

Année​: 2020 ​Thèse n°​: ​181/ST2I

Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes
Centre d’Etudes Doctorales en Sciences des Technologies de l’Information et de l'Ingénieur

THÈSE DE DOCTORAT

SCALABLE AND ACCURATE HIGH-DIMENSIONAL SIMILARITY SEARCH:

FROM DATA SERIES TO DEEP NETWORK EMBEDDINGS

Présentée par

Karima ECHIHABI

Le 28/07/2020

Formation doctorale​: Informatique
Structure de recherche​: IRDA, Rabat IT Center

JURY

Professeur Bouchaib Bounabat
PES, ENSIAS, Université Mohammed V, Rabat

Président

Professeure Houda Benbrahim
PH, ENSIAS, Université Mohammed V, Rabat

Directrice de thèse

Professeur Themis Palpanas
Professeur, Université de Paris, France

Co-Encadrant de thèse

Professeur Mohammed Ramdani
PES, FST, Université Hassan II, Mohammedia

Rapporteur

Professeur Mohamed Lazaar
PH, ENSIAS, Université Mohammed V, Rabat

Rapporteur

Professeure Zohra Bakkoury
PES, EMI, Université Mohammed V, Rabat

Rapportrice

Professeur Mostapha Zbakh
PES, ENSIAS, Université Mohammed V, Rabat

Examinateur

Abstract

The world is drowning in a big data tsunami of high-dimensional objects that need to be

analyzed in order to identify useful patterns and extract new knowledge in domains as

varied as agriculture, medicine, cybersecurity, seismology, astrophysics, manufacturing,

finance, and others. In response to these needs, it is imperative to build analytical

systems that truly support interactive exploration on datasets containing terabytes of

high-dimensional objects, with dimensions reaching hundreds to thousands.

A fundamental and challenging operation called similarity search is the main bot-

tleneck of many critical data processing tasks such as data cleaning, data integration

and big data analytics (e.g., outlier detection, frequent pattern mining, clustering, and

classification). A number of exact and approximate approaches have been proposed in

the literature to support similarity search over massive data series collections.

In this thesis, we unify and formally define the terminology used for the different

flavors of the similarity search problem. We present a similarity search taxonomy that

classifies methods based on the quality guarantees they provide for the search results, and

that unifies the varied nomenclature used in the literature. Following this taxonomy, we

include a survey of similarity search approaches supporting exact and approximate search,

bringing together works from the data series and multidimensional data research commu-

nities. We propose extensions to existing data series indexes that can answer approximate

queries with guarantees and that outperform popular state-of-the-art techniques such as

LSH, kNN graphs and quantization-based inverted indexes in many scenarios. We also

design and conduct the two most exhaustive experimental evaluations in the field cover-

ing both exact and approximate techniques. Building upon the deep insights gained from

both studies, we propose Hercules, a new algorithm that outperforms the state-of-the-art

similarity search approaches in-memory and on-disk.

Our work has far-reaching fundamental and practical implications. We demonstrate

that it is possible to design efficient high-dimensional vector similarity search algorithms

ii

with theoretical guarantees on the quality of the answers, and we thus offer a more promis-

ing alternative to the two current trends in the literature: (i) LSH-based algorithms that

support guarantees, but are relatively slow, and (ii) kNN graphs and inverted indexes,

which are relatively fast, but do not provide theoretical guarantees. This finding paves

the way for very exciting new developments which will lead to efficient solutions that can

support critical analytical tasks such as brain seizure detection, cyber-attack prevention,

transportation management and data cleaning automation.

iii

Acknowledgements

My path to graduate school has been rather unconventional. After working in industry

for over fifteen years as a software engineer and consultant, I decided four years ago

to pursue a PhD degree. Although I have always kept a foot in the academic door

teaching courses in my field of expertise, a recent experience as a professor at Mundiapolis

University helped me rekindle my passion for an academic career.

I think pursuing a PhD degree was one of the toughest and best decisions I have

ever taken in my life. I expected the journey to be challenging but did not realize how

satisfying it would also prove to be. I feel grateful to have been able to take the time

to dive deep into a topic that fascinates me. I also feel honored to have advanced the

state-of-the-art in my field.

I would not have been able to bring this project to fruition without the wise guidance

of my supervisors and the unconditional support of my family, friends and colleagues.

I am particularly indebted to Prof. Themis Palpanas from the University of Paris who

has taught me how to conduct world-class research despite the challenges involved with

remote supervision. He inspired me to aim high, helped me gain access to the resources

I needed to succeed and encouraged me during difficult times. I also deeply thank Prof.

Houda Benbrahim from ENSIAS, Mohammed V University who has been very supportive

of the idea of a joint-supervision and for helping me navigate the world of academic

research. I also extend my thanks to my collaborators Dr. Kostas Zoumpatianos from

Harvard University and Professors Panagiota Fatourou From the University of Crete,

Anastasia Bezerianos and Theophanis Tsandilas from the University of Paris-Sud and

Salima Benbernou and Mourad Ouziri from the University of Paris for generously sharing

their time and expertise. Last but not least, I would like to thank my colleagues from

the diNo lab at the University of Paris for making my visits to Paris truly memorable.

I cite in alphabetical order Paul Boniol, Dr. Laura Di Rocco, Dr. Anna Gogolou, Dr.

iv

Michele Linardi, Wissam Maamar-Kouadri, Botao Peng, Frederico Roncallo and Sabiha

Tahrat.

I am forever grateful to my parents Zainab and Lahoussaine for their unconditional

love and for instilling in me, at a young age, strong ethics and a passion for learning,

my loving husband Ahmed for his unwavering support, and my son Ismail for always

cheering me up and helping me maintain a balanced life despite the great demands of

graduate school. I also wish to express my gratitude to my siblings Sofia, Abdelhamid

and Ali for their love and advice throughout the years. Special thanks also go to my

in-laws Zahra, Mohammed, Fatima, Hajar, Malak, Malika, and Rachida, my nieces and

nephews Maryam-Aya, Sarah-Nour, Youssef, Fatima-Zahra, Mohammed and Khadija for

the sunshine their bring to my life.

Above all, I owe everything I have ever achieved to Allah Almighty. May Allah accept

this deed and help me seek and spread beneficial knowledge.

v

Contents

1 Introduction 5

1.1 Problem Overview . 6

1.2 Main Contributions . 10

1.3 Outline . 14

2 Preliminaries 16

2.1 Definitions . 17

2.1.1 Data Types and Distance Measures 17

2.1.2 Similarity Search Queries . 21

2.1.3 Similarity Search Methods . 23

2.2 A Taxonomy . 25

2.3 Conclusion . 27

3 Exact Similarity Search 28

3.1 Main Contributions . 29

3.2 Approaches . 30

3.2.1 Summarization Techniques . 31

3.2.2 Similarity Search Methods . 33

3.2.3 Examples . 38

3.3 Experimental Evaluation . 40

3.3.1 Environment . 40

vi

3.3.2 Experimental Setup . 40

3.4 Results . 46

3.4.1 Parametrization . 46

3.4.2 Evaluation of Individual Methods 47

3.4.3 Comparison of the Best Methods 51

3.5 Discussion . 67

3.6 Conclusions . 71

4 Approximate Similarity Search 72

4.1 Main Contributions . 73

4.2 Approaches . 74

4.2.1 Summarization Techniques . 76

4.2.2 Approximate Similarity Search Methods 77

4.3 A New Class of Approximate Search Techniques 81

4.4 Experimental Evaluation . 84

4.4.1 Environment. 84

4.4.2 Experimental Setup . 84

4.5 Results . 87

4.5.1 Parametrization . 87

4.5.2 Indexing Efficiency . 88

4.5.3 Query Answering Efficiency and Accuracy: in-Memory Datasets . 89

4.5.4 Query Answering Efficiency and Accuracy: on-Disk

Datasets . 92

4.6 Discussion . 104

4.7 Conclusions . 108

5 Hercules: A New Similarity Search Technique 110

5.1 Main Contributions . 111

vii

5.2 Related Work . 112

5.2.1 SAX . 112

5.2.2 DSTree . 113

5.3 Hercules . 116

5.3.1 Indexing with Hercules . 116

5.3.2 Query Answering with Hercules 121

5.3.3 Complexity Analysis . 130

5.3.4 Proofs . 131

5.4 Experimental Evaluation . 134

5.4.1 Environment . 134

5.4.2 Experimental Framework . 135

5.5 Results . 138

5.5.1 Parametrization . 138

5.5.2 Exact Query Answering . 139

5.5.3 Approximate Query Answering 142

5.6 Conclusions . 148

6 Conclusions and Future Work 150

6.1 Key Contributions . 151

6.2 Future Work . 152

Bibliography 156

viii

List of Figures

1.1 Similarity Search over Collections of High-Dimensional Objects 8

1.2 Data Series Similarity Search as a k-NN Query 9

1.3 A simplified architecture for a neural network with a 4-dimensional em-

bedding layer . 10

2.1 Different flavors of the similarity search problem 25

2.2 Taxonomy of similarity search methods (• indicates our extensions to ex-

isting techniques) . 26

3.1 Summarizations . 32

3.2 Answering a similarity search query using different access paths 38

3.3 Leaf size parametrization . 44

3.4 Buffer size parametrization . 45

3.5 Scalability with increasing dataset sizes 48

3.6 Number of disk accesses . 49

3.7 Scalability with increasing lengths . 52

3.8 Scalability comparison (HDD) . 53

3.9 Scalability comparison (SSD) . 53

3.10 Exact methods footprint and TLB for synthetic datasets 57

3.11 Pruning ratio (Dataset Size= 100GB, Workload = 100 Queries) 58

3.12 Average time of queries with different difficulty (HDD) 61

1

LIST OF FIGURES 2

3.13 Average time of queries with different difficulty (SSD) 62

3.14 Indexing and answering 100 queries (HDD) 63

3.15 Indexing and answering 100 queries (SSD) 64

3.16 Indexing and answering 10K queries (HDD) 65

3.17 Indexing and answering 10K queries (SSD) 66

3.18 Recommendations (Indexing and answering 10K queries on HDD) 71

4.1 Comparison of indexing scalability . 89

4.2 Efficiency vs. accuracy for in memory ng-approximate search (100NN

queries) . 96

4.3 Efficiency vs. accuracy for in-memory δ-ε-approximate search(100NN queries) 97

4.4 Comparison of measures (Sift25GB) . 98

4.5 Efficiency vs. accuracy for on disk ng-approximate search (100NN queries) 99

4.6 Efficiency vs. accuracy for on disk δ-ε-approximate search (100NN queries) 100

4.7 Efficiency vs. accuracy for the best methods (δ-ε-approximate) 101

4.8 Efficiency vs. k (ε-approximate) . 102

4.9 Accuracy and efficiency vs. δ and ε . 103

4.10 Recommendations (query answering). 108

5.1 The PAA and SAX representations . 112

5.2 The APCA and EAPCA representations 113

5.3 A sample binary tree index created by the DSTree 114

5.4 DSTree Indexing Workflow . 115

5.5 Hercules Indexing Workflow . 117

5.6 Query Answering Workflow . 121

5.7 Comparison of exact query answering using 1NN queries of different difficulty141

5.8 Exact query answering for best methods with increasing k 142

5.9 δ-ε-approximate search (Dataset= Synth250GB, Queries = 100NN) . . . 143

LIST OF FIGURES 3

5.10 δ-ε-approximate search (Dataset= Deep250GB, Queries = 100NN) . . . 144

5.11 δ-ε-approximate search (Dataset= Seismic100GB, Queries = 100NN) . . 144

5.12 δ-ε-approximate search (Dataset= Sald100GB, Queries = 100NN) 145

5.13 ng-approximate search (Dataset= Synth250GB, Queries = 100NN) . . . 147

5.14 ng-approximate search (Dataset= Deep250GB, Queries = 100NN) 147

5.15 ng-approximate search (Dataset= Seismic100GB, Queries = 100NN) . . 148

5.16 ng-approximate search (Dataset= Sald100GB, Queries = 100NN) 148

List of Tables

3.1 Similarity search methods . 37

3.2 Controlled workloads experimental results summary (sequential scan al-

gorithm is highlighted) . 56

4.1 Similarity search methods used in this study (”•” indicates our modifi-

cations to original methods). All methods support in-memory data, but

only methods ticked in last column support disk-resident data. 75

4

Chapter 1

Introduction

We are surrounded by high-dimensional objects including data series, images, video,

text, graphs, and deep neural network embeddings. Analyzing this data is important for

a variety of real-world applications and has been extensively studied over the past 25

years. At the core of the analysis task lies a classic operation called similarity search.

The goal of this dissertation is to support efficient and accurate similarity search on

massive collections of high-dimensional data. We present Hercules, a new technique for

high-dimensional similarity search that outperforms the state-of-the-art. We also propose

a taxonomy that unifies the nomenclature used for the different flavors of the similarity

search problem, and design and execute two thorough experimental evaluations of the

state-of-the-art exact and approximate similarity search approaches.

In this chapter, we first present a brief overview of the similarity search problem and

the main data types we cover in our work (§ 1.1), then provide a succinct summary of

the main contributions of this thesis (§ 1.2).

5

Chapter 1. Introduction 6

1.1 Problem Overview

We provide below a bird’s eye view of the similarity search problem.

Similarity Search. Similarity search is a fundamental operation that lies at the core

of many critical data processing tasks, such as data cleaning [1], data integration [2], and

big data analytics (e.g., outlier detection [3, 4], frequent pattern mining [5], clustering [6,

7], and classification [8]). Similarity search aims at finding objects in a collection that

are close to a given query according to some definition of sameness.

This problem has been studied heavily in the past 25 years and will continue to attract

attention as massive collections of high-dimensional objects are becoming omnipresent in

various domains. Objects can be data series, text, images, audio and video recordings,

graphs, database tables or deep network embeddings (Fig. 1.1). Similarity search over

high-dimensional objects is often reduced to a k-nearest neighbor (kNN) problem such

that the objects are represented using high-dimensional vectors and the (dis)-similarity

between them is measured using a distance. Some studies [9, 10, 11, 12] have argued that

nearest neighbor search is not meaningful for a number of high-dimensional datasets due

to the concentration of distances (a.k.a. the curse of dimensionality [13]), i.e., that the

distance of a point to its farthest neighbor approaches the distance to its nearest neighbor.

However, these conclusions were based on over-restrictive assumptions such as data being

identical and independently distributed (i.i.d.) in each dimension, dimensionality being

the only factor determining meaningfulness and an asymptotic analysis of dimensionality

growing to infinity. In fact, other studies have shown that high-dimensional nearest

neighbor search is meaningful for non-i.i.d data [9, 14, 15, 16], data with low intrinsic

dimensionality and for a variety of real world datasets when meaningfulness is evaluated

based on a number of data characteristics including finite dimensionality, data sparsity,

dataset size and the nature of the distance measure used [17]. The importance and

relevance of nearest neighbor search in high-dimensions is further evidenced by a large

and growing body of research [18, 19, 20, 21, 22, 23, 24, 5, 25, 4, 26, 27, 28, 29, 30, 31,

Chapter 1. Introduction 7

32, 33, 34, 35, 36, 37, 38, 39].

This problem is hard because objects typically contain hundreds to thousands of di-

mensions and these dimensions need to be processed as a single entity not as individual

values. Besides, as the dataset gets larger and cannot fit in-memory, the cost of the

brute-force approach which compares a query to all objects in the collection becomes

prohibitive both in terms of CPU and I/O. The research community has thus developed

similarity search methods that aim at answering a query efficiently by limiting the num-

ber of data points accessed, while minimizing the I/O cost of accessing raw data on disk

and the CPU cost when comparing raw data to the query (e.g., Euclidean distance cal-

culations). These goals are achieved by exploiting summarization techniques, and using

efficient data structures (e.g., an index) and search algorithms. Some methods further

enhance the efficiency of similarity search by sacrificing accuracy returning deterministic

or probabilistic approximate answers.

Answering a similarity query using an index typically involves two steps: a filtering

step where the pre-built index is used to prune candidates and a refinement step where

the surviving candidates are compared to the query in the original high-dimensional

space [40, 41, 20, 28, 30, 42, 25, 43, 44, 31]. Some exact [41, 20, 43, 42] and approximate

methods [26, 45] first summarize the original data and then index these summarizations,

while others tie together data reduction and indexing [28, 30, 25]. Some approximate

methods return the candidates obtained in the filtering step [45]. There also exist ex-

act [46] and approximate [29] methods that index high-dimensional data directly. A

variety of data structures exist for similarity search indexes, including trees [40, 43, 28,

30, 25, 44, 31, 26, 42], inverted indexes [47, 48, 49, 45], filter files [41, 20, 30], hash ta-

bles [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] and graphs [61, 62, 63, 64, 65, 66, 67, 29].

There also exist multi-step approaches, e.g., Stepwise [24], that transform and organize

data according to a hierarchy of resolutions.

While our work is relevant to generic high-dimensional objects, we focus on two

Chapter 1. Introduction 8

prevalent types: data series and deep network embeddings. Both types of data exhibit

correlated dimensions, a characteristic that has been shown to be favourable to mean-

ingful nearest neighbor search [15].

Figure 1.1: Similarity Search over Collections of High-Dimensional Objects

Data Series. A data series is a sequence of ordered real values. When the sequence is

ordered on time, it is called a time series. However, the order can be defined by angle (e.g.,

in radial profiles), mass (e.g., in mass spectroscopy), position (e.g., in genome sequences),

and others [68]. The terms data series, time series and sequence are used interchange-

ably. Data series are one of the most common types of data, covering virtually every

scientific and social domain, such as astrophysics, neuroscience, seismology, environmen-

tal monitoring, biology, health care, energy, finance, criminology, social studies, video and

audio recordings, and many others [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82].

The number of data series generated by IoT technologies alone is estimated in multiple

zettabytes [83]. A data series is typically represented as a high-dimensional vector of

floating point values, where each value represents an observation and neighboring val-

Chapter 1. Introduction 9

ues are correlated. Data series similarity search is thus reduced to a k-nearest neighbor

(kNN) query over the high-dimensional vectors of all series in a collection (Fig. 1.2).

Figure 1.2: Data Series Similarity Search as a k-NN Query

Deep Network Embeddings. An embedding is a mapping of a high-dimensional

object into a lower-dimensional vector such that similar objects are close together in the

projected space. Embeddings are learned from the data using a deep neural network,

where the embedding is a hidden layer and each dimension of the embedding is repre-

sented using one unit. A d-dimensional embedding is a vector of d floating point values,

where each value is equal to the edge weight between the input node corresponding to

the object and one of the d nodes in the embedding layer. Intuitively, each floating point

value captures how important that particular facet (dimension) is for the input object.

The number of dimensions d is a hyper-parameter of the learning model. Embeddings

are used for three main tasks: 1) to support similarity search [84, 85]; 2) to serve as

input to a machine learning model for a supervised task [86]; or 3) to enable the visu-

alization of the relations between entities or concepts [87]. In our work, we are mainly

interested in developing an efficient and scalable algorithm for scenario 1, i.e. similar-

ity search. Embeddings have grown in popularity thanks to the recent breakthroughs in

neural networks. They are used to represent various types of objects such as text [88, 85],

graphs [89], images [90] and video [91]. Figure 1.3 shows a simplified architecture for a

Chapter 1. Introduction 10

Figure 1.3: A simplified architecture for a neural network with a
4-dimensional embedding layer

deep neural network showing only the input and output layers and the 4-dimensional em-

bedding layer. The input layer takes a sparse vector representation of a high-dimensional

object, for instance a one-hot encoding of a word, then the model learns the weights of

the edges connecting to the hidden layer as would occur in a supervised task, typically

through back-propagation. Once the model is trained, the embedding vectors for all

items in a collection can be used for other tasks, in our case similarity search.

1.2 Main Contributions

Our main contributions are as follows:

1. A unified terminology and taxonomy. We provide a framework for the

similarity search nomenclature, unifying conflicting terminology from different research

communities, and propose a taxonomy that classifies similarity search methods based on

search quality guarantees.

Chapter 1. Introduction 11

2. An experimental evaluation of exact similarity search methods. We

conducted the most extensive and comprehensive experimental evaluation in this area,

including techniques from both the data series and high-dimensional data communities,

which had never been considered together. We assess the efficiency and footprint of the

different algorithms under a unified framework. We present an elaborate discussion and

pinpointed promising research directions, including which approaches would benefit the

most from modern hardware. We also demonstrate that choosing between an index or

a scan is not a trivial decision but rather an optimization problem that depends on a

variety of factors including hardware, query pruning ratio, data characteristics, the ac-

curacy of a summarization and the efficacy of the clustering provided by an index. To

help users decide the best approach for their problem, we issue a set of recommendations

for typical user scenarios.

3. An experimental evaluation of approximate similarity search methods.

In the approximate similarity search literature, experimental evaluations ignore the an-

swering capabilities of data series methods. Our second experimental evaluation is the

first study that fills this gap comparing the efficiency, accuracy and footprint of approxi-

mate data series approaches to state-of-the-art techniques designed for high-dimensional

vectors. We pinpoint the weaknesses and the strengths of the different techniques sharing

insights that have never been published in the literature. For instance, we show that the

performance of popular LSH techniques [92] is inadequate for big data collections both

in terms of efficiency and accuracy and that approximate techniques, that do not offer

guarantees, are difficult to tune and can return incomplete results.

4. A new class of approximate similarity search techniques. We propose a

new class of techniques for approximate similarity search that outperform the state-of-

Chapter 1. Introduction 12

the-art methods, including those designed for data series and generic high-dimensional

vectors. We extended the best exact algorithms using ideas that were proposed 20 years

ago for metric trees [18], and have not been exploited until now by any other technique.

Our extensions are the clear winners for approximate similarity search with guarantees

for both in-memory and disk based data, while they are the only viable solution for on-

disk data. These techniques are also the fastest at indexing and have the lowest footprint.

Another main advantage of our techniques is that the accuracy-efficiency trade-off is de-

termined at query-time whereas all of the competitors need to perform this tuning both

during index building and query answering, which means that an index may need to be

built many times using different parameters before finding the right settings. Moreover,

if the analyst builds an index with a particular accuracy target, and then their needs

change, they will have to rebuild the index from scratch and go through the same pro-

cess of determining the right parameter values. This becomes particularly impractical

with larger datasets which can require several days to build an index.

5. A novel algorithm for exact and approximate similarity search. Build-

ing upon the deep insights gained from our experimental evaluations about the intricate

designs of the different techniques, their strengths and weaknesses, we propose a new

algorithm that outperforms our proposed extensions and the state-of-the-art exact and

approximate similarity search techniques in-memory and on-disk. We used synthetic

datasets and 4 of the largest publicly available real datasets of high-dimensional vectors,

including data series, images, and deep neural network embeddings. Our datasets range

in size from 25 gigabytes to 250 gigabytes. Similarity search algorithms based on indexes

typically operate in two steps: a filtering step where the pre-built index is used to prune

candidates and a refinement step where the surviving candidates are compared to the

query in the original high dimensional space. Our new index owes its efficiency to the

following novel ideas: 1) a double-filtering scheme which significantly reduces the num-

Chapter 1. Introduction 13

ber of surviving candidates compared to competing techniques; 2) an efficient storage

mechanism for the index; 3) the carefully crafted distribution and execution of parallel

instructions; and 4) the exploitation of the Single Instruction Multiple Data (SIMD) ca-

pabilities of modern CPUs.

6. A public archive which would serve as a the stepping stone for a much-

needed benchmark. In both studies, all methods are evaluated under a unified frame-

work to prevent implementation bias. We used the most efficient C/C++ implementa-

tions available for all approaches, and developed from scratch in C the ones that were

only implemented in other programming languages, leading to new implementations that

are considerably faster than the original ones. We share a public archive containing all

source codes, datasets, queries and results [93, 94].

7. Far-reaching fundamental and practical implications. With the overwhelm-

ing data deluge that we have been witnessing in the past few years, the similarity search

community has shown a growing interest in the development approximate methods follow-

ing two main research trends: (i) LSH-based algorithms [26, 60] that support guarantees,

but are relatively slow, and (ii) kNN graphs [45, 29] and inverted indexes [49, 47], which

are relatively fast, but do not provide theoretical guarantees. We demonstrate that it

is possible to design efficient high-dimensional vector similarity search algorithms with

theoretical guarantees on the quality of the answers, and we thus offer a more promising

alternative to the two current trends in the literature. This finding paves the way for very

exciting new developments which will lead to efficient solutions that can support critical

analytical tasks such as brain seizure detection, cyber-attack prevention, transportation

management and data cleaning automation.

The contributions of this thesis have led to the following publications:

Chapter 1. Introduction 14

1. Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

The Lernaean Hydra of Data Series Similarity Search: An Experimental Evaluation

of the State of the Art. PVLDB, 12(2):112127, 2018. [95]

2. Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approxi-

mate Similarity Search. PVLDB, 13(3):402419, 2019. [96]

3. Karima Echihabi. Truly Scalable Data Series Similarity Search. In VLDB PhD

Workshop, 2019. [97]

4. Karima Echihabi. High-Dimensional Similarity Search: From Time Series to Deep

Network Embeddings. In SIGMOD, 2020. [98]

5. Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, Panagiota Fatourou,

and Houda Benbrahim. Hercules: Overcoming the Lernaean Hydra of High Di-

mensional Similarity Search. Under Submission. [99]

6. Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Themis Palpanas, and

Anastasia Bezerianos. Data Series Progressive Similarity Search with Probabilistic

Quality Guarantees. In SIGMOD, 2020. [100]

1.3 Outline

The remainder of this thesis is organized in 5 chapters. Chapter 2 proposes a frame-

work and taxonomy for the similarity search problem. Chapter 3 presents the results

of the first comprehensive experimental evaluation of the efficiency of exact similarity

search for high-dimensional vectors. Chapter 4 describes a new class of efficient approx-

imate similarity search techniques for high-dimensional vectors and discusses the results

of an exhaustive experimental study of approximate similarity search methods. Chapter

Chapter 1. Introduction 15

5 introduces Hercules, a new similarity search technique that outperforms the state-of-

the-art methods in exact and approximate search. Chapter 6 concludes the thesis with

a summary of the main findings, a statement of the contributions made by the research

and an outline of promising future directions.

Chapter 2

Preliminaries

Increasingly large collections of high-dimensional objects are becoming commonplace

across many different domains and applications. A key operation in the analysis of these

collections is similarity search which aims at finding objects in a collection that are close

to a given query according to some definition of sameness. This fundamental problem

has attracted lots of attention and effort over the past two decades. Even though a

large number of relevant approaches have been proposed in the literature by different

communities, the non-standard use of terminology, with different terms being used for

the same meaning and a single term being used with different meanings, makes it hard

to compare and share results and often leads to confusion and misconceptions.

This chapter1 is organized in two sections. In section 2.1, we provide definitions for

the different flavors of similarity search that have been studied in the past, covering data

types and distance measures (§ 2.1.1), similarity search queries (§ 2.1.2) and similarity

search methods (§ 2.1.3). In section 2.2, we present a taxonomy that classifies similarity

search methods based on the type of guarantees they provide.

1This chapter is a modified version of [95].

16

Chapter 2. Preliminaries 17

2.1 Definitions

2.1.1 Data Types and Distance Measures

In the context of similarity search, a complex object is often represented as a single

point in an n-dimensional space, which is also referred to as a vector of n dimensions.

An exhaustive description of the different object-to-vector mapping techniques is beyond

the scope of this work, so for the sake of clarity, we only briefly describe how the data

types we cover in this study are typically represented as vectors.

Images

An image is often represented with a feature vector [101], i.e., a vector of distinc-

tive characteristics of this image, such as the color, texture or shape of a region of the

image [101, 102] or a scale-invariant descriptor [103]. Each feature corresponds to a

coordinate axis in the vector space.

Data Series

A data series S(p1, p2, ..., pn) is an ordered sequence of points, pi, 1 ≤ i ≤ n. The

number of points, |S| = n, is the length of the series. We denote the i-th point in S by

S[i]; then S[i : j] denotes the subsequence S(pi, pi+1, ..., pj−1, pj), where 1 ≤ i ≤ j ≤ n.

We use S to represent all the series in a collection (dataset).

In the above definition, if each point in the series represents the value of a single

variable (e.g., temperature) then each point is a scalar, and we talk about a univari-

ate series. Otherwise, if each point represents the values of multiple variables (e.g.,

temperature, humidity, pressure, etc.) then each point is a vector, and we talk about a

multivariate series. The values of a data series may also encode measurement errors,

or imprecisions, in which case we talk about uncertain data series [104, 105, 106, 107, 4].

The scope of our work is univariate series with no uncertainty. In this case, a data

Chapter 2. Preliminaries 18

series S of length n is represented as a single point in an n-dimensional space by mapping

each observation of the data series into one of the vector scalars. This type of vector is

also called a feature vector and the values and length of S are referred to as dimensions

and dimensionality, respectively.

From herein, unless otherwise specified, whenever we use the word data series or

image, we refer to their feature vector representations.

Embeddings

An embedding is a mapping of an object into a point in low-dimensional real-valued

vector space, called the embedding space [108]. The rationale is that the distances of the

embedded space approximate those in the original space and that it is less expensive

computationally to perform similarity search in the embedded space.

We are mainly concerned with embeddings that map finite metric spaces into normed

real-valued vector spaces.

Consider the set M of finite cardinality N and the distance d, the tuple (M,d) is said

to be a finite metric space if d : M×M→ R+ is a distance metric.

A vector space V consists of a set of elements, called vectors, a field F of numbers,

called scalars. and is closed under vector addition and scalar multiplication. The field F

typically consists of the set of real numbers R.

A normed real-valued vector space (V,‖.‖) consists of the vector space V and

the norm ‖.‖. A norm is a real valued function with the following properties: ∀ u, v ∈ V

and all a ∈ R

1. Triangular inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖

2. Absolute scalability: ‖av‖ = |a|‖v‖

3. Positivity: If ‖v‖ = 0 then v = 0 is the zero vector

Chapter 2. Preliminaries 19

While different norms have been studied in the literature, we use the Euclidean dis-

tance, which is a subclass of Lp norms where p = 2, because it is a popular choice as

evidenced by a large body of work [18, 19, 20, 22, 23, 25, 4, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 109, 110, 97, 98].

Definition 1. The Euclidean distance between two objects SQ and SC of dimension-

ality n, represented by two points Q(q1, q2, ..., qn) and C(c1, c2, ..., cn) in Rd, is defined as

follows [111]:

d(SQ, SC) ≡ d(Q,C) = 2

√√√√ n∑
i=1

(qi − ci)2

Definition 2. An embedding f that maps an object from a finite metric space (M,d)

to a normed real-valued vector space (V,d’) is defined as f : M → Rm, where m is the

dimensionality of the embedding space and d′ is the distance metric in the embedding

space [108].

An embedding is called isometric if the distances in the embedding space are equal

to their correponding distances in the original space. An embedding is called contractive

if the distances in the embedding space lower-bound the corresponding distances in the

original space.

Embeddings have been studied extensively in pure mathematics [112, 113, 114, 115]

and have been exploited to model different types objects including graphs [116, 117],

images [118], protein sequences [119], and data series [120, 121]. The popularity of

embeddings has surged in the past few years thanks to the machine learning revolu-

tion [88, 85, 89, 122].

When the object is a high-dimensional vector, we call this special class of embed-

dings, dimensionality reduction techniques [108]. Examples of dimensionality reduction

techniques are the Karhunen-Loève transform (KLT) [123], the Discrete Fourier Trans-

form [120, 124] and wavelets [121]. We will provide a more detailed survey of these

techniques in Chapters 3 and 4 .

Chapter 2. Preliminaries 20

For instance, for a data series representing an audio signal, an embedding can be

extracted from the high-dimensional power spectral density or Fourier coefficients. Sim-

ilarly, an embedding can be mapped from the one-hot-encoding of a word, or the raw

pixel intensities of an image or its SIFT descriptors [125].

In the literature, the terms embeddings and feature vectors are sometimes used inter-

changeably. In this thesis, we use the term embedding to refer to a a low-dimensional and

dense vector representation. We call embeddings created by deep neural networks deep

network embeddings and those created by other techniques simply embeddings, in particu-

lar, vectors resulting from a dimensionality reduction technique. Note that an embedding

does not always represent a feature vector of an individual object but can also model in-

put interaction context, the most popular example being recommender systems based on

collaborative filtering. For example, the embeddings created by movie recommendation

systems model the users identifiers and the list of movies they watched [126]. Besides,

embeddings can model multimodal entities to enable translation from one modality to

another, for instance to automatically generate captions for images [127].

When similarity search is reduced to a k-NN problem, the high-dimensional objects

are represented as n-dimensional vectors, and the (dis)-similarity between the objects is

evaluated as the distance between their vector representations. The distance between a

query object, SQ, and a candidate object, SC , is denoted by d(SQ, SC). Even though

several distance measures have been proposed in the literature [128, 129, 130, 131, 132,

133], the Euclidean distance is the one that is the most widely used, as well as one of

the most effective for large data series collections [134]. In the case of data series, we

note that an additional advantage of the Euclidean distance is that when the series is

Z-normalized (mean=0, stddev=1), which is very often done in practice [135], it can be

exploited to compute Pearson correlation [136].

Since the Euclidean distance is computationally expensive, for similarity search meth-

ods to be efficient, they need to reduce the number of these calculations. Some of these

Chapter 2. Preliminaries 21

methods achieve this by creating embeddings for the high-dimensional feature vectors of

all objects in the dataset, then performing the distance calculations in the embedding

space. If the embedding is isometric, the result in the embedding space is guaranteed

to be correct in the original space. However, embeddings are rarely isometric, so simi-

larity search techniques often exploit contractive embeddings so they can use the search

in the embedding space as a filtering step, then further refine the filtered candidates by

comparing their distances in the original high-dimensional space. These techniques rely

on lower-bounding distances [28, 30, 42, 25, 44, 31, 46, 24] and some of them also define

upper-bounding distances [25, 24].

Definition 3. Consider an embedding f from (M,d) to (V,d’), where d and d′ are the

distance metrics in the original and embedding spaces respectively, the distance d′ is a

lower-bounding distance if: ∀ SQ, SC ∈M d′(f(SQ), f(SC)) ≤ d(SQ, SC) [124].

Definition 4. Consider an embedding f from (M,d) to (V,d’), where d and d′ are the

distance metrics in the original and embedding spaces respectively, the distance d′ is an

upper-bounding distance if: ∀ SQ, SC ∈M d′(f(SQ), f(SC)) ≥ d(SQ, SC) [25, 24].

2.1.2 Similarity Search Queries

We now define the different forms of similarity search queries. We assume a data

collection of objects, S, a query object, SQ, and a distance function d(·, ·).

A k-Nearest-Neighbor (k-NN) query identifies the k objects in the collection

with the smallest distances to the query.

Definition 5. Given an integer k, a k-NN query retrieves the set of objects A =

{{SC1 , ..., SCk
} ⊆ S|∀ SC ∈ A and ∀ SC′ /∈ A, d(SQ, SC) ≤ d(SQ, SC′)}.

An r-range query identifies all the series in the collection within range r form the

query series.

Chapter 2. Preliminaries 22

Definition 6. Given a distance r, an r-range query retrieves the set of objects A =

{SC ∈ S|d(SQ, SC) ≤ r}.

In the case of data series, we additionally identify the following two categories of k-

NN and range queries. In whole matching (WM) queries, we compute the similarity

between an entire query series and an entire candidate series. All the series involved in

the similarity search should to have the same length. In subsequence matching (SM)

queries, we compute the similarity between an entire query series and all subsequences

of a candidate series. In this case, candidate series can have different lengths, but should

be longer than the query series.

