
p. 1

Université Hassan 1er

Centre d’Études Doctorales en Sciences

et Techniques & Sciences Médicales

Faculté des Sciences et Techniques

Settat

THÈSE DE DOCTORAT

Pour l’obtention de grade de Docteur en Informatique

Formation Doctorale: MAI

Spécialité: Informatique

Sous le thème

Efficient Conceptual Modeling of varying Time Data and

adaptative And Approaches into various environment : Object-

Relational Database,XML and NoSQL

Présentée par :

Soumiya AIN EL HAYAT

Soutenue le: 02 Décembre 2021

A la Faculté des Sciences et Techniques de Settat devant le jury composé de :

Pr.ZBITOU Jamal PES École Nationale des Sciences Appliquées, Tanger Président

Pr.CHIHEB Raddouane PES École Nationale Supérieure d'Informatique et Rapporteur

 d'Analyse Des Systèmes, Rabat

Pr. GHERABI Noreddine PH École Nationale des Sciences Appliquées, Khouribga Rapporteur

Pr. EZZATI Abdellah PES Faculté des Sciences & Techniques, Settat Rapporteur

Pr.MARZOUK Abderahim PES Faculté des Sciences & Techniques, Settat Examinateur

Pr. BAHAJ Mohamed PES Faculté des Sciences & Techniques, Settat Directeur de thèse

 RÉSUMÉ

p. 2

RÉSUMÉ

 L'évolution rapide de développement des nouvelles technologies pour la gestion des données

massives, et l'intérêt des entreprises à adopter des nouvelles techniques dans des différents

environnements, constituent un enjeu majeur pour la réingénierie des données historisées. Plusieurs

méthodologies sont mises en œuvre pour la modélisation, la migration et le partage des informations, afin

d'améliorer les fonctionnalités des systèmes de base de données existants. Le processus de réingénierie

consiste à identifier les différents composants d'un système. Cette étape cruciale et nécessaire dans le

processus des migrations des bases de données.

 Les bases des données temporelles ont attiré un ensemble important des chercheurs. Elles consistent à

historier les données qui se reposent sur les concepts de temps dans le contexte d’analyses des données

destinées aux managers pour élabore leurs stratégies décisionnelles. En Revanche, il y a un manque de

littérature concernant l’utilisation des applications temporelles. À cet égard, l’objectif principal de notre

thèse est d’examiner la flexibilité de la base de données relationnelle objets pour supporter les aspects

temporels et valider la capacité d’adoption d’une nouvelle norme pour avoir un système solide de gestion

de touts types de données.

 Notre approche apporte une solution pour la modélisation, le stockage et la manipulation de données

temporelles en utilisant des différents systèmes de gestion de données telles que RDB et NoSQL. Ce

travail de recherche s’inscrive dans le contexte de la migration des bases de données relationnelles d'objets

temporels. Pour éviter le risque de la perte d’une masse très importante des données, il est préférable

d'enrichir et de convertir un tel schéma pour qu'il soit utilisé par de nouveaux systèmes comme NOSQL,

et les partager à l’aide des méthodes de sémantique web tel que XML. Nous proposons un modèle qui

préserve et améliore le schéma des bases de données relationnelles et objets relationnelles existants pour

établir un pont technologique vers les différents applications. Ensuite, on définit un schéma de la

transformation enrichi par des données sémantiques, pour qu’ils se convertissent d’une façon dynamique.

Un prototype a été implémenté réalisant la migration automatique des différents types de bases de données

prouvant l’efficacité de cette approche. Par conséquent, Notre méthodologie se base sur d’autres

méthodes de la conception afin de développé une nouvelle modélisation de données temporelles en

utilisant des mécanismes UML, y compris OCL, pour spécifier les contraintes et les restrictions relatives

aux temps.

Mot clés: Temporal Database, TORDB, TRDB, UML, OCL, XML, Temporal Datawarehouse, varying

Time Data, Migration

ABSTRACTERROR! USE THE HOME TAB TO APPLY TITRE DU LIVRE TO THE TEXT

THAT YOU WANT TO APPEAR HERE.

p. 3

ABSTRACT

 The rapid development in information technology to manage a large volume of data, and the interest

of companies in securing benefits for the new environments has made information system re-engineering

an active research area. Several methodologies are implemented for modeling, migrating and sharing the

information; in order to improve the functionality of existing database system. The re-engineering process

requires identifying and understanding all the component of such system.

 The concept of temporal database has gotten much attention from researches. Meanwhile, there is lack

of literature concerning the practical application of temporal database. This thesis investigate the

examination the potential of object relational database to support Temporal features and the ability of

the adoption of standard that is essential for increased portability , flexibility and constraints preservation.

 Our approach contributes a solution for creating, storing and handling varying time data using Object

relational database. This research work deals with the migration of temporal object relational database.

Yet, it has a limitation to support complex types. Instead of throwing away a large amount of data, it is

more appropriate to enrich and convert such schema to be used by new systems. We propose a solution

that offers automatic migration of TORDB as a source into conventional and recent database technologies

as a target such as NOSQL and sharing data into web semantic using XML files. Therefore, this solution

provides a methodology for producing a new modeling of varying time data using UML mechanisms

including OCL to express the constraints and restrictions dependent on the time. Thus, research on the

migration is not fully developed.

Keywords: Temporal Database, TORDB, TRDB, UML, OCL, XML, Temporal Datawarehouse, varying

Time Data, Migration

 ACNOWLDGEMENTS

4

ACKNOWLEDGEMENTS

 After all these years, I have finally the space to thank, after Allah the

greatest and merciful, all those persons who were with me during this

adventure.

 First of all, I would like to thank the jury members for reviewing my thesis;

your comments helped me to achieve this work.

 I would like also to thank my adviser, Mohamed BAHAJ, who for all these

years supported me as much as possible, even when things seemed to be very

complicated to solve, He was there regardless of our own expertise. I will also

thank all the members of the LMIET Laboratory.

 I would like then to thank my family for their encouragement and prayers

for me. Without support of my parents, brother as well as my sisters and their

family, this work could hardly have been completed.

 Finally, thanks to all of you, you know who I am, you know how you helped

me, and you know that everyone of you has a special place in my heart.

TABLE OF CONTENTS

5

TABLE OF CONTENTS

GENERAL INTRODUCTION

I. GENERAL CONTEXT.. 13

II. SCOPE & MOTIVATION ... 14

III. SUMMARY OF THE MAIN GOAL AND CONTRIBUTIONS ... 15

IV. OUTLINE OF DISSERTATION: .. 17

V. PUBLICATION ... 18

CHAPTER I: BACKGROUND AND RELATED WORKS

I. INTRODUCTION ... 20

II. CONCEPTUAL MODELLING WITH UML AND OCL TOOLS .. 20

2.1 What is UML? ... 20

2.2 UML Diagrams: ... 21

2.3 OCL ... 22

III. VARYING-TIME MANAGEMENT DATA: ... 22

3.1An Overview ... 22

3.2Valide Time ... 24

3.3Transaction Time .. 25

3.4Bitemporal Data ……………………………………………………………………………………….25

IV. RELATIONAL AND OBJECT RELATIONAL DATABASE ... 26

4.1 Relational Database ... 26

4.2 Object Relational Database: ... 28

V. TEMPORAL DATA WAREHOUSE : AN OVERVIEW ... 29

VI. NOSQL DATABASE .. 31

VII. WEB SEMANTIC: .. 34

7.XML Model ... 35

7.2XML schema Language .. 36

VIII. OBJECT RELATIONAL DATABASE MIGRATION APPROACH .. 37

8.1 An Overview of the Proposed Approachs:.. 37

8.2 Discussion ... 40

TABLE OF CONTENTSERROR! USE THE HOME TAB TO APPLY TITRE DU LIVRE TO THE

TEXT THAT YOU WANT TO APPEAR HERE.

p. 6

8.3Semantic Enrichment of TORDB……………………………………………………………………...41

IX. CONCLUSION .. 43

CHAPTER II: CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

I. INTRODUCTION ... 44

II. CONCEPTUAL DESIGNING OF TEMPORAL OBJECT-RELATIONAL DATABASE BY USING UML: .

2.1 Temporal Data Design with UML mechanism : ... 47

2.2 Improving UML by using OCL:... 47

III. DEFINING THE TRANSFORMATION RULES FROM UML USING VALID TIME INTO TORDB: . 48

3.1UML Class Diagram with Temporal Data: .. 48

3.2Meta-Model for Temporal Database: .. 49

3.3Mapping Method from UML Into Temporal ORDB .. 51

3.3.1Association ... 51

3.3.2Aggregation .. 52

3.3.3Composition ... 53

3.3.4Inheritance ... 54

3.4Temporal ORDB QueryIncluding Varying Time: .. 55

IV. MODELLING AND MAPPING METHOD FROM UML/OCL INTO BITEMPORAL DATA: 57

4.1 Employing UML/OCL for designing Temporal Database .. 58

4.2 The migration from Class_schema into TORDB Model ... 59

4.2.1 Identification of Class_Schema .. 60

4.2.2 Definition of TORDB Model ... 62

4.3Algorithm of conversion from Class_schema into TORDB Model .. 63

V. MAPPING BETWEEN OCL SPECIFICATIONS AND TORDB: ... 65

5.1 OCL specifications .. 66

5.2 Transformation of OCL Specification into TORDB ... 69

5.2.1 Creation of Bitemporal_Period Object ... 69

5.2.2 Creation of trigger before inserts (transformation of Implies operator) 71

5.3 Exprimental study ... 72

VI. IMPLEMENTATION: ... 73

VII. CONCLUSION .. 74

CHAPTER III: MAPPING METHOD FROM TRDB INTO TORDB

I. INTRODUCTION ... 75

TABLE OF CONTENTSERROR! USE THE HOME TAB TO APPLY TITRE DU LIVRE TO THE

TEXT THAT YOU WANT TO APPEAR HERE.

p. 7

II. An Overview of Temporal Relational Databases: ... 76

2.1Comparison between TRDB and TORDB ... 76

2.2 Strategy of the Migration from TRDB into TORDB: .. 78

III. MAPPING PROCESS OF TRDB INTO TORDB:.. 79

3.1 Semantic Enrichment of Temporal Relational Database Using Valid time: ... 79

3.1.1 Definition of the New Valid Time Data Model ... 79

3.1.2 Generation of the NVTM from TRDB: .. 80

3.1.3 Translating NVTM into TORDB design schema .. 82

3.1.4 Translation of the TRDB design schema to TORDB Query .. 83

3.2 Temporal Relational Database Queries with Bitemporal Data: .. 84

3.3 Semantic enrichment of Temporal Relational Database: ... 85

3.3.1 Definition of the New Bitemporal Data Model ... 85

3.3.2 Generation of the NBTM from TRDB: ... 85

3.4 Semantic Enrichment of Temporal Object Relational database: .. 86

3.4.1 Definition and Identification of TORDB Model: ... 86

3.4.2 Translation of the TORDB design schema to a TORDB Queries: .. 86

3.4.3 Algorithm For Translating NBTM to TORDB Model ... 87

IV. IMPLEMENTATION .. 89

V. TEMPORAL DATA MNIPULATION... 90

5.1 Insert Statement: .. 90

5.2 Delete Statement: ... 92

5.3 Update Statement: .. 93

VI. CONCLUSION .. 94

CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

I. INTRODUCTION ... 95

II. TEMPORAL XML DOCUMENT MIGRATION ... 96

III. SEMANTIC ENRICHMENT OF TXML ... 96

3.1 Definition of TXSDM ... 96

3.2 Generation of TXSDM from TXML schema File: .. 98

3.3 Algorithm For Translating TXSDM into TORDB Model: ... 100

IV. STORAGE AND PUBLISHING DATA FROM TXML DOCUMENTS INTO TORDB: 102

4.1 TXML documents Modelling and Dewey numbering schema: ... 103

 TABLE OF CONTENTS

8

4.2 Definition of TXMLModel for TORDB (TX-OR) .. 105

4.3 Representation of TORDB schema for storing data: ... 106

4.4 General Algorithm for the conversion: ... 107

V. CONCLUSION.. 109

CHAPTER V: MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE:

DATAWAREHOUSE AND NOSQL

I. INTRODUCTION ... 110

II. TEMPORAL DATAWERHOUSE MODELLING USING TEMPORAL OBJECT RELATIONAL

FEATURES .. 111

2.1 Process Of medelling and transforming UML into Logical Model .. 112

2.1.1 Creation of Meta-Model for TDW: ... 112

2.1.2 Identification and definition of TEER Model : .. 113

2.1.3 S-TORDW and SW-TORDW Model: ... 114

2.2 TORDB Queries Implementation: .. 116

III. MODELLING AND MIGRATING METHOD FROM TORDB INTO MONGODB 116

3.1 Comparison between Object relational database and Mongo db features: .. 118

3.2 Temporal Json schema (TJSON-schema): .. 119

3.3 Transformation Rules From TORDB into mongodb: .. 120

IV. CONCLUSION .. 127

CONCLUSION…………………………………………………………………………………………………...129

REFERENCES……………………………………………………………………………………………………131

LISTE OF FIGURES

p. 9

LISTE OF FIGURES

Figure 1. Migration from Conventional Database into Temporal Database…………………………………………………..13

Figure 2. Temporal Database Interval …….20

Figure 3. Column Database Meta-Model ……………………………………………………………………………………..29

Figure 4. Document Database Meta-Model …………………………………………………………………………………..30

Figure 5. Graph Database Meta-Model ……………………………………………………………………………………….31

Figure 6. General Web Semantic Architecture………………………………………………………………………………...32

Figure7. Semantic Enrichment Process from database Source into Temporal Database……………………………………..39

Figure8.Class Diagram for a Management e-banking System ……………………………………………………………….46

Figure9. UML profile for Management e-banking System enriched with temporal data……………………………………..47

Figure10. Result of the migration into Temporal ORDB……………………………………………………………………...54

Figure11. UML/OCL conceptual Design for banking Management………………………………………………………….56

Figure12. Algorithm to extract the important component of the banking system……………………………………………..61

Figure13. Algorithm of rules transformation………………………………………………………………………………….61

Figur 14. Bitemporal Type constructor………………………………………………………………………………………..67

Figure 15. Bitemporal Object called the Bitemporal Constructor……………………………………………………………..70

Figure16. Example oF Tables including Bitemporal Object and the constructor……………………………………………..70

Figure17. Creation of trigger before insert into balance table…………………………………………………………………71

Figure18. Graphic Design of the implementation……………………………………………………………………………..73

Figure19. Process of the Migration from TRDB into TORDB………………………………………………………………..78

Figure20. Sample Input representing TRDB tables……………………………………………………………………………80

Figure21. Temporal ORDB design schema……………………………………………………………………………………82

Figure22. TORDB Querie…………………………………………………………………………………………………….83

Figure23. Example of TRDB creation Querie………………………………………………………………………………...84

Figure24.Example of Creation statement for employee table…………………………………………………………………86

Figure25. Algorithm to produce TORDB Model……………………………………………………………………………...87

Figure26. Graphic Design of the transformation from TRDB Into TORDB…………………………………………………89

Figure27. Creation of table LOG for employee table …………………………………………………………………………91

Figure28. Trigger to control historical data after delete statement…………………………………………………………….92

LISTE OF FIGURES

p. 10

Figure29. Trigger to control historical data after Update statement …………………………………………………………..92

Figure30. Example of TXML schema document ..98

Figure31. Algorithm of the transformation..101

Figure32. An example of tree schema for TXML files with Dewey ID……………………………………………………103

Figure33.Example of TXML schema document……………………………………………………………………………..104

Figure34. TX-OR Index Tree………………………………………………………………………………………………...105

Figure35. Algorithm to convert the TX-OR into TORDB Model……………………………………………………………108

Figure36. Class Diagrams for department Store System……………………………………………………………………..112

Figure37. Meta-Model for TDW based on UML notation…………………………………………………………………...113

Figure38. The TEER model of sales, product and category tables…………………………………………………………..113

Figure39. Temporal Star OR DW (S-TORDW) Model…………………………………………………………………….114

Figure40. Temporal Snowflake OR DW (SW-TORDW) Model…………………………………………………………...115

Figure41. TORDB Queries for product Dimension in S-TORDW based on Star schema…………………………………..116

Figure42. Example of Json file with bitemporal data………………………………………………………………………...119

Figure43. An example of Association 1 to N relationship between Customer and Account………………………………...120

Figure44. Account_Document extraction with Mongodb……………………………………………………………………121

Figure45. Account_Document extraction with Mongodb……………………………………………………………………121

Figure46. Extraction of branch_bank Json file……………………………………………………………………………….122

Figure47. An example of Composition Class diagram………………………………………………………………………123

Figure48.Extraction of Balance Json File for Composition ………………………………………………………………....123

Figure49. Aggregation relationship Class……………………………………………………………………………………124

Figure50. Temporal Json File for Balance_Bank…………………………………………………………………………….125

Figure51. TORDB for aggregation Relationship…………………………………………………………………………….125

Figure52. Inheritance Relationship Example………………………………………………………………………………...126

Figure 53. Temporal JSON Document For Ihneritance Relationship………………………………………………………..126

Figure 54. Temporal Queries FOR Ihneritance Relationship………………………………………………………………..127

 LISTE OF TABLES

11

LISTE OF TABLES

Table1. Customer Table with Valid Time Period……………………………………………………….49

Table2.Loan Table with Valid Time Period……………………………………………………………..49

Table3.Branch-Bank Table including Historical data…………………………………………………...50

Table4. Bank branch table integrating Account data……………………………………………………51

Table5. Account Table with historical data…………………………………………………………….51

Table6. Account Table with balance History……………………………………………………………52

Table7. The Transaction temporal table…………………………………………………………………52

Table8. Transaction table with Target Source data……………………………………………………..52

Table9. Example of Queries with bitemporal data………………………………………………………70

Table10. Comparison between TRDB and TORDB…………………………………………………….76

Table11.Result of the generation of NVTM…………………………………………………………….80

Table12. Result of NBTM generation…………………………………………………………………...84

Table13. Example of Temporal Object Relational table with bitemporal Data…………………………85

Table14. Insertion statement with temporal data………………………………………………………..89

Table15. Result of TXSDM Generation………………………………………………………………...98

Table16. The Differences between TORDB and Mongodb features………………………………….118

 LISTE OF ABBREVIATIONS

12

LIST OF ABBREVIATIONS

TRDB Temporal Relational Database

TORDB Temporal Object Relational Database

OMG Object Management Group

UML Unified Modeling Language

OCL Object Constraint Language

TXML Temporal Extensible Markup Language

SGML Standard Generalized Markup Language

OID Object Identifier

TDW Temporal Data Warehouse

W3C World Wide Web Consortium

DTD Document Type Definition

C_Schema Class schema of UML

NVTM New Valid Time Model

NBTM New Bitemporal Time Model

TXSDM Temporal XML schema Data Model

TX-OR TXML Model for TORDB

S-TORDW Star temporal Object Relational for datawarehouse

SW-TORDW Snowflake temporal Object Relational for datawarehouse

TEER model Temporal entity-relationship

 GENERAL INTRODUCTION

13

GENERAL INTRODUCTION

I. GENERAL CONTEXT

 Over the last decades, the Companies over the word are operating in very dynamic and complex

areas that need from their managers the ability to make proactive decisions, in order to improve the quality

and to increase the gain of their business. Meaningful data are required to achieve the specific goals, and

are involving in analyzing and decision making. To ensure the availability of information generated by

company’s activities, it is necessary to use the various technologies. The database management systems

(DBMS) are nowadays a common technology of everyday work in several environments where they are

applied that allows it easy for enterprises to centralize the information, store data efficiently, and provide

data access for application. They are among the most important tool for business applications. The growth

of databases technologies day by day attracts organization investments due to its fast evolution and

importance.

 The emergences of novel databases systems have created challenges for companies and

organizations to respond quickly to the demand impacted by this change take advantage of the benefits of

new technologies in order to manage work more flexibly and efficiently. As a natural result of these

evolution and requirements, Forward engineering has become a vibrant field for significant researchers

and practical issue. It represents a method to transform the existing systems into new database systems to

realize quality improvement in functionalities and operations that applies on the stored data. It can be

defined as a process of discovering how a database system works. It involves a wide range of tasks to

understand, convert, and redesign the existing system. This process starts by identifying the semantics

structure, components and their relationships, and translating them into conceptual layer representing by

entities, attributes and relationships. The obtained design-level can be used to provide new systems or

redesign an existing database to meet new requirements. However, database systems cannot be easily

replaced. It is very hard to re-write database applications every time the user wants to switch to the new

technology. The system re-engineering is very complicated method. The main reason behind this solution

is to solve the problem of the conversion from traditional to more recent environment in order to avoid

throwing away a large volume of structured data

GENERAL INTRODUCTION

p. 14

 The most conventional databases are based on traditional relational database where they have been far

successful in handling large amount of data.Today, the increasing popularity of new object relational,

NoSQL systems, Business intelligent applications and XML technologies can be considered to be among

the most significant recent revolution in information technology. These novel management database

systems and information technologies have been dominant in the data management environments due to

their productivity, flexibility and extensibility.Moreover, the conventional databases are only able of

storing and querying the current perception of reality and relationship among objects, such database

systems remove the old data values when the data is updated. Time is an important aspect of all real-world

phenomena where the Events occur at specific points in time. The ability to model this temporal dimension

of the real world is essential to many computer applications. Unlike the existed databases systems, a

temporal database is capable of storing evolution of data, thereby allowing managersto maintain and

examine complete object histories.

 On the other hand, an Object relational database has more potential than traditional database because

it has a relational technology base and appends object-oriented features. The ORDB concepts has the

ability to support historical object by defining our temporal object in order to store all the changes

dependent on the data value over the time. The efficient implementation of object-relational applications

handling temporal data has received considerable attention, especially in business and commercial area.

Improving object-relational applications performance has been a serious challenge for scientific and

database researchers.On the other hand, Database migration is very necessary process in order to

encourage organizations to move to new systems adopting temporal features.

II. SCOPE & MOTIVATION

 Several reasons have led to the investigation described in this dissertation. Many companies have

stored their data in conventional database and aspire to take advantage and adopt the databases systems

that have emerged in the last years. In such databases, the recent data value is only recorded. When new

data values are available through update insert and delete statement, the old data values are removed from

these databases permanently. Although conventional databases serve some applications well, they are

insufficient for those applications in which the data values historyare required to be retrieved rapidly.

Hence, instead of discarding existing conventional databases on building a novel systems on top of them,

it is generally suitable and beneficial to incorporate the varying time features and convert existing database

into a new environment in order to discover which database is more appropriate to move to and which

GENERAL INTRODUCTION

p. 15

system is able to support Temporal features to provide an opportunity for experimentation and comparison

among alternative database technologies. Temporal information extraction and converting is complex

subject that needs carefully designed.For this reason, the temporal Applications need a persistent storage

of complex data and the capability to query the information arbitrarily and efficiently wherethese features

are not supported by conventional database systems appear: user-defined Type and operators on the

complex data. All these characteristics are specific to object-relational database systems.Then, there is

need for methodologies that deal with integrating varying time data that are based on object relational

model which combines concepts given by relational database and the oriented object features.

 Therefore, implementing the migration between different database management systems, especially

the database that manipulates the temporal features is far from easy. Several research questions need to be

resolved before leading to systems that provide adaptation of temporal data storage and retrieval.

Moreover, all research on the generation of ORDBs based on varying time is focused on diverse areas of

handling historical data. But any work has covered a solution for the migration of object relational

database associating time properties to the attributes into another Target schema. In addition, none of the

existing proposals can be considered as a method for migrating from different models based on varying

time management features. On the other hand, this could help further increase the acceptance of such

newer and richer databases among enterprises and companies and to select the most effective strategies to

achieve their objectives.

The main questions this research seeks to answer are:

 What are the main concepts of temporal databases?

 How temporal databases are currently implemented in different environments?

 How to manage and query the historical data effectively and efficiently?

 How Object relational database supports temporal database? Why?

 Which of the new Technologies is most appropriate for temporal Database?

III. SUMMARY OF THE MAIN GOAL AND CONTRIBUTIONS

 The general aim of our research is to preserve the historical data that are associated to the time at

attribute level. We are particularly interested in object relational database with temporal concepts.

GENERAL INTRODUCTION

p. 16

Although many important insights and results have been reported to explain the storage and query

processing using SQL: 2011 concepts, many research challenges still remain in temporal database

management such as the migration method.

Figure 1. Migration from Conventional Database into Temporal Database

 We propose a solution which will be offered to the problem of the migration of temporal database

between different models such as TRDB, MongoDB and web semantic. Thus, solve different weaknesses

and limitation that are outlined previously.

 In this research, we exploit the semantic enrichment techniques in order to facilitate the

implementation of our framework. We claim that that an integrated methods can be developed based on

the definition of schema translation that enrich the object relational database and models with additional

specifications and take into account the features and the characteristics of the target schema in order to

evaluate which the model is more appropriate to support temporal data according to the required

functionality, performance and suitability.Also, the proposed approaches help us to develop a framework

for automatically convert an existing temporal databases into different target schema.

To achieve our goal, we propose the following objectives:

1. To survey existing researches related to temporal database storage and querying process based on

Object relational Databases, by analyzing their capabilities and limitations

2. Produce the schema translation of the various management data systems enhancing with temporal

features and using enrichment semantic method

3. Include temporal features in XML documents to share and exchange the historical data over the

web.

4. Implement an algorithms and prototype to validate our solutions

 GENERAL INTRODUCTION

17

IV. OUTLINE OF DISSERTATION:

The organization of this manuscript can be summarized as follows:

The first chapter will be the subject of a state-of-the-art presentation that addresses the concepts of

temporal object database as well as different definitions of conceptual techniques, management data

systems and web semantic. In the Next, A review is of existing works related to temporal databases and

object relational database are analyzed to determine the problem to be resolved. The following chapters

are the published and submitted works.

 In the second chapter, the logical schema is produced and the rules of the migration are formalized

using UML features with the definition of restrictions dependent to the time which are expressed by OCL

language. The main goal is to develop a conceptual layer to design temporal data and it requirement in

order to promote the understandability of different dimensions and advantages offered by temporal

systems. The defined model will be adopted along of our thesis to facilitate the conversion process.

 The focus of chapter 3 is the migration of temporal relational database into temporal object relational

database. A categorization will be presented of selected works in the literature, involving the manipulation

of temporal data concentrating on SQL: 2011 characteristics and object relational database advantages

which are discussed and critically evaluated. In the next section, we will define a Database migration from

the source (TRDB) into TRODB that introduce two basic phases, including the semantic enrichment and

schema translation describing in detail how to identify TRDB model and TORDB constructs, and how to

classify the relationships and temporal features between different entities.

 In the fourth chapter, a review of existing approaches to include the temporal elements and data in

XML files, considering their capabilities, weaknesses and limitations. After that, a solution is dealt with

the problem of the creation and sharing temporal object relational database using TXML files, by

providing schema translation and algorithm is implemented to facilitate the conversion process.

 In the fifth chapter, we will produce the transforming model from temporal object relational database

into new systems to handle a large volume of data. The Big amount of information cannot be processed

by conventional databases. We will discuss the possibilities to create temporal model for data warehouse

solutions by incorporating temporal object relational concepts. On the other hand, the Nosql present one

 GENERAL INTRODUCTION

18

of the most popular technologies of big data which can make records and handle the data in the distributed

environments. The main challenge is to find a good balance between characteristics of temporal database

using object relational database management systems presented by oracle and opportunities offered by

NoSQL database management systems. Our goal is to evaluate the ability and the capabilities of new

applications in order to store and retrieve the history of data with efficient manner.

V. PUBLICATION

5.1 Published Articles

 S. AIN EL HAYAT & M. BAHAJ . “Converting UML Class Diagrams into Temporal Object

Relational DataBase”. International Journal of Electrical and Computer Engineering (IJECE).

