
 

 

 

 

 

 

 

 De nos jours, les données sont devenues l’un des atouts majeurs qui constituent une richesse pour 

la recherche. Les informations présentes sont devenues aussi bien pour les entreprises que pour les 

instituts de recherche un facteur de compétitivité et d’innovation. En général, ces données permettent de 

découvrir et d’expliquer certains phénomènes existants ou bien d’extrapoler des nouvelles connaissances 

à partir des informations présentes. Cependant, dans le monde réel, et dans le contexte d’apprentissage 

supervisé, ces données brutes ne sont pas toutes faciles à traiter par les modèles d’apprentissage. On 

peut avoir : 

i. des données homogènes temporelles difficiles à traiter qui présentent un défi de par leur grande 

masse, leur grande dimensionnalité, et l’aspect de changement continu. 

ii. des données peu abondantes présentant un manque aigu de données étiquetées, ce qui entraine 

généralement des difficultés de traitement ; 

iii. des données déséquilibrées contenant un dosage déséquilibré entre les observations fréquentes et 

les observations rares ou très peu représentées ; 

iv. des données contenant des observations aberrantes qui faussent généralement les méthodes 

traditionnelles d’analyse; 

Cette thèse essaie de répondre à cette problématique en proposant des algorithmes qui s’appuient sur les 

réseaux de neurones. Dans cette thèse, on introduit de nouvelles approches, basées sur les réseaux de 

neurones artificiels ou sur l’apprentissage profond, qui produisent des résultats comparables ou 

meilleurs que ceux de l’état de l’art. 
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Abstract

The research goal of this work is to develop learning methods and applications to
interpret and learn features from various sources of information, such as images,
time-series, as well as data from different fields. In this dissertation we introduce a
series of artificial neural network and deep learning based approaches to make classi-
fication and regression tasks towards real-world data and applications. Throughout
this dissertation, we show how these approaches are able to learn features from
different types of data including homogeneous data and heterogeneous data such as
imbalanced data, data with outliers and small datasets.

Faced with challenges that pose such types of data, we propose the following
solutions:

• Homogeneous data. This part focuses on approaches for the classification of
1 dimensional input data (time-series) as well as 2 dimensional input data
(images). Regarding time-series, in the data-level, we propose a method to
convert time-series to frequencies based on the Stockwell Transform and, in
the algorithm-level, an adaptable deep learning model for classifying data
based on the input data variation. As for images, our contribution is the ap-
plication of deep learning models for the recognition of Tifinagh handwritten
characters.

• Lack of data. We attempt to address the challenge of lacking enough super-
vised data. We demonstrate how our framework can be further used within
a multi-modal framework based on a novel transfer learning approach, in or-
der to tackle the problem of lack of data in a particular classification task.
Furthermore, we define three other multi-modal techniques for handling clas-
sification under lack of data: the first one relies on transfer learning with
fine-tuning by using the appropriate source domain task, the second one on a
deep neural network ensemble technique and the third one on a deep neural
network with a novel augmentation technique and a voting technique at test
time.

• Imbalanced data. We propose a cost-sensitive approach for classifying imbal-
anced data. Based on a cost-sensitive loss function, its objective is to correctly
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classify the minority classes and favor them as much as the frequent ones by
assigning a weighted misclassification cost based on the distribution of classes.
We also show which loss functions are suitable for this approach and how this
approach is efficient only for loss functions which ensure, via certain condi-
tions, that the gradient of the loss is relatively large when misclassification
occurs.

• Imbalanced data. We propose an efficient cost-sensitive regression algorithm
for dealing with imbalanced data, suitable for learning with shallow and deep
neural networks. The method uses an updated loss function which pushes
gradients to be influenced by all data equally including rare and frequent
ones during backpropagation.

• Imbalanced data. We propose novel evaluation strategies for regression mod-
els under imbalanced domains, which are shown to be more robust to the
imbalance of data as they are able to reflect the performance of rare events
as well as frequent ones. As such, we introduce new scalar measures, namely
Geometric Mean Error (GME) and Class-Weighted Error (CWE), as well
as graphical-based measures, namely RECT P R, RECT NR, RECG−Mean and
RECCW A curves. These evaluation approaches are computed based on the
estimate of the probability density function of given data and also on the
concept of positives and negatives normally used in classification.

• Data with outliers. We introduce a deep regression model robust to outliers
based on a novel loss function which does not require any hard threshold on
the proportion of outliers in the training set. Our model has shown promising
results and thus can generalize to any dataset with outliers.



Résumé

De nos jours, les données sont devenues l’un des atouts majeurs qui constituent
une richesse pour la recherche. Les informations présentes sont devenues aussi bien
pour les entreprises que pour les instituts de recherche un facteur de compétitivité
et d’innovation. En général, ces données permettent de découvrir et d’expliquer
certains phénomènes existants ou bien d’extrapoler des nouvelles connaissances à
partir des informations présentes. Cependant, dans le monde réel, et dans le con-
texte d’apprentissage supervisé, ces données brutes ne sont pas toutes faciles à
traiter par les modèles d’apprentissage. On peut avoir :

• des données homogènes temporelles difficiles à traiter qui présentent un défi de
par leur grande masse, leur grande dimensionnalité, et l’aspect de changement
continu.

• des données peu abondantes présentant un manque aigu de données éti-
quetées, ce qui entraine généralement des difficultés de traitement ;

• des données déséquilibrées contenant un dosage déséquilibré entre les obser-
vations fréquentes et les observations rares ou très peu représentées ;

• des données contenant des observations aberrantes qui faussent généralement
les méthodes traditionnelles d’analyse;

Cette thèse essaie de répondre à cette problématique en proposant des algorithmes
qui s’appuient sur les réseaux de neurones. En effet, dans cette thèse, on introduit
de nouvelles solutions adaptées à ces types de données :

• Données homogènes. On introduit de nouvelles approches au niveau des don-
nées et au niveau algorithmiques pour la classification des séries temporelles
et des données à deux dimensions (images).

• Manque de données. On a développé un Framework d’apprentissage profond
en se basant sur une nouvelle technique de transfert d’apprentissage (Transfer
Learning). Par ailleurs, on propose d’autres nouvelles techniques à savoir :
une approche associée à un transfert d’apprentissage avec “fine-tuning”, une

v



technique d’un ensemble de réseaux de neurones profonds, et une approche
basée sur une technique de vote appliquées sur un réseau de neurone profond
durant la phase de test.

• Données déséquilibrées. On introduit une approche de reconnaissance op-
timisé pour la classification supervisée des données déséquilibrées. Cette
approche consiste à modifier la fonction de cout en assignant des couts de
classification erronée pondérés selon la distribution des classes. On mon-
tre également les fonctions de cout adaptées à notre approche sont seulement
celles dont le gradient est relativement large lorsque les classifications erronées
surviennent.

• Données déséquilibrées. On propose un algorithme de régression de recon-
naissance optimisé pour le traitement des données déséquilibrées, adaptées à
l’apprentissage avec des réseaux de neurones artificielles et profonds. Cette
méthode utilise une fonction de cout modifiée qui poussent les gradients à
prendre en considération les événements rares autant que les événements
fréquents et ce durant le processus de rétro-propagation du gradient.

• Données déséquilibrées. On propose de nouvelles stratégies d’évaluation des
modèles de régression à partir de données déséquilibrées (à fréquences dif-
férentes). Ces stratégies sont plus robustes que les mesures existantes car
elles permettent de faire apparaitre la performance aussi bien des événements
rares que les fréquents.

• Données avec intrus. Le nouveau modèle qu’on a développé est capable de
traiter et classifier les bases de données bruitées.
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Chapter 1

Introduction to machine learning

1.1 The Amazing Progress of Deep Learning

Deep learning is now regarded as the state-of-the-art solution in almost all machine
learning tasks across various domains (Schmidhuber, 2015). The advantage these
architectures provide over shallow architectures is the ability to extract hierarchies
of meaningful abstracted features from the underlying input data. For instance,
Convolutional Neural Networks (ConvNets), one type of deep learning networks,
have yielded the highest accuracy on computer vision benchmarks such as ImageNet
(Jia Deng et al., 2009; Krizhevsky et al., 2012).

Yet the breakthroughs of deep learning are not limited to computer vision but
also to temporal sequences (RNN) such as natural language processing (Bahdanau
et al., 2014) and speech recognition (Graves et al., 2013). Moreover, thanks to deep
learning, new applications have emerged such and image captioning (by describing
the picture in words) (Xu et al., 2015; Johnson et al., 2016), question answering (We-
ston et al., 2015) and image generation (Van Den Oord et al., 2016). Furthermore,
deep reinforcement learning, which relies on deep learning and reinforcement learn-
ing principles, demonstrated a great success on robotics and video games (Lanctot
et al., 2016).

1.2 Towards Artificial Agents that Exist in the World

However, machine learning and computer science are usually applied on datasets
that are rather divorced from the real world. The current standard implementation
for machine learning is to produce a dataset of tuples ⟨x, y⟩ in which every data
sample is composed of an input x and a target y, and a dataset consists of aggregates
of these tuples together. Datasets are typically cleaned and normalized, and in many
cases, a pre-defined training and test split of the data is produced to equalize results
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from many groups. This dataset formalization ignores many characteristics present
in the real world. As these characteristics will be one of the main problematics of
this thesis, it is worth noting them here:

i First, in many real-world applications, the collected data follows an ‘imbal-
anced’ or ‘skewed’ distribution. Indeed, having data instances with some tar-
gets that are abundant (i.e., majority events) and others scarce (e.g., minority
events), classification or regression algorithms tend to learn more from data
belonging to the majority events and ignore minority events during the train-
ing process. Thus, minority events’ data tend are not adequately learned,
which results in poor accuracy performance of these data. And, unfortu-
nately, within many applications, the minority instances actually represent
the concept of interest (such as fraud in banking operations, abnormal cell in
medical data, dangerous activity in a a continuous surveillance task, object
classification etc.), which makes the detection of these rare events even more
important.

ii Recently, with the increasing growth of data, several annotated (e.g., labeled)
datasets have become publicly available. Nonetheless, some disciplines such as
medicine have few annotated data either because it demands human expertise
or because annotating data is time consuming. And, as a reminder, most of
machine learning algorithms require a large amount of labeled data for proper
training and for a proper feature representation.

iii Third, noise is an inescapable feature of the natural environment which must
be addressed.

These characteristics are often considered to be confounds on the true interesting
problem of creating machines that learn, but it is far from obvious that these char-
acteristics can be abstracted away without substantially modifying learning models
or generating new ones.

This thesis will discuss new learning methods to face these challenges, and opens
a door for substantial further research that bridges the domain of deep learning.



Chapter 2

Contributions

In this thesis, we introduce novel solutions to homogeneous data as well as problems
of lack of data, imbalanced data and data with outliers. These solutions involve the
proposal of new frameworks or approaches:

• Homogeneous data. We introduce a data-level and an algorithm-level ap-
proaches for classifying 1 dimensional input data (time-series) (Sadouk et al.,
2018; Sadouk, 2018) (Part III - Chapter 1) as well as 2 dimensional in-
put data (images) (Sadouk et al., 2017) (Part III - Chapter 2). Regarding
time-series, we propose in the data-level a method to convert time-series to
frequencies based on the Stockwell Transform and in the algorithm-level an
adaptable deep learning model for classifying data based on the input data
variation .

• Lack of data. We demonstrate how our framework can be further used within
a multi-modal framework based on a novel transfer learning approach, in order
to tackle the problem of lack of data in a particular classification task (Sadouk
et al., 2018) (Part IV - Chapter 2)

• Lack of data. Furthermore, we define three other multi-modal techniques
for handling classification under lack of data: the first one relies on transfer
learning with fine-tuning by using the appropriate source domain task (Sadouk
et al., 2020b) (Part IV - Chapter 1), the second one on a Deep Neural Network
ensemble technique (Sadouk et al., 2016a) (Part IV - Chapter 3) and the last
one on a Deep Neural Network voting technique at test time (Sadouk et al.,
2016b) (Part IV - Chapter 4)

• Imbalanced data. We propose a cost-sensitive approach for classifying im-
balanced data (Sadouk et al., 2020c) (Part V - Chapter 1). Based on a
cost-sensitive loss function, its objective is to correctly classify the minority
classes and favor them as much as the frequent ones by assigning a weighted
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misclassification cost based on the distribution of classes. We also show which
loss functions are suitable for this approach and how this approach is efficient
only for loss functions which ensure, via certain conditions, that the gradient
of the loss is relatively large when misclassification occurs.

• Imbalanced data. We propose an efficient cost-sensitive regression algorithm
for dealing with imbalanced data (Sadouk et al., 2021) (Part V - Chapter
2), suitable for learning with shallow and deep neural networks. The method
uses an updated loss function which pushes gradients to be influenced by all
data equally including rare and frequent ones during backpropagation.

• Imbalanced data. We propose novel evaluation strategies for regression models
under imbalanced domains (Sadouk et al., 2021) (Part V - Chapter 2), which
are shown to be more robust to the imbalance of data as they are able to
reflect the performance of rare events as well as frequent ones. As such, we
introduce new scalar measures, namely Geometric Mean Error (GME) and
Class-Weighted Error (CWE), as well as graphical-based measures, namely
RECT P R, RECT NR, RECG−Mean and RECCW A curves. These evaluation
approaches are computed based on the estimate of the probability density
function of given data and also on the concept of positives and negatives
normally used in classification.

• Data with outliers. We propose a robust deep regression model based on a
novel loss function which does not require any hard threshold on the propor-
tion of outliers in the training set (Sadouk et al., 2020a) (Part VI). Our
model has shown promising results and thus can generalize to any dataset
with outliers.



Chapter 3

Thesis Structure

This dissertation is organized as follows:

• Part 2 gives an overview of Neural Networks and Deep learning to provide a
background on recent works.

• Part 3 describes our research findings in the context of learning from homo-
geneous data including time-series and images.

• Part 4 is dedicated to the problem of lack of data and introduces new ap-
proaches allowing a good classification in real supervised tasks even with few
input data.

• Part 5 approaches the issue of learning with imbalanced data and discusses
learning data representations with imbalanced data for classification and re-
gression tasks.

• Part 6 introduces a new regression approach in a data environment with
outliers.

• Finally, Part 7 concludes the thesis by summarizing our contributions and
findings and by discussing remaining challenges and future research directions.

Further details about the organization of the work is given the figure below.
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background and basics
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In recent years, machine learning has become more and more popular in re-
search and a large number of applications, including multimedia concept retrieval,
image classification, video recommendation, social network analysis, text mining,
etc. Among various machine learning algorithms, “deep learning” (DL), also known
as representation learning (Deng, 2014), is widely used in these applications nowa-
days. With great successes around many fields, deep learning now represent a huge
step forward for machine learning and is regarded as one of the hottest research
directions in the machine learning society.

Deep learning is a sub-field of machine learning. As such, it commits to a par-
ticular set of design choices, and explores ways of addressing the two challenges
of machine learning in this self-imposed design space. In doing so, it has accumu-
lated a set of methods that have proven to work well across a large range of tasks,
sometimes outperforming other approaches by a large margin. In this chapter, a
literature review on the related work based on the deep learning framework and
automatic information retrieval is presented. In chapter 1, we define DL categories
and recapitulate the prior work that has been accomplished in DL by discussing
recent research directions, the most important methods and the most popular al-
gorithms in these areas. This will serve as a starting point to begin investigating
methods to come up with novel Deep Learning frameworks. Then, in chapters 2
and 3, we introduce components of deep neural networks (including design choices
and their implications) for supervised learning tasks.





Chapter 1

Deep Learning: definition, categories and
prior work

1.1 Definition

Similar to how medicine, energy, transportation, manufacturing, industrialization,
and food production were revolutionized by electricity in the 20th century, deep
learning (DL) is poised to set course in becoming part of the next century of revo-
lutions. Moreover, the explosive growth and availability of data as well as the re-
markable advancement in hardware technologies have led to the emergence of new
studies in deep learning. Deep learning which has its root from conventional neural
networks significantly outperforms its predecessors. It utilizes graph technologies
with transformations among neurons to develop many layered learning models.

Traditionally, the efficiency of machine learning algorithms highly relied on the
goodness of the representation of the input data. A bad data representation often
leads to lower performance compared to a good data representation. Therefore, fea-
ture engineering has become an important research direction in machine learning
for a long time, which focuses on building features from raw data and has led to lots
of research studies. Furthermore, feature engineering is often very domain specific
and requires significant human efforts. For example, in computer vision, different
kinds of features have been proposed and compared such as SIFT (“Scale Invari-
ant Feature Transform”) (Lowe, 1999), HOG (“Histogram of Oriented Gradients”)
(Dalal and Triggs, 2005), and BoW (“Bag of Words”) (?). Once a new feature is
proposed and performs well, it would become a trend for years. Similar situations
happened in other domains including Speech Recognition and Natural Language
Processing.

Comparatively, deep learning algorithms perform feature extraction in a quite
automated way which allows the researchers to extract discriminative features with-
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out domain knowledge and human input. These algorithms include a layered archi-
tecture of data representation, where high-level features can be defined in the top
layers while low-level features are extracted from the bottom layers. Inspired by
the way the human brain processes information and learns, the DL model consists
of several levels of representation, in which every level uses information from the
previous level to learn deeply. Each level corresponds, in this model, to a different
area of the cerebral cortex, and every level abstract more the information in the
same way of the human brain.

1.2 Deep learning categories and their applications
So far, deep learning has been actively applied in a wide range of applications in
many areas and has covered all types of tasks including supervised, unsupervised
and reinforcement learning tasks, as depicted in Figure 1.1.

DEEP
LEARNING

Supervised learning

Feed-forward
Neural Networks

Multi-Layer
Perceptrons
(MLPs)

Convolutional
Neural Networks

(ConvNets)

Feed-back
Neural Networks

Recurrent
Neural

Networks
(RNNs)

Long Short
Term Memory

(LSTMs)

Unsupervised learning

Generative
models

Deep Belief
Networks
(DBNs)

Generative
Adversarial
Networks
(GANs)

Reinforcement
learning

Deep
Reinforcement

learning

Figure 1.1: Overview of Deep Learning techniques.

1.2.1 Supervised Learning

The most straightforward deep learning tasks fall under the umbrella of supervised
learning, whereby we have access to examples of correct input-output pairs that
we can show to the neural network model during the training phase. In other
words, each input is labeled with a ground-truth output value (e.g., target value)
so that the learning system knows the real output when input is fed. Existing deep
learning models for such learning can be split into two main categories: feedforward
and feedback neural networks.

Feedforward neural networks. Feedforward neural networks are straightforward
networks which associate inputs with outputs with no feedback i.e., the output of
any layer does not affect that same layer (Figure 1.2.a). In other words, the in-
formation flow is unidirectional and a unit within a layer sends information to an



unit of another layer from which it does not receive any information. Accordingly,
prediction at an instance i does not depend on the prediction at the previous in-
stance i − 1 in the previous moment. This type of organization is also referred
to as bottom-up or top-down. For example, if a network classifies the first image
as a ship, then the next image classification will not be changed by the former
classification and will therefore classify a “bus” image as a bus.

Feedforward neural network models include Multi-layer perceptrons (MLPs) and
Convolutional Neural Networks (ConvNets) and have been used in many vision-
related applications, such as face recognition (Taigman et al., 2014), object detec-
tion and semantic segmentation (Girshick et al., 2014), image retrieval (Babenko
et al., 2014), self-driving cars (Chen, 2015), medical diagnostics (J and OG, 2015)
and video surveillance (Kang et al., 2017). When first introduced in the 1980s,
ConvNets were the preferable solution for small problems only (e.g. LeNet (Le Cun
et al., 1990) for handwritten digit recognition). They did not gain popularity since
they were restricted by the high computational cost due to the large network archi-
tecture and training data. It was not until the emergence of GPUs as well as new
hyper-parameters such as ReLU activation neurons (instead of TanH), max-pooling
(instead of average pooling) and dropout regularization, that ConvNets achieved
very high performance.

Feedback neural networks. On the other hand, in a Feedback neural network,
also denoted as recurrent or interactive neural network, the decision this network
gets at this moment (at instance i) depends on the decision which the network got
at the previous moment (at instance i − 1). Computations derived from earlier
input are fed back into the network, thus introducing loops which produce a kind
of memory, as shown in Figure 1.2.b. As a consequence, the current prediction of
a recurrent neural network depends on both the previous prediction of the network
(at instance i− 1) and the current one (at instance i). Thus, rather than learning
a function that maps the input to the output (which is the case for feedforward
networks), the Feedback network represents an internal state for the network that
can cause the network’s behavior to change over time based on its input. Feedback
networks are be used in many applications including Image Captioning, Sentiment
analysis, Machine Translation, etc. For example, in order to read a big text file
and predict the next character, feedback networks can accumulate the knowledge
through previous time-steps (previously read characters) and therefore be aware of
the context.

The most common Feedback networks are Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTMs), which greatly improved the accuracy of
Speech Recognition (Hinton, 2012), Natural Language Processing (Collobert et al.,
2011), and Machine Translation (Bahdanau et al., 2014).



(a) (b)

Figure 1.2: Example of: (a) a Feedforward neural network and (b) a Feedback
neural network.

1.2.2 Unsupervised Learning

Some other deep learning tasks are axed on another common learning category/class
referred to as Unsupervised Learning, where training instances are not labeled with
the belonging class 1.2.b. The role of the unsupervised deep learning system is then
to develop and organize the data, searching for common characteristics among them,
and changing based on internal knowledge. Existing unsupervised deep learning
models such as Deep Belief Networks (DBNs) and Deep Convolutional Generalized
Adversarial Network are generative models whose goal is to imitate the process
that generates the training data in order to produce new data that resembles the
training data. These models have made significant advancements in generative
models, which have improved the efficiency and quality of Compressed Sensing
(Bora et al., 2017) and Super Resolution (Ledig et al., 2017). They even gave
rise to new applications such as Image Style Transfer (Gatys et al., 2015), Visual
Manipulation (Zhu et al., 2016) and Image Synthesis (Chen and Koltun, 2017).
Furthermore, after being trained, unsupervised deep learning models such as DBNs
can further serve as a supervised learning model by being fine-tuned using labeled
data.



1.2.3 Reinforcement Learning

A newer type of learning problem that has gained a great deal of traction recently is
called Reinforcement Learning (RL). In reinforcement learning, the system is not fed
with examples of correct input-output pairs, but rather finds a method to quantify
its performance in the form of a reward signal. Reinforcement learning methods
resemble how humans and animals learn: the machine tries a bunch of different
things and is rewarded when it does something well. Deep reinforcement learning
have made progress in Game Playing (Lanctot et al., 2016), Visual Navigation
(Mottaghi et al., 2017), Device Placement (Mirhoseini et al., 2017), Automatic
Neural Network Architecture Design (Zoph and Le, 2016) and Robotic Grasping
(Levine et al., 2018).

In our study, we focus on Supervised Learning tasks, especially non-sequential
tasks (i.e., tasks whose current input does not depend on previous inputs). As such
Feedforward networks will be discussed and their key concepts and formulation will
be described (Sec. 2). Next, we will perform a general analysis of a generative
model namely the “Deep Belief Network”, an unsupervised deep learning model
that will be further used for supervised learning tasks through a fine-tuning process
(chapter 3).
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Chapter 2

Feed-forward Neural Networks

Given a set of training data {(xs, ys)}S
s=1 where S is the total number of instances

(e.g., samples) in the training set, xs the input vector and ys the output vector,
a feedforward neural network is trained using a function ω(·). The goal of the
network training is to obtain a mapping between xs and ys by adjusting or fine-
tuning weights (also referred to as parameters) θ. The mapping is given by,

ŷs = ω(xs, θ) (2.1)

where ŷs is the prediction or network output e.g., the estimated output value of the
network.

Training consists of minimizing an objective function L(·) using backpropagation
(Rumelhart et al., 1986) and stochastic gradient descent, as follows,

minθL(θ, ω) (2.2)

where
L(θ, ω) = 1

N

N∑
i=1

Li(θ, ω), Li(θ, ω) = ℓ(yi, ŷi) (2.3)

where N is the number of instances per batch, ℓ(·) is the loss function, yi is the
true label as one-hot encoding and ŷi = ω(xi, θ) is the network output vector for
an instance i within the batch.

The rest of this chapter is structured as follows. In chapter 2.1, we start by
defining the function ω(·) and hyper-parameters of the feed-forward model (i.e.,
parameters responsible for mapping the input to the network output) are intro-
duced. The next chapter (chapter 2.2) defines the backpropagation process where
optimization is conducted to find the optimal θ∗. Then, types of feedforward neural
networks are elaborated (chapter 2.3).
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2.1 Model hyper-parameters: feed-forward NN architecture
A typical feed-forward neural network is a sequence of linear and non-linear func-
tions. These linear and non-linear operators are often encapsulated into layers when
designing neural networks. The output of the previous layer is served as the input
of the next layer. Below we will introduce some commonly used operators.

2.1.1 Linear functions

Fully Connected layer. One of the principal linear function within feed-forward
neural networks is the Fully Connected layer (also referred to as “FC”). It consists
of a matrix-vector multiplication and is defined as,

y = W x + b (2.4)

where y ∈ Rm, x ∈ Rd is an input vector, W ∈ Rm×d is the weight matrix, and
b ∈ Rm is the bias vector. For FC, each output dimension yj, j = 1, · · · , m, also
called unit, is computed as a weighted sum of all the input dimensions.

Convolution layer. Another linear function referred to as Convolution layer
constrains the size of this input range. The input to this layer has often three di-
mensions: rows (also denoted as “height”), columns (also denoted as “weight”), and
depth (also denoted as “channels”). The first convolutional layer consists of con-
volving the input with a set of M1 filters (also known as “kernels”) whose dimension
has to have the same number of channels as the input.

Before addressing the convolution with a three-dimensional input, let’s first
look at the convolution with a one-dimensional input such as a time-series x =
{xt}N−1

t=0 . The goal of the first convolutional layer is to convolve each filter w1
h for

h = 1, · · · , M1 with the one-dimensional input to produce the following output
feature map,

a1(i, h) = (w1
h ∗ x)(i) =

∞∑
p=−∞

w1
h(p)x(i− p) (2.5)

where w1
h ∈ R1×k×1 and a1 ∈ R1×N−k+1×M1 , i is the feature map index at the

second dimension (i = 1, · · · , N − k + 1) and h is the feature map index at the
third dimension (h = 1, · · · , M1). Having the dimension of the input channel set to
1, accordingly the dimension of the filter or weight matrix is also one, as shown in
Figure 2.1.a.

Now, let’s consider a 3 − D input such as an image x ∈ RH×W ×C with C

channels and spatial size H ×W . The convolution layer filter will have a weight
w1

h ∈ R(2K+1)×(2K+1)×C . By convolving the filter w1
h for (h = 1, · · · , M1) to x, we
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Figure 2.1: Illustration of a convolutional units with (a) a 1D input and (b) a 3D
input.

obtain the output feature map below,

a1(i, j, h) = (w1
h ∗ x)(i, j) =

C∑
c=1

∞∑
p=−∞

∞∑
q=−∞

w1
h(p, q, c)x(i + p, j + q, c) (2.6)

For the next layers l = 2, · · · , L, for a convolution at the lth layer, we will have the
following data:

• the output filter map from the previous convolution has the size of Nl−1 ×
Nl−1 ×Ml−1, where Nl−1 = Nl−2 − k + 1, where k = 2K + 1),

• the input feature map is f l−1 ∈ RN
l−1 ×Nl−1 ×Ml−1,



• the convolution is done with a set of Ml filters wl
h ∈ Rk×k×Ml−1 , h = 1, · · · , Ml,

• the obtained feature map al ∈ RNl×Nl×Ml is given by,

al(i, j, h) = (wl
h ∗ f l−1)(i, j) =

C∑
c=1

∞∑
p=−∞

∞∑
q=−∞

w1
h(p, q, c)x(i + p, j + q, c)

(2.7)

This process is demonstrated in Figure 2.1.b. Each output unit can be seen
as the inner-product between the filter and the input inside a local region, which
represents their matching similarities. The convolution filter is shared across all
the output units on the feature map. Thus it serves as a pattern detector that
finds certain pattern on the input. As such, features will be captured in a invariant
manner and weights to be learned by the network will be reduced.

2.1.2 Non-linear functions

Performing linear operations consecutively is useless, since they can be replaced by
a single linear operation. For example, applying two FC layers as follows,

w2(w1x + b1) + b2 = (w2w1)x + (w2b1 + b2) (2.8)

is equivalent to a single FC layer with parameters (w2w1; w2b1 + b2). In order to
enrich the function family that neural networks can represent, non-linear functions
are often inserted between every two linear functions.

In neural networks, non-linear functions (denoted as ϕ(·)), which usually come
after the linear function, apply a transformation to each input unit independently.
They can serve as activation functions or as probability functions.

Activation functions are located in all layers except the last one. The most
common are the Sigmoid unit, the Tanh unit and the rectified linear unit (ReLU).
The sigmoid function is given by,

ϕ(x) = σ(x) = 1
1 + e−x

(2.9)

, with σ(x) being a non-linear function within the range [0, 1].
The Tanh function has a range of [−1, 1] and can be expressed as,

ϕ(x) = tanh(x) = 2σ(2x)− 1 (2.10)

One drawback of the Sigmoid and Tanh units is that they take a real-valued number
x and “squash” it into range [0, 1] and [−1, 1] respectively. For instance, given the



Sigmoid unit, when the feature map values x are very large (either positive or
negative), ϕ(x) tends to be large too, pushing the output either to the extreme left
(towards 0) or to the extreme right (towards 1) as seen in Figure 2.2.a. This extreme
right and left are also referred to as “saturation regions”. Indeed, the gradient or
derivative at these regions is very small (almost zero), resulting in a very small
gradient of the weights (also called “vanishing gradient”) and thus in a very slow
learning during backpropagation.

The ReLU (LeCun et al., 2012), which is a piece-wise linear function, is defined
as,

ϕ(x) = ReLU(x) = max(0, x) =

x for x ≥ 0

0 otherwise
(2.11)

, resolves the “vanishing gradient” problem and accelerates convergence thanks to
its linear, non-saturating form. Moreover, as opposed to sigmoid and tanh units
which involve heavy operations such as exponentials, the ReLU involves a simple
operation of thresholding a matrix of activations at zero, as shown in Fig2.2.c.

(a) (b) (c)

Figure 2.2: Typical activation functions for hidden layers with plots (a), (b) and
(c) corresponding to Sigmoid, Tanh and ReLU activation units.

Probability functions, which are located at the last layer, turn network outputs
into probability estimates by mapping them to (0; 1). The sigmoid function also
serves as a probability function. Another widely used probability function is the
softmax function which maps a vector x ∈ RC to a multinomial distribution,

ϕ(x) = yi = softmax(xi) = exi∑C
c=1 exc

(2.12)

By having yi ≥ 0 and ∑C
c=1 yi = 1, the goal of the softmax function is to cast

network outputs into a categorical distribution over predefined classes.



2.2 Optimization

In the previous chapter, we have seen how a deep neural network is formed and
what its model hyper-parameters are. And in order to find optimal parameters θ of
this neural network, a suitable loss function and optimization method are required,
which will be the topic of this chapter. To this matter, we first define the most
popular loss functions (chapter 2.2.1). Next, we discuss properties of the used
optimization method including the backpropagation principle (chapter 2.2.2) and
the gradient descent method (chapter 2.2.3).

2.2.1 Loss functions

To optimize parameters θ of our model f , we need to define a measure that tells
us how much a particular choice of model and parameters solves a given task. This
formalization comes in the form of a loss function L(θ; w) (already mentioned in
eq. 2.3). This loss function computes a scalar loss value, where the lowest values
stand for the best solutions.

The role of the loss function is to compare the prediction ŷ of the model against
a target value yi for each input xi within a set of N training instances. And, from
eq. 2.3, we get,

L(θ; ω) =
N∑

i=1
ℓ(yi, ω(xi, θ)) (2.13)

The formalization of the loss depends on the discriminative learning in hand
which can be split into two categories: classification and regression. Classification
consists of categorizing data points (inputs) into one of C classes, via a function
mapping the data to a vector of C numbers ŷ ∈ RC giving the respective proba-
bilities of the data point belonging to each of the classes. In this case, the target
or the ground truth value can be expressed as a one-hot vector y ∈ RC over C

predefined classes (y = [y1, · · · , yC ]) with yk = 1 if the target is class k and yk = 0
otherwise (all the other dimensions are zero). Meanwhile the goal of regression is
to infer one or more scalar values from given data points via a function mapping
the data to a scalar or vector. For instance, if we wish to build/train a predictive
model for predicting the abalone (animal) age based on several attributes, we can
either employ classification by predicting a categorical class c = 1, 2, · · · , 28 or use
regression by directly predicting the age as a decimal number (such as 12.2).



2.2.1.1 Loss functions for regression.

The most common loss function for regression is called the squared loss (also denoted
as the L2 loss) which is given by,

ℓ(yi, ŷi) =
∥∥∥yi − ŷi

∥∥∥2

2
(2.14)

2.2.1.2 Loss functions for binary classification.

One common loss function is the cross-entropy loss which is defined as,

ℓ(yi, ŷi) = −yi log(ŷi)− (1− yi) log(1− ŷi) (2.15)

2.2.1.3 Loss functions for multi-class classification.

Several loss functions for multi-class classification exist. The most famous ones are
listed in Table 2.1. Given an instance i, knowing that the corresponding true label
yi is a one-hot vector, then yi

k the true label at a certain node k can be either 0 or
1.
Table 2.1: List of loss functions for classification. yi and ŷi are the true label
and network output vectors respectively. ·k denotes the kth dimension (element)
of a given vector, and σ(·) denotes a probability estimate (softmax function or the
sigmoid function).

Symbol Name Equation ℓ(yi, ŷi)

L2 L2 loss – Squared loss ∥yi − ŷi∥2
2

L2 ◦ σ L2 expectation loss with
σ(·) = sigmoid

∥yi − pi∥2
2 where pi = σ(ŷi)

Mshinge Multi-class structured
hinge loss (Crammer-
Singer loss)

max
{
0, (1 + maxq ̸=t ŷi

q − ŷi
t)

}
, ŷi

t = 1

Mshinge2 Squared Multi-class
structured hinge loss

(1 + maxq ̸=t ŷi
q − ŷi

t)2, ŷi
t = 1

Mshinge3 Cubed Multi-class struc-
tured hinge loss

max
{
0, (1 + maxq ̸=t ŷi

q − ŷi
t)3

}
, ŷi

t = 1

log ◦σ Cross entropy loss with
σ(·) = softmax

∑K
k yi

k log(pi
k) where pi

k = σ(ŷi
k) = e

ŷi
k∑K

j=1 e
ŷi

j
and K

denotes the total number of neurons in the final
output layer (i.e., K equals the number of classes)

2.2.2 Backpropagation

As mentioned in eq.2.2, the minimization of the objective function is performed
based on the combination of the chosen model and the chosen loss function. We



can distinguish between the following cases:

• A convex function L(θ, ω). If the loss function and the model both generate
a strictly convex function with respect to θ, then a single global optimum
exist with no saddle point. This optimum can be easily computed (by using
convex optimization for example).

• A Non-convex and differentiable function L(θ, ω). In other cases, the model
and the loss function may form a non-convex function with respect to θ. But,
if the model ω is differentiable with respect to θ and the loss ℓ is differentiable
with respect to the predicted model output ŷ, then the chain rule makes
L(θ, ω) differentiable with respect to θ. Thus, a local optimum can be found
by using a gradient-based method such as gradient descent.

• A non-convex and non-differentiable objective function L(θ, ω). In other
cases, the function L(θ, ω) is non-convex and non-differentiable with respect
to θ, which calls for a stochastic search method to solve for θ (such as evolu-
tionary algorithms).

In our case, due to the stacked non-linearities present within neural networks,
L(θ, ω) is not a convex function with respect to θ. Nonetheless, the loss function
ℓ(yi, ŷi) of each instance i is differentiable with respect to ŷi, and the other neural
network model hyper-parameters (such as the linear and non-linear functions) are
also differentiable with respect to θ, making L(θ) differentiable, which make us fall
within the second case.

Differentiating the loss function with respect to model parameters gives,

∂L(θ, ω)
∂θ

=
N∑

i=1

∂ℓ(yi, ŷi)
∂θ

=
N∑

i=1

∂ℓ(yi, ŷi)
∂ŷi

∂f(xi, θ)
∂θ

(2.16)

Here, ∂L(θ, ω)∂θ denotes a row vector of all partial derivatives of the scalar loss
with respect to the different model parameters (a gradient). ∂ℓ(yi,ŷi)

∂ŷi is the gradient
with respect to the predicted network outputs. ∂f

∂θ
denotes a matrix of all partial

derivatives of the different network outputs with respect to model parameters (a
Jacobian matrix). To further detail the backpropagation process, let’s consider a
neural network whose computational graph is depicted in Fig.2.3. We set ŷi =
f(xi, θ) = σn(an) and an = g(xi, θ).

For the first term of the equation 2.16, partial derivatives of the loss with respect
to network outputs are easily computed. For instance,



• In the case regression, the Mean Squared Error has the following partial
derivative:

∂ℓ(yi, ŷi)
∂ŷi

= 2(yi − ŷi) (2.17)

• In the case of classification, the partial derivative of the Cross-Entropy loss is
defined as,

∂ℓ(yi, ŷi)
∂ŷi

= (yi − ŷi)T (2.18)

To compute the second term i.e., the Jacobian of f(xi, θ) with respect to θ, we
employ the chain rule (see Fig.2.3). As discussed in the previous chapter, a deep
neural network is a stack of linear and non-linear layers i.e., a parametrized linear
transformation aj = hj(zj−1, θj) and an activation function zj = σj(aj) for a given
hidden layer j. Assuming that xi = z0 (as shown in Fig.2.3), f(xi, θ) can be written
as,

f(xi, θ) =hn(σn−1(hn−1(· · · (σ1(h1(xi, θ1)) · · · ), θn−1)), θn)

=(hn ◦ σn−1 ◦ hn−1 ◦ · · · ◦ σ1 ◦ h1)(xi, θ1, · · · , θn−1, θn)
(2.19)

(xi)
h1

z0

Ө0

σ1
a1 hn-1

zn-2

Өn-1

σn-1
an-1 hn

zn-1

Өn

z1 an σn l
ŷ i

yi

...

l(yi,ŷ i)= l(yi,σn(an))an=g(xi,Ө) 

Figure 2.3: Computational graph of the minimization of the objective function
L(yi, ŷi), divided into two components: an = g(xi, θ) and ℓ(yi, ŷi).

First, let’s consider the Jacobian of f(xi, θ) with respect to the parameters θn

located within the last hidden layer n,

∂f(xi, θ)
∂θn

= ∂ŷi

∂θn

= ∂ŷi

∂an

∂an

∂θn

=∂σn(an)
∂an

∂hn(zn−1, θn)∂θn

(2.20)

Knowing form the graph 2.3 that zn−1 is not a function of θn, this implies that the
Jacobian ∂hn(zn−1,θn)

∂θn
. Therefore, the gradient of the loss ℓ(yi, ŷi) with respect to



θn can be written as,

∂ℓ(yi, ŷi)
∂θn

= δn
∂hn(zn−1, θn)

∂θn

δn = ∂ℓ(yi, ŷi)
∂an

= ∂ℓ(yi, ŷi)
∂ŷi

∂σn(an)
∂an

(2.21)

Now, let’s compute the Jacobian of f(xi, θ) with respect to parameters of the
previous hidden layer θn−1,

∂f(xi, θ)
∂θn−1

= ∂ŷi

∂θn−1

= ∂ŷi

∂an

∂an

∂zn−1

∂zn−1

∂an−1

∂an−1

∂θn−1

=∂σn(an)
∂an

∂hn(zn−1, θn)
∂zn−1

∂σn−1(an−1)
∂an−1

∂hn−1(zn−2, θn−1)
∂θn−1

(2.22)

, which means that this Jacobian depends on the input zn−2, the Jacobian of
the activation function σn−1(an−1) with respect to to its input an−1, Jacobian of
the last layer’s linear transformation hn with respect to its inputs, and the Jacobian
of the activation function σn(an) with respect to to its input an. Accordingly, the
gradient of the loss ℓ(yi, ŷi) with respect to θn can be expressed as,

∂ℓ(yi, ŷi)
∂θn−1

= δn−1
∂hn−1(zn−2, θn−1)

∂θn−1
,

δn−1 = ∂ℓ(yi, ŷi)
∂ŷi

∂σn(an)
∂an

∂hn(zn−1, θn)
∂zn−1

∂σn−1(an−1)
∂an−1

= δn
∂hn(zn−1, θn)

∂zn−1

∂σn−1(an−1)
∂an−1

(2.23)

So, computing ∂ℓ(yi,ŷi)
∂θn−1

requires δn−1 which in turn requires the already computed δn

as well as computing the Jacobian hn(zn−1, θn) with respect to zn−1 and the partial
derivative of σn−1(an−1) with respect to an−1.

Finally, let’s compute the Jacobian of f with respect to parameters of the first
layer (layer 1),

∂f(xi, θ)
∂θ1

=∂ŷi

∂θ1

= ∂ŷi

∂a1
· · · ∂a1

∂θ1

= ∂ŷi

∂an

∂an

∂zn−1

∂zn−1

∂an−1

∂an−1

∂θn−1
· · · ∂z1

∂a1

∂a1

∂θ1

=∂σn(an)
∂an

· · · ∂σ1(a1)
∂a1

∂h1(xiθ1)
∂θ1

(2.24)



Thus, this Jacobian with respect to parameters θ1 requires the input x, and the
Jacobian f(xi, θ) with respect to a1, which in turn is the product of all Jacobians
∂σj(aj)

∂aj
and ∂hj(zj−1,θj)

∂zj−1
for j = 1, · · · , n. Therefore, the gradient of the loss ℓ(yi, ŷi)

with respect to θ1 is given by,

∂ℓ(yi, ŷi)
∂θn−1

= δ1
∂h1(xi, θ1)

∂θ1
,

δ1 = δ2
∂h2(z1, θ2)

∂z1

∂σ1(a1)
∂a1

(2.25)

By looking at equations 2.21, 2.23 and 2.25 and comparing them, we can see that
the Jacobians with respect to the model parameters of the different layers have
some features in common. This is the key to devise an algorithm that computes
all of them at once. Indeed, we observe that the Jacobian of the loss with respect
to θj depends on the layer’s input zj−1 (since its depends on ∂hj(zj−1,θj)

∂θj
and on the

Jacobian of the loss with respect to aj which is equivalent to the error δj. We also
notice that the error δj at layer j is dependent on the error δj+1 at the next layer.
Thus, errors flow backward, from the last layer to the first layer.

Putting everything together, we obtain the algorithm below corresponding to
the error backpropagation algorithm which has been introduced by (Dreyfus, 1962),
implemented by (Linnainmaa, 1970), and popularized for training neural networks
by (Rumelhart et al., 1986).

1. Given xi = z0, compute a1 = h1(z0, θ) and z1 = σ1(a1). Proceed in this way
up until an and zn. This process is referred to as the forward pass, since it
propagates data through the network from input to output.

2. Compute the gradient ∂ℓ(yi,ŷi)
∂ŷi which is easy to compute, as discussed previ-

ously.

3. Use ∂ℓ(yi,ŷi)
∂ŷi to compute δn, and compute ∂hn(zn−1,θn)

∂θn
(which depends on zn−1)

to find the gradient ∆θn = ∂ℓ(yi,ŷi

∂θn
.

4. Compute the partial derivative ∂σn−1(an−1)
∂an−1

and the Jacobian ∂hn(zn−1,θn)
∂zn−1

in
order to compute the error δn−1. Then use δn−1 and ∂hn−1(zn−2,θn−1)

∂θn−1
to compute

∆θn−1.

5. Proceed in this way down until ∆θ1. This is called the backward pass, since
it propagates gradients through the network from output to input.



2.2.3 Gradient descent method

The backpropagation algorithm allows us to compute the gradient of the objective
function L(θ, ω) with respect to the model parameters θ. To reduce this cost
function, we merely have to change each parameter value in the opposite direction
of the gradient: A parameter value with positive gradient needs to be reduced, a
value with negative gradient needs to be increased. As the dependency of the loss
on the parameters is not actually linear, the linear approximation only holds locally
at the position the gradient was evaluated. Thus, without further information, we
can only modify the parameters by small amounts, and then have to re-evaluate
the gradient at the new position. Repeating this, we can move through parameter
space until we reach a point of zero gradient (a local extremum or saddle point).
In this section, we describe common algorithms used to compute by how much and
in which direction to change the parameters in each step. The main goal of these
algorithms is to efficiently optimize the cost function without falling into saddle
points or poor local minima.

2.2.3.1 Gradient Descent.

Given a nonzero gradient, there are infinitely many directions in parameter space
the loss function decreases – for example all those that move each parameter against
the sign of the corresponding gradient. Gradient Descent (Cauchy, 1847) chooses the
direction the loss function decreases the fastest. As it turns out, this is simply the
direction of the negative gradient (illustrated in Figure 2.17, derived in Goodfellow
et al., 2016, Eq. 4.3 ff.). The step size is chosen proportional to the gradient
magnitude, so the update for a parameter tensor θ ∈ θ becomes

θ ← θ − α∆θ (2.26)

where α is referred to as the learning rate. It controls by how much to change
parameters in each step, and has to be chosen outside of the optimization procedure
– this is referred to as a hyperparameter. If α is too large, gradient descent can
overshoot the minimum and it may fail to converge, cause oscillations and even
diverge, as illustrated by the function L(θ) = θ2 in Fig.2.4. On the other hand,
if α is too small, gradient descent can be slow, thus slowing down optimization as
shown in Fig.2.4.

2.2.3.2 Mini-Batch Gradient Descent.

For gradient descent, the objective function L()̇ is defined as a sum of losses ℓ as
given by eq.2.3 such that N = S where S is the number of instances within the



(a) (b)

Figure 2.4: Visualization of: (a) a gradient descent with a large learning rate and,
(b) a gradient descent with a small learning rate.

training set. In other words, the batch in the gradient descent method corresponds
to the whole training set. Accordingly, each update step within backpropagation
requires a forward and backward pass of all the training data to evaluate the gra-
dient. So, for large training sets, this process becomes highly expensive. Stochastic
Gradient Descent (SGD) alleviates this issue by defining the loss as a sum of penal-
ties for a batch (e.g, N data points chosen randomly for each update step). N is
also a hyperparameter to be defined: the larger, the faster the gradient evaluation,
but the noisier the gradient estimate. Larger N thus generally requires smaller α

to avoid taking a large step in an inaccurate direction. However, larger N can also
help optimization escape poor local minima or saddle points (Keskar et al., 2017):
Noisy gradients induce exploration of the parameter space around the trajectory
that would be followed by Gradient Descent on the full training set.

2.2.3.3 Gradient Descent with Momentum.

The high variance oscillations in SGD makes it hard to reach convergence, so a
technique called Momentum was invented which accelerates SGD by navigating
along the relevant direction and softens the oscillations in irrelevant directions.
Momentum uses the history of gradients to accelerate progress in stable directions,
and reduce progress in directions the gradient changed. In other words all it does
is adds a fraction “η” of the update vector of the past step to the current update
vector. Specifically, updates are computed as:

vθ ← ηvθ − α∆θ

θ ← θ + vθ

(2.27)



where vθ is an exponential moving average over the gradients ∆θ or, in other words,
the gradient that is retained from previous iterations, and η is the coefficient of Mo-
mentum which is the percentage of the gradient retained every iteration. This term
is responsible for increasing updates for dimensions whose gradients point in the
same directions and reduces updates for dimensions whose gradients change direc-
tions. This means it does parameter updates only for relevant examples. This
reduces the unnecessary parameter updates which leads to faster and stable conver-
gence and reduced oscillations. Here the momentum is the same as the momentum
in classical physics: as we throw a ball down a hill it gathers momentum and its
velocity keeps on increasing.

2.2.3.4 Nesterov Accelerated Gradient.

However, a ball that rolls down a hill, blindly following the slope, is highly un-
satisfactory. We’d like to have a smarter ball, a ball that has a notion of where
it is going so that it knows to slow down before the hill slopes up again. What
actually happens is that as we reach the minima i.e the lowest point on the curve
,the momentum is pretty high and it do non’t knows to slow down at that point
due to the high momentum which could cause it to miss the minima entirely and
continue moving up.

The Nestrov Accelerated Gradient (NAG) strategy, which was published by first
by Nesterov (Nesterov, 1983) then reformulated by Bengio et al. (Bengio et al.,
2013), solved this problem of momentum. In this method, the author suggested
we first make a big jump based on our previous momentum then calculate the
Gradient and them make a correction which results in an parameter update. Now
this anticipatory update prevents us to go too fast and not miss the minima and
makes it more responsive to changes.

In NAG, we know that we will use our momentum term ηvθ to move the param-
eters θ. Computing θ + ηvθ thus gives us an approximation of the “looked-ahead”
position or the next position of the parameters which gives us a rough idea where
our parameters are going to be (located at the tip of the green arrow in Fig.2.5).
We can now effectively look ahead by calculating the gradient not with respect to
to our current parameters θ but with respect to the approximate future position of
our parameters: Accordingly, NAG is computed as follows,

vθ ← ηvθ − α∆θ

θ ← θ + ηvθ − α∆θ
(2.28)



Figure 2.5: Nesterov momentum. Instead of evaluating the gradient at the current
position (red circle), we know that our momentum is about to carry us to the tip
of the green arrow. With Nesterov momentum we therefore instead evaluate the
gradient at this “looked-ahead” position.

