combination of translations of a basis function which only depends
on the Euclidean distance from its center. This basis function is therefore radially symmetric
with respect to its center. That is how its name radial basis function comes about. Given a set
of n distinct known data points {xj ;u(xj)}, the approximation function can be approximate by
RBF as

u(x) =
n∑

i=1

cjϕ
(
∥x− xj∥

)
, (1.1.1)

the coefficient cj must be determined as unknown, ϕ is called radial basis function, there have
been several choices for the radial basis function as

• Gaussian(GA): ϕ(h) = e−αh2
, α > 0.

• Multiquadric (MQ): ϕ(h) = (h2 + α2)
1
2 , α > 0,

• Inverse multiquadric (IMQ): ϕ(h) = (h2 + α2)
−1
2 , α > 0,

where h = ∥x− xi∥ and α is a parameter for controlling the shape of functions. Eq. (1.1.1) can
be reformulated as a system of linear equations of the form:

AC = U, (1.1.2)

where A,C,U are defined respectively

Ai,j = ϕ
(
∥xi − xj∥

)
, U = [u(x1), u(x2), ...., u(xn)]

T , C = [c1, c2, ...., cn]
T .

If the matrix A is nonsingular the solution of the system is guaranteed. More details about the
inversibility of matrix A about the different radial basis function can be found in the nice review
references of [16]. Therefore, solving Eq. (1.1.2) can acquire

C = A−1U. (1.1.3)
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RBFs have been applied to solve integral equations [123] and integro-differential equations [44].
Although the training is faster in RBF network but in the limit the basis functions become
increasingly flat because of several types of radial basis functions that include a free parameter
α, then the linear system to solve becomes highly ill-conditioned, and the expansion coefficients
diverge.

1.1.3 Moving least-squares approximation

1.1.3.1 Least squares

Considering the well known data fitting problem where we want to find a function uh(x) fitting
the data points (xi, ui) with ui = u(xi). Assuming that the approximation function uh(x) is a
polynomial of order m:

uh(x) = a0 + a1x+ a2x
2 + .......+ amx

m,

written in compact form
uh(x) = pT (x)a,

the parameters a can be determined by minimizing the square of difference between ui and u
h

J =

n∑
i=1

[uh(xi)− ui]2 =
n∑

i=1

[pT (xi)a− ui]2,

differentiating with respect to a leads to the equation

n∑
i=1

p(xi)p
T (xi)a =

n∑
i=1

p(xi)ui, (1.1.4)

which allows us to solve for unknowns a, then the approximation function uh(x) is completely
defined. Let us present a simple example with data given as

(x1, u1) = (1, 1.5), (x2, u2) = (2, 2), (x3, u3) = (3, 5.5), (x4, u4) = (3, 6),

and
pT (x) = [1 x x2], a = [a0 a1 a2].

Eq.(1.1.4) becomes
4∑

i=1

 1 xi x2i
xi x2i x3i
x2i x3i x4i

 a =

4∑
i=1

 1
xi
x2i

ui,
 4 10 30
10 30 100
30 100 354

 a =

 15
46
155

 ,
The solution is

a =

[
− 2

2754

195

−155
39

]
.

Then the approximating is given by

uh = −2 + 2754

195
x+
−155
39

x2.

It is clear that this way of approximation equals the role of every data points which often gives
inaccurate results if some points are more important than others.
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Figure 1.1: Data fitting using least square method

1.1.3.2 Weighted least square data fitting

The standard least square technique solves a large linear system and produces a global solution.
MLS allow the fit to change locally depending on where the function is evaluated. To achieve this
property, the solution for each point in the problem domain is solved for using weighted least
square approximation. In the weighted least square estimation, the unknown a is estimated
by minimizing the sum of the squared residual. Unlike least squares, however, each term in
the weighted least squares approximation contain an additional weight ω, that determines how
much each observation in the data set influence the final parameter estimation. and in order to
improve the least square fit, we need modify the method by weighting the data in a way that
emphasizes the effect of distance from a chosen point. Then we can write the weighted least
square fit

J =
n∑

i=1

w(xi − x0)[uh(xi)− ui]2.

1.1.3.3 Moving least square method

In the moving least square method, the procedure is exactly the same as the weighted least
square fit but now this procedure is applied for every points of the domain. Consider the data
values of the function u(x) at nodal points X = {(xi}ni=1 in domain D. Let u : D → R be a
continuous real function. Let Pq be the space of polynomials of degree q ≪ n. The local MLS
approximation uh(x) of u(x) around a point x̄, can be given as

uhL(x, x̄) = pT (x)a(x), (1.1.5)

where p(x) is a complete polynomial of order m

pT (x) = [1, x, x2, ..., xm],

and a(x) are unknown non constant coefficients to be determined

a(x) = [a0, a1, ..., am].
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The unknown coefficients are obtained by minimizing the difference between the local approxi-
mation at that point and the nodal parameters ui as

J(x) =
n∑

i=1

ωi(x− xi)(pT (xi)a(x)− ui)2 = [P.a(x)− u]T .W.[P.a(x)− u], (1.1.6)

where ωi(x − xi) is the weight function associated with node i with wi(x − xi) > 0, n is the
number of nodes in the neighborhood of x where the weight function w(x − xi) ̸= 0. and ui
are the fictitious nodal values, but not the nodal values of the unknown trial function uh(x),
i.e. uh(xi) ̸= ui. The minimum of J in Eq. (1.1.6) with respect to a(x) can be determined by
setting the derivative of J with respect to a(x) equal to zero, then we have

n∑
i=1

w(x− xi)2p1(xi)[pT (xi)a(x)− ui] = 0,

n∑
i=1

w(x− xi)2p2(xi)[pT (xi)a(x)− ui] = 0,

...
n∑

i=1

w(x− xi)2pm(xi)[p
T (xi)a(x)− ui] = 0. (1.1.7)

In general, solving the interpolation problem based on the extended expansion (1.1.7) leads to
a system of linear equations of the form

Aa = Bu, (1.1.8)

Where the matrix A(x) and B(x) are defined respectively by

A(x) =

n∑
i=1

ωi(x)p(xi)p
T (xi), (1.1.9)

B(x) = [w1(x)p(x1), w2(x)p(x2), ......, wn(x)p(xn)]. (1.1.10)

Solving a(x) from Eq. (1.1.8), then we obtain

a(x) = A−1Bu, (1.1.11)

substituting Eq. (1.1.11) into Eq. (1.1.5), the MLS approximations can be defined as

uh(x) =
N∑
i=1

Φi(x)ui = Φ(x)u,

where Φ is the MLS shape functions given by

Φ(x) = pT (x)[A(x)]−1B(x). (1.1.12)

The matrix A(x) is often called moment matrix, it is of size m × m. This matrix must
be inverted wherever the MLS shape functions are to be evaluated. Obviously, this fact is the
major drawback of the MMs because of computational cost and the possibility that this moment
matrix is singular matrix.
Consider a linear basis in one dimension, the moment matrix then becomes

A(X) = ω(x− x1)
[
1 x1
x1 x21

]
+ ω(x− x2)

[
1 x2
x2 x22

]
+ ...+ ω(x− xn)

[
1 xn
xn xnn

]
.

It is clear from this equation, if n = 1 i.e., the point x is covered by only one nodal support
while the basis is linear (m = 2), then the matrix is singular and can not be inverted. Therefore,
the condition for moment matrix to be invertible is that n ≥ m.
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1.1.3.4 MLS weighting function characteristics

An important ingredient of meshless methods is the weight function which are denoted by
wi; Ω −→ R. The weight functions have compact support. This weight function should be non
zero only over a small neighborhood of node i which is called domain of influence of this node or
support of weight function, in order to generate sparse discrete equations. Although any choice
of the support shape may be possible, in practice, circles, rectangles are most frequently used
and given by

• Circular support

ω(x− xi) = w

(
∥x− xi∥

di

)
. (1.1.13)

• Rectangular support

ω(x− xi) = w

(
|x− xi|
di

)
w

(
|y − yi|
di

)
. (1.1.14)

The weight function should be continuous and positive in its support. The continuity of the
shape function will be determined solely by the continuity of the weight function. For example,
Generally, if p ∈ Cm(W ) and w ∈ C l(W ), then the shape function ϕ ∈ Cmin(m,l)(W ). Some
commonly-used weight functions are

• The Gaussian weight functions:

w(s) =

 e−( s
α
)2 − e−( 1

α
)2

1− e−( 1
α
)2

, si |s| ≤ 1.

0, si |s| > 1.

(1.1.15)

α is a constant controlling the shape of the weight function.

• The cubic spline weight function

w(s) =


2

3
− 4s2 + 4s3, si |s| ≤ 1

2
.

4

3
− 4s+ 4s2 − 4

3
s3, si

1

2
< |s| ≤ 1.

0, si |s| > 1.

(1.1.16)

• The quartic spline weight function

w(s) =

{
1− 6s2 + 8s3 − 3s4, si |s| ≤ 1.
0, si |s| > 1.

(1.1.17)

1.1.3.5 Domains of influence

We call domain of influence of node i, the adherence of the set Ωi = {x/x − xi ≥ 0}. Two
different strategies are possible for implementing the radius of influence using in the equations
(1.1.13)-(1.1.14).

1. Strategy 1 : At each evaluation point we take into account k closest nodes.

2. Strategy 2 : The domains of influence are arbitrarily fixed by assigning a radius of influence
to each node.
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Figure 1.2: Disretization using meshless methods: nodes, domains of influence (circular shape)

Strategy 1 Strategy 1 Strategy 2

Figure 1.3: Different domains of influence

Figure 1.3 show different forms of domains of influence of the central node using various defini-
tions of the radius of influence. In all three cases nl = 3 and the radius of influence is chosen
in such a way that at least 4 closest neighbors are selected. nl is the number of terms of the
polynomial basis vector l. A regular 2D grid is used in first two figures. The existence of the
approximation requires a number of nodes at least equal to nl at each evaluation point. When
n = nl, MLS degenerates to polynomial Lagrange interpolation and the weights have no longer
effect. So, in order to guarantee the continuity, the size of the domains of influence must be
adjusted. In a general case, at least nl + dim nodes are recommended at each point of the
domain, where dim is the space dimension.

X

Will conditioned pattern
with linear basis

X 

Ill conditioned pattern with
linear basis

X

Ill conditioned pattern with
linear basis

Figure 1.4: Different cases with a linear basis for a random distribution of nodes

Figure 1.4 presents a well-conditioned case with a linear basis for a random distribution of
nodes. This figure show also a particular cases where matrix A becomes singular, respectively
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with collinear points with a linear basis or with co circular points with a quadratic basis. These
pathological situations are the limit cases in which the approximation cannot be performed. The
patterns close to these singular ones may lead to ill-conditioned matrices and therefore spoil the
convergence. We remark that these results do not depend on the choice of the weighting function.

1.1.3.6 MLS shape function characteristics

The properties of MLS shape functions are different then finite element method shape functions:

• Absence of interpolation; MLS shape functions do not have the Kronecker-delta prop-
erty

ΦI(xj) ̸= δi,j ,

that is why MLS approximation is definitely an approximation and not an interpolation

uh(xI) ̸= uI ,

this lack of kronecker delta property is reason making the imposition of boundary condi-
tions much complicated than in the FEM.

• Consistency: Any functions appearing in the basis can be exactly reproduced, i.e.uh(x) =
u(x).
In fact, a function in the basis has the form

u(x) =
∑
i

αipi(x).

Then if we let ai(x) = αi, J in Eq. (1.1.6) will vanish and it will be a minimum since J is
positive definite. Thus

uh(x) =
∑
i

aipi(x) =
∑
i

αipi(x) = u(x).

• Partition of unity: A partition of unity is a paradigm in which a domain is divided into
overlapping patches, or subdomains ΩI , each of which is associated with a function ΦI(x)
which is nonzero only in ΩI and has the following partition of unity property

n∑
I=1

ΦI(x) = 1 in Ω. (1.1.18)

The zero order function u(x) = 1 can be reproduced exactly, this gives us

uh(x) =

n∑
I=1

ΦI(x)uI =

n∑
I=1

ΦI(x) = 1.

Thus, MLS shape functions are also partitions of unity.

• Continuity: Generally, if p ∈ Cm(Ω) and w ∈ C l(Ω), then the shape function ϕ ∈
Cmin(m,l)(Ω).

As an example, Fig. 3.4 shows shape and weight functions in a one dimensional domain W =
[0, 1] with 11 equally distributed nodes.

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 1.5: Comparison between weight (a) and shape (b) functions
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Figure 1.6: Comparison between weight (a) and shape function of the central node

1.1.3.7 MLS shape function derivatives

Using Eqs. (1.1.9), (1.1.10), (1.1.12), the MLS shape function can be reformulated in the form:

ϕi(x) = nT (x)wi(x)p(xi), (1.1.19)

where
n(x) = A(x)−1p(x),

The first derivatives of shape functions are given by

ϕi,k(x) = nT,k(x)wi(x)p(xi) + nT (x)p(xi)wi,k(x), (1.1.20)

where

n,k(x) = A−1
,k (x)p(x) +A−1(x)p,k(x). (1.1.21)

The derivative of Eq.(1.1.8) implies

A,ka+Aa,k = B,ku,

then we obtain
a,k = A−1B,ku−A−1A,ka. (1.1.22)
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Combining Eqs (1.1.8 and (1.1.22), then we have

a,k = A−1B,ku−A−1A,kA
−1Bu. (1.1.23)

The derivative of Eq. (1.1.11) implies

a,k = A−1B,ku+A−1
,k Bu. (1.1.24)

Finally compare Eqs. (1.1.23) and (1.1.24), then we conclude that

A−1
,k = −A−1A,kA

−1. (1.1.25)

Substituting Eq. (1.1.25) in Eq. (1.1.21), then we have

n,k(x) = −A−1(x)A,k(x)A
−1(x)p(x) +A−1(x)p,k(x),

= A−1(x)[−A,k(x)n(x) + p,k(x)],

= A−1(x)bk.

and

Ai,k(x) =
n∑

i=1

wi,k(x)p(xi)p
T (xi),

wi,k are the derivatives of the weight functions and given by

w,k(r) = w,r(r)r,k = w,r
xk − xIk
rd2I

.

1

0.8

0.6

0.4

0.2

0

  φ
′

x
 

0

0.2

0.4

0.6

0.8

1

-0.1

-0.05

0.05

0.1

0

(a)

1

0.8

0.6

0.4

0.2

0

  φ
′

y
 

0

0.2

0.4

0.6

0.8

1

0.05

0.1

-0.1

-0.05

0

(b)

Figure 1.7: Shape function first derivatives of the central node: (a) ϕ,x and (b) ϕ,y

Second derivatives
Take the derivative of (1.1.20) with respect to the lth dimension, we obtain

ϕT,kl(x) =p
T
,kl(x)A

−1B + pT,k(x)A
−1
,l B + pT,k(x)A

−1B,l

+ pT,l (x)A
−1
,k B + pT (x)A−1

,klB + pT (x)A−1
,k B,l

+ pT,l (x)A
−1B,k + pT (x)A−1

,l B,k + pT (x)A−1B,kl. (1.1.26)

Taking the derivative of Eq. (1.1.25) with respect to the lth dimension gives

A−1
,kl = −A

−1
,l AkA

−1 −A−1A,klA
−1 −A−1A,kA

−1
l , (1.1.27)

Using Eq. (1.1.25), substitute A−1
,l into Eq. (1.1.27) to get

A−1
,kl = A−1A,lA

−1A,kA
−1 −A−1A,klA

−1 +A−1A,kA
−1A,lA

−1.
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Figure 1.8: Comparison between shape function and shape function first derivatives of the central
node: (a) ϕ and (b) ϕx

1.1.4 Error estimates of MLS method

This section covers the error bound which ensures the convergence analysis of the proposed
method. In [77] Levin presented the error estimates in the uniform norm for a particular weight
function in N dimensions, but, he did not obtain error estimates for the derivatives. In [4]
Armentano and Duron studied the MLS method for the function and its derivatives in the one
dimension obtaining error estimate in L∞. Armentano in [3] presented the error estimates in
L∞ and L2 norms for one and N dimensions which generalizes the result given in [4]. Zuppa
in [129] proved the error estimates for derivatives of shape function by the condition numbers
of the star of nodes in the normal equation. Authors of [103], obtained the error estimates in
Sobolev space when u(x, y) ∈ Cm+1(D), and u(x, y) ∈Wm+1,q(D), respectively.

Definition 1.1.1. [39] The fill distance of the nodal points X = {(x1, y1), ..., (xn, yn)} in D can
be presented as

hX,D = sup
(x,y)∈D

min
0≤i≤n

√
(x− xi)2 + (y − yi)2.

The separation distance of X = {(x1, y1), ..., (xn, yn)} is given by

hX,D =
1

2
min
i ̸=j

√
(xj − xi)2 + (yj − yi)2.

The set X is considered as quasi-uniform with respect to a constant c > 0 if

qX ≤ hX,D ≤ cqX .

Definition 1.1.2. We define the semi-norm given by

|u|q+1 = max
|α|=q+1

∥Dαu∥∞.

Assuming all these definitions, Wendland proved the following Theorem about the error
bound for approximating a function using the MLS approximation.

Theorem 1.1.1. [130] Assume that s ∈ Cq+1(D) and X = {(x1, y1), ..., (xn, yn)} is a quasi-
uniform set on D. Then there exists a constant C > 0 that can be computed explicitly such that
the approximation error is defined as follows

∥u− zu,X∥∞ ≤ Chq+1
X |u|q+1, hX ≤ h0.

31



Algorithm 1 The MLS method

Require: Scattered points: (x1, x2, x3, ..., xn)
Degree of polynomials: q
Weight functions: ωi(x), i = 1, ..., n
for j = 1 to q do

Fj ←
q∑

k=1

ak

n∑
i=1

ωi(x)pk(xi)pj(xi)

end for
{Fj ← pj(x), ..., Fn = pn(x)} for the unknown {a1, a2, ..., aq}
for i = 1 to n do

Φi(x)← ωi(x)

q∑
k=1

akpk(x)

end for
r(x)← 0
for i = 1 to n do
r(x)← r(x) + u(xi)Φi(x)

end for
Ensure: r(x)

We introduce the collocation projection operator Pn : C([0, 1])→ Cn([0, 1]) as

Pnu(t) =
n∑

i=0

λiϕi(t),

where Cn([0, 1]) = Span(ϕ1, ..., ϕn) and the vector V = [λ1, ..., λn] is determined by solving the
linear system

Pnu(ti) = u(ti), i = 1, ..., n. (1.1.28)

Let lj ∈ Cn([0, 1]) be elements that satisfy the interpolation conditions

lj(ti) = δij , i = 1, ..., n.

There exist a unique set of functions lj which are called Lagrange basis functions, and the set
{l0, ..., ln} is a new basis for Cn([0, 1]). With this new basis we can write

Pnu(t) =
n∑

j=1

u(tj)lj(t).

Furthermore, in the collocation projection we need to assume that

n∑
j=1

|lj(t)| <∞.

By definition of the operator Pn we have

∥Pn∥ = max
t∈[0,1]

n∑
j=0

|lj(t)|,

Then Pn is uniformly bounded.
We introduced the following Theorem about the discrete projection operator with the MLS

shape functions.
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Theorem 1.1.2. [130] Using the assumptions of Theorem 1.1.1. Assume the family {Pn, n ≥ 1}
is uniformly bounded and ∥Pn∥ ≤ δ ≤ ∞. If u ∈ Cq+1(D) then Pnu converge to u as n −→ ∞
and

∥Pnu− u∥∞ ≤ (1 + δ)Chq+1
X,D|s|q+1,

where η, C are constants.

Remark 1. The proof of uniformly bounded for the operators Pn has been discussed in [8].

1.1.5 Procedures of Meshless methods

This section will present several steps that are used for implementation of meshless methods.

• Node distribution: Node distribution can be performed arbitrarily over the problem
domain provided the nodes are placed in the regions where the solution is required. nodes
are created to discretize the domain, where randomly or uniformly distributed field nodes
are arranged within the domain

• Creating shape function of the node distribution: The approximation function is
an essential feature of the meshless method. The construction of shape functions is the
central issue in meshless methods. The nodes within a created local domain or the whole
domain are used for the field variable interpolation at the concerned node by suitable
interpolation function as

uh =
n∑

i=1

ϕiui.

• Disctretized system equations: The discrete equations involved in a meshless method
are formulated using the shape functions and the strong or weak form of the system
equations.

• Solving global system of equation: These equations are often written in a nodal
matrix form and are assembled into the global system matrices for the entire problem
domain. The solution is obtained using the available established numerical techniques
used for solving systems of algebraic equations, including direct or iterative methods such
as the Gauss elimination or the QR method etc.

1.2 Review on integral equations

Many natural phenomena are studied and described mathematically by integral equations. Many
initial and boundary value problems can be transformed into integral equations, they are used as
mathematical models applications in various fields of science and engineering, such as diffraction
theory [104], axisymmetric contact problems for bodies with complex rheology [84], the image
deblurring problem and its regularization [46].
Integral equation is the equation in which the unknown function u(x) appears inside an integral
sign. The most standard type of integral equation in u(x) is of the form

u(x) = f(x) + λ

∫ w(x)

v(x)
K(x, y, u(y))dy,

where v(x) and w(x) are the limits of integration, λ is a constant parameter, and K(x, y) is a
known function, called the kernel of the integral equation. The unknown function u(x) that will
be determined appears inside the integral sign. In many other cases, the unknown function u(x)
appears inside and outside the integral sign. The functions f(x) andK(x, y) are given in advance.
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1.2.1 Integral operators

First we recall the basic definitions regarding operator

Definition 1.2.1. Let X;Y be normed linear spaces, and let A : X be a linear operators

1. A is continuous at a point φ ∈ X if φn −→ φ in X implies Aφn −→ Aφ in Y .

2. A is continuous if it is continuous at every point, i.e. If φn −→ φ in X implies Aφn −→ Aφ
in Y : for every φ in X.

3. A is bounded if there exists a finite c > 0 such that

φ ∈ X, ∥Aφ∥Y ≤ c∥φ∥X .

4. The operator norm of A
∥A∥ = sup

∥φ∥=1
∥Aφ∥.

5. We denote by B(X;Y ) the set of all bounded linear operators mapping X into Y

B(X,Y ) = {A : XY : A is bounded and linear operator}.

Definition 1.2.2. Let X and Y be two normed linear spaces and A : X −→ Y a linear map
between X and Y . A is called a compact operator if for all bounded sets U ⊆ X, A(U) is
relatively compact in Y

Theorem 1.2.1. Let X and Y be two normed linear spaces; suppose A : X −→ Y , is a linear
operator. Then the following are equivalent.

1. A is compact.

2. The image of the open unit ball under A is relatively compact in Y .

3. For any bounded sequence φn in X, there exist a subsequence {Aφnk
} of {Aφn} that

converges in Y .

Definition 1.2.3. Let Ω ∈ Rn a compact subset, K a continuous function from Ω × Ω into R
then the linear operator defined from C(Ω) into itself by

Aφ(x) =

∫
Ω
K(x, y)φ(y)dy, x ∈ Ω,

is called integral operator, and K(x, y) is the kernel of the integral operator.

A particularly class of integral operators is operators with degenerate kernels. These kernels
can be decomposed into a finite sum of separable functions i.e we can write it in the form

K(x, y) =
n∑

i=1

ai(x)bi(y).

Theorem 1.2.2. Let A be the integral operator from C(Ω) into itself with continuous kernel
K(x, y), then A is compact.

Theorem 1.2.3. Let

Aφ(x) =

∫
Ω
K(x, y)φ(y)dy, x ∈ Ω,

with kernel K ∈ L2(Ω× Ω). Then A is continuous compact operator from L2(Ω) into itself.
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Proof. First we prove that the linear operator A is bounded (continuous), let φ ∈ L2(Ω) by the
Cauchy-Schwartz inequality we get∫

Ω
(Aφ(x))2dx ≤

∫
Ω

(∫
Ω
| K(x, y) |2 dy

)(∫
Ω
| φ(y) |2 dy

)
dx,

≤M
∫
Ω
| φ(y) |2 dy <∞,

with M =

∫ ∫
]a,b[×]a,b[

| K(x, y) |2 dydx.

It remains to prove that A is compact, we recall that the space L2(Ω) has a countable
orthonormal basis, so we can write the kernel K as a sum of degenerate kernels (Kn)n∈N such
that

lim
x→∞

∥K −Kn∥ = 0,

so we get a sequence operators

(Anφ)(x) =

∫
Ω
K(x, y)φ(y)dy, x ∈ Ω.

Obviously, A maps L2(Ω) into a finite-dimensional subspace of L2(Ω). The range of An is
finite dimensional and hence An is compact. We find

∥(An −A)φ∥ =
∫
Ω
(

∫
Ω
(Kn(x, y)−K(x, y))φ(y)dy)2)dx,

≤
∫
Ω×Ω
|Kn(x, y)−K(x, y)|2dy)dx∥φ∥2,

= ∥Kn −K∥L2(Ω×Ω)∥φ∥2,

the above expression has to go to zero as n −→∞. We conclude that A −→ An so A is compact.

Theorem 1.2.4. Let A an integral operator with the kernel K(x, y); assuming that ∥K(x, y)∥ <
∞ for 1 ≤ p ≤ ∞; then A maps Lp into itself, furthermore we have

∥Aφ∥p ≤ ∥K∥p∥φ∥p.

Proof. Let p ∈]1,∞[, by applying the Holder’s inequality we get∫
Ω

(∫
Ω
|K(x, y)||φ(y)|dy

)p
dx ≤

∫
Ω

[(∫
Ω
|K(x, y)|pdy

) p
q ∥φ∥pp

]
dx,

= ∥K∥pp∥φ∥pp.

then the operator A exists with
∥Aφ∥p ≤ ∥K∥p∥φ∥p.

Now we discuss the case when p = 1; and p =∞ respectively∫
Ω

∫
Ω
|K(x, y)||φ(y)|dydx ≤

∫
Ω

∫
Ω
sup
y∈Ω

ess|K(x, y)|dx
∫
Ω
|φ(y)|dy,

so
∥Aφ∥1 ≤ ∥K∥1∥φ∥1.
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From another side

sup
x∈Ω

ess|Aφ(x)| = sup
x∈Ω

ess

∣∣∣∣∣
∫
Ω
K(x, y)φ(y)dy

∣∣∣∣∣,
≤ sup

y∈Ω
ess|φ(y)| sup

x∈Ω
ess

∫
Ω
|K(x, y)|dy,

then
∥Aφ∥∞ ≤ ∥K∥∞∥φ∥∞.

1.2.2 Classification

Integral equations are classified according to many characteristics

• The limits of integration

– The integral equation is called a Fredholm integral equation if the limits of integration
are constant

u(x) = f(x) + λ

∫ b

a
K(x, y, u(y))dy,

– The equation is called a Volterra integral equation if one of the limits of integration
is a variable

u(x) = f(x) + λ

∫ x

a
K(x, y, u(y))dy,

• The linearity of the kernel

– The integral equation is called linear equation if K(x; y;u(y)) is linear with respect
to the third variable

K(x, y, u(y)) = K(x, y)u(y).

• The integral equation is called nonlinear equation if K(x, y, u(y)) is nonlinear with respect
to the third variable, in this case, the integral equation has two form

– Urysohn form u(x) = f(x) + λ

∫ x

a
K(x, y, u(y))dy.

– Hammerstein form u(x) = f(x) + λ

∫ x

a
K(x, y)G(y, u(y))dy.

• Placement of unknown function

– The integral equation is called a first kind integral if the unknown function u(x)
appears only under the integral

– The integral equation is called a second kind integral if the unknown function u(x)
appears both inside and outside integral

– Nature of known function u(x): integral equations called homogeneous integral equa-
tion if f(x) is identically zero given by

u(x) =

∫ w(x)

v(x)
K(x, y)u(y)dy.
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1.2.2.1 Volterra-Fredholm integral equations

The Volterra-Fredholm integral equations appear in the literature in two forms

u(x) = f(x) +

∫ y

x
K(x, y)u(y)dy +

∫ b

a
K(x, y)u(y)dy, (1.2.1)

and

u(x) = f(x) +

∫ y

x

∫ b

a
K(x, y)u(y)dy, (1.2.2)

where f(x) and K(x, t) are analytic functions. It is interesting to note that Eq.(1.2.1) con-
tains disjoint Volterra and Fredholm integrals, whereas Eq.(1.2.2) contains mixed Volterra and
Fredholm integrals.

