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"I really think that if we change our own approach and thinking about
what we have available to us, that is what will unlock our ability to truly
excel in security. It’s a perspectives exercise. What would it look like if
abundance were the reality and not resource constraint?" − Greg York
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Abstract

The use of cryptographic systems and protocols became indispensable to guarantee the

information security goals, which fall in the purpose of this thesis. New symmetric cryp-

tographic systems are designed to ensure data confidentiality and integrity using cellular

automata, which provide complex behavior and good properties from fast, simple, and

parallel computations. At first a symmetric partition problem inspired encryption scheme

, Partition Ciphering System (PCS), is proposed to make frequency cryptanalysis and

brute force attacks challenging. Then the second contribution introduces a hybrid cellu-

lar automaton producing more confusion and diffusion, as well as better security against

attacks. The third contribution aims to produce sequences with high quality of ran-

domness through a family of pseudo-random number generators, CFA, based on cellular

automata and other cryptographic primitives. The fourth contribution is a stream cipher

involving cellular automata, with the objective of investigating different configurations

to have better security level. The last two contributions fall in the primitives providing

data integrity, namely hash functions. The fifth contribution, LCAHASH1.1, is a cellular

automaton-based hash functions family. The last one makes use of multiple cellular au-

tomata in addition to some features to prevent known attacks.

Keywords: Information security, Symmetric Cryptography, Cellular Automata, Confi-

dentiality, Integrity, Avalanche effect, Confusion, Diffusion, Pseudorandom Number Gen-

erator, Stream Cipher, Hash functions
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Résumé

Le recours de systèmes et de protocoles cryptographiques est devenue indispensable pour

garantir les objectifs de la sécurité informatique, qui correspondent à la motivation de

cette thèse. De nouveaux systèmes cryptographiques symétriques sont conçus pour as-

surer la confidentialité et l’intégrité des données en utilisant les automates cellulaires, qui

fournissent un comportement complexe et des propriétés satisfaisantes à partir de cal-

culs rapides, simples et en parallèle. Dans un premier temps, un système de chiffrement

symétrique inspiré par le problème de la partition, chiffrement par partition (PCS), est

proposé pour rendre la cryptanalyse des fréquences et les attaques par force brute plus

complexes. Ensuite, la deuxième contribution, CA-PCS utilise un automate cellulaire

non-uniform produisant plus de confusion et de diffusion, ainsi qu’une meilleure sécurité

contre les attaques. La troisième contribution vise à produire des séquences de haute qual-

ité d’aléatoire grâce à une famille de générateurs de nombres pseudo-aléatoires, CFA, basée

sur des automates cellulaires et d’autres primitives cryptographiques. La quatrième con-

tribution est un chiffrement par flux impliquant des automates cellulaires, avec l’objectif

d’étudier plusieurs configurations pour atteindre un meilleur niveau de sécurité. Les deux

dernières contributions concernent les primitives assurant l’intégrité des données, à savoir

les fonctions de hachage. La cinquième contribution, LCAHASH1.1, est une famille de

fonctions de hachage basées sur des automates cellulaires. La dernière fait appel à plusieurs

automates cellulaires en plus de certaines mécanismes pour prévenir les attaques connues.

Mots-clefs : Sécurité Informatique, Cryptographie Symètrique, Automate Cellulaire,

Confidentialité, Integrité, Effet d’Avalanche, Confusion, Diffusion, Générateur Pseudo-

Aléatoire, Chiffrement par flux, Fonction de Hachage.
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Résumé détaillé

Le but de ce travail est de construire des cryptosystèmes basés sur les auto-
mates cellulaires pour assurer la confidentialité et l’integrité des données, qui
font partie des objectifs principals de la sécurité de l’information. L’objectif
de l’utilisation d’automates cellulaires dans la conception des différents sys-
tèmes cryptographiques est de tirer profit de leurs caractéristiques, à savoir
la simplicité, les propriétés aléatoires, la facilité de l’implémentation logi-
cielle et matérielle, le parallélisme, la vitesse de calcul, ainsi que les pro-
priétés cryptographiques, qui changent de manière significative au fil du
temps. Différents domaines de recherche (physique, biologie, chimie, cryp-
tographie, etc.) utilisent les ACs. Dans ce mémoire, son utilisation dans
la cryptographie est présentée dans les sections Related Work des chapitres
3,4,5 et 6.
Organisation du mémoire:
Cette thèse comprend une introduction générale, un chapitre sur les fon-
daments de la cryptographie symètrique et les automates cellulaires, et six
contributions. Les contributions de 1 à 4 assurent la confidentialié, et les
contributions 5 et 6 permettent de protéger l’integrité des données :

Contribution 1 : Système de chiffrement des partitions (PCS):
Il s’agit d’un système de chiffrement symétrique développé pour améliorer
l’extension binaire du SEC [1] contre l’analyse de fréquence, en faisant ap-
paraître les blocs ou les caractères avec la même fréquence dans le chiffré.
Le Problème de Piles égales(Equal Piles Problem EPP) a été notre source
d’inspiration pour atteindre notre objectif, avec une adaptation de la défini-
tion du problème en fonction de nos besoins. Le chapitre 2 présente d’abord
le système de chiffrement PCS, puis sa combinaison avec la version binaire du
SEC, qui est un système de chiffrement symétrique conçu en introduisant
un algorithme évolutionniste pour changer les positions des blocs dans le
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chiffré. La version binaire du SEC permet de permuter les listes des posi-
tions des blocs sans changer les listes des positions. Alors, pour que tous les
blocs apparaissent avec la même fréquence, la proposition de PCS permet de
définir en premier lieu le nombre d’apparitions par le calcul de la cardinalité
idéale. Puis selon sa valeur, les blocs qui apparaissent moins sont ajoutés,
et les blocs qui apparaissent plus sont enlevés d’une position aléatoirement.
Ces opérations changent les éléments des listes de positions. Vu la simplicité
et la présence du concept de l’aléatoire, le système développe des propriétés
statistiques satisfaisantes.

Contribution 2 : Système de chiffrement de partition basé sur
les automates cellulaire (CA-PCS): Il s’agit d’une nouvelle version
de PCS qui comprend des opérations supplémentaires. Dans cette version,
CA-PCS, comme son nom l’indique, utilise un automate cellulaire unidi-
mensionnel ainsi qu’une permutation aléatoire afin de fournir de meilleures
propriétés de confusion, de diffusion, et des propriétés statistiques. En pre-
mier lieu, l’automate cellulaire unidimensionnel et non-uniforme évolue 64
itérations en utilisant des fonctions locales qui dépendent de la cellule et
ses voisins (droit et gauche), ce sont des fonctions booléennes à 3-variables.
Ces dernières, après 64 itérations forme une fonction de transition globale
qui dépend de 128 cellules, autrement dit, une fonction booléenne à 128-
variables. Ce qui rend les propriétés cryptographiques dans un niveau im-
portant, (La non-linéarité, le degré algébrique, ...). Le calcul de la cardinalité
idéale change ici pour pouvoir éliminer l’opération de suppression des blocs.
Il y aura seulement des ajouts de blocs dont le nombre d’apparitions est in-
férieur à la cardinalité idéale. Puis, une permutation aléatoire est appliqué
au résultat de l’étape d’insertion des blocs. L’étude des propriétés cryp-
tographiques et des caractéristiques statistique implique que les attaques
linéaires et différentielles sont difficile à atteindre. Cette contribution est
détaillée dans le chapitre 3.

Contribution 3 : CFA : A New Family of Hybrid CA-Based
PRNGs : Il s’agit d’une famille de générateurs de nombres pseudo-aléatoires
sécurisés basés sur des automates cellulaires non uniformes. ce travail est
actuellement soumis dans le Journal Security and Communication Networks
en cours d’évaluation. Sa conception générale comprend trois primitives
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fondamentaux : une fonction de hachage, un chiffrement par blocs et un
automate cellulaire. Une implémentation spécifique utilise Keccack(256), le
gagnant de la compétition de SHA3, AES-256, et un CA non uniforme évolu-
ant avec des règles soigneusement choisies avec des conditions périodiques
aux limites. Pour concevoir l’AC, nous avons suivi les recommandations
présentées dans [2] afin qu’il fournisse une grande qualité d’aléatoire avec
une périodicité élevée, pour l’utiliser pour la génération de graines, de clés,
des IV, de nonces, ou de sels à usage cryptographique. Cette construction
est détaillée dans le chapitre 4.

Contribution 4 : CASC 3N vs. 4N : Effet de l’augmentation
de la taille du voisinage des automates cellulaires sur sécurité du
système : Une conception de chiffrement par flux inspiré par la structure
du chiffrement Grain, en utilisant des automates cellulaires au lieu de LFSR,
NFSR et la fonction de mélange introduite dans le système Grain[3], qui est
l’un des finalistes du projet eStream. L’objectif principal de cette contribu-
tion est l’étude du passage des règles à 3 voisins (fonctions à 3-variables) à
des règles de 4 voisins, (fonctions à 4-variables)et leurs caractéristiques et
l’impact de cette transition sur les propriétés cryptographiques et le niveau
de sécurité. En premier lieu, la version à 3 voisins est présentée dans le
chapitre 5, et à partir de cette version (les règles des automates cellulaires
utilisées servent pour retouver des règles à 4 variables, en ajoutant une vari-
able de plus au lieux de parcourir toutes les fonctions boolèenes à 4-variable
=65536). Un exemple est présenté dans le chapitre 5 ainsi que les détails de
l’étude. Les deux versions ont des avantages qu’on peut par la suite com-
biner pour une meilleure solution pour différents besoins.

Contribution 5 : LCAHASH 1.1 : Une nouvelle version de la
famille de fonctions de hachage LCAHASH: Il s’agit d’une version
améliorée de la conception LCAHASH[4], qui est une fonction de hachage
basée sur un automate cellulaire comprenant une seule itération d’une règle
à 7 ou 8 variables. Dans LCAHASH 1.1, nous avons proposé de modifier
la fonction de transition globale en utilisant des règles à 3 voisins(variables)
pour n évolutions, ce qui fait de la transformation globale une fonction
booléenne à 128 ou 256-variables. Par conséquent, elle offre une meilleure
confusion et une meilleure diffusion, ainsi que des propriétés cryptographiques
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d’ordre plus important. Cette contribution est détaillée dans le chapitre 6.
Contribution 6 : HCAHF : A New Family of CA-Based Hash

Functions : Il s’agit d’une construction inspirée par "wide-pipe construc-
tion" qui utilise des automates cellulaires. Elle comprend trois étapes : une
étape de prétraitement qui divise et appliquele padding ainsi que l’introduction
du sel "salt", une étape de compression comprenant un AC uniforme, en util-
isant les règles des classes 3 et 4 ayants des propriétés satisfaisantes, et le
XOR de leurs résultats, et à la fin, une étape de transformation comprenant
un AC non uniforme fournissant des caractéristiques intéressantes au sys-
tème générale. Une version spécifique produisant des digests de 256 bits est
présentée et étudiée aussi dans le chapitre 6.

À la fin, une conclusion générale résume les travaux de cette thèse et
présente les prochains travaux.
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Introduction

Nowadays, the use of cryptosystems and cryptographic protocols became
indispensable to achieve the information security goals in almost all infor-
mation systems of different parties, such as companies, government, mili-
tary, hospitals, and many others. For example, a company should keep the
clients and the departments’ sensitive data secret from unauthorized access,
alteration, or destruction, whether sent over an unprotected communication
channel or stored in a local database. They should employ robust encryp-
tion schemes so that unauthorized parties could not decrypt encrypted data
or even destroy it. Cryptographic systems and protocols are fundamental
to provide a satisfying security level depending on the types of applications.
It is a subfield of cryptology, which includes cryptanalysis aiming to find
cryptographic systems flaws. There are two basic types of cryptographic
algorithms: symmetric cryptosystems involving the same key for both en-
cryption and decryption, and asymmetric ones that make use of a specific
key for each operation (encryption and decryption). An additional class of
algorithms, called hybrid schemes, is defined using the combination of both
types to benefit from their advantages. In this thesis, the focus goes to sym-
metric cryptographic primitives to ensure confidentiality and integrity using
cellular automata as a building block of almost all contributions. Cellular
automata are dynamic systems involving a network of cells. The purpose
behind the use of cellular automata in the design of the different cryptosys-
tems is to benefit from their characteristics, namely the simplicity, ran-
domness properties, ease of software and hardware implementation, parallel
computation, speed, as well as the cryptographic properties, which changes
significantly through the time. Different research areas (physics, biology,
chemistry, cryptography, etc.) use CAs. In cryptography, CAs were at first
basic building blocks in the design of pseudo-random number generators,
such as the wolfram rule 30 generator[1], and many others like [2], [3], [4],
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and [5]. They were used also to design hash functions like the Damgard
design [6], Mihaljevic construction [7], [8], [9] and [10], block ciphers such as
BC-CaACO [11],SPF-CA [12],and KAMAR [13], stream ciphers like hiji-bij-
bij [14] and CAvium [15], and message authentication codes such as CAA
[16] and LCAHASH-MAC [17].

Contributions

The fundamental purpose of this thesis is to provide data confidentiality
and integrity using the cellular automata as building blocks of the proposed
designs. This thesis comprises six contributions:
Contribution 1: Partition Ciphering System (PCS): It is a sym-
metric encryption scheme developed to make the SEC extension to binary
blocks [18] more secure against frequency analysis by making the blocks or
characters appear with the same frequency in the output. The partition
problem was our inspiration source to achieve the specified goal with an
updated definition according to our needs. Chapter 2 presents PCS at first
as a standalone system followed by its combination with SEC extension to
binary blocks, a previously designed symmetric encryption scheme involving
an evolutionist algorithm to substitute the blocks positions.
Contribution 2: Cellular Automaton-based Partition Ciphering
System (CA-PCS): It is an extended version of PCS that includes addi-
tional features. Its design involves a hybrid cellular automaton as well as
a random permutation to provide better confusion and diffusion properties
and statistical characteristics.
Contribution 3: CFA: A New Family of Hybrid CA-Based PRNGs:
It is a secure pseudo-random Number Generators family based on non-
uniform cellular automata. It is currently under review in the Hindawi’s
journal Security and Communication Networks. Its general design com-
prises three fundamental building blocks: a hash function, a block cipher,
and a cellular automaton. A specific implementation uses Keccack(256), the
winner of the SHA3 competition, AES-256, and a non-uniform CA evolving
with carefully chosen rules with periodic boundary conditions. To design
the CFA, we followed the recommendations found in [19] so that it provides
a high quality of randomness with a high periodicity, to use it for the gen-
eration of seeds, keys, IVs, nonces, or salts for cryptographic use.
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Contribution 4: CASC 3N vs. 4N: Effect of Increasing Cellu-
lar Automata Neighborhood Size on Cryptographic Strength: A
stream cipher design having grain-like structure using Cellular automata in-
stead of LFSR, NFSR and mixing function of grain design [20], one of the
eStream project finalists. The principal purpose of this contribution is the
study of the 3-neighborhood rules and their augmented 4-neighborhood rules
characteristics and how this transition impacts the cryptographic properties
and the security level.
Contribution 5: LCAHASH 1.1: A New version of LCAHASH
hash functions family: It is an improved version of LCAHASH design [10],
which is a cellular automaton-based hash function including only one itera-
tion of a 7-variable or 8-variable rule during evolution. In LCAHASH 1.1, we
proposed to change the global transition function using 3-neighborhood rules
for n evolutions, which makes the global transformation a 128-variable/256-
variable boolean function. Consequently, it provides better confusion and
diffusion, as well as cryptographic properties.
Contribution 6: HCAHF: A New Family of CA-Based Hash Func-
tions: It is a wide-pipe Merkle Damgard inspired construction that uses
cellular automata. It comprises three steps: a preprocessing step, a com-
pression step including uniform CA involving the class 3 and 4 rules with
satisfying properties and the XOR of their results, and a transformation
step including a non-uniform CA providing good characteristics to the gen-
eral design. A specific version producing 256-bit digests is presented and
studied.

Manuscript structure

This dissertation follows this structure:

• Chapter 1 gives a short insight into the background of symmetric cryp-
tography and cellular automata.

• Chapter 2 provides the first contribution that aims to guarantee con-
fidentiality PCS encryption scheme and its combination with the SEC
extension to binary blocks.

• Chapter 3 details the second contribution providing confidentiality,
namely CA-PCS encryption, which is an extended version of PCS.

26



LIST OF ALGORITHMS

• Chapter 4 presents the third contribution concerning confidentiality,
the general design of the PRNGs family provided by CFA, and a spe-
cific implementation CFA-256.

• Chapter 5 describes the fourth contribution ensuring confidentiality,
the stream cipher NCASC with two values of N (3 and 4 ) referring to
the cells neighbor size and investigates the impact of switching these
values to the cryptographic properties and security.

• Chapter 6 presents the contributions providing data integrity, namely
the LCAHASH 1.1 and HCAHF designs.

This manuscript ends up with a general conclusion summarizing these con-
tributions and future works.
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Chapter 1

Cryptography and Cellular
Automata

1.1 Information Security

Information security is the field of study that aims to keep sensitive data safe
from illegal acts of unauthorized parties in any system. This research area
got more attention through the years and became a necessity to protect in-
formation systems and confidential data of governments, military, hospitals,
and many others. Cryptography is one of the fundamental tools ensuring
privacy, including several security goals, namely confidentiality, integrity,
authentication, availability as well as non-repudiation.

1.1.1 Confidentiality

If sensitive data are transmitted between concerned parties (sender and re-
ceiver), a third party trying to intercept sent data could not get the original
(plaintext) form of encrypted data (ciphertext) without knowledge of the
secret key K [21].

1.1.2 Integrity

If data do not go through any modification during their cycle life, then the
data integrity is verified [21].
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1.1.3 Authentication

If two parties decide to communicate, they should be able to identify each
other using a signature. Also, the sent data should be authenticated by the
attribution of a specific ID using Message Authenticated Codes, for example
[21].

1.1.4 Non-repudiation

If two parties send/receive some data over a communication channel, they
should not be able to deny sending or receiving data [21].

All these goals could be ensured by a combination of multiple crypto-
graphic primitives to design a more integrated system. These primitives
could be either symmetric or asymmetric. In symmetric cryptosystems, the
sender and receiver use the same key for both encryption and decryption,
as illustrated in figure 1.1. On the other hand, in asymmetric cryptosys-
tems, the sender uses its secret key SK to produce the ciphertext, which is
decrypted using its public key pk by the receiver as displayed in figure 1.2.

Figure 1.1: Symmetric Cryptosystems

Figure 1.2: Asymmetric Cryptosystems

The rest of this section is concerned with the symmetric primitives, in-
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cluding Pseudo-Random Number Generators PRNGs, stream ciphers, block
ciphers, hash functions, and Message Authentication Codes (MACs).

1.2 Symmetric Cryptography

1.2.1 PRNGs

The generation of random sequences is an essential cryptographic feature.
Almost all cryptographic applications need random bitstreams such as ses-
sion keys for encryption, initial vectors, salts, nonces, and many others.
Fundamentally, one of two methods that generate these bitstreams. A
pseudo-random number generator(PRNG) is a mostly used technique in
cryptographic applications that involves deterministic algorithms. The sec-
ond method makes use of non-deterministic physical sources of randomness,
termed true random number generator (TRNG). For cryptographic use, bit-
streams should have high-quality of randomness and unpredictability. To
consider the bitstream random, it needs to satisfy two fundamental con-
ditions. The first one is the uniform distribution of ones and zeros in the
sequence, which means that the bits should occur approximately at the same
rate. The second condition is the independence of the bits or subsequences
that form the bitstream, which means that there is no correlation between
them. Still, for several applications like the generation of session keys and
stream ciphers, there is a further condition in addition to the mentioned
constraints, which is the unpredictability. If each bit /number of a sequence
generated by a TRNG is statistically independent of each other, then the
unpredictability is satisfied. However, TRNGs are not suited for all appli-
cations because of their limitations (e.g., efficiency problems). Accordingly,
PRNGs producing pseudo-random numbers that look like random ones are
generally adequate for many situations. Thus, designers should keep in mind
the unpredictability condition [22]. Consequently, an adversary having ac-
cess to the current number would never predict the next number or even the
previous one. More details are depicted in the rest of this part.

Deterministic algorithms are adopted to generate random sequences for
cryptographical use. It means that the resulting bitstreams are not statis-
tically independent, and consequently, they are not random. Still, if the
algorithm design is well, it will provide sequences satisfying most of the ran-
domness tests. These sequences are considered pseudo-random numbers/
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sequences. If some conditions are satisfied, pseudo-random numbers are
used instead of random numbers and maintain similar results for a specific
use. Therefore, PRNGs are broadly adopted by many other applications be-
sides cryptography, such as physics, statistics, and many others [22]. Figure

Figure 1.3: PRNGs and TRNGs

1.3 displays a global vision of TRNGs and PRNGs. Commonly, a TRNG
accepts an entropy source as input, which is random and could be formed by
a single or several physical sources. These sources could be audio or video
input, hard disk activity, system clock, or mouse movements. When the
TRNG algorithm takes these inputs, it will do a conversion to get a binary
output, or it will apply further transformations in the case of biased sources.
On the other hand, a pre-generated seed, which must be secret, is an input
to the PRNG. It will go through using the deterministic transformations
provided by the algorithm to produce pseudo-random sequences. Depend-
ing on the demanded number of bits, the algorithm requires each output
in the next number generated. In general, it is better to use a TRNG to
provide the seed [22].

1.2.1.1 The PRNGs requirements

a) Randomness
The conditions of a PRNG concerning the randomness properties rely on
the fact that the resulting sequence should look like a random one, although
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it is deterministic. There are two popular statistical test tools, the NIST
statistical test suite and the dieharder battery of tests designed to examine
the quality of the PRNGs outputs. According to the percentage of successful
tests, the randomness quality of the PRNG decided. For example, according
to the NIST SP 800-22 [23] , three characteristics are concerned with tests:

• Uniformity: For each random or pseudo-random bitstream, 0s and
1s should appear with the same probability, which should be 0.5. And
if n is the bitstream size, then zeros and ones should appear exactly
n/2 times [23].

• Scalability: If a test was successful on a bitstream, it should be valid
also for sub-bitstreams taken randomly from the latter. That is to say,
if a sequence is random, then a subsequence taken from this sequence
should also be random[23].

• Consistency: Multiple seeds should be used in the generation of the
bitstream to test the consistency of the PRNG’s behavior[23].

b) Unpredictability
Two kinds of unpredictability should be satisfied by the outputs of a PRNG:

• Forward unpredictability: If the seed is secret, even if some previ-
ous bits are known, the next bit is supposed to be unpredictable.

• Backward unpredictability: It should be impossible to find the
seed from a known sequence. That is to say, all the sub-sequences
generated using the same seed should not display any correlation.

These properties could be verified using the same tests provided by NIST
and Dieharder battery[24]. If the results show that the sequence tested
is random, then it is unachievable to predict the following bit based on the
known previous bits. Likewise, if the bitstream looks like a random sequence,
then it is impossible to determine the seed based on this later if known since
no correlation is supposed to figure between the seed and the bitstream [22].
c) Periodicity
The period of a PRNG is a significant characteristic, which is defined to be
the period of bitstream reproduction, using the same seed. This parameter
should be large enough to say that the PRNG is good. If the period is
short, then the unpredictability of the bitstream generated turns out to be
unsatisfied [22].
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1.2.1.2 Seed Requirements

When the PRNG is particular for cryptographic use, then the corresponding
seed should be secure. In other terms, it should be unpredictable so that an
opponent is unable to get it, and therefore, the output of the PRNG since
the latter is deterministic. Consequently, the seed should be random or look
like a random sequence. In general, it should be produced by a TRNG as
recommended by the NIST report SP 800-90A. However, not all the times
a TRNG is accessible or practical (e.g., for stream ciphers, TRNGs are not
convenient). For this reason, a secure PRNG is adequate to generate the
seed [22].