2017. (Scopus).

 S. AIN EL HAYAT & M. BAHAJ. “Migration of the temporal RDB into temporal ORDB

including Bitemporal Data: Phases”. Transactions on Machine Learning and Artificial

Intelligence, 5(4). 2017. (Index Copernicus).

 S. AIN EL HAYAT & F.Toufik & M. BAHAJ . “UML/OCL based Design and the transition

towards Temporal Object Relational Database with Bitemporal Data”.Journal of King Saud

University - Computer and Information Sciences. 2019. (Elsevier).

 S. AIN EL HAYAT & M. BAHAJ. “Modeling and Transformation from Temporal Object

Relational Database into Mongodb: Rules.Advances in Science” . Technology and Engineering

Systems Journal (ASTESJ). 2020 . (Scopus)

5.2 Conferences

 S. AIN EL HAYAT & M. BAHAJ. “Migration of the temporal RDB into temporal ORDB

including Bitemporal Data: Phases”.ACMLIS(2017). Tetouan.Morocco

 S. AIN EL HAYAT & M. BAHAJ. “Converting Temporal Relational database into Temporal

Object Relational Database”.AIT2S (2017). Tanger. Morocco. (Springer)

 S. AIN EL HAYAT & M. BAHAJ. “Conversion of a TXML Schema to Temporal Object-

Relational Database Using Bitemporal Data”. ICITM (2018). Oxford.United

Kingdom.(IEEE,Scopus)

 GENERAL INTRODUCTION

19

 S. AIN EL HAYAT & M. BAHAJ. “A Temporal Data Warehouse Conceptual Modeling and its

Transformation into Temporal Object Relational Model” .AI2SD.2018). Tanger.

Morocco.(Springer, Scopus ,DBLP)

 S. AIN EL HAYAT & M. BAHAJ. “The Storage of Data from TXML document into Temporal

Object Relational Database”.ICDS (2019).Marrakech. Morocco.(IEEE,Scopus,DBLP)

 M.RAJAALLAH, SA.CHAMKARA, S.AIN EL HAYAT. “Intrusion Detection Systems: To an

Optimal Hybrid Intrusion Detection System”.AIT2S 2019.Mohammedia. Morooco. (Springer)

ChapterI: BACKGROUND AND RELATED WORKS

20

CHAPTER I:

BACKGROUND AND RELATED WORKS

I. INTRODUCTION

 This chapter provided an illustrative background to the main concepts of different types of databases

related to the topic of the thesis, in order to get a better understanding of this dissertation and the process

of the temporal object relational database migration. It includes introductions to several technologies and

tools, the advantages and disadvantages of each model. Finally, we presented the main challenges in the

field of modeling and handling object relational database systems.

II. CONCEPTUAL MODELLING WITH UML AND OCL TOOLS

 Data modeling is the important phase in the process of database design and the systems development.

This step is considered to be a high-level and abstract design activity, also called a conceptual design. The

conceptual model presents the specifications of software systems in the form of diagrams and

relationships. It can be considered as an activity related to capturing the knowledge about the desired

system. According to [1], “the conceptual schema of an information system is the specification of its

functional requirements.”

2.1 What is UML?

 Unified Modeling Language UML is the de-facto standard in industry for designing software systems.

It was developed in the mid-1990s as a collaborative effort by James Rumbaugh, and Jacobson. In

November 1997, UML was accepted by the Object Management Group (OMG) as a standard modeling

language. Although UML is most often associated with modeling Object-Oriented Software applications,

it has a much wider system due to its inbuilt extensibility techniques. UML was designed to incorporate

current best practice in modeling technologies and software engineering. It is important to realize that

UML does not give us any kind of modeling methodology [2]. UML is not dependant to any specific

https://www.sciencedirect.com/topics/computer-science/conceptual-schema

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 21

Methodology or life cycle, and indeed it is able of being used with existing methodologies. It has been

playing an increasingly important role in software systems and dominates object-oriented modeling. Now,

it is a very mature design language. UML can be used for business modeling, software modeling, and

general modeling of any construction to describe both a static structure and dynamic behavior. It had

proved its value in thousands of software development projects worldwide. On the other hand, The Object

Management Group (OMG) defined several tools for helping the software engineer using UML and this

list reflects the high reputation of UML as a modeling language. The UML specification defines a number

of basic diagrams that are based on three aspects of the system in the form of classes, packages and their

relations. They provide the high level design details of the system. The design process supported by UML

starting by analysis data helps forward engineering as well as reverse engineering. Therefore, how to

develop UML based environment for software development is a hot research issue.UML has always

provided many options about how a particular model element may be displayed, and not all of those will

be supported by every modeling language.

2.2 UML Diagrams:

 UMLDiagrams are the graphs that design the contents of the system. They are used to specify the

structure of the objects, classes and their components. Also UML diagrams promote the modeling of the

connection between different entities and classes. UML offers several diagram types that are used in

combination to produce all views of the application. There are two broad classifications of diagrams and

they are divided as follow:

 Structural diagrams

 Behavioral diagram

 In this work, we will focus on one of the important structured diagram that is called Class Diagram.

A class diagram is the most diagrams used in the conceptual modeling. It represents the static structure

of classes and their relationships in the system. Class diagram basically provides the object-oriented view

of such application. Classes can be related to each other in a number of ways: Association, Aggregation,

Composition or Inheritance. All these relationships described in a class diagram along with the internal

structure of the classes in terms of attributes and operations.

 CHAPTER I : BACKGROUND AND RELATED WORKS

22

2.3 OCL

 The Object Constraint Language (OCL) was introduced at IBM as a language for business design.

The developer’s ability to use OCL is very important. It is considered as a formal language used to express

constraints. OCL is an adopted standard of the Object Management Group (OMG) and mainly used for

specifying properties of a model that cannot be expressed in the diagrammatic notations of UML. The

OCL can supplement some of the shortcomings of UML modeling by providing the expression of textual

and declarative requirements of conceptual schema. UML/OCL as OO Specification Languages is one of

the most widely used diagrammatic object-oriented modeling languages in the industry, which can help

formalize the semantics of the language itself and to facilitate UML users to express precise restrictions

on the data and the structure of models. Constraints specified in OCL help to restrict UML models [3] but

they also increase maturity level of a UML model [4]. Therefore, OCL does not create any new object in

a class diagram but completes the meanings of the existing objects. Also, an OCL specification always

conforms to the OCL meta-model.

III. VARYING-TIME MANAGEMENT DATA:

3.1 An Overview:

 In the recent decades, temporal database is one of the most important parts of the information

technology. The temporal database was developed in 1993 and implemented in 1994. It is generally

known that temporal database stores the history of the objects or the database activity. A temporal

database is a database that contains time-varying data and offers built-in support for modeling the temporal

dimension of the data. The storage time is one of the most necessary properties to characterize an attribute.

The varying time database is able to track when an event started and when it ended. Even today, a large

number of database system based on time in nature to make a correct description of data by recording the

database activity and their changes over time. Hence, the need to retain trace and audit the change made

to a data and the ability to plan based on past or future assumptions are important uses cases for temporal

data [5].Temporal databases capture the history of object or activity of database. The ability to model this

temporal period of the real world is necessary to many computer applications in various domains, such as

econometrics, banking, inventory control, accounting, law, medical records, land and geographical

information systems, and airline reservations. Applications such as these rely on varying time database

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 23

that record time referenced data to make a history of all object changes.Therefore, Historical information

can be stored systematically and in uniformed manner using temporal databases [6]. Historical which need

past occurrences in an organization data is widely analyzed for a lot of purposes such as making data

decisions.

 On the other hand, Conventional databases provide the state of an enterprise at one moment of time.

Although the stored data continue to change as new information is added, these changes are considered as

modifications to the state, with the old out-of-date information being deleted from the system. In such

applications the attributes involving time are manipulated solely. The temporal database management

system (DBMS) manipulates dates as values in the base data types.When using a temporal database,

retrieving information about the past is supported by included query functions which makes the

development and databases more efficient and potentially increases the performance [7].

Figure 2. Temporal Database Interval

 Therefore, data manipulation statements in temporal database (INSERT, UPDATE and DELETE) are

handling in same manner as ordinary tables. However, in temporal systems, user has the permission to

control dates and times of PERIOD columns and can refer to any date and time (past, present or future).To

insert or update a value, additional syntax is defined without throwing the old value, which allows row

splitting. That means if there exists record in the system, with predefined period and insert or update query

have been executed, then the stored value will be updated from records end time to update query

executing time . Also, the new additional row will be created in which the start attribute takes update

statement beginning time in order to maintain integrity of data. On the other hand, the dalate query

removes records that satisfy time period condition, but inserts in database additional two rows where, one

update records beginning time by Delete statement beginning time and another update statement end time

by records end time.

 In the glossary of varying time management databases, the concept of temporal attributes is added to

include multiple time dimensions as well as multiple data models. Temporal databases support 3

T T-1 T-2

Past NOW Future

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 24

Dimensions called valid time and transaction time. These two dimensions are orthogonal and can be

supported separately, or both can be supported in concert. Valid time and transaction time can be merged

to provide bitemporal data.

3.2 Valide Time

 Valid time presents the time at which an event was true in the real world. It can be in the future, if it

is known that will be true at a specified time in the future.The temporal tables including valid time period

are defined in SQL: 2011 standard and associated with the PERIOD clause statement. It consists of two

predefined date-time columns, one for the beginning of a period and another for the end of a period. A

valid-time period can be specified during the creation table or alter table process. In order to prevent the

user to define two or more records with same value, the PERIOD can be added as primary key. Valid time

tables are intended for meeting the requirements of applications that are interested in capturing time period

during which the data is believed to be valid in the real world. A typical example of such applications is

an insurance application, where it is necessary to keep track of the specific policy details of a given

customer that are in effect at any given point in time [8].A primary requirement of such temporal

applications is that the user has the ability to set the start and end times of the validity period of rows, and

he is free to assign any time values, either in the past, current or in the future, for period attributes. On the

other hand, user is permitted to update the valid period of the rows as errors are discovered or new

information is made available. Also, Users can choose any name they want for the name of the period as

well as for the names of columns that act as the start and end columns of the period .Any table that contains

a period definition with a user-defined name is an application-time period table[9]. Additionally, one

constraint is added, which disallows creating a record where end time is lower than beginning time. The

data types of the period start and end columns must be either DATE or a timestamp type, and data types

of both columns must be the same.For example: we can keep track of the specific period of time during

an employee has hired in company on February 2, 2001 to now. This Period can be represented as the set

of all time points and historical data from its start to now. That employee have worked in financial

department during fourth years, he has worked from 01/02/2001 until 10/11/2005. An employee changed

his department and he received an additional 6% salary increase when her department changed from

11/11/2005 until now. All this changes can be recorded in temporaldatabase with valid time period

columns in order to preserve history in such company.

 CHAPTER I : BACKGROUND AND RELATED WORKS

25

3.3 Transaction Time

 As Shown previously, valid time represents a period of the time when a fact is true in reality. Unlike

valid time, Transaction time identifies when data was asserted in the database. It refers to the time at which

a transaction has been processed to update the database. If transaction time is added to table, the states of

the database at all previous points of time are retained. It models the database reality, storing exactly when

row has been inserted, modified, and removed in the database. Also, the transaction time period cannot

extend into the future, as it is impossible to update the past. This means, transaction time table must be

created with two additional attributes, one for start period and another for end period. These new columns

cannot be modified by the user. In other words, system can only add or change values of these fields [10].

The transaction-time start period is the time when the database became aware of a row, when the row was

recorded in the database. With the insertion statement the transaction attribute start columns takes current

time as value. On the other hand, the transaction time end period reflects when the fact was closed by an

update to the row, or when the row was deleted from the database. This means, update or delete statements

close end time of updated record and create new row with start time of current date.

 The transaction time period uses also closed-open period interval. At any given point in time, a row

in transaction table is regarded ascurrent system row if the start time period of that row defines as current

time. The values of start and ad end columns are assigned and updated automatically by the database

system.

3.4 Bitemporal Data

 Bitemporal data support the transaction time and valid time periods. IT is like version control for your

data. Bitemporal data are storing current and historical data and this means it not only shows records as

they are now in the present, but also as they were at any point in the past in order to preserve data history

that exists at different times. Rows in such bitemporal tables are associated with both the valid time and

the transaction time period. Bitemporal tables are very useful for capturing both the period interval during

which fact is believed to be true in the real world as well as the period interval during which this fact was

stored in the temporal database.For example, an employee may change the bank. Typically the account

number changes legally at a specific time but it is not changed in the database currently. In that case, the

transaction period automatically records when a particular account number is known to the database and

the valid time period records when the account was legally effective.

 CHAPTER I : BACKGROUND AND RELATED WORKS

26

IV. RELATIONAL AND OBJECT RELATIONALDATABASE

4.1 Relational Database

 Relational databases were first introduced in 1970 by E.F. Codd [11]. Relational databases are

based on set theory and relational algebra to record related data in a structured manner. It is a database

with a relational model that can organize data in the form of table .Each table contains one or more data

categories in columns. Each row contains a unique instance of data for the categories defined by the

columns. Each column in a table is called an attribute. Columns specify a data type (integer, char, date)

which can be stored. Each row contains a unique instance of data for the categories defined by the columns.

In Relational database tables, columns can also have constraints. Constraints can be that every stored data

has a unique value, or if null a default value is utilized. The primary key of table is a data item, which

must be atomic. There is a unique key for each row in each table and it is possible to connect the rows of

the different tables the same row key. A relationship is created through a foreign key constraint, which

requires a record with the same value of that column to exist in another table. Information is retrieved

from a relational database by querying a table, and defining joins on these relationships to relate data

between many tables. Relational databases have been built upon as major products for technology giants,

such as Oracle, and IBM. New concept sets and improvements are still being made to them as these

technology giants push to satisfy more needs.

 Although Relational database is sufficient for managing the storage of an important capacity of

primitive data types, where their SQL is easy to use, they are not strong enough to represent real world

problems and new environments. For instance, Novel application often need persistence for

nontraditional data structures, such as graphics, multimedia, or voice data. RDBs have some weaknesses

in supporting complex structures and data operations. Moreover, they cannot handle applications such

as temporal databases, and other systems that involve complex data inter relationships. The relational

data model does not have the ability to provide user-defined data types that can be specified based on

pre-defined data types. Different relations between tables may not represent entities in the real world,

and the inheritance relationship is not supported. The relational database model is not scalable for

systems and applications needing access to many related tables, which requires joins. Joining several

tables leads to inefficient query processing times [12]. In addition, it is very difficult to include new

operations to the system in the relational model since it is limited to the generic SQL operations queries.

RDBMS developers and researchers have spent much time in producing methods for the mapping of

 CHAPTER I : BACKGROUND AND RELATED WORKS

27

complex data structures into RDBs for persistence. All these limitations have led to the emergence of

new extensions called as Object Relational DBMS (ORDBM). The most important features of RDB are:

 Keys

In RDBMS keys concept are very important features as they are used to identify data and make

relationship between tables. One of the most important properties of relational model is uniqueness of

rows or records which are also provided using the concept of ‘Key’. There are mainly three types of keys

which are specified for RDBMSs as follows:

 Candidate Key: is a key which can be used to uniquely identify any record in a table without

referring to any other data. A candidate key can represent a single column or a combination of

multiple columns. A table can have more than one candidate key.

 Primary Key: is a key by which any record can uniquely be identified from a table. A table can

have multiple candidate keys, but only one from those keys can be considered or chosen as a

primary key [13]. Primary keys ensure the uniqueness of recorded data in a table and reduce

information redundancy. It can be defined as a single column or composed by multiple columns.

 Foreign Key: A foreign key represents a column or set of columns in a table which refers to the

primary key of another table in order to uniquely identify a record of that table and define the joins

between tables.

 Constraint concepts:

 The constraints specify some restrictions on the data stored in RDBs with help of DDL. They are the

rules enforced on the data columns of a table. In RDB, the constraints are represented by implicit, explicit,

and semantic and data dependency restrictions. Implicit constraints are inherent in the data model for the

characteristics of relations, relationships among tuples. Explicit constraints can be defined in the schema

during the creation of the table that are called integrity constraints. Integrity constraints deal with data

validation process and business rules that can be stored and imposed on relational data when applications

or users manipulated data. The integrity constraints are: key, entity integrity, referential integrity, domain,

null, and default value. Semantic constraints cannot be specified in the data schema. However, they are

expressed in application programs or data content. In the last, Data dependencies test whether or not the

RDB is designed perfectly using the normalization process. Normalization is a technique used in database

 CHAPTER I : BACKGROUND AND RELATED WORKS

28

design to reduce redundancy, data anomalies and poor data integrity. These constraints should be enforced

by RDBMSs at each instance of insertion, updating or deletion of data to or from the tables.

4.2 Object Relational Database:

 The demand to represent complex data structures has motivated the development of the object

Relational database systems. ORDBs have potential because they merge relational modeling and Object

Oriented concepts. The main objective of their developpement was to combine both the robust transaction

and performance management concepts of relational database, and the Object oriented technology features

of scalability, flexibility, and support for rich data types. The OO models offer concepts that enable a

better modeling of real world problems to conceptual schemas [14]. Researchers can work with tabular

relational structures and DDL with the possibility of object management. The object-relational

specification extends a relational model features to integrate object Oriented capabilities such as defining

objects and complex data structure that are directly supported in database schemas and in the query

language. These include pre-defined, structured and collection data types, primary keys and references,

inheritance, and operations. Therefore, the table in ORDB is called typed table as it can be created based

on Object aspect and using pre-defined type to identify the data. Each row in typed table has an object

Identifier OID, through relationships among objects are established. The rules of RDB model have been

ignored from the object-relational models, so that an attribute can be defined as collection of data types.

On the other hand, one of the most important advantages of ORDBs is their huge scalability, the ability

of reuse and sharing. Object relational database systems designed to have large storage capacities to satisfy

large companies need to manage massive data.

The most important features of Object Relational Databases are described as follow:

• Object: An object is one of the most fundamental concepts of the object relational model where an

object represents an entity of interest in a specific application. The objects are invented to overcome

the limitation of relational database in supporting complex data and real world modeling. They are

defined with a number of levels of complexity and an inheritance hierarchy. Each object has a state

(value), behavior (operations) and unique identifier which is used as a reference to the object in order to

establish a relationship between other Objects.

 CHAPTER I : BACKGROUND AND RELATED WORKS

29

• Inheritance: Object relational database allows the inheritance between Objects this process is known

also a generalization. This is a powerful mechanism, which lets a sub-type Object inherits the attributes

and operations of a super-type Object defined parent class, with additional properties. Simple inheritance

is supported in ORDB via the under keyword added in the definition of the table.

 User defined types: this concept allows to the users to provide a complex data type according to their

needs, integrating object specification, attributes and methods. The UDT can be formed using predefined

types. An UDT allows values in tables to be associated with methods (encapsulation). The attributes of

user defined type or UDT can be used by different objects. Besides, a table can be defined based on an

UDT.

• Reference type: A row in object relational model can be an object that is uniquely specified by a

column called identity, containing an OID, to make a difference between objects. The type of this column

is a REF, which is used for relationship participation. REF plays the same role as foreign key to express

the relationship between tables.

• Collection type: Object relational database has the ability to store more than one value in the same

row. It supports collection types which represent multi-valued attributes as a single type. A collection

type is expressed by the keyword that determines the type of the collection and the element data type.

ORDB support these two collection types:

 Varray: The varray is a collection type that allows the user to embed homogenous data into

an array to form an object in a pre-defined array data type [15]. Also varray type, has a limited

size to store the values where must be ordered.

 Nested table: this type allow duplicated values and accept unordered values. A nested table

is a collection type that can be stored within another table. With a nested table, a collection of

multiple columns from one table can be integrated into a single column in another table.

V. TEMPORAL DATA WAREHOUSE: AN OVERVIEW

 Before the emergence of Data Warehouses, Developers created reports and analysis by straight

queries into the operative systems. Data in these systems usually are stored in relational databases which

 CHAPTER I : BACKGROUND AND RELATED WORKS

30

serve these needs. It is important when the database is directly queried with a real-time data. Moreover,

straight query can causes some problems where Analysis operation of recorded information in the real

time requires large volume of data from the operative system. Also, the retrieval data for reporting can be

distributed between many environments. This can lead to the serious issues that have impact to the

performance of the operative system .For this reason, Data warehouse is developed to support reporting

and making analytics. A data warehouse can be defined as a database which stores data from several

sources and presents them in an integrated structure that is suitable for effective decision-making support.

A data warehouse (DW) collects large amounts of data from heterogeneous data sources and transforms

them in order to make this information available and be used to analysis the behavior of company. The

main goal of the analysis and reporting phase is to provide the management of an organization with

information on trends and facts that are required for making a new strategy.Hence, Data warehouse is best

described by Inmon [16] as: “a subject oriented, integrated, non-volatile and time-variant collection of

data in support of management’s decisions”. Datawarehouseis based on the multidimensional model,

which defineinformation as facts that can be analyzed along a set of dimensions, composed of levels

conforming to aggregation hierarchies. The basic multidimensional model assumes that only facts evolve

in time and this is materialized by the link(s) of the facts with the time dimension [17].

 Therefore, temporal database and data warehousing are two separate environments that are strongly

related: data warehouseis the commercial product that need temporal database features. Trend analysis

can go along many dimensions, the most important of which is time [18]. It is used to identify different

characteristics in the evolution of data, over time or over various geographic points or over product lines.

With the temporal evolution data warehouse is very often required not only to hold a reformatted subset

of current operational data, but also to maintain a history of this data.Furthermore, Temporal Data

Warehousehas the same elements and components as non temporal one, called, dimensions, hierarchies,

facts, and measures related on system requirements and the availability of this data in the source. The

additional concept is that TDW associates a time period to facts, typically representing valid time, and

makingtrack of the evolution of dimensions, facts, and measures. TDW supports the different dimension

of time presented previously, namely, valid time, transaction time. In addition, a temporal DW should

allow both temporal and nontemporal aspect and features in the same system.

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 31

VI. NOSQL DATABASE

 The term NoSQL was invented first by Carlo Strozzi in 1998 for his Strozzi NoSQL opensource

relational database. This database was relational, but the term has evolved and since 2009 it is more known

for non-relational or non-ACID databases. Although, NoSQL is a vague term that also includes rich

categories like key-value and Graph databases, it’s commonly used to refer to systems that focus on

simplifying the design to more easily achieve horizontal scaling and high availability, which usually

means dropping the relational model. Besides, Th non-relational or NoSQL databases are schema-free

[19], and allow storage of diffrent data formats without prior structural declarations [20]. To achieve

scalability and availability of data, NoSQL database usually relaxes the consistency guarantee on data

they store. Therefore, they were developped for massively scalable web applications. They are designed

for distributed storage and parallel computing and so try to overcome the weaknesses of relational

databases with management of massive amounts of data. The most interest characteristics advantages of

NoSQL databases are efficient processing, effective parallelization, scalability and costs.

 There are many types of NoSQL databases which might vary greatly in features. A way to categorize

NoSQL databases is related to their data model:

 Key-value Databases

 Key-value databases were the first and simplest Nosql databases, they are more basic. The data

structure of the key-value stores is clear and easy to understand which does not need many schema

restrictions. This kind of databases stores key/value pairs, which can be of different types and are

organized in sets where Keys have to be unique . The exact data types that are supported depend on the

properties of the object. Therefore, the key value database doesn’t focus on how data is related to each

other. Any new data, no matter what the structure is, has the possibility to be stored at any time without

affecting existing data items and the availability of the database system. Also it can easily be distributed

among different clusters and can be accessed very fast via keys. Key-value databases are based on the

primary key access. But, they are efficient for relatively simple operations which can be done by the keys.

However, it will take more time to develop complicated data structures and relations adopting this NOSQL

model.

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 32

 Column Databases

 Are also known as columnar databases that are based on the concept of grouping closely related data

into one extendable column [21]. Logically, data is organized in tables with rows and columns. But the

column data model considers this concept as a limitation in conventional databases. Instead of storing a

single table’s properties in one entity, Column database records the properties of many objects that belong

to a column separately. In addition, a row acts as container for several columns. The rows in the column

family store do not need to have the same number of columns and the columns in each row can be different.

Therefore, Columns in a family are logically dependant to each other and are physically recorded in the

same entity by grouping columns with similar characteristics into the same family. A column family is

dealt with a row that includes many columns and can be identified by a unique row key, where each row

can store any number of key-value pairs. This data model is mostly based on schema, and therefore the

data types are predefined.

Examples of such databases: Accumulo, Cassandra, Druid, HBase, Vertica.

 1...* 1...*

 1...1 1...*

Figure 3. Column Database Meta-Model

 Document Databases

 The document databases are not document management system. A document-oriented database is a

modern technology to store data document rather than simple rows and columns. In NOSQL document

store, the smallest element is a document. Document is similar to SQL record. It is a self-representation

of a column. Document stores structured sets of key/value pairs in some variation XML or JSON. All the

keys are identified as a unique in each document. For this reason a particular key is added in each

document which allows storing a key reference to another document, establishing a relationship between

the both. One of the advantages of this Nosql model is the ability to store a new document that contains

a massive data, and to integrate new properties and information of any length into the existing document

Table Row

Column

Family

Value Column

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 33

that can be done easily. Hence, a set of documents are grouped in a collection. The document oriented

databases are convenient for data integrating and schema migrating. As opposed to the column database,

the document data is a schema-less and any data type can be defined in JSON or XML. This kind of

databases is flexible and does not focus on the data structure. Therefore, they are efficient and helpful for

rapid development and handling complex data structures.

Examples of such databases: MarkLogic, MongoDB, OrientDB, Qizx, RethinkDB.

 1...*

 1...*

 1 1

 1...*

Figure 4. Document Database Meta-Model

 Graph Database

 Graph Database is considered as a special type of database, where graph elements are used to represent

interconnectivity or topology of unstructured data. Graph Databases provide a flexible graph model that

can scale across multiple servers and applications. Typical of these kind applications are social networking

and recommendations, network and cloud management, master data management, geospatial,

bioinformatics, and security and access control [22]. Compared to other database Models, they are a little

Collection

Pair

Document

Key Value

SimpleValList DocList StringValue NumberValue

SimpleVal ComplexVal

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 34

different though by comparing the characteristics and how Graph databases preserve the unstructured

data. The Graph database applies graphs, which consist of nodes and edges, to store and manage data,

instead of storing data in tables in a relational database [23]. The nodes represent the entities in the graph

which contain all the information about some object. And the vertices represent the relations between

nodes. Therefore, the structure of graphs provides a high accessibility and scalability in distributed

systems by partitioning the graph data into a number of separate environments.

 Figure 5. Graph Database Meta-Model

VII. WEB SEMANTIC:

 According to the World Wide Web Consortium (W3C), The Semantic Web provides a common

framework that allows data to be shared and reused across applications, enterprises, and community

boundaries [23]. It can be defined as a collection of technologies that aim for representing semantic

meanings in a language that computers can understand. The Semantic Web is an extension of the current

Web in which information is given a well-defined meaning, better enabling computers and people to work

in cooperation in order to facilitate their activities (research, e-business, e-commerce….). The Semantic

Web designates a set of standards for describing content of W3 resources that is accessible and usable by

adopting software or agents, through a system of formal meta-data, using in particular the family of

languages developed by the W3C consortium. The word semantic means that the meaning of information

in the Web can be known, not only by humans, but also by machines. Furthermore, The Semantic Web

can enable the processing of the data to infer well defined meaning for a better communication between

computers and people. It play an important role to make data to become Smart or intelligent through the

use of ontologies. The intelligent data means the information of the web can be so richly interconnected

which help the machine to be more able to infer as humans.The Semantic Web represents a novel solution

in which both machines and men can search, read, understand and use data across the Web so that they

can interpret Web resources and respond more appropriately to user requests. Therefore, The Semantic

N

1

N

2

Value Value

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 35

Web was implemented by, Tim Berners-Lee, as an extension of the existing web for the purpose to

formalize information and automated services in order to provide the content of the Web resources re-

usable and sharable by automated techniques.