1.2.2.2 Singular integral equation

A singular integral is where the integrand (the function being integrated) has an infinite value
at one or more points within the given bounds of integration. Singular integrals appear in
many areas, including fluid and solid mechanics and acoustic / electromagnetic wave scattering.
Formally, a one dimensional singular integral is defined as∫ b

a

u(t)

(t− s)p
dt, s ∈ (a, b), p > 0. (1.2.3)

Singular integrals are classified by the order of singularity (a measure of the nature of unbound-
edness of the kernel).

Weakly singular: p < 1. A value for the integral exists and is continuous at the singularity.

Strongly singular: p = 1. The integrand and the integral are singular.

Hyper-singular: p > 1.
An important class of singular integral is the one with a Cauchy kernel, which crops up in
contact and fracture problems in solid mechanics. It is defined as

K(s, t) =
1

s− t
, s ̸= t.

1.2.2.3 A stochastic differential equation

A stochastic differential equation (SDE) is a differential equation in which one or more of the
terms is a stochastic process, resulting in a solution which is also a stochastic process. Stochastic
differential equations originated in the theory of Brownian motion, in the work of Albert Einstein
and Smoluchowski. Stochastic differential equations for Brownian motion were introduced by
Japanese mathematician Kiyosi Itô [57], who introduced the concept of stochastic integral and
initiated the study of nonlinear stochastic differential equations. The stochastic differential
equation (SDE) appear in the literature in many forms

• Fredholm stochastic integral equation

u(x) = f(x) +

∫ b

a
K1(x, t)u(t)dt+

∫ d

c
K2(x, t)u(t)dB(t), x ∈ D. (1.2.4)

• Fredholm-Volterra stochastic integral equation

u(x) = f(x) +

∫ b

a
K1(x)s(t)dt+

∫ t

a
K2(x, t)u(t)dB(t), x ∈ D. (1.2.5)
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• Fredholm-Volterra stochastic integro-differential equation

du

dx
(x) = f(x) +

∫ b

a
K1(x, yt)u(t)dt+

∫ t

a
K2(xt)u(t)dB(t), x ∈ D. (1.2.6)

• Stratonovich Volterra integral equation

du

dx
(x) = f(x) +

∫ b

a
K1(x, yt)u(t)dt+

∫ t

a
K2(xt)u(t)odB(t), x ∈ D. (1.2.7)

the symbol o between integrand and the stochastic differential is used to indicate Stratonovich
integrals. Stratonovich integrals are defined such that the chain rule of ordinary calculus
holds.

Existence solutions of integral equation

Many researchers have been produced to study existence and uniqueness solutions of integral
equation. many others used fixed point theory to prove the existence and uniqueness of the
solution [48] [124]. Riesz theory and Fredholm alternative are also used to demonstrate the
existence of solutions of integral equations. Firstly, we introduce the following corollaries as

Corollary 1.2.1. Let A a compact operator of a normed space X into itself, for λ ̸= 0 the
nonhomogeneous equation

Tφ = φ−Aφ = f,

has a unique solution φ ∈ X for all f ∈ X, if and only if the homogeneous equation

Tφ = φ−Aφ = 0,

has the trivial solution φ = 0.

Proof. if the first equation has a solution for all f ∈ X, then T is surjective, as a result T
injective what proves that the second equation has the unique solution φ = 0.
Furthermore if φ = 0 is not a solution for the homogeneous equation, then the homogeneous
equation has a finite number m ∈ N of solutions linearly independent, in this case either the
nonhomogeneous equation is unsolvable, or has a solution given in the form

φ = φ̃+
m∑
i=1

αiφi,

where φ1, φ2, ..., φm are arbitrary complex numbers and φ̃ a particular solution of the inhomo-
geneous equation.

Corollary 1.2.2. Let Ω ∈ Rn, and let K(x, y) a continuous function. Then either homogeneous
integral equations

φ(x)−
∫
Ω
K(x, y)φ(y)dy = 0, x ∈ Ω.

ψ(x)−
∫
Ω
K(x, y)ψ(y)dy = 0, x ∈ Ω.

have only the trivial solution φ = 0 and ψ = 0 and in this case the nonhomogeneous equation

φ(x)−
∫
Ω
K(x, y)φ(y)dy = f(x), x ∈ Ω.

ψ(x)−
∫
Ω
K(x, y)ψ(y)dy = f(x), x ∈ Ω.
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have a unique solution φ ∈ C(Ω) and ψ ∈ C(Ω) respectively for any f ∈ C(Ω) and g ∈ C(Ω)
or the homogeneous integral equations have the same finite number m ∈ N of solutions linearly
independent, and in this case the nonhomogeneous integral equations are solvable if and only∫

Ω
K(x, y)φ(y)dy =

∫
Ω
K(x, y)ψ(y)dy = 0,

for all ψ solution of the adjoint homogeneous equation and for all φ solution of the homogeneous
equation.

Now we consider the nonlinear integral equation, in the next theorem we well use the fixed
point theory to prove that nonlinear integral equation of the second kind with bounded kernel
has a unique solution for sufficiently small |λ|.

Theorem 1.2.5. Consider nonlinear integral equation of the second kind

ψ(x)−
∫
Ω
K(x, y, ψ(y))dy = f(x), x ∈ Ω. (1.2.8)

such that A is a bounded integral operator and satisfies the Lipschitz condition

∥Aφ1 −Aφ2∥ ≤ c∥φ1 − φ2∥, c ≥ 0,

with
|λ|c < 1,

then Eq.(1.2.8) has a unique solution

Proof. Rewrite the nonlinear integral equation of the second kind in the form

φ = Tφ, (1.2.9)

with
Tφ = λAφ+ f.

Then

∥Tφ2 − Tφ1∥ = ∥λAφ2 + f − (λAφ1 + f)∥,
= ∥λAφ2 − λAφ1∥,
= ∥λ∥∥Aφ2 −Aφ1∥,
⩽ |λ|c|φ2 − φ1|.

when |λ|c < 1, the operator T is a contraction and according to Banach fixed point theorem,
there exist a unique fixed point of Eq.(1.2.9). This unique fixed point is also a solution of the
nonlinear integral.

1.3 Numerical integration

Numerical integration is one of the basic contents in numerical mathematics, and it always plays
a vital role in engineering and science calculation. Numerical integration methods are introduced
in detail [21, 20, 125], numerical integration is always carried out by mechanical quadrature and
its basic scheme ([17]) is as follows ∫ b

a
h(x) =

n∑
i=0

Akh(xi), (1.3.1)

39



where Ak > 0, k = 0, 1, ..., n, and x ∈ [a, b], k = 0, 1, ..., n are called coefficients and nodes for
mechanical quadrature, respectively. Once the coefficients and nodes are set down, the scheme
1.3.1 can be determined.
The beginnings of numerical integration have its roots in antiquity. A prime example of how
ancient these methods are is the Greek quadrature of the circle by means of inscribed and
circumscribed regular polygons. This process led Archimedes to an upper bound and lower
bound for the value Pi. These methods were used widely due to the lack of formal calculus. The
method of the sum of an infinitesimal area over a finite range was unknown until the sixteenth
century when Newton formalized the concepts of what we know now know as calculus. The
earliest forms of numerical integration are similar to that of the Greek method of inscribing
regular polygons into curved functions. This process broken down was taking a known area
and overlapping it with an unknown area to approximate the area of the unknown shape. One
could improve accuracy by choosing a better fitting shape. Later methods decided to improve
upon estimating area under a curve decided to use more polygons but smaller in area. Such an
example is the use of rectangles evenly spaced under a curve to estimate the area. Even further
improvements saw the use of trapezoids instead of rectangles to better fit the curvature of the
function being analyzed. Today, Quadrature methods are better than using any regular polygon
inscribed in a function to approximate area under the curve that have a very small error, in this
particular example Gaussian Quadrature

Gaussian quadrature rules

Gauss quadrature formula will only be an accurate approximation to the integral above if f(x)
is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1] and it can be written
in the form ∫ 1

−1
h(x)dx =

n∑
i=0

wih(xi),

where the xi are zeros of the Legendre polynomial Pn(x) of order N and the wi are non-zero
constants called “quadrature weights” defined as

wi =

∫ 1

−1

n∏
k=1,k ̸=i

x− xi
xk − xi

dx.

The Legendre polynomials can be defined via the recursive relation

Pk+1(x) =
2k + 1

k + 1
xPk(x)−

k

k + 1
Pk−1(x), P0(x) = 1, P1(x) = x.

Some loworder rules for solving the integration problem are listed below
For integrating over a general interval [a, b], a change of interval can be applied to convert the

n Roots of Pn(x) Weights wi

2
1√
3
,
−1√
3

1, 1

3 −
√

3

5
, 0,

√
3

5

5

9
,
8

9
,
5

9

4 ±

√√√√3− 2
√

6
5

7
, ±

√√√√3 + 2
√

6
5

7

18±
√
30

36
,
18±

√
30

36

Table 1.3: Gauss–Legendre nodes and coefficients
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problem to one of integrating over [−1, 1] in the following way:∫ b

a
h(t)dt =

b− a
2

∫ 1

−1
h(
b− a
2

s+
b+ a

2
)ds.

Applying n point Gaussian quadrature (s, w) rule then results in the following approximation∫ b

a
h(t)dt =

b− a
2

n∑
i=1

wih(
b− a
2

si +
b+ a

2
).

Composite Gauss-Legendre formulas

The singular integral in Eq.(1.2.3) can not be estimated with common numerical integration
as gauss-legendre quadrature, for this reason, we use two types of composite mn point Gauss-
Legendre rules relative to the coefficients δp and weights ωp in the interval [-1, 1] as follows:

• Suppose s ∈ C2mn[a,b] , for any given integer M > 0, we have∫ b

a
h(s)ds =

∆s

2

mn∑
p=1

wp

M∑
l=1

h(δlp),

where

∆s =
b− a
M

, δlp =
∆s

2
σp + (q − 1

2
)∆s.

• Let h(s) defined on [a, b] such that

|h2mn(s)| < C(a− s)−α−2mn , for all t ∈ [0, 1], and some α ∈ [0, 1].

the function u only at the point s = a is not continuously differentiable up to order 2mn

and at other points is several times continuously differentiable. Suppose δp are the mn

roots of the Legendre polynomial of degreemn and weights wp. Then, for any given integer
M > 0, we have

∫ b

a
h(s)ds =

mn∑
p=1

wp

M∑
l=1

∆sl
2
h(δlp). (1.3.2)

where

δlp =
∆sl
2
σp + s̄l, ∆sl = t(sl − sl−1), s̄l =

sl + sl−1

2
,

sl =

(
l

M

)e

, and e =
2m1 + 1

1− α
.

1.4 Basics for stochastic and fractional calculus

1.4.1 Basics for stochastic calculus

Stochastic calculus has come to play an important role in many branches of science and technol-
ogy where day by day more and more mathematician have encountered in this field. Stochastic
calculus is the area of mathematics that deals with processes containing a stochastic component
and thus allows the modeling of random systems. The best-known stochastic process to which
stochastic calculus is applied is the Wiener process (named in honor of Norbert Wiener), which
is used for modeling Brownian motion as described by Louis Bachelier. Brownian motion B(t)
is a stochastic process with the following properties:
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Definition 1.4.1. [65]

• B0 = 0;

• The process Bt has stationary increments; for any 0 ≤ s ≤ t, Bt −Bs ∼ Bt−s.

• The process Bt has independent increments; for any 0 = t0 ≤ t1 ≤ .... ≤ tn, Bti+1 − Bti are
independents;

• The increment Bt+s −Bs has the normal (0, t) distribution; for any t > 0, Bt ∼ N(0, t).

• The function t→ B(t) is a continuous function of t.

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B(t)

-0.5

0

0.5

1

Figure 1.9: Discretized Brownian path B(t)

Definition 1.4.2. The stochastic Itô integral is defined as

∫ T

0
u(t)dB, and it can be approxi-

mated by Riemann sums, then the integral is given by∫ T

0
u(t)dB =

n−1∑
i=0

u(ti)
(
B(ti+1)−B(ti)

)
, (1.4.1)

where

ti = idt, dt =
T

n
, n is a sufficiently large number. and the approximation of the Itô integral is

obtained at the left endpoint of [ti+1, ti]

By using the integration by parts, we have

Theorem 1.4.1. Suppose us is a continuous function on [0, T ] with bounded variation. Then∫ T

0
usdBs = uTBT −

∫ T

0
Bsdus, (1.4.2)

where the second integral is the Stieltjes integral.

Lemma 1.4.1. for all T ≥ 0, we have∫ T

0
BsdBs =

1

2
(B2

T − T ).

42



1.4.2 Basics for fractional calculus

Fractional calculus owes its origin to a question of whether the meaning of a derivative to an
integer order could be extended to still be valid when is not an integer. This question was first
raised in a letter of L’Hospital to Leibniz. The prophetical answer of Leibniz to that deep ques-
tion attracted the interest of many well-known mathematicians, including Riemann, Letnikov,
Euler, Liouville, Laplace, and many others fractional calculus is a generalization of ordinary
calculus, where derivatives and integrals of arbitrary real or complex order are defined. These
fractional operators may model more efficiently certain real world phenomena, especially when
the dynamics is affected by constraints inherent to the system. There exist several definitions for
fractional derivatives and fractional integrals, like the Riemann-Liouville, Caputo, Hadamard,
Riesz, Griinwald-Letnikov, Marchaud, etc. (see [66], [100]). In fact, one could argue that real
world processes are fractional order systems in general. The main reason for the success of frac-
tional calculus applications is that these new fractional-order models are often more accurate
than integer-order ones, i.e., there are more degrees of freedom in the fractional order model
than in the corresponding classical one. The applications of fractional calculus are very wide
nowadays. It is safe to say that almost no discipline of modern engineering and science in general,
remains untouched by the tools and techniques of fractional calculus. For example, wide and
fruitful applications can be found in rheology, viscoelasticity, acoustics, optics, chemical and sta-
tistical physics, robotics, control theory, electrical and mechanical engineering, bio-engineering,
etc.

1.4.2.1 The Gamma function

The Gamma function Γ(x) is one of basic functions which plays an important role on the theory
of differentiation and generalizes the ordinary definition of factorial of an integer number n and
allows n to take also any non- negative integer.
The integral transform definition for the Γ(x) is given by

Γ(x) =

∫ ∞

0
yx−1e−y dy, Re(x) > 0.

The following are the most important properties of Gamma function:

1. Γ(1) = 1.

2. Γ(x+ 1) = xΓ(x), X is a non- negative integer.

3. Γ(n+ 1) = n.

1.4.2.2 Fractional integrals

Let defined the differentiation operator D and the integration operator J respectively as

Du(x) =
d

dx
u(x), (1.4.3)

Ju(x) =

∫ x

0
u(s) ds. (1.4.4)

Formally the real order generalization is introduced as follows:

Dα

for every real number α in such a way that, when α takes an integer value n ∈ Z, it coincides
with the usual n-fold differentiation D if n > 0, and with the n-th power of J when n < 0.
Repeating the process 1.4.4 gives

(J2u)(x) =

∫ x

0

(
Ju(t)

)
dt =

∫ x

0

(∫ t

0
u(s) ds

)
dt
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The Cauchy formula for repeated integration, namely(
Jnu

)
(x) =

1

(n− 1)!

∫ x

0
(x− t)n−1u(t)dt. (1.4.5)

For direct use in 1.4.5 , n is restricted to be an integer. The primary restriction is the use of
the fractional which in essence has no meaning for non- integer values. The gamma function is
however an analytic expansion of the fractional for all reals, and thus can be used by replacing the
fractional expression for its gamma function equivalent, we can generalize 1.4.5 for all α ∈ R+,
as shown

Definition 1.4.3. The Riemann-Liouville fractional integral operator Jα of order α ≥ 0

Jαu(t) =
1

Γ(α)

∫ t

0

u(s)

(t− s)1−α
ds, t > 0.

with u0(t) = u(t)

1.4.2.3 Fractional derivatives

Let us assume that u(x) is a monomial of the form

u(x) = xk .

The first derivative is as usual

u′(x) =
d

dx
u(x) = kxk−1 .

Repeating this gives the more general result that

da

dxα
xk =

k!

(k − α)!
xk−α ,

which, after replacing the factorials with the gamma function, leads to

dα

dxα
xk =

Γ(k + 1)

Γ(k − α+ 1)
xk−α, k > 0.

In the same fashion, as in the definition of fractional integral and for a general function u(x)
and 0 < α < 1, the complete fractional derivative is

Dαu(x) =
1

Γ(1− α)
d

dx

∫ x

0

u(t)

(x− t)α
dt

which is called the Riemann-Liouville fractional derivative of u of order α.
Another option for computing fractional derivatives is the Caputo fractional derivative. In
contrast to the Riemann-Liouville fractional derivative, when solving differential equations using
Caputo’s definition, it is not necessary to define the fractional order initial conditions. Caputo’s
definition is illustrated as follows

Definition 1.4.4. [66] The Caputo fractional derivative of order α is defined as

Dαu(t) =
1

Γ(k − α)

∫ t

0

uk(s)

(t− s)1+α−k
ds, α > 0, k − 1 < α < k, t > 0. (1.4.6)
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The linear property of the Caputo fractional derivative hold similar to the integer order
differentiation, that is for constant numbers λ and γ, we have

Dα(λu(t) + γg(t)) = λDαu(t) + γDαg(t).

Some of most important properties of fractional operators are as follows

JαJβu(t) = Jα+βu(t),

JαJβu(t) = JβJαu(t),

DαDβu(t) = Dα+βu(t),

DαJαu(t) = u(t),

JαDαu(t) = u(t)−
n−1∑
k=0

tk

k!
uk(0+), n− 1 < α < n, n ∈ N.
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Part I

Modified moving least squares
approach for a class of integral

equations on 2D and 3D domains
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Chapter 2

The numerical solution of linear and
nonlinear Fredholm-Volterra integral
equations on 2D regular and
irregular domains

This chapter presents a comparison between moving least squares (MLS) and modified moving
least squares (MMLS) approximations for solving linear and nonlinear mixed integral equations
on 2D regular and irregular domains. The MMLS scheme is proposed for handling a singular
moment matrix in the context of meshfree methods based on moving least squares (MLS) ap-
proximation. This modification allows quadratic base functions to be used with the same size of
the support domain as linear base functions, resulting in better approximation capability. These
meshfree methods don’t require any background mesh or cell structures and so they are inde-
pendent of the form of the consideration domain. The convergence analysis of this technique is
provided. A valuable advantage of applied this new technique is that the results converge more
quickly to the exact solution by using a small support domain, and it is more flexible because it
allows an easy adaptation of the nodal density in non-rectangular domain. Some several numer-
ical tests are presented and compared with the classical MLS method to prove the applicability
and the reliability of this new approach.

The results obtained in this chapter are presented in the research paper [29, 30], in collabo-
ration with Rachid El Jid and Abdelkarim Hajjaj.

2.1 Introduction

The motivation of this chapter is to solve the following class of nonlinear mixed integral equations
of the second kind using the moving least squares and modified moving least squares methods,
namely

• Fredholm-Volterra integral equation of the second kind on 2D regular domain

u(x, y) +

∫ d

c

∫ b

a
K1(x, y, s, v)Φ1(s, v, u(s, v)) dsdv (2.1.1)

+

∫ y

c

∫ x

a
K2(x, y, s, v)Φ2(s, v, u(s, v)) dsdv = g(x, y).

The functions g(x, y), K1(x, y, s, v), K2(x, y, s, v) are assumed to be given smooth real
valued functions on (x, y) ∈ [a, b]× [c, d] and D = {(x, y, s, v), a ≤ s ≤ x ≤ b, c ≤ v ≤ y ≤
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d}, respectively and u(x, y) is the solution to be determined. For these types of integral
equations, it is usually difficult to obtain analytical solutions and then numerical solutions
have to be studied.

• Fredholm-Hammerstein integral equation of the second kind on 2D irregular domain

u(x, y) +

∫
D
K(x, y, µ, θ)Φ(µ, θ, u(µ, θ)) dµdθ = g(x, y). x, y ∈ D (2.1.2)

where u is the solution to be determined, the functions g and K are assumed to be given
and D is a two-dimensional non-rectangular domain defined as

D = {(µ, θ) ∈ R2, 0 ≤ θ ≤ 1, υ1(θ) ≤ µ ≤ υ2(θ)},

where υ1(θ) and υ2(θ) are continues functions of θ. We can separate a domain to finite
numbers of sub-domains

D = D1 ∪2 .......... ∪Dd,

where De, 1 ≤ e ≤ d are disjoint domains and then apply the method in each sub-
domain described as

De = {(µ, θ) ∈ R2, 0 ≤ θ ≤ 1, υ1,e(θ) ≤ µ ≤ υ2,e(θ)}, e = 1, ..., d. (2.1.3)

Throughout the paper, the following assumption is made on Φ

|Φ(x, y, u1)− Φ(x, y, u2)| ≤ C1|u1 − u2|, (2.1.4)

where Φ is Lipschitz with respect to the third variable.

These types of integral equations seem to be a good way for modeling different applications
such as: plasma physics [38], approximation of implicit surfaces [108], diffraction theory [104],
simulations [14, 78], and computational biomechanics [53, 60]. Some integral equations cannot
be solved by the exact methods. Thus, it is desirable to present numerical methods with high
performance to solve these equations numerically. It is worth remembering that, analytical and
numerical analysis of one-dimensional mixed integral equations have been discussed by numer-
ous authors [68, 85, 128]. Recently, the two-dimensional integral equation on a non-rectangular
domain has been studied in only a few papers, the author in [40] applied a new spectral meshless
radial point interpolation (SMRPI) method to solve two-dimensional Fredholm integral equa-
tions on general domains with error analysis, in [6] the author used a numerical method for
solving linear integral equations of the second kind on the non-rectangular domains based on
the moving least square MLS method.
Meshless methods have been widely used in many branches such as neural networks, surface
construction, artificial intelligence, function approximation. The moving least squares (MLS)
approximation as a generalization of Shepard’s method [107] is developed by Lancaster and
Salkauskas [76]. Among meshless methods, the MLS method has been used in many different
non-rectangular domains because it does not depend on the geometry of the domain, and it
does not require domain elements or background cells. For that, the distribution of nodes could
be selected regularly or randomly in the analyzed domain. The new method is more adaptable
and efficient to approximate the unknown function for most classes of integral equations on
2D irregular domains. The moment matrix in MLS method may be singular when the number
of points in the local support domain is few. So finding good support is an open interesting
research problem.
Some methods have recently been proposed in MLS based methods to avoid the singular matrix.
Wang et al. [126] proposed the regularized MLS (RMLS) and the regularized IIMLS (RIIMLS)
for handling a singular moment matrix in the MLS based methods, the regularization technique
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is based on the Tikhonov-Miller regularization for ill-posed least squares problems. Wang et al.
[127] proposed an adaptive orthogonal improved interpolating moving least-square (AO-IIMLS)
method. Based on IIMLS approximation, a weighted orthogonal basis functions are applied to
obtain a diagonal moment matrix, which can avoid the direct inverse of the moment matrix.
In this work, a modified MLS method with nonsingular moment matrix is proposed by adding
additional constraints and using convenable support. Here, the quadratic base functions (m =
6) will be used with the same size of the support domain as linear base functions (m = 3). So,
the results of MMLS approximation converge more quickly to the exact solution and give better
accuracy than that of MLS approximation. The first use of MMLS method was proposed in
[61] for smoothing and approximating scattered. The basic advantage of the proposed method
does not require any adaptation of the nodal density on a non-rectangular domain. The new
technique is examined in various integral equations. We obtain the error bound and the rate of
convergence.
The outline of this chapter is as follows: In section 2.2, two-dimensional classical MLS ap-
proximation is discussed. In section 2.3, the modified MLS approximation with second order
polynomial basis is presented. In section 2.4, we present a computational method for solving
linear and nonlinear mixed integral equations on 2D regular and irregular domains. Section 2.5
is devoted to the error estimate of the applied method. The numerical experiments are carried
out in section 2.6, which will be used to verify the theoretical results obtained in section 2.5.
Finally, this chapter is ended in Section 2.7.

2.2 Two-dimensional classical MLS approximation

The moving least squares (MLS) approximation as a generalization of Shepard’s method [107]
is developed by Lancaster and Salkauskas [76]. It is one of the meshless methods since it is
based on a set of scattered points instead of interpolation on elements. We use this method to
approximate two variable functions X = {(x1, y1), (x2, y2), ..., (xn, yn)}. Let u : D → R be a
continuous real function and the points (xi, yi, ui), i = 1, 2, ...., n are known. The main point of
this meshless method is to estimate a function u(x, y) for every point (x, y) ∈ D based on the
weighted least square.
Let Pq be the space of polynomials of degree q ≪ n. The MLS approximation uh(x, y) of u(x, y),
∀(x, y) ∈ D, can be given as

uh(x, y) = pT (x, y)a(x, y), ∀(x, y) ∈ D, (2.2.1)

where
p(x, y) = [p0(x, y), p1(x, y), ....., pm(x, y)]T ,

and {pi(x, y)}mi=0 is a complete basis of Pq of order m and,

a(x, y) = [a0(x, y), a1(x, y), ....., am(x, y)],

are unknown coefficients to be determined. In this paper we use monomials and Chebyshev
polynomials as a basis. The MLS method presents the approximate function uh(x, y) in a
particularized class of differentiable functions which minimize the quantity

J(x, y) =
n∑

i=1

ωi(x, y)(p
T (xi, yi)a(x, y)− ui)2 (2.2.2)

= [P.a(x, y)− u]T .W.[P.a(x, y)− u],

where ωi(x, y) is the weight function associated with node i, (xi, yi) denotes the value of (x, y)
at node i, n is the number of nodes in D with wi(x, y) > 0 and ui are the fictitious nodal values,
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but not the nodal values of the unknown trial function uh(x, y) i.e. uh(xi, yi) ̸= ui . The matrix
P and W are defined as

P = [pT (x1, y1), p
T (x2, y2), ..., p

T (xn, yn)]
T
n×(m+1)

W = diag(ωi(x, y)), i = 1, 2, ...n.

A necessary condition for J(x, y) to be minimized is ∇J = 0, which implies the following normal
equation

n∑
i=1

ωi(x, y)p(xi, yi)p
T (xi, yi)a(x, y) =

n∑
i=1

ωi(x, y)p(xi, yi)ui. (2.2.3)

Using the moment matrix

A(x, y) =

n∑
i=1

ωi(x, y)p(xi, yi)p
T (xi, yi),

and setting
u = [u1, u2, ....., un]

T ,

and

B(x, y) = [w1(x, y)p(x1, y1), w2(x, y)p(x2, y2),

..., wn(x, y)p(xn, yn)],

(2.2.3) becomes as follows
A(x, y)a(x, y) = B(x, y)u, (2.2.4)

and by selecting the nodal points such that A(x) is nonsingular, (2.2.4) can be written as

a(x, y) = A−1(x, y)B(x, y)u. (2.2.5)

Substituting (2.2.5) into (2.2.1) we obtain

uρ(x, y) = p(x, y)TA−1(x, y)B(x, y)u =

n∑
i=1

ϕi(x, y)ui, (2.2.6)

where

ϕi(x, y) =
m∑
k=1

pk(x, y)[A
−1(x, y)B(x, y)]ki,

ϕi(x, y) are called the shape functions of the MLS approximation, corresponding to the nodal
point (xi, yi). If wi(x, y) ∈ Cr(D) and pk(x, y) ∈ Cs(D), i = 1, ...., n, k = 1, ....,m then ϕi(x, y) ∈
Cmin(r,s)(D). In two-dimensional case, if we choose n = 2 that means the point is covered by
only two nodal support while the basis is linear (m = 3), then the matrix can not be inverted.
Therefore, the condition for moment matrix to be not singular is that n > m. Now, for the
quadratic basis(m=6), the moment matrix is non-singular if there are at least 6 non-collinear
nodes in the support domain. Nevertheless, some nodal distributions can still lead to singular
moment matrices even if enough nodes are included in the support domain, for example, if the
nodes are collinear or the nodes are distributed on two parallel lines in 2D. For these reasons,
the nodes have to be arranged in different coordinate directions, also we can enlarge the support
domains to include more nodes. Despite that, this solution leads to higher approximation error.
In this sense, Joldes [61] proposed a modified MLS with second order polynomial basis.
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2.3 Two-dimensional modified MLS approximation

The proposed MMLS method will avoid singular moment matrix in the context of MLS based on
meshless methods. This modification allows quadratic base functions to be used with the same
size of the support domain as linear base functions by adding additional terms based on the
coefficients of the polynomial base functions, leading to have a better approximation capability.