Definition 7. A whole matching query finds the candidate data series S ∈ S that

matches SQ, where |S| = |SQ|.

Definition 8. A subsequence matching query finds the subsequence S[i : j] of a

candidate data series S ∈ S that matches SQ, where |S[i : j]| = |SQ| < |S|.

In practice, we encounter situations that cover the entire spectrum: WM queries

on large collections of short series [137, 138], SM queries on large collections of short

series [139], and SM queries on collections of long series [140].

Note that SM queries can be converted to WM: create a new collection that com-

prises all overlapping subsequences (each long series in the candidate set is chopped into

overlapping subsequences of the length of the query), and perform a WM query against

these subsequences [31, 141].

In this work, we focus on whole-matching queries. This is a very popular problem

that lies at the core of several other algorithms, and is important for many applications

in various domains in the real world [7, 135, 68], ranging from fMRI clustering [142] to

mining earthquake [143], energy consumption [144], and retail data [145].

Chapter 2. Preliminaries 23

2.1.3 Similarity Search Methods

When a similarity search algorithm (k-NN or range) produces answers that are (by

definition) always correct and complete: we call such an algorithm exact. Nevertheless,

we can also develop algorithms without such strong guarantees: we call such algorithms

approximate. As we discuss below, there exist different flavors of approximate similarity

search algorithms.

An ε-approximate algorithm guarantees that its distance results have a relative

error no more than ε, i.e., the approximate distance is at most (1 + ε) times the exact

one.

Definition 9. Given a query SQ, and ε ≥ 0, an ε-approximate algorithm guarantees

that all results, SC, are at a distance d(SQ, SC) ≤ (1 + ε)d(SQ, [k-th NN of SQ]) in the

case of a k-NN query, and distance d(SQ, SC) ≤ (1 + ε)r in the case of an r-range query.

A δ-ε-approximate algorithm, guarantees that its distance results will have a rel-

ative error no more than ε (i.e., the approximate distance is at most (1 + ε) times the

exact distance), with a probability of at least δ.

Definition 10. Given a query SQ, ε ≥ 0, and δ ∈ [0, 1], a δ-ε-approximate algorithm

produces results, SC, for which Pr[d(SQ, SC) ≤ (1 + ε)d(SQ, [k-th NN of SQ])] ≥ δ in the

case of a k-NN query, and Pr[d(SQ, SC) ≤ (1 + ε)r] ≥ δ) in the case of an r-range query.

An ng-approximate (no-guarantees approximate) algorithm does not provide any

guarantees (deterministic, or probabilistic) on the error bounds of its distance results.

Definition 11. Given a query SQ, an ng-approximate algorithm produces results, SC,

that are at a distance d(SQ, SC) ≤ (1 + θ)d(SQ, [k-th NN of SQ]) in the case of a k-NN

query, and distance d(SQ, SC) ≤ (1+θ)r in the case of an r-range query, for an arbitrary

value θ ∈ R>0.

In the data series literature, ng-approximate algorithms have been referred to as

approximate, or heuristic search [28, 30, 42, 25, 44, 31]. Unless otherwise specified, for

Chapter 2. Preliminaries 24

the rest of this paper we will refer to ng-approximate algorithms simply as approximate.

Approximate matching in the data series literature consists of pruning the search space,

by traversing one path of an index structure representing the data, visiting at most one

leaf, to get a baseline best-so-far (bsf) match.

Observe that when δ = 1, a δ-ε-approximate method becomes ε-approximate, and

when ε = 0, an ε-approximate method becomes exact [18]. It it also possible that the

same approach implements both approximate and exact algorithms [146, 25, 28, 30, 42].

Methods that provide exact answers with probabilistic guarantees are considered δ-0-

approximate. These methods guarantee distance results to be exact with probability

at least δ (0 ≤ δ ≤ 1 and ε = 0). (We note that in the case of k-NN queries, Def. 9

corresponds to the approximately correct NN [18] and (1 + ε)-approximate NN [147],

while Def. 10 corresponds to the probably approximately correct NN [18].)

Figure 2.1 shows a visual interpretation of these different flavors of similarity search

for (R2, L2). The radius rδ(OQ) is the maximum distance from OQ, such that the sphere

with center OQ and radius rδ(OQ) is empty with probability δ.

Chapter 2. Preliminaries 25

Figure 2.1: Different flavors of the similarity search problem

2.2 A Taxonomy

Figure 2.2 presents a taxonomy of similarity search methods based on the type of

guarantees they provide as defined in the previous section (methods with multiple types

of guarantees are included in more than one leaf of the taxonomy). We call probabilistic

the general δ-ε-approximate methods. When δ = 1 we have the ε-approximate methods.

Setting δ = 1 and ε = 0, we get the exact methods. Finally, methods that provide no

guarantees are categorized under ng-approximate.

C
h
a
p
t
e
r
2
.

P
r
e
l
im

in
a
r
ie
s

26

Figure 2.2: Taxonomy of similarity search methods
(• indicates our extensions to existing techniques)

Chapter 2. Preliminaries 27

2.3 Conclusion

In the following chapters, we will provide a detailed description of all the methods

referenced in the taxonomy. Chapter 3 will study exact techniques, Chapter 4 will exam-

ine probabilistic, ε-approximate and ng-approximate methods, including the new class

of techniques that we propose for similarity search, and Chapter 5 will cover our novel

similarity search algorithm.

Chapter 3

Exact Similarity Search

Similarity search is a core operation of many critical data processing tasks, such

as data cleaning, data integration and data analytics (e.g., outlier detection, frequent

pattern mining, clustering and classification). Similarity search algorithms can either

return exact or approximate answers. Exact methods are expensive while approximate

methods sacrifice accuracy to achieve better efficiency. Although several exact approaches

have been proposed in the literature in the past 25 years, none of the existing studies

provides a detailed evaluation against the available alternatives.

In this chapter1, we present the first systematic experimental evaluation of the effi-

ciency of exact similarity search techniques for high-dimensional vectors. Based on the

experimental results, we describe the strengths and weaknesses of each approach and

give recommendations for the best approach to use under typical use cases. Finally, by

identifying the shortcomings of each method, our findings lay the ground for solid further

developments in the field.

The chapter is organized in six sections. We summarize our contributions in sec-

tion 3.1, briefly survey the state-of-the-art exact techniques in section 3.2, describe our

experimental framework in section 3.3, present results and a thorough discussion in sec-

tions 3.4 and 3.5, then close the chapter with concluding remarks in section 3.6.

1This chapter is a slightly modified version of [95].

28

Chapter 3. Exact Similarity Search 29

3.1 Main Contributions

Our main contributions are as follows:

1. We include a brief survey of similarity search approaches, bringing together studies

presented in different communities that have been treated in isolation from each other.

These approaches range from smart serial scan methods to the use of indexing, and are

based on a variety of classic and specialized data summarization techniques, including

both traditional signal processing techniques and modern specialized ones.

2. We make sure that all approaches are evaluated under the same conditions, so

as to guard against implementation bias. To this effect, we used implementations in

C/C++ for all approaches, and reimplemented in C the ones that were only available

in other programming languages. Moreover, we conducted a careful inspection of the

code bases, and applied to all of them the same set of optimizations (e.g., with respect

to memory management, Euclidean distance calculation, etc.), leading to considerably

faster performance.

3. We conduct the first comprehensive experimental evaluation of the efficiency of

similarity search approaches including techniques designed for metric spaces, multidimen-

sional data, and data series. We use several synthetic and 4 real datasets from diverse

domains. In addition, we report the first large scale experiments with carefully crafted

query workloads that include queries of varying difficulty, which can effectively stress-

test all the approaches. Our results reveal characteristics that have not been reported

in the literature, and lead to a deep understanding of the different approaches and their

performance. Based on those, we provide recommendations for the best approach to use

under typical use cases, and identify promising future research directions.

4. We make available online all source codes, datasets, and query workloads used in

our study [93]. This will render our work reproducible and further help the community to

agree on and establish a much needed high-dimensional similarity search benchmark [148,

135, 149].

Chapter 3. Exact Similarity Search 30

3.2 Approaches

Similarity search methods can be classified into sequential, and indexing methods.

Sequential methods proceed in one step to answer a similarity search query. Each can-

didate is read sequentially from the raw data file and compared to the query. Particular

optimizations can be applied to limit the number of these comparisons [5]. Some sequen-

tial methods work with the raw data in its original high-dimensional representation [5],

while others perform transformations on the raw data before comparing them to the

query [27].

On the other hand, answering a similarity query using an index involves two steps:

a filtering step where the pre-built index is used to prune candidates and a refinement

step where the surviving candidates are compared to the query in the original high

dimensional space [40, 41, 20, 28, 30, 42, 25, 43, 44, 31, 141]. Some indexing methods

first summarize the original data and then index these summarizations [43, 42, 41, 20],

while others interwine data reduction and indexing [28, 30, 25]. Some methods index

high dimensional data directly [46]. We note that all indexing methods depend on lower-

bounding, since it allows indexes to prune the search space with the guarantee of no false

dismissals [124] (the DSTree index [25] also supports an upper-bounding distance, but

does not use it for similarity search). Metric indexes (such as the M-tree [46]) additionally

require the distance measure triangle inequality to hold. Though, there exist (non-metric)

indexes for data series that are based on distance measures that are not metrics [150].

There also exist hybrid approaches that fall in-between indexing and sequential meth-

ods. In particular, multi-step approaches, where data is transformed and re-organized in

levels. Pruning then occurs at multiple intermediate filtering steps as levels are sequen-

tially read one at a time.

Stepwise is such a method [24], relying on the Euclidean distance, and lower- and

upper-bounding distances.

Chapter 3. Exact Similarity Search 31

3.2.1 Summarization Techniques

We now briefly outline the summarization techniques used by the methods that we

examine in this study.

The Discrete Haar Wavelet Transform (DHWT) [121] uses the Haar wavelet decom-

position to transform each object S into a multi-level hierarchical structure. Resulting

summarizations are composed of the first l coefficients.

The Discrete Fourier Transform (DFT) [120, 124, 151, 152] decomposes S into fre-

quency coefficients. A subset of l coefficients constitutes the summary of S. In our

experiments, we use the Fast Fourier Transform (FFT) algorithm, which is optimal for

whole matching scenarios (the MFT algorithm [153] is faster than FFT for computing

DFT on sliding windows, thus beneficial for subsequence matching queries).

The Piecewise Aggregate Approximation (PAA) [154] and Adaptive Piecewise Constant

Approximation (APCA) [155] methods are segmentation techniques that divide S into

l (equi-length and varying-length, respectively) segments. Each segment represents the

mean value of the corresponding points. The Extended Adaptive Piecewise Approximation

(EAPCA) [25] technique extends APCA by using more information to represent each

segment. In addition to the mean, it also stores the standard deviation of the segment.

With the Symbolic Aggregate Approximation (SAX) [156], S is first transformed using

PAA into l real values, and then a discretization technique is applied to map PAA

values to discrete set of symbols (alphabet) that can be succinctly represented in binary

form. A SAX representation consists of l such symbols. An iSAX (indexable SAX) [157]

representation can have an arbitrary alphabet size for each segment.

Similarly to SAX, the Symbolic Fourier Approximation (SFA) [42] is also a symbolic

approach. However, instead of PAA, it first transforms S into l DFT coefficients using

FFT (or MFT for subsequence matching), then extends the discretization principle of

SAX to support both equi-depth and equi-width binning, and to allow each dimension

to have its own breakpoints. An SFA summary consists of l symbols.

Chapter 3. Exact Similarity Search 32

Using the VA+file method [20], an object S of dimension n is first transformed using

the Karhunen–Loève transform (KLT) into n real values, which are then quantized to

discrete symbols. As we will detail later, we modified the VA+file to use DFT instead of

KLT, for efficiency reasons.

Figure 3.1 presents a high-level overview of the summarization techniques presented

above.

Dimensionality SAX/DHWT/VA+: predefined number of dimensions (segments/coefficients)
SFA: predefined maximum number of dimensions (coefficients)
EAPCA: dynamic number of dimensions

Discretization

Bit Allocation (each dimension is represented with a bit string)
SAX/SFA: uniform (total bit budget divided equally among dimensions)
VA+: non-uniform (dimensions with high energy are allocated more bits)
Decision Intervals/Breakpoints
SAX: same for all dimensions (equi-depth binning in each dimension)
SFA: different across dimensions (equi-depth or equi-width binning)
VA+: different across dimensions (k-means binning)

Splitting SAX: adds a new breakpoint
SFA: adds a new dimension
EAPCA: adds a new dimension or redistributes points along a dimension

c

d

e

g

h

SAX(S)
cdee
010 011 100 100

f

b

a

h

c

b

g

e
d

a

d

e

g

h

a

c
c

f

h

g

f

a

e

g

d

c

b

SFA(S)
afbe
000 101 001 100

b

EAPCA(S)
Mean and sd of
each dimension

0

1

00

2

3 Original
Series

d

e

f

g

h

b

Series
Mean

DHWT(S)
A tree of
coefficients

f

p

c
b

o

k

d

a

d

a

c

b

...

VA+(S)
akaf
000 0110 00 101

h

c

b

g

e

d

a

f

h

c

b

g

e
d

a

f

j

...

h

g

a

Figure 3.1: Summarizations

Chapter 3. Exact Similarity Search 33

3.2.2 Similarity Search Methods

In this study, we focus on algorithms that can produce exact results, and evaluate the

ten methods outlined below (in chronological order). The properties of these algorithms

are also summarized in Table 3.1.

We also point out that there exist several techniques dedicated to approximate simi-

larity search [158, 21, 26, 159, 29, 90]. A thorough evaluation of all approximate methods

is covered in Chapter 4.

R*-tree. The R*-tree [43] is a height-balanced spatial access method that partitions

the data space into a hierarchy of nested overlapping rectangles. Each leaf can contain

either the raw data objects or pointers to those, along with the enclosing rectangle.

Each intermediate node contains the minimum bounding rectangle that encompasses the

rectangles of its children. Given a query SQ, the R*-tree query answering algorithm visits

all nodes whose rectangle intersects SQ, starting from the root. Once a leaf is reached,

all its data entries are returned. We tried multiple implementations of the R*-tree, and

opted for the fastest [160]. We modified this code by adding support for PAA summaries.

M-tree. The M-tree [46] is a multidimensional, metric-space access method that uses

hyper-spheres to divide the data entries according to their relative distances. The leaves

store data objects, and the internal nodes store routing objects; both store distances

from each object to its parent. During query answering, the M-tree uses these distances

to prune the search space. The triangle inequality that holds for metric distance func-

tions guarantees correctness. Apart from exact queries, it also supports ε-approximate

and δ-ε-approximate queries. We experimented with four different code bases: two im-

plementations that support bulk-loading [161, 4], the disk-aware mvptree [162], and a

memory-resident implementation [4]. We report the results with the latter, because (de-

spite our laborious efforts) it was the only one that scaled to datasets larger than 1GB.

We modified it to use the same sampling technique as the original implementation [161],

which chooses the number of initial samples based on the leaf size, minimum utilization,

Chapter 3. Exact Similarity Search 34

and dataset size.

VA+file. The VA+file [20] is an improvement of the VA-file method [41]. While both

methods create a filter file containing quantization-based approximations of the high

dimensional data, and share the same exact search algorithm, the VA+file does not

assume that neighboring points (dimensions) in the sequence are uncorrelated. It thus

improves the accuracy of the approximations by allocating bits per dimension in a non-

uniform fashion, and partitioning each dimension using a k-means (instead of an equi-

depth approach). We improved the efficiency of the original VA+file significantly by

implementing it in C and modifying it to use DFT instead of KLT, since DFT is a very

good approximation for KLT [20] and is much more efficient [163].

Stepwise. The Stepwise method [24] differentiates itself from indexing methods by

storing DHWT summarizations vertically across multiple levels. This process happens

in a pre-processing step. When a query SQ arrives, the algorithm converts it to DWHT,

and computes the distance between SQ and the DHWT of each candidate data series one

level at a time, using lower and upper bounding distances it filters out non-promising

candidates. When leaves are reached, the final refinement step consists of calculating

the Euclidean distance between the raw representations of SQ and the candidate series.

We modified the original implementation to load the pre-computed sums in memory

and answer one query at a time (instead of the batch query answering of the original

implementation). We also slightly improved memory management to address swapping

issues that occurred with the out-of-memory datasets.

SFA trie. The SFA approach [42] first summarizes the series using SFA of length 1

and builds a trie with a fanout equal to the alphabet size on top of them. As leaves

reach their capacity and split, the length of the SFA word for each series in the leaf is

increased by one, and the series are redistributed among the new nodes. The maximum

resolution is the number of DFT coefficients given as a parameter. SFA implements

lower-bounding to prune the search space, as well as a bulk-loading algorithm. We re-

Chapter 3. Exact Similarity Search 35

implemented SFA in C, optimized its memory management, and improved the sampling

and buffering schemes. This resulted in a significantly faster implementation than the

original one in Java.

UCR Suite. The UCR Suite [5] is an optimized sequential scan algorithm for exact sub-

sequence matching. We adapted the original algorithm to support exact whole matching.

DSTree. The DSTree [25] approach uses the EAPCA summarization technique, which

allows, during node splitting, the resolution of a summarization to increase along two

dimensions: vertically and horizontally. (Instead, SAX-based indexes allow horizontal

splitting by adding a breakpoint to the y-axis, and SFA allows vertical splitting by

adding a new DFT coefficient.) In addition to a lower bounding distance, the DSTree

also supports an upper bounding distance. It uses both distances to determine the

optimal splitting policy for each node. We reimplemented the DSTree algorithm in C

and we optimized its buffering and memory management, improving the performance of

the algorithm by a factor of 4, compared to the original implementation (in Java).

iSAX2+. The iSAX family of indexes has undergone several improvements [164]. The

iSAX 2.0 index [23] improved the splitting policy and added bulk-loading support to

the original iSAX index [146]. iSAX2+ [28] further optimized bulk-loading. In the

literature, competing approaches have either compared to iSAX, or iSAX 2.0. This is

the first time that iSAX2+ is compared to other exact data series indexes. The index

supports ng-approximate and exact query answering. We reimplemented the original

iSAX2+ algorithm from scratch using C, and optimized its memory management, leading

to significant performance improvements.

ADS+. ADS+ [30] is the first query adaptive data series index. It first builds an index

tree structure using only the iSAX summarizations of the raw data, and then adaptively

constructs the leaves and incorporates the raw data during query answering. For exact

query answering, the SIMS algorithm is proposed. It first performs a fast ng-approximate

search in the tree in order to acquire an initial best-so-far (bsf) distance, then prunes

Chapter 3. Exact Similarity Search 36

the search space by using the bsf and the lower bounds between the query and all iSAX

summaries. Using that, it performs a skip-sequential search on the raw data that were

not pruned. In all our experiments involving ADS+ we use the SIMS algorithm for exact

similarity search. ADS-FULL is a non-adaptive version of ADS, that builds a full index

using a double pass on the data.

MASS. MASS [165] is an exact subsequence matching algorithm, which computes the

distance between a query, SQ, and every subsequence in the series, using the dot product

of the DFT transforms of the series and the reverse of SQ. We adapted it to perform

exact whole matching queries.

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

37

Table 3.1: Similarity search methods

Matching Accuracy Matching Type Representation Implementation
exact ng-appr. ε-appr. δ-ε-appr. Whole Subseq. Raw Reduced Original New

In
d

ex
es

ADS+ [30] [30] X iSAX C
DSTree [25] [25] X EAPCA Java C
iSAX2+ [28] [28] X iSAX C# C
M-tree [46] [18] [18] X X C++
R*-tree [43] X PAA C++
SFA trie [42] [42] X X SFA Java C
VA+file [20] X DFT MATLAB C

O
th

er

UCR Suite [5] X X C
MASS [165] X DFT C

Stepwise [24] X DHWT C

Chapter 3. Exact Similarity Search 38

3.2.3 Examples

Figure 3.2 illustrates how a serial scan (e.g., the UCR-Suite), a skip-sequential scan

(e.g., ADS+ and the VA+file) and a tree-based index (e.g., iSAX2+, DSTree and SFA)

typically answer a similarity search query.

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Figure 3.2: Answering a similarity search query using different access paths

A similarity search query Q is answered using a serial scan by comparing it to each

single candidate in the high-dimensional space (Fig. 3.2a). This incurs a high CPU cost

due to the large number of distance calculations. Moreover, when the dataset is too

large to fit in memory, the overhead for reading all the high-dimensional data from disk

becomes prohibitive.

A skip-sequential scan typically performs first a search in-memory on the summarized

data, then compares the query to the raw candidates that could not be pruned based

on their summaries (Fig. 3.2b). The key principle that supports pruning is the lower-

bounding property, i.e., distances in the reduced dimensionality space are guaranteed to

be smaller than or equal to distances in the original space (Definition 3 in Chapter 2).

Before search starts, the best-so-far distance (bsf) is initialized to +∞. When search

starts, the lower-bounding distance (lb1) is calculated between the summary of Q and the

summary of the first candidate C1. Since lb1 is smaller than bsf , C1 cannot be pruned;

therefore the distance between Q and C1 is calculated (real1). Since real1 is smaller

Chapter 3. Exact Similarity Search 39

than bsf , the latter is updated with real1. Search proceeds with the second candidate

calculating lb2, the lower-bounding distance between the summary of Q and the summary

of C2. If lb2 is greater than or equal to bsf , C2 can be pruned because the lower-bounding

property guarantees that real2 ≥ lb2 ≥ bsf ; therefore C2 will not improve the bsf . If

lb2 is smaller than bsf , C2 cannot be pruned and the algorithm calculates real2. The

bsf is updated with real2 if and only if real2 < bsf . Search continues similarly until all

summaries are processed. Different summarizations have been used in the literature, for

example ADS+ uses SAX summaries and the VA+file uses DFT transformations. The

summaries and the raw data are stored in the same order.

A tree-based index also takes advantage of lower-bounding to reduce the number of

distance calculations between the query and the candidates in the dataset (Fig. 3.2c).

Typically, each internal node in the tree summarizes the data contained in its subtree and

each leaf node is associated with a file on disk that contains the raw high-dimensional

data. Raw data is loaded from disk only if the leaf containing it could not be pruned.

When a similarity search query arrives, a quick approximate answer is returned by heuris-

tically visiting one leaf, loading the leaf’s data into disk, calculating the distance between

the query and all the candidates in this leaf and initializing the bsf with the smallest dis-

tance. Search proceeds by calculating lb1, the distance between the root summarization

and the query summarization. Following the same lower-bounding principle described

earlier, if lb1 ≥ bsf , the root can be pruned because no other candidate will improve the

bsf , and search terminates by returning bsf as the final answer. However, if lb1 < bsf ,

then the root cannot be pruned, and its children are visited. Search proceeds in the same

fashion until all nodes have either been pruned or visited. When a leaf is visited, its raw

data is loaded into memory and distances are calculated between the query and all the

leaf’s raw data. Any such distance that is smaller than the current bsf becomes the new

bsf . When all nodes in the tree have been processed, search returns the current bsf as

the final answer.

Chapter 3. Exact Similarity Search 40

3.3 Experimental Evaluation

In order to provide an unbiased evaluation, we re-implemented in C all methods

whose original language was other than C/C++. Our new implementations are more

efficient (in space and time) than the original ones on all datasets we tested. All meth-

ods use single precision values, and the methods based on fixed summarizations use 16

segments/coefficients. The same set of known optimizations for data series processing

are applied to all methods. All results, source codes, datasets and plots are available

in [93].

3.3.1 Environment

All methods were compiled with GCC 6.2.0 under Ubuntu Linux 16.04.2 with level

2 optimization. Experiments were run on two different machines. The first machine,

called HDD, is a server with two Intel Xeon E5-2650 v4 2.2GHz CPUs, 75GB2 of RAM,

and 10.8TB (6 x 1.8TB) 10K RPM SAS hard drives in RAID0. The throughput of the

RAID0 array is 1290 MB/sec. The second machine, called SSD, is a server with two Intel

Xeon E5-2650 v4 2.2Ghz CPUs, 75GB of RAM, and 3.2TB (2 x 1.6TB) SATA2 SSD

in RAID0. The throughput of the RAID0 array is 330 MB/sec. All our algorithms are

single-core implementations.

3.3.2 Experimental Setup

Scope. This work concentrates on exact whole-matching (WM) 1-NN queries. Ex-

tending our experimental framework to cover r-range queries, subsequence matching and

approximate query answering is part of our future work.

Algorithms. This experimental study covers the ten methods described in Section 3.2,

2We used GRUB to limit the amount of RAM, so that all methods are forced to use the disk. Note
that GRUB prevents the operating system from using the rest of the RAM as a file cache, which is what
we wanted for our experiments.

Chapter 3. Exact Similarity Search 41

which all have native-support for Euclidean distance. Our baseline is the Euclidean dis-

tance version of the UCR Suite [5]. This is a set of techniques for performing very fast

similarity computation scans. These optimizations include: a) avoiding the computa-

tion of square root on Euclidean distance, b) early abandoning of Euclidean distance

calculations, and c) reordering early abandoning on normalized data3. We used these

optimizations on all the methods that we examined.

Datasets. Experiments were conducted using both synthetic and real datasets. Syn-

thetic data series were generated as random-walks (i.e., cumulative sums) of steps that

follow a Gaussian distribution (0,1). This type of data has been extensively used in the

past [124, 28, 135], and it is claimed to model the distribution of stock market prices [124].

Our four real datasets come from the domains of seismology, astronomy, neuroscience

and image processing. The seismic dataset, Seismic, was obtained from the IRIS Seismic

Data Access archive [140]. It contains seismic instrument recording from thousands of

stations worldwide and consists of 100 million data series of size 256. The astronomy

dataset, Astro, represents celestial objects and was obtained from [72]. The dataset con-

sists of 100 million data series of size 256. The neuroscience dataset, SALD, obtained

from [166] represents MRI data, including 200 million data series of size 128. The im-

age processing dataset, Deep1B, retrieved from [167], contains 267 million deep network

embeddings of dimension 96 extracted from the last layers of a convolutional neural net-

work. All of our real datasets are of size 100 GB. In the rest of the paper, the size of

each dataset is given in GB instead of the number of high-dimensional vectors. Overall,

in our experiments, we use datasets of sizes between 25-1000GB.

Queries. All our query workloads, unless otherwise stated, include 100 query series. For

synthetic datasets, we use two types of workloads: Synth-Rand queries are produced

using the same random-walk generator (with a different seed4), while Synth-Ctrl queries

are created by extracting vectors from the input data set and adding progressively larger

3Early abandoning of Z-normalization is not used since all datasets were normalized in advance.
4All seeds can be found in [93].

Chapter 3. Exact Similarity Search 42

amounts of noise, in order to control the difficulty of each query (more difficult queries

tend to be less similar to their nearest neighbor [149]). For the real datasets, query

workloads are also generated by adding progressively larger amounts of noise to vectors

extracted from the raw data, and we name them with the suffix -Ctrl. For the Deep1B

dataset, we additionally include a real workload that came with the original dataset; we

refer to it as Deep-Orig.

Scenarios. The experimental framework consists of three scenarios: parametrization,

evaluation and comparison. In parametrization (§5.5.1), the optimal parameters for each

method are identified. In evaluation (§3.4.2), the scalability and search efficiency for

each method is evaluated under varying dataset sizes and data series lengths. Finally, in

comparison (§3.4.3), methods are compared together according to the following criteria:

a) scalability and search efficiency on more complex query workloads and more varied

and larger datasets, b) memory and disk footprint, c) pruning ratio, and d) tightness of

the lower bound.

Measures The measures we use are the following.

1. For scalability and search efficiency, we use two measures: wall clock time and the

number of random disk accesses. Wall clock time is used to measure input, output and

total elapsed times. Then CPU time is calculated as the difference between the total time

and I/O time. The number of random disk accesses is measured for indexes. One random

disk access corresponds to one leaf access for all indexes, except for the skip-sequential

access method ADS+, for which one random disk access corresponds to one skip. As will

be evident in the results, our measure of random disk accesses provides a good insight

into the actual performance of indexes, even though we do not account for details such

as caching, the number of disk pages occupied by a leaf and the numbers of leaves in

contiguous disk blocks.

2. For footprint, the measures used are: total number of nodes, number of leaf nodes,

memory size, disk size, leaf nodes fill factor and leaf depth.

Chapter 3. Exact Similarity Search 43

3. We also consider the pruning ratio P , which has been widely used in the data series

literature [154, 42, 25, 134, 24] as an implementation-independent measure to compare

the effectiveness of an index. It is defined as follows:

P = 1− # of Raw Data Series Examined

of Data Series In Dataset

Pruning ratio is a good indicator of the number of sequential I/Os incurred. However,

since relevant data series are usually spread out on disk, it should be considered along

with the number of random disk accesses (seeks) performed.

4. The tightness of the lower bound, TLB has been used in the literature as an imple-

mentation independent measure in various different forms [146, 42, 132]. In this work we

use the following version of the TLB measure that better captures the performance of

indexes:

TLB =
Lower Bounding Distance(Q′, N)

Average True Distance(Q,N)

Where Q is the query, Q′ is the representation of Q using the segmentation of a given leaf

node N , and the average true distance between the query Q and node N is the average

Euclidean distance between Q and all data series in N . We report the average over all

leaf nodes for all 100 queries.

Procedure. Unless otherwise stated, experiments refer to answering 100 exact queries.

Experiments with query workloads of 10,000 queries report extrapolated values. The

extrapolation consists of discarding the best and worst five queries (of the original 100)

in terms of total execution time, and multiplying the average of the 90 remaining queries

by 10,000. Experiments involving an indexing method include a first step of building

the index (or re-organizing the data as in the case of Stepwise). Caches are fully cleared

before each experiment. During each experiment, the caches are warm, i.e., not cleared

between indexing/preprocessing and query answering, nor after each query.

Chapter 3. Exact Similarity Search 44

0.00

0.25

0.50

0.75

1.00

5K 50
K

10
0K

15
0K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(a) ADS+
Dataset = 100GB

0.00

0.25

0.50

0.75

1.00

10
K

50
K

10
0K

15
0K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(b) DSTree
Dataset = 100GB

0.00

0.25

0.50

0.75

1.00

5K 50
K

10
0K

15
0K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(c) iSAX2+
Dataset = 100GB

0.00

0.25

0.50

0.75

1.00

1 50

10
0

20
0

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(d) M-tree
Dataset = 50GB

0.00

0.25

0.50

0.75

1.00

40

50

10
0

20
0

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(e) R*-tree
Dataset = 50GB

0.00

0.25

0.50

0.75

1.00

20
0K

50
0K

10
00

K

15
00

K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(f) SFA trie
Dataset = 100GB

Figure 3.3: Leaf size parametrization

Chapter 3. Exact Similarity Search 45

(a) ADS+ (b) DSTree (c) iSAX2+

(d) SFA trie

Figure 3.4: Buffer size parametrization

Chapter 3. Exact Similarity Search 46

3.4 Results

3.4.1 Parametrization

We start our experimentation by fine tuning each method. Methods that do not sup-

port parameters are ran with their default values. The methods that support parameters

are ADS+, DSTree, iSAX2+, M-tree, R*-tree and SFA trie. Since none of the methods

supports auto-tuning, we perform this step manually on a synthetic dataset of 100GB

with data series of length 256. Ideally, parametrization would be performed exhaustively

for each scenario used in the experimental study. However, this will require an exces-

sive amount of resources and time as a scenario is defined by 6 inputs: an algorithm,

a dataset, a dataset size, a data series length, a query workload (controlled or random)

and a machine (HDD or SSD). For instance, parameter tuning on the HDD machine for

the random synthetic workload of the 100GB dataset of length 256 requires 30 hours.

Trying all possible different combinations of parameters for the synthetic datasets alone

for one algorithm would require running 7680 testing iterations. Developing auto-tuning

mechanisms for these methods is an open problem which we would like to explore in

future work.

The most critical parameter for these methods is the leaf threshold, i.e., the maximum

number of vectors that an index leaf can hold. We thus vary the leaf size and study the

tradeoffs of index construction and query answering for each method. Figure 3.3 reports

indexing and querying execution times for each method, normalized by the largest total

cost. The ratio is broken down into CPU and I/O times. Figure 3.3a shows that the

performance of ADS+ is the same across leaf sizes. The leaf size affects indexing time,

but not query answering. This is not visible in the figure, because index construction time

is minimal compared to query answering time. This behavior is expected, since ADS+

is an adaptive index, which during querying splits the nodes until a minimal leaf size is

reached. For M-tree, larger leaves cause both indexing and querying times to deteriorate.

Chapter 3. Exact Similarity Search 47

For all other methods, increasing the leaf size improves indexing time (because trees are

smaller) and querying time (because several series are read together), but once the leaf

size goes beyond the optimal leaf size, querying slows down (because some series are

unnecessarily read and processed). For DSTree, the experiments execution logs indicate

that querying is faster with the 100K leaf size. The optimal leaf size for iSAX2+ is also

100K, for SFA is 1M, and for M-tree and R*-tree are 1 and 50, respectively.

SFA takes two other parameters: the alphabet size and the binning method. We ran

experiments with both equi-depth and equi-width binning, and alphabet sizes from 8

(default value), to 256 (default alphabet size of iSAX2+ and ADS+). Alphabet size 8

and equi-depth binning provided the best performance and were thus used for subsequent

experiments.

Some of the evaluated methods also use internal buffers to manage raw data that

do not fit in memory during index building and query processing. We ran experiments

varying these buffer sizes from 5GB to 60GB (Figure 3.4). The maximum was set to

60GB (recall that total RAM was 75GB). All methods benefit from a larger buffer size

except ADS+. This is because a smaller buffer size allows the OS to use extra memory

for file caching during query processing, since ADS+ accesses the raw data file directly.

3.4.2 Evaluation of Individual Methods

We now evaluate the indexing and search efficiency of the methods by varying the

dataset size. We used two datasets of size 25GB and 50GB that fit in memory and two

datasets of size 100GB and 250GB that do not fit in memory (total RAM was 75GB),

with the Synth-Rand query workload.

ADS+. Figure 3.5a shows that ADS+ is very efficient at index building, spending most

of the cost for query answering, itself dominated by the input time. The reason is that

ADS+ performs skip sequential accesses on the raw data file, performing a skip almost

every time a data series is pruned.

Chapter 3. Exact Similarity Search 48

0

2

4

6

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(a) ADS+

0
1
2
3
4
5

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(b) DSTree

0

2

4

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(c) iSAX2+

0
5

10
15
20

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(d) MASS

0

5

10

25 50 100 250
Dataset Size (GB)

Ti
m

e
(h

ou
rs

)

Ex
tra

po
lat
ed

(e) M-tree

0
5

10
15
20
25

25 50 100 250
Dataset Size (GB)

Ti
m

e
(h

ou
rs

)

>2
4

ho
ur

s

>2
4

ho
ur

s

(f) R*-tree

0

1

2

3

4

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(g) SFA trie

0

10

20

30

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(h) Stepwise

0

2

4

6

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(i) UCR Suite

0

1

2

3

4

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(j) VA+file

Figure 3.5: Scalability with increasing dataset sizes

DSTree. In contrast, DSTree answers queries very fast whereas index building is costly

(Figure 3.5b). DSTree’s cost for index building is mostly CPU, thus, offering great

opportunities for parallelization.