Figure 6. General Web Semantic Architecture

7.1 XML Model

 Not all data can be handled in structured databases. Data might be collected in databases where

they do not have to be constrained by the schema. These types of data are called semi-structured data,

which they need a specific Model is called XML. XML has become a very important data representation

model. It is considered as a tool for specifying the semantics of the data. The Extensible Markup Language

(XML) is the universal format for structured documents and data on the Web [25].Is is a text-based markup

language for structured documents, which is a subset of the Standard Generalized Markup Language

(SGML). It is designed to facilitate interoperability with SGML and HTML .This meta-language concept

is becoming the standard f for W3C in order to interchange the data over the Web. Therefore, XML

document is composed by several constructs such as namespaces, elements, attributes, tags and values.

An element represents a unit of XML data enclosed by tags which can group several elements. A tag is

used to describe elements or data that is surrounded by brackets. An attribute is integrated on the tag to

provide further information. Values occur as instances of elements/attributes. On the other hand, XML

allow to the user to create his own markup language file for describing a specific purpose. Users have the

ability to define their own tags elements and values. XML is self-describing according to which documents

can be structured into complex levels of data and schema. However, XML files consist of schema and

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 36

data that can be combined in one document. XML is a powerful model because it extends simple defined

tags to more complicated structures and relationships such as aggregation and inheritance. The schema in

XML represents the data structure and restrictions using one of the XML schema languages. In XML,

there are two predominant languages have been proposed by by W3C, and XDR by Microsoft: Document

Type Definition (DTD) and XML Schema. The use of the one of the languages depends on its capability

to fit the application requirements. Even though, DTD is less expressive than XML Schema specifications.

XML Schema offers flexible name space support, which is a significant advantage over using DTD.

7.2 XML schema Language

 The structure of an XML document can vary each time for this reason there are several languages

are designed to express the same information. XML Schema language is a standard that provides a

sophisticated means for describing the structures and constraints of XML schema and instance documents

[26]. The W3C recommended the use of the XML Schema language in May [27,28]in order to overcome

the weaknesses of DTDs and implement a more description of XML document content. It formalizes the

definition of the structure, content and semantics of XML instance documents. With XML Schema

concepts, it is possible to modelthe representation of datain XML instance document, and the relationship

between the different elements. Also the XML Schema language has support to namespaces and has the

ability to specify the data types of the information and is extensible because it is based on XML-syntax.

On the other hand, An XML Schema offers an important of featuressuch as key and integrity constraints,

and other concepts such as inheritance, references, data collections and user-defined data types can support

RDB and ORDB models to exchange the data. Moreover, it implements a wider range of built-in data

types, where offers to the users the possibility to define their own simple and complex data types including

restrictions and extension keywords.

The essential components of XML Schema are used to model the data below:

 Elements and attributes

 Simple types

 Complex types

 Namespaces and annotations

 Inheritance

 Identity Constraints

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 37

VIII. OBJECT RELATIONAL DATABASE MIGRATIONAPPROACH

 The emergence of the novel data management systems and the need to move into an efficient environment in

order to overcome the limitation of the existing system in the company lead to involve the migration of database

applications. Database Migration represents a process in which all components and properties of database source

systems are converted into their equivalents into another database environment. Indeed, each migration has its

specifications, prerequisites and data model used. These specifications lead to propose different mapping rules for

the conversion models, which in turn affect the success and quality of the process.The migration process involves

the extraction of the important properties and the structure, classification of the relationship, the translating of the

source database schema into the target one and converting data into the target database format.

8.1 An Overview of the Proposed Approachs:

 The migration of object Relational database and the use of temporal concepts to make records of data,

represent a vibrant field for significant researchers and scientifics. These studies lead us to combine the

most important features of ORDB and varying time aspect in order to develop our frameworks for

simplifying the conversion and the migration of historical data between different environements. Now,

we will cover several approachs that are devided as follow:

 Temporal database Definition and Manipulation:

 As we already stated, there are several works dealing with the temporal data storage and query

language. Atay presented a comparison between interval-based attribute and tuple time stamped with

bitemporal data models, and evaluated their usability using the same data and same queries for both

concepts [29]. According to this comparison, Petkoviç’s work examined the performance implication for

tuple timestamping and time varying attribute, his test stored data using two different forms, and examined

the 36 query on both [30]. This work in [31] introduced a temporal object relational SQL language

handling valid time dimension at the attribute level in a temporal environment. Comparison of three

different data storage models (OODB, ORDB, and XML) for the parametric temporal data model in order

to estimate storage costs are discussed in [32]. The ISO (international organization for standard) and IEC

(International Electrotechnical Commission) committee, initiated a project to provide a language

extension to support temporal database, is given in [33]. The most important features in SQL: 2011 to

create and manipulate relational database including temporal data, which implemented by IBMDB2 is

discussed in [8]. Slavimir Vesić presented a temporal concept and focused on temporal features defined

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 38

in SQL: 2011 in DB2 [34]. Sandro Radovanović evaluated the performance of traditional relational DBMS

(RDBMS) and temporal databases using Oracle 12c DBMS [35].

 Migrating Conceptual schema into database:

 We review the existing proposals for defining conceptual Modeling level, UML is assumed in most

studies as a model language for data design. Transforming conceptual models into ORDB without tempral

features have been studied extensively over the past years [36][37][38][39].A UML diagram, such as a

class diagram, is typically not refined enough to provide all the relevant aspects of a specification. There

is, among other things, a need to describe additional constraints about the objects in the model.For this

reason, other approaches dealt with the expression of data constraints by adopting OCL annotation

thatallowsenriching the conceptual model structurally and semantically. The work in [40] presented a

systematic procedure for the transformation of a UML class diagram formed with OCL annotations into a

constraint satisfaction problem (CSP) in order to provide a predefined set of correctness properties about

the UML/OCL. Identification and specification of arbitrary constraints within the bounds of OCL-Lite in

a conceptual level to ensure the completeness and correctness of reasoning are discussed in [41]. Gogolla

and Hilken introduced the model validator of the use tool, a modern instance finder from UML and OCL

based on implementation of relational logic in order to help developers to find fault in model description

[42]. Maciaszek and Wong defined a design constructs needed for the development of an object Relational

database based on UML and they proposed a mapping method from design models to an object relational

implementation [43]. Golobisky and Vecchiesti proposed in [44] formalization mapping steps involved in

the conversion of UML into Object relational database starting with the conceptual schema wich is

presented by UML class diagrams.

 Migrating RDB into ORDB:

 Here, we show some existing proposals for transforming RDB into ORDBs. The relationship

Inheritanceis one of the important features given by ORDB, it is defined in [45]. Using foreign keys or

ref types in Oracle 8i and the under clause in Oracle 9i/SQL3 A method of mapping and preserving

collection semantics into an ORDB has recently been proposed [46].M. Castellanos and f. Saltor

developed a canonical model that converts the schema of a federated system database. This involves a

knowledge acquisition process to improve the semantic level of the schema. The approach presents a

methodology that enriches relational schemas by converting them to an object-oriented data model, called

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 39

bloom. It is based on inclusion dependencies, but also takes into account exclusion and complementarily

dependencies [47][48].A. Maatuk proposed a semantic enrichment concept of RDB and ORDB , it is

done by improving a representation of an existing database structure in order to give more details of

database schema. This approach holds an existing relational database as input, obtains a copy of its

metadata and enriches it with as much semantics as possible, and builds an improved representation of the

relational schema (RSR) [49]. The research work in [50] deals with the passage of migrating data from a

relational database to an object relational database, by developing methods of selection and insertion

which is based on optimizing the extraction of information in a predefined data model, which deals with

the transition from relational to object relational.

 Migrating ORDB into XML:

 In the last decades, significant research has focused on the problem of document history management

combining the issues of XML document version and varying time data management for which a numerous

technologies and models have been provided. There is much current interest in representing and

exchanging temporal data in temporal XML document on the web. The approach in [51] proposed a

concise and comprehensive review of the methods implemented for XML based semi structured semantic

analysis, this solution is composed by four logical parts describing disambiguation techniques that can

benefit from XML aspect including data clustering and indexing concepts. Rizzolo and Vaisman presented

a new method for modeling and implementing temporal data in XML in order to track historical

information in XML document and recover the state of the XML document as of any given time by

developing an algorithm for validating this technique [52]. A research study developed a framework based

on archIS system using XML techniques to manipulate temporal data and temporal xqueries which are

supported via clustering and indexing techniques in order to manage the historical data in RDB is

discussed in [53]. G.Qadah developed two new algorithms and the associated indexing structures to

perform correctly in processing interlinked and independent XML documents, also another algorithm is

introduced to minimize the storage requirements [54].an XML based implementation of temporal database

system for parametric data model is discussed in [55].Ying and Yuyin presented a novel approach based

on indexing technique wich is separated in two parts: path index and value index [56]. Qtaish and Ahmad

implemented a new framework called XANCESTOR wich uses a path based techniques and composed

by 2 algorithms (XtoDB) algorithm wich maps XML document to RDB reducing the storage space and

XtoSQL algorithm converts Xpath queries into their corresponding in SQL [57]. The approach in [58]

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 40

introduced a general strategy for repairing detected inconsistencies that result from retroactive updates for

currency data in a valid time and Bitemporal XML database.

 Migrating ORDB into MongoDB

 A research work in [69] proposed a generic standard-based architecture that allows Nosql systems

focusing on mongo db to be manipulated using SQL query and seamlessly interact with any software

supporting JDBC. Ajit Singh demonstrated data conversion to mongo db, in order to make data more

interactive and innovative using the data stored in cloud [60]. The model transformation and data

migration from relational database into Mongodb taken into consideration the query characteristics of

each model, in addition, an algorithm to automate the migration are discussed in [61]. Another approach

presented Algorithm for automatic mapping of relational database to mongodb using entity relationship

(ER) Model to provide the conceptual schema and modelling relationship between the different entities

[62]. A framework for mapping MySQL database to mongodb by developing an algorithm that uses the

metadata stored in relational system as input is discussed in [63]. The work in [64] described a migration

process from Object relational database to Nosql document database end provided a review of different

proposed approach. An overview of Nosql to evaluate the scalability and efficiency in storage of data in

oriented document database case study in order to show the representational format and querying

management process of Mongodb [65]. The work in [66]introduced a disciplined approach called

Jschema(Temporal Json Schema) for the temporal management Json documents by creating a temporal

json documents from conventional document that can vary over time, the generated document uses such

features of temporal management data. The mapping Process of spatio temporal disaster data into

Mongodb database using the data represented by the aspects of space and time is shown in [67].Boicea,

Radulesu and agapin discussed the difference between oracle and Mongodb this comparison dealt with

several criteria including theorical , Concept , restrictions and query processing of SQL database get a

document oriented database Management [68].

8.2 Discussion

 The investigations into the problem of Object relational database including temporal features migration

demonstrates that the approaches proposed so far have had different goals. Each proposal has made certain

assumptions to improve the performance of TORDB and facilitate the migration process, which might be a point of

limitations or a drawback. However, there are still shortcomings in the implementation of temporal database based

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 41

on object relational model data translation in a more effective manner into more than one management data system.

The use of a middleware can lead to slow performance, and make the process expensive at run-timebecause of the

dynamic mapping and migration of temporal data in the different environements. Although most varying time

concepts are present in these proposals, their focus has been on only the technical part of storage and

retrieval of data of temporal data rather than on migration. We feel that some semantic concepts of varying

data are not considered. Furthermore, these studies don’t give solutions that will allow providing a

mapping method between different data models, and gain from the offered advantages in temporal ORDB.

 During our criticized analysis, some researchers focused on the designing and mapping the

conceptual level using UML into Object Relational database without including the time features to make

records of data history. We noticed that Articles about the transformation from UML class enriched with

OCL to temporal database are not frequent. Therefore, many studies have been devoted to the analysis

and correctness of UML formed with OCL notations. Furthemore, we noticed that temporal database

features were overlooked and some semantic concepts of temporal data are not considered in many works,

especially in the conceptual level. Therefore, Most of the previous works presented in the literature fail

because they do not provide consistent migration formalization such that these mapping can be automated

using different technologies such RDB XML and web semantic incorporating varying time properties into

temporal Object relational database. We conclude these previous studies don’t offer a solution that allows

developing a comprehensive and precise modeling for temporal database and gain from the offered

advantage of Object relational model, and Nosql techniques for time-varying data management design.

8.3 Semantic Enrichment of TORDB:

 In order for information to be understood and workable by different systems, and adequate for

migration between different models, techniques and tools that simplify the comprehension of the database

component must be used. For this reason, it is important to resort to semantic enrichment, which can be

described as the mechanism of providing metadata in order to facilitate understanding, integration, and

processing of information. Semantic enrichment is a process of building process in which experts system

formalizes rule sets specific to a type of database in order to capture the new facts of objects and their

relationships. It allows analyzing and examining a database to determine its structure and identify

definitions of data meaning. This is achieved by improving the representation of an obtained structure in

order to make hidden semantics at the higher level. Therefore, the success of the process is related to

volume of data that can be extracted from the existing database, and the method by which an enhanced

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 42

semantic representation is produced. To do that, additional concept must be taken into account such as the

classification of different entities and their properties, the specification of relationships and cardinalities,

and the different constraints and restrictions including Keys.

 In our approach, the semantic enrichment process involves extraction of data semantics of an ORDB

including temporal features by specifying its metadata representation and improving it with required

information, and producing an enriched object relational schema. This method will be applied to generate

the enhanced representation of source and target databases used in this work in order to capture the

important characteristics and data structure. In the next chapters, the thinking behind the construct of

database schema mechanism is explained in details the main benefit of using semantic enrichment

techniques, including why they are needed, what purpose they serve, and their definitions. This method

facilitates migration into new different databases based on temporal object relational model.

 The following schema shows the important phases of semantic enrichment system described in our

proposed approach:

Figure7. Semantic Enrichment Process from database Source into Temporal Datbase

 Extract the relation,

Attributes and

constraints

Extract Data

dataDATA

Extract Temporal period

Data

Determine the

relationships

Source Schema Target Schema
Transformation Rules

 CHAPTER I : BACKGROUND AND RELATED WORKS

p. 43

IX. CONCLUSION:

In this chapter we provided a survey of the basic concepts of our field of research, we focused on the

notion of the different data management systems. We also presented the main goal of UML on the

modeling level. In the next, we reviewed earlier approaches in Object relational database migration and

some works introduced to handle time varying management data. We also detailed the challengesfor

migrating and sharing temporal object relational data using XML or web semantic environment. The

presented literature review was essential to understand the basics mechanisms and technologies used so

far for migrating of TORDB. In addition, the aims have been to provide a comprehensive view of the

problem of ORDB conversion including temporal features, to introduce various proposals in order to show

how it has shaped current and future research in this area.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

44

CHAPTER II:

CONCEPTUAL MODEL OF TEMPORAL DATABASE

USING UML/OCL

I. INTRODUCTION

 Nowadays, Software systems are vital part of our day life, the process of developing software becomes

harder to manage and more complex to maintain. For the purpose to simplify the software building, the

developers and researchers started using and introducing different mechanism to design the system. The

modeling system is one of the interesting solutions to reduce the complexity of development process. The

modeling system provides understandable description of the architecture and structure in a formal or semi-

formal annotation and an involved activity follow which can be considered as reference of development

process. The object oriented and relational systems exploit the concept of object technology and use

conceptual design methods as a means of description for modeling of object relational applications.Today,

UML is widely accepted as popular modeling language for different systems. UML (Unified Modeling

Language) is a visual language for describing, specifying, constructing and documenting the artifacts of

the system which can be applied to all applications and implemented platforms that are based in the time

features in nature. In object-oriented software modeling, the UML has the ability to visually represent

software models.

 Since the temporal data models use the term object loosely, one we may think of the possibility of

integrating non-temporal database language such OODB or ORDB. With a non-temporal database

language, it is a great burden for DB users to deal with temporal data all on their own [69]. For representing

time varying data from the real world into objects, class diagram of the Unified Modeling Language

(UML) has become a standard of the Information Technology.

 On the other hand, we assumed the most researchers don’t deal with the identification of conceptual

schema for temporal systems. For this reason, we inspired of the recent and existing works for further

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 45

Investigation in this area, in order to describe the meaningful temporal information specifying the different

dimension of time and give a comprehensive data model especially at the representation level.

 This chapter contains definitions of a wide range of concepts specific to and widely used within

temporal databases. We formalized the steps involved in the transformation from UML class diagrams

into temporal Object relational database (TORDB) handling temporal attribute. In addition, we address

the issues of seamless integration with UML meta-model, and the useful features of temporal query to

represent the temporal database schema.

 We define a mapping rules and present the essential steps involved in the transformation of UML/OCL

into its equivalent in Temporal object relational database (TORDB) handling different dimension of time

.We provide a precise conceptual schema (UML/OCL) for representing temporal database system

handling bitemporal data. In addition, we will define syntaxes and semantics of OCL constraints for

representing the complex constraints dependent on time. The proposed UML/OCL is the transformation

at the conceptual level of either one of the temporal database constraints such as Triggers and constructors

that can also be used to enforce complex integrity constraint. In addition, the creation of the prototype is

carried out on Oracle to validate our solution.We deal with an expressive conceptual schema for temporal

object-relational database representation using both UML specification and its constraints language OCL.

We define the syntax of OCL expression representing the complex constraints which are dependent on

the bitemporal dimension. The proposed constraints will be transformed to their equivalent in the database.

In addition, our study proposes a UML/OCL design from UML class diagram annotated with OCL

(UML/OCL) to define set of entities and restrictions, for the specification of the new characterization in

order to manipulate the temporal attribute associated with class diagrams, and make an efficient

description of a temporal object-relational database. A prototype has been implemented, we have

developed an algorithm for generation of TORDB Model from UML/OCL Model, and the OCL

specifications have been translated into integrity constraint, triggers and constructor to handle the complex

restrictions.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

46

II. CONCEPTUAL DESIGNING OF TEMPORALOBJECT-RELATIONAL DATABASE BY

USING UML:

 Conceptual modeling is the process of generating a description of the contents of a database in high-

level terms and specifying its functional requirements. It can be considered as an activity for capturing

knowledge about the desired system functionality. The process starts by taking as input information

requirements for the systems that will use the database, and constructs a schema expressed in a

conceptual design notation, such as UML class diagrams. The challenges in providing conceptual

schema include designing informal and formal information requirements into a cognitive model, that

describes unabiguously and completely the component of the database, and using the mechanisms of a

data modeling language appropriately.

 The conceptual schema represents an abstract definition of database tables and their relationships by

using a human oriented natural language, independent of any implementation, respecting clarity and

simplicity criteria [70]. It consists of taxonomy of classes with their attribute, their relationships and their

set of constraint. Over the state of the domain which identifies conditions that each instance of schema

must satisfy.

 However, several methods for object-oriented analysis and design have brought a great number of

languages for supporting many specifications of the applications development process. UML is one of the

techniques the most used in different phases of system life cycle of. The main reason for its widespread

use is that UML has a very rich notation for the modeling process. To ensure model quality, a conceptual

schema is represented by UML diagrams tools with the graphical, and a set of complex constraints where

are usually expressed in OCL as invariants object models. The primary goal of OCL is to augment a

model with additional information and restriction that cannot be expressed in UML.

 On the other hand, the concepts of transformation from the conceptual (UML) design to temporal

Object-Relational models depend on the understanding of the data meaning and the structure of the

database. It is required to use a conceptual model obtained and follow certain rules and phases to perform

the creation of a temporal object-relational model.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 47

2.1 Temporal Data Design with UML Mechanism

 UML has a very rich notation offers many aspects of software engineering and applications

development. It is a standard language for object oriented analysis that is able to specify a wide range of

object oriented concepts by modeling a database schema. In addition, UML provides mechanisms that

enable new kinds of modeling elements to be defined, and also enable to relate the information to new

modeling elements. This is accomplished by integrating stereotype, constraints and tagged values. It

defines several graphical diagrams in terms of the views of system. It has been widely used in database

design process for the conceptual, logical and physical representation. Therefore, temporal databases

capture the history of object or activity of database. Since the temporal data models use the term object

loosely, one we may think of the possibility of integrating non-temporal database language such OODB

or ORDB. For representing time varying data from the real world into objects, and to overcome the

complexity of designing temporal object and the navigability path between different entities, the Unified

Modeling Language (UML) has become a standard of the Information Technology. It is the intention of

this work to develop a general strategy for transformation mechanism from UML class diagram into

objects in temporal database based on ORDB.

2.2 Improving UML by using OCL:

 Several methods for object-oriented analysis and design have brought a great number of languages

for supporting many specifications of the applications development process. The main reason for its

widespread use is that UML has many Diagrams and tools for the modeling process. To ensure model

quality, a conceptual schema is represented by UML diagrams tools with the graphical, and a set of

complex constraints where are usually expressed in OCL as invariants object models. The primary goal

of OCL is to augment a model with additional information and restriction that cannot be expressed

in UML.

 The proposed conceptual schema for temporal object-relational database uses both UML specification

and its constraints language OCL. We define the syntax of OCL expression representing the complex

constraints which are dependent on the temporal dimension. The proposed constraints will be transformed

to their equivalent in the database. In addition, our study proposes a UML/OCL design from UML class

diagram annotated with OCL (UML/OCL) to define set of entities and restrictions, for the specification

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

48

of the new characterization in order to manipulate the temporal attribute associated with class diagrams,

and make an efficient description of a temporal object-relational database.

III. DEFINING THE TRANSFORMATION RULES FROM UML USING VALID TIME INTO

TORDB:

 The major task to be performed in varying management data is the conceptual layer. It plays an

important role in interactive analysis of the temporal data in order to build a comprehensive system that

dependent on the time. The conceptual models determine how to store the one or more facts from the

reality to be modeled by temporal relations. Also, help us to handle the temporal data that requires

specifications and more details of the temporal relations between different entities with an easier manner

and can be envisioned as a sequence of data history. A Temporal relation consists of a set of classes which

are related to each other. It has tree orthogonal time dimensions. In thissubsection, we will take a more

general dimension to design the history states of data using valid time period, and define the rules of the

transformation from UML diagram class into Temporal Object relational database.

3.1 UML Class Diagram with Temporal Data:

 The most well-known language of UML is the language of class diagrams which describes the

structure of a system in terms of classifiers, their behaviors, and possible relations between different

objects. It defines several graphical diagrams in terms of the views of system. It has been widely used in

database design process for the conceptual, logical and physical representation. Class diagram includes

many elements to model corresponding to the system requirements. The class diagram represents the static

view of an object-oriented application structure and includes many elements to model corresponding to

the system requirement. It is composed of the classes, attributes, operations, constraints; and different

relationships between classes can be established such as aggregation, association, composition, and

inheritance. We have selected the more commonly used for database design.

 Consider the class diagram in Figure 8. It illustrates a class diagram in banking system management

including Bitemporal data in order to make records of the history of data and the transaction operations.

This model will be used in the examples presented along this chapter.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

49

 Figure 8.Class Diagram for a Management e-banking System

3.2 Meta-Model for Temporal Database:

 UML provides mechanisms that enable new kinds of modeling elements to be defined, and also

enable to relate the information to new modeling elements. This is accomplished by integrating

stereotype, constraints langage and tagged values for describing a specific Domain. For this purpose, we

concentrate on the UML class diagram to describe our system and to create the new logical design

according to varying time aspects.

 We need in this work to develop an application, which task is to keep records of changes of data in

past, present or in the future. This application maintains the history of employees with salary, department

and project information. The problem that occurs in non temporal databases is that only current state of

data is memorized. This problem can be solved using varying time features. The temporal concepts links

time of event or a fact with a time, the need to describe clearly the event when it has occurred in real time

to be true or valid. With a temporal database, the time-varying of the customer, bank account and the

transactionactivity are captured.For example: we can keep track of the specific period of time during a

Customer has opened a new bank Account on February 2, 2001 to now.This Period can be represented as

the set of all time points and historical data from its start to now. That customer hasrequest two Loans

during fourth years, the First from 10/03/2001 until 10/11/2002 and the other from 15/09/2003 until

30/03/2004 and he received 6% increase when the type of the loan is changed. For this reason, all the

financial transactions which have occurred within a given period of time on a bank account and the balance

of the account at any point in time should be storedin temporal database to make a history of customer

activities.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

50

 Although the class diagram is a general purpose of a conceptual and logical schema, it has several

limitations for certain applications, which deal with temporal database features at the attribute level.

Therefore, it is necessary to develop a new Meta-Model for temporal database operation modeling. A

Meta-Model is involved for each database and system engineering to get a better comprehension of a data

model , because it describes the structure, relationships , constraints and semantic of data. This section

proposes an approach using UML extension mechanism to define a new set of UML model elements that

represent the previous class diagram including varying time features. This Meta-Model give the possibility

to understand the structure of temporal databases and construct schema translation, which facilate the

migration into temporal database based on ORDB.

Figure 9. UML profile for Management e-banking System enriched with temporal data

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

51

3.3 Mapping Method from UML into Temporal ORDB

 Temporal ORDB is a collection of tables each of which is can derived from any structured type

or a typed table. User-defined type includes a list of attribute definitions: attribute and attribute time

stamping. Time-varying attributes must be non-atomic values. Also, typed table has a row called REF.

The REF is a data type which contains the reference of another typed table. The existence of this column

can replace the concept of the foreign key in the relational data model. In this section, the rules of the

migration of the UML into TORDB will be discussed. We integrate oracle’s concepts of nested tables to

create the time varying columns.

3.3.1 Association

 Association is a relationship between 2 classes indicating that, at least one side of the relationship

knows about the other side. In TORDB, we propose a method of maintaining the reference type (REF) as

collection in the ‘one’ side with varying Time period. Transformation resultis:

 1:N Association :

Definition 1: For two classes namely C1 and C2 contain valid time Period. If C1 and C2 has 1:N

association relationship(REL), this Relationship is translated in UDT1 and UDT2 corresponding to C1

and C2, where UDT1 has an attribute time stamping store collection of REF value referencing to an object

in UDT2 with valid time Period (Vt_Start,Vt-End). Transformation result is: UDT1

= [UDT1 .Name, Attributes, vt-start,vt-end, NT(Ref(UDT2), vt-start, vt-end)] And UDT2 = [UDT2

.Name, Attributes, vt-start,vt-end]

Example: Classes Customer and Loan have 1: N association relationship (see Figure 9). This typical

example is adapted to suit our valid time support at the attribute timestamping level. As shown in tables 1

and 2, the time varying information of loan history proved for the customer is stored. In these two tables,

each valid time period is a closed-open interval [Vt-start, Vt-End).

