
  
CENTRE D’ETUDES DOCTORALES - SCIENCES ET TECHNOLOGIES 

 

 Faculté des Sciences, avenue Ibn Battouta, BP. 1014 RP, Rabat –Maroc 

 00212 (05) 37 77 18 76  00212(05) 37 77 42 61; http://www. fsr.um5.ac.ma 

 

                                          

    N° d’ordre 3278 

En vue de l’obtention du : DOCTORAT 
 

Structure de Recherche : Laboratoire de Recherche en Informatique et     

Télécommunications 

Discipline : Sciences de l’ingénieur 

Spécialité : Informatique et Télécommunications 

 

 
Présentée et soutenue le 30/12/2019 par :   

 
Raihana MOKHLISSI  

  

The analysis of the structural properties and the spanning trees entropy of 

complex networks 

 

 

 

JURY 

 
Moulay Driss RAHMANI 
 

PES, Faculté des Sciences,  Université Mohammed V de Rabat Président 

Mohamed  EL MARRAKI          PES, Faculté des Sciences, Université Mohammed V de Rabat Directeur de Thèse      

Dounia LOTFI                           PH, Faculté des Sciences, Université Mohammed V de Rabat Co-encadrant 

 

Mohammed EL HASSOUNI PES, Faculté des Lettres et des Sciences Humaines, Université 

Mohammed V de Rabat 

 

Rapporteur/examinateur 

 

Noussaima EL KHATTABI PH, Faculté des Sciences, Université Mohammed V de Rabat Rapporteur/examinateur 

Mohamed DAHCHOUR  

 

 

Joyati DEBNATH          
 

                     

PES, Institut national des postes et télécommunications de 

Rabat 

 

PES, Winona State University, MN, USA 

Rapporteur/examinateur 

 

 

Examinateur 

 

 

Année Universitaire : 2019-2020 

 



I would like to dedicate my thesis
to my beloved parents,

my sisters and my brothers.



ACKNOWLEDGEMENTS

During the preparation of my thesis, I was granted a scholarship of excellence in research
awarded by the National Center for Scientific and Technical Research (CNRST).
This thesis has been performed in the Laboratory of Research in Computer Science and
Telecommunication (LRIT) of the Faculty of Sciences Rabat, Mohammed V University,
under the supervision of Professor Mohamed EL MARRAKI and the co-supervision
of Professor Dounia LOTFI.

First of all, I would like to express my profound gratitude to my supervisor, Professor
Mohamed EL MARRAKI, Full Professor at Faculty of Sciences Rabat, who guided
me throughout my studies and I would like to mention that it was a privilege and honour
for me to have been his student. I am thankful to him for giving me a strong background
to pursue my research in this field, for having fruitful discussions with him, as well as for
his strong support and dedication during these years.

I would like to warmly thank Professor Dounia LOTFI, Qualified Professor at Fac-
ulty of Sciences Rabat, for her co-supervision, patience, and motivation. I want to thank
her especially for letting me wide autonomy while providing appropriate advice. I hope
to keep up our collaboration in the future.

I would like to convey my greatest honor and gratitude to Professor RAHMANI
Moulay Driss, Full Professor at Faculty of Sciences Rabat, for agreeing to chair the
committee of my thesis.

I would like also to thank Professor Mohamed HASSOUNI, Full Professor at Fac-
ulty of Sciences Rabat, for having agreed to report this thesis and for having taken time
to thoroughly evaluate this work.

I am very fortunate and grateful to Professor Noussaima EL KHATTABI, Quali-
fied Professor at Faculty of Sciences Rabat, for having agreed to report this work and for
her valuable comments that helped me to improve this manuscript.

I would like to thank Professor Mohamed DAHCHOUR, Full Professor at Na-
tional Institute of Posts and Telecommunications Rabat, for having agreed to report also



iv

this work and to participate in the committee. I sincerely thank him for his availability
and his precious remarks in order to ameliorate my modest work.

I would also like to extend my warmest thanks to Professor Joyati DEBNATH,
Full Professor at Winona State University, Winona, MN, USA, for her availability, close
collaboration, her kind assistance and for her willingness to come to Morocco and attend
this thesis.

I would like to express here my acknowledgments to every person who gave me support
and contributed to the elaboration of this work. Finally, my warmest thanks go to my
lovely parents, sisters and brothers for their endless support and encouragement through
my entire life.



ABSTRACT

Many real-world networks are modelled as complex networks due to their large structure
and their dynamical behaviour. Graph theory provides efficient tools to understand and
to analyze their mechanism. In fact, many structural properties are used such as the
average path length, the diameter, the clustering coefficient, the degree distribution, the
average degree, etc. Based on these features, three categories of complex networks are
defined, namely scale-free networks, small-world networks and random networks. One of
the important invariants to characterize their structures is the number of spanning trees
of a network, which is defined as the total number of connected and acyclic subgraphs of a
network having all its vertices and some or all its edges. In this work, the main objective
is the calculation of the number of spanning trees of a network also known as the com-
plexity of a network, which provides the prediction of its reliability and its robustness.
However, the enumeration of spanning trees remains a challenge, particularly for complex
networks. Recently, there has been much interest in finding efficient methods to obtain
exact expressions of the number of spanning trees for complex networks. The primary
interest of this study is to create new models for each category of complex networks based
on real-networks that grow by the gradual addition of vertices and edges. Then, find
their relevant structural properties to understand their mechanism. Furthermore, eval-
uate their complexity using combinatorial and geometric approaches. In the end, as an
application, we calculate their entropy of spanning trees to quantify their robustness and
compare them with other networks having the same average degree.

Keywords: Complex Networks, Graph theory, Average Path Length, Diameter,
Clustering Coefficient, Degree Distribution, Average Degree, Scale-Free Network, Small-
World Network, Random Network, Spanning Tree, Complexity, Reliability, Robustness,
Entropy.



RÉSUMÉ

L’analyse des réseaux complexes a été largement stimulée par les ressources de données
massives et leur étude a été initiée pour une volonté de comprendre le comportement de
divers systèmes réels. Ces réseaux complexes sont le résultat de toutes les interactions
entre les composants physiques et logiques des réseaux. Pour comprendre leur mécanisme
et leur comportement, de nombreuses propriétés structurelles sont utilisées, telles que la
distance moyenne, le diamètre, le coefficient de clustering, la distribution des degrés et
le degré moyen, etc. Ces caractéristiques définissent trois modèles de réseaux complexes
notamment les réseaux sans échelle, les réseaux petit monde et les réseaux aléatoires. Ces
trois modèles affichent un comportement riche, observé dans une grande variété de sys-
tèmes réels, y compris Internet, le World Wide Web, les réseaux électriques, les réseaux
de neurones cérébraux et les réseaux sociaux. Pour caractériser et analyser leur structure,
la théorie des graphes dispose d’un outil puissant, nommé le nombre d’arbres couvrants
d’un réseau, également appelé la complexité d’un réseau. Il est défini comme le nombre
total des sous-graphes connexes et sans cycles contenant tous les sommets du réseau avec
le plus petit nombre possible d’arêtes. L’objectif principal de ce travail est le calcul du
nombre d’arbres couvrants d’un réseau, qui permet de prédire sa fiabilité et sa robustesse.
En effet, le calcul de ce nombre reste un défi, en particulier pour les réseaux complexes.
Nous nous sommes intéressés à la recherche des méthodes efficaces pour obtenir la for-
mule exacte du nombre d’arbres couvrants pour les réseaux complexes. Le premier but
de cette étude est de créer de nouveaux modèles évoluant de manière dynamique dans
le temps pour chaque catégorie de réseaux complexes. Ensuite, calculer leurs propriétés
structurelles pertinentes pour comprendre leurs mécanismes et leurs comportements. De
plus, évaluer leur complexité en utilisant et améliorant des méthodes combinatoires et
géométriques. Finalement, comme application, nous calculons leur entropie afin de quan-
tifier leur robustesse et la comparer avec d’autres réseaux ayant le même degré moyen.

Mots clés: Réseaux Complexes, Théorie des Graphes, Distance Moyenne, Diamètre,
Coefficient de Clustering, Distribution des Degrés, Degré Moyen, Réseau Sans échelle,
Réseau Petit Monde, Réseau Aléatoire, Arbre Couvrant, Complexité, Fiabilité, Robustesse,
Entropie.

L’analyse des réseaux complexes a été largement stimulée par les ressources de don-
nées massives et leur étude a été initiée pour une volonté de comprendre le comportement
de divers systèmes réels. Pour comprendre leur mécanisme, de nombreuses propriétés
structurelles sont utilisées, telles que la distance moyenne, le coefficient de clustering,
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la distribution des degrés, etc. Ces caractéristiques définissent trois modèles de réseaux
complexes notamment les réseaux sans échelle, les réseaux petit monde et les réseaux
aléatoires. Ces trois modèles affichent un comportement riche, observé dans une grande
variété de systèmes réels, y compris Internet, WWW et les réseaux sociaux. Pour car-
actériser et analyser leur structure, la théorie des graphes dispose d’un outil puissant,
nommé le nombre d’arbres couvrants d’un réseau, également appelé la complexité d’un
réseau. Il est défini comme le nombre total des arbres contenant tous les sommets du
réseau avec le plus petit nombre possible d’arêtes. L’objectif principal de ce travail est
le calcul du nombre d’arbres couvrants d’un réseau, qui permet de prédire sa fiabilité
et sa robustesse. En effet, le calcul de ce nombre reste un défi, en particulier pour les
réseaux complexes. Nous nous sommes intéressés à la recherche des méthodes efficaces
pour obtenir la formule exacte du nombre d’arbres couvrants pour les réseaux complexes.
Le premier but de cette étude est de créer de nouveaux modèles évoluant de manière
dynamique dans le temps pour chaque catégorie de réseaux complexes. Ensuite, calculer
leurs propriétés structurelles pertinentes pour comprendre leurs mécanismes et leurs com-
portements. De plus, évaluer leur complexité en utilisant et améliorant des méthodes
combinatoires et géométriques. Finalement, comme application, nous calculons leur en-
tropie afin de quantifier leur robustesse et la comparer avec d’autres réseaux ayant le
même degré moyen.



RÉSUMÉ DÉTAILLÉ

Contexte Général

Une grande variété de systèmes du monde réel peut être décrits et caractérisés par des
réseaux complexes. Ils constituent un outil fondamental pour la modélisation de systèmes
complexes dans divers domaines. Parmi les exemples de réseaux complexes fréquemment
cités incluent le Web, Internet, les réseaux sociaux, les réseaux de transport, les réseaux
de communication, les réseaux génétiques, les réseaux de neurones, etc. Ces réseaux com-
plexes sont tous des systèmes d’interactions entre ses composants. La théorie de graphes
fournit des outils mathématiques permettant de modéliser et analyser la structure de ces
réseaux, en combinaison avec d’autres concepts et méthodes informatique et physique.
L’origine de l’étude des réseaux complexes remonte à la célèbre solution adoptée par
Euler en 1735 pour résoudre le problème du pont de Königsburg (Euler, 1741), qui a
été cité comme la première découverte de la théorie des réseaux. A la fin des années
1950, deux mathématiciens, Erdős et Rényi, ont introduit l’un des modèles de réseaux
aléatoires (Erdős et al., 1959), où chaque paire de noeuds est reliée avec la probabilité
p et ils ont montré que les propriétés de tels réseaux peuvent être calculées de manière
analytique. Ces dernières années, les recherches ont vécu la naissance d’un nouveau mou-
vement d’intérêt dans l’étude de réseaux complexes, qui ont une structure irrégulière, large
et évoluant de manière dynamique dans le temps avec l’ajout des milliers ou des millions
de noeuds et d’arêtes. En 1998, Watts et Strogatz ont observé qu’un petit diamètre ou
une courte distance moyenne et un clustering élevé conduisent à un modèle de réseau
petit monde (Watts and Strogatz, 1998), ce qui est commun dans une variété de réseaux
réels. Un an plus tard, Barabási et Albert ont proposé un modèle de réseau sans échelle,
avec une distribution de degrés de la loi de puissance (Barabási and Albert, 1999). Après
cela, plusieurs études ont incité les chercheurs à construire des modèles de réseaux pour
reproduire ou expliquer les caractéristiques communes des systèmes de la vie réelle. Parmi
les objectifs de cette thèse, nous proposons de nouveaux modèles en montrant la présence
de certaines propriétés génériques de divers réseaux complexes telles que le coefficient de
clustering, la distribution de degrés, le diamètre, etc.

En outre, en tant qu’invariant crucial de la structure d’un réseau, le nombre d’arbres
couvrants d’un réseau connexe, également considéré comme la complexité d’un réseau,
est défini comme le nombre total d’arbres contenant tous les sommets du réseau et non
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nécessairement toutes les arêtes (Knuth, 1997; Wu and Chao, 2004). Cela nous donne
une idée sur le nombre de topologies possibles connexes et sans boucles qu’un réseau
peut avoir. Ce nombre est lié aux plusieurs problèmes intéressants de réseaux, telles que
sa fiabilité (Bistouni and Jahanshahi, 2017), sa robustesse (Burton and Pemantle, 1993;
Lyons, 2005), l’étude des marches aléatoires (Aldous, 1990), la synchronisation (Nishikawa
and Motter, 2006), etc. Vu que ses applications sont diverses dans plusieurs domaines,
l’énumération des arbres couvrants a suscité une attention considérable de la part de la
communauté scientifique. Elle est considérée comme un problème d’intérêt fondamental
en mathématiques (Ozeki and Yamashita, 2011), en physique (Lin et al., 2011) et en in-
formatique (Nikolopoulos et al., 2014). Pour la première fois, Kirchhoff l’a examiné dans
son analyse des circuits électriques (Kirchhoff, 1847). Son théorème appelé “Matrix Tree
Theorem”, fournit un algorithme permettant de déterminer le nombre d’arbres couvrants
de n’importe quel réseau connexe, en calculant le déterminant d’une spécifique matrice
issue de la matrice laplacienne. Cependant, ce théorème n’est pas efficace pour les réseaux
réels ayant un grand nombre de noeuds et d’arêtes vu qu’on sera amené à calculer le de-
terminant d’une matrice large, ce qui est coûteux en terme de calcul. Par conséquent,
la plupart des travaux récents ont tenté d’étudier ce problème, de trouver des méthodes
alternatives afin d’éviter les calculs difficiles du déterminant de la matrice de Kirchhoff
et de déterminer la formule exacte du nombre d’arbres couvrants pour les réseaux com-
plexes, telles que les méthodes de suppression et de contraction Feussner (1902) et la
dualité (Lang, 2002), etc.

Objectifs

Les objectifs de cette thèse sont d’abord l’étude des réseaux complexes en proposant de
nouveaux modèles évoluant de manière dynamique dans le temps, basés sur des réseaux
réels pour chaque catégorie de réseaux petit monde, sans échelle et aléatoires. En-
suite, l’analyse de ces modèles en déterminant leurs propriétés structurelles pertinentes
pour comprendre leur mécanisme et leur comportement. Puis, le développement et
l’amélioration des méthodes combinatoires et des approches géométriques facilitant le cal-
cul du nombre d’arbres couvrants pour les réseaux proposés, prouvant que nos méthodes
sont efficaces par rapport aux méthodes classiques. Enfin, proposer une application du
nombre d’arbres couvrants pour quantifier la robustesse de nos réseaux étudiés et carac-
tériser leurs structures en utilisant la mesure de la complexité asymptotique ou l’entropie
d’arbres couvrants.

Contributions et Plan

La nouveauté de notre thèse est d’étudier et d’analyser de nouveaux modèles de réseaux
complexes, calculer leurs propriétés structurelles et d’évaluer leur complexité en utilisant
des méthodes efficaces afin de quantifier leur robustesse. Cette thèse comprend cinq
chapitres: Le premier chapitre présente l’état de l’art de notre sujet. Le chapitre 2
présente les différentes méthodes de calcul du nombre d’arbres couvrants d’un réseau,
y compris nos méthodes proposées et quelques exemples de leurs applications. Alors que
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les chapitres 3, 4 et 5 présentent nos principales contributions pour modéliser et analyser
chaque catégorie de réseaux complexes et d’évaluer leur complexité. Le plan de cette thèse
est organisé comme suit:

• Chapitre 1: Analyse structurelle des réseaux complexes. Dans ce chapitre,
nous présentons l’état de l’art des réseaux complexes et les concepts de base de la
théorie des graphes, qui sont utilisés dans la suite de ce document. Ensuite, nous
discutons certaines propriétés structurelles importantes pour analyser ces réseaux
complexes. Au final, nous citons les différents modèles proposés dans la littérature.

• Chapitre 2: Les méthodes de calcul du nombre d’arbres couvrants d’un
réseau . Dans ce chapitre, nous citons les différentes méthodes et techniques, con-
nues dans la littérature, pour calculer le nombre d’arbres couvrants d’un réseau,
classées comme méthodes algébriques, combinatoires et géométriques, telles que la
matrice de Kirchhoff, les méthodes de suppression et de contraction, la dualité, etc.
Nous examinons également leurs principaux avantages et inconvénients. Nous pro-
posons quelques exemples d’applications, telles que l’évaluation de la complexité des
réseaux Book. La limitation de ces méthodes nous pousse à utiliser et à développer
des approches alternatives pour faciliter l’énumération des arbres couvrants pour
les réseaux larges et complexes, tels que la méthode de contraction pour une châıne
fermée de réseaux planaires, la méthode électrique, etc. Nous traitons aussi deux
applications réelles, à savoir la robustesse et la fiabilité d’un réseau. Certains résul-
tats de ce chapitre ont été publiés dans une revue internationale (Mokhlissi et al.,
2015a) et deux conférences internationales (Mokhlissi et al., 2015b, 2018a).

• Chapitre 3: L’analyse des modèles des réseaux petit monde . Dans ce
chapitre, nous proposons trois modèles de réseaux petit monde: le réseau Small-
World Exponential, le réseau Koch et le réseau Farey. Nous étudions leur cas
général. Nous analysons leur construction itérative et leurs propriétés structurelles
telles que la distribution des degrés, le coefficient de clustering, le diamètre, la dis-
tance moyenne, etc, en montrant comment la généralisation de ces modèles affecte
les propriétés du petit monde. Ensuite, nous calculons le nombre d’arbres couvrants
en utilisant la méthode de décomposition généralisée suivant un noeud d’articulation
pour le réseau Small-World Exponential et le réseau Koch et les transformations de
la méthode électrique pour le réseau Farey. En tant qu’application, nous évalu-
ons l’entropie des arbres couvrants pour quantifier leur robustesse et la comparons
avec d’autres réseaux ayant le même degré moyen afin d’estimer le modèle le plus
robuste. Le résultat principal de ce chapitre est que les généralisations des deux
premiers modèles proposés ont la même robustesse malgré que leurs structures, pro-
priétés et complexités soient différentes. Les résultats de ce chapitre ont été publiés
dans une revue internationale (Mokhlissi et al., 2018b), une conférence interna-
tionale (Mokhlissi et al., 2016a) et soumis à une revue internationale (Mokhlissi
et al., 2019a).

• Chapitre 4: L’analyse des modèles des réseaux sans échelle . Dans ce
chapitre, nous examinons trois modèles de réseaux sans échelle, à savoir le réseau
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Flower, le réseau Mosaic et le réseau Fractal Scale-Free Lattice. Pour chaque modèle,
nous proposons sa généralisation en modifiant certaines dimensions. Nous analysons
sa construction et ses propriétés structurelles, en prouvant que les généralisations
proposées n’affectent pas la propriété sans échelle. De plus, nous calculons le nom-
bre d’arbres couvrants en appliquant deux approches géométriques: les approches
de réduction et de bipartition pour le réseau Flower et le réseau Mosaic et nous util-
isons les transformations de la méthode électrique pour le réseau Fractal Scale-Free
Lattice. Enfin, afin d’évaluer la robustesse des modèles proposés, nous calculons et
comparons leur entropie avec d’autres réseaux ayant le même degré moyen. Le résul-
tat principal de ce chapitre est que les combinaisons des approches de réduction et de
bipartition conduisent à la même complexité avec deux entropies différentes malgré
la différence de structure et de propriétés des deux premiers modèles étudiés. Nous
avons publié les résultats de ce chapitre dans une revue internationale (Mokhlissi
et al., 2019b) et trois conférences internationales (Mokhlissi et al., 2016b, 2017b,a).

• Chapitre 5: L’analyse des modèles des réseaux réels et aléatoires. Dans
ce chapitre, nous étudions analytiquement certains réseaux du monde réel et tous les
modèles proposés dans cette thèse et les comparons à des réseaux aléatoires ayant le
même nombre de noeuds et d’arêtes. Nous discutons leurs propriétés structurelles
telles que la distribution des degrés, la distance moyenne, le diamétre et le coef-
ficient de clustering. Ensuite, nous calculons leur nombre d’arbres couvrants en
utilisant les transformations de la méthode électrique, prouvant que cette technique
est efficace et plus générale par rapport aux techniques classiques. En outre, nous
évaluons et comparons leur entropie d’arbres couvrants afin de prédire quel réseau
est le plus robuste. Le résultat principal de ce chapitre est que le modèle de réseau
aléatoire peut être le mauvais modèle pour la plupart des réseaux réels, mais il est
considéré comme le modèle le plus robuste à cause de son entropie élevée et de son
grand nombre d’arbres couvrants. Les résultats de ce chapitre ont été soumis à une
conférence internationale (Mokhlissi et al., 2020).

Pour conclure, cette thèse se termine par une conclusion générale qui résume nos
contributions et décrit certaines perspectives et pistes de recherche.
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GENERAL INTRODUCTION

General context

Complex systems are ubiquitous in nature and society and their study has recently become

a major topic of the multidisciplinary field of research that is spreading to many disciplines

such as physics, mathematics, computer science, sociology, biology and economics. Many

real systems in these different scientific fields can be modelled as complex networks, where

their elements are nodes and interactions between elements are edges. The structure of

these networks is irregular, complex and dynamically evolving in time with thousands or

millions of nodes and edges. Examples of complex networks frequently cited include the

World Wide Web, the Internet, social networks, transportation systems, communication

networks, genetic networks, neural networks, etc. Regardless of their nature, complex net-

works share some common structural properties that define three categories of complex

networks namely scale-free networks, small-world networks and random networks. Graph

theory provides mathematical tools for modelling and analyzing them more adequately, in

combination with other computer and physical concepts. The origin of complex network

study goes back to the famous solution adopted by Euler in 1735 to solve the problem

of the Königsburg bridge (Euler, 1741), which is often cited as the first true proof in the

theory of networks. In the late 1950s, two mathematicians, Erdős and Rényi introduced

one of the models of random networks (ER network) (Erdős et al., 1959), where each node

pair is connected with the probability p and they showed that many of the properties of

such networks can be calculated analytically. In recent years, researches have witnessed

the birth of a new movement of interest in the study of complex networks. In 1998,

Watts and Strogatz observed that a small diameter or a short average path length and a
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high clustering lead to a small-world network model (Watts and Strogatz, 1998), which

is common in a variety of real networks. One year later, Barabási and Albert proposed

a scale-free network model, which has a degree distribution of power-law form (Barabási

and Albert, 1999). After that, several studies have inspired researchers to construct net-

work models to reproduce or explain the striking common features of real-life systems.

Besides, as a crucial invariant of the structure of a network, the number of spanning

trees of a connected network, also considered as the complexity of a network, is defined as

the total number of trees that connecting all the vertices of the main network and not nec-

essary all its edges (Knuth, 1997; Wu and Chao, 2004). This gives us an idea about how

many possible connected topologies that a network can have without loops. This number

of spanning trees is related to several interesting network issues, such as its reliability (Bis-

touni and Jahanshahi, 2017), its robustness (Burton and Pemantle, 1993; Lyons, 2005),

the study of random walks (Aldous, 1990), the synchronization (Nishikawa and Motter,

2006) and so on. Because of its wide range of applications in various fields, the enumera-

tion of spanning trees has received considerable attention from the scientific community.

It is a problem of fundamental interest in mathematics (Ozeki and Yamashita, 2011),

physics (Lin et al., 2011) and computer science (Nikolopoulos et al., 2014). It was first

considered by Kirchhoff in his analysis of electric circuits (Kirchhoff, 1847). His theorem

called the “Matrix Tree Theorem”, which provides a general algorithm for determining the

number of spanning trees of any connected network, in terms of a determinant. However,

this theorem is not efficient for real-world networks having a large value of nodes and

links since we will have to calculate the determinant of a large matrix, which is costly in

terms of calculation. Therefore, most of the recent works have tried to study this NP-hard

problem and to find some alternative methods in order to avoid the arduous calculations

of the largest determinant as needed by the algebraic method of Kirchhoff and determine

the exact formula of the number of spanning trees for complex networks, such as the

deletion, contraction methods Feussner (1902) and the duality (Lang, 2002), etc.
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Main Objectives

The ultimate goals of this thesis are to investigate complex networks by proposing new

models dynamically evolving in time based on real-networks for each category of small-

world, scale-free and random networks. Then, analyze them by determining their relevant

structural properties to understand their mechanism and behaviour. After that, suggest

and develop some combinatorial and geometric approaches facilitating the calculation of

the number of spanning trees for our proposed networks, proving that our methods are

efficient compared to the classical ones. Finally, propose an application of the number of

spanning trees which quantifies the robustness of our studied networks and characterizes

their structures using the measure of the entropy.

Thesis Contributions and Outline

The novelty of our thesis is to study and analyze new models of complex networks and

evaluate their complexity using efficient methods in order to quantify their robustness

and estimate which model is more effective. This thesis consists of five chapters: The

first chapter introduces the state of art of our subject. While Chapter 2 gives different

methods to calculate the number of spanning trees of a network including our proposed

methods and some examples of their applications and Chapter 3, 4 and 5 present our

main contributions to model and analyze each category of complex networks and evaluate

their complexity. The outline of this thesis is organized as follows:

• Chapter 1: The Structural analysis of complex networks. In this chap-

ter, we present the state of art of complex networks and the necessary background

knowledge on graph theory, which is needed for the rest of this document. Then, we

discuss some important structural properties to analyze these complex networks. In

the end, we review the different models proposed by scientists.

• Chapter 2: The methods of calculating the number of spanning trees of

a network . In this chapter, we quote different methods and techniques, known

in the literature, to calculate the number of spanning trees of a network, classed
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as algebraic, combinatorial and geometric methods, such as the Kirchhoff matrix,

the deletion and the contraction methods, the duality and so on. We propose also

some examples of their applications such as the evaluation of the complexity of

Book networks. We examine also their main advantages and issues. The restriction

of these methods pushes us to use and develop alternative approaches to facilitate

the enumeration of spanning trees for large and complex networks, such as the

contraction method for a closed chain of planar networks, the electrically equivalent

technique, etc. As applications of the number of spanning trees, we treat two real

propositions, which are the robustness and the reliability of a network. Some results

of this chapter were published in an international journal (Mokhlissi et al., 2015a)

and two international conferences (Mokhlissi et al., 2015b, 2018a).

• Chapter 3: The analysis of models of Small-World Networks. In this

chapter, we propose three models of small-world networks: Small-World Exponen-

tial network, Koch Network and Farey network. We investigate the general case

of each model. We analyze their iterative construction and their structural prop-

erties such as the degree distribution, the clustering coefficient, the diameter, the

average path length, etc, showing how the generalization of these models affects the

small-world properties. Then, we calculate the number of spanning trees using the

generalized decomposition method following one node for the Small-World Exponen-

tial network and the Koch Network and the electrically equivalent transformations

for the Farey network. As an application, we evaluate their entropy of spanning

trees to quantify their robustness and compare them with other networks having

the same average degree to estimate the robust model. The main result of this

chapter is that the generalizations of the two first proposed models have the same

robustness although their structures, properties and complexities are different. The

results of this chapter were published in an international journal (Mokhlissi et al.,

2018b), an international conference (Mokhlissi et al., 2016a) and submitted to an

international journal (Mokhlissi et al., 2019a).
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• Chapter 4: The analysis of models of Scale-Free networks. In this chap-

ter, we examine three models of scale-free networks, namely Flower network, Mosaic

network and Fractal Scale-Free Lattice. For each model, we put forward its gen-

eralization by changing some dimensions. We analyze their construction and their

structural properties, proving that the proposed generalizations do not affect the

scale-free property. Furthermore, we calculate the number of spanning trees by ap-

plying two geometric approaches: The reduction and the bipartition approaches for

the Flower network and the Mosaic network. While we use the electrically equiv-

alent transformations for the Fractal Scale-Free Lattice. Finally, to evaluate the

robustness of the proposed models, we compute and compare their entropy with

other networks having the same average degree. The main result of this chapter

is that the combinations of the reduction and the bipartition approaches lead to

the same complexity with two different entropies in spite of the difference in the

structure and the properties of the two first studied models. We have published the

results of this chapter in an international journal (Mokhlissi et al., 2019b) and three

international conferences (Mokhlissi et al., 2016b, 2017b,a).

• Chapter 5: The analysis of Real and Random networks models. In this

chapter, we study analytically some real-world networks and all proposed models

in this thesis and compare them with random networks having the same number of

nodes and links. We discuss their structural properties such as the degree distri-

bution, the small-world property and the clustering coefficient. Then, we calculate

their number of spanning trees by using the electrically equivalent transformations,

proving that this technique is efficient and more general compared to the classical

ones. Besides, we evaluate and compare their entropy of spanning trees to pre-

dict which network is more robust. The main result of this chapter is that the

random network model may be the wrong model for most real networks, but it is

considered as the most robust model due to its high entropy and its large number

of spanning trees. The results of this chapter were submitted to an international

conference (Mokhlissi et al., 2020).
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To conclude, this dissertation is ended with a general conclusion that summarizes our

contributions and describes some perspectives. The outline of the thesis is schematically

depicted in Figure 1.

Figure 1: Schematic of the outline of this thesis.
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C
omplex networks appear in a wide range of disciplines in social and ecological to

biological and technological systems. The research on these networks began with the

effort of defining new features to characterize the topology and the structure of real-

world networks. Mathematical graph theory is a large field that helps to understand and

predict the behaviour of these complex networks. In this chapter, we present the state of

the art of complex networks analysis. We establish the standard graph theory notation and

complex networks terminology. We study various structural properties that are common

to many networks. We discuss the main models and analytical tools, including random

networks, small-world and scale-free networks and we review the important characteristics

of each model. To read more about complex networks, you can usefully refer to the

books (Newman, 2003, 2010).
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1.1 Introduction

Networks are all around us. They are defined as a set of items, called nodes (vertices), with

connections between them, called links (edges). They are used to mimic many systems in

nature. Recently, real-world systems have attracted increasing attention because of their

growth with a million or a billion nodes and edges from which comes the utility of their

study. Many of the questions that might previously have been asked in studies of these

systems as: How can we model them? why are they complex? what are their properties?...

To answer to all these questions, researchers have discovered that real-world systems have

common special features and there is a strong need to develop mathematical foundations,

models and measures to understand and predict their behaviour and how they differ from

one domain to another. Undoubtedly, they can be described by models of complex

networks, which their structure is irregular, complex and dynamically evolving in time,

where common examples include: An organization is a network of people, the Internet is a

network of routers or domains, the World Wide Web (WWW) is a network of websites, the

brain is a network of neurons, the global economy is a network of national economies, which

are themselves networks of markets; and markets are themselves networks of interacting

producers and consumers, etc (Dehmer (2010); Estrada (2015)). In this context, our work

aims to analyze and model these complex networks.

1.1.1 Complex Networks in the Real World

Complex networks have been acknowledged as an invaluable tool for describing real-world

systems in nature and society, much-quoted examples including the cell which is a network

of chemicals linked by chemical reactions, or the Internet which is a network of routers

and computers connected by physical links, etc. These networks are present in many

fields as biology, sociology, psychology, computer science... They can be grouped into four

categories: social networks, information networks, technological networks and biological

networks. We list the most important examples in each category (See Figure 1.1) and

some examples of nodes and links in particular networks (See Table 1.1) (Strogatz (2001);

Albert and Barabási (2002); Newman (2003)).
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• Social networks: A social network is, usually, a network of people, although it

may sometimes be a network of groups of people, such as companies. The people

or groups form the vertices of the network and the edges represent some form of

social interaction between them, such as friendship between individuals, business

relationships between companies or intermarriages between families... We refer to

the words “social network” as online social networking services such as Facebook

and MySpace and we refer to vertices as actors and the edges as ties. We will

sometimes use these words when discussing social networks. Recently, studies are

just beginning to arise in the structure and properties of these larger networks.

• Information networks: Also sometimes called “knowledge networks”. They are

networks that comprise people, computers, or methods organized to collect, process,

transmit, and propagate data. The classic example of an information network is the

network of citations between academic papers. These citations form a network

in which the vertices are articles and a directed edge from article A to article B

indicates that A cites B. The structure of the citation network reflects the structure

of the information stored at its vertices. Another very important example of an

information network is the World Wide Web, which is a network of Web pages

containing information, linked together by hyperlinks from one page to another.

The Web should not be confused with the Internet, which is a physical network of

computers linked together by optical fiber and other data connections.

• Technological networks: A technological network is the physical infrastructure

networks that have grown up over the last century and form the backbone of mod-

ern technological societies. Perhaps the most known such network is the Internet,

the global network of data connections, electrical, optical and wireless that con-

nect computers and other information systems together. Other important examples

of technological networks, including the electric power grid which is a network of

high-voltage three-phase transmission lines that spans a country or a portion of a

country, transportation networks such as airline routes, roads and rail networks and

a telephone network which is a network of landlines and wireless links that transmits
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telephone calls.

• Biological networks: They are networks that occur in a number of situations in

biology as a convenient representation of patterns of interactions between appropri-

ate biological elements. Some are concrete physical networks like neural networks

which are networks of connections between neurons in the brain. Another class of

biological networks is that of biochemical networks, i.e., networks that represent the

molecular level patterns of interaction and mechanisms of control in the biological

cell such as metabolic networks, protein-protein interaction networks, and genetic

regulatory networks. The food web networks are another class of biological networks

of considerable importance, in which the vertices represent species in an ecosystem

and a directed edge from species A to species B indicates that A feeds on B.

Figure 1.1: An example of a social network of a community website (a). The network
structure of the WWW (b), its nodes are webpages connected by directed hyperlinks. The
network structure of the Internet (c). Food web (d).
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Network Node (Vertex) Link (Edge)
Citation network Article Citation
World Wide Web Web page Hyperlink

Internet Computer or router Cable or wireless data connection
Friendship network Individual Friendship

Food web Species Predation
Power grid Station Transmission line

Neural network Neuron Synapse
Metabolic network Metabolite Metabolic reaction

Table 1.1: Some examples of nodes and links in particular networks.

1.1.2 Modeling Complex Networks

The study of most complex networks has been initiated to understand various real systems.

It has begun with the effort of defining new concepts and measures to describe the topol-

ogy of real networks. In fact, these networks present specific topological features which

characterize their structure and behaviour (Boccaletti et al. (2006)). The major problem

is to model and analyze such networks. Their study by using Graph Theory is oftentimes

a difficult procedure. Thus, there is a strong need to combine graph-theoretic methods

with mathematical techniques from other scientific disciplines, such as Computer Science,

Statistics and information theory, for analyzing complex networks more adequately. The

primary interest of this study is to create new models based on real-networks that grow by

the gradual addition of vertices and edges. Then, find and highlight their structural prop-

erties to predict their mechanisms and their behaviours and to classify them according to

existing models in the literature.

1.2 Basic Concepts and Definitions on Graph Theory

The area of complex networks is a relatively recent field of study, but much of the asso-

ciated terminology comes from Graph theory, which has a much longer history. Graph

theory is considered as an adequate tool to represent a network as a graph, which can

be used to model many types of relations and processes in physical, biological, social

and information systems... In computer science, graphs are used to represent networks

of communication, data organization, computational devices, etc. In this section, basic
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definitions and concepts of graph theory are briefly presented. The reader may usefully

refer to these two books (Wilson (1985); West (2001)).

