جامعة محمد الخامس RABAT - الباط - RABAT -

ROYAUME DU MAROC

Faculté des sciences کلیة العلوم

CENTRE D'ETUDES DOCTORALES - SCIENCES ET TECHNOLOGIES

 N° d'ordre : 3258

THESE

En vue de l'obtention du : **DOCTORAT**

Centre de Recherche : Centre des Sciences des Matériaux Structure de Recherche : Laboratoire de Chimie Appliquée des Matériaux Discipline : Chimie Spécialité : Sciences des Matériaux

Présentée et soutenue le : 16 /11/2019 par :

Jamal KHMIYAS

Synthèse, caractérisation et étude structurale des nouveaux phosphates : $(A_2/M)Zn_2Fe(PO_4)_3$ (A = Na, Ag et M = Ca); $MZn_2Fe_4(PO_4)_6$ (M = Zn, Cd); $AgSr_4Cu_{4.5}(PO_4)_6$ et $SrFe(HPO_4)(PO_4)$

JURY

Lahcen EL AMMARI	PES	Faculté des Sciences, Université Mohammed V	Président
		de Rabat – Maroc	
Abdelilah LAHMAR	IR-HDR	UFR des Sciences, Université de Picardie Jules	Rapporteur / Examinateur
		Verne – France	
Lotfi RGHIOUI	PES	Faculté des Sciences, Université Mohammed V	Rapporteur / Examinateur
		de Rabat – Maroc	
Fouad BENTISS	PES	Faculté des Sciences d'El Jadida, Université	Rapporteur / Examinateur
		Chouaib Doukkali – Maroc	
Mohamed AZROUR	PES	Faculté des Sciences et Techniques d'Errachidia,	Examinateur
		Université Moulay Ismail – Maroc	
Abderrazzak ASSANI	PES	Faculté des Sciences, Université Mohammed V	Directeur de Thèse
		de Rabat – Maroc	
Mohamed SAADI	PES	Faculté des Sciences, Université Mohammed V	Directeur de Thèse
		de Rabat – Maroc	

Année universitaire 2019-2020

☑ Faculté des Sciences, avenue Ibn Battouta, BP. 1014 RP, Rabat –Maroc
 ☎ 00212(05) 37 77 18 76 = 00212(05) 37 77 42 61; http://www. fsr.um5.ac.ma

Dédicaces

Au nom du Dieu le plus puissant le miséricordieux

Je dédie ce travail :

À la mémoire de mon père

À ma très chère mère

À ma femme, mes sœurs et mes frères

À ma petite fille

À toute ma famille

À tous ceux qui me sont chers

En témoignage de ma profonde reconnaissance

Jamal KHMIYAS

Remerciements

Les travaux réalisés dans le cadre de cette thèse ont été effectués au sein du Laboratoire de Chimie Appliquée des Matériaux (LCAM), Centre des Sciences des Matériaux, de la Faculté des Sciences de Rabat, sous la direction des Professeurs Monsieur **Abderrazzak ASSANI** et Monsieur **Mohamed SAADI**.

Je tiens tout d'abord à exprimer mon profond respect et ma reconnaissance ainsi que mes remerciements les plus sincères à mes directeurs de thèse Monsieur **Abderrazzak ASSANI** et Monsieur **Mohamed SAADI** Professeurs à la Faculté des Sciences, Université Mohammed V -Rabat-, de m'avoir accueilli chaleureusement dans leur structure de recherche, pour l'encadrement, les encouragements, les conseils prodigieux durant la réalisation de ce travail de thèse et le soutien moral pendant les moments difficiles. Qu'il me soit permis de leur témoigner aussi ma profonde gratitude pour le soin qu'ils ont apporté à ma formation de chercheur et pour leurs confiances qu'ils m'ont accordées.

Je remercie chaleureusement Monsieur Lahcen EL AMMARI, Professeur à la Faculté des Sciences, Université Mohammed V -Rabat- et Directeur du Laboratoire (LCAM), pour l'honneur qu'il m'a fait en acceptant de présider le jury de soutenance de ma thèse. Je souhaite aussi lui exprimer ma profonde reconnaissance pour ses conseils, sa patience, sa disponibilité, sa gentillesse, ses qualités humaines et ses efforts inlassablement déployés tout au long de ce travail.

Je remercie profondément Monsieur **Abdelilah LAHMAR**, Ingénieur de Recherche et Habilité à Diriger des Recherches à l'Université de Picardie Jules Verne (France), d'avoir accepté de juger ce travail de thèse en tant que rapporteur malgré ses nombreuses occupations.

Mes vifs remerciements vont également à Monsieur **Fouad BENTISS** Professeur à la Faculté des Sciences d'El Jadida, Université Chouaib Doukkali, qui me fait un grand honneur de vouloir accepter de rapporter les travaux de cette thèse et d'être membre du jury.

Je remercie sincèrement Monsieur Lotfi RGHIOUI Professeur à la Faculté des Sciences, Université Mohammed V -Rabat-, d'avoir accepté de rapporter cette thèse. Je suis sensible à l'honneur qu'il m'a fait en acceptant de participer à ce jury de thèse. Mes sincères remerciements s'adressent également à Monsieur **Mohamed AZROUR** Professeur à la Faculté des Sciences et Techniques d'Errachidia, Université Moulay Ismail, pour l'honneur qu'il me fait de bien examiner ce travail.

Mes remerciements vont, aussi, à mes collègues du Laboratoire de Chimie Appliquée des Matériaux (LCAM) de la Faculté des Sciences de Rabat, pour leurs aides, leurs soutiens, leur amitié, leur sympathie et l'esprit de travail qu'ils font régner au laboratoire.

Je ne saurais oublier dans ces remerciements ma famille et mes amis pour leur soutien indéfectible durant ces longues années de travail laborieux.

En fin, je tiens à remercier chaleureusement tous ceux qui ont contribué de près ou de loin à réalisation de ce travail.

Résumé

Les travaux réalisés dans le cadre de cette thèse portent sur l'élaboration, la caractérisation et la valorisation de nouveaux phosphates de cation mono, bi et trivalent.

Par réaction de diffusion à l'état solide nous avons pu isoler sous forme de monocristaux les nouveaux phosphates $A_2Zn_2Fe(PO_4)_3$ avec (A=Na, Ag) de type Alluaudite, MZn_2Fe4(PO_4)_6 avec (M = Zn, Cd) de type Howardevansite et CaZn_2Fe(PO_4)_3. Aussi, nous avons réussi la synthèse des monocristaux relatifs aux nouveaux phosphates $AgSr_4Cu_{4.5}(PO_4)_6$ et SrFe(HPO_4)(PO_4) par la méthode hydrothermale. La détermination structurale de ces phases a été entreprise en exploitant les données de diffraction des rayons-X (DRX) sur monocristal. Nous avons, également élaboré les phosphates $AgSr_4Cu_{4.5}(PO_4)_6$, $Na_2Zn_2Fe(PO_4)_3$, $CaZn_2Fe(PO_4)_3$ et CdZn_2Fe4(PO_4)_6 sous forme pulvérulente par diffusion à l'état solide. Ces dernières phases ont été examinées par microscopie MEB-EDS et par spectroscopie vibrationnelle Raman et Infrarouge.

Mots clés : Phosphate, Alluaudite, Howardevansite, synthèse hydrothermale, synthèse par diffusion à l'état solide, diffraction de rayons X, structure cristalline.

Abstract

The work carried out within the framework of this thesis deals with the elaboration, the characterization and the valorization of new mono, bi and trivalent cation phosphates.

By solid state diffusion reaction we have been able to isolate as single crystals the new Alluaudite-type phosphates $A_2Zn_2Fe(PO_4)_3$ with (A = Na, Ag), $MZn_2Fe_4(PO_4)_6$ with (M = Zn, Cd) Howardevansite-type and $CaZn_2Fe(PO_4)_3$. Also, we succeeded in the synthesis of single crystals related to the new phosphates $AgSr_4Cu_{4.5}(PO_4)_6$ and $SrFe(HPO_4)(PO_4)$ by the hydrothermal method. The structural determination of these phases was undertaken by exploiting single-crystal X-ray diffraction (XRD) data. We have also synthesized the phosphates $AgSr_4Cu_{4.5}(PO_4)_6$, $Na_2Zn_2Fe(PO_4)_3$, $CaZn_2Fe(PO_4)_3$ and $CdZn_2Fe_4(PO_4)_6$ in powder form by solid state diffusion. These phases were examined by SEM-EDS microscopy, Raman and Infrared vibrational spectroscopy.

Key words: Phosphate, Alluaudite, Howardevansite, hydrothermal synthesis, solid state diffusion synthesis, X-ray diffraction, crystal structure.

Table des matières

Liste de figuresI
Liste de tableaux V
Introduction générale
Chapitre I : Recueil bibliographique sur les mono-phosphates de cations mono, bi, et
trivalents4
I-1 Introduction
I-2 Recueil bibliographie sur les monophosphates
I-2-1 Les monophosphates
I-2-2 Les monophosphates de fer, de cuivre et de zinc7
I-2-3 Les orthophosphates de type Alluaudite
I-2-4 Les orthophosphates de type $AB_2Fe^{III}(PO_4)_3$ avec A, B = cations bivalents
I-2-5 Les hexaphosphates de formule générale $A^{2+}_{3+n}B^{3+}_{4-n}(PO_4)_{6-n}(HPO_4)_n$ (n≤4)14
I-3 Conclusion 16
Chapitre II : Synthèse et étude structurale des nouveaux monophosphates:
$A_2Zn_2Fe(PO_4)_3 (A = Na, Ag)17$
II-1 Introduction
II-2 Synthèses des cristaux et déterminations structurales des nouveaux phosphates $A_2Zn_2Fe(PO_4)_3$ (A= Na , Ag)
II-2-1 Synthèse des cristaux des nouveaux phosphates $A_2Zn_2Fe(PO_4)_3$ (A= Na , Ag) 19
II-2-2 Etude structurale de $A_2Zn_2Fe(PO_4)_3$ (A = Na ou Ag) par diffraction des rayons-X (DRX) sur monocristal
II-2-2-1 Résolution et affinement structurale de $A_2Zn_2Fe(PO_4)_3$ (A = Na ou Ag)20
II-2-2-2 Descriptions structurales des orthophosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
II-3 Synthèse et caractérisation du phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃ sous forme pulvérulente 37
II-3-1 Essais de synthèse du phosphate $A_2Zn_2Fe(PO_4)_3$ (A = Na, Ag) sous forme pulvérulente 37
II-3-2 Caractérisation de Na ₂ Zn ₂ Fe(PO ₄) ₃ sous forme polycristalline

II-3-2-1 Affinement du profil total du diagramme de diffraction de Na ₂ Zn ₂ Fe(PO ₄) ₃ 38
II-3-2-2 Caractérisation par microscopie électronique à balayage (MEB) du phosphate
$Na_2Zn_2Fe(PO_4)_3$
II-3-2-3 Etude spectroscopique
II-3-2-3-1 Analyse par spectroscopie infrarouge (IR)
II-3-2-3-2 Analyse par spectroscopie Raman
II-4 Conclusion
Chapitre III : Synthèse et étude structurale des nouveaux orthophosphates
$CaZn_2Fe(PO_4)_3$ et MZn_2Fe ₄ (PO_4) ₆ (M = Zn, Cd)
III-1 Introduction
III-2 Synthèse et détermination structurale du nouveau phosphate CaZn ₂ Fe(PO ₄) ₃ 47
III-2-1 Synthèse des cristaux du monophosphate CaZn ₂ Fe(PO ₄) ₃
III-2-2 Détermination structurale de CaZn ₂ Fe(PO ₄) ₃
III-2-2-1 Résolution et affinement structurale du nouveau phosphate CaZn ₂ Fe(PO ₄) ₃ 49
III-2-2-2 Description structurale de CaZn ₂ Fe(PO ₄) ₃
III-3 Synthèse et caractérisation de CaZn ₂ Fe(PO ₄) ₃ sous forme pulvérulente60
III-3-1 Synthèse de poudre du monophosphate CaZn ₂ Fe(PO ₄) ₃ 60
III-3-2 Caractérisation par diffraction des rayons-X (DRX) sur poudre61
III-3-2-1 Affinement du profil total
III-3-3 Analyse par microscope électronique à balayage (MEB) de CaZn ₂ Fe(PO ₄) ₃ 62
III-3-4 Caractérisation par spectroscopies IR et Raman
III-3-4-1 Spectroscopie infrarouge (IR)
III-3-4-2 Spectroscopie Raman
III-4 Synthèses et déterminations structurales des nouveaux phosphates $MZn_2Fe_4(PO_4)_6$
(M= Zn, Cd)66
III-4-1 Synthèse des cristaux des nouveaux phosphates $MZn_2Fe_4(PO_4)_6$ (M= Zn, Cd) 66
III-4-2 Etude structurale des phosphates $MZn_2Fe_4(PO_4)_6$ (M= Zn, Cd)67
III-4-2-1 Résolution et affinement structurale de MZn ₂ Fe ₄ (PO ₄) ₆ (M= Zn, Cd) 67
III-4-2-2 Caractérisation par microscopie électronique à balayage (MEB/EDS) des
monocristaux du phosphate Zn ₃ Fe ₄ (PO ₄) ₆ 72

III-4-2-3 Description structurale de $MZn_2Fe_4(PO_4)_6$ (M= Zn , Cd)74
III-5 Synthèse et caractérisation du phosphate CdZn ₂ Fe ₄ (PO ₄) ₆ sous forme pulvérulente 89
III-5-1 Synthèse de poudre de l'orthophosphate CdZn ₂ Fe ₄ (PO ₄) ₆
III-5-2 Affinement du profil total du diagramme de diffraction de CdZn ₂ Fe ₄ (PO ₄) ₆ 90
III-5-3 Caractérisation par microscopie électronique à balayage (MEB) du phosphate
$CdZn_2Fe_4(PO_4)_691$
III-5-4 Caractérisation par spectroscopie vibrationnelle
III-5-4-1 Spectroscopie infrarouge
III-5-4-2 Spectroscopie Raman
III-6 Conclusion
Chapitre IV : Elaboration, caractérisation et étude structurale du nouveau phosphate
AgSr4Cu4.5(PO4)6
IV-1 Introduction
IV-2 Synthèse des cristaux de AgSr ₄ Cu _{4.5} (PO ₄) ₆
IV-3 Étude structurale du nouveau monophosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆
IV-3-1 Résolution et affinement structurale du nouveau phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ 99
IV-3-2 Description structurale du nouveau phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ 102
IV-4 Synthèse et caractérisation du nouveau phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ sous forme pulvérulente
IV-4-1 Protocole de synthèse de AgSr ₄ Cu _{4.5} (PO ₄) ₆
IV-4-2 Affinement du profil total du diagramme DRX sur poudre de AgSr ₄ Cu _{4.5} (PO ₄) ₆ 116
IV-5 Caractérisation par microscopie électronique à balayage (MEB) du phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆
IV-6 Conclusion
Chapitre V : Synthèse et étude structurale du nouveau monophosphate
SrFe(HPO ₄)(PO ₄)
V-1 Introduction
V-2 Etude des systèmes A ₂ O-SrO-MO-P ₂ O ₅ (M= Fe , Cu), (A= Ag, Na, K, Rb, Cs) 121
V-3 Détermination structurale de SrFe(HPO ₄)(PO ₄) par diffraction des rayons-X sur
monocristal

V-3-1 Résolution et affinement structural de SrFe(HPO ₄)(PO ₄) 1	23
V-3-2 Description structurale de SrFe(HPO ₄)(PO ₄)	25
V-4 Essais de synthèses des cristaux de MFe(HPO ₄)(PO ₄) (M = Ca, Ba, Cd, Mg, Pb) 1	35
V-5 Conclusion1	36
Conclusion générale et perspectives1	38
ANNEXE : Techniques expérimentales14	42
Introduction	43
I- Méthodes d'élaborations des matériaux phosphatés14	43
I-1 Synthèse par voie solide1	43
I-1-1 Synthèse des monocristaux par voie solide1	43
I-1-2 Synthèse de poudre par voie sèche 1	44
I-2 Synthèse hydrothermale	44
I-2-1 L'autoclave 1	46
I-2-2 Protocole expérimentale1	47
II- Caractérisation structurale par diffraction des rayons-X (DRX)14	47
II-1 Caractérisation par diffraction des rayons-X sur monocristal 1	48
II-1-1 Sélection du monocristal 1	48
II-1-2 Examen préliminaire1	49
II-1-3 Collecte de l'intensités diffractées et réduction des données 1	50
II-1-4 Résolution et affinement de la structure cristalline1	51
II-1-5 Description de la structure	51
II-2 Caractérisation par diffraction des rayons-X sur poudre1	51
III- Analyses par microscope électronique à balayage (MEB/EDS)1	52
IV- Analyses par spectroscopies infra-rouge (IR) et Raman1	53
Références bibliographiques1	55

Liste de figures

Figure I.1: Groupement $(PO_4)^{3-}$ de symétrie tétraédrique (T_d)
Figure I.2: Projection de la structure Alluaudite $Na_{0.625}Mn_{1.125}Ca_{0.125}Mg_{0.049}$ Li _{0.025} Fe _{1.976} (PO ₄) ₃ dans le
plan (\vec{a}, \vec{b})
Figure I.3 : Projection de la structure de Fe ₇ (AsO ₄) ₆ dans le plan (011)16
Figure II.1 : Protocole expérimental de synthése de A ₂ Zn ₂ Fe(PO ₄) ₃ (A=Na ou Ag)20
Figure II.2 : Agencement tridimensionnel des polyèdres dans Na _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃
Figure II.3 : Connectivité des polyèdres de coordination dans Ag _{1.65} Zn _{1.65} Fe _{1.35} (PO ₄) ₃
Figure II.4 : Environnement tétraédrique de P(1) et P(2) dans les phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et
$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Figure II.5 : Environnement des atomes $Fe(1)$ et $Zn(1)$ dans les phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et
$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Figure II.6: Environnement des atomes Zn(2) dans les phosphates Na _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃ 30
Figure II.7 : Environnement de Na(1) et Ag(1) dans les structures deNa _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃ et de
$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Figure II.8: Environnement des atomes $Na(2)$ et $Ag(2)$ dans $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et
$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Figure II.9: Dimères $(Fe(1)/Zn(1))_2O_{10}$ dans la structure des phosphates (a) $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et
(b) $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Figure II.10: Illustration d'une chaine en zigzag évoluant suivant la rangeé [101] , pour les deux
$structures \ Na_{1.67} Zn_{1.67} Fe_{1.33} (PO_4)_3 \ et \ Ag_{1.65} Zn_{1.65} Fe_{1.35} (PO_4)_3 \ \dots \ 33$
Figure II.11: Feuillet parallèle au plan (101) dans la structure des deux phosphates
$Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3 \ et \ Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Figure II.12 : Projection d'un feuillet suivant la direction [001]
Figure II.13 : Interconnexion des feuillets suivant la direction [001]
Figure II.14 : Projection de la structure de A ₂ Zn ₂ Fe(PO ₄) ₃ (A=Na , Ag) suivant la direction [001] 35
$Figure \ II.15: Dimensions \ des \ tunnels \ dans \ la \ structure \ du \ phosphate \ Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_336$
$Figure \ II.16: Dimensions \ des \ tunnels \ dans \ la \ structure \ du \ phosphate \ Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_336$
Figure II.17 : Diffractogrammes (DRX) calculé, observé et leur différence dans Na ₂ Zn ₂ Fe(PO ₄) ₃ 38
Figure II.18: Micrographies MEB du nouveau phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃
Figure II.19: Spectre EDS de la poudre du phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃
Figure II.20: Spectre infrarouge du phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃
Figure II.21: Spectre de diffusion Raman du nouveau phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃
Figure II.22 : Spectres de diffusion Raman de $Na_2Zn_2Fe(PO_4)_3(1)$ et ceux des Alluaudites du sud de
Dakota (2) et de Rwanda (3)

$Figure \ III.1: Disposition \ spatial \ des \ polyèdres \ du \ phosphate \ CaZn_2Fe(PO_4)_3 \ \ 53$
Figure III.2 : Environnement des atomes P(1), P(2) et P(3) dans la structure de CaZn ₂ Fe(PO ₄) ₃
Figure III.3 : Environnement de Zn(1) dans la structure de CaZn ₂ Fe(PO ₄) ₃
Figure III.4 : Environnement de Zn(2) dans la structure de $CaZn_2Fe(PO_4)_3$
Figure III.5 : Environnement octaédrique de Fe(1) dans la structure de CaZn ₂ Fe(PO ₄) ₃
Figure III.6: Environnement de Ca(1) dans la structure de CaZn ₂ Fe(PO ₄) ₃
Figure III.7 : Représentation tridimensionnelle du dimère Zn ₂ O ₈
Figure III.8 : Vue en perspective sur l'entité $[Zn_2Fe_2O_{16}]$
Figure III.9 : Représentation du feuillet parallèle au plan (101) dans le phosphate CaZn ₂ Fe(PO ₄) ₃ 58
Figure III.10 : Projection des feuillets à $y = 0$ et à $y = 0,5$ dans le plan (001) pour le phosphate
$CaZn_2Fe(PO_4)_3$
Figure III.11 : Projection de la structure de CaZn ₂ Fe(PO ₄) ₃ dans le plan (110)
Figure III.12: Diffractogrammes (DRX) calculé, observé de CaZn ₂ Fe(PO ₄) ₃ et leur différence
Figure III.13 : Micrographies MEB et spectre EDS de la poudre du nouveau phosphate $CaZn_2Fe(PO_4)_3$
Figure III.14: Spectre infrarouge du nouveau phosphate CaZn ₂ Fe(PO ₄) ₃
Figure III.15: Spectre de diffusion Raman du nouveau phosphate CaZn ₂ Fe(PO ₄) ₃ 65
Figure III.16: Protocole expérimental suivi pendant la synthèse par voie solide des deux composés du
phosphate $MZn_2Fe_4(PO_4)_6$ (M= Zn ou Cd)
Figure III.17: Micrographie MEB du monocristal relatif au nouveau phosphate Zn ₃ Fe ₄ (PO ₄) ₆ 72
Figure III.18: Spectre EDS du nouveau phosphate Zn ₃ Fe ₄ (PO ₄) ₆ 72
Figure III.19: Répartitions des divers éléments constitutifs du monocristal du nouveau phosphate
$Zn_3Fe_4(PO_4)_6$
Figure III.20: Arrangement spatial des polyèdres de coordination dans le phosphate Zn ₃ Fe ₄ (PO ₄) ₆ 77
$Figure \ III.21: Vue \ en \ perspective \ sur \ les \ polyèdres \ de \ coordination \ dans \ le \ phosphate \ CdZn_2Fe_4(PO_4)_6$
Figure III.22: Environnement tétraédrique de l'atome P(1) dans la structure des phosphates Zn ₃ Fe ₄ (PO ₄) ₆
$et\ CdZn_2Fe_4(PO_4)_6\ldots\ldots 79$
Figure III.23: Environnement tétraédrique de l'atome P(2) dans la structure des phosphates Zn ₃ Fe ₄ (PO ₄) ₆
et $CdZn_2Fe_4(PO_4)_6$
Figure III.24: Environnement tétraédrique de l'atome P(3) dans la structure des phosphates
$Zn_{3}Fe_{4}(PO_{4})_{6}et\ CdZn_{2}Fe_{4}(PO_{4})_{6}80$
$Figure \ III.25: Environnement \ des \ atomes \ Fe(1) \ dans \ les \ phases \ Zn_3Fe_4(PO_4)_6 \ et \ CdZn_2Fe_4(PO_4)_6 \ 81$
Figure III.26: Environnement des atomes $Fe(2)$ dans les deux phases $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$
Figure III.27: Environnement de l'atome $Zn(1)$ dans la structure des phosphates $Zn_3Fe_4(PO_4)_6$ et
$CdZn_2Fe_4(PO_4)_6$

Figure III.28: Environnement des atomes Zn(2) et Cd(1) dans la structure des phosphates
$Zn_{3}Fe_{4}(PO_{4})_{6} \ et \ CdZn_{2}Fe_{4}(PO_{4})_{6} \ \dots \ 83$
Figure III.29: Environnement de l'atome Cd(2) dans le composé CdZn ₂ Fe ₄ (PO ₄) ₆
Figure III.30: Représentation des dimères $[Fe(1)_2O_{10}]$ dans les phases (a) $Zn_3Fe_4(PO_4)_6$,
(b) $CdZn_2Fe_4(PO_4)_6$
Figure III.31: Représentation des dimères $[Fe(2)_2O_{10}]$ dans les phases (a) $Zn_3Fe_4(PO_4)_6$,
(b) $CdZn_2Fe_4(PO_4)$
Figure III.32: Représentation de la chaîne en zigzag le long de [101]
Figure III.33: Représentation des chaînes en zigzag dans le plan (010)
Figure III.34: Projection d'une couche dans le plan (010)
Figure III.35: Projection de la structure du phosphate $Zn_3Fe_4(PO_4)_6$ dans le plan (100)
$Figure \ III.36: \ Projection \ de \ la \ structure \ du \ phosphate \ CdZn_2Fe_4(PO_4)_6 \ dans \ le \ plan \ (100) \ \ 88$
Figure III.37: Diffractogrammes (DRX) calculé, observé de CdZn ₂ Fe ₄ (PO ₄) ₆ ainsi que leur différence
$Figure \ III.38: Micrographie \ MEB \ de \ la \ poudre \ du \ nouveau \ phosphate \ CdZn_2Fe_4(PO_4)_691$
$Figure \ III.39: Spectre \ EDS \ de \ la \ poudre \ du \ nouveau \ phosphate \ CdZn_2Fe_4(PO_4)_692$
$Figure \ III.40: Spectre \ infrarouge \ du \ nouveau \ phosphate \ CdZn_2Fe_4(PO_4)_6 \93$
Figure III.41: Spectre de diffusion Raman du nouveau phosphate CdZn ₂ Fe ₄ (PO ₄) ₆ 94
Figure IV.1: Agencement tridimensionnel des divers polyèdres dans la structure du nouveau phosphate
$AgSr_{4}Cu_{4.5}(PO_{4})_{6}105$
Figure IV.2: Environnement des atomes P(1), P(2) et P(3) dans la structure de AgSr ₄ Cu _{4.5} (PO ₄) ₆ 106
Figure IV.3: Environnement des atomes P(4), P(5) et P(6) dans la structure de AgSr ₄ Cu _{4.5} (PO ₄) ₆ 106
Figure IV.4: Environnement de l'atome Cu(1) dans la structure du phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ 107
Figure IV.5: Environnement de l'atome Cu(2) dans la structure de la phase AgSr ₄ Cu _{4.5} (PO ₄) ₆ 108
Figure IV.6: Environnement de l'atome Cu(3) dans la phase AgSr ₄ Cu _{4.5} (PO ₄) ₆ 109
Figure IV.7: Environnement des atomes Cu(4) dans la phase AgSr ₄ Cu _{4.5} (PO ₄) ₆ 109
Figure IV.8: Environnement des atomes Cu(4) et Cu(5) dans la phase AgSr ₄ Cu _{4.5} (PO ₄) ₆ 110
Figure IV.9: Environnement de atomes Sr(1), Sr(2), Sr(3) et Sr(4) dans la structure de la phase
$AgSr_4Cu_{4.5}(PO_4)_6$
Figure IV.10: Environnement de l'atome Ag(1) dans la structure de la phase AgSr ₄ Cu _{4.5} (PO ₄) ₆ 112
$Figure \ IV.11: Représentation \ du \ trimère \ [Cu_3O_{12}]^{18-} formé \ par \ Cu(5)O_5 \ , \ Cu(2)O_4 \ et \ Cu(4)O_5 \ 113$
Figure IV.12: Représentation du trimère $[Cu_3O_{12}]^{18-}$ formé par $Cu(1)O_4$ et deux $Cu(3)O_5$ 113
Figure IV.13: Représentation du premier type de ruban $[Cu_3P_{10} O_{40}]^{24}$ 114
Figure IV.14: Représentation du second type de ruban $[Cu_3P_{10} O_{40}]^{24}$ 114
Figure IV.15: Représentation d'un feuillet $[Cu_{4.5}(PO_4)_6]^{9-}$ dans le plan (\vec{b}, \vec{c})
Figure IV.16: Projection de la structure de AgSr ₄ Cu _{4.5} (PO ₄) ₆ dans le plan (\vec{a}, \vec{c}) 115

Figure IV.17: Diagrammes de diffraction X calculé, observé et leur différence pour le composé
$AgSr_{4}Cu_{4.5}(PO_{4})_{6}117$
Figure IV.18: Microanalyse EDS du nouveau phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ 118
Figure IV.19 : Micrographies MEB du nouveau phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ élaboré à T=580°C 119
Figure V.1 : Agencement tridimensionnel des polyèdres de coordination de SrFe(HPO ₄)(PO ₄) 127
Figure V.2 : Environnement de P(1) dans la structure de SrFe(HPO ₄)(PO ₄) 128
Figure V.3 : Environnement de P(2) dans la structure de SrFe(HPO ₄)(PO ₄) 128
Figure V.4: Environnement de Fe dans la structure de SrFe(HPO ₄)(PO ₄)129
Figure V.5: Environnement de Sr dans la structure de SrFe(HPO ₄)(PO ₄)
Figure V.6: Feuillet [Fe(HPO ₄)(PO ₄)] ²⁻ paralléle au plan (010)
Figure V.7: Formes et dimensions des cavités (1) et (2)
Figure V.8: Forme et dimension de la cavité (3)
Figure V.9: Liaison hydrogène O8-H8····O8 dans SrFe(HPO4)(PO4) et morphologie de la cavité
hôte (3)
Figure V.10 : Représentation d'un feuillet de SrFe(HPO ₄)(PO ₄) dans le plan (\vec{a}, \vec{c})
Figure V.11: Représentation d'un feuillet de l'Yavapaiite KFe ^{III} (SO ₄) ₂ dans le plan (\vec{a}, \vec{b})
Figure V.12: Projection de la structure de SrFe(HPO ₄)(PO ₄) dans le plan (\vec{b}, \vec{c})

Liste de tableaux

Tableau I.1: Techniques de synthèses et leurs phases relatives 9
Tableau I.2: Exemples de phosphates de sodium ou d'argent appartenant à la famille Alluaudite 12
Tableau I.3: Données cristallographiques de quelques phosphates de type A ^{II} B ₂ ^{II} Fe ^{III} (PO ₄) ₃ 14
Tableau II.1: Exemples phases de phosphatés de cation monovalents de type Alluaudite
Tableau II.2: Données cristallographiques et conditions d'enregistrement des intensités de diffraction
des rayons-X sur monocristal de $Na_{1.67}Zn_{1.67}Fe_{1.33}$ (PO ₄) ₃ et Ag _{1.65} Zn _{1.65} Fe _{1.35} (PO ₄) ₃ 22
Tableau II.3 : Résultats d'affinements des deux structures des phosphates Na _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃ et
$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Tableau II.4 : Positions atomiques et facteurs des déplacements atomiques isotropes équivalents (Å ²)
des phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3^*$
Tableau II.5 : Facteurs des déplacements atomiques anisotropes (Å ²) dans la structure des phosphates
$Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3^*$
Tableau II.6: Valences des liaisons cationiques dans les deux structures Na _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃ et
$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Tableau II.7: Principaux distances (Å) et angles interatomiques (°) dans les structures de
$Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$
Tableau II.8 : Paramètres de maille affinés, volume et facteurs de reliabiltès de Na ₂ Zn ₂ Fe(PO ₄) ₃ 39
Tableau II.9: Pourcentages massiques des éléments obtenus par EDS 40
Tableau II.10: Attributions des fréquences Infrarouge observées pour le phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃ . 42
Tableau II.11: Attributions des fréquences Raman (cm ⁻¹) observées pour le phosphate Na ₂ Zn ₂ Fe(PO ₄) ₃
Tableau III.1 : Données cristallographiques et Conditions d'enregistrement des intensités de diffraction
des rayons-X sur un monocristal de CaZn ₂ Fe(PO ₄) ₃
Tableau III.2 : Résultats d'affinement de la structure du nouveau monophosphate CaZn ₂ Fe(PO ₄) ₃ 50
Tableau III.3 : Positions atomiques et paramètres de déplacements atomiques
Tableau III.4 : Facteurs de déplacements atomiques anisotropes (Å ²) dans la structure de CaZn ₂ Fe(PO ₄) ₃
Tableau III.5 : Valeurs des valences de liaisons des cations du phosphate CaZn ₂ Fe(PO ₄) ₃
Tableau III.6 : Principaux distances interatomiques (Å) et angles interatomiques (°) dans la structure
de CaZn ₂ Fe(PO ₄) ₃
Tableau III.7 : Comparaison des distances interatomiques Zn-O dans les tétraèdres ZnO ₄ de certains
phosphates
Tableau III.8: Données cristallographiques de quelques phosphates de type A ^{II} B ₂ ^{II} Fe ^{III} (PO ₄) ₃ 60
Tableau III.9: Paramètres de maille affinés, volume et facteurs de reliabiltés de CaZn ₂ Fe(PO ₄) ₃ 62

Tableau III.10 : Attributions des fréquences Infrarouge (cm ⁻¹) observées pour le nouveau phosphate
CaZn ₂ Fe(PO ₄) ₃
Tableau III.11: Attributions des fréquences Raman (cm-1) observées pour le nouveau phosphate
$CaZn_2Fe(PO_4)_3$
Tableau III.12: Données cristallographiques et conditions d'enregistrement des intensités de diffraction
des rayons-X sur monocristal des phosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$
Tableau III.13: Résultats d'affinement de la structure des nouveaux phosphates $Zn_3Fe_4(PO_4)_6$,
$CdZn_2Fe_4(PO_4)_6$
Tableau III.14: Positions atomiques et facteurs des déplacements atomiques isotropes équivalents (Å ²)
des phosphates $Zn_3Fe_4(PO_4)_6$, $CdZn_2Fe_4(PO_4)_6^*$
Tableau III.15: Facteurs des déplacements atomiques anisotropes (Å ²) dans la structure des phosphates
$Zn_3Fe_4(PO_4)_6 \text{ et } CdZn_2Fe_4(PO_4)_6^*$
Tableau III.16: Pourcentages massiques des éléments constituants du phosphate Zn ₃ Fe ₄ (PO ₄) ₆ 73
Tableau III.17: Principaux distances (Å) et angles interatomiques (°) dans les structures des phosphates
$Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$
Tableau III.18: Valences des liaisons cationiques dans les deux structures $Zn_3Fe_4(PO_4)_6$ et
$CdZn_2Fe_4(PO_4)_6$
Tableau III.19: Paramètres de maille des phosphates de type Howardevansite et leurs techniques de
synthèses
Tableau III.20: Paramètres de maille affinés, volume et facteurs de reliabiltès de CdZn ₂ Fe ₄ (PO ₄) ₆ 90
Tableau III.21: Attributions des fréquences Infrarouge (cm ⁻¹) observées pour le nouveau phosphate
$CdZn_2Fe_4(PO_4)_6$
Tableau III.22: Attributions des fréquences Raman (cm ⁻¹) observées pour le phosphate CdZn ₂ Fe ₄ (PO ₄) ₆
Tableau IV.1: Données cristallographiques et conditions d'enregistrement des intensités de diffraction
des rayons-X sur monocristal de AgSr ₄ Cu _{4.5} (PO ₄) ₆
Tableau IV.2 : Résultats d'affinement de la structure du nouveau monophosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ 99
Tableau IV.3 : Positions atomiques et paramètres de déplacements atomiques isotropes équivalents (Å ²)
du nouveau monophosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆
Tableau IV.4 : Facteurs de déplacements atomiques anisotropes (Å ²) dans la structure du phosphate
AgSr ₄ Cu _{4.5} (PO ₄) ₆
Tableau IV.5 : Valences des liaisons cationiques dans les deux structures AgSr ₄ Cu _{4.5} (PO ₄) ₆ 102
Tableau IV.6 : Principaux distances (Å) et angles interatomiques (°) dans la structure du phosphate
$AgSr_4Cu_{4.5}(PO_4)_6$
Tableau IV.7: Paramètres de maille affinés, volume et facteurs de reliabiltés de AgSr ₄ Cu _{4.5} (PO ₄) ₆ 117
Tableau IV.8 : Pourcentages massiques des éléments constituants du phosphate AgSr ₄ Cu _{4.5} (PO ₄) ₆ 118

Tableau V.1 : Conditions expérimentales et bilan d'investigations hydrothermales des systèmes
A ₂ O-SrO-MO-P ₂ O ₅ (M= Fe , Cu) et (A= Ag, Na, K, Rb, Cs)
Tableau V.2: Données cristallographiques et conditions d'enregistrement des intensités de diffraction
des rayons-X sur monocristal de SrFe(HPO ₄)(PO ₄)
Tableau V.3: Résultats d'affinement de la structure du nouveau monophosphate SrFe(HPO ₄)(PO ₄) 124
Tableau V.4: Positions atomiques et paramètres de déplacements atomiques isotropes 124
TableauV.5: Facteurs de déplacements atomiques anisotropes (Å2) dans la structure de
SrFe(HPO ₄)(PO ₄)
Tableau V.6: Valeur des valences de liaisons des atomes du phosphate SrFe(HPO ₄)(PO ₄) 125
Tableau V.7: Principaux distances (Å) et angles interatomiques (°) dans la structure de SrFe(HPO ₄)(PO ₄)
Tableau V.8: Liaison hydrogène dans le monophosphate SrFe(HPO ₄)(PO ₄) 127
Tableau V.9: Caractéristiques géométriques des liaisons hydrogène dans certains monophosphates 133
Tableau V.10: Récapitulatif des résultats de tentatives d'élaborations de MFe(HPO ₄)(PO ₄) (M = Ca, Ba,
Cd, Mg, Pb) par voie hydrothermale

Introduction générale

Introduction générale

L'émergence du besoin accru en nouveaux matériaux performants et répondant à la fois aux divers critères habituellement exigés que se soient écologique, économique, etc..., constitue un défi majeur pour la communauté scientifique. Au cœur de ce développement, la chimie des matériaux phosphatés à charpentes ouvertes est actuellement en plein essor [1]. En 1982, la découverte capitale de la famille des aluminophosphates (AlPO₄-n) de structure zéolitique fut une source d'inspiration pour la mise en œuvre de nouveaux phosphates métalliques à charpentes ouvertes [2]. Peu de temps après, la résolution structurale du phosphate de fer AlFe₂₄(OH)₁₂(PO₄)₁₇(H₂O)₂₄].51H₂O connu sous le nom de Cacoxénite [3], révéla que ladite structure contenait de larges canaux cylindriques de 1,4 nm de diamètre, formés par 36 polyèdres d'où l'appellation (36R) [4]. Ces travaux et autres ont fait que les phases minérales aussi bien naturelles que synthétiques à divers complexes oxo-anions deviennent de plus en plus attrayantes notamment grâce à l'apparition de nombreux matériaux à caractère micro [5] et mésoporeux (exemples : phosphates de Ce, Al, Ti, Zr et Fe) [6], les métalloaluminophosphates (MeAPO) avec :(Me = Co, Fe, Zn, Mg, Mn, etc...), et les silicoaluminophosphates (SAPO) [7]), susceptibles d'engendrer des propriétés physicochimiques remarquables.

Durant cette course effrénée de la chimie des matériaux, une attention particulière a été accordée aux phosphates de métaux de transition qui constituent de nos jours l'une des classes de matériaux les plus étudiées en chimie minérale sans équivoque. Se caractérisant aussi bien par leurs richesses que par leurs originalités structurales et leurs diversités topologiques, la recherche de telles phases innovantes est loin d'être épuisée. Du point de vue cristallographique, ces structures sont généralement construites à base de charpentes anioniques résultantes d'une succession d'oxoanions tétraédriques PO_4^{3-} , reliés à des cations métalliques de coordinances variées : MO_n (avec n = 4, 5 et 6) [8]. Cet agencement génère un environnement interstitiel approprié pour l'insertion des cations comme Ag^+ , les cations alcalins et alcalino-terreux (Na⁺, Ca²⁺, Sr²⁺, etc...).

L'entrain particulier pour les phosphates de métaux de transition est aussi justifié par le fait qu'ils sont dotés de hautes potentialités leurs permettant de substituer efficacement certains matériaux existants et/ou de jouer le rôle de matériaux multifonctionnels capables d'être utilisés, à titre d'exemples, en autant que fertilisant [9], bio-minéralisant en milieu aquatique [10], capteur de gaz (LiFePO₄) [11], pigments anticorrosifs (CaZn₂(PO₄)₂) [12]. Les phosphates de métaux de transition trouvent leurs application aussi en ingénierie des micro-

batteries Li₃Fe₂(PO₄)₃ [13], la conception de composites (Zn₃(PO₄)₂·4H₂O) [14] , en céramique (NaFeNb(PO₄)₃) [15], l'élaboration des tamis moléculaires comme les ferroaluminophosphate (FAPO-5) [16] , (H₃O⁺,NH₄⁺)₄[Ni₁₈(HPO₄)₁₄(OH)₃F₉]·12H₂O et Ni₂₀[(OH)₁₂(H₂O)₆][(HPO₄)₈(PO₄)₄]·12H₂O) [17] , en tant que matériaux multifonctionnel comme FePO₄ jouant le rôle de : catalyseur [18], adsorbant spécifique des métaux lourds [19] , intervenant dans l'immobilisation des déchets radioactives [20], etc...

Depuis des décennies, les chercheurs du Laboratoire de Chimie Appliquée des Matériaux (LCAM), Centre des Sciences des Matériaux, Université Mohammed V de Rabat – Maroc, se sont impliqués dans un vaste programme visant la conception et la valorisation de nouveaux matériaux phosphatés. Ces efforts ont été concrétisés par la publication d'un grand nombre de travaux dans des revues scientifiques de renommées internationales.

S'inscrivant dans un tel contexte et en guise de contribution à ce vaste programme déjà initié dans le laboratoire (LCAM), nous développerons dans le présent travail la synthèse, la caractérisation et la valorisation de nouveaux phosphates à base de cations mono bi et trivalents et leur mise en valeur.

Après une brève introduction, le mémoire de thèse est organisé comme suit:

- ✓ Le premier chapitre est consacré à une étude bibliographique recueillant et relatant les matériaux phosphatés à base de cations mono, bi et trivalents. Dans ce recueil bibliographique, nous avons, ciblé les phosphates de fer et de cations monovalents ou de métaux alcalino-terreux, les phosphates de type Alluaudite, ceux de type Howardevansite A^{II}₃B^{III}₄(PO₄)₆ ainsi que les composés de formule générale : A^{II}B₂^{II}Fe^{III}(PO₄)₃.
- ✓ Le deuxième chapitre porte sur la synthèse et l'étude structurale des nouveaux phosphates de formule $A_2Zn_2Fe(PO_4)_3$ (A = Na, Ag).
- ✓ Le troisième chapitre présente la synthèse et l'étude structurale de nouveaux phosphates de fer : CaZn₂Fe(PO₄)₃ et MZn₂Fe₄(PO₄)₆ (M = Zn, Cd).
- ✓ Le quatrième chapitre relate l'élaboration et l'étude structurale du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆.
- ✓ Le cinquième chapitre est dédié à la synthèse et l'étude structurale de nouveau phosphate SrFe(HPO₄)(PO₄).

Ce mémoire de thèse se termine par une conclusion générale résumant les résultats obtenus et présente les perspectives à court et moyen terme. En annexe sont regroupées les différentes méthodes et techniques d'analyse, utilisées dans le cadre de cette thèse. **Chapitre I** : Recueil bibliographique sur les monophosphates de cations mono, bi, et trivalents

I-1 Introduction

Le phosphore a été isolé pour la première fois par l'alchimiste allemand Henning Brandt en 1669 par distillation de l'urine. Le phosphore est le $11^{\text{ème}}$ élément en terme d'abondance dans les roches crustales terrestres [21]. Cet élément de nombre atomique Z=15 adopte la configuration électronique suivante : [Ne] $3s^23p^3$, qui lui permet de présenter , selon les cas, plusieurs états d'oxydation allant de -3 jusqu'à +5 [22].

Le phosphore et ses composés dérivés présentent un intérêt particulier aussi bien dans des processus biologiques que dans diverses applications industrielles et technologiques [23]. La chimie des phosphates constitue un vaste domaine de recherche en perpétuelle évolution dans lequel un nombre croissant de laboratoires se sont investis. Dans la nature, l'orthophosphate PO_4^{3-} (appelé aussi monophosphate) , peut réagir avec plus de 30 éléments donnant lieu à plus de 300 minéraux phosphatés [24] , classés en de nombreux groupes en fonction de l'élément cationique qui les constituent [25]. Ces phosphates sont particulièrement demandés grâce à leur vaste domaine d'utilisation en tant que composés ferroélectriques [26], ou encore piézo-électriques [27], en optique non linéaire [28], en catalyse [29] , en luminescence [30], dans le domaine biologique [31], etc...

Les monophosphates métalliques (phosphates à base de cations monovalents, bivalents et/ou trivalents...) forment une classe importante de matériaux dont les nombreuses familles présentent une grande originalité structurale. Cette originalité résulte du comportement chimique du groupement orthophosphate PO₄, qui est très réactif et favorable à la formation d'une charpente anionique, caractérisée par une stabilité mécanique, chimique et thermique importante [32]. Dans cette famille de matériaux, la charpente anionique résultante, est généralement établie à partir de l'alternance de tétraèdres PO₄ reliés à des cations métalliques de différents degrés d'oxydations dans des polyèdres de géométries variées, générant ainsi des cavités appropriées capables, éventuellement, de loger d'autres cations de différentes tailles [33] et/ou de petites molécules [34].

Les applications variées des phosphates métalliques proviennent aussi de la diversité poreuse ou polaire de leurs structures. En tant qu'unité fondamentale de construction, les tétraèdres polarisables PO₄ sont favorables à divers schémas de condensations à fin d'aboutir à divers groupements P_xO_y tels que : P_2O_7 , P_3O_{10} , P_3O_9 , P_4O_{12} et P_6O_{18} [35]. Plus particulièrement, la classe de matériaux (mono [36] et/ou diphosphatés [37]) peut présenter diverses dimensionnalités qui peuvent être cruciales dans la détermination de la nature de propriétés physico-chimiques ainsi que les éventuelles applications qui lui sont associées.

A titre d'exemple, la connaissance préalable, le contrôle et la réduction de la dimensionnalité des phosphates des métaux de transition (PMT) sont des caractéristiques vivement recherchées pour les propriétés magnétiques : interaction- alternation , la spintronique , la transition de spin-Peierls [38], la mise au point de nouveaux matériaux mésoporeux [39] et la classification des nanomatériaux [40].

En vue de mettre en évidence l'importance croissante des matériaux phosphatés des éléments de transition et des cations mono - bi et trivalents nous avons consacré ce premier chapitre à un bref recueil bibliographique.

I-2 Recueil bibliographie sur les monophosphates

I-2-1 Les monophosphates

Les monophosphates ou orthophosphates sont des sels dérivants de l'acide phosphorique H_3PO_4 et ils sont caractérisés par la présence de l'entité polyanionique isolée $(PO_4)^{3-}$. Ces groupements anioniques se présentent sous forme tétraédrique (hybridation sp³), dont l'atome central est un phosphore et les quatre sommets sont des atomes d'oxygène [41]. Chaque atome d'oxygène formant le groupe phosphate [PO₄], vérifie la valence formelle de : 5/4 = 1,25 v.u (unité de valence) [42] (**Figure I.1**).