• The coefficients of the quadratic basis is defined as p(x) = [1, x, y, xy, x2, y2]T .

• The unknown coefficients aj are defined as a(x) = [a0, ax, ay, axy, ax2 , ay2 ]
T .

The moment matrix is singular means that the classical MLS minimization has multiple solu-
tions. So, the functional (2.2.2) does not include sufficient constraints to assure a unique solution
for the given node distribution. To overcome this problem, we propose to add additional con-
straints to the functional (2.2.2). Therefore, we obtain

J̄(x, y) =

n∑
i=1

ωi(x, y)[u
ρ(x, y)− ui]2 + νx2a2x2 + νxya

2
xy + νy2a

2
y2 (2.3.1)

where ν = [νx2 νxy νy2 ] is a vector of positive weights for the additional constraints. The
choice of the additional constraints ensures that, when the classical MLS moment matrix is
singular, we choose the solution having the coefficients for the higher order monomials in the
bases equal to zero. It assures that a solution with zero coefficients for some higher order
monomials is selected when the classical MLS moment matrix has multiples solutions. By
selecting ν as a small positive number we can guarantee that the classical MLS solution is little
changed and the moment matrix is nonsingular. The modified matrix and the matrix form are

J̄(x, y) = [P.a− ui]T .W.[P.a− ui] + aTMa, i = 1, 2, ..., n (2.3.2)

and

M =

[
O3,3 O3,3

O3,3 diag(ν)

]
where O3,3 is the zero matrix and the last three diagonal entries equal to ν.
By minimizing the functional (2.3.2), the coefficients a(x, y) will be determined by

Ā(, y)a(x, y) = B(x, y)ui,

where
Ā = P T .W.P +M. (2.3.3)

The modified approximation can be written as follows

ūh(x, y) =
n∑

i=1

ϕ̄i(x, y)ui, (x, y) ∈ D̄, (2.3.4)

with the MMLS shape functions defined by

Φ̄(x, y) = [ϕ̄1(x, y), ϕ̄2(x, y)...ϕ̄n(x, y)] = pT (x, y)(P T .W.P +M)−1B(x, y).

Lemma 2.3.1. The moment matrix Ā defined in (2.3.3) is nonsingular.

Proof. (2.3.3) can be formulated as follows

Ā = P̄ T W̄ P̄ , (2.3.5)
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where the matrices W̄ and P̄ are defined as

W̄ =

[
W O3,3

O3,3 diag(ν)

]
, (2.3.6)

P̄ =


1 x1 y1 x2

1 y21 x1y1
...

...
...

...
...

...

1 xn yn x2
n y2n xnyn

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. (2.3.7)

(2.3.5) can be rewritten in the following form

Ā = P̄ TDTDP̄ = Y TY, (2.3.8)

where
D = sqrt(W̄ ), Y = DP̄ .

W̄ is a diagonal matrix positive and with non-zeros diagonal elements, then by using the matrix
rank properties, we conclude

rank(Y ) = rank(P̄ ). (2.3.9)

From (2.3.8) and (2.3.9), we get

rank(Ā) = rank(Y TY ) = rank(Y ). (2.3.10)

Using (2.3.9) and (2.3.10), we have

rank(Ā) = rank(P̄ ). (2.3.11)

(2.3.11 ) confirm that the matrix Ā will be nonsingular if the matrix P̄ have full rank (m=6).
In this case, we just need the following matrix

P ∗ =

1 x1 y1
...

...
...

1 xn yn


to have full rank. The last condition is the same one for the the classical moment matrix A with
linear bases.

Lemma 2.3.2. (See [61]) Let wi(x, y, z) ∈ Cr(D). If ν is a constant vector and the moment
matrix Ā is invertible at every point of D, then ūρ(x, y, z) ∈ Cr(D).

Generally, it is clear that if wi(x, y) ∈ Cr(D) and pk(x, y) ∈ Cs(D), i = 1, ...., n, k = 0, ....,m
then ϕ̄i(x, y) ∈ Cmin(r,s)(D), since the monomials bases have C∞ continuity, then the order of
continuity of the shape functions is determined by the weight function and u. we knew that ν is
a constant vector ( ν ∈ C∞). As a result, the order of continuity of the approximation function
is determined by that of the weight functions.

2.4 Numerical scheme

2.4.1 Numerical scheme on rectangular domain

2.4.1.1 2-D linear Fredholm-Volterra integral equation

Consider the following two-dimensional Fredholm-Volterra integral equation

u(x, y) +

∫ d

c

∫ b

a
K1(x, y, s, v)u(s, v) dsdv +

∫ y

c

∫ x

a
K2(x, y, s, v)u(s, v) dsdv = g(x, y),
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where (x, y) ∈ [a, b] × [c, d], the intervals [a, x], [c, y] are converted respectively to the fixed
intervals [a, b], [c, d] by the following linear transformations

s(x, δ) =
x− a
b− a

δ +
b− x
b− a

a, v(y, β) =
y − c
d− c

β +
d− y
d− c

c. (2.4.1)

Therefore, the equation takes the following form

u(x, y) +

∫ d

c

∫ b

a
K1(x, y, s, v)u(s, v) dsdv +

∫ d

c

∫ b

a
K̄2(x, y, s(x, δ), v(y, β))u(s(x, δ), v(y, β)) dδdβ

= g(x, y),

where
K̄2(x, y, s(x, δ), v(y, β)) =

x− a
b− a

y − c
d− c

K2(x, y, s(x, δ), v(y, β)).

If we replace u(x, y) by uh(x, y) we obtain

uh(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)u
h(s, v) dsdv+

∫ d

c

∫ b

a

K̄2(x, y, ξ(x, δ), v(y, β))u
h(s(x, δ), v(y, β)) dδdβ = g(x, y),

or equivalently

n∑
j=1

[
ϕj(x, y) +

∫ d

c

∫ b

a

K1(x, y, s, v)ϕj(s, v) dsdv

+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))ϕj(s(x, δ), v(y, β))dδdβ
]
uj = g(x, y).

Assume that this equation holds at (xi, yi)

n∑
j=1

[
ϕj(xi, yi)+

∫ d

c

∫ b

a

K1(xi, yi, s, v)ϕj(s, v) dsdv

+

∫ d

c

∫ b

a

K̄2(xi, yi, s(xi, δ), v(yi, β))ϕj(s(xi, δ), v(yi, β))dδdβ
]
uj = g(xi, yi),

where i = 1, 2, ..., n, we compute integrals numerically by using m1 points quadrature formula with the
quadrature points {sk}, {δk}, {vp}, {βp} and the quadrature weights {wk}, {wp}. Therefore, the above
equation can be written as follows

n∑
j=1

Fi,j ûj = g(xi, yi), i = 1, 2, ..., n,

where ûj are the approximate quantities of uj and F is a n by n matrix defined by

Fi,j = ϕj(xi, yi) +

m1∑
p=1

m1∑
k=1

K1(xi, yi, sk, vp)ϕj(sk, vp)ωkωp

+

m1∑
p=1

m1∑
k=1

K̄2(xi, yi, s(xi, δk), v(yi, βp))ϕj(s(xi, δk), v(yi, βp))ωkωp.

Let’s note
û = [û1, û2, ......, ûn]

T , g = [g1, g2, ...., gn]
T .

Then we have the following linear system of equations

Fû = g. (2.4.2)

Solving (2.4.2), we can approximate u(x, y) as in (2.2.6) by

uh(x, y) =

n∑
j=1

ϕj(x, y)ûj , (x, y) ∈ [a, b]× [c, d].
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2.4.1.2 2-D nonlinear Fredholm-Volterra integral equation

In this section, MLS and MMLS approximations are used to solve two dimensional nonlinear Fredholm-
Volterra integral equations of the second kind. Firstly, we transform the intervals [a, x], [c, y] in to
[a, b], [c, d] by the last linear transformations (2.4.1), then (2.1.1) takes the following form

u(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)Ψ1(s, v, u(s, v)) dsdv (2.4.3)

+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))Ψ2(s(x, δ), v(y, β), u(s(x, δ), v(y, β))dδdβ = g(x, y),

where

K̄2(x, y, s(x, δ), v(y, β)) =
x− a
b− a

y − c
d− c

K2(x, y, s(x, δ), v(y, β)).

We estimate the unknown function u(x, y) as

uh(x, y) =

n∑
j=1

αjϕj(x, y).

If in (2.4.3) we replace u(x, y) by uh(x, y), we obtain

n∑
j=1

αjϕj(x, y) +

∫ d

c

∫ b

a

K1(x, y, s, v)Ψ1

s, v, n∑
j=1

αjϕj(s, v)

 dsdv

+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))Ψ2

s(x, δ), v(y, β), n∑
j=1

αjϕj(s(x, δ), v(y, β))

 dδdβ

= g(x, y).

If this equation holds at the collocation points (xi, yi) we have

n∑
j=1

αjϕj(xi, yi) +

∫ d

c

∫ b

a

K1(xi, yi, s, v)Ψ1

s, v, n∑
j=1

αjϕj(s, v)

 dsdv

+

∫ d

c

∫ b

a

K̄2(xi, yi, s(xi, δ), v(yi, β))Ψ2

s(xi, δ), v(yi, β), n∑
j=1

αjϕj(s(xi, δ), v(yi, β))

 dδdβ

= g(xi, yi). (2.4.4)

Using a m1 points quadrature formula with the points {sk}, {δk}, {vp}, {βp} and weights {wk}, {wp} for
numerical integration, we obtain

n∑
j=1

ᾱjϕj(xi, yi) +

m1∑
p=1

m1∑
k=1

wkwpK1(xi, yi, sk, vp)Ψ1

sk, vp, n∑
j=1

ᾱjϕj(sk, vp)

 (2.4.5)

+

m1∑
p=1

m1∑
k=1

wkwpK̄2(xi, yi, s(x, δk), v(y, βp))Ψ2

s(xi, δk), v(yi, βp), n∑
j=1

ᾱjϕj(s(xi, δk), v(yi, βp))


= g(xi, yi).

The unknowns ᾱj can be found by solving the nonlinear system of algebraic equations which can be
solved by any nonlinear solver; in this work we have used the fsolve command of Matlab. So the values
of u(x, y) at any point (x, y) ∈ [a, b]× [c, d] can be approximated by

uh(x, y) =

n∑
j=1

ᾱjϕj(x, y)
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2.4.2 Numerical scheme on non rectangular domain

2.4.2.1 2-D linear Fredholm integral equation

Consider the following two-dimensional Fredholm integral equation

u(x, y)− λ
∫
D

K(x, y, µ, θ)u(µ, θ) dµdθ = g(x, y), (x, y) ∈ D. (2.4.6)

To apply to method in each sub-domain, (2.4.6) take the folowing form

u(x, y)− λ
d∑

e=1

∫ 1

0

∫ υ2,e(θ)

υ1,e(θ)

K(x, y, µ, θ)u(µ, θ) dµdθ = g(x, y), e = 1, ..., d, (x, y) ∈ D. (2.4.7)

The intervals [υ1,e(θ), υ2,e(θ)], e = 1, ..., d are converted to the fixed interval [0, 1] by using the change of
variable given by

s = µ(θ, σ) =
(
υ2,e(θ)− υ1,e(θ)

)
σ + υ1,e(θ) (2.4.8)

Therefore, (2.4.7) takes the following form

u(x, y)− λ
d∑

e=1

∫ 1

0

∫ 1

0

(
υ2,e(θ)− υ1,e(θ)

)
K(x, y, s, θ)u(s, θ) dσdθ = g(x, y).

If we replace u(x, y) by ūh(x, y) we obtain

ūh(x, y)− λ
d∑

e=1

∫ 1

0

∫ 1

0

(
υ2,e(θ)− υ1,e(θ)

)
K(x, y, s, θ)ūρ(s, θ) dσdθ = g(x, y),

or equivalently

n∑
j=1

[
ϕ̄j(x, y)− λ

d∑
e=1

∫ 1

0

∫ 1

0

(
υ2,e(θ)− υ1,e(θ)

)
K(x, y, s, θ)ϕ̄j(x, y, s, θ) dσdθ

]
uj = g(x, y).

If this equation holds at (xi, yi). Then, we have

n∑
j=1

[
ϕ̄j(xi, yi)− λ

d∑
e=1

∫ 1

0

∫ 1

0

(
υ2,e(θ)− υ1,e(θ)

)
K(xi, yi, s, θ)ϕ̄j(s, θ) dσdθ

]
uj = g(xi, yi),

where i = 1, 2, ..., n, we use m1 point quadrature formula with the quadrature points sh, θp and the
quadrature weights {wh}, {wp} for numerical integration. Therefore, the above equation can be reformu-
lated as follows

n∑
j=1

Fi,j ûj = g(xi, yi),

where ûj are the approximate quantities of uj and F is a matrix defined by

Fi,j = ϕ̄j(xi, yi)− λ
d∑

e=1

m1∑
p=1

m1∑
h=1

whwp

(
υ2,e(θp)− υ1,e(θp)

)
K(xi, yi, sh, θp)ϕ̄j(sh, θp).

Let’s note
û = [û1, û2, ......, ûn]

T , g = [g1, g2, ...., gn]
T .

Then we have the following linear system of equations

Fû = g. (2.4.9)

Solving (2.4.9), we can approximate u(x, y) as in (2.3.4) by

ūh(x, y) =

n∑
j=1

ϕ̄j(x, y)ûj , (x, y) ∈ D.
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2.4.2.2 2-D Fredholm-Hammerstein integral equation

We use Kumar and Sloan technique [67] for finding the approximate solution of the equation (2.1.2).

z(x, y) = Ψ(x, y, u(x, y)) = Ψ

(
x, y, g(x, y) + λ

∫
D

K(x, y, µ, θ)z(µ, θ)dµdθ

)
. (2.4.10)

To apply the method, we estimate the unknown function u(x, y) by the MLS approximation as

z(x, y) =

n∑
j=1

αj ϕ̄j(x, y). (2.4.11)

By substituting (2.4.11) into (2.4.10) and interpolating the collocation points (xi, yi), i = 0, ..., n. we have

n∑
j=1

αj ϕ̄j(xi, yi) = Ψ

xi, yi, g(xi, yi) + λ

∫
D

K(xi, yi, µ, θ)

n∑
j=1

αj ϕ̄j(µ, θ)dµdθ

 . (2.4.12)

Now the domain D can be replaced with their expressions given in (2.1.3). (2.4.12) becomes

n∑
j=1

αj ϕ̄j(xi, yi) = Ψ

xi, yi, g(xi, yi) + λ
d∑

e=1

∫ 1

0

∫ υ2,e(θ)

υ1,e(θ)

K(xi, yi, µ, θ)
n∑

j=1

αj ϕ̄j(µ, θ)dµdθ

 . (2.4.13)

We transform the intervals [υ1,e(θ), υ2,e(θ)] into [0, 1] by the linear transformations (2.4.8). Then (2.4.13)
take the following form

n∑
j=1

αj ϕ̄j(xi, yi) = Ψ

(
xi, yi, g(xi, yi) + λ

d∑
e=1

∫ 1

0

∫ 1

0

(
υ2,e(θ)− υ1,e(θ)

)

K(xi, yi, s, θ)

n∑
j=1

αj ϕ̄j(s, θ)dσdθ

)
. (2.4.14)

Using a m1-point quadrature formula with the points{sh}, {θp} and weights {wh}, {wp} for numerical
integration, we obtain

n∑
j=1

ᾱj ϕ̄j(xi, yi) = Ψ

(
xi, yi, g(xi, yi) + λ

d∑
e=1

m1∑
p=0

m1∑
h=0

whwp

(
υ2,e(θp)− υ1,e(θp)

)

K(xi, yi, sh, θp)

n∑
j=0

ᾱj ϕ̄j(sh, θp)

)
. (2.4.15)

Finding unknowns ᾱj by solving the nonlinear system of algebraic equations which can be solved by any
nonlinear solver. In this work we have used the fsolve command of Matlab. The following approximate
solution is given by

z̄(x, y) =

n∑
j=1

ᾱj ϕ̄j(x, y),

the approximation solution ūn(x, y) of un(x, y) is obtained by

ūn(x, y) = g(x, y) + λ

d∑
e=1

m1∑
p=0

m1∑
h=0

whwp

(
υ2,e(θp)− υ1,e(θp)

)
K(xi, yi, sh, θp)z̄(sh, θp).

2.5 Error estimates

(2.1.2) can be represented in abstract form as

(I −K)u = g,
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where

Ku =

∫ 1

0

∫ 1

0

K1(x, y, s, v)Ψ1(s, v, u(s, v)) dsdv +

∫ y

0

∫ x

0

K2(x, y, s, v)Ψ2(s, v, u(s, v)) dsdv.

We define the collocation operator Pn : C(D)→ Gn by

Pnu(x, y) =

n∑
i=1

αiΦi(x, y), (x, y) ∈ D,

where Gn = span{Φ1,Φ2, ...,Φn} and the coefficients αi can be determined by solving the linear system

Pnu(xi, yi) = u(xi, yi), i = 1, 2, ..., n.

we note that (2.4.4) can be written in the abstract form

(I − PnK)un = Png. (2.5.1)

Let the operator K be defined as

Knu =

m1∑
p=1

m1∑
k=1

wkwpK1(x, y, sk, vp)Ψ1 (sk, vp, u(sk, vp))

+

m1∑
p=1

m1∑
k=1

wkwpK̄2(x, y, s(x, δk), v(y, βp))Ψ2 (s(x, δk), v(y, βp), u(s(x, δk), v(y, βp))) .

we can write (2.4.5) in the operator form

(I − PnKn)ûn = Png. (2.5.2)

Let {Tn, T̂n} be the operators defined respectively by

Tnu = PnKu+ Png, T̂nu = PnKnu+ Png.

So (2.5.1), (2.5.2) can be written as

un = Tnun, ûn = T̂nûn.

We present the following Theorem from Vainikko [121] used to obtain the error analysis of the proposed
method.

Theorem 2.5.1. Let T and T̂ be continuous over an open set D in Banach space X. Let the equation

u = T̂ u,

has an isolated solution û0 in D and let the following conditions be satisfied:

• The operator T is Frechet differentiable in some neighborhood of the point û0 while the linear operator
I − T

′
(û0) is continuously invertible,

• For some η > 0 and 0 < q < 1 the following inequalities are valid (the number η > 0 assumed to be so
small that the sphere ∥u− û0∥ ≤ η is contained within D).

sup
∥u−û0∥≤η

∥(I − T
′
(û0))

−1(T
′
(u)− T

′
(û0))∥ ≤ q, (2.5.3)

α = ∥(I − T
′
(û0))

−1(T (û0)− T̂ (û0))∥ ≤ η(1− q), (2.5.4)

then the equation u = Tu has in the sphere ∥u− û0∥ ≤ η a unique solution u0. Moreover, the inequality

α

1 + q
∥u0 − û0∥ ≤

α

1− q
,

is valid.
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Theorem 2.5.2. let u0 ∈ C([0, 1]× [0, 1]) be an isolated solution of

u = Ku+ g,

Assume that 1 is not an eigenvalue of the linear operator T
′
(u0). Then for sufficiently large n, the operator

(I− T̂
′

n(u0))
−1 is invertible and there exists constant L > 0 independent of n such that ∥(I− T̂

′

n(u0))
−1∥ ≤

L.

Theorem 2.5.3. let u0 ∈ C([0, 1]× [0, 1]) be an isolated solution of

u = Ku+ g.

Assume that 1 is not an eigenvalue of the linear operator T
′
(u0). Then for sufficiently large n, the

approximate solution ûn of (2.5.2) is unique in B(u0, η) = {u : ∥u−u0∥ ≤ η} for some η > 0. Moreover,
there exists a constant 0 < q < 1 independent of n such that

φn

1 + q
≤ ∥u0 − ûn∥ ≤

φn

1− q
,

where φn = ∥(I − T̂
′

n(u0))
−1(T̂n(u0)− T (u0))∥.

Proof. Applying Theorem 2.5.2 we have (I − T̂
′

n(u0))
−1. exists and it is uniformly bounded i.e, there

exists a constant L > 0 such that
∥(I − T̂

′

n(u0))
−1∥ ≤ L.

Assume that ∥Pn∥ < p and ∥K′
n∥ < M, then

∥T̂
′

n(u)− T̂
′

n(u0)∥ = ∥Pn
′

nu− PnK
′

nu0∥

≤ ∥Pn∥∥K
′

nu−K
′

nu0∥
≤ pMη, ∀u ∈ B(u0, η).

Thus, we obtain
sup

∥u−û0∥≤η

∥(I − T̂
′

n(u0))
−1(T̂

′

n(u)− T̂
′

n(u0))∥ ≤ LpMη ≤ q,

where 0 < q < 1, which demonstrates (2.5.3) for η sufficiently small. Also we have

φn = ∥(I − T̂
′

n(u0))
−1(T̂n(u0)− T (u0))∥

≤ ∥(I − T̂
′

n(u0))
−1∥∥(T̂n(u0)− T (u0))∥

≤ L∥(T̂n(u0)− T (u0))∥.

Here, we will prove that ∥(T̂n(u0)− T (u0))∥ −→ 0 as n −→∞. Now consider

∥(T̂n(u0)− T (u0))∥ = ∥PnKnu0 + Pnf −Ku0 − g∥ (2.5.5)

≤ ∥Pn{Knu0 + g −Ku0 − g}∥+ ∥(Pn − I)(Ku0 + g)∥
≤ p∥Kn −K∥∥u0∥+ ∥Pnu0 − u0∥ −→ 0 as n −→∞

For sufficient large n we have βn ≤ η(1− q). Since (2.5.4) is satisfied. Then from Theorem 2.5.1 we have

φn

1 + q
∥ûn − u0∥ ≤

φn

1− q
.

We complete the error estimate by the following Theorem.

Theorem 2.5.4. let u0 ∈ Cq+1(D) be an isolated solution of the equation u = Ku + g and ûn be the
discrete MLS collocation method of u0. Then we have

∥ûn − u0∥L∞(D) ≤
Lp

1− q
∥Kn −K∥L∞(D)∥u0∥L∞(D) +

L

1− q
(1 + δ)Chq+1

X,D|u0|Cq+1(D). (2.5.6)
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Proof. We have

∥ûn − u0∥ ≤
φn

1− q
Using Eq. (2.5.5) and Theorems 2.5.3, 1.1.2, we obtain the estimate

∥ûn − u0∥L∞(D) ≤
φn

1− q

≤
∥(I − T̂

′
n(u0))

−1(T̂n(u0)− T (u0))∥L∞(D)

1− q

≤ L

1− q
∥(T̂n(u0)− T (u0))∥L∞(D)

≤ L

1− q
∥PN∥L∞(D)∥Kn −K∥L∞(D)∥u0∥L∞(D) +

L

1− q
∥Pnu0 − u0∥L∞(D)

≤ Lp

1− q
∥Kn −K∥L∞(D)∥u0∥L∞(D) +

L

1− q
(1 + δ)Chq+1

X,D|u0|Cq+1(D).

2.6 Numerical results

To show the validity of the method as a numerical tool. Linear and nonlinear Fredholm-Volterra integral

equations are solved. For numerical implementation we put hX =
1

n− 1
, then in computations of the

MLS method we put for linear case ρi = 2 × hX , for quadratic case ρi = 2.5 × hX , for degree 3 case
ρi = 3×hX , and for degree 4 case ρi = 4×hX , where hX is the distance between two consecutive nodes.
When we use the MMLS method, we take for quadratic case ρi = 2 × hX . Also, we use the 5-points
Gauss-Legendre quadratic rule for numerical integration and spline weight functions for approximating
integrals in the scheme. Furthermore, for computing shape function in MMLS method, we take νe = 10−9;
with e = 1; 2; 3 as weights of additional coefficients for MMLS, it should be pointed out that, this value
was selected experimentally. Accuracy of the numerical solutions can be worked out by measuring the
∥e∥∞ and e(x, y) norms which are defined by

∥e∥∞ = max |uex(x, y)− û(x, y)|, (x, y) ∈ D,
e(x, y) = |uex(x, y)− û(x, y)|, (x, y) ∈ D,

where û is the approximate solution of the exact solution uex. The rate convergence presented in this
work is defined as

Ratio =
ln(∥en∥∞)− ln(∥en′∥∞)

ln(hX)− ln(hX′ )
,

(∥en∥∞, ∥en′∥∞) are the maximum errors of the previous and the current row respectively. The ”Fsolve”
command is employed to solve the nonlinear system of algebraic equations. All calculations are done by
Matlab.

2.6.1 Applications on rectangular domain

Example 1. As the first example, consider the two-dimensional linear Fredholm-Volterra integral equa-
tion

u(x, y) +

∫ 1

0

∫ 1

0

cos(x− s) exp(v)u(s, v) dsdv

+
1

2

∫ y

0

∫ x

0

sin(x− s) exp(v − y)u(s, v) dsdv = g(x, y). (x, y) ∈ [0, 1],

where

g(x, y)) = sin(x) exp(−y) + y

4
exp(−y)

(
sin(x)− xcos(x)

)
+

1

4

(
2sin(x)− cos(2− x) + cos(x)

)
, 0 ≤ x, y ≤ 1.
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Table 2.1: Maximum errors using different values of n for Example 1

n hX
MLS approximation error MMLS approximation error
Linear basis Ratio Quadratic basis Ratio Quadratic basis Ratio

3× 3 0.50 1.43× 10−2 - 7.47× 10−3 - 2.83× 10−3 -

5× 5 0.25 4.41× 10−3 1.69 1.30× 10−3 2.52 4.77× 10−4 2.56

9× 9 0.12 1.22× 10−3 1.85 1.73× 10−4 2.90 6.36× 10−5 2.90

19× 19 0.05 2.54× 10−4 1.93 1.55× 10−5 2.97 7.08× 10−6 2.70

37× 37 0.02 6.46× 10−5 1.97 1.94× 10−6 2.99 9.17× 10−7 2.94

43× 43 0.02 4.75× 10−5 1.99 1.21× 10−6 3.06 5.36× 10−7 3.48

The function g(x, y) has been chosen such that the exact solution of the integral equation is uex(x, y) =
sin(x) exp(−y). The integral equation is solved on the square domain D = [0, 1]×[0, 1]. Numerical results
are presented in Table 2.1 in terms of ∥e∥∞ at different numbers of n, and Figure 2.1 is depicting the
absolute error with (n = 43× 43) points. As we expected, from Figure 2.1, the error near the boundary
increases which effects on the global error. As we can see, the results gradually converge to the exact
values as the number of nodes increases, and the obtained results by the MMLS method are better
than the results given by the MLS method. According to the Theorem 2.5.4, the ratio of error remains
approximately constant for the linear case O(h2X) and for the quadratic case O(h3X) as n→∞.
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(a)

(b)

(c)

Figure 2.1: Approximation error :(a) Linear basis(MLS), (b) Quadratic basis(MLS), (c)
Quadratic basis(MMLS) of Example 1

Example 2. Consider the following nonlinear Volterra-Fredholm integral equation by using the shifted
Chebyshev polynomials as basis
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u(x)−
∫ x

0

sin(x− s)cos(u(x)) ds − 1

8

∫ 1

0

(x− s)u(x) ds = g(x), x ∈ [0, 1],

where

g(x) =
49

48
− 17x

16
− 1

2

(
sin(x)(xcos(1) + sin(1))− xsin(1)cos(x)

)
.

The exact solution of this equation is uex(x) = 1− x.

Table 2.2: Maximum errors using different values of degree basis m for Example 2

n hX m = 1 m = 2 m = 3 m = 4

5 0.25 8.65× 10−4 3.56×10−5 3.65×10−6 1.37×10−6

9 0.12 2.89× 10−4 2.88×10−6 1.35×10−6 3.95×10−8

15 0.07 1.36 ×10−4 1.12×10−6 1.55×10−7 2.65×10−9

21 0.05 9.51 ×10−5 2.50×10−7 4.59×10−8 4.43×10−10

25 0.04 7.61 ×10−5 1.30×10−7 2.78×10−8 2.78×10−10

Table 2.2 shows ∥e∥∞ at the different numbers of nodes that are regularly employed in the segment.
According to the table, when the degree basis increases, the numerical results show the higher performance
of the MLS method with the Chebyshev basis, and also the results converge to the exact values as the
number of nodes increases.