1.2.1.3 The Algorithm Design

The development of cryptographically secure PRNGs is a challenging task.
Before getting involved in the design, one should decide which type of
PRNGs he is developing:
a) Specially developed algorithms
These algorithms are specific to the generation of pseudo-random sequences.
Certain algorithms of this type are adequate for different applications of
PRNGs like Linear Congruential Generators and Blum Blum Shub Genera-
tor. While other ones are conceived particularly for stream ciphers like RC4.
b) Cryptographic primitives-based algorithms
These algorithms rely on the random behavior of pre-developed crypto-
graphic primitives, which should not display a specific pattern to make the
cryptanalysis challenging. Hence, these primitives are adequate to produce
a cryptographically secure PRNG since the security of this latter is based on
these primitives’ security. In general, these primitives could be block ciphers,
asymmetric ciphers, hash functions, or Message Authentication Codes.

1.2.1.4 Crytographic Statistical Test Suites

This subsection presents a short description of the most popular test suites
used in cryptography, the NIST Statistical Test Suite and the Dieharder
battery.

33



CHAPTER 1. CRYPTOGRAPHY AND CELLULAR AUTOMATA

1.2.1.4.1 NIST STS

The National Institute of Standards and Technology designed the NIST Sta-
tistical Test Suite that comprises 15 tests to evaluate the PRNGs’ behavior
and their statistical properties. For each sequence, the test algorithms com-
pute the p-value, which refers to the probability that a TRNG was used to
generate it. More specifically, the p-values estimate the distance between
the corresponding bitstream and random ones. The results of the tested
algorithms are successful if the p-values are in the range [α, 1 − α], where
alpha is the significance level, α = 0.01. The NIST report [23] provides more
details about this test suite.

1.2.1.4.2 Dieharder

Dieharder is a battery of statistical tests, comprising 32 tests, designed by
Brown to check the randomness and statistical properties of pseudo-random
number generators and cryptographic primitives such as encryption systems,
hash functions, and MACs [24]. The battery algorithms compute the p-
values, which are the probabilities that the bitstream tested is random.
Accordingly, the sequence is said to be random or not. If the p-values are
between 0 + α and 1 − α, then the bitstream is indistinguishable from a
random bitstream, where alpha is the significance level such that α = 0.005.

1.2.1.4.3 Statistical Tests

This subsection presents a short description of some statistical tests provided
by the NIST statistical test suite and Dieharder.

a) Frequency Monobit Test : This test aims to evaluate the percent-
age of the ones and zeros in the bitstream, which is supposed to be
random if the ones and zeros appear nearly at the same rate. Other
statistical tests results rely on the success of this test.

b) Frequency Test within a Block : This test is a general form of
the Frequency Monobit Test. It measures the proportion of ones in
M-bit subsequences from the whole bitstream. If the ones appear in
almost 50% of positions in the block, then this test is successful, and
the bitstream has a high randomness quality. In the case of M = 1, it
leads to an instance of the frequency test.
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c) Runs Test : This test’s objective is to check if the number of subse-
quences formed by consecutive 1s or 0s in the bitstream is as supposed
to be in a random sequence or not. It evaluates how the variation from
1s to 0s or from 0s to 1s is in the bitstream.

d) The Longest Runs Test : This test aims to check if the maximum
size of subsequences formed by 1s, namely runs, in the bitstream eval-
uated is close to what is supposed to be in a random sequence. The
1s runs evaluation indicates if the 0s longest runs are regular, that is
why this test concerns 1s runs only.

e) Rank Matrix Test : This test tries to verify if there is a linear
dependency between substrings. The focus of the test is the rank of
disjoint sub-matrices of the entire sequence. The purpose of this test
is to check for linear dependence among fixed-length substrings of the
original bitstream. Note that this test also appears in the DIEHARD
battery of tests.

f) Approximate Entropy Test : This test evaluates the bitstream by
computing the frequency of all possible k-bits and (k+1)-bits blocks
in it. Then it is compared with the values that should be in a random
sequence.

More detailed descriptions of these tests and the other ones could be
found in the NIST report [23] and [24].

1.2.2 Stream Ciphers

Stream Ciphers form a class of symmetric encryption schemes that are built
based on PRNGs designs to produce the keystream, which goes through the
XOR operation with the plaintext to get the ciphertext. Many investiga-
tions over the years lead to the development of several systems. Stream
ciphers look like the One Time Pad system [25], except that PRNGs re-
place TRNGs involved in OTP. Following the recommendations found in
[22], stream ciphers should include PRNGs that produce sequences with a
high period. In general, the functions employed in PRNGs generate de-
terministic bitstreams. Thus, it ends up reproducing similar subsequences.
The higher periodicity makes the cryptanalysis challenging. Also, PRNGs
should provide keystreams with high randomness quality, as stated in the
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previous section (PRNG). This feature transfers to the ciphertext. There-
fore, cryptanalysis is more challenging. Moreover, the key or seed input to
the PRNG should be long enough to make the system robust against brute
force attacks. It should be at least a 128-bit key [22]. There are two kinds
of stream ciphers:

1. Synchronous Stream Ciphers : In this type of stream ciphers,
the keystream generated has no correlation with the plaintext or the
ciphertext. A cryptographic PRNG is involved, such that the Key and
IV are the only inputs [26].

2. Self-Synchronous Stream Ciphers : In this type of stream cipher,
in addition to the key and IV, the PRNG involved takes the previous
bits of the ciphertext as an input to produce the keystream [27].

Figures 1.4 and 1.5 display the general structure of synchronous and self-
synchronous stream ciphers, respectively.

Figure 1.4: Synchronous Stream Ciphers

The use of linear feedback shift register LFSR together with nonlinear
feedback shift register NFSR in the same system or nonlinear combination
of multiples LFSRs are among the most popular designs adopted. However,
these designs are still vulnerable to attacks like fault attack and correlation
attacks, even if they provide a high randomness quality. In this thesis,
a stream cipher involving cellular automata as the fundamental building
blocks instead of LFSRs and NFSRs is provided by Chapter 5.
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Figure 1.5: Self-Synchronous Stream Ciphers

1.2.3 Block Ciphers

A block cipher [22] is a second class of symmetric encryption systems that
process over a plaintext of arbitrary length by splitting it into n-bit blocks.
Next, a pre-defined encryption function fE is applied to each block Mi to
provide Cis, i ∈ {1, ...,m}, Ci = fE(Mi,K) using a specific mode (ECB,
CBC, OFB, or CTR). In the case of M not being a multiple of n, it is
padded by 1||0∗.

Figure 1.6: A block cipher general structure in ECB mode
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Figure 1.6 presents a general structure of a block cipher that uses ECB
mode. The encryption/decryption function should follow a specific struc-
ture: either a substitution-permutation network, a Feistel scheme, or a com-
bination of both. These structures provide two main cryptographic proper-
ties, namely confusion, and diffusion, which are fundamental for the block
ciphers, as well as other symmetric primitives, security purposes. The con-
fusion property illustrates the statistical relationship between the key and
the ciphertext, while the diffusion represents the statistical relation of the
plaintext and the ciphertext [22].

Substitution-Permutation Network

According to the proposition of Shannon, a robust SPN-based block cipher
follows a complex combination of two transformations, a substitution as
well as a permutation, using the key’s bits and multiple layers to fully mix-
up the plaintext bits and to remove any existing potential pattern. The
substitution is performed using various nonlinear S-Boxes replacing sub-
blocks bits in each round. This feature should provide satisfying confusion.
For this reason, S-Boxes should be carefully designed and studied. On the
other hand, the permutation involves a well designed linear P-box to swap
the bits of the block to produce high diffusion to the whole system [28].

Figure 1.7: One round of Substitution-Permutation Network

Figure 1.7 illustrates one layer of the general SPN- designs for one block.
At first, a round key is XORed with the bits of the blocks. Next, the result
is fed to S-boxes. The resulting bits are then permuted using P-box. SPN-
based block ciphers include AES [29], PRESENT [30], SHARK [31], and
many others.

38



CHAPTER 1. CRYPTOGRAPHY AND CELLULAR AUTOMATA

Feistel Network

A Feistel cipher [32] is one of the commonly used structures in the design of
block ciphers. The general process starts with the split of the n-bit blocks
into n/2-bits sub-blocks L0 and R0, where L0 is the left sub-block and R0

is the right sub-block. Then, the sub-blocks are processed r rounds and
combined to produce a ciphertext block. In one round (round 1 in Figure
1.8), a round key (K1) is involved to compute F (R0,K1) and the Exclusive-
OR of the output with L0. Then the result is fed to the right sub-block of
the next round input R1 = L0⊕F (R0,K1). The left sub-block L1 is supplied
by the previous right sub-block R0. Figure 1.8 illustrates the encryption
process using one round of Feistel structure. After r rounds, Lr and Rr are
swapped/switched to provide the ciphertext block Cj = Rr||Lr.

Figure 1.8: One round of Feistel structure

The function involved in the encryption process serves to decrypt a ci-
phertext block, and the order of round keys is reversed. Different parameters
are involved in the design of a secure Feistel-based block cipher, such as the
block length, the key-length, the number of rounds, the key rounds gen-
erator, as well as the round function F. Also, the block cipher should be
fast and easy to analyze. Feistel based designs include DES [33], TDES[34],
Blowfish [35], and many others.

1.2.4 Hash Functions

A cryptographic hash function is a primitive ensuring data integrity by
means of a one-way function. It proceeds over an arbitrary-length mes-
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sage to produce an n-bit message digest digest = H(M). Formally, a hash
functionH : {0, 1}∗ → {0, 1}n s a function mapping an arbitrary length mes-
sage M ∈ {0, 1}∗ to a fixed length output H(M) ∈ {0, 1}n, n > 0. There
are two kinds of hash functions: unkeyed and keyed hash functions. Their
most common applications include digital signature, public-key encryption,
message authentications, virus detection, and intrusion detection. From the
above definition, it is clear that hash functions are many to one since the
size of the input is not fixed, which means that collisions are not evitable.
However, additional conditions are required to say that a hash function is
cryptographically secure [?].

Collision resistance

It should be hard to find two different messages m1 and m2 that hash to the
same value H(m1) = H(m2).

Pre-image resistance

It should be infeasible to find a message m corresponding to a given hash
value H(m).

Second-preimage resistance

Given a message m1 and its hash value H(m1), it should be hard to find a
second message m2 that hashes to the same value H(m1) = H(m2).

The complexity to find a collision, a preimage, or a second-preimage is
related to the size of the hash functions output. Finding collisions requires
2

n
2 operations, due to the introduction of the birthday attack [36]. On the

other hand, it requires 2n to find a preimage or a second preimage [?].
Moreover, a fundamental condition should be verified. A secure hash

function should conduct like a random oracle. For this purpose, the out-
put should be unpredictable. If two messages are different by only a few
bits, their hash values should be different. This characteristic strengthens
the hash function system. Also, it should be efficient enough to make the
software and hardware implementations easy.

There are two forms of hash functions:

1) Merkle Damgard Construction: This type of iterative construc-
tions forms a hash function that makes use of a compression function
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CF . It starts by the split of the message to hash into m-bit blocks
M1,..., Mk. Next, the last block is padded if necessary. Then, CF is
applied iteratively over blocks together with k n-bit chaining variable
hi, such that h0 = IV [37]. Figure 1.9 displays the general design of a
Merkle Damgard construction.

2) Sponge Construction: This construction is a second class of
iterative constructions that is completely different from the Merkle
Damgard constructions. It involves permutations instead of compres-
sion functions and outputs variable-length outputs instead of a fixed
size output. Also, no IV is involved. A sponge hash function [38]
comprises two fundamental steps:

– Absorbing Step: At this level, the message is firstly padded.
Next, it is split into r-bit blocks M1, ..., Mk. Then, a b-bit
state goes through the permutation f iteratively together with
the blocks. Initially, the state is set to {0}b, such that b = r + c

where r is termed the bitrate and c the capacity. The first r bits of
the state are XORed each time with the ith blockMi. Afterward,
it is fed to f together with the rest c bits of the state, 1 ≤ i ≤ k.

– Squeezing Step: This step outputs r bits of the state and ap-
plies f to get more outputs as long as more bits are desired to fit
the size specified by the user.

Figure 1.10 summarizes the general design of a sponge hash function.
Examples of Sponge constructions include Keccack [39], which the
winner in the SHA3 competition, and Spritz [40], a hash function
inspired by the RC4 design.

1.2.5 Message Authentication Code (MACs)

Message Authentication Codes (MACs) are symmetric primitives employed
to ensure data integrity and authentication. Three building blocks form a
MAC algorithm [41]:

• A Key Generation Mechanism: The k-bit secret key K should be gen-
erated using a cryptographic PRNG [41].
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Figure 1.9: Merkle Damgard Con-
struction

Figure 1.10: Sponge Construction

• A MAC generation mechanism: Given a message M and the secret key
K, the process of this mechanism produces a MAC value MACK(M),
which is also termed tag, of a fixed-length n [41].

• A MAC Verification mechanism: This mechanism serves to check
the message authenticity given the secret key K and the MAC value
MACK(M)

Figure 1.11 illustrates the MAC generation and verification processes. Most
of the MAC designs are based on either a block cipher like AES-CMAC [42],
a hash function such as HMAC-MD5 [43], or a dedicated design like MAA
[44].

A secure MAC should be robust against forgery attacks, where an op-
ponent tries to reproduce the MAC of a message without knowledge of the
secret key, and known-message attacks, in which attackers seek to get a set
of messages and their MACs. In addition to chosen-attacks that aim to find
the MACs of specific messages [45].
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Figure 1.11: Message Authentication Codes General Design

1.3 Cellular Automata

1.3.1 Introduction to Cellular Automata

Cellular automata, which were proposed initially by John Von Neumann in
the 1950s, form a class of discrete dynamic systems. They were widespread in
the 1980s through Stephen Wolfram’s purposes [46]. At first, Von Neumann
studied their relevance in the biological self-reproduction modeling through
the suggestions of Stanislas Ulam [47]. Later, several areas, namely biology,
chemistry, physics, mathematics, and so on, employed cellular automata in
modeling and solving natural, physical, and real-life problems. The CAs are
getting the researchers’ attention due to their complicated global conduct
arising from the simple cellular transformations, in addition to their ran-
domness and computation universality features [48]. A cellular automaton
is a discrete system consisting of n cells, which have a finite number of states,
arranged as an array. Each cell state is updated in a discrete-time using the
neighbor cells state. Formally, a cellular automaton is a quintuple (L, S, N,
f, R), such that:
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• L refers to the space of the d-dimensional cellular.

• S is the set of finite-state.

• N is the vector indicating the cells’ neighborhood, which is denoted
by a radius r that designates how many successive cells are involved
in each cell evolution.

• F is a local function, also called a local rule, that produces each cell’s
future state.

• R denotes the set of rules involved to update the CA cells.

The variation of L, S, and N results in several kinds of cellular automata.
For instance, 2-dimensional cellular automata with 5-neighborhood and 29-
state were proposed and studied by Jon von Neumann. If the local transfor-
mation f involves only the XOR operator, then the CA is linear. If additional
operations are included, such as OR or AND, then the CA is nonlinear. The
ruleset R defines if the CA is uniform or not. A uniform CA uses a single rule
to update all the cells |R| = 1. A non-uniform CA involves more than one
rule to evolve the CA cells |R| > 1. Multidimensional cellular automata al-
low a more complex behavior, but their study is more challenging compared
to 1-dimensional CAs. Consequently, most of the cryptographic applica-
tions involve 1-dimensional CAs, especially Stephen Wolfram’s elementary
CAs [49], which are 2-state 3-neighborhood CAs. These CAs have 23 = 8
neighbor configurations and 223 = 256 rules. Table 1.1 provides examples
of linear and nonlinear Elementary CAs rules.

Table 1.1: Elementary Cellular Automata Example

Neighborhood configuration 111 110 101 100 011 010 001 000
NL Rule 86 0 1 0 1 0 1 1 0
L Rule 60 0 0 1 1 1 1 0 0

Such that xi−1, xi, and xi+1 are the left neighbor, the cell, and the
right neighbor, respectively. According to Wolfram [121], the name of each
binary rule is its decimal value (for example, (01010110)2 = (86)10 is de-
noted rule 86). In addition to 3-neighborhood CAs, this thesis includes
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4-neighborhood CAs in chapter 5 in the design of a stream cipher. By anal-
ogy to 3-neighborhood 1-dimensional CAs, 4-neighborhood 1-dimensional
2-state CAs have 24 = 16 neighborhood configurations and 224 = 65535
rules. Examples of linear and non-linear 4-neighborhood cells are in table
1.2.

Table 1.2: 4 Neighborhood Cellular Automata Example

Neighborhood configuration NL Rule 42390 L Rule 42330
1111 1 1
1110 0 0
1101 1 1
1100 0 0
1011 0 0
1010 1 1
1001 0 0
1000 1 1
0111 1 0
0110 0 1
0101 0 0
0100 1 1
0011 0 1
0010 1 0
0001 1 1
0000 0 0

To see how a CA evolve during the time, space/time diagram is used,
where the CA space is provided by the x-axis, and the time is illustrated
by the y-axis, such that the different states are represented by colors, (e.g.
black and white in the case of two-state CA). Space/time diagram is useful to
display and analyze the overall behavior of a cellular automaton according
to its ruleset R. Examples of space/time diagram are represented in the
following table (86, 60, 24390, 24330).

1.3.2 Boundary Conditions

In cryptographic applications, finite-state CAs are used to explore a partic-
ular framework. The boundary conditions should be defined to do so. The
most used ones are:

45



CHAPTER 1. CRYPTOGRAPHY AND CELLULAR AUTOMATA

• null boundary where the leftmost and the rightmost cells neighbor cell
are set to ’0’.

• Periodic boundary where the leftmost and the rightmost cells are
neighbors.

• Adiabatic boundaries where the leftmost and the rightmost cells are
their own neighbor.

• Reflexive boundaries where the neighbor cells are the same (left neigh-
bor = right neighbor)

This thesis is concerned by the periodic boundary conditions due to the
properties provided in the leftmost and the rightmost cells, which spread
through evolutions

1.3.3 Boolean functions properties

This section presents short descriptions of boolean functions’ properties that
help to measure their adequacy with cryptographic systems. More details
could be found in [50].

Hamming weight

Given an n-variable boolean function f, its hamming weight wt(f) is defined
to be the number of ones in its binary representation. If wt(f) = 2n−1 then
f has a satisfying hamming weight.

Hamming distance

Given two n-variable boolean functions f and g, the hamming distance be-
tween f and g is denoted by the hamming weight of the XOR of f with g,
dH(f, g) = wt(f ⊕ g).

Nonlinearity

Given an n-variable boolean function f, its nonlinearity is deduced from the
following formula

NL(f) = min{dH(f, g)|g ∈ AF}
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such that AF is the set of all n-variable affine boolean functions where NL(f)
is bounded by 2n−1 − 2

n
2−1

Algebraic degree

Given an n-variable boolean function f, the algebraic degree corresponds to
the number of variables in the highest order term. It is bounded by n-1.

Balancedness

An n-variable boolean function f is said to be balanced if its hamming weight
is 2n−1 (wt(f) = 2n−1).

Correlation immunity

An n-variable boolean function is said to be mth order correlation immune
if its outputs are independent of at most m variables of its input (m < n).

Resiliency

An n-variable boolean function is m-resilient if it is a balanced mth order
correlation immune function.

1.3.4 Cryptographic Application of CAs

Cryptography is one of the fields making use of cellular automata in almost
all primitives. Chapter 3 gives a summarized view of their use in encryption
in section 3.2. Next, Chapter 4 provides how CAs were good candidates in
the design of secure PRNGs in section 4.2. Also, chapter 5 gives a summary
of their use in the development of stream ciphers and how they replaced the
preceding features (LFSRs and NFSRs) in section 5.2. Afterward, Chapter
6 presents the different applications in the hash functions schemes in section
6.2.
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Chapter 2

PCS: Partition Ciphering
System

2.1 Introduction

This chapter describes the Partition Ciphering System (PCS). It is a sym-
metric encryption algorithm that got inspiration from the study of the par-
tition problem and the Symmetrical Evolutionist-based Ciphering (SEC)
scheme [51]. Concisely, this latter is an encryption scheme based on an
evolutionary algorithm that aims to substitute all the plaintext characters
to result in a change in the appearance frequency [51]. At first, this con-
tribution was designed mainly to be combined with the SEC algorithm, to
increase its resistance against frequency analysis, referring to the constraint
of equality of appearance frequency. Nevertheless, in this section, PCS is
first presented and studied as a standalone system. Then, it is joined with
the SEC extension to binary blocks to produce a multiple-encryption scheme.
The main objective behind this construction is to achieve high entropy so
that frequency analysis could not reveal any information. Consequently, it
will display good results for statistical tests. According to the SEC design,
the partition problem is the most practical problem to get inspiration, espe-
cially the Equal Piles Problem, which was defined by Jones and Beltramo in
[52]. It is one of the grouping problems aiming to group or partition a set of
elements into disjoint subsets(piles) referring to a specific constraint, which
is the subsets sums equality[53]. However, to reach the goal specified before,
an adaptation of the EPP to the Card-Partition Problem was suggested.
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The idea is to partition a set into subsets(piles) such that the subsets cardi-
nals are equal. Accordingly, the PSC encryption algorithm processes using
simple operations to find a balanced ciphertext. Afterward, the statistical
tests of Dieharder were applied to analyze the behavior of PCS. Also, the
confusion and diffusion tests were verified using the avalanche effect to de-
termine if PCS respects the requirements of a secure symmetric scheme, as
stated by Claude Shannon. Moreover, a comparison was performed regard-
ing the statistical tests, the time of encryption and decryption, in addition
to attacks. Finally, the combination of PCS with SEC is detailed. The rest
of this chapter is organized as follow: Section 2.2 details the related work.
Afterward, the PCS encryption and decryption algorithms are presented,
respectively, in section 2.3 and 2.4. Next, section 2.5 presents the com-
bination of PCS with SEC extension to binary blocks (SECEX). Finally,
section 2.6 provides the results and security analysis.

2.2 Related Work

In 1991, Jones and Beltramo defined the partition problem to be the Equal
Piles Problem, which is also known as the Load Balancing Problem, in their
article. They used nine genetic algorithms to solve a challenging instance of
this problem. This latter comprises a set of thirty-four numbers to be par-
titioned into ten subsets(piles), which sum to the same value [52]. However,
the algorithms tested could not find an optimal solution. Later, this instance
was studied by Falkenauer [53] and William [54] in their articles. In 1995,
Falkenauer adopted an updated version of the grouping genetic algorithm.
He defines a different encoding where the genes are the piles(subsets), he uses
revised GA crossover and mutation operators to find an optimal solution to
the Equal Piles Problem. Falkenauer proposed this algorithm previously to
solve the Bin Packing Problem, where items of different sizes are packed to
some limited capacity bins[55]. As the Equal Piles Problem and the Bin
Packing Problem are part of the grouping problems[55], and the main dif-
ference between these problems is the number of subsets (piles). It is easy
to adapt the algorithm to find better solutions compared to the solutions
found by Jones and Beltramo. Afterward, in 2000, William proposed a ge-
netic algorithm, called Eager Breeder, producing better results compared
to Falkenauer’s and Jones and Beltramo’s solutions[54]. He developed the
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Eager Breeder algorithm involving a more expensive representation of genes
and differs from the grouping genetic algorithm in the crossover and mu-
tation operators. The crossover aims to choose only the best genes from
parents to conceive the genes of a child. Moreover, the mutation operator
tries to remove a random element from a subset and insert it into a random
subset[54]. Afterward, the cryptographic algorithms included the benefits of
genetic and evolutionary algorithms to ensure better security. For instance,
Omary and al. proposed the standard version of the SEC in [56], which
performs the encryption process on characters. Next, they extended SEC
with two versions. The binary extension of SEC [18] [57], which applies the
encryption to binary data split into binary blocks instead of characters, and
the fusion extension [57], which includes a pre-processing step to increase
resistance to frequency analysis. The contribution of this chapter is related,
but not limited, to the binary extension of the SEC. It is also compatible
with the standard version of the SEC. Later, various approaches were intro-
duced by Trichni et al. [58], Bougrine et al. [59], Kaddouri et al. [60][61],
and Mouloudi [62] to strengthen the SEC against frequency cryptanalysis
and brute force attacks. In 2011, Trichni et al. proposed an enhanced
SEC version [58] that makes use of a new partition problem-based mutation
operator. Later, in 2012, Bougrine et al. suggested another technique[59]
producing a new SEC version. Afterward, in 2013, Kaddouri et al. pro-
posed two SEC versions, a balancing process was applied to the standard
SEC version to produce the first version[60], and a second version that in-
volves a binary fusion operation in the binary block extension of SEC[61].
In 2015, Mouloudi adopted a new technique called fragmentation[62] that
he combined with the standard SEC version to make the characters appear
with nearly the same frequency. In this chapter, the proposed technique
used to design the Partition Ciphering System (PCS) makes the characters
or the binary blocks appear with the same frequency providing the best
equilibrium compared to the previous work.