Table1.Loan Table with Valid Time Period

Loan_No Amount VT_Start VT_END

1 400000 01/08/2017 01/08/2018

2 23560 14/06/2014 30/05/2015

3 3000 01/01/2019 31/12/2020

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

52

Table2. Customer Table with Valid Time Period

ID_cus

t

Name phone Adress_History VT_Start

VT_END

Loan_History

Adress_Re

f

VT_Start VT_END Loan_Re

f

VT_Start VT_END

1 Nassim

a
0657689

0
1 10/05/201

1

15/08/201

5

10/05/201

1

31/12/999

9

1 01/08/201

7

01/08/201

8

7 20/08/201

5

31/12/999

9

3 14/06/201

4

30/05/201

5

2 Amine 0634274

5

4 18/01/201

4

27/02/201

6

18/01/201

4

27/02/201

6

2 01/01/201

9

31/12/202

0

 N: N Association:

Definition 2: For two classes namely C1 and C2 contain valid time Period. If C1 and C2 has N:N

association relationship(REL) in C3, implement C1 and C2 as UDTs ,where UDT1 has an attribute time

stamping store collection of Att.C3 and collection of REF value referencing to an object in UDT2 with

valid time Period (Vt_Start,Vt-End). Transformation result is:

UDT1 = [UDT1.Name, Attributes, vt-start, vt-end, NT (Ref (UDT2),Attribute ,vt-start, vt-end)] And

UDT2 = [UDT2 .Name, Attributes, vt-start, vt-end]

Example: Classes employee and project have N: N association relationship (see Figure 9). The references

of one class together with the relationships will be mapped as a collection in another class table with

closed-open interval [Vt-start, Vt-End).

Table3.Branch-Bank Table includinh Historical data

ID_bra

nch

Name

Phone Adress_History VT_Start

VT_END Customer

Ref_Ad

ress

VT_Start

VT_END Ref_custo

mer

VT_Start

VT_END

FC456 CHI 05347865 1 15/07/2007 31/08/2015 15/07/2007 31/12/9999 1 10/05/2011 31/12/9999

2 01/09/2015 31/12/9999 2 18/01/2014 27/02/2016

3.3.2 Aggregation

 An aggregation relationship is a binary association that specifies a whole-part type relationship

.The part is shareable and independent from the whole, where each part component (C2) can be a part of

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

53

more than whole component (C1). In addition, aggregation does not imply any restriction over the life of

C2, if shared part could be included in several whole, and if some or all of the wholes are deleted, shared

part may still exist. In TORDB, to meet the requirement, we use the collection of UDT with varying time

period in the whole table.

Definition 3: For two classes namely C1 and C2 contain valid time Period. If C1(UDT1) can be composed

by more than one shareable and existence-independent C2, implement C2 as UDT collection attribute with

Valid Time Period (Vt-Start, Vt-End) in table C1. Transformation result is: UDT1 = [UDT1.Name,

Attributes, vt-start,vt-end, NT(UDT2)] And UDT2 = [UDT2 .Name, Attributes, vt-start,vt-end]

Example: Type bank_branch is the aggregation of type Account (see Figure 9). The latter type can still

exist outside type bank_branch, probably in another class. The aggregation will be mapped as a collection

of UDT including Valid Time Period (Vt-Start, Vt-End) as attributes.

Table4. Bank branch table integrating Account data

ID_bra

nch

Name

Phone Adress_History VT_Start

VT_END Account_History

Ref_Adre

ss

VT_Start

VT_END Ref_cus

tomer

Account_

Type

VT_Start VT_END

FC456 CHI 05347865 1 15/07/2007 31/08/2015 15/07/2007 31/12/9999 1 Checking_acc

ount

10/05/2011 31/12/9999

2 01/09/2015 31/12/9999 2 Saving_accou

nt

01/2014 27/02/2014

Table 5. Account Table with historical data

3.3.3 Composition:

 It is a special kind of aggregation in which the part components are physically included in the

whole. A composition relationship is an association that specifies a whole-part type relationship, but this

relation is stronger than the aggregation, due to the part life depends on the whole existence. The part must

belong to a unique whole, and it can be explicitly removed before removing its associated whole. So in

ACC_NO Account_Type VT_Start VT_END

1 Checking_account 10/05/2011 31/12/9999

2 Saving_account 18/01/2014 27/02/2014

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 54

TORDB, we need to exclusively define the part component inside the whole. For this reason, we use the

nested table collection. A nested table is a table can be stored within another table.

Definition 4: For two classes namely C1 and C2 contain valid time Period. If C1 (UDT1) composed by

C2 in a composition aggregation, implement C2 as a collection of multiple attribute from C2 with Valid

Time Period in table C1. Transformation result is:

UDT1 = [UDT1 .Name, Attributes, vt-start, vt-end, NT (Atributes, vt-start, vt-end)]

Example: Class Account is the composition of class Balance (see Figure 9). The composition type will

be mapped as a collection of multiple columns from balance history, can be placed into a single column

in project table.

Table6. Account Table with balance History

3.3.4 Inheritance:

 In Practice, the inheritance is very important and easy type of relationship. For the creation of types

that represent the inheritance, we add under for the sub class, the keyword not final if the type has

subtypes, and final if the type has no subtypes. Furthermore, Additional properties of subtype are defined

in the usual way with time varying features. For example, transfer class with additional attribute named

target_source inherits class Transaction with temporal attributes. The details are illustrated in the

following tables:

 Table7. The Transaction temporal table

Acc_No Account_Type

VT_Start VT_END

Balance

Value Vt-Start Vt-End

1 Checking_account 10/05/2011 30/10/2013 100000 10/05/2011 10/06/2012

156000 11/06/2012 10/12/2012

2

Saving_account 01/11/2013 30/11/2016 50000 01/11/2013 30/10/2014

1200 30/10/2014 30/11/2016

Checking_account 01/12/2016 31/12/9999 4568 01/12/2016 31/12/9999

Transaction_ID Amount VT_Start VT_END

1 3000 15/05/2006 15/05/2006

2 4000 30/10/2013 01/04/2014

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

55

Table8. Transaction table with Target Source data

3.4 Temporal ORDB QueryIncluding Varying Time:

 This section describes the schema definition of the bank management system example Figure 9,

using the commercial database oracle 12C. With the studies presented in the previous sections, it can be

able to produce temporal queries for relationships. The temporal queries formed as shown in Figure 10:

TORDB Query

Create type t_Adress_Customer as object (

street varchar(20),

City varchar(20),

State varchar(20),

Codepostale varchar(20),)/

Create Type NT_AdressCustomer as object (

Adress_Ref REF t_Adress_Customer

Vt_Start Date,

Vt_End Date)/

Create type Adress_cus_h is table of NT_AdressCustomer;

Create type t_Loan as object (

Loan_NO varchar(20),,

Amount Number,

Type varchar(20),

Vt_Start Date,

Vt_End Date)/

Create table Loan of t_LoanCONSTRAINT

Loan_NOPRIMARY KEY(Loan_NO);

Create type NT_Loan as object (

Loan REF t_Loan,

Vt_Start Date,

Vt_End Date)/

Create type Loan_H is table of NT_Loan;

Create type t_Customer as object (

ID_custNumber,

Transaction_ID Amount VT_Start VT_END Target_Source

1 3000 15/05/2006 15/05/2006 Hajar

2 4000 30/10/2013 01/04/2014 Ahmad

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

56

Name varchar(20),

Phone varchar(20),

Adress_History Adress_cus_h ,

Loan_History Loan_H,

Vt_Start Date,

Vt_End Date)/

Create table Customer of t_CustomerCONSTRAINT

ID_custPRIMARY KEY(ID_cust), NESTED TABLE

Adress_History STORE AS Adress_tab, NESTED TABLE

Loan_History STOREAS Loan_tab;

Create type NT_cust as object (

Customer REF t_Customer,

Vt_Start Date,

Vt_End Date)/

Create type Customer_H is table of NT_cust;

Create type NT_balance as object (

Value Number,

Vt_Start Date,

Vt_End Date)/

Create type balance is table of NT_balance;

Create type t_Account as object (

Acc_NO Number,

Acc_Type varchar(20),

Balance_H balance ,

Customer_History Customer_H,

Vt_Start Date,

Vt_End Date)/

Create table Account of t_Account CONSTRAINT Acc_NO

PRIMARY KEY(Acc_NO), NESTED TABLE Balance_H

STORE AS balance_tab, NESTED TABLE

Customer_History STORE AS Customer_tab

Create type T_Checking_Account UNDER t_Account

(Overdraft_limit Number) Final;

Create type t_Adress_Branch as object (

streetvarchar(20),

City varchar(20),

State varchar(20),

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

57

Codepostale varchar(20))/

Create Type NT_AdressBank as object (

Adress REF t_Adress_Branch ,

Vt_Start Date,

Vt_End Date)/

Create type Adress_h is table of NT_AdressBank;

Create type NT_Account as object (

Account t_Account)/

Create type Account_h is table of NT_Account ;

Create type t_bank as object(

ID_Branch Varchar(20) ,

Phone Number,

Account_history Account_h,

Customer_History Customer_H,

Adress_history Adress_h

Vt_Start Date,

Vt_End Date)/

Create table Bank_Branch of t_bank CONSTRAINT

ID_Branch PRIMARY KEY(ID_Branch), NESTED TABLE

Account_history STORE AS account_tab, NESTED

TABLE Customer_History STORE AS Customer_tab,

NESTED TABLE Adress_history STORE AS Adress_h;

Create type T_trasaction as object(

Transaction_ID Varchar(20) ,

Type Varchar(20),

Amount Number,

Vt_Start Date,

Vt_End Date) Not Final/

Create type T_transfer UNDER T_trasaction(

target_source varchar(30)) Final;

Create table T_transfer of T_trasaction CONSTRAINT

Transaction_ID Primary Key (Transaction_ID);

Figure10. Result of the migration into Temporal ORDB

IV. MODELLING AND MAPPING METHOD FROM UML/OCL INTO BITEMPORAL DATA

 Several tools can be used to enhance the conceptual layer, andallow modeling the restrictions

dependent on the temporal features in order to support the creation of code, reverse engineering, etc.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 58

However, it is a well-known fact that the least used of all UML languages is OCL.Here, we describe how

we can transform UML into UML/OCL as a new meta-model that offers a promising way for creating and

analyzing the temporal system. This is done by adding some OCL constraint to our UML class diagram

for providing some correctness properties to our conceptual model. In the next, required OCL constraints

are defined to specify the restrictions and the business rules on the temporal attribute that cannot be

expressed in UML model. In the last, we will show the translation of OCL expression into their equivalent

in the TORDB. We will use Bitemporal data which combine valid time and transaction Time to capture

the objects activity and the part of the reality to be modeled.

4.1 Employing UML/OCL for designing Temporal Database

 As we see in the previous section, UML Model represents an explanation of the system as the whole,

and show how the different entities are related to each other. UML permits the description of functional,

static and dynamic models and the series of changes of the system over time.Now, it is necessary to

develop a new model based on diagram class according to bitemporal dimension aspect and formed with

restricted OCL constraints, in order to describe temporal database operation modeling, and to promote the

visualization of the navigational path. It is able to define all the possible traces of an interaction between

objects. This model is enriched by the use of additional constraints specified in the object constraints

language. This model allows us to develop UML/OCL model adding bitemporal data which give the

possibility to understand the structured of the temporal database and construct the schema translation that

facilitates the converting process into a temporal object-relational database.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

59

Figure11. UML/OCL conceptual Design for banking Management

4.2 The migration from Class_schema into TORDB Model

 In this section, we outline the essential phases for translation method from class diagram into TORDB.

In the fist, we define the class schema, corresponding in TORD model. The model extraction phase

transforms class schema and their relationships to an equivalent set of structured type with bitemporal

data.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 60

4.2.1 Identification of Class_Schema

 Figure 12 shows meta-Model of banking system; this model contains all concepts and information

needed to achieve the goal of this work.

 While class diagram has several techniques and elements for modeling temporal database system, we

have selected the most commonly used in the database which can specify the relevant entities, their

properties, and their relationships. The definitions of the elements of the UML class diagrams with the

purpose of converting it into a temporal object relational model (TORDB_Model) are characterized by

the following expression:

 A class can be defined as:

C_Schema = {C|C=(Cn , A, S_class, REL, O , Bit_P,PK)}where

 Cn= Name of class

 A= denotes a set of class attributes

A= {An, T} each attribute has a name An, and T is the type of attribute.

 REL = A Relationship where a class C is participating, where each Class C has a set of

relationships with other class

 REL={REL | REL= (RelType,DirC,mp)} where

RelType represents a type of relationship which supports four types: association, aggregation,

composition and inheritance.

DirC is the name of class C’ interacts with Class C.

 Mp means a multiplicity to identify if the attributes can be simple or multivalued.

 O: defines a set of operations

 S_class= denotes name of super class in case of inheritance relationship

 Bit_P: Bitemporal element

Each temporal class specifies bitemporal dimension by adding Bit_P which can have the following

values:

Bit_P={(vt-start,vt-end,TT_start,TT_end)}.

 Association: Associations are links between two or more classes. It’s particularly useful in order to

specify navigability paths among objects.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 61

A class with RelType= “Associat with” is defined as follow:

C_A= { C|C=(Cn, AT, “Associat with”, C’n , mp, Bit_P ,O, Pk)}

Where:

Cn is the name assigned to the class; AT is a finite set of class’s attributes, C’n is the name of class C’

interacts with class C, O is a finite set of operations, mp means the multiplicity of the class C, Bit_P is the

Bitemporal Period and PK is the primary key of Class C .

 Aggregation: An aggregation relationship is a binary association that specifies a whole-part type

relationship [Fundamentals for the automation of] where the part is shareable and independent from the

whole class. Therefore, the class with aggregation relationship can be defined by the following

expression:

C_AG= { C|C=(Wn, AT ,“aggregation”, Pn, mp, Bit_P ,O, Pk)}

Where:

Wn is the name of the whole class composed of 0..n objects of the part class P, AT is a finite set of attribute

of the whole class, Pn is the name of part whose objects compose the class whole.

 Composition: It is a special kind of aggregation in which the part element is physically included

in the whole. A composition relationship is a not-shared association that identifies a whole-part type

relationship, but this relation is stronger than the aggregation, due to the part life depends on the whole

existence. The composition can be defined as follow:

C_C= { C|C=(Wn, AT,“iscompposite”, Pn, mp, Bit_P ,O,PK)}

 Inheritance: The inheritance is very important and easy type of relationship between more general

classes of a hierarchy denoted super class and the lower class in the hierarchy called sub-classes. The

inheritance relationship is formally expressed as:

C_I= { C|C=(SCN, AT,“ihnerit”, SPC, Bit_P ,O,PK)}

Where: SPC means the super class name, and SCN is the name of subclass.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 62

4.2.2 Definition of TORDB Model

 Now, we will explain the different elements composed of a TORDB Model, which provides

an efficient description of the temporal object-relational database. The TORDB model obtained is

defined as a set of temporal typed table based on structured type ST and temporal structured type TST

for storing data. Each TST is composed of a set of simple attributes and varying time attributes. The

varying time attribute can be a bitemporal attribute, which actually stored in a nested table as a collection

type.

The Definition of TORDB model is denoted as three-tuples:

TORDBModel={TT|TT=(TTs,STs,Tm)}

Where:

TT s is set of temporal and non temporal typed table, STs is a set of temporal structured type or simple

structured type , and Tm is a time-varying Period. The sets TTs, STs and Tm are defined as follows:

STs ={Sn , S, AT},where Sn is the name of a structured type , S is the super type of ST, and AT is

a set of structured type’s attributes: AT={A|A:={N,T,D,NL,BitT,M}},where

N: is the name of attribute, T: means data type which can be primitive, UDT or reference. NL: if the

attribute accepts Null or not. D: default value. M: denotes if the AT is a single valued or collection

valued. BitT: denotes if the attribute contains a bitemporal attribute is defined:

BitT={(AT1,AT2,….,VTL,VTU,TTL,TTU)}.

TTs={typedtable|Ttable={TTn,STn,PK,Tp}}

Where: TTn is the name of typed table, STn is the name of the structured type based upon which TT is

defined, PK : primary key, TP: means if the TT is temporal or not.

 Association: For each relationship Rel where RelType= “associate with” is translated into:

TT_Association = {TT|TT=(TTn, STn, AT ⋃ NT (Ref (ST’)) ,PK, Bit_P)}

In the relationship with an association class, we propose a method for maintaining the reference type of

the structured type ST’ referencing to the class which is related as a Nested Table collection with

Bitemporal data dimension.

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

63

 Aggregation: each relationship Rel where RelType= “Aggregation” is mapped as a collection of

UDT (User Defined Type) representing the C’ class that participates in a relationship with class C.

TT_Aggregation= { TT|TT=(TTn, STn, AT ⋃ NT(UDT(ST’)),PK, Bit_P)}

 Composition: each relationship rel where RelType = “composition” is translated into an attribute

typed as a nested table stores the attributes of the ST’ corresponding to a class part C’.

TT_Composition = { TT|TT=(TTn, STn, AT ⋃ NT(ST’) ,PK, Bit_P) }

 Inheritance: each relationship rel where RelType = “inheritance”, the class C’ inherits all the

properties of its super class which is corresponding to ST’. For the creation of structured type that

represents the inheritance relationship, we use the keyword UNDER during the creation of ST that

corresponds to sub class C.

TT_ihneritance= {TT|TT= (STn, ST.AT⋃ Super_T.AT, PK, Bit_P)}

4.3 Algorithm of conversion from Class_schema into TORDB Model

 After classifying and extracting the basic information about the different classes, relationships and

attributes, we propose an algorithm produces TORDB Model to automate the conversion process from

C_Schema into TORDB Model.

 Class and attributes Extraction and transformation

Algorith to produce TORDB Model

Input : C_schema

Output: TORDB Model

Begin

ST,ST_C’:STs:=Ø

TT:TTs:=Ø

TP:Tm:=Ø

M,TP,RelType:string:=‘ ’

Foreach class C ϵ C_schema do

If C.BitP != Null then

ST.AT.BitT=C.BitP

TP= ‘Yes’

EndIf

ST=C.Cn+‘_T’

TT.TTn=C.Cn

TT.PK = C.PK

http://tt.pk/
http://c.pk/

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

64

Figure 12. Algrithm to extract the important component of the banking system

 We begin the transformation process by taking the conceptual schema (CS) as input, the CS presented

in our work represents an UML class diagram, which contains a set of classes and attributes connected by

relationship and enriched by temporal data features.

 The first step takes every class in the conceptual schema, extracting its metadata information including

Bitemporal data, class name, attribute properties (Name, Type, Null or not, data Lengh) and the primary

key which express the data dependencies and play a very important role during the schema translation

process. After that, the algorithm generates their equivalent in TORDB model, and keeps the same name

listed in C-schema adding ‘_T’ to identify the table in temporal object relational database.

 Relationships Extraction and transformation

Algorith to produce TORDB Model

Foreach Relationship RlϵC.Rel do

C’:C.C_schema

C’=getRel(Rel.DirC)

If C.mp=((‘1,1..N’)||(‘1..N,1..N’)) then

ST.AT.M= ‘collection valued’

Else

ST.AT.M= ‘single valued’

EndIf

If Rl.RelType= ‘Associatewith’ then

ST.AT= ST.AT⋃{‘NT(’+defineRef(C’)+ ‘)’+Bit-P+

AddConstraint(D,N)}

EndIf

If Rl.RelType= ‘Aggregation’ then

ST.AT=ST.AT⋃{‘NT(UDT_C’)’+AddConstraint(D,N)+Bit_P}}

EndIf

If Rl.RelType= ‘Is composite’ then

ST.AT= ST.AT⋃{‘NT(‘+ST_C’.AT +’)’+ AddConstraint(D,N)}

EndIf

If Rel.RelType= ‘Ihnerit' then

ST= C.SCN +‘_T

Foreach Attribute A ϵ C. C_schema do

If A.An!=C.PK then

ST.AT.T=mapType_ORDB(A.T)

EndIf

End For

http://st.at/
http://st.at/
http://st.at/
http://st.at/
http://st.at/
http://st.at/
http://c.pk/

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

65

TT.TTn=C.SCN

ST.Super_T= C.SPC

ST.AT= ST.AT⋃{‘UNDER(‘+getAT(ST_C’.AT.N)+ ‘)’ +

AddConstraint(D,N)}

EndIf

EndFor

EndFor

Return(TT,ST,TP)

End Algorithm

Figure13. Algrithm of rules transformation

 An efficient C-schema construction overcomes the complication and difficulties that can be occur

during matching of keys in order to classify the relationships.

After finishing the first step of class and attribute extraction, we catch the part of the relationships; in our

algorithm we cover all type of relationships (aggregation, composition, inheritance specialization and

simple association). This step takes every relationship using the exported key, we concatenate the key

with its references, for the purpose to determinate the classes which the current class interacts with them.

Also, the cardinalities are defined to simplify the conversion process. In order to express as much

semantics possible and to give a complete conversion process, the proposed model has taken into

consideration the rules provided in our previous work, which formalize the necessary that can help us to

transform each relationship into their equivalent in temporal object relational database.

V. MAPPING BETWEEN OCL SPECIFICATIONS AND TORDB:

 In a high level of abstraction UML plays a key role in software and data modeling. Despite of the

maturity and evolution of UML, it’s not enough to present all characteristic of data specially the data

behavior, that’s why OCL (Object Constraint Language) is used. OCL is a natural comprehensive

language and is a part of the UML standard and can be used with any Object Management Group (OMG)

meta-model.

 Using OCL to describe constraints and restrictions give us the possibility to enforce and enrich our

UML class diagram and allow us to use one data model for many ORDBMS vendors. When using SQL

directly with UML, here we merge the conceptual schema with the physical schema and we lose the power

of making generic conceptual schema which represents different physical schema of different vendors

(Oracle RDMS, Microsoft SQL Server).

http://st.at/
http://st.at/

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

66

 This section presents some OCL expressions that must hold for the system being well modeled and

its transformation into logical modeling expressed by temporal object Relational techniques. Furthermore,

we will describe some restrictions with the matching OCL clause. The determinate restriction will be

expressed by the different kind of constraint (triggers, integrity constraint, constructors….) in order to

control access and storage of varying time data into temporal tables.

5.1 OCL specifications

 OCL is a high level language for specifying contractual restrictions of object-oriented systems.It

is a declarative textual language that expresses and describes the complex constraints on object-oriented

models. It is associated with the UML standard for object oriented analysis and design operation in such

common problem of complex systems. However, OCL offers the chance to explicit comparison of object

attributes and automatic deal with business rules when building UML model for the object-oriented

application. The most important advantages of OCL are navigation and attribute access which related to

OCL expression with the values in a concrete model. More formally, OCL constraints can restrict the

static aspect of UML standard through the different type of specifications.OCL expressions are connected

to a context class. The proposed constraints are shown in the UML/OCL design with the proper syntax

and are connected with the contextual element in order to express the restriction of varying time attribute

and the requirement to maintain the system behavior. We extended our example UML model presented in

Figure 11 by simple and complex constraints which are defining as follows:

 Enumeration For Bitemporal_Period

 Enumeration defined in UML Model has to be represented within OCL Constraints. Each enumeration

is defined as a special data type and accordingly has a type name and the value name. We use the

enumeration constraint to limit the content of an object to a set of acceptable attributes. The specification

below defines an element called bitemporal_Period where the only allowed attributes are valid time start,

valid time end, and transaction time start and transaction time end.

The following OCL expression defines a bitemporal data objects which are used to specify time-variant

attributes:

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 67

contextBitemporal_Periodinv:

self. bitemporal_Period = bitemporal_Period::VT_startOr self.

bitemporal_Period = bitemporal_Period::VT_endor self.

bitemporal_Period = bitemporal_Period::TT_start or self.

bitemporal_Period = bitemporal_Period::TT_end

 Valid_Time_Start NOT NULL

 The Figure 11 above, shows the banking system relation in the temporal Object-relational approach.

Every Class has bitemporal dimension which contains Vt_Start and Vt_End attributes representing a valid

period of a class. For convenience, we assume no null values in the valid time dimension. The NOT NULL

constraint enforces a row to always store a value. The added restriction means that the insert or update

operation of data not authorized without adding values in the vt_Start attribute of the bitemporal data

object. To present this constraint with OCL, we create an invariant that uses the method ocllsUndefined()

which return true if the value is NULL.

Consider the Vt_Start attribute of Adress_Customer Class as an example which must be Not Null.The

respective OCL expression is given bellow:

Context Adress_Customerinv:

 NOT self.bit_period.vt_start.ocllsUndefined ()

 Default value for Transaction Time

 For any given temporal attribute, its transaction time may arbitrarily differ from its valid time where

that transaction time is the time to indicate that the information is active in the system. The storage into a

transaction time dimension automatically sets the value of system_start which a special value is associated

with every insertion and sets the value of insertion of transaction time to the highest value (“31/12/9999”).

In contrast to valid time, users are not allowed to assign or update the values of transaction period bounds.

More precisely, the transaction time start store the default sysdate value during the insertion of new data.

Definition of OCL expression for Transaction Start(TT_Start) wich take the Sysdate as Default value .

Context Bit_period::TT_Start: dateTime

 init :date.now()

Transaction End (TT_End) with default value “ 30/12/9999” identified by the following expression:

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 68

Context Bit_period::TT_End :dateTime

 init : '30/12/9999'

 OCL expression on Valid time interval

 A main requirement of such system that are interesting to make data historisy the data is that the user

can be able to assign any time value, either in the past present or in the future for the start and end time.

Therefore, another requirement of valid time a specification combines start time attribute and end time

attribute to form a period. A period is used to refer to the interval of time, with upper and low values.

When inserting the period, the user has to specify the valid time values indicating that the valid time start

must be not null. Hence, the valid time end hold upper bound which is greater than valid time start value.

 The following OCL expression defines the content restriction of valid time bounds

(VT_Start<= VT_End).

Context Customer inv:

 NOT self.bit_period. VT_Start.ocllsUndefined()

 AND

 (self.bit_period.VT_Start =<self.bit_period.Vt_End

 OR

 self.bit_period.Vt_End.ocllsUndefined())

 OCL expression with ImpliesOperator

 Consider the class account in Figure 11. It shows the comparison relationship between the account and

balance class, where the time-varying information of account and the balance that make records of

historical Amount is captured and changed in each transaction. In these two classes, each time period

represents a closed_open interval. The valid time start is included where the valid time is excluded. In this

example, we deal with the problem of insertion of new balance record before any transaction operation.

The pre amount (amount >= 2000) specifies the lower limit of the corresponding balance values. Each

value is assigned in the valid time period in balance class must obey some restrictions that can be specified

in OCL in the following way:

 The OCL constraint below Identify the valid time restrictions of Balance and account tables. The

valid time start of balance must be lower than the value of account, and the both don’t accept the NULL

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 69

value. On the other hand, the valid time end value of account and balance class obeys to the restriction

described in the previous example.

Context Balance inv:

 self.bit_period.valid_time_start>=self.account.bit_period.valid_time_start

 AND

 (self.bit_period.Vt_End<=self.account.Vt_End

 OR

self.bit_period.Vt_End.ocllsUndefined()

 Implies

 self.account.bit_period.Vt_End.ocllsUndefined())

5.2 Transformation of OCL Specification into TORDB

 The examples below present a set of SQL queries and procedures to demonstrate the transformation

process of the OCL specifications presented in the previous section into the object relational database with

bitemporal data. For a better understanding of how our method works, we present some examples in the

following way:

5.2.1 Creation of Bitemporal_Period Object

 The constructor is used to initialize an object. It plays a very important role to define complex

business rules to enforce the execution of complex constraint. In practice, there is a need to implement

the constructor in our proposed solution for the reason to define the constraints, which are specified in the

previous subsection to handle Bitemporal period. In this constructor, we identify the default values of the

transaction Time period (TT-start,TT-End) , and specify the NOT NULL requirement to enforce a row

to always store a value in the valid time dimension in order to avoid the NULL values . In addition, the

constraint is identified to control the value of vt_End which must be greater than VT-Start during the

insertion operation. Therefore, the constructor bitemporal_period is called every time the table is created,

and during the insertion of the new tuple to verify the validity of the valid and transaction time periods,

also to control the data access to temporal object-relational tables. This solution is the most universal and

fulfills the requirement above:

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

70

Bitemporal Constructor

CREATE OR REPLACE TYPE BODY bitemporal_period AS

CONSTRUCTOR FUNCTION bitemporal_period (vt_start DATE, vt_end DATE,

tt_end DATE)

RETURN SELF AS RESULT

 AS

 BEGIN

 IF vt_start IS NULL THEN
RAISE_APPLICATION_ERROR(-20343, 'The vt_start cannot be null');

 RETURN;

 END IF;

 IF vt_end IS NOT NULL THEN

 IF vt_start>vt_end THEN

RAISE_APPLICATION_ERROR(-20344, 'The vt_start cannot be greater than

vt_end');

 RETURN;

 END IF;

 END IF;
 SELF.vt_start := vt_start;

 SELF.vt_end := vt_end;

 SELF.tt_start := TO_DATE(sysdate,'DD/MM/YYYY HH24:MI:SS');

 RETURN;

 END;

END;

/

 Figure14. Bitemporal Type constructor

 The query below defines object type bitemporal_Period which is used to specify the time-variant

attribute. All temporal object-relational tables contain Bitemporal features are created with four additional

columns (The VT_start and VT_end columns define the lower and upper bound of the valid time data,

while TT_start and TT_end express the lower and upper bound of the transaction time data, respectively).