Example 3. Consider the following two-dimensional nonlinear Fredholm-Volterra integral equation de-
fined as

u(x, y)−
∫ 1

0

∫ 1

0

(v − s)sin(x− y)u(s, v) ds dv

−
∫ y

0

∫ x

0

(xs2 + cos(v))u2(s, v) dsdv = g(x, y), 0 ≤ x, y ≤ 1,

where

g(x, y) = xsin(y)

(
1− 1

9
x2sin2(y)

)
+

1

10
x6
(
1

2
sin(2y)− y

)
+

1

6
sin(x− y)

(
2− 3sin(1) + cos(1)

)
.

Table 2.3: Maximum errors using different values of n for Example 3

n hX
MLS approximation error MMLS approximation error
Linear basis Ratio Quadratic basis Ratio Quadratic basis Ratio

3× 3 0.50 2.23× 10−2 - 1.08× 10−2 - 7.51× 10−3 -

4× 4 0.33 1.09× 10−2 1.76 3.89× 10−3 2.51 1.55× 10−3 3.89

5× 5 0.25 6.59× 10−3 1.74 1.56× 10−3 3.17 4.93× 10−4 3.98

9× 9 0.12 1.91× 10−3 1.78 1.89× 10−4 3.04 6.35× 10−5 2.95

12× 12 0.09 8.43× 10−4 2.56 8.04× 10−5 2.68 2.80× 10−5 2.57

18× 18 0.05 2.66× 10−4 2.64 2.07× 10−5 3.11 8.07× 10−6 2.43
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(a) (b)

(c)

Figure 2.2: Approximation error :(a) Linear basis(MLS), (b) Quadratic basis(MLS), (c)
Quadratic basis(MMLS) of Example 3

The exact solution is uex(x, y) = xsin(y). Table 2.3 shows the maximum errors for different values of
m and n that are regularly employed in the unit square domain, and the absolute error for (n = 18× 18)
is graphically shown in Figure 2.2. We can see that when the values of n increases, the maximum errors
decrease, the results of MMLS approximation converge more quickly to the true solution than that of
MLS approximation. The ratio of error remains constant for the linear case (≈ 2) and the quadratic case
(≈ 3). So the numerical results show that the proposed method will be of O(hq+1

X ) as it is expected in
Theorem 2.5.4.

Example 4. As the final example, we consider the following two-dimensional nonlinear Fredholm-
Volterra integral equation

u(x, y)−
∫ 1

0

∫ 1

0

exp(−x− y − 4)u2(s, v) ds dv

− 1

4

∫ y

0

∫ x

0

(ys+ xv)u(s, v) dsdv = g(x, y), (x, y) ∈ [0, 1]× [0, 1],

where

g(x, y) =
1

2
exp(y) + xy − 1

72
exp(−x− y − 4)

(
35

+ 9 exp(2)

)
− x2

48

(
4y3x− 3y + exp(y)(9y − 6) + 6

)
.

The analytic solution of this problem is uex(x, y) =
1

2
exp(y) + xy. The maximum errors using MLS and
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Table 2.4: Maximum errors using different values of n for Example 4

n hX
MLS approximation error MMLS approximation error
Linear basis Quadratic basis Quadratic basis

3× 3 0.50 2.44× 10−2 1.03× 10−3 5.39× 10−4

5× 5 0.25 7.99× 10−3 6.20× 10−4 6.31× 10−5

6× 6 0.20 5.60× 10−3 3.60× 10−4 2.19× 10−5

10× 10 0.11 1.91× 10−3 6.91× 10−5 4.68× 10−6

Table 2.5: Maximum errors using different values of ν and n = 5× 5 for Example 4

ν 10−6 10−8 10−9 10−10

∥e∥∞ 1.42× 10−4 6.34× 10−5 6.31× 10−5 6.31× 10−5

MMLS approximation are shown in Table 2.4, the absolute error with (n = 10 × 10) points is plotted
in figure 2.3. The results, presented in Table 2.5, support the maximum errors using different values of
ν when n = 5 × 5, this value was selected experimentally, we can see that MMLS approximation gives
better accuracy when we put ν as small positive numbers. As shown, from Table 2.4, the faster method is
modified moving least squares method, also as n (the number of nodes) increases, the error term decreases
in both MLS and MMLS approximation. Apparently, the method provides accurate numerical solutions
for mixed integral equations.

(a) (b)

(c)

Figure 2.3: Approximation error: (a) Linear basis(MLS), (b) Quadratic basis(MLS), (c)
Quadratic basis(MMLS) of Example 4
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2.6.2 Applications on non rectangular domain

Example 5. (see [40]) As the first example, consider (2.4.6) with the following

K(x, y, µ, θ) = (1− θ − µ)e−(µ+θ+x+y), λ = 1, (2.6.1)

g(x, y) = x2 + y2 − 1

3
(98− 36e)e−x−y−1, (2.6.2)

D =
{

(µ, θ) : 0 ≤ θ ≤ 1, 0 ≤ µ ≤ −θ + 1
}
. (2.6.3)
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  D

Figure 2.4: The consideration domain D for Example 5

Table 2.6: Numerical results for Example 5 with m1 = 2

(x, y)
e(x, y) of MMLS method e(x, y) of method [40]

n = 11 n = 20 n = 67 n = 1326

(0.0, 0.0) 4.09 ×10−5 1.04 ×10−8 1.70 ×10−10 7.23 ×10−3

(0.1, 0.1) 3.37 ×10−5 8.57 ×10−9 1.39 ×10−10 5.92 ×10−3

(0.2, 0.2) 2.75 ×10−5 7.02 ×10−9 1.14 ×10−10 4.84×10−3

(0.3, 0.3) 2.24 ×10−5 5.75 ×10−9 9.32 ×10−11 3.96×10−3

(0.4, 0.4) 1.82 ×10−5 4.70 ×10−9 7.71 ×10−11 3.25 ×10−3

(0.5, 0.5) 1.50 ×10−5 3.85 ×10−9 6.35 ×10−11 2.66 ×10−3

The exact solution is uex(x, y) = x2 + y2. Domain D is shown in Figure 2.4. Table 2.6 gives absolute
errors at different numbers of n when m1 = 2 using the quadratic spline weight function. We have
compared the errors of the present method with that in [40]. Figure 2.5 shows the domain for a different
number of nodal points. The results show that better accuracy is obtained with the present method by
increasing a number of collocation points.
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Figure 2.5: Node distribution for Example 5

Example 6. (See [6]) Consider (2.4.6) with the following

K(x, y, µ, θ) = µsin(θ) + 1 λ = 1, (2.6.4)

g(x, y) = x cos(y)− 0.2804057157, (2.6.5)

D =
{

(ξ, η) : 0 ≤ θ ≤ 1,

√
1

4
− (η − 1

2
)2 ≤ µ ≤

√(
1− 4(η − 1

2

)2
)
}
. (2.6.6)
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Figure 2.6: The consideration domain D for Example 6
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Table 2.7: Numerical results for Example 6 with different values of n and m1 = 2

n
∥e∥∞ of MMLS method ∥e∥∞ of method [6]

Quadratic weight functions Cubic weight functions GA weight functions

22 1.79 ×10−4 1.36 ×10−4 2.68×10−3

33 6.14 ×10−5 4.87 ×10−5 1.65×10−3

47 5.80 ×10−5 4.45×10−5 1.10×10−3

68 2.48×10−5 1.75×10−5 7.49×10−4

90 1.22 ×10−5 8.68 ×10−6 4.73×10−4

The exact solution is uex(x, y) = xcos(y). D is the crescent domain which is drawn in Figure 2.6.
The numerical results of this example are reported in Table 2.7. These results are presented in terms of
∥e∥∞ by using the quadratic and cubic spline weight functions. Also, these results are compared with
the method in [6] based on the use of the moving least squares (MLS) approximation. MMLS results
converge more quickly to the true solution than that of MLS approximation. The results confirm the
high accuracy of the present method.
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Figure 2.7: Node distribution for Example 6

Example 7. Consider (2.4.6) with the following

K(x, y, µ, θ) =
e−ysin(−x)
1 + y + 2ex

λ = 1, (2.6.7)

g(x, y) = xe−y + y − e−ysin(−x)
1 + y + 2ex

(0.190821 + 0.287982), (2.6.8)

D1 =

{
(µ, θ) : 0 ≤ θ ≤ 1, −

√
1

4
− (θ − 1

2
)2 +

1

2
< µ < −1

8

√
1− 4(θ − 1

2
)2 +

1

2

}
, (2.6.9)

D2 =

{
(µ, θ) : 0 ≤ θ ≤ 1,

1

8

√
1− 4(θ − 1

2
)2 +

1

2
≤ µ ≤

√
1

4
− (θ − 1

2
)2 +

1

2

}
. (2.6.10)
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Figure 2.8: The consideration domain for Example 7

Table 2.8: Numerical results for Example 7 with different values of n and m1 = 2

n
∥e∥∞ of MLS method ∥e∥∞ of MMLS method

Quadratic Cubic Quadratic Cubic

weight function weight function weight function weight function

8 7.54 ×10−3 6.43×10−3 1.19 ×10−3 1.56 ×10−3

19 4.16 ×10−3 3.29×10−3 1.04 ×10−4 2.08 ×10−5

35 321× 10−3 2.65 ×10−3 2.28× 10−5 4.71× 10−6

49 6.53× 10−4 4.18× 10−4 4.06× 10−6 2.01× 10−6

The exact solution is u(x, y) = xe−y + y. D = D1 ∪D2 is drawn in Figure 2.8. Figure 2.10 shows the
domain for different number of nodal points. The maximum errors using MLS and MMLS approximation
are shown in Table 2.8. The obtained errors for the different numbers of nodes are drawn in the logarithmic
mode in Figure 2.9. In this example, we use cubic and quadratic spline weight functions. For numerical
integration we choose m1 = 2. The numerical results confirm that the MMLS results converge more
quickly to the exact solution than that of MLS approximation.
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Figure 2.9: Comparison between MLS and MMLS methods for Example 7
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Figure 2.10: Node distribution for Example 7
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Example 8. Consider (2.4.6) with the following

K(x, y, µ, θ) =
θe−y−µsin(−x)
1 + y + 2ex

λ = 1, (2.6.11)

g(x, y) = xe−y + y − 0.0691965
(e−ysin(−x)
1 + y + 2ex

)
, (2.6.12)

D =

{
(µ, θ) : 0 ≤ θ ≤ 1,

√
1

4
− (θ − 1

2
)2 < µ <

√
1− θ2

}
. (2.6.13)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  D

Figure 2.11: The consideration domain D for Example 8
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Figure 2.12: Nodes distribution for Example 8
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Table 2.9: Maximum error and rate of convergence for Example 8 using MMLS method and
m1 = 2

n h
Quadratic spline weight function Cubic spline weight function RBF weight function
∥e∥∞ Ratio ∥e∥∞ Ratio ∥e∥∞ Ratio

9 0.50 2.13 ×10−3 - 2.14 ×10−3 - 9.51 ×10−4 -

36 0.20 2.12 ×10−4 2.51 1.59 ×10−4 2.83 5.85 ×10−5 3.04

55 0.15 5.89 ×10−5 5.13 4.30 ×10−5 5.24 2.04 ×10−5 4.22

80 0.12 4.17 ×10−5 1.61 2.90 ×10−5 1.84 1.15 ×10−5 2.68
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Figure 2.13: A comparison between weight functions for Example 8

The exact solution is uex(x, y) = xe−y + y. The integral equation is solved on the irregular domain
depicted in figure 2.11. Figure 2.12 shows the node distribution. Table 4.1 presented the maximum

error at some particular points for m1 = 2. Here we put h =
1√
n− 1

. A graphical comparison be-

tween spline and RBF weight functions is shown in figure 2.13. Numerical MMLS results show that the
better results are obtained with RBF weight functions which converge more quickly to the exacte solution.

Example 9. Consider (2.1.1) with the following

K(x, y, µ, θ) = e−x−y−4 λ = 1, (2.6.14)

Φ(µ, θ, u(µ, θ)) = u2(µ, θ), (2.6.15)

g(x, y) =
1

2
ey + xy − e−x−y−4(0.275604 + 0.499492), (2.6.16)

D1 =

{
(µ, θ) : 0 ≤ θ ≤ 1, −1

2

√
1− (θ − 1)2 +

1

2
< µ <

1

2

√
1− θ2

}
, (2.6.17)

D2 =

{
(µ, θ) : 0 ≤ θ ≤ 1, −1

2

√
1− θ2 + 1 ≤ µ ≤ 1

2

√
1− (θ − 1)2 +

1

2

}
. (2.6.18)
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Figure 2.14: The consideration domain for Example 9

Table 2.10: Numerical results for Example 9 with different values of n and m1 = 2

n
∥e∥∞ of MLS method ∥e∥∞ of MMLS method

Quadratic Cubic Quadratic Cubic

weight function weight function weight function weight function

11 5.48 ×10−3 4.31 ×10−3 8.97 ×10−4 5.91 ×10−4

21 1.96 ×10−3 1.51 ×10−3 1.47 ×10−4 8.51 ×10−5

39 6.42 ×10−4 7.60×10−4 9.94× 10−5 6.05 ×10−5

71 2.23 ×10−4 1.72× 10−4 2.19× 10−5 1.83 ×10−5

The exact solution is uex(x, y) =
1

2
ey + xy. D = D1 ∪ D2 is drawn in Figure 2.14. Table 2.10

illustrates the maximum error for different values of nodes by using MMLS and MLS approximations.
The obtained errors are drawn in the logarithmic mode in Figure 2.15; here we use m1 = 2 for numerical
integration. Figure 2.16 presented the distribution of nodal points. As shown, from Table 2.10, the faster
method is modified moving least squares method.
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Figure 2.15: Comparison between MLS and MMLS methods for Example 9
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Figure 2.16: Node distribution for Example 9

Example 10. As the final example, consider the following two dimensional Fredholm-Hammerstein in-
tegral equation (2.1.1) with the following

K(x, y, µ, θ) = θ λ = 1, (2.6.19)

Φ(µ, θ, u(µ, θ)) = u2(µ, θ), (2.6.20)

g(x, y) = xsin(y)− (0.0340488 + 0.00193779), (2.6.21)

D1 =

{
(µ, θ) : 0 ≤ θ ≤ 1,

−1
4

(θ − 1) < µ <
−1
4

(θ − 2)

}
, (2.6.22)

D2 =

{
(µ, θ) : 0 ≤ θ ≤ 1,

1

4
(θ + 2) ≤ µ ≤ 1

4
(θ + 3)

}
. (2.6.23)
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Figure 2.17: The consideration domain D for Example 10

Table 2.11: Numerical results for Example 10 with different values of n and with m1 = 2

N
∥e∥∞ of MMLS method

Quadratic weight function Cubic weight function

9 2.07 ×10−3 1.53×10−3

28 4.44 ×10−4 4.09×10−4

39 5.60× 10−5 4.52×10−5

65 2.57× 10−5 2.17 ×10−5

The exact solution is uex(x, y) = xsin(y). D = D1 ∪D2 is drawn in Figure 2.17. The maximum
error by using the MMLS method is displayed in Table 2.11 for different values of n. The distribution of
nodal points is plotted in Figure 2.18. In this example, we put m1 = 2. The results, plotted in Table 2.12,
support the maximum error for different values of ν when n = 39, this value was selected experimentally.
So it is clear that MMLS approximations give better accuracy when we put ν as a small positive number.

Table 2.12: Numerical results for Example 10 using different values of ν and n = 39

ν 10−5 10−6 10−8 10−9 10−10

∥e∥∞ 3.76× 10−3 5.68× 10−4 5.60× 10−5 5.49× 10−5 5.55× 10−5
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Figure 2.18: Node distribution for Example 10

2.7 Conclusion

In this chapter, two meshless approaches called moving least squares and modified moving least-squares
approximation are applied for solving linear and nonlinear Fredholm-Volterra integral equations on 2D
regular and irregular domains. These approaches don’t need any background interpolation or approxi-
mation cells and they don’t depend to the geometry of the domain. Comparing the results obtained by
these methods with the results obtained by the exact solution shows the efficiency and good accuracy of
the MMLS scheme for solving a system of functional equations.
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Chapter 3

An implementation of modified
moving least square for solving
multidimensional mixed integral
equations in 3D hypercube domains

In this chapter, the three-dimensional (3-D) modified moving least square method is developed for solving
the three-dimensional linear and nonlinear Volterra-Fredholm integral equations of the second kind. This
approach is very convenient for solving integral equations in high dimensions and it does not require
any need for mesh connectivity. The size of the support used is the only factor that has a significant
effect on the maximum errors of the MLS method. To overcome this problem, the MMLS approach
with a nonsingular moment matrix is applied to obtain better results than MLS approximation on using
the best support, then applying the method in three dimensions can be easily achieved. The numerical
experiments of the MMLS and classical MLS techniques are presented to show the difference between
both methods for multi-dimensional problems. The convergence analysis is provided and some numerical
tests are given to prove the applicability of this technique.

The results obtained in this chapter are presented in the research article [31], in collaboration with
Rachid El Jid and Abdelkarim Hajjaj.

3.1 Introduction

The multi-dimensional integral equations can be arisen in many branches of sciences and provide an
important tool for modeling many problems in mathematics, physics, and engineering. These equations
appear in many branches of applied science such as, determination of elastic waves [21], methods for
solving electromagnetic problems [20, 125], applications to heat and mass transfer problems [58], pre-
dicting water structure around molecules [79], the reformulation of an asexual population in a changing
environment [118] and the investigation of population growth in a closed model [114]. Three-dimensional
integral equations are generally difficult to be solved analytically, for this reason. In this research, we
expand the MMLS method for solving a class of multi-dimensional integral equation on the form

• Three-dimensional linear Volterra-Fredholm integral equations of the second kind

u(x, y, z)− λ1
∫ x

0

∫ y

0

∫ z

0

K1(x, y, z, µ, θ, ν)u(µ, θ, ν) dνdθdµ

− λ2
∫ 1

0

∫ 1

0

∫ 1

0

K2(x, y, z, µ, θ, ν)u(µ, θ, ν) dνdθdµ = g(x, y, z), (3.1.1)

where λ1, λ2 are real numbers, alsoK1, K2 and g defined respectively on D = [0, 1]×[0, 1]×[0, 1], u
is an unknown function and N = {(x, y, z, µ, θ, ν), 0 ≤ µ ≤ x ≤ 1, 0 ≤ θ ≤ y ≤ 1, 0 ≤ ν ≤ z ≤ 1}.

• Three-dimensional nonlinear mixed Volterra-Fredholm integral equations of the second kind

u(x, y, z)− λ
∫ x

0

∫ 1

0

∫ 1

0

K(x, y, z, µ, θ, ν)Ψ

(
µ, θ, ν, u(µ, θ, ν)

)
dνdθdµ = g(x, y, z), (3.1.2)
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λ is a real number, g,K and Ψ are assumed to be given. u is an unknown function and S(D) =
{(x, y, z, µ, θ, ν), 1 ≤ µ ≤ x ≤ 1, (y, z, θ, ν) ∈ [0, 1]}. The following assumption is made:

|Ψ(x, y, z, u1)−Ψ(x, y, z, u2)| ≤ C1|u1 − u2|, (3.1.3)

where Ψ is lipschitz with respect to the fourth variable.

To avoid any surface discretization or mesh connectivity, the meshless methods have gained more atten-
tion, particularly moving least squares (MLS) method, it has been applied in many branches of modern
sciences, such as surface construction [2], function approximation [77] and meshless (meshfree) methods
[6, 68, 83]. Nevertheless, the moment matrix in MLS method may be singular because of the small
number of points used in the local support. In this work, we propose the modified moving least square
method (MMLS) to overcome this difficulty and finding the best support, then the results converge more
quickly to the exact solution and give better computational efficiency and accuracy than that of MLS
approximation.

Computational complexity of mathematical operations seems to be the most principal difficulty to
approximate integral equations in higher dimensions. Then a few numerical methods can be efficient
and applicable to solve the high dimensional problems. In [28], the meshfree method based on the use
of radial basis functions was applied to the solution of three-dimensional Fredholm integral equations.
In [91] the modified block-pulse functions were investigated to the three-dimensional Volterra-Fredholm
integral equations, and in [1] a new pseudo spectral technique was presented for the three-dimensional
integral equations (3D-IEs). The new idea in this paper is to expand MMLS method to approximate
3D nonlinear Volterra-Fredholm integral equations, this method does not arise the difficulties for higher
dimensional problems because of the simple adaption of the MMLS and it is more flexible for most classes
of multi-dimensional integral equations.

This work is organized as follows: We briefly describe the three-dimensional MLS method in Section
3.2. In the Section 3.3, the three-dimensional modified moving least square approximation is presented.
The computational method for solving linear and nonlinear three-dimensional Volterra-Fredholm integral
equations are introduced in Section 3.4. Section 3.5 investigates the error estimate of the present method.
Some numerical examples are presented in Section 3.6. We ended the chapter in Section 3.7.

3.2 Three-dimensional MLS approximation

In this work, the moving least squares approximation is used to estimate a function of three variables
X = {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)} on the cubic form D = [0, 1]× [0, 1]× [0, 1]. Let u : D → R
be a continuous real function and points (xi, yi, zi), i = 1, 2, ..., n are known. The main point of this
meshless method is to approximate a function u(x, y, z) for every point (x, y, z) ∈ D based on the weighted
least square. Let Pq be the space of polynomials of degree q ≪ n. The MLS approximation uh(x, y, z) of
u(x, y, z), ∀(x, y, z) ∈ D, can be given as

uh(x, y, z) = pT (x, y, z)a(x, y, z), ∀(x, y, z) ∈ D, (3.2.1)

where
pT (x, y, z) = [p0(x, y, z), p1(x, y, z), ..., pq(x, y, z)],

and {pi(x, y, z)}qi=0 is a complete basis of Pq and

a(x, y, z) = [a0(x, y, z), a1(x, y, z), ..., aq(x, y, z)],

are unknown coefficients to be determined. The MLS method presents the approximate function uh(x, y, z)
in a particularized class of differentiable functions which minimizes the quantity

J(x, y, z) =

n∑
i=1

ωi(x, y, z)(p
T (xi, yi, zi)a(x, y, z)− ui)2 (3.2.2)

= [P.a(x, y, z)− u]T .W.[P.a(x, y, z)− u],

Where ωi(x, y, z) is the weight function associated with node i, (xi, yi, zi) denotes the value of (x, y, z)
at node i, n is the number of nodes in D with wi(x, y, z) > 0 and ui are the fictitious nodal values. The
matrix P and W are defined as

P = [pT (x1, y1, z1), p
T (x2, y2, z2), ..., p

T (xn, yn, zn)]
T
n×(q+1),

W = diag(ωi(x, y, z)), i = 1, 2, ..., n.
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A necessary condition for J(x, y, z) to be minimized is ∇J = 0, which implies the following normal
equation

n∑
i=1

ωi(x, y, z)p(xi, yi, zi)p
T (xi, yi, zi)a(x, y, z) =

n∑
i=1

ωi(x, y, z)p(xi, yi, zi)ui, (3.2.3)

Using the moment matrix

A(x, y, z) =

n∑
i=1

ωi(x, y, z)p(xi, yi, zi)p
T (xi, yi, zi),

and setting
u = [u1, u2, ..., un]

T ,

and
B(x, y, z) = [w1(x, y, z)p(x1, y1, z1), w2(x, y, z)p(x2, y2, z2), ..., wn(x, y, z)p(xn, yn, zn)],

(3.2.3) becomes as follows
A(x, y, z)a(x, y, z) = B(x, y, z)u, (3.2.4)

and by selecting the nodal points such that A(x) is nonsingular, (3.2.4) can be written as

a(x, y, z) = A−1(x, y, z)B(x, y, z)u. (3.2.5)

Substituting (3.2.5) into (3.2.1) we obtain

uρ(x, y, z) = p(x, y, z)TA−1(x, y, z)B(x, y, z)u =

n∑
i=1

ϕi(x, y, z)ui, (x, y, z) ∈ D, (3.2.6)

where

ϕi(x, y, z) =

q∑
k=1

pk(x, y, z)[A
−1(x, y, z)B(x, y, z)]ki,

ϕi(x, y, z) are called the shape functions of the MLS approximation.

3.3 Three-dimensional modified MLS approximation

A necessary condition for the moment matrix to be nonsingular is that n ≥ q at any node. For three-
dimensional domains, for example on a linear basis, each point is covered by at least 3 non-aligned node
supports and 9 non-aligned node supports for a quadratic basis. Practically, this condition imposes a
lower limit on the size of the support domain; the supports must be large enough so that each point
is sufficiently covered. Therefore, the computation of the MLS shape functions needs the inverse of the
moment matrix which seems more difficult in 3-D space. In this case, Joldes [61] suggested a modified
MLS method with an invertible matrix. In this chapter, we restrict ourselves to expand this technique
in 3D surfaces. Additional constraints are added in this modification and the coefficients are defined
respectively as

• The linear basis (q = 3) p(x) = [1, x, y, z]T ,

• The quadratic basis (q = 9) p(x) = [1, x, y, z, xy, xz, yz, x2, y2, z2]T .

The unknown coefficients aj are defined as

a(x) = [a1, ax, ay, az, axy, azy, axz, ax2 , ay2 , az2 ]T .

The moment matrix is singular means that the classical MLS minimization has multiple solutions, so
the functional (3.2.2) does not include enough constraints to assure a unique solution for the given node
distribution. To overcome this problem, we propose to add additional constraints to the functional (3.2.2).
Therefore, (3.2.2) can be represented as follows

J̄(x, y, z) =

n∑
i=1

ωi(x, y, z)[u
h(x, y, z)−ui]2+νx2a2x2 +νy2ay2 +νz2a2z2 +νxya

2
xy +νzya

2
zy +νxza

2
xz (3.3.1)
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where ν = [νx2 νy2 νz2 νxy νzy νxz] is a vector of positive weights for the additional constraints. By
choosing ν as a small positive number we can assure that the classical MLS solution is small changed
and the moment matrix is invertible.
The modified matrix and the matrix form of (3.3.1) are

J̄(x, y, z) = [P.a− ui]T .W.[P.a− ui] + aTMa, i = 1, 2, ..., n (3.3.2)

and

M =

[
O4,4 O4,6

O6,4 diag(ν)

]
O is the zero matrix and the last six diagonal entries equal to ν.
By minimizing the functional (3.3.2), the coefficients a(x, y, z) defined by

Ā(x, y, z)a(x, y, z) = B(x, y, z)ui,

where
Ā = PT .W.P +M.

The modified approximation can be determined as follows

ūh(x, y, z) =

n∑
i=1

ϕ̄i(x, y, z)ui, (3.3.3)

where the MMLS shape functions is given by

Φ̄(x, y, z) = [ϕ̄1(x, y, z), ϕ̄2(x, y, z), ..., ϕ̄n(x, y, z)]

= pT (x, y, z)(PT .W.P +M)−1B(x, y, z).

Remark 2. The proof of nonsingular matrix Ā is shown in [30].

In this work, we use the following different weight functions
The cubic spline weight function

wi(x, y, z) =


2

3
− 4

(
di
ρi

)2

+ 4

(
di
ρi

)3

, si 0 ≤ di ≤
1

2
ρi,

4

3
− 4

(
di
ρi

)
+ 4

(
di
ρi

)2

− 4

3

(
di
ρi

)3

, si
1

2
ρi < di ≤ ρi,

0, si di > ρi.

The quadratic spline weight function

wi(x, y, z) =

 1− 6

(
di
ρi

)2

+ 8

(
di
ρi

)3

− 3

(
di
ρi

)4

, si 0 ≤ di ≤ ρi,

0, si di > ρi.

