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ON THE SECRECY ANALYSIS OF COGNITIVE RADIO NETWORKS 

 

Abstract: The increasing number of connected devices represents a major challenge for broadband wireless 

networks that would require a paradigm shift towards the development of key enabling technologies for the fifth-

generation wireless networks. One of the key challenges towards realizing the next-generation wireless networks, 

however, is the scarcity of spectrum, owing to the unprecedented broadband penetration rate in recent years. 

Cognitive radio has emerged as a promising solution to the current spectrum crunch. Assuming a spectrum sharing 

scenario, the unlicensed users, also known as secondary users, opportunistically access the spectrum of primary 

(licensed) users under the constraint of not causing harmful interference to them. 

Similarly to traditional wireless networks, cognitive radio networks (CRNs) could be vulnerable to several attacks 

that could disrupt their operation. Eavesdropping attack is one of the security threats that can occur at the physical 

layer. Therein, unauthorized users try to overhear the communication between legitimate users. Since the SUs have 

to continuously adapt their transmit power to avoid causing harmful interference to the PUs, ensuring the security at 

the physical layer becomes a challenging task. Although several research works have investigated physical layer 

security (PLS) of wireless communication networks, secrecy analysis of CRNs is among the hottest research topics 

that are in their infancy. Therefore, in this thesis, the PLS of several cognitive radio-based wireless communication 

systems has been investigated and some main techniques such as friendly jammer, space diversity, and energy 

harvesting have been considered for security enhancement purposes. 

The first phase of work focused on investigating the impact of exploiting a multi-antenna relay to forward the 

message from a source to the intended destination. Indeed, secrecy metrics have been derived by considering a 

generalized fading model namely, Nakagami-m. The second phase of investigation consisted in performing secrecy 

analysis of different EH-based CRNs. Specifically, focus was placed on deriving closed-form and asymptotic 

expressions for the secrecy outage probability, based on which the impact of different key parameters of the 

network was investigated and new insights were gained. Finally, we focused our efforts on investigating the impact 

of a friendly jammer on the secrecy performance of CRNs. Indeed, our aim was to continuously send an artificial 

noise that could be added to the eavesdroppers’ signal and thus decrease his signal-to-noise ratio. However, given 

the power adaption constraint of secondary users, we were uncertain whether a friendly jammer would contribute to 

the enhancement of the secrecy performance of CRNs. Therefore, secrecy metrics were derived based on which we 

were able to conclude meaningful insights as to when a friendly jammer could improve the secrecy of a given 

communication system. Moreover, another main contribution consisted in deriving a new and generalized 

expression for the intercept probability representing communication between two nodes, through the aid of a relay 

performing decode-and-forward protocol, in the presence of two eavesdroppers at the first and second hop. 

Keywords: Cognitive radio networks, dual-hop based satellite communication, eavesdropping, energy harvesting, 

fading channels, friendly jammer, intercept probability, maximum tolerated interference power, physical layer 

security, power-splitting, secrecy capacity, secrecy outage probability, time-switching. 
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Abstract

The increasing number of connected devices represents a major challenge for broadband wire

less networks that would require a paradigm shift towards the development of key enabling

technologies for the fifth-generation wireless networks. One of the key challenges towards

realizing the next-generation wireless networks, however, is the scarcity of spectrum, owing to

the unprecedented broadband penetration rate in recent years. Cognitive radio has emerged as

a promising solution to the current spectrum crunch. Assuming a spectrum sharing scenario,

the unlicensed users, also known as secondary users, opportunistically access the spectrum of

primary (licensed) users under the constraint of not causing harmful interference to them.

Similarly to traditional wireless networks, cognitive radio networks (CRNs) could be vulner-

able to several attacks that could disrupt their operation. Eavesdropping attack is one of the

security threats that can occur at the physical layer. Therein, unauthorized users try to over-

hear the communication between legitimate users. Since the SUs have to continuously adapt

their transmit power to avoid causing harmful interference to the PUs, ensuring the security

at the physical layer becomes a challenging task. Although several research works have inves-

tigated physical layer security (PLS) of wireless communication networks, secrecy analysis of

CRNs is among the hottest research topics that are in their infancy. Therefore, in this thesis,

the PLS of several cognitive radio-based wireless communication systems has been investigated

and some main techniques such as friendly jammer, space diversity, and energy harvesting have

been considered for security enhancement purposes.

The first phase of work focused on investigating the impact of exploiting a multi-antenna

relay to forward the message from a source to the intended destination. Indeed, secrecy metrics

have been derived by considering a generalized fading model namely, Nakagami-m. The second

phase of investigation consisted in performing secrecy analysis of different EH-based CRNs.

Specifically, focus was placed on deriving closed-form and asymptotic expressions for the secrecy

outage probability, based on which the impact of different key parameters of the network was

investigated and new insights were gained. Finally, we focused our efforts on investigating the

impact of a friendly jammer on the secrecy performance of CRNs. Indeed, our aim was to

continuously send an artificial noise that could be added to the eavesdroppers signal and thus



decrease his signal-to-noise ratio. However, given the power adaption constraint of secondary

users, we were uncertain whether a friendly jammer would contribute to the enhancement of the

secrecy performance of CRNs. Therefore, secrecy metrics were derived based on which we were

able to conclude meaningful insights as to when a friendly jammer could improve the secrecy of a

given communication system. Moreover, another main contribution consisted in deriving a new

and generalized expression for the intercept probability representing communication between

two nodes, through the aid of a relay performing decode-and-forward protocol, in the presence

of two eavesdroppers at the first and second hop.

Keywords: Cognitive radio networks, dual-hop based satellite communication, eavesdropping,

energy harvesting, fading channels, friendly jammer, intercept probability, maximum tolerated

interference power, physical layer security, power-splitting, secrecy capacity, secrecy outage

probability, time-switching.
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‖h‖F Frobenius norm of a vector h

hl Fading amplitude of link l

gl = |hl|2 Channel gain of link l

ml Fading severity parameter of link l

αl, βl Turbulence-induced fading parameters

PTx Transmit power of node Tx

Pmax
Tx Maximum transmit power at node Tx

xTx Transmitted signal from node Tx

yRx received signal at node Rx

PI Maximum tolerated interference power at PU receiver

nZ Additive white Gaussian noise(AWGN) at node Z

dZ Distance between the satellite and the node Z

bX Half average power of the multi-path component

ΩX Average power of LOS component

r Detection technique parameter

φ Path-loss exponent

γth Decoding threshold SNR

Kv (.) Modified Bessel function of the second kind

1F1(.; .; .) Confluent hypergeometric function

j
√
−1
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General Introduction

In recent years, the proliferation of mobile devices has led to unprecedented demand for wire-

less spectrum and energy-efficient solutions [1–4]. In this regard, cognitive radio and energy

harvesting (EH) paradigms have emerged as promising solutions to ensure spectrum and energy

efficiency. Specifically, cognitive radio allows effective utilization of the spectrum [5, 6], while

EH enables devices to harvest energy from ambient RF signals [7, 8]. In underlay cognitive

radio networks (CRNs), the issue of radio-frequency spectrum scarcity is alleviated by allowing

the secondary users (SUs) to share the spectrum with primary users (PUs) under the condition

of not causing any harmful interference to them [9–11]. Consequently, the SUs are required to

continuously adjust their transmit powers in order to meet the PUs’ quality of service (QoS).

Under the conditions of spectrum and energy efficiency constraints, ensuring the physical

layer security (PLS) of multi-hop CRNs becomes a challenge of utmost importance. It has been

demonstrated by Wyner in his seminal work [12] that a system is secure if the capacity of the

legitimate user is higher than that of the wiretap channel. However, in practical scenarios, the

main channel does not always have a higher capacity. Therefore, in order to achieve secure

communication, one can either increase the capacity of the main link or decrease the one

of eavesdropping channel. To do so, several techniques have been proposed in the literature,

including exploiting (i) a friendly jammer to transmit artificial noise to malicious eavesdroppers

[13–16], (ii) cooperative transmission through one or multiple relays [17–21], (iii) space diversity

[22–26], (iv) employing zero-forcing precoding techniques [27–30], etc.

Problematic and contributions

The deployment of CRNs requires the consideration of more realistic scenarios and investigating

the joint impact of multiple key parameters of the network. Although several research works
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have investigated the PLS of CRNs, many system setups (e.g., presence of multiple eavesdrop-

pers, uplink communication system in the presence of multiple users, harvesting energy from

SU signals instead of PU signals, etc.) have not been considered yet in the literature due to

the complexity of the analytical approaches. For instance, several works such as [31–35] in-

vestigated the PLS of EH-based systems by considering that the energy-constrained node is

harvesting energy from PU signals. On the other hand, the impact of a jamming signal on the

system’s security has been extensively investigated for traditional wireless networks [13–16],

whereas few research works have dealt with jamming signal in the case of CRNs.

Therefore, the main objectives of this thesis are as follows

� To fill the existent gap in the literature with regard to the PLS of dual-hop CRNs, we

aimed at considering more realistic scenarios such as the presence of multiple eavesdrop-

pers, uplink communication system in the presence of multiple users, etc.

� Differently from the existing works, we aim to investigate the secrecy performance of

EH-based CRNs where the energy is harvested from the SU signals which added another

layer of complexity to assess the security of the system.

� To the best of our knowledge, few research works have investigated the impact of jamming

signals on the physical layer security of CRNs [36, 37]. Therefore, our aim was to inves-

tigate the impact of jamming-signal on the overall system’s security under the condition

of power adaptation constraint of an SU friendly jammer.

The main contributions of this thesis are

� We inspect the impact of space diversity on the secrecy performance of a dual-hop CRNs

over a generalized fading model, namely Nakagami-m [38].

� Investigate the PLS of EH-based CRNs by considering that SU relay is harvesting energy

from the SU source. The analytical expressions for the considered secrecy metric are

derived over independent and non-identically distributed (i.n.id) and independent and

identically distributed Rayleigh fading models [39,40].

� We investigate the PLS of jamming-based CRNs along with space diversity and we at-

tempt to answer the following question: Can better secrecy be achieved without jamming
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by considering a single antenna at eavesdroppers and multiple-ones at the legitimate users

(i.e., relay and end-user) rather than sending permanently an artificial noise and consid-

ering that both the relay and the destination are equipped with a single antenna, while

multiple antennas are used by the eavesdroppers? [41–44].

� We provide a new framework for the IP of a dual-hop decode-and-forward (DF) relaying

in the presence of eavesdroppers at each hop based on which we investigate the PLS

of a hybrid satellite-terrestrial cognitive network (HSTCN) and attempt to answer the

following question: could a friendly jammer further enhance the security of a system even

in a low SNR regime? [44].

Structure

The remainder of this dissertation is organized as follows: Chapter 1 depicts a state of art, while

Chapter 2 represents our contribution dealing with the impact of space diversity on the CRN

security. Chapter 3 depicts our contributions dealing with the performance analysis of EH-

based underlay CRN, while in Chapter 4, our contributions related to the secrecy performance

of jamming-based underlay CRN are presented. Finally, several conclusions and perspectives

are provided.
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Chapter 1

State of Art

In this chapter, a review of the wireless communication in the form of either radio frequency

(RF) signals or optical light waves along with the channel impairments is presented. Techniques

such as diversity, jamming-based communication, EH are also introduced and their impact on

improving the security is highlighted.

1.1 Wireless Communications

In this section, technologies allowing for an efficient spectrum utilization are introduced. Al-

though these technologies allow mitigating spectrum scarcity issue, they can be subject to

several channel impairments that could degrade the performance of a communication system.

Therefore, the main channel impairments for both RF and free space optics (FSO) along with

some corresponding mitigation techniques are also provided in this section.

1.1.1 RF and visible spectrum

Wireless communication is ensured through electromagnetic waves that are transmitted in the

free space. The wireless transmission can be performed by either using radio waves in the range

300 kHz and 300 GHz or optical light waves which accounts for the visible spectrum ranging

from 300 GHz to 3000 THz.
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1.1.2 Cognitive radio networks

The proliferation of mobile users over the last decade resulted in an unprecedented demand for

radio spectrum resources leading to a spectrum scarcity issue [45,46]. Since the radio spectrum

is a very limited resource, its allocation policy is controlled by some authorities such as the

national agency for the legalization of communications (ANRT) in Morocco and the federal

communications commission (FCC) in the US. The main role of these authorities is to assign

the radio spectrum to some users for specific technologies and services using static spectrum

allocation policies. Recent studies revealed that, under this fixed spectrum allocation (FSA)

policy, certain channels can be heavily occupied while others are rarely used [47, 48]. In this

regard, developing new techniques for spectrum allocation becomes mandatory in order to

achieve and efficient spectrum utilization and alleviate the spectrum scarcity issue.

Since the allocated spectrum is not always exploited by their owners called primary users

(PUs), a new spectrum allocation policy could be established to mitigate the spectrum scarcity

problem. In contrast to FSA, a dynamic spectrum allocation (DSA) policy can be used to

achieve a better exploitation of the spectrum by allowing unlicensed users also called secondary

users (SUs) to share spectrum with PUs [49, 50]. In order to perform DSA, several solutions

have been proposed, including cognitive radio [49–53]. Indeed, cognitive radio can be defined

as intelligent radio frequency transmitter/receiver able to detect available channels and adjust

its transmission parameters to use these channels. Therefore, this new paradigm allows the

SUs to opportunistically access the radio spectrum assigned to PUs under the condition of not

causing harmful interference to existing traffics. Depending on the knowledge that is required to

access the spectrum of the primary network, cognitive radio approaches fall into three distinct

categories namely, underlay, overlay, and interweave [54].

Underlay cognitive radio

This mode is known to be efficient in terms of spectrum utilization as it allows the SUs to

simultaneously share the spectrum with the active PUs (i.e., the PUs are also using the spec-

trum) [54]. This can be performed under the condition of not causing harmful interference

to the primary network. Therefore, the main functions to achieve a better performance in

underlay CRN are spectrum sharing and spectrum mobility. The former allows multiple SUs
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to coordinate with the PUs and transmit their data simultaneously with them. The latter

deals with the changeover channels when spectrum access policies are violated (i.e. harmful

interference is introduced to the PU signals). In order to avoid interfering with PU signals, the

SU node has to adapt his transmit power as [39]

PS = min

(
Pmax
S ,

PI
gSP

)
, (1.1)

where Pmax
S is the maximal transmit power of the SU, PI accounts for the maximum tolerated

interference power (MTIP) at the PU receiver, and gSP = |hSP |2 with hSP standing for the

fading amplitude of the link between SU transmitter and the PU receiver.

Interweave cognitive radio

In this mode, the SUs access the spectrum only when it is not used by the PUs. To do so,

the SUs are required to continuously perform spectrum sensing in order to detect available

spectrum holes that are unoccupied by the PUs. It has been reported by several research works

(e.g. [55], [56]) that the network’s performance can be deteriorate by an imperfect spectrum

sensing. Spectrum decision is another important function that is used to select the best available

channels. Similarity to underlay mode, spectrum mobility is of utmost importance as it allows

vacating some frequency bands when the PUs start using them.

Overlay cognitive radio

Differently from the two previous modes, the overlay mode allows the SUs to share the spectrum

with the PUs under the condition to act as a relay to PUs’ messages [57]. Therefore, the SU

has to continuously adapt its transmit power as in (1.1).

1.1.3 FSO communication

Similarly to CRNs, FSO technology could be also used as an alternative solution to overcome

the spectrum scarcity issue and provide high data rate. Indeed, high-speed communication (i.e.,

Tbps per optical beam) can be achieved by employing FSO technology [58] where the data is

transmitted with the help of an optical source emitting light beams in either visible (400-800

nm) or infrared (1500-1550 nm) spectrum bands [59, 60]. Besides providing high data rate,

18



FSO communication is most immune to the interference and provide a high level of security

against wiretapping attacks due to its narrow beamwidth. Despite the advantages of the FSO

technology, the optical feeder is vulnerable to several critical issues, such as the atmospheric

turbulence, and pointing error loss due to beam wandering [61].

Atmospheric turbulence

Optical light wave propagation in the atmosphere is subject to random fluctuations due to

atmospheric turbulence. Such impairment is caused mainly by the rapid changes in the tem-

perature, pressure, as well as the refractive index change in the propagation environment [62].

This latter factor leads to creating several turbulent cells with different indices of refraction,

called eddies. To this end, the refractive index structure parameter and the Rytov variance are

the two key parameters that describe the turbulence effect. In the context of vertical optical

links, the altitude-dependent refractive structure index parameter in m−
2
3 can be expressed for

the uplink using the Hufnagel-Valley Boundary model as [63, Eq. (10)]

C2
n(h) = 0.00594

(
Vw
27

)2 (
10−5h

)10
e−

h
1000 + 2.7× 10−10e−

h
1500 + Ae−

h
100 , (1.2)

with h is the altitude in meters, Vw stands for the wind speed in m/s, and A is the measured

value of the refractive index structure parameter at the ground (i.e., h = 0). A mostly common

value for A is to A = 1.7 × 10−14 m−
2
3 for Vw = 21 m/s [64]. Based on the above result, the

Rytov variance is given as [65]

σ2
R = 8.70

∫ dυ

h0

C2
n(h)

( [
Lλϑ2(h)

πW 2
L

+ iϑ (h)
(

1 + Lϑ(h)
F

)] 5
6 −

(
Lλ
πW 2

L

) 5
6
ϑ

5
3 (h)

)
dh, (1.3)

where ϑ (h) = dυ−h
dυ−h0

, dυ and h0 are the satellite and optical ground station (OGS) altitudes

with respect to the sea level, L = dυ−h0

cos(θ0)
with θ0 referring to the satellite’s zenith angle with

respect to the OGS, λ is the operating wavelength, and [65,66]

F = dυ − h0 +
z0

dυ − h0

, (1.4)

W 2
L = W 2

0

(
1 +

(dυ − h0)2

z2
0

)
+ 2

(
2λ (dυ − h0)

πr0,s

)2

, (1.5)
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denote the radius of curvature and the square of the beam waist at the satellite altitude, with

W0 stands for the beam waist at the origin, z0 =
πW 2

0

λ
is the Rayleigh distance, and [66]

r0,s =

[
0.42

(
2π

λ

)2 ∫ dυ−h0

0

C2
n(h)

(
1− h

dυ − h0

) 5
3

dh

]− 3
5

, (1.6)

refers to the coherence diameter.

Gamma-Gamma model, proposed by [64], considers that the light propagation through a

turbulent medium consists of small-scale (i.e., scattering) and large-scale (i.e., refraction) effect.

The PDF of the normalized received irradiance Ia subject to atmospheric turbulence is given

by [62]

fIa(x) =
2 (αβ)

α+β
2

Γ (α) Γ (β)
x
α+β

2
−1Kα−β

(
2
√
αβx

)
, x ≥ 0, (1.7)

where Kv (.) is the modified Bessel function of the second kind and v-th order [67, Eq. (8.432.1)].

Importantly, the turbulence-induced fading parameters α > 0 and β > 0 are expressed in terms

of the Rytov variance σ2
R given in (1.2) as follows [63,68]

α =

exp

 0.49σ2
R(

1 + 1.11σ
12
5
R

) 7
6

− 1


−1

, (1.8)

β =

exp

 0.51σ2
R(

1 + 0.69σ
12
5
R

) 5
6

− 1


−1

. (1.9)

Remark 1. It can be noticed from (1.8) and (1.9) that α and β increase with the increasing

of the Rytov variance. Therefore, it can be seen from (1.2) and (1.3) that the greater the wind

speed Vw is, the stronger is the turbulence.

Beam wandering and pointing error

The beam wandering is a phenomenon which occurs when the size of turbulence eddies are

larger than the beam size. This results in a random deflection of the beam from its propagating

direction by several hundreds of meters, and thus results in pointing error issue [69]. In such

an instance, the pointing error strength, which is the ratio between the equivalent beam waist

at the satellite altitude and the beam wander displacement variance, is the key parameter that
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quantifies the pointing error loss severity, given as [70]

ξ =
Weq

2σ2
s

, (1.10)

where σ2
s and Weq are the random beam wander displacement variance as well as the equivalent

beam waist, being expressed as [65,70]

σ2
s = Bw

1−
π2W 2

0

r0,s

1 +
π2W 2

0

r0,s

 , (1.11)

Weq = WL

√√√√erf

(√
πR

2WL

)√
WL

2R
exp

(
πR

4WL

)
, (1.12)

respectively, with erf(.) is the error function [67, Eq. (8.250.1)], R is the receiver’s aperture

radius, Bw = 0.54 (dυ − h0)2
(

λ
2W0

)2 (
2W0

r0,s

) 5
3

denotes the beam wander displacement in meters.

A widely used statistical model for representing the PDF of the normalized received irradiance

Ip subject to pointing error impairment is given as [70]

fIp (x) =
ξ2

Aξ
2

0

xξ
2−1; 0 ≤ x ≤ A0, (1.13)

where A0 =
(

erf
(√

πR
2WL

))2

is the fraction of the collected power at ρ = 0 such that ρ is the

distance between the bean footprint and the receiver photoelectric center.

Notwithstanding that in the context of pointing loss impairment, tracking and pointing

algorithms are among the key solutions the reduction of the pointing error impact [69].

Free-space path-loss

Similarly to the RF communication, its FSO counterpart can be impaired by FSPL, which is a

deterministic phenomenon that arises from the atmosphere and layers particles absorption and

scattering. Herein, the propagating photons either lose their energy through absorption or get

deflected through scattering. A general expression for the normalized received light irradiance

21



is given as [69]

Il =
Ir
I0

= exp

[
− sec (θ0)

∫ dv

h0

c (λ, h) dh

]
, θ0 6=

π

2
, (1.14)

with sec (.) = 1
cos(.)

is the secant function, θ0 refers to the satellite’s zenith angle with respect to

the OGS, I0 and Ir are the transmit and receive irradiances in W/m2, respectively, and c (λ, h)

stands for the wavelength and altitude-dependent attenuation coefficient, and is given by [69]

c (λ, h) = am (λ, h) + ae (λ, h) + bm (λ, h) + be (λ, h) , (1.15)

with am (λ, h) , ae (λ, h) , bm (λ, h) , be (λ, h) denote the molecular, aerosol absorption coefficients

and their scattering counterparts, respectively which are depending on both frequency and

altitude.

SNR statistical representation

Capitalizing on the PDF expressions in (1.7) and (1.13) alongside [71, Eq. (03.04.26.0008.01)]

and some algebraic manipulations, the respective PDF and CDF of the SNR γZ = (ηI)r

σ2
N

can be

obtained as [60]

fγZ (z) =
OZ
rz
G3,0

1,3

ΥZ r

√
z

µ
(Z)
r

∣∣∣∣∣∣∣
−; ξ2

Z + 1

ξ2
Z , αZ , βZ ;−

 , (1.16)

FγZ (z) =
rαZ+βZ−2OZ

(2π)r−1 G3r,1
r+1,3r+1

 Υr
Zz

r2rµ
(Z)
r

∣∣∣∣∣∣∣
1;κ

(Z)
1

κ
(Z)
2 ; 0

 , (1.17)

where r
√
. denotes the rth root, OZ =

ξ2
Z

Γ(αZ)Γ(βZ)
, µ

(Z)
r = E [γZ ], ΥZ =

ξ2
ZαZβZ
ξ2
Z+1

, κ
(Z)
1 =

{
ξ2
Z+i

r

}
i=1:r

,

κ
(Z)
2 =

{
ξ2
Z+i

r
, αZ+i

r
, βZ+i

r

}
i=0:r−1

, Gm,n
p,q

.
∣∣∣∣∣∣∣

(ak)k≤p

(bk)k≤q

 denotes the Meijer G-function [67, Eq.

(9.301)], and r is a detection technique depending-parameter (i.e., r = 1 refers to coherent

detection, and r = 2 accounts for the direct detection).
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1.1.4 Wireless channel impairments

To design reliable wireless communication systems, it is imperative to understand how prop-

agating radio waves are attenuated. Indeed, the propagation of electromagnetic waves in the

free-space (wireless channel) is susceptible to several impairments including channel impedi-

ments, interference, and noise that are unpredictably changing over time [72]. These impair-

ments could result in a variation in received signal power due to free-space path loss, shadowing,

and multipath fading [72,73].

Free-space path-loss

The free-space path-loss (FSPL) represents a deterministic attenuation of the signal strength

between the transmitter and receiver over a communication channel free from obstacles. Since

variation in the signal strength occurs over large distances (100-1000 meters), this attenuation

is sometimes termed to as large-scale propagation effects [72]. The FSPL can be modeled as [74]

Pr
Pt

= GtGr

(
λ

4πdref

)2(
dref
d

)φ
. (1.18)

where Pt and Pr are the transmitted and received powers, respectively, Gt and Gr are the

transmitter and the receiver antenna gains, respectively, λ is the wavelength, dref and d is a

reference distance for the antenna far-field and the distance between the transmitter and the

receiver, and φ is the environment-dependent path-loss exponent.

Shadowing

Shadowing phenomena occurs when the transmitted signal encounters obstructing large-scale

objects (e.g., buildings, trees, etc) throughout the communication channel which results in

random fluctuations of the signal envelope and thus attenuation of the signal power [75,76].

Fading

In a typical wireless communication environment, the transmitted signal encounters multiple

objects throughout the communication channel which creates reflected, diffracted, or scattered

copies of the signal [72] as shown in Figure 1.1. These copies, also called multipath signal
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components, reach the receiver with random delays, magnitudes, and phases. The summation

of these components at the receiver results in a distortion of the signal(i.e., fading) [72,76].

Generally, one can distinguish between two types of fading, namely fast and slow fading. In

the former, the channel impulse response changes rapidly during a symbol duration Ts, while

in the latter no change occurs over time [77].

Figure 1.1: Multipath wireless propagation.

1.1.5 RF fading models

Given the random variation of the signal strength due to fading phenomena, several statistical

models have been proposed in the literature to characterize the fading. In the sequel, we will

present exclusively the RF fading models considered in our research works.

Rayleigh fading

Rayleigh distribution is used to characterize the propagation of a transmitted signal through

a communication channel where no line-of-sight (LOS) exists [72]. The probability density

function (PDF) of the fading amplitude h is expressed as [73, Eq.(2.6)]

fh (x) =
2x

Ω
exp

(
−x2

Ω

)
, x ≥ 0, (1.19)

where Ω = Eh [h2] represents the average fading power, and EX [.] denotes expectation operator

with respect to the random variable (RV) X.
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Nakagami-m fading

Nakagami-m fading is generally suitable for land-mobile and indoor mobile multipath propa-

gation [73]. The PDF of Nakagami-m distribution is given as [73, Eq. (2.20)]

fh (x) =
2mmx2m−1

Γ (m) Ωm
exp

(
−mx

2

Ω

)
, x ≥ 0, (1.20)

where Γ (.) denotes the Euler Gamma function [67, Eq. (8.310)], Ω = Eh[h2], with m ≥ 0.5

denotes the fading severity parameter. It is worth mentioning that when m = 1, Nakagami-m

is reduced to Rayleigh model.

Shadowed Rician fading

Shadowed Rician fading model perfectly describes the land mobile satellite (LMS) channel. The

PDF of the channel gain corresponding to a link l can be characterized as

fgl (x) = ∆le
−βlx

1F1 (m
l
; 1; δ

l
x) (1.21)

(a)
= ∆le

−υlx
ml−1∑
n=0

φ
(n)
l xn,

where ∆l = 1
2bl

(
2blml

2blml+Ωl

)ml
, υl = βl − δl , βl = 1

2bl
, δl =

βlΩl
2b
l
m
l
+Ω

l
, φ(n)

l
=

(ml−1)!δn
l

(ml−1−n)!(n!)2 ,

1F1(.; .; .) denotes the confluent hypergeometric function [67, Eq. (9.210)], and step (a) follows

by assuming that m
l

is a positive-valued number and by using jointly Eqs. (06.10.02.0003.01)

and (07.20.03.0025.01) of [71]. The corresponding cumulative distribution function (CDF) can

be straightforwardly obtained from the above PDF as

Fg
l
(x) = ∆

l

m
l
−1∑

n=0

φ(n)
l

∫ x

0

t
n

e−υl tdt (1.22)

= ∆
l

m
l
−1∑

n=0

φ(n)
l

υn+1
l

γinc (n+ 1, υ
l
x),

where γinc (., .) denotes the lower incomplete Gamma function [67, Eq. (8.350.1)].
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1.2 Diversity Systems

To mitigate the destructive effect of multipath fading and enhance the reliability of a commu-

nication system, diversity techniques had been proposed as an effective solution by combining

constructively multiple replicas of the transmitted signal at the receiver. Indeed, it has been

suggested that these replicas would experience independent fading, which would reduce the

probability that all paths could fade simultaneously. Diversity can be achieved using multiples

approaches, namely [73]

� Time Diversity: Consists in sending multiple copies of the signal over different time

slots. To circumvent the intersymbol interference, the time slots have to be separated by

the channel coherence time [72].

� Frequency Diversity: Multiple copies of the signal are transmitted at the same time

using different carrier frequencies. In a similar manner, these frequencies have to be

separated by the coherence bandwidth so as to experience independent fading scenario

[73].

� Space Diversity: Consists in transmitting the signal over different propagation paths.

This could be achieved by using multiple transmit and/or receive antennas [76]. In

order to avoid fading correlation, the antennas have to be separated by at least half

the wavelength [72].

� Intelligent reflecting surfaces (IRSs): Consists of matrix of small reflecting elements

able to reflect smartly the transmitted signal towards the end-user, regardless of its po-

sition [78].

Among combining techniques that have been proposed in the literature, one can highlight

the most practical ones:

� Maximal-ratio combining (MRC): with the help of such a receiver, the received copies

are linearly combined together after removing the phase shift and using optimal weights

equal to the fading amplitudes [72,79]. Therefore, the combined SNR at the receiver can

be expressed as
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γ =
L∑
i=1

γi, (1.23)

where L is the number of diversity branches.

� Equal-gain combining (EGC): Differently from MRC, this receiver corrects the phase

shift of the received signals and then combines them with equal gain [73,80]. Hence, the

combined SNR is given by

γ =

(∑L
i=1

√
γi

)2

L
. (1.24)

� Selection combining (SC): This technique consists in selecting the antenna with the

highest SNR [73,80]. Therefore, the SNR can be expressed as

γ = max
i≤L

γi. (1.25)

1.3 Energy Harvesting

The rapid increase of internet of things (IoT) devices with limited power constraints has led

to unprecedented demand for energy efficient solutions. Indeed, prolonging the lifetime of

energy-constrained nodes is the key factor towards achieving self-sustaining futuristic wireless

networks. In this regard, harvesting energy from radio-frequency (RF) signals has gained

considerable attention during the past years [81–89]. Besides, environmental sources of energy

(e.g., thermal, vibration, and solar), energy-constrained nodes could scavenge energy from

ambient radio sources such as TV broadcast and cellular networks so as to ensure a long-term

functioning and sustainability of mobile communication.

1.3.1 Wireless EH protocols

In the literature, as it can be seen in Fig. 1.2 one can distinguish three main wireless EH

protocols:
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1. Wireless power transfer (WPT): Consists of transferring only energy signals to the energy-

constrained node without sending information signals [86,87].

2. Wireless-powered communication network (WPCN): EH is carried out in a first time slot

by the energy-constrained node following information transfer in a second time slot [88].

3. Simultaneous wireless information and power transfer (SWIPT): The concept of SWIPT

was first introduced in [89] where both EH and information processing could be carried

out simultaneously.

SWIPT/SLIPT:
Information and energy transfer on 

1 time slot

Power transfer

WPCN:
Information and energy transfer on 

2 time slots

WPT:
Energy transfer on 1 time slot

Information transfer

Figure 1.2: Wireless EH protocols.

1.3.2 Variants of SWIPT protocol

Due to the robustness of SWIPT protocol, compared to the two other aforementioned ones, it

has been considered in our contributions in Chapter 3. Indeed, two SWIPT variants have been

presented in the literature, namely, time switching (TS) and power splitting (PS) [84,85].

Time Switching

TS protocol allocates portion of the time to EH and dedicates the rest to information processing.

As illustrated in Fig. 1.3a, the energy-constrained relay node performs information processing

during αT0, 0 ≤ α ≤ 1 and harvests energy during (1−α)T0 where T0 stands for the dedicated

time slot for S-R communication. Therefore, the harvested energy at the relay is given by

EH = η(1− α)PS |hSR|2 T0, (1.26)
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where η, PS, and hR denote the energy conversion efficiency (0 < η < 1), the source’s transmit

power, and fading coefficient, respectively.

Power Splitting

The PS protocol splits the received signal into two streams, one for EH and the other one for

information decoding. As depicted in Fig. 1.3b, the relay uses a fraction of power αPS to carry

out the information processing, while the remaining power (1− α)PS is used to harvest energy.

Therefore, the harvested energy is given by

EH = ηPS(1− α) |hSR|2 T0. (1.27)

Importantly, the harvested energy by the relay R is assumed to be used for forwarding the

information signal to its destination during a time slot T1. Therefore, the transmit power at

the relay is

PR =
EH
T1

=
ηPS |hSR|2 (1− α)T0

T1

, (1.28)

Information decoding 
Information 
forwarding   

Energy 
harvesting 

Energy Harvesting 

Information 
Processing 𝛼𝑇0 

(1 − 𝛼)𝑇0 

𝛼𝑇0 (1 − 𝛼)𝑇0 𝑇1 

R-D hop: 2nd time slot  𝑇1 S-R hop: 1st time slot   𝑇0 

(a) TS scheme

Information decoding Information 
forwarding   

Energy Harvesting 

Information 
Processing 

Energy Harvesting 

𝛼𝑃𝑆 

(1 − 𝛼)𝑃𝑆 

𝑇0 𝑇1 

𝛼𝑃𝑆 

(1 − 𝛼)𝑃𝑆 

S-R hop: 1st time slot  𝑇0 R-D hop: 2nd time slot 𝑇1 

(b) PS scheme

Figure 1.3: Variants of SWIPT protocol.
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1.4 Jamming-based systems

Jamming-based communication systems consists in exploiting, in addition to the transmitter

S, a legitimate node J to transmit an artificial noise and thus cause interference at the eaves-

dropper node E. Therefore, the SNR at E can be expressed as

γE =
PSgSE

PJgJE +N
, (1.29)

with PS and PJ are the transmit powers of the source and friendly jammer, respectively, gSE

and gJE represent the channel gains of the link S-E and J-E, respectively, and N is the noise

power..

One can see from (1.29) that increasing the transmit power of a friendly jammer decreases

the SNR at the eavesdropper and therefore this techniques allows reducing the capacity of

the eavesdropping link, which contributes to the enhancement of the communication system’s

security.

It is worth mentioning that in this dissertation, we assumed that the legitimate node is able

to cancel out the artificial noise, whereas the eavesdropper cannot cancel it. Indeed, this can

be achieved by generating an artificial noise using a pseudo-random sequence that is known to

the legitimate nodes which allows them to cancel out this noise, while this sequence remains

unknown to the illegitimate ones. Since our main aim is to investigate the PLS of CRNs under

different system setups, noise cancellation techniques are out of the scope in this thesis.