2.2.3.5 RMSPro.

RMSProp also tries to dampen the oscillations, but in a different way than mo-
mentum. RMS prop also takes away the need to adjust learning rate, and does it
automatically. More so, RMSProp chses a different learning rate for each parame-
ter.

In RMS prop, each update is done according to the equations described below.
This update is done separately for each parameter.

v ← ρv + (1− ρ)(∆θ)2

θ ← θ − α√
v + ϵ

∆θ
(2.29)

where α is the learning rate, ∆θ is the gradient with respect to to the single pa-
rameter θ, v is the exponential average of squares of gradients (previous terms),
and ρ is a hyperparameter controlling the weighing of this average with respect to
the recent gradient. The reason why we use exponential average is because as we
saw, in the momentum example, it helps us weigh the more recent gradient updates
more than the less recent ones.

2.2.3.6 ADAM.

So far, we have seen RMSProp and Momentum take contrasting approaches. While
momentum accelerates our search in direction of minima, RMSProp impedes our
search in direction of oscillations. Adam or Adaptive Moment Optimization algo-
rithms combines the heuristics of both Momentum and RMSProp. Here are the



update equations.

m← β1m + (1− β1)∆θ

v ← β2m + (1− β2)(∆θ)2

θ ← θ − α√
v + ϵ

m

(2.30)

where hyperparameters β1, β2 and ϵ are generally kept around 0.9, 0.99 and 1e-10
respectively.

We have now discussed the most common optimization schemes in contemporary
deep learning. All of these rely on first-order (gradient) information only, using
sophisticated heuristics to determine how far to follow the negative gradient in each
step. This begs the question why algorithms do not employ second-order (curvature)
information – since low curvature implies a stable gradient, this could directly be
used to determine an appropriate step size. In fact, around 2010, considerable effort
was spent on efficiently using second-order derivatives in optimizing deep neural
networks, e.g., Hessian-Free Learning (Martens, 2010) or Krylov Subspace Descent
(Vinyals and Povey, 2012). However, this line of research became less important
after progress in a previously neglected part of optimization we will discuss in the
following chapter.

2.3 Types of feed-forward neural networks / Feed-forward
Neural Network Architectures

2.3.1 Single-Layer Perceptron.

It is the simplest function of the family of artificial neural networks. It consists of
one hidden layer, i.e., one fully-connected layer followed by a non-linear function
and can be expressed as,

ŷ = f(x, θ, ϕ) = ϕ(b +
∑

j

wjxj) = ϕ(b + wT x) (2.31)

where x is the input vector of a particular instance i, ŷ is the network output which
is a scalar, ϕ(·) is a defined transfer function (non-linear function), and θ = (b, w)
are the tunable parameters composed of the weight vector w the bias term b. The
process consists of mapping x to a scalar ŷ by computing a weighted sum of the
input values xj, expressed as a dot product wT x, adding a scalar offset b and passing
it through the transfer function ϕ(·). This process, shown in Figure 2.6.a, is often
denoted as a neuron or unit in artificial neural since it resembles a biological neuron



(Figure 2.6.b): connections or weights w in artificial neural networks are represented
by the dendrites in biological neurons; the function ϕ(b + wT x) (also referred to
as nucleus using biological terms) accumulates non-linearly all incoming excitatory
and inhibitory inputs (or signals), and fires with an output y which corresponds to
the strength along the axon. To obtain a mapping from a vector x to a vector ŷ,

^

(a) (b)

Figure 2.6: Visualization of: (a) a biological neuron and, (b) an artificial one (single-
layer perceptron) ϕ(b + W T x)

we simply use multiple units of the same form, each with a separate bias and set
of weights, as depicted in Figure 2.7. Since all these units share the same inputs
x, we can express the vector of weighted sums as a matrix product W T x. Using a
vector addition for the biases, we arrive at,

ŷ = f(xiθ, ϕ) = ϕ(b + W T x) (2.32)

This model has some disadvantages: in this model, the layer’s inputs are only
linearly combined, and hence even adding a non-linearity to these combination(s) of
inputs cannot produce the non-linearity necessary for finding all decision boundaries
that separate between classes. Nonetheless, we can obtain a more complex model
by stacking one hidden layer (composed of a fully-connected layer followed by a
non-linear function) on top of the other. The first layer (Layer 1) can be thought of
as encoding a set of features learned from the inputs, while the second layer (Layer
2) encodes a different (higher-level, more abstracted) set of features learned from
the outputs of Layer 1, and so on. The multiple layers add levels of abstraction
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Figure 2.7: Visualization of ϕ(b + W T x)

that cannot be as simply contained within a single layer of the same number of
parameters. This model is known as “Multi-Layer Perceptrons”.

2.3.2 Multi-layer Perceptron (MLP).

An MLP consists of multiple hidden layers composed of one fully-connected layer
and a non-linear function each. In a MLP, each neuron from layer i is connected
to layer i + 1, and the computation boils down to matrix-vector multiplication.
Stacking two hidden layers results in,

ŷ =f(f(xiθ1, ϕ1), θ2, ϕ2)

=ϕ2(b2 + W T
2 ϕ1(b1 + W T

1 x))
(2.33)

where each function f represents a hidden layer, and can be visualized through
Figure 2.8. The units are not fully interconnected, but form three groups that are
connected in sequence. More specifically, the input vector x is referred to as the
input, the output vector ŷ is referred to as the output, and functions f between the
input and output are represented by the first and second hidden layer respectively.

Usually, the size of the output is usually fixed determined by the task, whereas
the number of hidden layers and/or their individual sizes can be increased (by
stacking more functions f and/or adapting the sizes of the weight matrices and bias
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Figure 2.8: Visualization of ϕ2(b2 + W T
2 ϕ1(b1 + W T

1 x))

vectors) or adapted depending on the complexity of features that should detected
within the task. The transfer function is set to one of the non-linear functions
mentioned in section 2.1.2.

2.3.3 Convolutional Neural Networks (ConvNet).

The Convolutional Neural Network (ConvNet) takes advantage of using convolu-
tional layers which offer spatial locality of the input signal (such as images) and
shares the weights in space, making it invariant to translations of the input. As
mentioned in the previous chapter, the ConvNet architecture has a good data lo-
cality since the kernel can be reused across different places, making the ConvNet
computation bounded.

The design space for ConvNets is similar to that of MLPs as we set the number
of hidden layers as well as the size of each of one of them and the activation function
following it. Nonetheless, as for ConvNets, we do not only have to fix the number
of convolutional units or filters for a layer, but also the size of the filter itself (e.g.,
height and width of the filter) which is responsible of determining the size of the
output. For instance, a larger the filter size increases the amount of spatial context
per output pixel, increases the number of learnable parameters, and decreases the
size of the output. Let’s not that a particular case of convolution is when the filter
size is set equal to the input size, which result in having a FC layer.

Nonetheless, stacking a couple of convolutional layers in a ConvNet makes the



number of parameters (or weights) grow quickly. Indeed, the first convolutional layer
might process an input of only three channels or less, whereas the next layers have to
process as many channels as the depth of the previous convolutional layers’ filters.
Furthermore, the ConvNet receptive fields – defined as the spatial extent (the width
and height) of the convolutional layer filters – get larger throughout the network. To
resolve the growing data issue (growing size of parameters), it is common to add a
pooling layer (also known as subsampling or down-sampling) in-between successive
convolutional layers in a ConvNet. The idea behind the pooling layer is to diminish
the size of the output feature maps and thus lower the number of parameters and
within the network, thereby resulting in less overfitting. The Pooling Layer operates
independently on every depth slice of the input (i.e., operates on the channel of each
input separately) and re-sizes it spatially, as shown in Figure 2.9. The most common
forms of pooling are max-pooling or mean-pooling. For instance, a pooling layer
with filters of size 2 × 2 applied with a stride of 2 down-samples every depth slice
in the input by 2 along both width and height. In this case, the max-pooling layer
will compute the max over 4 numbers (little 2×2 region in some depth slice) as the
output. The depth dimension remains unchanged. From this example, we deduce
that the amount of parameters is reduced by 75%.

In general, the pooling layer can be defined as an operation which requires the
following,

• the input volume of size W1 ×H1 ×Depth1,

• the following hyper-parameters:

– spatial extent F ,

– the stride S of the pooling layer.

and which produces an output with a volume of size W2 ×H2 ×Depth2 where,

• W2 = (W1 − F )/S + 1

• H2 = (H1 − F )/S + 1

• Depth2 = Depth1

The main advantage of the pooling layer is to introduce zero parameters since
it computes a fixed function of the input. If the input size is not evenly divisible
by the pooling factors, part of the input will be ignored.

In general, no standard rule exists for constructing a ConvNet architecture.
However, most famous ConvNets (Chatfield et al., 2014; Simonyan and Zisserman,
2015) agree on the following architecture: several layers composed of convolution,



Figure 2.9: Visualization of max-pooling

ReLU and MaxPooling each, followed by connected layers with ReLUs. Indeed,
a ConvNet will end in one or more fully-connected layers (FCs) that integrate
information across all spatial locations and finally produce the prediction. This way
the model is still oblivious to the ordering of target vector components, like an MLP,
which is appropriate for most classification and regression tasks. To summarize, a
ConvNet is composed of a stack of convolutional, activation and pooling layers,
followed by one or multiple fully connected layers. Figure 2.10shows a schematic
architecture of a single layer of each of these types. It depicts feature maps as
3D volumes, with the number of channels forming the third dimension, and dense
layers as columns. Labels denote the number and size of feature maps (top) and
layer types (bottom). I will use this kind of visualization throughout the thesis.

2.3.3.1 Regularization

One common regularizer is the use of dropout layers. Dropout regularization tech-
nique in deep network (its weights cannot be updated, nor affect the learning of
the other network nodes). With dropout, the learned weights of the nodes become
somewhat more insensitive to the weights of the other nodes and learn to decide
somewhat more by their own (and less dependent on the other nodes they’re con-
nected to). In other words, dropout removes individual activations at random while
training the network, which makes the model more robust to the loss of individual
pieces of evidence, and less likely to rely on particular idiosyncrasies of the training
data.
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Figure 2.10: A simple ConvNet architecture with one set of convolutional, max-
pooling and fully connected layers

Bibliography

Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neu-
ral codes for image retrieval. In Lecture Notes in Computer Science, vol-
ume 8689 LNCS, pages 584–599. 2014. ISBN 9783319105895. doi: 10.1007/
978-3-319-10590-1_38.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Transla-
tion by Jointly Learning to Align and Translate. arxiv.org, 2014. ISSN 0147-006X.
doi: 10.1146/annurev.neuro.26.041002.131047.

Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends® in
Machine Learning, 2(1):1–127, 2009. ISSN 1935-8237. doi: 10.1561/2200000006.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances
in optimizing recurrent networks. In ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, pages 8624–8628, 2013.
ISBN 9781479903566. doi: 10.1109/ICASSP.2013.6639349.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. Compressed



Sensing using Generative Models. In dl.acm.org, pages 537—-546, 2017. ISBN
9781510855144. doi: 10.5829/idosi.wasj.2013.23.04.368.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return
of the Devil in the Details: Delving Deep into Convolutional Nets. In British
Machine Vision Conference, 2014. ISBN 1-901725-52-9. doi: 10.5244/C.28.6.

Chenyi Chen. DeepDriving : Learning Affordance for Direct Perception in Au-
tonomous Driving. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 2722–2730, 2015. doi: 10.1109/ICCV.2015.312.

Qifeng Chen and Vladlen Koltun. Photographic Image Synthesis with Cascaded Re-
finement Networks. In Proceedings of the IEEE International Conference on Com-
puter Vision, volume 2017-Octob, pages 1520–1529, 2017. ISBN 9781538610329.
doi: 10.1109/ICCV.2017.168.

Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. Natural Language Processing (almost) from Scratch. Journal
of machine learning research, 12(Aug):2493—-2537, 2011. ISSN 1532-4435. doi:
10.1145/2347736.2347755.

George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. IEEE Transactions
on Audio, Speech and Language Processing, 20(1):30—-42, 2012. ISSN 15587916.
doi: 10.1109/TASL.2011.2134090.

Navneet Dalal and William Triggs. Histograms of Oriented Gradients for Human
Detection. In International Conference on computer vision & Pattern Recogni-
tion, volume 1, pages 886–893, 2005. ISBN 0-7695-2372-2. doi: 10.1109/CVPR.
2005.177.

Li Deng. A Tutorial Survey of Architectures, Algorithms, and Applications for Deep
Learning. APSIPA Transactions on Signal and Information Processing, 3, 2014.

Stuart Dreyfus. The numerical solution of variational problems. Journal of Math-
ematical Analysis and Applications, 5(1):30–45, 1962. ISSN 10960813. doi:
10.1016/0022-247X(62)90004-5.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A Neural Algorithm of
Artistic Style. arXiv preprint arXiv:1508.06576, aug 2015. ISSN 1935-8237. doi:
10.1561/2200000006.

Ross Girshick, Jeff Donahue, Trevor Darrell, U C Berkeley, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation. In



IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587,
2014. ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.81.

Philippe Hamel and Douglas Eck. Learning Features from Music Audio with Deep
Belief Networks. In Proc. of the 11th International Society of Music Information
Retrieval, pages 339–344, 2010. ISBN 9789039353813.

Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Di-
vergence. Neural Computation, 14(8):1771–1800, aug 2002. ISSN 0899-7667. doi:
10.1162/089976602760128018.

Geoffrey E. Hinton. A practical guide to training restricted Boltzmann machines.
In Neural networks: Tricks of the Trade, pages 599–619. 2012.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Al-
gorithm for Deep Belief Nets. Neural Computation, 18(7):1527–1554, jul 2006.
ISSN 0899-7667. doi: 10.1162/neco.2006.18.7.1527.

Zhou J and Troyanskaya OG. Predicting effects of noncoding variants with deep
learning–based sequence model. Nature Methods, 12(10):931, 2015.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
NoScope: Optimizing Neural Network Queries over Video at Scale. Proceed-
ings of the VLDB Endowment, 10(11):1586—-1597, 2017. ISSN 16130073. doi:
10.14778/3137628.3137664.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere,
and Mikhail Smelyanskiy. On large-batch training for deep learning: Gener-
alization gap and sharp minima. In 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Proceedings. International Con-
ference on Learning Representations, ICLR, 2017.

Marc Lanctot, Demis Hassabis, Thore Graepel, Veda Panneershelvam, Timothy Lil-
licrap, John Nham, Ioannis Antonoglou, David Silver, Chris J. Maddison, Arthur
Guez, Ilya Sutskever, Aja Huang, Julian Schrittwieser, Nal Kalchbrenner, Do-
minik Grewe, George van den Driessche, Madeleine Leach, Laurent Sifre, Koray
Kavukcuoglu, and Sander Dieleman. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, jan 2016. ISSN 0028-0836.
doi: 10.1038/nature16961.

Y. Le Cun, BE Boser, J. S. Js Denker, D. Henderson, R. E. Howard, E. Hubbard,
L. D. Jackel, Bb Le Cun, J. S. Js Denker, and D. Henderson. Handwritten
Digit Recognition with a Back-Propagation Network. In Advances in Neural



Information Processing Systems (NIPS), pages 396–404. 1990. ISBN 1-55860-
100-7. doi: 10.1111/dsu.12130.

Yann LeCun, Marc Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and
Aurelio’Marc Ranzato. Sparse Feature Learning for Deep Belief Networks. In
Advances in neural information processing systems, pages 1185—-1192, 2008.
ISBN 0018-9219. doi: 10.1109/5.726791.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, volume 7700 LECTU, pages
9–48. 2012. ISBN 9783642352881. doi: 10.1007/978-3-642-35289-8-3.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
and Wenzhe Shi. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, volume 2017-Janua, pages 4681–4690,
2017. ISBN 9781538604571. doi: 10.1109/CVPR.2017.19.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection. International Journal of Robotics Research, 37(4-5):421–
436, apr 2018. ISSN 17413176. doi: 10.1177/0278364917710318.

Seppo Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis (in
Finnish), Univ. Helsinki, pages 6–7, 1970.

D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, volume 99,
pages 1150–1157, 1999. ISBN 0-7695-0164-8. doi: 10.1109/ICCV.1999.790410.

James Martens. Deep learning via Hessian-free optimization. In ICML, volume 27,
pages 735–742, 2010. ISBN 9781605589077. doi: 10.1155/2011/176802.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device
Placement Optimization with Reinforcement Learning. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 2430–2439,
2017.

Abdel-rahman Mohamed, Dong Yu, and Li Deng. Investigation of full-sequence
training of deep belief networks for speech recognition. In Eleventh Annual Con-



ference of the International Speech Communication Association, number Septem-
ber, 2010.

Abdel Rahman Mohamed, Tara N. Sainath, George Dahl, Bhuvana Ramabhad-
ran, Geoffrey E. Hinton, and Michael A. Picheny. Deep belief networks using
discriminative features for phone recognition. In ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 5060–5063, 2011.
ISBN 9781457705397. doi: 10.1109/ICASSP.2011.5947494.

Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-fei, and Ali
Farhadi. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforce-
ment Learning. In IEEE international conference on robotics and automation
(ICRA), pages 3357–3364, 2017.

V Nair and Geoffrey E. Hinton. 3D Object Recognition with Deep Belief Nets.
In Advances in neural information processing systems, pages 1339–1347, 2009.
ISBN 9781615679119.

Nesterov. A method of solving a convex programming problem with convergence
rate. In Sov. Math. Dokl, volume 27, 1983.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533–536, oct 1986.
ISSN 0028-0836. doi: 10.1038/323533a0.

Tara N. Sainath, Brian Kingsbury, Bhuvana Ramabhadran, Petr Fousek, Petr No-
vak, and Abdel Rahman Mohamed. Making deep belief networks effective for
large vocabulary continuous speech recognition. In 2011 IEEE Workshop on Au-
tomatic Speech Recognition and Understanding, ASRU 2011, Proceedings, pages
30–35, 2011. ISBN 9781467303675. doi: 10.1109/ASRU.2011.6163900.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In Proceedings of the 3rd International Confer-
ence on Learning Representations, sep 2015. ISBN 1097-0142 (Electronic)\n0008-
543X (Linking). doi: 10.2146/ajhp170251.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace: Clos-
ing the gap to human-level performance in face verification. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 1701–1708, 2014. ISBN 9781479951178. doi: 10.1109/CVPR.2014.
220.

Oriol Vinyals and Daniel Povey. Krylov Subspace Descent for Deep Learning. Ar-
tificial Intelligence and Statistics, pages 1261–1268, 2012.



S. Zhou, Q. Chen, and X. Wang. Active deep learning method for semi-supervised
sentiment classification. Neurocomputing, 120:536–546, 2013.

Jun Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Gener-
ative visual manipulation on the natural image manifold. In European Con-
ference on Computer Vision, volume 9909 LNCS, pages 597–613, 2016. ISBN
9783319464534. doi: 10.1007/978-3-319-46454-1_36.

Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement
Learning. arXiv preprint arXiv:1611.01578., 2016.





Chapter 3

Deep Belief Networks

Deep Belief Networks is another deep learning architecture that has attracted a lot
of attention and has been applied to many problems so far such as image processing
(Nair and Hinton, 2009), natural language processing (Zhou et al., 2013), automatic
speech recognition (Dahl et al., 2012; Sainath et al., 2011; Mohamed et al., 2010,
2011), and feature extraction and reduction (Hamel and Eck, 2010), to name a few.

A DBN (Hinton et al., 2006) can be defined as a multi-layered probabilistic gen-
erative model based on multiple Restricted Boltzmann Machines (RBMs). Training
of a Deep Belief Network is divided into two phases: (i) the first phase being a
greedy, unsupervised, layer-by-layer pre-training phase which is designed to initial-
ize the weights of each RBM to values in the neighborhood of a good local optimum
of the error surface. This pre-training phase allows the DBN to make use of unla-
beled data, which is often very desirable since most data is unlabeled. The second
phase of training is a supervised phase where the DBN is trained as a perceptron
using label data. Accordingly, this chapter is organized as follows: we start by
defining components of an RBM (chapter 3.1). Then, we describe the pre-training
process of these RBMs (chapter 3.2). Finally, the training of the overall DBN is
explained (chapter 3.3).

3.1 Restricted Boltzmann Machines (RBMs)

An RBM is an energy-based generative model that consists of a bottom layer of I

binary visible units (observed variables), v ∈ {0, 1}I , and a top layer of J binary
hidden units (explanatory factors), h ∈ {0, 1}J , which are fully and bidirectionally
connected with symmetric weights (Hinton, 2012), as depicted in Figure 3.1.

RBM’s neurons form two disjoint sets, satisfying the definition of bipartite
graphs. Neuron connections in a RBM may be directed or undirected; in the lat-
ter case, the network forms an auto-associative memory which is characterized by
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bi-directional information flow due to feedback connections (Hinton et al., 2006).
RBMs follow the encoder–decoder paradigm (LeCun et al., 2008) where both the
encoded representation and the (decoded) reconstruction are stochastic by nature.
The encoder–decoder architecture is useful because: (i) after training, the feature
vector can be computed in a very fast way and (ii) by reconstructing the input we
can assess how well the model was able to capture the relevant information from
the data (LeCun et al., 2008).

In RBMs, units within the same layer are not connected which makes inference
and learning within this graphical model tractable.

Figure 3.1: Schematic representation of a Restricted Boltzmann Machine (RBM).

3.2 Pre-training phase : Training each RBM

In a binary RBM, the units stochastically take on states 0 or 1, depending on
their inputs from the other layer. Denoting the states of visible units with vi, the
states of hidden units with hj, the weights connecting these units with Wij, and the
biases of visible and hidden units with ci and bjrespectively, a RBM encodes a joint
probability distribution P (v, h|θ), defined via the energy function

E(v, h; θ) =− cvT − bhT − vT W h

=−
I∑

i=1
civi −

J∑
j=1

bjhj −
I∑

i=1

J∑
j=1

Wijvihj

(3.1)

where θ = (W , c, b), c ∈ RI represents the bias of the visible units, b ∈ RJ denotes
the bias of the hidden units and W ∈ RJ×I is a matrix containing all connection
weights Wij.



The RBM assigns a probability for each configuration (v, h), using

P (v, h|θ) = 1
Z

e−E(v,h;θ) (3.2)

where v and h are the visible and hidden units respectively, and Z is a the nor-
malization constant called “partition” function by analogy with physical systems,
given by the sum of all energy configurations.

Since there are no connections between any two units within the same layer,
given a particular random input configuration v, all the hidden units are indepen-
dent of each other and the probability of h given v becomes

P (h|v) =
∏
j

P (hj = 1|v) (3.3)

where P (hj = 1|v), the probability that a hidden unit hj is activated given a visible
vector v, is given by 2.18

P (hj = 1|v) = σ(bj +
I∑

i=1
Wijvi) (3.4)

and σ(x) is the sigmoid function 1/(1 + e−x). For implementation purposes, hj

is set to 1 when P (hj = 1|v) is greater than a given random number (uniformly
distributed between 0 and 1) and to 0 otherwise.

Similarly, given a specific hidden h, the probability of v given h is given by 3.5

P (v|h) =
∏

i

P (vi = 1|h) (3.5)

where P (vi = 1|h), the probability that a visible unit vi is activated given a hidden
vector h, is defined as,

P (vi = 1|h) = σ(ci +
J∑

j=1
Wijhj) (3.6)

When using eq.2.20, the hidden states are to be binary so that the input vector
could be reconstructed.

The marginal probability assigned to a visible vector v can be expressed as,

P (v) =
∑

h

p(v, h) = 1
Z

∑
h

e−E(v,h) (3.7)

During learning, the visible units are clamped to the actual inputs, which are seen
as samples from the “data distribution”. The task for learning is to adapt the pa-
rameters θ such that the marginal distribution P (v, |θ) = ∑

h P (v, h|θ) becomes



maximally similar to the true observed data distribution p∗(v). Indeed, given a
specific training vector v, its probability can be raised by adjusting weights and
biases of the network so as to make the energy of that particular vector smaller and
the energy of the other vectors higher. To this end, we can perform a stochastic
gradient ascent on the log-likelihood manifold obtained from the training data vec-
tors, by computing the derivative of the log probability with respect to the network
parameters θ ∈ {bj, ci, Wij} which can be computed as follows,

∂ log P (v)
∂θ

=
∂ log( 1

Z

∑
h e−E(v,h))

∂θ

=

positive phase︷ ︸︸ ︷
∂ log(∑

h e−E(v,h))
∂θ

−

negative phase︷ ︸︸ ︷
∂ log(Z)

∂θ

=∂ log(∑
h e−E(v,h))
∂θ

−
∂ log(∑

v,h e−E(v,h))
∂θ

=−
∑

h e−E(v,h) ∂E(v,h)
∂θ∑

h e−E(v,h) +
∑

v,h e−E(v,h) ∂E(v,h)
∂θ∑

v,h e−E(v,h)

(3.8)

Using eq.3.2 and knowing that

p(h|v) = p(h, v)
p(v)

= p(h, v)∑
h p(h, v)

= 1∑
h e−E(v,h)

Z

e−E(v,h)

Z
=

∑
he−E(v,h)

e−E(v,h) (3.9)

then eq.3.8 can be rewritten as,

∂ log P (v)
∂θ

= −

positive phase︷ ︸︸ ︷∑
h

p(h|v)∂E(v, h)
∂θ

+

negative phase︷ ︸︸ ︷∑
h

p(h, v)∂E(v, h)
∂θ

(3.10)

As in the maximum likelihood learning procedure, we aim at finding the set of
network parameters for which the probability of the (observed) training dataset
P (v) is maximized. Computing ∂E(v,h)

∂θ
is straightforward. Thus, in order to obtain

an unbiased stochastic estimator of the log-likelihood gradient, we need a procedure
to sample from p(h|v) and another to sample from p(h, v). To do so, in the “positive
phase”, we first clamp v to the observed input vector x and then sample h from
the clamped v. On the other hand, in the “negative phase”, we sample both v and
h from the model (Bengio, 2009). Sampling can be done by setting up a Markov
chain Monte Carlo (MCMC) using alternating Gibbs sampling (AGS) (Bengio, 2009;
Hinton, 2012). Each iteration of the AGS consists of updating all of the hidden
units through sampling from the probability p(h|v) using equation 2.18, followed by
updating all of the visible units through sampling from the distribution/probability
p(v|h) using equation 2.20. This process is visualized in Figure 3.2. As a result,



Figure 3.2: Markov chain Monte Carlo using alternating Gibbs sampling in a re-
stricted Boltzmann machine (RBM). The chain is initialized with the data input
vector x.

equation 3.10 becomes,

∂ log P (v)
∂θ

= −

positive phase︷ ︸︸ ︷⟨
∂E(v, h)

∂θ

⟩
0

+

negative phase︷ ︸︸ ︷⟨
∂E(v, h)

∂θ

⟩
∞

(3.11)

where ⟨·⟩0 denotes the expectations for the data distribution (p0 = p(h|v)) (e.g., an
average over samples with visible units clamped to actual inputs) and ⟨·⟩∞ denotes
the expectations under the model distribution (p∞(v, h) = p(v, h)) (e.g., an average
over samples when the network is allowed to sample all units freely) (Hinton, 2002).
Unfortunately, using a sampling approximation by computing ⟨vihj⟩∞ (which is the
negative phase e.g., the second term of eq.2.25) normally requires creating enough
samples such that the network can settle into an equilibrium. So this approximation
requires performing AGS for a very long time (Hinton, 2012; Bengio, 2009) in order
to draw unbiased samples from the model distribution, thus making the problem
intractable. To solve this issue, Hinton proposed a much faster learning procedure
which performs very well in practice: the contrastive divergence (CD-k) algorithm
(Hinton, 2012, 2002) which consists of fixing k to a small value (such as 1) and
replacing ⟨·⟩∞ with ⟨·⟩k.

For example, at k = 1, only a single sample for the data and model distribution
is used. Indeed, CD-k first samples new values for all hidden units in parallel,
conditioned on the current input, which gives a complete sample (v(0), h(0)) for the
data distribution. It then generates a sample for the visible layer, conditioned on
the hidden states h(0) sampled in the first step, and then samples the hidden layer
again, conditioned on this new activity in the visible layer. This generates a sample
(v(1), h(1)) from the model distribution.

Accordingly, by applying CD-k into eq.3.11, the following update rules are ob-



tained,

∆Wij = α(⟨vihj⟩0 − ⟨vihj⟩k) (3.12)

∆bj = α(⟨hj⟩0 − ⟨hj⟩k) (3.13)

∆ci = α(⟨vi⟩0 − ⟨vi⟩k) (3.14)

where α stands for the learning rate.
The main steps of he CD-k algorithm are summarized in Algorithm 1.

Algorithm 1: CD-k algorithm.

Data: x is an input vector of the training dataset.
Result: update of parameters θ

v0 = x ;
Compute the binary states of the hidden units, h0, using v0 and Eq.3.4 ;
for ( n = 1; n < k; n = n + 1 ) {

Compute the “reconstruction” states for the visible units vn , using
hn−1 and Eq.3.6 ;

Compute the binary features (states) for the hidden units hn, using vn

and Eq.3.4 ;
}
Update the weights Wij using eq.3.12 ;
Update the biases bj using eq.3.13 ;
Update the biases ci using eq.3.14 ;

3.3 Forming the DBN and fine-tuning it
As illustrated by Figure 3.3, DBNs are constructed by stacking Restricted Boltz-
mann Machines (RBMs). The visible layers of RBMs at the bottom of a DBN are
clamped to the actual inputs when data is presented. When RBMs are stacked to
form a DBN, the hidden layer of the lower RBM becomes the visible layer of the
next higher RBM, as explained in 3.4. Through this process, higher level RBMs
can be trained to encode more and more abstract features of the input distribution.
In Figure 3.3, visible and hidden units of the 3 RBMs 1, 2 and 3 are {v, W1},
{W1, W2} and {W2, W3} respectively. The supervised phase consists of a global
fine-tuning process that is very similar to traditional neural network training and
can use normal gradient or conjugate gradient descent (Rumelhart et al., 1986).
After training a stack of RBMs, the bottom-up recognition weights of the result-



Figure 3.3: Structure of a DBN with three hidden layers.

Figure 3.4: DBN training with one input layer x, and three hidden layers h1, h2,
h3. From left to right, purple color represents layers already trained, while cyan
the RBM being trained.

ing DBN (from the unsupervised phase) can be used to initialize the weights of a
Multi-Layer Feed-Forward Neural Network with as many neurons at the top end as
the number of classes (e.g., labels). This feed-forward neural network can then be
discriminatively fine-tuned using labeled data by back propagating error derivatives.
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Chapter 1

Learning from time-series

Time-series classification is a challenging task in data mining. With the rise of ac-
cessible time series datasets, many approaches have been proposed so far. However,
despite all efforts made in this field, time-series classification is still challenging due
to the following factors: (i) the large amount of data, (ii) the high-dimensionality of
data and, (iii) the continuously changing aspect within this type of data. Further-
more, it is worth mentioning that several proposed approaches do not take into con-
sideration that features or details held by time-series often have different time scales.
Recently, new approaches based on Deep Learning frameworks have been proposed
to tackle such challenges and issues. To this matter, we introduce two approaches
for handling time series classification including: (i) a data-level method which turns
time-series signals into frequency-domain ones using the Stockwell Transform tech-
nique, and (ii) an algorithm-level method which trains a ConvNet using an adaptive
convolutional layer filter suiting the time-series input. These approaches are further
run on classifying human activities including normal movements of typical subjects
and abnormal movements of atypical subjects especially Stereotypical Motor Move-
ments performed by children on the autism spectrum. Experimental results prove
the effectiveness of our approaches in dealing with time-series classification.

1.1 Introduction

A time series is a set of regular time-ordered observations taken at successive and
regular intervals (e.g., points of time). Examples of time series include Weather
records, economic indicators, patient health evolution metrics, etc. Extensive re-
search has been conducted so far on the classification of these time series. And
still, time series classification presents some challenges: the large volume and high
dimensionality of data, as well as the continuously updating scheme of time series.
And recently, time series classification has attracted great interests and initiated
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various researches related to Deep Learning. Indeed, time series classification with
Deep Learning has been widely applied in different fields such as computer science
for speech recognition or signature verification (Abdel-hamid et al., 2012; Abdel-
Hamid et al., 2013), in medical science to to identify human movements (Sadouk
and Gadi, 2017; Sadouk et al., 2018) or to track cardiac anomaly (Liu et al., 2013).
To this matter, proposes a ConvNet approach for classifying time series data. Our
contributions are:

i we show that the Stockwell Transform can be used as a data-level approach
to improve performance of our ConvNet framework,

ii we introduce a novel algorithm-level approach based on an adaptive convolu-
tional layer filter that shows better performance than the standard ConvNet.

The remainder of this chapter is organized as follows. In section 1.2, we present
an overview of existent techniques for time-series classification including including
handcrafted and automated methods. Then, we present some preliminaries about
the nature of the time series (Section 1.3). Afterward, we introduce and describe
our data level and algorithm level approaches (Section 1.4). Implementation details
are provided in Sec. 1.5. Experiments and results are summarized in Sec. 1.5 and
the paper concludes in Sec. 1.6.

1.2 Related work

1.2.1 Classical methods

To address the task of time series classification, several approaches have been in-
troduced so far. These approaches can be either model based, distance based or
feature based.

Model based methods. In this category, a model is built for each and every
class by fitting its parameters to that class, ending up with as many models as
the number of classes. Then, at test time, each time series of the validation set is
compared to the models to determine which class it belongs to. The auto-regressive
(AR) model has been commonly used for time series analysis (Venkataramana and
Sekhar, 2013), but it requires that the time series satisfy a stationary assumption,
which is unfeasible in practice. The Markov model (MM) and the hidden Markov
model (HMM) approaches were applied to model non-stationary time series and to
perform time series classification (Antonucci et al., 2015), but they are limited to
symbolic time series only. Besides, in general, generative models (including AR,
MM and HMM) are unable to extract the best representations out of time series.



Distance based methods. This category consists of two steps: (i) building a
distance function to measure the similarity (or dissimilarity) between two time
series and, (ii) selecting the proper classifier such as K nearest neighbor (KNN)
(Fix and Hodges, 1951), support vector machines (SVM) (Boser et al., 1992), etc..
However, these approaches have limitations: they are sensitive to distortions in
time dimension and the length of the two series inputs must be equal. To deal
with these limitations, the concept of dynamic time warping (DTW) distance was
introduced (Rakthanmanon et al., 2013; Jeong Y S et al., 2011). Nonetheless,
the DTW distance does not satisfy the triangle inequality, and is computationally
expensive.

Feature based methods. In this category, the main goal is to capture relevant
features from time series data. This is achieved via dimension reduction by using
a set of features representing the time series. One proposed approach was to use
discrete Fourier transform (DFT) (Schäfer, 2015), a spectral method for converting
a time series into frequency domain signals, and to apply some of the few Fourier
coefficients as features. However, with DFT, many local features of the original
data may be lost. To alleviate this problem, short-time Fourier transform (STFT)
(also known as windowed Fourier transform) was suggested (Bailly et al., 2015),
but it requires determining the optimal window size. An alternative is the discrete
wavelet transform (DWT) which is commonly used for time series analysis and
which is designed for time-frequency multi-resolution analysis of time series (of
length 2k only) (Jeong Y S et al., 2011; Rakthanmanon et al., 2013). There are
other approaches for feature extraction which rely on eigenvalues such as principal
component analysis (PCA), singular value decomposition (SVD) and sparse coding
(Chen et al., 2015). In addition, other approaches based on shapelets have been
proposed for time series classification (Hills et al., 2014).

Ensemble algorithms also yield state-of-the-art performance with time series
classification problems. Three of the most successful ensemble algorithms that in-
tegrate various features of a time series are Elastic Ensemble (PROP) (Lines and
Bagnall, 2015), a model that integrates 11 time series classifiers using a weighted
ensemble method, Shapelet ensemble (SE) (Cetin et al., 2015), a model that ap-
plies a heterogeneous ensemble onto transformed shapelets, and a flat collective of
transform based ensembles (COTE) (Bagnall et al., 2016), a model that fuses 35
various classifiers into a single classifier.

1.2.2 Automated methods

Automated approaches based deep learning models have shown to be successful in
classifying time series, especially ConvNets. In (Abdel-hamid et al., 2012; Abdel-



Hamid et al., 2013), authors proposed a solution to the issue of speech recognition
which consists of having speech signals sharing similar patterns within different
frequency band locations which convey a different meaning. One solution is to use
a limited weight sharing ConvNet architecture (Abdel-hamid et al., 2012) which
consists of limiting weight sharing only to local filters which are close to each other
and which are pooled together in the subsampling layer. Another solution suggested
by (Wang and Oates, 2015) is composed of a tiled ConvNet architecture with a pre-
training stage. A tiled ConvNet (Le et al., 2010) is an extension of ConvNets which
unties weights locally and does not require that adjacent hidden units share identical
weights. This type of ConvNet rather learns k separate convolution kernels within
the same layer.

Meanwhile, authors of (Cui et al., 2016) introduced a multi-scale convolutional
neural network (MConvNet) where each of the three transformed versions of the
input is fed into a branch (e.g., a set of consecutive convolutional and pooling lay-
ers), thus ending up with three outputs which are further concatenated and fed
into more convolutional and pooling layers, fully connected layers and a softmax
layer to obtain the final output. Another work (Wang et al., 2016) also makes
use of a ConvNet architecture with multiple branches which are fed by the same
time series signal. Each of these branches has a different convolutional filter size
so as to detect all multi-scale characteristics within the input. Another attempt to
improve time series classification was made by (Wang et al., 2017) who proposed
two variants of ConvNets: (i) a fully convolutional network (FCN) without sub-
sampling layers, with batch normalization layers and with a global pooling layer
instead of fully connected layers. Let’s note that FCNs (Long et al., 2015) are
networks with convolutional layers only and no fully-connected layers, (ii) a resid-
ual network (ResNet) with batch normalization layers added. As a definition, a
ResNet (He et al., 2016) is a type of network which solves the “vanishing gradi-
ent” problem within very deep networks (i.e., networks with several stacked layers)
by using residual blocks which have the property of preserving inputs. These two
variants achieve comparable or better results than MConvNet (Cui et al., 2016).
An ensemble method of deep learning models named LSTM-FCN was introduced
by (Fazle Karim, Houshang Darabi, Somshubra Majumdar, 2018). This method,
the same input is fed into the FCN and the Long Short Term Recurrent Neural
Network (LSTM) block (Hochreiter and Schmidhuber, 1997), thus generating two
outputs which are further concatenated and passed onto a softmax classification
layer. Meanwhile, Guennec et al. (Le Guennec et al., 2016) suggested to use data-
augmentation techniques and to pre-train each layer in an unsupervised manner
(by an auto-encoder) using unlabeled training time series from different datasets.
Regarding multivariate time series, only few research papers based on ConvNets



were published. The work of (Zheng et al., 2014) introduced a multi-channels deep
convolution neural network (MC-DConvNet) composed of multiple branches. Each
one of these branch is fed by a single dimension of the multivariate time series and
learns features individually. Then the learned features of each branch are embed-
ded and fed into a fully connected layer for classification. Other works including
(Sadouk and Gadi, 2017; Sadouk et al., 2018; Zhao et al., 2017) handled mutlivariate
time series differently by respectively treating the 3-, 12-, and 9-variate time series
inputs as a 3-, 12-, and 9-channel inputs and convolving them as a whole instead
of convolving each channel separately as illustrated by (Zheng et al., 2014). This
method seems more plausible than the former (Zheng et al., 2014) since separating
multivariate time series into univariate makes us lose the interrelationship between
different univariate time series.

In this chapter, our ConvNet approaches for time series classification are laid
out. This chapter is structured as follows. Section 1.2 starts by defining the main
concepts of time series. In Section 1.3, a summary of existent data-level techniques
for time series classification is provided, our data-level approach is explained, then
corresponding experiments and results are presented. The next section (Section
1.4) gives an overview of algorithm-level approaches for time series classification,
then introduces our algorithm-level approach and lays out conducted experiments
and obtained results. Finally, the last section within this chapter (Section 1.5)
concludes our paper with future perspectives.

1.3 Overview of time series data

Types of time-series. There exists two types of time-series data:

• Univariate Time-series involves the analysis of a single variable. The input
will then have one channel,

• Multivariate Time-series is an extension of the univariate case and involves
two or more input variables. The resulting input consists of multiple channels.

Most time-series predicting models work with univariate data and show promising
results. However, existing multivariate time-series models do not perfom as well as
univariate ones due to the complexity in modeling simultaneously multiple time-
series.

Raw vs extracted time-series signals. A raw time-series is the original time-
series (e.g., a sequence of discrete-time data taken at successive equally spaced
points in time). In time-series classification tasks, some authors choose to train their
predicting models using raw time-series data (Sadouk and Gadi, 2017; Sadouk et al.,



2018; Abdel-Hamid et al., 2013; Abdel-hamid et al., 2012; Wang and Oates, 2015;
Zheng et al., 2014; Yang et al., 2015; Rad et al., 2018). On the other hand, others use
extracted time-series data which consist of raw time-series already segmented and
converted into a set of fixed-length signals. Examples of such models using ConvNet
include (Cui et al., 2016; Wang et al., 2016, 2017; Fazle Karim, Houshang Darabi,
Somshubra Majumdar, 2018; Le Guennec et al., 2016; Zheng et al., 2014; Hatami
et al., 2017) whose simulations are conducted using extracted signals from the UCR
time-series classification archive (Keogh et al., 2011). However, this benchmark is
composed of relatively small datasets (with a small number of instances), which
makes the ConvNet less efficient knowing that ConvNets require large training sets
for training. Furthermore, in most of the cases, fixed-length signals cannot be
further encoded into new representations, as opposed to raw time-series. These
issues have led us to use raw time-series data instead (Sadouk and Gadi, 2017;
Sadouk et al., 2018).

1.4 Methodology

1.4.1 Our Data-level approach

In this section, we start by describing pre-processing methods to turn time-series
data into input vectors (which will be further used for training deep learning mod-
els), including the basic Sliding Window method and more advanced methods
(Sec.1.4.1.1). Then, we introduce our pre-processing method (Sec.1.4.1.2).

1.4.1.1 Background on pre-processing methods for time-series

Basic pre-processing method: the Sliding Window. This Sliding Window approach
is the basis of how to turn any time series dataset into a supervised learning problem.
The Sliding Window is a temporary approximation over the actual value of the time
series data (BenYahmed et al., 2015) by using prior time steps to predict the next
time step. The Sliding Window method steps are summarized in Algorithm 2.
Indeed, after selecting the first segment, the next segment taken at multiple time
steps is selected. The process is repeated until all time series data are segmented.
Each segment represents an input vector, whereas the output corresponding to the
label of this vector is generally annotated by an expert. The size or width of the
sliding window L can change to include more or less previous time steps depending
on the dataset characteristics and on the user choice.

Other pre-processing methods applied to ConvNets. Several pre-processing
approaches have been conducted so far on ConvNets to improve classification or
prediction of time series.



Algorithm 2: Sliding window algorithm.

Data: The number of frames or windows: n, the original time-series
data/sequence: T , the size of sliding window: L, the step: s.

Result: The set of extracted frames/windows: F
initialization;
instructions;
i = 0 ;
n = 0 ;
F = [] ;
while i + L ≤ length(T ) do

F [n] = T [i · · · (i + L− 1)] ;
i = i + s ;
n = n + 1 ;

end

One category of these approaches consists of turning raw time-series to a ma-
trix representation, such as the Markov Transition Field (MTF) (Wang and Oates,
2015), the Gramian Angular Field (GAF) (Wang and Oates, 2015), stacked time-
series signals (Yang et al., 2015; Wolfgang Grob, Sascha Lange, Joschka Boedecker,
2017) and Recurrence Plots (RP) (Hatami et al., 2017).

Another category of data pre-processing approaches involves data augmentation
via transformations applied to data, which ensure a better ConvNet convergence.
One example of such category is the window slicing method (Le Guennec et al.,
2016) which trains the ConvNet using slices of the time-series input, classifies at test
time each slice of the test time-series using ConvNet, and then performs majority
voting to output the predicted label. Another example is the window warping
method (Le Guennec et al., 2016) whose goal is to warp a randomly selected slice
of a time-series (by speeding it up or down), which produces a transformed raw
time-series. The resulting time-series is further converted into fixed-length input
signals (e.g., instances) via window slicing. Another way of augmenting time-series
is to apply small noise or smoothing on raw time-series (Sadouk and Gadi, 2017).
Other transformations were also considered in (Cui et al., 2016) such as down-
sampling to generate versions of a time-series at different time scales, and spectral
transformations in the frequency domain by adopting low frequency to remove noise
from time-series inputs.

One drawback of the first two categories is the presence of high-frequency pertur-
bations and noise within time-series data inputs, which alters the ConvNet learning
performance. As such, one solution is to turn time-series into frequency-domain sig-
nals some works (Abdel-Hamid et al., 2013; Rad et al., 2018) by applying the Fast
Fourier Transform (FFT) and converting raw time-series into a set of frequency-
domain signals which are then fed to the ConvNet.



1.4.1.2 Our data-level approach: The Stockwell Transform.

One drawback of FFT is that it extracts frequency signals by using a predefined fixed
window length. A solution to this problem is to opt for the Stockwell Transform
(ST)as our data pre-processing technique (Sadouk and Gadi, 2017; Sadouk et al.,
2018), which has the property of adaptively capturing spectral changes over time
without data windowing, thus ending up with a better time-frequency resolution
for non-stationary signals (Stockwell et al., 1996).

The continuous S-transform of a function h(t) is,

S(t, f) =
∫ +∞

−∞
h(t) |f |√

2π
e−i2πft dt (1.1)

A voice S(τ, f0) can be defined as a one-dimensional function of time for a constant
frequency f0, which highlight how amplitude and phase change over time at f0.

In the discrete case, the equivalent frequency domain definition of the S-transform
is given by
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√
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Further details and steps about the Discrete Stockwell Transform can be found
in our paper (Sadouk et al., 2018).

1.4.2 Algorithm-level approach: Adaptive convolutional layer filter

Several ConvNet models have been developed to capture the most meaningful fea-
tures out of time-series signals. (Cui et al., 2016; Le Guennec et al., 2016) proposed
to apply transformations to time-series such as down-sampling, slicing, or warping,
in order to allow convolution filters at the 1st layer detect entire fluctuations (or
peaks) within signals. Meanwhile, other studies chose to modulate the ConvNet
hyper-parameters, especially model hyper-parameters such as the number hidden
layers, number of feature maps per layer, the filter size of convolutional layers, the
regularizer (dropout), etc. In general, there is no design rule for choosing ConvNet’s
hyper-parameters and these latter are either set based on the literature or on the
trial-and-error process. Nonetheless, some authors believe that some model hyper-
parameters could be chosen based on the nature of inputs. For instance, (Wang
et al., 2016) suggest to feed the same time-series signal input to 3 branches, each
having a 1st convolutional filter size different from the other so that input signal
peaks with multiple sizes (lengths) could be identified. In a similar way, our pro-
posal is to based on designing an adaptive 1st convolutional layer filter whose size
is the best at capturing most of entire peaks present within input signals. In this



section, the overall concept of our adaptive 1st convolutional layer filter is laid out.
Usually, the filter size of the 1st convolutional layer is chosen to be 3×3, 5×5, 7×7

or 10×10, based on whether fine details need to be detected out of the image or large
details. In other words, the size of the receptive field size is chosen so that complete
features (e.g., entire variations) within an object are captured. Features can include
edges, colors or textures within images and peaks or fluctuations within signals.
Selecting a very small 1st layer filter may be best at capturing short variations or
peaks within a time-series input signal, but may capture only a slice of a large
variation of another input signal by convolving only part of it, thus failing to detect
the whole fluctuation within the signal. Conversely, a relatively large filter may
convolve multiple signal peaks at once and therefore no fluctuation is detected
either. Therefore, in order to maximize the recognition performance, we need an
optimal 1st layer filter that suits most of input signals and which convolves most
of entire signal peaks within the input signals. To this end, we apply sampling
whose goal is to select a subset (a statistical sample) of individuals from within a
statistical population to estimate characteristics of the whole population. In other
words, samples (a number of observations) are taken from a larger population to
represent the population in question. In our study, the goal is to take sample peak
lengths taken from randomly selected signals in order to estimate the optimal peak
length of all signals. The sample can take the form of the sample mean, sample
median or mode. After reviewing advantages and drawbacks of each sample form
(see our paper (Sadouk et al., 2018), we deduced that the sample median is the best
at estimating the population. In other words, by computing the sample median of
signal peak lengths, we can obtain the optimal filter size of the 1st convolutional
layer.

1.5 Experimental setup

1.5.1 Stereotypical Motor Movement Recognition task

Stereotypical Motor Movements (SMMs) are rhythmic, repetitive and predictable
movements made by children with Autism Spectrum Disorders (ASD). Different
SMMs have been identified, the most prevalent among them being body-rocking,
complex hand movements and mouthing (LaGrow and Repp, 1984). Unfortunately,
most of ASD research is centered around social and communication deficits within
subjects with ASD and neglect the high prevalence of restricted and repetitive
behaviors. Indeed, identifying SMM behaviors is very important in the screening,
monitoring and therapy of ASD, thus potentially improving the lives of children on
the spectrum.