The motivation of the design of the Partition Ciphering System (PCS)
was to strengthen the SEC binary extension system. The main intention
was to make the blocks or characters appear with the same frequency in the
ciphertext. Accordingly, the Equal Piles Problem was a suitable candidate
that inspires us to reach our purpose. After the study of this problem re-
garding the SEC system, an adaptation of this problem was recommended.
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Figure 2.1: Equal Piles Problem

Consequently, the Card-Partition Problem was defined. The following fig-
ures (Figure 2.1 and Figure 2.2 display models of the equal piles problem
and the card partition problem.

As the Equal Piles Problem is a grouping problem, it is then formally
defined as follows:
The Equal Piles Problem
Given a set S of integer numbers and an integer t. Partition the set S into
t subsets such that:

∑
el∈S1

el =
∑

el∈S2

el = ... =
∑

el∈St

el

and S1 ∪ S2 ∪ ... ∪ St = S and S1 ∩ S2 ∩ ... ∩ St = ∅ where el are the Sj ’s
elements, and Sj is the jth subset.
The definition of the Card-Partition Problem differs from the Equal Piles
Problem in the criteria that must be satisfied in the resulting partition. The
subsets’ cardinals replaced the subsets’ sums in our case.
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Figure 2.2: Card-Partition Problem

The Card-Partition Problem
Given a set of integers and an integer t. Partition the set S into t subsets
such that:

cardinal(S1) = cardinal(S2) = ... = cardinal(St)

and S1∪S2∪ ...∪St = S and S1∩S2∩ ...∩St = ∅ where cardinal(Sj) is the
Sj ’s number of elements, and Sj is the jth subset. From our perspectives, the
elements of S have the same size. This latter is fixed in the pre-processing
phase of PCS. The following subsections detail the steps of PCS encryption
and decryption.
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2.3 The Partition Ciphering System (PCS) En-
cryption

The aim of the proposed system, as stated before, is to construct an ideal
partition corresponding to the ciphertext. In this latter, all the blocks ap-
pear at the same rate. The PCS algorithm comprises three steps to reach
this goal.

2.3.1 The PCS Pre-processing Step

The objective of this step is to represent the plaintext as a partition. Since
the idea of this system’s design is relative to the SEC, the best representation
to adopt is the same used in SEC[56]. At first, the split of the binary message
into blocks of the same size s, where 2 < s ≤ 16, is performed. Next, for each
block, all the positions where it figures are grouped in one list. This latter
is the corresponding list of the appearance of the block in the plaintext.
Figure 2.3 displays the process of this step.

Figure 2.3: The PCS pre-processing step

2.3.2 The Ideal Cardinality Computation Step

The ideal cardinality is the number of occurrences required of each block
to construct the final partition. Let d be the number of distinct blocks in
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M=(M1, ...,Mn), and n be the number of blocks in M. If n
d ∈ N then IC = n

d

else IC = dn
d e.

2.3.3 Final Partition Construction Step

In the ciphertext, the number of blocks is m ≥ n where m = d× IC. Conse-
quently, the resulting partition found in this step is a partition of {1, 2, ...,m}
where all the blocks occurrence lists have the same cardinal.
Throughout this step, according to the actions performed, the secret key is
established. It comprises four elements: the blocks’ length s, the number
of additional blocks NbInsBl, the suppression list SuppLi comprising the
removed blocks and the positions of removal, and a permutation π resulting
from the mapping transformation between the initial partition and the re-
sulting partition of this step. sk = {s,NbInsBl, SuppLi, π}.
The cardinal of each distinct block occurrence list OccL is concluded and
compared with IC. Therefore, two possible actions are performed depending
on the situation encountered. It is determined whether to insert or remove
a block.

1- The Block Insertion
This operation involves the block Blj for which the cardinal of the occur-
rence list corresponding OccLj < IC for 1 ≤ j ≤ d. The algorithm, at this
stage, inserts Blj at the last position of M. Also, it includes this position in
OccLj to update the initial partition. Finally, it increases the NbInsBl by
one. It repeats this process until cardinal(OccLj) = IC.

2- The Block Removal
The algorithm, at this level, removes Blj from a random position, which is
selected from OccLj randomly, in M when cardinal(OccLj) > IC. Also, it
deletes this position from OccLj and updates the initial partition according
to the resulting changes in the other lists when influenced. Finally, it inserts
the index j, if it does not figure, ofBlj in the suppression list and the position
of removal. It repeats this process until cardinal(OccLj) = IC.
The general algorithm updates the secret key simultaneously with the initial
partition during the encryption process to create the final partition that
represents the ciphertext.
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Figure 2.4: Block Insertion

Figure 2.5: Block Removal
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The secret key sk is expressed as follows:
sk = {{ s}, { NbInsBl}, { IndexOf(Blj)→ { PosOf(Blj)},...,IndexOf(Blk)→
{ PosOf(Blk)}}, π}.
Where IndexOf(Blj) = j and Pos(Blj) is the list of positions from where
Blj was removed ( 1 ≤ j ≤ d, 1 ≤ k ≤ d ).

Algorithm 1 displays the PCS encryption algorithm. The Suppression-
List and π are initially empty.

Algorithm 1 PCS Encryption Algorithm
Input: The binary message M
Output: The ciphertext C and the secret key sk
Begin
s← random(2, 16) . random integer 2 < s ≤ 16
NbInsBl← 0
sk ← {{s}, {NbInsBl}, SuppLi, π}
M ′ ← splitIntoBlocks(M, s) . pre-processing step
n← sizeOf(M ′)
d← nbDiffBl(M ′)
PlainPartition← toPartition(M ′)
CipherPartition← PlainPartition
ListOfBlocks← diffBlocks(M ′) . Bl1, ..., Bld
IC ← computeIdealCardinality(n, d) . Ideal cardinality computation
step
for 0 < j ≤ d do

while Cardinal(OccLj) < IC do . Block Insertion
M ′ ← blockInsertion(Blj ,M ′, NbInsBl, sk)

end while
while Card(OccLj) > IC do . Block Removal

M ′ ← blockRemoval(Blj , randPosition(OccLj),M ′, sk, SuppLi)
end while

end for
C ←M ′

π ← generatePermutation(PlainPartition, CipherPartition, sk)
End

Figure 2.6 summarize the encryption process detailed before.
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Figure 2.6: PCS Encryption
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2.4 The Partition Ciphering System (PCS) De-
cryption

To decrypt, the PCS process through two main phases: a pre-processing
one that splits the ciphertext into blocks of size s. And the second one that
reverses the actions performed during the encryption algorithm.

2.4.1 The PCS Decryption Pre-processing Step

Let C be the ciphertext and sk = {s,NbInsBl, SuppLi, π} the secret key.
The first element of the secret key s is used by the PCS decryption algorithm
to split C into s-bit blocks. Afterward, from the result of the split, the list
of distinct blocks in C LiDistBl is produced. This list serves in the next
step to decide which block is going to be inserted back or removed.

2.4.2 The PCS Decryption Step

At this level, the PCS decryption algorithm applies the reverse operations
of the third step of PCS encryption operations (i.e., It inserts the removed
blocks and removes the inserted ones ).
At first, it uses LiDistBl, SuppLi, and π to insert each removed block in the
positions of removal, where SuppLi is iterated starting from the last index.
Figure 2.7 details how the insertion is processed. Finally, it removes a
block from the last position NbInsBl times. Figure 2.8 displays the removal
process.

Algorithm 2 describes the decryption algorithm.
Figure 2.9 Displays the PCS decryption process.

2.5 Combination of PCS with SEC extension to
binary blocks

2.5.1 SEC extension to binary blocks

The SEC (Symmetrical Evolutionist-based Ciphering) is an evolutionary en-
cryption scheme. To achieve the best security against the frequency analysis
of the plaintext characters, the SEC was extended for application over bi-
nary blocks instead. In the SEC extension to binary blocks, an individual
is a vector of size m, and genes are the lists of positions.
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Figure 2.7: Insert removed blocks

60



CHAPTER 2. PCS: PARTITION CIPHERING SYSTEM

Figure 2.8: Remove inserted blocks

Algorithm 2 PCS Decryption Algorithm
Input: The Ciphertext C and the secret key sk
Output: The plaintext M
Begin
C ← divideIntoBlocks(C, s) . pre-processing
LiDistBl← distinctBlocks(C)
for 0 < i ≤ sizeOf(SuppLi) do . insert removed blocks

Insert(π, LiDistBl, SuppLi, C)
end for
while NbInsBl > 0 do . remove inserted blocks

C ← RemoveFromLast(C)
NbInsBl← NbInsBl − 1

end while
M ← C
End
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Figure 2.9: PCS Decryption
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Encryption
Given an arbitrary length binary message, the SEC extension to binary
blocks encryption algorithm firstly splits it into blocks of size k ≥ 2. Then,
it constructs the original chromosome that comprises the blocks together
with their occurrences lists.

(Bl1, OccL1) (Bl2, OccL2) ... (Bld, OccLd)

Afterward, q permutations of these lists are applied to the original chro-
mosome to generate the initial population of q potential solutions. These
latter are evaluated adopting the evaluation function denoted by F(Xj)=∑d

i=1 |card(OccLji)- card(OccLi)|, where 0 ≤ j ≤ q (d: number of differ-
ent blocks in the plaintext). Accordingly, the best individuals are selected
using the roulette wheel method, where the control function tries to elim-
inate individuals of minor change of genes compared to original-ch. Next,
the MPX crossover operates on the selected individuals with a rate ranging
from 60% to 100%. Afterward, the individuals produced by the crossing
undergo the transposition mutation, which swaps randomly two genes, with
a rate ranging from 0.1% to 5% to generate the next population. The steps
from evaluation to the mutation are processed iteratively until the achieve-
ment of the stopping condition, which is the objective function convergence
0 ≤ F (Xj) ≤ 2 × n (n: number of blocks in the plaintext). The final-Ch
denotes the final solution, which is used in combination with the original-Ch
to generate the symmetric key. It is a permutation of the set {1, 2, ...,m}.
[57] exposes more details about the SEC binary extension algorithm. Figure
2.10 summarises the corresponding encryption mechanism.
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Figure 2.10: SEC Extension to Binary Blocks Encryption
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Decryption
Given the binary ciphertext and the secret key comprising k and p the
permutation produced in the encryption algorithm, the SEC extension to
binary blocks decryption process starts by the split of the binary ciphertext
into k-bits blocks. Next, it generates the Final-Ch by corresponding to each
block its occurrence list. Afterward, the permutation p is useful to associate
with each block its positions list to find the original chromosome Original-
Ch, and consequently the plaintext. Figure 2.11 displays the decryption
process of SEC extension to binary blocks.

Figure 2.11: SEC Extension to Binary Blocks Decryption

2.5.2 SECEX-PCS multiple encryption

As stated before, the design of PCS makes the SEC results more satisfying
by the combination of both systems. From Figure 2.12, given an arbi-
trary length binary message M, the encryption process starts with the SEC
extension to the binary blocks encryption algorithm followed by the PCS en-
cryption algorithm. The secret key SK = {KSECEX ,KP CS}. Figure 2.13
illustrates the decryption process, which decrypts at first the ciphertext us-
ing the PCS decryption. Next, the resulting message goes through the SEC
extension to the binary blocks decryption algorithm to get the plaintext.
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Figure 2.12: SEC Extension to Binary Blocks - PCS encryption

Figure 2.13: SEC Extension to Binary Blocks - PCS decryption

2.6 Experimental Results and Security Analysis

This section displays the PCS results of the statistical tests, namely Dieharder
and NIST STS, the confusion and diffusion properties, and the performance
and security compared to other systems, namely AES, DES, and 3DES.

2.6.1 Dieharder Tests

Dieharder is a battery of statistical tests, comprising 32 tests, designed by
Brown to check the randomness and statistical properties of pseudo-random
number generators and cryptographic primitives such as encryption systems,
hash functions, and MACs. Thus, the PCS encryption algorithm generates a
file that contains a 10Mb-bitstream. The battery algorithms compute the p-
values. Accordingly, the sequence is said to be random or not. If the p-values
are between 0 + α and 1 − α, then the bitstream is indistinguishable from
a random bitstream, where α is the significance level such that α = 0.005.
Table 2.1 displays the results of the statistical tests of PCS, SECEX and
SECEX-PCS in comparison with AES, DES, and 3DES. It shows that PCS
passed all the tests as the p-values are bounded by 0.2 and 0.9. Plus, the
p-values of the sequence generated by AES are bounded by 0.05 and 1.
To conclude, the PCS behavior is random. From Table 2.1, the p-values
corresponding to SECEX are bounded by 0.07 and 0.96. The p-values of
SECEX-PCS are bounded by 0.13 and 0.93. Consequently, both systems
pass the tests. To conclude, the results of SECEX-PCS are better.
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Table 2.1: Dieharder Tests of PCS, SECEX, and SECEX-PCS compared to
AES, DES, and 3DES

Test P-values
PCS AES DES 3DES SECEX SECEX-PCS

1 0.8625 0.0836 0.8133 0.6844 0.4089 0.9191
2 0.9571 0.0967 0.7043 0.0069 0.9937 0.4371
3 0.1402 0.7711 0.1952 0.0138 0.2241 0.6931
4 0.324 0.6936 0.8422 0.8119 0.7946 0.547
5 0.453 0.6593 0.3996 0.8619 0.073 0.4851
6 0.3559 0.7204 0.135 0.2125 0.8689 0.9231
7 0.0898 0.6363 0.4289 0.9598 0.2828 0.3692
8 0.2811 0.3142 0.7883 0.1243 0.0745 0.3191
9 0.9687 0.8797 0.7384 0.3628 0.8473 0.6549
10 0.7611 0.8451 0.7915 0.344 0.5826 0.9089
11 0.7733 0.8514 0.9016 0.3209 0.6881 0.8969
12 0.791 0.537 0.9916 0.2343 0.412 0.9019
13 0.2487 0.3863 0.2674 0.9371 0.5801 0.6786
14 0.9916 0.8732 0.0007 0.2897 0.3517 0.6727
15 0.1779 0.0058 0.2512 0.4485 0.3071 0.1332
16 0.7702 0.381 0.2296 0.4514 0.5596 0.5369
17 0.9093 0.863 0.4422 0.6496 0.5449 0.4591
18 0.4046 0.7107 0.2148 0.7392 0.5038 0.593
19 0.5431 0.6915 0.5303 0.4562 0.2487 0.8948
20 0.0704 0.4656 0.2151 0.3326 0.5767 0.3401
21 0.6388 0.5643 0.5482 0.5758 0.5286 0.592
22 0.4844 0.549 0.5006 0.56 0.6585 0.3864
23 0.4441 0.3475 0.2433 0.6842 0.3519 0.3857
24 0.4145 0.6588 0.6155 0.729 0.4371 0.6948
25 0.604 0.5363 0.6518 0.4936 0.5655 0.5568
26 0.1025 0.4934 0.3525 0.1255 0.0833 0.6017
27 0.2636 0.4758 0.0914 0.1132 0.2665 0.3721
28 0.8735 0.9448 0.2778 0.4307 0.0894 0.781
29 0.5212 0.4721 0.4319 0.3558 0.4331 0.2684
30 0.3727 0.709 0.2142 0.4891 0.4523 0.7374
31 0.6055 0.0507 0.915 0.2603 0.366 0.3292
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2.6.2 Confusion and Diffusion Properties

This section presents the confusion and diffusion properties of PCS and
AES. Shannons defined an encryption system satisfying these properties to
be robust against statistical analysis [63]. AES was already studied before,
and it has satisfying confusion and diffusion properties. The confusion prop-
erty illustrates the complexity of the relationship between the key and the
ciphertext. If the proportion of change observed in the ciphertext when
changing one bit of the key is approximately 50%, then the confusion prop-
erty is excellent. The diffusion property displays how the plaintext is related
to the ciphertext. If almost 50% of the ciphertext bits change when a single
bit in the plaintext is changed, then the diffusion property is good enough.
The avalanche effect test if a system satisfies these properties. Figure 2.14
presents the diffusion property of PCS in comparison with AES. It shows
that the rate of change in the output is around 50% for both systems. Con-
sequently, in the PCS scheme, diffusion is accomplished.

Figure 2.14: PCS Diffusion property

Figure 2.15 presents the PCS confusion property. Around 50% of the
output bits transformed after the alteration of one bit in the plaintext.

From the statistical tests and the avalanche effect results, the conclusion
is that the proposed system PCS had good randomness, confusion, and
diffusion properties.
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Figure 2.15: Diffusion property

2.6.3 Comparison of PCS with AES, DES and 3DES

Encryption and Decryption time

This part provides the time of encryption and decryption of PCS, AES,
DES, and 3DES(Figure 2.16).

Figure 2.16: PCS Encryption and Decryption time compared to AES, DES,
and 3DES

Figure 2.16 shows that DES takes more time to encrypt and decrypt
than AES and PCS systems. Even though DES is vulnerable compared to
3DES, but 3DES takes more time than other cryptosystems. PCS and AES
take an equivalent and shorter time to encrypt than DES and 3DES. Also,
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PCS takes less time than AES, DES, and 3DES.

Brute Force Attack

The adversary tries to test each possible key to obtain intelligible cleartext
by transforming the ciphertext in this type of attack. Therefore, the security
parameter that determines the security level guaranteed is the length of the
key. When this latter is high, then the attack requires significant time and
resources to find the proper key. The presence of a quantum computer can
make this attack possible for some ciphers. According to the level of security
wished, the symmetric key can take values from 128 to 256 bit. If the long
term security is required without the presence of quantum computers, then
it is recommended to use a 128-bit key. If the long term security is necessary
even in the presence of quantum computers, then it is suggested to use a key
of at least 256 bits. As there are three versions of AES (the 128 version, the
192 version, and the 256 version), the two levels could be insured. The secret
key of PCS could be higher than 256 bit. Consequently, no attacker can get
the secret of PCS to get the plaintext. Table 2.2 displays the security level
of PCS, AES, DES, and 3DES.

Table 2.2: Brute Force Attack of AES, PCS, DES, and 3DES

Encryption
schemes

AES-128 AES-192 AES-256 PCS DES 3DES

Key
length(b)

128 192 256 ≥ 256 56 168

# possible
keys

2128 2192 2256 ≥ 2256 256 2168

Frequency Analysis

This section presents the frequency analysis conducted to plaintext and its
corresponding ciphertext. Figure 2.17 provides the results of this analysis.
As mentioned previously, the motivation of PCS is to get a ciphertext having
the blocks appearing with the same frequency. And figure 2.17 displays the
difference between before and after encryption. In the other articles [58]
to [62], the blocks frequency change, but without the concept of the same
appearance frequency.
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Figure 2.17: PCS Frequency Analysis

2.6.4 SECEX-PCS Frequency Analysis

This part investigates the frequency analysis of the different blocks in a
message instance and after encryption with SECEX and PCS. Figure 2.18
displays the frequency change by comparing how SECEX influences the
appearance of each block with the combination of SECEX with PCS for
a message of size 2804 bits with kSecex=kPCS=6. As mentioned before,
SECEx is limited to swapping the lists, while the combination makes all lists
with the same cardinal, which is nine in this example. It provides robustness
concerning the frequency cryptanalysis. Consequently, the SECEX-PCS
results are better than the results of SECEX encryption.

Figure 2.18: SEC Extension to Binary Blocks - PCS Frequency Analysis

2.7 Conclusion

This chapter provides a detailed description of the symmetric encryption
scheme is provided, which is called the Partition Ciphering System (PCS)
based on an adapted representation of the Equal Piles Problem (EPP) in
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combination with the study of SEC, a previously developed scheme. The
motivation of this contribution is to design a robust encryption system re-
sistant to frequency cryptanalysis. The Card-Partition problem, aiming to
partition a set into subsets having the same cardinal, was proposed to with-
stand this attack. The idea of PCS was to construct a partition based on
the proposed problem without using a genetic algorithm. The operations
performed are simple, making the combination of PCS with other systems
more interesting if frequency analysis resistance is required. The union of
the SEC with PCS exhibits excellent resistance to this attack. Also, the re-
sults of the comparison of PCS with AES, DES, and 3DES are good enough
to tell that PCS is secure. Regarding the Dieharder results, PCS has better
results when compared to the other systems. Besides, the confusion and
diffusion properties of PCS are suitable for a secure encryption system, as
recommended by Shannon. Moreover, PSC provides a higher security level,
which makes it robust against the brute force attack. Plus, it is resistant
to statistical attacks like frequency cryptanalysis. To explore the impact
of including new features, the second design extending this version is also
proposed in the next chapter.
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Chapter 3

Cellular Automata based
Partition Ciphering System

3.1 Introduction

This chapter presents an extended version of PCS called Cellular Automaton-
based Partition Ciphering System (CA-PCS) that includes new features en-
suring high nonlinearity, high confusion and diffusion and a satisfying secu-
rity level. The simplicity, the unpredictability, and the simple hardware and
software implementations provided by cellular automata expand their appli-
cability in the cryptography as well as other domains. CA-PCS comprises
a hybrid cellular automaton, evolving multiple clock cycles to provide ade-
quate cryptographic properties to strengthen the system. Afterward comes
the insertion of missing blocks producing the balance in the output. Finally,
an application of a random permutation improving the diffusion property
follows. The CA cryptographic properties make the security level study
provided by the system simple. Precisely, the nonlinearity, algebraic degree,
balancedness, resiliency, and correlation immunity are computed and an-
alyzed. Balancedness and high nonlinearity prevent attacks like the linear
and differential cryptanalysis. High correlation immunity and resiliency pro-
vide better confusion property and make correlations attacks challenging. A
high algebraic degree makes the system stronger against algebraic attacks.
A comparison of CA-PCS with AES and PCS concerning the randomness,
security, and performance follows. The rest of this chapter is organized as
follow: Section 3.2 details the related work. Next, the CA-PCS encryption
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and decryption algorithms are presented, respectively, in section 3.3 and
3.4. Afterward, section 3.5 provides the results and security analysis of the
proposed scheme.

