
 

 
 

 
 
 
 
 
 
 
 
 
 
 

École Nationale Supérieure d'Informatique et d'Analyse des Systèmes 
Centre d’Études Doctorales en Sciences des Technologies de l'Information et de l'Ingénieur 

THÈSE DE DOCTORAT 

 

A CONTRIBUTION TO ARTIFICIAL INTELLIGENCE-BASED 
THERMAL COMFORT CONTROL WITH DYNAMIC MODELING 

FOR SMART BUILDINGS 
 
 

Présentée par 
 

Ghezlane HALHOUL MERABET 
 

Le 04/03/2020 
 

Formation doctorale : Informatique 
Structure de recherche : Smart Systems Laboratory  

 
JURY 

 
Professeur Mohammed ERRADI 
PES, ENSIAS, Université Mohamed V de Rabat 

Président 

Professeur Mohamed ESSAAIDI 
PES, ENSIAS, Université Mohamed V de Rabat 

Directeur de thèse 

Professeur Driss BENHADDOU 
Associate Profesor, University of Houston, TX, USA 

Co-Encadrant de thèse  

Professeur Mustapha BENJILALI 
PES, INPT, Rabat 

Rapporteur 

Professeur Hassan BERBIA 
PES, ENSIAS, Université Mohamed V de Rabat 

Rapporteur 

Professeur Mohammed BOULMALF 
PES, Université Internationale de Rabat 

Rapporteur 

Professeur Houda BENBRAHIM 
PES, ENSIAS, Université Mohamed V de Rabat 
Dr. Mohamed Ben Haddou 
CEO, MENTIS Consulting SA, Brussels, Belgium 

Examinateur 
 
Invité 

 

 
 

 
A Contribution to Artificial Intelligence-based Thermal Comfort Control 

with Dynamic Modeling for Smart Buildings 
 

Résumé : Différents facteurs, tels que le confort thermique, la qualité de l'air intérieur, la ventilation, l'humidité et les 
conditions acoustiques, ont des effets combinés importants sur l'acceptabilité et la qualité des activités réalisées par les 
occupants des bâtiments qui passent une grande partie de leur temps à l'intérieur. Parmi les facteurs cités, le confort 
thermique, qui contribue au bien-être humain en raison de son lien avec la thermorégulation du corps humain. Par 
ailleurs, la relation entre l'occupant et son environnement ainsi que l'ensemble du bâtiment est complexe et 
interdépendante, et elle a un impact significatif sur l'efficacité énergétique. Par conséquent, le développement 
d'environnements thermiquement confortables et énergétiquement efficaces joue un rôle important dans la conception 
des bâtiments et ainsi des systèmes de chauffage, de ventilation et de climatisation. À cet égard, diverses études ont été 
menées, depuis des décennies, y compris des enquêtes et des expérimentations afin d'établir des normes pour évaluer le 
confort et les facteurs thermiques, ainsi que les paramètres de réglage des systèmes CVC. Cependant, la plupart des 
travaux de recherche rapportés dans la littérature traitent uniquement des paramètres qui ne sont pas suivis 
dynamiquement. Pour surmonter cette lacune, cette thèse présente une approche axée sur les données pour développer 
un modèle de confort personnalisé en utilisant des caractéristiques liées a l’homme telles que des paramètres 
anthropométriques comme la morphologie du corps traduite par l’indice de masse corporelle, et des variables 
environnementales pour prédire des indicateurs de confort thermique. Une large base de données contenant des données 
expérimentales sur le confort humain au sein des plusieurs bâtiments réels est utilisée, ici, pour estimer la probabilité 
de sensation, d’acceptabilité et de préférence thermique individuelle. Le modèle développé sera mis en œuvre a 
l’intérieur des bâtiments pour configurer les systèmes CVC, où les occupants pourront être identifiés de manière non-
intrusive. Cela permettra de modifier dynamiquement les réglages de température et donc d’atteindre le niveau du 
confort attendu. 

Mots clés : Bâtiments intelligents, Occupants, Contrôle, Confort thermique, Apprentissage Automatique, Efficacité 
énergétique, Économies d'énergie, Systèmes CVC. 
 

Abstract: Different factors such as thermal comfort, indoor air quality, ventilation, humidity and acoustic conditions, 
have significant combined effects on the acceptability and quality of the activities performed by the buildings’ occupants 
who spend a great part of their times indoors. Among the factors cited, thermal comfort, which contributes to the human 
well-being because of its connection with the thermoregulation of the human body. Besides, the relationship between 
the occupant and his surrounding environment as well as the entire building is complex and interdependent, and has a 
significant impact on the energy efficiency. Therefore, the development of thermally comfortable and energy efficient 
environments is of great importance in the design of the buildings and hence the heating, ventilation and air-conditioning 
systems. In this regard, various studies have been conducted, for decades, including surveys and experimentations in 
order to establish standards to evaluate thermal comfort and factors, and setting-up parameters for HVAC systems. 
However, to the best of our knowledge, most of the research work reported in the literature deal only with parameters 
that are not dynamically tracked. To address this gap, this thesis presents a data-driven approach for developing a 
personalized comfort model that uses human-related features such as anthropometric parameters such as the body shape 
translated by the individual body mass index, and environmental variables to predict personalized thermal comfort 
indicators. Here, a large database containing experimental occupant comfort data from real office and classroom 
buildings is used to estimate the probability of individual thermal sensation, acceptability, and preference for multiple 
building types. The developed model will be implemented inside the buildings to setup HVAC systems, in 
which the occupants could be identified through a non-intrusive way. This allows to dynamically change the 
temperature settings and hence, meeting the expected comfort level. 

Keywords: Smart buildings, Occupants, Control, Thermal Comfort, Machine Learning, Energy-Efficiency, Energy 
savings, HVAC Systems. 
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ABSTRACT 

Different factors such as thermal comfort, indoor air quality, ventilation, humidity, 

acoustic conditions, and so forth, have significant combined effects on the acceptability 

and quality of the activities performed by the occupants of the buildings who spend a 

great part of their time indoors. Among the factors cited, thermal comfort, which 

contributes to human well-being because of its connection with the thermoregulation of 

the human body. Moreover, the relationship between the occupant and his surrounding 

environment as well as the entire building is complex and interdependent and has a 

significant impact on energy-efficiency. Therefore, the development of thermally 

comfortable and energy-efficient environments is of great importance in the design of the 

buildings and hence the heating, ventilation, and air-conditioning systems. In this regard, 

various studies have been conducted, for decades, including surveys and experimentations 

in order to establish standards to evaluate thermal comfort and factors, and setting up 

parameters for HVAC systems. However, to our best of knowledge, most of the research 

work reported in the literature deal only with parameters that are not dynamically tracked. 

In order to address this gap, this thesis presents a data-driven approach for developing 

a personalized comfort model that uses human-related features such as anthropometric 

parameters such as the body shape translated by the individual body mass index and 

environmental variables to predict personalized thermal comfort indicators. Here, a large 

database containing experimental occupant comfort data from real office and classroom 

buildings is used to estimate the probability of individual thermal sensation, acceptability, 

and preference for multiple building types.  

The developed model will be implemented inside the buildings to set up HVAC 

systems, in which the occupants could be identified in a non-intrusive way. This will allow 

to dynamically change the temperature settings and hence, meeting the expected comfort 

level. Finally, the developed model will pave the way to develop systems that can 

dynamically adjust the environment to the users’ preferences. Besides, the system can take 

advantage of this information to consider more energy efficiency opportunities. For 

instance, currently, the HVAC system set up the environment statically assuming an 

average user comfort level. With the current model, HVAC systems will be able to 

dynamically change the temperature setting and save energy. 
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1 INTRODUCTION 

iscussion of the environmental impact of buildings has been gaining weight in the 

agendas of several cities and countries around the world. Indeed, approximately 

38% of the final energy consumption growth between 2015 and 2050 in the world is 

correlated to the use and occupation of buildings. In this regard, the building sector was 

identified as a world pioneer in CO2 in the fifth report produced by the International 

Panel of Climate Change (IPCC) [1]. However, the same report also has identified this 

sector as the one with the greatest potential for reducing CO2 emissions, due to the design 

opportunities, technological advances, and user behavior. 

Proportionally, climate change, the increased frequency, and the severity of warmer 

periods during the year has made a large part of the world’s population dependent on 

artificial conditioning, which further drives peak demand during the summer [2]–[4]. 

Figure (1-1) shows the penetration of HVAC systems in households in some countries 

around the world. HVAC penetration will impact peak power demand which is extreme 

in countries such as Japan, the United States, and Korea. On the other hand, countries 

with low HVAC penetration are expected to have their peak electricity load increase by 

around 45% by 2050, according to the International Energy Agency (IEA) [5]. This 

significant consumption has been generating concern about the management and energy 

efficiency of these devices taking into account the thermal comfort of the buildings’ 

occupants. Research in this area shows how difficult it is to balance the two main 

objectives in question: thermal comfort and energy savings. 
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Figure 1-1. Percentage of households equipped with AC in selected countries, 2018, (Source: Adapted 

from IEA [5]). 

Currently, thermal comfort is a recognized and justified demand in buildings because 

of its impact on the indoor environmental quality (IEQ), the health and productivity of 

the occupants spending three-quarters of their time indoors. This demand is supported 

by standards and regulations that ensure the conformity of indoor environments to the 

requirements of thermal comfort. Moreover, understanding the concept of thermal 

comfort, as well as the search for ways to predict whether a given situation represents 

comfort or discomfort has been the object of study for more than 50 years. In general, 

they are polarized on two fronts: the static (or analytical) perspective and the adaptive one, 

both brought the main thermal comfort standards into use today. 

Evaluating thermal comfort in indoor environments is fundamental for the 

establishment of environmental and energy performance regulations in buildings, and 

which is mainly performed according to the American Society of Heating, Refrigerating 

and Air-Conditioning Engineers – ASHRAE 55 standard [6]. However, the analytical 

models adopted by this standard require the knowledge of several parameters whose 

measurement is complex, and can therefore be distorted, as they are based on a set of 

hypotheses that lead to defining an approximate comfort. Studies have shown that in the 

case of naturally ventilated buildings, these models fail to determine comfort situations: 

in reality, the comfort ranges are wider than those provided [7]. This situation is mainly 

due to the greater freedom of occupants. also, the implementation of these models in the 
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current commercial buildings is static and does not take into consideration the variability 

of thermal perceptions amongst the occupants. Also, the parameters used by these models 

cannot be dynamically evaluated by the buildings to change their settings. Such gap has 

been addressed through this thesis by developing a personalized thermal comfort model 

as a function of variables that are dynamically updated, e.g., the individual body mass 

index, allowing to infer the adequate individual thermal comfort. 

This thesis also focuses on comfort in office buildings, for a few reasons. First, within 

the context of offices, the human cost represents a hundred times more than the energy 

cost of buildings, which makes the performance of people in their work significantly 

important to improve the productivity factor in organizations as a whole [8]. Second, in 

the offices, the air temperature is influenced by multiple heat sources such as lighting, 

poorly insulated windows, machines (photocopiers, computers, other machines in 

operation). Finally, space insulation conditions affect comfort (e.g., thermal bridge, 

airflow, the temperature difference between workspaces…). 

Moreover, in order to adjust the indoor climate conditions, many technological 

solutions have been proposed. However, achieving a comfortable and energy-efficient 

environment, the occupant is supposed to become an expert on these technologies that 

can challenge his daily habits. Given the complexity of these technologies, the user could 

choose the solution of the smart buildings equipped with sensors to adjust everything 

(temperature, ventilation, opening/closing windows) to promote energy savings and 

comfort. Moreover, we might think that building automation makes it possible to reach 

comfort and reduce energy consumption, but studies have shown that when the user can 

act on his environment, he sets up the conditions allowing him to achieve his optimal 

comfort. Thus, the occupant must interact with his surrounding environment to achieve 

the expected savings, since the human being is always the final sensitive sensor, i.e., he is 

an actor of comfort and can act to meet the conditions that are favorable to the risk of 

going against the social or technical practices designed to reduce energy consumption or 

to improve comfort. 

In their study, J. Nicol and M. Humphreys [7] have shown that the individual is more 

tolerant towards comfort situations if he can act (by himself) on the regulation of systems. 

For example, in buildings where the control is centralized, the occupants must adapt to a 

certain temperature that may make them feel uncomfortable. Thus, according to them, 

when the occupants have the access to control of the temperature changes, they find the 

atmosphere more comfortable. 
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In the same context, research has recently been directed towards more advanced 

control structures that take multiple inputs (temperature, humidity, comfort sensation, 

and so forth) and uses, and developing individual comfort models based on personal 

characteristics of the users within given environments [9]–[15]. One study [9] proposed a 

decision support system for a real-time individual’s thermal comfort prediction dedicated 

especially to senior citizens, and using environmental, psychological, and physiological 

features. Results showed significant prediction accuracy improvement (76.7%) compared 

to the conventional Fanger’s model (35.4%) by including two new factors: the age and 

outdoor temperature that are not considered in the Fanger’s model. Other suggested 

personalized models dealing with both thermal comfort and energy savings, by 

investigating the “human-in-the-loop” approach that allows HVAC adjustments 

adaptable to the users’ preferences [10], [11]. 

Otherwise, several types of research have studied the influence of different contextual 

variables, such as gender, age, body composition, and thermal history on thermal comfort. 

They have concluded that: 

• Gender: women are more sensitive to temperature variations than men, as they 

prefer warmer conditions, and report more frequently being in thermal 

discomfort [16]–[22]. 

• Age: elderly people are more sensitive to temperature variations compared to 

young adults [23], [24]. 

• Body Composition: overweight people prefer cooler thermal conditions than 

underweight people [24]–[26]. In field studies, this variable is usually 

investigated through the Body Mass Index (BMI) that relates the weight and 

height. 

• Thermal History1: people previously exposed (to field studies and in the 

climatic chamber) to: (1) higher temperature conditions expressed thermal 

sensations tending more to the negative (cold) side of the seventh scale of 

thermal sensation than people previously exposed to lower temperatures [27], 

 
 
1 According to the theory of adaptive comfort, thermal comfort can also be influenced by people’s thermal history (the 
thermal conditions in which people were recently submitted, besides the conditions at the time of application of thermal 
comfort questionnaires). 
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[28]; (2) environments with air-conditioning (cooling) felt more heated [27] and 

preferred to be colder than people not exposed to air-conditioning [3]. 

However, despite the studies indicating differences in thermal comfort perception 

among different groups of people, the impact of different contextual variables on the 

temperature limits of the thermal comfort zone still needs to be investigated taking into 

account field studies. 

1.1 RESEARCH ITEMS 

This chapter contributes addressing the gaps discussed previously (cf. Chapter 1) and 

proposing a dynamic interaction between the subject and his environment through 

answering the following questions: 

• Does the temperature preference of people represent the actual comfort level? 

• Which model can be used to correlate between the temperature preference of 

the occupants and their anthropometric parameters? 

• How can we develop a dynamic model that can change the comfort level using 

the anthropometric parameters (e.g., BMI, weight, height, or waist)? 

Hence, this chapter seeks to examine items that are not covered by previous studies: 

• Identifying the conditions of comfort and the acceptability of the thermal 

environment without trying to understand the mechanism involved. 

• Evaluating the impact of the anthropometric parameters (age, gender, body 

shape, and weight) and the ambient variables (air temperature and relative 

humidity) on a variable presenting multiclass singularities (thermal sensation 

vote and perception). 

1.2 THESIS ROADMAP 

The thesis content is presented in six stages, each assigned its own chapter: 

Chapter 1 has an introductory character, presenting the justifications of the work, the 

general and the specific objectives as well as the structure of the thesis.  

Chapter 2 reviews existing literature on thermal comfort in buildings with three 

objectives: (1) Investigating the relevant aspects of the history and scientific evolution in 

the field of thermal comfort, then describing existing approaches for assessing comfort, 

reaching the current situation: the inexistence of methods that take into consideration the 

diversity of comfort perceptions among the occupants; (2) Presenting a general review on 
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the importance of environmental building control linked with the human behavior; and 

(3) Introducing a point in which the anthropometric characteristics of the human body 

and the possible implications on the sensation and preference of thermal comfort are 

discussed, as well as a discussion on the lack of studies focusing on the influence of these 

characteristics on the thermal satisfaction. 

Chapter 3 depicts a systematic literature review results of the application of the artificial 

intelligence-based tools in buildings environmental control, which is related to one or 

more of the objectives of the thesis. In this review, several characteristics were considered 

and have found a lack of existing reviews, by insisting on the AI techniques for both 

thermal comfort and energy control in buildings, whilst including individual interactions 

into the comfort-energy control loop. This enables a holistic view of (1) the complexities 

of delivering thermal comfort to users inside buildings in an energy-efficient way, and (2) 

the associated bibliographic material to assist researchers and experts in the field in 

tackling such a challenge. Chapter 3 references a paper published in the Renewable and 

Sustainable Energy Reviews journal under the title “Intelligent building control 

systems for thermal comfort and Energy-Efficiency: A systematic review of Artificial 

Intelligence-assisted techniques”.  

Chapter 4 deals with the method of research, through the characterization of the 

research, sample data, criteria, etc. while Chapter 5 develops a model of individual-level 

thermal comfort. The chapter describes the results acquired through the tabulation and 

analysis of data obtained in the field, the main mathematical models identified, as well as 

the influence of anthropometric characteristics on the thermal sensation. These chapters 

refer to an article published by the author in the Proceedings of the Institution of 

Mechanical Engineers, Part I: Journal of Systems and Control Engineering under 

the title “A Dynamic model for human thermal comfort for smart building applications” 

[29]. An earlier version of this paper was presented in the International Conference on 

Smart Digital Environment (ICSDE) under the title “Measuring human comfort for 

smart building application: Experimental set-up using WSN” [13]. 

Finally, Chapter 6 refers to the general conclusions of the thesis, the final considerations 

about the research, the limitations of the study, and proposals for future developments.  

 

 



 

2 HUMAN THERMAL COMFORT IN THE BUILT ENVIRONMENT 7 

2 HUMAN THERMAL 
COMFORT IN THE BUILT 
ENVIRONMENT 

o formulate the research problem, it was necessary to investigate relevant aspects of 

the history and scientific evolution in the area of thermal comfort. In this chapter, 

some comments and quotations have been crucial to underlying the discussions and the 

results of the sample-based analysis. Various researchers have stated that thermal comfort 

is the result of the influence of thermal adaptation, Alliesthesia, thermal experience, and 

thermal expectation. These concepts are discussed in this chapter together with a brief 

analysis on the predictive indices of thermal comfort, the control strategies, and their 

relationship with the occupant’s behavior, finally this impact of the human variability on 

thermal comfort. 

2.1 EVALUATING THERMAL COMFORT: FROM THE LAST 50 YEARS 
TO THE STATE OF THE ART 

2.1.1 The Logic of Thermal Comfort, Relevant Definitions and 
Considerations 

Through standardized experiments performed in thermally controlled environments, 

researcher Fanger created extensive diagrams that would be able to predict comfort in any 

environment [30]. His studies were focused on the relationship between the human body’s 

physiological awareness and physical theories of thermodynamics based on heat balance. 

The heat balance refers to the heat exchange between the human body and the 

environment, i.e., the difference between the heat generated in the metabolism and that 

T 



 

8 2 HUMAN THERMAL COMFORT IN THE BUILT ENVIRONMENT 

converted into work with the heat exchanges occurring through the skin and respiratory 

system, and a possible balance. 

In 1995, M. Humphreys published an article entitled Thermal comfort temperatures and the 

habits of Hobbits [31]. Comically, although academic, he explains how research should be 

performed in the field of thermal comfort using the Middle Earth Hobbits, as an 

illustration. In its roadmap, the research begins with an investigation of the population’s 

habits, followed by the application of questionnaires with simultaneous measurements of 

environmental variables in real situations, rejecting methods with intrusive measurements 

and complicated experimental routines. The author criticizes, in an incisive way, the 

necessity of thermal physiology or heat balance theory for the study of comfort, whose 

knowledge would be merely interesting for certain quantitative and theoretical 

explanations. 

Although the two lines of reasoning described are divergent in theory and practice, 

both coexist mutually in standards such as ASHRAE 55-2017 [6] and EN15251-2007 [32],  

and usually referred to as Static model (also called Analytical, it refers to experiments carried 

out in climate chambers, thermally controlled environments, in which the researcher has 

control over the thermal conditions, such as the Fanger tests) and Adaptive (refers to 

experiments performed in real situations, so that the researcher interferes as little as 

possible in the interviewee’s daily life and that he is free to adapt to the thermal conditions 

of the environment). 

The first time that the adaptive and analytical concepts have been convened was in 

1972, at the First International Conference on Thermal Comfort [33]. Since then, there is a dispute 

between researchers about which predictive method of thermal comfort is more effective, 

being commonly the Fanger’s model considered the best for artificially conditioned (AC) 

environments, and the adaptive one for naturally ventilated (NV) (as observed in the 

indications of the ASHRAE 55-2017 standard). 

Identifying which predictive index of thermal comfort achieves the best result in a 

given context is one of the many gaps existing in the academic area. Another primary 

problem is the definition of terms, since, according to A. Auliciems [34], such terms have 

imprecise semantic use, with inconsistencies in basic concepts such as thermal comfort, 

thermal neutrality, and localized discomfort. 
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According to ASHRAE 55-20172, thermal comfort is “the state of mind that expresses 

thermal satisfaction with the environment”. O. Fanger [30] complemented this definition 

by stating that the person should also be in thermal neutrality, as well as presenting the 

skin temperature and the rate of secretion within certain intervals without there being 

asymmetrical heat loss. R. de Dear et al. [35] used the ASHRAE definition and added that 

thermal comfort can be assumed to mean that there are no thermal changes in the 

environment. Although these last two definitions use the more comprehensive concept 

found in ASHRAE 55-2017, conceptual complementation leads to disparate results, and 

incorrect use of thermal neutrality as a synonym for thermal comfort is not uncommon. 

In contrast to the ASHRAE definition of thermal comfort and the way that predictive 

models are commonly approached, J. Nicol and S. Roaf [36] raised an interesting question: 

If comfort is a state of mind, a complex psychological construction referring to a state of 

mind, would it be coherent to affirm that something so abstruse can be measured through 

a single linear scale? 

The term “Thermal Neutrality” was defined by O. Fanger [30] as neither colder nor 

warmer (it is observed that this is the complementation of the concept of thermal comfort 

presented in the work of R. de Dear et al. [35]. Hey [37] has interpreted it as the balance 

resulting from the conditions of thermal equilibrium (i.e., heat balance equation equal to 

zero). R. de Dear et al. [35] and ASHRAE 55-20103 [38] defined it as the neutral thermal 

sensation, i.e., not feeling cold or warm. The association of thermal neutrality, either as a 

synonym or as a necessary condition to achieve comfort, arises, according to Auliciems 

[34], from the idea that feelings of warmth are equivalent to the feelings of comfort. Such 

a pragmatic idea removes the subjective aspect of the comfort definition and prescribes 

it in thermal terms. 

The research work of M. Humphreys and J. Nicol [39] points to a tendency of the 

link between sensations and non-neutral preferences and comfort, the individual’s thermal 

history, and the external temperature. Although comfort and thermal neutrality were not 

correlated, R. de Dear et al. [35] suggested that much of what was considered climate 

adaptation was the optimal temperature (preference), emphasizing the semantic 

discrepancy between neutrality and preferred temperature (consequently, optimal 

 
 
2 Although ASHRAE 55-2017 is cited, it is a fact that, in previous versions of the American standard, this same concept 
was already used, which is why Fanger’s work published in 1973 used the concept of the standard as a reference. 
3 The version of standard 55-2013 removes the term “thermal neutrality” from its definitions. 
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comfort), especially in artificially air-conditioned environments. The terms “thermally 

optimal”, “optimal comfort” and “very comfortable” are usually found when one wants 

to indicates that the person is in his/her preferred thermal state. 

Another conceptual incongruity lies in localized discomfort, which is usually seen as 

asymmetry of thermal radiation, the existence of draughts, difference in air temperature 

in the vertical direction, and heating or cooling of floors [30], [40]. The inconsistency in 

this concept is generated by the specific term “discomfort” which, due to its etymology, 

refers to the absence of comfort. In this way, it contradicts itself with two principles: 

Personal Environmental Control (PEC) and Alliesthesia, since both asymmetrically use 

heat losses or gains to promote comfort and satisfaction.  

According to R. de Dear [41], more efficient than homogeneous, isothermal, and 

stationary environments, which are listed as neutral and comfortable, are asymmetric, 

non-uniform, and transient environments, where “very comfortable” levels of perception 

are found. In this respect, L. Webb [42] claimed that the thermal experience is never 

neutral because thermal diversity implies in the intuitive fact that we are subjected daily 

to a full set of thermal stimuli. 

According to H. Zhang et al. [43], the PEC, formerly known as TAC (task-ambient 

conditioning), consists of devices and systems that allow the user to control the thermal 

conditions that surround him directly and, although the literature has not reached a 

consensus on whether comfort is achieved due to the perception of personal control or 

heat transfer, it is a fact that some authors consider it an improved version of conventional 

means of mechanical environmental conditioning [44]. H. Zhang et al. [45] predicted that 

the general condition of comfort is strongly influenced by the hands, feet, and face and, 

through experiments carried out in air-conditioned chambers, have proven that, in 

addition to energy efficiency, it is possible to achieve comfort in temperature ranges 

considered uncomfortable through the PEC, i.e., losing or gaining heat in a generally 

asymmetrical way4. 

The PEC was based on the term Alliesthesia, coined in 1971 by M. Cabanac in his 

work called Physiological Role of Pleasure [46]. This term comes from the Greek ‘aísthēsis’ 

and ‘allós’, which mean change and sensation, respectively. This notion consists not in 

 
 
4 Prediction models, such as the adaptive and the PMV of Fanger, because they are based on average environmental 
characteristics, are not able to predict comfort in situations with considerable asymmetries. The multi-node models are 
the most adequate to evaluate this type of situation. However, they will not be addressed in this research. 
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the study of thermal comfort, but of pleasure with the temperature that is only acquired 

when a body in a state of discomfort receives a stimulus that tries to re-establish the 

internal thermal balance; therefore, it is submitted to different and simultaneous thermal 

conditions. 

An example could be found in the work of R. de Dear  [41], who made an analogy 

between thermal comfort and nutritional needs. According to the author, the thermal 

environment is essential for life, as well as nutrition. Thus, although it is possible to 

survive only with a few pills and injections, one cannot ignore all the customs and 

sensations that are associated with a good meal. In parallel, it also makes an analogy with 

the thermal environment:  if the state of satisfaction of the strictly nutritional need can be 

contrasted with a thermally neutral environment, the maximum potential for pleasure 

could only be achieved with a good meal, which exists only beyond a thermally neutral 

world. 

The usual methods of prediction, as well as the proper definition of the terms found 

in the literature, diverge from each other or do not cover in their entirety the possibilities 

of comfort, mainly because they exclude in their definition the adaptation. As listed by A. 

Auliciems and S. Szokolay [47], the comfort specifications need to be understood beyond 

the boundaries of thermal ambiance, by assuming a spatial and temporal dimension. In 

this sense, M. Humphreys et al. [48], who have described discomfort as the result of 

restrictions placed on the process of choice and adjustment, while thermal comfort is not 

an equation of physiology and heat regulation, but a broad and intelligent behavioral 

response to the climate. Psychological, sociological, and external factors can influence 

perception, sensation, and thermal comfort itself; however, when not subjected to such 

pressures, the sensation of thermal well-being is strongly influenced by adaptation. 

2.1.2 Thermal Comfort Models 

Realizing the importance of the impact of thermal comfort on human health and 

productivity, much research has been conducted in this field since the beginning of the 

last century. Such studies are carried out in climatic chambers or in situ, on mannequins 

or with human beings. They seek to identify the conditions for comfort and acceptability 

of thermal environments without trying to understand the mechanisms involved. As a 

result, several thermal comfort indices have been developed based on thermal comfort 

models, which are of different natures. There are physical models which are often 

measuring instruments whose physical responses to the thermal environment are similar 
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to those of the human body. There are also thermal mannequins often used for 

determining the thermal characteristics of clothing. Finally, there are empirical models 

and rational models. Empirical models establish, through experiments (in climatic 

chambers or in situ), a statistical regression by combining the effects of two or more 

physical and/or physiological variables into a single variable. Rational models are based 

on estimates of the different forms of heat exchange between the human body and 

thermal environments, as well as the heat balance and the resulting physiological stress. 

2.1.2.1 Environmental Indices 

2.1.2.1.1 Operative Temperature – Top 

The operative temperature is a comfort index integrating the effect of convection and 

radiation (ta and tr). It is defined as the temperature of an isothermal enclosure in which, 

through radiation and convection, an occupant exchanges the same amount of heat as in 

the enclosure in which it is located. It can be written as follows: 

!!" = #. %# + (1 − #)%$%&                                      (2-1) 

Whereas, !! is the air temperature; !"#$ is the mean radiant temperature while " is a parameter depending 
exclusively on the air speed (often around 0.5). 

This index is assumed to be equal to the temperature measured inside a black globe 

whose diameter is determined so that heat exchanges by convection and radiation are in 

the same proportions as for the human body. For natural convection with a low air speed 

(between 0.1 and 0.15 m/s), a 40 mm diameter globe is sufficient. Moreover, it has a faster 

response time compared to the 150 mm globe traditionally used [49]. 

2.1.2.1.2 Equivalent Temperature – teq 

The equivalent temperature is defined as the temperature of an isothermal enclosure with 

zero air speed, in which a subject would exchange the same amount of sensible heat, by 

convection and radiation, as in the actual enclosure in which it is located. It takes into 

account the effects of air temperature, radiation and air speed (ta, tr, and va). It can be 

calculated from the temperature inside a heated globe. 

2.1.2.1.3 Effective Temperature – ET* 

The effective temperature is defined as the equivalent dry temperature of an isothermal 

enclosure at 50% relative humidity, in which a subject would exchange the same amount 

of heat and even skin wetness as in the actual enclosure in which it is located. The ET* 

index takes into account the effects of temperature and humidity (ta, tr, and pa), and to 
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calculate it, it is necessary to know the skin wetness and the water vapor permeability 

index of the clothing (im). ASHRAE has developed comfort scales based on this index for 

subjects with low activity (1 Met), 0.6 Clo clothing, and a quiet environment (va< 0.2 m/s). 

2.1.2.2 Analytical Models 

Numerous analytical models have been developed to predict the thermal and 

physiological responses of the human body as a function of environmental conditions, 

under stationary or transient conditions. In the simplest models, the body is treated as a 

single block. More complex models divide the body into several segments and allow the 

dynamics of physiological responses to be simulated. At this point, the focus of this work 

is not to make a literature review of how these models emerged or the mathematical 

models that generated them, but rather to present the most commonly used. 

2.1.2.2.1 Fanger’s Model: PMV & PDD 

In the 1970s the Danish O. Fanger [50] derived a general equation for thermal comfort. 

Fanger’s model, which is the most recognized for evaluating thermal comfort, also known 

as the static method, since the studies were conducted within a completely controlled 

environment, taking into consideration the combination of some physical environmental 

variables such as air temperature, mean radiant temperature, humidity, and air velocity. 

Besides these environmental variables, the metabolic rate and clothing insulation are also 

considered to measure the individual sensation of thermal comfort. Through his 

experimental work and the equations developed, Fanger obtained the Predicted Mean 

Vote (PMV), which consists of a numerical value that demonstrates human sensitivity to 

cold and heat. From these studies, the concept of Predicted Percentage of Dissatisfied 

(PPD) also emerged. Its equations and methods are still used worldwide and have served 

as a basis for the elaboration of important international standards such as ISO 7730-1994 

and ANSI/ASHRAE 55-1992, both already updated. 

Currently, ISO 7730-2005 and ASHRAE 55-2017 adopt the O. Fanger surveys and 

determine the PMV as an index that predicts the average value of votes of a large group 

of people on the seventh scale of thermal sensation, (cf. Table (2-1)), based on the balance 

of the human body heat. 