Chapter 3. Exact Similarity Search 49

●●●

●
●

●

●

●

●

●

●

●●

●

●●
●

●●●●

●

●

●

●●●

●

100
102
104
106
108

25 100 1000
Dataset Size (GB)

#D
is

k
A

cc
es

se
s

(a) Sequential accesses
Varying dataset sizes

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●

●●●
●●●●

●
●●

●

100

102

104

106

108

256 2048 16384
Data Series Length

(b) Sequential accesses
Varying series lengths

●

●

●

●
●

●

●●

●
●

●
●

●●

●●●

●
●

100

102

104

106

25 100 1000
Dataset Size (GB)

#D
is

k
A

cc
es

se
s

(c) Random accesses
Varying dataset sizes

●
●

●

●●

●
●

●

●

●
●

● ●

●

●
●

●

●●●

●●

●

●

100
101
102
103
104
105
106

256 2048 16384
Data Series Length

(d) Random accesses
Varying series lengths

Figure 3.6: Number of disk accesses

iSAX2+. Figure 3.5c summarizes the results for iSAX2+, which is slower to build the

index compared to ADS+, but faster compared to DSTree. Query answering is faster

than ADS+ and slower than the DSTree.

MASS. Figure 3.5d reports the results for MASS, which has been designed mainly for

subsequence matching queries, but we adapted it for whole matching. The very high CPU

cost is due to the large number of operations involved in calculating Fourier transforms

and the dot product cost.

M-tree. For the M-tree, we were only able to run experiments with in-memory datasets,

because the only implementation we could use is a main memory index. The disk-aware

implementations did not scale beyond 1GB. Figure 3.5e shows the M-tree experimental

results for the 25GB and 50GB datasets, and the (optimistic) extrapolated results for

the 100GB and 250GB datasets. Note that going from 25GB to 50GB, the M-tree

Chapter 3. Exact Similarity Search 50

performance deteriorates by a factor of 3, even though both datasets fit in memory. (The

M-tree experiments for the 100GB and 250GB datasets were not able to terminate, so

we report extrapolated values in the graph, by multiplying the 50GB numbers by 3 and

9, respectively, which is an optimistic estimation.) These results indicate that M-tree

cannot scale to large dataset sizes.

R*-tree. Figure 3.5f shows the results for the R*-tree. Its performance deteriorates

rapidly as dataset sizes increase. Even using the best implementation among the ones we

tried, when the dataset reaches half the available memory, swapping causes performance

to degrade. Experiments on the 100GB and 250GB datasets were stopped after 24 hours.

SFA Trie. Figure 3.5g reports the cost of index building and query processing for SFA.

We observe that query processing dominates the total cost and that query cost is mostly

I/O, due to the optimal leaf size being rather large.

Stepwise. Figure 3.5h indicates the time it takes for Stepwise to build the DWHT tree

and execute the workload. The total cost is high and is dominated by query answering.

This is because answering one query entails filtering the data level by level and requires

locating the remaining candidate data corresponding to higher resolutions through ran-

dom I/O.

UCR Suite. Figure 3.5i shows the time it takes for the UCR-Suite to execute the work-

load. Its cost is naturally dominated by input time, being a sequential scan algorithm.

VA+file. We observe in Figure 3.5j that VA+file is efficient at index building, spending

most of the cost for query answering. The indexing and querying costs are dominated by

CPU and input time, respectively. The CPU cost is due to the time spent for determining

the bit allocation and decision intervals for each dimension; the input time is incurred

when accessing the non-pruned raw vectors.

Summary. Overall, Figure 3.5 shows that it takes Stepwise, MASS, the M-tree and the

R*-tree over 12 hours to complete the workload for the 250GB dataset, whereas the other

methods need less than 7 hours. Therefore, in the subsequent experiments, we will only

Chapter 3. Exact Similarity Search 51

include ADS+, DSTree, iSAX2+, SFA, the UCR suite and the VA+file.

3.4.3 Comparison of the Best Methods

In the following experiments, we use the best methods as identified above, and com-

pare them in more detail.

Disk Accesses vs Dataset Size/Sequence Length. Figure 3.6 shows the number of

sequential and random disk accesses incurred by the 100 exact queries of the Synth-Rand

workload for increasing dataset sizes and increasing lengths. When the dataset size is

varied, the length of the data series is kept constant at 256, whereas the dataset size is

kept at 100GB when the length is varied. We can observe that the VA+file and ADS+

perform the smallest number of sequential disk accesses across dataset sizes and data

series lengths, with the VA+ performing virtually none. As expected, the UCR-Suite

performs the largest number of sequential accesses regardless of the length of the series,

or the size of the dataset. This number is also steady across queries, thus its boxplot

is represented by a flat line. There is not a significant difference between the number

of sequential operations needed by the DSTree, SFA or iSAX2+ (DSTree does the least,

and SFA the most). SFA requires more sequential accesses, because its optimal leaf size

is 1M, as opposed to 100K for DSTree and iSAX2+.

As far as random I/O for different dataset sizes is concerned, ADS+ performs the

largest number of random accesses, followed by the VA+file. The DSTree and SFA incur

almost the same number of operations. However, the DSTree has a good balance between

the number of random and sequential I/O operations. It is interesting to point out that

as the dataset size increases, the number of random operations for iSAX2+ becomes

less skewed across queries. This is because of the fixed split-point nature of iSAX2+

that causes it to better distribute data among leaves when the dataset is large: in small

dataset sizes, many leaves can contain very few series.

When the dataset size is set to 100GB and the data series length is increased, we can

Chapter 3. Exact Similarity Search 52

●

●
●

●
●

●
● ●10

30

100

300

12
8

25
6

51
2
10

24
20

48
40

96
81

92

16
38

4

Dataset Series Length

To
ta

l T
im

e
(m

in
s)

(a) Idx+Exact100

●

●
●

●
●

●
● ●1000

3000

10000

12
8

25
6

51
2
10

24
20

48
40

96
81

92

16
38

4

Dataset Series Length

To
ta

l T
im

e
(m

in
s)

(b) Idx+Exact10K

Figure 3.7: Scalability with increasing lengths

observe a dramatic decrease of the number of random operations incurred by ADS+ and

VA+file. The reason is that both methods use a skip-sequential algorithm, so even if

the pruning ratio stays the same, when the data series is long, the algorithm skips larger

blocks of data, thus the number of skips decreases. The random I/Os across lengths for

the other methods remain quite steady, with SFA and DSTree performing the least.

Scalability/Search Efficiency vs Sequence Length. Figure 3.7 depicts the perfor-

mance of the different methods with increasing data series lengths. In order to factor out

other parameters, we fix the dataset size to 100GB, and the dimensionality of the methods

that use summarizations to 16, for all data series lengths. We observe that the indexing

and querying costs for ADS+ and VA+file plummet as the data series length increases,

whereas the cost of the other methods remains relatively steady across all lengths. This

is because with increasing lengths, both algorithms perform larger sequential reads on

the raw data file and fewer, contiguous skips. VA+file performs better than ADS+ since

it incurs less random and almost no sequential I/Os (Figure 3.6).

Scalability/Search Efficiency vs Dataset Size - HDD. Figure 3.8 compares the

scalability and search efficiency of the best methods on the HDD platform for the Synth-

Rand workload on synthetic datasets ranging from 25GB to 1TB. There are 4 scenarios:

Chapter 3. Exact Similarity Search 53

●
●

●
●

●

0.1

1.0

10.0

25 50 10
0

25
0
10

00

Dataset Size (GB)

To
ta

l T
im

e
(h

rs
)

(a) Idx

●
●

●

●

●

0.1

1.0

10.0

25 50 10
0

25
0

10
00

Dataset Size (GB)

(b) Exact100

●
●

●

●
●

●

0.1

1.0

10.0

25 50 10
0

25
0

50
0
10

00

Dataset Size (GB)

(c) Idx+Exact100

●
●

●

●
●

●

10

100

1000

25 50 10
0

25
0

50
0
10

00

Dataset Size (GB)

(d) Idx+Exact10K

Figure 3.8: Scalability comparison (HDD)

●
●

●
●

●

0.1

1.0

10.0

25 50 10
0

25
0
10

00

Dataset Size (GB)

To
ta

l T
im

e
(h

rs
)

(a) Idx

●
●

●
●

●

1

100

25 50 10
0

25
0

10
00

Dataset Size (GB)

(b) Exact100

●
●

●
●

●

1

100

25 50 10
0

25
0

10
00

Dataset Size (GB)

(c) Idx+Exact100

●
●

●
●

●

100

10000

25 50 10
0

25
0
10

00

Dataset Size (GB)

(d) Idx+Exact10K

Figure 3.9: Scalability comparison (SSD)

indexing (Idx), answering 100 exact queries (Exact100), indexing and answering 100 exact

queries (Idx+Exact100), and indexing and answering 10,000 queries (Idx+Exact10K).

Times are shown in log scale to reveal the performance on smaller datasets.

Figure 3.8a indicates only the indexing times. ADS+ outperforms all other methods

and is an order of magnitude faster than the slowest, DSTree. Figure 3.8b shows the

times for running 100 exact queries. We observe two trends in this plot. For in-memory

datasets, VA+file surpasses the other methods. For the larger datasets, the DSTree is a

clear winner, followed by VA+file, while the performance of the other methods converge

to that of sequential scan. Figure 3.8c refers to indexing and answering the 100 exact

queries. For in-memory datasets, ADS+ shows the best performance, with iSAX2+

performing equally well on the 25GB dataset. However, for larger datasets, VA+file

outperforms all other methods.

Figure 3.8d shows the time for indexing and answering 10K exact queries. The trends

now change. For in-memory datasets, iSAX2+ and VA+file outperform all other meth-

Chapter 3. Exact Similarity Search 54

ods, in particular ADS+. Both iSAX2+ and VA+file are slower than ADS+ in index

building, but this high initial cost is amortized over the large query workload.

The DSTree is the best contender for large data sets that do not fit in memory,

followed by VA+file and iSAX2+. The other methods perform similar to a sequential

scan. The DSTree has the highest indexing cost among these methods, but once the index

is built, query answering is very fast, thus being amortized for large query workloads.

The strength of the DSTree is based on its sophisticated splitting policy, the upper/lower

bounds used in query answering, and its parameter-free summarization algorithm.

Our results for in-memory datasets corroborate earlier studies [30] (i.e., ADS+ out-

performs alternative methods), yet, we additionally bring in the picture VA+file, which

is very competitive and had not been considered in earlier works. Moreover, for out-of-

memory data, our results show that ADS+ is not faster than sequential scan, as was

previously reported. The reason for this discrepancy in results lies with the different

hardware characteristics, which can significantly affect the performance of different algo-

rithms, both in relative, as well as in absolute terms. More specifically, the disks used

in [30] had 60% of the sequential throughput of the disks used in this paper. As a result,

ADS+ can be outperformed by a sequential scan of the data when the disk throughput is

high and the length of the sequences is small enough, where ADS+ is forced to perform

multiple disk seeks. Figures 3.6a and 3.6c clearly show that ADS+ performs the smallest

number of sequential disk operations and the largest number of random disk operations

across all datasets. In main-memory, SSDs, and with batched I/Os, ADS+ is expected

to perform significantly better.

Scalability/Search Efficiency vs Dataset Size - SSD. In order to further study the

effect of different hardware on the performance of similarity search methods, we repeated

the experiments described in the last paragraph on the SSD machine. We once again

tuned each index on the 100GB dataset to find the optimal leaf threshold, which this

time was an order of magnitude smaller than the optimal leaf size for the HDD platform.

Chapter 3. Exact Similarity Search 55

However, we were not able to perform experiments with our larger datasets with these

smaller leaf sizes, because the maximum number of possible split points was reached

before indexing the entire dataset. Although small leaf sizes can improve performance

on smaller datasets, they cannot be used in practice, since the index itself cannot be

constructed. Therefore, we iteratively increased the leaf sizes, and picked the ones that

worked for all datasets in our experiments: these leaf sizes proved to be the same as

the ones for the HDD platform. We note that the SFA trie was particularly sensitive to

parametrization.

There are two main observations on these results (see Figure 3.9). The first is that

VA+file and ADS+ are now the best performers on most scenarios. The only exceptions

are iSAX2+ surpassing ADS+ on the 25GB workload, and iSAX2+/SFA being faster

in indexing the in-memory datasets. As discussed earlier, the bottleneck of ADS+ and

VA+file is random I/O, so the fast performance of the SSD machine on random I/O

explains why they both win over the other methods. ADS+ is faster than VA+file at

indexing, while the opposite is true for query answering. The indexing cost of VA+file

is amortized in the 10K workload. The second observation is that UCR-Suite performs

poorly, due to the low disk throughput of the SSD server.

Memory/Disk Footprint vs Dataset Size. In this set of experiments, we compare

the disk and memory footprints of all methods. Figure 3.10a shows that SAX-based

indexes have the largest number of nodes. SFA has a very low number of nodes, because

the leaf size we use is 1,000,000 (refer to Figure 3.3), whereas the leaf sizes for DSTree and

iSAX2+ are both 100,000. The ADS+ index is indifferent to leaf size so we set its initial

value to 100,000. For all methods, most nodes are leaves, as shown in Figure 3.10b. Note

that ADS+ and iSAX2+ have the same tree structure with en equal number of nodes,

since the leaf size is the same.

As shown in Figures 3.10c and 3.10d, the size of the indexes in memory and on disk

follows the same trend as the number of nodes. Although ADS+ and iSAX2+ have the

Chapter 3. Exact Similarity Search 56

Table 3.2: Controlled workloads experimental results summary
(sequential scan algorithm is highlighted)

Scenarios
Dataset Idx Idx+ Idx+

Exact Exact Exact Exact Exact
100 100 10K Easy-20 Hard-20

H
D

D
Small A D S D D D
Large A D S D D D
Astro A U U V V U

Deep1B A U U U D U
SALD A D I D D D
Seismic A D S D D U

S
S
D

Small S D I D I D
Large S D I D I D
Astro I V V V V V

Deep1B S I I V I U
SALD S I I I I V
Seismic A V V V D V

A: ADS, D: DSTree, I: iSAX2+
S: SFA, U: UCR-Suite, V: VA+file

same tree shape, some of the data types and structures they use are not the same, thus the

different sizes in memory. For the VA+file, we only report the size of the approximation

file on disk, since it does not build an auxiliary tree structure.

We use two measures to compare the overall structure of the indexes. The first is

the leaf nodes fill factor, which measures the percentage of the leaf that is full, and gives

a good indication of whether the index distributes evenly the data among leaves. The

second measure is the depth of the leaves, which can help evaluate how balanced an

index is. While none of the best performing index trees is truly height-balanced, some

are better balanced in practice than others. Figure 3.10e shows the leaf nodes fill factor

for different dataset sizes and methods. (Note that VA+file is missing, since it has no

tree; though, if we consider as leaves the pages, where it stores the data, then the fill

factor of these pages is 100%.) We observe that SFA offers the least variability in the fill

factor for the small datasets (as indicated by the size of the boxplot), but the median fill

factor fluctuates as the data set changes. DSTree provides the highest median fill factor

Chapter 3. Exact Similarity Search 57

(a) Nodes (b) Leaf Nodes (c) Mem. Size (d) Disk Size

●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●●

●
●●●

●

●●
●

●
●

●●
●
●

●
●
●●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●
●●
●
●

●
●●

●●●
●
●
●
●●
●
●
●
●●
●
●●
●
●●
●
●

●

●
●●
●
●

●

●●
●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●●
●
●●
●
●

●
●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●
●
●

●

●
●

●●

●●
●
●●
●
●
●
●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●●
●●
●
●●
●
●
●
●
●

●

●
●●

●

●●
●

●

●

●
●

●●

●
●

●

●

●●

●

●●●

●

●
●
●
●
●
●●
●
●●
●●

●
●

●●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●
●
●
●
●●
●●●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●●●

●

●
●
●
●

●
●
●●
●●●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●●
●
●●

●

●
●
●●
●

●

●
●
●●
●
●
●
●
●●
●
●
●
●●●

●
●
●
●●

●
●
●

●
●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●
●

●
●●
●

●
●

●●●

●

●●●
●

●●●
●

●

●

●

●●●
●

●

●

●●

●

●
●
●
●●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●●

●
●●●

●

●●
●

●
●

●●
●
●

●
●
●●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●
●●
●
●

●
●●

●●●
●
●
●
●●
●
●
●
●●
●
●●
●
●●
●
●

●

●
●●
●
●

●

●●
●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●●
●
●●
●
●

●
●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●
●
●

●

●
●

●●

●●
●
●●
●
●
●
●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●●
●●
●
●●
●
●
●
●
●

●

●
●●

●

●●
●

●

●

●
●

●●

●
●

●

●

●●

●

●●●

●

●
●
●
●
●
●●
●
●●
●●

●
●

●●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●
●
●
●
●●
●●●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●●●

●

●
●
●
●

●
●
●●
●●●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●●
●
●●

●

●
●
●●
●

●

●
●
●●
●
●
●
●
●●
●
●
●
●●●

●
●
●
●●

●
●
●

●
●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●
●

●
●●
●

●
●

●●●

●

●●●
●

●●●
●

●

●

●

●●●
●

●

●

●●

●

●
●
●
●●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●●
●

●

●

●●

●

●●●●

●

●
●
●
●●
●●

●

●●●

●●

●
●●

●●

●
●●
●

●
●
●
●
●●●

●
●

●
●

●●●●

●
●●●
●
●
●●
●●●●
●

●

●
●●●●●

●
●
●●●
●
●

●●
●

●
●

●

●
●

●
●

●

●

●●

●

●●

●
●
●●
●●
●●

●

●

●

●
●
●

●
●●
●

●

●

●●●●

●●
●●

●

●

●
●●
●
●

●
●●

●●

●●
●
●
●
●●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●

●●

●
●

●

●●●

●

●
●
●
●

●●●
●●●
●

●

●

●
●

●

●
●

●●
●
●

●●●

●

●

●

●
●
●●

●

●

●
●
●●
●●

●

●

●

●
●
●

●

●

●

●
●
●
●●
●
●
●
●

●
●●
●

●
●
●
●

●

●

●●
●●●

●

●●
●

●

●●

●

●●
●

●

●●

●●

●●

●●

●●

●
●●

●

●
●
●●
●
●
●
●
●●
●
●
●●●
●

●
●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●

●
●
●
●

●

●

●
●

●
●
●
●
●
●
●

●●●

●

●
●●●

●
●●●

●

●●
●

●

●
●●
●

●
●
●●
●●
●

●●
●●●
●

●

●
●●●
●
●

●

●
●
●

●

●
●●

●

●●
●
●
●

●

●
●●
●
●
●●

●●●
●
●
●
●●
●
●
●
●●
●●
●●
●

●

●
●●
●

●
●●

●●
●

●●
●●

●
●

●
●
●●

●

●

●
●●
●
●
●●

●
●

●●
●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●●

●

●●●●
●

●

●

●
●
●

●●

●●

●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●
●●●●●

●

●

●
●
●
●●

●
●

●●
●●
●
●●
●
●●●

●

●
●●

●
●●

●●

●●●●

●

●●
●
●

●

●
●
●

●●●

●
●

●

●●●

●

●●●
●

●
●
●
●
●

●
●
●●●

●

●
●●
●
●●
●
●●
●●

●
●

●●
●
●

●
●

●

●●●●
●●
●

●
●
●
●
●

●
●
●
●
●

●

●
●
●●
●
●●
●●
●

●●

●●

●
●
●

●
●
●

●

●
●●

●

●
●●
●

●
●●
●
●

●
●
●●●

●

●
●
●
●
●
●●
●●●
●●

●
●

●●●●
●
●●
●

●●

●
●●

●
●

●
●●
●

●
●
●●
●
●

●
●
●
●●
●

●

●
●●
●●
●
●●
●
●
●
●●●
●
●
●
●●

●
●
●
●
●●
●

●

●
●
●
●
●
●
●●●
●
●●

●
●●

●

●●●●●●●●
●

●
●●●●
●

●
●
●●
●
●

●
●●
●

●

●●●

●

●●●
●

●●●
●

●

●

●

●

●

●●
●

●

●
●
●

●
●

●

●
●●
●
●
●

●

●

●●
●
●
●
●●
●

●
●●
●

●
●
●●
●
●

●●●●●
●●
●

●

●
●●
●

●
●

●
●

●

●●
●

●

●●

●

●●

●
●
●
●

●
●

●

●
●●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●●
●

●●

●●●●

●
●

●

●●

●
●

●
●

●
●●
●●●●

●
●
●
●●●

●

●

●●
●●
●
●
●
●
●●●
●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●●●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●
●●

●
●●●

●
●●●●
●●
●

●

●

●

●●

●●

●

●

●

●●●
●
●
●
●
●
●●
●

●

●●

●
●
●

●

●

●
●

●
●●

●

●●
●
●

●

●

●
●

●

●

●●●
●
●

●

●

●
●●
●

●●

●

●●

●
●●

●
●

●●

●
●

●

●
●
●●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●
●●

●

●
●
●
●
●●
●

●●

●●
●
●

●●●

●

●

●

●●●
●
●●

●
●
●●●●●
●
●●
●●

●

●
●
●

●

●

●
●
●●●
●●●●

●
●
●

●●●
●
●●
●
●●

●

●
●

●●

●

●

●
●

●●
●
●●
●

●
●●

●
●

●●
●

●

●

●●

●

●●●●

●

●
●
●
●●
●●

●

●●●

●●

●
●●

●●

●
●●
●

●
●
●
●
●●●

●
●

●
●

●●●●

●
●●●
●
●
●●
●●●●
●

●

●
●●●●●

●
●
●●●
●
●

●●
●

●
●

●

●
●

●
●

●

●

●●

●

●●

●
●
●●
●●
●●

●

●

●

●
●
●

●
●●
●

●

●

●●●●

●●
●●

●

●

●
●●
●
●

●
●●

●●

●●
●
●
●
●●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●

●●

●
●

●

●●●

●

●
●
●
●

●●●
●●●
●

●

●

●
●

●

●
●

●●
●
●

●●●

●

●

●

●
●
●●

●

●

●
●
●●
●●

●

●

●

●
●
●

●

●

●

●
●
●
●●
●
●
●
●

●
●●
●

●
●
●
●

●

●

●●
●●●

●

●●
●

●

●●

●

●●
●

●

●●

●●

●●

●●

●●

●
●●

●

●
●
●●
●
●
●
●
●●
●
●
●●●
●

●
●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●

●
●
●
●

●

●

●
●

●
●
●
●
●
●
●

●●●

●

●
●●●

●
●●●

●

●●
●

●

●
●●
●

●
●
●●
●●
●

●●
●●●
●

●

●
●●●
●
●

●

●
●
●

●

●
●●

●

●●
●
●
●

●

●
●●
●
●
●●

●●●
●
●
●
●●
●
●
●
●●
●●
●●
●

●

●
●●
●

●
●●

●●
●

●●
●●

●
●

●
●
●●

●

●

●
●●
●
●
●●

●
●

●●
●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●●

●

●●●●
●

●

●

●
●
●

●●

●●

●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●
●●●●●

●

●

●
●
●
●●

●
●

●●
●●
●
●●
●
●●●

●

●
●●

●
●●

●●

●●●●

●

●●
●
●

●

●
●
●

●●●

●
●

●

●●●

●

●●●
●

●
●
●
●
●

●
●
●●●

●

●
●●
●
●●
●
●●
●●

●
●

●●
●
●

●
●

●

●●●●
●●
●

●
●
●
●
●

●
●
●
●
●

●

●
●
●●
●
●●
●●
●

●●

●●

●
●
●

●
●
●

●

●
●●

●

●
●●
●

●
●●
●
●

●
●
●●●

●

●
●
●
●
●
●●
●●●
●●

●
●

●●●●
●
●●
●

●●

●
●●

●
●

●
●●
●

●
●
●●
●
●

●
●
●
●●
●

●

●
●●
●●
●
●●
●
●
●
●●●
●
●
●
●●

●
●
●
●
●●
●

●

●
●
●
●
●
●
●●●
●
●●

●
●●

●

●●●●●●●●
●

●
●●●●
●

●
●
●●
●
●

●
●●
●

●

●●●

●

●●●
●

●●●
●

●

●

●

●

●

●●
●

●

●
●
●

●
●

●

●
●●
●
●
●

●

●

●●
●
●
●
●●
●

●
●●
●

●
●
●●
●
●

●●●●●
●●
●

●

●
●●
●

●
●

●
●

●

●●
●

●

●●

●

●●

●
●
●
●

●
●

●

●
●●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●●
●

●●

●●●●

●
●

●

●●

●
●

●
●

●
●●
●●●●

●
●
●
●●●

●

●

●●
●●
●
●
●
●
●●●
●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●●●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●
●●

●
●●●

●
●●●●
●●
●

●

●

●

●●

●●

●

●

●

●●●
●
●
●
●
●
●●
●

●

●●

●
●
●

●

●

●
●

●
●●

●

●●
●
●

●

●

●
●

●

●

●●●
●
●

●

●

●
●●
●

●●

●

●●

●
●●

●
●

●●

●
●

●

●
●
●●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●
●●

●

●
●
●
●
●●
●

●●

●●
●
●

●●●

●

●

●

●●●
●
●●

●
●
●●●●●
●
●●
●●

●

●
●
●

●

●

●

●●●●

●

●

●●
●
●
●
●
●

●
●●

●

●●

●

●
●

●
●

●
●

●●●
●
●

●

●

●●●●●●
●

●

●

●

●
●
●

●

●●

●

●●

●

●

●
●●●
●

●

●

●

●●

●

●●●●

●

●●●
●●
●
●

●

●

●●●●
●

●

●●●●
●
●
●
●
●
●●

●

●
●
●●
●
●
●
●●
●●●

●●
●●
●
●

●
●●

●
●●

●
●
●
●

●
●●

●●

●
●
●●●●●●●●
●●
●●
●
●●
●●

●

●
●

●●

●

●●

●●●●

●●
●
●
●
●
●

●●

●●

●
●

●

●●

●
●

●

●
●
●

●
●

●

●●
●

●
●
●●●●●●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●●

●●●
●●●

●

●

●

●●
●●
●●
●
●
●
●
●
●●

●

●

●

●●●
●
●●
●

●

●
●
●

●●

●

●

●●
●●●●
●
●●
●

●
●●

●

●●●●●●

●
●

●●●
●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●
●

●
●
●

●
●
●●

●●

●
●

●
●●
●
●

●

●●
●

●

●●
●●●
●
●

●
●

●
●
●●●
●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●

●●

●

●

●
●●
●●
●

●

●

●●●●

●

●

●

●

●

●
●
●

●

●●●
●

●
●●

●
●

●

●

●

●
●

●

●

●●
●●●●
●●●●●
●
●●●●●●
●

●

●

●●

●

●●
●●
●●●●
●●

●
●

●
●
●●●●
●

●●

●
●●●
●
●
●
●●

●

●

●

●●

●●●

●●
●
●

●

●●●●
●●
●
●

●
●●●●
●

●

●

●●

●
●
●●

●
●

●

●●
●●

●

●
●

●

●●●●●●

●

●●

●

●
●

●●●

●●

●
●
●●●●●

●●●

●
●

●
●
●

●
●

●
●●

●●●●
●

●
●●
●●●

●

●

●
●

●●
●●

●

●
●

●
●
●

●

●●

●●
●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●

●

●●

●●

●●●
●

●

●

●

●●
●
●

●

●

●
●●

●
●

●
●
●●●●●●●
●●
●
●
●
●●
●●●

●

●

●

●
●
●

●●

●●

●
●●

●
●

●

●

●
●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●●

●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

1.00

100.00

25 10
0

10
00

Dataset Size (GB)

F
ill

 F
ac

to
r

(%
)

(e) Leaf fill factor

●

●●

●

●

●

●●●

●

●

●

●
●
●●

●

●

●
● ●

●

●●

●
●
●●●

●
●

●

●

●
●

●
●●●
●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●●
●

●

●●
●

●

●
●●

0.4

0.6

0.8

1.0

25
6

20
48

16
38

4

Data Series Length

Q
ue

ry
 T

LB

(f) TLB

Figure 3.10: Exact methods footprint and TLB for synthetic datasets

(as indicated by the line in the middle of the boxplot), which also remains steady with

increasing data set sizes. DSTree also displays the least skew and virtually no outliers,

which means that this index effectively partitions the dataset and distributes the series

across all its leaves. The SAX-based indexes have many outliers, with some leaves being

full and others being empty. The graph showing the depth of the indexes can be found

elsewhere [93].

Tightness of the Lower Bound. Figure 3.10f shows the TLB (defined in Section 4.4.2)

of each method for increasing data series lengths. We observe that the TLBs of ADS+

and VA+file increase rapidly with increasing lengths, then stabilize when they reach a

value close to 1. This explains why the performance of both methods improves with

longer series. We also note that VA+file has a slightly tighter lower bound than ADS+,

Chapter 3. Exact Similarity Search 58

●●

●●●

●
●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●●
●
●●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●●●

●●●●●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●

●●

●●●

●●

●●●

●●●●

●

●●●●

●●●●●●●●●●●●

●●●●

●

●
●

●

●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●
●
●
●●

●

●

●

●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●

●

●●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

0.00

0.25

0.50

0.75

1.00

ADS+ iSAX2+ DSTree SFA VA+file
Algorithm

P
ru

ni
ng

 R
at

io Workload
Synth−Rand
Synth−Ctrl
SALD−Ctrl
Seismic−Ctrl
Astro−Ctrl
Deep−Orig
Deep−Ctrl

Figure 3.11: Pruning ratio
(Dataset Size= 100GB, Workload = 100 Queries)

thanks to its non-uniform discretization scheme, which helps explain why VA+file incurs

less random I/O than ADS+, and thus performs better. The TLB of the SFA trie is low

compared to the other methods, although we used the tight lower bounding distance of

SFA (which uses the DFT MBRs). We believe this is due to the optimal alphabet size of

8, which is rather small compared to the default alphabet size of 256 for the SAX-based

methods. As for iSAX2+ and DSTree, the main difference in the TLB is that it becomes

virtually constant as the length increases.

Pruning Ratio. We measure the pruning ratio (higher is better) for all indexes across

datasets and data series lengths. For the Synth-Rand workload on synthetic datasets, we

varied the size from 25GB to 1TB and the length from 128 to 16384. We observed that

the pruning ratio remained stable for each method and that overall ADS+ and VA+file

have the best pruning ratio, followed by DSTree, iSAX2+ and SFA. We also ran experi-

ments with a real workload (Deep-Orig), a controlled workload on the 100GB synthetic

dataset (Synth-Ctrl), and controlled workloads on the real datasets (Astro-Ctrl, Deep-

Ctrl, SALD-Ctrl and Seismic-Ctrl). In the controlled workloads, we extract series from

the dataset and add noise. Figure 3.11 summarizes these results. For lack of space, we

only report the pruning ratio for the real datasets (all of size 100GB) and the 100GB

synthetic dataset. The pruning ratio for Synth-Rand is the highest for all methods. We

observe that the Synth-Ctrl workload is more varied than Synth-Rand since it contains

harder queries with lower pruning ratios. The trend remains the same with ADS+ and

Chapter 3. Exact Similarity Search 59

VA+file having the best pruning ratio overall, followed by DSTree, iSAX2+ then SFA.

For real dataset workloads, ADS+ and VA+file achieve the best pruning, followed by

iSAX2+, DSTree, and then SFA. The relatively low pruning ratio for the SFA is most

probably due to the large leaf size of 1,000,000. Once a leaf is retrieved, SFA accesses

all series in the leaf, which reduces the pruning ratio significantly. VA+file has a slightly

better pruning ratio than ADS+, because it performs less random and sequential I/O,

thanks to its tighter lower bound. We note that the pruning ratio alone does not predict

the performance of an index. In fact, this ratio provides a good estimate of the number

of sequential operations that a method will perform, but it should be considered along

with other measures like the number of random disk I/Os.

Scalability/Search Efficiency with Real Datasets. In Table 3.2, we report the

name of the best method for each scenario. In addition to the four scenarios discussed

earlier, we also consider two new scenarios: the average time of the 20 easiest queries

(Easy-20) and the average time of the 20 hardest queries (Hard-20) of the corresponding

workload. A query is considered easy, or hard, depending on its pruning ratio (computed

as the average across all techniques) [149].

It is important to note that while queries are categorized as easy and hard, easy

queries on one dataset may be harder than easy queries on another dataset, as the

average pruning ratio for each dataset differs. This is because some datasets can be

summarized more effectively than others. We averaged the results over 20 hard queries

and 20 easy queries. In-memory datasets are labeled small and the others large.

We observe that UCR-Suite wins in exact query answering and on hard queries for the

Astro/Deep1B scenarios. This is due to the very low pruning ratio for these workloads.

DSTree is fast on easy queries and exact query answering on the SALD/Seimic scenarios.

ADS+ always wins in indexing on HDD, but is sometimes surpassed by iSAX2+/SFA

on SSD. Similarly to synthetic datasets, the methods behave differently on real datasets

Chapter 3. Exact Similarity Search 60

when experiments are ran on the SSD platform. VA+file and iSAX2+ have a superior

performance overall. DSTree also performs well, while UCR-Suite wins only on hard

queries on the Deep1B dataset.

The complete results for the controlled workloads on the both the HDD and SSD

platforms are found in Figures 3.12 to 3.17.

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

61

0
10
20
30

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(a) Rand-Ctrl (easy)

0

50

100

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(b) Rand-Ctrl (hard)

0
25
50
75

100
125

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(c) SALD-Ctrl (easy)

0
50

100
150

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(d) SALD-Ctrl (hard)

0
25
50
75

100

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(e) Seismic-Ctrl (easy)

0
200
400
600
800

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(f) Seismic-Ctrl (hard)

0
200
400
600

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(g) Deep-Ctrl (easy)

0
500

1000
1500

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(h) Deep-Ctrl (hard)

0
100
200
300
400

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(i) Astronomy-Ctrl (easy)

0
500

1000
1500
2000

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(j) Astronomy-Ctrl (hard)

Figure 3.12: Average time of queries with different difficulty (HDD)

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

62

0
25
50
75

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(a) Rand-Ctrl (easy)

0
25
50
75

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(b) Rand-Ctrl (hard)

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(c) SALD-Ctrl (easy)

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(d) SALD-Ctrl (hard)

0

100

200

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(e) Seismic-Ctrl (easy)

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(f) Seismic-Ctrl (hard)

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(g) Deep-Ctrl (easy)

0
100
200
300
400

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(h) Deep-Ctrl (hard)

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(i) Astronomy-Ctrl (easy)

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(s

ec
s)

(j) Astronomy-Ctrl (hard)

Figure 3.13: Average time of queries with different difficulty (SSD)

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

63

0
2
4
6

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(a) Rand-Ctrl

0
1
2
3

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(b) SALD-Ctrl

0
2
4
6
8

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(c) Seismic-Ctrl

0
5

10
15
20
25

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(d) Deep-Ctrl

0
5

10
15
20
25

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(e) Astronomy-Ctrl

Figure 3.14: Indexing and answering 100 queries (HDD)

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

64

0
2
4
6

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(a) Rand-Ctrl

0.0
2.5
5.0
7.5

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(b) SALD-Ctrl

0
2
4
6
8

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(c) Seismic-Ctrl

0.0
2.5
5.0
7.5

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(d) Deep-Ctrl

0.0
2.5
5.0
7.5

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(e) Astronomy-Ctrl

Figure 3.15: Indexing and answering 100 queries (SSD)

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

65

0
200
400

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(a) Rand-Ctrl

0
100
200
300

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(b) SALD-Ctrl

0
200
400
600

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(c) Seismic-Ctrl

0
500

1000
1500
2000
2500

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(d) Deep-Ctrl

0
500

1000
1500
2000
2500

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(e) Astronomy-Ctrl

Figure 3.16: Indexing and answering 10K queries (HDD)

C
h
a
p
t
e
r
3
.