1.5 Physical layer security performance metrics

The broadcast nature of wireless transmission gives the possibility to malicious users to over-

hear the communication channel. Indeed, eavesdropping attack occurs when a malicious user

intercepts the communication of the legitimate users. Traditionally, security can be ensured

using cryptographic techniques that rely on using secret keys to encrypt messages at upper

layers. Although a good security level of the transmitted messages could be achieved using

these cryptographic techniques, they are performed at the cost of computational overhead as

well as additional system complexity for secret key management and distribution. Therefore,

PLS, which leverages the characteristics of the wireless communication channels, gained a sig-
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Transmitter 

 

Receiver 

Wiretap link 

Legitimate link 

Figure 1.4: Eavesdropping attack of an RF transmission.

nificant attention as an enhancing security technique complementary to cryptography. In this

context, it has been pioneeringly demonstrated by Wyner in his seminal work [12] that perfect

secrecy can be achieved when the capacity of the legitimate channel, i.e., the link between the

source and the destination is better than the one of the eavesdropping channel. Therefore, the

secrecy capacity emerged as a new paradigm measuring the difference between the capacities of

the main and eavesdropping channels so as to investigate the secrecy performance of a wireless

communication system. Mathematically speaking, such a metric is defined as

Cs = [CL − CE]+ , (1.30)

where CL = log2 (1 + γL) and CE = log2 (1 + γE) represent the capacities of the main and

wiretap links, respectively, γL and γE refer to the SNR of the legitimate and eavesdropping

links, respectively, and [x]+ = max (x, 0).

For a dual-hop communication system, the secrecy capacity of the end-to-end communica-

tion system is given by

CS = min(C1S, C2S), (1.31)

with CqS denotes the secrecy capacities at the qth hop which is defined as
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C1S =


log2

(
1 + γR
1 + γ1E

)
, γR > γ1E

0 , elsewhere

(1.32)

and

C2S =


log2

(
1 + γD
1 + γ2E

)
, γD > γ2E

0 , elsewhere

(1.33)

where γR, γqE, γD, account for the SNR at the relay R, eavesdropper when intercepting com-

munication at the qth hop, and destination D, respectively.

1.5.1 Secrecy outage probability

The secrecy outage probability (SOP) can be used as a key performance metric to assess the

secrecy level of a given communication system. This metric accounts for the probability that

the secrecy capacity falls below a predefined secrecy rate Rs [90]

SOP = Pr (Cs ≤ Rs) , (1.34)

1.5.2 Intercept probability

The intercept probability (IP) is another secrecy performance metric that stands for the prob-

ability that the capacity of the legitimate link is smaller than the eavesdropping link’s one.

Therefore, the IP can be expressed as [91]

Pint = Pr (Cs ≤ 0) , (1.35)

1.5.3 Average secrecy capacity

The average secrecy capacity (ASC) is another PLS metric quantifying the average behavior of

the gap between the legitimate and wiretapper capacities, irrespective of time. Explicitly, the

ASC can be expressed as [92]

Cs = EγL,γE [Cs] . (1.36)
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Particularly, the metrics given in (1.34)-(1.36) for a direct communication link, can be

expressed, respectively, as

SOP =

∫ ∞
0

FγL
(
2R (z + 1)− 1

)
fγE(z)dz, (1.37)

Pint =

∫ ∞
0

FγL (z) fγE(z)dz, (1.38)

and

Cs =
1

ln(2)

∫ ∞
0

FγSE(z)

1 + z
F c
γeq (z) dz, (1.39)

With F c
. is the complementary CDF.

It is worth mentioning that neither the SOP nor the IP have been derived in the literature

for a decode-and-forward (DF) dual-hop communication system in the presence of two eaves-

droppers. Therefore, a contribution of this thesis is to provide a framework for IP evaluation

when two eavesdroppers are intercepting communication at both hops.

Remark 2. One can see from (1.34) and (1.35) that a perfect secrecy can be achieved by

maximizing Cs. This can be attained by either maximizing the capacity of the legitimate link

(i.e., increasing γL) or minimizing the one of the eavesdropping link (i.e., decreasing γE). To

do so, multiple techniques can be used such as exploiting (i) a friendly jammer to send an

artificial noise and consequently degrade the SNR at the eavesdropper, (ii) MIMO techniques

to enhance the SNR at legitimate nodes, (iii) EH to provide the relay with maximal power for

transmission, etc.
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Chapter 2

PLS of CRNs assisted MIMO

2.1 Introduction

2.1.1 Motivation

Space diversity such as MIMO managed by diversity combining techniques, e.g. MRC or SC,

can be used in practice to overcome the challenge of unreliable communications by strengthening

the combined SNR of the legitimate user.

In CRN, the PLS using multi-antenna techniques has been investigated by considering either

(i) the presence of a direct communication link between the source and destination [93–96] or (ii)

a cooperative relaying technique [97–101]. Secrecy metrics have been derived, in the presence of

a direct communication link, by considering diverse scenarios namely, single-input multi-output

(SIMO) channels with SC at both the legitimate receiver and the eavesdropper [93–95], MIMO

systems with transmit antenna selection and different receiver combining schemes [96]. On

the other hand, cooperative relaying technique received much interests as it could extend the

wireless coverage while improving the secrecy performance of a given communication system.

The PLS of a cooperative CRN has been investigated by considering multiple relays such

that only one relay is selected to forward the message to its intended destination [97–100].

The secrecy performance over Rayleigh fading channels of a multi-antenna relay has been

investigated in [101].

Although the above works have added new insights to the research field, they have mainly

focused on direct-link communication system or on the case of cooperative relaying with multiple
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relays. Few research works considered the case of a multi-antenna relaying system. To fill this

gap, we focused our efforts on investigating the impact of spatial diversity on a dual-hop CRN

by considering a more generalized fading, namely Nakagami-m model.

2.1.2 Contribution

The main contributions of this chapter can be summarized as follows

� The exact expression for the SOP is derived by considering a dual-hop CRN where the

information is forwarded to its intended destination through a multi-antenna relay and

under the attempt of the eavesdropper to intercept the transmitted information at both

communication hops.

� Based on the derived expression for the SOP, the impact of different key parameters of

the network are investigated. Meaningful insights are gained in terms of the impact of

spatial diversity on the system’s security.

2.1.3 Chapter’s structure

The remainder of this chapter is organized as follows. In Section II, the system and channel

models are presented. The closed-form expression for the SOP is derived in Section III. In

Section IV, we provide and discuss the numerical and simulation results. Finally, Section V

concludes this chapter.

2.2 System and channel model

The considered CR communication system represented in Fig. 2.1 consists of one SU source

S that communicates with one SU destination D through one SU relay R in the presence

of one eavesdropper E. This eavesdropper is intercepting the transmitted information at both

communication hops (i.e. S -R andR-D). The SUs are opportunistically accessing the spectrum

of the primary network consisting of one PU transmitter PUTx, and one PU receiver PURx.

The relay is assumed to be equipped with multiple antennas and performs MRC technique to

combine the multiple copies of the signal received on its L branches. On the other hand, all

other nodes are supposed to be equipped with single antenna namely, S, E, D, PUTx, and
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PURx. As the SUs in CRN share the spectrum with the PUs hence their transmission power is

constrained by the MTIP PI at the PU receiver. These powers are expressed as

Data link 

Interference  link 

Eavesdropping  link 

S 
R . 

. 

E 

D 

1 

2 

L 

ℎ
𝑅
𝐸

 

ℎ𝑅𝐷 

𝑷𝑼𝑻𝒙 

𝑷𝑼𝑹𝒙 ℎ𝑃 

Figure 2.1: The considered CR communication system.

PS = min

(
Pmax
S ,

PI
gSP

)
, (2.1)

and

PR = min

(
Pmax
R ,

PI
gRP

)
, (2.2)

where Pmax
S and Pmax

R denote the maximal transmit power at S and R, respectively, and PI

accounts for the MTIP at the primary receiver.

For the sake of simplicity, we consider that the fading amplitudes of all channels are

Nakagami-m distributed. Let mi and Ωi denote the fading severity and the average chan-

nel power gain, respectively, where i ∈ {SP, SRk, RP,RD,RE}. For the sake of simplicity, we

denote the channel power gains as gi = |hi|2. As |hi| is Nakagami-m distributed, the channel

power gains are Gamma distributed with shape and scale parameters mi and λi = mi
Ωi

.

The PDF as well as the CDF of the channel power gains are given as

fgi(x) =
λmii

Γ(mi)
xmi−1e−λix, (2.3)

Fgi (x) =
γ (mi, λix)

Γinc (mi)
. (2.4)

For a positive number mi, the above CDF can be written in terms of finite simple series
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as [67, Eq. (8.352.1)]

Fgi (x) = 1− e−λix
mi−1∑
k=0

λki x
k

k!
. (2.5)

According to [97], the combined signal at the MRC output of R can be expressed as

yR =
√
PS ‖ hSR ‖ xs + wRnR, (2.6)

where ‖ . ‖ accounts for the Frobenius norm , hSR is the L × 1 channel vector from the S to

R, xs is the transmitted signal from S, and nR stands for the additive white Gaussian noise

(AWGN) L × 1 channel vector with variance NR and zero mean. The MRC weight vector is

wR =
h†SR
||hSR||

, where the symbol † denotes the transpose conjugate.

Moreover, the received signal at D can be also expressed as

yD =
√
PRhRDxr + nD, (2.7)

where xr is the transmitted signal of R and nD is the AWGN of mean zero and variance ND.

The received signals at the eavesdropper from the source and from the relay are given as

yjE =
√
PjhjExj + nE, j ∈ {S,R}, (2.8)

where nE represents the additive noise assumed to be AWGN with zero mean and variance NE.

Without loss of generality, we assume, in what follows, that all noise powers are equal, that is

NE = NR = ND = N .

2.3 Secrecy outage probability

The secrecy capacity of the considered system is defined as in (1.31), where

� γR is the combined SNR at R

γR = min

(
γs,

γP
gSP

) L∑
l=1

gSRl , (2.9)

with γs =
PmaxS

N
and γP = PI

N
.
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We assume that the fading amplitudes of all links between S and the L branches of R are

independent and identically Nakagami-m distributed (i.i.d) (i.e, λSRk = λSR). Hence, the

sum of all the channel gains
∑L

l=1 gSRl is Gamma distributed with the shape and scale

parameters mSR =
∑L

l=0mSRi and λSR, respectively.

� γD is the SNR at D and can be expressed as

γD = min

(
γR,

γP
gRP

)
gRD, (2.10)

with γR =
PmaxR

N
.

� γqE denotes the SNR at the eavesdropper and can be expressed as

γqE = min

(
γAq ,

γP
gAqP

)
gAqE, (2.11)

where A1 = S and A2 = R.

Now, substituting (1.31) into (1.34), the SOP can be expressed as

SOP = Pr (min(CS1, CS2) < RS)

= 1− [1− SOP1] [1− SOP2] , (2.12)

with SOPq = Pr (CSq < RS) denotes the SOP at the qth hop.

Theorem 2.3.1. The expressions of SOP1 and SOP2 under Nakagami-m fading channels as-

sumption are expressed as

SOP1 = 1− λmSESE

Γ(mSE)

mSR−1∑
k=0

λkSR
k!

k∑
j=0

ψ
(1)
k,j

[
α1δ1

γksχ
mSE+j
S

+
θ1Θ

(1)
j,k

γkP

]
. (2.13)

and

SOP2 = 1− λmRERE

Γ(mRE)

mRD−1∑
k=0

λkRD
k!

k∑
j=0

ψ
(2)
k,j

(
α2δ2

γkRχ
mRE+j
R

+
θ2Θ

(2)
j,k

γkP

)
. (2.14)

where

ψ
(q)
k,j =

(
k

j

)
γj (γ − 1)k−j Γ

(
mBqE + j

)
, B1 = S, B2 = R (2.15)
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αq =
γ
(
m

BqP
,
λ
BqP

γP

γBq

)
Γ
(
m

BqP

) , (2.16)

δ1 =
e
−λSR(γ−1)

γS

γmSES

, (2.17)

χS =
λSRγ + λSE

γS
, (2.18)

θq =
λ
mBqP
BqP

Γ(mBqP )γ
mBqE
P

, (2.19)

Θ
(1)
j,k =

(
γP

λSE+λSRγ

)mSE+j

Γ
(
ζSP ,

β1γP
γS

)
βmSP+k−j

1

, (2.20)

Θ
(2)
j,k =

(
γP

λRE+λRDγ

)mRE+j

Γ
(
ζRP ,

β2γP
γR

)
βmRP+k−j

2

, (2.21)

ζq = mBqP + k − j, (2.22)

β1 = λSP +
λSR (γ − 1)

γP
. (2.23)

χR =
λRDγ + λRE

γR
, (2.24)

δ2 =
e
−λRD(γ−1)

γR

γmRER

, (2.25)

and

β2 = λRP +
λRD (γ − 1)

γP
. (2.26)

Proof.

� SOP at the first hop

Using (1.32), we have

SOP1 = Pr ( γR ≤ γ1E) + [Pr (γR > γ1E) Pr (CS1 < RS|γR > γ1E)] . (2.27)
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According to [95, Eq. (12)], SOP1 can be expressed as

SOP1 =

∫ ∞
x=0

∫ ∞
y=0

FγR|gSP=x (γy + γ − 1) fγ1E |gSP=x(y)fgSP (x)dydx, (2.28)

where and γ = 2Rs .

It is clear from (2.28) the we have to start first by deriving the CDF of γR|gSP = x and the

PDF of γ1E|gSP = x in order to derive SOP1.

Using (2.9), the conditional CDF of γR given gSP can be evaluated as

FγR|gSP=x(z) = Pr (γR ≤ z|gSP = x)

= Pr

(
min

(
γs,

γP
x

)
YSR ≤ z

)
, (2.29)

where YSR =
∑L

l=1 gSRl .

Now using (2.11), the conditional CDF of γ1E given gSP can be expressed as

Fγ1E |gSP=x(y) = Pr (γ1E ≤ y|gSP = x)

= Pr

(
min

(
γs,

γP
x

)
gSE ≤ y

)
. (2.30)

It is obvious that if x ≤ γP
γS

then

FγR|gSP=x(z) = FYSR

(
z

γs

)
, (2.31)

and

fγ1E |gSP=x(y) =
fgSE

(
y
γs

)
γs

. (2.32)

Otherwise, the above two expressions become

FγR|gSP=x(z) = FYSR

(
xz

γP

)
, (2.33)

and

fγ1E |gSP=x(y) =
x

γP
fgSE

(
xy

γP

)
. (2.34)
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Replacing (2.31)-(2.34) into (2.28), the expression of SOP1 can be expressed as

SOP1 =
1

γs

∫ γP
γs

x=0

fgSP (x)

∫ ∞
y=0

FYSR

(
γy + γ − 1

γs

)
fgSE

(
y

γs

)
dydx︸ ︷︷ ︸

I1

+
1

γP

∫ ∞
x=

γP
γs

xfgSP (x)

∫ ∞
y=0

FYSR

(
x (γy + γ − 1)

γP

)
fgSE

(
xy

γP

)
dydx︸ ︷︷ ︸

I2

. (2.35)

Now, by using (2.3) and (2.5), and performing some algebraic manipulations we obtain

I1 = α1

(
1− λ

mSE

SE δ1

Γ(mSE)

mSR−1∑
k=0

λkSR
γksk!

k∑
j=0

ψ
(1)
k,j

χmSE+j
S

)
(2.36)

where ψ
(1)
k,j , α1, and δ1 are given in (2.15), (2.16), and (2.17), respectively.

On the other side, the second term I2 can be written as

I2 = 1− α1 −
λmSESE θ1

Γ(mSE)

mSR−1∑
k=0

λkSR
γkPk!

k∑
j=0

Φ
(1)
k,j, (2.37)

where Φ
(1)
k,j = ψ

(1)
k,jΘ

(1)
j,k , θ1, and Θ

(1)
j,k are defined in (2.19) and (2.20), respectively.

Finally, by incorporating (2.36) and (2.37) into (2.35), we obtain the expression of SOP1

given in (2.13).

� SOP at the second hop

Similarly to (2.27) and (2.28), the expression of SOP2 can be written as

SOP2 =

∫ ∞
x=0

∫ ∞
y=0

FγD|gRP=x (γy + γ − 1) fγ2E |gRP=x(y)fgRP (x)dydx. (2.38)

Analogously to (2.29) and (2.30), we have

FγD|gRP=x(γy + γ − 1) = FgRD

(
γy + γ − 1

γR

)
, (2.39)

and

fγ2E |gRP=x(y) =
1

γR
fgRE

(
y

γR

)
. (2.40)
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Pointedly, when x ≤ γP
γR

FγD|gRP=x(γy + γ − 1) = FgRD

(
x (γy + γ − 1)

γP

)
, (2.41)

and elsewhere,

fγ2E |gRP=x(y) =
x

γP
fgRE

(
xy

γP

)
. (2.42)

By substituting Eqs. (2.39)-(2.42) into (2.38), yields

SOP2 =
1

γR

∫ γP
γR

x=0

fgRP (x)

∫ ∞
y=0

FgRD

(
γy + γ − 1

γR

)
fgRE

(
y

γR

)
dydx︸ ︷︷ ︸

I3

+
1

γP

∫ ∞
x=

γP
γR

xfgRP (x)

∫ ∞
y=0

FgRD

(
x (γy + γ − 1)

γP

)
fgRE

(
xy

γP

)
dydx︸ ︷︷ ︸

I4

. (2.43)

The first term in (2.43) can be expressed as

I3 = α2

(
1− λmRERE δ2

Γ(mRE)

mRD−1∑
k=0

λkRD
k!γkR

k∑
j=0

ψ
(2)
k,j

χmRE+j
R

)
, (2.44)

where ψ
(2)
k,j , α2, and δ2 are given in (2.15), (2.16), and (2.25), respectively.

While, the second term I4 is given as

I4 = 1− α2 −
λmRERE θ2

Γ(mRE)

mRD−1∑
k=0

λkRD
γkPk!

k∑
j=0

Φ
(2)
j,k , (2.45)

where Φ
(2)
j,k = ψ

(2)
k,jΘ

(2)
j,k , θ2 and Θ

(2)
j,k are given in (2.19) and (2.21), respectively.

Finally, by substituting (2.44) and (2.45) into (2.43), (2.14) is attained which concludes the

proof of Theorem 2.3.1. �

2.4 Numerical results and discussions

In this section, the derived analytical expression for the SOP is validated through Monte-Carlo

simulation by generating 106 Gamma distributed random values. Several parameters have

been considered in order to show their impact on the security performance of the considered
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communication system. The simulation parameters settings are summarized in Table 2.1.

Table 2.1: Simulation parameters of contribution 1.

Parameter λi mi RS(bit/s/Hz) γ̄P (dB) γ̄S (dB) γ̄R(dB)
value 0.5 2 1 10 6 6

Fig. 2.2 depicts the SOP as a function of the secrecy rate Rs for various numbers of

the relay’s antennas L. It is obvious that the system’s security is improved by increasing L.

Moreover, when Rs increases, the SOP increases as well. In fact, and as it can be noticed from

(1.34), when the SU adopts a high secrecy rate for better throughput performance, a secrecy

outage is most likely happening.
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Figure 2.2: SOP versus secrecy rate for various numbers of the MRC branches.

Fig. 2.3 shows the SOP as a function of γP for various numbers the relay’s antennas. As it

can be seen the greater γP the smaller the SOP. From (2.1) and (2.2), it is obvious that when

the MTIP at the PU receiver becomes higher, the SU source and the relay are allowed to use

their maximum transmission power which improves the system’s security. Additionally, and as

expected, using a multi-antenna relay enhances the security performances.

Fig. 2.4 presents the SOP versus γS for different values of the relay’s antennas. As it can be

noticed, the SOP becomes smaller as the values of γS increase. Also, as long as the transmission

power of the SUs is increased, the security of the system gets enhanced.
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Figure 2.4: SOP versus γS for various
numbers the relay’s antennas
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2.5 Concluding remarks

In this chapter, we investigated the PLS of a dual-hop CR communication system, under the

constraint of interfering with the PU’s signals. By considering a more generalized fading, namely

Nakagami-m, and by considering a multi-antenna relay, we derived the SOP as a performance

metric, based on which, new insights were gained. The obtained results show that the security

is enhanced with the increase of number of the relay’s antennas. The next chapter investigates

the impact of both spatial diversity and energy harvesting on the secrecy performance of a

dual-hop CRN.
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Chapter 3

On the Secrecy Performance of

EH-based Underlay CRN

3.1 Introduction

3.1.1 Motivation

In a cooperative CRN, the information is forwarded to its intended destination through the aid

of one or multiple relays. However, in some cases, the relay nodes can be energy-constrained,

which leads to degraded network performance. To deal with this issue, EH has been recently

proposed as an effective emerging technology that makes use of RF energy. However, it is noted

that despite the promising advantages of a cooperative EH-CRN, securing data transmission

in such complex environment becomes a critical and challenging task.

Considerable research analyses have investigated the PLS of CRNs under different system

setups [31–34, 93–103]. In general, two types of CRNs have been considered in the literature,

namely (i) a system that assumes the existence of a direct communication link between the

source and the destination; and (ii) a cooperative system where the source communicates with

the intended destination with the aid of multiple relays. Specifically, the secrecy performance of

cooperative EH-CRNs has been investigated in [31–34]. In [31], lower bounds for the probability

of strictly positive secrecy capacity were derived by assuming that the destination receives via a

direct link both confidential information and a sub-frame used for EH purposes. The harvested

energy is then exploited to broadcast jamming signal towards an eavesdropper so as to achieve
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secure communication. By considering that the SUs harvest energy from the PU’s signals,

the SOP has been derived over Rayleigh fading channels in [32], while the authors in [33]

investigated the corresponding IP. In [34], the SOP is derived by considering a dual-hop overlay

EH-CRN in which the SUs act as relays to forward the PU’s data to its intended PU destination.

The SUs, in this case, harvest energy from the received signals of the PU source. On the other

hand, the authors of [93–96] derived both a closed-form and asymptotic expressions for the SOP

metric by considering either Rayleigh or Nakagami-m fading conditions. In [93–95], the source

node was equipped with one antenna, whereas in [96] a multi-antenna source was considered

and analyzed. Also, the receivers (i.e., destination and eavesdropper), were assumed to be

equipped with multiple antennas. Additionally, in [94] the authors assumed the existence of two

eavesdroppers, in which one is intercepting the communication of the primary network whereas

the other is eavesdropping the secondary user. In [97–99], the PLS of a cooperative CRN using

multiple relays was investigated. Closed-form and asymptotic expressions for the SOP were

derived under the optimal relay selection technique. In [97] and [99], the SOP expressions were

derived under Nakagami-m and Rayleigh fading channels, respectively. Moreover, the IP was

derived in [98] over Rayleigh fading conditions.

Despite the usefulness of the above scenarios, they do not embrace all the practical cases

that are encountered in realistic communication scenarios involving cognitive radio systems.

For instance, a direct communication link does not typically exist between the source and the

destination. Moreover, the case of multiple relays seems to be also impractical as, in some cases,

only one relay can be available to forward the data from the source to the destination. Like-

wise, the corresponding energy consumption and computational complexity can be increased

dramatically when the number of cooperative nodes is high, which can render the required com-

putation and processing unsustainable. Additionally, the available relay may not always have

sufficient energy to forward the received information to its intended destination. Motivated

by the above, the main objective of this chapter is to investigate the PLS by combining both

diversity as well as EH at the relay.

3.1.2 Contributions

The main contributions of this chapter are given as:
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� Secrecy performance analysis of a dual-hop EH-CRN with single antenna relay over

Rayleigh fading channel is investigated. Precisely, closed-form expression for the SOP

was derived by considering a single-antenna relay that is not causing any interference to

the PU.

� The PLS of a dual-hop EH-CRN is investigated by assuming that the relay is equipped

with multiple antennas and causing interference to the PU signals. Mainly,

– Closed-form and asymptotic expressions for the SOP are derived by considering both

i.n.i.d as well as i.i.d flat Rayleigh fading channels.

– Impact of key parameters such as the MTIP at the PU, maximum transmit power

of both relay and source, power splitting ratio, and the number of MRC branches at

the relay on the overall system’s security are investigated.

3.1.3 Chapter’s structure

The remainder of this chapter is organized as follows: Sections 2 and 3 present contributions

on the secrecy performance analysis of two various setups, namely (i) a dual-hop EH-CRN with

a single antenna relay located in a far-field area of the PU (i.e. not causing any interference

to the PU signals), and (ii) a dual-hop EH-CRN where the relay is equipped with multiple

antennas and continuously adapting its transmit power to avoid interfering with the PU. For

each setup, system and channel model, secrecy performance metrics, and numerical results are

presented. Lastly, Section 5 concludes this chapter.

3.2 Contribution 2: Cooperative EH-based CRNs with

a single-antenna relay

3.2.1 System and channel model

We consider the EH-CRN system illustrated in Fig. 3.1 where the SUs share the same spectrum

with PUs under the requirement of respecting the PUs’ quality of service (QoS). Therefore, node

S has to continuously adapt its transmission power in order to avoid interfering with PUs. For

the considered system, the communication is carried out in two phases as follows:
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� Phase 1: The source S transmits data with power PS. In order to avoid interference with

the PU signal, the transmit power PS should fall below the MTIP at PURx (i.e., PI). It

follows that the transmission power of S is constrained by its maximum transmit power

Pmax
S and the tolerated PI as given in (1.1).

� Phase 2: The relay R harvests energy from RF signals transmitted by S. In the considered

setup, it is assumed that the relay performs PS protocol. Hence, R harvests a fraction

of power θ (i.e., 0 ≤ θ ≤ 1), from the received signal. The remaining power (1− θ)PS is

used to carry out information processing. If R harvests energy from the received signal

for a duration of T , then the harvested energy at R is

EH = TηθPSgSR, (3.1)

where η denotes the energy conversion efficiency coefficient (0 ≤ η ≤ 1). Importantly,

all the harvested energy by R is assumed to be used for forwarding the information to

its destination during the same time slot considered at the first hop. Therefore, the

transmission power of R is given by

PR =
EH
T

= ηθPSgSR. (3.2)

Without loss of generality, we assume that the relay is located far away from the primary

network. Therefore, it is not required that the relay uses the power adaption policy as it does

not impact the PU’s QoS.

Also, all fading amplitudes are assumed to be Rayleigh distributed. Consequently, the

channel power gains gq = |hq|2, with q = {SR, SE,RD,RE}, are exponentially distributed

with parameters λq that are inversely proportional to the average SNRs of the associated links.

Accordingly, the received signal at R and D are given by

yR =
√

(1− θ)PShSRxs + nR, (3.3)

and

yD =
√
PRhRDxr + nD, (3.4)
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respectively, where nR and nD denote the AWGN of zero mean and variance NR and ND,

respectively. Likewise, xs and xr stand for the transmitted signals from S and R, respectively.

The received signals at the eavesdropper at the first and the second hop, respectively, are

expressed as

y1E =
√

(1− θ)PShSExs + nE, (3.5)

and

y2E =
√
PRhRExr + nE, (3.6)

where nE is the AWGN with zero mean and variance NE. For the sake of simplicity, we also

consider that all noise powers are identical, i.e., NE = NR = ND = N .
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Figure 3.1: The considered EH-CRN system.

3.2.2 Secrecy performance analysis

In this section, the SOP is derived as performance metric for the considered communication

system. In the considered EH-CRN system, the eavesdropper is assumed to be intercepting

communication at both hops i.e., S-R and R-D. The secrecy capacity of the considered system
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is defined as in (1.31) such that the SNR γR at the relay R is given by

γR = (1− θ) min

(
γs,

γP
gSP

)
gSR. (3.7)

Likewise, the SNR γD at D can be expressed as γD = ρRgRD, with

ρR = ηθmin

(
γs,

γP
gSP

)
gSR, (3.8)

and γs = Pmax
S /N, and γP = PI/N .

Finally, the SNRs at the eavesdropper γ1E and γ2E of the links S-E and R-E, are given by

γ1E = (1− θ) min

(
γs,

γP
gSP

)
gSE, (3.9)

and γ2E = ρRgRE, respectively.

Closed-form expression for the SOP

The closed-form expression for the SOP is derived in Theorem 3.2.1.

Theorem 3.2.1. The SOP of the considered EH-CRN system subject to flat Rayleigh fading

channels is given by

SOP = 1−1

δ

[
e
− ρ
γS

χ+ 1

(
1− e−φ +

e−φ

ρ
γPλSP

+ 1

)](1− e−φ)G2,0
0,2

ωSξ
∣∣∣∣∣∣∣
−;−

0, 1;−

+
λSP e

−φ

ξωP

[
ξ2Ξ1 − Ω

] .
(3.10)

where

χ = λSRγ/λSE, (3.11)

ρ = λSR (γ − 1) /(1− θ), (3.12)

φ = λSPγP/γS, (3.13)

ωv = λSR/(ηθγs), v ∈ {S, P}, (3.14)

ξ = λRD (γ − 1) , (3.15)
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Ξ1 = ξ−2G1,2
2,1

λSP
ωP ξ

∣∣∣∣∣∣∣
−1, 0;−

0;−

 , (3.16)

and

Ω = G1,0:1,1:1,1
0,1:1,1:1,2

ωP ξ
λSP

, ξωS

∣∣∣∣∣∣∣
−;− : 1;− : 1;−

2;− : 1;− : 1; 0

 . (3.17)

Proof.

Substituting (1.31) into (1.34), the SOP becomes

SOP = 1− Pr (C1S > Rs) Pr (C2S > Rs) (3.18)

= 1− [1− SOP1] [1− SOP2] ,

where SOP1 and SOP2 denote the SOP of either the first or the second hop.

Expression of SOP1

By using (1.32), SOP1 can be expressed as

SOP1 = Pr (γR ≤ γ1E) + Pr (γR > γ1E) Pr (C1S < Rs |γR > γ1E ) . (3.19)

Utilizing [67, Eq. (12)], one can obtain

SOP1 =

∫ ∞
x=0

∫ ∞
y=0

FγR|gSP=x (γy + γ − 1) fγ1E |gSP=x(y)fgSP (x)dydx. (3.20)

The CDFs of γR and γ1E for a given gSP are expressed as

FγR|gSP=x (z) = Pr (γR ≤ z |gSP = x) (3.21)

= FgSR

(
z

(1− θ) Φ (x)

)
,

and

Fγ1E |gSP=x(y) = Pr (γ1E ≤ y|gSP = x) (3.22)

= FgSE

(
y

(1− θ) Φ (x)

)
.
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respectively, with

Φ (x) =


γS, x ≤ γP/γS

γP/x, x > γP/γS

. (3.23)

Hence, substituting the derivative of (3.22) alongside (3.21) yields

SOP1 =

∫ ∞
0

fgSP (x)

(1− θ) Φ (x)

∫ ∞
0

FgSR

(
γy + γ − 1

(1− θ) Φ (x)

)
fgSE

(
y

(1− θ) Φ (x)

)
dydx

=

∫ ∞
x=0

fgSP (x)

(
1− e−

ρ
Φ(x)

χ+ 1

)
dx. (3.24)

Now, using (3.23), we obtain

SOP1 =

(
1− e

− ρ
γS

χ+ 1

)∫ γP
γS

x=0

fgSP (x)dx+

∫ ∞
x=

γP
γS

fgSP (x)

(
1− e

− ρx
γP

χ+ 1

)
dx (3.25)

= 1− e
− ρ
γS

χ+ 1

(
1− e−φ +

e−φ

ρ
γPλSP

+ 1

)
.

Expression of SOP2

Similarly, using (1.33), SOP2 can be expressed as

SOP2 = Pr (γD ≤ γ2E) + Pr (γD > γ2E) Pr (C2S < Rs |γD > γ2E ) . (3.26)

To this effect, using [95, Eq. (12)], yields

SOP2 =

∫ ∞
x=0

∫ ∞
y=0

FγD|ρR=x (γy + γ − 1) fγ2E |ρR=x(y)fρR(x)dydx. (3.27)

Analogously, the CDFs of γD and γ2E for a given ρR can be expressed as

FγD|ρR=x (z) = Pr (γD ≤ z |ρR = x) = FgRD

(z
x

)
, (3.28)

and

Fγ2E |ρR=x (z) = Pr (γ2E ≤ z |ρR = x) = FgRE

(z
x

)
, (3.29)
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respectively. Based on this, the CDF of ρR is given by

FρR (z) = Pr

(
min

(
γs,

γP
gSP

)
gSR ≤

z

ηθ

)
(3.30)

= Pr

(
gSR ≤

z

ηθγs
,
γP
gSP
≥ γs

)
︸ ︷︷ ︸

I1

+ Pr

(
gSR
gSP
≤ z

ηθγP
,
γP
gSP
≤ γs

)
︸ ︷︷ ︸

I2

,

where the two terms I1 and I2 can be rewritten as

I1 = FgSR

(
z

ηθγs

)
FgSP

(
γP
γs

)
, (3.31)

and

I2 =

∫ ∞
γP
γs

FgSR

(
z

ηθγP
y

)
fgSP (y) dy (3.32)

= λSP

∫ ∞
γP
γs

(
1− e−ωP zy

)
e−λSP ydy

= e−φ − λSP e
−(ωSz+φ)

ωP z + λSP
.

Then, replacing (3.31) and (3.32) into (3.30), yields

FρR (z) = 1− e−ωSz
(
1− e−φ

)
− λSP e

−(ωSz+φ)

ωP z + λSP
, (3.33)

whereas by differentiating (3.33), it follows that

fρR (z) =
(
1− e−φ

)
ωSe

−ωSz +
λSP e

−φ

ωP

ωSe−ωSz
z + λSP

ωP

+
e−ωSz(

z + λSP
ωP

)2

 . (3.34)

Based on the above, substituting (3.28), (3.34), and the derivative of (3.29) into (3.27), yields

SOP2 = 1− 1

δ

∫ ∞
x=0

fρR(x)e−
ξ
xdx (3.35)

= 1− 1

δ

[(
1− e−φ

)
Φ1 +

λSP e
−φ

ωP
(Φ2 + Φ3)

]
,
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where

Φ1 = ωS

∫ ∞
0

e−( ξx+ωSx)dx, (3.36)

Φ2 = ωS

∫ ∞
0

e−(ωSx+ ξ
x)

x+ λSP
ωP

dx, (3.37)

and

Φ3 =

∫ ∞
0

e−(ωSx+ ξ
x)(

x+ λSP
ωP

)2dx. (3.38)

Using [67, Eq. (3.324.1)] alongside [71, Eq. (03.04.26.0006.01)], it follows that

Φ1 = ωS

√
ξ

ωS
G2,0

0,2

ωSξ
∣∣∣∣∣∣∣
−;−

1
2
, −1

2
;−

 (3.39)

= G2,0
0,2

ωSξ
∣∣∣∣∣∣∣
−;−

0, 1;−

 .

By performing integration by parts, Φ3 can rewritten as

Φ3 =

∫ ∞
0

(
−ωS +

ξ

x2

)
e−(ωSx+ ξ

x)

x+ λSP
ωP

dx. (3.40)

On the other hand, using [71, Eqs. (07.34.03.0271.01), (01.03.26.0007.01)] along with (3.40),

yields Φ2 + Φ3 = ξ [Ξ1 − Ξ2] , where

Ξ1 =

∫ ∞
0

ye−ξyG1,1
1,1

λSP
ωP

y

∣∣∣∣∣∣∣
0;−

0;−

 dy, (3.41)

and

Ξ2 =

∫ ∞
0

y

eξy
G1,1

1,1

λSP
ωP

y

∣∣∣∣∣∣∣
0;−

0;−

G1,1
1,2

ωS
y

∣∣∣∣∣∣∣
1;−

1; 0

 dy. (3.42)

Now, using [71, Eq. (07.34.21.0088.01)], (3.16) is attained.