1.2.1 Graphs

1.2.1.1 Historical Problem of Graph Theory

Historically, Graph Theory began with the Swiss mathematician Leonhard Euler (1707-

1783) in his study of the Bridges of Königsburg problem (Euler, 1741). The city of

Königsburg is built on a river and consists of four islands, which can be reached by means

of seven bridges (See Figure 1.2.(a)). The question Euler was interested in answering

is: Is it possible to go from island to island traversing each bridge only once? Euler

analyzed the problem by simplifying the representation to a graph. Assume that we treat

each island as a vertex and each bridge as a line edge (See Figure 1.2.(b)). The problem

reduces to finding a “closed walk” in the graph which traverses each edge exactly once,

this is called an Eulerian circuit. This method is considered by many to be the birth of

graph theory, which has become a fundamental pillar of applied mathematics. Generally

speaking, Graph Theory is a branch of combinatorics but it is closely connected to Applied

Mathematics, Optimization Theory, Network Science and Computer Science.

Figure 1.2: Kon̈igsberg Bridge Problem (a). The resulting graph (b)
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1.2.1.2 Fundamental Definitions

Definition 1.2.1. (Graph)

A graph is a tuple G = (VG, EG) where VG is a finite set of vertices and EG is a finite

collection of edges. We only consider undirected graphs, meaning that there is no

distinction how an edge may be directed from one vertex to another. A weighted graph

is defined by replacing the set of edges EG by a set of edge weights WG. Two or more

edges joining the same pair of vertices (u, v) are known as multiple edges, we call the

graph having multiple edges by multigraph. An edge e = {v} joining a vertex to itself is

called a loop. A graph that is in one piece is a connected graph. A graph with no loops

and no multiple edges is called a simple graph (Diestel (1997); Kaveh (2013); Griffin

(2017)).

Remark 1.2.1. The number of vertices in G is called the order of G and the number of

edges in G is called the size of G. The order and size of G are denoted by |VG| and |EG|

respectively.

Example 1.2.1. Consider two graphs (a) and (b) in Figure 1.3. The first graph (a) is a

simple, undirected and connected graph. The second graph (b) is a multigraph, disconnected

and undirected graph with a loop e and multiple edges between (u, v).

(a) (b)

e

v

u

Figure 1.3: A simple graph (a) and a multigraph (b).

Definition 1.2.2. (Vertex degree, Average degree, Regular graph)

The degree of a vertex i of a graph G, denoted by ki, is the number of edges attached

to it. For a loop, we count its degree twice because it has two ends joined to that vertex.

The average degree for the whole graph G, denoted by < zG >, is the average, which is
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defined as < zG >= 2|EG|
|VG|

where 0 ≤< zG >≤ |VG| − 1 and it is not necessary an integer.

A k−regular graph is a graph where all its vertices have the same degree k (Diestel

(1997)).

Example 1.2.2. We consider the same example as Figure 1.3 (b). The degree of v is

kv = 6, the degree of u is ku = 4 and the average degree of (b) is < z(b) >= 2×8
6

= 2, 66.

Definition 1.2.3. (Path, Distance, Cycle, Complete graphs)

A path graph is a simple graph whose vertices can be ordered, denoted by Pn = v0, v1, v2, ...vn.

The degree of its vertices is kvi = 2 for i = 1, 2, ..., n − 1. The distance between two

vertices (u, v) of a network G is the number of edges in the shortest path connecting them,

denoted by d(u, v), called also as the geodesic distance. A cycle graph, denoted as Cn

is a closed path (v0, v1, v2, ..., vn, v0) in which the degree of all its vertices is kvi = 2 for

i = 0, 1, 2, ..., n. A complete graph with n vertices, denoted as Kn, is a simple graph

that contains every possible edge between all the vertices. It has n(n−1)
2

edges and is a

regular graph of the degree n− 1 (Diestel (1997)).

Example 1.2.3. Consider three graphs (a), (b) and (c)in Figure 1.4. The first graph (a)

is a path graph P5. The second graph (b) is a cycle graph C5 and the distance between

(u, v) is 2. The third graph (c) is a complete graph K5.

(a) (b)

v

u

(c)

Figure 1.4: A path graph (a), a cycle graph (b) and a complete graph (c).

Definition 1.2.4. (isomorphism)

An isomorphism from a simple graph G to a simple graph H is a bijection between the

node sets of G and H. This bijection preserves structures f : V (G) → V (H) such that

(u, v) ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say “G is isomorphic to H”, denoted

G ∼= H, if there is an isomorphism from G to H (Griffin (2017)).
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Example 1.2.4. For example, in Figure 1.5, two graphs G and H are not the same, but

they are isomorphic under the correspondence f(a) = 1, f(b) = 6, f(c) = 8, f(d) = 3,

f(g) = 5, f(h) = 2, f(i) = 4, f(j) = 7.

a

b

c

d

g

h

i

j
G

1 2

34

5 6

78

H

Figure 1.5: Two isomorphic graphs G and H.

Definition 1.2.5. (Planar graph)

A graph G is called planar if it can be drawn in the plane in such a way that no two

edges cross each other (Nishizeki and Rahman (2004)).

Example 1.2.5. For example, in Figure 1.6, G is planar graph but the complete graph

K5 is not planar graph. It has crossing edges.

G K5

Figure 1.6: A planar graph G and a non planar graph K5.

Euler’s formula: The Euler’s formula is a topological invariant, that characterized

the topological properties related to the number of vertices, edges and faces (Euler (1741);

Berge (1962); Moskowitz (2002)).

Corollary 1.2.1. Let G be a connected planar graph with |VG| vertices, |EG| edges and

|FG| faces. These numbers are connected by the well known Euler’s relation, then:

|VG| − |EG|+ |FG| = 2 (1.1)
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Example 1.2.6. We consider the same example as Figure 1.6, a graph G has |VG| = 5,

|EG| = 7 and |FG| = 4. According to the Euler’s formula, we get: 5− 7 + 4 = 2.

1.2.1.3 Matrices Associated to a Graph

Although it is convenient to represent a graph by a diagram of vertices joined by edges,

such a representation may be unsuitable if we wish to store a large graph in a computer

for an automatic and algorithmic processing. There are several types of representations

of graphs that will be studied including the adjacency matrix, the degree matrix and the

Laplacian matrix (Clark and Holton (1991)).

Adjacency Matrix: A common representation of the topology of a graph G is

through the adjacency matrix. It is a square matrix whose size is its number of vertices.

Definition 1.2.6. (Adjacency Matrix) Let G = (V,E) be a graph and assume that

V = {v1, v2, ..., vn}. The adjacency matrix of G is defined as (Aij)n×n :

(Aij) =

 1 if {vi, vj} ∈ E

0 else
(1.2)

Remark 1.2.2. An undirected graph corresponds to a symmetric matrix and the absence

of loops corresponds to a zero diagonal. For a multiple graph, Aij is defined by the number

of edges between vi and vj.

Degree Matrix: A second important matrix representation of a graph is the matrix

of degrees that contains information about the degree of each vertex of a graph.

Definition 1.2.7. (Degree Matrix) Let G = (V,E) be a graph and assume that

V = {v1, v2, ..., vn} and kvi is the degree of the vertex vi. The degree matrix of G is a

diagonal matrix, which is defined as (Dij)n×n :

(Dij) :=

 k(vi) if i = j

0 else
(1.3)
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Laplacian Matrix: (Kenyon (2012)) Another important matrix representation of a

graph is through its Laplacian matrix, which is the difference of the degree matrix and

the adjacency matrix of a graph. The Laplacian matrix can be used to find many other

properties of a graph, see e.g., spectral graph theory (Chaiken and Kleitman (1978)),

Matrix-Tree Theorem (Kirchhoff, 1847).

Definition 1.2.8. (Laplacian matrix) Let G = (V,E) be a graph, assume that V =

{v1, v2, ..., vn} and kvi is the degree of the vertex vi. The Laplacian matrix of G is defined

as Lij = Dij − Aij with Dij is the degree matrix of G and Aij is its adjacency matrix:

(Lij) =


k(vi) if i = j

−1 if i6=j, {vi, vj} ∈ E

0 else

(1.4)

More formally, an undirected graph G = (V,E) with V = {v1, v2, ..., vn}, weighted by

the weight function at any edge (vi, vj) associated weight w(vi, vj). The Laplacian matrix

of G verifies:

(Lij) =


w(vi) if i = j

−w(vi, vj) if i6=j, {vi, vj} ∈ EG
0 else

(1.5)

The weight w(vi) =
∑

j∼iw(vi, vj) is the diagonal elements of matrix 1.5, which is

the sum of the weights of edges incident on vertex i and the off-diagonal elements are

−w(vi, vj), if an edge connects the two vertices, and 0 otherwise.

Example 1.2.7. Consider the simple and undirected graph G in Figure 1.7, which has

the adjacency matrix A, the degree matrix D and the Laplacian matrix L as follows:

1 2

34

Figure 1.7: A simple and undirected graph G.
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A =


0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

 D =


2 0 0 0

0 3 0 0

0 0 3 0

0 0 0 2

 L =


2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2


1.2.2 Trees

1.2.2.1 Trees

The concept of a tree is one of the most important and commonly used ideas in graph

theory, especially in the applications of computer science as data storage, searching and

communication. Although trees are relatively simple structures, they form the basis of

many of practical techniques used to model and to design large and complex networks.

Definition 1.2.9. (Tree)

A tree is a connected graph without cycles, denoted as T = (V,E). In other words, it is a

graph in which any two vertices are connected by exactly one path (Diestel (1997); Kaveh

(2013)). It has |V | − 1 edges. There are two types of vertices in a tree:

• Leaves with the degree 1.

• Internal nodes whose degree is greater than 1.

Example 1.2.8. In Figure 1.8. The following 4 graphs are trees.

Figure 1.8: Simple trees

1.2.2.2 Spanning Trees

In graph theory, one of the major uses of trees is to find spanning trees of a graph (Knuth,

1997; Wu and Chao, 2004). This type of trees has always been of great interest in various
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areas of computer science. A spanning tree is an important concept that we need later.

In Chapter 2, we explain in details how to calculate the number of spanning trees of a

graph.

Definition 1.2.10. (Spanning Trees)

Spanning Tree is defined as an acyclic and a connected subgraph which has all the vertices

of a graph covered with minimum possible number of edges.

Example 1.2.9. For example, Figure 1.9 shows a graph G and some of its spanning trees.

G

Figure 1.9: A graph G with some of its spanning trees.

1.3 Structural Properties of Complex Networks

The analysis of relevant structural properties is one of the major objectives that guide the

research on complex networks. A structural property is any inherently graph-theoretical

property that preserves under all possible topological changes of a network. This means

that networks with the same structural property naturally define a certain family or type

of networks ( See Section 1.4). However, the structural properties are defined and studied
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to understand the mechanism and the behaviour of real-world networks. Among these

properties, three concepts have attracted lots of attention in the research of complex

networks. These concepts are the clustering coefficient, the degree distribution and the

small-world effect. They play a crucial role to classify complex networks. In this section,

we discuss some important properties that appear to be common to many networks.

1.3.1 Clustering Coefficient or Transitivity

The clustering coefficient C, introduced by Watts and Strogatz (1998), is a measure of

grouping nodes in a network. More precisely, this coefficient measures how close the

neighbourhood of a vertex is. In many networks, it is found that if vertex A is connected

to vertex B and vertex B to vertex C, then there is a heightened probability that vertex

A will also be connected to vertex C. It can be defined in two different versions: the

global and the local. The global clustering coefficient measures the density of triangles

in a network, often called transitivity (Newman et al. (2002); Newman (2003)). In social

networks, it measures the fraction of the total pairs of friends of an individual that are

each other friends (Wasserman and Faust (1994)). That means also the probability that

the friend of your friend is also your friend. The global clustering coefficient is defined as:

C =
3×Number of triangles
Number of all triplets

(1.6)

where a triplet means three nodes that are connected by either two or three undi-

rected links i.e., subgraphs isomorphic to a path on 3 vertices and the factor of “3” in the

numerator accounts for the fact that each triangle contributes to three triples. Whereas

the local clustering coefficient of a node i is the ratio between the number of links ei

connecting the nearest neighbours of i and the total number of maximum possible links

between these neighbours, which defined as:

Ci =
2ei

ki(ki − 1)
(1.7)

where“ki”is the degree of a node i. As an alternative to the local clustering coefficient,

the overall level of clustering in a network G is measured as the average of the local
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clustering coefficients of all the nodes, which has been extensively used in the analysis of

complex networks, defined as:

CG =
1

|VG|

|VG|∑
i=1

Ci (1.8)

The value of the clustering coefficient of a network is between 0 ≤ C ≤ 1. For the

star network or the tree, their clustering coefficient is C = 0 and for a complete network,

its clustering coefficient is C = 1.

Example 1.3.1. From Figure 1.10, we illustre the definition of the clustering coefficient

C. According to the global definition in Equation 1.6, this network has one triangle and 8

connected triples. Hence, it has a clustering coefficient of 3 × 1
8

= 3
8

= 0.375. According

to the local clustering coefficient in Equation 1.7, we get for each vertex: 1, 1, 1
6
, 0 and

0. For the clustering coefficient of the whole network according to Equation 1.8, we get:

C = 13
30

= 0.433.

Figure 1.10: Illustration of the definition of the clustering coefficient C.

1.3.2 Degree Distribution

In network theory, an important property for the study of a complex network is its degree

distribution, denoted by P (k), which is the probability that a randomly selected node has

exactly a degree k (Dorogovtsev and Mendes (2004)). It is defined to be the fraction of

nodes in the network with a degree k, where |Vk| is the number of nodes having the degree

k. We have

P (k) =
|Vk|
|VG|

. (1.9)

Example 1.3.2. We consider the same example as Figure 1.10. This graph has |VG| = 5

vertices, of which 2 have degree 1, 2 have degree 2 and 1 have degree 4. Thus the values

of P (k) for k = 1, 2, 4 are: P (1) = 2
5
, P (2) = 2

5
, P (4) = 1

5
.
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It is often illuminating to make a plot of the degree distribution P (k) of a large network

by a histogram of the degrees of nodes. Another way to present the degree data is to plot

a graph of the cumulative distribution function (Price (1976)). It has the advantage that

all the original data are represented. It is defined as the probability that the degree of

nodes is greater than or equal to k:

Pcum(k) =
∞∑
k′=k

P (k′) (1.10)

In a random network of the type studied by Erdős and Rényi (1961) (See Section

1.4.3), each edge is present or absent with the equal probability p and its degree distri-

bution follows the binomial distribution or Poisson in the limit of large network size (See

Figure 1.11 (a)).

P (k) =

(
|VG| − 1

k

)
pk(1− p)|VG|−1−k ∼ < z >k e−<z>

k!
(1.11)

Where < z > is the average degree of a network. Generally, it was believed that the

degree distribution in real-world networks follows a Poisson distribution but in reality,

the degree distribution of real-world networks is unlike those of the random networks.

These real networks have a highly skewed degree distribution following power-laws (Simon

(1955)) (See Figure 1.11 (b)). They are named as scale-free networks (See Section 1.4.2).

P (k) ∼ k−γ (1.12)

Where γ is a constant which belongs to the interval [2, 3]. Note that such power-

law distributions show up as power laws in the cumulative distributions also (Newman

(2003)), but with exponent γ − 1 rather than γ:

Pcum(k) =
∞∑
k′=k

k′−γ ∼ k−(γ−1) (1.13)

Recent interest in networks with power-law degree distribution started with Barabási

and Albert (1999), who proposed a mechanism to explain the appearance of the power-

law distribution, which they called preferential attachment (See Section 1.4.2). This
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mechanism is based on some nodes, which they called hubs, had many more connections

than others and that the network as a whole had a power-law distribution of the number

of links connecting to a node. This concept is used to refer to the principle of “the rich

gets richer” (Jackson (1935); Merton (1968)). In the language of social networks, it refers

to the more friends you have, the easier it is to make new ones. In terms of network

theory, all these concepts refer to the idea that if a node has a high degree, it has a higher

probability to attract more connections and thus its connectivity grows at a faster rate

than other nodes with low connectivity. There are other real-networks that their degree

distribution follows an exponential distribution (Newman (2003)):

P (k) ∼ e−αk (1.14)

These also give exponentials in the cumulative distribution with the same exponent:

Pcum(k) =
∞∑
k′=k

e−αk
′ ∼ e−αk (1.15)

In Figure 1.11, we show the representation of the degree distribution of two networks.

Binomial distribution for random networks (a). Power-law degree distribution for scale-

free networks (b).

Figure 1.11: The degree distribution of a random network (a) and a scale-free network (b).
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1.3.3 Small-World Effect

In general, a network that has the small-world effect in which all nodes can be reached

to the other nodes through a small number of hops. This property was found in many

real-world networks. For example, in social networks, the average distance from one

individual to another is small compared to the size of a network. Indeed, In the 1960s,

social psychologist Stanley Milgram conducted some experiments which are referred to as,

the small-world experiment (Milgram (1967)). He gave 300 letters to participants living in

the cities of United States, Boston and Omaha, along with instructions to deliver them to

one particular target person by mailing the letter to an acquaintance, they considered to

be closer to the target. That person then got the same set of instructions, which, therefore,

set up a chain. Milgram found that the average path length that separates any two people

in the world was about six hops, which is called also the small-world phenomenon. He

suggested that human society is a small-world type network characterized by short path

lengths (See Section 1.4.1) and the experiments are often associated with the phrase “six

degrees of separation” (Watts (2004)). In literature, this concept is often referred to as

the average path length of a network.

1.3.3.1 Average path length

The average path length (APL) characterizes the small-world effect. It is a measure of the

efficiency of information or mass transport on a network. It gives an idea of, on average,

how far apart any two nodes lie in a network. It is defined as the average of the shortest

distance between all nodes of a network G, denoted by lG (Newman (2003)). For an

undirected network, the average path length is calculated as:

lG =
1

|VG|(|VG| − 1)

∑
u6=v

d(u, v) (1.16)

Where d(u, v) is the geodesic distance from vertex u to vertex v. For small-world

networks, the distance between any two nodes scales as the logarithm of the number of

nodes, suggesting that the APL between any two nodes in the network is quite low. For

random networks, they have also the small-world effect, their average distance also scales
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as the logarithm of the number of nodes (Albert and Barabási (2002)). The small-world

effect can be quite useful in different networks. For example, if one considers the spread

of information across a network, the small-world effect implies that the spread will be

fast on most real-world networks. If it takes only six steps for a rumour to spread from

any person to any other, for instance, then the rumour will spread much faster. To more

technical applications such as estimating the number of hops required for an information

packet to get from one computer to another on the Internet (Zhang et al. (2004)). Another

example to study how to control and take precautions against an epidemic spread in social

networks (Moore and Newman (2000)), etc. The small-world effect also underlies some

well-known parlor games, particularly the calculation of Erdòs numbers (De Castro and

Grossman (1999)) and Bacon numbers. In some cases, it is difficult to obtain the analytic

solution of APL, especially for large networks. Therefore, researchers adopt “diameter” as

an alternative parameter to demonstrate the short distance between any two nodes of a

network.

1.3.3.2 Diameter

By definition, the diameter of the network G, denoted as DG, is the longest geodesic, i.e.,

the maximum of the shortest distance between any two nodes (u, v) of a network G:

DG = maxu,vd(u, v) (1.17)

The diameter characterizes the maximal communication delay in a network. If a

network is with a small diameter, it is undoubtedly with a short APL, i.e., if the diameter

of a network G scales as DG = O(log VG) and we have always the APL is smaller than

the diameter lG ≤ DG, then it is undoubtedly with a short APL: lG = O(log VG). So the

APL should increase more slowly (Gu et al. (2013); Takes and Kosters (2011)). These two

structural properties (The APL and the diameter) define the small-world effect, because

one of them is related to the other indirectly.

Example 1.3.3. We consider the same example as Figure 1.10. This graph has |VG| = 5

vertices. Then, its APL is: l = 1+2+2+2+1+2+2+2+1+1+1+1+1+1+2+2+1+1+2+2
5×4

= 3
2

= 1.5 and

its diameter is: D = 2.
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1.3.4 Fractals Dimension

Another fundamental measurement characterizing a specific type of complex networks, it

measures the dimension of the fractality, named as Fractals Dimension, which is the scaling

rule from knowing how something scales. It is an index for characterizing fractal patterns.

So, what is a fractal? A fractal is an irregular geometric object with an infinite nesting

of the structure at all scales, it is realized by repeated construction of an elementary

shape on progressively smaller length scales. They display self-similarity in all scales.

The concept of fractals first introduced by Mandelbrot (1982), characterizes many real-

life systems in nature and society and has received tremendous interest from the scientific

community (Mandelbrot (1982); Aguirre et al. (2009)). Fractals have been observed in

complex networks including the World Wide Web (WWW), protein interaction networks

and metabolism, etc. A network is said to be fractal if it has a finite fractal dimension.

There are many types of fractal dimension (Costa et al. (2007)). Generally, in order to

measure the fractal dimension of complex networks, a box-counting method has been

proposed by Song (2005). In the former, the network is covered with NB boxes, where all

vertices in each of them are connected by a minimum distance smaller than lB. Then, the

fractal box dimension of the network, denoted by dB (0 < dB <∞), is defined by

dB ≈
lnNB

ln lB
(1.18)

A self-similar network is exactly or approximately similar to a part of itself (Song et al.

(2005)). Note that fractality and self-similarity do not always imply each other. A fractal

network is always self-similar, but a self-similar network may be not fractal. Another

scaling relation is found with a renormalization procedure based on the box counting

method (Song (2005)). A renormalized network is created with each box of the original

network transformed into a vertex and two new vertices are connected if at least one edge

exists between vertices of the corresponding boxes in the original network (Song et al.

(2006)). By considering the degree k′ of each vertex of the renormalized network versus

the maximum degree k in each box of the original network, we have that:

k′ ≈ l−dkB k (1.19)
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Where dk is the degree exponent of boxes. The exponents dB, dk and γ (of the power

law of the degree distribution (See Section 1.4.2)) are related by

γ = 1 +
dB
dk

(1.20)

Thus, scale-free networks, characterized by the exponent, can also be described by

the two length invariant exponents dB and dk.

1.4 Models of Complex Networks

In order to mimic the real-world systems, a wide variety of models have been proposed,

including the small-world networks, scale-free networks and random networks. A small-

world network model is defined by Watts and Strogatz, named WS model (Watts and

Strogatz, 1998). It started an avalanche of research on small-world networks. A scale-

free network model is defined by Barabási and Albert, named BA model (Barabási and

Albert, 1999). It has attracted an exceptional amount of attention within the physics

community. While a random network model is introduced by Erdős and Reńyi, named

ER model (Erdős and Rényi, 1960, 1961). It is considered the most basic model to

analyse real-world networks. Modeling complex networks with small-world, scale-free and

random networks properties is still an important issue to explain how networks with these

properties appear in the real world. This section introduces those three commonly cited

models, which will be used throughout this thesis as a tool to classify other new models

of networks.

1.4.1 Small-World Networks

The small-world model describes the fact that despite the large graph size in most real-

world networks, there is a relatively short path between any two nodes and large clustering

coefficients. There are different realizations of the small-world model but the original

model as proposed by Watts and Strogatz (1998) is by far the most widely studied. It

starts with a ring of n vertices in which each vertex is connected to its k nearest neighbours,

for a given k. This forms a regular graph as shown in Figure 1.12(a). Then, each edge
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is rewired with a given probability p by choosing randomly a new vertex to connect,

except that no double links or loops are allowed. In a regular graph, since neighbours

are connected to each other, the overall clustering coefficient C is very high. On the

other hand, the average path length l is very high as vertices are only connected to their

neighbours. The random rewiring a few nodes introduces edges that connect nodes lying

at long distances, which in turn, reduces the overall average path length. Since many

vertices are connected to their neighbours, the overall clustering coefficient C remains

high whereas the average path length l is reduced, giving us the properties of a small

world network (See Figure 1.12(b)). Thus l scales logarithmically with the network order

V and the clustering coefficient decreases with V . The clustering coefficient for this small-

world model can be calculated relatively easily as:

C =
3(k − 1)

2(2k − 1)
(1− p)3 (1.21)

And the average path length l does not begin to decrease until p ≥ 2/V k. This implies

that there exists a p-dependent crossover length V ∗ such that if V < V ∗, l ∼ V , but if

V > V ∗, l ∼ ln(V ). The concept of the crossover length was introduced by Barthélémy

and Amaral (1999), who conjectured that the characteristic path length scales as

l(V, p) ∼ V ∗F

(
V

V ∗

)
, (1.22)

Where

F (u) =

u, if u� 1

ln(u), if u� 1

(1.23)

If the process of random rewiring continues, we eventually end up rewiring every

node which results in a random graph as vertices no longer share common neighbours

(See Figure 1.12(c)). It is important to note that networks produced using this model

do not have scale-free degree distribution, it is similar to that of random networks. Since

every vertex in the network initially has a fix k degree, random rewiring of only a few

vertices does not affect the overall behaviour of the degree distribution. Thus, the topology
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of the network is relatively homogeneous and all nodes having approximately the same

number of edges. This original model has been studied at some length in the mathematical

and physical literature (Newman, 2000). Other models have been proposed to produce

networks with small-world properties without using this basic model such as (Newman

and Watts, 1999; Mathias and Gopal, 2001; Guillaume and Latapy, 2006).

Figure 1.12: Schematic representation of the evolution of the rewiring process in the
Watts-Strogatz model: From a regular network (a) with p = 0 to a random Network (c)
with p = 1, where random rewiring of few edges in a regular network produces a small-
world network (b) with 0 < p < 1, high clustering coefficient and low average path length.
The figure is taken from Watts and Strogatz (1998).

1.4.2 Scale-Free Networks

After Watts and Strogatz’s model, Barabási and Albert (1999) showed that many real

systems are characterized by an uneven distribution. Some vertices are highly connected,

called hubs while others have few connections. Specifically, the degree distribution follows

a power law for a large k (See Equation 1.12). These networks are called scale-free

networks. They are characterized by the non-homogeneity of their structure, or what is

known by the heterogeneity .i.e., very few nodes have many edges but most nodes have
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very few edges. Indeed, we can define scale-free networks as dynamic systems that evolve

through the subsequent addition and deletion of nodes and links. Barabási and Albert

(1999) proposed a model, called as Barabási-Albert (BA) network model to reproduce the

important characteristic of scale-free networks. This model of network growth is inspired

by the formation of the World Wide Web and is based on two basic ingredients: growth

and preferential attachment. The growth model controls how a network grows over time

and using the preferential attachment as a guide to growing the network, where new nodes

prefer to attach to well-connected nodes. The BA model is generated starting with a set of

m0 vertices. Then, at each step of the construction, the network grows with the addition

of new vertices. For each new vertex, m ≤ m0 new edges are inserted between the new

vertex and some previous vertices. The vertices which receive the new edges are chosen

following a linear preferential attachment rule, i.e. the probability of the new vertex i to

connect with an existing vertex j is proportional to the degree of j:

p(i→ j) =
kj∑
u ku

(1.24)

Thus, the most connected vertices have a greater probability of receiving new vertices.

This is known as “the rich get richer” paradigm. After t timesteps, this procedure results

in a network with V = t + m0 nodes and E = mt edges, corresponding to an average

degree < z >= 2m for large times. This network evolves into a scale-invariant state with

the probability that a node has k edges following a power-law with an exponent γ = 3.

The scaling exponent is independent of m. The clustering coefficient of the scale-free

network decreases with the network size following approximately a power-law

C ∼ V −0.75 (1.25)

And its average path length increases approximately logarithmically with V , the best fit

following a generalized logarithmic form

l ∼ log V

log(log V )
(1.26)
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Mathematical results for scale-free networks have been studied by several researchers

such as (Bollobás and Riordan, 2003; Bollt and ben Avraham, 2005). Other alternative

models for obtaining power-law degree distributions with different exponents γ can be

found in the literature (Aiello et al., 2001; Caldarelli et al., 2002; Dorogovtsev and Mendes,

2013). Figure 1.13 shows an example of a Barabási-Albert network.

Figure 1.13: An example of the scale-free network of Barabási and Albert.

1.4.3 Random Networks

The systematic study of random graphs was initiated by two Hungarian mathematicians

Paul Erdős and Alfred Rényi in 1959. They published a celebrated series of papers about

the random graph model in the late 1950s and early 1960s (Erdős et al., 1959; Erdős

and Rényi, 1960, 1961). They proposed a model G(V,E) to generate random graphs

consisting of V vertices and E edges. Starting with V disconnected vertices, the net-

work is constructed by the addition of E edges at random, avoiding multiple and self

connections. Another similar model G(V, p) defines V vertices which are connected with

the probability 0 ≤ p ≤ 1. The latter model is widely known as Erdős-Rényi network
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(ER). It is also sometimes called the “Poisson random graph” or the “Bernoulli random

graph”, names that refer to the distributions of degrees and edges in the model. There

are many random graph models, but G(V, p) is the most fundamental and widely studied

of them. Here, we will discuss G(V, p). In Figure 1.14, we illustrate some examples of

Erdős-Rényi random networks with the same number of nodes (30 nodes) and different

probability values. In fact, technically, G(V, p) is the ensemble of all such graphs in which

a graph having E = pV (V−1)
2

edges. It exhibits some important properties (Solomonoff

and Rapoport, 1951; Bollobás, 1998b; Newman et al., 2001; Newman, 2003). For exam-

ple, we can get the connected random network if the probability p ≥ lnV
V

. Its average

degree is < z >= p(V − 1) ' pV . However, in almost all other respects, the proper-

ties of the random graph do not match those of networks in the real world. It has a

low clustering coefficient: the probability of connection of two vertices is p regardless of

whether they have a common neighbour, and hence C = p << 1, which tends to zero as

n−1 in the limit of large system size. The ER network is characterized by a small-world

effect: The diameter varies in a small range of values around D = lnV
ln(pV )

= lnV
ln<z>

. The

average shortest path length l has the same behaviour as a function of V as the diameter,

l ∼ lnV
ln<z>

. Its degree distribution follows the binomial distribution (See Equation 1.11),

because the maximal degree of a node i is V − 1, the probability that the vertex has k

links is pk(1−p)V−1−k and there are
(
V−1
k

)
possibilities to choose k links from V −1 nodes.

In the limit V →∞ becomes P (k) = <z>ke−<z>

k!
. This means that the degree distribution

of a node in a random network can be approximated by the Poisson distribution for large

V . For this reason, random networks are also called Poisson random networks.

The expected structure of the random graph varies with the value of p. The edges join

vertices together to form components, i.e., subsets of vertices that are connected by paths

through the network. The ER model possesses a phase transition: from a low p value

for which there are few links and many small components to a high p value for which an

extensive fraction of all nodes are joined together in a single giant component (See Figure

1.14).
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Figure 1.14: Erdős-Rényi network with 30 nodes and the probability values 0, 0.5 and 1

1.5 Summary

This chapter is an elementary introduction to the field of complex networks. The impor-

tant networks models and properties are reviewed. The focus of this chapter is to analyze

the relevance of topological properties that are the basics of classifying complex networks.

Besides, the basic concepts of graph theory are also discussed. Indeed, graphs are used in

several disciplines. For example, many problems in computer science have been solved by

using graph theory due to the importance of its algorithmic aspect. A very important tool

of this theory is a spanning tree of a network, which has been the remedy of several prob-

lems including the switching loops in computer networks (Spanning Tree Protocol: STP),

the prediction of the reliability and the robustness of networks, etc. All these different

applications have led us to study different spanning trees derived from a network and find

several methods to enumerate them. In the next chapter, we will discuss the notion of

the number of spanning trees of a network and we will treat the different techniques and

approaches to calculate it.
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S
panning trees have been widely studied in many aspects of mathematics and theoreti-

cal computer science. An interesting issue is the calculation of the number of spanning

trees, which has a lot of connections with networks (Wu, 1982; Kim et al., 2007). In

view of its wide range of applications, the enumeration of spanning trees has received

considerable attention from the scientific community. In this chapter, first, we investigate

two important applications of enumerating the spanning trees such as the reliability and

the robustness of a network. Then, we present the different methods to obtain the exact

formula of the number of spanning trees for a network, classed as algebraic, combinatorial

and geometric methods, especially the Kirchhoff theorem, Fussner’s formula, the decom-

position method, the suppression and contraction method and the duality, etc. Finally,

we propose some applications of these methods such as the evaluation of the complexity

of Book networks. We note that the results of this chapter were published in an interna-

tional journal (Mokhlissi et al., 2015a) and two international conferences (Mokhlissi et al.,

2015b, 2018a).
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2.1 Introduction

A spanning tree is relevant to various aspects of networks. It is a powerful tool to model

and analyze the structure of a connected network. According to Definition 1.2.10, a

spanning tree is a tree containing all the vertices and some or all edges of the main

network. The most classical theory of interest concerning spanning trees is the number

of spanning trees of a graph G, also known as the complexity of G, denoted as τ(G).

Generally, the number of different spanning trees of a graph G turns out to be a very useful

number leading to interesting results and applications. The research of this number has

a long history. Firstly, it was initiated by the physicist Kirchhoff (1847) who proposed a

theorem called the “Matrix-Tree Theorem”. Then, many researches are devoted to finding

the exact formula of the number of spanning trees of a given graph.

2.1.1 Problematic

For a connected graph G, it is easy to find a tree that contains all nodes and some or all

edges of G, which is named a spanning tree of G. We can also find two or three others. In

general, a graph can have several spanning trees, but the connectivity remains an essential

condition for spanning trees. Now, the difficult question is how many spanning trees can

contain this graph? Let’s imagine that we have a network with millions or billions of

nodes, can we calculate its number of spanning trees easily? It is difficult even impossible

to obtain it by hand. In the literature, several researchers have found an answer to this

question by proposing several methods and techniques. The main objective of this chapter

is to quote almost all the known methods in the literature in order to calculate the number

of spanning trees of a graph. It will be divided into three types of methods: Algebraic,

combinatorial and geometric.

2.1.2 Applications of the number of spanning trees of a network

The number of spanning trees or what is called the complexity of a network is a very

important invariant in graph theory, which has a lot of applications. In particular, in

communication networks, the number of spanning trees is used to generate spanning trees
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in order to build a loop-free logical topology for Ethernet networks and prevent bridge

loops and the broadcast radiation that results from them. This algorithm is the span-

ning tree protocol (STP) defined in the IEEE 802.1D standard (Perlman, 1985; Group

et al., 2004). Other uses for the number of spanning trees including the synchroniza-

tion (Nishikawa and Motter, 2006), the percolation (Dhar, 2006), the analysis of social

networks (Smith and Christakis, 2008), the study of random walks (Marchal et al., 2000),

etc. Recently, two important applications of the complexity of a network are mostly

treated, which are the robustness and the reliability of a network.