Figure I.1: Groupement (PO₄)³⁻ de symétrie tétraédrique (T_d) [43]

Dans les phosphates ioniques, les liaisons P = O et P-O du même groupement tétraédrique sont équivalents et sont renforcés par le chevauchement des orbitales P: $3d_{\pi}$ - O: $2p_{\pi}$. Les [PO₄] se caractérisent par des distances P-O qui varient entre 1,50 et 1,58 Å et des angles compris entre 97 et 115°. Par ailleurs, les ions dihydrogénophosphate H₂PO₄⁻, et hydrogénophosphate HPO₄²⁻ affichent des distances P-OH allant de 1,56 à 1,62 Å [43]. Plus de 30 cations réagissent facilement avec le phosphore pour former une grande variété de minéraux. Dans ce sens, Angel Kunov [44], mentionna l'existence d'environ 100 minéraux contenant du fer, plus de 60 phases d'aluminium, 60 de calcium, 45 de manganèse, etc...

Les minéraux de fer, souvent des phosphates basiques et / ou hydratés [45], comptent parmi les substances les plus perplexes du règne minéral [46]. Nriagu reporta qu'environ 45%

des minéraux phosphatés connus contiennent du fer en tant que composant majeur [47], ce qui témoigne de la grande richesse de cette classe de matériaux. A cette grande diversité de minéraux, un énorme nombre de matériaux phosphatés synthétiques viennent enrichir les différentes classes des dits minéraux.

En conformité avec le sujet de la présente thèse, nous consacrons notre recueil bibliographique, plus particulièrement, aux monophosphates de fer et de cations monovalents ou de métaux alcalino-terreux, avant de relater l'aspect structural des orthophosphates de type Alluaudite et de type Howardevansite.

I-2-2 Les monophosphates de fer, de cuivre et de zinc

Les matériaux à base de phosphates de métaux de transition se sont considérablement développés au cours des dernières décennies en particulier les monophosphates de fer qui suscitent un intérêt considérable en raison de leurs différentes applications potentielles et leurs diverses propriétés physico-chimiques à savoir : électroniques, magnétiques, et optiques. A titre d'exemple, le phosphate LiFePO₄ [48], qui rentre dans la conception de l'une des meilleures batteries au lithium commercialisées actuellement, présentant une bénignité environnementale importante [49] et de grandes capacité théorique ainsi qu'une stabilité élevée [50], thermique et chimique [51]. De même, les phases appartenant à la famille NASICON : $A_3Fe_2(PO_4)_3$ (A = Li, Na) peuvent être utilisées comme électrode active dans la nouvelle génération des batteries à lithium rechargeables [52] . Quant au phosphate FePO₄ [53], possédant des propriétés électrochimiques remarquables, il trouve, également, des applications dans les industries des aciers et des verres [54].

L'importance et la richesse des phosphates de fer sont confortées par leur utilisation dans d'autres applications de pointes comme la conception des composites magnétiques souples (SMCs) [55], en tant que matériaux avancés en catalyse [56], inhibiteur de corrosion [57], dans la mise au point de fibres de verre biocompatibles [58], comme matériau de détection [59], en phénomène de bio-minéralisation [60], dans le confinement des déchets nucléaires [61] etc...

Les phosphates de fer sont caractérisés par une riche cristallochimie et présentent un nombre considérable de structures variées en raison de l'importante capacité du fer, de configuration électronique : $[Ar]3d^{6}4s^{2}$, à adopter plusieurs degrés d'oxydation allant de -2 à +6, dont les plus familiers sont les deux états : Fe²⁺ (fer ferreux) et Fe³⁺ (fer ferrique) [62]. Cette grande variété de composés de fer (II) manifeste plusieurs propriétés physicochimiques remarquables comme le phénomène de transition thermique de spin, observé notamment dans

les complexes de fer (II), les nanomatériaux, les matériaux polyfonctionnels, les polymères 1D, 2D, 3D, etc... [63].

Par ailleurs, les composés de valence mixtes Fe^{2+}/Fe^{3+} manifestent, quant à eux, d'autres propriétés intéressantes à savoir: le phénomène de transfert de charge d'intervalence optiquement ou thermiquement activé s'effectuant entre deux sites voisins de Fe^{2+} et Fe^{3+} . Cet interaction a été observée dans des minéraux , indépendamment de la polymérisation des polyèdres du fer-oxygène allant des clusters finis jusqu'aux unités structurales infinies [64]. Jusqu'à l'an 2003, plus de 5000 phases portant sur les composés à valence mixte ont été répertoriées [65].

Selon ces degrés d'oxydation, le fer peut ainsi adopter plusieurs environnements en formant des arrangements de polyèdres FeO_n (n = 4, 5, 6, 7, 8). Ces derniers sont liés aux tétraèdres PO_4^{3-} et/ou HPO₄²⁻ par des sommets et/ou des arrêtes [66]. Ainsi, les structures de plusieurs phosphates de fer sont constituées des clusters ou des agrégats de polyèdres, comme unités de base de la structure cristalline. Les enchainements des polyèdres FeO_n et PO₄ et/ou HPO₄ formant les monophosphates métalliques peuvent aboutir à diverses formes architecturales : 0D (clusters), 1D (chaines), 2D (feuillets), 3D (charpentes ouvertes). L'espace délimité par ces formes architecturales, accueille les cations alcalins ou alcalino-terreux. Dans le cas des monophosphates de fer et de cations monovalents, nous pouvons citer des exemples de structures :

- ✓ Monodimensionnelle: $[C_4H_{12}N_2]_{1.5}[Fe_2(OH)(H_2PO_4)(HPO_4)_2(PO_4)].0.5H_2O$ [67];
- ✓ Bidimensionnelle : $Na_3Fe_3(PO_4)_4$ [68] ;
- ✓ Tridimensionnelle : $K_3Fe_2(PO_4)_3$ [69].

Souvent dans les matériaux phosphatés à base de fer, la compétition entre les liaisons P-O et Fe-O dans les chaînes Fe-O-P produit une forte distorsion des tétraèdres de phosphore [70] . Vu l'importance des mesures des longueurs de liaisons M-O (M = métaux alcalins et alcalino-terreux) et leurs rôle dans le calcul de degrés de distorsion des polyèdres, plusieurs chercheurs ont établis des intervalles de variation de liaisons M-O ainsi que la coordinance correspondante. Dans ce même contexte, il faut souligner que la nature et la modalité des jonctions entre les divers polyèdres est un facteur déterminant de la structure cristalline dans lesquelles les cations M⁺ peuvent occuper l'espace inter-feuillet, les tunnels et/ou les cavités engendrés par les charpentes anioniques covalentes.

Les phosphates mixtes à base de fer et des métaux alcalino-terreux sont caractérisés par une activité chimique élevée et une grande stabilité thermique grâce à l'établissement des liaisons Fe–O–P caractérisée par son effet inductif important [71]. L'examen bibliographique des travaux antérieurs révèle l'existence de plusieurs phases phosphatées à base de fer et /ou d'alcalino-terreux qui ont été synthétisés par diverses techniques (**Tableau I.1**).

	Techniques de synthèses				
	Voie solide	Référence	Voie hydrothermale	Référence	
	$SrFe_2(PO_4)_2$	[72]	CaFe ₃ (PO ₄) ₃ .H ₂ O	[73]	
	Sr ₉ Fe _{1.5} (PO ₄) ₇	[74]	CaFe ₂ (PO ₄) ₂ (HPO ₄)	[75]	
	CaNi ₂ Fe(PO ₄) ₃	[76]	$BaFe_2(PO_4)_2$	[77]	
Phosphate	SrNi ₂ Fe(PO ₄) ₃	[78]	SrFe ₃ (PO ₄) ₃ (HPO ₄)	[79]	
	SrCo ₂ Fe(PO ₄) ₃	[80]	SrFe ₃ (PO ₄) ₃	[81]	
	CaZn ₂ Fe(PO ₄) ₃	[82]	Ba ₃ Fe ₂ (HPO ₄) ₆	[83]	
	BaMn ₂ Fe(PO ₄) ₃	[84]	Sr ₂ Fe(PO ₄) ₂ (H ₂ PO ₄)	[85]	
	SrMn ₂ Fe(PO ₄) ₃	[84]	CaFe ₅ (PO ₄) ₅ (OH).H ₂ O	[86]	
	Sr _{9.5} Fe(PO ₄) ₇	[87]	SrFe5(PO4)5(OH).H2O	[86]	

Tableau I.1: Techniques de synthèses et leurs phases relatives

La diversité des formes des polyèdres de cuivre et de zinc est étroitement liée aux diverses coordinations adoptées par chacun des deux éléments. En effet, le cuivre de numéro atomique Z=29 et de configuration électronique [Ar] $3d^{10}4s^1$ peut posséder plusieurs degrés d'oxydation compris entre 0 et +4 et par conséquent peut adopter diverses géométries [88]. Par contre dans le cas du zinc, le degré d'oxydation est dominé par la valeur +II. L'ion Zn^{2+} se caractérise, lui aussi, par divers coordinances et par plusieurs environnements dans la structure [89]. Entre autre, la possibilité d'atteindre plusieurs degrés d'oxydation et des rayons cationiques relativement voisins, les cations de zinc, de fer et de cuivre sont très favorables à d'éventuelles substitutions selon les propriétés recherchées.

Après cet aperçu bibliographique sur les monophosphates de fer, de zinc et de cuivre nous allons nous intéresser à la structure cristalline et aux applications des monophosphates de type Alluaudite. Nous terminons ce chapitre par un recueil bibliographique sur les phosphates $A^{II}B_2^{II}Fe^{III}(PO_4)_3$ et $A^{2+}_{3+n}B^{3+}_{4-n}(PO_4)_{6-n}(HPO_4)_n$ (n≤4). Ces familles constituent l'axe de recherche majeur autour duquel s'articulent les travaux de recherches réalisés dans le cadre de la présente thèse.

I-2-3 Les orthophosphates de type Alluaudite

Le terme «Alluaudite» fait référence à une grande famille de composés naturels ou synthétiques dont le premier membre correspond à $Na_{2,5}Li_{0,1}Ca_{0,5}Mn_{4,5}^{2+}Mg_{0,2}Fe_{7,9}^{3+}(PO_4)_{1,2}qui$ cristallise dans le système monoclinique avec comme groupe d'espace C2/c et les paramètres de maille suivants : a = 12.004(2) Å, b = 12.533(4) Å, c = 6.404(1) Å et $\beta = 114.4(1)^{\circ}$. P. B. Moore proposa en 1971 la célèbre formulation générale pour l'Alluaudite : $X(2)X(1)M(1)M(2)_2(PO_4)_3$ [90]. Le premier site X(1) peut accueillir des cations mono, bivalent ou peut rester vacant (\Box), tandis que le second site, X(2), est vacant (\Box) ou occupé par des cations monovalents [91]. Par ailleurs, les sites M(1) et M(2) sont de géométries octaédriques pouvant contenir une distribution de cations bi et/ou trivalents [92]. En général, la structure Alluaudite est construite à partir des octaèdres M(1)O₆ et M(2)O₆ ainsi que des tétraèdres PO₄. La connexion de ces polyèdres conduit à une charpente tridimensionnelle laissant apparaitre deux types de tunnels parallèles à l'axe c de forme hexagonale. Ces tunnels sont occupés par les cations mono ou bivalents. En se basant sur l'ancienne formule de P. B. Moore : $X(2)X(1)M(1)M(2)_2(PO_4)_3$, (Leroux et al.) [93] et (Hatert et al.) [94] proposèrent une nouvelle formule générale pour la structure Alluaudite afin de tenir compte des différents sites cationiques disponibles dans les tunnels. Ainsi, les deux sites X(1) et X(2) sont scindés en 2 ou 3 sites A comme suit : [A(2)A(2)'][A(1)A(1)'A(1)"]M(1)M(2)₂(PO₄)₃, où A(2) et A(2)' sites sont situés dans le tunnel (2) et les sites A (1), A (1)'et A (1)" se positionnent dans le tunnel (1) (Figure I.2).

La principale caractéristique de la structure Alluaudite est sans doute sa remarquable flexibilité au niveau de la charpente anionique ce qui est très favorable aux substitutions de cations dans les sites A et M [95]. De ce fait, un grand nombre d'Alluaudite avec des propriétés physiques intéressantes a été synthétisé et caractérisé. En effet, l'existence des métaux de transitions dans la structure est souvent à l'origine de diverses propriétés, en particulier des propriétés magnétiques intéressantes [96]. De même, les phosphates de type Alluaudite trouvent leurs utilisations dans des applications pratiques, comme la catalyse hétérogène (rôle de AgCaCdMg₂(PO₄)₃ et AgCd₂Mg₂(PO₄)₃ dans la conversion du butan-2-ol) [97]. La présence des cations dans les tunnels, des composés de type Alluaudite induit des propriétés de conductivité électronique et une mobilité ionique importante [98] . Les performances de ces phases font d'elles des cathodes prometteuses pour les batteries au lithium (LIBs) et au sodium (SIBs) [99].

Figure I.2: Projection de la structure Alluaudite Na_{0.625}Mn_{1.125}Ca_{0.125}Mg_{0.049} Li_{0.025} Fe_{1.976}(PO₄)₃ [90] dans le plan (\vec{a}, \vec{b})

Dans cette optique, les efforts des chercheures de notre équipe de recherche ont abouti à l'élaboration et la caractérisation de nouveaux phosphates de type Alluaudite. Nous pouvons citer, à titre d'exemple, NaMg₃(PO₄)(HPO₄)₂ [100] et AgMg₃(PO₄)(HPO₄)₂ [101] synthétisés par voie hydrothermal, ainsi que Na₂Co₂Fe(PO₄)₃ [102], Ag_{1.655}Co_{1.64}Fe_{1.36}(PO₄)₃ [103], Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ [104], Na₂Mg₂Fe(PO₄)₃ et Ag_{1.67}Mg_{2.33}Fe_{0.89}(PO₄)₃ [105] obtenus par voie solide. Par ailleurs, dans la littérature, un grand nombre d'Alluaudite à base de (Na⁺/Ag⁺) et de cation mono, bi ou trivalents, a été rapporté par les chercheurs, ce qui témoigne de la demande et l'importance accrus de cette classe de matériaux (**Tableau I.2**).

Phase	a(Å)	b(Å)	c(Å)	β (°)	Réf
NaMg ₃ (PO ₄)(HPO ₄) ₂	11.8064 (6)	12.0625 (7)	6.4969 (4)	113.805 (2)	[100]
Na ₂ Co ₂ Fe(PO ₄) ₃	11.7106 (6)	12.4083 (7)	6.4285 (3)	113.959 (2)	[102]
Na ₂ CaMnFe(PO ₄) ₃	12.283 (1)	12.736 (1)	6.494 (5)	114.76 (3)	[106]
NaCaCdMg ₂ (PO ₄) ₃	12,005(2)	12,675(3)	6,546(1)	114,55(1)	[107]
NaCaMn ₂ (PO ₄)(HPO ₄) ₂	12.5435(9)	12.4324(9)	6,7121(4)	115.332(2)	[108]
Na ₂ Mn ₂ Fe(PO ₄) ₃	12.049(5)	12.624(1)	6.507(3)	114.559(3)	[109]
NaMnFe ₂ (PO ₄) ₃	11.9878(2)	12.5364(2)	6.3980(1)	114.220(1)	[110]
Na ₂ MnFe ₂ (PO ₄) ₃	11.944(2)	12.560(2)	6,480(1)	114,52(1)	[96]
NaMn ₃ (PO ₄)(HPO ₄) ₂	12.179(2)	12.405(1)	6.6602(8)	114.616(7)	[111]
NaFe ₃ (PO ₄) ₃	11,998(1)	12,328(1)	6.500(1)	114,185(6)	[112]
Na ₄ CaFe ₄ (PO ₄) ₆	12.099(5)	12.480(5)	6.404(2)	113.77(3)	[113]
Na ₃ In ₂ (PO ₄) ₃	12.450(1)	12.786(1)	6.5920(7)	114.174(2)	[114]
NaCdIn ₂ (PO ₄) ₃	12.519(2)	12.959(3)	6.575(1)	115.17(1)	[115]
NaCo ₃ (PO ₄)(HPO ₄) ₂	11.865(2)	12.137(2)	6.512(1)	114.12(1)	[116]
Na ₂ MnCdFe(PO ₄) ₃	12.169(4)	12.692(4)	6.530(2)	114.56(2)	[117]
$Na_2Cd_2Fe(PO_4)_3$	12.297(4)	12.799(4)	6.562(2)	114.85(2)	[117]
Na ₂ Ni ₂ Fe(PO ₄) ₃	11.729(7)	12.433(5)	6.431(2)	113.66(4)	[118]
Na ₂ GaMn ₂ (PO ₄) ₃	12.019(4)	12.559(2)	6.495(5)	114.63(3)	[119]
$Na_2InMn_2(PO_4)_3$	12.248(1)	12.823(4)	6.607(2)	114.97(3)	[119]
Na ₂ GaCd ₂ (PO ₄) ₃	12.188(3)	12.799(1)	6.547(3)	114.75(2)	[119]
Na ₂ FeMnCd(PO ₄) ₃	12.169(5)	12.685(3)	6.524(4)	114.51(2)	[119]
(Na,Ca)MnFe ₂ (PO ₄) ₃	11.972(9)	12.5988(8)	6.5029(5)	114.841(8)	[120]
$Na_2Fe^{2+}{}_2Fe^{3+}(PO_4)_3$	11.849(2)	12.539(1)	6.486(1)	114.51(1)	[121]
NaMnFeln(PO ₄) ₃	12.131(2)	12.746(2)	6.470(1)	114.84(1)	[122]
NaMnIn ₂ (PO ₄) ₃	12.282(2)	12.948(2)	6.552(1)	115.21(1)	[122]
$Ag_3Tl_2(PO_4)_3$	13.138(3)	13.111(3)	6.725(1)	114.62(3)	[123]
β-Ag ₃ In ₂ (PO ₄) ₃	12.6305(1)	12.8549(1)	6.5989(1)	113.842(1)	[124]
Ag ₂ FeMn ₂ (PO ₄) ₃	12.1466(3)	12.7328(4)	6.4999(5)	114.53(3)	[125]
AgNaFeMn ₂ (PO ₄) ₃	12.085(1)	12.684(0)	6.498(4)	114.535(3)	[109]
AgCaCdMg ₂ (PO ₄) ₃	12.106(3)	12.677(2)	6.525(1)	114.67(2)	[97]
$AgCd_2Mg_2(PO_4)_3$	12.089(3)	12.653(2)	6.530(1)	114.71(2)	[97]
AgMn ₃ (PO ₄)(HPO ₄) ₂	12.263(1)	12.446(2)	6.649(1)	114.708(8)	[93]
AgCo ₃ (PO ₄)(HPO ₄) ₂	12.035(2)	12.235(2)	6.541(2)	114.14 (2)	[126]
AgNi ₃ (PO ₄)(HPO ₄) ₂	11.865(4)	12.117(3)	6.467(2)	113.82(3)	[127]
AgMg ₃ (PO ₄)(HPO ₄) ₂	11.9126(5)	12.1197(6)	6.4780(3)	113.812(2)	[101]
Na _{1.50} Mn _{2.48} Al _{0.85} (PO ₄) ₃	11.9816(1)	12.5387 (1)	6.4407 (1)	114.621 (8)	[128]
Na1.25Mg1.10Fe1.90(PO4)3	11.7831(3)	12.4740(3)	6.3761(2)	113.643(2)	[129]

Tableau I.2: Exemples de phosphates de sodium ou d'argent appartenant à la famille Alluaudite

NaFe _{3.67} (PO ₄) ₃	11.881(4)	12.564(3)	6.522(2)	115.09(2)	[130]
Na1.79Mg1.79Fe1.21(PO4)3	11.791(3)	12.489(3)	6.4191(10)	113.82(2)	[131]
Na _{0.38} Ca _{0.31} MgFe ₂ (PO ₄) ₃	11,852(2)	12,458(1)	6,3861(6)	113,84(1)	[132]
α-Na _{0.67} FePO ₄	11.8649 (7)	12.5238 (7)	6.4667(4)	114.396(3)	[133]
Li _{0.5} Na _{0.5} MnFe ₂ (PO ₄) ₃	11.9892(2)	12.4927(2)	6.3859(1)	114.639(1)	[134]
$Li_{0.75}Mn_{1.50}Fe_{1.75}(PO_4)_3$	12.002(9)	12.509(9)	6.404(7)	115.07(7)	[135]
Na _{1.5} Mn _{1.5} Fe _{1.5} (PO ₄) ₃	12.018(2)	12.591(2)	6.442(1)	114.27(1)	[136]
Na _{1.86} Fe ₃ (PO ₄) ₃	11.8656(6)	12.5335(8)	6.4703(3)	114.530(4)	[137]
$Na_{1.85}Mg_{1.85}In_{1.15}(PO_4)_3$	11.98(1)	12.694(1)	6.5239(7)	114.555 (3)	[103]
Ag _{1.655} Co _{1.64} Fe _{1.36} (PO ₄) ₃	11.8680(3)	12.5514(3)	6.4386(2)	114.012(1)	[138]
Ag _{1.69} Mg _{1.69} In _{1.31} (PO ₄) ₃	12.0273(3)	12.8120(3)	6.5061(2)	114.519(1)	[103]

I-2-4 Les orthophosphates de type AB₂Fe^{III}(PO₄)₃ avec A, B = cations bivalents

Les matériaux phosphatés de formulation générale $A^{II}B_2{}^{II}Fe^{III}(PO_4)_3$ sont au cœur de développement de nouveaux matériaux multi- fonctionctionnels possédant diverses propriétés physiques attrayantes. Citons, à titre d'exemple, le comportement magnétique intéressant du phosphate BaFe₂^{II}Fe^{III}(PO₄)₃ [139]. En outre, l'examen minutieux de la littérature a démontré que les monophosphates de type $A^{II}B_2{}^{II}Fe^{III}(PO_4)_3$ cristallisent dans deux systèmes cristallins avec différents groupes d'espace selon la taille et la nature des cations bivalents (**Tableau I.3**) :

- Dans le système orthorhombique, ces phases adoptent soit le groupe d'espace Pbcn ou bien Imma (type α-CrPO₄);
- ✓ Les monophosphates qui cristallisent dans le système monoclinique avec le groupe d'espace C2/c sont apparentés à l'Alluaudite.

Dhara	Paramètres de maille				Groupe	D/f
Phase	a (Å)	b (Å)	c (Å)	β (°)	d'espace	Kef
SrNi ₂ Fe(PO ₄) ₃	10.388(1)	13.160 (1)	6.5117(7)	90.00	Imma	[78]
SrCo ₂ Fe(PO ₄) ₃	10.4097(2)	13.2714(3)	6.5481(2)	90.00	Imma	[80]
SrFe ₂ ²⁺ Fe ³⁺ (PO ₄) ₃	10.452(3)	13.429(3)	6.528(2)	90.00	Imma	[81]
$BaFe_2^{2+}Fe^{3+}(PO_4)_3$	10.5236(3)	13.4454(4)	6.6411(2)	90.00	Imma	[139]
$PbFe_{1.4}^{2+}Mg_{0.6}Fe^{3+}(PO_4)_3$	10.481(5)	13.331(6)	6.596(3)	90.00	Imma	[140]
$BaFe_{1.4}^{2+}Mg_{0.6}Fe^{3+}(PO_4)_3$	10.555(4)	13.395(5)	6.642(3)	90.00	Imma	[140]
CaNi ₂ Fe(PO ₄) ₃	10.3126(3)	13.1138(3)	6.4405(2)	90.00	Imma	[141]
BaCo ₂ Fe(PO ₄) ₃	10.5067(2)	13.3155(3)	6.6471(2)	90.00	Imma	[142]
PbCo ₂ Fe(PO ₄) ₃	10.4326(5)	13.2811(2)	6.5746(4)	90.00	Imma	[142]
BaMn ₂ Fe(PO ₄) ₃	6.4304 (3)	17.8462(7)	8.4906(3)	90.00	Pbcn	[84]
SrMn ₂ Fe(PO ₄) ₃	6.5899 (2)	17.6467(4)	8.5106(2)	90.00	Pbcn	[84]
PbMn ₂ Fe(PO ₄) ₃	6.475 (1)	17.964 (4)	8.467 (2)	90.00	Pbcn	[143]
$Ca_{1.54}Mn_{1.46}Fe(PO_4)_3$	12.3487(2)	12.6569(2)	6.4650(1)	115.673(1)	C2/c	[144]
Cd _{0.66} Mn _{2.34} Fe(PO ₄) ₃	12.1565(2)	12.6226(2)	6.4311(1)	115.200(1)	C2/c	[144]

Tableau I.3: Données cristallographiques de quelques phosphates de type A^{II}B₂^{II}Fe^{III}(PO₄)₃

I-2-5 Les hexaphosphates de formule générale A²⁺_{3+n}B³⁺_{4-n}(PO₄)_{6-n}(HPO₄)_n (n≤4)

Le règne minéral regorge de nombreuses familles parmi elles figurent celles hexaphosphatés comme : les Fillowites Na₂CaM₇(PO₄)₆ (M = métal alcalin , alcalino-terreux ou terre rare) [145], la Stanfieldite Ca₄(Mg,Fe)₅(PO₄)₆ [146], la Xénophillite Na₄Fe₇(PO₄)₆ [147], l'Eulytite Na₃Bi₅(PO₄)₆ [148], la Whitlockite Ca₉Mg(HPO₄)(PO₄)₆ [149]. Dans ce sens, de grands efforts ont été dévoués à ces types de composés contenant l'unité tétraédrique (PO₄)₆. Ces efforts déployés ont été concrétisés par la synthèse et la caractérisation structurale de nombreuses phases à savoir: Na₄CaFe₄(PO₄)₆ qui adopte la structure Alluaudite avec le groupe spatial C2/c (Hidouri.M et al) [113], Ba₃V₄(PO₄)₆ de type Langbeinite (Droß.T & Glaum.R) [150], CuTi₄(PO₄)₆ appartenant à la famille Nasicon (Kasuga.T et al) [151] et les Apatites Pb₈A₂(PO₄)₆(A=Na, Ag [152], K [153]), Pb_{4.8}Bi_{1.6}Na_{3.6}(PO₄)₆ [154] et Pb₆Ca₂Na₂(PO₄)₆[155].

Il est bien connu que certains de ces phosphates possèdent des propriétés physicochimiques remarquables et manifestent, par conséquent, de grandes potentialités d'applications dans différents secteurs de la technologie. Citons, à titre d'exemple, les performances catalytiques des apatites $Ca_{10-x}Ag_x(PO_4)_6(OH)_{2-x}\Box_x$ [156] ou du phosphate NiZr₄(PO₄)₆ [157], les propriétés magnétiques de K₃Gd₅(PO₄)₆[158], les propriétés photocatalytiques des vitrocéramiques contenant des cristaux de MgTi₄(PO₄)₆ [159], le rôle du phosphate CaTi₄(PO₄)₆ en tant que supports d'immobilisation de diverses enzymes , ou encore les performances de ZnZr₄(PO₄)₆ en tant qu'électrolyte solide [160], sans oublier la conductivité ionique de Ca_{1-x}Na_{2x}Ti₄(PO₄)₆ de type Nasicon [161] et la conductivité électrique de M^{II}Zr₄(PO₄)₆ (M^{II}=Mg, Ca, Sr, Ba, Mn, Co, Ni, Zn, Cd et Pb) [162].

Il est aussi intéressant de signaler que, dans le cadre des travaux de recherche entrepris dans le laboratoire LCAM, les investigations hydrothermales avec les alcalinoterreux ont permis l'obtention de Mg₇(PO₄)₂(HPO₄)₄ (Assani et al) [163], un des membres de famille de composés $M^{2+}_{7}(PO_{4})_{2}(HPO_{4})_{4}$ qui constitue un cas de la grande famille $A^{2+}_{3+n}B^{3+}_{4-n}(PO_{4})_{6-n}(HPO_{4})_{n}$ avec n = 4 [164] comprenant, également, les phosphates Fe₇(PO₄)₂(HPO₄)₄ (Zhou et al) [165], Mn₇(PO₄)₂(HPO₄)₄ (Riou et al) [166] et Co₇(PO₄)₂(HPO₄)₄ (Lightfoot & Cheetham) [167]. Tous ces phosphates sont isotypes et cristallisent dans le système triclinique avec le groupe d'espace PĪ.

Comme suite à ce travail, nous nous sommes intéressés, au cours de la préparation de la présente thèse, au cas particulier n=0, en l'occurrence les phosphates de formule générale $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$. Il convient aussi de rappeler que ces composés sont apparentés à la Howardevansite Na₂Cu₂Fe₄(VO₄)₆[168] cristallisant dans le système triclinique avec le groupe d'espace PI et les paramètres de maille : a=8.198(2) Å, b =9.773(1) Å , c=6.6510(8) Å, α =103.82(1)°, β =101.99(1)° et γ =106.74(1)° [169].

La structure de $\text{Fe}_3^{2+}\text{Fe}_4^3(\text{XO}_4)_6$ avec (X = P ou As) [170] [171], est formée des groupements $\text{Fe}^{III}\text{O}_6$, Fe^{II}O_5 et XO₄ (X=P ou As). L'association de ces polyèdres conduit une structure tridimensionnelle libérant des tunnels occupés par les cations Fe^{2+} (**Figure I.3**).

Figure I.3 : Projection de la structure de Fe₇(AsO₄)₆ dans le plan (011)

I-3 Conclusion

Dans le présent travail, ce premier chapitre a été consacré à un recueil des travaux antérieurs sur les matériaux phosphatés à base de cations mono, bi et trivalents. Dans cette analyse bibliographique, nous avons ciblés diverses familles d'architectures variées à savoir : les phosphates de fer et des cations monovalents ou des métaux alcalino-terreux, les phosphates de type Alluaudite ainsi que les séries de composés de formules générales : $A^{II}B_2^{II}Fe^{III}(PO_4)_3$ et $A^{II}_3B^{III}_4(PO_4)_6$.

Au terme de ce premier chapitre, l'examen bibliographique minutieux porté sur lesdites familles nous a permis de réaliser une mise au point sur leurs cristallochimies.

Chapitre II : Synthèse et étude structurale des nouveaux monophosphates: A₂Zn₂Fe(PO₄)₃ (A = Na, Ag)

II-1 Introduction

Comme nous l'avons évoqué dans le chapitre I, le terme Alluaudite est représentatif d'une large famille de composés naturels ou synthétiques désignés par la formulation générale de P. B. Moore [90] comme suit : $X(2)X(1)M(1)M(2)_2(PO_4)_3$ où X(2) et X(1) sont des sites cationiques situés dans deux types de tunnels susceptibles d'accueillir des cations de faibles charges (monovalent ou bivalent) et de tailles moyennes à grandes, alors que les sites cationiques M(1) et M(2), de forme octaédrique, sont généralement occupés par des cations bivalents ou trivalents de petites tailles.

Ultérieurement, les travaux de Leroux et al. [93] et Hatert et al. [94] révélèrent l'existence de nouveaux sites interstitiels au niveau des tunnels de cette structure cristalline et proposèrent , par la suite, une nouvelle formulation pour les phases type Alluaudite qui est établie comme suit : $[A(2)A(2)'][A(1)A(1)'A(1)'']M(1)M(2)_2(PO_4)_3$ avec A(1), A(1)', A(1)'' d'une part et A(2), A(2)' d'autre part remplacent les sites cristallographiques X(1) et X(2) respectivement.

L'étude bibliographique entreprise sur un grand nombre de phosphates nous a permis de comprendre au mieux et d'appréhender la cristallochimie des phases Alluaudites. A ce titre, nous avons remarqué que, dans cette structure, les sites M peuvent être complètement remplis. En revanche, les sites interstitiels A peuvent être partiellement occupés, ou totalement lacunaires. Dans la plupart des cas, les sites A(1) et A(2)' sont occupés par des cations tandis que A(2), A(1)' et A(1)" demeurent lacunaires. De même, il ressort de cette étude bibliographique que la nature des cations localisés dans les tunnels de la structure tridimensionnelle ouverte des Alluaudites, ainsi que les taux d'occupation de ces sites influent considérablement non seulement sur le degré de distorsion des divers polyèdres YO_n (Y = M(1)) et M(2)) mais aussi sur la stabilité de cette structure. Une des particularités attrayantes de la structure Alluaudite est le taux de flexibilité élevé qui garantit une large gamme de substitutions et/ou insertions cationiques, en particulier pour les monovalents comme : Na⁺ et Ag⁺.

La famille alluaudite, désignant la variété minéralogique et les matériaux qui en dérivent sous forme de phosphate, a été, ensuite, élargie pour inclure des arséniates et plus récemment des vanadates, des molybdates et des sulfates. De tels matériaux suscitent un intérêt accru en raison de leurs propriétés physicochimiques remarquables et leurs innombrables applications potentilles. Citons à titre d'exemple, les propriétés catalytiques de AgCaCdMg₂(PO₄)₃ et AgCd₂Mg₂(PO₄)₃ [97], les performances électrochimiques de Na_{2.32}Co_{1.84}(SO₄)₃[172], Na_{2+2x}Fe_{2-x}(SO₄)₃ ($0 \le x \le 0,4$) [173] , Na_{2.5}(Fe_{1-y}Mn_y)_{1.75}(SO₄)₃ ($0 \le y \le 1$) [174] , Na_{2.67}Mn_{1.67}(MoO₄)₃ [175], Na₂Co₂Fe(PO₄)₃ [176] , Na₂VFe₂(PO₄)₃ [177], Na_{1,702}Fe₃(PO₄)₃

[178] et NaFe₂Mn(PO₄)₃ [179], Na₂Mn₂Fe(VO₄)₃ [180], NaCoFe₂(PO₄)₃ [181] et Na_{1.47}Fe₃(PO₄)₃ [182] comme électrodes prometteuses pour les batteries au sodium et les propriétés magnétiques intéressantes de Na₂Mn_{2(1-x)}Cd_{2x}Fe(PO₄)₃ ($0 \le x \le 1$) [183], et Na₂Ni₂Fe(PO₄)₃ [118], Na₂Co₂Cr(PO₄)₃[184] et A₂Co₂Fe(VO₄)₃ (A = Ag, Na)[185].

Dans le présent chapitre, en conformité avec l'objectif premier fixé pour cette thèse, nous détaillerons les résultats de synthèse et de caractérisation structurale de nouveaux phosphates à base du zinc et du fer de formule $A_2Zn_2Fe(PO_4)_3$ (A = Na, Ag) apparentés à la famille Alluaudite.

II-2 Synthèses des cristaux et déterminations structurales des nouveaux phosphates $A_2Zn_2Fe(PO_4)_3$ (A= Na , Ag)

II-2-1 Synthèse des cristaux des nouveaux phosphates A₂Zn₂Fe(PO₄)₃ (A= Na , Ag)

La synthèse des cristaux de A₂Zn₂Fe(PO₄)₃ (A= Na , Ag) a été réalisée par la méthode de diffusion à l'état solide, à partir des mélanges stœchiométriques des précurseurs : ANO₃ (A=Na, Ag) (NaNO₃: 99% , Acros Organics et AgNO₃: \geq 99% , Sigma-Aldrich), (Zn(NO₃)₂.6H₂O : 98% , Sigma-Aldrich), (Fe(NO₃)₃.9H₂O : 98% , Panreac Applichem) , (H₃PO₄: 85% , VWR Chemicals), pris dans les proportions molaires A : Zn : Fe : P = 2 : 2 : 1: 3 (A = Na, Ag).

Les mélanges réactionnels ont été dissous dans de l'eau distillée en présence de quelques gouttes de HNO₃ dans un bécher. La solution résultante est ensuite maintenue sous agitation à température ambiante. Suite à une évaporation sous un chauffage modéré, sur une plaque chauffante, un résidu est alors obtenu. Ce dernier subit un premier traitement thermique à 300°C pendant 24 heures dans une nacelle en platine. Après cette étape, le produit résultant est broyé pendant une demi-heure avant, d'entamer le processus de croissance cristalline à l'aide d'un four programmable. Le protocole adopté est schématisé sur la **Figure (II.1**).

Figure II.1 : Protocole expérimental de synthése de A₂Zn₂Fe(PO₄)₃ (A=Na ou Ag)

II-2-2 Etude structurale de $A_2Zn_2Fe(PO_4)_3$ (A = Na ou Ag) par diffraction des rayons-X (DRX) sur monocristal

II-2-2-1 Résolution et affinement structurale de A₂Zn₂Fe(PO₄)₃ (A = Na ou Ag)

Pour l'étude structurale de ces deux phases, nous avons choisi un monocristal marron pour A = Na et un monocristal jaune de forme parallélépipédique pour le phosphate A = Ag. La collecte des données de la diffraction de rayons X du premier monocristal, de dimensions $0,31 \ge 0,25 \ge 0,19 \text{ mm}^3$, a été réalisée sur un diffractomètre automatique à quatre cercles de type Bruker X8, de l'UATRS (Unités d'Appui Techniques à la Recherche Scientifique) – CNRST (Centre National pour la Recherche Scientifique et Technique) – Rabat. Tandis que pour le second cristal (A= Ag), les données de la DRX ont été collectées à l'aide du diffractomètre automatique à quatre cercles de type Bruker D8 Venture au sein de la plateforme d'analyse microstructurale de la Faculté des Sciences de Rabat.

Pour le phosphate au Na, la réduction de ces données et les corrections des intensités des effets de Lorenz, de polarisation et d'absorption ont abouti à un total de 18880 réflexions observées dont 2101 sont indépendantes. Parmi ces dernières, 1997 réflexions ont une intensité supérieure à $2\sigma(I)$. Dans le cas du composé d'Ag, le nombre total de réflexions collectées s'élève à 27680 comprenant 2274 réflexions indépendantes avec 1771 d'entre elles possèdent une intensité I > $2\sigma(I)$.

A partir de ces données, la détermination structurale des deux nouveaux phosphates a été réalisée via WinGX version 2014.1 [186]. La structure de chaque composé a été résolue par la méthode directe [187] à l'aide du programme SHLEXS-2014 [188] et a été affinée par la méthode des moindres carrées [189] à l'aide du programme SHELXL-2014 [190]. Le résultat

de la détermination structurale des deux phases révèle qu'elles sont isotypes de la structure Alluaudite en manifestant, toutefois, une non stœchiométrique pratiquement identique comme le traduit leurs formules respectives $Na_{1,67}Zn_{1,67}Fe_{1,33}(PO_4)_3$ et $Ag_{1,65}Zn_{1,65}Fe_{1,35}(PO_4)_3$ (les formules stœchiométriques recherchées : $Na_2Zn_2Fe(PO_4)_3$ et $Ag_2Zn_2Fe(PO_4)_3$). Cette déviation par rapport à la composition stœchiométrique est souvent rencontrée dans les matériaux phosphatés de type alluaudite, comme le montre le **Tableau II.1**.

Phase	a(Å)	b(Å)	c(Å)	β (°)	Réf
Na _{1,67} Zn _{1,67} Fe _{1,33} (PO ₄) ₃	11.7545(4)	12.5080(4)	6.4014(2)	113.507(1)	(*)
Ag _{1,65} Zn _{1,65} Fe _{1,35} (PO ₄) ₃	11.8151(5)	12.6367 (6)	6.4056 (3)	113.431(2)	(*)
Na1.50Mn2.48Al0.85(PO4)3	11.9816(1)	12.5387 (1)	6.4407(1)	114.621(8)	[128]
Na _{1.25} Mg _{1.10} Fe _{1.90} (PO ₄) ₃	11.7831(3)	12.4740(3)	6.3761(2)	113.643(2)	[129]
NaFe _{3.67} (PO ₄) ₃	11.881(4)	12.564(3)	6.522(2)	115.09(2)	[130]
Na1.79Mg1.79Fe1.21(PO4)3	11.791(3)	12.489(3)	6.4191(10)	113.82(2)	[131]
Na _{0.38} Ca _{0.31} MgFe ₂ (PO ₄) ₃	11,852(2)	12,458(1)	6,3861(6)	113,84(1)	[132]
α-Na _{0.67} FePO ₄	11.8649 (7)	12.5238(7)	6.4667(4)	114.396(3)	[133]
Li _{0.5} Na _{0.5} MnFe ₂ (PO ₄) ₃	11.9892(2)	12.4927(2)	6.3859(1)	114.639(1)	[134]
$Li_{0.75}Mn_{1.50}Fe_{1.75}(PO_4)_3$	12.002(9)	12.509(9)	6.404(7)	115.07(7)	[135]
Na _{1.5} Mn _{1.5} Fe _{1.5} (PO ₄) ₃	12.018(2)	12.591(2)	6.442(1)	114.27(1)	[136]
Na _{1.86} Fe ₃ (PO ₄) ₃	11.8656(6)	12.5335(8)	6.4703(3)	114.530(4)	[137]
Na _{1.85} Mg _{1.85} In _{1.15} (PO ₄) ₃	11.98(1)	12.694(1)	6.5239(7)	114.555(3)	[103]
Ag _{1.655} Co _{1.64} Fe _{1.36} (PO ₄) ₃	11.8680(3)	12.5514(3)	6.4386(2)	114.012(1)	[138]
Ag1.69Mg1.69In1.31(PO4)3	12.0273(3)	12.8120(3)	6.5061(2)	114.519(1)	[103]

Tableau II.1: Exemples phases de phosphatés de cation monovalents de type Alluaudite

(*) Présent travail

Les principales données cristallographiques relatives aux deux cristaux des nouveaux phosphates $Na_{1,67}Zn_{1,67}Fe_{1,33}(PO_4)_3$ et $Ag_{1,65}Zn_{1,65}Fe_{1,35}(PO_4)_3$ ainsi que les conditions d'enregistrement des données (DRX) sont consignées dans le **Tableau II.2**.

La résolution structurale de Na_{1,67}Zn_{1,67}Fe_{1,33}(PO₄)₃ et de Ag_{1,65}Zn_{1,65}Fe_{1,35}(PO₄)₃, nous a permis de localiser en premier lieu les atomes Na, Zn, Fe et P et suite aux séries d'affinements successifs suivies de Fourier-différence, nous avons pu localiser les six atomes d'oxygène indépendants complétant ainsi l'unité asymétrique. Pour les deux phosphates, les cations Fe³⁺(1)/Zn²⁺(1) partagent la même position générale *8f* du groupe d'espace C2/c (N°15) avec les taux d'occupations 0.668(3)/0.332(3) pour le phosphate au Na et 0.685(9)/0.315(9) pour le composé à Ag.

Quant aux cations $Zn^{2+}(2)$, ils sont localisés sur la position particulière 4e de *Wyckoff* avec un taux d'occupation de 100%. Les cations P⁵⁺(1) et P⁵⁺(2) occupent complètement leurs sites cristallographiques 8f et 4e respectivement. De plus, tous les ions O²⁻ ont été affinés en position 8f. Pour les deux phases, les sites 4e sont partiellement remplis par 0.664(6) et 0.65(1) des cations Na(1)⁺ et Ag(1)⁺ respectivement. Tandis que chacun des cations Na(2)⁺ et Ag(2)⁺ occupent totalement leurs sites 4a.

Tableau II.2: Données cristallographiques et conditions d'enregistrement des intensités de diffractiondes rayons-X sur monocristal de Na_{1.67}Zn_{1.67}Fe_{1.33} (PO₄)₃ et Ag_{1.65}Zn_{1.65}Fe_{1.35} (PO₄)₃

]	Données cristallographiques						
Formule chimique	$Na_{1.67}Zn_{1.67}Fe_{1.33}$ (PO ₄) ₃	$Ag_{1.65}Zn_{1.65}Fe_{1.35}$ (PO ₄) ₃					
Système cristallin	Monoclinique	Monoclinique					
Groupe d'espace	C2/c	C2/c					
	a = 11.7545 (4) Å	a = 11.8151 (5) Å					
Paramètres de maille	b = 12.5080 (4) Å	b = 12.6367(6)Å					
r arametres de manie	c = 6.4014 (2) Å	c = 6.4056 (3) Å					
	$\beta = 113.507 \ (1)^{\circ}$	$\beta = 113.431 \ (2)^{\circ}$					
Volume de la maille ($Å^3$)	863.06 (5)	877.52 (7)					
Nombre de motifs par maille Z	4	4					
Densité calculée (g.cm ⁻³)	3.904	5.248					
Coefficient d'absorption μ (mm ⁻¹)	7.52	13.59					
Collecte des intensités							
Diffractomètre	BrukerX8	Bruker D8 Venture					
Température (K)	296	273					
Longueur d'onde $Mo(K\alpha)$ (Å)	0.71073	0.71073					
Correction d'absorption	multi-scan (SADABS ; Bruker)	multi-scan (SADABS ;Bruker)					
Correction d'absorption	T_{min} = 0.504 et T_{max} = 0.748	T_{min} = 0.6034 et T_{max} = 0.7473					
Domaine de θ (°)	$\theta_{max} = 36.3^{\circ}, \ \theta_{min} = 2.5^{\circ}$	$\theta_{max} = 37.3^{\circ}, \ \theta_{min} = 2.5^{\circ}$					
	$h = -19 \rightarrow 16$	$h = -20 \rightarrow 20$					
Indices de Miller	$k = -20 \rightarrow 20$	$k = -21 \rightarrow 21$					
	$l = -10 \rightarrow 10$	$l = -10 \rightarrow 10$					
Réflexions mesurées	18880	27680					
Réflexions indépendantes	2101	2274					
Réflexions pour I > $2\sigma(I)$	1997	1771					
R _{int}	0.031	0.067					
Résolution $(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.833	0.852					

L'affinement structural en anisotropie de tous les atomes des deux structures a abouti à d'excellents facteurs de reliabilités consignés dans le **Tableau II.3**. Dans les **Tableaux (II.4)** et (**II.5**) sont mentionnés, les coordonnées atomiques et les facteurs de déplacements atomiques isotropes équivalents et anisotropes obtenus après le dernier cycle d'affinement des phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3^*$.