Dataset. SMM recognition for subjects with ASD is conducted on Goodwin et
al.’s dataset (Goodwin et al., 2014). This dataset is composed of raw time-series of
accelerometer signals recorded from 6 subjects with ASD in a longitudinal study.
After wearing three 3-axis wireless accelerometer sensors on the left and right wrist
as well as on the torso, subjects started to perform SMM and non-SMM behaviors.
SMMs include hand flapping, body rocking and simultaneous body rocking and
hand flapping. In order to label data, subject movements were recorded with a
video camera and passed on to an expert to be labeled as SMM or non-SMM. Two
data collections were performed: one referred to as “Study1” which was recoreded
at a sampling frequency of 60Hz, and the other denoted by “Study2” which was
collected on the same subjects three years later with a sampling frequency of 90Hz.
So, to equalize the data, Study1 data are resampled to 90Hz (as explained in the
next subsection). Each subject within each study has a two to three recorded
observation sessions, where each session lasts between 9 and 39 minutes. The only
exception is subject 6 within Study 2 who had only one session.

This dataset is further referred to as “SMM dataset”.
Pre-processing.

Resampling: Since each study has a different sampling frequency, the 60Hz signals
of Study1 are resampled and interpolated to 90Hz (as in Study2). Then, noise
within data is deleted by passing data of both studies into a high pass filter with a
cut-off frequency of 0.1Hz. Next, data is segmented either into time-domain vector
signals (via the Sliding Window method) or into frequency-domain one (via the
Stockwell Transform).

Extraction of time-domain signals: Time-domain samples are obtained by
segmenting raw data using a one second window (e.g., L = 90, see algorithm 2)
and 88.9% overlap between consecutive data segments (e.g. s = 10, see algorithm
2), resulting in 90 time-point samples. And, knowing that three 3-axis acceleration
signals are measured per accelerometer, an input instance will be a 90×1×9 matrix
with 9 denoting the number of channels ( 9 = 3 accelerometers ×3 coordinates).
The number of instances (N) per subject and per study is recorded in Table 1.1.

Extraction of frequency-domain signals: Frequency-domain samples are ob-
tained by deriving ST for every other 10th sample, which at 90Hz is equal to
1/9th of a second. The next step is to choose the optimal frequency range. Accord-
ing to (Grobekathofer et al., 2017), human activity frequencies are between 0 and
20Hz, and 98% of the FFT amplitude is contained below 10Hz. As such, choosing
the frequency range to be 0 to 10Hz did not yield good results when it comes to
recognizing SMMs. Nonetheless, after considering Goodwin’s observation that fre-
quencies in the range of 1-3Hz covered almost all SMMs (Goodwin et al., 2014), we
set the new frequency range to be 0 to 3Hz, which produced satisfying classification



rates. So, for every input signal, ST is computed and a feature vector of length 50
is obtained, resulting into a frequency-domain instance of size 50× 1× 9. The final
input matrix is 90×1×9×N matrix for the SMM dataset, where N is the number
of samples per subject and study (as shown in Table 1.1).
Table 1.1: Number of instances (N) per subject per study after data extraction in
time and frequency domains.

Subject S1 S2 S3 S4 S5 S6
Study1

Frequency-domain 27134 17314 34814 20994 24133 30111
Time-domain 27117 17296 34796 20976 24115 30093
Study2

Frequency-domain 30652 27594 41004 47239 29802 13642
Time-domain 30625 27576 40986 47212 29784 13633

ConvNet training and architecture.
As mentioned before, the goal is to analyze intersession variability of SMMs. As

such, we train one ConvNet for each domain (time or frequency domain) for every
subject per study. This way, each ConvNet will be able to identify SMMs across
multiple sessions of a given subject i at a study j. A k-fold cross-validation for
this subject is performed such that k is the number of sessions a participant was
observed within each study, and every fold consists of data from a specific session.

The time domain ConvNet architecture consist of three sets of convolution,
ReLU and pooling layers respectively stacked on top of one another with the number
of convolutional filters set to {96, 192, 300}, followed by a fully connected layer with
500 neurons. On the other hand, the frequency domain ConvNet architecture is
composed of two sets of convolution, ReLU and pooling layers respectively stacked
on top of one another with the number of convolutional filters set to {96, 192},
followed by a fully connected layer with 500 neurons. The overall framework for the
frequency-domain ConvNet is given in Figure 1.1. The 50× 1×D input signals (D
referring to the number of channels or signals recorded from sensors) are convolved
with the convolutional layer C1 which has 96 kernels of size 10×1, then are followed
by 3 × 1 subsampling P1 (with a stride of 2). The outputs of P1 are then fed to
the second convolutional layer C2 composed of 192 filters of size 7»1, followed by
the 3»1 pooling layer P2. The resulting output is then vectorized and passed on to
the first and second fully connected layer F1 and F2, followed by a softmax layer.

As for optimization parameters, training is performed for 10 to 40 epochs with
a dropout of 0.5, a momentum of 0.9, a learning rate of 0.01, a weight decay of
0.0005, and a mini-batch size of 150.

Index of performance. Since the SMM dataset is unbalanced with normal ac-



Figure 1.1: The overall frequency-domain ConvNet architecture. Symbols “C”,
“S”,“U” in the parentheses of the layer tags refer to convolution, subsampling and
unification operations respectively. Numbers before and after “@” refer to the
feature map size. Note that ReLU layers located after C1, C2 and F1 are not
showed due to the limitation of space.

tivities being much more abundant than SMM ones, the accuracy measure will not
reflect a correct performance for the SMM recognition task. As such, the F1-score
is used instead as our evaluation metric.

1.5.2 Human Activity Recognition (HAR) task

Dataset. The PUC dataset (Ugulino, Wallace and Cardador, D{\’e}bora and Vega,
Katia and Velloso, Eduardo and Milidi{\’u}, Ruy and Fuks, 2012) is the selected
dataset for training the ConvNet on the HAR task. The PUC data was collected
for 8 hours of activities from 4 tri-axial ADXL335 accelerometers respectively po-
sitioned in the waist, left thigh, right ankle, and right arm. The recorded activities
of labels of this data are: “sitting”, “sitting down”, “standing”, “standing up”, and
“walking”. The data is further sampled at a frequency of 8Hz.

Pre-processing. Raw time-series taken from the PUC dataset is turned into
either time or frequency domain signals. In time-domain, we use the Sliding Window
method with the time window set to 1 second (e.g., L = 8) and the overlapping to
125 ms (e.g., s = 1). The resulting instances have the size of 8 × 1. Nonetheless,
an 8 × 1 input vector is too small to be fed to the ConvNet. As such, we chose
to re-sample signals from 8 to 50 using an anti-aliasing FIR low-pass filter and
compensating for the delay introduced by the filter. The final time domain input
instances are of size 50×1×12, 12 representing the number of channels (3 coordinates
×4 accelerometers). In frequency domain, we re-sample raw time-series from 8 to
16 Hz before feeding them to the Stockwell Transform. This results in frequency-
domain input samples of size 50× 1× 12, where each sample contains the power of
50 frequencies in the range of 0 - 8 Hz.



ConvNet Training and hyper-parameters. In this experiment, we train a Con-
vNet for time domain signals and another ConvNet for frequency domain ones,
using a a 10-fold cross-validation. Time and frequency domain ConvNet hyper-
parameters are similar to ConvNet hyper-parameters for the SMM recognition task
(see section 1.5.1

Index of performance. The performance measure used for the HAR task is the
accuracy, since the PUC dataset has a balanced distribution.

1.6 Experiments

1.6.1 Experiment 1

We run experiments with our data-level approach (on our frequency domain Con-
vNet using both PUC and SMM datasets) and our algorithm-level approach (on
our time and frequency domain ConvNets using the SMM dataset), according to
settings mentioned in the previous section. The inputs used are either time-domains
acceleration signals of size 90×1×9 for time-domain ConvNet training or frequency-
domain signals of size 50× 1× 9 for frequency-domain ConvNet training.

(a)

(b)

Figure 1.2: Plots (a) and (b) display time domain acceleration signal samples taken
from the SMM dataset. The red, green and blue curves stand for x, y and z signals
respectively. The size of samples is 90× 1 (e.g., 1 second long).

Examples of signals are shown in Figures 1.2 and 1.3. Figure 1.2 illustrates



(a)

(b)

Figure 1.3: Plots (a) and (b) represent frequency domain acceleration signal samples
taken from the SMM dataset. The red, green and blue curves stand for x, y and z
signals respectively. The size of samples is 50× 1 (e.g., 50 frequency points).

2 time-domain acceleration signal samples while Figure 1.3 displays 2 frequency-
domain signal samples. Every sample is represented by x, y and z signals (corre-
sponding to red, green and blue curves respectively) of the right wrist, left wrist
and torso sensors (corresponding to the left, middle and right plots). For each sig-
nal, the x-axis represents the duration of either the time signal (in Fig.1.2) or the
frequency signal (in Fig.1.3). The y-axis represents the acceleration value of that
signal.

Samples illustrated in both figures are annotated as SMM behaviors. For in-
stance, a flap-rock SMM appears in Fig.1.2.b because of high peaks in almost all
three axes of right wrist, left wrist and torso signals. Meanwhile, flap SMMs are
present within Fig.1.2.a and Fig.1.3.a due to the presence of fluctuations within
axes of the right wrist signal only. Finally, Fig.1.3.b shows a variation in torso
signals only, conveying that the sample is a rock SMM movement.

Frequency-domain samples (a) and (b) whose total length is 50 display several
amplitude fluctuations (e.g., variations) whose length varies between 10 and 15
points ( a frequency span of 0.2Hz). Meanwhile, the time-domain samples, which
are 90 points long, show peaks contained within an interval of 7 to 20 time-points.
By observing these time and frequency-signal samples, we have a rough idea about
the range of the peak duration but we cannot determine the optimal peak length



that will cover most of the peaks within the “SMM dataset”. As a consequence, the
sampling method is needed.

Accordingly, for each domain, 30 random signals of atypical subjects are col-
lected from signals containing at least one peak. Then, 30 peaks or fluctuations are
selected from these signals in order to compute the sample median e.g, the optimal
peak length of signals which will correspond to the optimal 1st convolutional layer
filter size. The resulting medians in time and frequency domain are illustrated in
histograms (a) and (b) respectively. These histograms correspond to the frequency
distribution of the 30 peak lengths present within the 30 randomly selected signals.
The obtained medians are 9 in time-domain and 10 in frequency-domain. These
values will represent the size of our adaptive 1st convolution layer filters in time and
frequency domain.

(a) (b)

Figure 1.4: Figures (a) and (b) show histograms and box plots which represent the
frequency distribution of 30 peak lengths present within 30 randomly selected time
domain signals and 30 randomly selected frequency domain signals respectively.

1.6.2 Experiment 2

The purpose of this experiment is to prove that the computed sample median is
indeed the best 1st convolutional layer filter size. To do so, we run experiments
on signals of one atypical subject (Subject 1 of Study 1), by varying the size 1st

convolution filter, resulting in different time and frequency domain ConvNet archi-
tectures. The size of the 1st convolutional layer filter ranges from 7 to 11 for both
time and frequency domain ConvNets.



1.6.3 Experiment 3: Comparison with other SMM detection tech-
niques

Moreover, to further show the efficiency of our data-, and algorithm-level ap-
proaches, our framework is compared to other SMM detection techniques, namely:

i Support Vector Machines (Cortes and Vapnik, 1995) trained using both base-
line and Stockwell features (referred to as “SVM-C”),

ii Random Forest with Recurrence Quantification Analysis (Grobekathofer et al.,
2017) (denoted as “RF-RQA”),

iii Some deep learning approaches proposed by Rad et al. (Rad et al., 2018)
namely a standard ConvNet model (referred to as “ConvNet-Rad”), a Con-
vNet pre-trained using a transfer learning technique (referred to as “ConvNet-
TL-Rad”), and an ensemble of LSTM models (referred to as “LSTM-Rad”),

iv Deep Belief Networks (DBNs).

SVM-C, RF-RQA and ConvNet-Rad apply the same dataset as ours and results are
already available. As for the DBN, training needs to be conducted. The DBN is
first pre-trained in an unsupervised manner then an additional feed-forward layer is
used for the supervised learning phase to read out the top-level internal representa-
tions of the hierarchical generative model, as explained in the background section.
In the unsupervised phase, learning parameters are set as follows: 450 and 810 in-
put vector in frequency and time domains respectively, 25 hidden units per layer,
0.001 and 0.0001 as the learning rates of the unsupervised (pre-training) and super-
vised (training) phase respectively, 0.7 as the momentum in pre-training, 0.3 as the
dropout in the supervised phase, 100 as the mini-batch size, 100 and 250 epochs
for the unsupervised (pre-training) and supervised (training) phase respectively. As
indicated in (Hinton, 2012), a 1-step contrastive divergence learning is applied. The
trained time and frequency domain DBNs are referred to as “Time-domain DBN”
and “Frequency-domain DBN” respectively.

1.7 Results

1.7.1 Results of Experiment 1.

Table 1.2 lays out results of time and frequency domain ConvNets trained on both
the SMM recognition and HAR tasks. Data-level approach. For the SMM recogni-
tion task, we notice that frequency-domain ConvNets (of all subjects in all studies)



Table 1.2: Performance rates of time-, and frequency-domain ConvNets for the
SMM recognition (in terms of F1-score, denoted as “F1 sc.”) and Human Activity
Recognition referred to as “HAR” (in terms of accuracy). Highest rates are in bold.

SMM Recognition (F1-sc.) Study1 Study2
S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 Mean

Time-domain ConvNet 91.23 76.76 84.95 93.38 86.41 95.11 95.97 75.67 60.17 91.68 82.55 84.90
Frequency-domain ConvNet 96.54 78.41 93.62 96.46 95.74 98.58 96.07 95.27 85.03 98.03 93.88 93.42
HAR (Accuracy)

Time-domain ConvNet 99.90
Frequency-domain ConvNet 95.98

achieve higher F1-scores than time-domain ConvNets by an average of 8.52%, im-
plying that the Stockwell Transform does a good job at suppressing noise and un-
necessary details and thus contributes to detecting more relevant features. However,
training time and frequency domain ConvNets on the HAR task gives us opposite
results, with the time-domain ConvNets having higher accuracies than frequency
domain ones by an average 3.92% (as shown in Table 1.2). These contradictory re-
sults can be explained by the difference in the chosen ST frequency range for SMM
recognition and that of HAR. Indeed, in SMM recognition, the frequency range of
the ST was carefully chosen to cover almost all SMMs (0-3Hz), resulting in optimal
frequency-domain samples (containing full and noise-free information), which gave
rise to better ConvNet learned parameters. Meanwhile, the ST frequency range for
HAR (0 to 3 Hz) may be a short/small range which generated frequency-domain
samples that may have lost relevant information. Indeed human activity frequen-
cies fall between 0 and 20Hz (with 98% of the FFT amplitude contained below
10Hz). So, a proper analysis of raw time-series needs to be conducted in order to
find the proper ST frequency range and thus obtain the best performance from our
approach,.

Algorithm-level approach. From Table 1.2, it is hard to prove the efficiency of
our adaptive 1st convolutional layer filter. Nonetheless, the efficiency of our ap-
proach can be seen through the feature representations learned by the ConvNets
trained on the SMM recognition task. Indeed, we randomly choose feature repre-
sentations learned by a ConvNet trained on one of the subjects within the SMM
dataset.

First, we examine the type of features learned by filters of the 1st convolu-
tional layer within the trained frequency-domain ConvNet by looking at the learned
weights. Figure 1.5 displays some of these sample filters of the 1st convolutional
layer. Plots (a) and (b) of this figure represent the best 2 out of the 96 1st con-
volutional layer filters based on their highest activations (weights across x, y and
z-axis combined). Each of these plots has nine subplots: the three subplots on the



(a)

(b)

Figure 1.5: Plots (a) and (b) display weights of two filters within 1st convolutional
layer of the frequency-domain ConvNet model. The red, green and blue curves
stand for weights of x, y and z signals respectively.

top, middle and bottom standing for the weights of the x, y and z axis of the right,
left and torso sensor respectively. We can clearly see sharp fluctuations (edges) in
plots, conveying that, during the training phase, filters have learned such variations
by detecting peaks and subtle changes in the input acceleration signals. Moreover,
we notice that weights in the z-axis of the torso sensor show great variations com-
pared to other weights. In the instance (a), we can see a high peak in the z-axis of
the torso sensor while other weights stagnate or change with smaller peaks. Thus,
weights of filter (a) must probably detect rock SMM activities. On the other hand,
in filter (b), weights in all axes show variations especially weights in the z-axis of the
torso and left sensors and in the x and y axis of the left sensor, which means that
this filter is probably for detecting flap-rock SMMs. We repeat the same process by
visualizing some 1st convolutional layer filters learned from a trained time-domain
ConvNet that have the highest activations across all axes x, y and z (1.6). We
can clearly see the differences between weights learned in time-domain and those
learned in frequency-domain: (i) time-domain weights are less prominent (e.g, less
intense in amplitude) than frequency-domain weights, (ii) the time-domain weights
has different shapes from the frequency-domain weights with smoother curves, less
fluctuations, more downhills (as seen through signals within the y-axis of the right
and left sensor in filter –a- and signals within the z-axis of the left sensor in filter
–b-), and more uphills (as seen through signals within the z-axis of the right sen-
sor in filter –a- and signals within the y-axis of the left and torso sensor in filter
–b-). From this comparison, we conclude that the ConvNet learns feature repre-



sentations specific to each domain (time or frequency). In addition, the smaller
intensities, the reduced number of fluctuations and the smoother curves within the
time-domain weights may explain why the time-domain ConvNet performs less in
average (mean F1-score = 87.97%) than the frequency-domain ConvNet (mean F1-
score = 93.23%). Furthermore, let’s note that it is hard to know from 1.6 whether
these filters are responsible for detecting flap, rock or flap-rock movements. Indeed,
we notice small variations in weight intensities in almost all axes within each sensor.

(a)

(b)

Figure 1.6: Plots (a) and (b) represent weights of two filters contained in the 1st
convolutional layer of the time-domain ConvNet model. The red, green and blue
curves represent weights of x, y and z signals respectively.

1.7.2 Results of Experiment 2.

Results of this experiment are reported in Figure 1.7. In time-domain, by increasing
the size of the 1st convolutional layer filter from 7 ( a time span of 0.078 seconds) to
9 ( a time span of 0.1 seconds), the obtained classification rate rises from 87.97 to
91.23%, which implies that larger filters seem to detect more low-level details from
the input signal. Meanwhile, applying larger filters such 10 ( a time span of 0.11
seconds) and 11 ( a time span of 0.12 seconds) seems to decrease the performance
of the network. Hence, the best 1st convolutional layer time span able to retrieve
the best acceleration changes is 0.1, which corresponds to an optimal peak length
of 9 (e.g., Me(x) = 9). On the other hand, for frequency domain signals, increasing
the size of the 1st convolutional layer kernel from 7 ( a frequency span of 0.14Hz)
to 10 ( a frequency span of 0.2Hz) seems to increase the performance rate. Also,



the performance of the framework seems to decrease when the kernel is too large,
suggesting that the optimal kernel size for capturing the whole amplitude peaks is
the sample median 10 (e.g., Me(x) = 10).

Figure 1.7: Effect of the size of 1st convolutional layer kernel on SMM recognition
performance.

1.7.3 Results of Experiment 3.

Table 1.3 summarizes accuracy and F1-score results of existent works (SVM-C,
RF-RQA, ConvNet-Rad, ConvNet-Rad, ConvNet-TL-Rad and LSTM-Rad), Time-
domain DBN, Frequency-domain DBN, as well as our time and frequency domain
ConvNet models. As shown in Table 1.3, we notice that there is a large differ-
ence between accuracy values and F1-scores which is due to the highly imbalanced
distribution in the test set. The following observations are made:
Table 1.3: Results of our models and other models on 6 subjects of Study1 and
Study2 datasets. For each study, two to three video sessions were performed per
subject except for Subject6 (in Study2) who had only one session recorded; there-
fore, experiments could not be performed, which is indicated by “_”.

Experiments S1 S2 S3 S4 S5 S6 Mean
Acc. F1-sc. Acc. F1-sc. Acc. F1-sc. Acc. F1-sc. Acc. F1-sc. Acc. F1-sc. Acc. F1-sc.

Study 1
SVM-C [17] 85.90 73.00 85.30 36.00 94.00 50.00 66.50 73.00 75.10 44.00 87.30 46.00 82.35 53.67
ConvNet-Rad [18] _ 74 _ 75 _ 68 _ 92 _ 51 _ 90 _ 74
ConvNet-TL-Rad [18] _ 71.00 _ 73.00 _ 70.00 _ 92.00 _ 68.00 _ 94.00 _ 78.00
LSTM-Rad [18] 80 _ 74 _ 72 _ 93 _ 51 _ 91 _ 77
RF-RQA [23] 83.00 _ 89.00 _ 93.00 _ 91.00 _ 80.00 _ 88.00 _ 87.33 _
Time-domain ConvNet 96.55 91.23 88.51 76.76 97.19 84.95 93.34 93.38 92.51 86.41 94.20 95.11 93.71 87.97
Frequency-domain ConvNet 98.80 96.54 88.93 78.41 98.89 93.62 96.56 96.46 97.77 95.74 98.33 98.58 96.55 93.23
Frequency-domain DBN 91.50 82.41 87.10 78.06 93.73 71.50 93.55 93.63 89.31 81.69 93.72 94.65 91.49 83.66
Study 2

SVM-C [17] 71.00 43.00 79.00 26.00 99.00 3.00 90.00 86.00 73.00 72.00 _ _ 82.40 46.00
ConvNet-Rad [18] _ 61 _ 20 _ 2 _ 72 _ 21 _ _ _ 35
ConvNet-TL-Rad [18] _ 68 _ 22 _ 2 _ 77 _ 75 _ _ _ 48.80
LSTM-Rad [18] _ 59 _ 29 _ 2 _ 87 _ 43 _ _ _ 53
RF-RQA [23] 80 _ 69 _ 99 _ 95 _ 85 _ _ _ 85.60 _
Time-domain ConvNet 96.88 95.97 89.53 75.67 99.10 60.17 96.88 91.68 91.69 82.55 _ _ 94.81 81.21
Frequency-domain ConvNet 96.95 96.07 98.28 95.27 99.79 85.03 99.31 98.03 97.11 93.88 _ _ 98.29 93.66
Frequency-domain DBN 88.60 85.57 88.84 74.09 99.11 62.70 96.91 91.65 94.04 87.92 _ _ 93.50 80.39



i Our time and frequency domain ConvNets perform better than traditional
hand-crafted feature approaches (SVM-C and RF-RQA). Hence, our approach
is able to detect a better feature representation from time and frequency
domain signals.

ii Our time domain ConvNets surpass the time-domain ConvNet of “ConvNet-
Rad” by 30.09%, implying that regulating the ConvNet hyper-parameters
(including convolutional layer filter sizes) plays a great role in increasing the
SMM recognition rate.

iii Our time and frequency domain ConvNets perform better than existent deep
learning models ConvNet-Rad (by 30.09% and 38.95% respectively), ConvNet-
TL-Rad (by 29.82% and 38.68% respectively), and LSTM-Rad (by 19.59% and
28.45% respectively), suggesting that a properly trained ConvNet performs
better than the transfer learning with fine-tuning framework and the LSTM
framework.

iv The time-domain DBN achieves a poor score and does not even converge to
a local minima, which is why the corresponding results were not displayed in
Table 1.3. This is can be explained by the nature of the DBN whose each
hidden layer neurons are able to signal variations only and cannot learn the
place of these variations within the signal. As a reminder, DBNs do not have
the concept of “local signal patch” inside weights and the “weight sharing”
concept as in ConvNets. Thus, DBNs are unable to perform well on data that
is not aligned by means of size and translation such as time-domain signals.

v Nonetheless, SMM acceleration signals which are turned into frequency-domain
are translation-invariant across frequency. As a result, frequency-domain
DBNs yield a satisfying F1-score average of 82.03% (see Table 1.3). Fur-
thermore, this deep neural network is able to detect better SMM feature
representations (within each atypical subject) than those extracted by more
complicated approaches such as RF-RQA and those extracted from compu-
tationally heavy approaches such as SVM-C. Nevertheless, our time and fre-
quency domain ConvNet models are still better at recognizing SMMs than
the frequency-domain DBN by an average of 2.57% and 11.42% respectively.

1.8 Conclusion
This chapter involves developing new approaches for time-series classification tasks.
The two proposed approaches are: (i) a data-level approach which applies the Stock-
well Transform to turn time-series data into frequency-domain signals, thereby



reducing noise within input signals and improving the performance of the deep
learning model, (ii) an algorithm-level approach relying on an adaptive convolu-
tional layer filter whose size is determined based on the nature of variations present
within input time-series signals. Indeed, choosing the proper 1st layer filter gener-
ates features maps which are more informative about the input signals and which
capture the whole peaks within input signals. Experiments were implemented on
the recognition of human activities, including normal activities performed by typical
subjects (i.e., the HAR task) and disorder-based activities performed by atypical
subjects such as the recognition of SMM behaviors within subjects. Those experi-
ments showed the efficiency of our time-series approaches.
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Chapter 2

Learning from images

Image classification is an important computer vision task which has had recently an
outstanding success. The idea behind image classification is to extract meaningful
features from the raw pixels, and then match these features to known, labeled ones
in order to achieve recognition. Thank to deep learning, the highest benchmarks
accuracy rates has been reached in image recognition tasks.

In this context, we propose to conduct deep learning models for a new task,
namely “Handwritten Tifinagh Character” recognition. The reason why we chose
the Tifinagh-IRCAM alphabet (the Amazigh language which is widely used in North
Africa) is that it remains a young alphabet and recognizing its characters is still a
young field of research.

As such, the proposed models are: randomly initialized Convolutional Neural
Networks (ConvNets), Deep Belief Networks (DBNs) and transfer learning with
ConvNets. The first and second approach achieve satisfactory results with an accu-
racy of 98.95% and 95.47% respectively while the third method outperforms state-
of-the art methods with an accuracy of 99.05%.

2.1 Introduction

Handwritten character recognition has been a popular research field since it has
been applied for several tasks, including analysis of documents, processing of bank
checks reading postal codes and reading different forms. Several techniques of hand-
writing recognition have been developed and refined, especially for Latin scripts,
Chinese/Japanese/Hindi scripts and Arabic/Farsi scripts (Steinherz et al., 1999),
(Bazzi et al., 1999), (Zhang et al., 2009), (Agrawal et al., 2009), (Amin, 1998),
(Ebrahimpour et al., 2011). Recently, with the growth of means of communication,
the Tifinagh alphabet has been integrated into the information systems. And only
few works have been introduced to address the handwriting recognition task of such
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a language. In literature, some articles dealing with offline recognition of handwrit-
ten Tifinagh character have been conducted using neural networks (Ait ouguengay
and Taalabi, 2009; EL Ayachi et al., 2011; Bencharef et al., 2011; Kessab et al.,
2011; Gounane et al., 2011), Support Vector Machines (Oujaoura et al., 2013),
Fuzzy K-NN (Gounane et al., 2011), Finite Automata (Es Saady et al., 2011a),
Hidden Markov Models (Amrouch et al., 2009, 2010, 2012a; Kessab et al., 2011)
and Fuzzy K-NN combined to Bigram language model (Steinherz et al., 1999). The
Tifinagh alphabet is regarded as the writing system of the Amazigh language. An
ancient version of Tifinagh existed from the 3 rd century BC to the 3rd century
AD and was more widely used in North Africa (from the oasis of Siwa in Egypt,
to Morocco passing through Libya, Tunisia, Algeria, Niger, Mali, Burkina Faso and
Mauritania). Since then, several variations have been applied to the original Ti-
finagh. The Royal Institute of the Amazigh Culture adopted “Tifinagh-IRCAM”
as the latest version of Amazigh alphabet, which is officially recognized by the In-
ternational Organization of Standardization (ISO) as the basic multilingual plan
(Zenkouar, 2004). Figure 1.6 shows Tifinagh characters used in Morocco along
with their corresponding Latin characters. This alphabet consists of 33 phonetic
entities. However, Unicode codes only 31 letters plus a modifier letter that forms
the two phonetic units: ⴳ (gw) and ⴽⵯ (kw).

The Tifinagh script is written from left to right and it employs the same punc-
tuation marks as Latin alphabet. However, capital letters do not exist within the
Tifinagh script, meaning that the notion of upper and lowercase characters is not
present within this language. Regarding the shape of the characters, the majority
of graphic models of the characters consist of a combination of horizontal, vertical
or diagonal segments. In addition, one advantage of the Tifinagh alphabet is that
is not cursive, which makes the Tifinagh handwriting recognition an easier task.
Throughout this study, we propose to learn features for the Tifinagh handwritten
characters classification using two deep learning approaches: Convolutional Neural
Networks (ConvNets) and Deep Belief Networks (DBNs). Recently, ConvNets and
DBNs have been successfully applied into pattern recognition, whereby features
are no longer hand-crafted but rather learned automatically from images. Both
approaches provide an efficient feature extraction by detecting relevant all level
features (low-, mid-, and high-level features). In this study, we attempt to apply
ConvNets and DBNs on Tifinagh handwritten characters the same way they were
applied to Latin script. Our contribution is to: train different ConvNet and DBN
architectures with Tifinagh characters taken from the AMHCD database (Zenkouar,
2004) and discuss their corresponding feature representations. In the next sections,
we review related works on Tifinagh Handwritten character recognition (Section
2.2). Then, we define the structure of our ConvNet and DBN architectures (Sec-



tion 2.3). In Section 2.4, experiments are laid out and corresponding results are
compared to existent techniques. Finally, Section 2.5 concludes our work.

2.2 Related work

Several studies have been conducted on the Tifinagh Handwritten character recog-
nition task. Among the first studies is the work of (Oulamara and Duvernoy, 1988)
which provides a statistical approach for Berber character classification whereby
straight-line segments are extracted using the Hough transform. The features are
defined and measured in the parameter space obtained by the Hough transforming
of the character shape (Oulamara and Duvernoy, 1988). Djematen et al. allevi-
ate the problem of incorrect segmentation due to straight-line segments (Oulamara
and Duvernoy, 1988) by proposing curved strokes instead (Djematene et al., 1997).
Authors in (Ait ouguengay and Taalabi, 2009) introduce neural networks (NNs)
for classifying Tifinagh characters. The database used for training the network in-
cludes Amazigh spelling patterns of different fonts and sizes. Meanwhile, the study
(EL Ayachi et al., 2011) implements multilayer neural perceptrons (MLPs). Works
(Amrouch et al., 2009, 2010, 2012a; Kessab et al., 2011) apply Hidden Markov
Models for Tifinagh handwritten characters recognition. In (Amrouch et al., 2009),
features generated by applying the Hough transform on Tifinagh characters are
used as input. In (Kessab et al., 2011), neural networks are combined with Hidden
Markov Models to produce a better recognition performance. Finally, (Amrouch
et al., 2012a) uses a combination of continuous Hidden Markov Models and direc-
tional features. The work of (El Yachi et al., 2010) employs dynamic programming
for the recognition of Tifinagh scripts. In (Es Saady et al., 2011b), authors adopt
a horizontal centerline of writing as a new approach for classifying Amazigh hand-
writing. Positions of baselines of characters (a central line, upper and lower line
of writing) are used to derive a subset of baseline independent and dependent fea-
tures (Es Saady et al., 2011b). The same authors add another contribution in (Es
Saady et al., 2014), where parameters such as horizontal and vertical baselines of
the character are estimated, then used to derive a subset of baseline dependent
features. These features are extracted on characters using the sliding window tech-
nique. Another approach that contributed to the increase of Tifinagh handwriting
recognition performance is a Syntactic Approach using Finite Automata (Es Saady
et al., 2011a). (Gounane et al., 2011; Steinherz et al., 1999) present the k-nearest
neighbor algorithm that proposes candidates (classes) weighted by their member-
ship degree so as to conduct the Tifinagh classification task.



2.3 Methodology

In this section, we define the main components for training our deep learning models.
First, we describe the preprocessing and data augmentation phases before training
2.3.1. Next, we discuss the architecture of our ConvNet Section:Fapp3.2. Then, we
go through the architecture of our DBN Section:Fapp3.3.

2.3.1 Preprocessing and data augmentation phase

First, the training dataset needs to be preprocessed then increased via multiple
transformations.

2.3.1.1 Preprocessing phase

Each image of the dataset is resized to 30 × 30, 60 × 60 or 100 × 100 based on
the configuration of the architecture used. The ratio between height and width of
images is kept the same. Then it is converted to a grayscale format. For ConvNet
training, it is binarized using the Otsu threshold method (Otsu, 1979). For DBN
training, we increase the contrast of images by adjusting their intensity values.

2.3.1.2 Data augmentation phase

Generally, deep neural networks yield satisfying classification rates when trained
with enough training instances. In other words, with a lack in training samples,
these networks overfit and provide misleading (incorrect) classifications at the test-
ing phase. The best way to alleviate this problem is by enlarging the training
dataset via data augmentation. Data augmentation is applied during ConvNet
training and during DBN supervised training. In this context, our characters are
replicated with several transformations. To this end, we randomly select half the
instances of the batch and distort them by a random rotation between -20 and 20
degrees and by rescaling the image width and height independently with a random
resizing coefficient ranging from 0.7 to 1.

2.3.2 ConvNet model

As depicted in Table 2.1, our ConvNet is composed of seven layers: four convo-
lutional layers and three fully connected. The selected activation function is the
rectified linear unit (ReLU). The ConvNet takes a grayscale image (one channel)
as input. Each convolutional layer convolves the output of its previous layer with a
set of learned kernels, followed by the ReLU, and Max-pooling as an optional layer.
The first and fourth convolutional layers are followed by a max-pooling layer. The



fourth convolutional layer is then followed by two fully connected layers (FC1, FC2)
each of which has 500 neurons as output. Finally, one last fully connected layer
is added (FC3); and its output is fed into a softmax function which computes the
probability distribution over the different classes. The final layer has 31 output
units corresponding to the 31 Tifinagh character labels.

Table 2.1: ConvNets architecture.

Layer Type Kernel size Number of kernels Stride Pad Output Size
Input - 30× 30

L1
Conv 4× 4 20 1 0 27× 27
ReLU - - - - 27× 27
Maxpool 2× 2 - 2 0 13× 13

L2 Conv 3× 3 50 1 0 11× 11
ReLU - - - - 11× 11

L3 Conv 3× 3 150 1 1 11× 11
ReLU - - - - 11× 11

L4
Conv 3× 3 150 1 1 11× 11
ReLU - - - - 11× 11
Maxpool 2× 2 - 2 0 5× 5

L5
Conv (FC1) 5× 5 500 1 0 1× 1
ReLU - - - - 1× 1
Dropout - - - - 1× 1

L6
Conv (FC2) 1× 1 500 1 0 1× 1
ReLU - - - - 1× 1
Dropout - - - - 1× 1

L7 Conv (FC3) 1× 1 32 1 0 1× 1

As depicted in Table 2.1, the filter size of the first convolutional layer is chosen
to be 4 × 4, which is relatively large compared to the input image size 30 × 30.
Indeed, unlike photo images that have texture information and require a very small
filter size (relative to input image size) to capture small shapes, we are dealing with
grayscale character images with no texture. Accordingly, applying smaller filters is
not adequate and adopting large filters (relative to the input image) detects more
structured context than textured information.

2.3.3 DBN model

2.4 Experiments and results
We conduct our experimental studies on handwritten Tifinagh character recogni-
tion using ConvNet and DBN methods. These two deep learning approaches are



evaluated on AMHCD database (Es Saady et al., 2011c). Results are detailed and
discussed in the next subsections.

2.4.1 Experiments using Convolutional Neural Networks

Simulation details. In our work, we used the stochastic (mini-batch) gradient de-
scent as our gradient-based optimization method. The learning rate was chosen to
be 0.01 for the first 5 epochs and 0.001 for the 8 remaining epochs. The momentum
is fixed to 0.9 while the dropout rate is set to a high value 0.5 to avoid overfitting.
Our batch size is set to 50.

2.4.1.1 Experimental setup

Using k-cross validation with k = 3, we randomly divide the dataset into three
equal parts, and choose two parts as training data and the remaining part as test-
ing/validation data. We take the average accuracy of the validation set as the final
evaluation.

2.4.1.2 Results

After training the ConvNet model explained in section 3.2 with 30 × 30 input
images, we achieve a classification accuracy of 97.99% (Table 2.2). Furthermore,
we investigate the performance of different ConvNet architectures on the AMHCD
dataset by a parametrization of the size and number of layers as well as kernel sizes.
For the 60 by 60 input images, we apply an architecture that consists of 8 layers (5
convolutional and 3 fully connected) as follows: 5× 5 Conv., ReLU, Maxpool, 4× 4
Conv., ReLU, Maxpool,-3×3 Conv., ReLU, 3×3 Conv., ReLU, 3×3 Conv., ReLU,
Maxpool-6 × 6 Conv., ReLU, Dropout, 1 × 1 Conv., ReLU, Dropout, 1 × 1 Conv.
Since the input image size is now 60 by 60, the filter size of the first convolutional
layer is set to be 5× 5 instead of 4× 4 and an extra layer is added (a convolution, a
ReLU and Maxpool). This more complex architecture yields an accuracy of 98.25%,
which is slightly better than the result we got for the previous architecture. Due to
the fact that st layer filters adopted for 60 by 60 images are proportionally smaller
w.r.t the input image size than st layer filters adopted for 30 by 30 images, they
may be susceptible to capture more entire edges.Therefore, one way to improve
recognition of images is to : (i) choose a larger input image size which results in
keeping more details about the image, and (ii) choose a st layer filter size that is
proportionally smaller w.r.t the input image so that the finest details (edges) of
the image could be detected. Furthermore, we set input images to be 100 × 100
and use the same ConvNet architecture as the one applied to the 60 × 60 image,
except that the filter size of the first convolutional layer is chosen to be 7× 7. Note



that st layer filters adopted in this architecture are proportionally smaller w.r.t the
input image size than st layer filters adopted for 60 by 60 images. The accuracy
of this architecture is surprisingly lower (97.95%) compared to the two previous
architectures. This means that, even if we adopt a larger input image size and thus
an image with more details, choosing a st layer filter size that is too small w.r.t the
input image leads to a failure in capturing the entire edge, catching only a part of
the edge, therefore losing valuable information about the image.

As a result, in order to increase the accuracy of a ConvNet model, one way is
to keep the resolution/frame of the input image as big as possible and keep the st

layer filter size as proportionally small w.r.t the input image as possible (but not
too small to lose edges within images).

These results can be explained by the dimension of images present in the AMHCD
dataset. The original input image sizes are neither uniform nor fixed; they vary from
20×30 pixels to 150×180 pixels. However most of the images are around the mean
size of 60 × 60. That is why the architecture adapted for 60 × 60 images gave the
best results, followed by the architecture for 30 × 30 images, then followed by the
architecture for 100 × 100 images, knowing that we lose quality and information
about the image when decreasing or increasing its size.

Table 2.2: Comparative results using different Transfer Learning ConvNets.

Input image size Accuracy at test time (%)
30× 30 97.99
60× 60 98.25
100× 100 97.95

2.4.1.3 Feature representations

We analyze the type of visual features learned by neurons of the first convolutional
layer by plotting the corresponding weight matrices for the three architectures men-
tioned above (Figure 2.1). We notice that, the larger the first layer filters are, the
clearer the edges and contours become. Indeed, going from 4 by 4 filter weights in
(a) to 7 by 7 filter weights in (b) makes edges stronger and look like Gabor filters.

2.4.2 Experiments using Deep Belief Networks

We further investigate the performance on recognizing Tifinagh characters of AMHCD
database using the unsupervised feature learning approach DBN. After preprocess-
ing images and expanding the size of the training set by the augmentation technique
mentioned in section 2.4.1, the DBN is first pre-trained in an unsupervised manner.
Next, an additional feed-forward layer is used to read out the top-level internal



(a) (b) (c)

Figure 2.1: Filter weights on the first layer for the three ConvNet architectures: (a)
4 by 4 filter weights for the architecture adopted for 30×30 images, (b) 5 by 5 filter
weights for the architecture adopted for 60× 60 images, (c) 7 by 7 filter weights for
the architecture adopted for 100× 100 images.

representations of the hierarchical generative model (Fig. 2.2).

Figure 2.2: Structure of the chosen DBN architecture (500-500-2000-31). Undi-
rected connections stand for unsupervised learning, whereas directed arrows on the
top layer entail supervised learning. The number on each layer denotes the layer
size.

2.4.2.1 Architecture and Simulation details

We consider four different deep architectures, with a varying number of hidden
neurons. The first architecture of DBN is 500-500-2000-31, which consists of three



RBMs, with 500 hidden neurons in the first and second layers, and 1000 hidden
neurons in the third layer. The second architecture is 500-1000-2000-31, the third
1000-1000-2000-31, the fourth 1000-1000-1000-2000-31. The size of the first and
second hidden layer is varied between 500 and 1000 neurons across different archi-
tectures. In addition, the number of RBMs is varied between 3 and 4 hidden layers
respectively. For the unsupervised learning, learning parameters are set according
to suggestions published by Hinton (Hinton et al., 2006). The 1-step contrastive
divergence learning is used with a learning rate of 0.0001, a momentum coefficient
of 0.7, and a dropout of 0.3. The pre-training of the RBMs –unsupervised learning-
is performed for 200 epochs using a mini-batch of size 200. On the other hand,
parameters of the supervised learning are set to 0.0001 for the learning rate and
200 for the batch size. The number of epochs varied according to the minimum
value of the error rate.

2.4.2.2 Results

Classification accuracy for all the considered architectures, measured by correct
classification rates, is reported in Table 2.3. For instance, the architecture 500-
500-2000-31 yields an accuracy of 93.68%. Next, we observe that, the larger the
size of the hidden layers, the better the recognition accuracy. Indeed, increasing the
number of hidden units in the first layer from 500 to 1000 improves the classification
performance by 0.72, suggesting that having learned more low-level features helps
classifying the Tifinagh characters. Similarly, going from 500 to 1000 units in the
second hidden layer increases the accuracy by 1.07%, which implies that the more
hidden units we have in the second layer, the more mid-level features we capture.
Therefore, increasing low and mid-level features results in better high-level features
and a better character recognition.

Table 2.3: Results of different DBN architectures.

Architecture (# units per layer) Character recognition accuracy
Training data (%) Testing data (%)

500-500-2000-31 98.55% 93.68%
500-1000-2000-31 99.31% 94.75%
1000-1000-2000-31 99.75% 95.47%
1000-1000-1000-2000-31 98.90% 94.13%

2.4.2.3 Feature representations

We analyze the type of visual features learned by units of the first hidden layer by
plotting weights of some unit samples for the three architectures mentioned above



(Fig. 2.3). Weights of each 1st hidden layer unit are converted from a 900 raw
vector into a 30 × 30 matrix. From the plots of all three architectures, we notice
that some unit weights show low-level features (with simple Gaussian filters) while
other show more complex features such as developed edge detectors and Gabor
filters with different phases and orientations.

(a) (b) (c)

Figure 2.3: 20 sample weights taken from the units of the 1st hidden layer for three
DBN architectures. Each sample is a 900 raw vector of a single 1st hidden unit
sample that is reshaped into a 30× 30 matrix. (a) weights for the 500-500-2000-31
architecture, (b) weights for the 500-1000-2000-31 architecture, (c) weights for the
1000-1000-2000-31 architecture.

2.4.3 ConvNet vs DBN results

In order to explain the difference in accuracy between ConvNets and DBNs, let’s
first discuss properties and advantages of each of these two approaches. DBN is
a generative unsupervised model that has the following advantages: (i) it acts as
some special kind of regularizer and thus reduces overfitting (lower performance in
training data, but better generalization power), (ii) it gives a better initialization
of the weights in the deep neural network, which can then be adjusted or refined in
a supervised manner, leading then to better local optima, (iii) it is useful when we
have many unlabeled data and few labeled data. However, DBN is not so powerful
when the number of labeled training samples is large enough, which is the case
for our AMHCD database. In ConvNet, even though the weights are randomly
generated and the first few layers in deep networks change very slowly due to dif-
fusion of gradients, they will eventually change with enough training samples and
a long enough training time. That explains why ConvNet performs better than
DBN when using the relatively large dataset AMHCD. Another reason why DBN
performs lower than ConvNet is that the all the neurons of the DBN will try to
learn not only the Tifinagh characters but also the place of those characters in the



images because it will not have the concept of ’local image patch’ inside weights.
Nevertheless, ConvNet has the weight sharing property and the subsampling con-
cept that make the network translation-invariant and rotation-invariant. And, we
know that the AMHCD is composed of hand-drawn characters that are not located
in the same place and at the same angle.

2.4.4 Confusion errors and character similarity

Based on both architectures mentioned above, we compute the individual accuracy
for each class of the Tifinagh characters in the test data. The results obtained
are shown in Table 2.4. For the ConvNet and DBN models, we notice that some
characters such as ⵙ (s), ⵔ (r), ⵕ (rr) have a relatively lower classification rate
than others. This may be due to the bad writing of some characters in the database
whose classification is difficult even for a human operator. Figure 2.4 illustrates
some badly written letters in the database. Furthermore, due to the structural
similarity of characters such as characters ⵣ (z) with ⵥ (zz) and ⴹ (dd) with ⵟ

(tt), these characters are misclassified by the DBN while being correctly classified
by the ConvNet.

Misclassified as ’ⴱ’ (class=1)

Misclassified as ’ⴰ’ (class=3)

Misclassified as ’ⵔ’ (class=21)

Misclassified as ’ⵚ’ (class=24)

Figure 2.4: Some samples of the character ⵙ (class=23) badly written in the
database.

2.4.5 Comparative results

Table 2.5 displays results of previous Tifinagh handwritten recognition works as
well as our results. We notice that our ConvNet model outperforms all traditional
works except the work of (Aharrane et al., 2017) which consists of a combination of



Table 2.4: Individual recognition rate for each character for both DBN (architecture
1000-1000-2000) and ConvNet models.

Character Images correctly classified by the DBN Images correctly classified by the ConvNet

# images Accuracy (%) # images Accuracy (%)

A ⴰ 260 100.00 259 99.62

Aa ⵄ 250 96.15 257 98.85

B ⴱ 258 99.23 259 99.62

Ch ⵛ 239 91.92 249 95.77

D ⴷ 258 99.23 257 98.85

Dd ⴹ 245 94.23 258 99.23

E ⴻ 248 95.38 260 100.00

F ⴼ 243 93.46 255 98.08

G ⴳ 243 93.46 253 97.31

gh ⵖ 248 95.38 255 98.08

h ⵀ 251 96.54 258 99.23

hh ⵃ 256 98.46 260 100.00

i ⵉ 251 96.54 250 96.15

j ⵊ 246 94.62 257 98.85

k ⴽ 244 93.85 258 99.23

kh ⵅ 249 95.77 260 100.00

l ⵍ 260 100.00 260 100.00

m ⵎ 256 98.46 259 99.62

n ⵏ 259 99.62 260 100.00

q ⵇ 260 100.00 259 99.62

r ⵔ 249 95.77 245 94.23

rr ⵕ 241 92.69 248 95.38

s ⵙ 207 79.62 225 86.54

ss ⵚ 255 98.08 256 98.46

t ⵜ 254 97.69 258 99.23

tt ⵟ 245 94.23 259 99.62

u ⵓ 251 96.54 258 99.23

w ⵡ 260 100.00 260 100.00

y ⵢ 249 95.77 254 97.69

z ⵣ 226 86.92 258 99.23

zz ⵥ 234 90.00 255 98.08



classifiers. Meanwhile, our DBN model outperforms several state-of-the-art works
except (Es Saady et al., 2011b; Amrouch et al., 2012b; Aharrane et al., 2017).
This suggests that deep learning approaches are able to automatically capture the
low-, mid-, and high-level features from Tifinagh characters. This suggests that
automatically learned feature representations via deep learning methods are globally
more efficient than engineered ones in terms of recognizing handwritten Tifinagh
characters.
Table 2.5: Comparison between our method and other existing approaches. Images
used are taken from AMHCD. The abbreviation % stands for the percentage with
respect to the total size of images used.