The RBF weight function

wi(x, y, z) =

{
(1− di)6

(
6 + 36di + 82d2i + 72d3i + 30d4i + 5d5i

)
, si 0 ≤ di ≤ ρi,

0, si di > ρi.

where di =
√
(x− xi)2 + (y − yi)2 + (z − zi)2 (the Euclidean distance between nodes), ρi is the size of

the support domain.
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Figure 3.1: 3× 3× 3 uniformly distributed nodes on the cub domain and the red sphere is the
support of the central node

3.4 Numerical scheme

3D linear mixed Volterra-Fredholm integral equation

Consider the following three-dimensional Volterra-Fredholm integral equation on the form

u(x, y, z)− λ1
∫ x

0

∫ y

0

∫ z

0

K1(x, y, z, µ, θ, ν)u(µ, θ, ν) dνdθdµ

− λ2
∫ 1

0

∫ 1

0

∫ 1

0

K2(x, y, z, µ, θ, ν)u(µ, θ, ν) dνdθdµ = g(x, y, z), (x, y, z) ∈ D.

The intervals [0, x], [0, y], [0, z] are converted respectively to the fixed intervals [0, 1], [0, 1], [0, 1] by the
following linear transformations

µ(x, δ) = xδ, θ(y, σ) = yσ, ν(z, α) = zα,

then the above equation can be reformulated as

u(x, y, z)− λ1
∫ 1

0

∫ 1

0

∫ 1

0

K̄1

(
x, y, z, µ(x, δ), θ(y, σ), ν(z, α)

)
u
(
µ(x, δ), θ(y, σ), ν(z, α)

)
dαdσdδ

− λ2
∫ 1

0

∫ 1

0

∫ 1

0

K2(x, y, z, µ, θ, ν)u(µ, θ, ν) dνdθdµ = g(x, y, z), (3.4.1)

where
K̄1

(
x, y, z, µ(x, δ), θ(y, σ), ν(z, α)

)
= xyzK1

(
x, y, z, µ(x, δ), θ(y, σ), ν(z, α)

)
.

If we replace u(x, y, z) by ūh(x, y, z), we obtain

ūh(x, y, z)− λ1
∫ 1

0

∫ 1

0

∫ 1

0

K̄1

(
x, y, z, µ(x, δ), θ(y, σ), ν(z, α)

)
ūh
(
µ(x, δ), θ(y, σ), ν(z, α)

)
dαdσdδ

− λ2
∫ 1

0

∫ 1

0

∫ 1

0

K2(x, y, z, µ, θ, ν)ū
h(µ, θ, ν) dνdθdµ = g(x, y, z), (3.4.2)
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or equivalently

n∑
j=1

[
ϕ̄j(x, y, z)− λ1

∫ 1

0

∫ 1

0

∫ 1

0

K̄1

(
x, y, z, µ(x, δ), θ(y, σ), ν(z, α)

)
ϕ̄j

(
µ(x, δ), θ(y, σ), ν(z, α)

)
dαdσdδ − λ2

∫ 1

0

∫ 1

0

∫ 1

0

K2(x, y, z, µ, θ, ν)

ϕ̄j(µ, θ, ν) dνdθdµ

]
uj = g(x, y, z). (3.4.3)

If this equation holds at (xi, yi, zi), so we obtain

n∑
j=1

[
ϕ̄j(xi, yi, zi)− λ1

∫ 1

0

∫ 1

0

∫ 1

0

K̄1

(
xi, yi, zi, µ(xi, δ), θ(yi, σ), ν(zi, α)

)
ϕ̄j

(
µ(xi, δ), θ(yi, σ), ν(zi, α)

)
dαdσdδ − λ2

∫ 1

0

∫ 1

0

∫ 1

0

K2

(
xi, yi, zi, µ, θ, ν

)
ϕ̄j
(
µ, θ, ν

)
dνdθdµ

]
uj = g(xi, yi, zi). i = 1, 2, ..., n. (3.4.4)

We utilize m1 point quadrature formula with the quadrature points δh, σp, αk, µh, θp, νk and the quadra-
ture weights {wh}, {wk}, {wp} for numerical integration. Then the equation can be represented as follows

n∑
j=1

Fi,j ûj = g(xi, yi, zi), i = 1, 2, ..., n,

where ûj are the approximate quantities of uj and F is a matrix given by

Fi,j =

[
ϕ̄j(xi, yi, zi)− λ1

m1∑
h=1

m1∑
p=1

m1∑
k=1

whwkwpK̄1

(
xi, yi, zi, µ(xi, δh), θ(yi, σp), ν(zi, αk)

)
ϕ̄j

(
µ(xi, δh), θ(yi, σp), ν(zi, αk)

)
− λ2

m1∑
h=1

m1∑
p=1

m1∑
k=1

whwkwpK2(xi, yi, zi, µh, θp, νk)

ϕ̄j(µh, θp, νk)

]
.

where
û = [û1, û2, ..., ûn]

T ,

g = [g1, g2, ..., gn]
T .

So the linear system of equations can be reformulated as

Fû = g. (3.4.5)

Solving (3.4.5), we can approximate u(x, y, z) as in (3.3.3) by

ūh(x, y, z) =

n∑
j=1

ϕ̄j(x, y, z)ûj , (x, y, z) ∈ D.

3D nonlinear mixed Volterra-Fredholm integral equation

We utilize Kumar and Sloan approach [67] to solve three-dimensional nonlinear mixed Volterra-Fredholm
integral equations of the second kind (3.1.2).

s(x, y, z) = Ψ
(
x, y, z, u(x, y, z)

)
= Ψ

(
x, y, z, g(x, y, z) + λ

∫ x

0

∫ 1

0

∫ 1

0

K(x, y, z, µ, θ, ν)s(µ, θ, ν) dνdθdµ

)
. (3.4.6)
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To approximate the solution of this integral equation, we replace the unknown function s(x, y, z) by the
modified approximation given by

s(x, y, z) =

n∑
j=1

αj ϕ̄j(x, y, z). (3.4.7)

By replacing (3.4.7) into (3.4.6) and interpolating the collocation points (xi, yi, zi);
i = 0, ..., n. we obtain

n∑
j=1

αj ϕ̄j(xi, yi, zi) = Ψ(xi, yi, zi, u(xi, yi, zi))

= Ψ

(
xi, yi, zi, g(xi, yi, zi) + λ

∫ x

0

∫ 1

0

∫ 1

0

K(xi, yi, zi, µ, θ, ν)

n∑
j=1

αj ϕ̄j(µ, θ, ν) dνdθdµ

)
. (3.4.8)

The interval [0, x] is transformed to the fixed interval [0, 1] by the linear transformation as follows

µ(x, δ) = xδ.

Equation becomes

n∑
j=1

αj ϕ̄j(xi, yi, zi) = Ψ

(
xi, yi, zi, g(xi, yi, zi) + λ

∫ 1

0

∫ 1

0

∫ 1

0

K̄(xi, yi, zi, µ(x, δ), θ, ν)

n∑
j=1

αj ϕ̄j(µ(x, δ), θ, ν) dνdθdδ

)
, (3.4.9)

where
K̄
(
x, y, z, µ(x, δ), θ, ν

)
= xK

(
x, y, z, µ(x, δ), θ, ν

)
.

We use m1 point quadrature formula with the quadrature points {δh}, {θp}, {νk} and the quadrature
weights {wh}, {wk}, {wp} for numerical integration. we have

n∑
j=1

α̂j ϕ̄j(xi, yi, zi) = Ψ

(
xi, yi, zi, g(xi, yi, zi) + λ

m1∑
h=1

m1∑
p=1

m1∑
k=1

whwkwp

K̄(xi, yi, zi, µ(xi, δh), θp, νk)

n∑
j=1

α̂j ϕ̄j(µ(xi, δh), θp, νk)

)
, (3.4.10)

the unknowns α̂j can be found by solving the nonlinear system of algebraic equations with any nonlinear
solver as the fsolve command of Matlab. So the values of s(x, y, z) can be approximated by

s̄(x, y, z) =

n∑
j=1

α̂j ϕ̄j(x, y, z).

The approximation solution ūn(x, y, z) of un(x, y, z) is given by

ū(x, y, z) = g(x, y, z) + λ

m1∑
h=1

m1∑
p=1

m1∑
k=1

whwkwpK̄
(
x, y, z, µ(x, δh), θp, νk

)
s̄((µ(x, δh), θp, νk

)
. (3.4.11)

3.5 Error estimates

In this section, we present the rate of convergence and the error estimate of the proposed method. This
analysis is based on those results given in [8, 30, 121, 125].
Let Pn : C(D)→ Gn be the the collocation operator given by

Pnu(x, y, z) =

n∑
i=1

αiϕ̄i(x, y, z), (x, y, z) ∈ D,
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where Gn = span{ϕ̄1, ϕ̄2, ..., ϕ̄n}. Let Γ be the operator Γ : X → X defined by

Γ(ϕ̄)(x, y, z) = Ψ(x, y, z, ϕ̄(x, y, z)),

So we can write (3.4.6) in abstract form as

s(x, y, z) = Γ(Ks+ g)(x, y, z).

where

(Ks)(x, y, z) =
∫ x

0

∫ 1

0

∫ 1

0

K(x, y, z, µ, θ, ν)s(µ, θ, ν) dνdθdµ

Let
Υ(u)(x, y, z) = Γ(Ku+ g)(x, y, z), (3.5.1)

then (3.5.1) can be written as
s(x, y, z) = Υ(s)(x, y, z).

We define the approximate solution for (3.4.8) by

sn(x, y, z) = PnΓ(Ksn + g)(x, y, z),

The discrete collocation method for (3.4.10) is written as

s̄n(x, y, z) = PnΓ(Kns̄n + g)(x, y, z). (3.5.2)

Let {Υn, Ῡn} be the operators defined respectively by

Υn(u)(x, y, z) = PnΓ(Ku+ g)(x, y, z),

Ῡn(u)(x, y, z) = PnΓ(Knu+ g)(x, y, z).

So (3.4.6) (3.4.8), (3.4.10) can be written as

s = Υs, sn = Υnsn, s̄n = Ῡns̄n.

We present the following theorems that are used to obtain the error estimate of the method.

Theorem 3.5.1. [121] let s0 ∈ C(D) be an isolated solution of

s = Ψ(x, y, z,Ks+ g).

Suppose that the operator Υ is Frechet differentiable in some neighborhood of the point s0 and assume
that 1 is not an eigenvalue of the linear operator Υ

′
(s0).Then for sufficiently large n, the operator (I −

Ῡ
′

n(s0))
−1 is invertible and there exists constant L > 0 independent of n such that ∥(I− Ῡ

′

n(s0))
−1∥ ≤ L.

The approximate solution s̄n of (3.5.2) is unique in B(s0, δ) = {s : ∥s − s0∥ ≤ δ} for some δ > 0.
Moreover, there exists a constant 0 < q < 1 independent of n such that

αn

1 + q
≤ ∥s0 − s̄n∥ ≤

αn

1− q
,

where αn = ∥(I − Ῡ
′

n(s0))
−1(Ῡn(s0)−Υ(s0))∥.

Theorem 3.5.2. Let Kn be bounded operator on C(D) to C(D) and ∥Kn∥ ≤ C2, u0 is an isolated solution
of the equation u = Ks+ g corresponding to s0 and ūn is the MLS collocation approximation of u0, then
we have

∥ūn − u0∥ ≤
(
C1C2Lδ

1− q
+ 1

)
∥Kn −K∥∥s0∥+

L

1− q
(1 +m)Chq+1

X,D|s0|Cq+1 .

Proof. Using Theorem 3.5.1, we can write

∥ūn − u0∥ = ∥Kns̄n −Ks0∥ ≤ ∥Kn(s̄n − s0)∥+ ∥(Kn −K)s0∥
≤ C2∥s̄n − s0∥+ ∥(Kn −K)s0∥

≤ C2αn

1− q
+ ∥(Kn −K)s0∥.

≤ C2

1− q
∥(I − Ῡ

′

n(s0))
−1(Ῡn(s0)−Υ(s0))∥+ ∥(Kn −K)s0∥

≤ C2L

1− q
∥(Ῡn(s0)−Υ(s0))∥+ ∥(Kn −K)∥∥s0∥ (3.5.3)
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Here, we show that ∥Ῡn(s0)−Υ(s0)∥ −→ 0 as n −→∞.

Using lipschitz condition on Ψ and let consider the following decomposition

∥Ῡn(s0)−Υ(s0)∥ = ∥PnΓ(Kns0 + g)− Γ(Ks0 + g)∥
≤ ∥PnΓ(Kns0 + g)− PnΓ(Ks0 + g)∥+ ∥PnΓ(Ks0 + g)− Γ(Ks0 + g)∥

≤ ∥Pn

(
Γ(Kns0 + g)− Γ(Ks0 + g)

)
∥+ ∥(Pn − I)Γ(Ks0 + g)∥

≤ ∥Pn∥∥(Γ(Kns0 + g)− Γ(Ks0 + g))∥+ ∥(Pn − I)s0∥
≤ ∥Pn∥∥Ψ(x, y, z,Kns0 + g)−Ψ(x, y, z,Ks0 + g)∥+ ∥(Pn − I)s0∥
≤ C1∥Pn∥∥(Kn −K)s0∥+ ∥Pns0 − s0∥ −→ 0 as n −→∞. (3.5.4)

Using Theorem 1.1.2 and combining Eq. (3.5.3) and (3.5.4), we obtain

∥ūn − u0∥ ≤
C1C2L

1− q
∥Pn∥∥Kn −K∥∥s0∥+

C2L

1− q
∥Pns0 − s0∥+ ∥(Kn −K)∥∥s0∥

≤
(
C1C2Lδ

1− q
+ 1

)
∥Kn −K∥∥s0∥+

C2L

1− q
(1 + δ)Chq+1

X,D|s0|Cq+1 . (3.5.5)

Using the fact that hq+1
X,D → 0 as n→∞ and the pointwise convergence of Kn to K, we deduce from Eq.

(3.5.5) that ∥ūn − u0∥ → 0 as n→∞.

The error of the proposed approach depends on the error of the quadrature formula and the MMLS
approximation error. So, for sufficiently large integration nodes the error of the MMLS is dominated over
the error of the numerical integration method and the rate of convergence of the proposed method is of
order O(hq+1

X,D). In the rest of paper, we put hq+1
X,D ≡ h for simplicity in notations.

3.6 Numerical results

In this section, some examples are provided to show the strength of the proposed method in approximating
the solution of multi-dimensional linear and nonlinear Volterra-Fredholm integral equations. For the

numerical implementation, we put h =
1

3
√
n− 1

where h is the distance between two consecutive nodes,

for MMLS method we put ρi = 1.5×h. When we use the MLS method, we put for linear case ρi = 2×h
and for quadratic case ρi = 2.5 × h. Also we use the Gauss-Legendre quadrature rule for numerical
integration. Moreover, for computing MMLS shape function, we choose νe = 10−9; with e = 1, ..., 6
as weights of additional coefficients for MMLS, it should be pointed out that, this value was selected
experimentally. We applied the absolute errors e(x, y, z) and the maximum errors ∥e∥∞ between the
exact solution and the present solution given by

e(x, y, z) = |uex(x, y, z)− û(x, y, z)|, ∥e∥∞ = max
(x,y,z)∈D

|uex(x, y, z)− û(x, y, z)|.

where û is the approximate solution of the exact solution uex. All calculations are done by Matlab. In
order to prove the rate convergence of this technique, the values of ratio are calculated by

Ratio =
ln(∥e∥∞)n − ln(∥e∥∞)n−1

ln(h)n − ln(h)n−1

Example 11. Consider the three-dimensional Fredholm integral equation [28]

u(x, y, z)− 1

2

∫ 1

0

∫ 1

0

∫ 1

0

xyzu(ν, θ, µ) dν dθdµ = xyz exp(−x2− y2− z2)− 1

16

(
1− 1

exp(1)

)3
xyz. (3.6.1)

The exact solution is uex(x, y, z) = xyz exp(−x2 − y2 − z2). The integral equation is solved on the cub
domain D = [0, 1]× [0, 1]× [0, 1] depicted in Figure 3.3. Table 3.1 presented the absolute errors at some
particular points for m1 = 2, n = 15 and n = 27. MMLS approximation results are shown in Table 3.2

85



Table 3.1: Numerical results for Example 11 with m1 = 2

x y z
e(x, y, z) of MMLS method

n=15 n=27

0.1 0.1 0.1 3.27×10−2 8.17×10−4

0.01 0.1 0.1 2.17×10−2 1.02×10−4

0.01 0.01 0.1 8.16×10−3 1.05×10−5

0.01 0.01 0.01 8.60×10−3 1.09×10−6

0.001 0.01 0.01 7.13×10−3 1.33×10−7

0.001 0.001 0.01 5.66×10−3 1.28×10−8

0.001 0.001 0.001 5.67×10−3 9.39×10−10

Table 3.2: Maximum error and rate of convergence for Example 11 with different values of n

n h
MMLS method RBF(IQ) method [28]
∥e∥∞ Ratio CPU time ∥e∥∞

8 1.00 1.35×10−2 - 0.13 -

27 0.50 2.53×10−3 2.41 0.72 8.11 ×10−3

64 0.33 8.58×10−4 2.66 3.36 1.63 ×10−3

125 0.25 6.04×10−5 9.22 19.92 5.46 ×10−4
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Figure 3.2: A comparison between MMLS and RBF(IQ) methods for Example 11

in terms of ∥e∥∞ at various values of n and m1 = 10. Figure 3.2 presented a comparison between
MMLS and RBF(IQ) [28] methods, The results show that better accuracy is obtained with the present
method. By increasing the number of nodes the rate errors increase and the maximum errors decrease

which confirm that the new approach converge more quickly to the exact solution.

Example 12. Consider the following three-dimensional linear Volterra-Fredholm integral equation de-
fined as [91]

u(x, y, z) +
1

20

∫ x

0

∫ y

0

∫ z

0

zu(µ, θ, ν) dν dθdµ− 1

10

∫ 1

0

∫ 1

0

∫ 1

0

(x+ µ)u(µ, θ, ν) dν dθdµ = g(x, y, z),
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Figure 3.4: Regular nodes distribution for Examples 11,12,13,14,15

where

g(x, y, z) = sin(y + z)− 1

10

(
(2x+ 1)sin(1)− (x+ 1)sin(2)− 1− cos(2) + 2cos(1)

)
+
xz

20

(
sin(y) + sin(z)− sin(y + z)

)
.

The exact solution is uex(x, y, z) = sin(y + z). The absolute errors of MMLS method are displayed
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Table 3.3: Numerical results for Example 12 with different values of n and m1

x y z
e(x, y, z) of MMLS method

n=8, m1 = 2 n=8, m1 = 10 n=64, m1 = 2 n=64, m1 = 10

0.1 0.1 0.1 4.68 ×10−2 4.70 ×10−2 5.52 ×10−3 6.09 ×10−3

0.01 0.1 0.1 4.48 ×10−2 4.49 ×10−2 5.55 ×10−2 6.04 ×10−3

0.01 0.01 0.1 2.56 ×10−2 2.57 ×10−2 2.07 ×10−3 6.04 ×10−3

0.01 0.01 0.01 1.07 ×10−2 1.08 ×10−2 3.47 ×10−4 8.41 ×10−4

0.001 0.01 0.01 1.04 ×10−2 1.06 ×10−2 3.47 ×10−4 8.33 ×10−4

0.001 0.001 0.01 9.05 ×10−3 9.15 ×10−3 1.53 ×10−4 6.39 ×10−4

0.001 0.001 0.001 7.59 ×10−3 7.69 ×10−3 1.58 ×10−5 4.70 ×10−4

Table 3.4: Maximum error and rate of convergence for Example 12 with different values of n
and m1 = 2

n h
∥e∥∞ of MLS method ∥e∥∞ of MMLS method
Linear basis Ratio CPU time Quadratic basis Ratio CPU time Quadratic basis Ratio CPU time

8 1.00 2.17 ×10−2 - 0.10 2.14 ×10−2 - 0.15 2.10×10−2 - 0.14

27 0.50 2.04 ×10−2 0.08 0.65 1.02 ×10−2 1.06 0.99 7.49×10−3 1.48 0.92

64 0.33 1.75 ×10−2 0.37 3.11 4.51 ×10−3 2.01 6.18 4.80×10−4 6.77 4.66

125 0.25 1.03 ×10−2 1.84 17.73 2.03 ×10−3 2.77 32.54 6.31×10−5 7.05 24.49

216 0.20 6.69 ×10−3 1.93 91.29 1.06 ×10−3 3.56 177.03 2.98×10−5 3.36 160.29

Table 3.5: Numerical results for Example 12 using MMLS method for different values of ν and
n = 125

ν 10−5 10−6 10−8 10−9 10−10

∥e∥∞ 8.36× 10−4 1.42× 10−4 6.34× 10−5 6.31× 10−5 6.31× 10−5
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Figure 3.5: A comparison between MLS and MMLS methods for Example 12

in Table 3.3. The maximum errors using MLS and MMLS approximations are shown in Table 3.4. The
results, introduced in Table 3.5, show the maximum errors using different values of ν when n = 125,
we can see that MMLS approximations give better accuracy when we put ν as a small positive number.
These tables show that the errors decrease as n increases which confirm the convergence of the method.
A graphical comparison is shown in Figure 3.5 between MMLS and MLS methods. As n→∞, the ratio
of MLS error remains approximately constant for the linear case O(h2) and for the quadratic case O(h3).
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For large n, the rate of MMLS error seems to be a big value which confirms that the new approach is
very fast in comparison with classical MLS method. Apparently, the MMLS method provides accurate
numerical solutions for mixed integral equations.

Example 13. In this example we consider the following three-dimensional linear Volterra-Fredholm
integral equation [1]

u(x, y, z)− 1

2

∫ x

0

∫ 1

0

∫ 1

0

(yz + µν)u(µ, θ, ν) dµdθdν = g(x, y, z),

where g(x, y, z) = x2y2sin(z)− 1

72

(
− 4yzcos(x) + 3sin(x)− 3xcos(x) + 4yz

)
.

Table 3.6: Numerical results for Example 13 with different values of n and m1 = 2

x y z
e(x, y, z) of MMLS method

n=8 n=27 n=64

0.1 0.1 0.1 1.29 ×10−3 2.24 ×10−4 9.08 ×10−5

0.01 0.1 0.1 1.29 ×10−3 1.61 ×10−5 5.58 ×10−6

0.01 0.01 0.1 1.30 ×10−4 1.47 ×10−5 1.96 ×10−7

0.01 0.01 0.01 1.30 ×10−4 1.44 ×10−5 1.12 ×10−7

0.001 0.01 0.01 1.30 ×10−5 1.45 ×10−6 1.54 ×10−8

0.001 0.001 0.01 1.29 ×10−5 1.44 ×10−6 1.03 ×10−8

0.001 0.001 0.001 1.29 ×10−5 1.43 ×10−6 9.57 ×10−9

Table 3.7: Maximum error and rate of convergence for Example 13 with different values of n
and m1 = 2

n h
∥e∥∞ of MLS method ∥e∥∞ of MMLS method
Linear basis Ratio CPU time Quadratic basis Ratio CPU time Quadratic basis Ratio CPU time

27 0.50 4.45 ×10−2 - 0.48 5.39 ×10−2 - 0.80 1.37 ×10−2 - 0.67

64 0.33 3.08 ×10−2 0.90 2.31 1.35 ×10−2 3.41 4.38 1.07 ×10−3 6.28 3.28

125 0.25 1.06 ×10−2 3.70 12.78 6.49 ×10−3 2.54 28.34 1.46 ×10−4 6.92 17.07

216 0.20 7.00 ×10−3 1.85 50.01 3.23 ×10−3 3.12 87.03 4.31 ×10−5 5.46 60.25
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Figure 3.6: A comparison between MLS and MMLS methods for Example 13

The exact solution is uex(x, y, z) = x2y2sin(z). The distribution of nodes is depicted in Figure 3.3.
Table 3.6 illustrates the absolute errors at some particular points. Table 3.7 shows ∥e∥∞ at the different
number of the nodes that are regularly employed in a cub domain. A graphical comparison is shown in
Figure 3.6 between MMLS and MLS methods. As n→∞, the ratio of MLS error remains approximately
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constant for the linear case O(h2) and for the quadratic case O(h3). For large n, the rate of MMLS error
seems to be a big value which confirms the high accuracy of this method. In these tables, we see that
the results gradually converge to the exact values along with the increase of the nodes.

Example 14. Consider the following three-dimensional nonlinear mixed Volterra-Fredholm integral equa-
tion [83]

u(x, y, z)−
∫ x

0

∫ 1

0

∫ 1

0

x2yzµθsin(ν)u(ν, θ, µ)3 dµ dθdν =
yz

100

(
x2cos(x)4 − x2 + 100cos(x)

)
.

Table 3.8: Numerical results for Example 14 with m1 = 2

x y z
e(x, y, z) of MMLS method

n = 8

0.1 0.1 0.1 4.13 ×10−5

0.01 0.1 0.1 1.83 ×10−5

0.01 0.01 0.1 4.26 ×10−6

0.01 0.01 0.01 5.88 ×10−7

0.001 0.01 0.01 1.86 ×10−7

0.001 0.001 0.01 2.89 ×10−7

0.001 0.001 0.001 1.55 ×10−8

Table 3.9: Maximum error and rate of convergence for Example 14 using different values of n
and m1 = 2

n h
MMLS method
∥e∥∞ Ratio CPU time

8 1.00 1.41 ×10−2 - 1.20

27 0.50 5.15 ×10−3 1.45 37.56

64 0.33 3.09 ×10−4 6.93 141.07

Table 3.10: Maximum error for Example 14 using MMLS method with different values of m1

and n = 27

m1 2 3 5 7 10

∥e∥∞ 5.15× 10−3 3.08× 10−3 3.56× 10−3 2.31× 10−3 2.75× 10−3

The exact solution for this equation is uex(x, y, z) = zycos(x). The absolute errors with m1 = 2 for
this example are presented in Table 3.8. The maximum errors are shown in Table 3.9 for different values
of n. As n −→∞ the rate error increases which confirms that the new approach converges more quickly
to the exact solution. As we expected from Table 3.10, using bigger values of m1 has no significant effect
on maximum errors which confirm that the error of MMLS approximation is dominated over the error of
integration.

Example 15. As the final example, we consider the following three-dimensional nonlinear Volterra-
Fredholm integral equation [91]

u(x, y, z)− 1

2

∫ x

0

∫ 1

0

∫ 1

0

x2θ(yz + µν)u(ν, θ, µ)3 dµ dθdν = g(x, y, z).

90



The exact solution for this equation is uex(x, y, z) = zysin(x). The absolute errors of MMLS ap-

Table 3.11: Numerical results for Example 15 with m1 = 2 and n = 27

x = y = z = 2−l 3D-BFs method [91] MMLS method
e(x, y, z) e(x, y, z)

l = 1 5,32×10−4 2.64×10−6

l = 2 1,59×10−4 1.78×10−5

l = 3 2,63×10−3 5.43×10−5

l = 4 4,34×10−3 6.02×10−5

l = 5 4,55×10−3 5.11×10−5

l = 6 4,58×10−3 2.38×10−5

Table 3.12: Maximum error and rate of convergence for Example 15 with different values of n
and m1 = 2

n h
MMLS method
∥e∥∞ Ratio CPU time

8 1 3.34 ×10−2 - 1.31

27 0.5 7.42 ×10−3 2.17 38.95

64 0.33 2.59 ×10−3 2.59 153.23

125 0.25 5.81 ×10−5 13.19 765.02

proximation and the method based on three-dimensional block-pulse functions approximation of [91] are
presented in Table 3.11. Table 3.12 displayed the maximum error for different values of n. It is observed
that the results of MMLS approximation converge more quickly to the true solution along with the in-
crease of the nodes. As n −→∞ the rate error increases which confirms that the new approach converge
more quickly to the exact solution. We can summarize that MMLS method is simple and efficient for
solving high-dimensional nonlinear mixte integral equations.