Table 2-1. The seven-point thermal sensation scale (Source: Adopted from ISO 7730-2005). 

Sensation  Cold  Cool  Slightly Cool Neutral Slightly Warm Warm Hot 
Vote  -3 -2 -1 0 +1 +2 +3 
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For the calculation of the PMV (Equation (2-2)), the ISO 7730-2005 standard 

presents four equations that should be used, Equations (2-3), (2-4), and (2-5): 

#$% = (0.303 ∙ exp(−0.036 ∙ $) + 0.028)

∙ 	

⎩
⎪
⎨

⎪
⎧ ($ −:) − 3.05 ∙ 10%& ∙ (5733 − 6.99 ∙ ($ −:) − ?!)
−0.42 ∙ A($ −:) − 58.15B − 1.7 ∙ 10%' ∙ $ ∙ (5867 − ?!)
−0.0014 ∙ $ ∙ (34 − !!) − 3.96 ∙ 10%( ∙ C)* ∙ ((!)* + 273)+

−(!#D + 273)+) − C)* ∙ ℎ) ∙ (!)* − !!)	

 

(2-2) 

!)* = 35.7 − 0.028 ∙ ($ −:) − F)*
∙ [3.96 ∙ 10%( ∙ C)* ∙ ((!)* + 273)+ − (!#D + 273)+) 	− C)* ∙ ℎ)
∙ 	 (!)* − !!)] (2-3) 

ℎ, = I
2.38 ∙ |!)* − !!|-,/'																				CKL	2.38 ∙ |!)* − !!|-,/' > 12.1 ∙ NO!#
12.1 ∙ NO!#																																		CKL	2.38 ∙ |!)* − !!|-,/' < 12.1 ∙ NO!#

 
(2-4) 

C,* = Q
1.00 + 1.290F)*																								RC	F)* ≤ 0.078T/ ∙ U/:
1.05 + 0.645F)*																							RC	F)* > 0.078T/ ∙ U/:

 (2-5) 

Whereas, $ is the metabolic rate; : is the effective mechanical power, which is 0 for most indoor activities; 
F)* is the clothing insulation factor; C)* is the clothing surface area factor; !#D  is the mean radiant temperature; 
O!# is the air velocity; ?! is the partial pressure of water; ℎ, is the convective heat transfer coefficient; while 
!)* is the clothing surface temperature; and !! is the air temperature. 

The standard also describes, through Equation (2-6), how to calculate the index of 

people thermally dissatisfied with the environment (PPD), which is the percentage of 

people who would like the environment to be warmer or less hot (colder) and correlates, 

through Figure (2-1), the PMV and PPD indices. 

##W = 100 − 95 ∙ exp	(−0.03353 ∙ #$%+ − 0.2179 ∙ #$%/) (2-6) 

Both ISO 7730-2005 and ASHRAE 55-2017, in their analytical method for 

determining comfort zones, recommend that in thermally moderate spaces of human 

occupation, the PPD index should be less than 10%, which corresponds to a PMV range 

of -0.5 to +0.5. 

The use of Fanger’s PMV/PPD as a universal model has been widely discussed by 

researchers who adopt the recommendations of these standards in field study analysis. 

Research to assess thermal comfort in thermally conditioned environments that are not 
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fully controlled or even research in warmer regions with environments without artificial 

conditioning, such as those naturally ventilated, are the ones that present more 

disagreements with the premises of the PMV/PPD method, where the model generally 

overestimates the real thermal sensation of the occupants of the environment, i.e., 

occupants end up tolerating a wider range of temperatures than the foreseen by the 

method [51]–[53]. 

 

Figure 2-1. The Predicted Percentage of Dissatisfied (PPD) as a function of Predicted Mean Vote (PMV) 
(Source: Adopted from ASHRAE 55-2017). 

2.1.2.2.2 Gagge’s Two Node Model: ET*, SET & PMV* 

A. Gagge has developed a simplified dynamic model of thermoregulation. This model 

represents the human body in two concentric nodes representing the center of the body 

and the skin [6]. The exchanges between the two components considered isothermal are 

modeled as tissue conduction and blood convection. Unlike Fanger’s model, this model 

allows the calculation of physiological variables (skin and internal temperatures, skin 

wetness) under transient conditions. Skin temperature, skin wetness, and skin heat flow 

are used to calculate the ET* index (new effective temperature). The ET* index depends 

on the clothing and activity level of the subject. To standardize the calculation, a new 

index, the “SET” (standard effective temperature) has been defined. SET represents the 

equivalent dry temperature of an isothermal enclosure at 50% relative humidity, in which 

a subject, wearing clothing standardized to his activity, would exchange the same amount 

of heat and have the same skin wetness as in the actual enclosure in which he is located. 

Standardized clothing is calculated according to Equation (2-7) [54]. 
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F)*0[)*2] =
1.33

($[45$] −:[45$] + 0.74)
− 0.095 (2-7) 

The SET is a thermal comfort index integrating the effect of the six basic parameters, 

and applicable in hot, moderate, or cold transient conditions. Thermal sensations can be 

deduced from the different SET values from Table (1-2) [49]. 

Furthermore, A. Gagge suggested replacing the operative temperature with the 

effective temperature in the calculation of the PMV. The PMV calculated, in this way, is 

noted as PMV*, which makes it possible to better take into account the effects of humidity 

in hot areas [54]. 

Table 2-2. Relationship between standard effective temperature (SET) index levels and thermal sensation 
(Source: Adopted from [49]). 

SET (ºC) Sensation Physiology State of Sedentary Person 
>37.5 Very hot, very uncomfortable Failure of regulation 
34.5 – 37.5 Hot, very unacceptable Profuse sweating 
30.0 – 34.5 Warm, uncomfortable, unacceptable  Sweating 
25.6 – 30.0 Slightly warm, slightly unacceptable Slight sweating, vasodilation 
22.2 – 25.6 Comfortable and acceptable Neutrality  
17.5 – 22.2 Slightly cool, slightly unacceptable Vasoconstriction 
14.5 – 17.5 Cool and unacceptable Slow body cooling 
10.0 – 14.5 Cold, very unacceptable Shivering 

 
Finally, ASHRAE proposes two other empirical indices TSENS (thermal sensation) 

and DISC (thermal discomfort). These two indices are calculated from the average body 

temperature which is a weighted average of the internal and skin temperature. The TSENS 

determines the thermal sensation on the ASHRAE scale by adding two extreme degrees 

(±4 for extremely hot/cold and ±5 for intolerably hot/cold), while DISC determines the 

level of thermal discomfort on a 6-point scale ranging from comfortable (DISC=0) to 

intolerable (DISC=5) [6]. 

2.1.2.2.3 Local Thermal Discomfort 

The overall thermal comfort does not guarantee the individual well-being, since only one 

part of the body is warmer or cooler to create a situation of thermal discomfort [30]. The 

incidence of local thermal discomfort is higher in people with slightly cooler overall 

thermal sensation (PMV=-1) and with sedentary activity (1.2 met) [55]. The reasons 

behind local thermal discomfort are related to drafts, vertical air thermal difference, floor 

surface temperature, and radiant temperature asymmetry [56]. 

The phenomenon of convection, due to the existence of drafts, reduces the 

temperature of the skin by removing heat from the skin’s surface, which, depending on 
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the person’s general thermal sensation, can cause discomfort. The Draft Rating (DR) can 

be determined through Equation (2-8) [56]. 

WX = A34 − !!,*B ∙ AO!,* − 0.05B
-.7/

	 ∙ A0.37	O!,* ∙ Y8 + 3.14B (2-8) 

Whereas, !!,* is the local air temperature (ºC); O!,* is the local mean air speed (m/s); while Y8 is the local 
turbulence intensity (%). 

On the other hand, the vertical thermal amplitude causes differences in temperature 

between the ankles and the occupant’s head, causing discomfort proportional to the 

amplitude of the temperature range. The percentage of dissatisfied people can be 

determined by equation (1-9), applicable only to situations with a temperature range below 

8ºC [56]. 

+, = 100 (1 + exp	(5.76 − 0.856 ∙ ∆%#,()⁄ ) (2-9) 

Whereas, ∆!!,9 is the difference in vertical thermal between head and feet (ºC). 

A warm or cool floor provides thermal discomfort in the feet as they are permanently 

in contact, especially in sedentary activities. Figure (2-2) relates the percentage of 

dissatisfied people to the floor temperature. 

 

Figure 2-2. Local discomfort caused by warm and cool floors (Source: Adopted from [6]). 

On the other hand, the asymmetry of the radiant temperature causes oscillation of the 

body’s thermal sensation, which results from the thermal radiation emitted unequally by 

warm, cool surfaces or direct solar radiation. Local thermal discomfort is easily detected 

in places with warm ceilings or cool walls [56]. The influence of radiant thermal 

asymmetry on comfort in various situations can be analyzed in Figure (2-3). 
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Figure 2-3. Local thermal discomfort caused by radiant temperature asymmetry (Source: Adopted from 
[6]). 

2.1.2.3 The Effect of Inter-Individual Diversity 

The calculation of thermal comfort is essentially based on the six basic parameters (air 

temperature, radiation temperature, air humidity, air speed, and subject activity and 

clothing). However, given its subjective aspect, it is normal that thermal comfort is 

influenced by factors related to the subjects and their living conditions: age, gender, ethnic 

origin, geographical region (climate), physiological acclimatization, circadian or seasonal 

rhythm, diet, and so forth. Numerous studies have been carried out to determine the 

influence of these factors on thermal comfort conditions. These studies often aim to 

evaluate or validate the PMV, which is the index proposed by the international standard 

ISO 7730. This index was developed from studies conducted in climatic chambers with 

North American and European subjects, leaving doubts about its applicability to other 

populations with different living conditions in other geographical regions. 

Most of the studies carried out have shown that the influence of these factors is of a 

small magnitude and that the six basic parameters are sufficient to calculate thermal 

comfort conditions [49]. Although inter-individual remains, they are often expressed by 

the activity and clothing of the subjects, which are among the six basic parameters. The 

preference for slightly warmer environments by the elderly people is due to their sedentary 

activities [57]. The sensitivity of women to the cold is due to their clothing, which is 

generally lighter than men. People sometimes tend to prefer a slightly warm atmosphere 

before lunch, but without having a significant effect on thermal comfort [6]. Regarding 

physiological acclimatization, studies conducted with people acclimatized to hot or cold 
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show that it does not affect acceptability and thermal discomfort for typical conditions 

encountered in homes or offices. Hence, the PMV (or SET) takes these factors into 

account indirectly through clothing and activity. 

On the other hand, surveys and in-situ studies on thermal comfort revealed a 

discrepancy between the subjective responses evaluated and those predicted by analytical 

models (PMV) especially in non-air-conditioned buildings (with natural ventilation) 

during the summer period, with a tendency to overestimate the sensation of warmth [51], 

[58]. This has led the researchers to multiply in situ experiments on thermal comfort, 

paving the way for a new approach that consists in determining thermal comfort 

conditions from the results of surveys and in situ studies. This approach, known as the 

adaptive approach (cf. Section 2.1.2.4). 

2.1.2.4 Adaptive Model 

According to J. Nicol and M. Humphreys [7], people have a natural tendency to adapt to 

the environment, which is mainly related to seasonal fluctuations in external temperature. 

From this statement, it is possible to conclude that thermal comfort temperatures are 

dynamic and can change constantly according to the local climate [35]. R. de Dear and G. 

Brager [59] stated in their studies that, when adapted to the current condition of the 

environment, the occupants accept and even prefer the thermal variability of naturally 

ventilated buildings, and such results have already been confirmed several times in other 

studies that evaluated commercial environments [51], [60]–[62]. 

The acceptance of the adaptive model in international thermal comfort standards has 

allowed passive strategies such as natural ventilation to become viable worldwide [51], 

[63]–[65]. Thus, adaptation, whether physiological or psychological, certainly contributes 

to user satisfaction; which, by logical extension, also contributes to the reduction of energy 

demand necessary for the operation of air-conditioning systems in commercial buildings 

[66]. The expansion of thermal comfort temperature limits proposed by the adaptive 

model has resulted in energy rationing initiatives in artificially conditioned buildings 

around the world through setpoint temperature adjustments, such as Cool Biz and 

Setsuden in Japan (setpoint temperature adjustments close to 28°C) [67]. According to R. 

de Dear [68], at each degree of expansion in the comfort zone provided by the adaptive 

model, it is possible to save around 10% of final electric energy consumption. 

Initially, the first equations from the adaptive model appeared to define a temperature 

that represents thermal neutrality as a function of the external temperature. M. 
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Humphreys has developed two equations for neutral temperature prediction (Equations 

(2-10) and (2-11)) [69]. The first one in the function of the internal temperature, and the 

second one in function of the external temperature; A. Auliciems and R. de Dear [70] 

developed equations to predict the neutral temperature of a group, relating means of 

internal and external temperature (Equations (2-12), (2-13), and (2-14)); while Nicol and 

Roaf [71] presented an equation for naturally ventilated buildings (Equation (2-15)) as a 

function of external temperature. Based on equations (2-12), (2-13), and (2-14), equation 

(2-16) was developed, which determines the thermal comfort temperature based on the 

external air temperature, and can be found in the American standard ASHRAE 55. 

!),* = 2.6 + 0.831	!* (2-10) 

!),! = 11.9 + 0.534	!! (2-11) 

!),* = 5.41 + 0.731	!* (2-12) 

!),! = 17.6 + 0.31	!! (2-13) 

!),*,! = 9.22 + 0.48	!* + 	0.48	!! (2-14) 

!),! = 17.0 + 0.38	!! (2-15) 

!+ = 0.31 + 17.8 (2-16) 

Whereas Y) is the comfort temperature; Y2 is the outdoor air temperature; Y: is the average indoor air 
temperature; Y;,: is the neutral temperature, based on the average values of the indoor air temperature; 
while Y;,2 is the neutral temperature based on the average values of the outdoor air temperature; and Y;,:,2 
is the neutral temperature based on the average values of indoor and outdoor air temperatures. 

Subsequently, ASHRAE presented an updated version of the equation for the 

prediction of neutral temperature in naturally ventilated indoor environments, which is 

based on a prevailing average external air temperature value and determines the minimum 

and maximum limits of a thermal acceptability zone. In this method, the average 

temperature of the prevailing outside air can be calculated from an arithmetic mean of the 

daily average values of the outside air temperature, considering no less than seven days 

and no more than 30 sequential days before the day in question. However, the prevailing 

temperature can also be calculated using an exponentially weighted average of daily 

average values of the external air temperature of the last days before the day in question, 

with a weighting factor that can vary between 0.6 and 0.9; in this second method, there is 

no upper limit of days to be considered for the calculation. When climate data are not 

available, the standard allows the use of average monthly temperature data published by 
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local weather stations. Equations (2-17) and (2-18) present, respectively, the equation 

referring to the upper limit of the zone of thermal acceptability of the adaptive model 

employed by the standard, and the equation referring to the lower limit of this same zone. 

%,""-%	/*$*& = 0.31	%"$#(!,&)============ + 21.3 (2-17) 

%/!2-%	/*$*& = 0.31	%"$#(!,&)============ + 14.3 (2-18) 

Whereas !"<!(28$)[[[[[[[[[[[ is the prevailing mean external air temperature. 

Based on Fanger’s model and adaptive concepts, Yao et al. [72] developed a model 

called adaptive Predict Mean Vote (aPMV), noting that only a combination of the 

characteristics of static and adaptive models would be able to explain all the 

environmental influences that occur in occupant responses in a real environment. In this 

model, the authors considered a coefficient of adaptation that when derived in zero, 

results in the same equation of the PMV of the Fanger’s model [50]. Such principle is 

similar to the expectation factor proposed by Fanger and Toftum [73], if both methods 

are considered as a correction factor directly applicable in the PMV index. 

It is also important to note that the adaptive model was incorporated into ASHRAE 

55 in 2004, and since then it has been undergoing substantial updates, which can be seen 

in the last publication of the standard in 2017. Research works in this field since the 

adaptive model was incorporated to ASHRAE 55-2004, suggest that the method indicated 

by the graph of the model’s 80% and 90% thermal acceptability zones (cf. Figure (2-4)) 

can be extended to other applications, such as artificially conditioned environments, 

correctly characterizing the thermal comfort of occupants in these spaces, especially when 

there is environmental control. 
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Figure 2-4. Acceptable operative temperature ranges for naturally conditioned environments (Source: 
Adopted from ASHRAE 55-2013 [40]). 

2.1.3 Thermal Comfort Standards and the Current Gap 

Currently, the evaluation of thermal comfort in indoor environments is made mainly 

according to the American standard ASHRAE 55 (last revision published in 2017), which 

deals only with environmental thermal conditions for human occupation (ASHRAE 55 - 

Thermal environmental conditions for human occupancy). Other standards are also in 

action, such as the most recent revision of ISO 7730 of 2005, focused mainly on the 

Fanger’s model [50] and the calculation of PMV/PPD  (ISO 7730 - Moderate thermal 

environments - calculation of the PMV and PPD indices) and the updated European standard 

EN 15251 of 2012, which in addition to thermal comfort, also deals with internal air 

quality, lighting, and acoustics (EN 15251 - Indoor environmental input parameters for design and 

assessment of energy performance of buildings: addressing indoor air quality, thermal environment, lighting, 

and acoustics). In the first versions of these standards, the PMV/PPD model was the only 

one considered for thermal comfort evaluation, and in environments with uniform 

temperature conditions. Over time, and with updates in assessment methods, the 

PMV/PPD has continued to be effective for the evaluation of thermal comfort in 

conditioned environments. However, some of these standards have also started to 

incorporate the adaptive model method, intended for naturally ventilated buildings. 

Among the three standards cited, ISO 7730 remains today with a superficial version of 

the concept of adaptation, with no updates since the last revision of 2005, while ASHRAE 

55 and EN 15251 have adopted versions of the model based on results of extensive 
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differentiated field studies. The model and equations that generated the comfort limits of 

the European standard EN 15251 [32] are based on the results of a European Union (EU) 

study, known as Smart Controls and Thermal Comfort (SCATs), aimed at reducing the energy 

consumption of air-conditioning systems by adjusting the setpoint temperature according 

to the external climatic conditions and the adaptive algorithm [74]. The American 

standard ASHRAE 55 method was based on the results of the research report known as 

ASHRAE RP-884, which analyzed a dataset of more than 20,000 microclimate variable 

inputs measured simultaneously to occupant sensation, preference, and thermal 

acceptability responses. The use of data with great climatic variability, collected in several 

countries, made ASHRAE 55 [6] to be used globally. 

Although ASHRAE 55 is considered a worldwide standard for the evaluation of 

thermal comfort in indoor environments, there are a number of issues to be discussed 

that involve the scientific community. The main one is that the comfort models existing 

in this standard are considered valid for anyone, i.e., even though the models indicate 

thermal comfort zones for 80% or 90% of thermal comfort/acceptability, they do not 

discriminate which users’ group would not be in comfort or would not be accepting the 

thermal conditions. However, different groups of people may have different thermal 

perceptions. In addition, the parameters used by these models cannot be dynamically 

evaluated by buildings to change their settings. 

2.2 NON-THERMAL PARAMETERS INFLUENCING THERMAL 
COMFORT: LINKING COMFORT & ENERGY USE 

Apart from the role of physical and physiological parameters in thermal comfort, the 

adaptive approach recognizes the role of other psychological and behavioral parameters. 

They are actively involved in the regulation of thermal conditions and contribute to the 

acceptability of certain environments that are qualified as unsatisfactory from a physical 

and physiological point of view. A comparison of the predictions of analytical indices with 

in-situ comfort votes showed a discrepancy between them, especially in naturally 

ventilated (NV) buildings with a tendency to overestimate discomfort during hot periods. 

These indices take into account only the physical and physiological parameters and infer 

the role of other psychological and behavioral parameters in the perceived comfort in 

these buildings. 
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2.2.1 Control Strategies and User’s Behavior 

The thermo-energetic performance of a building is influenced by factors such as climate, 

orientation, and the architectural characteristics of the envelope, in addition to lighting 

systems, air-conditioning, and electronic equipment. Besides these factors, the user’s 

behavior and local culture, which play a fundamental role in energy consumption, also 

have an important role in the emission of CO2 and greenhouse gases. An active user, who 

participates in the environmental control of a building and, especially when considering 

mixed/naturally ventilated buildings, does so by opening windows, maintaining shading 

elements, switching on/off cooling, heating, and artificial lighting systems [75]. 

According to S. Borgeson and G. Brager [76], occupants generally appreciate the 

opportunity to control the environment and usually prefer to have access to fresh air, 

wind breeze, and the open-air environment. In buildings that operate passively, local air 

speed control, or so-called Personal Control Systems (PCS) directly influence thermal 

satisfaction and acceptability, which allows the occupants to tolerate temperature 

conditions above those usual [77]–[79]. From the logic of G. Brager et al. [79], if people 

feel more comfortable in a wider range of environmental conditions provided by naturally 

ventilated, occupant-controlled buildings, then a significant amount of energy could be 

saved if there were greater flexibility in thermal comfort standards. H. Zhang et al. [43], 

stated that personal comfort systems represent a powerful tool for individual thermal 

satisfaction, focusing on occupants of different age groups, genders, body mass, clothing 

habits, metabolic rate, and thermal adaptation. 

Environmental control is thus a viable strategy, considered by a number of studies as 

a form of adaptation, which allows the users to modify the environment to meet their 

preferences, including the temporal variation of their personal preferences [80]. In this 

context, G. Brager et al. [79] conducted field experiments in naturally ventilated offices, 

where the occupants had different degrees of environmental control. In their study, the 

authors performed continuous environmental measurements in the occupant’s workspace 

and used online questionnaires that evaluated the physical conditions of the 

environments. The results showed that different levels of control strongly influence the 

responses of the occupants, even in some cases where the clothing (Clo) and metabolic 

activity (Met) were identical. 

It is in this scenario that some studies explain that, although environmental control is 

pointed out with a viable energy-saving strategy, it is important to consider that users 
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change the environment according to their preferences, and these preferences, besides 

being convenient and subjective, do not necessarily result in significantly higher levels of 

energy efficiency [76], [81]. According to B. Bordass et al. [82], the occupants can respond 

in unexpected ways to uncomfortable situations, which must be observed and considered 

in analyses involving energy consumption. 

2.2.2 Human Behavior Investigation 

The analysis of human behavior is mainly done by two techniques. The first consists in 

carrying out sociological surveys, which can be quantitative or qualitative, and which most 

often lead to statistical studies. However, there may be a discrepancy between the 

statements and the actions that are actually taken, which is a common bias in the field of 

sociology. The second technique consists of in situ instrumentation in the residential or 

workplace environments of persons volunteering for the study. These in situ 

measurements thus reveal a real behavior insofar as the measuring instrument does not 

interfere with the daily practice of the occupants. Some studies combine the two survey 

methods, which gives an explanation of the practices by the occupants themselves. 

Human behavior is frequently discussed to explain the differences in energy 

consumption between simulations and in situ measurements. However, modeling human 

behavior is complicated. In a period, with no simulation time, several adaptive behaviors 

may have taken place. In this regard, Vorger [83], in his work, outlined three approaches 

for modeling human behavior: the deterministic approach, the agent-oriented approach 

based on thermal comfort, and the stochastic approach. 

The deterministic approach is typically the one adopted in dynamic thermal software, 

in which the designer determines a set of scenarios defining room occupancy, internal 

contributions, ventilation rates, setpoint temperatures, occlusion closure rate, and so 

forth. He traces, on an hourly basis, a predefined behavior over a week and then over the 

whole year.  

Other more complex models rely on the potential of computing and programming to 

determine individual behavior. In [84], the author has developed a dynamic model of 

thermal comfort. Based on the individual thermal state, feedback loops are allowed to 

define a list of actions (corresponding to adaptive opportunities) the events that will be 

accomplished. While [85] is based on experimental designs to show the importance of 

taking into account the behavior of individuals in dynamic thermal simulations. Then he 

proposed modeling of the behavior through an artificial intelligence algorithm. The 
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system is subject to a thermal environment. Based on the calculated thermal sensation, if 

discomfort is found, a reaction is triggered. After a learning phase, the system can 

determine the actions that will be effective in achieving comfort. Finally, J. Langevin et al. 

[86]  adopted the agent-oriented approach based on thermal sensation to define occupant 

behavior. This method models a system composed of autonomous agents (i.e., in their 

case the occupants). Agents are autonomous software with defined characteristics 

(clothing, metabolism, behavioral habits, an acceptable level of thermal sensation...) that 

can interact with each other. They have one goal: maintaining an acceptable thermal 

sensation, and they evolve in an environment: a building whose specificities allow to 

define adaptive opportunities and indoor climatic conditions. 

The stochastic approach is based on statistics to determine the situations in which the 

individual has a high probability of operating his window, shutter... to restore his comfort. 

Time-use surveys and population census statistics can be used to determine the adaptive 

behavior of individuals. By developing several stochastic models, on openings, 

thermostats, lightings, etc., in this way, it is possible to determine behavioral scenarios 

that can then be added to dynamic thermal simulation software. 

2.3 CHARACTERISTICS AND IMPLICATIONS IN THERMAL 
COMFORT STUDIES 

The vast majority of studies and evaluations involving physiology and thermal comfort 

are based on a thermal neutrality zone, also known as the “Thermoneutral Zone” (TNZ). 

The thermal neutrality zone is defined as the temperature range in an environment where 

no thermoregulatory change occurs in the human body: neither heat production by 

metabolism (involuntary and often imperceptible attitudes seeking to keep the body 

temperature constant), nor heat loss by evaporation (e.g., perspiration) [22]. Factors such 

as body composition (weight or Body Mass Index (BMI)), clothing, energy expenditure, 

age, and gender directly influence the thermal neutrality zone of the human body and are 

potential drivers of erroneous results in studies of various areas. 

O. Fanger was one of the precursors in thermal comfort analyses, which considered 

other parameters besides the six basic ones already known worldwide (such as gender, 

age, number of people in the same environment, etc.) and concluded that none of them 

had an effect of significant enough magnitude to be taken into account [50]. His results 

were considered by some authors as controversial, which led to several other studies that 

presented different results. 
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Despite their importance, anthropometric characteristics and their impact on thermal 

comfort studies are usually treated in an individualized way, as a modifying agent of the 

users’ responses (sensation, satisfaction, and thermal acceptability). Thus, the following 

items will introduce the anthropometric aspects to be investigated based on the results of 

the experiment in this study, seeking to discuss studies dealing with the influence of age, 

gender, and body composition on thermal perception. However, the relationship of such 

anthropometric characteristics in the user’s behavior, and consequent influence on the 

operation of buildings with the user’s control strategies, constitutes a gap in this area, 

being therefore on the specific objectives of this work. 

2.3.1 Age 

Although there is a lot of controversy amongst studies of different authors, it is known 

that age is a factor that can directly influence the body temperature and metabolic rate, 

which is consequently reflected in the response to the thermal environment if considered 

occupants of different age groups. Fanger conducted experiments in an air-conditioned 

chamber considering two different groups: the first one with 128 people of advanced age 

(average of 68 years), and the second one with 128 students (average of 23 years), exposed 

to exactly the same thermal conditions during a period of 3 hours, and with standardized 

clothing of 0.6 clo [50]. According to the results, the comfort temperature preferred by 

older people and younger people was quite similar, close to 25.7ºC. O. Fanger also stated 

that the reason for the preference for higher temperatures of elderly people found in other 

studies is related to the low metabolism, and concluded that for this reason, the 

PMV/PPD is an approximate index for all age groups, since the metabolic rate is one of 

the main factors considered in its calculation. Following the publication of the results of  

O. Fanger [50], a series of studies pointed out results similar to those found by the author 

[87]–[90]. However, another stream of studies found that such differences exist, especially 

when considering the thermal neutrality zone, the preference and thermal acceptability in 

other age groups not analyzed until then. 

In their work, E. Hey and G. Katz [90] focused on maternal age groups and defined 

ideal temperature conditions for undressed newborns through a study of the magnitude 

of environmental factors affecting thermal equilibrium. According to the authors, the 

thermal neutrality zone varies according to the weight of babies at birth, and can be 

between 34.5°C and 33.8°C for babies weighing approximately two kilograms in the first 

five days of age, and change rapidly until the same baby reaches one month of age, moving 

to 32°C and 33°C. 



 

28 2 HUMAN THERMAL COMFORT IN THE BUILT ENVIRONMENT 

B. Kingma et al. [24] also confirmed in their results that the thermal neutrality zone 

changes with age. According to the authors, at about one month of age, the thermal 

neutrality zone varies from 32ºC to 34ºC and decreases to the range of 28.5 to 32.0ºC in 

early adulthood (according to the authors, around 20 years of age). This is mainly due to 

the metabolism and the amount of lean mass and fat mass, which increases with age5. For 

M. Indraganti and K. D. Rao [91], it is evident that the level of expectation regarding the 

thermal environment will also change and vary according to the individuality of each age 

group, affecting the thermal sensation. Besides, R. de Dear et al. [92] found preferred 

temperatures in groups of school-age children lower than those expected for groups of 

adults under the same indoor thermal conditions (22.5ºC), although the range of 

acceptability found was from 19.5ºC to 26.6ºC. 

Although international thermal comfort standards such as ASHRAE 55 and ISO 7730 

assume that the requirements for obtaining thermal comfort are universal and common 

for all age groups, R.-L. Hwang and C.-P. Chen [93] reaffirm that people over 60 have 

unique physiological and psychological characteristics, and therefore have different 

requirements concerning the indoor microclimate when compared to younger occupants. 

According to the authors, few studies have been carried out in this area in order to 

establish or modify the existing comfort parameters, and also adapt them to the specific 

needs of people in different age groups. 

2.3.2 Gender 

One of the main anthropometric differences observed in the vote of thermal sensation, 

and which generates discussions since the first thermal comfort experiments published 

until today, is related to the human gender. In his studies, O. Fanger [50] observed that 

although the neutral temperature of a group is a parameter independent of age, gender, 

weight, time of the day, race, or geographical location, women have greater sensitivity to 

temperature fluctuations when compared to men. Still, according to the results of Fanger, 

women tend to prefer an internal temperature slightly higher than that preferred by men 

(0.3°C). 

Some authors believe that this difference may be directly related to the way female 

and male users dress [74]. However, L. Webb and K. Parsons [94] and K. Parsons [49] 

discarded the hypothesis of the differences being related to clothing by performing a 

 
 
5 The difference between the metabolism of a young adult and an elderly person is approximately 4.7$ %!⁄ . 
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comparison between groups of different genders using identical clothing and physical 

activities. The authors found that in a cold situation (PMV=-2.0), women tend to 

complain significantly more than men. In addition, women usually have a thermal 

sensation vote much closer to the PMV value calculated when compared to male results. 

Even though the authors also concluded that women are more sensitive to cold, no 

significant differences between genders were found when the environment presents 

temperature conditions that lead to thermal neutrality or in a slightly warm situation. 

Moreover, S. Karjalainen [21] found that women are on average 74% more likely to 

complain about the thermal environment than men. In his literature review, the author 

did not find any study where women had a higher level of thermal satisfaction when 

compared to men.  

In terms of physiology, H. Kaciuba-Uscilko and R. Grucza [95] explained that such 

differences between genders are evidenced by the body characteristics and the endocrine 

system. Women usually have a larger body lining surface than men and are more 

susceptible to heat loss. On the other hand, women have a higher amount of 

subcutaneous fat, which increases the heat insulation of the body in some specific parts 

such as the hips and waist [96]. 