Method used # images # Training images and % # Test images Accuracy

(Djematene et al., 1997) 1700 (06.60%) 1000 (59%) 700 92.30
(Es Saady et al., 2011b) 20,150 (78.28%) 18,135 (90%) 2015 96.32
(Es Saady et al., 2014) 24,180 (93.93%) 21,762 (90%) 2418 94.96
(Amrouch et al., 2012b) 20,180 (93.93%) 16120 (80%) 8060 97.89
(Aharrane et al., 2017) 24,180 (93.93%) 16,926 (70%) 7254 99.03
Our DBN (Sadouk et al., 2017) 24,180 (93.93%) 16,120 (67%) 8060 95.47
Our ConvNet (Sadouk et al., 2017) 24,180 (93.93%) 16,120 (67%) 8060 98.25

2.5 Conclusion

In this study, we proposed two deep learning frameworks for Tifinagh handwritten
character recognition. We presented Convolutional Neural Network (ConvNet) and
Deep Belief Network (DBN) models as powerful automatic approaches for classifying
Tifinagh handwritten characters. By using the AMHCD database with 31 class
labels of character patterns, we showed that the ConvNet surpassed existent works
with an accuracy of 98.25%, whereas the DBN achieved satisfying results with
95.47% accuracy. Even with a lower performance than ConvNet, DBN is yet faster
and its architecture structure is less complex. As a perspective, we could apply
Convolutional Deep Belief Network approach as a generative model for learning
hierarchical representations of Tifinagh handwritten characters. We believe that
replacing RBMs by CRBMs by sharing the weights between the hidden and visible
layers among all locations in an image will give higher recognition accuracy. Another
perspective would be to build an ensemble of ConvNet and traditional methods at
test time to provide the best classification. A different research direction would be
to develop a framework robust to misclassified characters.
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Part IV

Learning from few data (with lack of data)
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As we know, deep learning models in general and Convolutional Neural Net-
works (ConvNets) in particular require large datasets during training. Indeed, they
require excessive amount of labeled (e.g., annotated) data to avoid overfitting and
obtain full convergence of parameters. Although in recent years several labeled
datasets have become available, some fields such as medicine experience a lack of
annotated data as manually annotating a large set requires human expertise and is
time consuming. For instance, labeling acceleration signals of autistic children as
SMMs or non-SMMs requires knowledge of a specialist. The conventional approach
to deal with this kind of problem is to act on the data level via data augmentation
by applying transformations to the existing data, as shown in section 1.4.1.1. Data
augmentation achieves slightly better time-series classification rates, but the Con-
vNet is still prone to overfitting. In this part, we show how to solve the issue of lack
of data when training ConvNets. In this matter, we attempt to present solutions
to this problem by proposing the following approaches: two multi-modal learning
approaches (an ensemble learning approach and a transfer learning one) as well as
an approach based on a ConvNet voting technique at test time.

i a ConvNet Transfer learning approach with a source domain that is more
global and more general than the target. This approach is applied on an
Optical Character Recognition (OCR) task where the target domain is any
Handwritten Alphabet with lack of data and the source domain is the Phoeni-
cian handwritten alphabet,

ii another algorithm-level approach adapted to time-series classification tasks
with limited annotated data, which is a global, fast and light-weight frame-
work based on a transfer learning technique with a source learning task similar
or different but related to the target learning task. This approach is conducted
on a medical application: the recognition of Stereotypical Motor Movements
of autistic subjects,

iii an ensemble learning approach which combines between different ConvNets,
some of which employing knowledge transfer. The proposed ensemble learning
framework embeds between features learned by training different ConvNet
models including randomly initialized ConvNets and ConvNets already pre-
trained on tasks different from the target domain task. This framework is
implemented on a computer vision task, namely the sketch recognition task,

iv a novel augmentation technique at the training phase and a voting approach
at the testing phase. Implementation was also conduced on the sketch recog-
nition task.

Each of these approaches is presented in the chapters below.





Chapter 1

Multimodal learning: Transfer learning
approach with fine-tuning

Many cognitive tasks require reusing knowledge acquired in one domain to perform
one or more tasks in a someway related domain, without needing to learn the new
task completely from scratch. In particular, given a source domain with a source
learning task and a target domain with a target learning task, transfer learning
aims to improve learning of the target predictive function using the knowledge in the
source domain and source task, with the assumption that source and target domains
share a common feature space. This functionality comes in handy especially when
the target domain has a limited number of training data. When dealing with
Convolutional Neural Networks (ConvNet), transfer learning (TL) consists of using
a ConvNet model already pre-trained on a source domain dataset and updating/fine-
tuning part of or all of its weights by training them on the target dataset.

In this chapter, we show how feature learning with lack of training data using
ConvNet TL can be improved by selecting the appropriate source domain. Indeed,
we demonstrate that picking a source domain that is more global and more general
than the target domain results in a better feature learning. To this matter, we
choose an application on Optical Character Recognition (OCR) task where the
target domain is any Handwritten Alphabet with lack of data and the source domain
is the Phoenician Handwritten Alphabet. Let’s note that the Phoenician alphabet
is the ancestor of almost all current alphabets.

The outline is as follows: an overview about the Phoenician alphabet is intro-
duced (chapter 1.1). Then we describe how our new Phoenician Handwritten Char-
acters’ Database has been implemented (chapter 1.2). In chapter 1.3, we present the
ConvNet model used for the source domain task (e.g., the Phoenician Handwritten
Alphabet recognition). Afterward, we introduce the light-weight transfer learning
system for the recognition of alphabets which lack of annotated data (1.4). Finally,
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chapter 1.5 concludes our work.

1.1 Overview of the Phoenician alphabet

The Phoenician alphabet is the oldest verified alphabet in the wider sense of the
term ”alphabet”. The earliest Phoenician inscription found dates from the 11th
century BC (Fig.1.1). It was used to write Phoenician, a Northern Semitic lan-
guage, used by the ancient civilization of Phoenicia in modern-day Syria, Lebanon,
and northern Israel The Phoenician alphabet was widely-used since Phoenicians
traded around the Mediterranean world and built some cities North Africa and
Southern Europe. The origins of most alphabetic writing systems are derived from
the Phoenician alphabet, including Greek, Etruscan, Latin, Arabic and Hebrew, as
well as the scripts of India and East Asia.

Figure 1.1: Phoenician text inscribed on stone, 1st millennium BCE.

The type of writing of the Phoenician alphabet is Abjad (Fischer, 2003) with
22 consonants and no vowel indication, leaving readers to infer vowel sounds (Table
1.1).

Lately, some interest has been given to Phoenician scripts. According to gen-
erally accepted estimates, the corpus of Phoenician-Punic inscriptions comprises
about 12,000 inscriptions from all the countries of the Mediterranean (Xella and
Zamora, 2019). And, as noted by (Cunchillos et al., 2005), the sheer quantity and
scattered nature of the documents, spread over a very wide span of time, have
severely affected research and caused considerable difficulties in the knowledge,



Table 1.1: Phoenician alphabet with their correspondents (names and values) in
Latin Characters.

Name {value} Letter(s) Name {value} Letter(s)

Aleph {,} Lameth {L}

Beth {B} Mem {M}

Gimmel {G} Nun {N}

Daleth {D} Samekh {S}

He {H} Ayin {Ap}

Waw {W} Pe {P}
Zayin {Z} Tsadi ts {So}

Heth { χ - Ho} Qoph {Q}

Teth { θ - To} Resh {R}
yodh{Y} Sin {Shat}

Kaph {K} Taw {T}

availability and use of these sources. To alleviate this problem, a collection of all
Phoenician and Punic epigraphic documents was transferred into a database by the
CIP project (Xella and Zamora, 2019), thus making Phoenician texts accessible to
everyone. To this matter, and to further digitize and preserve the heritage of the
Phoenician script, we propose a system for the recognition of Phoenician Hand-
written characters, which can be used in applications such as processing of records
of land conservation and the editing of old documents. To do so, we first need a
Phoenician reference database, which up until now is not available. As such, we
propose a new database for Phoenician Handwritten Characters (PHCDB).

1.2 Phoenician Handwritten Character Dataset
To create our Phoenician Handwritten Character Dataset, dataset of Phoenician
handwritten characters is collected first, then pre-processing of characters is con-
ducted. First, data was collected by 500 writers (authors) who were given either
’form A’ or ’form B’ to reproduce, as shown in Figure 1.2. Let’s note that, form A
has Phoenician characters slightly different from form B (Fig.1.2.a). As a result, by
making each author write 22 characters, a total of 11,000 characters are collected.



(a)

(b)

Figure 1.2: (a) consists of the two forms (“A” and “B”) given to writers, where
each form has a different style of alphabet writing. (b) is an example of two sample
forms filled by two writers.

The forms were scanned with a quality of 300 dpi. Also, a program was written
in Matlab to extract each character image separately from each filled form and
saving it into the character folder (i.e., all similar character image will be grouped
into the same folder). This program helps in reducing processing time. Next,
pre-processing including noise filtering and image binarization is performed. Also,
character images are re-sized to remove extra white space. Also, badly written



or unclear characters (extracted from the collected forms) were deleted manually,
ending up with 10,714 images i.e., 487 images per character. Figure 1.3 shows some

image samples of character ’Kaph’ stored in our database.

Figure 1.3: Example of images of character ’Kaph’ K stored in our database.

The HPCDB database is publicly available for the purpose of research at:
https://osf.io/4j9b6/

1.3 Handwritten Phoenician Character recognition

In this chapter, we propose our Deep Learning framework for the recognition of
Handwritten Phoenician Characters based on a Convolutional Neural Network
(ConvNet) and the ’PHCDB’. First, the ConvNet architecture and simulation set-
tings are described, then the experiments are laid out and results are discussed.

1.3.1 Phoenician ConvNet.

Data pre-processing. We choose to feed the ConvNet with 60 by 60 images. As
such, Phoenician images are re-sized proportionally to a 60 × 60 frame. Also, to
prevent overfitting, data augmentation is performed by randomly rotating, trans-
lating/shifting and jittering half of the training images.



Architecture. The architecture of the ConvNet was selected after a trial and
error process to maximize the performance rate of recognition of Phoenician char-
acters. As such, the final architecture, illustrated in Figure 1.4, has seven layers
in total: (i) four convolutional layers composed of either a stack of Convolution,
ReLU and Maxpooling units or a stack of Convolution and ReLU units, and (ii)
three fully connected layers with a Fully Connected layer followed by a ReLU and
a dropout. A summary of the architecture parameters is given in Table 1.4 of the
Annex.

Conv. 5x5
+ReLU

Max-pooling 
pooling size 2x2

Fully-connected 
+ ReLU

+ Dropout

....Input: (60 x 60)

20@56x56 20@28x28 50@25x25 50@12x12

Layer 1

Max-pooling 
pooling size 2x2

150@12x12

Conv. 4x4
+ReLU

Conv. 3x3
+ReLU

Conv. 3x3
+ReLU

150@12x12 150@6x6

Max-pooling 
pooling size 2x2

500@1x1 500@1x1 22@1x1

Fully-connected 
+ ReLU

+ Dropout
Fully-connected 

+ softmax

Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Figure 1.4: Architecture of the proposed ConvNet.

Training. Training is performed using the adaptive learning rate optimization
algorithm ADAM with the following parameters: 0.001 as the learning rate, 0.9
and 0.99 as the exponential decay rates for the first and second moment estimates
respectively. A high dropout rate of 0.5 is set to avoid overfitting. The selected
batch size is 100 and the number of training epochs for full convergence is 70 epochs.
We report results with 3-fold cross validation and we take the average accuracy of
the validation set as the final evaluation.

1.3.2 Experiments and Results.

ConvNet trained on PHCDB. After training the ConvNet on PHCDB, results are
reported in Tables 1.2 and 1.5 (Annex). The first table displays the recognition
rate of each Phoenician character while the second table shows the confusion matrix
corresponding to the best recognition performance recorded by the system. From
these results, a high classification accuracy of 0.9851 is recorded. Thus our ConvNet
is able to capture features from handwritten Phoenician characters.

Furthermore, some characters achieve a 100% accuracy while some others achieve
a recognition rate between 96.3% and 99.6%. In order to detect where misclassifi-
cation occurs, let’s observe some of the misclassified characters. From these charac-
ters, we notice that misrecognition occurs because of either badly written characters
within the database such as in (Figure 1.5) or structural similarities between some

Phoenician characters namely and , and , and as illustrated in
the confusion matrix 1.5 (Annex).



Table 1.2: Classification rate of each character in the PHCDB database during the
validation phase.

Character Accuracy Character Accuracy

1 0.9753

0.9815 0.9938

0.9630 0.9753
0.9753 1

0.9815 0.9877

1 0.9877

1 0.9815

1 0.9321
0.9877 0.9938
0.9691 1

0.9938 Average 0.9851

0.9938

G ( ) h Qoph ( )

Mem ( ) Resh ( ) Teth ( )
(b)

Figure 1.5: Examples of badly written characters in our database.

Comparison with other techniques. Our ConvNet is further compared to two
other recognition approaches. The first one involves HOG (Histogram of Oriented
Gradient) features (Dalal and Triggs, 2005) (by setting the HOG cell size to 4× 4)
and a multi-class SVM (Support Vector Machine) classifier. The second one consists
of training a Deep Belief Network (DBN) as follows: (i) given the same preprocessed
and augmented training images as in chapter 1.2, images are resized from 60 × 60
to 30 × 30 then turned into a 900 raw vector; (ii) we set the DBN architecture to



500-500-2000-23, meaning there are three RBMs with 500 hidden neurons in the
first and second layers, and 2000 hidden neurons in the third layer (see Figure 1.2
of Annex); (iii) training parameters are set according to Table 1.6 (Annex).

After running simulations, the best performance for each of these approaches
is retained and reported in Table 1.3. From these results, we observe that the
proposed ConvNet surpasses both the traditional approach (HOG-SVM) and the
deep learning one (DBN).

Table 1.3: Comparison of different used classifiers.

HOG-SVM DBN Phoenician ConvNet
Accuracy 0.9052 0.8566 0.9851

1.4 Transfer Learning for recognizing Handwritten Alpha-
bets with lack of annotated data

1.4.1 Methodology

Since the Phoenician alphabet is the ancestor of most existing alphabets, these latter
must probably share common features with the Phoenician alphabet. As such, the
main idea is to use the Phoenician alphabet features to improve recognition of
existing alphabets, especially alphabets which have only few annotated data.

As we know, in order for a ConvNet to be efficient in feature extraction and
classification, it needs to be trained by a relatively large number of training instances
for full convergence. And, one way to solve the issue of few training labeled data is
to first train the ConvNet on data whose domain is close to the target data domain
(in hand) and then fine-tune the resulting ConvNet on the target data. Hence,
we propose a light-weight and global transfer learning (TL) system based on the
following steps:

1. A ConvNet is trained on Phoenician characters according to steps of chapter
1.3 ;

2. The resulting ConvNet weights are frozen except those within the last layer
which are replaced by new randomly initialized weights (the number of weights
being set according to the number of characters within the target alphabet) ;

3. These last layer weights are then trained on the target alphabet characters.

By doing so, the number of parameters to be learned within the system is limited
and we ensure that the training process is much faster.



1.4.2 Target datasets

To determine how well the proposed TL system works, we conduct a series of
experiments on a number of different target alphabet datasets for character classifi-
cation, namely Tifinagh, Latin, Arabic, Russian and Bengali handwriting character
datasets.

Latin dataset. The Latin dataset is taken from the Emnist database (Cohen
et al., 2017). This repository contains 12,051 images (of size 28 × 28) of the 31
Latin characters.

Arabic dataset. The Arabic script is written from right to left and is composed
of 28 characters (Figure 1.6.a). Arabic characters data is taken from the Handwrit-
ten Arabic Characters Database (HACDB) (Lawgali et al., 2013) which has two
versions: one with 66 shapes or labels (58 shape characters and 8 shapes of overlap-
ping characters) and a basic one with 24 shapes (representing 24 basic characters).
The latter version is the one used in our study and is composed of a total of 2400
jpg images (of size 128× 128) representing all 24 characters.

Russian dataset. The Russian alphabet uses letters from the Cyrillic script
to write the Russian language (Figure 1.6.c). Russian characters data is taken
from Cyrillic-oriented MNIST dataset (CoMNIST) (Comnist, 2019) which is a free,
crowd-sourced version of MNIST that contains digitized letters from the Cyrillic and
Latin alphabet. The Cyrillic repository currently contains 15,233 png handwritten
images of size 278× 278 representing all 33 letters of the Russian alphabet.

Bengali dataset. Bengali is the native language of Bangladesh (Figure 1.6.d).
The Bengali character dataset is obtained from the Handwritten Indian script char-
acter database CMATERdb 3 (Das et al., 2012). The dataset contains 15,000
images representing the 50 basic Bengali characters.

(a) Tifinagh alphabet (b) Arabic alphabet (c) Russian alphabet (d) Bengali alphabet

Figure 1.6: Some existing alphabets.

Training hyper-parameters are the same as in the chapter 1.3, except that the
number of epochs needed for full convergence is reduced to 35 epochs.



1.4.3 Experiments and results

Experiment 1. In this experiment, we train our Phoenician TL system as well as
other TL systems pre-trained on different source domains (e.g., different datasets).
Below is the list of conducted simulations:

i TL using Phoenician ConvNet: this transfer learning consists of fine-tuning
one Phoenician ConvNet per target dataset (target datasets are the ones
mentioned in section 1.4.2) according to steps of the methodology (section
1.4.1). However, fine-tuning involves training the Phoenician ConvNet on
onlya subset of the target data training set (e.g., n instances from the total
training instances);

ii TL using Latin ConvNet: we first train a ConvNet on the whole Latin dataset
using the same network architecture, simulation settings and cross validation
as the Phoenician ConvNet’s. The obtained ConvNet, referred to as the
“Latin ConvNet”, is further fine-tuned (according to methodology of section
1.4.1) on n instances only of each and every target dataset (except the Latin
dataset);

iii TL using Digits ConvNet: we first train a ConvNet on digit images contained
within the training set of the MNIST dataset (Li Deng, 2012), based on the
same network architecture and simulation settings as the Phoenician Con-
vNet’s. Digit images are resized from 28 × 28 to 60 × 60 before being fed to
the network. Then, the obtained ConvNet, denoted as “Digits ConvNet”, is
further fine-tuned (according to methodology of section 1.4.1) on n instances
only of each and every target dataset;

iv TL using Cifar ConvNet: we train a ConvNet on natural images contained
within the training set of the Cifar dataset (Krizhevsky and Hinton, 2009),
based on the same network architecture and simulation settings as the Phoeni-
cian ConvNet’s. Digit images are resized from 28×28 to 60×60 before being
fed to the network. the obtained ConvNet, denoted as “Cifar ConvNet”, is
further fine-tuned (according to methodology of section 1.4.1) on n instances
only of each and every target dataset;

v RI ConvNet: we train one randomly initialized (RI) ConvNet on n instances
of each of the mentioned target datasets, using the same network architecture,
simulation settings and cross validation as the Phoenician ConvNet’s.

For this experiment, the number of training instances n is set to 34 instances.
Corresponding results are illustrated in Table 1.4. From these results, we observe

that all TL systems are able to recognize target datasets but each at different rates.



For instance, TL using Phoenician ConvNet approach achieves a higher score than
TL using Latin ConvNet, TL using Digits ConvNet and TL using Cifar ConvNet
approaches over all target alphabets. Hence, a prior pre-training of the ConvNet
on Phoenician characters gives a better recognition than a prior pre-training on
Latin letters, digits or natural Cifar images. This suggests that features learned
from Phoenician characters generalize better on existing alphabets than features
learned from Latin characters, digits or natural images, implying that the former
features are more global than the latter ones. Furthermore, the TL using Phoenician
ConvNet approach can be considered as an efficient technique to recognize any
alphabet with few labeled data. Also, the Phoenician ConvNet can be seen as a
baseline ConvNet to train any alphabet.

Comparing the TL using Phoenician ConvNet approach with RI ConvNet ap-
proach shows that the former performs better than the latter when dealing with
Tifinagh and Latin as target datasets and less than the latter for Arabic, Russian
and Bengali target datasets. However, let’s note that, according to Table ?? (An-
nex), RI ConvNet requires training a total of 3,248,892 parameters for 70 epochs as
opposed to TL using Phoenician ConvNet system which requires training 11,022 pa-
rameters only for 35 epochs. Thus, TL using Phoenician ConvNet can be regarded
as a light-weight system for the recognition of any alphabet with few labeled data.

Table 1.4: Comparative results using different Transfer Learning ConvNets.

Target
dataset

RI Con-
vNet

TL using
Phoeni-
cian
ConvNet

TL using
Latin
ConvNet

TL using
Digits
ConvNet

TL us-
ing Cifar
ConvNet

Tifinagh 0.9277 0.9327 0.8266 0.8970 0.7184
Latin 0.9594 0.9786 _ 0.7868 0.6471
Arabic 0.8657 0.8333 0.7361 0.7980 0.6765
Russian 0.9158 0.8771 0.8451 0.7610 0.6114
Bengali 0.8867 0.6056 0.5333 0.5533 0.4612

Experiment 2. We run the same simulations as Experiment 1 but this time
with n = 66 and n = 134. Given the set of training instances n = {34, 66, 134},
classification results of these techniques on the Tifinagh, Latin, Arabic, Russian, and
Bengali target datasets are displayed in Figures 1.7.a, .b, .c, .d and .e respectively.

From these results, the following observations can be made:

i The larger the number of training instances n, the higher the classification
score for all techniques on almost all target datasets; Moreover, increasing n

makes the recognition performance of TL using Phoenician ConvNet compara-
ble to that of TL using Latin ConvNet, meaning that the ConvNet pre-trained



(a) Tifinagh alphabet (b) Latin alphabet (c) Arabic alphabet

(d) Russian alphabet (e) Bengali alphabet

Figure 1.7: Classification results of the RI ConvNet, TL using Phoenician ConvNet,
TL using Latin ConvNet, TL using Digits ConvNet, and TL using Cifar ConvNet
techniques as a function of the number of training instances n per target dataset.

on Latin characters may hold features as global as the Phoenician ConvNet’s
but that the last layer (representing the classifier) of the Latin ConvNet needs
more training instances to converge.

ii Even after increasing the number of training instances, we still have the RI
ConvNet the best at recognizing alphabets, followed by TL using Phoenician
ConvNet and TL using Latin ConvNet, then by TL using Digits ConvNet,
then by TL using Cifar ConvNet. However, as mentioned in the previous ex-
periment, RI ConvNet remains a computationally heavy technique compared
with the rest of the techniques, making the TL using Phoenician ConvNet
the most optimal technique for recognizing alphabets with few labeled data.

1.5 Conclusion

In this chapter, we first proposed a Phoenician Handwritten dataset (PHCDB)
which provides a repository of handwritten Phoenician characters containing 10,714
character shapes. Then, we further used this database to train and test a deep
learning system (a Convolutional Neural Network) for the recognition of handwrit-
ten Phoenician characters. Finally, we developed a fast, global and light-weight
transfer learning network (with limited fine-tuning) based on Phoenician character
shapes which can be used for the recognition of any alphabet which experiences a
lack of annotated data.
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Chapter 2

Multimodal learning: Novel transfer
learning approach

In this chapter, we present a solution to the lack of data by introducing a “knowl-
edge transfer” framework which is a global, fast and light-weight framework that
combines between a transfer learning technique and a SVM classifier. We conduct
this study again on the SMM recognition task.

As a reminder, let’s note that, due to the inter-subject variability of SMMs, a
ConvNet trained on movements of an atypical subject i performs badly on detecting
SMMs of another atypical subject and therefore cannot be applied on SMMs other
than subject i’s SMMs. For instance, testing one of the trained ConvNets of exper-
iments within Section 1.6 (let’s say the trained ConvNet of subject i study j) on
SMMs of a subject other than subject i produces a very low F1-score with less than
30%. As a result, ConvNet features learned from SMMs of one subject differ from
the ones learned from another subject and are not general enough to detect SMMs
of another subject. One way to resolve this problem is to train a ConvNet for each
and every atypical subject individually, as was done in experiments of Section 1.6).
However, we do not always have a large number of annotated SMMs in hand per
atypical subject. As such, the idea is to develop a framework capable of detecting
SMMs across atypical subjects.

The rest of this chapter is organized as follows. Section 2.1 describes the basic
component of our technique. Afterward, Section 2.2 implements this technique on a
SMM recognition task which is different from the SMM recognition task mentioned
in chapter 1. This task consists of recognizing SMMs across different atypical
subjects rather than recognizing SMMs across multiple sessions within one subject
(as in experiments of section 1.6). Results are reported and discussed in Section
2.3.

133



2.1 Methodology: Feature learning via knowledge transfer
In this section, the target domain is the SMM dataset of an atypical (e.g., autistic)
subject i while the source domain is either similar to the target domain (such as
SMM datasets of multiple atypical subjects other than i) or different but related
to it (such as datasets of human activities performed by typical subjects). So, the
purpose of this section is to prove that some of the complex features emerging
from discriminative learning of our ConvNet models (time-domain and frequency-
domain ConvNets) in one of the 2 source domains can be successively used via
transfer learning to classify SMM patterns of any atypical subject.

Source domains. To detect SMMs of an atypical subject i, feature learning is
performed according to Step1 of Figure 2.1, whereby features are learned by training
a ConvNet using data from 2 source domains. We consider:

i features learned from SMMs of some atypical subjects other than subject i as
the 1st source domain. These features are further embedded within a Transfer
Learning system to perform recognition on the target domain which is “the
recognition of SMMs of subject i”. Thus, the source and target domains of
this knowledge transfer process are the same;

ii features learned from movements of typical subjects as the 2nd source domain.
Indeed, this domain is about standard movements (e.g.,simple human activ-
ities) of normal individuals taken from everyday life basis, such as walking,
sitting, standing, jumping, running, etc.. Features learned are further em-
ployed to recognize SMMs via knowledge transfer. Therefore, this knowledge
transfer process relies on two different but related domains.

Knowledge transfer. Features learned from either one of the two source domains
are then embedded within a knowledge transfer process to identify instances of the
target-domain. In particular, the ConvNet low and mid-level features are used (kept
unchanged) while high-level features are removed and replaced by new randomly
initialized ones. So, the transfer learning framework is composed of low and mid-
level features of the source domain, followed by a “readout module” mapping the
representation of these low and mid-level features into 2 labels: SMM or non-SMM.
This read-out module consists of a simple classifier, the Support Vector Machine
with the RBF kernel (a popular kernel function used in various kernelized learning),
whose goal is to train high-level weights using instances of the target-domain, as
shown in Step 2 of Figure 2.1. Supplying the transfer learning framework with SMM
instances consists into feeding these instances into its low and mid-level features,
resulting in output features which serve as input to train the SVM classifier (knowing
that all SMM instances are labeled).



Figure 2.1: The overall transfer learning framework. Abbreviations “conv.” and
“FC” stand for convolutional and fully connected layers respectively.

2.2 Experiments

2.2.1 Experiment 1

. Through this experiment, we want to show that the “transfer learning with SVM
read-out” framework (also referred to as “TL SVM framework”) is a global, fast
and light-weight approach that deals with time-series classification tasks with the
lack of annotated data. The target learning task involves recognizing SMMs of an
atypical subject i. On the other hand, the source learning task is one of the two
following tasks: (i) a task similar to the target learning task such as recognizing
SMMs of multiple subjects other than i, (ii) a task different but related to the
target task such as the recognition of basic human movements. Running the “TL
SVM framework” with the former and the latter target tasks is referred to as as
TL SVM similar domains and TL SVM across domains respectively. Through this
experiment, we also prove that these source learning tasks produce features that
are global enough to recognize SMMs of any new atypical subject.

Datasets. The dataset used for the target learning task is the same SMM
dataset used in section 1.5.1. The dataset used for the source domain of the “TL
SVM similar domains” experiment is also the SMM dataset, whereas the one used
for the source domain of the “TL SVM across domains” experiment is the PUC
dataset which is described in section 1.5.2.

When using the SMM dataset in the target and source learning tasks, signals
of right and left wrist accelerometers are not needed while signals of the torso
sensor are the ones employed in this experiments. The resulting inputs have then
3 channels instead of 9. So, with torso measurements only, the only SMMs that
could be identified by our frameworks are the rock and flap-rock SMMs (and no flap
SMMs), which implies that inputs used for this experiment are rock and flap-rock



SMM instances only.
When applying the PUC dataset as the source learning task, signals recorded

from accelerometers located at the thigh, ankle and arm are not needed while the
waist accelerometer (waist being next to torso) is the only one relevant to the SMM
recognition task during transfer learning. Indeed, the waist location is quite similar
to to the torso location so that the ConvNet pre-trained on the source learning
dataset can further be transferred to the target learning task (SMM recognition).
Accordingly, input instances will have 3 channels instead of 12.

Pre-processing. The pre-processing phase is the same as in section 1.5.
Experimental setup. In this experiment, the time and frequency domain Con-

vNet architectures and hyper-parameters are the same as to the ones used in section
1.5. The target learning task is the SMM recognition of a target subject i of study
j where i ∈ [1, 6] and j ∈ [1, 2]. As such, one “TL SVM framework” is to be trained
per domain (time or frequency domain), per subject and per study. The training
and testing sets of subject i (study j) are selected using the same k-fold cross-
validation used in section 1.5. Nonetheless, since the purpose of this experiment is
to test our framework under the constraint of lack of training labeled data, we pick
only a subset of the whole training set (knowing that the training data instances
vary from 10,000 to 30,000), i.e., 2000 randomly selected training instances.

In order to run our experiment, we need to follow steps below for each domain
(time and frequency)for each study i within each study j:

1. For each and every subject i of every study j. , we start by training a ConvNet
in both time and frequency domains for 5 to 15 epochs, using: (i) signal
instances of all 6 atypical subjects within study j except subject i for the TL
SVM similar domains framework, and (ii) basic human activities’ instances for
the TL SVM across domains framework. This process results in a pre-trained
ConvNet model for each subject i.

2. For each resulting ConvNet model, we employ all of its layers except the last
layer which is replaced by a SVM classifier. Then, 2000 samples taken from
subject i’s training data are fed into the new framework (e.g., the ConvNet
layers followed by the SVM classifier) for training the classifier, resulting in
learned high-level features. Afterwards, the remaining instances of subject i

are used for testing the framework. Since only a subset of subject i’s training
dataset is used, this experiment is run for 5 times, with 2000 randomly selected
samples in each run. Then, we average out the F1-scores relative to the 5 runs
in order to obtain more realistic results.



2.2.2 Experiment 2: Comparison with other techniques

. By way of comparison, several other techniques are laid out:

i . The “ConvNet with few data” approach trains a randomly initialized Con-
vNet in time and frequency domains using the same number of target training
instances as in experiment 1, i.e., 2000 samples. This approach is further de-
noted as ConvNet few data. Let’s note that ConvNet few data is different
from the ConvNet of section 1.6 in several aspects: (i) Only 2000 input in-
stances are used for training the former as opposed to 10,000-30,000 training
instances for the latter, (ii) inputs in the former has less channels than the
latter since the former takes into account only torso sensor measurements
(versus torso, right and left wrist sensor measurements for the latter) and,
(3) as opposed to the latter approach, the former rocking SMM samples and
keeps rock and flap-rock SMM instances only.

ii . The “transfer learning with full fine-tuning” approach (referred to as TL
full fine-tuning) trains a ConvNet in time and frequency domains for every
subject i within study j for 5 to 15 epochs, using instances of all 6 atypical
subjects within study j except subject i (as in Step 1 of Experiment 1). Then
a fine-tuning process is run on the each resulting ConvNet (e.g., all ConvNet
layers’ weights) using the same reduced target training data.

iii . The “transfer learning with limited fine-tuning” approach (denoted as TL
limited fine-tuning) is the same as “transfer learning with full fine-tuning”
except that the fine-tuning process is effective only on weights of the last
ConvNet layer L while weights of other layers 1, · · · , L− 1 are kept fixed.

2.3 Results
We report results and characteristics of experiment 1 and 2 in Table 2.1 and 2.2
respectively. From these results and characteristics, the following observations can
be made:

• As depicted in Table 2.1, the TL SVM similar domains framework is successful
at recognizing SMMs at a mean F1-score of 74.50 % and 91.81 % for time
and frequency domains respectively. Therefore, we can infer the following:
(i) good SMM features can be extracted thanks to TL SVM similar domains,
(ii) since freezing pre-trained ConvNet layers 1, · · · , L− 1 during training on
target data generate good classification scores, this suggests that low and mid-
level SMM features share the same information from one subject to another,



Table 2.1: Results of our transfer learning approach as well as other ConvNet
approaches per domain (time or frequency) per subject and per study.

Study 1 Study 2
Approaches S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 Mean
Time domain
ConvNet few data 72.02 62.31 52.98 88.47 60.61 88.86 80.90 53.28 16.00 82.66 75.82 66.72
TL full fine-tuning 75.73 71.31 59.04 91.67 59.47 91.89 85.66 63.84 38.57 92.24 82.31 73.79
TL limited fine-tuning 75.44 56.50 50.86 91.74 63.86 93.11 85.88 62.62 27.14 93.63 81.16 71.09
TL SVM similar domains 75.37 76.44 56.53 91.74 63.37 92.76 84.86 62.97 41.60 93.32 80.55 74.50
TL SVM across domains 71.66 74.40 66.80 90.69 61.87 92.19 81.35 58.13 35.66 88.44 73.98 72.29
Frequency domain
ConvNet few data 76.64 96.55 63.44 93.13 82.58 94.61 84.94 76.42 29.51 93.66 83.41 79.54
TL full fine-tuning 88.51 97.22 88.15 97.53 91.29 98.26 92.17 88.19 52.17 96.59 91.98 89.28
TL limited fine-tuning 87.98 94.59 62.70 97.57 87.94 98.36 91.62 87.08 40.00 97.82 90.82 85.14
TL SVM similar domain 90.54 97.22 83.86 95.24 86.19 98.45 92.71 90.49 84.99 97.99 92.22 91.81
TL SVM across domains 74.50 91.56 43.77 93.11 76.03 94.2 85.16 74.67 66.98 93.66 83.99 79.78

Table 2.2: Characteristics and resources used for the different techniques imple-
mented in experiments.

Approaches # parameters updated for one pass (1 batch) # batches per iteration # iterations (epochs) Implementation on Android device

ConvNet few data 1.2e+06 (time-domain) 14 (2000/150) 20-35 (time-domain) No (too much memory consumption)7.1e+05 (frequency-domain) 55-85 (frequency-domain)

TL full fine-tuning 1.2e+06 (time-domain) 14 (2000/150) 5-15 No (too much memory consumption)7.1e+05 (frequency-domain)

TL limited fine-tuning 1000 (500*2) 14 (2000/150) 5-15 No (hard to run back-propagation on mobile devices)

TL SVM 500 1 1 Yes (easy to train SVM on mobile devices)

(iii) the last ConvNet layer weights are the ones that vary from one atypical
subject to another and are the ones that characterize each atypical subject,
(iv) TL SVM similar domains can be considered as a general and light-weight
framework to identify SMMs of any new atypical subject. Furthermore, low-
and mid-level features captured from a source learning task can be further
applied as low- and mid-level features of a target learning task close to the
source task.

• The TL SVM across domains framework yields an average F1-score of 72.29%
and 79.78% in time- and frequency-domain respectively (Table 2.1). So, fixing
low and mid-level weights learned from basic movements and modulating
only high-level features via an SVM seem to produce satisfying results on
recognizing SMMs. From time-domain results, the following conclusions can
be drawn: (i) low- and mid-level features of basic human movements hold
features general enough to adapt to SMMs of any new atypical subject i, (ii)
normal and stereotypical movements must have common low and mid-level
features, (iii) low- and mid-level details learned by a ConvNet from a source



target task different but related to the source learning task, can be further
used as features for learning target tasks, especially when only few labeled
data are present within that task.

• The TL SVM similar domains framework yields higher classification scores
than the three frameworks ConvNet few data, TL full fine-tuning and TL
limited fine-tuning in both time- and frequency-domain. This is due to over-
fitting of the three frameworks during training since weights are fine-tuned
using few training data. As we know, training neural network weights by back-
propagation necessitates a large amount of labelled training data to achieve
full convergence.

• TL SVM similar domains and TL SVM across domains architectures produce
better rates than ConvNet few data by 7.78% and 5.57% respectively in time-
domain and by 12.27% and 0.24% respectively in frequency-domain. Thus,
more general features are learned within our two frameworks. Moreover, these
two frameworks offer a better convergence speed than ConvNet few data by a
total of 5-15 epochs (in both time and frequency domains) for full convergence
compared to 20-35 epochs and 55 -85 epochs in time- and frequency-domain
respectively for full convergence, as shown in Table 2.2. Furthermore, in
terms of memory consumption, the number of parameters to be learned by our
frameworks is, which is 500 (in both time and frequency domains) compared to
1.2e+06 and 7.1e+05 for the time- and frequency- domain ConvNet few data
respectively (Table 2.2). Thus, in contrast to ConvNet few data, the proposed
frameworks can be regarded as a global, fast and light-weight framework for
SMM recognition across subjects.

• TL full fine-tuning performs slightly better than TL limited fine-tuning by an
average of 2.71% and 4.14% in time- and frequency-domain respectively, sug-
gesting that fine-tuning weights of layers 1, · · · , L−1 (where L is the number
of ConvNet layers) is not necessary since it does not improve SMM recogni-
tion significantly. This confirms the earliest assumption that atypical subjects
have similar low- and mid-level features but different high-level features.

• TL SVM across domains framework has a lower performance than TL SVM
similar domains by 2.21% and 12.02% in time- and frequency-domain respec-
tively. In time-domain, the small rate difference (2.21%) between TL SVM
across domains and TL SVM similar domains implies that atypical and typi-
cal subjects share common low- and mid-level information within their move-
ments. Nonetheless, this similarity in features is not reflected in frequency-
domain because of the large score difference between TL SVM across domains



and TL SVM similar domains. Indeed, the relatively low frequency-domain
low performance could be explained by the imperfect choice of the frequency
bandwidth (set to the range 0-3Hz) when turning time-series input signals
into frequency signals. In fact the 0-3Hz range was the perfect bandwidth
for SMM signals but not for typical movements which, according to (?), have
98% of their FFT amplitude contained below 10Hz.

• TL SVM similar domains and TL SVM across domains could be further im-
plemented in Android portable devices, as illustrated in Table 2.2. To do so,
only two steps are required: first, an expert (a doctor for instance) would
receive continuous acceleration signals from the torso accelerometer of a sub-
ject, and label them on the fly (as SMM/non-SMM) as the subject performs
his activities/movements. A one-minute recording of these signals is enough
for our experiment. Then, our framework preprocesses the resulting anno-
tated time-series and use them for training either TL SVM similar domains
or TL SVM across domains. Afterwards, this framework can be operational
for recognizing further SMMs on that same subject.

2.4 Conclusion

In this chapter we introduced a deep learning approach to address time-series clas-
sification with limited annotated data. Our proposed within-domain and across-
domain transfer learning frameworks (“TL SVM similar domains” and “TL SVM
across domains”) are two ConvNet frameworks whose goal is to generate features
general and global enough to recognize time-series of the target learning task, given
time-series of a source learning task that is similar or different but related to the
target learning task. All these approaches were implemented on the recognition of
Stereotypical Motor Movements (SMMs) across atypical subjects (e.g., subjects on
the Autism Spectrum). Experimental results showed the superiority of our frame-
works and their ability to extract relevant features from time-series inputs. We
illustrated how our within-, and across-domain transfer learning frameworks are
scalable, fast and light-weight solutions which: (i) adjust to stereotypical behavior
patterns of any new atypical subject requiring only few labeled SMMs, (ii) alle-
viate the problem of the lack of annotated SMMs per subject. Furthermore, we
showed that, as opposed to the within-domain transfer learning framework, the
cross-domain transfer learning framework does require SMMs for training since
training is implemented using a source domain dataset different from the target
domain. Thus, the lack of training annotated data in any medical target domain
no longer limits the size and learning ability of ConvNet models. As a perspective,



the time-, and frequency-domain cross-domain transfer learning frameworks can be
used as a baseline to the recognition of movement disorders with any frequency and
with a frequency range [0, 10Hz] respectively.
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Chapter 3

MultiModal Learning: Novel ensemble
learning approach

In the previous chapter, we have seen how to overcome the lack of data while training
supervised Deep learning models via knowledge transfer, i.e., by transferring part
of features learned from similar or different domain data to our transfer domain
task. In this chapter, we propose to use fuse different deep learning models, some
of which employing knowledge transfer. Indeed, we propose an ensemble learning
framework which embeds between features learned by training different ConvNet
models including randomly initialized ConvNets and ConvNets already pre-trained
on tasks different from the target domain task. We choose to implement this study
on a computer vision task, namely the “sketch recognition” task.

This chapter is organized as follows. First, a definition of sketch and its applica-
tions are given in Section 3.1. Afterward, a review on sketch recognition techniques
is provided (Section 3.2). Next, Section 3.3 describes components of our ensemble
learning framework. In Section 3.4, the experimental setup is described. Then,
experiments related to sketch classification are carried out (Sec.3.5. Then results
are reported and analyzed 3.6). Finally, a conclusion is presented in Section 3.7.

3.1 Introduction

Sketches have been used by humans to describe objects of the world around us.
Sketches are known to be simple and hasty drawings, giving the essential features
without the details (Fig.3.1.a). In other words, a sketch is defined as a quick, rough
drawing that shows the main features of an object or scene. Even though they are
considered to be a rough design of the reality, they are an effective communicative
tool for humans since they are considered to be the simplest way for people to show
ideas intuitively. And, with the growing field of touchscreens, sketching became

145



more and more popular. Since then, more research has been conducted on sketch-
ing, giving rise to many applications such as sketch recognition (Eitz et al., 2012;
Schneider and Tuytelaars, 2014), sketch-based image retrieval (Eitz et al., 2011; Hu
and Collornosse, 2013), sketch-based 3D model retrieval (Wang et al., 2015), and
forensic sketch analysis (Klare et al., 2011; Ouyang et al., 2015). One of the pop-
ular applications is sketch-to-image retrieval which uses a sketch as query to find
the images with the similar semantic content in a large image set. One example of
this application is “MindFinder.1”, a popular product of Microsoft that compares a
query sketch with the edge-maps of millions images collected from web (Cao et al.,
2010). However, this product is only able to detect simple sketch features and
cannot extract all edges in sketch images, making it difficult to recognize complex
sketches.

Sketches and natural photo-based images are very different in appearance even
though they appear to have a lot of things in common and convey the same meaning.
Compared to natural images, sketches are very abstract and don’t have color or
texture. Consequently, existing methods for natural images cannot be directly
applied to our sketch recognition problem. Moreover, the same object can be drawn
with different levels of detail (abstraction), e.g., every person has his or her own way
to sketch an object, drawing a stickman for example with either a rough structure
or a portrait with fine details, as illustrated in Figure 3.1.b. Therefore, internal
structures of sketches are very complex and details of the drawing are very sparse.
All these reasons make the sketch classification a more challenging task. In fact,
even humans can only achieve a recognition accuracy of 73.1% (Eitz et al., 2012).

(a) (b)

Figure 3.1: (a) Examples of hand-sketched objects, and (b) three samples of a
stickman object drawn with different levels of abstraction.



3.2 Related work

Natural photo-based image recognition. Most image understanding and computer
vision methods build on image representations such as textons (Leung and Malik,
2001), histogram of oriented gradients (SIFT (Lowe, 2004) and HOG (Dalal and
Triggs, 2005)), bag of visual words (Csurka et al., 2004; Sivic and Zisserman, 2003),
sparse and local coding (Yang et al., 2010), super vector coding (Zhou et al., 2010),
VLAD (Jégou et al., 2010), Fisher Vectors (Perronnin and Dance, 2007), and, lately,
deep neural networks, particularly of the convolutional variety (Krizhevsky et al.,
2012; Sermanet et al., 2013; Zeiler and Fergus, 2014). The progress in the devel-
opment of visual representations made us go from shallow hand-crafted features to
deep representations, where millions of parameters are learned from data.

Sketch recognition. Sketch recognition did not get much attention until 2012
when a large crowd-sourced dataset was published in the article “How do Humans
Sketch Objects” (Eitz et al., 2012). Using this dataset, works have been conducted
on sketch recognition (Eitz et al., 2012; Li et al., 2015; Schneider and Tuytelaars,
2014) applying hand-crafted features representation borrowed from photos and us-
ing the SVM classifier. Authors in (Eitz et al., 2012) collected a dataset of 20000
unique sketches evenly distributed over 250 object categories, which are totally com-
pleted by no-expert free hands, and they investigated the sketch recognition issue in
both the humans and the proposed method using SIFT-variant descriptor. Later,
authors in (Leung and Malik, 2001) demonstrated that fusing different local features
using multiple kernel learning helps improve the recognition performance. They also
examined the performance of many features individually and found that HOG gen-
erally outperformed others. Very recently, Schneider and Tuytelaars (Schneider and
Tuytelaars, 2014) demonstrated that Fisher Vectors, an advanced feature represen-
tation scheme successfully applied to image recognition, can be adapted to sketch
recognition and achieve near-human accuracy (68.9% vs. 73.1% for humans on the
TU-Berlin sketch dataset). Overall, those works directly apply the hand-designed
local natural image features for sketch recognition. Indeed, most of the sketch recog-
nition works do not make use of sketch shape features to design low-level descriptors
that are specific to sketches, but rather take into consideration the low-level features
used on natural images since they outperform sketch shape features. Their methods
are simple and undergo three easy steps: selecting the most informational areas or
points, computing the best local features, and building a structure model as well
as an evaluation scheme by spatial cues (structural information) or local feature
similarity (matching score). These frameworks has the following disadvantages: (i)
they seriously depend on parameters of the chosen local features and models se-
lected, meaning that it is necessary to play randomly with combinations of features



and models until the best recognition score is achieved; (ii) they treat sketches as
low level concepts such as shape, edge map, contour or strokes. However, a total
sketch is associated with a real object or scene which makes it a high-level concept
with an certain degree of abstraction. Therefore, sketches can be hardly classified
with such frameworks (with specific local features), which explains why none of the
above methods was able to exceed the humans’ performance in sketch recognition.

Recently, with the emergence of deep learning models including Convolutional
Neural Networks (ConvNets) which have dominated top benchmark results on visual
recognition challenges (such as ILSVRC (Jia Deng et al., 2009)), some works intro-
duced ConvNet based models for sketch recognition (Sarvadevabhatla and Babu,
2015; Seddati, 2015; Wang et al., 2016; Yu et al., 2017). All of these works run
there experiments on the TU Berlin dataset (Eitz et al., 2012). The work of (Yu
et al., 2017) builds a ConvNet from scratch by using sequential ordering informa-
tion to model multiple channels per image as well as using a multi-scale network
ensemble why Bayesian fusion. Similarly, authors of (Seddati, 2015) choose to train
a ConvNet from scratch too by adjusting the architecture for a better performance.
(Sarvadevabhatla and Babu, 2015) retrains two popular pre-trained ConvNets (Im-
agenet ConvNet and a modified version of LeNet ConvNet) but uses only a subset
of the whole dataset by eliminating drawn sketches whose identity is difficult to
discern for human beings. Another attempt was made by (Wang et al., 2016) who
introduce an augmentation technique via edge-preserving sketch resizing as well as
a multi-angle voting technique. Following the path of learning sketch feature using
deep networks, we introduce a novel deep learning strategy for sketch classification
that copes with the lack of data. Indeed, the challenge is to perform a good sketch
classification even with a limited number of training data (13500 training instances
with 56 instances per category). As we know, deep neural networks require a very
large number of data to be able to learn the correct value of all parameters of
network (millions of parameters). To do so, we propose a multi-modal learning
approach for sketch recognition based on an ensemble learning framework which is
composed of two deep learning models: (i) a randomly initialized ConvNet model,
and (ii) an existing model pre-trained on images (photos of natural objects), know-
ing that images and sketches are two different domains having different semantic
description. We further show that our framework achieves better or comparable
recognition performance to existent sketch recognition techniques.

3.3 Methodology
One reliable approach to improving the performance of neural networks by a few
percent is to train multiple independent and different models and, at test time,



combine individual predictions of each model as an ensemble in order to obtain final
predictions. Moreover, the improvements are more dramatic with higher model
variety in the ensemble. In our study, we suggest/propose to use the ensemble
approach as an alternative to solve the issue of lack of labeled data. In other words,
we suggest that combining models properly will boost the overall performance even
if we have few training data in hand.

One common approach to forming an ensemble is to use the top n models hav-
ing the highest recognition score during cross-validation. In practice, this process
is easily done since it does not require additional retraining of models after cross-
validation. Indeed, fusing the predictions of top models at test time is most helpful
since these models are different from each other and have different parameters.
There are different ways to combine models. The work of (Frazão and Alexandre,

Deep learning Model 1

Deep learning Model 2

Deep learning Model n

...

y1̂

y2̂
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Softmax
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Combining 
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Figure 3.2: Ensemble learning framework at test time using either direct output
vectors ŷ1, ..., ŷn or output probabilities p1, ..., pn coming out the softmax layer
(the softmax being represented by dashed boxes).

2014) propose to combine output probability vectors of different ConvNet models
p1, · · · , pn, as shown in Fig. 3.4 where the softmax layer (dashed boxes) is included.
Within this work, different combination ways are presented including: simple aver-
age, weighted average based on model accuracies, and weighted average based on
model rankings.

For an index i of the output probability vector (i.e., the class index), the simple
average over output probabilities si is given by,

si = 1
n

n∑
j=1

pi
j (3.1)

where pi
j is the output of the model j of a given input for the class label i, and n

the number of models in our network ensemble.
As for the method Weighted average based on model accuracies, the purpose

is to give more importance to a model by applying a different weight for each
network. In the validation set, models that have a higher recognition rate will
have a larger weight when combining the predictions. Given some input image, the



output probabilities of each model j are multiplied by a weight λj before the final
prediction as explained in the equation below:

si =
n∑

j=1
λjp

i
j,

λj = Aj∑n
i Ai

(3.2)

where λj is the weight of model j, and Aj the accuracy at test time of model j.
In this model architecture of combining networks, weights are proportional to the
accuracy in validation set.