3.7 Conclusion

In this chapter, we extended the modified moving least squares (MMLS) method for solving the three-
dimensional linear and nonlinear Volterra-Fredholm integral equations of the second kind. An important
benefit of the proposed method is the ability to provide an approximation for cases when classical MLS
with quadratic base functions fails due to a singular moment matrix. Additionally, through the com-
parison with exact solutions we show that the MMLS method have good reliability and efficiency and it
can be extended without difficulties to the three-dimensional problems because of the simple adaption of
MMLS method for the 3-D space.
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Part II

A meshless methods based on
moving least squares and regularised
moving least squares approaches for
solving stochastic integral equations
and fractional stochastic differential

equations
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Chapter 4

Regularized moving least squares
scheme for two-dimensional
stochastic Fredholm integral
equations

In this chapter, a new adaptive meshless scheme based on the regularized moving least squares approxi-
mation(RMLS) combined with Itô approximation is employed to solve two-dimensional stochastic integral
equations. This approach is proposed for handling a singular moment matrix in the context of meshfree
methods based on moving least squares (MLS) approximation. A valuable advantage of applied this tech-
nique is that the results converge more quickly to the exact solution by using a small support domain,
and it is more flexible because it allows an easy adaptation of the nodal density. The computational
complexity is presented to measure the usage time of the proposed approach. The convergence rate of
the new method is provided. The numerical test problems are presented and compared with the results
obtained by other meshless methods to verify the efficiency and accuracy of the proposed scheme.

The results obtained in this chapter are presented in the research paper [32] in collaboration with
Rachid El Jid and Abdelkarim Hajjaj.

4.1 Introduction

Non deterministic phenomena appear increasingly in many fields such as engineering, physical and bio-
logical sciences. These phenomena can be naturally modeled by stochastic integral equations which are
usually dependent on time and a random factor. Since solving analytically stochastic integral equations
is very difficult and not available in some cases, it is essential to give their numerical solutions. Recently,
some numerical methods have been used to solve different types of one dimensional stochastic integral
equations such as stochastic operational matrix [86], spline interpolation methods [109], Euler polynomial
[93], generalized hat basis functions [50], Taylor series [63], Chebyshev wavelet [96]. For instance, the
number of research articles on the numerical solution of 2D dimensional stochastic integral equations
is very few; in [36] a new numerical method based on Haar wavelet is introduced for solving numerical
solution of two-dimensional linear stochastic Volterra integral equation, [35] the block-pulse is employed
to solve two-dimensional linear stochastic Volterra-Fredholm integral equation. Also, a numerical mesh-
less scheme based on radial basis functions is developed to find numerical solutions of two-dimensional
stochastic Fredholm integral equations [110]. In this work, an accurate numerical technique is used to
solve two-dimensional stochastic integral equation

u(x, y) = g(x, y) +

∫ d

c

∫ b

a

K1(x, y, r, t)u(r, t)dtdr +

∫ d

c

∫ b

a

K2(x, y, r, t)s(r, t)dB(t)dB(r), (x, y) ∈ D,

(4.1.1)
where D = [a, b] × [c, d] is a rectangular domain, u(x, y) is the unknown function to be determined and
the functions K1, K2 and g are assumed to be given. In literature, the MLS method has been used to
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approximate many various types of integral equations [68, 6, 83]. However, the moment matrix of the
traditional MLS method may be singular. In this context, some techniques have recently been suggested
to avoid the singular matrix; Joldes et al [61] developed a modified moving least squares (MMLS) method
for handling a singular moment matrix in the context of MLS method. Also, Wang et al [127] presented
an adaptive orthogonal IIMLS (AO-IIMLS) approximation to avoid the singular matrix by using the
weighted orthogonal basis function.
In this chapter, the regularized MLS approach is used to solve stochastic integral equation (4.1.1) with
nonsingular matrix. The advantage of this method is using the quadratic base functions with a small
support domain by adding only some constraints and also this modification reduces the cost of calculating
the shape functions. The moment matrix still nonsingular and gives better accuracy more than MLS
approximation. The computational complexity of the method is studied to measure the usage time of
the proposed algorithm which is confirmed by numerical tests given. The first use of RMLS method was
proposed in [126] for smoothing and approximating scattered.
The chapter is organized as follows: Section 4.2 is devoted to present the regularized moving least-square
approximation. In Section 4.3, we introduce the description of numerical scheme based on regularised
MLS approximation. In Section 4.4, we provide the error estimate of the method. Tests problems are
given in Section 4.5. we ended the chapter in Section 4.6.

4.2 Regularized moving least-square approximations

Given data coordinates of the function u(x, y) at certain data nodes X = {(x1, y1), (x2, y2), ..., (xn, yn)} ⊂
D, the MLS approximate û(x, y) of u(x, y), can be given as

û(x, y) =

m∑
k=1

ak(x, y)pk(x, y) = PT (x, y)a(x, y), (4.2.1)

where {pk(x, y)}mk=1 is a basis function of Pq which is the linear space of polynomials of total degree less
than or equal to q and ak(x, y) are the unknown coefficients.
The MLS approximation is obtained using the solution of

J(a) =

n∑
k=1

∣∣∣aT (xk, yk)p(x, y)− uk∣∣∣2wk(x, y) = [Pa(x, y)− u]TW [Pa(x, y)− u], (4.2.2)

where
P = [pT (x1, y1), p

T (x2, y2), ..., p
T (xn, yn)]

T

W = diag(ωi(x, y)), i = 1, 2, ..., n.

A regularized technique is employed to modify MLS moment matrix by adding additional constraints to
the functional (4.2.2). Then Eq. (4.2.2) can be reformulated as follows

J(a) = [Pa− u]TW [Pa− u] + aHa, (4.2.3)

where
H = diag(εi), i = 1, 2, ...,m,

εi are the constants and positifs values, then by set
∂J

∂a
we obtain

[PTWP +H]a− PTWu = 0. (4.2.4)

We put
R = PTWP +H, (4.2.5)

Eq. (4.2.4) becomes as follows
Ra = PTWu. (4.2.6)

Remark 3. The moment matrix R is invertible.

Proof. Eq. (4.2.5) can be represented as follows

R = P̄T W̄ P̄ , (4.2.7)
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where

W̄ =

[
W 0
0 R

]
, P̄ =

[
P
Im

]
, with P =

1 x1 y1 x2
1 y21 x1y1

.

..
.
..

.

..
.
..

.

..
.
..

1 xn yn x2
n y2n xnyn

. (4.2.8)

Eq. (4.2.7) can be reformulated as

R = P̄TNTNP̄ = DTD, (4.2.9)

where
N = sqrt(W̄ ), D = NP̄ .

As we knew that W̄ is a diagonal positive matrix with non-zeros diagonal values, thus by utilizing the
matrix rank properties, we obtain

rank(D) = rank(P̄ ). (4.2.10)

Utilizing Eq. (4.2.9) and Eq. (4.2.10), we concluded that

rank(R) = rank(DTD) = rank(D) = rank(P̄ ). (4.2.11)

Eq. (4.2.11 ) proved that the matrix R is invertible if the matrix P̄ have full rank (m=6).

Now Eq. (4.2.6) can be written as
a = R−1PTWu, (4.2.12)

substituting Eq. (4.2.12) into Eq. (4.2.1), then we obtain

û = PTR−1PTWu,

we put

Ψ = PTR−1PTW.

Ψ = {ϕ1, ϕ2, ..., ϕm} are called the shape function of the RMLS approximation, the expressions P,W and
H are continuous and the moment matrix R is invertible, it implies the shape functions of regularized
MLS are continuous. If the weight functions w(x, y) and the monomials bases P have compact support
domains, then the shape functions have compact support domains.
Finally, the approximation of u(x, y) can be represented by

û(x, y) =

n∑
k=1

ϕk(x, y)uk = Ψu. (4.2.13)
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Figure 4.1: RMLS and MMLS shape functions of the central node

RMLS and MMLS shape functions of the central node with 25 uniformly distributed nodes are
illustrated in Fig. 4.1 on the square domain [0, 1]× [0, 1]. We use quadratic bases with the small support
domain R = 0.3125. In this case, the moment matrix of MLS approximation is singular but those of RMLS
and MMLS approximations are still nonsingular. The shape functions influences when we decrease the
value of the weight parameter ε, this small value allows the singular moment matrix to be little changed
and the moment matrix becomes nonsingular. The effect of choosing ε as a small value will be also
treated in the numerical part.
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Computational complexity of the proposed method

Considering a 5 × 5 uniformly distributed nodes depicted in Fig. 4.2. Here, a comparison between
the MLS and RMLS support domain of the central node is given. The quadratic basis is used in both
methods. Generally, the condition for the MLS moment matrix to be invertible is that n ≥ m. For this
reason, we put the size of MLS circular support larger (R=0.45) and more than six nodes are included in
the support domain. For RMLS approximation, we put the size of circular support smaller (R=0.3125)
and only five nodes are including in the support domain. Therefore, the MLS shape function contains
nine nonzero elements while the RMLS shape function contains only five nonzero elements, which means
the computation time is normalized by the number of nodes included in the support domain. Then, it
concludes that the cost of calculating shape functions for the MLS method is expensive compared to the
RMLS method.
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Figure 4.2: MLS and RMLS circular support of the central node

4.3 Numerical scheme

In this section, we use a meshfree approach based on regularized moving least-square method for solving
stochastic integral equations (4.3.1). We approximate the unknown function u(x, y) by û(x, y) which is
defined in Eq. (4.2.13), then we obtain

û(x, y) = g(x, y) +

∫ d

c

∫ b

a

K1(x, y, r, t)û(r, t)dtdr +

∫ d

c

∫ b

a

K2(x, y, r, t)û(r, t)dB(t)dB(r), (4.3.1)

if we collocate equation at collocation nodes (xi, yi), then we have

n∑
k=1

[
ϕk(xi, yi) +

∫ d

c

∫ b

a

K1(xi, yi, r, t)ϕk(r, t)dtdr +

∫ d

c

∫ b

a

K2(xi, yi, r, t)ϕk(r, t)dB(t)dB(r)

]
uk

= g(xi, yi). (4.3.2)

We use m1 point quadrature formula with the quadrature points rp, uj and the quadrature weights wp, wj

for numerical integration of the first integral. At first, we compute the integrals over [−1, 1] by using the
following linear transformations

r = γ(τ) =
b− a
2

τ +
b+ a

2
, t = ε(η) =

d− c
2

η +
d+ c

2
,

then we obtain

∫ d

c

∫ b

a

K1(xi, yi, r, t)ϕk(r, t)dtdr =
(b− a)2

4

∫ 1

−1

∫ 1

−1

K1(xi, yi, γ(τ), ε(η))ϕk(γ(τ), ε(η)dtdr (4.3.3)

=
(b− a)2

4

m1∑
p=1

m1∑
j=1

K1(xi, yi, γ(τp), ε(ηj))ϕk(γ(τp), ε(ηj))wpwj .
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The second integral can be approximated by using the Riemann sum introduced in Eq. (1.4.1) as∫ d

c

∫ b

a

K2(xi, yi, r, t)ϕk(r, t)dB(t)dB(r) =

n−1∑
p=0

n−1∑
j=0

K2(xi, yi, rp, tj)ϕk(rp, tj)

(B(tj+1)−B(tj))(B(rp+1)−B(rp)), (4.3.4)

by substituting Eqs. (4.3.3)-(4.3.4) in Eq. (4.3.2), we have the following system

n∑
k=1

[
ϕk(x, y) +

(b− a)2

4

m1∑
p=1

m1∑
j=1

K1(xi, yi, γ(τp), ε(ηj))ϕk(γ(τp), ε(ηj))wpwj (4.3.5)

+

n−1∑
p=0

n−1∑
j=0

K2(xi, yi, rp, tj)ϕk(tj , rp)(B(tj+1)−B(tj))(B(rp+1)−B(rp))

]
ûk = g(x, y),

where ûk are the approximations for uk. After solving the linear system, we find the unknown uk and
then the values of u(x, y) can be approximated by

û(x, y) =

n∑
k=1

ϕk(x, y)uk, (x, y) ∈ [a, b]× [c, d].

4.4 Error estimates

Firstly, we remind some basic defintions which are useful to estimate the error of proposed method [39, 37].

Equation (4.3.1) can be reformulated as

(I −K1 −K2)u = f,

where

• (K1u)(x, y) =

∫ d

c

∫ b

a

K1(x, y, r, t)u(r, t)dtdr,

• (K2u)(x, y) =

∫ d

c

∫ b

a

K2(x, y, r, t)u(r, t)dB(t)dB(r),

Using Eq. (1.1.28), then Eq. (4.3.2) can be written as the abstract form

(I − PnK1 − PnK2)un = Pnf.

Let K1,n,K2,n be the numerical integration operators defined respectively by

• (K1,ns)(x, y) =

m1∑
p=1

m1∑
j=1

K1(x, y, rp, tj)u(rp, tj)wpwj ,

• (K2,ns)(x, y) =

n−1∑
p=0

n−1∑
j=0

K2(x, y, rp, tj)u(rp, tj)(B(tj+1)−B(tj))(B(rp+1)−B(rp)).

Now, Eq. (4.3.5) can be reformulated as the operator form

(I − PnK1,n − PnK2,n)ûn = Pnf, (4.4.1)

we give the following iterated discrete collocation solution

ūn = f + PnK1,nûn + PnK2,nûn. (4.4.2)

Adding Pn on both sides of Eq. (4.4.2) and using Pnûn = ûn, we have

Pnūn = Pnf + PnK1,nûn + PnK2,nûn. (4.4.3)

Now using Eq. (4.4.1) and Eq. (4.4.3), we obtain

Pnūn = ûn. (4.4.4)
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Lemma 4.4.1. [37] Let K1,K2 be bounded operators on C(D) to C(D), assume that I − K1 − K2 :
C(D)→ C(D), and

∥K1 +K2 − Pn(K1,n +K2,n)∥ 7−→ 0, as n 7−→ ∞.

For all sufficiently large n, the operator
(
I − Pn(K1,n +K2,n)

)−1
existe and is uniformly bounded, then

there exists a natural number N such that

supn≥N∥
(
I − Pn(K1,n +K2,n)

)−1∥ < C0 <∞.

Let u0 be a unique solution of Eq. (4.3.1) and for the solution s̄n we have

∥u0 − ūn∥ ≤ ∥
(
I − Pn(K1,n +K2,n)

)−1∥∥K1u0 −K1,nPnu0 +K2u0 −K2,nPnu0∥.

Theorem 4.4.1. Let the assumptions of Lemma 4.4.1 are satisfied, let u0 be a unique solution of the
integral equation (4.3.1), the proposed method in the current paper has a unique solution, we have

∥u0− ûn∥ ≤
(
1+0 (C1+C2)(1+ δ)

)
Chq+1

X,D|u0|q+1+ δC0

(
∥K1u0−K1,nu0∥+ ∥K2u0−K2,nu0∥

)
, (4.4.5)

where C0, C1, C2 and η are constant numbers.

Proof. From Eq. (4.4.4), we see that

u0 − ûn = u0 − Pnun = u0 − Pnu0 + Pn(u0 − un).

Therefore
∥u0 − ûn∥ ≤ ∥u0 − Pnu0∥+ δ∥u0 − un∥

Using Lemma 4.4.1, we find that

∥u0 − ūn∥ ≤ ∥u0 − Pnu0∥+ δ∥
(
I − Pn(K1,n +K2,n)

)−1∥∥K1u0 −K1,nPnu0 +K2u0 −K2,nPnu0∥
(4.4.6)

≤ ∥u0 − Pnu0∥+ δC0∥K1u0 −K1,nPnu0 +K2u0 −K2,nPnu0∥.

It is clear that

∥K1u0 +K2u0 −K1,nPnu0 −K2,nPnu0∥ ≤ ∥K1u0 −K1,nu0∥+ ∥K2u0 −K2,nu0∥ (4.4.7)

+ ∥K1,nu0 −K1,nPnu0∥+ ∥K2,nu0 −K2,nPnu0∥
≤ ∥K1u0 −K1,nu0∥+ ∥K2u0 −K2,nu0∥
+ ∥K1,n(u0 − Pnu0)∥+ ∥K2,n(u0 − Pnu0)∥.

By using the pointwise convergence of K1,n and K2,n, we can assume that

K1,n ≤ C1 <∞,

K2,n ≤ C2 <∞.

Hence, it is concluded that

∥K1u0 +K2u0 −K1,nPnu0 −K2,nPnu0∥ ≤ ∥K1u0 −K1,nu0∥+ ∥K2u0 −K2,nu0∥+ (C1 +C2)∥u0 −Pnu0∥.
(4.4.8)

Combining Eq. (4.4.6) and Eq. (4.4.8), we obtain

∥u0 − ûn∥ ≤ ∥u0 − Pnu0∥+ δC0∥K1u0 −K1,nu0∥+ δC0∥K2u0 −K2,nu0∥
+ δC0(C1 + C2)∥(s0 − Pnu0)∥

≤ (1 + δC0(C1 + C2))∥u0 − Pnu0∥+ δC0

(
∥K1u0 −K1,nu0∥+ ∥K2u0 −K2,nu0∥

)
.

From Lemma 1.1.2, we get

∥u0−ûn∥ ≤
(
1+δC0(C1+C2)

)
(1+δ)Chq+1

X,D|u0|q+1+δC0

(
∥K1u0−K1,nu0∥+∥K2u0−K2,nu0∥

)
, (4.4.9)

for every u0 ∈ Cq+1(D), using the fact that hq+1
X,D → 0 as n→∞ and the pointwise convergence of K1,n

and K2,n to K1 and K2 respectively, we deduce from Eq. (4.4.9) that ∥u0 − ûn∥ → 0 as n→∞.

In the rest of chapter, we put hq+1
X,D ≡ h for simplicity in notations.
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4.5 Numerical results

In this section, two dimensional stochastic integral equations are solved and compared to the computa-
tional efficiency of other meshless methods : MLS, MMLS, and RBF methods. Quadratic basis functions
and spline weight functions are applied in illustrative tests. For computational details, we put R = 2.5×h
for classical MLS method and R = 1.5×h for RMLS and MMLS methods. For computing shape function,
we put εe = 10−8, with e = 1, ...., 6 as weights of additional coefficients for the RMLS method, this value
was selected experimentally. To show the accuracy and convergence of the proposed method, the absolute
error e(x, y) and maximum absolute error ∥e(x, y)∥∞ are given as follows

e(x, y) = |u0(x, y)− ûn(x, y)|,
∥e∥∞ = max

(x,y)∈D
|u0(x, y)− ûn(x, y)|,

where ûn(x, y) is the approximate solution of u0(x, y). All codes are written in Matlab.

Example 16. We consider the following stochastic integral equation [110]

u(x, y) = g(x, y) +

∫ 1

0

∫ 1

0

xyrtu(r, t)dtdr +

∫ 1

0

∫ 1

0

(x+ y)u(r, t)dB(t)dB(r),

where

g(x, y) = 1− 1

4
xy −B2(1)(x+ y),

and the exact solution is u0(x, y) = 1.

Table 4.1: Maximum error for Example 16 using RMLS and MMLS methods

n h
RMLS method MMLS method RBF method [110]
∥e∥∞ ∥e∥∞ ∥e∥∞

4 1.00 1.19 ×10−2 4.32 ×10−2 1.58 ×10−1

9 0.50 5.82 ×10−8 5.80 ×10−7 1.45 ×10−2

25 0.25 3.57 ×10−13 1.91 ×10−11 3.46 ×10−4

36 0.20 4.13 ×10−14 8.95 ×10−13 1.33 ×10−4
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Figure 4.3: Absolute error e(x, y) of MMLS and RMLS methods (n = 36) for Example 16
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Figure 4.4: Contour plots of maximum error for MMLS and RMLS methods for Example 16

The maximum error of the numerical results is shown in Table 4.1 for different values of n. As we
expected, from Theorem 4.4.1, the results gradually converge to the exact values along with the increase of
the nodes. The absolute errors for n = 36 are represented in Fig. 4.3. The comparison of obtained errors
of RMLS, MLS and RBF methods are reported in Table 4.1. The 2-point Gauss-Legendre quadrature
rule is used for numerical integration of the first integral. Contour plots given in Fig. 4.4 reveal that
the RMLS method is more accurate and the efficiency of this method is concluded from using a small
support domain.
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Example 17. We consider the following stochastic integral equation [110]

u(x, y) = g(x, y) +

∫ 1

0

∫ 1

0

xy

t
u(r, t)dtdr +

∫ 1

0

∫ 1

0

cos(xy)u(r, t)dB(t)dB(r),

where

g(x, y) =
xy

2
− cos(xy)

[
B(1)−

∫ 1

0

B(t)dt

]2
.

and the exact solution is u0(x, y) = xy,

Table 4.2: Maximum error and CPU time for Example 17 using RMLS and MLS methods

n h
RMLS method MLS method RBF method [110]
∥e∥∞ CPU time ∥e∥∞ CPU time ∥e∥∞

4 1.00 1.19 ×10−2 0.02 1.29 ×10−2 0.07 1.58 ×10−1

9 0.50 4.99 ×10−4 0.65 2.42 ×10−3 0.87 1.45 ×10−2

25 0.25 4.60 ×10−11 63.42 6.14 ×10−4 112.48 1.33 ×10−4
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Figure 4.5: Absolute error e(x, y) of MMLS and RMLS methods (n = 36) for Example 17
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Figure 4.6: Contour plots of maximum error for MMLS and RMLS methods for Example 17

The numerical results in terms of ∥e∥∞ are given in Table 4.2 at different numbers of n. Theorem
4.4.1 concludes that the results gradually converge to the exact values as the number of nodes increases.
We employ the 2-point Gauss-Legendre quadrature formula for numerical integration of the first integral.
Fig. 4.5 shows the absolute error for n = 25. Three meshless schemes are compared and the results of
the RMLS method converge more quickly to the exact solution and give better accuracy than that of the
classical MLS and RBF methods. CPU time presented confirms the computational cost of the moment
matrix which is decreased compared with the MLS method. Contour plots given in Fig. 4.6 reveal that
the RMLS method is more accurate and the efficiency of this method is concluded from using a small
support domain.

Example 18. We consider the following stochastic integral equation

u(x, y) = g(x, y) +

∫ 1

0

∫ 1

0

(xr + yt)u(r, t)dtdr +

∫ 1

0

∫ 1

0

exp(−x− y − t− 4)u(r, t)dB(t)dB(r),

where

g(x, y) =
1

2
ex(y) +

x

4
− y

12

(
3exp(1) + 1

)
− exp(−x− y − 4)

(
1

2
B(1)2 +

(
B(1)−

∫ 1

0

B(s)ds
)(
exp(−1)B(1)

−
∫ 1

0

exp(−s)B(s)ds
))

, (4.5.1)

and the exact solution is u0(x, y) =
1

2
exp(y) + x.

Table 4.3: Maximum error and CPU time for Example 18 using RMLS and MLS methods

RMLS method MLS method

n h
ε = 10−6 ε = 10−7 ε = 10−8

CPU time ∥e∥∞ CPU time∥e∥∞ ∥e∥∞ ∥e∥∞
9 0.50 7.30 ×10−3 4.50 ×10−3 4.00 ×10−3 0.78 2.41×10−2 0.89

16 0.33 2.66 ×10−3 1.44 ×10−3 1.27 ×10−3 7.00 1.11×10−2 11.12

25 0.25 0.11 ×10−3 5.77 ×10−4 5.11 ×10−4 52.42 7.77×10−3 132.82

36 0.20 9.69 ×10−4 2.29 ×10−4 1.21 ×10−4 209.82 4.98×10−3 396.88

47 0.16 7.06 ×10−4 8.01 ×10−5 4.16 ×10−5 725.64 3.60×10−3 989.79
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Figure 4.7: Absolute error e(x, y) of MLS and RMLS methods (n = 47) for Example 18
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Figure 4.8: Contour plots for MMLS and RMLS methods for Example 18

Table 4.3 reported the maximum error for different values of ε compared with the classical MLS
method. As we can see in Theorem 4.4.1, the errors decrease as N → ∞. In this example, we put
m1 = 5. The absolute error for n = 47 is plotted in Figs. 4.7. The numerical results confirm that RMLS
approximations give better accuracy when we put ε as a small positive number. Since the support domain
used is smaller, the computational cost of the moment matrix decrease compared with the MLS method
which is confirmed by CPU time presented in Table 4.3. Contour plots given in Fig. 4.8 reveal that the
RMLS method is more accurate and the efficiency of this method is concluded from using a small support
domain.
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4.6 Conclusion

In this chapter, an adaptive meshless approach based on the regularized moving least squares approxi-
mation (RMLS) combined with Itô approximation is applied to solve two-dimensional stochastic integral
equation. More accurate results are obtained by using a small support domain and this makes it suitable
to study real world problems. Also, the computational complexity of the method is studied to measure
the usage time of the proposed algorithm which is confirmed by numerical tests given.
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Chapter 5

On the numerical solution of
fractional stochastic
integro-differential equations of
fractional order using moving least
square approximation

Fractional calculus is used to model real problems that occur in real life, the aim of this chapter is
to extend the meshless method based on moving least square approximation (MLS) to solve stochas-
tic fractional integro-differential equations (SFIDEs). To establish the scheme; we apply the composite
Gauss-Legendre integration rule to compute the singular-fractional integral appearing in the scheme and
the Riemann sum for estimating Itô integral. We have also compared different basis in terms of CPU time.
The error bound of the numerical method is given. The major advantage of this approach is that the
results converge more quickly to the exact solution by using a small number of points and basis functions,
and it is more flexible because it allows an easy adaptation of the nodal density, then the computational
cost of the moment matrix is reduced. This method is very convenient for solving fractional stochastic
integro-differential since it does not require any need for mesh connectivity. Several numerical tests are
reported and compared with the results obtained by other methods which verified the theoretical findings.

The results obtained in this chapter are presented in the research paper [33] in collaboration with
Rachid El Jid and Elham Taghizadeh.

5.1 Introduction

In the last few decades, the study of fractional calculus has been an interesting research area because of
its applicapility in various fields such us solid mechanics [105] control theory [15], fluid-dynamic traffic
[49], and economics [10]. Accordingly, many researchers have been produced to approximate solution of
fractional differential and integral equations [55], [51], [7].
Recently, stochastic models are employed in diverse areas for modeling problems occur in real life such us
the study of biological population growth [64], the stochastic formulation of problems in reactor dynamics
[22], the model of rainfall-runof [54]. Solving the stochastic equations analytically are not available or
usually difficult because of the presence of random factors in mathematical models. Thus, some numerical
approaches are used to obtain their approximate solutions [63],[110].
A fractional stochastic integro-differential equation is a stochastic integro-differential equation where
order of derivative is non integer and it is a generalization of the fractional Fokker-Planck equation
which describes the random walk of a particle [26]. Many phenomena in science that have been modeled
by fractional differential equations have some additive noise and uncertainty, for this reason, there is
a great tendency to approximate fractional stochastic integro-differential equations. For instance, few
studies have been done and discussed about the numerical solutions of SFDE. Galerkin method based
on orthogonal polynomials [97], spectral collocation method based on the shifted Legendre polynomials
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[111] and Cubic B-spline approximation [92].
The MLS method is one of the most effective meshless approaches have implemented a significant role
in numerical analysis field, it does not require domain elements or background cells. This method allows
an easy adaptation of the nodal density, then the distribution of nodes could be chosen regularly or
randomly in the consideration domain. This approach has been applied for solving the most classes of
integral equations: 1D and 2D linear and nonlinear integral equations on rectangular and non-rectangular
domains [68, 88], nonlinear 1D integro-differential equations [25], stochastic Volterra-Fredholm integral
equations [90]. We obtain the error bound and the rate of convergence for the new technique. The
computational complexity of the method is studied to measure the usage time of the proposed algorithm
which is confirmed by numerical tests presented.
In this chapter, we focus on the numerical solution of the following stochastic fractional integro-differential
equations SFIDEs by applying meshfree method based on moving least square method.

Dαu(x) + u(x) = g(x) +

∫ x

0

K1(x, s)u(s)ds+ σ

∫ x

0

K2(x, s)u(s)dB(s), (5.1.1)

u(0) = u0,

where g(x),K1(x, s) and K2(x, s) for x, s ∈ [0, 1] are given functions, σ is real number and u(x) is the
unknown function to be determined, Dα denotes the Caputo fractional derivative of order α which
will be introduced later. B is a Brownian motion defined on the probability space (Ω, A, P ) and∫ x

0

K2(x, s)u(s)dB(s) is the Itô integral. This chapter is organized as follows: The computational method

for solving fractional stochastic integro-differential equations is introduced in Section 5.2. In Section 5.3,
we provide the error estimate and rate convergence of the method. Several tests are presented in Section
5.4. We ended the chapter in Section 5.5.