The issue of differences in thermal perception between men and women was recently 

discussed by B. Kingma and W. van Marken Lichtenbelt [97]. The authors stated that the 

greatest difference between men and women is related to the metabolic rate, and 

therefore, this is the main gap coming from thermal comfort assessment models such as 

O. Fanger [50], as the accuracy of the two main variables of the model inputs – clothing 

and metabolic rate – were, in general, poorly defined [49], [95]–[98]. Such a problem has 

directly impacted the methods proposed by the current standards, and consequently on 

the energy consumption of the spaces shared by men and women, which present different 

demands for indoor cooling and heating set-points. According to J. Van Hoof [99], gender 

inequalities are increasingly reported. For this reason, the author stated that a large-scale 

re-evaluation of field studies focused on these differences is imperative, bringing together 

material large enough to convince not only the real estate sector but also the global 

standards committees and professionals in the building sector that a review of all existing 

thermal comfort practices and requirements is extremely necessary. 
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2.3.3 Physical Conditions and Weight 

According to O. Fanger, there is a widespread and popular theory that obese people prefer 

cooler environments when compared to thin people [50]. In this regard, in [100] the 

authors explained that subcutaneous fat and skin surface create a kind of thermal 

resistance that directly influences heat conductivity and blood flow. Although O. Fanger 

[50], and more recently T. H. Karyono [101], have investigated this issue in their studies 

without, however, finding significant differences relating weight to the thermal comfort 

condition. Other authors have stated that individuals with higher amounts of body fat 

(both subcutaneous fat and the general percentage of body fat) are able to tolerate lower 

temperatures, without having to increase their internal heat production [102], [103]. M. 

O. Fadeyi [26] found that the thermal sensation of overweight occupants was warmer 

than the thermal sensation of normal-weight occupants, even after a long period of 

occupancy in the same space, as well as the thermal acceptability levels, which were also 

lower. Thus, overweight people have a certain tendency to prefer lower operating 

temperatures than those preferred by thinner people, both in winter and summer. The 

influence of weight on the thermal comfort sensation can also be related to age, 

considering the body composition as something that changes over the years [104]. 

Few published studies have investigated the influence of weight and body mass on 

sensation, preference, thermal acceptability, and environmental control of the occupants 

in indoor spaces. However, with the advent of the so-called “obesity epidemic”, 

differences between the physical condition and body mass of occupants in the same space 

in which environmental control is a current practice may become common and even 

recurring. Although there is a lack of studies focusing on this issue, on the other hand, 

human physiology researchers have often related the continuous exposure of the body in 

static environments to the increase in the number of obese people in the world [102], 

[105]–[107]. F. Johnson et al. [108] explained that prolonged exposure of the body to a 

thermal neutrality zone can significantly contribute to body weight gain. Thus, considering 

the people who spend 90% of their working time in indoor spaces with artificial air-

conditioning such as cars, shopping malls, offices and supermarkets, it is reasonable to 

conclude that the energy expenditure related to the metabolism in daily life has been 

significantly reduced. In addition to the use of artificial air-conditioning and prolonged 

stay in thermal neutrality zone, being considered two contributors to the obesity epidemic, 

Wijers et al. [85] went further and explained that obese people spend less energy on 
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metabolism compared to thinner people, even when they are outside the thermal 

neutrality zone. 

2.4 WAYS TO CAPTURE THE HUMAN VARIABILITY 

Capturing the anthropometric parameters of human beings is necessary for performing 

ergonomic studies which allow the evaluation and the design in different fields that are 

related to the people characteristics especially building automation applications (in the 

context of thermal comfort and energy control). Otherwise, the body dimensions are of 

two types: Structural and Functional. The static or structural anthropometry is concerned by 

the measurement of static dimensions, i.e., those that are taken with the body in a fixed 

and determined position. However, human beings are usually in motion, hence dynamic 

or functional anthropometry has been developed with a purpose to measure the dynamic 

dimensions that are those measurements made from the movement associated with 

certain activities [32]. 

The knowledge of the static dimensions is basic for the design of the workstations 

and allows the establishment the necessary distances between the body and its 

surrounding. Besides the dynamic or functional dimensions, as previously mentioned, are 

those that are taken from the work positions resulting from the movement associated 

with certain activities, i.e., it considers the study of the joints, providing knowledge of the 

function and possible movements of them and allowing to evaluate the capacity of the 

joint dynamics [109]. In this regard, several methods and sensors are used to capture 

dynamically the dimensions with a relatively high degree of precision and they can be 

classified according to the used technologies into: 

• Electromagnetic motion capture systems, there is a collection of 

electromagnetic sensors that measure the spatial relationship with a nearby 

transmitter. The sensors are placed on the body and connected to a central 

electronic unit; they are constituted by three orthogonal turns that measure the 

magnetic flux, determining the position and orientation of the sensor [110]. 

• Inertial motion capture systems, inertial sensors are placed in different parts 

of the body. Accurate data are obtained from the individual’s orientation and 

acceleration [111]. 

• The ultrasonic sensors-based systems, where the sensors are composed of 

a transmitter and a receiver and use the ultrasound telemetry method to 



 

32 2 HUMAN THERMAL COMFORT IN THE BUILT ENVIRONMENT 

calculate the distance between the transmitter and a remote object (e.g., the 

human body). This method consists of measuring the time taken by an 

ultrasonic impulse to reach the object and return by reflection to its starting 

point [112]. 

2.5 FINAL CONSIDERATIONS 

The assessment of thermal comfort is currently done in different ways, considering the 

various parts of the world and their climatic and cultural characteristics. Given the broad 

variety of existing models, approaches, and applications for thermal comfort evaluation, 

it is important to understand that the use of any of these models should be carefully 

considered and restricted to the conditions for which they are intended. The opportunity 

to adapt and control environmental conditions has opened space for occupants to 

experience more thermally comfortable environments, which can provide a significantly 

higher level of overall satisfaction; in addition to a better thermal and energy performance 

of the building. Although there are several models and equations intended for evaluation 

in artificially conditioned environments (static models such as PMV and PPD) or naturally 

ventilated (adaptive models), when the subject involves environments with mixed 

conditioning systems, there is still a significant gap in the field. 

During thermal comfort experiments, it is important to point out that the occupants 

can react in different ways under the same environmental conditions. Therefore, it is 

correct to assume that anthropometric or psychosocial factors, besides the parameters 

already considered by the current models, directly influence the thermal perception and 

the quality of the internal environment supplied to the occupants. Anthropometric 

parameters such as age, weight, and height contribute actively to thermal perception, and 

when combined, may produce unproven effects. According to the studies discussed in 

the review, there is little evidence of the influence of such characteristics on the operation 

of air-conditioners; but in general, female occupants are generally known to be sensitive 

to lower temperatures, while older people may prefer temperatures higher than those 

preferred by younger people. Obese people are more inclined to heat, which can make 

these users prefer cooler environments. Although prominent in a few studies, such results 

require further investigation. 

In the following chapter, we will present the integration of the various computer 

resources, in terms of artificial intelligence applied for energy management and thermal 

comfort in buildings. 
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3 ARTIFICIAL INTELLIGENCE 
IN BUILDING CONTROL: 
LINKING COMFORT & 
ENERGY USE 

educing energy consumption while maintaining comfortable conditions in buildings 

turned out to have conflicting objectives and has accelerated the development of 

new systems for energy and thermal comfort optimization. For instance, reducing the 

inside temperature of a building in a hot area in order to make it comfortable will make 

the consumption of energy higher. Over the last decade, different methodologies based 

on Artificial Intelligence (AI) techniques have been applied to find the sweet spot between 

the energy consumption of HVAC systems and the acceptable comfort level of occupants. 

The application of AI and Machine Learning (ML) in optimizing energy efficiency while 

maintaining an acceptable comfort level of the occupant is a promising area of research 

and still an ongoing endeavor. Accordingly, this chapter develops a systematic review of 

AI-based techniques for building control and investigating their abilities to improve the 

energy-efficiency while maintaining personalized thermal comfort. Hence, this provides a 

holistic view of the complexities of delivering comfort conditions to users inside buildings 

in an energy-efficient way; and broadening the state-of-the-art by evaluating and 

categorizing all current literature and presenting materials relevant to AI-assisted buildings 

environmental management tools when recognizing complex activity within the comfort-

subject-energy control loop. 

 

R 
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3.1 BACKGROUND 

Initial efforts to apply AI for building control began in the 1990s. Intelligent controllers 

have been optimized using evolutionary algorithms designed to control smart building 

subsystems. Synergy between neural networks, fuzzy logic, and evolutionary algorithms, 

or more broadly computational intelligence (CI) techniques, has been applied to buildings. 

To overcome non-linear functions of thermal comfort indices, time delay, and system 

uncertainty, certain advanced control algorithms have also integrated adaptive fuzzy 

control for optimal comfort control. In this context, a direct neural network controller, 

using a back-propagation algorithm, was developed and successfully deployed in Japanese 

air-conditioning installations and electrical fans for commercial applications. For example, 

a system incorporating two neural networks has been integrated into an air-conditioning 

in order to ensure that the equipment is adapted to customer preferences [113]. 

Although the use of AI-based technologies for building management has lasted over 

two decades, the performance of such techniques for building environmental control 

using these techniques is not yet fully satisfactory. Based on [114], the personal 

environmental comfort model could save about 20-30% of cooling and heating energy 

while maintaining acceptable comfort for the occupants. Nevertheless, based on the 

current study, from 1993 to 2020, the application of AI-based techniques and customized 

comfort models was able to achieve an average of between 21.81% and 44.36% of energy 

savings and an average of between 21.67% and 85.77% of comfort improvement. 

The principles of the different artificial intelligence techniques used to design building 

controllers will be defined. In this regard, we will present the most employed ones – based 

on the analysis – to control both thermal comfort and energy use. 

3.2 BUILDINGS CONTROL 

Building climate control is a multi-parameter problem with no single solution, especially 

in sustainable buildings. Specifically, the objectives of an intelligent energy and comfort 

management system are as follows: 

• High comfort level: Learning the comfort zone from the user’s preferences, 

ensuring a high level of comfort (thermal, acoustic, air quality, and lighting) 

and improved dynamic performance. 

• Energy Saving: Combining the control of comfort conditions with an energy-

saving strategy. 
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• Air quality control: Providing a ventilation control system (CO2 

concentration control). 

User interactions always have a direct effect on the system under examination to give 

the user the impression that he/she is in control of his/her environment. Users of an 

electric lighting system can change the state of the lighting, or choose its level. Users of 

the heating system may adjust the temperature set-point. An increase in this threshold 

immediately triggers the heating system until the interior temperature is below this set-

point. Additionally, people using blinds can choose any dark position they prefer.  

The combined control process for the above systems requires the optimal 

performance of all subsystems, under the basic assumption that they are operating 

properly, in order to avoid conflicts that arise between user preferences and the 

simultaneous operations of these control subsystems. Such example in [115], when the 

authors developed effective cost control strategies to achieve optimal energy and 

acceptable comfort conditions. 

The different approaches to the design of control systems for indoor environments 

of buildings can be classified into (1) Classical methods, and (2) Artificial Intelligence 

techniques. 

3.2.1 Classic PID Controllers 

Initially, the purpose of the development of control systems for buildings was primarily 

to reduce energy consumption, while thermostats were used to control temperature 

feedback. In order to prevent frequent changes between the two states of a thermostat, 

thermostats with a dead zone have been implemented and used, and this type of control 

is called bang-bang control with a dead zone. However, controlled temperature excesses 

have not been avoided, resulting in increased energy consumption. To solve the problem, 

the designers used PID (Proportional-Integrate-Derivative) controllers. 

A PID controller allows a closed-loop control (a system is said to be in a closed-loop 

when the output of the process is taken into account to calculate the input) of a physical 

quantity of a system. In other words, the goal is to reduce the error between set-point and 

measurement. Therefore, it generates a control signal from the difference between the 

set-point and the measurement. The PID corrector acts in three ways: 

• Proportional action: the error is multiplied by a gain, !. 

• Integral action: the error is integrated and divided by a gain, "! . 
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• Derivative action: the error is divided and multiplied by a gain, "" . 

There are several possible architectures to combine the three effects (serial, parallel or 

mixed), and here we present a parallel architecture: 

 

Figure 3-1. Block-diagram of PID controller. 

The transfer function id given by: 

>(?) = @ A1 +
1

!* × ?
+ !3 × ?C (3-1) 

Whereas, Y: and Y? are time constants and \ is the gain of the proportional part. 

The different parameters to be determined are !, "! , and "" to control the physical 

process variable with the transfer function #(%). there are a number of methods to find 

these parameters, which is generally referred to as synthesis. Additionally, for these three 

parameters, setting a too high threshold has the effect of causing the increasing system 

oscillation, leading to instability. 

Analyzing the PID system is very simple, but its design can be challenging, even 

difficult, as there is no single method to solve this problem. Compromises have to be 

found, as there is no perfect controller. In general, specifications are set for the 

robustness, the overrun, and the time for the establishment of the stationary regime. The 

most commonly used tuning methods, in theory, are the Ziegler-Nichols methods (open 

and closed-loop), the P. Naslin method (normal polynomials with adjustable damping), 

and the inverse Nyquist locus method (uses the Nyquist diagram). In the context of 

buildings, the controller’s parameters adapt to the system’s behavior, which can be 

effective when installing hardware. The non-linearity of different types of HVAC 

equipment is another disadvantage of self-tuning. Thus, taking into account the special 
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knowledge of thermal equipment used in buildings, a higher degree of control is required, 

which can no longer be synthesized in the form of a simple PID controller. The main 

additional knowledge that can be used are: the description of a thermal comfort zone, the 

occupancy profile, weather forecast, energy prices, thermal connections between rooms, 

as well as different types of constraints (maximum available power). In order to make the 

best use of them, research work has been oriented towards more advanced control 

systems, based on artificial intelligence or optimized approaches, which are presented in 

the following section. 

3.2.2 Developed AI-based Techniques for Comfort and Energy-Efficiency 
Control 

AI is a field of expertise that offers decision support and control models based on real 

facts and empirical and theoretical knowledge. In this sense, one of the main objectives 

of AI is related to the development of systems capable of solving problems that only the 

capacity of human beings reasoning allows due to their ability to learn and make decisions 

correctly (i.e., intelligence). AI has the challenge of developing problem-solving systems 

that can be converted into mathematical models and programs for use in computers or 

controllers. In this section, the principles of the different AI techniques used to design 

building controllers in the reviewed works will be defined first, we will highlight in 

particular the most used and well-known tools. In the second part of this section, we will 

introduce the optimization functions, as a fundamental key in the building control system 

component.  

Numerous AI-based solutions were developed for controlling energy and thermal 

comfort inside buildings. We performed a thorough analysis of all existing works on the 

use of AI in buildings’ control, which are recorded in Tables (3-1) to (3-7). Based on this 

analysis, almost 20 AI techniques were employed to control both thermal comfort and 

energy consumption. 

3.2.2.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) or Neural Networks (NN), including Recurrent 

Neural Networks (RNN), Deep Neural Networks (DNN), and Feedforward-

ANNs, are among the most well-known tools (cf. Table 3-1). First introduced by 

McCulloch and Pitts in 1943, ANNs are now widely used methods for obtaining efficient 

results in many domains, in supervised or unsupervised classifications. Although it dates 

back to the 1950s (then called a perceptron and composed of a single neuron) [116], [117], 
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ANN was later developed with the introduction of new types of ANN [118], and new 

learning methods [119], [120]. Deep learning has continued to be refined thereafter [121], 

[122], yet has above all revealed its potential through the provision of powerful 

computational tools (such as graphics processors) to leverage the potential of ANN. 

An artificial neuron (or formal neuron) is inspired by a biological neuron to which it 

gives mathematical inspiration as shown in Figure (3-2).  

 

Figure 3-2. Mathematical model of a biological neuron. 

In a formal neuron, we observe: 

• Inputs (D = E4, … , E)) to which are associated weights (H = I4, … , I)) 
relating to the importance of the information conveyed; 

• A bias (') constituting the weight of a constant input allowing to add 
flexibility to the network by acting on the position of the decision boundary; 

• An activation function (j) applied to inputs and bias, such as: 

o Sigmoid: J(K) = 1 1 + L56⁄  
o Hyperbolic tangent (tanh): J(K) = (1 − L56) (1 + L56⁄ ) 
o ReLu (Rectified linear unit): J(K) = MNE(0, K) 
o Identity: J(K) = K 

• An output (O) that can be used as the input of other neurons, such as: 

O = J(H.D + P) (3-2) 

An ANN is then the association of several neurons grouped in layers linked by 

weighted connections. 

The ANN architecture determines the way neurons are ordered and connected within 

the same network. In general, the ANN consists of several successive layers of neurons: 

the inputs, the hidden layers (which are not accessible outside the network) up to the 

output layer(s). The depth of the ANN is estimated by the number of hidden layers. 
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In the field of thermal building, ANNs are used to solve various problems. Direct 

neural network controllers were applied for thermal comfort monitoring [123] and HVAC 

control systems [10], [124], [125]. Such controllers are simple and do not need a building 

recognition model, unlike indirect neural network controllers. 

Figure (3-3) shows the configuration of a neural network controller, which is dual-

layer, multi-input, single-output (MISO) [123]. There are two inputs and one output for 

this controller: , is an error between the PMV setting and the feedback value, ,̇ is a 

differential error, and . is a building control signal.  

 

Figure 3-3. A Direct Neural Network controller (Source: figure adopted from [126]). 

The equations describing this controller are as follow [126]: 

Q = R44L + R47L̇ + R48P (3-3) 
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Whereas c in the input of the output layer of neural network; dBB and dB/ are the synaptic weights; dB& is 
the synaptic weight of the fixed input e = 1; f(c) is the activation function (unipolar sigmoid function); 
a is the output of the output layer; and ^∗ is the learning rate parameter. 

Learning an ANN is, in essence, the adjustment of these weight coefficients to 

optimize the cost functions. The weight of interconnections between neurons is based on 

the gradient descent algorithm. Initially, this algorithm sets random values to the weights 

of the network, obtains the two input signals of the controller, and calculates the output. 

Afterward, the algorithm adjusts both the weights and the output signal. 
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Table 3-1. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using Artificial Neural Networks (ANN). 

YEAR STUDY CASE UNDERLYING 
AL/ML TOOLS 

AI APPLICATION 
SCENARIO 

THERMAL 
COMFORT 
METHOD 

OPTIMIZATION 
OBJECTIVE OUTCOMES & KEY RESULTS REF. 

2005 NN-based control development for individual 
thermal comfort optimization, and energy saving 
by combining a thermal space model for 
VAV&HVAC application. 

Direct neural network Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 
HVAC, Temperature, 
Humidity), Energy/Load 

The controller showed high comfort level (by 
maintaining the comfort zone between -0.5 and 
+0.5) while conserving energy. But, still some 
limitations in practice. 

[123] 

2008 Intelligent comfort control system (ICCS) 
design by combining the human learning and 
minimum energy consumption strategies for 
HVAC system application. 

Deep neural networks Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity, 
VAV), Energy/Load 

More energy saving and higher comfort level (by 
applying VAV control), compared to conventional 
temperature controller by maintaining the PMV 
within the comfort zone 

[126] 

2009 Developing an inferential sensor based on the 
adaptive neuro-fuzzy modeling to estimate the 
average temperature in space heating systems. 

Adaptive neuro-fuzzy 
model 

Adaptive neuro fuzzy 
inference system 

Average air temperature 
estimation (based on To, 
QSQL, and Fire) 

Comfort parameters 
(Temperature, Hot/Cold 
water), Energy/Load 

The average air temperature estimated by ANFIS 
control model are very close to experimental 
results, with a highest possible RMSE = 0.5782ºC. 

[127] 

2009 Predicting fan speed based on ANFIS for energy 
saving purpose in HVAC system 

Adaptive neuro-fuzzy 
model 

Predictive control Desired temperature by 
controlling the damper 

Comfort parameters 
(Temperature), 
Energy/Load 

Simulation results showed that the ANFIS model 
is more effective and can be used as an alternative 
for HVAC control system. 

[128] 

2010 Multi-objective optimization methodology used 
to optimize thermal comfort and energy 
consumption in a residential building 

ANN combined with 
NSGA-II 

Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 
Heating/Cooling, 
Humidity, Temperature), 
Energy/Load 

Optimization results showed significant 
improvement in thermal comfort (average 
PMV<4%), more saving in total energy (relative 
error<1%) and reduction in simulation time 
compared to conventional optimization methods. 

[129] 

2011 AI-based thermal control of a typical residential 
building in USA 

Adaptive neuro-fuzzy 
model 

Adaptive neuro fuzzy 
inference system 
(ANFIS) 

Defined comfort ranges Comfort parameters 
(Temperature, Hot/cold 
water), Energy/load 

ANFIS could save 0.3% more energy than ANN. 
Both methods satisfied thermal comfort (~98% in 
winter/100% in summer), and reduction in Std. 
dev.  of air temperature from setpoint temperature 
(under 0.3ºC). 

[130] 

2014 Dynamic and automatic fuzzy controller for 
indoor for indoor thermal comfort requirements 

Neural network-based 
ARX 

Predictive control Defined Temperature 
ranges (based on personal 
thermal preferences) 

Comfort parameters 
(Temperature, Humidity), 
Energy/Load 

The proposed control system allowed to achieve 
efficient use of energy and bringing the room 
temperature to the maximum value of personal 
comfort. 

[131] 

2014 Radiator-based heating system optimization to 
maintain indoor thermal comfort and minimize 
energy consumption for residential building 

Random neural network 
(RNN) 

Predictive control & 
optimized setting 

PMV-based setpoint6	
(!"# = % ∙ ' + ) ∙ *! − ,) 

Comfort parameters (PMV, 
Temperature, Hot/cold 
water), Energy/load 

The proposed model accuracy is of MSE=38.87% 
for PSO less than GA; MSE=21.19% for PSO less 
than SQP. RNN with GA allowed to maintain 
comfortable comfort conditions with the 
minimum energy consumption (400.6 MWH), 
compared to MPC model. 

[115] 

 
 
6 Defined by the Institute for Environmental Research at KSU under ASHRAE contract. 
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Table 3-1. (Continued). 

Year Study Case 
Underlying AL/ML 

Tools 
AI Application 

Scenario 
Thermal Comfort 

Method 
Optimization 

Objective 
Outcomes & Key Results Ref. 

2014 Control logic for thermally comfortable and 
energy-efficient environments in buildings with 
double skin envelopes 

Rule-base & ANN-based 
control 

Predictive & adaptive 
control 

Comfort range (built from 
the cavity and indoor 
temperature conditions) 

Comfort parameters 
(Temperature, 
heating/cooling), 
Energy/load  

ANN-based logic showed significant results in 
reducing over/undershoots out of the comfort 
range. Simplest rule-base control logic use allowed 
to save cooling energy. 

[132] 

2015 Developing and testing an NN-based smart 
controller for maintaining a comfortable 
environment, and saving energy using a single 
zone test chamber 

Recurrent neural 
networks (RNN) 

Predictive control & 
optimized setting 

User recommendations; 
PMV-based setpoints 
(Fanger’s model) 

Comfort parameters (PMV, 
Temperature, CO2 
Concentration/Air quality/ 
heating/cooling), Energy 
load  

The proposed controller has learned the human 
preferences with an accuracy of 94.87% for 
heating, 98.39% for cooling and 99.27% for 
ventilation. The occupancy estimation using RNN 
is about 83.08%. 

[133] 

2015 Predictive-based controller development for 
multizone HVAC systems management in non-
residential buildings 

Low-order ANN-based 
model 

Predictive control & 
optimized setting 

PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Heating/ 
cooling), Time efficiency, 
Energy/load 

The proposed strategy could optimize operation 
time of HVAC subsystems, reducing energy 
consumption and improving thermal comfort for 
cooling/heating modes. 

[134] 

2015 AI-theory-based optimal control for improving 
the indoor temperature conditions and heating 
energy efficiency of the building with double-
skin 

ANN & ANN coupled 
with FLC 

AI-based optimal control Defined comfort 
temperature range 

Comfort parameters 
(Temperature, Heating/ 
cooling), Energy/load  

FLC, ANFIS-1 inputs and ANFIS-2 input models 
increased significantly the comfortable condition 
period by 2.92%, 2.61% and 2.73% respectively 
(compared to the rule-based algorithm). 

[135] 

2015 Automatic air-conditioning control development 
for indoor thermal comfort based on PMV and 
energy saving 

Adaptive neuro-fuzzy 
based model 

Predictive control based 
on Inverse-PMV mode 

Inverse-PMV model (based 
on desired PMV and 
measured variables) 

Comfort parameters (PMV, 
Humidity, Temperature), 
Energy/load 

The proposed control method performed better 
than conventional method by effectively 
maintaining the PMV within a range ±0.5 and up 
to 30% of energy saving. 

[136] 

2016 ANN-based algorithms development for optimal 
application of the setback moment during 
heating season. 

ANN-based model Predictive control & 
optimized setting 

Defined setpoint 
temperature for occupied 
periods 

Comfort parameters 
(Temperature), Energy/load 

The optimized ANN model showed a promising 
prediction accuracy (R2 up to 99.99%). ANN-based 
algorithms are much better in thermal comfort 
improvement (97.73% by Algorithm (1)); energy 
saving (14.04% by Algorithm (2)), compared to the 
conventional algorithm. 

[137] 

2016 ANN-based control algorithm development for 
improving thermal comfort and building energy 
efficiency of accommodation buildings during 
the cooling season. 

ANN-based algorithms Predictive & adaptive 
controls 

Fixed setpoint/setback 
temperatures for occupied/ 
unoccupied periods 

Comfort parameters 
(Temperature), Energy/load 

ANN models gave accurate prediction results with 
acceptable error for comfort and energy 
improvement: 1st model: Average difference = 
17.07%/MBE = 17.66%, 2nd model: Average 
difference = 20.87%/MBE = 21.90%. 

[138] 

2016 A personalized energy management system 
(PEMS) development for HVAC systems in 
residential buildings. 

Adaptive neuro-fuzzy 
based model 

Predictive control Personalized comfort bands Comfort parameters 
(Temperature), 
Energy/load, Cost 

About 9.7% to 25% reduction in energy 
consumption and the cost, from 8.2% to 18.2%. 

[139] 

2017 Proposing an AI-based heating and cooling 
energy supply model, responding to abnormal/ 
abrupt indoor situations, to enhance thermal 
comfort and energy consumption reduction. 

Decision making based 
ANN model 

Optimized setting PMV-PPD (Fanger’s model) Comfort parameters 
(PMV/PPD, Temperature, 
Humidity, Heating/ 
cooling), Energy/load 

Thermal comfort improvement: 2.5% for office 
building, and ~10.2% for residential building. 
annual energy consumption reduction:  17.4% for 
office building and 25.7% for residential buildings. 

[140] 
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Table 3-1. (Continued). 

Year Study Case 
Underlying AL/ML 

Tools 
AI Application 

Scenario 
Thermal Comfort 

Method 
Optimization 

Objective 
Outcomes & Key Results Ref. 

2017 A low-cost, high-quality decision-making 
mechanism (DMM) targeting smart thermostats 
in a smart building environment. 

ANN and fuzzy inference 
system (FIS) 

Neural-Fuzzy control PPD (Fanger’s model) Comfort parameters (PPD, 
Temperature, Humidity), 
Energy/load  

The proposed framework allowed to reach a higher 
thermal comfort while reducing energy 
consumption by an average between 18% and 40%. 
The use of FL by considering the dynamic 
behavior of the world allowed to improve the total 
cost by 7%–19% on average. 

[141] 

2017 Designing and implementing a smart controller 
by integrating the internet of things (IoT) with 
cloud computing for HVAC within an 
environment chamber. 

Random neural network Occupancy estimation & 
optimized setting 

PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, HVAC, CO2 
concentration/Air quality), 
Energy/load  

Results showed that the hybrid RNN-based 
occupancy estimation algorithm was accurate by 
88%. ~27.12% reduction in energy consumption 
with the smart controller, compared to the simple 
rule-based controllers. 

[142] 

2017 RNN-based smart controller development for 
HVAC by integrating IoT with cloud computing 
and web services. 

RNN trained with PSO-
SQP 

Occupancy estimation & 
optimized setting 

PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity, 
CO2 concentration/Air 
quality, HVAC), 
Energy/load 

Energy consumption was 4.4% less than Case-1 
and 19.23% less than Case-2. The RNN HVAC 
controller could maintain the user defined set-
points and accurate temperature for PMV set-
points. 

[143] 

2017 Implementing a predictive control strategy in a 
commercial BEMS for boilers in buildings. 

ANN-based model Predictive control Predefined temperature 
(according to daytime) 

Comfort parameters 
(Temperature, Hot/cold 
water), Energy/load 

The predictive strategy allowed to reduce ~20% of 
energy required to heat the building without 
compromising the user’s comfort, compared to 
scheduled ON/OFF control. 

[144] 

2017 A smart heating set-point scheduler development 
for an office building control. 

ANN coupled with 
MOGA 

Optimized setting & 
predictive control 

PPD (Fanger’s model) Comfort parameters (PPD, 
Temperature, Humidity), 
Energy /load 

4.93% energy savings whilst improving thermal 
comfort by reducing the PPD by an average of 
0.76%. 

[145] 

2017 A hybrid rule-based energy saving approach 
development using ANN and GA in buildings. 

ANN-based model Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Heating/ 
cooling), Energy/load 

Validation results showed an average 25% energy 
savings while satisfying occupants’ (elderly people) 
comfort conditions (-1£PMV£+1). 

[146] 

2017 Deploying ML techniques to balance energy 
consumption and thermal comfort in ACMV 
systems through computational intelligence 
techniques in optimizations. 

ANN with Extreme 
learning machine 

Optimized setting & 
predictive control 

PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity), 
Energy/load 

Maximum energy saving rate prediction ~31% and 
maintaining thermal comfort within pre-established 
comfort zone (PMV»0) 

[147] 

2017 Machine learning-based thermal environment 
control development 

ANN-based model Predictive control Individual’s thermal 
preference/feedback 

Comfort parameters 
(Temperature, Humidity), 
Energy/load 

A total of up to 45% more energy savings and 
44.3% better thermal comfort performance than 
the PMV model. 

[148] 

2018 A novel real-time automated HVAC control 
system built on top of an Internet of Things 
(IoT). 

ANN MPL-based 
predictive model 

Optimized setting & 
predictive control 

Personal dissatisfaction level 
expressed by users (thermal 
comfort is a function of 
temperature) 
 

Comfort parameters 
(Temperature, Humidity, 
CO2 concentration/Air 
quality), Energy/load 

Between 20% and 40% energy savings were 
achieved while maintaining temperature within the 
comfort range (except the pre-peak cooling hour). 

[149] 
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Table 3-1. (Continued). 

Year Study Case 
Underlying AL/ML 

Tools 
AI Application 

Scenario 
Thermal Comfort 

Method 
Optimization 

Objective 
Outcomes & Key Results Ref. 

2019 An indoor-climate framework development for 
air-conditioning and mechanical ventilation 
(ACMV) systems control in buildings 

Self-layered feedforward-
ANN  

Predictive control & 
optimized setting 

Thermal sensation index 
based on ASHRAE 7-point 
sensation scale 

Comfort parameters 
(ACMV, Temperature, 
Humidity), Energy/load 

An average of 36.5% energy saving was ensured, 
and 25ºC was found as the ideal comfort 
temperature with a minimum energy use. 

[150] 

2019 A novel optimization framework using a deep 
learning-based control for building thermal load. 

Recurrent neural network 
(RNN) 

Load prediction & 
optimized setting 

Defined temperature 
setpoints 

Comfort parameters 
(Temperature), Energy/load 

Up to 12.8% cost savings compared with a rule-
based strategy, while maintaining the users’ thermal 
comfort during the occupied periods. 

[151] 

2019 A learning-based optimization framework 
development for HVAC systems in smart 
buildings 

Deep neural networks  Predictive control & 
optimized setting 

Predicted thermal comfort 
by time slot: 

"! = Φ%&!"#, (!"#)	
 
 

Comfort parameters 
(Temperature, Humidity), 
Energy/load 

DDPG allowed to achieve higher degree of 
thermal comfort with an average value closer to the 
preset threshold of 0.5. As it could save 6% more 
energy than the baseline methods. 