 $\label{eq:constructures} \begin{array}{l} \textbf{Tableau II.3:} Résultats d'affinements des deux structures des phosphates Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3 \ et Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3 \end{array}$

Affinement structural						
Composé	$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$	Na _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃				
Facteur de confiance $R[F^2 > 2\sigma (F^2)]$	0.032	0.017				
Facteur de confiance wR(F ²)	0.060	0.046				
S (Goodness-of-Fit)	1.04	1.19				
Nombre de paramètres affinés	96	96				
Densité résiduelle maximale $\Delta \rho_{max}$ (e.Å ⁻³)	1.17	0.65				
Densité résiduelle minimale $\Delta \rho_{min}$ (e.Å ⁻³)	-1.80	-1.20				
$(\Delta/\sigma)_{\rm max}$	0.001	0.001				
Schéma de pondération avec $P = (F_o^2 + 2F_c^2)/3$	W_1	<i>W</i> ₂				

Avec: $w_1 = 1/[\sigma^2(F_o^2) + (0.0254P)^2 + 2.8183P]$ et $w_2 = 1/[\sigma^2(F_o^2) + (0.016P)^2 + 1.8532P]$

Tableau II.4 : Positions atomiques et facteurs des déplacements atomiques isotropes équivalents (Å²) des phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3^*$

Atome	Site	Х	У	Z	Ueq	Occupation
Na1	4a	0.50000	0.50000	0.00000	0.0152 (1)	1
Ag1*		0.50000	0.50000	0.00000	0.01563 (8)	1
Na2	10	1.00000	0.4915 (1)	0.75000	0.0356 (7)	0.664 (6)
Ag2*	40	1.00000	0.49097 (5)	0.75000	0.0290(1)	0.65 (1)
Fe1/Zn1	8 f	0.71738 (2)	0.84648 (2)	0.12925 (3)	0.00552 (5)	0.668 (3) / 0.332 (3)
Fe1/Zn1*	0J	0.71744 (3)	0.84689 (3)	0.12765 (5)	0.00637 (9)	0.685 (9) / 0.315 (9)
Zn2	10	0.50000	0.73133 (2)	0.25000	0.00966 (5)	1
Zn2*	40	0.50000	0.73457 (3)	0.25000	0.00968 (9)	1
P1	Q£	0.76212 (3)	0.60983 (2)	0.37448 (5)	0.00388 (6)	1
P1*	ðј	0.76145 (5)	0.61141 (5)	0.37476 (9)	0.0051 (1)	1
P2	10	0.50000	0.28835 (3)	0.25000	0.00330 (7)	1
P2*	40	0.500000	0.28598 (7)	0.25000	0.0047 (1)	1
01	Q£	0.83510 (9)	0.66524 (7)	0.6077 (1)	0.007 (1)	1
01*	ðј	0.8356 (1)	0.6645 (1)	0.6086 (3)	0.0079 (3)	1
O2	٥£	0.77771 (9)	0.67779 (8)	0.1849 (1)	0.0077 (1)	1
02*	ðJ	0.7783 (1)	0.6772 (1)	0.1861 (3)	0.0096 (3)	1
03	Q£	0.62448 (9)	0.60224 (8)	0.325 (1)	0.0081 (1)	1
03*	ðј	0.6249 (1)	0.6086 (1)	0.3286 (3)	0.0090 (3)	1
04	٥£	0.8211 (1)	0.49950 (8)	0.3841 (1)	0.0111 (1)	1
04*	ðј	0.8156 (1)	0.5001 (1)	0.3824 (3)	0.0134 (3)	1
05	٥£	0.60288 (9)	0.36396 (8)	0.2519(1)	0.0075 (1)	1
05*	ðJ	0.6037 (1)	0.3598 (1)	0.2533 (3)	0.0082 (3)	1
06	8 f	0.45837 (8)	0.21761 (8)	0.0333 (1)	0.0063 (1)	1
06*	ЪĴ	0.4583 (1)	0.2163 (1)	0.0329 (3)	0.0071 (3)	1

Atome	<i>U</i> ¹¹	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Na1	0.0221 (4)	0.0079 (3)	0.0091 (3)	0.0024 (3)	-0.0004 (3)	0.0006 (3)
Ag1*	0.0247 (1)	0.0084 (1)	0.0096 (1)	0.0047 (1)	0.0023 (1)	0.00064 (9)
Na2	0.0167 (8)	0.046(1)	0.035 (1)	0.000	-0.0008 (7)	0.000
Ag2*	0.0113 (2)	0.0283 (3)	0.0360 (3)	0.000	-0.0024 (2)	0.000
Fe1/Zn1	0.00523 (7)	0.00632 (7)	0.00583 (7)	-0.00082 (5)	0.00307 (5)	-0.00067 (5)
Fe1/Zn1*	0.0054 (1)	0.0079 (1)	0.0064 (1)	-0.0010(1)	0.0028 (1)	-0.0007 (1)
Zn2	0.0112 (1)	0.0092 (1)	0.0108 (1)	0.000	0.00679 (8)	0.000
Zn2*	0.0107 (1)	0.0096 (1)	0.0109 (18)	0.000	0.0064 (1)	0.000
P1	0.0056 (1)	0.0036 (1)	0.0028 (1)	-0.00051 (9)	0.00192 (9)	-0.00023 (8)
P1*	0.0061 (2)	0.0051 (2)	0.0039 (2)	-0.0011 (1)	0.002(1)	-0.0004 (1)
P2	0.0032 (1)	0.0037 (1)	0.0026 (1)	0.000	0.0007 (1)	0.000
P2*	0.0050 (3)	0.0051 (3)	0.0034 (3)	0.000	0.0013 (3)	0.000
01	0.0098 (4)	0.0072 (4)	0.0035 (3)	-0.0020 (3)	0.0022 (3)	-0.0015 (3)
01*	0.0100 (7)	0.0077 (8)	0.0054 (7)	-0.0013 (6)	0.0025 (6)	-0.0017 (6)
O2	0.0090 (4)	0.0101 (4)	0.0043 (3)	-0.0022 (3)	0.0032 (3)	0.0013 (3)
O2*	0.0089 (7)	0.0129 (8)	0.0070 (7)	-0.0034 (6)	0.0030 (6)	0.0005 (6)
03	0.0068 (4)	0.0083 (4)	0.0101 (4)	-0.0015 (3)	0.0044 (3)	-0.0006 (3)
03*	0.0065 (7)	0.0104 (8)	0.0105 (8)	-0.0013 (6)	0.0039 (6)	-0.0002 (6)
O4	0.0147 (4)	0.0062 (4)	0.0125 (4)	0.0026 (3)	0.0057 (3)	-0.0019 (3)
04*	0.0160 (9)	0.0084 (8)	0.0158 (9)	0.0030(7)	0.0062 (7)	-0.0024 (7)
05	0.0055 (3)	0.0064 (3)	0.0092 (4)	-0.0012 (3)	0.0016 (3)	0.0029 (3)
05*	0.0061 (7)	0.0076 (8)	0.0098 (7)	-0.0011 (5)	0.0020 (6)	0.0023 (6)
06	0.0057 (3)	0.0081 (4)	0.0044 (3)	-0.0004 (3)	0.0015 (3)	-0.0024 (3)
06*	0.0059 (7)	0.0084 (7)	0.0064 (7)	0.0000 (6)	0.0019 (6)	-0.0014 (6)

Tableau II.5 : Facteurs des déplacements atomiques anisotropes (Å²) dans la structure des phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3^*$

II-2-2-2 Descriptions structurales des orthophosphates Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃

Les polyèdres de coordinations des divers cations des deux phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$, ainsi que tous les dessins de structures ont été réalisés avec le logiciel *Diamond 3.1d* [191]. La visualisation graphique des polyèdres a été réalisée en respectant la sphère de coordinance de chaque cation. Pour les cations monovalents nous discuterons l'effet d'introduction des distances A⁺- O (A⁺= Ag ou Na) de l'ordre de 3Å, sur l'aspect géométrique de chaque polyèdre.

Les représentations tridimensionnelles des polyèdres de coordination des deux structures ont été réalisées via le logiciel *Ortep 3* (version 2014.1) [192]. La confirmation du modèle structural a été réalisée via le calcul des valences de liaisons, des divers cations constitutifs

chacune des deux structures en utilisant le programme Bond-Str incorporé dans la suite «*Fullprof*» 2018 [193]. Les résultats des calculs sont consignés dans le (**TableauII.6**).

 $\label{eq:constructures} \begin{array}{l} \textbf{Tableau II.6:} \ Valences \ des \ liaisons \ cationiques \ dans \ les \ deux \ structures \ Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3 \ et \ Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3 \end{array}$

Phase	Na _{1.67} Zn _{1.67} Fe _{1.33} (PO ₄) ₃						
Elément	Na(1)	Na(2)	Zn(1)	Zn(2)	Fe(1)	P(1)	P(2)
Valence de liaison	1.300(1)	0.833(1)	2.456(3)	1.793(2)	2.849(3)	4.912(7)	4.910(7)
Phase	$Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$						
Elément	Ag(1)	Ag (2)	Zn(1)	Zn(2)	Fe(1)	P(1)	P(2)
Valence de liaison	1.233(2)	0.825(2)	2.410(5)	1.829(4)	2.796(6)	4.934(1)	4.897(1)

Les distances interatomiques et les angles de liaisons des deux structures sont résumés dans le (**TableauII.7**).

 $\label{eq:tableau} \textbf{II.7:} Principaux distances (Å) et angles interatomiques (°) dans les structures de Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3 et Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$

Atome	Na1.67Zn1.67Fe1.33(PO4)3		Ag1.65Zn1.65Fe1.35(PO4)3		
	Distances P(1) - O) (Å)	Distances P(1) - O	(Å)	
	P1—O1	1.5563 (9)	P1—O1	1.5550(1)	
	P1—O2	1.5520(1)	P1—O2	1.5440(1)	
	P1—O3	1.5230(1)	P1—O3	1.5220(1)	
	P1—O4	1.5350(1)	P1—O4	1.5390 (1)	
	Distance moyen	ne :	Distance moyenn	e :	
P1	$\langle \mathbf{P}(1) - \mathbf{O} \rangle = 1.$	5415	< P(1) - O > = 1.5	;400	
11	Angles O - P(1) - 0	(°) C	Angles O - P(1) - O) (°)	
	O3—P1—O4	112.20 (6)	O3—P1—O4	112.3 (1)	
	O3—P1—O2	108.58 (5)	O3—P1—O2	108.5 (1)	
	O4—P1—O2	109.36 (6)	O4—P1—O2	109.6 (1)	
	O3—P1—O1	111.16 (6)	O3—P1—O1	110.2 (1)	
	04—P1—O1	107.14 (6)	04—P1—O1	107.2 (1)	
	02—P1—O1	108.32 (5)	02—P1—O1	108.9 (1)	
Atome	Distances P(2) - O	(Å)	Distances P(2) - O (Å)		
	P2—O5	1.5320(1)	P2—O5	1.5340 (1)	
	P2—O5 ^v	1.5320(1)	P2—O5 ^v	1.5340 (1)	
	P2—O6	1.5510 (9)	P2—O6	1.5520(1)	
	P2—O6 ^v	1.5510 (9)	P2—O6 ^v	1.5520(1)	
	Distance moyen	ne :	Distance moyenne :		
	< P(2) - O > = 1.5	5415	< P(2) - O > = 1.5	5430	
P2	Angles O - P(2) - 0	O (°)	Angles O - P(2) - C) (°)	
	O5—P2—O6	109.00 (5)	O5—P2—O6	108.98 (9)	
	O5 ^v —P2— O5	103.73 (8)	O5 ^v —P2—O5	105.1 (1)	
	O5—P2—O6 ^v	112.27 (5)	O5—P2—O6 ^v	111.42 (9)	
	O5 ^v —P2—O6 ^v	108.99 (5)	O5 ^v —P2—O6 ^v	108.97 (9)	
	O5 ^v —P2—O6	112.27 (5)	O5 ^v —P2—O6	111.42 (9)	
	O6 ^v —P2—O6	110.43 (7)	O6 ^v —P2—O6	110.9 (1)	

Atome	Distances Fe(1)/Zn(1)) - O (Å)	Distances Fe(1)/Zn(1)	- O (Å)
	Fe1/Zn1—O1 ⁱⁱ	2.0170(1)	Fe1/Zn1—O1 ⁱⁱ	2.0280(1)
	Fe1/Zn1—O2	2.2090(1)	Fe1/Zn1—O2	2.2460 (1)
	Fe1/Zn1—O2 ⁱⁱⁱ	2.0570(1)	Fe1/Zn1—O2 ⁱⁱⁱ	2.0540(1)
	Fe1/Zn1—O4 ⁱ	1.9610(1)	Fe1/Zn1—O4 ⁱ	1.9710(1)
	Fe1/Zn1—O5 ⁱ	1.9510(1)	Fe1/Zn1—O5 ⁱ	1.9480 (1)
	Fe1/Zn1—O6 ^{iv}	2.0684 (9)	Fe1/Zn1—O6 ^{iv}	2.0750(1)
	Distance moven	ne :	Distance movenn	e :
	< Fe(1)/Zn(1) - O > =	= 2.0439	$\langle Fe(1)/Zn(1) - O \rangle =$	2.0536
	Angles O - Fe(1)/Zn(1	l) - O (°)	Angles O - Fe(1)/Zn(1) - O (°)
	O4 ⁱ —Fe1/Zn1—O2	173.23 (4)	O4 ⁱ —Fe1/Zn1—O2	171.76 (7)
Fe1/Zn1	O5 ⁱ —Fe1/Zn1—O4 ⁱ	95.89 (4)	$O5^{i}$ — Fe1/Zn1—O4 ⁱ	95.78 (8)
	$O6^{iv}$ —Fe1/Zn1—O1 ⁱⁱ	79.35 (4)	O6 ^{iv} — Fe1/Zn1—O1 ⁱⁱ	78.82 (7)
	$O1^{ii}$ —Fe1/Zn1— $O5^{i}$	109.05 (4)	O1 ⁱⁱ — Fe1/Zn1—O5 ⁱ	109.04 (7)
	$O6^{iv}$ —Fe1/Zn1— $O2^{iii}$	82.12 (4)	O6 ^{iv} — Fe1/Zn1—O2 ⁱⁱⁱ	82.36 (7)
	O1 ⁱⁱ —Fe1/Zn1—O4 ⁱ	88.00 (4)	O1 ⁱⁱ — Fe1/Zn1—O4 ⁱ	88.51 (7)
	$O2^{iii}$ —Fe1/Zn1— $O5^{i}$	87.13 (4)	O2 ⁱⁱⁱ — Fe1/Zn1—O5 ⁱ	87.16(7)
	$O2^{iii}$ —Fe1/Zn1— O4 ⁱ	101.39 (4)	O2 ⁱⁱⁱ — Fe1/Zn1—O4 ⁱ	101.25 (8)
	$O6^{iv}$ —Fe1/Zn1—O4 ⁱ	100.93 (4)	$O6^{iv}$ — Fe1/Zn1—O4 ⁱ	102.46 (7)
	O6 ^{iv} —Fe1/Zn1—O2	84.43 (4)	O6 ^{iv} — Fe1/Zn1—O2	84.60 (7)
	O5 ⁱ —Fe1/Zn1—O2	79.41 (4)	O5 ⁱ — Fe1/Zn1—O2	77.81 (7)
	O1 ⁱⁱ —Fe1/Zn1—O2	88.95 (4)	O1 ⁱⁱ — Fe1/Zn1—O2	88.73 (6)
	O2 ¹¹¹ —Fe1/Zn1—O2	83.34 (4)	O2 ^m — Fe1/Zn1—O2	83.74 (7)
Atome	Distances Zn(2) - (D (Å)	Distances Zn(2) - C	D (A)
	Zn2—O1 ⁱⁱ	2.2030 (1)	Zn2—O1 ⁱⁱ	2.1970 (1)
	Zn2—O1 ^{vii}	2.2028 (9)	$Zn2-O1^{vii}$	2.1970 (1)
	Zn2—O3 ^v	2.1020(1)	Zn2—O3 ^v	2.0920(1)
	Zn2—O3	2.1020(1)	Zn2—O3	2.0920(1)
	Zn2—06 ^{v1}	2.1550 (1)	Zn2—06 ^{vi}	2.1510(1)
	Zn2—06 ^{iv}	2.1550(1)	Zn2—O6 ¹	2.1510(1)
	Distance moyen $\langle 7n(2) - 0 \rangle = 2$	1e : 1533	Distance moyenn $\langle \mathbf{Tn}(2) - \mathbf{ON} \rangle = 2$	ie : 1466
	$\frac{1}{2} = \frac{1}{2}$	O (°)	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	$\mathbf{O}(^{\circ})$
	O_3 — $Z_n 2$ — O_1^{vii}	164.40 (4)	$O3$ — $Zn2$ — $O1^{vii}$	164.81 (7)
7.0	$03 - Zn^2 - O1^{ii}$	86.51 (4)	$03 - 7 n^2 - 01^{ii}$	85.39 (6)
Zn2	O6 ^{vi} —Zn2—O1 ⁱⁱ	86.30 (4)	O6 ^{vi} —Zn2—O1 ⁱⁱ	86.93 (6)
	O3 ^v —Zn2—O3	79.62 (5)	O3 ^v —Zn2—O3	80.80 (9)
	O3 ^v —Zn2—O6 ^{vi}	92.79 (4)	O3 ^v —Zn2—O6 ^{vi}	92.67 (6)
	O3—Zn2—O6 ^{vi}	113.99 (4)	O3—Zn2—O6 ^{vi}	113.15 (6)
	O6 ^{iv} —Zn2—O1 ⁱⁱ	73.53 (3)	O6 ^{iv} —Zn2—O1 ⁱⁱ	73.62 (6)
	O3 ^v —Zn2—O1 ^{vii}	86.51 (4)	O3 ^v —Zn2—O1 ^{vii}	85.39 (6)
	O3 ^v —Zn2—O6 ^{iv}	113.99 (4)	$O3^{v}$ —Zn2— $O6^{iv}$	113.15 (6)
	O6 ^{vi} —Zn2—O1 ^{vii}	73.53 (3)	O6 ^{vi} —Zn2—O1 ^{vii}	73.62 (6)
	O6 ^{iv} —Zn2—O1 ^{vii}	86.30 (4)	O6 ^{iv} —Zn2—O1 ^{vii}	86.93 (6)
	O1 ⁱⁱ —Zn2—O1 ^{vii}	108.07 (5)	O1 ⁱⁱ —Zn2—O1 ^{vii}	108.97 (9)
	O3—Zn2—O6 ^{iv}	92.79 (4)	O3—Zn2—O6 ^{iv}	92.67 (6)
Atome	Distances Na(1) - (O (Å)	Distances Ag(1) - C) (Å)
	Na1—O3 ^{iv}	2.3824 (9)	Ag1—O3 ^{iv}	2.4540(1)
	Na1—O3 ^{xii}	2.5180(1)	Ag1—O3 ^{xii}	2.5600 (1)
	Na1—O3 ^v	2.5180(1)	Ag1—O3 ^v	2.5600(1)
	Na1—O3	2.3823 (9)	Ag1—O3	2.4540 (1)
Na1, Ag1	Na1—O5	2.3240 (9)	Ag1-05	2.3860 (1)
_	Na1—O5 ^{iv}	2.3240 (9)	Ag1—O5 ^{iv}	2.3860(1)
	Na1—O5 ^{xii}	2.9010(1)	Ag1—O5 ^{xii}	2.9460 (1)
	Na1—O5 ^v	2.9010(1)	Ag1—O5 ^v	2.9460 (1)

	Distance moyenne : <na(1) o="" –=""> = 2.5313</na(1)>		Distance moyenne : < Ag(1) - O > = 2.5865		
Atome	Distances Na(2) - O (Å)		Distances Ag(2) - O (Å)		
	Na2—O1	2.812 (2)	Ag2—O1	2.829(1)	
	Na2—O1 ^{viii}	2.812 (2)	Ag2—O1 ^{viii}	2.829(1)	
	Na2—O4 ^{ix}	2.572 (1)	Ag2—O4 ^{ix}	2.636 (2)	
	Na2—O4 ^{viii}	2.448 (1)	Ag2—O4 ^{viii}	2.495 (2)	
Na2, Ag2	Na2—O4	2.448 (1)	Ag2—O4	2.495 (2)	
_	Na2—O4 ^{vi}	2.572 (1)	Ag2—O4 ^{vi}	2.636 (2)	
	Na2—O6 ^x	2.908 (2)	Ag2—O6 ^x	2.915(1)	
	Na2—O6 ^{xi}	2.908 (2)	Ag2—O6 ^{xi}	2.915(1)	
	Distance moyenne :		Distance moyenne :		
	$\langle Na(2) - O \rangle = 2$	2.685	$\langle \mathrm{Ag}(2) - \mathrm{O} \rangle = 2$	2.7187	

 [✓] Codes de symétries :(i) -x+3/2, y+1/2, -z+1/2; (ii) -x+3/2, -y+3/2, -z+1; (iii) -x+3/2, -y+3/2, -z; (II) -x+1, -y+1, -z; (v) -x+1, y, -z+1/2; (vi) x, -y+1, z+1/2; (vii) x-1/2, -y+3/2, z-1/2; (viii) -x+2, y, -z+3/2; (ix) -x+2, -y+1, -z+1; (x) x+1/2, -y+1/2, z+1/2; (xi) -x+3/2, -y+1/2, -z+1; (xii) x, -y+1, z-1/2.

Les **Figures (II.2)** et (**II.3**) représentent l'enchainement tridimensionnel des polyèdres de coordination, dans les structures de $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$. Les ellipsoïdes d'agitations thermiques ont été représentés avec une probabilité de 60%.

Figure II.2 : Agencement tridimensionnel des polyèdres dans Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃

Figure II.3 : Connectivité des polyèdres de coordination dans Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃

(i) Environnement de phosphore :

Dans les deux phosphates, l'atome de phosphore P(1) adopte un environnement tétraédrique avec des distances interatomiques P(1) — O évoluant entre 1,523(1)Å et 1,556(9)Å pour Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et entre 1,522(1)Å et 1,555(1)Å pour Ag_{1.65}Fe_{1.35}(PO₄)₃. Le second phosphore P(2) possède également, un environnement tétraédrique avec les distances interatomiques P(2) — O égaux deux à deux. Elles varient ainsi entre 1,532(1)Å et 1,551(9)Å pour Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et évoluent de 1,534(1)Å à 1,552(1)Å pour Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃ (**Figure II.4**). Ces valeurs sont en parfaite concordance avec celles rencontrées dans le cas des orthophosphates.

Figure II.4 : Environnement tétraédrique de P(1) et P(2) dans les phosphates Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃

(ii) Environnement de Fer et de Zinc :

Dans les deux structures, les atomes Fe(1)/Zn(1) sont entourés par six atomes d'oxygène formant des octaèdres déformés (Fe(1)/Zn(1))O₆ avec des distances interatomiques Fe(1)/Zn(1) — O comprises entre 1.951(1)Å et 2.209(1)Å pour le composé au Na et entre 1.948(1)Å et 2.246(1)Å pour la phase à Ag (**Figure II.5**).

De même, pour les deux structures, les atomes Zn(2) sont entourés par six atomes d'oxygène pour adopter un environnement octaédrique déformé avec des distances Zn(2)—O comprises entre 2.102(1)Å et 2.203(1)Å pour Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et entre 2.092(1)Å et 2.197(1)Å pour Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃ (Figures II.6).

Figure II.5 : Environnement des atomes Fe(1) et Zn(1) dans les phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$

< Zn(2) – O > = 2.1533Å

< Zn(2) – O > = 2.1466Å

Figure II.6: Environnement des atomes Zn(2) dans les phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$

(iii) Environnement de sodium et d'argent:

Dans les deux structures, les cations monovalents A⁺ (A⁺= Na⁺ et Ag⁺) possèdent une sphère de coordination de huit atomes d'oxygène (**Figures (II.7**) et (**II.8**)). Dans les polyèdres de coordination A(1)O₈, les distances interatomiques A(1) — O varient considérablement avec une différence de l'ordre de ≈ 0.6 Å entre les distances minimales et celles maximales. En effet, dans le cas de A(1)O₈ (A = Na et Ag), six des distances A(1) — O sont comprises entre 2.324(9)Å et 2.518(1)Å pour Na(1) et entre 2.386(1)Å et 2.560(1)Å pour Ag(1). Les deux distances restantes atteignent 2,901(1)Å et 2,946(1)Å pour Na(1) et Ag(1) respectivement. De même, l'analyse des distances interatomiques dans le polyèdre Na(2)O₈ révèle la présence de quatre distances Na(2)—O comprises entre 2.448(1)Å et 2.572(1)Å, en plus de quatre autres nettement plus longues que les précédentes (deux liaisons Na(2)—O(1) = 2.812(2)Å et deux liaisons Na(2)—O(6)=2.908(2)Å). Par analogie, le polyèdre Ag(2)O₈ est constitué de quatre oxygènes se trouvant à des distances de 2.495(2)Å et de 2.636(1)Å par rapport à Ag(2), tandis que les quatre autres oxygènes restants sont nettement distants de Ag(2): Ag(2) — O(1) = 2.829(1)Å et Ag(2) —O(6) = 2.915(1)Å.

Figure II.7 : Environnement de Na(1) et Ag(1) dans les structures deNa_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et de Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃

L'analyse des distances interatomiques dans le polyèdre $Na(2)O_8$ révèle la présence de six distances Na(2)—O comprises entre 2.448(1)Å et 2.812(2)Å avec deux distances supplémentaires Na(2)—O(6) = 2.908(2)Å, nettement plus longues que les précédentes. Par analogie Ag(2)O₈ affiche six distances Ag(2) —O qui évoluent entre 2.495(2)Å et 2.829(1)Å

avec deux autres distances Ag(2) - O(6)=2.915Å. Cette forte variation des distances A-O est fort probablement due à la forte agitation des cations Na⁺ et Ag⁺ présents dans les tunnels.

Figure II.8: Environnement des atomes Na(2) et Ag(2) dans Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃

Dans les deux structures, chaque deux octaèdres (Fe(1)/Zn(1))O₆ mettent en commun une arête O(2) - O(2) de longueurs 2,8383Å et 2,8711Å respectivement pour les phases aux Na et Ag afin d'aboutir à des dimères (Fe(1)/Zn(1))₂O₁₀ (**Figure II.9**). Aussi, il convient de signaler que, dans chaque dimère, le milieu de l'arête O(2) - O(2) présente un centre d'inversion de ces entités. Ces diméres se caractérisent par une distance d[(Fe(1)/Zn(1))-(Fe(1)/Zn(1)] = 3.1880Å pour Na_{1.67}Zn_{1.67}Fe_{1.33}(PO₄)₃ et 3.2028 Å pour Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃ (**Figure II.9**).

Deux dimères $(Fe(1)/Zn(1))_2O_{10}$ sont connectés entre eux via un octaèdre $Zn(2)O_6$ fortement distordu, par la mise en commun d'arête, formant une entité $[(Fe(1)/Zn(1))_2Zn(2)O_{14}]$. Cette dernière s'étend en zigzag le long de la direction [101] construisant ainsi à des chaînes infinies $[(Fe(1)/Zn(1))_2Zn(2)O_{14}]_{m}$ (Figure II.10).

 $\label{eq:Figure II.10: Illustration d'une chaine en zigzag évoluant suivant la rangeé [101] , pour les deux structures Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3 et Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$

Les chaînes consécutives sont connectées entre elles via les groupements tétraédriques PO₄ conduisant à la formation de feuillets parallèles au plan (101) (**Figures (II.11)** et (**II.12**)).

 $\label{eq:Figure II.11: Feuillet parallèle au plan (101) dans la structure des deux phosphates Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3 \ et \ Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$

Figure II.12 : Projection d'un feuillet suivant la direction [001]

Les feuillets adjacents sont reliés entre eux par la mise en commun des sommets, des tétraèdres $P(1)O_4$ et des octaèdres (Fe(1)/Zn(1))O₆ (Figure II.13) afin de former une charpente tridimensionnelle délimitant ainsi deux types de tunnels de forme hexagonal le long de l'axe c (Figure II.14). Les cations monovalents Na⁺(1) et Ag⁺(1) se positionnent dans le premier type de tunnel (1) alors que Na⁺(2) et Ag⁺(2) se localisent dans le second type de tunnel (2) (Figure II.14).

Figure II.13 : Interconnexion des feuillets suivant la direction [001]

Figure II.14 : Projection de la structure de A₂Zn₂Fe(PO₄)₃ (A=Na, Ag) suivant la direction [001]

Les deux structures des phosphates $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$ et $Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO_4)_3$, se caractérisent par une alternance des tunnels (1) et (2) (**Figure II.14**) dont les dimensions sont très voisines comme le montre les **Figures (II.15**) et (**II.16**).

Figure II.15 : Dimensions des tunnels dans la structure du phosphate $Na_{1.67}Zn_{1.67}Fe_{1.33}(PO_4)_3$

Figure II.16 : Dimensions des tunnels dans la structure du phosphate Ag_{1.65}Zn_{1.65}Fe_{1.35}(PO₄)₃

II-3 Synthèse et caractérisation du phosphate Na₂Zn₂Fe(PO₄)₃ sous forme pulvérulente

II-3-1 Essais de synthèse du phosphate $A_2Zn_2Fe(PO_4)_3$ (A = Na, Ag) sous forme pulvérulente

Les essais de synthèse de A₂Zn₂Fe(PO₄)₃ (A = Na, Ag) sous forme de poudre ont été réalisés par la méthode de diffusion à l'état solide à partir des mélanges stœchiométriques correspondant au rapport molaire Na (Ag) : Zn : Fe : P = 2 : 2 : 1 : 3 des réactifs suivants: $[(Ag_2CO_3 \ge 99\%, Sigma-Aldrich) \text{ pour la phase à Ag et (Na_2CO_3:98\%, Sigma-Aldrich) pour le composé au Na], (Zn(NO_3)_2.6H_2O : 98\%, Sigma-Aldrich), (Fe(NO_3)_3.9H_2O : 98\%, Panreac Applichem) et (NH_4H_2PO_4: 99.99\%, Sigma-Aldrich).$

L'ensemble des réactifs est dissous, en premier lieu, dans un bécher avec un volume convenable d'eau distillée et quelques gouttes de HNO3 concentré. Ensuite, le mélange réactionnel est maintenu sous agitation, à l'aide d'un agitateur magnétique, à température ambiante pendant 24h. La solution résultante est chauffée lentement sur une plaque chauffante. Après séchage, le solide jaunâtre obtenu pour les deux préparations est recueilli dans un creuset en platine pour subir des traitements thermiques, à différents paliers de températures allant de 400°C à 750°C à raison de 50°C de différence entre deux traitements successifs. Ces paliers thermiques, d'une durée de 72h pour chacun, sont entrecoupés par des broyages rigoureux afin d'aboutir à une bonne homogénéisation. L'évaluation progressive de la qualité et la pureté des échantillons est contrôlée par diffraction de rayons X (DRX) sur poudre de manière systématique après chaque traitement thermique. Les diagrammes de diffractions des rayons-X sur poudre ont été enregistrés à l'aide du diffractomètre «Siemens D5000» du Laboratoire de Chimie Appliquée des Matériaux (LCAM) de la Faculté des Sciences de Rabat. Les positions et les intensités des différentes raies de diffraction observées sont comparées à celles disponibles dans la banque de données regroupant les fiches de référence PDF2-2010 ICDD (International Centre for Diffraction Data), en utilisant le logiciel BrukerDIFFRAC plus EVA [194].

A 750°C, l'essai de synthèse de Na₂Zn₂Fe(PO₄)₃ a abouti à un diffractogramme qui s'identifie parfaitement avec celui calculé à partir des données cristallographiques obtenues sur monocristal via le programme *PowderCell 2.4* et qui ne présente pas de raies supplémentaires attestant ainsi de l'obtention de la phase recherchée. Quant à l'essai de synthèse de Ag₂Zn₂Fe(PO₄)₃, le diagramme de DRX obtenu au terme du traitement thermique à 750°C, contient plus de raies, non identifiées, comparé à celui théorique de la phase recherchée.

Devant cette difficulté, nous avons entrepris des tentatives de synthèse de $Ag_2Zn_2Fe(PO_4)_3$ en variant les précurseurs et en respectant les mêmes rapports molaires. Dans tous les essais, bien que nous observions les raies de diffraction caractéristiques de la phase recherchée, à des températures de traitements thermiques avoisinantes 800°C, nous nous sommes confrontés à un faible taux de cristallisation, qui persiste malgré des recuits durant 24h chacun. Signalons qu'un début de frittage est observé au-delà de cette température.

II-3-2 Caractérisation de Na₂Zn₂Fe(PO₄)₃ sous forme polycristalline II-3-2-1 Affinement du profil total du diagramme de diffraction de Na₂Zn₂Fe(PO₄)₃

Afin d'affiner le profil total du diagramme de diffraction (DRX) de Na₂Zn₂Fe(PO₄)₃ l'enregistrement des données a été effectué avec le même diffractomètre à l'ambiante, dans le domaine angulaire 10 - 70° (2 θ) avec un pas de 0,04° et un temps d'intégration de 30 s par pas. L'affinement a été réalisé en utilisant l'option « Pattern Matching » [195] à l'aide du programme *Jana 2006* [196]. Les deux diagrammes de diffraction (DRX) calculé, observé et leur différence (**Figure II.17**) montrent une très bonne concordance comme le témoigne les bonnes valeurs des facteurs de mérites. Ces derniers, ainsi que les paramètres de maille affinés du diagramme DRX de poudre sont consignés dans le **Tableau (II.8**).

 $\label{eq:Figure II.17} Figure II.17: Diffractogrammes (DRX) calculé, observé et leur différence dans \\ Na_2 Zn_2 Fe(PO_4)_3$

Paramètres de maille et volume			Facteu	rs de re	eliabilt	tès	
a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)	GOF	R _p	wR_p
11.7604(3)	12.5050(3)	6.3961(1)	113.513(2)	862.54(5)	1.22	6.39	8.18

Tableau II.8 : Paramètres de maille affinés, volume et facteurs de reliabiltès de Na₂Zn₂Fe(PO₄)₃

II-3-2-2 Caractérisation par microscopie électronique à balayage (MEB) du phosphate Na_2Zn_2Fe(PO_4)_3

L'analyse minutieuse des micrographies MEB révèle la présence d'agrégats de grains micrométriques de différentes morphologies et granulométries (**Figure II.18**). Ce constat est lié intimement au broyage et à la nature de l'échantillon. En effet, la température de synthèse de Na₂Zn₂Fe(PO₄)₃ sous forme pulvérulente par voie solide est très proche de celle de début de frittage de cette phase, ce qui accroit la compacité de cette dernière. En outre, l'analyse élémentaire par spectrométrie de rayons-X à dispersion d'énergie (EDS) nous permis de vérifier la pureté de notre poudre (**Figure II.19**). En plus, l'analyse des données obtenues confirme que les pourcentages massiques des éléments détectés sont très proches de ceux de la phase Na₂Zn₂Fe(PO₄)₃ (**Tableau II.9**).

Figure II.18: Micrographies MEB du nouveau phosphate Na₂Zn₂Fe(PO₄)₃

Figure II.19: Spectre EDS de la poudre du phosphate Na₂Zn₂Fe(PO₄)₃

Tableau II.9: Pourcentages massiques des éléments obtenus par EDS

Elément	Na	Zn	Fe	Р	0
% Massique (EDS)	8.36	22.42	13.41	20.81	35.00
% Massique (Théorique)	7.90	22.46	13.70	18.24	37.69

II-3-2-3 Etude spectroscopique

Dans le cadre de la présente thèse, toutes les analyses de poudres, par la spectroscopie infrarouge ont été réalisées au sein du plateforme d'analyse et de caractérisation (PAC), de la Faculté des Sciences de Rabat, à l'aide d'un spectromètre infrarouge à transformée de fourrier de marque «*JASCO FT/IR 4600*». Les mesures ont été entreprises sous un angle de 45°, dans intervalle spectral compris entre 4000 et 400 cm⁻¹ (pour nos analyses spectrales on se contentera de la gamme spectrale 1600 - 400 cm⁻¹), avec un balayage de 30 scans, une vitesse de 2mm.s⁻¹ et une résolution de 4 cm⁻¹ à température ambiante.

Les mesures de spectroscopie Raman ont été réalisées au Laboratoire de Spectrométrie des Matériaux et Archéomatériaux (LASMAR-URAC11) de la Faculté des Sciences de Meknès. Les spectres Raman ont été mesurés entre 100 et 2000 cm⁻¹ à température ambiante avec un spectromètre «*Renishaw»* micro-Raman (RM1000).

L'examen bibliographique révèle que d'une manière générale les spectres Infrarouge et Raman des phosphates contenant les groupements PO₄ isolés peuvent être subdivisés en trois principales régions [197]:

- ✓ Les vibrations de valence des liaisons P-O (v_1 et v_3) qui se situent entre 1250 et 900 cm⁻¹;
- ✓ Entre 700 et 400 cm⁻¹ apparaissent les vibrations de déformation des angles O-P-O (v_2 et v_4), v_2 se localisent vers 400 cm⁻¹ tandis que v_4 se positionne au voisinage de 600 cm⁻¹;
- ✓ Dans l'intervalle 400-50 cm⁻¹ apparaissent les vibrations externes et de réseau.

II-3-2-3-1 Analyse par spectroscopie infrarouge (IR)

Dans le cas de la poudre du nouveau phosphate élaboré, l'intervalle spectral situé entre 1600 et 400 cm⁻¹ est parfaitement adéquat pour la caractérisation des vibrations du groupement tétraédrique PO_4^{3-} . Le spectre infrarouge de la poudre $Na_2Zn_2Fe(PO_4)_3$, est illustré dans la **(Figure II.20)**.

Figure II.20: Spectre infrarouge du phosphate Na₂Zn₂Fe(PO₄)₃

L'analyse par spectroscopie infrarouge (IR), nous a permis de mettre en évidence plusieurs bandes dues aux modes de vibrations attribuables aux ions PO_4^{3-} du phosphate $Na_2Zn_2Fe(PO_4)_3$. Les résultats des divers assignements sont résumés dans le (**Tableau II.10**).

Assignement	Nombre d'onde (cm ⁻¹)
Elongations P-O symétrique (v_1) et antisymétrique (v_3)	912 - 987-1074
Déformation angulaire O-P-O symétrique (v ₂) et antisymétrique (v ₄)	418 - 429 - 436 - 540 - 569 - 585

Tableau II.10: Attributions des fréquences Infrarouge observées pour le phosphate Na₂Zn₂Fe(PO₄)₃

Ces attributions sont en parfaite accord avec celles signalées dans la bibliographie [197], en particulier pour les phosphates de type Alluaudite suivants :

AgCaCdMg₂(PO₄)₃, AgCd₂Mg₂(PO₄)₃ [97], Na_{1.5}(Mn_{1-x}M_x²⁺)_{1.5}Fe_{1.5}(PO₄)₃ (M²⁺ = Cd²⁺, Zn²⁺) [198], Na₂(Mn_{1-x}M_{2+x})Fe²⁺Fe³⁺(PO₄) (M²⁺ = Mg, Cd) [199], Na₂(Mn_{1-x}Fe_x²⁺)₂Fe³⁺(PO₄)₃ [121], (Na_{1-x}Li_x)CdIn₂(PO₄)₃ [200] et la phase NaMn(Fe_{1-x}In_x)₂(PO₄)₃ [122]. L'examen des données de la littérature révèle que certaines vibrations relatives aux autres groupements peuvent interférer avec ceux relatives à l'ion phosphate PO₄³⁻.

D'après (Hatert.F)[198] dans le cas des structures $Na_{1.5}(Mn_{1-x}M_x^{2+})_{1.5}Fe_{1.5}(PO_4)_3$ avec $0 \le x \le 1$ et ($M^{2+}=Cd^{2+}, Zn^{2+}$), la bande d'absorption à environ 414 cm⁻¹ correspond aux vibrations du cation M^{2+} en position M(1). Dans cette solution solide, la substitution de Mn^{2+} par Cd^{2+} produit un allongement des longueurs des liaisons M(1) - O et par conséquent cette bande se déplace vers des fréquences inférieures à 400 cm⁻¹, par contre le remplacement de Mn^{2+} par Zn^{2+} produit des effets inverses ainsi la bande de 414 cm⁻¹ se déplace vers 426 cm⁻¹. Cette bande peut atteindre 443 cm⁻¹ dans le cas de $Na_2MgFe^{2+}Fe^{3+}(PO_4)_3$.

Par ailleurs, dans les solutions solides Na₂(Mn_{1-x}M_{2+x})Fe²⁺Fe³⁺(PO₄)₃ avec $0 \le x \le 1$ et (M²⁺ = Mg, Cd), les fréquences des vibrations M²⁺ – O relatives au cation en site M(2) varient entre 596 et 610 cm⁻¹. Cependant, les vibrations des liaisons Fe³⁺– O sont- comprises entre 628 et 642 cm⁻¹.

En comparaison avec cette dernière bande, dans le cas de $Na_2Zn_2Fe(PO_4)_3$ un léger épaulement et une faible raie sont perceptibles respectivement à 640 et 653 cm⁻¹. Par ailleurs l'élongation asymétrique de NaO_8 n'est visible qu'au voisinage de 270 cm⁻¹ d'après Makreski.P et al [201].

II-3-2-3-2 Analyse par spectroscopie Raman

Dans le cadre du présent travail, dans la (**Figure II.21**), nous représentons le spectre de diffusion Raman relatif au phosphate $Na_2Zn_2Fe(PO_4)_3$ dans l'intervalle spectrale 1600 - 150 cm⁻¹.

Figure II.21: Spectre de diffusion Raman du nouveau phosphate Na₂Zn₂Fe(PO₄)₃

Dans le (**Tableau II.11**) sont rassemblés l'ensemble des attributions des fréquences Raman observées dans le phosphate Na₂Zn₂Fe(PO₄)₃.

Tableau II.11: Attributions	des fréquences	Raman (cm ⁻¹)	observées pour	le phosphate	$Na_2Zn_2Fe(PO_4)_3$
-----------------------------	----------------	---------------------------	----------------	--------------	----------------------

Assignement	Nombre d'onde (cm ⁻¹)
Elongations P-O symétrique (v_1) et antisymétrique (v_3)	972 - 928 - 1124 - 1058 - 999
Déformation angulaire O-P-O symétrique (v_2) et antisymétrique (v_4)	448 - 481- 604 - 567 - 658

Ce dépouillement est en parfaite concordance avec les travaux menés par (Frost.R.L) sur les phosphates de zinc [202], (Zhai.S et al)[203], (Rghioui.L et al) [204], (Essehli.R et al) [205] et (Nejjar et al) [206].

L'analyse des spectres de diffusion Raman de Na₂Zn₂Fe(PO₄)₃ et ceux des Alluaudites de Rwanda (Na_{0.70}Mn_{0.23}Ca_{0.07}) Σ =1.00Mn_{1.00}(Fe³⁺1.50Al_{0.29}Mg_{0.10}Mn_{0.11}) Σ =2.00(PO₄)₃, et du sud de Dakota États-Unis d'Amérique (Na_{0.97}Ca_{0.06}) Σ =1.03(Mn_{0.81}Fe²⁺0.12Mg_{0.02}) Σ =0.95Fe³⁺2(PO₄)₃ obtenus à partir de la base de données *RRUFF* [207], a révélé que ces trois phases affichent en général des allures comparables dans la région spectrale [150-1600cm⁻¹] (Figure II.22).

Figure II.22 : Spectres de diffusion Raman de Na₂Zn₂Fe(PO₄)₃(1) et ceux des Alluaudites du sud de Dakota (2) et de Rwanda (3) [207]

II-4 Conclusion

Dans le présent chapitre, nous avons rapporté les conditions expérimentales de synthèse par diffusion à l'état solide des deux nouveaux phosphates $Na_{1,67}Zn_{1,67}Fe_{1,33}(PO_4)_3$ et $Ag_{1,65}Zn_{1,65}Fe_{1,35}(PO_4)_3$ apparentés à la famille Alluaudite. L'étude structurale des deux phases a été entreprise en s'appuyant sur les données de diffraction des rayons X (DRX) sur monocristal.

Ces dites phases cristallisent dans le système monoclinique avec le groupe d'espace C2/c avec les paramètres de mailles suivants :

- ✓ Pour Na_{1,67}Zn_{1,67}Fe_{1,33}(PO₄)₃: a = 11,7545(4) Å, b = 12,5080(4) Å, c = 6,4014(2) Å, $\beta = 113,507(1)^{\circ}$;
- ✓ Pour Ag_{1,65}Zn_{1,65}Fe_{1,35}(PO₄)₃: a = 11,8151(5) Å, b = 12,6367(6) Å, c = 6,4056(3) Å $\beta = 113,431(2)^{\circ}$.

La structure des deux phases, isotypes de l'Alluaudite, est construite à partir des octaèdres $(Fe(1)/Zn(1))O_6$ qui mettent en commun une arête afin d'aboutir à des dimères $(Fe(1)/Zn(1))_2O_{10}$. Deux dimères $(Fe(1)/Zn(1))_2O_{10}$ sont connectés entre eux via un octaèdre $Zn(2)O_6$ fortement distordu, par la mise en commun d'une arête, formant une entité $[(Fe(1)/Zn(1))_2Zn(2)O_{14}]$. Cette dernière s'étend en zigzag le long de la direction [101] construisant ainsi des chaînes infinies $[(Fe(1)/Zn(1))_2Zn(2)O_{14}]_{\infty}$. Les chaînes adjacentes sont connectées entre elles par les groupements tétraédriques PO₄, ce qui conduit à la formation de feuillets parallèles au plan (\vec{a}, \vec{b}) . Les feuillets adjacents sont reliés entre eux via la mise en commun des sommets, des tétraèdres P(1)O₄ et des octaèdres (Fe(1)/Zn(1))O₆ afin de former une charpente tridimensionnelle délimitant ainsi deux types de tunnels le long de l'axe c, qui sont occupés par les cations monovalents Na⁺ ou Ag⁺.

Dans le cadre de nos investigations nous avons réussis la synthèse de la nouvelle phase $Na_2Zn_2Fe(PO_4)_3$ sous forme pulvérulente par voie solide. Ce composé a fait l'objet de caractérisation par diffraction des rayons sur poudre (DRX), par microscopie à balayage (MEB) couplée à la spectroscopie de rayons X à dispersion d'énergie (EDS) et par spectroscopies infrarouge-Raman.

Chapitre III : Synthèse et étude structurale des nouveaux orthophosphates $CaZn_2Fe(PO_4)_3$ et $MZn_2Fe_4(PO_4)_6$ (M = Zn, Cd)

III-1 Introduction

Dans le chapitre précèdent, nous avons rapporté la synthèse et la caractérisation des nouveaux phosphates $A_2Zn_2Fe(PO_4)_3$ de type Alluaudite. Comme suite de ce travail, en conformité avec l'objectif principal qui consiste à synthétiser et à caractériser de nouveaux matériaux de type alluaudite, nous nous proposons de substituer les cations monovalents $A = Na^+$ ou Ag^+ occupant les deux types de tunnels A(1) et A(2) de cette structure par les cations bivalents M = Ca, Ba et Cd. Ce choix est conforté par le nombre relativement réduit de ces phases dans lesquelles les tunnels sont occupés uniquement par les cations bivalents. Nous avons ainsi entrepris des investigations par diffusion à l'état solide, sur trois systèmes quaternaires $MO - ZnO - Fe_2O_3 - P_2O_5$ (M = Ca, Ba et Cd) avec le rapport molaire M : Zn : Fe : P égal à 1 : 2 : 1 : 3.

Dans le présent chapitre, nous relatons et discutons les résultats obtenus au cours de ces investigations, qui ont abouti à l'élaboration et à la cratérisation structurale des trois nouveaux phosphates de fer et de zinc : $CaZn_2Fe(PO_4)_3$, $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$.