The Bitemporal_Period uses the previous constructor to define the system behavior.

Figure 15. Bitemporal Object called the Bitemporal Constructor

Bitemporal Object

CREATE OR REPLACE TYPE bitemporal_period AS OBJECT

(vt_start DATE,

vt_end DATE,

tt_start DATE,

tt_end DATE,

CONSTRUCTOR FUNCTION bitemporal_period(vt_start DATE, vt_end

DATE, tt_end DATE)

 RETURN SELF AS RESULT);

CREATE TYPE bit_period IS TABLE OF bitemporal_period;

 Chapter II : Conceptual Model Of Temporal Database Using UML/OCL

p. 71

We use Oracle’s concept of nested tables to create the temporal Object Relational tableswith bitemporal

column. The example shows the creation of the Customer, Loan, and account tables and of all necessary

auxiliary (object) types using the Bitemporal_period Object and including Bitemporal_period

Constructor.

TORDB Query with Bitemporal Data

Create or Replace type Customer_T as Object

(id_cust Number,

name_cusvarchar(20),

phone Number,

Loan_History Loan_H,
customer_hbit_period);

Create Table customer OF Customer_T NESTED TABLE customer_h

STORE AS customer_tab, NESTED TABLE Loan_History STORE AS

Loan_Tab

Create or Replace type Loan_T As Object(

Loan_NO Number,

Amount Number,

Type varchar(20),Loan_Hbit_period)

Create Table Loan_tableOF Loan_T NESTED TABLE Loan_H

STORE AS loan_tab ;

Figure16. Example oF Tables including Bitemporal Object and the constructor

5.2.2 Creation of trigger before inserts (transformation of Implies operator)

 The OCL specifications are applied in balance class will be transformed into Triggers, which would

be used to implement tracking the state of balance tables in object Relational database and make records

of the system behavior that can enable to manipulate data upon insertion of the new values. We create the

trigger to be automatically fired when some events occurred before the insertion in the balance table.

Therefore, it is necessary to define all possible triggers as OCL expression in object-relational database to

handle the varying time data, since triggers merge between SQL queries and procedural code implemented

in Oracle. The following example shows the transformation of the OCL expression presented in the

previous subsection:

CREATE OR REPLACE TRIGGER insertNewBalanceRecord

BEFORE INSERT

ON Balance_table

FOR EACH ROW

WHEN (new.amount>= 100)

DECLARE

Trigger before Insert

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

72

 account_balance NUMBER

BEGIN

Selectaccount_bl into account_balance from account_table

 where (id = :new.id);

 IF (:new.amount>account_Balance) THEN

RAISE_APPLICATION_ERROR(10266, 'Insufficient funds');

 END IF;

 Updateaccount_table

 set balance = account_bl - :new.amount;

END;

Figure17. Creation of trigger before insert into balance table

5.3 Exprimental study

 The conventional INSERT statement provides sufficient support for setting the initial values of valid

and transaction time period columns. The following Examples show an INSERT statement, which inserts

a tuple in the account table. This statement is here just to show how temporal rows are inserted where each

table can have as many tuples as needed to represent bitemporal attribute.

Also, we use the select statement to show how to retrieve all the information stored in account table in

order to validate our solution. We can express the query as (See the Examples Below):

Description TORDB statements

Insertion statement into account table

INSERT INTO account_table VALUES(1,'xxxx', (select REF(c) from
customer c where c.id_cust =1),

balance_T(Balance_Type(2345,bit_period(bitemporal_period(TO_DATE('

03/05/201708:30:25','DD/MM/YYYYHH24:MI:SS'),TO_DATE('03/01/2018
12:22:10','DD/MM/YYYYHH24:MI:SS'),null),

bitemporal_period(TO_DATE('04/06/201811:49:26','DD/MM/YYYYHH24:

MI:SS'),TO_DATE('03/07/2019 10:01:36', 'DD/MM/YYYY
HH24:MI:SS'),null))

Select balance value between two dates

‘03/10/2017’ and ‘03/05/2017’ of a

given customer:

SELECT c.id_cust,c.name_cus,c.phone, b.* FROM customer c,

table(c.customer_h) b

WHERE TO_DATE('03/05/2017 08:30:25','DD/MM/YYYY HH24:MI:SS')

>b.vt_start

and TO_DATE('03/05/2017 08:30:25','DD/MM/YYYY HH24:MI:SS') <b.vt_end;

Select created accounts between two date

‘ 03/05/2011’ and ‘03/05/2011’ of a

specific customer

SELECT ac.acc_no, ac.acc_type, b.value_b, bh.*FROM account_table ac,

table(ac.balance) b, table(b.balance_h) bhWHERE TO_DATE('03/10/2017

08:30:25','DD/MM/YYYY HH24:MI:SS') >bh.vt_start

and TO_DATE('03/05/2017 08:30:25','DD/MM/YYYY HH24:MI:SS') <bh.vt_end
and ac.customer = (select REF(c) from customer c where c.id_cust =1);

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

73

Table 9. Example of Queries with bitemporal data

VI. IMPLEMENTATION:

 We introduce the prototype that has been implemented to demonstrate our proposed approach. This application

manages the migration between UML and temporal object relational database. The solution consists on 2 main

steps:

 Upload the file which contains the Class schema with the definition of diffrents entities and properties, and

the specification of the relationships.

 The “Transform” button allows converting the File into their equivalent by extracting the necessary

component and replace the relationship names generated automatically for TORDB with meaningful names.

This prototype is based on the schema translation algorithm and the proposed rules that are provided

previously.

The following Figure illustrates the process of the mapping:

Figure18. Graphic Design of the implementation

Select valid created account of a

customer between two date ‘03/05/2011’

and ‘03/05/2011’

SELECT ac.acc_no, ac.acc_type, ah.* FROM account_table ac,

table(ac.account_h) ah

WHERE TO_DATE('03/05/2011 08:30:25','DD/MM/YYYY HH24:MI:SS')

>ah.vt_start

and TO_DATE('03/05/2011 08:30:25','DD/MM/YYYY HH24:MI:SS') <ah.vt_end

and ac.customer = (select REF(c) from customer c where c.id_cust =1);

 CHAPTER II : CONCEPTUAL MODEL OF TEMPORAL DATABASE USING UML/OCL

p. 74

VII. CONCLUSION

 In this chapter, we described an approach for providing a conpetual design for varying time data

based on UML. The solution is considered as a complete study that shows how we can maintain the

collection semantics stated in the conceptual level into the implementation using temporal object

relational database. We use the class diagram, their relationships, and properties as input enriched with

semantic data to provide class_schema, which will be transformed to TORDB model which characterize

the temporal and non-temporal tables. After that we formalized the necessary rules and steps for the

migration into temporal object relational database starting with UML class diagram enriched by OCL,

to express restrictions that must be applying on data during the storage of data. The study is based on a

set of methods and rules depend on the UML class specifications. These new methods can gain benefit

for specific cases such as tables with varying time aspects and temporal queries, etc. Our subsequent

chapter, we will present the migration process from the temporal relational database into temporal Object

relational database based on the obtained conceptual model and their rules to help on the schema

conversion methods.

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 75

CHAPTER III:

MAPPING METHOD FROM TRDB INTO TORDB

I. INTRODUCTION

 The relational database model has emerged a long way and it has become the dominant model of

database that is based on traditional management systems. Today, in the majority of the management

database systems, the time of event presents one of the important rows in its application. However, a need

to shift time manipulation from application to RDB is implemented in SQL: 2011 standard, which adds

period definition as metadata to tables on the relational database. A period is defined as table component,

identifying a pair of columns in order to capture start and the period end time. The temporal relational

database with SQL: 2011 features have been accepted as a solution for kept data changes over time with

insertion of new records or update old records. Although the temporal relational database is designed to

serve many applications which need only store the recent state of data, many problems have been emerged.

They are insufficient for those who need to retrieve past as well as current and future data.The weakness

of such Temporal RDBMSs in supporting complex data structures, user-defined data types and data

persistence required by temporal object relational database. The weakness of such Temporal RDBMSs in

supporting complex data structures, Object types and data persistence required by the temporal object-

relational database. Furthermore, the reconstruction of temporal complexes objects split across relational

tables is costly because of its causes many joins. Several Companies developing the largest database

systems have updated their relational database systems by including object-relational technology. It allows

developing databases for very complicated objects and ensuring efficient retrieval of data by the use of

extended SQL language [71]. ORDBs with time-varying features have addressed these problems, which

have a relational base and append object concept, to enhance ORDB performance and give the correct

description of data, we associate time at rows. Temporal ORDB overcomes the disadvantage of data

redundancy introduced when using temporal RDB to store the information.

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 76

The aim goal of this chapter is to provide a method for migrating RDB based on SQL: 2011 standard into

Temporal ORDB integrating time-varying data. The migration is prominent in several different areas of

temporal data management, including database design, information integration, and the use of temporal

dimension. The solution comprises four basic steps. In the first, the method takes the temporal relational

database as input and stores it in a temporal structured table that contains several parameters, attributes,

class, relationships, cardinalities, integrity constraint and Bitemporal period, in order to enrich and realize

the schema translation , also we will create TRDB queries using Period Clause to express valid time

dimension. The schema translation so obtained is converted into a temporal ORDB model (TORDB),

which handles complexes object and data semantic that can be expressed in its metadata in the second

step. The third step deals with the transformation of the ORDB design based on TORDB Model, which

holds the necessary for the correct description of Object associated with time, to TORDB tables. In

addition, we will present algorithms which have been produced to automate the conversion process and

the ability to manipulate temporal tables which are associated with one or more temporal period

dimension.

II. AN OVERVIEW Of TEMPORAL RELATIONAL DATABASES:

2.1 Comparison between TRDB and TORDB

Several Scientifics, e-commerce and e-business systems have a temporal elements related with them

integrating applications that involve time series analysis. Therefore, all companies needs to track the changes of

data values at any point of the time. The time designed within the standard relational model cannot be done in

straightforward manner. Due to the importance of storing and handling temporal data, there is a need for novel

consistent extension of the standard relational model to manipulate such data In practice, the implementation of

temporal database management systems (DBMS) using the varying time attribute approach is rarely

available. On the other hand, implementing temporal features in Relational database systems requires

development of additional varying time features to track changes dependent on the time for each record.

For this reason, a recent specification of a temporal extension of SQL, termed SQL: 2011 has been emerged to

support temporal relational database.The temporal tables are defined in SQL: 2011 standard and they are

related to valid time. Even Oracle 12C, which now offers to RDB users new clause called PERIOD that

support valid time dimension and it can be used daring the creation of the table to specify the opened-

closed interval period. These kinds of tables are created with PERIOD statement with two predefined

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 77

attributes, one to store the initial time of period, and the other to store the end time of period. The relational

table includes PERIOD clause, whereby the user specifies the name of the period and the values to be

stored. On the other hand, to define the transaction Time in temporal Table, two additional columns

where start time is set by system and the end time records '9999/12/31' as a default Value. The users are

not allowed to supply values for these columns. The drawbacks of such TRDBMSs in supporting complex

data structures, and temporal data persistence required by many application that are based on the storage

time such as e-commerce and e-health systems , have led to the development of temporal object-based

database systems.A temporal OR database TDB is an OR database DB that supports some aspect of time.

The temporal relational model (TORD) has been applied in a number of areas and accepted as a one the

efficient solution for storing and retrieving temporal data due to their maturity. The users can provide

additional type of data by defining both the structure of the data and the ways of operating DB. The

temporal ORDB offers the possibility to specify what the users want rather than how to achieve what they

want. Using the proposed language for temporal data management allows manipulating temporal complex

data of any data type and issuing temporal queries based on OR technology with ease and intuition. In

terms of tables, a temporal Object Relational database is based on a collection of 1NF, non- 1NF, and

typed tables. At least one of obtained tables has some temporal aspect which is called temporal table. If a

temporal table is a typed table defined on a structured type and includes temporal Object, such a structured

type is called a temporal structured type.the temporal object is declared as user defined type to present the

varying time features in Object relational database. This Object contains four attributes, two attribute to

store the valid time interval and the others to specify the transaction time dimension in order to express

bitemporal data concept.

 In the following subsection, we concentrate on comparing TRDB features with Temporal Object

relational database concepts. The table below presents the main techniques of TORDB methodology and

TRDB:

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 78

TRDB TORDB

Varying period

User defined Time Object Transaction Time

Bitemporal data

Primary Key Primary Key

Foreign Key

REF

UDT(User Defined Type)

Collection(Nested table \varray)

Under

Table10. Comparison between TRDB and TORDB

2.2 Strategy of the Migration from TRDB into TORDB:

 The main question that needs to be answered is how to transform Temporal Relational Database

technology into Temporal Object-Relational Database technology. Development of a method for the

migration is the aim of this chapter. There are several steps is based on semantic enrichment technique

required to achieve the goal. Semantic Enrichment is a process of analyzing databases to understand their

structure, and to make hidden semantics explicit [49]. To enrich the semantic of temporal RDB schema,

we have to extract its data semantic and converted into a much enhanced TRDB schema. Our process

starts by extracting the basic information about an existing temporal RDB schema, integrating

relations names, Periods time, and Attributes properties. We assume that data dependencies are

represented by primary keys and foreign keys. The next step is to identify the TORDB Model constructs

based on classification of data, the relationships, structured type and valid time period, which may be

performed through data access. In the last step, the TRDB schema so obtained is converted into their

corresponding in TORDB Model and the prototype algorithm is developed to validate the solution.

Figure19. Process of the Migration from TRDB into TORDB

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 79

III. MAPPING PROCESS OF TRDB INTO TORDB:

 We present through this section the steps required to perform the migration of the temporal relational

structure into temporal object relational structure, by identifying the schema conversion starting by more

general dimension valid time. Also, we will describe the transformation model based on Bitemporal data

to provide more details of temporal table .To do that, we give a formal definition of the schema conversion

of TRDB and TORDB. The proposed schema is a source of valuable semantics producing an enriched and

well structured data model, which can be translated flexibly into the target database. Besides considering

the characteristics of the temporal Object relational model, the TRDB schema preserves all data semantics

and varying time concepts that could be extracted from a RDB based on temporal features and the integrity

constraints imposed on it. The obtained TRDB data Model plays an important role to simplify the

migration of the data and the reallocation of attribute values to the appropriate values in temporal Object

relational tables. In addition, we cover the technical level of temporal data, by implementing the data

definition, Data manipulation and data retrieval statements. Each part of the translation process is

described with examples.

3.1 Semantic Enrichment of Temporal Relational Database Using Valid time:

3.1.1 Definition of the New Valid Time Data Model

 The NVTM is a representation of Relational Database contains valid time dimension, which is

enriched with semantic data in order to provide a new kind of tables representing the classes extracted

from temporal RDB, with the data necessary for the creation of temporal Object Relational Database.

 This phase provides a data reference model that is designed to allow the exchange the temporal

schema and the sharing of information to reuse.

 The NVTM is defined in our approach as a set of element:

 NVTM :={ C|C :={ Cn, ANVTM, RelNVTM, Clas, PK-NVTM, FK-NVTM}}

Where:

 Each class has a name Cn

 ANVTM = means a set of Attributes of class C

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 80

ANVTM ={a|a:=(NA,TA,L,NL,D)} , where NA : attribute name , T : attribute type, L: data length, NL: if the

attribute accepts the parameter null (N/ NoN), D: Default value.

 RelNVTM: Relations NVTM

each class C has a set of relationships with other classes ,where rel is defined in C with another class

C’ RelNVTM={rel| rel:= RelType,DirC,Crd } , where each class C has a relationship RelType with

other classes, DirC is the name of C’ that interacts with C,Crd means cardinalities describing the

relationship.

RType offers five types of relationships:

– “Ass” : Association

– “Agg” : Aggregation

– “comp” :Composition

– “inher” and “inherBy”: Inheritance

 Clas: classification

Classification divides classes into two different kinds of categories:

– Temporal class (TCls): class contains a varying time period.

– Simple class (SCls): class without temporal data.

 PK-NVTM: each class C has a primary key PK.

PK= {P|P:=PKn, NB}, where PKn is the primary key name, and NB is a number of Pk in case of a

composite key.

 FK-NVTM: denotes foreign key of Class C, FK= {F|F:=FKn, NB} where: FKn is the Foreign key name,

and NB is a number of Fk.

3.1.2 Generation of the NVTM from TRDB:

The NVTM presents the first step of the migration process from TRDB into TORDB. Consider the

TRDB Example shown below. That example presents an RDB includes valid time features. In Table 11,

we will generate the NVTM of the TRDB:

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

81

Figure20. Sample Input representing TRDB tables

EmpNo Name Birthday VT-Start VT-End dept D-Start D-End

1 Hajar 10/04/1986 15/02/2007 31/12/9999 1 15/07/1998 31/12/9999

2 Amine 24/08/1976 03/05/2004 31/11/2011 2 03/05/2004 31/12/9999

3 Ahmed 24/08/1980 03/05/2008 31/12/2013 4 21/12/2010 31/12/9999

4 Ilyas 30/01/1979 20/12/2005 31/12/2010 2 03/05/2004 31/12/9999

3 Ahmed 24/08/1980 10/12/2013 29/11/2016 3 20/12/2005 29/11/2016

5 Imane 31/05/1975 03/05/2006 31/12/2007 3 20/12/2005 29/11/2016

Empno NumProj

1 2

5 1

3 17

NoK Kname sexe Numemp

10 sarah W 17

15 Mehdi M 1

Empno Grade salary Vt-Start Vt-End

1 engineer 7000 15/02/2007 31/12/9999

1 Manager 8000 15/02/2015 31/12/9999

3 commercial 5000 03/05/2008 31/12/2013

DeptNo deptname VT-Start VT-End

1

Computer 15/07/1998 31/12/9999

2 Accounting 03/05/2004 31/12/9999

3 After-sales 20/12/2005 29/11/2016

4 Marketing 21/12/2010 31/12/9999

NumProj Nameproj Details VT_Start VT_END

1 Payment

Management

Creation of payment

management application web

15/05/2006 01/01/2007

2 HR Management

Integration of a module in an

erp source

30/10/2013 01/04/2014

Cn Clas ANVTM RelNVTM PKNVTM FKNVTM

NA TA L NL D RelTyp

e

DirC Crd PKn

NB FKn

NB

employee TCLS EmpNo

Name

Birthday

Vt_start

Vt_end

dept

D-Start

D-End

Numb

er

Varch

ar

Date

Date

Date

Numb

er

Date

date

25

NoN

NoN

NoN

NoN

NoN

NoN

NoN

NoN

 Ass

Ass

IhnerBy

Agg

Department

Works-on

Salaried-

emp

Kids

1..N

1..N

1..1

1..N

 EmpNo

Vt_start

Vt_end

1

2

3

dept

D-Start

D-End

1

2

3

department TCLS Deptno

Deptname

Vt-Start

Vt-End

Numb

er

Varch

ar

Date

25

NoN

NoN

NoN

NoN

 Ass

employee 1..1 Deptno

Vt-Start

Vt-End

1

2

3

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

82

Table 11.Result of the generation of NVTM

3.1.3 Translating NVTM into TORDB design schema

 After obtaining the NVTM, we focus on the use of UML notation for creating the TORDB design

scheme, which can facilitates the transition towards the object by a set of rules for transposition, and

promotes the description of the complex type and possible navigation paths. The model of navigation

introduces the logical links between object of the type ref or nested table in order to Decrease the

redundancy of the temporal data.

The main goal behind developing a TORDB design is to simplify the comprehension of essentials

information stored in temporal data. The TORDB modeling plays a pivot role between the conceptual

schemes and implementation object.

date

Kids SCLS NoK

Kname

Sexe

Numemp

Numb

er

Varch

ar

Varch

ar

Numb

er

25

10

NoN

NoN

N

NoN

 Agg

employee 1..1 NoK

1 Numem

p

1

Project TCLS Numproj

Nameproj

Details

Vt-start

Vt-End

Numb

er

Varch

ar

Varch

ar

Date

Date

30

255

NoN

NoN

N

N

N

 Ass

Works-on 1..N

Numproj

Vt-start

Vt-End

1

2

3

Works_on SCLS Empno

Numproj

Numb

er

Numb

er

 NoN

NoN

 Ass

Ass

Project

Employee

1..1

1..1

Empno

Numproj

1

2

Empno

Numpro

j

1

2

Salaried_emp TCLS Empno

Grade

Salary

Vt-Start

Vt-end

Numb

er

Varch

ar

Numb

er

Date

Date

25

NoN

NoN

NoN

NoN

NoN

 ihner employee 1..1 Empno

1 Empno

1

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

83

Figure21. Temporal ORDB design schema

3.1.4 Translation of the TRDB design schema to TORDB Query

 This section describes the schema definition of the previous prototype, using the commercial

database oracle 12C. Through the studies presented in the previous sections, it can be able to produce

temporal ORDB queries for relationships. The temporal and no temporal queries formed as shown in

Figure 22:

Figure22. TORDB Querie

Create type t_employee as object(

NoEmp NUMBER ,

Name VARCHAR(25),

Birthday DATE,

Vt_Start Date,

Vt_End Date,

Department dept_emp) Not Final /

Create table employee of t_employee (CONSTRAINT emp-PK

PRIMARY KEY(NoEmp, Vt_Start ,Vt_End)), NESTED TABLE

Department STORE AS dept_tab;

TORDB Queried with Valid Time

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 84

3.2 Temporal Relational Database Queries with Bitemporal Data:

 This subsection describes the schema definition of the previous example. It can be able to

implement TRDB queries with oracle 12c by using PERIOD FOR clause. The PERIOD clause is used

in the creation statement of the table to specify valid time intervals. There is also another form of time-

variant data, called Transaction Time. It represents the time period during which a data is stored in the

database. The insertion into a transaction time period automatically sets the value of transaction time

start which stores the default sysdate value during the insertion of new data and sets the value of

insertion of TT_end to the highest value (“31/12/9999”).

Figure23. Example of TRDB creation Queries

TRDB Queries with Bitemporal Data

Create table employe (Empno NUMBER PRIMARY KEY, Birthday date,

KidsNo Number,

Start_vt date, End_vt date,

TT_start date DEFAULT sysdate,

TT_end date DEFAULT to_date('9999-01-01','YYYY-MM-DD'),

PERIOD FOR priod_vt (Start_vt, End_vt));

Create table department(

DeptNo NUMBER primary key, deptname varchar(25),

Vt_start date, vt_end date,

TT_start date DEFAULT sysdate,

TT_end date DEFAULT to_date ('9999-01-01','YYYY-MM-DD'),

PERIOD FOR period_VT(vt_start , vt_end));

Create table Emp_Dept(

empNo NUMBER, DeptNo NUMBER ,

vt_start date,

vt_end date,

TT_start date DEFAULT sysdate,

TT_end date DEFAULT to_date ('9999-01-01','YYYY-MM-DD'), PERIOD

FOR period_VT(vt_start , vt_end));

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 85

3.3 Semantic enrichment of Temporal Relational Database:

3.3.1 Definition of the New Bitemporal Data Model

 The NBTM is a representation of Relational Database contains Bitemporal dimension, which is

enriched with semantic data this phase provides a data reference model designed to allow the exchange

the temporal schema and the sharing of information to reuse based on valide time and transaction time in

the same Time.

 The NBTM is defined as a set of element using the same properties shown in the previous section,

with a description of Bitemporal period:

NBTM = {C|C:={Cn,ANBTM,RelNBTM, Clas, PK-NBTM, FK-NBTM,BT_P}}

 Each temporal class specifies Bitemporal dimension by adding BT-P where:

 BT-P = {VT-start,VT-End,TT-start,TT-end}

3.3.2 Generation of the NBTM from TRDB:

 The NBTM presents the first step of the migration process from TRDB into TORDB. Consider the

TRDB Example shown in Figure 20 wich will be enhanced with Transaction Time Periods. The following

example presents an RDB includes Bitemporal features. The NBTM is considered as an important phase

for the conversion process which in the end generates the target schema.

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

86

Table 12. Result of NBTM generation

3.4 Semantic Enrichment of Temporal Object Relational database:

3.4.1 Definition and Identification of TORDB Model:

 As shown in the chapter II, The TORDB model is defined as a set of typed table based on structured type

ST and temporal structured type TST which include varying time features for storing data. Definition of

TORDB model is denoted as a set of element:

TORDBModel = {TTs, ST, TTm}

3.4.2 Translation of the TORDB design schema to a TORDB Queries:

 In the previous chapter, we defined the temporal object to make records of temporal dimension

periods by including a constructor which is used to initialize an object. We provided temporal ORDB

queries which are formed by the temporal and no temporal queries. We use Oracle’s concept of nested

table and reference to store the varying-time attributes and to express the relationships between the

different tables. The following Example shows the creation of the TORDB tables including bitemporal

object of all necessary auxiliary (object) types.

