

École Nationale Supérieure d'Informatique et d'Analyse des Systèmes
Centre d’Études Doctorales en Sciences des Technologies de l'Information et de l'Ingénieur

THÈSE DE DOCTORAT

CONTRIBUTIONS TO THE CONSTRUCTION AND LOW-
COMPLEXITY DECODING OF ERROR CORRECTING CODES

BASED ON OPTIMIZATION ALGORITHMS

Présentée par

Anouar YATRIBI

Le 19/05/2021

Formation doctorale : Informatique

Structure de recherche : Équipe Information, Communication and Embedded
Systems (ICES)

JURY

Professeur Mohamed ESSAAIDI

PES, ENSIAS, Université Mohammed V de Rabat

Président

Professeur Mostafa BELKASMI

PES, ENSIAS, Université Mohammed V de Rabat

Directeur de thèse

Professeur Fouad AYOUB

PH, CRMEF, Kénitra

Co-Encadrant de thèse

Professeur Mohammed BENATTOU

PES, Faculté des Sciences, Université Ibn Tofail, Kénitra

Rapporteur

Professeur Mustapha BENJILLALI

PES, INPT, Rabat

Rapporteur

Professeur Abdellatif KOBBANE

PES, ENSIAS, Université Mohammed V de Rabat

Rapporteur

Professeur Abderrazak FARCHANE

PH, Faculté Polydisciplinaire, Université Sultan Moulay

Slimane, Beni Mellal

Examinateur

Professeur Samir MBARKI

PES, Faculté des Sciences, Université Ibn Tofail, Kénitra

Examinateur

…

CONTRIBUTIONS TO THE CONSTRUCTION AND LOW-

COMPLEXITY DECODING OF ERROR CORRECTING CODES BASED

ON OPTIMIZATION ALGORITHMS

Résumé : Les codes à Logique Majoritaire (MLGD) représentent une classe spéciale des codes correcteurs d’erreurs, satisfaisant les

prérequis techniques de la couche physique des systèmes de communication sans fil modernes et futurs, ainsi que les systèmes de stockage

d’information. Étant donné que la latence de codage/décodage et la complexité s’avèrent être les propriétés les plus intéressantes de ces

codes, en plus d’une faible mémoire de stockage requise, nous mettons l’accent sur les avantages pertinents de ces codes, en plus de leurs

algorithmes de décodage appropriés qui fournissent des performances compétitives par rapport à d’autres schémas de codage canal. Un autre

avantage des codes MLGD s’agit de leurs techniques de construction, qui sont généralement basées sur des notions mathématiques liées aux

designs combinatoires, l’algèbre des corps finis ainsi que la géométrie finie, ce qui en conséquence garantit plusieurs propriétés

mathématiques et structurelles de ces codes, qui sont héritées des objets mathématiques dont la construction est basée.

Nous proposons une étude compréhensive, une analyse et classification des différentes techniques de construction associées à diverses

familles de codes MLGD, ainsi qu’une étude extensive sur les algorithmes de décodage itératif capables d’exploiter la propriété

d’orthogonalité qui caractérise ces codes. Nous soulignons nos contributions dans le cadre de la thématique de la construction combinatoire

et le décodage itératif des codes à logique majoritaire décodables en une seule étape (OSMLD), et nous adressons également quelques

applications de ces codes, notamment dans le standard des systèmes mobiles cellulaires de la 5ème génération (5G New Radio Standard),

ainsi que dans les supports de stockage futurs à base de la molécule d’ADN synthétique. Nous faisons appel à des notions solides basées sur

des revues de littérature des différents travaux de recherche réalisés auparavant, de la modélisation mathématique ainsi que des techniques

d’optimisation locale et globale afin d’adresser différents défis et problématiques dans ces thématiques.

Plus précisément, nous proposons une classification générale des codes MLGD basés sur les designs combinatoires. Nous proposons

également un nouvel algorithme de construction des codes OSMLD binaires et non-binaires à base des Algorithmes Génétiques. Dans la

partie dédiée au décodage, nous proposons un nouvel algorithme de décodage des codes OSMLD basé sur le Gradient Descendant. En plus,

nous introduisons une interprétation universelle des différents algorithmes de décodage à logique majoritaire en tant que processus

d’optimisation de fonctions objectives dérivables. Nous adressons l’exploitation des techniques d’optimisation locales par contraintes afin de

mettre en œuvre un nouvel algorithme de décodage pour les codes linéaires en bloc à base de la méthode des multiplicateurs du Lagrangien

Augmenté. Pour la partie applications, nous proposons d’établir une comparaison des schémas de codage canal proposés et des codes LDPC

standardisés pour la 5G NR eMBB. Nous présentons également un nouveau schéma de codage canal à base des codes DSC ternaires pour les

systèmes de stockage à base de la molécule d’ADN synthétique.

Mots clés : Codes Correcteurs d’Erreurs, Décodage Itératif, Codes à Logique Majoritaire, Designs Combinatoires, Géométrie Finie,

Algorithmes d’Optimisation, Complexité, 5G New Radio, Systèmes de Stockage de Données à base de l’ADN.

Abstract: Majority-Logic Decodable (MLGD) codes represent a special class of error correcting codes that meets the main requirements

of the physical layer design of modern and future wireless communication and data storage systems. While the encoding and decoding

latency and computational complexity are the most interesting features of these codes, in addition to low storage requirements, we emphasize

the major key benefits of these codes as well as their appropriate iterative decoding algorithms that provide competitive performance

compared to other channel coding schemes. Another advantage of MLGD codes is their construction techniques, usually derived from

combinatorial designs, finite fields algebra and finite geometries, providing guaranteed mathematical structural properties of these codes

inheriting from their respective construction techniques.

We propose a comprehensive study, analysis and classification of different construction techniques of various families of MLGD codes, as

well as an extensive study on iterative decoding algorithms suitable for exploiting the orthogonality property of these codes. We highlight

our contributions on the combinatorial construction and iterative decoding topics of One-Step Majority-Logic Decodable (OSMLD) codes, in

addition to some featured applications of a set of these codes in the next generation 5G New Radio standards and future data storage systems

based on the synthetic DNA molecule. We use a solid background related to extensive literature reviews, mathematical modeling, global and

local optimization algorithms in order to address different open challenges within these topics.

More precisely, we propose first a general classification of MLGD codes based on Combinatorial Designs. Furthermore, a new construction

algorithm of binary and non-binary OSMLD codes based on Genetic Algorithms is proposed. In the decoding topic, we propose a new

Gradient-Descent based Majority-Logic Decoding algorithm for decoding OSMLD codes. Moreover, a new unified interpretation of various

majority-logic decoders as a maximization process of derivable objective functions is introduced. Local constrained optimization techniques

are exploited for devising a new decoding algorithm for linear codes based on the Augmented Lagrangian Method of Multipliers. For

addressing different applications, we propose to establish a comparison of the proposed channel coding schemes with the standardized LDPC

codes for the 5G NR eMBB use case. In addition, a new forward error correction scheme based on ternary Difference-Set codes is proposed

for DNA data storage systems.

Keywords: Error Correcting Codes, Iterative Decoding, Majority-Logic Decodable Codes, Combinatorial Designs, Finite Geometry,

Optimization Algorithms, Complexity, 5G New Radio, DNA Data Storage Systems.

 Année : 2021

A
n

n
ée

 :
 2

0
2

1

 N
°

th
ès

e
 :

 2
1

0
/S

T2
I

 C

o
n

tr
ib

u
ti

o
n

s
to

 t
h

e
 C

o
n

st
ru

ct
io

n
 a

n
d

 L
o

w
-C

o
m

p
le

xi
ty

 D
e

co
d

in
g

A
n

o
u

ar
 Y

A
TR

IB
I

o

f
Er

ro
r

C
o

rr
e

ct
in

g
C

o
d

es
 b

as
ed

 o
n

 O
p

ti
m

iz
at

io
n

 A
lg

o
ri

th
m

s

Thèse N° : 210/ST2I

i

Acknowledgements

The realization of this thesis was not possible without my Professor and Supervisor Dr. Mostafa

Belkasmi. Thank you very much for your high quality supervision, your continuous support, encour-

agement and help which made the realization of our ideas possible. Thank you for allowing me to

participate in many organizing activities in international conferences, and for trusting in my skills and

qualifications. I would like also to emphasize the benefits of the working sessions and reunions that

you were organizing regularly along my thesis journey, in which an interesting flow of information

and presentations helped me as well as all the team members in achieving our goals. Thank you for

all your valuable time and your human qualities, I am very grateful. I could not have asked for a better

supervision. Thank you Mr. Mostafa Belkasmi.

I would also like to thank my co-supervisor Pr. Fouad Ayoub, for his support and advises during

all my thesis journey. Thank you for all the moments that we have shared together, for your human

qualities, for your continuous supervising that helped me to make this work better, and for sharing

with me many tools and papers that helped me to achieve my objectives. I am grateful for all your

devoted efforts Mr. Fouad Ayoub.

I would like to acknowledge Pr. M. Essaidi for accepting to be a president of the honorable jury, as

well as the reporters Pr. M. Benattou, Pr. M. Benjillali, Pr. A. Kobbane, and the examiners Pr. A.

Farchane and Pr. S. Mbarki for providing their valuable remarks and feedback on this thesis.

I would also like to thank particularly the Professor Dr. Robert G. Maunder, from the University of

Southampton, UK, for his collaboration, support and his continual interaction with me in order to give

help and advises in my works, and for his valuable efforts for his reviewing and explanations that

helped me a lot to understand the 5G NR LDPC scheme. I am very grateful for this support Mr. Rob

Maunder.

Thanks to all my friends, and all my colleagues from the ICES team, and in particular my friend and

colleague Zakaria M’rabet, who shared with me many unforgettable moments during all this journey,

as well as during our Master degree. Thanks also to my friend and colleague Othmane El Mouaatamid,

for our collaboration in many works.

Most of all, thanks to my lovely family, my dear father for his continuous support since my childhood,

and for his rigorous scientific background and qualities along with his advises that helped me to

achieve my goals. My lovely mother who supported me since my childhood, to whom I particularly

dedicate this thesis, my lovely sister, and my dear brother, as well as my cousin. Your love and support

makes everything seem easy for me.

ii

Abstract

Majority-Logic Decodable (MLGD) codes represent a special class of error correcting

codes that meets the main requirements of the physical layer design of modern and future

wireless communication and data storage systems. While the encoding and decoding la-

tency and computational complexity are the most interesting features of these codes,

in addition to low storage requirements, we emphasize the major key benefits of these

codes as well as their appropriate iterative decoding algorithms that provide competitive

performance compared to other channel coding schemes. Another advantage of MLGD

codes is their construction techniques, usually derived from combinatorial designs, fi-

nite fields algebra and finite geometries, providing guaranteed mathematical structural

properties of these codes inheriting from their respective construction techniques.

We propose a comprehensive study, analysis and classification of different construction

techniques of various families of MLGD codes, as well as an extensive study on iterative

decoding algorithms suitable for exploiting the orthogonality property of these codes.

We highlight our contributions on the combinatorial construction and iterative decoding

topics of One-Step Majority-Logic Decodable (OSMLD) codes, in addition to some fea-

tured applications of a set of these codes in the next generation 5G New Radio standards

and future data storage systems based on the synthetic DNA molecule. We use a solid

background related to extensive literature reviews, mathematical modeling, global and

local optimization algorithms in order to address different open challenges within these

topics.

More precisely, we propose first a general classification of MLGD codes based on Com-

binatorial Designs. Furthermore, a new construction algorithm of binary and non-binary

OSMLD codes based on Genetic Algorithms is proposed. In the decoding topic, we pro-

pose a new Gradient-Descent based Majority-Logic Decoding algorithm for decoding

OSMLD codes. Moreover, a new unified interpretation of various majority-logic de-

coders as a maximization process of derivable objective functions is introduced. Local

constrained optimization techniques are exploited for devising a new decoding algo-

rithm for linear codes based on the Augmented Lagrangian Method of Multipliers. For

addressing different applications, we propose to establish a comparison of the proposed

channel coding schemes with the standardized LDPC codes for the 5G NR eMBB use

case. In addition, a new forward error correction scheme based on ternary Difference-Set

codes is proposed for DNA data storage systems.

Contents

List of Tables vii

List of Figures x

1 Introduction 1
1.1 Overview on Forward Error Correction . 1
1.2 Problem Statement and Motivation . 5
1.3 Thesis Aim, Objectives and Organization . 7
1.4 Related publications . 10

2 Majority-Logic Decodable Codes 13
2.1 Introduction and Background . 13

2.1.1 Definitions and Preliminaries . 15
2.1.2 Balanced Incomplete Block Designs 19
2.1.3 Difference-Sets . 22

2.2 Low Density Parity-Check Codes . 27
2.2.1 Tanner Graph . 27
2.2.2 Random Constructions . 29
2.2.3 Algebraic Constructions . 31

2.3 One-Step Majority-Logic Decodable Codes 32
2.3.1 Reed-Muller Codes . 32
2.3.2 Cyclic OSMLD Codes . 36
2.3.3 Quasi-Cyclic OSMLD Codes . 43
2.3.4 Other OSMLD Codes derived from Combinatorial Designs 44

2.4 Multi-Step Majority-Logic Decodable Codes 45
2.4.1 Background and Definitions . 45
2.4.2 MSMLD Codes derived from Euclidean Geometries 49

iii

Contents iv

2.5 Conclusion . 52

3 Genetic Algorithms for the Discovery of New Cyclic One-Step Majority-Logic
Decodable Codes 55
3.1 Introduction . 55
3.2 Cyclotomic Cosets and Parity-Check Idempotents 57

3.2.1 Singer Difference Sets and Golomb Rulers 57
3.2.2 Cyclotomic Cosets and Parity-check Idempotents 60
3.2.3 Constraints on the Parity-Check Idempotent 62

3.3 Exhaustive Search based Construction . 67
3.4 Problematic and Analysis of the Search Space 72
3.5 Construction of cyclic OSMLD codes using Genetic Algorithms 76

3.5.1 Problem modeling . 77
3.5.2 OSMLD-GA construction algorithm for cyclic OSMLD codes over

GF(2m≥1) . 77
3.6 Construction results . 83
3.7 Conclusion . 91

4 A New Gradient-Descent based One-Step Majority-Logic Decoding Algorithm
for LDPC Codes 93
4.1 Introduction and Preliminaries . 93

4.1.1 Introduction . 93
4.1.2 Preliminaries . 95

4.2 The Existing Majority-Logic Decoding Algorithms 96
4.2.1 Hard Decision Majority-Logic Decoding 96
4.2.2 Soft Decision Majority-Logic Decoding 97
4.2.3 Gradient-Descent based Decoding 103

4.3 A New Gradient-Descent Majority-Logic Decoding Algorithm 107
4.3.1 GD-MLGD . 107
4.3.2 GD-MLGD with Quantization (QGD-MLGD) 114

4.4 Performance Analysis and Comparison with previous works 116
4.4.1 Complexity Analysis . 117
4.4.2 Parameters Optimization . 119
4.4.3 Average Number of Iterations . 122
4.4.4 Error rates . 126

Contents v

4.5 Analysis of the False Decoding Decisions 129
4.6 Conclusion . 132

5 Unified Models for Majority-Logic Decoding Algorithms using Local Opti-
mization Techniques and a New Constrained Optimization based Decoding
Algorithm for Linear Block Codes 134
5.1 Introduction . 134
5.2 Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent

Optimization . 136
5.3 Improved local optimization techniques . 141

5.3.1 Gradient-Descent with Momentum (MGD) 142
5.3.2 Nesterov Accelerated Gradient (NAG) 142
5.3.3 Adaptive Gradient (Adagrad) . 143
5.3.4 The Augmented Lagrangian Method of Multipliers 144

5.4 Improved update rules using variants of the Gradient-Descent 145
5.5 A New Universal Decoding Approach for Linear Block Codes using the Aug-

mented Lagrange Method of Multipliers . 146
5.6 Conclusion . 151

6 Evaluation of OSMLD codes in DNA Data Storage and Modern Wireless Com-
munication Systems 153
6.1 Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 153

6.1.1 Introduction . 153
6.1.2 DNA data storage Channel Model 155
6.1.3 DNA Forward Error Correction . 159
6.1.4 The proposed DNA data storage scheme 161
6.1.5 Performance analysis . 168

6.2 The Constructed OSMLD Codes for the 5G NR Mobile Networks 170
6.2.1 Introduction . 170
6.2.2 Background on the 5G NR Mobile networks 170
6.2.3 Protograph based LDPC Codes for Data Channels in 5G NR eMBB

applications . 175
6.2.4 The Constructed OSMLD Codes for the URLLC and mMTC use cases 178

6.3 Conclusion . 185

7 Conclusions and future directions 187

Contents vi

7.1 Concluding remarks . 187
7.2 Future research directions . 190

Appendix A Difference-families and Skolem sequences 194

Appendix B A set of Cyclic OSMLD codes constructed using the OSMLD-GA
algorithm 196

Appendix C Error Probability Bound of the WOSMLGD algorithm 232

Nomenclature 234

Bibliography 238

List of Tables

2.1 A set of Reed-Muller codes . 36
2.2 A set of cyclic binary difference-set codes . 39
2.3 A set of cyclic (µ = 0,s)th-order EG OSMLD codes 41
2.4 A set of cyclic DTI codes . 42
2.5 Base blocks constructions of Steiner systems . 45
2.6 A set of L = m−1 steps majority-logic decodable cyclic Hamming codes 48
2.7 A set of (µ,s)th-order EG cyclic codes . 51
2.8 A set of (µ,s)th-order Twofold EG cyclic codes 53
2.9 Classification of MLGD codes derived from combinatorial designs and finite ge-

ometries . 54

3.1 A set of cyclic EG OSMLD codes with their corresponding number of cyclotomic
cosets nc . 73

3.2 A set of cyclic DS OSMLD codes with their corresponding number of cyclotomic
cosets nc . 74

3.3 Space search evolution for different values of n for a set of cyclic DS codes . . . 74
3.4 A set of DS code lengths with their associated idempotent weight polynomials . . 75
3.5 A set of EG OSMLD code lengths with their associated idempotent weight poly-

nomials . 76
3.6 The hyper-parameters of the construction algorithm OSMLD-GA 79
3.7 A set of cyclic binary OSMLD codes constructed using the OSMLD-GA algorithm 84
3.8 A set of cyclic non-binary OSMLD codes over GF(4) constructed using the NB-

OSMLD-GA algorithm (Construction A) . 85
3.9 A set of cyclic non-binary OSMLD codes over GF(8) constructed using the NB-

OSMLD-GA algorithm (Construction A) . 86
3.10 A set of cyclic non-binary OSMLD codes over GF(4) constructed using the

OSMLD-GA algorithm (Construction B) . 87

vii

List of Tables viii

3.11 A set of cyclic non-binary OSMLD codes over GF(8) constructed using the
OSMLD-GA algorithm (Construction B) . 88

3.12 A set of cyclic non-binary OSMLD codes over GF(16) constructed using the
OSMLD-GA algorithm (Construction B) . 89

3.13 A set of cyclic non-binary OSMLD codes over GF(32) constructed using the
OSMLD-GA algorithm (Construction B) . 90

3.14 A set of cyclic non-binary OSMLD codes over GF(64) constructed using the
OSMLD-GA algorithm (Construction B) . 91

4.1 Decoding operations comparison of the existing MLGD algorithms 103
4.2 A set of cyclic OSMLD codes derived from Euclidean and Projective Geometries 116
4.3 Simulation parameters . 117
4.4 Computational complexity per iteration of various majority-logic decoding algo-

rithms . 118
4.5 Memory Requirements for Decoding a OSMLD Codes with various Decoding

Algorithms . 119
4.6 Optimal values of α , β and θ for a set of cyclic OSMLD codes 122
4.7 Comparison of the SNR and the average decoding iterations required to achieve

a BER of 10−5 for the cyclic OSMLD code (255,175,17) 125
4.8 Comparison of the SNR and the average decoding iterations required to achieve

a BER of 10−5 for the cyclic OSMLD code (1057,813,34) 126
4.9 Statistics on error types in GD-MLGD using the DS code with parameters (n,k,dmin)=

(73,45,10) . 131

5.1 MLGD algorithms and their corresponding objective functions to maximize with
the Gradient-Descent . 141

5.2 Initialization and partial derivatives associated to various MLGD algorithms . . . 146
5.3 Improved update rules for various MLGD algorithms using some variants of the

Gradient-Descent . 146

6.1 Goldman’s base-3 to DNA modulation for avoiding repeated nucleotides 160
6.2 A set of ternary cyclic difference-set codes . 166
6.3 Comparison of DNA storage encoding schemes 171
6.4 Key 5G Parameters . 175

List of Tables ix

B.1 A set of Cyclic binary OSMLD codes with code-lengths 7 ≤ n ≤ 1057 con-
structed using the OSMLD-GA algorithm . 197

B.2 A set of Cyclic binary OSMLD codes with code-lengths 1059 ≤ n ≤ 2001 con-
structed using the OSMLD-GA algorithm . 198

B.3 A set of Cyclic binary OSMLD codes with code-lengths 2003 ≤ n ≤ 4001 con-
structed using the OSMLD-GA algorithm . 201

B.4 A set of Cyclic binary OSMLD codes with code-lengths 4003 ≤ n ≤ 6001 con-
structed using the OSMLD-GA algorithm . 203

B.5 A set of Cyclic binary OSMLD codes with code-lengths 6003 ≤ n ≤ 8001 con-
structed using the OSMLD-GA algorithm . 205

B.6 A set of Cyclic binary OSMLD codes with code-lengths 8003≤ n≤ 10001 con-
structed using the OSMLD-GA algorithm . 207

B.7 A set of Cyclic binary OSMLD codes with code-lengths n ≥ 10001 constructed
using the OSMLD-GA algorithm . 210

B.8 A set of Cyclic non-binary OSMLD codes over GF(4) constructed using the
NB-OSMLD-GA algorithm (Construction B) 212

B.9 A set of Cyclic non-binary OSMLD codes over GF(8) constructed using the
NB-OSMLD-GA algorithm (Construction B) 217

B.10 A set of Cyclic non-binary OSMLD codes over GF(16) constructed using the
NB-OSMLD-GA algorithm (Construction B) 222

B.11 A set of Cyclic non-binary OSMLD codes over GF(32) constructed using the
NB-OSMLD-GA algorithm (Construction B) 225

B.12 A set of Cyclic non-binary OSMLD codes over GF(64) constructed using the
NB-OSMLD-GA algorithm (Construction B) 229

List of Figures

2.1 Block diagram of a data transmission (or storage system) 19
2.2 The Fano Plane PG(2,2) . 23
2.3 The Tanner graph for the LDPC code given in Example 2.5 28
2.4 Two-Step Majority-Logic Decoding Tree of the (7,4,3) Hamming code 48

3.1 The Fano Plane PG(2,2) . 58
3.2 A modular Golomb ruler modulo n = 31 with J = 6 marks 60
3.3 The evolution of nc (analytical versus experimental) with respect to the code

lengths n for 7≤ n≤ 4161 . 75

4.1 The Gradient-Descent Optimization Technique 104
4.2 Evolution of the generalized syndrome weight with various error weights and

SNRs, for the DS code (n,k,dmin) = (21,11,6) 105
4.3 Evolution of the soft syndrome weight function Wm(Sw) with the error weight

and various SNRs for the DS code (n,k,dmin) = (21,11,6) 109
4.4 The uniform quantization function behavior with various quantization bits 115
4.5 Optimization of the descent step α and the over-scaling factor β for the code

(255,175,17) in SNR = 3 dB . 120
4.6 Optimization of the descent step α and the over-scaling factor β for the code

(255,175,17) in SNR = 3.25 dB . 120
4.7 Optimization of the offset factor θ over various SNRs for the OSMLD code

(255,175,17) . 121
4.8 Optimization of the offset factor θ over various SNRs for the OSMLD code

(273,191,18) . 121
4.9 Optimization of the offset factor θ over various SNRs for the OSMLD code

(1057,813,34) . 122

x

List of Figures xi

4.10 Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (255,175,17) . 123

4.11 Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (273,191,18) . 123

4.12 Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (1023,781,33) . 124

4.13 Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (1057,813,34) . 125

4.14 BLER performance of various MLGD algorithms for decoding the cyclic OSMLD
code (255,175,17) . 127

4.15 BLER performance of various MLGD algorithms for decoding the cyclic OSMLD
code (273,191,18) . 128

4.16 BLER performance of various MLGD algorithms for decoding the cyclic OSMLD
code (1023,781,33) . 128

4.17 BLER performance of various MLGD algorithms for decoding the cyclic OSMLD
code (1057,813,34) . 129

6.1 DNA Data Storage Channel Model . 156
6.2 Goldman’s Scheme for DNA Data Storage . 161
6.3 The proposed DNA data encoding scheme . 168
6.4 5G standardization timeline . 172
6.5 5G spectrum bands . 174
6.6 Sketch of base parity check structure for the 5G NR LDPC code 177
6.7 BLER performance of the cyclic OSMLD code with parameters (73,45) decoded

with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with pa-
rameters (74,45) generated with BG2 and decoded with the BP-SPA, for a coder-
ate r ≈ 0.61 . 182

6.8 BLER performance of the cyclic OSMLD code with parameters (357,227) de-
coded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with
parameters (356,227) generated with BG2 and decoded with the BP-SPA, for a
coderate r ≈ 0.64 . 183

6.9 BLER performance of the cyclic OSMLD code with parameters (803,559) de-
coded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with
parameters (804,559) generated with BG2 and decoded with the BP-SPA, for a
coderate r ≈ 0.70 . 184

List of Figures xii

6.10 BLER performance of the cyclic OSMLD code with parameters (3471,2873)
decoded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code
with parameters (3472,2873) generated with BG1 and decoded with the BP-SPA,
for a coderate r ≈ 0.83 . 185

List of Algorithms

3.1 Exhaustive Search cyclotomic cosets based construction algorithm 72
3.2 OSMLD-GA . 82
4.1 WOSMLGD . 97
4.2 IDA . 99
4.3 ITD . 101
4.4 SRBI . 102
4.5 ISRBI . 102
4.6 MTD . 103
4.7 GD-MLGD . 114
4.8 QGD-MLGD . 116
5.1 ALMM-D . 151

xiii

Chapter 1

Introduction

Forward error correction is an essential key to the success of wireless communication and data
storage systems. After 70 years from the pioneering work of Shannon on information and
coding theory, extensive research studies and advancements are continuously driven towards
achieving reliable communications over different transmission channels, while data reliabil-
ity and reasonable hardware complexity remain the main motivating challenges for meeting
the current industrial requirements. Low-Density Parity-Check (LDPC) codes have proven
their ability to asymptotically achieve near capacity performance for very long block lengths.
LDPC codes with structural properties have shown to be close to meet these requirements,
especially when these codes have the orthogonality property in their dual structure used in the
decoding process. Such codes of interest meeting those requirements are the Majority-Logic
Decodable (MLGD) codes, which represent a special class of error correcting codes that pro-
vide good performance at the cost of very reasonable complexity, in both the encoding and
the decoding processes. These codes are generally constructed from techniques derived from
finite fields, finite geometries and combinatorial mathematics. Our interest in this thesis is re-
lated to the construction of different families of MLGD codes, as well as the investigation on
devising suitable decoding algorithms satisfying a reasonable trade-off between performance
and complexity.

1.1 Overview on Forward Error Correction

Error correction codes (ECC) have become a key enabler of reliable data transmissions in
wireless communication and data storage systems. They are deployed in many current stan-
dards of telecommunications in order to guarantee error detection and correction. Addition-

1

1.1. Overview on Forward Error Correction 2

ally, error correcting codes are playing an increasing key role in the analysis and the design of
modern cryptosystems. Among various classes of codes, cyclic error correcting codes repre-
sent the most interesting family of codes, due to the simplicity of their encoding and decoding
implementations that have shown to be the most suitable for modern applications. Encoding
cyclic codes can be realized in the hardware using a simple linear feedback shift register.
Moreover, decoding cyclic codes requires lower computational complexity than non cyclic
codes. Powerful cyclic codes are derived from pseudo-random constructions. Also, cyclic al-
gebraic codes that are derived from combinatorial and geometric constructions have shown to
provide attractive performance with many guaranteed structural properties that inherit from
their construction mathematical objects.

The fundamental performance limits of forward error correction were determined by Shan-
non in his 1948 paper [153]. Shannon proved that, by employing forward error correction,
arbitrarily reliable communication is possible through channels which corrupt the data trans-
mitted over them only if information is transmitted at a rate less than the capacity of the
channel. Furthermore, if the rate of the transmitted data is less than the channel capacity,
Shannon’s theorem states that an error correction code and decoder must exist for which all
the introduced errors during transmission can be corrected, providing a completely reliable
communication over that channel.

However, the theorem of Shannon was not proved implicitly, leading the research commu-
nities to two main open challenges until now: devising powerful codes capable of achieving
the theoretical limit along with suitable decoding algorithms for these codes, able to achieve
the Shannon limit for various propagation channels.

After the Shannon’s theorem, many decades have witnessed the benefits of error correc-
tion codes with algebraic structure to be appropriate for many decoding algorithms, exhibit-
ing performances very close to the fundamental limits. Specifically, codes based on graphs
have shown a particular interest from many research and industrial communities due to their
hardware implementations satisfying many requirements of modern communication systems.
For instance, LDPC codes represent the most interesting family that meets the fundamen-
tal requirements of many telecommunication industries, as these codes are very suitable for
message-passing decoding algorithms that achieve robust performances, in addition to the
low storage requirements and complexity of these codes provided by sparse parity-check
matrices used for the decoding process.

LDPC codes were first discovered in 1962 by Gallager [48], right after the discovery of
Golay codes [50] and Hamming codes [58]. Golay and Hamming codes have shown to

1.1. Overview on Forward Error Correction 3

have interesting mathematical properties, used by many communities to understand how
it is possible to design efficient error correcting codes. In contrast, LDPC codes provide
many more important features and a design flexibility, leading the researchers to continu-
ously investigate the design of powerful LDPC codes. In 1962, the hardware implementa-
tion of LDPC codes was impossible because of the unavailability of electronic techniques as
well as the semi-conductor industry which was not yet sufficiently developed at that time.
Consequently, before the Gallager discovery, in 1953, the first majority-logic decodable
(MLGD) codes were discovered by Reed [133], well known as Reed-Muller codes. Also
the first nontrivial majority-logic decoding method was introduced by the same author. After
these works, in the same decade of the discovery of LDPC codes, algebraic Difference-Set
codes were discovered independently by Rudolph in 1964 [145] and Weldon in 1966 [185].
Majority-logic decoding and threshold decoding were extensively studied by Massey [113]
who proposed the first unified formulation of majority-logic decoding, as well as Kolesnik
and Mironchikov [84]. Furthermore, the weighted one-step majority-logic decoding was in-
troduced by Rudolph [142,143]. These works were mainly motivated by the simplicity of the
decoding process of these codes, requiring a simple majority-logic vote than can be realized
by using only logical gates, and also motivated by the guaranteed properties that these codes
have.

Many decades ago until the 1990s, many research efforts have been devoted for the construc-
tion of LDPC codes suitable for meeting the requirements of modern communication and data
storage systems. Both random and algebraic techniques were investigated to devise a large
database of LDPC codes. Convolutional codes have gained the attention of industrial com-
munities in the 1990s due to their flexibility in selecting various information block lengths,
a property that was very useful for its use in 2nd generation (GSM) and the 3rd generation
of mobile networks (UMTS, HSPA, HSDPA). However, for achieving robust performance
and achieving higher data rates and throughput, Turbo-codes were introduced by Berrou,
Glavieux and Thitimajshima in 1993 [13], proving their capacity-approaching to the funda-
mental limits promised by Shannon. Turbo-codes are based on a parallel concatenation of
elementary convolutional codes, separated by an interleaver. Decoding Turbo-codes requires
a small number of iterations at a cost of a relatively high complexity in implementations.
Besides that, Turbo-codes were adopted for the 4G Long Term Evolution (4G LTE) mobile
networks as a standardized coding scheme, along with Hybrid Automatic Repeat Request
(HARQ) protocols for the combination between forward error correction and retransmission,
which led for the first time in high reliable transmissions of data over the air interface.

1.1. Overview on Forward Error Correction 4

The introduction of Turbo-codes was a radical starter toward the re-evaluation of graph-based
forward error correction, and how effective graph-based decoding algorithms must be de-
vised. The pioneering works of Tanner in 1981 [165] on graph decoding of LDPC codes was
reconsidered seriously with a large interest from many research communities. Particularly, it
was shown that LDPC codes can be graphically represented by a Tanner Graph, and that pow-
erful LDPC codes suitable for iterative decoding are those who have a small number of short
cycles, ideally the shortest cycle must be greater than 4 (i.e. a girth1 ≥ 6), and it is known that
these LDPC codes that have this property are One-Step Majority-Logic Decodable (OSMLD)
codes. Thereafter, the late 1990s was a remarkable period where LDPC codes were rediscov-
ered by Mackay in 1996 [109], where their capacity-approaching performance was proved
experimentally. Then, Richardson et al. have proved in 2001 the capacity-approaching of
irregular LDPC codes [137], especially for asymptotically very large block lengths. Also, in
the same year, finite geometry LDPC codes were rediscovered in [86], and the authors have
shown that their performance are better compared to their randomly-generated counterparts,
achieving near capacity performance. Directly after this contribution, MLGD codes have
gained considerable interests from various research communities. Moreover, in 2000, it was
shown in [106] that MLGD codes outperform many families of block codes when decoded
with the Belief Propagation Sum-Product (BP-SP) algorithm.

In order to meet the requirements of modern communication systems, where the flexibility in
block lengths and code rates is needed, a new concept of protograph (or multi-edge) LDPC
codes was introduced independently in [166] and [138]. The main concept behind this new
approach was the introduction of a small graph (protograph) used as a prototype that encap-
sulates the macroscopic properties of a large number of desired LDPC codes supporting a
wide range of blocklengths and code rates. This graph is also called Base Graph. After that,
many other publications were dealing with the construction of robust base graphs for generat-
ing protograph LDPC codes [33, 34, 104, 135, 166]. Note that in the 5G New Radio (5G NR)
mobile networks, particularly in Enhanced Mobile Broadband (eMBB) scenarios, this class
of codes was finally adopted by the 3GPP for data channels, where two different base graphs
(BG1 and BG2) were adopted, providing a high flexibility in contrast to previous generations
of mobile communication systems.

1The girth of a Tanner graph of a LDPC code is defined by the length of the shortest cycle contained in it.

1.2. Problem Statement and Motivation 5

1.2 Problem Statement and Motivation

Actually, achieving reliable communications over various propagation channels is a key re-
quirement for modern standards of wireless communications. In contrast to previous gen-
erations, the optimization of the trade-off between performance and complexity is a main
challenge to meet the requirements of these modern wireless communication systems. Ad-
ditionally, decades of advancements in coding theory have shown that performance near the
Shannon capacity can be achieved by LDPC codes when decoded with the BP-SP algorithm,
and especially for very high information and code lengths. However, recently, many com-
munication standards require transmissions of short to moderate block lengths, with a high
reliability and low-complexity. Moreover, these energy-constrained systems require low stor-
age requirements, due to their limited hardware memory.

LDPC codes with the row-column (RC) constraint in their associated Tanner graphs have
shown to be the most suitable codes for modern communication systems, providing perfor-
mances near the Shannon capacity. These codes are considered OSMLD codes, and can
be decoded using simplest majority-logic decoding algorithms compared to the BP-SP algo-
rithm that requires a relatively higher computational complexity. The construction of different
MLGD codes is essentially derived from combinatorial and geometric constructions, which
use deep notions of finite fields and combinatorial mathematics.

In addition, regular MLGD codes that have a cyclic structure represent the most appropriate
coding schemes for energy-constrained communication systems and data storage systems,
especially for short blocklengths. Also, these codes have shown to exhibit very low error
floors given at a Bit Error Rate (BER) of 10−15, which is moreover very useful for systems
that operate in high Signal to Noise Ratios (SNRs). Consequently, the comprehensive un-
derstanding of different constructions of these codes may lead to a profound investigation on
how is it possible to design powerful MLGD codes suitable for low-complexity systems.

The decoding of current LDPC codes uses the belief-propagation sum-product (BP-SP) al-
gorithm, which requires relatively higher computational complexity, because of the mathe-
matical calculations involved in the decoding process, that may be relatively high-cost for
some particular communication systems. Majority-logic decoding algorithms represent a
highly likable candidate for achieving reliable communications at the cost of low computa-
tional complexities. Furthermore, those codes with a cyclic structure are capable of providing
lower complexities and low latency communications.

For instance, the latest standard of mobile wireless communication systems is the 5G NR

1.2. Problem Statement and Motivation 6

standard, which was partially completed and finished in June 2018. In contrast to previous
generations of mobile networks, the 5G NR is a combination of many technologies and vari-
ous use cases and seeks to connect the entire ecosystem by connecting and redefining various
industries, ranging from mobile communications, immersive applications, vehicular com-
munications to the internet of things (IoT) and industrial automation. The major expected
applications of the 5G systems include: enhanced Mobile Broadband (eMBB), dedicated for
ultra high capacity and high throughput applications, including mobile phone communica-
tions, high resolution (>4K) video streaming, mobile gaming and immersive extended reality
applications (VR, AR), etc. Another use case includes Ultra Reliable Low-Latency Com-
munications (URLLC), dedicated for mission critical machine to machine communications,
vehicular communications (V2V, V2P, V2I, and in general cV2X) and remote surgeries in the
e-Health industry, as well as many other use cases in various industries. The third expected
application of the 5G NR is massive Machine-Type Communications (mMTC), dedicated
for the IoT industry, smart homes, smart cities, smart farming, industrial IoT and other re-
lated machine to machine communications requiring short blocklengths and limited memory
storage requirements.

The URLLC and mMTC scenarios in the 5G NR, and more especially the mMTC use case,
require transmissions of short data blocks with a high reliability and very low complexity
and latency. The key parameter to meet these requirements is the use of an optimal trade-off
between performance and complexity providing reliable communications for these systems.

The main challenge and motivations behind this thesis is to emphasize the benefits of MLGD
codes in these use cases of modern communication systems in the 5G NR standard, and
to show that MLGD codes represent a promising candidate for meeting these industrial re-
quirements. Also, it was shown in the literature that for short and moderate blocklengths,
the irregularity is no longer advantageous for achieving good performance, while regular
OSMLD codes are the most promising candidates for meeting these performance require-
ments. This motivates us in this thesis to investigate different constructions of MLGD codes
and to establish an extensive state of art on the construction techniques, in order to enrich the
code database of our research team. Also, our motivations are extended to review the exist-
ing decoding algorithms for these codes, that are already proposed in the literature, towards
the proposition of new decoding algorithms that compete the previous works, as well as in
order to result in a unified view and understanding of majority-logic decoding algorithms for
improving the current state of art.

1.3. Thesis Aim, Objectives and Organization 7

1.3 Thesis Aim, Objectives and Organization

The topic of this thesis is the investigation of the construction, iterative decoding and some ap-
plications of majority-logic decodable codes. These codes represent a particular class of error
correcting codes, with guaranteed structural properties, providing the orthogonality in their
corresponding dual structures. Based on the orthogonality property that these codes inherit
from their associated construction methods, MLGD codes can be decoded using majority-
logic decoding algorithms, requiring a relatively lower computational complexity.

In fact we are interested to emphasize the attractive advantages of MLGD codes for their
eventual use in many standards of wireless communication systems, where both the reliability
and low-complexity are a key requirement. Using majority-logic decoding, low decoding
latency can be easily achieved, providing interesting features for modern and future wireless
communication and data storage systems. For instance, as mentioned before, the mMTC use
case in 5G mobile networks is a particular scenario where MLGD codes can compete well the
existing channel coding techniques. Actually, investigations and studies on theses scenarios
are still in progress in most wireless communication industries, and the standard remains
incomplete, waiting for further technical contributions from various research communities
over the world.

Consequently, we develop in this thesis different background and state of art on the combi-
natorial and algebraic construction of MLGD codes with various code lengths and rates. The
main challenge is to obtain a large database for these codes with guaranteed mathematical
properties, in order to evaluate their performances over various realistic scenarios, and to em-
phasize their benefits for the semi-conductor and telecommunications industries that require
low-complexity and high performances. Besides wireless communication and data storage
systems, another benefit of these codes consists of their proposition in new low-complexity
and post-quantum cryptosystems in the IoT industry as well as for vehicular communica-
tions in the URLLC 5G NR use cases, as the security is actually a key challenge behind the
commercialization and the roll-out of the complete standalone 5G NR standard.

In order to exploit the performances of the constructed MLGD codes, we are especially in-
terested in establishing an extensive state of art on decoding MLGD codes, and devising new
decoding techniques suitable to result in robust performances, while maintaining a reasonable
computational complexity, for meeting the future requirements of wireless communication
and data storage systems.

A brief introduction of the required background on coding and information theory, and the

1.3. Thesis Aim, Objectives and Organization 8

historical evolution of the launched projects and research contributions on forward error cor-
rection, as well as the essential notions of cyclic codes were given above in 1.1. The remain-
der of this thesis is divided into three main parts. The first part, including Chapters 2 and 3,
is dedicated to the combinatorial construction of various MLGD codes, where balanced in-
complete block designs and other related combinatorial designs and algebraic techniques are
used to derive various classes of MLGD codes. In the second part, which includes Chapters 4
and 5, we will investigate and analyze the iterative decoding of two distinct classes of MLGD
codes, namely OSMLD codes and TSMLD codes, respectively. In the last part of this thesis,
namely Chapter 6, we focus our interest to some applications of OSMLD codes in the 5G NR
and synthetic DNA data storage systems.

More specifically the contents of the chapters of this thesis are organized as follows:

In Chapter 2, we address our interest to the classification of different families of MLGD
codes, using backgrounds and mathematical techniques derived from combinatorial theory,
finite fields, algebra and finite geometries. We will introduce the notions of balanced incom-
plete block designs and difference-sets, and we will explore various families of difference-
sets, as well as their generalization to difference-families. Additionally, we will briefly
present a literature review on finite geometry MLGD codes and their construction methods.
This extensive literature review will result in a classification of different MLGD codes, with
various structures, i.e. cyclic, quasi-cyclic and non cyclic MLGD codes.

In Chapter 3, we will focus our interest to the construction of cyclic OSMLD codes, derived
from advanced notions of cyclotomic cosets and parity-check idempotents. We will present
the mathematical constraints on how is it possible to construct feasible parity-check idempo-
tents for generating cyclic OSMLD codes. We will also give a correspondence between the
design of cyclic OSMLD codes and difference-sets and Golomb rulers. A literature review
on the existing construction techniques already proposed previously is established, where
the exhaustive search based construction is entirely reviewed, before establishing an analysis
on the search space and investigating how it is possible to simplify the construction to ob-
tain diverse code lengths (short, moderate and long) and code rates. Then we will introduce
our proposed construction algorithms based on Genetic Algorithms, which aims to further
simplify the construction complexity and to easily result in new cyclic OSMLD codes with
attractive properties.

Chapter 4 is dedicated to the iterative decoding of OSMLD codes. We will give some pre-
liminaries that will be useful along the chapter, before establishing a literature review on the
existing majority-logic decoding algorithms. We will define each algorithm in order to pro-

1.3. Thesis Aim, Objectives and Organization 9

vide a deep understanding of different decoding approaches, before giving a classification of
these decoding algorithms. Then we will explore the previous works that use the Gradient-
Descent technique for decoding error correcting codes, before introducing the proposed de-
coding algorithm (GD-MLGD) based on the gradient-descent optimization technique along
with its quantized version that aims to further reduce the computational complexity. Per-
formance analysis and comparisons with previous works will be addressed, in terms of the
computational complexity, average number of decoding iterations and error rates. Finally an
universal view of gradient-descent decoding algorithms is proposed based on the established
literature review. Moreover, we explore other variants of the GD technique in order to re-
sult in enhanced update rules of the reviewed MLGD algorithms. Additionally, we extend
our generalization to constrained optimization techniques, basically based on the Augmented
Lagrange Method of Multipliers, and we propose a more generalized model suitable for de-
coding every linear block code characterized by a parity-check matrix, and not essentially
containing orthogonal parity-check equations.

In Chapter 5, we propose a unified view of majority-logic decoding algorithms as an un-
constrained minimization/maximization of a first-order derivable objective function with n

variables, where n is the code-length. We show that for each MLGD algorithm, it is possible
to associate a suitable objective function representing the decoding problem. Our study re-
veals that each derived objective function can be maximized using the Gradient-Descent (GD)
optimization technique. The calculations of the corresponding first-order partial derivatives
of these functions are investigated, and have shown to coincide with their corresponding soft-
reliabilities. Moreover, we propose enhanced versions of these algorithms based on introduc-
ing new update rules derived from other variants of the Gradient-Descent. In addition, we
extend our mathematical formulation to constrained optimization models, where we propose
a new decoding algorithm, so-called the Augmented Lagrangian Multiplier Method Decoder
(ALMM-D), derived from the ALMM constrained optimization technique. Our contribution
aims to establish a solid mathematical foundation of the decoding problem, and to facilitate
the task of devising a decoding algorithm suitable for decoding LDPC codes, especially those
with no short cycles (considered as OSMLD codes) as well as other linear block codes, by ad-
equately choosing an appropriate mathematical model, in which the involved complexity only
depends on the arithmetical calculations of the first-order partial derivatives of the incorpo-
rated objective function which represents the decoding problem. Furthermore, the extension
of these models as well as the employed optimization techniques for solving it depend on
the use case, where many compromises between performance, complexity and latency can be

1.4. Related publications 10

mathematically jointly optimized.

Chapter 6 is dedicated to the proposition of the use of OSMLD codes in two different appli-
cations: the 5G NR mMTC and URLLC applications, and DNA data storage systems. In the
first part we will first present the benefit of OSMLD codes in the 5G NR as a competitors
of other channel coding schemes, where some preliminary notions about the URLLC and
mMTC scenarios are introduced, as well as the protograph LDPC codes already standard-
ized for data channels in the 5G eMBB applications. Then we will present a brief literature
review on the current advancement in the coding schemes already proposed for the URLLC
and mMTC scenarios. This part will be concluded by performance comparisons of the pro-
posed OSMLD codes with the previous propositions in the state of art. The second part of
this chapter includes an application of cyclic ternary difference-set codes defined over GF(3)
in DNA data storage systems. We will present some preliminaries on the next generation
DNA data storage technology. We will introduce DNA channels and DNA modulations in a
information theory considerations, then we establish a literature review on the previous DNA
forward encoding schemes, before introducing our proposed scheme based a double protec-
tion of DNA molecules based on cyclic ternary difference-sets. Performance evaluation of
the proposed DNA encoding scheme along with a comparison with previous works will be
finally exposed.

General concluding remarks and future research directions are presented in Chapter 7. Fi-
nally, Appendix A presents detailed definitions of some combinatorial designs and objects.
Appendix B presents a non-exhaustive list of new constructed cyclic binary and non-binary
OSMLD codes using the OSMLD-GA algorithm, while Appendix C explains the calculation
of the analytical form of the error rate for the WOSMLGD algorithm, followed by a glossary
and the bibliography.

1.4 Related publications

Journal papers

• Karim Rkizat, Anouar Yatribi, Mohammed Lahmer, and Mostafa Belkasmi. Iterative
threshold decoding of high rates quasi-cyclic OSMLD codes. International Journal of

Advanced Computer Science and Applications, 7, 2016.

• A. Yatribi, M. Belkasmi and F. Ayoub. Gradient-descent decoding of one-step majority-
logic decodable codes. Elsevier, Physical Communication (2020), doi: https://doi.

https://doi.org/10.1016/j.phycom.2019.100999
https://doi.org/10.1016/j.phycom.2019.100999
https://doi.org/10.1016/j.phycom.2019.100999

1.4. Related publications 11

org/10.1016/j.phycom.2019.100999.

• Anouar Yatribi, Mostafa Belkasmi and Fouad Ayoub. Unified Models for Majority-
Logic Decoding of LDPC Codes using Local Optimization Techniques. Accepted in

the International Journal of Computer Science & Applications (IJCSA), 2020.

• Anouar Yatribi, Mostafa Belkasmi, Fouad Ayoub and Robert G. Maunder. Deep Learn-
ing aided Iterative Threshold Decoding of Two-Step Majority-Logic Decodable Codes.
In preparation for submission to IEEE Transactions on Communications, 2021.

Book chapters

• Anouar Yatribi, Mostafa Belkasmi, and Fouad Ayoub. An Efficient and Secure Forward
Error Correcting Scheme for DNA Data Storage. In International Conference on Soft

Computing and Pattern Recognition, pp. 226–237. Springer, 2018.

Conference papers

• • Anouar Yatribi, Fouad Ayoub, Ahmed Azouaoui, Mostafa Belkasmi. Comparison of
Hybrid Automatic Repeat Request Protocols using Turbo Codes. In NDENT’13, 2013.

• Anouar Yatribi, Fouad Ayoub, Zakaria M’rabet, Ahmed Azouaoui, and Mostafa Belka-
smi. Hybrid Automatic Repeat Request Protocols: Turbo-Codes against Cyclic Binary
Low-Density Parity-Check Codes. In 2014 5th Workshop on Codes, Cryptography and

Communication Systems (WCCCS), pages 86–91. IEEE, 2014.

• Anas Aboudeine, Fouad Ayoub, Anouar Yatribi, and Mohammed Benattou. Perfor-
mance analysis of Coding using Distributed Turbo Codes. In 2015 Third International

Workshop on RFID And Adaptive Wireless Sensor Networks (RAWSN), pages 78–81.
IEEE, 2015.

• Anouar Yatribi, Fouad Ayoub, and Mostafa Belkasmi. Construction of Cyclic One-Step
Majority-Logic Decodable Codes using Genetic Algorithms. In 2015 International

Conference on Wireless Networks and Mobile Communications (WINCOM), pages 1–
6. IEEE, 2015.

• Anouar Yatribi, Fouad Ayoub, and Mostafa Belkasmi. An efficient FEC/ARQ scheme
using Iterative Threshold Decoder. In JDSIRT’15, 20:2, 2015.

https://doi.org/10.1016/j.phycom.2019.100999
https://doi.org/10.1016/j.phycom.2019.100999
https://doi.org/10.1016/j.phycom.2019.100999

1.4. Related publications 12

• Anouar Yatribi, Mostafa Belkasmi, Fouad Ayoub, and Zakaria M’rabet. Non-Binary
Cyclic Majority-Logic Decodable Codes: An Algebraic Construction by using Genetic
Algorithms. In 2016 International Conference on Advanced Communication Systems

and Information Security (ACOSIS), pages 1–9. IEEE, 2016.

• Zakaria M’rabet, Fouad Ayoub, Mostafa Belkasmi, Anouar Yatribi, and Alaoui Ismaili
Zine El Abidine. Non-Binary Euclidean Geometry Codes: Majority Logic Decoding.
In 2016 International Conference on Advanced Communication Systems and Informa-

tion Security (ACOSIS), pages 1–7. IEEE, 2016.

• Souad Labghough, Anouar Yatribi, Fouad Ayoub and Mostafa Belkasmi. CSOC Codes
Performance over AWGN Channel. In NDENT’17, 2017.

• Otmane El Mouaatamid, Mohamed Lahmer, Mostafa Belkasmi, Zakaria M’rabet, and
Anouar Yatribi. One-Step Majority-Logic Decodable Codes derived from Oval de-
signs. In 2017 International Conference on Wireless Networks and Mobile Communi-

cations (WINCOM), pages 1–6. IEEE, 2017.

Chapter 2

Majority-Logic Decodable Codes

2.1 Introduction and Background

Low-density parity-check codes represent a class of linear block codes with implementable
decoders, which provide near-capacity performance on a large set of data transmission and
data storage channels. LDPC codes were invented by Gallager in his 1960 doctoral disserta-
tion [48] and were mostly ignored during the 35 years that followed. One notable exception
is the important work of Tanner in 1981 [165], in which Tanner generalized LDPC codes and
introduced a graphical representation of these codes, now called a Tanner graph. The study
of LDPC codes was resurrected in the mid 1990s, where it was noticed, independently of
Gallager’s work, the advantages of linear block codes with sparse (low-density) parity-check
matrices.

LDPC codes are generally decoded using message-passing decoding algorithms. The most
known decoding algorithms for these codes are the Belief-Propagation Sum-Product algo-
rithm (BP-SPA), as well as it simplification known as belief-propagation Min-Sum (BP-
MS). Other variants of the BP-MS algorithm were proposed in the literature in order to
improve the performance. Other decoding techniques include the original bit-flipping al-
gorithm [48] and many of its improved variants [20, 54, 72, 77, 86, 90, 99, 100, 103, 121, 122,
125, 159, 172, 184, 187, 188, 198, 199]. Later, due the works of Feldman in his doctoral dis-
sertation in 2003 [44], a new approach for decoding LDPC codes was introduced, based
on the use of constrained optimization techniques, namely Linear Programming. These
works have motivated a lot of research groups to investigate other advanced constrained
and convex optimization techniques for devising appropriate decoding algorithms for LDPC
codes [9, 22, 45, 82, 101, 102, 162, 182, 183, 202] in various transmission channels.

13

2.1. Introduction and Background 14

We shall consider only binary LDPC codes for the sake of simplicity, although LDPC codes
can be generalized to non-binary alphabets. A low-density parity-check code is a linear block
code given by the null space of an m× n sparse (i.e. low density of 1s) parity-check matrix
H. A regular LDPC code is a linear block code whose parity-check matrix H has column
weight γ and row weight ρ , where ρ = γ(n/m) and γ � m. If H is low density, but its
row and column weight are not both constant, then the code is an irregular LDPC code.
For reasons that will become apparent later, almost all LDPC code constructions impose the
following additional structural property on H: no two rows (or two columns) have more than
one position in common that contains a nonzero element. This property is called the row–

column constraint, or simply, the RC constraint. When a LDPC code has the RC constraint
satisfied, it can be considered as a One-Step Majority-Logic Decodable (OSMLD) code.

The descriptor “low density” is unavoidably vague and cannot be precisely quantified, al-
though a density of 0.01 or lower can be called low density (1% or fewer of the entries of
H are 1s). The density needs only be sufficiently low to permit effective iterative decoding.
This is in fact the key innovation behind the invention of LDPC codes. It is well known
that optimum (e.g., maximum-likelihood) decoding of the general linear block codes that is
useful for applications is not possible due to the vast complexity involved. The low-density
aspect of LDPC codes accommodates iterative decoding, which typically has near-maximum-
likelihood performance at error rates of interest for many applications. The construction of
LDPC codes usually involves the construction of H, which need not be full rank. In this case,
the code rate r for a regular LDPC code is bounded as

r ≥ 1− m
n

(2.1)

with equality when H is full rank.

The most known constructions of powerful LDPC codes with the RC constraint are based on
finite fields and finite geometries, including Euclidean and Projective geometries and other
sub-geometries. Other constructions include those based on combinatorial designs, especially
Balanced Incomplete Block Designs (BIBDs), as will be presented in this chapter. There are
also computer-generated LDPC codes, in which the construction is random, and these codes
are referred to random LDPC codes [66, 167].

In this chapter, the notions of balanced incomplete block designs and difference-sets are intro-
duced in Section 2.2, before reviewing the most known constructions of LDPC codes in Sec-
tion 2.3, including computer-generated and algebraic LDPC codes. Section 2.4 reviews the
constructions of cyclic, quasi cyclic and non structured OSMLD codes derived from various

2.1. Introduction and Background 15

classes of combinatorial designs. Multi-Step Majority-Logic Decodable (MSMLD) codes
derived from Euclidean geometries are introduced in Section 2.5, followed by a classification
summary of the correspondence between different families of MLGD codes and combinato-
rial designs. Finally, a summary of this chapter is presented in Section 2.7.

2.1.1 Definitions and Preliminaries

We shall begin by some background and definitions that will be used throughout the thesis.
We will give the definitions that are specific to a particular problem in the section pertaining
to that particular problem.

Definition 2.1 (Linear code). Let Fn
q denotes an n-dimensional vector space over a finite field

Fq of q elements. An (n,k,dmin)q linear code C is a k-subset of Fn
q, with a dimension k. Each

vector of C is a n-dimensional vector of Fn
q denoted by c = (c0,c1, ...,cn−1).

Note that there is qk codewords in a code C defined over GF(q). A codeword of C is obtained
by linear combinations of other codewords of the same sub-space, and the component-wise
sum of all codewords is an all zero vector, called the trivial codeword. Consequently the code
C is said to be linear.

Throughout the thesis, if the subscript q is omitted, i.e. C = (n,k,dmin), then q = 2 and C is
a binary code.

Definition 2.2 (Code rate). The code rate r of an (n,k,dmin)q linear code C is defined by the
ratio r = k

n .

Definition 2.3 (Hamming weight). For a vector v = (v0,v1, ...,vn−1) ∈ Fn
q, the Hamming

weight of v, denoted by wtH(v), is the number of non zero elements in the vector. That is

wtH(v) = |
{

v j 6= 0 |0≤ j < n
}
|

Definition 2.4 (Support). The support sup(v) of a vector v ∈ Fn
q, denotes a set of coordinates

of v for which the value is non zero:

sup(v) =
{

j |v j 6= 0,0≤ j < n
}

Definition 2.5 (Hamming distance). Let the vectors u,v∈ Fn
q, the Hamming distance of u and

v, denoted by dH(u,v), represents the number of coordinates in which u and v are different,

dH(u,v) = wtH(u− v) = |
{
(u j− v j) 6= 0 |0≤ j < n

}
|

2.1. Introduction and Background 16

Definition 2.6 (Minimum Hamming distance). The minimum Hamming distance of a code
C , denoted by dmin, is the smallest value of all Hamming distances between any two distinct
codewords of C . Because of the linearity property, dmin can also be defined as:

dmin = min
{

dH(c,c′) | for all c,c′ ∈ C
}

= min{wtH(c) | for all c ∈ C }

A code of Hamming distance dmin is capable of correcting t =
[

dmin−1
2

]
symbol errors. The

parameter t is the correction capacity of the code C .

Definition 2.7 (Generator matrix). An (n,k,dmin)q linear code C has a generator matrix G

with dimension k× n, which contains k linearly independent codewords of C . A codeword
c ∈ C may be obtained by taking any linear row combination of G.

The matrix G can be transformed into a reduced-echelon or systematic form by elementary
row operations and if necessary, some column permutations. In systematic form, the first k

coordinates of G is an identity matrix. Hence, for an arbitrary information vector u ∈ Fk
q,

c = uG and c ∈ C is a systematic codeword where the first k symbols are the information
vector u and the remaining n− k coordinates contain the redundant symbols.

Definition 2.8 (Parity-check matrix). The parity-check matrix H of a code C is a m× n

matrix, such that m ≥ n− k, and it contains m linearly independent vectors of Fn
q so that

G.HT = 0. Equivalently, this implies cHT = 0 for all c ∈ C . Each row in the matrix H is
called a parity-check equation.

Definition 2.9 (Dual code). The dual code of an (n,k,dmin)q linear code C , denoted by C⊥,
is an (n,n− k,d′min) linear code where cc⊥ = 0 for all c ∈ C and all c⊥ ∈ C⊥.