[152] 

2020 Hybrid data-driven approaches development for 
predicting building indoor temperature response 
in VAV systems. 

MLR and ANN trained 
by Bayesian Regulation 

Predictive control Defined comfort zones Comfort parameters 
(Temperature, VAV system, 
Heating/cooling), 
Energy/load 

The proposed model allowed to improve the 
control and optimization of buildings space cooling 

[153] 

2020 A network-based deterministic model 
development to respond the ever-changing users’ 
fickle taste that can deteriorate thermal comfort 
and energy efficiency in building spaces. 

Fuzzy inference system 
(FIS), ANN 

Thermostat on/off, 
ANN, ANN + FDM 

PMV (Fanger’s model) Comfort parameters (PMV, 
Humidity), Energy/load 

ANN-FDM showed significant results by 
improving thermal comfort by up to 4.3% rather 
than thermostat model and up to 44.1% of energy 
efficiency rather than ANN model. 

[154] 

2020 ANN-based prognostic models’ development for 
load demand (LD) prediction for a Greek island 
by capturing three different forecasting horizons: 
medium, short and very short-terms 

Multilayer Perception 
ANN 

Predictive control Biometeorological human 
thermal comfort-discomfort 
index 

Comfort parameters 
(Humidity, Heating/ 
cooling), Energy/load 

Both medium and short-term prognoses showed 
significant ability to predict LD by errors around 
7.9% and 7.2% respectively. 

[155] 

2020 An intelligent-based ML model to predict the 
energy performances in heating loads (HL) and 
cooling loads (CL) of residential buildings. 

ANN, Deep neural 
networks 

Predictive control Maintaining defined 
comfort conditions 

Comfort parameters 
(Temperature, Humidity, 
Heating/cooling), 
Energy/load  

Deep NN showed better results compared to 
ANN (i.e., HL and CL prediction), by applying 
state-based sensitivity analysis (SBSA) technique 
allowing to improve the model by selecting the 
most significant variables. 

[156] 

2020 A novel personal thermal comfort prediction 
method using less physiological parameters. 

ANN-based model Predictive control Modified thermal sensation 
vote scale {cold, cool, 
neutral, warm, hot}. 

Comfort parameters 
(Temperature, Humidity, 
HVAC), Energy/load 

the proposed model showed good prediction 
accuracy and stability by an average of 89.2% and a 
standard deviation around 2.0%. 

[157] 

2020 Investigating the performances and comparative 
analyses of combined on-demand and predictive 
models for thermal conditions control in 
buildings. 

ANN combined with FIS On-demand & predictive 
controls 

PMV/PPD (Fanger’s 
model) 

Comfort parameters 
(PMV/PPD, Temperature), 
Energy/load 

combining the predictive and on-demand 
algorithms improved the energy efficiency from 
13.1% to 44.4% and reduced the thermal 
dissatisfaction by 20% to 33.6%, compared to each 
independent model. 

[158] 

2020 A building intelligent thermal comfort control 
and energy prediction based on the IoT and 
artificial intelligence. 

Back-propagation (BP) 
neural networks 

Predictive control & 
optimized setting 

PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity), 
Energy/load 

The system performed better than traditional 
control on comfort and energy savings. 
Limitations: ~3% error between expected and 
actual values. 

[159] 
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3.2.2.2 Fuzzy Logic Control 

Fuzzy Logic Control (FLC) is an appropriate tool for imitating the behavior of building 

users and developing linguistic descriptions of the thermal comfort sensation that 

approach the PMV model and facilitate the calculation of the control system (cf. Table 

(3-2). Unlike conventional control methods, FLC is more widely used in poorly specified, 

complicated procedures that can be managed by a professional human agent without a 

deep understanding of their underlying mechanisms. The basic idea behind FLCs is to 

integrate the “expert knowledge” of a human agent into the regulation of a mechanism 

whose input-output association is defined as a collection of fuzzy control rules (e.g., IF-

THEN), which involve linguistic variables rather than a complex dynamic model. The use 

of linguistic variables, fuzzy rules, and rough set reasoning offers a way of integrating the 

human expert experience into the design of the controller. The typical FLC architecture 

is shown in Figure (3-4), comprising four main elements: a Fuzzifier, a Fuzzy Rule Base 

(FRB), an Inference Engine, and a Defuzzifier. 

 

Figure 3-4. Schematic of fuzzy logic controller. 

i. Fuzzification: is the operation that consists of assigning a degree of 

membership to each fuzzy subset for each physical input. In other words, it is 

the operation that allows the transition from numerical (physical) to symbolic 

(fuzzy) variables. 

ii. The knowledge Base: includes knowledge of the field of application and the 

objectives of the planned control. It includes: 

§ The basis of fuzzy rules for storing empirical knowledge of how the 

process works by experts in the field. 

Fuzzy	Controller

Process	Output	&	State Crisp	Control	Signal

Knowledge	Base

Inference	Engine DefuzzifierFuzzifier

Process

Fuzzy Fuzzy
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§ The rule base is a set of linguistic expressions structured around expert 

knowledge and represented in the form of rules, such as:  
   IF <condition> THEN < consequence> 

iii. Defuzzification: this is the inverse fuzzification operation, which consists of 

converting the fuzzy number B into the numerical quantity, !!. 

iv. Fuzzy inference rules: the inference engine is the core of the FLC, and has 

the ability to simulate human decision-making by performing rough reasoning 

to achieve the desired control strategy. 

In the context of building control systems, the application of FL control methods for 

HVAC systems is efficient as this technique is well suited for non-linear systems [160]. 

These methods can uniformly approximate a non-linear function to any degree of 

accuracy and also provide fast operation. In [161], the use of Fuzzy-PID, Fuzzy-PD, and 

adaptive Fuzzy-PD methods to control thermal comfort and indoor air quality is 

described. One of the main objectives of this work was to reduce energy consumption. 

The lowest values were obtained with the adaptive Fuzzy-PD controller. Moreover, T. 

Bernard T. and H-B. Kuntze [162] proposed a fuzzy logic supervisory system, which 

allows the monitoring of the thermal environment inside a building where the customer 

could follow a compromise solution (through a weighting factor) between efficiency and 

comfort. M. Hamdi M. and G. Lachiver [163], studied in this direction and developed a 

concept of comfort conditions based on human sensitivity, without maintaining a 

constant internal temperature, but rather a constant indoor comfort. The results showed 

that it was possible to combine the comfort of the occupants while saving resources. 
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Table 3-2. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using Fuzzy Logic Control (FLC).  

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

1998 Fuzzy controller development for improving 
thermal comfort and energy saving of HVAC 
systems. 

Fuzzy logic control (FLC) Fuzzy control PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity, 
HVAC), Energy/load, cost 

20% energy saving, and better comfort level at the 
lower cost (than provided by thermostatic 
techniques) 

[163] 

1999 Multi-objective supervisory control of building 
climate and energy. 

Fuzzy logic control (FLC) Optimized setting Pre-defined (standardized) 
temperature  

Comfort parameters 
(Temperature, Humidity, 
CO2 concentration/Air 
quality 

The proposed system allows the user to 
compromise solution (comfort requirements 
/energy saving) 

[162] 

2001 PMV-based fuzzy logic controller for energy 
conservation and indoor thermal requirements 
and of a heating system in a building space. 

Fuzzy logic control (FLC) Fuzzy control PMV/PPD (Fanger’s 
model) 

Comfort parameters 
(PMV/PPD, Temperature, 
Humidity, Heating/ 
cooling), Energy/load 

By maintaining PMV index at 0 and PPD with a 
maximum threshold of 5%, fuzzy controller had 
better performance with a heating energy of 20% 
(compared to tuned PID control). 

[164] 

2001 Developing fuzzy controller for energy saving 
and occupants’ thermal-visual comfort and IAQ 
requirements. 

Fuzzy logic control (FLC) Fuzzy control PMV (Fanger’s model) Comfort parameters (PMV, 
CO2 concentration/Air 
quality, Lighting), 
Energy/load 

Adaptive fuzzy PD showed better performance for 
energy consumption (up to 25-30%) and the 
PMV/CO2 responses, for visual comfort, the non-
adaptive fuzzy PD was sufficient. 

[161] 

2003 Fuzzy controller for indoor environment 
management. 

Fuzzy logic control (FLC) Fuzzy control PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, CO2 
concentration, Lighting, 
Heating/cooling), 
Energy/load 

Up to 20.1% heating and cooling energy saving 
using P-controller by maintaining PMV between 0 
and 0.1 and CO2 concentration less than 20 ppm. 

[165] 

2003 Fuzzy control for indoor environmental quality, 
energy and cost efficiencies. 

Fuzzy logic control (FLC) Fuzzy control Defined ranges/ Preferred 
set-points variables 

Comfort parameters 
(Temperature, Humidity, 
CO2 concentration/Air 
quality), Energy/load, Cost 

Fuzzy approach showed its ability to deal with 
multivariate problems by collaborating expert 
knowledge for decision making at complex level.  

[166] 

2005 Integrated indoor environment energy 
management system (IEEMS) implementation 
for buildings application 

Fuzzy logic control (FLC) Fuzzy control PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, CO2 
concentration, Lighting), 
Energy/load 

Up to 38% energy conservation in both buildings 
without compromising the indoor comfort 
requirements. 

[167] 

2005 Dynamic illumination and temperature response 
control in real time conditions. 

Fuzzy logic control (FLC) Fuzzy control Temperature preference set-
point (by the user) 

Comfort parameters 
(Temperature, Lighting, 
Heating/cooling), 
Energy/load, Cost 

Adjusting automatically roller blind position and 
window geometry according to external weather 
enables to get closer to thermal-visual preferences, 
contributing to lower energy consumption for 
lighting, heating/cooling and cost-saving 
enhancement. 

[168] 

2005 Controller development to improve energy 
conservation with a constraint on the individual 
dissatisfactions of indoor environment. 

FLC based on kNN 
approximations 

Gradient-based 
optimization 

Degree of individual 
dissatisfaction (DID) 
!"!($%&')
= (1 + tanh	(2|$%&'| − 3) 2⁄  

Comfort parameters (DID, 
Temperature), Energy/load 

Optimized HIYW presented better performance 
than OFSA (PPD exceeding 20% for ~15% of 
population and 50% for ~5%) to minimize the 
energy consumption. 

[169] 

2006 Adaptive fuzzy control strategy for comfort air-
conditioning (CAC) system performance 

Fuzzy logic control (FLC) Indirect fuzzy adaptive 
control 

PMV (Fanger’s model) Comfort parameters (PMV, 
HVAC), Energy/load 

The adaptive fuzzy controller could save almost 
18.9% of energy, compared to PID controller. 

[170] 
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Table 3-2. (Continued). 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2007 Fuzzy controller development for improving 
indoor environmental conditions while reducing 
energy requirements for building energy 
management system 

Fuzzy logic control (FLC) Fuzzy control PMV (Fanger’s model) Comfort parameters (PMV, 
Lighting, CO2 concentration 
/Air quality), Energy/load 

Using a suitable cost function for BEMS allowed to 
save energy at a level lower than recommended by 
the literature. Also, users were satisfied by adopting 
the fuzzy controller 

[171] 

2011 Fuzzy adaptive comfort temperature (FACT) 
model development for intelligent control of 
smart building. 

Fuzzy adaptive control 
 
 

Fuzzy control and 
optimized setting 

Adaptive comfort model Comfort parameters 
(Temperature), Energy/load 

Using the FACT model with grey predictor in 
agent-based control system of a smart building, 
provided reasonable comfort temperature with less 
energy consumption to the customers 

[172] 

2013 Fuzzy method-based data-driven to model and 
optimize thermal conditions of smart buildings 
applications. 

Fuzzy logic control (FLC) Fuzzy control Comfort temperature ranges 
(defined by the users). 

Comfort parameters 
(Temperature), Energy/load 

The type-2 fuzzy model performs better, with 
RMSE=12.55 compared to the linear regression 
model where the RMSE=17.64. 

[173] 

2013 Identifying building behaviors related to energy 
efficiency and comfort for an office building in 
the Pacific Northwest. 

Fuzzy knowledge base Fuzzy rule base & 
optimized setting 

Comfort levels based on 
average zone temperature 

Comfort parameters 
(Temperature), Energy/load 

The developed framework was able to identify and 
extract complex building behavior, which improve 
the building energy management systems (BEMSs) 
by eliminating the low efficiency and low comfort 
behavior 

[174] 

2014 Deploying and evaluating a user-led thermal 
comfort driven HVAC control framework in 
office building on University of Southern 
California 

Fuzzy predictive model Predictive control Personalized comfort 
profiles based on a thermal 
preference (TPI) scale 

Comfort parameters 
(Temperature, Humidity, 
Lighting, CO2 concentration 
/Air quality, HVAC), 
Energy/load 

The developed framework showed promising 
results for energy saving and comfort 
improvement. 39% reduction in daily average 
airflow rates. 

[175] 

2015 Fuzzy logic-based advanced on–off control for 
maintaining thermal comfort in residential 
buildings 

Fuzzy logic control (FLC) Fuzzy control Defined (desired) room 
temperature  

Comfort parameters 
(Temperature), Energy/load 

Compared to the conventional on–off controller, 
the proposed system had better control 
performance and saved energy. 

[176] 

2018 Combining a Comfort Eye sensor with a sub-
zonal heating system control for building climate 
management 

Fuzzy logic control (FLC) Fuzzy PID-PMV control PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity, 
Heating/cooling), 
Energy/load 

Up to 17% energy savings with respect to the 
standard ON/OFF mono-zone control, thermal 
comfort has been slightly improved with a 
minimum deviation from the neutral condition 
(PMV=0) 

[177] 
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3.2.2.3 Distributed Artificial Intelligence & Multi-Agent Systems 

Distributed Artificial Intelligence (DAI) and Multi-Agent Systems (MAS) (cf. Table (3-

3)). MAS are derived from Distributed AI, a branch of artificial intelligence. The DAI has 

structured around three axes: 

• Distributed problem solving, allows the problem to be divided into a set of 

sub-problems supported by distributed and collaborating entities and studies 

on how to share problem knowledge to find a solution. 

• Parallel AI, develops parallel languages and algorithms to improve computer 

system performance. 

• Multi-agent systems, promote a decentralized modeling approach and 

emphasize the collective aspects of systems. 

The MAS approach, which has evolved considerably over the last twenty years, makes 

it possible to apprehend, model, and simulate complex systems, i.e., systems involving 

multiple components that interact dynamically with each other and with the outside world. 

It looks at how to coordinate a set of entities called agents so that they can collectively 

solve a global problem. Otherwise, the concept of agent refers to an autonomous entity 

evolving in interaction with its environment, which is often dynamic and unforecastable. 

The modeling and interactions of these agents were inspired by the observation of 

complex biological systems (e.g., organized animal societies such as ant colonies, bird 

swarms [178], or fish schooling [179]). MAS are therefore a privileged approach to 

addressing complex systems. Their entirely decentralized nature makes them particularly 

suitable for this type of system. MAS make it possible to work on the overall functioning 

of the system by looking at the entities that make it up and their interactions. MAS have 

been developed in a variety of areas including image processing, robotics, simulation, 

among others. 

In the building sector, the usage of agent-based and distributed intelligent energy-

saving systems while maintaining a satisfactory indoor environment has been adopted in 

several works. For example, L. Klein et al. [180] proposed a multi-agent comfort and 

energy system (MACES) to coordinate equipment and occupants within a building. Also, 

P. Davidsson and M. Boman [181] presented a MAS for energy control in tertiary sector 

buildings. The purpose of this system is to provide three services: lighting, heating, and 

ventilation, as well as minimizing office energy consumption. Also, Z. Mo [182] built an 
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agent-based platform for individual users and buildings occupants in order to negotiate 

their control activities. A. I. Dounis and C. Caraiscos [183] suggested the use of an 

intelligent supervisor to arrange the optimal collaboration of local controller-agents. 

Consequently, overall control is reached, the occupants’ preferences are met, 

disagreements are avoided and the energy consumption is reduced on a conditional basis. 

Another agent-based system control developed by M. Barakat and H. Khoury [184], 

which examines multi-comfort (visual, thermal and acoustic) level control designed to 

reduce energy consumption. In [185], an agent-based model was introduced to simulate 

the effect of occupant’s behavior on comfort and energy usage in a residential building. 

The developed model showed a realistic estimation of the energy consumption levels. 

3.2.2.4 Reinforcement Learning & Deep Reinforcement Learning 

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) have been used 

in building control (cf. Table (3-4)). Reinforcement learning is a type of machine learning 

through which an intelligent agent learns based on rewards (or reinforcements) that may 

be positive or negative depending on how the action is taken by the agent brings it closer 

to its goal [186]. In RL, the agent interacts with the environment and receives information 

from this interaction that helps to manage the environment better over time. In each 

interaction, the agent is in a state s, from a set of all possible !	($ ∈ !)	 states, and performs 

an action a, from a set of all possible '	(( ∈ '	) actions. After performing the action, the 

agent goes to a new state $′ and receives a reward * from the environment. This process 

can be shown in Figure (3-5). 

 

Figure 3-5. Illustration of the general framework of reinforcement learning. 

The agent must carry out those actions that increase the total amount of received 

rewards, i.e., it is necessary to locate a movement policy that optimizes the accumulated 

reinforcement over the long term. A policy ! is a mapping of states to actions that 

determines the probability !(#|%) of an action being performed in a state %. This map is 

updated on the basis of the experience acquired by the agent during training.

Environment

Agent

ars'

s
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Table 3-3. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using distributed AI (DAI) & Multi-agent systems (MASs). 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2005 Decentralized system development for 
controlling and monitoring an office building. 

Agent-based approach Distributed AI Personal comfort based on 
individual preferences  

Comfort parameters 
(Temperature, Lighting), 
Energy/load 

MAS approach allowed to save up to 40% energy, 
compared to thermostat approach, and ~12% 
compared to timer-based approach. Reactive 
approach is more energy consuming than pro-
active, ensuring 100% of thermal satisfaction. 

[181] 

2006 Centralized HVAC with multi-agent structure. Agent- based approach Distributed AI and 
optimized setting 

PMV (Fanger’s model) Comfort parameters 
(Temperature, Humidity, 
HVAC), Energy/load 

The control accuracy goes around 89% to 92.5%. 
which means that the thermal comfort is predicted 
by 7.5% to 11% of error rate. 

[187] 

2011 Multi-agent simulation for building system 
energy and occupants’ comfort optimization 

Multi-agent system (MAS) Distributed AI PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature), Energy/load 

17% energy savings while maintaining high 
comfort level, approximately 85% occupants’ 
satisfaction. 

[188] 

2011 Developing a MAS combined with an intelligent 
optimizer for intelligent building control. 

Multi-agent system (MAS) Optimized setting Temperature set-point 
control 

Comfort parameters 
(Temperature, Lighting, 
CO2 concentration/Air 
quality), Energy/load 

Implementing PSO optimizer allowed to maintain 
a high-level of overall comfort, i.e., mainly around 
1.0, when the total energy supply was in shortage.  

[189] 

2012 Coordinating occupants’ behaviors for thermal 
comfort improvement and energy conservation 
of an HVAC system. 

Agent-based approach Distributed AI PMV (Fanger’s model) Comfort parameters (PMV, 
HVAC), Energy/load 

Reducing 12% of energy consumption while 
maintaining 70%–75% occupant satisfaction for 
both proactive and proactive-MDP. 

[180] 

2012 Distributed AI control with information fusion-
based Indoor energy and comfort management 
for smart building application. 

Multi-agent approach Distributed AI & 
optimized setting 

Defined comfort range Comfort parameters 
(Temperature, Lighting, 
CO2 concentration/Air 
quality), Energy/load 

All case studies showed the effectiveness of the 
system of the developed system in different 
operating scenarios. 

[190] 

2013 Intelligent management system development for 
energy efficient and comfort in building 
environments. 

Agent-based approach Distributed AI Individual thermal comfort 
based on the indoor 
temperature 

Comfort parameters (PMV, 
Temperature, Lighting, CO2 
concentration), Energy/load 

Case studies simulation results showed that the 
developed MAS could manage comfort needs and 
reducing energy consumption simultaneously 
(PMV was kept around 0.61). 

[191] 

2014 A human and building interaction toolkit 
(HABIT) development for building performance 
simulation 

Agent-based model 
(ABM) 

Distributed AI Individual comfort 
distribution based on PMV 
(Fanger’s model) 

Comfort parameters (PMV, 
Temperature, Heating/ 
cooling), Energy/load 

Up to 32% reduction of total energy use in all 
zones in summer without significant increase in 
winter are expected, and a promising decrease in 
thermal discomfort in all zones in both seasons.  

[192] 

2014 NN-based approach with a MAS infrastructure 
to improve energy efficiency, while maintaining 
acceptable thermal comfort level for occupants 
of an academic building 

MAS combined with 
gARTMAP 

Distributed AI Learning the user’s thermal 
preferences 

Comfort parameters 
(Temperature, Hot/cold 
water), Energy/Load 

The proposed gARTMAP-MAS IHMS might use 
less heat to achieve the desired indoor temperature, 
compared to the existing rule-base BMS and fuzzy 
ARTMAP IHMS 

[193] 

2015 Multi-agent control architecture for cooling and 
heating processes in smart residential building. 

Multi-agent system + ML 
algorithms 

ML & distributed AI Desired temperature based 
on occupant’s behavior 

Comfort parameters 
(Temperature, 
Heating/cooling), 
Energy/load 

The proposed system allowed to significantly 
improve the occupants comfort with a slight 
increase in energy consumption, with respect to 
‘sense behavior’ (compared to simple strategies) 

[194] 
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Table 3-4. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using Reinforcement Learning (RL) & Deep-RL. 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2007 Linear reinforcement learning controller (LRLC) 
for energy saving while sustaining comfort 
requirements. 

Linear reinforcement 
learning 

Machine Learning (ML) PMV-PPD (Fanger’s model) Comfort parameters 
(PMV/PPD, Temperature, 
Humidity, CO2 level /Air 
quality), Energy/load 

Over a period of 4 years, training the LRLC, the 
energy consumption has been increased from 
4.77Mwh to 4.85Mwh, however the PPD index has 
been decreased from 13.4% to 12.1%. 

[195] 

2014 Reinforcement learning for tenant comfort and 
energy use optimization in HVAC systems. 

Q-learning based 
supervisory approach 

Optimized setting Occupant’s comfort is learnt 
from the tenant preferences 
and occupancy patterns    

Comfort parameters 
(Temperature, HVAC), 
Energy/load 

Learning to adjust/schedule, appropriately, 
thermostat temperature setpoints for energy 
efficiency while keeping the tenant comfortable. 

[196] 

2015 Implementing and evaluating a multi-grid 
reinforcement learning method for energy 
conservation and comfort control of HVAC 
systems in buildings. 

Multi-grid methods for 
Q-learning 

Optimized setting PPD-PMV (Fanger’s model) Comfort parameters 
(PMV/PPD, Temperature, 
Humidity, HVAC), 
Energy/load 

The proposed multi-grid approach helped to 
accelerate the convergence of Q-learning, and 
performed better on energy saving and comfort 
than the constant grid versions. 

[197] 

2017 A deep reinforcement learning based data–driven 
approach development for building HVAC 
control. 

Deep reinforcement 
learning (DRL) 

Optimized setting Desired temperature range 
based on ASHRAE 
standard 

Comfort parameters 
(Temperature), 
Energy/load, Cost 

Up to 20%-70% energy cost reduction while 
meeting the room temperature requirements, 
compared to a conventional rule-based approach. 

[124] 

2017 A reinforcement learning-based thermostat 
schedule controller development using long–
short–term memory recurrent neural network for 
an office HVAC system. 

Actor-critic RL + LSTM-
RNN 

Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature), Energy/load 

An average 2.5% energy savings was achieved while 
improving thermal comfort by an average of 15%, 
compared to other control baselines (Ideal PMV & 
Control Variable). 

[198] 

2018 A novel type of decentralized and cooperative 
method development for decision-making 
strategies in the buildings’ context, based on 
reinforcement learning. 

Extended joint action 
learning (eJAL) 

Distributed AI Thermal comfort index as a 
function of indoor 
temperature 

Comfort parameters 
(Temperature, Humidity, 
Lighting), Energy/load 

The long-term learning analysis showed that Q-
learning and eJAL gave acceptable comfort losses 
(DC £ 0.4), for demand/response balance, eJAL 
(Median=1.67) was slightly better than Q-learning 
(Median=2.21) 

[199] 

2018 Plug & play solution of an HVAC thermostat’s 
set-point scheduling inspired by reinforcement 
learning technique 

Neural Fitted Q-iteration 
(NFQ)-RL 

RL-based control PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, Humidity, 
HVAC), Energy/load 

With energy/comfort trade-off balance, an average 
up to 32.4% energy savings and up to 27.4% 
comfort improvements in average. 

[12] 

2018 A whole BEM-DRL framework development for 
HVAC optimal control in a real office building 

Deep reinforcement 
learning (DRL) 

Optimized setting PPD (Fanger’s model) Comfort parameters (PPD, 
Hot/cold water), Energy 

About 15% heating energy savings with similar 
comfort conditions as the base-case 

[200] 

2019 AI-based agent development for indoor 
environment control while optimizing energy use 
of air-conditioning and ventilation fans in a 
classroom and a laboratory 

Deep RL (double Q-
learning) 

Optimized setting  PMV (Fanger’s model) Comfort parameters (PMV, 
Temperature, HVAC, CO2 
concentration/Air quality), 
Energy/load 

AI-agent has successfully managed the indoor 
environment within an acceptable PMV values 
between -0.1 and +0.07, and 10% lower CO2 
levels, reducing energy consumption by 4% to 5%. 

[201] 

2020 An event-triggered paradigm based on RL 
approach for smart learning and autonomous 
micro-climate control in buildings. 

Stochastic/deterministic 
policy gradient RL 

Optimized setting & 
event-trigged control 

Discomfort rate derived 
from desired temperature  

Comfort parameters 
(Temperature, Heating/ 
cooling), Energy/load 

the proposed algorithms learn the optimal policy in 
an appropriate time, i.e., optimal thresholds were 
found !!"#$ = 12.5°( and !!%%#$ = 17.5°( resulting 
an optimal rewards rate. 

[202] 

2020 A framework development for optimal control 
over AHUs by combining DRL methods and 
long-short-term-memory networks (LSTM). 

Deep reinforcement 
learning (DRL) 

Predictive control & 
optimized setting 

PMV (Fanger’s model) Comfort parameters (PPD, 
Temperature, CO2 
concentration/Air quality), 
Energy/load 

27% to 30% lower energy consumption compared 
to rule-based control, while maintaining the 
average PPD at 10%. 

[203] 
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3.2.2.5 Advanced Predictive Control 

Advanced predictive control, including predictive functions of ANN and model-based 

predictive control (MPC) (cf. Table (3-5)), is a widely recognized comfort control 

technique using a model (system, noise, and disturbance) to predict the future output. 

These predictions are integrated into the cost function of closed-loop action and control 

activity, which is reduced with regard to the sequence of anticipated signals, taking into 

account the problem constraints. Finally, a rolling-horizon strategy is implemented, 

applying at time k the control signal calculated for that time and repeating the calculations 

for the next sampling period. Many variants of these techniques have emerged and, within 

the context of this paper, we consider the most relevant in the field of comfort and energy 

management in built environments, such as Linear MPC, Non-Linear MPC, 

Distributed MPC.  

3.2.2.6 Hybrid Methods & Other AI-based Tools 

Hybrid methods, resulting from a combination of intelligent techniques and classical or 

advanced techniques, such as FLC and Genetic Algorithm (GA) [204]–[209], MAS and 

FLC [210], [211], ANN and GA [212]–[214], among others [215]–[220]. Hybrid 

controllers are useful since this incorporation can solve problems that the single controller 

cannot solve. Nevertheless, the design of the “intelligent” component involves the 

expertise of the user and a large amount of training data, while the “classic” or “advanced” 

part is difficult to adjust (tuning), particularly for HVAC systems, which is a constraint on 

the control system. 

In addition, there are other AI-based methods including: Genetic Algorithm (GA) 

method [221]–[225], Knowledge-Based System (KBS) [226], [227] for reasoning and 

resolving complex problems, Autoregressive Exogenous (ARX) technique [228], [229], 

Bayesian Network (BN) [10], [230], Decision Tree (DT) [231], Multi-Objective 

Artificial Bee Colony (MOABC) and Multi-Objective Particle Swarm Optimization 

(MOPSO) [232], [233] for multi-objective optimizing control strategies, Radial Basis 

Function (RBF) [212], [234], Support Vector Machine (SVM/C-SVC) [219], [235], 

Logistic Regression (LR) [236], Random Forest (RF) [219], [237] , and k-Nearest 

Neighbor (kNN) [238] for classification purpose, k-Means algorithm for clustering 

[239], and the Hidden Markov Model (HMM) for modeling [138], while the Bayesian 

Inference (BI) which is useful to quantify the uncertainty in the estimated parameters of 

a given model [240]. 
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Table 3-5. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using advanced predictive control methods. 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2012 Improving the energy efficiency in an AC by 

reducing transient and steady-state electricity 

consumption on BRITE platform. 

Learning-based model 

predictive control 

Predictive control Comfort specifications 

based on OSHA guidelines 

Comfort parameters 

(Temperature, HVAC), 

Energy/load 

30%–70% reduction in energy consumption while 

maintaining comfortable room temperature by 

keeping temperature close to the specified comfort 

middle (22ºC) 

[241] 

2012 Model-based predictive control development for 

thermal comfort improvement with auction of 

available energy of a limited shared energy 

resource in three houses. 

Distributed model 

predictive control 

Predictive control Defined comfort 

temperature bounds 

Comfort parameters 

(Temperature), Cost, 

Energy/load,  

The developed system is flexible, allowing the 

customer to shift between comfort and lower cost.  

[242] 

2012 A discrete model-based predictive control for 

thermal comfort and energy conservation in an 

academic building. 

MBPC based (RBF) 

ANN 

Discrete models-based 

predictive control 

PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, Humidity), 

Energy/load 

Up to 50% energy savings are achieved by using 

the MBPC, which provided good coverage of the 

thermal sensation scale, when used with radial basis 

function-NN models. 

[234] 

2013 Model-based predictive control development for 

optimal personalized comfort and energy 

consumption management in an office 

workplace 

Learning-based model 

predictive control 

Predictive control & 

optimized setting 

PPV function defined as an 

affine transform of PMV 

index 

Comfort parameters (PPV-

PMV, Temperature), 

Energy/load 

About 60% energy savings when compared with 

fixed temperature set-point, and discomfort 

reduction from 0.36 to 0.02 compared to baseline 

methods. 

[238] 

2014 Predicting an integrated building heating and 

cooling control based on weather forecasting and 

occupancy behavior detection in the Solar House 

test-bed in real-time located in Pittsburgh. 

Nonlinear model 

predictive control 

Predictive control & 

optimized setting 

Personalized thermal 

comfort (based on 

occupancy and weather) 

Comfort parameters 

(Temperature, Humidity, 

HVAC, Lighting, CO2 

concentration), Energy/load 

30.1% of energy reduction in the heating season, 

besides 17.8% in the cooling season. NMPC 

allowed reducing time not met comfort (from 4.8% 

to 1.2% in heating season, and from 2.5% to 1.2% 

for cooling season). 

[243] 

2015 Hybrid predictive control model development 

for energy and cost savings in a commercial 

building (Adelaide airport). 

Linear MPC combined 

with ANN 

Hybrid predictive control Defined comfort range 

based on ASHRAE 

Comfort parameters 

(Temperature, Hot/cold 

water), cost, Energy/load 

About 13% of energy cost saving was achieved and 

up to 41% of energy saving, compared to the 

baseline control. 
[244] 

2016 Simulation-based MPC procedure for multi-

objective optimization of HVAC system 

performance and thermal comfort, applied to a 

multi-zone residential building in Naples. 