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

87

Table13. Example of Temporal Object Relational table with bitemporal Data

TORDB Query to create Employee Table using the construction and including Bitemporal period:

Creation Statement

Create Type Employee_T as Object

(NoEmp Number,

Name varchar(25),

Birthday Date,

Emplyee_H bit_period,

Department Emp_Dept ,

Project Works_on

) Not Final ;

Create table Employee of Employee_T (Primary Key (NoEmp)) NESTED

TABLE Emplyee_H STORE AS employee_tab, NESTED TABLE

Department STORE AS Department_Tab(NESTED TABLE EmpDept_H

Store as EmpDeptH_tab), NESTED TABLE Project STORE AS

project_Tab(Nested table WorksON_H store as WorksONH_tab ;

Figure24. Example of Creation statement for employee table

3.4.3 Algorithm for Translating NBTM to TORDB Model

 After classifying the different classes, relationships and attributes, we propose an algorithm produces

TORDB Model to automate the translation process of NBTM into TORDB Model as shown in Figure 25:

Noem

p

name Birt

hday

Employee_H Department Project

VT_st

art

Vt_en

d

TT_star

t

TT_en

d

De

pt

EmpDept_H Proj WorksOn_H

Vt_start Vt_En

d

TT_sta

rt

TT_end Vt_sta

rt

Vt_End TT_

start

TT_en

d

1 Hajar 10/

04/

19

86

15/0

2/20

07

31/

12/

99

99

15/07/20

09
31/12/

9999

1
15/07/19

98

31/12/9

999

15/07/2

009

31/12/9

999

2
15/07/2

013

15/11/20

15

17/0

7/20

13

31/12/

9999

1
22/04/2

012

09/12/20

14

30/0

2/20

13

31/12/

9999

2 Amin

e 24/

08/

19

76

03/0

5/20

04

31/

11/

20

11

03/05/

2004

31/12/

9999

2
31/12/20

14

31/05/2

013

07/12/2

009

31/12/9

999

1
18/08/2

012

18/08/20

12

23/0

4/20

12

31/12/

9999

3 Ahme

d
03/

05/

20

08

03/0

5/20

08

31/

12/

20

13

03/05/

2008
31/12/

9999

4
22/12/20

10

31/12/2

014

30/12/2

010

31/12/9

999

2
30/10/2

013

01/04/20

14

02/1

1/20

13

31/12/

9999

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

88

Algorithm Produces TORDBModel

Input: NBTM

Output: TORDBModel

Begin

ST: STs :=Ø

TT: TTs :=Ø

TP:Tm:= Ø

M,,Clas,TP,Crd:string:=‘’

Foreach class C ϵ NBTM do

 If C.clas=’TCLS’ then

ST.AT.BT_P= BT_Period

 TP= ‘ Temporal class’

EndIf

ST=C.Cn+‘_Type’

TT.TTn=C.Cn

TT.PK=A.PK_NBTM

Foreach Attribute A ϵ C.A.NBTM do

 If A.NA != A.PK_NBTM.PKn then

ST.AT.N=A.NA

ST.AT.NL=A.NL

ST.AT.T=mapingType(‘ORDBType’,A.T)

Endf

 End For

Foreach Relationship Rel ϵ C.RelNBTM do

 C’:C.NBTM

If C’. FK-NBTM != NULL then

 C’=getRel(Rel.DirC)

 If Rel.Crd=((‘1,1..N’)||(‘1..N,1..N’)) then

ST.AT.M= ‘collection valued’

 Else

ST.AT.M= ‘single valued’

 EndIf

 If Rel.RelType= ‘Ass’ then

ST.AT=ST.AT⋃{‘NT(’+defineRef(C’)+‘)’+BT-P}

 EndIf

 If Rel.RelType= ‘Agg’ then

ST.AT=ST.AT⋃{‘UDT(‘+getAT(C’.NA)+‘)’}+BT-P+AddConstraint()}

EndIf

 If Rel.RelType= ‘Comp’ then

 ST.AT= ST.AT ⋃{‘NT(‘+C’.A+’)’+BT-P+ AddConstraint ()}

EndIf

If Rel.RelType= ‘Ihner’ then

ST.AT=ST.AT⋃{‘UNDER(‘+getAT(C’.A.NA)+‘)’+BT-P+ AddConstraint() }

EnIf EndFor EndFor

Return(TT,ST,TP)

End Algorithm

Figure25. Algorithm to produce TORDB Model

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 89

IV. IMPLEMENTATION

 The following prototype is implemented to automate the transformation of temporal relational database into

their equivalent in temporal Object Relational database, in order to simplify the migration with an efficient manner

and gain of the main advantaged giving by Object relational model. The Java language is used for basic coding in

our approach. We have chosen JAVA for its ability to connect to TRDBs and the reusability of code wich makes

it preferable for use through JDBC. As described previously, our solution is based on 3 important phases:

 Connexion to the source database and the extraction of all possible information about tables, their

attributes and keys, and temporal period from a given TRDB.

 the construction of TRDB schema from the obtained component by defined functions and methods

 the generation of the TORDB Model, which includes the classification of constructs and the

identification of relationships and cardinalities . This function is responsible of TORDB Model

generation by using the defined rules and the algorithm of the translation described in the previous

subsection.

 The connexion will be established to database Target in order to create the TORDB tables.

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

90

Figure26. Graphic Design of the transformation from TRDB Into TORDB

V. TEMPORAL DATA MNIPULATION

 Here, we outline the more difficult parts of temporal database operations. The data manipulations,

especially insert, delete and update operations to handle varying time data in TRDB and TORDB. With

the consideration of temporal events in the temporal database, the three manipulation operations need deep

enhancements. Temporal insertion is straightforward. Indeed, the INSERT statement should allow the

introduction of valid time and transaction time, and the UPDATE statement must carry out of the non-

destructive updates of any data. Furthermore, the DELETE statement must allow the non-destructive

delete of rows in order to maintain the history of data, using bitemporal period. The UPDATE query can

be used to modify the rows of temporal tables including Bitemporal period in order to define changes that

are effective within a specified period. This is provided by both UPDATE and DELETE statements that

let users specify the period of interest. We further detail the enhancements that we propose in the following

three sub-sections.

5.1 Insert Statement:

 The conventional Insert statement provides sufficient support for the insertion of the initial values of

Bitemporal period columns. The “Insert” allows the user to introduce valid time period values. The

transaction time columns are not specified in the insert query, default values referred at the creation of

temporal database. For example, the following insert statements store one row into a project table in TRDB

and TORDB:

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 91

Table14. Insertion statement with temporal data

Description TRDB Queries TORDB Queries

Insert into Project table Insert into project (Numproj

,nameproj,Details ,vt_start,vt_end) Values

(1,'carrefour','ecommerce', date '2016-09-

01',date '2022-12-31');

INSERT INTO project VALUES(1,'Carrefour

project', ‘e-business project' , Budget_T

(Budget_NT(2345,bit_period(bitemporal_pe

riod(TO_DATE('03/05/2017

08:30:25','DD/MM/YYYY

HH24:MI:SS'),TO_DATE('03/01/2018

12:22:10','DD/MM/YYYY

HH24:MI:SS'),null),

bitemporal_period(TO_DATE('04/06/2018

11:49:26','DD/MM/YYYYHH24:MI:SS'),TO

_DATE('03/07/2019 10:01:36',

'DD/MM/YYYY HH24:MI:SS'),null))

Select Budget values of all projects in

‘03/10/2017’

SELECTproject.nameproj,budget.value,proj

ect.vt_start , project.vt_end

FROM project

AS OF PERIOD FOR period_VT

TO_DATE ('01JAN-2014','DD-MON-YYYY')

JOIN budget on budget.numproj=

project.numproj ;

SELECT p.nameproj,b.value, ph.* FROM

project p, table (p. Project_H)ph, table (p.

Budget)b

WHERE TO_DATE b.vt_start =

('03/05/2017 08:30:25','DD/MM/YYYY

HH24:MI:SS') ;

Select employee works on a given

project between '1and 2-Jan-2013' and

'06-JAN-2020'

Select *

 from proj_emp

VERSIONS PERIOD FOR period_VT

BETWEEN

TO_DATE ('12-Jan-2013','DD-MON-YYYY')

AND

TO_DATE ('06-JAN-2020','DD-MON-

YYYY')

JOIN project ON

project.numproj=proj_em

p.numproj

JOIN employe ON

proj_emp.empno=proj_em

p.empno

WHERE proj_emp.empno=2;

SELECT ep.numrpoj, e.empno, wh.*

FROM employee e , table(e.projectt)ep,

table(ep. WorksON_H) wh WHERE

TO_DATE('12-Jan-

2013','DD/MM/YYYY')>wh.vt_start

and TO_DATE('06-JAN

2020','DD/MM/YYYY’)<wh.vt_end

and e. NoEmp = 2;

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 92

5.2 Delete Statement:

 Deletion Operation is a challenging task. Delete statement on Bitemporal Table does not actually

delete the rows from temporal relational or temporal object-relational tables. For This reason, we provide

a new tables Log that has the same schema and properties of the previous tables in TRDB and TORDB,

in Order to preserve the deleted data.

Creation of table LOG

Create table employe_log (Empno NUMBER PRIMARY KEY, Birthday

date,KidsNo Number, Start_vt date, End_vt date, TT_start date DEFAULT

sysdate,TT_end date DEFAULT to_date('9999-01-01','YYYY-MM-DD'),

PERIOD FOR priod_vt (Start_vt, End_vt));

Figure27. Creation of table LOG for employee table

 Therefore, we perform a trigger that fires for the row selected for deletion. The created trigger inserts

the selected row into the table log and changes the transaction time-end value to date of Delete query is

executed.

 For example, suppose the current system row in the employee table with Bitemporal Period is shown

below:

 The following delete statement simplifies modifications of the transaction Time end columns of the

current system row (31/12/9999) for the Employee to the transaction time in which the delete statement

was executed. That means the transaction Time End of the current row will be inserted into Employee log,

and the transaction Time End will take the system date value when the row is stored in table Log. A trigger

is used to control the insertion into the table log after every deletion statement.

Figure28. Trigger to control historical data after delete statement

Delete Trigger

CREATE OR REPLACE TRIGGER delete_time

After DELETE

 ON employe

 REFERENCING OLD AS old

 FOR EACH ROW

BEGIN

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

93

 INSERT INTO employe_log (Empno,Birthday ,Start_vt ,End_vt ,TT_start
,TT_end) VALUES(:OLD.Empno,:OLD.Birthday ,:OLD.Start_vt ,

:OLD.End_vt ,:OLD.TT_start ,sysdate);

END;

The above query outputs the records of employees who’s still active in the current system and the deleted

rows that are stored in table Logs :

SELECT * from employe

UNION

SELECT * from employe_log;

5.3 Update Statement:

 Although traditional databases store data in its current versions only, the varying time databases make

records of the informative on which were visible in the system at every point in time. The update operation

in the temporal database is implemented as a modification of the current values, and the insertion of the

old version in the table log with the modification of the transaction time start which stores the current date

when the update statement was executed. Therefore, in the temporal database, the user is unable to change

the content of historical rows, more precisely, the Bitemporal period interval associated. As deletion

operation, a trigger is performed to restrict the insertion of the selected rows to be modified into a table

log before executing the update statement.

Update Trigger

CREATE OR REPLACE TRIGGER update_data

BEFORE UPDATE

ON employe

FOR EACH ROW

BEGIN

 INSERT INTO employe_history (Empno,Birthday ,Start_vt ,End_vt

,TT_start ,TT_end) VALUES(:OLD.Empno,:OLD.Birthday ,:OLD.Start_vt

,
:OLD.End_vt ,sysdate ,:OLD.tt_end);

END;

update employe

set birthday = date '1989-05-02'

where empno=1;

Figure29. Trigger to control historical data after Update statemen

 CHAPTER III : MAPPING METHOD FROM TRDB INTO TORDB

p. 94

VI. CONCLUSION

 This chapter introduces the basics phases to convert an RDB based on SQL: 2011 standard into

ORDB, which contains valid time and Bitemporal data features, with a simple and practical method to

capture the different relationships between classes, association, aggregation, composition, as well as

inheritance. We started by extracting data model from RDB including temporal data and implemented by

SQL: 2011. We used it as an input enriched with semantic data, which is translatable into any of the target

database schemas. After that, we have defined TORDB model including the schema and data by

exploiting the range of powerful concepts provided by time varying data management. Therefore, we have

provided a TORDB design to capture the characteristics of temporal and non-temporal SQL query.

Finally, we proposed an algorithm for mapping method from TRDB with varying time period features

into ORDB including temporal data.

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

95

CHPTER IV:

CONVERSION AND STORAGE OF DATA FROM TXML

DOCUMENT INTO TORDB

I. INTRODUCTION

 With the emergence of novel systems and the increasing complexity of Web applications and user

requirements, there are different needs to shift from the data level to the human semantic interaction.

Hence, semantic representation level becomes very interest in order to maximize the semantic data

structure that requires these representations become increasingly explicit. For this reason, the users must

learn how can deal with the ambiguity of language by understanding the context of information in which

terms are used. Therefore, The World Wide Web was shifted from the semi-structured Internet to a more

structured Web called the Semantic Web. The information stored by WWW is intended for human use.

The contents on the web must be readable and comprehensible by the users. Information linked up in such

a way to be process-able by machines in a mesh network defines Semantic Web where it develops

languages for articulating information in a machine process-able form [72]. The new generation of Web

provided many intelligent and mechanism that specify explicit semantics for data and enable knowledge

sharing and publishing among knowledge-based systems. For this reason, ontologies are used to define

and relate aspects and concepts that describe Web resources with a formal method. On the other hand,

the dominant standard for information exchange on the Web is XML. It is used as a base syntax for other

languages produced for the upper layers of the Semantic Web. XML and its related standards, such as

DTD and XML schema are used to form a common means to structure and semi-structured data on the

web. XML provides the syntactic layer for the Semantic Web. XML offers rich documents because of its

ability to use meta-data and focuses on the meaning of documents rather than the presentation. However,

the modeling for XML including temporal data and its transformation into Object relational database

schema has not been widely investigated.

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

p. 96

II. TEMPORAL XML DOCUMENT MIGRATION

 XML is emerging as a standard format and Meta language for interchange data and structured

document on the web. The data in XML file can be organized into hierarchies so that the relationships

between data elements are visually obvious [73]. Various kinds of applications that use the XML format

have been developed. This is why, XML needs to have databases system to store all data which will be

reused and published later in the different environment. Nevertheless, Time is present in almost any real-

world application especially on the web where XML data changes over time with the creation,

modification, and deletion of XML documents. Temporal information is the nature and basic description

for the development and changes of real word objects, and almost everything has explicit or implicit

temporal features [74].Several databases applications need to keep records of changes of data in past

present or in the future. Today, there are many database applications support a data type features dependent

on the time. The most common examples of such applications involve flight reservation, the banking

system, e-health, e-business, which require a full history and retain

trace of data for these reasons: Avoiding loss of data after schema changes, maintenance of legacy data

formatted according to past schema, reuse of legacy application and auditing purpose[75].Hence, XML

provides excellent support for temporally grouped data models which have been accepted as a better

solution to represent and to share temporal information. For this reason, it is certain to use ways needed

to describe temporal XML schema formats in the temporal database using Object Relational concept based

on bitemporal data dimension. Hence the acknowledge required from the combination two research area,

management varying time and XML standard, led to the emergence of TXML document.XML provides

excellent support for the temporal database in order to represent and to share temporal data.

III. SEMANTIC ENRICHMENT OF TXML

3.1 Definition of TXSDM

 TXSDM is a description of XML schema with historical data which can define the relevant entities,

their attributes or elements, and their relationships. The Model is enriched with semantic information that

is extracted by in-depth analysis of TXSD document and takes into consideration features and object that

are provided by object based model. Therefore, TXSDM is a data reference model that is designed as a

method to extend and exchange the schema.

 The TXSDM is defined in our approach as a set of complex type:

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

p. 97

TXSDM = {CT|CT:= [NCT, CLS, SE\A, REL, BitE, Key, KeyRef]} where:

 NCT : name of Complex type

 CLS: each Complex type CT is classified into two different kind of categories as follow:

1. Temporal CT (TCT): Complex type CT contains a historical data

2. Simple CT (SCT): Complex type CT without temporal data.

 SE\A: denotes a set of Element or attribute of complex type CT.

SE\A= {E\A:= NE\A , TE\A ,MinO\MaxO, Use} each attribute or element has a name NE\A , TE\A is

the type of the element or attribute , MinO is the minimum of occurrence, MaxO is the maximum

of occurrence ,and Use means if the element or attribute is required or not.

 REL: denotes relations TCSDM

Each complex type CT has a set of relationships with other complex types.

REL= {REL: = RelType, DirC}.

RelType means a type of relationship where RelType supports four types:

1. “Ass” for Association

2.“Agg” for Aggregation

3. “Comp” for Composition

4. “inher” and “inherBy” for Inheritance

 DirC is the name of complex type CT’ interact with CT.

 BitE: Bitemporal element

BitE= {NBitE,TBitE ,MaxO\MinO} where

NBitE: Bitemporal Element name

TBitE: Predefined Type of BitE which accepts as a value Bit-Period.

Bit-Period is a bitemporal complex type specifies the lower and upper bound of valid Time (VT)

and transaction time (TT) : Bit-Period = {VT-LB, VT-UB, TT-LB, TT-UB}.

MaxO\MinO= Max and Min of occurrence

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

p. 98

 Key: primary Key of CT

Key= {NK , Selector, Field}

Each key has a name, element Selector as scopes within which the key is defined and a collection

of related sub elements field are specified by selector to be unique.

 KeyRef: data dependencies are represented by KeyRef which is a reference to key of another

complex type.

KeyRef= {NFK , Selector, Field, Refer}

Each KeyRef has a name NFK , Selector , Field and Reference constraint Refer.

3.2 Generation of TXSDM from TXML schema File:

 The TXSDM presents the first step of the migration process from XML schema into TORDB, which

in the end generates the target schema. Let Consider the XML schema file shown in Figure30, modelling

a part of the purchase Orders system in a business company.

<?xml version="1.1" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:complexType name="Bit_Period">

<xs:sequence>
<xs:element name="VT_LB" type="xs:date"/>
<xs:element name="VT_UB" type="xs:date"/>
<xs:element name="VT_LB" type="xs:date"/>
<xs:element name="VT_UB" type="xs:date"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Dis_history">

<xs:sequence>
<xs:element name="percent" type="xs:integer"/>
<xs:element name="Discount_H" type="Bit_Period"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="customer">
<xs:sequence>
<xs:element name="customerName" type="xs:string"/>

<xs:element name="Customer_H"type="Bit_Period" />
<xs:element name="phone" type="xs:integer"/><xs:element name="Address_cust" type="address"
maxOccurs="unbounded"/>
<xs:element name="order" maxOccurs="unbounded">
<xs:complexType >
<xs:sequence>
<xs:element name="orderID" type="xs:integer" />
<xs:element name="Order_H" type="Bit_Period" />

</xs:sequence>
</xs:complexType >

TXML Document Extraction

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

99

</xs:element>
</xs:sequence>
<xs:attribute name="customerId" type="xs:integer" use="required"/>
</xs:complexType>
<xs:complexType name="address">
<xs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>

<xs:element name="zipCode" type="xs:integer"/>
<xs:element name="Adress_H" type="Bit_Period" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:element name="Person">
<xs:complexType>
<xs:complexContent>
<xs:extension base="customer">

<xs:sequence>
<xs:element name="Discount_H" type="Dis_history"/>
<xs:element name="Bitemporal" type="Bit_Period" maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="customer" type = "customer" >
<xs:key name="customerId">
<xs:selector xpath="customer"/>
<xs:field xpath="@customerId"/>
</xs:key>
<xs:keyref name="Purchase_Order_Ref" refer="orderID">
<xs:selector xpath="customer"/>
<xs:field xpath="@order"/>
</xs:keyref>

</xs:element>
<xs:element name="PurchaseOrder">
<xs:complexType>
<xs:sequence>
<xs:element name="shipping_date" type="xs:date"/>
<xs:element name="Adress_shipping" type="address"/>
<xs:element name="Orderline" maxOccurs="unbounded"/>
<xs:element name="Orderlineitem" >

<xs:complexType>
<xs:sequence>
<xs:element name="quantity" type="xs:integer"/>
<xs:element name="productId" type="xs:integer" maxOccurs="unbounded"/>
<xs:element name="bitemporal" type="Bit_Period"></xs:element>
</xs:sequence>
<xs:attribute name="line" type="xs:ID" use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence><xs:attribute name="orderID" type="xs:integer" use="required"/>
</xs:complexType>
<xs:key name="orderID">
<xs:selector xpath="PurchaseOrder"/>
<xs:field xpath="@orderId"/>
</xs:key>
</xs:element>

</xs:schema>
 Figure30. Example of TXML schema document

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

100

 Now, we generate the TXSDM of the TXML scheme described in the example above (see Table15)

Table 15. Result of TXSDM Generation

3.3 Algorithm for Translating TXSDM into TORDB Model:

 In This subsection, we present an algorithm to produce TORDB Model in order to automate the

translation process of TXSDM into TORDB Model shown in Figure 31. After classifying and extracting

the basic information about the different complex types, the algorithm goes through the main loop to

TXSDM constructs as input and generates their equivalents in TORDB Model as output.

 In the second chapter, we defined TORDB as a reference model which provide complete description of

temporal Object Relational Database. The TORDBM obtained is presented as a set of temporal table based

on structured type and temporal structured type thatcontain varying time attributes.Definition of TORDB

model: is denotes as three-tuples:

TORDB Model = {TTs, STs , Tm}

NCT

CLS

SE\A REL BitE Key

KeyRef

NE\A TE\A MinO\Max

O

Use RelType DirC NBitE TBitE

Person TCT Discount Dis-

history

unbounded Required Inher Customer

Discount TCT Percent xs:integer unbounded Aggr Person Discount-H Bit-Period

Address-

Cust
TCT Street City

zipCode

xs:string

xs:string

xs:integer

 Agg Person Adress-H Bit-Period

Customer TCT CustomerId

CustomerName

Phone

Address-Cust

Order

xs:IDxs:s

tringxs:in

tegerAdr

ess

unbounded

unbounded

Ihnerby

Ass

Person

PurchaseOrder

Customer-H

 Order_H

Bit-Period

Bit-Period

CustomerId OrderId

Purchase-

Order
TCT OrderId

Address-

shipping

OrderLine

xs:ID

address

unbounded Required Ass

comp

Customer

OrderLineItem

Shipping_da

te

Bit-Period OrderId

OrederLi

neItem
TCT Line

Quantity

ProductId

xs:ID

xs:integer

xs:integer

unbounded comp PurchaseOrder OrderLineIT

-H

Bit-Period Line

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

101

Algorithm To Produce TORDBModel

Input: TXSDM

Output: TORDBModel

Begin

TST: STs :=Ø

TT: TTs :=Ø

TBit:Tm:= Ø

Min,Max,RL,CoL,SV,NL,:string:= ‘ ’

 Foreach ComplexType CT ϵ TXSDM do

 If CT== Bit_Period Then

 TBit= getBitPeriod(Bit_ Period)

 EndIf

 ST:StructType

 Ttable:TypedTable

 ST.Sn=CT. NCT + ‘_t’

 Ttable.TTn= CT. NCT

 Ttable.PK=getKey(Key.CT)

Foreach Element E\A ϵ CT.E\A do

 If E\A .MinO= ‘0’ Then

 ST.AT.NL= ‘Null’

 End If

 If E\A .MaxO= ‘unbounded’ Then

 ST.AT.M= ‘CoL’

Else

 ST.AT.M= ‘SV’

 End If

 ST.AT.N= E\A. NE\A

ST.AT.T= E\A. TE\A

 ST.AT.BitT=CT.BitE

EndFor

Foreach Relashionship RL ϵ CT.REL do

 CT’:CTTXSDM

 CT’=DefineRelation(RL.DirC)

 CT.RLT=getRelType(RL.RelTye)

 If RLT= ‘Ass’ then

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

102

Figure31. Algorithm of the transformation

IV. STORAGE AND PUBLISHING DATA FROM TXML DOCUMENTS INTO TORDB:

 First, we outline the interest phases for modeling temporal data in XML documents. The process

starts by defining a graph model for temporal temporal XML documents which track the historical data

and then extended it to tree graph based on indexing techniques tree, where each node is identified by

Dewey encoding concept. Through this model, we proceed to the next step; we will give the generated

tables showing the Txpath according to the proposed models. In this section, we first outline the interest

phases for modeling temporal data in XML documents. The process starts by defining a graph model for

temporal temporal XML documents which track the historical data and then extended it to tree graph based

on indexing techniques tree and each node is identified by Dewey encoding concept. In The next, we will

give a representation of TORDB including varying time data enriched with additional semantic data.

Through these two models, we will give an algorithm explaining the general process of the migration.

 ST.AT={ST.AT, DefineCoL(CT.KeyRef+BitE) }

EndIf

 If RLT= ‘Agg’ then

 ST.AT= { ST.AT, ‘UDT(‘+ CT’.NCT + ‘)’}

EndIf

 If RLT= ‘Comp’ then

 ST.AT={ST.AT,defineCoL(CT’.E\A)}

 EndIf

 If RLT= ‘ihner’ then

 ST.SS=CT’.NCT + ‘-T’

 Ttable.STn= CT’.NCT

 EndIf

 EndFor

 TST=TST ⋃{ST}

 TT=TT⋃{Ttable}

EndFor

Return(TST,TT, TBit)

End Algorithm

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

p. 103

4.1 TXML documents Modelling and Dewey Numbering Schema:

 Temporal XML database is built by a collection of TXML documents. XML provides the

opportunity to have a sequence of element and attribute. On the other hand, a temporal xml document can

be modeled as a rooted, structured and ordered graph. This work adopts the tree graph which itself is a

connected acyclic schema in the Graph theoretical term in order to determine the relationship between the

nodes. The tree will be consisting of the tags and content represented in the nodes of the tree. The stored

data in the tree can be tracked by its path. The mechanism we use for integrating the varying time

dimension to the proposed model consists in adding a new element to capture the changing value of the

data over time. A temporal element is defined as H_element. Each H_element has an open –closed interval

time (valid time start and valid time end).

 Therefore, this data model leads to simplify the search of temporal data and reduce the storage space

of TXML files. The tree diagram help us to convert and map the data from TXML documents into their

corresponding in temporal object relational database (TORDB) where high scalability is needed to store

different size of TXML files. In this proposed approach, we use a new index mechanism based in Dewey

encoding feature. We assign to each node a Dewey ID to specify vector that define the path from the root

to the leaf and identify the absolute position of the node. Furthermore, Ancestor–Descendant relationship

between the nodes composed our proposed graph tree can be determinate and identify the number of the

fragment, for this reason we divided the tree graph into several sub trees denoted ST (i) in order to simplify

the migration of data. Figure1 shows the TXML files describing the history of a customer in banking

managements and their system using a temporally representation.Figure1 shows the TXML files

describing the history of a customer in banking managements and their system using a temporally

representation.

Figure32. An example of tree schema for TXML files with Dewey ID

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

p. 104

Let Consider the XML file shown in Figure 33, modeling a part of the customer and its relationship with

the account element in banking system. Other elements like Balance_H table can be modeled in similar

way and its child elements represent the grouped history of attribute values.

<customercustomerId="1">

<customerName> Soumiya </customerName>

<phone>0522435688</phone>

<Address_cust>

<street>Farah1</street>

<city>Settat</city>

<zipCode>26000</zipCode>

<Adress_H>

<vt_Start>2010-05-04</vt_Start>

<vt_End>2013-03-31 </vt_End>

</Adress_H>

</Address_cust>

<Address_cust>

<street>elqods</street>

<city>Casablanca</city>

<zipCode>26000</zipCode>

<Adress_H>

<vt_Start>2013-04-02</vt_Start>

<vt_End>2999-12-31 </vt_End>

</Adress_H>

</Address_cust>

<Customer_H>

<vt_Start>2013-05-04</vt_Start>

<vt_End>2019-05-04 </vt_End>

</Customer_H>

</customer>

<account Type= "Saving Account">

<Account_NO> F23

<vt_Start>2010-05-04</vt_Start>

<vt_End>2013-03-31 </vt_End>

<Balance_H>

<Balance Value= "349087">

<vt_Start>2010-05-04</vt_Start>

<vt_End>2012-03-31 </vt_End>

</Balance>

</Balance_H>

<Customer>

<CustomerRef>1</CustomerRef>

<vt_Start>2014-05-04</vt_Start>

<vt_End>2020-05-04 </vt_End>

</Customer>

</Account_NO>

</account>
Figure33.Example of TXML schema document

TXML schema Extraction

 CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

105

4.2 Definition of TXML Model for TORDB (TX-OR)

 For our purpose, we proceed to define the structure of TX-OR index model, which is based on

complex index key to reduce the storage space and to handle the records of TXML files with efficient

manner. Each index item has to store different Dewey ID corresponding element.

 TX-OR is a description of tree graph enriched with additional semantic data for modeling historical

data by defining the structure, the relevant entities, their elements or attribute, and the relationships. This

model is extracted by in-depth analysis of tree graph produced and shown above, considered TXML files

as input. It takes into account concepts and feature offered by varying time data management and object

relational model.

The TX-OR is defined in our approach as follow:

TX-OR= {(Node| N= Doc_ID, Parent_ID, Node_Tag, ST(i), Pos, Node_name, Node_val , VT_H,

PathID)}

Where:

 Doc_ID:Document Identifier

 Parent_ID: Parent label of the node

 Node_Tag: denote the Dewey ID of the node.

 Node_Name: represents the name of the element or attribute

 Node_value: node representing values (text or numeric).