On the other hand, (3.42) can be rewritten using Mellin-Barnes integrals as

Ξ2 =
1

(2πj)2

∫
C1

Γ (s) Γ (1− s)
(
λSP
ωP

)−s ∫
C2

Γ (1 + v) Γ (−v)

Γ (1− v)ωvS
dsdv

∫ ∞
0

yv−s+1

eξy
dy (3.43)
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which becomes Ξ2 = Ω/ξ2, where j =
√
−1, and C1 and C2 are two complex contours of

integration ensuring the convergence of the above bivariate Meijer G-function.

Next, substituting (3.16) and (3.43) into (3.2.2), yields

Φ2 + Φ3 =
1

ξ

G1,2
2,1

λSP
ωP ξ

∣∣∣∣∣∣∣
−1, 0;−

0;−

− Ω

 . (3.44)

By also substituting (3.39) and (3.44) into (3.35), yields

SOP2 = 1− 1

δ

(1− e−φ)Φ1 +
λSP e

−φ

ωP ξ

G1,2
2,1

λSP
ωP ξ

∣∣∣∣∣∣∣
−1, 0;−

0;−

− Ω


 . (3.45)

Finally, substituting (3.25) and (3.45) into (3.18), leads to (3.10) which concludes the proof of

Theorem 3.2.1. �

3.2.3 Numerical results and discussions

In this section, we evaluate the security performance of the considered EH-CRN setup. The

derived SOP expression in (3.10) is validated through corresponding Monte-Carlo simulation

by generating 106 exponentially distributed random values. The simulation parameters are

depicted in Table 3.1.

Table 3.1: Simulation parameters of contribution 2.

Parameter λq γ̄P (dB) γ̄S (dB) RS (bit/s/Hz) θ
value 0.5 10 10 1 0.5

Fig. 3.2 illustrates the SOP as a function of γP for various values of η. It can be observed

that SOP decreases with the increasing values of γP and η. Indeed, under the assumption that

fading severity parameters of the legitimate links i.e., λSR and λRD are smaller than those of

the wiretap channels, i.e., λSE and λRE, the greater γP , the greater the SNRs γR and γ1D.

Consequently, the capacity of the legitimate links is greater than the one of the wiretap links,

which ultimately leads to an enhanced system security.

Fig. 3.3 shows the SOP versus the EH ratio θ for different values of η. Clearly, the SOP

is a concave function of θ. This behavior can be construed by the fact that as θ tends to 0
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Figure 3.2: SOP versus γP for various values of η.

the instantaneous SNRs given in (3.2.2), also approach 0. Hence, CS tends to 0 leading to the

highest value of the SOP. Similarly, as θ tends to 1 the instantaneous SNRs given in (3.7) and

(3.9) approach 0. Consequently, both C1S and CS approach 0, and thus the SOP increases

accordingly.

Finally, Fig. 3.4 demonstrates the SOP versus both γP and θ. Evidently, the parameters

γP and θ admit certain values for which a better security is achieved. For instance, one can

infer that a higher secrecy is achieved for 0.4 ≤ θ ≤ 0.6 and γP ≥ 15dB.
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3.3 Contribution 3: Cooperative EH-based CRN with

multi-antennas relay

3.3.1 System and channel model

In this contribution, we consider a dual-hop cooperative DF EH-CRN system, as illustrated

in Fig. 3.5. This system consists of one SU source node S who is transmitting data to one
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Figure 3.5: The considered cooperative EH-CRN.

SU destination node D through an energy-constrained SU relay R, under the eavesdropping

attempt of E. The relay is assumed to be equipped with multiple antennas and an MRC

diversity receiver in order to combine the received signals. Without loss of generality, all other

nodes are assumed to be equipped with a single antenna. Additionally, R performs the PS-

EH technique to mitigate the lack of energy constraint, whereas E is continuously listening

to both communication hops. During the data transmission, the PU receiver is subject to the

interference signals coming from both S and R. Under this constraint, only the node S has to

adjust its transmit power in order to satisfy the PUs’ quality of service. That is, the transmit

power PS is constrained by the maximum transmit power Pmax
S and the MTIP PI at PU receiver

as given in (1.1).

On the contrary, according to [32] and under the PS variant, the relay harvests energy from

the received information for a duration of T . Hence, the harvested energy at the relay can be
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expressed as

EH = TηθPS

L∑
k=1

gSRk , (3.46)

where η accounts for the energy conversion efficiency coefficient that takes values in the interval

[0, 1]. Also, θ denotes the fraction of power harvested by the relay from the received signal and

it takes values also in the interval [0, 1], whereas L is the number of diversity branches. To this

effect, the maximum transmit power of R is given by

Pmax
R =

EH
T

= ηθPS

L∑
k=1

gSRk . (3.47)

The transmit power allowing the relay to avoid any potential interference to the PU is given

by

PR = min

(
Pmax
R ,

PI
gRP

)
(3.48)

= min

(
ηθPS

L∑
k=1

gSRk ,
PI
gRP

)
.

One can ascertain from (1.1) and (3.48) that when PI increases, the nodes S and R are able

to use their maximum transmit powers, which results in increasing the SNR at both R and D,

ultimately leading to the system’s security enhancement.

Without loss of generality, the communication between the transmitters and the receivers

is assumed to be established in a non-line-of-sight scenario. Therefore, the fading amplitudes

of all links are Rayleigh distributed, i.e. the channel coefficients of links S→Rk, R→D, S→E,

R→E, PTx→PRx, R→PRx are hSRk , hRD, hSE, hRE, hP , hRP, respectively. For simplicity, we

write the channel power gains as gSRk = |hSRk |2, gRD = |hRD|2, gSE = |hSE|2, gRE = |hRE|2, gP =

|hP |2, gRP = |hRP|2. Evidently, all these gains are exponentially distributed with parameters

λSRk , λRD, λSE, λRE, λP , λRP, λSP that are inversely proportional to the average SNRs of the

associated links. Moreover, each input signal at the relay arrives with a certain delay compared

to the one received by its first branch. Since the considered receiver employs MRC, all these

delays will be eliminated and the interference of these signals will be canceled out. It is worth

mentioning that the delays, as well as the interference cancellation, are out of the scope of this

contribution since the present contribution is devoted to the investigation of the impact of the
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primary network, the EH, as well as the diversity techniques on the security performance of

the system.

Additionally, the relay operates according to the PS scheme such that θPS is dedicated to

EH and (1−θ)PS is used for information detection. Accordingly, the signal at the MRC output

of R can be expressed as

yR =
√

(1− θ)PS||hSR||xs + wRnR, (3.49)

where ‖ . ‖ denotes the Frobenius norm, hSR denotes the L×1 channel vector (hSRk)1≤k≤L, xs is

the transmitted signal from S, nR stands for the additive white Gaussian noise (AWGN) with

variance NR and zero mean, whereas and wR =
h†SR

||hSR||
, where † denotes the transpose conjugate.

On the other hand, the received signal at the destination D is given by

yD =
√
PRhRDxr + nD, (3.50)

where xr denotes the transmitted signal from R after performing both the relaying and the EH

techniques, and nD is an AWGN of zero mean and variance ND.

The received signals arriving at the eavesdropper from the source and from the relay are,

respectively, written as

y1E =
√

(1− θ)PShSExs + nE, (3.51)

and

y2E =
√
PRhRExr + nE, (3.52)

where nE is the corresponding AWGN with zero mean and variance NE. Without loss of

generality, we also consider that all noise powers are identical, i.e. NE = NR = ND = N .

3.3.2 Secrecy performance analysis

In this section, we derive the closed-form as well as the asymptotic expressions for the SOP

by considering both i.i.d and i.n.i.d Rayleigh fading channels. The secrecy capacity of the

considered communication system is defined as in (1.31) where
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� γR is the combined SNR at the relay R, namely

γR = (1− θ)Wk, (3.53)

with

Wk = min

(
γs,

γP
gSP

)
YSR, (3.54)

and γs = Pmax
S /N, γP = PI/N, YSR =

∑L
k=1 gSRk .

� γD denotes the SNR at the destination D, namely

γD = ρRgRD, (3.55)

where

ρR = min

(
ηθWk,

γP
gRP

)
. (3.56)

� γ1E and γ2E are the SNRs of the links S-E and R-E, respectively and are expressed as

γ1E = (1− θ) min

(
γs,

γP
gSP

)
gSE, (3.57)

and

γ2E = ρRgRE. (3.58)

Remark 3.

� From (1.31), it can be seen that improving the security of the system relies on increasing

the two secrecy capacities at the same time. In other words, improving the secrecy of only

one link will not enhance the system’s reliability. In addition, it is noticed from (3.53) that

the greater the number of branches L, the greater the γR, γ1, C1S and CS. Consequently,

the SOP metric decreases, which in turn leads to an overall system’s security improvement.

� As the parameters λq are inversely proportional to the associated average SNR, it follows

that the greater λSE and λRE, the smaller the first and the second wiretap link capacities,

respectively. That is, the two secrecy capacities become greater which lead to the SOP

reduction and consequently to enhanced system security.
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Closed-form expression for the SOP

Using (1.34) and (1.31), closed-form expressions for the SOP are derived in Theorem 3.3.1 for

both i.n.i.d and i.i.d Rayleigh fading channels.

Theorem 3.3.1. The SOP of the considered communication system subject to i.n.i.d and i.i.d

flat Rayleigh fading channels can be expressed by (3.59) and (3.60), respectively,

SOPi.n.i.d = 1− 1

δ

L∑
k=1

Ψke
− ιk
γS

χk + 1

(
1− e−φ +

e−φ

ιk
γPλSP

+ 1

)
L∑
k=1

Ψk

[(
1− e−φ

)
Φ

(k)
1 + e−φΦ

(k)
2

]
,

(3.59)

and

SOPi.i.d = 1− λSE
δγ (1− θ)

L−1∑
m=0

µm

m!%m+1


(
1− e−φ

)
e
− $
γS Γ

(
m+ 1, (γ−1)%

γS

)
+

(
1

1+ $
γP λSP

)
G2,1

2,2

 (γ−1)%
λSPγP+$

∣∣∣∣∣∣∣
(

0, φ+ $
γS

)
; (1, 0)

(0, 0) , (m+ 1, 0) ;−




×

[
1− ξ

(
1

β
+

(
1− e−φ

)
Ω1 + Ω2

Γ (L)

)]
, (3.60)

where

Ψk =
L∏
j=1
j 6=k

(
λSRj

λSRj − λSRk

)
, (3.61)

χk =
λSRkγ

λSE

, (3.62)

γ = 2Rs , (3.63)

ιk =
λSRk (γ − 1)

1− θ
, (3.64)

φ =
λSPγP
γS

, (3.65)

δ =
λRDγ

λRE

+ 1, (3.66)

ξ = λRD (γ − 1) , (3.67)

ω
(k)
l =

λSRk

ηθγl
, (3.68)
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l = {P, S}, (3.69)

ωl =
λSR

ηθγl
, (3.70)

β = λRPγP + ξ, (3.71)

% =
λSR + λSE

γ

1− θ
, (3.72)

µ =
λSR

1− θ
, (3.73)

$ =
λSE

(
1
γ
− 1
)

1− θ
, (3.74)

Φ
(k)
1 =M1 (ξ)− ξ

β
M1 (β) , (3.75)

M1 (u) = G2,0
0,2

ω(S)
k u

∣∣∣∣∣∣∣
−;−

0, 1;−

 , (3.76)

Φ
(k)
2 =

ξλSP

ω
(P )
k

(Z (ξ)−Z (β)) , (3.77)

Z (u) =
1

u2

G1,2
2,1

 λSP

ω
(P )
k u

∣∣∣∣∣∣∣
−1, 0;−

0;−

− Λk (u)

 , (3.78)

Λk (u) = G1,0:1,1:1,1
0,1:1,1:1,2

ω(P )
k u

λSP

, ω
(S)
k u

∣∣∣∣∣∣∣
−;− : 1;− : 1;−

2;− : 1;− : 1; 0

 , (3.79)

Ω1 =M2 (ξ)−M2 (β) , (3.80)

M2 (u) =
1

u
G2,1

1,3

ωSu
∣∣∣∣∣∣∣

1;−

L, 1; 0

 , (3.81)

Ω2 = J (ξ)− J (β) , (3.82)

J (u) =
1

u
G2,2

3,2

ωPu
λSP

∣∣∣∣∣∣∣
(1, 0) , (0, φ);−

(L, 0) , (1, 0) ; (0, 0)

 , (3.83)

with u referring to either ξ or β.

Proof.
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Substituting (1.31) into (1.34), the SOP can be rewritten as

SOP = 1− Pr (C1S > Rs) .P r (C2S > Rs) (3.84)

= 1− [1− SOP1] [1− SOP2] ,

where

SOPq = Pr (CqS < RS) , q = {1, 2}, (3.85)

denotes the SOP of either the first or the second hop. Therefore, to derive the above SOP

expression, it is sufficient to know both SOP1 and SOP2.

� Expression of SOP1

Using (1.32), the expression of SOP1 can be expressed as

SOP1 = Pr (γR ≤ γ1E) + Pr (γR > γ1E) Pr (C1S < Rs |γR > γ1E ) . (3.86)

According to [95, Eq. (12)], SOP1 can be rewritten as

SOP1 =

∫ ∞
x=0

∫ ∞
y=0

FγR|gSP=x (γy + γ − 1) fγ1E |gSP=x(y)fgSP
(x)dydx. (3.87)

The conditional CDF of γR given gSP is expressed as

FγR|gSP=x (z) = Pr (γR ≤ z |gSP = x) (3.88)

= FYSR

(
z

(1− θ) Φ (x)

)
,

with Φ (x) is defined in (3.23)

Similarly, the one of γ1E given gSP can be written as

Fγ1E |gSP=x(y) = Pr (γ1E ≤ y|gSP = x) (3.89)

= FgSE

(
y

(1− θ) Φ (x)

)
.

63



Substituting the derivative of (3.89) alongside (3.88) into (3.87), yields

SOP1 =
1

1− θ

∫ ∞
0

fgSP
(x)

Φ (x)

∫ ∞
0

FYSR

(
γy + γ − 1

(1− θ) Φ (x)

)
fgSE

(
y

(1− θ) Φ (x)

)
dydx. (3.90)

In the sequel, two different cases will be distinguished.

i.n.i.d Rayleigh fading channels of the link S-R

For i.n.i.d Rayleigh fading model, the CDF of YSR is given by [104]

FYSR
(x) =

L∑
k=1

Ψk

(
1− e−λSRk

x
)
. (3.91)

Substituting (3.91) into (3.90) alongside the function Φ (x), and performing some algebraic

manipulations, one can obtain

SOP1,i.n.i.d =
L∑
k=1

Ψk

∫ γP
γS

0

fgSP
(x)

(
1− e

− ιk
γS

βk

)
dx+

L∑
k=1

Ψk

∫ ∞
γP
γS

fgSP
(x)

(
1− e

− ιkx
γP

βk

)
dx

= 1−
L∑
k=1

Ψke
− ιk
γS

εk

(
1− e−φ + e−φ

ιk
γP λSP

+1

)
, (3.92)

where εk = χk + 1 and χk are defined in Theorem 3.3.1.

i.i.d Rayleigh fading channels of the link S-R

Under this assumption, it can be seen that YSR is chi square distributed of 2L degrees of

freedom. That is, the CDF of YSR can be expressed as [67, Eq. (8.352.1)]

FYSR
(y) =

γinc (L, λSRy)

Γ (L)
, (3.93)

= 1− e−λSRy

L−1∑
m=0

(λSRy)m

m!
.

Incorporating (3.93) into (3.90), and by carrying out some algebraic manipulations, the

term SOP1,i.i.d can be expressed as

SOP1,i.i.d =
(
1− e−φ

)1− λSEe
− $
γS

γ (1− θ)

L−1∑
m=0

µm

m!

Γ
(
m+ 1, (γ−1)%

γS

)
%m+1

+e−φ− λSPλSE

γ (1− θ)

L−1∑
m=0

µm

m!

z1

%m+1
,

(3.94)
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where

z1 =

∫ ∞
γP
γS

e
−
(
$
γP

+λSP

)
x
Γ

(
m+ 1,

(γ − 1) %

γP
x

)
dx. (3.95)

Using [71, Eq. (06.06.26.0005.01)], the term z1 can be expressed in terms of upper incomplete

Meijer’s G-function as follows:

z1 =

∫ ∞
γP
γS

G2,0
1,2

(γ − 1) %x

γP

∣∣∣∣∣∣∣
−; 1

0,m+ 1;−

 e−νxdx

=
1

ν

1

2πj

∫
C

Γ (s) Γ (m+ 1 + s) Γ (1− s, ς)
Γ (1 + s)

(
(γ − 1) %

γPν

)−s
ds

=
1

ν
G2,1

2,2

(γ − 1) %

γPν

∣∣∣∣∣∣∣
(0, ς) ; (1, 0)

(0, 0) , (m+ 1, 0) ;−

 , (3.96)

where C is a complex contour of integration ensuring the convergence of the above Meijer’s

G-function, ς = φ+ $
γS

, and ν = λSP +$/γP .

Replacing (3.96) into (3.94), yields

SOP1,i.i.d = 1− λSE

γ (1− θ)

L−1∑
m=0

µm

m!%m+1

[ (
1− e−φ

)
e
− $
γS Γ

(
m+ 1, (γ−1)%

γS

)
+ Θm

1+ $
γP λSP

]
, (3.97)

where Θm = G2,1
2,2

 (γ−1)%
γP ν

∣∣∣∣∣∣∣
(0, ς) ; (1, 0)

(0, 0) , (m+ 1, 0) ;−

 .

� Expression of SOP2

In the same manner to SOP1, the SOP2 for the second hop can be expressed from (1.33) as

follows:

SOP2 = Pr (γD ≤ γ2E) + Pr (γD > γ2E) Pr (C2S < Rs |γD > γ2E ) . (3.98)

Similarly to (3.87), SOP2 can be expressed as

SOP2 =

∫ ∞
x=0

∫ ∞
y=0

FγD|ρR=x (γy + γ − 1) fγ2E |ρR=x(y)fρR(x)dydx. (3.99)
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The CDFs of γD and γ2E for a given ρR are expressed as

FγD|ρR=x (z) = Pr (γD ≤ z |ρR = x) (3.100)

= FgRD

(z
x

)
,

and

Fγ2E |ρR=x (z) = Pr (γ2E ≤ z |ρR = x) (3.101)

= FgRE

(z
x

)
,

respectively, while the one of ρR is given by

FρR (z) = Pr

(
min

(
ηθWk,

γP
gRP

)
≤ z

)
(3.102)

= Pr

(
ηθWk ≤ z,

γP
gRP

≥ ηθWk

)
︸ ︷︷ ︸

I1

+ Pr

(
γP
gRP

≤ z,
γP
gRP

≤ ηθWk

)
︸ ︷︷ ︸

I2

.

Likewise, the terms I1 and I2 can be expressed as

I1 = Pr

(
ηθWk ≤ z,

γP
gRP

≥ ηθWk

)
(3.103)

=

∫ z
ηθ

0

FgRP

(
γP
ηθy

)
fWk

(y) dy,

and

I2 = Pr

(
γP
gRP

≤ z,
γP
gRP

≤ ηθWk

)
(3.104)

=

∫ ∞
γP
z

(
1− FWk

(
γP
ηθy

))
fgRP

(y) dy.

respectively. Substituting the two terms I1 and I2 into (3.102) and performing some algebraic

operations, the CDF of ρR can be rewritten as

FρR (z) = 1− FgRP

(
γP
z

)[
1− FWk

(
z

ηθ

)]
. (3.105)
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On the other hand, the CDF of Wk is expressed by

FWk
(y) = Pr

(
min

(
γs,

γP
gSP

)
YSR ≤ y

)
(3.106)

= Pr

(
YSR ≤

y

γs
,
γP
gSP

≥ γs

)
︸ ︷︷ ︸

T1

+ Pr

(
YSR

gSP

≤ y

γP
,
γP
gSP

≤ γs

)
︸ ︷︷ ︸ .

T2

The two terms T1 and T2 can be rewritten as

T1 = FYSR

(
y

γs

)
FgSP

(
γP
γs

)
, (3.107)

and

T2 =

∫ ∞
γP
γs

FYSR

(
y

γP
t

)
fgSP

(t) dt. (3.108)

In the sequel, two cases will be distinguished.

i.n.i.d Rayleigh fading channels of the link S-R

With the aid of (3.91), the two terms T1 and T2 can be rewritten as

T1 =
(
1− e−φ

) L∑
k=1

Ψk

(
1− e−α

(k)
S y
)
, (3.109)

and

T2 =
L∑
k=1

Ψk

e−φ − e
−
(
α

(k)
S y+φ

)
α

(k)
P

λSP
y + 1

 , (3.110)

where α
(k)
l = λSRk/γl, l = {S, P}.

Now, substituting (3.109) and (3.110) into (3.106), yields

FWk
(y) = 1−

(
1− e−φ

) L∑
k=1

Ψke
−α(k)

S y − e−φ
L∑
k=1

Ψk
e−α

(k)
S y

α
(k)
P

λSP
y + 1

. (3.111)

The CDF of ρR can be now rewritten as

FρR (z) = 1− FgRP

(
γP
z

)
+ FgRP

(
γP
z

)
e−φ

L∑
k=1

Ψke
−ω(S)

k z

1− 1

ω
(P )
k

λSP
z + 1

 . (3.112)

By substituting (3.100), (3.112), and the derivative of (3.101) into (3.99), along with some
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algebraic manipulations, yields

SOP2,i.n.i.d = 1− 1

δ

[
1− ξ

∫ ∞
0

e−
ξ
x

x2
FρR(x)dx

]
(3.113)

= 1− 1

δ

L∑
k=1

Ψk

[(
1− e−φ

)
Φ

(k)
1 + e−φΦ

(k)
2

]
,

where

Φ
(k)
1 = ξ

∫ ∞
0

e
−
(
ω

(S)
k x+ ξ

x

)
x2

(
1− e−

λRPγP
x

)
dx, (3.114)

and

Φ
(k)
2 = ξ

∫ ∞
0

e
−
(
ω

(S)
k x+ ξ

x

) (
1− e−

λRPγP
x

)
x2

(
ω

(P )
k

λSP
x+ 1

) dx (3.115)

=
ξλSP

ω
(P )
k

[G (ξ)− G (β)] ,

with

G (u) =

∫ ∞
0

te
−
(
ω

(S)
k
t

+ut

)

1 + λSP

ω
(P )
k

t
dt, u = {ξ, β}, (3.116)

where β is defined in Theorem 3.3.1. Using [67, Eq. (3.324.1)] alongside [71, Eq. (03.04.26.0006.01)],

we obtain (3.75).

By also using Eqs. (07.34.03.0271.01) and (01.03.26.0007.01) of [71], (3.116) can be rewritten

as

G (u) = Ξ1 − Ξ2, (3.117)

where

Ξ1 =

∫ ∞
0

te−utG1,1
1,1

 λSP

ω
(P )
k

t

∣∣∣∣∣∣∣
0;−

0;−

 dt, (3.118)

and

Ξ2 =

∫ ∞
0

te−utG1,1
1,1

 λSP

ω
(P )
k

t

∣∣∣∣∣∣∣
0;−

0;−

G1,1
1,2

ω(S)
k

t

∣∣∣∣∣∣∣
1;−

1; 0

 dt.
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Using [71, Eq. (07.34.21.0088.01)], the term Ξ1 can be rewritten as

Ξ1 = u−2G1,2
2,1

 λSP

ω
(P )
k u

∣∣∣∣∣∣∣
−1, 0;−

0;−

 . (3.119)

On the other hand, the term Ξ2 can be re-expressed as

Ξ2 =
1

(2πj)2

∫
Cs

Γ (−s) Γ (1 + s)

(
ω

(P )
k

λSP

)−s ∫
Ct

Γ (1 + v) Γ (−v)

Γ (1− v)
(
ω

(S)
k

)v dsdv ∫ ∞
0

ts+v+1

eut
dt, (3.120)

which becomes Ξ2 = Λk (u) /ξ2, where Λk (u) is being defined in (3.79), and Cs and Ct are

two complex contours of integration ensuring the convergence of the above bivariate Meijer’s

G-functions.

Replacing (3.119) and (3.120) into (3.117) and then incorporating (3.117) into (3.115), one

can obtain (3.77).

i.i.d Rayleigh fading channels of the link S-R

Subject to this case, (3.107) and (3.108) can be rewritten using (3.93) as

T1 =

(
1− e−φ

)
Γ (L)

γinc (L, αSy) . (3.121)

Using (3.93) along with [71, Eq. (06.06.26.0004.01)], (3.108) can be expressed as

T2 =
1

2πj

∫
C

Γ (L+ s) Γ (−s) Γ (1− s, φ)

Γ (1− s) Γ (L)

(
αPy

λSP

)−s
ds

=
1

Γ (L)
G1,2

2,2

αPy
λSP

∣∣∣∣∣∣∣
(1, 0) , (0, φ);−

(L, 0) ; (0, 0)

 , (3.122)

where αv = λSR/γv, v = {S, P}. Now, substituting (3.121) and (3.122) into (3.106), yields

FWk
(y) =

(
1− e−φ

)
γ (L, αSy)

Γ (L)
+

1

Γ (L)
G1,2

2,2

αPy
λSP

∣∣∣∣∣∣∣
(1, 0) , (0, φ);−

(L, 0) ; (0, 0)

 . (3.123)
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Substituting (3.123) into (3.105), one can obtain

FρR (z) = e−
λRPγP

z +

(
1− e−

λRPγP
z

)
Γ (L)


(
1− e−φ

)
γ (L, ωSz)

+G1,1
1,2

ωP z
∣∣∣∣∣∣∣

(1, 0) , (0, φ);−

(L, 0) ; (0, 0)


 (3.124)

where ωP is being defined in Theorem 3.3.1.

Similarly to (3.113), SOP2,i.i.d can be expressed as

SOP2,i.i.d = 1− 1

δ

[
1− ξ

∫ ∞
0

e−
ξ
x

x2
FρR(x)dx

]
(3.125)

= 1− 1

δ

[
1− ξ

{
1

β
+

(
1− e−φ

)
Ω1 + Ω2

Γ (L)

}]

where

Ω1 =

∫ ∞
0

e−
ξ
x

x2

(
1− e−

λRPγP
x

)
γ (L, ωSx) dx, (3.126)

and

Ω2 =

∫ ∞
0

e−
ξ
x

x2

(
1− e−

λRPγP
x

)
G1,1

1,2

 ωS
λSP

x

∣∣∣∣∣∣∣
(1, 0) , (0, φ);−

(L, 0) ; (0, 0)

 dx. (3.127)

By making a change of variable t = 1/x and using [71, Eq. (06.06.26.0004.01)], the term Ω1

can be rewritten as

Ω1 =

∫ ∞
0

e−ξtG1,1
1,2

ωS
t

∣∣∣∣∣∣∣
1;−

L; 0

 dt−
∫ ∞

0

e−βtG1,1
1,2

ωS
t

∣∣∣∣∣∣∣
1;−

L; 0

 dt, (3.128)

while

G1,1
1,2

ωS
t

∣∣∣∣∣∣∣
1;−

L; 0

 =

∫
C

Γ (L− s) Γ (s)

Γ (1 + s)

(
t

ωS

)−s
ds

= G1,1
2,1

 t

ωS

∣∣∣∣∣∣∣
1− L; 1

0;−

 . (3.129)

Now, making use of [71, Eq. (07.34.21.0088.01)], one can obtain (3.80). On the contrary, the
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term Ω2 can be expressed as

Ω2 =

∫
C

Γ (L+ s) Γ (−s) Γ (1− s, φ)

2πjΓ (1− s)

(
ωP
λSP

)−s{∫ ∞
0

e−ξttsdtds−
∫ ∞

0

e−βttsdt

}
ds, (3.130)

which leads to (3.82). Finally, replacing (3.75) and (3.77) into (3.113) and incorporating (3.92)

along with the final expression for SOP2,i.n.i.d into (3.84) yields (3.59). By also replacing (3.80)

and (3.130) into (3.125), one can obtain the final expression for SOP2,i.i.d. Then, by substituting

it alongside (3.97) into (3.84), we obtain (3.60), which concludes the proof of Theorem 3.3.1. �

Asymptotic Secrecy Outage Probability

An asymptotic analysis is next carried out in order to obtain useful insights on the impact of

the involved parameters on the overall system performance. Based on this, we quantify the

impact of the MTIP at the PU receiver on the SOP behavior. Similarly to [95], we assume that

the interference power PI is proportional to the maximum transmit power of the source S. For

the sake of simplicity, we define the positive constant σ = γP/γS = PI/P
max
S .

Proposition 1. The Asymptotic SOP in high SNR regimes (i.e., γP → ∞) of the considered

communication system subject to i.n.i.d as well as i.i.d flat Rayleigh fading channels for the

S-R link can be expressed by (3.131) and (3.132), respectively, as

SOPi.n.i.d ∼ 1− A1

δ
− A2

δ
γ−1
P , (3.131)

and

SOPi.i.d ∼ 1− C1

δ
+
C2 +D1

δ
γ−1
P , (3.132)

where

A1 =
L∑
k=1

Ψk

χk + 1
, (3.133)

A2 =
L∑
k=1

Ψk

χk + 1

{
ιk

(
σ +

e−φ

λSP

)
− ξ

λRP

}
, (3.134)

C1 =
λSE

(
1
%

+
∑L−1

m=1
µm

%m+1

)
γ (1− θ)

, (3.135)
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C2 =
λSE

γ (1− θ)

[
γ − 1 +$

(
1

%
+

L−1∑
m=1

µm

%m+1

)][(
1− e−φ

)
σ +

Γ (2, φ)

λSP

]
, (3.136)

D1 =
ξC1

λRP

[
1 +

(
1− e−φ

)
Γ (L)

(B1 + B2)− B3

]
, (3.137)

B1 =
(−a)L

L!
[ψ(1) + 2ψ(L)− ψ(1 + L)− log (a)] , (3.138)

B2 =
L−1∑
i=2

Γ (L− i)
i!

(−a)i , (3.139)

B3 =
1

Γ (L)
G2,2

2,3

 a

λSPσ

∣∣∣∣∣∣∣
(1, 0) , (0, φ);−

(L, 0) , (1, 0) ; (0, 0)

− aΓ (2, φ)

(L− 1)λSPσ
, (3.140)

whereas a = σλSRλRP

ηθ
, and ψ (.) stands for the Polygamma function [71, Eq. (06.14.02.0001.01)].

Proof.

� Asymptotic expression for SOP at the first hop

In order to find the asymptotic expression of SOP for both i.n.i.d and i.i.d cases, we use the

Maclaurin series when 1/γP approaches zero, to express the exponential function, the upper

incomplete Gamma function, and the polynomial power function as well.

i.n.i.d Rayleigh fading channels of the link S-R

Armed by Maclaurin series of the exponential function and the polynomial power function,

the approximate SOP can be expressed from (3.92) as

SOP1,i.n.i.d ∼ 1−
L∑
k=1

Ψk

χk + 1
− γ−1

P

(
σ +

e−φ

λSP

) L∑
k=1

Ψkιk
χk + 1

, (3.141)

i.i.d Rayleigh fading channels of the link S-R

Note that the upper incomplete Gamma can be asymptotically expressed, near x = 0 as

Γ (a, x) ∼

 1− x, a = 1

Γ (a) , a > 1
(3.142)
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By replacing (3.142) into (3.94), yields

SOP1,i.i.d ∼ 1−

(
1− e−φ

)
λSE

(
1− σ$

γP

)
γ (1− θ)

[
1− σ(γ−1)%

γP

%
+

L−1∑
m=1

µm

%m+1

]
− λSP

γ (1− θ)

×
∫ ∞
γP
γS

e−λSPxλSE

(
1− $

γP
x

)[
1− (γ−1)%

γP
x

%
+

L−1∑
m=1

µm

%m+1

]
dx, (3.143)

By performing some mathematical manipulations, we obtain

SOP1,i.i.d ∼ 1− C1 + C2γ
−1
P , (3.144)

where C1 and C2 are defined in (3.135) and (3.136), respectively.

� Asymptotic expression for the SOP at the second hop

In this part, the residues theorem will be used to derive the asymptotic expressions of both

Meijer’s and incomplete Meijer’s G-functions.

i.n.i.d Rayleigh fading channels of the link S-R

The term Φ
(k)
2 given in (3.115) can be approximated for high values of γP as

Φ
(k)
2 ∼ ξ

[ ∫∞
0

e
−(ω(S)

k
x+

ξ
x)

x2

(
1− ω

(P )
k

λSP
x

)
dx−

∫∞
0

e
−(ω(S)

k
x+

β
x)

x2

(
1− ω

(P )
k

λSP
x

)
dx

]
, (3.145)

That is, this term becomes with the help of [105, Eq. (2.9.32)] as

Φ
(k)
2 ∼ ξω

(P )
k

[
σ (M3 (ξ)−M3 (β)) + 1

λSP
(M4 (β)−M4 (ξ))

]
, (3.146)

where M3 (u) = G2,0
0,2

σω(P )
k u

∣∣∣∣∣∣∣
−;−

0,−1;−

 ,M4 (u) = G2,0
0,2

σω(P )
k u

∣∣∣∣∣∣∣
−;−

0, 0;−

 , and u = {ξ,

β}.

The term M3 (u) given in (3.146) can be written in terms of complex integral as

M3 (u) =
1

2πj

∫
C

Γ2 (s)

s− 1

(
σω

(P )
k u

)−s
ds, (3.147)

That is, the above integrand function has

� Poles of second-order: −l, l ∈ N.
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� Simple pole (i.e., of first-order) at l = 1.

Hence, (3.147) can be expressed using the residue theorem [105, Theorem 1.5] as follows:

M3 (u) = lim
s→1

Γ2 (s)
(
σω

(P )
k u

)−s
+
∞∑
l=0

lim
s→−l

∂Q1 (s, u)

∂s
, (3.148)

where

Q1 (s, u) = H1(s)H2(s)
(
σω

(P )
k u

)−s
, (3.149)

H1(s) = (s+ l)2Γ2(s), (3.150)

and

H2(s) =
1

s− 1
. (3.151)

The partial derivative of (3.149) with respect to s is given by

∂Q1 (s, u)

∂s
= lim

s→−l
(U1 + U2 + U3) , (3.152)

where

U1 = −H1(s)H2(s)
(
σω

(P )
k u

)−s
log
(
σω

(P )
k u

)
, (3.153)

U2 = − H1(s)

(s− 1)2

(
σω

(P )
k u

)−s
, (3.154)

U3 = 2(s+ l)Γ2(s) [1 + (s+ l)ψ (s)]H2(s)
(
σω

(P )
k u

)−s
. (3.155)

Using [71, Eq. (06.05.04.0004.01)], the limit of the terms U1 and U2 can be expressed as

lim
s→−l
U1 =

(
σω

(P )
k u

)l
log
(
σω

(P )
k u

)
(l + 1)!l!