5.2 Numerical scheme

In this section, we applied the MLS approximation for solving fractional stochastic integro-differential
equation (5.1.1) for special case 0 ≤ α ≤ 1 and σ = 1. By using formulation of Caputo fractional
derivative operator Eq. (1.4.6), we obtain

1

Γ(k − α)

∫ x

0

uk(s)

(x− s))1+α−k
ds+ u(x) = g(x) +

∫ x

0

K1(x, s)u(s)ds+

∫ x

0

K2(x, s)u(s)dB(s), (5.2.1)

Substituting uh(x) =

n∑
q=1

Φq(x)uq as the MLS approximation of u(x), we get

1

Γ(k − α)

∫ x

0

(x− s)k−α−1
n∑

q=1

Φk
q (s)uqds+

n∑
q=1

Φq(x)uq = g(x) (5.2.2)

+

∫ x

0

K1(x, s)
[ n∑
q=1

Φq(s)uq

]
ds+

∫ x

0

K2(x, s)
[ n∑
q=1

Φq(s)uq

]
dB(s),

We collocate Eq. (5.2.2) at points xi, then we have

n∑
q=1

[
1

Γ(k − α)

∫ xi

0

(xi − s)k−α−1Φk
q (s)ds+Φq(xi)−

∫ xi

0

K1(xi, s)Φq(s)ds (5.2.3)

−
∫ xi

0

K2(xi, s)Φq(s)dB(s)

]
uq = g(xi).

Eq. (5.2.3) can be approximated using the composite m1-point Gauss-Legendre formula with M uniform
subdivisions relative to the quadrature points δp and weights wp, we have∫ xi

0

(xi − s)k−α−1Φk
q (s)ds =

∆s

2

M∑
l=1

m1∑
p=1

wp(xi − δlp)k−α−1Φk
q ((δ

l
p), (5.2.4)
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where

δlp =
∆s

2
sp + (l − 1)∆s, where ∆s =

xi
M
.

To estimate the second integral in Eq. (5.2.3) we use the m1-point Gauss-Legendre formula with the
quadrature points ξp and weights wp as follows∫ xi

0

K1(xi, s)Φq(s)ds =

∫ 1

0

xiK1(xi, xiξ)Φq(xiξ)dξ =

m1∑
p=0

xiwpK1(xi, xiξp)Φq(xiξp), (5.2.5)

The third integral can be approximated by using the Riemann sum introduced in Eq. (1.4.1) as∫ xi

0

K2(xi, s)Φq(s)dB(s) =

n−1∑
p=0

K2(xi, sp)Φq(sp)
(
B(sp+1)−B(sp)

)
, (5.2.6)

Substituting Eqs. (7.2)-(5.2.5)-(5.2.6) in Eq. (5.2.3), we get

n∑
q=1

[
1

Γ(k − α)

m1∑
p=1

wp

M∑
l=1

∆s

2
(xi − δlp)k−α−1Φk

q (δ
l
p) + ϕq(xi) (5.2.7)

−
n∑

p=0

xiwpK1(xi, xiξp)Φq(xiξp)−
n−1∑
p=0

K2(xi, sp)Φq(sp)
(
B(sp+1)−B(sp)

)]
ûq = g(xi),

where ûq are the approximations for uq. After solving the linear system, we find the unknown uq and
then the values of u(x) can be approximated by

û(x) =

n∑
q=1

ϕq(x)uq.

5.3 Error estimates

Theorem 5.3.1. [94] The derivatives of u are defined as

Dαu =

n∑
i=0

Dαϕju(xi).

Then there exists a constant C > 0 such that for all u ∈ Cq+1 and all X with hX,D ≤ h0 there is an error
bound

∥PnD
α(u)−Dα(u)∥∞ ≤ (1 + δ)Ch

q+1−|α|
X,D |u|q+1, where q > |α|.

We note that
DαPnu = PnD

αu,

which is proved in [94].

Theorem 5.3.2. [95] Assume that u and U(x) =

n∑
j=0

Ujϕj(x) denote the exact and the MLS approximate

solutions of Eq.(5.1.1) Then there exists a constant Cn > 0 such that for all u ∈ Cq+1 and all X with
hX,D ≤ h0 there is an error bound

∥DαU −Dαu∥∞ ≤ δCnh
q+1−|α|
X,D |u|q+1, where q > |α|.

To prove error estimate of proposed method, we need the following inequality

Theorem 5.3.3. (Gronwall inequality) [80] If a non-negative continuous function e(x) satisfies

e(x) ≤ C
∫ x

−1

e(ξ)dξ + S(x), x ∈ [0, 1],

where S(x) is a given integrable function, then

∥e∥L∞ ≤ C∥S∥L∞ .
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In the following theorem, we estimate the error of the proposed method

Theorem 5.3.4. Suppose that u and U(x) =

n∑
j=0

Ujϕj(x) denote the exact and the MLS approximate

solutions of Eq.(5.1.1), respectively. Also, suppose that

∥K1(x, v)∥ ≤ C1, ∥K2(x, v)∥ ≤ C2, (x, v) ∈ [0, 1]2,∥∥∥∥∂K1(x, v)

∂x
+
∂K2(x, v)

∂x

∥∥∥∥ ≤ C3, (x, v) ∈ [0, 1]2,

∥B(x)∥ ≤ L, x ∈ [0, 1],

where C1, C2, C3, L are positives constants. Then

∥e∥L∞ ≤ C

1− LC2
hX,D

(
(1+δ)

((
2+hqX,DC2L+(C1+C3)

)
∥e(t)∥L∞+2∥u∥L∞+(h

q−|α|
X,D +hqX,D)|u|q+1

)
+δh

q−|α|
X,D |u|q+1

)
.

Proof. The numerical approximation equation can be reformulated as

Uj = g(xi)−DαUj(xi)+xi

m1∑
j=1

wjK1

(
xi, xiξj)Uj

(
xiξj

)
+

n−1∑
p=0

K2(xi, xivp)Uj(xivp)
(
B(xivp+1)−B(xivp)

)
(5.3.1)

Eq. (5.3.1) can be rewritten as

Uj = g(xi)−DαUj(xi) + xi

∫ 1

0

K1

(
xi, xiξ)Uj

(
xiξ
)
dξ +

∫ 1

0

K2(xi, xivp)Uj(xivp)dB(xiv)− S1(xi)− S2(xi),

(5.3.2)

where

S1(x) = x

∫ 1

0

K1

(
x, xξ)Uj

(
xξ
)
dξ − x

m1∑
j=1

wjK1

(
x, xξj)Uj

(
xξj
)
, (5.3.3)

S2(x) =

∫ 1

0

K2(x, xv)Uj(xv)dB(xv)−
n−1∑
p=0

K2(x, xvp)Uj(xvp)
(
B(xvp+1)−B(xvp)

)
. (5.3.4)

Assume that

µ1(x) = x

∫ 1

0

K1(x, xξ)Uj

(
xξ
)
dξ =

∫ x

0

K1(x, v)Uj

(
v
)
dv.

Then Eq.(5.3.3) can be writen as

S1(x) =

∫ x

0

K1(x, v)Uj

(
v
)
ds− Pn

(∫ x

0

K1(x, v)Uj

(
v
)
dv

)
, (5.3.5)

= µ1(x)− Pn(µ1(x)).

Using Theorem 1.1.2 for q = 0, we obtain

∥S1(x)∥L∞ = ∥µ1(x)− Pn(µ1(x))∥L∞ (5.3.6)

< (1 + δ)ChX,D∥µ
′

1(x)∥L∞

< (1 + δ)ChX,D∥K1(x, x)U(x) +

∫ x

0

∂K1

∂x
(x, v)U(v)dv∥L∞

< (1 + δ)ChX,D∥U∥L∞

< (1 + δ)ChX,D(∥e(x)∥L∞ + ∥u∥L∞).

Assume that

µ2(x) =

∫ 1

0

K2(x, xv)Uj(xv)dB(xv) =

∫ x

0

K2(x, v)Uj

(
v
)
dB(v).

108



Then Eq.(5.3.4) can be writen as

S2(x) =

∫ x

0

K2(x, v)Uj

(
v
)
dB(v)− Pn

(∫ x

0

K2(x, v)Uj

(
v
)
dB(v)

)
, (5.3.7)

= µ2(x)− Pn(µ2(x))

Using Theorem 1.1.2 for q = 0, we obtain

∥S2(x)∥L∞ = ∥µ2(x)− Pn(µ2(x))∥L∞

< (1 + δ)ChX,D∥µ
′

2(x)∥L∞

< (1 + δ)ChX,D∥K2(x, x)U(x) +

∫ x

0

∂K2

∂x
(x, v)U(v)dB(v)∥L∞

< (1 + δ)ChX,D∥U∥L∞

< (1 + δ)ChX,D(∥e(x)∥L∞ + ∥u∥L∞).

Eq. (5.3.2) can be reformulated as

Uj =g(xi)−DαUj(xi) +

∫ xi

0

K1

(
xi, v)Uj

(
v
)
dv +

∫ xi

0

K2(xi, v)Uj(v)dB(v)− S1(xi)− S2(xi), (5.3.8)

≤g(xi)−DαUj(xi) +

∫ xi

0

K1

(
xi, v)Uj

(
v
)
dv +K2(xi, xi)Uj(xi)B(xi)− S1(xi)− S2(xi).

By using U =

n∑
j=0

Ujϕj(x), then from Eq.(5.3.8) we get

U ≤Png −DαU + Pn

(∫ t

0

K1

(
x, v)U

(
v
)
dv

)
+ Pn

(
K2(x, x)U(x)B(x)

)
− Pn(S1)− Pn(S2). (5.3.9)

By using U =

n∑
j=0

Ujϕj(x), then from Eq.(5.1.1) we get

Pnu =Png −Dαu+ Pn

(∫ x

0

K1(x, s)u(v)dv

)
+ Pn

(∫ x

0

K2(x, v)u(v)dB(v)

)
, (5.3.10)

≤Png − PnD
αu+ Pn

(∫ x

0

K1(x, v)u
(
v)dv

)
+ Pn

(
K2(x, x)u(x)B(x)

)
.

Subtracting U(x) from u(x), then we obtain the error equation as

e(x) = u(x)− U(x)

= u(x)− Pnu(x) + Pnu(x)− U(x),

≤ u(x)− Pnu(x) +DαU − PnD
αu+ Pn

(∫ x

0

K1

(
x, v)e

(
v
)
ds

)
+ Pn

(
K2(x, x)e(x)B(x)

)
+ Pn(S1) + Pn(S2),

≤
∫ t

0

K1

(
x, v)e

(
v
)
dv +K2(x, x)e(t)B(x) + Pn(S1) + Pn(S2)

+ S3(t) + S4(x) + S5(x) + S6(x),

where

S3(x) = u(x)− Pnu(x),

S4(x) = DαU − PnD
αu,

S5(x) = Pn

(∫ x

0

K1

(
x, v)e

(
v
)
dv

)
−
∫ x

0

K1

(
x, v)e

(
v
)
dv,

S6(x) = Pn

(
K2(x, x)e(x)B(x)

)
−K2(x, x)e(x)B(x).
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Then

|e(x)| ≤ 1

1− LC2

(∫ x

0

∣∣K1

(
x, v)e

(
v
)∣∣dv + ∣∣Pn(S1) + Pn(S2) + S3(x) + S4(x) + S5(x) + S6(x)

∣∣).
From the Gronwall inequality (5.3.3), we obtain

∥e∥L∞ ≤ 1

1− LC2

(
∥Pn(S1)∥L∞ + ∥Pn(S2)∥L∞ + ∥S3∥L∞ + ∥S4∥L∞ + ∥S5∥L∞ + ∥S6∥L∞

)
. (5.3.11)

The error bound for the MLS approximation implies

∥Pn(S1(x))∥L∞ = ∥
n∑

i=1

S1(xi)ϕi(x)∥L∞

≤ max
0≤i≤n

|S1(xi)|∥
n∑

i=1

ϕi(x)∥L∞

≤ (1 + δ)ChX,D

(
∥e(x)∥L∞ + ∥u∥L∞

)
,

∥Pn(S2(x))∥L∞ = ∥
n∑

i=1

S2(xi)ϕi(x)∥L∞

≤ max
0≤i≤n

|S2(xi)|∥
n∑

i=1

ϕi(x)∥L∞

≤ (1 + δ)ChX,D

(
∥e(x)∥L∞ + ∥u∥L∞

)
,

∥S3(x)∥L∞ = ∥u(x)− Pnu(x)∥L∞ ≤ (1 + δ)Chq+1
X,D|u|q+1,

∥S4(x)∥L∞ = ∥PnD
αu(x)−DαU(x)∥L∞

≤ ∥PnD
αu(x)−Dαu(x)∥L∞ + ∥Dαu(x)−DαU(x)∥L∞

≤ δChq+1−|α|
X,D |u|q+1 + (1 + δ)Ch

q+1−|α|
X,D |u|q+1,

≤ (1 + 2δ)Ch
q+1−|α|
X,D |u|q+1,

∥S5(x)∥L∞ ≤ C(1 + δ)ChX,D∥
(∫ t

0

K1

(
x, v)e

(
v
)
dv
)′

∥L∞ ,

≤ C(1 + δ)ChX,D∥K1(x, x)e(x) +

∫ x

0

∂K1

(
x, x))

∂x
e
(
v
)
dv)∥L∞ ,

≤ C(1 + δ)ChX,D(C1 + C3)∥e(x)∥L∞ ,

∥S6(x)∥L∞ = ∥Pn

(
K2(x, x)e(x)B(x)

)
−K2(x, x)e(x)B(x)∥L∞

≤ (1 + δ)CC2Lh
q+1
X,D|e(x)|q+1.

Then

∥e∥L∞ ≤ C

1− LC2
hX,D

(
(1+δ)

((
2+hqX,DC2L+(C1+C3)

)
∥e(x)∥L∞+2∥u∥L∞+(h

q−|α|
X,D +hqX,D)|u|q+1

)
+δh

q−|α|
X,D |u|q+1

)
.

We get hX,D =
1

n− 1
, by increasing n and hX,D → 0, it implies ∥e(x)∥ = ∥u(x)−U(x)∥ → 0 as n→∞.

In the rest of chapter, we put hq+1
X,D = h for simplicity in notations.

5.4 Numerical results

In this section some numerical tests problems are presented to demonstrate the high accuracy of the
method. We give also a comparison between our described approach and the proposed method in [111],
[97],[92]. We used spline weight functions and different basis functions as: the linear basis (m = 1), the
quadratic basis (m = 2), the cubic basis (m = 3) and the quartic basis (m = 4). For computational
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details, we put R = 1.5 × h for m = 1, R = 2.5 × h for m = 2, R = 3 × h for m = 3 and R = 4 × h for

m = 4, where h =
1

n− 1
. In addition, we use the 3-points composite Gauss-Legendre quadrature rule

with M = 5 for numerical integration. If the exact solution of SFIDE (5.1.1) is known then the absolute
errors and the maximum errors are given as

e(x) = |u(x)− U(x)| ∥e(x)∥∞ = max
x∈[0,1]

|u(x)− U(x)|

All calculations are done by Matlab R2015a. In order to prove the rate convergence of this technique,
the values of ratio are calculated by

Ratio =
ln(∥e∥∞)n − ln(∥e∥∞)n−1

ln(h)n − ln(h)n−1

Example 19. Consider the following fractional stochastic integro-differential equation [97, 111, 92]

Dαu(x) =
x2

2
+

Γ(2)

Γ(2− α)
x1−α +

∫ x

0

u(s)ds+ σ

∫ x

0

u(s)dB(s). x ∈ [0, 1]

u(0) = 0

The exact solution of this equation is unknown. In stochastic case (σ = α = 0) the problem has the
exact solution u(x) = 2ex − (2 + x), in this case, the maximum absolute errors are reported in Table 5.1
for different values of x and compared with those of Wavelet collocation method. Table 5.2 shows the
approximate solutions obtained by the proposed method, Chebyshev wavelet method and Cubic B-spline
method for σ = 1 and various values of α. The comparison of obtained errors of linear, quadratic and
cubic basis are listed in Table 5.3 and plotted in Fig 5.1. The approximate solutions obtained by the MLS
method for different values of α and n = 10 are plotted in Fig. 5.2. Contour plots of maximum error for
m = {1, 2} and σ = α = 0 are plotted in Fig. 5.3. As we expected, from Theorem 5.3.4, Table 5.1 and
Table 5.3 confirm that the results gradually converge to the exact values along with the increase of the
nodes. According to Table 5.1 the numerical results show the higher performance of the MLS method
which is more accurate and better than those of obtained method in [111]. From Table 5.3, we can see
that the scheme consumes less CPU time and the computational cost of the moment matrix increases
as the number of points increases. Also, the ratio of MLS error remains approximately constant for the
linear case O(h2) and the quadratic case O(h3). For a high degree basis (m = 3,m = 4), the rate of MLS
error seems to be a big value which confirms the great potential of the MLS method in this case.

Table 5.1: Errors using different values of n and σ = 0 for Example 19

n h
∥e∥∞ MLS method ∥e∥∞ Wavelet collocation method [111]

m = 1 m = 2

4 0.33 2.86 ×10−2 5.86 ×10−3 -
6 0.20 9.03 ×10−3 1.35 ×10−3 1.95 ×10−2

12 0.09 1.65 ×10−3 1.34 ×10−4 4.80 ×10−3

24 0.04 3.90 ×10−4 1.56 ×10−5 1.20 ×10−3

48 0.02 8.87 ×10−5 4.66 ×10−6 2.92 ×10−4
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Table 5.2: Numerical results using different values of x, α, σ = 1 and n = 4 for Example 19

t MLS method Chebyshev wavelet
method [97]

Cubic B-spline
method [92]

α = 0.25 0.10 0.0875 0.14133 0.03695
0.30 0.2883 0.48481 0.22947
0.50 0.5450 1.54907 0.32993
0.70 0.8777 1.45203 0.79859
0.90 1.3163 2.34412 1.16076

α = 0.5 0.10 0.1027 0.11473 0.01593
0.30 0.3171 0.42058 0.09125
0.50 0.5736 1.40845 0.24115
0.70 0.8988 1.22509 0.47565
0.90 1.3281 1.90333 0.87980

α = 0.75 0.10 0.1472 0.10199 0.00349
0.30 0.4361 0.37445 0.03022
0.50 0.7665 1.30037 0.09128
0.70 1.1887 1.06846 0.23163
0.90 1.7708 1.61821 0.42955

Table 5.3: Errors, rates and CPU times using different values of m and n for Example 19

n h ∥e∥∞ CPU time Ratio

m = 1 4 0.33 2.85 ×10−2 0.059 s -
6 0.16 9.03 ×10−3 0.126 2.24
7 0.14 6.05 ×10−3 0.192 2.19
8 0.125 4.33 ×10−3 0.238 2.16

m = 2 4 0.33 5.86 ×10−3 0.062 -
6 0.16 1.35 ×10−3 0.135 2.87
7 0.14 7.96 ×10−4 0.202 2.89
8 0.125 5.08 ×10−4 0.288 2.91

m = 3 4 0.33 9.36 ×10−4 0.064
6 0.16 4.52 ×10−4 0.160 1.42
7 0.14 2.61 ×10−4 0.339 3.01
8 0.125 1.37 ×10−4 0.513 4.18

m = 4 6 0.16 6.78 ×10−5 0.233 -
7 0.14 2.38 ×10−5 0.381 5.74
8 0.125 2.15 ×10−5 0.653 0.65

Example 20. Consider the following fractional stochastic integro-differential equation [62]

Dαu(x) + u(x) = x+
Γ(2)

Γ(2− α)
x1−α + σ

∫ x

0

dB(s), x ∈ [0, 1]

u(0) = 0

The exact solution of this equation is unknown. The errors of our approach with σ = 0 and σ = 1 for
different values of x are shown in Table 5.4 and compared with Galerkin method. In stochastic case
(σ = α = 0) the problem has the exact solution u(x) = x, and the absolute error for different values of
α are reported in the Table 5.5. Furthermore, the approximate solutions for different values of α with
x = 10 are plotted in Fig. 5.4. As we can see, the numerical solutions converge to the exact solution as
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Figure 5.1: Error distributions using different basis and σ = 0 for Example 19

the value α → 0 which is the exact solution of this equation for the case σ = α = 0. In addition, The
MLS results give better accuracy than those obtained in [62].

Table 5.4: Errors using different values of x, α, σ and n = 4 for Example 20

x e(x) Proposed method e(x) Galerkin method [62]

σ = α = 0 σ = 1, α = 0.25 σ = 1, α = 0.5 σ = 1, n = 2 σ = 1, n = 4

0.01 9.18 ×10−15 1.29 ×10−6 3.24 ×10−5 1.49 ×10−2 2.18 ×10−2

0.20 8.32 ×10−17 2.59 ×10−5 6.48 ×10−4 1.23 ×10−2 9.00 ×10−4

0.34 1.47 ×10−13 4.36 ×10−5 1.08 ×10−3 2.89 ×10−2 1.17 ×10−2

0.43 1.50 ×10−13 5.39 ×10−5 1.32 ×10−3 3.50 ×10−2 1.63 ×10−2

0.50 6.01 ×10−13 6.17 ×10−5 1.50 ×10−3 3.90 ×10−2 1.18 ×10−2

0.65 9.37 ×10−13 7.82 ×10−5 1.87 ×10−3 4.13 ×10−2 2.14 ×10−2

0.87 1.30 ×10−11 1.01 ×10−4 2.35 ×10−3 3.23 ×10−2 1.72 ×10−2

1.00 3.30 ×10−11 1.14 ×10−4 2.62 ×10−3 1.99 ×10−2 9.70 ×10−3

Table 5.5: Numerical results using different values of x, α, σ = 1 and n = 4 for Example 20

σ = 0 σ = 1

t Exact solution α = 0 α = 0.25 α = 0.5 α = 0.75

0.10 0.1000 0.1000 0.1000 0.1010 1.1140
0.30 0.3000 0.3000 0.3001 0.3027 0.3321
0.50 0.5000 0.5000 0.5002 0.5042 0.5479
0.70 0.7000 0.7000 0.7003 0.7055 0.7611
0.90 0.8999 0.8999 0.9004 0.9067 0.9723
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Figure 5.2: The approximate solution using different values of σ and α for Example 19
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Figure 5.4: The approximate solution for different values of α and n = 10 for Example 20
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Example 21. We consider the following stochastic integro-differential equation

ù(x) = g(x) +

∫ 1

0

cos(x− r)u(r)dr +
∫ 1

0

exp(x− r)u(r)dB(r),

u(0) = 0.

where

g(x) = xex + ex − 0.25(cos(x)− e1sin(1− x))− ex
[
B(1)−

∫ 1

0

B(r)dr

]
.

and the exact solution is u(x) = xex. Absolute errors using regular and irregular points are shown

Table 5.6: Errors using regular and irregular points and m = 3 for Example 21

x
n = 4 n = 7

e(x) CPU times e(x) CPU times

Regular points 0.1 3.04 ×10−2 0.076 s 1.10 ×10−2 0.163 s
0.01 2.68 ×10−3 0.075 1.91 ×10−4 0.165
0.001 2.65 ×10−4 0.073 9.76 ×10−6 0.165
0.0001 2.69 ×10−5 0.077 7.69 ×10−8 0.168
0.00001 3.66 ×10−6 0.074 8.08 ×10−7 0.159

Irregular points 0.1 1.41×10−2 0.075 1.11×10−2 0.118
0.01 9.86×10−4 0.076 1.46×10−4 0.133
0.001 9.54×10−5 0.074 5.31×10−6 0.123
0.0001 9.51×10−6 0.074 4.38×10−7 0.126
0.00001 9.49×10−7 0.078 4.29×10−8 0.140

in Table 5.6. Also, the Maximum error for Example 21 with different values of x and m are given in
Table 5.7. Fig. 5.6 plots the graph of maximum solutions for different values of m. Figure 5.7 plots
the approximate solution which is the same as the exact solution. Contour plots of maximum error for
m = {1, 2, 3} and σ = α = 0 are plotted in Fig. 5.5. As we can see in Theorem 5.3.4, the results
gradually converge to the exact values as the number of nodes increases. For a given CPU time. the ratio
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Table 5.7: Errors using different values of n and m for Example 21

n h ∥e∥∞ Ratio CPU times

m = 1 5 0.25 2.88× 10−1 - 1.07 s
9 0.12 6.27× 10−2 2.19 1.33
12 0.09 3.23× 10−2 2.08 1.84
17 0.06 1.70× 10−2 1.71 3.65
25 0.04 7.03× 10−3 2.17 6.78
38 0.02 2.94× 10−3 2.01 31.79
87 0.01 6.69× 10−4 1.73 750.24

m = 2 5 0.25 4.93× 10−2 - 1.17
9 0.12 6.62× 10−3 2.89 1.41
12 0.09 1.93× 10−3 3.87 1.93
17 0.06 9.01× 10−4 2.03 3.77
25 0.04 4.11× 10−4 1.93 8.19
38 0.02 2.08× 10−4 1.57 38.25
87 0.01 2.23× 10−5 2.61 783.48

m = 3 5 0.25 4.44× 10−3 - 1.20
9 0.12 8.02× 10−4 2.46 1.54
12 0.09 5.84× 10−4 0.99 2.02
17 0.06 4.59× 10−5 6.78 3.91

of MLS error remains approximately constant for the linear case O(h2) and the quadratic case O(h3), for
a high degree basis (m = 3,m = 4), the rate of MLS error seems to be a big value which confirms the
convergence of the method. Also, the scheme consumes less CPU time and the computational cost of the
moment matrix increase as the number of points increases.
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Figure 5.5: Contour plots of maximum error (nodes, the distance between two consecutive nodes)
for m = {1, 2, 3} for Example 21
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the exact solution for σ = 0 and n = 15 for Example 21.

5.5 Conclusion

In this chapter, the combination of MLS approximation, composit Gauss-Legendre quadrature formula,
and Itô approximation are used to solve fractional stochastic integro-differential equations. The achieved
results indicate that the RMLS method uses much less volume computing and time. This approach
provides acceptable results with a small number of nodes and basis functions. The suggest method is
practical and it can be used in cases where the exact answer to the problem is not available. Also, the
method is free from choosing nodes as regular or irregular points and this makes it suitable to study real
world problems.
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General conclusion and perspectives

In this thesis, new adaptive meshless schemes based on the modified moving least squares approxima-
tion(MMLS) and the regularized moving least squares approximation(RMLS) have been proposed as
novel numerical models, which have been applied to solve a different class of integral equations and
integro-differential equations in regular and irregular domains.

The first part of this thesis is devoted to applying the modified moving least squares approach for a
class of integral equations on 2D and 3D domains. More specifically, in Chapter 2, we treated the ques-
tion of singular moment matrix in the context of MLS based method by adding additional terms based
on the coefficients of the polynomial base functions, leading to have a better approximation capability
with a nonsingular moment matrix. We presented the moving least squares (MLS) and modified mov-
ing least squares (MMLS) methods for solving two-dimensional linear and nonlinear Fredholm-Volterra
integral equations and Fredholm-Hammerstein integral equations on 2D irregular domains. The numer-
ical examples show that the approximation of the MMLS gave more accurate results than that of the
classical MLS. The MMLS method can be used in various irregular domains since it does not depend
on the geometry of the domain. The efficiency of the obtained solutions can be improved by taking
more nodes in the domain. In Chapter 3, the three-dimensional mixed integral equations are solved
by using the MMLS approach, compared with the classical MLS method. The most advantage of the
MMLS method is the potential to get an approximation for cases when classical MLS with quadratic base
functions fail because of a non-invertible moment matrix. It can be concluded that the MMLS method
is very convenient for solving integral equations in high dimensions. Apparently, the MMLS approxima-
tion is a powerful tool for solving mixed integral equations and it can be extended without difficulties
to the three-dimensional problems because of the simple adaption of the MMLS method for the 3-D space.

In the second part, we deal with two chapters on the theoretical and numerical study of the RMLS
approach and its applications for solving stochastic integral equations and stochastic differential equa-
tions. More specifically, in Chapter 4, the combination of an efficient meshfree method, the regularized
MLS approximation, and the Itô approximation for solving two-dimensional stochastic Fredholm integral
equations are applied. Numerical examples have been examined and compared with classical MLS, mod-
ified MLS, and RBF methods which confirmed the validity and the reliability of the new approach with
only a few nodal points. The achieved results indicate that the RMLS method uses much less volume
computing and time. This approach is free from choosing the domain and this makes it suitable to study
real world problems. In Chapter 5, the combination of the MLS approximation, the Caputo fractional
derivative, the composite Gauss-Legendre quadrature formula, and the Itô approximation are used to
solve the fractional stochastic integro-differential equation. To illustrate the capability of the proposed
method, three different test cases are solved. Obtained results indicate that this approach can be used
in cases where the exact solution to the problem is not available. the method is free from choosing nodes
as regular or irregular points and this makes it suitable to study real world problems. The valuable
advantage of the MLS method is that it can be used in various irregular domains since it is free from
choosing the domain, furthermore, it can be easily extended to the higher problems because of the simple
adaption of MLS method.