III-2 Synthèse et détermination structurale du nouveau phosphate $CaZn_2Fe(PO_4)_3$

III-2-1 Synthèse des cristaux du monophosphate CaZn₂Fe(PO₄)₃

La synthèse des cristaux du phosphate $CaZn_2Fe(PO_4)_3$ a été réalisée par la méthode conventionnelle de diffusion à l'état solide, en mélangeant, dans une première étape, les différents précurseurs : $(Ca(NO_3)_2.4H_2O : 99\%$, Riedel-de-Haën), $(Zn(NO_3)_2.6H_2O : 98\%$, Sigma-Aldrich), $(Fe(NO_3)_3.9H_2O : 98\%$, Panreac Applichem), $(H_3PO_4 : 85\%, VWR$ Chemicals), en respectant les proportions stœchiométriques 1: 2: 1: 3, avec 40 mL d'eau distillée dans un bécher de 100mL. Le mélange réactionnel est soumis, ensuite, à une agitation à température ambiante pendant 48h. En deuxième étape, la solution est ensuite chauffée sur une plaque chauffante à une température modérée jusqu'à l'obtention d'un solide résiduel jaunâtre. Ce dernier a subi un traitement thermique à 400°C pendant 24 heures dans une nacelle en platine.

Au terme de ces étapes, le produit résultant est broyé pendant une demi-heure et placé dans un creuset en platine de forme cylindrique de petites dimensions. L'ensemble est introduit dans un four programmable de marque *«Nabertherm»* et est porté graduellement à une température de 1010°C, correspondant à 22°C au-delà de la température de fusion obtenue pour le solide résiduel jaunâtre. Ce dernier est maintenu à cette température pendant 15min, avant de

le refroidir lentement avec une vitesse de 5°C/h jusqu'à 860°C. La température est, ensuite, abaissée jusqu'à l'ambiante avec l'inertie du four. Le solide obtenu contient des cristaux de couleur orange-transparent correspondants à la phase $CaZn_2Fe(PO_4)_{3.}$

III-2-2 Détermination structurale de CaZn₂Fe(PO₄)₃

La structure de CaZn₂Fe(PO₄)₃ a été déterminée à partir des données de diffraction des rayons-X (DRX) sur monocristal. Le test des cristaux a été effectué avec un diffractomètre automatique à quatre cercles de type BrukerX8 de l'UATRS – CNRST (Unités d'Appui Techniques à la Recherche Scientifique du Centre National pour la Recherche Scientifique et Technique à Rabat).

Les informations préliminaires obtenues au terme de ces tests ont conduit à une maille monoclinique primitive de paramètres de maille: a = 8,15Å, b = 15.30Å, c = 8.59Å, $\beta = 117,8^{\circ}$ et un volume V =918Å³.Suite à une recherche bibliographique minutieuse, nous avons conclu que ces paramètres de maille ne correspondaient à aucune phase connue ni répertoriée dans les bases de données ICSD [208] et PDF2 [209].

L'acquisition des intensités de diffraction (DRX) sur monocristal a été réalisée sur un monocristal de dimensions 0.30 x 0.26 x 0.18 mm³. L'enregistrement a été réalisé dans l'intervalle angulaire θ : [2.7° - 37.6°], à température ambiante. Au terme de l'enregistrement, les données sont réduites et corrigées des facteurs de Lorentz, de polarisation et des effets d'absorption. Nous avons ainsi collecté au total 54053 réflexions parmi elles figurent 4985 réflexions indépendantes dont 4493 réflexions observées soumises à la condition I > 2 σ (I).

Les principales données cristallographiques relatives au cristal du nouveau phosphate $CaZn_2Fe(PO_4)_3$, ainsi que les conditions d'enregistrement des données (DRX), sont consignées dans le **Tableau (III.1)**.

Tableau III.1 : Données cristallographiques et Conditions d'enregistrement des intensités de diffractiondes rayons-X sur un monocristal de $CaZn_2Fe(PO_4)_3$

Données cristallographiques				
Formule chimique	$CaZn_2Fe(PO_4)_3$			
Système cristallin	Monoclinique			
Groupe d'espace	P2 ₁ /c			
	a =8.5619 (3)Å			
Paramètres de maille	b =15.2699 (5) Å			
i arametres de marite	c = 8.1190 (3) Å			
	$\beta = 117.788 \ (2)^{\circ}$			
Volume de la maille ($Å^3$)	939.06 (6)			
Nombre de motifs par maille Z	4			
Densité calculée (g.cm ⁻³)	3.618			
Coefficient d'absorption μ (mm ⁻¹)	7.72			
Collecte d	es intensités			
Diffractomètre	Bruker X8 APEXII			
Température (K)	296			
Longueur d'onde Mo(Ka) (Å)	0.71073			
Correction d'absorption	multi-scan (SADABS; Bruker)			
	$T_{min} = 0.600$, $T_{max} = 0.747$			
Domaine de θ (°)	$\theta_{\min} = 2.7^{\circ}$, $\theta_{\max} = 37.6^{\circ}$			
	$h = -14 \rightarrow 14$			
Indices de Miller	$k = -26 \rightarrow 26$			
	$l = -10 \rightarrow 13$			
Réflexions mesurées	54053			
Réflexions indépendantes	4985			
Réflexions pour I > $2\sigma(I)$	4493			
R _{int}	0.033			
Résolution $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.859			

III-2-2-1 Résolution et affinement structurale du nouveau phosphate CaZn₂Fe(PO₄)₃

La résolution structurale du nouveau phosphate $CaZn_2Fe(PO_4)_3$, a été effectuée à l'aide de l'interface WinGX version 2014.1 [186]. La structure de ce composé a été résolue par la méthode directe [187], à l'aide du programme SHLEXS-2014 [188], et affinée par la méthode des moindres carrées [189] à l'aide du programme SHELXL-2014 [190].

Au cours de la détermination structurale de $CaZn_2Fe(PO_4)_{3,}$ nous avons pu positionner premièrement les atomes Ca, Zn, Fe et P. Suite aux séries d'affinements successifs suivies des synthèses de Fourier-différence, nous avons pu localiser les douze atomes d'oxygène indépendants complétant ainsi l'unité asymétrique. Dans la structure de ce phosphate, tous les atomes sont localisés dans des positions générales *4e* de *Wyckoff* du groupe d'espace P2₁/c (N°14), en occupant totalement leurs sites cristallographiques. L'affinement structural en anisotropie de tous les atomes a abouti à de bons facteurs d'accords, consignés dans le **Tableau** (**III.2**).

Affinement structural				
Facteur de confianceR[F ² > 2σ (F ²)]	0.017			
Facteur de confiance wR(F ²)	0.041			
S (Goodness-of-Fit)	1.04			
Nombre de paramètres affinés	172			
Densité résiduelle maximale $\Delta \rho_{max}$ (e.Å ⁻³)	1.07			
Densité résiduelle minimale $\Delta \rho_{min}$ (e.Å ⁻³)	-0.78			
$(\Delta/\sigma)_{\rm max}$	0.003			
Schéma de pondération avec : $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[s^2(F_o^2) + (0.0174P)^2 + 0.7655P]$			

Tableau III.2 : Résultats d'affinement de la structure du nouveau monophosphate CaZn₂Fe(PO₄)₃

Dans les **Tableaux (III.3)** et (**III.4**) sont consignés respectivement, les coordonnées atomiques ainsi que les facteurs de déplacements atomiques isotropes équivalents et anisotropes obtenus après le dernier cycle d'affinement structural de $CaZn_2Fe(PO_4)_3$.

Atome	Х	у	Z	Ueq
Zn1	0.81685(2)	0.73588(2)	0.30142(2)	0.00740(3)
Zn2	0.88412(2)	0.52265(2)	0.59417(2)	0.01026(3)
Fe1	0.67075(2)	0.49009(2)	0.83003(2)	0.00500(3)
Ca1	0.27619(3)	0.75762(2)	0.47919(3)	0.01070(4)
P1	0.29665(3)	0.58370(2)	0.77261(4)	0.00503(4)
P2	0.96807(3)	0.62244(2)	0.09438(4)	0.00499(4)
P3	0.60325(3)	0.64096 (2)	0.49014 (4)	0.00491 (4)
01	0.2995 (1)	0.67932 (6)	0.7235 (1)	0.0128 (1)
02	0.3028 (1)	0.58596 (6)	0.9647 (1)	0.0101 (1)
03	0.1221 (1)	0.54161 (6)	0.6269 (1)	0.0112 (1)
O4	0.4395 (1)	0.52893 (6)	0.7648 (1)	0.0132 (1)
05	0.7793 (1)	0.58832 (5)	0.0038 (1)	0.009(1)
O6	1.0014 (1)	0.67493 (6)	-0.0475 (1)	0.0105 (1)
07	1.0026 (1)	0.68143 (6)	0.2614 (1)	0.0106 (1)
08	1.0993 (1)	0.54481 (5)	0.1741 (1)	0.0073 (1)
09	0.7543 (1)	0.65280 (6)	0.4394 (1)	0.0117 (1)
O10	0.5938 (1)	0.71947 (6)	0.6036(1)	0.0098 (1)
011	0.6660(1)	0.55677 (5)	0.6110(1)	0.0083 (1)
012	0.4199 (1)	0.62799 (6)	0.3262 (1)	0.0102(1)

Tableau III.3 : Positions atomiques et paramètres de déplacements atomiques isotropes équivalents ($Å^2$) du nouveau monophosphate CaZn₂Fe(PO₄)₃

Atome	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Zn1	0.00645 (5)	0.00817 (5)	0.00801 (6)	0.00013 (4)	0.00374 (4)	0.00104 (4)
Zn2	0.00760 (5)	0.01471 (6)	0.01073 (6)	0.00042 (4)	0.00616 (4)	-0.00080 (5)
Fe1	0.00454 (5)	0.00602 (6)	0.00488 (6)	0.00044 (4)	0.00256 (4)	0.00061 (4)
Ca1	0.01029 (8)	0.01095 (9)	0.0118 (1)	0.00175 (6)	0.00591 (7)	0.00601 (7)
P1	0.00467 (9)	0.0061 (1)	0.0045 (1)	0.00011 (7)	0.00229 (8)	-0.00022 (8)
P2	0.00441 (9)	0.0048 (1)	0.0058 (1)	0.00038 (7)	0.00243 (8)	-0.00009 (8)
P3	0.00448 (9)	0.0050 (1)	0.0048 (1)	0.00004 (7)	0.00182 (8)	0.00031 (8)
01	0.0222 (4)	0.0076 (3)	0.0109 (4)	-0.0001 (3)	0.0098 (3)	0.0019 (3)
02	0.0169 (3)	0.0093 (3)	0.0063 (3)	0.0009 (3)	0.0073 (3)	0.0011 (3)
03	0.0051 (3)	0.0176 (4)	0.0102 (4)	-0.0030 (3)	0.0030 (3)	-0.0063 (3)
04	0.0065 (3)	0.0172 (4)	0.0157 (4)	0.0026 (3)	0.0052 (3)	-0.0045 (3)
05	0.0056 (3)	0.0100 (3)	0.0101 (3)	-0.0016 (2)	0.0028 (2)	-0.0034 (3)
06	0.0097 (3)	0.0107 (3)	0.0132 (4)	0.0029 (3)	0.0072 (3)	0.0061 (3)
07	0.0079 (3)	0.0122 (3)	0.0115 (4)	-0.0005 (2)	0.0045 (3)	-0.0062 (3)
08	0.0065 (3)	0.0073 (3)	0.0088 (3)	0.0026 (2)	0.0043 (2)	0.0020 (2)
09	0.0111 (3)	0.0118 (3)	0.0161 (4)	0.0008 (3)	0.0098 (3)	0.0042 (3)
O10	0.0076 (3)	0.0091 (3)	0.0103 (3)	0.0006 (2)	0.0024 (3)	-0.0040 (3)
011	0.0100 (3)	0.0080 (3)	0.0082 (3)	0.0028 (2)	0.0055 (3)	0.0039 (3)
012	0.0068 (3)	0.0086 (3)	0.0097 (3)	-0.0002 (2)	-0.0006 (3)	-0.0020 (3)

Tableau III.4 : Facteurs de déplacements atomiques anisotropes (Å²) dans la structure de CaZn₂Fe(PO₄)₃

III-2-2-2 Description structurale de CaZn₂Fe(PO₄)₃

La détermination structurale de CaZn₂Fe(PO₄)₃ nous a permis de mettre en évidence 19 atomes indépendants dans l'unité asymétrique répartis comme suit : 2Zn, 1Fe, 1Ca, 3P et 12O. Le calcul des valences de liaisons pour chaque atome a été réalisé à l'aide du logiciel *Platon* [210] (**Tableau III.5**). Ces valeurs sont en parfaite concordance avec les degrés d'oxydation prévus pour ces éléments.

Tableau III.5 : Valeurs des valences de liaisons des cations du phosphate CaZn₂Fe(PO₄)₃

Atome	Zn(1)	Zn(2)	Fe(1)	Ca (1)	P (1)	P (2)	P(3)
Valence de liaison	2.00	1.91	3.04	1.93	5.10	4.97	4.94

L'analyse des polyèdres relatifs à chacun des cations a été entreprise via les mêmes outils informatiques exploités précédemment. En outre la visualisation graphique des polyèdres a été entreprise en respectant les distances interatomiques et les angles de liaisons consignés dans le **Tableau (III.6)**.

Tableau III.6 : Principaux distances interatomiques (Å) et angles interatomiques (°) dans la structure de $CaZn_2Fe(PO_4)_3$

Atome	Distances P(1) - O (Å)	Atome	Distances Zn(2	2) - O (Å)		
	P1-01	1.5166 (9)		Zn2—O3 ⁱⁱⁱ	1.9496 (8)		
	P1	1.5358 (9)		Zn2—O3 ^{iv}	2.0241 (9)		
	P103	1.5487 (8)		Zn2—O8 ^v	2.0911 (8)		
	P104	1.5073 (9)		Zn2—09	2.3371 (9)		
	Distance moyenne < P(1) - 0 > = 1.5271		Zn2—011	2.0038 (8)		
	Angles O - P(l) - O (°)		Distance moyenne < Zr	a(2) - O > = 2.0811		
P1	04—P1—01	114.24 (6)		Angles O - Zn	(2)- O (°)		
	O4—P1—O2	114.28 (5)	Zn2	O3 ⁱⁱⁱ —Zn2—O11	154.16 (4)		
	01—P1—02	104.36 (5)		$O3^{iii}$ —Zn2— $O3^{iv}$	77.67 (4)		
	O4—P1—O3	104.50 (5)		$O3^{iii}$ —Zn2—O8 ^v	108.82 (4)		
	01—P1—O3	109.05 (5)		011—Zn2—O8 ^v	75.00 (3)		
	O2—P1—O3	110.42 (5)		$O3^{iv}$ —Zn2—O8 ^v	121.44 (4)		
Atome	Distances P(2) - O (Å)		O3 ⁱⁱⁱ —Zn2—O9	98.73 (4)		
	P2—O5	1.5222 (8)		011—Zn2—O9	65.84 (3)		
	P2—O6	1.5348 (9)		O3 ^{iv} —Zn2—O9	97.26 (4)		
	P2—O7	1.5371 (9)	Atome	Distances Fe (1	l) - O (Å)		
	P2—O8	1.5519 (8)		Fe1—O2 ^{vi}	1.9561 (9)		
	Distance moyenne < P (2) - O > = 1.5365		Fe1—O4	1.8908 (8)		
De	Angles O - P(2) - O (°)		Fe1—O5 ^{vii}	1.9700 (8)		
P2	O5—P2—O6	110.07 (5)		Fe1—O8 ^v	2.0547 (8)		
	O5—P2—O7	110.55 (5)		Fe1—011	2.0330 (8)		
	O6—P2—O7	109.20 (5)		Fe1—O12 ^{iv}	2.1318 (8)		
	O5—P2—O8	109.84 (5)		Distance moyenne < Fe	(1) - O > = 2.006		
	O6—P2—O8	111.11 (5)		Angles O - Fe	(1) - O (°)		
	O7—P2—O8	106.00 (5)		O5 ^{vii} —Fe1—O12 ^{iv}	171.65 (3)		
Atome	Distances P(3) - O (Å)		O4—Fe1—O2 ^{vi}	96.63 (4)		
	P3—09	1.5396 (9)	Fe1	04—Fe1—O5 ^{vn}	92.55 (4)		
	P3—O10	1.5365 (9)	101	$O2^{v_1}$ —Fe1—O5 ^{v_1}	90.75 (4)		
	P3-011	1.5534 (8)		04—Fe1—011	90.37 (4)		
	P3-012	1.5253 (8)		O5 ^{vn} —Fe1—O11	93.18 (4)		
D2	Distance moyenne < P(3) - 0 > = 1.5387		$O2^{v_i}$ —Fe1— $O8^v$	97.38 (3)		
P3	Angles O - P(3) - O (°)		$O5^{vn}$ —Fe1—O8 ^v	94.22 (3)		
	012—P3—010	107.69 (5)		011—Fe1—08 ^v	75.18 (3)		
	012—P3—09	115.63 (5)		O4—Fe1—O12 ^{iv}	93.16 (4)		
	010—P3—09	110.75 (5)		$O2^{vi}$ —Fel—O12 ^{iv}	82.55 (4)		
	012—P3—011	110.86 (5)		011—Fe1—012 ^{iv}	92.86 (4)		
	$010 - P_3 - 011$	111.30 (5)		08° —FeI—OI2 ^{\circ}	81.77(3)		
A 4 a ma a	09—P3—011	100.36(5)	Atome	Distances Ca($\frac{1}{2} - \frac{0}{4} $		
Atome	7n1 O6ii	(1) - O(A)		Cal=01	2.2439 (9)		
	Zn1 = 00	2.0120 (8)		Cal=01	2.379(1)		
	Zn1 = 07	1.9318 (8)	Cal	$Ca1 = 02^{4}$	2.4073 (9)		
	$7n1 O10^{i}$	1.9200 (9)	Cal	Ca1 = 00	2.4640 (9)		
	Distance moveme < 7	(1) 0 > -1.9620		Ca1 = 0/7	2.4709 (9)		
	Angles Q Zn	(1) - 0 > = 1.9020		$\frac{\text{Cal}-010}{\text{Cal}-012}$	2.4883 (8)		
Zn1	Aligies $\mathbf{O} \cdot \mathbf{Z} \mathbf{n}$	106 60 (4)		Cal—012	2.8984(9)		
	0^{-2} 1^{-0}	106.00 (4)		Distance moyenne < Ca	(1) - 0 > = 2.481/		
	$07_7_1 010^{i}$	124 80 (4)	• Codes de symétries : (i) $x, -y+3/2, z-1/2$; (ii) $x, -y+3/2, z-1/2$; (ii) $x, -y+3/2, z-1/2$; (iii) $x, -y+3/2, z-1/2$; (iv) $x+1, y+1, z+1$; (v)				
	0, -2n1 - 010 09 - 7n1 - 06 ⁱⁱ	116 31 (4)					
	$07_7_1 - 06^{ii}$	85 46 (3)	$\begin{array}{c} -y \pm j + 2 \\ (3) \\ -y \pm 2 \\ -y \pm 1 \\ -y +$				
	010^{i} 7n1 06^{ii}	116.03 (4)	-x+2, -y+1, -y+1	z_{1} , $(v_{1}) = x \pm 1, -y \pm 1, -2 \pm 2$ 7. (ix) x-1 $-y \pm 3/2, -y \pm 1/2$.	(x) x y 7-1 (xi)		
		1 1 1 1 2 2 1 1 4 1	\ VIII / N ⁻ I, V, /	ζ_{1} $(1\Lambda)\Lambda$ 1 , $\gamma \top J/\Delta_{1} \zeta \top 1/\Delta_{2}$	(A) No Yo K. 10 (A1)		

La représentation tridimensionnelle des polyèdres de coordination dans le phosphate $CaZn_2Fe(PO_4)_3$ a été réalisée via le logiciel *Ortep3* (version 2014.1) [192]. L'arrangement spatial des divers polyèdres est illustré dans la **Figure (III.1)**. Par ailleurs les ellipsoïdes relatifs aux agitations thermiques de chaque atome ont été définis avec 60% de probabilité.

Figure III.1 : Disposition spatial des polyèdres du phosphate CaZn₂Fe(PO₄)₃

A la lumière des distances interatomiques et des angles décrits précédemment nous décrivons dans ce qui suit les divers environnements de chacun des cations constitutifs de la structure du phosphate CaZn₂Fe(PO₄)₃.

(i) Environnement de P(1), P(2) et P(3) :

Dans la structure du nouveau phosphate $CaZn_2Fe(PO_4)_3$, chacun des trois atomes de phosphore forme avec quatre oxygènes des groupements PO₄ de géométrie tétraédrique (**Figure III.2**), avec des distances interatomiques : P(1) — O comprises entre 1.5073(9)Å et 1.5487(8)Å, P(2) — O évoluant entre 1.5222(8)Å et 1.5519(8)Å et P(3) — O variant dans l'intervalle [1.5253(8) Å -1.5534(8)Å]. Ces valeurs sont similaires à celles habituellement rencontrées dans le cas des ions phosphates PO₄³⁻.

Figure III.2 : Environnement des atomes P(1), P(2) et P(3) dans la structure de CaZn₂Fe(PO₄)₃

(ii) Environnement de Zn(1) et Zn(2) :

L'atome de zinc : Zn(1) est entouré de quatre atomes d'oxygènes formant ainsi un tétraèdre Zn(1)O₄ légèrement distordu (**Figure III.3**). Ce polyèdre se caractérise par des liaisons Zn(1) —O qui sont comprises entre 1.9266(9)Å et 2.0120(8)Å avec une distance moyenne \langle Zn(1) —O>= 1.9620Å. La géométrie tétraédrique du zinc a été signalée dans de nombreuses phases phosphatées (**Tableau III.7**).

< Zn(1) – O > = 1.9620Å

Figure III.3 : Environnement de Zn(1) dans la structure de CaZn₂Fe(PO₄)₃

Phase	d(Zn—O) _{min} (Å)	$d(Zn-O)_{max}(A)$	<zn—o> (Å)</zn—o>	Réf
$CaZn_2Fe(PO_4)_3$	1.9266 (9)	2.0120 (8)	1.962	[82]
$Zn_2(Zn_{0.5}Fe_{0.5})Fe^{III}(PO_4)_3.2H_2O$	1.897	2.001	1.950	[211]
γ-AgZnPO ₄	1.938 (1)	1.952 (1)	1.944	[212]
α-LiZnPO ₄	1.926 (4)	1.961 (4)	1.944	[213]
α -Li ₄ Zn(PO ₄) ₂	1.926(7)	1.969(7)	1.949	[214]
$Na_2Zn_5(PO_4)_4$	1.898 (2)	1.997 (2)	1.948	[215]
NaZnPO ₄ .H ₂ O	1.946 (7)	1.953 (6)	1.950	[216]
α -Zn ₃ (PO ₄) ₂	1.86	2.03	1.960	[217]
$Zn_{3}(PO_{4})_{2}.4H_{2}O$	1.912 (6)	1.999 (5)	1.963	[218]
$CoZn_2(PO_4)_2.4H_2O$	1.897 (4)	1.993 (3)	1.947	[219]
$Zn_2Fe^{III}(PO_4)_2(OH).3H_2O$	1.93(2)	1.96(2)	1.940	[220]
α -SrZn ₂ (PO ₄) ₂	1.921(l)	1.992 (2)	1.954	[221]
α -CaZn ₂ (PO ₄) ₂	1.909 (1)	2.010(1)	1.948	[222]
$Zn_2KH(PO_4)_2.5/2H_2O$	1.914 (9)	1.961 (8)	1.940	[223]
$Zn_6(PO_4)_4 \cdot 7H_2O$	1.925 (4)	2.000 (4)	1.964	[224]
$Rb_2Zn_2(HPO_4)_3$	1.932 (3)	1.967 (3)	1.948	[225]

Tableau III.7 : Comparaison des distances interatomiques Zn-O dans les tétraèdres ZnO₄ de certains phosphates

Le second atome de zinc Zn(2) possède quant à lui une coordinance cinq en formant une pyramide à base rectangulaire très déformée ZnO₅. Ce polyèdre est caractérisé par un écart significatif au niveau des liaisons Zn—O qui évoluent dans l'intervalle [1.9496(8)Å - 2.3371(9)Å] avec une distance moyenne de \langle Zn—O> = 1.9620Å (**Figure III.4**). D'autres phases phosphatés présentant cette même géométrie ont été rapportés dans la littérature à titre d'exemple citons : α -Zn₃(PO₄)₂ [226], Mn₂Zn(PO₄)₂.H₂O [227], Zn₂Co₄(PO₄)₄(H₂O)₅.2H₂O [228] et Zn₃[PO₃(OH)]₃.3H₂O [229].

< Zn(2) – O > = 2.0811Å

Figure III.4 : Environnement de Zn(2) dans la structure de CaZn₂Fe(PO₄)₃
(iii) Environnement de Fe(1) :

Le seul atome de fer dans la structure se caractérise par une sphère de coordinance de six atomes d'oxygène formant ainsi un octaèdre irrégulier FeO₆ (**Figure III.5**), dont les liaisons Fe(1) - O sont comprises entre 1.8908(8)Å et 2.1318(8)Å, avec une distance moyenne de l'ordre de $\langle Fe(1) - O \rangle = 2.006$ Å.

Figure III.5 : Environnement octaédrique de Fe(1) dans la structure de CaZn₂Fe(PO₄)₃

(iv) Environnement de Ca(1) :

L'atome de calcium Ca(1) adopte une coordinance sept formant un polyèdre CaO₇ très déformé (**Figure III.6**). Cette distorsion est due essentiellement aux distances interatomiques Ca(1) — O qui manifestent un écart significatif entre les deux valeurs $d(Ca(1) - O)_{min} = 2.2439$ (9)Å et $d(Ca(1) - O)_{max} = 2.8984$ (9)Å.

< Ca(1) - O > = 2.4817 Å

Figure III.6: Environnement de Ca(1) dans la structure de CaZn₂Fe(PO₄)₃

L'union de deux pyramides à bases rectangulaires $Zn(2)O_5$, via une arête commune, forme un dimère [Zn_2O_8]. Ce dernier se caractérise par un centre d'inversion au milieu de l'arête commune O(3) - O(3) de distance interatomique 2.4923Å et une distance entre les deux Zn(2)de l'ordre de d_{(Zn(2) - Zn(2))} = 3.0895 (**Figure III.7**).

Figure III.7 : Représentation tridimensionnelle du dimère Zn₂O₈

Le dimère [Zn₂O₈], relie deux groupements octaédriques Fe(1)O₆ par partage de l'arête O(8) - O(11) de longueur 2.4939Å pour former [Zn₂Fe₂O₁₆] (Figure III.8).

Figure III.8 : Vue en perspective sur l'entité [Zn₂Fe₂O₁₆]

Les entités $Zn_2Fe_2O_{16}$ se connectent entre elles via les tétraèdres PO₄ en partageant un sommet et une arrête avec P(3)O₄ et avec P(2)O₄ ou bien trois sommets avec P(1)O₄. Cet enchainement conduit à un feuillet parallèle au plan (\vec{a},\vec{c}) (**Figure III.9**). Ces feuillets sont situés au voisinage de y = 0 et y = 0.5 (**Figure III.10**).

Figure III.9 : Représentation du feuillet parallèle au plan (101) dans le phosphate $CaZn_2Fe(PO_4)_3$

Figure III.10 : Projection des feuillets à y = 0 et à y = 0,5 dans le plan (001) pour le phosphate $CaZn_2Fe(PO_4)_3$

Les feuillets sont connectés entre eux par les tétraèdres $Zn(1)O_4$ qui partagent leurs sommets avec les tétraèdres PO₄ pour conduire à une structure tridimensionnelle libérant des tunnels occupés par les cations Ca²⁺ (**Figure III.11**).

Figure III.11 : Projection de la structure de CaZn₂Fe(PO₄)₃ dans le plan (110)

L'examen attentif de la littérature concernant la matrice $A^{II}B_2{}^{II}Fe^{III}(PO_4)_3$, révèle l'existence de nombreux matériaux phosphatés adoptant différents types structuraux comme le montre le **Tableau (III.8)**. Toutes les phases cristallisants dans le groupe d'espace Imma sont de type α -CrPO₄. Les composés adoptants le groupe d'espace C2/c sont de type alluaudite alors que ceux cristallisants dans le groupe d'espace Pbcn appartiennent à une nouvelle variété minéralogique découverte en 2018 « Lasnierite » [230]. Quant à la nouvelle phase, isolée dans le présent travail CaZn₂Fe(PO₄)₃, cristallisant avec le groupe d'espace P2₁/c, elle présente un nouveau type structural.

Dhaga		Groupe	Dáf			
rnase	a (Å)	b (Å)	c (Å)	β (°)	d'espace	Kei
SrNi ₂ Fe(PO ₄) ₃	10.388(1)	13.160 (1)	6.5117(7)	90.00	Imma	[78]
SrCo ₂ Fe(PO ₄) ₃	10.4097(2)	13.2714(3)	6.5481(2)	90.00	Imma	[80]
$SrFe_2^{2+}Fe^{3+}(PO_4)_3$	10.452(3)	13.429(3)	6.528(2)	90.00	Imma	[81]
$BaFe_2^{2+}Fe^{3+}(PO_4)_3$	10.5236(3)	13.4454(4)	6.6411(2)	90.00	Imma	[139]
$PbFe_{1.4}^{2+}Mg_{0.6}Fe^{3+}(PO_4)_3$	10.481(5)	13.331(6)	6.596(3)	90.00	Imma	[140]
$BaFe_{1.4}^{2+}Mg_{0.6}Fe^{3+}(PO_4)_3$	10.555(4)	13.395(5)	6.642(3)	90.00	Imma	[140]
CaNi ₂ Fe(PO ₄) ₃	10.3126(3)	13.1138(3)	6.4405(2)	90.00	Imma	[141]
BaCo ₂ Fe(PO ₄) ₃	10.5067(2)	13.3155(3)	6.6471(2)	90.00	Imma	[142]
PbCo ₂ Fe(PO ₄) ₃	10.4326(5)	13.2811(2)	6.5746(4)	90.00	Imma	[142]
BaMn ₂ Fe(PO ₄) ₃	6.4304 (3)	17.8462(7)	8.4906(3)	90.00	Pbcn	[84]
SrMn ₂ Fe(PO ₄) ₃	6.5899 (2)	17.6467(4)	8.5106(2)	90.00	Pbcn	[84]
PbMn ₂ Fe(PO ₄) ₃	6.475 (1)	17.964 (4)	8.467 (2)	90.00	Pbcn	[143]
$Ca_{1.54}Mn_{1.46}Fe(PO_4)_3$	12.3487(2)	12.6569(2)	6.4650(1)	115.673(1)	C2/c	[144]
Cd _{0.66} Mn _{2.34} Fe(PO ₄) ₃	12.1565(2)	12.6226(2)	6.4311(1)	115.200(1)	C2/c	[144]
$CaZn_2Fe(PO_4)_3$	8.5619(3)	15.2699(5)	8.1190(3)	117.788(2)	P2 ₁ /c	[82]

Tableau III.8: Données cristallographiques de quelques phosphates de type A^{II}B₂^{II}Fe^{III}(PO₄)₃

III-3 Synthèse et caractérisation de CaZn₂Fe(PO₄)₃ sous forme pulvérulente

III-3-1 Synthèse de poudre du monophosphate CaZn₂Fe(PO₄)₃

La poudre relative à la phase $CaZn_2Fe(PO_4)_3$ a été obtenue par voie solide, suivant deux modes de synthèses :

✓ Première voie :

Les divers précurseurs : $(Ca(NO_3)_2.4H_2O: 99\%$, Riedel-de-Haën), $(Zn(NO_3)_2.6H_2O: 98\%)$, Sigma-Aldrich), (Fe(NO₃)₃.9H₂O: 98%, Panreac Applichem), (H₃PO₄:85%,VWR Chemicals), pris dans les proportions stœchiométriques Ca : Zn : Fe : P = 1: 2: 1: 3, sont dissous dans 80 mL d'eau distillée en présence de 0.2 mL de HNO₃ concentré. L'ensemble est soumis, ensuite, à une agitation à l'ambiante pendant 48h. Au terme d'une évaporation lente du mélange réactionnel, un résidu jaunâtre est obtenu. Ce dernier subit ensuite un premier traitement thermique à 400°C pendant 24 h dans une nacelle en platine. Ensuite, la poudre est soumise à différents paliers thermiques, pendant 24h chacun, à des températures situées entre 600°C et 900°C à raison de 50°C de différence. Un broyage rigoureux est effectué entre les différents traitements thermiques. Une poudre marron, correspondant à la phase recherchée, est obtenue à T = 930°C.

✓ Deuxième voie :

La synthèse de poudre du nouveau phosphate a été effectuée par voie solide en partant de quantités stœchiométriques des précurseurs suivants : $(Ca(CH_3CO_2)_2.H_2O: \ge 99\%, Sigma-Aldrich), (Zn(CH_3CO_2)_2.2H_2O: \ge 98\%, Sigma-Aldrich)(Fe_2O_3:99\%, Merck) et (NH_4H_2PO_4:99\%, Riedel-de-Halën), selon l'équation de la réaction suivante :$

$$\frac{1}{2Fe_2O_{3(s)} + Ca(CH_3CO_2)_2.H_2O_{(s)} + 2Zn(CH_3CO_2)_2.2H_2O_{(s)} + 3NH_4H_2PO_{4(s)}}{CaZn_2Fe(PO_4)_{3(s)} + 3CO_{2(g)} + 3(CH_3)_2CO_{(g)} + 3NH_{3(g)} + 19/2H_2O_{(g)}}$$

Les réactifs sont finement mélangés dans un mortier en agate au préalable avant de subir un premier traitement thermique à 400°C, dans un creuset en platine. Comme dans la première méthode de synthèse, le mélange réactionnel a été soumis à divers traitements thermiques progressifs à des températures évoluant entre 450 à 930°C, avec des broyages intermédiaires.

III-3-2 Caractérisation par diffraction des rayons-X (DRX) sur poudre

Le suivi de la synthèse de la poudre relative à CaZn₂Fe(PO₄)₃ a été réalisée par diffraction des rayons-X (DRX) sur poudre au sein du Laboratoire de Chimie Appliquée des Matériaux (LCAM) de la Faculté des Sciences de Rabat. En effet, des diagrammes de DRX expérimentaux, enregistrés au terme de chacun des traitements thermiques, sont systématiquement comparés à celui théorique. Ce dernier est généré par le programme *PowderCell 2.4* [231],à partir des données de la résolution structurale sur monocristal de la même phase. Une telle comparaison nous a permis de suivre l'évolution de la réaction et de s'assurer de la pureté de la phase préparée.

III-3-2-1 Affinement du profil total

L'enregistrement du diagramme (DRX) du nouveau monophosphate $CaZn_2Fe(PO_4)_3$ a été effectué dans l'intervalle [10 - 70°] en 2 θ , avec pas de 0,04° et une accumulation de 30 s par pas. L'affinement du profil total de ce diagramme a été réalisé en utilisant l'option Pattern Matching (communément appelée méthode de Le bail) [195] à l'aide du programme *Jana 2006* [196]. Les deux diagrammes de diffraction (DRX) calculé et observé représentés dans la **Figure (III.12)**, sont superposables comme le témoigne leur différence. Par ailleurs, l'affinement a abouti à de très bonnes valeurs des facteurs de mérites. Ces facteurs, ainsi que les paramètres de maille affinés sont mentionnés dans le **Tableau (III.9**).

Paramètres de maille et volume				Facteu	rs de re	liabiltès	
a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)	GOF	R _p	wR _p
8.5591(1)	15.2860(3)	8.1186(1)	117.790(1)	939.67(4)	1.47	7.75	10.28

Tableau III.9: Paramètres de maille affinés, volume et facteurs de reliabiltés de CaZn₂Fe(PO₄)₃

Figure III.12: Diffractogrammes (DRX) calculé, observé de CaZn₂Fe(PO₄)₃ et leur différence

III-3-3 Analyse par microscope électronique à balayage (MEB) de CaZn₂Fe(PO₄)₃

L'analyse morphologique par microscopie électronique à balayage couplé à l'analyse en dispersion d'énergie (MEB/EDS), révèle que le matériau phosphaté $CaZn_2Fe(PO_4)_3$ sous forme pulvérulente est constitué de particules de tailles micrométriques et des morphologies très différentes (**Figure III.13**). Ceci est dû essentiellement à la nature du processus de synthèse utilisé (traitement thermique inter-coupé par des broyages).

En outre les résultats de l'analyse chimique effectuée par la technique EDS révèlent d'une part la pureté de la poudre examinée et d'autre part confirme que les rapports des pourcentages atomiques : Ca/P=0.31, Fe/P= 0.35 et Zn/P=0.67 sont pratiquement égaux à ceux de CaZn₂Fe(PO₄)₃(Figure III.13).

Figure III.13 : Micrographies MEB et spectre EDS de la poudre du nouveau phosphate $CaZn_2Fe(PO_4)_3$

III-3-4 Caractérisation par spectroscopies IR et Raman III-3-4-1 Spectroscopie infrarouge (IR)

L'analyse du nouveau phosphate $CaZn_2Fe(PO_4)_3$ par spectroscopie infrarouge a été réalisée à la plateforme d'analyse et de caractérisation (PAC) de la Faculté des Sciences de Rabat, à l'aide d'un spectromètre infrarouge à transformée de fourrier de marque *«JASCO FT/IR* 4600». Dans la gamme spectrale 4000 - 400 cm⁻¹ à température ambiante (Figure III.14). L'analyse par spectroscopie infrarouge (IR), nous a permis l'attribution de plusieurs bandes liées aux modes de vibrations des ions PO_4^{3-} . L'interprétation de ces résultats ainsi que les divers assignements sont consignés dans le **Tableau (III.10)**.

Figure III.14: Spectre infrarouge du nouveau phosphate CaZn₂Fe(PO₄)₃

Tableau III.10 : Attributions des fréquences Infrarouge (cm⁻¹) observées pour le nouveau phosphate $CaZn_2Fe(PO_4)_3$.

Assignement	Nombre d'onde (cm ⁻¹)
Elongations P-O symétrique (v_1) et antisymétrique (v_3)	951 - 977 - 1005 - 1042 -1075 - 1097 - 1189 - 1211
Déformation angulaire O-P-O symétrique (v ₂) et antisymétrique (v ₄)	448 - 481- 604 - 567 - 658

III-3-4-2 Spectroscopie Raman

Les mesures de spectroscopie Raman ont été réalisées au Laboratoire de spectrométrie des matériaux et archéomatériaux (LASMAR-URAC11) de la Faculté des Sciences de Meknès. Le spectre Raman a été mesuré entre 100 et 2000 cm⁻¹ à température ambiante avec un spectromètre «*Renishaw*» micro-Raman (RM1000).

Dans la **Figure (III.15)** est représenté le spectre de diffusion Raman relatif au phosphate $CaZn_2Fe(PO_4)_3$ dans l'intervalle spectrale 1600 -150 cm⁻¹. Suite au dépouillement de ce spectre nous avons pu identifier les diverses vibrations internes de valence et de déformations relatives aux ions phosphate PO_4^{3-} . En outre dans la région spectrale 400-50 cm⁻¹ apparaissent les vibrations externes et de réseau.

Figure III.15: Spectre de diffusion Raman du nouveau phosphate CaZn₂Fe(PO₄)₃.

Dans le **Tableau (III.11)**, sont rassemblés l'ensemble des attributions des fréquences observées dans le phosphate $CaZn_2Fe(PO_4)_3$, qui sont en parfaite concordance avec la littérature [232][233].

Assignement	Nombre d'onde (cm ⁻¹)
Elongations P-O symétrique (v_1) et antisymétrique (v_3)	982 - 952 - 1163 - 1105 - 1079 - 1049 - 1021
Déformation angulaire O-P-O symétrique (v_2) et antisymétrique (v_4)	482 - 420 - 571 - 551 - 513

III-4 Synthèses et déterminations structurales des nouveaux phosphates MZn₂Fe₄(PO₄)₆ (M= Zn, Cd)

III-4-1 Synthèse des cristaux des nouveaux phosphates MZn₂Fe₄(PO₄)₆ (M= Zn, Cd)

Les cristaux des nouveaux phosphates $MZn_2Fe_4(PO_4)_6$ (M = Zn, Cd) ont été obtenus lors des essais de synthèses des phosphates M'Zn_2Fe(PO_4)_3 (M' = Ba, Cd) de type alluaudite. Ces synthèses ont été réalisées par la méthode de diffusion à l'état solide, en partant des réactifs suivants : (Ba(NO_3)_2 : 99% , Sigma-Aldrich), (Zn(NO_3)_2.6H_2O : 98% , Sigma-Aldrich), (Fe(NO_3)_3.9H_2O :98% , Panreac Applichem), (NH_4H_2PO_4: 99.99% , Sigma-Aldrich) et (Cd(NO_3)_2.4H_2O : 99.99%, Alfa Aesar) , pris suivant les rapports molaires : M': Zn : Fe : P = 1: 2 : 1: 3 (M' = Ba , Cd).

Les réactifs ont été dissous dans 80 mL d'eau distillée en présence de 1.5mL d'acide nitrique concentré. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant trois nuits dans un bécher de 100 mL. Sous chauffage modéré à l'aide d'une plaque chauffante, le mélange réactionnel est porté à évaporation jusqu'à l'obtention d'un solide jaunâtre. Le résidu subit ensuite un traitement thermique préliminaire à 450°C pendant 24 heures dans une nacelle en platine. Après ce traitement, le produit résultant est broyé intiment, placé dans un creuset en platine puis introduit dans le four programmable de marque «*Nabertherm*» en vue d'entamer la croissance cristalline suivant le protocole expérimentale décrit dans la **Figure (III.16)**.

L'étude structurale a révélé qu'il s'agit de la nouvelle phase $Zn_3Fe_4(PO_4)_6$ dans le cas des cristaux verts obtenus lors de l'essai de synthèse avec le Ba, et du nouveau composé $CdZn_2Fe_4(PO_4)_6$, pour les cristaux jaunes obtenus dans le cas de l'essai au Cd.

III-4-2 Etude structurale des phosphates MZn₂Fe₄(PO₄)₆ (M= Zn, Cd) III-4-2-1 Résolution et affinement structurale de MZn₂Fe₄(PO₄)₆ (M= Zn, Cd)

La collecte des intensités de diffraction des rayons X (DRX) a été réalisée sur un monocristal sous forme d'un parallélépipède de couleur verdâtre choisi dans la préparation avec M = Zn et sur un monocristal de couleur jaunâtre, trié de la préparation avec M = Cd.

Pour chaque collecte de données, un cristal est monté sur la tête du goniomètre du diffractomètre automatique à quatre cercles de type BrukerX8, de l'UATRS – CNRST– Rabat. Après la réduction des données et en procédant aux diverses corrections, nous avons pu collecter pour M = Zn un total de 21103 réflexions mesurées parmi elles figurent 2715 réflexions indépendantes dont 2676 réflexions observées vérifiant la condition I > 2 σ (I). Dans le cas de M = Cd, le nombre total de réflexions mesurées atteint 19422 avec 2790 réflexions indépendantes et 2788 réflexions observées remplissant la condition I > 2 σ (I).

Les résolutions structurales des nouveaux phosphates $MZn_2Fe_4(PO_4)_6$ (M = Zn , Cd), ont été effectuées à l'aide de l'interface WinGX version 2014.1 [186]. Les structures de ces composés ont été résolues par la méthode directe [187], à l'aide du programme SHLEXS-2014 [188], et ont été affinée par la méthode des moindres carrées [189] via le programme SHELXL-2014 [190]. Les données cristallographiques relatives aux cristaux des nouveaux phosphates $Zn_3Fe_4(PO_4)_6$ et CdZn₂Fe₄(PO₄)₆ ainsi que les conditions d'enregistrement des données (DRX) sont consignées dans le **Tableau (III.12)**.

Au terme de la détermination structurale des deux phases, nous avons pu positionner, en premier lieu, les atomes Cd, Zn, Fe et P. Après des séries d'affinements successifs suivies des synthèses de Fourier-différence, nous avons pu localiser les atomes d'oxygène indépendants dans chaque unité asymétrique **Tableau (III.14)**.

L'unité asymétrique des deux composés MZn₂Fe₄(PO₄)₆ (M = Zn , Cd), contient deux atomes indépendants de zinc pour M = Zn et un atome de zinc et deux atomes de cadmium pour M = Cd, deux atomes de fer, trois atomes de phosphore et douze atomes d'oxygène. Dans la structure de ces phosphates, tous les atomes se trouvent dans des positions générales *2i* de *Wyckoff* du groupe d'espace P-1 (N°2), à l'exception de Zn(2) qui occupe la position spéciale *1g* avec un taux d'occupation de 100% dans la phase de Zn. Dans le phosphate CdZn₂Fe₄(PO₄)₆, les atomes de cadmium sont répartis entre la position générale 2i de *Wyckoff* et la position spéciale Ig. En effet, les Cd(1) viennent occuper la position spéciale Ig (position occupée par Zn(2) dans Zn₃Fe₄(PO₄)₆) avec un taux d'occupation de 0.908 alors que les Cd(2) sont localisés dans la position générale 2i avec un taux d'occupation de 0.046 (**Tableau III.14**).

Donnée	s cristallographiques			
Formule chimique	$Zn_3Fe_4(PO_4)_6$	CdZn ₂ Fe ₄ (PO ₄) ₆		
Système cristallin	Triclinique	Triclinique		
Groupe d'espace	PĪ	PĪ		
	a = 6.3447 (2) Å	a = 6.3557 (2) Å		
	b = 7.8838 (2) Å	b = 8.0376 (2) Å		
Paramètres de maille	c = 9.3019 (2) Å	c = 9.3582 (3) Å		
r arametres de manie	$\alpha = 104.726 \ (1)^{\circ}$	$\alpha = 105.087 \ (1)^{\circ}$		
	$\beta = 108.408 \ (1)^{\circ}$	$\beta = 107.998 \ (1)^{\circ}$		
	$\gamma = 101.245 \ (1)^{\circ}$	$\gamma = 101.756 \ (1)^{\circ}$		
Volume de la maille ($Å^3$)	407.31 (2)	417.45 (2)		
Nombre de motifs par maille Z	1	1		
Densité calculée (g.cm ⁻³)	4.033	5.248		
Coefficient d'absorption μ (mm ⁻¹)	8.54	8.17		
Colle	ecte des intensités			
Diffractomètre	Bruker X8 APEXII	Bruker X8 APEXII		
Température (K)	296	296		
Longueur d'onde Mo(Kα) (Å)	0.71073	0.71073		
	(SADABS ; Bruker)	(SADABS ; Bruker)		
Correction d'absorption (multi-scan)	$T_{min} = 0.3910$	$T_{min} = 0.4133$		
	$T_{max} = 0.7470$	$T_{max} = 0.7472$		
Domaine de θ (°)	$\theta_{max} = 31.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$	$\theta_{\text{max}} = 33.7^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$		
	$-9 \le h \le 9$	$-9 \le h \le 9$		
Espace réciproque exploré	$-11 \le k \le 11$	$-11 \le k \le 11$		
	$-13 \le l \le 13$	$-13 \le l \le 13$		
Réflexions mesurées	21103	19422		
Réflexions indépendantes	2715	2790		
Réflexions pour I > $2\sigma(I)$	2676	2788		
R _{int}	0.029	0.032		
Résolution $(\sin\theta/\lambda)_{max}$ (Å ⁻¹)	0.735	0.735		

Tableau III.12: Données cristallographiques et conditions d'enregistrement des intensités de diffractiondes rayons-X sur monocristal des phosphates $Zn_3Fe_4(PO_4)_6$ et CdZn_2Fe_4(PO_4)_6

L'affinement final des divers paramètres structuraux des deux phases (positions atomiques, paramètres de déplacements anisotropes (U_{aniso}) et les taux d'occupation des sites cristallographiques, conduit aux bonnes valeurs des facteurs de reliabilité comme le témoigne les données du **Tableau (III.13)**.