, (3.156)

and

lim
s→−l
U2 = −

(
σω

(P )
k u

)l
[(l + 1)!]2

. (3.157)

By considering s = −l + ε and making use of [71, Eq. (06.14.06.0026.01)], one can see that

lim
s→−l
U3 = −2ψ(l + 1)

(l + 1)!l!

(
σω

(P )
k u

)l
. (3.158)
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Finally, substituting (3.156), (3.157), and (3.158) into (3.152), yields

M3 (u) =
(
σω

(P )
k u

)−1

+
+∞∑
l=0

(
σω

(P )
k u

)l
l! (l + 1)!

[
log
(
σω

(P )
k u

)
− 2ψ(l + 1)− 1

l + 1

]
. (3.159)

In the same manner to M3 (u), it can be seen that the integrand associated with M4 (u) has

only poles of second-order, namely −l, l ∈ N. Thus, similarly to (4.182), the term M4 (u) can

be expressed as

M4 (u) =
+∞∑
l=0

(
σω

(P )
k u

)l
(l!)2

[
2ψ(l + 1)− log

(
σω

(P )
k u

)]
. (3.160)

On the other hand, one can notice that the integrand of the Mellin-Barnes integral associated

with the Meijer’s G-function M1 (u) defined in (3.76) has poles of second-order at −l, l ∈ N.

To this effect, it follows that

M1 (u) =
+∞∑
l=0

(
σω

(P )
k u

)l
(l!)2

[
l log

(
σω

(P )
k u

)
− 2lψ (1 + l) + 1

]
. (3.161)

Now, by substituting (3.159) and (3.160) into (3.146) and incorporating (3.161) into (3.75),

then replacing Φ
(k)
1 and the approximate expression of Φ

(k)
2 into (3.113) and by considering

only the first terms in the infinite series (i.e., l = 0 and l = 1), the asymptotic expression of

SOP2,i.n.i.d is obtained, namely

SOP2,i.n.i.d ∼ 1− 1

δ

(
1− ξ

λRPγP

)
. (3.162)

i.i.d Rayleigh fading channels of the link S-R

One can notice thatM2 (u) is given in (3.80) can be rewritten in terms of complex integral

as

M2 (u) =
1

u

1

2πj

∫
C

Γ (1 + s) Γ (L+ s) Γ (−s)
Γ (1− s) (σωPu)s

ds, (3.163)

It can be noticed that the integrand function given in (3.163) has poles of second-order at

−L− i, i ∈ N and ones of simple order at −i, 1 ≤ i ≤ L− 1. That is

M2 (u) =
1

u

L−1∑
i=1

lim
s→−i

(s+ i)Q2 (s, u) +
1

u

∞∑
i=0

lim
s→−(L+i)

∂Q3 (s, u)

∂s
. (3.164)
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Based on this, it follows that

lim
s→−i

(s+ i)Q2 (s, u) =
(−1)i−1 Γ (L− i)

i!
(σωPu)i , (3.165)

and

Q2 (s, u) =
(s+ L+ i)2Γ (L+ s) Γ (1 + s) Γ (−s)

Γ (1− s) (σωPu)s
. (3.166)

On the other hand, the partial derivative of Q3 (s, u) with respect to s is given by

∂Q3 (s, u)

∂s
= U4 + U5 + U6, (3.167)

where

U4 = −(s+ L+ i)2Γ (L+ s) Γ (1 + s)
Γ (−s)

Γ (1− s)
(σωPu)−s log (σωPu) , (3.168)

U5 = [2 + (s+ L+ i) {ψ(L+ s) + ψ(1 + s)}] (s+ L+ i)Γ (L+ s) Γ (1 + s) Γ (−s)
Γ (1− s) (σωPu)s

, (3.169)

and

U6 = (s+ L+ i)2Γ (L+ s) Γ (1 + s)

(
ψ(−s)− ψ(1− s)

s

)
(σωPu)−s . (3.170)

That is

lim
s→−(L+i)

U4 = − (−1)L−1

i! (i+ L)!
(σωPu)L+i log (σωPu) , (3.171)

while the limit of U5 can be expressed using [71, Eq. (06.14.06.0026.01)] as

lim
s→−(L+i)

U5 =
(−1)L−1 [ψ(i+ 1) + ψ(L+ i)]

i! (i+ L)!
(σωPu)L+i , (3.172)

whereas, the one of the term U6 can be expressed as

lim
s→−(L+i)

U6 =
(−1)L−1 (σωPu)i+L

i! (i+ L)!
[ψ(L+ i)− ψ(1 + L+ i)] . (3.173)

Now, replacing (3.171), (3.172), and (3.173) into (3.167) and then substituting (3.165) and
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(3.167) into (3.164), one can obtain

M2 (u) =
1

u

+∞∑
i=0

(−1)L−1

i! (i+ L)!
(σωPu)L+i

[
− log (σωPu) + ψ(i+ 1) + 2ψ(L+ k)− ψ(1 + L+ i)

]

+
1

u

L−1∑
i=1

(−1)i−1 Γ (L− i)
i!

(σωPu)i . (3.174)

In a similar manner to the previous computation performed for (3.163), the incomplete Meijer’s

G-function J (u) given in (3.82) can be expressed as sum of residues by considering the poles

of second-order at −L− i, i ∈ N and the ones of first-order at −i, 1 ≤ i ≤ L− 1. That is

J (u) =
1

u

+∞∑
i=0

(−1)L−1 Γ (1 + L+ i, φ)Ni (u)

i! (i+ L)!
(
ωPu
λSP

)−(L+i)
+

1

u

L−1∑
i=1

(−1)i−1 Γ (L− i) Γ (1 + i, φ) (ωPu)i

i!λiSP

,

where

Ni (u) = − log

(
ωPu

λSP

)
+ ψ(i+ 1) + 2ψ(L+ i) + log (φ)− ψ(1 + i+ L)

+
1

Γ (1 + L+ i, φ)
G3,0

2,3

φ
∣∣∣∣∣∣∣

−; 1, 1

0, 0, 1 + i+ L;−

 . (3.175)

Now, by substituting (3.174) and (3.175) into (3.80) and (3.82), respectively, then by incorpo-

rating the final expressions of Ω1 and Ω2 into (3.125) and by considering only the first term in

the infinite series and the case of L > 1, the asymptotic expression of SOP2,i.i.d is given by

SOP2,i.i.d ∼ 1− 1

δ
+

ξ

δλRPγP

(
1 + 1−e−φ

Γ(L)
(B1 + B2)− B3

)
, (3.176)

where B1, B2, and B3 are defined in (3.138), (3.139), and (3.140), respectively.

Finally, substituting (3.141) and (3.162) into (3.18) yields (3.131), while replacing (3.144)

and (3.176) into (3.18), we obtain (3.144), which concludes the proof. �

Remark 4. It can be noticed from (3.131) and (3.132) that the asymptotic expressions of SOP
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for both i.n.i.d and i.i.d cases with respect to γS can be obtained by replacing γP by σγS

SOPi.n.i.d ∼ 1− A1

δ
− A2

δσ
γ−1
S , (3.177)

and

SOPi.i.d ∼ 1− C1

δ
+
C2 +D1

σδ
γ−1
S . (3.178)

Remark 5. It is worth mentioning that the approximate expression given in (3.131) is an

increasing function with respect to γP as the coefficient A2 is positive. In a similar manner,

one can notice that the approximate SOP representation in (3.132) is a decreasing function in

γP as the term C2+D1

δ
is a positive real number.

3.3.3 Numerical results and discussions

This section capitalizes on the derived analytic expressions and provides a thorough analysis of

the corresponding results. To this end, illustrative numerical examples are presented and vali-

dated through extensive results from respective Monte Carlo simulations. The used parameters

are set up as shown in Table 3.2. The parameters λSR = 0.5 for i.i.d case and λSRk = β + k
10
,

0 ≤ k ≤ L−1
10

for i.n.i.d fading channels with β either equal to 0.1 or 0.5. The aim of the con-

ducted simulation is to evaluate the impact of the MTIP at the PRx, the maximum transmit

power of the source S, the fading severity parameters, the EH ratio θ, and the number of the

relay antennas on the security performance of the system. The corresponding computer simu-

lation has been performed by repeating the same experiments 106 times. From Figs. 3.6-3.11,

we observe that the simulation results match perfectly the numerical results, which verifies the

validity of the derived exact and asymptotic analytic expressions.

Figs. 3.6-3.9 depict the closed-form expressions of the SOP as a function of γP and γS,

respectively for various numbers of the relay’s antennas for both i.n.i.d and i.i.d cases. It can be

noticed that this probability decreases with the increasing values of either γP or γS. This can be

justified by the fact that the greater the γP and γS, the greater the γR, γD, γ1E, and γ2E. Under

the assumption of no significant difference between fading severity parameters of legitimate and

wiretap channels, it follows from (3.7), (3.2.2), (3.9), and (3.58) that the increasing scale of

γR and γD exceeds largely the one of γ1E and γ2E as the relay performs the MRC diversity
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Table 3.2: Simulation parameters of contribution 3.

Parameter value Figures

λSP 0.1 All figures
λRD 0.3 All figures
λSE 0.2 All figures
λRE 0.4 All figures
λRP 0.5 All figures

RS(bit/s/Hz) 1 All figures
γ̄P (dB) 10 All except Figs. 3.6 & 3.7
γ̄S (dB) 10 All except Figs. 3.8 & 3.9

η 0.8 All figures
θ 0.5 All except Figs. 3.10-3.12

technique. In addition, when γP and γS exceed certain thresholds, the instantaneous powers

PS and PR remain constant as stated in (1.1) and (3.48). As a consequence, the SOP remains

constant as well. Furthermore, one can ascertain that the greater the parameters λSRk the

smaller the combined SNR at the relay. Consequently, the secrecy capacity at the first hop

decreases as well, leading to a degradation of the system’s security.
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Figure 3.6: SOP versus γP for γS = 20
dB and i.n.i.d Rayleigh fading chan-
nels.
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Figure 3.7: SOP versus γP for γS = 50
dB and i.i.d Rayleigh fading channels.

Fig. 3.10 and Fig. 3.11 illustrate the SOP for the i.n.i.d and i.i.d cases versus the EH ratio θ

for different numbers of the relay antennas, computed using (3.59), (3.60), (3.131), and (3.132).

It can be observed that the SOP is a concave function of θ. Indeed, it can be seen from (3.2.2),

(3.56), and (3.58) that as θ approaches 0, both γD and γ2E tend to 0. Consequently, both CS2

and CS tend to 0, which leads to a higher value of the SOP. Similarly, according to (3.7) and

(3.9), the greater the value of θ i.e., when it tends to 1, both γR and γ1E tend to 0. Therefore,
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both C1S and CS approach 0, and therefore the SOP increases accordingly.
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Finally, Fig. 3.12 shows the SOP versus θ and γP . Obviously, the parameters γP and

θ admit certain values for which better security is achieved. For instance, one can infer that

higher secrecy is achieved for 0.4 ≤ θ ≤ 0.6 and γP ≥ 15 dB. This constitutes a practical insight

that is expected to be useful in the design of future EH based CR systems and networks.
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3.4 Concluding remarks

PLS has been investigated , in this chapter, by considering two setups of a dual-hop EH-CRNs.

In the first contribution, the rely was equipped with only one antenna and assumed to be

located far from the PU and not causing any interference to it. In the second contribution,

the rely was equipped with multiple antennas, performing MRC combining technique, and

continuously adapting its transmit power to not interfere with the PU signals. In the first

contribution of this chapter, closed-form expression for the sop was derived, whereas in the

second contribution, both closed-form and asymptotic expressions were derived for the SOP by

considering both i.n.i.d and i.i.d Rayleigh fading channels. For both setups, we investigated

the impact of several parameters on the system’s security performance. We showed that the

security is improved for high tolerated interference power at the primary receiver as well as for

high secondary users transmit power. Furthermore, better secrecy is achieved when the fraction

of the harvested energy takes its values in the interval [0.4, 0.6].

The current chapter studied the impact of EH on the secrecy performance of a dual-hop

CRN. The next chapter investigates the impact of jamming signal on the secrecy performance

of underlay CRNs.
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Chapter 4

On the Secrecy Performance of a

Jamming-based Underlay CRN

4.1 Introduction

4.1.1 Motivation

Recently, the PLS of CRNs has been the focus of many research works. For instance, non-

cooperative CRNs were considered in [93–96], therein all receivers i.e., both destination and

eavesdropper were assumed to be equipped with multiple antennas and perform MRC technique,

while in [96], the source is also assumed to be a multi-antenna node performing transmit antenna

selection. Also, in [94] the secrecy performance was investigated for both secondary and primary

networks. Closed-form and asymptotic expressions for the SOP were derived under Nakagami-

m [93, 96] and Rayleigh [94,95] fading models.

The PLS of cooperative dual-hop CRNs was explored in [97–103]. Specifically, in [97]

and [98], the communication was performed in the presence of only one eavesdropper attempting

to overhear the communication channel, while multiple eavesdroppers were considered in [102]

and [103]. Furthermore, In [97], optimal and suboptimal relay selection were analyzed while

in [98] the relay that minimizes the SNR of the wiretap link was chosen. Besides, in [102], the

most threatening eavesdropper is selected first according to the maximum SNR of the wiretap

links between the source and the eavesdroppers. Next, the best relay minimizing the SNR at

the selected eavesdropper is then chosen. In [103], the relay that maximizes the achievable
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secrecy rate is selected. Under these conditions, closed-form and asymptotic expressions for the

SOP and IP were derived over either Nakagami-m [97] or Rayleigh [98–103] fading channels.

The PLS of underlay EH-based CRNs have been investigated in [31–35]. Specifically,

in [32–34], the energy-constrained nodes were harvesting energy fro the RF signals of the PU.

The authors of [31], derived the upper and lower bounds probability of strictly positive se-

crecy capacity by considering that the destination node was harvesting energy from the source

node and used the harvested energy to send a jamming signal to downgrade the eavesdrop-

per’s decoding capacity. In [32], the SOP was derived by considering a direct communication

link where the source was equipped with multiple antennas and communicating with a multi-

antenna destination in the presence of a multi-antenna eavesdropper. In [33], the IP was derived

by considering that multiple SUs were communicating with a base station in the presence of

multiple eavesdroppers. The authors of [34] investigated the PLS of an EH-based overlay CRN

where the SUs harvest energy from the PU signals and act as relays between the PU trans-

mitter and the PU receiver. In [35], the secrecy performance was investigated by considering a

direct communication link where a secondary base station was communicating with a secondary

receiver in the presence of multiple eavesdroppers. The eavesdroppers were assumed to be all

legitimate users in the network that are also energy harvesters.

The PLS of non-orthogonal multiple access (NOMA)-based CRNs has been investigated

in [106–108]. In [106], an overlay NOMA CRN was considered such that the SUs were assumed

to be eavesdroppers, while the PLS of mmWave NOMA CRN was investigated in [107]. Closed-

form expressions for the connection outage probability, SOP, and secrecy throughput were

derived over Nakagami-m fading channels. In [108], zero-forcing-beamforming technique was

used to secure communications in MIMO, NOMA-based CRN.

PLS analysis through the aid of a friendly jammer was discussed in [36, 37]. In [36], the

IP was derived by considering multiple source-destination pairs communicating under eaves-

dropping attempts of only one eavesdropper, with the source cooperation aided opportunistic

jamming. In [37], the SOP of dual-hop aided opportunistic jamming CRNs is investigated.

In this work, one relay is selected to forward the information while another one is chosen to

disrupt the eavesdropper by sending an artificial noise. Also, in the two aforementioned works,

several selection policies of the friendly jammer were considered.
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Concurrently, to the best of the authors’ knowledge, very few research works have investi-

gated the PLS of HSTCNs. The secrecy analysis of HSTCNs where the terrestrial secondary

network is sharing the spectrum with a satellite system, acting as a primary network is ex-

amined in [109] by maximizing the SUs rate and considering various beamforming techniques.

Distinctively, the authors in [110] dealt with the minimization of the total transmit power of

numerous terrestrial base stations and onboard the satellite subject to the PU secrecy rate con-

straint. Later, the ASC and SOP of a downlink hybrid satellite-FSO cooperative system were

derived in [111] by considering both amplify-and-forward and DF relaying protocols. Likewise,

the authors of [27] investigated the PLS of a hybrid very high throughput satellite communi-

cation system with an FSO feeder link. Therein, a satellite combines the received data from

multiple optical ground stations, performs a decoding process, regenerates the information sig-

nal, and forwards it to the end-user with zero-forcing precoding so that to cancel the interbeam

interference at the receivers.

Although the above works have added new insights to the research field, only few works have

considered the friendly jammer approach to improve the secrecy of a given CR communication

system. Additionally, the existing jamming-based communication contributions neglected the

power adaptation constraints of the SUs, despite that this condition is of paramount importance

in order to avoid interference with PUs. Therefore, our aim is to investigate the impact of

multiple techniques namely, jamming signal, spatial diversity, number of eavesdroppers, etc.

on the overall system security of a CR communication system.

4.1.2 Contributions

The main contributions of this chapter are given as follows:

� Secrecy performance analysis of a direct-link jamming-based underlay CRN.

– By considering the power adaptation constraint of SUs, a closed-form expression for

the IP is derived for two scenarios: (i) presence and (ii) absence of a friendly jammer.

These exact analytic results constitute the basis for the derivation of simpler, more

tractable, and more insightful asymptotic expression.

– We develop useful insights into the secrecy performance of the considered commu-

nication system. Specifically, we conclude that for a high number of eavesdroppers
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and a low transmit power of the friendly jammer, the security performance of the

system becomes the same for both scenarios.

� Secrecy performance analysis of a dual-hop jamming-based underlay CRN over Rayleigh

fading channels.

– Closed-form expression for the SOP is derived by considering the power adaptation

constraint of the SUs as well as the presence of multiple eavesdroppers that are

intercepting the transmitted data at both communication hops.

– Differently from the previous works, we combine, in this contribution, two techniques

(i) using a friendly jammer to enhance the security at the first hop, and (ii) con-

sidering a multi-antenna destination node that performs MRC technique to improve

security at the second hop.

– Deep useful insights into the secrecy performance of the considered communication

system are given.

� Secrecy performance analysis of a dual-hop Jamming-based CR communication system

with multi-antenna receivers over Nakagami-m fading channels.

– The PLS of an underlay uplink dual-hop CRN operating under Nakagami-m fading

environment is investigated by deriving closed-form and asymptotic expressions for

the SOP of the overall system under two scenarios namely, (i) presence and (ii)

absence of a friendly jammer.

– Under the power adaptation constraint of the SUs, the joint impact of the friendly

jammer’s transmit power, multiple SUs with power adaptation constraint, number

of eavesdroppers, number of diversity branches, MTIP at the PU receiver on the

system’s security is investigated.

– We show that the system’s security is enhanced in the presence of an important

number of eavesdroppers by increasing the (i) SUs’ transmit powers (ii) number of

legitimate destination branches (iii) and MTIP.

� Secrecy performance analysis of a dual-hop jamming-based underlay cognitive hybrid

satellite-terrestrial network.
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– A novel expression for the IP of a dual-hop DF relaying in the presence of eaves-

droppers at each hop is derived.

– Capitalizing on the above result, the IP expression of HSTCN is derived in closed-

form for both the presence and absence of friendly jammer scenarios.

– The asymptotic expression for the IP in high SNR regime is also provided, based on

it, the achievable diversity order is retrieved.

– Insightful discussions on the impact of different key parameters of HSTCN on its

security are also provided. Specifically, we demonstrated that the system’s secrecy

can be enhanced by increasing (i) SU’s transmit power, (ii) maximal tolerated inter-

ference power (MTIP) at PU, and (iii) average power of the downlink channel along

with the satellite transmit power. Moreover, we demonstrated that under low source

transmit power and low MTIP constraints, the friendly jammer does not enhance

the system’s secrecy.

4.1.3 Chapter’s structure

The remainder of this chapter is organized as follows: Sections 2, 3 and 4 provide contributions

on the PLS of 3 various setups, namely a direct-link jamming-based CR system subject to

Rayleigh fading, a dual-hop jamming-based CR system subject to Rayleigh fading, and a dual-

hop jamming-based CR system subject to Nakagami-m fading with multi-antenna receivers.

For each contribution, system and channel model, secrecy performance analysis, and numerical

results are provided. Section 5 concludes this chapter.

4.2 Contribution 4: Secrecy performance analysis of a

direct-link jamming-based underlay CRN

4.2.1 System and channel model

We consider an uplink CRN, illustrated in Fig. 4.1, composed by multiple SUs (Si)i≤N , multiple

eavesdroppers (Ek)k≤M , one single-antenna secondary base station (Bs), one PU transmitter

(PUTx), and one primary base station (PBS) (BP ). Multi-user scheduling is considered such
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that, at the moment t, only one source (Sc) is selected according to the round-robbing scheduling

algorithm for data transmission. Additionally, a jammer among the N − 1 remaining sources

is selected by the current transmitter to send an artificial noise (AN) that is added to the kth

eavesdropper’s signal. Indeed, the AN is considered as a signal designed in the null space of the

legitimate channel i.e., Sc −D, and is transmitted to interfere with the eavesdroppers without

affecting the legitimate destination. Similarly to [36], we consider that the AN is generated

from a pseudo-random sequence. This sequence is known to the legitimate receiver while it

is unknown to the eavesdroppers. Consequently, the destination is able to cancel out the AN

while the eavesdroppers cannot.

For the sake of simplicity but without loss of generality, we denote the channel power gains

by gq = |hq|2 and their corresponding coefficients are λq, where q = {SiBS, SiEk, SiBP}. As

the fading amplitudes for all links are Rayleigh distributed, it follows that the channel gains

are exponentially distributed.

Moreover, under the power adaptation policy, the instantaneous SNR of the main channel

Sc −D and the wiretap link Sc − Ek are given, respectively, by

γ(c)
m = gScRXSc , (4.1)

and

γ(c,εJ)
ek

=
gScEkXSc

εgSJEk XSJ + 1
, (4.2)

where

ε =

 0 : without jammer

1 : with jammer
, (4.3)

XSc = min

(
γ
Sc
,
γP
g
ScP

)
, (4.4)

and

XSJ = min

(
γ
SJ
,
γP
g
SJP

)
, (4.5)

and γSc = Pmax
Sc

/N0, γSJ = Pmax
SJ

/N0, γP = PI/N0, with Pmax
Sc

and Pmax
SJ

denoting the maximal

transmit power of Sc and SJ , respectively, while PI accounts for the MTIP at PURx, and N0 is

the variance of the additive white Gaussian noise, assumed the same, at each receiver.
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It is worth mentioning that when PI increases, the source nodes are able to use their maximal

transmission power resulting in increasing the SNR at D, which leads the enhancement of the

system’s security.
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Legitimate link 
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PBS 𝑷𝑼𝑻𝒙 

Figure 4.1: The considered direct-link jamming-based CRN.

4.2.2 Secrecy performance evaluation

In this section, the IP analysis of an underlay Uplink CRN is presented by considering the

presence and absence of a friendly jammer. Similarly to [36], the IP of the considered CRN in

the presence of a friendly jammer can be expressed as

Pint =
1

N(N − 1)

N∑
c=1

N∑
J=1
J 6=c

P
(c,J)
int , (4.6)

While the IP in the absence of a friendly jammer is expressed as

Pint =
1

N

N∑
c=1

P
(c)
int , (4.7)

For the considered system, the IP can be defined as the probability that at least one of the

wiretap links capacities is above the legitimate one, namely

P
(c,J)
int = 1−

M∏
k=1

Pr
(
C

(c, k,εJ)
S > 0

)
, (4.8)
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and C
(c, k,εJ)
S denotes the secrecy capacity of the cth source Ek is intercepting the channel.

C
(c, k,εJ)
S = log2

(
1 + γ(c)

m

)
− log2

(
1 + γ(c,εJ)

ek

)
. (4.9)

Remark 6. It is worth mentioning that by considering identical parameters, the IPs given in

(4.6) and (4.7) becomes the one of user c i.e., P
(c,J)
int .

Closed-form intercept probability

According to (4.6), in order to derive the IP of the considered system, we first have to determine

the expression of P
(c,J)
int .

Theorem 4.2.1. The IPs of cth source in presence and absence of a friendly jammer are given,

respectively by

P
(c,J)
int = 1−

M∏
k=1

[
1− λScD

(
e−ϕJ

$
(c)
k

− χ(k,J)
c

[
M(k,J)

c

[
e−ϕJ − 1

]
+ eθ

(k,J)
c −ϕJ∆(k,J)

c

])]
, (4.10)

and

P
(c)
int = 1−

M∏
k=1

[
λScEk

λScEk + λScD

]
, (4.11)

where

ϕJ = λSJPγP/γSJ , $
(c)
k = λScEk + λScD, ε

(k,J)
c = λSJEk/λScEk , χ

(k,J)
c = ε

(k,J)
c /γSJ , θ

(k,J)
c =

$
(c)
k χ

(k,J)
c ,

M(k,J)
c = G2,1

1,2

θ(k,J)
c

∣∣∣∣∣∣∣
0;−

0, 0;−

 ,

∆(k,J)
c =

(
A

(c,k,J)
1 /ϕJ − A(c,k,J)

0

)
,

A(c,k,J)
v =

(
ϕJ/θ

(k,J)
c

)v+1
Ω(k,J)
c , v ∈ {0, 1},

Ω(k,J)
c = G2,2

2,2

ϕJ/θ(k,J)
c

∣∣∣∣∣∣∣
(0, 0), (−v, θ(k,J)

c );−

(0, 0), (0, 0);−

 ,

Proof.

In the following, two cases are distinguished, namely the presence and absence of a friendly

jammer.
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� Case 1: Presence of a jammer

The IP corresponding to the links Sc −D and Sc − Ek can be expressed as

Pr
(
C

(c, k,J)
S ≤ 0

)
= Pr

(
gScD ≤ W (k,J)

c

)
=

∫ ∞
0

FgScD (z) f
W

(k,J)
c

(z) dz,

(4.12)

where W
(k,J)
c =gScEk/

(
Y

(k)
J + 1

)
, Y

(k)
J = gSJEkXJ , fX and FX denote the PDF and the CDF

of the distribution X, respectively.

On the other hand, the CDF of W
(k,J)
c is given by

F
W

(k,J)
c

(ξ) =

∫ ∞
0

FgScEk (ξ (z + 1)) f
Y

(k)
J

(z) dz, (4.13)

where the CDF of Y
(k)
J is expressed as

F
Y

(k)
J

(ϑ) = Pr

(
min

(
γ
SJ
,
γP
g
SJP

)
gSJEk ≤ ϑ

)

= Pr

(
γ
SJ
gSJEk ≤ ϑ,γ

SJ
≤ γP
g
SJP

)
︸ ︷︷ ︸

I(k,J)
1

+ Pr

(
gSJEk
g
SJP

≤ ϑ

γP
,γ

SJ
>

γP
g
SJP

)
︸ ︷︷ ︸

I(k,J)
2

. (4.14)

The first term I(k,J)
1 can be rewritten as

I(k,J)
1 = FgSJEk

(
ϑ

γSJ

)
Fg

SJP

(
γP
γSJ

)
=

(
1− e

−
λSJEk

ϑ

γSJ

)(
1− e−ϕJ

)
. (4.15)
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while the second term I(k,J)
2 can be re-expressed as

I(k,J)
2 =

∫ ∞
γP
γSJ

fgSJP (y)

∫ ϑ
γP

y

0

fgSJEk (x)dxdy

=

∫ ∞
γP
γSJ

fgSJP (y)FgSJEk

(
ϑ

γP
y

)
dxdy

= e−ϕJ − e
−ϕJ

(
ϑ%

(J)
k +1

)
ϑ%

(J)
k +1

, (4.16)

with %
(J)
k = λSJEk/λSJPγP .

By replacing (4.15) and (4.16) into (4.14), we get the CDF of Y
(k)
J as

F
Y

(k)
J

(ϑ) = 1− e−ϕJ%
(J)
k ϑ
(
1− e−ϕJ

)
− e

−ϕJ
(
ϑ%

(J)
k +1

)
%

(J)
k ϑ+1

. (4.17)

It follows by using the integration by part and substituting (4.17) into (4.13) that

F
W

(k,J)
c

(ξ) = 1− ξ
∫ ∞

0

fgScEk (ξ (z + 1))F
Y

(k)
J

(z) dz

= 1− Ξ
(c)
k (ξ)

[
1
ξ

+ e−ϕJ−1

µ
(k,J)
c

− λ
ScEk

e−ϕJΘ
(k,J)
c (z)

]
, (4.18)

where Ξ
(c)
k (ξ) = ξe

−ξλ
ScEk ,Θ

(k,J)
c (z) =

∫∞
0

e−β
(k,J)
c z

%
(J)
k z+1

dz, β
(k,J)
c = λ

ScEk
µ

(k,J)
c , and µ

(k,J)
c =

ϕJ%
(J)
k

λ
ScEk

+ξ.

Now, making use of Eqs. (07.34.03.0456.01) (07.34.21.0088.01) of [71], the term Θ
(k,J)
c is

given by

Θ(k,J)
c =

1

%
(J)
k

G1,3
3,2

 %
(J)
k

β
(k,J)
c

∣∣∣∣∣∣∣
0, 1, 1;−

1; 0

 , (4.19)

On the other hand, the Meijer’s G-function obtained in (4.19) can be reduced to

G3,1
2,3

β(k,J)
c

%
(J)
k

∣∣∣∣∣∣∣
0; 1

1, 0, 0;−

 =
1

2πj

∫
C

Γ2 (s) Γ (1− s)(
β

(k,J)
c

%
(J)
k

)s ds

= G2,1
1,2

β(k,J)
c

%
(J)
k

∣∣∣∣∣∣∣
0;−

0, 0;−

 ,

(4.20)
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where C represents a complex contour of integration ensuring the convergence of the Mellin-

Barnes integral.

Now, substituting (4.19) and (4.20) into (4.18) yields

F
W

(k,J)
c

(ξ) = 1− e−λScEk ξ
[
1 + Υ(k,J)

c (ξ)
]
, (4.21)

where

Υ(k,J)
c (ξ) =

ξ (e−ϕJ − 1)

χ
(k,J)
c + ξ

− ξλScEk

%
(J)
k

e−ϕJG2,1
1,2

ϕJ +
ϕJ

χ
(k,J)
c

ξ

∣∣∣∣∣∣∣
0;−

0, 0;−

 . (4.22)

By using the integration by parts and incorporating (4.21) into ( 4.12), we obtain

Pr
(
C

(c, k,J)
S ≤ 0

)
= 1−

∫ ∞
0

f gScD
(z)F

W
(k,J)
c

(z) dz,

= λScD

[
1

$
(c)
k

+ I(c,k,J)
3

]
. (4.23)

The term I(c,k,J)
3 =

∫∞
0
e−$

(c)
k zΥ

(k,J)
c (z) dz can be rewritten using (4.22) as

I(c,k,J)
3 =

(
e−ϕJ − 1

)
Φ

(c,k,J)
1 − λScEk

%
(J)
k

e−ϕJΦ
(c,k,J)
2 , (4.24)

with

Φ
(c,k,J)
1 =

∫ ∞
0

ze−$
(c)
k z

χ
(k,J)
c + z

dz (4.25)

=
1

$
(c)
k

− χ(k,J)
c G2,1

1,2

θ(k,J)
c

∣∣∣∣∣∣∣
0;−

0, 0;−

 ,

and

Φ
(c,k,J)
2 =

∫ ∞
0

z

e$
(c)
k z

G2,1
1,2

ϕJ +
ϕJ

χ
(k,J)
c

z

∣∣∣∣∣∣∣
0;−

0, 0;−

 dz

=

(
χ

(k,J)
c

)2

ϕJ
eθ

(k,J)
c

[
A

(c,k,J)
1

ϕJ
− A(c,k,J)

0

]
, (4.26)
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where the two functions
(
A

(c,k,J)
v

)
v=0,1

are defined by

A(c,k,J)
v =

∫ ∞
ϕJ

yve
− θ

(k,J)
c
ϕJ

y
G2,1

1,2

y
∣∣∣∣∣∣∣

0;−

0, 0;−

 dy (4.27)

=
ηv+1
k

2πj

∫
C

Γ2 (s) Γ (1− s) Γ
(
ςv, θ

(k,J)
c

)
(ηk)

−s ds,

where ηk = ϕJ/θ
(k,J)
c , and ςv = v + 1− s.

Finally, by replacing (4.27) into (4.26) alongside incorporating (4.25), and (4.26) into (4.24),

and using (4.8), we get (4.10).

� Case 2: Absence of jammer

Under this assumption, one can arrive at

Pr
(
C

(c, k)
S ≤ 0

)
=

∫ ∞
0

FgScD(z)fgScEk (z) dz

= 1− λScEk
λScEk + λScD

. (4.28)

Substituting (4.28) into (4.8), we get the expression of IP given in (4.11), which concludes the

proof of Theorem 4.2.1. �

Remark 7. It can be noticed that the IP in the presence of friendly jammer is independent

from γSc, whereas the one in absence of jammer signal depends only on the fading parameters.

Particularly, for identical fading parameters, IP is reduced to P
(c)
int = 1−

(
1
2

)M
. Therefore, for

a high number of eavesdroppers, the system may become vulnerable to eavesdroppers’ attacks.

Asymptotic intercept probability

It can be noticed from (4.10) that the closed-form expression of the IP depends on the average

SNRs γP and γSJ . Consequently, the asymptotic expression for the IP can be derived for high

SNR regime by considering either γP →∞ or γSJ →∞. Analogously to [95], we assume that

γP is proportional to γSJ i.e., σ = γP/γSJ .

Theorem 4.2.2. The Asymptotic expression for the IP of the considered communication system
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subject to flat Rayleigh fading channels can be expressed as

P
(c,J)
int ∼ 1−

M∏
k=1

[
1− λScD

(
1 +

e−ϕJ

ϕJ

)
ε

(k,J)
c

γSJ
log
(
γSJ
)]
. (4.29)

Proof.

In order to derive the asymptotic expression for the IP, the residues theorem is used to

approximate the Meijer G-function.

First, by using the Maclaurin series and performing some algebraic manipulations, the term

Φ2 in (4.26) can be approximated for high values of γSJ as

Φ
(c,k,J)
2 ∼ 1

2πj

∫ ∞
0

ze−$
(c)
k z

∫
C

Γ2 (s) Γ (1− s)

(
ϕJz

χ
(k,J)
c

)−s(
1− χ

(k,J)
c

z
s

)
dsdz

∼ 1(
$

(c)
k

)2 Υ1 (υ)− χ
(k,J)
c

$
(c)
k

Υ2 (υ) , (4.30)

where Υ1 (υ) = G2,2
2,2

υ
∣∣∣∣∣∣∣

1, 1;−

1, 2;−

 , Υ2 (υ) = G2,2
2,2

υ
∣∣∣∣∣∣∣

0, 1;−

1, 1;−

 , and υ = χ
(k,J)
c $

(c)
k /ϕJ .

The terms Υ1 (υ) and Υ2 (υ) given in (4.317) can be written in terms of complex integral as

Υ1 (υ) =
1

2πj

∫
C1

Γ (1 + s) Γ (2 + s) Γ2 (−s) υ−sds, (4.31)

and

Υ2 (υ) =
1

2πj

∫
C2

Γ2 (1 + s) Γ (1− s) Γ (−s) υ−sds. (4.32)

By considering the left half plans of both C1 and C2, it can be noticed that (4.31) has simple

pole at −1 and admits poles of second order at −l − 2, l ∈ N, while (4.32) has poles of second

order at −l − 1, l ∈ N.