Based on the work undertaken in this thesis, there are some areas which present themselves as clear
opportunities for future research and development. Some of those points are listed below:
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1) Application of MLS method for solving system of linear Stratonovich Volterra
integral equation

Stochastic integrals are split into two parts in stochastic processes; Stratonovich integrals which is fre-
quently used in physics and Itô integrals which are usually used in applied mathematics. Unlike the
Itô calculus. the Stratonovich integral is defined to hold the chain rule in ordinary calculus. Owing
to this feature, stochastic differential equations are easier to describe the differentiable manifolds in the
Stratonovich sense. On many occasions, it is not possible to find an exact solution for these equations.
This fact, together with an essential requirement in applied mathematics for solving them, has given rise
to a heightened development of work aimed to design numerical methods for solving this type of equation.
In this work, we suggest using the MLS method to get an approximate solution for the linear system of
Stratonovich Volterra integral equation

du(x)

dx
= g(x) +

∫ b

a

K1(x, t)u(t)dt+

∫ x

a

K2(x, t)u(t)odB(t), x ∈ D, (6.0.1)

where

u(x) = [u1(x), u2(x), ..., un(x)]
T ,

f(x) = [g1(x), g2(x), ..., gn(x)]
T ,

K1(x, t) = [K1i,j(x, t)], i, j = 1, 2, ..., n.

K2(x, t) = K1i,j(x, t), i, j = 1, 2, ..., n.

where gi(x),K1i,j(x, y) andK2i,j(x, y) for i, j = 1, 2, ..., n are known functions whereas ui(x) are unknown
functions. B(x) is a standard Brownian motion. Note that the symbol o between integrand and the
stochastic differential is used to indicate Stratonovich integrals.

2) Finding the error analysis of the MLS method for the Volterra integral equations

In recent literature, the researches of the mathematical theory of meshless methods are much less than
those of their applications. The error analysis of MLS approximation was provided by some authors,
beginning with the work of Levin [77] presented the error estimates in the uniform norm for a particular
weight function in N dimensions, but, he did not obtain error estimates for the derivatives. In [4] Ar-
mentano and Duron studied the MLS method for the function and its derivatives in the one dimension
obtaining error estimate in L∞. Armentano in [3] presented the error estimates in L∞ and L2 norms
for one and N dimensions which generalize the result given in [4]. Zuppa in [129] proved the error es-
timates for derivatives of shape function by the condition numbers of the star of nodes in the normal
equation. Authors of [103], obtained the error estimates in Sobolev space when u(x, y) ∈ Cm+1(D),
and u(x, y) ∈ Wm+1,q(D), respectively. However finding the error analysis of the MLS method for the
Volterra integral equations is an interesting research problem

3) Finding the optimum value α for the Gaussian weight function

An important ingredient of meshless methods is the weight function which is denoted by wi, consider the
following Gaussian weight function given us

w(s) =

 e−( s
α )2 − e−( 1

α )2

1− e−( 1
α )2

si |s| ≤ 1

0 si |s| > 1

(6.0.2)

α is a constant controlling the shape of the weight function
The Gaussian weight function is sensitive in respect to parameter α. Experiments show α = 0.6× δ

is an appropriate choice, where δ is the distance between two consecutive nodes. However, finding the
optimum value for α is an open problem for this method.

4)Solving three-dimensional time fractional diffusion equation with variable-order
derivatives

One of the important classes of fractional partial differential equations (FPDEs) [89] which is widely used
nowadays is the well-known time fractional diffusion equation [45, 101]. This kind of equation can be
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used to explain the phenomena such as anomalous diffusion which involves long-time simulations in a
better way. The time fractional diffusion equation can be written in the following form

∂α(x,t)u(x, t)

∂tα(x,t)
− κ△(x, t) + ν.∇u(x, t)− f(x, t) = 0, x = (x, y, z) ∈ Ω ⊂ R3, (6.0.3)

u(x, 0) = h(x), x ∈ Ω (6.0.4)

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, tfinale], (6.0.5)

where ∂u and ∇u denote Laplace and gradient operators, respectively, Ω represents the computational
domain in R3 with boundary ∂Ω, κ stands for the diffusion coefficient, represents the vector of veloci-

ties, ν = [ν, νy, νz] represents the vector of velocities, and
∂α(x,t

n+1)u(x, tn+1)

∂tα(x,tn+1)
stands for the fractional

derivative with variable-orders [113] which can be defined as

∂α(x,t)u(x, t)

∂tα(x,t)
=

1

Γ(1− α(x, t))

∫ t

0

∂u(x, ξ)

∂ξ

1

(t− ξ)α(x,t)
, 0 < α, (x, t) < 1.

The current dominant numerical method for modeling FPDE is the finite difference Method (FDM),
which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in
the simulation of problems with the complex problem domain and in using irregularly distributed nodes.
Because of its distinguished advantages, the meshless method has good potential in the simulation of
FPDEs.

5) Solving Sobolev equation arising in fluid dynamics

The Sobolev equations have been used for modeling many phenomena in mechanical engineering and
physics such as the migration of the moisture in soil [99], thermodynamics [115], and the motion of fluid
in different media such as soil and rock [119]. The Sobolev equation of order can be written in the
following form

ut − γ∆ut − σ∆u = g(x, t), x ∈ Ω ⊂ R2, t ∈ [0, T ]. (6.0.6)

The initial condition is considered as
u(x, 0) = f(x), x ∈ Ω

together with the boundary conditions

u(x, t) = h(t), x ∈ ∂Ω, t ∈ [0, T ]

where

• σ is the factor of piezo-conductivity of fissured rock,

• γ represents a new characteristic related to the fissured rocks.

g(x, t), f(x) and h(t) are known functions, σ and γ are positive constants, and ∆ is considered as second-
order derivative operator. The existence and uniqueness of the solution for the Sobolev equations have
been discussed in [116].
the solutions of FPDEs cannot be achieved via usual paper–pencil work. Therefore, researchers are
constantly developing various approximation methods to cope with this issue. Approximate solutions of
FPDEs have been reported via finite differences scheme [34], weak Galerkin finite element method scheme
[42] and Legendre spectral element scheme [24]. However, implementation of these schemes becomes a
challenge as dimension of the problem domain increases. In such a situation, meshless methods perform
very well due to their independence of problem geometry and dimension.
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Annex

This section presents preliminary material from functional analysis which we have used in the previous
chapters, and the basic numerical steps and results for implementation of MLS shape functions

7.1 Preliminary functional analysis

Normed spaces

We start this section with basic definitions, notations and results concerning the normed spaces.
Given a linear space X, we recall that a norm ∥.∥X is a function from X to R with the following properties.
Let X be a vector space over K. A norm on X is a map ∥.∥ : X −→ [0,∞) that satisfies the following
three properties.

1. ∥u∥X = 0 implies x = 0. (definiteness).

2. ∥λx∥ = ∥λ∥∥x∥, for all x ∈ X and λ ∈ K. (homogeneity).

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥, for all x, y ∈ X. (triangle inequality).

A normed space is a pair (X, ∥.∥), where X is a vector space and ∥.∥ is a norm on X. The vector space
Rn with the usual addition and scalar multiplication allows for several norms, for example:

• The Euclidean norm ∥(x1, ..., xn)∥l2 = (x21 + ...+ x2n)
1/2,

• The maximum norm ∥(x1, ..., xn)∥l∞ = max{|x1|, ..., |xn|},
• The summation norm ∥(x1, ..., xn)∥l1 = {|x1|+ ...+ |xn|}.

These are all special cases of the (finite-dimensional) lp-norm

∥(x1, ..., xn)∥lp =

(
n∑

j=1

|xj |p
)1/p

, 1 ≤ p ≤ ∞.

Let ∥.∥(1) and ∥.∥(2) be two norms over a linear space X. The two norms are said to be equivalent if
there exist two constants c1, c2 > 0 such that

c1∥u∥1 ≤ ∥u∥2 ≤ c2∥u∥1. u ∈ X.

A sequence (xn)n∈N in X is said to converge to a ∈ X if

∀ε > 0, ∃N0 ∈ N : ∀n ≥ N0, ∥xn − a∥ < ε.

A sequence (xn)n∈N in X is said to be bounded if there exists M > 0 such that

∥un∥X ≤M, ∀n ∈ N,

or, equivalently, if
sup
n
∥un∥ ≤ ∞.

To test the convergence of a sequence without knowing its limit, it is usually convenient to refer to
the notion of a Cauchy sequence. Let X be a normed space. A sequence (un) ∈ X is called a Cauchy
sequence if

∥um − un∥ 7−→ 0, as m,n 7−→ ∞.
The open ball about x ∈ X with radius r > 0 is the set

B(X, r) = {y ∈ X, ∥x− y∥ < r}.
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Definition 7.1.1. A normed space is said to be complete if every Cauchy sequence from the space
converges to an element in the space. A complete normed space is called a Banach space.

Definition 7.1.2. Given a linear space X we recall that an inner product (X, ∥.∥X) is a function from
X ×X to R with the following properties.

• (u, u)X ≥ 0,∀u ∈ X and (u, u)X = 0 if and only if u = 0X ,

• (u, v)X = (v, u)X ,∀u, v ∈ X.

• (αu+ βv, ω) = α(u, ω) + β(v, ω), ∀u, v, w ∈ X, ∀α, β ∈ R.

The pair (X, ∥.∥X) is called an inner product space.

Definition 7.1.3. A complete inner product space is called a Hilbert space.

we suppose that a, b ∈ R with a < b, consider the closed interval. Recall the spaceB([a, b]) (comprising
all bounded functions on [a, b] ) and consider the linear subspace C0[a, b] comprising all continuous
functions f : [a, b] −→ R. (By the Weierstrass extreme value theorem, any such function is bounded, thus
we have the inclusion C0([a, b]) ⊂ B([a, b]). The restriction of the supremum norm to C0([a, b]) gives rise
to a normed subspace of B([a, b]). We denote its norm by

∥f∥C0([a,b]) = sup
x∈[a,b]

|f(x)|, f ∈ C0([a, b]).

Definition 7.1.4. Let k ∈ N. Then Ck([a, b]) comprises all functions f ∈ C0([a, b]) such that f is k times
continuously differentiable in (a, b) and there exist g1, ..., gk ∈ C0([a, b]) such that f i(t) = gi(t) for all
t ∈ (a, b) and i = 1, ..., k. For f ∈ Ck([a, b]), we define

∥f∥Ck([a,b]) =

k∑
i=0

∥gi∥C0([a,b]),

where g0 = f and g1, ..., gk ∈ C0([a, b]).

In other words, a function f [a, b] −→ R belongs to Ck([a, b]) if it is continuous on [a, b] and k times
continuously differentiable in (a, b) and every derivative up to order k has a continuous extension to [a, b].
It is common to abuse notation and write f i for the continuous extension of the i-th derivative of f (rather
than gi). Then

∥f∥Ck([a,b]) =

k∑
i=0

∥f i∥C0([a,b])

7.1.1 Support and Compact Support

Let U be an open set in Rn, and let f : U −→ R be a continuous function.

Definition 7.1.5. The support of f is

supp = {x ∈ U : f(x) ̸= 0}.

Definition 7.1.6. Let f : U −→ R, the function f is compactly supported if suppf is compact.

Notation Ck
0 (U) = The set of compactly supportedCk functions onU.

Suppose that f ∈ Ck
0 (U). Define a new set U1 = (Rn − suppf). Then U ∪ U1 = Rn, because

suppf ⊆ U .
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7.1.2 Partitions of Unity

Let {Uα : α ∈ I} be a collection of of open subsets of Rn such that U = ∪αUα.

Theorem 7.1.1. There exists a sequence of rectangles Qi, i = 1, 2, 3, ... such that

1. Int Qi, i = 1, 2, 3, ... is a cover of U ,

2. Each Qi ⊂ Iα for some α,

3. For every point p ∈ U , there exists a neighborhood Up of p such that Up ∩Qi = ϕ for all i > Np.

The following theorem is called the Partition of Unity Theorem.

Theorem 7.1.2. There exist functions fi ⊆ C0
∞(U) such that

1. f1 ≥ 0,

2. supp fi ⊆ Uα, for some α,

3. For every p ∈ U , there exists a neighborhood Up of p such that Up ∪ suppfi = ϕ for all i > Np,

4.
∑

fi = 1.

7.1.3 Hölder spaces

Suppose Ω ⊂ Rd is an open set and 0 < γ < 1. Recall that k-Lipschitz continuous functions f : Ω −→ R
satisfy by definition the following estimate:

|f(x)− f(y)| ≤ k∥x− y∥, ∀x, y ∈ Ω, k ∈ R+.

This relation provides a uniform modulus of continuity. It is often useful to consider functions f satisfying

|f(x)− f(y)| ≤ k∥x− y∥γ , x, y ∈ Ω, k ∈ R+.

Such functions are said to be Hölder continuous with exponent γ ∈ R+.

Definition 7.1.7. Consider f : Ω −→ R

• if f is bounded and continuous, we write

∥f∥C0(Ω̄)
def
= sup

x∈Ω
|f(x)|.

• the γth-Hölder seminorm of f is:

|f |C0,γ(Ω̄)
def
= sup

x,y∈Ω
x ̸=y

(
|f(x)− f(y)|
|x− y∥(γ

)
,

and the γth-Hölder norm of f is:

∥f∥C0,γ(Ω̄)
def
= ∥f∥C0(Ω̄) + |f |C0,γ(Ω̄).

Definition 7.1.8. The Hölder space Ck,γ(Ω̄) consists of all functions f ∈ Ck(Ω̄) for which the norm

∥f∥Ck,γ(Ω̄)
def
=
∑
|α|≤k

∥∂αf∥C0(Ω̄) +
∑
|α|=k

|∂αf |C0,γ(Ω̄),

is finite.

Definition 7.1.9. The space of functions Ck,γ(Ω̄) is a Banach space.
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Lp spaces

Definition 7.1.10. Let (X,A, µ) be a measure space and 1 ≤ p < ∞ . The space Lp(X) consists of
equivalence classes of measurable functions f : X −→ R such that∫

|f |pdµ <∞,

where two measurable functions are equivalent if they are equal µ-a.e. TheLp-norm of f ∈ Lp(X) is
defined by

∥f∥Lp =

(∫
|f |pdµ

)1/p

.

The notation Lp(X) assumes that the measure µ on X is understood. We say that fn −→ f in Lp if
∥f − fn∥Lp −→ 0.

The space L∞(X) is defined in a slightly different way. First, we introduce the notion of esssential
supremum.

Definition 7.1.11. Let f : X −→ R be a measurable function on a measure space (X,A, µ). The
essential supremum of f on X is

ess sup
X
f = inf{a ∈ R : µ{x ∈ X : f(x) > a} = 0}.

Equivalently

ess sup
X
f = inf

{
sup
X
g : g = fpointwise a.e

}
.

Thus, the essential supremum of a function depends only on its µ-a.e. equivalence class. We say that f
is essentially bounded on X if

ess sup
X
|f | <∞

Definition 7.1.12. Let (X,A, µ) be a measure space. The space L∞(X) consists of pointwise a.e.-
equivalence classes of essentially bounded measurable functions f : X −→ R with norm

∥f∥L∞ = ess sup
X
|f |.

We state two fundamental inequalities.

Theorem 7.1.3. (Minkowski inequality). If f, g ∈ Lp(X), where 1 ≤ p ≤ ∞, then f + g ∈ Lp(X)
and

∥f + g∥p ≤ ∥f∥p + ∥g∥p.
This inequality means, as stated previously, that ∥.∥Lp

is a norm on Lp(X) for 1 ≤ p ≤ ∞. If 0 < p < 1,
then the reverse inequality holds

∥f∥p + ∥g∥p ≤ ∥f + g∥p,
so ∥.∥Lp is not a norm in that case. Nevertheless, for 0 < p < 1 we have

|f + g|p ≤ |f |p + |g|p,

so Lp(X) is a linear space in that case also. To state the second inequality, we define the Hölder conjugate
of an exponent.

Definition 7.1.13. Let 1 ≤ p ≤ ∞. The Hölder conjugate p
′
of p is defined by

1

p
+

1

p′ = 1, if 1 < p <∞.

Theorem 7.1.4. (Hölder’s inequality). Suppose that (X,A, µ) is a measure space and 1 ≤ p ≤ ∞. If

f ∈ Lp(X) and g ∈ Lp
′

(X), then fg ∈ L1(X) and∫
fgdµ ≤ ∥f∥Lp∥g∥

Lp
′ .

For p = p
′
= 2, this is the Cauchy-Schwartz inequality.
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7.2 Implementation of MLS shape functions

All codes are implemented in Matlab language and given the results in the following listing:

7.2.1 Numerical steps for implementation of MLS shape functions on 1D

• Node distribution: Consider an interval [0 4] which is divided into 5 equally spaced nodes depicted
in Fig.7.1 and given data coordinates as

node =
[
0 1 2 3 4

]

2 41 3 5

Figure 7.1: Node distribution

• Define support The domain of influence for nodes is a circle with fixed radius d = 1.5 (1.1.13), and
finding all points including in each local support nodes

1 4 532

Figure 7.2: MLS circular support

Index(1) = {1, 2}, Index(2) = {1, 2, 3}, Index(3) = {2, 3, 4}

Index(4) = {3, 4, 5}, Index(5) = {4, 5}.
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• MLS Weight functions: A cubic weight function (1.1.16) is chosen to compute shape function, then
we have

ω(1) = [1.0000 0.1111 0 0 0]

ω(2) = [0.1111 1.0000 0.1111 0 0],

ω(3) = [0 0.1111 1.0000 0.1111 0],

ω(4) = [0 0 0.1111 1.0000 0.1111],

ω(5) = [0 0 0 0.1111 1.0000].

From those results, one can see that the weight functions are positive and non zero only over its support.

• MLS shape functions: A linear basis is used to compute shape function, then we have

ϕ(1) = [1.0000 0.0000 0 0 0]

ϕ(2) = [0.0207 0.9586 0.0207 0 0],

ϕ(3) = [0 0.0207 0.9586 0.0207 0],

ϕ(4) = [0 0 0.0207 0.9586 0.0207],

ϕ(5) = [0 0 0 0.0000 1.0000].

From those results, one can easily see that MLS shape functions satisfy the consistency property (1.1.18)
of MLS approximation.

7.2.2 Numerical steps for implementation of MLS shape functions on 2D

• Node distribution: Let us define a vector node including 25 equidistant points and given data coordi-
nates as follows

node =

[
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

]

1 3 5

13

19

25

2 4

6 7 8 9 10

11 12 14 15

16 17 18 20

21 22 23 24

Figure 7.3: Node distribution
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• Define support: The domain of influence for nodes is a circle with fixed radius d = 2.5 (1.1.13), and
finding all points including in each local support node:

Figure 7.4: MLS circular support

Index(1) = {1, 2, 6, 7}, Index(13) = {7, 8, 9, 12, 13, 14, 17, 18, 19},
Index(15) = {9, 10, 14, 15, 19, 20}, Index(25) = {19, 20, 24, 25}.

• MLS Weight functions; A cubic weight function (1.1.16) is chosen to compute shape function, then
we have

w(1) =


1.0000 0.1111 0 0 0
0.1111 0.0007 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , w(13) =


0 0 0 0 0
0 0.0007 0.1111 0.0007 0
0 0.1111 1.0000 0.1111 0
0 0.0007 0.1111 0.0007 0
0 0 0 0 0

 ,

w(15) =


0 0 0 0 0
0 0 0 0.0007 0.1111
0 0 0 0.1111 1.0000
0 0 0 0.0007 0.1111
0 0 0 0 0

 , w(25) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.0007 0.1111
0 0 0 0.1111 1.0000

 .

From those results, one can see that the weight functions are positive and non zero only over its support.

• MLS shape functions: A linear basis is used to compute shape function, then we have

w(1) =


0.9904 0.0096 0 0 0
0.0096 −0.0096 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , w(13) =


0 0 0 0 0
0 0.0069 0.0891 0.0069 0
0 0.0891 0.6161 0.0891 0
0 0.0069 0.0891 0.0069 0
0 0 0 0 0

 ,

w(15) =


0 0 0 0 0
0 0 0 −0.0003 0.0207
0 0 0 0.012 0.09586
0 0 0 0.0009 0.0.0207
0 0 0 0 0

 , w(25) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −0.0011 0.0011
0 0 0 0.0011 0.9989

 .
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From those results, one can easily see that MLS shape functions satisfy the consistency property (1.1.18)
of MLS approximation.
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[18] T. Canor, V. Denoël, Transient Fokker-Planck-Kolmogorov equation solved with smoothed particle
hydrodynamics method, International Journal for Numerical Methods in Engineering, 94(6) 2013,
535-553.

[19] A. Chakrabarti, S.R. Manam, S. Banerjea, Scattering of surface water waves involving a vertical
barrier with a gap, J. Eng. Math. 45(2) (2003), 183–194.

130



[20] M.V.K. Chari, S.J. Salon, Numerical methods in electromagnetism, Academic Press. 1999.

[21] W.C. Chew, M.S. Tong, B. Hu, Integral equation methods for electromagnetic and elastic waves,
Morgan Claypool Publishers, 2008.

[22] P.A. Cioica, S. Dahlke, Spatial Besov regularity for semilinear stochastic partial differential equations
on bounded Lipschitz domains. Int J Comput Math. 89(18) 2012, 2443-2459.

[23] R.A. Dalrymple, O. Knio, SPH modelling of water waves, In Coastal dynamics’ 01, 2001, 779-787.

[24] M. Dehghan, N. Shafieeabyaneh, M. Abbaszadeh, Application of spectral element method for solving
Sobolev equations with error estimation. Applied Numerical Mathematics, 158 (2020), 439-462.

[25] M. Dehghan, R. Salehi, The numerical solution of the non-linear integro-differential equations based
on the meshless method. Journal of Computational and Applied Mathematics. 236(9) (2012), 2367-
2377.

[26] S.I. Denisov, P. Hanggi, H. Kantz. Parameters of the fractional Fokker-Planck equation. Europhysics
Letters. (2009);85(4);40007.

[27] J. Dolbow, T. Belytschko, Numerical integration of the galerkin weak form in meshfree methods,
Computational mechanics, 23(3) (1999), 219–230.

[28] M. Esmaeilbeigi, F. Mirzaee, D. Moazami. A meshfree method for solving multidimensional linear
Fredholm integral equations on the hypercube domains, Appl. Math. Comput. 298 (2017), 236–246.

[29] Z. El Majouti, R. El Jid, and A. Hajjaj. Numerical solution of two-dimensional Fred-
holm–Hammerstein integral equations on 2D irregular domains by using modified moving least-
square method. International Journal of Computer Mathematics 98(8) (2021): 1574- 1593.
https://doi.org/10.1080/00207160.2020.1834089

[30] Z. El Majouti, R. El Jid and A. Hajjaj. Solving two-dimensional linear and nonlinear mixed inte-
gral equations using moving least squares and modified moving least squares methods. International
Journal of Applied Mathematics. 51(1) (2021).

[31] Z. El Majouti, R. El Jid and A. Hajjaj. Numerical solution for three-dimensional nonlinear mixed
Volterra–Fredholm integral equations via modified moving least-square method. International Journal
of Computer Mathematics (2021):1-19. https://doi.org/10.1080/00207160.2021.2014053

[32] Z. El Majouti, R. El Jid and A. Hajjaj. A meshless method for solving two-dimensional stochastic
Fredholm integral equations using regularized moving least squares approximation.Applied Numerical
Mathematics, (submitted paper).

[33] Z. El Majouti, R. El Jid and E. Taghizadeh. Moving least squares scheme to approximate the
solution of fractional stochastic integro-differential equations. Applied Mathematics and Computation,
(submitted paper).

[34] R.E. Ewing, Numerical solution of Sobolev partial differential equations, SIAM J. Numer. Anal, 12
(1974), 345–363.

[35] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis and validation in numerical
solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the
block-pulse functions, Cogent Mathematics, 4 (1) (2017), 1296750.

[36] M. Fallahpour, K. Maleknejad, M. Khodabin, Approximation solution of two-dimensional linear
stochastic Fredholm integral equation by applying the Haar wavelet, Int. J Math Model. Comput, 5
(4) (2015), 361-372.

[37] W. Fang, Y. Wang, Y. Xu. An implementation of fast wavelet Galerkin methods for integral equations
of the second kind, J. Sci. Comput, 20 (2) (2004), 277-302

[38] R. Farengo, Y.C. Lee, and P.N. Guzdar, An electromagnetic integral equation: Application to
microtearing modes, Phys. Fluids, 26 (12) (1983), 3515–3523.

[39] GE. Fasshauer, Meshfree methods, In: Rieth M, Schommers W (eds) Handbook of theoretical and
computational nanotechnology, American Scientific Publishers, Valencia, 2005.

[40] H. Fatahi, J. Saberi-Nadjafi, E. Shivanian, A new spectral meshless radial point interpolation (SM-
RPI) method for the two-dimensional Fredholm integral equations on general domains with error
analysis, J. Comput. Appl. Math, 294 (2016), 196–209.

[41] T.P. Fries, H. Matthies, Classification and overview of meshfree methods. (2004).

131



[42] F. Gao, J. Cui, G. Zhao. Weak Galerkin finite element methods for Sobolev equation, Journal of
Computational and Applied Mathematics, 317 (2017), 188-202.

[43] R.Gingold, J. Monaghan, Smoothed Particle Hydrodynamics:theory and application to non spherical
stars, Astrophysical Journal 181 (1977), 275–389.

[44] A. Golbabai, S. Seifollahi, Radial basis function networks in the numerical solution of linear integro-
differential equations. Applied Mathematics and Computation, 188(1) (2007), 427-432.

[45] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order,
arXiv preprint arXiv:0805.3823, 2008.

[46] P.C. Hansen, T.K. Jensen, Large-scale methods in image deblurring, in: Proceedings of the LNCS
of Lecture Notes in Computer Science, 4699, 2007.

[47] R. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical
Research, 76 (8) (1971), 1905-1915.

[48] P.M. Hasan, N.A. Sulaiman, F. Soleymani, A. Akgül, The existence and uniqueness of solution for
linear system of mixed Volterra-Fredholm integral equations in Banach space. AIMS Mathematics,
5(1) (2020), 226-235.

[49] He J.H. Some applications of nonlinear fractional differential equations and their approximations.
Bull Sci Technol, 5(86) (1999), 86-90.

[50] M.H. Heydari , M.R. Hooshmandasl, C. Cattani, FM. Ghaini, An efficient computational method for
solving nonlinear stochastic Itˆo-integral equations: Application for stochastic problems in physics, J
Comput Phys. 283 (2015), 148-168.

[51] M. H. Heydari, H. Laeli Dastjerdi, M. Nili Ahmadabadi, An Efficient Method for the Numerical
Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations. International
Journal of Nonlinear Sciences and Numerical Simulation, 19(2) (2018), 165-173.

[52] E. Hopf, Mathematical Problems of Radiative Equilibrium, Stechert-Hafner Service Agency,
NewYork, 1964.

[53] A. Horton, A. Wittek, G.R. Joldes, and K. Miller, A meshless total Lagrangian explicit dynamics
algorithm for surgical simulation, Int. J. Numer. Methods Biomed. Eng. 26 (8) (2010), 977–998.

[54] T.V. Hromadka, Approximating rainfall-runoff modelling uncertainty using the stochastic integral
equation method. Adv Water Resour, 12(1) (1989), 21-25.

[55] L. Huang, X.F. Li, Y. Zhao, x.Y. Duan. Approximate solution of fractional integro-differential equa-
tions by Taylor expansion method. Comput. Math. Appl, 62(3) (2011), 1127-1134.

[56] K. Hui-Hsiung, Introduction to stochastic integration, Springer Science+Business Media, Inc. 2006.
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