While any linear row combination of G produces c, any linear row combination of H produces
c⊥. The matrices H and G are the generator and parity-check matrices of C⊥ respectively.

Definition 2.10 (Self-dual and self-orthogonal code). An (n,k) code C is self-orthogonal if
C ⊂ C⊥ and self-dual if C = C⊥. The length of a self-dual code is even and n = 2k. An
(n, n

2) code C is formally self-dual if C and C⊥ have the same weight distribution.

Definition 2.11 (Syndrome). Given a vector z ∈ Fn
q, the vector s(z) ∈ Fm

q defined by

s(z) = z.HT

2.1. Introduction and Background 17

is the syndrome of a code whose parity-check matrix is H. If the vector z ∈ C , then s(z) = 0,
otherwise at least one coordinate of s(z) has a non zero value.

Definition 2.12 (Hamming weight enumerator polynomial and weight distribution). Given
an (n,k,dmin)q linear code C , let Ai = |{wtH(c) = i |∀c ∈ C }|, i.e. the number of codewords
of Hamming weight i. The Hamming weight enumerator polynomial of C is given by

AC (z) =
n

∑
i=0

Aizi

where z is an indeterminate. The distribution of Ai for 0 ≤ i ≤ n is known as the weight
distribution of C .

Theorem 2.1 (MacWilliams identity). Let C be an (n,k) code over Fq with weight enumer-

ator A(x), and let B(x) be the weight enumerator of C⊥. Then

qkB(x) = (1+(q−1)x)n A
(

1− x
1+(q−1)x

)
. (2.2)

Definition 2.13 (Equivalence and automorphism of codes). Two codes are equivalent if one
of the codes can be obtained from the other by permuting the coordinates (in all codewords)
and permuting the symbols within one or more coordinate positions.

Two codes are isomorphic if they differ by a permutation of the coordinates only. An auto-

morphism of a code is any equivalence of the code with itself [27].

Theorem 2.2 (sphere packing or Hamming bound). A q-ary code C of length n and minimum

distance d = 2t +1 satisfies

|C | ≤ qn

∑
t
i=0
(n

i

)
(q−1)i

. (2.3)

A code that achieves the sphere packing bound is a perfect code. Equivalently, a code is
perfect if the whole space is covered by the spheres of radius t around all codewords. [27].

Definition 2.14 (Union Bound Probability). For a code with rate r = k
n and a minimum dis-

tance dmin, the bit error probability Pb for a transmission over a noisy channel with signal to
noise ratio Eb

N0
and noise variance σ2 = N0

2 is given by:

Pb = ∑
i

AiQ(
√

2rdiEb/N0) (2.4)

2.1. Introduction and Background 18

where
Q(x) = 0.5er f c(

x√
2
) (2.5)

and
er f c(x) =

2√
π

�
∞

x
e−t2

dt (2.6)

where Ai is the Hamming weight of a codeword ci, Eb is the energy per bit, N0 is the noise
spectral density and erfc(.) is the complementary error function given by (1.5).

The error probability Pb can be approximated as the probability of error associated with con-
stellations at the minimum distance dmin multiplied by the number of neighbors at this dis-
tance, denoted by Kdmin . This approximation is the union bound, which becomes increasingly
tight as the SNR increases, and takes the following form:

Pb ≤ KdminQ
(

dmin

2σ

)
(2.7)

Throughout the thesis, the considered transmission flow is illustrated in Figure 1.1. The
source encoder transforms the source output into a binary sequence u of size k so that the
source information is compressed and can be reconstructed without ambiguity. Source cod-
ing is another topic out of the scope of this thesis. The channel encoder transforms the
information sequence u into a codeword c ∈ Fn

q, where q is alphabet size of the considered
code. The channel encoding procedure is necessary for adding n− k redundancy symbols in
order to protect the transmitted signal from the channel noise perturbation. Before the trans-
mission over the noisy channel, the encoded sequence is modulated into a waveform which
is suitable for transmission (or recording in a storage medium). The modulated waveform is
therefore transmitted over the propagation channel (or storage medium) and is corrupted by
noise. There are many channel models in the literature, adequate for various wireless com-
munication systems. Each of these channel models is subject to a different noise distribution.
The demodulator processes each received signal and produces a discrete (quantized) or con-
tinuous (unquantized) output for the channel decoder. The channel decoder is responsible for
detecting and correcting the channel errors, and then outputs an estimated binary informa-
tion sequence û. The decoding strategy depends on the considered family of error correcting
codes and the decoding algorithm, as well as the noise characteristics of the channel. Ideally,
the decoder outputs a replica of the information sequence u, although the noise may introduce
some decoding errors. Finally, the source decoder transforms the estimated sequence û into
an estimate of the source output and delivers it to the destination. In this thesis, we focus our
major interest to the channel encoder and channel decoder blocks of this transmission chain.

2.1. Introduction and Background 19

Figure 2.1: Block diagram of a data transmission (or storage system)

2.1.2 Balanced Incomplete Block Designs

As mentioned in the introduction of this chapter, many interesting construction methods of
LDPC codes and MLGD codes are derived from special classes of combinatorial designs. The
mot important notion of these designs includes Balanced Incomplete Block Designs (BIBDs)
as well as other related designs [27, 57]. BIBDs represent a family of combinatorial designs,
widely used in statistical and control applications. They represent particular objects with inci-
dence properties that controls the occurrence of each object into blocks. The correspondence
between BIBDs and error correcting codes is motivated by the following facts:

• The incidence matrix of a combinatorial design is the equivalent of a parity-check
matrix of a regular LDPC code.

• Both are sparse binary matrices with constant row and column weights.

• The design for LDPC codes with Tanner graphs free of 4-cycles (MLGD codes) is
analogous to a well studied problem in combinatorics, that of constructing Steiner
2-designs.

The next two definitions describe the notions t-designs and BIBDs, followed by other defini-
tions that characterize their existence and properties.

Definition 2.15 (t-(v,k,λ) designs). A t-(v,k,λ) design, is a pair (X ,B) where X is a v-
set of points and B is a collection of k-subsets of X (blocks) with the property that every
t-subset of X is contained in exactly λ blocks. The parameter λ is the index of the design.

2.1. Introduction and Background 20

Remark 2.1. When t = 2, a 2-(v,k,λ) design, or a (v,k,λ) design in short is a balanced
incomplete block design (BIBD).

Definition 2.16 (Balanced Incomplete Block Designs). A Balanced Incomplete Block Design
(BIBD) is an arrangement of v distinct objects into b blocks such that each block contains
exactly k distinct objects, each object occurs in exactly r different blocks, and every t distinct
objects (ai,a j) occurs together in exactly λ blocks.

An (v,b,r,k,λ)-BIBD is a collection V and B of objects and blocks with a relation of inci-
dence indicating which objects belong to which blocks. We will only consider the case where
t = 2, thus the parameter t will be omitted.

Example 2.1. Let X = {1, ...,6}. Let B= {124,126,134,135,156,235,236,245,346,456}.
Then (X ,B) is a 2-(6,3,2) design.

Theorem 2.3 below was proved by Assmus and Mattson in 1969, and provides an important
method for the construction of t-designs as support designs in linear codes with relatively few
nonzero weights [27].

Theorem 2.3 (Assmus–Mattson theorem). Let C be an (n,k,dmin) linear code over Fq and

C⊥ be the dual (n,n− k,d⊥min) code. Denote by n0 the largest integer ≤ n such that n0−
n0+q−2

q−1 < dmin , and define n⊥0 similarly for the dual code C⊥. Suppose that for some integer

t, 0 < t < dmin, there are at most d− t nonzero weights ω in C⊥ such that ω ≤ n− t. Then,

the support design:

1. for any weight u, d ≤ u≤ n0 in C is a t-design;

2. for any weight ω , d⊥min ≤ ω ≤min
{

n− t,n⊥0
}

in C⊥ is a t-design.

Remark 2.2. The largest value of t for any known t-design derived from a code via the
Assmus–Mattson Theorem is t = 5. All such 5-designs come from self-dual codes.

The properties of a BIBD are characterized by its corresponding incidence matrix, along with
the incidence properties defined in the next definition.

Definition 2.17. The incidence matrix of a BIBD with parameters v,b,r,k,λ is a v×b matrix
A = (ai j), in which ai j = 1 when the ith element of V occurs in the jth block of B, and ai j = 0
otherwise. The incidence matrix of a BIBD is governed by the following two equalities:

2.1. Introduction and Background 21

bk = vr (2.8)

r(k−1) = λ (v−1) (2.9)

where the incidence property 2.8 indicates that each of the b blocks are containing k objects
and each of the v objects being contained in r blocks. The property 2.9 means that each object
occurs in r blocks, and in each of these is a pair with the (k−1) remaining objects, while on
the other hand, a1 is paired λ times with each of the remaining (v−1) objects.

Given a 2-(v,k,λ)-design, its corresponding incidence matrix A must satisfy the equation
stated in Theorem 2.4 below [57].

Theorem 2.4. Let A be the incidence matrix of the (v,k,λ)-design. Then A is a binary matrix

of order v that satisfies the matrix equation

AAT = (k−λ)I +λJ (2.10)

where AT denotes the transpose of A, I is the identity matrix of order v, and J is the matrix of

1’s of order v.

A particular case of BIBDs, is when the number of blocks equals the number of objects. In
this case, the design is called a symmetric BIBD [27, 57].

Definition 2.18 (Symmetric BIBD). A (v,b,r,k,λ)- design is a symmetric BIBD if v = b, or
equivalently r = k.

k(k−1) = λ (v−1) (2.11)

In this case, the parameters r and b can be omitted, and the design is simply denoted as
(v,k,λ).

The existence conditions of a BIBD are related to the Fisher’s inequality [47] and the theorem
of Bruck, Ryser and Chowla [23, 27, 57]. These two theorems are stated below (Theorems
2.5 and 2.6).

Theorem 2.5 (Fisher’s inequality). If a BIBD (v,b,r,k,λ) exists with 2≤ k ≤ v, then b≥ v.

2.1. Introduction and Background 22

This theorem simply states that if a BIBD with parameters (v,b,r,k,λ) exists, then the number
of blocks b must be greater or equal than the number of objects v.

The existence of a symmetric BIBD is governed by the Bruck, Ryser and Chowla theorem
stated below.

Theorem 2.6 (Bruck, Ryser and Chowla Theorem). Let n = k− λ . If a symmetric block

design exists with parameters v,k,λ , then:

1. If v is even, then n is a square.

2. If v is odd, then z2 = nx2+(−1)(v−1)/2λy2 has a solution in integers x,y,z not all zero.

The proof of the Bruck-Ryser and Chowla theorem can be found in [147].

Now let’s state a corollaire that establishes the correspondence between combinatorial de-
signs and majority-logic codes [27].

Corollary 2.1. A linear code whose dual code supports the blocks of a t-design admits one of

the simplest decoding algorithms, majority decoding. Essentially, for each symbol y j of the

received codeword y = (y0, ...,yn−1), a set of values y(i)j , i = 1, ...,r of certain linear functions

defined by the blocks of the design are computed, and the true value of y j is decided to be the

one that appears most frequently among y(1)j , ...,y(r)j .

2.1.3 Difference-Sets

When a (v,k,λ) design is a symmetric BIBD, then each block represents a difference-set. For
the case of symmetric BIBDs, the construction of such designs only implies the construction
of one block (difference-set), as the other blocks can be directly obtained by cyclically per-
muting the difference-set being constructed. There are many classes of difference-sets, and
the understanding of the construction of those objects leads to the design of many classes
of cyclic codes that have orthogonality properties that inherit from these designs. We will
briefly describe a set of classes of difference-sets, and a classification with the correspon-
dence between these combinatorial objects and codes will be given later in this chapter.

Definition 2.19. Let G be an additively written group of order v. A k-subset D of G is a
(v,k,λ ;n)-difference set of order n = k− λ if every nonzero element of G has exactly λ

representations as a difference di−d j (di,d j ∈ D). The difference set is abelian, cyclic, etc.,
if the group G has the respective property. The redundant parameter n is sometimes omitted;
therefore, the notion of (v,k,λ)-difference sets is also used.

2.1. Introduction and Background 23

Example 2.2. The set D = {0,1,3} is an (7,3,1)-difference set in the group Z7. It corre-
sponds to an hyperplane of the projective plane PG(2,2), called Fano plane, represented in
Figure 2.1. The projective geometry PG(2,2) corresponds to a symmetric BIBD with param-
eters (v,k,λ) = (7,3,1).

Figure 2.2: The Fano Plane PG(2,2)

The incidence matrix of this symmetric BIBD is given by:

AD =

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

Note that every block of AD is the incidence block of a difference-set with the same parame-
ters as D. We say that these difference-sets are equivalent.

Example 2.3. The complement of the difference-set D corresponding to PG(2,2) is D′ =

{2,4,5,6}, which is again a difference-set in Z7, called biplane, with parameters (v,k,λ) =

2.1. Introduction and Background 24

(7,4,2). The incidence matrix of its corresponding BIBD with parameters (v,k,λ) = (7,4,2)
is given by:

AD′ =

0 0 1 0 1 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

1 0 1 1 1 0 0

0 1 0 1 1 1 0

Similarly to Example 2.2, each block of AD′ is a difference-set, and all the blocks are equiva-
lent.

Example 2.4. The set D = {1,3,4,5,9} is an (11,5,2)-difference set in the group Z11. It is
also possible to write the groups multiplicatively, in which case the difference di− d j must
be replaced by d.d−1.

The development of a difference set D is the incidence structure dev(D) whose points are the
elements of G and whose blocks are the translates gD = {gd : d ∈ D}.

Next we will describe some classes of difference-sets. The construction of each class is
different, despite that most of these constructions are based on finite fields.

2.1.3.1 Singer Difference-Sets (Type S)

A Singer difference-set is determined by the Hyperplanes in PG(m−1,q), where q = pr. Its
parameters are given by the theorem of Singer [155], which gives:

v =
qm−1
q−1

, k =
qm−1−1

q−1
, λ =

qm−2−1
q−1

(2.12)

where q = ps is a prime power.

The construction of Singer Difference-Sets is performed based on the blocks of the projective
geometry PG(m,q). Another construction is given as follows:

2.1. Introduction and Background 25

Let α be a generator of the multiplicative group of Fqm . Then the set of integers {i : 0 ≤
i < (qm−1)/(q−1), tracem/1(α

i) = 0} modulo (qm−1)/(q−1) form a (cyclic) difference
set with the classical parameters [q,m]. Here the trace denotes the usual trace function

tracem/1(β) =
m−1
∑

i=0
β qi

from Fqm onto Fq. These difference sets are Singer difference sets.

2.1.3.2 Quadratic Residues Difference-Sets (Type Q)

The parameters of quadratic residues in GF(q = pr)≡ 3(mod 4) are:

v = pr = 4t−1, k = 2t−1, λ = t−1 (2.13)

Construction: The subset F(2)
q = {x2 : x ∈ Fq \{0}} of Fq is a difference set of type Q.

2.1.3.3 Type H6

If p is a prime of the form p = 4x2 + 27, then there will exist a primitive root r modulo
p such that Indr(3) = 1(mod 6). The residues a1, ...,a(p−1)/2(mod p) such that Indr(ai) =

0,1,or 3(mod 6) will form a difference set with the following parameters:

v = p = 4t−1, k = 2t−1, λ = t−1 (2.14)

Type H6 always duplicate the parameters of difference sets of type Q.

2.1.3.4 Twin-Primes Difference-Sets (Type T)

Suppose that p and q = p+ 2 are both primes. Of the (p− 1)(q− 1) residues modulo pq

prime to pq, let a1, ...,am, m = (p−1)(q−1)/2 be those for which (ai/p) = (ai/q), and also
let am+1, ...,am+p be 0,q,2q, ...,(p−1)q. Here m+ p = (pq−1)/2 = k. Then a1, ...,ak form
a difference set modulo v = pq, with the following parameters:

v = pq, k = (pq−1)/2, λ = (pq−3)/4 (2.15)

Here, necessarily pq ≡ −1(mod 4), and we have v = 4t− 1, k = 2t− 1, λ = t− 1. In fact,
difference sets of type T , and also type Q and H6 are Hadamard difference sets.

2.1. Introduction and Background 26

2.1.3.5 Biquadratic Residues Difference-Sets (Type B)

The parameters of biquadratic residues of primes p = 4x2 +1, where x is odd, are given by:

v = p = 4x2 +1, k = x2, λ =
x2−1

4
(2.16)

Construction: The subset F(4)
p = {x4 : x ∈ Fp \{0}} of Fp is a difference set of type B.

2.1.3.6 Biquadratic Residues and Zero Difference-Sets (Type B0)

The parameters of biquadratic residues and zero modulo primes p = 4x2 +9, where x is odd,
are given by:

v = 4x2 +9, k = x2 +3, λ =
x2 +3

4
(2.17)

Construction: The subset F(4)
p ∪{0} of Fp is a difference set of type B0.

2.1.3.7 Octic Residues Difference-Sets (Type O)

If a and b are odd integers, then the parameters of octic residues of primes p = 8a2 + 1 =

64b2 +9 are given by:

v = p, k = a2, λ = b2 (2.18)

Construction: The subset F(8)
p = {x8 : x ∈ Fp \{0}} of Fp is a difference set of type O.

2.1.3.8 Octic Residues and Zero Difference-Sets (Type O0)

The parameters of octic residues and zero for primes p = 8a2 +49 = 64b2 +441, where a is
odd and b is even, is given by:

v = p, k = a2 +6, λ = b2 +7 (2.19)

Construction: The subset F(8)
p ∪{0} of Fp is a difference set of type O0.

2.2. Low Density Parity-Check Codes 27

2.2 Low Density Parity-Check Codes

2.2.1 Tanner Graph

The Tanner graph of an LDPC code is analogous to the trellis of a convolutional code in that
it provides a complete graphical representation of the code and it aids in the description of
decoding algorithms. A Tanner graph is a bipartite graph, that is, a graph whose nodes may be
separated into two types, with edges connecting only nodes of different types. The two types
of nodes in a Tanner graph are the variable nodes (or code-bit nodes) and the check nodes

(or constraint nodes), which we denote by VNs and CNs, respectively. The Tanner graph of
a code is drawn as follows: CN i is connected to VN j whenever element hi j in H is a 1.
Observe from this rule that there are m CNs in a Tanner graph, one for each check equation,
and n VNs, one for each code bit. Further, the m rows of H specify the m CN connections, and
the n columns of H specify the n VN connections. Accordingly, the allowable n-bit words
represented by the n VNs are precisely the codewords in the code.

Example 2.5. Consider a (7,3) cyclic linear block code with ωc = 3 and ωr = 3 with the
following H matrix:

H =

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0

Note that the parity-check matrix H is square, and this a consequence of the code being
cyclic. We said that there k extra parity-check equations in addition to the trivial n−k check-
sums. It is also observed that each row is a cyclic permutation of the previous one to the
right. This is only a special case when the code is cyclic, however, in the general case, there
are m ≥ n− k rows in H. The Tanner graph corresponding to H is depicted in Figure 2.2.
Observe that VNs 1,2, and 4 are connected to CN 0 in accordance with the fact that, in the
zeroth row of H, we have h01 = h02 = h04 = 1 (all others are zero). Note, as follows from
cHT = 0, that the bit values connected to the same check node must sum to zero (mod 2). We
may also proceed along columns to construct the Tanner graph. For example, note that VN
0 is connected to CNs 3,5 and 6 in accordance with the fact that, in the zeroth column of H,

2.2. Low Density Parity-Check Codes 28

we have h30 = h50 = h60 = 1. The matrix H has 4 linearly independent rows. Thus, we have
rank(H) = 4 and r = 1−4/7 = 3/7.

Figure 2.3: The Tanner graph for the LDPC code given in Example 2.5

The Tanner graph of an LDPC code acts as a blueprint for the iterative decoder in the fol-
lowing way. Each of the nodes acts as a locally operating processor and each edge acts as
a bus that conveys information from a given node to each of its neighbors. The information
conveyed is typically probabilistic information, e.g., log-likelihood ratios (LLRs), pertaining
to the values of the bits assigned to the variable nodes. The LDPC decoder is initiated by
n LLRs from the channel, which are received by the n VN processors. At the beginning of
each half-iteration in the basic iterative decoding algorithm, each VN processor takes inputs
from the channel and each of its neighboring CNs, and from these computes outputs for each
one of its neighboring CN processors. In the next half-iteration, each CN processor takes
inputs from each of its neighboring VNs, and from these computes outputs for each one of
its neighboring VN processors. The VN-CN iterations continue until a codeword is found or
until the preset maximum number of iterations has been reached.

The effectiveness of the iterative decoder depends on a number of structural properties of the
Tanner graph on which the decoder is based. A sequence of edges which form a closed path
is called a cycle. We are interested in cycles because short cycles degrade the performance of
the iterative decoding algorithms employed by LDPC codes. This fact will be made evident in
the discussion of the majority-logic decoding algorithms later in this thesis, but it can also be
seen from the brief algorithm description in the previous paragraph. It should be clear from
the description that cycles force the decoder to operate locally in some portions of the graph

2.2. Low Density Parity-Check Codes 29

(e.g., continually around a short cycle) so that a globally optimum solution is impossible.
Observe also from the decoder description the necessity of a low-density matrix H: at high
densities (about half of the entries are 1s), many short cycles will exist, thus precluding the
use of an iterative decoder.

The length of a cycle is equal to the number of edges which form the cycle, so the length of
the cycle in Figure 2.2 is 6. A cycle of length l is often called an l-cycle. The minimum cycle
length in a given bipartite graph is called the graph’s girth. The girth of the Tanner graph
for the example code is clearly 6. The shortest possible cycle in a bipartite graph is clearly
a length-4 cycle, and such cycles manifest themselves in the H matrix as four 1s that lie on
the four corners of a rectangular sub-matrix of H. Observe that the RC constraint eliminates
length-4 cycles, this is the major advantage of OSMLD codes. In the example shown above,
the parity-check matrix H is free from cycles of length 4, moreover, this is a completely
orthogonalizable difference-set code with minimum distance 4, which is the dual of the (7,4)
Hamming code.

The Tanner graph in the above example is completely regular: each VN and CN has 3 edge
connections. We say that the degree of each VN and each CN is 3. This is in accordance with
the fact that γ = 3 and ρ = 3. It is also clear from this example that mρ = nγ must hold for
all regular LDPC codes since both mρ and nγ are equal to the number of edges in the graph.

It is possible to more closely approach capacity limits with irregular LDPC codes than with
regular LDPC codes [137], especially for long codes. For irregular LDPC codes, the pa-
rameters γ and ρ vary with the columns and rows, so such notation is not useful in this case.
Instead, it is usual in the literature to specify the VN and CN degree-distribution polynomials,
denoted in the literature by λ (X) and ρ(X), respectively.

2.2.2 Random Constructions

Random constructions of LDPC codes include computer-based techniques for constructing
LDPC codes based on a set of criteria. In general, computer-generated LDPC are not struc-
tured, i.e. they do not have a cyclic or quasi-cyclic structure in their corresponding parity-
check matrices. In contrast to structured LDPC codes, the encoding procedure of these codes
requires a higher computational complexity compared to their structured counterparts. This
is because random LDPC codes require a generator matrix instead of a generator polynomial
for performing the encoding. Also, generally the generator matrix associated to a random
LDPC codes is not sparse like the parity-check matrix H, and contains a large number of

2.2. Low Density Parity-Check Codes 30

1s. The generator matrix is generated based on the parity-check matrix, by using Gaussian
elimination.

The most known random construction algorithms are the Progressive-Edge-Growth (PEG)
and the Approximate Cycle Extrinsic message degree (ACE) techniques, shortly defined be-
low [146].

1. The PEG algorithm: the progressive-edge-growth (PEG) algorithm [66, 67] is very
effective and has been used widely for computer-based code design. This technique
is essentially based on the fact that short cycles in Tanner graph present problems for
iterative decoders. The main principle of this algorithm the is to build the graph one
edge at a time, and each edge is added to the graph so that the local girth is maximized.
The PEG algorithm is initialized by the number of variable nodes, n, the number of
check nodes, m, and a variable node-degree sequence Dv.

2. The ACE algorithm: The ACE algorithm [167] accounts for the fact that iterative de-
coders not only have difficulties with cycles, but they are also impacted by the overlap
of multiple cycles. The ACE algorithm was motivated by the following observations
made in [167]:

a) In a Tanner graph for which each VN degree is at least 2, every stopping set con-
tains multiple cycles, except for the special case in which all VNs in the stopping
set1 are degree-2 VNs, in which case the stopping set is a single cycle.

b) For a code with minimum distance dmin, each set of dmin columns of H that sum
to the zero vector corresponds to a set of VNs that form a stopping set.

c) The previous result implies that preventing small stopping sets in the design of an
LDPC code (i.e., the construction of H) also prevents a small dmin.

Note that it is possible to combine the PEG and ACE algorithms to obtain a hybrid PEG/ACE
algorithm. This was proposed in [190], where the PEG/ACE algorithm has shown to result in
codes with good iterative decoding performance. An application of the PEG/ACE algorithm
as well as a detailed description of this algorithm can be found in [146].

1

i. A stopping set S is a set of VNs whose neighboring CNs are connected to S at least twice. Stopping sets
thwart iterative decoding on erasure channels.

2.2. Low Density Parity-Check Codes 31

2.2.3 Algebraic Constructions

Most of LDPC codes constructed algebraically or from finite geometries are structured, i.e.
they are either cyclic or quasi-cyclic. The parity-check matrix of a structured LDPC code
is a circulant if the code is cyclic, or it consists of a set of circulant matrices if the code is
quasi-cyclic. These codes are very suitable for the practical use because of the simplicity
of their implementation. Additionally, the encoding procedure is simply achieved using a
cyclic shift register, as these codes are characterized by a generator polynomial instead of a
generator matrix. The most known algebraic constructions of LDPC codes are those derived
from finite geometries, namely Euclidean Geometries (EG) and Projective Geometries (PG).
Other constructions include those derived from sub-geometries and combinatorial designs.
Finite geometries constructions use advanced notions of finite fields and algebra. For details
about these constructions, readers are referred to the book [98].

It was shown that LDPC codes derived from finite geometries outperform their randomly
generated counterparts, when decoded with the BP-SP algorithm [106]. Also, it was shown in
[86] that finite geometry LDPC codes outperform many other families of linear block codes,
at the cost of simpler encoding and decoding implementations. In general, finite geometry
LDPC codes satisfy the RC constraint, and can be decoded with majority-logic decoding
(MLGD) algorithms. When these codes are decoded with majority-logic techniques, they
can be comprised into two distinct classes:

• One-Step Majority-Logic Decodable (OSMLD) codes: These codes are the most
appropriate to use in energy-constrained wireless communication systems, as their cor-
responding decoding algorithms require a significant lower computational complexity
and lower storage requirements compared to other error correcting codes, in addition
to a parallelizable implementation. In general, these codes are characterized by a set of
orthogonal parity-check equations on each symbol digit, and the decoding process can
employed using a simple majority-logic vote based on these equations. These codes are
very sparse and they provide very low error floors compared to other algebraic codes.

• Multi-Step Majority-Logic Decodable (MSMLD) codes: These codes are generally
characterized by a dense (not sparse) parity-check matrix, where the number of 1s
entries is relatively high. For this reason, these codes are sometimes considered as
Moderate or High density parity-check (MDPC/HDPC) codes. The orthogonalization
process is obtained in λ steps, where λ > 1. Thus, decoding MSMLD codes requires λ

majority-logic vote procedures, and it requires relatively higher complexity compared

2.3. One-Step Majority-Logic Decodable Codes 32

to the decoding of OSMLD codes. MSMLD codes have shown to provide significant
performance degradation, while decoded with the BP-SP algorithm. This degradation
is caused by the existence of a large number of short cycles in their corresponding
Tanner graphs.

2.3 One-Step Majority-Logic Decodable Codes

Let’s first recall the definition of an OSMLD code, before exploring various families of codes
that have the orthogonality property. In general, the orthogonalization rules for these codes
are derived from notions of finite geometries.

Definition 2.20. Let C be a code with parameters defined by the triplet (n,k,dmin). The code
C is one-step majority-logic decodable, if for each digit position 0 ≤ j < n, a set H j of J

binary orthogonal parity-check equations exists, with the following properties:

1. The jth component of each vector H ji is a 1, for i ∈ {0,1,2, ...,J−1}.

2. For z 6= j there is at most one vector H ji whose zth component is a 1.

These J vectors are said to be orthogonal on the jth digit position. We call them orthogonal
vectors.

2.3.1 Reed-Muller Codes

Reed-Muller (RM) codes represent one of the oldest and most understood families of error
correcting codes. RM codes have gained the attention of many mathematical communities
due to their attractive recursive and symmetric properties. The RM codes were introduced
by Muller [118] in 1954, then Reed [133] succeeded in verifying their decoding algorithm in
the same year. The RM codes are able to outperform the Hamming (1949) and Gray codes
(1950) because they have the capacity to correct multiple errors. RM codes constitute the
most prominent examples for which majority-logic decoding is possible. Except for first-
order RM codes and codes of modest block lengths, their minimum distance is lower than
that of BCH codes, however, the great merit of RM codes is that they are relatively easy to
decode, using majority-logic circuits. RM codes were among the first codes to be deployed
in space applications, being used in the deep space probes flown from 1969 to 1977. They
are also used as components in several other systems. They were probably the first family of

2.3. One-Step Majority-Logic Decodable Codes 33

codes to provide a mechanism for obtaining a desired minimum distance. Also, RM codes
have a fast maximum likelihood decoding algorithm which is still very attractive. Moreover,
with the recent introduction of polar codes, considered as generalized RM codes, these codes
have regained the attention of many academic and industrial communities, especially after
that it was shown that RM codes are capacity achieving in erasure channels [87].

In [80], [84] and [19], it was simultaneously discovered that RM codes are extended cyclic
codes.

There are many ways to describe RM codes, provided that there are a varieties of construction
techniques, which has made them useful in many theoretical developments. These codes were
well explained and investigated in [117].

Reed-Muller codes are closely tied to functions of Boolean variables and can be described as
multinomials over the field GF(2).

Definition 2.21. Consider a Boolean function of m variables, f (v1,v2, ...,vm), which is a map-
ping from the vector space V , of binary m-tuples to the binary numbers {0,1}. Such functions
can be represented using a truth table, which is an exhaustive listing of the input/output val-
ues. Boolean functions can also be written in terms of the variables.

As an example, the table below is a truth table for two functions of the variables v1, v2, v3

and v4.

v4 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

v3 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

v2 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

v1 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

f1 = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

f2 = 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0

Clearly we have :
f1(v1,v2,v3,v4) = v1 + v2 + v3 + v4

and
f2(v1,v2,v3,v4) = 1+ v1v4 + v1v3 + v2v3

The columns of the truth table can be numbered from 0 to 2m−1 using a base-2 representation
with v1 as the least-significant bit. The number of distinct Boolean functions in m variables
is the number of distinct binary sequences of length 2m, which is 22m

.

2.3. One-Step Majority-Logic Decodable Codes 34

The set M of all Boolean functions in m variables forms a vector space that has a basis:

{1,v1,v2, ...,vm,v1v2,v1v3, ...,vm−1vm, ...,v1v2v3...vm}

Every function f in this space can be represented as a linear combination of these basis func-
tions. Below we give some examples of some basic functions and their vector representations:

1 = 1111111111111111

v1 = 0101010101010101

v2 = 0011001100110011

v3 = 0000111100001111

v4 = 0000000011111111

v1v2 = 0001000100010001

v1v2v3v4 = 0000000000000001

Now, let’s define an RM(r,m) code of order r and length 2m.

Definition 2.22. The binary Reed-Muller code RM(r,m) of order r and length 2m consists of
all linear combinations of vectors f associated with Boolean functions f that are monomials
of degree ≤ r in m variables.

Example 2.6. The RM(1,3) code has length 23 = 8. The monomials of degree ≤ 1 are
{1,v1,v2,v3}, with associated vectors:

1 = 1 1 1 1 1 1 1 1

v3 = 0 0 0 0 1 1 1 1

v2 = 0 0 1 1 0 0 1 1

v1 = 0 1 0 1 0 1 0 1

The generator matrix is described by:

G =

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

This is the (n,k,dmn) = (8,4,4) RM code, and also the extended Hamming code.

2.3. One-Step Majority-Logic Decodable Codes 35

Theorem 2.7. The parameters of a RM(r,m) code take the following form:

(n,k,dmin) =

(
2m,1+

r

∑
i=1

(
m
i

)
,2m−r

)

One of the most interesting features of RM is that they have many symmetric and recursive
properties. There are two other simple construction techniques of RM codes, the first one is a
recursive construction, and the other is based on the m-fold Kronecker product of the matrix
G2,2, just similarly to the polar codes construction.

Lemma 2.1 (The |u|u+v| construction). RM(r+1,m+1)= {(f , f +g) for all f ∈ RM(r+1,m) and g ∈ RM(r,m)},
where its generator matrix is given by:

GRM(r,m) =

GRM(r,m−1) GRM(r,m−1)

0 GRM(r−1,m−1)

Theorem 2.8. For 0≤ r ≤ m−1, the RM(m− r−1,m) code is dual to the RM(r,m) code.

Theorem 2.9 (Kronecker construction). Let G(2,2) =

1 1

0 1

. Define the m-fold Kronecker

product of G(2,2) as

G(2m,2m) =
m⊗

i=1

G(2,2)

which is a 2m×2m matrix. Then the generator for the RM(r,m) code is obtained by selecting

from G(2m,2m) those rows with weight greater than or equal to 2m−r.

In general, a RM code of order r is an r + 1 majority-logic decodable code. However, as
the number of the orthogonalization steps becomes large when the order increases, decoding
these codes is usually unpractical, due to the increased memory and computational complex-
ity. But In 1971, Chen [21] showed that many finite geometry codes, among them all Reed–
Muller codes RM(r,m), r ≤ m

2 , allow a two-step majority-logic decoding, improving signif-
icantly the decoding complexity in comparison with the well-known step-by-step decoding
algorithm of Reed [133]. Also, decoding by sequential code reduction (SCR) majority-logic
was introduced by Rudolph and Hartmann in [144], in order to reduce the number of the
majority-logic gates required by the Reed step by step decoding algorithm, while slightly
sacrificing decoding speed.

2.3. One-Step Majority-Logic Decodable Codes 36

Recently, many papers have been published in the literature, investigating the decoding of
RM codes using diverse variants and generalizations, as well as their performance evaluation
and their connection to polar codes [15, 28, 32, 55, 59, 60, 148–150, 193].

Table 2.1 displays a set of Reed-Muller codes with various parameters for orders 1≤ r ≤ 4.

r m n k dmin

1
3 8 4 4
4 16 5 8
5 32 6 16

2
4 16 11 4
5 32 16 8
6 64 22 16

3

5 32 26 4
6 64 42 8
7 128 64 16
8 256 93 32

4

6 64 57 4
7 128 99 8
8 256 163 16
9 512 256 32

Table 2.1: A set of Reed-Muller codes

2.3.2 Cyclic OSMLD Codes

2.3.2.1 Difference-Set Codes derived from Projective Geometry

Cyclic Difference-Set codes (DSC) represent an infinite class of powerful OSMLD codes
with relatively high minimum distances and increasing code rates. These codes were dis-
covered independently by Rudolph [142,145]and Weldon [185], where Weldon have defined
these codes based on combinatorial background, specifically from difference-sets, while the
construction proposed by Rudolph is based on finite geometry, namely the Projective Geom-
etry (PG).

For a (µ,s)th-order PG(m,2s) code of length n =
(

2(m+1)s−1
)
/(2s−1), when µ = 1, a

class of OSMLD codes is obtained. When m = 2, a (1,s)th-order PG code becomes a

2.3. One-Step Majority-Logic Decodable Codes 37

difference-set code. Thus, DS codes represent a subclass of the class of (1,s)th-order PG
codes. When s = 1,a (1,1)th-order PG code is considered a maximum-length code [98].

There are no simple formulas for enumerating the number of parity-check digits of PG codes.
However, for µ = m− 1, the number of parity-check digits of a (m− 1,s)th-order PG code
was obtained independently by Goethals and Delsarte [49], Smith [156], MacWilliams and
Mann [110], and is given by:

n− k = 1+

 m+1

m

s

(2.20)

Difference-Set (DS) codes are well known to be completely orthogonalizable, i.e. each sym-
bol digit contributes in the set of equations that are orthogonal on every digit position j,
for 0 ≤ j < n. These codes have shown to outperform many other families of linear block
codes, and due to their structured properties, their implementation is easy and requires a
low-computational complexity and storage requirements. Additionally, DS codes exhibit
low error floors, at a BER of 10−15. Another advantage of these codes is that their mini-
mum distances are well defined and easily calculated, in addition to the regular weight of
the parity-check equations, which is given by J = dmin− 1. Note that the number of the or-
thogonal equations on a given symbol is equal to J. Thus, cyclic DS codes are completely
regular. The expression of the number of information symbols for cyclic DS codes was given
independently in [52].

For a positive integer s > 0, the parameters of cyclic DS codes over GF(p), where p is a
prime, take the following expressions [185]:

n = p2s + ps +1 (2.21)

k = n−

 p+1

2

s+1

 (2.22)

dmin = ps +2 (2.23)

For the binary case, a difference-set code defined over GF(p = 2) has the following parame-
ters:

2.3. One-Step Majority-Logic Decodable Codes 38

n = 22s +2s +1 (2.24)

k = n− (3s +1) (2.25)

dmin = 2s +2 (2.26)

The formulation of difference-set codes is based on the construction of a perfect difference-

set. Let P = {l0, l1, ..., lq} be a set of q+1 non-negative integers such that:

0≤ l0 < l1 < l2 < lq ≤ q(q+1) (2.27)

From this set of integers, it is possible to form q(q+1) ordered differences as follows:

D =
{

l j− li | j 6= i
}

(2.28)

Obviously, half of the differences in D are positive and the other half are negative. The set
P is said to be a perfect simple difference-set of order q if and only if it has the following
properties [98]:

1. All the positive differences in D are distinct.

2. All the negative differences in D are distinct.

3. If l j− li is a negative difference in D, then q(q+ 1)+ 1+(l j− li) is not equal to any
positive difference in D.

Clearly, it follows from the definition that P′ =
{

0, l1− l0, l2− l0, ..., lq− l0
}

is also a simple
perfect difference-set.

As mentioned above, the construction of cyclic and quasi-cyclic DS codes is based on Singer
difference-sets. Table 2.2 presents a set of binary difference-set codes with their parameters.

2.3. One-Step Majority-Logic Decodable Codes 39

n k dmin J r = k
n

7 3 4 3 0.43
21 11 6 5 0.52
73 45 10 9 0.62

273 191 18 17 0.70
1057 813 34 33 0.77
4161 3431 66 65 0.82

16513 14325 130 129 0.87
65793 59231 258 257 0.90

Table 2.2: A set of cyclic binary difference-set codes

2.3.2.2 Euclidean Geometry Codes

Consider the m-tuples
(a0,a1, ...,am−1) (2.29)

such that ai ∈ GF(q) and q = 2s. There are (2s)m = 2ms m-tuples that form a vector space
over GF(2s). The 2ms m-tuples over GF(2s) form an m-dimensional Euclidean Geometry
over GF(2s), denoted EG(m,2s).

Each m-tuple is a point in EG(m,2s). The m-tuple 0 = (0,0, ...,0) is called the origin of the
geometry EG(m,2s). There are qm points and qm−1 (qm−1)/(q−1) lines in EG(m,2s).

Let a be a non-origin point in EG(m,2s) (i.e., a 6= 0). The 2s points {βa : β ∈ GF(2s)}
constitute a line (or 1-flat) in EG(m,2s). This line is denoted {βa}.

Let a0,a1, ...,aµ be µ + 1 linearly independent points in EG(m,2s), where µ < m, then the
collection of the 2µs points:

{a0 +β1a1 + ...+βµaµ} (2.30)

with βi ∈GF(2s) constitute a µ-flat in EG(m,2s) that passes through the point a0. The µ-flats
{β1a1 + ...+βµaµ} and {a0 +β1a1 + ...+βµaµ} do not have any point in common. They
are said to be parallel.

A realization of EG(m,q) is obtained by using the extension field GF(2ms). Let α be a
primitive element of GF(2ms). The 2ms elements in EG(m,2s) are expressed as: α∞ = 0,α0 =

1,α2, ...,α2ms−2. In this case, GF(2s) is considered a subfield of GF(2ms). Every element α i

of GF(2ms) can be expressed as:

α
i = ai0 +ai1α +ai2α

2 + ...+ai,m−1α
m−1 (2.31)

2.3. One-Step Majority-Logic Decodable Codes 40

The µ-flats passing through α l0 can be expressed as follows:

α
l0 +β1α

l1 + ...+βµα
lµ (2.32)

Now let
v = (v0,v1, ...,v2ms−2) (2.33)

be a (2ms− 1)-tuple over the binary field GF(2). As mentioned above, let α be a primitive
element of the Galois field GF(2ms). We may number the components of v with the nonzero
elements of GF(2ms) as follows: the component vi is numbered α i for 0≤ i≤ 2m−2. Hence,
α i is the location number of vi. We regard GF(2ms) as the m-dimensional Euclidean geometry
over GF(2s), denoted as GF(m,2s). Let F be a µ-flat in EG(m,2s) that does not pass through
the origin α∞ = 0. Based on this flat F , we may form a vector over GF(2) as follows:

vF = (v0,v1, ...,v2ms−2) (2.34)

, whose ith component vi is 1 if its location number α i is a point in F ; otherwise, vi is 0. In
other words, the location numbers for the nonzero components of vF form the points of the
µ-flat F . The vector vF is called the incidence vector of the µ-flat F [98].

Definition 2.23. A (µ,s)th-order binary Euclidean geometry (EG) code of length 2ms−1 is
the largest cyclic code whose null space contains the incidence vectors of all the (µ +1)-flats
that do not pass through the origin.

From Definition 2.23, the null space of the code contains the incidence vectors of all the
(µ +1)-flats that do not pass through the origin. There are

J =
2ms−1
2s−1

(2.35)

error sums orthogonal on the error digit e2ms−2 at the location α2ms−2, corresponding to all the
1-flats passing through the point α2ms−2. Thus, e2ms−2 can be decoded correctly from these
error sums provided that there are no more than

[J
2

]
errors in the received vector. Since the

code is cyclic, decoding other error digits is performed in the same manner successively.

Since the decoding of each error digit requires µ +1 steps of orthogonalization, the (µ,s)th-
order EG code of length n = 2ms− 1 is therefore a (µ + 1) step majority-logic decodable
code. The code is capable of correcting

t =

[
2(m−µ)s−1
2(2s−1)

− 1
2

]
(2.36)

2.3. One-Step Majority-Logic Decodable Codes 41

or fewer errors [98].

Note that when µ = 0, then the code is a cyclic OSMLD code. Table 2.3 lists a set of
(µ = 0,s)th-order cyclic EG OSMLD codes.

n k dmin J r = k
n

15 7 5 4 0.47
63 37 9 8 0.59

255 175 17 16 0.67
1023 781 33 32 0.76

Table 2.3: A set of cyclic (µ = 0,s)th-order EG OSMLD codes

2.3.2.3 Doubly-Transitive Invariant Codes

Doubly-Transitive Invariant (DTI) cyclic codes are a class of OSMLD codes derived from
Euclidean geometries. These codes were introduced in 1967 [79], and have shown to provide
good performance under iterative majority-logic decoding. In contrast to EG OSMLD codes
defined above, DTI codes are characterized by a set of irregular orthogonal parity-check
equations on each symbol, where all the orthogonal equations have the same weight q except
one of them which has a weight q− 1, for each symbol position. The construction of DTI
codes was well investigated in [79] and [98]. We will briefly define cyclic DTI codes based
on the explanations given in [98].

Let C be an (n,k) cyclic code of length n = 2m− 1. Each vector v = (v0,v1, ...,vn−1) in
C can be extended by adding an overall parity-check digit to its left, denoted by v∞, where
v∞ = v0 + v1 + ...+ vn−1. The resulting vector has n+1 = 2m components. The 2k extended
vectors form an (n+1,k) extended code, denoted by Ce. Let α be a primitive element of the
Galois field GF(2m). Then the components of the extended vector ve are numbered following
the powers of α , where α∞ = 0, and each component vi is numbered as α i. These numbers
are called location numbers. Let Y denote the location of a component of ve. Let’s consider
a permutation that carries the component of ve at the location Y to the location Z = aY + b,
where a,b ∈ GF(2m) and a 6= 0. This permutation is called an affine permutation.

An extended cyclic code Ce of length n = 2m is said to be invariant under the group of affine
permutations if every affine permutation carries every code vector in Ce into another code
vector in Ce.

2.3. One-Step Majority-Logic Decodable Codes 42

Let h be a nonegative integer less than 2m. The radix 2 (binary) expansion of h is given by

h = δ0 +δ12+δ222 + ...+δm−12m−1 (2.37)

where δi is binary for 0 ≤ i < m. Let h′ be another nonegative integer less than 2m whose
radix 2 expansion is

h′ = δ
′
0 +δ

′
12+δ

′
222 + ...+δ

′
m−12m−1. (2.38)

The integer h′ is said to be a descendant of h if δ ′i ≤ δi for 0≤ i < m. The set of all nonzero
proper descendants of h is denoted by ∆(h).

Theorem 2.10 ([98]). Let C be a cyclic code of length n = 2m−1 generated by g(x). Let Ce

be the extended code obtained from C by appending an overall parity-check digit. Let α be

a primitive element of the Galois field GF(2m). Then the extended code Ce is invariant under

the affine permutations if and only if for every αh that is a root of the generator polynomial

g(x) of C and for every h′ in ∆(h), αh′ is also a root of g(x) and α0 = 1 is not a root of g(x).

The cyclic DTI code C is obtained by deleting the first from each vector of Ce. Let J and L be
two (odd) factors of 2m−1, where J.L = 2m−1. The code C has a set of J orthogonal parity-
check equations on each digit position in its dual structure, and is capable of correcting t =[J

2

]
errors of fewer. The method of determining the orthogonal equations and the generator

polynomial of DTI codes is explained in [98].

Table 2.4 displays a set of cyclic DTI codes with their corresponding parameters.

n k dmin r = k
n

15 6 6 0.4
63 36 10 0.57

255 174 18 0.69
1023 780 34 0.76

Table 2.4: A set of cyclic DTI codes

2.3.2.4 Maximal-Length Codes

Another class of OSMLD codes is the Maximal-Length codes. These codes have been proved
to be completely orthogonalizable, and were shown to be majority-logic decodable indepen-
dently by Yale [191] and Zierler [206].

2.3. One-Step Majority-Logic Decodable Codes 43

For any integer m ≥ 3, there exists a nontrivial maximum-length code with the following
parameters:

n = 2m−1 (2.39)

k = m (2.40)

dmin = 2m−1 (2.41)

The generator polynomial of these codes is given by:

g(x) =
xn +1
p(x)

(2.42)

where p(x) is a primitive polynomial of degree m. This code consists of the all-zero codeword
vector and 2m−1 codeword vectors of weight 2m−1. The dual code of the maximum-length
code is a (2m−1,2m−m−1) cyclic code generated by the reciprocal of the parity polynomial
p(x) calculated as follows [98]:

p∗(x) = xm p(x−1) (2.43)

2.3.3 Quasi-Cyclic OSMLD Codes

The construction of Quasi-Cyclic OSMLD codes derived from combinatorial designs has
gained many attentions of various research communities. Specifically, attention was ad-
dressed to the correspondence between difference-families, including Steiner 2-designs [27,
57], and quasi-cyclic self-orthogonal OSMLD codes. We shall define these notions before
presenting these special constructions leading to quasi-cyclic OSMLD codes.

Definition 2.24 (Difference-Families). Let G be a group of order v. A collection {B1,B2, ...,Bt}
of k-subsets of G form a (v,b,r,k,λ) difference-family if every non-identity element of G

occurs λ times in ∆B1∪ ...∪∆Bt . The sets Bi are base blocks. A difference family having at
least one short block is partial.

Special classes of difference families include the Steiner systems, constructed based on base
blocks of these designs. Historically, Smith et al. [157] introduced in 1968 an application
of incomplete block designs to the construction of several families of error-correcting codes
which may be decoded using a relatively simple majority logic decoding procedure. However
any explicit construction for such designs was given. Special cases of these codes are equiv-
alent to the quasi-cyclic self orthogonal codes based on Singer Difference Sets, discussed
by Townsend and Weldon in [171]. Chen Zhi et al. stated in [204] explicit constructions

2.3. One-Step Majority-Logic Decodable Codes 44

of many classes of difference families, considered as base blocks for Steiner designs. The
authors presented a construction of infinite optimal self-orthogonal quasi-cyclic codes with
high rates. Later, these connections was made by MacKay in his 2000 paper using the in-
cidence matrix of Steiner triple system (STS) designs for high-rate LDPC codes [108]. In
the same year, Mittelholzer, in an IBM research report [116], demonstrated the link between
projective geometry LDPC codes and BIBD designs, and generated new LDPC codes from
further BIBDs, extending the work of [108]. The use of Steiner triple systems as QC LDPC
codes was also the central theme in a presentation by B. Vasic in 2002 at the Information The-
ory Symposium [176], and later published in [180]. A method of constructing Quasi-cyclic
LDPC (OSMLD) codes based on two arbitrary subsets of elements from a given field was
proposed in [93]. The authors claimed that their construction technique includes some well
known constructions of QC-LDPC codes based on finite fields and combinatorial designs as
special cases. Their proposed construction in conjunction with a technique, known as mask-
ing, results in codes whose Tanner graphs have girth 8 or larger, and they have shown that the
constructed codes perform well and have low error-floors. Recently, a construction of quasi
cyclic OSMLD codes (using genetic algorithms) derived from Disjoint Difference-Sets was
published in [139].

The advantage of Steiner systems is that the number of objects belonging to base blocks is
small. This property has motivated many group of researchers to correspond these designs to
LDPC codes with sparse dual structure. Generally, the most known Steiner systems are triple
Steiner designs with k = 3, as well as other Steiner designs with k = 4 and k = 5.

Details of these constructions based on Steiner systems are not presented in this section,
although the main results are depicted in Table 2.5. This table presents the parameters of the
Steiner systems, as well as the references where their explicit constructions are given. Note
that the parameter λ was omitted because in the case of OSMLD codes, we always have
λ = 1. The Netto constructions, Skolem and extended Skolem sequences are detailed in the
Appendix A.

2.3.4 Other OSMLD Codes derived from Combinatorial Designs

Other constructions of OSMLD codes that do not have any particular structure (i.e. cyclic
or quasi cyclic) include constructions based on sub-geometries derived from PG and EG, as
well as some special combinatorial designs. We briefly review here a non-exhaustive list of
previous works already published on this topic.

2.4. Multi-Step Majority-Logic Decodable Codes 45

v k b r References

6t +1 3 6t2 + t 3t
Netto first construction

[180, 204]
Skolem Sequences [27]

6t +3 3 (3t +1)(2t +1) 3t +1 Extended Skolem Sequences [27]

12t +7 3 (2t +1)(12t +7) 3(2t +1) Netto second construction [180]
12t +1 4 t(12t +1) 4t [204, Lemma 3]
20t +1 5 t(20t +1) 5t [204, Lemma 4]

Table 2.5: Base blocks constructions of Steiner systems

LDPC codes based on mutually orthogonal Latin rectangles were presented in [179]. The
same author proposed high-rate LDPC codes based on anti-Pasch affine geometries [177].
In [197], regular LDPC codes with girth 12 have been constructed based on BIBDs. In [6],
the authors have investigated the construction of LDPC codes with girth at least equal to 6,
and they stated that most of these codes derived from block designs are quasi cyclic. In [181],
high-rate girth-8 LDPC codes based on rectangular integer lattices were proposed. LDPC
codes derived from partial geometries as Unital and Oval designs were presented in [76], and
later in [38, 39]. Also, Hermitian curves were used to design LDPC codes in [127]. Semi-

partial geometries, considered as a generalization of partial geometries were investigated
in a doctoral thesis in [70] as well as their correspondence with LDPC (OSMLD) codes.
In [189], a study on partial geometries from RC-constrained matrices based on group divisible

designs (GDDs), and relevant constructions of BIBDs and TDs were presented. The authors
have proposed a method for constructing LDPC codes with flexible code rate and length
parameters by employing the resolvability of GDDs.

2.4 Multi-Step Majority-Logic Decodable Codes

2.4.1 Background and Definitions

Multi-Step Majority-Logic Decodable (MSMLD) codes represent a generalization of OSMLD
codes, in a manner that the notion of the orthogonality on a given symbol is extended to a
set of symbols. Therefore, the decoding process of these codes requires many orthogonal-
ization steps, where each step consists of decoding a given set of symbols, until reaching a

2.4. Multi-Step Majority-Logic Decodable Codes 46

set of equations orthogonal on the symbol being decoded. It is straightforward that decod-
ing MSMLD codes needs a higher computational complexity than that required for decoding
OSMLD codes, due the number of orthogonalization steps involved.

Generally, MSMLD codes are defined by a parity-check matrix H which is not sparse, i.e.
the number of nonzero entries is very large. Thus, unlike OSMLD codes, the structure of
H contains a large number of short cycles. As a consequence, MSMLD codes provide bad
performance when decoded with the BP-SP decoding algorithm, in addition to a large storage
requirement. This performance degradation is obvious, as the number of short cycles is
significantly large. Therefore, an interesting research direction consists of devising suitable
decoding algorithms that exploits the orthogonality structure of MSMLD codes, in order to
achieve good performance.

The decoding complexity of MSMLD codes is relatively higher, this is a major drawback of
these codes. However, this drawback can be overcame by considering only cyclic OSMLD
codes, which helps to significantly reduce the encoding and decoding complexity of these
codes. Additionally, MSMLD codes have shown to provide high coderates and low error
floors due because of a relative large column degree.

Thus, cyclic MSMLD codes derived from finite geometries represent the most interesting
subclass of these codes. Moreover, it was shown in [96] that MSMLD codes derived from
Euclidean geometries are the most powerful class of this family of codes. Other MSMLD
codes are those derived from Projective geometries, as well as those derived from combina-
torial designs, with the parameter λ > 1. We will briefly define the notion of multi-steps,
as well as a special class of MSMLD codes derived from EG, namely (µ > 0,s)th-order EG
cyclic codes and (µ > 0,s)th-order multifold EG cyclic codes. As mentioned in 2.4.1.2, the
parameter µ is the number of steps required for achieving the orthogonality, and we say that
the EG cyclic code is a µ-step majority-logic decodable code.

First, before defining MSMLD codes derived from EG, let’s introduce a definition on the
notion of the multi step orthogonality in Definition 2.25. Next we will assume that the notions
of lines and flats in EGs are already defined in 2.4.2.1, so that we will skip these definitions.

Let E = {ei1,ei2, ...,eiM} be a set of M error digits where 0 ≤ i1 < i2 < ... < iM < n. The
integer M is called the size of E.

Definition 2.25. A set of J parity-check sums A1,A2, ...,AJ is said to be orthogonal on the set
E if and only if:

2.4. Multi-Step Majority-Logic Decodable Codes 47

• Every error digit eil in E is checked by every check-sum A j for 1≤ j ≤ J.

• No other error digit is checked by more than one check-sum.

Similarly to One-Step MLG decoding, the sum of error digits in E can be determined
correctly from the J check-sums orthogonal on E, provided that there are

[J
2

]
errors or

fewer in the error pattern e.

This orthogonalization process is additionally used to decode correctly all the error
digits.

Now let Lu, j denotes the uth error set (Line) of EG(m,q) orthogonal on the error digit e j, for
0 ≤ u < J2 and 0 ≤ j < n. Let SLu, j denotes its corresponding check-sum. Let SLu,i, j denotes
the ith check-sum orthogonal on the line Lu, j for 0≤ i < J1, where J1 < J2.

Then, for sake of simplicity, consider that µ = 1, so that the code C is a two-step majority-
logic decodable (TSMLD) code (i.e. (µ + 1)-step MLD code). Based on this assumption,
and for 0 ≤ j < n, 0 ≤ u < J2 and 0 ≤ i < J1, the decoding process includes the following
steps:

1. First orthogonalization step: Decoding each line Lu, j based on the J1 check-sums
SLu,i, j orthogonal on it.

2. Second orthogonalization step: Decoding the digit e j based on the J2 check-sums
SLu, j orthogonal on it.

Figure 2.3 illustrates the principle of two-step majority-logic decoding. For instance, it repre-
sents the decoding tree of the last symbol of the Hamming code with parameters (n,k,dmin) =

(7,4,3). For decoding the 6th digit, the decoding process starts from the set of 2-flats SLu,i, j

orthogonal on each 1-flat (line) SLu, j containing the last symbol, where each line is decoded
by a majority-logic vote based on the 2-flats orthogonal on it, until all these lines of 1-flats
are decoded, then a second majority-logic vote is decided on the symbol. As this code is
cyclic, the same decoding procedure is employed for all the remaining symbols, by cyclically
shifting the sequence being decoded. It is clear that for this case, we have J2 = 5 and J1 = 2
provided that this code is capable of correcting at most J1

2 = 1 error.

Details on decoding algorithms for TSMLD codes are included in Chapter 5, dedicated for
this topic. Note that many known algebraic codes can be considered as MSMLD codes, for
instance, Reed Muller (RM), Quadratic Residue (QR) and Golay codes can be decoded with

2.4. Multi-Step Majority-Logic Decodable Codes 48

Figure 2.4: Two-Step Majority-Logic Decoding Tree of the (7,4,3) Hamming code

majority-logic in multiple steps (L steps), as well as many families of self-dual codes have
shown to have orthogonal equations on sets of digit positions in their dual structure, leading
to consider them as MSMLD codes. In addition, it was shown in [98] that for m ≥ 3, the
cyclic (n,k,dmin) = (2m− 1,2m−m− 1,3) Hamming codes are m− 1 steps majority-logic
decodable. Cyclic MSMLD codes derived from Euclidean geometries are actually known
to be the most efficient class of MSMLD codes, including a subset of codes belonging to
the family of BCH codes, and this is due to their geometrical structure and to the fact that a
subclass of these codes includes MSMLD codes that are completely orthogonalizable. Table
2.6 lists a set of L = m−1 steps majority-logic decodable cyclic Hamming codes.

m (n,k,dmin) J2 J1 L

3 (7,4,3) 5 2 2
4 (15,11,3) 13 2 3
5 (31,26,3) 29 2 4
6 (63,57,3) 61 2 5
7 (127,120,3) 125 2 6
8 (256,248,3) 254 2 7

Table 2.6: A set of L = m−1 steps majority-logic decodable cyclic Hamming codes

2.4. Multi-Step Majority-Logic Decodable Codes 49

2.4.2 MSMLD Codes derived from Euclidean Geometries

2.4.2.1 (µ,s)th-order EG cyclic EG codes

Given a µ-flat F(µ) in EG(m,q = 2s) passing through α2ms−2, the number of (µ +1)-flats not
passing through the origin in EG(m,2s) that intersect on F(µ) is:

J1 =
2(m−µ)s−1

2s−1
(2.44)

The incidence vectors of these J1 (µ +1)-flats are orthogonal on the digits corresponding to
the points in F(µ). This is the first orthogonalization step (the sum S(F(µ)) is determined)

Let F(µ−1) be a (µ−1)-flat passing through α2ms−2. There are:

J2 =
2(m−µ+1)s−1

2s−1
−1 > J1 (2.45)

µ-flats not passing through the origin which intersect on F(µ−1). This process is the sec-
ond orthogonalization step. We say that a (µ,s)-th order Euclidean geometry (EG) code of
length 2ms−1 is a L = µ +1 steps majority-logic decodable code, capable of correcting any
combination of

[
J1
2

]
or fewer errors.