Tableau III.13: Résultats d'affinement de la structure des nouveaux phosphates $Zn_3Fe_4(PO_4)_6$, $CdZn_2Fe_4(PO_4)_6$

Affinement struct	tural	
Paramètre	$Zn_3Fe_4(PO_4)_6$	$CdZn_2Fe_4(PO_4)_6$
Facteur de confiance $R[F^2 > 2\sigma(F^2)]$	0.016	0.021
Facteur de confiance $wR(F^2)$	0.041	0.056
S (Goodness-of-Fit)	1.11	1.17
Nombre de paramètres affinés	170	179
Densité résiduelle maximale	0.53	2.33
Densité résiduelle minimale	-0.94	-0.84
$(\Delta/\sigma)_{\rm max}$	0.001	0.001
Schéma de pondération avec : $P = (F_o^2 + 2F_c^2)/3$	<i>W</i> 1	<i>W</i> ₂

Avec: $w_1 = 1/[\sigma^2(F_o^2) + (0.0137P)^2 + 0.6343P]$ et $w_2 = 1/[\sigma^2(F_o^2) + (0.0192P)^2 + 1.3367P]$

Dans les **Tableaux (III.14)** et (**III.15**) sont consignés respectivement, les coordonnées atomiques ainsi que les facteurs de déplacements thermiques isotropes équivalents et anisotropes obtenus après le dernier cycle d'affinement structural de $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$

Atome	Site	Х	У	Z	Ueq	Occupation
Zn1	2;	0.71430 (3)	0.69091 (2)	0.21080 (2)	0.00749 (5)	1
Zn1*	21	0.71742 (5)	0.69632 (4)	0.20568 (3)	0.00821 (7)	1
Zn2	10	0.000000	0.500000	0.500000	0.01099 (6)	1
Cd1*	Ig	0.000000	0.500000	0.500000	0.00914 (7)	0.908
Cd2*	2i	0.5111 (5)	0.4585 (5)	0.4415 (4)	0.0080 (5)	0.046
Fe1	2:	0.38374 (4)	0.95165 (3)	0.61509 (2)	0.00456 (5)	1
Fe1*	21	0.38015 (5)	0.95317 (4)	0.61387 (3)	0.00479 (7)	1
Fe2	2:	0.04499 (4)	0.22322 (3)	0.02788 (3)	0.00481 (5)	1
Fe2*	21	0.04156 (5)	0.22113 (4)	0.03122 (4)	0.00539 (7)	1
P1	2:	0.90946 (6)	0.90691 (5)	0.66748 (4)	0.00302 (7)	1
P1*	21	0.90091 (9)	0.91018 (7)	0.66850 (6)	0.0041 (1)	1
P2	2:	0.23032 (6)	0.64914 (5)	0.26997 (4)	0.00316 (7)	1
P2*	21	0.23067 (9)	0.65332 (7)	0.26388 (6)	0.0037 (1)	1
P3	2:	0.60316 (6)	0.27365 (5)	0.13035 (4)	0.00380 (7)	1
P3*	21	0.59907 (9)	0.27313 (7)	0.13072 (6)	0.0045 (1)	1
01	2:	0.0633 (1)	0.0488 (1)	0.1532 (1)	0.0063 (1)	1
01*	21	0.0710 (3)	0.0480 (2)	0.1529 (1)	0.0071 (3)	1
O2	2:	0.1089 (2)	0.2878 (1)	0.415 (1)	0.0096 (2)	1
O2*	21	0.1333 (3)	0.2837 (2)	0.4160 (2)	0.0133 (3)	1
03	2:	0.8767 (1)	0.9635 (1)	0.3389 (1)	0.0062 (1)	1
O3*	21	0.8804 (3)	0.9672 (2)	0.3376 (1)	0.0078 (3)	1
O4	2:	0.3104 (1)	0.0401 (1)	0.4162 (1)	0.006(1)	1
O4*	21	0.3122 (3)	0.0336 (2)	0.4144 (1)	0.0066 (3)	1
05	2:	0.2108 (2)	0.4491 (1)	0.2052 (1)	0.0088 (2)	1
O5*	21	0.2047 (3)	0.4544 (2)	0.1995 (2)	0.0103 (3)	1
06	2:	0.9792 (1)	0.3082 (1)	0.8393 (1)	0.007 (1)	1
06*	21	0.9761 (3)	0.3035 (2)	0.8435 (1)	0.0075 (3)	1
O7	2;	0.5412 (1)	0.2323 (1)	0.7263 (1)	0.0062 (1)	1
O7*	21	0.5390 (3)	0.2318 (2)	0.732 (1)	0.0072 (3)	1
08	2;	0.2278 (1)	0.6987 (1)	0.4422 (1)	0.0069 (1)	1
O8*	21	0.2301 (3)	0.7043 (2)	0.4358 (1)	0.0089 (3)	1
09	2;	0.2484 (2)	0.7751 (1)	0.9639 (1)	0.0100 (2)	1
O9*	21	0.2537 (3)	0.7849 (3)	0.9613 (2)	0.0113 (3)	1
O10	2;	0.5523 (2)	0.1363 (1)	0.2131 (1)	0.0097 (2)	1
O10*	<i>21</i>	0.5624 (3)	0.1544 (2)	0.2288 (2)	0.0123 (3)	1
011	2;	0.7257 (2)	0.4659 (1)	0.2615 (1)	0.0082 (1)	1
O11*	<i>21</i>	0.7168 (3)	0.4701 (2)	0.2474 (2)	0.0104 (3)	1
O12	2:	0.369 (1)	0.2693 (1)	1.0071 (1)	0.0076 (1)	1
O12*	21	0.3607 (3)	0.2552 (2)	1.0066 (1)	0.0077 (3)	1

Tableau III.14: Positions atomiques et facteurs des déplacements atomiques isotropes équivalents (Å²) des phosphates $Zn_3Fe_4(PO_4)_6$, $CdZn_2Fe_4(PO_4)_6^*$

Atome	<i>U</i> ¹¹	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
Zn1	0.00907 (9)	0.00587 (8)	0.00885 (8)	0.00279 (6)	0.00468 (6)	0.00268 (6)
Zn1*	0.0093 (1)	0.0073 (1)	0.0088 (1)	0.00275 (9)	0.00473 (9)	0.00226 (9)
Zn2	0.0153 (1)	0.0074 (1)	0.0122 (1)	0.00489 (9)	0.0069(1)	0.00309 (9)
Cd1*	0.0175 (1)	0.0051 (1)	0.0087 (1)	0.00486 (8)	0.0082 (9)	0.00360 (8)
Cd2*	0.002 (1)	0.011 (1)	0.011 (1)	-0.001 (1)	-0.001 (1)	0.008 (1)
Fe1	0.00540 (9)	0.00449 (9)	0.00434 (9)	0.00146 (7)	0.00233 (7)	0.00182 (7)
Fe1*	0.0055 (1)	0.0056 (1)	0.004 (1)	0.0013 (1)	0.0023 (1)	0.0024 (1)
Fe2	0.00520 (9)	0.00480 (9)	0.00477 (9)	0.00157 (7)	0.00212 (7)	0.00189 (7)
Fe2*	0.0056 (1)	0.0063 (1)	0.005 (1)	0.0019 (1)	0.0024 (1)	0.0025 (1)
P1	0.0034 (1)	0.0034 (1)	0.0025 (1)	0.0012 (1)	0.0012 (1)	0.0011 (1)
P1*	0.0044 (2)	0.0050 (2)	0.0029 (2)	0.0014 (1)	0.0016 (1)	0.0015 (1)
P2	0.0033 (1)	0.0032(1)	0.0027 (1)	0.0007 (1)	0.0011 (1)	0.0007 (1)
P2*	0.0036 (2)	0.0041 (2)	0.0026 (2)	0.0006 (1)	0.0012 (1)	0.0008 (1)
P3	0.0037 (1)	0.0041 (1)	0.0037 (1)	0.0012 (1)	0.0011 (1)	0.0016 (1)
P3*	0.0041 (2)	0.0058 (2)	0.0034 (2)	0.0014 (1)	0.0014 (1)	0.002 (1)
01	0.0088 (5)	0.0060 (4)	0.0045 (4)	0.0025 (4)	0.0026 (4)	0.0022 (4)
01*	0.0093 (6)	0.0086 (6)	0.0046 (6)	0.0030 (5)	0.0029 (5)	0.0036 (5)
02	0.0126 (5)	0.0058 (5)	0.0109 (5)	0.0032 (4)	0.0059 (4)	0.0015 (4)
O2*	0.0182 (8)	0.0076 (7)	0.0136 (8)	0.0046 (6)	0.0071 (6)	0.0009 (6)
03	0.0054 (4)	0.0062 (4)	0.0072 (5)	0.0012 (4)	0.0033 (4)	0.0021 (4)
03*	0.0058 (6)	0.0101 (7)	0.0071 (6)	0.0011 (5)	0.0034 (5)	0.0024 (5)
04	0.0050 (4)	0.0080 (4)	0.0054 (4)	0.0028 (4)	0.0017 (4)	0.0031 (4)
O4*	0.0060 (6)	0.0098 (7)	0.0056 (6)	0.0033 (5)	0.0024 (5)	0.0043 (5)
05	0.0105 (5)	0.0053 (4)	0.0080 (5)	0.0016 (4)	0.0026 (4)	-0.0001 (4)
05*	0.0121 (7)	0.0057 (6)	0.0096 (7)	0.0020 (5)	0.0027 (6)	-0.0005 (5)
06	0.0053 (4)	0.0095 (5)	0.0069 (4)	0.0029 (4)	0.0021 (4)	0.0040 (4)
06*	0.0060 (6)	0.0113 (7)	0.0065 (6)	0.0029 (5)	0.0023 (5)	0.0052 (5)
07	0.0052 (4)	0.0060 (4)	0.0064 (4)	0.0004 (3)	0.0029 (4)	0.0010 (4)
07*	0.0061 (6)	0.0078 (6)	0.0071 (6)	0.0007 (5)	0.0035 (5)	0.0015 (5)
08	0.0084 (5)	0.0065 (4)	0.0047 (4)	0.0007 (4)	0.0031 (4)	0.0009 (4)
08*	0.0101 (7)	0.0096 (7)	0.0050 (6)	0.0000 (5)	0.0032 (5)	0.0010 (5)
09	0.0068 (5)	0.0150 (5)	0.0089 (5)	0.0046 (4)	0.0042 (4)	0.0027 (4)
09*	0.0082 (7)	0.0180 (8)	0.0096 (7)	0.0060 (6)	0.0052 (6)	0.0039 (6)
O10	0.0111 (5)	0.0088 (5)	0.0091 (5)	0.0012 (4)	0.0026 (4)	0.0060 (4)
010*	0.0128 (7)	0.0157 (8)	0.0104 (7)	0.0029 (6)	0.0036 (6)	0.0098 (6)
011	0.0091 (5)	0.0050 (4)	0.0075 (5)	0.0009 (4)	0.0013 (4)	0.0010 (4)
011*	0.0102 (7)	0.0064 (7)	0.0102 (7)	0.0003 (5)	0.0015 (6)	0.0010 (5)
012	0.0053 (4)	0.0127 (5)	0.0058 (4)	0.0043 (4)	0.0019 (4)	0.0041 (4)
O12*	0.0054 (6)	0.0129 (7)	0.0056 (6)	0.0033 (5)	0.0020 (5)	0.0039 (5)

 $\label{eq:constraint} \begin{array}{l} \textbf{Tableau III.15:} \ Facteurs \ des \ déplacements \ atomiques \ anisotropes \ (\AA^2) \ dans \ la \ structure \ des \ phosphates \ Zn_3Fe_4(PO_4)_6 \ et \ CdZn_2Fe_4(PO_4)_6^* \end{array}$

III-4-2-2 Caractérisation par microscopie électronique à balayage (MEB/EDS) des monocristaux du phosphate $Zn_3Fe_4(PO_4)_6$

L'analyse MEB /EDS de la phase $Zn_3Fe_4(PO_4)_6$ sous la forme monocristal a été entamé en vue d'examiner la morphologie, et de chercher d'éventuel présence de Ba dans le cristal. L'analyse par microscopie électronique à balayage (MEB), couplés aux analyses par spectroscopie de rayons-X à dispersion à énergie (EDS) a été réalisée au sein de la plateforme d'analyse microstructurale de la Faculté des sciences de Rabat via un microscope de marque «*JEOL*». Le monocristal examiné de $Zn_3Fe_4(PO_4)_6$ adopte la forme d'un parallélépipède homogène en terme de répartition des éléments (Zn, Fe, P, O), comme le montre la micrographie (**Figure III.17**), l'analyse EDS (**Figure III.18**) et les images (**Figure III.19**).

Figure III.17: Micrographie MEB du monocristal relatif au nouveau phosphate Zn₃Fe₄(PO₄)₆

Figure III.18: Spectre EDS du nouveau phosphate Zn₃Fe₄(PO₄)₆

Figure III.19: Répartitions des divers éléments constitutifs du monocristal du nouveau phosphate $Zn_3Fe_4(PO_4)_6$

Les pourcentages massiques des éléments Zn, Fe, P et O, obtenus par diffractions des rayons X (DRX) sur monocristal et ceux obtenus par (MEB/EDS) sont approximativement voisines (**Tableau III.16**).

Phase	Elément	Pourcentage Massique*	Pourcentage Massique
	0	38.81	37.53
Zn ₃ Fe ₄ (PO ₄) ₆	Р	18.78	23.13
	Fe	22.58	22.48
	Zn	19.83	16.86

Tableau III.16: Pourcentages massiques des éléments constituants du phosphate Zn₃Fe₄(PO₄)₆

(*) Pourcentages obtenus par (DRX) sur monocristal

III-4-2-3 Description structurale de MZn₂Fe₄(PO₄)₆ (M= Zn , Cd)

Dans le **Tableau (III.17)** sont mentionnées les distances (Å) et les angles interatomiques (°) dans les structures des deux orthophosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$.

Atome	Zn ₃ Fe ₄ (PO ₄) ₆		CdZn ₂ Fe ₄ (PO ₄)6
	Distances P(1) - O	(Å)	Distances P(1) - O) (Å)
	P1-01 ⁱ	1.56 (1)	P1—O1 ⁱ	1.562 (1)
	P1—O2 ⁱ	1.494 (1)	P1—O2 ⁱ	1.489 (1)
	P1—O3 ^x	1.559 (1)	P1—O3 ^x	1.557 (1)
	P1—O4 ⁱ	1.56 (1)	P1—O4 ⁱ	1.558 (1)
	Distance moyenne: < P(1) -	· O > = 1.543	Distance moyenne: < P(1) -	- O > =1.542
P1	Angles O - P(1) - 0) (°)	Angles O - P(1) -	(°) C
	O2 ⁱ —P1—O3 ^x	108.78 (6)	$O2^{i}$ —P1— $O3^{x}$	110.0(1)
	O2 ⁱ —P1—O4 ⁱ	112.16 (7)	O2 ⁱ —P1—O4 ⁱ	110.5 (1)
	$O3^{x}$ —P1—O4 ⁱ	107.61 (6)	$O3^{x}$ —P1—O4 ⁱ	107.65 (9)
	$O2^{i}$ —P1—O1 ⁱ	114.18 (6)	$O2^{i}$ —P1—O1 ⁱ	113.1 (1)
	$O3^{x}$ —P1—O1 ⁱ	108.53 (6)	$O3^{x}$ —P1—O1 ⁱ	108.82 (9)
	O4 ⁱ —P1—O1 ⁱ	105.32 (6)	O4 ⁱ —P1—O1 ⁱ	106.63 (9)
Atome	Distances P(2) - O	(Å)	Distances P(2) - O	(Å)
	P2—O5	1.503 (1)	P2—O5	1.509 (1)
	P2—O6 ⁱ	1.552 (1)	P2—O6 ⁱ	1.552 (1)
	P2—O7 ⁱ	1.55 (1)	P2—O7 ⁱ	1.547 (1)
	P2—O8	1.556 (1)	P2—O8	1.554 (1)
	Distance moyenne: < P(2) -	- O > =1.540	Distance moyenne: < P(2) -	- O > =1.541
P2	Angles O - P(2) - 0) (°)	Angles O - P(2) -	(°) C
	O5—P2—O7 ⁱ	109.34 (6)	O5—P2—O7 ⁱ	109.97 (9)
	O5—P2—O6 ⁱ	110.16 (6)	O5—P2—O6 ⁱ	110.2 (1)
	$O7^{i}$ $P2$ $O6^{i}$	108.99 (6)	$O7^{i}$ —P2— $O6^{i}$	109.27 (9)
				()
	O5—P2—O8	110.35 (7)	O5—P2—O8	109.9 (1)
	O5—P2—O8 O7 ⁱ —P2—O8	110.35 (7) 110.09 (6)	O5—P2—O8 O7 ⁱ —P2—O8	109.9 (1) 109.52 (9)
	05—P2—08 07 ⁱ —P2—08 06 ⁱ —P2—08	110.35 (7) 110.09 (6) 107.88 (6)	05—P2—08 07 ⁱ —P2—08 06 ⁱ —P2—08	109.9 (1) 109.52 (9) 107.99 (9)
Atome	05—P2—08 07 ⁱ —P2—08 06 ⁱ —P2—08 Distances P(3) - 0	110.35 (7) 110.09 (6) 107.88 (6) (Å)	05—P2—08 07 ⁱ —P2—08 06 ⁱ —P2—08 Distances P(3) - 0	109.9 (1) 109.52 (9) 107.99 (9) (Å)
Atome	O5—P2—O8 O7 ⁱ —P2—O8 O6 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ	110.35 (7) 110.09 (6) 107.88 (6) (Å) 1.515 (1)	O5—P2—O8 O7 ⁱ —P2—O8 O6 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ	109.9 (1) 109.52 (9) 107.99 (9) (Å) 1.517 (1)
Atome	05—P2—08 07 ⁱ —P2—08 06 ⁱ —P2—08 Distances P(3) - 0 P3—09 ⁱ P3—010	110.35 (7) 110.09 (6) 107.88 (6) (Å) 1.515 (1) 1.521 (1)	O5—P2—O8 O7 ⁱ —P2—O8 O6 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ P3—O10	109.9 (1) 109.52 (9) 107.99 (9) (Å) 1.517 (1) 1.519 (1)
Atome	05—P2—O8 07 ⁱ —P2—O8 06 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ P3—O10 P3—O11	110.35 (7) 110.09 (6) 107.88 (6) (Å) 1.515 (1) 1.521 (1) 1.546 (1)	05—P2—08 07 ⁱ —P2—08 06 ⁱ —P2—08 Distances P(3) - 0 P3—09 ⁱ P3—010 P3—011	109.9 (1) 109.52 (9) 107.99 (9) (Å) 1.517 (1) 1.519 (1) 1.541 (1)
Atome	O5-P2-O8 O7 ⁱ -P2-O8 O6 ⁱ -P2-O8 Distances P(3) - O P3-O9 ⁱ P3-O10 P3-O11 P3-O12 ^{viii}	110.35 (7) 110.09 (6) 107.88 (6) (Å) 1.515 (1) 1.521 (1) 1.546 (1) 1.552 (1)	O5—P2—O8 O7 ⁱ —P2—O8 O6 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ P3—O10 P3—O11 P3—O11 P3—O12 ^{viii}	109.9 (1) 109.52 (9) 107.99 (9) (Å) 1.517 (1) 1.519 (1) 1.541 (1) 1.552 (1)
Atome	O5-P2-O8 O7 ⁱ -P2-O8 O6 ⁱ -P2-O8 Distances P(3) - O P3-O9 ⁱ P3-O10 P3-O11 P3-O12 ^{viii} Distance moyenne: < P(3) -	$\begin{array}{c} 110.35\ (7)\\ 110.09\ (6)\\ 107.88\ (6)\\ \hline \textbf{(Å)}\\ 1.515\ (1)\\ 1.521\ (1)\\ 1.546\ (1)\\ 1.552\ (1)\\ \hline \textbf{.552\ (1)}\\ \textbf{-O} > = \textbf{1.533} \end{array}$	O5—P2—O8 O7 ⁱ —P2—O8 O6 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ P3—O10 P3—O11 P3—O12 ^{viii} Distance moyenne: < P(3) -	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ - O > = 1.532
Atome	O5-P2-O8 O7 ⁱ -P2-O8 O6 ⁱ -P2-O8 Distances P(3) - O P3-O9 ⁱ P3-O10 P3-O11 P3-O12 ^{viii} Distance moyenne: < P(3) - Angles O - P(3) - O	$\begin{array}{c} 110.35\ (7)\\ 110.09\ (6)\\ 107.88\ (6)\\ \hline \textbf{(Å)}\\ 1.515\ (1)\\ 1.521\ (1)\\ 1.521\ (1)\\ 1.546\ (1)\\ 1.552\ (1)\\ \hline \textbf{O} > = 1.533\\ \hline \textbf{(°)}\\ \end{array}$	O5—P2—O8 O7 ⁱ —P2—O8 O6 ⁱ —P2—O8 Distances P(3) - O P3—O9 ⁱ P3—O10 P3—O11 P3—O12 ^{viii} Distance moyenne: < P(3) - O Angles O - P(3) - O	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ $- O > = 1.532$ O (°)
Atome P3	$05-P2-08$ $07^i-P2-08$ $06^i-P2-08$ Distances P(3) - 0 $P3-09^i$ $P3-010$ $P3-011$ $P3-012^{viii}$ Distance moyenne: < P(3) - 0 $Angles O - P(3) - 0$ $09^i-P3-010$	110.35 (7) $110.09 (6)$ $107.88 (6)$ $(Å)$ $1.515 (1)$ $1.521 (1)$ $1.546 (1)$ $1.552 (1)$ $-O > =1.533$ $O (°)$ $112.26 (7)$	$05-P2-08$ $07^{i}-P2-08$ $06^{i}-P2-08$ Distances P(3) - 0 $P3-09^{i}$ $P3-010$ $P3-011$ $P3-012^{viii}$ Distance moyenne: < P(3) - 0 $O9^{i}-P3-010$	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ - O > = 1.532 D (°) $112.2 (1)$
Atome P3	$05-P2-08$ $07^i-P2-08$ $06^i-P2-08$ Distances P(3) - 0 $P3-09^i$ $P3-010$ $P3-011$ $P3-012^{viii}$ Distance moyenne: < P(3) - 0 $09^i-P3-010$ $09^i-P3-010$ $09^i-P3-010$ $09^i-P3-011$	$\begin{array}{c} 110.35\ (7)\\ 110.09\ (6)\\ 107.88\ (6)\\ \hline (Å)\\ 1.515\ (1)\\ 1.521\ (1)\\ 1.521\ (1)\\ 1.546\ (1)\\ 1.552\ (1)\\ \hline 0\ > =1.533\\ \hline (°)\\ 112.26\ (7)\\ 110.73\ (7)\\ \end{array}$	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ 06^{i} - P2 - 08 \\ \hline \textbf{Distances P(3) - 0} \\ P3 - 09^{i} \\ P3 - 010 \\ P3 - 011 \\ P3 - 012^{viii} \\ \hline \textbf{Distance moyenne: < P(3) - 0} \\ \hline \textbf{Angles O - P(3) - 0} \\ 09^{i} - P3 - 010 \\ 09^{i} - P3 - 011 \\ \hline \end{array}$	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ - O > = 1.532 O (°) $112.2 (1)$ $110.7 (1)$
Atome P3	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ 06^{i} - P2 - 08 \\ \hline \textbf{Distances P(3) - 0} \\ P3 - 010 \\ P3 - 010 \\ P3 - 011 \\ \hline \textbf{P3 - 012^{viii}} \\ \hline \textbf{Distance moyenne: < P(3) - 0} \\ \hline \textbf{Angles O - P(3) - 0} \\ 09^{i} - P3 - 010 \\ \hline 09^{i} - P3 - 011 \\ \hline 010 - P3 - 011 \\ \hline \textbf{O10} - 01 \\ \hline \textbf{O10} - 0$	$\begin{array}{c} 110.35\ (7)\\ 110.09\ (6)\\ 107.88\ (6)\\ \hline (\AA)\\ 1.515\ (1)\\ 1.521\ (1)\\ 1.521\ (1)\\ 1.552\ (1)\\ \hline 1.552\ (1)\\ \hline 0\ >=1.533\\ \hline 0\ (^{\circ})\\ 112.26\ (7)\\ 110.73\ (7)\\ 107.81\ (7)\\ \end{array}$	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ 06^{i} - P2 - 08 \\ \hline \textbf{Distances P(3) - 0} \\ P3 - 010 \\ P3 - 010 \\ P3 - 011 \\ P3 - 012^{viii} \\ \hline \textbf{Distance moyenne: < P(3) - 0} \\ \hline \textbf{Angles O - P(3) - 0} \\ 09^{i} - P3 - 010 \\ 09^{i} - P3 - 011 \\ 010 - P3 - 011 \\ \hline \textbf{O10} - 01 \\ \hline \textbf{O10} - $	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ - O > = 1.532 O (°) $112.2 (1)$ $110.7 (1)$ $107.5 (1)$
Atome P3	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ \hline 06^{i} - P2 - 08 \\ \hline Distances P(3) - O \\ P3 - 010 \\ P3 - 010 \\ P3 - 011 \\ P3 - 012^{viii} \\ \hline Distance moyenne: < P(3) - 00 \\ \hline O9^{i} - P3 - 010 \\ \hline 09^{i} - P3 - 011 \\ \hline 010 - P3 - 011 \\ \hline 09^{i} - P3 - 012^{viii} \\ \hline O9^{i} - P3 - 012^{viii} \\ \hline O9^{i} - P3 - 011 \\ \hline 09^{i} - P3 - 012^{viii} \\ \hline O9^{i} - 012^{vii} \\ \hline O9^{i} - 012^{vi} \\ \hline O9^{i} - 012^{vii} \\ \hline O9^{i} - 012^{vii}$	$\begin{array}{c} 110.35\ (7)\\ 110.09\ (6)\\ 107.88\ (6)\\ \hline \textbf{(Å)}\\ 1.515\ (1)\\ 1.521\ (1)\\ 1.521\ (1)\\ 1.552\ (1)\\ \hline \textbf{(S)}\\ \textbf{(S)}\\ \textbf{(O)} > =1.533\\ \hline \textbf{(O)}\\ 112.26\ (7)\\ 110.73\ (7)\\ 107.81\ (7)\\ 106.72\ (6)\\ \hline \end{array}$	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ \hline 06^{i} - P2 - 08 \\ \hline Distances P(3) - 0 \\ P3 - 010 \\ P3 - 010 \\ P3 - 011 \\ P3 - 012^{viii} \\ \hline Distance moyenne: < P(3) - 0 \\ \hline 09^{i} - P3 - 010 \\ \hline 09^{i} - P3 - 011 \\ \hline 010 - P3 - 011 \\ \hline 09^{i} - P3 - 012^{viii} \\ \hline \end{array}$	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ - O > = 1.532 O (°) $112.2 (1)$ $110.7 (1)$ $107.5 (1)$ $107.1 (1)$
Atome P3	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ 06^{i} - P2 - 08 \\ \hline \textbf{Distances P(3) - 0} \\ P3 - 09^{i} \\ P3 - 010 \\ P3 - 010 \\ P3 - 012^{viii} \\ \hline \textbf{Distance moyenne: < P(3) - 0} \\ \hline \textbf{Angles O - P(3) - 0} \\ \hline \textbf{O9^{i} - P3 - 010} \\ 09^{i} - P3 - 011 \\ \hline 010 - P3 - 012^{viii} \\ \hline \textbf{O10} - 01 \\ \hline \textbf{O1} - 01 \\ \hline \textbf$	$\begin{array}{c} 110.35\ (7)\\ 110.09\ (6)\\ 107.88\ (6)\\ \hline (Å)\\ \hline 1.515\ (1)\\ 1.521\ (1)\\ 1.521\ (1)\\ \hline 1.552\ (1)\\ \hline 0 > =1.533\\ \hline (°)\\ \hline 112.26\ (7)\\ 110.73\ (7)\\ 107.81\ (7)\\ \hline 106.72\ (6)\\ \hline 108.41\ (7)\\ \end{array}$	$\begin{array}{c} 05 - P2 - 08 \\ 07^{i} - P2 - 08 \\ 06^{i} - P2 - 08 \\ \hline \textbf{Distances P(3) - 0} \\ P3 - 09^{i} \\ P3 - 010 \\ P3 - 011 \\ P3 - 012^{viii} \\ \hline \textbf{Distance moyenne: < P(3) - 0} \\ \hline \textbf{O9^{i} - P3 - 010} \\ 09^{i} - P3 - 011 \\ 010 - P3 - 011 \\ 010 - P3 - 012^{viii} \\ \hline \textbf{O10} - P3 - 012^{vii} \\ \hline \textbf{O10} - P3 - 012^{viii} \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 \\ \hline \textbf{O10} - 010 - 010 \\ \hline \textbf{O10} - 010 \\ \hline \textbf{O10} - 010 - 010 \\ \hline \textbf{O10} - 010 \\ \hline \textbf{O10} - 010 \\ \hline \textbf{O10} - 010 \\ \hline$	109.9 (1) $109.52 (9)$ $107.99 (9)$ (Å) $1.517 (1)$ $1.517 (1)$ $1.519 (1)$ $1.541 (1)$ $1.552 (1)$ - O > = 1.532 O (°) $112.2 (1)$ $110.7 (1)$ $107.5 (1)$ $107.1 (1)$ $108.9 (1)$

 $\label{eq:tableau} \begin{tabular}{lll.17:} Tableau III.17: Principaux distances (Å) et angles interatomiques (°) dans les structures des phosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$ et $$

Atome	Distances Fe(1) - O) (Å)	Distances Fe(1) - C) (Å)
	Fe1—O3 ^v	2.024 (1)	Fe1—O3 ^v	2.027 (1)
	Fe1—O4 ^{vi}	2.089(1)	Fe1—O4 ^{vi}	2.083 (1)
	Fe1—O4 ⁱ	2.043 (1)	Fe1—O4 ⁱ	2.038 (1)
	Fe1—O7 ^{vi}	2.07 (1)	Fe1—O7 ^{vi}	2.088 (1)
	Fe1—O8	2.034 (1)	Fe1—O8	2.049 (1)
	Fe1—O10 ⁱ	1.861 (1)	Fe1—O10 ⁱ	1.873 (1)
	Distance moyenne: < Fe (1) ·	-0 > = 2.020	Distance moyenne: < Fe(1)	-0 > = 2.026
	Angles O - Fe(1) -	O (°)	Angles O - Fe(1) -	O (°)
	$O10^{i}$ —Fe1—O4 ^{vi}	177.71 (5)	$O10^{i}$ —Fe1—O4 ^{vi}	170.94 (7)
	010 ⁱ —Fe1—O3 ^v	92.20 (5)	$O10^{i}$ —Fe1—O3 ^v	94.07 (7)
Fe1	O10 ⁱ —Fe1—O8	95.05 (5)	O10 ⁱ —Fe1—O8	91.17 (8)
	O3 ^v —Fe1—O8	105.74 (5)	O3 ^v —Fe1—O8	107.03 (7)
	O10 ⁱ —Fe1—O4 ⁱ	97.32 (5)	$O10^{i}$ —Fe1—O4 ⁱ	95.86 (7)
	O8—Fe1—O4 ⁱ	90.59 (4)	O8—Fe1—O4 ⁱ	89.73 (7)
	O10 ⁱ —Fe1—O7 ^{vi}	103.03 (5)	$O10^{i}$ —Fe1—O7 ^{vi}	106.72 (7)
	O3 ^v —Fe1—O7 ^{vi}	78.36 (4)	$O3^{v}$ —Fe1— $O7^{vi}$	78.23 (6)
	O4 ⁱ —Fe1—O7 ^{vi}	82.71 (4)	O4 ⁱ —Fe1—O7 ^{vi}	82.65 (6)
	$O3^{v}$ —Fe1—O4 ^{vi}	89.12 (4)	$O3^{v}$ —Fe1—O4 ^{vi}	91.44 (6)
	O8—Fe1—O4 ^{vi}	82.79 (4)	O8—Fe1—O4 ^{vi}	80.33 (7)
	O4 ⁱ —Fe1—O4 ^{vi}	81.98 (5)	O4 ⁱ —Fe1—O4 ^{vi}	81.07 (7)
	$O7^{vi}$ —Fe1—O4 ^{vi}	79.06 (4)	O7 ^{vi} —Fe1—O4 ^{vi}	81.45 (6)
Atome	Distances Fe(2) - O) (Å)	Distances Fe(2) - C) (Å)
	Fe2—O1	2.014 (1)	Fe2—O1	2.018 (1)
	Fe2—O1 ^{ix}	2.183 (1)	Fe2—O1 ^{ix}	2.197 (1)
	Fe2—O5	1.918 (1)	Fe2—O5	1.932 (1)
	Fe2—O6 ^{vii}	1.986 (1)	Fe2—O6 ^{vii}	1.992 (1)
	Fe2—O9 ⁱⁱ	1.89 (1)	Fe2—O9 ⁱⁱ	1.892 (1)
	Fe2—O12 ^{viii}	2.095 (1)	Fe2—O12 ^{viii}	2.083 (1)
	Distance moyenne: < Fe(2) -	-0 > = 2.014	Distance moyenne: < Fe (2)	-0 > = 2.019
	Angles O - Fe(2) -	O (°)	Angles O - Fe(2) -	O (°)
	O5—Fe2—O1 ^{ix}	165.96 (5)	O5—Fe2—O1 ^{ix}	168.07 (7)
	O9 ⁱⁱⁱ —Fe2—O5	94.12 (5)	O9 ⁱⁱⁱ —Fe2—O5	95.07 (8)
Fo?	O9 ⁱⁱⁱ —Fe2—O6 ^{vii}	92.02 (5)	O9 ⁱⁱⁱ —Fe2—O6 ^{vii}	92.58 (7)
1.62	O5—Fe2—O6 ^{vii}	102.43 (5)	O5—Fe2—O6 ^{vii}	98.76 (7)
	O9 ⁱⁱⁱ —Fe2—O1	89.09 (5)	O9 ⁱⁱⁱ —Fe2—O1	90.58 (7)
	O5—Fe2—O1	98.37 (5)	O5—Fe2—O1	102.48 (7)
	O5—Fe2—O12 ^{viii}	80.98 (5)	O5—Fe2—O12 ^{viii}	82.73 (7)
	O6 ^{vii} —Fe2—O12 ^{viii}	79.01 (4)	O6 ^{vii} —Fe2—O12 ^{viii}	79.86 (6)
	O1—Fe2—O12 ^{viii}	101.87 (5)	O1—Fe2—O12 ^{viii}	97.74 (6)
	O9 ⁱⁱⁱ —Fe2—O1 ^{ix}	98.12 (5)	O9 ⁱⁱⁱ —Fe2—O1 ^{ix}	96.55 (7)
	O6 ^{vii} —Fe2—O1 ^{ix}	84.06 (4)	O6 ^{vii} —Fe2—O1 ^{ix}	83.38 (6)
	O1—Fe2—O1 ^{ix}	75.06 (5)	O1—Fe2—O1 ^{ix}	74.79 (7)
	O12 ^{viii} —Fe2—O1 ^{ix}	88.17 (4)	O12 ^{viii} —Fe2—O1 ^{ix}	86.12 (6)
Atome	Distances Zn(1) - C	(A)	Distances Zn(1) - C	D (A)
	Zn1—O3	2.039 (1)	Zn1—O3	2.057 (1)
	Zn1—O6 ¹¹	2.137 (1)	Zn1—06 ^u	2.135 (1)
	Zn1—07 ¹	2.034 (1)	$Zn1-07^{1}$	2.032 (1)
	Zn1—011	1.957 (1)	Zn1—011	1.956 (1)
	Zn1—O12 ¹	2.049 (1)	Zn1—012 ¹	2.053 (1)
	Distance moyenne : <zn(1 -<="" th=""><th>- O > = 2.043</th><th>Distance moyenne : < Zn(1)</th><th>-O > = 2.047</th></zn(1>	- O > = 2.043	Distance moyenne : < Zn(1)	-O > = 2.047
	Angles O - Zn(1) -	O (°)	Angles O - Zn(1) -	O (°)

	$O7^{i}$ —Zn1—O6 ⁱⁱ	163.80 (4)	$O7^{i}$ —Zn1— $O6^{ii}$	164.79 (7)
Zn1	011—Zn1—O7 ⁱ	105.54 (5)	O11—Zn1—O7 ⁱ	104.64 (7)
	O11—Zn1—O3	133.59 (5)	O11—Zn1—O3	135.25 (7)
	O7 ⁱ —Zn1—O3	78.85 (4)	O7 ⁱ —Zn1—O3	78.84 (6)
	O11—Zn1—O12 ⁱ	129.77 (5)	O11—Zn1—O12 ⁱ	130.10(7)
	$O7^{i}$ —Zn1—O12 ⁱ	99.01 (4)	$O7^{i}$ —Zn1—O12 ⁱ	98.41 (6)
	O3—Zn1—O12 ⁱ	93.50 (5)	$O3-Zn1-O12^{i}$	92.09 (7)
	011—Zn1—O6 ⁱⁱ	88.74 (5)	011—Zn1—O6 ⁱⁱ	88.91 (7)
	O3—Zn1—O6 ⁱⁱ	85.77 (4)	O3—Zn1—O6 ⁱⁱ	86.69 (6)
	$O12^{i}$ — $Zn1$ — $O6^{ii}$	76.69 (4)	$O12^{i}$ —Zn1—O6 ⁱⁱ	77.30 (6)
Atome	Distances Zn(2) - C) (Å)	Distances Cd(1) - C) (Å)
	Zn2—O2 ⁱⁱⁱ	2.007 (1)	Cd1—O2	2.159 (1)
	Zn2—O2	2.007 (1)	Cd1—O2 ⁱⁱⁱ	2.159 (1)
	Zn2—O8 ⁱⁱⁱ	2.206 (1)	Cd1—O8 ⁱⁱⁱ	2.298 (1)
	Zn2—O8	2.206 (1)	Cd1—O8	2.298 (1)
	Zn2—O11 ⁱ	2.258 (1)	Cd1—O11 ⁱ	2.406 (1)
	Zn2—O11 ^{iv}	2.258 (1)	Cd1—O11 ^{iv}	2.406 (1)
	Distance moyenne : <zn(2)< th=""><th>- O > =2.157</th><th>Distance moyenne : <cd(1)< th=""><th>– O > =2.287</th></cd(1)<></th></zn(2)<>	- O > =2.157	Distance moyenne : <cd(1)< th=""><th>– O > =2.287</th></cd(1)<>	– O > =2.287
	Angles O - Zn(2) -	0 (°)	Angles O - Cd(1) -	O (°)
	$O11^{iv}$ —Zn2—O11 ⁱ	180.00	$O11^{iv}$ —Zn2—O11 ⁱ	180.00
	O2 ⁱⁱⁱ —Zn2—O8 ⁱⁱⁱ	94.82 (4)	O2 ⁱⁱⁱ —Cd1—O8 ⁱⁱⁱ	93.82 (7)
	O2—Zn2—O8 ⁱⁱⁱ	85.18 (4)	O2—Cd1—O8 ⁱⁱⁱ	86.18 (7)
Zn2-Cd1	O2 ⁱⁱⁱ —Zn2—O8	85.18 (4)	O2 ⁱⁱⁱ —Cd1—O8	86.18 (7)
	O2—Zn2—O8	94.82 (4)	O2—Cd1—O8	93.82 (7)
	02—Zn2—O8 02 ⁱⁱⁱ —Zn2—O11 ^{iv}	94.82 (4) 83.96 (4)	02—Cd1—O8 02 ⁱⁱⁱ —Cd1—O11 ^{iv}	93.82 (7) 81.34 (6)
	02—Zn2—O8 02 ⁱⁱⁱ —Zn2—O11 ^{iv} 02—Zn2—O11 ^{iv}	94.82 (4) 83.96 (4) 96.04 (5)	02Cd1O8 02 ⁱⁱⁱ Cd1O11 ^{iv} 02Cd1O11 ^{iv}	93.82 (7) 81.34 (6) 98.66 (6)
	02-Zn2-O8 02 ⁱⁱⁱ -Zn2-O11 ^{iv} 02-Zn2-O11 ^{iv} 08 ⁱⁱⁱ -Zn2-O11 ^{iv}	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4)	02Cd108 02 ⁱⁱⁱ Cd1011 ^{iv} 02Cd1011 ^{iv} 08 ⁱⁱⁱ Cd1011 ^{iv}	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6)
	O2Zn2O8 O2 ⁱⁱⁱ Zn2O11 ^{iv} O2Zn2O11 ^{iv} O8 ⁱⁱⁱ Zn2O11 ^{iv} O8Zn2O11 ^{iv}	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4)	02Cd1O8 02 ⁱⁱⁱ Cd1O11 ^{iv} 02Cd1O11 ^{iv} 08 ⁱⁱⁱ Cd1O11 ^{iv} 08Cd1O11 ^{iv}	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6)
	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8 - Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \end{array}$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5)	02Cd1O8 02 ⁱⁱⁱ Cd1O11 ^{iv} 02Cd1O11 ^{iv} 08 ⁱⁱⁱ Cd1O11 ^{iv} 08Cd1O11 ^{iv} 02 ⁱⁱⁱ Cd1O11 ⁱ	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6)
	$\begin{array}{c} O2 & - Zn2 & - O8 \\ O2^{iii} & - Zn2 & - O11^{iv} \\ O2 & - Zn2 & - O11^{iv} \\ O8^{iii} & - Zn2 & - O11^{iv} \\ O8 & - Zn2 & - O11^{iv} \\ O2^{iii} & - Zn2 & - O11^{i} \\ O2 & - Zn2 & - O11^{i} \\ \end{array}$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5)	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ \end{array}$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6)
	$\begin{array}{c} 02 \\ \hline 02 \\ \hline -Zn2 \\ \hline -O11^{iv} \\ \hline 02 \\ \hline -Zn2 \\ \hline -O11^{iv} \\ \hline 08^{iii} \\ \hline -Zn2 \\ \hline -O11^{iv} \\ \hline 08 \\ \hline -Zn2 \\ \hline -O11^{iv} \\ \hline 02 \\ \hline -Zn2 \\ \hline -O11^{i} \\ \hline 08^{iii} \\ \hline -Zn2 $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4)	$\begin{array}{c} O2 - Cd1 - O8 \\ O2^{iii} - Cd1 - O11^{iv} \\ O2 - Cd1 - O11^{iv} \\ O8^{iii} - Cd1 - O11^{iv} \\ O8 - Cd1 - O11^{iv} \\ O2^{iii} - Cd1 - O11^{i} \\ O2 - Cd1 - O11^{i} \\ O2 - Cd1 - O11^{i} \\ O8^{iii} - Cd1 - O11^{i} \\ O11^{i} \\ O8^{iii} - Cd1 - O11^{i} \\ O1$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 81.34 (6) 81.92 (6)
	$\begin{array}{c} O2 & - Zn2 & - O8 \\ O2^{iii} & - Zn2 & - O11^{iv} \\ O2 & - Zn2 & - O11^{iv} \\ O8^{iii} & - Zn2 & - O11^{iv} \\ O8^{-} & - Zn2 & - O11^{i} \\ O2^{iii} & - Zn2 & - O11^{i} \\ O2 & - Zn2 & - O11^{i} \\ O8^{iii} & - Zn2 & - O11^{i} \\ O8 & - Zn2 & - O11^{i} \\ O8 & - Zn2 & - O11^{i} \\ \end{array}$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4)	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 81.34 (6) 81.92 (6) 98.08 (6)
	$\begin{array}{c} 02 - Zn2 - 08 \\ 02^{iii} - Zn2 - 011^{iv} \\ 02 - Zn2 - 011^{iv} \\ 08^{iii} - Zn2 - 011^{iv} \\ 08 - Zn2 - 011^{iv} \\ 02^{iii} - Zn2 - 011^{i} \\ 02 - Zn2 - 011^{i} \\ 08^{iii} - Zn2 - 011^{i} \\ 08 - Zn2 - 011^{i} \\ $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8^{iii}-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ $	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6)
Atome	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8 - Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \\ O2 - Zn2 - O11^{i} \\ O8 - Z$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 98.08 (6)
Atome	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8^{-} Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \\ O2^{-} Zn2 - O11^{i} \\ O3^{iii} - Zn2 - O11^{i} \\ O8^{iii} - Zn2 - O11^{i} \\ O8^{-} Zn2 - O11^{i} \\ $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.555 (4)	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8^{-Cd1-O11^{iv}}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 79.2 (1)
Atome	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8^{-} Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \\ O2 - Zn2 - O11^{i} \\ O8 - Zn2 - O1^{i} \\ O8 - Zn2 $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.555 (4) 2.405 (4)	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1-O10^{i}\\ O8-Cd1$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1)
Atome	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8 - Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \\ O2 - Zn2 - O11^{i} \\ O3 - Zn2 - O11 \\ O3 - Z$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.555 (4) 2.495 (4) 2.495 (4)	$\begin{array}{c} 02 - Cd1 - 08 \\ 02^{iii} - Cd1 - 011^{iv} \\ 02 - Cd1 - 011^{iv} \\ 08^{iii} - Cd1 - 011^{iv} \\ 08 - Cd1 - 011^{iv} \\ 02^{iii} - Cd1 - 011^{i} \\ 02^{-Cd1} - 011^{i} \\ 08^{-Cd1} - 011^{i} \\ 08 - Cd1 - 011^{i} \\ 08 - Cd1 - 011^{i} \\ 08 - Cd1 - 011^{i} \\ 08 - Cd2 - 011^{i} \\ 02 - Cd2 - 02^{i} \\ 02 - Cd2 - 05 \\ 02^{i} - Cd2 - 05 \\ 02^{i} - Cd2 - 05 \\ 02 - 02 - 02 \\ 02 $	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1) 120.1 (1)
Atome	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8^{-} Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \\ O2^{-} Zn2 - O11^{i} \\ O8^{iii} - Zn2 - O11^{i} \\ O8^{iii} - Zn2 - O11^{i} \\ O8 - Zn2 - O2 \\ Cd2 - O2 \\ Cd2 - O2 \\ Cd2 - O2 \\ Cd2 - O3^{i} \\ O8 - Zn2 - O5 \\ O8 - Zn2$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.555 (4) 2.495 (4) 2.477 (4) 2.412 (4)	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O11^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O5\\ O2^{i}-Cd2-O5\\ O2^{i}-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ $	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1) 101.9 (1) 92.5 (1)
Atome Cd2	$\begin{array}{c} O2 - Zn2 - O8 \\ O2^{iii} - Zn2 - O11^{iv} \\ O2 - Zn2 - O11^{iv} \\ O8^{iii} - Zn2 - O11^{iv} \\ O8^{-} Zn2 - O11^{iv} \\ O2^{iii} - Zn2 - O11^{i} \\ O2 - Zn2 - O11^{i} \\ O3 - Zn2 - O11^{i} \\ O8 - Zn2 - O11^{i} \\ Cd2 - O2 \\ Cd2 - O2 \\ Cd2 - O2 \\ Cd2 - O2^{i} \\ \hline \end{array}$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.555 (4) 2.495 (4) 2.443 (4)	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O11^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O5\\ O2^{i}-Cd2-O5\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1) 101.9 (1) 82.5 (1) 147.2 (1)
Atome Cd2	$\begin{array}{c} O2-Zn2-O8\\ O2^{iii}-Zn2-O11^{iv}\\ O2-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O8-Zn2-O11^{iv}\\ O2^{iii}-Zn2-O11^{i}\\ O2-Zn2-O11^{i}\\ O2-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O10^{i}\\ O8-Zn2-O10^{i}\\ O8-Zn2-O10^{i}\\ O8-Zn2-O1^{i}\\ O8-Zn2-O1^{i}\\ O8-Zn2-O1^{i}\\ O8-Zn2-O1^{i}\\ O8-Zn2-O1^$	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.495 (4) 2.477 (4) 2.443 (4) $- \mathbf{O} > =2.479$	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8^{iii}-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O2^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O5\\ O2^{i}-Cd2-O5\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O5-Cd2-O8^{i}\\ O5-Cd2-O8^{i}\\ O12-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O8-Cd2-O8^{i}\\ O8-C$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) O (°) 151.8 (1) 70.2 (1) 120.1 (1) 101.9 (1) 82.5 (1) 147.2 (1)
Atome Cd2	$\begin{array}{c} O2-Zn2-O8\\ O2^{iii}-Zn2-O11^{iv}\\ O2-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O2^{iii}-Zn2-O11^{i}\\ O2-Zn2-O11^{i}\\ O8^{iii}-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ Cd2-O2\\ Cd2-O2\\ Cd2-O2\\ Cd2-O5\\ Cd2-O5\\ Cd2-O2^{i}\\ \hline \textbf{Distance moyenne : $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.555 (4) 2.495 (4) 2.477 (4) 2.443 (4) $- \mathbf{O} > =2.479$	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8^{-Cd1-O11^{iv}}\\ O2^{iii}-Cd1-O11^{i}\\ O2^{-Cd1-O11^{i}}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O11^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O5\\ O2^{i}-Cd2-O5\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O11\\ O2^{i}-Cd2-O1\\ O2^{i}-Cd2$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1) 101.9 (1) 82.5 (1) 147.2 (1) 134.3 (1) 72.2 (1)
Atome Cd2	$\begin{array}{c} O2-Zn2-O8\\ O2^{iii}-Zn2-O11^{iv}\\ O2-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O2^{iii}-Zn2-O11^{i}\\ O2-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ Cd2-O2\\ Cd2-O2\\ Cd2-O2\\ Cd2-O2\\ Cd2-O2^{i}\\ Distance moyenne : $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F O (Å) 2.427 (4) 2.427 (4) 2.495 (4) 2.443 (4) -O > =2.479	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O11^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O5\\ O2^{i}-Cd2-O5\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O11\\ O2^{i}-Cd2-O1\\ O2^{i}-C$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.34 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1) 101.9 (1) 82.5 (1) 147.2 (1) 134.3 (1) 73.2 (1) 76.5 (1)
Atome Cd2	$\begin{array}{c} O2-Zn2-O8\\ O2^{iii}-Zn2-O11^{iv}\\ O2-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O8^{iii}-Zn2-O11^{iv}\\ O2^{iii}-Zn2-O11^{i}\\ O2-Zn2-O11^{i}\\ O2-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ O8-Zn2-O11^{i}\\ Cd2-O2\\ Cd2-O11\\ Cd2-O2\\ Cd2-O11\\ Cd2-O5\\ Cd2-O2^{i}\\ \hline \textbf{Distance moyenne : $	94.82 (4) 83.96 (4) 96.04 (5) 94.93 (4) 85.07 (4) 96.04 (5) 83.96 (5) 85.07 (4) 94.93 (4) CdZn ₂ F (Å) 2.427 (4) 2.495 (4) 2.495 (4) 2.443 (4) -O > =2.479	$\begin{array}{c} O2-Cd1-O8\\ O2^{iii}-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O2-Cd1-O11^{iv}\\ O8^{iii}-Cd1-O11^{iv}\\ O2^{iii}-Cd1-O11^{i}\\ O2^{iii}-Cd1-O11^{i}\\ O2-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd1-O11^{i}\\ O8-Cd2-O11^{i}\\ O2-Cd2-O2^{i}\\ O2-Cd2-O5\\ O2^{i}-Cd2-O5\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2^{i}-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2-Cd2-O8^{i}\\ O2-Cd2-O11\\ O2^{i}-Cd2-O11\\ O2^{i}-Cd2-O1\\ O2^{i}-$	93.82 (7) 81.34 (6) 98.66 (6) 98.08 (6) 81.92 (6) 98.66 (6) 81.92 (6) 98.08 (6) 0 (°) 151.8 (1) 70.2 (1) 120.1 (1) 101.9 (1) 82.5 (1) 147.2 (1) 134.3 (1) 73.2 (1) 76.5 (1) 98.04 (1)

• Code de symétrie : (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*+2, -*z*+1; (vi) *x*, *y*+1, *z*; (vii) *x*-1, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (ix) -*x*, -*y*, -*z*; (x) -*x*+2, -*y*+2, -*z*+1.