By making use of [105, Theorem 1.5], (4.31) is given by

Υ1 (υ) = lim
s→−1

(s+ 1) Γ (1 + s) Γ (2 + s) Γ2 (−s) υ−s +
∞∑
l=0

lim
s→−(l+2)

∂G1 (s, υ)

∂s
, (4.33)
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where

G1 (s, υ) = (s+ l + 2)2 Γ2 (1 + s) (s+ 1) Γ2 (−s) υ−s. (4.34)

It is evident that, the first term in (4.33) is equal to υ , while the partial derivative of G1 (s, υ)

with respect to s is given by

∂G1 (s, υ)

∂s
= T1 + T2 + T3, (4.35)

with

T1 = − (s+ l + 2)2 Γ2 (1 + s) (s+ 1) Γ2 (−s) υ−s log (υ) , (4.36)

T2 = 2 (s+ l + 2) Γ2 (1 + s) [1 + (s+ l + 2)ψ (1 + s)] (s+ 1) Γ2 (−s) υ−s, (4.37)

and

T3 = (s+ l + 2)2 Γ2 (1 + s) Γ2 (−s) [1− 2 (s+ 1)ψ (−s)] υ−s. (4.38)

The limit of T1 is expressed as

lim
s→−(l+2)

T1 = (l + 1) υl+2 log (υ) . (4.39)

On the other hand, the limit of T2 can be expressed using [71, Eq. (06.14.06.0026.01)] as follows

lim
s→−(l+2)

T2 = −2 (l + 1)ψ (l + 2) υl+2, (4.40)

while the limit of T3 is given by

lim
s→−(l+2)

T3 = [1 + 2 (l + 1)ψ (l + 2)] υl+2. (4.41)

By substituting (4.39), (4.40), and (4.41) into (4.33), we get

Υ1 (υ) = v +
∞∑
l=0

υl+2 [(l + 1) log (υ) + 1] . (4.42)

In the same manner to Υ1 (υ) , the term Υ2 (υ) can be written using the residues theorem as

Υ2 (υ) =
∞∑
l=0

(l + 1) υl+1 [ψ (1 + l)− ψ (2 + l)− log (υ)] . (4.43)
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Using [71, Eq. (06.14.03.0001.01)], the term Υ2 (υ) can be simplified as

Υ2 (υ) =
∞∑
l=0

− (l + 1) υl+1

[
1

l + 1
+ log (υ)

]
. (4.44)

On the other hand, the MeijerG function given in (4.25) can be written in term of complex

integral as

G2,1
1,2

κ
∣∣∣∣∣∣∣

0;−

0, 0;−

 =
1

2πj

∫
C

Γ2 (s) Γ (1− s)κ−sds, (4.45)

with κ = θ
(k,J)
c .

It can be noticed that the above integrand function has poles of second order at −l, l ∈ N.

Hence, by using the residues theorem, (4.45) can be expressed as

G2,1
1,2

κ
∣∣∣∣∣∣∣

0;−

0, 0;−

 =
∞∑
l=0

lim
s→−l

∂G2 (s, κ)

∂s
, (4.46)

with

G2 (s, κ) = (s+ l)2 Γ2 (s) Γ (1− s)κ−s. (4.47)

The partial derivative of G2 (s, υ) with respect to s is given by

∂G2 (s, κ)

∂s
= (s+ l) Γ2 (s) Γ (1− s)κ−s [− (s+ l) log (κ) + 2 [1 + (s+ l)ψ (s)]− (s+ l)ψ (1− s)] .

(4.48)

By making use of [71, Eq. (06.14.06.0026.01)], the limit of (4.48) can be expressed as

lim
s→−l

∂G2 (s, κ)

∂s
=
κl

l!
[ψ (1 + l)− log (κ)] . (4.49)

Now, replacing (4.49) into (4.46), yields

G2,1
1,2

κ
∣∣∣∣∣∣∣

0;−

0, 0;−

 =
∞∑
l=0

κl

l!
[ψ (1 + l)− log (κ)] . (4.50)

Now, by substituting (4.42) and (4.43) into (4.317) and replacing (4.317) and ( 4.50) into (4.23)
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and by considering only the first and second terms of the infinite sum, we get

Pr
(
C

(c, k,J)
S ≤ 0

)
∼ λScD

[
1 +

e−ϕJ

ϕJ

]
ε

(k,J)
c

γSJ
log
(
γSJ
)
. (4.51)

Finally, by replacing (4.51) into (4.8) we get the asymptotic expression for P
(c,J)
int given in

(4.29). �

4.2.3 Numerical results and discussions

In this section, the derived IP expression is validated through corresponding Monte-Carlo sim-

ulation by generating 106 exponentially distributed random values. The considered simulation

parameters are given in Table. 4.1. We clearly see from the obtained figures that the analytical

results perfectly match the simulation results.

Table 4.1: Simulation parameters of contribution 4.

Parameter λq M N γ̄P (dB)
value 0.5 4 2 10

Figs. 4.2 and 4.3 show the IP as a function of γP for various values of γSJ and M , respec-

tively. As it can be seen, the greater γP and γSJ , the smaller the IP. According to (4.1), when

γP increases the SNR of the main link increases as well. This leads to the improvement of

the main link capacity and consequently the system’s secrecy capacity enhances, which ensure

secure transmission. Moreover, in the absence of a jammer, the IP remains constant, for a

fixed number of eavesdroppers, regardless of the average SNR γP because as shown in (4.11)

the IP depends only on the channel coefficients. Additionally, Fig. 2 shows that for M = 4, a

better secrecy is achieved for high values of γSJ . Indeed, it can be seen from (4.2) that SNR at

the eavesdroppers decreases as long as γSJ increases. Consequently, the wiretap link capacity

decreases, which leads to the enhancement of the system’s security.

Fig. 4.4 depicts the IP as a function of the number of eavesdroppers M for various values

of γSJ by considering the case of the presence and absence of a friendly jammer. As one can

see, as the number of eavesdroppers increases the probability of intercepting communication

increases as well. Moreover, it can be also noticed that when γSJ is significantly small i.e.,

γSJ ≤ −2 dB and M ≥ 10, the friendly jammer does not contribute to improving the security
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of the system.

Fig. 4.5 depicts the IP versus γSJ and the number of eavesdroppers M . It is clearly seen

that better security is achieved for a small number of eavesdroppers and high transmission

power of the friendly jammer. However, for a high number of eavesdroppers, the presence of a

friendly jammer with low power does not have any significant impact on the system’s security

as the IP tends to be high.
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4.3 Contribution 5: Secrecy performance analysis of a

dual-hop jamming-based underlay CRN

4.3.1 System and channel model

The considered dual-hop CRN, represented in Fig. 4.6, consists of multiple sources (Si)i=1,..,n,

one relay R, multiple eavesdroppers (Ek)k=1,..,m, one L-antennas destination D performing

MRC diversity technique, one PU transmitter (PUTx), and one PU receiver (PURx). In this

scheme, all the nodes except D are assumed to be equipped with only one antenna. Moreover,

we consider a multi-user scheduling such that, at the moment t, only one user is transmitting

its data. We assume that the source nodes are taking rounds in accessing the spectrum and a

friendly jammer SJ is randomly selected among n−1 source nodes in order to send an artificial

noise to the eavesdroppers. We assume that the primary receiver PURx and the relay R are

able to cancel out that noise, while the eavesdroppers are not.

In this scheme, we are considering Rayleigh fading model for all links in which the channel

gains are exponentially distributed. The channel coefficients of links Si → R, R→ D, Si → Ek,

R → Ek, PUTx → PURx, R → PURx, Si → PURx are denoted by hSiR, hRD, hSiEk , hREk ,

hP ,hRP , hSiP , respectively. The received signals at R, Ek at the first and second hop, D, and

the primary receiver PURx are, respectively, expressed as

yR =
√
PSihSiRxSi + nR i = 1, .., n (4.52)

y
(i)
1Ek

=
√
PSihSiEkxSi + ε

√
PSJhSJEkxSJ + nEk , (4.53)

k = 1, ..,m i = 1, .., n i 6= J

yD =
√
PR||hRD||xR + wDnD, (4.54)

y2Ek =
√
PRhREkxr + nE, k = 1, ..,m (4.55)

where

ε =


0, absence of jammer

1, presence of jammer

,
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and PSi , PR, and PSJ are the transmission power of Si, R, and SJ , respectively. The transmitted

signals of Si, R, and SJ are xsi , xR, and xSj , respectively. nR, nD, nE, denote the additive

white Gaussian noise at R, D, and Ek, respectively, wD =
h†RD
||hRD||

, while hRD denotes L × 1

channel vector of the links R-(Dj)j=1,..,L, and the symbol † denotes the transpose conjugate.

For the sake of simplicity, we denote the channel power gains by gq = |hq|2 and their

corresponding coefficients are λq where q = {SiR, SiEk, SiP, RDj, REk, RP, P}. As the

fading amplitudes of all links are Rayleigh distributed, it follows that the channel gains are

exponentially distributed.

During transmission, the nodes Si, SJ , and R have to set their transmission power in order

to avoid causing harmful interference to the PUs. Thus, the transmission power of the source

Si, the jammer SJ , and the relay R can be, respectively, expressed as

PSi = min

(
Pmax
Si

,
PI
gSiP

)
; i = 1, .., n, (4.56)

and

PR = min

(
Pmax
R ,

PI
gRP

)
, (4.57)

where Pmax
Si

, and Pmax
R are the maximal transmit power at Si, and R, respectively, while PI

accounts for the MTIP at PURx. It is clearly seen from (4.56), and (4.57) that when PI

increases, the nodes Si, SJ , and R will be allowed to use their maximal transmission power.

Consequently, the SNR at both R and D will increase while the SNR at eavesdroppers will

decrease leading to a system security improvement.
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Figure 4.6: The considered dual-hop jamming-based CRN.
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4.3.2 Secrecy performance evaluation

In this section, the SOP as performance metric is derived in its closed-form. To do so, we have

to define first the expression of secrecy capacity. In our considered communication system, the

secrecy capacity of the ith source when SJ is selected as a friendly jammer can be expressed by

C(i,J)
s = min

k=1,..,m

(
C

(i, k,J)
1S , C

(k)
2S

)
, (4.58)

where

� C
(i, k,J)
1S denotes the secrecy capacity of the first link, i.e, the difference between the ca-

pacity of the main link Si−R and the one of the wiretap channel Si−Ek in the presence

of the jammer SJ , and can be written as

C
(i, k,J)
1S =

[
C

(i)
1M − C

(i,k,J)
1E

]+

(4.59)

=


log2

(
γ

(i,J)
1k

)
, γ

(i)
R > γ

(i,k,J)
1E

0, elsewhere

,

where γ
(i)
R and γ

(i,k,J)
1E denote the instantaneous SNR at the relay R and the kth eaves-

dropper Ek, respectively, and are given as

γ
(i)
R =

PSigSiR
NR

, (4.60)

γ
(i,k,J)
1E =

PSigSiEk
PSJgSJEk +NE

, (4.61)

and

γ
(i,J)
1k =

1 + γ
(i)
R

1 + γ
(i,k,J)
1E

. (4.62)

� C
(k)
2S is the secrecy capacity of the second hop, representing the difference between the

capacity of the link R−D and the one of the wiretap channel R− Ek

C
(k)
2S =


log2 (γ2k) , γD > γ

(k)
2E

0, elsewhere

, (4.63)
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where

γ2k =
1 + γD

1 + γ
(k)
2E

. (4.64)

γD, and γ
(k)
2E denote the instantaneous SNR of the main link R − D and the channel

R− Ek, respectively and are given as

γD =
PR
∑L

t=1 gRDt
ND

, (4.65)

γ
(k)
2E =

PRgREk
NE

, (4.66)

Closed-form expression for the SOP

The SOP of the considered communication system can be expressed as

SOP =
1

n(n− 1)

n−1∑
i=1

n∑
J=1
J 6=i

SOP
(J)
i , (4.67)

where

SOP
(J)
i = Pr

(
C(i,J)
s < Rs

)
, (4.68)

It is clearly seen from (4.68) that as C
(i,J)
s increases SOP decreases resulting in performance

enhancement of the system. So, in order to investigate the system’s security, it is sufficient to

determine the CDF of C
(i,J)
s .

Substituting (4.58) into (4.68), yields

SOP
(J)
i = 1−

m∏
k=1

Pr
(

min(C
(i, k,J)
1S , C

(k)
2S ) ≥ Rs

)
= 1−

m∏
k=1

[
1− F

γ
(i,J)
1k

(γ)
]

[1− Fγ2k
(γ)] , (4.69)

where γ = 2RS .

One can see from (4.69) that the computation of SOP
(J)
i requires the knowledge of the CDFs

of both γ
(i,J)
1k and γ2k.
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Theorem 4.3.1. The CDFs of RVs γ
(i,J)
1k and γ2k are given by (4.70) and (4.71), respectively,

F
γ

(i,J)
1k

(γ) = 1−


(

1− λSiRNRγΞ
(J)
i,k (γ)

)
e
−
λSiR

NR(γ−1)

Pmax
Si

1− e
−
λSiP

PI

Pmax
Si

λSiPPI
λSiRNR(γ−1)

+ 1


 , (4.70)

and

Fγ2k
(γ) = 1−

L∑
h=1

L∏
l=1
l 6=h

(
λRDl

λRDl − λRDh

)
e
−
λRDh

ND(γ−1)

Pmax
R

λRDhNDγ

λREkNE

+ 1

1− e
−λRP PI

Pmax
R

λ
RP

PI
λRDh ND(γ−1)

+ 1

 . (4.71)

where

Ξ
(J)
i,k (γ) = e−ϕJ

hi,k
− χ

(J)
i,k

{
Υ

(J)
i,k [e−ϕJ − 1]− e$

(J)
i,k −ϕJΛ

(J)
i,k

}
, ϕJ =

λSJPPI
Pmax
SJ

, χ
(J)
i,k =

λSJEk
λSiEkP

max
SJ

,

hi,k = λSiEkNE + λSiRNRγ, Υ
(J)
i,k = G2,1

1,2

$(J)
i,k

∣∣∣∣∣∣∣
0;−

0, 0;−

 , $
(J)
i,k = χ

(J)
i,k hi,k, Λ

(J)
i,k =

A
(i,k,J)
1

ϕJ
−

A
(i,k,J)
0 , A

(i,k,J)
p =

(
β

(J)
i,k

)p+1

G2,2
2,2

β(J)
i,k

∣∣∣∣∣∣∣
(0, 0), (−p,$(J)

i,k );−

(0, 0), (0, 0);−

 , β
(J)
i,k = ϕJ

χ
(J)
i,k hi,k

.

Proof.

� CDF of γ
(i,J)
1k

The CDF of γ
(i,J)
1k can be expressed as

F
γ

(i,J)
1k

(γ) = Pr

(
PSi

[
gSiR
NR

− γW (J)
i,k

]
≤γ − 1

)
= Pr

((
PSi≤ Z

(J)
i,k and Z

(J)
i,k ≥ 0

)
or Z

(J)
i,k ≤ 0

)
=

∫ ∞
0

FPSi (z)f
Z

(J)
i,k

(z)dz+

∫ 0

−∞
f
Z

(J)
i,k

(z)dz, (4.72)

where W
(J)
i,k =

gSiEk
PSJgSJEk +NE

and Z
(J)
i,k = γ−1

gSiR

NR
−γW (J)

i,k

. According to (4.72), it follows that the

derivation of F
γ

(i,J)
1k

(γ) requires the knowledge of the CDFs of both PSi and Z
(J)
i,k . Doing some

computations, the CDF of PSi can be easily shown to be given

FPSi (z) =


1 : Pmax

Si
≤ z

F PI
gSiP

(z) : Pmax
Si

> z

, (4.73)
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where the CDF of PI
gSiP

can be obtained as

F PI
gSiP

(z) = e
−λ

SiP

PI
z . (4.74)

On the other hand, the CDF of Q
(J)
i,k =

1

Z
(J)
i,k

can be expressed for positive values of ψ as

F
Q

(J)
i,k

(ψ) = Pr
(
gSiR ≤ NR

[
ψ (γ − 1) + γW

(J)
i,k

])
=

∫ ∞
0

FgSiR (NR [ψ (γ − 1) + γz]) f
W

(J)
i,k

(z) dz. (4.75)

In order to derive F
Q

(J)
i,k

(ψ) we have to derive the CDF of the RV W
(J)
i,k

F
W

(J)
i,k

(ξ) = Pr (gSiEk ≤ ξ (gSJEkPSJ +NE))

=

∫ ∞
0

FgSiEk (ξ (z +NE)) fPSJ gSJEk (z) dz. (4.76)

By using integration by parts, we get

F
W

(J)
i,k

(ξ) = 1− ξ
∫ ∞

0

fgSiEk (ξ (z +NE))FPSJ gSJEk (z) dz. (4.77)

By definition, the CDF of the RV PSJgSJEk can be written as

FPSJ gSJEk (z) = Pr

(
gSJEk ≤

z

Pmax
SJ

,
PI
gSJP

≥ Pmax
SJ

)
︸ ︷︷ ︸

I
(k,J)
1

+ Pr

(
gSJEk
gSJP

≤ z

PI
,
PI
gSJP

≤ Pmax
SJ

)
︸ ︷︷ ︸

I
(k,J)
2

As the two RVs gSJEk and gSJP are independent, the first term I(k,J)
1 in (4.78) can be written

as

I(k,J)
1 = Pr

(
gSJEk ≤

z

Pmax
SJ

)
Pr

(
gSJP ≤

PI
Pmax
SJ

)
= FgSJEk

(
z

Pmax
SJ

)
FgSJP

(
PI
Pmax
SJ

)
, (4.78)
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while, the second term I(k,J)
2 can be easily expressed as

I(k,J)
2 =

∫ ∞
PI

Pmax
SJ

fgSJP (y)

∫ z
PI
y

0

fgSJEk (x)dxdy

= e−ϕJ − e
−ϕJ

(
z%

(J)
k +1

)
z%

(J)
k +1

, (4.79)

where %
(J)
k =

λSJEk
λSJPPI

. Then, by plugging (4.149) and (4.79) into (4.78) we obtain

FPSJ gSJEk (ϑ) = 1 + e−ϕJ%
(J)
k ϑ
(
e−ϕJ − 1

)
− e

−ϕJ
(
ϑ%

(J)
k +1

)
ϑ%

(J)
k +1

. (4.80)

Now, the CDF of W
(J)
i,k can be obtained by incorporating (4.80) into (4.77), as

F
W

(J)
i,k

(ξ) = 1− e−λSiEk ξNE

1 +
λSiEkξ (e−ϕJ − 1)

ϕJ%
(J)
k + λSiEkξ

− ξλSiEke
−ϕJ

%
(J)
k

∫ ∞
0

e−%
(J)
k δ

(J)
i,k z

z + 1

%
(J)
k

dz

︸ ︷︷ ︸
I(i,k,J)

3

 , (4.81)

where δ
(J)
i,k =

ϕJ%
(J)
k +λSiEk ξ

%
(J)
k

.

Making use of [71, Eq. (07.34.03.0456.01)] alongside [71, Eq. (07.34.21.0088.01)], we have

I(i,k,J)
3 = δ

(J)
i,k

∫ ∞
0

G1,2
2,2

z
∣∣∣∣∣∣∣

1, 1;−

1; 0

 e
−δ(J)
i,k

z

dz

= G1,3
3,2

 1

δ
(J)
i,k

∣∣∣∣∣∣∣
0, 1, 1;−

1; 0

 . (4.82)
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Furthermore,

G1,3
3,2

 1

δ
(J)
i,k

∣∣∣∣∣∣∣
0, 1, 1;−

1; 0

 = G3,1
2,3

δ(J)
i,k

∣∣∣∣∣∣∣
0; 1

1, 0, 0;−

 (4.83)

=
1

2πj

∫
C

Γ (s+ 1) Γ2 (s) Γ (1− s)
Γ (s+ 1)

(
δ

(J)
i,k

)−s
ds

= G2,1
1,2

δ(J)
i,k

∣∣∣∣∣∣∣
0;−

0, 0;−

 ,

with and C represents a complex contour of integration ensuring the convergence of the Mellin-

Barnes integral.

Then, by performing the substitution (4.82) into (4.81) yields

F
W

(J)
i,k

(ξ) = 1− e−λSiEk ξNE

1 +
λSiEkξ (e−ϕJ − 1)

ϕJ%
(J)
k + λSiEkξ

− ξλSiEke
−ϕJ

%
(J)
k

G2,1
1,2

ϕJ +
ϕJξ

χ
(J)
i,k

∣∣∣∣∣∣∣
0;−

0, 0;−


 ,

(4.84)

It follows, by substituting (4.84) into (4.75) that

F
Q

(J)
i,k

(ψ) = 1− e−φi(ψ)
(

1− λSiRNRγΞ
(J)
i,k (γ)

)
, (4.85)

where

Ξ
(J)
i,k (γ) =

∫ ∞
0

e−hi,kzdz +
(
e−ϕJ − 1

)
Θ

(i,k)
1J −

ϕJe
−ϕJ

χ
(J)
i,k

Θ
(i,k,J)
2 , (4.86)

Θ
(i,k)
1J =

∫ ∞
0

ze−hi,kz

χ
(J)
i,k + z

dz, (4.87)

Θ
(i,k)
2J =

∫ ∞
0

ze−hi,kzG2,1
1,2

ϕJ (1 +
z

χ
(J)
i,k

)∣∣∣∣∣∣∣
0;−

0, 0;−

 dz, (4.88)

and

φi (ψ) = λSiRNRψ (γ − 1) . (4.89)
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The term Θ
(i,k)
1J can be expressed as

Θ
(i,k)
1J =

∫ ∞
0

e−hi,kzdz − χ(J)
i,k

∫ ∞
0

e−hi,kz

χ
(J)
i,k + z

dz

=
1

hi,k
− χ(J)

i,k G
2,1
1,2

hi,kχ(J)
i,k

∣∣∣∣∣∣∣
0;−

0, 0;−

 , (4.90)

while the term Θ
(i,k)
2J can be rewritten, using a change of variable, as

Θ
(i,k)
2J =

χ
(J)
i,k

ϕJ
eχ

(J)
i,k hi,k

∫ ∞
ϕJ

(
y

ϕJ
− 1

)
e
−
χ

(J)
i,k

hi,k

ϕJ
y
G2,1

1,2

y
∣∣∣∣∣∣∣

0;−

0, 0;−

 dy

= η
(J)
i,k

[
A

(i,k,J)
1

ϕJ
− A(i,k,J)

0

]
, (4.91)

where η
(J)
i,k =

χ
(J)
i,k

ϕJ
eχ

(J)
i,k hi,k , and the function

(
A

(i,k,J)
p

)
p=0,1

is defined by

A(i,k,J)
p =

∫ ∞
ϕJ

ype
−
χ

(J)
i,k

hi,k

ϕJ
y
G2,1

1,2

y
∣∣∣∣∣∣∣

0;−

0, 0;−

 dy (4.92)

=
1

2πj

∫
C

Γ2 (s) Γ (1− s) ds
∫ ∞
ϕJ

yp−se
−
χ

(J)
i,k

hi,k

ϕJ
y
dy

=

(
β

(J)
i,k

)p+1

2πj

∫
C

Γ2 (s) Γ (1− s) Γ
(
ςp,s, $

(J)
i,k

)(
β

(J)
i,k

)−s
ds,

where ςp,s = p + 1 − s. Then, by substituting (4.92) into (4.91) alongside (4.90), we get the

expression of the function Ξ
(J)
i,k (γ) defined above.

In contrast, the CDF of Z
(J)
i,k is expressed in terms of the one of its inverse as

F
Z

(J)
i,k

(x) = 1− F
Q

(J)
i,k

(
1

x

)
+ F

Q
(J)
i,k

(0). (4.93)

By using (4.85), the CDF of Z
(J)
i,k can be rewritten as

F
Z

(J)
i,k

(x) = e−
λSiR

NR(γ−1)

x (1− λSiRNRγΞ
(J)
i,k (γ)) + λSiRNRγΞ

(J)
i,k (γ). (4.94)

Then, by performing the appropriate substitutions in (4.72 ), we obtain (4.70).
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Remark 8. For the scenario without any jammer source and by performing some computation

we can get easily the CDF at the first hop as

F
γ

(i)
1k

(γ) = 1 +
e−Φi

λSiRNRγ

λ
SiEk

NE
+ 1

[
Φie

−Ωi

Ωi + Φi

− 1

]
, (4.95)

where Ωi =
λSiPPI
Pmax
Si

and Φi =
λSiRNR(γ−1)

Pmax
Si

.

� CDF of γ2k

Using (4.66), the CDF of γ2k is given as

Fγ2k
(γ) = Pr

(
PR

[
YRD
ND

− γgREk
NE

]
≤ γ − 1

)
= Pr (PR ≤ VR,k, VR,k ≥ 0) + Pr (VR,k ≤ 0)

=

∫ ∞
0

FPR(z)fVR,k(z)dz +

∫ 0

−∞
fVR,k(z), (4.96)

where YRD =
∑L

v=1 gRDv, and VR,k = γ−1(
YRD
ND
−γ
gREk
NE

) .
In a similar manner, we have to derive first the CDF of the RV VR,k = 1

UR,k
.

FUR,k(ϑ) = Pr

(
YRD ≤ ND

(
ϑ (γ − 1) + γ

gREk
NE

))
=

∫ ∞
0

FYRD (θ(z)) fgREk (z) dz, (4.97)

where θ(z) = ND

(
ϑ (γ − 1) + γ

z

NE

)
.

According to [104], the CDF of YRD in the case of i.n.i.d RVs can be expressed as

FYRD(x) =
L∑
h=1

ψh
(
1− e−λRDhx

)
, (4.98)

where ψh =
L∏
l=1
l 6=h

(
λRDl

λRDl−λRDh

)
.

By substituting the PDF of the exponential RV and (4.98) into (4.97), the CDF of UR,k can

be derived as

FUR,k(ϑ) =
L∑
h=1

ψh

1− e−λRDhNDϑ(γ−1)

λRDhNDγ

λREkNE

+ 1

 . (4.99)
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Table 4.2: Simulation parameters of contribution 5.

Parameter λq m n RS NR

value 0.5 2 2 1 2
Parameter ND NE Pmax

Si
Pmax
R Pmax

SJ

value 2 2 8 8 8

Similarly to (4.93), and making use of (4.99) yields

FZR,k(x) = 1−
L∑
h=1

ψh

(
1− e−

λRDh
ND(γ−1)

x

)
λRDhNDγ

λREkNE

+ 1

. (4.100)

As the CDF of PR can be expressed similarly to the one of PSi given by (4.73) and (4.74),

the CDF of γ2k can be now rewritten as

Fγ2k
(γ) =

∫ Pmax
R

0

F PI
gRP

(t)fVR,k (t) dt+

∫ ∞
Pmax
R

fVR,k (t) dt+

∫ 0

−∞
fVR,k (t) dt︸ ︷︷ ︸

=1−
∫ Pmax

R
0 fVR,k (t)dt

, (4.101)

Finally, by substituting CDF of PI
gRP

, that is similarly to (4.74), and (4.100) into (4.101), we

obtain (4.71) which concludes the proof of Theorem 4.3.1. �

4.3.3 Numerical results and discussions

In this section, we present the analytical and the simulation results for the considered CRN.

The setting parameters of the simulation experiment are summarized in Table 4.2 where the

powers are given in dBW.

As seen in Figs. 4.7-4.9, all analytical and simulation curves are perfectly matched over the

entire ranges of the considered parameters.

Fig. 4.7 shows the SOP as a function of the secrecy rate Rs for various values of destination’s

antennas number. It can clearly be seen that the SOP increases with the increasing values of

Rs, as also noticed by (4.68). This can be interpreted by the fact that when a high secrecy rate

is adopted for a better performance, it is less likely to achieve a perfect secure transmission.

Furthermore, the security is enhanced when using multiple antennas at the destination instead

of employing only a single one. For instance, for Rs = 1 bit/s/Hz we have SOP' 0.85 and
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SOP= 0.94 for L = 4 and L = 2, respectively.

The SOP versus the transmission power of the selected jammer Pmax
SJ

is illustrated in Fig.

4.8 for various values of branches number L at the node D. It can be noticed that, the higher

Pmax
SJ

the smaller the SOP and therefore the system security becomes more reliable. This

can be construed as increasing Pmax
SJ

leads to a decrease of eavesdroppers’ SNRs as it can

be seen in (4.61). Consequently, the wiretap link capacity decreases as well leading to the

improvement of the first hop secrecy capacity. Additionally, increasing the number of antennas

at the destination enhances the SNR as shown in (4.65) leading to the enhancement of the main

link capacity i.e., R−D, and consequently the secrecy performance gets better.
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Figure 4.7: SOP versus secrecy
rate for different numbers of antenna
branches at the destination.
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Figure 4.8: SOP versus maximum
transmission power of the jammer SJ
for different numbers of antennas at
the destination.

Fig. 4.9 depicts the SOP versus PI for different scenarios namely (i) either absence or

presence of a friendly jammer and (i) single and multiple antennas destination. It can be

noticed that the greater the PI , the smaller the SOP. This can be justified, from (4.56) and

(4.57), as increasing PI above certain threshold, push the sources as well as the relay to transmit

with their maximal powers. Also, it is clearly seen that a better secrecy is achieved when using

a friendly jammer at the first hop and a destination with multiple antennas. Moreover, it can

be noticed that the scenario with absence of jammer and L antennas destination (L > 2) is

better than the one with presence of friendly jammer and a single antenna destination.
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Figure 4.9: SOP versus PI at PURx for different numbers of antennas at the destination.

4.4 Contribution 6: Secrecy performance analysis of a

dual-hop Jamming-based CR communication system

with multi-antenna receivers

4.4.1 System and channel model

The considered two-hops CRN, represented in Fig. 4.10, consists of multiple sources (Si)i=1,..,N ,

one LR-antennas relay R, multiple LEk-antennas eavesdroppers (Ek)k=1,..,M , one destination D

equipped with LD antennas, one PU transmitter (PTx), and one PU receiver (PRx). For the

sake of simplicity, we assume that the relay receives the transmitted signals from Si on the

LR antennas and uses only one antenna to forward the message to D. Moreover, we consider

multi-user scheduling such that, at any given moment, only one user is transmitting its data.

Also, the source nodes are taking rounds in accessing the spectrum and a friendly jammer SJ

is randomly selected among N − 1 remaining nodes to send an artificial noise. This latter can

be canceled by legitimate nodes, while Ek cannot mitigate it, leading to an increase in the

secrecy capacity. Similarly to [36], we assume that a friendly jammer generates an artificial

noise using a pseudo-random sequence that is known to the legitimate users which allows them

to cancel out this noise, while this sequence remains unknown to the illegitimate ones. To this

end, the main aim of this work is to investigate the impact of a friendly jammer, legitimate,

and wiretap channels’ average SNRs, MTIP as well as the spatial diversity at both the relay

and the end-user on the secrecy performance of the considered communication system. In this

scheme, Nakagami-m fading model is considered for all links. The fading amplitudes of links
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Si → R, R → (Dt)1≤t≤LD , Si → Ek, R → Ek, R → PRx, Si → PRx are denoted by hq where

q = {SiR, RDt,SiEk, REk, RP, SiP}. Consequently, the channel gains gq = |hq|2 are Gamma

distributed with PDF and CDF are given by

fgq(x) =
λ
mq
q

Γ(mq)
xmq−1e−λqx, (4.102)

Fgq (x) =
γ (mq, λqx)

Γ (mq)
, (4.103)

where λq =
mq

Ωq

, mq and Ωq denote the fading severity and the average channel power gain,

respectively. For a positive number mq, the above CDF can be written as [67, Eq. (8.352.1)]

Fgq (x) = 1− e−λqx
mq−1∑
k=0

λkqx
k

k!
. (4.104)

The received signals at R, Ek at both hops, and D are given, respectively, by

y
(i)
R =

√
PSi ||hSiR||xSi + wSiRnR, i = 1, .., N, (4.105)

y
(i)
1Ek

=
√
PSi ||hSiEk ||xSi + ε

√
PSJ ||hSJEk ||xSJ + wSiEknEk , (4.106)

k = 1, ..,M, i = 1, .., N, J 6= i,

y2Ek =
√
PR||hREk ||xR + wREknEk , k = 1, ..,M, (4.107)

yD =
√
PR||hRD||xR + wRDnD, (4.108)

with

ε =


0, Absence of a jammer

1, Presence of a jammer

.

Here, Pn and xn denote the transmit power and signal from the node n, respectively where

n = {Si, R}, wq =
h†q
||hq || , q = {SiR, SiEk, REk, RD}, while hq denotes Ln× 1, channel vector of

the links Si-R, Si-Ek, R-D, † denotes the transpose conjugate, and ||.|| represents the Frobenius

norm. Also, nR, nD, and nEk , denote the Nn × 1 additive white Gaussian noise vector at R,

D, and Ek, respectively. For the sake of simplicity, all noise power vectors’ components are
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considered equal N0.

Throughout the transmission process, both Si, and R have to adapt their transmit powers

so as to avoid causing harmful interference to the PUs. Thus, the transmit power of the source

and the relay R taking into consideration the maximum constraint power can be, respectively,

expressed as

PSi = min

(
Pmax
Si

,
PI
gSiP

)
; i = 1, .., N, (4.109)

and

PR = min

(
Pmax
R ,

PI
gRP

)
, (4.110)

where Pmax
Si

and Pmax
R denote the maximum transmit power at Si, and R, respectively, while

PI accounts for the maximum tolerated interference power at PRx.
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Figure 4.10: The considered dual-hop Jamming-based CRN.

4.4.2 Secrecy performance evaluation

In this section, the SOP is derived as performance metric. To do so, we have to define first the

expression of the secrecy capacity. In our considered system, the secrecy capacities in the case

of presence and absence of a friendly jammer are given, respectively, by

C(i,J)
s = min

k=1,..,M

(
C

(i, k,J)
1S , C

(k)
2S

)
, (4.111)

C(i)
s = min

k=1,..,M

(
C

(i, k)
1S , C

(k)
2S

)
, (4.112)
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where

� C
(i, k,J)
1S and C

(i, k)
1S denote the secrecy capacities at the first hop, i.e., the difference between

the capacity of the main link Si − R and the one of the wiretap channel Si − Ek in the

presence and absence of a friendly jammer, respectively, and can be written as

C
(i,k,J)
1S =


log2

(
1 + γ

(i)
R

1 + γ
(i,k,J)
1E

)
, γ

(i)
R > γ

(i,k,J)
1E

0, elsewhere

, (4.113)

C
(i,k)
1S =


log2

(
1 + γ

(i)
R

1 + γ
(i,k)
1E

)
, γ

(i)
R > γ

(i,k)
1E

0, elsewhere

, (4.114)

where γ
(i)
R denotes the instantaneous SNR at R, while γ

(i,k,J)
1E and γ

(i,k)
1E stand for the SNRs

at the eavesdropper Ek in the presence and absence of a friendly jammer, respectively,

and are given by

γ
(i)
R = min

(
γSi ,

γI
gSiP

) LR∑
u=1

gSiRu , (4.115)

γ
(i,k,J)
1E =

min
(
γSi ,

γI
gSiP

)∑LEk
u=1 gSiE(u)

k

min
(
γSJ ,

γI
gSJP

)∑LEk
u=1 gSJE(u)

k
+ 1

, (4.116)

γ
(i,k)
1E = min

(
γSi ,

γI
gSiP

) LEk∑
u=1

g
SiE

(u)
k
, (4.117)

and γSi = Pmax
Si

/N0, γI = PI/N0, and γSJ = Pmax
SJ

/N0.