As for the Weighted average based on model rankings method, more importance
is given to the model which has the higher accuracy score. In other words, the weight
λj of each model j is based on the order of accuracy in the validation set as follows,

λj = Ranking(Aj)∑n
i Ranking(Ai)

(3.3)

In our study, we introduce new combination architectures. First, instead of apply-
ing these three methods (mentioned below) on output probabilities p1, · · · , pn, we
propose to apply these methods on ŷ1, · · · , ŷn which correspond to output feature
vectors coming out of the last fully connected layer, as shown when omitting the
softmax layer (dashed boxes) within Fig.3.4. Those output feature vectors will be
further denoted as “direct outputs”. As such, we propose the four methods below,

(i) Simple average over direct outputs. For an index i of the direct outputs
vector (i.e., the class index), this combination method is defined as,

si = 1
n

n∑
j=1

ŷi
j (3.4)

(ii) Weighted average based on model accuracies over direct outputs.

si =
n∑

j=1
λj ŷ

i
j, λj = Aj∑n

i Ai

(3.5)

(iii) Weighted average based on model rankings over direct outputs.

si =
n∑

j=1
λj ŷ

i
j, λj = Ranking(Aj)∑n

i Ranking(Ai)
(3.6)

(iv) Maximum. This ensemble architecture combines the predictions of our models
(either the direct outputs or output probabilities) by keeping, for each class label,
the maximum class label prediction of the n models. The Maximum over direct



outputs is expressed as,

si = max(ŷ1
i , · · · , ŷn

i ) (3.7)

Furthermore, we propose a new combination approach based on maximum pre-
dictions on output probabilities (which will be referred to as Maximum over output
probabilities), which is defined as,

si = max(p1
i , · · · , pn

i ) (3.8)

After applying one of the previously mentioned ensemble methods, the index within
the vector S which has the maximum element/value represents the predicted class
label or prediction as follows,

prediction = argmaxis
i (3.9)

3.4 Experimental setup

In order to demonstrate the effectiveness of our ensemble learning approaches over
existent ones, the following steps are used within our experiment. First, we train
a randomly initialized ConvNet on sketch images. Second, we select two known
pre-trained ConvNet models (already pre-trained on natural images e.g., photos),
namely the VGG-F and VGG-deep-16 models, then fine-tune their parameters by
training them on sketch images. Finally, we perform our ensemble learning ap-
proach at test time on validation set instances. In order to complete these steps,
a description of the dataset as well as the training process of our ConvNet models
are given below.

3.4.1 Dataset.

We perform our sketch recognition evaluation on the TU Berlin dataset (Eitz et al.,
2012). This latter consists of 20000 non-expert sketches, which are drawn by hu-
mans, divided into 250 categories. Each category has 80 sketches and each sketch
size is 1111 by 1111. In order to implement these sketch images into our ConvNet
models, they need to be resized and shrunk to a fixed size before training. Accord-
ingly, they are resized to [224224] in our experiment. Moreover, since our training
dataset is very small (56 images per category), data augmentation is performed
to reduce overfitting by replicating training instances (sketches) with a number of
transformations. For each epoch, we randomly select half of the images within the
batch and perform the following transformations upon them: horizontal reflection



e.g., mirroring (across vertical axis), random rotation between -30 and 30 degrees, as
well as rescaling the width and height of each image independently using a random
resizing range between 0.4 and 1.

3.4.2 Deep learning Model architecture and training.

For training all ConvNet models, we use the stochastic (mini-batch) gradient descent
as our gradient-based optimization method. Hyper-parameters of the ConvNet
models are set according to Table 3.1.
Table 3.1: Training hyper-parameters of ConvNet models. The abbreviations ’LR’
and ’Mom.’ stand for the learning rate and the momentum respectively.

ConvNet models LR Batch
size

Mom. #epochs #layers #parameters

Randomly
initialized
ConvNet

0.01 135 0.9 300 20 lay-
ers:5conv.+3FC.

6.8e+06(26MB)

VGG-F 0.001 135 0.9 40 22 lay-
ers:5conv.+3FC.

5.8e+07(220MB)

VGG-
deep-16

0.001 135 0.9 40 44 lay-
ers:16conv.+3FC.

1.4e+08(548MB)

Randomly initialized ConvNet. As mentioned in the methodology 3.3, due
to the lack of data, we need to have a high dropout rate. As such, the dropout
rate is set to 0.5 and applied on the first two fully connected layers. Moreover,
setting a high dropout requires having a large/deep neural network (with more
hidden layers). Accordingly, our ConvNet has eight layers, each having a different
configuration as described in Table 3.2. Unlike the existing pre-trained models, the
filter size of the first convolutional layer are chosen to be relatively large 15× 15 –
compared to 11×11 filter in VGG-F model (Chatfield et al., 2014) and 3×3 filter in
VGG-deep-16 model (Simonyan and Zisserman, 2015), since larger filters are more
appropriate for sketch modeling. Indeed, as mentioned in (Yu et al., 2017), sketches
lack texture information, i.e., a small round-shaped patch can be recognized as eye
or button in a photo based on texture, but this is infeasible for sketches. So, small
filters which are useful for detecting textured information are not necessary in our
case; and rather employ larger filters which are good at capturing more structured
context than textured one.

The final layer has 250 output units corresponding to 250 categories (that is the
number of unique classes in the TU-Berlin sketch dataset), upon which we place a
Softmax loss.

Pre-trained models (VGG-f and VGG-verydeep-16). The goal is to build a



Table 3.2: Architecture of the ConvNet model trained from scratch.

Id Layer Type Filter size Filter Num Stride Pad Output Size
0 Input - 224× 224
1

L1
Conv 15× 15 64 3 0 70× 70

2 ReLu - - - - 70× 70
3 Maxpool 3× 3 - 2 0 34× 34

4
L2

Conv 5× 5 128 1 0 30× 30
5 ReLu - - - - 30× 30
6 Maxpool 3× 3 - 2 0 14× 14

7 L3 Conv 3× 3 256 1 1 14× 14
8 ReLu - - - - 14× 14

9 L4 Conv 3× 3 256 1 1 14× 14
10 ReLu - - - - 14× 14

11
L5

Conv 3× 3 256 1 1 14× 14
12 ReLu - - - - 14× 14
13 Maxpool 3× 3 - 2 0 6× 6

14
L6

Conv (FC) 6× 6 512 1 0 1× 1
15 ReLu - - - - 1× 1
16 Dropout - - - - 1× 1

17
L7

Conv (FC) 1× 1 512 1 0 1× 1
18 ReLu - - - - 1× 1
19 Dropout - - - - 1× 1

20 L8 Conv (FC) 1× 1 250 1 0 1× 1

rough global sketch model by fine-tuning the two famous ConvNet models (Chatfield
et al., 2014; Simonyan and Zisserman, 2015) using the sketch dataset (Eitz et al.,
2012), with the help of transfer learning. But, before doing so, we need to make
appropriate changes within the training set instances and the models’architectures,
which are summarized below:

i Input images replicated. Since the two models were pre-trained on color im-
ages, they accept only three channel images (corresponding to RGB channels).
Therefore, to fine-tune these models, we replicate each training instance three
times to obtain three-channel image instances.

ii Local Response Normalization for VGG-f model removed. Local Response
Normalization (LRN) implements a form of lateral inhibition, which is found
in real neurons. This is used pervasively in contemporary ConvNet recognition
architectures (Krizhevsky et al., 2012; Chatfield et al., 2014; Simonyan and
Zisserman, 2015). However, in practice LRN’s benefit is due to providing
“brightness normalization”. This is not necessary in sketches since brightness



is not an issue in line-drawings. Thus removing LRN layers makes learning
faster without sacrificing performance.

iii Last Fully Connected Layer changed. The two ConvNet models are previously
pre-trained using the ImageNet image classification data, which is designed
for 1000 categories. However, the sketch classification dataset contains 250
categories only. So, we need to change the 1000-classes way into 2-classes by
replacing the last fully connected layer that has 1000 nodes with one that has
250 nodes.

iv Dropout layers added. Two dropout layers are added before the two fully
connected layers FC6 and FC7.

v Learning rate adjusted. Since VGG models have already been trained, a small
learning rate 0.001 is used.

Let’s note that the VGG-f and VGG-verydeep-16 models are deeper than the ran-
domly initialized ConvNet with larger filters banks (more neurons) and more lay-
ers. Indeed, VGG-f and VGG-verydeep-16 have 5.8e+07 and 1.4e+08 parameters
respectively compared to 6.8e+06 parameters for the randomly initialized ConvNet.

3.5 Experiments

The first step is to train ConvNets, namely the randomly initialized ConvNet as well
as the pre-trained VGG-f and VGG-verydeep-16 models, according to the experi-
mental setup mentioned above. Next, we form our ensemble learning framework by
selecting the top two models which achieved the highest accuracy/performance and
applying a combination method upon them. The overall process is summarized in
Figure 3.3. The ensemble learning framework is tested using the proposed combina-
tion methods: (i) simple average over direct outputs, (ii) weighted average based on
model accuracies over direct outputs, (iii) weighted average based on model rank-
ings over direct outputs, (iv) maximum of direct outputs, (v) maximum of output
probabilities. And, in order to show the superiority of our combination methods
with respect to existing ones, we run the same ensemble learning framework using
combination methods of (Frazão and Alexandre, 2014) including the simple aver-
age over output probabilities and weighted average based on model rankings over
output probabilities.

Afterward, in order to prove the effectiveness of our ensemble learning frame-
work, we compare it with the most famous state-of-the art sketch recognition tech-
niques.
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Figure 3.3: Overall steps of our experiment.

3.6 Results

3.6.1 Results of training ConvNet models.

After running the experiments on ConvNet models, results are reported in Table
3.4. We observe that training the VGG-f and VGG-verydeep-16 models yields an
accuracy of 0.691 and 0.686 respectively 3.4. Even though VGG-verydeep-16 model
has a deeper architecture than VGG-f model, its performance is less than this latter.
We deduce that adding more layers helps with photo image classification but does
not improve sketch classification results. This is due to the small filter sizes used
in VGG-verydeep-16 model. Its small 3 by 3 first layer filters are here to capture
texture and low-level information of photo images that are not present in sketch
images. So, as illustrated in Fig. 3.4.b, VGG-verydeep-16 first layer filters (right)
fail to display obvious edges. Nonetheless, half of VGG-f first layer filters (middle)
resemble Gabor filters (as shown in Fig. 3.4.c), conveying that the large first layer
filters (of size 11× 11) of VGG-f pre-trained model were able to capture the details
of sketches.

As to VGG-deep-16 model, even with small first layer filters (3× 3), it was able
to do a good job on sketch recognition with an accuracy of 0.686. Therefore, we can
conclude that any model previously pre-trained on photo-based images can perform
quite well on the sketch classification task.

On the other hand, training the randomly initialized ConvNet model achieves



a recognition rate of 0.717 (Table 3.4). This implies that training a deep network
from scratch yields better classification results than training a pre-trained model.
Getting better accuracy results using our model was expected since its architecture
was designed specifically for sketch images. Indeed, larger filters (15 by 15) used in
the first layer of our model catches more details than the 11 by 11 filters of the VGG-
f model and 3 by 3 filters of the VGG-deep-19 model. Larger filters are used here to
capture mid-level and high-level representations of sketch images. As illustrated in
Fig.3.4.a, most of the first layer filters of our model from scratch (left) have strong
edges and look like Gabor filters. On the other hand, these edges happen to be
stronger and more complex than VGG-f first layer filter edges (middle).

(a) (b) (c)

Figure 3.4: Visualization of the learned filters in the first layer of each model. Left:
first layer filters of our ConvNet model from scratch (64 filters in total, each having
a size of 15 by 15 pixels). Middle: first layer filters of our fine-tuned model of VGG-f
(64 filters in total, each having a size of 11 by 11 pixels). Right: first layer filters
of our fine-tuned model of VGG-deep (64 filters in total, each having a size of 3 by
3 pixels). We can see the similarities and differences between the three models.

3.6.2 Results of the ensemble learning framework using different
combination approaches.

Upon applying the hybrid model ensemble at test time using our proposed combi-
nations methods as well as existing ones (Frazão and Alexandre, 2014), results are
obtained and displayed in Table 3.3. From this latter, the following observations
can be made:

i The ensemble learning framework based on any combination method performs
higher than the trained ConvNets (the randomly initialized ConvNet, VGG-f
and VGG-deep-16).

ii Running the ensemble learning framework based on the combination method
of simple average over direct outputs yields the best recognition rate (74.7%)
and thus is superior to existing combination methods (simple average over



Table 3.3: Results of the hybrid model using different model ensemble architectures,
i.e. different methods of combining models at test time.

Output type -> Combination method Accuracy
Output probabilities -> Simple average (Eq. 3.1) 0.7417
Output probabilities -> Weighted average based on model rankings (Eq. 3.3) 0.7186
Output probabilities -> Maximum (Eq. 3.8) 0.7463
Direct outputs -> Simple average (Eq. 3.4) 0.7470
Direct outputs -> Weighted average based on model accuracies - (Eq.3.5) 0.7470
Direct outputs -> Weighted average based on model rankings - (Eq.3.6) 0.7412
Direct outputs -> Maximum (Eq. 3.7) 0.7057

output probabilities and weighted average based on model rankings over out-
put probabilities. Therefore, the simple average over direct outputs method
can be regarded as a proper combination approach for ensemble learning
frameworks.

iii Also, results show that the ensemble framework with the weighted average
based on model accuracies over direct outputs achieves a little less same per-
formance then the method of simple average over direct outputs. This is
because the weight λ1 corresponding to the randomly initialized ConvNet
and the weight λ2 attributed to the pre-trained VGG-f model are close to 0.5
with λ1 = 0.717/(0.717+0.691) = 0.51 and λ1 = 0.691/(0.717+0.691) = 0.49.

iv On the other hand, employing the method of weighted average based on
model rankings over direct outputs achieves less accuracy than the method of
simple average over direct outputs. By looking at the corresponding weights
λ1 = 2/3 and λ2 = 1/3, we can see that giving a greater importance to the
network achieving a better accuracy in the validation set doesn’t improve the
final prediction of the model ensemble because the two model accuracies are
not far apart and the difference between them is only 0.026.

v Running the ensemble learning framework using the proposed maximum over
output probabilities method achieves better performance than existing com-
bination methods (simple average over output probabilities and weighted av-
erage based on model rankings over output probabilities. Thus, the maximum
over output probabilities method can also be considered as a good combina-
tion method for ensemble learning frameworks.

vi Applying the maximum over output probabilities method yields 4.13% less
accuracy than the maximum over direct outputs method. Indeed, unlike the
latter method which treats the outputs as uncalibrated (i.e., direct outputs



are difficult to interpret), the former method uses the softmax classifier which
gives a slightly more intuitive output and also has normalized class probabil-
ities. That is why employing the maximum method to the normalized class
probabilities gives a better result than employing the maximum method on
direct outputs.

3.6.3 Comparative results.

Our results as well as results of previous sketch recognition works are presented in
Table 3.4. By observing these results, we infer the following remarks:
Table 3.4: Comparison of different sketch classification methods as well as the
human recognition performance.

Method Accuracy
Humans’ recognition (Eitz et al., 2012) 0.732
HOG-SVM (Eitz et al., 2012) 0.56
Stargraph + KNN (Li et al., 2013) 0.615
MKL-SVM (Li et al., 2015) 0.658
FV-SP-SVM (Schneider and Tuytelaars, 2014) 0.689
Sketch-a-Net M-Cha+M-Sca (Yu et al., 2017) 0.749
DeepSketch (Seddati, 2015) 0.7542
Deep sketch feature for cross domain image retrieval (Wang et al., 2016) 0.773
Ours
* Randomly initialized ConvNet 0.717
* Pre-trained VGG-f 0.691
* Pre-trained VGG-deep-16 0.686
* Ensemble learning framework (Eq. 3.4) (?) 0.747

i Comparison between our ConvNet models and hand-crafted feature based
techniques: The randomly initialized ConvNet yields a better performance
than hand-crafted feature techniques (Eitz et al., 2012; Li et al., 2013, 2015;
Schneider and Tuytelaars, 2014) architecture, which implies that our model
is able to compete with the recent sketch recognition methods. Similarly,
fine-tuning the two pre-trained models (VGG-f (Chatfield et al., 2014) and
VGG-deep-16 (Simonyan and Zisserman, 2015)) achieves a higher recognition
rate than hand-crafted feature techniques, conveying that fine-tuned models
fill the semantic gap better than low-level representations of hand-crafted fea-
ture works. Finally, our hybrid model surpasses by far all engineered feature
studies with an accuracy of 0.747.

ii Comparison between our ensemble learning framework and automated feature
based techniques: Our hybrid model yields almost the same accuracy than
“Sketch-a-net” work (Yu et al., 2017), with the former having the following



advantages over the latter: (i) the former model is based on two network
ensemble only with a simple average fusion while the latter is based on five
network ensemble with a Bayesian fusion, which is more complex and com-
putationally more expensive; (ii) our hybrid model uses only one channel per
input image whereas the model in (Yu et al., 2017) has to first discretize
the image strokes into sequential groups for each input image, then use these
groups as three channels per input image, which takes longer processing time
and larger memory. On the other hand, our hybrid model achieves compara-
ble results to (Seddati, 2015; Wang et al., 2016) works with 0.72% and 2.6%
less accuracy than (Seddati, 2015) and (Wang et al., 2016) respectively.

3.6.4 Running cost.

Our models were implemented on a 2.60GHz CPU (without explicit parallelization)
using the MatConvNet (Vedaldi and Lenc, 2015) toolbox of Matlab. We trained
our model from scratch for 500 epochs, with each epoch having different input data
thanks to random data augmentation. Training the randomly initialized ConvNet
took 68 hours (500 epochs) compared to 72 hours for VGG-f model (40 epochs) and
240 hours for VGG-deep-16 (40 epochs). As for combining/fusing ConvNet models
at test time, it does not require more than 10 minutes.

3.7 Conclusion

In this chapter, we investigated an ensemble learning framework to alleviate the
issue of lack of data by combining deep neural networks at test time. The process
consists of : (i) training multiple ConvNet models, each having a different architec-
ture and each being trained differently on different training sets, (ii) selecting the
top two ConvNet models having the highest scores and combining their outputs at
test time to get a hybrid model. Experiments were conducted on the sketch classi-
fication task using a sketch dataset with 250 object categories/classes. Comparing
our hybrid model with recent works showed that our hybrid method outperforms
most of the up-to-date works. We also showed that fusing the two models based
on averaging over their direct outputs is better than averaging or computing the
maximum over their output probabilities. Finally, regarding sketch recognition, we
believe that the input image should be treated as a whole and do not have to be
discretized into sequential parts as done in (Yu et al., 2017). Indeed, a well-trained
ConvNet should behave like human neural networks (e.g., our neurons) and has to
be able to recognize the whole image without having to do additional processing by
splitting it into segments.
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Chapter 4

Novel augmentation and voting approach
at test time

In previous sections, we have seen how transfer learning and ensemble learning could
improve deep neural networks performance with a limited number of training data.
Further in this chapter, we propose other techniques to alleviate the issue of the
lack of data, including a novel augmentation technique at the training phase and a
voting approach at testing phase. By running experiments on the sketch recognition
task too (using the same dataset as the previous chapter - chapter 4), we show that
these techniques increase the accuracy score.

In the study below, we define our augmentation and voting approach (Section
4.1). In the next section (4.2), a description of our experiments is given and results
of our approach are reported and compared to state-of-art methods. Finally, Section
4.3 summarizes our work.

4.1 Methodology
In this section, we introduce the key components of our approaches. First, we
discuss our scaling augmentation technique at the training stage and its advantage
in increasing the training data size for the neural network to be properly trained
(4.1.1). Next, we explore our multi-angle and multi-scale voting strategy at test
time based on the augmentation technique used (4.1.2). Fig.4.1 illustrates steps of
our overall framework.

4.1.1 Data augmentation technique.

While the work of (Wang et al., 2016) suggests to resize sketches proportionally
via an edge-preserving technique, we propose a skewing method that preserves the
overall meaning of the original sketch. Unlike natural images which lose information
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Figure 4.1: Illustration of the overall steps within our deep learning framework.

after undergoing skewing transformations due to their nature (having texture and
colors, and being complex with a lot of details), sketches keep the most meaningful
information/representations after being skewed. This can be seen through the ex-
ample of an airplane sketch object (Fig.4.2) whose details are preserved even after
the skewing transformation.

The proposed skewing strategy is based on rescaling of the width and the height
of the sketch independently (e.g., non-uniformly). During the training phase, for
each epoch and within each batch, we select half of the batch instances then perform
the following transformations for each instance:

i we randomly apply a horizontal reflection i.e. mirroring (across vertical axis)
as well a rotation between -30 and 30 degrees,

ii We randomly rescale the width and the height of the sketch independently
using random values w and h respectively which range from 0.4 to 1 to obtain
a skewed sample of size round(224 ∗ w) × round(224 ∗ h); then we place the
sketch at the middle of a 224× 224 frame ;

iii we add horizontal and vertical translations which range randomly from 0 to
112− 224 ∗ w and 0 to 224− 224 ∗ h respectively.

4.1.2 Multi-angle and multi-scale voting during test time

After training our model, it is time to go to the testing phase. In the conventional
way, we simply feed each testing image into the trained network then see whether
the computed output corresponds to the true label of that image. However, in our
study, for each and every testing image, we make multiple transformed versions
of it (applying the same transformations of augmentation techniques performed
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Figure 4.2: (a) Original sample of an airplane object, (b) Transformed samples of
the airplane generated via our skewing augmentation technique.

during training), and their corresponding network outputs are fed into a voting
system that votes for the best output, which is then compared to the true label
of that image. The idea is to take into consideration properties of the training
process during evaluation (at test time). Indeed, the goal is to take advantage of
the features diversity learned by data augmentation at test time. As we know, our
deep learning model was trained on an augmented data composed of original images
as well as multiple rescaled, shifted, mirrored and rotated variants of the original
images. This implies that our neural network will have no trouble recognizing
these variants during testing. Accordingly, we propose to test each testing instance
(testing sketch image) several times in different ways:

i We perform multiple transformations on that instance which are similar to
the transformations done to augment the data at the training phase. Indeed,
we rotate and rescale the instance non-uniformly (by resizing the width and
height independently at random) in order to obtain n variants ;

ii Each variant j within the n variants is fed into the deep learning model to
produce the output vector ŷj = ŷ(anglej, widthj, heightj) ;

iii The n output vectors {ŷj}n
j=1 are averaged before making a prediction. Indeed,

according to (Wang et al., 2016), using the voting scheme with different angles
to recognize a sketch is like that humans recognize object for several times.
The same thing applies for our multi-angle multi-scaling voting scheme. For
an index i of the output vector (i.e., the class index), the average output at
that index si is given by Eq.4.1,

si = 1
n

n∑
j=1

ŷi
j (4.1)

where ŷi
j is the output of the variant j (rotated or rescaled variant of the

original image) of the class label i. Thus, the final prediction or output vector
s is a result of the voting of all transformed versions of the testing instance;



iv We pick the index i within si having the maximum value and set it as the
predicted class label, as illustrated in Eq.4.2. Then, we compare it with the
true label of the instance.

C = argmaxis
i (4.2)

We follow these steps for every image in the testing dataset to get the final accuracy.
Our approach is similar to the learning ensemble approach (chapter 3). While

this latter combines between predictions produced by different models for each input
instance at test time, our voting method combines predictions produced by feeding
multiple transformed variants of the instance into one trained model.

Unlike the work of (Wang et al., 2016) which performs multi-angle voting on
computed Softmax output probabilities vectors (where each vector is produced by
feeding the network outputs vector to the softmax layer), our work uses multi-angle
and multi-scale voting directly on the network outputs vector rather than Softmax
output probabilities because it gives a better performance, as shown in chapter 3.

4.2 Experiments and results

4.2.1 Voting technique based on different variants.

To conduct this experiment, we first train the ConvNet model on augmented data
using the augmentation techniques mentioned above. Then we apply the voting
technique at test time by following steps mentioned in the methodology (Sec-
tion 4.1). Indeed, for each testing sketch instance, we choose to perform 1 to
3 angle rotations at random where the angle is chosen among the following val-
ues {−25◦, 0◦, 25◦} and 1 to 4 skewing (rescaling) operations where sketch dimen-
sions (width and height) are chosen randomly among one of the following values
{224, 197, 167, 141, 119}. The resultant variants are listed in Table 4.1. We finally
obtain 2 to 7 variants of the testing instance which are then fed into our network
to produce 2 to 7 output vectors. These output vectors are then averaged out to
make the final prediction.

We run multiple simulations at test time with different configurations (or com-
binations) of variants, as illustrated in Table 4.1. And their corresponding results
are reported in the same table. After feeding the trained ConvNet model with
original testing instances, we achieve a classification accuracy of 0.717. Meanwhile,
running the voting technique on the original testing instance and 2 of its rotated
variants {−25◦, +25◦} improves the accuracy by 1.4%. Additionally, adding an ex-
tra rescaled variant (of size 168× 168) to these variants makes the recognition rate



even higher by 1.5%. Adding again an extra rescaled variant (of size 127 × 127)
increases accuracy by 0.7%. Nonetheless, adding 2 extra rescaled variants helps
improves the accuracy by only 0.13%. From these results, we deduce that: (i) more
predictions (coming from transformed versions of the image) tend to contribute to
a higher accuracy, (ii) not only the multi-voting technique improves accuracy, but
the multi-scaling technique too, which demonstrates the efficiency of our voting
technique, (iii) as the number of transformed versions of the image in the ensemble
increases, the performance typically monotonically improves though with diminish-
ing returns.
Table 4.1: Results of our trained model at test time using different characteristics.
For each image, we perform rotation and rescaling to get n variants of the image.
Then, these images are fed into our network, producing n outputs. After that, we
see which output has the highest number of votes. Finally, this output is compared
to the true label of the image.

#variants Variant(s) Accuracy
1 (0◦, 224× 224) 0.717
3 (0◦, 224× 224); (−25◦, 224× 224); (25◦, 224× 224) 0.731
4 (0◦, 224 × 224); (−25◦, 224 × 224); (25◦, 224 ×

224); (0◦, 168× 168)
0.746

5 (0◦, 224 × 224); (−25◦, 224 × 224); (25◦, 224 ×
224); (0◦, 168× 168); (0◦, 127× 127)

0.753

7 (0◦, 224 × 224); (−25◦, 224 × 224); (25◦, 224 ×
224); (0◦, 197 × 197); (0◦, 167 × 167); (0◦, 141 ×
141); (0◦, 119× 119)

0.7543

4.2.2 Comparative study.

In order to prove the effectiveness of our augmentation and voting technique, we
evaluate/compare our results against models previously mentioned in section 3.6.1.
Results are reported in Table 4.2. From these results, the following remarks can be
made:

1. Comparison between our model and hand-crafted feature based techniques:
Our model produces an accuracy of 0.7543, which is higher than all engineered
feature works including HOG-SVM (Eitz et al., 2012), Stargraph-KNN (Li
et al., 2013), MKL-SVM (Li et al., 2015) and FV-SP-SVM (Schneider and
Tuytelaars, 2014).

2. Comparison between our model and automated feature based techniques: Our
model performs better than the Ensemble learning framework (?) as well as
Sketch-a-net (Yu et al., 2017), and slightly better than DeepSketch work (Sed-
dati, 2015), implying that our model can easily compete with state-of-the-art



Table 4.2: Comparison of different sketch classification methods as well as the
human recognition performance.

Method Accuracy
Humans’ recognition (Eitz et al., 2012) 0.732
HOG-SVM (Eitz et al., 2012) 0.56
Stargraph + KNN (Li et al., 2013) 0.615
MKL-SVM (Li et al., 2015) 0.658
FV-SP-SVM (Schneider and Tuytelaars, 2014) 0.689
Ensemble learning framework (?) 0.747
Sketch-a-Net M-Cha+M-Sca (Yu et al., 2017) 0.749
DeepSketch (Seddati, 2015) 0.7542
Ours (with 7 variants at test time) (?) 0.7543
Deep sketch feature for cross domain image retrieval (Wang et al., 2016) 0.773

deep learning recognition works. On the other hand, our model has 0.0187
less accuracy than the work (Wang et al., 2016). However, Even our model
happens to be simpler than (Wang et al., 2016) because: (i) at the preprocess-
ing stage, the former model is faster than the latter with the rescaling aug-
mentation technique being easily computed compared to the edge-preserving
resizing technique. Indeed, this edge-preserving resizing technique requires
that we locate coordinates of all the sketch points whose pixel value is 1 for
each sketch instance, before rotating and scaling the list of coordinates; (ii)
Furthermore, during training, the former model is less complex, computa-
tionally less expensive and less time consuming than the latter with 6.8e+06
vs 5.93e+07 parameters having to be learned; (iii) finally, at test time, the
former model is faster the latter since only 7 variants of each sketch instance
are used for voting versus 18 variants.

4.3 Conclusion

In this chapter, we proposed a novel augmentation and voting technique for Con-
vNet classification of sketch images which helps resolve the issue of lack of data.
The augmentation approach is based on skewing sketches as well as applying other
transformations (rotations, shifting, mirroring) on them before feeding them to the
ConvNet for training. Indeed, as opposed to natural images, sketch images have
most of their details preserved even after being skewed due to the free-hand nature.
As for the voting technique, we take advantage of the rich ConvNet feature repre-
sentations learned via our augmentation approach to vote, for each sketch instance
at test time, among multiple augmented variants of that instance by averaging over
ConvNet outputs of these variants. Running experiments over the sketch database



shows the superiority of our approach over all hand-crafted feature based techniques
and most automated feature based techniques.
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Part V

Learning from imbalanced data
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Data imbalance is one of the problems that we face when applying machine
learning to real-world problems, especially in image classification. With all the
improvements in machine learning, especially deep learning, research in this area
is drawing more attention from academics and even industry. This part addresses
the data imbalance problem. Indeed, we propose cost-sensitive learning approaches
applied on neural networks to deal with both classification and regression under
imbalanced domains.

In the first chapter, we address classification under imbalanced domains by in-
troducing an approach able to automatically learn robust features for both frequent
and rare classes. Our approach automatically assigns misclassification penalties to
each class based the frequency of occurrence of that class. This approach is in-
vestigated in the context by shallow networks (Multi-Layer Perceptrons) and deep
networks (Convolutional Neural Networks). Moreover, it offers not only a better
convergence but also a faster convergence boosting optimization. Furthermore, we
show that the efficiency of our cost-sensitive learning approach on classifying imbal-
anced data relies on the loss function used and that the loss function should satisfy
certain properties in order for our approach to be efficient. Running experiments
with any loss function satisfying these properties along with our approach shows the
superiority of this latter over the baseline algorithm as well as existent techniques.

In the second chapter, we propose a cost-sensitive algorithm as well as evalua-
tion techniques for regression tasks under imbalanced domains. As opposed to the
previous chapter in which the data is nominal, meaning that the number of data
target variables (e.g., the number of classes or labels) the classifier needs to learn to
recognize is fixed, data in this chapter is continuous. Classification algorithms for
imbalanced data have been thoroughly studied within machine learning; however
few predictive models for regression tasks with imbalanced continuous target vari-
ables exist. As such, a cost-sensitive learning algorithm based on a neural network
trained on the minimization of a biased loss function is introduced. Results show
a higher or comparable performance and convergence speed to existent techniques.
Moreover, there is also a lack of evaluation techniques dealing with regression tasks
within imbalanced domains. To this matter, new approaches for performance as-
sessment of regression tasks with imbalanced domains are proposed, including new
scalar measures, namely Geometric Mean Error (GME) and Class-Weighted Error
(CWE), and graphical-based ones, namely RECT P R, RECT NR, RECG−Mean and
RECCW A curves. Unlike standard measures, our evaluation strategies are shown to
be more robust to data imbalance as they reflect the performance of both rare and
frequent events.





Chapter 1

Approaches for Handling Classification
under Imbalanced Domains

1.1 Introduction

The development in information science has enabled an explosive growth of data,
which attracts more and more researchers to engage in the field of big data ana-
lytics. This brings a great opportunity for data mining and knowledge discovery
and many challenges as well. A noteworthy challenge is data imbalance. Indeed, in
many real-world classification applications, the collected data manifests a ‘skewed’
or ‘imbalanced’ distribution where data for some object classes is abundant while
data for others is scarce. With the presence of minority (positive or rare) classes
with heavily under-represented data compared to majority (frequent or negative)
classes, during the training process, classification algorithms tend to learn more
from data belonging to the majority classes, thus being more biased towards these
latter and resulting in showing very poor classification accuracy on the minority
classes. Therefore, features or representations present within minority classes’ data
tend to be ignored and not adequately learned. Within many applications, the mi-
nority instances actually represent the concept of interest (such as fraud in banking
operations, abnormal cell in medical data, dangerous activity in a a continuous
surveillance task, object classification etc.), which makes the detection of these rare
events even more important. By feeding such imbalanced data at training, standard
classifiers such as k-NN, SVM, decision tree and neural network tend to learn more
from more observed instances (e.g., belonging to the majority classes) than from
under-represented ones (e.g. belonging to the minority classes), therefore resulting
in erroneous performance on test data, especially rare ones. Indeed, the imbalanced
distribution of data forces classification algorithms to be biased towards the ma-
jority classes. To this end, we need to find means to (it is necessary to) improve
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the overall accuracy of these algorithms without unduly sacrificing the precision
of any of the majority or minority class. These challenges motivate us to propose
a new neural network model to tackle the class imbalance problem in real-world
data (Sadouk et al., 2020). In this chapter, we introduce an cost-sensitive learning
approach using either shallow or deep neural networks (Multi-Layer Perceptrons
or Convolutional Neural Networks) to achieve promising performance in classifying
largely imbalanced datasets.

The key contributions of this study are as follows.

i Our approach achieves a better classification performance than the baseline
algorithm and existent techniques.

ii It can be regarded as a boosting technique in optimization which makes a
faster NN learning and thus a faster convergence.

iii It generalizes to shallow neural networks such as Multi-Layer Perceptrons
(MLPs) and to deep neural networks such as Convolutional Neural Networks
(ConvNets), therefore handing classification of 1-, 2-, and 3-dimensional input
datasets.

iv We also propose a demonstration to show which properties have to be present
within a loss function for the cost-sensitive strategy to be efficient. Then, we
further show which of the common loss functions is suitable for this strategy.

The remainder of this chapter is organized as follows. We briefly discuss the related
work in the next section (Section 1.2). The, we introduce and describe our proposed
cost-sensitive learning algorithm (Section 1.3.1), analyze properties of the loss func-
tion that are necessary for the cost-sensitive strategy to hold/be efficient (Section
1.3.2), and discuss the convergence speed once the cost-sensitive technique is applied
(Section 1.3.3). Implementation details including the description of datasets as well
as NN hyper-parameters are provided in Section 1.4. Experiments and results are
summarized in Sec. 1.5 and the paper concludes in Sec. 1.6.

1.2 Related work

To solve the class imbalance problem, research is ongoing with variety of techniques.
Approaches to solve this imbalanced data are broadly divided into two categories:
Algorithm- and Data-level approaches.



1.2.1 Data-level methods

The data-level techniques do not affect the learning algorithm itself but rather mod-
ify the data distribution to solve the imbalanced classification problem. Also known
as data-preprocessing techniques, they employ a pre-processing step to re-balance
the label distribution. Preprocessing is often performed before building learning
model so as to attain better input data. This means that instead of applying a
learning algorithm directly to the provided training sample, we first pre-process
this data according to the goals of the user. Any standard learning algorithm can
then be applied to the pre-processed dataset. The most frequently used data-level
approaches are re-sampling techniques whose goal is to re-balance the sample space
for an imbalanced dataset in order to alleviate the effect of the skewed distribution
in the learning process. Attempts of hybrid sampling which combines between over-
sampling and under-sampling techniques were also proposed (Batista et al., 2004;
Jeatrakul et al., 2010; Ramentol et al., 2012). Another direction toward balancing
data is dynamic sampling. One example of such sampling is the work of (Pouyan-
far et al., 2018) where a deep learning model (Convolutional Neural Network) is
trained such that the performance metric on the reference dataset is utilized to ad-
just the class distribution of training samples of the next iteration. In other words,
more samples of classes with low F1-scores are to be selected for the next iteration.
Nonetheless, all these data-level approaches present a drawback: the computational
cost required for data pre-processing and for the learning of a classification model.

1.2.2 Algorithm-level methods

The main purpose of algorithm-based approaches is to optimize the performance of
learning algorithms on unseen data to address the class/data imbalance problem.
These approaches modify the learning procedure to improve the sensitivity of the
classifier towards minority classes, based on the consideration of the cost associated
with misclassifying instances (samples). To this matter, several learning algorithms
have been proposed such as cost-sensitive SVM learning (Zhang, Yong and Wang
2013), neuro-fuzzy modeling Gao et al. (2014), an extreme learning machine (ELM)
with a weighting based on Adaboost Li et al. (2014), and an ensemble of soft-margin
SVMs formed using boosting (Wang and Japkowicz, 2010). In the scope of shal-
low neural networks also known as Multi-Layer Perceptions (MLP), several cost-
sensitive approaches applied to imbalanced problems have been proposed in (Alejo
et al., 2007; Castro and de Padua Braga, 2009; Oh, 2011; Castro and Braga, 2013).
Such approaches are similar with respect to the loss function which is the L2 loss
(Euclidean loss), with respect to the cost function formulation which is based on the
dissociation of the class objectives, and also with respect to the learning rule used



namely the extension of the backpropagation algorithm (Rumelhart et al., 1986).
The peculiarities of these methods are in the strategies used to incorporate costs
into the classes. In the study of (Alejo et al., 2007), authors proposed to weight
the L2 loss function of a RBF neural network with the parameter λk = max(Nj)

Nk
,

where Nk is the number of examples of the kth class, and max(Nj) is the number
of examples of the majority class. Authors also argued that the values of λk should
be gradually diminished along the training. Following the same direction as (Alejo
et al., 2007), the work of (Castro and de Padua Braga, 2009) consists of weighting
the same L2 loss function for a NN defining but this time with λk = 1

Nk
. Another

study (Sangyoon Oh et al., 2011) which assumes a two-class MLPs also proposes
to intensify the error signal resulting from the target output neuron of the minority
class by setting the parameters that control the order of the modified cost function
unequal and equal to 2 and 4 for the dominant and rare classes respectively. An-
other attempt to deal with binary imbalanced classification was made by (Castro
and Braga, 2013) who incorporate into the loss function parameters λ1 = N2

N1+N2

and λ2 = N2
N1+N2

which weight the positive and negative classes respectively. In the
scope of deep neural networks, few studies recently integrated existing class imbal-
ance solutions into deep learning models. The study of (Wang et al., 2016) is an
extension of the work of ConvNet binary classification (Castro and de Padua Braga,
2009) to deal with multi-class ConvNet classification. The corresponding authors
first propose λk = 1

Nk
then propose λk = F Ek

Nk
where FEk = ∑Nk

i=1
∑M

m=1 ŷi
m − yi

m
2,

where ŷi
m and yi

m represent the network output and real/desired output for the
ith sample at the mth neuron respectively. On the other hand, a novel approach
based on a learned embedding with ConvNet is addressed by (Huang et al., 2016)
whereby a ConvNet is trained with instances selected through a new quintuplet
sampling scheme and the associated triple-header hinge loss. The learned embed-
ding produces features that preserve not only locality across the same-class clusters
but also discrimination between classes. Another attempt to solve class imbalance
with ConvNets is made by (Yue, 2017) using a weighted softmax loss function where
λk = 1+ max(Nj)−Nk

β∗max(Nj) , with β a parameter that controls the scaling of the weighted loss
(β chosen to be 20). Another study of (Khan et al., 2018) introduces a cost-sensitive
Convolutional Neural Network (ConvNet) whose class-dependent cost matrix E (or
weight) is optimized along with neural network parameters during the training
phase. With E(p, q) denoting the misclassification cost of classifying an instance
belonging to a class p into a different class q, the goal is to turn E(p, q) = 0 as
p = q during the backpropagation process, using different loss functions (L2, SVM
hinge, and cross entropy). Another way to address class imbalance is to adopt a
hybrid (algorithm and data) approach as in (Harliman and Uchida, 2018) where a
novel over-sampling method called Ripple-SMOTE is combined with the weighted



loss function suggested in (Yue, 2017). Our cost-sensitive learning approach comes
as an extension of the previously mentioned algorithm-level studies for multi-class
classification tasks by providing an asymmetrical learning of NN via a modified
(backpropagation) weight update rule.

1.3 Methodology

In this section, we introduce the proposed cost-sensitive loss function for classifica-
tion under imbalanced domains.

1.3.1 Cost-sensitive learning approach

Empirical studies performed with the backpropagation algorithm show that the im-
balance problem is due to the contribution to the loss function from the positive
classes in relation to negative classes, where the most contribution to the loss func-
tion is produced by negative classes. Therefore, the training process is dominated
by these latter. In order to achieve solutions that are sensitive to the importance
of each class (i.e., that give equal importance to each class), we propose a cost-
sensitive cost function defined as a sum of functionals χ(yi, ŷi), i = 1, · · · , N which
are weighted functionals ℓ(yi, ŷi) such that χ(yi, ŷi) = λ(m)ℓ(yi, ŷi), where λ(m)
is the weighting parameter corresponding to the class m of instance i. In other
words, given M classes and N training samples N = ∑M

m=1 nm with nm the number
of samples of the mth class, the expression of the cost-sensitive cost function is given
by,

X(θ) = 1
N

N∑
i=1

χi(θ) = Li(θ) =
M∑

m=1
λ(m)

nm∑
i=1

ℓ(yi, ŷi) (1.1)

The question is how to find the proper parameter λ(m) that maximizes classi-
fication performance given imbalanced datasets. The solution proposed by (Alejo
et al., 2007) was to set λ(m) = max(nk)/nm, where k = 1, , M and max(nk) is
the number of examples of the most frequent class. However, with such a solution,
1 ≤ λ(m) ≤ max(nk)/min(nk) implying that λ(m) does not have a fixed bound and
can get very high as nm << max(nk) (i.e., as the number of instances of the most
frequent class is much higher than the one of the rare class). Thus, this method can
yield to an aggressive weighting of the loss function. Another solution is to come
up with a fixed bounded λ(m). As such, we first define the relevance of a class m

as,
ϕ(m) = 1− nm

max(nk)
(1.2)

where the relevance ϕ(m) is a probability ranging from 0 to 1 which increases as the



class m is more positive (more rare) and decreases as the class m is more negative
(more frequent). For instance, ϕ(m) ≈ 1 for nm << max(nk) and ϕ(m) = 0 for
m = max(nk).

Afterward, the weighting parameter λ(m) is obtained,

λ(m) = 1 + τϕ(m) (1.3)

where τ is the parameter that regulates the weighting of the relevance ϕ(m), defined
as τ ≥ 1. Accordingly, λ(m) ranges from 1 to 1+τ . For example, given an instance i

whose target is the most frequent class m, the weighting parameter λ(m) at instance
i (also denoted as λi) is equal to 1, meaning that no extra weight is attributed to
the functional ℓ(yi, ŷi). On the other hand, with an instance i whose target is the
most rare class, λi = 1 + τ ; so ℓ(yi, ŷi) is multiplied by 1 + τ .

In order to show the impact of the cost-sensitive approach on the neural network
(NN) learning process, let’s analyze the cost-sensitive gradient of the cost function.
Given equation 1.1 and based on the standard backpropagation algorithm (Rumel-
hart et al., 1986), the cost-sensitive gradient (e.g., the gradient of the cost-sensitive
objective function) for the weight vector θk of the network (which connects the k

output node located at the last NN layer l to input nodes at layer l − 1) can be
written as,

∇X(θk) = 1
N

N∑
i=1

λi ∂ℓ(yi, ŷi)
∂ŷi

k

∂ŷi
k

∂θk

= 1
N

N∑
i=1

λi ∂ℓ(yi
k, ŷi

k)
∂ŷi

k

ai

(1.4)

where yi
k and ŷi

k are the true label and the network output respectively at node
k for instance i, ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

is the partial derivative of the loss with respect to ŷi
k, and

ai is the activation vector at layer l − 1 for that same instance. Let’s note that, in
our case, no activation function is present between the sum of weighted input nodes
(e.g. the linear combination of inputs) and the loss function. We will further show
in section 3.2 that omitting this activation function is responsible for improving
the efficiency of our cost-sensitive approach. And knowing that the standard cost
function (eq. 2.3) has the gradient with respect to θk expressed as,

∇ℓ(θk) = 1
N

N∑
i=1

∂ℓ(yi, ŷi)
∂ŷi

k

∂ŷi
k

∂θk

= 1
N

N∑
i=1

∂ℓ(yi
k, ŷi

k)
∂ŷi

k

ai

(1.5)



, the cost-sensitive gradient ∇X(θk) of eq. 1.4 (along with the expression in eq.
1.3) becomes,

∇X(θk) = ∇ℓ(θk) + 1
N

N∑
i=1

τϕi ∂ℓ(yi
k, ŷi

k)
∂ŷi

k

ai (1.6)

where ϕi = ϕ(m) with m being the target class (label) of instance i. So ∇X(θk)
is simply ∇ℓ(θk) plus an extra cost (second term of eq. 1.6) whose value depends
on the relevance of instances within the batch. We notice that this extra cost gets
higher as the relevance of the instances i ∈ {1, , n} is higher i.e., as the classes of
instances are less frequent (more rare). And conversely, this extra cost goes to 0
as the classes of instances are more frequent. Consequently, |∇X(θk)| >> |∇ℓ(θk)|
for more rare instances and ∇X(θk) ≈ ∇ℓ(θk) for more frequent instances. Hence,
more learning (more weight update) occurs at positive instances.

Moreover, during the training process, the impact of the extra cost of the gra-
dient (second term of eq. 1.6) diminishes since ℓ(yi

k,ŷi
k)

ŷi
k

(the gradient of the loss with
respect to to ŷi

k) gets smaller over epochs.

1.3.2 Efficiency of the cost-sensitive learning approach based on the
nature of the loss function used

Now that the cost-sensitive cost function is defined, it is necessary to define the
proper loss function. For this, we first lay out a background on different loss func-
tion for classification. Then, we discuss properties which should be present within
loss functions in general to guarantee the efficiency of our cost-sensitive approach.
Finally, we apply these properties on some commonly used loss functions to see
which ones are applicable to our approach.

1.3.2.1 Background on loss functions for classification

Given loss functions within Table 2.1 (II), graphical representations of these loss
functions are displayed in Fig.1.1.a for yi

k = 1 and in Fig.1.1.b for yi
k = 0. Note that

in these figures, (i) hinge, hinge2, and hinge3 are variants of Mshinge, Mshinge2,
and Mshinge3 respectively where maxq ̸=t ŷi

q = 0, and (ii) in order to visualize the
cross-entropy loss, its activation function σ(·) is chosen to be the sigmoid function
instead of the softmax function. In our study, we call “probability estimate loss
functions” loss functions which are applied to probability estimates σ(·) such as
softmax or sigmoid functions. In other words, these loss functions are connected to
final layer activations (output neurons) which are based on probability estimates.
In Table 2.1, examples of such loss functions are log ◦σ and L2 ◦σ, while the rest of



the loss functions are applied to final layer activations based on a linear output. As

(a) (b)

Figure 1.1: Plots (a) and (b) represent different loss functions at an instance i with
respect to the network output ŷi

k when yi
k = 1 and yi

k = 0 respectively. σ(·) denotes
the sigmoid function. Curves that may not appear in plots are equal to 0.

illustrated in Fig.1.1, each loss function has its own characteristics. For instance,
Mshinge loss function is affine whereas Mshinge2, Mshinge3, L2, log ·σ and L2 ◦σ

loss functions are non-affine. Furthermore, as discussed in the study of (Khan et al.,
2018), a faster and better convergence is achieved when architecture together with
loss function produce a piecewise linear partial derivatives (but not constant) with
respect to to network outputs, as it is the case for Mshinge2 and L2. Also, the
same study states that L2 ◦ σ loss function has the advantage of being more robust
to high noise. So this implies that each loss function has its own properties with
advantages and disadvantages. To this matter, the question is how each one of these
loss functions behaves when merged with our cost-sensitive approach.

1.3.2.2 Cost-sensitive learning approach applied on loss functions

In this section, we discuss properties that should be present within a loss function
ℓ(·) for our cost-sensitive learning approach to be efficient and to have a greater im-
pact on NN learning at rare instances i than the standard approach. Given a target
value yi

k defined as yi
k ∈ {0, 1} (i.e., yi

k = 1 if the target class of instance i is k) and a
network output ŷi

k at node (neuron) k of instance i, and having a misclassification at
this latter such that ŷi

k < yi
k, yi

k = 1, Algorithm 3 below summarizes these properties.
Indeed, the goal of Algorithm 3 is to check whether a loss function ℓ(·) is suitable for
our cost-sensitive learning algorithm. Algorithm 3 is further explained in subsection
a. Next, Algorithm 3 is applied on loss functions mentioned in Table 2.1 (subsection
b). Then, a graphical interpretation of properties of Algorithm 3 is given (subsection



c).

Algorithm 3: Decision of the efficiency of the cost-sensitive approach on classi-
fying imbalanced data based on the type of loss function used.
Data: network output of instance i at node k of the last layer of a neural

network: ŷi
k, target variable of instance i at node k: yi

k, loss function:
ℓ(·),aboolean that is set to true if the objective function X(θ), the
cost-sensitive version of the standard objective function ℓ(θ) is
efficient at classifying imbalanced data and to false otherwise: b.