Model-based predictive 

control 

Predictive control & 

optimized setting 

PPDMAX: the maximum 

hourly value of PPD 

(Fanger’s model) 

Comfort parameters (PPD, 

HVAC), cost, Energy/load 

Up to 56% operating cost reduction and 

improvement in thermal comfort, compared to the 

standard control strategy. 

[245] 

2020 A novel MPC relied on artificial intelligence-

based approach development for institutional 

and commercial buildings control. 

MPC relied on AI-based 

approach 

Predictive control & 

optimized setting 

Pre-defined set-point ramps 

(temperature) profiles 

Comfort parameters 

(Temperature, Heating), 

Time efficiency, 

Energy/load 

Reduction of the natural gas consumption and the 

building heating demand by 22.2% and 4.3% resp. 

Improving thermal comfort, while minimizing the 

required amount of time and information, 

compared with business-as-usual control strategies. 

[246] 

2020 A neural network-based approach for energy 

management and climate control optimization of 

buildings (applied to two-story building in Italy). 

MPC with ANN-based 

models 

Predictive control & 

optimized setting 

Constant set-point 
temperature (defined as 
!!"# = 25°&) for each 
zone. 

Comfort parameters 

(Temperature, Humidity), 

Energy/load 

The proposed model showed significant results in 

energy savings (5.7% energy reduction of one 

zone) and better comfort compared to the baseline 

controller. 

[247] 
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Table 3-6. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using the Hybrid methods. 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2002 Controller development for indoor 

environmental conditions management for users’ 

satisfaction while minimizing energy 

consumption inside a building. 

GA-based fuzzy control Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, lighting, CO2 

concentration/Air quality, 

Humidity)/ Energy/load 

Overall energy saving up to 35%, with a steady-

state error of 0.5 for PMV, ~ 80ppm for CO2, and 

~80 lx for illuminance (after applying GA). 

[204] 

2003 Developing controller for HVAC system to 

improve indoor comfort requirements and 

energy performance in two real sites. 

GA-based fuzzy control Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, CO2 

concentration/Air quality), 

Energy/load 

While maintaining a steady-state indoor conditions, 

the developed controller showed best 

experimentation results in the real test cells, with 

up to 30% energy saving for CNRS–ENTPE case 

and 12.5% for ATC (anonymous enterprise). 

[205] 

2005 Development of fuzzy rule-based controller 

using GA for HVAC system 

GA-based fuzzy control Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, HVAC, CO2 

concentration/Air quality), 

Energy/load 

By considering the rule weights and rule selection, 

results showed that FLC controller presented 

improvement by 14% in energy saving and about 

16.5% in system stability. 

[206] 

2007 Development of an intelligent coordinator of 

fuzzy controller-agents (FCA) for indoor 

environmental control conditions using 3-D 

fuzzy comfort model 

Agent-based FLC Intelligent system-based 

fuzzy control 

PMV (Fanger’s model) Comfort parameters (PMV, 

Lighting, CO2 concentration 

/Air quality), Energy/load 

The combined controller showed significant results 

by maintaining the controlled variables in 

acceptable ranges (PMV between -0.5 and +0.6) 

besides up to 30% of energy savings 

[210] 

2011 Intelligent control system development to 

optimize comfort and energy savings using soft 

computing techniques for building application 

GA-based fuzzy control Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 

Lighting, CO2 concentration 

/Air quality), Energy/load 

The proposed system has successfully managed the 

user’s preferences for comfort requirements and 

energy consumption (while maintaining PPD < 

10%). 

[207] 

2011 Controller development for a heating and 

cooling energy system 

GA-based fuzzy control Predictive control Fixed set-point temperature 

for the thermal zone (24ºC) 

Comfort parameters 

(Temperature, Heating/ 

cooling), cost, Energy/load 

The proposed methodologies allowed to achieve 

higher energy efficiency and comfort requirements 

by lowering equipment initial and operating costs 

up to 35%, and comfort costs up to 45%. 

[208] 

2013 Intelligent control system deployment for energy 

and comfort management in commercial 

buildings 

MAS & FLC Distributed AI & Fuzzy 

control 

User preferences 

(temperature setpoint) 

Comfort parameters 

(Temperature, Lighting), 

Energy/load 

Up to 0.9 is achieved by comfort factors, i.e., the 

customers satisfaction is ensured. The GA-based 

optimization allowed to minimize the energy 

consumption 

[211] 

2014 Improving the fuzzy controller’s performance 

for comfort energy saving in HVAC system 

GA-based fuzzy control Fuzzy control & 

optimized setting 

Individual comfort classes: 

ISO 7730 based on 

PMV/PPD (Fanger’s 

model) 

Comfort parameters 

(PMV/PPD, HVAC), 

Energy/load 

The overall energy consumption is decreased by 

16.1% in case of cooling and 18.1% in case of 

heating. Also, the PMV is reduced from -0.3735 to 

-0.3075 compared to EnergyPlus. 

[209] 

2014 Stochastic optimized controller development to 

improve the energy consumption and indoor 

environmental comfort in smart buildings 

MAS + GA Distributed AI and 

optimized setting 

User preferences 

(temperature setpoint) 

Comfort parameters 

(Temperature, Lighting, 

CO2 concentration), 

Energy/load 

Overall occupant comfort with GA was kept 

between 0.97 and 0.99, and the error between 

setpoints and the sensor data became smaller with 

GA. A significant reduction in the overall energy 

consumption (~20% compared to system without 

GA) 

[215] 
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Table 3-6. (Continuous). 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2015 Agent-based particle swarm optimization 

development for inter-operation of Smart Grid-

BEMS framework 

Agent-based approach Distributed AI & 

optimized setting 

Comfort was modeled as a 

temperature Gaussian 

function 

Comfort parameters 

(Temperature, Humidity, 

CO2 concentration), 

Energy/load 

The proposed system could effectively improve the 

voltage profile of the feeder, while ensuring 

acceptable comfort levels. 

[216] 

2016 Deploying an intelligent MBPC solution for 

HVAC systems in a University building 

MOGA framework + 

RBF-NN 

Predictive control PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, Humidity, 

HVAC), Cost, Energy/load 

The IBMPC HVAC showed significant results in 

reducing energy cost and maintaining thermal 

comfort level during the whole occupation period. 

[212] 

2018 Optimizing the passive design of newly-built 

residential buildings in hot summer and cold 

winter region of China 

NSGA-II combined with 

ANN 

Optimized setting Annual indoor thermal 

indices: CTR and DTR 

Comfort parameters 

(Comfort indices: 

CTR/DTR), Energy/load 

The annual thermal comfort hours were extended 

by 516.8–560.6 hours, and the annual building 

energy demand was reduced by 27.86–33.29% 

compared to base-case design 

[213] 

2018 A demand-driven cooling control (DCC) based 

on machine learning techniques for HVAC 

systems in office buildings. 

k-means clustering & 

kNN 

ML & predictive control Predefined comfort 

conditions (temperature 

setpoints) 

Comfort parameters 

(HVAC, Temperature, 

Humidity, CO2 

concentration/Air quality), 

Energy/load 

Between 7% and 52% energy savings were ensured 

compared to the conventionally-scheduled cooling 

systems (by maintaining temperature deviations 

means less than 0.1ºC) 

[217] 

2020 Comfort and energy management of daily and 

seasonally used appliances for smart buildings 

application in hottest areas. 

Binary-PSO + FLC 

(BPSOFMAM, 

BPSOFSUG) 

Fuzzy logic and 

optimization setting 

Fanger’s PMV method Comfort parameters (PMV, 

Temperature), Energy/load 

Simulation results showed that the BPSOFSUG 

controller outperformed the BPSOFMAM in terms 

of energy efficiency by 16%, while comfort 

computation, via PMV, was kept in satisfactory 

range. 

[248] 

2020 A multi-objective optimization method for a 

passive house (PH) design by considering energy 

demand, thermal comfort and cost. 

Combining: RDA, GBDT 

and NSGA-II  

Optimized setting The annual cumulative 

comfort ratio (CTR)-based 

adaptive model 

Comfort parameters (CTR 

index), Cost, Energy/load 

the optimization results showed around 88.2% 

energy savings rate and improvement in thermal 

comfort by 37.7% compared to base-case building. 

[218] 

2020 A predictive model for thermal energy by 

integrating IoT architecture based on Edge 
Computing and classifier ensemble techniques 

for smart buildings application. 

Combining: SVM, LR and 

RF 

Predictive control Indoor temperature set by 

the user or by the learning 

algorithm  

Comfort parameters 

(Temperature, Humidity, 

CO2 concentration/Air 

quality, lighting), 

Energy/load 

Simulation results showed that the proposed 

approach presented the highest accuracy, by 

91.526% compared to neural networks, ensemble 

RF and SVM. 

[219] 

2020 A novel optimization method for building 

environment design by integrating a GA, an 

ANN, MRA and an FLC based on the results of 

computational fluid dynamics (CFD) analysis. 

Combining GA + ANN 

+ multivariate regression 

analysis (MRA) + FLC 

Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, Cost, Time 

efficiency, Energy/load 

Integrating GA, ANN, MRA and FLC in the 

design process allowed to reduce the variable space 

and computational cost by 50% and 35.7% 

respectively. 

[214] 

2020 An energy flexibility quantification methodology 

based on supervised machine learning techniques 

for hybrid demand-side control for high-rise 

office building. 

MLR + SVR + 

backpropagation NN  

Predictive control Indoor setpoint temperature Comfort parameters 

(Temperature, Hot/cold 

water), Time efficiency, 

Energy/load 

The hybrid controller allowed to reduce the time 

duration of the peak power, which was reduced by 

61% of the grid importation 

[220] 
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Table 3-7. Summary of the works focusing on intelligent management of thermal comfort and energy in buildings using other AI-assisted tools. 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

1993 An intelligent operation support system (IOSS) 

to improve HVAC operations for IAQ control 

and energy saving for industrial application. 

Knowledge-based system 

(KBS) 

Optimized setting PMV (Fanger’s method) Comfort parameters (PMV, 

HVAC), Time Efficiency, 

Energy/load 

The developed system can provide real-time 

planning, and assisting the interaction between the 

operator and the HVAC process 

[226] 

2004 Two-objective optimization of HVAC system 

control with two variable air volume (VAV) 

systems. 

Genetic Algorithm (GA) Optimized setting PMV-PPD (Fanger’s model) Comfort parameters (PMV/ 

PPD, Temperature, HVAC), 

Energy/load 

The on-line implementation of GA optimization 

allowed to save up to 19.5% of energy 

consumption while minimizing the zone airflow 

rates and satisfying thermal comfort 

[221] 

2007 Modelling indoor temperature using 

autoregressive models for intelligent building 

application. 

Autoregressive exogenous 

(ARX) 

Predictive control Black-box model to predict 

indoor temperature based 

on defined variables 

Comfort parameters 

(Temperature, Humidity), 

Energy/load 

Results showed that ARX model gave better 

temperature prediction than ARMAX model by the 

structure  !"#(2,3,0) with a coefficient of 

determination of 0.9457 and the !"#(3,2,1) with 

a coefficient of determination of 0.9096. 

[228] 

2009 Exploring the impact of optimal control 

strategies of a multi-zone HVAC system on the 

energy consumption while maintaining thermal 

comfort and IAQ of a built environment. 

Genetic Algorithm (GA) Optimized setting & 

predictive control 

PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature, HVAC, Air 

quality), Cost, Energy/load 

Up to 30.4% savings in energy costs when 

compared to conventional base strategy whilst 

sustaining comfort and indoor air quality 

[222] 

2009 Estimating occupant mental performance and 

energy consumption of determining acceptable 

thermal conditions under different scenarios. 

Bayesian Networks (BN) Predictive control PMV (Fanger’s model) and 

the adaptive comfort model 

Comfort parameters (PMV, 

Temperature), Energy/load 

Results concluded that determining acceptable 

thermal conditions with the adaptive model of 

comfort can result in significant energy saving with 

no large consequences for the mental performance 

of occupants. 

[230] 

2010 Energy consumption optimization and thermal 

comfort management using data mining 

approach in built environment 

Decision tree classifier 

(C4.5 Algorithm) 

Optimized setting & 

predictive control 

Comfort levels based on 

CIBSE standard 

Comfort parameters 

(Temperature, CO2 

concentration/Air quality, 

Humidity), Energy/load 

Based on decision tree analysis and results relying 

ambient environmental conditions with user 

comfort, designers and facility managers can 

determine the optimal energy use 

[231] 

2014 Improving HVAC systems operations by 

coupling personalized thermal comfort and zone 

level energy consumption for selecting energy-

aware and comfort-driven set-points. 

Knowledge-based 

approach 

Optimized setting Personalized comfort 

profiles 

Comfort parameters 

(Temperature), Energy/load 

About 12.08% (57.6m3/h) average daily air-flow 

rates were reduced in three target zones, compared 

to operational strategy that focus on comfort only. 

[227] 

2016 Simulation-based multi-objective optimization 

for building energy efficiency and indoor thermal 

comfort 

MOABC optimizer Optimized setting PPD (Fanger’s model) Comfort parameters (PPD, 

Temperature, Heating/ 

cooling), Energy/load  

The multi-objective optimization + TOPSIS 

showed that in different climates, even the energy 

consumption increased a bit by 2.9-11.3%, the 

PPD significantly reduced by 49.1-56.8%, 

compared to the baseline model. 

[232] 

2016 An operation collaborative optimization 

framework development for a building cluster 

with multiple buildings and distributed energy 

systems while maintaining indoor thermal 

comfort 

Multi-objective 

optimization (PSO) 

Optimized setting PMV (Fanger’s model) Comfort parameters (PMV, 

Temperature), Cost, 

Energy/load 

Around 12.1–58.3% of energy cost saving under 

different electricity pricing plans and thermal 

comfort requirements. 

[233] 
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Table 3-7. (Continuous). 

Year Study Case Underlying AL/ML 
Tools 

AI Application 
Scenario 

Thermal Comfort 
Method 

Optimization 
Objective Outcomes & Key Results Ref. 

2016 Multi-objective control and management for 

smart energy buildings 

Hybrid multi-objective 

GA 

Optimized setting Discomfort parameter 

based on the user 

preferences 

Comfort parameters 

(Temperature, Lighting, 

CO2 concentration/Air 

quality), Energy/load 

31.6% energy saving could be achieved for smart 

control building, and the comfort index was 

improved by 71.8%, compared to the conventional 

optimization methods. 

[223] 

2016 Real-time information-based energy management 

controller development for smart homes 

applications 

Genetic Algorithm Optimized setting User preferences Comfort parameters 

(Temperature), Cost, 

Energy/load 

The proposed algorithms are flexible enough to 

maintain the user’s comfort while reducing the 

peak to average ratio (PAR) and electricity cost up 

to 22.77% and 22.63% resp. 

[224] 

2017 A personalized thermal comfort model (BCM) 

development for smart HVAC systems control 

Bayesian Network-based 

model 

Optimized setting & 

predictive control 

Personalized comfort model 

(combining the static and 

the adaptive models) 

Comfort parameters 

(HVAC, Temperature), 

Energy/load 

By using alternative comfort scale, the proposed 

model outperformed the existing approaches by 

13.2%–25.8%. The heating algorithm reduced 

energy consumption by 6.4%-10.5%, by 15.1%-

39.4% for AC, and reducing discomfort by 24.8%. 

[10] 

2017 A newly developed Epistemic-Deontic-Axiologic 

(EDA) agent-based solution supporting the 

energy management system (EMS) in office 

buildings 

Support vector machine 

(SVM & C-SVC) 

Distributed AI & ML Personal thermal sensation 

model and Group-of-

people-based thermal 

sensation model 

Comfort parameters 

(Temperature, Humidity), 

Energy/load 

Case studies simulations showed the abilities of the 

developed model in energy saving by 3.5–10%, 

compared to the pre-set control systems, while 

fulfilling the individual thermal comfort needs. 

[235] 

2017 Deploying a software application based mobile 

sensing technology (Occupant Mobile Gateway 

(OMG)) for occupant-aware energy management 

of mix of buildings in California 

Logistic regression (LR) ML & predictive control Occupants’ subjective 

feedbacks 

Comfort parameters 

(Temperature, Humidity), 

Energy/load 

Implementing occupant-driven models showed 

that thermal management learned by subjective 

feedback had the potential energy savings while 

maintaining acceptable levels of thermal comfort 

[236] 

2017 An HVAC optimization framework deployment 

for energy-efficient predictive control for HVAC 

systems in office buildings 

Random Forest (RF) 

regression 

Predictive control and 

optimized setting 

Comfort ranges defined by 

Royal Decree 1826/2009. 

Comfort parameters 

(Temperature, Humidity, 

HVAC), Energy/load 

Next 24h-Energy framework allowed reduce 

energy consumption for heating (48%) and cooling 

(39%), without affecting the user’s comfort. 

[237] 

2018 The benefits of including ambient intelligent 

systems for building’s EMS control to optimize 

the energy/comfort trade-off 

k-means algorithm Optimized setting Occupants’ preferences Comfort parameters 

(HVAC), Energy/load 

The energy consumption was reduced by an 

average of 5KWh while maintaining the majority of 

the occupants within acceptable comfort levels (the 

comfort rate was 5% lower than the baseline). 

[239] 

2018 Agent-based control system for and optimized 

and intelligent control of the built environment 

Evolutionary MOGA Distributed AI & 

optimized setting 

User preferences Comfort parameters 

(Temperature, lighting, 

Humidity), Energy/load 

By applying MOGA optimizer allowed to save up 

to 67% energy consumption and about 99.73% 

overall comfort improvement. 

[225] 

2020 Thermal comfort control relying on a smart 

WiFi-based thermostat deployment for 

residential applications 

Nonlinear Autoregressive 

exogenous (NARX) 

Linear-based predictive 

control 

Fanger’s PMV method Comfort parameters (PMV, 

Heating/cooling, 

Temperature, Humidity), 

Energy/load 

In both High- and low-efficiency residences, 

cooling energy savings were around 85% and 95% 

respectively, while the PMV index was maintained 

within the desired rang [0 – 0.5]. 

[229] 

2020 Defining new occupant comfort ranges using 

Bayesian-based data-driven approach for U.S. 

office buildings using the ASHRAE global 

thermal comfort database 

Bayesian Inference (BI) 

(Bayes Theorem)   

Active learning and data-

driven control  

Setpoint temperatures/ 

Occupants’ feedback 

Comfort parameters 

(HVAC, Temperature) 

Data-driven and Bayesian approach allowed to 

reach realistic setpoint temperature values which 

facilitate more building performance, load 

prediction, and better informing better HVAC 

design as well as technology selection. 

[240] 
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3.2.3 Optimization Functions in support of AI-based control 

Building designers increasingly need to use simulation tools to analyze the performance 

of scenarios for the purpose of understanding how strategies reduce environmental 

impact, ameliorate energy usage, and enhance comfort in buildings. These techniques can 

also be used to infer the adequate parameters to the AI-based building control. Another 

application of optimization functions in AI-based control is the use of co-simulators that 

provide the possible parameters in real-time to the AI-based controller for optimum 

operation. The co-simulator has a global view of the system, while the controller has a 

local view of the sub-system and they complement each other in the entire process of 

optimizing AI-based energy and thermal comfort of sustainable buildings. 

The introduction of these optimization techniques to the design simulation field 

started in the 1980s and gained renewed interest from the 2000s [249], [250]. In [250], the 

authors reported an increase in the number of scientific works on building model 

optimization since 2005. This reflects the interest and importance given to the 

development and application of numerical optimization methods by the building 

community around the world. At this point, the focus of our work is not to make a 

literature review of all these methods, but rather to present the most advanced and 

adopted optimization techniques in AI-based applications, in particular the Genetic 

Algorithm (GA) [115], [129], [134], [145], [146], [204]–[207], [209], [213]–[215], [218], 

[221]–[225], [245] and the Particle Swarm Optimization (PSO) [133], [142], [143], [172], 

[190], [216], [233], [248]. Genetic Algorithms are an optimization technique that imitates 

the evolution of species through natural selection in a very simplified way. In genetic 

algorithms, a population is generated and submitted to the selection and recombination 

genetic operators (i.e., Crossover). These operators evaluate each individual, i.e., they use 

a quality feature of each individual as a solution to the problem. As a result, a process of 

the natural evolution of the individuals in the created population is generated, which will 

consequently generate an individual with features of a good solution to the addressed 

problem. A flowchart describing the classical GA is shown in Figure (3-6). 
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Figure 3-6. Flowchart of a classical Genetic Algorithm (GA). 

Particle Swarm Optimization (PSO) is a population-based stochastic optimization 

technique pioneered by R. Eberhart and J. Kennedy [251]. PSO is an AI technique that 

seeks to imitate the social behavior of animals such as fish and birds that live in colonies. 

The algorithm is initialized with an initial population candidate to solve the problem, called 

particles [252], [253]. Similar to the GA technique, the PSO initializes a swarm with a 

quantity of particles !, and each particle has a dimension d representing a possible solution 

to the problem. This occurs in such a way that all the elements of the swarm are within 

the pre-established range ["!"#, "!$%], in the same way as the best evaluation solution 

(global evaluation) that should guide the hyperspace search for the sub-optimal solution, 

i.e., solutions that have approximate values to the optimum of the function. The best 

individual values for each particle are stored and, therefore, the best one estimated will 

represent a new optimal assessment if it overlaps with that established in the previous 

iteration. In this way, each particle has its own velocity, which will be updated along with 

the iterations according to the best individual values and the global value of the swarm to 

then update the value of each particle, as depicted in Equations (3-6) and (3-7) [253]. 

%"
&'( = ' ∗ %"

& + *( ∗ +(,-" − ""
&/ + *) ∗ +)(1 − ""

&) (3-6) 

""
&'( = ""

& + %"
&'( (3-7) 

Whereas, !!" and !!"#$ represent the velocity vector of the particles of position !!"#$ respectively at iteration 
" and " + 1, % defines the coefficient of inertia, &$ and &% are the positive constants, '$ and '% are the 
arbitrary values defined in the interval [0,1], while ,! and - represent, respectively, the vectors of the best 
solution for position . and the best global solution, and finally, /!" and /!"#$ represent the particle vector in 
position . of the swarm, respectively, at iterations " and " + 1. 

A flowchart describing a typical PSO algorithm is illustrated in Figure (3-7). 
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Figure 3-7. Flowchart of a classical particle swarm optimization (PSO) algorithm. 

3.3 THEORETICAL ANALYSIS OF THE AI APPLIED FOR BUILDING 
CONTROL 

Improving energy efficiency and maintaining indoor comfort conditions, while taking into 

account user preferences, have led researchers to develop intelligent Building Energy 

Management Systems (iBEMS), primarily for large-scale buildings such as hotels, offices, 

and commercial buildings, among others. The iBEMS are developed to be used in a wide 

array of applications. Such solutions are designed to track and manage the building’s 

microclimate and to reduce energy use and operating costs. The literature includes a 

significant number of works on the application of AI techniques to iBEMS. The results 

are more persuasive than those of conventional control systems. 

General advances in the development of automated control systems are the need for 

a mathematical model for building operation, which is a drawback of applying traditional 

control systems in buildings. By incorporating high-level variables that describe comfort 

into smart controllers, comfort could be managed without having to control lower-level 

variables such as temperature, humidity, and air speed. The consumer starts to get 

involved in specifying the ideal comfort, in these systems. Hence, through this section, 

the reviewed publications in which AI-assisted tools were deployed and summarized in 

Tables (3-1) to (3-7) are therefore extensively examined. In the first place, the case studies 
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are discussed on the basis of the most selected inputs and their associated outputs used 

by the implemented models, in the second place, the control performance of the AI 

techniques used for energy-saving and thermal comfort optimization are quantified and, 

finally, the thermal comfort measurement methods are characterized and classified 

according to the AI tools used. In this regard, Figure (3-8) presents the block diagram of 

a typical structure for AI-assisted building control resulting from the reviewed articles.  

 

Figure 3-8. Block-diagram of the AI-assisted for HVAC and thermal comfort controls in buildings. 

3.3.1 Study Cases: Inputs and Outputs 

In the context of thermal comfort and energy-saving control systems, the inputs and 

outputs considered to generate AI-based models are closely linked. Concerning the inputs, 

they are mainly associated with comfort conditions and design variables as well as other 

indicators that could be useful for such control systems. The inputs are therefore divided 

into seven groups: heating, ventilation, and air conditioning (HVAC) systems, indoor and 

outdoor climatic conditions, occupant-related variables, building geometry, and 

components, among others. 

Regarding the outputs, they can be categorized into four major groups: (i) Comfort 

indices (PMV, PPD, and others), (ii) Microclimate indicators (temperature, CO2 

concentration), (iii) Energy/Load (HVAC, cooling/heating, cool/hot water), and (iv) 
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Others (including cost and time efficiency). In this regard, the relationship between the 

selected inputs to describe specific outputs is illustrated in Figure (3-9). 
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Figure 3-9. Heat-map of the number of times of using a given input and the corresponding output of the 
AI-based models. 

The numbers in the heat-map represent the times when specific input is used to 

approximate certain outputs. For example, the air temperature was used 45 times to 

estimate the HVAC load. Such information is useful by highlighting the most influential 
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and selected variables used by AI-based models as inputs to building installations/system 

targets (as shown in Section 3.3.2). 

3.3.2 Study Cases: Energy Control 

We are now turning our attention to how AI techniques have been applied to improve 

energy efficiency and thermal comfort. Figure (3-10) shows the diversity between the 

systems/installations adopted in the reviewed works, responsible for ensuring thermal 

comfort and suitable indoor air quality in indoor settings. It is apparent that AI techniques 

are relevant for implementation in different parts of the building control systems. 

The most commonly used systems for research were appliances and systems used for 

about 78% of the total works reviewed in the current paper and used to perform space 

conditioning tasks in a variety of ways, such as HVAC systems, mechanical systems (or 

air-conditioning and mechanical ventilation (ACMV)), space heating using heaters and 

boilers. Building components (e.g., window, envelope, surface) and occupant factor (e.g., 

human behavior, occupancy estimation) were used in 6% and 8% of the studies, 

respectively. Building component technology is a key sustainable solution for energy 

savings and thermal comfort. However, its drawback is that it depends on the local 

weather and the outdoor air quality. 

 

Figure 3-10. The relative distribution among the reviewed works in relation to the energy control in 
buildings. 

3.3.3 Study Cases: Thermal Comfort Measurement 

Thermal comfort assessment approaches can be categorized into two groups, according 

to the reviewed works: General Comfort Models (GCM) and Individual Comfort Models (ICM). 
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3.3.3.1 General Comfort Models 

The conventional approaches focused on the thermal equilibrium between man and his 

surroundings allow the development of internationally recognized environmental indices, 

such as the Fanger PMV-PPD model, considered to be a GCM [49]. In addition, this 

model was statistically based on experimental studies involving 1,300 subjects in climatic 

chambers. Its main limitation lies in the fact that the PMV index estimates the average 

comfort level of the subjects, which was also determined under homogenous and 

stationary conditions, representing theoretical conditions rarely encountered in actual 

buildings. 

Personal models based on the PMV model, such as the Predicted Personal Vote 

(PPV) model, maybe considered GCM, defined as the PMV transform affine: --% =

3**+(-4%) [238]. The idea behind PPV is to assess the level of comfort within a single 

worker within a workplace. The inverse-PMV model may also be considered as GCM, 

used to calculate thermal comfort temperatures based on the desired target PMV and 

measured assessed air speed and humidity [136]. Apart from the Comfort Time Ratio 

(CTR) index, also considered as GCM, which is based on Szokolay’s theory and assesses 

the annual indoor thermal comfort for residential buildings [213]. These comfort indices 

are used as inputs to the temperature control system to adjust the comfort level of the 

building. 

Furthermore, in commercial applications, models such as conventional methods (i.e., 

fixed temperature settings that can be adjusted for complaints and predefined indoor 

conditions in accordance with standards and legislation that can be considered GCM) are 

adopted in order to identify comfort ranges. Among these standards: CIBSE which 

defines the comfort levels in office buildings between 21ºC and 23ºC [231], OSHA 

guidelines specifying the comfort zone between 20ºC and 24.2ºC [241], ASHRAE 55 

which limits indoor temperatures between 2121.5ºC and 24ºC during occupancy hours 

[254], comfort margins based on Royal Decree 1826/2009 by setting indoor temperatures 

between 21ºC and 26ºC. 

3.3.3.2 Individual Comfort Model 

Although the ASHRAE 55 is considered as a global standard for assessing thermal 

comfort in buildings, there are a variety of drawbacks and concerns: the main issue is that 

the comfort models existing in this standard are considered valid for anyone (i.e., even 

though the models indicate thermal zones for 80% or 90% of thermal 
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comfort/acceptability; they do not discriminate which users’ group would not be in 

comfort or would not be accepting the thermal conditions). However, different groups 

of people can have different thermal perceptions. Individual comfort models (ICMs) can 

therefore provide individual treatment that can give better satisfaction for occupants 

within a given environment. ICM is a recent paradigm predicting individual-level thermal 

comfort and is typically based on data-driven learning algorithms. A Bayesian Comfort 

Model (BCM) was developed by combining a human-body-centered approach of static 

models with an external environment-based technique of adaptive models [10]. A data-

driven thermal comfort model was also created by learning subjective feedback from the 

occupants in real-time through the application of the smartphone/server (OMG) and 

objective thermal information [236]. In addition to the personal thermal sensation model 

(for MET, the personal activity of the occupant) and the group-of-people-based thermal 

sensation model (for MET, the average activity group of people) generated by the SVM 

algorithm for assessing the occupants’ thermal sensation [235]. 

In addition, other works suggested personalized models by investigating the “human-

in-the-loop” approach that allows HVAC to be adapted to user preferences. Personalized 

comfort profiles are established on a participatory sensing approach by embracing a 

Thermal Perception Index (TPI) scale (slider values) that shows thermal preferences of 

votes ranging from -5 to +5 [227]. The Degree of Individual Dissatisfaction (DID) index 

was defined as the function of the user’s vote and, depending on the ambient temperature, 

the desired individual temperature (T0), and the individual temperature tolerance (∆T) 

[254]. A comfort-driven framework based on the scale of user preferences using the 

Thermal State Index (TSI) (Cool-Discomfort/Comfort/Warm-Discomfort) is provided in [150]. 

3.3.4 Trend Analysis and Discussions 

The graphic detail of the studies considered in this review is displayed in Figures (3-11) – 

(3-19). Figure (3-11) shows the works published in various conferences and journals, and 

it is observed that up to 80% of the articles come from journals (cf. Figure (3-11(a))). 

Most of the works have been published in Building Control related journals (cf. Figure 

(3-11(b))), such as: Energy and Buildings, Building and Environment, Applied Energy, Energy. It 

has been observed that most of the academic articles published in conference proceedings 

are based on a fuzzy approach and that more case studies have been published in journals 

than in conferences. 
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(a) 

 

(b) 

Figure 3-11. Classification of the papers we consider by: (a) Type; (b) Journals and conferences in which 
the articles were published. 
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emerged from underdeveloped countries, probably due to their occupation with more 

fundamental energy-related problems in these countries and their poorer economic 

standing. 

 

Figure 3-12. The percentage of publications by geographical origin. 

 
Figure 3-13. The frequency of use of the AI-based tools extracted from the reviewed publications related 

to the building control. 
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Among the various AI techniques, neural networks are the most popular approach 

adopted by researchers among the research papers in our study (cf. Figure (3-13)). Fuzzy 

logic is also widely used for energy-saving and thermal comfort improvement due to its 

suitability to imitate human behavior and enable linguistic descriptions of thermal comfort 

sensations. Hybrid methods were also preferred by combining two different techniques 

(e.g., FL and ANN; ANN and GA/or PSO; FL and GA/or PSO). In most cases, GA and 

PSO have been introduced to provide optimal solutions to building optimization 

problems. Although fewer works are using DAI and MAS, they have been used in 

complex control systems by incorporating a set of controllers instead of a single controller 

system. 