3.2 Related Work

Cellular automata were first applied to cryptography by Wolfram [64]. He
designed a pseudo-random number generator (PRNG) and a stream cipher
using the nonlinear rule 30. In the last decade, Das et al. developed a one-
dimensional programmable CA-based block cipher, where programmable CA
depends on a specific signal called the control signal. According to which,
in the model proposed, the CA evolves using one of the linear rules 51,
153, 195 for each different cell [65]. As well, Bhaumik [66] and Roy [67]
proposed one-dimensional uniform CA-based primitives. In [66], Bhaumik
designed a CA-based diffusion layer for a specific SPN block cipher using
the ruleset 150, 150, 90, 150, 90, 150, 90, 150. Roy made use of the rules 51,
153,195 to produce a group of CAs that serve in the different steps of the
system proposed[67]. Also, Mehta and Bouchkaren involved non-uniform
one-dimensional reversible CAs in the design of block ciphers [68] [69]. In
[68], Mehta involved the rulesets 51, 51, 153, 153, 153, 153, 51, 51, 51,
153, 153, 153, 153, 153, 153, 51, 195, 195, 195, 195, 51, 51, 51, 51, and
153, 153, 153, 153, 51, 51, 51, 51 in the encryption design. The general
design structure [69] comprises four steps, and the CA is involved in the
shift transformation using the rules deduced from the plaintext bytes[69].
Bouchkaren and Faraoun employed two-dimensional CA in their designs
[70][71]. In [70], the encryption algorithm generates the reversible rules to
provide a decipherable ciphertext. In [71], Faraoun used a genetic algorithm
to find the best rules according to the strict avalanche criterion. Moreover,
image encryption systems involving two-dimensional CAs could be found in
[72], where Li et al. proposed their system based on balanced reversible
CA so that randomness properties are interesting. Also, Niyat et al. used
the CA rules 165, 105, 90, 150, 153, 101, 30, 86 to generate the key image
together with a chaotic-mapping to design a strong system[73].
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CA-PCS design

3.3 CA-PCS Encryption Algorithm

Three building blocks are involved in the development of the CA-PCS en-
cryption system. A CA-based building block, the blocks insertion mecha-
nism which is going through a random behavior, and a random permutation
π uniformly generated.

3.3.1 CA Evolution

A hybrid one-dimensional CA, which makes use of the ruleset {90, 150,
30, 180, 45, 90, 150, 30}, combining linear and nonlinear rules. Linear
rules produce high cycle length and better diffusion, and nonlinear rules
provide more confusion and resistance to linear and differential attacks. The
ruleset was determined by following the recommendations of Chakraborty
and Bahtacharjee[19]. Balanced nonlinear rules having random behavior in
addition to linear rules with high correlation immunity construct a ruleset
adequate for cryptographic applications. Figure 3.1 displays one iteration
of the CA evolution according to the proposed ruleset.
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Figure 3.1: CA Evolution step

3.3.2 Blocks Insertion

The blocks insertion mechanism starts with the representation of the previ-
ous step’s output as a partition. Next, the computation of the ideal cardinal,
followed by the insertion of particular blocks to get equilibrium in the result
of this step. First of all, the output of the CA building block is divided into
s-bits blocks, such that s is a random number in the range [2,16]. An occur-
rence list OccLj is associated with each block Blj constructing the partition
(1 ≤ j ≤ d, d is the number of different blocks in the output of the previous
step). Then, the calculation of the Ideal Cardinal IC follows the formula:

IC = max{Cardinal(OccL1), Cardinal(OccL2), ..., Cardinal(OccLd)}
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Afterward, if the cardinal of Blj is inferior to IC, then Blj is added at a
random position Pjk between 1 and the length of the result of the CA phase,
such that k is in the range [1, IC−Cardinal(OccLj)]. Next, InsertedBlock-
sPositionsList undergoes an update by the insertion of Pjk.

Figure 3.2: Blocks Insertion Step
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3.3.3 Permutation

This phase makes use of a random permutation to substitute the set of occur-
rence lists {OccL1, OccL2, ..., OccLd}. Concretely, this step aims to change
the occurrence lists of blocks OccLjs. More formally, it is defined by π:
S → S such that S is a d-elements set. There are d! distinct permutations of
{OccL1, OccL2, ..., OccLd}. For instance, if d=8, then π : {OccL1, OccL2,
OccL3, OccL4, OccL5, OccL6, OccL7, OccL8} → {OccL2, OccL4, OccL1,
OccL6, OccL3, OccL7, OccL8, OccL5}. Accordingly, OccL1 → OccL2,
OccL2 → OccL4, OccL3 → OccL1, OccL4 → OccL6, OccL5 → OccL3,
OccL6 → OccL7, OccL7 → OccL8, OccL8 → OccL5. Consequently, the
positions of Bl2 will comprise Bl1, those of Bl4 will contain Bl2, and so on.

3.3.4 Key generation

The CA-PCS encryption algorithm generates the secret key, which is a ses-
sion key, including four elements: SK = { CAKey, s, InsertedBlocksPosi-
tionsList, PermutaionKey }. The CAKey is the plaintext M XORed with the
input of the insertion blocks phase CAKey = M ⊕ InsertionBlockInput.
The second element s is the size of the blocks. The third element is the list
of the positions of blocks insertion InsertedBlocksPositionsList. The fourth
element is the PermutationKey, which is the ciphertext C XORed with the
input of the permutation phase PermutationKey = C⊕PermutationInput.

Figure 3.3 summarizes the encryption process of CA-PCS.

3.4 CA-PCS Decryption Algorithm

To decrypt a ciphertext C, that CA-PCS decryption algorithm processes as
follows, having the secret key SK: SK = { CAKey, s, InsertedBlocksPosi-
tionsList, PermutationKey } It starts with the XOR of the ciphertext with
the fourth element of SK, PermutationKey, to get the PermutationInput.

PermutationInput = C ⊕ PermutationKey

Next, it splits the PermutationInput into s-bit blocks. Then, to get BlocksIn-
sertionInput, it removes blocks from the positions figuring at the list of in-
serted blocks positions InsertedBlocksPositionsList, that is iterated starting
with the last element as specified in algorithm 4. At last, the XOR oper-
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Figure 3.3: CA-PCS Encryption
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Algorithm 3 CA-PCS Encryption Algorithm
Input: The message M
Output: The ciphertext C and the secret key SK
Begin
s← random(2, 16) . random integer 2 < s ≤ 16
ruleSet← {30, 90, 150, 30, 180, 45, 90, 150}
M ← CAEvolution(M, ruleSet, 64)
CAKey ←M ⊕ InsertionBlocksInput
PermutationInput← DivideIntoBlocks(InsertionBlocksInput, s)
n← sizeOf(PermutationInput)
m← NumberOfDifferentBlocks(PermutationInput)
Partition← ToPartition(PermutationInput)
ListOfBlocks← DifferentBlocks(PermutationInput) . {Bl1, ..., Bld}
IC ← ComputeIdealCardinality(Partition)
for 1 ≤ j ≤ d do

while Cardinal(OccLj)< IC do
PermutationInput ← insert(Blj , PermutationInput,

randomPosition,OccLj , ListOfInsertedBlocksPositions)
end while

end for
π ← generateRandomPermutation({1, 2, ..., d})
Ciphertext← applyPermutation(PermutationInput, permutation)
PermutationKey ← Ciphertext⊕ PermutationInput
SK ← {CAKey, s, InsertedBlocksPositionsList, PermutationKey}
End
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ation is applied to the BlocksInsertionInput and the CAKey to obtain the
plaintext M.

M = BlocksInsertionInput⊕ CAKey

Figure 3.4 and Algorithm 4 details the decryption process of CA-PCS.

Figure 3.4: CA-PCS Decryption
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Algorithm 4 Decryption algorithm
Input:The secret key SK and the ciphertext C
Output: The message M
Begin
PermutationInput← C ⊕ PermutationKey
SplitPermutationInput← DivideIntoBlocks(PermutationInput, s)
for k from sizeOf(InsertedBlocksPositionsList) to 1 do

BlocksInsertionInput ← Remove(SplitPermutationInput,
InsertedBlock PositionsList[k])
end for
M ← BlocksInsertionInput⊕ CAKey
End

3.5 Results & Security Analysis

This section displays the statistical tests and the confusion and diffusion
properties of CA-PCS compared to the AES.

Dieharder Test

This part investigates the randomness properties of CA-PCS using the dieharder
tests battery. Statistical based attacks are hard to succeed if the bahevior
of CA-PCS is indistinguishable from random functions. The CA-PCS, PCS,
and AES encryption algorithms are processed repetitively to generate three
files of 10Mb. Then, the average p-values of the sequences are measured.
From table 3.1, in the case of CA-PCS, the p-values are between 0.2342 and
0.92. The PCS corresponding p-values range from 0.10 to 0.91. For AES,
the p-values are bounded by 0.005 and 0.95. As a result, PCS, CA-PCS,
and AES pass the test as all the values are in the range [α, 1− α], where α
is equal to 0.005. Nevertheless, the results of CA-PCS are better in compar-
ison to PCS and AES. Since the difference between the lower bound p-value
of CA-PCS and α is 0.2292, and between the upper bound and 1-α is 0.082.
While for PCS, 0.0975 is the difference between the lower bound and α, and
0.0857 is the difference between the upper bound and 1-α. Also, for AES,
the difference between the lower bound and α is 0.0008, and the difference
between the upper bound and 1-α is 0.0502.
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Table 3.1: Dieharder Results of CA-PCS, AES, and PCS

Tests CA-PCS P-values AES P-values PCS P-values
Diehard birthdays 0.5357 0.0836 0.8625
Diehard operm5 0.4946 0.0967 0.8971
Diehard rank 32x32 0.5887 0.7711 0.1402
Diehard rank 6x8 0.7192 0.6936 0.3240
Diehard bitstream 0.4615 0.6593 0.4530
Diehard opso 0.5559 0.7204 0.3559
Diehard oqso 0.5092 0.6363 0.1898
Diehard dna 0.5686 0.3142 0.2811
Diehard count 1s str 0.4114 0.8797 0.8988
Diehard count 1s byt 0.6995 0.8451 0.7611
Diehard parking lot 0.2622 0.8514 0.773
Diehard 2dsphere 0.4555 0.5370 0.7910
Diehard 3dsphere 0.6735 0.3863 0.2487
Diehard squeeze 0.6888 0.8732 0.7991
Diehard sums 0.9130 0.0058 0.1779
Diehard runs 0.2342 0.3810 0.7702
Diehard craps 0.7063 0.8630 0.9093
Marsaglia tsang gcd 0.6682 0.7107 0.4046
Sts monobit 0.5815 0.6915 0.54319
Sts runs 0.4394 0.4656 0.1070
Sts serial 0.6616 0.5643 0.6388
Rgb bitdist 0.6689 0.5724 0.4844
Rgb minimum distance 0.5515 0.3475 0.4441
Rgb permutations 0.6639 0.6588 0.4145
Rgb lagged sum 0.5074 0.5363 0.6067
Rgb kstest test 0.2840 0.4934 0.1025
dab bytedistrib 0.5920 0.4758 0.2636
dab dct 0.8842 0.9448 0.8735
dab filltree 0.4757 0.4721 0.5212
dab filltree2 0.8987 0.7090 0.3727
dab monobit2 0.8994 0.0507 0.6055

Confusion and Diffusion Tests

This part exposes the confusion and diffusion properties of CA-PCS and
AES. These properties are indispensable for symmetric systems. As de-
tailed before, the confusion represents the concealed relation of the secret
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key with the ciphertext referring to the avalanche effect. In short, if chang-
ing one bit of the secret key produces about 50% of the ciphertext bits, then
the confusion test is successful. As well, the diffusion displays the secret
relationship of the plaintext with the ciphertext using the avalanche effect
test. In other terms, if the alteration of one bit in the plaintext produces
a change of 50% in the ciphertext bits, then the diffusion test is satisfying.
Figure 3.5 presents the comparison of CA-PCS with AES in terms of the
confusion test. From this figure, it is perceptible that the proportion of
altered bits in the ciphertext is nearly 50% for both systems. More specifi-
cally, the ranges of values for CA-PCS and AES respectively are [40%, 61%]
and [36%, 61%]. From these ranges, both systems fulfill the confusion test.
However, the values of CA-PCS are considered better than those of AES.

Figure 3.5: Confusion Test of CA-PCS and AES

Figure 3.6 presents the comparison of CA-PCS with AES concerning the
diffusion test. Notably, changing one bit in the plaintext provides a modi-
fication of almost 50% of the ciphertext bits for both systems. The ranges
of values for CA-PCS and AES respectively are [41%,61%] and [37%,67%].
From these values, both systems passe the diffusion test. However, CA-PCS
has better values. Consequently, it has better diffusion property compared
to AES.
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Figure 3.6: Diffusion Test of CA-PCS and AES

Encryption and Decryption Time Of CA-PCS, AES and PCS

This part provides a comparison of CA-PCS with the previous version PCS
and AES systems in terms of the time of encryption and decryption. Figure

Figure 3.7: Encryption and decryption time of CA-PCS, PCS and AES

3.7 displays that the encryption algorithm of CA-PCS is faster than both
PCS and AES encryption algorithms. These latter spend the same amount
of time to encrypt. On the other hand, the decryption algorithms of all
systems, namely, CA-PCS, PCS, and AES, requires the same amount of time
to process. Consequently, CA-PCS is the system providing better results.

Frequency Analysis

This section provides the study of the PCS and the CA-PCS encryption sys-
tems concerning the frequency analysis of the outputs. As displayed in the
PCS design, the motivation is to provide a ciphertext having an equilibrium
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Figure 3.8: Frequency of blocks before and after encryption for CA-PCS
and PCS

in the distribution of blocks. In other words, these blocks appear at the
same rate, which makes the frequency analysis pointless. As CA-PCS is an
extended version of PCS, this fact is still respected. CA-PCS and PCS differ
in almost all the steps. CA-PCS starts with the CA evolution step. Next,
the calculation of the ideal cardinal. Afterward, comes the blocks’ insertion.
And finally, the permutation is applied to the output of the previous step.
In PCS, the ideal cardinal value produces two possible decisions, whether
to insert or remove a block. CA-PCS design aims to offer better confusion
and diffusion, as well as robustness to linear and differential attacks. Figure
3.8 presents the block analysis of frequency for the outputs of CA-PCS and
PCS regarding the plaintext. From this figure, we noticed that an adversary
could not have any information using this attack. Consequently, this latter
is unsuccessful.

Cryptographic Properties of The Ruleset Used in the CA evolution

This section displays the cryptographic properties of the ruleset involved in
the CA evolution step. Explicitly, the nonlinearity, the algebraic degree, the
correlation immunity, the resiliency, and the balancedness. The application
of the ruleset {30, 90, 150, 30, 180, 45, 90, 150 } is performed alternatively on
the cells of the CA. However, the study of the hole CA space is not practical.
Consequently, the study is limited to the ruleset applied for three iterations.
Tables 3.2 to 3.6 expose how the cryptographic properties change through
multiple clock cycles.

The values of the nonlinearity, as well as the algebraic degree, are consid-
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Table 3.2: Nonlinearity

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 0 0 2 2 2 0 0
2 8 8 8 8 8 8 8 8
3 32 48 48 48 28 44 48 48

Table 3.3: Algebraic Degree

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 1 1 2 2 2 1 1
2 3 2 2 3 3 3 2 2
3 4 3 3 4 5 4 3 3

Table 3.4: Resiliency

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2
2 0 2 2 0 1 0 2 2
3 0 0 0 0 0 0 0 1

Table 3.5: Correlation Immunity

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2
2 0 2 2 0 1 0 2 2
3 0 0 0 0 0 0 0 1

Table 3.6: Balancedness

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

erably growing with iterations. Moreover, the balancedness remains during
the three iterations. Consequently, due to the high nonlinearity and its im-
pact on both correlation immunity and resiliency, their values reduce with
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iterations. Nonlinearity, algebraic degree, and balancedness are essential
properties for different cryptographic systems. These properties strengthen
the system and make it robust against linear and differential attacks, which
exploit the linearity of the system and try to find a linear approximation.
Also, statistical attacks are hard to succeed.

Brute-Force Attack

The adversary, in this type of attack, tries to check out every possible key to
find out a valid plaintext via the ciphertext processing [22]. Hence, to ensure
a specific level of security, the size of the key is the parameter specifying this
latter. If the key is large, then more time and resources are required to find
the appropriate key. In other words, except in the case of the availability
of quantum computers, this attack is not successful. The key in symmet-
ric systems should include at least 128 bits to provide the lowest security
level required. To guarantee long term security if quantum computers are
available, the size of the key must be at least 256 bits. As AES comprises
three possible variants, the user could decide which security level is desired
(AES-128, AES-192, and AES-256). The PCS key size is longer than 256
bit, as seen in the previous chapter. As well, the CA-PCS key size is not
less than 256 bits too. Consequently, even in the presence of quantum com-
puters, this attack could not provide a valid plaintext. The security level
ensured by AES, PCS, and CA-PCS is presented in table 3.7.

Table 3.7: Brute Force Attack of AES, PCS and CA-PCS

Encryption
schemes

AES-128 AES-192 AES-256 PCS CA-PCS

Key
length(b)

128 192 256 ≥ 256 ≥ 256

# possible
keys

2128 2192 2256 ≥ 2256 ≥ 2256

Linear and Differential Attacks

The linear attack, a known-plaintext attack, investigates a set of plain-
texts and ciphertexts linear approximations [74]. The differential attack is
a chosen-plaintext attack that explores the differences of plaintexts with ci-
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phertexts [75]. These attacks should be impractical for a symmetric system,
which must display good confusion through the nonlinear building blocks
making the system robust against these attacks. Typically, in block ci-
phers, the S-boxes provide this feature. Also, good CAs could be involved
to achieve the same objective. The CA-PCS design comprises a CA evo-
lution step involving a CA ruleset with high nonlinearity. This property
makes these attacks hardly achievable.

3.6 Conclusion

This chapter presents an extended version of PCS comprising other features
making the study of other attacks possible and practical. It is titled CA-
PCS and involves a hybrid cellular automaton and a random permutation
to ensure better security compared to PCS. Each building block influences
the strength of CA-PCS. For instance, the ruleset used in the CA evolution
produces better confusion and statistical parameters, as well as resistance to
attacks, namely the linear and differential attacks. According to the results,
the randomness and balancedness provide robustness against statistical at-
tacks. CA-PCS prevents linear and differential attacks since the nonlinearity
and the algebraic degree are high. Also, brute force attacks are challenging.
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Chapter 4

CFA : A Cellular Automata
Based Cryptographic
PseudoRandom Number
Generator

4.1 Introduction

Random numbers are useful in different cryptographic applications such as
session keys, initial vectors, seeds, salts, nonces, and others. To generate
them, a Truly Random Number Generator (TRNG), which makes use of
physical sources of randomness, is required. Nevertheless, not all applica-
tions could use them because of cost purposes. Therefore, a cryptograph-
ically secure PRNG, which generates sequences that are indistinguishable
from random sequences, is an adequate candidate to fix this issue. It is a
challenging task to design a cryptographic PRNG with a high-security level
where all the cryptographic properties are satisfying. It results from the im-
provement of cryptanalysis methods and certain conflicting cryptographic
properties, namely the nonlinearity and resiliency [19]. Consequently, the
designers should find a trade-off between the security level and these proper-
ties depending on their needs. This chapter presents a new family of Pseudo-
Random Number Generators (PRNGs) based on three building blocks, a
hash function, a Cellular Automaton(CA), and a block cipher. The gen-
eral design includes a seeding and a reseeding mechanism producing the
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unpredictability of the PRNG initial state. The system is modular and al-
lows the modification or the adaptation of one or more modules according
to the application or the user’s requirements or the degree of randomness.
Each building block in the system affords its characteristics to provide a
high-quality of randomness, a high level of security, and adequate crypto-
graphic properties. The choice of the rules used in the CA-based building
block follows recommendations, also, the evaluation of their cryptographic
properties and the application of statistical tests to conclude if the proposed
design provides sequences with high quality of randomness. In this chapter,
this design is independently used to generate random sequences. It could
also be associated with larger systems such as stream ciphers. The rest of
this chapter is organized as follow: In section 4.2, CA-based PRNGs are
given. Next, in section 4.3 the general scheme of the generator and a specific
implementation are described. The experimental results and an analysis of
that specific implementation follows in section 4.4.

4.2 Related Work

The first CA-based PRNG for cryptographic use was proposed by Wolfram
in [76], in which he employed a one-dimensional uniform CA evolving with
the nonlinear rule 30 and r=1. Later, in 1989, Hortensius et al. [77] designed
a PRNG involved in a built-in self-test based on non-uniform CAs using the
nonlinear rules 30,45 and the linear ones 90,150. They have also studied the
uniform CA rule 30. In 1994, Nandi et al.Nandi1994 studied hybrid CAs and
suggested five rulesets from the combination of the linear rules 51, 153, and
195. The ruleset found are R1=153, 153, 153, 153, 51, 51, 51, 51, R2= 195,
195, 195, 195, 51, 51, 51, 51, R3=51,51,153, 153, 153, 153, 51, 51, R4=51,
51, 195, 195, 195, 195, 51, 51, R5=51, 153, 153, 153, 153, 153, 153, 51.
Later in 1999, Tomassini et al [79] used an evolutionary method called cel-
lular programming to find the hybrid ruleset 90, 105, 150, 165 depending on
the entropy level provided. Afterward, Guan et al. proposed the adoption
of controllable CAs. These latter use a sort of signals to control the cell’s
transitions each clock cycle for more unpredictability [80]. They also made
use of self-programmable CAs SPCAs involving a control signal that picks
the rules in the evolution process. They evaluated the rules 90, 165 and 150,
105 adopted by SPCAS, and suggested that they provide a high quality of
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randomness[81]. In[82] Seredynski et al. applied cellular programming to a
set of 47 rules to determine the appropriate ones. In the case of r=1, the
selected rules are 86, 90, 101, 105, 153, 165. Lately, Bhattacharjee et al.[83]
studied a 3-state One-dimensional CA with r=1. The rule found to be good
for the random generation is 120021120021021120021021210. All these de-
signs are vulnerable to attacks or had some limitations. This area of study
remains fresh and needs more attention for better advance. In this chapter,
the design combines a non-uniform one-dimensional CA with other crypto-
graphic primitives to increase the robustness and the randomness degree of
its output.

4.3 CFA Generator Design

4.3.1 General Design

The motivation of the general CFA scheme was to establish a versatile PRNG
system. In simple words, it could be adjusted depending on the system’s
needs. As well, a larger design may use it. That is to say, each build-
ing block is independent, which means that it can use previously devel-
oped cryptographic primitives, as it can involve new ones. Moreover, CFA
was designed in a way to be secure against many attacks that could face a
PRNG.Moreover, CFA takes into account further conditions, such as flexi-
bility, efficiency, usability, and simplicity. The fundamental components of
the CFA general design are as follows:

• A seed file: it comprises sequences with high entropy.

• A reseed trigger tool: it serves to start the mechanism of reseeding.

• A reseed technique: it refreshes the seed file.

• A generator algorithm: it provides random output it using a hash
function, a block cipher, and an additional function to produce the
output.

Figure 4.1 shows the fundamental components of the general design of CFA.
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Figure 4.1: CFA General Design

Seed File

The seed file contains high entropy sequences that will be adopted to gener-
ate the output of the PRNG. These sequences originate from entropy sources
or a PRNG with high-quality output according to accessible sources. Flash
memory comprises the seed file containing those sequences, which are sup-
plied to the generation algorithm using the reseed technique if necessary.

Reseed Trigger

The reseed trigger manages when the reseeding operation is indispensable
based on a specific parameter, such as the number of generated streams or
the PRNG’s period. Besides, the reseeding could be actuated by this tool if
an adversary made the PRNG in a compromised state.

Reseed Technique

This technique is essential to refresh the seed file. If the reseed trigger evokes
the reseeding process, then the seed file is updated by including a newly
generated high-entropy random sequence. After the use of all the sequences
of the seed file, these later are removed and new ones are provided.
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Generator Algorithm

It is the design’s fundamental part. This generator makes use of a cellu-
lar automata with specific characteristics in addition to two cryptographic
primitives to provide a high-entropy random bitstream. The rest of this
section describes the general form of the generator and its particular imple-
mentation.