� C
(k)
2S is the secrecy capacity of the second hop, representing the difference between the

capacity of the link R−D and the one of the wiretap channel R− Ek

C
(k)
2S =


log2

(
1 + γD

1 + γ
(k)
2E

)
, γD > γ

(k)
2E

0, elsewhere

, (4.118)

where γD, and γ
(k)
2E denote the instantaneous SNR of the main link R−D and the channel
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R− Ek, respectively and are given as

γD = min

(
γR,

γI
gRP

) LD∑
t=1

gRDt , (4.119)

γ
(k)
2E = min

(
γR,

γI
gRP

) LEk∑
u=1

g
RE

(u)
k
, (4.120)

with γR = Pmax
R /N0.

Remark 9.

� One can see from (4.115) and (4.116), that the PHY layer security at the first hop in the

presence of a friendly jammer can be enhanced by increasing separately γI , γSi , or γSJ .

Indeed, the increasing scale of the SNR at the relay exceeds the one of the kth eavesdropper

as a jamming signal is added to the one received by Ek. However, in the absence of a

friendly jammer, one can see from (4.115) and (4.117) that only the impact of legitimate

and wiretap channels’ parameters can make the distinction between the two associated

SNRs. Consequently, the smaller λSiR, the greater the secrecy capacity and then the

security gets improved.

� From (4.119) and (4.120), it can be noticed that increasing either γR or γI enhances

more the capacity of the legitimate link as D performs the MRC technique. Additionally,

increasing the number of antennas at the receiver increases the SNR at D. Consequently,

the system’s security gets enhanced as well.

Closed-form expression for the SOP

For the considered system, the N sources are taking rounds in accessing the spectrum then

one jammer is randomly selected among the N − 1 remaining sources. The SOP if there is no

jamming, can be expressed as

SOP =
1

N

N∑
i=1

SOP(i), (4.121)
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while in the presence of a jammer, it becomes

SOP =
1

N(N − 1)

N∑
i=1

N∑
J=1
J 6=i

SOP (i,J), (4.122)

where SOP(i) and SOP(i,J) account for SOP of the system linking Si with D in the presence

of eavesdroppers, and in the absence and presence of the Jth friendly jammer, respectively.

The SOP of the considered system stands for the probability that at least one of the secrecy

capacities falls below a predefined secrecy rate Rs, namely

SOP(i,J) = 1−
M∏
k=1

Pr
(

min(C
(i, k,J)
1S , C

(k)
2S ) ≥ Rs

)
(4.123)

= 1−
M∏
k=1

[
1− SOP

(i,k,J)
1

] [
1− SOP

(k)
2

]
,

and

SOP(i) = 1−
M∏
k=1

[
1− SOP

(i,k)
1

] [
1− SOP

(k)
2

]
, (4.124)

where SOP
(i,k,J)
1 and SOP

(i,k)
1 stand for the secrecy capacities at the first hop in the presence

and absence of a friendly jammer, respectively, and SOP
(k)
2 represents the secrecy capacity at

the second hop. One can see from (4.123) and (4.124) that the computation of SOP requires

the knowledge of SOP
(i,k,J)
1 , SOP

(i,k)
1 , and SOP

(k)
2 as well.

Remark 10. As SOP
(i,k,J)
1 , SOP

(i)
1 , and SOP

(k)
2 are between 0 and 1, it is worth mentioning that

the greater is M , the greater is SOP (approaches 1), and then the system becomes vulnerable

to eavesdropping attack.

Theorem 4.4.1. The closed-form expressions of SOP
(i,k,J)
1 , SOP

(i,k)
1 , and SOP

(k)
2 under Nakagami-
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m fading model are given by (4.125), (4.126), and (4.127), respectively,

SOP
(i,k,J)
1 = 1−

γ (mSiP , ϕSi) Γ
(
LRmSiR,

σiξSiR
γI

)
+M3

(
ξSiR
λSiP γI

)
Γ(LRmSiR)Γ (mSiP )

+
γα

(k,J)
i

Γ (mSiP )

LEkmSiEk−1∑
h=0

Ω
(i,k)
h

LRmSiR−1∑
l=0

Υ
(i)
l (γI)

−LRmSiR+l+1(
$

(k)
i

)LEkmSiEk+l−h

×

γ (mSiP , ϕSi) e
−
σiξSiR

γI

σ
−LRmSiR+l+1

i

+
λ
mSiP
SiP

Γ
(
mSiP + LRmSiR − l − 1, ϕSi +

σiξSiR
γI

)
(
λSiP +

ξSiR
γI

)mSiP+LRmSiR−l−1


×

[
γ (mSJP , ϕJ)M(h,l)

1

(
$

(k)
i θ

(k,J)
i

)
+M(h,l)

2

(
ς

(k,J)
i $

(k)
i

γI

)]
. (4.125)

SOP
(i,k)
1 = 1−

λ
LRmSiR
SiR

γγ
−LRmSiR
I

Γ (LEkmSiEk) Γ(LRmSiR)Γ (mSiP )
(4.126)

×
LRmSiR−1∑

l=0

Υ
(i)
l γ

l+1
I

(γλSiR)l+1
G1,2

2,2

 λSiEk
λSiRγ

∣∣∣∣∣∣∣
−l, 1;−

LEkmSiEk ; 0


×

γ (mSiP , ϕSi) e
−
σiξSiR

γI

σ
−LRmSiR+l+1

i

+
λ
mSiP
SiP

Γ
(
mSiP + LRmSiR − l − 1, ϕSi +

σiξSiR
γI

)
(
λSiP +

ξSiR
γI

)mSiP+LRmSiR−l−1

 .
and

SOP
(k)
2 = 1− λLDmRDRD γ−LDmRDI

Γ (LEkmREk) Γ(LDmRD)Γ(mRP )

LDmRD−1∑
j=0

Bjγj+1
I

λj+1
RD

G1,2
2,2

 λ
REk

λRDγ

∣∣∣∣∣∣∣
−j, 1;−

LEkmREk ; 0


×

e− δξRDγI γ (mRP , ϕR)

δ−LDmRD+j+1
+
λmRPRP Γ

(
LDmRD +mRP − j − 1, ϕR + δξRD

γI

)
(
ξRD
γI

+ λRP

)LDmRD+mRP−j−1

 . (4.127)

where $
(k)
i = γλSiR + λSiEk , σi = γI/γSi , δ = γI/γR, γ = 2RS , θ

(k,J)
i = λSJEk/

(
γSJλSiEk

)
,

ϕJ = λSJPγI/γSJ , ς
(k,J)
i = λSJEk/ (λSJPλSiEk) , ϕR = λRPγI/γR, ϕSi = λSiPγP/γSi ,

M(h,l)
1 (z) = G2,2

2,3

z
∣∣∣∣∣∣∣

−h, 1;−

µ
(h,l)
i,k , LEkmSJEk ; 0

 , (4.128)
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M(h,l)
2 (z) = G2,3

3,3

z
∣∣∣∣∣∣∣

(1−mSJP , ϕJ) , (1, 0), (−h, 0);−

(LEkmSJEk , 0),
(
µ

(h,l)
i,k , 0

)
; (0, 0)

 , (4.129)

µ
(h,l)
i,k = LEkmSiEk − h+ l, (4.130)

ξv = λv (γ − 1) ; v = {SiR,RD}, (4.131)

M3 (z) = G2,1
2,2

z
∣∣∣∣∣∣∣

(1−mSiP , ϕSi) ; (1, 0)

(0, 0) , (LRmSiR, 0);−

 , (4.132)

Ω
(i,k)
h =

(
LEkmSiEk−1

h

)
λ
LEkmSiEk−h−1

SiEk
, (4.133)

α
(k,J)
i =

β
(J)
k λ

LRmSiR
SiR

Γ (LEkmSiEk) Γ(LRmSiR)
, (4.134)

β
(J)
k =

1

Γ (LEkmSJEk) Γ(mSJP )
, (4.135)

Υ
(i)
l =

(
LRmSiR − 1

l

)
γl (γ − 1)LRmSiR−1−l , (4.136)

Bn1 =

(
LDmRD − 1

n1

)
(γ − 1)LDmRD−1−n1 . (4.137)

Proof.

� Expression of SOP at the first hop

The SOP at the first hop in the absence and presence of a friendly jammer is given, respectively,

by

SOP
(i,k)
1 = 1− γ

∫ ∞
x=0

fgSiP (x)Ξ
(i,k)
2 (x) dx, (4.138)

and

SOP
(i,k,J)
1 = 1− γ

∫ ∞
x=0

fgSiP (x)Ξ
(i,k,J)
1 (x) dx, (4.139)

where (4.138) and (4.139) hold by using integration by parts on [38, Eq. (33)] , with

Ξ
(i,k,J)
1 (x) =

∫ ∞
0

f
γ

(i)
R |gSiP=x

(γy + γ − 1)F
γ

(i,k,J)
1E |gSiP=x

(y)dy, (4.140)
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and

Ξ
(i,k)
2 (x) =

∫ ∞
0

f
γ

(i)
R |gSiP=x

(γy + γ − 1)F
γ

(i,k)
1E |gSiP=x

(y)dy, (4.141)

and γ is being defined in Theorem 4.4.1.

The CDF of γ
(i)
R for a given gSiP can be expressed as

F
γ

(i)
R |gSiP=x

(z) = Pr

(
min

(
γSi ,

γI
x

)
ESiR ≤ z

)
(4.142)

= FESiR

(
z

Φ (x)

)
,

where ESiR =
∑LR

u=1 gSiRu , Φ (x) = γSi for x ≤ γI/γSi and Φ (x) = γI/x for x > γI/γSi .

SOP at the first hop with the absence of a jamming signal

The conditional CDF of γ
(i,k)
1E can be expressed as

F
γ

(i,k)
1E |gSiP=x

(y) = Pr

(
min

(
γSi ,

γI
x

)
ESiEk ≤ y

)
= FESiEk

(
y

Φ (x)

)
. (4.143)

where ESiEk =
∑LR

u=1 gSiE(u)
k
.

It is worth mentioning that for i.i.d Nakagami-m channels, ESiR and ESiEk are Gamma dis-

tributed with shape and scale parameters LRmSiR and λSiR, LEkmSiEk and λSiEk , respectively.

Using Eqs. (06.06.26.0004.01) and (07.34.21.0088.01) of [71], and substituting (4.142) and

(4.143) into (4.141)yields

Ξ
(i,k)
2 (x) =

λ
LRmSiR
SiR

e−
ξSiR

Φ(x)

ΦLRmSiR (x) Γ (LEkmSiEk) Γ(LRmSiR)

LRmSiR−1∑
l=0

Υ
(i)
l (4.144)

×
(
λSiRγ

Φ (x)

)−l−1

G1,2
2,2

 λSiEk
λSiRγ

∣∣∣∣∣∣∣
−l, 1;−

LEkmSiEk ; 0

 ,

where Υ
(i)
l is defined in (4.136).
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Now, replacing (4.144) into (4.138), one can obtain

SOP
(i,k)
1 = 1−

λ
LRmSiR
SiR

γ

Γ (LEkmSiEk) Γ(LRmSiR)

LRmSiR−1∑
l=0

Υ
(i)
l

(γλSiR)l+1
H1G

1,2
2,2

 λSiEk
λSiRγ

∣∣∣∣∣∣∣
−l, 1;−

LEkmSiEk ; 0

 ,

(4.145)

where

H1 =

∫ ∞
0

fgSiP (x)e−
ξSiR

Φ(x)

ΦLRmSiR−l−1 (x)
dx (4.146)

(a)
=
γ
−LRmSiR+l+1

I

Γ (mSiP )

 e
−
σiξSiR
γI

σ
−LRmSiR+l+1

i

γ (mSiP , ϕSi) +
λ
mSiP
SiP

Γ

(
LRmSiR+mSiP−l−1,ϕSi+

ξSiR

γSi

)
(
λSiP+

ξSiR

γI

)LRmSiR+mSiP
−l−1

 ,
where step (a) is obtained by replacing Φ (x) by its values, and performing some algebraic

manipulations.

Now, incorporating (4.146) into (4.145), (4.126) is attained.

SOP at the first hop in the presence of a jamming signal

In the presence of a friendly jammer, the CDF of γ
(i,k,J)
1E for a given gSiP is given by

F
γ

(i,k,J)
1E |gSiP=x

(y)
(a)
=

∫ ∞
0

FESiEk

(
y (t+ 1)

Φ (x)

)
f
W

(J)
k

(t) dt (4.147a)

(b)
= 1−Ψ

(k)
i (y)

LEkmSiEk−1∑
h=0

(
LEkmSiEk − 1

h

)
V(h)(y), (4.147b)

whereW
(J)
k = min

(
γSJ ,

γP
gSJP

)
ESJEk , ESJEk =

∑LEk
u=1 gSJE(u)

k
, V(h)(y) =

∫∞
0
the−

yλSiEk
Φ(x)

tF
W

(J)
k

(t) dt,

Ψ
(k)
i (y) =

yfSiEk(
y

Φ(x))
Φ(x)

. Here step (4.147a) holds using the definition (4.116), while step (4.147b)

is obtained by using integration by parts alongside the Binomial formula for a positive integer

LEkmSiEk . Importantly, the derivation of the CDF of γ
(i,k,J)
1E requires the one of W

(J)
k , given as

F
W

(J)
k

(t) = Pr

(
ESJEk ≤

t

γSJ
,
γI
gSJP

≥ γSJ

)
+ Pr

(
ESJEk
gSJP

≤ t

γI
,
γI
gSJP

≤ γSJ

)
= FESJEk

(
t

γSJ

)
FgSJP

(
γI
γSJ

)
+ I(k,J)

1 . (4.148)
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where

I(k,J)
1 =

∫ ∞
γI
γSJ

fgSJP (ν)FESJEk

(
t

γI
ν

)
dν (4.149)

(a)
=

1

2πj

∫
L1

Γ (mSJP − s, ϕJ) Γ (LEkmSJEk + s) Γ (−s)

Γ (1− s) (κt)s
(
β

(J)
k

)−1 ds

= β
(J)
k ∆

(J)
k (t) ,

where L1 is a vertical line of integration chosen such as to separate the left poles of the above

integrand function from the right ones, ∆
(J)
k (t) = G1,2

2,2

κt
∣∣∣∣∣∣∣

(1−mSJP , ϕJ) , (1, 0);−

(LEkmSJEk , 0); (0, 0)

, κ =

λSJEk/λSJPγI , ϕJ , and β
(J)
k are defined in Theorem 4.4.1 and (4.135), respectively. Step (a)

holds using [71, Eq. (06.06.26.0004.01)] alongside (4.102) and (4.103). As mentioned above,

ESJEk is also Gamma distributed with parameters LEkmSJEk and λSJEk .

Substituting (4.149) into (4.148), we get

F
W

(J)
k

(t) = β
(J)
k

[
γ
(
LEkmSJEk ,

λSJEk
γSJ

t
)
× γ (mSJP , ϕJ) + ∆

(J)
k (t)

]
. (4.150)

Now, it remains to compute V(h)(y) so as to evaluate (4.147b). Using (4.150), yields

V(h)(y) = β
(J)
k

(
γ (mSJP , ϕJ) T (h)

1 + T (h)
2

)
, (4.151)

where

T (h)
1 =

∫ ∞
0

the−
yλSiEk

Φ(x)
tγ

(
LEkmSJEk ,

λSJEk
γSJ

t

)
dt

(a)
=

∫ ∞
0

the−
yλSiEk

Φ(x)
tG1,1

1,2

λSJEk
γSJ

t

∣∣∣∣∣∣∣
1;−

LEkmSJEk ; 0

 dt

(b)
=

(
Φ (x)

λSiEky

)h+1

Θ
(h)
1 (y) , (4.152)

with Θ
(h)
1 (y) = G1,2

2,2

 θ
(k,J)
i Φ(x)

y

∣∣∣∣∣∣∣
−h, 1;−

LEkmSJEk ; 0

 and θ
(k,J)
i is being defined in Theorem 4.4.1.

The equality (a) and (b) follow by using Eqs. (06.06.26.0004.01) and (07.34.21.0088.01) of [71],
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respectively.

On the other hand, the term T (h)
2 can be expressed as

T (h)
2 =

∫ ∞
0

the−
yλSiEk

Φ(x)
t∆

(J)
k (t) dt (4.153)

=
1

2πj

(
Φ (x)

λSiEky

)h+1 ∫
L2

Γ (1 + h− s) Γ (−s) Γ (mSJP − s, ϕJ) Γ (LEkmSJEk + s)

Γ (1− s)

(
η

y

)−s
ds

=

(
Φ (x)

λSiEky

)h+1

Θ
(h)
2 (y) ,

where Θ
(h)
2 (y) = G1,3

3,2

η
y

∣∣∣∣∣∣∣
(ζJ , ϕJ) , (1, 0), (−h, 0);−

(LEkmSJEk , 0); (0, 0)

 , η =
ς
(k,J)
i Φ(x)

γI
, ζJ = 1−mSJP , and ς

(k,J)
i

is being defined in Theorem 4.4.1.

Finally, the conditional CDF of γ
(i,k,J)
1E can be expressed by substituting (4.152) and (4.153)

into (4.151) and then replacing it into (4.147b), yields

F
γ

(i,k,J)
1E |gSiP=x

(y) = 1−Ψ
(k)
i (y) β

(J)
k

LEkmSiEk−1∑
h=0

(LEkmSiEk−1

h

)
Φh+1 (x)

(λSiEky)h+1

[
γ (mSJP , ϕJ) Θ

(h)
1 (y) + Θ

(h)
2 (y)

]
.

(4.154)

Now, the remaining last previous step in this proof consists of computing Ξ
(i,k,J)
1 (x) . Indeed,

by differentiating (4.142) and using (4.102) alongside with (4.154), (4.140) can be rewritten for

a positive integer LRmSiR as

Ξ
(i,k,J)
1 (x) =

Γ
(
LRmSiR,

ξSiR
Φ(x)

)
γΓ(LRmSiR)

α
(k,J)
i

LEkmSiEk−1∑
h=0

Ω
(i,k)
h e−

ξSiR

Φ(x)

(Φ (x))LEkmSiEk+LRmSiR−h−2
(4.155)

×
LRmSiR−1∑

l=0

Υ
(i)
l

[
γ (mSJP , ϕJ)U (h,l)

1 + U (h,l)
2

]
,

where ξSiR, Ω
(i,k)
h , α

(k,J)
i , and Υ

(i)
l are defined in (4.131), (4.133), (4.134), (4.136), respectively,

and

U (h,l)
a =

∫ ∞
0

yLEkmSiEk+l−h−1e−
$

(k)
i

Φ(x)
yΘ(h)

a (y) dy, a = {1, 2}, (4.156)

with $
(k)
i is being defined in Theorem 4.4.1.
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The two above terms can be expressed as

U (h,l)
1 =

(
Φ (x)

$
(k)
i

)l+LEkmSiEk−h

M(h,l)
1

(
$

(k)
i θ

(k,J)
i

)
, (4.157)

and

U (h,l)
2 =

(
Φ (x)

$
(k)
i

)LEkmSiEk+l−h
1

2πj

∫
L3

Γ (LEkmSiEk + l − h+ s) Γ (mSJP − s, ϕJ)

Γ (1− s)

× Γ (LEkmSJEk + s) Γ (−s) Γ (1 + h− s)

(
ς

(k,J)
i $

(k)
i

γI

)−s
ds

=

(
Φ (x)

$
(k)
i

)LEkmSiEk+l−h

M(h,l)
2

(
ς

(k,J)
i $

(k)
i

γI

)
, (4.158)

whereM(h,l)
1 (.) andM(h,l)

2 (.) are defined in (4.128) and (4.250), respectively. Note that (4.157)

follows relying on [71, Eq. (07.34.21.0088.01)].

Henceforth, substituting (4.157) and (4.158) into (4.155), yields

Ξ
(i,k,J)
1 (x) =

Γ
(
LRmSiR,

ξSiR
Φ(x)

)
γΓ(LRmSiR)

− α(k,J)
i

LEkmSiEk−1∑
h=0

Ω
(i,k)
h e−

ξSiR

Φ(x)

(Φ (x))LEkmSiEk+LRmSiR−h−2
(4.159)

×
LRmSiR−1∑

l=0

Υ
(i)
l

(
Φ (x)

$
(k)
i

)LEkmSiEk+l−h
 γ (mSJP , ϕJ)M(h,l)

1

(
$

(k)
i θ

(k,J)
i

)
+M(h,l)

2

(
ς
(k,J)
i $

(k)
i

γP

)
 .

Now, replacing (4.159) into (4.139), we obtain

SOP
(i,k,J)
1 = 1− Λ1

Γ(LRmSiR)
+ γα

(k,J)
i

LEkmSiEk−1∑
h=0

Ω
(i,k)
h

LRmSiR−1∑
l=0

Υ
(i)
l Λ2(

$
(k)
i

)l+LEkmSiEk−h (4.160)

×

[
γ (mSJP , ϕJ)M(h,l)

1

(
$

(k)
i θ

(k,J)
i

)
+M(h,l)

2

(
ς

(k,J)
i $

(k)
i

γI

)]
,

where

Λ1 =

∫ ∞
0

fgSiP (x)Γ

(
LRmSiR,

ξSiR
Φ (x)

)
dx (4.161)

(a)
=

1

Γ (mSiP )

[
γ (mSiP , ϕSi) Γ

(
LRmSiR,

ξSiR
γSi

)
+M3

(
ξSiR

λSiPγP

)]
,
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and

Λ2 =

∫ ∞
0

fgSiP (x)e−
ξSiR

Φ(x)

(Φ (x))LRmSiR−l−1
dx (4.162)

=
γ (mSiP , ϕSi) e

−
ξSiR

γSi

Γ (mSiP ) γ
LRmSiR−l−1

Si

+
λ
mSiP
SiP

Γ
(
mSiP + LRmSiR − l − 1, ϕSi +

ξSiR
γSi

)
Γ (mSiP ) γ

LRmSiR−l−1

I

(
λSiP +

ξSiR
γP

)mSiP+LRmSiR−l−1
,

with M3 (.) is defined in (4.132). Equality (a) holds by replacing Φ (x) by their values along

using [71, Eqs. (06.06.26.0005.01), (07.34.21.0088.01)]. By substituting (4.161) and (4.162) into

(4.160), (4.125) is attained.

Expression of SOP at the second Hop

In like manner to SOP
(i,k)
1 , SOP

(k)
2 can be expressed as

SOP
(k)
2 = 1− γ

∫ ∞
0

fgRP (x)Ξ
(k)
3 (x) dx, (4.163)

with

Ξ
(k)
3 (x) =

∫ ∞
0

fγD|gRP=x (γ + γy − 1)F
γ

(k)
2E |gRP=x

(y) dy. (4.164)

One can notice from (4.164) that in order to calculate SOP
(k)
2 , it is necessary to find first the

conditional CDFs of γD and γ
(k)
2E for a given gRP .

Let’s define YRD =
∑L

t=1 gRDt . In a similar manner to (4.142), the conditional CDFs of γD

and γ
(k)
2E are given, respectively, by

FγD|gRP=x(z) = FYRD

(
z

D (x)

)
, (4.165)

and

F
γ

(k)
2E |gRP=x

(y) = FEREk

(
y

D(x)

)
, (4.166)

where EREk =
∑LEk

u=1 gRE(u)
k
, D (x) = γR for x ≤ γI/γR and D (x) = γI/x for x > γI/γR. It

follows, in a similar manner to ESiR, that EREk is also Gamma distributed with parameters

LEkmREk and λREk .

It is worthwhile that YRD is Gamma distributed for i.i.d Nakagami-m fading channels with

shape and scale parameters LDmRD and λRD, respectively. That is
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Ξ
(k)
3 (x)

(a)
=

λLDmRDRD e−
ξRD
D(x)

Γ(LDmRD)Γ (LEkmREk) (D (x))LDmRD−1

×
LDmRD−1∑

n1=0

Bn1γ
n1

∫ ∞
0

yn1e−
λRDγ

D(x)
yγ

(
LEkmREk ,

λ
REk

D(x)
y

)
(b)
=

λLDmRDRD e−
ξRD
D(x)

γΓ(LDmRD)Γ (LEkmREk)DLDmRD−1 (x)

×
LDmRD−1∑

n1=0

Bn1

(
D (x)

λRD

)n1+1

G1,2
2,2

 λ
REk

λRDγ

∣∣∣∣∣∣∣
−n1, 1;−

LEkmREk ; 0

 , (4.167)

where Bn1 is defined in (4.137). Note that step (a) holds by substituting (4.165) and (4.166) into

(4.164), while equality (b) follows by using [71, Eqs. (06.06.26.0004.01), (07.34.21.0088.01)].

Substituting (4.167) into (4.163), yields

SOP
(k)
2 = 1− λLDmRDRD

Γ (LEkmREk) Γ(LDmRD)

LDmRD−1∑
n1=0

Bn1

λn1+1
RD

Jn1G
1,2
2,2

 λREk
λRDγ

∣∣∣∣∣∣∣
−n1, 1;−

LEkmREk ; 0

 ,

(4.168)

where

Jn1=

∫ ∞
0

fgRP (x) (D (x))−LDmRD+n1+1 e−
ξRD
D(x)dx (4.169)

(a)
=

1

Γ(mRP )

e− ξRDγR γ (mRP , ϕR)

γLDmRD−n1−1
R

+
λmRPRP Γ

(
υn1 , ϕR + ξRD

γR

)
γLDmRD−n1−1
I

(
ξRD
γI

+ λRP

)υn1

 ,
where υn1 = LDmRD +mRP −n1− 1, ϕR is defined in Theorem 4.4.1. Here step (a) is obtained

by replacing D (x) by its values and using (4.102) alongside with Eqs. (3.381.1) and (3.381.3)

of [67].

By considering γI
γR

= δ and substituting (4.169) into (4.168), one can obtain (4.127) which

concludes the proof of Theorem 4.4.1. �

Asymptotic expression for the SOP

In this section, we provide an asymptotic analysis of the derived closed-form expressions of the

SOP. The expressions (4.125)-(4.127) can be approximated for high SNR regime by considering
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γP →∞.

Theorem 4.4.2. The asymptotic expression of the SOP in the absence of a jammer is given

by

SOP(i) ∼ 1−
M∏
k=1

AREk,RD,D (1)ASiEk,SiR,R (1)− 1

γI

M∑
k=1

M∏
j=1
j 6=k

AREj ,RD,D (1)ASiEj ,SiR,R (1)

×
(
AREk,RD,D (1)ASiEk,SiR,Si,R +ASiEk,SiR,R (1)AREk,RD,R,D

)
, (4.170)

While the asymptotic expressions of the SOP in the presence of a jamming signal is expressed

depending on various cases as follows

� LRmSiR < LEkmSJEk

SOP(i,k,J) ∼ 1−
M∏
k=1

AREk,RD,D (1)−

∑M
k=1

∏M
j=1
j 6=k

AREj ,RD,D (1)

γI
AREk,RD,R,D

(
1− P (SiR) C(i,k,J)

1

)
,

(4.171)

� LRmSiR > LEkmSJEk

SOP(i,k,J) ∼ 1−
M∏
k=1

AREk,RD,D (1)−

∑M
k=1

∏M
j=1
j 6=k

AREj ,RD,D (1)

γI
AREk,RD,R,D

(
1− P (SJEk) C(i,k,J)

2

)
,

(4.172)

� LRmSiR = LEkmSJEk = 1

SOP(i,J) ∼ 1−
M∏
k=1

AREk,RD,D (1) +
log (γI)

γI

M∑
k=1

M∏
j=1
j 6=k

AREj ,RD,D (1)AREk,RD,D (1) C(i,k,J)
3 . (4.173)

� LRmSiR = LEkmSJEk and LEkmSJEk > 1

SOP(i,J) ∼ 1−
M∏
k=1

AREk,RD,D (1)− 1

γI

M∑
k=1

M∏
j=1
j 6=k

AREj ,RD,D (1)AREk,RD,R,D, (4.174)

where P (q) = 1− sgn (Lvmq − 1) , q = {SiR, SJEk}, sgn stands for sign function,

Ae,c,v (y) =
1

Γ (Lvme) Γ(mc)
G1,2

2,2

 λe
λcγ

∣∣∣∣∣∣∣
−Lvmc + y, 1;−

Lvme; 0

 , e = {SiEk, REk}, (4.175)

c = {SiR,RD}, y = {1, 2}, v = {R,D}
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Ae,c,u,v =


λc(Lvmc−1)Ae,c,v(2)

Γ(muP )

[
δγ (muP , ϕu) + Γ(muP+1,ϕu)

λuP

]
− ξcAe,c,v(1)

Γ(muP )

[
δ
(
γ (muP , ϕu) + ϕmuP−1

R e−ϕu
)

+ muP
λuP

Γ (muP , ϕu)
]
 , (4.176)

u = {Si, R}, v = {R,D}

C(i,k,J)
1 =

[
γ (mSiP , ϕSi)σ

LRmSiR
i +

Γ (mSiP + LRmSiR, ϕSi)

λ
LRmSiR
SiP

]
ξ
LRmSiR
SiR

LRmSiRΓ(LRmSiR)Γ (mSiP )

(4.177)

+ γα
(k,J)
i

LRmSiR−1∑
l=0

Υl

[
γ (mSiP , ϕSi)

σ
−LRmSiR+l+1

i

+
Γ (mSiP + LRmSiR − l − 1, ϕSi)

λ
LRmSiR−l−1

SiP

]

× Γ (LEkmSJEk − l−1) Γ (LEkmSiEk + l + 1)

(l + 1) Γ (mSiP )

×

[
γ (mSJP , ϕJ)

(
δλSJEk
λSiEk

)l+1

+ Γ (mSJP + l + 1, ϕJ)
(
ς

(k,J)
i

)l+1
]
,

C(i,k,J)
2 ∼ γLRmSiRα

(k,J)
i

LEkmSJEk

 γ (mSJP , ϕJ)
(
δλSJEk
λSiEk

)LEkmSJEk
+Γ (mSJP + LEkmSJEk , ϕJ)

(
ς

(k,J)
i

)LEkmSJEk
 (4.178)

×
LEkmSiEk−1∑

h=0

Ω
(i,k)
h Γ (LEkmSiEk + LRmSiR − LEkmSJEk − h− 1) Γ (LEkmSJEk + h+ 1)(

$
(k)
i

)LEkmSiEk+LRmSiR−LEkmSJEk−h−1
,

and

C(i,k,J)
3 =

γLRmSiRα
(k,J)
i

$LRmSiR−LEkmSJEk

 γ (mSJP , ϕJ)
(
δλSJEk
λSiEk

)LEkmSJEk
+
(
ς

(k,J)
i

)LEkmSJEk
Γ (mSJP + LEkmSJEk , ϕJ)

 (4.179)

× (−1)LEkmSJEk−LRmSiR Γ (LEkmSiEk + LEkmSJEk)

LEkmSJEk

.

Proof.

The residues theorem is used in order to find the approximate expressions of Meijer-G’s

function given in (4.125).

� Asymptotic expression of SOP
(i,k,J)
1

Case 1: Presence of a jammer
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The Meijer-G’s functions M(h,l)
1 (z) and M(h,l)

2 (z) defined in (4.128) and (4.250), respec-

tively can be expressed in terms of complex integral as

M(h,l)
1 (z) =

1

2πj

∫
L3

Γ (LEkmSJEk + s) Γ (1 + h− s) Γ (LEkmSiEk + l − h+ s) Γ (−s)
Γ (1− s)

z−sds,

(4.180)

and

M(h,l)
2 (z) =

1

2πj

∫
L3

Γ (LEkmSJEk + s) Γ (1 + h− s) Γ (LEkmSiEk + l − h+ s)

Γ (1− s)
×Γ (−s) Γ (mSJP − s, ϕJ) z−sds. (4.181)

It is noteworthy that the conditions of [105, Theorem 1.5] are satisfied. That is, the two

above functions can be written as an infinite sum of the poles belonging to the left half plan

of L3. Furthermore, as the upper incomplete gamma function in (4.312) is always finite for

ϕJ 6= 0, it follows that the integrand functions of the two above equations have the same

poles. Additionally, it is clearly seen that the order of the left poles depends on the values of

LEkmSJEk , LEkmSiEk , h, and l. Owing to this fact, three cases can be distinguished:

� −LEkmSJEk < −LEkmSiEk − l + h: In this case, the two integrand functions given in

(4.180) and (4.312) admit −χh,l,r with χh,l,r = LEkmSiEk + l − h + r and 0 ≤ r ≤

LEkmSJEk − LEkmSiEk − l + h− 1 as simple poles and −%r with %r = LEkmSJEk + r and

r natural number as poles of second-order.

� −LEkmSJEk > −LEkmSiEk − l + h : Under this condition, the aforementioned integrands

have −%r with 0 ≤ r ≤ LEkmSiEk − LEkmSJEk + l − h − 1 as simple poles and −χh,l,r

where r ∈ N as poles of second-order.

� −LEkmSJEk = −LEkmSiEk− l+h : Under this assumption, the two integrands admit only

poles of second-order at −%r, r ∈ N.

a. −LEkmSJEk< −LEkmSiEk−l + h

Relying on [105, Theorem 1.5],M(h,l)
1 (z) can be rewritten as series of residues at the afore-
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mentioned poles

M(h,l)
1 (z) =

%r−χh,l,r−1∑
r=0

lim
s→−χh,l,r

Q1 (s, z) +
∞∑
r=0

lim
s→−%r

∂Q2 (s, z)

∂s
, (4.182)

where

Q1 (s, z) = (χh,l,r + s)
Γ (χh,l,r − r + s) Γ (LEkmSJEk + s) Γ (−s) Γ (1 + h− s)

Γ (1− s)
z−s, (4.183)

and

Q2 (s, z) = (%r + s)2 Γ (LEkmSiEk + l − h+ s) Γ (LEkmSJEk + s) Γ (−s) Γ (1 + h− s)
Γ (1− s)

z−s.

(4.184)

Obviously, the limit of Q1 (s, z) can be expressed as

lim
s→−χh,l,r

Q1 (s, z) =
(−1)r Γ (LEkmSiEk + l + r + 1) Γ (LEkmSJEk − χh,l,r)

r!χh,l,r
zχh,l,r . (4.185)

On the other hand, using [71, Eqs. (06.14.06.0026.01) and (06.14.16.0003.01)] the partial deriva-

tive of Q2 (s, z) is given by

∂Q2 (s, z)

∂s
=

(s+ %r)
2Γ (χh,l,r − r + s) Γ (−s) Γ (LEkmSJEk + s) Γ (1 + h− s)

Γ (1− s) zs
G(h,l,r) (z, s) ,

(4.186)

where G(h,l,r) (z, s) = − log z + ψ(r + 1) + ψ(%r − χh,l,r + r + 1)− 1
s
− ψ(1 + h− s).