Definition 2.26 ([98]). A (µ,s)-th order binary Euclidean geometry (EG) code of length
2ms− 1 is the largest cyclic code whose null space contains the incidence vectors of all the
(µ +1)-flats of EG(m,2s) that do not pas through the origin.

The determination of the generator polynomial of these codes is given in the following theo-
rem [98].

Theorem 2.11 ([97]). Let α be a primitive element of the Galois field GF(2ms). Let h be a

nonnegative integer less than 2ms− 1. The generator polynomial g(x) of the (µ,s)-th order

EG code of length 2ms−1 has αh as a root if and only if

0 < max
0≤l<s

W2s(h(l))≤ (m−µ−1)(2s−1) (2.46)

where W2s(h) is the 2s radix-expansion of the integer h.

Example 2.7. Let m = 4, s = 1 and µ = 1. Thus EG(4,2) is considered with J1 = 6 and
J2 = 13.

2.4. Multi-Step Majority-Logic Decodable Codes 50

• The J2 = 13 lines (1-flats) of EG(4,2) passing through α14 are obtained by α14 +aα i,
yielding:
{α13,α14},{α12,α14},{α11,α14},{α10,α14},{α9,α14},{α8,α14},{α7,α14},
{α6,α14},{α5,α14},{α4,α14},{α3,α14},{α2,α14},{α1,α14}.

• The J2 = 6 2-flats passing through {α13,α14} are obtained by α14 +aα i +bα j yield-
ing:
{α4,α10,α13,α14},{α7,α12,α13,α14}, {α9,α11,α13,α14},
{α0,α8,α13,α14}, {α1,α5,α13,α14}, {α3,α6,α13,α14}.
...

The rest of the 2-flats are obtained in the same manner, and the obtained code is a (15,5,7)
cyclic TSMLD code capable of correcting

[
J1
2

]
= 3 errors or fewer. This code is also the

triple error correcting BCH codes.

Remark 2.3 ([98]). A (µ,s = 1)th-order EG code is called a µ-th order Reed Muller (RM)

code.

A set of (µ,s)th-order EG cyclic codes is listed in Table 2.7. These codes are (µ + 1)
majority-logic decodable, and they contain Hamming codes with J = 2.

2.4.2.2 (µ,s)th-order Twofold cyclic EG codes

Here we will define a special class of MSMLD codes, called (µ,s)th-order twofold EG cyclic
codes. Note that this notion is generalizable to multifold. However, we will here focus our
interest to twofold codes, as it was stated that these codes are the most powerful MSMLD
codes [96, 98].

Let’s denote by EG∗(m,q) the subgeometry obtained by removing the origin of EG(m,q) and
all the lines passing through it.

A line of EG∗(m,q) has q points. Every point of EG∗(m,q) is contained in

J2 =
n

(q−1)
−1 (2.47)

lines.

Let Lu, j = {α j0,α j1, ...,α jq−1} denotes the uth line of EG∗(m,q) orthogonal on α j for 0 ≤
u < J2. There are

2.4. Multi-Step Majority-Logic Decodable Codes 51

m s µ n k J

3 1 1 7 4 2
4 1 2 15 11 2
4 1 1 15 5 6
5 1 3 31 26 2
5 1 2 31 16 6
6 1 4 63 57 2
6 1 3 63 42 6
6 1 2 63 22 14
3 2 1 63 48 4
7 1 5 127 120 2
7 1 4 127 99 6
7 1 3 127 64 14
8 1 5 255 219 6
8 1 4 255 163 14
4 2 2 255 231 4
4 2 1 255 127 20

10 1 6 1023 848 14
10 1 5 1023 638 30
5 2 2 1023 748 20
5 2 1 1023 288 84

Table 2.7: A set of (µ,s)th-order EG cyclic codes

J1 = qm−1−2 (2.48)

(1,2)-frames parallel to it, denoted as Lu,i, j where 0≤ i < J1.

A (1,2)-frame in EG∗(m,q) intersecting on α j is denoted as
{

Lu, j,Lu,i, j
}

. There are J1

(1,2)-frames
{

Lu, j,Lu,0, j
}
,
{

Lu,Lu,1, j
}
, ...,

{
Lu,Lu,J1−1, j

}
orthogonal on the line Lu, j.

The total number of (1,2)-frames contained in EG∗(m,q) is given by:

J0 =
n
(
qm−1−1

)(
qm−1−2

)
2(q−1)

(2.49)

Each line that passes through αqm−2 consists of the following points:

2.5. Conclusion 52

α
qm−2 +ηα

j (2.50)

where η ∈ GF(q).

A (1,2)-frame that contains the line {αqm−2 +ηα j} is of the form:

({αqm−2 +ηα
j},{αqm−2 +α

l +ηα
j}) (2.51)

where α l is not in {αqm−2 +ηα j}.

A (µ,s)th-order twofold EG code of length n = 2ms−1 is a L = µ +1 steps majority-logic decodable

code, capable of correcting any combination of
[J1

2

]
or fewer errors.

Definition 2.27. A (µ,s)th-order twofold EG code of length n = 2ms− 1 is the largest cyclic code

whose null space contains the incidence vectors of all the (µ,2)-frames in EG(m,2s) that do not pass

through the origin.

Theorem 2.12. Let α be a primitive element of the Galois field GF(2ms). Let h be a nonnegative

integer less than 2ms− 1. The generator polynomial g(x) of the (µ,s)th-order twofold EG code of

length 2ms−1 has αh as a root if and only if

0 < max
0≤l<s

W2s(h(l))< (m−µ)(2s−1) (2.52)

A set of (µ,s)th-order Twofold EG cyclic codes is displayed in Table 2.8. These codes are
(µ +1) majority-logic decodable.

2.5 Conclusion

In this chapter, we have presented some interesting notions on balanced incomplete block de-
signs as well as difference-sets, then we have established a literature review on the different
classes of majority-logic decodable codes derived from various block designs and finite ge-
ometries. We particularly discussed the methods of constructing cyclic, quasi-cyclic and non
structured OSMLD and MSMLD codes. For cyclic OSMLD codes, we have seen that most
of them are derived from Singer difference-sets and Golomb ruler, as well as Euclidean ge-
ometries. The quasi-cyclic OSMLD codes are essentially developed from difference-families
and various Steiner systems. Base blocks of these combinatorial systems are the key for
generating quasi-cyclic OSMLD codes, where the other lines of the parity-check matrix are
obtained by cyclically shifting the base blocks t times, yielding a quasi circulant parity-check

2.5. Conclusion 53

m s µ n k J

3 2 1 63 24 14
2 3 1 63 45 6
4 2 1 255 45 62
4 2 2 255 171 14
2 4 1 255 191 14
3 3 1 511 184 62
3 3 2 511 475 6
5 2 1 1023 76 256
5 2 2 1023 438 62
5 2 3 1023 868 14
2 5 1 1023 813 30

Table 2.8: A set of (µ,s)th-order Twofold EG cyclic codes

matrix. For the non structured OSMLD codes, we have shown that they are derived from
subgeometries of PG and EG, as well as other block designs not investigated in this thesis.

Our summary of this classification is presented in Table 2.9. The first column includes the
structure of codes, the second column displays different families of MLGD codes, while the
third column includes the combinatorial or geometric construction that leads to these codes.
Note that this classification is not exhaustive, as we are actually pursuing these investigations
towards finding new families of MLGD codes derived from other types of combinatorial
designs.

2.5. Conclusion 54

Structure
Combinatorial

Codes
Construction

Cyclic OSMLD
EG (Type 0, Type 1) EG, DTI

PG, Singer Difference-Sets, DS codes,

Golomb Rulers other OSMLD codes

Cyclic MSMLD
(µ,s)-th order EG and PG, (µ,s)-th order (Multifold) EG,

other Difference-Sets RM, (µ,s)-th order PG

Quasi-Cyclic Difference-Families SOQC and other

OSMLD and Steiner Systems QC OSMLD codes

Non Cyclic Sub-geometries of PG, Ovals, Unitals, PBDs

OSMLD other designs and geometries Quadric geometries, PBIBDs

Table 2.9: Classification of MLGD codes derived from combinatorial designs and finite ge-
ometries

Cyclic MSMLD codes are principally derived from Euclidean and Projective geometries,
and they include various classes, depending on the parameters of the geometries involved
in the construction. Other cyclic MSMLD codes can be derived from the other families of
difference-sets that were reviewed in this chapter. Similarly to OSMLD codes, quasi-cyclic
MSMLD codes can be derived from BIBDs that are similar to Steiner systems and difference-
families, with a parameter λ > 1. MSMLD codes that do not have any particular structure
may be constructed from other families of block designs, although non-cyclic MSMLD codes
are not interesting for wireless communication systems. Besides that, however, non-cyclic
codes can be very beneficial for other applications, including low-complexity authentication
systems and McEliece cryptosystems. This chapter is essential in order to develop basic
notions about the constructions of various MLGD codes as well as the attractive structural
properties that these codes inherit from their corresponding combinatorial constructions.

Chapter 3

Genetic Algorithms for the Discovery of
New Cyclic One-Step Majority-Logic
Decodable Codes

3.1 Introduction

The construction of One-Step Majority-Logic Decodable codes represents an important topic
in coding theory, that have gained the attention of various research communities since the
1950s. Most of the construction methods of OSMLD codes are derived from finite geome-
tries, finite fields and combinatorial designs. After the rediscovery of LDPC codes [109],
many research papers have investigated the construction of regular LDPC codes without
short cycles, namely with a minimum girth of 6 [68, 75, 76, 92, 116, 180, 186]. Most of these
construction techniques are derived from combinatorial designs, where each combinatorial
design leads to a set of OSMLD codes with properties that inherit those designs. The oldest
construction of OSMLD codes was that of Difference-Set Codes, discovered independently
by Rudolph [145] and Weldon [185], respectively derived from Projective geometries and
Singer Difference-Sets. These codes are known to be completely orthogonalizable and repre-
sent a particular class of OSMLD codes where the code length is in the form n = J(J−1)+1.
Weldon has shown that these codes are approximately as powerful as the best cyclic codes
for given values of efficiency and length, and are very easily implemented. The formula
for calculating the number of parity-check equations was introduced by Graham [52] and
MacWilliams [112]. Other OSMLD codes derived from finite geometries are those based
on Euclidean geometries. Also, in [86] it was shown that cyclic OSMLD codes are finite

55

3.1. Introduction 56

geometry LDPC codes with a Tanner graph that has no cycles of length 4. In general, these
codes have a regular structure in their parity-check matrix and due to their cyclic structure,
it is assumed that they have a great benefit for the use in energy-constrained and low-latency
modern wireless communication and data storage systems.

Since the rediscovery of LDPC codes in the late 1990s, research communities have focused
their interest on binary LDPC codes, because long binary LDPC codes can achieve perfor-
mance approaching the Shannon limit, especially when the irregularity is introduced into
their graph structure [137], at the cost of practical and low-cost implementations. But in
1998, Davey and MacKay [30] showed that non-binary LDPC codes over GF(q) for q > 2
perform well compared to their binary counterparts. Moreover, non-binary LDPC codes
outperform binary codes on channels with burst errors and are very suitable for high order
modulation schemes. All these advantages have motivated many works on the design of
non-binary codes [24, 74, 169, 196, 205]. Similarly to their binary counterparts, non-binary
LDPC codes with no short cycles in their corresponding Tanner Graph are OSMLD codes.
Although non-binary codes have some advantages over their binary counterparts, unfortu-
nately their decoding complexity is a significant challenge. The iterative hard and soft re-
liability based majority-logic decoding algorithms are very attractive decoding schemes for
non-binary LDPC codes, intuitively, the construction of algebraic non-binary OSMLD codes
is a challenging task for future industrialization over many standards of telecommunications.

Based on the pioneering works of MacWilliams on the idempotents and the Mattson-Solomon
polynomials [111, 112], it was shown that every cyclic code may be generated from its dual
code, using a parity-check Idempotent polynomial E(x), built from the cyclotomic cosets
modulo n, as an alternative to its generator polynomial g(x). In fact the generation of a
cyclic code is based on a single cyclotomic coset, or the union (modulo 2 addition) of a set
of cyclotomic cosets, with the property E(x) = E(x)2 over GF(2s), where s is a positive
integer such that s > 0. This parity-check idempotent is a multiple of a polynomial h(x)

such that deg(h(x)) = k, and a zero minimal degree, that is E(x) = m(x)h(x), k being the
code dimension and m(x) is a monomial. The parity-check idempotent polynomial E(x)

directly allows the calculation of the generator polynomial of the code C and its dual parity-
check matrix. However, in order to achieve high code lengths with good minimum distances,
the search for a feasible idempotent E(x) may becomes more difficult due to the significant
increase of the number of cyclotomic cosets modulo n, thus an increase in the search space
dimension.

Based on this method, an algebraic exhaustive search based construction algorithm was pro-

3.2. Cyclotomic Cosets and Parity-Check Idempotents 57

posed in [64, 168–170] for the construction of binary and non-binary cyclic codes. How-
ever, several limitations were observed for achieving diverse codes especially for high code
lengths. For this purpose, we propose to design a flexible construction algorithm able to re-
duce the search space dimension in order to construct new moderate and high dimensional
cyclic OSMLD codes with increasing correction capacities.

This chapter is organized as follows. In Section 3.2, background and definitions are intro-
duced. Section 3.3 presents the constraints imposed on the construction of a feasible parity-
check idempotent E(x) to generate cyclic OSMLD Codes. A literature review on the existing
exhaustive search based construction is presented in Section 3.4. The problematic is ex-
plained in Section 3.5 as well as the analysis of the search space. We introduce the proposed
construction algorithm in Section 3.6, where the problem modeling is explained as well as
the genetic algorithm proposed to solve the construction problem. Section 3.7 presents the
obtained results. Finally, in Section 3.8, our conclusions of this chapter are drawn.

3.2 Cyclotomic Cosets and Parity-Check Idempotents

This section is dedicated to the introduction of the background and some definitions that
will be useful throughout this chapter. We will define some combinatorial objects, namely
Singer Difference-Sets [155] and Golomb rulers [35]. Additionally, we will go through the
introduction of the algebraic background, used for the construction of cyclic codes. Note
that for sake of consistency, we will use different notations of these objects in contrast to the
literature, in order to simplify the correspondence between these designs and the codes.

3.2.1 Singer Difference Sets and Golomb Rulers

Singer Difference-Sets represent a particular class of combinatorial designs. These objects
are derived from projective geometries, and are defined as blocks of symmetric balanced
incomplete block designs. Each block of a symmetric BIBD is a difference-set, and optimal
difference-sets are called perfect difference-sets. Their construction is based on the theorem
of Singer, which is used to design projective geometries.

Definition 3.1 (Difference-Sets). Let G be an additively written group of order n. A J-
subset D of G is a (n,J,λ ;v)-difference set of order v = J−λ if every nonzero element of
G has exactly λ representations as a difference di− d j (di,d j ∈ D). The difference set is

3.2. Cyclotomic Cosets and Parity-Check Idempotents 58

abelian, cyclic, etc., if the group G has the respective property. The redundant parameter v is
sometimes omitted; therefore, the notion of (n,J,λ)-difference sets is also used.

Fact 3.1. If D is a difference-set of size J over a group of order n, then the following equality

must be satisfied:

J(J−1) = n−1 (3.1)

Example 3.1. The set D = {0,1,3} is an (7,3,1)-difference set in the group Z7. It corre-
sponds to an hyperplane of the projective plane PG(2,2), called Fano plane.

Figure 3.1: The Fano Plane PG(2,2)

The incidence matrix of the projective plane PG(2,2) is given by:

3.2. Cyclotomic Cosets and Parity-Check Idempotents 59

AD =

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

Note that every block of AD is the incidence block of a difference-set with the same parame-
ters as D. We say that these difference-sets are equivalent.

Example 3.2. The complement of the difference-set D corresponding to PG(2,2) is D′ =

{2,4,5,6}, which is again a difference-set in Z7, called biplane, with parameters (v,k,λ) =
(7,4,2). Its incidence matrix is given by:

AD′ =

0 0 1 0 1 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

1 0 1 1 1 0 0

0 1 0 1 1 1 0

Similarly to Example 3.8, each block of AD′ is a difference-set, and they are all equivalent.

Definition 3.2. A set of integers {ai : 0≤ ai < n, 1≤ i≤ J} is called a Golomb ruler modulo
n with J marks, or simply a modular Golomb ruler when n and J are clear from the context,
if the differences (ai−a j)mod n are distinct for all ordered pairs (i, j) with i 6= j.

• A modular Golomb ruler modulo n with J marks satisfies the following inequality:

J(J−1)≤ n−1

3.2. Cyclotomic Cosets and Parity-Check Idempotents 60

Figure 3.2: A modular Golomb ruler modulo n = 31 with J = 6 marks

3.2.2 Cyclotomic Cosets and Parity-check Idempotents

We will introduce here the notion of cyclotomic cosets and parity-check idempotents, as well
as other definitions useful for this purpose. Note that these definitions will be used in the
next sections of this chapter in the construction of cyclic OSMLD codes. Basic algebraic
background on the groups, rings and finite fields are out of scope of this chapter, and they can
be found in [98, 146].

Definition 3.3 (q-th order Cyclotomic Cosets). Let u and n be two odd positive integers, the
qth order cyclotomic cosets associated with u modulo n is defined by:

Cu =
{

qiumod (n) |0≤ i≤ t
}

(3.2)

where t represents the integer for which qt+1umod (n) = u. The integer u is the smallest
element of the coset Cu and is called Coset Leader.

Definition 3.4. Let F be the set that contains the leaders of all cyclotomic cosets modulo n,
thus the property ∪

u⊆F
Cu = {0,1,2, ... ,n−1} holds.

Definition 3.5 (Primitive idempotent). All the cyclotomic cosets modulo n corresponds to
idempotent polynomials Cu(x), called Primitive idempotents, with the property:

Cu(x) =Cu(x2) for all u ∈F (3.3)

Theorem 3.1. Let’s define the quotient ring Am
1 by Am =GF(2m)[x]/(xn−1). Let {Ci(x)}i=1,...,nc

be the set of primitive idempotents of Am. Then xn−1 has nc distinct monic irreducible factors
1When m = 1, so that binary codes are considered, the notation Am is simplified to A.

3.2. Cyclotomic Cosets and Parity-Check Idempotents 61

over GF(2m), namely

gcd(xn−1,Ci(x)−1), i = 1, ..., nc (3.4)

Example 3.3. Let n = 7 and A = GF(2)[x]/(x7− 1). Then the polynomial x7 + 1 has the
following irreducible factors :

x7 +1 = (x+1)
(
x3 + x+1

)(
x3 + x2 +1

)
Clearly, here we have nc = 3 monic irreducible factors, corresponding to nc cyclotomic cosets
of order 2 modulo n = 7. These cyclotomic cosets are those illustrated in Example 3.10. It
shows that the size of each cyclotomic coset corresponds to the order of its associated monic
irreducible polynomial of x7−1.

Definition 3.6. The number nc of primitive idempotents of A is equal to

nc = ∑
d/n

ϕ(d)
o2(d)

(3.5)

where ϕ is the Euler’s function, o2(d) stands for the order of q in the multiplicative group
Z/dZ, and d are the the integers that divide n.

Example 3.4. Let’s consider n= 7 and q= 2. The set of 2-th order cyclotomic cosets modulo
7 is given by:

• C0 = {0}

• C1 = {1,2,4}

• C3 = {3,5,6}

Their associated primitive idempotents over the quotient ring A are given by:

• C0(x) = 1

• C1(x) = x+ x2 + x4

• C3(x) = x3 + x5 + x6

Clearly, we have nc = 3 and F = {0,1,3}. Definition 3.31 holds; i.e. ∑
u⊆F

Cu = {0,1,2,3,4,5,6}.

3.2. Cyclotomic Cosets and Parity-Check Idempotents 62

Definition 3.7 (Parity-check idempotent). Let Ω be a subset of F . The polynomial E (x)

such that:

E (x) = ∑
u∈Ω

Cu (x) (3.6)

can be considered as a parity-check idempotent polynomial of a cyclic code C .

Definition 3.8 (Difference-enumerator polynomial). Let D(E(x)) be the Difference Enu-
merator Polynomial of the parity-check idempotent E(x) defined by:

D(E(x)) = E (x)E(x−1) = d0 +d1x+ ...+dn−1xn−1 (3.7)

where d0 = J, the terms di denote the integer coefficients of D(E(x)) for 0≤ i≤ n−1, and x

is the indeterminate. Thus, another expression of the difference-enumerator polynomial takes
the following form:

D(E(x)) = J+
n−1

∑
i=1

dixi (3.8)

Definition 3.9 (Mattson-Solomon Polynomial). If a(x) ∈ A, the Mattson-Solomon polyno-
mial of a(x) is the mapping from a(x) to A(z) and is defined by [111]:

A(z) = MS(a(x)) =
n−1

∑
j=0

a(α−r j)z j (3.9)

where α is a primitive element over the finite field GF(2m), the field of the quotient ring A,
and z is the indeterminate.

Note that the Mattson-Solomon transform is the equivalent of Fourrier Transform in finite
fields.

3.2.3 Constraints on the Parity-Check Idempotent

For the construction of cyclic OSMLD codes based on the parity-check idempotent, a set of
conditions on E(x) must be satisfied. As shown in Definition 3.34, the parity-check idempo-
tent polynomial is designed based on the union (addition over GF(q)) of a set of primitive
idempotents. As primitive idempotent are directly related to cyclotomic cosets modulo n, the
construction of the set Ω is out interest. Note that every set Ω can lead to generate a cyclic
code of length n. However, for the generation of OSMLD codes with the orthogonality prop-
erty, many mathematical conditions are imposed on the construction of the parity-check idem-
potent polynomial E(x). For this purpose, and based on the works launched in [64,168–170],

3.2. Cyclotomic Cosets and Parity-Check Idempotents 63

we will briefly describe the mathematical constraints for generating a feasible parity-check
idempotent E(x) for the generation of a cyclic OSMLD code.

Next Lemma describes the constraints that control the feasibility of a parity-check idempotent
polynomial E(x) for generating a cyclic OSMLD code.

Lemma 3.1. We call a parity-check idempotent polynomial E(x) ∈ GF(q)n feasible if the

following conditions are satisfied (proof in [170]):

1. E(x) must be an idempotent. i.e. E(x) = E(x2).

2. The weight J of E(x) must satisfy J(J− 1) ≤ n− 1 for the construction of a OSMLD

code of length n.

3. Exponents of E(x) must not contain a common factor of n other than unity. Example:

n = 63 and E(x) =C9(x) = x9 + x18 + x36 = x9(1+ x9 + x27) contains factors of 63.

4. All differences between the exponents of D(E(x)) must be distinct. i.e. di ∈ {0,1} for

all i ∈ {1,2, ...n−1}.

a) If di = 1 for all i ∈ {1,2, ...,n−1}, then E(x) can be used to generate a cyclic DS

code.

The proof of Lemma 3.2 can be found in [170].

Following MacWilliams, a code C may be defined by the parity-check idempotent E(x) as
an alternative to its generator polynomial g(x). Since E(x) is in the dual code, it an be written
as

E(x) = m(x)h(x) (3.10)

, and the generator polynomial g(x) of the code C is simply deduced by the euclidean division
of the unity xn−1 and the generating idempotent Ec(x) = 1+E(x) as follows:

g(x) = gcd(xn−1,Ec(x)) (3.11)

Note that cyclic OSMLD codes can be considered and used as LDPC codes, due to sparsity of
the parity-check matrix H. A parity-check matrix could be obtained directly by performing
n cyclic shifts of the polynomial xdeg(E(x))E(x−1). The parity-check matrix H of a cyclic
OSMLD code contains for every symbol index 0 ≤ j < n, a set of parity-check equations

3.2. Cyclotomic Cosets and Parity-Check Idempotents 64

orthogonal on it, denoted as M (j). Due to the orthogonality property, the minimum distance
of the OSMLD code C is easily defined, and is given by:

dmin = J+1 (3.12)

such that:
J = wt(E(x)) (3.13)

The mathematical consequences of the orthogonality property is given in the following lemma
[168]. The proof of Lemma 3.3 was given in [128, Theorem 10.1].

Lemma 3.2. Let di for 0 ≤ i < n denote the coefficients of D(E(x)). If di ∈ {0,1}, for all

i ∈ {1,2, ...,n− 1}, the parity-check polynomial derived from E∗(x) is orthogonal on each

.position in the n-tuple. Consequently:

1. the minimum distance of the resulting OSMLD code is dmin = 1+wt(E∗(x)), and

2. the underlying Tanner Graph of its equivalent LDPC code has girth of at least 6.

Proof. 1) Let a codeword c(x) = c0 + c1x+ ...+ cn−1xn−1 and c(x) ∈ GF(2m). For each
non zero bit position c j of c(x), where j ∈ {0,1, ...,n−1}, there are wtH(E(x)) parity-check
equations orthogonal to position c j. Each of the parity-check equations must check another
non zero bit cl , where l 6= j, so that the equation is satisfied. Clearly, wtH(c(x)) must equal
to 1+wtH(E(x)) and this is the minimum weight of all codewords.
2) The direct consequence of having orthogonal parity-check equation is the absence of cycles
of length 4 in the Tanner Graphs. Let a, b and c, where a< b< c, be three distinct coordinates
in an n-tuple, since di ∈ {0,1} for 1 ≤ i ≤ n−1, this implies that b−a 6= c−b. It is known
that q(b−a) (mod n) ∈ {1,2, ...,n−1} and thus, q(b−a) (mod n)≡ (c−b) for some integer
q ∈ {1,2, ...,n− 1}. If the integers a, b and c are associated with some variable vertices in
the Tanner graph, a length 6 cycle is formed.

In the next example, we give the construction of a binary cyclic OSMLD code with parame-
ters (n,k,dmin) = (21,11,6), following the method described above.

Example 3.5. Let’s fix a code length n = 21. From the the code length n, it is possible to
construct a completely orthogonalizable difference-set code with a parity-check idempotent
of weight J = 5 and a code length n = 21, due to the fact that the equality J(J−1) = n−1 is
verified.

3.2. Cyclotomic Cosets and Parity-Check Idempotents 65

The classical construction of the generator polynomial of this cyclic code comes from the
factorization of x21−1 over A = GF(2)[x]/(x21−1). The factorization is given as follows:

x21+1=(x+1)
(
x2 + x+1

)(
x3 + x2 +1

)(
x3 + x+1

)(
x6 + x4 + x2 + x+1

)(
x6 + x5 + x4 + x2 +1

)
By following the dual code construction technique, the set C of 2-th order cyclotomic cosets
modulo n = 21 is given by:

• C0 = {0}

• C1 = {1,2,4,8,11,16}

• C3 = {3,6,12}

• C5 = {5,10,13,17,19,20}

• C7 = {7,14}

• C9 = {9,15,18}

The primitive idempotent polynomials associated to the set C is given by:

• C0(x) = 1

• C1(x) = x+ x2 + x4 + x8 + x11 + x16

• C3(x) = x3 + x6 + x12

• C5(x) = x5 + x10 + x13 + x17 + x19 + x20

• C7(x) = x7 + x14

• C9(x) = x9 + x15 + x18

Clearly, the number of cyclotomic cosets modulo n = 21, or equivalently, the number of
primitive idempotent polynomials over A = GF(2)[x]/(x21−1) is nc = 6. Moreover, the set
F is defined by F = {0,1,3,5,7,9}. Following the respective weights of the nc primitive
idempotents, it is straightforward that we have two possibilities for the construction of a
parity-check idempotent E(x) with a weight J = 5. These two possible choices are:

E1(x) =C3(x)+C7(x)

= x3 + x6 + x7 + x12 + x14

3.2. Cyclotomic Cosets and Parity-Check Idempotents 66

and

E2(x) =C7(x)+C9(x)

= x7 + x9 + x14 + x15 + x18

In other words, we have: Ω1 = {3,7} and Ω2 = {7,9}. By calculating the difference enu-
merator polynomials D(E1(x)) and D(E2(x)), we find that:

D(E1(x)) = D(E2(x)) = 5+ x+ x2 + ...+ x20

which shows that these difference-enumerator polynomials take the following form given in
(3.8):

D(E(x)) = J+
n−1

∑
i=1

xi

Consequently, the parity-check idempotents E1(x) or E2(x) may be used to generate a cyclic
binary DS code with parameters (n,k,dmin) = (21,11,6). If we consider the parity-check
idempotent E1(x), the header of its corresponding parity-check matrix H is obtained as fol-
lows:

E∗(x) = xdeg(E(x))E(x−1) = 1+ x2 + x7 + x8 + x11 (3.14)

Thus, the parity-check matrix H is obtained by applying n cyclic shifts to the incidence vector
of the reciprocal polynomial E∗(x). The parity-check matrix corresponding to the code C is
sparse and completely regular, where the row and column weights are equal to J = 5. Also,
all the orthogonal parity-check equations orthogonal on each position 0≤ j < n are included,
such that each symbol has J = 5 orthogonal equations on it. The subset of the equations that
are orthogonal on the last position j = n−1 is given by:

Hn−1 =

x9 + x11 + x16 + x17 + x20

x2 + x12 + x14 + x19 + x20

1+ x3 + x13 + x15 + x20

x4 + x5 + x8 + x18 + x20

x+ x6 + x7 + x10 + x20

The set Hn−1 includes the orthogonality property on the last symbol, where the later is
checked in all the orthogonal equations, while the other digits are not checked more than

3.3. Exhaustive Search based Construction 67

once. Due to the cyclic structure of the OSMLD code, the set Hn−1 can be used to decode all
the symbol digits, by applying n cyclic permutations to the received binary sequence being
decoded. Note that all the symbols x j for 0≤ j < n participate in the orthogonal equations of
the set Hn−1, thus the OSMLD code C is said to be completely orthogonalizable.

3.3 Exhaustive Search based Construction

The authors in [168,170] have developed an exhaustive search idempotent based construction
method of binary LDPC codes with no cycles of length 4. The key parameters they took into
consideration in devising this technique are the code rate and the minimum distances. This
construction method results in many OSMLD codes with various code rates and minimum
distances. However, due to the exhaustive search, a key limitation of this method is the diffi-
culty to achieve high minimum distances, especially for high code lengths, as high minimum
distances directly implies a larger size of the Ω constructed upon the union of cyclotomic
cosets. From their obtained results, it was shown that the authors were not successful to
achieve a diversity in code lengths and minimum distances, provided that the construction
algorithm requires a higher time and computational complexities for choosing different sets
Ω and testing the conditions stated in Lemma 3.2.

A key feature of the cyclotomic coset-based construction is the ability to increment the min-
imum Hamming distance of a code by adding further weight from other idempotents and so
steadily decrease the sparseness of the resulting parity-check matrix. Despite the construction
method has a feature of producing LDPC codes with no cycles of length 4, it is important to
remark that codes that have cycle of length 4 in their parity-check matrix do not necessarily
have bad performance under iterative decoding and a similar finding has been demonstrated
in [164]. It has been observed that there are many cyclotomic coset-based LDPC codes that
have this property and the constraints given in Lemma 3.2 can be easily relaxed to allow the
construction of cyclic LDPC codes with girth 4 [168, 169].

Similarly to the binary case, authors in [64, 169] introduced another exhaustive search con-
struction method of non-binary LDPC codes over GF(2m) with no short cycles. In contrast to
binary OSMLD codes, the non-binary codes are based on the non-binary cyclotomic cosets
modulo n, constructed following the Lemma 31.

Before introducing the non-binary primitive idempotent, we will briefly give some prelimi-
naries that will be useful. Let’s denote by Am(x) the set of polynomials of degree at most
n− 1 with coefficients in GF(2m). Let m and m′ be two positive integers such that m | m′,

3.3. Exhaustive Search based Construction 68

where GF(2m) is a sub-field of GF(2m′). Let n be a positive odd integer, representing the
code length, and conversely, let GF(2m′) be the splitting field for xn−1 over GF(2m), so that
n | 2m′−1. Let r = (2m′−1)/n, l = (2m′−1)/(2m−1), α a primitive element and a generator
for GF(2m′), and β be a generator for GF(2m), where β = α l .

With the given preliminaries, the construction of non-binary primitive idempotents over
Am(x) is given in Lemma 3.4.

Lemma 3.3. The non-binary primitive idempotent polynomial Cu(x) ∈ Am(x) is given by:

Cu(x) = ∑
0≤i≤|Cu|−1

eCu,ix
Cu,i (3.15)

where |Cu| is the number of elements in Cu and eCu,i is defined by:

• i = 0: eCu,i ∈ {1,β ,β 2, ...,β 2m−2}

• i > 0: eCu,i = e2
Cu,i−1

Definition 3.10. If e(x) ∈ Am′(x) then the Mattson-Solomon finite field transform of e(x) is:

E(z) = MS(e(x)) =
n−1

∑
j=0

e(α−r j)z j (3.16)

where E(z) ∈ Am′(z). The inverse Mattson-Solomon transform is given by:

e(x) = MS−1(E(z)) =
1
n

n−1

∑
j=0

E(αr j)xi (3.17)

This transform is widely known in coding theory. The number of non-zero elements of the
Mattson-Solomon polynomial of an idempotent gives the dimension k of the cyclic code C .
Also, this transform is usual for the determination of the BCH lower-bound of the minimum
distance dmin of the code, which is equal to the maximal number of consecutive ones in
E(z). It is known that if E(x) is an idempotent, then E(z) = MS(E(x)) ∈ A1(z) is a binary
polynomial [128, Chapter 8]. From the Mattson-Solomon polynomial, the bound on the
minimum distance of a code C is determined following Definition 3.38 [64, 128].

Definition 3.11. The minimal distance of a cyclic code C over GF(2m) is bounded by:

d0 ≤ dmin ≤min(wt(g(x)), J+1) (3.18)

where d0 denotes the maximum number of the consecutive run of ones in MS(E(x)) taken
cyclically modulo n.

3.3. Exhaustive Search based Construction 69

Similarly to cyclic binary OSMLD codes, we state in the next proposition the correspondence
between a feasible parity-check idempotent and combinatorial designs, namely difference-set
and modular Golomb rulers.

Proposition 3.1. The parity-check idempotent E (x) ∈ Am(x) is the parity-check polynomial

for a cyclic (binary/non-binary) OSMLD code C if the set of the exponents of E(x) forms a

modular Golomb Ruler, or a Singer difference-set.

The construction of such designs with long parameters for finding a feasible E(x) has been
widely investigated in the literature, due to the difficulty provided by large space dimensions.
This problem is addressed especially for cyclic OSMLD codes that are not derived from PG
or EG.

The algebraic construction method of cyclic OSMLD over GF(2m) is based on the following
steps:

1. Fix the integers m and n.

2. If m = 1, go to step 6, otherwise continue.

3. Find the splitting field GF(2m′) of xn−1 over GF(2m), such that m | m′.

4. Generate the cyclotomic cosets modulo 2m′−1 and denote it C′.

5. Construct all elements of GF(2m) using p(x) as primitive polynomial and β as a prim-
itive element. The primitive polynomial p(x) is derived from C′ by choosing the small-
est integer u ∈ F such that |C′u| = m. Then the minimal polynomial of αu is given
by:

p(x) = ∏
0≤i<m

(x+α
C′u,i)

6. Generate the set of cyclotomic cosets modulo n over Am(x) following Lemma 3.4, and
denote it C. Then, generate the solution, which is a non-empty set Ω ⊂F , giving the
parity-check idempotent polynomial E(x).

7. Calculate the Mattson-Solomon transform MS(E(x)) ∈ A1(z) and obtain the lower-
bound of the minimal distance dmin and the dimension of the code (optional).

8. Calculate the generator polynomial g(x) ∈ Am(x) of the resulting code, given by:

g(x) = gcd(xn−1,1+E(x))

3.3. Exhaustive Search based Construction 70

9. Generate the set ω of J = wt(E(x)) dual code orthogonal parity-check equations on the
last symbol position n−1, given by, for 1≤ j ≤ J−1

ω j(x) = (βx)i
ω0(x)

where ω0(x) is the first orthogonal parity-check equation given by ω0(x)= xdeg(E(x))E(x−1)

and i is an index running over all the exponents of h(x) such that E(x) =m(x)h(x), such
that m(x) is a monomial.

The step 7 that includes the calculation of the Mattson-Solomon (MS) transform of the parity-
check idempotent is optional, since the dimension of the code C is obtained in the next step
(Step 8), and its minimum distance can be correctly lower-bounded by J +1. This step will
be effective when linear (including LDPC) codes construction is of interest, excluding the
orthogonality property, and hence the conditions on the design of the idempotent can be
relaxed.

Next we give an example (Example 3.13) of the construction of a non-binary BCH code over
GF(4) with a code length n = 15. We will show that this codes is a cyclic NB-OSMLD code.
This code is also derived from the Euclidean geometry.

Example 3.6. Let m = 2,m′ = 4 and n = 15. The field GF(16) is the splitting field of xn−1
over GF(4). We generate the set C′ of cyclotomic cosets modulo 2m′−1 = 15. The smallest
coset leader u such that |C′u| = m is u = 5. Then we derive a minimal polynomial from C′1,
defined by

p(x) = (x+α
5)(x+α

10) = 1+ x+ x2

Now, we can generate all elements of GF(4). The elements of GF(4) are given by:

0 : 0 0

1 : 1 0

β : 0 1

β 2 : 1 1

Next, we generate the cyclotomic cosets modulo n = 15. There are nc = 5 cosets. Then
we assign coefficients from {1,β ,β 2} following Lemma 3.4. Now we have to find the set
Ω in order to construct a feasible parity-check idempotent E(x) for the construction of a
cyclic NB-OSMLD code. Suppose that we have chosen initial coefficients eCu,0 following

3.3. Exhaustive Search based Construction 71

Lemma 3.4 as: {1,β ,β 2,1}, respectively excluding the cyclotomic coset C0 = {0}. Hence,
the primitive idempotents are defined by:

C1(x) = x+ x2 + x4 + x8

C3(x) = βx3 +β 2x6 +β 2x9 +βx12

C5(x) = β 2x5 +βx10

C7(x) = x7 + x11 + x13 + x14

We introduce the idempotent weight enumerator ψ(x) here defined by

ψ(x) = 1+ x2 +3x4

, such that its coefficients represent the number of occurrences of the weights represented by
the exponents, in the cyclotomic cosets modulo n. This polynomial indicates that there is
one cyclotomic coset with weight 1, one with weight 2 and three primitive idempotents with
weight 4. An essential condition to construct OSMLD codes, is that the weight of E(x), which
is a sum of primitive idempotents indexed by Ω, must satisfy the condition J(J−1)≤ n−1.
Clearly, there are 4 choices of the set Ω, and two possible weights of E(x), given by J = 2
and J = 4.

• Suppose we fix J = 2, and Ω = {5}. In fact, we have a parity-check idempotent E(x) =

β 2x5 +βx10. Following Definition 3.37, its Mattson-Solomon transform is equal to:

E(z) = 1+ x+ x3 + x4 + x6 + x7 + x9 + x10 + x12 + x13

and shows that the number of consecutive ones is equal to d0 = 2, therefore dmin ≥ 2,
which is the lower-bound on the minimal distance of the code. Also, the weight of
E(z) shows that it is possible to construct a NB-OSMLD code with dimension k =

n−wt(E(z)) = 5. In fact, the BCH code with parameters (n,k,dmin) = (15,5,3) can
be constructed from E(x) with J = 2 orthogonal equations. Its generator polynomial is
of degree deg(g(x)) = n− k = 10, and is defined by:

g(x) = gcd(xn−1,E(x)−1)

• Now suppose that we fix J = 4, and Ω = {1}. The obtained parity-check idempotent is
E(x) = x+ x2 + x4 + x8, and its MS transform is:

E(z) = MS(E(x)) = x+ x2 + x3 + x4 + x6 + x8 + x9 + x12

3.4. Problematic and Analysis of the Search Space 72

Clearly, E(x) is the parity-check idempotent of a cyclic NB-OSMLD code with param-
eters (n,k,dmin) = (15,7,5) over GF(4).

Authors in [64,168,169] have developed a construction algorithm which exhaustively searches
for all non-degenerate cyclic LDPC codes of length n which have orthogonal parity-check
polynomial. The exhaustive search algorithm is described in Algorithm 3.1.

Algorithm 3.1 Exhaustive Search cyclotomic cosets based construction algorithm
Input: n← block length (odd integer)

index← an integer initialized to −1
V ← a vector initialized to �
S←F excluding 0

Output: CodesList contains set of cyclic codes which have
orthogonal parity-check polynomial

1: T ←V
2: for i = index+1; i≤ |S|; i++ do
3: Tprev← T
4: if (∑∀t∈T |CSt | ≤

√
n, St is the tth element of S) then

5: Append i to T
6: u(x) = ∑∀t∈T eSt (x)
7: if (u(x) is non degenerate) and (u(x) is orthogonal

on each position) then
8: U(z) = MS(u(x))
9: k = n−wtH(U(z))

10: C← an [n,k,1+wtH(u(x))] cyclic code
defined by u(x)

11: if (k ≥ 1
4) and (C /∈CodeList) then

12: Add C to CodeList
13: end if
14: end if
15: CodeSearch(T, i)
16: end if
17: T ← Tprev
18: end for

3.4 Problematic and Analysis of the Search Space

As shown in the previous section, the construction of a feasible parity-check idempotent E(x)

for generating a cyclic OSMLD code over GF(2m) is constrained by a set of mathematical

3.4. Problematic and Analysis of the Search Space 73

conditions. The design of E(x) is particularly based on finding a set Ω of primitive idempo-
tents indexes. The choice of Ω must be carried out appropriately following Lemma 3.2.

Consequently, we will show that the exhaustive search construction algorithm leads to many
limitations. The number nc of cyclotomic cosets modulo n, or equivalently, the number of
primitive idempotents over A is a key parameter for analyzing the space search of a feasible
parity-check idempotent. Tables 3.1 illustrate the evolution of the number nc of cyclotomic
cosets modulo n for a set of cyclic OSMLD EG and DS codes, respectively. Table 3.3 presents
for a set of DS codes the corresponding space search dimension S for a given value of J. In
addition, Figure 3.3 depicts the evolution of nc with respect to the code length n. The selected
values of n include all odd integers such that 7 ≤ n ≤ 4161, and the analytical results using
Definition 3.33 are compared with those obtained experimentally.

n k dmin J nc

63 37 9 8 12
255 175 17 16 34
511 199 19 18 58

1023 781 33 32 106
2047 1023 34 33 186
4095 2135 38 37 350
8191 4199 40 39 630

16383 8207 57 56 1180

Table 3.1: A set of cyclic EG OSMLD codes with their corresponding number of cyclotomic
cosets nc

Indeed, we can observe from Figure 3.3 that the parameter nc increases significantly with the
code length n. This assumption is straightforward as the number of irreducible factors over
A of the polynomial xn− 1 increase with n. As a consequence, an exhaustive search for the
feasible set Ω leads to a combinatorial explosion due to the large search space dimension
S as shown in Table 3.3. These limitations explain why the design of long algebraic cyclic
OSMLD codes is actually a difficult task.

Also, from Figure 3.3, it is shown that the value of nc increases significantly from moderate to
long code lengths. We particularly observe the first peak of the curve at n = 127, followed by
several peak transitions, then from n = 2000, the value of nc begins to increase exponentially.
This figure also shows that the analytical expression for calculating the number of cyclotomic
cosets modulo n coincides exactly with the values obtained by numerical simulations.

3.4. Problematic and Analysis of the Search Space 74

n k dmin J r = k
n nc

7 3 4 3 0.43 2
21 11 6 5 0.52 5
73 45 10 9 0.62 8

273 191 18 17 0.70 26
1057 813 34 33 0.77 72
4161 3431 66 65 0.82 236

16513 14325 130 129 0.87 788
65793 59231 258 257 0.90 2756

Table 3.2: A set of cyclic DS OSMLD codes with their corresponding number of cyclotomic
cosets nc

n J nc S Approximate value of S

7 3 3 2 2
21 5 6 3 3
73 9 9 8 8

273 17 27 23 23
1057 33 73 2×

(2
70

)
4830

4161 65 237 8×
(3

228

)
1.55×107

16513 129 789 2×
(12

786

)
2.13×1026

65793 257 2757 2×
(12

2730

)
6.98×1032

Table 3.3: Space search evolution for different values of n for a set of cyclic DS codes

Intuitively, for simplifying the construction, we can derive the idempotent weights enumera-
tor polynomial with coefficients that represent the number of primitive idempotents over Tm

with a weight equal to their exponents.

We state the definition of the primitive idempotent weights enumerator as follows:

Definition 3.12. Let Tm =GF(2m)[x]/(xn−1). The distribution of the weights of all primitive
idempotents over Tm is defined by:

ψ(x) = x+ ∑
u∈F−{0}

a|Cu|x
|Cu| (3.19)

where |Cu| denotes the weight of the cyclotomic coset Cu for u ∈F , and a|Cu| is the number
of cyclotomic cosets with a weight equal to |Cu|, such that ∑u∈F a|Cu| = nc.

3.4. Problematic and Analysis of the Search Space 75

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

200

250

n

n
c

nc − experimental

nc − theoritical

Figure 3.3: The evolution of nc (analytical versus experimental) with respect to the code
lengths n for 7≤ n≤ 4161

This polynomial will be useful for enumerating the corresponding weights of primitive idem-
potents over Tm, in addition to the enumeration of equivalent cyclic OSMLD codes over Tm.
We note that with the given definition, ψ(x) is a polynomial representation of a partition of
the integer n. We will use this polynomial later for the reduction of the dimension of the
search space.

Tables 3.4 and 3.5 display a set of code lengths associated to difference-set codes and EG
OSMLD codes respectively, over GF(2), with their corresponding primitive idempotent weights
polynomials.

n nc ψ(x)

7 3 x+2x3

21 6 x+ x2 +2x3 +2x6

73 9 x+8x9

273 27 x+ x2 +2x3 +2x6 +21x12

1057 73 x+2x3 +70x15

4161 237 x+ x2 +8x9 +227x18

Table 3.4: A set of DS code lengths with their associated idempotent weight polynomials

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 76

n nc ψ(x)

15 5 x+ x2 +3x4

31 7 x+6x5

63 13 x+ x2 +2x3 +9x6

127 19 x+18x7

255 35 x+ x2 +3x4 +30x8

1023 107 x+ x2 +6x5 +99x10

Table 3.5: A set of EG OSMLD code lengths with their associated idempotent weight poly-
nomials

3.5 Construction of cyclic OSMLD codes using Genetic
Algorithms

Motivated by the fact that a more sophisticated search strategy must be introduced to solve
the problem of designing a feasible parity-check idempotent for generating cyclic OSMLD
codes, we address our interest to apply an evolution strategy for the exploration of the space
search. Intuitively, we propose the use of genetic algorithms to address this problem.

Genetic algorithms (GAs) were first invented by Holland in [63]. Inspired by the natural
mechanisms of adaptation and biological evolution, GAs provide good performances in solv-
ing global optimization problems. With genetic operators, it is possible to optimize the pro-
cess of finding a global optimum of a function, by overcoming the local optimums using the
diversity provided by these operators.

Holland’s GA is a method for moving from one population of chromosomes (e.g., strings of
ones and zeros, or bits) to a new population by using a kind of natural selection together with
the genetic-inspired operators of crossover, mutation, and inversion. Each chromosome
consists of genes (e.g., bits), each gene being an instance of a particular allele (e.g., 0 or 1).
The selection operator chooses those chromosomes in the population that will be allowed
to reproduce, and on average the fitter chromosomes produce more offspring than the less
fit ones. Crossover exchanges sub-parts of two chromosomes, roughly mimicking biologi-
cal recombination between two single chromosome (haploid) organisms; mutation randomly
changes the allele values of some locations in the chromosome; and inversion reverses the
order of a contiguous section of the chromosome, thus rearranging the order in which genes
are arrayed [115].

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 77

3.5.1 Problem modeling

The mathematical modeling of the problem of the parity-check idempotent design is a key pa-
rameter for applying a genetic algorithm. We propose an objective function f (x1,x2, ...,xM)

with M = card(Ω) variables, such that xi ∈F for i ∈ {1,2, ...,M}. This means that our indi-
viduals are non zero integers vectors (x1,x2, ...,xM) of size M. The chromosomes (elements xi

for i ∈ {1,2, ...,M}) represent cosets leaders of the corresponding cyclotomic coset Cxi con-
tained in the parity-check idempotent E(x). Therefore, individuals and their corresponding
fitness functions may be formulated as follows:

Proposition 3.2. For an individual (x1,x2, ...,xM) such that J = wt(E(x)), it is possible to

correspond a fitness function defined by:

f (x1,x2, ...,xM) = J(J−1)−wt1(D(E(x))) (3.20)

to the construction problem of the parity-check idempotent for OSMLD codes, where wt1(D(E(x)))

denotes the number of differences di such that di = 1 for i ∈ {1,2, ...,n−1}.

The objective function f is a metric that indicates the number of repeated differences in
the exponents of the parity-check idempotent E(x), which occurs more than once. Accord-
ing to Lemma 3.2, the constraint di ∈ {0,1} for i ∈ {1,2, ...,n− 1} must be satisfied for
cyclic OSMLD codes and in this case, it is clear that the value of the evaluation function
f (x1,x2, ...,xM) must be equal to zero. Therefore, the construction of the parity-check idem-
potent E(x) for generating a cyclic binary OSMLD code is equivalent to the following mini-
mization problem:

Find Ω = (x1,x2, ...,xM), xi ∈F

s.t. f (x) = J(J−1)−wt1(D(E(x))) = 0 (3.21)

where E(x) = ∑u∈Ω ∑i∈Cu xi is the parity-check idempotent constructed from the sum of the
cyclotomic cosets modulo n associated to the subset Ω.

3.5.2 OSMLD-GA construction algorithm for cyclic OSMLD codes
over GF(2m≥1)

The proposed algorithm here aims to exploit the standard steps in the process of genetic
algorithms. For each code length n, the algorithm searches for feasible cyclic OSMLD codes,
with incremental value of M. When M increases, then J also tends to increase. In fact,

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 78

we obtain codes with higher minimum distances by increasing M. When the parameter M

reaches a saturated value, then the algorithm stops. A saturated value of M means that it is
impossible to find a set of M primitive idempotents contained in E(x) such that the constraint
J(J− 1) ≤ n− 1 is satisfied. For high code lengths, we introduce a parameter Ntr which
represents the number of trials of the genetic algorithm in each individual value M for a given
code length n. This parameter helps to improve the performance and to obtain diversified
results in each instance of the algorithm.

For the GA process, the principle is to generate an initial population of Ni individuals. The pa-
rameter Ni is called the population size. Then the value of the fitness function f (x1,x2, ...,xM)

is calculated for each individual E(i)(x). If one of the individuals has a zero fitness value, the
algorithm returns the current individual as solution, then extracts the code parameters. Alter-
natively, if the initial population does not contain a solution, the genetic algorithm is executed
according to the following steps:

• Selection of parent individuals from the current population.

• Crossing parents for creating children. The crossing is performed according to a crossover
function fcrossover and a crossover probability pc.

• Mutation of the individual children to ensure a genetic diversity for future generations.
The mutation is performed according to a mutation function fmutation and a mutation
probability pm.

• Calculation of the value of the fitness function for each child.

• New generation based on elitism. The elitism is an operation that selects the best
individuals of the current generation based on their fitness values.

The same steps are repeated for different values of M to produce different weights of E(x).
For each value of M, we perform Ntr iterations of the algorithm, in order to find a larger set of
possible combinations of the weights of primitive idempotents. For the mutation operator, as
individuals are not binary elements, we have used a custom mutation function. The proposed
mutation consists of selecting chromosomes following the mutation probability pm, then for
each selected chromosome c(i), a random value is chosen from the set {F (i) \v(c(i))}, where
v(c(i)) denotes the value of the current chromosome c(i).

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 79

Stopping Criteria:

For a given value of M, the construction algorithm OSMLD-GA stops when the maximum
number of generations Ng is achieved, or when a feasible solution is found for the current
value of M. Note also that when the fitness function is zero, the parity-check idempotent is
checked whether it leads to a degenerated code, in which case the solution is discarded.

In order to reduce the complexity of the problem, i.e. the search space dimension, we discard
the cyclotomic cosets whose size J does not meet the condition 2 in Lemma 3.2, i.e. a new
reduced set Ċof cyclotomic cosets is formed such that Ċ = {Ci, |Ci|.(|Ci|−1)≤ n−1}.

The hyper-parameters of the proposed algorithm (OSMLD-GA) are illustrated in Table 3.6.
Note that these parameters are optimized by simulations for each code length. For each
interval of code length, we have found that the hyper-parameters may vary. As a consequence,
we have chosen to represent here a set of sub-optimal hyper-parameters that give satisfactory
results, without representing the exact values for each code length interval.

Parameter Value

Fitness function f (x1, ...,xM) = J(J−1)−wt1(D(E(x)))
Population size Ni 512

Mutation operator
Random

pm = [0, ...,1]

Crossover operator
Random

pc = [0, ...,1]
Selection operator Roulette

Elite count
[
Ni× 20

100

]
Max generations Ng 100×M

Table 3.6: The hyper-parameters of the construction algorithm OSMLD-GA

For the cyclic non-binary OSMLD codes, we propose two different construction approaches.
The first one (Construction A) is that derived from extension fields, and explained in 3.4,
which provides some limitations on the possible codelengths. The second one (Construction
B) is based on the cyclotomic cosets of order q modulo n, and leads to a large set of non-
binary OSMLD codes over GF(q). In addition, the constructed NB-OSMLD codes using

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 80

this method have binary polynomial generators and dual orthogonal equations, which is very
a useful feature for reducing the data storage requirements of non-binary codes, in contrast
to most NB codes known in the literature. We summarize these two methods as follows:

1. Method A: Based on the extension fields (few code lengths).

2. Method B: Based on the cyclotomic cosets of order q modulo n (very large set of code
lengths). The generator polynomial and the orthogonal equations are binary, which is
very advantageous in reducing the storage requirements of non-binary codes.

For illustrating the construction method B, we give an explanatory example below.

Example 3.7. Let’s consider a code length n = 15 and A2(x) = GF(22)[x]/(x15−1), so that
q = 4. We would like to construct an OSMLD code of length n = 15 defined over GF(4).
The set of 4-th order cyclotomic cosets modulo 15 is given by:

• C0 = 0

• C1 = {1,4}

• C2 = {2,8}

• C3 = {3,12}

• C4 = {5}

• C5 = {6,9}

• C6 = {7,13}

• C7 = {10}

• C8 = {11,14}

Clearly, we have nc = 9, and we observe that the union of all the cosets leads the set {0,1, ...,n−1},
i.e. ∪

u⊆F
Cu = {0,1,2, ... ,n−1}. Now, let Ω = {1,2}, so that the idempotent weight is

J = 2+ 2 = 4. The parity-check idempotent is given by E = {1,2,4,8}, and its associated
polynomial is E(x) = x+ x2 + x4 + x8. We have E(x) = E(x2) mod 15, thus E(x) is an idem-
potent polynomial. Moreover, all the differences between the exponents of E(x) are distinct,

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 81

thus E(x) is a feasible parity-check idempotent for generating an OSMLD code with param-
eters (n,k,dmin)4 = (15,7,5) over GF(4). The generator polynomial of the code is simply
1+E(x) and is given by:

g(x) = 1+ x+ x2 + x4 + x8

The J = 4 dual parity-check equations orthogonal on the last digit (the 14th digit) are given
in the binary form below:

Hn−1 =

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1

1 0 0 0 0 0 0 0 1 0 0 0 1 0 1

0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

As shown, despite that the code is defined over GF(4), the generator polynomial and the dual
parity-check equations are binary. This is a major advantage of this construction, in addition
to the fact that it leads to a large set of cyclic NB-OSMLD codes. As the code is cyclic,
only the set Hn−1 is used to decode all the digit positions, by cyclically shifting the decoded
sequence. Note that this construction requires few storage memory due to the cyclic structure
and the binary form of the code generators.

The proposed construction algorithm OSMLD-GA is described in details in Algorithm 3.2.
Note that both the binary and non-binary constructions (construction A and B) are consoli-
dated in the same algorithm, as the only difference between these approaches is the order of
the cyclotomic cosets as well as the method of choosing their coefficients.

3.5. Construction of cyclic OSMLD codes using Genetic Algorithms 82

Algorithm 3.2 OSMLD-GA
Input: n, m, q = 2m, Mmax, Ntrials, Ni, NG, pc, pm, Flimit = 0, CodesList =�
Output: CodesList

/*- - - - - - - - - - - - - Initialization - - - - - - - - - - - - -*/
1: if q > 2 then
2: if Construction = "A" then
3: Find m′, then generate the extension field GF(2m′).
4: Generate the set C of cyclotomic cosets of order 2 modulo n.
5: else if Construction = "B" then
6: Generate the set C of cyclotomic cosets of order q modulo n.
7: end if
8: else
9: Generate the set C of cyclotomic cosets of order 2 modulo n.

10: end if
11: Form the reduced set Ċ of cyclotomic cosets and set Mmax = nc, where nc = card(Ċ).
12: Construct the primitive idempotents over Tm.

/*- - - - - - - - - - - - - - - Process - - - - - - - - - - - - - - -*/
13: for M = 1 : Mmax do
14: for trials = 1 : Ntrials do
15: for g = 1 : NG do
16: Generate the population Pg of the current generation
17: for all Ωz ∈ Pg do
18: Set Ez(x)
19: Jz← wt(Ez(x))
20: end for
21: cpt← f alse
22: for all Ez(x) do
23: if Jz(Jz−1)≤ n−1 then
24: D(Ez(x))← Ez(x)E−1

z (x)
25: Fz = Jz(Jz−1)−wt1(D(Ez(x)))
26: if Fz = Flimit and isNoDegenerated then
27: cpt← true
28: Add Ez(x) to Elist
29: end if
30: end if
31: end for
32: if cpt = f alse then
33: Selection of parents
34: Crossover to produce children
35: Mutation of children
36: Calculate the Fitness of each child
37: Elitism to generate the next population
38: else
39: break
40: end if
41: end for
42: for all E(x) ∈ Elist do
43: E(z) = MS(E(x))
44: k = n−wt(E(z))
45: C ← an [n,k,1+wt(E(x))] cyclic OSMLD code
46: if (k

n > 1
2) and (C /∈CodesList) then

47: Add C to CodesList
48: end if
49: end for
50: end for
51: if CodesList =� then
52: Exit the algorithm
53: end if
54: end for

3.6. Construction results 83

Note that we restrict the construction to only cyclic OSMLD codes with rates r > 1
2 , such

that the coderate is calculated directly after computing the Mattson-Solomon transform, from
which the code dimension is deducted by k = wt(E(z)). The Mattson-Solomon calculation
procedure is optional (only used in Construction A) as the code dimension can be directly
deducted from the generator polynomial g(x) of the constructed code.