Result: b

initialization;
instructions;
if ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

is constant with ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
= β then

if β ≤ −1 then
b = true;

else
b = false;

end
else

if ∂2ℓ(yi
k,ŷi

k)
∂(ŷi

k
)2 is constant with ∂2ℓ(yi

k,ŷi
k)

∂(ŷi
k

)2 = c
′ then

if c
′ ≥ 1 then
b = true;

else
b = false;

end
else

if ∂2ℓ(yi
k,ŷi

k)
∂(ŷi

k
)2 > 0 is constant with ∂3ℓ(yi

k,ŷi
k)

∂(ŷi
k

)3 < 0 then
b = true;

else
b = false;

end
end

end

1.3.2.2.1 Explanation of Algorithm 3 Given that χ(yi
k, ŷi

k) = λiℓ(yi
k, ŷi

k) (eq. 1.1),
the partial derivative of the cost-sensitive loss function with respect to ŷi

k is given
by,

∂χ(yi, ŷi)
∂ŷi

k

= λi ∂ℓ(yi
k, ŷi

k)
∂ŷi

k

= ∂ℓ(yi
k, ŷi

k)
∂ŷi

k

+ ϕi ∂ℓ(yi
k, ŷi

k)
∂ŷi

k

(1.7)



where ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
is the standard (pure) partial derivative of that loss function with

respect to ŷi
k. The question is how large

∣∣∣∣∂ℓ(yi
k,ŷi

k)
∂ŷi

k

∣∣∣∣ should be when misclassification

occurs (i.e., when ŷi
k is far from yi

k) to make the extra term ϕi ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
(eq. 1.7) at

a rare instance i large enough to influence gradient NN learning for that instance.
First, let’s discuss when misclassification occurs. Usually, it occurs at:

• ŷi
k < yi

k, yi
k = 1 since we wish to assign a larger cost for predictions that are

further from the true score 1 and that tend to approach the false label score
0. As depicted in Fig.1.1.a, all loss functions share a common feature: they
are all increasing as ŷi

k gets smaller and further from yi
k. Meanwhile, any

prediction ŷi
k ≥ 1 shall not be regarded as a misclassification. Indeed, most

loss functions (in Fig.1.1.a) assign for ŷi
k ≥ 1 either a zero loss as it is the case

for hinge, hinge2, and hinge3 or a very small loss as for log ◦σ and L2 ◦ σ,

• ŷi
k > yi

k, yi
k = 0, since larger costs are assigned for predictions that are further

from 0 and that are approaching the true label score 1. However, as illustrated
in Fig.1.1.a.b, not all functions assign a cost when ŷi

k > yi
k (at yi

k = 0).
Examples of no cost (0 loss) at yi

k = 0 include hingen loss functions with
n ∈ {1, 2, 3}.

To this matter, we focus on misclassifications occurring for ŷi
k < yi

k at yi
k = 1. So,

assuming that most NN learning occurs for such misclassification, let’s discuss each
of the cases within the algorithm.

Case 1: Affine loss function For ŷi
k < yi

k such that yi
k = 1, if the loss function

is affine in the form of l(yi
k, ŷi

k) = −cŷi
k + yi

k = −cŷi
k + 1, then ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

= −c.
Accordingly,

∂χ(yi
k, ŷi

k)
∂ŷi

k

= −λic (1.8)

Having 1λi1 + τ (τ ≥ 1), we obtain,

−(1 + τ)c ≤ ∂χ(yi
k, ŷi

k)
∂ŷi

k

≤ −c (1.9)

So, in order to increase the learning process for positives, we need a large |∂χ(yi
k, ŷi

k)/(∂ŷi
k)|,

and accordingly a large c. If we set c to a very small value such that c ≈ 0, then
−(1 + τ)c ≈ 0. Hence, not only ∂ℓ(yi

k,ŷi
k)

∂ŷi
k
≈ 0 but also (∂χ(yi

k, ŷi
k))/(∂ŷi

k) ≈ 0 for
any τ . And, let’s note that a partial derivative close to 0 results in the vanishing
gradient problem (i.e., a very small partial derivative at the last layer produces very
small gradients of last layer weights, which makes gradients of the first and middle



layer weights die and become 0). As such, we propose to set c to a value far from
0 such as c ≥ 1.

Case 2 and 3: Non-affine loss functions If the loss function is not affine for
ŷi

k < yi
k at yi

k = 1, it means that its partial derivative with respect to ŷi
k is not

a constant function and can be either an affine or a non-affine function. In other
words, ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 can be defined either constant with ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 = c

′ (referred to as
Case 2) or non-constant (referred to as Case 3).

Given a loss function with a non-constant ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
and a dataset with rare in-

stances, then, for yi
k = 1, ideally ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

= 0 at ŷi
k = yi

k and ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
should be

decreasing as ŷi
k → −∞, implying that ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

needs to be an increasing function

and ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 > 0 for ŷi

k < yi
k. Indeed, if we were to use a loss function with a

non-increasing ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
, then ∂ℓ(yi

k,ŷi
k)

∂ŷi
k
≈ 0 as ŷi

k decreases; and as a result this loss
function will tend to regard rare instances as outliers and attribute a very small
learning to such instances. In fact, knowing that the NN tends to be influenced
by frequent instances (i.e., its weights will learn more from these instances) and
results in wrong predictions ŷi

k for rare instances i with ŷi
k << yi

k at yi
k = 1, this

loss function considers those predictions as outliers since they are very far from
yi

k. Therefore, even applying the cost-sensitive approach to such loss function will
result in a small ∂χ(yi

k,ŷi
k)

∂ŷi
k

as ŷi
k decreases, suggesting that this approach has no

impact on NN learning given rare instances. However, applying the cost-sensitive
approach on loss functions with ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 > 0 makes the slope of ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
larger

(more positive) and thus
∣∣∣∣partialℓ(yi

k,ŷi
k)

∂ŷi
k

∣∣∣∣ even larger as ŷi
k decreases. Having said that

∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 > 0, the question that arises is how the slope of ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

should be (or what

the value of ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 should be) in order for the cost-sensitive approach to improve

the NN learning process for positives and thus enhance the overall classification
performance.

Case 2: Non-affine loss functions with affine partial derivatives w.r.t network
outputs Given a constant ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 with ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 = c

′ (c′
> 0), then the second-

order partial derivative of the cost-sensitive loss function with respect to network
output ŷi

k is defined as,

∂2χ(yi
k, ŷi

k)
∂ŷi

k
2 = λic

′(13) (1.10)

If we set c
′ to be small and close to 0, then ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

will decrease at a slow rate

as ŷi
k gets far from yi

k (yi
k = 1). Knowing that ∂ℓ(yi

k,ŷi
k)

∂ŷi
k
≈ 0 at ŷi

k = yi
k for almost all



loss functions, then as c
′ ≈ 0 we get ∂ℓ(yi

k,ŷi
k)

∂ŷi
k
≈ 0 for ŷi

k < yi
k, meaning that there will

be a very slow learning within the NN. Similarly, the cost-sensitive approach will
not influence learning for the positive instance i since the cost-sensitive weighting
parameter λi does not increase (sharpen) the slope of ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

as λic
′ ≈ c

′ ≈ 0.

Hence, c
′ needs to be sufficiently large for λi to have a large impact on ∂2χ(yi

k,ŷi
k)

∂ŷi
k

2 .

Accordingly, we propose that c
′ ≥ 1 so that (∂χ(yi

k, ŷi
k))/(∂ŷi

k) has a larger slope
than ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

and so that higher gradient is attributed to positive instances.

Case 3: Non-affine Loss functions with non-affine partial derivatives w.r.t net-
work outputs As mentioned earlier, when dealing with rare instances, a proper
non-affine loss function shall have ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 > 0 for ŷi
k < yi

k, yi
k = 1. If this loss

function has a non-affine ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
with a non-constant and positive ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 , this

implies that ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
is either an increasing and concave or an increasing and convex

function. An increasing and concave ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
for ŷi

k < yi
k at yi

k = 1 would produce a
very small gradient close to 0 (i.e., a small NN learning) as the network output ŷi

k

approaches the true label yi
k and a very large gradient as ŷi

k gets further away from
yi

k. Consequently, applying the cost-sensitive approach on such partial derivative
i.e., multiplying ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

) by λi will still give rise to a small gradient for ŷi
k close to yi

k

but will result in a higher gradient for ŷi
k far from yi

k, which is exactly what we wish
for. On the other hand, a convex and increasing partial derivative with respect to
ŷi

k would produce: (i) a quite large gradient for ŷi
k close to yi

k resulting in a large
NN learning, which is not a desirable property for such ŷi

k, and (ii) a stagnating and
almost constant gradient for ŷi

k far from yi
k that could result in a small learning if

limŷi
k

)
∂ℓ(yi

k,ŷi
k)

∂ŷi
k

= −1. Accordingly the cost-sensitive version of such partial deriva-
tive produces even larger gradients for ŷi

k close to yi
k (which is not desirable either)

and still a small gradient for ŷi
k far from yi

k if limŷi
k

→−∞
∂ℓ(yi

k,ŷi
k)

∂ŷi
k

= −1.
Therefore, when dealing with non-affine loss functions with non-affine partial

derivatives w.r.t network outputs, it is necessary to have an increasing and concave
∂ℓ(yi

k,ŷi
k)

∂ŷi
k

(i.e., ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 > 0 and ∂3ℓ(yi

k,ŷi
k)

∂ŷi
k

3 < 0) for ŷi
k < yi

k at yi
k = 1 in order for the

cost-sensitive learning strategy to have a large impact on NN learning.

1.3.2.2.2 (b) Application of Algorithm 3 on loss functions L2 loss function. Among
loss functions discussed in Table 2.1, L2 belongs to Case 2 since its partial derivative
with respect to ŷi

k,

∂ℓ(yi
k, ŷi

k)
∂ŷi

k

= 2(ŷi
k − yi

k) =

2(ŷi
k − 1), yi

k = 1

2ŷi
k, yi

k = 0
(1.11)



is not constant and its second-order partial derivative with respect to ŷi
k is constant

with ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 = 2. And, knowing that ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 ≥ 1, then the L2 loss function
satisfies b = true in Algorithm 3, implying that L2 along with the proposed cost-
sensitive approach could enhance classification under imbalanced domains.

L2 ◦σ loss function. We know that L2 ◦σ is not affine since its partial derivative
with respect to ŷi

k,

∂ℓ(yi
k, ŷi

k)
∂ŷi

k

=2(σ(ŷi
k)− yi

k)σ′(ŷi
k)

=2(σ(ŷi
k)− yi

k)σ(ŷi
k)(1− σ(ŷi

k))
(1.12)

is not constant. Moreover, ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 which can be expressed as, and which can also

be written as,

∂2ℓ(yi
k, ŷi

k)
∂ŷi

k
2 = 2σ(ŷi

k)(1− σ(ŷi
k))2(3σ(ŷi

k)− 1), yi
k = 1

is not constant either, which implies that the partial derivative with respect to ŷi
k is

not affine. Having shown that L2◦σ belongs to Case 3 by being non-affine and having
a non-affine partial derivative with respect to ŷi

k, and knowing that 0 ≤ σ(ŷi
k) ≤ 1,

0 ≤ (1 − σ(ŷi
k))2 ≤ 1 and −1 ≤ (3σ(ŷi

k) − 1) ≤ 2, we obtain ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 < 0 for

]−∞,− log(2)[, which, according to Algorithm 3, suggests that b = false and that
applying the cost-sensitive approach on L2 ◦ σ (where σ(ŷi

k) = 1/(1 + e(− ŷi
k))) will

not improve classification under imbalanced domains.

Mshinge loss function. ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
of Mshinge is constant and falls within Case 1

since it is defined as,

∂ℓ(yi
k, ŷi

k)
∂ŷi

k

=


−1, ŷi

k −maxq ̸=t ŷi
q < 1, yi

k = 1

+1, ŷi
t − ŷi

k < 1, ŷi
k = maxq ̸=t ŷi

q, yi
t = 1

0, otherwise

(1.13)

And knowing that ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
= −1 : ŷi

k < 1+maxq ̸=t ŷi
q, yi

k = 1, thus the Mshinge loss
function satisfies the condition b = true in Algorithm 3 provided that maxq ̸=t ŷi

q ≥ 0
, inferring that the cost-sensitive approach can be efficient at classifying imbalanced
data based on Mshinge only when maxq ̸=t ŷi

q ≥ 0.

Mshinge2 loss function. ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
of Mshinge2 which is computed as follows,

∂ℓ(yi
k, ŷi

k)
∂ŷi

k

=

−2(1 + maxq ̸=t ŷi
q − ŷi

k), yi
k = 1

+2(1 + ŷi
k − ŷi

t), ŷi
k = maxq ̸=t ŷi

q, yi
t = 1

(1.14)



, is not constant, which means that Mshinge2 is not affine at ŷi
k < yi

k, yi
k = 1. Also,

∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 which can be written as,

∂2ℓ(yi
k, ŷi

k)
∂ŷi

k
2 =

+2, yi
k = 1

−2, ŷi
k = maxq ̸=t ŷi

q, yi
t = 1

is constant with ∂2ℓ(yi
k,ŷi

k)
∂ŷi

k
2 ≥ 1 for ŷi

k < yi
k, yi

k = 1, implying that the cost-sensitive
approach can be efficient at classifying imbalanced data based on Mshinge2 loss
function.

Mshinge3 loss function. ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
of Mshinge3 which is expressed as, (18)

∂ℓ(yi
k, ŷi

k)
∂ŷi

k

=


−3(1 + m maxq ̸=t ŷi

q − ŷi
k)2, ŷi

k −maxq ̸=t ŷi
q < 1, yi

k = 1

+3(1 + maxq ̸=t ŷi
q − ŷi

t)2, ŷi
t − ŷi

k < 1, ŷi
k = maxq ̸=t ŷi

q, yi
t = 1

0, otherwise
(1.15)

is not constant at ŷi
k < 1, yi

k = 1, implying that Mshinge3 is not affine. Further-
more, its second-order partial derivative with respect to ŷi

k is not constant either at
ŷi

k < yi
k, yi

k = 1 since it is expressed as,
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0, otherwise

For ŷi
k < yi

k, yi
k = 1, we obtain 1 + maxq ̸=tŷ

i
q − ŷi

k > maxq ̸=t ŷi
q. So, only when
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q ≥ 0, we obtain ∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 > 0 and ∂3ℓ(yi
k,ŷi

k)
∂ŷi

k
3 = −6 < 0, which satisfies the

condition b=true of Algorithm 3. Hence, applying the cost-sensitive approach on
Mshinge3 loss function is efficient at classifying imbalanced data when maxq ̸=t ŷi

q ≥
0.

log ◦σ loss function. ∂ℓ(yi
k,ŷi

k)
∂ŷi

k
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k is given by,

∂ℓ(yi
k, ŷi
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k

=−
M∑

m=1
yi

m

1
pi

m

∂pi
m

∂ŷi
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where pi
k = σ(ŷi

k) = eŷi
k/(∑M

j=1 eŷi
j ) , σ() being the softmax function. Since (∂pi
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, then equation 1.16 becomes,
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And, knowing that ∑M
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, suggesting that log ◦σ is not affine for ŷi
k < yi

k, yi
k = 1.

The second order partial derivative of log ◦σ with respect to ŷi
k can be expressed

as,
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, meaning that ∂2ℓ(yi
k,ŷi
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∂ŷi

k
2 is not constant and that ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

of log ◦σ is not affine for
ŷi

k < yi
k, yi

k = 1, which indicates that log ◦σ belongs to Case 3.
The softmax function pi

k has the property of outputting a probability distri-
bution since it transforms ŷi

k into a real number in the range ]0, 1[ such that∑M
m=1 pi

m = 1. So, given that 0 < pi
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Furthermore, the third-order partial derivative of log ◦σ with respect to ŷi
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given by,
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Having 0 < pi
k < 1, 0 < 1 − pi

k < 1, and −1 < 1 − 2pi
k < 1, then ∂3ℓ(yi

k,ŷi
k)

∂ŷi
k

3 is



not always positive. Thus, with 0 <
∂2ℓ(yi

k,ŷi
k)

∂ŷi
k

2 and ∂3ℓ(yi
k,ŷi

k)
∂ŷi

k
3 < 0, then the log ◦σ

loss function satisfies b = false of Algorithm 3, suggesting that the cost-sensitive
approach applied on log ◦σ is not efficient at classifying imbalanced data.

1.3.2.2.3 (c) Graphical interpretation In order to visualize how the cost-sensitive
approach impacts loss functions, we choose to plot in Fig.2.a and 2.b respectively
the standard and cost-sensitive partial derivatives of loss functions (displayed in
Fig. 1.1) with respect to to the network output ŷi

k. For the cost-sensitive version of
loss functions, we pick an instance i whose class mi is very rare such that ϕi = 0.9,
and we set τ = 1 to obtain λi = 1.9. Fig.2.a and 2.b depict ∂ℓ(yi

k,ŷi
k)

∂ŷi
k

and ∂χ(yi
k,ŷi

k)
∂ŷi

k

at yi
k = 1, respectively. By analyzing plots of Fig.2.a and 2.b, we observe that loss

(a) (b)

Figure 1.2: Plots in (a) and (b) represent respectively standard and cost-sensitive
partial derivatives of different loss functions with respect to to ŷi

k at instance i for
yi

k = 1. Instance i is chosen to have a high relevance ϕ(mi) = 0.9, and τ is set to 1.

functions which satisfy b=true of Algorithm 3 are the ones which have the highest
absolute value of partial derivatives with respect to ŷi

k (
∣∣∣∣∂ℓ(yi,ŷi)

∂ŷi
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∣∣∣∣) and consequently
the highest absolute value of cost-sensitive partial derivatives with respect to ŷi

k∣∣∣∣(∂χ(yi
k,ŷi
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k

∣∣∣∣) for ŷi
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k at yi
k = 1. These loss functions include L2 as well as

hinge, hinge2 and hinge3 which are special versions of Mshinge, Mshinge2 and
Mshinge3 respectively where maxq ̸=t ŷi

q = 0. On the other hand, loss functions for
which b=false of Algorithm 3 holds have relatively low
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k,ŷi
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∣∣∣∣. log ◦σ and L2 ◦ σ

are examples of such loss functions. Indeed, as our prediction ŷi
k decreases and goes

further from the true label yi
k = 1,
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of Mshinge, Mshinge2, Mshinge3, and L2 loss functions. As a result, multiplying
partial derivatives by λ(mi) still produces a small
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loss functions (i.e.,
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∣∣∣∣ < 1 for ŷi
k ≤ 0) and a relatively high
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other loss functions (i.e.,
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∣∣∣∣ ≥ 1 for ŷi
k ≤ 0), as shown in Fig.2.b.

For instance, for a network output ŷi
k = 0 far from the true label yi

k = 1, ∂ℓ(yi
k,ŷi

k)
∂ŷi

k

is equal to -1, -2, -12 and -2 for hinge, hinge2, hinge3, and L2 respectively, compared
to -1/2 and -1/4 for log ◦σ and L2 ◦ σ respectively; and ∂χ(yi

k,ŷi
k)

∂ŷi
k

is equal to -1.9,
-3.8, -22.8 and -3.8 for hinge, hinge2, hinge3, and L2 respectively, compared to
-0.95 and -0.475 for log ◦σ and L2 ◦ σ respectively. Hence, as the network output
gets further from the true label, the impact of the cost-sensitive approach is very
sparse for the probability estimate loss functions and relatively high for Mshinge,
Mshinge2, Mshinge3, and L2.

1.3.3 Faster convergence with cost-sensitive learning approach

One of the factors which contribute to the fast NN convergence is the use of an
adaptable learning rate α which is not too large for the network to diverge and
not too small for it to converge too slowly. Below we show that our cost-sensitive
approach is able to improve the network’s convergence via a dynamic learning rate
per instance αi which depends on the rarity or relevance of that instance.

Using the cost-sensitive gradient∇χ(θk) (eq.1.5), the stochastic gradient descent
learning rule is obtained as,

θk :=θk − α
1
n
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∂ŷi

k)
ai

:= θk −
1
n

N∑
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αi ∂ℓ(yi
k, ŷi

k)
∂ŷi

k)
ai

(1.20)

where αi = αλi and α ≤ αi ≤ (1 + τ)α. So, we can consider αi as a dynamic
learning rate which changes with respect to the rarity or relevance of the instance,
by increasing up to (1+τ)α for the rarest instances and decreasing up to the original
learning rate α for the most frequent instances. As such, our cost-sensitive gradient
∇χ(θk) has the property of boosting learning as it helps the network converge faster.
Indeed, our gradient has the property of increasing small weight updates, which is
one of the two objectives of the Adam optimizer Kingma and Ba (2015) (whole
goal is to make relatively small weight updates bigger and relatively high weights
updates smaller).

In order to show this property, let’s consider training a two-class neuron network
(NN) under imbalanced domains using stochastic gradient descent with a batch of
size 10. By applying the standard cost function (eq. 2.3), this NN tends to classify
frequent instances as negatives and rare instances as positives. For example, given



a run composed of 8 negative instances and 2 positive ones, the NN is more likely
to correctly classify the 8 negatives as negatives and to wrongly classify the 2
positives as negatives, resulting in a relatively small average gradient ∇χ(θ) and
thus a small learning. So, more runs (e.g., backpropagations) are needed in order
to learn from positive instances. However, employing the cost-sensitive learning
approach produces a higher average error (since the loss of every positive instance
is increased), and a higher ∇χ(θ), which makes learning from positives greater and
faster. Hence, the cost-sensitive learning algorithm boosts learning by making small
gradients bigger.

1.4 Experimental study

1.4.1 Datasets

1.4.1.1 1D datasets

The experiments were carried out on eight real one-dimensional datasets (i.e., whose
input data is a vector) extracted from the UCI Database Repository http:www.ics.
uci.edu/~mlearn. The datasets and some of their characteristics are summarized
in Table 1.1. All these datasets have passed through the following preprocessing
steps: categorical attributes were expanded into the corresponding binary vectors,
and then each attribute (metric or binary) was normalized to the interval [0, 1].
Furthermore, the “Yeast_8l” dataset is simply the “yeast” dataset with class 9 and
10 removed (since these latter contain very few instances, which makes the NN hard
to train).

1.4.1.2 2D dataset MNIST

MNIST is considered a simple and solved problem that involves digits’ images clas-
sification. The dataset consists of grayscale images of size 28 × 28. There are ten
classes corresponding to digits from 0 to 9. The number of examples per class in
the original training dataset ranges from 5421 in class 5 to 6742 in class 1. In our
study, we sub-sample uniformly at random each class to obtain no more than 600
examples par class. This dataset will be referred to as “Mnist”. Afterward, in order
to show the performance of our cost-sensitive algorithm, the “Mnist” dataset needs
to be imbalanced. To do so, we first set the classes 1 and 3 (e.g., number “1”and
“3”) to be our minority classes. Next, we define the ratio r between the number
of examples in majority classes and the number of examples in minority classes as
follows, r = maxk nk

mink nk
. The ratio is set to one of the values {10, 30, 40, 50}, meaning

that the number of instances within class 1 and 3 will be either 60, 30, 15 or 12.



These imbalanced datasets will be denoted as “Mnist10”, “Mnist30”, “Mnist40”
and “Mnist50” respectively.

Table 1.1: Characteristics of the 1D datasets.

Dataset No. of
Attributes

No. of
classes

No. of
instances Class distribution

Ionosphere 34 2 181 126/55
Pima Indians Diabetes 8 2 768 268/500
WP Breast Cancer 30 2 198 47/151
SPECTF Heart 43 2 267 55/212
Yeast_8l 8 8 1645 464/430/424/163/51/47/35/31
Car 6 4 1728 1210/384/69/65
Satimage 36 6 6435 1533/703/1358/626/707/ 1508
Thyroid 21 3 7200 166/368/6666
Mnist 28× 28 10 6000 600/600/600/600/600/600/600/600/600/600
Mnist10 28× 28 10 4920 60/600/60/600/600/600/600/600/600/600
Mnist30 28× 28 10 4860 20/600/20/600/600/600/600/600/600/600
Mnist40 28× 28 10 4850 15/600/15/600/600/600/600/600/600/600

1.4.2 Training and Experimental setup

In our study, a Multi-Layer Perceptron is used to train the 1D datasets, whereas
the 2D datasets are trained using a Convolutional Neural Network (ConvNet). The
optimization algorithm used for experiments within section 5.1 and 5.2 is stochastic
gradient descent (SGD) with a momentum of 0.9 and a weight decay of 0.0005. As
for experiments of section 5.3, SGD with the same momentum and weight decay is
used for training ConvNets, whereas the Adam optimizer (Kingma and Ba, 2015)
is used for training MLPs with the exponential decay rate for 1st and 2nd moment
estimates β1 and β2 set to 0.9 and 0.999 respectively, and the offset ϵ set to 10−8.
Adam is used for training MLPs only because, as stated in (Proefschrift, 2017),
Adam shows large performance improvement over SGD with momentum for MLPs
versus marginal improvement for ConvNets. Hyper-parameters such as the learning
rate, batch size and network architecture vary from one dataset to another and are
set according to Table 1.2. Note that learning rates displayed in Table 1.2.a are
used when the optimizer is SGD with momentum. On the other hand, when dealing
with the Adam optimizer, the learning rate is set to 0.001 for all datasets within
Table 1.2.a. The dropout rate for ConvNet is set to 0.5. Training is performed
for 15 to 100 epochs, depending on the dataset used and the experimental method
employed. We report results with 3-fold cross validation.

As for parameters of the cost-sensitive approach, τ is set to 2 and 50 for the MLP
and ConvNet models respectively. Indeed, as the proposed ConvNet architecture



has more hidden layers than the proposed MLP architectures, the magnitude of the
gradients with each subsequent layer of the ConvNet gets exponentially smaller in
the backpropagation process, which results in very slow learning of weights in the
ConvNet lower layers. So, in order for ConvNet lower layers’ weights to be affected
by the cost-sensitive technique, the weighting parameter λ needs to be relatively
high compared to λ of a MLP. That’s why the parameter τ used for ConvNet
training is chosen to be higher than the one used for MLP training.
Table 1.2: Training hyper-parameters for the 1D datasets in (a) and the 2D datasets
in (b). [n1, n2, n3] defines the architecture of the MLP for the 1D datasets, with
n1, n2 and n3 denoting the number of neurons in the first, second and third layer
respectively. In (b), the architecture of the ConvNet is defined by the layer type,
its kernel size, stride, and depth.

(a) MLP training hyper-parameters
Dataset Learning rate Batch size [n1,n2,n3]
Ionosphere 0.010 5 500, 50, 2
Pima Indians Diabetes 0.010 5 200, 20, 2
WP Breast Cancer 0.005 5 500, 50, 2
SPECTF Heart 0.010 5 650, 65, 2
Yeast_8l 0.001 10 200, 100, 8
Car 0.010 10 150, 75, 4
Satimage 0.010 50 600, 100, 6
Thyroid 0.010 50 350, 70, 3

(b) ConvNet training hyper-parameters

Dataset Learning rate Batch size Architecture
Layer Depth Kernel size Stride

Mnist10/

0.0001 30

Convolution 20 5x5 1
Mnist30/ ReLU 20 - -
Mnist40/ Max-pooling 20 2x2 2
Mnist50 Convolution 50 5x5 1

ReLU 50 - -
Max-pooling 50 2x2 2
Fully connected 500 4x4 1
ReLU 500 - -
Dropout 500 - -
Fully connected 10 1x1 1

As for the performance metric, the most widely used one for evaluating per-
formance in the context of multi-class classification within neural networks (MLPs
or ConvNets) is overall accuracy which is the proportion of correctly classified test
examples. However, this metric has some significant and long acknowledged limita-
tions, particularly in the context of imbalanced datasets. Specifically, when the test



set is imbalanced, accuracy favors classes that are overrepresented in some cases
leading to highly misleading assessment. In order to make the classification perfor-
mance of each class equally represented in the evaluation measure, (Kubat et al.,
1998) suggested the G-mean as the geometric means of recall values for the bi-class
scenario. Expanding this measure to the multiple class scenario was introduced by
(Sun, Yanmin and Kamel, Mohamed S and Wang, 2006) whereby the G-mean is
the geometric means of recall values of every classes as follows,

G−mean =
m∏

i=1
TP (i)1/m (1.21)

where m is the number of classes, and TP is the recall or true positive rate. As each
recall value representing the classification performance of a specific class is equally
accounted, G-mean is chosen to be the metric for our study.

1.5 Experiments and results
In this section, we first want to show the effect that each loss function (mentioned in
Table 2.1) has on our cost-sensitive approach by training shallow and deep neural
networks (MLPs and ConvNets) under imbalanced datasets using the standard
version of that loss function and comparing them with networks trained on the cost-
sensitive version. Next, convergence speeds of MLPs using the standard and cost-
sensitive versions of each of the loss functions are visualized by displaying, in Figure
3, learning curves relative to one of the 1D datasets. Finally, in order to evaluate
the effectiveness of the cost-sensitive algorithm in improving the performance of
both shallow and deep neural networks under imbalanced domains, an empirical
study is conducted by comparing classification rates of the cost-sensitive approach
to classification rates of well-known methods used for addressing class imbalance
(Table 1.4).

1.5.1 Effect of our cost-sensitive approach on classification perfor-
mance

Training MLPs on the 1D datasets and ConvNets on the 2D datasets is performed
using the standard version of loss functions of Table 2.1 as well as the cost-sensitive
version of the following loss functions: L2, Mshinge, Mshinge2, Mshinge3, log ◦σ
(σ(·) being the softmax function), and L2 ◦ σ (σ(·) being the sigmoid function).
Each experiment is repeated three times and its mean performance across all three
runs is depicted in Table 1.3. From results in Table 1.3, we observe that applying
the cost-sensitive approach on L2, Mshinge, Mshinge2, Mshinge3 loss functions



improves the G-mean performance in overall. Indeed G-mean results for the cost-
sensitive version of these loss functions are higher than results for the standard
version for all 1D and 2D datasets (except “WB breast cancer” dataset for Mshinge3

loss function). For instance, the cost-sensitive approach boosts performance from
0% to 60.69% for the “thyroid” dataset when applied on Mshinge, from 0% to
60.66% for the “Yeast_8l” dataset when applied on Mshinge2, and from 0% to
98.41% for the “Mnist50” dataset when applied on L2. However, we can see that
applying the same cost-sensitive approach on log ◦σ loss function seems to decrease
performance for several datasets (such as “Ionosphere”, “Yeast_8l”, “Mnist30”,
“Mnist40” and “Mnist50”) and to increase performance for the rest of the datasets.
The same behavior is observed for L2◦σ with a decrease in performance for datasets
“Ionosphere”, “Pid”, “WB breast cancer”, and “Satimage”, versus an increase in
performance for the other datasets.
Table 1.3: Mean classification results of neural networks over 3 runs using the
standard version (denoted as “Std.”) and the cost-sensitive version of different loss
functions in terms of average values of g-mean (in %). Best rates per loss function
and per dataset are in bold.

log ◦σ Mshinge Mshinge2 Mshinge3 L2 ◦ σ L2

Std. Ours Std. Ours Std. Ours Std. Ours Std. Ours Std. Ours
Ionosphere 90.60 88.29 86.25 89.17 86.25 87.72 89.17 90.93 85.29 82.02 70.26 81.58
Pid 75.52 76.38 75.22 75.27 75.50 76.54 74.65 75.77 76.08 32.12 75.77 75.97
WB breast cancer 92.83 93.36 92.40 93.19 92.17 92.62 94.13 93.98 93.27 89.38 82.30 89.88
SPECTF_Heart 79.66 81.18 83.68 83.68 80.52 82.12 81.32 83.68 73.49 82.02 80.05 82.90
Yeast_8l 58.72 58.02 56.36 59.84 0.00 60.66 53.11 59.43 0.00 0.00 57.32 63.15
Car 98.01 100.00 98.75 99.63 98.50 99.94 98.67 99.82 87.57 96.52 96.56 99.57
Satimage 87.83 87.94 86.86 88.73 87.60 88.94 87.58 88.58 88.34 82.74 85.55 88.12
Thyroid 51.03 54.93 0.00 60.69 57.97 72.26 50.51 72.65 0.00 41.08 46.75 73.14
Mnist10 94.88 95.15 94.78 96.55 94.96 95.18 95.18 95.92 90.74 96.21 91.76 96.27
Mnist30 92.00 90.94 91.95 93.45 91.89 92.50 90.31 90.75 90.43 92.36 90.43 92.64
Mnist40 97.77 98.50 95.81 98.41 87.81 97.13 96.80 98.52 0.00 97.81 0.00 98.41
Mnist50 98.70 98.11 97.89 98.70 98.66 98.29 98.61 98.67 0.00 97.05 0.00 98.43

Given these observations, the following reflections can be made:

i When dealing with L2, Mshinge and Mshinge2 and Mshinge3 loss func-
tions, our cost-sensitive approach is able to capture more relevant features
i.e., features that are shared between positive and negative instances. In-
deed, at every instance i, multiplying such loss functions by λi contributes in
balancing weights θ between positives and negatives, thus generating better
weights. Furthermore, the positive impact of this approach with such loss
functions is drawn for both the shallow NN models (MLPs) and deep learning
ones (ConvNets).

ii The cost-sensitive approach can be regarded as a reliable technique when
applied on loss functions which satisfy the property b = true of Algorithm



3 (namely, L2, Mshinge and Mshinge2 and Mshinge3), which verifies that
Algorithm 3 is correct and can be further used to test whether a loss function is
suitable for the cost-sensitive approach to improve classification performance
within imbalanced data.

iii We believe that our cost-sensitive strategy does not generalize to probabil-
ity estimate loss functions but rather to loss functions with no probability
estimate (or activation function) σ(·) applied at the last layer. Indeed, as
σ(·) turns predicted outputs into probabilities ranging from 0 to 1, partial
derivatives of the loss function with respect to this output tend to be small
within the range [0, 1]. As a result, applying the cost-sensitive technique on
such small partial derivatives has a little impact on NN learning.

iv The performance decrease of NNs with probability estimate loss functions
when applying the cost-sensitive approach instead of the standard one can be
explained by the fact that ∂ℓ(yi

k, ŷi
k)/(∂ŷi

k) ̸= 0 for a correct classification ŷi
k =

yi
k, yi

k = 1 for these loss functions (knowing that, ideally, ∂ℓ(yi
k, ŷi

k)/(∂ŷi
k) = 0

for a correct classification). So, as the cost-sensitive weighting parameter
λi is applied on ∂ℓyi

k,ŷi
k

∂ŷi
k

, the resultant ∂χ(yi
k, ŷi

k)/(∂ŷi
k) gets further from 0

which leads to an even larger gradient update even for a correct classification,
resulting in a wrong NN learning.

v Also, let’s note that the non-linearity present within partial derivatives of
loss functions log ◦σ and L2 ◦σ with respect to ŷi

k is not the property respon-
sible for the inefficiency of the cost-sensitive approach. Indeed, even with
the non-linearity of Mshinge3 partial derivative, Mshinge3 along with the
cost-sensitive method improves classification performance.

1.5.2 Effect of our cost-sensitive approach on convergence speed

Plots in Fig.3.a, 3.b, 3.c, 3.d, 3.e and 3.f illustrate learning curves resulting from
training NNs using Mshinge, Mshinge2, Mshinge3, L2, L2 ◦ σ and log ◦σ loss
functions respectively in the standard and cost-sensitive form (based on the “Iono-
sphere” dataset for Mshinge, Mshinge2, Mshinge3, the “Pima Indians Diabetes”)
dataset for L2, the “WP Breast Cancer” dataset for L2, and the “Satimage” dataset
for L2 ◦ σ). From these plots, we observe that the cost-sensitive strategy increases
the convergence speed for Mshinge, Mshinge2, Mshinge3 and L2 loss functions.
As explained in the methodology (section 3.3), this improvement over the NN con-
vergence speed is due to the coefficient λi within the gradient which acts like a
learning rate magnifier for positive instances i and which boosts the learning pro-
cess for those instances. Nonetheless, we notice a different behavior for both log ◦σ



and L2 ◦ σ where the cost-sensitive approach either does not affect convergence
speed as it is the case for log ◦σ (Fig.3.f) or reduces convergence speed as observed
for L2 ◦ σ (Fig.3.e). These observations confirm that the cost-sensitive technique
applied on loss functions with probability estimates such as log ◦σ and L2 ◦ σ has
a sparse impact on the network learning speed compared to the large impact of
that technique when applied on loss functions whose partial derivative with re-
spect to network output is relatively large. Thus, proving the non-efficiency of the
cost-sensitive approach on improving classification with data imbalance when either
log ◦σ or L2 ◦ σ is applied verifies Algorithm 3.

1.5.3 Comparison with other techniques

Our cost-sensitive approach is compared with known methods in the literature for
imbalanced learning such as under-sampling, over-sampling, and the cost-sensitive
method ST1 (Alejo et al., 2007). A pure neural network, i.e., without any strategy
to deal with imbalanced data, was also tested within exactly the same conditions
of the other algorithms. In these experiments, the chosen loss function to conduct
all these methods is L2. Moreover, each experiment is performed three times and
its mean G-mean classification result is reported in Table 1.4.
Table 1.4: Comparative results between different methods in terms of the G-mean
performance metric (in %).

L_2 ST1 Ours Over-sampling Under-sampling
Ionosphere 87.72 87.72 88.81 84.19 88.29
Pid 75.81 77.36 77.05 78.21 76.79
WB breast cancer 92.83 93.06 94.27 92.62 92.62
SPECTF_Heart 80.43 83.68 84.50 81.18 82.86
yeast_8l 59.01 62.46 62.99 62.04 55.87
Car 99.40 99.26 99.56 99.56 93.99
Satimage 88.01 89.04 88.86 88.38 88.48
Thyroid 78.06 93.09 86.35 96.69 77.64
mnist10 91.76 95.15 96.27 94.37 90.18
mnist30 90.43 92.34 92.64 91.08 86.53
mnist40 0.00 97.68 98.41 97.85 82.44
mnist50 0.00 97.29 98.43 93.56 80.47

From these results, we deduce that, in general, our method surpasses other
methods. Furthermore, several observations can be drawn:

• Our cost-sensitive method surpasses by far the under-sampling technique.
Indeed, as we under-sample, we are able to balance the data for proper neural
network training, but we remove training instances which could hold valuable
characteristics, thus losing relevant information.



• For almost all datasets (except “Pid” and “Thyroid”), the performance of
our approach is higher than the over-sampling technique. This is because
over-sampling generates redundant instances which might cause overfitting
of the NN especially if dealing with a complex NN such as ConvNet, thus
preventing this latter from correctly classifying new unseen instances (e.g.
test instances).

• Our approach performs slightly better than the ST1 technique. As opposed
to ST1 which up-weights positive instances with an unbounded weight that
could get very high as nm << max(nk) (nm being the number of instances
of a minority class and max(nk) being the number of instances of the most
frequent class), our method up-weights these instances with a bounded weight
that varies from 0 to τ + 1, where τ is chosen to be small or large depending
on whether we are training MLPs or ConvNets.

1.6 Conclusion
Our cost-sensitive learning algorithm addressed the class imbalance problem which
is commonly encountered when dealing with real-world datasets, by introducing
a cost-sensitive strategy applied on neural networks at the training phase. Based
on a cost-sensitive error function, its objective was to correctly classify the minor-
ity classes and favor them as much as the frequent ones by assigning a weighted
misclassification cost based on the distribution of classes. By properly weighting
the loss function weight-updating is intensified for the minority class based on the
probability of their occurrence. Throughout this chapter, results on several popular
datasets showed that:

i. our approach has a better convergence than the baseline algorithm and exis-
tent approaches,

ii. it also offers a faster convergence by boosting the optimizer when positive
instances are present,

iii. it can handle classification of imbalanced datasets whose inputs are one-,
two-, or three-dimensional since it can be applied on shallow and deep neural
networks (MLPs and ConvNets).

We also showed that the cost-sensitive approach is efficient only when applied on
loss functions which ensure, via certain conditions, that the gradient of the loss is
relatively large when misclassification occurs i.e., for ŷi

k < yi
k at yi

k = 1. Finally,
we conclude that adding a probability estimate activation function at the last NN



layer (which is done in all classification research papers) in general and using the
cross entropy loss (which is the most commonly used loss function in the majority
of papers) in particular is not a good choice as it comes to classifying imbalanced
datasets with a cost-sensitive learning approach based on a weighted cost such as
ours.
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Chapter 2

Techniques for Handling Regression under
Imbalanced Domains: algorithm and
evaluation techniques

2.1 Introduction
As discussed in the previous chapter, data imbalance is caused by imbalanced data
distributions where some events (e.g., cases) are abundant (denoted as negative,
majority or frequent) while others only have limited representations (denoted as
positive, minority, extreme or rare events), which leads to unexpected mistakes and
even serious consequences in data analysis especially in classification and regression
tasks. Indeed the skewed distribution of instances forces predictive models to be
biased to labels of frequent events and thus to ignore or not learn properly from
rare ones.

One example of regression tasks under imbalanced domains involves forecasting
rare extreme returns in financial markets. Unfortunately, in such domains, cases
that are more important to the user are the rare events which are very few on the
available training set, which gives rise to the following challenges: (i) we need means
for making a learning regression algorithm focus on these rare cases, and (ii) we
need a special purpose evaluation approach that is biased towards the performance
of the models on these rare cases while taking into consideration frequent cases. To
this end, this chapter, which is further discussed in (Sadouk et al., 2021), attempts
to address these two questions through the proposal of:

i a cost-sensitive learning approach with neural networks for tackling the issue
of rare/extreme values prediction,

ii new evaluation strategies for regression models that handle imbalanced datasets,
including scalar and graphical-based measures.
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The rest of the chapter is outlined as follows. Section 2 reviews related works
on techniques and evaluation approaches for handling regression tasks under imbal-
anced domains. Section 3 describes our cost-sensitive approach as well as our eval-
uation measures designed to tackle regression with imbalanced data distribution.
Section 4 develops the experimental setup and explores fundamental characteris-
tics of datasets employed. Section 5 highlights experiments and results, and then
compares them to existing methods. Finally, Section 6 concludes our work.

2.2 Related work

2.2.1 Regression Strategies for Handling Imbalanced Domains

Few strategies have been developed to address this problem in regression setting
and are divided into two categories: data-level and algorithm-level methods.

2.2.1.1 Data-level methods.

As mentioned in the previous chapter, the most common data-level methods are re-
sampling techniques namely, under-sampling whose goal is to discard the intrinsic
samples in the frequent events, over-sampling which duplicates minority events or
create/synthesize new ones, and hybrid method which combines over-sampling with
under-sampling. So far, in regression, under-sampling was performed by Torgo et al.
(Torgo et al., 2015) as a strategy for addressing the imbalance problem. This method
uses a relevance function and a user defined threshold to determine the common and
uninteresting values which need to be under-sampled. Works (Torgo et al., 2015;
Branco et al., 2017) proposed a hybrid method combining under-sampling and over-
sampling, where over-sampling in (Torgo et al., 2015) consists of generating new
synthetic data through the SMOTER algorithm whereas over-sampling in (Branco
et al., 2017) incorporates two over-sampling strategies: SMOTER and introduction
of Gaussian Noise. .

2.2.1.2 Algorithm-level methods.

Generally, we can distinguish between two algorithm-level types of methods. The
first one involves special-purpose learning methods which comprise solutions that
change the existing algorithms to be able to learn from imbalanced data. The work
of Ribeiro (Torgo and Ribeiro, 2007; Ribeiro, 2011) is the only work that makes use
of this type of method via a utility-based regression rule ensemble system designed
for obtaining models biased according to a specific utility function which is based
on the assumption that the user assigns a non-uniform relevance to the values of



the target variable domain. The system main goal is to first generate different re-
gression trees which are then converted to rule ensembles, and then select the best
rules to include in the final ensemble. The utility function is used as criterion at
several stages of the algorithm. The second type of algorithm-level methods deals
with cost-sensitive post-processing approaches do not modify the algorithm/model
itself but rather imposes an expensive cost when an error happens. For example,
a model assigns larger cost to rare observations compared to frequent ones thus
emphasizing the learning from rare observations. In regression, introducing costs at
a post-processing level still remains an under-explored issue with few limited solu-
tions. Recent studies on cost sensitive learning for imbalance regression distribution
has been proposed (Bansal et al., 2008; Zhao et al., 2011). In the area of finance,
several works have been made to take into account differentiated prediction costs
through different asymmetric loss functions such as quad-quad (Zellner, 1986), lin-
lin (Christoffersen and Diebold, 1997) and others (Cain and Janssen, 1995; Christof-
fersen and Diebold, 1996; Granger, 1999; Crone et al., 2005; Lee, 2008). However,
these solutions have the same disadvantage of being capable of only distinguishing
between over and under-predictions. Thus, they remain unsuitable for tackling the
problem of imbalanced domains with a user preference bias towards some specific
ranges of values. Another alternative is the concept of a reframing framework by
J. Hernandez-Orallo (Hernandez-Orallo, 2012; Hernández-Orallo, 2014) which was
not developed specifically for imbalanced domains but still works for these latter
by adjusting the predictions of a previously built model to different deployment
contexts. The notion of reframing was established as the process of applying a
previously built model to a new operating context by the proper transformation of
inputs, outputs and patterns. This framework changes the obtained predictions by
adapting them to a different distribution.

Although efficient, some of these data- and algorithm-level methods present
some limitations. Indeed, data-level approaches require mapping the given data
distribution into an optimal new distribution which is not an easy task, and alter
the data distribution such that over-sampling aggravates the burden of compu-
tation and cause overfitting while under-sampling loses some useful information
(Khan et al., 2018). As to special-purpose learning methods, they require a deep
knowledge of the learning algorithms implementation and restrict the user to uti-
lize learning algorithms that have been modified to be able to optimize his goals.
However, post-processing approaches keep the original dataset and the standard
learning algorithm unchanged, and only manipulate predictions and learning of the
given model. Moreover, it is a straight forward learning mechanism with no user
intervention required before or at learning time (no hard threshold being imposed)
and its obtained model can be further applied to different deployment scenarios. To



this matter, our study focuses on such prediction post-processing approaches and
introduces a novel cost-sensitive error function for neural networks.

2.2.2 Evaluation approaches for imbalanced regression domains

Very few efforts have been made regarding evaluation approaches for regression tasks
in imbalanced domains (Branco et al., 2016). Performance measures can be either
scalar or graphical-based. Graphical-based metrics. Following the efforts made
within classification, some attempts were made to adapt the existing notion of ROC
curves to regression tasks. One of these attempts is the ROC space for regression
(RROC space) (Hernández-Orallo, 2013) which is motivated by the asymmetric loss
often present on regression applications where both over-estimations and under-
estimations entail different costs. RROC space is defined by plotting the total
over-estimation and under-estimation on the x-axis and y-axis, respectively. Other
evaluation metrics were explored, such as the Area Over the RROC curve (AOC)
which was shown to be equivalent to the error variance. Another relevant effort
towards the adaptation of the concept of ROC curves to regression tasks was made
by (Bi, J.; Bennett, 2003) with the proposal of Regression Error Characteristic
(REC) curves that provide a graphical representation of the cumulative distribution
function (CDF) of the error of a model. These curves plot the error tolerance and
the accuracy of a regression function which is defined as the percentage of points
predicted within a given tolerance. REC curves illustrate the predictive performance
of a model across the range of possible errors. The Area Over the Curve (AOC)
can also be evaluated and is a biased estimate of the expected error of the model.
RROC and REC curves, although interesting, are still not sensitive to the error
location across the target variable domain. To address this problem, (Torgo, 2005)
proposed Regression Error Characteristic Surfaces (RECS) whose goal is to add an
extra dimension into REC curves representing the cumulative distribution of the
target variable. RECS shows how the errors corresponding to a certain point of
the REC curve are distributed across the range of the target variable (e.g., label
range). Another contribution of (Torgo, 2005) is the partial REC curve, which is
a particular case of a REC curve where the analysis of the error distribution is
limited to a certain label range such as rare events, which permits the analysis of
errors within that range. Accordingly, with a unimodal data distribution (one peak
within the distribution), we will obtain two different ranges of rare labels. And with
a multimodal data distribution (with n peaks), we will end up with n + 1 ranges of
rare labels and with n+1 partial REC curves, which will be difficult to analyze (all at
once). Therefore, the partial REC curve for rare events is suitable only when having
one range of rare labels i.e., when dealing with data whose distribution has no peak



such as J shaped data distributions (exponential or log normal data distributions).
To solve this problem and to further improve graphical-based metrics for imbalanced
domains, we propose a REC curve which incorporates all n+1 ranges of rare labels,
which will be denoted as True Positive Rate REC RECT P R curve. We also define
another REC curve which pools all ranges of frequent labels, referred to as the True
Negative Rate REC (RECT NR) curve. The goal of RECT P R and RECT NR curves
will be to evaluate the error magnitude of positive (rare) and negative (frequent)
instances respectively, based on the non-uniform relevance of the target variable
domain. Then, inspired by scalar metrics for classification such as Geometric Mean
(G-Mean) and Class-Weighted Accuracy (CWA), these two curves can be further
fused into one single curve which can be either RECG−Mean curve or RECCWA

curve. Scalar metrics. Performance measures commonly used in regression such
as Mean Squared Error (MSE) and Mean Absolute Error (MAE) are not adequate
to these specific problems. These measures assume a uniform relevance of the
target variable domain and evaluate only the magnitude of the error. Although the
sum of the magnitude of numeric errors holds valuable information, for tasks with
imbalanced domains of the target variable, this sum should also be sensitive to the
errors location within the target variable domain, because it is frequently biased
to the performance on poorly represented values of the target. This means that
the error magnitude must have a differentiated impact depending on the values of
the target domain where the error occurs. Attempts to apply this differentiated
impact within measures were made by (Torgo and Ribeiro, 2009; Torgo et al., 2015)
through the notions of precision/recall and F1-measure derived from the utility
function (Torgo and Ribeiro, 2007) (which is a special-purpose learning method as
mentioned in the previous subsection). However, these measures can only be applied
to this special-purpose learning methods and cannot generalize to all algorithm-
level methods. As such, we suggest evaluation strategies which can be applied
to all regression models and which take into account the imbalance distribution
of datasets, namely the Geometric Mean Error (GME) and Class-Weighted Error
(CWE).