4.3.2 Description

The CFA generator requires three fundamental elements:

• A secure hash function h(x): It should be a one-way function and
strong second pre-image attacks, as well as Birthday attacks.

• A CA function Evol(x): It evolves the CA iteratively and provides
suitable characteristics to the PRNG.

• A block cipher E(x): It should have satisfying statistical properties
and security against attacks.

The security level provided by CFA is determined by the min(m,k), such
that m is the size of the h(x) output, and k is the key length of E(x). Figure
4.2 outlines the CFA generator involving h, Evol, and E.

A Specific Implementation: CFA-256

The fundamental components of CFA-256 are:

• A seed provided using the Bouncy Castle Java library.

• The hash function SHA-3-256 (Sponge construction)

• A hybrid 3-neighborhood one-dimensional CA.

• The encryption block AES-256-CTR.

A) Seed File Generation
Firstly, the CFA-256 design generates random seeds by the Bouncy Castle
Java library’s class ThreadedSeedGenerator. The seed file is filled by 1024-
bit seeds as long as required. Next, the seed file is accessed to take seed as
input to the hash function SHA-3.
B) SHA-3
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Figure 4.2: CFA generator

Differently from SHA-1 and SHA-2, which are based on the Merkle-Damgard
structure, SHA-3 uses a sponge function. This latter comprises three phases,
a preprocessing step where the message is split into blocks and padded if
needed. Next comes the absorbing phase in which the resulting blocks are
manipulated by the transformation function. At last, the squeezing phase
provides the digest using the same function f. The transformation function
f is a permutation of 24 rounds comprising the θ, ρ, Π, χ, and ι operations.
Figure 4.3 illustrates the generation of the SHA-3 digest, where the bitrate

Figure 4.3: SHA-3 Hash Function

r refers to the size of the input blocks, and the capacity c that is dependent on
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the SHA-3 level of security, such that c=2 x output size. Both parameters
sum to the SHA-3 state width b=1600. SHA-3 could produce, from an
arbitrary-length message, digests of different sizes (i.e., 224, 256, 384, and
512 bits). In our case, the CFA-256 design includes the SHA-3 version
producing a 256-bit digest, where the bitrate r equals 1088, and the capacity
value c is 512. Table 4.1 [10] presents the values of the different parameters
for SHA-3 depending on the possibles output length.

Table 4.1: SHA-3 Parameters [13]

Digest Size 224 256 384 512
Message Size No max No max No max No max
Block Size 1152 1088 832 576
Word Size 64 64 64 64

Number of Rounds 24 24 24 24
Capacity c 448 512 768 1024

Collision Resistance 2112 2128 2192 2256

Second Preimage Resistance 2224 2256 2384 2512

This step outputs a digest of 256 bits, which is input to the CA evolution
step.

Step 2: CA Evolution

In this step, a non-uniform CA uses the ruleset R = { 30, 90, 150, 30, 110,
30, 90, 150} to produce the output. According to the instructions of [19],
the combination of linear and non-linear rules forms this ruleset. All the
cells evolve through the use of R successively for 128 clock cycles. Figure
4.4 illustrates one iteration of the CA evolution using R.

Then, the output of this step goes through the AES encryption with
CTR mode.

Step 3: AES Encryption

At this stage, the CA evolution’s output goes through the AES encryption
process to produce random bitstream, which is considered the ciphertext
depicted in Figure 4.5. In brief, the AES encryption starts with the bitwise
XOR of the plaintext with the first round key, then the round function that
includes four transformations is applied 13 times. Lastly, it follows the last
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Figure 4.4: CA Evolution Step
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Figure 4.5: AES-256 Encryption [2]

round, which has a minimal difference compared to the previous rounds, to
get the ciphertext.

CFA-256 Algorithm

Algorithm 5 presents how bitstreams of high entropy are supplied to the
seed file. Algorithm 6 depicts the bitstreams generation through CFA-256.
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Algorithm 5 Seed file creation/filling
Input: The number of desired sequences nbOfSeq
Output: The seed file seedFile
Begin
if seedFile exists then

Override(seedF ile)
else

Create(seedF ile)
end if
n← 0
while n < nbOfSeq do

Seq[n]← ThreadedSeedGenerator(128)
while H(seq[n]) ≤ 0.9 do

Seq[n]← ThreadedSeedGenerator(128)
end while
seed[n]← seq[n]
n← n+ 1

end while
seedF ile← seed
return seedF ile
End

4.4 Results and Security Analysis

4.4.1 Security

This section presents the security of the proposed PRNG. A cryptographic
primitive-based PRNG is as secure as its components[84]. Among the most
common reasons producing a vulnerable PRNG, follows:

Entropy overestimation and guessable starting points

This kind of problem is possible in the absence of the seed/reseed process[86].
To prevent this type of attack, CFA-256 uses a seed file and a seeding/reseeding
process. The bitstreams stored in the seed file have satisfying entropy are
fed to the hash function. Also, the seed/reseeding operation makes the
PRNG’s state renewable periodically or at request if needed. Consequently,
it is not practical to try finding the initial configuration of the PRNG. While
in the other PRNGs proposed in [78],[79]and [82], no seed/reseed process is
present. Thus, these PRNGs are vulnerable to such situations.
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Algorithm 6 Pseudo-code CFA-256
Input: The seed seed
Output: The Random bits (256 bits) outputCFA
Begin
j ← (−sizeOf(seed)− 2) mod 256
ruleSet← {30, 90, 150, 30, 110, 30, 90, 150}
paddedSeed← seed10j1
s← SHA3(paddedSeed, 256)
s[0]← s[256]
s[257]← s[1]
for 1 ≤ it ≤ 128 do

for 1 ≤ i ≤ 256 do
k ← i− 1 modulo sizeOf(ruleSet)
if (k == 0)(k == 3)(k == 5) then . 30

evolution[i]← s[i− 1]⊕ (s[i] + s[i+ 1])
else if (k == 1)(k == 6) then . 90

evolution[i]← s[i− 1]⊕ s[i+ 1]
else if ((k == 2)(k == 7)) then . 150

evolution[i]← s[i− 1]⊕ s[i]⊕ s[i+ 1]
else . 110

evolution[i] ← s[i − 1] ⊕ s[i + 1] ⊕ s[i − 1].s[i + 1] ⊕ s[i −
1].s[i].s[i+ 1]

end if
end for

end for
outputCFA← AES256(evolution)
End
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Chosen-Input Attacks

This type of attack exploits the fact that PRNG’s inputs are not pre-
processed before being fed to its state. To prevent these attacks, CFA-256
includes a secure hash function, namely SHA-3. However, no technique
or process prevents or reduces the possibility of chosen-input attacks in
[78],[79]and [82].

Side-Channel Attacks

To avoid these types of attacks, CFA-256 involves a non-uniform CA, which
includes thoughtfully selected linear and nonlinear rules having satisfying
cryptographic properties. According to the tables presented in the cryp-
tographic properties section, CFA-256 displays better characteristics than
[78],[79]and [82].

Direct Cryptanalytic attacks

Direct Cryptanalytic Attacks are avoided in CFA-256 by the inclusion of a
robust block cipher together with a secure hash function. It is important to
note that a state compromise related attack implies that the PRNG state
should change. In [78],[79]and [82], there is no method involved to lower the
threat of direct cryptanalytic attacks.

4.4.2 Results

Cryptographic Properties of CA

This section presents the cryptographic properties of the CA evolution step
ruleset 30,90,150,30,110,30,90,150. Since it is impractical to study these
properties for a 256-cells CA, these results were conducted for an 8-cells
CA (i.e., the size of the ruleset) during three clock cycles, to explore the
cryptographic properties variation from one iteration to the other. The
other cells of the 256-cells CA evolve using the same ruleset. So, from the
study of the ruleset(8-cells CA), one could conclude the properties of the 256-
cells CA. In the tables, the xis denote the CA cells. The following tables
4.2 to 4.6 illustrate the variation of the values of the algebraic degree, the
nonlinearity, the correlation immunity, the resiliency, and the balancedness.
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Table 4.2: Nonlinearity

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 0 0 2 1 2 0 0
2 8 8 8 6 10 8 8 8
3 32 48 52 36 40 48 48 48

Table 4.3: Algebraic Degree

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 1 1 2 3 2 1 1
2 3 2 2 4 4 3 2 2
3 4 3 4 5 5 4 3 3

Table 4.4: Resiliency

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 -1 0 1 2
2 0 2 2 0 -1 -1 2 2
3 0 0 0 0 -1 -1 -1 1

Table 4.5: Correlation Immunity

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2
2 0 2 2 0 0 1 2 2
3 0 0 0 0 0 2 0 1

These tables show the increase of nonlinearity and algebraic degree with
iterations. On the other hand, the correlation immunity and resiliency de-
crease through evolutions. Also, the balancedness remains for the major-
ity of cells from one iteration to another. Accordingly, the rules involved
are satisfying regarding cryptographic properties. In comparison with the
PRNGs proposed in [78],[79]and [82], the results are presented in tables for
the PRNG presented in this chapter is adequate for cryptographic applica-
tions.
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Table 4.6: Balancedness

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X × X X X

2 X X X X × × X X

3 X X X X × × × X

Seredynski [82] Ruleset Cryptographic Properties

Ruleset: 86, 90, 101, 105, 153, 165 The following tables present the variation
of the cryptographic properties corresponding to the ruleset provided by the
CA-based PRNG defined by Seredinsky [82].

Table 4.7: Nonlinearity of [82]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 0 2 0 0 0 2 0
2 8 12 8 8 0 0 8 8
3 32 48 48 32 32 32 32 32

Table 4.8: Algebraic Degree of [82]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 1 2 1 1 1 1 1
2 2 2 3 2 1 1 3 2
3 2 3 4 3 2 3 3 3

Tomassini [79] Ruleset Cryptographic Properties

Ruleset: 90,105,150,165 The following tables present the different crypto-
graphic properties of the ruleset employed by the CA-based PRNG specified
by Tomassini [79].

103



CHAPTER 4. CFA : A CELLULAR AUTOMATA BASED
CRYPTOGRAPHIC PSEUDORANDOM NUMBER GENERATOR

Table 4.9: Correlation Immunity of [82]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 0 2 1 1 0 1
2 1 0 0 0 1 2 1 0
3 1 0 0 1 1 1 0 1

Table 4.10: Resiliency of [82]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 0 2 1 1 0 1
2 1 0 0 0 1 2 1 0
3 1 0 0 1 1 1 0 1

Table 4.11: Balancedness of [82]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X
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Table 4.12: Nonlinearity of [79]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

Table 4.13: Algebraic Degree of [79]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

Table 4.14: Correlation Immunity of [79]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 2 2 1 1 2 2 1
2 2 3 3 2 2 3 3 2
3 3 4 2 4 4 2 2 3

Table 4.15: Resiliency of [79]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 2 2 1 1 2 2 1
2 2 3 3 2 2 3 3 2
3 3 4 2 4 4 2 2 3

Table 4.16: Balancedness of [79]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X
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Nandi [78] Rulesets Cryptographic Properties

The following tables display the various cryptographic properties of the first
ruleset used in the CA-based PRNG defined by Nandi [78].
Ruleset 1: {153,153,153,153,51,51,51,51}

Table 4.17: Nonlinearity of R1 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

Table 4.18: Algebraic Degree of R1 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

Table 4.19: Correlation Immunity of R1 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 0 0 0 0
2 1 1 1 1 0 0 0 0
3 3 3 3 2 0 0 0 0

Table 4.20: Resiliency of R1 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 0 0 0 0
2 1 1 1 1 0 0 0 0
3 3 3 3 2 0 0 0 0
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Table 4.21: Balancedness of R1 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

The following tables illustrate the cryptographic properties of the second
ruleset applied in the CA-based PRNG specified by Nandi [78].
Ruleset 2:{195,195,195,195,51,51,51,51}

Table 4.22: Nonlinearity of R2 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

Table 4.23: Algebraic Degree of R2 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

Table 4.24: Correlation Immunity of R2 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 0 0 0 0
2 1 1 1 1 0 0 0 0
3 1 1 3 3 0 0 0 0
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Table 4.25: Resiliency of R2 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 0 0 0 0
2 1 1 1 1 0 0 0 0
3 1 1 3 3 0 0 0 0

Table 4.26: Balancedness of R2 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

The following tables depict the different cryptographic properties of the
third ruleset used in the CA-based PRNG specified by Nandi [78].
Ruleset 3: 51,51,153,153,153,153,51,51

Table 4.27: Nonlinearity of R3 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

Table 4.28: Algebraic Degree of R3 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
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Table 4.29: Correlation Immunity of R3 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 1 1 1 1 0 0
2 0 0 1 1 1 2 0 0
3 0 0 3 3 2 1 0 0

Table 4.30: Resiliency of R3 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 1 1 1 1 0 0
2 0 0 1 1 1 2 0 0
3 0 0 3 3 2 1 0 0

Table 4.31: Balancedness of R3 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

The following tables represent the cryptographic properties of the fourth
ruleset utilized in the CA-based PRNG defined by Nandi [78].
Ruleset 4: 51,51,195,195,195,195,51,51

Table 4.32: Nonlinearity of R4 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
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Table 4.33: Algebraic Degree of R4 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

Table 4.34: Correlation Immunity of R4 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 1 1 1 1 0 0
2 0 0 0 1 1 1 0 0
3 0 0 1 2 3 3 0 0

Table 4.35: Resiliency of R4 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 1 1 1 1 0 0
2 0 0 0 1 1 1 0 0
3 0 0 1 2 3 3 0 0

Table 4.36: Balancedness of R4 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

The following tables present the cryptographic properties of the fifth
ruleset employed by the CA-based PRNG specified by Nandi [78].
Ruleset 5: 51, 153, 153, 153, 153, 153, 153, 51
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Table 4.37: Nonlinearity of R5 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

Table 4.38: Algebraic Degree of R5 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

Table 4.39: Correlation Immunity of R5 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 1 1 1 1 1 0
2 0 1 1 1 1 1 2 0
3 0 3 3 3 3 2 1 0

Table 4.40: Resiliency of R5 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 1 1 1 1 1 0
2 0 1 1 1 1 1 2 0
3 0 3 3 3 3 2 1 0

Table 4.41: Balancedness of R5 [78]

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X
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4.4.3 Cellular Automata Evolutions

The following table compares the CA evolution step of the proposed de-
sign (CFA-256) with the other CA-based PRNGs specified by Nandi [78],
Tomassini [79], and Seredinsky [82] according to the space-time diagram,
which is a graphical display of the CA conduct. It shows if there is a spe-
cific template followed by the CA in different situations. The 256-cells CAs
corresponding to the PRNGs evolves 128 clock cycles. Table 4.42 displays
that the rulesets adopted in [78] follow repeated templates. The rest designs
[79], [82], and CFA-256 do not produce a reproduction of any particular pat-
tern and have a uniform distribution of ones and zeros.

Table 4.42: Evolutions of Different Designs

CFA CA [78] R1 [78] R2 [78] R3

[78] R4 [78] R5 [79] [82]

4.4.4 Avalanche Effect

Feistel was the first to define the avalanche effect [87] that is one of the most
important properties that should satisfy all cryptographic systems [22]. The
rate of variation displayed in the output bits by minor modification of the
input bits defines this concept[22]. Its mathematical expression figures in
the following formula:

∀I, I ′H(I, I ′) = 1, avalanche(I ′) = H(F (I), F (I ′))
size(F (I)) × 100
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Figure 4.6: Avalanche Effect

where I is the original input, and I’ is the input with one bit changed com-
pared to I, and F is to the function that the I and I’ undergo such that F is
CFA-256 in this chapter.

The avalanche effect test of CFA-256 involves the following steps. At
first, one hundred of 1024-bit of high entropy seeds are generated by the
threaded seed generator provided by the bouncy castle library. Next, the
outputs corresponding to each seed are computed {O1, ..., O100}. Also, to
each seed, one bit is altered each time to compute its outputs, {{O1

1, O2
1,

..., O1024
1 }, ..., {O1

100, O2
100, ..., O1024

100 }}. Afterward, the hamming distances
Hij = H(Oj , O(i)

j ) 1 ≤ i ≤ 1024, 1 ≤ j ≤ 100 of the outputs of the changed
seeds {{O1

1, O2
1, ..., O1024

1 }, ...,{O1
100,O2

100, ..., O1024
100 }} and the original ones

{O1, ..., O100}. Then for each bit, the average of the hamming distances

is computed AvgHi =
∑100

j=1 Hij

100 . Finally, the average avalanche effect is
determined by the given formula. Figure 4.6 displays the results. The
maximum percentage of the variation in the output is 54.29%, the minimum
value is 44.31%, and the average is 49.08%. Accordingly, an alteration of one
bit in the input produces a variation of approximately 50% of the output
bits. Consequently, CFA-256 has a satisfying diffusion property.

4.4.5 NIST Statistical Test Suite

The National Institute of Standards and Technology designed the NIST Sta-
tistical Test Suite that comprises 15 tests to evaluate the PRNGs’ behavior
and their statistical properties. For each sequence, the test algorithms com-
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pute the p-value, which refers to the probability that a TRNG was used to
generate it. More specifically, the p-values estimate the distance between
the corresponding bitstream and random ones. The results of the tested
algorithms are successful if the p-values are in the range [α, 1−α], where α
is the significance level, α = 0.01. The NIST report [23] more details about
this test suite. The CFA-256 algorithm generates a file, provided to the test
suite, containing a 10-Mb bitstream of 256-bit sequences to evaluate its ran-
domness and statistical properties. Table 4.43 displays the tests’ results.
From these results, applicable tests were successful since the p-values range
between 0.3946 and 0.7857. Some tests are unapplicable because of param-
eter constraints, such as the size of the sequences. The size of the CFA-256
output is 256 bits, which is small to apply some tests. For instance, the
Random Excursions Test requires a 1 000 000 bit sequence.

Table 4.43: NIST Statistical Test Suite results

Test name p-value Pass?
The Frequency (Monobit) Test 0.5884 X
Frequency Test within a Block 0.4362 X
The Runs Test 0.5381 X
Tests for the Longest-Run-of-Ones in a Block 0.5448 X
The Binary Matrix Rank Test - N/A
The Discrete Fourier Transform (Spectral) Test 0.4079 X
The Non-Overlapping Template Matching Test - N/A
The Overlapping Template Matching Test - N/A
Maurer’s "Universal Statistical" Test 0.3946 X
The Linear Complexity Test 0.7515 X
The Serial p-value1 Test 0.7857 X
The Serial p-value2 Test 0.7030 X
The Approximate Entropy Test 0.7335 X
The Cumulative Sums (Cusums) Forward Test 0.6292 X
The Cumulative Sums (Cusums) Reverse Test 0.7458 X
The Random Excursions Test - N/A
The Random Excursions Variant Test - N/A

4.4.6 Dieharder battery of tests

This section presents the dieharder results of CFA-256 and the other CA-
based PRNGs presented in [78],[79], and [82]. The significance level in
dieharder equals 0.005, so the p-values should stand in the range [0.005,
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0.995] to consider that the system passes a test. Table 4.44 gives the re-
sults, where the bold values represent the failed tests. For CFA-256, all
the tests were successful, while the other systems fail several tests. Conse-
quently, CFA-256 is a better candidate to generate random sequences.

Table 4.44: DIEHARDER Test Suite Results

Test CFA [78]R1 [78]R2 [78]R3 [78]R4 [78]R5 [79] [82]
1 0.6623 0.9802 0.8421 0.4237 0.3459 0.9768 0.4378 0.2232
2 0.5403 0.4148 0.4755 0.2383 0.5784 0.0202 0.2292 0.6905
3 0.6715 0.8507 0.7957 0.9124 0.4491 0.1362 0.2419 0.3264
4 0.9007 0.4125 0.0002 0.4293 0.9708 0.5195 0.8282 0.1726
5 0.2464 0.9366 0.3630 0.6942 0.1792 0.5380 0.8924 0.6778
6 0.8277 0.0698 0.5419 0.3899 0.6108 0.1515 0.9086 0.0001
7 0.0854 0.8900 0.4643 0.6756 0.2325 0.1522 0.8017 0.5926
8 0.4641 0.7005 0.1575 0.0262 0.2483 0.1222 0.5061 0.5227
9 0.4858 0.3388 0.0116 0.7640 0.6682 0.0060 0.2537 0.9393
10 0.4470 0.9960 0.9675 0.6349 0.1520 0.3032 0.6834 0.1153
11 0.2059 0.7304 0.6101 0.9838 0.3066 0.9427 0.9505 0.2887
12 0.6967 0.7601 0.4023 0.3048 0.3965 0.1029 0.9210 0.3030
13 0.3451 0.8119 0.9807 0.1776 0.8243 0.5984 0.8955 0.7754
14 0.5753 0.8465 0.6718 0.7075 0.7877 0.3422 0.8840 0.0688
15 0.5935 0.0481 0.5318 0.5789 0.2052 0.4397 0.0267 0.0308
16 0.2164 0.9461 0.9868 0.4022 0.1908 0.0285 0.6756 0.2968
17 0.3887 0.7592 0.3333 0.9596 0.6374 0.0793 0.7020 0.8279
18 0.4494 0.4690 0.9998 0.9968 0.7307 0.9139 0.9982 0.4598
19 0.8838 0.9109 0.9752 0.1365 0.2587 0.7308 0.9376 0.4891
20 0.5977 0.1979 0.5449 0.5154 0.6203 0.9966 0.5226 0.0957
21 0.4952 0.1462 0.9974 0.9986 0.2273 0.1311 0.9534 0.6477
22 0.4434 0.3337 0.7738 0.9957 0.7480 0.6602 0.7407 0.2266
23 0.4228 0.0475 0.8172 0.1231 0.9650 0.6983 0.1185 0.0505
24 0.6120 0.4065 0.3640 0.1977 0.0096 0.5224 0.9992 0.9983
25 0.5594 0.8959 0.9992 0.9960 0.9813 0.2458 0.9397 0.9961
26 0.6816 0.3811 0.3171 0.6940 0.0900 0.3590 0.5957 0.6173
27 0.4042 0.2968 0.3197 0.6481 0.9695 0.6180 0.6694 0.3752
28 0.9476 0.7612 0.1361 0.8437 0.9904 06670 0.8914 0.0999
29 0.7678 0.2497 0.1738 0.1829 0.2446 0.7298 0.9967 0.0461
30 0.7613 0.9869 0.1332 0.0001 0.1170 0.3688 0.9254 0.193
31 0.2594 0.6661 0.8481 0.8585 0.4841 0.5552 0.8214 0.7918

4.5 Conclusion

Pseudorandom number generators are applicable in various fields. For cryp-
tographic use, a PRNG should be cryptographically secure. This chapter
provides a PRNGs family following a general design involving three funda-
mental components, a secure hash function, a CA-based building block, and
a strong block cipher. The introduction of these components provides high
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security to the PRNG. The specific design presented here, titled CFA-256,
includes SHA-3, a CA evolving using the ruleset 30,90,150,30,110,30,90,150,
and AES-256. Both SHA-3 and AES-256 are considered secure and give their
properties to CFA-256. As well, the hybrid CA improves the randomness,
confusion, diffusion properties, and security of CFA against known attacks.
According to the results of the statistical tests displayed, the sequences gen-
erated using CFA-256 are statistically independent and appear to be truly
random. Moreover, the avalanche effect and the cryptographic properties
supplied by the CA are satisfying and make CFA-256 a good candidate to
generate pseudorandom sequences.
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Chapter 5

NCASC : 3CASC VS
4CASC Cellular Automata
based Stream Ciphers

5.1 Introduction

Stream ciphers are a class of symmetric cryptographic primitives that makes
use of pseudorandom number generators to produce the keystream, which is
XORed with the plaintext to get the ciphertext. Accordingly, the stream ci-
phers’ security relies on the PRNG robustness. Most PRNGs designs include
linear and nonlinear feedback shift registers. However, those designs are vul-
nerable to fault and correlation attacks, and many others, even if they pro-
vide a high quality of randomness. Cellular automata are good alternatives
to replace feedback shift registers. Due to their characteristics providing fast
encryption, better cryptographic properties, better randomness quality, and
higher security level, CAs, and particularly 3-neighborhood CAs, are parts
of several cryptographic systems. However, 3-neighborhood CAs are still
vulnerable to some attacks. From this perspective, this chapter provides
two CA-based stream ciphers, namely, 3CASC and 4CASC, to study their
behavior and properties, as well as their security. Exploring all the rules of
4-neighborhood CAs is challenging. For this purpose, the 4-neighborhood
rules are determined using 3-neighborhood ones, established referring to the
recommendations of [19], by including a fourth variable. Appendix X de-
tails this process. The general design of the proposed system comprises
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three CAs: a linear CA, a nonlinear CA that uses only nonlinear rules,
and a mixing CA involving both linear and nonlinear ones. The principal
purpose of this chapter’s contribution is to evaluate how the neighborhood
size impacts the statistical characteristics, the cryptographic properties, as
well as the security level. The rest of this chapter is structured as follows:
Section 5.2 presents related works. Next, section 5.3 provides 3CASC and
4CASC design. Section 5.4 presents the security analysis, followed by the
results in section 5.5.