3.6 Construction results

The construction results are presented in this section. The proposed construction algorithm
OSMLD-GA has resulted in many new binary and non-binary cyclic OSMLD codes with
various parameters, as well as a large set of equivalent cyclic OSMLD codes for the same
parameters. Equivalent OSMLD codes were obtained because of the global optimization
aspect of genetic algorithms, where different regions of the search space are explored in the
same instance. Note that the execution time of the OSMLD-GA algorithm is very fast and
requires very low time complexity compared to the existing construction techniques. We
highlight the fact that long cyclic OSMLD codes were easily constructed using the OSMLD-
GA algorithm.

Table 3.7 displays an illustrative and non-exhaustive set of the obtained cyclic binary OSMLD
(and LDPC) codes using the OSMLD-GA algorithm. Tables 3.8 and 3.9 present a set of
cyclic non-binary OSMLD codes constructed using the NB-OSMLD-GA algorithm, using
Contruction A, over GF(4) and GF(8), respectively. In Tables 3.10 to 3.14, a set of cyclic
non-binary OSMLD codes constructed by Construction B are illustrated, with alphabets de-
fined over GF(4), GF(8), GF(16), GF(32) and GF(64), respectively. The parameters of
these codes are also included, namely the codelength, dimension, minimum distance and the
code rate as well as the parity-check idempotent index set Ω. Note that this displayed set of
codes was chosen just for sake of illustration, as we have obtained a very large number of
new cyclic OSMLD codes. Is is noted from the results that the coderate generally increases
with the minimum distance for short codes, while the opposite is observed for long codes.
However, this observation is not general. In our case the most interesting cyclic OSMLD
codes are those with higher rates. Note also that cyclic difference-set codes and cyclic EG
codes were obtained using this construction, and they are included on the Appendix B. For
the same codelength, we have obtained several codes that are equivalent as well as nonequiv-
alent with different coderates and correction capacities. For spatial constraints, we have only
selected to represent one OSMLD code for each n.

3.6. Construction results 84

The complete list of the constructed cyclic OSMLD codes will be presented in an online
database in the near future, including also a set of quasi-cyclic OSMLD codes derived from
combinatorial designs. A longer list of a set of the designed cyclic OSMLD codes with
various codelengths is included in the Appendix B.

n k dmin J r = k
n ΩE(x)

315 213 19 18 0.68 {3,35}
357 227 20 19 0.64 {51,85,119,133}
765 637 25 24 0.83 {127}
803 559 29 28 0.70 {33,73,275}

1157 815 35 34 0.71 {39,89,429}
1287 819 37 36 0.64 {117,275,319,429}
1335 947 37 36 0.71 {89,195,267,285,445,623}
1519 1095 40 39 0.72 {21,31,217}
1683 1251 41 40 0.74 {153,165,187,297,363}
1755 1453 43 42 0.83 {59,195}
2415 1995 50 49 0.83 {105,161,253,345,525,575,805}
2937 2135 55 54 0.73 {33,89,267,363,445,979}
3471 2873 60 59 0.83 {39,89,195,623,1157,1287}
4005 3303 64 63 0.82 {75,89,267,445,801,1485,1869}
4539 3797 68 67 0.84 {51,89,255,445,979,1513,1683,1691}
5073 4259 72 71 0.84 {57,89,445,513,741,1691}
5225 4865 73 72 0.93 {95,275,285,475,1045}
7353 5993 81 80 0.81 {19,129,645,2451}
7755 6375 85 84 0.82 {165,235,517,705,825,1175,3619}
8855 7567 92 91 0.85 {161,253,385,483,805,1771,1925,3795}
9597 7677 97 96 0.80 {105,457,1371,2285,3199,4113}
9821 6887 100 99 0.70 {61,161,1403,4209}

10341 8785 103 102 0.84 {171,183,915,1159}
12533 9871 113 112 0.79 {151,1245,2905}
16513 14325 130 129 0.87 {1,89,947,965,1699,2737,7077}
65793 59231 258 257 0.90 {1,1205,1309,1395,1749,2209,3713,4427,6931,9399,9553,11529,21931}

Table 3.7: A set of cyclic binary OSMLD codes constructed using the OSMLD-GA algorithm

3.6. Construction results 85

m′ n k dmin r = k
n Ω eCu,0

12
7 3 4 0.43 {1} {1}

15 7 5 0.47 {7} {1}
21 11 6 0.52 {3,7} {1,1}

10 31 15 6 0.48 {11} {1}
6

63
53 8 0.84 {5,21} {β 2,β}

12 37 9 0.59 {1,21} {β 2,1}
8 85 37 9 0.44 {7} {1}
10 93 47 8 0.51 {3,31} {1,β 2}

8 255
223 13 0.87 {17,43} {β 2,β 2}
175 17 0.69 {27,43} {1,1}

12 315 279 11 0.89 {21,115} {1,β}

10 341
320 11 0.94 {17} {β 2}
205 16 0.60 {35,55} {1,1}

12
819 689 21 0.84 {65,273,307} {β 2,β ,1}
1365 1327 28 0.97 {149,293,585} {β 2,1,β 2}

Table 3.8: A set of cyclic non-binary OSMLD codes over GF(4) constructed using the NB-
OSMLD-GA algorithm (Construction A)

3.6. Construction results 86

m′ n k dmin r = k
n Ω eCu,0

15 7 3 4 0.43 {1} {β 4}
12 15 7 5 0.47 {1} {1}
12 21 11 6 0.52 {3,7} {β 6,1}
15 31 15 6 0.48 {3} {1}
12

63
47 7 0.75 {13} {β 3}

6 37 9 0.59 {1,21} {β ,1}
9 73 45 10 0.62 {17} {1}

12 105
97 5 0.92 {45,49} {β 4,1}
53 8 0.50 {15,49} {1,1}

15 217
201 6 0.93 {77,93} {1,β 6}
109 9 0.50 {31,77} {β ,1}

12 273 239 18 0.88 {39,41,91} {β 5,β 2,1}
12 819 789 21 0.96 {143,273,275} {β 3,β 3,β 2}
12 4095 2199 31 0.54 {85,311,845} {β 3,1,1}

Table 3.9: A set of cyclic non-binary OSMLD codes over GF(8) constructed using the NB-
OSMLD-GA algorithm (Construction A)

3.6. Construction results 87

n k dmin J r = k
n ΩE(x)

93 61 11 10 0.66 {5,10}
273 191 18 17 0.70 {39,91,97,101,182}
465 337 21 20 0.72 {53,106}
803 559 29 28 0.70 {55,73,146,187}
945 777 31 30 0.82 {5,10,21,42}

1661 1231 41 40 0.74 {11,151,302,407}
1963 1471 43 42 0.75 {91,151,302,481}
2313 1929 49 48 0.83 {191,271}
2667 2163 49 48 0.81 {95,127,190,254}
2945 2195 53 52 0.74 {155,310,437,551,589,665,1045,1178}
3311 2371 59 58 0.72 {11,22,301,473,602,1419}
3995 2605 63 62 0.65 {85,141,282,425,705,1410}
4305 3157 64 63 0.73 {43,86,1845}
4743 3351 70 69 0.71 {69,138,341,459,682}
4781 3545 70 69 0.74 {9,18,683}
5083 3581 71 70 0.70 {115,221,230,1105,1265,2139}
5635 3991 74 73 0.71 {105,345,483,966,1127,2254,2415}
5735 4005 76 75 0.70 {155,185,310,333,555,666,1147,1295,2294}

Table 3.10: A set of cyclic non-binary OSMLD codes over GF(4) constructed using the
OSMLD-GA algorithm (Construction B)

3.6. Construction results 88

n k dmin J r = k
n ΩE(x)

255 175 17 16 0.69 {31,39}
279 167 17 16 0.60 {31,45,62,99,124}
595 403 25 24 0.68 {3,6,12}
651 491 26 25 0.75 {99,161,198,291}
715 497 27 26 0.70 {11,22,44,65,143}
889 697 29 28 0.78 {11,22,44,49}
935 697 31 30 0.75 {33,85,143,187}

1157 815 35 34 0.70 {13,89,143,178,356}
1419 1029 39 38 0.73 {99,121,129}
1495 1073 39 38 0.72 {65,69,138,276,299,325}
1677 1229 41 40 0.73 {39,91,129,258,516}
1905 1521 43 42 0.80 {57,355}
2451 1795 49 48 0.73 {95,129,171,258,516,817}
2871 2313 55 54 0.81 {87,99,319,435,638,1276}
3519 2837 60 59 0.81 {153,255,437,575,1127,1173}
3999 3291 60 59 0.82 {93,279,645,651,989,1333}
4895 4153 70 69 0.85 {363,445,715,979}
5313 3591 74 73 0.68 {77,115,161,230,231,299}

Table 3.11: A set of cyclic non-binary OSMLD codes over GF(8) constructed using the
OSMLD-GA algorithm (Construction B)

3.6. Construction results 89

n k dmin J r = k
n ΩE(x)

341 205 16 15 0.60 {39,55,78}
381 255 17 16 0.67 {71,127,142,254}
651 491 26 25 0.75 {33,35,70}
803 559 29 28 0.70 {73,121,146,143}
889 697 29 28 0.78 {7,97}

1617 1191 41 40 0.74 {33,77,147,154,231,294}
2117 1531 47 46 0.72 {73,87,146,292,584,725}
2759 2003 53 52 0.73 {89,93,267,445,623,979,1023,1335}
3311 2371 59 58 0.72 {297,301,451,473,602,1419}
4347 3071 63 62 0.71 {23,46,189,297}
4781 3545 70 69 0.74 {89,178,2049}
5037 3783 72 71 0.75 {365,511,621,759,943,1095,1679,1886,3358}

Table 3.12: A set of cyclic non-binary OSMLD codes over GF(16) constructed using the
OSMLD-GA algorithm (Construction B)

3.6. Construction results 90

n k dmin J r = k
n ΩE(x)

315 195 19 18 0.62 {5,45,63,105,135}
357 227 20 19 0.64 {17,35,119,153}
585 377 25 24 0.64 {61,201}
657 451 27 26 0.69 {9,73,81,219}
945 657 31 30 0.70 {9,155}

1235 881 35 34 0.71 {19,65,247}
1285 833 37 36 0.65 {37,109,257}
1691 1211 41 40 0.72 {19,89,209}
1755 1459 37 36 0.83 {217}
2313 1929 49 48 0.83 {283}
2967 2187 53 52 0.74 {23,69,129,645,989}
3213 2701 43 42 0.84 {21,221}
3309 2205 59 58 0.67 {559}
3471 2873 60 59 0.83 {39,89,117,623,741,1157}
4347 2793 64 63 0.64 {115,189,207,345,483,621,945,1449}
4361 3103 66 65 0.71 {245,267,441,539,637}
4945 3449 69 68 0.70 {161,215,805,989,1075}
5035 3869 71 70 0.77 {265,361}

Table 3.13: A set of cyclic non-binary OSMLD codes over GF(32) constructed using the
OSMLD-GA algorithm (Construction B)

3.7. Conclusion 91

n k dmin J r = k
n ΩE(x)

217 153 16 15 0.70 {27,54,108}
465 337 21 20 0.72 {23,46}

1513 1079 39 38 0.71 {85,89,153,178,267,534}
1581 1069 41 40 0.68 {35,70}
2225 1607 47 46 0.72 {75,89,178,445,825,890}
2263 1815 46 45 0.80 {227,235,470}
2635 1977 51 50 0.75 {59,85,118,1275}
2759 2003 53 52 0.73 {31,89,267,341,445,623,979,1335}
2829 1897 54 53 0.67 {23,46,205,287,615}
3995 2965 63 62 0.74 {47,85,94,425,1363,2679}

4945
3449 69 68 0.70 {115,215,230,897,989,1075,1081,1978}
3155 70 69 0.64 {115,215,230,473,301}

4991 3231 71 70 0.65 {69,105,138,276}
5429 3393 72 71 0.62 {89,178,356,445,671,712,890}
5969 3907 75 74 0.65 {127,235,635,987,1081,1457}

Table 3.14: A set of cyclic non-binary OSMLD codes over GF(64) constructed using the
OSMLD-GA algorithm (Construction B)

3.7 Conclusion

In this chapter, we have presented a new construction algorithm based on genetic algorithms,
for the design of cyclic OSMLD codes using the parity-check idempotent technique. The
proposed algorithm has shown to result in a large number of new cyclic OSMLD codes with
various coderates and code lengths, where long codes were constructed easily in a low time
complexity, in contrast to previous exhaustive search based techniques that were presented
in this chapter. The proposed construction technique has an advantage in the flexibility of
parameters, where it is possible to relax the mathematical constraints easily for design other
cyclic codes not necessarily with the orthogonality property.

The same construction algorithm was used to design binary and non-binary OSMLD codes,
where in the NB-OSMLD-GA construction, two different methods were proposed, the method
A which requires extension fields and leads to few code length possibilities, and the method
B which exploits the cyclotomic cosets of order q modulo n for designing cyclic OSMLD
codes over GF(q). The later has two main interesting features, firstly, it leads to a very

3.7. Conclusion 92

large set of new cyclic NB-OSMLD codes, secondly, it provides an advantage in low storage
requirements, as the codes are cyclic and their generator polynomials and dual orthogonal
parity-check equations are written in the binary field.

The proposed formulation of the problem as an objective function leads to new investigations
on how to extend this contribution to constructing irregular OSMLD codes as well as non-
cyclic OSMLD codes by exploiting global optimization algorithms, and appropriately modi-
fying the objective function by adding additional structural constraints. We note that the large
database of the constructed codes are very useful for energy-constrained wireless communi-
cation systems as well as systems that require limited storage memory. For instance, one such
application is the massive Machine-Type Communications (mMTC) including drone commu-
nications and Internet of Things (IoT) devices in the 5G NR cellular mobile networks, as well
as other communication systems that may use these codes in concatenated (serial or parallel)
forward error correction schemes, including spatial, underwater and optical communications.

Chapter 4

A New Gradient-Descent based One-Step
Majority-Logic Decoding Algorithm for
LDPC Codes

4.1 Introduction and Preliminaries

4.1.1 Introduction

During last decades, coding theory has seen many ever-growing efforts from academic and
industrial research communities towards reaching fast and reliable communication systems
for a wide range of propagation channels, while providing an efficient trade-off between
performance and computational complexity. LDPC codes, first introduced by [48], and later
rediscovered in [86, 109], have shown to form a class of error correcting codes approaching
the theoretical capacity, while decoding with the Belief Propagation Sum-Product (BP-SP)
algorithm. The BP-SP algorithm [109], along with its variants, has shown to provide a large
number of arithmetic operations required for the decoding process. The most efficient LDPC
codes are whose Tanner graph structure does not contain short cycles, i.e. cycles of length 4.
These LDPC codes can be simply decoded with majority-logic algorithms, instead of the BP
algorithm which requires more computational complexity. LDPC codes with no short cycles
represents a sub-class of OSMLD codes.

OSMLD codes [145, 185] represent an interesting class of error correcting codes, due to
their structured combinatorial properties providing orthogonality in the dual structure, which
helps to decode these codes with a simple majority-logic decoding (MLGD) procedure. A

93

4.1. Introduction and Preliminaries 94

linear code C with a length, dimension and minimal distance respectively denoted by the
triplet (n,k,dmin), is a OSMLD code if for each symbol index 0 ≤ j < n, there is a set of J

orthogonal parity-check equations belonging to its dual code, such that every symbol apart
the symbol j is contained in no more than one equation, and all the J equations intersect
on the symbol index j. These equations are said to be orthogonal on the jth symbol. As a
consequence, the code C has a structured minimum distance given by dmin ≥ J + 1. When
C is completely orthogonalizable (Difference-set codes [185]), i.e. all the digit positions
participate in the decoding process of a symbol index j, its corresponding minimum distance
is exactly determined by dmin = J +1. Due to the orthogonality property, decoding OSMLD
codes is simpler and requires lower computational complexity compared to decoding other
families of codes.

The first majority-logic decoder was devised by Reed [133] for decoding Reed-Muller codes,
and was later extended by Massey [113], who proposed the first Soft-Input Hard-Output
(SIHO) one-step majority-logic scheme. Majority-logic decoding and threshold decoding
were also extensively studied by Massey, as well as Kolesnik and Mironchikov [84]. The
weighted one-step majority-logic decoding was introduced by Rudolph [142, 143]. Lucas
et al. [106] has shown that OSMLD codes derived from finite geometries outperforms their
equivalent randomly generated LDPC codes, when decoded with the BP algorithm. Several
majority-logic decoding algorithms have been proposed in the literature. In general, decoding
OSMLD codes can be classified into 2 distinct categories, hard-decision and soft-decision
decoding algorithms. The hard-decision MLGD algorithm (OSMLGD) introduced in [133]
is the most simple decoder, and can be realized with simple logical operations. However,
its error rate performances provides bad convergence, due to the absence of the soft channel
output information. The use of hard-decision MLGD algorithms can only be useful for data
storage systems, or when a simple decoder is needed. In counterpart, soft-decision MLGD
algorithms use the channel information, and exploit it generally in an iterative scheme, with
an relative increase in complexity. Several soft-reliability based MLGD algorithms have been
proposed for finite geometry LDPC codes and OSMLD codes in the literature [10,11,69,88,
105,120,158,173,174,192,207]. The comparison that will be presented in this paper in terms
of performances and complexity of these algorithms, shows that MLGD schemes suffer from
performance degradation compared to the BP decoding of equivalent LDPC codes, especially
for long codes.

In this chapter, we propose a new MLGD algorithm, based on the Gradient-Descent (GD)
optimization technique (GD-MLGD). A suitable model of the decoding problem of OSMLD

4.1. Introduction and Preliminaries 95

codes is proposed as a first-order derivable multi-variable objective function. An investiga-
tion of the designed objective function is addressed, and the decoding algorithm consists of
iteratively maximizing this function, based on the first-order partial derivatives until achiev-
ing convergence. Also, a quantized version of the proposed algorithm (QGD-MLGD) is
proposed, aiming to reduce the computational complexity. A comparison between the pro-
posed decoding algorithms and the relevant MLGD algorithms in the literature is presented.
This comparison is based on error rates performances and computational complexity. A sta-
tistical analysis of the wrong decisions of the decoder is also established, and some eventual
strategies and perspectives that can be employed to improve decoding performance are inves-
tigated.

The rest of this chapter is organized as follows. In Section 2, preliminaries and basic back-
ground are briefly presented, and a literature review on the existing majority-logic decoders
is provided. Section 3 presents related works on gradient-descent decoding, and introduces
the proposed decoding algorithms (GD-MLGD and QGD-MLGD). A Complexity analysis
and comparison with previous works is also given. Performance results are presented is Sec-
tion 4, with remarks and discussions, followed by a statistical analysis and investigations on
performance improvement, before concluding remarks in Section 5.

4.1.2 Preliminaries

Let C be a regular binary OSMLD code, with code length, dimension and minimum distance
denoted respectively by (n,k,dmin). Let c ∈ Fn

2 be a codeword, i.e. c ∈ C , where F2 denotes
the Galois field of order 2, i.e. GF(2), such that cHT = 0, where H is the parity-check matrix
of C with dimension m×n, such that its row and column weights are respectively denoted by
ρ and γ , and m≥ n− k is the number of parity-check equations of H. The null space of H is
the code C . Since C is an OSMLD code, its parity-check matrix H contains for each symbol
index 0≤ j < n, a set of J binary orthogonal equations on the jth digit position. Let’s denote
the set containing the indexes of parity-check equations orthogonal on the jth digit by M (j),
where M (j) = {i : hi j = 1,0 ≤ i < m}. When H is a circulant matrix, then C is a cyclic
OSMLD code. If H consists of a set of circulant matrices, then C is a quasi-cyclic code. For
the case of cyclic regular OSMLD codes derived from finite geometries that are considered
in this paper (type-1 EG and difference-set codes), row and column weights of H are similar
and equal to J [146].

Let i be an index running through the set M (j), and let N (i) be the index of the non zero
digits of the ith orthogonal equation on the jth symbol, i.e. N (i) = { j : hi j = 1,0≤ j < n}.

4.2. The Existing Majority-Logic Decoding Algorithms 96

We consider OSMLD codes that have the same number of orthogonal equations for each
symbol. Thus, let J = |M (j)| denote the cardinal of the set M (j).

We assume a transmission over an additive white Gaussian noise (AWGN) channel using a
BPSK modulation (0 is mapped to 1, and 1 to−1) such that x j = (−1)c j for 0≤ j < n, where
x ∈ {−1,1}n is the modulated (bipolar) codeword. The transmission is performed assuming
the model y = x+ e, where y ∈ Rn is the received signal, and e ∈ Rn is the AWGN vector
with zero mean and variance σ2 = N0/2, where N0/2 is the single-sided noise-power spectral
density.

Let z = (z0,z1, ...,zn−1) ∈ Fn
2 denote the hard decision of the received signal y, defined by

z j = (1− sgn(y j))/2 for each 0 ≤ j < n, where sgn(.) is the sign operator. The syndrome
vector S(z) = (s0,s1, ...,sm−1) ∈ Fm

2 is calculated by the scalar product s = zHT over F2.

Let A ji =
⊕

s∈N (i) zs and B ji = A ji⊕ z j denote respectively the ith parity checksum and the

ith binary estimator orthogonal on the symbol z j. Let E(q)
j and R(q)

j represent the extrinsic
information and the soft-reliability on the symbol z j at the qth iteration, respectively. In gen-
eral, the extrinsic information E(q)

j is calculated by the summation of the bipolar estimators
orthogonal on the symbol index j, where a bipolar estimator is given by 1− 2B ji, and its
reliability is denoted by ω ji. The reliability of the ith bipolar checksum of H is denoted by
ωi.

4.2 The Existing Majority-Logic Decoding Algorithms

4.2.1 Hard Decision Majority-Logic Decoding

Majority-logic decoding (OSMLGD) was first devised by Reed [133] to decode Reed-Muller
(RM) codes step by step, and was later extended by Massey in [113], by devising the thresh-
old decoding, namely the Hard-In Hard-Out (HIHO) and Soft-In Hard-Out (SIHO) threshold
majority-logic decoding algorithms. The simplest hard decision based Majority-logic de-
coder (OSMLGD) can be implemented with simple logic gates [133], and was proposed in
two variants, A and B, where respectively, either the error or the symbol value is estimated
via the orthogonal equations on each symbol. The OSMLGD algorithm was well explained
and investigated in [97].

Recently in [69], an iterative hard reliability-based majority-logic decoder (HRBI-MLGD)
has been proposed. Based on the same decoding rule used in OSMLGD, authors established
an initialization of the hard reliability R of the received sequence, with either −J or +J,

4.2. The Existing Majority-Logic Decoding Algorithms 97

provided that a received bit z j is more reliable if the value of R j is close to −J or J. Then the
reliability R is updated in each iteration by accumulating the extrinsic information provided
by the orthogonal parity-check equations.

4.2.2 Soft Decision Majority-Logic Decoding

The first soft reliability-based majority-logic decoder was introduced by Massey in [113]. He
proposed the APP threshold decoding scheme, which is essentially developed based on the
mathematical expression of the a posteriori probability (APP). In other part, the weighted one-
step majority-logic decoding algorithm (WOSMLGD) was introduced by Rudolph [142,143].
Independently, Kolesnik [83] presented the WOSMLGD algorithm, as a simplification of the
APP decoding rule of the threshold decoding [113], by weighting the orthogonal equations
in the decoding function. Independently in [163], The WOSMLGD algorithm was also pro-
posed with an analytical closed form of its bit error probability. The weighted OSMLGD
(WOSMLGD) is described in Algorithm 4.1.

Algorithm 4.1 WOSMLGD
Input: Received signal y
Output: Binary Decoded sequence z

1: for j = (0 : n−1) do
2: for i = (0 : J−1) do
3: Calculate σ ji
4: w ji = mint∈ω ji\{ j}{|yt |}
5: end for
6: E j = ∑

J−1
i=0 (2σ ji−1)w ji

7: Calculate the hard decision z j of E j
8: end for

Later, Lucas et al. [105] proposed an Iterative Decoding Algorithm (IDA) for decoding linear
block codes, and has shown that OSMLD codes can be decoded with the IDA giving better
performance than other families of linear codes. Their proposed algorithm uses a soft relia-
bility which is accumulated by iterations. The calculation of the soft reliability in the IDA is
derived, similarly to the APP threshold algorithm, from the development of the conditional
probability expression.

Let σ2 = N0
2 denotes the single-sided noise-power spectral density. Hagenauer et al. [56]

have interpreted the MAP probability as an extrinsic part, and an intrinsic part, namely:

ln
Pr(x j =+1)
Pr(x j =−1)

= LLR j = γch.y j +E j(C⊥) (4.1)

4.2. The Existing Majority-Logic Decoding Algorithms 98

where
γch =

2
σ2 (4.2)

and the probability Pr(x j =+1) is given by:

Pr(x j =+1) =
eLLR j

1+ eLLR j
(4.3)

By induction and using the identity tanh(x
2) =

(ex−1)
(ex+1) , the extrinsic information σ j for decod-

ing the jth symbol based on the the dual code takes the following form [56, 105]:

E j(C⊥) = ln

[
1+∑b∈C⊥∏

n
s=1,s 6= j tanh(γchys

2)bs

1−∑b∈C⊥∏
n
s=1,s 6= j tanh(γchys

2)bs

]
(4.4)

This extrinsic information is clearly optimal with respect to its sign. Here, all codewords of
the dual code are taken into account. By the use of a set of parity-check vectors H j orthogonal
on the coordinate j, (4.4) takes the form that was derived by Gallager [48] and Massey [113],
given by:

E j(M (j)) = ln

[
1+∑i∈M (j)∏s∈N (i) tanh(γchys

2)

1−∑b∈M (j)∏s∈N (i) tanh(γchys
2)

]
(4.5)

Using the following identity:

log
1+ x
1− x

= 2arctan(x) (4.6)

, the extrinsic information is simplified and takes the new form:

E j(M (j)) = 2arctan

(
∑

i∈M (j)
∏

s∈N (i)\{ j}
tanh(

γchys

2
)

)
(4.7)

which can be further simplified [56] to take the following final form:

σ j(H j) = ∑
i∈M (j)

∏
s∈N (i)\{ j}

tanh(
γchys

2
) (4.8)

At the initialization step of the IDA, the soft reliability vector R ∈ Rn is set to R(0)
j = γchy j

for all 0 ≤ j < n. Then at each iteration 0 ≤ q < Imax, the soft reliability is updated by
accumulating the extrinsic information E j calculated at each iteration as follows:

4.2. The Existing Majority-Logic Decoding Algorithms 99

1. For 0≤ j < n, compute the extrinsic information

E(q)
j = ∑

i∈M (j)
∏

s∈N (i)\{ j}
tanh(R(q)

s) (4.9)

2. For 0≤ j < n, update the vector of soft reliabilities

R(q+1)
j = R(q)

j +E(q)
j (4.10)

The Iterative Decoding Algorithm (IDA) is summarized in Algorithm 4.2.

Algorithm 4.2 IDA
Input: Received signal y, R(0) = y, Imax
Output: Binary Decoded sequence z(q)

- - - - - - - - - - - Initialization - - - - - - - - - - -
1: R(0)

j = y j for all 0≤ j < n
- - - - - - - - - - - Iterations - - - - - - - - - - -

2: for q = (0 : Imax) do
3: Calculate s, If (s = 0 or q = Imax), Stop decoding
4: for (j = 0 : n−1) do
5: E j = ∑i∈M (j)∏s∈N (i)\{ j} tanh(R(q)

s)

6: R(q+1)
j = R(q)

j +E j
7: end for
8: end for

An iterative threshold decoding algorithm (ITD) was proposed separately for decoding OSMLD
product codes in [10], and parallel concatenated OSMLD codes in [11], and later for decod-
ing simple OSMLD codes [88]. The ITD is based on a development of the log-likelihood
mathematical expression using the Bayes rule. For a transmission over an AWGN channel
using a BPSK modulation, the soft-output of the jth bit of the received signal y, for 0≤ j < n

is given by:

LLR j = ln
Pr(c j = 1/y)
Pr(c j = 0/y)

(4.11)

where LLR j is the Log-Likelihood Ratio of the symbol c j. Given an OSMLD code C with J

orthogonal parity-check equations, the expression (4.11) can be rewritten as follows:

LLR j ' ln
Pr(c j = 1/{Bi})
Pr(c j = 0/{Bi})

(4.12)

4.2. The Existing Majority-Logic Decoding Algorithms 100

where Bi denotes the ith orthogonal estimator on the jth bit, for i∈ [0, ...,J], and B0 is the hard
decision h j of y j. By using Bayes theorem, (4.12) takes the form:

LLR j ' ln
Pr({Bi}/c j = 1)×Pr(c j = 1)
Pr({Bi}/c j = 0)×Pr(c j = 0)

(4.13)

As the estimators are orthogonal on the jth bit, the individual probabilities are all independent,
and therefore (4.13) takes the following form:

LLR j '
J

∑
i=0

ln
Pr({Bi}/c j = 1)
Pr({Bi}/c j = 0)

+ ln
Pr(c j = 1)
Pr(c j = 0)

(4.14)

Equation (4.14) can be expanded as follows:

LLR j '

(
J

∑
i=1

ln
Pr({Bi}/c j = 1)
Pr({Bi}/c j = 0)

)
+

(
ln

Pr({B0}/c j = 1)
Pr({B0}/c j = 0)

)
+

(
ln

Pr(c j = 1)
Pr(c j = 0)

)
(4.15)

where the first term acts as an extrinsic information on the symbol c j, the second term is
related to the soft channel information and the third term is the a priori information.

Following [26], (4.15) can be written as follows:

LLR j '
J

∑
i=1

(1−2Bi)ωi +((1−2B0)ω0)+ ln
Pr(c j = 1)
Pr(c j = 0)

(4.16)

where
(1−2B0)ω0 =

4Es

N0
y j (4.17)

and the weighting coefficients ωi of each estimator is given by:

ωi = ln

[
1+∏

ni
s=1 tanh(Ls

2)

1−∏
ni
s=1 tanh(Ls

2)

]
(4.18)

where ni denotes the size of the ith orthogonal equation on c j, and s is the sth element of the
ith orthogonal equation and

Ls =
4Es

N0
.|ys| (4.19)

Thus, the soft output of the first iteration of the ITD algorithm is given by (4.16), which cor-
responds to a normalized version of the soft input, and an extrinsic information E j estimated
from the orthogonal equations on the symbol c j, in addition to an a priori information that
was omitted in the algorithm.

The Iterative Threshold Decoding (ITD) algorithm is described in details in Algorithm 4.3.

4.2. The Existing Majority-Logic Decoding Algorithms 101

Algorithm 4.3 ITD
Input: y, R(0) = 0, Imax, γ = 4Es/N0
Output: Binary Decoded sequence z(q)

- - - - - - - - - - - Initialization - - - - - - - - - - -
1: R(0)

j = 0 for all 0≤ j < n
- - - - - - - - - - - Iterations - - - - - - - - - - -

2: for q = (0 : Imax) do
3: y(q)j = y j +R(q)

j for all 0≤ j < n
4: for j = (0 : n−1) do
5: Calculate σ ji for all 0≤ i < J

6: w ji = ln(
1+∏t∈ω ji\{ j} tanh(γ

2 |y
(q)
j |)

1−∏t∈ω ji\{ j} tanh(γ

2 |y
(q)
j |)

) for all 0≤ i < J

7: Calculate (2B0−1)W0 = 4 Es
N0

y(q)j

8: E j = ∑
J−1
i=0 (2σ ji−1)w ji

9: Calculate z(q)j based on E j

10: Update R(q+1)
j = α(E j +(2B0−1)W0)

11: end for
12: end for

The soft reliability-based iterative majority-logic decoder (SRBI-MLGD) was also proposed
in [69] as a soft-reliability version of the HRBI-MLGD. The SRBI algorithm exploits the
soft information from the channel by using an uniform quantization function, which maps
each received real value to an interval of integers. Thus, the quantization helps to reduce
the computational complexity by keeping an integer-valued decoding reliability. The SRBI
decoder is described in Algorithm 4.4.

Later in [120], authors presented an improved version of the SRBI-MLGD algorithm, which
is the improved soft reliability-based majority-logic decoder (ISRBI-MLGD). In the ISRBI,
the computation of the extrinsic information which is used to update the reliability measures
of the orthogonal check-sums is improved, by weighting each orthogonal estimator. Also, a
modification to the update rule was also proposed, by introducing a scaling factor α . The
ISRBI-MLGD has shown to outperform the SRBI-MLGD with a slight increase in the com-
putational complexity. The ISRBI decoder is described in Algorithm 4.5.

More recently in [174], an iterative decoding scheme was proposed, named multi-threshold
decoding (MTD) algorithm, which use a difference register, and a soft-reliability related to
information and parity bits in order the estimate the error. The MTD was first proposed
for self-orthogonal convolutional codes [174], then improved later by the same authors in

4.2. The Existing Majority-Logic Decoding Algorithms 102

Algorithm 4.4 SRBI
Input: Received signal y, Imax, b and ∆

Output: Binary Decoded sequence z(q)

- - - - - - - - - - - Initialization - - - - - - - - - - -
1: Init Q(0)

j , and R(0)
j = Q(0)

j for all 0≤ j < n
- - - - - - - - - - - Iterations - - - - - - - - - - -

2: for q = (0 : Imax) do
3: Calculate s, If (s = 0 or q = Imax), Stop decoding
4: for j = (0 : n−1) do
5: Calculate σ ji for all 0≤ i < J
6: E j = ∑

J−1
i=0 (1−2σ ji)

7: R(q+1)
j = R(q)

j +E j
8: end for
9: end for

Algorithm 4.5 ISRBI
Input: Received signal y, Imax, α , b and ∆

Output: Binary Decoded sequence z(q)

- - - - - - - - - - - Initialization - - - - - - - - - - -
1: Init Q(0)

j , R(0)
j = Q(0)

j and w ji = mint∈ω ji\{ j}|R
(0)
t | for all 0≤ j < n

- - - - - - - - - - - Iterations - - - - - - - - - - -
2: for q = (0 : Imax) do
3: Calculate s, If (s = 0 or q = Imax), Stop decoding
4: for j = (0 : n−1) do
5: Calculate σ ji for all 0≤ i < J
6: E j = ∑

J−1
i=0 (1−2σ ji)ω ji

7: R(q+1)
j = R(q)

j +αE j
8: end for
9: end for

[173]. The MTD was recently proposed for self-orthogonal block codes for the use in optical
channels [207]. The MTD algorithm is described in Algorithm 4.6.

Recently in 2015, a proportional majority-logic decoding scheme was proposed [158]. Au-
thors introduced a proportionality factor for computing the quantized reliability of symbols
estimated from a proportion of the orthogonal equations.

Table 4.1 summarizes the overall decoding operations of the existing majority-logic decoding
algorithms.

4.2. The Existing Majority-Logic Decoding Algorithms 103

Algorithm 4.6 MTD
Input: Received signal y, Imax
Output: Binary Decoded sequence z(q)

- - - - - - - - - - - Initialization - - - - - - - - - - -
1: Init D j = 0 and w ji for all 0≤ j < n

- - - - - - - - - - - Iterations - - - - - - - - - - -
2: for q = (0 : Imax) do
3: Calculate s, If (s = 0 or q = Imax), Stop decoding
4: for j = (0 : n−1) do
5: Calculate σ ji for all 0≤ i < J
6: E j = ∑

J−1
i=0 (1−2σ ji)ω ji

7: R(q)
j = |y j|(1−2D j)+E j

8: if R(q)
j > 0 then

9: Flip z j and D j
10: end if
11: end for
12: end for

Table 4.1: Decoding operations comparison of the existing MLGD algorithms

Algorithm Initialization E j R(q)
j update

SRBI R(0)
j = q j E j = ∑

J−1
i=0 (1−2B ji) R(q+1)

j = R(q)
j +E j

ISRBI R(0)
j = q j E j = ∑

J−1
i=0 (1−2B ji)w ji R(q+1)

j = R(q)
j +αE j

MTD D j = 0 E j = ∑
J−1
i=0 (1−2A ji)w ji R(q+1)

j = E j + |y j|(1−2D j)

IDA R(0)
j = γchy j E j = ∑

J−1
i=0 ∏t∈H̄ ji\{ j} tanh(y(q)t) R(q+1)

j = R(q)
j +E j

ITD R(0)
j = 0 E j = ∑

J−1
i=0 (1−2B ji)w ji

R(q+1)
j = α(E j + γchy(q)j)

y(q)j = y(0)j +R(q)
j

4.2.3 Gradient-Descent based Decoding

4.2.3.1 The Gradient-Descent Optimization technique

The Gradient-Descent (GD) is well known as one of the simplest local optimization tech-
niques. GD is widely used to solve local non linear optimization problems, and recently has
seen a deep interest from industrial communities due to its use in the optimization of artificial
neural networks in various applications. The convergence of the GD depends essentially on
the initial solution of the problem, and on the nature of the problem itself. The GD has shown
to perform better for the optimization of convex objective functions.

4.2. The Existing Majority-Logic Decoding Algorithms 104

Suppose that we look for the optimum (minimum/maximum) of an objective function f (x)

with n variables x = (x0,x1, ...,xn−1). For the case of a maximization, the optimization prob-
lem is stated as follows:

max
x∈Rn

f (x) (4.20)

Given an initial solution x(0) = (x(0)0 ,x(0)1 , ...,x(0)n−1), the GD algorithm performs in each iter-
ation, an update of the solution following the direction given by the gradient vector already
calculated in the previous iteration, based on the following update rule:

x(q) = x(q−1)±α∇ f (x(q−1)) (4.21)

where q is an iteration index,α ∈ [0,1] is the descent step, and ∇ f (x) = (∂ f (x)
∂x0

, ∂ f (x)
∂x1

, ..., ∂ f (x)
∂xn−1

)

is the gradient vector of partial derivatives with respect to each variable x j for 0≤ j < n.

Figure 4.1: The Gradient-Descent Optimization Technique

4.2.3.2 Gradient-Descent Decoding

The first application of the GD in decoding error correcting codes was introduced by [105]
for decoding linear block codes. The authors proposed the IDA and have introduced an
interpretation of this algorithm as a gradient descent optimization. The extrinsic information
used in IDA has shown to coincide with the first partial derivative of the considered objective
function, excluding a term to be investigated. The objective function used for this purpose is

4.2. The Existing Majority-Logic Decoding Algorithms 105

the generalized syndrome weight, denoted by Wg(Sw), introduced in [105]. For each 0≤ i <

m, the weighted syndrome component Swi corresponding to the ith check-sum is defined by:

Swi(R) = ∏
s∈N (i)

tanh(Rs) (4.22)

and the generalized syndrome weight is given by the sum of all Swi’s, which takes the follow-
ing form:

Wg(Sw) = ∑
0≤i<m

Swi(R) = ∑
0≤i<m

(
∏

s∈N (i)
tanh(Rs)

)
(4.23)

The evolution of the generalized syndrome weight function with various error weights and
signal to noise ratio (SNR) values, for the Difference-Set (DS) code with parameters (n,k,dmin)=

(21,11,6) is illustrated in Figure 4.2.

0

1

10

2

8

G
e
n

e
ra

li
z
e
d

 S
y
n

d
ro

m
e
 W

e
ig

h
t

3

6

Error Weight

5

4

SNR (dB)

4

2

0 0

Figure 4.2: Evolution of the generalized syndrome weight with various error weights and
SNRs, for the DS code (n,k,dmin) = (21,11,6)

Note that the number of codewords of this code is 2k=11 = 2048. Thus for each distinct SNR
and error weight, the set of 2048 codewords is transmitted multiple times over an AWGN
channel, in order to guarantee that different configurations of errors has occurred, and Wg(Sw)

is calculated by averaging all the obtained values for each SNR value. It is shown in Figure

4.2. The Existing Majority-Logic Decoding Algorithms 106

4.2 that when the error weight is zero (transmission without errors), then Wg(Sw) takes a max-
imal value (yellow surface), especially in high SNR regions, and it decreases proportionally
when the error weight increases.

Independently in [94], the gradient-descent algorithm was proposed for solving the t-bounded

Coset Weights problem (t-CWP) for decoding linear codes. The authors have introduced two
different variants, supported by a gradient-like decoding function. Later, an algebraic in-
vestigation of these algorithms was proposed in [132], using the Grobner representation of
linear codes. After these works, a Gradient-Descent Bit Flipping (GDBF) algorithm with two
variants was proposed for decoding LDPC codes [184]. The authors proposed the use of an
inversion function based on the first-order Taylor development of an objective function de-
rived from the maximum likelihood (ML) argument, and penalized by the syndrome weight,
in contrast to [105] where the ML argument was not considered. Later, an improved version
of GDBF, namely the Noisy Gradient-Descent Bit-Flipping (NGDBF) was proposed in [159]
with its variants, where the authors introduced weighting coefficients in the objective func-
tion. Additionally, a noise perturbation was introduced in the inversion function, in order to
help the algorithm to escape from local optimums. The NGDBF and its variants has shown to
outperform other bit-flipping decoding algorithms in the literature. The initialization step of
the GDBF decoding algorithm includes setting x j = sgn(y j) for each 0≤ j < n, and is based
on the following objective function:

f (x) =
n−1

∑
j=0

x jy j +
m−1

∑
i=0

∏
s∈N (i)

xs (4.24)

where x ∈ {−1,1}n is the bipolar solution at the current iteration q.

The partial derivative of the objective function f (x) with respect to the variable x j is given
by:

∂

∂x j
f (x) = y j + ∑

i∈M (j)
∏

s∈N (i)\ j
xs (4.25)

Then for each symbol x j for 0≤ j < n, the flipping decision of the GDBF algorithm is based
on the sign of the following inversion function:

x j
∂

∂x j
f (x) = x jy j + ∑

i∈M (j)
∏

s∈N (i)
xs (4.26)

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 107

If x j
∂ f (x)
∂x j

< 0, then the phase of the symbol x j is flipped, providing that x j must follow the
same direction provided by the partial derivative of f (x) with respect to it. The same process
is repeated for all the symbols at each iteration, until reaching a solution, or achieving the
maximum number of allowed decoding iterations.

For the IDA [105], the considered objective function is the generalized syndrome weight
given in (4.23), and the decoding process is given in (4.9) and (4.10).

4.3 A New Gradient-Descent Majority-Logic Decoding
Algorithm

4.3.1 GD-MLGD

Inspired by the works launched in [105, 159, 184], we propose to devise a majority-logic de-
coder based on the gradient-descent optimization technique. We will show that the gradient-
descent is suitable for modeling and solving the decoding problem of OSMLD codes.

In contrast to the IDA, where only the generalized syndrome weight function was considered,
we propose the use of an objective function that includes the soft syndrome weight, which
is relatively simpler to calculate, in addition to a term related to the correlation between the
solution and the received signal. The proposed objective function is similar to that used
in the GDBF algorithm, excluding an over-scaling factor that we will introduce in order to
scale between the two terms, which is beneficial for improving performance, in addition
to an offset factor used to improve the accuracy of each orthogonal estimator, in order to
enhance the strategy used to calculate the extrinsic information. Also, similarly to the IDA,
and in contrast to the GDBF algorithm, the objective function is directly maximized using the
gradient-descent technique, allowing the soft reliability calculated using the first-order partial
derivatives to evolve and to be updated during each decoding iteration, until either achieving
convergence, or the maximum number of allowable decoding iterations.

It is known that decoding error correcting codes is an NP-Complete problem [12, 175]. The
optimal decoding rule is derived from the ML decoding. Let C̄ be the set of all bipolar
codewords of the code C . The standard ML decoding problem consists of finding the nearest
bipolar codeword xML ∈ C̄ from to received signal y:

xML = argx∈C̄ max(
n−1

∑
j=0

x jy j) (4.27)

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 108

The ML argument in (4.27) is a correlation between the solution and the received signal.
This function can be penalized by a term related to the syndrome weight. In [105], the
generalized syndrome weight defined in (4.23) was used as the objective function of the
decoding problem. We propose the use of the soft syndrome weight Wm(Sw(x)) as a penalty
term to be added to the ML argument, which we define as follows:

Wm(Sw) = ∑
0≤i<m

S̄i(x) = ∑
0≤i<m

ωi

(
∏

s∈N (i)
sgn(xs)

)
(4.28)

where S̄i(x) is the ith weighted bipolar syndrome component of the vector x, such that each
bipolar syndrome component is weighted by a term ωi, which represents the minimum mag-
nitude of the soft symbols that participate in the ith parity-check, which is given by:

ωi = max(min
s∈N (i)

{| xs |}−θ ,0) (4.29)

such that θ ∈ [0,1] is an offset parameter [73] that controls the minimum reliability ωi at
which the ith decision (vote) is canceled, and sgn(X) for X ∈ R is the sign operator defined
by:

sgn(X) =

1 if x≥ 0

−1 otherwise
(4.30)

Note that in (4.29), when mins∈N (i){| xs |} < θ , we obtain ωi = 0, which means that the
reliability of the ith orthogonal equation is zero, and does not contribute in the majority vote
process. This technique is useful because in some decoding cases, the reliability ωi is very
weak, however it can contributes to the emergence of erroneous decoding decisions.

The soft syndrome weight Wm(Sw(x)) is a decreasing function as the error weight increase.
Thus, the maximization of (4.28) leads to a solution for which the hard decision is a codeword
of C . If sgn(x̂) ∈ C̄ is a bipolar codeword, then ∏s∈N (i) sgn(x̂s) = 1 for all 0 ≤ i < m, and
the soft syndrome weight function takes the following value:

W (Sm(x̂)) =
m−1

∑
i=0

ωi (4.31)

Figure 4.3 represents the evolution of the soft syndrome weight function with the error weight
and the SNR, for a DS code C with parameters (n,k,dmin) = (21,11,6). It is shown that

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 109

when the error weight is zero, i.e. transmission without errors, then Wm(Sw) is maximal.
The function decreases when the SNR decreases, and when the error weight is higher. We
deduce that the function Wm(Sw) is suitable to add to the objective function as a penalty
term, for modeling the decoding problem. Note that the calculation of Wm(Sw) requires less
computational complexity than the generalized syndrome weight.

8
0

612

2

10

4

SNR (dB)

48

6

M
in

 S
y
n

d
ro

m
e
 W

e
ig

h
t

Error Weight

6

8

24

10

2
00

Figure 4.3: Evolution of the soft syndrome weight function Wm(Sw) with the error weight and
various SNRs for the DS code (n,k,dmin) = (21,11,6)

Intuitively, the decoding problem may be formulated by the maximization, with respect to
x ∈ Rn, of the objective function:

f (x) =C(x,y)+βWm(Sw(x)) (4.32)

where C(x,y) is the correlation of the solution x and the received signal y, and β is an over-
scaling parameter used to scale between the correlation C (x,y) and the soft syndrome weight
function Wm(Sw). The expression (4.32) takes the following form:

f (x) =
n−1

∑
j=0

sgn(x j)y j +β

m−1

∑
i=0

ωi ∏
s∈N (i)

sgn(xs) (4.33)

Note that the objective function given in (4.33) is monotone and derivable. Note also that
f (x) ∈ R.

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 110

The partial derivative of f (x) with respect to each variable x j is given by:

∂ f (x)
∂x j

= y j +β ∑
i∈M (j)

ω ji ∏
s∈N (i)\ j

sgn(xs) (4.34)

The first term of the partial derivative of the objective function f (x) is an intrinsic information
related to the channel, while the second term corresponds to the sum of the weighted bipolar
estimators that are orthogonal on the jth symbol.

By inspecting the expression 4.34, the bipolar syndrome components summation are weighted
by the coefficients ω ji ∈ R, related to the minimal magnitude of the symbols involved in the
ith row of H, excluding the jth symbol being decoded. The weighting coefficients ω ji acts
here as a reliability of the ith bipolar estimator on the jth symbol. For decoding a symbol x j,
given the offset factor θ , the weighting coefficients are determined by:

ω ji = max(min s∈N (i)\{ j}{| ys |}−θ ,0) (4.35)

Note that the expression of ω ji given in (4.35) corresponds to the partial derivative of ωi with
respect to x j. Indeed, it is known that ∀(a,b) ∈ R2, we have:

fmin(a,b) = min(a,b) =

a if a≤ b

b if a > b
(4.36)

The partial derivatives of the min(.) function with respect to its variables a and b are given
by:

δ fmin(a,b)
δa

=

1 if a < b

0 if a > b
(4.37)

and

δ fmin(a,b)
δb

=

0 if a < b

1 if a > b
(4.38)

Similarly, the partial derivatives of the max function are obtained in the same manner. Con-
sequently, the partial derivative of ωi with respect to the variable x j is given by:

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 111

δωi(x)
δx j

=
δ (max(mins∈N (i){| xs |}−θ ,0))

δx j

= max(min s∈N (i)\{ j}{| xs |}−θ ,0)

= ω ji

(4.39)

For sake of simplicity, we will consider that each ω ji term is a constant, which further sim-
plifies the expression of the first-order partial derivative as given in (4.34).

With the given formulation, finding the maximum of (4.33) requires to solve the uncon-
strained optimization problem stated in the next proposition.

Proposition 4.1. The decoding problem of OSMLD codes is equivalent to the following op-

timization problem:

Maximize f (x) =
n−1

∑
j=0

sgn(x j)y j +β

m−1

∑
i=0

ωi ∏
s∈N (i)

sgn(xs) (4.40)

Subject to x ∈ Rn

Proof. An optimal solution x̂, i.e. a solution that maximizes f (x) in Proposition 1 is a bipolar
codeword x̂ ∈ C̄ with all the bipolar parity-check sums satisfied. Thus, the objective function
value at x̂ takes the following form:

f (x̂) =
n−1

∑
j=0

x̂ jy j +β

m−1

∑
i=0

ωi (4.41)

The objective function f (x) is monotone and derivable. Its partial derivative with respect to
each variable x j is given by:

∂ f (x)
∂x j

= y j +β ∑
i∈M (j)

ω ji ∏
s∈N (i)\ j

sgn(xs) (4.42)

where the first term coincides with the intrinsic information of the jth symbol being decoded,
while the second term represents the sum of the weighted bipolar estimators orthogonal on
the jth symbol. Thus, this partial derivative can be considered as a soft reliability on the
jth symbol, and can be exploited in each iteration in order to correctly decode the received
sample y, by including it in the gradient-descent solution update.

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 112

The proposed gradient-descent decoding algorithm (GD-MLGD) performs in each iteration,
the calculation of the gradient of (4.40) in order to exploit it for the next iteration, where the
real solution y(q) at the qth iteration is updated to a new value, following the direction given
by the calculated gradient. As the updated solution y(q) is real-valued, we consider that the
binary estimated solution is the hard decision of y(q)j for all 0≤ j < n.

The GD-MLGD initialization step includes the initialization of the descent step parameter
α ∈ [0,1], the received vector at the first iteration y(0)j = γchy j where γch =

2
σ2 is the channel

reliability, and the reliability vector R ∈ Rn by a zero vector R(0)
j = 0 for each 0≤ j < n.

Let Imax be the maximum number of allowed decoding iterations, and let q be the iteration
index such that 0 ≤ q < Imax. At the beginning of each iteration q, the solution update is
performed following:

y(q) = y(q−1)+αR(q) (4.43)

The syndrome vector is then calculated based on the hard decision z(q) of y(q), and as a
stopping criteria, if S(z(q)) = 0 then we stop the decoding process and z(q) is returned as the
decoded word. Otherwise, for each variable y j, the soft reliability R(q+1)

j , which is the partial

derivative δ f (y(q))

δy(q)j

at the qth iteration is calculated based on (4.42), and is given by:

R(q+1)
j = y(0)j +β

(
∑

i∈M (j)
ω ji ∏

s∈N (i)\ j
sgn(y(q)s)

)
(4.44)

The GD-MLGD decoding procedure is summarized as follows:

1. Initialize the initial solution vector y(0)j = γch.y j and the gradient vector R(0)
j = 0 for all

0≤ j < n.

2. At each iteration q:

a) Update the solution y(q)j = y(q)+αR(q)
j for all 0≤ j < n.

b) Compute the hard decision z(q) of y(q).

c) Calculate the syndrome vector S(z(q)).

i. Check if the stopping criterion S(z(q) = 0) or q = Imax are satisfied.

ii. If a stopping criteria is satisfied, then output z(q) as a solution.

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 113

d) For each symbol index 0 ≤ j < n, compute the partial derivative R(q+1)
j using

(4.44).

The update rule given by (4.43), which gives the estimation on the solution y(q) at the qth

iteration, causes a degradation at the decoding process. This effect has a significant impact
providing slow convergence, in addition to a degradation in error rates. This is explained
by the consideration of the term y(q−1), corresponding to the solution update calculated in
the previous iteration. Considering the previous update causes the qth update value to be
significantly increased, and sometimes it can push the decoder to make an erroneous update
of some symbols. This remark can be simply deduced from the small value of the descent
step α required to achieve decoding convergence in this case. From (4.43), the update rule at
the iteration q > 1 can be rewritten as follows:

y(q) = αR(q)+
q−1

∑
i=0

y(i−1)+αR(i−1) (4.45)

The summation in (4.45) is accumulated at each iteration, providing an over-scaling between
the first and second term. At the first iteration q = 0, the reliability is a zero vector R(0) = 0.
Hence, the expression (4.45) takes the following form:

y(q) = y(0)+αR(q)+
q−1

∑
i=1

y(i−1)+αR(i−1) (4.46)

Henceforth, we propose to omit the summation term in (4.46) in order to reduce the over-
scaling effect between the two terms. Therefore, beginning from q = 0, the update rule at the
qth iteration can be replaced by:

y(q) = y(0)+αR(q) (4.47)

This modification leading to (4.47) provides a considerable improvement of the GD-MLGD
algorithm. As an alternative to the standard GD update rule, the updated value of y(q) consists
of jumping at each iteration from the initial solution y(0), towards the direction provided
by the gradientR(q) at the qth iteration, with respect to a fixed descent step value α . This
improvement results in less decoding iterations and lower error rates.

The proposed GD-MLGD algorithm is described in details in Algorithm 4.7.

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 114

Algorithm 4.7 GD-MLGD
Input: Received signal y(0) = y, Imax, α,β ,θ ,γch = 2/σ2

Output: z
1: Init R(0)

j = 0 for all 0≤ j < n
2: for q = (0 : Imax) do
3: y(q)j = γy(0)j +αR(q)

j for all 0≤ j < n
4: Calculate the hard decision z(q) of y(q)

5: Calculate S(z(q)), If (S(z(q)) = 0 or q = Imax), Stop decoding
6: for j = (0 : n−1) do
7: ω ji = max(mins∈N (i)\{ j}|y

(q)
s |−θ ,0)

8: R(q+1)
j = y(0)j +β ∑i∈M (j)ω ji ∏s∈N (i)\{ j} sgn(y(q)s)

9: end for
10: end for

4.3.2 GD-MLGD with Quantization (QGD-MLGD)

In order to further reduce the computational complexity, the Quantized Gradient-Descent
Majority-Logic Decoder (QGD-MLGD) is proposed here. The quantization function aims
to map each real symbol of the GD-MLGD algorithm into an integer, belonging to a certain
range. The main provided advantage is to restrict the decoding operations to only integer
operations, instead of operations on real valued symbols. As in [69, 120], we propose the
use of an uniform quantization function with b quantization levels (bits). The quantization
interval length is denoted by ∆, and is given, for the case of an uniform quantization, by:

∆ =
1

2b−1 (4.48)

The quantization function Q(x) : Rn −→ Zn is defined for each 0≤ j < n as follows:

Q(y j) =

−(2b−1), y j

∆
≤−(2b−1)[y j

∆

]
, |y j

∆
|< (2b−1)

+(2b−1), y j
∆
>+(2b−1)

(4.49)

where [.] denotes the rounding operator, which selects the nearest integer.

Each quantized symbol belongs to the interval Q(y j) ∈ [−(2b− 1),(2b− 1)]. The behavior
of the quantization function Q(x) is illustrated in Figure 4.4, for various quantization bits
b = 2,3, ...,5 and with x taking real values from the interval [−4,4] with a step equal to 0.1.

4.3. A New Gradient-Descent Majority-Logic Decoding Algorithm 115

Clearly, the accuracy of the quantization function increases with the quantization bits b, at
the cost of a slightly higher storage and computational complexity.

-4 -3 -2 -1 0 1 2 3 4

x

-40

-30

-20

-10

0

10

20

30

40

Q
(x

)
b = 2

b = 3

b = 4

b = 5

Figure 4.4: The uniform quantization function behavior with various quantization bits

In the QGD-MLGD algorithm, the initialization step consists of computing the quantized
received values y(0)j = Q(y(0)j) for every j ∈ [0,n−1]. Then at the beginning of each iteration,
the solution update at the qth iteration given in Algorithm 1, Line 3, can be written for every
j ∈ [0,n−1] as follows:

y(q)j = y(0)j +
[
αR(q)

j

]
(4.50)

As the descent step parameter α is real, the product αR(q)
j results in a real value. Thus, the

rounding operator [.] is used to convert the result to an integer. Note that the over-scaling
parameter β is omitted. Also, in contrast to GD-MLGD where the offset parameter θ is real,
here θ takes an integer value, as the updated solution is an integer. Note that the QGD-MLGD
algorithm does not need any knowledge on the channel reliability γch.

The QGD-MLGD algorithm is summarized in Algorithm 4.8.

4.4. Performance Analysis and Comparison with previous works 116

Algorithm 4.8 QGD-MLGD
Input: Received signal y, Imax, α ∈ R, θ ∈ N, b
Output: z

1: Init R(0)
j = 0 and y(0)j = Q(y j) for all 0≤ j < n

2: for q = (0 : Imax) do
3: y(q)j = y(0)j +[αR(q)

j] for all 0≤ j < n
4: Calculate the hard decision z(q) of y(q)

5: Calculate S(z(q)), If (S(z(q)) = 0 or q = Imax), Stop decoding
6: for j = (0 : n−1) do
7: ω ji = max(mins∈N (i)\{ j}|y

(q)
s |−θ ,0)

8: R(q+1)
j = y(0)j +∑i∈M (j)ω ji ∏s∈N (i)\{ j} sgn(y(q)s)

9: end for
10: end for

4.4 Performance Analysis and Comparison with previous
works

This section is dedicated to the complexity analysis as well as the performance evaluation
of the proposed decoding algorithms. For simulations, we consider cyclic OSMLD codes
derived from finite geometries, namely difference-set codes (DSC) derived from Projective
Geometries [145, 185], and OSMLD codes derived from Euclidean Geometries (EG). Table
4.2 presents the parameters of the selected OSMLD codes for performance evaluation. The
first column includes the code parameters, while the three columns that follows includes the
number of orthogonal parity-check equations, the code rate and the code sub-class, respec-
tively.

(n,k,dmin) J r = k
n Sub-Class

(255,175,17) 16 0.69 EG
(273,191,18) 17 0.70 DSC
(1023,781,33) 32 0.76 EG
(1057,813,34) 33 0.77 DSC

Table 4.2: A set of cyclic OSMLD codes derived from Euclidean and Projective Geometries

Note that the simulations of all the decoding algorithms were performed after a numerical
optimization of their associated input parameters.