Replacing (4.186) and (4.185) into (4.182), yields

M(h,l)
1 (z) =

%r−χh,l,r−1∑
r=0

(−1)r Γ (LEkmSJEk − χh,l,r) Γ (LEkmSiEk + l + r + 1)

r!χh,l,r
zχh,l,r (4.187)

+
∞∑
r=0

(−1)%r−χh,l,r Γ (h+ %r + 1)

(−LEkmSiEk + %r − l + h)!k!%r
z%rG(h,l,r) (z,−%r) .
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In similar manner,M(h,l)
2 (z) can be expressed as

M(h,l)
2 (z) =

%r−χh,l,r−1∑
k=0

(−1)r Γ (LEkmSiEk + l + r + 1)

r!χh,l,rz−χh,l,r
Γ (mSJP + χh,l,r, ϕJ) Γ (LEkmSJEk − χh,l,r)

+
∞∑
r=0

(−1)%r−χh,l,r Γ (1 + h+ %r)

(−LEkmSiEk + %r − l + h)!r!%r
z%r


[
G(h,l,r) (z,−%r)− log (ϕJ)

]
×Γ (mSJP + %r, ϕJ)− V(r) (%r)

 ,

(4.188)

where V(r) (%r) =G3,0
2,3

ϕJ
∣∣∣∣∣∣∣

−; 1, 1

0, 0,mSJP + %r;−

 .

Interestingly, one can notice that %r > χh,l,r for LEkmSJEk > LEkmSiEk+l−h. Consequently,

the second summation in the two above expressions can be ignored as z approaches 0, i.e.,

M(h,l)
1 (z) ∼ Γ (LEk(mSJEk −mSiEk)− l + h) Γ (LEkmSiEk + l + 1)

(LEkmSiEk + l − h)
zLEkmSiEk+l−h (4.189)

and

M(h,l)
2 (z) ∼ Γ (LEkmSiEk + l + 1) Γ (LEk(mSJEk −mSiEk)− l + h)

(LEkmSiEk + l − h)

× Γ (mSJP + LEkmSiEk + l − h, ϕJ) zLEkmSiEk+l−h. (4.190)

b. −LEkmSJEk> −LEkmSiEk−l + h

Analogously to the previous case, the integrals (4.180) and (4.312) can be computed relied

on [105, Theorem 1.5] and [71, Eq. (06.14.16.0003.01)], respectively, as

M(h,l)
1 (z) =

χh,l,r−%r−1∑
r=0

Γ (LEkmSiEk + l − h− %r) Γ (1 + h+ %r)

r!%r (−1)−r z−%r
(4.191)

+
∞∑
r=0

(−1)χh,l,r−%r Γ (1 + h+ χh,l,r)

(χh,l,r − LEkmSJEk)!r!χh,l,r
zχh,l,r

×
{
ψ(r + 1) + ψ(−LEkmSJEk + χh,l,r + 1)− ψ(1 + LEkmSiEk + l + r) +

1

χh,l,r
− log z

}
,
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and

M(h,l)
2 (z) =

χh,l,r−%r−1∑
r=0

(−1)r Γ (LEkmSiEk + l − h− %r) Γ (1 + h+ %r) z
%rΓ (mSJP + %r, ϕJ)

r!%r

+
∞∑
r=0

(−1)χh,l,r−%r Γ (1 + h+ χh,l,r)

(χh,l,r − %r)!r!χh,l,rz−χh,l,r
[
Z − V(r) (χh,l,r)

]
, (4.192)

where

Z =Γ (mSJP + χh,l,r, ϕJ)


− log z + ψ(r + 1) + ψ(−LEkmSJEk + χh,l,r + 1)

−ψ(LEkmSiEk + l − h+ r)− ψ(LEkmSiEk + l + r + 1)

+ψ(1 + χh,l,r)− log (ϕJ)

 . (4.193)

One can notice that as %r < χh,l,r,M(h,l)
1 (z) andM(h,l)

2 (z) can be approximated when z tends

to 0 by

M(h,l)
1 (z) ∼ Γ (LEkmSiEk − LEkmSJEk + l − h) Γ (LEkmSJEk + h+ 1)

LEkmSJEk

zLEkmSJEk , (4.194)

and

M(h,l)
2 (z) ∼ Γ (LEkmSJEk + h+ 1) Γ (mSJP + LEkmSJEk , ϕJ)

LEkmSJEk

(4.195)

× Γ (LEkmSiEk − LEkmSJEk + l − h) zLEkmSJEk .

c. −LEkmSJEk= −LEkmSiEk − l + h

For this case, the two complex integrals given in (4.180) and (4.312) can be expressed by

performing some algebraic operations as

M(h,l)
1 (z) =

∞∑
r=0

(−1)%r−χh,l,r Γ (1 + h+ %r)

(−LEkmSiEk + %r − l + h)!k!%r
z%rG(h,l,r) (z,−%r) , (4.196)

and

M(h,l)
2 (z) =

∞∑
r=0

(−1)%r−χh,l,r Γ (1 + h+ %r)

(%r − LEkmSiEk − l + h)!r!%r
z%r

×
{[
G(h,l,r) (z)− log (ϕJ)

]
Γ (mSJP + %r, ϕJ)− V(r) (%r)

}
. (4.197)
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Again, M(h,l)
1 (z) and M(h,l)

2 (z) can be approximated as z approaches 0 by

M(h,l)
1 (z) ∼ (−1) LEkmSJEk−LRmSiR+1 Γ ( LEkmSiEk + LEkmSJEk) z

LEkmSJEk log z

LEkmSJEk

, (4.198)

and

M(h,l)
2 (z) ∼ (−1) LEkmSJEk−LRmSiR+1 Γ ( LEk (mSiEk +mSJEk))

LEkmSJEk

(4.199)

× Γ (mSJP + LEkmSJEk , ϕJ) zLEkmSJEk log (z) .

Finally, the Meijer’s G-functionM3 (z) defined in (4.132) can be written in terms of complex

integral as

M3 (z) =
1

2πj

∫
L4

Γ (LRmSiR + s) Γ (mSiP − s, ϕSi)
s

z−sds. (4.200)

It is worth mentioning that the conditions of [105] are applied also here. Thus, the above

integrand function can be written as an infinite sum of the left poles in L4. Besides, that

integrand admits only poles of the first order at 0 and −LRmSiR − r, r ∈ N. That is

M3 (z) = Γ (LRmSiR) Γ (mSiP , ϕSi) +
∞∑
r=0

(−1)r+1 Γ (mSiP + LRmSiR + r, ϕSi)

r! ( LRmSiR + r) z−LRmSiR−r

(a)∼ Γ (LRmSiR) Γ (mSiP , ϕSi)−
Γ (mSiP + LRmSiR, ϕSi)

LRmSiRz
−LRmSiR

, (4.201)

with step (a) follows by considering only the first term of the infinite summation when z tends

to 0.

Finally, armed by [67, Eq. (8.354.2)] the upper incomplete Gamma given in (4.125) can be

approximated for small values of z as

Γ

(
LRmSiR,

σiξSiR
γI

)
∼ Γ (LRmSiR)− 1

LRmSiR

(
σiξSiR
γI

)LRmSiR
. (4.202)

Interestingly, the SOP
(i,k,J)
1 can finally be approximated in high SNR regime (i.e., γI →∞)

by considering three cases, namely LRmSiR < LEkmSJEk , LRmSiR > LEkmSJEk , and LRmSiR =

LEkmSJEk .

� LRmSiR < LEkmSJEk
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Substituting (4.189), (4.190), (4.201), and (4.202) into (4.125), and by considering h =

LEkmSiEk−1, SOP
(i,k,J)
1 can be approximated as

SOP
(i,k,J)
1 ∼ C(i,k,J)

1

γ
LRmSiR
I

, (4.203)

where C(i,k,J)
1 is given in (4.177).

� LRmSiR > LEkmSJEk

Incorporating (4.194), (4.195), (4.201), and (4.202) into (4.125), and by considering l =

LRmSiR−1, SOP
(i,k,J)
1 can be approximated as

SOP
(i,k,J)
1 ∼ C(i,k,J)

2

γ
LEkmSJEk
I

, (4.204)

where C(i,k,J)
2 is given in (4.178).

� LRmSiR = LEkmSJEk

Replacing (4.194), (4.195), (4.198), (4.199), (4.201), and (4.202) into (4.125), and by con-

sidering l = LRmSiR−1, SOP
(i,k,J)
1 can be approximated as

SOP
(i,k,J)
1 ∼ C(i,k,J)

3

log (γI)

γ
LEkmSJEk
I

, (4.205)

where C(i,k,J)
3 is given in (4.179).

Case 2: Absence of a Friendly Jammer

In order to derive the asymptotic expression of SOP
(i,k)
1 given in (4.126), we need to approx-

imate the upper incomplete Gamma function. One can ascertain by applying the Maclaurin

series that

Γ (a, b+ cz) ∼ Γ (a, b)− czba−1e−b, (4.206)

as z tends to 0. By considering only the two cases i.e., l = LRmSiR − 1 and l = LRmSiR − 2

and performing some algebraic manipulations, one can obtain
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Table 4.3: Simulation parameters of contribution 6.

Parameter M N λSiR λSiP λSiEk
value 3 4 0.1 0.3 0.6

Parameter λREk λRP λRD mSiR mSiP

value 0.6 0.2 0.1 2 3
Parameter mSiEk mRD mREk mRP

value 5 2 4 3

SOP
(i,k)
1 ∼ 1−ASiEk,SiR,R −

ASiEk,SiR,Si,R
γI

, (4.207)

where A•,•,• and A•,•,•,• are defined in (4.175) and (4.176), respectively.

� Asymptotic expression of SOP
(k)
2

As SOP
(i,k)
1 and SOP

(k)
2 given in (4.126) and (4.127), respectively have the same shape, one

can see that

SOP
(k)
2 ∼ 1−AREk,RD −

AREk,RD,R
γI

, (4.208)

Finally, replacing (4.203), (4.204), (4.205), and (4.208) into (4.123), one can get the expres-

sions (4.171)-(4.174), respectively. Furthermore, substituting (4.207) and (4.208) into (4.124),

(4.170) is attained which concludes the proof of Theorem 4.4.2. �

4.4.3 Numerical results and discussions

In this section, we validate the derived analytical results through Monte Carlo simulation by

generating 106 Gamma-distributed RVs. The setting parameters of the simulation are summa-

rized in Table 4.3. Indeed, the values of fading severity parameter m• have been chosen such

that the wiretap channel is better than the legitimate one. Moreover, their values are taken

integer in the range 2..5 similarly to [97] and [18]. On the other hand, the average SNR, which

is inversely proportional to λ•, the legitimate link is considered better than the one of the

wiretap channel. It is worthwhile that these parameters are associated with all figures except

those indicating other values. As one can see in Figs. 4.11-4.16, all closed-form and simulation

curves are perfectly matched for considered parameters’ values.
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Fig. 4.11 and Fig. 4.12 depict closed-form and asymptotic expressions for the SOP versus

γI for various numbers of antennas’ in both the presence and absence of a friendly jammer

cases, respectively. As stated in remark 9, it can be noticed that the greater γI , the smaller

the SOP. Interestingly, above a certain threshold of γI the SOP becomes steady this can be

obviously justified from (4.109) and (4.110) that above that threshold, both sources and relay

will always transmit with their maximum powers. Consequently, the legitimate and wiretap

capacities of each hop remain constant, leading to a constant value of SOP. Interestingly, by

comparing the SOP values in the two aforementioned figures, one can ascertain that better

secrecy is achieved by using a friendly jammer. In addition, the asymptotic curves are plotted

under the considered fading severity values (i.e., mSiR = 2, mSJEk = 5) from Eqs. (4.170)-

(4.174). Clearly, the asymptotic curves match with the closed-form ones in high SNR regime.

γI(dB)

5 10 15 20 25 30 35

S
O

P

0.4

0.5

0.6

0.7

0.8

0.9

1

Closed-form

Simulations

Asymptotic

L=2

L=3

L=4

Figure 4.11: SOP versus γI for differ-
ent numbers of antennas at the des-
tination in the presence of a friendly
jammer for η = σi = δ = 0.1 and
LR = LEk = LD = L.
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Figure 4.12: SOP versus γI in the ab-
sence of a friendly jammer for σi =
δ = 0.1 and LR = LEk = LD = L.

Fig. 4.13 illustrates the SOP versus γSJ for numerous numbers of branches’ LD at the

receiver D. Again, as indicated in remark 9, one can realize that the higher γSJ and LD, the

smaller the SOP and therefore the system’s security gets improved.

Fig. 4.14 and Fig. 4.15 show the SOP as a function of the number of eavesdroppers M

for different values of γSJ and by considering both cases i.e., presence and absence of jammer.

One can observe that the smaller γSJ or the greater M the worst is the system’s secrecy
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as highlighted in remark 9 and 10, respectively. In addition, introducing a jamming signal

improves significantly the secrecy performance for high values of γSJ or in the presence of small

numbers of eavesdroppers.
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Figure 4.13: SOP versus γSJ for differ-
ent numbers of antennas at the desti-
nation for γI = γSi = γR = 20 dB and
LR = LEk = LD = L.
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Figure 4.14: SOP versus number of
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for LD = 4 and γI = γSi = γR = 20
dB.

Fig. 4.16 depicts the SOP as a function of the number of eavesdroppers by considering

the presence and absence of a friendly jammer. It is worth mentioning that better security

is obviously achieved for the case of presence of jammer and multi-antenna nodes, while the

scenario of the absence of jammer and legitimate nodes equipped with a single antenna is the

worst case. For this reason, our aim here is to investigate if the security gets enhanced when

having artificial noise and legitimate nodes with a single antenna or the scenario of the absence

of jammer and all legitimate nodes are equipped with multiple antennas. One can obviously

notice that the system’s security is improved when diversity is used at the legitimate nodes.

Additionally, in the presence of an important number of eavesdroppers, the friendly jammer

does not contribute to the enhancement of the system’s security.
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4.5 Contribution 7: Secrecy performance analysis of a

dual-hop jamming-based underlay cognitive hybrid

satellite-terrestrial network

4.5.1 System and channel model

We consider an underlay cognitive satellite system, presented in Fig. 4.17, consisting of two

SU sources, namely a data source S, a jammer source SJ , satellite R that serves as a relay,

one optical ground station D, two eavesdroppers E1 and E2 intercepting the communication

at the first and the second hop, respectively, one primary transmitter PUTx , and one primary

receiver PURx . It is worth mentioning that the jamming signal sent by SJ can be canceled at

the legitimate receiver (i.e. R), while the eavesdropper E1 is not able to decode it. Without

loss of generality, the source communicates with the optimal relay through an RF-link, while

at the second hop R forwards data to D through an optical feeder link. The received signal at

R and E1 are, respectively, given by

yR =
√
PSxShSR + nR, (4.209)
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Figure 4.17: The considered HSTCN.

yE1 =
√
PSxShSE1 + ε

√
PSJxSJhSJE1 + nE1 , (4.210)

while, the received signal at node Z ∈ {D,E2} is given by

yZ =
√
PRωZ (ηIZ)

r
2 xR + nZ , (4.211)

where, ε is either equal to 0 or to 1 in absence or presence of artificial noise, respectively. IZ is

the irradiance of the link R-D,
(
i.e.,IZ = I

(a)
Z I

(p)
Z I

(l)
Z

)
defined as the product of the irradiance

fluctuation caused by atmospheric turbulence (i.e., I
(a)
Z ), the pointing error due to the beam

misalignment (i.e., I
(p)
Z ), and the free-space path loss (FSPL) (i.e., I

(l)
Z ), respectively. Of note,

the latter irradiance can be expressed as I
(l)
Z = Ite

−φdZ , with It stands for the laser emittance.

For simplicity reasons, the FSPL’s irradiance is considered normalized to unity (φ = 0). Fur-

thermore, r refers to the detection technique index (i.e., r = 1 for coherent detection and r = 2

for direct detection).

To avoid interference with the PU signal, the SNR at R can be characterized as

γR = min

(
γS,

γI
gSP

)
gSR, (4.212)

while the SNR at E1 in the case of absence and presence of a friendly jammer are, respectively,

138



given by

γE1 = US, (4.213)

and

γ
(J)
E1

=
US

USJ + 1
, (4.214)

where

UQ = min

(
γQ,

γI
gQP

)
gQE1 , Q ∈ {S, SJ} , (4.215)

γQ = Pmax
Q /N, and γI = PI/N , with N presents the thermal power noise at the receivers,

assumed identical.

Furthermore, the SNR at node Z ∈ {D,E2} can be straightforwardly expressed from (4.211)

as

γZ =
PRωZ (ηIZ)r

N
. (4.216)

Given that the satellite R performs the DF protocol, the equivalent SNR of the end-to-end

link is given by

γeq = min (γR, γD) . (4.217)

All fading amplitudes are assumed to be independent and identically distributed (i.i.d).

Specifically, the amplitudes of the terrestrial (i.e. S-PURx and SJ -PURx) and uplink chan-

nels (i.e. S-R, S-E1, and SJ -E1) are Rayleigh and shadowed-Rician distributed, respectively.

Therefore, the PDF and CDF of the channel gain corresponding to the latter channel can be

characterized as given in (1.21) and (1.22), respectively.

On the other hand, as the atmospheric turbulence induced-fading with pointing error for

the received optical beam is modeled with Gamma-Gamma distribution, the PDF and CDF of

the SNR γZ are expressed, respectively as in (1.16) and (1.17).

4.5.2 Secrecy performance evaluation

In this section, we derive closed-form and asymptotic expressions for the IP defined in (1.35)

such that the secrecy capacity of the system is defined in (1.31). Differently from the previous

systems, we are considering in this contribution the presence of two eavesdroppers. Therefore,
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the secrecy capacity at the second hop is given by

C2S = min

(
log2

(
1 + γR
1 + γE2

)
, log2

(
1 + γD
1 + γE2

))
. (4.218)

Remark 11. One can see from (1.35) that the system’s secrecy can be enhanced by increasing

the SNRs at legitimate nodes (i.e., R and D) or decreasing the SNRs at the eavesdroppers at

both hops. To this end, the system’s secrecy is impacted by two main factors: (i) transmit power

of the sources, and (ii) fading severity exhibited by different channels. Owing to that, it can

be clearly noticed from (4.212) and (4.214) that increasing either γI or γS enhances the SNR

at R, while increasing γSJ decreases the SNR at E1. Particularly, the presence of a friendly

jammer decreases this latter metric as can be ascertained in (4.214) and (4.213). Furthermore,

above a certain threshold of either γI or γS, both legitimate and eavesdropper SNRs depend

exclusively of either γS or γI , respectively as can be observed in (4.214)-(4.215). Consequently,

the IP remains steady in both aforementioned cases. Likewise, it can be noticed from (4.216)

that the capacities of the second-hop channels are affected by various parameters including the

satellite’s transmit power and the average powers of both LOS and multipath components of the

downlink turbulence channel.

New framework for the IP

In order to derive the closed-form and asymptotic expressions for the IP of the considered

HSTCN, we have to provide first a framework for IP’s evaluation of a dual-hop cognitive system

in the presence of an eavesdropper at each hop when the relay performs the DF protocol. Next,

both closed-form and asymptotic expressions of the IP for the considered system are provided

under two scenarios, namely (i) absence, and (ii) presence of a friendly jamming signal.

Lemma 1. For a dual-hop cognitive network-aided DF relaying protocol experiencing general-

ized fading models over the intercepting attempt of two wiretappers E1 and E2 at the first and

the second hop, respectively, the IP can be evaluated as

IP = 1−
∫ ∞
u=0

fgSP (u)R1 (u) du, (4.219)
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where

R1 (u) =

∫ ∞
y=γth

J1 (y, u)J2 (y) dy, (4.220)

J1 (y, u) = fγR|gSP=u (y)FγE1
|gSP=u (y) , (4.221)

and

J2 (y) =

∫ y

z=0

fγE2
(z)F c

γD
(z) dz, (4.222)

where F c
. (.) denotes the complementary CDF.

Proof. Using equations (1.31), (1.32), (1.35), and (4.218), the IP can be rewritten as

IP
(a)
= Pr (Csec ≤ 0| γR > γth) Pr (γR > γth) + Pr (Csec ≤ 0| γR < γth) Pr (γR < γth) (4.223)

(b)
= Pr (Csec ≤ 0| γR > γth) Pr (γR > γth) + Pr (γR < γth) ,

where step (a) is attained by using both total probability and Bayes’ rules, while step (b) holds

by noting that when γR < γth, the satellite R fails to decode the received message from S and

therefore the communication could not be established between the source and the destination

(i.e. γD = γE2 = 0). It follows that Csec = 0 and consequently, Pr (Csec ≤ 0| γR < γth) = 1.

On the other hand, by considering that

Pr (Csec ≤ 0| γR > γth) = Pr (γR > γth)− Pr (Csec > 0| γR > γth) , (4.224)

Substituting (??) and (4.224) into (4.223), the IP can be rewritten as

IP = 1− Pr (Csec > 0, γR > γth) , (4.225)

= 1− Pr (γR > γE1 , γR > γE2 , γD > γE2 , γR > γth)︸ ︷︷ ︸
I

.

Obviously, the term I can be expressed as the sum of six different probabilities (i.e. I =
∑6

i=1 Ii

with Ii = Pr (Ei, γD > γE2) where the events Ei are summarized in Table 4.4.

I1 =

∫ ∞
0

fgSP (u) du

∫ ∞
γth

FγE1
|gSP=u (y)

 fγR|gSP=u (y)
∫ y
γth
fγE2

(z)F c
γD

(z) dz

−F c
γR|gSP=u (y) fγE2

(y)F c
γD

(y)

 dy. (4.226)
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Table 4.4: Events for I.

Event Event
E1 γR > γE1 > γE2 > γth E4 γR > γth > γE1 > γE2

E2 γR > γE2 > γE1 > γth E5 γR > γE2 > γth > γE1

E3 γR > γth > γE2 > γE1 E6 γR > γE1 > γth > γE2

I2 =

∫ ∞
0

fgSP (u) du

∫ ∞
γth

F c
γR|gSP=u (z) fγE2

(z)F c
γD

(z)
[
FγE1

|gSP=u (z)− FγE1
|gSP=u (γth)

]
dz.

(4.227)

I3 =

∫ ∞
0

F c
γR|gSP=u (γth) fgSP (u)

∫ γth

0

FγE1
|gSP=u (y) fγE2

(y)F c
γD

(y) dudy. (4.228)

I4 =

∫ ∞
0

F c
γR|gSP=u (γth) fgSP (u)

∫ γth

0

fγE2
(z)F c

γD
(z)
[
FγE1

|gSP=u (γth)− FγE1
|gSP=u (z)

]
dudz.

(4.229)

I5 =

∫ ∞
0

FγE1
|gSP=u (γth) fgSP (u)

[∫ ∞
γth

fγE2
(x)F c

γD
(x)−

∫ ∞
γth

FγR|gSP=u (x) fγE2
(x)F c

γD
(x)

]
dudx.

(4.230)

I6 =

∫ ∞
0

fgSP (u)

∫ ∞
γth

fγR|gSP=u (x)
[
FγE1

|gSP=u (x)− FγE1
|gSP=u (γth)

]
dxdu×

∫ γth

0

fγE2
(z)F c

γD
(z) dz.

(4.231)

Eqs. (4.226), (4.228), and (4.230) are obtained using integration by parts alongside some

algebraic manipulations, while (4.227), (4.229), and (4.231) can be achieved by applying the

basic definition of the CDF.

By performing a summation of (4.226)-(4.231) and substituting I into (4.225), (4.219) is

attained, which concludes the proof of Lemma 1. �

IP closed-form

Theorem 4.5.1. The closed-form expressions for IP of the considered HSTCN under the con-

sidered fading models is given by (4.243), for both absence (i.e. E = A) and presence (i.e.

E = P ) of a friendly jamming, where
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e(Z,τ) =
Γ (αZ − ξ2

Z) Γ (βZ − ξ2
Z)

τ + ξ2
Z

, (4.232)

e(Z,τ,k) (x, y) =
(−1)k Γ (x− y − k)

k! (ξ2
Z − y − k) (τ + y + k)

, ξ2
Z 6= y + k, (4.233)

B(n1,n2,n3,p) =

(
n2

p

)
φ

(n1)
SJE1

φ
(n2)
SE1

φ
(n3)
SR

υn1+1
SJE1

υpSE1

, (4.234)

Ψ
(n1,n2,n3,p,a,τ)
2 =

%τD (ΥE2%E2)a

ζn2+n3−p+1+a+τ

[
FgSP (σS)M(n1,n2,n3,p,a,τ) + λSPσ

a+τ
S Y(n1,n2,n3,p,a,τ)

]
, (4.235)

Ψ
(n1,n2,n3,p,a,τ)
3 =

%τD (ΥE2%E2)a

ζn2+n3−p+1+a+τ

[
FgSP (σS) Φ(n1,n2,n3,p,a,τ) + λSPσ

a+τ
S W(n1,n2,n3,p,a,τ)

]
, (4.236)

θ = OD ×OE2 , (4.237)

%Z =
γS

µ
(Z)
1

, (4.238)

σQ =
γI
γQ
, (4.239)

εI =
γth
γI
, (4.240)

χ =
υSJE1ζ

υSE1

, (4.241)

ζ = υSR + υSE1 , (4.242)

τ ∈ {0, q}, q ∈ {ξ2
D, αD + k, βD + k}, and Cs and Cw are two vertical lines of integration chosen

so as to separate left poles of the integrand functions in (4.251) and (4.253), from the right

ones.

IPE = 1−
ξ2
E2
D(0)
E

Γ (αE2) Γ (βE2)
+ θ

 e(D,0)D(ξ2
D)

E +
∑∞

k=0 e
(D,0,k) (βD, αD)D(αD+k)

E

+e(D,0,k) (αD, βD)D(βD+k)
E

 , E ∈ {A,P}
(4.243)
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D(τ)
A = Υτ

D∆SE1∆SR

mSE1
−1∑

n2=0

mSR−1∑
n3=0

φ
(n3)
SR φ

(n2)
SE1

υn2+1
SE1


e(E2,τ)N (n2,n3,ξ2

E2
,τ)

1

+
∑∞

k=0 e
(E2,τ,k) (βE2 , αE2)N (n2,n3,αE2

+k,τ)
1

+
∑∞

k=0 e
(E2,τ,k) (αE2 , βE2)N (n2,n3,βE2

+k,τ)
1

 .
(4.244)

D(τ)
P = Υτ

D∆SR

 ∑mSR−1
n3=0 φ

(n3)
SR Ξ

(n3,τ)
1 −∆SE1∆SJE1

∑mSJE1
−1

n1=0

∑mSE1
−1

n2=0

∑n2

p=0

∑mSR−1
n3=0

×B(n1,n2,n3,p)
{
FgSJP (σSJ ) Ξ

(n1,n2,n3,p,τ)
2 + Ξ

(n1,n2,n3,p,τ)
3

}
 .

(4.245)

N (n2,n3,a,τ)
1 =

%τD (ΥE2%E2)a

υn3+τ+a+1
SR


FgSP (σS)G1,2

2,2

υSE1

υSR

∣∣∣∣∣∣∣
(1, 0) , (−n3 − τ − a, εIσSυSR) ;−

(n2+1, 0) ; (0, 0)


+ (λSP σS)τ+a

(2πj)2

∫
Cs

Γ(n2+1+s)Γ(−s)
Γ(1−s)

(
υSE1

υSR

)−s
×
∫
Cw

Γ(−τ−a−w+1,λSP σS)Γ(n3+τ+a+1−s+w)Γ(w)
Γ(1+w)

(
εIυSR
λSP

)−w
dsdw


.

(4.246)

Ξ
(n3,τ)
1 = e(E2,τ)Ψ

(n3,ξ2
E2
,τ)

1 +
∞∑
k=0

e(E2,τ,k) (βE2 , αE2) Ψ
(n3,αE2

+k,τ)
1 +e(E2,τ,k) (αE2 , βE2) Ψ

(n3,βE2
+k,τ)

1 .

(4.247)

Ψ
(n3,a,τ)
1 =

%τD (ΥE2%E2)a

υn3+τ+a+1
SR


FgSP (σS) Γ (n3 + τ + a+ 1, εIσSυSR)

+ (σSλSP )τ+aG2,1
2,2

υSRεI
λSP

∣∣∣∣∣∣∣
(τ + a, σSλSP ) ; (1, 0)

(0, 0) , (n3 + τ + a+ 1, 0) ;−


 .

(4.248)

Ξ(n1,n2,n3,p,τ)
n = e(E2,τ)Ψ

(n1,n2,n3,p,ξ2
E2
,τ)

n +
∞∑
k=0

e(E2,τ,k) (βE2 , αE2) Ψ
(n1,n2,n3,p,αE2

+k,τ)
n

+ e(E2,τ,k) (αE2 , βE2) Ψ
(n1,n2,n3,p,βE2

+k,τ)
n , n ∈ {2, 3}. (4.249)

M(n1,n2,n3,p,a,τ) = G2,2
2,3

χσSJ
γI

∣∣∣∣∣∣∣
(−p, 0) , (1, 0) ;−

(n1 + 1, 0) , (n2 + n3 − p+ 1 + τ + a, ζεIσS) ; (0, 0)

 .

(4.250)

Y(n1,n2,n3,p,a,τ) =
−λa+τ−1

SP

(2πj)2

∫
Cs

Γ (n1 + 1 + s) Γ (1 + p− s)
s

(
χσSJ
γI

)−s
(4.251)

×
∫
Cw

Γ (n2 + n3 − p+ 1 + τ + a+ s+ w) Γ (1− a− τ − w, σSλSP )

w

(
ζεI
λSP

)−w
dsdw.
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Φ(n1,n2,n3,p,a,τ) = G2,3
3,3

 χ

λSJPγI

∣∣∣∣∣∣∣
(−p, 0) , (1, 0) , (0, σSJλSJP ) ;−

(n1 + 1, 0) , (n2 + n3 − p+ 1 + τ + a, ζεIσS) ; (0, 0)

 .

(4.252)

W(n1,n2,n3,p,a,τ) =
−λa+τ−1

SP

(2πj)2

∫
Cs

Γ (n1 + 1 + s) Γ (1 + p− s) Γ (1− s, σSJλSJP )

s

(
χ

λSJPγI

)−s
(4.253)

×
∫
Cw

Γ (n2 + n3 − p+ 1 + a+ τ + s+ w) Γ (1− a− τ − w, σSλSP )

w

(
ζεI
λSP

)−w
dsdw.

Proof. To prove the IP expression given in (4.243) in both the absence and presence of friendly

jammer cases, it is mandatory to compute J1 (y, u), J2 (y), and R1 (u). As one can see from

(4.221) and (4.222), to compute J1 (y, u) it is sufficient to derive the conditional CDFs of

(4.212), (4.213) and (4.214), while J2 (y) can be attained using (1.21) and (1.22).

To do so, we start by computing the conditional CDF of γR for a given gSP as follows

FγR|gSP=u (y) = Pr (γR ≤ y |gSP = u) (4.254)

(a)
= FgSR

(
y

Ω (u)

)
,

where Ω (u) = γS if u ≤ σS and Ω (u) = γI
u

if u > σS, with σS is defined in Theorem 4.5.1, and

step (a) holds by using (4.212).

� Absence of friendly jammer case.

Using (4.213), the conditional CDF of γE1 for a given gSP can be expressed as

FγE1
|gSP=u (y) = Pr

(
min

(
γS,

γI
u

)
gSE1 ≤ y

)
(4.255)

= FgSE1

(
y

Ω (u)

)
.

Substituting (4.254) and (4.255) into (4.221), yields

J1 (y, u) =
1

Ω (u)
fgSR

(
y

Ω (u)

)
FgSE1

(
y

Ω (u)

)
. (4.256)
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Now, using (1.21) and (1.22), the term J1 (y, u) can be rewritten as

J1 (y, u) =
∆SE1∆SRe

− υSR
Ω(u)

y

Ω (u)

mSE1
−1∑

n2=0

φ
(n2)
SE1

υn2+1
SE1

γinc

(
n2+1,

υSE1

Ω (u)
y

)mSR−1∑
n3=0

φ
(n3)
SR

Ωn3 (u)
yn3 . (4.257)

Next, the term J2 (y) given in (4.222) can be expressed as

J2 (y) = FγE2
(y)−

∫ y

z=0

fγE2
(z)FγD (z) dz. (4.258)

By substituting (1.16) and (1.17) into (4.258), we get

J2 (y) = FγE2
(y)− θ

∫ y

z=0

1

z
G3,0

1,3

ΥE2z

µ
(E2)
1

∣∣∣∣∣∣∣
−; ξ2

E2
+ 1

ξ2
E2
, αE2 , βE2 ;−

G3,1
2,4

ΥDz

µ
(D)
1

∣∣∣∣∣∣∣
1; ξ2

D + 1

ξ2
D, αD, βD; 0

 dz,

(4.259)

where θ is defined in Theorem 4.5.1.

To compute (4.259), we can express one of the two Meijer’s G-functions as an infinite sum

of the respective integrand’s residues evaluated at the appropriate poles [105, Theorem 1.5].

That is,

G3,1
2,4

y
∣∣∣∣∣∣∣

1− τ ; ξ2
Z + 1

ξ2
Z , αZ , βZ ;−τ

 = e(Z,τ)yξ
2
Z +

∞∑
k=0

e(Z,τ,k) (βZ , αZ) yαZ+k +
∞∑
k=0

e(Z,τ,k) (αZ , βZ) yβZ+k,

(4.260)

where τ = {0, q}, q takes a value in the set {ξ2
D, αD + k, βD + k}, e(Z,τ), and e(Z,τ,k) (., .) are

defined in Theorem 4.5.1.

Substituting (4.260) into (4.259), yields

J2 (y) = F
γ

(k)
E2

(y)− θ


e(D,0)P (ξ2

D, y)

+
∑∞

k=0 e
(D,0,k) (βD, αD)P (αD + k, y)

+
∑∞

k=0 e
(D,0,k) (αD, βD)P (βD + k, y)

 , (4.261)
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with

P (q, y) =

(
ΥD

µ
(D)
1

)q ∫ y

0

zq−1G3,0
1,3

ΥE2z

µ
(E2)
1

∣∣∣∣∣∣∣
−; ξ2

E2
+ 1

ξ2
E2
, αE2 , βE2 ;−

 dz (4.262)

(a)
=

(
ΥDy

µ
(D)
1

)q

G3,1
2,4

ΥE2y

µ
(E2)
1

∣∣∣∣∣∣∣
1− q; ξ2

E2
+ 1

ξ2
E2
, αE2 , βE2 ;−q

 ,

where step (a) follows using [71, Eq. 07.34.21.0003.01].

Replacing, (4.257) and (4.261) into (4.220), one can obtain

R1 (u) =
ξ2
E2
L(0)

1 (u)

Γ (αE2) Γ (βE2)
− θ


e(D,0)L(ξ2

D)
1 (u)

+
∑∞

k=0 e
(D,0,k) (βD, αD)L(αD+k)

1 (u)

+
∑∞

k=0 e
(D,0,k) (αD, βD)L(βD+k)

1 (u)

 , (4.263)

where

L(τ)
1 (u) = ∆SE1∆SR

(
ΥD

µ
(D)
1

)τ mSE1
−1∑

n2=0

φ
(n2)
SE1

υn2+1
SE1

mSR−1∑
n3=0

φ
(n3)
SR

Ωn3+1 (u)

∫ ∞
y=γth

yτ+n3γinc

(
n2+1,

υSE1

Ω (u)
y

)
e−

υSR
Ω(u)

y

(4.264)

×G3,1
2,4

ΥE2y

µ
(E2)
1

∣∣∣∣∣∣∣
1− τ ; ξ2

E2
+ 1

ξ2
E2
, αE2 , βE2 ;−τ

 dy.