2.1.2.1 Robustness of a network

As an application of the number of spanning trees of a network Gn, we use the entropy of

spanning trees or what is called the asymptotic complexity, denoted as ρGn , to characterize

the structure of a network and to evaluate its robustness. This latter is related to the

capacity of a network to withstand random changes, failures and perturbations in its

structure over evolutionary time. The best known mathematical model of the network

robustness is offered by the percolation theory (Stauffer et al., 1993). In this work, we

propose a new measure of the entropy to quantify the robustness of a network. This

entropy of spanning trees is considered as a quantitative measure of the graph itself. If

the number of spanning trees τ(Gn) grows exponentially with the network order VGn , then

there exists a constant ρGn , describing this exponential growth (Burton and Pemantle,

1993; Lyons, 2005):

ρGn = lim
VGn→∞

ln |τ(Gn)|
|VGn|

= lim
n→∞

ln |τ(Gn)|
|VGn|

(2.1)

where Gn is an increasing sequence of graphs approaching an infinite graph and de-

pending on the number of iterations n, called an iterative graph. By calculating this

entropy, we can estimate how the network will evolve to infinity. The most robust net-

work is the network that has the highest entropy of spanning trees. According to Equation

2.1, when we have a high entropy value, this means that we have a large number of span-

ning trees, because the increase of the number of spanning trees provides more possibilities

of connecting two nodes related by defective links, that ensures a good robustness and
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availability of communication networks. So, if the number of spanning trees of a network

increases, its robustness can improve. This entropy of spanning trees was calculated for

many networks such as the Small-World Exponential Network (Mokhlissi et al., 2016a),

the Koch network (Mokhlissi et al., 2018b), the prism and anti-prism (Sun et al., 2016), the

contact graphs of disk packings (Qin et al., 2015), the pseudofractal scale-free web (Zhang

et al., 2010b), the Sierpinski gasket (Chang et al., 2007), the lattice (Wu, 1977) and the

Farey graph (Zhang et al., 2012), etc. In the next chapters, we calculate the entropy for

many complex networks and we compare the results with other networks having the same

average degree.

.2.1.2.2 Reliability of a network

Reliability is defined as the probability of a successful connection of all network nodes to

each other. In other words, an arbitrary node of an active network should have access

to all other nodes. A spanning tree of a network can provide this concept. A network

can have multiple spanning trees. However, the network will be successful if at least

one of the spanning trees is available. To analyze the reliability of a network, a novel

approach named the Spanning Tree Set Method, based on the number of spanning trees,

is treated to determine the exact value of network reliability for predicting the weakness of

a system and giving suitable emergency management operations under faulty situations.

This method is proposed by Bistouni and Jahanshahi (2017). Suppose a network G with

V nodes and E edges. Also, suppose that the set of spanning trees in the network is

S = {S1, S2, ..., Sτ(G)}, where τ(G) is the number of spanning trees of G. We assume

that each link in the network may fail and the failures are assumed to be exponentially

distributed. Let λ be as the failure rate of a link, then the link reliability is given by

RE(t) = e−λt. Operating time t should be considered. The reliability of the entire network

is the probability of the union of its spanning trees:

RG = P (S1 ∪ S2 ∪ ... ∪ Sτ(G))

=

τ(G)∑
i=1

P (Si)−
∑
i<j

P (Si ∩ Sj) +
∑
i<j<k

P (Si ∩ Sj ∩ Sk)− ...+ (−1)τ(G)−1P

τ(G)⋂
i=1

Si

 .

(2.2)
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The main advantage of this approach is that it divides the main problem into solvable

subproblems and it is applicable to any type of network with any amount of topological

complexity. The important issue of this method is about the computational complexity.

In the calculation of the reliability, it should be noted that the main function in this

method is related to counting the number of spanning trees of the network. Thanks to

a lot of research works done in this field, especially in the domain of complex networks,

the spanning tree enumeration can be done in a linear complexity of O(n) where n is

the number of nodes in the network. In this chapter, we will investigate almost all the

methods of the calculation of the number of spanning trees of a network with different

complexities.

Example 2.1.1. We consider a network G in Figure 2.1 (a), which is a network with a

relatively simple structure. This network has three spanning trees that have been shown in

Figure 2.1 (b): S1, S2, S3. This example is taken from (Bistouni and Jahanshahi, 2017).

G

(a)

S1

S2

(b)

S3

Figure 2.1: (a) A network G with three links and (b) The three spanning trees of G.

Therefore, considering 2.2, and assuming that RE(t) = e−λt, we have:

RG = P (S1 ∪ S2 ∪ S3)

= P (S1) + P (S2) + P (S3)− P (S1 ∩ S2)− P (S1 ∩ S3)− P (S2 ∩ S3) + P (S1 ∩ S2 ∩ S3)

= 3e−λt − 3e−2λt + e−3λt. (2.3)

let’s assume that the link failure rate (λ) is equal to 0, 000001 per hour. Then, the

link reliability is RE(t) = 0.9999990000005. Therefore, according to 2.3, the exact value

of the reliability of G is: RG = 1.
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2.2 Algebraic methods for enumerating spanning trees of a network

Algebraic graph theory is a branch of mathematics that studies graphs by using algebraic

properties of associated matrices. There are some known algebraic methods for calculating

the number of spanning trees of a network.

2.2.1 Matrix-Tree Theorem

A general method to calculate the number of spanning trees of a network G is using

linear algebra. The first study of the number of spanning trees was initiated by the

physicist Kirchhoff (1847) who proposed a theorem called the “Matrix-Tree Theorem”

based on the determinant of a submatrix of the Laplacian matrix corresponding to the

network (Chaiken and Kleitman, 1978; Merris, 1994) defined by LG = DG −AG with AG

is the adjacency matrix of G and DG its degree matrix (See Section 1.2.1.3).

Theorem 2.2.1. (Kirchhoff, 1847) The Kirchhoff Matrix-Tree Theorem computes the

number of spanning trees of a graph G by:

τ(G) = (−1)i+j detL∗(G). (2.4)

Where L∗(G) is a matrix obtained by deleting row i and column j of the Laplacian

matrix L(G).

å Advantages and constraints of Kirchhoff Matrix-Tree Theorem:

Matrix-Tree Theorem is the first and general method to calculate the number of

spanning trees of a network, it provides the exact value of this number and gives useful

results for networks containing a small number of vertices, but it is practically not efficient

for real networks having a large number of nodes and edges, because the calculation of the

determinant of their Laplacian matrix is very difficult and even impossible. Recently, there

has been much interest in studying this problem and finding alternative methods to avoid

the calculations of the largest determinant of the Kirchhoff matrix. Some of these methods

have been proposed in this chapter: Combinatorial methods and geometric approaches.
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2.2.2 Eigenvalues method

Another interpretation of Kirchhoff’s Theorem is given by the set of non-zero eigenvalues

of the Laplacian matrix of the graph G. It is simple and easy to calculate the number

of spanning trees of graphs using the eigenvalues method just for simple graphs with a

small number of vertices. However, for a large and complex network, this method becomes

expensive or sometimes impossible.

Theorem 2.2.2. (Kelmans and Chelnokov, 1974) For a given undirected connected graph

G with n vertices, let λ1, ..., λn−1 be the non-zero eigenvalues of L(G). Then, the number

of spanning trees τ(G) is equal to:

τ(G) =
1

n

n−1∏
i=1

λi (2.5)

Remark 2.2.1. There are some faster methods to count the number of spanning trees in

some special graphs:

• If G is a graph with loops, then to count τ(G), we first neglect all the loops in G,

because they have no contribution to the construction of a spanning tree.

• If G is a tree, then τ(G) = 1.

• if G is a disconnected graph, then τ(G) = 0.

• If G is a cyclic graph with n vertices, then τ(G) = n.

• If G is a complete graph with n vertices, Cayley’s formula can be used: τ(Kn) =

nn−2 (Cayley, 1889). As an example, the number of spanning trees of the complete

graph K4 is τ(k4) = 44−2 = 16.

2.3 Combinatorial methods for enumerating spanning trees of a network

In this section, we investigate some combinatorial methods that facilitate the computation

of the complexity of a network containing a large number of vertices and edges without

using the determinant of the Laplacian matrix.
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2.3.1 Deletion and Contraction methods

The deletion and the contraction methods derive recursive functions that enumerate span-

ning trees of a planar graph containing a simple edge e. In this section, we will present

the results, the demonstrations of this method and its generalization.

Definition 2.3.1. Let G be a planar graph and e = v1v2 ∈ E(G) an edge of G:

• Deletion method: The graph G− e is the result of the deletion of the edge e of G.

• Contraction method: The graph G.e is obtained after the contraction of the edge

e of G (See Figure 2.2).

e

v1

v2

G

v1

v2

G− e G.e

v1 = v2

Figure 2.2: Graphs G, G− e and G.e.

2.3.1.1 Fussner’s formula

The deletion and the contraction methods are important results in the enumerative com-

binatorics, that are due to the origin Feussner (1902), which allows the enumeration of

spanning trees of a planar graph.

Theorem 2.3.1. (Fussner’s formula) Feussner (1902) Let G be a planar graph. If

e = v1v2 ∈ EG (See Figure 2.2). The number of spanning trees of G is given by the fol-

lowing formula:

τ(G) =



1 If G does not contain any edges,

τ(G− e) If e is a loop,

τ(G.e) If e is a deletion edge,

τ(G− e) + τ(G.e) If e is a simple edge.

(2.6)
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Example 2.3.1. Consider the graph G shown in Figure 2.3. To apply Fussner’s formula,

we recursively remove and contract edges until we get tree or single vertex (loops are not

considered). We follow the process of removing and contracting edges as shown in Figure

2.3. The total number of these trees and single vertices is equal to the total number of

spanning trees of the graph G. According to this example, the graph G has 5 spanning

trees.
e

e

e

G

G.e

e

G− e

G− eG.e

G− eG.e

G− eG.e

Figure 2.3: The process of removing and contracting edges of the graph G.

å Advantages and constraints of deletion and contraction methods

The deletion and the contraction methods are used to calculate the number of span-

ning trees of several planar graphs such as Fan graph, Wheel graph, etc. This method

has several advantages such that it is easy to use because it relies on simple operations

applied to the graph, the deletion or contraction edge can be any edge of the graph and the

computational complexity of this method is linear O(n). However, the only disadvantage

is that the use of this method concerns only graphs containing a simple edge. Therefore,

we investigate its generalization.



2.3. COMBINATORIAL METHODS FOR ENUMERATING SPANNING TREES OF A NETWORK43

2.3.1.2 Generalization of Fussner’s formula

In the paper of Modabish and El Marraki (2011), they gave a generalization of the deletion

and contraction methods by considering a planar graph containing a simple path, which

all its vertices have strictly a degree equal two, except the two vertices of ends (See Figure

2.4).

Definition 2.3.2. Let G be a planar graph and P = {v0, v1, ..., vk} be a simple path of G

with length k:

• Deletion method: The graph G− P is the result of the deletion of the path P .

• Contraction method: The graph G.P is obtained after contracting the path P

(the contraction of adjacent vertices v0 and vk) (See Figure 2.4).

v0

v1

vk−1

vk

P

G

v0

vk

G− P G.P

vk = v0

Figure 2.4: Graphs G, G− P and G.P .

Theorem 2.3.2. Generalization of Fussner’s formula (Modabish and El Marraki,

2011) Let G be a planar graph. If P is a path with vertices (v0, v1, ..., vk), (See Figure

2.4). Then, the number of spanning trees of G is given by the following formula:

τ(G) = k × τ(G− P ) + τ(G.P ) (2.7)

2.3.2 Decomposition methods for enumerating spanning trees of a network

In this section, we rely on the principle of a process of “Divide and Conquer”, which

divides a problem recursively in sub-problems, solves each of this sub-problems and then

merges the partial results for a general solution. An example of this technique is the

decomposition method: to calculate the number of spanning trees of a planar network,

we follow this algorithm:
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1. First, we decompose the original graph into different subgraphs that are connected

by one node, two nodes, an edge or a path.

2. Then, we calculate the number of spanning trees for each subgraph.

3. Finally, we collect the results to obtain the complexity of the original graph.

The use of this technique is due to its ease to discover the spanning trees of a com-

plex network. We must search the best way to decompose the graph. We have several

possibilities to do it, as we can decompose the graph into different subgraphs according

to certain constraints: by following one node, two nodes, an edge, a path, etc. In this

section, we will study each case.

2.3.2.1 Number of spanning trees of a planar graph of type G = C1 • C2

First, we begin by studying the case where the subgraphs C1 and C2 are connected by a

single vertex.

Definition 2.3.3. Let G = C1 • C2 be a planar graph obtained by connecting C1 and C2

with one vertex v1. i.e., C1 and C2 are connected subgraphs which intersect exactly in one

vertex v1. We say that v1 is an articulation node if its deletion disconnects the subgraphs

C1 and C2 (See Figure 2.5).

v1

C1 C2

Figure 2.5: A graph G = C1 • C2 with an articulation node v1

Property 2.3.1. Let G be a planar graph of type G = C1 • C2:

• C1 and C2 have a common vertex v1 and a common face (the external face).

• VG = VC1 + VC2 − 1, EG = EC1 + EC2 and FG = FC1 + FC2 − 1.

• If we remove the vertex v1 of the graph G, the resulting graph is not connected.

• A path from a vertex of C1 to a vertex of C2 must pass through v1.
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Theorem 2.3.3. (Modabish and El Marraki, 2011) Let G = C1 • C2 be a planar graph.

C1 and C2 two subgraphs are connected with one vertex v1 (See Figure 2.5). Then, the

number of spanning trees of G is given by:

τ(G) = τ(C1 • C2) = τ(C1)× τ(C2). (2.8)

2.3.2.2 Number of spanning trees of a planar graph of type G = C1 • C2 • ... • Cn

Now, we are interested in a planar graph G composed in many subgraphs Ci, which are

connected by one vertex. This method is considered as the generalized decomposition

method following one articulation node.

Theorem 2.3.4. (Generalization of Theorem 2.3.3) (Modabish et al., 2011) Let G

be a chain of planar graphs defined by G = C1 •C2 • ...•Cn (See Figure 2.6). The number

of spanning trees of G is given by the following formula:

τ(G) =
n∏
i=1

τ(Ci). (2.9)

C1 C2 Cn

Cn

C1

C2
C3

Figure 2.6: Chain network and Star network

2.3.2.3 Number of spanning trees of a planar graph of type G = C1 : C2

In this section, we are interested in a planar graph G composed in two subgraphs having

two common vertices. Let G be a planar graph as G = C1:C2 with C1 and C2 two

subgraphs which are connected by two vertices v1, v2, such that if a path connects a

vertex of C1 and a vertex of C2, it must pass through one of the two common vertices v1

and v2 (See Figure 2.7).
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Property 2.3.2. Let G be a planar graph of type G = C1:C2:

• C1 and C2 have two common vertices v1, v2 and a common face (the external face).

• VG = VC1 + VC2 − 2, EG = EC1 + EC2 and FG = FC1 + FC2.

• If we remove the vertex v1 and v2 of the graph G, the resulting graph is not con-

nected (Nishizeki and Rahman, 2004).

• A path that connects a vertex of C1 and a vertex of C2 must pass through v1 or v2.

v1

v2

C1 C2

v1

v2

C1 C2

v1

v2

Figure 2.7: A planar graph G = C1:C2

Theorem 2.3.5. (Modabish and El Marraki, 2011) Let G = C1:C2 be a planar graph

where “:” represents a common pair (v1, v2) between two subgraphs C1 and C2 . The

number of spanning trees of G is given by the following formula:

τ(G) = τ(C1)×τ(C2.v1v2) + τ(C1.v1v2)×τ(C2) (2.10)

2.3.2.4 Number of spanning trees of a planar graph of type G = C1|C2

Now, we are interested in the graph of type G = C1|C2, such that v1 and v2 two vertices

of G connected by an edge e (See Figure 2.8).

Property 2.3.3. Let G be a planar graph of type G = C1|C2:

• C1 and C2 have two common vertices v1, v2 a common edge e and a common face

(the external face).

• VG = VC1 + VC2 − 2, EG = EC1 + EC2 − 1 and FG = FC1 + FC2 − 1.
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e

v1

v2

C1 C2
e e

v1

v2

C1 C2

v1

v2

Figure 2.8: A planar graph G = C1|C2

Theorem 2.3.6. (Modabish and El Marraki, 2011) Let G be a planar graph of type

G = C1|C2 and v1 and v2 two vertices of C1 and C2 connected by an edge e (See Figure

2.8). Then, the number of spanning trees of G is given by the following formula:

τ(G) = τ(C1)× τ(C2)− τ(C1 − e)× τ(C2 − e). (2.11)

2.3.2.5 Number of spanning trees of a planar graph of type G = C1‡C2

Now, we are interested in the planar graph G, which contains a simple path P with length

k in common between C1 and C2, we denote G = C1‡C2 (See Figure 2.9).

Property 2.3.4. Let G be a planar graph of type G = C1‡C2 where ‡ a simple path that

contains k + 1 vertices and k edges, then:

• C1 and C2 have k + 1 common vertices v1, v2, ..., vk, vk+1, k common edges (simple

path P ) and a common face (the external face).

• VG = VC1 + VC2 − (k + 1), EG = EC1 + EC2 − k and FG = FC1 + FC2 − 1.

P

v1

vk+1

v2

vk

C1 C2 P P

v1

vk+1

C1 C2

v1

vk+1

v2

vk

v2

vk

Figure 2.9: A planar graph G = C1‡C2
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Theorem 2.3.7. (Generalization of Theorem 2.3.6) (Lotfi et al., 2012) Let G be

a planar graph of type G = C1‡C2. v1 and vk+1 two vertices of G connected by a simple

path P = {v1, v2, ..., vk, vk+1} that contains k edges (See Figure 2.9). Then, the number

of spanning trees of G is given by the following formula:

τ(G) = τ(C1)× τ(C2)− k2τ(C1 − P )× τ(C2 − P ). (2.12)

å Advantages and constraints of decomposition methods

The decomposition method is a method of “divide and conquer” based on simple

operations. It allows the derivation of recursive functions that evaluate the complexity of

a large planar graph and the only disadvantage is that this method is limited for planar

graphs containing one node, two nodes, an edge or a path in common between subgraphs.

2.3.2.6 Application: A Book network with a common edge e

In general, the Book network is defined as the graph cartesian product Sn+1 × P2 where

Sn+1 is a star network with n vertices of degree 1, one vertex of degree n and P2 is the

path graph of 2 vertices. There are two types of a Book network: a Book network with a

common edge and a Book network with a common path. In this section, as an application

of the decomposition methods, we focus on a Book network with a common edge, which

is composed of a number of subnets having arbitrary two nodes in common and one edge

e, denoted as Bm,p where m number of p-cycles (m ≥ 1, p ≥ 3) with a common edge e

(See Figure 2.10).

e

B1,4

e

B2,4

e

Bm,4

...

m

Figure 2.10: The representation of Book networks with a common edge e.

We calculate its number of spanning trees based on some combinatorial methods:

deletion and contraction methods by deleting an edge and contracting two vertices and
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the decomposition method by following two nodes. In the end, we enumerate the spanning

trees of a chain of Book network Cm,p,n using the generalized decomposition method by

following one node (See Figure 2.11). The results of this application were presented

in (Mokhlissi et al., 2015a)

Theorem 2.3.8. Let Bm,p be a Book network where m number of p-cycles (m ≥ 1, p ≥ 3).

The number of spanning trees of the Book network Bm,p is given by:

τ(Bm,p) =
−m(p− 2)(p− 1) + (p− 1)(m+1) − (p− 1)

(p− 2)2
+ (p− 1)(m−1) +m(p− 1) (2.13)

Proof: We use Equation 2.3.1, we obtain τ(Bm,p) = τ(Bm,p − e) + τ(Bm,p.e), then:

τ(Bm,p) = τ(Bm,p − e) +m× (p− 1) (2.14)

We calculate the complexity of Bm,p − e by using Theorem 2.3.5, we obtain

τ(Bm,p − e) = τ(B1,p − e)×τ(Bm−1,p.e) + τ(Bm−1,p − e)×τ(B1,p.e), then:

τ((Bm,p − e) = (m− 1)(p− 1) + (p− 1)× τ(Bm−1,p − e)

τ(Bm−1,p − e) = (m− 2)(p− 1) + (p− 1)× τ(Bm−2,p − e)
...

τ(B2,p − e) = (p− 1) + (p− 1)× τ(B1,p − e) with τ(B1,p − e) = 1

We multiply the equation of τ(Bm−1,p − e) by (p− 1), the equation of τ(Bm−2,p − e)

by (p − 1)2 and so on until the last equation τ(B2,p − e), which will be multiplied by

(p− 1)(m−2). Summing all the obtained equations, we can find this formula.

τ(Bm,p − e) = (m− 1)(p− 1) + (m− 2)(p− 1)2 + (m− 3)(p− 1)3 + ...+

2(p− 1)(m−2) + (p− 1)(m−1) + (p− 1)(m−1).

τ(Bm,p − e) = (p− 1)(m−1)

[
1

(p− 1)0
+

2

(p− 1)1
+

3

(p− 1)2
+ ...+

(m− 3)

(p− 1)(m−4)
+

(m− 2)

(p− 1)(m−3)
+

(m− 1)

(p− 1)(m−2)

]
+ (p− 1)(m−1).

We have g(x) = 1+x+x2 +x3 + ...+xn−1 = 1−xn
1−x . Then, g′( 1

x
) = 1+ 2

x
+ 3

x2 + ...+ n−1
xn−2
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We can see that τ(Bm,p − e) = (p− 1)(m−1) × g′( 1
p−1

) + (p− 1)(m−1), with

g′(x) = −nxn−1(1−x)+1−xn
(1−x)2 . First, we calculate g′( 1

p−1
) , and we replace it in τ(Bm,p − e):

τ(Bm,p − e) =
−m(p− 2)(p− 1) + (p− 1)(m+1) − (p− 1)

(p− 2)2
+ (p− 1)(m−1),m ≥ 1, p ≥ 3

(2.15)

We replace the formula 2.15 of τ(Bm,p−e) in τ(Bm,p) of Equation 2.14, then the result.

Let Cm,p,n be a chain of Book networks, it is composed of n Book networks connected

by an articulation point where m number of p-cycles (m ≥ 1, p ≥ 3, n ≥ 2) (See Figure

2.11).

e

m

e

m

e

m

Figure 2.11: A chain of Book networks Cm,p,n

Theorem 2.3.9. Let Cm,p,n be a chain, composed of n Book networks with m number of

p-cycles. The number of spanning trees of Cm,p,n is given by the following formula, for

m ≥ 1, p ≥ 3, n ≥ 2:

τ(Cm,p,n) =

[
−m(p− 2)(p− 1) + (p− 1)(m+1) − (p− 1)

(p− 2)2
+ (p− 1)(m−1) +m(p− 1)

]n
(2.16)

Proof: We use Equation 2.3.4. We obtain τ(Cm,p,n) = (τ(Bm,p))
n. We replace in

τ(Cm,p,n) the formula of τ(Bm,p) of Theorem 2.3.8, then the result.

2.3.3 Contraction methods for enumerating spanning trees of a network

The contraction method is defined by removing an edge and connecting two vertices. It is

used to derive recursive functions to facilitate the enumeration of spanning trees of several

classes of planar graphs. In this section, we propose a technique based on the contraction

of vertices to calculate the number of spanning trees for a closed chain of planar networks.
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We study two families of a closed chain: a closed chain of the same planar networks Ln

(See Figure 2.12) and a closed chain of different types of planar networks Gn (See Figure

2.14). We consider this latter as the generalization of the first closed chain. The results

of this section were presented in (Mokhlissi et al., 2015b).

2.3.3.1 Contraction method for a closed chain of the same planar networks

We consider a closed chain Ln of the same planar networks C (See Figure 2.12). It is de-

fined by n planar networks C connected by articulation points. This type of representation

has been used for many types of networks, such as Star Flower networks (Modabish and

El Marraki, 2012), maximal planar networks (Lotfi et al., 2014), Pseudofractal Scale-Free

networks (Lotfi et al., 2014), Fan networks (Mokhlissi and El Marraki, 2014) and Wheel

networks (Mokhlissi and El Marraki, 2014). We propose a recursive approach based on

the contraction of nodes. As an application, we obtain the explicit expression for the

number of spanning trees in the closed chain of the same cyclic network (See Figure 2.13).

C

u
v

C

u

C

C v

u
Cv

C

u Ln

n
We cut here

Figure 2.12: A closed chain Ln of the same planar networks C.

Theorem 2.3.10. (Lotfi et al., 2014) Let Ln be a closed chain with the same planar

networks. It’s formed by a set of n planar networks C connected by articulation points

with u and v two cut vertices of C (See Figure 2.12). The number of spanning trees of

Ln is given by the following formula:

τ(Ln) = n× τ(C)n−1 × τ(C.uv) (2.17)
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2.3.3.1.1 Application: A closed chain of the same cyclic networks

As an application of the contraction method for a closed chain of the same planar networks,

we provide a theoretical study of the number of spanning trees for a closed chain of the

same cyclic networks Ln,m, which is a set of cyclic networks C connected by cut vertices

(See Figure 2.13).

C
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v

C

u

C

C v

u
Cv
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m

m

m

mm

m

n
We cut here

Figure 2.13: A closed chain Ln,m of the same cyclic networks

Theorem 2.3.11. (Mokhlissi et al., 2015b) Let Ln,m be a closed chain composed by n of

m−cyclic networks C connected by articulation points and u and v two cut vertices of C.

The number of spanning trees of Ln,m is given by the following formula:

τ(Ln,m) = n×mn−1 × (m− 1). (2.18)

Proof: Let Ln,m be a closed chain formed by n of m−cyclic networks C with u and v

two cut vertices of Ln,m. Using Theorem 2.3.10, we get: τ(Ln,m) = n×τ(C)n−1×τ(C.uv).

C is a m−cyclic network, then its number of spanning trees is equal to its length: τ(C) =

m, then the result.

2.3.3.2 Contraction method for a closed chain of different types of planar networks

In this section, we study another family of a closed chain Gn with n different types of

planar networks Ci connected by articulation points (See Figure 2.14). This type of

network presents a generalization of the representation of the precedent closed chain (See

Figure 2.12). Then, we propose our theoretical analysis based on the contraction method
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to enumerate spanning trees for this family of a closed chain. As an application, we

obtain the exact formula of the number of spanning trees for a closed chain with different

multigraphs (See Figure 2.15).

Cn

u
v

C1

u
C2

C3 v

u

C4v

C5

u Gn

n

We cut here

Figure 2.14: A closed chain Gn of different types of planar networks Ci

Theorem 2.3.12. (Mokhlissi et al., 2015b) Let Gn be a closed chain with n different

types of planar networks C1, C2, C3, ..., Cn having two vertices u and v in common (See

Figure 2.14). The number of spanning trees of Gn is given by the following formula:

τ(Gn) = τ(C1.uv)×

[
n−1∑
k=0

n−k∏
i=2

τ(Ci)× τ(C1)k
]

(2.19)

Proof: Let Gn be a closed chain composed of n different types of planar networks

C1, C2, C3..., Cn. We use Theorems 2.3.5 and 2.3.4 by cutting C1 of Gn and applying the

contraction method (See Figure 2.14). We get

τ(Gn) = τ(C1)× τ(Gn−1) + τ(C1.uv)×
n∏
i=2

τ(Ci)

τ(Gn−1) = τ(C1)× τ(Gn−2) + τ(C1.uv)×
n−1∏
i=2

τ(Ci)

...

τ(G2) = τ(C1)× τ(G1) + τ(C1.uv)× τ(C2)

τ(G1) = τ(C1.uv).

We multiply the equation of τ(Gn−1) by τ(C1), the equation of τ(Gn−2) by τ(C1)2 and

so on until the last equation τ(G3) which will be multiplied by τ(C1)n−3 and the equation
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of τ(G2) which will be multiplied by τ(C1)n−2. Summing all the obtained equations, we

can find this formula.

τ(Gn) =τ(C1)n−1τ(C1.uv) + τ(C1.uv)

[ n∏
i=2

τ(Ci)τ(C1)0 +
n−1∏
i=2

τ(Ci)τ(C1)1 + ...+

τ(C2)τ(C1)n−2

]
=τ(C1.uv)

[
n∏
i=2

τ(Ci)τ(C1)0 +
n−1∏
i=2

τ(Ci)τ(C1)1 + ...+ τ(C2)τ(C1)n−2 + τ(C1)n−1

]

Then, the result.

2.3.3.2.1 Application: A closed chain with different multigraphs

As an application of the contraction method for a closed chain of different types of planar

networks, we examine the number of spanning trees for a closed chain Kn, which is

composed of n multigraphs C1, C2, C3, ..., Cn having only two vertices u and v in common.

Each multigraph is characterized by a number of distinct edges joining the same pair of

common nodes. The transition from one to the next multigraph is done by adding an

edge connecting u and v (See Figure 2.15).

Cn

u

v

C1

u
C2

C3

v

u

C4

v

C5

u Kn

n
n

We cut here

Figure 2.15: A closed chain Kn with different multigraphs

Theorem 2.3.13. (Mokhlissi et al., 2015b) Let Kn be a closed chain, composed of n

multigraphs C1, C2, C3, ..., Cn having only two vertices u and v in common (See Figure

2.15). The formula to calculate the number of spanning trees of Kn is as follow:

τ(Kn) =
n∑
i=1

i! (2.20)
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Proof: Let Kn be a closed chain, composed of n multigraphs C1, C2, C3, ..., Cn with

u and v two cut vertices of Ci. Using Theorem 2.3.12, we get τ(Kn) = n! + (n − 1)! +

(n− 2)! + (n− 3)! + · · ·+ 3! + 2! + 1!, with τ(C1) = 1. Then the result.

å Advantages and constraints of the contraction method

The contraction method allows deriving recursive functions calculating the number of

spanning trees of a large family of planar graphs, but it requires the presence of a pair of

separation. Therefore, we search more genericity by applying geometric transformations.

2.4 Geometric approaches for enumerating spanning trees of a network

In this section, we propose four approaches that are based on geometrical transformations

of the original network to facilitate the calculation of the number of spanning trees for

complex and large networks, namely duality, bipartition, reduction approaches and the

electrically equivalent technique. They change the geometric nature of a network and its

complexity is calculated according to that of the network obtained after some geometric

transformations. We begin by enumerating the spanning trees of the dual of a planar net-

work. Then the bipartite, the k-partite network, the reduced and the k-reduced network

according to that of the initial network. Finally, we show the relevance of these approaches

by applying them to a planar network such as the Book network with common path l. In

addition, we investigate the technique of electrically equivalent transformations, we give

its definition, we illustrate it by an example and we explain its methodology by providing

an algorithm for each transformation. The aim of these approaches is the evaluation of

the number of spanning trees of large and complex networks which cannot be found by

using the existing methods such as the contraction, the deletion and the decomposition,

etc. Some results of this section were presented in (Mokhlissi et al., 2018a).

2.4.1 Duality

Duality is a very important mathematical concept that has several uses including linear

algebra, functional analysis, group theory and graph theory (Lang, 2002; Nishizeki and

Rahman, 2004; Caspard et al., 2007). It is a geometric transformation of a graph into a
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dual graph. It concerns the family of planar graphs and facilitates the calculation of their

number of spanning trees because there is an equality relation between the complexity of

a planar graph and that of its dual. We begin by defining this approach and determining

its structural properties. Then, we show the relationship between the number of spanning

trees of a graph and that of its dual. Finally, we illustrate this concept by an example.

Definition 2.4.1. Let G be a planar graph, we can construct the dual of G, denoted as

G∗, as follows:

• To construct the set of vertices V ∗ of G∗, a vertex v∗i will be placed in each middle

of faces Fi of the graph G.

• For each edge e of G, we draw an edge e∗ of G∗, which intersects the edge e (but not

another edge of G) and connects the vertices v∗i , which are in the faces Fi delimited

by e. The edges e∗ of G∗ are called the dual edges of e of G.

Property 2.4.1. Let G∗(V ∗G, E
∗
G, F

∗
G) be the dual graph of a planar graph G(VG, EG, FG).

• For each vertex v of G, there is a corresponding face in G∗. Then, |VG| = |F ∗G|.

• For each edge e of G, there is a corresponding edge in G∗. Then, |EG| = |E∗G|.

• For each face f of G, there exists a corresponding vertex in G∗. Then, |FG| = |V ∗G|.

• The dual graph of a planar graph is also planar.

• A dual graph is always connected.

• A dual graph may have loops and multiple edges even if the initial graph is simple.

• A planar graph may not have a unique dual if it has several planar representations.

Theorem 2.4.1. (Lotfi et al., 2015) Let G∗(V ∗G, E
∗
G, F

∗
G) be the dual graph of G(VG, EG, FG).

The number of spanning trees of G is equal to the number of spanning trees of G∗:

τ(G) = τ(G∗) (2.21)



2.4. GEOMETRIC APPROACHES FOR ENUMERATING SPANNING TREES OF A NETWORK 57

Example 2.4.1. Let G(VG, EG, FG) be a planar graph. The dual graph G∗(V ∗G, E
∗
G, F

∗
G)

is represented as follows: the edges are illustrated by the red dashes and the vertices are

drawn by red circles (See Figure 2.16)

G

G∗

Figure 2.16: A graph G and its dual G∗.

2.4.2 Bipartition Approach

The bipartite graphs belong to one of the simplest families in graph theory. They are used

in various areas such as Semantic Web, Data Mining and segmentation of images (Zha

et al., 2001; Rege et al., 2006; Li et al., 2012). The bipartition approach is characterized

by the presence of nodes. Its main objective is to reduce the number of nodes to simplify

the enumeration of spanning trees for planar networks having a large number of nodes.

We start by defining this approach and determining its properties. Then, we propose a

theorem to calculate the number of spanning trees of the bipartite network according to

that of the origin network and its number of faces. Finally, we generalize these results for

the case of the k-partite network.

Definition 2.4.2. A graph becomes bipartite when we add a new vertex between two

directly connected vertices, denoted by B2(G) (See Figure 2.17).

Property 2.4.2. Let G be a planar graph and B2(G) its bipartite graph.

• The number of vertices in B2(G) is given by |VB2(G)| = |VG|+ |EG|,

• The number of edges is given by |EB2(G)| = 2|EG|,

• The number of faces is |FB2(G)| = |FG|,

• The average degree is < z >B2(G)=
2|EB2(G)|
|VB2(G)|

= 4|EG|
|VG|+|EG|

.



2.4. GEOMETRIC APPROACHES FOR ENUMERATING SPANNING TREES OF A NETWORK 58

Theorem 2.4.2. (Lotfi et al., 2015) Let B2(G) be a bipartite graph of a planar graph G.

The number of spanning trees in B2(G) is given by:

τ(B2(G)) = 2|FG|−1τ(G) (2.22)

Definition 2.4.3. (Generalization of the bipartition approach) A k-partite graph

of a planar graph G is defined by adding k − 1 new vertices in each edge to get k new

edges, denoted by Bk(G) (See Figure 2.17).

Property 2.4.3. Let G be a planar graph and Bk(G) its k-partite graph.

• The number of vertices in Bk(G) is given by |VBk(G)| = |VG|+ (k − 1)|EG|,

• The number of edges is given by |EBk(G)| = k|EG|,

• The number of faces is |FBk(G)| = |FG|,

• The average degree is < z >Bk(G)=
2|EBk(G)|
|VBk(G)|

= 2k|EG|
|VG|+(k−1)|EG|

.

Theorem 2.4.3. (Lotfi et al., 2015) Let Bk(G) be a k-partite graph of a planar graph

G. The number of spanning trees of Bk(G) is given by:

τ(Bk(G)) = k|FG|−1τ(G) (2.23)

G B2(G) B3(G)

Figure 2.17: A graph G, its bipartite graph and its 3-partite graph

2.4.3 Reduction Approach

The reduction approach is another concept that is characterized by the presence of multi-

ple edges. Its main purpose is to reduce the number of edges to facilitate the calculation

of the number of spanning trees for planar networks having a large number of edges. We
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begin by a definition of the reduction approach and we provide its properties. Then, we

present the formula of the number of spanning trees of the reduced network according to

that of the origin network and its number of nodes. Finally, we generalize these results

for the case of the k-reduced network.

Definition 2.4.4. A graph becomes reduced when we add a new edge connecting two

existing vertices of a planar graph G. It is denoted by R2(G) (See Figure 2.18).

Property 2.4.4. Let G be a planar graph and R2(G) its reduced graph.

• The number of vertices in R2(G) is given by |VR2(G)| = |VG|,

• The number of edges is given by |ER2(G)| = 2|EG|,

• The number of faces is |FR2(G)| = |FG|+ |EG|,

• The average degree is < z >R2(G)=
2|ER2(G)|
|VR2(G)|

= 4|EG|
|VG|

.