E
x
a
c
t
S
im

il
a
r
it
y
S
e
a
r
c
h

66

0
200
400
600

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(a) Rand-Ctrl

0
250
500
750

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(b) SALD-Ctrl

0
200
400
600
800

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(c) Seismic-Ctrl

0
250
500
750

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(d) Deep-Ctrl

0
250
500
750

ADS+
DSTr

ee
iS

AX2+ SFA
VA

+f
ile

UCR−S
uit

e

Algorithm

T
im

e
(h

ou
rs

)

(e) Astronomy-Ctrl

Figure 3.17: Indexing and answering 10K queries (SSD)

Chapter 3. Exact Similarity Search 67

3.5 Discussion

In the data series literature, competing similarity search methods have never been

compared together under a unified experimental scheme. The objective of this experi-

mental evaluation is to consolidate previous work on data series whole-matching similarity

search and prepare a solid ground for further developments in the field.

We undertook a challenging and laborious task, where we re-implemented from scratch

four algorithms: iSAX2+, SFA trie, DSTree, and VA+file, and optimized memory man-

agement problems (swapping, and out-of-memory errors) in R*-tree, M-tree, and Step-

wise. Choosing C/C++ provided considerable performance gains, but also required low-

level memory management optimizations. We believe the effort involved was well worth

it since the results of our experimental evaluation emphatically demonstrate the impor-

tance of the experimental setup on the relative performance of the various methods.

To further facilitate research in the field we publicize our source code and experimental

results [93]. This section summarizes the lessons learned in this study.

Unexpected Results. For some of the algorithms our experimental evaluation revealed

some unexpected results.

(1) The Stepwise method performed lower than our expectations. This was both due

to the fact that our baseline sequential scan was fully optimized for early abandoning

and computation optimization, but most importantly because of a different experimental

setup. The original implementation of Stepwise performed batched query answering. In

our case we compared all methods on single query at a time workload scenario. This

demonstrates the importance of the experimental setup and workload type.

(2) The VA+file method performed extremely well. Although an older method, VA+file

is among the best performers overall. Our optimized implementation, which is much

faster than the original version, helped unleash the best of this method; this demon-

strates the importance of the implementation framework.

(3) For exact queries on out-of-memory data on the HDD machine, ADS+ is under-

Chapter 3. Exact Similarity Search 68

performing. The reason is that ADS+ performs multiple skips while pruning at a per

series level and is thus significantly affected by the hard disk’s latency. In the original

study [30], ADS+ was run on a machine with 60% of the hard disk throughput of the

one used in the current work. The HDD setup with the 6 RAID0 disks gave a significant

advantage on methods that perform sequential scans on larger blocks of data and less

skips. On the SSD machine, however, the trend is reversed, and ADS+ becomes one

of the best contenders overall. These observations demonstrate the importance of the

hardware setup.

(4) The optimal parameters of most algorithms were different than the ones presented

in their respective papers. This is because some methods were not tuned before: the

iSAX2+, DSTree and SFA papers have no tuning experiments. We tuned each for vary-

ing leaf and buffer sizes (for brevity, we only report results for leaf parametrization in

Figure 3.3 (for buffer tuning experiments, see [93]). For SFA, we also tuned the sample

size used to identify the breakpoints, binning method (equi-depth vs. equi-width), and

number of symbols for the SFA discretization. Another reason is that we studied in more

detail methods that were partially tuned (e.g., ADS+ was tuned only for varying leaf

size; we also varied buffer size and found that assigning most of RAM to buffering hurts

performance). These findings further demonstrate the need for careful parameter-tuning.

(5) The quality of the summarization, as measured by TLB and pruning, is not nec-

essarily correlated to time performance. An early experimental study [148] claimed that

the tightness of the lower bound can be used alone to evaluate the efficiency of indexing

techniques. While summarization quality is an important factor on its own, we demon-

strate that it cannot alone predict the time performance of an index, even in the absence

of data and implementation biases. For example, ADS+ achieves very high pruning and

TLB, yet, in terms of time, it is outperformed by other methods in some scenarios. It is

of crucial importance to consider summarization quality alongside the properties of the

index structure and the hardware platform.

Chapter 3. Exact Similarity Search 69

Speed-up Opportunities. Through our analysis, we identified multiple factors that

affect the performance of examined methods. In turn, these factors reveal opportunities

and point to directions for performance improvements.

(1) Stepwise offers many such avenues. Its storage scheme could be optimized to

reduce the number of random I/O during query answering, and its query answering

algorithm would benefit a lot from parallelization and modern hardware optimizations

(i.e., through multi-core and SIMD parallelism), as 50%-98% of total time is CPU.

(2) DSTree is very fast at query answering, but rather slow at index building. Nev-

ertheless, a large percentage of this time (85-90%) is CPU. Therefore, also the indexing

performance of DSTree can be improved by exploiting modern hardware. Moreover, bulk

loading during indexing, and buffering during querying, would also make it even faster.

(3) A similar observation holds for VA+file and MASS. Even though MASS is not

designed for whole-matching data series similarity search, its performance can be sig-

nificantly enhanced with parallelism and modern hardware exploitation, since 90% of

its execution time is CPU cost. Similarly, the indexing cost of VA+file can be further

improved.

(4) Finally, we obtained a better understanding of the ADS+ algorithm. Apart from

being very fast in index building, our results showed that it also has a leading performance

for whole-matching similarity search for long data series. We also discovered that the

main bottleneck for ADS+ are the multiple skips performed during query answering.

Its effects could be masked by controlling the size of the data segments skipped (i.e.,

skipping/reading large continuous blocks), and through asynchronous I/O. Moreover,

because of its very good pruning power (that leads to an increased number of skips),

we expect ADS+ to work well whenever random access is cheap, e.g., with SSDs and

main-memory systems.

Data-adaptive Partitioning. While the SFA trie and iSAX-based index building

algorithms are much faster than the DSTree index building algorithm, their performance

Chapter 3. Exact Similarity Search 70

during query answering is much worse than that of DSTree. DSTree spends more time

during indexing, intelligently adapting its leaf summarizations when split operations are

performed. This leads to better data clustering and as a result faster query execution.

On the contrary, both iSAX and SFA have fixed maximum resolutions, and iSAX indexes

can only perform splits on predefined split-points. Even though iSAX summarizations at

full resolution offer excellent pruning power (see ADS+ in Figure 3.11), grouping them

using fixed split-points in an iSAX-based index does not allow for effective clustering

(see Figure 3.10e). This is both an advantage (indexing is extremely fast), but also a

drawback as it does not allow clustering to adapt to the dataset distribution.

Access-Path Selection. Finally, our results demonstrate that the pruning ratio, along

with the ability of an index to cluster together similar data series in large contiguous

blocks of data, is crucial for its performance. Moreover, our results confirm the intuitive

result that the smaller the pruning ratio, the higher the probability that a sequential scan

will perform better than an index, as can be observed for the hard queries in Table 3.2.

This is because it will avoid costly random accesses patterns on a large part of the dataset.

However, the decision between a scan or an index, and more specifically, the choice of an

index, is not trivial, but is based on a combination of factors: (a) the effectiveness of the

summarization used by the index (which can be estimated by the pruning ratio); (b) the

ability of the index to cluster together similar data series (which determines the access

pattern); and (c) the hardware characteristics (which dictate the data access latencies).

This context gives rise to interesting optimization problems, which have never before

been studied in the domain of data series similarity search.

Recommendations. Figure 4.10 presents a decision matrix that reports the best ap-

proach to use for problems with different data series characteristics, given a specific

hardware setup (i.e., HDD) and query workload (i.e., Indexing + 10K synthetic queries).

In general though, choosing the best approach to answer a similarity query on massive

data series is an optimization problem, and needs to be studied in depth.

Chapter 3. Exact Similarity Search 71

In−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long Series Disk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long Series

In−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short Series Disk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short Series

decision depends on dataset sizedecision depends on dataset sizedecision depends on dataset sizedecision depends on dataset sizedecision depends on dataset sizedecision depends on dataset size

decision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and length

iSAX2+ DSTree

VA+file

DSTree

VA+file

DSTree

DATASET SIZE

S
E

R
IE

S
 L

E
N

G
T

H

Figure 3.18: Recommendations
(Indexing and answering 10K queries on HDD)

3.6 Conclusions

In this chapter, we presented the results of the most thorough experimental com-

parison in the literature of the state-of-the-art exact high-dimensional similarity search

methods, which had never before been compared at equal footing to one another. We

examined which approaches are good candidates for parallelization and modern hard-

ware optimizations after assessing their strengths and weaknesses. We also pin-pointed

the approaches which better withstand the curse of dimensionality, those which scale

better with large datasets and workloads and identified the DSTree, iSAX2+ and the

VA+file to be the best choices overall. We introduced for the first time in an experimen-

tal evaluation, query workloads that differentiate between easy and hard queries, which

enable to stress-test a wide variety of high-dimensional similarity search methods. Our

results paint a clear picture of the strengths and weaknesses of the various approaches,

and indicate promising research directions.

Chapter 4

Approximate Similarity Search

Data series are a special type of high-dimensional data present in numerous domains,

where similarity search is a key operation that has been extensively studied in the data se-

ries literature, leading to the development of efficient exact indexing methods. In parallel,

the high-dimensional community has studied approximate similarity search techniques.

In this chapter1, we propose a new class of efficient approximate similarity search tech-

niques with theoretical guarantees based on modifications to exact data series indexes,

and conduct a thorough experimental evaluation to compare these techniques to state-

of-the-art methods under a unified framework. Although data series differ from generic

high-dimensional vectors (series usually exhibit correlation between neighboring values),

our results show that our techniques answer approximate similarity queries with strong

guarantees and an excellent empirical performance, on data series and vectors alike, out-

performing the state-of-the-art approximate techniques for vectors when operating on

disk, and remaining competitive in memory.

The chapter is organized in seven sections. We summarize our contributions in sec-

tion 4.1, describe our proposed techniques in 4.3, survey the state-of-the-art approximate

techniques in section 4.2, outline our experimental framework and present results and an

elaborate discussion in sections 4.4, 4.5 and 4.6, then conclude the chapter in section 4.7.

1This chapter is a slightly modified version of [96].

72

Chapter 4. Approximate Similarity Search 73

4.1 Main Contributions

Our key contributions are as follows:

1. Following the taxonomy we presented in Chapter 2, we include a brief survey

of similarity search approaches supporting approximate search, bringing together works

from the data series and high-dimensional data research communities.

2. We propose a new set of approximate approaches with theoretical guarantees on

accuracy and excellent empirical performance, based on modifications to the current data

series exact methods.

3. We evaluate all methods under a unified framework to prevent implementation bias.

We used the most efficient C/C++ implementations available for all approaches, and

developed from scratch in C the ones that were only implemented in other programming

languages. Our new implementations are considerably faster than the original ones.

4. We conduct the first comprehensive experimental evaluation of the efficiency and

accuracy of data series approximate similarity search approaches, using synthetic and

real series and vector datasets from different domains, including the two largest vector

datasets publicly available.

5. Our results unveil the strengths and weaknesses of each method, and lead to

recommendations as to which approach to use.

6. Based on our thorough evaluation, we make an important observation that has

never been made in the past: methods derived from the exact data series indexing ap-

proaches generally surpass the state-of-the-art techniques for approximate search in vec-

tor spaces. This finding paves the way for exciting new developments in the field of

approximate similarity search for data series and high-dimensional data at large.

7. We share all source codes, datasets, and queries [94].

Chapter 4. Approximate Similarity Search 74

4.2 Approaches

Similarity search methods aim at answering a query efficiently by limiting the number

of data points accessed, while minimizing the I/O cost of accessing raw data on disk

and the CPU cost when comparing raw data to the query (e.g., Euclidean distance

calculations). These goals are achieved by exploiting summarization techniques, and

using efficient data structures (e.g., an index) and search algorithms. Note that solutions

based on sequential scans are geared to exact similarity search [5, 27], and cannot support

efficient approximate search, since all candidates are always read.

Answering a similarity query using an index typically involves two steps: a filtering

step where the pre-built index is used to prune candidates and a refinement step where

the surviving candidates are compared to the query in the original high-dimensional

space [40, 41, 20, 28, 30, 42, 25, 43, 44, 31]. Some exact [41, 20, 43, 42] and approximate

methods [26, 45] first summarize the original data and then index these summarizations,

while others tie together data reduction and indexing [28, 30, 25]. Some approximate

methods return the candidates obtained in the filtering step [45]. There also exist ex-

act [46] and approximate [29] methods that index high-dimensional data directly.

A variety of data structures exist for similarity search indexes, including trees [40, 43,

28, 30, 25, 44, 31, 26, 42], inverted indexes [47, 48, 49, 45], filter files [41, 20, 30], hash

tables [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] and graphs [61, 62, 63, 64, 65, 66, 67, 29].

There also exist multi-step approaches, e.g., Stepwise [24], that transform and organize

data according to a hierarchy of resolutions.

Next, we outline the approximate similarity search methods (refer also to Table 4.1)

and their summarization techniques. (Exact methods are detailed in Chapter 3).

C
h
a
p
t
e
r
4
.

A
p
p
r
o
x
im

a
t
e
S
im

il
a
r
it
y
S
e
a
r
c
h

75

Table 4.1: Similarity search methods used in this study (”•” indicates our modifications to original methods).
All methods support in-memory data, but only methods ticked in last column support disk-resident data.

Matching Accuracy Representation Implementation
exact ng-appr. ε-appr. δ-ε-appr. Raw Reduced Original New Disk-resident Data

Graphs
HNSW [29] X C++
NSG [168] X C++

Inv. Indexes IMI [45, 159] OPQ C++ X

LSH
QALSH [60] Signatures C++

SRS [26] Signatures C++
Scans VA+file [20] • • • DFT MATLAB C X

Trees

Flann [169] X C++
DSTree [25] [25] • • EAPCA Java C X

HD-index [170] Hilbert keys C++ X
iSAX2+ [28] [28] • • iSAX C# C X

Chapter 4. Approximate Similarity Search 76

4.2.1 Summarization Techniques

Random projections (used by SRS [26]) reduce the original high-dimensional data

into a lower dimensional space by multiplying it with a random matrix. The Johnson-

Lindenstrauss (JL) Lemma [171] guarantees that if the projected space has a large enough

number of dimensions, there is a high probability that the pairwise distances are pre-

served, with a distortion not exceeding (1 + ε).

Piecewise Aggregate Approximation (PAA) [154] and Adaptive Piecewise Constant

Approximation (APCA) [155] are segmentation techniques that approximate a data series

S using l segments (of equal/arbitrary length, respectively). The approximation repre-

sents each segment with the mean value of its points. The Extended APCA (EAPCA) [25]

technique extends APCA by representing each segment with both the mean and the stan-

dard deviation.

Quantization is a lossy compression process that maps a set of infinite numbers to a fi-

nite set of codewords that together constitute the codebook. A scalar quantizer operates

on the individual dimensions of a vector independently, whereas a vector quantizer con-

siders the vector as a whole (leveraging the correlation between dimensions [172]). The

size k of a codebook increases exponentially with the number of bits allocated for each

code. A product quantizer [47] splits the original vector of dimension d into m smaller

subvectors, on which a lower-complexity vector quantization is performed. The codebook

then consists of the cartesian product of the codebooks of the m subquantizers. Scalar

and vector quantization are special cases of product quantization, where m is equal to d

and 1, respectively.

(i) Optimized Product Quantization (OPQ) (used by IMI [159]) improves the accuracy of

the original product quantizer [47] by adding a preprocessing step consisting of a linear

transformation of the original vectors, which decorrelates the dimensions and optimizes

space decomposition. A similar quantization technique, CK-Means, was proposed in [173]

but OPQ is considered the state-of-the-art [174, 175].

Chapter 4. Approximate Similarity Search 77

(ii) The Symbolic Aggregate Approximation (SAX) [156] technique starts by transforming

the data series into l real values using PAA, and then applies a scalar quantization

technique to represent the PAA values using discrete symbols forming an alphabet of

size a, called the cardinality of SAX. The l symbols form the SAX representation. The

iSAX [157] technique allows comparisons of SAX representations of different cardinalities,

which makes SAX indexable.

(iii) The Karhunen-Loève transform (KLT). The original VA+file method [20] first con-

verts a data series S of length n using KLT into n real values to de-correlate the data,

then applies a scalar quantizer to encode the real values as discrete symbols. As we will

explain in the next subsection, for efficiency considerations, we altered the VA+file to use

the Discrete Fourier Transform (DFT) instead of KLT. DFT [120, 124, 151, 152] approxi-

mates a data series using l frequency coefficients, and can be efficiently implemented with

Fast Fourier Transform (FFT), which is optimal for whole matching (alternatively, the

MFT algorithm [153] is adapted to subsequence matching since it uses sliding windows).

4.2.2 Approximate Similarity Search Methods

There exist several techniques for approximate similarity search [50, 158, 176, 177,

21, 178, 179, 180, 26, 159, 29, 90] [181, 182, 183]. We focus on the 7 most prominent

techniques designed for high-dimensional data, and we also describe the approximate

search algorithms designed specifically for data series. We also propose a new set of

techniques that can answer δ-ε-approximate queries based on modifications to existing

exact similarity methods for data series.

State-of-the-Art for High-dimensional Vectors

Flann [169] is an in-memory ensemble technique for ng-approximate nearest neighbor

search in high-dimensional spaces. Given a dataset and a desired search accuracy, Flann

selects and auto-tunes the most appropriate algorithm among randomized kd-trees [184]

Chapter 4. Approximate Similarity Search 78

and a new proposed approach based on hierarchical k-means trees [169].

HD-index [170] is an ng-approximate nearest neighbor technique that partitions the

original space into disjoint partitions of lower dimensionality, then represents each parti-

tion by an RBD tree (modified B+tree with leaves containing distances of data objects

to reference objects) built on the Hilbert keys of data objects. A query Q is partitioned

according to the same scheme, searching the hilbert key of Q in the RDB tree of each par-

tition, then refining the candidates first using approximate distances based on triangular

and Ptolemaic inequalities then using the real distances.

HNSW. HNSW [29] is an in-memory ng-approximate method that belongs to the class

of proximity graphs that exploit two fundamental geometric structures: the Voronoi

Diagram (VD) and the Delaunay Triangulation (DT). A VD is obtained when a given

space is decomposed using a finite number of points, called sites, into regions such that

each site is associated with a region consisting of all points that are closer to it than to

any other site. The DT is the dual of the VD. It is constructed by connecting sites with

an edge if their regions share a side. Since constructing a DT for a generic metric space

is not always possible (except if the DT is the complete graph) [185], proximity graphs,

which approximate the DT by conserving only certain edges, have been proposed [61,

62, 63, 64, 65, 66, 67, 29]. A k-NN graph is a proximity graph, where only the links

to the closest neighbors are preserved. Such graphs suffer from two limitations: (i) the

curse of dimensionality; and (ii) the poor performance on clustered data (the graph has

a high probability of being disconnected). To address these limitations, the Navigable

Small World (NSW) method [65] proposed to heuristically augment the approximation

of the DT with long range links to satisfy the small world navigation properties [186].

The HNSW graph [29] improves the search efficiency of NSW by organizing the links

in hierarchical layers according to their lengths. Search starts at the top layer, which

contains only the longest links, and proceeds down the hierarchy. HNSW is considered

the state-of-the-art [187].

Chapter 4. Approximate Similarity Search 79

NSG [168] is a recent in-memory proximity graph approach that approximates a graph

structure called MRNG [168] which belongs to the class of Monotonic Search Networks

(MSNET). Building an MRNG graph for large datasets becomes impractical; that is why

the state-of-the-art techniques approximate it. NSG approximates the MRNG graph by

relaxing the monotonicity requirement and edge selection strategy, and dropping the

longest edges in the graph.

IMI. Among the different quantization-based inverted indexes proposed in the litera-

ture [47, 48, 49, 45], IMI [159, 45] is considered the state-of-the-art [175]. This class of

techniques builds an inverted index storing the list of data points that lie in the prox-

imity of each codeword. The codebook is the set of representative points obtained by

performing clustering on the original data. When a query arrives, the ng-approximate

search algorithm returns the list of all points corresponding to the closest codeword (or

list of codewords).

LSH. The LSH family [188] encompasses a class of randomized algorithms that solve

the δ-ε-approximate nearest neighbor problem in sub-linear time, for δ < 1. The main

intuition is that two points that are nearby in a high-dimensional space, will remain

nearby when projected to a lower dimensional space [50]. LSH techniques partition points

into buckets using hash functions, which guarantee that only nearby points are likely to

be mapped to the same bucket. Given a dataset S and a query SQ, L hash functions are

applied to all points in S and to the query SQ. Only points that fall at least once in the

same bucket as SQ, in each of the L hash tables, are further processed in a linear scan

to find the δ-ε-approximate nearest-neighbor. There exist many variants of LSH, either

proposing different hash functions to support particular similarity measures [51, 52, 53,

58], or improving the theoretical bounds on query accuracy (i.e., δ or ε), query efficiency

or the index size [54, 55, 56, 57, 58, 59, 26, 60] [189]. In this work, we select SRS [26] and

QALSH [60] to represent the class of LSH techniques because they are considered the

state-of-the-art in terms of footprint and accuracy, respectively [170]. SRS answers δ-ε-

Chapter 4. Approximate Similarity Search 80

approximate queries using size linear to the dataset size, while empirically outperforming

other LSH methods (with size super-linear to the dataset size [51]). QALSH is a query-

aware LSH technique that partitions points into buckets using the query as anchor. Other

LSH methods typically partition data points before a query arrives, using a random

projection followed by a random shift. QALSH, does not perform the second step until a

query arrives, thus improving the likelihood that points similar to the query are mapped

to the same bucket.

State-of-the-Art for Data Series

While a number of data series methods support approximate similarity search [190,

191, 19, 21, 23, 42, 25, 28, 30], we focus on those that fit the scope of this study, i.e.,

methods that support out-of-core k-NN queries with Euclidean distance. In particular,

we examine DSTree [25], iSAX2+ [28], and VA+file [20], the three data series methods

that perform the best in terms of exact search [95], and also inherently support ng-

approximate search.

DSTree [25] is a tree index based on the EAPCA summarization technique and supports

ng-approximate and exact query answering. Its dynamic segmentation algorithm allows

tree nodes to split vertically and horizontally, unlike the other data series indexes which

allow either one or the other. The DSTree supports a lower and upper bounding distance

and uses them to calculate a QoS measure that determines the optimal way to split any

given node. We significantly improved the efficiency of the original DSTree Java imple-

mentation by developing it from scratch in C and optimizing its buffering and memory

management, making it 4 times faster across datasets ranging between 25-250GB.

SAX-based indexes include different flavors of tree indexes based on SAX summariza-

tion [164]. The original iSAX index [146] was enhanced with a better spliting policy and

bulk-loading support in iSAX 2.0 [23], while iSAX2+ [28] further optimized bulk-loading.

ADS+ [30] then improved upon iSAX2+ by making it adaptive, Coconut [192, 193, 34]

Chapter 4. Approximate Similarity Search 81

by constructing a compact and contiguous data layout, and DPiSAX [44, 33], ParIS [32]

and MESSI [38] by exploiting parallelization. Here, we use iSAX2+, because of its excel-

lent performance [95] and the fact that the SIMS query answering strategy [30] of ADS+,

Coconut, and ParIS is not immediately amenable to approximate search with guarantees

(we plan to extend these methods in our future work). We do not include DPiSAX and

MESSI, because they are distributed, and in-memory only, algorithms, respectively.

TARDIS [194] is a distributed indexing method that supports exact and ng-approximate

kNN queries. It improves the efficiency and accuracy of iSAX by building a more compact,

k-ary tree index, exploiting word-level (instead of character-level) cardinality, and using

a novel conversion scheme between SAX representations. We do not include TARDIS in

the experimental evaluation since it is a distributed algorithm (built in Scala for Spark).

VA+file [20] is a skip-sequential method that improves the accuracy and efficiency of

the VA-file [41]. Both techniques create a file that contains quantization-based summa-

rizations of the original high-dimensional data. Search proceeds by sequentially reading

each summarization, calculating its lower bounding distance to the query, and accessing

the original high-dimensional vector only if the lower bounding distance is less than the

current best-so-far (bsf) answer. We greatly improved the performance of the original

VA+file by approximating KLT with DFT [20, 163] and implementing it in C instead

of Matlab. In the rest of the text, whenever we mention the VA+file, we refer to the

modified version.

4.3 A New Class of Approximate Search Techniques

We now propose extensions to the data series methods described above, that will

allow them to support ε-approximate and δ-ε-approximate search (in addition to ng-

approximate search that they already support). For brevity, we only discuss the tree-

Chapter 4. Approximate Similarity Search 82

Algorithm 1 exactNN(SQ,idx)

1: bsf.dist ← ∞ ; bsf.node ← NULL;
2: for each rootNode in idx do
3: result.node ← rootNode;
4: result.dist ← calcMinDist(SQ,rootNode);
5: push result to pqueue

6: bsf ← ng-approxNN(SQ,idx);
7: add bsf to pqueue;
8: while result ← pop next node from pqueue do
9: n ← result.node;
10: if n.dist > bsf.dist then break;

11: if n is a leaf then . a leaf node
12: for each SC in n do
13: realDist ← calcRealDist(SQ,SC);
14: if realDist < bsf.dist then
15: bsf.dist ← realDist ;
16: bsf.node ← n;

17: else . an internal node
18: for each childNode in n do
19: minDist ← calcMinDist(SQ,childNode);
20: if minDist < bsf.dist then add childNode to
21: pqueue with priority minDist;

22: return bsf

based methods (such as iSAX2+ and DSTree); skip-sequential techniques (such as VA+file)

can be modified following the same ideas.

The exact 1-NN search algorithms of DSTree and iSAX2+ are based on an optimal

exact NN algorithm first proposed for PMR-Quadtree [195], which was then generalized

for any hierarchical index structure that is constructed using a conservative and recursive

partitioning of the data [196].

Algorithm 1 describes an index-invariant algorithm for exact 1-NN search. It takes as

arguments a query SQ and an index idx. Lines 1-5 initialize the best-so-far (bsf) answer

and a priority queue with the root node(s) of the index in increasing order of lower

bounding (lb) distances (the lb distance is calculated by the function calcMinDist). In

line 6, the ng-approxNN function traverses one path of the index tree visiting one leaf

to return an ng-approximate bsf answer, which is added to the queue (line 7). In line 8,

the algorithm pops nodes from the queue, terminating in line 10 if the lb distance of the

current node is greater than the current bsf distance (the lb distances of all remaining

nodes in the queue are also greater than the bsf). Otherwise, if the node is a leaf, the

bsf is updated if a better answer is found (lines 11-16); if the node is an internal node,

Chapter 4. Approximate Similarity Search 83

Algorithm 2 deltaEpsilonNN(SQ,idx,δ,ε, FQ(.))

1: bsf.dist ← ∞ ; bsf.node ← NULL;
rδ(Q) ← calcDeltaRadius(SQ,δ, FQ(.));

2: bsf ← ng-approxNN(SQ,idx);
3: add bsf to pqueue;
4: for each rootNode in idx do
5: result.node ← rootNode;
6: result.dist ← calcMinDist(SQ,rootNode);
7: push result to pqueue

8: while result ← pop next node from pqueue do
9: n ← result.node;
10: if n.dist > bsf.dist/(1 + ε) then break;

11: if n is a leaf then . a leaf node
12: for each SC in n do
13: realDist ← calcRealDist(SQ,SC);
14: if realDist < bsf.dist then
15: bsf.dist ← realDist ;
16: bsf.node ← n;

if bsf.dist ≤ (1 + ε) rδ(Q) then exit;

17: else . an internal node
18: for each childNode in n do
19: minDist ← calcMinDist(SQ,childNode);
20: if minDist < bsf.dist/(1 + ε) then add

21: childNode to pqueue with priority minDist;

22: return bsf

its children are added to the queue provided their lb distances are greater than the bsf

distance (lines 18-21).

We can use Algorithm 1 for ng-approximate search, by visiting one leaf and returning

the first bsf. This ng-approximate answer can be anywhere in the data space

We extend approximate search in Algorithm 1 by introducing two changes: (i) allow

the index to visit up to nprobe leaves (user parameter); and (ii) apply the modifications

suggested in [18] to support δ-ε-approximate NN search. The first change is straightfor-

ward, so we only describe the second change in Algorithm 2. To return the ε-approximate

NN of SQ, Sε, bsf.dist is replaced with bsf.dist/(1 + ε) in lines 10 and 20. To return

the δ-ε-approximate NN of SQ, Sδε, we also modify lines 1 and 16.

The distance rδ(Q) is initialized in line 1 using FQ(·), SQ and δ. FQ(·) represents

the relative distance distribution of SQ. Intuitively, rδ(Q) is the maximum distance from

SQ, such that the sphere with center SQ and radius rδ(Q) is empty with probability δ.

As proposed in [197], we use F (·), the overall distance distribution, instead of FQ(·) to

estimate rδ(Q). The delta radius rδ(Q) is then used in line 16 as a stopping condition.

Chapter 4. Approximate Similarity Search 84

When δ = 1, Algorithm 2 returns Sδε, the ε-approximate NN of SQ, and when δ = 1

and ε = 0, Algorithm 2 becomes equivalent to Algorithm 1, i.e., it returns Sx, the

exact NN of SQ. Our implementations generalize Algorithm 2 to the case of k ≥ 1.

These modifications are straightforward and omitted for the sake of brevity. A proof of

correctness for Algorithm 2 can be found in [18, 198] for k = 1 and k ≥ 1, respectively.

4.4 Experimental Evaluation

We assessed all methods on the same framework. Source code, datasets, queries, and

all results are available in [94].

4.4.1 Environment.

All methods were compiled with GCC 6.2.0 under Ubuntu Linux 16.04.2 with their

default compilation flags; optimization level was set to 2. Experiments were run on a

server with two Intel Xeon E5-2650 v4 2.2GHz CPUs, 75GB2 of RAM, and 10.8TB (6 x

1.8TB) 10K RPM SAS hard drives in RAID0 with a throughput of 1290 MB/sec.

4.4.2 Experimental Setup

Algorithms. We use the most efficient C/C++ implementation available for each

method: iSAX2+ [93], DSTree [93] and VA+file [93] representing exact data series meth-

ods with support for approximate queries; and HNSW [199], Faiss IMI [35], SRS [200],

FLANN [169], and QALSH [60] representing strictly approximate methods for vectors.

We ran experiments with the HD-index [170] and NSG [168], but since they could not

scale for our smallest 25GB dataset, we do not report results for them. We extended

DSTree, iSAX2+ and VA+file with Algorithm 2, approximating rδ with density his-

2We used GRUB to limit the amount of RAM, so that all methods are forced to use the disk. Note
that GRUB prevents the operating system from using the rest of the RAM as a file cache, which is what
we wanted for our experiments.

Chapter 4. Approximate Similarity Search 85

tograms on a 100K data series sample, following the C++ implementation of [18]. All

methods are single core implementations, except for HNSW and IMI that make use of

multi-threading and SIMD vectorization. Data series points are represented using single

precision values and methods based on fixed summarizations use 16 dimensions.

Datasets. We use synthetic and real datasets. Synthetic datasets, called Rand, were

generated as random-walks using a summing process with steps following a Gaussian

distribution (0,1). Such data model financial time series [124] and have been widely used

in the literature [124, 28, 135]. Our four real datasets cover domains as varied as deep

learning, computer vision, seismology, and neuroscience. Deep1B [167] comprises 1 bil-

lion vectors of size 96 extracted from the last layers of a convolutional neural network.

Sift1B [48, 201] consists of 1 billion SIFT vectors of size 128 representing image feature

descriptions. To the best of our knowledge, these two vector datasets are the largest pub-

licly available real datasets. Seismic100GB [140], contains 100 million data series of size

256 representing earthquake recordings at seismic stations worldwide. Sald100GB [166]

contains neuroscience MRI data and includes 200 million data series of size 128. In our

experiments, we vary the size of the datasets from 25GB to 250GB. The name of each

dataset is suffixed with its size. We do not use other real datasets that have appeared in

the literature [202, 187], because they are very small, not exceeding 1GB in size.

Queries. All our query workloads consist of 100 query series run asynchronously, i.e., not

in batch mode. Synthetic queries were generated using the same random-walk generator

as the Rand dataset (with a different seed, reported in [94]). For the Deep1B and Sift1B

datasets, we randomly select 100 queries from the real workloads that come with the

datasets archives. For the other real datasets, query workloads were generated by adding

progressively larger amounts of noise to data series extracted from the raw data, so as

to produce queries having different levels of difficulty, following the ideas in [149]. Our

experiments cover ng-approximate and δ-ε-approximate k-NN queries, where k ∈ [1, 100].

We also include results for exact queries to serve as a yardstick.

Chapter 4. Approximate Similarity Search 86

Scenarios. Our experimental evaluation proceeds in four main steps: (i) we tune meth-

ods to their optimal parameters (§5.5.1); (ii) we evaluate the indexing scalability of the

methods (§4.5.2); (iii) we compare in-memory and out-of-core scalability and accuracy

of all methods (§4.5.3-§4.5.4); and (iv) we perform additional experiments on the best

performing methods for disk-resident data (§4.5.4).

Measures. We assess methods using the following criteria:

(1) Scalability and search efficiency using: wall clock time (input, output, CPU and

total time), throughput (# of queries answered per minute), and two implementation-

independent measures: the number of random disk accesses (# of disk seeks) and the

percentage of data accessed.

(2) Search accuracy is assessed using: Avg Recall, Mean Average Precision (MAP), and

Mean Relative Error (MRE). Recall is the most commonly used accuracy metric in the

approximate similarity search literature. However, since it does not consider rank ac-

curacy, we also use MAP [203] that is popular in information retrieval [204, 205] and

has been proposed recently in the high-dimensional community [170] as an alternative

accuracy measure to recall. For a workload of queries SQi
: i ∈ [1, NQ], these are defined

as follows.

1. Avg Recall(workload) =
∑NQ

i=1Recall(SQi
)/NQ

2. MAP (workload) =
∑NQ

i=1 AP (SQi
)/NQ

3. MRE(workload) =
∑NQ

i=1RE(SQi
)/NQ

where:

• Recall(SQi
) = # true neighbors returned by Qi

k

• AP (SQi
) =

∑k
r=1(P (SQi,r

)×rel(r))
k

,∀i ∈ [1, NQ]

− P (SQi
, r) = # true neighbors among the first r elements

r
.

− rel(r) is equal 1 if the neighbor returned at position r

is one of the k exact neighbors of SQi
and 0 otherwise.

Chapter 4. Approximate Similarity Search 87

• RE(SQi
) = 1

k
×
∑k

r=1

d(SQi
,SCr)−d(SQi

,SCi
)

d(SQi
,SCi

)
. SCi

is the exact nearest neighbor of SQi
and

SCr is the r-th NN retrieved3. Without loss of generality, we do not consider the case

where d(SQi
, SCi

) = 0. (i.e., range queries with radius zero, or kNN queries where the

1-NN is the query itself4.)