5.2 Related Work

Grain [20] and Trivium ciphers [88] are from the finalists of the eSTREAM
project candidates. Both of them are efficient, simple, and secure designs.
Grain combines an LFSR and an NFSR, while Trivium makes use of a simple
combination of LFSRs. Nevertheless, by the end of the eSTREAM project,
those systems were vulnerable to several attacks, such as correlation attacks
that make use of the relation of the output with the IV fault attacks that in-
vestigate the propagation of an inserted fault, and other attacks. Later, cel-
lular automata were used instead of LFSRs and NFSRs to avoid these types
of attacks. Their cryptographic properties and randomness characteristics
make them a perfect alternative to earlier designs. Wolfram designed the
first Cellular Automata-based stream cipher[64] [1] that makes use of rule 30
to generate the keystream. Later, Meier and Stafflebach applied MS-attack
to this design to show its vulnerability. Afterward, most of the proposed CA-
based stream ciphers involves CAs with the following characteristics (d=1,
r=1, 2-state CA). For instance, NOCAS[89], CASTREAM[90], CAvium[15],
CAR30[91], and CASca[[92] are designed based on Grain[89][91][92] and
Trivium[90] [15]ciphers. In other words, the same design is kept such that
the linear CAs and nonlinear CAs replace LFSRs and NFSRs, respectively.
While a rotational bent function or NMIX[93] is used instead of the filter
function. More constructions with different characteristics, such as r=3/2
or r=2, are proposed in [94],[95], and [96]. The neighborhood extension
to a higher level provided better cryptographic properties and higher qual-
ity of randomness, as well as security against several attacks like algebraic,
fault, and correlation attacks. Because of the complexity and the hardness
of investigating multidimensional CA-based designs, fewer constructions are
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proposed(e.g., [97]).

5.3 General Design

This section outlines the N-CASC system, where N refers to the neighbor-
hood that is either 3 or 4. N-CASC’s general design takes inspiration from
Grain and FResCA, with the purposes of the study of the impact of expand-
ing the neighborhood on the cryptographic properties and security of the
proposed system.

5.3.1 General Scheme

The design of the N-neighborhood Cellular Automata-based Stream Cipher
(N-CASC) shares the same structure with Grain. However, the N-CASC
fundamental components include CAs instead of the feedback registers and
the combining function.

Encryption Scheme

The encryption system comprises two steps, namely the initialization and the
encryption steps. Each one includes three fundamental components, which
are the linear hybrid CA, the nonlinear non-uniform CA, and a hybrid CA
combining both linear and nonlinear rules forming the mixing function. The
rest of this section outlines these steps and their building blocks.

Initialization Phase This step is required to make the initial state of
the system good enough before performing the encryption step. It runs a
specific number of clock cycles all the CAs constituting this step to achieve
a satisfying confusion as well as the cryptographic properties. This step
considers at t0 a first configurationsC0 = (KEY, IV ) of 256 bits, where
the KEY and the IV comprise 128 bits. The bouncy castle java crypto-
graphic library includes the ThreadedSeedGenerator class dedicated to the
generation of random seeds for cryptographic use. Accordingly, this class
produces the KEY and IV for this system. Afterward, the KEY and IV
supplied to the nonlinear non-uniform CA and the linear non-uniform CA,
respectively, are the CAs’ initial state. Then, the CAs evolve, according to
the encryption step defined below, n clock cycles as Cn, which is the initial
state of the encryption step, is not attained yet. The number of rounds n
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is determined through the avalanche effect investigation. For this purpose,
one hundred pairs of (KEY, IV ) are generated, then the initialization step
was applied for different values of n, explicitly 4,8,16,32,64,128. Then the
computation of the avalanche effect average of all the pairs C1

0 , ..., C
100
0 =

{(KEY1, IV1), ...(KEY100, IV100)}, and C1
n, ..., C

100
n is performed. The in-

vestigation results are presented in table 3, which displays that the better
value should be n = 64. This study was made for the 3N version only since
the comparison should consider similar parameters.

Table 5.1: Number of Rounds During Initialization Phase

Number of Rounds Average Avalanche Effect
4 48.80859
8 48.84375
16 48.89062
32 48.94141
64 49.01562
128 48.42187

Encryption Phase The components included in this step are similar to
those involved in the initialization step. A linear non-uniform CA that
evolves according to a ruleset providing to the system a higher cycle length
to avoid running the initialization phase frequently. A nonlinear non-uniform
CA that processes by the use of only nonlinear rules having adequate cryp-
tographic properties to increase the system’s security level. Finally, a non-
uniform CA that serves as a mixing function, it proceeds using a ruleset of
both linear and nonlinear rules producing better confusion to the system.

Figures 5.1 and 5.2 display, respectively, the initialization and the
encryption steps.

As illustrated in Figure 5.2, the ciphertext is the XOR of the keystream
z produced by the evolution of the three CAs involved by the plaintext. The
CAs states update for more keystreams proceeds as follows: the 32 leftmost
and rightmost bits of z are XORed, respectively, to the 32 leftmost bits of
the nonlinear CA and the 32 rightmost bits of the linear CA.

Fundamental components This subsection describes the fundamental
components involved in the encryption/initialization step, as well, the dif-
ference between both versions 3N and 4N, the rules selection, and the CAs
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Figure 5.1: Initialization Step

Figure 5.2: Encryption Step

properties variation and their impact on the security of the global system.
The rules selected for 3CASC found according to the guidance provided by
[19] and [98] . On the other hand, the rules used in 4CASC CAs got from
the ones selected for the 3CASC. More precisely, each of these latter used
in 3CASC is left-skewed to find similar rules for 4CASC, which go through
an evaluation to choose the right one according to the cryptographic prop-
erties, following this order: the nonlinearity, algebraic degree, balancedness,
correlation immunity, and resiliency, in addition to the space-time diagram.

Nonlinear Hybrid CA 3N Version Case
The nonlinear non-uniform CA is a 128-cell two-state one-dimensional

cellular automaton. It evolves n/2=64 clock cycle using the nonlinear rules
{30, 120, 180, 45, 30, 120, 180, 45}. After 64 iterations, all the cells depend
on all the 128 cells, which means that changing any bit influences all the
other cells’ results and consequently high confusion property. At t0, the

121



CHAPTER 5. NCASC : 3CASC VS 4CASC CELLULAR AUTOMATA
BASED STREAM CIPHERS

cellular automaton is updated before encryption by the Cn’s 64 leftmost
bits produced through the initialization step.

4N Version Case
The 4CASC nonlinear Cellular automaton evolves using the ruleset {

43350, 38490, 25500, 22185, 43350, 38490, 25500, 22185 }. In the case of
4-Neighborhood CAs, only n

3 = 43 iterations are necessary to reach high
confusion property, since after 43 evolutions all the 128-cells depend on all
the cells. However, for comparison purposes, n

2 evolutions are done.
This CA is entirely nonlinear in the purpose of enhancing the system’s

security. The nonlinear rules involved in this CA have high nonlinearity, high
algebraic degree, as well as balancedness. These cryptographic properties
guarantee NCASC strength against some attacks, particularly, algebraic and
fault attacks[99].

Linear Hybrid CA 3N Version Case
The 3CASC linear CA is a 128-cells CA that evolves using 90 and 150,

providing high cycle length, n
2 times. Same as the nonlinear CA, this CA

initially contains the 64 rightmost bits of the output of the initialization
step concatenated with the rest of its cells.

4N Version Case
The 4CASC linear CA is a 128-cell CA that process using the ruleset

{24330, 27030} for n
2 clock cycle.

The rules 90, 150 used in 3CASC provide maximal periodicity according
to [16]. Consequently, this CA ensures a long period.

Hybrid CA Mixing Function 3N Version Case
The 3CASC mixing CA is a 128-cell CA involving both linear and non-

linear rules {30, 60, 90, 120, 150, 180, 240, 15, 45} in the evolution process
for n/2 clock cycle. Initially, it takes half of its cells from the linear CA
(64 leftmost cells) and the other half from the nonlinear CA(64 rightmost
cells)..

4N Version Case
The 4CASC mixing CA is a 128-cells CA that proceeds using the rules

{43350, 49980, 42330, 38490, 27030, 25500, 65280, 255, 22185} n/2 clock
cycles. Even though only n/3 iterations are sufficient for better results
compared with the 3-neighborhood version.
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This CA uses both linear and nonlinear rules taking as input the outputs
of linear and nonlinear CAs. The cryptographic properties and the high
periodicity provided by this CA increase the system security.

Algorithm 7 Pseudo-code 3CASC
Input: Key, IV, NbOfKestreams
Output: keystream
Begin
LinearCARuleset← {90, 150}
NonlinearCARuleset← {30, 120, 180, 45, 30, 120, 180, 45}
MixingCARuleset← {30, 60, 90, 120, 150, 180, 240, 15, 45}
NbOfRounds← 64
NLCA← Key
LCA← IV
keystream← ””
for 1 ≤ r ≤ NbOfRounds do . Initialization Phase

NLCA← Evolution(NLCA,NonlinearCARuleset, 64) .
Nonlinear CA

LCA← Evolution(LCA,LinearCARuleset, 64) . Linear CA
MixCA←MSB(NLCA, 64)LSB(LCA, 64)
MixCA← Evolution(MixCA,MixingCARuleset, 64) . Mixing

CA
end for
for 1 ≤ r ≤ NbOfRounds do . Keystream generation Phase

NLCA← Evolution(NLCA,NonlinearCARuleset, 64) .
Nonlinear CA

LCA← Evolution(LCA,LinearCARuleset, 64) . Linear CA
MixCA←MSB(NLCA, 64)LSB(LCA, 64)
MixCA← Evolution(MixCA,MixingCARuleset, 64) . Mixing

CA
keystream← keystreamMixCA

end for
return keystream
End

Decryption Scheme

As the encryption and the decryption use similar transformations. Given the
key and the IV supplied to the initialization and the keystream generation
mechanism to reproduce the keystream. The decryption applies the XOR
operation to the ciphertext with the keystream to find the plaintext.
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Algorithm 8 Pseudo-code 4CASC
Input: Key, IV, NbOfKestreams
Output: keystream
Begin
LinearCARuleset← {42330, 27030}
NonlinearCARuleset ← { 43350, 38490, 25500, 22185, 43350, 38490,
25500, 22185 }
MixingCARuleset ← { 43350, 49980, 42330, 38490, 27030, 25500,
65280, 255, 22185 }
NbOfRounds← 64
NLCA← Key
LCA← IV
keystream← ””
for 1 ≤ r ≤ NbOfRounds do . Initialization Phase

NLCA← Evolution(NLCA,NonlinearCARuleset, 64) .
Nonlinear CA

LCA← Evolution(LCA,LinearCARuleset, 64) . Linear CA
MixCA←MSB(NLCA, 64)LSB(LCA, 64)
MixCA← Evolution(MixCA,MixingCARuleset, 64) . Mixing

CA
end for
for 1 ≤ r ≤ NbOfRounds do . Keystream generation Phase

NLCA← Evolution(NLCA,NonlinearCARuleset, 64) .
Nonlinear CA

LCA← Evolution(LCA,LinearCARuleset, 64) . Linear CA
MixCA←MSB(NLCA, 64)LSB(LCA, 64)
MixCA← Evolution(MixCA,MixingCARuleset, 64) . Mixing

CA
keystream← keystreamMixCA

end for
return keystream
End

124



CHAPTER 5. NCASC : 3CASC VS 4CASC CELLULAR AUTOMATA
BASED STREAM CIPHERS

5.4 Security Analysis

This section presents the security analysis of the proposed design against
known attacks and the purpose of each component to avoid these attacks.

5.4.1 Side Channel Attacks

This type of attacks aims to exploit the hardware implementation of a
keystream generator to find its internal state when it comes to stream ci-
phers. It could be achieved via the design’s physical properties analysis
throughout the keystream generation. These properties could be thermal
dissipation, energy consumption, and many other characteristics. The re-
sistance to these attacks relies on the difficulty of reversing the generation
mechanism [100]. 3CASC and 4CASC designs include linear CA and two
nonlinear CAs, which makes the complexity of these attacks costly.

5.4.2 Time/Memory/Data Tradeoff Attack

This attack aims to reduce the brute force search attack’s complexity using
a pre-computed key/keystream pairs lookup table defined in the offline step.
Then, the adversary monitors the keystream generator outputs to find the
corresponding key. This attack’s complexity is O(2n/2), where n refers to
the size of KEY || IV [100]. In the case of 3CASC and 4CASC n=256,
consequently, this attack is hard to succeed.

5.4.3 Algebraic Attacks

The purpose of this family of attacks is to find algebraic equations represent-
ing the system’s behavior. It could start by establishing a set of algebraic
equations defining the relation of the initial configuration IC with the out-
put. Afterward, the equations system representing the whole design could
be determined using keystream bits captured. Solving such a system leads
to find the Key and IV, namely the initial configuration. To avoid these at-
tacks, the nonlinearity and the algebraic degree of the keystream generator
process should be at their highest level [100]. According to tables 5.5 and
5.10, the growth of the algebraic degree and nonlinearity of 3CASC and
4CASC through iterations are satisfying. The number of evolutions used
follows the recommendations related to this concern according to the size
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of the neighborhood. Consequently, 3CASC and 4CASC are secure to these
attacks.

5.4.4 Linear Approximation Attacks

These are known-plaintext attacks that seek to get a linear approximation of
the whole processing of symmetric primitives using some bits of the plaintext
and the ciphertext relatively with the bits of the key[101]. Avoiding this
class of attacks is based on the high nonlinearity and algebraic degree. In
the case of 3CASC and 4CASC, the nonlinear CA and the mixing CA are
the elements providing resistance to these attacks. According to tables 5.4,
5.5, 5.9 and 5.10, the increase of the nonlinearity and algebraic degree
through iterations is significant. As a result, these attacks become hard to
achieve.

5.4.5 Correlation Attacks

In the correlation attacks, the opponent tries to retrieve the keystream gener-
ator’s internal state starting configuration using several bits of the keystream
[102]. Avoiding such attacks is based on the balancedness, together with the
high nonlinearity, resiliency, and correlation immunity. Referring to the
tables presenting the cryptographic properties of 3CASC and 4CASC, the
design displays satisfying strength to these attacks.

5.4.6 Fault Attacks

Fault attacks aim to find out the keystream generator state or the secret key
by solving an equation system established using pairs of ciphertext with fault
and without fault. In LFSRs and NFSR-based stream ciphers, the attacker
could choose positions to include fault so that the resulting equation system
is simple to resolve. However, in CA-based stream ciphers, the equation
system found is hard to solve due to the CAs diffusion property[95]. The
number of the CA evolutions used in 3CASC and 4CASC provides the spread
of fault to all the cells. Consequently, it makes these attacks hard to achieve.
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5.5 Results

This section presents the results of the statistical tests, the avalanche effect
test, and the cryptographic properties to evaluate and compare the security
and the quality of randomness provided by 3CASC and 4CASC.

5.5.1 Dieharder Battery of Tests

This part provides the dieharder test battery results. Each test is associated
with a p-value reflecting the evaluated bitstream randomness quality. As
stated before, a system passes a test if the corresponding p-value is between
α and 1 − α, such that α referring to the significance level is defined to be
0.005. Table 5.2 illustrates the dieharder results of 3CASC and 4CASC.

As Table 5.2 indicates, both 3CASC and 4CASC pass each test in the
dieharder battery. Consequently, both have satisfying statistical character-
istics and produce keystreams with a high randomness quality providing the
indistinguishability property.

5.5.2 NIST Statistical Test Suite

This section presents the statistical characteristics and the randomness qual-
ity of the keystreams generated using 3CASC and 4CASC through the NIST
Statistical Test Suite. Similarly to the dieharder tests, the p-values deter-
mine if the system succeeds in the corresponding test. Here the significance
level α is set to be 0.001. Two files of 10 000 000 bit sequences are input
to the statistical test suite to test the keystreams generated by 3CASC and
4CASC, respectively. Table 5.3 displays their results.

There is no doubt, according to Table 5.3, that 3CASC and 4CASC
succeed all the tests, which guarantee their quality of randomness and sta-
tistical characteristics.

5.5.3 Avalanche Effect Test

This section presents the avalanche effect results for both 3CASC and 4CASC.
For each version, the ThreadedSeedGenerator class, provided by the bouncy
castle library, generates one hundred of 256-bit initial configurations IC1 =
{KEY1, IV1}, ...,IC100 = {KEY100, IV100}. Then the keystreams z1 =
NCASC(IC1), z2 = NCASC(IC2), ...,z100 = NCASC(IC100) are gener-
ated. Then, for each ICi, the 1-bit changedICj

i s, 1 ≤ j ≤ 256, and their cor-
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Table 5.2: Dieharder Battery of Tests

Test 3CASC 4CASC
p-value Pass? p-value Pass?

Diehard birthdays 0.8424 X 0.5206 X
Diehard OPERM5 0.5199 X 0.9833 X
Diehard 32x32 Binary Rank 0.9003 X 0.5421 X
Diehard 6x8 Binary Rank 0.0487 X 0.6334 X
Diehard_bitstream 0.4212 X 0.6958 X
Diehard OPSO 0.0051 X 0.4837 X
Diehard OQSO 0.8170 X 0.2401 X
Diehard DNA 0.1679 X 0.3812 X
Diehard Count the 1s (stream) 0.3554 X 0.1257 X
Diehard Count the 1s (byte) 0.5995 X 0.5644 X
Diehard Parking Lot 0.1729 X 0.5762 X
Diehard Minimum Distance (2d Circle) 0.9929 X 0.4650 X
Diehard 3d Sphere (Minimum Distance) 0.4359 X 0.8811 X
Diehard Squeeze 0.1712 X 0.5164 X
Diehard Sums 0.1439 X 0.5196 X
Diehard Runs 0.8278 X 0.4736 X
Diehard Craps 0.7255 X 0.8218 X
Marsaglia and Tsang GCD 0.7844 X 0.8227 X
STS Monobit 0.1308 X 0.1903 X
STS Runs 0.0263 X 0.5934 X
STS Serial Test (Generalized) 0.4169 X 0.5562 X
RGB Bit Distribution 0.5877 X 0.5663 X
RGB Generalized Minimum Distance 0.4043 X 0.6391 X
RGB Permutations 0.3396 X 0.4819 X
RGB Lagged Sum 0.5583 X 0.5224 X
RGB Kolmogorov-Smirnov 0.1747 X 0.5765 X
DAB Byte Distribution 0.4969 X 0.9117 X
DAB DCT (Frequency Analysis) 0.6231 X 0.5832 X
DAB Fill Tree 0.4335 X 0.7668 X
DAB Fill Tree 2 0.5519 X 0.4413 X
DAB Monobit 2 0.5114 X 0.9481 X
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Table 5.3: NIST STS

Test Name 3CASC 4CASC
p-value Pass? p-value Pass?

The Frequency (Monobit) Test 0.5836 X 0.5086 X
Frequency Test within a Block 0.3504 X 0.4573 X
The Runs Test 0.49111 X 0.49209 X
Tests for the Longest-Run-of-Ones in a Block 0.5741 X 0.4788 X
The Binary Matrix Rank Test 0.53414 X 0.73991 X
The Discrete Fourier Transform (Spectral) Test 0.2648 X 0.4877 X
The Non-Overlapping Template Matching Test 0.5425 X 0.5342 X
The Overlapping Template Matching Test 0.2872 X 0.4491 X
Maurer’s "Universal Statistical" Test 0.3238 X 0.3238 X
The Linear Complexity Test 0.5384 X 0.5341 X
The Serial p-value1 Test 0.3417 X 0.4989 X
The Serial p-value2 Test 0.9114 X 0.5018 X
The Approximate Entropy Test 0.6691 X 0.5747 X
The Cumulative Sums (Cusums) Forward Test 0.7026 X 0.6547 X
The Cumulative Sums (Cusums) Reverse Test 0.3649 X 0.5086 X
The Random Excursions Test 0.5224 X 0.4254 X
The Random Excursions Variant Test 0.5836 X 0.4489 X

Figure 5.3: Avalanche Effect Test Results for CASC 3N

responding keystreams z(j)
i = NCASC(ICj

i ) are generated {{z1
1 , ..., z256

1 },
..., {z1

100, ..., z
256
100}}. Next, the hamming distances between the keystreams

{{z1
1 , ...,z256

1 }, ...,{z1
100, ..., z256

100}} and {z1, ..., z100} are computed. Then,

the average of the hamming distances is computed AvgHi =
∑100

j=1 Hij

100 for
each 1 ≤ i ≤ 256. At last, the average avalanche effect is determined by the
following formula AverageAvalanche(ICi, IC

j
i ) = AvgHi/128 ∗ 100. Such

that 1 ≤ i ≤ 100 and 1 ≤ j ≤ 256. Figure 5.3 and 5.4 displays the average
avalanche effect for all the altered bits of 3CASC and 4CASC, respectively.
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Figure 5.4: Avalanche Effect Test Results for CASC 4N

From these figures, the values of the average of the avalanche effect are
approximately 50% for both 3CASC and 4CASC. In particular, 4CASC dis-
plays better results compared to 3CASC. Accordingly, 3CASC and 4CASC
produce statistically independent keystreams from the initial configurations.

5.5.4 Cryptographic Properties of CASC 3N and CASC 4N

In addition to the tests above, the cryptographic properties study is a further
method to evaluate the robustness, the randomness quality, the statistical
features, and the confusion property of the proposed design. This part
investigates the nonlinearity, algebraic degree, balancedness, resiliency, and
correlation immunity. These properties are presented by tables from 5.4 to
5.13 for nonlinear and the mixing CAs rulesets of 3CASC and 4CASC. The
nonlinear and mixing CA rulesets study relies on the computation of these
properties for eight cells and nine cells, respectively, for three iterations,
where the xis refer to CA cells.