Theorem 2.4.4. (Lotfi et al., 2015) Let R2(G) be a reduced graph of a planar graph G.

The number of spanning trees of R2(G) is given by:

τ(R2(G)) = 2|VG|−1τ(G) (2.24)

Definition 2.4.5. (Generalization of the reduction approach) Let G be a planar

graph. The k-reduced graph of G, denoted Rk(G), is obtained when for each pair of vertices

of G, we have k multiple edges connecting them (See Figure 2.18).

Property 2.4.5. Let G be a planar graph and Rk(G) its k-reduced graph.

• The number of vertices in Rk(G) is given by |VRk(G)| = |VG|,

• The number of edges is given by |ERk(G)| = k|EG|,

• The number of faces is |FRk(G)| = |FG|+ (k − 1)|EG|,

• The average degree is < z >Rk(G)=
2|ERk(G)|
|VRk(G)|

= 2k|EG|
|VG|

.
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Theorem 2.4.5. (Lotfi et al., 2015) Let Rk(G) be a k-reduced graph of a planar graph

G. The number of spanning trees of Rk(G) is given by:

τ(Rk(G)) = k|VG|−1τ(G) (2.25)

G R2(G) R3(G)

Figure 2.18: A graph G, its reduced graph and its 3-reduced graph

å Advantages and constraints of the duality, reduction and bipartition ap-

proaches

These geometric approaches facilitate the calculation of the number of spanning trees of

a planar network by changing its topological nature and decreasing its number of vertices

and edges, but their application concerns just specific types of planar networks. Therefore,

we propose a general technique based on some geometric transformations to calculate the

number of spanning trees of any network whatever its size and its structure.

2.4.3.1 Application: A Book network with a common path lk

In this section, we concentrate on a Book network with a common path lk, denoted as

Pm,k where m is the number of paths between two common vertices u and v and k is

the size of the path lk (m ≥ 2, k ≥ 2). It contains the same number of vertices in each

cycle (See Figure 2.19). Then, we calculate its number of spanning trees based on the

combination of two geometric approaches: the bipartition and the reduction approaches.

Finally, we enumerate the spanning trees of a chain of Book network Cm,k,n using the same

combination (See Figure 2.21). The results of this application were presented in (Mokhlissi

et al., 2018a).

Theorem 2.4.6. (Mokhlissi et al., 2018a) Let Pm,k be a Book network with a common

path lk, where m is the number of paths between two common vertices u and v and k is
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the size of the path lk (m ≥ 2, k ≥ 2). The number of spanning trees of Pm,k is given by:

τ(Pm,k) = m× km−1 (2.26)

P2,2

l2u v

P3,3

l3u v u v

Pm,k

lk...

m

Figure 2.19: The representation of Book networks with a common path lk .

Proof: Let e be an edge connecting two vertices u and v, Rm(e) is the m-reduced

graph of e and Bk(Rm(e)) is the k-partite graph of the m-reduced graph of the edge e.

This geometrical transformation of the edge e is used to form the Book network Pm,k with

a common path lk. Then τ(Pm,k) = τ(Bk(Rm(e))). We apply Theorem 2.4.5 to the edge

e, we obtain τ(Rm(e)) = m, since Ve = 2 and we apply Theorem 2.4.3 to Rm(e), we obtain

τ(Bk(Rm(e))) = k|FRm(e)|−1× τ(Rm(e)) and |FRm(e)| = m, hence τ(Pm,k) = m× km−1. We

illustrate this demonstration in Figure 2.20 for P3,3.

u v

e

eu v

R3(e) B3(R3(e)) = P3,3

l3u v

Figure 2.20: The demonstration of P3,3.

Let Cm,k,n be a chain of Book networks Pm,k with a common path lk. It is composed

of n Book networks connected by an articulation point where m is the number of paths

between two common vertices and k is the size of the path lk (m ≥ 2, k ≥ 2, n ≥ 2). We

use the same combination of two geometric approaches: the bipartition and the reduction

approaches to calculate its number of spanning trees (See Figure 2.21).

Theorem 2.4.7. (Mokhlissi et al., 2018a) Let Cm,k,n be a chain of Book networks Pm,k

with a common path lk where n is the number of Book networks, m is the number of paths
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between two common vertices and k is the size of the path lk (m ≥ 2, k ≥ 2, n ≥ 2).

Then, the number of spanning trees of Cm,k,n is given by:

τ(Cm,k,n) = mn × kn(m−1) (2.27)

m

lk

m

lk

m

lk

Figure 2.21: A chain of Book networks Cm,k,n

Proof: Let t be a path, Rm(t) is the m-reduced graph of t and Bk(Rm(t)) is the k-

partite graph of the m-reduced graph of t. This geometrical transformation of t constructs

the chain Cm,k,n of n Book networks Pm,k. Then τ(Cm,k,n) = τ(Bk(Rm(t))). We apply

Theorem 2.4.5 to the path t, we obtain τ(Rm(t)) = mn and we apply Theorem 2.4.3 to

Rm(t), we obtain τ(Bk(Rm(t))) = k|FRm(t)|−1 × τ(Rm(t)) and |FRm(t)| − 1 = (m − 1)n,

hence τ(Cm,k,n) = mn × kn(m−1).

2.4.4 Electrically equivalent technique for enumerating spanning trees of a network

In this section, we use some notions of the electrical networks (Teufl and Wagner, 2010b,a),

we study the technique of the electrically equivalent transformations and we analyze the

characteristics of each one. Finally, we propose an algorithm for each transformation and

we provide the main algorithm which defines the number of spanning trees of a given

network.

2.4.4.1 Definition

The electrically equivalent technique is a transformation of the network structure (Teufl

and Wagner, 2010b,a). This technique simplifies the network structure by reducing the

number of edges and vertices and changes the weight of the edges. An edge-weighted

network is an electrical network such that the weights represent the conductances of the

corresponding edges. Furthermore, the number of spanning trees changes under the five
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transformations of this technique. It is proved that if a subgraph of a graph G is replaced

by an electrically equivalent graph, the number of spanning trees only changes by a factor

that does not depend on G, which is very important to determine the number of spanning

trees of a network.

Theorem 2.4.8. (Teufl and Wagner, 2010a) Suppose that a graph G can be partitioned

into two “edge-disjoint” subgraphs S1 and S2 and the vertex set of G satisfies VS1∪VS2 = VG

and VS1 ∩ VS2 = S∗. Suppose that S ′2 is a graph with ES1 ∩ ES′2 = ∅ and VS1 ∩ VS′2 = S∗.

Suppose that S2 and S ′2 are electrically equivalent with respect to S∗. Finally, let G′ =

S1 ∪ S ′2. If τ(G) 6= 0 and τ(S2) 6= 0. Then, the following formula holds:

τ(G′)

τ(G)
=
τ(S ′2)

τ(S2)
(2.28)

As a consequence of this theorem, we can use simplification techniques for networks in

order to calculate their number of spanning trees. The electrically equivalent technique has

been applied to many networks as a prism and an antiprism (Sun et al., 2016), the contact

graphs of disk packings (Qin et al., 2015), Apollonian networks (Sun et al., 2016) and the

generalized pseudofractal networks (Xiao et al., 2015), etc. In Table 2.1, we consider the

effect of five simple transformations of the electrically equivalent technique on the weight

of each edge and on the number of spanning trees. Let G be a weighted graph and τ(G) be

its weighted number of spanning trees. Let G′ be the corresponding electrically equivalent

graph and τ(G′) be its weighted number of spanning trees. These five transformations

are as follows: Parallel edges, Serial edges, Wye−Delta transform, Delta−Wye transform

and Star−Mesh transform. This last transformation is a generalization of Serial edges

and Wye−Delta transform. As a matter of fact, if we have a star Sn with n vertices

and the weights a1, a2, ..., an, it will be transformed to a complete graph Kn with a new

weight xi,j =
aiaj
n∑

k=1

ak

for each edge vivj (i 6= j). Its number of spanning trees is given by

τ(Kn) = 1
n∑

k=1
ak

τ(Sn). As an example, we consider the fifth illustration in Table 2.1, which

presents the transformation of the star S4 to the complete graph K4.
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Graph G, its electrically equivalent graph G′ and its complexity

a1

a2

Parallel Edge

G

x1,2 = a1 + a2

G′

τ(G′) = τ(G)

a1 a2

Serial Edge

G

x1,2 = a1a2

(a1+a2)

G′

τ(G′) = 1
a1+a2

.τ(G)

a2 a3

a1

Y =⇒ ∆

G

x1,2 = a1a2

a1+a2+a3
x1,3 = a1a3

a1+a2+a3

x2,3 = a2a3

a1+a2+a3

G′

τ(G′) = 1
a1+a2+a3

.τ(G)

a3 a2

a1

∆ =⇒ Y

G

x1,3 = a1a2+a2a3+a3a1

a2
x1,2 = a1a2+a2a3+a3a1

a3

x2,3 = a1a2+a2a3+a3a1

a1

G′

τ(G′) = (a1a2+a2a3+a3a1)2

a1a2a3
.τ(G)

a1

a2a3

a4

Star −Mesh

G

x1,2 = a1a2

a1+a2+a3+a4

x2,3

x4,1

x1,3x2,4x3,4

G′

τ(G′) = 1
a1+a2+a3+a4

τ(G)

Table 2.1: The five electrically equivalent transformations.
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2.4.4.2 Example

Figure 2.22 shows an example of the application of the electrically equivalent transfor-

mations. We calculate the number of spanning trees of the network G by applying four

electrically equivalent transformations. The corresponding calculations of the conduc-

tances are as follows:

1

1

1 1

11

Y =⇒ ∆

G

1

1 1

1
3

1
3

1
3

Parallel edge

G(1)

4
3

4
3

4
3

G(2)

4
3

2
3

2

Parallel edge

Serial edge

G(3)G(4)

Figure 2.22: An example of electrically equivalent transformations.

1. Note the conductance of each edge of the original network is 1, then the corre-

sponding conductance of the resulting network for Wye−Delta transformation is

1.1
1+1+1

= 1
3
.

2. For two parallel edges with conductances 1 and 1
3
, the conductance of the new edge

is the sum of two original conductances, i.e. 1 + 1
3

= 4
3
.

3. When two serial edges with conductances 4
3

and 4
3

are merged into a new edge, its

conductance is
4
3
× 4

3
4
3

+ 4
3

= 2
3
.

4. For two parallel edges, the conductance of the new edge is 2
3

+ 4
3

= 2.

The weighted number of spanning trees in the network G is calculated as:
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(a) τ(G) = τ(G(0)).

(b) τ(G) = 3× τ(G(1))→ Y =⇒ ∆.

(c) τ(G) = 3× τ(G(2))→ Parallel edge.

(d) τ(G) = 3× 8
3
× τ(G(3))→ Serial edge.

(e) τ(G) = 8× τ(G(4))→ Parallel edge.

(f) τ(G) = 8× 2 = 16.

So, the original network G has 16 spanning trees according to the factors of these

transformations.

2.4.4.3 Electrically equivalent transformations algorithms.

In general, a network can be simplified by identifying edges in series, parallel, Wye-Delta,

Delta-Wye and Star-Mesh. The main task is which transformation must be applied first.

Two properties can be used to provide an order for these transformations: The degree of

each node and the weights of the equivalent edges of each transformation. In literature,

the resistances in series and parallel are the most used transformations (Teufl and Wagner,

2010a)).

1. Parallel Edge: We start with the parallel edge transformation to reduce the num-

ber of edges in a network. We calculate the weight for the new edge. This trans-

formation does not change the complexity of the obtained graph. The algorithm 1

presents the transformation of parallel edges.

2. Serial Edge: The second transformation is the serial edge. We look for a node

with a degree ‘2’. This transformation allows to reduce the number of vertices and

edges of a network. The algorithm 2 presents the transformation of serial edges.

Some networks cannot be simplified either by the serial edge or by the parallel edge

transformations. For this reason, three new transformations have been proposed

namely Wye-Delta, Delta-Wye or Star-Mesh.

3. Wye-Delta transformation: We call the transformations of “Wye” and “Delta”

according to the form of schemas, which look like letters (Y, ∆). The Wye-Delta

transformation has priority because it reduces the number of nodes and simplifies

the structure of large networks. For every four nodes of a Wye, we will have only
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three nodes of a Delta and the number of edges remains unchangeable. We look for

a node with a degree ‘3’ in a network. The algorithm 3 presents the transformation

of Wye-Delta.

4. Delta-Wye transformation: This transformation is the inverse of the Wye−Delta

transformation. Its application generates a node of degree ‘3’ and the degrees of

Delta nodes will be decreased by 1. The algorithm 4 presents the transformation of

Delta-Wye.

5. Star-Mesh transformation: For a network that has no parallel edges and all its

nodes have a degree greater than ‘3’, the transformations mentioned above are not

appropriate, so we will use the Star-Mesh transformation. We look for a node with

a degree n > 3. This transformation reduces the number of vertices by deleting

the vertices having the degree n. The algorithm 5 presents the transformation of

Star-Mesh.

Algorithm 1 The algorithm of Parallel edge transformation
1: function ParallelEdge(G)
2: L1: List of pairs of nodes that are connected by multiple edges;
3: n1: The length of L1;
4: for i = 1→ n1 do
5: x1,2: The sum of the weights of all multiple edges between the pair of nodes of L1[i];
6: Remove all multiple edges between the pair of nodes of L1[i];
7: Add a new edge between the pair of nodes of L1[i];
8: Assign the weight x1,2 to the new edge in L1[i];
9: τ(G)← 1 ∗ τ(G);

10: end for
11: Empty L1;
12: end function

Algorithm 2 The algorithm of Serial edge transformation
1: function SerialEdge(G)
2: L2: List of nodes having degree 2 and their two neighbors;
3: n2: The length of L2;
4: for i = 1→ n2 do
5: a1, a2 : Weights of two edges between nodes having the degree 2 and their neighbors in L2[i];
6: x1,2 ← (a1 ∗ a2)/(a1 + a2);
7: Remove the node having the degree 2 from L2[i];
8: Add a new edge between two neighbors to L2[i];
9: Assign the weight x1,2 to the new edge created between two neighbors in L2[i];

10: τ(G)← (a1 + a2) ∗ τ(G);
11: end for
12: Empty L2;
13: end function
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Algorithm 3 The algorithm of Wye-Delta transformation
1: function Wye−Delta(G)
2: L3: List of nodes having degree 3 and their three neighbors;
3: n3: The length of L3;
4: for i = 1→ n3 do
5: a1, a2, a3: Weights of three edges between nodes having the degree 3 and their neighbors in
6: L3[i];
7: x1,2 ← (a1 ∗ a2)/(a1 + a2 + a3);
8: x1,3 ← (a1 ∗ a3)/(a1 + a2 + a3);
9: x2,3 ← (a2 ∗ a3)/(a1 + a2 + a3);

10: Remove the node having the degree 3 from L3[i];
11: Add three new edges between the three neighbors to L3[i];
12: Assign the weights x1,2, x1,3 and x2,3 to the new three edges created between the edges having

the
13: weights a1 and a2, the weights a1 and a3 and the weights a2 and a3, respectively;
14: τ(G)← (a1 + a2 + a3) ∗ τ(G);
15: end for
16: Empty L3;
17: end function

Algorithm 4 The algorithm of Delta-Wye transformation
1: function Delta−Wye(G)
2: L4: list of triangles in G;
3: n4: The length of L4;
4: for i = 1→ n4 do
5: a1, a2, a3: Weights of the three edges of a triangle of L4[i];
6: x2,3 ← (a1 ∗ a2 + a2 ∗ a3 + a1 ∗ a3)/a1;
7: x1,3 ← (a1 ∗ a2 + a2 ∗ a3 + a1 ∗ a3)/a2;
8: x1,2 ← (a1 ∗ a2 + a2 ∗ a3 + a1 ∗ a3)/a3;
9: Remove all the three edges of a triangle of L4[i];

10: Add a new node in G;
11: Add three new edges between the new node and the three nodes of a triangle of L4[i];
12: Assign the weights x2,3, x1,3 and x1,2 to the new three edges created between the new node
13: and the node between two edges having the weights a2 and a3, a1 and a3, a1 and a2,
14: respectively;
15: τ(G)← (a1 ∗ a2 ∗ a3)/(a1 ∗ a2 + a2 ∗ a3 + a1 ∗ a3)∧2 ∗ τ(G);
16: end for
17: Empty L4;
18: end function
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Algorithm 5 The algorithm of Star-Mesh transformation
1: function Star −Mesh(G)
2: L5: Sorted list of nodes having the degree > 3 with their neighbors;
3: n5: The length of L5;
4: for i = 1→ n5 do
5: t: The size of L5[i];
6: s← 0;
7: for j = 2→ t do
8: a(j) : Weight of the edge between nodes having the degree greater than 3 and their
9: neighbor j;

10: s← s+ a(j) . Summing all the weights a(j)
11: end for
12: for j = 1→ t− 1 do
13: for k = j + 1→ t do
14: x(j)(k)← a(j) ∗ a(k)/s ;
15: Add new edge between two edges that have the weight a(j) and a(k);
16: Assign the weight x(j)(k) to the new edge;
17: end for
18: end for
19: Remove the node having the degree greater than 3 in L5[i];
20: τ(G)← s ∗ τ(G) ;
21: end for
22: Empty L5;
23: end function

2.4.4.4 Methodology

To calculate the number of spanning trees of a network using the electrically equivalent

transformations, we follow the steps below:

1. First, if we have an unweighted network G, we add a weight (conductance) for each

edge. We often assign a weight “1” to each edge of a network.

2. We apply the electrically equivalent transformations on the weighted network G

using the cited algorithms and Algorithm 6 to obtain the conductances of all the

edges of the transformed network G′. We verify the isomorphism between two

successive iterations of a network to deduce the relationship between their number

of spanning trees and the exact value of the number of spanning trees in each

iteration.

3. Finally, we deduce the exact formula of the number of spanning trees of the original

network.
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The proposed algorithm 6 presents the order of electrically equivalent transformations

with the original network Gn and the transformed network Gn−1.

Algorithm 6 The algorithm of the electrically equivalent transformations
Input: Gn: A connected network with n iterations, Gn−1: its transformed network;

N : The number of nodes of Gn, E: The number of edges of Gn;
Output: τ(Gn): The number of spanning trees of Gn;

eq: The equation between τ(Gn) and τ(Gn−1);

τ(Gn)← 1;
while not N = 2 and E = 1 do . The last transformed network

if Gn is isomorphic to Gn−1 then
eq = τ(Gn);

end if
if Existence of multiple edges between two nodes then

ParallelEdge(Gn) function; . Algorithm 1
else if Existence of nodes having the degree 2 then

SerialEdge(Gn) function; . Algorithm 2
else if Existence of nodes having the degree 3 then

Wye−Delta(Gn) function; . Algorithm 3
else if Existence of triangles in (Gn) then

Delta−Wye(Gn) function; . Algorithm 4
else if Existence of nodes having the degree higher than 3 then

Star −Mesh(Gn) function; . Algorithm 5
else

break;
end if

end while
τ(Gn) = τ(Gn)∗ Weight of the last transformed network (N = 2 and E = 1).

å Advantages and constraints of the electrically equivalent technique

The electrically equivalent technique to enumerate spanning trees is general and can

be easily extended to any complex networks, because if any subgraph of the main graph

is replaced by an electrically equivalent graph, the number of spanning trees only changes

by a factor that is independent of the rest of the graph. Based on this technique, we can

determine the relationship between the number of spanning trees of the original and the

transformed networks. It provides the calculation of the edges’ weights of the transformed

network and the exact value of the number of spanning trees of the original network.
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2.5 Summary

In this chapter, we have studied the different methods and techniques of calculating the

number of spanning trees of a network, notably algebraic methods such as Matrix-Tree

Theorem, combinatorial methods such as the deletion and the contraction methods, the

decomposition methods and geometric approaches such as the electrically equivalent tech-

nique, etc. All these methods are efficient to calculate the number of spanning trees.

However, some of them have restrictions. As the first method proposed by Kirchhoff,

which calculates the number of spanning trees for all graphs, but if we consider a large

and complex network which has a very large number of vertices, it will not be easy to

calculate the determinant of a very large matrix. As a remedy to this problem, researchers

have developed techniques and approaches without going through the determinant. In this

chapter, we have treated almost all solutions to obtain the exact formula of the number

of spanning trees. We have proposed many generalizations of some methods known in the

literature as the contraction method and we have shown that the electrically equivalent

technique is considered as the general method and can be easily applied to any complex

network whatever its size. Furthermore, we have explored two important real applications

of enumerating spanning trees such as the reliability and the robustness of a network. In

the next chapters, we study the three types of complex networks: small-world, scale-free

and random networks, we propose new models for each type, we analyze their structure

and their topological properties, we calculate their complexity using some methods men-

tioned in this chapter and we evaluate their entropy to estimate the most robust network.

We start in Chapter 3 by investigating three models of the small-world network: The

Koch Network, the Small-World Exponential network, the Farey network and we perform

a comparative study between them.
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S
mall-world networks are a class of networks that are highly clustered, yet have the

small-world effect. They display rich behaviour as observed in a large variety of real

systems. Social networks are intuitive examples of this type of networks. In this chap-

ter, we discuss three categories of small-world networks, namely Small-World Exponential

network, Koch Network and Farey network. For each network, we propose its general-

ization. We investigate their iterative construction. We focus on the analysis of their

structural properties such as the degree distribution, the clustering coefficient, the diam-

eter, etc, and deduce the complicated analytical results from the growth mechanism used

in these models. Then, we calculate their number of spanning trees using some methods

proposed in Chapter 2. Finally, as an application, we evaluate their entropy of spanning

trees to quantify their robustness and compare them with other networks having the same

average degree to estimate the robust one. The results of this chapter were published in

an international journal (Mokhlissi et al., 2018b), an international conference (Mokhlissi

et al., 2016a) and submitted to an international journal (Mokhlissi et al., 2019a).
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3.1 Why be interested in small-world networks?

Many scientists care about small-world networks because they appear to be everywhere.

For example, they can be found in social networks (Scott, 2000), economic networks (Kir-

man, 1997), transportation systems (Guimera et al., 2005), epidemic spreading (Pastor-

Satorras and Vespignani, 2001), metabolic networks (Jeong et al., 2000), food web (Mon-

toya and Solé, 2002) and so on. Small-world networks have two structural properties, the

small-world effect and high clustering. The small-world effect is the concept where any

two nodes in a network are connected to each other through a small path. This prop-

erty minimizes the number of connections (links) in a network. The second property of

small-world networks is the high clustering coefficient where two nodes having a common

neighbour have a high tendency to be connected to each other. This feature maximizes

the connectivity in a network. In order to mimic real-world networks, many models have

been proposed to generate networks with small-world properties to understand, improve

and manipulate them for useful applications (Zaidi, 2013).

3.2 Analysis of Small-World Exponential network

In this section, we introduce a well known family of small-world network: The Small-

World Exponential network (See Figure 3.1) (Mokhlissi et al., 2016a; Liu et al., 2015;

Barriere et al., 2009). Its construction is based on triangles and it has an exponential form

of degree distribution. The Small-World Exponential network has been observed from

some real-life systems as tensor networks (Marti et al., 2010), social networks (Bonneau

et al., 2009), quantum walks (Hillery et al., 2010), etc. We present its construction

which is built in an iterative way, determine their structural properties and calculate

its number of spanning trees using the generalized decomposition method following one

articulation node. Then, we propose a new family of generalized Small-World Exponential

networks (Mokhlissi et al., 2018b)(See Figure 3.2), where the difference relies on the size

and the dimension of the added cyclic subgraph. We also investigate its construction and

their structural properties, indicating that the generalization of this small-world network

affects the properties of small-world networks and its behaviour follows the characteristics
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of scale-free networks. We calculate its number of spanning trees using the same method.

In the end, we calculate its entropy of spanning trees to evaluate its robustness.

3.2.1 Small-World Exponential network G1,3,n

3.2.1.1 Construction of the Small-World Exponential network G1,3,n

The Small-World Exponential network is denoted by G1,3,n with n is the current genera-

tion, ‘1’ refers to the number of the added triangles for each node of each triangle added

to the previous iteration and ‘3’ refers to the size of triangles. G1,3,n is constructed by

following this algorithm: At n = 0, we have a simple node. At first generation, G1,3,1 is a

simple triangle. For n > 1, each node of each triangle added to the previous iteration is

replaced by a new triangle. Thus, each of the newly appeared triangles contains exactly

one node of the network of the previous iteration. The degree of the articulation nodes

of the first iteration (The red nodes in Figure 3.1) is 2n. The growth process to the next

generations continues in a similar way. In Figure 3.1, the first three iterations of the

Small-World Exponential network G1,3,n are illustrated.

G1,3,0 G1,3,1 G1,3,2 G1,3,3

Figure 3.1: The first three generations of the Small-World Exponential network G1,3,n

Next, we compute the numbers of nodes, edges, faces and the average degree of the

Small-World Exponential network. According to the construction of G1,3,n, we get:

• Let VG1,3,n be the number of nodes created at step n. For n ≥ 0, we notice

VG1,3,n = 3VG1,3,n−1 = 32VG1,3,n−2 = 33VG1,3,n−3 = ... = 3n−1VG1,3,1 = 3nVG1,3,0 . Thus,



3.2. ANALYSIS OF SMALL-WORLD EXPONENTIAL NETWORK 75

the number of nodes of G1,3,n is:

VG1,3,n = 3n, n ≥ 0. (3.1)

• Similarly, we find the number of edges of G1,3,n:

EG1,3,n = 3× 3n − 1

2
, n ≥ 0. (3.2)

• The number of faces of G1,3,n is:

FG1,3,n =
3n + 1

2
, n ≥ 0. (3.3)

• Let < z >G1,3,n be the average degree of G1,3,n. It is calculated as follows:

< z >G1,3,n=
2EG1,3,n

VG1,3,n
. Thus the average degree of G1,3,n is (which is approxi-

mately 3 for large n):

< z >G1,3,n=
3n − 1

3(n−1)
, n ≥ 0 (3.4)

3.2.1.2 Structural properties of the Small-World Exponential network G1,3,n

• The degree distribution

We denote ku(n) as the degree of a node u at the step n. When a node u is added to

the network at step nu ≥ 0, it has a degree ku(nu) = 2. To determine ku(n), we first

determine the number of triangles involving the node u at step n that is represented

by M∆(u,n)
. These triangles will create new nodes connected to the node u at step

n+ 1. Then, at step nu,M∆(u,nu)
= 1. By construction, M∆(u,n)

= M∆(u,n−1)
+ 1. We

can derive M∆(u,n)
= n− nu + 1. Note that the relation between ku(n) and M∆(u,n)

satisfies
ku(n) = 2M∆(u,n)

= 2(n− nu + 1). (3.5)

In this way, at step n the degree of node u has been computed explicitly. From

Equation 3.5, we can see that at each step the degree of a node is:

ku(n) = ku(n− 1) + 2. (3.6)

Then, the cumulative degree distribution is given by

Pcum(k) =
1

VG1,3,n

∑
i≤nu

Mv(i) =
3nu

3n
. (3.7)
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with Mv(n) is the number of new nodes at step n and VG1,3,n =
∑n

i=0Mv(i). From

Equation 3.5, we obtain nu = n + 1− k
2
. Then, the cumulative degree distribution

of G1,3,n will be:
Pcum(k) = 3−

k
2

+1 (3.8)

For large n, we can obtain:

Pcum(k) ∼ 3−
k
2 . (3.9)

So the degree distribution of the Small-World Exponential network G1,3,n follows an

exponential distribution.

• Clustering coefficient

Now, we calculate the clustering coefficient of the Small-World Exponential network

G1,3,n for any node u, which is given by Cu = 2eu/[ku(ku−1)], where eu is the number

of existing links between all the ku neighbors of node u. From Equation 3.5, we have

ku = 2(n − nu + 1). Among the 2(n − nu + 1) neighbors, 2 nodes that belong to

the same triangle are connected to each other, leading to the total number of links

eu = n− nu + 1. Thus, the Cu is given by:

Cu =
1

2(n− nu + 1)− 1
(3.10)

Based on Equation 3.10, we can list the correspondence between each kind of clus-

tering coefficient and the corresponding amount of nodes:

Cu =



1, for 2× 3n−1 nodes,

1
3
, for 2× 3n−2 nodes,

...
...

1
2n−1

, for 2× 30 + 1 nodes,

(3.11)

Where the last case represents the center of the whole network. Then, we can obtain

the average clustering coefficient of all the nodes,

CG1,3,n =
1

3n

[
3

2n− 1
+

n∑
i=1

2× 3n−i × 1

2i− 1

]
(3.12)
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For large n, the clustering coefficient of the Small-World Exponential network G1,3,n

converges to a nonzero value CG1,3,n ≈ 0.76. Therefore, the clustering coefficient of

the Small-World Exponential network G1,3,n is high.

• Diameter

Most real networks are small-world and their average path length grows logarith-

mically with the network order. For a general network, it is not easy to derive a

closed formula for its average path length. However, the small diameter is also con-

sistent with the concept of small-world. Let DG1,3,n be the diameter of G1,3,n. From

Figure 3.1, it has been noticed that at iteration n = 1, the diameter DG1,3,1 = 1.

For n > 1, the diameter of G1,3,n increases by 2 at most. So for i from 2 to n,

we have: DG1,3,i
= DG1,3,i−1

+ 2. Summing all the obtained equations, we find:

DG1,3,n = DG1,3,1 + 2(n− 1). So, the diameter of G1,3,n is:

DG1,3,n = 2n− 1, n ≥ 1 (3.13)

We can present this diameter by another formula DG1,3,n = 2log(3)(VG1,3,n)−1, which

grows logarithmically with the network order, indicating that G1,3,n is a small-world

network.

+ Discussion

According to the above results, the Small-World Exponential network G1,3,n has specific

properties, its degree distribution follows an exponential distribution, a high clustering

coefficient and a small diameter, which indicate that G1,3,n is a small-world network.

3.2.1.3 Number of spanning trees of the Small-World Exponential network G1,3,n

The number of spanning trees of complex networks is difficult to evaluate using classical

approaches such as calculating the determinant of its Laplacian matrix. To remedy this

problem, we use the generalized decomposition method following one articulation node

mentioned in 2.3.2.2, which facilitates the computation of the number of spanning trees

of the Small-World Exponential network by obtaining recursive expressions.
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Theorem 3.2.1. (Mokhlissi et al., 2016a) Let G1,3,n be the Small-World Exponential

network. The number of spanning trees of G1,3,n is given by the following formula:

τ(G1,3,n) = 3
3n−1

2 , n ≥ 1. (3.14)

Proof: The Small-World Exponential network G1,3,n can be decomposed into sub-

graphs according to the articulation nodes. These subgraphs are triangles ∆(n). Using

Equation 2.9, we obtain: τ(G1,3,n) =
∏M∆(n) τ(∆(n)) = τ(∆(n))

M∆(n) with M∆(n)
is the

number of triangles in G1,3,n. In order to calculate the number of spanning trees of G1,3,n,

we need to find the number of triangles in G1,3,n. From our network, for i from 1 to n, we

see: M∆(i)
= 3×M∆(i−1)

+1. Then, we multiply the equation of M∆(n−1)
by 3 , the equation

of M∆(n−2)
by 32 and so on until the last equation M∆(1)

which will be multiplied by 3n−1.

Summing all the obtained equations:
∑n−1

i=0 3iM∆(n−i)
=
∑n−1

i=0 3i+1M∆(n−i−1)
+
∑n−1

i=0 3i.

We find: M∆(n)
=
∑n−1

i=0 3i. So the number of triangles in G1,3,n is: M∆(n)
= 3n−1

2
. We

replace it in the equation of τ(G1,3,n), hence we obtain: τ(G1,3,n) = 3
3n−1

2 .

3.2.2 Generalized Small-World Exponential network Gm,l,n

3.2.2.1 Construction of the generalized Small-World Exponential network Gm,l,n

The generalized Small-World Exponential network is denoted by Gm,l,n with two control-

lable parameters: l > 3 is the size of the cyclic subgraph and m > 1 is the dimension of

the cyclic subgraph i.e the number of the added cyclic subgraphs for each node of each

cyclic subgraph added to the previous iteration. The construction of Gm,l,n follows this

algorithm: At n = 0, we have a simple node. At first generation, Gm,l,1 is a cyclic graph

with the size l. For n > 1, each node of each cyclic subgraph added to the previous

iteration is replaced by m new cyclic subgraphs having the size l. Thus, each of the

newly appeared cyclic subgraph contains exactly one node of the network of the previous

iteration. The degree of the articulation nodes of the first iteration (The red nodes in

Figure 3.2) is 2(mn−1)
m−1

. The same process is used for the other iterations. In Figure 3.2,

the first three iterations of the generalized Small-World Exponential network Gm,l,n are

illustrated, with m = 2 and l = 4. Let us compute the order, the size, the number of faces

and the average degree of the generalized Small-World Exponential network.



3.2. ANALYSIS OF SMALL-WORLD EXPONENTIAL NETWORK 79

G2,4,0 G2,4,1 G2,4,2

G2,4,3

Figure 3.2: The first three generations of the generalized Small-World Exponential network
G2,4,n

According to the construction of Gm,l,n, we get:

• Let VGm,l,n
be the number of nodes created at n. For i from 1 to n, we notice

VGm,l,i
= lm × VGm,l,i−1

− (m − 1)l. Then, we multiply the equation of VGm,l,n−1
by

(lm), the equation of VGm,l,n−2
by (lm)2 and so on until the last equation VGm,l,1
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which will be multiplied by (lm)(n−1). Summing all the obtained equations:∑n−1
i=0 (lm)iVGm,l,n−i

=
∑n−1

i=0 (lm)i+1VGm,l,n−i−1
− (m − 1)l

∑n−1
i=0 (lm)i. We find the

following results: VGm,l,n
= (lm)nVGm,l,0

− (m − 1)l
∑n−1

i=0 (lm)i with VGm,l,0
= 1.

Thus, the number of nodes of Gm,l,n is:

VGm,l,n
=

(lm)n(l − 1) + (m− 1)l

lm− 1
, n ≥ 0. (3.15)

• Similarly, we find the number of edges of Gm,l,n:

EGm,l,n
= l × (lm)n − 1

(lm)− 1
, n ≥ 0. (3.16)

• The number of faces of Gm,l,n is:

FGm,l,n
=

(lm)n + (lm− 2)

lm− 1
, n ≥ 0. (3.17)

• The average degree of Gm,l,n is (which is approximately 3 for large n):

< z >Gm,l,n
=

2EGm,l,n

VGm,l,n

=
2l × ((lm)n − 1)

(lm)n(l − 1) + (m− 1)l
, n ≥ 0. (3.18)

3.2.2.2 Structural properties of the generalized Small-World Exponential network Gm,l,n

• The degree distribution

To calculate the degree distribution of the generalized Small-World Exponential

network Gm,l,n, we use the same process applied on the degree distribution of the

small-world exponential network G1,3,n. Then, the cumulative degree distribution

of Gm,l,n is given by:

Pcum(k) =
(lm)n × (lm)× (k

2
(m− 1) + 1)−

ln(lm)
ln(m) × (l − 1) + (m− 1)l

(lm)n(l − 1) + (m− 1)l
. (3.19)

For large n, we can obtain:

Pcum(k) ∼ (m− 1)

2

− ln(lm)
ln(m)

× k−
ln(lm)
ln(m) (3.20)

So the degree distribution of the generalized Small-World Exponential network
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Gm,l,n follows a power-law form with the exponent γ = 1 + ln(lm)
ln(m)

. For m ≥ l,

the exponent γ belongs to the interval [2, 3], which means that Gm,l,n is a scale-free

network.

• Clustering coefficient

Another property of interest is the clustering coefficient, which is a measure of the

likelihood for neighbors of a node to be neighbors of one another (See Section 1.3.1).