Le calcul de valence des liaisons est réalisé par le programme Bond-Str incorporé dans la suite «*Fullprof*» 2018 [193] (**Tableau III.18**).

Phase	CdZn ₂ Fe ₄ (PO ₄) ₆							
Element	Zn(1)	Cd	Fe(1)	Fe(2)	P(1)	P(2)	P(3)	
Valence de liaison	2.006(5)	2.0583(5)	2.979(6)	3.082(6)	4.93(1)	4.930(1)	5.050(1)	
Phase	$Zn_3Fe_4(PO_4)_6$							
Element	Zn(1)	Zn(2)	Fe(1)	Fe(2)	P(1)	P(2)	P(3)	
Valence de liaison	2.024(3)	1.845(3)	3.029(4)	3.118(4)	4.898(8)	4.934(8)	5.021(9)	

En tenant compte des taux d'occupations des dits cations, ce calcul nous a permis de confirmer le modèle structural adopté pour chacun des deux phosphates . Les illustrations graphiques des deux unités asymétriques relatives aux monophosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$ ont été réalisées par le biais du logiciel *Ortep 3* (version 2014.1) [192]. L'enchaînement ainsi que l'arrangement tridimensionnel des divers polyèdres sont représentés respectivement dans les **Figures (III.20)** et (**III.21**). Les ellipsoïdes relatifs aux agitations thermiques de chaque atome ont été définis avec 60% de probabilité.

Figure III.20: Arrangement spatial des polyèdres de coordination dans le phosphate $Zn_3Fe_4(PO_4)_6$

Figure III.21 : Vue en perspective sur les polyèdres de coordination dans le phosphate $CdZn_2Fe_4(PO_4)_6$

(i) Environnement de P(1), P(2) et P(3) :

Dans les deux orthophosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$, le premier atome de phosphore P(1) affiche une coordinence CN=4, en adoptant une géométrie tétraédrique habituellement rencontrée dans la littérature pour l'ion P⁵⁺. Dans les tétraèdres P(1)O₄ les distances P(1) - O sont comprises entre 1.494(1)Å et 1.560(1)Å avec une distance moyenne $\langle P(1) - O \rangle = 1,543$ Å pour $Zn_3Fe_4(PO_4)_6$ et sont comprises entre 1.489(1)Å et 1.562(1)Å avec une distance moyenne $\langle P(1) - O \rangle = 1.542$ Å dans le cas de CdZn₂Fe₄(PO₄)₆ (Figure III.22).

Les groupements tétraédriques P(2)O₄ dans les deux composés affichent des distances moyennes de même ordre de grandeur que celles rencontrées dans les premiers polyèdres P(1)O₄. En effet dans les groupes P(2)O₄ les distances P(2)-O varient entre 1.503(1)Å et 1.556(1)Å avec une moyenne $\langle P(2) - O \rangle = 1,540Å$ dans la structure de Zn₃Fe₄(PO₄)₆, entre 1.509(1)Å et 1.554(1)Å avec une distance moyenne de 1.541 Å pour le monophosphate CdZn₂Fe₄(PO₄)₆ (**Figure III.23**).

Figure III.22: Environnement tétraédrique de l'atome P(1) dans la structure des phosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$

Figure III.23: Environnement tétraédrique de l'atome P(2) dans la structure des phosphates, $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$

Quant aux distances interatomiques P(3)-O des groupements P(3)O₄, elles affichent des distances moyennes légèrement faibles parmi les tétraèdres PO₄ des structures étudiées. Ceci se traduit par des distances P-O allant de 1.515(1) Å à 1.552(1)Å avec une moyenne de l'ordre de 1.533Å dans Zn₃Fe₄(PO₄)₆. Dans la phase CdZn₂Fe₄(PO₄)₆ les distances P(3)-O sont comprises entre 1.517(1)Å et 1.552(1)Å avec une distance moyenne <P(3) - O> =1.532Å (**Figures III.24**).

Figure III.24: Environnement tétraédrique de l'atome P(3) dans la structure des phosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$

(ii) Environnement de Fe(1) et Fe(2) :

Chacun des atomes de fer, Fe(1) et Fe(2), est entouré de six oxygènes formant ainsi des octaèdres irréguliers : Fe(1)O₆ et Fe(2)O₆. La déformation de ces deux polyèdres est due essentiellement aux grands écarts entre les diverses liaisons Fe^{III}-O. Ainsi, dans la phase Zn₃Fe₄(PO₄)₆, la distance Fe(1)-O passe de la valeur minimale d(Fe(1)-O)_{min}= 1.861(1)Å pour atteindre une valeur maximale d(Fe(1)-O)_{max}=2.089(1)Å, montrant un écart de 0.228Å, tandis que, pour le composé CdZn₃Fe₄(PO₄)₆, elle varie de d(Fe(1)-O)_{min}=1.873(1)Å à d(Fe(1)-O)_{max} = 2.088(1)Å avec un écart évalué à 0.215Å (**Figure III.25**).

Les octaèdres déformés Fe(2)O₆ affichent des distances moyennes \langle Fe(2)-O \rangle légèrement inférieures à celles remarquées dans leurs homologues Fe(1)O₆. Ainsi, la distance Fe(2) - O varie dans l'intervalle [1.890(1)Å; 2.183(1)Å] avec comme moyenne \langle Fe(2)-O \rangle = 2.014Å dans la phase Zn₃Fe₄(PO₄)₆. Dans le composé CdZn₂Fe₄(PO₄)₆ les distances Fe(2)-O évoluent entre

1.892(1)Å et 2.197(1)Å avec une distance moyenne <Fe(2)-O>=2.019 Å. La Figure (III.26) montre l'environnement des atomes de Fe(2) dans les deux structures.

Figure III.25: Environnement des atomes Fe(1) dans les phases Zn₃Fe₄(PO₄)₆ et CdZn₂Fe₄(PO₄)₆

Figure III.26: Environnement des atomes Fe(2) dans les deux phases Zn₃Fe₄(PO₄)₆ et CdZn₂Fe₄(PO₄)₆

(iii) Environnement de Zn(1), Cd(1) et Zn(2) :

Dans les composés phosphatés $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$, l'atome Zn(1) est entouré de cinq atomes d'oxygène en formant ainsi une bipyramide à base triangulaire distordue, $Zn(1)O_5$, avec une distance moyenne $\langle Zn(1) - O \rangle = 2.043$ Å et 2.047Å pour $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$ respectivement (**Figure III.27**).

Par ailleurs, les atomes Zn(2) et Cd(1) présentent un environnement octaédrique Zn(2)O₆ et Cd(1)O₆ légèrement déformés . Les distances Zn(2)-O varient entre 2,007(1)Å et 2,258(1)Å avec une distance moyenne \langle Zn(2) – O> = 2,157 Å pour Zn₃Fe₄(PO₄)₆, tandis que les distances Cd(1)-O évoluent entre 2,159(1)Å et 2,406(1)Å avec une distance moyenne \langle Cd(1) – O> = 2,287Å dans le cas de l'orthophosphate CdZn₂Fe₄(PO₄)₆ (**Figure III.28**).

Figure III.27: Environnement de l'atome Zn(1) dans la structure des phosphates $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$

Figure III.28 : Environnement des atomes Zn(2) et Cd(1) dans la structure des phosphates $Zn_3Fe_4(PO_4)_6$ et CdZn₂Fe₄(PO₄)₆

Dans la structure de $CdZn_2Fe_4(PO_4)_6$ le second atome de cadmium Cd(2) possède une sphère de coordinence de cinq atomes d'oxygène en formant une pyramide à base carré $Cd(2)O_5$ hautement distordue comme le montre la **Figure (III.29**). Les distances interatomiques Cd(2)-O varient entre 2.427(4)Å et 2.555(4)Å avec une distance moyenne < Cd(2)-O>=2.479Å.

< Cd(2) - O > = 2.479 Å

Figure III.29: Environnement de l'atome Cd(2) dans le composé CdZn₂Fe₄(PO₄)₆

Dans les deux structures, chaque deux octaèdres $Fe(1)O_6$ adjacents, partagent une arête O(4)-O(4) pour former le premier type de dimères $[Fe(1)_2O_{10}]$ (Figures (III.30a) et (III.30b)). De même, deux octaèdres $Fe(2)O_6$ voisins forment le second type de dimères $[Fe(2)_2O_{10}]$ par la mise en commun de l'arête O(1)-O(1) (Figures (III.31a) et (III.31b)).

A titre indicatif, dans le second type de dimère $[Fe(2)_2O_{10}]$, la longueur de l'arête commune O(1)-O(1) est égale à 2,559 Å et la distance entre les deux atomes de fer , Fe(2)-Fe(2), vaut 3.329 Å dans la phase $Zn_3Fe_4(PO_4)_6$. Dans la seconde phase $CdZn_2Fe_4(PO_4)_6$, O(1)-O(1) atteint 2.563 Å et Fe(2)-Fe(2) = 3.349 Å.

Figure III.30 : Représentation des dimères $[Fe(1)_2O_{10}]$ dans les phases (a) $Zn_3Fe_4(PO_4)_6$, (b) $CdZn_2Fe_4(PO_4)_6$

Figure III.31: Représentation des dimères $[Fe(2)_2O_{10}]$ dans les phases (a) $Zn_3Fe_4(PO_4)_6$ (b) $CdZn_2Fe_4(PO_4)$

L'union des deux dimères $[Fe(1)_2O_{10}]$ et $[Fe(2)_2O_{10}]$ dans les deux structures se fait via le groupement Zn(1)O₅ par partage des arêtes O(3)-O(3) avec $[Fe(1)_2O_{10}]$ et O(6)-O(12) avec $[Fe(2)_2O_{10}]$ pour former ainsi des chaines en zigzag (**Figures (III.32) et (III.33)**).

Figure III.32: Représentation de la chaîne en zigzag le long de [101]

Figure III.33: Représentation des chaînes en zigzag dans le plan (010)

Ces chaînes sont liées entre elles via les sommets des tétraèdres PO₄ de manière à construire des couches parallèles au même plan (010) (**Figure III.34**).

Figure III.34: Projection d'une couche dans le plan (010)

L'interconnexion entre deux couches successives est assurée par la mise en commun de sommets libres des tétraèdres $P(2)O_4$ et $P(3)O_4$ avec ceux de $Fe(2)O_6$ et $Zn(1)O_5$ respectivement.

Cet enchainement conduit à la formation d'un réseau tridimensionnel délimitant des tunnels suivant l'axe a qui sont remplis uniquement par les cations $Zn(2)^{2+}$ dans $Zn_3Fe_4(PO_4)_6$ (Figure III.35) et par Cd(1)²⁺ et Cd(2)²⁺ dans CdZn_2Fe_4(PO_4)_6 (Figure III.36)

Figure III.35: Projection de la structure du phosphate Zn₃Fe₄(PO₄)₆ dans le plan (100)

Figure III.36: Projection de la structure du phosphate CdZn₂Fe₄(PO₄)₆ dans le plan (100)

Le recueil bibliographique porté sur les phosphates de cations bi et trivalents apparentés à la famille Howardevansite (NaCuFe₂^{III}(VO₄)₃ cristallisant dans une maille triclinique de groupe d'espace P1 et les paramètres de maille : a = 6.6510(8) Å, b = 8.198(2) Å, c = 9.773(1) Å $\alpha = 103.82(1)^{\circ}$, $\beta = 106.74(1)^{\circ}$ et $\gamma = 101.99(1)$), révèle l'existence de nombreux phases de même type que les deux composés MZn₂Fe₄(PO₄)₆ (M = Zn, Cd). Dans le **Tableau (III.19**) nous avons rapportés, quelques exemples, leurs paramètres de mailles, ainsi que les diverses techniques de synthèses utilisées.

			D/f						
Phase	a (Å)	b (Å)	b (Å) c (Å)		β (°)	γ (°)	Technique	Kei	
CdZn2Fe4(PO4)6	6.3557(2)	8.0376(2)	9.3582(3)	105.087(1)	107.998(1)	101.756(1)	Solide	(*)	
Zn3Fe4(PO4)6	6.3447(2)	7.8838(2)	9.3019(2)	104.726(1)	108.408(1)	101.245(1)	Solide	(*)	
Mn ₃ Fe ₄ (PO ₄) ₆	6.3660(3)	8.0906(3)	9.3232(5)	105.219(4)	108.116(4)	102.045(4)	Solide	[234]	
Mg3Fe4(PO4)6	6.3264(3)	7.9229(5)	9.2682(5)	104.689(4)	108.390(5)	101.331(5)	Solide	[234]	
MnMg ₂ Fe ₄ (PO ₄) ₆	6.3396(3)	7.9945(4)	9.2938(4)	104.894 (4)	108.205(4)	101.619(5)	Solide	[234]	
Mn2MgFe4(PO4)6	6.3485(2)	8.0443(4)	9.3058(5)	105.046(4)	108.125(4)	101.827(4)	Solide	[234]	
Cu ₃ Fe ₄ (PO ₄) ₆	6.2558(4)	7.9076(4)	9.3195(6)	105.752(9)	107.155(9)	100.976(9)	Solide	[235]	
Cu ₂ Fe ₅ (PO ₄) ₆	6.2654(2)	7.9434(2)	9.3089(2)	105.643(2)	107.564(2)	101.040(2)	Solide	[235]	
Co ₃ Cr ₄ (PO ₄) ₆	6.2785	7.8561	9.2350	105.329	108.173	101.808	Solide	[236]	
Mn ₃ V ₄ (PO ₄) ₆	6.380631(7)	8.09194(1)	9.36507(1)	106.1460(1)	108.1808(1)	102.0162(1)	Solide	[237]	
Fe3V4(PO4)6	6.37023(2)	7.97114(2)	9.35541(3)	106.0380(2)	108.3873(2)	101.5664(2)	Solide	[237]	
C03V4(PO4)6	6.34838(2)	7.89159(2)	9.31906(3)	105.3086(2)	108.6825(2)	101.4843(2)	Solide	[237]	
Mg ₃ V ₄ (PO ₄) ₆	6.32616(5)	7.89709(6)	9.28888(7)	105.2542(3)	108.6118(3)	101.2761(3)	Solide	[237]	
Ni ₃ V ₄ (PO ₄) ₆	6.31393(3)	7.88682(4)	9.25523(5)	105.3195(3)	108.6967(3)	101.2205(3)	Solide	[237]	
Mg2.88Fe4.12(PO4)6	6.325(5)	7.911(3)	9.271(3)	104.62(1)	108.41(1)	101.24(1)	Solide	[238]	
Mg7(PO4)2(HPO4)4	6.4204(5)	7.8489(4)	9.4315(5)	104.442(3)	108.505(5)	101.189(8)	Hydrothermale	[163]	
Fe7(PO4)2(HPO4)4	6.528(3)	7.956(4)	9.501(4)	104.03(4)	109.17(2)	101.66(3)	Hydrothermale	[165]	
C07(PO4)2(HPO4)4	6.466(4)	7.871(2)	9.480(2)	104.29(2)	109.10(3)	101.35(3)	Hydrothermale	[167]	
Co ₃ Fe ₄ (PO ₄) ₆	6.365(1)	8.069(2)	9.327(2)	105.25(1)	108.16(1)	101.90(1)	Hydrothermale	[239]	
Mn ₂ Fe ₅ (PO ₄) ₆	6.350(1)	7.915(2)	9.300(2)	104.70(1)	108.47(1)	101.52(1)	Hydrothermale	[239]	
Mg ₃ Cr ₄ (PO ₄) ₆	6.265(2)	7.840(2)	9.212(3)	105.15(2)	108.20(2)	101.63(2)	C.V.T	[240]	
Cu ₃ Cr ₄ (PO ₄) ₆	6.2297(4)	7.8360(5)	9.2718(6)	106.321(5)	107.238(6)	101.950(6)	C.V.T	[240]	
Zn ₃ Cr ₄ (PO ₄) ₆	6.274(2)	7.830(2)	9.236(2)	105.33(1)	108.12(1)	101.52(1)	C.V.T	[240]	
Cr7(PO4)6	6,254(1)	8,005(1)	9.319(1)	107,14(1)	107,95(1)	100,982(9)	C.V.T	[241]	
Zn ₃ V ₄ (PO ₄) ₆	6.349(2)	7.869(1)	9.324(2)	105.32(1)	108.66(2)	101.23(2)	C.V.T	[242]	

Tableau III.19: Paramètres de maille des phosphates de type Howardevansite et leurs techniques de synthèses

C.V.T : Transport chimique en phase vapeur

(*) : Présent travail

III-5 Synthèse et caractérisation du phosphate CdZn₂Fe₄(PO₄)₆ sous forme pulvérulente

III-5-1 Synthèse de poudre de l'orthophosphate CdZn2Fe4(PO4)6

Suite à la détermination de la structure du phosphate $CdZn_2Fe_4(PO_4)_6$, à partir des données obtenues par diffraction des rayons X sur monocristal, nous nous sommes intéressés à la synthèse de cette phase sous forme pulvérulente et à sa caractérisation, en premier lieu, par DRX. La poudre relative à la nouvelle phase $CdZn_2Fe_4(PO_4)_6$ a été obtenue par voie solide, en utilisant les précurseurs suivants : (CdCO₃: 99.99%, Alfa aesar), (Zn(CH₃CO₂)₂.2H₂O : \geq 98%, Sigma-

Aldrich), (Fe(NO₃)₃.9H₂O : 98%, Panreac Applichem), (NH₄H₂PO₄ : 99%, Riedel-de-Halën), pris suivant les proportions stœchiométriques 1: 2 : 4 : 6. Les précurseurs sont intiment mélangés afin de subir un premier traitement thermique à 400°C dans une nacelle en platine pendant une nuit. Le mélange réactionnel blanchâtre est ensuite délicatement broyé dans un mortier en agate. La poudre est, ensuite, portée à différents paliers thermiques entrecoupés de broyages rigoureux.

L'état d'avancement de la réaction durant les diverses étapes de la synthèse sont contrôlés en comparant les diagrammes DRX expérimentaux, enregistrés à la fin de chaque traitement thermiques, avec ceux de la base de données PDF2-2010 ICDD (International Centre for Diffraction Data), en utilisant le logiciel *Bruker DIFFRAC plus EVA* [194] et avec celui théoriques générés à partir des données de DRX sur monocristal. La poudre verdâtre obtenue après traitement thermique à 820°C pendant 72h correspond à la phase pure recherchée.

III-5-2 Affinement du profil total du diagramme de diffraction de CdZn₂Fe₄(PO₄)₆

L'enregistrement du diagramme (DRX) du nouveau monophosphate CdZn₂Fe₄(PO₄)₆ a été effectué avec le diffractomètre (Siemens D5000) à température ambiante, dans l'intervalle angulaire $10^{\circ} \le 20 \le 70^{\circ}$ avec un pas de 0,04° et un temps d'intégration de 30 s par pas. L'affinement du profil total du diagramme expérimental de CdZn₂Fe₄(PO₄)₆ a été réalisé par la méthode *Pattern Matching* [195] en utilisant le programme *Jana 2006* [196]. Les deux diagrammes de diffraction (DRX) calculé et observé sont en parfaite concordance comme le témoigne la Figure (III.37). Par ailleurs, au dernier cycle d'affinement, nous avons obtenu de très bonnes valeurs des facteurs de mérite. Dans le **Tableau** (III.20), nous avons consignés les dits facteurs, le volume, ainsi que les paramètres de maille affinés obtenus.

Paramètres de maille, volume et facteurs de reliabiltès									
a (Å)	b (Å)	c (Å)	a (°)	β (°)	γ (°)	V (Å ³)	GOF	R _p	wRp
6.3517(1)	8.0417(2)	9.3489(2)	105.080(1)	107.987(1)	101.776(1)	416.98(2)	1.33	7.39	10.11

Tableau III.20: Paramètres de maille affinés, volume et facteurs de reliabiltès de $CdZn_2Fe_4(PO_4)_6$

Figure III.37: Diffractogrammes (DRX) calculé, observé de $CdZn_2Fe_4(PO_4)_6$ ainsi que leur différence

III-5-3 Caractérisation par microscopie électronique à balayage (MEB) du phosphate $CdZn_2Fe_4(PO_4)_6$

L'analyse de $CdZn_2Fe_4(PO_4)_6$ sous sa forme pulvérulente par microscopie MEB révèle l'existence d'agrégats de grains de formes sphériques et de granulométries de l'ordre d'un micromètre. (**Figure III.38**). L'échantillon se caractérise, en outre, par un aspect homogène.

Figure III.38 : Micrographie MEB de la poudre du nouveau phosphate CdZn₂Fe₄(PO₄)₆
L'analyse élémentaire, par spectrométrie de rayons-X à dispersion d'énergie (EDS), nous a permis de vérifier la pureté de notre poudre (**Figure III.39**). En plus, l'analyse des données obtenues confirme que les pourcentages atomiques des éléments : Cd/P = 0.18, Zn/P = 0.36 et Fe/P = 0.69 sont très proches de ceux obtenus à partir de l'étude structurale sur monocristal de $CdZn_2Fe_4(PO_4)_6$.

Figure III.39 : Spectre EDS de la poudre du nouveau phosphate CdZn₂Fe₄(PO₄)₆

III-5-4 Caractérisation par spectroscopie vibrationnelle III-5-4-1 Spectroscopie infrarouge

L'acquisition des données expérimentales a été effectuée sous un angle de 45°, dans la gamme de fréquences 4000 - 400 cm⁻¹, avec un balayage de 30 scans, une vitesse de 2 mm.s⁻¹ et une résolution de 4 cm⁻¹ à température ambiante via un spectromètre infrarouge à transformée de fourrier de marque «*JASCO FT/IR 4600*» de la plateforme d'analyse et de caractérisation (PAC) de la Faculté des Sciences de Rabat (**Figure III.40**). L'examen minutieux du spectre infrarouge (IR), dans l'intervalle 1600-400 cm⁻¹ nous permis l'assignement de diverses bandes relatives aux modes de vibrations des ions phosphate PO₄³⁻ dans la structure du composé CdZn₂Fe₄(PO₄)₆, dont les résultats ainsi que les divers assignements relatives sont consignés dans le **Tableau** (**III.21**).

Figure III.40 : Spectre infrarouge du nouveau phosphate CdZn₂Fe₄(PO₄)₆

Tableau III.21: Attributions des fréquences Infrarouge (cm⁻¹) observées pour le nouveau phosphate $CdZn_2Fe_4(PO_4)_6$

Assignement	Nombre d'onde (cm ⁻¹)
Elongations P-O symétrique (v_1) et antisymétrique (v_3)	900 - 934 - 970 - 1005 - 1082 - 1031 - 1170 - 1210
Déformation angulaire O-P-O symétrique (v_2) et antisymétrique (v_4)	413 - 445 - 475 - 547 - 580 - 592 - 613 - 640

III-5-4-2 Spectroscopie Raman

Les spectres Raman ont été mesurés entre 100 et 2000 cm⁻¹ à température ambiante avec un spectromètre de marque «*Renishaw*» micro-Raman (RM1000), au sein du Laboratoire de spectrométrie des matériaux et archéomatériaux (LASMAR-URAC11) de la Faculté des Ssciences de Meknès. La **Figure (III.41)** illustre le spectre de diffusion Raman relatif au phosphate CdZn₂Fe₄(PO₄)₆ dans l'intervalle spectrale 1600 -150 cm⁻¹. L'analyse de ce spectre nous a permis l'identification des diverses vibrations internes de valence et de déformations des ions phosphate PO₄³⁻.

Figure III.41: Spectre de diffusion Raman du nouveau phosphate CdZn₂Fe₄(PO₄)₆.

Dans le (**Tableau III.22**) sont résumées l'ensemble des attributions des fréquences observées dans le phosphate $CdZn_2Fe_4(PO_4)_6$.

Tableau III.22: Attributions des fréquences Raman (cm⁻¹) observées pour le phosphate CdZn₂Fe₄(PO₄)₆

Assignement	Nombre d'onde (cm ⁻¹)
Elongations P-O symétrique (v_1) et antisymétrique (v_3)	962 - 996 - 1069 - 1157 - 1209
Déformation angulaire O-P-O symétrique (v ₂) et antisymétrique (v ₄)	444 - 464 - 549 - 581 - 605 - 634

III-6 Conclusion

Le nouveau phosphate CaZn₂Fe(PO₄)₃ a été synthétisé avec succès par diffusion à l'état solide sous forme de monocristaux. La structure de ce composé a été déterminée à partir des données de la diffraction des rayons-X (DRX) sur monocristal. Cette phase cristallise dans le groupe d'espace P2₁/c du système monoclinique avec les paramètres de maille suivants : a = 8.5619 (3) Å, b = 15.2699 (5) Å, c = 8.1190 (3), β = 117.788 (2)°. Dans ce phosphate,

les deux pyramides à bases rectangulaires, $Zn(2)O_5$, forme un dimère $[Zn_2O_8]$. Ce dernier relie deux groupements octaédriques Fe(1)O₆ par une arête pour conduire à la formation de l'entité $[Zn_2Fe_2O_{16}]$. Ces entités se connectent entre elles via les tétraèdres PO₄ aboutissant à un feuillet parallèle au plan (\vec{a}, \vec{c}) . Ces feuillets sont connectés entre eux par les tétraèdres Zn(1)O₄ pour conduire à une structure tridimensionnelle libérant des tunnels occupés par les cations Ca²⁺.

Nous avons, également, réussi la synthèse de $CaZn_2Fe(PO_4)_3$ sous forme pulvérulente par voie solide. Cette phase a fait l'objet de caractérisation par diffraction des rayons sur poudre (DRX), par microscopie à balayage (MEB) couplée à la spectroscopie de rayons X à dispersion d'énergie (EDS) et par spectroscopies infrarouge et Raman.

Dans ce chapitre, nous avons aussi présenté la synthèse par diffusion à l'état solide et l'étude structurale de deux nouveaux phosphates : $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$ appartenant à la famille de l'Howardevansite. Les structures des dits phosphates ont été aussi déterminées à partir des données de la diffraction des rayons-X sur monocristal. Les deux phases cristallisent dans une maille triclinique avec le groupe d'espace $P\overline{1}$ et les paramètres de maille suivants :

- ✓ Zn₃Fe₄(PO₄)₆: a = 6.3447 (2) Å, b = 7.8838 (2) Å, c = 9.3019 (2) Å, α = 104.726 (1)°, $\beta = 108.408 (1)°$ et $\gamma = 101.245 (1)°$;
- ✓ CdZn₂Fe₄(PO₄)₆: a = 6.3557 (2) Å, b = 8.0376 (2) Å, c = 9.3582 (3) Å, α = 105.087 (1)°, $\beta = 107.998 (1)^{\circ}, \gamma = 101.756 (1)^{\circ}.$

Dans les deux structures, chaque paire d'octaèdres $Fe^{III}(1)O_6$ ou bien $Fe^{III}(2)O_6$, partagent une arête pour former des dimères $[Fe(1)_2O_{10}]$ ou bien $[Fe(2)_2O_{10}]$. L'union des deux dimères $[Fe(1)_2O_{10}]$ et $[Fe(2)_2O_{10}]$ se fait via le groupement $Zn(1)O_5$ par partage des arêtes avec $[Fe(1)_2O_{10}]$ et $[Fe(2)_2O_{10}]$ en formant ainsi des chaines en zigzag dans le plan (101). Ces chaînes sont liées via les sommets des tétraèdres PO₄ de manière à construire des couches parallèles au même plan. L'interconnexion entre les diverses couches conduit à la formation d'un réseau tridimensionnel délimitant des tunnels occupés par les cations Zn^{2+} et Cd^{2+} .

Nous avons aussi élaboré avec succès la phase $CdZn_2Fe_4(PO_4)_6$ sous forme pulvérulente par voie solide. Cette phase a été caractérisée par DRX, par spectroscopies IR-Raman et également nous l'avons examiné par microscopie MEB-EDS. Chapitre IV : Elaboration, caractérisation et étude structurale du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆

IV-1 Introduction

Dans le chapitre 2, nous avons étudié les nouvelles phases $A_2Zn_2Fe(PO_4)_3$ (A = Na, Ag) de type alluaudite. La substitution des cations monovalents dans ces phases par les cations Ca^{2+} , Ba^{2+} et Cd^{2+} a conduit à la formation des trois nouveaux phosphates $CaZn_2Fe(PO_4)_3$ et $MZn_2Fe_4(PO_4)_6$ (M = Zn, Cd) dont les résultats ont été exposés et discutés dans le chapitre 3. Les cinq nouvelles phases obtenues ont été synthétisées par diffusion à l'état solide.

En diversifiant nos méthodes de synthèses et en visant le même objectif d'avoir des phases de type alluaudite, nous avons opté pour la technique hydrothermale. Ainsi, nous avons exploré les systèmes quaternaires Ag₂O-CuO-SrO-P₂O₅ selon le rapport molaire Ag : Cu : Sr : P = 1 :2 :1 :3 dans le but de synthétiser de nouveaux composés de type Alluaudite semblables à AgMn₃(HPO₄)₂(PO₄) [93], NaCaMn₂(HPO₄)(PO₄)₂ [108], AgCo₃(HPO₄)₂(PO₄), [126] AgNi₃(HPO₄)₂(PO₄) [127], AgMg₃(HPO₄)₂(PO₄) [101].

Ces efforts ont été concrétisés par l'obtention du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆ dont la synthèse, la caractérisation et l'étude structurale seront détaillées dans ce chapitre.

IV-2 Synthèse des cristaux de AgSr₄Cu_{4.5}(PO₄)₆

La synthèse des cristaux de AgSr₄Cu_{4.5}(PO₄)₆ a été réalisée par voie hydrothermale à partir des rapports molaires Ag : Cu : Sr : P = 1 :2 :1 : 3. Ainsi nous avons entamé la synthèse avec les précurseurs : (AgNO₃: \geq 99%, Sigma-Aldrich), (Sr(NO₃)₂: 99.99%, Sigma-Aldrich), (Cu :99.9%, Acros Organics), mélangés avec 12 mL d'eau distillée en présence de 0,10 mL d'acide phosphorique (H₃PO₄: 85%, VWR Chemicals).

Les divers précurseurs ont été introduits dans une chemise en téflon de volume 23 mL en présence de l'eau distillée. L'enceinte réactionnelle est fermée hermétiquement dans un autoclave en acier inoxydable de marque « *Paar* » qui sera par la suite introduit dans l'étuve où il subira un traitement thermique à 200° C sous pression autogène pendant 4 jours.

L'examen des cristaux bleus-transparents obtenus par DRX sur monocristal, révèle des paramètres de maille qui ne correspondent à aucune des phases répertoriées dans la base de données cristallographiques. Ces cristaux représentent une nouvelle phase phosphatée dont l'étude structurale a permis d'établir la formule chimique suivante : AgSr₄Cu_{4.5}(PO₄)₆.

IV-3 Étude structurale du nouveau monophosphate AgSr₄Cu_{4.5}(PO₄)₆

L'acquisition des intensités de diffraction (DRX) sur monocristal a été réalisée sur un monocristal de couleur bleu-transparent et de dimensions $0.30 \times 0.27 \times 0.21$ mm³ en utilisant le diffractomètre automatique à quatre cercles de type Bruker X8, de l'UATRS – CNRST– Rabat. Après avoir choisi la meilleure stratégie de collecte des données, nous avons lancé l'enregistrement en couvrant la gamme angulaire θ : [2.4° - 35.3°], à température ambiante.

Les intensités obtenues sont intégrées et corrigées des facteurs de Lorentz, et de polarisation en utilisant le programme SAINT [243], en outre la correction des données des divers effets d'absorption [244], ont été réalisés par le programme SADABS [245]. Au terme de cette étape nous avons collecté un total de 31383 réflexions mesurées parmi elles figurent 8382 réflexions indépendantes dont 7248 réflexions vérifient la condition I > $2\sigma(I)$.

Les principales données cristallographiques, ainsi que les conditions d'enregistrement des données (DRX) du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆ sont consignées dans le **Tableau** (**IV.1**).

Données cristallographiques				
Formule chimique	$AgSr_4Cu_{4.5}(PO_4)_6$			
Système cristallin	Triclin	ique		
Groupe d'espace	PĪ			
Paramètres de maille	a = 9.1069 (1) Å b = 9.1512 (1) Å c = 13.7255 (2) Å	$\begin{aligned} \alpha &= 97.497 \ (1)^{\circ} \\ \beta &= 98.303 \ (1)^{\circ} \\ \gamma &= 110.874 \ (1)^{\circ} \end{aligned}$		
Volume de la maille ($Å^3$)	1036.9	1 (2)		
Nombre de motif par maille Z	2			
Densité calculée (g.cm ⁻³)	4.20	9		
Coefficient d'absorption μ (mm ⁻¹)	16.22			
Collecte d	es intensités			
Diffractomètre	Bruker X8 APEXII			
Température (K)	296			
Longueur d'onde Mo(Ka) (Å)	0.71073			
Correction d'absorption	multi-scan (SAD) $T_{min}= 0.596$, T	ABS ; Bruker) $\Gamma_{max} = 0.748$		
Domaine de θ (°)	$\theta_{\min} = 2.4^{\circ}, \ \theta$	$_{\rm max} = 35.3^{\circ}$		
	h = -14	→14		
Indices de Miller	$k = -12 \rightarrow 14$			
	$l = -21 \rightarrow 20$			
Réflexions mesurées	31383			
Réflexions indépendantes	8382			
Réflexions pour I > $2\sigma(I)$	724	8		
R _{int}	0.03	3		
Résolution $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.812			

Tableau IV.1: Données cristallographiques et conditions d'enregistrement des intensités de diffraction des rayons-X sur monocristal de AgSr₄Cu_{4.5}(PO₄)₆

IV-3-1 Résolution et affinement structurale du nouveau phosphate AgSr4Cu4.5(PO4)6

La résolution structurale du nouveau phosphate $AgSr_4Cu_{4.5}(PO_4)_6$ a été réalisée via WinGX version 2014.1 [186]. La structure de ce composé a été résolue par la méthode directe [187] à l'aide du programme SHLEXS-2014 [188] et affinée par la méthode des moindres carrées [189] à l'aide du programme SHELXL-2014 [190]. La détermination structurale de $AgSr_4Cu_{4.5}(PO_4)_6$ nous a permis de localiser en premier lieu les atomes Ag, Sr, Cu et P , tandis que les atomes d'oxygène ont été positionnés dans l'unité asymétrique suite aux séries d'affinements successifs suivies de Fourier-différence. Dans la structure, tous les atomes se trouvent dans des positions générales (position *2i* de *Wyckoff*) du groupe d'espace P-1 (N°2), à l'exception de Cu(1) qui se trouvent en position spéciale (position *1a* de *Wyckoff*).

L'affinement structural en anisotropie de tous les atomes conduit à d'excellents facteurs d'accords (**Tableau IV.2**).

Affinement structural				
Facteur de confiance $R[F^2 > 2\sigma(F^2)]$	0.029			
Facteur de confiance $wR(F^2)$	0.065			
S (Goodness-of-Fit)	1.04			
Nombre de paramètres affinés	358			
Densité résiduelle maximale $\Delta \rho_{max}$ (e.Å ⁻³)	3.99 à 0.63 Å de Ag1			
Densité résiduelle minimale $\Delta \rho_{min}$ (e.Å ⁻³)	-3.73 à 0.59 Å de Ag1			
$(\Delta/\sigma)_{\rm max}$	0.001			
Schéma de pondération avec : $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0258P)^2 + 3.1089P]$			

Tableau IV.2 : Résultats d'affinement de la structure du nouveau monophosphate AgSr₄Cu_{4.5}(PO₄)₆

Dans les **Tableau (IV.3)** et **(IV.4)** sont rapportés respectivement, les coordonnées atomiques ainsi que les facteurs de déplacements atomiques isotropes équivalents et anisotropes obtenus après le dernier cycle d'affinement structural de $AgSr_4Cu_{4.5}(PO_4)_6$.

Atome	Site	X	У	Z	Ueq	Occupation
Ag1	2 <i>i</i>	0.39350 (4)	0.41223 (4)	-0.10400 (2)	0.02961 (7)	1
Sr1	2 <i>i</i>	0.28823 (3)	0.81799 (3)	0.01655 (2)	0.00705 (5)	1
Sr2	2 <i>i</i>	0.12836 (3)	0.14772 (3)	0.64594 (2)	0.00862 (5)	1
Sr3	2 <i>i</i>	0.63381 (3)	0.17215 (3)	0.32562 (2)	0.00854 (5)	1
Sr4	2 <i>i</i>	0.07031 (3)	0.54033 (3)	0.33636 (2)	0.00682 (5)	1
Cu1	1a	0.0000	1.0000	0.0000	0.00908 (9)	1
Cu2	2 <i>i</i>	0.35441 (4)	0.35729 (4)	0.32546 (2)	0.00724 (6)	1
Cu3	2 <i>i</i>	0.17554 (4)	-0.05278 (4)	0.22039 (2)	0.00631 (6)	1
Cu4	2 <i>i</i>	0.51286 (4)	0.24190 (4)	0.54769 (2)	0.00752 (6)	1
Cu5	2 <i>i</i>	0.19759 (4)	0.43836 (4)	0.10392 (2)	0.00711 (6)	1
P1	2 <i>i</i>	-0.00318 (8)	0.17911 (8)	0.20922 (5)	0.0049 (1)	1
P2	2 <i>i</i>	-0.06336 (8)	0.60243 (8)	0.11619 (5)	0.0054 (1)	1
P3	2 <i>i</i>	0.24292 (8)	0.92195 (8)	0.44053 (5)	0.0058 (1)	1
P4	2 <i>i</i>	0.44974 (8)	0.78966 (8)	0.23846 (5)	0.0058 (1)	1
P5	2 <i>i</i>	0.37042 (8)	0.20302 (8)	0.11200 (5)	0.0052 (1)	1
P6	2 <i>i</i>	0.69848 (8)	0.54686 (8)	0.45910 (5)	0.0051 (1)	1
01	2 <i>i</i>	0.1627 (2)	0.3232 (2)	0.2218 (1)	0.0067 (3)	1
02	2 <i>i</i>	0.0314 (3)	0.0494 (2)	0.2574 (1)	0.0095 (4)	1
03	2 <i>i</i>	-0.1119 (3)	0.2404 (2)	0.2612 (1)	0.0097 (4)	1
04	2 <i>i</i>	-0.0762 (3)	0.1178 (3)	0.0962 (1)	0.0094 (4)	1
05	2 <i>i</i>	0.0558 (3)	0.5276 (3)	0.1535 (1)	0.0130 (4)	1
06	2 <i>i</i>	-0.1491 (3)	0.6237 (3)	0.2024 (1)	0.0116 (4)	1
07	2 <i>i</i>	-0.1872 (3)	0.4853 (2)	0.0239 (1)	0.0094 (4)	1
08	2 <i>i</i>	0.0258 (3)	0.7604 (2)	0.0866 (1)	0.0120 (4)	1
09	2 <i>i</i>	0.3839 (3)	1.0680 (2)	0.4306 (1)	0.0109 (4)	1
010	2 <i>i</i>	0.2988 (3)	0.7964 (2)	0.4828 (1)	0.0091 (4)	1
011	2 <i>i</i>	0.1336 (3)	0.9562 (3)	0.505 (1)	0.0135 (4)	1
012	2 <i>i</i>	0.1397 (2)	0.8386 (2)	0.3333 (1)	0.0067 (3)	1
013	2 <i>i</i>	0.3715 (3)	0.9111 (2)	0.2156 (1)	0.0091 (4)	1
014	2 <i>i</i>	0.6258 (3)	0.8918 (2)	0.2832 (1)	0.0111 (4)	1
015	2 <i>i</i>	0.4209 (3)	0.6805 (3)	0.1374 (1)	0.0101 (4)	1
016	2 <i>i</i>	0.3742 (3)	0.6848 (2)	0.3116 (1)	0.0091 (4)	1
017	2 <i>i</i>	0.3382 (3)	0.3333 (2)	0.0637 (1)	0.0097 (4)	1
018	2 <i>i</i>	0.4811 (3)	0.1406 (3)	0.0642 (1)	0.0109 (4)	1
019	2 <i>i</i>	0.4412 (3)	0.2650 (3)	0.2259 (1)	0.0096 (4)	1
O20	2 <i>i</i>	0.2067 (2)	0.0587 (2)	0.1 (1)	0.0073 (3)	1
021	2 <i>i</i>	0.6559 (3)	0.6836 (2)	0.4282 (1)	0.0099 (4)	1
O22	2i	0.8375 (3)	0.5350 (3)	0.415 (1)	0.0164 (4)	1
023	2 <i>i</i>	0.7428 (3)	0.5692 (3)	0.5744 (1)	0.0090 (4)	1
O24	2i	0.5495 (2)	0.3884 (2)	0.421 (1)	0.0086 (4)	1

Tableau IV.3 : Positions atomiques et paramètres de déplacements atomiques isotropes équivalents (Å²) du nouveau monophosphate $AgSr_4Cu_{4.5}(PO_4)_6$

Atome	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Ag1	0.0148 (1)	0.0428 (1)	0.0373 (1)	0.02 (1)	0.0082 (1)	0.0048 (1)
Sr1	0.0069(1)	0.0077 (1)	0.0080(1)	0.00358 (9)	0.00308 (8)	0.00227 (8)
Sr2	0.0069(1)	0.0104 (1)	0.0109(1)	0.00443 (9)	0.00423 (9)	0.00373 (8)
Sr3	0.0084 (1)	0.01 (1)	0.0092 (1)	0.00516(9)	0.00321 (9)	0.00226 (8)
Sr4	0.0067 (1)	0.0064 (1)	0.0082 (1)	0.00304 (8)	0.00254 (8)	0.00156 (8)
Cu1	0.0061 (2)	0.0137 (2)	0.0067 (1)	0.0053 (1)	-0.0004 (1)	-0.0028 (1)
Cu2	0.0065 (1)	0.01 (1)	0.0056 (1)	0.0044 (1)	0.0004 (1)	-0.0004 (1)
Cu3	0.007 (1)	0.0078 (1)	0.0069(1)	0.0046 (1)	0.0031 (1)	0.0033 (1)
Cu4	0.0069 (1)	0.0092 (1)	0.007 (1)	0.0043 (1)	0.0006 (1)	0.0005 (1)
Cu5	0.0088 (1)	0.0086 (1)	0.0072 (1)	0.0056 (1)	0.0036 (1)	0.0036 (1)
P1	0.0048 (3)	0.0051 (3)	0.0055 (3)	0.0026 (2)	0.0018 (2)	0.0013 (2)
P2	0.0048 (3)	0.0059 (3)	0.0055 (3)	0.0019 (2)	0.0008 (2)	0.0014 (2)
P3	0.0051 (3)	0.0060 (3)	0.0061 (3)	0.0023 (2)	0.0008 (2)	0.0003 (2)
P4	0.0054 (3)	0.0065 (3)	0.0057 (3)	0.0028 (2)	0.0009 (2)	0.0014 (2)
P5	0.0049 (3)	0.0055 (3)	0.0057 (3)	0.0021 (2)	0.0020 (2)	0.0012 (2)
P6	0.0047 (3)	0.0062 (3)	0.0053 (3)	0.0027 (2)	0.0019 (2)	0.0019 (2)
01	0.0049 (8)	0.0073 (8)	0.0076 (8)	0.0019 (7)	0.0010 (6)	0.0024 (6)
02	0.0116 (1)	0.0094 (9)	0.0125 (9)	0.0072 (8)	0.0059 (7)	0.0059 (7)
03	0.0085 (9)	0.0082 (9)	0.0144 (9)	0.0044 (7)	0.0056 (7)	0.0019 (7)
04	0.0083 (9)	0.0135 (9)	0.0068 (8)	0.0061 (8)	-0.0001 (7)	-0.0003 (7)
05	0.016 (1)	0.023 (1)	0.0100 (9)	0.0164 (9)	0.0050 (8)	0.0065 (8)
06	0.0094 (9)	0.017 (1)	0.0101 (9)	0.0067 (8)	0.0039 (7)	0.0013 (7)
07	0.0106 (9)	0.0068 (8)	0.0071 (8)	0.0004 (7)	-0.0011 (7)	0.0005 (7)
08	0.013 (1)	0.0079 (9)	0.0119 (9)	-0.0010 (8)	0.0040 (8)	0.0029 (7)
09	0.0090 (9)	0.0088 (9)	0.0105 (9)	-0.0010 (7)	0.0012 (7)	0.0005 (7)
O10	0.011 (1)	0.0114 (9)	0.0085 (8)	0.0078 (8)	0.0020 (7)	0.0042 (7)
011	0.0117 (1)	0.017 (1)	0.0128 (9)	0.0071 (8)	0.0046 (8)	0.0002 (8)
012	0.0065 (9)	0.0074 (8)	0.0058 (8)	0.0021 (7)	0.0006 (6)	0.0023 (6)
013	0.0103 (9)	0.0114 (9)	0.0098 (8)	0.0078 (8)	0.0032 (7)	0.0049 (7)
014	0.0064 (9)	0.0092 (9)	0.016 (1)	0.0021 (7)	-0.0007 (7)	0.0033 (7)
015	0.0107 (9)	0.0123 (9)	0.0073 (8)	0.0062 (8)	0.0003 (7)	-0.0016 (7)
016	0.0087 (9)	0.0106 (9)	0.0075 (8)	0.0026 (7)	0.0015 (7)	0.0035 (7)
017	0.012 (1)	0.0089 (9)	0.0132 (9)	0.0068 (8)	0.0075 (8)	0.0058 (7)
018	0.010(1)	0.0101 (9)	0.0161 (9)	0.0063 (8)	0.0080 (8)	0.0033 (7)
019	0.0083 (9)	0.0134 (9)	0.0067 (8)	0.0058 (8)	-0.0006 (7)	-0.0015 (7)
O20	0.0056 (9)	0.0061 (8)	0.0086 (8)	0.0006 (7)	0.0006 (7)	0.0021 (6)
021	0.0099 (9)	0.0095 (9)	0.0138 (9)	0.0053 (8)	0.0048 (7)	0.0066 (7)
022	0.012 (1)	0.03 (1)	0.015 (1)	0.012 (1)	0.0092 (8)	0.0068 (9)
023	0.0108 (9)	0.0137 (9)	0.0053 (8)	0.0079 (8)	0.0012 (7)	0.0022 (7)
O24	0.0073 (9)	0.0074 (8)	0.0099 (8)	0.0026 (7)	-0.0009 (7)	0.0011 (7)

Tableau IV.4 : Facteurs de déplacements atomiques anisotropes (Å²) dans la structure du phosphate $AgSr_4Cu_{4.5}(PO_4)_6$

IV-3-2 Description structurale du nouveau phosphate AgSr4Cu4.5(PO4)6

La détermination structurale de $AgSr_4Cu_{4.5}(PO_4)_6$ nous a permis la mise en évidence de l'existence de quarante atomes indépendants dans la maille (4Sr, 5Cu, Ag, 6P et 24O). Ce model structurale a été confirmé par le calcul des valences de liaisons réalisé par le logiciel *Platon* [210]. Les résultats des calculs sont résumés dans le **Tableau** (**IV.5**).