Nonlinear Block Cryptographic Properties

3N Ruleset: {30, 120, 180, 45, 30, 120, 180, 45}
4N Ruleset: {43350, 38490, 25500, 22185, 43350, 38490, 25500, 22185}

Mixing Function Block Cryptographic Properties

3N Ruleset: {30, 60, 90, 120, 150, 180, 240, 15, 45}
4N Ruleset: {43350, 49980, 42330, 38490, 27030, 25500, 65280, 255, 22185}
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Table 5.4: Nonlinearity

Iteration x1 x2 x3 x4 x5 x6 x7 x8
1 2 2 2 2 2 2 2 2 3N

4 4 4 4 4 4 4 4 4N
2 8 8 8 8 8 8 8 8 3N

32 56 48 48 48 56 48 48 4N
3 44 40 44 40 36 40 44 40 3N

464 432 432 448 440 440 448 400 4N

Table 5.5: Algebraic Degree

Iteration x1 x2 x3 x4 x5 x6 x7 x8
1 2 2 2 2 2 2 2 2 3N

2 2 2 2 2 2 2 2 4N
2 3 3 3 3 3 3 3 3 3N

3 3 4 3 4 3 4 3 4N
3 5 5 4 4 5 5 4 4 3N

5 5 6 5 5 5 6 5 4N

Table 5.6: Resiliency

Iteration x1 x2 x3 x4 x5 x6 x7 x8
1 0 0 0 0 0 0 0 0 3N

1 1 1 1 1 1 1 1 4N
2 0 1 0 0 1 1 0 0 3N

1 1 0 0 1 1 0 0 4N
3 1 1 0 0 0 1 0 0 3N

0 -1 0 0 0 -1 -1 1 4N
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Table 5.7: Correlation Immunity

Iteration x1 x2 x3 x4 x5 x6 x7 x8
1 0 0 0 0 0 0 0 0 3N

1 1 1 1 1 1 1 1 4N
2 0 1 0 0 1 1 0 0 3N

1 1 0 0 1 1 0 0 4N
3 1 1 0 0 0 1 0 0 3N

0 0 0 0 0 0 0 1 4N

Table 5.8: Balancedness

Iteration x1 x2 x3 x4 x5 x6 x7 x8
1 X X X X X X X X 3N

X X X X X X X X 4N
2 X X X X X X X X 3N

X X X X X X X X 4N
3 X X X X X X X X 3N

X × X X X × × X 4N

Table 5.9: Nonlinearity

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9
1 2 0 0 2 0 2 0 0 2 3N

4 0 0 4 0 4 0 0 4 4N
2 8 8 8 8 12 8 8 0 8 3N

32 32 48 32 48 48 0 32 48 4N
3 32 32 48 48 48 32 32 32 32 3N

384 256 384 448 448 384 384 384 384 4N
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Table 5.10: Algebraic Degree

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9
1 2 1 1 2 1 2 1 1 2 3N

2 1 1 2 1 2 1 1 2 4N
2 2 2 2 3 2 2 2 1 3 3N

3 2 2 3 2 2 1 2 3 4N
3 3 2 3 4 3 3 2 2 4 3N

4 3 3 5 3 3 2 2 5 4N

Table 5.11: Resiliency

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9
1 0 1 1 0 2 0 0 0 0 3N

1 2 2 1 3 1 0 0 1 4N
2 2 0 2 1 0 0 0 0 0 3N

1 2 2 2 0 -1 3 1 3 4N
3 1 0 1 0 2 0 0 0 0 3N

0 1 2 2 0 -1 0 -1 1 4N

Table 5.12: Correlation Immunity

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9
1 0 1 1 0 2 0 0 0 0 3N

1 2 2 1 3 1 0 0 1 4N
2 2 0 2 1 0 0 0 0 0 3N

1 2 2 2 0 0 3 1 3 4N
3 1 0 1 0 2 0 0 0 0 3N

0 1 2 2 0 0 0 0 1 4N
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Table 5.13: Balancedness

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9
1 X X X X X X X X X 3N

X X X X X X X X X 4N
2 X X X X X X X X X 3N

X X X X X × X X X 4N
3 X X X X X X X X X 3N

X X X X X × X × X 4N

These tables show that, except for resiliency and correlation immunity,
balancedness is preserved. As well, algebraic degree and nonlinearity raise
through iterations for 3CASC and 4CASC. The diminution of both resiliency
and correlation immunity is due to their conflicting relation with nonlinear-
ity and algebraic degree[19]. Consequently, one should reach a trade-off. In
the case of primitives like stream ciphers, to meet a high nonlinearity and
algebraic degree are more interesting for security issues and randomness fea-
tures. According to the results presented in the tables, 4CASC has higher
nonlinearity and algebraic degree compared to 3CASC. Fewer iterations in
4CASC are enough to achieve the same security level provided by a higher
number of evolutions in 3CASC. Consequently, passing from three neighbor-
hood rulesets (3CASC) to four neighborhood rulesets (4CASC) enhances the
statistical and the cryptographic properties of the proposed design.

5.6 Conclusion

This chapter presents a newly proposed stream cipher titled N neighbor-
hood Cellular Automata-based Stream Cipher (NCASC). This cipher takes
inspiration from the Grain design by substituting feedback shift registers
with CAs. It consists of three fundamental components, namely a linear
CA, a nonlinear CA of only nonlinear rules, and a mixing CA including
linear and nonlinear rules replacing LFSR, NFSR, and mixing function, re-
spectively. This chapter provides a detailed description of the stream cipher
designs and compares two versions 3CASC and 4CASC. This study was per-
formed referring to the statistical characteristics, cryptographic properties,
and security analysis to deduce the beneficial and negative impacts of both
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versions. Accordingly, 4CASC displays better statistical characteristics and
higher algebraic degree and nonlinearity compared to 3CASC. From another
perspective, 3CASC has a higher level of correlation immunity and resiliency.
Referring to the conclusions of the study conducted in this chapter, future
propositions will combine 3-neighborhood CAs with 4-neighborhood CAs to
benefit from their properties to achieve a higher security level and random-
ness quality. Also, the current study could be expanded to another level of
neighborhood configuration.
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Chapter 6

LCAHASH 1.1 and HCAHF
Hash Functions Families

6.1 Introduction

Cryptographic hash functions are symmetric cryptographic primitives that
guarantee data integrity used for passwords storage, virus detection, or in-
trusion detection. Also, they could be involved in the design of PRNGs,
digital signatures, or Message Authentication Codes (MACs). The current
chapter presents two hash functions, namely LCAHASH 1.1 and HCAHF.
The first one is an enhanced version of the LCAHASH[10] design that in-
volves modular computation and a cellular automaton, which makes use of
a 7-variable or 8-variable global rule generated during the design process-
ing depending on the digest’s size, that evolves only one iteration. LCA-
HASH 1.1 involves a cellular automaton that evolves using rules 30 and 90
for 128 or 256 iterations, which makes the global function a 128-variable
/256-variable one, to ensure a higher security level and better statistical
characteristics compared to LCAHASH. The second hash function, namely
HCAHF, is a CA-based hash function that makes use of different features
providing better security against known attacks and greater cryptographic
and statistical properties. Three functions construct the HCAHF system:
the pre-processing step, the compression function, and the last transforma-
tion. Each step includes features producing security against several attacks
and high quality of randomness.

This chapter is organized as follows: In section 6.2, we mention some
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related work. In section 6.3 and 6.4, we describe the old and the new design
of LCAHASH, respectively. Next, HCAHF design is detailed in section 6.5.
Afterwards, we present the security analysis of both LCAHASH 1.1 and
HCAHF in section 6.6. Section 6.7 provides their experimental results.
Finally, a conclusion is presented in Section 6.8.

6.2 Related Work

In[103], Damgard proposed a technique to design free-collision hash func-
tions and presented three ways to use his proposition, namely a Knapsack
problem-based design, a Wolfram’s PRNG based design including CAs, and
modular squaring-based construction. Later, in [104], Daemen et al. pro-
vided the weak points of the system presented in [103] and suggested a
hash functions framework together with a CA-based hash function titled
CellHash. The work of[105] introduces Subhash that is an improved ver-
sion of CellHash. In [106], Chang attacked the designs of [104] and [105]
and proposed robust versions of them. Later, Mihalevic et al. [?] devel-
oped a CA-based hash functions family without providing the rules in-
volved. In [8], Jeon included linear and nonlinear rules in the design of
a CA-based hash function. [9] proposed an efficient and secure sponge con-
struction inspired hash function involving CAs. This chapter presents two
efficient hash functions providing a security level at least like other hash
functions involving other features, such as SPONGENT[108], GLUON[109],
QUARK[110], PHOTON[111], and SHA-3[112]. The first construction, ti-
tled LCAHASH1.1, is based on a Merkle-Damgard structure that improves
the hash function proposed by Charifa et al. in [10] LCAHASH, which
has some flaws concerning cryptographic and statistical characteristics. A
single evolution of a uniform CA that uses a 7-variables (128-bit) or 8-
variables (256-bit) boolean function as the global transition rule. Instead,
LCAHASH1.1 makes use of a hybrid CA evolving 128 or 256 times using
a linear and a nonlinear transition rule to increase the system’s statistical
properties and security. The second design is a wide-pipe Merkle Damgard
inspired hash functions family that includes additional features like the hy-
brid CA and the padding algorithm providing resistance to known attacks
and satisfying cryptographic properties and statistical characteristics.

138



CHAPTER 6. LCAHASH 1.1 AND HCAHF HASH FUNCTIONS
FAMILIES

6.3 The LCAHASH 1.0 Design

This section describes the LCAHASH 1.0 design [10]. The LCAHASH 1.0
algorithm takes as input an arbitrary length message and produces a 128-bit
or 256-bit digest. At first, a padding is applied to the binary message M if
the size is not a multiple of 128 or 256. Next, M is split into 128/256-bit
blocks (M1, ..., Mm). Then, a random n-bit initial value IV1 is xored with a
randomly chosen block Mindex. Afterward, a carefully chosen 13-bit prime
number N is used to compute Ri = MimodN . Next, Ris are appended to
M’ that is split into n-bit blocks and padded if necessary. Next,the M ′is
are xored to IV2 to produce Mrule. Afterward, Mrule is evolved using the
7-variable or 8-variable rule Mrule to get the digest. Figure X illustrates
the LCAHASH 1.0 process. Algorithm 9 provides the pseudo-code of the
LCAHASH 1.0

Algorithm 9 Pseudo-code LCAHASH 1.0
Input: Message M, IV1, IV2, index, prime number N
Output: digest
Begin
Split M into n-bits blocks . n =128 or 256, {M1, ...,Mm}
if Mm is not a multiple of n then

Pad Mm

end if
Mindex ←Mindex ⊕ IV1
for 1 ≤ i ≤ m do

Ri ←MimodN
end for
M ′ ← R1...Rm

if M ′ ≤ n then
Mrule ←M ′IV2

else
Split M’ into n-bits blocks
Mrule ← IV2 ⊕M ′1 ⊕ ...⊕M ′k

end if
Digest← EvolMrule

(Mrule)
End
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Figure 6.1: LCAHASH 1.0 design
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6.4 The LCAHASH 1.1 Design

This section describes the new design of LCAHASH. The LCAHASH 1.1
algorithm proceeds as follows: it takes as input an arbitrary length message
M and produces an n-bits digest, where n is either 128 or 256. M is first
divided into n-bit blocks, and padded if necessary. Afterwards, a randomly
chosen blockMindex is Xored with the random n-bit initial value IV1. In the
forthcoming phase, a 13-bit prime number N to compute Ris Ri = MimodN ,
which are appended to form M’. If M’ is not a multiple of n, then it is padded
and split into n-bit blocks {M ′1, ..., M ′k }. Next, all the M ′is are Xored
with each other together with the n-bit IV2 resulting Mevol. Lastly, Mevol

underges n CA evolutions using the rules 30,90 to get the digest.

Algorithm 10 Pseudo-code LCAHASH 1.1
Input: Message M, IV1, IV2, index, prime number N
Output: digest
Begin
Split M into n-bits blocks . n =128 or 256, {M1, ...,Mm}
if M is not a multiple of n then

Pad Mm

end if
Mindex ←Mindex ⊕ IV1
for 1 ≤ i ≤ m do

Ri ←MimodN
end for
M ′ ← R1...Rm

if M ′ is not a multiple of n then
Pad M ′

end if
Split M’ into n-bits blocks
MEvol ← IV2 ⊕M ′1 ⊕ ...⊕M ′k
Digest← Evol{30,90}(MEvol, n iterations )
End

Figure 1 displays the different steps of LCAHASH 1.1.
Figure 2 shows a sample evolution ofM evol using the non-uniform cellular

automaton with ruleset {30,90}.
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Figure 6.2: LCAHASH 1.1 steps
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6.5 HCAHF Design

This section describes a hash function design inspired by the wide-pipe
Merkle Damgard construction [114]. HCAHF is the general structure that
outputs m-bit digests, here a specific design HCAHF-256 is detailed refering
to the version that produces 256-bit digests. The HCAHF design comprises
three steps, namely a preprocessing step, a CA-based compression function,
and a hybrid CA-based transformation produces the digest. In the rest of
this section, HCAHF-256 steps are depicted.

6.5.1 Preprocessing Phase

Padding Scheme

This step purpose is to provide security against the length-extension attack[113].
It is applied to every message, even if its size is a multiple of 256. The
padding algorithm involved in this steps is titled Merkle Damgard Strength-
ening [114]. It appends to the rightmost bit a ’1’ bit followed by zeros fol-
lowed by the message length encoding represented over 64 bits to make the
message length a multiple of 256.

Message Splitting

After applying the MD-Strengthening padding, the resulting message is then
divided into 256-bit blocks.

Salt

At this stage, a random salt value is generated using a PRNG. Then it is
inserted before the first block M1. The main purpose of this parameter
is to minimise the collisions possibility avoid pre-computation attacks like
dictionary attack due to the fact that the same message could hash to two
different digests h1 = h(m, salt1) and h2 = h(m, salt2) if different salt
values are used salt1 6= salt2 [113].

6.5.2 Compression Phase

This step involves a compression function f, which combines CA evolotions
refered by E and the XOR operation. f is applied iteratively over the blocks
together with a random IV set to be the initial chaining variable h0. The IV
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was generated by the ThreadedSeedGenerator class provided by the bouncy
castle java library. The last chaining variable is input to the last trans-
formation to provide the final digest. (n+1) 256-bit blocks are iterated to
compute the compression function result to produce a 256-bit block.

The Function E

This function refers to the cellular automaton involving 3-neighborhood
rules, such that the boundary conditions are set to be periodic. Each 256-bit
blockMi goes through 128 evolutions by applying the rule Ri determined by
the eight leftmost bit of Mi. (ex: if the lesftmost 8-bits of Mi are ’01011010’
then Ri = 90. Each block M i is evolved 128 times using a rule Ri as follows:

e0 = E(salt, R0)

e1 = E(M1, R1)

...

en = E(Mn, Rn)

If Ris are have not good cryptographic properties, then it is replaced by
a randomly chosen rule from the class 3 and 4 of ones having satisfying
properties (RE={30, 45, 60, 75, 86, 89, 90, 101, 102, 105, 106, 120, 135, 147,
149, 150, 165, 169, 195, 225}).

The XOR Function

Each block Mi is evolved and XORed with the preceeding block evolution
result.

The Function f

The compression function f could be expressed by the following formula:

h0 = IV

h1 = f(e0, h0)

...

hi = f(ei−1, hi−1)
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...

hn+1 = f(en, hn)

6.5.3 Transformation Phase

This step involves the function T that takes as input the output of the
previous step to produce the digest. T represents a non-uniform CA that
evolves 128 times by means of the set of rules Rdigest = {30, 90, 150, 30,
135, 30, 90, 150}, which is defined according to the guidelines provided by
[19].

digest = T (Mcompressed, Rdigest)

During the transformation phase, a function T is applied to M compressed, the
256-bit output of the previous phase.

The number of evolutions in this construction is defined to be n/2=128
to guarantee a high CA period according to [26]. Figure 6.3 summarizes
the different steps of HCAHF.

Figure 6.3: HCAHF Design
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6.5.4 Pseudo-Code for The Padding Scheme of HCAHF-256

Algorithm 11 details the padding scheme used for HCAHF-256.

Algorithm 11 Pseudo-code of the padding scheme of HCAHF-256
Input: M the message to pad
Output: Mpadded the padded message
Begin
m ← sizeOf(M) mod 256
x ← 256 - m
if sizeOf(M) is multiple of 256 then

NbZero ← 191
else if sizeOf(M) is not a multiple of 256 then

if x < 65 then
y ← x + 256
NbZero ← y - 65

else
NbZero ← x - 65

end if
end if
Mpadded ←M10NbZerosizeOf(M) ∈ {0, 1}64

return Mpadded

End

6.5.5 Pseudo-Code for The Generation Mechanism of HCAHF-
256

Algorithm 12 shows the different steps by which a 256-bit digest is generated
by HCAHF-256.

6.6 Security Analysis

6.6.1 LCAHASH 1.1 Complexity

To pad and divide an L-bit message M into n-bit blocks it takes n− L
n steps.

To apply the XOR of IV1 with Mindex, n mod 2 addition operations are
needed. The computation of Ris needs m × nmod2 divisions, such that m
is the number of blocks in M. Padding and splitting the L’-bit M’ into n-bit
blocks demand at most n− L′

n operations. Next, the XOR of M ′is with the
IV2 needs k mod 2 additions. At last, in the CA evolution ofMevol, n2 steps
are necessary. To conclude, the LCAHASH 1.1 complexity is O(n2).
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Algorithm 12 Pseudo-code of HCAHF-256
Input: M the message to hash
Output: digest
Begin
IV ← randomSequence(256)
salt ← randomSequence(256)
ruleSet← {30, 90, 150, 30, 135, 30, 90, 150}
Mpadded ← padding(M)
splittedM ← split(Mpadded, 256)
saltedM ← insert (salt, splittedM)
Xor ← IV
for each block b in saltedM do

if IntegerValue(8firstBits(b)) is in S the set of class 3 and 4 rules
then

rulesi ← IntegerV alue(8firstBits(b))
else

rulesi ← randomRule(S)
end if
E ← evolv(b, rulesi, 128, periodicBoundaries)
Xor ← Xor ⊕ E

end for
s← Xor
evolution← CAEvolution(s, ruleSet, 128)
digest← evolution
return digest
End

147



CHAPTER 6. LCAHASH 1.1 AND HCAHF HASH FUNCTIONS
FAMILIES

6.6.2 HCAHF Complexity

This part provides the HCAHF complexity. To padd a message M, it takes
at most n + 64 steps, such that n is the length of blocks. To divide the
padded message, it needs m = Len

n , such that Len is the length of the
padded message. To generate the salt and IV it requires 2n steps. The
application of the function E to each block needs (m + 1) × n × n

2 steps.
The compression step uses m+ 1× n mod 2 additions. The transformation
T involves n× n

2 steps. To conclude, the complexity of HCAHF is of order
O(m× n2), such that n is the digest length and m is the number of blocks.

6.6.3 Pre-image and Second Pre-image Resistance

The LCAHASH 1.1 security is located in the CA global function since the
IVs, N and index are supposed to be known. Then, it is easy to deduce
that it requires n × 2n, such that n is the blocks size, step to determine
the CA global function. Consequently, LCAHASH 1.1 is robust against
pre-image and second pre-image attacks. Similarly, the security of HCAHF
depends of the compression function f and the transformation T. To achieve
the pre-image and second pre-image attacks against HCAHF-256 , it needs
2256 steps. Consequently, HCAHF-256 is secure againts these attacks.

6.6.4 Collision Resistance

Refering to te birthday attack and the LCAHASH 1.1 parameters, to get
two messages M and M’ that hash to the same digest it needs 2

n
2 trials.

Consequently, in the case of LCAHASH 1.1, n could be either 128 or 256,
2

128
2 or 2

256
2 steps are proceeded to find a collision. Thus, LCAHASH 1.1

resists collision attacks. Similarly, in the case of HCAHF-256, to find a
collision, it takes 2128 steps. Then, HCAHF-256 is secure against this attack.

6.6.5 Cryptanalytic Attacks

This type of attacks is addressed to the hash functions designs, especially the
compression function involved. These attacks aim to decrease the algorithm
complexity which minimise the brute force attacks complexity. Among these
attacks there are the length-extension attacks[116], herding attack[119], mul-
ticollision attacks[115], and fixed-point attacks[117]. Preventing these at-
tacks requires inclusion of some features. In the HCAHF design, a padding
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scheme titled Merkle Damgard Strengthening padding is involved in the
first step to make it robust against length-extension attacks. In addition,
the salt value included increase the complexity of the multicollision attacks,
the fix point attack, length extension attack, as well as herding attack. The
uniform CAs involved the function E, which evolve using either linear or
nonlinear rules depending on the blocks, and the non-uniform CA used in
the T transformation are also useful to avoid some attacks like linear and
differential attacks. Moreover, the nonlinear CA ensure satisfying confusion,
while the diffusion is provided by the XOR operation and checked by the
avalanche effect test. Moreover, the statistical tests show that the output
of HCAHF-256 and LCAHASH 1.1 are independent to the output. Conse-
quently, the HCAHF and LCAHASH 1.1 designs are resistant to statistical
attacks.

6.7 Results

6.7.1 LCAHASH 1.1 Avalanche Effect

The avalanche effect test of LCAHASH 1.1 proceeds as follows. At first,
one hundred of 1024-bit messages are generated. Next, the correspond-
ing digests are computed {h1, ..., h100}. Thereafter, for each message Mi,
one bit position is modified each time and the corresponding digest is then
computed, {{h(1)

1 , ..., h
(1024)
1 }, ..., {h(1)

100, ..., h
(1024)
100 }}. Next, the hamming dis-

tances Hij = H(hj , h
(i)
j ), 1 ≤ i ≤ 1024 and 1 ≤ j ≤ 100 of the digests pro-

duced from the changed messages {{h(1)
1 , ..., h

(1024)
1 }, ..., {h(1)

100, ..., h
(1024)
100 }}

and the original one {h1, ..., h100}. Then, for each i ∈ {1, ..., 1024}, the
average of the hamming distances is computed AvgHi =

∑100
j=1

Hij

100 . At last,
the average avalanche effect is deduced refering to the formula

AvgAvalanche(Mi,M
(j)
i ) = AvgHi

n
× 100

such that 1 ≤ i ≤ 1024 and 1 ≤ j ≤ 100. Figure 6.4 and Table 6.1 illustrate
the LCAHASH 1.1 avalanche effect results for n=128.

6.7.2 HCAHF-256 Avalanche Effect

This section displays the HCAHF-256 avalanche test results. To get these
results, one hundred 1024-bit messages are randomly generated. Next, their
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Figure 6.4: Avalanche Effect for LCAHASH (128-bit version)

Table 6.1: Min, Max and Mean Average Hamming Distances

Min 45.41%
Max 55.35%
Mean 50.51%
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digests are calculated {H1, H2, ..., H100}. Thereafter, for each message
Mi, one bit position is modified each time and the corresponding digest is
computed {{H(1)

1 , ..., H(1024)
1 }, ..., {H(1)

100, ..., H
(1024)
100 }}. Furthermore, the

Hammig distances Hdij = Hd(Hj , H
(
j i)), i ∈ {1, ..., 1024}, j ∈ {1, ..., 100}

of the outputs produced from the changed messages {{H(1)
1 , ..., H(1024)

1 }, ...,
{H(1)

100, ..., H
(1024)
100 }} and the original ones {H1, H2, ..., H100} are computed.

Then, for each i ∈ {1, ..., 1024}, the average of the hammings distances is

found by the formula AvgHdi =
∑100

j=1
100 . Finally, the average avalanche effect

is deduced refering to the formula AvAvalanche(Mj ,M
i
j) = AvgHdi

256 × 100,
i ∈ {1, ..., 1024}, j ∈ {1, ..., 100}. Figure 6.5 illustrates the avalanche
effect test results of HCAHF-256. According to this figure , HCAHF-256
displays satisfying results since the values range around 50% , consequently,
the hash values provided by HCAHF-256 are statistically independent from
the inputs.

Figure 6.5: Avalanche Test Results

6.7.3 Statistical Tests

Dieharder Tests

In this section, the statistical tests provided by the Dieharder battery of
tests are applied to the LCAHASH 1.1 and HCAHF-256 outputs to study
the randomness quality produced. Two 10 MB files are filled by 78128
digests computed using the 128 version of LCAHASH 1.1 and 39063 digests
produced using HCAHF-256, respectively. Table 6.2 presents the Dieharder
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results. The p-values should range in [α , 1 − α ], where α = 0.005 is the
significance level. Accordingly, all the p-values are in the range 0.008 > α

and 0.9596 < 1 − α. LCAHASH 1.1 and HCAHF-256 passed all the tests,
which means that both designs have a random behaviour and satisfying
statistical properties making statistical attacks hard to achieve.