4.4. Performance Analysis and Comparison with previous works 117

Simulation results were carried out by the Monte-Carlo method, using a BPSK modulation
and a transmission over an AWGN channel with zero mean and variance σ2. For the quan-
tized decoding algorithms, the number of quantized bits considered for simulations is b = 7
with 127 quantization intervals. The simulations were executed in C++, while prototyping
was carried out using the simulation platform MATLAB. Simulation parameters are displayed
in Table 4.3.

Parameter Value

Modulation BPSK
Channel AWGN

Number of quantization bits
7 bits

(for the quantized algorithms)
Minimum transmitted blocks 1000

Minimum residual errors 200

Table 4.3: Simulation parameters

4.4.1 Complexity Analysis

We evaluate the computational complexity provided by the proposed decoding schemes ((Q)GD-
MLGD). The idea of using the gradient-descent algorithm for decoding OSMLD codes is
mainly motivated by the simplicity of the GD technique. Let’s first consider the initializa-
tion step. The initialization of the vector R(0) of the soft-reliabilities included in Algorithm
4.7, line 1, requires simple affectations without additional operations. Let’s now analyze the
complexity per iteration required by the GD-MLGD algorithm.

Without loss of generality, we will conventionally denote row and column weights of the
parity-check equations respectively by ρ and γ , as mentioned in the preliminaries. Each it-
eration needs at the beginning n real additions to compute the updated solution y(q) at line 3
in Algorithm 4.7. The syndrome calculation of s(q) at line 5 requires n sign tests, which are
logical operations, and (ρ−1)m other binary operations. For the evaluation of the J orthogo-
nal equations for each symbol, the weighting coefficients ω ji needs a total of 3m(ρ−1) real
comparisons for the process of all the n symbols. For each orthogonal equation, the binary
estimator B ji requires ρ−2 binary operations, thus a total of (ρ−2)γn binary operations are
needed for all the estimators. (γ − 1)n real additions are needed for the calculation of the
extrinsic information vector E. Finally, the vector of soft-reliabilities R(q) is calculated by n

real additions and n real multiplications.

4.4. Performance Analysis and Comparison with previous works 118

Then, assuming that δ = ρm = γn, to carry out one iteration of the GD-MLGD algorithm, a
total of (ρ−1)δ +n−m logical operations, δ +n real additions and 3(δ −m) real compar-
isons are required.

The QGD-MLGD algorithm require less computational complexity than the GD-MLGD. The
real operations are simplified to integer operations, providing a faster decoding speed.

Table 4.4 presents and compares the computational complexities of the proposed algorithms
GD-MLGD and QGD-MLGD with the existing soft-reliability-based majority-logic decod-
ing algorithms reviewed in Section II. In Table 4.4, let BO, IA, RA, IC, RC and RM de-
note binary operations, integer additions, real additions, integer comparisons, real compar-
isons and real multiplications, respectively. We see that the GD-MLGD algorithm requires
a lower computational complexity compared to the IDA and ITD algorithms. Additionally,
it is shown that the QGD-MLGD algorithm provides an additional reduction of the required
complexity.

Decoding Computational cost per iteration

algorithm BO IA RA IC RC RM Log

SRBI 2δ +n−m δ

ISRBI 2δ +n−m (δ −1)n n
MTD δρ +n−m δ

IDA δ +n−m δ (ρ−2)δ
ITD (ρ−2)δ +n δ +n 3(δ −m) n n
GD (ρ−1)δ +n−m δ +n 3(δ −m) n

QGD (ρ−1)δ +n−m δ +n 3(δ −m) n
SPA 6δ n

Table 4.4: Computational complexity per iteration of various majority-logic decoding algo-
rithms

Besides the computational complexity, the (Q)GD-MLGD algorithms need the storage of the
gradient vector R(q) and the updated signal y(q). Thus, for the GD-MLGD algorithm, n real
numbers are needed to store both R(q) and y(q). Then a total storage of 2n real numbers are
required for the GD-MLGD algorithm. For the QGD-MLGD algorithm, the storage require-
ments depends on the number b of quantization bits. Thus, the gradient vector R(q), which
contains n real reliabilities, can be stored in bn bits, and similarly for the vector y(q). Thus
the QGD-MLGD algorithm requires a total storage cost of 2bn units (bits).

4.4. Performance Analysis and Comparison with previous works 119

Table 4.5 gives the memory requirements per iteration of the proposed algorithms (Q)GD-
MLGD, compared to previous works in the literature. Clearly, the GD-MLGD and QGD-
MLGD algorithms require a reasonable storage complexity compared to the other decoding
approaches.

Decoding Memory Requirement
Algorithm Units (bits) RN

MTD 2n
IDA n
SRBI m+bn
ISRBI m+bn n
ITD m n

GD-MLGD n
QGD-MLGD bn

BP δ

Table 4.5: Memory Requirements for Decoding a OSMLD Codes with various Decoding
Algorithms

4.4.2 Parameters Optimization

Our purpose here is to perform a numerical optimization of the parameters involved in the
GD-MLGD algorithm, in order to find the best set of parameters. The parameters of GD-
MLGD are the descent step α , the over-scaling factor β and the offset parameter θ . Thus, we
present below the results obtained by an exhaustive numerical optimization of a set of values
of α and β , then the best values are chosen for optimizing the offset parameter θ individually.

Figures 4.5 and 4.6 represent the obtained optimization results, for a set of values given in
the range α ∈{0.05,0.2,0.4,0.6,0.8,1} and β ∈{0.05,0.2,0.4,0.6,0.8,1} for various SNRs,
and for the cyclic OSMLD code with parameters (n,k,dmin) given by (255,175,17), for SNR
values of 3 dB and 3.25 dB, respectively.

Clearly, the optimal values of α and β are weakly dependent on the SNR, and strongly de-
pends on the considered code itself. It is shown from Figures 4.5 and 4.6 that the optimal
values for the code (255,175,17) are given by (α,β) = (0.2,1.0). Similarly, we have per-
formed the same optimization for all the OSMLD codes displayed in Table 4.2.

4.4. Performance Analysis and Comparison with previous works 120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-3

10
-2

10
-1

B
E

R

Evolution of the BER with and

for the code C(255,175,17) and SNR = 3dB

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

Figure 4.5: Optimization of the descent step α and the over-scaling factor β for the code
(255,175,17) in SNR = 3 dB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-4

10
-3

10
-2

10
-1

B
E

R

Evolution of the BER with and

for the code C(255,175,17) and SNR = 3.25dB

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

Figure 4.6: Optimization of the descent step α and the over-scaling factor β for the code
(255,175,17) in SNR = 3.25 dB

4.4. Performance Analysis and Comparison with previous works 121

Given the optimal values of α and β , the optimization of the offset parameter is performed
individually and is represented in Figures 4.7, 4.8 and 4.9, for a set of OSMLD codes with
parameters (255,175,17), (273,191,18), and (1057,813,34), respectively. A set of values
in the range [0,1] are assigned to θ with a step equal to 0.2, and the BER is determined for
each value over various SNR values. For each code, the optimal value of the offset parameter
is obtained based on the BER performance.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

SNR (dB)

10
-5

10
-4

10
-3

10
-2

B
E

R

Code (255,175,17) with = 0.2 and = 1

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

Figure 4.7: Optimization of the offset factor θ over various SNRs for the OSMLD code
(255,175,17)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

B
E

R

Code (273,191,18) with = 0.4 and = 0.8

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

Figure 4.8: Optimization of the offset factor θ over various SNRs for the OSMLD code
(273,191,18)

4.4. Performance Analysis and Comparison with previous works 122

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5

SNR (dB)

10
-5

10
-4

10
-3

10
-2

B
E

R

Code (1057,813,34) with = 0.2 and = 1

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

Figure 4.9: Optimization of the offset factor θ over various SNRs for the OSMLD code
(1057,813,34)

(n,k,dmin)
GD-MLGD QGD-MLGD

Family
(α,β ,θ) (α,θ)

(255,175,17) (0.2,1.0,0.6) (0.2,4) Cyclic EG
(273,191,18) (0.4,0.8,0.4) (0.2,4) Cyclic DSC
(1023,781,33) (0.6,0.4,0.6) (0.2,4) Cyclic EG
(1057,813,34) (0.2,1.0,0.6) (0.3,0) Cyclic DSC

Table 4.6: Optimal values of α , β and θ for a set of cyclic OSMLD codes

Based on this optimization, Tables 4.6 displays the optimal values of the descent step α , the
over-scaling β and the offset θ , for the set of OSMLD codes displayed in Table 4.2, and for
the algorithms GD-MLGD and QGD-MLGD. Note that the obtained values are suitable for
the case of a transmission over an AWGN channel with a BPSK modulation, and may be
different for other transmission channels and modulation schemes.

4.4.3 Average Number of Iterations

In order to perform a numerical convergence analysis of the proposed decoding scheme, we
propose to analyze the average number of iterations with respect to the SNR. If the number
of simulated transmitted blocks is N, then the average iterations number Iavg is obtained by
the ratio Iavg = T/N, where T is the total number of iterations used for decoding all the N

4.4. Performance Analysis and Comparison with previous works 123

blocks, and N is chosen such that at least 200 erroneous decoded words are observed for each
SNR.

The curves corresponding to the average number of iterations for the codes displayed in Table
4.2 with respect to different SNRs are illustrated in Figures 4.10-4.13, respectively.

2 2.5 3 3.5 4 4.5 5 5.5 6

SNR (dB)

0

5

10

15

20

25

30

35

40
A

v
e

ra
g

e
 i

te
ra

ti
o

n
s

SRBI

ISRBI

MTD

GDBF

NGDBF

AT-NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

Figure 4.10: Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (255,175,17)

2 2.5 3 3.5 4 4.5 5

SNR (dB)

0

5

10

15

20

25

30

35

40

45

A
v

e
ra

g
e

 i
te

ra
ti

o
n

s

SRBI

ISRBI

MTD

GDBF

NGDBF

AT-NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

Figure 4.11: Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (273,191,18)

For the moderate length OSMLD codes presented in Figures 4.10 and 4.11 corresponding to
the OSMLD codes (255,175,17) and (273,191,18), we see that in the entire range of SNRs,

4.4. Performance Analysis and Comparison with previous works 124

the GD-MLGD needs less iterations to achieve convergence, followed by the QGD-MLGD
(Figure 4.10), the IDA, then the ITD, which in turns outperforms the MTD, ISRBI, and the
SRBI. Bit-Flipping algorithms always require more iterations to achieve convergence. In
moderate SNRs, the GD-MLGD requires approximately 50% fewer iterations than the IDA
and ITD. From Figure 4.11, it is shown that the proposed algorithms GD-MLGD and QGD-
MLGD requires the same number of decoding iterations, which shows the advantage of the
proposed quantized algorithm QGD-MLGD.

The average number of decoding iterations of long OSMLD codes is represented in Figures
4.12 and 4.13 corresponding to the codes (1023,781,33) and (1057,813,34), respectively.

2 2.5 3 3.5 4 4.5 5

SNR (dB)

0

10

20

30

40

50

A
v

e
ra

g
e

 i
te

ra
ti

o
n

s

SRBI

ISRBI

MTD

GDBF

NGDBF

AT-NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

Figure 4.12: Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (1023,781,33)

Clearly, the proposed decoding algorithms require a lower number of decoding iterations
compared to the other schemes, where it requires about 50% fewer iterations than the ITD
and IDA. The ISRBI requires slightly fewer iterations than the IDA and ITD, followed by the
MTD, then the SRBI. The GD-MLGD and its quantized version QGD-MLGD requires the
same number of decoding iterations.

Decoding latency can be analyzed using the required number of decoding iterations for
achieving a given BER value, as well as the SNR value at which this BER value can be
achieved. Tables 4.7 and 4.8 depict the SNR and the average decoding iterations required for
achieving a BER of 10−5, for the cyclic OSMLD codes (255,175,17) and (1057,813,34)
respectively. It is shown that the proposed decoding algorithms achieve a BER of 10−5 at

4.4. Performance Analysis and Comparison with previous works 125

2 2.5 3 3.5 4 4.5 5

SNR (dB)

0

10

20

30

40

50

A
v

e
ra

g
e

 i
te

ra
ti

o
n

s

SRBI

ISRBI

MTD

GDBF

NGDBF

AT-NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

Figure 4.13: Comparison of the average iterations number of various MLGD algorithms for
the cyclic OSMLD code (1057,813,34)

lower SNR values, compared to the other decoding algorithms. Also, with the obtained
SNR values, a reasonable average number of decoding iterations is required, relatively lower
than the other decoding techniques. Note that in the case where an algorithm requires lower
decoding iterations corresponds to a higher SNR value than that required by the proposed
(Q)GD-MLGD algorithms. This established analysis emphasizes the fact that the proposed
algorithms provide lower decoding latency compared to the state of art.

Decoding algorithm SNR (dB) Average decoding iterations

GDBF 5.3 4
MTD 4.5 1.03
SRBI 4.75 1.86
ISRBI 4.15 2.96
IDA 3.85 1.44
ITD 3.83 6.12

GD-MLGD 3.65 1.5
QGD-MLGD 3.69 2.2

Table 4.7: Comparison of the SNR and the average decoding iterations required to achieve a
BER of 10−5 for the cyclic OSMLD code (255,175,17)

Generally, it is observed that the proposed algorithms achieve a fast convergence, and provide
lower latency compared to previous MLGD techniques. It is also shown that the bit-flipping

4.4. Performance Analysis and Comparison with previous works 126

Decoding algorithm SNR (dB) Average decoding iterations

GDBF 4.73 16.8
MTD 4.2 1.32
SRBI 4.3 2.15
ISRBI 4 2.7
IDA 3.86 2.15
ITD 3.7 7.82

GD-MLGD 3.51 3.08
QGD-MLGD 3.51 2.68

Table 4.8: Comparison of the SNR and the average decoding iterations required to achieve a
BER of 10−5 for the cyclic OSMLD code (1057,813,34)

algorithms requires more decoding iterations for achieving convergence.

An overall comparison shows that the QGD-MLGD algorithm is more suitable for applica-
tions requiring high-speed decoding and low latency. For instance, the QGD-MLGD algo-
rithm is suitable for the use in Ultra-Reliable Low-Latency (URLLC) and massive Machine-
Type Communications (mMTC) use cases in the 5G NR mobile networks.

4.4.4 Error rates

The Block Error Rate (BLER) simulation results of the proposed algorithms GD-MLGD and
QGD-MLGD, compared with the ITD, IDA, MTD, ISRBI, SRBI, and WOSMLGD algo-
rithms for the cyclic OSMLD codes displayed in Table 4.2, are shown in Figures 4.14-4.17,
respectively for each code. Note that these figures include additionally the performance of
the GDBF and NGDBF decoding algorithms.

Figures 4.14 and 4.15 represents the BLER performance corresponding to the cyclic OSMLD
codes (255,175,17) and (273,191,18), respectively. The ITD and IDA algorithms provide
approximately the same performance. The benefits of the quantization function is clearly
illustrated, especially for the low and moderate SNR values, where the QGD-MLGD outper-
forms slightly the GD-MLGD, and in the remaining SNR regions the two algorithms provide
approximately the same BLER performances. The GD-MLGD algorithm achieves a coding
gain of about 0.2 dB versus the ITD and IDA algorithms. A significant improvement com-
pared to ISRBI, MTD, SRBI and WOSMLGD algorithms is shown, given by a coding gain
of about 0.45 dB, 0.75 dB, 1.1 dB and 1.75 dB, respectively. Clearly the proposed algorithm

4.4. Performance Analysis and Comparison with previous works 127

outperforms all the existing algorithms, at the cost of a low computational complexity and
decoding latency.

The BLER performance of the cyclic OSMLD codes (1023,781,33) and (1057,813,34) are
displayed in Figures 4.16 and 4.17, respectively. We see that the proposed algorithms outper-
form all the existing MLGD algorithms. The coding gain is further improved for the case of
long OSMLD codes compared to moderate code lengths depicted in Figures 4.14 and 4.15.
In figure 4.16, the OSMLD code (1023,781,33) achieves a coding gain of 0.25 dB at a BER
of 10−5 compared to the ITD algorithm. The IDA has a performance loss of about 0.25 dB
versus the ITD. A general comparison shows that the GD-MLGD algorithm achieve a coding
gain of 0.5 dB versus the the IDA and ISRBI, which has similar performances in this case.
GD-MLGD outperforms the MTD, SRBI and WOSMLGD by a coding gain of 0.75 dB, 0.85
dB and 1.7 dB, respectively. In general, we see that the GD-MLGD algorithm represents
the best BLER performances compared to the existing MLGD algorithms. Note also that
GD-MLGD achieves performances that are nearly comparable with the performances of the
BP-SP decoding algorithm for LDPC codes, given in [86], such that a lower computational
complexity is required.

0 1 2 3 4 5 6

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R WOSMLGD

SRBI

ISRBI

MTD

GDBF

NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

Figure 4.14: BLER performance of various MLGD algorithms for decoding the cyclic
OSMLD code (255,175,17)

An overall comparison of the BLER performances of the existing MLGD algorithms shows
that in the general case, the proposed decoding algorithm outperforms all the existing algo-
rithms, especially for long codes. GD-MLGD outperforms ITD, followed by the IDA. The

4.4. Performance Analysis and Comparison with previous works 128

0 1 2 3 4 5 6

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R WOSMLGD

SRBI

ISRBI

MTD

GDBF

NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

Figure 4.15: BLER performance of various MLGD algorithms for decoding the cyclic
OSMLD code (273,191,18)

2 2.5 3 3.5 4 4.5 5 5.5 6

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R WOSMLGD

SRBI

ISRBI

MTD

GDBF

NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

BP-SPA

Figure 4.16: BLER performance of various MLGD algorithms for decoding the cyclic
OSMLD code (1023,781,33)

ISRBI provides better performance than the MTD, which in turns outperforms the SRBI and
the WOSMLGD algorithms.

It is also shown that the QGD-MLGD algorithm provides robust performances compared
to the expected performances given its computational complexity. Consequently, simulation
results shows that the proposed approach results in an efficient trade-off between performance
and complexity, where the obtained performances has shown that the QGD-MLGD algorithm

4.5. Analysis of the False Decoding Decisions 129

2 2.5 3 3.5 4 4.5 5 5.5 6

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R

WOSMLGD

SRBI

ISRBI

MTD

GDBF

NGDBF

IDA

ITD

GD-MLGD

QGD-MLGD

BP-SPA

Figure 4.17: BLER performance of various MLGD algorithms for decoding the cyclic
OSMLD code (1057,813,34)

represents the most suitable decoding scheme for applications that require low-complexity
and latency in addition to robust performance.

4.5 Analysis of the False Decoding Decisions

The study and analysis of the erroneous decisions of the decoder is primordial in order to
understand the behavior of the decoder, and eventually improve its performance. In the most
cases, the decoding decision is successful, however, wrong decisions provide a major impact
on the decoding error rates.

[107] claimed that a typical error correcting code, when decoded using a message-passing
algorithm, can result in two types of errors:

1. Undetected errors: When the decoder converges to a wrong codeword, which is not
the transmitted codeword, we say that the error configuration is undetected. We can
also refer to these types of errors as false converged codewords. Typically, these errors
imply the existence of low-weight codewords. Some codes (for example long codes,
and Gallager regular codes) do not contain low-weight codewords. However, for many
families of codes and decoding algorithms, these errors occur frequently, which indi-
cates that they should not be considered as other errors.

4.5. Analysis of the False Decoding Decisions 130

2. Detected errors: When the decoder fails to converge to a codeword. Typically, the
decoder reaches the maximum number of iterations, and outputs an erroneous vector
which is not a codeword. Generally these error configurations are associated to a large
number of errors.

Given the stopping criteria of the GD-MLGD algorithm, it is easy to distinguish a detected
error, as the decoder reaches the last iteration and the syndrome weight is not zero. However,
the errors of type 1 are undetected and cannot be distinguished from a successful decoding
decision. A partial solution to detect these errors consists of the use of a cyclic redundancy
check (CRC) as in [124, 200], at the cost of a reduced coding rate. However, the use of a
CRC does not always guarantees that the error is detectable, especially if the redundancy
associated to the CRC is erroneous.

Many papers have addressed the problem of detected errors of LDPC codes in the litera-
ture [5, 31, 81, 89, 126, 135, 178]. Typically, these errors are associated to some special com-
binatorial error patterns that exist and are related to the graph structure of the codes. These
special configurations are called Trapping Sets [135].

It has been shown that the degree of influence of the trapping sets is only of importance in
the case of diverged decoding decisions (detected error). As will be shown in the following,
most of the erroneous decisions of the GD-MLGD algorithm are due to the false converged
codewords phenomenon. Therefore, we will henceforth not focus our attention on trapping
sets, despite their influence on the error-floor region. Thus, error floors are not investigated
in this analysis and can be considered as a perspective of this work.

Table 4.9 illustrates the obtained results from a statistic on decoding the DS code with param-
eters (n,k,dmin) = (73,45,10) with the GD-MLGD algorithm. The first and second columns
represent the SNR value and the success rate, respectively. The percentage of undetected er-
rors and uncorrected errors are also represented in the third and fourth columns, respectively.
Note that these results were obtained by simulations, where for each SNR value, a set of
10000 randomly generated codewords had been transmitted.

We see that the undetected errors corresponding to false converged codewords are dominant,
compared to the uncorrected errors. These errors are responsible for all the decoding failures
in the moderate and high SNR regions. As displayed in Table 4.9, the percentage of the
number of uncorrected errors is negligible as these errors generally occur when the number
of errors in the received signal is significantly greater than the correction capacity of the code,
and the decoder fails to find any close codeword to the received sequence. This statement is

4.5. Analysis of the False Decoding Decisions 131

SNR (dB)
Success % of undetected % of uncorrected

rate errors errors

2.5 0.959 98.78% 1.22%
2.75 0.976 98% 2%

3 0.983 97.96% 2.04%
3.25 0.990 95% 5%
3.5 0.994 97.87% 2.12%

3.75 0.998 100% 0%
4 0.998 100% 0%

4.25 0.999 100% 0%
4.5 0.999 100% 0%

Table 4.9: Statistics on error types in GD-MLGD using the DS code with parameters
(n,k,dmin) = (73,45,10)

straightforward as a large number of errors is contained in the symbols participating in the
parity-check equations, thus many of these check-sums are not satisfied even after that the
maximum number of allowed decoding iterations is achieved. A check-sum is satisfied if
there is an even number of errors, therefore, when the number of errors is large, many check-
sums will contain an odd number of errors, which causes the decoder to fail in finding a valid
codeword that has a zero syndrome vector.

Our current investigations and perspectives of this work aim to establish an analysis of the
behavior and dynamic of the GD-MLGD algorithm, where the variations of the syndrome
weight and the error weight during decoding iterations are of interest. By denoting the se-
quence of the syndrome weight and the error weight during iterations respectively by WS(q)

and We(q), where q is the iteration index, current investigations consist of the analysis of the
correlation between these two distributions, considered as stochastic processes.

Moreover, a regression analysis of these processes is also established, but not presented in
this report. The expectations of this analysis includes the detection of the iterations at which
the correlation between WS(t) and We(t) is inversely proportional. At these particular points,
the decoder begins to minimize the syndrome weight towards an erroneous decision, and the
weight of the error is systematically increased. These errors are said to be punctual, and
they represent the most interesting case of local maximums for the GD-MLGD algorithm.
Other types of observed errors are those where the decoder oscillates during iterations around
an erroneous decision. These errors are said to be periodic. The last type of errors is the

4.6. Conclusion 132

aperiodic errors, where the oscillation of the error weight takes an aperiodic form.

This study has currently shown that the false converged codewords are especially caused by
the punctual errors, which are the most dominant error types in GD-MLGD decoding, and
occur in most cases where the GD-MLGD algorithm converges to a local maximum. An
open challenge consists of devising a suitable strategy for detecting these local maximums,
based on the analysis briefly explained above. The accurate detection of false converged
codewords in the GD-MLGD algorithm will open some attractive research directions for
devising different strategies for escaping from these local maximums, and therefore decoding
performances can be drastically improved.

For this purpose, based on our current investigations, we have found that for the case of
punctual errors, the decision of the decoder begins to diverge directly after the occurrence of
periodic points in the syndrome weight distribution. These periodic points are those iterations
at which the syndrome weight has the same value, and generally, based on our observations,
these iterations are consecutive. Before these periodic points, the error and syndrome weights
are correlated, and in the iterations that follow, the correlation is inversely proportional, which
means that the error weight increases, while the syndrome weight has a decreasing behav-
ior. In fact, at these particular points, the decoder begins to diverge towards an erroneous
codeword, other than that being transmitted.

As a consequence, we are currently investigating a solution for classifying these periodic
points. Based on this classification, a potential solution consists of storing the symbol in-
dexes that have a phase been flipped during the iterations that follow the periodic point being
detected. After storing these indexes, the phase inversion of these symbols is canceled, and
the magnitude of these symbols can be increased by multiplying there values by a corre-
sponding factor that needs to be optimized. Using this strategy, the decoder can be forced
to retry the decoding process based on the modified reliabilities retained at the iteration in
which the periodic point occurs. Thus, the decoder will try to converge to another codeword,
by correcting other symbols until the correct codeword is achieved. This analysis will be
published soon in as a journal paper.

4.6 Conclusion

In this chapter, a new gradient-descent based majority-logic decoding algorithm with low-
complexity has been proposed for decoding OSMLD codes. The quantized version of the

4.6. Conclusion 133

proposed algorithm has surprisingly shown to provide robust performances and fast conver-
gence. The proposed algorithm achieves lower error rates and faster decoding speed com-
pared to the existing MLGD algorithms in the literature, and can be easily scalable for the
use in various communication channels and higher order modulation schemes, by suitably
optimizing its parameters. Simulation results showed that (Q)GD-MLGD outperforms the
previous algorithms, especially for long codes, proving that the proposed decoding scheme
is suitable for decoding moderate and long OSMLD codes in high speed wireless commu-
nication systems requiring ultra-high reliability and low latency, while providing an efficient
trade-off between performance and complexity. The obtained results emphasize the benefit
of the use of the proposed decoding algorithms in the 5G NR URLLC and mMTC use cases
as well as in other wireless communication systems, where both performance and complexity
are required. Additionally, we have presented an analysis on the erroneous decisions of the
GD-MLGD algorithm, where we have studied the impact of the syndrome weight distribution
along decoding iterations on the emergence of false converged codewords, this study was not
completely presented in this chapter and will be published soon.

Chapter 5

Unified Models for Majority-Logic
Decoding Algorithms using Local
Optimization Techniques and a New
Constrained Optimization based
Decoding Algorithm for Linear Block
Codes

5.1 Introduction

Nowadays, with the emergence of many use cases of modern wireless communication sys-
tems, a significant challenge in coding theory is to find good error correcting codes as can-
didates that meet the technical requirements of these systems, as well as adequate decoding
algorithms capable of providing high reliability, low latency and simple hardware implemen-
tations. An important class of codes capable of facing these challenges are Low-Density
Parity-Check (LDPC) codes, initially introduced by Gallager in [48], and later rediscovered
in [86,109]. LDPC codes have demonstrated their ability to approach the fundamental limits
promised by Shannon in his seminal work [153]. The most powerful algorithm suitable for
decoding these codes is the Belief Propagation (BP) algorithm. It was shown in many papers
in the literature that the most efficient LDPC codes are those whose Tanner graph does not
contain short cycles of length 4. Equivalently, the parity-check matrices of LDPC codes must

134

5.1. Introduction 135

satisfy the row-column (RC) constraint, and in this case, they can be simply decoded using
majority- logic.

Majority-Logic Decoding (MLGD) is known to be the simplest approach for decoding LDPC
codes, and is very suitable for energy-constrained and real-time wireless communication sys-
tems, due to the low-complexity and low-cost hardware implementation involved in this de-
coding approach. LDPC codes that satisfy the RC constraint are so-called One-Step Majority-
Logic Decodable (OSMLD) codes. One-Step Majority-Logic Decodable codes [49, 78, 145,
185] represent an interesting class of codes, due to their structured combinatorial and geomet-
rical properties, including the orthogonality on each digit in their dual structure, which allows
the design of low-complexity MLGD algorithms. This feature is very beneficial in achieving
efficient implementations for real-time and low-complexity wireless communications. The
most known OSMLD codes are those derived from finite geometries, such as Difference-Set
code [185], and Euclidean Geometry (EG) codes [49, 78, 145].

As mentioned in previous chapters, the principle of majority-logic decoding was first intro-
duced by Reed [133] for decoding Reed-Muller codes. Majority-logic decoding and threshold
decoding were extensively studied by Massey [113] who proposed the first unified formula-
tion of majority-logic decoding, as well as in [84]. The weighted one-step majority-logic
decoding was introduced by Rudolph in [142, 143]. It was shown by Lucas et al. [106] that
OSMLD codes derived from finite geometries outperform their equivalent randomly gen-
erated LDPC codes counterparts, when decoded with the BP algorithm. Several iterative
majority-logic decoding algorithms have been proposed in the literature [10, 11, 69, 88, 105,
120,158,173,174,207]. One distinctive feature of these iterative decoding algorithms, is that
they follow the same logic and rule, and differ only in the initialization of the soft-input in-
formation, the calculation of the extrinsic information and the update of the soft reliabilities.

In this chapter, we propose a unified view of majority-logic decoding algorithms as an un-
constrained minimization/maximization of a derivable objective function. We show that for
each MLGD algorithm, it is possible to associate a suitable objective function representing
the decoding problem. Our study reveals that each derived objective function can be maxi-
mized using the Gradient-Descent (GD) optimization technique. The calculations of the cor-
responding first-order partial derivatives of these functions are investigated, and have shown
to coincide with their corresponding soft-reliabilities. Moreover, we propose enhanced ver-
sions of these algorithms based on introducing new update rules derived from other variants
of the Gradient-Descent. In addition, we extend our mathematical formulation to constrained
optimization models, where we propose a new decoding algorithm, so-called the Augmented

5.2. Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent
Optimization 136

Lagrangian Multiplier Method Decoder (ALMM-D), derived from the ALMM constrained
optimization technique. Our contribution aims to establish a solid mathematical foundation
of the decoding problem, and to facilitate the task of devising a decoding algorithm suit-
able for decoding LDPC codes, especially those with no short cycles (considered as OSMLD
codes) as well as other linear block codes, by adequately choosing an appropriate mathemati-
cal model, in which the involved complexity only depends on the arithmetical calculations of
the first-order partial derivatives of the incorporated objective function which represents the
decoding problem. Furthermore, the extension of these models as well as the employed opti-
mization techniques for solving it depend on the use case, where many compromises between
performance, complexity and latency can be mathematically jointly optimized.

The rest of this chapter is organized as follows. In Section 2, basic preliminaries are given
and a brief review on the existing majority-logic decoders is presented. Section 3 presents a
new interpretation of the MLGD algorithms as a gradient-descent optimization, as well as a
short discussion on the computational complexity of these algorithms. Section 4 introduces
improved variants of the GD as well as a background on the ALMM constrained optimization
technique. Section 5 includes improved versions of the considered MLGD algorithms based
on new update rules derived from some variants of the GD, in addition to an extension to a
new simplified constrained optimization model for devising the ALMM-D algorithm. Finally,
Section 6 concludes this chapter.

5.2 Interpretation of Majority-Logic Decoding Algorithms
as a Gradient-Descent Optimization

In this section, we propose an unified view of majority-logic decoding algorithms as an un-
constrained minimization/maximization of a derivable objective function. We show that for
each MLGD algorithm, it is possible to correspond a suitable objective function representing
the decoding problem. Based on the established literature review, our study reveals that each
derived objective function can be maximized using the Gradient- Descent (GD) optimization
technique. The calculations of the corresponding first-order derivatives of these functions are
investigated, and has shown to coincide with their corresponding soft-reliabilities.

As shown in Table 4.1, the main steps involved in all the existing MLGD algorithms in the
literature are identical. These steps are as follows:

1. Initialization of the soft-reliability vector R(0) at the iteration q = 0.

5.2. Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent
Optimization 137

2. Calculation of the extrinsic information E(q)
j for all 0≤ j < n.

3. Update of the soft-reliability values R(q)
j for all 0≤ j < n.

4. Update of the solution.

Intuitively, we figured out that each MLGD algorithm coincide with a gradient-descent max-
imization of a particular first-order derivable objective function. The reason behind this find-
ing is that the GD optimization technique also includes an initialization of the solution, which
is considered as an initial solution of the problem, then in each iteration, the GD computes
the vector of partial derivatives with respect to each variable of the problem, then finally up-
date the solution by following the direction provided by the gradient. For decoding OSMLD
codes, each codeword symbol is a variable of the problem, thus there are n variables denoted
as x = (x0,x1, ...,xn−1), and the objective function f (x) of each MLGD algorithm either in-
cludes only a term related to the syndrome weight, which can take different forms, or includes
the later in addition to a term related to the correlation between the solution and the received
signal y. Also, after devising each objective function, we have shown that each soft-reliability
term R j coincides with the partial derivative of the objective function f (x) with respect to
each variable x j. We also investigated the value of the descent step that corresponds to each
decoding algorithm. These results are consolidated in the following propositions below.

The IDA can be considered as an application of the gradient-descent algorithm to maximize
the function Wg(Sw). The optimization aims to find a real vector R ∈ Rn of soft-reliability
that maximize Wg(Sw(R)). The problem can be stated as follows:

Proposition 5.1. The Iterative decoding algorithm (IDA) is equivalent to the following gradient-

descent optimization problem:

Maximize f (x) = ∑
0≤i<m

(
∏

s∈N (i)
tanh(xs)

)
(5.1)

subject to x ∈ Rn

Proof. The partial derivative of f (x) with respect to each variable x j is given by:

R j =
∂ f (x)
∂x j

= (1− tanh2(x j)) ∑
i∈M (j)

(
∏

s∈N (i)\{ j}
tanh(xs)

)
(5.2)

5.2. Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent
Optimization 138

Note that the partial derivative in (5.2) coincides with the extrinsic information E j used in the
IDA, except the first term (1− tanh2(x j)) that was not considered. Given the initial solution
x(0)j = γchy j, where γch = 2

σ2 is the channel reliability, then the solution update at the qth

decoding iteration is given by:
x(q+1)

j = x(q)j +α jR j (5.3)

which coincides perfectly with the update of the IDA, with the assumption that the descent
step parameter α = (α0, ...,αn−1) takes for each 0≤ j < n the following value:

α j =
1

1− tanh2(x j)
(5.4)

As −1 ≤ ∏s∈N (i) tanh(xs) ≤ 1, the maximum and minimum of the objective function f (x)

are given by max(f (x)) = m and min(f (x)) = −m. This shows that the IDA is a gradient-
descent optimization of the objective function given in (5.1), which proves the proposition
4.4.

Similarly for the SRBI algorithm proposed in [69], we observe that the extrinsic information
E j corresponds to the first-order partial derivation of the objective function f (x) that we can
define for each x ∈ {−1,1}n by:

f (x) = ∑
0≤i<m

∏
s∈N (i)

xs (5.5)

This objective function represents the bipolar syndrome weight.

Proposition 5.2. The Soft Reliability based Iterative Majority-Logic Decoder (SRBI) is equiv-

alent to the following gradient-descent maximization problem:

Maximize f (x) = ∑
0≤i<m

∏
s∈N (i)

xs (5.6)

subject to x ∈ {−1,1}n

Proof. The partial derivative of f (x) with respect to each variable x j is given by:

R j =
∂ f (x)
∂x j

= ∑
i∈M (j)

∏
s∈N (i)\{ j}

xs (5.7)

Given the initial solution x(0)j = Q(y j), where Q(y j) is the quantized valuey j, the solution
update takes the following form:

x(q+1)
j = x(q)j +αR j (5.8)

5.2. Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent
Optimization 139

where in the SRBI, the descent step is α = 1. Clearly the SRBI is a gradient-descent opti-
mization of the function f (x). The minimum and maximum values of this objective function
are given by max(f (x)) = m and min(f (x)) =−m.

The SRBI algorithm was improved later in [120] to give the ISRBI-MLGD algorithm. In
the calculation of the extrinsic information E j in the SRBI, the bipolar estimators have the
same contribution, which is either +1 or −1. As a consequence, the iterative scheme does
not exploit the soft output information of the channel, except in the initialization step, where
x(0)j = Q(y j). The ISRBI adds weighting coefficients wi ∈ Z to each estimator, acting as
reliabilities of the ith orthogonal equation, which results in improved performance. This
means that the objective function f (x) is obtained by adding the weighting coefficients to the
function f (x). Thus, the modeling of the ISRBI as a gradient-descent is given in the following
proposition.

Proposition 5.3. The Improved Soft Reliability based Iterative Majority-Logic Decoder (IS-

RBI) is equivalent to the following gradient-descent maximization problem:

Maximize f (x) = ∑
0≤i<m

wi ∏
s∈N (i)

xs (5.9)

subject to x ∈ {−1,1}n

Proof. The partial derivative of f (x) with respect to each variable x j is given by:

R j =
∂ f (x)
∂x j

= ∑
i∈M (j)

wi, j ∏
s∈N (i)\{ j}

xs (5.10)

and similarly to the SRBI, given the initial solution x(0)j = Q(y j), the solution update takes
the following form:

x(q+1)
j = x(q)j +αR j (5.11)

where the descent step parameter α = 1. Clearly, the solution update in (5.11) corresponds to
the update of the ISRBI algorithm. Note that the objective function f (x) represents the Quan-
tized weighted bipolar syndrome weight, and that max(f (x)) = ∑0≤i<m wi and min(f (x)) =

−∑0≤i<m wi.

By using the same reasoning as above, the ITD algorithm [88] modeling is given in the next
proposition.

5.2. Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent
Optimization 140

Proposition 5.4. The Iterative Threshold Majority-Logic Decoder (ITD) is equivalent to the

following gradient-descent maximization problem:

Maximize f (x) =
γch

2
‖ x ‖2

2 + ∑
0≤i<m

∏
s∈N (i)

tanh(xs) (5.12)

subject to x ∈ Rn

Proof. The partial derivative of f (x) given above with respect to each variable x j is given by:

R j =
∂ f (x)
∂x j

= γchx j + ∑
i∈M (j)

wi, j ∏
s∈N (i)\{ j}

sgn(xs) (5.13)

where

wi, j = ln

[
1+∏s∈N (i)\{ j} tanh(|Ls

2 |)
1−∏s∈N (i)\{ j} tanh(|Ls

2 |)

]
(5.14)

and Ls = γchx(q)s , with the assumption that since | tanh(�)|< 1, then the approximation ln(1+x
1−x)≈

x can be used.

The solution update takes the following form:

x(q+1)
j = x(0)j +αR j (5.15)

where the descent step parameter α = 1/J, and the update given in (5.15) is modified from
the standard GD by updating only the first solution x(0) = γchy.

Table 5.1 summarizes our contribution, where for each MLGD algorithm, namely the IDA,
ITD, SRBI and ISRBI algorithms, the associated objective function expression and descent
step value are presented.

Note that this result is very interesting in the way that a universal interpretation of MLGD
algorithms is established, which further simplify and unify the current investigations on how
it is possible to improve the performance of MLGD algorithms, as well as how it is possible
to devise an efficient tradeoff between performance and complexity, where here we have
shown that both the complexity and performance depend on the mathematical expression of
the objective function representing the decoding problem of OSMLD LDPC codes.

5.3. Improved local optimization techniques 141

MLGD algorithm Objective function f (x0,x1, ...,xn−1) Descent Step

IDA ∑0≤i<m
(
∏s∈N (i) tanh(xs)

)
α j =

1
1−tanh2(x j)

ITD γ

2 ‖ x ‖2
2 +∑0≤i<m ∏s∈N (i) tanh(xs) α = 1

J

SRBI ∑0≤i<m ∏s∈N (i) xs α = 1

ISRBI ∑0≤i<m wi ∏s∈N (i) xs α = 1

Table 5.1: MLGD algorithms and their corresponding objective functions to maximize with
the Gradient-Descent

5.3 Improved local optimization techniques

After the proposition of a universal view of the majority-logic decoding algorithms in the
literature as a gradient-descent optimization, a straightforward perspective is to exploit other
improved variants of the GD algorithm in order to result in enhanced versions of these de-
coding algorithms. Indeed, many variants of the GD were already proposed in the literature,
where each variant tends to address some limitations of the standard GD optimization tech-
nique. One such limitation is the problem of local optimums, where the standard GD update
has shown that sometimes is unable to escape from these local optimums. Another limitation
of the standard GD is the oscillations of the convergence process across the slopes of the
ravine while making hesitating progress towards the local optimum.

We shall first introduce some variants of the GD algorithm, namely 3 different variants, where
we will emphasize the benefits of each approach compared to the standard GD. Then we pro-
pose to reformulate the majority-logic decoding of LDPC codes problem following the for-
malism of these improved variants, and we propose to investigate the mathematical model of
each MLGD algorithm defined in the previous subsection following the considered variants
of the GD. Moreover, we transform the unconstrained minimization problem of decoding
LDPC into the contrained optimization formalism, by investigating the according objective
function as well as the constraints, in order to exploit the Augmented Lagrange Method of
Multipliers (ALMM) technique for solving the decoding problem. The aims of this contribu-
tion is to provide several mathematical models for the decoding problem of LDPC codes, and
then to evaluate the performance of the proposed models in future research directions. The

5.3. Improved local optimization techniques 142

proposed models are enhanced versions of the existing MLGD algorithms in the literature.

5.3.1 Gradient-Descent with Momentum (MGD)

The standard Gradient-Descent technique suffers in some use cases from the problem of
navigating the surfaces that curve more steeply in one dimension than another [141,160]. The
GD performs many oscillations in these scenarios and makes hesitant convergence towards
the local optimum.

Momentum Gradient-Descent [131] is a method that helps accelerate GD in the relevant
direction and dampens oscillations, by adding a fraction γ of the update vector of the past
time step to the current update vector [141]. The Momentum GD update rule (in vectorial
notation) takes the following form:

vt = γvt−1 +α∇x f (x) (5.16)

x = x− vt

The momentum factor is usually equal to γ = 0.9 [141]. This phenomena is illustrated by
pushing a ball down a hill. While rolling downhill, the ball accumulates momentum and
increases its speed until reaching its terminal velocity. Thus, similarly, the momentum term
increases for dimensions whose gradients evolve in the same directions and reduces updates
for dimensions with directions that vary significantly, which results in a faster convergence
of the algorithm and more reduced oscillations compared to the standard GD.

5.3.2 Nesterov Accelerated Gradient (NAG)

When the ball is rolling down a hill, it is blindly following the slope. A better strategy
would be to have a smarter ball which anticipates the slopes of the surface, so that it could
slow down before the hill slopes up again. Nesterov Accelerated Gradient (NAG) [119] is an
improved variant that allows to anticipate the approximate future position of the convergence,
by predicting the surface slopes.

The momentum term γvt−1 is essentially used to move the parameters. Thus, an approxima-
tion of of the next position of the parameters is obtained by x−γvt−1, and the NAG technique
can effectively look ahead by calculating the gradient with respect to the approximate future
position of the parameters. The NAG update rule is given by:

5.3. Improved local optimization techniques 143

vt = γvt−1 +α∇x f (x− γvt−1) (5.17)

x = x− vt

Similarly to the MGD, the momentum term is usually set to a value around γ = 0.9. From
(5.17), the NAG method perform a big jump in the direction of the previous accumulated
gradient, measures the gradient and then perform an anticipatory correction which prevents it
to converge too fast in the wrong direction. This anticipatory process results in an increased
responsiveness and improved performance compared to the other GD variants.

5.3.3 Adaptive Gradient (Adagrad)

Another interesting desired feature of the GD is to adapt the updates to each individual pa-
rameter to perform larger or smaller updates depending on their importance. Adagrad [36]
enables the adaptation of the descent step (or learning rate in machine learning) to the param-
eters, by allowing larger updates for infrequent and smaller updates for frequent parameters.

The update rule of Adagrad consists of the modification of the descent step at each time step
t for every parameter j based on the past gradients that have been computed for x j, and is
given, for every j ∈ [0, ...,n−1] by:

xt+1
j = xt

j−
α√

Gt
j j + ε

∇xt f (xt
j) (5.18)

where Gt ∈ Rn×n is a diagonal matrix where each diagonal element j, j is the sum of the
squares of the gradients w.r.t. x j up to time step t, while ε is a smoothing term used for
avoiding division by zero.

The key advantage of Adagrad is the elimination of manual tuning of the descent step α ,
in addition to the adaptive update of each parameter. It is shown that most implementa-
tions use a default value of α = 0.01 [141]. However, for our case it might strongly impact
the performance of the decoder. On the other hand, the weakness of Adagrad is that the
accumulated squared gradients in the denominator of (5.18) results in making the descent
step infinitesimally small. This limitation is resolved by another variant of the GD so-called
Adadelta [195], which is not invoked in this study.

5.3. Improved local optimization techniques 144

5.3.4 The Augmented Lagrangian Method of Multipliers

The Augmented Lagrange Method of Multipliers (ALMM) is a powerful technique for solv-
ing constrained minimization (or maximization) problems. The Augmented Lagrangian and
the Method of Multipliers were initially introduced in the late 1960s by Hestenes and Pow-
ell [62, 129]. Much of the early work was recently consolidated and generalized by Bert-
sekas [14]. The ALMM is a penalty-based local optimization technique, widely used in
many applications, such as statistical problems, constrained sparse regression, sparse signal
recovery, image restoration and denoising, etc. The key principle of this technique consists
of adding a penalty term to the objective function, so that the penalty term determines the
severity of the penalty by prescribing a high cost to infeasible points. The resulting function
is the Augmented Lagrangian function which is essentially used to approximate the original
constrained problem as an unconstrained problem. Note there are many different penalty
functions that can be used for this purpose. Also, there are different possible constraints, for
instance equality and inequality constraints.

Let’s consider the following constrained minimization problem:

Minimize f (x) (5.19)

subject to x ∈ X and h(x) = 0

where f : Rn→ R and h : Rn→ Rm are continuous, and X is a closed set.

The Augmented Lagrangian of (5.19) is given by:

Lρ(x,λ) = f (x)+λ
T h(x)+

ρ

2
‖h(x)‖2

2 (5.20)

where ρ is the penalty parameter, and λ is the dual variable or Lagrange multiplier.

If the penalty ρ is large, then the objective function (5.20) is strongly convex. The principle
of ALMM is to solve the unconstrained minimization problem of the Augmented Lagrangian
in (5.20), as follows:

x∗ = argmin
x∈X

Lρ(x,λ) (5.21)

If ρ is larger than a threshold, then x∗ is a strict local minimum of Lρ(.,λ
∗) corresponding to

λ ∗. Moreover, if we set λ close to λ ∗ and perform unconstrained minimization of the A.L.,
then we can find x close to x∗ [14].

5.4. Improved update rules using variants of the Gradient-Descent 145

Now given ρ , x0 and λ 0, applying the ALMM technique to (5.21) yields to the following
algorithm :

xq+1 :=argmin
x

Lρ(x(q),λ q) (5.22)

λ
q+1 :=λ

q +ρh(x(q)) (5.23)

Generally, the A.L. given in (5.20) is first-order derivable if the objective function f (x) is,
thus the minimization problem (5.22) can be solved iteratively using the Gradient-Descent
technique, taking into account the update rule in (5.23) of the Lagrange multiplier.

For achieving convergence and finding a strict local minimum, two first-order necessary con-
ditions must be satisfied. The solution x∗ is a strict local minimum if ∇xL(x∗,λ ∗) = 0 and
∇λ L(x∗,λ ∗) = 0 for x∗ ∈ Rn and λ ∗ ∈ Rm.

5.4 Improved update rules using variants of the
Gradient-Descent

We will present various new mathematical models for the decoding problem of LDPC codes,
inspired from the existing MLGD algorithms. Our aim is to propose new enhanced versions
of each reviewed algorithm using the mentioned variants of the GD technique.

Based on Table 4.1, we propose here to introduce modifications to the standard update rule
of each MLGD decoding algorithm, using the update rule associated to each variant of the
GD optimization technique. Note that the main modifications of these GD variants consist
of changing the update operation in order to quickly achieve the convergence and to avoid
local optimums. In this case, a decoder falls in a local optimum when it outputs a non-valid
codeword, different from that being transmitted.

As the key modification includes the update rule in each decoding algorithm, the objective
functions presented in Table 5.1 and their first-order partial derivatives (corresponding to
the soft reliability R j) remain unchangeable. In Table 5.2, we represent for each MLGD
algorithm, the mathematical expression of the soft-reliability R j of the jth symbol, which
corresponds to the partial derivative of the objective function f (x) w.r.t each variable x j, for
j ∈ [0, ...,n−1]. Note that x j ∈ R and x j ∈ Z for the unquantized and quantized algorithms,
respectively. We also indicate in the same table the initialization step of each decoding algo-
rithm. The new update rules derived from the variants of the GD technique are summarized in

5.5. A New Universal Decoding Approach for Linear Block Codes using the
Augmented Lagrange Method of Multipliers 146

Table 5.3. Note that the descent step α of each algorithm must be numerically optimized for
performance improvement, as well as the momentum term γ . For spatial constraints, let’s as-
sume the following notations: S(q)i, j =∏s∈N (i)\{ j} sgn(x(q)s) and S̃(q)i, j =∏s∈N (i)\{ j} tanh(x(q)s).

MLGD algorithm Initialization Partial derivative ∇x(q) f (x(q)j)

IDA x(0)j = γchy j (1− tanh2(x(q)j))∑i∈M (j) S̃(q)i, j

ITD x(0)j = y j γchx(q)j +∑i∈M (j)ωi, jS
(q)
i, j

SRBI x(0)j = Q j ∑i∈M (j) S(q)i, j

ISRBI x(0)j = Q j ∑i∈M (j)ωi, jS
(q)
i, j

Table 5.2: Initialization and partial derivatives associated to various MLGD algorithms

New update

MGD NAG Adagrad

v(q)j = γv(q−1)
j +α∇x(q) f (x(q)j) v(q)j = γv(q−1)

j +α∇x(q) f (x(q)j − γv(q−1)
j) x(q+1)

j = x(q)j −
α√

G(q)
j j +ε

∇x(q) f (x(q)j)

x(q+1)
j = x(q)j − v(q)j x(q+1)

j = x(q)j − v(q)j

Table 5.3: Improved update rules for various MLGD algorithms using some variants of the
Gradient-Descent

5.5 A New Universal Decoding Approach for Linear Block
Codes using the Augmented Lagrange Method of
Multipliers

We extend our modeling to a more general decoding problem, that of decoding every linear
code characterized by a parity-check matrix, and we use the ALMM technique for addressing
this problem and devising a new algorithm capable of decoding every class of linear codes.
The main objective is to devise a set of decoding algorithms for opening new perspectives to-
wards a universal improvement and comparisons of the various methods, as well as providing
a facility to establish analytical convergence and performance studies of the decoding prob-
lem using these proposed frameworks. The difference between each proposition relies on the
considered objective function, the constraints (if considered), and the employed optimization
technique for solving the decoding problem.

5.5. A New Universal Decoding Approach for Linear Block Codes using the
Augmented Lagrange Method of Multipliers 147

Here we propose a new decoding model based on the ALMM constrained optimization tech-
nique. This model is associated to the ITD (and IDA) algorithm [88,105], despite it is possible
to devise its reduced complexity version inspired from the objective function introduced in
the Gradient-Descent MLGD (GD-MLGD) algorithm [194], providing an efficient tradeoff
between performance and complexity. However, we address our interest here to the general
model, and the reduced complexity version will be also addressed for solving a more gen-
eral problem for decoding linear codes. Our main purpose is to transform the unconstrained
objective functions corresponding to these algorithms into a constrained optimization prob-
lem. The key advantage of this purpose is to help the decoding algorithm to escape from
local optimums, and to prevent solutions that violate the considered constraints, resulting in
guaranteed convergence properties to the ML codeword, which inherit essentially from the
optimization technique. Note that when the constraints are linear, a better choice would be
the use of Linear Programming (LP) decoding techniques.

Indeed, decoding LDPC codes or more generally binary linear codes using the LP technique
was first introduced in 2003 by Feldman in his doctoral thesis [44], and much of the ob-
tained results were published later in [45]. These starter works have initially led the research
community to investigate new perspectives for decoding linear block codes and LDPC codes
using constrained optimization techniques. Independently in [182], a comparison and the re-
lation between LP decoding and the Min-Sum (MS) algorithm was investigated. In [22], an
efficient pseudo-codeword search algorithm was proposed for LP decoding of LDPC codes.
In [183] and [162], decoding complexity reduction and adaptive methods for LP decoding
were investigated. Later in [9], LP decoding of LDPC codes was improved by the use of the
Alternative Direction Method of Multipliers (ADMM) constrained optimization technique.
A projection algorithm was proposed in [203] for reducing the complexity of the ADMM
decoding algorithm. More recently, the penalized ADMM decoder (ADMM-PD) was pro-
posed with investigations on different penalty functions for achieving performance improve-
ment [102]. In [101], the same authors proposed the ADMM-PD technique for decoding
non-binary LDPC codes.

Let’s consider the constrained model inspired from the ITD and IDA algorithms. We would
like to devise a decoding algorithm suitable to decode every class of linear block codes de-
fined by a parity-check matrix. As shown in Table 5.1, the objective function associated to the
ITD algorithm includes a term related to the l2-norm of the variable, and a term related to the
generalized syndrome weight. In contrast, the IDA includes only the generalized syndrome
weight. Intuitively, it is possible to add to the objective function a term related to the ML

5.5. A New Universal Decoding Approach for Linear Block Codes using the
Augmented Lagrange Method of Multipliers 148

argument, defined by the distance between the solution and the received signal y. Here, there
are many distance metrics that can be considered. A suitable model for the decoding problem
would be the consideration of the ML argument as a term to minimize, and the constraints
can be described by the minimum value that the generalized syndrome weight must take.

Next proposition states the constrained model for the decoding problem based on the gener-
alized syndrome weight.

Proposition 5.5. The iterative decoding problem of LDPC codes can be stated as follows:

Minimize f (x) =−
n−1

∑
j=0

sgn(x j)y j (5.24)

subject to x ∈ Rn and ∏
s∈N (i)

tanh(xs)−1 = 0, ∀i ∈ [0,m−1] (5.25)

The objective function f (x), such that f : Rn→R, includes a correlation between the solution
vector x and the received signal y. Since tanh(xs) < 1, the optimal value of the sum in the
constraint cannot be greater than m, i.e. when the generalized syndrome weight is equal to
m, then all the parity-checks are satisfied, which means that sgn(x) is a bipolar codeword of
C . The Augmented Lagrangian (A.L.) corresponding to (5.25) takes the following form:

Lρ(x,λ) =−
n−1

∑
j=0

sgn(x j)y j +λ ∑
0≤i<m

(
∏

s∈N (i)
tanh(xs)

)
−m+

ρ

2

√√√√ ∑
0≤i<m

|

(
∏

s∈N (i)
tanh(xs)

)
−1|2

(5.26)

where λ is the Lagrange Multiplier, and ρ is the penalty factor. For sake of simplicity, we
consider that λ is a real number instead of being a vector, thus λ ∈ R.

Therefore, given x(0), λ (0) and ρ , the decoding problem now consists of solving the following
optimization problem:

x(q+1) :=arg min
x∈Rn

Lρ(x(q),λ q) (5.27)

λ
(q+1) :=λ

q +ρ

(
∑

0≤i<m

(
∏

s∈N (i)
tanh(x(q)s)

)
−m

)
(5.28)

The minimization of the A.L. in (5.27) can be solved iteratively using the gradient-descent.
However, the main drawback of this model is the computational complexity involved in the
calculation of the partial derivatives ∂Lρ (x(q),λ (q))

∂xq
j

for solving (5.27), which results in an un-
practical decoding algorithm due to the high complexity.

5.5. A New Universal Decoding Approach for Linear Block Codes using the
Augmented Lagrange Method of Multipliers 149

One alternative for reducing the computational complexity consists of the consideration of
another metric for the calculation of the syndrome weight. Similarly to the SRBI algorithm,
the bipolar syndrome weight can be considered instead of the generalized syndrome weight.
Thus, the problem takes the following simplified form stated in the next Proposition.

Proposition 5.6. The iterative decoding problem of LDPC codes can be stated as follows:

Minimize f (x) =−
n−1

∑
j=0

sgn(x j)y j (5.29)

subject to x ∈ Rn and ∏
s∈N (i)

sgn(xs)−1 = 0, ∀i ∈ [0,m−1] (5.30)

The augmented Lagrangian corresponding to (5.30) takes the following form:

Lρ(x,λ) =−
n−1

∑
j=0

sgn(x j)y j +λ

m−1

∑
i=0

(
∏

s∈N (i)
sgn(xs)

)
−m+

ρ

2

√√√√ε +
m−1

∑
i=0
|

(
∏

s∈N (i)
sgn(xs)

)
−1|2

(5.31)

where ε is a smoothing term used for avoiding the division by zero.

Now, with the given A.L. in (5.31), the decoding problem consists of solving the following
optimization problem:

x(q+1) :=arg min
x∈Rn

Lρ(x(q),λ q) (5.32)

λ
(q+1) :=λ

q +ρ

(
m−1

∑
i=0

(
∏

s∈N (i)
sgn(x(q)s)

)
−m

)
(5.33)

Note in (5.31) that when the constraint is satisfied, i.e. sgn(x) is a bipolar codeword, then all
the m parity-check equations are satisfied, therefore ∏s∈N (i) sgn(xs) = 1 for each 0≤ i < m,
thus the penalty argument inside the square root is zero. Otherwise, we have ∏s∈N (i) sgn(xs)=

−1.

Let |N (i)| denotes the weight of the ith row of the parity-check matrix. The partial derivative
of the A.L. can be simplified for the codes with a regular row weight. In this case, we denote
by J = |N (i)| the row weight of the parity-check matrix. Thus the partial derivative takes
the following form:

5.5. A New Universal Decoding Approach for Linear Block Codes using the
Augmented Lagrange Method of Multipliers 150

∂Lρ (x(q),λ (q))

∂xq
j

=−y j +λ (q)
∑i∈M (j)

(
∏s∈N (i)\{ j} sgn(x(q)s)

)
if ∑0≤i<m ∏s∈N (i) sgn(x(q)s) = m

∂Lρ (x(q),λ (q))

∂xq
j

=−y j +
(

∑i∈M (j) ∏s∈N (i)\{ j} sgn(x(q)s)
)(

λ (q)− ρJ√
ε+4m

)
otherwise

(5.34)

Note that the obtained final form of the partial derivative in (5.34) requires relatively low
computational operations, which results in a practical low-complexity decoding algorithm,
which can also be used to decode every linear block code defined by a parity-check matrix.
Now, the gradient-descent final solution update takes the following vectorial form:

x(q+1) :=x(q)+α
∂Lρ(x(q),λ (q))

∂xq
j

(5.35)

λ
(q+1) :=λ

q +ρ

(
m−1

∑
i=0

(
∏

s∈N (i)
sgn(x(q)s)

)
−m

)
(5.36)

where 0 < α ≤ 1 is the descent step, which can be optimized separately for improving perfor-
mance. Note that it is optional to use a variable penalty factor ρ which evolves with decoding
iterations, however, for sake of optimization simplicity, we consider a fixed penalty factor
during all the decoding process.