(3) Size, using the main memory footprint of the algorithm.

Procedure. Experiments involve two steps: index building and query answering. Caches

are fully cleared before each step, and stay warm between consecutive queries. For large

datasets that do not fit in memory, the effect of caching is minimized for all methods. All

experiments use workloads of 100 queries. Results reported for workloads of 10K queries

are extrapolated: we discard the 5 best and 5 worst queries of the original 100 (in terms

of total execution time), and multiply the average of the 90 remaining queries by 10K.

4.5 Results

4.5.1 Parametrization

We start by fine tuning each method (graphs omitted for brevity). In order to under-

stand the speed/accuracy tradeoffs, we fix the total memory size available to 75GB. The

optimal parameters for DSTree, iSAX2+ and VA+file are set according to [95]. For in-

dexing, the buffer and leaf sizes are set to 60GB and 100K, respectively, for both DSTree

and iSAX2+. iSAX2+ is set to use 16 segments. VA+file uses a 20GB buffer and 16 DFT

symbols. For SRS, we set M (the projected space dimensionality) to 16 so that the repre-

sentations of all datasets fit in memory. The settings were the same for all datasets. The

fine tuning for HNSW and IMI proved more tricky and involved many testing iterations

since the index building parameters strongly affect the speed/accuracy of query answering

and differ greatly across datasets. For this reason, different parameters were chosen for

3Note that in Definition 9, ε is an upper bound on RE(SQi).
4In these cases, the MRE definition can be extended to use the symmetric mean absolute percentage

error [206].

Chapter 4. Approximate Similarity Search 88

different datasets. For the in-memory method HNSW, we set efConstruction (the num-

ber of neighbors considered during index construction) to 500, and M (the number of

bi-directional edges created for every new node during indexing) to 4 for the Rand25GB

dataset. For Deep25GB and Sift25GB, we set efConstruction to 500 and M to 16. To tune

the Faiss implementation of IMI, we followed the guidelines in [35]. For the in-memory

datasets, we set the index factory key to PQ32 128,IMI2x12,PQ32 and the training size to

1,048,576 vectors, while for disk based datasets, the index key is PQ32 128,IMI2x14,PQ32

and the training size is 4,194,304 vectors. To tune δ-ε-approximate search performance

and accuracy, we vary δ and ε for SRS and ε for DSTree, iSAX2+ and VA+file (except

in one experiment where we also vary δ). For ng-approximate search, we vary the nprobe

parameter for DSTree/iSAX2+/IMI/VA+file (nprobe represents the number of visited

leaves for DSTree/iSAX2+, the number of visited raw series for VA+file, and the number

of inverted lists for IMI), and the efs parameter for HNSW (which represents the number

of non-pruned candidates).

Since none of the methods supports auto-tuning, we perform this step manually.

Ideally, parametrization would be performed exhaustively for each scenario used in the

experimental study. However, this will require an excessive amount of resources and

time as a scenario is defined by 4 inputs: an algorithm, a dataset, a dataset size and a

data series length. For instance, parameter tuning for the HNSW method on the small

Deep25GB alone took 120 hours. Developing auto-tuning mechanisms for these methods

is an open problem which we would like to explore in future work.

4.5.2 Indexing Efficiency

In this section, we evaluate the indexing scalability of each method by varying the

dataset size. We used four synthetic datasets of sizes 25GB, 50GB, 100GB and 250GB,

two of which fit in memory (total RAM was 75GB).

Chapter 4. Approximate Similarity Search 89

Figure 4.1a shows that iSAX2+ is the fastest method at index building in and out

of memory, followed by VA+file, SRS, DSTree, FLANN, QALSH, IMI and HNSW. Even

though IMI and HNSW are the only parallel methods, they are the slowest at index

building. Although FLANN is slow at indexing the 50GB dataset, we think this is more

due to memory management issues in the code, which cause swapping. For HNSW,

the major cost is building the graph structure, whereas IMI spends most of the time

on determining the clusters and computing the product quantizers. We also measured

the breakdown of the indexing time and found out that all methods can be significantly

improved by parallelism except iSAX2+ and QALSH that are I/O bound. In terms of

footprint, the DSTree is the most memory-efficient, followed by iSAX2+. IMI, SRS,

VA+file and FLANN are two orders of magnitude larger, while QALSH and HNSW are

a further order of magnitude bigger (Figure 4.1b).

(a) Indexing time (b) Size in memory

Figure 4.1: Comparison of indexing scalability

4.5.3 Query Answering Efficiency and Accuracy: in-Memory

Datasets

We now compare query answering efficiency and accuracy, in addition to the indexing

time, thus, measuring how well each method amortizes index construction time over a

large number of queries, and the level of accuracy achieved.

Chapter 4. Approximate Similarity Search 90

Summary. For our in-memory experiments, we used four datasets of 25GB each: two

synthetic (with series of length 256 and 16384, respectively), and two real: Deep25GB

and Sift25GB. We ran 1NN, 10NN and 100NN queries on the four datasets and we

observed that, while the running times increase with k, the relative performance of the

methods stays the same. Due to lack of space, Figures 4.2 and 4.3 show the 100NN query

results only (full results are in [94]), which we discuss below. Note that HNSW, QALSH

and FLANN store all raw data in-memory, while all other approaches use the memory

to store their data structures, but read the raw data from disk; IMI does not access the

raw data at all (it only uses the in-memory summaries).

Short Series. For ng-approximate queries of length 256 on the Rand25GB dataset,

HNSW has the largest throughput for any given accuracy, followed by FLANN, IMI,

DSTree and iSAX2+ (Figure 4.2a). However, HNSW does not reach a MAP of 1, which

is only obtained by the data series indexes (DSTree, iSAX2+, VA+file). The skip-

sequential method VA+file performs poorly on approximate search since it prunes per

series and not per cluster like the tree-based methods do. When indexing time is also

considered, iSAX2+ wins for the workload consisting of 100 queries (Figure 4.2b), and

DSTree for the 10K queries (Figure 4.2c).

Regarding δ-ε-approximate search, DSTree offers the best throughput/accuracy trade-

off, followed by iSAX2+, SRS, VA+file and finally QALSH. SRS does not achieve a MAP

higher than 0.5, while DSTree and iSAX2+ are at least 3 times faster than SRS for a

similar accuracy (Figure 4.3a). When we consider the combined indexing and querying

times, iSAX2+ wins over all methods for 100 queries (Figure 4.3b), and DSTree wins for

10K queries (Figure 4.3c).

Long Series. In this experiment, we use dataset sizes of 25GB, and query length of

16384. For ng-approximate search, we report the results only for iSAX2+, DSTree and

VA+file. We ran several experiments with IMI and HNSW building the indexes using

different parameters, but obtained a MAP of 0 for IMI for all index configurations we

Chapter 4. Approximate Similarity Search 91

tried, and ran into a segmentation fault during query answering with HNSW. DSTree

outperforms both iSAX2+ and VA+file in terms of throughput and combined total cost

for the larger workload (Figures 4.2d and 4.2f), whereas iSAX2+ wins for the smaller

workload when the combined total cost is considered (Figure 4.2e). We note also that

the performance of FLANN deteriorates with the increased dimensionality.

For δ-ε-approximate queries, Figure 4.3d shows that DSTree and VA+file outperform

all other methods for large MAP values, while DSTree and iSAX2+ have higher through-

put for small MAP values. Note that the SRS accuracy decreases when compared to series

of length 256, with the best MAP value now being 0.25. This is due to the increased

information loss, as for both series lengths the number of dimensions in the projected

space is 16. When index building time is considered, VA+file wins for the small workload

(Figure 4.3e), and iSAX2+ and DSTree win for the large one (Figure 4.3f). We do not

report numbers for QALSH because the algorithm ran into a segmentation fault for series

of length 16384.

Real Data. We ran the same set of experiments with real datasets. For ng-approximate

queries, HNSW outperforms the query performance of other methods by a large margin

(Figures 4.2g and 4.2j). When indexing time is considered, HNSW loses its edge due

to its high indexing cost to iSAX2+ when the query workload consists of 100 queries

(Figures 4.2h and 4.2k) and to DSTree for the 10K workload (Figures 4.2i and 4.2l).

HNSW does not achieve a MAP of 1, while DSTree and ISAX2+ both do, yet at a high

cost.

DSTree clearly wins on Sift25GB and Deep25GB among δ-ε-approximate methods

(Figures 4.3g, 4.3j, 4.3i, and 4.3l), except for the scenario of indexing plus answering

100 queries, where iSAX2+ has the least combined cost (Figures 4.3h and 4.3k). This

is because DSTree’s query answering is very fast, but its indexing cost is high, so it is

amortized only with a large query workload (Figures 4.3i and 4.3l). We observe a similar

trend for both Sift25GB and Deep25GB, except the degradation of the performance of

Chapter 4. Approximate Similarity Search 92

SRS, which achieves a very low accuracy of 0.01 on Deep25GB, despite using the most

restrictive parameters (δ = 0.99 and ε = 0).

Comparison of Accuracy Measures. In the approximate similarity search litera-

ture, the most commonly used accuracy measures are approximation error and recall.

The approximation error evaluates how far the approximate neighbors are from the true

neighbors, whereas recall assesses how many true neighbors are returned. In our study,

we refer to the recall and approximation error of a workload as Avg Recall and MRE re-

spectively. In addition, we use a third measure called MAP because it takes into account

the order of the returned candidates and thus is more sensitive than recall. Figures 4.4a

and 4.4b compare all three measures for the popular real dataset Sift25GB (we use the

25GB subset to include in-memory methods as well). We observe that for any given work-

load, the Avg Recall is equal to MAP for all methods, except for IMI. This is because

IMI returns the short-listed candidates based on distance calculations on the compressed

vectors, while the other methods further refine the candidates by sorting them based on

the Euclidean distance of the query to the raw data. Figure 4.4b illustrates the rela-

tionship between MAP and MRE. Note that the value of the approximation error is not

always indicative of the actual accuracy. For instance, an MRE of about 0.5 for iSAX2

sounds acceptable (some popular LSH methods only work with ε >= 3 [22, 58]), yet it

corresponds to a very low accuracy of 0.03 as measured by MAP (Figures 4.4b). Note

that MAP can be more useful in practice, since it takes into account the actual ranks of

the true neighbors returned, whereas MRE is evaluated only on the distances between

the query and its neighbors.

4.5.4 Query Answering Efficiency and Accuracy: on-Disk

Datasets

We now report results (Figures 4.5 and 4.6) for on-disk experiments, excluding the

in-memory only HNSW, QALSH and FLANN.

Chapter 4. Approximate Similarity Search 93

Synthetic Data. DSTree and iSAX2+ outperform by far the rest of the techniques on

both ng-approximate and δ-ε-approximate queries. iSAX2+ is particularly competitive

when the total cost is considered with the smaller workload (Figures 4.5b and 4.6b).

The querying performance of SRS degraded on-disk due to severe swapping issues (Fig-

ure 4.6a), therefore we do not include this method in further disk-based experiments.

Although IMI is much faster than both iSAX2+ and DSTree on ng-approximate search,

its accuracy is extremely low. In fact, the best MAP accuracy achieved by IMI plummets

to 0.05, whereas DSTree and iSAX2+ have much higher MAP values (Figure 4.5a).

Real Data. DSTree outperforms all methods on both Sift250GB and Deep250GB. The

only exception is iSAX2+ having an edge when the combined indexing and search costs

are considered for the smaller workload (Figures 4.5e, 4.6e, 4.5h and 4.6h) and being

equally competitive on ng-approximate query answering (Figures 4.5d, 4.6d).

Best Performing Methods. The earlier results show that VA+file is outperformed

by DSTree and iSAX2+, and that SRS and IMI have very low accuracy on the large

datasets. We thus conduct further experiments considering only iSAX2+ and DSTree

(recall that HNSW is an in-memory approach only): see Figures 4.7, 4.8 and 4.9.In terms

of query efficiency/accuracy tradeoff, DSTree outperforms iSAX2+ on all datasets, except

for Sald100GB (Figure 4.7j), and for low MAP values on Seismic100GB (Figure 4.7m).

Amount of data accessed. As expected, both DSTree and iSAX2+ need to access

more data as the accuracy increases. Nevertheless, we observe that to achieve accuracies

of almost 1, both methods access close to 100% of the data for Sift250GB (Figure 4.7e),

Deep250GB (Figure 4.7h) and Seismic100GB (Figure 4.7n), compared to 10% of data

accessed on Sald100GB (Figure 4.7k) and Rand250GB. (Figure 4.7b). The percentage

of accessed data also varies among real datasets, Deep250GB and Sift250GB requiring

the most. Note that for some datasets, a MAP of 1 is achievable with minimal data

access. For instance DSTree needs to access about 1% of the data to get a MAP of 1 on

Sald100GB (Figure 4.7k).

Chapter 4. Approximate Similarity Search 94

Number of Random I/Os. To understand the nature of the data accesses discussed

above, we report the number of random I/Os in Figure 4.7 (bottom row). Overall,

iSAX2+ incurs a higher number of random I/Os for all datasets. This is because iSAX2+

has a larger number of leaves, with a smaller fill factor than DSTree [95]. For instance,

the large number of random I/Os incurred by iSAX2+ (Figure 4.7o) is what explains the

faster runtime of DSTree on the Seismic100GB dataset (Figure 4.7m), even if DSTree

accesses more data than iSAX2+ for higher MAP values (Figure 4.7n). The Sald100GB

dataset is an exception to this trend as iSAX2+ outperforms DSTree on all accuracies

except for MAP is 1 (Figure 4.7j), because it accesses less data incuring almost the same

random I/O (Figures 4.7k and 4.7l).

Effect of k. Figure 4.8 summarizes experiments varying k on different datasets in-

memory and on-disk. We measure the total time required to complete a workload of 100

queries for each value of k. We observe that finding the first neighbor is the most costly

operation, while finding the additional neighbors is much cheaper.

Effect of δ and ε. In Figure 4.9, we describe in more detail how varying δ and ε

affects the performance of DSTree and iSAX2+. Figure 4.9a shows that the throughput

of both methods increases dramatically with increasing ε. For example, a small value of

ε = 5 increases the throughput of iSAX2+ by two orders of magnitude, when compared

to exact search (ε = 0). Moreover, note that both methods return the actual exact

answers for small ε values, and accuracy drops only as ε goes beyond 2 (Figure 4.9b). In

addition, Figure 4.9c shows that the actual approximation error MRE is well below the

user-tolerated threshold (represented by ε), even for ε values well above 2. The above

observations mean that these methods can be used in approximate mode, achieving very

high throughput, while still returning answers that are exact (or very close to the exact).

As the probability δ increases, throughput stays constant and only plummets when

search becomes exact (δ = 1 in Figure 4.9d). Similarly, accuracy also stays constant, then

slightly increases (for a very high δ of 0.99), reaching 1 for exact search (Figure 4.9e).

Chapter 4. Approximate Similarity Search 95

Accuracy plateaus as δ increases, because the first ng-approximate answer found by both

algorithms is very close to the exact answer (Figures 4.9b and 4.9c) and better than the

approximation of rδ, thus the stopping condition is never triggered. When a high value

of δ is used, the stopping condition takes effect for some queries, but the runtime is very

close to that of the exact algorithm.

Chapter 4. Approximate Similarity Search 96

●●●●

10

1000

100000

0.
03

0.
10

0.
30

1.
00

MAP

Q
rs

 p
er

 m
in

(a) Rand25GB
256 (ng)

● ●●●

3
10
30

100
300

0.
03

0.
10

0.
30

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(b) Rand25GB
256 (ng)

● ●●●

30
100
300

1000
3000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(c) Rand25GB
256 (ng)

10

100

1000

10000

0.
1

0.
3

1.
0

MAP

Q
rs

 p
er

 m
in

(d) Rand25GB
16384 (ng)

5

10

20

0.
1

0.
3

1.
0

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(e) Rand25GB
16384 (ng)

30

100

300

1000

0.
1

0.
3

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(f) Rand25GB
16384 (ng)

●●
●●

10
100

1000
10000

0.
03

0.
10

0.
30

1.
00

MAP

Q
rs

 p
er

 m
in

(g) Sift25GB(ng)

●●●●

3

10
30

100
300

0.
03

0.
10

0.
30

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(h) Sift25GB(ng)

●●●●

10

100

1000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(i) Sift25GB(ng)

●●
●

1
10

100
1000

10000

0.
01

0.
10

1.
00

MAP

Q
rs

 p
er

 m
in

(j) Deep25GB(ng)

●●●

10

100

1000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(k) Deep25GB(ng)

●●●

100

1000

10000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(l) Deep25GB(ng)

Figure 4.2: Efficiency vs. accuracy for in memory ng-approximate search
(100NN queries)

Chapter 4. Approximate Similarity Search 97

1

10

100

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Rand25GB
256 (δε)

3

10

30

100

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(b) Rand25GB
256 (δε)

100

1000

10000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(c) Rand25GB
256 (δε)

10

100

1000

0.
1

0.
3

1.
0

MAP

Q
rs

 p
er

 m
in

(d) Rand25GB
16384 (δε)

1

3

10

0.
1

0.
3

1.
0

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(e) Rand25GB
16384 (δε)

10

100

1000

0.
1

0.
3

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(f) Rand25GB
16384(δε)

0.1
1.0

10.0
100.0

1000.0

0.
03

0.
10

0.
30

1.
00

MAP

Q
rs

 p
er

 m
in

(g) Sift25GB(δε)

10

100

1000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(h) Sift25GB(δε)

10

100

1000

10000

100000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(i) Sift25GB(δε)

0.01
0.10
1.00

10.00
100.00

0.
01

0.
10

1.
00

MAP

Q
rs

 p
er

 m
in

(j) Deep25GB(δε)

10

100

1000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(k) Deep25GB(δε)

100
1000

10000
100000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(l) Deep25GB(δε)

Figure 4.3: Efficiency vs. accuracy for in-memory δ-ε-approximate
search(100NN queries)

Chapter 4. Approximate Similarity Search 98

● ●●●

0.6
0.7
0.8
0.9
1.0

0.
03

0.
10

0.
30

1.
00

MAP

M
A

P
/A

vg
_R

ec
al

l

(a) Recall vs. MAP

●

●

●

●

0.0001

0.0010

0.0100

0.1000

0.
03

0.
10

0.
30

1.
00

MAP

M
R

E

(b) MRE vs. MAP

Figure 4.4: Comparison of measures (Sift25GB)

Chapter 4. Approximate Similarity Search 99

10

1000

100000

0.
01

0.
10

1.
00

MAP

Q
rs

 p
er

 m
in

(a) Rand250GB(ng)

100

300

1000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(b) Rand250GB(ng)

100

1000

10000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(c) Rand250GB(ng)

1

100

10000

0.
01

0.
10

1.
00

MAP

Q
rs

 p
er

 m
in

(d) Sift250GB(ng)

100

300

1000

3000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(e) Sift250GB(ng)

100

1000

10000

100000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(f) Sift250GB(ng)

0.1
1.0

10.0
100.0

1000.0

0.
01

0.
10

1.
00

MAP

Q
rs

 p
er

 m
in

(g) Deep250GB(ng)

100
300

1000
3000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(h) Deep250GB(ng)

100

1000

10000

100000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(i) Deep250GB(ng)

Figure 4.5: Efficiency vs. accuracy for on disk ng-approximate search (100NN
queries)

Chapter 4. Approximate Similarity Search 100

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Rand250GB(δε)

100

300

1000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(b) Rand250GB(δε)

100

1000

10000

100000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(c) Rand250GB(δε)

0.1
1.0

10.0
100.0

1000.0

0.
1

0.
3

1.
0

MAP

Q
rs

 p
er

 m
in

(d) Sift250GB(δε)

100

300

1000

3000

0.
1

0.
3

1.
0

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(e) Sift250GB(δε)

100

1000

10000

100000

0.
1

0.
3

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(f) Sift250GB(δε)

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(g) Deep250GB(δε)

100

300

1000

3000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

00
 Q

rs
 (

m
in

)

(h) Deep250GB(δε)

1000

10000

100000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(i) Deep250GB(δε)

Figure 4.6: Efficiency vs. accuracy for on disk δ-ε-approximate search
(100NN queries)

Chapter 4. Approximate Similarity Search 101

1

10

100

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Rand250GB

0.1

1.0

10.0

0.
3

0.
5

1.
0

MAP

%
 d

at
a

ac
ce

ss
ed

(b) Rand250GB

1

10

100

1000

10000

0.
3

0.
5

1.
0

MAP

R

an
do

m
 I/

O

(c) Rand250GB

0.1
1.0

10.0
100.0

1000.0

0.
03

0.
10

0.
30

1.
00

MAP

Q
ue

rie
s

pe
r

m
in

(d) Sift250GB

0.1

1.0

10.0

100.0

0.
03

0.
10

0.
30

1.
00

MAP

%
 d

at
a

ac
ce

ss
ed

(e) Sift250GB

10

1000

100000

0.
03

0.
10

0.
30

1.
00

MAP

R

an
do

m
 I/

O

(f) Sift250GB

1

10

100

0.
3

0.
5

1.
0

MAP

Q
ue

rie
s

pe
r

m
in

(g) Deep250GB

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

%
 d

at
a

ac
ce

ss
ed

(h) Deep250GB

10

100

1000

0.
3

0.
5

1.
0

MAP

R

an
do

m
 I/

O

(i) Deep250GB

3
10
30

100
300

0.
6

0.
7

0.
8

MAP

Q
ue

rie
s

pe
r

m
in

(j) Sald100GB

0.1

1.0

10.0

0.
6

0.
7

0.
8

MAP

%
 d

at
a

ac
ce

ss
ed

(k) Sald100GB

10

100

1000

10000

0.
6

0.
7

0.
8

MAP

R

an
do

m
 I/

O

(l) Sald100GB

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
ue

rie
s

pe
r

m
in

(m) Seismic100GB

1

10

100

0.
3

0.
5

1.
0

MAP

%
 d

at
a

ac
ce

ss
ed

(n) Seismic100GB

10

100

1000

10000

0.
3

0.
5

1.
0

MAP

R

an
do

m
 I/

O

(o) Seismic100GB

Figure 4.7: Efficiency vs. accuracy for the best methods (δ-ε-approximate)

Chapter 4. Approximate Similarity Search 102

6
7

10

1 10 10
0

k

To
ta

l T
im

e
(m

in
)

(a) Rand25GB

20

30

1 10 10
0

k

To
ta

l T
im

e
(m

in
)

(b) Sift25GB

31

32

33

34

1 10 10
0

k

To
ta

l T
im

e
(m

in
)

(c) Deep25GB

2
3

5

1 10 10
0

k

To
ta

l T
im

e
(h

r)

(d) Rand250GB

10
20
30
40
50

1 10 10
0

k

To
ta

l T
im

e
(h

r)

(e) Sift250GB

10

30
50

1 10 10
0

k

To
ta

l T
im

e
(h

r)

(f) Deep250GB

Figure 4.8: Efficiency vs. k (ε-approximate)

Chapter 4. Approximate Similarity Search 103

0.3

1.0
3.0

10.0
30.0

0 2 4 6ε

Q
ue

rie
s

pe
r

m
in

(a) Time vs. ε
(δ = 1)

(b) MAP vs. ε
(δ = 1)

0.000

0.005

0.010

0.015

0 2 4 6ε

M
R

E
(c) MRE vs. ε

(δ = 1)

0

50

100

150

200

0.
2

0.
4

0.
6

0.
8

1.
0

δ

Q
ue

rie
s

pe
r

m
in

(d) Time vs. δ
(ε = 0)

(e) MAP vs. δ
(ε = 0)

Figure 4.9: Accuracy and efficiency vs. δ and ε

Chapter 4. Approximate Similarity Search 104

4.6 Discussion

In the approximate NN search literature, experimental evaluations ignore the an-

swering capabilities of data series methods. This is the first study that aims to fill this

gap.

Unexpected Results. Some of the results are surprising:

(1) Effectiveness of δ. LSH techniques (like SRS and QALSH) exploit both δ and ε to tune

the efficiency/accuracy tradeoff. We consider that they still fall short of expectations,

because for a low ε, high values of δ still produce low MAP and low values of δ still result

in slow execution (Figure 4.3). In the case of our extended methods, using ε yielded

excellent empirical results, but introducing the probabilistic stop condition based on δ

was ineffective (Figures 4.9-d,4.9-e). We believe that this is due to the inaccuracy of

the (histogram-based) approximation of rδ. Therefore, improving the approximation of

rδ, or devising novel approaches are interesting open research directions that will further

improve the efficiency of these methods.

(2) Approximate Query Answering with Data Series Indexes Performed Better than

LSH. Approximate query answering with DSTree and iSAX2+ outperfom SRS and

QALSH (state-of-the-art LSH-based methods) both in space and time, while supporting

better theoretical guarantees. This surprising result opens up exciting research opportu-

nities, that is, devising efficient disk-based techniques that support both ng-approximate

and δ-ε-approximate search with top performance [97]. Note that data series indexes

developed for distributed platforms [44, 194] also have the potential of outperforming

LSH techniques [207, 208] if extended following the ideas discussed in Section 4.3.

(3) Our results vs. the literature. Our results for the in-memory experiments are in-

line with those reported in the literature, confirming that HNSW achieves the best accu-

racy/efficiency tradeoff when only query answering is considered [187] (Figures 4.2a, 4.2g, 4.2j).

However, when indexing time is taken into account, HNSW loses its edge to iSAX2+/DSTree

for both small (Figures 4.2b, 4.2h, 4.2k) and large (Figures 4.2c, 4.2i, 4.2l) query work-

Chapter 4. Approximate Similarity Search 105

loads.

Our results for IMI show a dramatic decrease in accuracy, in terms of MAP and

Avg Recall for the Sift250GB and Deep250GB datasets, while high Avg Recall values

have been reported in the literature for the full Sift1B and Deep1B datasets [90, 35]. We

thoroughly investigated the reason behind such a discrepancy and ruled out the following

factors: the Z-normalization of the Sift1B/Deep1B datasets, the size of the queries, and

the number of NN. We believe that our results are different for the following reasons: (a)

our queries return only the number of NN requested, while the smallest candidate list

considered in [90] is 10,000 for a 1-NN query; and (b) the results in [35] were obtained

using training on a GPU with un-reported training sizes and times (we believe both

were very large), while our focus was to evaluate methods on a CPU and account for

training time. The difference in the accuracy results is most probably due to the fact that

the training samples used in [35] were larger than the recommended numbers we used

(1 million/4 million for the 25GB/250GB datasets, respectively). We tried to support

this claim by running experiments with different training sizes: (i) we observed that

increasing the training sizes for the smaller datasets improves the accuracy (the best

results are reported in this study); (ii) we could not run experiments on the CPU with

large training sizes for the 250GB datasets, because training was very slow: we stopped

the execution after 48 hours; (iii) we tried a GPU-enabled server for training, but ran

into a documented bug5.

Practicality of QALSH, IMI and HNSW. Although QALSH provides better accu-

racy than SRS, it does so at a high cost: it needs to build a different index for each

desired query accuracy. This is a serious drawback, while our extended methods offer a

neat alternative since the index is built once and the desired accuracy is determined at

query time. Although LSH methods (such as SRS) provide guarantees on the accuracy of

search results, they are expensive both in time and space. The ng-approximate methods

5https://github.com/facebookresearch/faiss/issues/67

Chapter 4. Approximate Similarity Search 106

overcome these limitations. IMI and HNSW are considered the state-of-the-art in this

category, and while they deliver better speed-accuracy tradeoffs than QALSH and SRS,

they suffer from two major limitations: (a) having no guarantees can lead them to return

incomplete result sets, for instance retrieving only a subset of the neighbors for a k-NN

query and returning null values for the others; (b) they are very difficult to tune, which

hinders their practicality. In fact, the speed-accuracy tradeoff is not determined only

at query time, but also during index building, which means that an index may need to

be built many times using different parameters before finding the right speed-accuracy

tradeoff. This means that the optimal settings may differ across datasets, and even for

different dataset sizes of the same dataset. Moreover, if the analyst builds an index with

a particular accuracy target, and then their needs change, they will have to rebuild the

index from scratch and go through the same process of determining the right parameter

values.

For example, we built the IMI index for the Deep250GB dataset 8 times. During

each run that required over 42 hours, we varied the PQ encoding sizes, the number of

centroids, and training sizes but still could not achieve the desired accuracy. Regarding

HNSW, we tried three different combinations of parameters (M/efConstruction = 4/500,

16/500, 48/200) for each dataset before choosing the optimal one; each run took over

40 hours on the small Deep25GB. Overall, we observe that using IMI and HNSW in

practice is cumbersome and time consuming. Developing auto-tuning methods for these

techniques is both an interesting problem and a necessity.

Importance of guarantees. In the approximate search literature, accuracy has been

evaluated using recall, and approximation error. LSH techniques are considered the state-

of-the-art in approximate search with theoretically proven sublinear time performance

and probabilistic guarantees on accuracy (approximation error). Our results indicate

that using the approximate search functionality of data series techniques provides tighter

bounds than LSH (since δ can be equal to 1), and a much better performance in prac-

Chapter 4. Approximate Similarity Search 107

tice, with experimental accuracy levels well above the theoretical accuracy guarantees

(Figure 4.9c). Note that LSH techniques can only provide probabilistic answers (δ < 1),

whereas our extended methods can also answer exact and ε-approximate queries (δ = 1).

A promising research direction is to improve the existing guarantees on these new meth-

ods, or establish additional ones: (1) by adding guarantees on query time performance;

or (2) by developing probabilistic or deterministic guarantees on the recall or MAP value

of a result set, instead of the commonly used distance approximation error. Remember

that recall and MAP are better indicators of accuracy, because even small approximation

errors may still result in low recall/MAP values (Figure 4.4b).

Improvement of ng-approximate methods. Our results indicate that ng-approximate

query answering with exact methods offers a viable alternative to existing methods, par-

ticularly because index building is much faster and query efficiency/accuracy tradeoffs

can be determined at query time. Besides, the performance of DSTree and iSAX2+

supporting ng-approximate and δ-ε-approximate search can be greatly improved by ex-

ploiting modern hardware (including SIMD vectorization, multi-cores, multi-sockets, and

GPUs).

Incremental approximate k-NN. We established that, on some datasets, a kNN query

incurs a much higher time cost as k increases. Therefore, a future research direction is

to build δ-ε-approximate methods that support incremental search, i.e., returning the

neighbors one by one as they are found. The current approaches return the k nearest

neighbors all at once which impedes their interactivity.

Progressive Query Answering. The excellent empirical results with approximate

search using exact methods paves the way for another very promising research direction:

progressive query answering [209]. New approaches can be devised to return intermediate

results with increasing accuracy until the exact answers are found.

Recommendations. Choosing the best approach to answer an approximate similarity

search query depends on a variety of factors including the accuracy desired, the dataset

Chapter 4. Approximate Similarity Search 108

In−Memory with guaranteesIn−Memory with guaranteesIn−Memory with guaranteesIn−Memory with guaranteesIn−Memory with guarantees On−disk with guaranteesOn−disk with guaranteesOn−disk with guaranteesOn−disk with guaranteesOn−disk with guarantees

In−Memory without guaranteesIn−Memory without guaranteesIn−Memory without guaranteesIn−Memory without guaranteesIn−Memory without guarantees On−disk without guaranteesOn−disk without guaranteesOn−disk without guaranteesOn−disk without guaranteesOn−disk without guarantees

decision depends on desired accuracydecision depends on desired accuracydecision depends on desired accuracydecision depends on desired accuracydecision depends on desired accuracyHNSW

DSTree DSTree

DSTree

iSAX2+

DATASET SIZE

G
U

A
R

A
N

T
E

E
S

Figure 4.10: Recommendations (query answering).

characteristics, the size of the query workload, the presence of an existing index and the

hardware. Figure 4.10 illustrates a decision matrix that recommends the best technique

to use for answering a query workload using an existing index. Overall, DSTree is the best

performer, with the exceptions of ng-approximate queries, where iSAX2+ also exhibits

excellent performance, and of in-memory datasets, where HNSW is the overall winner.

Accounting for index construction time as well, DSTree becomes the method of choice

across the board, except for small workloads, where iSAX2+ wins.

4.7 Conclusions

In this chapter, we proposed extensions of exact data series methods that can an-

swer δ-ε-approximate queries. Our proposed techniques are the clear winners for δ-ε-

approximate similarity search for both in-memory and disk based data, while they are

the only viable solution for on-disk data. These techniques are also the fastest at indexing

and have the lowest footprint. The only scenario where our techniques are outperformed

by another method is for in-memory ng-approximate search where HNSW [29] is the best

contender. However, this kNN graph-based method has very high footprint, is difficult

to tune and can return incomplete results.

We also presented the framework and results of a thorough experimental evalua-

tion of the state-of-the-art approximate techniques from both the data series and high-

dimensional vector indexing communities. Our results reveal the weaknesses and the

Chapter 4. Approximate Similarity Search 109

strengths of the different techniques sharing insights that have never been published in

the literature. For instance, LSH techniques such as SRS and QALSH exploit both δ

and ε to tune the efficiency/accuracy tradeoff. We show that their performance is still

inadequate, because a low ε and a high δ can still lead to inaccurate answers and low

values of ε and δ can still result in slow execution. The ng-approximate methods IMI

and HNSW provide better efficiency but they suffer from three major limitations: (a)

they have no guarantees; (b) they are very difficult to tune; and (c) their speed-accuracy

tradeoff is not determined only at query time, but also during index building.

In addition, we point to unexplored promising research directions in the approxi-

mate similarity search field such as the importance of devising novel stopping criteria,

establishing better guarantees and supporting progressive query answering.

Chapter 5

Hercules: A New Similarity Search

Technique

Similarity search over high-dimensional objects is a critical algorithm for a variety

of real-world applications. This problem has been extensively studied over the past

two decades leading to a number of exact and approximate approaches. The results of

two comprehensive experimental evaluations of exact and approximate similary search

methods form the foundations of Hercules, a novel similarity search technique that can

efficiently support exact, δ-ε-approximate and ng-approximate search over massive col-

lections of high-dimensional vectors.

In this chapter1, we describe the indexing and query answering algorithms of Hercules.

Our extensive experimental study demonstrates the superiority of Hercules against the

state-of-the-art approaches from the data series and high-dimensional communities.

The chapter is organized in five sections. We summarize our contributions in sec-

tion 5.1, briefly survey related work in section 5.2, describe the Hercules indexing and

querying algorithms in section 5.3, present results of a thorough experimental evaluation

in section 5.4 and draw conclusions in section 5.6.

1This chapter is a slightly modified version of [99]

110

Chapter 5. Hercules: A New Similarity Search Technique 111

5.1 Main Contributions

Our main contributions are as follows:

1. Hercules leverages the insights gained from our extensive experimental studies [95,

96] about the intricate inner workings of the different similarity search methods, their

strengths and weaknesses.

2. Since no single method was identified as an overall winner in exact query answer-

ing [95], Hercules incorporates key ideas from two different exact algorithms to become

an overall winner in-memory and on-disk: a) efficient index clustering using DSTree’s

data-adaptive segmentation [25]; and b) accurate low-memory footprint summarization

with SAX [156]. In addition, Hercules carefully crafts the distribution and execution of

parallel instructions; exploits the Single Instruction Multiple Data (SIMD) capabilities

of modern CPUs, and uses novel storage and buffering mechanisms for the index.