The generalized Small-World Exponential network Gm,l,n with m > 1, l > 3, n ≥ 0

have zero clustering because the neighbors of any node are never neighbors of one

other. The main cause is the absence of triangles in Gm,l,n because the size l of the

cyclic subgraphs is greater than 3. Therefore, one of the properties of the small-world

network is not verified.

• Diameter:

Let DGm,l,n
be the diameter of Gm,l,n created at generation n. This diameter can be

calculated in two cases:

– If the size of cyclic subgraphs l is even, we can calculate the diameter as follows:

At iteration n = 1, the diameter DGm,l,1
= l

2
. For n > 1, the diameter of Gm,l,n

increases by l at most.

– If the size of cyclic subgraphs l is odd, we can calculate the diameter as follows:

At iteration n = 1, the diameter DGm,l,1
=

⌊
l
2

⌋
. For n > 1, the diameter of

Gm,l,n increases by (l − 1) at most.

So the diameter of Gm,l,n is:

DGm,l,n
=
l − ε

2
+ (l − ε)(n− 1)with

ε = 0, if l is even,

ε = 1, if l is odd

(3.21)

For large n, the number of nodes will be VGm,l,n
= (lm)n. Then, the diameter can be

presented by another formula which grows logarithmically with the network order

indicating that Gm,l,n is a small-world network.

DGm,l,n
=
l − ε

2
+ (l − ε)

[
log(lm)(VGm,l,n

)− 1

]
with


ε = 0, if l is even,

ε = 1, if l is odd

(3.22)



3.2. ANALYSIS OF SMALL-WORLD EXPONENTIAL NETWORK 82

+ Discussion

According to the above analysis, the generalized Small-World Exponential network Gm,l,n

is a scale-free network, because its degree distribution follows a power-law form, its clus-

tering coefficient is missing and a short diameter, which satisfy the properties for scale-free

networks. We deduce that the model of the generalization of Small-World Exponential

network affects the properties of small-world networks and it is merged by the scale-free

characteristics.

3.2.2.3 Number of spanning trees of the generalized Small-World Exponential network

Gm,l,n

The enumeration of spanning trees is a fundamental issue in many problems encountered in

the network analysis. However, explicitly determining this interesting quantity in networks

is a theoretical challenge, especially for complex networks. Fortunately, the construction

of the generalized Small-World Exponential network Gm,l,n makes it possible to derive the

exact formula of this number using the generalized decomposition method following one

articulation node.

Theorem 3.2.2. (Mokhlissi et al., 2018b) Let Gm,l,n be the generalized Small-World

Exponential networks. The complexity of Gm,l,n is given by the following formula:

τ(Gm,l,n) = l
(lm)n−1
lm−1 , n ≥ 1. (3.23)

Proof: The generalized Small-World Exponential network Gm,l,n can be decomposed

into cyclic subgraphs Θ(n) according to the articulation nodes. Using Equation 2.9, we

obtain: τ(Gm,l,n) =
∏MΘ(n) τ(Θ(n)) = τ(Θ(n))

MΘ(n) with MΘ(n)
is the number of cyclic

subgraphs in Gm,l,n. In order to calculate the number of spanning trees of Gm,l,n, we need

to find firstly the number of cyclic subgraphs in Gm,l,n. From our network, for i from

1 to n, we see: MΘ(i)
= lm ×MΘ(i−1)

+ 1. Then, we multiply the equation of MΘ(n−1)

by (lm), the equation of MΘ(n−2)
by (lm)2 and so on until the last equation MΘ(1)

which

will be multiplied by (lm)n−1. Summing all the obtained equations:
∑n−1

i=0 (lm)iMΘ(n−i)
=∑n−1

i=0 (lm)i+1MΘ(n−i−1)
+
∑n−1

i=0 (lm)i. We find the number of cyclic subgraphs in Gm,l,n:

MΘ(n)
= (lm)n−1

(lm)−1
. We replace it in the equation of τ(Gm,l,n) with τ(Θ(n)) = l, hence we

obtain: τ(Gm,l,n) = l
(lm)n−1
(lm−1) .
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3.2.2.4 Entropy of spanning trees of the generalized Small-World Exponential network

Gm,l,n

The number of spanning trees of the generalized Small-World Exponential network grows

exponentially, so we can calculate its entropy of spanning trees according to the definition

of the entropy in Equation 2.1. Let ρGm,l,n
be the entropy of spanning trees for the

generalized Small-World Exponential network.

Corollary 3.2.1. (Mokhlissi et al., 2018b)The entropy of spanning trees of the generalized

Small-World Exponential network Gm,l,n is given by:

ρGm,l,n
=

ln(l)

(l − 1)
(3.24)

Proof: By applying Equation 2.1:

ρGm,l,n
= lim

VGm,l,n
→∞

ln |τ(Gm,l,n)|
|VGm,l,n

| = lim
n→∞

ln |τ(Gm,l,n)|
|VGm,l,n

| = lim
n→∞

ln(l
(lm)n−1
(lm)−1 )

(lm)n(l−1)+(m−1)l
lm−1

= lim
n→∞

1
(lm−1)

×
ln(l)

1− (m−1)l
(lm)−1

. Then, the result. The entropy ρGm,l,n
depends just on the size of the cyclic

subgraphs l and not on the dimension of the cyclic subgraphs m.

3.3 Analysis of Koch Network

In this section, another class of small-world networks called the Koch network is studied

analytically (See Figure 3.3) (Zhang et al., 2010a, 2009). This network is derived from

the class of Koch curves, which are one of the interesting families of fractals that helps to

understand the geometric fractals in real systems (Von Koch, 1906). The construction of

the Koch network is based on triangles, so we propose an iterative algorithm to investigate

its construction. We calculate its topological properties, showing that the Koch network

simultaneously exhibits scale-free behaviour and small-world properties and we enumer-

ate the exact number of its spanning trees using the generalized decomposition method

following one articulation node. Besides, we put forward a family of the generalized koch

network (Mokhlissi et al., 2018b) (See Figure 3.4), where the difference relies on the size

and the dimension of the added cyclic subgraphs. We propose analytically an iterative

algorithm of its construction, we determine its properties, indicating that the generalized

Koch network is characterized by scale-free properties and we calculate its number of

spanning trees using the same method. In the end, we evaluate its entropy of spanning

trees to quantify its robustness.
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3.3.1 Koch network C1,3,n

3.3.1.1 Construction of the Koch network C1,3,n

According to the construction process of the famous Koch curve (Von Koch, 1906), we

introduce an iterative algorithm to construct the Koch network, denoted by C1,3,n after n

generation, ‘1’ refers to the number of the added triangles for each node of every existing

triangle of the previous iteration and ‘3’ refers to the size of triangles. The algorithm is

presented as follows: Initially (n = 0), C1,3,0 is a simple triangle. For n ≥ 1, C1,3,n is

obtained from C1,3,n−1 by adding one triangle for each of the three nodes of every existing

triangles in C1,3,n−1. The degree of the articulation nodes of the first iteration (The green

nodes in Figure 3.3) is 2n+1. The growth process to the next iteration keeps on in a similar

way. Figure 3.3 shows the growth process for two generations of the Koch network C1,3,n.

C1,3,0 C1,3,1 C1,3,2

Figure 3.3: The first two generations of the Koch network C1,3,n

Next, we determine the number of nodes, edges, faces and the average degree of the

Koch network. According to the construction of C1,3,n, we get:

• Let VC1,3,n be the number of nodes of C1,3,n. For i from 1 to n, we notice VC1,3,i
=

4VC1,3,i−1
− 3. Then, the equation of VC1,3,n−1 is multiplied by 4, the equation of

VC1,3,n−2 by 42 and so on until the last equation VC1,3,1 which is multiplied by
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4n−1. Summing all the obtained equations:
∑n−1

i=0 4iVC1,3,n−i
=
∑n−1

i=0 4i+1VC1,3,n−i−1
−

3
∑n−1

i=0 4i. We find: VC1,3,n = 4nVC1,3,0−3
∑n−1

i=0 4i with VC1,3,0 = 3. Thus, the num-

ber of nodes of C1,3,n is:

VC1,3,n = 2× 4n + 1, n ≥ 0. (3.25)

• Similarly, we find the number of edges of C1,3,n:

EC1,3,n = 3× 4n, n ≥ 0. (3.26)

• The number of faces of C1,3,n is:

FC1,3,n = 4n + 1, n ≥ 0. (3.27)

We can obtain the number of faces of C1,3,n also by using Corollary 1.2.1.

• The average degree of C1,3,n is (which is approximately 3 for large n):

< z >C1,3,n=
2EC1,3,n

VC1,3,n

=
6× 4n

2× 4n + 1
, n ≥ 0 (3.28)

3.3.1.2 Structural properties of the Koch network C1,3,n

• The degree distribution

We denote ku(n) as the degree of a node u at the step n. When a node u is added to

the network at step nu ≥ 0, it has a degree ku(nu) = 2. To determine ku(n), we first

determine the number of triangles involving the node u at step n that is represented

by M∆(u,n)
. These triangles will create new nodes connected to the node u at step

n + 1. Then, at step nu,M∆(u,nu)
= 1. By construction, M∆(u,n)

= 2M∆(u,n−1)
.

We can derive M∆(u,n)
= 2n−nu . Note that the relation between ku(n) and M∆(u,n)

satisfies
ku(n) = 2M∆(u,n)

= 2n−nu+1. (3.29)

In this way, at step n the degree of node u has been computed explicitly. From

Equation 3.29, we can see that at each step the degree of a node doubles:

ku(n) = 2ku(n− 1). (3.30)

Then, the cumulative degree distribution is given by

Pcum(k) =
1

VC1,3,n

∑
i≤nu

Mv(i) =
2× 4nu + 1

2× 4n + 1
. (3.31)



3.3. ANALYSIS OF KOCH NETWORK 86

with Mv(n) is the number of new nodes at step n. We can calculate it as follows:

by construction, we notice that for n ≥ 1, each triangle in the network will lead

to an addition of six new nodes and nine new edges at step n, then we can easily

obtain the following relation: Mv(n) = 6M∆(n−1)
with M∆(n−1)

is the total number

of triangles existing at step n − 1. So, M∆(n)
= 4M∆(n−1)

. Considering the initial

condition, M∆(0)
= 1, it follows that M∆(n)

= 4n. Then, Mv(n) = 6 × 4n−1 and

VC1,3,n =
∑n

i=0Mv(i). From Equation 3.29, we obtain nu = n + 1 − ln k
ln 2

. Then, the

cumulative degree distribution of C1,3,n will be:

Pcum(k) =
2× 4n × 4× k− ln 4

ln 2 + 1

2× 4n + 1
(3.32)

For large n, we can obtain:

Pcum(k) ∼ 4× k−2. (3.33)

Consequently, for the cumulative degree distribution Pcum(k) ∼ k−γ+1 means that

the degree distribution follows a power-law form P (k) ∼ k−γ. So, the degree distri-

bution of the Koch network C1,3,n follows a power-law form with γ = 3.

• Clustering coefficient

The clustering coefficient of the Koch network C1,3,n is calculated analytically as

follows: By construction, for any given node u having a degree ku, we have obtained

ku = 2eu for all nodes at all steps, with eu is the number of existing triangles

attached to node u. So, there is a one-to-one correspondence between the clustering

coefficient of a node and its degree. According to Equation 1.7 of the clustering

coefficient, for a node u of the degree ku, we have

Cu =
1

ku − 1
(3.34)

Which is inversely proportional to ku in the limit of large ku. The scaling of

Cu ∼ k−1 has been observed in many real-world scale-free networks. After n iteration

evolutions, the clustering coefficient CC1,3,n of the whole network is given by

CC1,3,n =
1

VC1,3,n

n∑
i=0

1

ku(i)− 1
Mv(i) (3.35)

Where the sum runs over all the nodes and ku(i) is the degree of those nodes created
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at step i, which is given by Equation 3.29. For large n, the clustering coefficient of

the Koch network C1,3,n converges to a nonzero value CC1,3,n = 0.82008. Therefore,

the Koch network C1,3,n has a high clustering coefficient.

• Diameter:

The diameter of C1,3,n is calculated as follows: From Figure 3.3, it is clear that

DC1,3,0 = 1. At each iteration n ≥ 1, the diameter of C1,3,n increases by 2 at most.

So for i from 1 to n, we have: DC1,3,i
= DC1,3,i−1

+ 2 Summing all the obtained

equations, we find: DC1,3,n = DC1,3,0 + 2n. Thus, the diameter of C1,3,n is:

DC1,3,n = 2n+ 1. (3.36)

For large n, the number of nodes will be VC1,3,n = 2.4n. Then, the diameter can be

presented by another formula DC1,3,n = 2log(4)(
VC1,3,n

2
) + 1, which grows logarithmi-

cally with the network order indicating that C1,3,n is a small-world network.

+ Discussion

According to the above results, the Koch network C1,3,n has specific properties charac-

terizing a majority of real-life network systems: its degree distribution follows a power-law

form, a high clustering coefficient and a small diameter, which indicate that C1,3,n is si-

multaneously a small-world network and scale-free network.

3.3.1.3 Number of spanning trees of the Koch network C1,3,n

Using the same method applied on the first small-world network (the generalized decom-

position method following one articulation node), the exact number of spanning trees of

the Koch network C1,3,n is obtained.

Theorem 3.3.1. Let C1,3,n be the Koch network. The number of spanning trees of C1,3,n

is given by the following formula:

τ(C1,3,n) = 34n , n ≥ 0. (3.37)

Proof: From Figure 3.3, we see that C1,3,n contains several triangles ∆(n). Using

Equation 2.9, τ(C1,3,n) =
∏M∆(n) τ(∆(n)) = τ(∆(n))

M∆(n) with M∆(n)
= 4n is the number

of triangles in C1,3,n. Replacing this result in the equation of τ(C1,3,n) with τ(∆(n)) = 3,

hence we obtain: τ(C1,3,n) = 34n , n ≥ 0.
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3.3.2 Generalized Koch Network Cm,l,n

3.3.2.1 Construction of the generalized Koch network Cm,l,n

Inspired by the algorithm of the Koch network, we propose a family of the generalized

Koch network, denoted as Cm,l,n with two integer parameters: l > 3 is the size of the

cyclic subgraph and m > 1 is the dimension of the cyclic subgraph i.e the number of the

added cyclic subgraphs for each node of every existing cyclic subgraph of the previous

iteration. The iterative algorithm of its construction is as follows: Initially (n = 0), Cm,l,0

is a cyclic graph with the size l. For n ≥ 1, Cm,l,n is obtained from Cm,l,n−1 by adding

m new cyclic subgraphs having the size l for each node of every existing cyclic subgraphs

in Cm,l,n−1. The growth process of the generalized Koch network to the next generation

keeps on in a similar way. The degree of the articulation nodes of the first iteration (The

green nodes in Figure 3.4) is 2(m+ 1)n. Figure 3.4 illustrates the growing process of the

generalized Koch network for the first two generations with m = 2 and l = 4. Then, the

explicit results for the number of nodes, number of edges, number of faces and average

degree of Cm,l,n are stated. According to its construction, we get:

• The number of nodes of Cm,l,n is calculated as follows: For i from 1 to n, we

notice: VCm,l,i
= (lm + 1) × VCm,l,i−1

− lm. Then, we multiply the equation of

VCm,l,n−1
by (lm+ 1) , the equation of VCm,l,n−2

by (lm+ 1)2 and so on until the last

equation VCm,l,1
, which will be multiplied by (lm+1)(n−1). Summing all the obtained

equations:
∑n−1

i=0 (lm+1)iVCm,l,n−i
=
∑n−1

i=0 (lm+1)i+1VCm,l,n−i−1
− lm

∑n−1
i=0 (lm+1)i.

We find: VCm,l,n
= (lm+ 1)nVCm,l,0

− lm
∑n−1

i=0 (lm+ 1)i with VCm,l,0
= l. Thus, the

number of nodes of Cm,l,n is:

VCm,l,n
= (l − 1)(lm+ 1)n + 1, n ≥ 0. (3.38)

• Similarly, we find the number of edges of Cm,l,n:

ECm,l,n
= l(lm+ 1)n, n ≥ 0. (3.39)

• The number of faces of Cm,l,n is:

FCm,l,n
= (lm+ 1)n + 1, n ≥ 0. (3.40)
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We can obtain the number of faces of Cm,l,n also by using Corollary 1.2.1.

C2,4,0 C2,4,1

C2,4,2

Figure 3.4: The first two generations of the generalized Koch Network C2,4,n
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• The average degree of Cm,l,n is (which is approximately 3 for large n):

< z >Cm,l,n
=

2ECm,l,n

VCm,l,n

=
2l(lm+ 1)n

(l − 1)(lm+ 1)n + 1
, n ≥ 0 (3.41)

3.3.2.2 Structural properties of the generalized Koch network Cm,l,n

• The degree distribution

To calculate the degree distribution of the generalized Koch network Cm,l,n, we use

the same process applied on the degree distribution of the Koch network C1,3,n.

Then, the cumulative degree distribution of Cm,l,n is given by:

Pcum(k) =
(l − 1)(lm+ 1)n × (k

2
)−

ln(lm+1)
ln(m+1) + 1

(l − 1)(lm+ 1)n + 1
. (3.42)

For large n, we can obtain:

Pcum(k) ∼ 2
ln(lm+1)
ln(m+1) × k−

ln(lm+1)
ln(m+1) . (3.43)

So the degree distribution of the generalized Koch network Cm,l,n follows a power-

law form with the exponent γ = 1 + ln(lm+1)
ln(m+1)

. For m ≥ l, the exponent γ belongs to

the interval [2, 3], which means that Cm,l,n is a scale-free network.

• Clustering coefficient

From the construction of the generalized Koch network Cm,l,n with m > 1, l > 3 and

n ≥ 0, it is obvious that Cm,l,n have zero clustering because the neighbors of any

node are never neighbors of one other. The main reason is the absence of triangles

in Cm,l,n because the size l of the cyclic subgraphs is greater than 3. Therefore, one

of the properties of the small-world network is missing.

• Diameter:

Let DCm,l,n
be the diameter of Cm,l,n created at generation n. This diameter can

be presented by the following formula for n ≥ 0:

DCm,l,n
=
l − ε

2
+ n(l − ε)with

ε = 0, if l is even,

ε = 1, if l is odd

(3.44)
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For large n, the number of nodes will be VCm,l,n
= (l − 1)(lm + 1)n. Then, we

can present the diameter by another formula which grows logarithmically with the

network order indicating that Cm,l,n is a small-world network.

DCm,l,n
=
l − ε

2
+ (l − ε)

[
log(lm+1)

(
VCm,l,n

l − 1

)]
with

ε = 0, if l is even,

ε = 1, if l is odd

+ Discussion

According to the above discussion, the generalized Koch network Cm,l,n incorporates

some specific properties: its degree distribution follows a power-law form, a zero clustering

coefficient and short diameter, indicating that the generalized Koch network Cm,l,n is a

scale-free network. We deduce that the model of the generalization of Koch network is

limited just to scale-free property and not small-world properties.

3.3.2.3 Number of spanning trees of the generalized Koch Network Cm,l,n

In order to calculate the number of spanning trees of the generalized Koch Network Cm,l,n,

we use the same method as the last network studied before: The generalized decomposition

method following one articulation node.

Theorem 3.3.2. (Mokhlissi et al., 2018b) Let Cm,l,n be the generalized Koch network.

The number of spanning trees of Cm,l,n is given by the following formula:

τ(Cm,l,n) = l(lm+1)n , n ≥ 0 (3.45)

Proof: From Figure 3.4, we see that Cm,l,n contains several cyclic subgraphs Θ(n).

Using Equation 2.9, τ(Cm,l,n) =
∏MΘ(n) τ(Θ(n)) = τ(Θ(n))

MΘ(n) with MΘ(n)
is the number

of cyclic subgraphs in Cm,l,n. For i from 1 to n, we notice: MΘ(i)
= (lm + 1)MΘ(i−1)

. So,

the number of cyclic subgraphs in Cm,l,n is: MΘ(n)
= (lm + 1)n. Replacing this result in

the equation of τ(Cm,l,n) with τ(Θ(n)) = l, hence we obtain: τ(Cm,l,n) = l(lm+1)n , n ≥ 0.

3.3.2.4 Entropy of spanning trees of the generalized Koch network Cm,l,n

The number of spanning trees of the generalized Koch network grows exponentially, so

we can calculate its entropy of spanning trees according to the definition of the entropy

in Equation 2.1. Let ρCm,l,n
be the entropy of spanning trees for the generalized Koch

network.
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Corollary 3.3.1. (Mokhlissi et al., 2018b) The entropy of spanning trees of the gener-

alized Koch network Cm,l,n is:
ρCm,l,n

=
ln(l)

(l − 1)
(3.46)

Proof: By applying Equation 2.1:

ρCm,l,n
= lim

VCm,l,n
→∞

ln |τ(Cm,l,n)|
|VCm,l,n

| = lim
n→∞

ln |τ(Cm,l,n)|
|VCm,l,n

| = lim
n→∞

ln(l(lm+1)n )
(l−1)(lm+1)n+1

= lim
n→∞

ln(l)

(l−1)+ 1
(lm+1)n

.

Then, the result. The entropy ρCm,l,n
depends just on the size of the cyclic subgraphs

l and not on the dimension of the cyclic subgraphs m.

+ Comparison between the entropy of spanning trees of the Small-World

Exponential network and the Koch network.

From the results of Corollary 3.2.1 and 3.3.1, we find that the generalized Small-

World Exponential network and the generalized Koch network have the same entropy

ρGm,l,n
= ρCm,l,n

= ln(l)
(l−1)

. It means that the generalized Small-World Exponential network

and the generalized Koch network have the same robustness despite the fact that their

structures, properties and complexities are different. From these results, we can deduce

that entropy of spanning trees is one of the parameters that characterize the performance

of a topology of a network.

Figure 3.5: The entropy of spanning trees of the generalized Small-World Exponential
network Gm,l,n and the generalized Koch network Cm,l,n

Figure 3.5 shows the increase of the size of the cyclic subgraphs l leads to the decreas-

ing of the entropy of spanning trees of Gm,l,n and Cm,l,n. This result proves that these

networks having a low value of l are more robust than those having a high value of l.
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From Table 3.1, we compare the entropy of spanning trees of the Small-World Expo-

nential network G1,3,n and the Koch network C1,3,n (0.549) with those of other networks

having the same average degree 3. We notice that the value of their entropy of spanning

trees is the smallest known for networks with the average degree 3. This reflects the fact

that the Koch network and the Small-World Exponential network are less robust and

their structural topology is more vulnerable to a random breakdown of links than other

networks having the same average degree.

Type of network < z > ρ
Koch network (Mokhlissi et al., 2018b) 3 0.549

Small-World Exponential network (Mokhlissi et al., 2016a, 2018b) 3 0.549
The Hanoi network (Zhang et al., 2016) 3 0.677

The 2-Flower network(Mokhlissi et al., 2017a) 3 0.6931
The 3-2-12 lattices (Wu, 1977) 3 0.721

The 4-8-8 bathroom tile (Wu, 1977) 3 0.787
Honeycomb lattice (Shrock and Wu, 2000) 3 0.807

Table 3.1: The entropy of spanning trees of several networks having the same average
degree 3.

3.4 Analysis of Farey network

In this section, we focus on the Farey network (See Figure 3.6) (Zhang and Comellas,

2011; Xiao and Zhao, 2013; Jiang et al., 2018). It was first introduced by Matula and

Kornerup in 1979 (Matula and Kornerup, 1979), also studied by Colbourn in 1982 (Col-

bourn, 1982) and further was used as a model of the small-world network by Zhang and

Comellas (Zhang and Comellas, 2011) due to its remarkable properties of real networks.

The Farey network is derived from the famous Farey sequence (Hardy et al., 1979). This

network shows the small-world effect: a small diameter or a short average distance and a

large clustering coefficient. We propose a generalization of this model by adding q nodes

to every iterative edge in each step (See Figure 3.9) (Mokhlissi et al., 2019a). We analyze

the structural properties of the Farey network and its generalization such as the size, the

order, the number of faces, the average degree, the diameter, the degree distribution and

the clustering coefficient, proving that the generalized Farey network affects the properties

of small-world networks, it combines the small-world and the scale-free properties. Then,

we derive the exact expression of their number of spanning trees using the electrically

equivalent transformations. Finally, we further calculate the entropy of spanning trees
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and we compare it with those for other networks having the same average degree.

3.4.1 Farey network F1,n

3.4.1.1 Construction of the Farey network F1,n

The construction of the Farey network can mimic processes that drive the real networks

evolution through time. For example, in social, collaborative and some technological and

biological networks, it is very likely that a new node will join to nodes that are already

adjacent. The Farey network is denoted by F1,n with n ≥ 0 iterations and ‘1’ refers to the

added node for every iterative edge. Its construction follows this algorithm: At n = 0, F1,0

has two nodes related by an edge. For n ≥ 1, F1,n is obtained from F1,n−1 by adding to

every iterative edge introduced at the previous iteration a new node adjacent to the two

end nodes of this edge. The growth process of the Farey network to the next iterations

continues in a similar way. Figure 3.6 illustrates the first three iterative steps of the Farey

network F1,n.

F1,0 F1,1 F1,2 F1,3

Figure 3.6: The first three generations of the Farey network F1,n

Next, we calculate the number of nodes, edges, faces and the average degree of the

Farey network. According to the construction of F1,n, we get:

• Let VF1,n be the number of vertices of F1,n. For i from 1 to n, we have VF1,i
=

2VF1,i−1
−1. Then, we multiply the equation of VF1,n−1 by 2, the equation of VF1,n−2 by

22 and so on until the last equation VF1,1 which will be multiplied by 2n−1. Summing

all the obtained equations, we get
∑n−1

i=0 2iVF1,n−i
=
∑n−1

i=0 2i+1VF1,n−i−1
−
∑n−1

i=0 2i.

We find the following results: VF1,n = 2nVF1,0 −
∑n−1

i=0 2i with VF1,0 = 2. Thus, the

number of nodes of F1,n is:

VF1,n = 2n + 1, n ≥ 0. (3.47)
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• Similarly, we find the number of edges of F1,n:

EF1,n = 2n+1 − 1, n ≥ 0. (3.48)

• The number of faces of F1,n is:

FF1,n = 2n, n ≥ 0. (3.49)

• The average degree of F1,n is (which tends to 4 when the network size is large

enough)
< z >F1,n=

2EF1,n

VF1,n

=
2(2n+1 − 1)

2n + 1
, n ≥ 0. (3.50)

3.4.1.2 Structural properties of the Farey network F1,n

• The degree distribution

We calculate the degree distribution of the Farey network F1,n as follows: at n = 0,

the network has two nodes of degree 1. At step nu, a new node u is added to the

network. this node has degree ku(nu) = 2 and it is related to two generating edges.

From the construction of the Farey network, all its nodes, except the initial two

nodes, are always related to 2 generated edges and will increase their degrees by 2

at the next iteration. We denote the degree of the node u at step n by ku(n). By

construction, we have:ku(n) = ku(n− 1) + 2, u ∈ VF1,n , u 6= 0
1
, 1

1

k 0
1
(n) = k 1

1
(n) = n+ 1.

(3.51)

Which leads to:
ku(n) = 2(n− nu + 1) (3.52)

Which is linear. Therefore, the degree distribution of nodes of the Farey network

F1,n is as follows: the number of nodes of degree 2× 1, 2× 2, 2× 3, ..., 2× n, equals,

respectively 2n−1, 2n−2, ..., 2, 1 and the two initial nodes have degree n + 1. Then,

the cumulative degree distribution of F1,n is given by:

Pcum(k) =
∑

i=0≤nu

Mv(i)

VF1,n

=
2

2n + 1
+
∑

i=1≤nu

2i−1

2i + 1
(3.53)

with Mv(n) the number of new nodes at step n. We can calculate it as follows: by
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construction, we notice that for n ≥ 1, Mv(n) = Me(n − 1) with Me(n − 1) is the

number of new links at step n− 1. Considering the initial condition Mv(0) = 2 and

Me(0) = 1, it follows that Mv(n) = 2n−1 and VF1,n =
∑n

i=0Mv(i). From Equation

3.52, we obtain nu = n − k−2
2

. Then, the cumulative degree distribution of

F1,n will be for large n:

Pcum(k) =
1 + 2n−

k−2
2

1 + 2n
∼ (2)−

k
2 (3.54)

So the degree distribution of F1,n follows an exponential distribution.

• Clustering coefficient

We can calculate the clustering coefficient for the Farey network F1,n according to

Equation 1.7 as follows: When a new node u is added to the network at step nu,

its degree is ku = 2 and eu = 1. By construction, for all nodes at all steps, we have

eu = ku − 1. So, the expression for the clustering coefficient is Cu = 2
ku

. Then, the

clustering coefficient of the Farey network F1,n is easily obtained for any arbitrary

step n:

CF1,n =
1

VF1,n

[ n∑
i=1

1

i
.2i−1 +

2

n+ 1
.2

]
=

1

2n + 1

[
2n ln 2− 1

2
Φ

(
1

2
, 1, 1 + n

)
+

4

n+ 1

]
(3.55)

where Φ(z, s, a) =
∑∞

k=0
zk

(a+k)s
denotes the Lerch transcendent function. The clus-

tering coefficient of the Farey network F1,n tends to ln 2 for large n. Thus, the

clustering coefficient of F1,n is high.

• Diameter:

Let DF1,n be the diameter of F1,n. It can be calculated as follows: Clearly, at steps

n = 0, the diameter is 1. For n ≥ 1, the distance between two nodes is less than or

equal to n to get from one node to the other in each step. Thus, the diameter of

F1,n is: DF1,n = n, n ≥ 1. (3.56)

As ln(VF1,n) ∼ n × ln 2, for large n, we have diameter DF1,n ∼ ln |VF1,n|. It grows

logarithmically with the number of nodes of the network. Since this network has a
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small diameter, it is undoubtedly with a short average path length.

• Average path length

We calculate the average path length lF1,n of the Farey network F1,n as follows: As

shown in Figure 3.7, the Farey network F1,n may be obtained by joining at three

boundary vertices (X, Y, and Z) two copies of F1,n that we will label as F
(η)
1,n with

η = 1, 2.

X Y

Z

F
(1)
1,n F

(2)
1,n

Figure 3.7: Schematic illustration of the recursive construction of the Farey network F1,n

According to the recursive construction, the sum of distances σ(F1,n) satisfies the

recursive relation:
σ(F1,n+1) = 2σ(F1,n) + Sn (3.57)

Where Sn denotes the sum of distances of pairs of nodes which are not both in the

same F
(η)
1,n subgraph. its final expression is:

Sn =
1

18

[
− 5− 3(−1)n + 12× 2n + 14× 22n + 12n× 4n

]
. (3.58)

Inserting Equation 3.58 into Equation 3.57 and using the initial condition σ(F1,0) =

1. Then, Equation 3.57 can be solved inductively:

σ(F1,n) =
1

18

[
5 + (−1)n + (6n+ 17)2n + (6n− 5)4n

]
. (3.59)

which together with the number of nodes leads to the average path length of F1,n:

lF1,n =
22n(6n− 5) + 2n(6n+ 17) + 5 + (−1)n

9× 22n + 9× 2n
(3.60)

For a large step n, lF1,n ∼ n ∼ ln |VF1,n|, which shows a logarithmic scaling of the

average path length with the order of the Farey network F1,n.

+ Discussion

According to the above results, the Farey network has specific properties, its degree

distribution follows an exponential distribution, a high clustering coefficient, a small
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diameter and a small average path length, which indicate that F1,n is a small-world

network.

3.4.1.3 Number of spanning trees of the Farey network F1,n

We employ the electrically equivalent technique to derive the exact expression of the

number of spanning trees of Farey network F1,n by following the steps of Section 2.4.4.4:

1. Firstly, we start by constructing the Farey network F1,n and adding the weight a0

on each of its edge.

2. Then, we apply the algorithms of the electrically equivalent transformations to ob-

tain the change of weights of all edges of F1,n−1 from F1,n, the relationship between

τ(F1,n) and τ(F1,n−1) and the exact value of the number of spanning trees of F1,n in

each step. We deduce τ(F1,n) = (2a0)2n−1
.τ(F1,n−1). To prove mathematically this

formula, we use the method of the mathematical induction:

Basic step: We show that τ(F1,1) = (2a0)τ(F1,0). We denote F
(0)
1,1 as the Farey

network at iteration 1 in the transformation 0 with all its edges having the weight

a0. We show the electrically equivalent evolving process from F
(0)
1,1 to F

(0)
1,0 in Figure

3.8.

a0

a0 a0

Serial edges

F
(0)
1,1

a0

a0

2

Parallel edges

F
(1)
1,1

a1 = 3a0
2

F
(0)
1,0

Figure 3.8: The transformations from F1,1 to F1,0.

Two transformations are used in sequence and the corresponding weights of the

resulting edges are calculated as follows:

(a) Serial edge: We replace the serial edges with conductances a0 by a new edge

with the conductance a0.a0

a0+a0
= a0

2
to obtain a new subgraph F

(1)
1,1 .

(b) Parallel edge: We merge the parallel edges having the conductance a0

2
and a0

to obtain a new subgraph F
(0)
1,0 . The corresponding conductance of a new edge

is a0

2
+ a0 = a1.
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The application of these two electrically equivalent transformations are used to find

the formula of the number of spanning trees between F
(0)
1,1 and F

(0)
1,0 . Then

τ(F1,1) = τ(F
(0)
1,1 )

τ(F1,1) = (2a0)τ(F
(1)
1,1 )→ (Serial edges).

τ(F1,1) = (2a0)× 1× τ(F
(2)
1,1 )→ (Parallel edges).

τ(F1,1) = (2a0)τ(F
(0)
1,0 ).

Induction step: We assume that τ(F1,n) = (2a0)2n−1
τ(F1,n−1). We show that

τ(F1,n+1) = (2a0)2nτ(F1,n).

The number of triangles added in each iteration in F1,n is 2n−1. Note that the

number of spanning trees depends on those added triangles. So, for F1,n+1, the

number of added triangles in each step is 2n. Then, the number of spanning trees

of F1,n+1 is τ(F1,n+1) = (2a0)2n .τ(F1,n).

3. Finally, we deduce the exact formula of the number of spanning trees of τ(F1,n).

τ(F1,n) = (2a0)2n−1

.τ(F1,n−1)

= (2a0)2n−1

.(2a1)2n−2

...(2an−1)20

.τ(F1,0) with τ(F1,0) = an

= an.

[
(2a0)2n−1

.(2a1)2n−2

...(2an−1)20

]
(3.61)

In order to calculate this formula, first we should find the equation of an according

to a0. By construction, we start by the weight a0 at step n. After applying the

electrically equivalent transformations, we get the weight an at step 0 (As Figure

3.8, we start by the weight a0 at step 1 and we finish by the weight a1 at step 0).

From this result, we deduce that an = a0+ an−1

2
. Then, an = a0[1+ 1

2
+(1

2
)2+...+(1

2
)n].

Thus, the equation will be:

an = 2a0.

[
1−

(
1

2

)n+1]
(3.62)

We replace Equation 3.62 in Equation 3.61 to get:

τ(F1,n) = 2a0.
[
1−
(

1
2

)n+1]×[2a0

]2n−1

×
[
2.2a0.(1−(1

2
)2)
]2n−2

×...×
[
2.2a0.(1−(1

2
)n)
]20

We simplify this equation to obtain the exact formula of the number of spanning

trees of the Farey network:



3.4. ANALYSIS OF FAREY NETWORK 100

τ(F1,n) =

(
2a0

)2n

×
[
1−

(
1

2

)n+1]
×

n∏
i=2

[
2.