Therefore, with the given formulation, the initialization of the proposed algorithm (ALMM-
D) includes fixing a maximum number of allowed decoding iterations Imax, the penalty fac-
tor ρ , the Lagrange multiplier λ (0) and the descent step α . The partial derivative R j =
∂Lρ (x(q),λ (q))

∂xq
j

is initialized by zero for 0≤ j < n. The input of the algorithm is the received real
(or complex) signal y∈Rn in the case of an AWGN or a fading channel, or a binary sequence
y ∈ Fn

2 in the case of a Binary Symmetric Channel (BSC). The input signal is considered as
an initial solution, i.e. x(0) = y. The ALMM-D algorithm performs the decoding process
iteratively until a stopping criteria is met. The stopping criteria are defined by reaching the
maximum number of iterations, i.e. q = Imax, or when the fluctuation of the solution becomes
sufficiently small, i.e. ∑ j ‖z

(q)
j − z(q−1)

j ‖2
2 < ε2, where z(q) is the hard decision vector of the

solution x(q).

The ALMM-D algorithm is described in Algorithm 5.1.

5.6. Conclusion 151

Algorithm 5.1 ALMM-D
Input: Received signal y, Imax, ρ and α .
Output: Binary Decoded sequence z(q).

- - - - - - - - - - - Initialization - - - - - - - - - - -
1: x(0)j = y j and λ

(0)
j = 0 for all 0≤ j < n.

- - - - - - - - - - - Iterations - - - - - - - - - - - - -
2: for q = (0 : Imax) do
3: Calculate z(q), If (∑ j ‖z

(q)
j − z(q−1)

j ‖2
2 < ε2 or q = Imax), then stop decoding.

4: for (j = 0 : n−1) do
5: Calculate the partial derivative R j of the A.L. using (5.34).
6: end for
7: Update the solution vector x(q+1) using (5.35).
8: Update the Lagrange multiplier λ (q+1) using (5.36).
9: Update the penalty parameter by ρ(q+1) = βρ(q) where β ≥ 1. (Optional)

10: end for

Note that if the channel is symmetric, then the probability that the ALMM-D algorithm fails
is independent of the codeword that was transmitted. As mentioned in [102], it is generally
difficult to determine whether or not a feasible point is a global minimizer of a non-convex
optimization problem, such as the problem in Proposition 4.9. However, one can still use the
ML certificate property of LP decoding [44] to test whether or not the obtained solution is a
ML solution.

5.6 Conclusion

A unified view of majority-logic decoding algorithms was presented in this paper. We have
shown that all these decoding techniques are derived from a gradient-descent maximization
of a particular derivable objective function. A suitable correspondence between these algo-
rithms and the gradient-descent was given, with an investigation on the descent-step value
and first-order derivatives for each decoding algorithm. Moreover, we have introduced a
more general decoding model based on constrained optimization techniques, namely the Aug-
mented Lagrangian Multiplier Method, for addressing the problem of decoding both LDPC
(and OSMLD) codes and generally all linear block codes characterized by a parity-check
matrix. This approach has resulted in a low-complexity decoding algorithm (ALMM-D) that
we have proposed based on this mathematical constrained model.

An important future direction of this work is the performance evaluation of the proposed
enhanced versions of majority-logic decoders as well as the ALMM-D decoding algorithm

5.6. Conclusion 152

for various OSMLD, LDPC and linear block codes with an adequate investigation on the
optimization of the parameters involved in these decoding techniques. Additionally, the in-
vestigation of other mathematical expressions of the objective functions that represent these
decoding problems is considered as another interesting future direction.

Chapter 6

Evaluation of OSMLD codes in DNA
Data Storage and Modern Wireless
Communication Systems

6.1 Cyclic Ternary Difference-Set Codes for DNA Data
Storage Systems

6.1.1 Introduction

Recently, DNA based data storage systems has seen a large interest from research and indus-
trial communities, due to the ever growing data density required by the latest technologies, as
big data, IoT, high quality streaming, immersive technologies (VR, AR, holographs). Indeed,
the current magnetic based data storage mediums, namely optical, digital and cloud data stor-
age, has proven their density limitations, and needs to be maintained regularly. It was reported
by [134] that the total amount of data generated in 2016 has reached 16.1 ZetaBytes, and will
exponentially grow to reach 163 ZetaBytes in the horizon of 2025. Clearly, the classical data
storage mediums will fail to handle this challenge and must furthermore be replaced by other
storage candidates. Indeed, many researchers developed a natural approach beyond the clas-
sical storage mediums, towards storing massive data into the DNA molecule. As reported by
many scientific papers, the DNA information contained in the Neanderthal bones has been
recovered successfully even if it has been emerged at least 200,000 years ago. This natural
approach for data storage has proven the low-density, scalability and long-term stability and
storage that can provide DNA-based data storage systems.

153

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 154

A DNA molecule is composed from a sequence of nucleotides, each one taking a value from
the four bases (A: Adenine, C: Cyanine, G: Guanine, T: Thymine). Nucleotides are organized
into chains of DNA chunks, called oligonucleotides (or oligos). Theoretically, 1 gram per
DNA can store 455 EB (Exabytes) of information in low-maintenance environments, with
a long-term storing longevity [51], which outperforms by far the current classical digital
storage mediums.

Many efforts have been devoted recently for storing data into the DNA code. In 2012,
Georges Church and his team [25] proved experimentally the concept of storing data in DNA
molecules, by storing 22 MB of data in DNA. In 2013, N. Goldman et al. [51] made the
breakthrough by proposing and testing a new efficient approach for storing data of size 739
KB on DNA and retrieving it back successfully. They proposed an efficient DNA encoding
scheme with the given sequencing and synthesizing technologies in 2013 for storing archives
of several MegaBytes (MB) in a 500−5000 years horizon, in low-maintained environments.
Authors have used four folds redundancy to retrieve data from one of the DNA strands, and
proposed the use of the ternary Huffman code and differential encoding for avoiding ho-
mopolymer runs. However, this approach provides an increase in the DNA length, which
limits it for the commercial use due to the cost increase. Later, the synthesizing and reading-
access techniques have been improved, giving the possibility to synthesize a larger amount of
DNA data. Based on the Goldman’s approach, many different approaches were proposed in
the literature for error control coding in DNA data storage. Authors in [71] used an approach
where each group of five bits is followed by one parity-bit for error detection. In order to en-
hance reliability, they proposed an encoding approach based on inserting multiple copies of
data into multiple regions of the genome of the host organism. In [61], the extended (8,4,4)
binary Hamming code, or repetition coding were used for encoding data. In [95], the authors
proposed the use the ternary non-linear Golay code with parameters (n,k,dmin) = (11,6,5)3,
and theoretically, a high density was reached, giving 115 exabytes (EB) that can be stored in
one gram of DNA.

In this section, we propose to further enhance and simplify the encoding approach in DNA
data storage, by the use of ternary cyclic Difference-Set Codes (DSC). We show that efficient
storage density and error rates can be achieved using the proposed scheme, in addition to a
simple majority-logic decoding procedure for retrieving data.

This section is organized as follows. In Subsection 6.2.2, we briefly describe the DNA chan-
nel model, where we present the calculation of the Shannon capacity, and the coding potential
associated to constrained DNA channels. Also, we discuss the proposed modulation schemes

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 155

for this channel. In Subsection 6.2.3, previous works on DNA forward error correction and
the Goldman’s encoding scheme [51] are reviewed. Subsection 6.2.4 introduce the proposed
scheme, where cyclic ternary DS codes are presented followed by the proposed DNA en-
coding approach. Subsection 6.2.5 presents performance analysis of the proposed DNA data
storage scheme, with a comparison with the relevant previous works. Finally concluding
remarks are presented in Section 6.3.

6.1.2 DNA data storage Channel Model

6.1.2.1 Channel Model and Capacity

DNA data storage systems can be considered as a classical digital transmission over a noisy
channel. The DNA information is transmitted over the channel by synthesizing DNA oli-
gos. The information is received by sequencing the DNA oligos and decoding the sequenced
sequence. The channel noise is caused by various experimental factors, including DNA syn-
thesis imperfections, PCR dropouts, degradation of DNA molecules over time, and sequenc-
ing errors. In contrast to other classical theoretic channels, where the noise is identical and
independently distributed, the error patterns in DNA depends essentially on the input se-
quence [40, 41].

It was shown that biological, bio-chemical and bio-physical processes are causing errors,
while the physical and chemical effects introduces by itself errors to DNA oligos by the
time [16]. Church and his team [25] gathered DNA channels characteristics by conducting
several experimental analysis. Technically, 3 types of errors were observed in DNA channels.
First, flipping errors (swapping) occur when a DNA nucleotide symbol is replaced by another
one. Additionally, insertion and deletion errors were also detected. Oligos that were not
found in the DNA are called missing oligos. The obtained experimental results showed that
the swap error rate lies approximately between 6.0 �10−4 and 1.4 �10−3, while insertion and
deletion errors are 1.0 � 10−3 and 5.0 � 10−3 respectively [25]. Authors in [16] claimed that
the DNA channel is a data memory-less channel. In [40], authors described the DNA channel
as a constrained channel, concatenated to an erasure channel. Previous studies [7, 42, 43, 85,
140,152] has identified that homopolymer runs and GC content are the major constraints that
impacts synthesis and sequencing errors.

Figure 6.7 illustrates the transmission model applied to data storage systems.

The transmitter generate a synthesized DNA oligo of length N, which include information
data and an indexing header. As DNA are organized in a mixed pool due to the multiplexing

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 156

Figure 6.1: DNA Data Storage Channel Model

architecture of synthesis reactions and high throughput sequencing, it is important to index
each oligo before transmitting it. We will denote the appended index header oligo by hindex.
The synthesized oligo is transmitted over a constrained channel. Here an oligo is considered
a valid sequence if its GC content is within 0.5± cgc, and its longest homopolymer length is
up to m nucleotides. Otherwise, the sequence is considered invalid and cannot be transmitted.
Then valid sequences are exposed to an erasure channel with low dropout rate δv. Finally, the
transmitted DNA oligos are sequenced for reading the received data. Additionally, forward
error correction can be introduced, by appropriately choosing a code C for encoding data
before the transmission, and decoding the received data after sequencing DNA oligos. Erlich
et al. [40] established a theoretical study of the DNA channel capacity, by assigning realistic
values to the parameters m, cgc, hindex and δv into his model.

Let’s denote by AX the set of all possible transmitted DNA sequences of length N, and by AY

the set of all possible received sequences. Let X ∈ AX and Y ∈ AY represents a random DNA
transmitted sequence and received sequence respectively. The information capacity of each
oligo is given by [40]:

C = max
pX

I(X ;Y) (6.1)

where I(X ;Y) is the mutual information of X and Y , defined by:

I(X ;Y) = H(X)−H(X | Y) (6.2)

Thus, the information capacity per nucleotide Cnt is obtained as follows:

Cnt =
C
N

(6.3)

In a constrained channel, the mutual information is maximized by transmitting equiproba-
ble valid sequences [107], therefore H(X) = log2 |AX |, where |.| denotes the size of a set.

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 157

A sequence is dropped out with a probability δv, and is received without dropping with a
probability 1−δv. Thus, the capacity per nucleotide is defined as:

Cnt =
(1−δv) log2 |AX |

N
(6.4)

6.1.2.2 The homopolymer constraint

The size of valid codewords, given the homopolymer constraint is given by:

|Ah
X |= Q(m, l)4l (6.5)

where |Ah
X | is the set of valid codewords under the homopolymer constraint, and Q(m, l) is

the probability to observe up to an m-nt homopolymer run in a random l-nt sequence.

Let qm(p, l) denotes the probability of not observing m or more successes in l Bernoulli trials
with a success probability p and a failure probability q = 1− p. In [46], a tight approximation
was proposed:

qm(p, l)≈ β

xl+1 (6.6)

where
x = 1+qpm +(m+1)(qpm)2 (6.7)

and
β =

1− px
(m+1−mx)q

(6.8)

For practical purposes, authors in [40] have proposed to approximate the distribution of ob-
serving up to m-nt homopolymer runs as the product of four independent events:

Q(m, l) =
[
qm+1(p = 0.25, l)

]4
(6.9)

Thus for any m≥ 3 and l ≥ 50, combining (6.4), (6.5) and (6.9) yields to:

log2 |Ah
X |

l
= 2− 3log2 e

4m+1 (6.10)

Clearly, the information capacity under the homopolymer constraint does not depend on the
length of oligos, but depends especially on the maximal length of homopolymers.

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 158

6.1.2.3 The GC content constraint

Under the GC content constraint, the probability pgc that a sequence of l nucleotides is within
0.5± cgc is given by:

pgc = 2Φ(2
√

lcgc)−1 (6.11)

where Φ is the cumulative function of a standard normal distribution. Therefore, the number
of bits that can be transmitted per nucleotide takes the form:

log2 |A
gc
X |

l
= 2+

log2

[
2Φ(2

√
lcgc)−1

]
l

(6.12)

It was noted by Erlich and Zielinski [40] that the impact of the GC content constraint on
reducing the information capacity per nucleotide is negligible when cgc ≥ 0.05 and l ≥ 50.

6.1.2.4 The Coding Potential

When the biochemical constraints are taken together into consideration, namely the ho-
mopolymer and GC content, then the coding potential per nucleotide b is a metric that rep-
resents the output of the constrained channel (see Figure 6.1) , which takes the following
form:

b =
log2 |AX |

l
(bit/nt)

=
log2 |Ah

X ∪Agc
X |

l
(bit/nt)

= 2− 3log2 e
4m+1 −

log2

[
2Φ(2

√
lcgc)−1

]
l

(bit/nt)

(6.13)

In order to select suitably b, a practical and realistic set of constraints m, cgc and l must be
used.

As mentioned before, it is crucial to add an indexing header to encoded data, as the oligos
are not linearly sequenced. By adding a header of size K to oligos, the coding potential b is
further reduced, and can be rewritten as follows:

b = 2− 3log2 e
4m+1 −

log2

[
2Φ(2

√
lcgc)−1

]
l

− log2 K
l

(bit/nt) (6.14)

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 159

6.1.2.5 Modulation

From the DNA channel characteristics mentioned above, a suitable modulation must be ap-
plied in order to limit the error propagation phenomena. A feasible modulation must take
into consideration the following conditions:

• When a nucleotide symbol is erroneous, the error should be propagated to the minimum
number of digits after the demodulation.

• In order to avoid homopolymers, the maximal run-length of similar nucleotides should
be limited to 3.

• Self-complementary DNA sections has to be avoided because it causes amplification
issues of the corresponding oligo, and also a significant information density loss.

Based on these constraints, an efficient modulation scheme was proposed in [16] for handling
these limitations. Interested readers are referred to [16]. Also, the differential encoding
(base 3 to DNA) technique used by Goldman [51], presented next in Table 6.1, provides
satisfying results. However, this modulation technique is only useful when ternary symbols
are considered for modulation.

6.1.3 DNA Forward Error Correction

Many academic and industrial research communities have proposed error-correcting schemes
for DNA data storage, after that the pioneering works of Church’s [25] and Goldman’s [51]
teams made a remarkable advance in long-term data storage. Using the next generation syn-
thesizing and sequencing technology in 2012, Church [25] proposed on an efficient one bit
per base encoding algorithm for storing digital information into a fixed length of DNA chunks
(99 bases). For the header, flanking primers (headers) were inserted at the beginning and the
end of information data in order to indicate the specific DNA segment in which the informa-
tion data was encoded. A net information density of 0.83 bits per nucleotide was achieved.
However, Church’s approach suffers from the existence of homo polymers repeated DNA se-
quences that introduces writing and reading errors. This problem was resolved by Goldman
in 2013 [51], by introducing the improved base-3 Huffman code with 3 symbols called trits
(0, 1 and 2) in addition to differential encoding for data modulation. Thus, using Goldman’s
approach, binary data (one byte) was first encoded by the Huffman code, and then converted
(modulated) to its corresponding DNA triplet where each trit digit was converted to one of the

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 160

3 nucleotides different from the last one, in order to avoid homopolymers. The differential
encoding (modulation) technique used by Goldman to avoid homopolymers is presented in
table 6.2.

Table 6.1: Goldman’s base-3 to DNA modulation for avoiding repeated nucleotides

Previous nt
Next trit to encode

0 1 2

A C G T
C G T A
G T A C
T A C G

In the Goldman’s scheme, a four redundancy protection system was used, where for each
DNA strand of length 117 nt, comprising 114 nt for information and indexing data, and one
parity symbol, plus a beginning and ending symbol. Two similar copies of the DNA strand
were added and two odd indexed strands were reverse complemented. Additionally, prepend-
ing paddings and parity were used to allow error detection. The obtained net information
density in this scheme was 0.34 bits per nucleotide.

Clearly, the Goldman’s approach uses a large amount of redundancy to information data, pro-
viding lower DNA information density and higher costs. The Goldman’s DNA data storage
scheme is represented in Figure 6.8.

This approach can be efficiently improved by introducing error correcting codes for the pro-
tection of oligos. In [16], authors has achieved a net information density of 0.92 bits per
nucleotide by encoding information data using the Reed Solomon (RS) code (n,k,dmin) =

(255,223,31) over GF(28), and separately encode the header using a strong binary BCH
code with parameters (63,39,9). In [61], the extended (8,4,4) binary Hamming code, or
repetition coding were used for encoding data. A subcode (11,256,5)3 of the ternary Go-
lay code (11,6,5) was proposed in [95] for encoding information data, and a DNA storage
capacity of 115 ExaBytes (EB) was achieved. However, the indexing header remains unpro-
tected, which impact error rates performance of the DNA storage medium. In [53], authors
has introduced a double protection scheme, which consists of an inner Reed Solomon (RS)
code over GF(47) with parameters (n,k) = (39,33) for correcting individual errors, and an
outer RS code over the extension field GF(4730) with parameters (n,k) = (713,594) for the
correction of erasures and errors from the inner decoder. The field GF(47) was used in order

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 161

Figure 6.2: Goldman’s Scheme for DNA Data Storage

to avoid homopolymers of length m > 3. Authors achieved a net information density of 1.14
bits per nucleotide, and claimed that their proposed encoding scheme is robustly suitable for
digital data storage in DNA for thousands of years. Later, in [41], a Fountain Code tech-
nique was proposed to screen potential valid oligos to reach the maximal coding capacity of
b = 1.98 bit/nt. 2 bytes of RS code redundancy was additionally added to protect both the
seed and data payload. A net information density of 1.55 bits per nucleotide was achieved in
this scheme.

6.1.4 The proposed DNA data storage scheme

6.1.4.1 Cyclic Difference-Set codes over GF(3)

Difference-Set codes represents an infinite class of algebraic majority-logic decodable codes
derived from finite geometries, namely from projective geometry. DS codes were discov-
ered in their cyclic form independently by Weldon [185] and Rudolph [145]. Weldon has
shown that these codes are approximately powerful as BCH codes, with simpler decoding

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 162

implementation. Later in [86, 106], it was shown that OSMLD codes derived from finite ge-
ometries (DSC and EG) can be considered as finite geometry (PG, EG) LDPC codes, and they
perform better than BCH codes and other linear block codes under the BP iterative decoding
algorithm.

DS codes are completely orthogonalizable, as a consequence, the minimal distance is ex-
actly defined by dmin = J + 1, where J is the number of orthogonal parity-check equations
on each symbol being decoded, providing that the code is capable to correct each error pat-
tern of weight t (t erroneous symbols) or less, by a simple majority-logic vote. Due to the
orthogonality provided by the dual code, the length n of a cyclic DS code takes the following
form:

n = J(J−1)+1 (6.15)

Weldon has given the expression of the code length n and the minimum distance dmin, while
Graham et al. [52] has devised in an accompanying paper the exact enumeration of the num-
ber of parity check symbols for cyclic DS codes.

For a prime p, and a positive integer s> 0, the code length, dimension, and minimum distance
of a cyclic DS code over GF(p) are given by:

n = p2s + ps +1 (6.16)

k = n−

 p+1

2

s+1

 (6.17)

dmin = ps +2 (6.18)

When p = 3, a cyclic difference-set code over GF(3) is defined by the following parameters:

n = 32s +3s +1 (6.19)

k = n−6s−1 (6.20)

dmin = 3s +2 (6.21)

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 163

The construction of cyclic DS codes is derived from combinatorial objects called Difference-
Sets, introduced by Singer [155], which in turn are derived from finite geometry, namely
Projective Geometries (PG), well investigated later in [57, 98].

Definition 6.1 (Difference-Sets). A difference-set D is a collection of J integers (d0,d1, ...,dJ−1)

modulo n, taken from the set {0,1, ...,n−1} such that n = J(J−1)+1, and all the J(J−1)
differences (di−d j) between the elements of D are distinct for i 6= j. That is, each difference
occurs once.

A difference-set D can be considered in its polynomial form D(x)∈GF(p)n, in the algebra of
polynomials modulo xn−1. Thus, the difference-set polynomial D(x) is written as follows:

D(x) = xd0 + xd1 + ...+ xJ−1 (6.22)

From the difference-set properties involved above, differences between the exponents of D(x)

can be written as:
De(x) = D(x)D(x−1) = J+ x+ x2 + ...+ xn−1 (6.23)

where De(x) represents the difference enumerator polynomial. Therefore, De(x) may be
rewritten as:

De(x) = J+ jn(x) (6.24)

where
jn(x) =

n−1
∑

i=1
xi (6.25)

The construction of Singer difference-sets is based on the theorem of Singer based on the
hyperplanes of projective geometries.

Suppose F is any finite field. The space of all vectors (a0, ...,am), ai ∈ F is called the projec-
tive geometry of dimension m over F. The zero vector (0, ...,0) is the void space of dimension
−1. A point P, of dimension 0, is the set of vectors

(bx0, ...,bxm) (6.26)

such that (x0, ...,xm) 6=(0, ...,0) and b ranges over the elements of F. A subspace of dimension
(m− 1) is called an hyperplane. The points in common in two distinct hyperplanes form a
subspace of dimension (m−2).

Now let the finite field F be GF(q), i.e. the Galois field of order q, such that q = pr and p is
a prime. There are v = (qm+1− 1)/(q− 1) points obtained from the (qm+1− 1) points, and

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 164

v hyperplanes. Each hyperplane has J = (qm−1)/(q−1) different points, and a space Sm−2

has λ = (qm−1−1)/(q−1) points. We denote the geometry by PG(m, pr). [57]

Theorem 6.1 (Theorem of Singer). The hyperplanes of PG(m, pr), q = pr as blocks, points

as objects, form a symmetric block design with

v =
qm+1−1

q−1
, J =

qm−1
q−1

, λ =
qm−1−1

q−1
(6.27)

This design is cyclic, and the points in any hyperplane determine a (v,J,λ) difference-set.

Indeed, for DS codes over GF(3), the code length n given by expression (6.19), and the
minimum distance in (6.21) are derived respectively from the expression of a special case of
the expressions of v and J in 6.27, where PG(m,3) is especially considered.

Suppose that a difference-set D with J points is given, designed from the projective geometry
PG(m,3). Let D(x) be the polynomial form of D, in the algebra of polynomials modulo (xn−
1), when the arithmetic is performed over GF(3). Let D(x) be the difference-set polynomial
associated to D. From the code properties, a set ω j of J orthogonal equations on each symbol
position j for 0 ≤ j < n exists, which belong to the dual code. The parity-check header
polynomial h(x) has degree k and is obtained by:

h(x) = gcd(D(x),xn−1) (6.28)

Thus, ω j0 is containing the last symbol denoted xn−1. The remaining (J− 1) orthogonal
equations on xn−1 are obtained by shifting ω0 with respect to the (J−1) non zero exponents
of the parity-check header polynomial h(x) [185].

The generator polynomial g(x) of the DS code C is then simply obtained by:

g(x) = (xn−1)/h(x) (6.29)

Example 6.1. Let s = 1. The set D = {0,1,3,9} is a difference-set of modulo n = 13 of
order J = 4. We propose to design a cyclic difference-set code C over GF(3) with parameters
(n,k,dmin) = (13,6,5). The parity-check polynomial associated to D takes the form:

D(x) = 1+ x+ x3 + x9

By calculating its difference enumerator polynomial following (6.23), it is clear that the con-
dition (6.24) is satisfied and thus D(x) is a difference-set. By calculating the greatest common

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 165

divisor h(x) of D(x) and xn−1 in the algebra of polynomials modulo xn−1 following (6.28),
the generator polynomial of the code C has a degree n− k = 7 and is obtained as follows:

g(x) = (x13−1)/h(x) = 1+ x+2x4 + x5 +2x6 +2x7

The reciprocal polynomial h∗(x) of h(x) is the header of the null space of the code C. Conse-
quently, as the code is cyclic, the null space is given by the n cyclical shifts of the header. A
set of J = 4 orthogonal parity-check sums on every symbol is included in the null space. The
parity-check matrix of the ternary DSC code (13,6,5) is given by:

H =

0 0 0 1 0 0 0 0 0 1 0 1 1

1 0 0 0 1 0 0 0 0 0 1 0 1

1 1 0 0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 0 1 0 1 1 0 0 0 1 0

0 0 0 0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 1 0 1 1 0 0

0 0 1 0 0 0 0 0 1 0 1 1 0

where the rows in bold face are the orthogonal equations on the last symbol.

The set of the indexes of the orthogonal equations of the code (13,6,5) on the last symbol
can be written as follows:

ω12 =

x3 + x9 + x11 + x12

1+ x4 + x10 + x12

x+ x2 + x6 + x12

x5 + x7 + x8 + x12

Due to the cyclic structure of the code, the set ω12 is used to decode all the symbols x j for
0 ≤ j < n by applying n cyclic shift to the sequence being under decoding. From the set

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 166

ωn−1, the code C is capable of detecting 4 error trits, and correcting t = 2 errors or less by a
simple majority-logic vote on each trit.

Erasure-burst-correction capabilities of cyclic LDPC codes derived from two-dimensional fi-
nite geometries (EG and PG) was investigated in [146]. Let σ be the zero-covering-spam of
maximum length contained in the regular parity-check matrix H associated to a DS code C

(considered also as an LDPC code). Then any erasure-burst of length σ +1 or less is guaran-
teed to be recoverable regardless of its starting position. In fact, the erasure-burst capacity lb
of a DS code is lower-bounded by lb ≥ σ +1. The erasure-burst-correction efficiency of the
code C is given by:

η =
lb

n− k
(6.30)

When η = 1, and therefore lb = n− k, then the code is said to be optimal for erasure-burst-
correction.

Table 6.3 displays a set of cyclic Difference-Set codes over GF(3), constructed from PG(m,q=

3) based on Theorem 2. The difference-set D is only displayed for small codes due to spatial
constraints.

Table 6.2: A set of ternary cyclic difference-set codes

s (n,k,dmin) r = k
n D

1 (13,6,5) 0.46 {0,1,3,9}
2 (91,54,11) 0.59 {0,1,37,39,51,58,66,69,82,86}

3 (757,540,29) 0.71 -
4 (6643,5346,83) 0.80 -

6.1.4.2 Encoding information data block using the code (91,54,11)3

We propose a double protection to data and header chunks using a set of DS codes presented
in Table 6.2. In this work, each byte is mapped to 6 ternary symbols (trits), that will be
modulated to a DNA sequence following Table 6.1. Note that the use of ternary symbols
avoids automatically the homopolymer runs constraint. To realize this scheme, a mapping
table of ASCII symbols and a set of 256 ternary sequences of length 6 must be fixed from
the set of possible sequences (729 sequences). Therefore, each datablock (DB) of length
k1 = 54 trits corresponds to 9 bytes of data information. Then each DB is encoded using the
DS code C1 with parameters (n,k,dmin) = (91,54,11), which adds 37 trits of redundancy for
protecting data.

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 167

For sake of scalability of the proposed scheme, we introduce a positive integer parameter
λ > 0, which acts as a multiplier for defining the length N of oligos such that the available
and current synthesis and sequencing technologies are capable to handle. Thus, the total
length of encoded data to modulate into DNA is given by:

N = λn (6.31)

Thus, in each data block of length n, the code C1 is capable to detect 10 error trits, and
to correct any error pattern of 5 trits or less. Additionally, the code C1 has an erasure-burst
capacity for correcting configurations of burst erasures in the stored nucleotides. We note that
the code C1 can be replaced by a longer DS code if the available technologies are suitable for
it.

6.1.4.3 Encoding the index header using the code (13,6,5)3

Information data is lost if the indexing headers are corrupted. Henceforth, a strong protection
to headers must be set up. In this work, we propose, for each oligo of length N (given by
(6.31)), a prep-ending index of length nH = 13, which corresponds to an encoded sequence
of kH = 6 trits using the DS code C2 over GF(3) with parameters (nH ,kH ,dminH) = (13,6,5).
Thus, with kH = 6 trits, it is possible to index 36 = 729 distinct oligos for each processed
file. Note that, similarly to C1, the code C2 is also capable of correcting erasure-bursts. The
weight enumerator polynomial AC2(x) of the code C2 is:

AC2(x) = 1+156x6 +494x9 +78x12 (6.32)

With the given proposition, the total length l of protected oligos including its indexing headers
is given by:

l = N +nH (6.33)

Consequently, with the proposed protection scheme, robust forward error correction is en-
sured for both data and indexing headers, while efficiency and scalability are provided.

The proposed encoding scheme for DNA data storage systems is fully described in Figure
6.9.

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 168

Figure 6.3: The proposed DNA data encoding scheme

6.1.4.4 Decoding DNA data

For decoding sequenced DNA oligos, each DNA chunk is demodulated to base-3, and the
header is decoded first using C2. Syndrome calculation can be performed using a simple
division of the encoded sequence by the generator polynomial g2(x) of the code C2. If er-
rors are detected (non-zero syndrome), a majority-logic decoding is performed for correcting
the header, or it can be decoded using the Maximum Likelihood. Then, decoding of data
information is performed by using the majority-logic decoding algorithm (OSMLGD), for
decoding each of the λ codewords of C1 contained in the oligo of length N.

6.1.5 Performance analysis

We propose to evaluate the proposed forward error correcting scheme for DNA data storage.
Performance analysis of the proposed scheme is performed based on the coding potential and
the net information density. Note that, due to the absence of the experimental materials, the
obtained results are based on an analytical study as in [40], which tends to approximate the
realistic case.

6.1.5.1 Coding Potential

Suppose that a DNA sequence is valid only if its GC content is within 0.5± cgc, and its
longest homopolymer length is up to m nucleotides.

6.1. Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems 169

The coding potential, b, represents the entropy of each nucleotides in valid sequences. The
coding potential per nucleotide is defined based on the GC and homopolymer constraints,
and is given by:

b = 2− 3log2 e
4m+1 −

log2

[
2Φ(2

√
lcgc)−1

]
l

− log2 K
l

(bit/nt) (6.34)

where l is the oligo length, m is the maximum homopolymer length, K is the index length and
φ(.) is the cumulative function of a standard normal distribution. In this study, a conservative
set of constraints has been chosen, as in [40], given by the following parameters: m = 3 and
cgc = 0.05. An oligo length of l = (3×91)+13 = 286 (nts) and λ = 3 are set to match our
proposed scheme.

By the given parameters, the obtained coding potential is b = 1.97 bits per nucleotide.

6.1.5.2 Net Information Density

In the proposed scheme, each byte is encoded into 6 nucleotides with a coding potential
of b = 1.97 bit/nt. A set of λ blocks of nine bytes is encoded into λn+ nH nucleotides.
Therefore, the net information density Dn of the proposed scheme is calculated by:

Dn =
72λ

λn+nH
(bit/nt) (6.35)

In this work, we have n = 91, nH = 13 and λ is a parameter to be optimized used for im-
proving the net density, which depends on the current sequencing technologies. When using
λ = 2, a net density of 0.74 bit per nucleotide is achieved. For λ = 3, the net density is
0.75 bit/nt. Note that the use of longer codes with higher rates can further increase the net
information density of the proposed scheme.

6.1.5.3 Comparison with previous works

Table 6.4 depicts a comparison between the proposed scheme and various DNA storage en-
coding schemes proposed in the literature. The comparison is performed based on a set of
parameters, such that a subset of these parameters are defined based on realistic experience.
Due to the absence of experimentation for the proposed scheme, the fields associated to these
parameters in Table 6.4 are omitted. Table 6.4 includes the length of input data in the experi-
ment, the coding potential, redundancy, robustness of dropouts, error detection and correction
existence in the scheme, and the full recovery parameter which indicates if the DNA oligos

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 170

were completely recovered in the experiment. Also the net and physical information densi-
ties are included, in addition to the realized capacity and the number of oligos used in the
experiment.

6.2 The Constructed OSMLD Codes for the 5G NR
Mobile Networks

6.2.1 Introduction

After many decades of continuous efforts devoted for the design of reliable mobile networks,
future generations of wireless communication systems have received a deep attention from
various academic and industrial research communities towards ultra fast, high capacity, low
latency and reliable communications over the air interface. Due to the requirements of next
generation wireless communications, including interconnection of various technologies and
spectrums, achieving ultra high throughput and low latencies, fast mobility, low-cost radio
network architecture, efficient waveforms and optimal radio-frequency models, many chal-
lenges are actually open for meeting all these requirements. The 5th generation New Radio
(5G NR) represents the latest standard for wireless communication systems, initially com-
pleted in June 2018 by the 3GPP in the release 15 of the RAN technical specifications [4]. In
contrast to previous generations of mobile networks (2G GSM, 3G CDMA, 4G LTE), the 5G
NR requires many new specifications for operating over many various frequency bands, and
for allowing the interconnection of different technologies. New radio propagation models are
supported in the 5G NR, in addition to new waveforms and modulation schemes, and efficient
channel coding schemes that support a wide range of coderates and blocklengths.

The timeline of the 5G standardization [2] is depicted in Figure 6.1.

6.2.2 Background on the 5G NR Mobile networks

In contrast to previous generations of mobile networks, the new 5G NR standard requires the
support of many upcoming new technologies operating over different spectrum frequency
bands, as well as the support of high capacity and ultra high throughput communications
with low latencies, in order to allow current and future connected user equipments (UEs)
to communicate with a high reliability and low latency. The 5G NR will allow to redefine
and connect various industries, including the automotive industry, e-Health, industrial au-

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 171

Ta
bl

e
6.

3:
C

om
pa

ri
so

n
of

D
N

A
st

or
ag

e
en

co
di

ng
sc

he
m

es

Pa
ra

m
et

er
C

hu
rc

h
et

al
.[

25
]

G
ol

dm
an

et
al

.[
51

]
G

ra
ss

et
al

.[
53

]
B

or
nh

or
te

ta
l.

[1
8]

B
la

w
at

et
al

.[
16

]
E

rl
ic

h
et

al
.[

41
]

T
hi

s
w

or
k

In
pu

td
at

a
0.

65
0.

75
0.

08
0.

15
22

2.
15

-
(M

by
te

s)

C
od

in
g

po
te

nt
ia

l
1

1.
58

1.
78

1.
58

1.
6

1.
98

1.
96

(b
its

/n
t)

R
ed

un
da

nc
y

1
4

1
1.

5
1.

13
1.

07
1.

05

R
ob

us
tn

es
s

N
o

R
ep

et
iti

on
R

S
R

ep
et

iti
on

R
S

Fo
un

ta
in

D
SC

to
dr

op
ou

ts

E
rr

or
de

te
ct

io
n

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

an
d

co
rr

ec
tio

n

Fu
ll

re
co

ve
ry

N
o

N
o

Y
es

N
o

Y
es

Y
es

-
N

et
in

fo
rm

at
io

n
0.

83
0.

33
1.

14
0.

88
0.

92
1.

57
0.

75
de

ns
ity

(b
its

/n
t)

R
ea

liz
ed

ca
pa

ci
ty

45
%

18
%

62
%

48
%

50
%

86
%

N
um

be
ro

fo
lig

os
54

,8
98

15
3,

33
5

4,
99

1
15

1,
00

0
1,

00
0,

00
0

72
,0

00
-

Ph
ys

ic
al

de
ns

ity
1.

28
2.

25
25

-
-

21
4

-
(P

by
te

s/
g)

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 172

Figure 6.4: 5G standardization timeline

tomation, immersive applications, the Internet of Things (IoT), smart homes, smart cities and
smart farming, etc.

Actually, besides academic communities, there are various industries that lead and drive the
current evolution of the 5G NR, including Qualcomm, Nokia, Ericsson, Huawei, and many
other companies, whose contributions are done in a collaborative business strategy in or-
der to meet the requirements of these challenges and to drive the ecosystem towards next
generation mobile communications. Additionally, automotive and smartphone form factors
industries are currently including modems that support the 5G NR, as well as network op-
erators that are continuously working on building the required radio access networks and
infrastructures. It is known that this generation of mobile communications will change how
people connect and communicate, as there are not only mobile phones and computers that
will use this technology, but everything is supposed to connect to the 5G networks, leading
the entire ecosystem to a massive and fast connectivity, implying the extension of our vision
to many new technologies and business models, and creating a lot of new job opportunities.
It is known that the 5G NR technology will be the key enabler and driver of the innovation
age in the next few years.

Current 5G development focuses on enabling technologies such as flexible baseband and
RF technologies, hybrid beamforming, massive MIMO systems, rapid prototyping and field
trials, and verification of compliance with the new standard specifications.

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 173

The most distinctive features of the PHY/MAC design of the 5G NR are not exhaustively
listed below:

• Network densification: In order to allow high capacity connectivity, the current radio
architecture must support a high density in both urban and rural areas, which requires
many efforts from network operators to meet these requirements. The use of massive
Multiple Input Multiple Output (massive MIMO) antenna arrays is a key to achieve
this task, including related beamforming issues. Also, network densification enables to
overcome the limitations of high frequency communications using milimetric waves, as
these waves are unable to travel long distances and are easily attenuated by obstacles.

• Ultra-high throughputs: Achieving ultra-high throughputs is a key requirement of the
5G networks, and this can be achieved by using wider spectrum bands and high band-
widths, in addition to the inclusion of carrier aggregation. High frequencies imply the
use of milimetric waves (mm waves), which leads to the investigation of new radio
propagation models that support these high spectrum bands, including tapped delay
line (TDL) and clustered delay line (CDL) channel models as specified in 3GPP TR
38.901. In the 5G NR standard, there are two frequency ranges that must be supported,
namely:

– FR 1: This frequency band includes frequencies below 6 GHz, that are supposed
to support high capacity and long range communications.

– FR 2: This frequency band supports the mm waves propagations, which is above
24 GHz, used for low latency and ultra-high throughput wireless communications.

• New waveforms: New flexible waveforms that support different technologies and spec-
trum bands, including the OFDM with a scalable multiplexing numerology [2] for
downlinks, and SC-FDMA for uplinks. More advanced multiplexing techniques are
still investigated for their eventual use [29, 151, 201].

• High-order modulations: For allowing high throughputs, various and high-order mod-
ulations are supported in the 5G NR, including the BPSK, QPSK, 16-QAM, 32-QAM,
64-QAM and 256-QAM modulations.

• Software-defined core networks: SDNs allow the smart management of the switching
between different technologies and spectrum bands as well as an efficient mobility
management, where the 5G core network is basically inspired from that of 4G LTE but
is much smarter and simpler.

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 174

• Flexible Time Division Duplex (TDD): In order to allow a flexibility in multiple-access
techniques, a different TDD numerology is adopted in the 5G NR that allows the use
of various slots durations including mini-slots for allowing short data communications.

• New channel coding schemes: With a wide range of coderates and blocklengths that
must be supported, in addition to a high data reliability, the 5G NR employs new chan-
nel coding schemes, including polar codes [8] for control channels, and protograph
LDPC codes for data channels. Note that these coding schemes were only adopted for
the eMBB applications of the 5G NR.

Figure 6.2 illustrates the considered frequency spectrum bands in the 5G NR standard.

Figure 6.5: 5G spectrum bands

The 5G NR supports many different applications that require different technical specifica-
tions. The most expected applications are as follows [65]:

• eMBB—Enhanced Mobile Broadband: For high-capacity and ultrafast mobile com-
munications for phones and infrastructure, virtual and augmented reality, mobile gam-
ing, ultra-HD video broadcast and streaming, haptic feedback.

• URLLC—Ultrareliable and Low Latency: For vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), cellular vehicle-to-everything (cV2X) communications, autonomous
driving, industrial automation, remote surgeries.

• mMTC—Massive Machine-Type Communications: For consumer and industrial
IoT, Industry 4.0 mission-critical machine-to-machine (MC-M2M) communications.

Thus, by providing higher bandwidth capacity than current 4G–supporting broadband, 5G
will enable a higher density of mobile broadband users and support ultra-reliable device-to-

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 175

device and massive machine-type communications. The key 5G parameters are displayed in
Table 6.1.

Parameter Value

Latency in the air link < 1 ms

Latency end-to-end < 10 ms

Connection density 100× vs current 4G LTE

Area capacity density 1 (Tbit/s)/km2

System spectral efficiency 10 (bit/s)/Hz/cell

Peak throughput
10 Gbit/s

(downlink) per connection

Energy efficiency > 90% improvement over LTE

Table 6.4: Key 5G Parameters

6.2.3 Protograph based LDPC Codes for Data Channels in 5G NR
eMBB applications

As mentioned before, two channel coding schemes were adopted in the 5G NR eMBB use
cases, namely polar codes for control channels, and multi-edge (protograph) LDPC codes
for data channels [136]. The main difference between protograph LDPC codes and other
coding schemes used in previous wireless communication systems, is that, protograph LDPC
codes are targeted to support a wide range of blocklengths and coderates, which is a key
requirement of the 5G systems.

Indeed, protograph LDPC codes [33, 34, 104, 138, 166] have shown to provide near capacity
performances over various propagation channels while resulting in diverse code parameters.
The main concept behind their construction is to encapsulate the macroscopic structure of the
desired LDPC codes in a compressed form, which is the base graph, also called protograph.
The graphical construction of the base graph, which is based on algebra and graph theory,

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 176

includes the most relevant obtained results from many decades of research in the topic of the
construction of powerful error correcting codes. The construction of efficient base graphs for
the 5G NR LDPC codes takes into consideration the following properties:

• Large girths, or equivalently, the absence of short cycles.

• Low-density, given by a small number of 1s in the structure of the parity-check matrices
derived from the protograph.

• The irregularity in the parity-check matrix helps to achieve capacity approaching LDPC
codes, especially for large blocklengths.

• Low error floors, governed by the existence of trapping sets in the structure of the
resulting parity-check matrices.

• The support of puncturing and shortening, in order to allow an efficient use of the
incremental redundancy HARQ (IR-HARQ).

• The support of various coderates by allowing the puncturing and shortening of some
columns.

• Including degree 1 and 2 variable nodes (VNs) have shown to provide performance
improvement.

• The use of a Repeat Accumulate (RA) structure in the base graph (i.e. dual diagonal
matrix) allows the simplification of the encoding process.

• The use of a quasi-cyclic structure of the base graph will allow to reduce the decoding
implementation complexity, by providing parallelizable layered decoding, as well as to
reduce and simplify the storage requirement of the base graph.

In the 5G NR, two base graphs were adopted for meeting all these requirements [136]. The
base graph 1 (BG1) is targeted to support large information blocklengths, ranging between
500 ≤ k ≤ 8448, and high coderates between 1

3 ≤ r ≤ 8
9 , while the base graph 2 (BG2) is

targeted to support smaller information blocklengths 40 ≤ k ≤ 2560, and lower coderates
1
5 ≤ r ≤ 2

3 . Additionally, rate matching, multiplexing and bit selection and block interleav-
ing techniques are designed to be used with these codes, where these procedures are well
presented in the standard [4].

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 177

The structure of the base graphs standardized for the 5G NR eMBB contains two sets of
parity-checks, namely the core check rows and extension check rows. The structure is a
concatenation of an LDPC code and a low-density generator matrix (LDGM) code. The
structure begins with a relatively high rate “core”; this is the LDPC part. The base graph
for the core has a small number of parity checks and some number (e.g. kbmax = 22) of
information variable nodes and mcore parity variable nodes. All additional variable nodes
are extension degree one variable nodes each connected to a unique check node whose other
variable node neighbors are taken from the core; this is the LDGM part. In general, the
degree one variable nodes are the extension nodes used for IR-HARQ but the first degree
one variable node is special for reasons of performance improvement, and is included in all
code rates. For structural reasons, the core portion of the graph does not perform very well
without including at least some of the first degree one parity bits [136]. The structure of the
base graphs of the 5G NR eMBB [136] is illustrated in Figure 6.3.

Figure 6.6: Sketch of base parity check structure for the 5G NR LDPC code

The base graph includes integer values typically lower than 384, than can be took modulo Z,
where Z is the lifting or expansion factor. Thus, each value of the base graph, after performing
the rate-matching, will correspond to a Z×Z circulant matrix, permuted by the value of the
base graph component taken modulo Z. The value of Z is calculated based on the considered
codelength n and coderate r for the desired parity-check matrix. There are 8 sets of lifting
sizes Z considered in the 5G NR, leading to different constructions of the parity-check matrix
[4]. The lifting sets and values considered in the 5G eMBB as well as the complete PR-LDPC
encoding procedure is included in [4].

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 178

In a typical hardware implementation of a quasi-cyclic LDPC decoder, there are Z processors,
where Z corresponds to the maximum lift value. These Z processors perform variable node
and check node update operations. More precisely, in each clock cycle, the Z processors are
working on one layer (row in the base graph) and processing Z edges in parallel. The decoder
performs Z variable node updates and at the same time performs Z check node updates of the
next layer. If the edge connectivity of the base graph is such that variable nodes are connected
to two consecutive layers, there is potential for a negative impact to decoder performance.
Indeed, when the second such layer is processed, the updated variable node operation may
not yet be available, so the potential gain from the previous layer processing is not available
to and does not benefit the performance of the current layer. This can be circumvented by
introducing additional delay in the update process, but that results in a slowing down of
the decoder, also potentially degrading performance. This problem can be avoided if the
consecutive layers are orthogonal, meaning they have no variable node neighbors in common.
Typically, this is not feasible due to the structure provided by the design constraints explained
above, however a quasi row-orthogonality is achieved with these standardized base graphs.

In the 5G NR LDPC codes, the encoding process is performed on-fly by using matrix decom-
position techniques. An efficient encoding method and a high-throughput low-complexity
encoder architecture for quasi-cyclic LDPC codes for the 5G NR standard was proposed
in [123]. By storing the quantized value of the permutation information for each submatrix
instead of the whole parity check matrix, the required memory storage size was considerably
reduced. In addition, sharing techniques were employed to reduce the required hardware
complexity.

In [91], an algebra-assisted method for constructing QC-LDPC codes with the properties
explained above was proposed. The authors presented a review of the encoding mechanism
and requirements of 5G LDPC codes, and presented cycle analysis for such emerging codes.
Then they have proposed a metric, referred to as weighted average number of cycles (WANC),
from the perspective of cycle structure for constructing the QC-LDPC codes that can support
multiple lifting sizes.

6.2.4 The Constructed OSMLD Codes for the URLLC and mMTC use
cases

The eMBB 5G NR is different from the URLLC and mMTC use cases, in the way that for the
later ones, both reliability and low-complexity are key requirements, while short information

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 179

blocklengths must be employed in transmissions. Additionally, memory storage requirements
of these scenarios are very limited, especially for the mMTC use case, where the connected
devices do not support a large memory storage. As a consequence, the 5G NR LDPC base
graphs 1 and 2 are not longer useful for these applications. In fact, new coding schemes must
be investigated for meeting these requirements, while good performances should be obtained
at the cost of low complexity and memory usage.

Typically, for the URLLC and mMTC applications, data length of dozen or few hundred bits
must be supported. However, it is very known that LDPC codes achieve near capacity perfor-
mance only for long datablocks, and when decoded with the BP-SP algorithm. The BP-SP
algorithm requires relatively a large memory storage and computational complexity, espe-
cially in the calculation of the CN update. Also, BG1 and BG2 require an on-fly encoding
procedure that require an additional latency. Moreover, the irregularity in the parity-check
matrices obtained by BG1 and BG2 is only useful for large blocklengths. Thus, the investiga-
tion of other candidate channel coding schemes is an interesting current research challenge,
as well as devising suitable decoding algorithms that provide an efficient tradeoff between
performance and complexity.

In [114], a white paper was published by R.G Maunder, actually founder and CTO of Accel-
erComm [3], who outlined a vision for 5G, in which channel coding is provided by a flexible
turbo code for most use-cases, but which is supported by an inflexible LDPC code for 20
Gbps downlink use-cases, such as fixed wireless broadband. Additionally, recently in 2019,
AccelerComm has achieved unprecedented performance in industry, and was successful to
reduce the 5G latency by up to 16x with the NR LDPC channel coding and to deliver high-
performance throughput thanks to their innovative FPGA implementation solutions. In [37],
short-packet data communications were investigated over MIMO fading channels. The same
authors have presented in a tutorial of IEEE Globecom 2018, a talk entitled “Short-packet
communications: fundamentals and practical coding schemes”. The authors have presented
a fundamental study of candidate coding schemes for the URLLC and mMTC 5G NR stan-
dards, where a comparison of efficient short channel coding schemes was presented. They
have emphasized their study on modern channel codes such as binary and non-binary LDPC
codes, tail-biting convolutional codes, turbo-codes and polar codes. They have concluded
that polar codes have shown very good performance in the short blocklength regime and also
for higher-order modulation. However, for achieving good performance, polar codes require
CRC aided successive cancellation list (CRC-SCL) decoding algorithm, which requires a
large computational complexity, where most connected devices operating in the URLLC and

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 180

mMTC use cases could not support those required resources. Later, an evaluation of LDPC
and polar coding schemes for the mMTC 5G terminology was presented in [130].

It is known that mMTC is about wireless connectivity to tens of billions of machine-type
terminals, and about availability, low latency, and high reliability. The main challenge in
mMTC is scalable and efficient connectivity for a massive number of devices sending very
short packets, which is not done adequately in cellular systems designed for human-type
communications. Some Physical and MAC layer solutions were proposed in [17] for the
mMTC applications.

In [161], performance comparison between different channel coding schemes was presented
for the use in URLLC applications in the 5G NR. It was shown that it is not possible to
find one coding scheme that outperforms all others for all considered block sizes and coding
rates. For short blocklengths, it was shown that LDPC and polar codes outperform turbo-
codes. However, the opposite was true for medium blocklengths. Other aspects play a key
role in the selection of suitable coding schemes, as implementation complexity, latency and
flexibility. Due to the implementation issues of list decoding and to the sequential nature of
the SC decoding algorithm, it was stated that the use of polar codes is uncertain at this stage.
Independently in [154], an overall study and comparison of short blocklength channel coding
schemes for the URLLC 5G NR applications was presented. The authors have established a
comparison between binary and non-binary LDPC codes, convolutional codes, turbo-codes,
polar codes and BCH codes, and they have identified that BCH codes provide the best error
rate performances when decoded with of the Ordered-Statistic Decoding (OSD) algorithm.
This result is straightforward as BCH codes are characterized by large minimum distances
compared to other codes, for the same codelengths and coderates. However, the OSD al-
gorithm requires a huge computational complexity which is not adequate for the URLLC
applications.

Intuitively, and based on all these studies and investigations in the literature, we emphasize
the benefits of the use of OSMLD codes as a promising candidate for the URLLC and mMTC
5G applications. The motivation behind our proposition is that, as shown in previous chap-
ters, OSMLD codes have the property of simple encoding and decoding algorithms, with
small storage requirements and low latency. It is also shown in the literature that for short
blocklengths, the introduction of irregularities in the parity-check matrix is no longer useful,
oppositely to long codes. Therefore, the use of regular structured OSMLD codes, along with
the proposed quantized gradient-descent majority-logic decoder (QGD-MLGD) in Chapter
4, is an interesting proposition with great potential for these applications. However, and

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 181

similarly to other coding schemes outlined by the previous studies above, the flexibility in
coderates and blocklengths is an important issue, in contrast to protograph LDPC codes. Be-
sides that, it is not sure whether URLLC and mMTC should benefit from this flexibility, as it
is possible that for many applications, only a set of dozen OSMLD codes should be stored in
the memory for meeting the requirements of the application.

As a consequence, we are currently working on the graphical construction of a new base
graph (BG3), suitable for short blocklength transmissions, and capable to generate a set of
OSMLD codes, similarly to BG1 and BG2. However, in our proposition, we will focus our
interest on short information blocklengths, and regular structure of parity-check matrices, as
well as a quasi-cyclic, or possibly, a cyclic structure of the generated parity-check matrices of
the designed BG3. The aim of this proposition is the construction of a new base graph, with
a minimum degree of irregularity (for maintaining good performance at short blocklenghs),
and with emphasizing on the orthogonality property that should be present for all the set of
symbols. Also, we will maintain the compatibility of our base graph BG3 with the standard-
ized lifting sizes already used for BG1 and BG2 in eMBB applications, and we will also
include the punctured columns and rows for compatibility with various coderates and with
the IR-HARQ.

Our proposition will be realized by the use of constrained optimization techniques, where
an objective function is devised in order to minimize it. The objective function to mini-
mize will consist of the bit error rate of the generated OSMLD codes with a given set of
parameters, namely a codelength n and coderate r, as well as a lifting size index. We will
eventually extend the minimization to other sets of parameters, iteratively, and possibly in-
troduce a multi-objective function that also try to minimize other parameters, as the weight
of the overall base graph. The constrained minimization will take into consideration a set
of constraints, especially devised based on the cycles constraints, as well as the existence of
punctured columns and extension rows. This proposition is actually under investigation, and
the mathematical modeling of this construction problem is currently under study. The main
goal is to propose a new base graph that competes the existing base graphs (BG1 and BG2)
for short information blocklengths, and giving better performance than polar codes and BCH
codes that are actually the major candidates for the URLLC and mMTC 5G NR applications.

For illustrating the benefits of cyclic OSMLD codes and their robustness compared to the
standardized LDPC codes in the 5G NR eMBB, Figure 6.4 depicts the simulation results of
a comparison at a coderate of r ≈ 0.61 of the BLER performance of the cyclic OSMLD code
with parameters (n,k) = (73,45) decoded with the proposed QGD-MLGD algorithm, versus

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 182

the 5G NR LDPC code with parameters (74,45), generated with the standardized BG2 and
decoded with the BP-SP algorithm, for a transmission over an AWGN channel with a QPSK
modulation. For the simulated OSMLD code, the parameters of the QGD-MLGD algorithm
are α = 0.4 and θ = 7, with an uniform quantization function with b = 7 quantization bits.

2.5 3 3.5 4 4.5 5 5.5 6

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100
B

L
E

R

Cyclic OSMLD code (73,45) - QGD-MLGD

5G NR BG2 LDPC code (74,45) - BP-SPA

Figure 6.7: BLER performance of the cyclic OSMLD code with parameters (73,45) de-
coded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with parameters
(74,45) generated with BG2 and decoded with the BP-SPA, for a coderate r ≈ 0.61

Its it shown in Figure 6.4 that the cyclic OSMLD code (73,45) outperforms significantly its
counterpart 5G NR LDPC code (74,45) generated with BG2, such that a lower decoding
complexity is employed using the QGD-MLGD algorithm, versus the BP-SP algorithm. At a
BLER of 10−3, our scheme achieves a gain up to 2.1 dB. This comparison shows that cyclic
OSMLD codes are better than the current standardized LDPC codes in the 5G NR, especially
for coderates above 0.5. The regular structure of the OSMLD code is a key advantage, in
addition to its higher minimum distance, and its structure which requires lower encoding and
decoding complexities.

Now for a coderate r ≈ 0.64, we depict in Figure 6.5 a BLER comparison between the cyclic
OSMLD code with parameters (357,227) and decoded with the QGD-MLGD algorithm,
versus the 3GPP 5G NR LDPC code (356,227) generated with BG2 and decoded with the
BP-SPA. The same quantization levels and transmission parameters are considered as in the
previous comparison, and the parameters of the QGD-MLGD algorithm are α = 0.2 and
θ = 8 with b = 7 quantization bits.

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 183

0 1 2 3 4 5 6

SNR (dB)

10-4

10-3

10-2

10-1

100

B
L

E
R

5G NR BG2 LDPC code (356, 227) - BP-SPA

Cyclic OSMLD code (357, 227) - QGD-MLGD

Figure 6.8: BLER performance of the cyclic OSMLD code with parameters (357,227) de-
coded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with parameters
(356,227) generated with BG2 and decoded with the BP-SPA, for a coderate r ≈ 0.64

Figure 6.5 shows that the channel coding scheme based on Cyclic OSMLD codes decoded
with the QGD-MLGD algorithms provides a significant performance improvement over the
3GPP 5G NR quasi-cyclic LDPC code generated with BG2. A significant coding gain of
up to 0.75 dB is achieved by our scheme at a BLER of 10−3. Note also that the waterfall
region begins earlier than the 5G LDPC code, where the later suffers from a extended erro-
neous region until 3 dB, compared to less than 2 dB for our proposed scheme. The minimum
channel SNR that supports reliable iterative decoding of asymptotically large codes is called
decoding threshold. Similarly to the previous figure, this considerable performance improve-
ment is obtained at a cost of lower encoding and decoding complexities, by employing the
proposed QGD-MLGD algorithm, which requires lower computational complexity than the
BP-SP decoding algorithm.

For a higher coderate r ≈ 0.70, Figure 6.6 presents the BLER comparison of the cyclic
OSMLD code (803,559) decoded with the QGD-MLGD algorithm, with parameters α = 0.1
and θ = 0, compared with the 3GPP 5G NR LDPC code (804,559) generated with BG2 and
decoded with the BP-SP algorithm.

As shown in Figure 6.6, the proposed OSMLD code (803,559,29) decoded with the QGD-
MLGD algorithm provides a significant improvement over the 3GPP LDPC code generated

6.2. The Constructed OSMLD Codes for the 5G NR Mobile Networks 184

0 1 2 3 4 5 6

SNR (dB)

10-4

10-3

10-2

10-1

100

B
L

E
R

5G NR BG2 LDPC code (804, 559) - BP-SPA

Cyclic OSMLD code (803, 559) - QGD-MLGD

Figure 6.9: BLER performance of the cyclic OSMLD code with parameters (803,559) de-
coded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with parameters
(804,559) generated with BG2 and decoded with the BP-SPA, for a coderate r ≈ 0.70

with BG2 with parameters (804,559) and decoded with the BP-SP algorithm. Clearly, a
significant coding gain of up to 1.45 dB is obtained at a BLER of 10−3. The iterative decoding
threshold of our proposed scheme is observed approximately at an SNR of 2.25 dB versus
4.25 dB in the 3GPP 5G NR quasi-cyclic LDPC scheme.

Now for a coderate r ≈ 0.83, Figure 6.7 illustrates the BLER comparison of the cyclic
OSMLD code (3471,2873) decoded with the QGD-MLGD algorithm, with parameters α =

0.05 and θ = 3, compared with the 3GPP 5G NR LDPC code (3472,2873) generated with
BG1 and decoded with the BP-SP algorithm.