3. Based on the ideas we proposed [96], we extend Hercules to answer δ-ε-approximate

and ng-approximate queries. Hercules outperforms all the state-of-the-art techniques in-

memory and on-disk both in terms of accuracy and efficiency in δ-ε-approximate search

and all disk-based techniques in ng-approximate search.

4. While Hercule’s indexing is based on the DSTree’s indexing algorithn, it improves

its efficiency by: a) using a new storage mechanism where the data of all the index leaves

is stored in one file instead of separate files physically on the disk; and b) exploiting SIMD

to perform the CPU-intensive calculations required by the data-adaptive segmentation.

5. To evaluate Hercules, we conduct an extensive experimental evaluation using syn-

thetic datasets and four of the largest publicly available real datasets of high-dimensional

vectors, including data series, deep network embeddings and image features.

Chapter 5. Hercules: A New Similarity Search Technique 112

5.2 Related Work

Before presenting the workflow of Hercules, we will first give an overview of the SAX

summarization and the DSTree approach.

5.2.1 SAX

The Symbolic Aggregate Approximation (SAX) [156] first transforms a vector V using

the Piecewise Aggregate Approximation (PAA) [154]. The PAA summarization divides

V into l equi-length segments and represents each segment with one floating-point value

corresponding to the mean of all the points belonging to the segment (Fig. 5.1a). SAX

reduces the footprint of the PAA representation by applying a discretization technique

that map PAA values to a discrete set of symbols (alphabet) that can be succinctly

represented in binary form. A SAX representation consists of l such symbols. An iSAX

(indexable SAX) [157] representation can have an arbitrary alphabet size for each segment

(Fig. 5.1b).

(a) PAA (b) SAX

Figure 5.1: The PAA and SAX representations

Chapter 5. Hercules: A New Similarity Search Technique 113

5.2.2 DSTree

The DSTree [25] approach uses the Extended Adaptive Piecewise Approximation (EAPCA) [25],

which extends the Adaptive Piecewise Constant Approximation (APCA) [155] by using

more information to represent each segment of a vector V . The APCA segmentation di-

vides V into l varying-length segments and represents each segment using the mean value

of the points belonging to it (Fig 5.2a). The EAPCA representation uses the standard

deviation in addition to the mean to represent each segment (Fig 5.2b).

(a) APCA (b) EAPCA

Figure 5.2: The APCA and EAPCA representations

The DSTree intertwines segmentation and indexing, building an unbalanced binary

tree with two types of nodes: internal nodes and leaf nodes. Each node contains: 1) the

number of vectors indexed at its subtree; 2) the segmentation SG at this node indicated

by the the right endpoints of each segment; and 3) a synopsis Z = (z1, z2, ..., zm), where∗

zi = {µmin, µmax, ρmin, ρmax} that contains, for each segment, the minimum and maxi-

mum means and standard deviations of all series indexed at this node. A leaf node is

associated with a filename on disk that stores all its vectors. All leaves have a maximum

capacity of ψ vectors, called the leaf threshold, i.e., each leaf can store a maximum of

Chapter 5. Hercules: A New Similarity Search Technique 114

ψ vectors. An internal node contains pointers to the left and right children nodes and a

splitting policy. Figure 5.3 shows a sample DSTree binary tree.

Ln

L3

L2

V = [-1.5,-0.5, 0.5, 1.5, 2.5, 1.5,2, 2.6]

L1

Z[I2] = (z1,z2)

I1

I2

I3

SG[I2] = (4,8)

SG[I3] = (4,6,,8)
Z[I3] = (z1,z2z3)

SG[I1] = (8)
Z[I1] = (z1)

Figure 5.3: A sample binary tree index created by the DSTree

The dynamic segmentation allows the DSTree to summarize a data series more ac-

curately than the other dimensionality reduction techniques. It is exploited in the node

splitting algorithm by allowing the resolution of a summarization to increase along two

dimensions: vertically and horizontally. (Instead, SAX-based indexes allow horizontal

splitting by adding a breakpoint to the y-axis) In addition to a lower bounding dis-

tance, the DSTree also supports an upper bounding distance. It uses both distances to

determine the optimal splitting policy for each node. The data series in a given node

are all segmented using the same policy but each node has its own segmentation policy

which may result in nodes having a different number of segments or segments of different

lengths.

Figure 5.4 summarizes the workflow of DSTree’s index building algorithm. The algo-

rithm loads the dataset into memory one vector at a time, reading sequentially form the

original file. Each loaded vector is inserted into the tree traversing the index to find the

appropriate leaf, routing left or right depending on the split policy of the visited node,

Chapter 5. Hercules: A New Similarity Search Technique 115

and updating the synopsis of all traversed nodes. Each Leaf points to a FileBuffer which

itself points to a BufferedList that contains the data stored in the leaf and currently

present in-memory. Each leaf is associated with a file on disk. FileBuffers are organized

in a Hash Map called the FileMap. The FileMap contains < key, value > pairs where

each pair is an index corresponding to a leafs Filename and the value is a pointer to the

FileBuffer of the leaf.

Once memory is full, half of the FileBuffers are flushed into disk, each vector is stored

in the file corresponding to the leaf where it was stored. In the final flush, The index

tree and the data remaining in memory is flushed to disk.

DiskMemory

Original File
Ln

L2L1

Ln.BufferedList

Single
thread

Ln

0

Fi
le

M
ap

L1.Filename Ln.Filename

 k1

Ln
.F

ile
Bu

ffe
r

L1
.F

ile
Bu

ffe
r

L1.BufferedList

When memory is full, delete
k/2 FileBuffers from
FileMap and move their
BufferedLists to disk

L1

[1,-3,...,0,7]

[1,-3,...,0,7]

[1,-3,...,0,7]

Figure 5.4: DSTree Indexing Workflow

Chapter 5. Hercules: A New Similarity Search Technique 116

5.3 Hercules

5.3.1 Indexing with Hercules

Hercule enhances the DSTree’s indexing scheme by: a) reimplementing it from scratch

in Cv and optimizing its memory management (original code was in Java); b) improving

its buffering mechanism; c) using a new storage architecture where the data of all the

index leaves is stored in one file instead of separate files physically on the disk; and

d) exploiting multi-threading and SIMD capabilities of modern CPUs to perform the

CPU-intensive calculations required by the data-adaptive segmentation.

Figure 5.5 describes the design of the Hercules indexing mechanism. The coordinator

thread loads the dataset into memory by chunks, reading a small block of vectors from

the original file into the CBuffer and copying vectors ready for index insertion into the

WBuffer. The coordinator spaws insertWorker threads to insert vectors into the index.

The insertWorker threads work in parallel to read vectors from the WBuffer and insert

them into the tree. Each thread traverses the index to find the appropriate leaf, routing

left or right depending on the split policy of the visited node, and updating the synopsis

of all traversed nodes. The data of all inserted vectors is stored in the HardBuffer while

pointers to the data belonging to each leaf are stored in the leafs SoftBuffer. When

memory is full, the data in the HardBuffer is flushed to the LRD file in disk. The LRD

file contains all the vectors stored in the index tree in Breadth First Search order. When

all vectors have been inserted into the index tree, the tree, the LSD file and the data still

in the HardBuffer are flushed to disk.

Algorithm 3 outlines Hercules’ indexing algorithm. The algorithm uses a double

buffering scheme to mask the CPU cost incurred building the index tree with the I/O

cost involved in reading the raw vectors from disk. The coordinator thread reads the

raw vectors from the original input file into the coordinator’s buffer in memory, called

the CBuffer (line 1), then copies the contents of the CBuffer into the WBuffer (line 2).

Chapter 5. Hercules: A New Similarity Search Technique 117

L1

Ln

L2

LRD File
[1,-3,...,0,7]

Original File

Ln

WBuffer CBuffer

[1,-3,...,0,7] [1,-3,...,0,7]

[1,-3,...,0,7]

L2L1

[1,-3,...,0,7]

HardBuffer

SIMD
+

multiple
threads

L1

Ln

L2

LSD File

L2

Ln

L1

LSD File

L2 SoftBuffer

During final flush, move index tree, the LSD file
and the HardBuffer to disk

[1,-3,...,0,7]

DiskMemory

Create
thread

Coordinator
thread

insertWorker
[1,-3,...,0,7]

Move to disk
when memory is
full

L1SoftBuffer

Figure 5.5: Hercules Indexing Workflow

Algorithm 3 createHerculesIndex(file,idx,num threads)

1: read vectors from file into the CBuffer;
2: copy the CBuffer contents into the WBuffer;
3: while not EOF(file) do

4: for j ← 1 to num threads− 1 do

5: begin ← (j-1) * block size
6: end ← begin + block size - 1
7: create thread tj to execute insertWorker(idx,WBuffer,begin,end);

8: read vectors from file into the CBuffer;
9: block until all insertWorker threads finished execution;

10: copy the CBuffer contents into the WBuffer;
11: if memory is full then

12: for j ← 1 to num threads do

13: create thread tj to execute flushWorker(idx);

14: block until all flushWorker threads finished execution;

15: flush to disk the LSDFile, the idx tree and the remaining contents of the
HardBuffer;

Each insertWorker thread reads a block of vectors from its region in the WBuffer, inserts

them into the index tree, calculates their SAX summaries and adds them to the LSD file.

Chapter 5. Hercules: A New Similarity Search Technique 118

No coordination is needed for the workers to read data from the WBuffer ; however the

insertion of vectors into the tree requires careful synchronization, which we will detail in

the next paragraph. While the worker threads are inserting the vectors into the index

tree, the coordinator reads another chunk of vectors from the original file (line 8) into the

CBuffer. Once the worker threads have finished processing the vectors in the WBuffer

(line 9), the coordinator copies the contents of the CBuffer into the WBuffer to feed the

workers more vectors for insertion (line 10). If the algorithm runs out of memory, the

coordinator and worker threads coordinate the flushing of the raw data into the LRD

file (lines 11-13). Once the flushing has completed and provided there remains vectors

to process, the worker and coordinator threads resume the same process we described at

line 3. When indexing is complete, the coordinator flushes the index tree, the LSD file

and any remaining vectors in the HardBuffer to disk. As we will explain in more detail

later, the HardBuffer is used to hold all the vectors that have been inserted into the tree.

Each worker thread calls Algorithm 4 to insert a chunk of vectors into the index tree,

calculate their SAX summaries and store them into the LSDfile. Algorithm 5 describes

the steps taken by each thread to insert one vector into the index and the hand-over-

hand synchronization mechanism to allow efficient and correct index building. If the tree

contains only the root (line 1), a lock is acquired on the root (line 2). If the tree contains

internal nodes (line 3), a lock is acquired on each traversed node to update its synopsis,

unlocking it only when the appropriate child is locked and this child is not a leaf. The

parent of a leaf is not unlocked to prevent another thread from being in the lock queue

of this leaf while the current thread is processing it, particularly if the leaf needs to be

split and becomes an internal node. Once a leaf is locked, its synopsis is updated with

the vector information (line 10) then the vector is appended to it (line 11).

Note that a vector is appended to a node by having the leaf node point to a SoftBuffer

which itself contains pointers to the actual data in the HardBuffer. We opted for this

architecture because it exhibited the best performance. In fact, we found that allocating

Chapter 5. Hercules: A New Similarity Search Technique 119

a large memory buffer at the start of the index creation and releasing it once all vectors

have been inserted is more efficient than having each leaf continuously allocate and release

its own memory buffer because issuing a smaller number of system calls: 1) results in

a faster performance; 2) reduces the occurrence of out-of-memory management issues

(when a program issues a large number of memory cleanup operations, the memory can

be retained by the process for later reuse, so it is not purged, i.e., it is not returned to

the operating system which considers the memory to still be in use and can terminate

the process for an out-of-memory error [210]).

If a leaf node reaches its maximum capacity (line 12), i.e. ψ, the best splitting

policy is determined following the same heuristics as in the DSTree [25] (line 13) and

the node is split into two children nodes (line 14). The vectors in the split node are

redistributed among the left and right children nodes according to the node’s splitting

policy (Algorithm 7). Once the vector is inserted, the locks on the leaf and its parent

node (except when the leaf is the root) are released (lines 20-22).

Algorithm 4 insertWorker(idx,B,begin,end)

1: root ← root of idx;
2: for i ← begin to end do

3: Vi ← B[i];
4: insertVectorToNode(idx,root,Vi);
5: calculate SAX summary of Vi and store it in the LSDFile;

Algorithm 6 updates the synopsis of a node, if necessary, based on the new vector

being inserted. Recall that a node has a horizontal and a vertical segmentation and that

the synopsis of each segmentation consists of the minimum and maximum values of the

mean and standard deviations of each segment.

Algorithm 7 describes how Hercules routes a vector during the tree traversal. It first

gets sb and se, the beginning and end points of the segment that was used during the split

of the traversed node (lines 1-3). Then, it calculates the mean and standard deviation of

the points belonging to the segment [sb, se] of the vector being inserted. It picks either

Chapter 5. Hercules: A New Similarity Search Technique 120

Algorithm 5 insertVectorToNode(idx,node,vector)

1: if node is a leaf then

2: acquire lock on node

3: while node is not a leaf do

4: acquire lock on node

5: updateNodeSynopsis(node, vector);
6: node ← routeToChild(node, vector)
7: acquire lock on node

8: if node is not a leaf then

9: release lock on node parent

10: updateNodeSynopsis(node, vector);
11: appendVectorToNode(node, vector);
12: if node is full then

13: policy ← getBestSplitPolicy(node);
14: split node into two child nodes according to policy;
15: get all vectors in node from memory and disk (if flushed) ;
16: for each vector V in node do

17: N ← routeToChild(node,V)
18: updateNodeSynopsis(N,V);
19: appendVectorToNode(N,V);

20: release lock on node

21: if node parent is not NULL then

22: release lock on node parent

Algorithm 6 updateNodeSynopsis(node,vector)

1: SGv ← the vertical segments of node;
2: SGh ← the horizontal segments of node;
3: for each segment S in SGv and SGh do

4: seriesSketch ← calcMeanSD(V ,Sstart,Send);
5: update the min/max mean and sd of S with seriesSketch.Mean and
seriesSketch.SD;

the mean or the standard deviation depending on the split policy of the node to compare

to the threshold decided during the split (lines 6-8). The vector is routed left if the value

is less than the threshold and right otherwise (lines 9-12).

Chapter 5. Hercules: A New Similarity Search Technique 121

Algorithm 7 routeToChild(node,vector)

1: Get the splitPolicy of node;
2: from ← splitPolicy.segmentStart; . segment used in split
3: to ← splitPolicy.segmentEnd;
4: seriesSketch ← calcMeanSD(vector,from,to);
5: if splitPolicy.type is mean then

6: value ← seriesSketch.mean

7: else

8: value ← seriesSketch.sd

9: if value < splitPolicy.value then

10: return node.leftChild

11: else

12: return node.rightChild

5.3.2 Query Answering with Hercules

Exact Search

An overview

Figure 5.6 describes the workflow of Hercule’s query answering.

Ln

[-2,1,...,5,3]

L2L1

L2

Ln

L1

LRD File

LSD File

LC List

L1

L2

Ln

VC List

ptr to Ln.V2

[1,-3,...,0,7]

ptr to L1

ptr to L5

ptr to Ln

[1,1,...,5,2]SIMD
+

multiple
threads

SIMD
+

Single
thread

DiskMemory

1. Query q arrives [-2,1,...,5,3]

2. Visit lmax leaves:

3. Build the LC List
based on the
current bsf

4.1 Using the LSD File,
 calculate the
 sax_mindist of the
 query to all leaves
 in the LC List

4. Create threads
to build the VC
List:

4.2 Prune the LC List based
 on bsf and store the LRD
 positions of the vectors
 in the non pruned leaves
 in the VC List

buildVCList

5. Create threads to
 process the VC List:

procVCList

5.1 Using the LRD File, calculate the
 real dist of the query to all
 vectors in VC List

5.2 Return the final answer

2.1 Load the leaves vectors from the LRD File into
 Memory

2.2 Calculate the real dist of the query to loaded
 vectors. The smallest dist is called bsf.

1

2

4

3

5

Figure 5.6: Query Answering Workflow

Chapter 5. Hercules: A New Similarity Search Technique 122

Algorithm 8 outlines the kNN exact nearest neighbor search with Hercules. It takes

as arguments, the query vector VQ, the index idx, the maximum number of leaves lmax

that the approximate search can visit, the number of neighbors k, an array kresults to

store the k neighbors, and the number of threads that can be exploited by the algorithm.

It first starts by initializing an array results with the current k best-so-far answers (lines

1-2), the LCList and V CList arrays which will hold the candidate leaves and vectors

respectively (line 3), and a priority pqueue pqueue with the root node of the index (lines 4-

6), where the priority is based on the EAPCAMinDist, i.e., the lower bounding distance

of the query to the EAPCA segmentation of a given node as presented in [25]. Then

an approximate kNN search is performed by calling the function approxKNNSearch,

which returns k approximate neighbors for query VQ by visiting at most lmax leaves. The

variable kthbsf is initialized with the real distance of the kth neighbor to VQ (line 8) and

is used by the buildLCList function to prune the search space. The non-pruned leaves

are stored in the LCList (line 9). The buildV CList function applies a double filter on

the sax representation of the vectors belonging to the leaves in the LCList using the

SAXMinDist [146] and stores the non-pruned candidate vectors in the V CList (line 10).

The refineV CList function (line 11) loads the vectors in the V CList from disk and

calculates their real distance to the query returning the k vectors with the minimum real

Euclidean distance to VQ as the final answers. Note that we use SIMD for efficient real

distance calculations.

In what follows, we will describe in more detail the different building blocks of Algo-

rithm 8.

Chapter 5. Hercules: A New Similarity Search Technique 123

Algorithm 8 exactKNNSearch(VQ, idx, lmax, k, kresults, numThreads)

1: for each result in kresults do

2: result.dist ← ∞; result.pos ← NULL;

3: initialize the LCList and V CList arrays;
4: initialize a priority queue pqueue
5: rootMinDist ← calcEAPCAMinDistSIMD(VQ, rootNode);
6: add rootNode to pqueue with priority rootMinDist;
7: approxKNNSearch(VQ, LRDFile, pqueue, lmax, k, kresults);
8: kthbsf ← kresults[k− 1];
9: buildLCList(VQ, LRDFile, kthbsf , pqueue, LCList);

10: buildVCList(VQ, LSDFile, kthbsf , LCList, V CList, numThreads);
11: refineVCList(VQ, LRDFile, k, kresults, V CList, numThreads);

Finding the first bsf

The kth approximate answer, called kthbsf will serve to prune the search space.

Algorithm 9 finds k approximate first baseline answers and stores them in the array

kresults in increasing order of the real Euclidean distance. It visits a maximum of lmax

leaves, where lmax is a parameter provided by the user and is 1 by default. In line 2,

it pops the element in pqueue with the highest priority, i.e., the node with the lowest

EAPCAMinDist to the query. To understand the reason behind allocating a higher

priority to the EAPCAMinDist, recall that it is a lower-bounding distance. Therefore,

if a popped node has an EAPCAMinDist value greater than the current kthbsf answer,

this means that the search is complete (line 5) since any vector in the subtree rooted

at this node has a real distance that is greater than or equal to EAPAMinDist and

thus cannot improve the kthbsf . Besides, since the priority in pqueue is based on the

minimum EAPCAMinDist, all remaining nodes in pqueue can be pruned because their

lower-bounding distances will also be greater than the kthbsf . Note that we use SIMD

operations to speed up the calculations of the EAPCAMinDist.

If the non-pruned node is a leaf (line 6), then the vectors of this leaf are read from

the LRDFile (line 7) and their real Euclidean distances to the query are calculated (line

10) and the kreults array is updated if applicable (lines 11-15). The algorithm stops

improving the k answers once the leaves threshold is reached (line 16).

Chapter 5. Hercules: A New Similarity Search Technique 124

Algorithm 9 approxKNNSearch(VQ, LRDFile, pqueue, lmax, k, kresults)

1: visitedLeaves ← 0

2: while (qelement ← pop next element from pqueue) do

3: n ← qelement.node;
4: kthbsf ← kresults[k− 1];
5: if n.dist > kthbsf.dist then break;

6: if n is a leaf then . a leaf node
7: read vectors of n from the LRDFile;
8: for each VC in n do

9: kthbsf ← kresults[k− 1];
10: realDist ← calcRealDistSIMD(VQ,VC);
11: if realDist < kthbsf.dist then

12: create new result called bsf ;
13: bsf.dist ← realDist ;
14: bsf.pos ← position of VC in LRDFile;
15: add bsf to kresults;

16: if visitedLeaves > lmax then break;

17: else . an internal node
18: for each childNode in n do

19: kthbsf ← kresults[k− 1];
20: minDist ← calcEAPCAMinDistSIMD(SQ,childNode);
21: if minDist < kthbsf.dist then add childNode to
22: pqueue with priority minDist;

Instead, if the non-pruned node is an internal node (line 17), its children are added

to pqueue if their EAPCAMinDist is smaller than the current kthbsf (line 18-22). Then

the algorithm resumes processing the pqueue unless it is empty (line 2) and returns the

approximate k answers to the exact algorithm to help prune the search space.

Creating the LCList

Once k approximate answers have been found, the kth approximate answer, called

kthbsf is used by Algorithm 10 to prune the search space and create the LCList. In

addition to the kthbsf , the algorithm takes as arguments, the query vector VQ, the index

idx, the priority queue pqueue, and an array LCList to store the non-pruned leaves.

In algorithm 10, the search in the index tree resumes with the remaining nodes in

pqueue (line 2), i.e., nodes that were visited by algorithm 9 are not accessed again. If the

node’s EAPCAMinDist is larger than the kthbsf distance, the algorithm stops (line 4).

Chapter 5. Hercules: A New Similarity Search Technique 125

Algorithm 10 buildLCList(VQ, LRDFile, kthbsf , pqueue, LCList)

1: count ← 0;
2: while (qelement ← pop next element from pqueue) do

3: n ← qelement.node;
4: if n.dist > kthbsf.dist then break;

5: if n is a leaf then . a leaf node
6: LCList[count].node ← n;
7: LCList[count].dist ← qelement.dist;
8: count ← count+ 1;
9: else . an internal node

10: for each childNode in n do

11: minDist ← calcEAPCAMinDistSIMD(VQ,childNode);
12: if minDist < kthbsf.dist then add childNode to
13: pqueue with priority minDist;

14: sort the candidate leaves in the LClist in increasing order of their position in the
LRDFile;

Otherwise it adds non-pruned leaves into the LCList (lines 5-8) and non-pruned internal

nodes into pqueue (lines 9-13). Note that leaves are treated differently in Algorithms 9

and 10 because in the former, the vectors of the leaves are loaded from disk and the real

distance is calculated between each vector and the query, updating kresults as necessary,

whereas in the latter, the kresults are not updated and pointers to the leaves are stored

for further processing, so the disk is not accessed in this case.

Once all nodes in pqueue have been processed, the candidate leaves in the LCList are

sorted in increasing order of their position in the LRDFile (line 14). This is to reduce

the overhead of disk random I/O by ensuring that data pages are visited in the order

they are laid out on disk.

Creating the VCList

While the previous building blocks of the exact search algorithm use SIMD to effi-

ciently calculate the distances EAPCAMinDist and RealDist, they run sequentially. We

now describe Algorithm 11, the multi-threaded algorithm that creates the V CList. It

starts initializing the threads (line 1) and their local data. Each thread maintains a local

V CList (line 2) of size count (line 3) and current index currentCandidate (line 4) and

Chapter 5. Hercules: A New Similarity Search Technique 126

Algorithm 11 buildVCList(VQ, LSDFile, kthbsf , LCList, V CList,
numThreads)

1: initialize threads;
2: each thread maintains a local V CList;
3: threads count ← 0;
4: threads currentCandidate ← 0;
5: for i ← 1 to numThreads do

6: create thread tj to execute buildVCListWorker(VQ, LSDFile, kthbsf , LCList,
thread.V CList);

7: merge the threads local V CList into a global V CList ;

Algorithm 12 buildVCListWorker(VQ, LSDFile, kthbsf , LCList, V CList)

1: while currentCandidate < LCList.size do

2: n ← LCList[fetchAndAdd(currentCandidate)];
3: for each SC in n do

4: read SAX summary SC of each vector VC of leaf n from the LSDFile;
5: minDist ← calcSAXMinDist(PAA(VQ),SC);
6: if minDist < kthbsf.dist then

7: add VC to the thread’s local V CList;

executes a buildV CListWorker (line 6) to populate its V CList. Once all threads have

terminated execution, their local lists are merged into a global V CList (line 7).

Algorithm 12 outlines the tasks of each buildV CListWorker. Each worker processes

a leaf from the LCList if it is not empty (line 1) using a fetch-and-add operation for

concurrency control (line 2). For every vector SC in the leaf, it reads its SAX summary

from the LSDFile (line 4), which is in-memory, calculates its SAXMinDist [146] to the

query (line 5) and inserts its LRDFile position into the thread’s V CList if the vector

cannot be pruned (lines 6-7).

Refining the VCList

Algorithm 13 and describes the last step in exact search which involves refining the

vectors in the V CList to return the exact k neighbors of the query vector VQ. Each

thread keep track of the variable currentCandidate to fetch the correct vector from the

V CList and spawns a worker that processes vectors from the V CList in algorithm 14.

As long as there are unprocessed elements in the V CList (line 1), the worker in

Chapter 5. Hercules: A New Similarity Search Technique 127

Algorithm 13 refineVCList(VQ, LRDFile, k, kresults, V CList, numThreads)

1: initialize threads;
2: threads currentCandidate ← 0;
3: for i ← 1 to numThreads do

4: create thread tj to execute refineVCListWorker(VQ,LRDFile,k,kresults,V CList);

Algorithm 14 refineVCListWorker(VQ, LRDFile, k, kresults, V CList)

1: while currentCandidate < V CList.size do

2: kthbsf ← kresults[k− 1];
3: ptr ← V CList[fetchAndAdd(currentCandidate)];
4: read the VC with location ptr from the LRDFile;
5: realDist ← calcRealDistSIMD(VQ,VC);
6: if realDist < kthbsf.dist then

7: create new result called bsf ;
8: bsf.dist ← realDist;
9: bsf.pos ← ptr;

10: atomically add bsf to kresults;

algorithm 14 loads vectors from the V CList from disk (line 4) and calculates their real

distance to the query using efficient SIMD calculations (line 5) and atomically updating

the kresults array as needed (lines 6-10).

When all threads spawned by algorithm 13 have finished execution the kresults array

will contain the k vectors with the minimum real Euclidean distance to VQ.

ng-Approximate Search

The ng-approximate search of Hercules is Algorithm 9. The accuracy/efficiency trade-

off is determined using different values for lmax; visiting more leaves improves accuracy

at the expense of speed.

δ-ε-Approximate Search

We established in [96] how an index-based exact similarity search algorithm can be

modified to support δ-ε-approximate search. Following these ideas, we propose Algo-

rithm 15 which supports δ-ε-approximate search over a Hercules index.

Chapter 5. Hercules: A New Similarity Search Technique 128

Algorithm 15 DeltaEpsilonKNNSearch(VQ, idx, lmax, k, kresults, numThreads,
δ, ε, FQ(.))

1: for each result in kresults do

2: result.dist ← ∞; result.pos ← NULL;

3: initialize the LCList and V CList arrays;
4: initialize a priority queue pqueue
5: rootMinDist ← calcEAPCAMinDistSIMD(VQ, rootNode);
6: add rootNode to pqueue with priority rootMinDist;
7: approxKNNSearch(VQ, LRDFile, pqueue, lmax, k, kresults);
8: kthbsf ← kresults[k− 1];
9: buildLCListEpsilon(VQ, LRDFile, kthbsf , pqueue, LCList, ε);

10: buildVCList(VQ, LSDFile, kthbsf , LCList, V CList, numThreads);
11: rδ(Q) ← calcDeltaRadius(SQ,δ, FQ(.));

12: refineVCListDeltaEpsilon(VQ, LRDFile, k, kresults, V CList, numThreads,rδ(Q),ε);

Algorithm 16 modifies lines 4 and 12 of Algorithm 10 and Algorithm 16 modifies line

11 of Algorithm 14. Details on how to calculate rδ(Q) can be found in [18, 198] for k = 1

and k ≥ 1, respectively.

Chapter 5. Hercules: A New Similarity Search Technique 129

Algorithm 16 buildLCListEpsilon(VQ, LRDFile, kthbsf , pqueue, LCList, ε)

1: count ← 0;
2: while (qelement ← pop next element from pqueue) do

3: n ← qelement.node;
4: if n.dist > kthbsf.dist/(1 + ε) then break;

5: if n is a leaf then . a leaf node
6: LCList[count].node ← n;
7: LCList[count].dist ← qelement.dist;
8: count ← count+ 1;
9: else . an internal node

10: for each childNode in n do

11: minDist ← calcEAPCAMinDistSIMD(VQ,childNode);
12: if minDist < kthbsf.dist/(1 + ε) then add childNode to
13: pqueue with priority minDist;

14: sort the candidate leaves in the LClist in increasing order of their position in the
LRDFile;

Algorithm 17 refineVCListDeltaEpsilon(VQ, LRDFile, k, kresults, V CList,
numThreads, rδ(Q), ε)

1: initialize threads;
2: threads currentCandidate ← 0;
3: for i ← 1 to numThreads do

4: create thread tj to execute
refineVCListWorkerDeltaEpsilon(VQ,LRDFile,k,kresults,V CList, rδ(Q), ε);

Algorithm 18 refineVCListWorkerDeltaEpsilon(VQ, LRDFile, k, kresults,
V CList, rδ(Q), ε)

1: while currentCandidate < V CList.size do

2: kthbsf ← kresults[k− 1];
3: ptr ← V CList[fetchAndAdd(currentCandidate)];
4: read the VC with location ptr from the LRDFile;
5: realDist ← calcRealDistSIMD(VQ,VC);
6: if realDist < kthbsf.dist then

7: create new result called bsf ;
8: bsf.dist ← realDist;
9: bsf.pos ← ptr;

10: atomically add bsf to kresults;
11: if bsf.dist ≤ (1 + ε) rδ(Q) then exit;

Chapter 5. Hercules: A New Similarity Search Technique 130

5.3.3 Complexity Analysis

In the following paragraphs, we analyze the space complexity for the Hercules indexing

structure, as well as the time complexity for its exact and approximate search algorithms.

Since the index size and the query answering times for Hercules depend on the data

distribution [135], we provide best and worst case asymptotic analysis.

Consider an index over a dataset of size N such that each index leaf contains at most

th series (th � N). Note that Hercules fits the entire index in memory with leaves

pointing to the raw data on-disk and that it can produce an unbalanced index tree.

Space Complexity

Best Case: The best case occurs when the Hercules binary tree index has the smallest

possible number of nodes, i.e., the index tree is a full and complete binary tree. In this

case, the index will have a total of dN
th
e leaves. Since the index is full, the total number

of nodes in the index will be 2dN
th
e − 1.

Worst Case: The worst case is when the index has the largest possible number of

nodes. This can happen when each leaf contains only one series, except for one leaf with

th series, as a result of each new series insertion causing a leaf split where only one series

ends up in one of the children. Therefore, the index tree will have N − th + 1 leaves.

Since the index is full, the total number of nodes in the index will be 2(N−th)+1. (Note

that this is a pathological case that would happen when all series are almost identical:

in this case, indexing and similarity search are not useful anyways.)

Time Complexity

As we consider large on-disk datasets, the query runtime is I/O bound; thus we

express complexity in terms of I/O [211, 212], using the dataset size N , the index leaf

threshold th and the disk block size B. We count one disk page access of size B as one

I/O operation (for simplicity, we use B to denote the number of series that fit in one disk

Chapter 5. Hercules: A New Similarity Search Technique 131

page).

Best Case. The best case scenario occurs when one of the children of the index root

is a leaf, containing one data series. In this case, the approximate search will incur Θ(1)

I/O operation. In the best case, exact search will prune all other nodes of the index and

thus will also incur Θ(1) disk access.

Worst Case. Approximate search always visits one leaf. Therefore, the worst case

occurs when the leaf is the largest possible, i.e., it contains th series, in which case

approximate search incurs Θ(th/B) I/O operations. For exact search, the worst case

occurs when the algorithm needs to visit every single leaf of the index and the index has

the maximum possible number of leaves. This can happen in the worst case we discussed

above for index space complexity where the index tree has N − th+ 1 leaves. Therefore,

the exact search algorithm will access all the leaves, and will incur Θ(N) I/O operations.

(Note again that this is a pathological case where indexing and similarity search are not

useful anyways.)

5.3.4 Proofs

Consider definitions 3, 5 and 9 from Chapter 2, that we reproduce below for the sake

of clarity.

Definition 3. Consider an embedding f from (M,d) to (V,d’), where d and d′ are the

distance metrics in the original and embedding spaces respectively, the distance d′ is a

lower-bounding distance if: ∀ SQ, SC ∈M d′(f(SQ), f(SC)) ≤ d(SQ, SC) [124].

Definition 5. Given an integer k, a k-NN query retrieves the set of objects A =

{{SC1 , ..., SCk
} ⊆ S|∀ SC ∈ A and ∀ SC′ /∈ A, d(SQ, SC) ≤ d(SQ, SC′)}.

Definition 9. Given a query SQ, and ε ≥ 0, an ε-approximate algorithm guarantees

that all results, SC, are at a distance d(SQ, SC) ≤ (1 + ε)d(SQ, [k-th NN of SQ]) in the

case of a k-NN query, and distance d(SQ, SC) ≤ (1 + ε)r in the case of an r-range query.

Chapter 5. Hercules: A New Similarity Search Technique 132

A Hercules index H over a dataset M, consisting of a binary tree HT , an LRDFile

HR and an LSDFile HS, has the following properties:

Property 1. Each node N ∈ HT is associated with its own embedding fN from (M, d)

to (V, d′), where d′ is the EAPCAMinDist [25].

Property 2. ∀ SC ∈ M, ∃ a path α ∈ HT connecting the root node of HT to one leaf

node in HT containing SC. Given a query object SQ, ∀ nodes Ni ∈ α,

EAPCAMinDist(fNi
(SQ), fNi

(SC)) ≤ d(SQ, SC).

Property 3. ∀ SC ∈M, ∃ a vector VC ∈ HS such that VC = SAX(SC). Given a query

object SQ, ∀ VC ∈ HS, SAXMinDist(PAA(SQ), VC) ≤ d(SQ, SC) [146].

Theorem 1. Given a query SQ and a Hercules index H, Algorithm 8 returns the set

A = {SC1 , ..., SCk
} containing the kNN neighbors of SQ.

Proof. We will prove Theorem 1 by contradiction for k = 1. We skip the proof for an

arbitrary k because it is straightforward to prove by induction.

Assume Algorithm 8 does not return SC the NN of SQ; therefore, SC must have been

pruned at either line 7, 9, 10 or 11.

Case 1: SC was pruned at line 7 of Algorithm 8

This means that it was pruned by object S ′C which is not a NN of SQ and which

satisfies d(S ′C , SQ) = kthbsf at either line 5, 11 or 21 of Algorithm 9. At line 5, either

SC belongs to the subtree rooted at node n or at a node n′ still in pqueue, and knowing

that the priority in pqueue is based on the lowest value of the EAPCAMinDist, we

have EAPCAMinDist(SQ, n
′) ≥ EAPCAMinDist(SQ, n) > kthbsf . It follows from

property 2 that d(SQ, SC) > kthbsf . Per Definition 5, this cannot happen since SC , not

S ′C , is the NN of SQ. SC could not have been pruned at line 11 because it would mean that

d(SQ, SC) ≥ kthbsf and from Definition 5 that d(SQ, SC) = kthbsf which contradicts

our assumption that S ′C is not the NN of SQ. Similarly, SC cannot be pruned at line 21

Chapter 5. Hercules: A New Similarity Search Technique 133

because the subtree rooted at childNode and containing SC would satisfy the condition

d(SQ, SC) ≥ EAPCAMinDist(SQ, n) ≥ kthbsf . Therefore Case 1 is not plausible.