Ces valeurs sont en bon accord avec les degrés d'oxydation attendus pour ces cations. Par ailleurs les diverses représentations graphiques des polyèdres relatifs à chacun des cations ont été réalisées avec le logiciel *DIAMOND 3.1d* [191]. La visualisation graphique des dits polyèdres a été entreprise en respectant les distances interatomiques et les angles de liaisons consignés dans le **Tableau (IV.6)**.

Tableau IV.5 : Valences des liaisons cationiques dans les deux structures AgSr₄Cu_{4.5}(PO₄)₆

Element	Ag(1)	Sr(1)	Sr(2)	Sr(3)	Sr(4)	Cu (1)	Cu(2)	Cu(3)
Valence de liaison	0.999	2.124	2.306	1.901	2.248	1.765	1.957	2.050
Element	Cu(4)	Cu(5)	P(1)	P(2)	P(3)	P(4)	P(5)	P(6)
Valence de liaison	2.039	1.999	4.895	4.963	4.974	4.942	4.938	5.010

 $\label{eq:constraint} \begin{array}{l} \mbox{Tableau IV.6:} Principaux distances (Å) et angles interatomiques (°) dans la structure du phosphate \\ AgSr_4Cu_{4.5}(PO_4)_6 \end{array}$

Atomo	AgSr4Cu4.5(PO4)6					
Atome	Distances P(1) - 0	D (Å)	Distances P(2) -) (Å)		
	P1—O1	1.580 (2)	P2—O5	1.539 (2)		
	P1—O2	1.535 (2)	P2—O6	1.536 (2)		
	P1—O3	1.516 (2)	P2—O7	1.549 (2)		
	P1—O4	1.541 (2)	P2—O8	1.525 (2)		
	Distance moyenne :< P(1) -	- 0 > = 1.543	Distance moyenne :< P(2) -	-0 > = 1.537		
P1 - P2	Angles O - P(1) -	O (°)	Angles O - P(2) -	O (°)		
	O3—P1—O2	111.8 (1)	O8—P2—O6	112.2 (1)		
	O3—P1—O4	110.5 (1)	08—P2—O5	110.1 (1)		
	O2—P1—O4	110.9 (1)	O6—P2—O5	106.7 (1)		
	O3—P1—O1	107.9 (1)	08—P2—O7	109.7 (1)		
	O2—P1—O1	107.4 (1)	O6—P2—O7	109.6 (1)		
	O4—P1—O1	108.2 (1)	O5—P2—O7	108.6 (1)		
Atome	Distances P(3) - 0	O (Å)	Distances P(4) - O (Å)			
	P3—O9	1.526 (2)	P4—O13	1.560 (2)		
	P3—O10	1.555 (2)	P4—O14	1.523 (2)		
	P3—O11	1.508 (2)	P4—O15	1.530 (2)		
	P3—O12	1.559 (2)	P4—O16	1.543 (2)		
	Distance moyenne :< P(3) -	- O > = 1.537	Distance moyenne :< P(4) -	- O > = 1.539		
P3 – P4	Angles O - P(3) -	O (°)	Angles O - P(4) -	O (°)		
10 14	O11—P3—O9	115.3 (1)	O14—P4—O15	114.2 (1)		
	O11—P3—O10	107.2 (1)	O14—P4—O16	110.6 (1)		
	O9—P3—O10	112.2 (1)	O15—P4—O16	108.1 (1)		
	O11—P3—O12	107.7 (1)	O14—P4—O13	104.9 (1)		
	O9—P3—O12	107.9 (1)	O15—P4—O13	105.3 (1)		
	O10—P3—O12	106.2(1)	O16—P4—O13	113.9(1)		

Atome	Distances P(5) - O (Å)		Distances P(6) - O (Å)		
	P5—O17	1.532 (2)	P6—O21	1.527 (2)	
	P5—O18	1.509 (2)	P6—O22	1.511 (2)	
	P5-019	1.547 (2)	P6—O23	1.543 (2)	
	P5—O20	1.569 (2)	P6—O24	1.553 (2)	
	Distance movenne :< P(5) -	-0 > = 1.539	Distance movenne :< P(6) -	-0 > = 1.533	
	$\frac{1}{1}$	O (°)	Angles O - P(6) -	O (°)	
P5 – P6	0.18 - P5 - 0.17	1132(1)	0.022 - P6 - 0.021	110.6(1)	
10 10	018 - P5 - 019	109.2(1)	022 - P6 - 023	109.1(1)	
	017 - P5 - 019	109.1(1) 1105(1)	021 - P6 - 023	109.1(1) 1114(1)	
	018 - P5 - 020	107.5(1)	021 - 10 - 023	109.6(1)	
	017_P5_020	107.3(1) 108.7(1)	022 - 10 - 021	109.0(1) 108.9(1)	
	017 - 15 - 020	100.7(1) 107.5(1)	021 - 10 - 024	100.9(1) 107.3(1)	
Atomo		$O(\mathbf{\hat{k}})$		$0(\dot{A})$	
Atome		(A)	Distances $Cu(2)$ -	$\mathbf{U}(\mathbf{A})$	
	$Cu1 - O4^{n}$	1.952 (2)	$Cu2-023^{\circ}$	1.913 (2)	
	$Cu1-O4^{m}$	1.952 (2)	Cu2_019	1.922 (2)	
	Cu1—O20"	2.014 (2)	Cu2—024	1.956 (2)	
	Cu1—O20 ^m	2.014 (2)	Cu2—O1	1.988 (1)	
Cu1-Cu2	Distance moyenne : < Cu(1) – O > = 1.983	Distance moyenne : < Cu(2) – O > =1.944	
Cul-Cu2	Angles O - Cu(1)	• O (°)	Angles O - Cu(2)	- O (°)	
	O4 ⁱⁱ —Cu1—O20 ⁱⁱ	90.21 (8)	O23 ^v —Cu2—O24	94.11 (9)	
	O4 ⁱⁱⁱ —Cu1—O20 ⁱⁱ	89.79 (8)	O19—Cu2—O24	86.61 (9)	
	O4 ⁱⁱ —Cu1—O20 ⁱⁱⁱ	89.79 (8)	O23 ^v —Cu2—O1	89.33 (8)	
	O4 ⁱⁱⁱ —Cu1—O20 ⁱⁱⁱ	90.21 (8)	019—Cu2—O1	90.01 (8)	
Atome	Distances Cu(3) -	O (Å)	Distances Cu(4) -	O (Å)	
	Cu3—O13 ^{vii}	1.936 (2)	Cu4—O21 ^v	1.942 (2)	
	Cu3-02	1.948 (2)	$Cu4-O10^{v}$	1.958 (2)	
	Cu3—O12 ^{vii}	1.953 (1)	Cu4-016 ^v	1.959 (2)	
	Cu3-020	2.055 (2)	Cu4—O9 ^{vii}	1.988 (2)	
	Cu3-08 ^{vii}	2.225 (2)	Cu4	2.323(2)	
	Distance movenne $\leq Cu(3)$	-0 > -2.023	Distance movenne $\leq Cu(4)$	-0 > -2.034	
	Distance moyenne . Cu(3)	0 = 0 > -2.023		0 = 0 > = 2.034	
	$\begin{array}{c c} \hline \\ \hline $	160 15 (0)	$\begin{array}{c} \text{Angles U - Cu(4)} \\ \text{O21V} \text{Cu4} \text{O10V} \end{array}$		
Cu3-Cu4	013 - Cu3 - 02	100.13(9)	021 - Cu4 - 010	109.89(9)	
eue eu	013 - Cu3 - 012	91.03 (9)	021 - Cu4 - 010	92.81 (9)	
	$02-Cu3-012^{m}$	88.13 (8) 80.55 (8)	$O10^{\circ}$ $Cu4$ $O10^{\circ}$	87.73 (9)	
	013 - Cu3 - 020	01.06 (8)	$O_{21} - Cu_{4} - O_{5}$	97.20(9)	
	02-Cu3-020	91.00(8)	O10 - Cu4 - O9	<u>80.93 (9)</u>	
	O12 - Cu3 - O20	1/0.43(0)	010 - Cu4 - 09	97 92 (9)	
	013 - Cu3 - 08	90.03 (9)	021 - Cu4 - 024	87.82 (8) 92.76 (8)	
	02 —Cu3— 08^{m}	105.27(9) 104.07(8)	$010^{$	85.70 (8) 126.57 (8)	
	$\begin{array}{c} 012 \\ \hline 020 \\ 0$	74.07 (8)	O10 - Cu4 - O24	120.37 (8)	
	020	74.01 (0)	09 - Cu4 - 024	80.98 (8)	
Atome			Lu(3) - U(A)	2.045 (1)	
	Cu5-05	1.912 (2)	Cu5-01	2.045 (1)	
	Cu5-01/	1.952 (2)	Cu5-015	2.347 (2)	
	Cu5—0/"	1.972 (2)			
	Dist	ance moyenne :	< Cu(5) - O > = 2.045		
Cu5		Angles O -	Cu(5) - O (°)		
	O5—Cu5—O17	174.08 (9)	O7 ⁱⁱ —Cu5—O1	168.01 (8)	
	O5—Cu5—O7 ⁱⁱ	95.23 (9)	O5—Cu5—O15	95.56 (9)	
	017—Cu5—O7 ⁱⁱ	90.41 (9)	017—Cu5—O15	87.49 (8)	
	O5—Cu5—O1	82.50 (9)	07 ⁱⁱ —Cu5—O15	76.16 (8)	
	017—Cu5—O1	91.61 (8)	01—Cu5—O15	115.73 (7)	
Atome	Distances Sr(1) -	O (Å)	Distances Sr(2) -	O (Å)	
	Sr1-018 ⁱ	2,449 (2)	$Sr2-011^{vii}$	2,454 (2)	

	Sr1—O7 ⁱⁱ	2.547 (2)	Sr2—O21 ^v	2.470 (2)		
	Sr1—O4 ⁱⁱ	2.579 (2)	Sr2—O14 ^v	2.476 (2)		
	Sr1	2.610 (2)	Sr2—O2 ^{viii}	2.539 (2)		
	Sr1—015	2.615 (2)	Sr2—O12 ^{ix}	2.543 (2)		
Sr1-Sr2	Sr1—O13	2.663 (2)	Sr2—O6 ^{ix}	2.686 (2)		
	Sr1—O20 ⁱⁱⁱ	2.733 (2)	Sr2—O11 ^{ix}	2.707 (2)		
	Sr1—O18 ⁱⁱⁱ	2.774 (2)	Sr2—O22 ^v	3.047 (3)		
	Distance moyenne :< Sr(1)	- O > = 2.621	Distance moyenne :< Sr(2)	– O > = 2.615		
Atome	Distances Sr(3) -	0 (Å)	Distances Sr(4) -	O (Å)		
	Sr3—O3 ^{vi}	2.498 (2)	Sr4—O5	2.480 (2)		
	Sr3—O19	2.520 (2)	Sr4—O22 ^{iv}	2.502 (2)		
	Sr3—O14 ^{vii}	2.528 (2)	Sr4—023 ^v	2.517 (2)		
	Sr3—O10 ^v	2.567 (2)	Sr4—O12	2.581 (2)		
	Sr3—O24	2.630 (2)	Sr4—O3	2.621 (2)		
Sr3-Sr4	Sr3—O13 ^{vii}	2.765 (2)	Sr4—O16	2.703 (2)		
	Sr3—O9 ^{vii}	2.815 (2)	Sr4—O1	2.809 (2)		
			Sr4—O10	2.819 (2)		
			Sr4—O6	2.890 (2)		
	Distance moyenne :< $Sr(3) - O > = 2.617$ Distance moyenne :< $Sr(4) - O > = 2.658$					
Atome		Distances A	Ag(1) - O (Å)			
	Ag1—O15 ⁱ	2.221 (2)	Ag1—O17 ⁱ	2.630 (2)		
	Ag1—O6 ⁱⁱ	2.319 (2)	Ag1—O7 ⁱⁱ	2.684 (2)		
	Ag1—017	2.565 (2)				
	Distance moyenne : $\langle Ag(1) - O \rangle = 2.483$					
Ag1		Angles O -	Ag(1) - O (°)			
8-	O15 ⁱ —Ag1—O6 ⁱⁱ	130.26 (7)	017—Ag1—017 ⁱ	107.34 (6)		
	O15 ⁱ —Ag1—O17	104.14 (7)	015 ⁱ —Ag1—O7 ⁱⁱ	167.67 (7)		
	O6 ⁱⁱ —Ag1—O17	107.26 (7)	O6 ⁱⁱ —Ag1—O7 ⁱⁱ	60.01 (7)		
	015 ⁱ —Ag1—O17 ⁱ	75.48 (7)	O17—Ag1—O7 ⁱⁱ	64.03 (6)		
	O6 ⁱⁱ —Ag1—O17 ⁱ	127.71 (7)	O17 ⁱ —Ag1—O7 ⁱⁱ	103.91 (6)		

• Codes de symétries : (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+1, -*z*; (iii) *x*, *y*+1, *z*; (iv) *x*, *y*-1, *z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*, -*y*, -*z*+1; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) *x*-1, *y*, *z*.

La représentation tridimensionnelle du nouveau phosphate $AgSr_4Cu_{4.5}(PO_4)_6$ a été réalisée via le logiciel *Ortep 3* (version 2014.1) [192] . L'arrangement spatial des divers polyèdres de la structure est illustré dans la **Figure (IV.1**). Les ellipsoïdes relatifs aux agitations thermiques de chaque atome ont été définis avec une probabilité de 60%.

Figure IV.1: Agencement tridimensionnel des divers polyèdres dans la structure du nouveau phosphate $AgSr_4Cu_{4.5}(PO_4)_6$

(i) Environnement des atomes de phosphore :

Dans la structure du phosphate $AgSr_4Cu_{4.5}(PO_4)_6$, les atomes de phosphore P(1), P(2), P(3), P(4), P(5) et P(6) adoptent un environnement tétraédrique, avec des distances interatomiques P—O variant entre 1,508(2)Å et 1,580(2)Å et des distances moyennes <P—O> comprises entre 1,533Å et 1,543Å.

En outre, l'examen attentif des distances interatomiques et des principaux angles, permet de conclure que les six tétraèdres de phosphore PO₄ sont réguliers **Figures** (**IV.2**) et (**IV.3**).

Figure IV.2: Environnement des atomes P(1), P(2) et P(3) dans la structure de AgSr₄Cu_{4.5}(PO₄)₆

Figure IV.3: Environnement des atomes P(4), P(5) et P(6) dans la structure de AgSr₄Cu_{4.5}(PO₄)₆

(ii) Environnement des atomes de cuivre :

Dans la structure AgSr₄Cu_{4.5}(PO₄)₆, les atomes de cuivre adoptent deux environnements différents CuO₄ et CuO₅. L'atome de cuivre Cu(1) occupe pleinement son site cristallographique en position spéciale *la* (symétrie -1) de *Wyckoff*. Il possède une sphère de coordinence de quatre atomes d'oxygènes aboutissant ainsi à la formation d'un parallélogramme aplatit Cu(1)O₄ (**Figure IV.4**), comme le témoigne les valeurs des distances interatomiques Cu(1) —O et celles angulaires O — Cu(1) — O. En effet, dans ce polyèdre, les distances interatomiques Cu(1) — O varient entre 1.952(2)Å et 2.014(2)Å.

Figure IV.4: Environnement de l'atome Cu(1) dans la structure du phosphate AgSr₄Cu_{4.5}(PO₄)₆

L'atome de Cu(2) occupe complètement son site cristallographique en formant un plan carré distordu Cu(2)O₄ (**Figure IV.5**). Cette géométrie classique adoptée par le cuivre Cu(II) pour une coordinence CN = 4 est en parfaite accord avec le modèle d'hybridation des orbitales dsp² (Senga.Y & Kawahara.A) [246]. La forme carrée a été signalée en outre dans plusieurs composés, à savoir: M₃Cu₃(PO₄)₄ avec M = Sr, Pb et Ba₂Cu(PO₄)₂.H₂O (Effenberger.H) [247] , Cd₂Cu(PO₄)₂ (Stojanović, et al.) [248].

Dans cette unité structurale, les distances interatomiques Cu(2)—O varient entre 1.913(2) Å et 1.988 (1) Å avec une distance moyenne $\langle Cu(2)$ —O $\rangle = 1.944$ Å tandis que les angles O—Cu(2)—O varient entre 86.61(9)° et 94.11 (9)°.

Figure IV.5: Environnement de l'atome Cu(2) dans la structure de la phase AgSr₄Cu_{4.5}(PO₄)₆

Pour rendre compte de la nature de ce type de polyèdre Cu(1)O₄ et Cu(2)O₄, nous avons calculé l'indice τ_4 pour un cation de coordinence CN = 4. D'après (Yang.L et al) [249], cet indice τ_4 peut être calculé comme suit : $\tau_4 = \frac{(360^\circ - (\alpha + \beta))}{141^\circ}$ Avec α et β les deux angles les plus élevés du polyèdre. A titre d'exemple, τ_4 = 0 dans le cas d'un plan carré et τ_4 = 1 pour un tétraèdre. Les valeurs obtenus de l'indice τ_4 pour Cu(1)O₄ et pour Cu(2)O₄ (τ_4 (Cu(1)O₄) = 0 et τ_4 (Cu(2)O₄) = 0.059), confirme la planéité des deux polyèdres avec une légère distorsion dans le cas de Cu(2)O₄.

Dans la structure du nouveau phosphate $AgSr_4Cu_{4.5}(PO_4)_6$, les atomes de cuivre Cu(3), Cu(4) et Cu(5) occupent individuellement les centres de trois pyramides à bases carrées CuO_5 **Figures (IV.6), (IV.7)** et **(IV.8)**. Les trois polyèdres $Cu(3)O_5$, $Cu(4)O_5$ et $Cu(5)O_5$ affichent une déformation significative. Ainsi, dans chacun des polyèdres, le cation de cuivre forme avec les quatre oxygènes les plus proches les bases carrées déformées tandis que la coordinence CN = 5 est complétée par les liaisons axiales restantes dont la longueur est nettement supérieure par rapport à celles des quatre autres. La déformation du groupement CuO_5 a été attribuée dans certaines phases comme $KCuFe(PO_4)_2$ à la prédominance de l'effet *Jahn-Teller* observé habituellement dans le cas de Cu^{2+} avec d⁹ (Badri.A et al) [250]. Une irrégularité similaire a été signalée dans les phosphates $Ca_3Cu_3(PO_4)_4$ (Anderson.J.B et al) [251] et Mg_{1.65}Cu_{1.35}(PO_4)_2·H_2O (khmiyas.J et al) [252] . Dans les trois polyèdres CuO₅, les liaisons interatomiques Cu—O évoluent entre 1.936(2)Å et 2.225(2)Å dans Cu(3)O₅ , entre 1.942(2)Å et 2.323(2) Å dans Cu(4)O₅ et entre 1.912(2)Å et 2.347(2)Å pour Cu(5)O₅.

Figure IV.6: Environnement de l'atome Cu(3) dans la phase AgSr₄Cu_{4.5}(PO₄)₆

Figure IV.7: Environnement des atomes Cu(4) dans la phase AgSr₄Cu_{4.5}(PO₄)₆

Figure IV.8: Environnement des atomes Cu(4) et Cu(5) dans la phase AgSr₄Cu_{4.5}(PO₄)₆

(iii) Environnement des atomes de strontium :

La structure du phosphate $AgSr_4Cu_{4.5}(PO_4)_6$ contient quatre atomes de strontium indépendants. Chacun des deux atomes de strontium Sr(1), Sr(2) est entouré de huit atomes d'oxygène à des distances Sr - O allant de 2.449(2)Å à 2.774(2)Å avec une distance moyenne $\langle Sr(1) - O \rangle = 2.621$ Å pour Sr(1), et comprises entre 2.454(2)Å à 3.047(3)Å avec une distance moyenne $\langle Sr(2) - O \rangle = 2.615$ Å pour Sr(2). Quant au Sr(3), il est entouré de sept atomes d'oxygène avec des distances interatomiques variant entre 2.498(2)Å et 2.815(2)Å avec une distance moyenne $\langle Sr(3) - O \rangle = 2.617$ Å. Le quatrième atome de strontium, Sr (4), est entouré de neuf atomes d'oxygène à des distances Sr - O variant entre 2.480 (2)Å et 2.890(2)Å et une distance moyenne $\langle Sr(3) - O \rangle = 2.658$ Å (**Figure IV.9**). De telles distances interatomiques, Sr - O, ont été observées dans diverses phases à savoir : $Sr_{2.88}Cu_{3.12}(PO_4)_4$ [253], $SrMn_2Fe(PO_4)_3$ [84], $Ni_2Sr(PO_4)_2.2H_2O$ [254] et $Sr_2Mn_3(HPO_4)_2(PO_4)_2$ [33].

Figure IV.9: Environnement de atomes Sr(1), Sr(2), Sr(3) et Sr(4) dans la structure de la phase $AgSr_4Cu_{4.5}(PO_4)_6$

(iv) Environnement d'atome d'argent :

L'atome d'argent Ag(1) est entouré par cinq atomes d'oxygènes pour former le polyèdre Ag(1)O₅. Ce dernier est caractérisé par cinq distances interatomiques Ag(1) - O qui varient entre 2.221(2)Å et 2.684(2)Å avec comme distance moyenne $\langle Ag(1) - O \rangle = 2.483Å$ (Figure IV.10).

Le calcul de l'indice $\tau_5 = \frac{(\alpha - \beta)}{60^{\circ}}$ avec α et β les angles affichants les plus grandes valeurs, renseigne sur la nature de la géométrie adoptée par un cation de coordinence CN = 5 [255]. Ainsi pour une pyramide à base carrée $\tau_5 = 0$ et pour une bipyramide trigonale $\tau_5 = 1$. Dans le cas de Ag(1)O₅ nous avons constaté que ce polyèdre se présente sous forme d'une bipyramide à base trigonale très déformée avec une valeur de τ_5 calculée de 0.623.

Figure IV.10: Environnement de l'atome Ag(1) dans la structure de la phase AgSr₄Cu_{4.5}(PO₄)₆

Dans la structure de ce phosphate, les deux pyramides à bases carrées, $Cu(4)O_5$ et $Cu(5)O_5$ sont liées par le groupement $Cu(2)O_4$ qui partage avec eux deux oxygènes à fin de former le premier type de trimère [Cu_3O_{12}]¹⁸⁻ (**Figure IV.11**). Un second type de trimère, [Cu_3O_{12}]¹⁸⁻, est formé à partir de l'union de deux entités $Cu(3)O_5$ via le groupement $Cu(1)O_4$. En effet, Chacun des deux $Cu(3)O_5$ partage un sommet avec $Cu(1)O_4$ (**Figure IV.12**).

Figure IV.11: Représentation du trimère $[Cu_3O_{12}]^{18-}$ formé par $Cu(5)O_5$, $Cu(2)O_4$ et $Cu(4)O_5$

Figure IV.12: Représentation du trimère [Cu₃O₁₂]¹⁸⁻ formé par Cu(1)O₄ et deux Cu(3)O₅

Chaque atome d'oxygène des deux trimères $[Cu_3O_{12}]^{18}$ est relié à un tétraèdre PO₄ pour conduire à la formation de deux types de rubans $[Cu_3P_{10}O_{40}]^{24}$ Figures (IV.13) et (IV.14). L'association de ces rubans conduit à des feuillets $[Cu_{4.5}(PO_4)_6]^{9}$ parallèles au plan (\vec{b}, \vec{c}) (Figure IV.15). La cohésion entre les feuillets et la neutralité des charges électriques sont assurées par les cations Sr^{2+} et Ag^+ placés dans l'espace interfeuillets (Figure IV.16).

Figure IV.13: Représentation du premier type de ruban $[Cu_3P_{10} O_{40}]^{24-}$

Figure IV.14: Représentation du second type de ruban $[Cu_3P_{10} O_{40}]^{24-}$

Figure IV.15: Représentation d'un feuillet $[Cu_{4.5}(PO_4)_6]^{9-}$ dans le plan (\vec{b}, \vec{c})

Figure IV.16: Projection de la structure de AgSr₄Cu_{4.5}(PO₄)₆ dans le plan (\vec{a}, \vec{c})

IV-4 Synthèse et caractérisation du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆ sous forme pulvérulente

Après la détermination de la structure du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆, nous nous sommes intéressé par la suite à la synthèse de cette phase sous forme pulvérulente, à sa caractérisation par (DRX), et par microscopie MEB/EDS.

IV-4-1 Protocole de synthèse de AgSr₄Cu_{4.5}(PO₄)₆

La poudre relative à la phase $AgSr_4Cu_{4.5}(PO_4)_6$ a été obtenue par voie solide, en suivant le protocole expérimental suivant :

Les produits de départ (Ag₂CO₃:99%, Acros organics), (SrCO₃:99.9%, Sigma-Aldrich), (CuO:99%, Acros organics), et (NH₄H₂PO₄: 99%, Riedel-de-Halën), pris en proportions stœchiométriques : Ag : Sr : Cu : P = 1, 4, 4.5, 6 sont mélangés intimement dans un mortier d'agate. Le mélange réactionnel (couleur grise) subit les traitements thermiques suivants dans un creuset en alumine :

- ✓ 200°C pendant 24 heures (poudre grise) ;
- ✓ 400° C pendant 24 heures (poudre grise) ;
- ✓ 550° C pendant 72 heures (poudre turquoise);
- ✓ 580°C pendant 24 heures, suivi d'un broyage puis remis au four, à la même température pendant 48 heures (poudre turquoise).

Le suivi de la synthèse de la poudre du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆ a été réalisée par diffraction des rayons-X (DRX) en comparant systématiquement chaque diffractogramme expérimentale avec celui calculé à partir des données de l'affinement structurale sur monocristal à l'aide du programme *PowderCell 2.4* [231]. Le diffractogramme de la poudre obtenue après le traitement thermique à la température de 580°C est parfaitement superposable à celui théorique.

IV-4-2 Affinement du profil total du diagramme DRX sur poudre de AgSr4Cu4.5(PO4)6

L'ajustement du profil total du diagramme expérimental du phosphate AgSr₄Cu_{4.5}(PO₄)₆ a été réalisé en utilisant l'option Pattern Matching (méthode de Le bail) [195] à l'aide du programme «*Fullprof*» 2018 [193] sur le diffractogramme enregistré à température ambiante, dans l'intervalle $10 \le 2\theta \le 60^\circ$ avec pas de 0,03 en $2\theta^\circ$ et un temps d'intégration de 20 s par pas. Les deux diagrammes de diffraction (DRX) calculé et observé représentés dans

la **Figure** (**IV.17**), sont en parfaite concordance comme le témoigne leur différence mutuelle. Par ailleurs l'affinement a abouti à de très bonnes valeurs des facteurs de mérites. Ces facteurs, le volume, ainsi que les paramètres de maille affinés obtenus sont rassemblés dans le **Tableau** (**IV.7**).

Paramètres de maille et volume					
a (Å)	9,1169(4)				
b (Å)	9,1632(4)				
c (Å)	13,7346(6)				
α (°)	97,489(2)				
β (°)	98,271(2)				
γ (°)	110,869(2)				
$V(Å^3)$	1040.33(8)				
F	acteurs de mérite				
R _p	9.84				
R _{wp}	11.3				
Rexp	8.25				
R _{Bragg}	1.28				
χ^2	1.87				

Tableau IV.7: Paramètres de maille affinés, volume et facteurs de reliabiltés de AgSr₄Cu_{4.5}(PO₄)₆

Figure IV.17: Diagrammes de diffraction X calculé, observé et leur différence pour le composé AgSr₄Cu_{4.5}(PO₄)₆

IV-5 Caractérisation par microscopie électronique à balayage (MEB) du phosphate $AgSr_4Cu_{4.5}(PO_4)_6$

Les résultats de la microanalyse des éléments chimiques par spectroscopie de dispersion d'énergie (EDS) confirment l'absence de toutes sortes d'impuretés dans la poudre du phosphate AgSr₄Cu_{4.5}(PO₄)₆ obtenue à 580°C (**Figure IV.18**). L'analyse EDS confirme que les pourcentages massiques sont très proches de ceux de la composition de AgSr₄Cu_{4.5}(PO₄)₆ (**Tableau IV.8**).

Figure IV.18: Microanalyse EDS du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆

Tableau IV.8 : Pourcentages massiques des éléments constituants du phosphate AgSr₄Cu_{4.5}(PO₄)₆

Phase	Elément	Pourcentage Massique monocristal	Pourcentage Massique EDS
AgSr4Cu4.5(PO4)6	Ag	08.21	08.93
	Sr	26.67	25.90
	Cu	21.70	20.40
	Р	14.14	12.66
	0	29.22	32.11

L'analyse attentive des micrographies MEB (**Figure IV.19**) révèle que de la poudre de $AgSr_4Cu_{4.5}(PO_4)_6$ présente un caractère spongieux. En effet, elle est constituée d'agglomérats poreux dépassant un micromètre et formant un réseau continu tridimensionnel. A fort grossissement, nous pouvons constater que les particules sont fortement liées entre eux, révélant un degré notable de frittage.

Figure IV.19 : Micrographies MEB du nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆ élaboré à T=580°C

IV-6 Conclusion

Nos investigations par voie hydrothermale nous ont permis d'isoler le nouveau phosphate AgSr₄Cu_{4.5}(PO₄)₆. La détermination structurale de cette phase à partir des données de la diffraction de rayons-X sur monocristal montre qu'elle cristallise dans une maille triclinique avec le groupe d'espace P1 et les paramètres de maille suivants : a = 9.1069 (1) Å, b = 9.1512 (1) Å, c = 13.7255 (2) Å, α = 97.497 (1)°, β = 98.303 (1)°, γ = 110.874 (1)°.

La détermination structurale AgSr₄Cu_{4.5}(PO₄)₆ a abouti à une structure originale en absence de toutes formes d'homologues apparentées à ce composé. Dans la structure de ce phosphate, les deux pyramides à bases carrées, Cu(4)O₅ et Cu(5)O₅ sont liées par un seul groupement Cu(2)O₄ qui partage avec eux deux sommets afin d'aboutir au premier type de trimère [Cu₃O₁₂]¹⁸⁻. Le second type de trimère [Cu₃O₁₂]¹⁸⁻ est aussi formé par l'union d'un groupement Cu(1)O₄ qui relie deux entités Cu(3)O₅ via deux sommets communs. Chaque atome d'oxygène des deux trimères [Cu₃O₁₂]¹⁸⁻ est relié à un groupement tétraédrique PO₄ pour conduire à la formation de deux types de rubans [Cu₃P₁₀ O₄₀]²⁴⁻. L'association de ces rubans conduit à des feuillets [Cu_{4.5}(PO₄)₆]⁹⁻ parallèles au plan (\vec{b}, \vec{c}). La cohésion entre les feuillets est assurée par les cations Sr²⁺ et Ag⁺ en position interstitielle. Nous avons aussi élaboré avec succès AgSr₄Cu_{4.5}(PO₄)₆ sous forme pulvérulente par voie solide. Le suivi de la réaction de synthèse a été réalisé par diffraction des rayons X (DRX) sur poudre. Cette phase a été également caractérisée par microscopie MEB/EDS.

Chapitre V :

Synthèse et étude structurale du nouveau monophosphate : SrFe(HPO4)(PO4)

V-1 Introduction

Après avoir synthétisé avec succès la nouvelle phase phosphatée AgSr₄Cu_{4.5}(PO₄)₆ sous ces deux formes, monocristaux et pulvérulente, qui représente un type structural inédit, nous nous sommes intéressés à la synthèse et à la caractérisation de nouveaux phosphates apparentées à cette nouvelle famille de formule générale AM₄M'_{4.5}(PO₄)₆ avec A = cations monovalents et M, M'= cations bivalents. Dans notre investigation, nous avons ciblé les systèmes quaternaires : Ag₂O-SrO-M'O-P₂O₅ (M = Zn, Co, Ni, Mn, Fe), Ag₂O-MO-CuO-P₂O₅ (M =Ca, Ba, Pb, Mg, Cd) et A₂O-SrO-M'O-P₂O₅ avec A = K, Cs, Rb, Na, Li et M' = Cu, Zn, Ni, Co, Mn, Fe. Un récapitulatif des conditions de synthèses hydrothermales et des résultats obtenus dans ces investigations, qui sera détaillé dans ce chapitre, traduit aussi bien le grand travail réalisé que les difficultés rencontrées pour obtenir de tels phosphates. Pour autant, une attention particulière a été accordée au système K₂O-SrO-FeO-P₂O₅ qui a abouti à la mise au point du nouveau phosphate à base de strontium et de fer, SrFe(HPO₄)(PO₄),dont l'originalité structurale est incontestable.

V-2 Etude des systèmes A₂O-SrO-MO-P₂O₅ (M= Fe , Cu), (A= Ag, Na, K, Rb, Cs)

L'investigation des systèmes quaternaires A_2O -SrO-MO- P_2O_5 (M= Fe , Cu), (A= Ag, Na, K, Rb, Cs) a été menée par voie hydrothermale. Les précurseurs mis en jeu ont été pesés suivant le rapport molaire (A ou Ag) : (Sr ou M): M' : P = 1 : 4 : 4.5 : 6. Pour toutes les préparations, nous avons suivi le même protocole expérimental.

Les précurseurs constituant le mélange réactionnel sont soumis, en premier lieu, à une agitation dans 12.5mL d'eau distillée pendant 15 min afin de les homogénéiser. Ils sont ensuite délicatement transvasés dans une chemise en téflon de volume 23 mL. Cette dernière est scellée au sein de l'autoclave en acier inoxydable de marque « *Paar* », avant d'être placée dans l'étuve où le mélange réactionnel subit un traitement thermique à une température précise sous pression autogène. Au terme de ce traitement thermique, le mélange réactionnel est lentement refroidi à l'air libre. La phase solide obtenue est filtrée et est rincée avec de l'eau distillée puis séchée à température ambiante afin de procéder à son examen par la loupe binoculaire. L'essentiel des résultats de ces essais est présenté dans le **Tableau (V.1)**.

Mélange réactionnel	Durée (j)	Τ (° C)	Résultat
CsNO ₃ , Sr(NO ₃) ₂ , Cu (métallique) , H ₃ PO ₄ (85%)	5	200	Amas hétérogène, absence de cristaux
NaNO ₃ , Sr(NO ₃) ₂ , Cu (métallique) , H ₃ PO ₄ (85%)	5	200	Amas hétérogène, absence de cristaux
KNO_3 , $Sr(NO_3)_2$, Cu (métallique) , H_3PO_4 (85%)	5	200	Amas hétérogène, absence de cristaux
RbCl, Sr(NO ₃) ₂ , Cu (métallique) , H ₃ PO ₄ (85%)	5	200	Amas hétérogène, absence de cristaux
AgNO ₃ , Sr(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%)	6	200	Cristaux inexploitables
NaNO ₃ , Sr(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%)	5	200	Cristaux inexploitables
RbCl, Sr(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%)	5	200	Cristaux inexploitables
CsNO ₃ , Sr(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%)	5	200	Cristaux inexploitables
KNO_3 , $Sr(NO_3)_2$, Fe (métallique) , H_3PO_4 (85%)	5	200	SrFe(HPO ₄) (PO ₄) (*)

Tableau V.1 : Conditions expérimentales et bilan d'investigations hydrothermales des systèmes A₂O-SrO-MO-P₂O₅ (M= Fe , Cu) et (A= Ag, Na, K, Rb, Cs)

(*) Présent travail

V-3 Détermination structurale de SrFe(HPO₄)(PO₄) par diffraction des rayons-X sur monocristal

L'examen de l'échantillon par la loupe binoculaire révèle l'existence d'un seul type de cristaux transparents en présence de poudre verdâtre. Un cristal de taille optimale et de forme rectangulaire a été isolé pour l'analyse par DRX sur monocristal en utilisant le diffractomètre automatique à quatre cercles BrukerX8 de l'UATRS – CNRST.

La recherche de maille conduit à un système triclinique de paramètres a = 5.21Å, b = 7.13Å, c = 8.63 Å, α = 91.31, β = 91.01, γ = 80° et de volume V = 320 Å³. Une telle maille ne s'identifie à aucune de celles déjà répertoriées dans la base de données ICSD (Inorganic Crystal Structure Database) [208] et PDF2 (Powder Diffraction File) [209]. L'enregistrement des données a été réalisé dans le domaine angulaire 2.4 - 33.7° en 20 en balayant l'espace réciproque -8≤ h ≤8, -11≤ k ≤11 et -13≤ l ≤13. Après la réduction des données et la réalisation des diverses corrections, la collecte de données a abouti à un total de 10789 réflexions parmi elles figurent 2815 indépendantes dont 2575 réflexions observées vérifiant la condition I > 2 σ (I).

Dans le **Tableau** (V.2) sont consignées les principales données cristallographiques du cristal étudié ainsi que les conditions d'enregistrement.

Données cristallographiques					
Formule chimique	SrFe(HP	O ₄)(PO ₄)			
Système cristallin	Triclinique				
Groupe d'espace	Р	21			
Paramètres de maille	a = 5.1767 (2) Å b = 7.1344 (2) Å c = 8.5691 (3) Å	$\begin{aligned} \alpha &= 91.091 \ (2)^{\circ} \\ \beta &= 91.049 \ (2)^{\circ} \\ \gamma &= 90.321 \ (2)^{\circ} \end{aligned}$			
Volume de la maille ($Å^3$)	316.3	36 (2)			
Nombre de motifs par maille Z		2			
Densité calculée (g.cm ⁻³)	3.511				
Coefficient d'absorption μ (mm ⁻¹)	11.23				
Collecte d	les intensités				
Diffractomètre	Bruker X8 APEXII				
Température (K)	296				
Longueur d'onde $Mo(K\alpha)$ (Å)	0.71073				
Correction d'absorption	multi-scan (SADABS ; Bruker) $T_{min} = 0.5742$ et $T_{max} = 0.7478$				
Domaine de θ (°)	$\theta_{max} = 33.7^{\circ}$ $\theta_{min} = 2.4^{\circ}$				
Indices de Miller	$-8 \le h \le 8$ -11 $\le k \le 11$ -13 $\le 1 \le 13$				
Réflexions mesurées	10194				
Réflexions indépendantes	2515				
Réflexions pour I > $2\sigma(I)$	23	28			
R _{int}	0.0)33			
Résolution (sin θ/λ) _{max} (Å ⁻¹)	0.781				

Tableau V.2: Données cristallographiques et conditions d'enregistrement des intensités de diffraction des rayons-X sur monocristal de SrFe(HPO₄)(PO₄)

V-3-1 Résolution et affinement structural de SrFe(HPO₄)(PO₄)

La détermination structurale de SrFe(HPO₄)(PO₄) a été réalisée à l'aide de *WinGX version* 2014. La structure a été résolue par la méthode directe [187] à l'aide du programme *SHLEXS*-2014 [188], et affinée par la méthode des moindres carrées [189] [187] à l'aide du programme *SHELXL-2014* [190], ce qui nous a permis la localisation des atomes lourds Sr, Fe.

Suite aux synthèses de Fourier-différence, nous avons pu localiser les atomes légers (P, O et H) sans ambiguïté. Ainsi nous avons localisé dans l'unité asymétrique treize atomes indépendants en position générale : 1Sr, 1Fe, 2P, 8O et un atome d'hydrogène. L'atome H8 lié à O8 a été affiné avec une contrainte de distance O-H de 0,86 Å. L'affinement structural en anisotropie de tous les atomes a abouti à de bons facteurs d'accords, consignés dans le **Tableau (V.3)**.

Affinement structural				
Facteur de confiance $R[F^2 > 2\sigma (F^2)]$	0.041			
Facteur de confiance wR(F ²)	0.106			
S (Goodness-of-Fit)	1.15			
Nombre de paramètres affinés	109			
Densité résiduelle maximale $\Delta \rho_{max}$ (e.Å ⁻³)	3.36			
Densité résiduelle minimale $\Delta \rho_{min}$ (e.Å ⁻³)	-1.62			
$(\Delta/\sigma)_{\rm max}$	< 0.001			
Schéma de pondération avec : $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0003P)^2 + 6.3045P]$			

Tableau V.3: Résultats d'affinement de la structure du nouveau monophosphate SrFe(HPO₄)(PO₄)

Les **Tableaux** ci-dessous rassemblent les coordonnées atomiques ainsi que les facteurs de déplacements thermiques isotropes équivalents (**Tableau V.4**) et anisotropes (**Tableau V.5**) obtenus après le dernier cycle d'affinement structural de SrFe(HPO₄)(PO₄).