(
1−

(
1

2

)i)]2(n−i)

(3.63)

3.4.2 Generalized Farey network Fq,n

3.4.2.1 Construction of the generalized Farey network Fq,n

The general case of the Farey network is denoted by Fq,n with q > 1 the number of added

nodes to every iterative edge in each step and n ≥ 0 generations. The construction of the

generalized Farey network follows this algorithm: At n = 0, Fq,0 has two nodes related

by an edge. For n ≥ 1, Fq,n is obtained from Fq,n−1 by adding to every iterative edge

introduced at the previous iteration q new nodes adjacent to the two end nodes of this

edge. The growth process of the generalized Farey network to the next iterations continues

in a similar way. Figure 3.9 illustrates the first two iterative steps of the generalized Farey

network with q = 2.

F2,0 F2,1 F2,2

Figure 3.9: The first two iterations of the generalized Farey network with q = 2.

Now we compute the number of nodes, edges, faces and the average degree of the

generalized Farey network Fq,n. According to the construction of Fq,n, we get:

• We denote the number of nodes by VFq,n . For i from 1 to n, we have VFq,i
=

2qVFq,i−1
− (3q− 2). Then, we multiply the equation of VFq,n−1 by (2q), the equation

of VFq,n−2 by (2q)2 and so on until the last equation VFq,1 which will be multi-

plied by (2q)n−1. Summing all the obtained equations, we get
∑n−1

i=0 (2q)iVFq,n−i
=∑n−1

i=0 (2q)i+1VFq,n−i−1
− (3q − 2)

∑n−1
i=0 (2q)i. We find the following results: VFq,n =

(2q)nVFq,0 − (3q − 2)
∑n−1

i=0 (2q)i with VFq,0 = 2. Thus, the number of nodes of

Fq,n is:
VFq,n =

q(2q)n + 3q − 2

2q − 1
, n ≥ 0. (3.64)

• Similarly, we find the number of edges of Fq,n:

EFq,n =
(2q)n+1 − 1

2q − 1
, n ≥ 0. (3.65)
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• The number of faces of Fq,n is:

FFq,n =
(2q)n+1 − q(2q)n + (q − 1)

2q − 1
, n ≥ 0. (3.66)

• The average degree of Fq,n is (which tends to 4 when the network size is large

enough)
< z >Fq,n=

2EFq,n

VFq,n

=
2(2q)n+1 − 2

q(2q)n + 3q − 2
, n ≥ 0. (3.67)

3.4.2.2 Structural properties of the generalized Farey network Fq,n

• The degree distribution

We calculate the degree distribution of the generalized Farey network Fq,n using

the same process as the degree distribution of the Farey network F1,n. Then, the

cumulative degree distribution of Fq,n is given by:

Pcum(k) =
q(2q)n.(2q).(1 + k (q−1)

2
)−

ln 2q
ln 2 + 3q − 2

q(2q)n + 3q − 2
(3.68)

When n is large enough, the cumulative degree distribution of Fq,n will be:

Pcum(k) ∼ (
q − 1

2
)−

ln 2q
ln q .k−

ln 2q
ln q (3.69)

We get that the degree distribution of the generalized Farey network Fq,n follows

a power-law form with the exponent γ ∼ 1 + ln 2q
ln q

, lies between 2 and 3. For the

scale-free networks, their exponent of degree distribution lies in the same interval

between 2 and 3. This result proves that the scale-free characteristic emerges from

the generalized Farey network for larger q. However, this property does not exist

in the particular case of Farey network when q = 1. In Figure 3.10, we report the

simulation results of the degree distribution of the generalized Farey network for

different values of q. We can see that this degree distribution follows a power law.
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Figure 3.10: The cumulative degree distribution of Fq,n for different values of q

• The clustering coefficient

We calculate the clustering coefficient for the generalized Farey network Fq,n using

the same process as the clustering coefficient of the Farey network F1,n: When a

new node u is added to the network at step nu, its clustering coefficient is Cu = 2
ku
.

Then, the clustering coefficient of the whole network CFq,n is given by:

CFq,n =
2q − 1

q(2q)n + 3q − 2
×
[
2.

2(1− q)
1− qn+1

+
n∑
i=1

1− q
1− q(n−i+1)

.2i−1.qi
]

(3.70)

For large value of n, the clustering coefficient CFq,n tends to 2q(q−1)
2q2−1

. Therefore, for

large value of q and n, the clustering coefficient of the generalized Farey network

approaches a constant value 1. However, the value of the clustering coefficient for the

particular case of Farey network (q = 1) is ln 2. As a consequence, the generalized

Farey network Fq,n has higher clustering coefficient than the Farey network F1,n.

This result gets back at the creation of new closed triplets and triangles of nodes at

each step, that causes a high clustering coefficient. Figure 3.11 shows the clustering

coefficient of Fq,n with different values of q. We can see in this figure that the

clustering coefficient approaches a value 1 for large values of q.
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Figure 3.11: The clustering coefficient of the generalized Farey network Fq,n

• The diameter

Let DFq,n be the diameter of Fq,n. This diameter can be calculated as follows:

Clearly, at steps n = 0, the diameter is 1. For q > 1 and n ≥ 1, the distance

between two nodes is less than or equal to n+ 1 to get from one node to the other

in each step. Thus, the diameter of Fq,n is:

DFq,n = n+ 1, n ≥ 1, q > 1. (3.71)

For large n, the number of nodes will be q(2q)n. Thus, the diameter of Fq,n scales as

DFq,n ∼ log(2q) (
VFq,n

q
) for q ≥ 1. It grows logarithmically with the number of nodes

of the network. Since this network has a small diameter, it is undoubtedly with a

short average path length.

+ Discussion

According to the above results, the generalized Farey network has specific proper-

ties: its degree distribution follows a power-law form, while the degree distribution

is exponential in the Farey network. The difference of topological properties among

them are rooted in their different growth mechanisms. In other words, scale-free

originates from the exponential increase mechanism of nodes’ degrees in generalized

Farey networks, while exponential degree distribution is caused by the linear incre-
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mental in Farey network. The clustering coefficient of the generalized Farey network

approaches a constant value 1, but for the Farey network is ln 2. Nodes’ degrees

increase exponentially in the generalized Farey network, while that growth in the

Farey network is linear, which leads to the generalized Farey network having higher

clustering coefficient than Farey network. The basic motif in each growth step is

a triangle, which causes high clustering coefficients both in the generalized Farey

network and the Farey network. The diameter and the average path length are all

small and grow logarithmically with the number of nodes for the generalized Farey

network and the Farey network. From this analysis, the generalized Farey network

Fq,n is a scale-free and a small-world network because it combines the three charac-

teristics: a small diameter, a high clustering coefficient and its degree distribution

follows a power law form. However, the Farey network F1,n is just a small-world

network. We see this type of networks in many real-life networks.

3.4.2.3 Number of spanning trees of the generalized Farey network Fq,n

To calculate the number of spanning trees of the generalized Farey network Fq,n using the

electrically equivalent transformations, we follow the steps of Section 2.4.4.4:

1. Firstly, we start by constructing the generalized Farey network Fq,n and adding the

weight a0 on each of its edge.

2. Then, we apply the algorithms of the electrically equivalent transformations to ob-

tain the new weights of all edges of Fq,n−1 from Fq,n, the relationship between τ(Fq,n)

and τ(Fq,n−1) and the exact value of the number of spanning trees of Fq,n in each

step. We deduce τ(Fq,n) = (2a0)q
n×2n−1

.τ(Fq,n−1). To prove mathematically this

formula, we use the method of the mathematical induction:

Basic step: We show that τ(Fq,1) = (2a0)qτ(Fq,0). We denote F
(0)
q,1 as the general-

ized Farey network at iteration 1 in the transformation 0 with all its edges having

the weight a0. We take as an example of the generalized Farey network with q = 2

to show the electrically equivalent evolving process from F
(0)
2,1 to F

(0)
2,0 (See Figure

3.12).
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a0

a0 a0

a0 a0
Serial edges

F
(0)
2,1

a0

a0

2

Parallel edges

F
(1)
2,1

a1 = a0 + a0

F
(0)
2,0

Figure 3.12: The transformations from F2,1 to F2,0.

Two transformations are used in sequence and the corresponding weights of the

resulting edges are calculated as follows:

(a) Serial edge: We replace all the serial edges with conductances a0 by a new edge

with the conductance a0.a0

a0+a0
= a0

2
to obtain a new subgraph F

(1)
q,1 .

(b) Parallel edge: We merge q parallel edges having the same conductance a0

2

with the edge that has the weight a0 to obtain a new subgraph F
(0)
q,0 . The

corresponding conductance of a new edge is q.a0

2
+ a0 = a1.

The application of these two electrically equivalent transformations are used to find

the formula of the number of spanning trees between F
(0)
q,1 and F

(0)
q,0 . Then

τ(Fq,1) = τ(F
(0)
q,1 )

τ(Fq,1) = (2a0)qτ(F
(1)
q,1 )→ (Serial edges).

τ(Fq,1) = (2a0)q × 1q × τ(F
(2)
q,1 )→ (Parallel edges).

τ(Fq,1) = (2a0)qτ(F
(0)
q,0 ).

Induction step: We assume that τ(Fq,n) = (2a0)q
n×2n−1

τ(Fq,n−1). We show that

τ(Fq,n+1) = (2a0)q
(n+1)×2nτ(Fq,n).

The number of triangles added in each iteration in Fq,n is qn2n−1. Note that the

number of spanning trees depends on those added triangles. So, for Fq,n+1, the

number of added triangles in each step is qn+12n. Then, the number of spanning

trees of Fq,n+1 is τ(Fq,n+1) = (2a0)q
(n+1)×2n .τ(Fq,n).

3. Finally, we deduce the exact formula of the number of spanning trees of τ(Fq,n).

τ(Fq,n) = (2a0)q
n×2n−1

.τ(Fq,n−1)

= (2a0)q
n×2n−1

.(2a1)q
(n−1)×2n−2

...(2an−1)q
1×20

.τ(Fq,0) with τ(Fq,0) = an

= an.

[
(2a0)q

n×2n−1

.(2a1)q
(n−1)×2n−2

...(2an−1)q
1×20

]
(3.72)
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In order to calculate this formula, first we should find the equation of an according

to a0. By construction, we start by the weight a0 at step n. After applying the

electrically equivalent transformations, we get the weight an at step 0 (As Figure

3.12, we start by the weight a0 at step 1 and we finish by the weight a1 at step 0).

From this result, we deduce that an = a0 + q.an−1

2
. Then, an = a0[1 + q

2
+ ( q

2
)2 +

...+ ( q
2
)n]. Thus, the equation is:

an = 2a0.

[
1− ( q

2
)n+1

2− q

]
, q 6= 2. (3.73)

We replace Equation (3.73) in Equation (3.72) to get:

τ(Fq,n) = 2a0.(
1−( q

2
)n+1

2−q )×
[
(2a0)q

n×2n−1
.(2.2a0.(

1−( q
2

)2

2−q ))q
(n−1)×2(n−2)

...(2.2a0.(
1−( q

2
)n

2−q ))q
1×20

]
.

We simplify this equation to obtain the exact formula of the number of spanning

trees of the generalized Farey network:

τ(Fq,n) =

[
1− ( q

2
)n+1

2− q

]
×
(

2a0

)1+
n∑

i=1
qi.2(i−1)

×
n∏
i=2

[
2.(

1− ( q
2
)i

2− q
)

]q(n−i+1).2(n−i)

(3.74)

3.4.2.4 Entropy of spanning trees of the generalized Farey network Fq,n

The number of spanning tree of the generalized Farey network grows exponentially, so we

can calculate its entropy of spanning trees. Let ρFq,n be the entropy of spanning trees for

the generalized Farey network.

Corollary 3.4.1. (Mokhlissi et al., 2019a) The entropy of spanning trees of the gener-

alized Farey network Fq,n is:

ρFq,n =
1

2q
.

(
2q. ln 2 + ln(

2

2− q
)

)
, q < 2. (3.75)

Proof: Computing the entropy of spanning trees of the generalized Farey network

can be done analytically by using Equations 3.74, 2.1 and 3.64. From Equation 3.74, we

put a0 = 1. We follow the demonstration below:

ρFq,n = lim
VFq,n→∞

ln |τ(Fq,n)|
|VFq,n|

= lim
n→∞

ln |τ(Fq,n)|
|VFq,n|

= lim
n→∞

ln

[
[
1−( q

2
)n+1

2−q ]× (2)
1+

n∑
i=1

qi.2(i−1)

×
n∏
i=2

[2.(
1− ( q

2
)i

2− q
)]q

(n−i+1).2(n−i)

]
q(2q)n+3q−2

2q−1
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= lim
n→∞

(2q − 1). ln

(
1−( q

2
)n+1

2−q

)
q(2q)n + 3q − 2

+

(2q − 1).(1 +
n∑
i=1

qi.2(i−1)) ln 2

q(2q)n + 3q − 2
+

(2q − 1).
n∑
i=2

ln

(
2.(

1−( q
2

)i

2−q )

)q(n−i+1).2(n−i)

q(2q)n + 3q − 2
. (3.76)

• We calculate each part separately, the first part tends to 0:

lim
n→∞

(2q−1). ln

(
1−(

q
2 )n+1

2−q

)
q(2q)n+3q−2

= lim
n→∞

(2q−1) ln( q
2

)

q ln(2q)
× q

(2n+1−qn+1).2n
= 0.

• The second part tends to ln 2:

lim
n→∞

(2q−1).(1+
n∑

i=1
qi.2(i−1)) ln 2

q(2q)n+3q−2
= lim

n→∞
2n.qn+1. ln 2−q ln 2

2n.qn+1+3q−2
= ln 2.

• The last part tends to
ln( 2

2−q
)

2q
:

lim
n→∞

(2q − 1).
n∑
i=2

ln

(
2.(

1−( q
2

)i

2−q )

)q(n−i+1).2(n−i)

q(2q)n + 3q − 2
=

(2q − 1) ln 2

q(2q)n + 3q − 2
.

n∑
i=2

q(2q)n

(2q)i
+

(2q − 1)

q(2q)n + 3q − 2
.

n∑
i=2

q(2q)n

(2q)i
ln(

1− ( q
2
)i

2− q
) = (2q − 1) ln 2.

n∑
i=2

1

(2q)i
+

q(2q)n(2q − 1)

q(2q)n + 3q − 2
.

[ n∑
i=2

ln(2i−qi
2i

)

(2q)i
− ln(2− q).

n∑
i=2

1

(2q)i

]
=

ln 2

2q
+

[ n∑
i=2

(
ln(2i − qi)

(2q)i
− ln(2i)

(2q)i

)
−

ln(2− q). 1

(2q)2
.
1− ( 1

2q
)n−1

1− 1
2q

]
.(2q − 1) =

ln 2

2q
− ln(2− q)

2q

=
ln( 2

2−q )

2q
, q < 2.

We replace all these results in Equation (3.76). Then, the results. The obtained entropy

of spanning trees of Fq,n depends on q, but we can use the entropy of ρFq,n with q < 2.

For q = 1, ρF1,n = 0.9457. In Table 3.2, we compare the entropy of spanning trees of

the Farey network F1,n (0.9457) with those of other networks having the same average

degree 4. We notice that the value of this entropy is bigger than those of the Pseudo-

fractal web and smaller than those of the Fractal Scale-Free Lattice, the 2-dimensional

Sierpinski gasket, the square lattice and the 2-Mosaic networks. This result proves that

the structural topology of the Farey network is more robust than the Pseudo-fractal web
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and less robust than the other networks.

Type of network < z > ρ
Pseudo-fractal web (Zhang et al., 2010b) 4 0.8959

Farey network (Mokhlissi et al., 2019a) 4 0.9457
Fractal Scale-Free Lattice (Mokhlissi et al., 2019b) 4 1.0397

The 2-dimensional Sierpinski gasket (Chang et al., 2007) 4 1.0486
Square lattice (Wu, 1977) 4 1.1662

The 2-Mosaic networks (Mokhlissi et al., 2017b) 4 1.3862

Table 3.2: The entropy of spanning trees of several networks having the same average degree.

3.5 Summary

To conclude, we have investigated three important models of small-world networks, which

display rich structural behaviours in real-world networks:

• Small-World Exponential network and Koch Network: They are based on triangles.

For the first network, its degree distribution follows an exponential distribution.

For the second network, its degree distribution follows a power law-form and both

they have a high clustering coefficient and small diameter. We have proposed two

new models based on the generalization of the Small-World Exponential network

and the generalization of the Koch network. These models rely on the size and

dimension of the added cyclic subgraph and they are characterized by the scale-free

characteristics. Then, we have calculated their number of spanning trees using the

decomposition method following one articulation node. In the end, we have calcu-

lated and compared their entropy of spanning trees with other networks having the

same average degree, indicating that the generalizations of these networks have the

same robustness although their structures, properties and complexities are different.

• Farey network: It shows the small-world effect: a small diameter or a short average

distance and a large clustering coefficient. We have suggested a generalization of

this model by adding nodes to every iterative edge in each step. We have analyzed

its structural properties, showing that the generalized Farey network combines the

small-world and the scale-free properties. Then, we have evaluated its complexity

using the electrically equivalent transformations. Finally, we have calculated its
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asymptotic complexity and compared it with those for other networks having the

same average degree.

In the next chapter, we examine three models of scale-free networks: Flower network,

Mosaic network and Fractal Scale-Free Lattice. We propose their generalizations, we

analyze their structure and their topological properties, we calculate their complexity

using some geometric methods mentioned in Chapter 2 and we evaluate their entropy to

estimate the most robust network.
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S
cale-free networks are ubiquitous in science and in everyday life. They have been the

focus of intense interest, because many large complex networks, such as the Internet

and the World Wide Web and networks of interactions between proteins are scale-free.

Their degree distribution follows a power-law form. In this chapter, we investigate three

categories of scale-free networks, namely Flower network, Mosaic network and Fractal

Scale-Free Lattice. We propose three new models based on the generalization of these

mentioned networks. We study their structural properties, proving that the proposed

generalizations do not affect the scale-free property. In addition, we use three methods

proposed in Chapter 2, based on transformations by changing the geometric nature of the

models in order to count their number of spanning trees. Finally, in order to evaluate

the robustness of these generalized networks, we compute and compare their entropy

with other networks having the same average degree. The results of this chapter were

published in an international journal (Mokhlissi et al., 2019b) and three international

conferences (Mokhlissi et al., 2016b, 2017b,a).
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4.1 Why scale-free networks are very important to study?

Researchers have observed that a lot of real-world networks like the Internet or social

networks have a topology that comes close to the scale-free networks and they have also

demonstrated that several naturally occurring scale-free networks exhibit fractal scaling.

This type of networks is known by its degree distribution which decays like a power

law (Barabási and Bonabeau, 2003; Lenaerts, 2011). This means that the vast majority

of nodes have very few connections, while a few important nodes, called by hubs, have a

huge number of connections. The nodes with a large degree have a high probability of

attracting more links and their connectivity increases rapidly compared to other nodes,

which explains the principle of the “Rich get richer dynamics”. We can see the property of

the scale-free networks on the Web where the major websites like Google or Facebook are

hubs, they dominate the network, while there are millions of smaller websites with very few

connections. In order to understand the dynamics of growing real-world networks, many

models have been proposed to generate networks with the scale-free property (Barabási

and Albert, 1999; Aiello et al., 2001).

4.2 Analysis of Flower network

In this section, we present a well-known family of scale-free networks, called the Flower

network, which displays some remarkable properties observed in real-life networks (Rozen-

feld et al., 2007; Rozenfeld and Ben-Avraham, 2007; Lin et al., 2011). This network ex-

hibits the self-similarity and the fractality. We study two types of Flower networks: The

particular case: The 2-Flower network, which is based on the combination of the reduc-

tion and the bipartition approaches (See Figure 4.1) and the general case: The m-Flower

network, which is based on the combination of the m-reduction and the m-partition ap-

proaches (See Figure 4.2) (Mokhlissi et al., 2016b, 2017a). We introduce their construction

by applying firstly the reduced approach then, the bipartite approach for the 2-Flower

network and m-reduced approach then, the m-partite approach for the m-Flower net-

work. Then, we discuss their topological properties indicating that the generalization of

the Flower network is also a scale-free network. After that, we calculate their number

of spanning trees using the combination of the geometric approaches: The reduction and
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the bipartition approaches, the m-reduction and the m-partition approaches. Finally, we

evaluate the entropy of spanning trees and compare it with those for other studied net-

works with the same average degree in order to estimate the most robust network between

them.

4.2.1 2-Flower network

4.2.1.1 Construction of the 2-Flower network

The 2-Flower network is denoted by F2,n after n generations of evolution and ‘2’ refers to

the dimension of the Flower network. It can be created using the following iterative way:

For the iteration n = 0, we have a simple edge that connects two vertices. For n ≥ 1, first,

we apply the reduced approach by replacing each exiting edge in F2,n−1 by two links.Then,

we apply the bipartite approach to this last obtained graph by adding a new vertex in the

middle of each of its edges in order to get two links for each existing edge of the reduced

graph. We can denote this process by F2,n = B2(R2(F2,n−1)). For illustration, in Figure

4.1, we present the first two iterations of the 2-Flower network.

F2,0 F2,1 F2,2

Figure 4.1: The first two iterations of the 2-Flower network F2,n.

Next, we compute the numbers of nodes, edges, faces and the average degree of the

2-Flower network. According to the construction of F2,n, we get:

• LetEF2,n be the number of edges created at iteration n. We have EF2,n = EB2(R2(F2,n−1)).

Using Property 2.4.2, we obtain: EF2,n = 2ER2(F2,n−1) and using Property 2.4.4, we

obtain: EF2,n = 4EF2,n−1 = 42EF2,n−2 = 43EF2,n−3 = ... = 4nEF2,0 . So, the number

of edges of F2,n is:
EF2,n = 22n, n ≥ 0. (4.1)
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• Similarly, we find the number of vertices of F2,n :

VF2,n = 2 +
2

3
(22n − 1), n ≥ 0. (4.2)

• The number of faces of F2,n is:

FF2,n = 1 +
22n − 1

3
, n ≥ 0. (4.3)

• Let < z >F2,n be the average degree of F2,n. It is calculated as follows:

< z >F2,n=
2EF2,n

VF2,n
. Thus, the average degree of F2,n is (which is approximately

3 for large n):
< z >F2,n=

22n+1

4
3

+ 22n+1

3

, n ≥ 0. (4.4)

4.2.1.2 Topological properties of the 2-Flower network

• The degree distribution

We calculate the degree distribution of the 2-Flower network F2,n as follows: At

n = 0, the network has two nodes of degree 1. At the step nu, ku(nu) = 2 is the

degree of a new added node u. We denote the degree of the node u at step n by

ku(n). From the construction of F2,n, the degree of its nodes is:

ku(n) = 2ku(n− 1), n ≥ 0. (4.5)

Which leads to: ku(n) = 2n−nu+1, u ∈ VF2,n , u 6= 0
1
, 1

1

k 0
1
(n) = k 1

1
(n) = 2n.

(4.6)

Then, the cumulative degree distribution is given by:

Pcum(k) =
1

VF2,n

nu∑
i=0

Mv(i) =
4nu + 2

4n + 2
(4.7)

with Mv(n) is the number of new nodes at step n and VF2,n =
∑n

i=0Mv(i). From

Equation 4.6, we obtain nu = n+ 1− ln k
ln 2

. Then, the cumulative degree distribution

of F2,n will be:
Pcum(k) =

4n+1 × k− ln 4
ln 2 + 2

4n + 2
(4.8)
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For large n, we can obtain:
Pcum(k) ∼ k−2 (4.9)

So the degree distribution of the 2-Flower network F2,n follows a power-law form

with the exponent γ = 3.

• Clustering coefficient

The 2-Flower network F2,n have zero clusterings because the neighbors of any node

are never neighbors of one other. The main cause is the absence of triangles in F2,n.

Therefore, one of the properties of the small-world network is missing.

• Diameter

Let DF2,n be the diameter of F2,n created at generation n. This diameter can be cal-

culated as follows: According to the construction of F2,n, we get: DF2,n = 2DF2,n−1 =

4DF2,n−2 = ... = 2nDF2,0 , with DF2,0 = 1. Thus, the diameter of F2,n is:

DF2,n = 2n, n ≥ 0. (4.10)

for large n, the number of vertices will be VF2,n ∼ 22n. Then, DF2,n = V
( 1

2
)

F2,n
=
√
VF2,n .

It grows as a square power of the number of nodes in the network, which indicates

that the 2-Flower network F2,n is not a small world.

• Fractal dimension

Fractals are an irregular geometric object with an infinite nesting of the structure

at all scales. This type of network is characterized by the fractal dimension, which

is the scaling rule df , from knowing how something scales. For F2,n, we follow the

mathematical framework presented in (Song et al., 2006). By construction, in the

infinite n limit, the different quantities of the network grow as:
VF2,n ' 4.VF2,n−1 ,

ku(n) = 2.ku(n− 1),

DF2,n = 2.DF2,n−1 .

(4.11)

where VF2,n , ku(n) and DF2,n are the number of vertices, the degree of a node u and

the diameter of F2,n respectively. From Equation (4.11), it is obvious that VF2,n ,
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ku(n) and DF2,n increase by a factor of fV = 4, fk = 2, and fD = 2, respectively. So,

we can derive the scaling exponents in terms of the microscopic parameters (Song

et al., 2006): The fractal dimension is df = ln fV
ln fD

= 2, and the degree exponent

of boxes is dk = ln fk
ln fD

= 1. The exponent of the degree distribution satisfies γ =

1 +
df
dk

= 1 + ln fV
ln fk

= 3, giving the same γ as that obtained in the direct calculation

of the degree distribution. So, the 2-Flower network F2,n is a fractal.

+ Discussion

According to the above results, the 2-Flower network F2,n has specific properties:

its degree distribution follows a power law form, a zero clustering coefficient, its

diameter does not scale logarithmically with the number of nodes of the network

and it is characterized by a finite fractal dimension, which indicate that F2,n is a

scale-free network and a fractal.

4.2.1.3 Number of spanning trees of the 2-Flower network

Due to the large size of complex networks, their complexity is very difficult to compute,

even if we use the theorem of Kirchhoff. For this reason, we use two geometric approaches:

The reduction and the bipartition approaches (See Section 2.4.3 and Section 2.4.2) that

facilitate the computation. We combine Our approaches: First, we apply the reduction

approach, then the bipartite approach to find the exact number of spanning trees for the

2-Flower network.

Theorem 4.2.1. (Mokhlissi et al., 2016b, 2017a) Let F2,n denote a 2-Flower network

where n is the number of iterations. The number of spanning trees of F2,n is given by the

following formula:
τ(F2,n) = 22[ 22n−1

3
] (4.12)

Proof: This process can be presented as τ(F2,n) = τ(B2(R2(F2,n−1))). Using Theorem

2.4.2 of the bipartition approach, we obtain: τ(F2,n) = 2FR2(F2,n−1)−1 × τ(R2(F2,n−1))

with FR2(F2,n−1) = FF2,n . Using Theorem 2.4.4 of the reduction approach, we obtain:

τ(F2,n) = 2FF2,n
−1 × 2VF2,n−1

−1 × τ(F2,n−1). Using Equation 4.2 and 4.3 , we obtain:

τ(F2,n) = 2
22n−1

3 × 21+ 2
3

(22(n−1)−1) × τ(F2,n−1)
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τ(F2,n) = 222n−1 × τ(F2,n−1)

τ(F2,n) = 222n−1+22n−3+22n−5+...+21 × τ(F2,0) with τ(F2,0) = 1

τ(F2,n) = 22[ 22n−1
3

].

Hence, the result.

4.2.2 m-Flower network

4.2.2.1 Construction of the m-Flower network

The m-Flower network is denoted by Fm,n with n generations and ‘m’ refers to the di-

mension of the Flower network. It can be created using the following iterative way: For

n = 0, we have a simple edge that connects two vertices. For n ≥ 1, first, we apply

the m-reduced approach to obtain m multiple edges connecting each pair of vertices of

Fm,n−1. Then, we apply the m-partite approach to this last obtained graph by adding

m−1 vertices in each edge to get m links for each existing edge of the reduced graph.This

process can be denoted by Fm,n = Bm(Rm(Fm,n−1)). In Figure 4.2, we illustrate the first

two iterations of the m-Flower network with m = 3.

F3,0 F3,1 F3,2

Figure 4.2: The first two iterations of the 3-Flower network.

Then, we calculate the numbers of nodes, edges, faces and the average degree of the

m-Flower network. According to the construction of Fm,n, we get:

• LetEFm,n be the number of edges created at iteration n. We have EFm,n = EBm(Rm(Fm,n−1)).

Using Property 2.4.3, we obtain: EFm,n = m×ERm(Fm,n−1) and using Property 2.4.5,
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we obtain: EFm,n = m2×EFm,n−1 = m4×EFm,n−2 = m6×EFm,n−3 = ... = m2n×EFm,0 .

So, the number of edges of Fm,n is:

EFm,n = m2n, n ≥ 0. (4.13)

• Similarly, we find the number of vertices of Fm,n :

VFm,n = 2 +
m(m2n − 1)

m+ 1
, n ≥ 0. (4.14)

• The number of faces of Fm,n is:

FFm,n = 1 +
m2n − 1

m+ 1
, n ≥ 0. (4.15)

• Let < z >Fm,n be the average degree of Fm,n. It is calculated as follows:

< z >Fm,n=
2EFm,n

VFm,n
. Thus, the average degree of Fm,n is (which is approximately

3 for large n):
< z >Fm,n=

2m2n

2 + m(m2n−1)
m+1

, n ≥ 0. (4.16)

4.2.2.2 Topological properties of the m-Flower network

• The degree distribution

To calculate the degree distribution of the m-Flower network Fm,n, we use the same

process applied on the degree distribution of the 2-Flower network F2,n. Then, the

cumulative degree distribution of Fm,n is given by:

Pcum(k) =
m2n+1 × (k

2
)−2 +m+ 2

m2n+1 +m+ 2
(4.17)

For large n, we can obtain:

Pcum(k) ∼ 4× k−2 (4.18)

So the degree distribution of the m-Flower network Fm,n follows a power-law form

with the exponent γ = 3.

• Clustering coefficient

The m-Flower network Fm,n have also zero clusterings because the neighbors of

any node are never neighbors of one other. Therefore, one of the properties of the

small-world network is missing.
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• Diameter

Let DFm,n be the diameter of Fm,n created at generation n. This diameter can

be calculated as follows: According to the construction of Fm,n, we get: DFm,n =

mDFm,n−1 = m2DFm,n−2 = ... = mnDFm,0 , with DFm,0 = 1. Thus, the diameter of

Fm,n is:
DFm,n = mn, n ≥ 0. (4.19)

for large n, the number of nodes will be VFm,n ∼ m2n. Then, DFm,n = V
( 1

2
)

Fm,n
=√

VFm,n . It grows as a square power of the number of nodes in the network, which

indicates that the m-Flower network Fm,n is not a small world.

• Fractal dimension

We calculate the fractal dimension of the m-Flower network Fm,n as follows: By

construction, in the infinite n limit, the different quantities of the network grow as:
VFm,n ' m2.VFm,n−1 ,

ku(n) = m.ku(n− 1),

DFm,n = m.DFm,n−1 .

(4.20)

where VFm,n , ku(n) and DFm,n are the number of nodes, the degree of a node u and

the diameter of Fm,n respectively. From Equation (4.20), it is obvious that VFm,n ,

ku(n) and DFm,n increase by a factor of fV = m2, fk = m, and fD = m, respectively.

So, the fractal dimension is df = ln fV
ln fD

= 2, and the degree exponent of boxes is

dk = ln fk
ln fD

= 1. The exponent of the degree distribution satisfies 1+
df
dk

= 1+ ln fV
ln fk

= 3,

giving the same γ as that obtained in the direct calculation of the degree distribution.

So, the m-Flower network Fm,n is a fractal.

+ Discussion

According to the above results, the m-Flower network Fm,n incorporates some specific

properties: its degree distribution follows a power law form, a zero clustering coefficient,

its diameter does not scale logarithmically with the number of nodes of the network and

it has a finite fractal dimension, which indicate that Fm,n is a scale-free network and a

fractal.
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4.2.2.3 Number of spanning trees of the m-Flower network

In order to calculate the number of spanning trees of the m-Flower network, two ap-

proaches are combined: First, the reduction approach, then the bipartite approach are

applied.

Theorem 4.2.2. (Mokhlissi et al., 2016b, 2017a) The number of spanning trees of the

m-Flower network is given by:

τ(Fm,n) = m
m[m

2n−1

m2−1
]

(4.21)

Proof: This process can be presented as τ(Fm,n) = τ(Bm(Rm(Fm,n−1))). Using

Theorem 2.4.3 of the m-partition approach, we obtain: τ(Fm,n) = m
FRm(Fm,n−1)−1 ×

τ(Rm(Fm,n−1)) with FRm(Fm,n−1) = FFm,n . Using Theorem 2.4.5 of the m-reduction ap-

proach, we obtain: τ(Fm,n) = mFFm,n−1 ×mVFm,n−1
−1 × τ(Fm,n−1). Using Equation 4.14

and 4.15, we obtain:

τ(Fm,n) = m
m2n−1
m+1 ×m1+

m(m2(n−1)−1)
m+1 × τ(Fm,n−1)

τ(Fm,n) = mm2n−1 × τ(Fm,n−1)

τ(Fm,n) = mm2n−1+m2n−3+m2n−5+...+m1 × τ(Fm,0) with τ(Fm,0) = 1

τ(Fm,n) = m
m[m

2n−1

m2−1
]
.

4.2.2.4 Entropy of spanning trees of the m-Flower network

Since the number of spanning trees for the m-Flower network τ(Fm,n) grows exponentially

with the network order VFm,n , so we can calculate its entropy of spanning trees according

to the definition of the entropy of Equation 2.1 in Section 2.1.2.1:

Corollary 4.2.1. (Mokhlissi et al., 2017a) The entropy of spanning trees of the m-Flower

network is given by:
ρFm,n =

ln(m)

m− 1
(4.22)

Proof: We calculate the entropy of spanning trees of a m-Flower network as follows:

ρFm,n = lim
VFm,n→∞

ln |τ(Fm,n)|
|VFm,n |

= lim
n→∞

ln |τ(Fm,n)|
|VFm,n |

= lim
n→∞

ln(m
m[m

2n−1
m2−1

]
)

2+
m(m2n−1)

m+1

= lim
n→∞

ln(m)×(m+1)
m2−1

.

Then, the result. Similarly, we can find the entropy of the 2-Flower network: ρF2,n =

ln 2 = 0.6931. In Figure 4.3, we show that the entropy of spanning trees of the m-Flower
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network varies with the dimension m and the increasing of this value leads to decrement

the entropy of spanning trees. From this result, we deduce that the m-Flower networks

with a larger dimension are less robust than those with a smaller dimension.

Figure 4.3: The entropy of spanning trees of the m-Flower network

Type of network < z > ρ
Koch network (Mokhlissi et al., 2018b) 3 0.549

Small-World Exponential network (Mokhlissi et al., 2018b, 2016a) 3 0.549
Hanoi network (Zhang et al., 2016) 3 0.677

2-Flower network(Mokhlissi et al., 2017a) 3 0.6931
The 3-2-12 lattice (Wu, 1977) 3 0.721

The 4-8-8 bathroom tile (Wu, 1977) 3 0.787
Honeycomb lattice (Shrock and Wu, 2000) 3 0.807

Table 4.1: The entropy of spanning trees of several networks having the same average
degree.