Statistical results have shown that, from 1993 to 2020, the average energy savings in 

buildings by applying AI/ML techniques reached up to 31% (cf. Figure (3-14)). Maximum 

energy savings (~90%) were achieved by applying a Bayesian network-based model to 

determine acceptable thermal conditions, with the aim of estimating employee mental 

performance under different scenarios [230]. Moreover, advanced predictive models have 

shown promising results in the reduction of energy consumption, for example in [241], in 

which a learning-based model predictive control (LBMPC) was applied to improve energy 

efficiency (~50% reduction in energy consumption) in an HVAC-Testbed platform 

located in a room laboratory. Along the same line, a model-based predictive control of 

neural rule base function (RBF) networks was implemented and identified through the 

MOGA technique for HVAC control in large public buildings [234]. The model has 

shown significant results in terms of energy savings, by allowing to save more than 50% 

of energy while providing good coverage of the thermal sensation scale. In [238], the 

authors proposed a smart personalized office thermal control (SPOT+) system using the 

LBMPC and kNN algorithm used to estimate room occupancy and optimum room 

temperature within the office building. Based on the predictive model, SPOT+ identified 

a control schedule that allowed to save about 60% of energy use and optimized thermal 

comfort. Shaikh et al. [225] recently proposed an agent-based control system using an 

evolutionary multi-objective genetic algorithm (MOGA) for energy and comfort 

optimization. The developed optimizer has saved up to 67% of energy consumption in 

addition to about 99.73% of comfort improvement. 

Furthermore, the average comfort level improvement using AI/ML-based techniques 

was around 50%, while the maximum comfort level reached 100% through the use of 

neural networks [123], [129], [131]–[133], [152], DAI and MAS [181], [189], [194], as well 
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as GA [208] (cf. Figure (3-15)). Such comfort improvement was demonstrated in [123] by 

the development of an Intelligent Comfort Control System (ICCS) incorporating human 

learning with techniques for reduced energy usage in HVAC systems. 

 

Figure 3-14. Average of key results: Implications of 
AI/ML techniques on ‘Energy Saving’. 

 

Figure 3-15. Average of key results: Implications 
of AI/ML techniques on ‘Comfort level’. 

 
Figure 3-16. Average of key results: Implications of AI/ML techniques ‘Cost’. 
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costs. The average cost reduction using AI/ML methods was up to 34%, with a maximum 

of 58% of energy-saving costs [233] (cf. Figure (3-16)). 

 

Figure 3-17. Average key result: Implications of AI/ML techniques on both energy savings and Comfort 
level improvements. 

 

Figure 3-18. The percentage of methods used for assessing thermal comfort in the reviewed works. 
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permissible range, is a goal to be achieved in selecting the appropriate control technique. 

For example, fuzzy controllers have shown significant results in thermal building control, 

as they can properly imitate the behavior of building users and create linguistic 

descriptions of thermal comfort sensation which estimate PMV model calculations to 

facilitate system control (cf. Figures (3-18) and (3-19)). 

In this way, the fuzzy control scheme proposed in [255] is characterized by the explicit 

consideration in the control law of a range of permissible values for indoor ambient 

temperature rather than a fixed value. Recently, several studies have been directed towards 

suggesting personalized models dealing with both thermal comfort and energy savings, by 

investigating a “human-in-the-loop” approach that allows HVAC to be adapted to the 

individual preferences of each user. In [10], the authors proposed a Bayesian Comfort 

Model (BCM) that showed significant results by giving 13.2% to 25.8% accuracy of the 

user’s preference estimate compared to the existing method, and can save up to 13.5% of 

energy consumption by minimizing 24.8% of discomfort. While researchers have also 

shown the potential of using the smartphone/server application to generate a data-driven 

thermal comfort model through training, in real time, the subjective feedback from 

occupants in real-time [236]. The results showed that the learned settings had potential 

energy efficiency, while meeting standard expectations of thermal comfort, i.e., ≥ 80% of 

thermal satisfaction. 

 

Figure 3-19. Average key result: Implications of Thermal Comfort-based model/method on energy 
saving. 
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improve existing conventional controllers: (i) Fuzzy-based control; (ii) ANFIS-based 

control; and (iii) ANN-based control. The efficiency of each approach is examined in a 

two-story residential building. It is concluded that ANFIS- and ANN-based control 

methods are potentially better than conventional methods for maintaining indoor thermal 

comfort conditions (~98% in winter and 100% in summer) by setting up comfort bands 

for each season (20–23ºC in winter/23–26ºC in summer). However, none of the three 

techniques showed significantly more energy savings than the others. 

Moreover, a hierarchical multi-agent system for multi-objective monitoring and 

maintenance of intelligent building applications was handled in [223]. The developed 

control system used stochastic optimization using a hybrid MOGA and saved 31.6% of 

energy, while the comfort index (based on user preferences) was improved by about 

71.8%, compared to traditional optimization techniques. The work of P. Davidsson and 

M. Boman [181] is another contribution based on the MAS approach in which a 

decentralized framework for managing and monitoring an office building has been 

established. In this work, the proposed system facilitated the optimization of energy use 

(up to 40% of average energy savings compared to baseline) in three services: lighting, 

heating and ventilation, while ensuring 100% thermal satisfaction of users. 

 

Figure 3-20. Average key result: Implications of Thermal comfort-based Model/Method on improved 
comfort level. 
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Figure 3-21. Average key result: Implications of AI/ML techniques and Thermal Comfort-based 
model/method on energy saving. 
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4 MODELING INDIVIDUAL 
THERMAL COMFORT 

s implicitly discussed in previous chapters, different methods were used to assess 

thermal comfort within buildings are based mainly, in their design, on analytical 

models of thermal comfort (e.g., Fanger’s model). However, these models are static and 

do not take into consideration the different comfort sensations of the building users. In 

addition, the parameters used by these models cannot be dynamically evaluated by 

buildings to change their settings. Studies have shown that, in the case of naturally 

ventilated buildings, these models fail to define comfort situations, i.e., in reality, the 

comfort ranges are wider than those provided. This situation is mainly due to the greater 

freedom given to the occupants. Such gaps have led to propose dynamic interactions 

between the subject and his environment. Accordingly, Chapter 4 develops a holistic 

approach to model personalized thermal comfort by considering the human body shape 

to infer the adequate comfort level. Using occupant responses data from a field study, this 

chapter establishes thermal comfort probability distributions via Logistic Regression 

approach allowing to estimate parameters by addressing the research question: “Do 

thermal preferences of users are the actual level where they feel comfortable?” and the “is 

it possible to find a correlation between thermal sensation and the anthropometric indices 

such as age, height, weight…?”. 

4.1 BACKGROUND 

4.1.1 Thermal Sensation and Perception: A Brief Overview 

Thermal perception represents a mental process that allows the interrelation of the 

individual with his surroundings, occurring when the body receives and processes 

A 
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information from the environment. This information is internal and external stimuli 

responsible for the body’s behavior. It is through his perception that the person captures 

the characteristics of the environment; and when he is in thermal discomfort, he tends to 

divert attention and concentration from the activities he is performing. Thermal 

perception covers three dimensions: sensation, acceptability, and thermal preference [35]. 

The thermal sensation, on the other hand, is an indication of thermal perception, i.e., 

it is the degree of thermal comfort or discomfort of a person when submitted to a certain 

environment [256]. It could be assumed that thermal sensation is a combined effect of 

the climatic variations with the individual variations. Among the environmental variables 

that influence thermal perception are: air temperature, relative humidity, and air speed. 

In 1970, O. Fanger proposed a sensory scale that translated the thermal sensations 

reported by users according to the environment in which they were exposed. The scale 

presented in Table (4-1) was created to represent the users’ answers to the classic question: 

“How do you classify this environment at this moment?”, and is used in standards such 

as ISO 10551 and ASHRAE 55. Additionally, Table 4-2 shows the relationship between 

the ASHRAE scale, the Bedford scale used in 1936, and the Fanger preference scale. 

Table 4-1. The Seven-point sensory scale (Source: Adopted from [50]). 

Thermal Sensation Vote 
Too hot +3 

Hot +2 
Slightly hot +1 

Comfortable 0 
Slightly cold -1 

Cold -2 
Too cold -3 

 
Table 4-2. Scales of thermal sensations (Source: Adopted from [257]). 

Scale ASHRAE Bedford Preference 
+3 Hot Much too warm Much cooler 
+2 Warm Too warm Cooler 
+1 Slightly warm Comfortably warm Slightly cooler 
0 Neutral Comfortable  No change 
-1 Slightly cool Comfortably cool Slightly warmer 
-2 Cool Too cool Warmer 
-3 Cold Much too cool Much warmer 

Many are the factors the interfere in the determination of thermal sensations and, 

according to R. de Dear and G. Brager [51]. Finding out which of them leads to a greater 

influence on the sensation of individual thermal comfort is the point that most generates 

questions related to the subject. In order to specify these intervening factors and 
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determine the real influence of each one of them on the performance, sensation, and 

thermal preference, studies all over the world have been conducted, among them those 

of O. Fanger [50], [258], R. de Dear et al. [35], M. Humphreys and  J. Nicol [58], H. Zhang 

et al. [257]. 

4.1.2 Developed Thermal Comfort Models 

The researches related to thermal comfort tend to follow two distinct lines: those based 

on experiments in climatic chambers, with variables controlled by the researcher and the 

studies done in the field, where there is the impact of the climatic characteristics of the 

locality in which the study was conducted. 

For conditioned environments, given the thermal uniformity to which the occupants 

are subjected, standards such as ASHRAE 55-2017 and ISO 7730-2005 indicate the use 

of the methodology proposed by Fanger (i.e., PMV/PPD model) to predict and evaluate 

internal thermal conditions [50]. However, the use of this model with comfort parameters 

limited to a PMV of ±0.50, may not be as representative.  

Among some contributions on the study of thermal comfort in indoor environments, 

we can mention the study by T. Chow et al. [16] on the thermal sensation of people in 

Hong Kong subjected to a higher air velocity, temperature, and humidity in an air-

conditioned environment gathered about 300 people, aged between 19 and 50 years, in a 

controlled thermal environment. Their thermal sensation votes were gathered and the 

results showed that the temperature and air velocity interfered more with the occupants’ 

thermal sensation than humidity. In this study, the interviewed women were more 

sensitive to the change in temperature and less to the change in air velocity than men 

evaluated for temperature ranges. The authors concluded that from a sustainable point of 

view for the building, it would be more appropriate to increase the air movement rather 

than reduce the temperature and humidity of the air, achieving an acceptable thermal 

sensation with minimal energy use. 

J. Kim et al. [259] investigated the influences affecting air conditioning use decisions 

in households and the comfort of occupants in temperate climate regions in Australia. 

The field observations recorded the patterns of air conditioning use, internal and external 

climatic factors, perception of thermal comfort, and adaptive behaviors. In the two years 

of monitoring, 2105 comfort questionnaires were collected in 42 residences. The authors 

concluded that the users’ neutral temperature was estimated at two degrees below that 

predicted by the adaptive model of the ASHRAE Standard 55. The findings indicated that 
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people in their homes are more adaptable and tolerant to significantly higher temperature 

variations than expected. 

C. -S. Kang et al. [260] evaluated the impact of environmental quality and productivity 

in open-plan spaces (offices, universities) in China. The study showed how office 

productivity is affected by layout, air quality, thermal comfort, lighting, and acoustics. The 

authors concluded that the layout of an office is one of the basic factors that influence 

the performance and the occupants’ behavior. Indeed, an open plan office accommodates 

more people than a private office and facilitates communication between co-workers. 

However, the authors affirmed that this type of design and layout leads to reduce the size 

of the workspace of each occupant, the lack of visualization and privacy, and the increase 

of uncontrollable social contacts and interruptions. On the other hand, M. Luo et al. [261] 

evaluated environments that operate with both natural ventilation and air conditioners 

(mixed-mode) in China. The comparison between the stated thermal sensation votes and 

the predicted values of PMV for both situations indicated a failure in the index in both 

predictions. 

Many of these studies have shown that the assessment of environmental satisfaction 

and subsequent relationship with their level of productivity depends on several non-

measurable factors such as their psychological state, expectations, and their social position 

(e.g., in the workplace). In most of these studies, there are apparent discrepancies related 

to the comparative analysis between comfort thermal sensations reported and parameters 

predicted by the norms evaluated. 

4.2 METHODOLOGY 

4.2.1 Data Source and Structure  

So far, no study has used the ASHRAE Global Thermal Comfort Database II [262] data 

to model field-based probability distributions of thermal comfort indicators (sensation, 

acceptability, preference…) for buildings’ occupants. As previously mentioned, this 

chapter develops such probabilities to propose a data-driven approach for developing a 

thermal comfort model as a function of variables that are dynamically updated, such as 

the body shape, which reflects the individual thermal comfort. This section describes the 

data source from the field studies and outlines different parameters related to occupants’ 

responses contributing to our study. 
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4.2.1.1 Data Source 

In order to meet the objective proposed by this thesis, data are drawn from ASHRAE 

Thermal Comfort Global Database II (“Comfort Database”), which consists of a total of 

81,846 rows of raw data of paired subjective comfort votes and objective instrumental 

measurements of thermal environmental parameters. The database integrates 

standardized data files from the ASHRAE RP-884 adaptive model project [59], which 

were transformed and assimilated into the new database structure. A total of 25,617 

records from the RP-884 database were added to Database II, which brought the total to 

107,463.  

The field studies, from which the database draws, were conducted in five continents, 

with a broad spectrum of geographical locations7 and different distinct Köppen climate 

classes [262]. Additionally, thermal comfort data were collected in Naturally Ventilated 

(NV), Air-Conditioned (HVAC), and Mixed Mode (MM) buildings by a research team, 

that classified data into five main buildings categories including offices, classrooms, 

multifamily houses, senior centers, and others (any other building type than the defined 

ones). The primary emphasis of the field studies conducted to build “Comfort Database” 

was to “focus on ‘real’ buildings occupied by real people doing their normal day-to-day 

activities…”; accordingly, key comfort determinants (Temperature, Humidity, Clothing, 

etc.) were allowed to vary freely, unlike in the laboratory experiments. 

Table 4-3. Sensation vote binned by Ambient Temperature and PMV in “Comfort Database”. 

Ta (ºC) PMV 
ASHRAE Sensation Vote 

N Cold  
(-3) 

Cool 
(-2) 

Slt. Cool  
(-1) 

Neutral 
(0) 

Slt. Warm 
(+1) 

Warm 
(+2) 

Hot 
(+3) 

13.4 -3 0 0 10 10 0 0 0 20 

15.28 -2.57 2 11 43 55 3 0 0 114 

17.17 -2.14 8 20 93 127 5 1 0 254 

19.06 -1.71 7 18 105 259 28 6 2 425 

20.94 -1.29 3 56 262 717 72 5 3 1,228 

22.83 -0.86 15 188 853 1,928 399 65 11 3,459 

24.72 -0.43 17 322 1,038 2,235 706 205 96 4,619 

26.60 0.00 16 182 568 1,065 538 236 118 2,724 

28.49 0.43 23 85 303 756 345 166 122 1,800 

30.37 0.86 8 24 61 290 168 94 79 724 

32.26 1.29 1 0 12 80 97 109 97 396 

34.15 1.71 0 0 1 36 64 102 114 317 

36.03 2.14 0 9 0 8 34 63 57 162 

37.92 2.57 0 0 0 1 4 8 4 17 

39.8 3 0 0 0 0 0 0 4 4 

 

 
 
7 The geographical locations include 23 countries: Australia, Belgium, Brazil, China, Denmark, France, Germany, 

Greece, India, Iran, Italy, Japan, Malaysia, Mexico, Nigeria, Philippines, Portugal, Slovakia, South Korea, Sweden, 

Tunisia, the United Kingdom and the United States of America. 



 

80 4 MODELING INDIVIDUAL THERMAL COMFORT 

In this regard, we generated raw data from the Comfort Database II into Table (4-3), 

which is translated into a short-form list of individual observations. In Table (4-3), the 

ambient temperature was scaled (“Ta”) to a PMV ranging from -3 to 3, with a “Neutral” 

PMV occurring at 26.6ºC. Note that from these data, 16,153 fields were included, after 

data pre-processing.  

4.2.1.2 Key Variables and Ranges 

Table (4-4) summarizes the key variables taken from ASHRAE Thermal Comfort Global 

Database II field data for the purposes of this study. It is worth noting that body mass 

index (BMI) data are calculated from the height and weight of the subjects, which are 

available in the database. 

Table 4-4. Summary of key variables. 

Variable Abbreviation Prompt Variable Type Value Range 
Predicted Mean Vote PMV N/A Continuous -3 (Cold) to 3 

(Hot) 

Thermal Sensation Vote TSV How do feel right 

now? 

Discrete -3 (Cold) to 3 

(Hot) 

Thermal Acceptability TSA Acceptability of 

thermal 

environment 

Discrete 1 (Unacceptable); 

2 (Acceptable) 

Thermal Preference PREF I would like to 

feel… 

Discrete 1 (Cooler); 

2 (No change); 

3 (Warmer) 

Season of Response SEAS N/A Discrete 0 (Winter); 

1 (Summer) 

 
The seasonal variable (SEAS) (cf. Table (4-4)) is important to thermal sensation and 

preference distribution models, as this reflects previous observations that people may 

prefer cooler sensations in warm periods and warmer sensations in cold periods. The 

occupant thermal sensation (TSV), thermal acceptability (TSA) and thermal preference 

(PREF) response data are available for most of the thermal comfort studies included in 

the database, it is worth noting that, after data cleaning process, these three responses are 

only available in office and classroom buildings; besides seasons, data are only available 

in summer and winter (cf. Table (4-5)). This led us to consider only offices and classrooms 

as building types and summer and winter as seasons in our final analysis. Table (4-5) 

depicts the frequency of valid thermal responses classified according to seasons and 

building cooling strategies: Air-Conditioned (HVAC), Mixed-Mode (MM), and Naturally 

Ventilated (NV)). 
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Table 4-5. Thermal responses frequency by seasons and building types. 

Building Cooling Strategy 
#Valid Responses/Building Type 
Classrooms Offices 

Summer Air-Conditioned - 1,807 
Mixed-Mode 455 3,699 
Naturally Ventilated 413 1,361 

Winter  Air-Conditioned - 1,638 
Mixed-Mode - 5,136 
Naturally Ventilated 917 727 

4.2.2 Data Analysis 

Data from ASHRAE Thermal Comfort Global Database II (“Comfort Database”) are 

translated into probability distributions of thermal sensation and acceptability as well as 

preferences opting a Logistic Regression model. In this section, we introduce 

dichotomous and multinomial logit models and describe the specific thermal sensation, 

acceptability, and preference distribution models that are constructed under this data 

analysis approach. 

4.2.2.1 Data Description 

Descriptive statistics procedures were used to summarize and characterize the total data, 

presenting the distribution of values according to the occurrence frequency and variability 

(maximum, minimum, mean, and standard deviation). The occupants’ votes were 

analyzed from a crossing of information, and distributed based on the intervals of body 

mass index (BMI), grouping them in bars that represent the different weight classes; the 

results were presents in the form of graphs and tables. The thermal sensation votes, 

represented by the seventh scale as presented in Table (4-1) (cf. Section 4.1.1), were 

grouped into discomfort by cold (-3 and -2), discomfort by heat (+2 and +3), and thermal 

comfort (-1, 0, and +1). This grouping is based on the numerical ASHRAE scales, which 

states that “uncomfortable individuals are those who vote -2 (cool), -3 (cold), +2 (warm), 

and +3 (hot)”. Hence, this work considered the concepts of reducing the seven categories 

in the ASHRAE standard sensation votes scale into the following three classes (cf. Figure 

(4-1)): 

• Votes in the range of [-3, -1] are considered as comfortably cold; 

• Votes in the central categories, i.e., in the range (-1, +1), are considered as 

neutral/or comfortable; 

• Votes in the range of [+1, +3] are considered as uncomfortably hot. 

 



 

82 4 MODELING INDIVIDUAL THERMAL COMFORT 

 

Figure 4-1. ASHRAE 7-point Thermal Sensation scale and the corresponding simplified scale for the 
analysis purpose. 

The analyzes followed a standardized sequence of presentation: sensation, 

acceptability, and preference analysis and the influence of the body dimensions (cf. 

Section 5.2.1 & Section 5.2.2). The average behavioral graphs of the thermal sensation 

votes and prediction models were constructed with the help of RStudio Software as well 

as Microsoft Excel. 

It is worth noting that the variable to be modeled TSV (Thermal Sensation Vote) has 

needed to go through a code conversion for the data simulations and the construction of 

the models, initially the seventh-point scale of the ISO7730 was used, ranging from -3 to 

+3 for the construction of the graphs. For the purpose of analysis, it is more suitable to 

reduce the number of categories into three ordered mentioned classes. Such conversion 

did not change the results and was only used because of the need for the Python Software 

for Logit model and the formulation of the statistical models. 

4.2.2.2 Calculated Data Involved 

4.2.2.2.1 Body Mass Index 

The analyses that considered the weight of the occupants were made from the body mass 

index (BMI). The index is determined from the ratio of the occupant’s mass (in "#) to 

the height square (in $) according to Equation (4-1). Although there are more complex 

and accurate methods for determining and evaluating body composition, few are 

applicable to larger groups of people, and this occurs mainly due to the high costs related 

to the implementation and survey of data [263]. However, this index is one of the simplest 

methods found, and easily promotes comparable and interpretable estimates of the 

bodyweight based on height, resulting in estimates of fat and body composition 

acceptable for the type of analysis proposed by this work. 

012 = 1455
67.-ℎ"% (4-1) 

-3 -2 -1 0 +1 +2 +3

Cold Cool Slightly-cool Slightly-warmNeutral Warm Hot

(-1)
Uncomfortably-Cold

(+1)
Uncomfortably-Hot

(0)
Comfortable
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From the value found through the BMI equation, the occupants of both genders were 

classified according to the classes shown in Table (4-6), adapted from the pattern 

observed on the World Health Organization website8.  

Table 4-6. International classification of underweight, normal, overweight and obese adults according to 
Body Mass Index. 

Classification MBI Ranges 
Underweight  <18.50 
Normal 18.50 – 24.99 
Overweight  25.0 – 29.99 
Obese  >30.00 

4.2.2.2.2 Corrected Standard Effective Temperature 

The corrected standard effective temperature (SET*) index was used in all analyses 

presented in the results Chapter, this being a complete weighting, which considers the 

radiant and latent heat exchanges between the environment, the skin, and the body core, 

which happen every minute [54]. According to the authors, the index represents a 

temperature value in an imaginary uniform environment, where the ratio of relative 

humidity is 50%, the air velocity less than 0.10 m/s, the mean radiant temperature equals 

the air temperature. It was also assumed that, under these conditions, an imaginary 

occupant loses the same amount of heat as in a real environment when developing an 

activity that corresponds to 1.0 met, and clothing of 0.6 clo.  

It is worth noting that the SET* index is still little used in scientific researches in the 

area of thermal comfort because it is a value determined in a complex way, which needs 

the help of software to calculate it.  

4.2.2.3 Modeling Framework 

This dissertation work is a case study of supervised learning, as the outcome variable is 

available or provided, which can guide or shape the learning process. As the objective is 

proposing a data-driven approach in order to predict the individual thermal comfort level 

based on anthropometric and ambient parameters as inputs; we have implemented a 

logistic regression model (or Logit model). 

4.2.2.3.1 Logistic Regression 

The logistic regression model It can be seen as a special case of the family of Generalized 

Linear Models (GLMs) [264], which can make it possible to establish a parametric 

 
 
8 https://www.who.int 
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relationship between a dichotomous variable and the vector of covariates (or explanatory 

variables) [264]–[266]. Then, from this generated model it is possible to calculate or 

predict the probability of an event occurring, given a random observation. 

A logistic regression model allows to: 

• Model the probability of an event occurring depending on the values of the 

independent variables, which can be categorical or continuous. 

• Estimate the probability of an event occurring for a randomly selected 

observation against the probability of the event not occurring. 

• Predict the effect of the set of variables on the binary dependent variable. 

• Classify observations, estimating the probability of an observation being in a 

given category. 

The dependent variable % in logistic regression is often binary, so in these cases, it 

follows the Bernoulli distribution, with an unknown probability &. Remembering that 

Bernoulli’s distribution is only a special case of the binomial distribution, where ' = 1 (it 

considers conducting a single experiment). 

5 = 6
1,					93	:;**<::	=**;+:
0,				93	3?9@@;+<	=**;+: 

The probability of success is 0 ≤ - ≤ 1 and the probability of failure is B = 1 − -. In 

logistic regression, the unknown probability - is estimated, given a linear combination of 

independent variables. 

t Dichotomous Case 

Binary (or univariate) logistic regression represents cases of logistic regression where the 

dependent variable (DV) % is binary or dichotomous, i.e., it has two categories and has 

only one independent variable. In this case, the DV % is usually coded by the values 0 and 

1, as being the absence or presence of a characteristic under study. 

It is usual to make *(%!|-!) = /! , which is 0(%! = 1). The behavior of the 

relationship between -! and /! has curvilinear behavior at very small or very large values 

of -! , and has an approximately linear behavior at intermediate values of -! . This 

relationship can be expressed by an S-shaped curve, as shown in Figure (4-1). 

The relationship between -! and /! is given by: 
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/!(-) =
1(#&$#'%)

1 + 1(#&$#'%) 
(4-2) 

The model that is given in Equation (4-2) meets the requirement of 0 ≤ /! ≤ 1. The 

model in terms of DV, %, would be written as:  

 
ln E

F
1 − F

G = 1(") (4-3) 

Whereas,  

1(") = H, + H(I (4-4) 

The above model is called the Logistic Regression Model, as it comes from a logistic 

transformation, also known as logit transformation. 

 

 

Figure 4-2. Binary regression model with complementary log-log function (Source: Adopted from [267]). 

In Equation (4-2), when 5 tends to infinity, F(I) tends to zero if H( is negative, and 

1 if H( is positive, as illustrated in Figure (4-1). If H( is zero, the variable 5 in independent 

of the variable I. 

It is noticeable the absence of the term 6 in the presented model, since the left side 

of the model is a function of *(%|-), instead of %, which serves to remove the term error 

from the model. 

In the case of binary logistics, 6 can assume two values: if J = 1, then K = 1 − F(") 

with probability F("), and if J = 0, then K = −F(") with probability 1 − F("). Thus, the 

random variable 6 has zero average and variance F(")[1 − F(")]. This proposition 

indicates that regardless of whether the errors are large or small, one can expect their 

mean to be zero. Thus: 
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7! =
e('(()

1 + e('(() + 6! 
(4-5) 

Where, 6! follows the assumptions for all !, @ = {1, 2, … , O} 

i) Q(K"|"") = 0 

ii) S?+(K"|"") = F("")[1 − F("")] 

iii) T=%(K" , K-) = 0 if 9 ≠ @ 

t Multiple Case 

It can be seen as an extension of the simple case, where there is now instead of a predictor 

-, a set with & predictors. Hosmer and Lemeshow [268] establish this generalization as 

following: Be a set with & independent variables, denoted by 5!) = 95!*, 5!+, … , 5!,<, the 

vector of the ith line of the matrix (-) of the explanatory variables; denoted by H =

(H(, H), … , H*)., the vector of unknown parameters and H/ the jth parameter associated 

with the explanatory variable "(. In the multiple regression model, the probability of 

success is given by: 

F"("") = V(5" = 1|I = "") =
<(1!'1"%#"'⋯'1$%#$)

1 + <(1!'1"%#"'⋯'1$%#$)
 (4-6) 

																										=
<(%#

%1)

1 + <(%#
%1)

 (4-7) 

And the probability of failure becomes: 

1 − F"("") = V(5" = 0|I = "") =
1

1 + <(1!'1"%#"'⋯'1$%#$)
 (4-8) 

Thus, the 1(∙) function takes the form: 

1(") = H, + H("( +⋯+ H*"* (4-9) 

 
The errors follow the same assumptions as the simple case. The multiple logistic 

model’s given by: 

y" =
<4#

1 + <4#
+ K" (4-10) 

Whereas,  

1"(") = H, + H(""( +⋯+ H#""* (4-11) 

 
It is worth noting that in the model presented above, it is possible to have several 

discrete variables, of the nominal scale type, whose various numbers are used to represent 
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levels of these scales and have no numerical meaning. These are the dummies variables. In 

this case, we have: 

1(") = H, + H("( +⋯+Z H/-"/-
5&6(

-7(
+ H*"* (4-12) 

When we have a variable in the nominal scale with possible [ values. We introduced 

[ − 1 dummies variables, where the jth variable is on the nominal scale with [/ levels; each 

of the [/ − 1 dummies variables are denoted by "/- and its coefficient H/-, with 1 =

{1,… , [/ − 1}. 

t Multinomial Responses  

In the process given so far, the DV always assumes two values. The generalization of this 

situation models categorical responses with more than two categories. According to 

Agresti [267], multi-category logit models use all category pairs to specify the “odds” that 

the output falls on one category in relation to another. In this type of modeling, the order 

between categories is considered irrelevant. 

Among the DV categories, one is elected to be the reference category. Thus, if the 

last category (\) of the DV is used for this purpose, the logit for this modeling is: 

ln ]
F/
F8
^ , _ = 1,… , \ − 1 (4-13) 

For example, if \ = 3, for the modeling in this case, log(F( F9⁄ ) and log(F) F9⁄ )are 

calculated, since in this model, either the answer lies in _, _ = 1, 2 or in \, \ = 3. 

ln ]
F/
F8
^ = d/ + H/" , _ = 1,… , \ − 1 (4-14) 

This model presents 	\ − 1 equations, with different parameters for each one of them. 

When \ = 2, this model becomes the binary logistic case. For the simplicity of notation, 

it is sometimes performed as: 

e/ = d/ + H" (4-15) 

Then,  

logit ]
F/
F8
^ =e/ + K		, _ = 1,… , \ − 1 (4-16) 

 
And the multinomial model expressed in terms of probabilities of occurrence of the 

DV categories, takes the form of: 
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Fh/ =
<:;&

∑ <:;'86(
<7(

						 , _ = 1,… , \ − 1 (4-17) 

For example, if \ = 3, one would have:  

Fh( =
<:;"

<:;" + <:;(
 (4-18) 

Fh) =
<:;(

<:;" + <:;(
 (4-19) 

Fh9 =
1

<:;" + <:;(
 (4-20) 

Where, at Fh9, the numerator equal to 1 represents d9 = H9 = 0 concerning the 

reference category. 

By extending the modeling to the case of having a set of p explanatory variables, the 

regression model for category = becomes: 

logit ]
F/
F8
^ =H,/ + H(/"( +⋯+ H*/"* + K		, _ = 1,… , \ − 1 (4-21) 

To develop the likelihood function, Hosmer and Lemeshow [268] illustrate the 

process for the case where the DV has three categories, with the help of three binary 

variables, which aim to illustrate to which category an observation belongs; known as %*, 

%+ and %-. If an observed value of the DV is in category 2, for example, then %* = 0; %+ =
0 and %- = 1 are done. 

Thus, using this notation, the conditional likelihood function for a sample of ' 

independent observations is: 

l(H) =j[F,("")=!F(("")="F)("")=(]

#

"7,

 (4-22) 

Taking the logarithm of the equation (	) and using the fact that ∑J/" = 1 for each !, 
the logarithm of the likelihood function is: 

l(H) =ZJ("1(("") + J)"1)("") − ln{1 + <4"
(%#) + <4((%#)}

#

"7(

 (4-23) 

The likelihood equations are found by taking the first partial derivatives of k(H) with 

respect to each unknown parameter. The general form of these equations, given by 

Hosmer and Lemeshow [268] is: 



  

4 MODELING INDIVIDUAL THERMAL COMFORT 89 

lk(H)
lH/5

=Z"5"(J/" − F/")

#

"7(

 (4-24) 

For _ = 1, 2, … , \ − 1 and [ = 0, 1, 2, … , -, with 5*! = 1 for each object. 