2.3 Methodology

In this section, we introduce the key components for our cost-sensitive approach han-
dling regression tasks given imbalanced data (Sec. 3.1). Next, define our graphical-
based and scalar evaluation approaches suitable for measuring the performance of
regression tasks under imbalanced-domains (Sec. 3.2).



2.3.1 Cost-sensitive learning approach

In this subsection, we introduce the cost-sensitive learning technique for regression
with highly imbalanced data based on training a neural network using a proposed
probabilistic loss function. Given a highly imbalanced training dataset {(xs, ys)}S

s=1

where S is the total number of instances (e.g., samples) in the training set, our goal
is to train a neural network represented by a function f(.) which maps between the
input vector xs and the output or target variable ys via parameters θ as follows,

ŷs = f (xs, θ) (2.1)

where ŷs is the network output (e.g., estimated output value).
Optimal tuned parameters θ are obtained after the training process of the neural

network which is accomplished through the minimization of an objective function
that measures the error between the target variable ys and the network output ŷs

as follows,

minθℓθ),

L(θ) = 1
N

N∑
i=1

ℓ(ri)
(2.2)

where N is the number of instances per batch, ℓ(·) is the loss function, ri = yi − ŷi

, ri denoted/referred to as the residual, yi and ŷi being the target and predicted
values respectively for an instance i within the batch. In regression problems, the
typical loss function used is the quadratic loss function (called L2 loss) defined as,

ℓ2(ri) = (ri)2 (2.3)

However, training a neural network with L2 using imbalanced data yields a poor
performance especially on scarce/rare events, since it tends to learn more from the
normal examples (most frequent ones), neglecting the rare ones. In other words,
with frequent data being the majority data, the network tends to overfit, generating
parameters θ that tend to fit the most frequent data much more than the rare ones.
Thus, L2 deteriorates the performance of the network on predicting infrequent
events and needs further adjustment to take into account this imbalance in the
data.

To this end, we propose a biased loss function which favors rare events (e.g., rare
data) over frequent ones by adding more loss on instances whose target variable is
rare and adding no loss on instances whose target variable is frequent. The main
idea is to add an additional term to L2 that takes into account the importance
of the target variable itself, the rare ones being more important than the frequent



ones. To do, we first define the importance function, also denoted as the “relevance”
function, which gives the degree of importance to each target variable based on a
probabilistic approach. The next step is to incorporate this relevance function into
our biased loss function as well as describe the behavior of this latter given a rare
or frequent instance and its derivative with respect to the predicted value of that
instance.

2.3.1.1 Relevance function

The concept of relevance was first introduced by Torgo and Ribeiro (Torgo and
Ribeiro, 2007) and it is goal is to express the domain-specific biases concerning the
different importance of the target values. It is expressed as a continuous function
ϕ(y) : y → [0, 1] that maps the target variable domain y into a [0, 1] scale of rele-
vance, where 0 and 1 represent the minimum and maximum relevance respectively.
In (Torgo and Ribeiro, 2007), the relevance function ϕ was obtained by applying
piecewise cubic Hermite interpolation to the box-plot (Cleveland, 1993) statistics
of the target variable. In our study, we define two relevance functions: (i) Normal
Density Relevance (NDR) for any uni-modal symmetric distribution of the target
variable domain, and (ii) Kernel Density Relevance (KDR) for any asymmetric
target distribution (uni-modal and multimodal).

2.3.1.1.1 Normal Density Relevance (NDR). Let’s consider the most common
type of probability density functions: the probability density of the normal (Gaus-
sian) distribution. Given y, a target variable or label of a an instance (e.g., of an
observation or event) i within the batch, its normal density function (NDF) can be
written as,

f(y|µ, σ) = 1
σ
√

2π
e

−y−µ2

2σ2 (2.4)

where µ is the average over events ys within the training set {(xs, ys)}S
s=1, i.e.,

µ = 1
S

∑S
s=1 ys, and σ is its standard deviation. In order to illustrate this, as an

example, let’s consider labels (e.g. target variables) of a dataset called “cpuSM”
where the label corresponds to the relative performance of a CPU based on its
attributes. Note that labels have been normalized to the interval [0, 1]. Figure 2.1.a
consists of a histogram representing labels of this dataset. On the other hand, the
NDF of the same dataset is shown in Figure 2.1.b with an average µ and standard
deviation σ of 0.817 and 0.1864 respectively. Note that the NDF approaches zero at
rare events (low label values) and attains its peak 1

σ
√

2 at most frequent events (i.e.
at high label values). Multiplying the probability density function f(y|µ, σ) by its
peak value gives rise to P (y|µ, σ), a distribution function in the range [0, 1] which



(a) Histogram (b) NDF f(·) (c) NDR ϕ(·)

Figure 2.1: Plot (a) is a histogram that represents the “cpuSM” target distribution,
grouped into bins of interval 0.01. Plots (b) and (c) are the NDF f(·) and the NDR
function ϕ(·) of the same distribution.

can be regarded as a probability of having a target variable yi given an average
value µ and standard deviation σ,

P (y|µ, σ) = e
−y−µ2

2σ2 (2.5)

Given P (y|µ, σ), the relevance function of the normal density (also denoted
as Normal Density Relevance NDR) can be thought of as the probability of the
complement of the event y as follows,

ϕ(y) = 1− P (y|µ, σ) (2.6)

This implies that, when y is a label of a rare event, the relevance term ϕ(y) attains
its peak 1; and conversely, the relevance term ϕ(y) approaches 0 on frequent events,
as illustrated by the NDR in Figure 2.1.c. For example, Figure 2.1.c illustrates
the relevance for the “cpuSM” dataset. Nonetheless, comparing the histogram of
Figure 2.1.a and the NDF of Figure 2.1.b shows that the NDF doesn’t really suit
the histogram bins as the cpuSMtarget distribution is asymmetrically distributed
and multimodal. This conveys the need of a more robust relevance function whose
density function fits multimodal and asymmetric data.

2.3.1.1.2 Kernel Density Relevance (KDR). The proposed Kernel Density Rele-
vance (KDR) is computed based on the Kernel Density Estimation (KDE). Also
known as the Parzen’s window (Parzen, 1962), KDE is one of the popular approaches
to estimate the underlying probability density function of a dataset. Compared to
the normal probability density distribution stated above which requires parameters
such as the mean and standard deviation of the distribution, KDE is a nonpara-
metric density estimator which automatically learns the shape of the density from
the data. Let ys be an independent, identically distributed random sample from
the unknown distribution taken from the training set {(xs, ys)}S

s=1. Formally, given



y, a target variable of a an event i within the batch, the density function f of KDE
can be expressed as,

f(y) = 1
Sh

S∑
j=1

K(y − yj

h
) (2.7)

where K is a smooth function called the kernel function and h > 0 is the smoothing
bandwidth that controls the amount of smoothing. Intuitively, KDE has the effect
of smoothing out each data point into a smooth bump, whose shape is determined
by the kernel function K. Then, KDE sums over all these bumps to obtain a density
estimator. At regions with many observations, because there will be many bumps
around, KDE will yield a large value. On the other hand, for regions with only a few
observations, the density value from summing over the bumps is low, because only
a few bumps contribute to the density estimate. Figure 2.2.a illustrates the KDE
applied to the same dataset as above, where the selected parameters K (kernel) and
h (bandwidth) are chosen to be respectively the normal kernel and a bandwidth
computed using least square cross-validation (as explained below). Compared to
the NDF of Figure 2.1.b, the KDE fits better the histogram of “cpuSM” target
distribution (Figure 2.2.a).

Kernel selection. A range of kernel functions K are commonly used: uniform,
triangular, biweight, triweight, Epanechnikov, normal, and others. The normal
kernel (also known as the Gaussian kernel) is often used and is defined as K(x) =
φ(x), where φ(x) is the standard normal density function: φ(x) = 1√

2e− 1
2 x2 .

Bandwidth selection. Choosing the most appropriate smoothing bandwidth h

for KDE is crucial for computing the best density estimate. Indeed, when h is
too small, there are many wiggles in the density estimate. Conversely, when h is
too large, we smooth out important features. Common approaches to bandwidth
selection include the rule of thumb (Dehnad, 1987), least square cross-validation
(Rudemo, 1982), biased cross-validation (Scott and Terrell, 1987), and plug-in
method (Woodroofe, 1970). In our study, the applied bandwidth selection method
is the least square cross-validation. After selecting the optimal parameters K and
h for a particular dataset, the probability of having a target variable can be derived
by turning f(y) (eq. 2.7) into a distribution function in the range [0, 1], as follows

P (y) = 1
MSh

S∑
j=1

K(y − yj

h
) (2.8)

where M = max({P (y1), . . . , P (ys)}), M being the peak value of f(y). Thus, given
P (y), the Kernel Density Relevance KDR can be obtained using Equation 2.10.
Computing KDR of the “cpuSM” dataset gives us the plot in Figure 2.2.b. Let’s



(a) KDE f(·) (b) KDR ϕ(·)

Figure 2.2: Plot (a) and (b) are the KDE f(·) and the KDR function ϕ(·) of the
same target distribution of the “cpuSm” dataset.

note that, as the number of instances S within the training set becomes large,
computing the KDR ϕ(y) for each and every element y within the batch of the
neural network becomes heavy as we have to compute a sum of S exponentials for
every element y. Computation becomes even heavier when this process is repeated
for each batch and for each epoch. To alleviate this problem, we apply sampling by
computing a sum of U exponentials rather than S exponentials, where U ≺≺ S. As
a reminder, sampling is a statistical procedure that is concerned with the selection
of some observations (e.g., samples) to help us make statistical inferences about
the whole population. As for the choice of the sample size U , the work of (Cohen
et al., 2017) states that, in survey research, 100 samples should be identified for
each major sub-group in the population and between 20 to 50 samples for each
minor sub-group . And according to (Delİce, 2001), a sample size between 30 and
500 at 5% confidence level is generally sufficient for many researchers. Accordingly,
we choose a relatively large sample size U = 1000. As such, we under-sample the
training set by randomly selecting U instances from it and making these instances
represent our final training set. So, the corresponding probability becomes,

PU(y) = 1
MUh

U∑
j=1

K(y − yj

h
) (2.9)

Finally, given PU(y), the relevance function (or Kernel Density Relevance – KDR)
is given by,

ϕ(y) = 1− PU(y) (2.10)

As seen through the KDR of the “cpuSm” dataset (Figure 2.2), ϕ(y) attains its
peak 1 for rare target variables y and approaches 0 on frequent target variables.



2.3.1.2 Probabilistic loss function

The goal of this section is to integrate one of the relevance functions mentioned
above into the original ℓ2-loss function (eq. 2.3). The idea is that, for every instance
i within the batch, a cost term C(yi) is added to ℓ2, which is proportional to the
relevance function ϕ and to the absolute value of the residual ri, as follows,

C(yi) =
∣∣∣yi − ŷi

∣∣∣ ∗ ϕ(yi) (2.11)

where yi and ŷi are the target value and prediction of the model at an instance i.
The resultant probabilistic loss function ℓp for an instance i can be written as,

ℓp(yi, ŷi) = (yi − ŷi)2 + C(yi) (2.12)

The ℓp loss function is a regularized version L2 whose goal is to control the trade-
off between fitting the data well and giving more importance to infrequent (rarely
occurring) events. The role of the first term (yi − ŷi)2 is to fit the training data
well, whereas the role of the second C(yi) is to avoid overfitting most frequent events
and to give more weight/importance to residuals ri generated/coming from scarce
events. Furthermore, by taking a closer look at eq. 2.11, the second term of the
equation C(yi) will have an impact on the loss function ℓp(yi, ŷi) only when the first
term (ri)2 is kept small. Indeed, if the absolute value of the residual is bigger than
1(> 1), then (yi, ŷi)2 >> C(yi) , thus ending up with a loss function similar to the
original L2 with ℓp(yi, ŷi) = ℓ2(yi, ŷi) . So, the absolute value of the residual needs
to be small enough (in the range [0, 1]) for the cost term C(yi) to have an effect
on the loss function ℓp(i). To do so, target values need to be normalized into the
interval [0, 1]. Accordingly, equation 2.11 becomes,

ℓp((yi)′
, ŷi) = (yi − ŷi)2 + C((yi)′)

(yi)′ =
yi −minj∈{1,...,S} yj

maxj∈{1,...,S} yj −minj∈{1,...,S} yj

(2.13)

where yi and (yi)′ are the original and normalized target variables for instance i

respectively.

For convenience, the normalized target variable (yi)′ will be further denoted as
yi and the normalized loss function ℓp((yi)′

, ŷi) as ℓp(yi, ŷi) in the rest of the paper.

Furthermore, it is worth mentioning that the loss function ℓp is not differentiable
at ŷi = yi because of the absolute value |yi − ŷi| present within the cost C(yi) (eq.



2.8). So, to resolve this issue, C(yi) is updated as follows,

C(yi) =
√

(yi − ŷi)2 + ε) ∗ ϕ(yi) (2.14)

where ε is a very small term (ε = 10−9).

Using Equation 2.13 and 2.14, the final probabilistic loss function for an instance
i of the batch can be written as,

ℓp(yi, ŷi) = (yi − ŷi)2 +
√

(yi − ŷi)2 + ε ∗ ϕ(yi) (2.15)

In practice, when dealing with a frequent event yi, the probability of having yi

approaches 1; so the cost term C(yi) approaches 0, resulting in ℓp(yi, ŷi) ≈ ℓ(yi, ŷi).
Contrariwise, when having a rare event yi, P (yi) ≈ 0 and C(yi) ≈ 1, resulting
in ℓp(yi, ŷi) ≈ (yi − ŷi)2 + |yi − ŷi|. To illustrate this, two labels of the “cpuSM”
dataset (e.g. performance of CPUs) are used: a rare label yi = 0.3 (e.g., a low CPU
performance value) and a frequent one yi = 0.9 (e.g., a high CPU performance
value). Then, both ℓp and ℓ are plotted as a function of the residual r where
r = ŷi − yi, with yi being set to 0.3 (Figure 2.3.a) or 0.9 (Figure 2.3.b).

prediction ŷi, with yi being set to 0.3 (as shown in Figure 2.3.a) or 0.9 (as
depicted in Figure 2.3.b). In the case of ŷi = 0.3, the probabilistic loss ℓp gets higher
than the quadratic loss ℓ as the residual gets further from 0 i.e., as the prediction
gets further from the target variable. For instance, for a large residual ri = 0.6,
ℓp(0.6) = 0.96 while ℓ(0.6) = 0.36. Hence, it is clear that an extra cost is added to
the probabilistic loss function ℓp for rare events. On the other hand, for the frequent
label yi = 0.9 (Figure 2.3.b), ℓp(ri) and ℓ(ri) are almost equal, meaning that no
extra cost is applied when dealing with frequent events. During backpropagation,
the probabilistic loss function ℓp produces a gradient whose magnitude is linearly
proportional to the residual plus a constant term (bias). The gradient of the loss
of an instance i with respect to the network output ŷi is given by,

∂ℓp(yi, ŷi)
∂ŷi

= 2(yi − ŷi) + yi − ŷi√
(yi − ŷi)2 + ϵ

∗ ϕ(yi) (2.16)

This means that, for a frequent event yi, the second term of the derivative is close
to 0, whereas for a rare event yi, this second term approaches 1, producing a higher
magnitude of the gradient which (in turn) biases the whole training process, enabling
the neural network to adapt to rare events, thereby improving the performance of
the network. Plots in Figure 2.4 display derivatives of both ℓp and ℓ with respect to
the residual ri for yi = 0.3 (Fig. 2.4.a) and yi = 0.9 (Fig. 2.4.b). We observe that
the magnitude of the gradient of ℓp is higher than the gradient of ℓ by a constant
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Figure 2.3: Red and blue plots represent the value of ℓ and ℓp respectively with
respect to the residual ri (x-axis) for two scenarios: a rare event i having a low
CPU performance label yi = 0.3 (a), and a frequency event having a high CPU
performance label yi = 0.9 (b).

ϕ(yi) for ŷi > yi and lower by the same constant ϕ(yi) for ŷi < yi. So, for yi = 0.9,
ϕ(yi) 0. And for yi = 0.3, the constant term is almost 1 with ϕ(yi) = 0.9786. Using
the backpropagation rule and gradient descent, the cost-sensitive gradient at an
instance i can be written as,

∂ℓp(yi, ŷi)
∂θ

= ŷi

θ
(2(yi − ŷi) + ri√

(yi − ŷi)2 + ϵ
∗ ϕ(yi)) (2.17)

Therefore, for any rare event i, the probabilistic loss function has the property
of increasing the magnitude of the partial derivative with respect to the network
output during backpropagation, thereby increasing the magnitude of the gradient
by an amount that is inversely proportional to the frequency of occurrence of that
event. In other words, each training sample has a different contribution to the
minimization depending on the frequency of its occurrence. Other advantages of the
use of our probabilistic loss function is that (i) the minimization and weighting are
integrated into a single function and (ii) only soft constraints are imposed without
the need of setting a hard threshold on the loss function. Algorithm 4 summarizes
steps for optimizing network parameters θ using our cost-sensitive learning approach
based on one of the relevance functions (of section 2.3.1.1) and the probabilistic loss
function (2.3.1.2). Let’s note that the term U was set to 1000 when the number of
training instances becomes larger than 1000.



(a) (b)

Figure 2.4: Blue and red plots represent the derivatives of ℓ and ℓp functions re-
spectively with respect to residual ri for two scenarios: an instance i with a rare
label yi = 0.3 (a), and another instance i with a frequent label yi = 0.9 (b).

Algorithm 4: optimization for parameter θ of cost-sensitive learning approach.

Data: Imbalanced training dataset [x, y] (x the inputs and y the outputs),
Maximum epoch: M , Number of batches per epoch: B, learning
rate: α, relevance type: NDR or KDR, vector of labels of mini-batch
instances: ybatch, Number of training instances: S.

Result: θ∗

initialization;
instructions;
for ( epoch = 1; epoch < M ; epoch = epoch + 1 ) {

for ( batch = 1; batch < B; batch = batch + 1 ) {
forward passing ;
switch relevance ϕ do

case NDR do
Compute P (ybatch|µ, σ) (eq. 2.5) ;

end
case NDR do

if S < 1000 then
Compute P (ybatch) (eq. 2.8) ;

end
else

Compute P1000(ybatch) (eq. 2.9) ;
end

end
end

}
}



2.3.2 Evaluation methods for regression under imbalanced domains

2.3.2.1 Graphical-based evaluation approaches

Since standard evaluation criteria are not suitable for describing regression per-
formance for imbalanced domains as they tend to focus their evaluation of the
model on the most frequent events only, in this section, we propose to update the
graphical-based evaluation technique REC (Bi, J.; Bennett, 2003) such as to take
into consideration the imbalanced distribution of datasets. We first start with an
overview or background on classification metrics, including the True Positive Rate
(TPR) and the True Negative Rate (TNR) in classification tasks. Next, we show
how to derive TPR and TNR for regression. Then, based on these measures (TPR
and TNR), we attempt to define their corresponding REC curves (RECT P R and
RECT NR curves) as well as their corresponding Area Over the Curve (AOC). Fi-
nally, we propose to merge these 2 curves using interpolation in order to obtain a
G-mean REC (RECG−Mean) curve as well as a CWA REC (RECCW A) curve.

2.3.2.1.1 Background on classification metrics. In this section, we present an
overview of the confusion matrix typically used in classification and its elements
as well as the classification measures TPR and TNR. In the field of statistical clas-
sification and specifically the binary-class problem, a confusion matrix (Stehman,
1997), also known as an error matrix, is a specific table layout that allows visual-
ization of the performance of an algorithm or model, typically a supervised learning
one. For the two class classifier, the confusion matrix consists of information about
actual and predicted classification return by a classifier. The entries in the con-
fusion matrix are summarized in Table 2.1 and are denoted as: (i) True Positive
(TP ) referring to the number of positive examples which are correctly predicted as
positives by the model, (ii) True Negative (TN) denoting the number of negative
examples correctly classified as negatives by the model, (iii) False Positive (FP ),
often referred to as false alarm, which is defined by the number of negative exam-
ples incorrectly classified as positives by the model, and (iv) False Negative (FN),
sometimes known as miss, which is determined as the number of positive examples
incorrectly assigned as negatives by a classifier. However, analyzing the four entries

Table 2.1: Confusion matrix.

Predicted (Classified as)
Positive Negative

Actual (Really is) Positive (p) True Positive (TP ) False Negative (FN)
Negative (n) False Positive (FP ) True Negative (TN)

in the confusion matrix is not enough in determining the performance of a classifier.



Therefore, several derivatives based on the previously discussed confusion matrix
are used in evaluating classification models:

• True Positive Rate or Recall or Sensitivity, referring to the ability of a model in
correctly identifying a positive class as such (ranging from 0 to 1), is denoted
as;

TPR = TP

TP + FN
= TP

p
(2.18)

where p is the number of positive examples (instances) which corresponds to
the sum of true positives (TP ) and false negatives (FN).

• True Negative Rate or Specificity, denoting the ability a model in correctly
identifying negative class as such, is determined as,

TNR = TN

TN + FP
= TN

n
(2.19)

where n is the number of negative target examples (instances) which corre-
sponds to the sum of true negatives (TN) and false positives (FP ).

2.3.2.1.2 Definition of TPR and TNR for regression. As explained, the confusion
matrix comprises of four results from classification outputs that report the number
of true positives (TP ), true negatives (TN), false positives (FP ) and false negatives
(FN). In our study, we propose a mapping of these confusion matrix elements used
for classification into the regression field.

Positive and negative classes for target variables.
As such, we choose ‘positive’ to refer to rare events (e.g., events whose target

variable is considered as rare) and ‘negative’ to stand for frequent events (e.g., events
whose target variable is considered as frequent). In other words, positive events
represent the minority ‘class’ while negative events constitute the majority ‘class’.
Given m instances in the test set {(xi, yi)}m

i=1 with xi and yi being respectively
the input vector and the continuous target variable at instance i, the idea/goal is
to change the target variable domain as follows: R → {0, 1} where 0 and 1 stand
for the negative target class (negative label) and the positive target class (positive
label) respectively. To do so, we propose a function τ , that maps the original domain
of continuous target variables into these two discrete classes,

τ(·) =]−∞, +∞[→ {0, 1} (2.20)

The role of the function τ is to convert/change target variable values within the
test set whose relevance is greater than a user-defined threshold tE into “1” (the



positive class), and to turn target variable values whose relevance is lower than tE

into “0” (the negative class). The function τ of a target variable yi at the instance
i can be expressed as:

τ(yi) =

1 ifϕ(yi) ≥ tE

0 otherwise
(2.21)

In other words, any target variable whose relevance is greater than the threshold tE

is considered to be a positive instance and to belong to the positive class (τ(yi) = 1);
and any target variable whose relevance is lower than tE is regarded as a negative
instance with τ(yi) = 0.

Positive and negative classes for network output. Now that we have defined the
class of each target variable, we need to define the rule/formula for determining
whether the network output (e.g., prediction) of the model at a given instance is
positive or negative. In other words, each network output which is a continuous
value has to be mapped also into a positive or a negative class. To do so, for each
instance i, we make use of its residual ri (e.g., the difference between the network
output and the target variable of that instance). The basic idea is that the loss of
the residual at that instance - e.g., ℓ(ri) or ℓ(ŷi, yi) such that ŷi = f(xi, θ), must be
less than a tolerance ϵ before it is considered as a good/correct prediction. So, if
ℓ(ŷi, yi) is less than ϵ, then the model has made a good prediction about i and the
predicted value ŷi is turned into the same class as the class of the target/response
variable yi via a function τ

′ . And, conversely, having ℓ(ŷi, yi) greater than ϵ turns
ŷi into the opposite class of that of yi via the same function τ

′ . The following
algorithm is used to describe τ

′ .

Algorithm 5: function τ
′ .

Data: ϵi = ℓ(ŷi, yi), i = 1, ..., m. (m being the number of instances within
the test set).

Result: ĉi, i = 1, ..., m. (ĉi being the predicted class of instance i)
initialization;
instructions;
for ( i = 1; batch < M ; i = i + 1 ) {

if ϵi ≤ ϵ then
ĉi = τ(yi) ;

else
ĉi = 1− τ(yi) ;

end
}



T P R and T NR for multiple values of ϵ. In the previous subsection, we dis-
cussed how target variables {yi}m

i=1 and network outputs {ŷi}m
i=1 were labeled into

positive and negative classes via function τ and τ
′ respectively. After defining pos-

itive and negative classes for each of the target values and predicted values, we can
build our regression confusion matrix, and thereby compute TPR and TNR. How-
ever, using function τ

′ is conditioned by the parameter ϵ, which is hard to define. In
that sense, we propose to compute τ

′ (of all test set instances) for multiple values
of ϵ. Thus, for each and every value of ϵ, we will obtain TP s and TNs and then
compute the associated TPR and TNR. The first step is to split the m instances
of the test set into two categories: one that contains the p instances whose target
variable is positive with τ(yi) = 1, and another one composed of the n instances
whose target variable is negative with τ(yi) = 0. As shown in the confusion ma-
trix (Table 2.1), p = TP + FN and n = FP + TN . Meanwhile, having already
obtained the predicted class (e.g., label) of all m instances (including the p and
n instances) for each error/tolerance ϵ, we can compute True Positives for each ϵ

(TP (ϵ)) which corresponds to the number of positive instances correctly predicted
as positives i.e., the number of correctly predicted instances within the following p

instances: {(xip , yip)}p
ip=1,

TP (ϵ) :=
∣∣∣{(x, y) : ĉip = τ(yip), ip = 1, . . . , p

}∣∣∣ (2.22)

which, according to the algorithm of function τ
′ , can also be written as

TP (ϵ) :=
∣∣∣{(x, y) : ℓ(ŷ(ip), yip) ≤ ϵ, ip = 1, . . . , p

}∣∣∣ (2.23)

Hence, based on equation 2.18 and 2.22, we can compute TPR(ϵ), the true positive
rate with respect to ϵ,

TPR(ϵ) = TP (ϵ)/p (2.24)

Similarly, we can compute TN(ϵ), the number of negative instances which are cor-
rectly predicted as negative i.e., the number of correctly predicted instances within
the following n instances {(xin , yin)}n

in=1,

TN(ϵ) :=
∣∣∣{(x, y) : ĉin = τ(yin), in = 1, . . . , n

}∣∣∣ (2.25)

which, according to the algorithm of function τ
′ , can also be written as,

TN(ϵ) :=
∣∣∣{(x, y) : ℓ(ŷin , yin) ≤ ϵ, in = 1, . . . , n

}∣∣∣ (2.26)



Thus, based on equation 2.19 and 2.23, the true negative rate with respect to
ϵ becomes, estimate of the CDF of the error. And, given a set of m instances,
(x1, y1), (x2, y2), . . . , (xm, ym), the accuracy at tolerance ϵ is,

TNR(ϵ) = TN(ϵ)
n

(2.27)

2.3.2.1.3 Definition of REC curves for TPR and TNR. Given TPR(ϵ) and TNR(ϵ)
for each ϵ, the next step is to build a REC curve which plots TPR as a function of ϵ

and another REC curve which plots TNR as a function of ϵ. To do so, an overview
of the REC curve is laid out. Then, the process of developing REC curves for TPR

and TNR is described.
Overview of REC curve. As stated in the work of (Bi, J.; Bennett, 2003), the

REC curve considers an e-insensitive loss for all possible values of a tolerance ϵ,
where residuals must be greater than ϵ before they are considered as errors. In the
same study, the REC curve is also an estimate of the CDF of the error. And, given
a set of m instances, (x1, y1), (x2, y2), · · · , (xm, ym), the accuracy at tolerance ϵ is,

acc(ϵ) := |{(x, y) : ℓ(ŷi, yi) ≤ ϵ, i = 1, . . . , m}|
m

(2.28)

The set of points (coordinates) used to plot the REC curve is {(ϵj, acc(ϵj))}m
j=1,

j = 1, . . . , m where ϵj = l(ŷj, yj). In other words, given the m instances of the
set, their associated tolerance/error is computed. Then the errors ϵi are sorted in
ascending order and the “plot” command interpolates between the plotted points
with a line (Bi, J.; Bennett, 2003). The REC curve plots the error tolerance ϵ on the
x-axis and the accuracy at ϵ which is the percentage of points predicted correctly
within that tolerance on the y-axis. The resulting curve estimates the cumulative
distribution function (CDF) of the error. According to (Bi, J.; Bennett, 2003), the
expectation of ϵ defined as

E(ϵ) ≈ ϵmP̂ (ϵm)− (
m−1∑
j=1

(ϵj+1 − ϵj)P̂ (ϵj) + ϵ1P̂ (ϵ0))(28) (2.29)

where ϵ0 = 0, ϵm is the maximum observed error, and P (ϵ) is the empirical distri-
bution estimated on the sample data to approximate the probability distribution P

at ϵ. The first terms ϵmP (ϵm) corresponds to the area of the box corresponding to
the REC curve, assuming P (ϵm) = 1, while the second term (in parenthesis) stands
for the area under the curve. Thus, E(ϵ) can be approximated by the area over the
curve (AOC) within that box, and AOC can be regarded as is a biased estimate of
the expected error.

RECT P R curve. Suppose we want to build a REC curve for a certain range of



the target variable, the positive target variables only which are represented by the
positive instances (p instances). We define accp(ϵ), the accuracy within the positive
instances ip = 1, · · · , p at tolerance ϵ as:

accp(ϵ) := |{(x, y) : ℓ(ŷip , yip) ≤ ϵ, ip = 1, . . . , p}|
p

(2.30)

which is nothing but the true positive rate at ϵ (eq. 2.24). Thus, TPR(ϵ) = accp(ϵ).
The resultant REC curve, denoted as RECT P R, plots the error tolerance ϵ on the
x-axis and the accuracy of the model for the positive instances (e.g., the range of
positive target variables) which represents the TPR (the percentage of correctly
classified instances as positives over the total number of positive instances p) in the
y-axis.

RECT NR curve. Similarly, we build a REC curve for another range of the target
variable, namely the negative instances (n instances). Accordingly, the accuracy
within the negative instances at tolerance ϵ can be expressed as,

accn(ϵ) := |{(x, y) : ℓ(ŷin , yin) ≤ ϵ, in = 1, . . . , n}|
n

(2.31)

which is equal to the true negative rate at ϵ (eq. 2.27). Thus, TNR(ϵ) = accn(ϵ).
The resultant REC curve, denoted as RECT NR, plots the accuracy of the model
within the range of negative instances i.e., the TNR (the percentage of correctly
classified instances as negatives over the total number of negative instances) in the
y-axis.

2.3.2.1.4 Definition of REC(G-Mean) and REC(CWA) curves. Just like TPR

and TNR metrics, RECT P R and RECT NR curves often exhibit a trade-off and it is
impractical to simultaneously monitor both of them. The goal of this subsection is
to come up with a single REC curve that describes the behavior of both TPR and
TNR REC curves. To this matter, we propose novel graphical models that combine
information held by both TPR and TNR REC curves, namely RECG−Mean and
RECCW A curves. First, an overview of G-mean and CWAmeasures for classification
is laid out. Then, the fusion of both RECT P R and RECT NR curves into RECG−Mean

and RECCW A curves is described.
Background on scalar metric for imbalanced domains. When dealing with

classification in imbalanced domains, the most frequently used scalar measures
are: the Fβ score (?), the Geometric Mean (G-Mean) (Kubat et al., 1998) and
the Class-Weighted Accuracy (CWA) (Cohen et al., 2006). The Fβ score is de-
fined as, Fβ = ((1 + β2) × TPR × precision)/(β2 × TPR + precision) where
precision = TP/(TP + FP ) and where β is a coefficient set by the user to ad-



just the relative importance of TPR with respect to precision. One disadvantage of
using the Fβ measure is that this latter does not take into account the performance
of the negative class and only tests the effectiveness of a classifier on predicting
correctly the positive class. The geometric mean (G−Mean) which is defined as,

G−Mean =
√

TPR× TNR (2.32)

was developed specifically for assessing the performance under imbalanced domains.
It computes the geometric mean of the accuracies of the two classes, attempting
to maximize them while obtaining good balance. However, with this formulation,
equal importance is given to both classes (the positive and the negative class), which
is sometimes not desired by the user. The Class-Weighted Accuracy (CWA) was
introduced to deal with the issue of Fβ which does not consider the performance
of the negative class and that of G-Mean which gives equal importance to the
negative (majority) and positive (minority) classes and does not let the user assign
more weight to the minority class. CWA is defined as,

CWA = w × TPR + (1− w)× TNR (2.33)

where 0 ≤ w ≤ 1 , w being the user-defined weight of the positive class. RECG−Mean

and RECCW A curves. Given equation 2.31 and 2.32, the goal is to combine both
RECT P R and RECT NR curves to obtain either RECG−Mean or RECCW A curves.
However, as mentioned in section 3.2.2.b, the REC curve is a plot of a set of points
interpolated with a line, where the points are {(ϵj, P (ϵj))}m

j=1 with m the number
of samples within the set and ϵi being sorted in ascending order (ϵj = l(ŷj, yj)).
Therefore, the set of points of the RECT P R curve

{
(ϵjp , P (ϵjp))

}p

jp=1
(where ϵjp =

ℓ(ŷjp , yjp)) is different from the set of points of the RECT NR curve {(ϵjn , P (ϵjn))}n
jn=1

(where ϵjn = ℓ(ŷjn , yjn)), the former having a set of errors
{
ϵjp

}p

jp=1
different from

the latter set of errors {ϵjn}
n
jn=1. Moreover, let’s note that the number of points p

within RECT P R curve is less than the number of points n within the RECT NR curve,
the positive instances being less than the negative ones due to the imbalanced distri-
bution of the dataset. As a result, we cannot simply perform a scalar multiplication
between points of RECT P R curve and RECT NR curve in order to plot RECG−Mean

and RECCW A curves. An alternative is to apply interpolation to the set of points
of the RECT P R curve as well as the set of points of the RECT NR curve in order to
get interpolated values at k specific points (for instance, k = 0 : 0.001 : max(ϵ(jp)))
using the “nearest” interpolation. The algorithm below shows how interpolation is
conducted/performed. Furthermore, extrapolation is used for evaluating points that
lie outside the domain of the p error values. With interpolation, we no longer have p



points in the RECT P R curve and n points in the RECT NR curve but rather k points
in both curves (see algorithm 6). This suggests that we can compute the k points
of the RECG−Mean curve by doing a point-wise (scalar) operation/multiplication.
Similarly, the k points of the RECCW A curve can also be computed.

Algorithm 6: plot either RECG−mean or RECCW A curve.

Data: selected measure (“Gmean” or “CWA”): measure, selected weight
w if measure = CWA, Coordinates of points of the RECT P R curve[
ϵp, P̂p

]
.

Result: ϵmeasure = ϵi
k
i=1 , where k = max(ϵp)

step
+ 1 (k the number of error

points of RECmeasure curve), and P̂measure = P (ϵi)k
i=1

step = 0.001 ;
ϵmeasure = 0 : step : max(ϵp)) ;
P̂p = interpolate(ϵp, P̂p, ϵmeasure,

′ nearest′,′ extrapolate′) ;
P̂n = interpolate(ϵn, P̂n, ϵmeasure,

′ nearest′,′ extrapolate′) ;
if measure = “Gmean” then

P̂measure = (P̂p ∗ P̂n)1/2 ;
else if measure = “CWA” then

P̂measure = P̂p ∗ w + P̂n ∗ (1− w) ;

2.3.2.2 Scalar evaluation approaches

2.3.2.2.1 Definition of MAE for negatives and MAE for positives. According to
(Bi, J.; Bennett, 2003), instead of computing the expectation E(ϵ) via the AOC

of the REC curve, one alternative to finding E(ϵ) is the use of the sample mean
MAE or MSE as an estimation of the expected error, which are expressed as,

MSE = 1
N

N∑
i=1

(ŷi − yi)2 (2.34)

and,

MAE = 1
N

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ (2.35)

However, as mentioned in section 2, these metrics are not suitable for regression in
imbalanced domains since they assume a uniform relevance of the target variable
domain by evaluating the magnitude of the numeric error only. The scalar evalua-
tion techniques needed when dealing with imbalanced datasets should be sensitive
to the errors location within the target variable domain. Instead of applying MAE

by computing the mean error of all instances (i.e., by averaging over all instances),



the idea is to compute the mean error for specific ranges of the target variable, just
as done with our graphical-based evaluation approach (section 3.2.1). In that sense,
as performed in section 3.2.1, target variables are split into 2 categories: positive
and negative ones; then the mean absolute error for positive instances MAEp and
the mean absolute error for negative instances MAEn are computed. To do so, we
first need to specify what the positive and negative instances are. According to
equation 2.19 (section 3.2.1.b), any instance whose target variable has a relevance
greater than the threshold tE is considered positive, whereas any instance whose
target variable has a relevance lower than tE is a negative. So, aggregating all errors
coming from positive instances (whose target variable is positive) produces MAEp

while averaging over negative instances gives MAEn,

MAEp = 1∑N
i:c=1 i

∑
i:c=1

∣∣∣ŷi − yi
∣∣∣ (2.36)

and,

MAEn = 1∑N
i:c=0 i

∑
i:c=0

∣∣∣ŷi − yi
∣∣∣ (2.37)

where

c = I(ϕ(yi) ≥ tE, (2.38)

with ŷi and yi being the network output and target variable respectively (defined
in the range [0, 1]).

2.3.2.2.2 Definition of GME and CWE. As discussed in section 2.3.2.1, G-Mean
(eq. 2.32) is a scalar metric for classification tasks which computes the geometric
mean of the accuracies of two classes (positive and negative classes), attempting to
maximize them while obtaining good balance. Similarly, in the case of regression,
given the mean errors of the positive and negative classes, we can compute the
Geometric Mean Error (GME) which is the geometric mean of these two errors as
follows,

GME =
√

MAEp ×MAEn (2.39)

Also, inspired by CWA (eq. 2.33) which gives more importance to the positive class
than the negative class (by allowing the user to add more weight to the minority
class), we introduce the Class-Weighted Error (CWE) which sums the mean errors
of the positive and negative classes by giving more weight to the mean error of the



positive instances,

CWE = w ×MAEp + (1− w)×MAEn (2.40)

where 0 ≤ w ≤ 1 , w being the user-defined weight of the positive (rare) instances.

2.3.2.3 Comparison between our scalar and graphical-based measures

Given that the two estimates of E(ϵ), the AOC of a REC curve and the mean
absolute error MAD are close to each other (Bi, J.; Bennett, 2003), let’s assume that
MAE is an approximation of the AOC, implying AOC ≈MAE. So, working with
only positives as our target data, MAEp will be an approximation of the AOC of the
RECT P R curve, with AOCRECT P R

≈MAEp. And similarly, AOCRECT NR
≈MAEn.

2.3.2.3.1 AOC of REC(CWA) versus CWE. Based on these approximations and
given equation 2.40 we obtain,

CWE ≈ w ∗ AOCRECT P R
+ (1− w) ∗ AOCRECT NR

(2.41)

And, knowing that RECCW A is plotted using ϵmeasure (see algorithm 6) which are
interpolated values of positive errors ϵp and negative errors ϵn, we replace positive
and negative errors of equation 2.41 by these interpolated values. Then, substituting
the AOCs by their expectations (eq. 2.29) gives,

CWE ≈w ∗ (ϵmP̂p(ϵm)− (
m−1∑
i=1

(ϵi+1 − ϵi)P̂p(ϵi) + ϵ1P̂p(ϵ0)))+

(1− w) ∗ (ϵmP̂n(ϵm)− (
m−1∑
i=1

(ϵi+1 − ϵi)P̂n(ϵi) + ϵ1P̂n(ϵ0)))
(2.42)

which is equivalent to,

CWE ≈ϵm(w ∗ P̂p(ϵm) + (1− w) ∗ P̂n(ϵm))+
m−1∑
i=1

(ϵi+1 − ϵi)(w ∗ P̂p(ϵi) + (1− w) ∗ P̂n(ϵi))+

ϵ1(w ∗ P̂p(ϵ0) + (1− w) ∗ P̂n(ϵ0))

(2.43)

where P̂p(ϵ) and P̂n(ϵ) are the empirical distributions estimated on the sample
data to approximate the probability distribution of positives Pp and the probability
distribution of negatives Pn at ϵ respectively. In the former equation, we assume
that ϵm, the maximum observed error, is the same for both RECT P R and RECT NR

curves. Finally, knowing that P̂CW A = P̂p(ϵ) ∗ w + P̂n(ϵ) ∗ (1 − w) (see line 18 of



algorithm 6), equation 2.40 becomes,

CWE ≈ ϵmP̂CW A(ϵm) +
m−1∑
i=1

(ϵi+1 − ϵi)P̂CW A(ϵi) + ϵ1P̂CW A(ϵ0) (2.44)

or simply,

CWE ≈ AOCRECCW A
(2.45)

Thus, the scalar measure CWE can be regarded as an approximation of the AOC

of the RECCW A curve.

2.3.2.3.2 AOC of REC(G-Mean) versus GME. The scalar measure GME cannot
be an approximation of the AOC of RECG−Mean curve since. Indeed, as opposed to
the CWE which involves a weighted sum of the MAEp and the MAEn, the GME

involves a multiplication of these two terms. And, knowing that an AOC consists
of a fixed rectangle area (first term of eq. 2.27) minus an integral of the REC curve
(a sum in discrete terms) (second term of eq. 2.27), then, multiplying two AOCs
(AOCRECT P R

∗AOCRECT NR
) implies multiplying two integrals. And, unlike the fact

that the integral of a sum of two functions is equal to the sum of their integrals, the
integral of a product of two functions is not equal to the product of their integrals,
meaning that GME ̸= AOCRECG−Mean

.

2.4 Experimental study

2.4.1 Datasets

The proposed cost-sensitive learning approach is tested on 11 imbalanced datasets
to: (i) predict continuous labels for 7 datasets drawn from multiple sources: UCI
(Dheeru and Karra Taniskidou, 2017), Delve (Akujuobi and Zhang, 2017), etc., and
(ii) forecast traffic flow of 4 freeway datasets collected from California State. Since
none of these datasets has target variables whose distribution is normal, the Kernel
Density Relevance (KDR) is applied rather than the Normal Density Relevance
(NDR) in our experiments. Furthermore, we consider a threshold of 0.7 on the
relevance values in all datasets (tE = 0.7) to obtain P , the set of positive/rare
cases, and N, the set of negative/frequent cases.

2.4.1.1 The 7 datasets

Seven regression datasets are selected from different imbalanced domains. These
datasets as well as their characteristics are summarized in Table 2.2. The data



distribution (in the form of histogram bins), NDF , KDE and KDR of each dataset
can be visualized in Table 1.7 (Annex). Based on the KDR and the selected
threshold tE, a set of rare and frequent cases is formed for each dataset, as shown in
Table 2.2.We can observe that different percentages of rarity are obtained by these
datasets, with values ranging between 11.73% and 21.52%.

Table 2.2: A description of the 7 datasets (N : number of instances; p.total: number
of features in the input; p.nom: number of nominal features; p.num: number of
numeric features; nRare: number of rare cases using the Kernel Density Relevance
(KDR) with ϕ(y) > 0.7; Rare: 100× nRare/N ).

Dataset Source N p.total p.nom p.num nRare % Rare
abalone UCI 4177 8 1 7 679 16.25
accel _ 1732 14 3 11 232 13.39
heat _ 7400 12 4 8 1255 16.96
cpuSm Delve 8192 12 0 12 1273 15.54
bank8FM Delve 4499 8 0 8 968 21.52
parkinson telem. UCI 5875 16 0 16 689 11.73
dAiler Experiments of Rui Camacho 7129 5 0 5 1363 19.12

As discussed in the methodology (section 2.3), all dataset labels (e.g., target
variables) are further normalized to the [0, 1] range using eq. 2.13.

2.4.1.2 The 4 Traffic flow datasets

As for these datasets, our objective is to make precise short-term forecasts of
the data traffic flow for different locations of a freeway at any time, based on
measurement-based observations. To do so, we first need to feed the proper and
relevant observations to our learning system, which is explained in this section.

Traffic network and its spatio-temporal matrix. A traffic network ℵ is defined
as a freeway with multiple detectors which are non-uniformly distributed along the
freeway and are usually located about junctions such as exits and entrances. These
detectors record speeds at every time interval δ along the day for multiple days. In
our study, the traffic network ℵ is represented by network points that are uniformly
distributed along ℵ by averaging over traffic speed data of different detectors within
ℵ per postmile (e.g., per one mile). In the space dimension, traffic speeds of these
network points are ordered spatially with reference to a predefined starting point of
ℵ, and then fitted into the y-axis. In the time dimension, traffic speeds at successive
time intervals are laid out in the x-axis. As a result, a spatio-temporal matrix Sℵ



is formed,

Sℵ =


x1

1 · · · x1
t−1 x1

T

x2
1 · · · x2

t−1 x2
T

... . . . ... ...
xM

1 · · · xM
t−1 xM

T


where T is the length of time intervals, M is the length of network points; and xi

t

is the average traffic speed on the network point i at time t.
Interpolation. To ensure a more reliable result, missing and erroneous records

were properly remedied using temporally adjacent records via interpolation on
space, i.e. the missing speed measurement xi

t for the network point i at time t

becomes (xi
t−1 + xi

t+1)/2.
Spatio-temporal frames. The next step is to turn our spatio-temporal matrix

Sℵ into multiple frames. Sℵ is segmented using a fixed length sliding window of
dimension m × τ (chosen to be m = 10 and τ = 10) with a high overlap rate of
0.9 between consecutive frames, which means that the sliding window moves with 1
step along either the temporal or spacial dimension. We formally express the traffic
speed frame X i

t of a network point i at time t as a m× τ grid denoted by,

X i
t =


((x′))i−m+1

t−τ+1 · · · (x′)i−m+1
t−1 (x′)i−m+1

t

... . . . ... ...
(x′)i−1

t−τ+1 · · · (x′)i−1
t−1 (x′)i−1

t

(x′)i
t−τ+1 · · · (x′)i

t−1 (x′)i
t


where xj

k indicates traffic speed of network point j at time k. Let’s note that the
traffic frame X i

t (of point i at time t) contains speeds of the previous m adjacent net-
work points {i−m + 1, · · · , i− 1, i} at times series {t− τ + 1, · · · , t− 1, t} which
correspond to previous time points. So, the proposed frame accounts for spatial
and temporal correlations of traffic flow. Then, the traffic frame X i

t is vectorized
to form a 1×mτ vector xi

t as follows,

xi
t =

[
(x′)i−m+1

t−τ+1 , · · · , (x′)i−m+1
t−1 , (x′)i−m+1

t , · · · , (x′)i
t−τ+1, · · · , (x′)i

t−1, (x′)i
t

]
, and each traffic speed frame vector xi

t will then be used as an input sample to
predict the output y = xi

t+k which stands for traffic speed of network point i at
time t + k where k denotes the number of time intervals (i.e., forecasting time
divided by δ). In our study, k = 2 so that the traffic speed of network point i to be
predicted/forecasted is at time t + 2 (e.g., t + 10-min).

Normalization. Data is normalized by turning speeds above the speed limit to



the speed limit (where this latter is 70 mph). Accordingly, parameters of eq. 2.13
are set as follows: maxj∈{1,··· ,S}y

j = 70, minj∈{1,··· ,S}y
j = 0, and r = 70.

Dataset description. Data was taken from the Caltrans Performance Measure-
ment System (PeMS) database found at the PeMS website http://pems.dot.ca.
gov, where traffic data is collected over 15000 individual detectors which are de-
ployed in freeway systems across California [27]. The collected data are aggregated
into 5-min interval each for each detector station (e.g., δ = 5). In our study, the
traffic flow data is collected from District 7 from September 1 to September 30 of
2017. Networks used in our experiments as well as their properties are listed in
Table 2.3. As shown in Table 2.3, each network consists of a freeway (with multiple
sensors) with “starting postmile” denoting the starting point, “ending postmile”
the ending point, and “postmile length” the difference between the starting and
ending postmile. Using the KDR and tE = 0.7, the number and percentage of rare
instances (with respect to the total number of instances) per freeway is computed
(Table 2.3).

Table 2.3: Description of networks used in our study. (N : number of in-
stances; nRare: number of rare cases using the KDR with tE = 0.7; %Rare:
100 × nRare/N). Starting postmile, ending postmile and postmile length are in
miles.

Network Starting postmile Ending postmile Postmile length # Sensors N nRare % Rare

US101-North 69.75 2.05 67.70 82 203150 69276 34.10
I5-South 116.77 182.05 65.28 99 244300 84147 34.44
I5-North 194.62 116.83 77.78 90 243766 80514 33.03
I270-West 0.32 52.23 51.91 91 216920 48084 22.16

2.4.2 Experimental setup

In our study, we train neural networks, also referred to as Multi-Layer Percep-
trons (MLP). To do so, the MLP hyper-parameters need to be defined. We use
the stochastic (mini-batch) gradient descent as our gradient-based optimization
method. The dropout rate is set to 0.5, the weight decay to 0.0005 and the momen-
tum to 0.9. Training is performed for 10 to 40 epochs, depending on the dataset used
and the experimental method employed (which will be further discussed in the next
section). We report results with 10-fold and 4-fold cross validation for the 7 datasets
and the traffic flow datasets respectively. Other learning parameters such as the
network architecture (e.g, the size of each hidden layer), the learning rate and batch
size vary from one dataset to another and are set according to Table 2.4. Indeed,
the size of hidden layers (the number of weights per layer) depends on the input size
(e.g., the number of attributes within a dataset) and the batch size varies based on



the number of training instances per dataset. Using 10th cross validation for each
Table 2.4: Training hyperparameters for each dataset. [n1; n2; n3] defines the ar-
chitecture of the MLP for each dataset, where n1, n2 and n3 denote the number of
neurons in the first, second and third layer respectively.