Figure 6.7 shows that the constructed cyclic OSMLD code with parameters (3471,2873)
outperforms the 3GPP LDPC code generated with BG1 with parameter (3472,2873), where
the former is decoded with the proposed QGD-MLGD algorithm, while the later is decoded
with the BP-SPA. An approximate coding gain of about 0.86 dB is obtained at a BLER of
10−2, and approximately the same coding gain is observed at a BLER of 10−3. The proposed
scheme shows an iterative decoding threshold at 3.5 dB, while in the 5G 3GPP scheme the
threshold is observed at 4.5 dB, providing a gain of 1 dB.

The presented performance improvements of OSMLD codes when decoded with the low-
complexity QGD-MLGD algorithm compared to the 5G NR LDPC codes emphasize the

6.3. Conclusion 185

3.5 4 4.5 5 5.5

SNR (dB)

10-4

10-3

10-2

10-1

100

B
L

E
R

5G NR BG1 LDPC code (3472, 2873) - BP-SPA

Cyclic OSMLD code (3471, 2873) - QGD-MLGD

Figure 6.10: BLER performance of the cyclic OSMLD code with parameters (3471,2873)
decoded with the QGD-MLGD algorithm versus the 3GPP 5G NR LDPC code with parame-
ters (3472,2873) generated with BG1 and decoded with the BP-SPA, for a coderate r ≈ 0.83

benefits of the construction of new base graphs for the 5G NR that include the character-
istics of structured OSMLD codes, and show that these later codes are the most promising
candidates for high coderate channel coding schemes in the next generation wireless com-
munication systems. This motivate also our current project to include our new constructed
base graphs in the URLLC and mMTC use cases in the 5G NR, to meet all the standard
requirements of these communication systems.

6.3 Conclusion

In the first part of this chapter, we have emphasized that DNA data storage systems represent
the most suitable candidates for high reliability and long-term (thousands years) storage of
massive governmental, research and industrial archival data in the next few years. We have
presented an overview of the DNA channels and modulation schemes, as well as a literature
review on the forward error correcting schemes already proposed for DNA data storage sys-
tems. We have proposed a robust cost-effective DNA encoding scheme with a net information
density of 0.75 bit per nucleotide, under realistic parameters, allowing to detect and correct
errors in DNA oligos, using cyclic ternary difference-set codes. The proposed system aims
to ensure the protection of both information and indexing headers from symbol-flipping and

6.3. Conclusion 186

erasure errors by the use of two different DS codes, with less redundancy compared to many
previous works, and with a simple majority-logic decoding process providing a significant
reduced data storage and decoding cost, and a high DNA information density. As shown in
this chapter, the proposed scheme is scalable and may be improved by different ways, based
on the optimization of the parameters involved in the designed system. With the current
evolution of synthesizing and sequencing technologies, longer codes with higher correction
capacities can be considered in the proposed scheme for future DNA data storage mediums.

In the second part of this chapter, we have presented a brief overview of the features and
current evolution of the 5G NR standard, as well an outline on the standardized protograph
LDPC codes in the eMBB 5G use cases. We have established a state of art on the current
evolution of the propositions related to candidate channel coding schemes for the URLLC
and mMTC applications, where comparison between different schemes and the relevant re-
sults found in the previous works were presented comprehensively. We finally described our
current contribution in progress, which consists of the construction of a new base graph for
generating regular OSMLD codes for short blocklength transmissions suitable for the use in
the URLLC and mMTC 5G NR applications, and adequate to be decoded using the proposed
QGD-MLGD algorithm. This construction is essentially based on constrained optimization
techniques as well as various combinatorial design objects, that take into consideration a set
of constraints imposed on the BG3 in order to meet the requirements of these next generation
applications. The motivations behind the use of OSMLD codes for the URLLC and mMTC
applications were also given in this part, based on the established literature review of the cur-
rent results in the state of art, as well as some performance comparisons between OSMLD
codes and the current 3GPP standardized 5G NR LDPC codes, which have shown that cyclic
OSMLD codes outperform significantly the 5G NR quasi-cyclic LDPC codes standardized by
the 3GPP for the eMBB use cases, at the cost of lower decoding and encoding computational
complexities, and lower latency.

Chapter 7

Conclusions and future directions

7.1 Concluding remarks

This thesis has focused on majority-logic decodable codes, their construction based on fi-
nite geometries and combinatorial designs, their iterative decoding as well as some of their
applications in wireless communication systems and DNA data storage technologies. The
major benefits on considering structured majority-logic decodable codes with mathemati-
cal constructions are their guaranteed code properties, simplicity in encoding and decoding
requiring low-complexity, and low storage requirements, where these features are very ben-
eficial for modern communication, data storage and security systems. These properties are
not easily achieved using random constructions, and require many difficult constraints to take
into considerations when designing these codes.

We have presented in the first part of this thesis a classification of majority-logic decodable
codes, the cyclic, quasi-cyclic and non cyclic ones, as well as those that require only one-
step orthogonalization process and two orthogonalization steps, while the generalization to
multi-step is straightforward. The background used for this classification includes finite ge-
ometries and balanced incomplete block designs, as well as other designs including various
types of difference-sets and difference-families. This classification was useful for a complete
understanding of different mathematical constructions of majority-logic decodable codes for
an eventual future exploration of other advanced combinatorial and geometrical design tech-
niques.

In the second part of this thesis, and based on the first part, we have proposed to investigate
the construction of new cyclic OSMLD codes based on algebraic background related to cyclo-

187

7.1. Concluding remarks 188

tomic cosets and the parity-check idempotents. A literature review of the existing exhaustive
search constructions was presented, and the construction problematic was detailed for further
simplification and for more flexibility. A mathematical modeling of the construction problem
as a fitness function was introduced for exploiting global optimization techniques for solving
the problem, and for reducing the search space dimension. Then a flexible construction based
on genetic algorithms was proposed, consisting of minimizing the devised objective function
that represents the construction problem. This proposition had led us to a large database of
new cyclic binary and non-binary OSMLD codes, never presented in the literature before.
The main advantage of our new design algorithm is a diversity in code lengths and coderates,
ranging from short, moderate to very long code lengths.

The third part of this thesis was dedicated to the iterative decoding of OSMLD codes, where
an extensive literature review of the existing decoding algorithms was presented, along with
an overall comparison between previous decoding techniques in terms of computational com-
plexity, average number of decoding iterations and error rates. We have reviewed gradient-
descent decoding of error correcting codes, and we have devised a new objective function that
represents the decoding problem of OSMLD codes. We have proposed a gradient-descent
majority-logic decoder (GD-MLGD) along with its quantized version (QGD-MLGD), and
we have shown by simulations that proposed schemes outperform significantly the state of
art, at the cost of a reasonable complexity, emphasizing the benefits of the proposed decoding
schemes for energy-constrained and low-complexity communication systems, that require
both high performance and low-complexity. We have also presented an analysis of erroneous
decoding decisions of the proposed algorithms, along with a statistical study where false
converged codewords are of interest. We have concluded with some interesting perspec-
tive towards exploiting artificial neural networks for devising a classifier of false converged
codewords, by suitably studying the dynamic and evolution of the syndrome weight during
decoding iterations, where these distributions are considered as stochastic processes.

The contribution is Chapter 4 had led us to a new general interpretation of all the existing
majority-logic decoding algorithms as a gradient-descent maximization of a particular objec-
tive function, here we have devised for each algorithm an appropriate objective function that
coincides exactly with the reliability update in the original proposition. Furthermore, we have
devised new update rules derived from other variants of the gradient-descent. Also, a more
general decoding framework for linear block codes was proposed, based on a constrained
optimization mathematical model, where the Augmented Lagrange Method of Multiplier al-
gorithm was employed for addressing the decoding problem. This contribution results in a

7.1. Concluding remarks 189

new direction toward a universal improvement approach of the existing decoding algorithms,
based on the mathematical model of the problem.

Another contribution that was not presented in this report is a new iterative decoding of
TSMLD codes derived from Euclidean geometries. A literature review on the existing pre-
vious works and an overall comparison of these decoding algorithms was established. We
have proposed a new decoding algorithm, namely the two-step iterative threshold decoding
algorithm (TS-ITD) with is quantized version, which aims to optimize the trade-off between
performance and complexity for decoding TSMLD codes. The proposed algorithm exploits
the two-step orthogonality structure of TSMLD codes, and overcomes the performance degra-
dation provided by the belief-propagation sum-product decoding algorithm, due to the large
number of short cycles in the dual structure of these codes. Simulation results have shown
that the proposed algorithms outperform all the previous decoding approaches, at the cost of
a relatively low-computational complexity. This contribution was not presented in this report
as it is not yet published, and we are working on more improvements of this proposition by
proposing a custom deep neural network to be hybridized with the proposed decoder.

The last part of this thesis included two applications of OSMLD codes, the first one in some
applications of the 5G NR, and the second one in DNA digital data storage systems. In the 5G
NR, especially in the URLLC and mMTC use cases where short information block lengths
and low-computational complexity are required, we have emphasized the benefits of cyclic
OSMLD codes in meeting the requirements of these standards. We have presented a brief
literature review on previous forward error correction schemes, considered as candidates for
their eventual use in these standards, along with a comparison of the performance of these
schemes with those provided by cyclic OSMLD codes. We have shown that for high coder-
ates, cyclic OSMLD codes are more advantageous and provide better error rate performances
with lower encoding and decoding complexity, in addition to lower storage requirements.
These results show that cyclic OSMLD codes are appropriate for energy-constrained com-
munication systems in 5G NR mMTC applications, as well as for the 5G NR URLLC where
both high performance and low-complexity are of interest. OSMLD codes can also be key
candidates for other applications such as IEEE 802.15.6 standards for body area networks,
for UAVs and drones, defense systems, satellite and underwater communications.

The second application includes the application of cyclic ternary difference-set codes in DNA
data storage systems. This technology represents a promising candidate for next generation
massive data storage, achieving long-term storage and maximum security, without requiring
high-cost and regular maintenance. We have outlined some preliminaries about this data stor-

7.2. Future research directions 190

age technologies, by establishing a comprehensive literature review on the evolution of this
topic, along with the introduction of DNA channels and modulations in an information the-
ory point of view. We have also provided the historical evolution of forward error correction
schemes already proposed for DNA data storage, with the obtained performance for each sys-
tem. Then we have proposed a new forward error correction scheme aiming to protect DNA
oligos against symbol flipping and burst-erasure errors, where both information and indexing
headers data are protected. The new proposed scheme has an advantage of low-complexity
encoding and decoding, making synthesizing and sequencing encoded symbols easier and
requiring lower costs compared to previous schemes. The proposed system is scalable with
regards to the current synthesizing and sequencing technologies, and the presented compari-
son with previous works has shown that the obtained performances are competitive with the
current state of art.

7.2 Future research directions

The classification of MLGD codes led us to consider the decoding of many known algebraic
error correcting codes using majority-logic decoding algorithms, instead of other decoding
algorithms that require more computational complexity. For instance, we have figured out
that Quadratic Residues (QR) codes can be considered cyclic MSMLD codes, where their
construction is derived from Quadratic residues difference-sets. Other residues codes can be
derived from biquadratic residues, biquadratic residues with zero, octic residues and octic
residues with zero difference-sets. One interesting future direction is the exploration of fur-
ther combinatorial designs for constructing various new OSMLD and MSMLD codes, and
considering many known families of codes as MLGD codes. Further combinatorial designs
can be explored from the books [27,57], where many advanced designs were presented. Such
combinatorial designs include Bhaskar Rao designs, self-orthogonal Latin Squares, Pairwise
Balanced designs, including group divisible designs, balanced tournament designs, block-
transitive designs, frequency designs and hypercubes, nested designs and quasi-symmetric
designs...

Another interesting direction is the consideration of these designs over other composed finite
groups, yielding to multi-dimensional MLGD codes, where the indeterminate is not only x,
but many indeterminates are considered. Moreover, the exploration of the construction of
OSMLD codes over non-Abelian groups is another important future direction. One inter-
esting mathematical open problem in coding theory related to this topic is to find if there is

7.2. Future research directions 191

a duality and MacWilliams formula for codes over non-Abelian groups, and to discover a
subclass of non-Abelian groups for which a duality and a MacWilliams formula exist.

In the construction of OSMLD codes, an important future direction includes the exploration
of random construction techniques using constrained optimization techniques, where the con-
struction problem of OSMLD codes can be formulated using an objective function, in addi-
tion to a set of constraints that represent the mathematical conditions for obtaining powerful
OSMLD codes randomly, where the irregularity can be introduced, similarly to the PEG
and ACE construction algorithms. This direction includes the introduction of the flexibility
and the support of IR-HARQ retransmission techniques, by appropriately designing rate-
compatible base graphs that incorporate the properties of OSMLD codes, rather that one
parity-check matrix per code.

In the topic of decoding OSMLD codes, future research directions include the investigation
of the finite precision of quantization functions, where other quantization functions can be
explored for further performance improvement of the proposed QGD-MLGD algorithm. Ad-
ditionally, the analysis of false converged codewords can be continued towards devising a
neural networks based technique for the classification of false decoding decisions during iter-
ations. The statistical analysis of these scenarios can pursued in order to achieve an optimal
strategy for classifying these use cases, aiming to improve the performance of the proposed
MLGD algorithms. As shown in Chapter 4, the proposed algorithms include extra parame-
ters, namely the step-descent α , the overscaling factor β and the offset factor θ , where we
have considered these parameters to be fixed after numerical optimization. An interesting
future direction is to introduce dynamism in these parameters with respect to the decoding
iterations as well as the channel conditions. One such possible technique is the use of artifi-
cial deep neural networks for training the proposed decoders for classifying the appropriate
values of these parameters depending on the dynamic of the decoder as well as the chan-
nel conditions. This perspective includes the generalization to other transmission channels,
namely fading channels with the combination with high-order modulation techniques, in-
cluding channels for applications to wireless body area networks (802.15.6 standard) and
taped delay line channels for 5G networks, that take into consideration the multipath prop-
agation effect of the signals. Furthermore, the design of other quantization functions using
deep learning techniques is an interesting direction that might lead to significant performance
improvement of the QGD-MLGD algorithm, and to dynamically learn the quantization func-
tion with respect to various channels and codes. Another important future direction is to
exploit other local optimization techniques as well as other variants of the Gradient-Descent

7.2. Future research directions 192

technique in order to improve the performance of the GD-MLGD algorithm.

As shown in Chapter 5, we have proposed an universal view of all majority-logic decoding
algorithms as a gradient-descent maximization of an objective function. Therefore, it will
be interesting to investigate how to devise an optimal objective function that represents the
decoding problem of OSMLD codes. This improvement needs only mathematical investiga-
tions and knowledge instead of algorithmic considerations, and the computational complex-
ity depends only on the first-order derivatives, which is an important feature of the proposed
models. Another interesting direction is to investigate other local optimization techniques in
order to solve those mathematical optimization problems.

Another interesting future direction is the application of the proposed decoding schemes to
decode protograph LDPC codes already adopted in the 5G NR eMBB use cases, that was
standardized by Qualcomm, presented in the paper of Tom Richardson [136] which details
their performance as well as their design, such that this work was supported and standardized
by Qualcomm Incorporated [2]. The main aim is to emphasize the benefits of the proposed
approach in terms of satisfying robust performance at the cost of low computational com-
plexity compared to the BP-SP algorithm.

Perspectives of our contribution that was not presented in this report, concerning the iterative
decoding of TSMLD codes, include the generalization of the proposed algorithms TS-ITD
and TS-QITD to MSMLD codes, as well as the performance evaluation of decoding other
TSMLD codes derived from different construction techniques. Similarly to Chapter 4, a
future direction is the optimization of the extra parameters, including the overscaling factor
α , the attenuation factor λ and the offset parameter θ to different transmission scenarios.
This can be achieved by introducing dynamism in these variables with respect to the channel
conditions and the dynamic of the decoder during iterations. The use of artificial intelligence
is a key challenge towards optimizing these parameters by suitably devising a classifier based
on a large data-set of decoding use cases. The use of deep neural networks is a key solution
to prevent the manual tuning of the parameters of the algorithm, by suitably learn the optimal
values of these parameters for various SNRs. Moreover, a future direction is to emphasize
the benefit of cyclic TSMLD codes along with the proposed decoding algorithms compared
to BCH codes, currently used in various wireless communication standards. This is somehow
connected to the fact that we have decoded the BCH code with parameters (n,k) = (63,45)
using the TS-(Q)ITD algorithms, and according to our knowledge, we have obtained the best
performance ever presented in the literature for this code, except when it is decoded with the
Ordered Statistic Decoder (OSD) which requires a significant complexity. Thus, decoding

7.2. Future research directions 193

BCH codes using multi-step majority-logic decoders is a key direction for achieving near
optimal performance for this interesting class of codes.

Finally, future research directions on applications of OSMLD codes include the analysis of an
overall comparison between various coding schemes compared to cyclic OSMLD codes, for
the eventual use in future generation energy-constrained 5G NR mMTC data transmissions,
as well as for the URLLC use cases. Due to the major benefits of regular OSMLD codes
especially for short blocklengths, a future perspective consists of the construction of new
base graphs of LDPC codes (PR-LDPC) suitable for short length data communications, by
using constrained optimization and machine learning techniques, and possibly by the use
of other combinatorial block designs. For DNA data storage systems, current and future
investigations include the proposition of a framework for the simulation of the performances
of DNA data storage schemes, including forward error correction, DNA modulation and DNA
channels with the imposed constraints. Future directions include additionally the proposition
of other coding schemes, for instance the design of new constrained error correcting codes
that take into account the homopolymer and the GC content constraints, that align with the
current evolution of sequencing and synthesizing technologies provided by Illumina, which
is a leading company specialized in developing sequencing and array-based solutions for
genetic research [1].

Appendix A

Difference-families and Skolem sequences

The following definitions of difference-families and Skolem sequences are taken from [27].

Definition A.1 (Difference-Families). Let G be a group of order v. A collection {B1,B2, ...,Bt}
of k-subsets of G form a (v,b,r,k,λ) difference family if every non-identity element of G

occurs λ times in ∆B1∪ ...∪∆Bt . The sets Bi are base blocks. A difference family having at
least one short block is partial.

Example A.1. B1 = {0,1,3,5,10,11}, B2 = {0,6,1,7,3,9}, and B3 = {0,4,8,1,5,9} form
a (12,6,5) difference family over Z12. The stabilizers of B1, B2, B3 are {0}, {0,6}, and
{0,4,8}, respectively [27].

Definition A.2 (Skolem sequences). A Skolem sequence of order n is a sequence S=(s1,s2, ...,s2n)

of 2n integers satisfying the conditions

1. for every k ∈ {1,2, ...,n} there exist exactly two elements si,s j ∈ S such that si = s j = k,
and

2. if si = s j = k with i < j, then j− i = k.

Skolem sequences are also written as collections of ordered pairs {(ai,bi) : 1≤ i≤ n, bi−ai = i}
with

⋃n
i=1 {ai,bi}= {1,2, ...,2n}.

Example A.2. A Skolem sequence of order 5 is defined by S = (1,1,3,4,5,3,2,4,2,5) or,
equivalently, the collection {(1,2),(7,9),(3,6),(4,8),(5,10)}.

194

Difference-families and Skolem sequences 195

Definition A.3 (Extended Skolem sequence). An extended Skolem sequence of order n is a
sequence ES = (s1,s2, ...s2n+1) of 2n+1 integers satisfying conditions 1 and 2 of the defini-
tion A.44 and

3. there is exactly one si ∈ ES such that si = 0. The element si = 0 is the hook or zero of
the sequence.

Definition A.4 (Hooked Skolem sequence). A hooked Skolem sequence HS of order n is an
extended Skolem sequence of order n with s2n = 0.

Example A.3. A hooked Skolem sequence of order 6 that is also an extended Skolem se-
quence of order 6 is given by: ES = (1,1,2,5,2,4,6,3,5,4,3,0,6).

Appendix B

A set of Cyclic OSMLD codes constructed
using the OSMLD-GA algorithm

The tables below list a set of cyclic binary and non-binary OSMLD codes constructed with the
OSMLD-GA algorithm. Although for each codelength n, many equivalent and non equivalent
codes were constructed with various dimensions and minimum distances, we restrict our
illustration to only one code with the higher minimum distance for each codelength n, so that
we list a set of the constructed OSMLD codes in an increasing order of minimum distances
with respect to the codelengths, and with coderates r > 0.5. For a fixed code length, we only
present the code with higher minimum distance besides that there are other codes with higher
coderates. Sometimes the minimum distance is not following the increasing order, just to
represent some interesting codes with relatively high coderate, however we mainly focus on
a representation following an increasing order of dmin. Note that a complete list of thousands
of constructed cyclic OSMLD codes will be presented soon in an online database of our
research team, along with their corresponding generator polynomials and orthogonal parity-
check equations. Note that the set ΩE(x) is sufficient to characterize an OSMLD (LDPC)
code, along with its parity-check matrix and its generator polynomial.

196

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 197

Table B.1: A set of Cyclic binary OSMLD codes with code-
lengths 7≤ n≤ 1057 constructed using the OSMLD-GA al-
gorithm

n k dmin J r = k
n ΩE(x)

7 3 4 3 0.43 {1}

15 7 5 4 0.47 {7}

21 11 6 5 0.52 {3,7}

31 15 6 5 0.48 {15}

63 37 9 8 0.59 {13,21}

73 45 10 9 0.62 {25}

93 61 11 10 0.66 {23}

105 55 11 10 0.52 {7,15,45}

217 153 16 15 0.70 {37}

255 175 17 16 0.69 {3,13}

273 191 18 17 0.70 {67,91,117}

315 213 19 18 0.68 {3,35}

345 173 20 19 0.50 {15,23,161}

357 227 20 19 0.64 {51,85,119,133}

465
337 21 20 0.72 {97}

285 22 21 0.61 {45,105,155,217,225}

511 303 22 21 0.59 {21,27,219}

527 273 24 23 0.52 {17,31,119,255}

585 393 25 24 0.67 {29,43}

765 637 25 24 0.83 {127}

803 559 29 28 0.70 {33,73,275}

819 515 30 29 0.63 {41,91,195,273,351}

861 577 30 29 0.67 {41,49,369}

1057 813 34 33 0.77 {109,353,453}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 198

Table B.2: A set of Cyclic binary OSMLD codes with code-
lengths 1059≤ n≤ 2001 constructed using the OSMLD-GA
algorithm

n k dmin J r = k
n ΩE(x)

1023 781 33 32 0.76 {35,45,179,341}

1071 767 34 33 0.72 {29,255,459}

1143 749 35 34 0.66 {9,127,261,387,423}

1155
825 30 29 0.71 {105,143,231,495}

665 35 34 0.58 {133,187,385}

1157 815 35 34 0.71 {39,89,429}

1197
763 31 30 0.64 {133,135,285}

707 36 35 0.59 {181,399,437,513,589}

1209 817 35 34 0.68 {31,217,221}

1235 881 35 34 0.71 {57,65,247}

1271 695 36 35 0.55 {41,111,123,205}

1275 739 37 36 0.58 {105,119,475}

1285 737 37 36 0.57 {13,159,257}

1287 819 37 36 0.64 {117,275,319,429}

1305 721 37 36 0.55 {69,145,435}

1335
947 37 36 0.71 {89,195,267,285,445,623}

831 38 37 0.62 {65,135,267}

1359 907 37 36 0.67 {135,151,153}

1365
813 37 36 0.60 {25,143,469}

741 38 37 0.54 {37,65,195,309,637}

1395 983 38 37 0.70 {15,105,217,225}

1419 885 39 38 0.62 {121,129,143}

1457 739 39 38 0.51 {31,47,235,705}

1479
915 37 36 0.62 {29,51}

753 39 38 0.51 {51,261,493}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 199

1495 1073 39 38 0.72 {65,161,299,325}

1513 1079 39 38 0.71 {89,221,267,323}

1519 1095 40 39 0.72 {21,31,217}

1533 1053 37 36 0.69 {65,125}

1547
901 39 38 0.58 {129,221,273,663}

815 40 39 0.53 {15,289,663}

1561 781 41 40 0.50 {21,669}

1581 1069 41 40 0.68 {181}

1615
1173 35 34 0.73 {85,399,703}

833 39 38 0.52 {85,95,247,323}

1617 1191 41 40 0.74 {33,147,385,693}

1635 975 41 40 0.60 {95,327}

1645 827 42 41 0.50 {47,175,235,705}

1677 1229 41 40 0.73 {117,129,143}

1683 1251 41 40 0.74 {153,165,187,297,363}

1705 1065 41 40 0.62 {39,171}

1725 1041 43 42 0.60 {69,125}

1755 1453 43 42 0.83 {59,195}

1785

1225 41 40 0.69 {77,217,255,301,315,595,765}

1157 42 41 0.65 {85,133,259,637,765,777}

1055 43 42 0.59 {31,221,357,595}

1827
1197 43 42 0.65 {63,319,609,899}

1113 44 43 0.61 {105,203,783,899}

1905
1521 43 42 0.80 {85,213}

1099 45 44 0.58 {25,221,635}

1935
1409 43 42 0.73 {135,165,301,645}

1255 45 44 0.65 {57,301,903}

1953
1537 41 40 0.79 {105,167}

1251 45 44 0.64 {9,155,315,403,483,651}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 200

1971 1195 45 44 0.61 {87,143,219,657}

1995 1243 46 45 0.62 {19,75,171,855}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 201

Table B.3: A set of Cyclic binary OSMLD codes with code-
lengths 2003≤ n≤ 4001 constructed using the OSMLD-GA
algorithm

n k dmin J r = k
n ΩE(x)

2047 1167 45 44 0.57 {169,245,699,759}

2049 1365 45 44 0.67 {13,87}

2093 1229 46 45 0.59 {39,437}

2139 1101 47 46 0.51 {115,207,253,345,465,759}

2145 1439 47 46 0.67 {187,195,325,451,715}

2193 1567 47 46 0.71 {17,187,387,731,817}

2261 1239 49 48 0.55 {57,323,527,969}

2289
1623 48 47 0.71 {109,245,763,981}

1195 49 48 0.52 {53,109,327,981}

2325 1325 49 48 0.57 {75,155,175,397,525,1085}

2331 1423 49 48 0.61 {203,259,333,999}

2359 1369 49 48 0.58 {119,131,337,1011}

2365 1421 49 48 0.60 {129,209}

2387 1327 49 48 0.56 {407,497,511,819,1023}

2317 1215 50 49 0.52 {47,51,423,799,893}

2415 1995 50 49 0.83 {105,161,253,345,525,575,805}

2475 1405 51 50 0.57 {25,171}

2555 1291 52 51 0.51 {219,255,365,375,855,915}

2665 1637 53 52 0.61 {13,41,195}

2667 1511 53 52 0.57 {15,381,497,609,651}

2691 1733 53 52 0.64 {115,195,299,667}

2759 1737 54 53 0.63 {31,267,279,403,445,979,1335}

2821 1733 54 53 0.61 {31,91,195,273,403,637,1001,1209}

2829 1897 54 53 0.67 {205,253,615}

2907 2085 55 54 0.72 {119,425,513,969,1083}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 202

2937 2135 55 54 0.73 {33,89,267,363,445,979}

3003 1737 56 55 0.58 {33,253,273,429,455,715,1001}

3045 1817 56 55 0.60 {145,175,377,435,725}

3135 2191 57 56 0.70 {11,551}

3213 2021 57 56 0.63 {63,255,381,527}

3255 2135 58 57 0.66 {225,245,483,651,735,1395}

3465 1993 60 59 0.58 {11,99,315,363,495,525}

3471 2873 60 59 0.83 {39,89,195,623,1157,1287}

3575 1959 61 60 0.55 {39,55,385,605,715}

3627 2475 61 60 0.68 {391}

3641 2141 61 60 0.59 {191,549}

3795 2539 63 62 0.67 {55,69,667}

3843 2241 63 62 0.58 {55,69,667}

3861 2315 63 62 0.60 {117,143,231,351,957}

3895 2585 63 62 0.66 {95,133,205,779}

3927 2311 64 63 0.59 {55,357,595,693,1463,1683}

3937 2507 64 63 0.64 {31,201,651,961,1953}

3999 2519 64 63 0.63 {43,129,403,473,645,651,903}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 203

Table B.4: A set of Cyclic binary OSMLD codes with code-
lengths 4003≤ n≤ 6001 constructed using the OSMLD-GA
algorithm

n k dmin J r = k
n ΩE(x)

4005 3303 64 63 0.82 {75,89,267,445,801,1485,1869}

4017 2013 64 63 0.50 {117,721}

4029 2029 64 63 0.50 {51,79,237,1501}

4059 3459 61 60 0.85 {317}

4085 2833 65 64 0.69 {57,215,285,817}

4095 2263 65 64 0.55 {145,157,831,895,1403,1911}

4097 2497 65 64 0.61 {241,299,333,723}

4123 2513 65 64 0.61 {19,31,217,399,589,1463}

4161 3431 66 65 0.82 {1,285,307,357,1387}

4277 2171 66 65 0.51 {141,455,517,611,893,1833}

4305 3305 67 66 0.67 {181,1025}

4329 2335 67 66 0.54 {177,481,925,1073}

4365 2531 67 66 0.58 {299,485,679}

4371 2923 67 66 0.67 {31,235,1081}

4433 2277 68 67 0.51 {117,195,341,533,923,1001,1105}

4445 2707 68 67 0.61 {35,175,345,385,889,945,1085,2205}

4485 2537 68 67 0.57 {195,221,437}

4515 3203 68 67 0.71 {105,129,217,301,903,1505,1935}

4539 3797 68 67 0.84 {51,89,255,445,979,1513,1683,1691}

4575 2627 69 68 0.57 {103,305,915}

4599 2491 69 68 0.54 {207,225,237,949,1143,1533,2263,2295}

4641 2745 69 68 0.59 {31,51,153,867,1729}

4743 2967 70 69 0.62 {153,155,387}

4781 3545 70 69 0.74 {135,683}

4845 2831 71 70 0.58 {19,85,285,323,1045,1653,1729,2109}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 204

4879 3473 71 70 0.71 {119,357,533,697,2091}

4977 2673 72 71 0.54 {9,395,711,869,1659,1817,2133,2449}

4991 2819 72 71 0.56 {31,161,345,621,2139}

5037 3277 72 71 0.65 {207,219,345,365,759,897,1679}

5073 4259 72 71 0.84 {57,89,445,513,741,1691}

5115 2817 73 72 0.55 {145,215,307,415,625,835,1705}

5187 3363 73 72 0.64 {29,155}

5225 4865 73 72 0.93 {95,275,285,475,1045}

5285 3365 73 72 0.64 {23,151}

5313 3507 74 73 0.66 {99,231,483,1155,1265,1771}

5369 3055 74 73 0.57 {91,531,2301}

5439 3205 75 74 0.59 {7,111,259,777,1295,1813}

5565 3107 76 75 0.56 {133,689,795,1325,1855}

5673 3225 76 75 0.57 {7,183,549,2013}

5715 4563 71 70 0.80 {115,951}

5735 3473 77 76 0.61 {279,407,925,1295,2035,2775}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 205

Table B.5: A set of Cyclic binary OSMLD codes with code-
lengths 6003≤ n≤ 8001 constructed using the OSMLD-GA
algorithm

n k dmin J r = k
n ΩE(x)

6027
4757 76 75 0.79 {123,147,287,539,1435,2009}

3121 78 77 0.52 {123,343,287,369,1435,2583}

6035 3397 79 78 0.56 {85,213,595}

6039 3597 79 78 0.60 {219,671,915,2013}

6045
4485 73 72 0.75 {73,341}

3829 79 78 0.63 {139,403,1495,2821}

6095 4717 75 74 0.77 {23,265,1325}

6105 3663 79 78 0.60 {37,297,703,2035}

6215 4105 79 78 0.66 {55,113,339,565}

6273 3871 79 78 0.62 {525,615,697,779}

6279 3203 80 79 0.51 {115,575,621,759,897,1365,2093,2231,2691}

6321 3643 81 80 0.58 {363,387,539,2709}

6327 3439 81 80 0.54 {11,379,703,2109}

6355 3475 81 80 0.55 {57,257,1075,2355}

6405 3737 81 80 0.58 {17,61,427,1281}

6425 5721 81 80 0.89 {557}

6435 3599 81 80 0.56 {297,341,583,979,1131,1353}

6495 3751 81 80 0.58 {33,433,3031}

6555 5091 82 81 0.78 {95,115,437,575,1311,1425,3059}

6643 3627 82 81 0.55 {135,195,247,325,377,2431}

6665 4255 82 81 0.64 {155,215,465,473,1085,1333,1505,2365}

6765 3703 83 82 0.55 {233,401,497,1133,2255}

6825 6121 61 60 0.90 {661}

6851 4243 82 81 0.62 {85,403,663,1209}

6853 4115 83 82 0.60 {253,385,623,693,979,1463,2937}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 206

6923 4609 84 83 0.67 {43,473,989,1127}

6975
5745 67 66 0.82 {7,775}

3831 85 84 0.55 {185,687,3255}

6993 4005 85 84 0.57 {43,267,1221,1443}

7011 4907 85 84 0.70 {171,399,533,779,1025,2337}

7077 5301 85 84 0.75 {97,575}

7085 4153 85 84 0.59 {67,503,1199}

7105 5321 74 73 0.75 {145,203,245,609}

7119
5259 81 80 0.74 {21,113,339,1695,1743,2599}

4431 85 84 0.62 {815}

7161
5241 61 60 0.73 {235,737}

4121 86 85 0.58 {119,259,441,1029,1057,1221,1225,1267}

7353
5993 81 80 0.81 {19,129,645,2451}

4887 87 86 0.66 {215,399,513,645,817,1197,2451}

7493
5371 80 79 0.72 {127,295,1121,3717}

4915 87 86 0.66 {127,295,885,2537,3717}

7565
5155 81 80 0.68 {89,255,425,623,935,1335,1513,2805,3293}

4171 88 87 0.55 {85,255,445,765,801,1615,2581,2805,3293}

7659 4185 89 88 0.55 {23,333,555,851,1665,2553}

7667 4427 89 88 0.58 {357,451,943,1547}

7749
5223 85 84 0.69 {465,861,943}

4533 89 88 0.58 {287,441,567,1107,1353,1599,2829,3321,3813}

7755 6375 85 84 0.82 {165,235,517,705,825,1175,3619}

7905
5601 81 80 0.71 {211,267}

4725 90 89 0.60 {49,93,255,391,527,1581,3441}

7975 6485 83 82 0.81 {29,275,493,725,1595}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 207

Table B.6: A set of Cyclic binary OSMLD codes with code-
lengths 8003 ≤ n ≤ 10001 constructed using the OSMLD-
GA algorithm

n k dmin J r = k
n ΩE(x)

8001
6209 85 84 0.78 {229,475}

4633 90 89 0.58 {229,423,609,635,1651}

8029 4429 90 89 0.55 {111,259,341,481,555,3441}

8099 4731 91 90 0.58 {247,801,949,1691}

8103 4539 91 90 0.56 {43,63,999,1887}

8151 4781 91 90 0.59 {55,209,247,627,741,1235}

8191 4407 92 91 0.54 {395,245,675,1749,1773,1909,3035}

8211
5907 91 90 0.72 {187,759}

5209 92 91 0.63 {153,391,759,805,1173,1449,1955,3519}

8215
6275 87 86 0.76 {155,477,1643,1855,3975}

4727 92 91 0.58 {265,583,589,1325,1643,1855}

8415 4571 93 92 0.54 {153,209,495,561,1045,1683,3135}

8463
6079 91 90 0.72 {65,255}

4961 93 92 0.59 {117,279,589,793,1209,1829,2015,2821}

8547 5421 93 92 0.63 {37,165,777,1221,1295,3663}

8635 5095 93 92 0.59 {77,157,471}

8645 4741 94 93 0.55 {133,173,323,325,1235,1615}

8733 5781 93 92 0.66 {123,781,861,2911}

8745 5095 95 94 0.58 {121,583,1007,1325,1749,4081}

8763
5577 94 93 0.64 {161,165,2921}

4541 95 94 0.52 {127,207,345,529,759,1311,1495,1863,2921,3243}

8789 5587 95 94 0.64 {141,187,517,935}

8835 5241 95 94 0.59 {437,513,527,775}

8845 6785 93 92 0.77 {29,305,1769}

8855
7567 92 91 0.85 {161,253,385,483,805,1771,1925,3795}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 208

6223 95 94 0.70 {165,605,805,1265,1771,1925}

8925
7133 89 88 0.80 {435,637,795}

4663 95 94 0.52 {119,265,525,665,875,2065,2205,2975,3045}

8979 5945 95 94 0.66 {123,369,615,1107,1353,1599,1679,2091,2993,3075}

8995 5039 96 95 0.56 {119,245,259,771,1071,1285,1393}

9009 5195 95 94 0.58 {77,385,663,819,1529,3025,3289}

9021 5403 96 95 0.60 {97,403,679,873,1455,2037,3007,3201,4365}

9051 6209 96 95 0.67 {147,483,1293,2155}

9135
6287 91 90 0.69 {31,3335}

5379 97 96 0.59 {29,105,147,725,1595,1827,1885,3335}

9165 5865 97 96 0.64 {195,517,611,799,975,1833,1927,3055,4277}

9225

7777 61 60 0.84 {1123}

6377 81 80 0.69 {17,75}

5295 87 86 0.57 {39,441,849,981,1025}

5221 93 92 0.57 {231,405,453,699,1435}

4893 97 96 0.53 {15,177,519,621,1435,4305}

9265 5473 97 96 0.59 {327,379,2289,4033}

9271 7507 73 72 0.81 {169,1143}

9331
7433 91 90 0.80 {43,217,387,645,651,1333,1519}

5195 98 97 0.56 {301,387,473,713,1161,3311}

9405
7601 81 80 0.81 {19,495,3135}

6593 97 96 0.70 {165,551,935}

9465 5855 97 96 0.62 {15,285,631,3155}

9513
6241 97 96 0.65 {71,281,867,1661}

5049 99 98 0.53 {63,569,1017,1449,3171,3177,4681}

9555
8851 85 84 0.93 {661}

6771 97 96 0.71 {41,1001}

9597 7677 97 96 0.80 {105,457,1371,2285,3199,4113}

9605 6357 97 96 0.66 {221,791,1921,2007}

9657 5339 99 98 0.55 {87,333,555,1073}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 209

9709 5205 100 99 0.54 {521,1165,1607,2237,2269,4845}

9765

7285 96 95 0.75 {137,425,4725}

5725 99 98 0.59 {375,403,693,713,837,2263}

4987 100 99 0.51 {35,335,945,1829,1953,2205,2415,4185}

9815 5715 100 99 0.58 {69,453,715,755}

9821 6887 100 99 0.70 {61,161,1403,4209}

9911 6307 101 100 0.64 {187,477,1749}

9933 5817 101 100 0.59 {301,385,473,693,1045,1617}

9945 5405 101 100 0.54 {39,73,427,459,975,1131,1677,3705}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 210

Table B.7: A set of Cyclic binary OSMLD codes with code-
lengths n ≥ 10001 constructed using the OSMLD-GA algo-
rithm

n k dmin J r = k
n ΩE(x)

10005 6101 101 100 0.61 {161,253,377}

10019 7367 101 100 0.74 {129,215,233,699,1631}

10095 6055 101 100 0.60 {99,683,4711}

10137

6769 94 93 0.67 {31,109,327,545,763,1853,2289,3379,4905}

6053 99 98 0.60 {545,763,1085,1199,1635,1853,2289,3379,3597,4905}

5753 102 101 0.57 {327,763,837,981,1199,1635,1853,2507,3597,4905}

10143 7041 102 101 0.69 {207,511,1771,3381,3703}

10305 5875 103 102 0.57 {123,229,1603,3435}

10335 6273 103 102 0.60 {117,477,583,689,2067,3445,3551,4823}

10413 7451 100 99 0.72 {117,801,1053,1157,1287,1513,2223,2225,3471,3861}

10419 7761 100 99 0.74 {207,453,483,851,2265,2553,3473}

10341 8785 103 102 0.84 {171,183,915,1159}

10485 7715 103 102 0.74 {45,233,699,1165,1305,1631,2097,3495,4893}

10509 6959 104 103 0.66 {113,155,565,791,961,1017,3503,3729,5085}

10791 7979 105 104 0.74 {33,109,327,981,1199,1635,3597}

11023 6705 106 105 0.61 {73,267,803,1679,2701}

11295 7177 107 106 0.64 {201,1255}

11303 9191 85 84 0.81 {31,623}

11315
7495 96 95 0.66 {219,455,657,1825,2555}

6895 107 106 0.61 {73,365,595,1095,1395,1705,2263,2635}

11385

8907 95 94 0.78 {165,253,345,759,825,1265,1725,2277,5313}

8305 105 104 0.73 {429,437}

8223 107 106 0.72 {115,495,621,1771,2001,2475,3795}

11417 8411 107 106 0.74 {147,233,245,699,1631,4893}

11557 8233 109 108 0.71 {69,2041,4953}

11985 7721 110 109 0.64 {329,425,893,1275,1363,4089,4277}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 211

12075
9415 107 106 0.78 {275,483,1127}

7953 111 110 0.66 {375,483,575,1265,1955,2415,2625,2875,4025,5635}

12087 7247 111 110 0.60 {237,869,901}

12369 7461 112 111 0.60 {57,361,651,899,931,1271,4123}

12441 9393 113 112 0.75 {319,435,429,1885,4147}

12465 9117 113 112 0.73 {435,831,1385,2493,4155,5817}

12533 9871 113 112 0.79 {151,1245,2905}

13053 8567 115 114 0.66 {171,229,1145,4351}

16513 14325 130 129 0.87 {1,89,947,965,1699,2737,7077}

65793 59231 258 257 0.90 {1,1205,1309,1395,1749,2209,3713,4427,6931,9399,9553,11529,21931}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 212

Table B.8: A set of Cyclic non-binary OSMLD codes over
GF(4) constructed using the NB-OSMLD-GA algorithm
(Construction B)

n k dmin J r = k
n ΩE(x)

7 3 4 3 0.43 {3}

15 7 5 4 0.47 {1,2}

21 11 6 5 0.52 {3,7,14}

31 15 6 5 0.48 {15}

63 37 9 8 0.59 {5,10,21,42}

73 45 10 9 0.62 {25}

85 37 9 8 0.44 {9,18}

93 61 11 10 0.66 {5,10}

105 55 11 10 0.52 {7,15,14,45}

119 59 12 11 0.50 {7,14,51}

155 79 10 11 0.51 {5,31,62}

217 153 16 15 0.70 {37}

231 119 16 15 0.52 {7,14,77,99,154}

273 191 18 17 0.70 {39,91,97,101,182}

315 203 19 18 0.64 {65,107,130,151}

345 173 20 19 0.50 {15,23,46,161,253}

399 213 21 20 0.53 {133,143,187,266}

451 251 21 20 0.56 {65,69}

465 337 21 20 0.72 {53,106}

511 291 22 21 0.57 {45,79,219}

527 273 24 23 0.52 {31,62,85,187,255}

589 303 24 23 0.51 {31,62,209}

595 403 25 24 0.68 {23,46}

635 403 26 25 0.63 {15,35,127,145,254}

665 361 26 25 0.54 {95,133,155,225,266}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 213

713 367 27 26 0.51 {31,69,115,253}

803 559 29 28 0.70 {55,73,146,187}

819 531 25 24 0.65 {37,74,191,331}

861 577 30 29 0.67 {123,161,205,301,410}

889
637 25 24 0.72 {51,127}

587 28 27 0.66 {127,133,217,329,381}

945 777 31 30 0.82 {5,10,21,42}

993 511 31 30 0.51 {49,59}

1143 609 35 34 0.53 {63,127,243,254,261,423}

1157 815 35 34 0.70 {39,89,178,429}

1241
629 36 35 0.51 {17,51,187,219,438}

883 35 34 0.71 {73,146,187,219,221,438}

1333 749 35 34 0.56 {31,62,129,215,473,645}

1335 703 36 35 0.53 {15,25,50,623,979}

1359 757 37 36 0.56 {99,151,302,333}

1387 811 37 36 0.58 {139,278,321,563}

1395 1019 33 32 0.73 {147,217,341,294}

1457 739 39 38 0.51 {47,155,235,705}

1495
1073 39 38 0.72 {65,253,299,325,506,598}

743 40 39 0.50 {65,161,207,253,299,506,598}

1533 905 40 39 0.59 {21,93,175,219,245}

1561 781 41 40 0.50 {21,669}

1581 1069 41 40 0.68 {43,86}

1651 1051 41 40 0.64 {65,127,143,254,559,819}

1661 1231 41 40 0.74 {11,151,302,407}

1679 1207 41 40 0.72 {69,73,365,575}

1691 1211 41 40 0.72 {19,89,178,209}

1705 1065 41 40 0.62 {69,138,139,278}

1755 1459 37 36 0.83 {29,58}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 214

1785 1401 33 32 0.78 {139,278,301,602}

1963 1471 43 42 0.75 {91,151,302,481}

2007 1007 46 45 0.50 {171,223,446,669,1338}

2015 1207 45 44 0.60 {31,39,62,78,217,279}

2093 1229 46 45 0.59 {143,253,506}

2107 1127 46 45 0.53 {85,170,903}

2139 1091 47 46 0.51 {69,93,207,253,299,345,529,1058}

2201 1281 41 40 0.58 {317,781}

2263
1815 46 45 0.80 {229}

1335 47 46 0.59 {219,279,341,403,511,775}

2313 1929 49 48 0.83 {191,271}

2325 1349 46 45 0.58 {57,114,229,353,525}

2331
1525 43 42 0.62 {159,259,318,518}

1463 46 45 0.63 {63,126,333,481,962}

2359 1477 49 48 0.63 {13,179,337,1011}

2387 1807 49 48 0.76 {11,191,382,1023}

2397 1215 50 49 0.51 {141,235,255,282,329,517,799,1034,1598}

2415
1727 46 45 0.71 {15,253,506}

1217 50 49 0.50 {21,42,805,1035,1610}

2457
2073 37 36 0.84 {31,62}

1401 49 48 0.57 {15,30,59,118}

2607 1307 52 51 0.50 {99,395,553,869,1738}

2635
1867 41 40 0.71 {71,142}

1607 51 50 0.61 {259,383,935,1275}

2667 2163 49 48 0.81 {95,127,190,254}

2691 1733 53 52 0.64 {23,46,161,195,273,299,322,598}

2695 2117 47 46 0.79 {55,231,245,462,490,1155}

2759
2003 53 52 0.73 {31,89,267,341,445,623,979,1335}

1495 54 53 0.54 {89,155,279,445,589,623,1335}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 215

2829 1897 54 53 0.67 {23,41,46,82,123}

2869 2191 49 48 0.76 {133,151,302,323}

2937 1671 55 54 0.57 {143,165,267,286,429,534}

2945 2195 53 52 0.74 {155,310,437,551,589,665,1045,1178}

3005 1801 55 54 0.60 {105,305,601,1202}

3115 2073 56 55 0.67 {75,89,178,445,623,1246,1335}

3139 1927 56 55 0.61 {43,73,146,219,438,473,731}

3311 2371 59 58 0.72 {11,22,301,473,602,1419}

3379 1893 57 56 0.56 {109,279,341,545,763,1199}

3381 2531 57 56 0.75 {147,207,245,343,1127,2254}

3395 2021 55 54 0.60 {39,78,485,1455}

3441 1887 59 58 0.55 {111,341,403,555,1147,1221,1665,2294}

3451 2387 56 55 0.69 {119,238,377,551,1479}

3627 2475 61 60 0.68 {173,346}

3655 2375 57 56 0.65 {319,627}

3675 3047 42 41 0.83 {225,343,539}

3683 2115 57 56 0.57 {275,311,355,550}

3689 2101 60 59 0.57 {187,341,561,682,1309}

3843 2241 63 62 0.58 {115,230,1281,2562}

3965 2017 61 60 0.51 {101,167}

3995 2605 63 62 0.65 {85,141,282,425,705,1410}

4165
3105 58 57 0.75 {85,119,238,483,581}

2513 62 61 0.60 {85,343,371,567,686,1813,2009}

4301 2875 63 62 0.67 {187,529,667,935}

4305 3157 64 63 0.73 {43,86,1845}

4361 3103 66 65 0.71 {49,267,441,539,1617}

4371 2651 64 63 0.61 {31,62,141,987,1457,2115,2914}

4487 2243 68 67 0.50 {63,91,641}

4495 2765 68 67 0.62 {31,62,145,203,406,899,1595,1798,2175}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 216

4623 2357 69 68 0.51 {11,22,1541,3082}

4669 3239 68 67 0.69 {87,161,322,667,2001}

4681 2685 66 65 0.57 {233,273,459,701,2265}

4717 2945 64 63 0.62 {89,178,689}

4743 3351 70 69 0.71 {69,138,341,459,682}

4781 3545 70 69 0.74 {9,18,683}

4893 3079 68 67 0.63 {63,105,1165,2097,2330}

4991 2545 72 71 0.51 {161,207,217,299,345,483,1771}

5083 3581 71 70 0.70 {115,221,230,1105,1265,2139}

5313 3777 70 69 0.71 {33,69,138,1265,2530}

5369 3055 74 73 0.57 {91,182,767,1121,2242}

5429 3393 72 71 0.62 {89,178,549}

5487 3285 74 73 0.60 {93,186,295,590,2655}

5499 3675 71 70 0.67 {39,47,78,94,235,470}

5607 3203 76 75 0.57 {89,178,207,261,801}

5621 3061 76 75 0.54 {55,219,438,451,473,605,1925}

5635 3991 74 73 0.71 {105,345,483,966,1127,2254,2415}

5735 4005 76 75 0.70 {155,185,310,333,555,666,1147,1295,2294}

5889 4029 76 75 0.68 {125,139,429}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 217

Table B.9: A set of Cyclic non-binary OSMLD codes over
GF(8) constructed using the NB-OSMLD-GA algorithm
(Construction B)

n k dmin J r = k
n ΩE(x)

15 7 5 4 0.47 {7}

31 15 6 5 0.48 {15}

93 61 11 10 0.66 {23}

127 63 8 7 0.50 {63}

155 79 10 9 0.51 {25,31}

195 113 15 14 0.58 {11,22,44,65}

217 153 16 15 0.70 {15,23,46}

231 119 16 15 0.52 {33,35,66,77,132}

255 175 17 16 0.69 {31,39}

279 167 17 16 0.60 {31,45,62,99,124}

315 191 17 16 0.61 {31,47,62,63}

341 205 16 15 0.60 {11,15}

345 173 20 19 0.50 {15,23,161}

357 185 20 19 0.52 {7,35,51,102,204}

381 255 17 16 0.67 {17,127}

387 231 21 20 0.60 {9,43,86,172}

451 251 21 20 0.56 {155}

465
337 21 20 0.72 {97}

271 23 22 0.58 {31,75,93,165,217}

527 273 24 23 0.52 {51,93,119,187}

589 303 24 23 0.51 {31,62,124,209}

595 403 25 24 0.68 {3,6,12}

615 371 25 24 0.60 {123,127}

623 333 26 25 0.53 {21,231,267,445,534}

635 403 26 25 0.63 {5,127,135,235}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 218

645 405 25 24 0.63 {43,105,215,301}

651 491 26 25 0.75 {99,161,198,291}

713 367 28 27 0.51 {23,31,155}

715 497 27 26 0.70 {11,22,44,65,143}

765 429 29 28 0.56 {17,34,68,135,381}

825 517 29 28 0.63 {19,165,385}

833 437 30 29 0.52 {49,51,85,102}

889 697 29 28 0.78 {11,22,44,49}

935 697 31 30 0.75 {33,85,143,187}

1035 549 33 32 0.53 {15,69,115,230,460}

1105 657 33 32 0.59 {39,93,186,213}

1143 589 35 34 0.52 {45,127,129,254,508,567}

1155 715 33 32 0.62 {99,198,203,396}

1157 815 35 34 0.70 {13,89,143,178,356}

1161 753 33 32 0.65 {27,43,86,172}

1271 735 36 35 0.58 {205,215,287,615}

1275 723 37 36 0.57 {25,115,119}

1285 705 37 36 0.55 {31,193,257}

1305 721 37 36 0.55 {111,145,290,435,580}

1335
947 37 36 0.71 {89,195,267,285,445,623}

703 38 37 0.53 {65,89,495}

1395 933 37 36 0.67 {85,170,279,340,465}

1395 1003 38 37 0.72 {27,31,62,124,495}

1419 1029 39 38 0.73 {99,121,129}

1479 915 37 36 0.62 {51,145}

1495 1073 39 38 0.72 {65,69,138,276,299,325}

1513 1079 39 38 0.71 {89,221,267,323}

1581 1069 41 40 0.68 {181}

1615 1173 35 34 0.73 {19,85,170,340,551}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 219

1651 1051 41 40 0.64 {91,127,169,254,508,559,819}

1677 1229 41 40 0.73 {39,91,129,258,516}

1695 903 41 40 0.53 {57,113,339,791}

1705 1065 41 40 0.62 {53,411}

1725 1041 43 42 0.60 {25,69}

1755
1459 37 36 0.83 {209,251,418}

1035 41 40 0.59 {35,70,117,140}

1885 1221 41 40 0.65 {13,87,174,348}

1905
1521 43 42 0.80 {57,355}

1179 45 44 0.62 {93,185,635}

1985 1013 45 44 0.51 {211}

1995 1219 41 40 0.61 {133,169,289,571}

2007 1007 46 45 0.50 {27,223,446,669,892}

2047 1167 45 44 0.57 {19,51,181,199}

2049 1365 45 44 0.67 {9,173}

2091 1235 45 44 0.59 {119,205,451,779}

2115 1065 46 45 0.50 {45,235,329,423,470,611,940,1222}

2139
1563 45 44 0.73 {69,93,465,529,713,759}

1463 47 46 0.67 {187,215,357,473,731}

2277 1317 49 48 0.58 {69,99,207,253,495,506,1012}

2325 1385 49 48 0.60 {143,155,271,465}

2337 1517 41 40 0.65 {123,133,246,492,779}

2365 1421 49 48 0.60 {93,429}

2403 1631 43 42 0.68 {89,117,178,356,801}

2451 1795 49 48 0.73 {95,129,171,258,516,817}

2465 1513 49 48 0.61 {51,203,435,493}

2475 1405 51 50 0.57 {63,125,175,250}

2499 1315 51 50 0.53 {85,147,170,221}

2635
1867 41 40 0.71 {467}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 220

1607 51 50 0.61 {33,85,255}

2731 1535 53 52 0.56 {101,217}

2755 2049 51 52 0.74 {145,209,290,551,580}

2759 2003 53 52 0.73 {89,267,403,445,589,623,979,1335}

2871 2313 55 54 0.81 {87,99,319,435,638,1276}

2937 2135 55 54 0.73 {89,267,429,445,627,979}

2945
2535 48 47 0.86 {155,209,310,589,620,1425}

1617 54 53 0.55 {155,171,310,475,620,1045,1425}

2967 2229 51 50 0.75 {129,437,483,645}

3005 1801 55 54 0.60 {15,315,601}

3135 2035 53 52 0.65 {165,330,361,475,660,1463}

3195 1605 58 57 0.50 {45,71,142,284,355,639,710,1420}

3309 2205 59 58 0.67 {559}

3335 2497 55 54 0.75 {145,253,667,725}

3381 1825 61 60 0.77 {49,69,138,147,276}

3519 2837 60 59 0.81 {153,255,437,575,1127,1173}

3553 2363 59 58 0.66 {187,374,437,748}

3565 1825 61 60 0.51 {31,155,805}

3627 2475 61 60 0.68 {215,275,430}

3655 2199 61 60 0.60 {43,119,387,559,645}

3689 2265 61 60 0.61 {133,187,357,374,748}

3765 2713 61 60 0.72 {15,251,1255,1757}

3795 2853 63 62 0.75 {165,207,575,759,825,1265,1771}

3813 2083 63 62 0.55 {35,205,333,369,615,1271}

3937 2073 64 63 0.53 {31,193,403,651,1705}

3995 2011 64 63 0.50 {47,85,141,611,705,987}

3999 3291 60 59 0.82 {93,279,645,651,989,1333}

3999 2409 64 63 0.60 {215,301,341,387,651,903,1419}

4085
2901 61 60 0.71 {95,215,247,430,860}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 221

2453 65 64 0.60 {133,301,602,989}

4191
2691 63 62 0.64 {127,627,635,715,759,1551,1815}

2193 65 64 0.52 {381,429,635,891,957,1397,1419,1551,1815}

4257 3065 65 64 0.72 {33,43,86,99,172,473,946,1892}

4371 2433 67 66 0.56 {47,93,465,1551,2115}

4495 2765 68 67 0.62 {93,145,261,899,1595,2175}

4495 3393 63 62 0.75 {145,341,435,725,899,1015,1595,2175}

4539 3065 68 67 0.68 {89,221,255,267,445,979,1513}

4669 3293 65 64 0.71 {87,161,174,348,667,1334,2668}

4715 3145 67 66 0.67 {205,483,345,943,1025}

4785 3149 69 68 0.66 {145,319,363,435,725,1595,2233}

4859 2829 71 70 0.58 {113,183,379}

4895 4153 70 69 0.85 {363,445,715,979}

5035 3869 71 70 0.77 {19,265,530,1060}

5313 3591 74 73 0.68 {77,115,161,230,231,299}

5365 4065 69 68 0.76 {145,259,290,435,1073}

5763 4119 73 72 0.71 {51,323,339,1017}

5763 3653 75 74 0.63 {113,255,1017,1411,1921}

5911 3953 71 70 0.67 {161,257,299,1035,1285}

5945 3473 73 72 0.58 {41,87,261,1189}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 222

Table B.10: A set of Cyclic non-binary OSMLD codes over
GF(16) constructed using the NB-OSMLD-GA algorithm
(Construction B)

n k dmin J r = k
n ΩE(x)

7 3 4 3 0.43 {3}

21 11 6 5 0.52 {3,7,14}

31 15 6 5 0.48 {15}

63 37 9 8 0.59 {13,21,26,42}

73 45 10 9 0.62 {25}

93 61 11 10 0.66 {5,10}

217 153 16 15 0.70 {37}

315 187 13 12 0.59 {67,71,134,193}

341 205 16 15 0.60 {39,55,78}

381 255 17 16 0.67 {71,127,142,254}

399 213 21 20 0.53 {133,143,187,256}

465 337 21 20 0.72 {7,14,28,56}

483 249 23 22 0.52 {69,105,115,161,230,322}

511 303 22 21 0.59 {1,63,73}

623 333 26 25 0.53 {89,91,133}

651 491 26 25 0.75 {33,35,70}

651 443 27 26 0.68 {31,35,49,62,70,98}

713 367 28 27 0.51 {31,155,345}

803 559 29 28 0.70 {73,121,146,143}

837 487 29 28 0.58 {31,62,207,414}

889 697 29 28 0.78 {7,97}

993 511 31 30 0.51 {83,166}

1333
809 30 29 0.61 {31,62,215,473,645}

749 35 34 0.56 {43,215,217,279,301,645}

1359 849 37 36 0.62 {17,34,151,302}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 223