NIST Statistical Test Suite (STS)

This subsection presents the HCAHF-256 hash values NIST STS results to
check the randomness quality provided. At first a 10 MB file is generated us-
ing 39063 256-bit hash values (HCAHF256(M1), ..., HCAHF256(M39063)).
Then it is fed to the test suite. The results of each test are displayed in
Table 6.3. As known from the previous chapters, the p-values in NIST STS
should range between α and 1 − α, such that the significance level α is set
to be 0.001. Accordingly, all applicable tests are succeeded. Five out of
seventeen tests are not applicable because of the size of the hash values (256
bits). Longer sequences are required, for instance, the random excursions
test requires at least 1000000-bit sequences to get results.

The results of NIST STS and dieharder tests imply that HCAHF-256 has
a pseudo-random behaviour, which is a fundamental feature of cryptographic
hash functions. In other words, HCAHF-256 hash values are indistinguish-
able from random sequences.

6.7.4 Cryptographic Properties of the Class 3 and 4 Rules
and RT

A complementary study is provided in this part. The cryptographic prop-
erties of the class 3 and 4 rules that could be invovled in the E function, in
addition to those of RT are presented here for 8-cells and 3 evolutions with
the periodic boundary condition. Table 6.4 displays the class 3 and 4 rules
cryptographic properties for one iteration, such that NL, CI, AD, Res, and
Bal refer to nonlinearity, correlation immunity, algebraic degree, resiliency,
and balancedness respectively.

From this table, we conclude the set of the rules that could be involved
in E {30, 45, 60, 75, 86, 89, 90, 101, 102, 105, 106, 120, 135, 147, 149,
150, 165, 169, 195, 225}. Tables from 6.5 to 6.9 show the variation of the
cryptographic properties through multiple evolutions.
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Table 6.2: Diehard Test Suite

Tests LCAHASH 1.1 HCAHF-256
P-values Pass? P-values Pass ?

Diehard birthdays 0.3944 X 0.8559 X
Diehard operm5 0.5331 X 0.9309 X
Diehard rank 32x32 0.5760 X 0.3301 X
Diehard rank 6x8 0.7220 X 0.8151 X
Diehard bitstream 0.9483 X 0.7112 X
Diehard opso 0.1375 X 0.9008 X
Diehard opso 0.9219 X 0.1161 X
Diehard dna 0.6396 X 0.6635 X
Diehard count 1s str 0.4911 X 0.0808 X
Diehard count1s byt 0.9394 X 0.0082 X
Diehard parking lot 0.2254 X 0.7936 X
Diehard 2d sphere 0.6463 X 0.0254 X
Diehard 3d sphere 0.7971 X 0.8868 X
Diehard squeeze 0.8315 X 0.9114 X
Diehard sums 0.1793 X 0.0138 X
Diehard runs 0.7973 X 0.4253 X
Diehard craps 0.4773 X 0.5868 X
Marsaglia tsang gcd 0.8530 X 0.3477 X
Sts monobit 0.9595 X 0.7161 X
Sts runs 0.6414 X 0.2438 X
Sts serial 0.5015 X 0.5342 X
Rgb bitdist 0.4625 X 0.5511 X
Rgb minimum distance 0.6379 X 0.7152 X
Rgb permutations 0.5922 X 0.5 X
Rgb lagged sum 0.4944 X 0.533 X
Rgb kstest test 0.6942 X 0.5784 X
Dab bytedistrib 0.5645 X 0.5964 X
Dab dct 0.4265 X 0.0541 X
Dab filltree 0.4165 X 0.7417 X
Dab filltree2 0.5458 X 0.4559 X
Dab monobit2 0.6795 X 0.0432 X
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Table 6.3: NIST STS Results

Test name p-value Pass?
The Frequency (Monobit) Test 0.4963 X
Frequency Test within a Block 0.4888 X
The Runs Test 0.4927 X
Tests for the Longest-Run-of-Ones in a Block 0.4954 X
The Binary Matrix Rank Test - N/A
The Discrete Fourier Transform (Spectral) Test 0.4815 X
The Non-Overlapping Template Matching Test 0.6973 X
The Overlapping Template Matching Test - N/A
Maurer’s "Universal Statistical" Test - N/A
The Linear Complexity Test 0.5644 X
The Serial p-value1 Test 0.4915 X
The Serial p-value2 Test 0.4993 X
The Approximate Entropy Test 0.4914 X
The Cumulative Sums (Cusums) Forward Test 0.514 X
The Cumulative Sums (Cusums) Reverse Test 0.5132 X
The Random Excursions Test - N/A
The Random Excursions Variant Test - N/A

According to these tables, the algebraic degree and the nonlinearity keep
increasing and balancedness is maintained with iterations. Unlike the cor-
relation immunity and resiliency which decrease after two evolutions. This
decrease is justified by the fact that some properties are contradictory, for
example high resiliency could not be met together with high nonlinearity
by the same ruleset. As a result, for hash functions requirements, the focus
is on nonlinearity, algebraic degree and balancedness more than the other
properties to get a secure hash system.

6.7.5 Performance

To test the LCAHASH 1.1 performance, the java implementation was run
over an Intel Core i3-4010 32-bit processor clocked at 1.7 GHz with 4 Go of
RAM. Table 6.10 presents the results of LCAHASH 1.0 and LCAHASH 1.1.
According to this table, the LCAHASH 1.1 displays better results compared
to LCAHASH 1.0.
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Table 6.4: Cryptographic Properties of Class 3 and 4 ECAs

Rule NL CI AD Res Bal
18 2 0 2 -1 ×
22 1 0 3 -1 ×
30 2 0 2 0 X
41 1 0 3 -1 ×
45 2 0 2 0 X
60 0 1 1 1 X
75 2 0 2 0 X
86 2 0 2 0 X
89 2 0 2 0 X
90 0 1 1 1 X
101 2 0 2 0 X
102 0 1 1 1 X
105 0 2 1 2 X
106 2 0 2 0 X
110 1 0 3 0 ×
120 2 0 2 0 X
121 1 0 3 0 ×
122 1 0 3 0 ×
124 1 0 3 0 ×
126 2 1 2 1 ×
128 1 0 3 0 ×
135 2 0 2 0 X
137 1 0 3 0 ×
146 1 0 3 0 ×
147 2 0 2 0 X
149 2 0 2 0 X
150 0 2 1 2 X
151 1 0 3 0 ×
161 1 0 3 0 ×
165 0 1 1 1 X
169 2 0 2 0 X
182 1 0 3 0 ×
183 1 0 2 0 ×
193 1 0 3 0 ×
195 0 1 1 1 X
225 2 0 2 0 X
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Table 6.5: Algebraic Degree

Iterations x0 x1 x2 x3 x4 x5 x6 x7
1 2 1 1 2 2 2 1 1
2 3 2 2 3 3 3 2 2
3 4 3 3 4 5 4 3 3

Table 6.6: Nonlinearity

Iterations x0 x1 x2 x3 x4 x5 x6 x7
1 2 0 0 2 2 2 0 0
2 8 8 8 8 4 8 8 8
3 32 48 48 48 16 36 48 48

Table 6.7: Correlation Immunity

Iterations x0 x1 x2 x3 x4 x5 x6 x7
1 0 1 2 0 0 0 1 2
2 0 2 2 0 0 0 2 2
3 0 0 0 0 0 0 1 1

Table 6.8: Resiliency

Iterations x0 x1 x2 x3 x4 x5 x6 x7
1 0 1 2 0 0 0 1 2
2 0 2 2 0 0 0 2 2
3 0 0 0 0 0 0 1 1

Table 6.9: Balancedness

Iterations x0 x1 x2 x3 x4 x5 x6 x7
1 X X X X X X X X
2 X X X X X X X X
3 X X X X X X X X

Table 6.10: Software Performance Of LCAHASH 1.1

Hash function Output size (bit) Cycle per byte (cpb) Clock (GHz)
LCAHASH 1.0 128 324 1.7

256 374 1.7
LCAHASH 1.1 128 995 1.7

256 2844 1.7
GLUON 112 1951 2.66

U-QUARK 128 43373 2.66
D-QUARK 160 53103 2.66
S-QUARK 224 25142 2.66
PHOTON 80 1243 2.66
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6.8 Conclusion

In this chapter, two hash functions are presented. The first one, LCAHASH
1.1, enhances the LCAHAHSH 1.0 design by replacing the single CA evolu-
tion using a 7 or 8-variable boolean function to be the rule defined during
the hashing process of LCAHASH 1.0 by n CA evolutions using the ruleset
30,90, which means that the global transition function comprise n-variable
rules, where n is the digest size. The motivation of this contribution is to
improve the statistical characteristics and the cryptographic properties of
the original design. LCAHASH 1.1 is a cryptographic hash function provid-
ing good statistical characteristics from the results and has better perfor-
mance and cryptographic properties compared to the LCAHASH 1.0 design.
The second CA-based hash functions family is titled HCAHF. It comprises
three steps, namely the preprocessing step, the compression function, and
a final transformation. Firstly, the preprocessing step starts with the MD
strengthening padding followed by the split of the padded message and the
introduction of the salt. This step makes the system stronger to attacks like
length-extension attack, herding attack and other ones. Secondly, the com-
pression step involves a different CA for each block together with the XOR of
their results. This step produces good confusion and diffusion because of the
characteristics of the operations included. Lastly, the final transformation
includes a non-uniform CA that evolves by means of a ruleset having good
cryptographic properties. This step gives the system more confusion and
the randomness properties, which were checked by the statistical tests and
proved that HCAHF has good statistical characteristics in addition to its
resistance to attacks. Future work could include a hardware implementation
of HCAHF and could also check its applicability within blockchain.
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Conclusion

This thesis objective is to achieve two fundamental information security
goals, confidentiality and integrity, using cellular automata to benefit from
their characteristics providing complex behaviour with fast, simple and par-
allel computations. The first four contributions guarantee data confidential-
ity. The first one is Partition Ciphering System(PCS), which is inspired by
an adaptation of the Equal Piles Problem to provide security against sta-
tistical attacks and brute force attacks. The motivation of this construction
was the combination with SEC extension to binary blocks, and its impact
on the ability to apply the statistical attacks. As expected, it is challenging
to make use of this type of attacks to decrypt or find out the secret key
of the plaintext. For a more in-depth study, an extended version of PCS,
called Cellular Automaton based Partition Ciphering System(CA-PCS), was
proposed. CA-PCS, the second contribution of this thesis, involves a non-
uniform cellular automaton using a carefully chosen ruleset, and a random
permutation. Each included feature impacts the CA-PCS strenght, better
confusion, diffusion, and security are provided. For instance, the rules used
by the cellular automaton have a high nonlinearity and algebraic degree,
which means that attacks like linear and differential cryptanalysis are chal-
lenging. The third contribution, namely the CFA PRNGs family, follows a
general design that includes a hash function, a block cipher and a cellular
automaton. In CFA-256 specific implementation, SHA3-256 and AES-256
together with a non-uniform cellular automaton are involved to produce a
strong PRNG satisfying cryptographic requirements, such as randomness,
unpredictability, high cycle length, statistical properties, as well as security
against known attacks. This design could be adapted to fit with differ-
ent applications scales. For instance, in lightweight cryptography, the hash
function and the block cipher will be lightweight designs and accordingly,
the cellular automaton size could be decreased to the desired requirements,
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the rules and the number of evolutions could also be updated. The fourth
contribution concerns the stream cipher designs NCASC inspired by Grain
cipher, the eStream project finalist, such that N refers to the number of
neighbors cells. This design replace feedback shift registers and the mixing
function by linear and nonlinear cellular automata. It consists of three CAs,
a linear CA, a Nonlinear CA involving only nonlinear rules, and a mixing
CA involvine a CA combining linear and nonlinear rules. The first version,
3CASC, uses 3-neighborhood rules having satisfying behaviour and crypto-
graphic properties. The secon version, 4CASC, uses 4-neighborhood rules
that were deduced from the rules involved in 3CASC, by left-skewing the
3-neighborhood rule(i.e. by involving an additional variable). The main pur-
pose of this contribution is to study 3CASC and 4CASC and compare their
results referring to their statistical and cryptographic properties as well as
their security analysis. The transition from 3 to 4 neighborhood increases
some cryptographic properties like nonlinearity and algebraic degree, this
insure better security against some attacks. From another perspective, the
correlation immunity and resiliency provided by 3-neighborhood rulesets are
better. So according to the security level required, the user could choose be-
tween them. The two last contributions aim to ensure data integrity. The
fifth contribution, LCAHASH 1.1, is an enhancement of the LCAHASH de-
sign. It replaces the cellular automaton that used a 7 or 8-variable global
function with a 128 or 256-variable global function using the rules 30 and 90
for 128 or 256 iterations to ensure higher security and statistical properties.
The sixth contribution, HCAHF, is a new CA-based hash functions family,
inspired by the wide-pipe Merkle Damgard construction, that goes through
three fundamental steps, each one serves as a countermeasur to prevent at-
tacks and to provide the required behaviour and properties of a secure hash
function design. A specific version, HCAHF-256, outputs 256-bit digests
providing satisfying characteristics.

Perspectives

This dissertation presents five cryptographic systems ensuring data confi-
dentiality and integrity. Each of them could be extended for either better
security or to enlarge the range of possible applications, the following per-
spectives could achieve these goals:
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• The CA-PCS could be upgraded to define a new cellular automata
based block cipher, with the introduction of CA-based Sboxes and
P-box. In addition to the exploration of more CA configurations.

• A new CFA implementation for specific applications with constrained
devices by means of different CA configuration.

• An extended version of NCASC could involve both 3 and 4-neighborhood
rules to benefit from the advantages of both configurations.

• A Message Authencation Code based on CA-based block cipher.
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Appendix A

Rules Selection for the
CA-PCS hybrid CA

The ruleset selection mechanism adopted to form the CA-PCS cellular au-
tomaton is provided by[19]. Given the set of linear and nonlinear rules S
found in [19], split S into two sets, a linear set SL and a nonlinear one SNL.
SL = {60, 90, 102, 105, 150, 165, 195} and SNL = {22, 30, 37, 41, 43, 45,
91, 110, 120, 135, 180, 210}. Tables A.2 and A.1 display the cryptographic
properties of SL and SNL respectively. Given SL and SNL, to construct the

Table A.1: The cryptographic properties of SNL

Rule AD NL Bal CI
22 7 45 × 1
30 5 40 X 1
37 7 49 × 0
41 7 44 × 1
43 5 44 X 0
45 4 40 X 1
91 7 49 × 0
110 6 38 × 1
120 5 48 X 0
135 5 48 X 2
180 4 32 X 1
210 4 32 X 0

desired cellular automaton, the following guidelines of [19] were followed:

1. Pick a nonlinear rule with good cryptographic properties : {30}
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Table A.2: The cryptographic properties of SL

Rule AD NL Bal CI
60 1 0 X 3
90 1 0 X 3
102 1 0 X 3
105 1 0 X 4
150 1 0 X 4
165 1 0 X 3
195 1 0 X 3

2. Chose more rules to have similar number of linear and nonlinear rules
in the rest of cells to find a compromise between algebraic degree and
correlation immunity: {45,90,105,180}

3. To increase the algebraic degree, two or three nonlinear rules should
appear consecutively in the ruleset : {30,90,45,180,105}

4. To make correlation immunity better, more than one linear rule should
follow a nonlinear rule: {30,90,105,30,180,45,90,105}

5. To make the period higher, pick rules having large period :{90,150}
→ {30,90,150,30,180,45,90,150}

The resulting rulset to use in CA-PCS having satisfying cryptographic prop-
erties is

RCA−P CS = {30, 90, 150, 30, 180, 45, 90, 150}
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Appendix B

Rules Selection for the CFA
hybrid CA

The same process of A is followed to get the ruleset of CFA.

1. Pick a nonlinear rule with good cryptographic properties : {30}

2. Chose more rules to have similar number of linear and nonlinear rules
in the rest of cells to find a compromise between algebraic degree and
correlation immunity: {30,60, 110,90}

3. To increase the algebraic degree, two or three nonlinear rules should
appear consecutively in the ruleset : {30,60,30,110,90}

4. To increase the algebraic degree, two or three nonlinear rules should
appear consecutively in the ruleset : {30,60,90,30,110,30,60,90}

5. To make the period higher, pick rules having large period :{90,150}
→ {30,90,150,30,110,30,90,150}

The resulting rulset to use in CFA having satisfying cryptographic properties
is

RCF A = {30, 90, 150, 30, 110, 30, 90, 150}
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Appendix C

4-Neighborhood Rules using
3-Neighborhood rules
(NCASC)

This appendix presents shows the rulesets involved in 3CASC and 4CASC
for the nonlinear CA, the same concept work for the other CAs.

C.1 NHCA rules

C.1.1 3-Neighborhood rules

Rule 30: xt+1
i = xt

i−1 ⊕ (xt
i + xt

i+1)
Rule 120: xt+1

i = xt
i−1 ⊕ (xt

i · xt
i+1)

Rule 180: xt+1
i = xt

i−1 ⊕ (xt
i · xt

i+1)
Rule 45: xt+1

i = xt
i−1 ⊕ (xt

i + xt
i+1)

C.1.2 4-Neighborhood rules

30-Like rules

Like-30 rules found by Jimmy Jose are presented in [95], we selected the
best 4-neighborhood rules according to cryptographic properties in addition
to space time diagram. 42390, 43350, and 51510 are the best ones (see[95]).
Tables C.1 and C.2 provide the cryptographic properties and the space-
time diagrams of the 4N rules.
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APPENDIX C. 4-NEIGHBORHOOD RULES USING
3-NEIGHBORHOOD RULES (NCASC)

Table C.1: The cryptographic properties of the best 30-like rules

Rule NL Bal CI
42390 4 X 1
43350 4 X 1
51510 4 X 1

Table C.2: The space time diagram of the best 30-like rules

Rule 42390 Rule 43350 Rule 51510

120-Like rules

120 like rules 4N :

Table C.3: Cryptograhic proerties of the best 120-like rules

Rules NL CI RES AD Bal
38502 4 1 1 2 X
38490 4 1 1 2 X
38250 4 1 1 2 X
38460 4 1 1 2 X
37740 4 1 1 2 X
34680 4 1 1 2 X

Table C.4: The space time diagram of the best 120-like rules

Rule 38502 Rule 38490 Rule 38250

Rule 38460 Rule 37740 Rule 34680
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3-NEIGHBORHOOD RULES (NCASC)

180-Like rules

Rules NL CI RES AD Bal
38229 4 1 1 2 X
8580 4 1 1 2 X
27033 4 1 1 2 X
27045 4 1 1 2 X
27285 4 1 1 2 X
25500 4 1 1 2 X

Table C.5: The space time diagram of the best 180-like rules

Rule 38229 Rule 8580 Rule 27033

Rule 27045 Rule 27285 Rule 25500

45-Like rules

Table C.6: Cryptographic properties of the best 45-like rules

Rule NL CI RES AD Bal
765 2 0 0 3 X
3885 2 0 0 3 X
13113 2 0 0 3 X
43689 2 0 0 3 X
26217 4 1 1 2 X
23145 4 1 1 2 X
22185 4 1 1 2 X
50025 4 1 1 2 X
50745 4 1 1 2 X
53805 4 1 1 2 X
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APPENDIX C. 4-NEIGHBORHOOD RULES USING
3-NEIGHBORHOOD RULES (NCASC)

Table C.7: The space time diagram of the best 45-like rules

Rule 765 Rule 3885 Rule 13113

Rule 43689 Rule 26217 Rule 23145

Rule 22185 Rule 50025 Rule 50745

Rule 53805
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Appendix D

Rules Selection for the
HCAHF hybrid CA RT

The same process of A is followed to get the ruleset of HCAHF.

1. Pick a nonlinear rule with good cryptographic properties : {30}

2. Chose more rules to have similar number of linear and nonlinear rules
in the rest of cells to find a compromise between algebraic degree and
correlation immunity: {30,60, 135,90}

3. To increase the algebraic degree, two or three nonlinear rules should
appear consecutively in the ruleset : {30,60,30,135,90}

4. To increase the algebraic degree, two or three nonlinear rules should
appear consecutively in the ruleset : {30,60,90,30,135,30,60,90}

5. To make the period higher, pick rules having large period :{90,150}
→ {30,90,150,30,135,30,90,150}

The resulting rulset to use in CFA having satisfying cryptographic properties
is

RT = {30, 90, 150, 30, 135, 30, 90, 150}
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Résumé 
Le recours de systèmes et de protocoles cryptographiques est devenue indispensable pour garantir les objectifs 

de la sécurité informatique, qui correspondent à la motivation de cette thèse. De nouveaux systèmes 

cryptographiques symétriques sont conçus pour assurer la confidentialité et l’intégrité des données en utilisant 

les automates cellulaires, qui fournissent un comportement complexe et des propriétés satisfaisantes à partir de 

calculs rapides, simples et en parallèle. Dans un premier temps, un système de chiffrement symétrique inspiré 

par le problème de la partition, chiffrement par partition (PCS), est proposé pour rendre la cryptanalyse des 

fréquences et les attaques par force brute plus complexes. Ensuite, la deuxième contribution, CA-PCS utilise un 

automate cellulaire non-uniform produisant plus de confusion et de diffusion, ainsi qu’une meilleure sécurité 

contre les attaques. La troisième contribution vise à produire des séquences de haute qualité d’aléatoire grâce à 

une famille de générateurs de nombres pseudo-aléatoires, CFA, basée sur des automates cellulaires et d’autres 

primitives cryptographiques. La quatrième contribution est un chiffrement par flux impliquant des automates 

cellulaires, avec l’objectif d’étudier plusieurs configurations pour atteindre un meilleur niveau de sécurité. Les 

deux dernières contributions concernent les primitives assurant l’intégrité des données, à savoir les fonctions de 

hachage. La cinquième contribution, LCAHASH1.1, est une famille de fonctions de hachage basées sur des 

automates cellulaires. La dernière fait appel à plusieurs automates cellulaires en plus de certaines mécanismes 

pour prévenir les attaques connues. 

 

Mots-clefs (11) : Sécurité Informatique, Cryptographie Symètrique, Automate Cellulaire, Confidentialité, Integrité, 

Effet d’Avalanche, Confusion, Diffusion, Générateur Pseudo-Aléatoire, Chiffrement par flux, Fonction de Hachage. 

 

Abstract  

The use of cryptographic systems and protocols became indispensable to guarantee the information security 

goals, which fall in the purpose of this thesis. New symmetric cryptographic systems are designed to ensure data 

confidentiality and integrity using cellular automata, which provide complex behavior and good properties from 

fast, simple, and parallel computations. At first a symmetric partition problem inspired encryption scheme, 

Partition Ciphering System (PCS), is proposed to make frequency cryptanalysis and brute force attacks 

challenging. Then the second contribution introduces a hybrid cellular automaton producing more confusion 

and diffusion, as well as better security against attacks. The third contribution aims to produce sequences with 

high quality of randomness through a family of pseudo-random number generators, CFA, based on cellular 

automata and other cryptographic primitives. The fourth contribution is a stream cipher involving cellular 

automata, with the objective of investigating different configurations to have better security level. The last two 

contributions fall in the primitives providing data integrity, namely hash functions. The fifth contribution, 

LCAHASH1.1, is a cellular automaton-based hash functions family. The last one makes use of multiple cellular 

automata in addition to some features to prevent known attacks. 

 

Key Words (11) : Information security, Symmetric Cryptography, Cellular Automata, Confidentiality, Integrity, 

Avalanche effect, Confusion, Diffusion, Pseudorandom Number Generator, Stream Cipher, Hash functions 