Dataset Learning rate [n1;n2;n3] Batch size
abalone 0.010 [32;64;1]

50

accel 0.010 [56;112;1]
heat 0.005 [72;144;1]
cpuSM 0.010 [72;144;1]
bank8FM 0.005 [32;64;1]
parkinson 0.001 [64;128;1]
dAiler 0.010 [20;40;1]
H101_North_D7

0.005 [500;1000;1] 150I5_South_D7
I5_North_D7
I210_West_D7

dataset, we randomly choose one tenth of the data to be our testing/validation data
and the remaining part as our training data. Performance measures used are the
graphical-based evaluation techniques of section 3.2.1 (RECG−Mean and RECCW A

curves) as well the scalar evaluation techniques of section 3.2.2 (GME and CWE).
The parameter w for the RECCW A curve is set to 2/3.

2.5 Experiments and results

2.5.1 Experiments

To ensure the diversity of the algorithms and to illustrate the effectiveness of the
proposed graphical and scalar evaluation strategies, we compare our cost-sensitive
learning approach against different re-sampling strategies whose goal is to balance
the number of positive (rare) and negative (normal) instances. As such, the follow-
ing experiments are conducted on the 7 datasets as well as the traffic flow datasets:

i Carrying out no sampling i.e., training a basic or classic MLP on each of
the original imbalanced datasets using ℓ2 as the loss function, which will be
referred to as “ℓ2Unb.”,

ii Performing random under-sampling on the original imbalanced datasets be-
fore training the MLP. In other words, an MLP is trained on every under-
sampled version of the original dataset using ℓ2, which will be denoted as
“ℓ2Balu”,



iii Applying random over-sampling on the original datasets before training the
MLP, which means that an MLP is trained on every over-resampled version
of the original dataset using ℓ2, which will be called “ℓ2Balo”,

iv Training an MLP on each of the original imbalanced datasets using ℓp as the
loss function (referred to as “ℓpUnb.”). As discussed in previous sections, in
imbalanced regression problems it is necessary to use suitable evaluation mea-
sures. Accordingly, all experiments are conducted using graphical-based and
scalar evaluation methods defined in section 3.2 (e.g., RECG−Mean, RECCW A,
GME and CWE).

2.5.2 Results

Conducting the four experiments “ℓ2Unb.”, “ℓ2Balu”, “ℓ2Balo”, “ℓpUnb.” (on the 7
datasets and the traffic flow datasets) and applying the proposed graphical-based
evaluation approach gives rise to RECT P R, RECT NR, RECG−Mean and RECCW A

curves for each dataset, which are displayed in Table 1.8 of the Supplementary
material. Also, the AOC of RECG−Mean and RECCW A curves are computed for
each dataset and displayed in Table 2.5.
Table 2.5: Results of the 11 datasets, in terms of the AOC of the RECG−Mean and
RECCW A curves. The best results per AOC and per dataset are marked in bold.

Datasets AOCRECG−Mean
AOCRECCW A

ℓ2Unb. ℓ2Balu ℓ2Balo ℓP Unb. ℓ2Unb. ℓ2Balu ℓ2Balo ℓP Unb.

abalone 2.037 2.069 1.851 1.829 2.210 2.048 1.918 1.897
accel 3.689 2.806 2.655 2.724 3.613 2.962 2.781 2.876
heat 24.144 21.782 22.031 21.731 25.105 21.968 22.345 22.421
cpuSM 7.661 6.463 6.413 6.472 8.313 6.532 6.359 6.721
bank8FM 0.027 0.027 0.025 0.025 0.029 0.028 0.026 0.026
parkinson 15.612 12.778 12.301 14.020 14.685 13.151 12.819 13.010
dAiler 1.317 1.101 1.076 1.085 1.384 1.123 1.111 1.100
H101_North_D7 2.356 2.336 2.327 2.174 2.583 2.562 2.543 2.388
I5_South_D7 2.421 2.401 2.397 2.305 2.636 2.612 2.607 2.490
I5_North_D7 2.760 2.740 2.720 2.660 2.980 2.968 2.939 2.880
I210_West_D7 2.644 2.629 2.578 2.440 2.898 2.855 2.806 2.777

After running the four experiments using the proposed scalar evaluation tech-
niques GME and CWE, results are computed and reported in Table 2.6.

Moreover, another way of showing the efficiency of each method is to look at
its time consumption i.e., how fast it takes for each MLP method to converge. So,
the goal is to compare between their convergence speed. Note that, usually, the
measure employed to quantify the convergence speed of an MLP is the number of
epochs. Nonetheless, ℓ2Balu and ℓ2Balo techniques use a different training set than
the one used for ℓ2Unb. and ℓpUnb. techniques, with the latter techniques having



Table 2.6: Results for the four experiments applied on the 7 datasets as well as the
traffic flow datasets, in terms of scalar measures GME and CWE. The best results
per measure and per dataset are in bold.

Datasets GME CW E

ℓ2Unb. ℓ2Balu ℓ2Balo lP Unb. ℓ2Unb. ℓ2Bal_u ℓ2Bal_o lP Unb.

abalone 1.929 1.993 1.925 1.891 2.389 2.059 2.050 1.998
accel 3.013 2.655 2.507 2.537 3.750 3.052 2.854 2.953
heat 22.050 21.350 21.628 21.557 25.423 21.832 21.993 22.279
cpuSm 6.939 6.598 6.543 6.503 8.592 6.515 6.536 6.878
bank8FM 0.026 0.027 0.025 0.025 0.029 0.029 0.026 0.026
parkinson 11.284 11.354 11.191 11.083 14.847 13.294 12.851 12.719
dAiler 1.140 1.102 1.076 1.089 1.397 1.135 1.109 1.107
H101_North_D7 2.113 2.095 2.116 1.949 2.712 2.686 2.658 2.477
I5_South_D7 2.275 2.249 2.255 2.120 2.763 2.737 2.735 2.591
I5_North_D7 2.292 2.288 2.255 2.117 3.036 3.026 2.995 2.788
I210_West_D7 2.352 2.331 2.284 2.217 3.112 3.011 2.951 2.886

less training instances than ℓ2Balo (due to over-sampling) and more instances than
ℓ2Balu (due to under-sampling). So, for instance, having epochs of ℓ2Balo lasting
longer (having to go through more training samples) than epochs of ℓ2Unb. suggests
that the number of epochs is not an appropriate convergence speed measure for
our study. An alternative is the use of the total number of backpropagation runs
performed by the MLP before convergence as the convergence speed measure, which
is equal to nbtrainingSamples×nbepochs

sizebatch
where sizebatch is the batch size (e.g., the number

of instances per batch). Convergence speed of each technique for each dataset is
displayed in Table 2.7.
Table 2.7: Convergence speeds (in terms of the number of backpropagations required
before convergence) of the different approaches for the 7 datasets and the traffic flow
datasets. The least number of backpropagations recorded per dataset is reported
in bold.

# training instances # epochs # backpropagations
ℓ2Unb. ℓ2Balu ℓ2Balo ℓP Unb. ℓ2Unb. ℓ2Balu ℓ2Balo ℓP Unb. ℓ2Unb. ℓ2Balu ℓ2Balo ℓP Unb.

abalone 3753 1204 6274 3753 100 140 30 30 7506 3371 3764 2252
accel 1557 420 2694 1557 85 260 75 100 2647 2184 4041 3114
heat 6660 2254 11066 6660 90 44 24 24 11988 1984 5312 3197
cpuSM 7371 2272 12470 7371 61 54 39 29 8993 2454 9727 4275
bank8FM 4041 1756 6326 4041 40 45 21 17 3233 1580 2657 1374
parkinson 5283 2254 11066 5283 98 100 135 150 10355 4508 29878 15849
dAiler 7120 3152 11088 7120 32 29 11 9 4557 1828 2439 1282
H101_North_D7 203150 144931 261369 203150 20 25 15 15 81260 72466 78411 60945
I5_South_D7 244300 175866 312734 244300 20 25 15 15 97720 87933 93820 73290
I5_North_D7 243766 202339 285193 243766 20 25 15 15 97506 101170 85558 73130
I210_West_D7 216920 108160 325680 216920 20 25 15 15 86768 54080 97704 65076

Graphical-based evaluation measures. From RECT P R, RECT NR, RECG−Mean

and RECCW A curves (Table 1.8) as well as the AOCRECG−Mean
and the AOCRECCW A

(Table 2.5), the following remarks can be drawn: From curves within Table 1.8,



RECT P R curves of all datasets successfully show higher accuracies for ℓ2Balu and
ℓ2Balo techniques compared to the ℓ2Unb. technique. Indeed, training an MLP
with ℓ2Unb. on the original imbalanced dataset makes the network learn more from
negatives (e.g., negative instances) than from positives (e.g., positive instances) as
weights tend to fit to what it sees the most (the most frequent instances being the
negatives). On the other hand, if we train MLPs with as many positives as negatives
using either ℓ2Balu or ℓ2Balo, the corresponding MLPs learn as much from positives
as from negatives. These correct findings/results convey that the RECT P R curve
acts as a good tool for visualizing accuracies of positives. On the other hand,
RECT NR curves of all datasets successfully show higher accuracies for the ℓ2Unb.

technique compared to ℓ2Balu and ℓ2Balo techniques. Indeed, ℓ2Balu and ℓ2Balo are
less prone to fitting negatives than ℓ2Unb. since they are more influenced by positives
than ℓ2Unb. weights. As we know, training MLPs on balanced datasets (such as in
ℓ2Balu and ℓ2Balo) produce higher G-Mean and CWA rates than those obtained
after training MLPs on imbalanced datasets (as in ℓ2Unb.), as both G-Mean and
CWA metrics give as much importance to the accuracy of positives as the accuracy
of negatives. In parallel, RECG−Mean and RECCW A curves show the same behavior
and display a higher performance using ℓ2Balu and ℓ2Balo techniques versus using
the ℓ2Unb. technique (Table 1.8). Thus, both RECG−Mean and RECCW A curves
can be regarded as a generalization of REC curves with the main goal of providing
means to facilitate the analysis of the predictive performance of regression models
on imbalanced datasets.

Scalar evaluation measures. As graphical-based evaluation measures, obtained
GME and CWE errors are lower when training MLPs on balanced datasets (as
in ℓ2Balu and ℓ2Balo) than when training MLPs on imbalanced datasets (as in
ℓ2Unb.), as conveyed by results of Table 2.6. Thus GME and CWE can be seen
as proper measure for evaluating the performance of regression with imbalanced
datasets.

Comparing graphical-based and scalar evaluation measures. From Tables 2.5
and 2.6, we notice that AOCRECCW A

values are close to CWE values for all datasets,
with 0.11 as the average of the absolute difference between the former value and the
latter value over all 11 datasets and all 4 techniques. This confirms our previous
statement (of section2.3.2.3) that the scalar evaluation measure CWE can be re-
garded as an approximation of the AOC of RECCW A curve and can be considered
as an estimate of the expected error. On the other hand, we obtain 0.56 as an av-
erage of the absolute difference between GME and AOCRECG−Mean

values over all
datasets and all techniques, implying that GME and AOCRECG−Mean

are different
evaluation strategies.

Comparing our cost-sensitive learning approach to existing techniques. From



RECG−Mean and RECCW A curves and their AOCs (Table 2.5 and Table 1.8),
GME and CWE results (Table 2.6) and convergence speed results (Table 2.7), the
following observations can be made:

i Training MLPs on imbalanced datasets with the ℓp loss function (as in ℓpUnb.)
yields better performance than training them with ℓ2 (ℓ2Unb.) by having less
error as shown in GME, CWE, AOC of RECG−Mean and AOC of RECCW A.
This suggests that ℓpUnb. successfully updates network parameters to take
into account the scarcity of rare instances/observations (whose target vari-
ables are rare). Moreover, the ℓpUnb. technique succeeds in learning proper
weights for recognizing not only positive instances but also negative ones,
as seen through RECT P R and RECT NR curves (in Fig. B of Supplemen-
tary material). Indeed, ℓpUnb. pushes/converges weights toward recognizing
more positive instances than ℓ2Unb. , making the accuracy on the RECT P R

curve better than ℓ2Unb. and the accuracy on the RECT NR curve lower than
ℓ2Unb.. Furthermore, ℓpUnb. converges faster than ℓ2Unb., the former needing
30% less backpropagation runs than the latter for full convergence, as illus-
trated in Table 2.7. This means that our proposed method (ℓpUnb.) presents
clear advantages when compared with the classic method (ℓ2Unb.) including
a faster convergence and better generalization, suggesting that our method is
a suitable technique for dealing with imbalanced datasets.

ii In general, our algorithm achieves results slightly higher or close to the ones
obtained via ℓ2Balu and ℓ2Balo techniques (in terms of scalar and graphical-
based evaluation measures) except for the “accel”, “cpuSm” and “Parkinson”
datasets where results of ℓpUnb. is less favorable. Let’s also note that, as op-
posed to other dataset distributions, the “Parkinson” and “accel” target distri-
butions have multiple fluctuations and the “cpuSm” target distribution has 2
sharp peaks (at lowest and highest label values), as shown in the distributions
within Table 1.7 (see the supplementary material). So, ℓpUnb. technique is
good at regression tasks (i.e., at predicting continuous labels) of imbalanced
datasets when these latter have a data target distribution with no sharp peaks.
This can be explained by that fact that, when a data target distribution is
multimodal and exhibits sharp and narrow peaks close to each other (as the
ones mentioned above), the KDR has a hard time approximating such a distri-
bution, missing these peaks, as illustrated through KDEs of “accel”, “cpuSm”
and “Parkinson” datasets (table 1.7). So, in such cases, the ℓpUnb. technique,
whose loss function gives more or less weight/importance to instances based
on the KDE distribution, fails in giving the proper weight/importance to
instances whole labels have an up or down fluctuation within the data distri-



bution. A solution to this issue is to decrease the bandwidth h of the KDE
to make the KDR more sensitive to peaks and fluctuations.

iii In addition to that, let’s note that ℓpUnb. is a straight forward method which
simply trains the MLP on the original dataset whereas re-sampling approaches
require an extra preprocessing step to balance the original dataset , risk over-
fitting and having a burden in computational time when over-sampling, and
cause the loss of useful information when under-sampling.

iv Comparing ℓ2Balo technique to ℓpUnb. technique in terms of speed shows
that the latter converges much faster than the former, requiring 36% less
backpropagation runs, as depicted by Table 2.7. Therefore, ℓpUnb. can be
regarded as a fast technique for handling imbalanced datasets.

v Comparing ℓ2Balu technique to ℓpUnb. technique shows the latter converges
faster than the former for “abalone”, “bank8FM”, “dAiler” and traffic flow
datasets, and slower than the former for the rest of the datasets. However, it
is worth mentioning that the MLP of ℓ2Balu is less performant than ℓpUnb.

since the former does not always lead to global minima due to the removal of
valuable negative instances by ℓ2Balu.

2.6 Conclusion

In this chapter, we first introduced a robust cost-sensitive learning algorithm for
regression on datasets with imbalanced target distribution, using a neural network
model whose optimization is based on a probabilistic loss function. The main idea is
to up-weight the gradient at positive instances such that these latter maximally in-
fluence the training process. Other interesting properties of this loss function are the
integration of weighting and minimization in a single function as well as the soft con-
straints that it imposes without any hard threshold. Comparative results with ex-
istent methods suggest that our algorithm has a faster convergence and better gen-
eralization than the classical method, and has comparable or slightly higher results
than sampling techniques, with a faster convergence than the over-sampling ap-
proach and a convergence speed comparable to that of the under-sampling method.
Also, our second contribution is the proposal of scalar and graphical-based evalua-
tion strategies suitable for regression tasks under imbalanced domains. Inspired by
common classification concepts such as positives (p) and negatives (n), and based
on the relevance function induced from one of the two estimates of the probability
density function of a dataset (NDF or KDE), we derived scalar measures such as
the Geometric Mean Error (GME) and Class-Weighted Error (CWE), as well as



graphical-based measures RECT P R, RECT NR, RECG−Mean and RECCW A. Run-
ning experiments showed that these scalar and graphical-based metrics could be
regarded as proper measures for evaluating regression models under imbalanced do-
mains. We further showed that RECG−Mean and RECCW A could be considered as a
generalization of REC curves regression algorithms with imbalanced datasets. As a
perspective, our cost-sensitive learning technique can be further applied to any deep
learning feed-forward model to handle such regression tasks. It can even be used as
an estimator for any linear regression model with imbalanced datasets. Also, our
proposed scalar and graphical-based evaluation approaches could be further used
to evaluate the performance of any model under imbalanced domains.
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Part VI

Learning from outliers
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In regression analysis, the presence of outliers in the data set can strongly distort
the classical least squares (known as “L2”) estimator and lead to unreliable results
(due to the large abnormal error registered by outliers compared to the error of the
majority of the training samples). To deal with this, several robust-to-outliers meth-
ods in Robust Statistics have been proposed in the statistical literature. However,
in the context of deep regression networks, very few efforts have been carried out to
deal with outliers and most deep regression algorithms make use of the traditional
L2 loss function. In this part, we consider the issue of training deep neural networks
in the context of robust regression. As such, we introduce a robust deep regression
model which is based on a novel robust loss function (Sadouk et al., 2020). With
this latter, our model is able to adapt to an outlier distribution, without requiring
any hard threshold on the proportion of outliers in the training set. Experimental
evaluations on a head pose estimation dataset show that our model generalizes well
to noisy datasets, compared to other state-of-the-art techniques.





Chapter 1

Introduction

Statistical estimation is one of the fundamental tools in numerous fields in engi-
neering and science. Most of the techniques rely on strong assumptions about the
distribution of the measurements. Most often, these techniques are derived based
on the assumption of a Gaussian-distributed noise and yield poor results when
there are even small deviations from that assumption. To overcome those prob-
lems, robust estimation theory has been introduced by considering a large family of
statistical models as well as possible outliers that deviate from the general model
Huber (2011). A robust regression method has a high breakdown point, which is
the smallest amount of outlier contamination that an estimator can handle before
yielding poor results. In other words, an estimator is called robust if a large devia-
tion from the assumed statistical model (recorded from an outlier) has a low impact
on the overall performance.

In the last years, deep neural networks revolutionized related fields of research.
As such, the goal of this chapter is to apply these robust regression methods in the
context of deep learning. In this paper, we introduce a novel loss function within
a Convolutional Neural Network (ConvNet) regressor that addresses datasets with
outliers by reducing the impact of outliers in the model fitting process. Indeed,
in the context of feed-forward neural networks, we can employ a robust estimator
(instead of the regular LS or L2 loss function) for minimizing the cost/error function,
whereby corrupted training samples (e.g., outliers) with unusually large errors are
down-weighted such that they minimally influence the training backpropagation
process.

1.1 Robust Regression

A classical statistical inference problem is linear regression which consists of esti-
mating a vector of unknown parameters given a noisy linear observation model.
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The Least Squares (LS) method is usually employed to solve such problem but it
performs badly in the presence of outliers. To tackle this issue, Robust Regression
has been introduced. Indeed, it has long been studied in statistics Huber (2011);
Maronna et al. (2018); Rousseeuw and Leroy (2005) and in computer vision Black
and Rangarajan (1996); Meer et al. (1991). The most common robust statistical
techniques are: the M-estimators, sampling methods, trimming methods and robust
clustering. M-estimators Huber (2011) minimize the sum of a positive-definite func-
tion of the residuals and attempt to reduce the influence of large residual values.
The minimization is carried our with weighted least squares techniques, with no
proof of convergence for most M-estimators. Sampling methods Meer et al. (1991)
such as least-median-of-squares or random sample consensus (RANSAC), estimate
the model parameters by solving a system of equations defined for a randomly
chosen data subset. The main drawback of such methods is that they require com-
plex data-sampling procedures and it is tedious to use them for estimating a large
number of parameters. Trimming methods Rousseeuw and Leroy (2005), such as
Least Trimmed Squares (LTS), rank the residuals and down-weight or discard data
points associated with large residuals. They are typically cast into a (non-linear)
weighted least squares optimization problem, where the weights are modified at
each iteration, leading to iteratively re-weighted least squares problems. Robust
statistics have also been addressed in the framework of mixture models and a num-
ber of robust mixture models were proposed, such as Gaussian mixtures with a
uniform noise component Banfield and Raftery (1993); Coretto and Hennig (2016),
heavy-tailed distributions Forbes and Wraith (2014), trimmed likelihood estimators
Galimzianova et al. (2015); Neykov et al. (2007), or weighted-data mixtures Gebru
et al. (2016).

1.2 Deep Learning for Regression
In the context of regression where continuous values are to be estimated, several
deep learning techniques have been recently introduced. For the human pose esti-
mation task, studies Li and Chan (2014); Pfister et al. (2014); Toshev and Szegedy
(2014) attempted to estimate positions of the body joints on the image plane. As
for facial landmark detection task, the work of Sun et al. (2013) predicts image
locations of facial points. In the scheme of object and text detection, the goal is to
predict regressed values which represent a bounding box for localization Jaderberg
et al. (2016); Szegedy et al. (2013).

However, most of the research community still keeps one element nearly com-
pletely fixed: when it comes to regression, most of the studies train their deep
learning models based on the standard Least Squares loss function, which is sensi-



tive to outliers. Despite the large literature on regression-based deep learning, only
three works attempted to provide a robust deep regressor which tackles the issue
of outliers Belagiannis et al. (2015); Diskin et al. (2017); Lathuilière et al. (2018).
In Belagiannis et al. (2015), authors achieve robustness by choosing the Tukey’s
bi-weight M-estimator as the minimizing loss function. In Diskin et al. (2017), a
robust deep regressor is derived by unfolding a gradient descent method for a gen-
eralized least trimmed squares objective. This regressor is trained on triplets of
unknown parameters, linear models and noisy observations with outliers. Another
attempt toward a robust deep regressor was made by Lathuilière et al. (2018) which
makes use of an optimization algorithm that alternates between the unsupervised
detection of outliers using expectation-maximization, and the supervised training
with cleaned samples using stochastic gradient descent.

This part comes as an extension of works Belagiannis et al. (2015); Diskin et al.
(2017); Lathuilière et al. (2018). The main contribution of this part is to improve the
performance of deep regressors in the presence of outliers with a robust regression
approach based on training a ConvNet with novel loss function. In chapter 2,
we describe basic components of our approach. We choose to demonstrate our
approach on a pose estimation dataset. Accordingly, we describe experimental
details (chapter 3), then we discuss experiments and results (chapter 4). Finally,
chapter 5 concludes our work.





Chapter 2

Methodology

The neural network is fed by an input image x : Ω → R and its corresponding
label (target) which is a vector y = (y1, · · · , yJ) composed of J elements such that
yj ∈ R. Having a set of training data with outliers {(xs, ys)}S

s=1 composed of S

samples (e.g., instances), x(s) the input vector and y(s) the output vector, we wish
to train a regression model represented by a function ω(·), under the minimization
of a cost function L(·) (also called an objective function) using backpropagation
and stochastic gradient descent. Training this network generates tuned parameters
θ which define a mapping between xs and ys, represented by:

ŷ(s) = ω
(
x(s), θ

)
(2.1)

where ŷ(s) is the network output e.g., the estimated output value of the network at
an instance s.

The training process of a neural network is accomplished through the minimiza-
tion of L(·) which compares between the target vector and network output vector
as follows,

minθL(θ) (2.2)

where

L(θ) = 1
N

N∑
i=1

L(i)(θ), L(i)(θ) =
J∑

j=1
ℓ(r(i)

j ) (2.3)

where N is the number of instances per batch, J the number of elements within the
target vector, ℓ(·) is the loss function, and r

(i)
j the residual of the jth value of the

target vector at an instance i which is defined as,

r
(i)
j = y

(i)
j − ŷ

(i)
j (2.4)
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where y
(i)
j and ŷ

(i)
j represent the jth element (value) of the target (true label) and

output (estimated) vector respectively at an instance i.
In this chapter, we start by giving an overview of popular loss functions ℓ(·)

for regression including the standard one and the robust ones (Section 2.1). Next,
Section 2.2 defines our novel loss function.

2.1 Background on popular loss functions for regression

L-estimates. The two most common and standard estimators are the Least absolute
deviations (LAD) and ordinary Least Squares (OLS). The LAD regression estima-
tor (also known as L1-estimator) minimizes the sum of the absolute values of the
residuals and is defined as,

ℓ(r(i)
j ) =

∣∣∣r(i)
j

∣∣∣ (2.5)

It is quite robust and is generally not affected by outliers, but its derivatives are
not continuous which makes it impractical to use as a loss function for training
neural networks. On the other hand, the least square (LS) estimate (also denoted
as L2-estimate) which minimizes the sum of squared residuals,

ℓ(r(i)
j ) = (r(i)

j )2 (2.6)

gives a more stable and closed form solution. Nonetheless, the L2-estimate gives
outliers excessive weight by squaring the value of the residual and tries to adjust
the model according to these outlier values, even on the expense of other samples.

M-estimates. Compared to the L-estimates which are not robust with respect
to bad leverage points (outliers), the M-estimates are one of the robust regression
estimation methods whose goal is to reduce the influence of large residual values.
M-estimators act like LS except that the squares minimization is modified by a
sum of robust penalty functions of the residuals. They are a generalization of the
maximum likelihood estimator proposed in Huber (2011) and they are defined as,
ℓ(r(i)

j ) = ρ(r(i)
j ) such that ρ is a symmetric function with unique minimum at zero.

An example of such estimate is the Huber loss, a function function that is quadratic
in small values of r

(i)
j but grows linearly for large values of r

(i)
j , as shown in Fig.2.2.b.

This function and its partial derivative with respect to r
(i)
j (Fig.2.1.b) are given by

equations 2.7 and 2.8 respectively,

ℓ(r(i)
j ) =


1
2(r(i)

j )2 if
∣∣∣r(i)

j

∣∣∣ ≤ c

c
∣∣∣r(i)

j

∣∣∣− 1
2c2 otherwise

(2.7)



∂ℓ(r(i)
j )

∂r
(i)
j

=

r
(i)
j if

∣∣∣r(i)
j

∣∣∣ ≤ c

c sign(r(i)
j ) otherwise

(2.8)

where c is the hyper-parameter that controls how small the loss should be to go
from the linear to the quadratic forms (c usually being set to 1.345). For instance,
Huber loss approaches L1-estimate when c ≈ 0 and L2-estimate when c ≈ ∞ (large
numbers). However, despite the fact that the Huber loss is convex, differentiable
and robust to outliers, setting its parameter c is not an easy task.

Another robust M-estimate which is more robust than Huber loss is the Tukey’s
biweight function (plotted in Fig.2.2.b) which is defined as,

ℓ(r(i)
j ) =


c2

6 (1− (1− ( r
(i)
j

c2 )2)3) if
∣∣∣r(i)

j

∣∣∣ ≤ c

c2

6 otherwise
(2.9)

, and whose partial derivative with respect to r
(i)
j (plotted in Fig.2.1.b) is given by,

ℓ(r(i)
j ) =

r
(i)
j (1− ( r

(i)
j

c2 )2)2 if
∣∣∣r(i)

j

∣∣∣ ≤ c

0 otherwise
(2.10)

where c is a tuning constant (which if is set to 4.6851, gives approximately 95%
asymptotic efficiency as L2 minimization on the standard normal distribution of
residuals). This function has the property of suppressing the influence of outliers
during backpropagation by reducing the magnitude of their gradient close to zero,
as shown in Fig.2.1.b. However, even though it is robust to outliers, it is non-convex
and non-differentiable.

2.2 Our proposed loss function
The idea is to come up with a robust loss function that has advantages over existent
robust loss functions (mentioned above) and that generalizes well on deep learning
models. Our loss function has a partial derivative with respect to the residual
which is inspired from the sigmoid function. Instead of having a partial derivative
that looks like step function, as it is the case for the L1 loss partial derivative,
we want a smoother version of it that is similar to the smoothness of the sigmoid
activation function. To this matter, we will start by defining our loss function
partial derivative. Then, from this latter, we will come up with the loss function
itself.

Partial derivative of our loss function. Let’s consider the sigmoid function as a
function of r

(i)
j which, as a reminder, is given by σ(r(i)

j ) = 1/(1 + e−r
(i)
j ). We can



(a) (b)

Figure 2.1: Visualization of: (a) multiple variants of the partial derivative of our
loss function with respect to the residual with varying weighting factor (w =
{1, 2, 3, 5, 20}), (b) partial derivatives (with respect to the residual) of some com-
monly used loss functions: L1, L2, Huber (with c = 1.345) and Tukey (with
c = 4.685) as well as ours (with w = 3).

add steepness or smoothness to this sigmoid function by adding a weighting factor
w which gives us,

σw(r(i)
j ) = 1

1 + e−wr
(i)
j

(2.11)

The goal is to come up with a loss function whose partial derivative w.r.t r
(i)
j acts like

a smooth step function being around -1 for large negative residuals and around +1
for large positive residuals (just like the gradient of Huber and L1). And, Knowing
that the function σw is in the range [0, 1], we rescale this latter to become within
the range [−1, 1] and to obtain the following partial derivative of ℓ(·),

∂ℓ(r(i)
j )

∂r
(i)
j

= −1 + 2 1

1 + e−wr
(i)
j

(2.12)

where lim
r

(i)
j →−∞

∂ℓ(r(i)
j )

∂r
(i)
j

= −1, lim
r

(i)
j →+∞

∂ℓ(r(i)
j )

∂r
(i)
j

= +1, and ∂ℓ(r(i)
j )

∂r
(i)
j

= 0 at r
(i)
j = 0.

Figure 2.1.b illustrates this partial derivative as well as partial derivatives of other
previously mentioned loss functions (L1, L2, Huber and Tukey).

Our loss function. By computing the loss function itself by integrating its gra-
dient, we arrive at,

ℓ(r(i)
j ) = (r(i)

j ) + 2
w

log(1 + e−w∗r
(i)
j )− 2

w
log 2 (2.13)



where the term 2
w

log 2 is added in order to have the loss function equal to 0 at
r

(i)
j = 0. This loss function as well as loss functions mentioned in the previous
section are depicted in Figure 2.2.b.

(a) (b)

Figure 2.2: Visualization of: (a) multiple variants of our loss function with varying
weighting factor (w = {1, 2, 3, 5, 20}), (b) our loss function (with w = 3) as well as
the commonly used loss functions: L1, L2, Huber and Tukey.

Varying the weighting factor w. Through Figure 2.2.a, we can visualize multiple
variants of our loss function with varying weighting factor (w = {1, 2, 3, 5, 20}). We
notice that, as w increases, the loss function gets steeper and approaches the L1
loss function, thereby attributing relatively high errors to good estimated outputs
(i.e., for r

(i)
j ≈ 0). On the other hand, as w decreases, the loss function flattens

and gives less penalty to outliers (to bad estimated output for which r
(i)
j is very far

from 0). This is confirmed by plots of partial derivatives of those variants (see Fig.
2.1.a).

2.3 Comparing our loss function to other loss functions

By looking at Table 2.1 which compares between existent loss functions and ours,
this latter seems to have the following advantages: (i) unlike Huber and Tukey
loss functions which are composed of 2 functions, our loss function is composed of a
single function, (ii) unlike the Huber loss which has a hard threshold C imposed, our
loss function offers a smoother transition at r

(i)
j = C with no threshold required, and

(iii) as opposed to the Tukey loss, our loss function offers a convex optimization
that guarantees one optimal solution (globally optimal), whereas the Tukey loss
has a non-convex optimization which may result in multiple locally optimal points
and may take a lot of time to identify whether the solution is global. Hence, the
efficiency in time of the convex optimization problem is much better when training



Table 2.1: Comparison with existent loss functions for regression.

Properties L2 L1 Huber Tukey Ours
Convex Yes Yes Yes No Yes
Differentiable Yes No Yes Yes Yes
Robust to outliers No Yes Yes Yes Yes
Bounded No No No Yes No
# constraints 0 0 1 1 0

a neural network.



Chapter 3

Experimental setup

Dataset. We evaluate our loss function on the 2D human pose estimation task.
To this matter, we conduct our experiments on the LSP dataset (?), a publicly
available dataset. This dataset contains 2000 pose annotated images of mostly
sports people gathered from Flickr. Each image has been annotated with 14 joint
locations (illustrated by yellow dots in the output image of Figure 3.1) which are
represented by pixel coordinates (x and y coordinates). The purpose is to train our
model to estimate the 2D body skeleton as a set of joints. To do so, we assume
that each individual is localized within a bounding box with normalized body pose
coordinates.

Data processing. This step is similar to Belagiannis et al. (2015). Indeed, after
rescaling input images to 120 × 80, we normalize them by subtracting the mean
image (taken from the training images) from them. Moreover, in order to prevent
overfitting of the ConvNet, data augmentation is conducted by performing random
rotations and flipping and by adding a small Gaussian noise to the label vector y of
the augmented instances. As for the label vector, it is rescaled to the range [0, 1].

Training details. The ConvNet model hyper-parameters are set according to the
architecture shown in Figure 3.1. Other hyper-parameters are set as follows: 0.01
for the learning rate, 0.9 for the momentum, 0.5 for the dropout, 230 for the batch
size. Training of the ConvNet is performed using a 5-fold cross validation.

120 x 80 x 3

Conv. 5x5
+ ReLU
+ Pool

57 x 37 x  32
Input

27 x 17 x  32 27 x 17 x  64 12 x 7 x  64 1 x 1
x 1024

1 x 1 x 2048

Conv. 3x3
+ ReLU
+ Pool

Conv. 3x3
+ ReLU 

Conv. 3x3
+ ReLU
+ Pool
+ Dropout

Conv. 12x7
+ ReLU
+ Pool

FC. 
+ ReLU
+ Dropout

FC. 
+ ReLU

***
**

* **
**
*

* *
*

1 x 1 x 28
Output

Figure 3.1: Architecture of our Convolutional Neural Network.

Performance measure. The evaluation metric used in our study is the mean
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pixel error (MPE) which consists of averaging over errors of pixel coordinates of all
14 joints locations.



Chapter 4

Experiments and results

4.1 Baseline evaluation

Using the LSP dataset, we train our ConvNet with our loss function based on dif-
ferent values of w (weighting factor) {2.25, 3, 3.5, 5}. Figure 4.1 depicts the conver-
gence of each ConvNet and shows that best performance is obtained when w = 3.5.
This confirms our earliest assumption that: (i) a large w makes our loss function
steeper at ri = 0 and look like the L1 loss, which therefore over-penalizes small
residuals and also over-penalizes large residuals (as seen in Fig. 2.2.b), and (ii) a
small w flattens out our loss function. This results in under-penalizing large residu-
als (which is a good property for getting rid of outliers) but also in under-penalizing
small residuals (which is not a good property for inliers since the network does not
learn properly from these latter).

Figure 4.1: Convergence of different variants of ConvNets trained with our loss
function with different values of w (weighting factor) {2.25, 3, 3.5, 5} .

4.2 Comparison with other techniques

In this section, performance of our approach based on our loss function is compared
to that of other commonly used loss functions. For this purpose, we train a ConvNet
using each of the following loss functions: the standard L2 loss function as well as
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Table 4.1: Comparative results between the ConvNets trained on commonly used
loss functions for regression as well as ours, in terms of Mean Pixel Error (MPE).

L2 Huber Tukey Belagiannis et al. (2015) Ours (w=3.5)
6.2720 6.3376 5.9587 6.1104

the two common robust loss functions: Huber and Tukey Belagiannis et al. (2015).
Comparative results are summarized in Table 4.1. Through obtained results, we
show that our approach yields a better performance than the classical approach
(ConvNet with L2 loss function) and has comparable results to state-of-the-art
robust deep regression techniques.



Chapter 5

Conclusion

In this part, we proposed a robust deep regression model that addresses the issue
of outliers thanks to the use of a novel robust loss function. After defining our
loss function, we showed that this latter has advantages over common robust loss
functions. Experimental validation conducted on the human pose estimation task
showed that our robust deep regression ConvNet: (i) results in a better general-
ization and a faster convergence than the standard deep regression, (ii) has higher
or comparable performance results to ConvNets trained on robust loss functions.
Finally, our robust deep regression model is simple and could be easily used for
handle regression given datasets with outliers.
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Conclusion

1.1 Conclusion
In this thesis, we explored solving different machine learning tasks with artificial
and deep neural networks. As a branch of machine learning, we investigated a
particular area in the design space of machine learning algorithms in which datasets
are homogeneous, imbalanced, small in size (having few data) or noisy (containing
outliers). The previous parts have introduced new algorithms and implementations
for the classification of such datasets to increase the state-of-the-art accuracy.

In Part 2, a thorough review covering techniques in the area of deep learning
is presented. It also introduces basic concepts about artificial and deep neural
networks.

Part 3 addressed the issue of classifying homogeneous data especially homoge-
neous time-series and images. The first chapter dealt with time-series by introducing
data-, and algorithm-level approaches for classification tasks. In the data-level, we
proposed to turn time-series into the frequency domain using the Stockell Trans-
form to allow the deep neural network (namely the ConvNet) to extract the most
valuable features out of the time-series inputs. In the algorithm-level, we introduced
a deep learning model with an adaptable first convolutional layer whose filter size
varies depending on the overall input signals’ variations. In the second chapter,
classification of images was involved where we provided an application of ConvNets
on a new task which is the Handwritten Character Tifinagh recognition, resulting
in the state-of-the art accuracy results at the time of publication.

Part 4 demonstrated ways to alleviate the problem of lack of data when training
a Convolutional Neural Network. First we showed that using transfer learning with
fine-tuning along with a source domain more global and general than the target
domain improves the overall classification rate on the target domain task. Indeed,
applying Phoenician handwritten characters as a source domain to further recognize
current alphabets’ characters improved the classification performance. Second, in
another contribution, we applied a novel transfer learning approach based on a
ConvNet pre-trained on a source domain similar or different but related to the target
domain and based on an SVM classifier, resulting in state-of-the-art results on ASD
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signal classification benchmarks at the time of publication. Third, we introduced an
ensemble learning framework which combines ConvNets trained differently, some of
which employing knowledge transfer. This framework was implemented on sketch
image recognition. Finally, we defined novel augmentation and voting ConvNet
approaches and chose to run simulations on sketch recognition too.

In Part 5, we tackled the problem of imbalanced data by suggesting approaches
for both classification and regression tasks. Regarding classification, we introduced
a cost-sensitive learning approach that can be applied on Multi-Layer Perceptrons
or Convolutional Neural Networks, achieving promising performance in classifying
largely imbalanced datasets. Experiments were conducted on several 1D datasets’
tasks as well as the Traffic flow prediction task. As for regression tasks, we elab-
orated a robust learning regression approach based on a cost-sensitive learning
loss function for neural networks. This approach demonstrated a faster conver-
gence and better generalization than the classical method, and has comparable or
slightly higher results than sampling techniques. Simulation were run on multiple
1D datasets. Furthermore, we also developed new evaluation strategies for regres-
sion models that handle imbalanced datasets, including scalar and graphical-based
measures.

Part 6 took into account the outliers present within datasets by suggesting a
robust deep regression model (a ConvNet) based on a novel robust loss function.
Conducting our model on the human pose estimation task showed the superiority
in performance of our model over the standard deep regression and a higher or
comparable performance to ConvNets trained on the famous robust loss functions.

1.2 Towards the Future
Much remains to be yet accomplished, even in the restricted domain of deep learning
. Despite our efforts toward using artificial and deep neural networks for extracting
the best features out of the different types of data, the diversity of types of data still
poses many challenges. More research should be conducted to answer the questions
of how to learn good features from data. Furthermore, more application scenarios
and problem settings are also worth investigation especially in the field of medicine
in which data is scarce and presents outliers.
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Notation

1.1 List of commonly used abbreviations

Table 1.1: Notation.

Symbol Meaning
HAR Human Activity Recognition
ASD Autism Spectrum Disorder
SMM Stereotypical Motor Movements
ST Stockwell Transform
FFT Fast Fourier Transform
HMM Hidden Markov Model
SGD Stochastic Gradient Descent
SVM Support Vector Machine
HOG Histogram of Oriented Gradient
DBN Deep Belief Network
SIFT Scale-invariant Feature Transform
RBM Restricted Boltzmann Machine
ConvNet Convolutional Neural Network
TL Transfer Learning
ADAM Adaptive moment estimation (a method for stochastic optimization)
ReLU Rectified Linear Unit
FC Fully Connected layer
Conv Convolutional layer
Maxpool Maxpooling layer
ℓ loss function
E Expectation
N number of samples
W weight matrix
x input vector
θ network parameter
σ(·) sigmoid function
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1.2 General math notation
Table 1.2: Notation.

Symbol Meaning
ω function
ℓ loss function
E Expectation
N number of samples
W weight matrix
x input vector
θ network parameter
σ(·) sigmoid function

1.3 Abbreviations for the DBN
Table 1.3: Notation.

Symbol Meaning
b bias of the hidden units
c bias of the visible units
I number of visible units
J number of hidden units
v visible units
h hidden units
Z energy partition function
α learning rate
∆ change (variation) of a given variable. For example ∆Wij represents the weight change



Appendix

1.1 History of Deep learning

1958 Perceptron: Foundation of NNs (Rosenblatt, 1958)

1962 Backpropagation: Foundation of training multi-
layered NNs

(Dreyfus, 1962)

1980, 1998 Convolutional NNs: NN architecture specialized for
processing spatial data

(Fukushima, 1980; Lecun et al., 1998)

2006 RBM Pretraining: Breakthrough allowing to train
deep NNs

(Hinton et al., 2006)

2009 Semantic Hashing: Using RBMs for fast search for
similar text documents

(Salakhutdinov and Hinton, 2009)

2010 Glorot Initialization: Scaled random initialization
almost as good as pretraining

(Glorot and Bengio, 2010)

may, 2010 mcRBM: RBM variant learning more complex fea-
tures

(Marc’Aurelio Ranzato Geoffrey, 2010)

june, 2010 Hessian-free Learning: Second-order optimization
to train Rectified Linear Units deep networks with-
out pretraining

(Martens, 2010)

2011 Rectified Linear Units (ReLU): Nonsaturating non-
linearity helps training deep NNs

(Glorot et al., 2011)

july, 2012 Dropout: Generic solution to reduce overfitting for
deep NNs

(Hinton et al., 2012)

dec., 2012 AlexNet: Wins object recognition challenge with
deep CNN trained on raw pixels, using dropout
and ReLU

(Krizhevsky et al., 2012)

june, 2013 Leaky Rectified Linear Units: ReLU variant with a
nonzero gradient for negative inputs

(Maas et al., 2013)

june, 2013 Nesterov Momentum: Demonstration that Nesterov
momentum improves NN training

(Sutskever et al., 2013)

dec, 2013 Saliency Maps: Inspect which inputs a deep NN
used for a prediction

(Zeiler and Fergus, 2014)

dec, 2013 Saxe Initialization: Random orthogonal initializa-
tion

(Saxe et al., 2013)

may, 2015 VGG-Net: Second place in object recognition chal-
lenge, with only 3× 3 convolutions

(Simonyan and Zisserman, 2015)

may, 2015 ADAM: Optimization scheme improving over Nes-
terov momentum in some cases

(Kingma and Ba, 2015)

may, 2015 Guided Backpropagation: Better interpretable
saliency maps

(Springenberg et al., 2015)

dec, 2015 He Initialization: Scaled random initialization for
networks with rectified linear units

(Kaiming et al., 2015)

july, 2015 Batch Normalization: Regularization allowing
faster training of deep NNs, with reduced overfit-
ting, and requiring less careful initialization

(Ioffe and Szegedy, 2015)

2016 Residual Networks: Wins object recognition chal-
lenge with network architecture allowing to train
CNNs of 1000 layers

(He et al., 2016)

Timeline 1: Deep learning timeline
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1.2 Details of the Code
• The project for “A Novel Deep Learning Approach for Recognizing Stereotyp-

ical Motor Movements within and across Subjects on the Autism Spectrum
Disorder” can be found the URL: https://github.com/lsadouk/code_SMMs

• The Handwritten Phoenician Character database (HPCDB) is available at :
https://osf.io/4j9b6/

• The project for “Handwritten Phoenician Character Recognition and Its Use
to Improve Recognition of Handwritten Alphabets with Lack of Annotated
Data” can be found the URL: https://github.com/lsadouk/Phoenician_
recognition_code

• The project for “A Novel cost-sensitive learning approach and metric for re-
gression in imbalanced domains” can be found the URL: https://github.
com/lsadouk/imbalanced_regression

• The project for “A Cost-Sensitive Learning Approach applied on Shallow and
Deep Neural Networks for Classification of Imbalanced Data” can be found
the URL: https://github.com/lsadouk/imbalanced_classification



1.3 Supplementary material

1.3.1 Supplementary material for Part II

X

Y
∑

b

1

2

3

(a) (b)

Figure 1.1: Visualization of convolution applied on a 1D input (a) and a 3D input
(b).

1.3.2 Supplementary material for Chapter 1

Table 1.4: A summary of the Phoenician ConvNet architecture parameters.

Id Layer Type Filter size Filter Num Stride Pad Output Size #Parameters
0 Input - - - - 60× 60 0
1

L1
Conv 5× 5 20 1 0 56× 56 520

2 ReLu - - - - 56× 56 0
3 Maxpool 2× 2 - 2 0 28× 28 0
4

L2
Conv 4× 4 50 1 0 25× 25 16,050

5 ReLu - - - - 25× 25 0
6 Maxpool 2× 2 - 2 0 12× 12 0
7 L3 Conv 3× 3 150 1 1 12× 12 67,650
8 ReLu - - - - 12× 12 0
9

L4
Conv 3× 3 150 1 1 12× 12 202,650

10 ReLu - - - - 12× 12 0
11 Maxpool 2× 2 - 2 0 6× 6 0
12

L5
Conv (FC1) 6× 6 500 1 0 1× 1 2,700,500

13 ReLu - - - - 1× 1 0
14 Dropout - - - - 1× 1 0
15

L6
Conv (FC2) 1× 1 500 1 0 1× 1 250,500

16 ReLu - - - - 1× 1 0
17 Dropout - - - - 1× 1 0
18 L7 Conv (FC3) 1× 1 33 1 0 1× 1 11,022



Table 1.5: The confusion matrix for the recognition of each Phoenician character.
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Figure 1.2: Graphical representation of the DBN model for handwritten Phoenician
character recognition. Undirected and directed connections stand for unsupervised
and supervised learning respectively. Numbers on each layer denote the size of that
layer.



Table 1.6: Learning parameters of the DBN. Let’s note that learning parameters
are set according to suggestions published by Hinton (Hinton et al., 2006).

Phase Learning rate Momentum Dropout Number of epochs Batch size
Unsupervised phase 0.0001 0.7 0.3 200 200
Supervised phase 0.0001 0.9 100 200

1.3.3 Supplementary material for Chapter 2



Datasets (a) (b)

abalone

accel

Plot (a): histograms of the target variable distribution, NDF (blue plot) and KDE (black plot) of each dataset. Plot (b): KDR of each dataset.



Datasets (a) (b)

heat

cpuSM

Plot (a): histograms of the target variable distribution, NDF (blue plot) and KDE (black plot) of each dataset. Plot (b): KDR of each dataset.



Datasets (a) (b)

bank8FM

parkinson

Plot (a): histograms of the target variable distribution, NDF (blue plot) and KDE (black plot) of each dataset. Plot (b): KDR of each dataset.



Datasets (a) (b)

dAiler

H101_North_D7

Plot (a): histograms of the target variable distribution, NDF (blue plot) and KDE (black plot) of each dataset. Plot (b): KDR of each dataset.



Datasets (a) (b)

I5_South_D7

I5_North_D7

Plot (a): histograms of the target variable distribution, NDF (blue plot) and KDE (black plot) of each dataset. Plot (b): KDR of each dataset.



Datasets (a) (b)

I210_West_D7

Plot (a): histograms of the target variable distribution, NDF (blue plot) and KDE (black plot) of each dataset. Plot (b): KDR of each dataset.



Datasets RECT P R RECT NR RECG−Mean RECCW A

abalone

accel

heat

REC curves RECT P R, RECT NR, RECG−Mean and RECCW A at test time for experiments l2Unb., l2Balu, l2Balo, lpUnb. on the 11 datasets.



Datasets RECT P R RECT NR RECG−Mean RECCW A

cpuSM

bank8FM

parkinson

REC curves RECT P R, RECT NR, RECG−Mean and RECCW A at test time for experiments l2Unb., l2Balu, l2Balo, lpUnb. on the 11 datasets.



Datasets RECT P R RECT NR RECG−Mean RECCW A

dAiler

H101_North_D7

I5_South_D7

REC curves RECT P R, RECT NR, RECG−Mean and RECCW A at test time for experiments l2Unb., l2Balu, l2Balo, lpUnb. on the 11 datasets.



Datasets RECT P R RECT NR RECG−Mean RECCW A

I5_North_D7

I210_West_D7

REC curves RECT P R, RECT NR, RECG−Mean and RECCW A at test time for experiments l2Unb., l2Balu, l2Balo, lpUnb. on the 11 datasets.
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