Now, replacing (4.260) into (4.264), yields

L(τ)
1 (u) = ∆SE1∆SR

(
ΥD

µ
(D)
1

)τ mSE1
−1∑

n2=0

φ
(n2)
SE1

υn2+1
SE1

mSR−1∑
n3=0

φ
(n3)
SR

Ωn3+1 (u)
(4.265)

×


e(E2,τ)z(n2,n3,ξ2

E2
,τ)

1 (u)

+
∑∞

k=0 e
(E2,τ,k) (βE2 , αE2)z(n2,n3,αE2

+k,τ)
1 (u)

+
∑∞

k=0 e
(E2,τ,k) (αE2 , βE2)z(n2,n3,βE2

+k,τ)
1 (u)

 ,

with

z(n2,n3,a,τ)
1 (u) =

(
ΥE2

µ
(E2)
1

)a ∫ ∞
y=γth

yτ+n3+ae−
υSR
Ω(u)

yγinc

(
n2+1,

υSE1

Ω (u)
y

)
dy, (4.266)
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where a belongs to the set {ξ2
E2
, αE2 + k, βE2 + k}.

Using [71, Eq. (06.06.26.0004.01)], (4.266) can be expressed as

z(n2,n3,a,τ)
1 (u) =

(
ΥE2

µ
(E2)
1

)a(
Ω (u)

υSR

)l+1

G1,2
2,2

υSE1

υSR

∣∣∣∣∣∣∣
(1, 0) , (−l, ς) ;−

(n2+1, 0) ; (0, 0)

 , (4.267)

with l = n3 + τ + a and ς = γthυSR
Ω(u)

.

Now, substituting (4.263) into (4.219) , the IP in the absence of a friendly jammer can be

written as

IPA = 1−
ξ2
E2
D(0)
A

Γ (αE2) Γ (βE2)
+ θ


e(D,0)D(ξ2

D)
A

+
∑∞

k=0 e
(D,0,k) (βD, αD)D(αD+k)

A

+
∑∞

k=0 e
(D,0,k) (αD, βD)D(βD+k)

A

 , (4.268)

where

D(τ)
A =

Υτ
D(

µ
(D)
1

)τ ∫ ∞
u=0

fgSP (u)L(τ)
1 (u) du, (4.269)

To compute (4.269) , we need to replace Ω (u) by its values. Therefore, when u ≤ σS the term

L(τ)
1 (u) becomes constant. Thus,

D(τ)
A =

Υτ
D(

µ
(D)
1

)τ [L(τ)
2 (γS)FgSP (σS) + λSPL(τ)

2 (γI)
]
, (4.270)

with L(τ)
2 (γI) =

∫∞
σS
e−λSPuL(τ)

1 (u) du.

The terms L(τ)
2 (γS) and L(τ)

2 (γI) can be obtained by replacing Ω (u) = γS and Ω (u) = γI
u

in (4.265) and (4.267), respectively. Therefore, L(τ)
2 (γI) can be rewritten as

L(τ)
2 (γI) = ∆SE1∆SR

(
ΥD

µ
(D)
1

)τ mSR−1∑
n3=0

φ
(n3)
SR

γn3+1
I

mSE1
−1∑

n2=0

φ
(n2)
SE1

υn2+1
SE1

(4.271)

×


e(E2,τ)z(n2,n3,ξ2

E2
,τ)

2

+
∑∞

k=0 e
(E2,τ,k)

(
βE2 , αE2

)
z(n2,n3,αE2

+k,τ)
2

+
∑∞

k=0 e
(E2,τ,k)

(
αE2 , βE2

)
z(n2,n3,βE2

+k,τ)
2

 ,

148



where

z(n2,n3,a,τ)
2 =

(
ΥE2

µ
(E2)
1

)a ∫ ∞
σS

e−λSPuun3+1z(n2,n3,αE2
+k,τ)

1 (u) du (4.272)

=

(
γI
υSR

)τ+n3+a+1
1

2πj

∫
Cs

Γ (n2+1 + s) Γ (−s)
Γ (1− s)

(
υSE1

υSR

)−s ∫ ∞
σS

u−τ−ae−λSPu

× Γ (1 + n3 + τ + a− s, εIυSRu) dsdu,

where εI is defined in Theorem 4.5.1.

Using [71, Eq. (06.06.26.0005.01)], one obtains

z(n2,n3,a,τ)
2 =

(
ΥE2

µ
(E2)
1

)a(
γI
υSR

)τ+n3+a+1
λa+τ−1
SP

(2πj)2

∫
Cs

Γ (n2+1 + s) Γ (−s)
Γ (1− s)

(
υSE1

υSR

)−s
(4.273)

×
∫
Cw

Γ (−τ − a− w + 1, λSPσS) (εIυSR)−w Γ (τ + n3 + a+ 1− s+ w)

wλ−wSP
dwds,

� Presence of a friendly jammer.

Using (4.214), the conditional CDF of γ
(J)
E1

for a given gSP can be expressed as

F
γ

(J)
E1
|gSP=u

(y) = Pr (US ≤ y (USJ + 1)) (4.274a)

= 1− y

Ω (u)

∫ ∞
0

fgSE1

(
y (t+ 1)

Ω (u)

)
FUSJ (t) dt, (4.274b)

where (4.274b) holds by using integration by parts.

On the other hand, the CDF of USJ is given by

FUSJ (t) = Pr

(
min

(
γSJ ,

γI
gSJP

)
gSJE1 ≤ t

)
(4.275)

= FgSJE1

(
t

γSJ

)
FgSJP (σSJ ) +

∫ ∞
σSJ

FgSJE1

(
t

γI
y

)
fgSJP (y) dy︸ ︷︷ ︸

K1

.

where σSJ is defined in Theorem 4.5.1.
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Using (1.22) and [71, Eq. (06.06.26.0004.01)], the term K1 can be expressed as

K1 = λSJP∆SJE1

mSJE1
−1∑

n1=0

φ
(n1)
SJE1

υn1+1
SJE1

∫ ∞
σSJ

e−λSJP yG1,1
1,2

υSJE1t

γI
y

∣∣∣∣∣∣∣
1;−

n1 + 1; 0

 dy (4.276)

= ∆SJE1

mSJE1
−1∑

n1=0

φ
(n1)
SJE1

υn1+1
SJE1

G1,2
2,2

 υSJE1t

γIλSJP

∣∣∣∣∣∣∣
(1, 0) , (0, σSJλSJP ) ;−

(n1 + 1, 0) ; (0, 0)

 .

Substituting (4.276) into (4.275), yields the CDF of USJ

FUSJ (t) = FgSJE1

(
t

γSJ

)
FgSJP (σSJ )+∆SJE1

mSJE1
−1∑

n1=0

φ
(n1)
SJE1

υn1+1
SJE1

G1,2
2,2

 υSJE1t

γIλSJP

∣∣∣∣∣∣∣
(1, 0) , (0, σSJλSJP ) ;−

(n1 + 1, 0) ; (0, 0)

 .

(4.277)

Now, replacing (4.277) into (4.275), the CDF of γE1 can be expressed as

F
γ

(J)
E1
|gSP=u

(y) = 1− y∆SE1

Ω (u)
e−

υSE1
Ω(u)

y

mSE1
−1∑

n2=0

φ
(n2)
SE1

yn2

Ωn2 (u)

n2∑
p=0

(
n2

p

)
∆SJE1 (4.278)

×
mSJE1

−1∑
n1=0

φ
(n1)
SJE1

υn1+1
SJE1

[
FgSJP (σSJ )V1 (y, u) + V2 (y, u)

]
dt,

where

V1 (y, u) =

∫ ∞
0

tpe−
υSE1

y

Ω(u)
tγinc

(
n1 + 1,

υSJE1

γSJ
t

)
dt, (4.279)

and

V2 (y, u) =

∫ ∞
0

tpe−
υSE1

y

Ω(u)
tG1,2

2,2

 υSJE1t

γIλSJP

∣∣∣∣∣∣∣
(1, 0) , (0, σSJλSJP ) ;−

(n1 + 1, 0) ; (0, 0)

 dt, (4.280)

Using [71, Eq.(07.34.21.0088.01)], the term V1 (y, u) can be expressed as

V1 (y, u) =

(
Ω (u)

υSE1y

)p+1

G1,2
2,2

υSJE1Ω (u)

υSE1γSJy

∣∣∣∣∣∣∣
−p, 1;−

n1 + 1; 0

 , (4.281)

while the term V2 (y, u) can be evaluated as

V2 (y, u) =

(
Ω (u)

υSE1y

)p+1

G1,3
3,2

 υSJE1Ω (u)

λSJPυSE1γIy

∣∣∣∣∣∣∣
(1, 0) , (0, σSJλSJP ) , (−p, 0) ;−

(n1 + 1, 0) ; (0, 0)

 . (4.282)
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Replacing (4.281) and (4.282) into (4.278), and then substituting the obtained expression of

FγE1
|gSP=u (y) alongside (4.254) into (4.221), the term J1 (y, u) can be expressed as

J1 (y, u) = ∆SR

mSR−1∑
n3=0

φ
(n3)
SR y

n3

Ωn3+1 (u)
e−

υSR
Ω(u)

y −∆SR∆SJE1∆SE1 (4.283)

×
mSJE1

−1∑
n1=0

mSE1
−1∑

n2=0

n2∑
p=0

mSR−1∑
n3=0

B(n1,n2,n3,p)e−
ζ

Ω(u)
y

Ωn2+n3−p+1 (u)
yn2+n3−p

×


FgSJP (σSJ )G1,2

2,2

υSJE1
Ω(u)

υSE1
γSJ

y

∣∣∣∣∣∣∣
−p, 1;−

n1 + 1; 0


+G1,3

3,2

 υSJE1
Ω(u)

λSJP υSE1
γIy

∣∣∣∣∣∣∣
(1, 0) , (0, σSJλSJP ) , (−p, 0) ;−

(n1 + 1, 0) ; (0, 0)




,

where B(n1,n2,n3,p) is defined in Theorem 4.5.1.

Now, substituting (4.283) and (4.261) into ( 4.220), the term U1 (u) can be expressed as

U1 (u) =
ξ2
E2
T (0)

1 (u)

Γ (αE2) Γ (βE2)
− θ


e(D,0)T (ξ2

D)
1 (u)

+
∑∞

k=0 e
(D,0,k) (βD, αD) T (αD+k)

1 (u)

+
∑∞

k=0 e
(D,0,k) (αD, βD) T βD+k

1 (u)

 , (4.284)

where

T (τ)
1 (u) =

(
ΥD

µ
(D)
1

)τ ∫ ∞
y=γth

J1 (y, u)

y−τ
G3,1

2,4

ΥE2y

µ
(E2)
1

∣∣∣∣∣∣∣
1− τ ; ξ2

E2
+ 1

ξ2
E2
, αE2 , βE2 ;−τ

 . (4.285)

Using (4.283), the terms T (τ)
1 (u) can be expressed as

T (τ)
1 (u) = ∆SR

(
ΥD

µ
(D)
1

)τ mSR−1∑
n3=0

φ
(n3)
SR Θ

(n3,τ)
1 (u)

Ωn3+1 (u)
−∆SR∆SJE1∆SE1

(
ΥD

µ
(D)
1

)τ

(4.286)

×
mSJE1

−1∑
n1=0

mSE1
−1∑

n2=0

n2∑
p=0

mSR−1∑
n3=0

B(n1,n2,n3,p)

Ωn2−p+n3+1 (u)

[
FgSJP (σSJ ) Θ

(n1,n2,n3,p,τ)
2 (u) + Θ

(n1,n2,n3,p,τ)
3 (u)

]
,
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where

Θ
(n3,τ)
1 (u) =

∫ ∞
γth

e−
υSR
Ω(u)

y

y−n3−τ
G3,1

2,4

ΥE2y

µ
(E2)
1

∣∣∣∣∣∣∣
1− τ ; ξ2

E2
+1

ξ2
E2
, αE2

, βE2
;−τ

 dy, (4.287)

Θ
(n1,n2,n3,p,τ)
2 (u) =

∫ ∞
γth

e−
ζ

Ω(u)
y

y−n2−n3+p−τG
3,1
2,4

ΥE2y

µ
(E2)
1

∣∣∣∣∣∣∣
1− τ ; ξ2

E2
+1

ξ2
E2
, αE2

, βE2
;−τ

 (4.288)

×G1,2
2,2

υSJE1Ω (u)

υSE1γSJy

∣∣∣∣∣∣∣
−p, 1;−

n1+1; 0

 dy,

and

Θ
(n1,n2,n3,p,τ)
3 (u) =

∫ ∞
y=γth

e−
ζ

Ω(u)
y

y−n2−n3+p−τG
1,3
3,2

 υSJE1Ω (u)

λSJPυSE1γIy

∣∣∣∣∣∣∣
(1, 0) , (0, σSJλSJP ) , (−p, 0) ;−

(n1 + 1, 0) ; (0, 0)


(4.289)

×G3,1
2,4

ΥE2y

µ
(E2)
1

∣∣∣∣∣∣∣
1− τ ; ξ2

E2
+1

ξ2
E2
, αE2

, βE2
;−τ

 dy,

Using (4.260), (4.287) can be expressed as

Θ
(n3,τ)
1 (u) = e(E2,τ)Λ

(n3,ξ2
E2
,τ)

1 (u) +
∞∑
k=0

e(E2,τ,k)
(
βE2 , αE2

)
Λ

(n3,αE2
+k,τ)

1 (u) (4.290)

+
∞∑
k=0

e(E2,τ,k)
(
αE2 , βE2

)
Λ

(n3,βE2
+k,τ)

1 (u) ,

where

Λ
(n3,a,τ)
1 (u) =

(
ΥE2

µ
(E2)
1

)a(
Ω (u)

υSR

)τ+n3+a+1

Γ

(
τ + n3 + a+ 1,

γthυSR
Ω (u)

)
, (4.291)

g(a, u, τ) = and a = {ξ2
E2
, αE2 + k, βE2 + k}.
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Similarly to (4.290), (4.288) can be expressed as

Θ
(n1,n2,n3,p,τ)
2 (u) = e(E2,τ)M(n1,n2,n3,p,ξ2

E2
,τ)

1 (u)+
∞∑
k=0

Λ
(αE2

+k)
2 (u, βE2 , αE2)+

∞∑
k=0

Λ
(βE2

+k)
2 (u, αE2 , βE2) ,

(4.292)

where

Λ
(a)
2 (u, x, y) = e(E2,τ,k) (x, y)M(n1,n2,n3,p,a,τ)

1 (u) , (4.293)

M(n1,n2,n3,p,a,τ)
1 (u) =

(
ΥE2

µ
(E2)
1

)a(
Ω (u)

ζ

)κ

H1 (u) , (4.294)

with κ = n2 + n3 − p + 1 + a + τ, H1 (u) = G2,2
2,3

 χ
γSJ

∣∣∣∣∣∣∣
(−p, 0) , (1, 0) ;−

(n1+1, 0) ,
(
κ, ζγth

Ω(u)

)
; (0, 0)

, and χ

is defined in Theorem 4.5.1.

Analogously to (4.288) and (4.289), the term Θ
(n2,n3,p)
3 (u) can be evaluated as

Θ
(n1,n2,n3,p,τ)
3 (u) = e(E2,τ)Φ

(n1,n2,n3,p,ξ2
E2
,τ)

1 (u)+
∞∑
k=0

Λ
(αE2

+k)
3 (u, βE2 , αE2)+

∞∑
k=0

Λ
(βE2

+k)
3 (u, αE2 , βE2) ,

(4.295)

where

Λ
(a)
3 (u, x, y) = e(E2,τ,k) (x, y) Φ

(n1,n2,n3,p,a,τ)
1 (u) , (4.296)

Φ
(n1,n2,n3,p,a,τ)
1 (u) =

(
ΥE2

µ
(E2)
1

)a(
Ω (u)

ζ

)κ

G2,3
3,3

b
∣∣∣∣∣∣∣

(−p, 0) , (1, 0) , (0, c) ;−

(n1+1, 0) , (κ, v) ; (0, 0)

 . (4.297)

where b = χ
λSJP γI

, c = σSJλSJP , and v = ζγth
Ω(u)

.

Now, the remaining last step in this proof consists of computing the expression for the IP

in the presence of a friendly jammer by incorporating (4.284) into (4.219) as

IPP = 1−
ξ2
E2
D(0)
P

Γ (αE2) Γ (βE2)
+ θ


e(D,0)D(ξ2

D)
P

+
∑∞

k=0 e
(D,0,k) (βD, αD)D(αD+k)

P

+
∑∞

k=0 e
(D,0,k) (αD, βD)D(βD+k)

P

 , (4.298)

where

D(τ)
P =

Υτ
D(

µ
(D)
1

)τ ∫ ∞
u=0

fgSP (u) T (τ)
1 (u) du. (4.299)

To compute (4.299) , we need to replace Ω (u) by its values in (4.286). Therefore, when u ≤ σS,

153



the term T (τ)
1 (u) becomes constant. It follows that

D(τ)
P =

T (τ)
2 (γS)FgSP (σS) + λSPT (τ)

2 (γI)(
µ

(D)
1

)τ , (4.300)

with T (τ)
2 (γI) =

∫∞
σS
e−λSPuT (τ)

1 (u) , while the term T (τ)
2 (γS) can be obtained by replacing

Ω (u) = γS in ( 4.286).

Also, to compute T (τ)
2 (γI), we need to replace Ω (u) = γI

u
in (4.286) and compute the

following integrals

S(n3,a,τ) =

∫ ∞
σS

e−λSPu

ua+τ
Γ (τ + n3 + a+ 1, εIυSRu) du, (4.301)

Y(n1,n2,n3,p,a,τ) =

∫ ∞
σS

e−λSPu

ua+τ
M(n1,n2,n3,p,a,τ)

1 (u) du, (4.302)

and

W(n1,n2,n3,p,a,τ) =

∫ ∞
σS

e−λSPu

ua+τ
Φ

(n1,n2,n3,p,a,τ)
1 (u) du, (4.303)

where εI is defined in Theorem 4.5.1.

Using [71, Eq. 06.06.26.0005.01], (4.301) can be expressed as

S(n3,a,τ) = λa+τ−1
SP G2,1

2,2

εIυSR
λSP

∣∣∣∣∣∣∣
(a+ τ, λSPσS) ; (1, 0)

(0, 0) , (τ + n3 + a+ 1, 0) ;−

 , (4.304)

while (4.302) and (4.303) can be evaluated by replacing Ω (u) = γI
u

into (4.294) and (4.297),

respectively, and calculating the following common integral

A(n1,n2,n3,p,τ) =

∫ ∞
σS

u−a−τe−λSPuΓ (κ + s, εIζu) du (4.305)

(a)
=

1

2πj

∫
Cw

Γ (w) Γ (κ + s+ w)

Γ (1 + w)

(
εIζ

λSP

)−w
Γ (1− a− τ − w, σSλSP )

λ−a−τ+1
SP

dw,

where step (a) follows using [71, Eq. 06.06.26.0005.01].

Finally, substituting (4.305) into (4.302) and (4.303 ), one obtains (4.251) and (4.253) which

concludes the proof of Theorem 4.5.1. �
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Asymptotic IP

In this subsection, we provide an asymptotic analysis of the derived closed-form expression for

the IP in high SNR regime. It can be noticed from (4.250), (4.252), (4.251), and (4.253) that

the expression for the IP can be approximated for high SNR values by considering γI →∞.

Theorem 4.5.2. The Asymptotic expression for the IP in the presence of a friendly jammer

is given by (4.308), with

Ψ
(0,n2,n3,p,a,τ)
2 = σSJV(n2,n3,p,a,τ), (4.306)

Ψ
(0,n2,n3,p,a,τ)
3 =

Γ (2 + n1, σSJλSJP )

λSJP
V(n2,n3,p,a,τ), (4.307)

and V(n2,n3,p,a,τ) is given by (4.311) as shown at the same aforementioned page.

IP
(∞)
P ∼ 1−

ξ2
E2
D(0,∞)
P

Γ (αE2) Γ (βE2)
+ θ

 e(D,0)D(ξ2
D,∞)

P +
∑∞

k=0 e
(D,0,k) (βD, αD)D(αD+i,∞)

P

+e(D,0,k) (αD, βD)D(βD+k,∞)
P

 . (4.308)

D(τ,∞)
P = Υτ

D∆SR

 ∑mSR−1
n3=0 φ

(n3)
SR Ξ

(n3,τ)
1 −∆SE1∆SJE1

∑mSE1
−1

n2=0

∑n2

p=0

∑mSR−1
n3=0

×
{
FgSJP (σSJ ) Ξ

(0,n2,n3,p,τ)
2 + Ξ

(0,n2,n3,p,τ)
3

}
B(n1,n2,n3,p)

 . (4.309)

Ξ(0,n2,n3,p,τ)
n = e(E2,τ)Ψ

(0,n2,n3,p,ξ2
E2
,τ)

n +
∞∑
k=0

e(E2,τ,k) (βE2 , αE2) Ψ
(0,n2,n3,p,αE2

+k,τ)
n

+ e(E2,τ,k) (αE2 , βE2) Ψ
(0,n2,n3,p,βE2

+k,τ)
n , n ∈ {2, 3}. (4.310)

V(n2,n3,p,a,τ) =
χΓ (2 + p)

γI


FgSP (σS) Γ (n2 + n3 − p+ τ + a, ζεIσS)

+ (λSPσS)a+τ G2,1
2,2

 ζεI
λSP

∣∣∣∣∣∣∣
(a+ τ, σSλSP ) ; (1, 0)

(0, 0) , (n2+n3−p+ τ + a, 0) ;−


 .

(4.311)

Remark 12. It is worth mentioning that the expression for the IP in the absence of a friendly

jammer does not have an asymptotic expression as (4.244) is independent of γI .
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Proof. One can clearly see from (4.243) and (4.245) that the asymptotic expression for the IP

depends on approximating (4.249 ), which can be obtained by determining the asymptotic ex-

pansion of (4.235) and (4.236). To do so, the residues theorem is applied to find the asymptotic

expressions of functions given in (4.250)-(4.253).

First, the functions given in (4.250) and (4.252) can be rewritten as Mellin-Barnes integrals

as

M(n1,n2,n3,p,a,τ) =
1

2πj

∫
C

Γ (n1 + 1 + s) Γ (κ + s, ζεIσS) Γ (1 + p− s) Γ (−s)
Γ (1− s)

(
χσSJ
γI

)−s
ds,

(4.312)

and

Φ(n1,n2,n3,p,a,τ) =
1

2πj

∫
C

Γ (n1 + 1 + s) Γ (κ + s, ζεIσS) Γ (1 + p− s) Γ (−s)
Γ (1− s)

(4.313)

× Γ (1− s, σSJλSJP )

(
χ

λSJPγI

)−s
ds,

where κ = n2 + n3 − p + 1 + a + τ, and Cs is a vertical line of integration chosen such as to

separate the left poles of the above integrand functions from the right ones,

It is noteworthy that the same complex contour, namely Cs can be used to evaluate both

integrals as the upper incomplete Gamma function has no poles and both integrands have

the same poles. Moreover, the conditions of [105, Theorem 1.5] hold. That is, the two above

complex integrals can be written as an infinite sum of the poles belonging to the left half plan of

C. Furthermore, it is clearly seen that (4.312) and (4.313) both have same left poles −n1−1−k,

k ∈ N. It follows that

M(n1,n2,n3,p,a,τ) =
∞∑
k=0

(−1)kΓ (2 + p+ n1 + k) Γ (κ − n1 − 1− k, ζεIσS)

k! (n1 + 1 + k)

(
χσSJ
γI

)n1+1+k

,

(4.314)

and

Φ(n1,n2,n3,p,a,τ) =
∞∑
k=0

(−1)kΓ (2 + p+ n1 + k) Γ (κ − n1 − 1− k, ζεIσS)

k! (n1 + 1 + k)
(4.315)

× Γ (2 + n1 + k, σSJλSJP )

(
χ

λSJPγI

)n1+1+k

.
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By considering only the first term of the infinite summation when γI →∞, (4.314) and (4.315)

can be asymptotically approximated by

M(n1,n2,n3,p,a,τ) ∼ Γ (κ − n1 − 1− k, ζεIσS) Γ (2 + p+ n1)

n1 + 1

(
χσSJ
γI

)n1+1

, (4.316)

Φ(n1,n2,n3,p,a,τ) ∼ Γ (2 + n1, σSJλSJP ) Γ (2 + p+ n1) Γ (κ − n1 − 1, ζεIσS)

n1 + 1

(
χ

λSJPγI

)n1+1

.

(4.317)

In similar manner to (4.314) and (4.315), (4.251) and (4.253) can be, respectively, expressed as

infinite sums as follows

Y(n1,n2,n3,p,a,τ) =
λa+τ−1
SP

2πj

∫
Cw

Γ (1− a− τ − w, σSλSP )

w
(
ζεI
λSP

)w (4.318)

×

 ∑∞k=0
(−1)kΓ(2+p+n1+k)Γ(κ+w−n1−1−k)

k!(n1+1+k)

(
χσSJ
γI

)n1+1+k

+ (−1)kΓ(n1+1−κ−w−k)Γ(1+p+κ+w+k)
k!(κ+w+k)

(
χσSJ
γI

)κ+w+k

 dw,
and

W(n1,n2,n3,p,a,τ) =

∫
Cw

Γ (1− a− τ − w, σSλSP )

w

(
ζεI
λSP

)−w
(4.319)

×

 ∑∞k=0

(−1)kΓ(2+p+n1+k)Γ(κ+w−n1−1−k)Γ(2+n1+k,σSJ λSJP )
k!(n1+1+k)

(
χ

λSJP γI

)n1+1+k

+
(−1)kΓ(n1+1−κ−w−k))Γ(1+p+κ+w+k)Γ(1+κ+w+k,σSJ λSJP )

k!(κ+w+k)

(
χ

λSJP γI

)κ+w+k

 dw,
Subsequently, their asymptotic expression in high SNR regime can be straightforwardly

obtained by taking the first term of the two above infinite summations as

Y(n1,n2,n3,p,a,τ) ∼ λa+τ−1
SP Γ (2 + p+ n1)

n1 + 1

(
χσSJ
γI

)n1+1

G2,1
2,2

 ζεI
λSP

∣∣∣∣∣∣∣
(a+ τ, σSλSP ) ; (1, 0)

(0, 0) , (κ − n1−1, 0) ;−

 ,

(4.320)

and

157



W(n1,n2,n3,p,a,τ) ∼ λa+τ−1
SP Γ (2 + p+ n1) Γ (2 + n1, σSJλSJP )

n1 + 1

(
χ

λSJPγI

)n1+1

(4.321)

×G2,1
2,2

 ζεI
λSP

∣∣∣∣∣∣∣
(a+ τ, σSλSP ) ; (1, 0)

(0, 0) , (κ − n1−1, 0) ;−

 .

Lastly, substituting (4.316) alongside (4.320) and (4.317) along with (4.321) into (4.235) and

(4.236), respectively, (4.306) and (4.307) are attained. This concludes the proof of Theorem

4.5.2. �.

4.5.3 Numerical results and discussion

In this part, the derived analytical results are validated through Monte Carlo simulation by

generating 106 random samples and setting the parameters are summarized in Table 4.5. The

turbulence parameters of the FSO hops were generated based on OGS-satellite distance, wave-

length, and aperture radius according to [65, Eqs. (4, 9-10)] and [?, Eqs. (8)]. The main

point of note from Figures 4.18-4.24 is that all closed-form and simulation curves are perfectly

matching for numerous system parameters’ values, showing the high accuracy of our results.

Table 4.5: Simulation parameters of contribution 7.

Parameter bX mX ΩX λQP αZ
Value 1.4 2 3 0.8 6.1096

Parameter βZ ξZ γth(dB) γI(dB) γS(dB)
Value 1.0794 1.1227 2 9 60

Parameter γSJ (dB) µE2(dB) µD(dB) η ωD
Value 10 20 40 0.7 0.7

Fig. 4.18 depicts the IP versus γI for various values of ΩX . It is clearly seen that the

greater γI is, the smaller the IP is. This can be justified from (4.212) by the fact that when

the MTIP at the PU receiver increases, the SU is allowed to use its maximal transmit power,

which contributes to the improvement of the system’s secrecy.

Figures 4.19 and 4.20 show the IP versus γI and γS, respectively, for various values of γSJ .

It can be ascertained that the IP decreases with the increase of γI , γS, and γSJ as explained in

Remark 1. Also, it can be noticed that the presence of a friendly jammer improves the system’s
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Figure 4.18: IP versus γI in the pres-
ence of a friendly jammer for different
values of ΩX , ρD = 0.001, ρE2 = 0.01,
σS = σSJ = 1, εI = 0.1, and bX = 4.

γI(dB)
-10 0 10 20 30 40 50 60

IP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Closed-form with a jammer

Closed-form without a jammer

Simulation

γSJ
= −5 dB

γSJ
= 5 dB

γSJ
= 10 dB

Figure 4.19: IP versus γI for different
values of γSJ .

secrecy per the same Remark. However, one can notice that for low values of γI and γS, the

friendly jammer does not contribute to the enhancement of the system’s secrecy. In fact, it

can be seen from (4.215) that the smaller γI and γS are, the smaller US is. Thus, it follows

from (4.213) and (4.214) that both γE1 and γ
(J)
E1

approach 0. Moreover, it can be observed that

above certain thresholds of either γI or γS, respectively, the IP becomes steady as discussed in

Remark 1.
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Figure 4.20: IP versus γS for different
values of γSJ .
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Figure 4.21: IP versus γSJ for different
values of ΩX .

Fig. 4.21 shows the IP versus γSJ for various values of ΩX . As can be seen, the IP decreases

with the increasing values of the γSJ . This can be justified from (4.214) as increasing γSJ
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decreases the SNR at the eavesdropper which reduces the wiretap link capacity. Consequently,

the secrecy capacity gets enhanced which results in an improvement of the system’s secrecy.
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Figure 4.22: IP versus µD for different
values of ΩX .
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Fig. 4.22 illustrates the IP as a function of µD in the presence and absence of a friendly

jammer for various values of ΩX . The greater µD is, the greater the legitimate end-user SNR

is, leading to the improvement of the system’s secrecy. This behavior can be interpreted as

increasing µD leads to the enhancement of the SNR at the destination which improves the

legitimate link capacity accordingly.
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Figure 4.24: IP versus ΩX and bX in the presence of a friendly jammer.

Figures 4.23 and 4.24 depict the IP as a function of the average power of the LOS and

multipath components in the presence and absence of a friendly jammer. These powers are

assumed to be identical for all channels i.e., ΩSR = ΩSE1 = ΩSJE1 , and bSR = bSE1 = bSJE1 .
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One can ascertain that increasing the average powers of the LOS and multi-path components

at the first hop result in an enhancement of the system’s secrecy. Moreover, it is clearly seen

that the presence of a friendly jammer is strengthening the system’s secrecy. For instance, one

can see that for ΩX = 6 and bX = 6, IP equals 0.35 and 0.61 in the presence and absence of a

friendly jammer, respectively.

4.6 Concluding remarks

A secrecy performance analysis was carried out by considering four jamming-based CR setups,

namely: a single-hop and dual-hop communication systems over Rayleigh fading channels,

dual-hop system with multiples antenna receivers over Nakagami-m fading channels, and a

dual-hop HSCTNs. In the three contributions, we considered that multiple sources are taking

rounds in transmitting their data in the presence of multiples eavesdroppers, while in the forth

contribution one SU node was transmitting its data and another SU node was acting as a

friendly jammer. Moreover, a new framework for the IP that considers the presence of two

eavesdroppers was derived in the fourth contribution. For all contributions, we derived the IP

and SOP by considering two scenarios, namely absence and presence of a friendly jammer and

investigated the impact of several key parameters of the network on the system’s security. The

obtained results showed that the best secrecy is achieved in the presence of a small number of

eavesdroppers when increasing the transmit power of the SUs’, the number of antennas at the

legitimate receiver and the MTIP at the PU as well. Interestingly, we showed that equipping

the legitimate nodes by multiple antennas leads to a noticeable enhancement of the system’s

security rather than sending an artificial noise.
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General Conclusion and Future

Directions

Conclusions

In this dissertation, we investigated the physical layer security of CRNs by considering different

system setups. Interestingly, the derived analytical results could serve as a touchstone for the

deployment of futuristic power-limited CRNs.

Secrecy performance analysis of dual-hop CRNs was conducted in Chapter 2 by considering

that the relay node is equipped with multiple antennas and performs MRC technique to process

the received copies of the transmitted signal. Specifically, we derived the SOP as a performance

metric over Nakagami-m fading model and we demonstrated that a better secrecy could be

achieved when the tolerated interference power at the primary user as well as the number of

the relay’s antennas are increased.

In Chapter 3, the PLS of dual-hop EH-based CRNs was investigated over 2 schemes, namely

single and multi-antenna relay where the relay is considered as energy-constrained node that was

harvesting energy from the received SU signals. The SOP was derived for both contributions

over Rayleigh fading model. In the first contribution closed-form expression for the SOP was

derived by assuming that the relay is located far from the PU and thus did not need to perform

power adaptation. In the second contribution, we derived both closed-form and asymptotic

expressions under power adaptation constraint of the SU relay for both i.n.i.d and i.i.d fading

channels which added another layer of complexity in terms of analytical computation.

Finally, Chapter 4 dealt with secrecy performance analysis of jamming-based-CRNs. In par-

ticular, four system setups were considered, namely direct-link underlay CRN, dual-hop CRNs

such that only the destination is equipped with multiple antennas, dual-hop CRNs where all
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receivers (i.e., eavesdroppers, relays, and destination) are equipped with multiple antennas,

and dual-hop hybrid satellite-terrestrial cognitive radio network. In all contributions, perfor-

mance metric was derived by considering two scenarios namely (i) presence and (ii) absence of a

friendly jammer. In the first and fourth contributions, closed-form and asymptotic expressions

for the IP were derived, whereas in the second contribution closed-form expression for the SOP

was derived over Rayleigh fading, while exact and approximate expressions over Nakagami-m

fading model were given for these metrics in the third one.

Perspectives

Although a solid investigation with regards to PLS of CRNs was conducted so far in the

dissertation, we aim to pursue further research by combining multiple techniques so as to

achieve higher secrecy. Some future potential research directions can be summarized as follows

� It is envisioned that leveraging NOMA techniques along with CRNs would have a tremen-

dous potential to improve spectrum efficiency and the number of users to be served.

Indeed, it has been shown that NOMA enables massive connectivity, and low transmis-

sion latency at the cost of the mutual interference and the implementation complexity of

the receiver. Therefore, our aim is to investigate the secrecy performance of a dual-hop

NOMA-based CRNs under the mutual interference constraints.

� Investigating the physical layer security of CRNs by considering more generalized analyti-

cal models for wireless impairments that encompass both multipath fading and shadowing.

Additionally, we aim to investigate the impact of more techniques so as to enhance the

overall system’s security.
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