The maximum likelihood estimator Hm is obtained by setting these equations to zero 

and solving them for H. 

The matrix of the second partial derivative is necessary to obtain the matrix of 

information and estimation of the covariance matrix of maximum likelihood estimators. 

The general shape of the elements in the matrix of the partial derivative second is: 

l)k(H)
lH/5lH/5)

=Z"5)""5"F/"(1 − F/")

#

"7(

 (4-25) 

And  

l)k(H)
lH/5lH/5)

=Z"5)""5"F/"F/)"

#

"7(

 (4-26) 

For = and _> = 1, 2, … , \ − 1 and " and [> = 0, 1, 2, … , -. The observed information 

matrix is matrix 2(- + 1) by 2(- + 1)whose elements are the negative values of the found 

Equations (4-25) and (2-26), evaluated in Hm . The covariance matrix estimator of maximum 

likelihood estimators is the inverse of the observed information matrix. 

The “Odds ratio” of a multinomial model, assuming category % = 0 as the reference, 

is given by: 

no/(?, p) =
V(5 = _|" = ?)/V(5 = 0|" = ?)
(5 = _|" = p)/V(5 = 0|" = p)

 (4-27) 

 
Representing the odds ratio of the output 5 = _ versus the output 5 = 0, for the 

values of the covariable in " = ? versus " = p. 

The preliminary indication of the importance of an independent variable in the model 

can be obtained from the Wald-test statistics. However, a likelihood ratio test should be 

used to evaluate significance. For example, to test the significance of an independent 

variable in a model, the logarithm of the likelihood of the model containing IV is 

compared with the logarithm of the likelihood of the model containing only the intercept. 

According to D. Hosmer and S. Lemeshow [268], under the null hypothesis that all 

regression coefficients are null in the model, the negative of the double chance in the 

logarithm of likelihood follows a chi-square distribution with two degrees of liberation. 
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o Multinomial Ordinal Responses 

When the DV has an ordering between its categories, the use of the logistic model for 

ordinal responses has simpler interpretations and potentially greater power [267]. 

Logistic regression for ordinal responses is based on the use of accumulated 5 

probability. Thus, the probability considered now is that the value of 5 falls in a range of 

interest, =, or in categories that fall in lower ranges. So, given a category = of interest: 

V(5 ≤ _) = F( +⋯+ F/ ,					_ = 1,… , \ (4-28) 

The accumulated probability reflects the ordering between the DV categories. It 

follows that V(5 ≤ 1) ≤ V(5 ≤ 2) ≤ ⋯ ≤ V(5 ≤ \) = 1. 

The logits for cumulative probability are: 

logit V(5 ≤ _) = ln r
V(5 ≤ _)

1 − V(5 ≤ _)
s = ln r

F( +⋯+ F/
F/'( +⋯+ F/

s 	,					_ = 1,… , \ − 1 (4-29) 

For \ = 3, for example, the model uses logit[V(5 ≥ 3)] = logit[F9 (F) + F()⁄ ]	and 

logit[V(5 ≥ 2)] = logit[(F9 + F)) F(⁄ ]. Thus, each cumulative logit uses all the response 

categories. 

According to A. Agresti [267], a model for cumulative logit resembles a binary logistic 

regression model, in which categories 1 to = combine to form a single category and the 

other _ + 1 to \ form a second category. 

For only one predictor 5, such a cumulative logit model can be written as follows: 

logit V(5 ≤ _) = H,/ + H("	,					_ = 1,… , \ − 1 (4-30) 

In the equation above, H does not have a _ index, indicating that the effect of variable 

" is described by only one parameter for all categories. 

Figure (4-2) illustrates the case of an ordinal multinomial logistic regression model, 

where proportional Odds ownership is worth, with four categories and an explanatory 

variable. The curves are similar to the binomial case. In this model, the intercept is the 

parameter that differentiates the model for a category from another category, as we can 

see in the equation above the index = in the parameter H,. 
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Figure 4-3. Cumulative probability in the Proportional Odds model (Source: Adopted from [267]). 

The model is invariant when the category coding the inverted (the Jth category 

becomes the first, the first becomes the Jth, the second becomes the penultimate, and so 

on). A. Agresti [267] states that in this case, however, the N’s signs are inverted. 

Otherwise, there are several logistic regression models used when the response has been 

ordered, such as the Proportional Odds model (i.e., partial proportional model). Only the 

Proportional Odds model is presented here. 

o Proportional Odds Model  

We consider a multinomial 5 response variable with categorical outputs, denoted by 

1, 2, … , [ and be 5! a p-dimensional vector of the covariates. The dependence of 5 on " 

for the Proportional Odds model has the following representation: 

Pr	(5 ≤ J/|") =
<(?&6%

)1)

1 + <(?&6%
)1) ,					_ = 1,2, … , [ (4-31) 

Or, in the form of logit: 

logit,Π// = ln r
Π/

1 − Π/
s (4-32) 

ln
Pr	(5 ≤ J/|")
Pr	(5 > J/)

= d/ − ">H (4-33) 

Where ,Π// = Pr	(5 ≤ J/) is the cumulative probability of the event 5 ≤ J/. d/ is the 

unknown intercept, satisfying the condition d( ≤ d) ≤ ⋯ ≤ d5, and H = (H(, H), … , H5) is 

a vector of the regression coefficients corresponding to the vector of the covariates, ". 

It is noticeable that in this case, the terms of H do not depend on =, i.e., in the 

proportional odds model, no matter in which range of the DV the value is, H>: remain 

the same. In other words, the relationship between 5 and " remains unchanged as one 

goes through the entire length of 5. It only changes in this case, for each range of value 
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of the VD, the d/′:. This premise causes this model to be called a proportional odds 

model, as it is assumed that there is an identical Odds ratio at the [ cut-off points or 

assumption of parallel regression. 

4.2.3 Model Descriptions 

Using binomial and ordinal logistic regression models and the ASHRAE Thermal 

Comfort Global Database II, we fit field-based models of thermal comfort parameters 

(Acceptability, Sensation, and Preference) distributions. The models’ developments are 

described in the next Chapter (cf. Section (5-4)). In these models, we predict the 

probability that an occupant would report feeling a certain ASHRAE sensation (TSV), his 

preferences (PREF) as well as his evaluation a given ASHRAE sensation as “Acceptable” 

or “Unacceptable” (TSA) for 16,153 occupant responses from office and classroom 

buildings with naturally-ventilated, mixed-mode, and air-conditioned buildings. Each 

model is described in further detail bellow. 

Models 1-3: Thermal Acceptability Regressions 

Models 1-3 are thermal acceptability regressions that use the ASHRAE Thermal Comfort 

Global Database II. These models predict the probability that an occupant evaluates a 

given ASHRAE sensation as “Acceptable” or “Unacceptable” (TSA) for 3445 usable 

occupant TSA responses from HVAC buildings (Model 1), 9228 usable occupant TSA 

responses from MM buildings (Model 2), and 3366 usable occupant TSA responses from 

NV buildings (Model 3). Each of these thermal acceptability models includes the season 

of an occupant’s response (SEAS) as one of the predictors besides the anthropometric 

and environmental variables.  

Models 4-6: Thermal Sensation Regressions 

Models 4-6 predict the probability that an occupant would report feeling a certain 

ASHRAE Sensation given the season (SEAS), their anthropometric variables, besides 

environmental variables. Each of these Models 4-6 is distinguished by the building type 

of its underlying data (HVAC, N=3445 usable ASH responses; MM, N=9228 usable ASH 

responses; and NV, N=3366 usable ASH responses). 

Models 7-9: Thermal Preference Regressions 

Models 7-9 are thermal preference regressions. Each of these models predict the 

probability that an occupant wants a certain type of change (PREF) in a given ASHRAE 

sensation (ASH), again separately for 3445 usable PREF responses from HVAC buildings 
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(Model 7), 9228 usable PREF responses from MM buildings (Model 8), and 3366 usable 

PREF responses from NV buildings (Model 9). Also, these models include the season 

(SEAS) as one of the predictors besides the anthropometric and environmental variables. 
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5 MODEL DEVELOPMENT & 
VALIDATION 

his chapter portrays the analysis and discussion of field data that respond to the 

general and specific objectives proposed by the research. A priori, for a better 

understanding and contextualization of the results, it was opted to analyze the data from 

different perspectives (personal, environmental) for the construction and discussion of 

the models, it was possible to develop a consolidated understanding. The thermal and 

personal parameters were evaluated by performing a descriptive analysis. The entire 

procedure in section 2.1 (cf. Chapter 2) was necessary to investigate indicators involved 

in the models. In the following, it is the outcome and discussion of the field data, the 

descriptive analysis as well as the statistical modeling. 

5.1 CHARACTERIZATION AND PRESENTATION OF DATA 

The results of this thesis were analyzed mainly based on data extracted from ASHRAE 

Thermal Comfort Global Database II, which involves, after the quality-assurance process, 

approximately 81,846 rows of pairs subjective comfort votes and objective instrumental 

measurements of thermal environmental parameters9, collected from field studies 

conducted between 1995 and 2016 and others from the RP-884 database [35]. As 

previously noted, some variables are very limited in some seasons or building types, also 

in case of lack of data. Additionally, for our study purpose, we are interested in the data 

of anthropometric (or demographic) parameters, thermal sensation, and preference as 

 
 
9 https://datadryad.org/stash/dataset/doi:10.6078/D1F671  

T 
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well as indoor climatic variables; this led us to consider only the classrooms, and offices 

building, which leaves a total of 16,153 occupant responses from the “Thermal Comfort” 

database. Therefore, our sub-dataset covers two seasons (52.11% in winter and 47.89% 

in summer), coming from office and classroom buildings.  

5.1.1 Environmental Variables 

Several environmental parameters contribute to the analysis of thermal comfort in indoor 

environments, directly influencing its determination. During the field studies, variables 

related to the thermal environment in the occupied zones were measured (e.g., air 

temperature, relative humidity, globe temperature, air velocity). Table (5-1) summarizes 

the measured environmental variables, highlighting the minimum and maximum values 

of the air temperature measured during the studies (13.4ºC and 39.8ºC, respectively). 

Table 5-1. Variability of measured environmental conditions collected throughout the field studies. 

Parameter  Minimum  Maximum  Mean  St. Dev.* 

Air Temperature (ºC) 13.40 39.80 25.82  4.25 
Relative Humidity (%) 14.50 88.80 54.19  15.40 
Air Velocity (m/s) 0.00 2.38 0.20  0.25 
Standard Effective Temperature (ºC) 10.93 38.94 27.97  2.99 

*Standard Deviation 

Besides, the values of the air temperature and relative humidity of the air in both 

seasons ((a) Winter, and (b) Summer) were distributed according to the frequency and 

range of measured values (cf. Figures (5-1) & (5-2)). 

 
(a) Winter 

 
(b) Summer 

Figure 5-1. Variation in the Air Temperature and frequency of the values observed in (a) Winter 
(n=8,418), and (b) Summer (n=7,735). 
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concentration between 41% and 50% (cf. Figure 5-2 (a)), while in summer, a higher 

concentration of values was between ~41% and ~80% with lower values were between 

~21% and ~31% (cf. Figure 5-2 (b)). 

 
(a) Winter 

 
(b) Summer 

Figure 5-2. Variation in the Relative Humidity and frequency of the values observed in (a) Winter 
(n=8,418), and (b) Summer (n=7,735). 

The observation of high values of relative air humidity directed the research to the 

use of the Standard Effective Temperature Star (SET*), derived from the two-node model 

of Gagge et al. [269], where the exchanges of radiant and latent heat between the middle, 

the skin and the body’s core take place minute by minute. Examining Figure (5-3), it was 

observed that the standard effective temperature (SET*) index presented a larger 

temperature range when compared to the internal air temperature range observed in 

Figure (5-1). Such differences are considered by SET*, as a complete index, which in 

addition to weighing the metabolism and clothing, includes humidity and air velocity as 

input parameters. 

 

(a) Winter 

 

(b) Summer 

Figure 5-3. Histograms of the Standard Effective Temperature values (SET*) observed in the building 
throughout (a) Winter (n=8,418), and (b) Summer (n=7,735). 
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5.1.2 Occupants’ Characteristics  

Table (5-2) presents the description of the physical characteristics, clothing, and 

metabolism of the occupants. Among the 16,153 votes considered valid for this study, 

5,526 are female (34.2%) and 10,627 are male (65.8%). The minimum age of the occupant 

registered was 17 and the maximum 75 years; the height of the participants varied between 

1.2 and 2.03 m, the weight between 33 and 130 kg, while the BMI ranged between 11.39 

and 52.5 kg/m2, besides the clothing level which varied between 0.09 and 2.24 clo. 

Table 5-2. Statistical description of the individual characteristics of the occupants involved in the field 
studies. 

Parameter  Minimum  Maximum  Mean  St. Dev.* 
Age (years) 17 75 36.32  9.53 
Height (m) 1.20 2.03 1.67  0.09 
Weight (kg) 33 130 66.54  12.88 
Body Mass Index** (kg/m2) 11.39 52.50 23.70  3.99 
Clothing Insulation (clo) 0.09 2.24 0.71  0.25 
Metabolism (Met) 0.70 2.10 1.10  0.16 

*Standard Deviation 
** Calculated for the purpose of this study 

The highest frequency of clothing level values occurred between 0.54 and 0.69 clo (cf. 

Figure (5-4)), for both male and female occupants. However, it is interesting to observe 

that the male clothing level has a greater distribution of values in the horizontal interval 

when compared to the distribution of the female clothing level, concentrated in a larger 

interval (i.e., between 0.54 and 0.84 clo). Crossing the clothing data with the seasons, a 

clear relationship of dependence between both variables can be observed, which allows 

us to affirm that the amount of clothing that occupants wear is directly related to the 

seasons (cf. Figure (5-5)). 

 

Figure 5-4. Distribution of clothing insulation between male and female occupants. 
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Figure 5-5. Relationship between the users’ clothing and the considered seasons. 

 
Figure 5-6. Classification of occupants 

according to the weight classes.  

 
Figure 5-7. Distribution of the different weight classes 

according to the occupants’ gender. 

Figure (5-6) presents the comparison of the different weight classes of buildings 

occupants according to the body mass index (BMI). The frequency of obese occupants is 

quite low (~5%) when compared to the frequency of normal and overweight occupants, 

which are predominant in this case. Occupants who, according to the BMI, are classified 

as underweight, represent almost 6% of the buildings’ population. Although there are no 

significant differences between the frequency of underweight occupants according to the 

BMI when considering the gender of the occupants, some distinctions can be emphasized, 

such as the share of the rest of classes, the majority of male occupants are overweight, or 

classified as normal (Figure (5-7)).  
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5.1.3 Thermal Comfort Indices: Thermal Sensation, Preference, and 
Acceptability 

Initially, thermal sensation votes of occupants were analyzed. Figure (5-8) shows the 

frequency of thermal sensation comfort votes as a function of the Standard Effective 

Temperature (SET*). In ranges of SET* with high population concentration (i.e., from 

22ºC to 36ºC), it is observed that almost 80% on average of the occupants were 

comfortable when the votes oscillate within ±1 of the seventh scale of sensations. 

Otherwise, less than 25% stated uncomfortable from both cold and heat.  

When analyzing the thermal acceptability votes, little difference can be seen; when 

comparing the percentages of thermal acceptability with thermal sensations votes to 

express the same degree of comfort (cf. Figures (5-8) & (5-9)).  According to Figure (5-

9), thermal acceptability can reach more than 69%, on average, in SET* values between 

22ºC and 36ºC.  

 
Figure 5-8. Thermal sensation according to the standard effective temperature (SET*). 
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Figure 5-9. Thermal acceptability of the occupants according to the Standard Effective Temperature 

(SET*). 

Complementary to Figures (5-8) and (5-9), Figure (5-10) presents the relationship 

between thermal sensation votes and those of thermal acceptability. It is observed that 
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in some intervals where the SET* is higher (i.e., 34ºC and beyond), there is still a 

preference for higher temperatures in mixed environments. 

 
Figure 5-10. Thermal Acceptability (TSA) versus Thermal Sensation Votes (TSV). 

 

 
Figure 5-11. Frequency of thermal preference votes according to the Standard Effective Temperature 

(SET*). 
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5.2 ANTHROPOMETRIC INDICATORS ASSOCIATED WITH 
THERMAL COMFORT 

For the analyses investigating the influence of anthropometric characteristics associated 

with thermal comfort, a database with a significantly larger sample volume was used when 

compared to the one used in one of our previous works [29]. Such procedure was adopted 

with the objective of expanding the size of the data sample, and to further diversity the 

anthropometric characteristics of the occupants, hence enabling more complete analyses. 

The building type or the environmental air-conditioning system in operation were ignored 

in this part of the results since they have little relevance concerning the main focus of the 

analyses.  

Accordingly, the data used in the development of this block of analysis totaled 16,153 

votes extracted from the ASHRAE Thermal Comfort Global Database II (as previously 

explained in Section 5-1-2). In the original database, there is a significant unbalance in 

terms of gender, which may have a negative impact on data analysis related to the 

anthropometric parameters. In this regard, Figure (5-12) shows the frequency of available 

votes according to the observed effective standard temperature (SET*). It is worth noting 

that the largest volume of data is concentrated between 24°C and 34°C, hence the sample 

is considered valid between 22°C and 36°C. 

 
Figure 5-12. Frequency of the standard effective temperature values observed from the dataset 

(n=16,153). 
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anthropometric characterization of occupants remain identical to those observed in Table 

(5-2) of Section (5-1-2). It can be seen that the means and standard deviations of individual 

factors in some cases present alteration, such as age, clothing, and body mass index. It is 

important to emphasize that the metabolic activity of both data samples is similar 

(between 0.7 clo and 2.1 clo). 

Table 5-3. Statistical description of the individual occupant characteristics involved in the valid extracted 
data sample. 

Parameter  Minimum  Maximum  Mean  St. Dev.* 
Age (years) 17 75 36.27 9.51 
Height (m) 1.20 2.03 1.67 0.09 
Weight (kg) 33 130 66.55 12.89 
Body Mass Index** (kg/m2) 12.47 44.64 23.74 3.99 
Clothing Insulation (clo) 0.09 2.10 0.71 0.16 
Metabolism (Met) 0.70 2.10 1.09 0.16 

*Standard Deviation 
** Calculated for the purpose of this study 

The distribution of the frequency of votes according to gender and age of the 

occupants, grouped at three-years intervals (Youth (<30], Adults (30 – 50], and Seniors 

(50+)), can be seen in Figure (5-13). Among the analyzed votes, 34.2% were female 

occupants and 65.8% male. Most of the analyzed data is located between 22 and 55 years 

of age. According to Figure (5-14), the Body Mass Index (BMI) of the participants is 

directly related to the age group, since the frequency of normal weight occupants is higher 

in youth and adults’ groups (i.e., ranges (<30] and (30 – 50] years); besides, in group above 

than 50 years, the frequency obese people is significant compared to groups bellow 30 

years. 

 

Figure 5-13. Characterization of participants 
according to gender and age group. 

 

Figure 5-14. Characterization of participants 
according to the weight class and considered age 

group. 

 

47%
31% 28%

53%
69% 72%

0%

20%

40%

60%

80%

100%

Youth	(<30] Adults	(30-50] Seniors	(50+)

Fr
eq
ue
nc
y	
(%
)

Age	group	(Years)

Chart	Title

Female Male

n=3605	 																			n=10,554																					n=1880

8% 8%

68%
58%

48%

7%

12%

20% 27%
37%

0%

20%

40%

60%

80%

100%

Youth	(<30] Adults	(30-50] Seniors	(50+)

Fr
eq
ue
nc
y	
(%
)

Age	group	(Years)

Chart	Title

Underweight Normal Obese Overweight

n=3605	 																			n=10,554																					n=1880



  

5 MODEL DEVELOPMENT & VALIDATION 105 

5.2.1 Gender 

The first personal characteristic analyzed in this part of the results is gender. The total 

number of votes (~16,153) was divided between the male and female group; therefore, 

thermal sensation and preference votes were investigated based on SET* groupings. The 

votes of thermal acceptability of both groups were discarded as these data do not present 

significant differences when compared to the thermal sensation data of the comfort 

interval (±1), as discussed previously. 

5.2.1.1 Thermal Sensation 

The differences between the thermal sensation votes of the male and female groups are 

presented in Figures (5-15) and (5-16). From the analysis of the frequency of votes 

between both groups, it is possible to observe a considerable proportion of thermal 

discomfort votes in the male group, which reaches around 20% on average in the SET* 

data group range between 32ºC and 36ºC, and ~29% on average in the female group while 

considering the same SET* ranges. Still considering the male group, the discomfort 

caused by the cold is not significant and reached almost 12% in a cold situation. In the 

female voting group, a lower frequency of votes was observed on the scale of discomfort 

from cold, which is close to the frequency of discomfort from cold in some intervals 

(~15% on average) (cf. Figure 5-16).  

 
Figure 5-15. Frequency of votes on the thermal sensation scale according to SET* in the “male” 

occupants’ group. 
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Figure 5-16. Frequency of votes on the thermal sensation scale according to SET* in the “female” 
occupants’ group. 

 

Figure 5-17. Frequency of thermal sensation votes between “males” and “females”. 
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appear at a higher frequency on the scale of heat discomfort (Warm (+2)). Otherwise, 

both groups are almost similar for the Hot (+3) scale. 

5.2.1.2 Thermal Preference 

The analysis of thermal preference votes pointed out even more significant differences 

between the two groups investigated. Among the male occupant votes (cf. Figure (5-18)), 

it can be observed that in none of the SET* situations more than 60% of preference was 

reached so that the current condition of the environment would not be changed. The 

main cause of discomfort in this group of occupants is, for the most part, heat; the 

proportion of votes for a cooler environment reached around 28% on average and the 

maximum was 36% when the effective standard temperature ranged between 28ºC and 

30ºC. Also, in this group, the preference for a cooler environment could reach 21% in 

higher temperatures (i.e., between 34ºC and 36ºC); otherwise, it is always greater than 

20% of the votes, since the initial value is considered (SET* of 22°C). 

 

 
Figure 5-18. Thermal preference according to the SET* value scale in the “male” group. 
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Figure 5-19. Thermal preference according to the SET* value scale in the female group. 
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all groups, occurring in a higher percentage at temperatures between 22°C and 32°C 

(Figures (5-20), (5-21) and (5-22)). 

 
Figure 5-20. Thermal sensation of occupants of age group of Youth (Age < 30 years) according to the 

internal SET*. 

 

 

Figure 5-21. Thermal sensation of occupants of age group of Adults (30 £ Age <50 years) according to 
the internal SET*. 
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Figure 5-22. Thermal sensation of occupants of age group of Seniors (Age ³ 50 years) according to the 
internal SET*. 
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Figure 5-23. Thermal preference votes according to SET* values in age Youth’s group. 

 
Figure 5-24. Thermal preference votes according to SET* values in age Adults’ group. 
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Figure 5-25. Thermal preference votes according to SET* values in age Seniors’ group. 

5.2.3 Weight 

Among the personal characteristics analyzed in this study, the difference related to the 

weight of the occupants was considered and grouped according to the Body Mass Index 

(BMI), recognized by the WHO10 as the main reference for the classification of different 

weight ranges. Thus, the four main weight classes of this index were used, including the 

ones related to the “underweight” and “obese” data sample (cf. Figure (5-6) in Section (5-

1-2)), which although too small in comparison to the others, was used only for visual 

analysis and comparisons in general. 

5.2.3.1 Thermal Sensation 

Figures (5-26), (5-27), (5-28), and (5-29) show the effects of different weight classes on 

thermal sensation votes, analyzed based on SET* values that resulted in sufficient sample 

size for comparisons (in this case, between 22°C and 36°C). No significant difference was 

observed in the second and third figures (disregarding the visual analysis of the 

“underweight” and “obese” groups), although the frequency of heat discomfort votes 

shows a slight increase as the occupants’ body mass index moves towards overweight. In 

 
 
10 World Health Organization: http://www.who.int/gho/ncd/risk_factors/bmi_text/en/  
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the “obese” group of occupants, it is only noticed that the frequency of votes of 

discomfort by cold is higher than others (between 22ºC and 24ºC). 

 
Figure 5-26. Thermal sensation votes of the occupants classified as “Underweight”. 

 

Figure 5-27. Thermal Sensation Votes of the occupants classified with the “Normal” weight. 
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Figure 5-28. Thermal Sensation Votes of the occupants in the “Overweight” classification. 

 

Figure 5-29. Thermal Sensation Votes of the occupants classified as “Obese”. 
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differences between groups are quite significant. Starting with the group of occupants 

with normal weight (cf. Figure (5-31)), which proved to be the one with the highest 

proportionality between the “hottest” and “coolest” votes. From Figure (5-32), it can be 

seen that the frequency of votes of a “cooler” environment begins to increase and 

becoming higher in the group of occupants classified as obese (Figure (5-33)). It is also 

noted that the highest number of votes who prefer “not to change” the current condition 

of the environment in the normal-weight occupant group occurs in the 26ºC to 28ºC 

range. This same condition remains in the “overweight” group of occupants. It should 

also be noted that although the data sample is small in the “underweight” and “obese” 

groups, the predominant preferences are for a “cooler” in both “underweight” and 

“obese” groups (cf. Figures (5-30) and (5-33)).  

 
Figure 5-30. Thermal preference according to SET* of the “Underweight” occupants. 
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Figure 5-31. Thermal preference according to SET* of the occupants with “Normal” weight. 

 

Figure 5-32. Thermal preference according to SET* of the “Overweight” occupants. 
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Figure 5-33. Thermal preference according to SET* of the “Obese” occupants. 
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• Depending on the result of the evaluation procedure, a stopping criterion 

determines whether the subset of variables can be subjected to the learning phase.  

If this is the case, the selection process is stopped, otherwise, another subset of 

variables is generated. 

The main concerns and implications of variable selection are diverse: 

• The selection of variables will first allow us to determine which variables are 

considered relevant; 

• The selection of variables allows us to remove the noise generated by certain 

variables; 

• Redundant variables are also removed. 

• The size of the representation space is thus reduced. The cost of calculating the 

learning phase is also reduced. 

 

Figure 5-34. Correlation matrix for the selected variables, each cell presents the Person’s coefficient. 
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highly inversely correlated with the air temperature (compared to other variables), and the 

same for the air temperature, which is considerably correlated with the air velocity. 

Therefore, we continue our analysis with the following independent variables: Season, 

Age, Gender, ASHRAE sensation votes (TSV), PMV, Clo, Met, TA, RH, VA, and BMI. 

5.3.2 Models 1-3: Thermal Acceptability 

The first models developed in this study are binary logistic regression model that use the 

anthropometric parameters to predict the probability that an individual finds his/her 

actual thermal sensation “Acceptable” (TSA = 1) or “Unacceptable” (TSA = 0), using the 

data from ASHRAE Thermal Comfort Global Database II field studies. 

After the feature selection process, Table (5-4) provides details about the parameter 

estimates for the Acceptability models. As previously noted, the parameters of this model 

are estimated from environmental and personal/anthropometric variables and are 

estimated separately according to the building cooling strategy. This table gives more 

information about the variable’s significance and their contributions to the model. It is 

observed that most of the variables are statistically significant in all models, for example, 

in HVAC buildings, Season, Sex, Met, TA, and RH are the most significant while the ASH 

sensation votes effect is a bit smaller compared to the rest of variables (p-values<0.05); 

in MM buildings, more variables were included such as Age, Clo, and VA; while in NV 

Buildings, the personal/anthropometric parameters, such as BMI, Met, Clo, Sex have 

significant contributions in the model. 

Given that our model’s final objective is to classify new instances into one of the two 

categories, whether the occupant will have an “Acceptable” sensation in a given 

environment or not based on a set of environmental and personal/anthropometric 

variables. We want the model to give high scores to positive instances (1: Acceptable 

sensation) and low scores (0: Unacceptable sensation) otherwise. Ideally, in a double 

density plot, the distribution of scores to be separated, and the scores of the negative 

instances to be on the left and the scores of the positive instances to be on the right. 

However, in our case, both distributions are slightly skewed to the right. Not only is the 

predicted probability for the negative outcomes low, but the probability for the positive 

outcomes is also lower than it should be.  

The reason for this is because all the datasets only consist of 13.3% of negative 

instances (Unacceptable sensation) for HVAC buildings, 22.8% in MM buildings while in 

NV buildings, the percentage of 16.5% of negative instances are about 16.5%. Thus, our 
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predicted scores sort of getting pulled towards a lower number because of the majority of 

the data being positive instances. 

Our skewed double density plot, however, can tell us that the Accuracy will not be a 

suitable measurement for this model. Since the prediction of a logistic regression model 

is a probability, in order to use it as a classifier, we’ll have to choose a cutoff (threshold) 

value. Where scores above this value will be classified as positive, those below as negative. 

For this, we will use another measurement (instead of Accuracy) allowing to decide which 

cutoff value to choose, i.e., the ROC curve. 

One of the interesting aspects of logistic regression, in general, is how the change in 

one factor or explanatory variable can affect the dependent variable. This role is played 

by looking at the Odds Ratio (cf. Table (5-4)). 

Table 5-4. Regression summary and the related Odds Ratio of including variables in the Acceptability 
Models 1, 2 and 3. 

Parameter 
Model 1 

(HVAC buildings) 
Model 2 

(MM buildings) 
Model 3 

(NV buildings) 
Estimate Odds ratio Estimate Odds ratio Estimate Odds ratio 

b0 (Intercept) -1.51**** NA -1.89**** NA -0.017**** NA 
b1 (SEAS (Summer)) 4.70 (0.41) **** 56.97 4.43 (0.28) **** 83.11 4.37 (0.51) **** 31.23 
b2 (Age) 0.001 (0.005) NA 0.015(0.003) **** 1.016 -0.005 (0.004) NA 
b3 (Sex (Female)) 4.31 (0.4) **** 41.37 5.11 (0.28) **** 148.36 5.80 (0.50) **** 102.65 
b4 (ASH-Votes) -0.092 (0.04) * 0.86 -0.25 (0.02) **** 0.76 -0.42 (0.04) **** 0.65 
b5 (Clo) -0.40 (0.27) NA -2.07 (0.13) **** 0.18 -2.94 (0.18) **** 0.076 
b6 (Met) -0.90 (0.21) **** 0.52 0.041 (0.18) NA -0.71 (0.24) ** 0.63 
b7 (TA) -0.37 (0.01) **** 0.73 -0.28(0.009) **** 0.78 -0.22 (0.01) **** 0.83 
b8 (RH) 0.037 (0.004) **** 1.024 -0.004 (0.002) * 1.00 0.006 (0.003) * 1.01 
b9 (VA) 0.043 (0.3) NA 1.24 (0.13) **** 2.87 -0.10 (0.2) NA 
b10 (BMI) -0.02 (0.01) NA 0.001 (0.006) NA -0.02 (0.01) * 1.00 
**** p-value<0.0001 
*** p-value < 0.001 
** p-value < 0.01 
* p-value < 0.1 

N = 3445 Subjects              N = 9228 Subjects            N = 3366 Subjects 

Std. deviation is shown in parenthesis; 95% Confidence Intervals 

For HVAC buildings, most of b coefficients are clearly distinct from zero (p<0.0001) 

(cf. Table (5-4)). Estimates for b1 (attached to summer season) are positive indicating the 

expectation that the HVAC environment, with the change from summer to winter, has 

an increased chance of moving from “Unacceptable” sensation to “Acceptable” in the 

order of 56.97 times, in terms of Odds Ratio. Similarly, estimates for b3 (attached to Sex 

attribute) are positive and reflecting that the expectation for an occupant could find 

“Acceptable” sensation is in the order of 4.31 times when the change is from female to 

male. Estimates for the b8 coefficient (attached to the RH predictor) is positive, reflecting 

the expectation that by increasing one percentage in RH, it will be perceived as more 

acceptable by 1.042 in HVAC buildings, whereas, for b7 coefficient (attached to TA) 
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which is negative, the expectations are by increasing TA by one degree has the chance to 

decrease the “Acceptable” sensation by 0.73 times. For b6 coefficient (attached to Met 

variable), is negative and shows that by increasing by one unit in Met, the TSA has the 

chance to decrease by 0.52 times. Finally, estimates for b4 (attached to ASHRAE sensation 

votes) estimates are all substantially smaller (p-value<0.05), which indicates that the 

calculation of TSA (Acceptability votes) are less sensitive (even though the relationship is 

still clearly present, and operates in the opposite directions. In terms of Odds Ration, the 

probability that an occupant will find a given sensation “Acceptable” decreases by 0.86 

times. 