Case 2: SC was pruned at line 9 of Algorithm 8

This means that it was pruned at line 4 or 12 of Algorithm 10. Following the same

reasoning as in Case 1, this scenario is not plausible either.

Case 3: SC was pruned at line 10 of Algorithm 8

This could have happened only if it SC was not added to any V CList because it

was pruned at line 6 of Algorithm 12, i.e., we have SAXMinDist(PAA(SQ), SC) ≥

kthbsf . It follows from Property 3 that d(SQ, SC) ≥ kthbsf and from Definition 5 that

d(SQ, SC) = kthbsf which contradicts our assumption that S ′C is not the NN of SQ.

Case 4: SC was pruned at line 11 of Algorithm 8

This means that it was pruned at line 6 of Algorithm 14, i.e., that d(SQ, SC) ≥ kthbsf .

It follows from Definition 5 that d(SQ, SC) = kthbsf which contradicts our assumption

that S ′C is not the NN of SQ.

Since neither cases 1-4 can occur, this contradicts our original assumption.

Theorem 2. Given a query SQ, a Hercules index H, ε ≥ 0 and δ ∈ [0, 1], Algorithm 15

returns the set Ã = {S̃C1 , ..., S̃Ck
} containing the k δ-ε-approximate neighbors of SQ.

Proof. . We will prove Theorem 2 for δ = 1. For 0 ≤ δ < 1, a complete proof has

appeared in [18, 198].

Case 1: δ = 1

We will prove this case for δ = 1 and k = 1 by contradiction. We skip the proof for

an arbitrary k because it is straightforward to prove by induction.

Assume Algorithm 15 does not return S̃C the ε-approximate NN of SQ; therefore, S̃C

must have been pruned at either line 9 or 12 (as lines 7 and 10 are the same as the exact

algorithm for which we have already proven that they do not cause any false dismissals).

Also consider that SC is the exact NN of SQ.

Chapter 5. Hercules: A New Similarity Search Technique 134

If S̃C is pruned at line 9 of Algorithm 15, this means that it is pruned by object

S ′C , which satisfies d(SQ, S
′
C) = kthbsf and is not an ε-approximate NN of SQ, at either

line 4 or 12 of Algorithm 16. At line 4, either S̃C belongs to the subtree rooted at

node n or at a node n′ still in pqueue, and knowing that the priority in pqueue is

based on the lowest value of the EAPCAMinDist, we have EAPCAMinDist(SQ, n
′) ≥

EAPCAMinDist(SQ, n) > kthbsf/(1+(ε)). It follows from property 2 that d(SQ, S̃C) >

kthbsf/(1 + ε). Since S ′C cannot be closer to SQ than SC then d(SQ, S̃C) > kthbsf/(1 +

ε) ≥ d(SQ, S
′
C) but this violates Definition 9 since S̃C is the ε-approximate neighbor of

SQ. Following the same argument S̃C cannot be pruned by S ′C at line 12.

If S̃C is pruned at line 12 of Algorithm 15, it means that the stop condition at line

11 of Algorithm 18 is activated. When δ = 1, rδ(Q) = −∞, therefore the stop condition

is never activated.

This contradicts our assumption. Therefore, when δ = 1, Algorithm 15 returns the

the ε-approximate NN of SQ.

Case 2: 0 ≤ δ < 1

We refer the reader to the detailed proof in [18, 198].

5.4 Experimental Evaluation

We evaluated Hercules against the state-of-the-art similarity search methods per the

findings of our extensive experimental studies [95, 96].

5.4.1 Environment

We compiled all methods with GCC 6.2.0 under Ubuntu Linux 16.04.2 with their

default compilation flags; optimization level was set to 2. Experiments were run on a

server with two Intel Xeon E5-2650 v4 2.2GHz CPUs, (30MB cache, 12 cores, 24 hyper-

Chapter 5. Hercules: A New Similarity Search Technique 135

threads), 75GB2 of RAM, and 10.8TB (6 x 1.8TB) 10K RPM SAS hard drives in RAID0

with a throughput of 1290 MB/sec.

5.4.2 Experimental Framework

Algorithms. iSAX2+ [93], DSTree [93], ParIS [32] and VA+file [93] representing exact

data series methods with support for approximate queries; and Faiss IMI [35], SRS [200],

and QALSH [60] representing strictly approximate methods for vectors. We extended

DSTree, iSAX2+, ParIS and VA+file with Algorithm 2 from Chapter 4, approximating

rδ with density histograms on a 100K data series sample, following the C++ implemen-

tation of [18]. All methods are single core implementations, except for Herucles, IMI and

ParIS that make use of multi-threading and SIMD vectorization. We allow each method

to leverage its full functionalities. and we use various metrics, including implementation-

independent ones, to guard against bias. Our baseline is the Euclidean distance version

of the UCR Suite [5]. This is a set of techniques for performing very fast similarity com-

putation scans. These optimizations include: a) avoiding the computation of square root

on Euclidean distance, b) early abandoning of Euclidean distance calculations, and c) re-

ordering early abandoning on normalized data3. Data series points are represented using

single precision values and methods based on fixed summarizations use 16 dimensions.

Datasets. We use synthetic and real datasets. Synthetic datasets, called Rand, were

generated as random-walks using a summing process with steps following a Gaussian

distribution (0,1). Such data model financial time series [124] and have been widely

used in the literature [124, 28, 135]. Our three real datasets cover domains as varied as

deep learning, seismology, and neuroscience. Deep1B [167] comprises 1 billion vectors

of size 96 representing deep network embeddings extracted from the last layers of a

convolutional neural network. To the best of our knowledge, the Deep1B dataset is the

2We used GRUB to limit the amount of RAM, so that all methods are forced to use the disk. Note
that GRUB prevents the operating system from using the rest of the RAM as a file cache, which is what
we wanted for our experiments.

3Early abandoning of Z-normalization is not used since all datasets were normalized in advance.

Chapter 5. Hercules: A New Similarity Search Technique 136

largest publicly available real dataset of deep network embeddings. Seismic100GB [140],

contains 100 million data series of size 256 representing earthquake recordings at seismic

stations worldwide. Sald100GB [166] contains neuroscience MRI data and includes 200

million data series of size 128. In our experiments, we vary the size of the datasets from

25GB to 250GB. The name of each dataset is suffixed with its size. We do not use other

real datasets that have appeared in the literature [202, 187], because they are very small,

not exceeding 1GB in size.

Queries. All our query workloads consist of 100 query series run asynchronously, i.e., not

in batch mode. Synthetic queries were generated using the same random-walk generator

as the Rand dataset (with a different seed, reported in [94]). For each dataset, we use

two different query workloads: 1) a controlled workload, named with the suffix -Ctrl,

generated by adding progressively larger amounts of noise to data series extracted from

the raw dataset, so as to produce queries having different levels of difficulty, following the

ideas in [149]; 2) a random workload, named with the suffix -Rand, that is generated by

randomly selecting 100 queries from the raw dataset and excluding them during indexing.

Since the Deep1B archive contains a real workload, the random queries for this dataset

are selected from this workload. To assess Hercule’s query answering against the different

algorithms, we use the controlled query workloads for exact query answering and the

random workloads for approximate query answering. The random workloads are typically

hard and should not be used to assess the performance of index-based exact similarity

search, since a sequential scan would be the method of choice on most datasets [95]. Our

experiments cover ng-approximate and δ-ε-approximate k-NN queries, where k ∈ [1, 100].

We also include results for exact queries to serve as a yardstick. All datasets and queries

are z-normalized to allow efficient similarity search [148].

Scenarios. Our experimental evaluation proceeds in four main steps: (i) we tune meth-

ods to their optimal parameters (§5.5.1); (ii) we evaluate the indexing scalability of the

methods (§4.5.2); (iii) we compare in-memory and out-of-core scalability and accuracy

Chapter 5. Hercules: A New Similarity Search Technique 137

of all methods (§4.5.3-§4.5.4); and (iv) we perform additional experiments on the best

performing methods for disk-resident data (§4.5.4).

Measures. We assess methods using the following criteria:

(1) Scalability and search efficiency using: wall clock time (input, output, CPU and

total time), throughput (# of queries answered per minute), and two implementation-

independent measures: the number of random disk accesses (# of disk seeks) and the

percentage of data accessed.

(2) Search accuracy is assessed using: Avg Recall, Mean Average Precision (MAP), and

Mean Relative Error (MRE). Recall is the most commonly used accuracy metric in the

approximate similarity search literature. However, since it does not consider rank ac-

curacy, we also use MAP [203] that is popular in information retrieval [204, 205] and

has been proposed recently in the high-dimensional community [170] as an alternative

accuracy measure to recall. For a workload of queries SQi
: i ∈ [1, NQ], these are defined

as follows.

1. Avg Recall(workload) =
∑NQ

i=1Recall(SQi
)/NQ

2. MAP (workload) =
∑NQ

i=1 AP (SQi
)/NQ

3. MRE(workload) =
∑NQ

i=1RE(SQi
)/NQ

where:

• Recall(SQi
) = # true neighbors returned by Qi

k

• AP (SQi
) =

∑k
r=1(P (SQi,r

)×rel(r))
k

,∀i ∈ [1, NQ]

− P (SQi
, r) = # true neighbors among the first r elements

r
.

− rel(r) is equal 1 if the neighbor returned at position r

is one of the k exact neighbors of SQi
and 0 otherwise.

• RE(SQi
) = 1

k
×
∑k

r=1

d(SQi
,SCr)−d(SQi

,SCi
)

d(SQi
,SCi

)
. SCi

is the exact nearest neighbor of SQi
and

SCr is the r-th NN retrieved4. Without loss of generality, we do not consider the case

4Note that in Definition 9, ε is an upper bound on RE(SQi
).

Chapter 5. Hercules: A New Similarity Search Technique 138

where d(SQi
, SCi

) = 0. (i.e., range queries with radius zero, or kNN queries where the

1-NN is the query itself5.)

(3) Size, using the main memory footprint of the algorithm.

Procedure. Experiments involve two steps: index building and query answering. Caches

are fully cleared before each step, and stay warm between consecutive queries. For large

datasets that do not fit in memory, the effect of caching is minimized for all methods. All

experiments use workloads of 100 queries. Results reported for workloads of 10K queries

are extrapolated: we discard the 5 best and 5 worst queries of the original 100 (in terms

of total execution time), and multiply the average of the 90 remaining queries by 10K.

5.5 Results

5.5.1 Parametrization

We start by fine tuning each method (graphs omitted for brevity). In order to un-

derstand the speed/accuracy tradeoffs, we fix the total memory size available to 75GB.

The optimal parameters for DSTree, iSAX2+ and VA+file are set according to [95] and

those for ParIS are chosen per [32]. For indexing, the buffer and leaf sizes are set to

60GB and 100K, respectively, for both DSTree and iSAX2+. iSAX2+ is set to use 16

segments. VA+file uses a 20GB buffer and 16 DFT symbols. ParIS uses a 20GB buffer

and a 2K leaf size. For SRS, we set M (the projected space dimensionality) to 16 so

that the representations of all datasets fit in memory. The settings were the same for

all datasets. The fine tuning for IMI proved more tricky and involved many testing it-

erations since the index building parameters strongly affect the speed/accuracy of query

answering and differ greatly across datasets. For this reason, different parameters were

chosen for different datasets. To tune the Faiss implementation of IMI, we followed

5In these cases, the MRE definition can be extended to use the symmetric mean absolute percentage
error [206].

Chapter 5. Hercules: A New Similarity Search Technique 139

the guidelines in [35]. For the in-memory datasets, we set the index factory key to

PQ32 128,IMI2x12,PQ32 and the training size to 1,048,576 vectors, while for disk based

datasets, the index key is PQ32 128,IMI2x14,PQ32 and the training size is 4,194,304

vectors. To tune δ-ε-approximate search performance and accuracy, we vary δ and ε for

SRS and ε for DSTree, iSAX2+, ParIS and the VA+file. For ng-approximate search, we

vary the nprobe parameter for DSTree/iSAX2+/IMI/ParIS/VA+file (nprobe represents

the number of visited leaves for DSTree/iSAX2+, the number of visited raw series for

ParIS and VA+file, and the number of inverted lists for IMI).

5.5.2 Exact Query Answering

Figure 5.7 demonstrates the superiority of Hercules in exact query answering across

the synthetic and real datasets. We use controlled workloads to show how each technique

performs with queries having different levels of difficulty. We can observe that Hercules

is the best performer overall.

On the complete workload containing 100 queries of increasing difficulty, Hercules

is at least an order of magnitude faster than a sequential scan and 4 times faster than

the state-of-the-art parallel index ParIS on the synthetic and Sald datasets (Figures 5.7a

and 5.7c). As for the Seismic dataset, Hercules is at least 4 times faster than all competing

methods (Fig. 5.7e). On the Deep dataset, which is notoriously hard [35, 159, 95, 96],

Hercules still outperforms a sequential scan, which is not the case for any of the indexes

(Fig. 5.7-g).

On the easy queries, Hercules outperforms the other methods by an even larger mar-

gin. It is at least one and a half order of magnitude faster than a sequential scan on all

datasets and 4 times faster than the best index on the real datasets. Hercules leverages

the double filtering scheme to prune more data than the DSTree as can be observed in

Figures 5.7b, 5.7d, 5.7f, 5.7h.

On the hard queries, Hercules outperforms all the indexes. In the case of the hard

Chapter 5. Hercules: A New Similarity Search Technique 140

dataset Deep, for which an index is not the right access method anyways [95], all indexes

degenerate in comparison to a sequential scan, except Hercules which performs equally

well (Fig. 5.7g). This is despite the fact that Hercules accesses almost 100% of the data

(Fig. 5.7h). The reason behind this is two-fold: 1) Hercules takes advantage of the LRD

index storage layout which consists of only one file containing all the leaves data; and 2)

all the leaf accesses are organized by their positions in the LRD file. Therefore Hercules’

I/O accesses are treated by the disk as sequential.

C
h
a
p
t
e
r
5
.

H
e
r
c
u
l
e
s:

A
N
e
w

S
im

il
a
r
it
y
S
e
a
r
c
h
T
e
c
h
n
iq
u
e

141

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

Q
ue

ry
 T

im
e

(s
ec

s)

(a) Average Time (Synth-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

%
 D

at
a

A
cc

es
se

d

(b) Average % Data Accessed (Synth-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

Q
ue

ry
 T

im
e

(s
ec

s)

(c) Average Time (SALD-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

%
 D

at
a

A
cc

es
se

d

(d) Average % Data Accessed (SALD-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

Q
ue

ry
 T

im
e

(s
ec

s)

(e) Average Time (Seismic-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

%
 D

at
a

A
cc

es
se

d

(f) Average % Data Accessed (Seismic-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

Q
ue

ry
 T

im
e

(s
ec

s)

(g) Average Time (Deep-Ctrl)

0

10

100

25−Easy 25−Hard 100−Mixed
Queries

%
 D

at
a

A
cc

es
se

d

(h) Average % Data Accessed (Deep-Ctrl)

Figure 5.7: Comparison of exact query answering using 1NN queries of different difficulty

Chapter 5. Hercules: A New Similarity Search Technique 142

Based on the results in Figure 5.7, we selected the best methods (DSTree, ParIS

and Hercules) and conducted further experiments varying the number of neighbors k in

the query workload. Figure 5.8 summarizes the results of these experiments both in-

memory (Rand25GB) and on-disk (Rand250GB). We measure the total time required

to complete a workload of 100 queries for each value of k. We observe that Hercules

wins across the board for all values of k. The figure also illustrates that finding the first

neighbor is the most costly operation for DSTree and Hercules, while the performance

of ParIS deteriorates as the number of neighbors increases. We believe this is due to

ParIS being a skip sequential algorithm therefore the neighbors of a query can be located

anywhere in the dataset file, whereas DSTree and Hercules are tree-based indexes so the

neighbors tend be in the same subtree.

● ● ●
3

6

9

12

1 10 10
0

k

A
vg

 Q
ue

ry
 T

im
e

(s
ec

)

(a) Synth25GB

● ●●
20

40

60

1 10 10
0

k

A
vg

 Q
ue

ry
 T

im
e

(s
ec

)

(b) Synth250GB

Figure 5.8: Exact query answering for best methods with increasing k

5.5.3 Approximate Query Answering

To evaluate the performance of Hercules in approximate search, we ran two sets of

experiments, the first with δ-ε-approximate queries and the second with ng-approximate

queries.

Chapter 5. Hercules: A New Similarity Search Technique 143

δ-ε-Approximate Query Answering

We first ran δ-ε-approximate queries on all the methods that support this type of

search using a synthetic disk-based dataset of size 250GB. We can observe that Hercules

is the best performer for all levels of accuracy in terms of throughput (Fig. 5.8ba) and

the combined time needed to index and answer 10K queries (Fig. 5.9).

We can observe a similar behavior on the Deep250GB dataset (Fig. 5.10) where

Hercules is again the winner for all values of MAP. Note that due to severe swapping

issues, we could not run this experiment for the LSH-based method SRS.

We selected the best methods, i.e., DSTree, iSAX1+, ParIS and Hercules, and ran the

same experiment with two additional datasets. The results on the Seismic100GB (Fig.

5.11) and Sald100GB (Fig. 5.12) datasets further confirm the superiority of Hercules in

δ-ε-approximate query answering.

●● ●
●

●
●

●●●

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP

●● ● ● ●
●

●●●

100

1000

10000

100000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP

Figure 5.9: δ-ε-approximate search
(Dataset= Synth250GB, Queries = 100NN)

Chapter 5. Hercules: A New Similarity Search Technique 144

● ●
●

●

●

0.01
0.10
1.00

10.00
100.00

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP

● ● ●

●

●

1000

10000

100000

1000000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP

Figure 5.10: δ-ε-approximate search
(Dataset= Deep250GB, Queries = 100NN)

●
●

●
●
●
●

0.01

0.10

1.00

10.00

0.
5

0.
7

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP

●
●

●
●
●
●

1000

10000

100000

1000000

0.
5

0.
7

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP

Figure 5.11: δ-ε-approximate search
(Dataset= Seismic100GB, Queries = 100NN)

Chapter 5. Hercules: A New Similarity Search Technique 145

● ● ● ●
●

●

0.01

0.10

1.00

10.00

100.00

0.
5

0.
7

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP

● ● ● ●
●

●

100

1000

10000

100000

1000000

0.
5

0.
7

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP

Figure 5.12: δ-ε-approximate search
(Dataset= Sald100GB, Queries = 100NN)

Chapter 5. Hercules: A New Similarity Search Technique 146

ng-Approximate Query Answering

We now evaluate the performance of Hercules on ng-approximate queries. Note that

we only include disk-based methods since the datasets do not fit in memory.

Figure 5.13 shows that Hercules outperforms all the other methods in terms of

throughput and the combined time of indexing and answering 10K queries. IMI has

a higher throughput for very low accuracy which is not desirable in practice. It is also

noteworthy to point out that IMI does not incur any random I/O because it compresses

all the raw data and stores the summaries in memory, whereas DSTree, iSAX2+ and

Hercules use the memory to store their data structures, but read the raw data from disk.

We repeat the same experiment with the Deep250GB, Seismic100GB and Sald100GB

datasets excluding the under performing methods IMI. VA+file and ParIS. We observe

again that Hercules is the winner overall (Figures 5.14- 5.16).

Chapter 5. Hercules: A New Similarity Search Technique 147

●
●●●

●●

0.1

10.0

1000.0

0.
01

0.
10

1.
00

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP

● ●●
●

●●

100

1000

10000

100000

0.
01

0.
10

1.
00

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP

●

●

●

●
10

30

100

0.
7

0.
8

1.
0

MAP

Q
rs

 p
er

 m
in

(c) Throughput vs. MAP (best)

●

●

●

●

300
500

1000

0.
7

0.
8

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(d) Idx + 10K Queries vs. MAP (best)

Figure 5.13: ng-approximate search
(Dataset= Synth250GB, Queries = 100NN)

● ● ●
●

●
●

●

0.01

0.10

1.00

10.00

0.
5

0.
7

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP

● ● ●

●
●

●

●

1000

10000

100000

0.
5

0.
7

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP

Figure 5.14: ng-approximate search
(Dataset= Deep250GB, Queries = 100NN)

Chapter 5. Hercules: A New Similarity Search Technique 148

●
●

●
●

●

●

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP (best)

●
●

●
●

●

●

1000

10000

100000

0.
3

0.
5

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP (best)

Figure 5.15: ng-approximate search
(Dataset= Seismic100GB, Queries = 100NN)

●
●

●
●

●
●

●
1

10

100

0.
6

0.
7

1.
0

MAP

Q
rs

 p
er

 m
in

(a) Throughput vs. MAP (best)

●
●

●
●

●
●

●

100

1000

10000

0.
6

0.
7

1.
0

MAP

Id
x

+
 1

0K
 Q

rs
 (

m
in

)

(b) Idx + 10K Queries vs. MAP (best)

Figure 5.16: ng-approximate search
(Dataset= Sald100GB, Queries = 100NN)

5.6 Conclusions

In this chapter we introduced Hercules, a new similarity search technique that lever-

ages the deep insights gained from our two experimental evaluations about the intricate

designs of the different techniques, their strengths and weaknesses. Our thorough ex-

periments demonstrate that Hercules outperforms our proposed extensions in [96] and

the state-of-the-art exact and approximate similarity search techniques in-memory and

on-disk. We used synthetic datasets and 4 of the largest publicly available real datasets

Chapter 5. Hercules: A New Similarity Search Technique 149

of high-dimensional vectors, including data series and deep neural network embeddings.

The key features behind the superior performance of Hercules are the following novel

ideas: 1) a double-filtering scheme which significantly reduces the number of surviving

candidates compared to competing techniques; 2) an efficient storage mechanism for the

index; 3) the carefully crafted distribution and execution of parallel instructions; and 4)

the exploitation of the Single Instruction Multiple Data (SIMD) capabilities of modern

CPUs.

Chapter 6

Conclusions and Future Work

Similarity search is a fundamental operation that lies at the core of many critical

data processing tasks, such as data cleaning, data integration, and big data analytics

(e.g., outlier detection, frequent pattern mining, clustering, and classification). Similarity

search aims at finding objects in a collection that are close to a given query according to

some definition of sameness.

This problem has been studied heavily in the past 25 years and will continue to attract

attention as massive collections of high-dimensional objects are becoming omnipresent

in various domains. A number of exact and approximate approaches have been proposed

in the literature to support similarity search over massive data series collections.

This chapter summarizes the main contributions of this thesis in solving the similarity

search problem (§ 6.1) and concludes by pinpointing promising future research directions

that go beyond addressing limitations of our work (§ 6.2).

150

Chapter 6. Conclusions and Future Work 151

6.1 Key Contributions

In this work, we unified and formally defined the terminology used for the different

flavors of the similarity search problem. We presented a similarity search taxonomy that

classifies methods based on the quality guarantees they provide for the search results,

and that unifies the varied nomenclature used in the literature. Following this taxonomy,

we included a survey of similarity search approaches supporting exact and approximate

search, bringing together works from the data series and high-dimensional data research

communities.

We also designed and executed two thorough experimental comparisons of several

relevant techniques in the literature which had never before been compared at equal

footing to one another. Our experimental evaluations are the most comprehensive in

the literature and paint a clear picture of the strengths and weaknesses of the various

approaches, uncovering very interesting insights and indicating promising research direc-

tions. The findings of both studies lay the ground for solid further developments in the

field of similarity search.

We proposed extensions to existing data series indexes that can answer δ-ε-approximate

queries and that outperform popular state-of-the-art techniques such as LSH, kNN graphs

and quantization-based inverted indexes. This is an important contribution that opens up

a new research direction in the field of approximate similarity search, which has been ex-

tensively studied in the past 25 years by different communities following two main trends:

(i) LSH-based algorithms that support guarantees, but are relatively slow, and (ii) kNN

graphs and inverted indexes, which are relatively fast, but do not provide theoretical

guarantees. Our work demonstrates that it is possible to have the best of both worlds

and design efficient high-dimensional vector similarity search algorithms with theoretical

guarantees on the quality of the answers. We thus offer a more promising alternative

to the two current trends in the literature. This finding sets the stage for developing

solutions that truly support scalable analytics.

Chapter 6. Conclusions and Future Work 152

A forward step in this direction is Hercules, a new similarity search technique that out-

performs the state-of-the-art approximate and exact similarity search methods, including

our own extensions to data series indexes. Hercules builds upon the insights gained from

our two experimental studies about the intricate designs of the existing approaches, their

strengths and weaknesses. Hercules performs equally well on massive collections of data

series and high-dimensional vectors such as deep network embeddings. The interest for

such work will continue to grow as deep network embeddings are becoming a big consumer

of similarity search algorithms [84].

6.2 Future Work

An important contribution of this thesis is pinpointing promising research directions

in the field of similarity search. Below, I outline some of these directions that go beyond

addressing shortcomings of our proposed work.

Facilitating real data science. I would like to integrate Hercules in a real data man-

agement system to support data cleaning, data integration, and big data analytics (e.g.,

outlier detection, frequent pattern mining, clustering, and classification). This will not

only enhance the impact of my current research results, but also spur new research av-

enues for extending the capabilities of Hercules.

Developing a benchmark for similarity search. Currently, there exists no benchn-

mark for similarity search. My goal is to extend the Lernaean Hydra Archives [93, 94] to

serve as a benchmark that will help the research community standardize the evaluation

of the quality and efficiency of similarity search techniques.

Improving ng-approximate search in-memory. While Hercules is the overall winner

on-disk, for exact and approximate search, and in-memory for exact and δ-ε-approximate

search, it is outperformed in-memory by the kNNG method HNSW. I plan to improve

the performance of Hercules for memory-resident data, so that it becomes the method of

Chapter 6. Conclusions and Future Work 153

choice across all flavors of the similarity search problem.

Improving user interactivity with progressive query answering: Although Her-

cules is outperforming the current state-of-the-art techniques in exact search. Its query

answering time is still not satisfactory for interactive analytics. I would like to enhance

Herculess query answering algorithm to return progressive estimates of the final answer

with probability guarantees. This will better support interactive exploration and fast

decision making [209, 100].

Building a height-balanced index tree. Although empirically, the index building

algorithm of Hercules produces a tree that is well balanced, i.e., most leaves have the

same depth, this is not theoretically guaranteed. My objective is to modify the index

building algorithm so that it guarantees a height-balanced tree, i.e., a tree where no leaf

is farther away from the root than any other leaf. This will be useful to improve the

worst-case complexity of the algorithm and establish average-case guarantees which can

be leveraged to develop a cost model for Hercules.

Developing more effective stopping criteria. LSH techniques exploit both δ and ε to

tune the efficiency/accuracy tradeoff. We consider that they are still inadequate because

they can produce inaccurate results when ε is low and δ is high and lack in efficiency

when δ is low. We have shown that, in the case of our Hercules and our extended

methods, using ε yields excellent empirical results, but introducing the probabilistic stop

condition based on δ was ineffective. We believe that this is due to the inaccuracy of

the (histogram-based) approximation of rδ. Therefore, improving the approximation of

rδ, or devising novel approaches are interesting open research directions that will further

improve the efficiency of these methods.

Learning the segmentation of high-dimensional vectors. Hercules currently in-

tertwines indexing and data segmentation using statistical information about the data

and some heuristics to establish the quality of a given segmentation. I would like to

explore whether machine learning techniques can help Hercules improve its segmentation

Chapter 6. Conclusions and Future Work 154

for datasets from various domains (data series, images, deep network embeddings) and

how to establish lower-bounds and build an index tree using the learned segmentation.

Extending guarantees. In the approximate search literature, accuracy has been evalu-

ated using recall, and distance approximation error. The existing techniques that provide

guarantees base their guarantees on the approximation error. However, we established

that recall and MAP are better indicators of accuracy, because even small approxima-

tion errors may still result in low recall/MAP values. Therefore, a promising research

direction would be to develop probabilistic or deterministic guarantees on the recall or

MAP values of a result set, instead of the commonly used distance approximation error.

Developing a cost model. Currently, there exists no cost model for any of the data

series indexes, including Hercules. A cost model predicts the performance of similarity

search query by estimating the I/O and CPU costs of an incoming query. Devising such

a model is critical not only to establish a theoretical complexity analysis of the average

query execution time, but also for query optimization and index parameter tuning.

Supporting uncertain data. My work has focused on data that is considered correct

and free from noise. I would like to explore how to efficiently support similarity search on

uncertain high-dimensional vector data, i.e., vectors that have missing values in some di-

mensions or contain errors. For instance, data uncertainty can manifest when IoT sensors

produce imprecise measurements or as a result of privacy-preserving transformations.

Answering variable-length queries. The scope of my previous work was with fixed-

length queries, that is the query vector and the vectors indexed in the dataset have the

same number of dimensions. It would be very interesting to study how to support efficient

exact and approximate similarity search in the presence of vectors of a variable number

of dimensions. This is a common scenario in practice, for example, a neuroscientist might

be interested in analyzing Electroencephalogram recordings of different lengths to study

brain activity.

Automatic parameter tuning. To the best of our knowledge, all the state-of-the-

Chapter 6. Conclusions and Future Work 155

art similarity search methods require manual tuning. This is particularly problematic

for approximate similarity search techniques based on LSH, k-NN graphs and inverted

indexes because tuning these methods is cumbersome and time-consuming [96]. For

instance, QALSH [60] is considered the state-of-the-art LSH method in terms of accuracy.

However, it achieves this at a very high cost: it needs to build a different index for each

desired query accuracy. This is a serious drawback that concerns also IMI and HSNW,

which are considered among the best ng-approximate methods. The fact that the speed-

accuracy tradeoff is not determined only at query time, but also during index building,

means that an index may need to be built many times, using different parameters, before

finding the right speed-accuracy tradeoff. Besides, the optimal settings may differ across

datasets, and even across different dataset sizes for the same dataset. Developing auto-

tuning mechanisms for these techniques is both an interesting problem and a necessity.

Bibliography

[1] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael Stone-

braker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani,

and Nan Tang. The data civilizer system. In CIDR 2017, 8th Biennial Conference

on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11, 2017,

Online Proceedings, 2017.

[2] Renée J. Miller. Open data integration. PVLDB, 11(12):2130–2139, 2018.

[3] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM Computing Surveys (CSUR), 41(3):15, 2009.

[4] Michele Dallachiesa, Themis Palpanas, and Ihab F. Ilyas. Top-k Nearest Neighbor

Search in Uncertain Data Series. PVLDB, 8(1):13–24, 2014.

[5] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo E. A.

P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn J.

Keogh. Searching and mining trillions of time series subsequences under dynamic

time warping. In Qiang Yang, Deepak Agarwal, and Jian Pei, editors, KDD, pages

262–270. ACM, 2012.

[6] Thanawin Rakthanmanon, Eamonn J Keogh, Stefano Lonardi, and Scott Evans.

Time series epenthesis: Clustering time series streams requires ignoring some data.

In Data Mining (ICDM), 2011 IEEE 11th International Conference on, pages 547–

556. IEEE, 2011.

156

Bibliography 157

[7] T. Warren Liao. Clustering of time series dataa survey. Pattern Recognition,

38(11):1857–1874, 2005.

[8] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti.

Similarity-based classification: Concepts and algorithms. J. Mach. Learn. Res.,

10:747–776, June 2009.

[9] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When

is nearest neighbor meaningful? In Proceedings of the 7th International Conference

on Database Theory, ICDT 99, page 217235, Berlin, Heidelberg, 1999. Springer-

Verlag.

[10] Vladimir Pestov. On the geometry of similarity search: Dimensionality curse and

concentration of measure. Information Processing Letters, 73(1):47 – 51, 2000.

[11] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising

behavior of distance metrics in high dimensional spaces. In Proceedings of the

8th International Conference on Database Theory, ICDT 01, page 420434, Berlin,

Heidelberg, 2001. Springer-Verlag.

[12] Damien Francois, Vincent Wertz, and Michel Verleysen. The concentration of

fractional distances. IEEE Trans. on Knowl. and Data Eng., 19(7):873886, July

2007.

[13] Richard E. Bellman. Adaptive Control Processes: A Guided Tour. MIT Press,

1961.

[14] Kristin P. Bennett, Usama Fayyad, and Dan Geiger. Density-based indexing for

approximate nearest-neighbor queries. In Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD 99, page

233243, New York, NY, USA, 1999. Association for Computing Machinery.

Bibliography 158

[15] Robert J. Durrant and Ata Kabn. When is nearest neighbour meaningful: A

converse theorem and implications. Journal of Complexity, 25(4):385 – 397, 2009.

[16] Ata Kabán. Non-parametric detection of meaningless distances in high dimensional

data. Statistics and Computing, 22(2):375–385, 2012.

[17] Junfeng He, Sanjiv Kumar, and Shih-Fu Chang. On the difficulty of nearest neigh-

bor search. In Proceedings of the 29th International Conference on International

Conference on Machine Learning, ICML12, page 4148, Madison, WI, USA, 2012.

Omnipress.

[18] Paolo Ciaccia and Marco Patella. PAC Nearest Neighbor Queries: Approximate

and Controlled Search in High-Dimensional and Metric Spaces. In ICDE, pages

244–255, 2000.

[19] and X. Sean Wang. Supporting content-based searches on time series via approxi-

mation. In Proceedings. 12th International Conference on Scientific and Statistica

Database Management, pages 69–81, July 2000.

[20] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.

Vector Approximation Based Indexing for Non-uniform High Dimensional Data

Sets. In Proceedings of the Ninth International Conference on Information and

Knowledge Management, CIKM ’00, pages 202–209, New York, NY, USA, 2000.

ACM.

[21] Richard Cole, Dennis E. Shasha, and Xiaojian Zhao. Fast window correlations over

uncooperative time series. In Proceedings of the Eleventh ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, Chicago, Illinois,

USA, August 21-24, 2005, pages 743–749, 2005.

Bibliography 159

[22] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Efficient and Accurate Near-

est Neighbor and Closest Pair Search in High-dimensional Space. ACM Trans.

Database Syst., 35(3):20:1–20:46, July 2010.

[23] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh. iSAX

2.0: Indexing and Mining One Billion Time Series. In Geoffrey I. Webb, Bing Liu,

Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu, editors, ICDM, pages

58–67. IEEE Computer Society, 2010.

[24] Shrikant Kashyap and Panagiotis Karras. Scalable kNN search on vertically stored

time series. In Chid Apt, Joydeep Ghosh, and Padhraic Smyth, editors, KDD,

pages 1334–1342. ACM, 2011.

[25] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. A Data-adaptive

and Dynamic Segmentation Index for Whole Matching on Time Series. PVLDB,

6(10):793–804, 2013.

[26] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. SRS: Solving c-

approximate Nearest Neighbor Queries in High Dimensional Euclidean Space with

a Tiny Index. PVLDB, 8(1):1–12, 2014.

[27] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy

Viswanathan, Chetan Gupta, and Eamonn Keogh. The Fastest Similarity Search

Algorithm for Time Series Subsequences under Euclidean Distance, August 2017.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.