From Table 4.1, we compare the entropy of spanning trees of the 2-Flower network

ρF2,n with those of other networks with the same average degree. We notice that the

value of this entropy is the highest reported for the Koch network, the Small-World

Exponential network and the Hanoi network and it is the lowest reported for the 3-2-12

lattice, the 4-8-8 bathroom tile and Honeycomb lattice. This reflects the fact that the

2-Flower network has an average spanning tree rate compared to other networks with the

same average degree. This result proves that the 2-Flower network is more robust than

the Koch network, the Small-World Exponential network and the Hanoi network. On

the other hand, the 2-Flower network is less robust than the 3-2-12 lattices, the 4-8-8

bathroom tile and Honeycomb lattice.
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4.3 Analysis of Mosaic network

In this section, we introduce another family of scale-free networks, named the Mosaic

network, which incorporates some key properties characterizing a majority of real-life

networked systems. It consists of self-repeating patterns on all length scales. This type

of networks highlights the concepts of self-similarity and fractality. Two types of the

Mosaic network are examined: The particular case: The 2-Mosaic network, based on

the bipartite and the reduced approaches (See Figure 4.4) and the general case: The m-

Mosaic network, based on the m-partition and the m-reduction approaches (See Figure

4.5) (Mokhlissi et al., 2016b, 2017b). We investigate their construction. For the 2-Mosaic

network, we apply firstly the bipartite approach then, the reduced approach and for the m-

Mosaic network, we apply firstly the m-partite approach then, the m-reduced approach.

Then, we analyze their topological properties, showing that the generalization of the

Mosaic network is also a scale-free network. After that, we evaluate their complexity

by combining our geometric approaches: The bipartition and the reduction approaches,

the m-partition and the m-reduction approaches. Finally, we calculate the entropy of

spanning trees and compare it with those for other networks having the same average

degree of nodes in order to determine the most robust network between them.

4.3.1 2-Mosaic network

4.3.1.1 Construction of the 2-Mosaic network

The 2-Mosaic network is denoted by M2,n with n iteration and ‘2’ refers to the dimension

of the Mosaic network. It is constructed as follows: At first, M2,0 is a simple edge that

connects two nodes. At the next generation, the biparite approach is applied by adding

a new node in the simple edge of M2,0 to get two edges. Then the reduced approach is

applied by adding a new multiple edge for each existing edge of the bipartite network. The

growth process to the next iterations continues in a similar way. This process is denoted

by M2,n = R2(B2(M2,n−1)). This process is the opposite of that of the 2-Flower network.

For illustration, in Figure 4.4, the first three generations of the 2-Mosaic network are

presented. Next, we calculate the numbers of nodes, edges, faces and the average degree

of the 2-Mosaic network. According to the construction of M2,n, we get:
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M2,0 M2,1 M2,2

M2,3

Figure 4.4: The first three generations of the 2-Mosaic network.

• LetEM2,n be the number of edges created at iteration n. We have EM2,n = ER2(B2(M2,n−1)).

Using Property 2.4.4, we obtain: EM2,n = 2EB2(M2,n−1) and using Property 2.4.2, we

obtain: EM2,n = 4EM2,n−1 = 42EM2,n−2 = 43EM2,n−3 = ... = 4nEM2,0 . Thus, the

number of edges of M2,n is:

EM2,n = 22n, n ≥ 0. (4.23)

• Similarly, we find the number of vertices of M2,n :

VM2,n = 2 +
22n − 1

3
, n ≥ 0. (4.24)

• The number of faces of M2,n is:

FM2,n = 1 +
2

3
(22n − 1), n ≥ 0. (4.25)

• Let < z >M2,n be the average degree of M2,n. It is calculated as follows:

< z >M2,n=
2EM2,n

VM2,n
. Thus, the average degree of M2,n is (which is approximately

4 for large n):
< z >M2,n=

22n+1

2 + 22n−1
3

, n ≥ 0. (4.26)
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4.3.1.2 Structural properties of the 2-Mosaic network

• The degree distribution

The degree distribution of the 2-Mosaic network M2,n is calculated as follows: At

n = 0, the network has two nodes of degree 1. At the step nu, a new added node u

is created and it has the degree ku(nu) = 4. Let ku(n) be the degree of the node u

at step n. From the construction of M2,n, the degree of its nodes is:

ku(n) = 2ku(n− 1), n ≥ 0. (4.27)

Which leads to: ku(n) = 2n−nu+2, u ∈ VM2,n , u 6= 0
1
, 1

1

k 0
1
(n) = k 1

1
(n) = 2n.

(4.28)

Then, the cumulative degree distribution is given by:

Pcum(k) =
1

VM2,n

nu∑
i=0

Mv(i) =
4nu + 5

4n + 5
(4.29)

with Mv(n) is the number of new nodes at step n and VM2,n =
∑n

i=0Mv(i). From

Equation 4.28, we obtain nu = n+2− ln k
ln 2

. Then, the cumulative degree distribution

of M2,n will be:
Pcum(k) =

4n+2 × k− ln 4
ln 2 + 5

4n + 5
(4.30)

For large n, we can obtain:
Pcum(k) ∼ k−2 (4.31)

So the degree distribution of the 2-Mosaic network M2,n follows a power-law form

with the exponent γ = 3.

• Clustering coefficient

The 2-Mosaic network M2,n have zero clusterings because there is no link between

neighbors of any node. Therefore, one of the properties of the small-world network

is not verified.

• Diameter

Let DM2,n be the diameter of M2,n created at generation n. We can calculate

this diameter as follows: According to the construction of M2,n, we get: DM2,n =



4.3. ANALYSIS OF MOSAIC NETWORK 124

2DM2,n−1 = 4DM2,n−2 = ... = 2nDM2,0 , with DM2,0 = 1. Thus, the diameter of

M2,n is:
DM2,n = 2n, n ≥ 0. (4.32)

for large n, the number of vertices will be VM2,n ∼ 22n. Then, DM2,n = V
( 1

2
)

M2,n
=√

VM2,n . It grows as a square power of the number of nodes in the network, which

indicates that the 2-Mosaic network M2,n is not a small world.

• Fractal dimension

For 2-Mosaic network M2,n, we follow the same process as the Flower network to

calculate the fractal dimension. By construction, in the infinite n limit, the different

quantities of the network grow as:
VM2,n ' 4.VM2,n−1 ,

ku(n) = 2.ku(n− 1),

DM2,n = 2.DM2,n−1 .

(4.33)

where VM2,n , ku(n) and DM2,n are the number of nodes, the degree of a node u and

the diameter of M2,n respectively. From Equation (4.33), it is obvious that VM2,n ,

ku(n) and DM2,n increase by a factor of fV = 4, fk = 2, and fD = 2, respectively.

So, The fractal dimension is df = ln fV
ln fD

= 2 and the degree exponent of boxes

is dk = ln fk
ln fD

= 1. The exponent of the degree distribution satisfies γ = 1 +
df
dk

=

1 + ln fV
ln fk

= 3, giving the same γ as that obtained in the direct calculation of the

degree distribution. So, the 2-Mosaic network M2,n is a fractal.

+ Discussion

According to the found results, the 2-Mosaic network M2,n exhibits many interesting

structural features: its degree distribution follows a power law form, its clustering

coefficient is missing, its diameter does not scale logarithmically with the number of

nodes of the network and it has a finite fractal dimension, which indicate that M2,n

is a scale-free network and a fractal.
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4.3.1.3 Number of spanning trees of the 2-Mosaic network

The 2-Mosaic network is characterized by the self-similarity and a large number of nodes

and edges. For this reason, we can not calculate its complexity using the Kirchhoff

Theorem because we need to calculate the determinant of a very large matrix. Therefore,

we combine two geometric approaches by applying first the bipartite approach, then the

reduction approach to find the exact formula of the number of spanning trees of M2,n.

Theorem 4.3.1. (Mokhlissi et al., 2016b, 2017b) The number of spanning trees of 2-

Mosaic network M2,n is given by the following formula:

τ(M2,n) = 22[ 22n−1
3

] (4.34)

Proof: The result is demonstrated as follows: τ(M2,n) = τ(R2(B2(M2,n−1))). Using

Theorem 2.4.4, we obtain: τ(M2,n) = 2VB2(M2,n−1)−1×τ(B2(M2,n−1)) given that VB2(M2,n−1) =

VM2,n . Using Theorem 2.4.2, we obtain: τ(M2,n) = 2VM2,n
−1×2FM2,n−1

−1×τ(M2,n−1). Using

Equation 4.24 and 4.25, we obtain:

τ(M2,n) = 21+ 22n−1
3 × 2

2
3

(22(n−1)−1) × τ(M2,n−1)

τ(M2,n) = 222n−1 × τ(M2,n−1)

τ(M2,n) = 222n−1+22n−3+22n−5+...+21 × τ(M2,0)

τ(M2,n) = 22[ 22n−1
3

].

4.3.2 m-Mosaic Network

4.3.2.1 Construction of the m-Mosaic network

The m-Mosaic network, denoted by Mm,n, is characterized by two parameters m and n

where m stands for the dimension of the network and n for the current iteration. It is

created in the following iterative way: For the first generation, a simple link connects two

nodes. For the next generations, the m-partite approach is applied to the network in the

previous iteration by adding m − 1 nodes in each link. Then, the m-reduced approach

is applied to the last obtained network to get m multiple links connecting each pair of

nodes. This process is denoted by Mm,n = Rm(Bm(Mn−1)). For illustration, in Figure

4.5, the first two iterations of the m-Mosaic network with m = 3 are shown.
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M3,0 M3,1

M3,2

Figure 4.5: The first two generations of the 3-Mosaic network.

The exact values for the number of nodes, edges, faces and the average degree of the

m-Mosaic network are presented as follows. According to its construction, we get:

• Let EMm,n be the number of edges created at iteration n. We have EMm,n =

ERm(Bm(Mm,n−1)). Using Property 2.4.5, we obtain EMm,n = mEBm(Mm,n−1). Us-

ing Property 2.4.3, we obtain EMm,n = m2EMm,n−1 = m4EMm,n−2 = m6EMm,n−3 =

... = m2nEMm,0 . Thus, the number of edges of Mm,n is:

EMm,n = m2n, n ≥ 0. (4.35)

• Similarly, we find the number of vertices of Mm,n is:

VMm,n = 2 +
m2n − 1

m+ 1
, n ≥ 0. (4.36)

• The number of faces of Mm,n is:

FMm,n = 1 +
m(m2n − 1)

m+ 1
, n ≥ 0. (4.37)

• Let < z >Mm,n be the average degree of Mm,n. It is calculated as follows:

< z >Mm,n=
2EMm,n

VMm,n
. Thus, the average degree of Mm,n is (which is approximately

4 for large n):
< z >Mm,n=

2EMn

VMn

=
2m2n

2 + m2n−1
m+1

, n ≥ 0. (4.38)

4.3.2.2 Structural properties of the m-Mosaic network

• The degree distribution

To calculate the degree distribution of the m-Mosaic network Mm,n, we use the same

process applied on the degree distribution of the 2-Mosaic network M2,n. Then, the
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cumulative degree distribution of Mm,n is given by:

Pcum(k) =
m2n+2 + (k

2
)−2

m2n + 2m+ 1
(4.39)

For large n, we can obtain:
Pcum(k) ∼ 4× k−2 (4.40)

So the degree distribution of the m-Mosaic network Mm,n follows a power-law form

with the exponent γ = 3.

• Clustering coefficient

The m-Mosaic network Mm,n have also zero clusterings because there is no link

between neighbors of any node. Therefore, one of the properties of the small-world

network is missing.

• Diameter

Let DMm,n be the diameter of Mm,n created at generation n. We can calculate

this diameter as follows: According to the construction of Mm,n, we get: DMm,n =

mDMm,n−1 = m2DMm,n−2 = ... = mnDMm,0 , with DMm,0 = 1. Thus, the diameter

of Mm,n is:
DMm,n = mn, n ≥ 0. (4.41)

for large n, the number of nodes will be VMm,n ∼ m2n. Then, DMm,n = V
( 1

2
)

Mm,n
=√

VMm,n . It grows as a square power of the number of nodes in the network, which

indicates that the m-Mosaic network Mm,n is not a small world.

• Fractal dimension

We calculate the fractal dimension of the m-Mosaic network Mm,n as follows: By

construction, in the infinite n limit, the different quantities of the network grow as:
VMm,n ' m2.VMm,n−1 ,

ku(n) = m.ku(n− 1),

DMm,n = m.DMm,n−1 .

(4.42)

where VMm,n , ku(n) and DMm,n are the number of nodes, the degree of a node u
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and the diameter of Mm,n respectively. From Equation (4.42), it is clear that VMm,n ,

ku(n) and DMm,n increase by a factor of fV = m2, fk = m, and fD = m, respectively.

So, the fractal dimension is df = ln fV
ln fD

= 2, and the degree exponent of boxes is

dk = ln fk
ln fD

= 1. The exponent of the degree distribution satisfies 1+
df
dk

= 1+ ln fV
ln fk

= 3,

giving the same γ as that obtained in the direct calculation of the degree distribution.

So, the m-Mosaic network Mm,n is a fractal.

+ Discussion

According to the found results, the m-Mosaic network Mm,n presents many structural

characteristics: its degree distribution follows a power law form, a zero clustering coeffi-

cient, its diameter does not scale logarithmically with the number of nodes of the network

and it has a finite fractal dimension, which indicate that Mm,n is a scale-free network and

a fractal.

4.3.2.3 Number of spanning trees of the m-Mosaic network

To evaluate the complexity of the m-Mosaic network, two approaches are combined. First,

the m-partite approach, then the m-reduced approach are applied.

Theorem 4.3.2. (Mokhlissi et al., 2016b, 2017b) The number of spanning trees of m-

Mosaic network Mm,n is given by the following formula:

τ(Mm,n) = m
m[m

2n−1

m2−1
]

(4.43)

Proof: Theorem is demonstrated as follows: τ(Mm,n) = τ(Rm(Bm(Mm,n−1))). Using

Theorem 2.4.5, we obtain: τ(Mm,n) = m
VBm(Mm,n−1)−1×τ(Bm(Mm,n−1)) with VBm(Mm,n−1) =

VMm,n . Using Theorem 2.4.3, we obtain: τ(Mm,n) = mVMm,n−1×mFMm,n−1
−1× τ(Mm,n−1).

Using Equation 4.36 and 4.37, we obtain:

τ(Mm,n) = m1+m2n−1
m+1 ×m

m(m2(n−1)−1)
m+1 × τ(Mm,n−1)

τ(Mm,n) = mm2n−1 × τ(Mm,n−1)

τ(Mm,n) = mm2n−1+m2n−3+m2n−5+...+m1 × τ(Mm,0)

τ(Mm,n) = m
m[m

2n−1

m2−1
]
.
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4.3.2.4 Entropy of spanning trees of the m-Mosaic network

The number of spanning trees of the m-Mosaic network τ(Mm,n) grows exponentially

with the network order VMm,n , then we can calculate its entropy of spanning trees using

Equation (2.1).

Corollary 4.3.1. (Mokhlissi et al., 2017b) The entropy of spanning trees of the m-Mosaic

network is:

ρMm,n = m
ln(m)

m− 1
(4.44)

Proof: The entropy of spanning trees of the m-Mosaic network is calculated as fol-

lows: ρMm,n = lim
VMm,n→∞

ln |τ(Mm,n)|
|VMm,n |

= lim
n→∞

ln |τ(Mm,n)|
|VMm,n |

= lim
n→∞

ln(m
m[m

2n−1
m2−1

]
)

2+m2n−1
m+1

= lim
n→∞

m×m2n

(m−1)×(m+1)
×

ln(m)(m+1)
m2n = m ln(m)

m−1
. Then, the result.

Similarly, we can find the entropy of the 2-Mosaic network: ρM2,n = 2× ln 2 = 1, 3862.

According to Figure 4.6, the entropy of spanning trees of the m-Mosaic network is bigger

than 1 depending on the dimension m and the increasing of the value of this dimension

leads to the increase of the entropy of spanning trees. From this result, we deduce that

the m-Mosaic networks with a smaller dimension are less robust than those with a larger

dimension.

Figure 4.6: The entropy of spanning trees of the m-Mosaic network.
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From Table 4.2, the entropy of the 2-Mosaic network is larger than that of the Apol-

lonian network with the same average degree and it is smaller than that of the contact

graph of disk packings, the three-dimensional Sierpinski graph and the three-hypercubic

lattice and also the increasing of the value of the dimension m of m-Mosaic networks

leads to the increase of their entropy of spanning trees. This proves that the value of

the entropy of the spanning trees of Mm,n with m > 3 is the biggest known for networks

with an average degree of 6. It is demonstrated that the m-Mosaic network with m > 3

has much more spanning trees compared to other networks with the same average degree.

The increase in the number of spanning trees overall networks with the identical average

degree can lead to a more robust network. This means that the m-Mosaic network with

m > 3 is the most robust network compared to other networks having the same average

degree.

Type of network < z > ρ
Apollonian network (Zhang et al., 2014) 6 1.3540

2-Mosaic networks (Mokhlissi et al., 2017b) 6 1,3862
The contact graph of disk packings (Qin et al., 2015) 6 1.4354

Three-dimensional Sierpinski graph (Chang et al., 2007) 6 1.5694
3-Mosaic networks (Mokhlissi et al., 2017b) 6 1.6479
Three-hypercubic lattice (Felker and Lyons, 2003) 6 1.6734
4-Mosaic networks (Mokhlissi et al., 2017b) 6 1.8483

Table 4.2: The entropy of spanning trees of several networks having the same average degree.

+ Comparison between the entropy and the number of spanning trees of

the Flower network and the Mosaic network.

From the results above, we notice that the m-Flower network and the m-Mosaic

network have the same complexity(Mokhlissi et al., 2016b):

τ(Fm,n) = τ(Mm,n) = τ(Bm(Rm(Fm,n−1))) = τ(Rm(Bm(Mm,n−1)))

If we start with the application of the m-partition approach, then the m-reduction

approach or the opposite process, we get the same complexity. This reflects that the

combination of the m-partition and the m-reduction approaches with two different ways

leads to the same complexity in spite of the difference of the structure and the properties
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of the studied networks. Otherwise, they have two different entropies, although they have

the same complexity. The m-Mosaic network with m > 3 has the largest entropy, so it

is the most robust network. From these results, it is deduced that the complexity is not

sufficient to characterize the performance of a topology of a network, but the entropy

must be calculated to quantify its robustness and characterize its structure.

4.4 Analysis of Fractal Scale-Free Lattice

In this section, we are interested in the Fractal Scale Free Lattice (Zhang et al., 2008b,

2011; Mokhlissi et al., 2019b). It is a scale-free network with fractality that follows

a power-law degree distribution. It is characterized by the self-similar property that

highlights its topological structure. We investigate two cases of the Fractal Scale-Free

Lattice: The particular case and the general case. The difference between these cases is

the number of the connected clusters “q” that replaces each iterative edge (See Figure 4.7).

For each case, we examine the construction of the network and its structural properties,

proving that the generalization of the Fractal Scale-Free Lattice network does not affect the

scale-free property. Then, we evaluate its number of spanning trees using the electrically

equivalent transformations. In the end, we calculate its entropy of spanning trees and we

compare it with other studied networks having the same average degree. The results show

that this value is constant and does not depend on any parameter.

The iterative edge q = 1 q = 2

Figure 4.7: The difference between the particular case and the general case of the Fractal
Scale-Free Lattice. Each iterative edge is replaced by q connected clusters. The red edge
is a noniterated edge.
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4.4.1 Fractal Scale-Free Lattice L1,n

4.4.1.1 Construction of the Fractal Scale-Free Lattice L1,n

The Fractal Scale-Free Lattice is denoted by L1,n with ‘1’ refers to the number of the

connected clusters and n ≥ 0 iterations. The construction of this studied network follows

this algorithm: At n = 0, we have an iterative edge connecting two nodes. For n ≥ 1, we

get L1,n from L1,n−1. We replace each iterative edge in L1,n−1 by one connected cluster.

The growing process is repeated in a similar way n times. Figure 4.8 illustrates the first

three generations of the Fractal Scale-Free Lattice L1,n.

L1,0 L1,1 L1,2 L1,3

Figure 4.8: The first three generations of the Fractal Scale-Free Lattice L1,n.

Next, we compute the total number of nodes, edges, faces and average degrees of L1,n.

According to its construction, we get:

• Let VL1,n be the number of nodes. For i from 1 to n, we have VL1,i
= 4VL1,i−1

− 4.

Then, we multiply the equation of VL1,n−1 by 4, the equation of VL1,n−2 by 42 and

so on until the last equation VL1,1 which will be multiplied by 4n−1. Summing all

the obtained equations
∑n−1

i=0 4iVL1,n−i
=
∑n−1

i=0 4i+1VL1,n−i−1
− 4

∑n−1
i=0 4i. We find

VL1,n = 4nVL1,0 − 4
∑n−1

i=0 4i with VL1,0 = 2. Thus the number of nodes of L1,n is:

VL1,n =
2× 4n + 4

3
, n ≥ 0. (4.45)

• Similarly, we find the number of edges of L1,n:

EL1,n =
4n+1 − 1

3
, n ≥ 0. (4.46)
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• The number of faces of L1,n is:

FL1,n =
2× 4n + 1

3
, n ≥ 0. (4.47)

• Let < z >L1,n be the average degree of L1,n. It is calculated as follows: < z >L1,n=
2EL1,n

VL1,n
. Thus the average degree of L1,n is (which is approximately 4 for large n):

< z >L1,n=
4n+1 − 1

4n + 2
, n ≥ 0 (4.48)

4.4.1.2 Structural properties of the Fractal Scale-Free Lattice L1,n

• The degree distribution

The degree distribution of the Fractal Scale-Free Lattice L1,n is calculated as fol-

lows (Zhang et al., 2011, 2008b,a): When a new node u is added to the network at

nu ≥ 1, it has three links: two iterative links and one noniterated link (The red links

in Figure 4.8). Let Me(u, n) be the number of iterative links at iteration n that will

create new nodes connected to the node u at n + 1. Then, at nu, Me(u, nu) = 2.

From the construction of the network L1,n, we can see that at any step, each iter-

ative link of u is broken and generates two new iterative links connected to u. Let

ku(n) be the degree of node u at step n. So, the relation between ku(n) and Me(u, n)

satisfies:
ku(n) = Me(u, n) + 1 (4.49)

where“1”represents the only noniterated link of node u. Now, we calculate Me(u, n).

We see from the construction of L1,n: Me(u, n) = 2Me(u, n− 1) = 22Me(u, n− 2) =

... = 2n−nuMe(u, nu) = 2n−nu+1. Then

ku(n) = 2n−nu+1 + 1 (4.50)

We mention that the initial two nodes (The dark blue nodes in Figure 4.8) created

at iteration 0 are different from the other nodes. Since the initial two nodes have

no noniterated link, their degree equals the number of iterative links connecting to

them 2n. Then, the cumulative degree distribution of L1,n is given by:

Pcum(k) =
∑
i≤nu

Mv(i)

VL1,n

=
2× 4nu + 4

2× 4n + 4
(4.51)
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with Mv(n) is the number of new nodes at step n. By construction, we notice that

for n ≥ 1, Mv(n) = 2Me(n − 1) with Me(n − 1) is the number of iterative links at

step n − 1. Considering the initial condition Mv(0) = 2 and Me(0) = 1, it follows

that Mv(n) = 2.4n−1. From the Equation (??), we obtain nu = n+ 1− ln(k−1)
ln 2

. So,

Equation (4.51) will be

Pcum(k) =
2× 4n × 4(k − 1)−(ln 4/ ln 2) + 4

2× 4n + 4
(4.52)

When n is large enough, the cumulative degree distribution of L1,n will be

Pcum(k) ∼ 4(k − 1)−2. (4.53)

From Equation (4.53), we get that the degree distribution of the Fractal Scale-Free

Lattice L1,n follows a power-law form with the exponent γ = 3, indicating that L1,n

is a scale free network.

• Clustering coefficient

By construction of L1,n, it is easy to calculate analytically the clustering coefficient

Cu for each node u with the degree k (Zhang et al., 2008a, 2011, 2008b):

– For the two nodes created at iteration n = 0, their degree is k = 2n, and

the existing edges among these neighbors is e = k
2

= 2n−1 , all of which are

noniterated edges.

– For those nodes born at step r(0 < r < n), their degree is k = 2n−r+1 + 1 (See

Equation (4.50)) and there are only e = k−1
2

= 2n−r edges that actually exist

among the neighbor nodes.

– For the smallest nodes created at step n, their degree is k = 3 and the existing

number of links between the neighbors of each node is e = 2.

Thus, the clustering coefficient Cu of the node u and its degree k:

Cu =


1/(k − 1) for k = 2n,

1/k for k = 2n−r+1 + 1, (0 < r < n),

2/k for k = 21 + 1.

(4.54)
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which is inversely proportional to k in the limit of large k. The local clustering scales

as Cu ∼ k−1. It is interesting to notice that a similar scaling has been observed

in several real-life scale free networks. Let CL1,n be the clustering coefficient of

the whole network. Using Equation (4.54), we can obtain the average clustering

coefficient of the Fractal Scale-Free Lattice L1,n:

CL1,n =
1

VL1,n

[
Mv(o)

ko − 1
+

n−1∑
r=1

Mv(r)

kr
+

2Mv(n)

kn

]
(4.55)

where kr is the degree of a node at step n, which was created at step r. Then,

Equation (4.55) will be

CL1,n =
3

2.4n + 4

[
2

2n − 1
+

n−1∑
r=1

2.4r−1

2(n−r+1) + 1
+

4n

3

]
(4.56)

When (VL1,n → ∞), Equation (4.56) converges to a nonzero value CL1,n = 0.5435.

Therefore, the average clustering coefficient of the Fractal Scale-Free Lattice L1,n is

high.

• Diameter

Let DL1,n be the diameter of the Fractal Scale-Free Lattice L1,n. It can be calcu-

lated as follows: For i from 1 to n, we have DL1,i
= 2DL1,i−1

. Then, we multiply

the equation of DL1,n−1 by 2, the equation of DL1,n−2 by 22 and so on until the last

equation DL1,1 , which will be multiplied by 2n−1. Summing all the obtained equa-

tions
∑n−1

i=0 2iDL1,n−i
=
∑n−1

i=0 2i+1DL1,n−i−1
. We find DL1,n = 2nDL1,0 with DL1,0 = 1.

Thus, the diameter of L1,n is:

DL1,n = 2n, n ≥ 0. (4.57)

For large n, the number of nodes will be 4n. Thus, the diameter of L1,n scales as

DL1,n =
√
VL1,n . It grows as a square power of the number of nodes in the network,

which indicates that the Fractal Scale-Free Lattice L1,n is not a small world.

• Fractal dimension

We calculate the dimension of the Fractal Scale-Free Lattice L1,n as follows: By

construction, in the infinite n limit, the different quantities of the network grow
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as (Zhang et al., 2011, 2008b):
VL1,n ' 4.VL1,n−1 ,

ku(n) ' 2.ku(n− 1),

DL1,n = 2.DL1,n−1 .

(4.58)

where VL1,n , ku(n) and DL1,n are the number of vertices, the degree of a node u and

the diameter of L1,n respectively. From Equation (4.58), it is obvious that VL1,n ,

ku(n) and DL1,n increase by a factor of fV = 4, fk = 2, and fD = 2, respectively.

So, the fractal dimension is df = ln fV
ln fD

= 2, and the degree exponent of boxes

is dk = ln fk
ln fD

= 1. The exponent of the degree distribution satisfies γ = 1 +
df
dk

=

1 + ln fV
ln fk

= 3, giving the same γ as that obtained in the direct calculation of the

degree distribution.

• Average path length

The Fractal Scale-Free Lattice L1,n has a self-similar structure allowing us to calcu-

late the average path length (APL) lL1,n analytically (Zhang et al., 2011, 2008b,a):

lL1,n =
σ(L1,n)

|VL1,n|(|VL1,n| − 1)
(4.59)

where σ(L1,n) =
∑

u6=v d(u, v). As shown in Figure 4.9, the network L1,n+1 may be

obtained by the juxtaposition of four copies of L1,n, which are labeled as Lα1,n with

α = 1, 2, 3, 4. Then:
σ(L1,n+1) = 4σ(L1,n) + ∆n. (4.60)

where ∆n is the sum over all shortest paths whose endpoints are not in the same

L1,n branch. Its expression is found below:

∆n =
1

189

[
45− 119.2n+1 + 15.23n+2 + 7.25n+6 + 63.42n+1 + 21n.23n+2

]
. (4.61)

Substituting Equation 4.61 for ∆n into Equation 4.60 and using σ(L1,0) = 1, then

σ(L1,n) =
1

189

[
25n+4 + 21.24n + 21n.23n − 27.23n + 75.22n + 119.2n − 15

]
. (4.62)
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Inserting Equation 4.62 into Equation 4.59, we can obtain the expression for lL1,n :

lL1,n =
(16.2n + 21)16n + (21n− 27)8n + 75.4n + 119.2n − 15

21(2 + 5.4n + 2.16n)
(4.63)

For large n, l ∼ 8
21
.2n. Note that in the infinite n limit, VL1,n ∼ 4n. So, the APL

scales as l ∼ V
1/2
L1,n

, which indicates that the Fractal Scale-Free Lattice L1,n is not a

small-world.

A C

B

D

L
(2)
1,n L

(3)
1,n

L
(1)
1,n L

(4)
1,n

Figure 4.9: Schematic illustration of the recursive construction of the Fractal Scale-Free
Lattice L1,n. The red link is noniterated edge.

+ Discussion

According to the above results, the Fractal Scale-Free Lattice L1,n has some interesting

properties: its degree distribution follows a power law form, a high clustering coefficient,

its diameter and its average path length do not scale logarithmically with the number of

nodes of the network and it has a finite fractal dimension, which indicate that L1,n is a

scale-free network and a fractal.

4.4.1.3 Number of spanning trees of the Fractal Scale-Free Lattice L1,n

By applying the electrically equivalent technique, we can easily obtain the number of

spanning trees of the Fractal Scale-Free Lattice L1,n, because if any subgraph of L1,n is

replaced by an electrically equivalent network, the number of spanning trees only changes

by a factor that is independent of the rest of the network. To calculate its number of

spanning trees using this technique, we follow the steps of Section 2.4.4.4:

1. First, we add the weight a0 on each edge of L1,n.
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2. Then, we use the electrically equivalent transformations to obtain the change of

edges conductances of the n− 1 generation from L1,n, the relationship between the

number of spanning trees of τ(L1,n) and τ(L1,n−1) and the exact value of the number

of spanning trees of L1,n in each step.

By applying the algorithms of the electrically equivalent transformations, we deduce

τ(L1,n) = (8a2
0)4n−1

τ(L1,n−1). To prove mathematically this formula, we use the

mathematical induction:

Basic step: We prove that τ(L1,1) = 8a2
0τ(L1,0). We denote L

(0)
1,1 as the Fractal

Scale-Free Lattice at iteration 1 in the transformation 0 with all its edges having

the conductance a0. Figure 4.10 shows the electrically equivalent evolving process

from L
(0)
1,1 to L

(0)
1,0.

a0

a0 a0

a0 a0

L
(0)
1,1

∆ =⇒ Y 3a0

3a0

a0 a0

L
(1)
1,1

Serial edges

3
4
a0

3
4
a0

L
(2)
1,1

3a0

L
(0)
1,0

a0

L
(3)
1,1

3a0

3
2
a0

Parallel edges

Serial edges

Figure 4.10: The transformations from L1,1 to L1,0.

Four transformations are used in sequence and the corresponding weights of the

resulting edges are calculated as follows:
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(a) Delta−Wye transformation: We replace one triangle in the connected cluster

of L
(0)
1,1 (∆ network) with its electrically equivalent component (Y network). We

get L
(1)
1,1 as the resulting graph with three new edges with a new conductance

a2
0+a2

0+a2
0

a0
= 3a0.

(b) Serial edge: We replace all the serial edges with conductances a0 and 3a0 by a

new edge with the conductance 3a0.a0

3a0+a0
= 3

4
a0 to obtain a new subgraph L

(2)
1,1.

(c) Parallel edge: We merge two parallel edges having the same conductance 3
4
a0

of L
(2)
1,1 to obtain a new subgraph L

(3)
1,1. The corresponding conductance of a

new edge is 3
4
a0 + 3

4
a0 = 3

2
a0.

(d) Serial edge: We replace two serial edges with conductances 3a0 and 3
2
a0 by a

new edge with the conductance
3a0.

3
2
a0

3a0+ 3
2
a0

= a0 to get L
(0)
1,0.

Noting that those four applications of the electrically equivalent transformations

suffice to find the conversion formula of spanning trees between L
(0)
1,1 and L

(0)
1,0. Then

τ(L1,1) = τ(L
(0)
1,1).

τ(L1,1) =
a3

0

(3a2
0)2 τ(L

(1)
1,1) = 1

9a0
τ(L

(1)
1,1)→ (∆ =⇒ Y ).

τ(L1,1) = 1
9a0

(3a0 + a0)2τ(L
(2)
1,1) = 42a0

9
τ(L

(2)
1,1)→ (Serial edge).

τ(L1,1) = 42a0

9
× 1× τ(L

(3)
1,1)→ (Parallel edge).

τ(L1,1) = 42a0

9
(3

2
a0 + 3a0)τ(L

(4)
1,1) = 42a0

9
.9a0

2
τ(L

(4)
1,1)→ (Serial edge).

τ(L1,1) = 8a2
0τ(L

(0)
1,0).

Induction step: We assume that τ(L1,n) = (8a2
0)4n−1

τ(L1,n−1). We show that

τ(L1,n+1) = (8a2
0)4nτ(L1,n).

The number of connected clusters in L1,n is 4n−1. Since the number of spanning trees

depends on the number of connected clusters, this means in L1,n+1, the number of

connected cluster is 4n. Then, the number of spanning trees of L1,n+1 is τ(L1,n+1) =

(8a2
0)4nτ(L1,n).

3. Finally, we deduce the exact formula of the number of spanning trees of τ(L1,n).

τ(L1,n) = (8a2
0)4n−1

τ(L1,n−1)

τ(L1,n) = (8a2
0)4n−1 × (8a2

0)4n−2 × ...× (8a2
0)40

τ(L1,0)

τ(L1,n) = (8a2
0)4n−1+4n−2+...+40

τ(L1,0) with τ(L1,0) = a0



4.4. ANALYSIS OF FRACTAL SCALE-FREE LATTICE 140

Hence, the number of spanning trees of L1,n is given by this formula:

τ(L1,n) = (8a2
0)

4n−1
3 a0, n ≥ 0. (4.64)

4.4.2 Generalized Fractal Scale-Free Lattice Lq,n

4.4.2.1 Construction of the Generalized Fractal Scale-Free Lattice Lq,n

The generalized Fractal Scale-Free Lattice is denoted by Lq,n with q ≥ 1 is the number

of connected clusters and n ≥ 0 iterations. The construction of the generalized Fractal

Scale-Free Lattice network follows this algorithm: At n = 0, we have an iterative edge

connecting two nodes. For n ≥ 1, we get Lq,n from Lq,n−1. We replace each iterative edge

in Lq,n−1 by q connected clusters. The growth process of the generalized Fractal Scale-Free

Lattice to the next generations keeps going on in a similar way. Figure 4.11 illustrates

the growing process of the generalized Fractal Scale-Free Lattice L2,n where q = 2.

L2,0 L2,1 L2,2

Figure 4.11: The first two generations of the generalized Fractal Scale-Free Lattice L2,n.