For MM buildings, it is clearly apparent that almost all the variables contribute 

significantly to the model, except RH (p-value<0.05). It is noticed that estimates for b1 

and b3 coefficients (attached to Season and Sex attributes) are positive, which means that 

the change from summer to winter has an increased chance that an occupant will find 

“Acceptable” sensation increases in the order of 83.11 times for the season and by order 

of 148.36 times when Sex has to change from female to male. Estimates for b2 (attached 

to Age variable) are positive, reflecting that the expectations that an occupant find 

“Acceptable” sensation in such environments will increase by increasing Age by one unit 

(a year) by 1.016 times. While the estimates for b10 (attached to VA variable) are positive 

as well, and indicating that the expectations for occupants with increased VA by one unit, 

has the effect to increase the occupant sensation from “Unacceptable” condition to 

“Acceptable” in the order of 2.87 times. While in NV buildings, b1, b3, b4, b5, and b7 

coefficients are also clearly distinct from zero (p<0.0001), however, the estimates for b6, 

b8, and b10 (attached to Met, TA, and BMI resp.) are only distinct from zero at the p-

value<0.01 for Met and p-value<0.05 for RH and BMI thresholds indicating a reduced 

influence of metabolic rate acceptability sensation for warm sensations. The estimates for 

b8 (attached to RH variable) are positive indicating that the probability that an occupant 

will find an “Acceptable” sensation increases by 1.01 times when RH increases by one 

unit. However, for b10 coefficient (attached to BMI attribute), the estimates are negative 

which means that the chance that people with high weight to find “Acceptable” sensation 

decreases by 1.00 times. 

On the other hand, with the adjusted models, it was used to evaluate the model 

accuracy on a test-set (which represents 30% of the dataset in our case). It was verified 

that, through the confusion matrices (cf. Figure (5-35)), that Model 1 was accurate by 
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77%, Model 2 by 72%, while the accuracy of Model 3 was about 79%. Also, these 

confusion matrices show how the model behaves in predicting data. 

 
(a)  Model-1 

 
  (b)  Model-2 

 
(c)  Model-3 

Figure 5-35. Confusion matrices for Model 1 ((a) HVAC buildings), Model 2 ((b) MM buildings) and 
Model 3 ((c) NV buildings). 

Table 5-5. Relative values of performance metrics for Models 1-3. 

 Performance Metrics 
Precision Recall F1-Score 

Model 1 
(HVAC buildings) 

Acceptable 0.72 0.66 0.79 

Unacceptable 0.84 0.88 0.74 

Model 2 
(MM buildings) 

Acceptable 0.69 0.81 0.74 

Unacceptable 0.77 0.63 0.69 

Model 3 
(NV buildings) 

Acceptable 0.74 0.88 0.81 

Unacceptable 0.86 0.69 0.77 

Besides the confusion matrix, the ROC curve could be a proper way to interpret the 

prediction accuracy. The ROC curves for the three models are plotted in Figure (5-36). 

As shown in Figure (5-36), the area under the curve (AUC) means the possibility of 

ranking positive instances higher than negative instances. The higher AUC is, the better 

model is fitted. AUC is the highest for Model-3 (HVAC buildings), and that is the lowest 
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for Model-2 (NV buildings). The logistic regression model is a sensitive classifier to detect 

whether people have “acceptable” sensations or not.  

 

(a)  Model-1. 

 

(b)  Model-2. 

 

(c)  Model-3. 

Figure 5-36. ROC curves for Acceptability models for (a) HVAC buildings; (b) Mixed-Mode buildings; 
(c) Naturally-Ventilated buildings. 

5.3.3 Models 4-6: Thermal Sensation  

Models 4-6 are ordinal logistic regressions that use the environmental and personal/ 

anthropometric variables to predict the probability of observing certain individual 

ASHRAE sensation votes (“Uncomfortably Cold”, TSV=-1; “Comfortable”, TSV=0; 

“Uncomfortably Hot”, TSV=1), using the data from ASHRAE Thermal Comfort Global 

Database II of field studies. 

The choice of such a model involves a compromise between the complexity of the 

model, which in this case is observed by the number of variables involved, and by the 

observed errors (in this case, the deviance). The method used for the model’s selection is 

the Stepwise-backward. Thus, the analysis starts with the total of the regressors and after 
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fitting the model, the AIC (Akaike Information Criterion) index is observed. One variable 

is then removed, the one with the highest p-value, and the model is adjusted again. If the 

AIC observed in the second situation is lower than the AIC observed in the previous step, 

the variable that was excluded should remain excluded. Otherwise, the variable is added 

back to the model and the process is terminated. The process continues until there are no 

more variables to be excluded or when the AIC no longer improves. 

Table (5-6) provides details about the parameters estimates for models 4-6 and their 

related Odds ratio. The table reveals that most of b coefficients for Models 4-6 are 

positive and distinct from zero, with a p-value<0.0001. However, b2 and b8 estimates for 

Models 5 and 6 are substantially smaller, indicating that distributions of Age and VA are 

less sensitive compared to the other included variables (though the relationship is still 

clearly present and operates in the same directions for Model 4 and the opposite direction 

for Model 6). 

Table 5-6. Regression summary and the related Odds Ratio of including variables in the Acceptability 
Models 4, 5 and 6. 

Parameter 
Model 4 

(HVAC buildings) 
Model 5 

(MM buildings) 
Model 6 

(NV buildings) 
Estimate Odds ratio Estimate Odds ratio Estimate Odds ratio 

Intercept_1 9.63 (0.95) **** NA 8.25 (0.47) **** NA 3.84 (0.80) NA 
Intercept_2 14.07 (0.99) **** NA 11.41 (0.48) **** NA 7.85 (0.81) NA 
b1 (SEAS (Summer)) -0.24 (0.1) * 0.78 0.04 (0.06) NA 0.86 (0.11) **** 2.31 
b2 (Age) 0.014 (0.005) ** 1.014 0.007 (0.003) * 1.007 0.014 (0.004) ** 1.01 
b3 (Sex (Female)) -0.49 (0.1) **** 0.61 -0.05 (0.06) NA 0.076 (0.09) NA 
b4 (Clo) 0.14 (0.33) NA 0.85 (0.13) **** 2.30 0.34 (0.21) NA 
b5 (Met) 0.93 (0.27) *** 2.52 0.87 (0.19) **** 2.41 -0.086 (0.27) NA 
b6 (TA) 0.39 (0.03) **** 1.47 0.24 (0.01) **** 1.26 0.26 (0.02) **** 1.27 
b7 (RH) 0.003 (0.005) NA 0.016 (0.002) **** 1.02 -0.022 (0.003) **** 0.96 
b8 (VA) -1.03 (0.35) ** 0.36 -0.15 (0.12) NA -0.70 (0.22) ** 0.54 
b9 (BMI) 0.0012 (0.013) NA 0.022 (0.006) ** 1.02 -0.054 (0.012) **** 0.95 
**** p-value<0.0001 
*** p-value < 0.001 
** p-value < 0.01 
* p-value < 0.1 

N = 3445 Subjects              N = 9228 Subjects            N = 3366 Subjects 

Std. deviation is shown in parenthesis; 95% Confidence Interval 

It is worth noting that more personal/anthropometric variables (such as BMI and 

Clo) are considered in Model 5. However, estimates for b9 (attached to BMI attribute) are 

more significant in the case of NV buildings compared to MM buildings, similarly for 

environmental variables (TA, RH, and VA), which can be explained that in NV buildings, 

thermal sensation depends more on these variables than the personal variables (Met or 

Clo).  

From Table (5-6), Models 4-7 can be formulated as: 
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a) Model 4 (HVAC Buildings): 

Fh) =
<6(@.B96,.)C∗EFGE',.,(C∗G4H6,.C@∗EH%',.@9∗IH&',.9@∗.G6(.,9∗JG)

1 + <6(@.B96,.)C∗EFGE',.,(C∗G4H6,.C@∗EH%',.@9∗IH&',.9@∗.G6(.,9∗JG)
 (5-1) 

Fh9 =
<6((C.,K6,.)C∗EFGE',.,(C∗G4H6,.C@∗EH%',.@9∗IH&',.9@∗.G6(.,9∗JG)

1 + <6((C.,K6,.)C∗EFGE',.,(C∗G4H6,.C@∗EH%',.@9∗IH&',.9@∗.G6(.,9∗JG)
 (5-2) 

b) Model 5 (MM Buildings): 

Fh) =
<6(L.)M',.,,K∗G4H',.LM∗N-O',.LK∗IH&',.)C∗.G',.,(B∗PQ',.,))∗RIS)

1 + <6(L.)M',.,,K∗G4H',.LM∗N-O',.LK∗IH&',.)C∗.G',.,(B∗PQ',.,))∗RIS)
 (5-3) 

Fh9 =
<6(((.C(',.,,K∗G4H',.LM∗N-O',.LK∗IH&',.)C∗.G',.,(B∗PQ',.,))∗RIS)

1 + <6(((.C(',.,,K∗G4H',.LM∗N-O',.LK∗IH&',.)C∗.G',.,(B∗PQ',.,))∗RIS)
 (5-4) 

c) Model 6 (NV Buildings): 

Fh) =
<6(9.LC',.LB∗EFGE',.,(C∗G4H',.)B∗.G6,.,))∗PQ6,.K,∗JG6,.,MC∗RIS)

1 + <6(9.LC',.LB∗EFGE',.,(C∗G4H',.)B∗.G6,.,))∗PQ6,.K,∗JG6,.,MC∗RIS)
 (5-5) 

Fh9 =
<6(K.LM',.LB∗EFGE',.,(C∗G4H',.)B∗.G6,.,))∗PQ6,.K,∗JG6,.,MC∗RIS)

1 + <6(K.LM',.LB∗EFGE',.,(C∗G4H',.)B∗.G6,.,))∗PQ6,.K,∗JG6,.,MC∗RIS)
 (5-6) 

For each model, the intercept Uncomfortably-Cold |Comfortable corresponds to />-, 

which can be interpreted as the log of odds of believing that the thermal sensation is 

Comfortable versus believing that the sensation is Uncomfortably-Cold or Uncomfortably-Hot. 

Similarly, the intercept Comfortable |Uncomfortably-Hot corresponds to />., and it can be 

interpreted as the log of odds of believing that the thermal sensation is Uncomfortably-Cold 

or Comfortable versus believing that the sensation is Uncomfortably-Hot. 

Similarly, with each model’s adjustment, it was verified through confusion matrices 

(cf. Figure (5-37)) that the accuracy of Model 4 is about 58%, for Model 5 is 60%, while 

the Model 6 was accurate by 52%. The confusion matrix of Model 6 depicts that the 

model is slightly biased towards the ‘Uncomfortably Hot’ sensation since it is right in 76% 

of total test cases. This fact may come from the sample test used, which tends to this 

value. In category ‘Comfortable’, the model scores about 44% of the points, while in the 

category ‘Uncomfortably Cold’, the model scores about 61%.  
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(a) Model-4 

 

(b) Model-5 

 

(c) Model-6 

Figure 5-37. Confusion matrices for Model-4 ((a) HVAC buildings), Model-5 ((b) MM buildings) and 
Model-6 ((c) NV buildings). 

Table 5-7. Relative values of performance metrics for Models 4-6. 

 Performance Metrics 
Precision Recall F1-score 

Model 5 
(HVAC buildings) 

Uncomfortably Cold 0.36 0.42 0.39 

Comfortable 0.78 0.63 0.69 

Uncomfortably Hot 0.19 0.59 0.29 

Model 6 
(MM buildings) 

Uncomfortably Cold 0.40 0.54 0.46 

Comfortable 0.71 0.42 0.53 

Uncomfortably Hot 0.27 0.58 0.37 

Model 7 
(NV buildings) 

Uncomfortably Cold 0.54 0.61 0.57 

Comfortable 0.50 0.44 0.47 

Uncomfortably Hot 0.76 0.76 0.76 

The overall suitability test of each model shows up p-value < 0.001. this implies that 

there are models for each building type with the present data relating the categorized TSV 

and the considered predictors. However, the computed values of Pseudo – R2 (0.40 for 

HVAC buildings; 0.35 for MM buildings, and 0.38 for NV buildings) show that the 

adjustment is still poor. Hence the factors that may contribute to this low adherence of 

the models to the data are the sample size, in addition to existing latent explanatory 
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variables, or maybe risk factors that influence the TSV value that was not included in this 

data set. Despite all this, the proposed model provides some insight into the matter in 

question, showing that environmental comfort factors associated with personal and 

anthropometric factors interfere in human thermal sensation in closed environments. 

5.3.4 Models 7-9: Thermal Preference  

Models 7, 8, and 9 are ordinal logistic regressions that use the anthropometric and 

environmental variables, as well as the individual ASHRAE sensation vote (ASH-Votes) 

to predict the probability that an occupant wants a certain type of change in their current 

thermal sensation (“Cooler”, PREF = 1; “No Change”, PREF = 2; “Warmer”, PREF = 

3), using the data from the ASHRAE Thermal Comfort Global Database II of field 

studies. All models (7, 8, and 9) cover the preference outcome in HVAC, MM as well as 

NV buildings. 

Table (5-8) covers details about the parameter estimates for the thermal preference 

regressions. For HVAC and MM buildings, most of b coefficients are distinct from zero 

with a p-value<0.0001 (compared to NV buildings). Estimates for b4 are negative in all 

cases, reflecting that the expectation that as ASH votes move warmer, i.e., when ASH 

moves toward the extreme of +3, the probability that an occupant will want to feel 

“Warmer” (PREF = 3) will decrease, and vice versa for the case when the ASH votes 

move in the colder direction. Also, it is observed that almost all variables (environmental 

and personal) are included significantly in all buildings’ types, unless for BMI, whose 

coefficient estimates are smaller in MM and NV buildings. 

Table 5-8. Regression summary and the related Odds Ratio of including variables in the Preference 
Models 7, 8 and 9. 

Parameter 
Model 7 

(HVAC buildings) 
Model 8 

(MM buildings) 
Model 9 

(NV buildings) 
Estimate Odds ratio Estimate Odds ratio Estimate Odds ratio 

Intercept_1 -3.84 (0.91) **** NA 1.08 (0.2) **** NA 0.34 (0.78) NA 
Intercept_2 -0.39 (0.91) NA 3.65 (0.2) **** NA 3.31 (0.78) **** NA 
b1 (SEAS (Summer)) -0.53 (0.09) **** 0.56 0.13 (0.05) * NA -0.23 (0.09) * 0.80 
b2 (Age) -0.015 (0.005) ** 0.98 0.026 (0.003) **** 1.02 0.011 (0.004) ** 1.01 
b3 (Sex (Female)) 0.22 (0.09) * 1.20 0.39 (0.05) **** 1.52 -0.002 (0.08) NA 
b4 (ASH-Votes) -0.69 (0.06) **** 0.50 -0.63 (0.02) **** 0.54 -0.084 (0.04) * NA 
b5 (Clo) 0.29 (0.31) NA -0.83 (0.13) **** 0.47 0.74 (0.2) *** 1.81 
b6 (Met) 1.14 (0.25) **** 3.20 1.33 (0.18) **** 3.33 0.89 (0.25) *** 2.43 
b7 (TA) -0.12 (0.02) **** 0.88 0.012 (0.01) NA 0.025 (0.01) NA 
b8 (RH) -0.003 (0.005) NA -0.003 (0.002) NA -0.01 (0.003) ** 1.00 
b9 (VA) 1.04 (0.32) ** 2.68 0.57 (0.13) **** 1.69 0.012 (0.2) NA 
b10 (BMI) 0.007 (0.01) NA -0.012 (0.006) ** NA -0.025 (0.01) ** 1.00 
**** p-value<0.0001 
*** p-value < 0.001 
** p-value < 0.01 
* p-value < 0.1 

N = 3445 Subjects              N = 9228 Subjects            N = 3366 Subjects 

Std. Deviation is shown in parenthesis; 95% Confidence Interval 
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In this case, through Table (5-8), the Models 7-9 can be formulated as: 

a) Model 7 (HVAC Buildings): 

Fh) =
<6(69.LC6,.M9∗EFGE6,.,(M∗G4H6,.B@∗GEQ'(.(C∗IH&6,.()∗.G'(.,C∗JG)

1 + <6(69.LC6,.M9∗EFGE6,.,(M∗G4H6,.B@∗GEQ'(.(C∗IH&6,.()∗.G'(.,C∗JG)
 (5-7) 

Fh9 =
<6(6,.9@6,.M9∗EFGE6,.,(M∗G4H6,.B@∗GEQ'(.(C∗IH&6,.()∗.G'(.,C∗JG)

1 + <6(6,.9@6,.M9∗EFGE6,.,(M∗G4H6,.B@∗GEQ'(.(C∗IH&6,.()∗.G'(.,C∗JG)
 (5-8) 

b) Model 8 (MM Buildings): 

Fh) =
<6((.,L',.,)B∗G4H',.9@∗EH%6,.B9∗GEQ6,.L9∗N-O'(.99∗IH&',.MK∗JG6,.,()∗RIS)

1 + <6((.,L',.,)B∗G4H',.9@∗EH%6,.B9∗GEQ6,.L9∗N-O'(.99∗IH&',.MK∗JG6,.,()∗RIS)
 (5-9) 

Fh9 =
<6(9.BM',.,)B∗G4H',.9@∗EH%6,.B9∗GEQ6,.L9∗N-O'(.99∗IH&',.MK∗JG6,.,()∗RIS)

1 + <6(9.BM',.,)B∗G4H',.9@∗EH%6,.B9∗GEQ6,.L9∗N-O'(.99∗IH&',.MK∗JG6,.,()∗RIS)
 (5-10) 

c) Model 9 (NV Buildings): 

Fh) =
<6(,.9C',.,((∗G4H',.KC∗N-O',.L@∗IH&6,.,(∗PQ6,.,)M∗RIS)

1 + <6(,.9C',.,((∗G4H',.KC∗N-O',.L@∗IH&6,.,(∗PQ6,.,)M∗RIS)
 (5-11) 

Fh9 =
<6(9.9(',.,((∗G4H',.KC∗N-O',.L@∗IH&6,.,(∗PQ6,.,)M∗RIS)

1 + <6(9.9(',.,((∗G4H',.KC∗N-O',.L@∗IH&6,.,(∗PQ6,.,)M∗RIS)
 (5-12) 

For each model, the intercept Cooler |No Change corresponds to />-, which can be 

interpreted as the log of odds of believing that the thermal sensation is Comfortable versus 

believing that the sensation is Uncomfortably-Cold or Uncomfortably-Hot. Similarly, the 

intercept No Change |Warmer corresponds to />., and it can be interpreted as the log of 

odds of believing that the thermal sensation is Cooler or No Change versus believing that 

the sensation is Warmer. 

Similarly, with each model’s adjustment, it was verified through the confusion 

matrices (cf. Figure (5-38)) that Model 7 is accurate by 55%, the accuracy of Model 8 is 

53%, while for Model 9 is about 50%. It is worth noting that the confusion matrix of 

Model 9 shows that the model is biased towards ‘Cooler’ and ‘Warmer’ preferences, which 

may be explained that the test-set tends towards these values. Otherwise, in the category 

‘No Change’, the model scores only 32% of the points.  
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(a) Model-7 
 

(b) Model-8 

 

(c) Model-9 

Figure 5-38. Confusion matrices for (a) Model-7 (HVAC buildings), (b) Model-8 (MM buildings) and (c) 
Model-9 (NV buildings). 

Table 5-9. Relative values of performance metrics for Models 7-9. 

 Performance Metrics 
Precision Recall F1-Score 

Model 7 
(HVAC buildings) 

Cooler 0.59 0.57 0.58 

No Change 0.61 0.52 0.56 

Warmer 0.47 0.56 0.51 

Model 8 
(MM buildings) 

Cooler 0.56 0.58 0.57 

No Change 0.53 0.47 0.50 

Warmer 0.50 0.55 0.52 

Model 9 
(NV buildings) 

Cooler 0.58 0.62 0.60 

No Change 0.44 0.32 0.37 

Warmer 0.46 0.57 0.51 

 

5.4 DISCUSSIONS 

This section presented the analysis of the influence of personal characteristics on the 

general thermal perception of occupants verified from different standard effective 

temperature ranges (SET*). Among the items investigated are gender (male and female), 

age (under 30 (Youth-group), between 30 and 50 years old (Adults-group), and over 50 
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years old (Seniors-group)), and weight, according to the classification of body mass index 

(underweight, normal weight, overweight, and obese).  

Among the characteristics analyzed, gender and physical condition were those that 

presented the greatest changes in thermal comfort perception. Focusing only on thermal 

sensation votes, it was observed that men show greater intolerance to heat, and women 

complain more of discomfort from cold. Among the different weight classes, overweight 

and obese occupants have the highest levels of heat-related complaints, although the 

thermal sensation analysis does not show this fact. In this sense, thermal preference seems 

to be a much more accurate indicator for such a phenomenon, clearly pointing out the 

differences between groups. Therefore, focusing only on thermal preference, two 

important reflections are outlined: 

1. Among the three age groups observed, it was found that occupants over 30 years 

old are those who prefer higher temperatures compared to younger occupants. 

Such preference may occur due to changes in basal metabolism and the sedentary 

lifestyle of older people. In this work, it was observed that the share of occupants 

who preferred not to change the current thermal condition in age group 1 was 

highest in the 28°C to 30°C range, while in age group 2 was between 26°C and 

28°C, while in group 3 this condition occurred below 24°C (SET*). 

2. Between the genders, ages, and physical conditions considered, the difference in 

preferred temperature values reached in some cases 3.0°C ± 0.5°C. Such results 

could be even more expressive if some of these analyzed characteristics were 

combined and compared to each other. 

5.5 CONCLUSION  

In this chapter, we have used the Logistic regression parameter estimation approach to 

develop the probability of thermal acceptability, sensation, and preference for office and 

classroom building occupants. With these models, we have extended Fanger’s PMV-PPD 

representation of thermal satisfaction/dissatisfaction to the field and derived new direct 

projections of thermal comfort indicators (sensation, acceptability, and preference) in 

terms of anthropometric variables such as BMI and Age. This enables a better 

understanding of personalized thermal comfort and how it figures into a more effective 

and sustainable building design. 
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6 CONCLUSION 

his thesis evaluated the thermal comfort conditions of occupants in air-conditioned, 

mixed-mode, and naturally-ventilated buildings. The data analyzed were based on 

the answers to 16,153 votes regarding thermal sensation, preference, as well as 

acceptability, extracted from the ASHRAE Thermal Comfort Global Database II field 

studies, which covered two seasons (winter and summer) of the year. The results found 

form a kind of framework for future work, archiving important information that can be 

studied and incorporated in future versions of standards and evaluation methods for these 

types of buildings. The following pages conclude the thesis with a summary of its key 

outcomes, as well as a list of suggestions for future development of the work. 

6.1 SUMMARY OF KEY OUTCOMES 

1. Covering the role of the personal interaction of occupants using AI-based 

tools to achieve energy-efficiency and comfort optimization in buildings. 

The performed systematic review presented a comprehensive review discussing 

Artificial Intelligence (AI) techniques for Building Energy Management Systems 

(BEMS) that enable energy efficiency while considering thermal comfort. Besides, 

in order to evaluate the outputs of AI-based methods in energy savings and 

thermal comfort enhancement, assessments of the implementations of these 

techniques conducted in the published works have been reviewed and compiled 

according to the eligibility criteria. The research method used in the peer-reviewed 

publications was primarily empirical case-study, with data sources and data on 

thermal comfort and energy usage were collected predominantly through the 

T 
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execution of real-world studies (questionnaires or interviews with the occupants 

and data measurements) or by using current and publicly accessible datasets. 

The findings of the study showed that multiple types of AI-based techniques were 

used in different parts of building control systems. In particular, artificial neural 

networks (ANNs) have been used to overcome problems related to recognition 

and identification, and their function focused on learning algorithms that allow 

them to retain and classify data. In building management, ANNs were 

implemented to describe thermal comfort and estimate the Predicted Mean Vote 

(PMV) index. Fuzzy Logic (FL) is one of the recent tendencies which was 

developed to model human decision-making. Research works using FL have been 

documented since the late 1990s to treat thermal comfort as a subjective or fuzzy 

parameter. They were built to monitor conditions where the highest level of 

satisfaction and optimum energy-efficiency were achieved, most of the FL-based 

studies used the PMV comfort index. This line of management approaches 

focused on experience and judgment, aim at achieving simple, scalable. and 

effective regulation, without resorting to a system model. Their efficiency is 

generally compared to traditional controls, and their advantage resides primarily 

attributed to the fact that additional awareness of system behavior (expressed in 

natural language – fuzzy or incorporated learning techniques – ANNs) or a degree 

of optimality (i.e., Genetic Algorithms) is assumed. 

The review shows that the implementation of AI and ML technology in the 

building industry is still an ongoing research endeavor. This is partly attributed to 

the fact that this type of algorithms typically needs a massive quantity of high-

quality real-world data, yet buildings or, more specifically, the energy sector has 

so far had little data. Adjustments and technical advancements are contributing to 

a rise in the quantity and sophistication of data (Smart Meter Installation, Internet 

of Things (IoT), Cloud Storage, and so forth) allowing to build much more 

effective data-driven research.  The work concludes by describing the research 

challenges facing the research community namely the need for more data for AI-

based modeling in buildings, IoT based smart and connected buildings to facilitate 

efficient management and data collection for further studies. Smart buildings will 

also present security, privacy, and data sensitivity issues as well as big-data 

streaming. Context-awareness mechanisms that improve the intelligence of 

buildings in adapting to human behavior to adjust dynamically comfort and 
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improve energy in a more fine-grain manner is also of high importance to the 

community. Another line of research includes also humans in the loop, comfort 

modeling for dynamic temperature set-point adjustments. This type of research 

will need mixed-methods types of research where AI and ML techniques will open 

up opportunities for more energy savings while keeping the building comfortable. 

In particular, adjusting dynamic set-points in commercial buildings will depend 

on how comfort modeling is connected to human activity in the building. 

Tracking human activity brings the notion of context-awareness as another line 

of research that will provide value to efficient building management with 

satisfactory comfort levels to its occupants. As these models are exchanging data 

about the building and its occupants, security and privacy become important 

issues to investigate in smart buildings. Indeed, smart buildings bring about many 

interesting research challenges that are still an active line of research with many 

opportunities with the application of AI and ML.  

2. Individual-level model of occupant thermal comfort and a model validation 

method. The developed models allow simultaneous consideration of office and 

classroom buildings occupants and comfort/productivity. When focusing mainly 

on the building types, regardless of the season, it can be stated that in naturally 

ventilated and mixed-mode buildings, thermal comfort indicators depend more 

on anthropometric (or personal) parameters (such as Age, Sex, BMI) than air-

conditioned buildings. In this type of buildings, the occupants activate the air-

conditioning even they might feel comfortable. However, it was also found 

indicative of the influence of the operation of the air conditioning and the way 

they dress, which interferes with the use of the air conditioning. Analyzing the 

thermal perception of occupants under the different forms of buildings types, it 

is further concluded that there is a strong tendency to thermal discomfort by 

excessive cold during the operation of air-conditioners, and to thermal discomfort 

by heat when natural ventilation is used. Concerning the suitability of the current 

methods of thermal comfort for indoor environments evaluation indicated by 

ASHRAE 55, it is concluded that the method derived from the PMV-PPD model 

is the one that presents unsatisfactory results when compared to the actual 

sensation and thermal comfort votes from the investigated buildings. However, it 

is important to emphasize that this problem is not directly related to the model, 

but to the way, standards restrict its application. According to O. Fanger, 
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dissatisfaction related to the thermal environment (and consequently thermal 

acceptability) is defined by the -2 and -3, and +2 and +3 votes of the seventh scale 

of thermal sensation. Thus, limiting thermal comfort or acceptability to an interval 

of ±0.5, as in the case of ASHRAE 55/2013, or at worst to ±0.7 as ISO 

7730/2005 (which still suggests as ideal the brief interval between ±0.2), in 

addition to contradicting the theoretical foundation of the model, ends up 

erroneously characterizing thermal comfort votes in thermal discomfort (the 

percentage of people who reported thermal discomfort was less than 10% in all 

intervals of PMV calculated and analyzed: ±0.5, ±1.0 and ±1.5). 

As final considerations, the evaluation of thermal comfort is made in different ways, 

when considering the various parts of the world and its climatic and cultural 

characteristics. Given the wide variety of models, approaches, and existing applications 

for thermal comfort assessment, it is important to understand that the use of such models 

should be carefully thought-out and limited to the conditions for which they are intended. 

The ability to adapt and control environmental conditions has provided space for 

occupants to experience more thermally comfortable environments, which can provide a 

significantly higher level of overall satisfaction, as well as a better thermal and energy 

performance of the building.  

During thermal comfort experiments, it is important to emphasize that the occupants 

can, in most cases, react in different ways under the same environmental conditions. Thus, 

it is correct to assume that anthropometric or psychosocial factors, besides the parameters 

already considered by the current models, directly influence the thermal perception and 

the quality of the internal environment supplied to the occupants. Anthropometric 

parameters such as age, weight, and height actively contribute to thermal perception, and 

when combined, may produce unproven effects. According to the studies discussed in 

this report, there is little evidence of the influence of such characteristics on the operation 

of air conditioners; but in general, it is known that female occupants are sensitive to lower 

temperatures, while the older people may prefer higher temperatures than those preferred 

by younger people. Obese people are more sensitive to heat, which can make these users 

prefer cooler environments. Although prominent in a few studies, such results require 

further investigation. 
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6.2 LIMITATIONS OF THE WORK 

The main limitations of this research are restricted to those arising from field experiments 

where the main study variables are related to the responses and behavior of real occupants 

performing their work routine. However, it is important to point out that there are still 

limitations related to the aspects: 

1. Waist measurement. As our thesis aims to estimate the relationship between the 

anthropometric parameters (mainly the waist, BMI including height and weight) 

and the thermal comfort of the occupants. However, the database used does not 

include the waist measurements, so our developed models may not cover the body 

dimensions aspect of the users. In this regard, including such parameters in our 

model is required. 

2. Body mass and height. In this study, we considered the body mass index 

(relationship between body mass and height) as a parameter for the classification 

of people overweight, people with normal weight, and people underweight. This 

index does not measure body fat and may not adequately reflect the ratio between 

muscle and fat, which may lead to erroneous classifications. 

6.3 FUTURE WORK ITEMS 

During the development of this work, some ramifications concerning the topic were 

observed that could be explored, seeking a greater understanding and expansion of 

information: 

1. New filed surveys on commercial buildings and human behaviour for people 

performing different activities in the four seasons of the year; such conditions 

would provide new analysis and effective conclusions regarding the effect of 

outdoor conditions and users’ behaviors on their thermal comfort. 

2. Elaboration and validation of new methods for analysis focused on differences 

and variability of anthropometric characteristics, seeking more conclusive results 

of the combined effect of such characteristics on the thermal perception of 

occupants; 

3. Analysis of unusual factors and their influence on thermal perception, such as 

stress, mood, physical condition, smoking habits, and daily workload. Few 

researches focused on aspects of this type in thermal comfort studies. However, 
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it is known that these often influence the final analyses and can generate erroneous 

results. 
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