 Pos: position of the node in the tree graph

 ST (i): Subtree in the level i wich represents the fragment where the node belongs.

 Path-ID: simple path expression identifier

 VT_H: Valid_Time history label defined by two attributes VT_start (Valid Time start)and

vt_End (Valid Time End) wich can be denoted:

VT_H= {Key, vt_start, vt_End}

CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

106

Figure34: TX-OR Index tree

Where:

 PR: Path Index pointer

 PT_V:value index pointer

 VT_H: valid Time period pointer

 In TX_OR index tree, the node Number is a Dewey ID. The leaf node in the proposed graph

represents a set of related nodes having a same prefix of the Dewey IDs. Each node contains a

Dewey ID, path Index pointer (PR) which maintains the path of the each node,

and value index pointer (PT_V) points to the node information so that allows us to access to the

content of the element. A VT_H point is used to get the history of the Node expressed by valid

time dimension.

4.3 Representation of TORDB schema for storing data:

 This subsection, presents the different elements composed a TORDB schema by providing

a general description of temporal OR database. The TORDB schema is defined as a set of

temporal tables based on user-defined type UDT which contains varying-time attributes.

Generally, a UDT can be denoted as tree tuples:

CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

107

TORDB_Model = {UDT|UDT=UDT_name, SA,VT_P}

Where:

 UDT_name: name of UDT

 SA: is a set of UDT’s attricutes

SA= {A|A= (AN,AT,NL,MC,val)}where AN: is the name of attribute, AT: means data type

which can be primitive , UDT or reference. NL: if the attribute accepts Null value or not.MC

denotes if the Attribute is a single valued or Multi-valued, and val means the value of this

attribute.

 VT_P: valide time period which composed by two Attribute:

VT_P ={VT_start, VT_end}

4.4 General Algorithm for the conversion:

 The Figure 35 shows how the algorithm maps a TXML document into the TX-OR

schema (Path_Index_Table and H_index_Table).this algorithm uses a temporal path based by

loading TXML file, parseing it using DOM parser, and decompose the structure into different

fragment. This is done by implementing several methods and function to store the data into

proposed model TX-OR. In the Next, some methods and functions are done to get the UDT

matching the input elements and convert the TX-OR schema into TORDB Model.

Algorithm Produce TORDBschema

Input:TX_OR ,XMLDoc

Output: TORDB schema

Begin

UDT: UDT :=Ø

CurrentNode: Node :=Ø

VTP:VT_P:= Ø

MC:string:=‘’

\\ Parse and Read XML document

T=Tree. Parse(“DocXML”)

For each Sub tree ST ϵ TX-OR do

While Node is not a leaf and Node ϵ TX-OR do

\\Check if Node ID (Dewey ID) exists in TX-OR

table

If Current Node.Tag==TX-OR.Node_Tag

CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

108

Figure35. Algorithm to convert the TX-OR into TORDB Model

 CurrentNode.name=TX-OR. Node_Name

 CurrentNode.value = TX-OR. Node_val

 CurrentNode.parentID=TX-OR.ParentID

 If CurrentNode.VT_H !=Null then

 If VT_H == History_Index_Table.key then

CurrentNode.VT_P.vt_start=History_Index_Table.vt_start

CurrentNode.VT_P.vt_end=History_IndexTable.vt_End

End if

End If

End while

End For

\\ store the data into TRORDB schema

\\ check if the UDT is already created in Temporal database

For each UDT ϵ TORDB schemado

If UDT.name == Element.NameThen

For each attribute ATϵ TORDB schema do

If UDT. AT.AN== CurrentNode.name Then

UDT.AT.Type=Nodeval.getType (CurrentNode)

UDT.A.MC==’Collection’ then

UDT.A.MC= getAttributesfromCollection(AT)

If AT.MC.AN== CurrentNode.name then

AT.MC.val=currentNode.Val

End if

If UDT.AT.MC==’Single valued’ then

If UDT.AT.Type==Node val.getType (CurrentNode) then

UDT.AT.val= currentNode.Val

EndIf

UDT.VT_P.vt_start=curentNode. vt_start

 UDT.VT_P.vt_End=curentNode. vt_End

EndIf

EndIf

EndFor

CHAPTER IV : CONVERSION AND STORAGE OF DATA FROM TXML DOCUMENT INTO TORDB

109

V. CONCLUSION

 In this chapter, we explained the basics phases of translating XML schema including

varying time features into Temporal Database based on Object relational concepts. Currently

no approach has proposed as a solution to extract temporal data model from TXML schema.

Our method is done by providing a TXSDM from TXML schema file, and we use it as input

which is enriched by additional semantics data. In the Next, we provided an algorithm to

automate the translation process into TORDB. In addition; we discussed the issue of modeling

TXML documents including temporal dimension and the migration of data into TORDB. We

proposed a new solution takes the advantage of XML path, indexing mechanisms and Dewey

encoding to identify the nodes. Through this model, we can define the Ancestor–Descendant

relationship for each sub-tree rapidly. Another interesting feature of this approach is can keep

the necessary data by capturing the temporal XML data and varying time element semantics,

which can help to migrate the temporal data into temporal database.

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

110

CHAPTER V

MODELING BI-TEMPORAL PROPERTIES INTO

BIG DATABASE: DATAWAREHOUSE AND NOSQL

I. INTRODUCTION

 Companies are operating in a dynamic area that requires the ability to make proactive

decisions in a complex situation to maintain or improve their business. The available data

provided and handled by their activities is exploding due to the increasing use of various

technologies. In consequence, there is a variety of decision support systems for managers to

help to elaborate an analysis strategy rapidly. Before making a decision, the analysis phases can

go along many dimensions, the most important of which is time. For this reason, historical

information is used to identify certain characteristics in the evolution of data. Data analysis and

Big Data originate from the longstanding domain of database management. They are based

heavily on the storage, extraction, and optimization techniques that are stored in varying time

management data. On the other hand, NoSQL and data warehousing are considered the core

components of Big Data. They present the systems of modern data analysis as we know it today,

using well-known techniques such as database statements, online analytical processing, and

standard reporting tools. In recent times, the increasing use of temporal data has initiated

different researches and growth efforts in these two environments in order to handle a huge

amount of historical data in distributed systems.

 One of disadvantages of the temporal object Relational model is the complexity and

associated increased costs to store and to manipulate the varying time data. For this reason, we

have chosen the temporal data warehouse and Nosql technologies to evaluate the ability to

preserve the historical data.In this chapter,we attempt to propose a new conceptual modeling

for temporal data warehouse that can be adopted as a reference in order to adopt a novel

database management system in order to ensure the correctness of data and handle complex

information that are dependent on the time.However, this works contribute with the use of

Nosql technology by adopting Mongodb to store the huge amount of temporal data. We

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

111

Formalize the rules of the transformation from TORDB into Json documents.

This chapter is structured as Follow:

1. Section I describes a general strategy for transformation process from

UML class diagrams into temporal snowflake object relational schema (S-

TORDW).this model based on snowflake structure using temporal object relational

concepts and based on nested approach. We create a meta-Model that defines a new

modelling of TDW including bitemporal data aspects. This is accomplished by using

UML specification, stereotype, constraint and tagged values.

2. Section II presents a reliable, reasonable, and efficient method to convert the schema

and migrate the temporal data from the implemented temporal object-relational

database into MongoDB system. Our proposed approach provides a new model

transformation from object-relational tables including Bitemporal data features

towards documents oriented databases based on JSON files. Several rules are defined

to facilitate the migration process.

II. TEMPORAL DATAWERHOUSE MODELLING USING TEMPORAL

OBJECT RELATIONAL FEATURES

 A Data warehouse is a multidimensional database that is used to store and provide access

to large volumes of historical data, based on indicators for supporting the strategic decisions of

organizations. Data in data warehouse has features of being a collection of subject-oriented,

integrated, non-volatile and time-varying data. The two last characteristics allow changes to the

data values without overwriting the existing values. Furthermore, data in a DWs must be stored

in a way thus is secure, reliable, easy to retrieve and to manage [76]. It is mainly used only for

using querying and consequently, it is important that querying technique performance is as high

as possible. The structure of DWs is based on a multidimensional view of data usually

represented as a start or a snowflake schema, consisting of fact and dimension tables [77]. In

the recent decades, another active research, temporal database, deals with recording the history

of the objects or the database activity..Even today, a large number of database applications

based on time in nature, to make a better description and clearly some tasks of database systems.

 The literature on temporal database offers three dimensions of time for temporal data

support: transaction time, valid time and Bitemporal data which support the both. Bitemporal

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

112

data model our changing knowledge of the changing world, hence associate data values with

facts and also specify when the facts are valid. The Knowledge acquired from these two

research area, Management varying time data and data warehouse, led to the emergence of

temporal data warehouse (TDW). A TDW is considered as a repository of historical information

associated with time, and originating from multiple and heterogeneous sources, for the purpose

to analyze, plan, react to changing business conditions and identify the relevant trends fast as

possible.

2.1 Process Of medelling and transforming UML into Logical Model:

 In this section, we outline the important phase for modelling the conceptual and logical

design schema. The process starts by defining a meta-model for temporal data warehouse,

which is based on UML diagram class specification integrating bitemporal data features. In the

Next, we propose EER representation of Temporal Meta-model which allows a better

description of the entities, their attributes and their relationships. Through this model, we

preceede to the last step, we will develop S-TORDW and SW-TORDW as a logical design uses

the star and snowflake structure according to the specifications provided by Object relational

Models such as Structured Type, References and nested table (NT) to manipulate the complex

data.

2.1.1 Creation of Meta-Model for TDW:

 Figure 36 presents the class diagram modeling data of store department as an example to

be model with datawehouse structures.

Figure 36. Class Diagrams for department Store System

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

113

 We need in this work to develop a meta-model which task is to record the changes of data in past,

present or in the future. Although a class diagram is a general purpose language for system modeling,

the temporal data warehouse has not been addressed. For this reason, it is necessary to propose

a novel model for TDW modeling operation. A meta-Model is involved in system engineering

to understand the data semantic meaning because it describes the elements, the relationships,

constraints and attributes.

Figure 37. Meta-Model for TDW based on UML notation

2.1.2 Identification and definition of TEER Model

 We choose the enhanced entity-relationship (EER model) since it is well known and widely

used conceptual data model for database design. In this work, the proposed EER model is

implemented by transforming the previous meta-Model and its specification into object

Relational model. Therefore, this migration requires additional attributes and concepts for

supporting time varying data to make a better description of temporal data. The aim goal of the

EER model enriched with object relational features and bitemporal data is to simplify

thecomprehension of the essential information stored in temporal data warehouse, and facilitate the

implementation of the logical model. The TEER modeling plays a pivot role between the conceptual

schemes expressed by UML and implementation of temporal data warehouse schema.

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

114

Consider the TEER model example as shown in Figure 38. In This example, we produce a TEER model

of sales, product and category class described in the previous conceptual model.

Figure38. The TEER model of sales, product and category tables

2.1.3 S-TORDW and SW-TORDW Model:

 The SW-TORDB Model and S-TORDBW uses the snowflake and star schema for

representation of DW structure including the specifications provided by the Object relational

model to handle the complex data and objects. It consists of the fact table connected to several

Dimension contain varying time data which are called temporal dimensions. To provide a

history of the data and store their changes, the Bitemporal period should be kept at the attribute

level. Attributes can be temporal or nontemporal. SW-TORDW and S-TORDW are based on

Nested Approach to express hierarchy levels by the clustering of data in nested tables.

 In the Figure 39, the schema of S-TORDW is represented in star schema at the logical design.

In the S-TORDW a dimension’s hierarchy is expressed as a structured type and Nested Table.

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

115

Figure 39. Temporal Star OR DW (S-TORDW) model

 The SW-TORDW model which uses a snowflake schema is described in Figure 40. Each

dimension table has a hierarchical attribute which is referred by a REFERENCE feature to

express the foreign key attribute.

Figure 40: Temporal Snowflake OR DW (SW-TORDW) model

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

116

2.2 TORDB Queries Implementation:

We can translate the S-TORDW and SW-TORDW models into temporal relational queries

(for the sake of simplicity, we will create TORDB queries only for Product Dimension) using

Oracle 12 C.

Figure 41. TORDB Queries for product Dimension in S-TORDW based on Star schema

III. MODELLING AND MIGRATING METHOD FROM TORDB INTO

MONGODB

 Today, we notice the advent of big data. There is a revolution going on in databases system

management. With the development of data acquisition technologies, the information to be

stored expands strikingly in volume and velocity. NoSQL database have evolved intensely in

TOR-QUERY

CREATE TYPE BIT_PERIOD AS OBJECT(

TT_START DATE,

TT_END DATE,

VT_START DATE,

VT_END DATE

)/

Create price_Type as object (

Value Number,

Bit-NT Bit_Period

)/

Create price is table of price_Type;

Create Type category_T as Object(

Id_cat Number,

Cat_Desc varchar(20))/

Create table category of category_T;

Create Product_Type as Object (

ID_prod,

Price_NT price,

Prod_desc varchar(20),

Brand varchar(20),

Category REF category_Type)/

Create table Product_Dim of product_Type Constraint

Prod_Key Primary Key (Id_Prod), Nested table Price_NT

Store AS Price_Tab.

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

117

the last years due to their flexible structure, less constrained than relational ones and offering

faster access to information. Nosql is now used in many fields of industries and companies to

support applications and systems not well served by relational and object relationaldatabase.

NOSQL is released and widely used in many domains. Nosql database provides a mechanism

for storage and retrieval of instructed data other than tabular or object relation used in relational

and object relational database respectively [78]. The Nosql model fulfils the scalability

problems. Nosql databases are mostly open source , non relational , distributed and designed

for large volumes of data across many clusters supporting replication and partitioning , parallel

processing and what is usually called horizontal scaling [79].

 One of the post popular and leading Nosql system management is Mongodb. Mongo db

is an open source database based on distributed document released in 2009. It stores data as

JSON-Like document with dynamic schemas (The format is called BSON) [80]. Mongodb is a

document oriented database which holds a set of collection that are similar to relational

database Tables where each collection contains a set of documents. One collection can hold

different document with number of fields, content and size are not similar. It is a schema

less that means the mongodb can be a distributed database and does not have a predefined

schema so that allows providing additional data type and inserting new fields. Mongodb

document is a set of key value pairs. Key values databases provide a hash table where the unique

key and a pointer to a specific set of values are stored and data can be retrieved using

the key. Mongodb is suitable tools for managing a distributing data between instances while

using replication to improve the level of availability. With the information industry dependent

on the time, developing rapidly in recent years, the dataset using in different system are

becoming extremely large in volume with a high variety of data. For this reason , Mongodb has

been invented to overcome the limitation of relational and Object Relational Database , and

provides new mechanisms for managing huge amount of data that are different from the typical

relational and object relational Model. In addition, the mongodb is adopted to handle the huge

evolution of temporal data in distributed environments in which continue to rise in complex

applications and social network.

 In this section, we present the most necessary phases for translation process. We are going

to propose several rules that allow developing the determined schema. In the fist, we present a

comparison between temporal object relational database and Mongodb. After that we will

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

118

explain the different elements composed TORDB design, and then we will define the mongodb

schema including bitemporal data. In this approach, we will not explain the rules for translation

of TORDB model into their equivalent in the TJson_schema.

3.1 Comparison between Object relational database and Mongo db features:

 Mongodb is an open source Nosql database based on oriented document structure. It was

developed during 2007 by software called 10gen Company. Mongodb documents are stored in

binary form that are similar to Json document model called BSON format, that supports such

primitives data type (String, integer, date, Boolean, float and binary).the main features in

mongodb are collections and documents. Mongodb documents have a flexible schema in which

the collection dos not impose the necessary document schema. However, the temporal object

relational databases require a table schema to be declared and created before inserting the data.

Any temporal object table has a certain design that shows the relationships between them.

Although mongodb does not support join operations as SQL databases, the relationship between

documents can be represented using either the referenced or embedded concepts. The

relationship in mongodb define how various documents logically dependant to each other. The

relationship in mongodb can be expressed via embedded or referenced concepts. Where,

embedded documents maintain all the related data in one document. These renormalized data

representation allows applications handle and retrieve data from a single document.

 In the following subsection, we focus on comparing mongodb to Temporal Object relational

database. The table presents the main techniques of TORDB methodology and Mongodb.

Table16. The Differences between TORDB and Mongodb features

 On the other hand, the referenced document stores the relationships separately between

document by adding id-Field that references or links from one document to another. This

TORDB Mongodb

Database Database

Temporal Object\Temporal Table Temporal Collection

Row Document

Column Field

Data Type Data Type

Primary Key Id_Field

Simple UDT| REF | Nested table | Array |

nested table(REF)

Referenced Document \ Embedded

Document

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

119

approach designs the normalized relationship. Actually, the difficult part of transformation

process is how we can convert the relationships of the existing temporal object relational

database into Mongodb document.

Each User Defined Time or UDT is converted to a MongoDB collection, in this example the

collection name is customer contains Bitemporal period object. The customer_table holds data

rows of customer_type objects. Also the customer collection will store customer objects with

the same attribute as documents in BSON (Binary encoded JSON) format including varying

time attributes. Then statements below shows the creation of customer collection and how we

can generate documents with bitemporal Object in Mongodb :

Document1

db.createCollection(“Customer”) \\ Creation of Customer

Collection

db.Customer.insert(

{

“Customer_Id”:23

“Name”: “Soumiya”

“Bitemporal_data”:

{

“Vt_start”: “2020-02-03” \\ Valid time start

“Vt_End”: “2028-02-28” \\ Valid Time End

“TT_start”: new Date() \\ Transaction Time Start takes

the sysdate as Default value .

“TT_End”: “9999-12-31” }} \\ Transaction Time End

sets the value of insertion of transaction time to the highest

value (“31/12/9999”)

Figure42. Example of Json file with bitemporal data

3.2 Temporal Json schema (TJSON-schema):

 Tjson-schema is a representation of Json document with historical data that is enhanced

with additional semantic data to offer a new description of mongodb document. We have chosen

the most commonly used in the oriented documents that able to identify the relevant collections,

their documents and their relationships. The model constructs a data reference design in order

to facilitate the understandability of metadata stored in Json document integrating Bitemporal

Data. Also, it overcomes the complications that occur during the transformation process.

Tjson-schema can be defined as follows:

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

120

Tjson-schema ={TJ|TJ={ Col_name , Tdoc , RELCol}}

Where:

 Col_name : each collection has a name , where the collection can be defined as a set of

temporal and simple documents.

 Tdoc: denotes temporal Json documents including varying Time fields. Generally, the

document in mongo db is a set of a key value pairs:

TDOC= {doc_ID, Fields, Bitemporal_Period, Primary Key}

The Json document uses Object Id as a default id which is generated during the creation

of mongodb document.

 Fields = means a set of fields and can be identified by the following elements:

 Field={ Field_Name , Field_Name} Where:

Field_Name is the name of the field. Field_Type= means data type (integer, string, date)

.Bitemporal_Period means the embedded document in Json document which composed by:

Bitemporal_Period ={VT_start,VT_end,TT_start,TT_end}

 Relcol=Relations Tjson-schema. Each collection has a set of relationship between

documents and can be identified as follow:

Relcol ={RelType,RelName,Dircol Where:

 Each collection or Document has a relationship Type with other documents. The Reltype offers

2 types of relations: Embedded document of referencing document. Dircol is name of doc’ that

is related to the document Doc.

3.3 Transformation Rules From TORDB into mongodb:

 Association

 R1: For the two UDTs Namely Customer_Type and Account_Type contain Bitemporal data

and are related with association (1...N) relationship, using reference mechanism which allow

retrieving data rapidly without using join between tables. The transformation of association in

Mongodb consists on generating a new document where the Customer_Type will be referenced

in Account_type document and the object type will be embedded in the both document.

Col1={NameCol1,NameDoc,Doc(Fields),Embedded(Bitemporal_Period)}

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

121

Col2={NameCol2,NameDoc,Doc(Fields),Object_ID(Doc),Embedded(Bitemporal_Period)}

The example below shows the structure of customer and account document, also the TORDB

query Statement:

 Figure43. An example of Association 1 to N relationship between Customer and Account

The creation will proceed according to the following syntax:

Col1={Customer,Customer_Json Document , (_id, Id_Cust, Name), Customer_h (VT_start, VT_End,TT_Start,

TT_End)}

Col2={ Account, Account _Json Document , (_id, Num_Accout, Type_Account), Customer (_id),account_h

(VT_start, VT_End,TT_Start, TT_End)}

Figure44. Account_Document extraction with Mongodb

The defined TORDB Query for the corresponding example:

Query1: creation statement for account table

CREATE TYPE account_t AS OBJECT

(acc_no NUMBER,

acc_type varchar(20),

Customer REF customer_T,

account_h bitemporal_period);

Document 2:

{

 "_id":1345672

 "Num_Accout": 1

 "Type_Account": “Saving_Account”

 "account_h":

 {

 "VT_start": ISODATE(“2010-01-01”)
 "VT_End": ISODATE(“2012-11-30”)

"TT_Start": ISODATE (“2010-01-03”)

 "TT_End": ISODATE(“2012-12-04”)

 }

"Customer":{

 "_id": “145673” }}

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

122

CREATE TABLE account_table of account_t NESTED

TABLE account_h STORE AS accounth_tab ;

Figure45. Account_Document extraction with Mongodb

 On the other hand, in the case of association many to many (N,N) , the both document

representing account and Branch_bank(see the example below), will be mapped in composition

between the both document where each document integrates referenced document of another.

The transformation result is:

Col1={NameCol1,NameDoc,Doc(Fields),Object_ID(Doc),Embedded(Bitemporal_Period)}

Col2={NameCol2,NameDoc,Doc(Fields),Object_ID(Doc),Embedded(Bitemporal_Period)}

The example shows the structure of branch_bank and customer Json document representing N

to N Relationship:

Document 3:

Banch_bank document:

{

 "_id":45679

 "branch_pk":1

 "city": “Casablanca”

 "phone": 06453278

 "Bitemporal_Period":

 {

 "VT_start": DATE(“2013-03-01”)

 "VT_End": DATE(“9999-12-31”)

 "TT_Start": DATE (“2013-03-03”)
 "TT_End":DATE(“9999-12-31”)

 }

"Customer":{

 "Customer_id": “ 2334” }}

Customer_Json Document :

{

 "_id":2334

 "Num_Cust":

 "Name_cust":

 "Bitemporal_Period":

 {
 "VT_start": DATE(“2010-01-01”)

 "VT_End": DATE(“2012-11-30”)

 "TT_Start": DATE (“2010-01-03”)

 "TT_End": DATE(“2012-12-04”)}

"Branch_bank":{

 " _id": “45679” }}

Figure 46. Extraction of branch_bank Json file

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

123

 Composition:

 In ORDB, the composition relationship is represented by declaring Nested table in the

whole class which stores all attributes of the whole part. This relationship will be converted in

a strong composition in mongo db between the account and balance documents. The

transformation model generates one document account contains embedded collection of

balance documents. The result of composition relationship:

Col={NameCol, NameDoc, Doc (Fields), Embedded (Bitemporal_Data),

Embedded(Collection (Part_ Fields))}

Figure 47. An example of Composition Class diagram

The corresponding TJson document of the example above:

Col={ Account, Account _Json Document , (_id, Num_Accout, Type_Account), account_h

(VT_start,VT_End,TT_Start,TT_End),Balance{Value,Balance_h(VT_start,VT_End,TT_Start

, TT_End)})

Account document embedded the balance document:

Document4:

{

 "_id":65789

 "Num_Accout": 2

 "Type_Account": “saving_account”

 "Bitemporal_Period":

 {

 "VT_start": “2015-01-01”

 "VT_End": “9999-12-31”

 "TT_Start": “2015-01-01”

 "TT_End": “9999-12-31”
 }

"Balance":[{

 " value":324561.098

 "Blance_h":

 "VT_start": “2015-01-01”

 "VT_End": “9999-12-31”

 "TT_Start": “2015-01-01”

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

124

Figure 48. Extraction of balance Json File for composition

 Aggregation:

 An aggregation represents a binary relationship. It is a weak form of composition where

the part is shareable and independent from the whole, and its properties can be linked with more

than one whole class component. For example, if all the composites (whole) are deleted, the

sheared part can be existed.

 For the aggregation Relationship, the relation is identified a collection of (UDT) in addition

of bitemporal data. Then, the branch bank can be composed by one or more than one shareable

and existence independent collection. In mongodb, the Aggregation relationship will be

considered as a referencing collection of _ID document represented the account document:

Col1={NameCol1,NameDoc,doc(Fields),Embedded(Bitemporal_Period)}}

Col2={NameCol2,NameDoc2,Doc(Fields),Referencing(collection(Doc1)+BitemporalPeriod),Emb

edded(Bitemporal_Period)}}

Figure 49. Aggregation relationship Class

The transformation will be defined as follow:

Col1={ Account, Account _Json Document , (_id, Num_Accout, Type_Account), account_h (VT_start,

VT_End,TT_Start, TT_End))

Col2={Branch_Bank, Banch_bankdocument, {_id, branch_id, city,phone},Account(collection(_ID , account_h

(VT_start, VT_End,TT_Start, TT_End)} , Banch_bank_h(VT_start, VT_End,TT_Start, TT_End)}

 "TT_End": “9999-12-31” }

{

 " value": 4356.098

 " Blance_h ":

{

 "VT_start": “2019-07-24”

 "VT_End": “2019-09-23”

 "TT_Start": “2019-07-25”
 "TT_End": “2019-09-27”

 }]}

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

125

The following TJson document presents the example above:

Document5:

{

 "_id": 678

 "branch_id": 9

 "city": “Casablanca”

 "phone":074467543

 Accounts :[{
 "Account":56432

 "Account_h":

 {

 "VT_start": “2019-08-22”

 "VT_End": “9999-12-31”

 "TT_Start": “2019-08-25”

 "TT_End": “9999-12-31” }}

 {

 "Account":980654

 " Account_h ":

 {
 "VT_start": “2018-07-24”

 "VT_End": “2019-09-23”

 "TT_Start": “2018-07-25”

 "TT_End": “2019-09-27” }

}]}
Figure 50. Temporal Json File for Balance_Bank

The example below presents the TORDB Query Creation for Branch Bank and Account

Tables:

Query 3: creation statement of the aggregation relationship

Create type Account_NT as object

(Account Account_T,

Account_h bitemporal_period) /

CREATE TYPE Account IS TABLE OF Account_NT ;
Create type branch_bank_type as object (

Branch_Num number,

Address varchar(40),

City varchar(20),

Accounts Account,

Branch_h bit_period)

CREATE TABLE branch_bank_table of

branch_bank_type NESTED TABLE accouns STORE AS

accounth_tab, NESTED TABLE branch_h STORE AS

branch_tab ;

Figure51. TORDB for aggregation Relationship

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

126

 Inheritance

 Is called also a generalization is a relationship between two classes or more , where one

entity represent a parent or super class and the other one is considered as a child or sub class

. The child inherits the behavior and all the properties of the parent.

 The inheritance is a very important In ORDB. For the creation statement of UDT that

represents the inheritance, we add the keyword under for the sub class. This model will be

transformed in Mongo db by generating two documents separately modeling transaction and

transfers Types. The transfer document maintains the same structure of transaction type with

Additional properties of subtype is defined in the usual way with time varying features.