Next, we compute the number of total nodes, edges, faces and the average degree of

the generalized Fractal Scale-Free Lattice. According to the construction of Lq,n, we get:

• Let VLq,n be the number of nodes created at the iteration n. For i from 1 to n, we

have VLq,i
= 4qVLq,i−1

− 6q + 2. Then, we multiply the equation of VLq,n−1 by (4q),

the equation of VLq,n−2 by (4q)2 and so on until the last equation of VLq,1 which will

be multiplied by (4q)n−1. Summing all the obtained equations
∑n−1

i=0 (4q)iVLq,n−i
=∑n−1

i=0 (4q)i+1VLq,n−i−1
+ (−6q + 2)

∑n−1
i=0 (4q)i. We find the following results VLq,n =
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(4q)nVLq,0 + (−6q + 2)
∑n−1

i=0 (4q)i with VLq,0 = 2. Thus, the number of nodes of

Lq,n is:

VLq,n =
(4q)n2q + 6q − 2

4q − 1
, n ≥ 0. (4.65)

• Similarly, we find the number of edges of Lq,n:

ELq,n =
(4q)n(5q − 1)− q

4q − 1
, n ≥ 0. (4.66)

• the number of faces of Lq,n is:

FLq,n =
(4q)n(3q − 1) + q

4q − 1
, n ≥ 0. (4.67)

• The average degree of Lq,n is (which is approximately 4 for large n):

< z >Lq,n=
2ELq,n

VLq,n

=
(4q)n(5q − 1)− q
(4q)nq + 3q − 1

, n ≥ 0 (4.68)

4.4.2.2 Structural properties of the Generalized Fractal Scale-Free Lattice Lq,n

• The degree distribution

To calculate the degree distribution of the generalized Fractal Scale-Free Lattice Lq,n,

we use the same process applied on the degree distribution of the Fractal Scale-Free

Lattice L1,n (Mokhlissi et al., 2019b). Then, the cumulative degree distribution of

Lq,n is given by:

Pcum(k) =
(4q)n × (k − 1)−(

ln(4q)
ln(2q)

) × (4q)
ln 2

ln(2q) × 2q + 6q − 2

(4q)n2q + 6q − 2
(4.69)

When n is large enough, the cumulative degree distribution of Lq,n will be

Pcum(k) ∼ (4q)
ln 2

ln(2q) × (k − 1)−(
ln(4q)
ln(2q)

). (4.70)

From Equation 4.70, we get that the degree distribution follows a power-law form

with degree exponent continuously γ ∼ 1 + ln(4q)
ln(2q)

which belongs to the interval [2, 3],

indicating that Lq,n is a scale-free network. Figure 4.12 shows the scaling behavior

of the cumulative degree distribution Pcum(k) of Lq,n for different values of k and q.

• Clustering coefficient

We calculate the clustering coefficient of the generalized Fractal Scale-Free Lattice

Lq,n using the same process as the clustering coefficient of the Fractal Scale-Free
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Figure 4.12: The cumulative degree distribution of Lq,n

Lattice L1,n (Mokhlissi et al., 2019b). Then, the clustering coefficient Cu of a node

u with the degree k:

Cu =


1/(k − 1) for k = (2q)n,

1/k for k = 2(2q)n−r + 1, (0 < r < n),

2/k for k = 21 + 1.

(4.71)

Thus, the average clustering coefficient CLq,n of the whole network Lq,n is given by:

CLq,n =
1

VLq,n

[
Mv(o)

ko − 1
+

n−1∑
r=1

Mv(r)

kr
+

2Mv(n)

kn

]
(4.72)

where kr is the degree of a node at step n, which was created at step r. Then

CLq,n =
4q − 1

(4q)n2q + 6q − 2

[
2

(2q)n − 1
+

n−1∑
r=1

(2q)(4q)r−1

2(2q)(n−r) + 1
+

(4q)n

3

]
(4.73)

The clustering coefficient of the generalized Scale-Free Lattice Lq,n approaches a

constant value 1. As demonstrated in Figure 4.13, for large value of n, the clustering

coefficient will be high with different value of q.

• Diameter

The diameter of the generalized Fractal Scale-Free Lattice DLq,n is still the same as
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Figure 4.13: The clustering coefficient of Lq,n

the particular case of the Fractal Scale-Free Lattice for each step (Mokhlissi et al.,

2019b).
DLq,n = 2n, n ≥ 0. (4.74)

Then, we deduce that DLq,n does not depend on the number of clusters q. For large

n, the diameter of Lq,n grows as a square power of the number of nodes in the

network: DLq,n =
√

VLq,n

qn
, which indicates that the generalized Fractal Scale-Free

Lattice Lq,n is not a small world.

• Fractal dimension

For the generalized Fractal Scale-Free Lattice Lq,n, we calculate its fractal dimension

as follows: By construction, in the infinite n limit, the different quantities of the

network grow as (Mokhlissi et al., 2019b):
VLq,n ' 4q.VLq,n−1 ,

ku(n) ' 2q.ku(n− 1),

DLq,n = 2.DLq,n−1 .

(4.75)

where VLq,n , ku(n) and DLq,n are the number of vertices, the degree of a node u

and the diameter of Lq,n respectively. From Equation 4.75, it is obvious that VLq,n ,

ku(n) and DLq,n increase by a factor of fV = 4q, fk = 2q, and fD = 2, respectively.

So, the fractal dimension is df = ln fV
ln fD

= 2 + ln q
ln 2

, and the degree exponent of
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boxes is dk = ln fk
ln fD

= 1 + ln q
ln 2

. The exponent of the degree distribution satisfies

γ = 1 +
df
dk

= 1 + ln fV
ln fk

= 1 + ln 4q
ln 2q

, giving the same γ as that obtained in the direct

calculation of the degree distribution.

+ Discussion

After calculating the structural properties of the generalized Fractal Scale-Free Lattice,

we get that the degree distribution follows a power-law form, a high clustering coefficient,

the diameter does not scale logarithmically with the number of nodes of the network and it

has a finite fractal dimension. This proves that Lq,n is a scale-free network and a fractal as

the Fractal Scale-Free Lattice L1,n. We deduce from these results that the generalization

of the Fractal Scale-Free Lattice network does not affect the scale-free property and the

fractality.

4.4.2.3 Number of spanning trees of the generalized Fractal Scale-Free Lattice Lq,n

In order to calculate the number of spanning trees of Lq,n using the electrically equivalent

transformations (Mokhlissi et al., 2019b), we follow the steps of Section 2.4.4.4:

1. First, we put the weight a0 on each edge of Lq,n.

2. Then, we use the electrically equivalent technique to transform Lq,n to Lq,n−1. We

get the relationship between the number of spanning trees τ(Lq,n) and τ(Lq,n−1) and

the exact value of the number of spanning trees of Lq,n in each step.

By applying the algorithms of the electrically equivalent transformations, we deduce

τ(Lq,n) = (8a2
0)q

n4n−1
τ(Lq,n−1). To prove mathematically this formula, we use the

mathematical induction:

Basic step: We prove that τ(Lq,1) = (8a2
0)qτ(Lq,0). We denote L

(0)
q,1 as the gen-

eralized Fractal Scale-Free Lattice at iteration 1 with q connected clusters in the

transformation 0 with all its edges having the weights a0. We take as an example

the generalized Fractal Scale-Free Lattice with q = 2. Figure 4.14 shows the electri-

cally equivalent evolving process from L
(0)
2,1 to L

(0)
2,0.

Five transformations are used in sequence and the corresponding weights of the

resulting edges are calculated as follows:
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(a) Delta−Wye transformation: We replace one triangle in each connected cluster

of L
(0)
q,1 (∆ network) with its electrically equivalent component (Y network). We

get L
(1)
q,1 as the resulting graph with three new edges with a new conductance

a2
0+a2

0+a2
0

a0
= 3a0.

(b) Serial edge: We replace all the serial edges with conductances a0 and 3a0 by a

new edge with the conductance 3a0.a0

3a0+a0
= 3

4
a0 to obtain a new subgraph L

(2)
q,1.

(c) Parallel edge: We merge two parallel edges having the same conductance 3
4
a0

of L
(2)
q,1 to obtain a new subgraph L

(3)
q,1. The corresponding conductance of a

new edge is 3
4
a0 + 3

4
a0 = 3

2
a0.

(d) Serial edge: We replace two serial edges with conductances 3a0 and 3
2
a0 by a

new edge with the conductance
3a0.

3
2
a0

3a0+ 3
2
a0

= a0 to get L
(4)
q,1.

(e) Parallel edge: We merge two parallel edges having the same conductance a0

of L
(4)
q,1 to obtain a new subgraph L

(0)
q,0. The conductance of the new edge is

a0 + a0 = 2a0.

a0 a0

a0a0

a0 a0

L
(0)
2,1

∆ =⇒ Y

a0 a0

3a0 3a0

3a0 3a0

3a0

L
(1)
2,1

Serial edges
3
4
a0

3
4
a0

3a0 3a0

L
(2)
2,1

2a0

L
(0)
2,0

Parallel edges a0a0

L
(4)
2,1

Serial edges
3a0 3a0

3
2
a0

3
2
a0

L
(3)
2,1

Parallel edges

Figure 4.14: The transformations from L2,1 to L2,0.
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According to these five applications of the electrically equivalent transformations,

we determine the expression of the number of spanning trees between L
(0)
q,1 and L

(0)
q,0.

Then τ(Lq,1) = τ(L
(0)
q,1).

τ(Lq,1) = (
a3

0

(3a2
0)2 )qτ(L

(1)
q,1) = ( 1

9a0
)qτ(L

(1)
q,1)→ (∆ =⇒ Y ).

τ(Lq,1) = ( 1
9a0

)q(3a0 + a0)2qτ(L
(2)
q,1) = (42

9
a0)qτ(L

(2)
q,1)→ (Serial edge).

τ(Lq,1) = (42

9
a0)q × 1q × τ(L

(3)
q,1)→ (Parallel edge).

τ(Lq,1) = (42

9
a0)q(3

2
a0 + 3a0)qτ(L

(4)
q,1) = (8a2

0)qτ(L
(4)
q,1)→ (Serial edge).

τ(Lq,1) = (8a2
0)q × 1q × τ(L

(5)
q,1)→ (Parallel edge).

τ(Lq,1) = (8a2
0)qτ(L

(0)
q,0).

Induction step: We assume that τ(Lq,n) = (8a2
0)q

n4n−1
τ(Lq,n−1). We show that

τ(Lq,n+1) = (8a2
0)q

n+14nτ(Lq,n).

The number of connected clusters in Lq,n is qn4n−1. Note the number of span-

ning trees depends on the number of connected clusters. The number of con-

nected clusters in Lq,n+1 is qn+14n. Then, the number of spanning trees of Lq,n+1 is

τ(Lq,n+1) = (8a2
0)q

n+14nτ(Lq,n).

3. Finally, we deduce the exact formula of the number of spanning trees of τ(Lq,n).

τ(Lq,n) = (8a2
0)q

n4n−1

τ(Lq,n−1)

τ(Lq,n) = (8a2
0)q

n4n−1+qn−14n−2+...+q140

τ(Lq,0) with τ(Lq,0) = qa0

τ(Lq,n) = qa0(8a2
0)
q
n−1∑
j=0

(4q)j

Hence, the number of spanning trees of Lq,n is given by the following formula (Mokhlissi

et al., 2019b):

τ(Lq,n) = qa0(8a2
0)q

(4q)n−1
4q−1 , n ≥ 0. (4.76)

4.4.2.4 Entropy of spanning trees of the generalized Fractal Scale-Free Lattice Lq,n

Since the number of spanning trees of the generalized Fractal Scale-Free Lattice grows

exponentially with VLq,n , we can calculate its entropy of spanning trees according to the

definition of the entropy of Equation 2.1 in Section 2.1.2.1. Let ρLq,n be the entropy of
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spanning trees for Lq,n. From Equation 4.76, we put a0 = 1. We obtain:

ρLq,n = lim
n→∞

ln |τ(Lq,n)|
|VLq,n|

= lim
n→∞

ln(q(8)q
(4q)n−1

4q−1 )

(4q)n2q + 6q − 2
× (4q − 1)

= lim
n→∞

ln(q) + 3q (4q)n−1
4q−1

. ln(2)

(4q)n2q + 6q − 2
× (4q − 1)

=
3 ln(2)

2
≈ 1, 0397.

The obtained entropy of Lq,n is a constant value that does not depend on q. So, ρLq,n

remains unchanged by the addition of the connected clusters. It means no matter how it

gets started, in the long run, the entropy of spanning trees remains the same.

Type of network < z > ρ
Pseudo-fractal web (Zhang et al., 2010b) 4 0.8959
Farey network (Mokhlissi et al., 2019a) 4 0.9457

Generalized Fractal Scale-Free Lattice (Mokhlissi et al., 2019b) 4 1.0397
The 2-dimensional Sierpinski gasket (Chang et al., 2007) 4 1.0486

Square lattice (Wu, 1977) 4 1.1662
The 2-Mosaic networks (Mokhlissi et al., 2017b) 4 1.3862

Table 4.3: The entropy of spanning trees of several networks having the same average degree.

In Table 4.3, we compare the entropy of the generalized Fractal Scale-Free Lattice

Lq,n (1.0397) with those of other networks having the same average degree 4. We notice

that this value of the entropy is bigger than those of the Pseudo-fractal web and the

Farey network. While for the 2-dimensional Sierpinski gasket, the square lattice and the

2-Mosaic networks, the entropies of spanning trees are greater than 1.0397. This result

proves that the generalized Fractal Scale-Free Lattice is more robust than the Pseudo-

fractal web and the Farey network and less robust than the 2-dimensional Sierpinski

gasket, the square lattice and the 2-Mosaic networks.
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4.5 Summary

In summary, diverse real-life networks have power-law degree distribution, which defines

the type of scale-free networks. In this chapter, we have examined three important models

of scale-free networks:

• Flower network and Mosaic network: They exhibit the concepts of self-similarity and

fractality. For the construction of the Flower network, first, we have applied the re-

duction approach, then the bipartition approach. We have inverted this combination

by applying the bipartition approach, then the reduction approach to construct the

Mosaic network. We have analyzed their topological properties and calculated their

number of spanning trees using the same combinations of geometric approaches.

Then, we have proposed the generalization of these networks by changing their di-

mension. We have used the same combinations of the m-reduction and m-partition

approaches to reveal the mechanism of their construction and to calculate their

complexity. We have determined their topological properties, showing that the gen-

eralization of these networks does not affect the scale-free property. Finally, we have

evaluated their robustness by calculating their entropy.

• Fractal Scale-Free Lattice: It is a scale-free network with fractality that follows a

power-law degree distribution. We have proposed the generalization of the lattice

structure by multiplying the number of the connected clusters for each iterative

edge. In addition, we have determined its topological properties, proving that the

generalization of the Lattice network affects neither the scale-free property nor the

fractality. Using the electrically equivalent transformations, we have obtained the

exact formula of its number of spanning trees. Finally, we have evaluated and

compared its entropy with other networks having the same average degree. The

results show that this value is constant and does not depend on any parameter.

In the last chapter, we focus on the analytical study of some real-world networks and

random networks having the same number of nodes and links. We discuss their structural

properties. Then, we calculate their complexity by using the electrically equivalent tech-

nique. Finally, we evaluate and compare their entropy in order to predict which network

is more robust.
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R
ecently, the analysis of complex networks such as the Internet, World Wide Web,

telecommunication networks, protein interaction networks, social networks has at-

tracted much attention due to their quick growth. The study of these real-world

networks requires the use of random models. Such models would allow researchers to

better understand real-world networks and to predict their behavior. In this chapter, we

propose an analytical study of some real-world networks and random networks having

the same number of nodes and links. We discuss their structural properties such as the

diameter, the average path length, the clustering coefficient and the degree distribution.

Then, we calculate their number of spanning trees by using the electrically equivalent

transformations, proving that this technique is efficient and more general compared to

the classical ones. Finally, we evaluate and compare their entropy of spanning trees in

order to predict which network is more robust. The results of this chapter were accepted

at an international conference (Mokhlissi et al., 2020).
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5.1 Why use random networks?

The random network is one of the oldest and most studied models of a network. It can

not mimic real networks, but it is considered as a guide or a reference to compare with

the real network’s behaviour. When we explore a property of the real network, we can

use a random network as a model to realize if this property carries information or if it is

random. The best model of the random network is that of the ER network, presented by

Erdős and Rényi (Erdős et al., 1959). They showed that many of the properties of such

networks can be calculated analytically. The ER network differs from real networks in two

important features: it lacks the clustering coefficient and it has an unrealistic Poissonian

degree distribution. Such a model allows researchers to better understand the mechanism

of real-world networks and to predict their behaviour. Therefore, the random network

model may be the wrong model for most real networks, but it remains quite relevant for

network science (Barabási, 2013).

5.2 Structural Properties of real and random Networks

In this section, we introduce an analytical comparison of the structural properties be-

tween real-world networks such as Zachary’s karate club (Zachary, 1977), Dolphin social

network (Lusseau et al., 2003), Les Miserables (Knuth, 1993), Books about US poli-

tics (Krebs, 2004), Word adjacencies (Newman, 2006) and American College football (Gir-

van and Newman, 2002), all other models of scale-free and small-world networks studied

in the previous chapters such as the Flower network (See Section 4.2) (Mokhlissi et al.,

2017a), the Mosaic network (See Section 4.3) (Mokhlissi et al., 2017b), the Koch Net-

work (See Section 3.3) (Mokhlissi et al., 2018b), the Small-World Exponential Network

(See Section 3.2) (Mokhlissi et al., 2018b, 2016a), the Fractal Scale-Free Lattice (See Sec-

tion 4.4) (Mokhlissi et al., 2019b) and the Farey network (See Section 3.4) (Mokhlissi

et al., 2019a) and the first model of small-world networks as the Watts-Strogatz Net-

work (Watts and Strogatz, 1998), the first model of scale-free network as the barabasi-

albert Network (Barabási and Albert, 1999)) and the first model of random networks

as the Erdos-Renyi network (Erdős and Rényi, 1960, 1961) having the same number of
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vertices and edges.

5.2.1 Dataset

We start by presenting several datasets used as examples for real networks:

• Zachary’s karate club

This dataset contains 34 members of a karate club at a US university, as described by

Wayne Zachary in 1977. This network contains 78 pairwise links between members.

• Dolphin social network

This dataset contains the network of frequent associations between 62 dolphins in

a community living off Doubtful Sound, New Zealand. It contains 159 edges that

indicate a frequent association between them.

• Les Miserables

The co-occurrences of characters in Victor Hugo’s novel ‘Les Miserables’. It contains

77 characters that represent the nodes and the two characters appeared in the same

chapter of the book represents an edge between two nodes.

• Books about US politics

A set of books about US politics published around the time of the 2004 presidential

election. It consists of 105 books that represent the nodes and 441 edges between

books represent frequent co-purchasing of books by the customer from the same

merchant.

• Word adjacencies

The adjacency network of common adjectives and nouns in the novel David Copper-

field by Charles Dickens. It consists of 112 nodes that represent the most commonly

occurring adjectives and nouns in the book and 425 edges connect any pair of words

that occur in adjacent positions in the text of the book

• American College football

This dataset consists of 115 teams considered as nodes and 613 edges correspond to

games played by the teams against each other during the regular season of fall 2000.
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We discuss the structural properties of real networks such as the clustering coefficient,

the degree distribution, the diameter, the average path length, with values expected for

random networks.

5.2.2 Clustering Coefficient

To show the difference between the clustering coefficient of real-world networks and ran-

dom networks, we use the models of networks mentioned in Table 5.1, we calculate their

average clustering coefficient and compare it with those of random networks having a

similar number of nodes and edges. We notice that the clustering coefficients of different

complex networks mentioned in Table 5.1 are larger than that of random networks, except

two networks: 2-Flower networks and 2-Mosaic networks, because the neighbors of any

node of these networks are never neighbors of one another. In general, we can say that

the ER networks do not have high clustering coefficient compared to real networks (See

Figure 5.1).

N Type of network V E Creal Crandom

1 Zachary’s karate club 34 78 0.570638 0.163772

2 Dolphin social network 62 159 0.258958 0.087321

3 Les Miserables 77 254 0.573136 0.083168

4 Watts-Strogatz Network 100 500 0.102503 0.098122

5 Books about US politics 105 441 0.487526 0.075720

6 Word adjacencies 112 425 0.172840 0.046981

7 American College football 115 613 0.403216 0.102725

8 Fractal Scale-Free Lattice 172 341 0.539960 0.006646

9 barabasi-albert Network 213 1040 0.128816 0.111455

10 2-Mosaic networks 343 1024 0 0.011570

11 Koch Network 513 768 0.818473 0.006092

12 Farey network 513 1023 0.692396 0.008893

13 2-Flower network 684 1024 0 0.003118

14 Small-World Exponential Network 729 1092 0.760371 0.002891

Table 5.1: Clustering coefficient of real and random networks.
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Figure 5.1: Comparison between the clustering coefficient of real and random networks

5.2.3 Degree Distribution

To show the different types of the degree distribution, we plot in Figure 5.2 the degree

distribution of some real-world networks mentioned in Table 5.1 and random networks

with the same number of nodes and edges. We see in Figure 5.2 (b) that the exact form

of the degree distribution of random networks is the binomial distribution and in Figure

5.2 (a), for the 2-Flower network, the Koch Network, the 2-Mosaic network, the Fractal

Scale-Free Lattice and the Barabasi-albert Network, their degree distribution follows the

scale-free power-law form. Whereas, the Small-World Exponential Network and the Farey

network, their degree distribution follows an exponential distribution and for the Watts-

Strogatz Network, Dolphin social network, Les Miserables, Zachary’s karate club, Books

about US politics, Word adjacencies and American College football, the shape of their

degree distribution is similar to that of a random network.
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Figure 5.2: Comparaison between the degree distribution of real networks (a) and
random networks (b)
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5.2.4 Small-World Property

The average path length l of a network characterizes the small-world property. In some

cases, it is difficult to obtain the analytic solution of APL. Therefore, researchers adopt

the “diameter D,” as an alternative parameter to demonstrate the short distance between

any two nodes of a network. If the diameter of a network grows logarithmically with the

number of nodes V , i.e., small diameter and we have always l ≤ D, then it is undoubtedly

with a short APL: l = O(log V ). Then, the APL should increase more slowly. To show

the relationship between the APL and the diameter more clearly, we calculate these two

measures of some real-world networks and random networks with the same number of

nodes and edges. The results are displayed in Table 5.2 and the simulation results are

shown in Figures 5.3 and 5.4. We see for real-world networks in Figure 5.3 and random

networks in Figure 5.4 that when the diameter changes (increases/decreases), the APL

also changes (increases/decreases). We notice also that the values of the diameter and

the APL of random networks (ER networks) are almost the same as the the real-world

networks. Both the real network and the random network exhibit the same behaviour in

the small-world property.

N Type of network V E Dreal Drandom lreal lrandom
1 Zachary’s karate club 34 78 5 5 2.408199 2.399286

2 Dolphin social network 62 159 8 5 3.356953 2.693283

3 Les Miserables 77 254 5 4 2.641148 2.488380

4 Watts-Strogatz Network 100 500 4 4 2.235555 2.226060

5 Books about US politics 105 441 7 4 3.078754 2.394139

6 Word adjacencies 112 425 5 6 2.535553 2.558236

7 American College football 115 613 4 4 2.508161 2.250343

8 Fractal Scale-Free Lattice 172 341 16 7 6.622943 3.777373

9 barabasi-albert Network 213 1040 4 4 2.510541 2.595756

10 2-Mosaic networks 343 1024 32 7 6.240033 3.471007

11 Koch Network 513 768 10 13 5.157894 5.727294

12 Farey network 513 1023 9 11 5.449211 4.669691

13 2-Flower network 684 1024 32 15 11.142830 5.845276

14 Small-World Exponential Network 729 1092 11 14 7.010989 5.919793

Table 5.2: The diameter and the APL of real and random networks.
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Figure 5.3: The diameter and the APL of real networks

Figure 5.4: The diameter and the APL of random networks

5.3 Number and entropy of spanning trees of real and random Networks

In this section, we calculate the number of spanning trees for some real-world and random

networks using the electrically equivalent technique without going through the calculation

of Kirchhoff’s matrix and without the need for the existence of articulation nodes and the

planarity. Applying this technique for these types of networks, we get the exact value of
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their number of spanning trees. So, no need to find the exact equation of this number

and neither to verify the isomorphism. As an application of the number of spanning

trees of a network, we compute the entropy of spanning trees to quantify the robustness.

The most robust network is the network that has the highest entropy. In Table 5.3,

applying the electrically equivalent technique, we give the results of the number and the

entropy of spanning trees for some real-world networks. In Table 5.4, we give the results

of the number and the entropy of spanning trees for Erdos-Renyi random networks having

the same number of nodes and edges as the presented networks in Table 5.3. The only

condition for calculating the number of spanning trees is that all these real and random

networks must be connected. In Figure 5.5, we compare the entropy of spanning trees

of some real and random networks. We can see that the entropy of random networks is

almost larger than those of real-world networks due to their large number of spanning trees.

Consequently, the random networks are robust and their structure is more homogeneous

than the real-world networks having the same number of nodes and links.

N Type of network V E τreal ρreal

1 Zachary’s karate club 34 78 5.09099632302× 1015 0.3616

2 Dolphin social network 62 159 2.17175713551× 1032 0.7445

3 Les Miserables 77 254 2.03974706969× 1042 0.9742

4 Watts-Strogatz Network 100 500 9.16480112874× 1093 2.1635

5 Books about US politics 105 441 5.55633429016× 1082 1.9052

6 Word adjacencies 112 425 6.8594178138× 1076 1.7692

7 American College football 115 613 7.74002476226× 10111 2.5763

8 Fractal Scale-Free Lattice 172 341 5.78960446186581× 1076 1.0397

9 barabasi-albert Network 213 1040 2.988403704743589× 10186 2.0158

10 2-Mosaic networks 343 1024 2.006582604× 10205 1.3862

11 Koch Network 513 768 1.39008452377145× 10122 0.5493

12 Farey network 513 1023 9.90418468985189× 10209 0.9458

13 2-Flower network 684 1024 2.006582604× 10205 0.6931

14 Small-World Exponential Network 729 1092 4.70042056779386× 10173 0.5493

Table 5.3: The number and the entropy of spanning trees of real networks.
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N V E τrandom ρrandom
1 34 78 1.05860958932× 1018 0.4150
2 62 159 1.45016355662× 1037 0.8556
3 77 254 5.99585272075× 1055 1.2843
4 100 500 7.052459640644547× 1093 2.1609
5 105 441 1.43050550088× 1089 2.0528
6 112 425 1.65635617438× 1089 2.0543
7 115 613 4.62483134316× 10110 2.5481
8 172 341 7.192292267420218× 1078 1.0556
9 213 1040 1.0559617997499113× 10196 2.1190
10 343 1024 1.6648092131229848× 10234 1.5723
11 513 768 3.94135015033× 10159 0.7163
12 513 1023 1.26835361025× 10236 1.0597
13 684 1024 1.33756890122× 10215 0.7241
14 729 1092 3.68796589012× 10229 0.7250

Table 5.4: The number and the entropy of spanning trees of random networks.

Figure 5.5: Comparison between the entropy of spanning trees of real and random net-
works.

• Discussion

According to the above results, we deduce that the random network is the wrong

model for most real networks because its structural properties are different from those of

the real networks, but it is considered as the most robust model due to its high entropy

and its large number of spanning trees.
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5.4 Summary

In this chapter, we have given an overview of real networks, discussed their structural

properties such as the small-world property, the clustering coefficient and the degree

distribution. All these properties of real networks are compared with expected values

for random networks, showing that the clustering coefficients in the real network are

significantly larger than in the random networks. The low average distance and the

diameter have been observed in the real and random network. For the degree distribution

of random networks, it follows the binomial distribution. On the other hand, the degree

distribution of some real networks either follows a form of power-law or it follows an

exponential distribution or it is similar to that of the random network. Then, we have

calculated their number of spanning trees by using the electrically equivalent technique,

proving that this technique is general and can be applied to any type of networks. Finally,

we have evaluated and compared their entropy of spanning trees in order to predict which

network is more robust. As results, Although the random networks can not model the real

networks, they are the most robust models due to its high entropy and its large number

of spanning trees. .



GENERAL CONCLUSION AND PERSPECTIVES

In this general conclusion, we summarize the main results of our research on the modelling

and the analysis of complex networks and the evaluation of their complexity. Further-

more, we propose and discuss horizons for future research.

During this thesis, we have investigated three categories of complex networks: Scale-

free networks, small-world networks and random networks. We have proposed new models

dynamically evolving in time for each category. In one hand, we have discussed their it-

erative construction and their structural properties to understand their mechanism and

behaviour. On the other hand, we have focused on developing some combinatorial meth-

ods and geometric approaches that facilitate the calculation of their number of spanning

trees. As an application, we have used a measure of the entropy to quantify their robust-

ness and characterize their structures. In chapter 1, we have introduced an overview of

complex networks and some basic concepts of graph theory. In particular, spanning trees

and some matrices to represent a graph. Then, we have studied some important struc-

tural properties based on graph theory to analyze complex networks. Besides, we have

quoted the different models proposed by scientists. Then, we have moved to chapter 2,

which presents the different methods of calculating the number of spanning trees of a net-

work, classed as algebraic, combinatorial and geometric methods, especially the Kirchhoff

theorem, Fussner’s formula, the decomposition method, the suppression and contraction

method and the duality, etc. We have examined their main advantages and drawbacks and

we have also proposed some examples of their applications, such as the evaluation of the

complexity of Book networks, etc. In addition, we have suggested two real applications of
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the number of spanning trees, which are the reliability and the robustness of a network.

Our main result in this chapter was to develop some combinatorial methods and geometric

approaches as the generalization of the decomposition method following one articulation

node, the bipartition and the reduction approaches and the electrically equivalent tech-

nique to facilitate the calculation of the number of spanning trees of complex networks

without using the algebraic methods as Kirchhof theorem. To show the efficiency of the

proposed methods, we have applied them to the three categories of complex networks.

We have started by the small-world networks in chapter 3. We have examined three

models of small-world networks: Small-World Exponential network, Koch Network and

Farey network. we have proposed the generalization of each model. We have analyzed

their iterative construction and their structural properties. Then, we have calculated

their number of spanning trees: For the Small-World Exponential network and the Koch

Network, we have used the generalized decomposition method following one node and for

the Farey network, we have applied the electrically equivalent transformations. Finally,

we have evaluated their entropy of spanning trees to quantify their robustness and com-

pare them with other networks having the same average degree to estimate the robust

model. The main result of this chapter is that the generalization of our models affects

the small-world properties and the generalizations of the two first proposed models have

the same robustness, meaning the same entropy, although their structures, properties and

complexities are different. After that, we have moved to scale-free networks, which are

presented in chapter 4. We have proposed three models of scale-free networks and their

generalization: Flower network, Mosaic network and Fractal Scale-Free Lattice. We have

analyzed their construction and their structural properties such as the degree distribution,

the clustering coefficient, the diameter, the average path length, etc. Then, we have enu-

merated their spanning trees: For the Flower network and the Mosaic network, we have

used the reduction and the bipartition approaches and for the Fractal Scale-Free Lattice,

we have applied the electrically equivalent transformations. Finally, we have evaluated

their robustness by calculating their entropy and compared it with other networks having

the same average degree. The important result of this chapter is that the proposed gen-

eralization does not affect the scale-free property and the combinations of the reduction
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and the bipartition approaches lead to the same complexity with two different entropies

in spite of the difference in the structure and the properties of the two first proposed mod-

els. In chapter 5, we have analyzed the real and random networks. We have performed

a comparative study between real-world networks, all proposed models in the previous

chapters and random networks having the same number of nodes and links. We have

discussed their structural properties. Then, we have calculated their number of spanning

trees by applying the electrically equivalent transformations. Finally, we have evaluated

and compared their entropy of spanning trees to predict which network is more robust.

The crucial result of this chapter is that the proposed technique is efficient and more

general compared to the classical ones and we have deduced that the random network can

not model the real networks, but it is considered as the most robust model due to its high

entropy and its large number of spanning trees.

Regarding future work, we intend to analyze other new models of complex networks

and apply the electrically equivalent transformations to calculate their number of spanning

trees. We would like also to investigate the second application of the number of spanning

trees, which is the reliability of a network. In addition to the robustness of a network, we

will analyze the reliability of all the proposed networks in this thesis using our methods to

calculate the number of spanning trees and perform a comparative study between them

to predict the most reliable model. From a practical point of view, we would like to

bring theory into practice, especially in social networks. So, we can use the number of

spanning trees of a network to calculate two important measures, which are spanning

edge centrality and spanning edge betweenness. These measures are used to study how

information propagates or how traffic flows in a social network. They are considered as

useful tools for the analysis of very large networks with millions of nodes.
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Résumé  

 
L'analyse des réseaux complexes a été largement stimulée par les ressources de données massives et 

leur étude a été initiée pour une volonté de comprendre le comportement de divers systèmes réels. Pour 

comprendre leur mécanisme, de nombreuses propriétés structurelles sont utilisées, telles que la distance 

moyenne, le coefficient de clustering, la distribution des degrés, etc. Ces caractéristiques définissent trois 

modèles de réseaux complexes notamment les réseaux sans échelle, les réseaux petit monde et les réseaux 

aléatoires. Ces trois modèles affichent un comportement riche, observé dans une grande variété de systèmes 

réels, y compris Internet, WWW et les réseaux sociaux. Pour caractériser et analyser leur structure, la théorie 

des graphes dispose d'un outil puissant, nommé le nombre d'arbres couvrants d'un réseau, également appelé la 

complexité d'un réseau. Il est défini comme le nombre total des arbres contenant tous les sommets du réseau 

avec le plus petit nombre possible d'arêtes. L'objectif principal de ce travail est le calcul du nombre d'arbres 

couvrants d'un réseau, qui permet de prédire sa fiabilité et sa robustesse. En effet, le calcul de ce nombre reste 

un défi, en particulier pour les réseaux complexes. Nous nous sommes intéressés à la recherche des méthodes 

efficaces pour obtenir la formule exacte du nombre d'arbres couvrants pour les réseaux complexes. Le premier 

but de cette étude est de créer de nouveaux modèles évoluant de manière dynamique dans le temps pour chaque 

catégorie de réseaux complexes. Ensuite, calculer leurs propriétés structurelles pertinentes pour comprendre 

leurs mécanismes et leurs comportements. De plus, évaluer leur complexité en utilisant et améliorant des 

méthodes combinatoires et géométriques. Finalement, comme application, nous calculons leur entropie afin de 

quantifier leur robustesse et la comparer avec d'autres réseaux ayant le même degré moyen. 

 
Mots-clefs : Réseaux Complexes, Théorie des Graphes, Distance Moyenne, Diamètre, Coefficient de Clustering, 
Distribution des Degrés, Degré Moyen, Réseau Sans échelle, Réseau Petit Monde, Réseau Aléatoire, Arbre 
Couvrant, Complexité, Fiabilité, Robustesse, Entropie. 

 

Abstract  

 
Many real-world networks are modelled as complex networks due to their large structure and their 

dynamical behaviour. Graph theory provides efficient tools to understand and to analyze their mechanism. In 

fact, many structural properties are used such as the average path length, the diameter, the clustering 

coefficient, the degree distribution, the average degree, etc. Based on these features, three categories of complex 

networks are defined, namely scale-free networks, small-world networks and random networks. One of the 

important invariants to characterize their structures is the number of spanning trees of a network, which is 

defined as the total number of connected and acyclic subgraphs of a network having all its vertices and some or 

all its edges. In this work, the main objective is the calculation of the number of spanning trees of a network also 

known as the complexity of a network, which provides the prediction of its reliability and its robustness. 

However, the enumeration of spanning trees remains a challenge, particularly for complex networks. Recently, 

there has been much interest in finding efficient methods to obtain exact expressions of the number of spanning 

trees for complex networks. The primary interest of this study is to create new models for each category of 

complex networks based on real-networks that grow by the gradual addition of vertices and edges. Then, find 

their relevant structural properties to understand their mechanism. Furthermore, evaluate their complexity using 

combinatorial and geometric approaches. In the end, as an application, we calculate their entropy of spanning 

trees to quantify their robustness and compare them with other networks having the same average degree. 

 

 
Key Words: Complex Networks, Graph theory, Average Path Length, Diameter, Clustering Coefficient, Degree 
Distribution, Average Degree, Scale-Free Network, Small-World Network, Random Network, Spanning Tree, 
Complexity, Reliability, Robustness, Entropy. 
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