1387 811 37 36 0.58 {115,173,195,230}

1397 955 32 31 0.68 {33,55,127,254,297}

1533
819 39 38 0.53 {59,118,369,511,513,1022}

797 40 39 0.52 {171,219,273,281,562}

1617 1191 41 40 0.74 {33,77,147,154,231,294}

1659 869 42 41 0.52 {93,553,1106}

1661 1031 41 40 0.62 {85,151,170,302}

1691 1211 41 40 0.72 {89,178,247,361}

1869
1381 40 39 0.74 {165,445,890}

1289 43 42 0.69 {27,89,178,801}

1953
1441 31 30 0.74 {73,83}

1139 42 41 0.58 {45,217,225,434,441}

2047 1123 45 44 0.55 {9,19,185,205}

2117 1531 47 46 0.72 {73,87,146,292,584,725}

2139
1307 40 39 0.61 {155,217,345,713,759,1035,1426}

1143 45 44 0.53 {69,93,115,230,465,713,759,1426}

2263 1815 46 45 0.80 {229}

2277 1317 49 48 0.58 {99,207,253,345,414,483,495,506}

2359 1345 49 48 0.57 {47,337,395,1011}

2387 1687 49 48 0.71 {31,62,341,363}

2581 1871 51 50 0.72 {89,145,178,261,356,712}

2709
1813 49 48 0.67 {61,122,559,1118}

1729 52 51 0.64 {129,145,258,290,1161}

2759
2003 53 52 0.73 {89,93,267,445,623,979,1023,1335}

1737 54 53 0.63 {89,93,155,267,403,445,1335}

2869
2191 49 48 0.76 {95,151,302,323}

1897 54 53 0.67 {23,41,46,82,92,115,123}

2937 1705 55 54 0.58 {89,99,178,363,429,1089}

2967
1979 51 50 0.67 {215,253,301,483,506,621}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 224

1505 54 53 0.51 {129,207,414,437,483,529,621}

3059 1787 52 51 0.58 {23,46,209}

3069 2557 31 30 0.83 {379,431}

3069 1927 41 40 0.63 {17,34,297,693}

3139 1927 56 55 0.61 {43,73,146,219,438,559,1075}

3171 1867 55 54 0.59 {99,151,195,302,327,453}

3311 2371 59 58 0.72 {297,301,451,473,602,1419}

3473 2671 53 52 0.77 {151,161,755,851}

3479 1739 60 59 0.50 {49,213,1491}

3707 2605 53 52 0.70 {77,337,451,674}

3827 2251 59 58 0.59 {43,559,623,801,817,1419}

3933
2439 59 58 0.62 {161,171,322,391,713,855}

2195 61 60 0.56 {69,115,138,230,285,399,1311,2622}

3937 2087 64 63 0.53 {63,155,279,899,1457}

4347 3071 63 62 0.71 {23,46,189,297}

4557 3221 58 57 0.71 {155,310,315}

4623 2357 69 68 0.51 {11,22,1541,3082}

4669 3239 68 67 0.69 {29,161,322,644,667,1288,2001}

4781 3545 70 69 0.74 {89,178,2049}

4893
3319 67 66 0.68 {35,70,1165,1631,2330,3262}

2619 71 70 0.53 {233,357,466,567,1165,2330}

4991 3551 72 71 0.71 {155,759,805,851,2139}

5037 3783 72 71 0.75 {365,511,621,759,943,1095,1679,1886,3358}

5251 3281 70 69 0.62 {89,178,295}

5313 3809 70 69 0.72 {23,46,165,253,506}

5451 2705 75 74 0.50 {207,237,395,553,1817,3634}

5901 3089 76 75 0.52 {175,245,843,1967,3934}

5963 3531 78 77 0.59 {119,238,335}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 225

Table B.11: A set of Cyclic non-binary OSMLD codes over
GF(32) constructed using the NB-OSMLD-GA algorithm
(Construction B)

n k dmin J r = k
n ΩE(x)

7 3 4 3 0.43 {3}

15 7 5 4 0.47 {7}

21 11 6 5 0.52 {7,9}

63 37 9 8 0.59 {11,21}

73 45 10 9 0.62 {25}

119 59 12 11 0.50 {7,17}

195 113 15 14 0.58 {1,65}

315 195 19 18 0.62 {5,45,63,105,135}

357 227 20 19 0.64 {17,35,119,153}

387 231 21 20 0.60 {43,63}

399 213 21 20 0.53 {37,133}

483 249 23 22 0.52 {21,23,161,207}

585 377 25 24 0.64 {61,201}

657 451 27 26 0.69 {9,73,81,219}

663 381 27 26 0.57 {1,221}

765
637 25 24 0.83 {127}

421 29 28 0.55 {85,117,255,261,357}

819 471 28 27 0.57 {35,101,351}

889 587 28 27 0.66 {7,91,127,381,385}

945 657 31 30 0.70 {9,155}

1035 549 33 32 0.53 {15,115,483}

1071
783 31 30 0.73 {11,85}

645 34 33 0.60 {63,153,221,255,357,399}

1143 729 35 34 0.64 {45,127,165,495}

1197 767 36 35 0.64 {19,171,205,209,399}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 226

1235 881 35 34 0.71 {19,65,247}

1285 833 37 36 0.65 {37,109,257}

1365
839 34 33 0.61 {77,195,223,273,455}

773 37 36 0.56 {3,109,125}

1449 969 35 34 0.67 {21,23,529}

1479 915 37 36 0.62 {51,551}

1533
1125 37 36 0.73 {79,257}

881 40 39 0.57 {47,219,255,381}

1547 863 40 39 0.56 {75,289,663}

1635 975 41 40 0.60 {35,327}

1645 827 42 41 0.50 {35,47,235,705}

1665 929 41 40 0.56 {31,777}

1677 937 41 40 0.56 {129,143,301,559}

1691 1211 41 40 0.72 {19,89,209}

1725 1041 43 42 0.60 {25,69,138,207,414,621}

1755 1459 37 36 0.83 {217}

1785 1053 42 41 0.59 {49,77,85,119,255,357,609}

1869 1227 42 41 0.66 {21,63,89,399,623}

1935
1409 43 42 0.73 {43,135,165,645}

1255 45 44 0.65 {21,43,129}

1971 1213 43 42 0.62 {177,219,227}

1985 1013 45 44 0.51 {211}

2049 1301 45 44 0.63 {13,149}

2205 1537 46 45 0.70 {45,49,357}

2261 1547 46 45 0.68 {57,119,969}

2289 1491 45 44 0.65 {33,109,763}

2289 1335 48 47 0.58 {31,327,545,763}

2313 1929 49 48 0.83 {283}

2331 1369 49 48 0.59 {69,333,999,1147}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 227

2359 1495 43 42 0.63 {35,99}

2457 2073 37 36 0.84 {355}

2555 1459 50 49 0.57 {5,65,155,175,205,511}

2691 1755 49 48 0.65 {115,117,585,667,897}

2709 1723 53 52 0.64 {63,105,301,473,559,645}

2731 1535 53 52 0.56 {81,225}

2737 1925 53 52 0.70 {69,119,391,595,1173}

2755 2049 51 50 0.74 {19,145,551}

2967 2187 53 52 0.74 {23,69,129,645,989}

3033 2101 51 50 0.69 {81,337,1011,1017}

3045 1907 56 55 0.63 {35,87,145,1015,1305,1421}

3051 2181 47 46 0.71 {113,135}

3115 2271 50 49 0.73 {65,89,623}

3139 1927 56 55 0.73 {73,387,511,731,1075}

3213 1969 57 56 0.61 {119,255,321,765,1071}

3213 2701 43 42 0.84 {21,221}

3277 1989 57 56 0.61 {111,479}

3309 2205 59 58 0.67 {559}

3471 2873 60 59 0.83 {39,89,117,623,741,1157}

3381 2163 58 57 0.64 {69,147,161,483,735,1127,1449}

3451 2441 59 58 0.71 {119,319,493,1479}

3655 2225 59 58 0.61 {215,221,595,1247}

3723 2529 62 61 0.68 {153,187,219,561,657,1275}

3913
2831 61 60 0.72 {169,301,559,1677}

2279 63 62 0.58 {91,129,387,731,817}

3915 2457 63 62 0.63 {45,145,261,435,1305,1827}

4029 2029 64 63 0.50 {153,395,711,869}

4085 2833 65 64 0.69 {95,215,741,817}

4095 2291 64 63 0.56 {85,327,489,595,607,1755}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 228

4199 2737 63 62 0.65 {95,221,247,323}

4251 2497 63 62 0.59 {109,359,763,1417}

4263
3225 61 60 0.76 {87,147,609,1015,1421}

2763 64 63 0.64 {147,261,609,1015,1421,1827}

4347
2499 67 66 0.57 {189,207,713,759,897,945,1035,1449}

2793 64 63 0.64 {115,189,207,345,483,621,945,1449}

4361 3103 66 65 0.71 {245,267,441,539,637}

4365 2535 67 66 0.58 {63,291,485,873,2037}

4403 2445 67 66 0.55 {37,85,629,1887}

4515 2939 64 63 0.65 {133,175,387,903,1505,1935}

4515 2661 65 64 0.59 {105,217,735,1075,1505}

4539 2757 68 67 0.61 {89,255,267,445,561,801,969,1513}

4599 2773 69 68 0.60 {371,407,485,803,1533,1679}

4655 2797 68 67 0.60 {95,105,525,665,931,1995}

4669 3239 68 67 0.69 {161,319,667,2001}

4845 2739 71 70 0.57 {85,361,513,817,855,969,1197,1729}

4945 3449 69 68 0.70 {161,215,805,989,1075}

5031 2793 71 70 0.56 {129,215,301,429,559,903,1677}

5035 3869 71 70 0.77 {265,361}

5037 3495 70 69 0.69 {207,219,253,897,1095,1679,1725}

5117 3625 70 69 0.71 {43,459,2193}

5655 3197 75 74 0.57 {117,319,377,493,609,1885,2639}

5565
3981 68 67 0.72 {53,105,2385}

3327 75 74 0.60 {399,795,901,2385,2597}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 229

Table B.12: A set of Cyclic non-binary OSMLD codes over
GF(64) constructed using the NB-OSMLD-GA algorithm
(Construction B)

n k dmin J r = k
n ΩE(x)

93 61 11 10 0.66 {5,10}

217 153 16 15 0.70 {27,54,108}

341 205 16 15 0.60 {79,141,165}

345 173 20 19 0.50 {15,23,46,161,253}

381 255 17 16 0.67 {7,14,127,254}

465 337 21 20 0.72 {23,46}

635 403 26 25 0.63 {55,75,127,254,255}

713 367 28 27 0.51 {31,155,253}

775 439 26 25 0.57 {33,66,125}

979 593 22 21 0.61 {89,99,178}

1173 723 31 30 0.62 {51,253,255,506}

1271 695 36 35 0.55 {53,106,287,451,615}

1271 771 31 30 0.61 {123,143,286,615}

1333
809 30 29 0.61 {31,62,129,215,301}

749 35 34 0.56 {31,62,129,215,473,645}

1335 703 38 37 0.53 {45,55,110,623,979}

1397 955 32 31 0.68 {127,143,254,297,517}

1457 739 39 38 0.51 {155,235,329,517}

1513 1079 39 38 0.71 {85,89,153,178,267,534}

1581 1069 41 40 0.68 {35,70}

1705 1065 41 40 0.62 {73,121,143,146}

1725 1037 43 42 0.60 {23,46,125,175}

1905 1113 43 42 0.58 {77,154,165,225}

1985 1013 45 44 0.51 {17,34}

2139
1427 33 32 0.67 {31,62,391,782}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 230

1079 47 46 0.50 {253,299,391,465,483,529,782,1058}

2225 1607 47 46 0.72 {75,89,178,445,825,890}

2263 1815 46 45 0.80 {227,235,470}

2607 1307 52 51 0.50 {79,99,158,198,396,869,1738}

2635
2043 46 45 0.78 {63,126,1275}

1977 51 50 0.75 {59,85,118,1275}

2697
1471 51 50 0.55 {155,203,261,310,406,899,957,1798}

2199 46 45 0.82 {87,93,186,493,899,986,1798}

2759
2003 53 52 0.73 {31,89,267,341,445,623,979,1335}

1737 54 53 0.63 {89,155,341,445,589,623,1335}

2829 1897 54 53 0.67 {23,46,205,287,615}

2967 1977 53 52 0.67 {43,69,86,138,437,529,989,1978}

3005 1801 55 54 0.60 {125,145,601,1202}

3175 1739 56 55 0.55 {105,127,185,254,575}

3191 1815 56 55 0.57 {357}

3503 2293 44 43 0.65 {93,186,339,565,791}

3565
2381 58 57 0.67 {115,155,345,529,667,775,805}

1963 60 59 0.55 {31,62,115,805,1725}

3655 2375 57 56 0.65 {81,162}

3827 2063 62 61 0.54 {215,267,534,623,801,817,1419}

3937
2739 57 56 0.70 {155,179,837,1457}

2485 62 61 0.63 {93,181,279,889,1457}

3995
2965 63 62 0.74 {47,85,94,425,1363,2679}

2003 64 63 0.50 {85,235,423,470,611,705,846,893,1363,1410,2679}

4301 2875 63 62 0.67 {187,207,299,935}

4405 2369 60 59 0.54 {325,881,1762}

4495
3077 48 47 0.68 {341,435,682,899,1015,1798,2175}

2547 64 63 0.57 {87,145,174,217,434,435,725}

4715 1809 67 66 0.60 {69,138,205,207,414,943,1025,1886}

4867 2937 68 67 0.60 {157,279,465,1099,2355}

A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm 231

4895 2569 70 69 0.52 {55,143,286,445,890,979,1958}

4929 2479 70 69 0.50 {53,106,341,589,795,1643,3286}

4945
3449 69 68 0.70 {115,215,230,897,989,1075,1081,1978}

3155 70 69 0.64 {115,215,230,473,301}

4991 3231 71 70 0.65 {69,105,138,276}

5251 3281 70 69 0.62 {89,178,1947}

5429 3393 72 71 0.62 {89,178,356,445,671,712,890}

5451 2749 75 74 0.50 {79,158,207,237,414,828,1817,3634}

5969 3907 75 74 0.65 {127,235,635,987,1081,1457}

Appendix C

Error Probability Bound of the
WOSMLGD algorithm

In this appendix, we will present the analytical error probability of the Weighted One-Step
Majority-Logic Decoder (WOSMLGD) algorithm, already presented in Chapter 4, Algorithm
4.1. This analytical formulation is based on the paper published in [163].

For an uncoded transmission over an AWGN channel with a BPSK modulation, the bit error
probability p is given by:

p = Q(
√

2Es/N0) (C.1)

where Q(.) is the complementary error function, which takes the following form:

Q(x) =
1√
2π

∞�

x

exp(−1
2

t2)dt (C.2)

By assuming that a OSMLD code has J orthogonal equations on each symbol digit, the
estimation of each orthogonal estimator is erroneous when the number of errors occurring
in the symbols that participate in it is odd. Then by considering that each estimator has J

symbols participating in it, the error probability p∗ of an estimator is given by:

p∗ =
[(J−1)/2]

∑
i=0

 J

2i+1

 p2i+1(1− p)J−(2i+1) (C.3)

The decision of each estimator is treated as if it came from independent antipodal signals.
The required energy E∗s for each signal is given by solving the following equation:

p∗ = Q(
√

2E∗s /N0) (C.4)

232

Error Probability Bound of the WOSMLGD algorithm 233

Thus, the optimum decision rule for all the estimators is equivalent to a binary antipodal
signal of energy:

E = Es + JE∗s (C.5)

Therefore, the expression of the bit error probability Pb of the WOSMLGD algorithm takes
the following form:

Pb = Q(
√

2(Es + JE∗s)/N0) (C.6)

The block error probability Pe of the WOSMLGD algorithm can be approximated by:

Pe ≈
n

dmin
Pb (C.7)

where n is the code length and dmin is its minimum distance.

Nomenclature

3GPP 3rd Generation Partnership Project

4G LTE Fourth Generation Long Term Evolution

5G NR Fifth Generation New Radio

ACE Approximate Cycle Extrinsic message degree

Adagrad Adaptive Gradient

ALMM Augmented Lagrange Method of Multipliers

APP A Posteriori Probability

AR Augmented Reality

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BER Bit Error rate

BG Base Graph

BIBD Balanced Incomplete Block Design

BLER Block Error Rate

BP-MS Belief-Propagation Min-Sum

BP-SP Belief Propagation Sum-Product

CDMA Code Division Multiple Access

234

List of Symbols 235

CN Check Node

CRC Cyclic Redundancy Check

CRC-SCL CRC-aided Successive Cancellation List

cV2X Cellular Vehicle-to-Everything

DS Difference-Set

DSC Difference-Set Code

ECC Error Correcting Codes

EG Euclidean Geometry

eMBB Enhanced Mobile Broadband

GD-MLGD Gradient-Descent Majority-Logic Decoding

GDBF Gradient-Descent Bit-Flipping

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat Request

HDPC High-Density Parity-Check

HIHO Hard-Input Hard-Output

HRBI-MLGD Hard Reliability-Based Majority-Logic Decoder

HSDPA High Speed Download Packet Access

HSPA High Speed Packet Access

IDA Iterative Decoding Algorithm

IoT Internet of Things

IR-HARQ Incremental Redundancy Hybrid Automatic Repeat Request

ISRBI-MLGD Improved Soft Reliability-Based Iterative Majority-Logic Decoder

LDPC Low-Density Parity-Check

List of Symbols 236

LLR Log-Likelihood Ratio

LP Linear Programming

MC-M2M Mission-Critical Machine-to-Machine

MDPC Moderate-Density Parity-Check

MGD Momentum Gradient-Descent

MGD Momentum Gradient-Descent

MIMO Multiple Input Multiple Output

MLGD Majority-Logic Decodable

mMTC Massive Machine-Type Communications

MS Mattson-Solomon

MSMLD Multi-Step Majority-Logic Decodable

MTD Multi-Threshold Decoder

NAG Nesterov Accelerated Gradient

NGDBF Noisy Gradient-Descent Bit-Flipping

OFDM Orthogonal Frequency Divsion Multiplexing

OSD Ordered Statistic Decoding

OSMLD One-Step Majority-Logic Decodable

OSMLGD One-Step Majority-Logic Decoder

PBDs Pairwise Block Designs

PBIBDs Partially Balanced Incomplete Block Designs

PEG Progressive-Edge-Growth

PG Projective Geometry

QAM Quadrature Amplitude Modulation

List of Symbols 237

QGD-MLGD Quantized Gradient-Descent Majority-Logic Decoding

QPSK Quadrature Phase Shift-Key

RC Row-Column

RM Reed-Muller

SC-FDMA Single Carrier Frequency Division Multiple Access

SDN Software-Defined Network

SIHO Soft-Input Hard-Output

SNR Signal to Noise Ratio

SOQC Self-Orthogonal Quasi-Cyclic

SRBI-MLGD Soft Reliability-Based Iterative Majority-Logic Decoder

STS Steiner Triple System

t-CWP t-bounded Cosets Weight Problem

TDD Time Division Duplex

UMTS Universal Mobile Telecommunications System

URLLC Ultra Reliable Low Latency Communications

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VN Variable Node

VR Virtual Reality

WOSMLGD Weighted One-Step Majority-Logic Decoder

Bibliography

[1] Genetic sequencing and synthesizing technologies. https://www.illumina.com/.

[2] Qualcomm incorporated. https://www.qualcomm.com/.

[3] Vision for latency reduction in future wireless communications. https://www.

accelercomm.com/.

[4] 3GPP TS 38.212. Nr; multiplexing and channel coding. 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network, 2017.

[5] I. Adjudeanu, J-Y. Chouinard, and P. Fortier. On the correlation between error weights
and syndrome weights for belief propagation decoding of ldpc codes. In 2009 11th

Canadian Workshop on Information Theory, pages 36–41. IEEE, 2009.

[6] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin. Construction of low-density parity-
check codes based on balanced incomplete block designs. IEEE Transactions on In-

formation Theory, 50(6):1257–1269, 2004.

[7] G. Ananda, E. Walsh, K. D. Jacob, M. Krasilnikova, K. A. Eckert, F. Chiaromonte, and
K. D. Makova. Distinct mutational behaviors differentiate short tandem repeats from
microsatellites in the human genome. Genome biology and evolution, 5(3):606–620,
2012.

[8] E. Arikan. Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels. IEEE Transactions on information

Theory, 55(7):3051–3073, 2009.

[9] S. Barman, X. Liu, S. C. Draper, and B. Recht. Decomposition methods for large scale
lp decoding. IEEE Transactions on Information Theory, 59(12):7870–7886, 2013.

238

https://www.illumina.com/
https://www.qualcomm.com/
https://www.accelercomm.com/
https://www.accelercomm.com/

Bibliography 239

[10] M. Belkasmi, M. Lahmer, and F. Ayoub. Iterative threshold decoding of product codes
constructed from majority logic decodable codes. In 2006 2nd International Confer-

ence on Information and Communication Technologies, volume 2, pages 2376–2381.
IEEE, 2006.

[11] M. Belkasmi, M. Lahmer, and M. Benchrifa. Iterative threshold decoding of parallel
concatenated block codes. In 4th International Symposium on Turbo Codes and Re-

lated Topics; 6th International ITG-Conference on Source and Channel Coding, pages
1–4. VDE, 2006.

[12] E. Berlekamp, R. McEliece, and H. Van Tilborg. On the inherent intractability
of certain coding problems (corresp.). IEEE Transactions on Information Theory,
24(3):384–386, 1978.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting
coding and decoding: Turbo-codes. In Proceedings of ICC’93-IEEE International

Conference on Communications, volume 2, pages 1064–1070. IEEE, 1993.

[14] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[15] A. Bhowmick and S. Lovett. The list decoding radius for reed–muller codes over small
fields. IEEE Transactions on Information Theory, 64(6):4382–4391, 2018.

[16] M. Blawat, K. Gaedke, I. Hütter, X-M. Chen, B. Turczyk, S. Inverso, B. W. Pruitt,
and G. M. Church. Forward error correction for dna data storage. Procedia Computer

Science, 80:1011–1022, 2016.

[17] C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic,
P. Popovski, and A. Dekorsy. Massive machine-type communications in 5g: Physi-
cal and mac-layer solutions. IEEE Communications Magazine, 54(9):59–65, 2016.

[18] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss. A dna-based
archival storage system. ACM SIGOPS Operating Systems Review, 50(2):637–649,
2016.

[19] P. Camion. A proof of some properties of reed-muller codes by means of the normal
basis theorem. Combinatorial mathematics and its applications, University of North

Carolina at Chapel Hill, 1969.

Bibliography 240

[20] T. C-Y. Chang and Y. T. Su. Dynamic weighted bit-flipping decoding algorithms for
ldpc codes. IEEE Transactions on Communications, 63(11):3950–3963, 2015.

[21] C. L. Chen. On majority-logic decoding of finite geometry codes. IEEE Transactions

on Information Theory, 17(3):332–336, 1971.

[22] M. Chertkov and M. G. Stepanov. An efficient pseudocodeword search algorithm
for linear programming decoding of ldpc codes. IEEE Transactions on Information

Theory, 54(4):1514–1520, 2008.

[23] S. Chowla and H. J. Ryser. Combinatorial problems. Canadian Journal of Mathemat-

ics, 2:93–99, 1950.

[24] S-Y. Chung, G. D. Forney, T. Richardson, R. L. Urbanke, et al. On the design of
low-density parity-check codes within 0.0045 db of the shannon limit. IEEE Commu-

nications letters, 5(2):58–60, 2001.

[25] G. M. Church, Y. Gao, and S. Kosuri. Next-generation digital information storage in
dna. Science, page 1226355, 2012.

[26] G. C. Clark Jr. and J. B. Cain. Error-correction coding for digital communications.
Springer Science and Business Media, 2013.

[27] C. J. Colbourn. CRC handbook of combinatorial designs. CRC press, 2010.

[28] R. Cramer, C. Xing, and C. Yuan. Efficient multi-point local decoding of reed-muller
codes via interleaved codex. IEEE Transactions on Information Theory, 66(1):263–
272, 2019.

[29] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang. Non-orthogonal multiple
access for 5g: solutions, challenges, opportunities, and future research trends. IEEE

Communications Magazine, 53(9):74–81, 2015.

[30] M. C. Davey and D. J. C. MacKay. Low density parity check codes over gf (q). In
1998 Information Theory Workshop (Cat. No. 98EX131), pages 70–71. IEEE, 1998.

[31] C. Di, D. Proietti, I. E. Telatar, T. Richardson, and R. L. Urbanke. Finite-length anal-
ysis of low-density parity-check codes on the binary erasure channel. IEEE Transac-

tions on Information theory, 48(6):1570–1579, 2002.

Bibliography 241

[32] C. Ding, C. Li, and Y. Xia. Another generalisation of the binary reed–muller codes
and its applications. Finite Fields and Their Applications, 53:144–174, 2018.

[33] D. Divsalar, S. Dolinar, and C. Jones. Construction of protograph ldpc codes with
linear minimum distance. In 2006 IEEE International Symposium on Information

Theory, pages 664–668. IEEE, 2006.

[34] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews. Capacity-approaching proto-
graph codes. IEEE Journal on Selected Areas in Communications, 27(6):876–888,
2009.

[35] K. Drakakis. A review of the available construction methods for golomb rulers. Adv.

in Math. of Comm., 3(3):235–250, 2009.

[36] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of machine learning research, 12(Jul):2121–
2159, 2011.

[37] G. Durisi, T. Koch, J. Östman, Y. Polyanskiy, and W. Yang. Short-packet communica-
tions over multiple-antenna rayleigh-fading channels. IEEE Transactions on Commu-

nications, 64(2):618–629, 2015.

[38] O. El Mouaatamid, M. Lahmer, and M. Belkasmi. Construction and decoding of osmld
codes derived from unital and oval designs. In 2018 International Conference on Ad-

vanced Communication Technologies and Networking (CommNet), pages 1–7. IEEE,
2018.

[39] O. El Mouaatamid, M. Lahmer, M. Belkasmi, Z. M’rabet, and A. Yatribi. One-step
majority-logic decodable codes derived from oval designs. In 2017 International Con-

ference on Wireless Networks and Mobile Communications (WINCOM), pages 1–6.
IEEE, 2017.

[40] Y. Erlich and D. Zielinski. Capacity-approaching dna storage. bioRxiv, page 074237,
2016.

[41] Y. Erlich and D. Zielinski. Dna fountain enables a robust and efficient storage archi-
tecture. Science, 355(6328):950–954, 2017.

Bibliography 242

[42] N. Eroshenko, S. Kosuri, A. H. Marblestone, N. Conway, and G. M. Church. Gene
assembly from chip-synthesized oligonucleotides. Current protocols in chemical biol-

ogy, 4(1):1–17, 2012.

[43] B. C. Faircloth and T. C. Glenn. Not all sequence tags are created equal: designing and
validating sequence identification tags robust to indels. PloS one, 7(8):e42543, 2012.

[44] J. Feldman. Decoding error-correcting codes via linear programming. PhD thesis,
Massachusetts Institute of Technology, 2003.

[45] J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear programming to decode
binary linear codes. IEEE Transactions on Information Theory, 51(3):954–972, 2005.

[46] W. Feller. An introduction to probability theory and its applications, volume 1. Wiley,
New York, 1968.

[47] R. A. Fisher. An examination of the different possible solutions of a problem in in-
complete blocks. Annals of Eugenics, 10(1):52–75, 1940.

[48] R. Gallager. Low-density parity-check codes. IRE Transactions on information theory,
8(1):21–28, 1962.

[49] J-M. Goethals and P. Delsarte. On a class of majority-logic decodable cyclic codes.
IEEE Transactions on Information Theory, 14(2):182–188, 1968.

[50] M. J. E. Golay. Notes on digital coding. Proc. IEEE, 37:657, 1949.

[51] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Bir-
ney. Towards practical, high-capacity, low-maintenance information storage in syn-
thesized dna. Nature, 494(7435):77, 2013.

[52] R. L. Graham and J. MacWilliams. On the number of information symbols in
difference-set cyclic codes. Bell System Technical Journal, 45(7):1057–1070, 1966.

[53] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark. Robust chemical
preservation of digital information on dna in silica with error-correcting codes. Ange-

wandte Chemie International Edition, 54(8):2552–2555, 2015.

[54] F. Guo and L. Hanzo. Reliability ratio based weighted bit-flipping decoding for low-
density parity-check codes. Electronics Letters, 40(21):1356–1358, 2004.

Bibliography 243

[55] V. Guruswami, L. Jin, and C. Xing. Efficiently list-decodable punctured reed-muller
codes. IEEE Transactions on Information Theory, 63(7):4317–4324, 2017.

[56] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and convolu-
tional codes. IEEE Transactions on information theory, 42(2):429–445, 1996.

[57] Marshall Hall. Combinatorial Theory (2nd Ed.). John Wiley & Sons, Inc., USA, 1998.

[58] R. W. Hamming. Error detecting and error correcting codes. The Bell system technical

journal, 29(2):147–160, 1950.

[59] S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross. Decoding reed-muller and
polar codes by successive factor graph permutations. In 2018 IEEE 10th International

Symposium on Turbo Codes & Iterative Information Processing (ISTC), pages 1–5.
IEEE, 2018.

[60] P. Hauck, M. Huber, J. Bertram, D. Brauchle, and S. Ziesche. Efficient majority-logic
decoding of short-length reed-muller codes at information positions. IEEE transac-

tions on communications, 61(3):930–938, 2013.

[61] D. Heider and A. Barnekow. Dna-based watermarks using the dna-crypt algorithm.
BMC bioinformatics, 8(1):176, 2007.

[62] M. R. Hestenes. Multiplier and gradient methods. Journal of optimization theory and

applications, 4(5):303–320, 1969.

[63] J. H. Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[64] R. Horan, C. Tjhai, M. Tomlinson, M. Ambroze, and M. Ahmed. Idempo-
tents, mattson-solomon polynomials and binary ldpc codes. IEE Proceedings-

Communications, 153(2):256–262, 2006.

[65] F. Hu. Opportunities in 5G networks: A research and development perspective. CRC
press, 2016.

[66] X-Y. Hu, E. Eleftheriou, and D-M. Arnold. Progressive edge-growth tanner graphs.
In GLOBECOM’01. IEEE Global Telecommunications Conference, volume 2, pages
995–1001. IEEE, 2001.

Bibliography 244

[67] X-Y. Hu, E. Eleftheriou, and D-M. Arnold. Regular and irregular progressive edge-
growth tanner graphs. IEEE Transactions on Information Theory, 51(1):386–398,
2005.

[68] Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar. Cyclic and quasi-cyclic ldpc codes
on constrained parity-check matrices and their trapping sets. IEEE transactions on

information theory, 58(5):2648–2671, 2012.

[69] Q. Huang, J. Kang, L. Zhang, S. Lin, and K. Abdel-Ghaffar. Two reliability-based
iterative majority-logic decoding algorithms for ldpc codes. IEEE Transactions on

communications, 57(12):3597–3606, 2009.

[70] J. R. H. Hutton. LDPC codes from semipartial geometries. PhD thesis, University of
Sussex, 2011.

[71] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck. Duplication-correcting codes for
data storage in the dna of living organisms. In Information Theory (ISIT), 2016 IEEE

International Symposium on, pages 1028–1032. IEEE, 2016.

[72] M. Jiang, C. Zhao, Z. Shi, and Y. Chen. An improvement on the modified weighted bit
flipping decoding algorithm for ldpc codes. IEEE Communications Letters, 9(9):814–
816, 2005.

[73] M. Jiang, C. Zhao, L. Zhang, and E. Xu. Adaptive offset min-sum algorithm for low-
density parity check codes. IEEE communications letters, 10(6):483–485, 2006.

[74] X. Jiang and M. H. Lee. Large girth non-binary ldpc codes based on finite fields and
euclidean geometries. IEEE Signal Processing Letters, 16(6):521–524, 2009.

[75] S. Johnson and S. R. Weller. High-rate ldpc codes from unital designs. In GLOBE-

COM’03. IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489),
volume 4, pages 2036–2040. IEEE, 2003.

[76] S. Johnson and S. R. Weller. Codes for iterative decoding from partial geometries.
IEEE Transactions on Communications, 52(2):236–243, 2004.

[77] J. Jung and I-C. Park. Multi-bit flipping decoding of ldpc codes for nand storage
systems. IEEE Communications Letters, 21(5):979–982, 2017.

Bibliography 245

[78] T. Kasami and S. Lin. On majority-logic decoding for duals of primitive polynomial
codes. IEEE Transactions on Information Theory, 17(3):322–331, 1971.

[79] T. Kasami, S. Lin, and W. W. Peterson. Some results on cyclic codes which are in-
variant under the affine group and their applications. Information and Control, 11(5-
6):475–496, 1967.

[80] T. Kasami, S. Lin, and W. W. Peterson. New generalizations of the reed-muller codes–
i: Primitive codes. IEEE Transactions on Information Theory, 14(2):189–199, 1968.

[81] N. Kashyap and A. Vardy. Stopping sets in codes from designs. In IEEE International

Symposium on Information Theory, 2003. Proceedings., page 122. IEEE, 2003.

[82] A. Khajehnejad, A. G. Dimakis, B. Hassibi, B. Vigoda, and W. Bradley. Reweighted lp
decoding for ldpc codes. IEEE transactions on information theory, 58(9):5972–5984,
2012.

[83] V. D. Kolesnik. Probabilistic decoding of majority codes. Problemy Peredachi Infor-

matsii, 7(3):3–12, 1971.

[84] V. D. Kolesnik and E. T. Mironchikov. Cyclic reed–muller codes and their decoding.
Problemy Peredachi Informatsii, 4(4):20–25, 1968.

[85] S. Kosuri, N. Eroshenko, E. M. LeProust, M. Super, J. Way, J. B. Li, and G. M. Church.
Scalable gene synthesis by selective amplification of dna pools from high-fidelity mi-
crochips. Nature biotechnology, 28(12):1295, 2010.

[86] Y. Kou, S. Lin, and M. P. C. Fossorier. Low-density parity-check codes based on finite
geometries: a rediscovery and new results. IEEE Transactions on Information theory,
47(7):2711–2736, 2001.

[87] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. ŞaşoÇ§lu, and R. L. Urbanke.
Reed–muller codes achieve capacity on erasure channels. IEEE Transactions on infor-

mation theory, 63(7):4298–4316, 2017.

[88] M. Lahmer, M. Belkasmi, and F. Ayoub. Iterative threshold decoding of one step
majority logic decodable block codes. In 2007 IEEE International Symposium on

Signal Processing and Information Technology, pages 668–673. IEEE, 2007.

Bibliography 246

[89] S. Landner and O. Milenkovic. Algorithmic and combinatorial analysis of trapping
sets in structured ldpc codes. In 2005 International Conference on Wireless Networks,

Communications and Mobile Computing, volume 1, pages 630–635. IEEE, 2005.

[90] G. Li and G. Feng. Improved parallel weighted bit-flipping decoding algorithm for
ldpc codes. IET communications, 3(1):91–99, 2009.

[91] H. Li, B. Bai, X. Mu, J. Zhang, and H. Xu. Algebra-assisted construction of quasi-
cyclic ldpc codes for 5g new radio. IEEE Access, 6:50229–50244, 2018.

[92] J. Li, S. Lin, K. Abdel-Ghaffar, D. J. Costello Jr, and W. E. Ryan. LDPC code designs,

constructions, and unification. Cambridge University Press, 2016.

[93] J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar. Algebraic quasi-cyclic ldpc codes:
Construction, low error-floor, large girth and a reduced-complexity decoding scheme.
IEEE Transactions on communications, 62(8):2626–2637, 2014.

[94] R. Liebler. Implementing gradient descent decoding. The Michigan Mathematical

Journal, 58(1):285–291, 2009.

[95] D. Limbachiya, V. Dhameliya, M. Khakhar, and M. K. Gupta. On optimal family of
codes for archival dna storage. arXiv preprint arXiv:1501.07133, 2015.

[96] S. Lin. Multifold euclidean geometry codes. IEEE Transactions on Information The-

ory, 19(4):537–548, 1973.

[97] S. Lin and D. J. Costello. Error control coding. Pearson Education India, 2001.

[98] S. Lin and D. J. Costello. Error control coding. The second international edition,

Prentice-Hall, pages 704–712, 2004.

[99] B. Liu, J. Gao, G. Dou, and W. Tao. Weighted symbol-flipping decoding for nonbinary
ldpc codes. In 2010 Second International Conference on Networks Security, Wireless

Communications and Trusted Computing, volume 1, pages 223–226. IEEE, 2010.

[100] B. Liu, J. Gao, W. Tao, and G. Dou. Weighted symbol-flipping decoding algorithm
for nonbinary ldpc codes with flipping patterns. Journal of Systems Engineering and

Electronics, 22(5):848–855, 2011.

[101] X. Liu and S. C. Draper. Admm lp decoding of non-binary ldpc codes in g f (2m). IEEE

Transactions on Information Theory, 62(6):2985–3010, 2016.

Bibliography 247

[102] X. Liu and S. C. Draper. The admm penalized decoder for ldpc codes. IEEE Transac-

tions on Information Theory, 62(6):2966–2984, 2016.

[103] Y-H. Liu, X-L. Niu, and M-L. Zhang. Multi-threshold bit flipping algorithm for de-
coding structured ldpc codes. IEEE Communications Letters, 19(2):127–130, 2014.

[104] G. Liva and M. Chiani. Protograph ldpc codes design based on exit analysis. In IEEE

GLOBECOM 2007-IEEE Global Telecommunications Conference, pages 3250–3254.
IEEE, 2007.

[105] R. Lucas, M. Bossert, and M. Breitbach. On iterative soft-decision decoding of linear
binary block codes and product codes. IEEE Journal on selected areas in communica-

tions, 16(2):276–296, 1998.

[106] R. Lucas, M. P. C. Fossorier, Y. Kou, and S. Lin. Iterative decoding of one-step ma-
jority logic decodable codes based on belief propagation. IEEE Transactions on Com-

munications, 48(6):931–937, 2000.

[107] D. J. C. MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

[108] D. J. C. MacKay and M. C. Davey. Evaluation of gallager codes for short block length
and high rate applications. In Codes, Systems, and Graphical Models, pages 113–130.
Springer, 2001.

[109] D. J. C. MacKay and R. M. Neal. Near shannon limit performance of low density
parity check codes. Electronics letters, 32(18):1645–1646, 1996.

[110] F. J. MacWilliams and H. B. Mann. On the p-rank of the design matrix of a difference
set. Information and Control, 12(5):474–488, 1968.

[111] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, vol-
ume 16. Elsevier, 1977.

[112] J. F. MacWilliams. A table of primitive binary idempotents of odd length n, 7 {leq} n
{leq} 511. IEEE Transactions on Information Theory, 25(1):118–121, 1979.

[113] J. L. Massey. Threshold decoding. 1963.

[114] R. G. Maunder. A vision for 5g channel coding. AccelerComm White Paper, 2016.

Bibliography 248

[115] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[116] T. Mittelholzer. Construction of steiner systems and high-rate ldpc codes. IEEE Trans.

Inform. Theory, 2000.

[117] T. K. Moon. Error correction coding: mathematical methods and algorithms. John
Wiley & Sons, 2005.

[118] D. E. Muller. Application of boolean algebra to switching circuit design and to error
detection. Transactions of the IRE professional group on electronic computers, (3):6–
12, 1954.

[119] Y. Nesterov. A method for unconstrained convex minimization problem with the rate
of convergence o (1/k2̂). In Doklady an ussr, volume 269, pages 543–547, 1983.

[120] T. M. N. Ngatched, A. S. Alfa, and J. Cai. An improvement on the soft reliability-
based iterative majority-logic decoding algorithm for ldpc codes. In 2010 IEEE Global

Telecommunications Conference GLOBECOM 2010, pages 1–5. IEEE, 2010.

[121] D. V. Nguyen and B. Vasic. Two-bit bit flipping algorithms for ldpc codes and col-
lective error correction. IEEE Transactions on Communications, 62(4):1153–1163,
2014.

[122] D. V. Nguyen, B. Vasić, and M. W. Marcellin. Two-bit bit flipping decoding of ldpc
codes. In 2011 IEEE International Symposium on Information Theory Proceedings,
pages 1995–1999. IEEE, 2011.

[123] T. T. B. Nguyen, T. Nguyen Tan, and H. Lee. Efficient qc-ldpc encoder for 5g new
radio. Electronics, 8(6):668, 2019.

[124] K. Niu and K. Chen. Crc-aided decoding of polar codes. IEEE Communications

Letters, 16(10):1668–1671, 2012.

[125] J. Oh and J. Ha. A two-bit weighted bit-flipping decoding algorithm for ldpc codes.
IEEE Communications Letters, 22(5):874–877, 2018.

[126] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang. Stopping sets and the girth of
tanner graphs. In Proceedings IEEE International Symposium on Information Theory,,
page 2. IEEE, 2002.

Bibliography 249

[127] V. Pepe. Ldpc codes from the hermitian curve. Designs, Codes and Cryptography,
42(3):303–315, 2007.

[128] W. W. Peterson and E.J. Weldon. Error-correcting codes. MIT press, 1972.

[129] M. J. D. Powell. A method for nonlinear constraints in minimization problems. Opti-

mization, pages 283–298, 1969.

[130] G. K. Prayogo, R. Putra, A. H. Prasetyo, and M. Suryanegara. Evaluation of ldpc code
and polar code coding scheme in 5g technology–massive machine type communica-
tion. In 2018 10th International Conference on Information Technology and Electrical

Engineering (ICITEE), pages 170–174. IEEE, 2018.

[131] N. Qian. On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1):145–151, 1999.

[132] M. B. Quintana, M. A. B. Trenard, I. Márquez-Corbella, and E. Martínez-Moro. An
algebraic view to gradient descent decoding. In 2010 IEEE Information Theory Work-

shop, pages 1–4. IEEE, 2010.

[133] I. S. Reed. A class of multiple-error-correcting codes and the decoding scheme. Tech-
nical report, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB,
1953.

[134] D. Reinsel, J. Gantz, and J. Rydning. Data age 2025: The evolution of data to life-
critical. Don’t Focus on Big Data, 2017.

[135] T. Richardson. Error floors of ldpc codes. In Proceedings of the annual Allerton

conference on communication control and computing, volume 41, pages 1426–1435.
The University; 1998, 2003.

[136] T. Richardson and S. Kudekar. Design of low-density parity check codes for 5g new
radio. IEEE Communications Magazine, 56(3):28–34, 2018.

[137] T. Richardson, M. A. Shokrollahi, and R. L. Urbanke. Design of capacity-approaching
irregular low-density parity-check codes. IEEE transactions on information theory,
47(2):619–637, 2001.

[138] T. Richardson and R. Urbanke. Multi-edge type ldpc codes. In Workshop honoring

Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena,

California, pages 24–25, 2002.

Bibliography 250

[139] K. Rkizat, S. Nouh, M. Lahmer, and M. Belkasmi. New quasi-cyclic majority logic
codes constructed from disjoint difference sets by genetic algorithm. In First Interna-

tional Conference on Real Time Intelligent Systems, pages 168–177. Springer, 2017.

[140] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. J. Lennon, R. Hegarty, C. Nusbaum,
and D. B. Jaffe. Characterizing and measuring bias in sequence data. Genome biology,
14(5):R51, 2013.

[141] S. Ruder. An overview of gradient descent optimization algorithms [eb/ol]. 2017.

[142] L. Rudolph. A class of majority logic decodable codes. IEEE Transactions on Infor-

mation Theory, 13(2):305–307, 1967.

[143] L. Rudolph. Threshold decoding of cyclic codes. IEEE Transactions on Information

Theory, 15(3):414–418, 1969.

[144] L. Rudolph and C. Hartmann. Decoding by sequential code reduction. IEEE Transac-

tions on Information Theory, 19(4):549–555, 1973.

[145] L. D. Rudolph. Geometric configurations and majority logic decodable codes. PhD
thesis, MEE-University of Oklahoma, 1964.

[146] W. Ryan and S. Lin. Channel codes: classical and modern. Cambridge university
press, 2009.

[147] H. J. Ryser. The existence of symmetric block designs. Journal of Combinatorial

Theory, Series A, 32(1):103–105, 1982.

[148] E. Santi, C. Hager, and H. D. Pfister. Decoding reed-muller codes using minimum-
weight parity checks. In 2018 IEEE International Symposium on Information Theory

(ISIT), pages 1296–1300. IEEE, 2018.

[149] R. Saptharishi, A. Shpilka, and B. L. Volk. Efficiently decoding reed-muller codes
from random errors. In Proceedings of the forty-eighth annual ACM symposium on

Theory of Computing, pages 227–235, 2016.

[150] O. Sberlo and A. Shpilka. On the performance of reed-muller codes with respect to
random errors and erasures. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1357–1376. SIAM, 2020.

Bibliography 251

[151] F. Schaich and T. Wild. Waveform contenders for 5g ofdm vs. fbmc vs. ufmc. In
2014 6th international symposium on communications, control and signal processing

(ISCCSP), pages 457–460. IEEE, 2014.

[152] J. J. Schwartz, C. Lee, and J. Shendure. Accurate gene synthesis with tag-directed
retrieval of sequence-verified dna molecules. Nature methods, 9(9):913, 2012.

[153] C. E. Shannon. A mathematical theory of communication. Bell system technical

journal, 27(3):379–423, 1948.

[154] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz,
G. Han, Z. Lin, W. Liu, Y. Li, et al. Short block-length codes for ultra-reliable low
latency communications. IEEE Communications Magazine, 57(2):130–137, 2018.

[155] J. Singer. A theorem in finite projective geometry and some applications to number
theory. Transactions of the American Mathematical Society, 43(3):377–385, 1938.

[156] K. J. C. Smith. Majority decodable codes derived from finite geometries. Institute of

Statistics Minieo Series, University of North Carolina, 561, 1967.

[157] K. J. C. Smith. An application of incomplete block designs to the construction of

error-correcting codes, volume 42. Citeseer, 1968.

[158] Y. Sun, H. Chen, X. Li, L. Luo, and T. Qin. Reliability-based iterative proportionality-
logic decoding of ldpc codes with adaptive decision. Journal of Communications and

Networks, 17(3):213–220, 2015.

[159] G. Sundararajan, C. Winstead, and E. Boutillon. Noisy gradient descent bit-flip de-
coding for ldpc codes. IEEE Transactions on Communications, 62(10):3385–3400,
2014.

[160] R. Sutton. Two problems with back propagation and other steepest descent learning
procedures for networks. In Proceedings of the Eighth Annual Conference of the Cog-

nitive Science Society, 1986, pages 823–832, 1986.

[161] M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian, and V. Vukadinovic.
Channel coding for ultra-reliable low-latency communication in 5g systems. In 2016

IEEE 84th vehicular technology conference (VTC-Fall), pages 1–5. IEEE, 2016.

Bibliography 252

[162] M. H. Taghavi N. and P. H. Siegel. Adaptive methods for linear programming decod-
ing. IEEE Transactions on Information Theory, 54(12):5396–5410, 2008.

[163] H. Tanaka, K. Furusawa, and S. Kaneku. A novel approach to soft decision decoding
of threshold decodable codes. IEEE Transactions on Information Theory, 26(2):244–
246, 1980.

[164] H. Tang, J. Xu, S. Lin, and K. Abdel-Ghaffar. Codes on finite geometries. IEEE

Transactions on Information Theory, 51(2):572–596, 2005.

[165] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on

information theory, 27(5):533–547, 1981.

[166] J. Thorpe. Low-density parity-check (ldpc) codes constructed from protographs. IPN

progress report, 42(154):42–154, 2003.

[167] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Construction of irregular ldpc
codes with low error floors. In IEEE International Conference on Communications,

2003. ICC’03., volume 5, pages 3125–3129. IEEE, 2003.

[168] C. Tjhai, M. Tomlinson, M. Ambroze, and M. Ahmed. Cyclotomic idempotent-based
binary cyclic codes. Electronics Letters, 41(6):341–343, 2005.

[169] C. Tjhai, M. Tomlinson, R. Horan, M. Ahmed, and M. Ambroze. Gf (2m) low-density
parity-check codes derived from cyclotomic cosets. In 4th International Symposium

on Turbo Codes & Related Topics; 6th International ITG-Conference on Source and

Channel Coding, pages 1–6. VDE, 2006.

[170] M. Tomlinson, C. Jung Tjhai, M. Ambroze, and M. Ahmed. Binary cyclic difference
set codes derived from idempotents based on cyclotomic cosets. submitted to IEEE

Transations on information theory, 2004.

[171] R. Townsend and E. Weldon. Self-orthogonal quasi-cyclic codes. IEEE Transactions

on Information Theory, 13(2):183–195, 1967.

[172] Y-L. Ueng, C-Y. Wang, and M-R. Li. An efficient combined bit-flipping and stochastic
ldpc decoder using improved probability tracers. IEEE Transactions on Signal Pro-

cessing, 65(20):5368–5380, 2017.

Bibliography 253

[173] M. A. Ullah and H. Ogiwara. Performance improvement of multi-stage threshold
decoding with difference register. IEICE transactions on fundamentals of electronics,

communications and computer sciences, 94(6):1449–1457, 2011.

[174] M. A. Ullah, K. Okada, and H. Ogiwara. Multi-stage threshold decoding for self-
orthogonal convolutional codes. IEICE transactions on fundamentals of electronics,

communications and computer sciences, 93(11):1932–1941, 2010.

[175] A. Vardy. The intractability of computing the minimum distance of a code. IEEE

Transactions on Information Theory, 43(6):1757–1766, 1997.

[176] B. Vasic. Combinatorial constructions of low-density parity check codes for iterative
decoding. In Proceedings IEEE International Symposium on Information Theory,,
page 312. IEEE, 2002.

[177] B. Vasic. High-rate low-density parity check codes based on anti-pasch affine ge-
ometries. In 2002 IEEE International Conference on Communications. Conference

Proceedings. ICC 2002 (Cat. No. 02CH37333), volume 3, pages 1332–1336. IEEE,
2002.

[178] B. Vasić, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery. Trapping set ontology.
In 2009 47th Annual Allerton Conference on Communication, Control, and Computing

(Allerton), pages 1–7. IEEE, 2009.

[179] B. Vasic, E. M. Kurtas, and A. V. Kuznetsov. Ldpc codes based on mutually orthog-
onal latin rectangles and their application in perpendicular magnetic recording. IEEE

transactions on magnetics, 38(5):2346–2348, 2002.

[180] B. Vasic and O. Milenkovic. Combinatorial constructions of low-density parity-check
codes for iterative decoding. IEEE Transactions on information theory, 50(6):1156–
1176, 2004.

[181] B. Vasic, K. Pedagani, and M. Ivkovic. High-rate girth-eight low-density parity-
check codes on rectangular integer lattices. IEEE Transactions on Communications,
52(8):1248–1252, 2004.

[182] P. O. Vontobel and R. Koetter. On the relationship between linear programming de-
coding and min-sum algorithm decoding. In Proc. ISITA 2004. Citeseer.

Bibliography 254

[183] P. O. Vontobel and R. Koetter. On low-complexity linear-programming decoding of
ldpc codes. European transactions on telecommunications, 18(5):509–517, 2007.

[184] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi. Gra-
dient descent bit flipping algorithms for decoding ldpc codes. In 2008 International

Symposium on Information Theory and Its Applications, pages 1–6. IEEE, 2008.

[185] E. J. Weldon. Difference-set cyclic codes. The Bell System Technical Journal,
45(7):1045–1055, 1966.

[186] S. R. Weller and S. J. Johnson. Regular low-density parity-check codes from oval
designs. European Transactions on Telecommunications, 14(5):399–409, 2003.

[187] X. Wu, M. Jiang, C. Zhao, and X. You. Fast weighted bit-flipping decoding of finite-
geometry ldpc codes. In 2006 IEEE Information Theory Workshop-ITW’06 Chengdu,
pages 132–134. IEEE, 2006.

[188] X. Wu, C. Zhao, and X. You. Parallel weighted bit-flipping decoding. IEEE Commu-

nications letters, 11(8):671–673, 2007.

[189] Hengzhou X., Zhongyang Y., Dan F., and Hai Z. New construction of partial ge-
ometries based on group divisible designs and their associated ldpc codes. Physical

Communication, 39:100970, 2020.

[190] H. Xiao and A. H. Banihashemi. Improved progressive-edge-growth (peg) construc-
tion of irregular ldpc codes. IEEE Communications Letters, 8(12):715–717, 2004.

[191] R. B. Yale. Error correcting codes and linear recurring sequences. Report MIT Lincoln

Laboratory, Lexington, MA, pages 34–77, 1958.

[192] K. Yamaguchi, H. Iizuka, E. Nomura, and H. Imai. Variable threshold soft decision de-
coding. Electronics and Communications in Japan (Part III: Fundamental Electronic

Science), 72(9):65–74, 1989.

[193] T-Y. Yang and H. Chen. Modified majority logic decoding of reed–muller codes using
factor graphs. IET Communications, 12(7):759–764, 2018.

[194] A. Yatribi, M. Belkasmi, and F. Ayoub. Gradient-descent decoding of one-step
majority-logic decodable codes. Physical Communication, 39:100999, 2020.

Bibliography 255

[195] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[196] L. Zeng, L. Lan, Y. Y. Tai, B. Zhou, S. Lin, and K. Abdel-Ghaffar. Construction of
nonbinary cyclic, quasi-cyclic and regular ldpc codes: A finite geometry approach.
IEEE transactions on Communications, 56(3):378–387, 2008.

[197] H. Zhang and José M. F. Moura. The design of structured regular ldpc codes with large
girth. In GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat.

No. 03CH37489), volume 7, pages 4022–4027. IEEE, 2003.

[198] J. Zhang and M. P. C. Fossorier. A modified weighted bit-flipping decoding of low-
density parity-check codes. IEEE Communications Letters, 8(3):165–167, 2004.

[199] L. Zhang, N. Liu, Z. Pan, and X. You. Tabu-list noisy gradient descent bit flipping
decoding of ldpc codes. In 2019 11th International Conference on Wireless Commu-

nications and Signal Processing (WCSP), pages 1–5. IEEE, 2019.

[200] Q. Zhang, A. Liu, X. Pan, and K. Pan. Crc code design for list decoding of polar codes.
IEEE Communications Letters, 21(6):1229–1232, 2017.

[201] X. Zhang, L. Chen, J. Qiu, and J. Abdoli. On the waveform for 5g. IEEE Communi-

cations Magazine, 54(11):74–80, 2016.

[202] X. Zhang and P. H. Siegel. Adaptive cut generation algorithm for improved linear
programming decoding of binary linear codes. IEEE Transactions on Information

Theory, 58(10):6581–6594, 2012.

[203] X. Zhang and P. H. Siegel. Efficient iterative lp decoding of ldpc codes with alter-
nating direction method of multipliers. In 2013 IEEE International Symposium on

Information Theory, pages 1501–1505. IEEE, 2013.

[204] C. Zhi and J. Fan. On optimal self-orthogonal quasi-cyclic codes. In IEEE Interna-

tional Conference on Communications, pages 1256–1260, 1990.

[205] B. Zhou, J. Kang, S. W. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu. Construction of
non-binary quasi-cyclic ldpc codes by arrays and array dispersions. IEEE Transactions

on Communications, 57(6):1652–1662, 2009.

Bibliography 256

[206] N. Zierler. On a variation of the first-order reed-muller codes. Lincoln Laboratories of

Massachusetts Institute of Technology, Lexington, Mass, 1958.

[207] V. Zolotarev, G. Ovechkin, D. Satybaldina, N. Tashatov, A. Adamova, and V. Mishin.
Efficiency multithreshold decoders for self-orthogonal block codes for optical chan-
nels. International Journal of Circuits, Systems and Signal Processing, 8:487–495,
2014.

	Contents
	List of Tables
	List of Figures
	Introduction
	Overview on Forward Error Correction
	Problem Statement and Motivation
	Thesis Aim, Objectives and Organization
	Related publications

	Majority-Logic Decodable Codes
	Introduction and Background
	Definitions and Preliminaries
	Balanced Incomplete Block Designs
	Difference-Sets

	Low Density Parity-Check Codes
	Tanner Graph
	Random Constructions
	Algebraic Constructions

	One-Step Majority-Logic Decodable Codes
	Reed-Muller Codes
	Cyclic OSMLD Codes
	Quasi-Cyclic OSMLD Codes
	Other OSMLD Codes derived from Combinatorial Designs

	Multi-Step Majority-Logic Decodable Codes
	Background and Definitions
	MSMLD Codes derived from Euclidean Geometries

	Conclusion

	Genetic Algorithms for the Discovery of New Cyclic One-Step Majority-Logic Decodable Codes
	Introduction
	Cyclotomic Cosets and Parity-Check Idempotents
	Singer Difference Sets and Golomb Rulers
	Cyclotomic Cosets and Parity-check Idempotents
	Constraints on the Parity-Check Idempotent

	Exhaustive Search based Construction
	Problematic and Analysis of the Search Space
	Construction of cyclic OSMLD codes using Genetic Algorithms
	Problem modeling
	OSMLD-GA construction algorithm for cyclic OSMLD codes over GF(2m1)

	Construction results
	Conclusion

	A New Gradient-Descent based One-Step Majority-Logic Decoding Algorithm for LDPC Codes
	Introduction and Preliminaries
	Introduction
	Preliminaries

	The Existing Majority-Logic Decoding Algorithms
	Hard Decision Majority-Logic Decoding
	Soft Decision Majority-Logic Decoding
	Gradient-Descent based Decoding

	A New Gradient-Descent Majority-Logic Decoding Algorithm
	GD-MLGD
	GD-MLGD with Quantization (QGD-MLGD)

	Performance Analysis and Comparison with previous works
	Complexity Analysis
	Parameters Optimization
	Average Number of Iterations
	Error rates

	Analysis of the False Decoding Decisions
	Conclusion

	Unified Models for Majority-Logic Decoding Algorithms using Local Optimization Techniques and a New Constrained Optimization based Decoding Algorithm for Linear Block Codes
	Introduction
	Interpretation of Majority-Logic Decoding Algorithms as a Gradient-Descent Optimization
	Improved local optimization techniques
	Gradient-Descent with Momentum (MGD` 12`12`$12`&12`#12`1̂2`_12`%12`1̃2MGDMomentum Gradient-Descent)
	Nesterov Accelerated Gradient (NAG)
	Adaptive Gradient (Adagrad)
	The Augmented Lagrangian Method of Multipliers

	Improved update rules using variants of the Gradient-Descent
	A New Universal Decoding Approach for Linear Block Codes using the Augmented Lagrange Method of Multipliers
	Conclusion

	Evaluation of OSMLD codes in DNA Data Storage and Modern Wireless Communication Systems
	Cyclic Ternary Difference-Set Codes for DNA Data Storage Systems
	Introduction
	DNA data storage Channel Model
	DNA Forward Error Correction
	The proposed DNA data storage scheme
	Performance analysis

	The Constructed OSMLD Codes for the 5G NR Mobile Networks
	Introduction
	Background on the 5G NR Mobile networks
	Protograph based LDPC Codes for Data Channels in 5G NR eMBB applications
	The Constructed OSMLD Codes for the URLLC and mMTC use cases

	Conclusion

	Conclusions and future directions
	Concluding remarks
	Future research directions

	Difference-families and Skolem sequences
	A set of Cyclic OSMLD codes constructed using the OSMLD-GA algorithm
	Error Probability Bound of the WOSMLGD algorithm
	Nomenclature
	Bibliography