 Col1={NameCol1,NameDoc,Doc(Fields),Embedded(Bitemporal_Period)}}

Col2={NameCol2,NameDoc,doc(Fields+doc1(Fields)), Embedded(Bitemporal_Period)}}

The details are illustrated in the following example:

Figure52. Inheritance Relationship Example

Col1={Transaction, Transaction_Json Document doc(_id, trans_ID, Type_Trans, Amount), Transaction_h h

(VT_start, VT_End,TT_Start, TT_End)}

Col2={Transfer, Transfer_Json Document ,(_id, trans_ID, Type_Trans, Amount, target_source), Transaction_h h

(VT_start, VT_End,TT_Start, TT_End)}

The following TJson document presents inheritance relationship:

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

127

Document6: Temporal Json File for Transfer class

{

 "_id":87654

 " trans_ID ": 34

 " Type_Trans": “transfer”

 “Account”:9876

 “Amount”: 23450

 "Transaction_h":

 {

 "VT_start": “2018-04-02”
 "VT_End": “2018-04-05”

 "TT_Start": “2018-04-02”

 "TT_End": “2018-04-04” }}

“target_source “: “soumiya}

Figure 53. Temporal JSON Document For Ihneritance Relationship

Ihneritace Creation Query in TORB using Under keyword:

Query 4: creation statement for inheritance relationship

Create or Replace type Transaction_Type as object

(trans_ID number,

Type_Trans varchar(20),

Amount number,

Account REF account_type,

Transaction_h bitemporal_period) NOT FINAL ;

Create table transaction_table of Transaction_type

NESTED TABLE Transaction_h STORE AS

transactionh_tab;

Create or Replace type Transfer_T UNDER

Transaction_Type (target_source varchar(20)) ;

Figure 54. Temporal Queries FOR Ihneritance Relationship

IV. CONCLUSION

 This chapter described two solutions to the problem of modeling andtransforming of

massive data based on temporal object Relational database to handle a large volume of historical

information. In the first, we have presented a novel approach for conceptual design of TDW

and the rules. This study simplifies comprehension of the transformation process of UML class

diagram into TDW using ORDB and Bitemporal data. From UML class diagram we have

extract data behaviour, relationships between class and constraint rules in order to provide our

meta-Model in which contains varying time attributes. In the Next, We have described the

CHAPTER V : MODELLING BI-TEMPORAL PROPERTIES INTO BIG DATABASE

128

basics phases of modeling and converting Temporal Object relational including User defined

time with Bitemporal data into oriented document database. To do that, we formalized the rules

by specifying the basics steps involved in the temporal object-relational database design, in

order to capture the relationship’s type between objects. Furthermore, Temporal Json document

design has defined including the varying time data by exploiting the range of powerful concepts

provided by Nosql database. Currently, any work deals with the transformation process and its

functionalities from TORDB into Mongodb.

CONCLUSION

129

CONCLUSION

 In the last decades, with the emerging popularity of Object oriented applications, it is

becoming easier than ever to find methodologies for migrating into different environment. The

topic receiving less attention, though, is how to convert the temporal database adopting Object

Relational Model. The temporal databases are naturally good sources for knowledge discovery.

They could also be used to record all changes through time. This concept helps organizations

in better decision making and to function in a well formulated manner. Therefore, the proposed

methodologies describe howto migrate in great details with comprehensive examples. Our

approach seeks to make the gap smaller by easing the effort to the transformation of TORDB.

This is a major concept of this thesis. The methodology itself contains three major parts are:

1. implement a Conceptual model for temporal databases using UML and OCL

2. Extract a schema translation of each model for each stage of the migration

3. Formalize the rules of the migration which comprehensive examples

 In our research, we presented an approach to generate ORDB with varying time features

from class diagram schema. We use the class, relationships, and properties as input enriched

with semantic data to provide class_schema, which will be transformed to TORDB model

which characterize the temporal and non-temporal tables. To do that, we have developed an

algorithm to automate the translation schema conversion. Therefore, we have presented a class

diagram based on temporal concepts and incorporate OCL specification that can be useful for

early identification of undesired problems, in order to simplify the comprehension of the system

interaction and help for database migration and evolution using temporal object-relational

concepts.

 The next chapter covered the migration of Temporal object relational database based on

SQL: 2011 standard into temporal object relational database. The main goal of this conversion

is to overcome the lack emerged after combining TRDB with temporal features. Our

contribution offered a precise description of a solution for migrating a TRDB into temporal

object systems. We presented the basics phases to convert an RDB based on SQL: 2011

CONCLUSION

130

standard into TORDB, which contains varying time features, with a simple and practical

method to capture the different relationships between classes, association, aggregation,

composition, as well as inheritance.

In the last, we described the modeling the the transformation of massive data based on TORDB

as database source into Nosql databases and the web semantic, in order to store , reuse and share

the data on the web .We outlined the basic rules of the transformation by specifying the basics

steps involved in the temporal object-relational database design.

 The investigation of the relevant literature has shown that viewing the objects on top of

temporal database and establishing gateways to the migration of existing temporal data between

different systems. Besides, it seems that existing work does not produce a solution for

integrating temporal features in different environment in general and the migration mechanism

between different databases in particular.

REFERENCES

131

REFERENCES

[1] A. Olive. “Conceptual Modeling of Information Systems”, Springer. Heidelberg , (2007) .

[2] J.Arlow. “UML 2 and the Unified Process Practical Object_Oriented Analysis and

Design”. Edition 2, (2002).

[3] J.Cabot & E. Teniente . “Incremental Integrity Checking of UML/OCL Conceptual

Schemas”. Systems and Software. 82 (9), 1459-1478,(2009).

[4] M.Wahler. “Using Patterns to Develop Consistent Design Constraints”. PhD Thesis,.ETH

Zurich, Switzerland ,(2008).

[5] M. Kaufmann, P.M. Fischer, N. May & D. Kossmann. “Benchmarking Bitemporal

Database Systems: Ready for the Future or Stuck in the Past?”. Proc EDBT (2014), pp.738-

749,(2014).

[6] T. Richard Snodgrass & Ilsoo Ahn. “Temporal Databases”. IEEE Computer 19(9), pp.

35– 42,(1986)

[7] Alexander Menne. “The Potential of Temporal Databases for the Application in Data

Analytics”. Netherlands, (2019).

[8] K. Kulkarni & J. Michels. “Temporal Features in SQL: 2011”. SIGMOD Records, Vol. 41,

No. 3. (2012).

[9] K.Kulkarni & J.Michels. “Temporal Extensions in the SQL Standard”. In: Liu L., Özsu

M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY.(2018).

[10] S. Radovanović, E. Milovanović & Nenad Aničić. “Performance Evaluation Of Temporal

Features Defined”. In Oracle 12C Database. PROC. SYMORG, p 858—866, (2014).

[11] J.T. Wheeler . “Extracting a Relational Database Schema from a Document Database”.

University of North Florida , (2017)

[12] J.W. Rahayu ,E. Chang, T.S. Dillon & D. Taniar. “Performance evaluation of the object-

relational transformation methodology”. Data Knowledge Engineering 38(3):265–300,

(2001).

[13] J.C Date. “An Introduction to Database System” .8th Edition, United States of America,

Pearson Education, Inc. (2003).

[14] A.A. Maatuk . “Migrating Relational Databases into Object-Based and XML Databases”.

Northambria University . Newcastle. (2009).

https://www.researchgate.net/publication/220691699_Conceptual_Modeling_of_Information_Systems?el=1_x_8&enrichId=rgreq-f5abcea1fedf9acbace1f958d44a14fd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI2Njk2NztBUzo5OTE3MDg3NDU2MDUyMkAxNDAwNjU1NTg3Njg0

REFERENCES

132

[15] M. Wang. “Solving Relational Database Problems with ORDBMS in an Advanced

Database Course”. Information Systems Education Journal (ISEDJ),(2011).

[16] W.H. Inmon. “Building the Data Warehouse”, 2nd edition, John Wiley & Sons, New

York, (1996).

[17] A.A. Vaisman & E. Zimányi . “Temporal Datawarehousing”. In: Liu L., Özsu M.T. (eds)

Encyclopedia of Database Systems. Springer, New York, NY, (2018).

 [18] T. Zurek. “Optimisation of Partitioned Temporal Joins”. University of Edinburgh,(1997)

[19] RP. Padhy, MR. Patra & SC. Satapathy. “RDBMS to NoSQL: reviewing some next-

generation non-relational database’s”. Int J Adv Eng Sci Technol;11(1):15–30.(2011).

[20] NQ .Mehmood & R. Culmone. “An ANT+ protocol based health care system”. 29th

international conference on advanced information networking and applications workshops

(WAINA). New York. p. 193–8, (2015).

[21] N. Leavitt. “ Will NoSQL Databases Live Up to Their Promise?". Computer, vol. 43, pp.

12-14, feb. (2010).

[22] M.Vadanyan . “Picking the Right NoSQL Database Tool” .(2015)

[23] R. Angles , C. Gutierrez. “Survey of graph database models”. ACM Computing Surveys

(CSUR), 40(1):1–39, (2008).

[24] Koivunen, Marja-Riitta & E. Miller. “W3c semantic web activity”. Semantic Web

Kick-Off in Finland .pp27-44.(2001).

[25]L.Quin.“Extensible Markup Language (XML)”.Word Wide Web

https://www.w3.org/XML/ , (2002).

[26] C. M. Sperberg-McQueen & Henry S. Thompson . “XML Schema”. World Wide Web

Consortium (W3C). http://www.w3.org/XML/Schema.(2000)

[27] T. M. Connolly & C. E .Begg. “Database systems: a practical approach to design,

implementation, and management” . Pearson Education. (2005).

[28] Fallside, D. C. & Walmsley, P. “ XML schema part 0 : primer 2eme Edition”. W3C

recommendation, 16, (2004).

[29] CE. Atay. “A Comparison of Attribute and Tuple Time Stamped Bitemporal Relational

Data Models”. Proc of the Int Conf on Applied Computer Science. pp: 479--489, (2010).

 [30] D. Petković . “Performance Issues Concerning Storage of Time-Variant Data”. Egyptian

Computer Science Journal. Vol.38 . (2014).

http://www.dcs.ed.ac.uk/~tz
http://www.ed.ac.uk/
https://www.w3.org/XML/
http://www.w3.org/XML/Schema.(2000)

REFERENCES

133

[31] V.T.N Chau & Chittayasothorn . “A Temporal Object Relational SQL Language with

Attribute Timestamping in a Temporal Transparency Environment”. Data & Knowledge

Engineering , Elsevier, vol. (67), p. 331--361, (2008).

 [32] SY. Noh, S.K. Gadia & H. J Jang. “Comparisons of three data storage models in

parametric temporal databases”. Journal of central south university, Springer, vol .20, p

1919—1927. (2013).

[33] ISO/IEC 9075-2:2011. “ Information technology - Database languages - SQL - Part 2:

Foundation (SQL/Foundation)”, (2011).

 [34] S.Vesić, S. B.Nenad Aničić. “Use of the Temporal Concepts in Transaction Database”,

PROC. SYMORG, p 850--857, (2014).

[35] S. Radovanović, E. Milovanović & N.Aničić. “Performance Evaluation Of Temporal

Features Defined In Oracle 12C Database”. PROC. SYMORG, p 858--866,(2014).

[36] M. F. Golobisky & A. Vecchietti. “Mapping UML class diagrams into object-relational

schemas”. InProceedings of the Argentine Symposium on Software Engineering (ASSE

2005), 34 JAIIO, 65-79 pp, (2005).

[37] M. Wang .“Using UML For Object-Relational Database Systems Development: A

framework” . Issues in Information Systems, VOL 9, No. 2 .(2008).

[38] Wai Yin Mok & D. P. Paper. “On transformations from UML models to object-relational

databases”. Proceedings of the 34th Annual Hawaii International Conference on System

Sciences, Maui, HI, USA, 2001, pp. 10 pp.-, doi: 10.1109/HICSS.2001.926341.

[39]W.Y. Mok. “Designing nesting structures of user-defined types in object-relational

databases”. Information and Software Technology, Volume 49, Issues 9–10, Pages 1017-

1029,(2007).

[40] J. Cabot , R. Clarisó & D. Riera. “Verification of UML/OCL Class Diagrams using

Constraint Programming”. Proceedings of the 2008 IEEE International Conference on

Software Testing Verification and Validation Workshop, p.73-80, April 09-11, (2008).

[41] A. Queralt, A. Artale, D.Calvanese & E. Teniente. “OCL-Lite: Finite reasoning on

UML/OCL conceptualschemas”.Data Knowl.Eng, 73,1 -22,(2012).

[42] M.Gogolla & F.Hilken. “Model Validation and Verification Options in a Contemporary

UML and OCL Analysis Tool”. In: Oberweis, A., Reussner, R. (eds.) Proc. Modellierung

(MODELLIERUNG’ 2016). pp. 203–218. GI, LNI 254 ,(2016).

[43] L.Maciaszek & W. Kin-shin. “UML Dialect for Designing Object-Relational

Databases”.In challenge of information Technology Management in the 21 century,

Information Ressources managementAssociation International Conference,pp 473-447 ,

(2000) .

REFERENCES

134

[44] M. F. Golobisky & A. Vecchietti. “Mapping UML class diagrams into object-relational

schemas”. In Proceedings of the Argentine Symposium on Software Engineering (ASSE

2005), 34 JAIIO, 65-79 pp, (2005).

[45] E. Marcos , B. Vela & J. M. Cavero. “A methodological approach for object-relational

database design using UML” . Software and System Modeling, 2(1):59–75, (2003).

[46] E.Pardede, J. W. Rahayu & D. Taniar. “Mapping methods and query for aggregation and

association in object-relational database using collection”. In ITCC (1), volume 1, pages

539–, Las Vegas, Nevada, USA. IEEE Computer Society. (2004).

[47] CASTELLANOS, Malű et SALTOR, Felix. “Semantic enrichment of database schemes:

an object oriented approach”. In : Interoperability in Multidatabase Systems,. IMS'91.

Proceedings., First International Workshop on. IEEE, 1991. p. 71-78,(1991).

[48] Castellanos & Mal. “Semantic Enrichment of interoperable databases”. In : Research

Issues in Data Engineering, 1993: Interoperability in Multidatabase Systems, Proceedings

RIDE-IMS'93., Third International Workshop on. IEEE, 1993. p. 126-129, (1993).

[49] A.A.Maatuk , A.Akhtar & Nick. ROSSITER. “Semantic enrichent: The first phase of

relational database migration”. In : Innovations and Advances in Computer Sciences and

Engineering. Springer Netherlands,p. 373-378 , (2010).

[50] A. El Alami & M. Bahaj. “Migration of the Relational Data Base (RDB) to the Object

Relational Data Base (ORDB)”. World Academy of Science, Engineering and Technology,

International Journal of Computer, Electrical, Automation, Control and Information

Engineering, vol. 8, no 1, p. 242-248, (2014).

[51] J. Tekli. “An Overview on XML Semantic Disambiguation from Unstructured Text to

Semi-Structured Data: Background, Applications, and Ongoing Challenges”. IEEE

Transactions on Knowledge and Data, Vol: 28, Issue: 6 , pp: 1383 - 1407, (2016).

[52] F. Rizzolo & A. Vaisman. “Temporal XML: Modeling, indexing, and query processing”.

The VLDB Journal , 17(5):1179–1212, (2008).

[53] F. Wang, X. Zhou & C. Zaniolo. “Using XML to Build Efficient Transaction-Time

Temporal Database Systems on Relational Databases”. 22nd International Conference on

Data Engineering (ICDE'06), Atlanta, GA, USA, pp. 131-131,(2006).

[54]G. Z. Qadah. “Indexing techniques for processing generalized XML documents”.

Computer Standards and Interfaces, vol 49:34–43, (2017).

REFERENCES

135

[55] SY. Noh, Shashi, K. Gadia & Ma.Shihe. “An XML-based methodology for parametric

temporal database model implementation”. Journal of Systems and Software 81(6): 929-

948,(2008).

[56] L. Ying, M. Jun & S. Yuyin. “Applying Dewey Encoding to Construct XML Index for

Path and Keyword Query”. 2009 First International Workshop on Database Technology and

Applications, Wuhan, Hubei, pp. 553-556, 2006

[57] A. Qtaish & K. Ahmad. “XAncestor: An efficient mapping approach for storing and

querying XML documents in relational database using path-based technique”. Knowledge-

Based Systems, 114(October):167–192, (2016).

[58] H. Hamrouni, F.Grandi & Z. Brahmia. “Deferred repair of inconsistencies resulting from

retroactive updates of temporal XML currency data”. IJWIS 13(4): 485-519 ,(2017).

[59] R. Lawrence. “Integration and Virtualization of Relational SQL and NoSQL Systems

Including MySQL and MongoDB”, in 2014 The International Conference on

Computational Science and Computational Intelligence , Las Vegas, NV, USA, (2014).

[60] A. Singh. “Data Migration from Relational Database to MongoDB”.Global Journal of

Computer Science and Technology:C Software & Data Engineering ,Vol 19,Issue 2

,(2019).

[61] T. Jia, X. Zhao, Z. Wang, D. Gong &G. Ding . “Model Transformation and Data Migration

from Relational Database to MongoDB”, in 2016 IEEE International Congress on Big Data

(BigData Congress), San Francisco, CA, (2016).

[62] L. Stanescu, M. Brezovan, D.D. Burdescu . “An Algorithm for Mapping the Relational

Databases To MongoDB--A Case Study”, International Journal of Computer Science &

Applications, 14(1), (2017).

[63] L.Stanescu, M.Brezovan , CS. Spahui & DD. Burdescu . “A framework for mapping the

mysql Databases to Mongodb– Algorithm, Implementation and experiments. International

Journal of Computer Science and Applications, Vol.15, No. 1, pp. 65 – 82, (2018).

[64] T. Fouad & M. Bahaj. “Model Transformation From Object Relational Database to NoSQL

Document database”. In 2019 International Conference on Networking, Information

Systems & Security, Rabat, Morocco , (2019) .

REFERENCES

136

 [65] D. Chauhan & K.L. Bansal. “Using the Advantages of NoSQL: A case study on

MongoDB”, International Journal on Recent and Innovation Trends in Computing and

Communication, vol 5(2), ISSN 232/-8169, (2017).

[66] S. Brahmia, Z. Brahmia, F. Grandi, R. Bouaziz, “A Disciplined Approach to Temporal

Evolution and Versioning Support in JSON Data Stores” . In Emerging Technologies and

Applications in Data Processing and Management”, IGI Global, 114-133, 2019. DOI:

10.4018/978-1 -5225- 8446-9.ch006

[67] Y. Widyani, H. Laksmiwati & E. D. Bangun, “Mapping spatio-temporal disaster data into

MongoDB”,In 2016 International Conference on Data and Software Engineering

(ICoDSE), Denpasa, Indonesia, (2016).

[68]A. Boicea, F. Radulescu & L. I. Agapin, “MongoDB vs Oracle -- Database Comparison”,

In 2012 Third International Conference on Emerging Intelligent Data and Web

Technologies, Bucharest, (2012).

[69] Chau, V.T.N. and S. Chittayasothorn . “A Temporal Object Relational SQL Language

with Attribute Timestamping in a Temporal Transparency Environment” .Data &

Knowledge Engineering., vol 67, p. 331-361, (2008).

[70] T.fouad & M.BAHAJ. “Extracting UML Models And OCL Integrity Constraint From

Object Relational Database”, Journal of Theoretical and Applied Information Technology.

Vol.96. No 4, February (2018).

 [71] Ainars Auzins and Janis Eiduks and Alina Vasilevska and Reinis Dzenis .ObjectRelational

Database Structure Model and Structure Optimisation”,Applied Computer Systems, pp 28-

36,vol 23,2018

 [72] J. Cai, V.Eske, Xu. Wang, Semantic Web & Ontologies. http://www.mpi-

inf.mpg.de/departments/d5/teaching/ss03/xml-seminar/talks/CaiEskeWang.pdf

[73] S. Balamurugan & Ayyasamy . “ Performance Evaluation of Native XML database and

XML Enabled database”. IJARCSSE Journal, vol 7, (2017).

[74] M. Wang ,M. Xiao ,S. Peng : “A hybrid Index for Temporal Big” Data.FGCS Journal, vol

72 , , pp 264-272 , (2017).

[75] Z. Brahmia, F. Grandi & R. Bouaziz : “Changes To XML Namespaces in XML Schema

and Their Effects on Associated Xml Documents Under Schema Versioning”. In:

Proceeding of the 11 Th International Conference on Digital Information Managment

(ICDIM), (2016).

[76] G.GARANI & CE.ATAY. “Comparison of different temporal data warehouses

approaches”.The online Journal of science and technology . Vol7(2),(2017).

[77] E.Malinowski & E. Zimanyi. “Logical representation of a conceptual Model for spatial

data warehouses”.GeoInformatica.vol 11(4)pp431 -457,(2007).

http://www.mpi-inf.mpg.de/departments/d5/teaching/ss03/xml-seminar/talks/CaiEskeWang.pdf
http://www.mpi-inf.mpg.de/departments/d5/teaching/ss03/xml-seminar/talks/CaiEskeWang.pdf

REFERENCES

137

 [78] Z.Gansen, L.Qiaoying, L.Libo & L.Zijing. “Schema Conversion Model of SQL Database

to NoSQL”. In 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing. Guangdong, China. DOI: 10.1109/3PGCIC.2014.137, (2014).

[79] Byrne, B, Nelson, David & Jayakumar. “Big Data Technology - Can We Abandon the

Teaching of Normalisation?”, in 2017 I9th annual International Conference on Education

and New Learning Technologies, Barcelona, Spain.(2017).

[80] A. Boicea, F. Radulescu & L. I. Agapin. “MongoDB vs Oracle -- nDatabase Comparison”,

In 2012 Third International Conference on Emerging Intelligent Data and Web

Technologies, Bucharest, (2012).

	Figure42. Example of Json file with bitemporal data………………………………………………………………………...119
	I. GENERAL CONTEXT
	II. SCOPE & MOTIVATION
	III. SUMMARY OF THE MAIN GOAL AND CONTRIBUTIONS
	IV. OUTLINE OF DISSERTATION:
	I. INTRODUCTION
	II. CONCEPTUAL MODELLING WITH UML AND OCL TOOLS
	2.1 What is UML?
	2.2 UML Diagrams:
	2.3 OCL
	III. VARYING-TIME MANAGEMENT DATA:
	3.1 An Overview:
	3.2 Valide Time
	3.3 Transaction Time
	3.4 Bitemporal Data
	IV. RELATIONAL AND OBJECT RELATIONALDATABASE
	4.1 Relational Database
	4.2 Object Relational Database:
	V. TEMPORAL DATA WAREHOUSE: AN OVERVIEW
	VI. NOSQL DATABASE
	VII. WEB SEMANTIC:
	7.1 XML Model
	7.2 XML schema Language
	VIII. OBJECT RELATIONAL DATABASE MIGRATIONAPPROACH
	8.1 An Overview of the Proposed Approachs:
	8.2 Discussion
	8.3 Semantic Enrichment of TORDB:
	I. INTRODUCTION (1)
	II. CONCEPTUAL DESIGNING OF TEMPORALOBJECT-RELATIONAL DATABASE BY USING UML:
	2.1 Temporal Data Design with UML Mechanism
	2.2 Improving UML by using OCL:
	III. DEFINING THE TRANSFORMATION RULES FROM UML USING VALID TIME INTO TORDB:
	3.1 UML Class Diagram with Temporal Data:
	The most well-known language of UML is the language of class diagrams which describes the structure of a system in terms of classifiers, their behaviors, and possible relations between different objects. It defines several graphical diagrams in...

	3.2 Meta-Model for Temporal Database:
	UML provides mechanisms that enable new kinds of modeling elements to be defined, and also enable to relate the information to new modeling elements. This is accomplished by integrating stereotype, constraints langage and tagged values for d...

	3.3 Mapping Method from UML into Temporal ORDB
	3.3.1 Association
	3.4 Temporal ORDB QueryIncluding Varying Time:
	IV. MODELLING AND MAPPING METHOD FROM UML/OCL INTO BITEMPORAL DATA
	4.1 Employing UML/OCL for designing Temporal Database
	4.2 The migration from Class_schema into TORDB Model
	4.2.1 Identification of Class_Schema
	4.2.2 Definition of TORDB Model
	Now, we will explain the different elements composed of a TORDB Model, which provides an efficient description of the temporal object-relational database. The TORDB model obtained is defined as a set of temporal typed table based o...
	4.3 Algorithm of conversion from Class_schema into TORDB Model
	V. MAPPING BETWEEN OCL SPECIFICATIONS AND TORDB:
	5.1 OCL specifications
	5.2 Transformation of OCL Specification into TORDB
	5.2.1 Creation of Bitemporal_Period Object
	5.2.2 Creation of trigger before inserts (transformation of Implies operator)
	VI. IMPLEMENTATION:
	VII. CONCLUSION
	I. INTRODUCTION (2)
	II. AN OVERVIEW Of TEMPORAL RELATIONAL DATABASES:
	2.1 Comparison between TRDB and TORDB
	2.2 Strategy of the Migration from TRDB into TORDB:
	III. MAPPING PROCESS OF TRDB INTO TORDB:
	3.1 Semantic Enrichment of Temporal Relational Database Using Valid time:
	3.1.1 Definition of the New Valid Time Data Model
	3.1.2 Generation of the NVTM from TRDB:
	3.1.3 Translating NVTM into TORDB design schema
	3.1.4 Translation of the TRDB design schema to TORDB Query
	3.2 Temporal Relational Database Queries with Bitemporal Data:
	3.3 Semantic enrichment of Temporal Relational Database:
	3.3.1 Definition of the New Bitemporal Data Model
	3.3.2 Generation of the NBTM from TRDB:
	3.4 Semantic Enrichment of Temporal Object Relational database:
	3.4.1 Definition and Identification of TORDB Model:
	3.4.2 Translation of the TORDB design schema to a TORDB Queries:
	3.4.3 Algorithm for Translating NBTM to TORDB Model
	IV. IMPLEMENTATION
	V. TEMPORAL DATA MNIPULATION
	5.1 Insert Statement:
	5.2 Delete Statement:
	5.3 Update Statement:
	VI. CONCLUSION
	I. INTRODUCTION (3)
	II. TEMPORAL XML DOCUMENT MIGRATION
	III. SEMANTIC ENRICHMENT OF TXML
	3.1 Definition of TXSDM
	3.2 Generation of TXSDM from TXML schema File:
	3.3 Algorithm for Translating TXSDM into TORDB Model:
	IV. STORAGE AND PUBLISHING DATA FROM TXML DOCUMENTS INTO TORDB:
	4.1 TXML documents Modelling and Dewey Numbering Schema:
	4.2 Definition of TXML Model for TORDB (TX-OR)
	4.3 Representation of TORDB schema for storing data:
	4.4 General Algorithm for the conversion:
	I. INTRODUCTION (4)
	II. TEMPORAL DATAWERHOUSE MODELLING USING TEMPORAL OBJECT RELATIONAL FEATURES
	2.1 Process Of medelling and transforming UML into Logical Model:
	2.1.1 Creation of Meta-Model for TDW:
	2.1.2 Identification and definition of TEER Model
	2.1.3 S-TORDW and SW-TORDW Model:
	2.2 TORDB Queries Implementation:
	We can translate the S-TORDW and SW-TORDW models into temporal relational queries (for the sake of simplicity, we will create TORDB queries only for Product Dimension) using Oracle 12 C.

	III. MODELLING AND MIGRATING METHOD FROM TORDB INTO MONGODB
	3.1 Comparison between Object relational database and Mongo db features:
	Figure42. Example of Json file with bitemporal data

	3.2 Temporal Json schema (TJSON-schema):
	3.3 Transformation Rules From TORDB into mongodb:
	 Association

	IV. CONCLUSION
	[18] T. Zurek. “Optimisation of Partitioned Temporal Joins”. University of Edinburgh,(1997)
	[26] C. M. Sperberg-McQueen & Henry S. Thompson . “XML Schema”. World Wide Web Consortium (W3C). http://www.w3.org/XML/Schema.(2000)