[28] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and

Eamonn J. Keogh. Beyond one billion time series: indexing and mining very large

time series collections with iSAX2+. Knowl. Inf. Syst., 39(1):123–151, 2014.

Bibliography 160

[29] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate near-

est neighbor search using Hierarchical Navigable Small World graphs. CoRR,

abs/1603.09320, 2016.

[30] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. ADS: the adaptive

data series index. The VLDB Journal, 25(6):843–866, 2016.

[31] Michele Linardi and Themis Palpanas. ULISSE: ULtra compact Index for Variable-

Length Similarity SEarch in Data Series. In ICDE, 2018.

[32] Botao Peng, Panagiota Fatourou, and Themis Palpanas. ParIS: The Next Desti-

nation for Fast Data Series Indexing and Query Answering. IEEE BigData, 2018.

[33] Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.

Massively distributed time series indexing and querying. TKDE (to appear), 2019.

[34] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.

Coconut: Sortable summarizations for scalable indexes over static and streaming

data series. VLDBJ, accepted for publication, 2019.

[35] Faiss. https://github.com/facebookresearch/faiss/, 2019.

[36] Piotr Indyk and Tal Wagner. Approximate nearest neighbors in limited space. In

COLT, 2018.

[37] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast Approximate Nearest

Neighbor Search with the Navigating Spreading-out Graph. PVLDB., 12(5):461–

474, 2019.

[38] Botao Peng, Panagiota Fatourou, and Themis Palpanas. MESSI: In-Memory Data

Series Indexing. ICDE, 2020.

Bibliography 161

[39] Sebastián Ferrada, Benjamin Bustos, and Nora Reyes. An efficient algorithm for

approximated self-similarity joins in metric spaces. Information Systems, page

101510, 2020.

[40] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In

SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21,

1984, pages 47–57, 1984.

[41] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A Quantitative Analysis and

Performance Study for Similarity-Search Methods in High-Dimensional Spaces. In

Proceedings of the 24rd International Conference on Very Large Data Bases, VLDB

’98, pages 194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers

Inc.

[42] Patrick Schäfer and Mikael Högqvist. SFA: A Symbolic Fourier Approximation

and Index for Similarity Search in High Dimensional Datasets. In Proceedings of

the 15th International Conference on Extending Database Technology, EDBT ’12,

pages 516–527, New York, NY, USA, 2012. ACM.

[43] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The

R*-tree: an efficient and robust access method for points and rectangles. In IN-

TERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, pages 322–

331. ACM, 1990.

[44] D. E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas. DPiSAX: Massively

Distributed Partitioned iSAX. In 2017 IEEE International Conference on Data

Mining (ICDM), pages 1135–1140, 2017.

[45] A. Babenko and V. Lempitsky. The Inverted Multi-Index. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 37(6):1247–1260, June 2015.

Bibliography 162

[46] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An Efficient Access

Method for Similarity Search in Metric Spaces. In Matthias Jarke, Michael Carey,

Klaus R. Dittrich, Fred Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld,

editors, Proceedings of the 23rd International Conference on Very Large Data Bases

(VLDB’97), pages 426–435, Athens, Greece, August 1997. Morgan Kaufmann Pub-

lishers, Inc.

[47] H. Jegou, M. Douze, and C. Schmid. Product Quantization for Nearest Neigh-

bor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(1):117–128, Jan 2011.

[48] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one billion vectors:

Re-rank with source coding. In 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 861–864, May 2011.

[49] Yan Xia, Kaiming He, Fang Wen, and Jian Sun. Joint Inverted Indexing. 2013

IEEE International Conference on Computer Vision, pages 3416–3423, 2013.

[50] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Re-

moving the Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM

Symposium on Theory of Computing, STOC ’98, pages 604–613, New York, NY,

USA, 1998. ACM.

[51] A. Broder. On the Resemblance and Containment of Documents. In Proceedings

of the Compression and Complexity of Sequences 1997, SEQUENCES ’97, pages

21–, Washington, DC, USA, 1997. IEEE Computer Society.

[52] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-

sensitive Hashing Scheme Based on P-stable Distributions. In Proceedings of the

Twentieth Annual Symposium on Computational Geometry, SCG ’04, pages 253–

262, New York, NY, USA, 2004. ACM.

Bibliography 163

[53] Moses S. Charikar. Similarity Estimation Techniques from Rounding Algorithms. In

Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,

STOC ’02, pages 380–388, New York, NY, USA, 2002. ACM.

[54] Ting Liu, Andrew W. Moore, Alexander Gray, and Ke Yang. An Investigation of

Practical Approximate Nearest Neighbor Algorithms. In Proceedings of the 17th In-

ternational Conference on Neural Information Processing Systems, NIPS’04, pages

825–832, Cambridge, MA, USA, 2004. MIT Press.

[55] Rina Panigrahy. Entropy Based Nearest Neighbor Search in High Dimensions. In

Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Al-

gorithm, SODA ’06, pages 1186–1195, Philadelphia, PA, USA, 2006. Society for

Industrial and Applied Mathematics.

[56] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower Bounds on Locality

Sensitive Hashing. SIAM J. Discrete Math., 21(4):930–935, 2007.

[57] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe

LSH: Efficient Indexing for High-dimensional Similarity Search. In Proceedings of

the 33rd International Conference on Very Large Data Bases, VLDB ’07, pages

950–961. VLDB Endowment, 2007.

[58] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. Locality-sensitive Hashing

Scheme Based on Dynamic Collision Counting. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’12, pages

541–552, New York, NY, USA, 2012. ACM.

[59] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal Lower Bounds for Locality-

Sensitive Hashing (Except When Q is Tiny). ACM Trans. Comput. Theory,

6(1):5:1–5:13, March 2014.

Bibliography 164

[60] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. Query-aware

Locality-sensitive Hashing for Approximate Nearest Neighbor Search. PVLDB,

9(1):1–12, 2015.

[61] Sunil Arya and David M. Mount. Approximate Nearest Neighbor Queries in Fixed

Dimensions. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, SODA ’93, pages 271–280, Philadelphia, PA, USA, 1993. Society

for Industrial and Applied Mathematics.

[62] Edgar Chávez and Eric Sadit Tellez. Navigating K-Nearest Neighbor Graphs to

Solve Nearest Neighbor Searches. In José Francisco Mart́ınez-Trinidad, Jesús Ariel

Carrasco-Ochoa, and Josef Kittler, editors, Advances in Pattern Recognition, pages

270–280, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[63] Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. Fast Approxi-

mate Similarity Search Based on Degree-reduced Neighborhood Graphs. In Proceed-

ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’11, pages 1055–1063, New York, NY, USA, 2011. ACM.

[64] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo. Fast Neighborhood Graph

Search Using Cartesian Concatenation. In 2013 IEEE International Conference on

Computer Vision, pages 2128–2135, Dec 2013.

[65] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

Approximate nearest neighbor algorithm based on navigable small world graphs.

Information Systems, 45:61 – 68, 2014.

[66] Guillermo Ruiz, Edgar Chávez, Mario Graff, and Eric S. Téllez. Finding Near

Neighbors Through Local Search. In Proceedings of the 8th International Con-

ference on Similarity Search and Applications - Volume 9371, SISAP 2015, pages

103–109, Berlin, Heidelberg, 2015. Springer-Verlag.

Bibliography 165

[67] Zhansheng Jiang, Lingxi Xie, Xiaotie Deng, Weiwei Xu, and Jingdong Wang. Fast

Nearest Neighbor Search in the Hamming Space. In Proceedings, Part I, of the

22Nd International Conference on MultiMedia Modeling - Volume 9516, MMM

2016, pages 325–336, Berlin, Heidelberg, 2016. Springer-Verlag.

[68] Themis Palpanas. Big Sequence Management: A glimpse of the Past, the Present,

and the Future. In Rusins Martins Freivalds, Gregor Engels, and Barbara Catania,

editors, SOFSEM, volume 9587 of Lecture Notes in Computer Science, pages 63–80.

Springer, 2016.

[69] Kunio Kashino, Gavin Smith, and Hiroshi Murase. Time-series active search for

quick retrieval of audio and video. In ICASSP, 1999.

[70] Dennis Shasha. Tuning Time Series Queries in Finance: Case Studies and Recom-

mendations. IEEE Data Eng. Bull., 22(2):40–46, 1999.

[71] Pavlos Paraskevopoulos, Thanh-Cong Dinh, Zolzaya Dashdorj, Themis Palpanas,

and Luciano Serafini. Identification and Characterization of Human Behavior Pat-

terns from Mobile Phone Data. In D4D Challenge session, NetMob, 2013.

[72] S Soldi, Volker Beckmann, WH Baumgartner, Gabriele Ponti, Chris R Shrader,

P Lubiński, HA Krimm, F Mattana, and Jack Tueller. Long-term variability of

AGN at hard X-rays. Astronomy & Astrophysics, 563:A57, 2014.

[73] Katsiaryna Mirylenka, Vassilis Christophides, Themis Palpanas, Ioannis Pe-

fkianakis, and Martin May. Characterizing Home Device Usage From Wireless

Traffic Time Series. In EDBT, pages 551–562, 2016.

[74] Pablo Huijse, Pablo A. Estévez, Pavlos Protopapas, Jose C. Principe, and Pablo

Zegers. Computational Intelligence Challenges and Applications on Large-Scale

Astronomical Time Series Databases. IEEE Comp. Int. Mag., 9(3):27–39, 2014.

Bibliography 166

[75] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Palpanas, and

Gian Pietro Picco. Practical Data Prediction for Real-World Wireless Sensor Net-

works. IEEE Trans. Knowl. Data Eng., 27(8), 2015.

[76] Martin Bach-Andersen, Bo Romer-Odgaard, and Ole Winther. Flexible Non-

Linear Predictive Models for Large-Scale Wind Turbine Diagnostics. Wind Energy,

20(5):753–764, 2017.

[77] S. Knieling, J. Niediek, E. Kutter, J. Bostroem, C.E. Elger, and F. Mormann. An

online adaptive screening procedure for selective neuronal responses. Journal of

Neuroscience Methods, 291(Supplement C):36 – 42, 2017.

[78] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. Matrix Profile

X: VALMOD - Scalable Discovery of Variable-Length Motifs in Data Series. 2018.

[79] Billy M. Williams and Lester A. Hoel. Modeling and forecasting vehicular traffic

flow as a seasonal arima process: Theoretical basis and empirical results. Journal

of Transportation Engineering, 129(6):664–672, 2003.

[80] Georges Hébrail. Practical data mining in a large utility company, pages 87–95.

Physica-Verlag HD, Heidelberg, 2000.

[81] Anthony J. Bagnall, Richard L. Cole, Themis Palpanas, and Konstantinos Zoumpa-

tianos. Data series management (dagstuhl seminar 19282). Dagstuhl Reports,

9(7):24–39, 2019.

[82] Themis Palpanas and Volker Beckmann. Report on the First and Second Interdis-

ciplinary Time Series Analysis Workshop (ITISA). ACM SIGMOD Record, 48(3),

2019.

[83] The International Data Corporation (IDC). IDC Worldwide Global DataSphere

IoT Device and Data Forecast. In Doc #US45066919, May 2019.

Bibliography 167

[84] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with

GPUs. arXiv preprint arXiv:1702.08734, 2017.

[85] Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors. Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing, EMNLP

2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest

Group of the ACL. ACL, 2014.

[86] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.

[87] Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B. Vi-

gas, and Martin Wattenberg. Embedding projector: Interactive visualization and

interpretation of embeddings, 2016.

[88] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-

tributed representations of words and phrases and their compositionality. In Pro-

ceedings of the 26th International Conference on Neural Information Processing

Systems - Volume 2, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates

Inc.

[89] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks.

In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 855–864, New York, NY, USA, 2016.

ACM.

[90] A. B. Yandex and V. Lempitsky. Efficient Indexing of Billion-Scale Datasets of

Deep Descriptors. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2055–2063, June 2016.

Bibliography 168

[91] Yingwei Pan, Yehao Li, Ting Yao, Tao Mei, Houqiang Li, and Yong Rui. Learn-

ing deep intrinsic video representation by exploring temporal coherence and graph

structure. In IJCAI, pages 3832–3838, 2016.

[92] J. Wang, T. Zhang, j. song, N. Sebe, and H. T. Shen. A survey on learning to hash.

TPAMI, 40(4), 2018.

[93] Lernaean Hydra Archive. http://www.mi.parisdescartes.fr/~themisp/

dsseval/, 2018.

[94] Lernaean Hydra Archive II. http://www.mi.parisdescartes.fr/~themisp/

dsseval2/, 2019.

[95] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

The Lernaean Hydra of Data Series Similarity Search: An Experimental Evaluation

of the State of the Art. PVLDB, 12(2):112–127, 2018.

[96] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approxi-

mate Similarity Search. PVLDB, 13(3):402–419, 2019.

[97] Karima Echihabi. Truly Scalable Data Series Similarity Search. In VLDB PhD

Workshop, 2019.

[98] Karima Echihabi. High-Dimensional Similarity Search: From Time Series to Deep

Network Embeddings. In SIGMOD, 2020.

[99] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, Panagiota Fatourou,

and Houda Benbrahim. Hercules: Overcoming the Lernaean Hydra of High-

Dimensional Similarity Search. Under Submission.

Bibliography 169

[100] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Themis Palpanas, and

Anastasia Bezerianos. Data Series Progressive Similarity Search with Probabilistic

Quality Guarantees. In SIGMOD, 2020.

[101] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color

histogram indexing for quadratic form distance functions. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(7):729–736, July 1995.

[102] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber.

Efficient and effective querying by image content. Journal of Intelligent Information

Systems, 3:231–262, 1994.

[103] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision, 60(2):91–110, November 2004.

[104] Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, and Matthias Renz. Prob-

abilistic Similarity Search for Uncertain Time Series. In Scientific and Statistical

Database Management, 21st International Conference, SSDBM 2009, New Orleans,

LA, USA, June 2-4, 2009, Proceedings, pages 435–443, 2009.

[105] Mi-Yen Yeh, Kun-Lung Wu, Philip S. Yu, and Ming-Syan Chen. PROUD: a prob-

abilistic approach to processing similarity queries over uncertain data streams. In

EDBT 2009, 12th International Conference on Extending Database Technology,

Saint Petersburg, Russia, March 24-26, 2009, Proceedings, pages 684–695, 2009.

[106] Smruti R. Sarangi and Karin Murthy. DUST: a generalized notion of similarity

between uncertain time series. In Proceedings of the 16th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, Washington, DC,

USA, July 25-28, 2010, pages 383–392, 2010.

Bibliography 170

[107] Michele Dallachiesa, Besmira Nushi, Katsiaryna Mirylenka, and Themis Palpanas.

Uncertain Time-Series Similarity: Return to the Basics. PVLDB, 5(11):1662–1673,

2012.

[108] Gı́sli R. Hjaltason and Hanan Samet. Properties of embedding methods for similar-

ity searching in metric spaces. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):530–

549, May 2003.

[109] Botao Peng, Themis Palpanas, and Panagiota Fatourou. Paris+: Data series in-

dexing on multi-core architectures. TKDE, 2020.

[110] Themis Palpanas. Evolution of a Data Series Index. CCIS, 2020.

[111] Gustavo E. A. P. A. Batista, Xiaoyue Wang, and Eamonn J. Keogh. A Complexity-

Invariant Distance Measure for Time Series. In SDM, pages 699–710. SIAM /

Omnipress, 2011.

[112] Sam B Nadler et al. Multi-valued contraction mappings. Pacific Journal of Math-

ematics, 30(2):475–488, 1969.

[113] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz Mappings into a Hilbert

space. Comtemporary Mathematics, 26:189–206, 1984.

[114] Jǐŕı Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces.

Commentationes Mathematicae Universitatis Carolinae, 31(3):589–600, 1990.

[115] Nik Weaver. Lipschitz algebras. World Scientific, 1999.

[116] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and

some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[117] Kaspar Riesen and Horst Bunke. Graph classification by means of lipschitz embed-

ding. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

39(6):1472–1483, 2009.

Bibliography 171

[118] Christos Faloutsos and King-Ip Lin. FastMap: A fast algorithm for indexing, data-

mining and visualization of traditional and multimedia datasets, volume 24. ACM,

1995.

[119] Gabriela Hristescu and Martin Farach-Colton. Cluster-preserving embedding of

proteins. Technical report, Technical Report 99-50, Computer Science Department,

Rutgers University, 1999.

[120] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search

in sequence databases. pages 69–84, 1993.

[121] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient time series matching by

wavelets. In Proceedings 15th International Conference on Data Engineering (Cat.

No.99CB36337), pages 126–133, Mar 1999.

[122] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, June 2016.

[123] H. Hotelling. Analysis of a complex of statistical variables with principal compo-

nents. Journal of Educational Psychology, 24:417–441, 1933.

[124] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence

matching in time-series databases. In SIGMOD, pages 419–429, New York, NY,

USA, 1994. ACM.

[125] G. Hua, M. Brown, and S. Winder. Discriminative learning of local image descrip-

tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(01):43–

57, jan 2011.

Bibliography 172

[126] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi Zhang. A

hybrid collaborative filtering model with deep structure for recommender systems.

In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[127] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: A neural image caption generator. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3156–3164, 2015.

[128] Donald J Berndt and James Clifford. Using Dynamic Time Warping to Find Pat-

terns in Time Series. In AAAIWS, pages 359–370, 1994.

[129] Gautam Das, Dimitrios Gunopulos, and Heikki Mannila. Finding similar time

series. Principles of Data Mining and Knowledge Discovery, pages 88–100, 1997.

[130] Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin,

and Matthias Renz. Similarity Search on Time Series Based on Threshold Queries.

In Advances in Database Technology - EDBT 2006, 10th International Conference

on Extending Database Technology, Munich, Germany, March 26-31, 2006, Pro-

ceedings, pages 276–294, 2006.

[131] Yueguo Chen, Mario A. Nascimento, Beng Chin Ooi, and Anthony K. H. Tung.

SpADe: On Shape-based Pattern Detection in Streaming Time Series. In Proceed-

ings of the 23rd International Conference on Data Engineering, ICDE 2007, The

Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 786–795, 2007.

[132] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann,

and Eamonn Keogh. Experimental Comparison of Representation Methods and

Distance Measures for Time Series Data. Data Min. Knowl. Discov., 26(2):275–

309, March 2013.

[133] Katsiaryna Mirylenka, Michele Dallachiesa, and Themis Palpanas. Data Series

Similarity Using Correlation-Aware Measures. In Proceedings of the 29th Interna-

Bibliography 173

tional Conference on Scientific and Statistical Database Management, Chicago, IL,

USA, June 27-29, 2017, pages 11:1–11:12, 2017.

[134] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn

Keogh. Querying and mining of time series data: experimental comparison of

representations and distance measures. PVLDB, 1(2):1542–1552, 2008.

[135] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke. Query

Workloads for Data Series Indexes. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Sydney, NSW,

Australia, August 10-13, 2015, pages 1603–1612, 2015.

[136] Davood Rafiei. On Similarity-Based Queries for Time Series Data. In Proceedings of

the 15th International Conference on Data Engineering, Sydney, Austrialia, March

23-26, 1999, pages 410–417, 1999.

[137] ESA. SENTINEL-2 Mission, 2018.

[138] Sloan Digital Sky Survey. https://www.sdss3.org/dr10/data_access/volume.

php, 2018.

[139] ADHD-200. http://fcon_1000.projects.nitrc.org/indi/adhd200/, 2018.

[140] Incorporated Research Institutions for Seismology with Artificial Intelligence. Seis-

mic Data Access. http://ds.iris.edu/data/access/, 2018.

[141] Michele Linardi and Themis Palpanas. Scalable, variable-length similarity search

in data series: The ulisse approach. PVLDB, 11(13):2236–2248, 2018.

[142] Xavier Golay, Spyros Kollias, Gautier Stoll, Dieter Meier, Anton Valavanis, and

Peter Boesiger. A new correlation-based fuzzy logic clustering algorithm for FMRI.

Magnetic Resonance in Medicine, 40(2):249–260, 1998.

Bibliography 174

[143] Yoshihide Kakizawa, Robert H Shumway, and Masanobu Taniguchi. Discrimination

and clustering for multivariate time series. Journal of the American Statistical

Association, 93(441):328–340, 1998.

[144] Katarina Košmelj and Vladimir Batagelj. Cross-sectional approach for clustering

time varying data. Journal of Classification, 7(1):99–109, 1990.

[145] Mahesh Kumar, Nitin R. Patel, and Jonathan Woo. Clustering seasonality patterns

in the presence of errors. In Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmon-

ton, Alberta, Canada, pages 557–563, 2002.

[146] Jin Shieh and Eamonn Keogh. iSAX: Indexing and Mining Terabyte Sized Time

Series. In Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’08, pages 623–631, New York, NY,

USA, 2008. ACM.

[147] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and An-

gela Y. Wu. An Optimal Algorithm for Approximate Nearest Neighbor Searching

Fixed Dimensions. J. ACM, 45(6):891–923, November 1998.

[148] Eamonn Keogh and Shruti Kasetty. On the Need for Time Series Data Mining

Benchmarks: A Survey and Empirical Demonstration. Data Min. Knowl. Discov.,

7(4):349–371, October 2003.

[149] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes

Gehrke. Generating data series query workloads. The VLDB Journal, 27(6):823–

846, December 2018.

[150] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact Indexing of Dynamic

Time Warping. Knowl. Inf. Syst., 7(3):358–386, March 2005.

Bibliography 175

[151] Davood Rafiei and Alberto Mendelzon. Similarity-based Queries for Time Series

Data. SIGMOD Rec., 26(2):13–25, June 1997.

[152] Davood Rafiei and Alberto O. Mendelzon. Efficient Retrieval of Similar Time

Sequences Using DFT. CoRR, cs.DB/9809033, 1998.

[153] S. Albrecht, I. Cumming, and J. Dudas. The momentary Fourier transformation

derived from recursive matrix transformations. In Proceedings of 13th International

Conference on Digital Signal Processing, volume 1, pages 337–340 vol.1, Jul 1997.

[154] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Di-

mensionality Reduction for Fast Similarity Search in Large Time Series Databases.

Knowledge and Information Systems, 3(3):263–286, 2001.

[155] Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael Paz-

zani. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series

Databases. ACM Trans. Database Syst., 27(2):188–228, June 2002.

[156] Jessica Lin, Eamonn J. Keogh, Stefano Lonardi, and Bill Yuan-chi Chiu. A sym-

bolic representation of time series, with implications for streaming algorithms. In

Proceedings of the 8th ACM SIGMOD workshop on Research issues in data min-

ing and knowledge discovery, DMKD 2003, San Diego, California, USA, June 13,

2003, pages 2–11, 2003.

[157] Jin Shieh and Eamonn Keogh. iSAX: Indexing and Mining Terabyte Sized Time

Series. In Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’08, pages 623–631, New York, NY,

USA, 2008. ACM.

[158] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search in High

Dimensions via Hashing. In Proceedings of the 25th International Conference on

Bibliography 176

Very Large Data Bases, VLDB ’99, pages 518–529, San Francisco, CA, USA, 1999.

Morgan Kaufmann Publishers Inc.

[159] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized Product Quantiza-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 36(4):744–755, April 2014.

[160] Marios Hadjieleftheriou. The libspatialindex API, January 2014. http://

libspatialindex.github.io/.

[161] Paolo Ciaccia and Marco Patella. Bulk Loading the M-tree. pages 15–26, February

1998.

[162] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based Indexing for High-dimensional

Metric Spaces. SIGMOD Rec., 26(2):357–368, June 1997.

[163] Claudio Maccone. Advantages of KarhunenLove transform over fast Fourier trans-

form for planetary radar and space debris detection. Acta Astronautica, 60(8):775

– 779, 2007.

[164] Themis Palpanas. Evolution of a Data Series Index: the iSAX Family of Data

Series Indexes. Communications in Computer and Information Science (CCIS),

”accepted for publication, 2020”.

[165] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Zachary Zimmerman, Diego Furtado Silva, Abdullah Mueen, and

Eamonn Keogh. Time series joins, motifs, discords and shapelets: a unifying view

that exploits the matrix profile. Data Mining and Knowledge Discovery, pages

1–41, 2017.

[166] Southwest University. Southwest University Adult Lifespan Dataset (SALD).

http://fcon_1000.projects.nitrc.org/indi/retro/sald.html?utm_source=

Bibliography 177

newsletter&utm_medium=email&utm_content=See%20Data&utm_campaign=

indi-1, 2018.

[167] Skoltech Computer Vision. Deep billion-scale indexing. http://sites.skoltech.

ru/compvision/noimi, 2018.

[168] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast Approximate Nearest

Neighbor Search with the Navigating Spreading-out Graph. PVLDB, 12(5):461–

474, 2019.

[169] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with auto-

matic algorithm configuration. In VISAPP International Conference on Computer

Vision Theory and Applications, pages 331–340, 2009.

[170] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. HD-index:

Pushing the Scalability-accuracy Boundary for Approximate kNN Search in High-

dimensional Spaces. PVLDB, 11(8):906–919, 2018.

[171] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into

a Hilbert space. In Conference in modern analysis and probability (New Haven,

Conn., 1982), volume 26 of Contemporary Mathematics, pages 189–206. American

Mathematical Society, 1984.

[172] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Trans. Inf. Theor., 44(6):2325–

2383, September 2006.

[173] Mohammad Norouzi and David J. Fleet. Cartesian K-Means. In Proceedings of the

2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’13,

pages 3017–3024, 2013.

Bibliography 178

[174] Y. Kalantidis and Y. Avrithis. Locally Optimized Product Quantization for Ap-

proximate Nearest Neighbor Search. In 2014 IEEE Conference on Computer Vision

and Pattern Recognition, pages 2329–2336, June 2014.

[175] Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. A Survey of

Product Quantization. ITE Transactions on Media Technology and Applications,

6(1):2–10, 2018.

[176] Benjamin Bustos and Gonzalo Navarro. Probabilistic Proximity Searching Algo-

rithms Based on Compact Partitions. J. of Discrete Algorithms, 2(1):115–134,

March 2004.

[177] M. E. Houle and Jun Sakuma. Fast approximate similarity search in extremely

high-dimensional data sets. In 21st International Conference on Data Engineering

(ICDE’05), pages 619–630, April 2005.

[178] Edgar Chavez Gonzalez, Karina Figueroa, and Gonzalo Navarro. Effective Proxim-

ity Retrieval by Ordering Permutations. IEEE Trans. Pattern Anal. Mach. Intell.,

30(9):1647–1658, September 2008.

[179] Giuseppe Amato and Pasquale Savino. Approximate Similarity Search in Metric

Spaces Using Inverted Files. In Proceedings of the 3rd International Conference on

Scalable Information Systems, InfoScale ’08, pages 28:1–28:10, 2008.

[180] Eric Sadit Tellez, Edgar Chávez, and Gonzalo Navarro. Succinct Nearest Neighbor

Search. In Proceedings of the Fourth International Conference on SImilarity Search

and APplications, SISAP ’11, pages 33–40, New York, NY, USA, 2011. ACM.

[181] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The Pyramid-

technique: Towards Breaking the Curse of Dimensionality. In Proceedings of the

1998 ACM SIGMOD International Conference on Management of Data, SIGMOD

’98, pages 142–153, New York, NY, USA, 1998. ACM.

Bibliography 179

[182] Beng Chin Ooi, Kian-Lee Tan, Kian-Lee Tan, Cui Yu, and Stephane Bressan. In-

dexing the Edges&Mdash;a Simple and Yet Efficient Approach to High-dimensional

Indexing. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems, PODS ’00, pages 166–174, New York,

NY, USA, 2000. ACM.

[183] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the Distance:

An Efficient Method to KNN Processing. In Proceedings of the 27th International

Conference on Very Large Data Bases, VLDB ’01, pages 421–430, San Francisco,

CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[184] C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor match-

ing. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages

1–8, June 2008.

[185] Gonzalo Navarro. Searching in Metric Spaces by Spatial Approximation. The

VLDB Journal, 11(1):28–46, August 2002.

[186] Jon Kleinberg. The Small-world Phenomenon: An Algorithmic Perspective. In Pro-

ceedings of the Thirty-second Annual ACM Symposium on Theory of Computing,

STOC ’00, pages 163–170, New York, NY, USA, 2000. ACM.

[187] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-Benchmarks:

A Benchmarking Tool for Approximate Nearest Neighbor Algorithms. In Similarity

Search and Applications - 10th International Conference, SISAP 2017, Munich,

Germany, October 4-6, 2017, Proceedings, pages 34–49, 2017.

[188] Alexandr Andoni, Piotr Indyk, and Ilya P. Razenshteyn. Approximate Nearest

Neighbor Search in High Dimensions. CoRR, abs/1806.09823, 2018.

Bibliography 180

[189] Yingfan Liu, Jiangtao Cui, Zi Huang, Hui Li, and Heng Tao Shen. SK-LSH:

An Efficient Index Structure for Approximate Nearest Neighbor Search. PVLDB,

7:745–756, 2014.

[190] H. Shatkay and S. B. Zdonik. Approximate queries and representations for large

data sequences. In Proceedings of the Twelfth International Conference on Data

Engineering, pages 536–545, Feb 1996.

[191] Eamonn Keogh and Padhraic Smyth. A Probabilistic Approach to Fast Pattern

Matching in Time Series Databases. In Proceedings of the Third International Con-

ference on Knowledge Discovery and Data Mining, KDD’97, pages 24–30. AAAI

Press, 1997.

[192] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.

Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes.

PVLDB, 11(6):677–690, 2018.

[193] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.

Coconut palm: Static and streaming data series exploration now in your palm. In

SIGMOD, pages 1941–1944, 2019.

[194] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and E. A. Rundensteiner. TARDIS:

Distributed Indexing Framework for Big Time Series Data. In 2019 IEEE 35th

International Conference on Data Engineering (ICDE), pages 1202–1213, April

2019.

[195] Gisli R. Hjaltason and Hanan Samet. Ranking in Spatial Databases. In Proceedings

of the 4th International Symposium on Advances in Spatial Databases, SSD ’95,

pages 83–95, Berlin, Heidelberg, 1995. Springer-Verlag.

[196] Stefan Berchtold, Christian Böhm, Daniel A. Keim, and Hans-Peter Kriegel. A Cost

Model for Nearest Neighbor Search in High-dimensional Data Space. In Proceedings

Bibliography 181

of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, PODS ’97, pages 78–86, New York, NY, USA, 1997. ACM.

[197] Paolo Ciaccia, Marco Patella, and Pavel Zezula. A Cost Model for Similarity

Queries in Metric Spaces. In Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’98,

pages 59–68, New York, NY, USA, 1998. ACM.

[198] Paolo Ciaccia and Marco Patella. the power of distance distributions: Cost models

and scheduling policies for quality-controlled similarity queries.

[199] Hnswlib - fast approximate nearest neighbor search. https://github.com/

nmslib/hnswlib, 2019.

[200] DB Wang Group UNSW. SRS - Fast Approximate Nearest Neighbor Search in

High Dimensional Euclidean Space With a Tiny Index. https://github.com/

DBWangGroupUNSW/SRS, 2019.

[201] TEXMEX Research Team. Datasets for approximate nearest neighbor search.

http://corpus-texmex.irisa.fr/, 2018.

[202] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Ab-

dullah Mueen, and Gustavo Batista. The UCR Time Series Classification Archive,

July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.

[203] Andrew Turpin and Falk Scholer. User Performance Versus Precision Measures

for Simple Search Tasks. In Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR

’06, pages 11–18, New York, NY, USA, 2006. ACM.

[204] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction

to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

Bibliography 182

[205] Chris Buckley and Ellen M. Voorhees. Evaluating evaluation measure stability. In

SIGIR, pages 33–40. ACM, 2000.

[206] Benito E Flores. A pragmatic view of accuracy measurement in forecasting. Omega,

14(2):93 – 98, 1986.

[207] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient Distributed Local-

ity Sensitive Hashing. In Proceedings of the 21st ACM International Conference on

Information and Knowledge Management, CIKM ’12, pages 2174–2178, New York,

NY, USA, 2012. ACM.

[208] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak,

Piotr Indyk, Samuel Madden, and Pradeep Dubey. Streaming similarity search over

one billion tweets using parallel locality-sensitive hashing. PVLDB, 6(14):1930–

1941, 2013.

[209] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bezerianos.

Progressive Similarity Search on Time Series Data. In Proceedings of the Workshops

of the EDBT/ICDT 2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal,

March 26, 2019., 2019.

[210] The Jemalloc library. http://jemalloc.net/jemalloc.3.html, 2020.

[211] Paris C. Kanellakis, Sridhar Ramaswamy, Darren E. Vengroff, and Jeffrey S. Vit-

ter. Indexing for data models with constraints and classes (extended abstract). In

Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems, PODS 93, page 233243, New York, NY, USA, 1993.

Association for Computing Machinery.

[212] Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. On

the analysis of indexing schemes. In Proceedings of the Sixteenth ACM SIGACT-

Bibliography 183

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 97, page

249256, New York, NY, USA, 1997. Association for Computing Machinery.

SCALABLE AND ACCURATE HIGH-DIMENSIONAL SIMILARITY SEARCH:
FROM DATA SERIES TO DEEP NETWORK EMBEDDINGS

Abstract​: The world is drowning in a big data tsunami of high-dimensional objects that need
to be analyzed in order to identify useful patterns and extract new knowledge in domains as
varied as agriculture, medicine, cybersecurity, seismology, astrophysics, manufacturing, and
finance, and others. In response to these needs, it is imperative to build analytical systems
that truly support interactive exploration on datasets containing terabytes of high-dimensional
objects, with dimensions reaching hundreds to thousands.

A fundamental and challenging operation called similarity search is the main bottleneck of
many critical data processing tasks such as data cleaning, data integration and big data
analytics (e.g., outlier detection, frequent pattern mining, clustering, and classification). A
number of exact and approximate approaches have been proposed in the literature to
support similarity search over massive data series collections.

In this thesis, we unify and formally define the terminology used for the different flavors of the
similarity search problem. We present a similarity search taxonomy that classifies methods
based on the quality guarantees they provide for the search results, and that unifies the
varied nomenclature used in the literature. Following this taxonomy, we include a survey of
similarity search approaches supporting exact and approximate search, bringing together
works from the data series and multidimensional data research communities. We propose
extensions to existing data series indexes that can answer approximate queries with
guarantees and that outperform popular state-of-the-art techniques such as LSH, kNN
graphs and quantization-based inverted indexes in many scenarios. We also design and
conduct the two most exhaustive experimental evaluations in the field covering both exact
and approximate techniques. Building upon the deep insights gained from both studies, we
propose Hercules, a new algorithm that outperforms the state-of-the-art similarity search
approaches in-memory and on-disk.

Our work has far-reaching fundamental and practical implications. We demonstrate that it is
possible to design efficient high-dimensional vector similarity search algorithms with
theoretical guarantees on the quality of the answers, and we thus offer a more promising
alternative to the two current trends in the literature: (i) LSH-based algorithms that support
guarantees, but are relatively slow, and (ii) kNN graphs and inverted indexes, which are
relatively fast, but do not provide theoretical guarantees. This finding paves the way for very
exciting new developments which will lead to efficient solutions that can support critical
analytical tasks such as brain seizure detection, cyber-attack prevention, transportation
management and data cleaning automation.

Keywords​: Machine Learning, Data Mining, Similarity Search, Time Series, Data Series,
Indexing, Query Processing