Atome	X	У	Z	Uiso*/Ueq
Sr1	0.26384 (9)	0.50370 (6)	0.69723 (5)	0.0075 (1)
Fe1	0.7345 (1)	0.97344 (9)	0.25372 (8)	0.0054 (1)
P1	0.7541 (2)	0.7743 (1)	0.6141 (1)	0.0047 (1)
P2	0.2366 (2)	0.7662 (1)	0.0856 (1)	0.0052 (1)
01	1.0191 (7)	0.8300 (5)	0.6812 (5)	0.0122 (7)
02	0.7481 (7)	0.5588 (5)	0.6030 (4)	0.0097 (6)
03	0.5351 (7)	0.8379 (5)	0.7218 (4)	0.0106 (6)
O4	0.7111 (8)	0.8493 (6)	0.4503 (4)	0.0141 (7)
05	0.4977 (7)	0.7687 (5)	0.1669 (4)	0.0087 (6)
O6	0.2071 (7)	0.5839 (5)	-0.0126 (5)	0.0122 (7)
07	0.0118 (6)	0.7809 (5)	0.1991 (4)	0.0082 (6)
08	0.2182 (7)	0.9369 (5)	-0.0249 (4)	0.0089 (6)
H8	0.0564	0.9635	-0.0243	0.011*

Tableau V.4: Positions atomiques et paramètres de déplacements atomiques isotropes ou isotropes équivalents ($Å^2$) du nouveau monophosphate SrFe(HPO₄)(PO₄)

Atome	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Sr1	0.0081 (1)	0.0061 (1)	0.0087 (1)	0.0005 (1)	0.0011 (1)	0.0010(1)
Fe1	0.0041 (3)	0.0049 (3)	0.0070 (3)	0.0001 (1)	0.0002 (2)	0.0009 (2)
P1	0.0027 (4)	0.0052 (4)	0.0061 (5)	-0.0006 (3)	0.0000 (3)	0.0009 (3)
P2	0.0025 (4)	0.0058 (4)	0.0070 (5)	-0.0002 (3)	0.0001 (3)	0.0004 (4)
01	0.01 (1)	0.01 (1)	0.018 (1)	-0.003 (1)	-0.004 (1)	-0.002 (1)
02	0.011 (1)	0.005 (1)	0.015 (1)	0.001 (1)	0.000 (1)	0.001 (1)
03	0.012 (1)	0.012 (1)	0.01 (1)	0.003 (1)	0.006 (1)	0.001 (1)
04	0.02 (1)	0.017 (1)	0.008 (1)	0.003 (1)	0.002 (1)	0.005 (1)
05	0.005 (1)	0.008 (1)	0.014 (1)	-0.001 (1)	-0.004 (1)	0.003 (1)
06	0.015 (1)	0.008 (1)	0.015 (1)	-0.002 (1)	0.002 (1)	-0.005 (1)
07	0.004 (1)	0.009 (1)	0.013 (1)	0.001 (1)	0.003 (1)	0.002 (1)
08	0.008 (1)	0.01 (1)	0.01 (1)	0.003 (1)	0.001 (1)	0.004 (1)

Tableau V.5: Facteurs de déplacements atomiques anisotropes (Å²) dans la structure de SrFe(HPO₄)(PO₄)

V-3-2 Description structurale de SrFe(HPO₄)(PO₄)

L'unité asymétrique de la structure du phosphate $SrFe(HPO_4)(PO_4)$ se caractérise par la répartition atomique suivante : 1Fe, 1Sr, 2P et 8O et 1H . Les treize atomes occupent totalement leurs sites cristallographiques en se localisant tous dans la position *2i* de *wyckoff* du groupe d'espace $P\overline{1}$. Le model structurale est confirmé par le calcul des valences de liaisons réalisé par le logiciel *Platon* [210] , pour chaque atome. Ces valeurs sont en bon accord avec les degrés d'oxydation envisagés pour ces éléments (**Tableau V.6**).

Tableau V.6: Valeur des valences de liaisons des atomes du phosphate SrFe(HPO₄)(PO₄)

Atome	Sr	Fe	P(1)	P(2)
Valence de liaison	2.024	3.066	5.034	4.995

Les principales distances interatomiques et les angles de liaisons sont consignés dans les **Tableaux (V.7)** et **(V.8)**.

Atome	Distances P(1) - O (Å)					
	P1-01	1.526 (4)	P103	1.541 (4)		
	P102	1.538 (4)	P104	1.524 (4)		
	Distan	ce moyenne <	P(1) – O > = 1.532 Å			
P1	Angles O - P(1) - O (°)					
	04—P1—01	111.7 (2)	O4—P1—O3	110.4 (2)		
	O4—P1—O2	108.0 (2)	01—P1—O3	111.6 (2)		
	01—P1—O2	106.8 (2)	O2—P1—O3	108.0 (2)		
Atome		Distances I	P(2) - O (Å)	-		
	P2—O5	1.509 (4)	P2—O6	1.540 (4)		
	P2—O7	1.533 (4)	P2—O8	1.559 (4)		
	Distance moyenne $\langle P(2) - O \rangle = 1.535 \text{\AA}$					
P2	Angles O - P(2) - O (°)					
	O5—P2—O7	113.0 (2)	O5—P2—O8	109.0 (2)		
	O5—P2—O6	109.2 (2)	O7—P2—O8	107.4 (2)		
	O7—P2—O6	109.2 (2)	O6—P2—O8	109.0 (2)		
Atome	Distances Fe - O (Å)					
	Fe—O4	1.924 (4)	Fe—O5	2.024 (3)		
	Fe—O3 ^v	1.956 (4)	Fe—O7 ^{vii}	2.047 (3)		
	Fe—O1 ^{vi}	1.957 (4)	Fe—O8 ^{viii}	2.092 (4)		
	Distance moyenne < Fe – O > = 2.000Å					
		Angles O ·	• Fe - O (°)			
Fe	O4—Fe—O8 ^{viii}	170.0 (1)	O4—Fe—O1 ^{vi}	98.1 (1)		
	O5—Fe—O7 ^{vii}	82.1 (1)	$O3^{v}$ —Fe— $O1^{vi}$	86.8 (1)		
	$O3^{v}$ —Fe— $O8^{viii}$	88.5 (1)	O4—Fe—O5	86.3 (1)		
	O1vi—Fe—O8 ^{viii}	87.3 (1)	O3 ^v —Fe—O5	95.9 (1)		
	O5—Fe—O8 ^{viii}	88.1 (1)	O4—Fe—O7 ^{vii}	86.4 (1)		
	$O7^{vii}$ —Fe— $O8^{viii}$	84.7 (1)	$O1^{v_1}$ —Fe— $O7^{v_{11}}$	94.8 (1)		
	04—Fe—O3 ^v	100.4 (1)				
Atome	Distances Sr - O (Å)					
	Sr—O6 ⁱ	2.563 (4)	Sr—O2	2.677 (4)		
	$Sr-O5^{II}$	2.591 (3)	Sr03	2.763 (4)		
Sr	$Sr-O2^{ii}$	2.602 (4)	Sr—O4 ⁱⁱ	2.801 (4)		
	Sr—O7 ^{III}	2.652 (3)	$Sr-O2^{iv}$	2.807 (4)		
	$Sr-01^{iv}$	2.661 (4)				
	Distance moyenne < Sr – O > = 2.674Å					

Tableau V.7: Principaux distances (Å) et angles interatomiques (°) dans la structure de $SrFe(HPO_4)(PO_4)$

✓ Code de symétrie : (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x-1, y, z; (v) - x+1, -y+2, -z+1; (vi) -x+2, -y+2, -z+1; (vii) x+1, y, z; (viii) -x+1, -y+2, -z; (ix) x, y, z-1

Tableau V.8: Liaison hydrogène dans le monophosphate SrFe(HPO₄)(PO₄)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
08—H8…08 ^x	0.86Å	1.65Å	2.478(7)Å	160°

✓ Code de symétrie : (x) - x, -y+2, -z.

Les diverses représentations graphiques relatives à SrFe(HPO₄)(PO₄) ont été réalisées via le logiciel *Diamond 3.1d* [191]. La visualisation graphique des polyèdres a été réalisée en respectant la sphère de coordinance de chaque cation. Par ailleurs, la représentation tridimensionnelle des polyèdres de coordination ainsi que les déplacements atomiques de SrFe(HPO₄)(PO₄) (**Figure V.1**) ont été réalisés via le logiciel *Ortep3* (version 2014.1) [192]. Les ellipsoïdes relatifs aux agitations thermiques des atomes ont été définis avec une probabilité de 60%.

Figure V.1 : Agencement tridimensionnel des polyèdres de coordination de SrFe(HPO₄)(PO₄)
(i) Environnement de P(1) et P(2) :

Chacun des deux atomes du phosphore est entouré par quatre atomes d'oxygène en adoptant une géométrie tétraédrique. Dans le cas du tétraèdre P(1)O4, les distances P1— O évoluent entre 1,524 (4)Å et 1,541 (4)Å avec une distance moyenne équivalente à 1,532Å (**Figure V.2**). Ces distances sont compatibles avec celles usuellement rencontrées dans la littérature. Dans le second tétraèdre P(2)O3OH, l'atome de phosphore P(2) est entouré par trois atomes d'oxygène à qui s'ajoute un groupement OH à fin de compléter la coordinance CN = 4. Dans ce polyèdre, les distances P(2)-O varient entre 1,509 (4)Å et 1,540(2)Å et une distance P(2)-(OH) plus longue qui est de l'ordre de 1,559 (4)Å. L'atome d'hydrogène H8 est lié à l'atome d'oxygène O(8) par une liaison O – H de 0,86 Å (**Figure V.3**)

< P(1) - O > = 1.532 Å

Figure V.2 : Environnement de P(1) dans la structure de SrFe(HPO₄)(PO₄)

 $< P(2) - O > = 1.535 \text{\AA}$

Figure V.3 : Environnement de P(2) dans la structure de SrFe(HPO₄)(PO₄)

(ii) Environnement de Fe :

Dans la structure de SrFe(HPO₄)(PO₄), le seul atome de fer (Fe) est entouré de six atomes d'oxygène voisins en adoptant un environnement octaédrique FeO₆, légèrement déformé (**Figure V.4**). Deux des liaisons Fe—O, pratiquement égales : (Fe—O3 = 1.956 (4) Å et Fe—O1 = 1.957(4)Å) sont légèrement déférentes des quatre distances restantes. Par ailleurs, ce polyèdre se caractérise par une distance interatomique moyenne < Fe—O > de l'ordre de 2.000Å dont l'écart entre les distances Fe—O est significatif comme en témoigne les valeurs: d(Fe—O)_{min} = 1.924(4)Å et d(Fe—O)_{max} = 2.092(4)Å.

< Fe – O > = 2.000Å

Figure V.4: Environnement de Fe dans la structure de SrFe(HPO₄)(PO₄)

(iii) Environnement de Sr :

La sphère de coordinance de l'atome de strontium comporte neuf atomes d'oxygène (**Figure V.5**). Le polyèdre de coordination SrO₉ affiche des distances interatomiques Sr — O qui varient entre Sr — O6 = 2.563 (4)Å et Sr — O2 = 2.807 (4)Å avec une distance moyenne qui vaut 2.679Å.

 \langle Sr – O \rangle = 2.674Å

Figure V.5: Environnement de Sr dans la structure de SrFe(HPO₄)(PO₄)

La structure de SrFe(HPO₄)(PO₄) est caractérisée par des octaèdres FeO₆ et des tétraèdres isolés. Deux octaèdres FeO₆ consécutifs sont reliés entre eux par deux tétraèdres, P(1)O₄ et P(2)O₃OH, le long des deux directions a et c. Une telle disposition permet la formation de feuillets $[Fe(HPO_4)(PO_4)]^{2-}$ perpendiculaires à l'axe b, laissant apparaitre des cavités (1), (2) et (3) (**Figure V.6**) de dimensions différentes comme le montre les **Figures (V.7)** et (**V.8**).

Dans ces feuillets, les atomes d'hydrogène H8 liés aux atomes d'oxygène O(8) du tétraèdre $P(2)O_3OH$, créent une interaction électrostatique avec l'oxygène O(8) du second tétraèdre $P(2)O_3OH$ pour former des liaisons hydrogènes asymétriques et codées : O8—H8…O8 (du fait que la symétrie ponctuelle de l'atome H8 est 1) (**Figure V.9**). Ces liaisons hydrogènes s'établissent dans la cavité (3), pendant que les deux autres cavités (1) et (2) demeurent vides.

Figure V.6: Feuillet [Fe(HPO₄)(PO₄)]²⁻ paralléle au plan (010)

Figure V.7: Formes et dimensions des cavités (1) et (2)

Figure V.8: Forme et dimension de la cavité (3)

Figure V.9: Liaison hydrogène O8—H8…O8 dans SrFe(HPO₄)(PO₄) et morphologie de la cavité hôte (3)

D'après les valeurs des distances O7-O7 = 4.671Å et O8-O8=2.477Å, il apparait clairement que les dimensions de ce type de cavité (3) sont assez importantes **Figures V.8**) et (**V.9**) et elles sont nettement proches de celles des pores dans certaines Zéolites [256]. Deux liaisons hydrogène O8-H8····O8, décrivent un parallélogramme de diagonales : O8-O8 et H8-H8 de longueur 0.888 Å. Une telle géométrie a été rapportée par (Filaretov A. A et al) dans la structure de Li₂Sc[H(PO₄)₂] [257]. Par ailleurs, nous constatons aussi que l'intersection des

deux diagonales de ce parallélogramme définit clairement un centre d'inversion au sein de ces cavités (**Figure V.9**). Comme nous l'avons indiqué sur la **Figure (V.9**), la longueur de la liaison interatomique O8—H8 est de l'ordre de 0.860Å tandis que H8…O8 atteint 1.650Å. Ces deux valeurs sont en parfaite concordance avec celles rapportées dans la bibliographie.

Notons que d'après les travaux de G.A. Jeffrey et W.Saenger [258], l'établissement des liaisons hydrogène intramoléculaires, caractérisées par une courte séparation O — O comprise entre 2,4 et 2,6Å, serait le résultat direct de contraintes stériques au sein de la molécule. En outre, plus la liaison hydrogène est courte plus elle est difficile à rompre. Il en serait de même pour la liaison hydrogène dans la structure de SrFe(HPO₄)(PO₄), avec la distance O8—O8 vaut 2.478(7)Å, contribue fortement à la cohésion et à la stabilité de la structure.

Le **Tableau** (V.9) relate quelques exemples de phases présentant des caractéristiques géométriques de la liaison hydrogène semblables à celles existantes dans SrFe(HPO₄)(PO₄).

Phase	О—Н (Å)	Н…О (Å)	0…0 (Å)	0—H…O (°)	Référence
SrFe(HPO ₄)(PO ₄)	0.86	1.65	2.478 (7)	160	Présent travail
Ni ₂ Sr(PO ₄) ₂ .2H ₂ O	0.85 (3)	1.67 (3)	2.511 (4)	169 (9)	[254]
$Pb_2Mn_3(HPO_4)_2(PO_4)_2$	0.86	1.60	2.437 (5)	164	[259]
$Sr_2Mn_3(HPO_4)2(PO_4)_2$	0.82	1.66	2.483 (1)	177	[33]
Li ₂ Fe[H(PO ₄) ₂]	0.86 (6)	1.60 (6)	2.456 (2)	178 (6)	[257]
	0.88 (6)	1.63 (6)	2.463 (2)	155 (6)	[257]
Mg7(PO4)2(HPO4)4	0.86	1.61	2.460 (2)	172	[163]
Co ₂ Pb(HPO ₄)(PO ₄)OH.H ₂ O	0.86	1.65	2.489 (3)	165	[260]
AgMg ₃ (PO ₄)(HPO ₄) ₂	0.86	1.68	2.527 (1)	168	[101]
$Fe_7(PO_4)_2(HPO_4)_4$	0.85	1.71	2.539(7)	164	[165]

Tableau V.9: Caractéristiques géométriques des liaisons hydrogène dans certains monophosphates

Signalons que ces feuillets montrent une topologie étroitement semblable à celle rapportée par (Graeber.E.J et Rosenzweig.A) [261] dans la structure de l'Yavapaiite KFe^{III}(SO₄)₂ **Figures** (V.10) et (V.11).

Figure V.10 : Représentation d'un feuillet de SrFe(HPO₄)(PO₄) dans le plan (\vec{a}, \vec{c})

Figure V.11: Représentation d'un feuillet de l'Yavapaiite KFe^{III}(SO₄)₂ dans le plan (\vec{a}, \vec{b})

L'espace entre les feuillets parallèles et distants les uns des autres par environ 7Å, est occupé par les cations Sr^{2+} qui assurent, par conséquent la cohésion entre eux et compense la déficience en charge positive (**Figure V.11**).

Figure V.12: Projection de la structure de $SrFe(HPO_4)(PO_4)$ dans le plan (b,c)

V-4 Essais de synthèses des cristaux de MFe(HPO₄)(PO₄) (M = Ca, Ba, Cd, Mg, Pb)

Dans le cadre de nos investigations visant à synthétiser MFe(HPO₄)(PO₄) (M = Ca, Ba, Be, Cd, Mg, Pb), nous avons entamé plusieurs synthèses hydrothermales dans diverses conditions expérimentales. En faisant varier la température, la durée de synthèse et/ou les précurseurs et en travaillant avec le rapport molaire M : Fe : P = 1 : 1 : 2 nous avons obtenus les résultats consignés dans le (**Tableau V.10**).

Tableau V.10: Récapitulatif des résultats de tentatives d'élaborations de MFe(HPO₄)(PO₄) (M = Ca, Ba, Cd, Mg, Pb) par voie hydrothermale

Mélange réactionnel	Durée (j)	T (°C)	Résultat
MgO, Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	6	220	Fe7(HPO4)4(PO4)2 [165]
MgO, Fe (métallique) , H_3PO_4 (85%) et H_2O (12.5mL)	5	202	Fe7(HPO4)4(PO4)2 [165]
MgO, Fe (métallique) , H_3PO_4 (85%) et H_2O (12.5mL)	4	210	Fe ₇ (HPO ₄) ₄ (PO ₄) ₂ [165]
MgO Fe (métallique) HaPO((85%) et HaO($(12.5mL)$	2	107	Fe7(HPO4)4(PO4)2 [165]
Ng0, re (inclainque), rist 04 (85%) et 1120 (12.5mL)	2	177	$Mg_7(HPO_4)_4(PO_4)_2[163]$
MgO, Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	2	200	Mg7(HPO4)4(PO4)2 [163]
MgO, Fe ₂ O ₃ , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)			Pas de cristaux
CdO, Fe ₂ O ₃ , H ₃ PO ₄ (85%) et H ₂ O (12mL)	4	200	Cd ₅ (PO ₄) ₃ OH [262]
CdO, Fe (métallique), H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	2	197	Cristaux inexploitables
CdCl ₂ , Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12mL)	5	202	Cd5(PO4)3Cl [263]
CdCl ₂ , Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12mL)	5	220	Amas noir + cristaux maclés
$CdCl_2, Fe~(m\acute{e}tallique)~,~H_3PO_4~(85\%)~et~H_2O~(12.5mL)$	4	210	cristaux maclés
Ca(NO ₃) ₂ .4H ₂ O, Fe (métallique), H ₃ PO ₄ (85%) et H ₂ O (12mL)	2	200	Ca(HPO ₄) [264]
Ca(NO ₃) ₂ .4H ₂ O, Fe (métallique), H ₃ PO ₄ (85%) et H ₂ O (12mL)	3	210	Cristaux maclés
$Ca(OH)_2$, Fe_2O_3 , H_3PO_4 (85%) et H_2O (12mL)	5	200	Ca(HPO ₄) [264]
Ca(NO ₃) ₂ .4H ₂ O, Fe(métallique),H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	3	205	Pas de cristaux
Ca(NO ₃) ₂ .4H ₂ O, Fe(métallique),H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	2	197	Cristaux inexploitables
Ca(NO ₃) ₂ .4H ₂ O, Fe ₂ O ₃ , H ₃ PO ₄ (85%) et H ₂ O (12mL)	11	190	Pas de cristaux
Pb(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	4	220	Pas de cristaux
$Pb(NO_3)_2$, Fe (métallique) , H_3PO_4 (85\%) et H_2O (12.5mL)	4	205	Pas de cristaux
Pb(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	5	197	Pas de cristaux
$Pb(NO_3)_2$, Fe (métallique) , H_3PO_4 (85\%) et H_2O (12.5mL)	2	192	Pas de cristaux
PbO, Fe ₂ O ₃ , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	5	200	Cristaux inexploitables
Ba(NO3)2 ,Fe (métallique) , H3PO4 (85%) et H2O (12.5mL)	4	220	Pas de cristaux
$Ba(NO_3)_2$, Fe (métallique) , H_3PO_4 (85\%) et H_2O (12.5mL)	3	205	Pas de cristaux
$Ba(NO_3)_2$, Fe (métallique) , H_3PO_4 (85%) et H_2O (12.5mL)	5	202	Pas de cristaux
Ba(NO ₃) ₂ , Fe (métallique) , H ₃ PO ₄ (85%) et H ₂ O (12.5mL)	2	197	Cristaux inexploitables
BaCO ₃ , Fe ₂ O ₃ , H ₃ PO ₄ (85%) et H ₂ O (12mL)	5	200	Pas de cristaux
BaCO ₃ , Fe (métallique), H_3PO_4 (85%) et H_2O (12mL)	11	190	Pas de cristaux

V-5 Conclusion

Dans ce chapitre nous avons rapporté la synthèse par voie hydrothermale et l'étude structurale par diffraction de rayons-X sur monocristal du nouveau monphosphate SrFe(HPO₄)(PO₄). Ce phosphate cristallise dans une maille triclinique avec le groupe d'espace P1 et les paramètres de maille suivants : a = 5.1767 (2) Å, b = 7.1344 (2) Å, c = 8.5691 (3) Å, $\alpha = 91.091 (2)^{\circ}$, $\beta = 91.049 (2)^{\circ}$, $\gamma = 90.321 (2)^{\circ}$.

La structure de cette phase peut être décrite comme étant formée par un enchaînement des octaèdres FeO₆ et des groupements tétraédriques P(1)O₄ et P(2)O₃(OH). Les tétraèdres P(1)O₄ et P(2)O₃(OH) relient les octaèdres FeO₆ pour construire des feuillets [Fe(HPO₄)(PO₄)]²⁻, parallèles au plan (\vec{a}, \vec{c}) . En plus, la cohésion de chacun des feuillets est consolidée par la présence de liaison hydrogène. Le caractère lamellaire de la structure est nettement perceptible, créant ainsi un espace adéquat pour loger les gros cations interstitiels Sr²⁺.

Conclusion générale et perspectives

Conclusion Générale et perspectives

Les travaux menés au cours de cette thèse avaient pour objectif principal l'élaboration, la caractérisation physicochimique, l'étude structurale de nouveaux phosphates de cations mono, bi et trivalents à charpente ouverte et la contribution à leurs valorisations.

Nous avons entamé ce manuscrit par un recueil bibliographique portant sur ces familles de composés en mettant en relief la corrélation structure et propriétés potentiellement induites par leur structure. Dans le cadre de ce travail, notre choix s'est fixé principalement sur les phosphates apparentés à la famille Alluaudite et Howardevansite à charpentes ouvertes qui constitue l'axe majeur du présent travail.

Les premiers résultats rapportés dans ce mémoire de thèse portent sur les deux nouveaux phosphates $Na_{1,67}Zn_{1,67}Fe_{1,33}(PO_4)_3$ et $Ag_{1,65}Zn_{1,65}Fe_{1,35}(PO_4)_3$ apparentés à la famille Alluaudite et qui ont été synthétisés par diffusion à l'état solide. L'étude structurale de ces deux phases a été entreprise en se basant sur les données de diffraction des rayons X (DRX) sur monocristal. Ces deux phosphates cristallisent dans le système monoclinique avec le groupe d'espace C2/c. La structure des deux phases est construite à partir des octaèdres (Fe/Zn)O₆ afin d'aboutir à des dimères (Fe/Zn)₂O₁₀. Ces dimères sont connectés entre eux construisant ainsi des chaînes infinies [(Fe/Zn)₂ZnO₁₄]_{∞}. Les chaînes sont connectées entre elles via des groupements tétraédriques PO₄, ce qui conduit à la formation de feuillets parallèles au plan (\vec{a}, \vec{b}). Ces feuillets sont reliés entre eux afin de former une charpente tridimensionnelle délimitant deux types de tunnels suivant l'axe c. Ces derniers sont occupés par les cations monovalents Na⁺ ou Ag⁺.

Nous avons également réussi la synthèse de la nouvelle phase Na₂Zn₂Fe(PO₄)₃ sous forme pulvérulente par voie solide. Ce composé a été caractérisé par diffraction de rayons sur poudre (DRX), par microscopie à balayage (MEB) couplée à la spectroscopie de rayons X à dispersion d'énergie (EDS) et par spectroscopies infrarouge-Raman.

Par diffusion à l'état solide, l'essai de substitution de A = Na⁺ ou Ag⁺ dans la matrice $A_2Zn_2Fe(PO_4)_3$, par Ca, Ba et Cd nous a permis d'isoler les trois nouveaux phosphates : $CaZn_2Fe(PO_4)_3$ et $MZn_2Fe(PO_4)_6$ (M=Zn ou Cd).

La structure du nouveau phosphate $CaZn_2Fe(PO_4)_3$ a été déterminée à partir des données de la diffraction des rayons-X (DRX) sur monocristal. Cette phase cristallise le groupe d'espace $P2_1/c$. Dans ce phosphate, les deux pyramides à bases rectangulaires, ZnO₅, forme un dimère $[Zn_2O_8]$. Ce dernier relie deux groupements octaédriques FeO₆ par une arête afin de former l'entité $[Zn_2Fe_2O_{16}]$. Ces entités sont connectées entre elles par les tétraèdres PO₄ aboutissant à un feuillet parallèle au plan (a,c). Ces feuillets sont connectés, à leur tour, par les tétraèdres ZnO₄ pour conduire à une structure tridimensionnelle libérant des tunnels occupés par les cations Ca²⁺.

Nous avons, également, réussis la synthèse de $CaZn_2Fe(PO_4)_3$ sous forme pulvérulente par voie solide. Cette phase a fait l'objet de caractérisation par diffraction de rayons sur poudre (DRX), par microscopie à balayage (MEB) couplée à la spectroscopie de rayons X à dispersion d'énergie (EDS) et par spectroscopies infrarouge et Raman.

Les structures des deux nouveaux phosphates : $Zn_3Fe_4(PO_4)_6$ et $CdZn_2Fe_4(PO_4)_6$ adoptant la structure de l'Howardevansite ont été aussi déterminées à partir des données de la diffraction des rayons-X sur monocristal. Les deux phases cristallisent dans une maille triclinique dans le groupe d'espace P1.

Dans les deux structures, chaque paire d'octaèdres $Fe^{III}O_6$, partagent une arête pour former des dimères $[Fe_2O_{10}]$. L'union des deux dimères $[Fe_2O_{10}]$ est assurée par le groupement ZnO₅ en partageant des arêtes. Ceci abouti à la formation de chaines en zigzag. Ces chaînes sont liées via les sommets des tétraèdres PO₄ de manière à construire des couches .L'interconnexion entre ces différentes couches conduit à la formation d'un réseau tridimensionnel délimitant des tunnels occupés par les cations Zn²⁺ et Cd²⁺. La forme pulvérulente la phase CdZn₂Fe₄(PO₄)₆ a été élaborée par voie solide et a été caractérisée par DRX, par spectroscopies IR-Raman et par microscopie MEB/EDS.

En variant nos techniques d'investigations, nous avons pu isoler par le processus hydrothermal deux nouveaux phosphates $AgSr_4Cu_{4.5}(PO_4)_6$ et $SrFe(HPO_4)(PO_4)$. La détermination structurale de ces phosphates à partir des données de la diffraction de rayons-X sur monocristal montre qu'elles cristallisent dans des mailles tricliniques avec le groupe d'espace PI, et que la structure cristalline de chacune des phases est inédite.

Dans la structure de AgSr₄Cu_{4.5}(PO₄)₆, les pyramides à bases carrées CuO₅ sont liées par un seul groupement CuO₄ afin d'aboutir au trimère $[Cu_3O_{12}]^{18-}$. Chaque atome d'oxygène des trimères $[Cu_3O_{12}]^{18-}$ est relié à un groupement tétraédrique PO₄ pour conduire à la formation des rubans $[Cu_3P_{10}O_{40}]^{24-}$. L'union de ces rubans conduit à des feuillets $[Cu_{4.5}(PO_4)_6]^{9-}$. La cohésion entre les feuillets est assurée par les cations Sr²⁺ et Ag⁺ en position interstitielle.

Nous avons aussi élaboré avec succès AgSr₄Cu_{4.5}(PO₄)₆ sous forme pulvérulente par voie solide. Le suivi de la réaction de synthèse a été réalisé par diffraction des rayons X (DRX) sur poudre. Cette phase a été également caractérisée par microscopie MEB/EDS.

La structure du nouveau phosphate $SrFe(HPO_4)(PO_4)$ est construite à base d'un seul type octaèdres FeO_6 et de deux tétraèdres PO_4 et $PO_3(OH)$. Les tétraèdres PO_4 et $PO_3(OH)$ relient les octaèdres FeO_6 afin de construire des feuillets $[Fe(HPO_4)(PO_4)]^{2-}$. Cet agencement des polyèdres créent au sein des feuillets trois cavités, dont une est le siège de la liaison hydrogène. Etant non connectés entre eux, la succession de ces feuillets laisse apparaitre un espace inter-feuillet où se logent le gros cation Sr^{2+} .

L'examen de la littérature ainsi que la consultation des diverses bases de données révèlent que les trois phosphates : $CaZn_2Fe(PO_4)_3$, $SrFe(HPO_4)(PO_4)$ et $AgSr_4Cu_{4.5}(PO_4)_6$ sont les premiers de leurs séries en présentant une originalité structurale.

Comme premières perspectives au présent travail, nous envisageons l'optimisation des conditions de synthèses des isotypes de ces phases. Nous prévoyons également l'élaboration des phosphates $Ag_2Zn_2Fe(PO_4)_3$ et SrFe(HPO_4)(PO_4) sous forme pulvérulente. Nos perspectives s'étendent à l'étude des propriétés physico-chimiques des nouveaux matériaux phosphatés $Na_2Zn_2Fe(PO_4)_3$, $CaZn_2Fe(PO_4)_3$, $CdZn_2Fe_4(PO_4)_6$ et $AgSr_4Cu_{4.5}(PO_4)_6$.

ANNEXE : Techniques expérimentales

Introduction

Cette annexe est consacrée à la description des méthodes de synthèses des diverses phases phosphatés, et leurs techniques de caractérisation à savoir : la diffraction des rayons-X (DRX) sur monocristal et sur poudre, les spectroscopies FT-IR et Raman, et la microscopie électronique à balayage (MEB/EDS).

I- Méthodes d'élaborations des matériaux phosphatés

I-1 Synthèse par voie solide

Le mode de synthèse par réaction à l'état solide est le plus répondu dans la chimie du solide. Cette technique repose sur les propriétés de diffusion des réactifs (oxydes, carbonates, nitrates, acétate etc...), pris dans leur état solide à températures élevées. Les divers précurseurs sont au préalable pesés suivant des quantités stœchiométriques et finement broyés. Le mélange réactionnel subit des traitements thermiques successifs durant de quelques heures à quelques nuits jusqu'à l'obtention d'une phase pure et homogène.

Durant la réalisation du présent travail notre choix s'est fixé sur cette méthode de synthèse en vue de préparer de nouveaux matériaux phosphatés sous formes de monocristaux ou polycristallines.

I-1-1 Synthèse des monocristaux par voie solide

La méthode de synthèse des monocristaux par voie solide ou diffusion à l'état solide est une technique simple qui consiste à porter à fusion sans flux un mélange réactionnel sous forme solide préalablement préparé dans un creuset en platine, suivie ensuite d'un refroidissement très lent. Ceci amorce le phénomène de recristallisation aboutissant à la formation des phases attendues. L'élaboration des monocristaux a été réalisée via un four programmable de marque *« Nabertherm »* dédié à la croissance cristalline (**Figure 1**).

Le mode opératoire suivi lors des synthèses par diffusion à l'état solide peut être décrit en cinq stades :

- ✓ Pesée et broyage intime des précurseurs ;
- ✓ Traitement thermique intermédiaire de l'ensemble réactionnel ;
- ✓ Recherche de la température de fusion;
- ✓ Fusion du mélange réactionnel suivie d'un refroidissement lent (5°C/h);
- ✓ Refroidissement rapide via l'inertie thermique du four et retour à l'ambiante.

Figure 1 : Four à moufle programmable de marque *« Nabertherm »* utilisé pour la croissance cristalline

Après chaque exéprience le produit résultant de la croissance cristalline a été récupéré puis mis dans un tube à essai en présence de l'ethanol en vue de subir un premier nettoyage dans une cuve à ultra son.

I-1-2 Synthèse de poudre par voie sèche

La synthèse des diverses phases sous forme polycristalline a été effectuée par voie solide à partir des précurseurs pesés en premier lieu, finement broyés puis introduits dans une nacelle en platine. Le mélange réactionnel subit tout d'abord des traitements intermédiaires , en vue de favoriser les dégagements gazeux : H₂O, NH₃, NO₂, CO₂ etc... ce qui favorise la formation des précurseurs sous formes d'oxydes [265]. Après ceci le solide pulvérulent est porté progressivement à des paliers de températures élevées sans pour autant atteindre la température de fusion. Chaque traitement thermique est suivi d'un broyage jusqu'à l'obtention de la poudre recherchée.

I-2 Synthèse hydrothermale

La technique hydrothermale fournit une excellente possibilité pour le traitement des matériaux de pointe que ce soit en monocristaux, particules fines, ou nanoparticules [266]. La synthèse hydrothermale peut être décrite comme étant une réaction homogène ou hétérogène. Cette synthèse s'effectue en présence d'un solvant aqueux ou non aqueux sous hautes pressions (supérieures à 1 atm) et à des températures supérieures à la température ambiante dans une enceinte fermée à fin de dissoudre et recristalliser les matériaux qui sont relativement insolubles dans des conditions normales [267].

Les températures habituellement utilisées sont dans l'intervalle 100 - 374°C (température critique de l'eau). Dans cette gamme de températures, la pression varie en fonction exponentielle allant d'environ quelques bars jusqu'à 250 bar (**Figure 2**). Il s'établit à l'intérieur de l'autoclave un équilibre liquide - vapeur générant une pression autogène très favorable pour ce mode de synthèse. Dans le cadre de nos travaux nous avons fixé la température synthèse à 200°C.

Figure 2 : Conditions de pression et température de la synthèse hydrothermale [268]

L'un des facteurs influençant cette pression autogenèse est le taux de remplissage de l'autoclave comme le témoigne la (**Figure 3**).

Figure 3 : Variations de la pression et la température de l'eau pure au sein de l'autoclave en fonction du taux de remplissage [269]

I-2-1 L'autoclave

L'autoclave idéal pour la synthèse hydrothermale devrait avoir les caractéristiques suivantes :

- ✓ Inertie vis-à-vis des acides, des bases et des oxydants ;
- ✓ Facilité de montage (maniable) ;
- ✓ Une longueur suffisante pour obtenir un gradient de température désiré ;
- ✓ Etanche ;
- ✓ Avoir la capacité de résister aux hauts gradients de températures et de pressions.

Dans le présent travail, les synthèses hydrothermales ont été effectuées dans un autoclave de marque *Parr* de volume 23ml, capable de supporter une température maximale de 250°C et une pression maximale de 1800 Psi. C'est un cylindre en acier inoxydable revêtu d'une chemise en Téflon (PTFE ou polytétrafluoroéthylène), qui est un matériau inerte assurant une résistance à l'agression des réactifs chimiques (**Figure 4**).

Figure 4 : Image et schéma simplifié de l'autoclave utilisé pour les synthèses hydrothermales

I-2-2 Protocole expérimentale

Le mode opératoire mis en jeu lors des réactions hydrothermales peut être décrit de la manière suivante :

- ✓ La connaissance préalable et le contrôle des paramètres initiaux du milieu réactionnel (degrés de pH, concentration et température);
- ✓ Dissoudre les précurseurs dans un minimum d'eau, afin d'aboutir à un volume de solution inférieur ou égal à 20 ml pour une chemise en téflon de 23 ml ;
- ✓ Le mélange réactionnel préparé est placé dans la chemise en téflon qui est introduite par la suite dans l'autoclave afin de subir un traitement thermique dans une étuve pour une durée déterminée ;
- ✓ Au terme de la synthèse on retire l'autoclave de l'étuve et on procède à un refroidissement lent, à l'air libre ;
- ✓ Le produit obtenu est filtré, lavé avec de l'eau distillée et séché à température ambiante.

II- Caractérisation structurale par diffraction des rayons-X (DRX)

La technique de diffraction des rayons-X constitue un outil fondamental pour l'analyse et la résolution d'innombrables problèmes cristallographiques (identification de phases, détermination des structures cristallines, cartographie de l'espace réciproque etc...). Le principe de la diffraction des rayons-X repose sur l'interaction des rayons-X dont la longueur d'onde λ est comparable aux paramètres du réseau cristallin, avec les atomes constitutifs du matériau solide cristallisé. Ces atomes affichent un ordre à longue distance dans les plans réticulaires et peuvent donc diffracter le faisceau incident à certains angles spécifiques suivant la loi de Bragg : 2.d.sin(θ) = n. λ

Ainsi l'orientation judicieuse du faisceau monochromatique des rayons-X par rapport à l'échantillon (mono ou ploycristallin) irradié et le positionnement précis du détecteur, permettent la collecte efficace des intensités diffractés dans un domaine angulaire régulier, qui interfèrent de manière constructive par chaque famille de plans réticulaires. Ce processus constitue un point en commun entre deux types de diffractions des rayons-X :

✓ La diffraction des rayons-X (DRX) sur monocristal :

Cette technique repose sur l'exposition d'un monocristal à un faisceau de rayons-X et l'enregistrement des intensités diffractées qui produisent des images constituées de taches bien définies plus au moins intenses. La distribution spatiale de ces taches détermine la nature du système cristallin et procure les paramètres de maille, tandis que les intensités des taches lumineuses révèlent la nature des atomes et leurs positions respectives dans la maille cristalline.

✓ La diffraction des rayons-X (DRX) sur poudre:

En comparaison avec un monocristal, la poudre est formée par une multitude de cristallites orientées aléatoirement ce qui permet de contourner l'effet des orientations préférentielles et diffracter les rayon-X incidents d'une manière cohérente.

En général, la diffraction des rayons-X sur poudre se réduit en un enregistrement d'un diffractogramme et l'analyse de ses pics. Le diffractogramme recèle un nombre important d'informations à savoir:

• La position des pics : permet l'analyse qualitative, et l'identification de phases cristallines présentes;

• L'intensité des pics : renseigne sur l'arrangement structurale, l'orientation préférentielle, donne une estimation de la composition chimique et facilite l'analyse quantitative ;

• La largeur des pics : détermine la taille des cristallites, et la manifestation ou pas des contraintes internes.

Dans le présent travail, la diffraction des rayons X sur monocristal nous a permis d'étudier et élucider les structures cristallines des nouvelles phases. En outre la diffraction sur poudre a été principalement utilisée pour l'identification de phases, le suivi temporel des réactions chimiques mises en jeu et l'affinement des paramètres de maille par la méthode de Pattern Mattching.

II-1 Caractérisation par diffraction des rayons-X sur monocristal

La détermination de la structurale par diffraction de rayons-X (DRX) sur monocristal peut être résumée en cinq étapes essentielles:

- ✓ Sélection du monocristal;
- ✓ Examen préliminaire,
- ✓ Collecte de l'intensités diffractées et réduction des données ;
- ✓ Résolution et affinement de la structure cristalline ;
- ✓ Description structurale.

II-1-1 Sélection du monocristal

Les monocristaux synthétisés, ont été examinés sous le champ d'une loupe binoculaire «**IVYMEN**» en utilisant une source lumière froide à fibre optique de marque

«SCHOTT (KL 1500 LCD)». Chaque monocristal choisi doit être de morphologie aussi régulière que possible sans macles ni inclusions apparentes, d'un aspect homogène. Les monocristaux sont sélectionnés, triés, et nettoyés délicatement via une graisse de silicone à l'aide d'une aiguille métallique dédiée à cette opération. Celui-ci ne doit pas être de petites dimensions (minimum environ 25 μ m) pour être à la fois maniable et facile à fixer, ni trop gros afin de réduire le phénomène d'absorption et pour que les intensités diffractées soient optimales. Pour faire face aux dites difficultés on choisit en pratique plus d'un cristal pour les tests préliminaires. On note la taille, la couleur et la morphologie du cristal, puis on le colle sur une tige de verre de diamètre ($\emptyset = 0,2$ mm). Par la suite le cristal affichant des résultats prometteurs est choisi, pour l'enregistrement des données de diffraction des rayons-X sur monocristal.

II-1-2 Examen préliminaire

Le cristal objet d'étude est monté sur la tête goniométrique du diffractomètre automatique à quatre cercles de type BrukerX8 (Figure 5.a), de l'UATRS - CNRST (Unités d'Appui Techniques à la Recherche Scientifique du Centre National pour la Recherche Scientifique et Technique à Rabat), de géométrie Kappa et qui est doté d'un détecteur bidimensionnel CCD (Charge Coupled Device), d'un monochromateur en graphite, d'une anticathode en molybdène $(\lambda_{K\alpha} = 0.71073 \text{ Å})$ et d'un cryostat pour travailler à basse température sous un flux d'azote. Pour le test et la détermination des paramètres de maille du cristal étudié, ce dernier est placé de telle sorte qu'il soit dans le champ du faisceau des rayons-X lors des mouvements du goniomètre. En moyen le cristal est positionné non loin de la caméra CCD (≈ 35 à 50 mm). Cette distance est contrôlée via l'ordinateur. La caméra CCD est un système permettant la mesure fiable et rapide d'un grand nombre de réflexions de Bragg. Le diffractomètre est piloté par le logiciel Bruker APEXII [270], contenant des logiciels de commande et de traitement des données. Un premier examen des images établies lors de l'étude préliminaire renseigne sur la qualité du cristal. Les positions des taches de diffraction sont déterminées à partir de ces images et une maille est proposée à l'aide du logiciel Apex II de Bruker, qui essaie d'indexer le maximum de réflexions possibles. On a également accès au groupe de Laue et au mode de réseau de Bravais. Ces informations permettent de comparer la maille réduite du cristal aux mailles déjà inventoriées dans la base de données ICSD (Inorganic Crystal Structure Database) [208], PDF2 (Powder Diffraction File) [209] ou élucidées à partir d'une étude bibliographique. On peut ainsi savoir si la structure de notre cristal est déjà connue, s'il s'agit d'une structure isotype ou bien d'une structure inconnue.

Le second type de diffractomètre automatique à quatre cercles utilisé dans le cadre de nos travaux de recherche est de type Bruker D8 Venture de la Faculté des Sciences de Rabat (**Figure 5.b**). Le goniomètre est de géométrie KAPPA équipé d'un détecteur PHOTON II, utilisant la technologie CPAD (Charge Integrating Pixel Array Detector), et doté de deux microsources de rayons-X d'anticathodes en molybdène ($\lambda_{K\alpha}$ = 0,71073 Å) et en cuivre ($\lambda_{K\alpha}$ = 1 .54056 Å) et refroidies complètement à l'air. Ce dernier diffractomètre appartenant à la seconde génération de diffractomètres est piloté par le logiciel Bruker APEXIII [270], associant aussi une suite de logiciels de commandes et de traitements des données.

Figure 5 : Diffractomètres a quatre cercles : a) Bruker X8 et b) Bruker D8 Venture

II-1-3 Collecte de l'intensités diffractées et réduction des données

L'enregistrement des données a été effectué on utilisant les mêmes diffractomètres automatiques à quatre cercles à température ambiante. L'objectif est de faire un balayage angulaire maximal en θ pour avoir accès aux informations structurales les plus fines possibles. En effet, plus le nombre de réflexions collectées est important, meilleure est la statistique donc l'erreur sur la mesure et plus on pourra affiner de paramètres indépendants lors de l'étude structurale. Les réflexions sont mesurées jusqu'à un angle maximal en fonction de la qualité du cristal et de l'intensité des réflexions. L'ordinateur calcule une stratégie basée sur des scans en φ et ω . Pour obtenir une image, le diffractomètre amène le cristal en position de diffraction puis effectue une rotation autour de φ . Les intensités sont intégrées (calculées), réduites et corrigées des facteurs de Lorentz, et de polarisation par le programme SAINT [243].

Le fichier obtenu est utilisé par le programme SADABS [245], qui produit un nouveau fichier de données corrigées, des divers effets d'absorption. Les intensités sont regroupées dans un fichier (hkl) qui contient à la foi les intensités corrigées et leurs erreurs σ (I), pour chaque plan hkl.

II-1-4 Résolution et affinement de la structure cristalline

La détermination structurale des phases cristallines a été réalisée via la plateforme WinGX version 2014.1 [186]. Chacune des structures cristallines a été résolue par la méthode directe à l'aide du programme SHLEXS-2014 [188], et affinée par la méthode des moindres carrées [189] via le programme SHELXL-2014 [190]. La qualité de l'affinement est optimisée en minimisant les facteurs R et wR suite à la réduction des écarts entre les facteurs de structure observés (F_0) et calculés (F_c) :

$$R = \frac{\|F_{o}| - |F_{c}\|}{\sum |F_{o}|} \quad et \quad wR = \left[\frac{\sum w(F_{o}^{2} - F_{c}^{2})^{2}}{\sum wF_{o}^{2}}\right]^{1/2}$$

La validité du modèle structural est aussi contrôlée par d'autres paramètres :

- Le facteur de la qualité d'ajustement (« Goodness of Fit », noté S), qui doit converger vers 1 ;
- Le contrôle des paramètres de déplacements thermiques atomiques ;
- Avoir une densité électronique résiduelle négligeable lors de la dernière synthèse de Fourier différence.

II-1-5 Description de la structure

La description structurale des phases cristallines étudiées dans le cadre du présent travail est réalisée à l'aide du logiciel DIAMOND 3.1d [191] et du programme Ortep 3 (version 2014.1) [192].

II-2 Caractérisation par diffraction des rayons-X sur poudre

L'évolution progressive des réactions de synthèses des poudres relatives aux nouvelles phases ont été réalisés par diffraction des rayons-X (DRX) sur poudre au sein du Laboratoire de Chimie Appliquée des Matériaux (LCAM) de la Faculté des Sciences de Rabat à l'aide d'un diffractomètre de marque «*Siemens D5000*» (Figures 6.a et b) équipé du logiciel *BrukerDIFFRAC plus EVA*[194]. Le diffractomètre est doté d'un goniomètre de géométrie Bragg - Brentano en mode (θ - 2 θ) opérant avec 40Kv et 20mA, équipé d'une anticathode en cuivre (λ = 1,5406 Å) et d'un monochromateur secondaire en quartz. Pour les diagrammes (DRX) enregistrés, le domaine angulaire d'acquisition en 2θ ainsi que le pas d'avancement et le temps de comptage ont été fixé soigneusement au préalable avant toutes expériences (DRX). Après chaque test de diffraction (DRX) un examen de la qualité, la pureté des échantillons, ainsi que les positions et les intensités des différentes raies de diffraction (DRX) observées ont été comparées à celles disponibles dans la base de données regroupant les fiches de référence PDF-ICDD (International Centre for Diffraction Data), via le logiciel *BrukerDIFFRAC plus EVA* [194].

Figure 6 : a) Diffractomètre de poudre Siemens D5000 - b) goniomètre de géométrie Bragg – Brentano

III- Analyses par microscope électronique à balayage (MEB/EDS)

L'examen élémentaire et morphologique des divers échantillons a été réalisé à la plateforme d'analyse de la Faculté des Sciences de Rabat, via un microscope électronique à balayage « **JSM-IT100 InTouchScope**TM » de marque **JEOL** doté d'un analyseur par spectroscopie de rayons X à dispersion d'énergie (EDS) (**Figure 7**).

Figure 7 : Microscope électronique à balayage JSM-IT100 InTouchScope™

IV- Analyses par spectroscopies infra-rouge (IR) et Raman

Les spectroscopies Raman et infrarouge à transformée de Fourrier (FTIR) sont des techniques d'analyses vibrationnelles complémentaires et très performantes qui procurent des informations essentielles sur la nature des liaisons chimiques, et les propriétés structurales des matériaux inorganiques. Les spectres Infrarouge ont été enregistrés avec un spectromètre à transformée de Fourier «**FT/IR-4600**» de marque **JASCO** muni d'un accessoire de Réflectance Totale Atténuée (ATR) type Pro One de la plateforme d'analyse et de caractérisation (PAC) - Faculté des Sciences de Rabat (**Figure 8**). Les données expérimentales ont été acquises sous un angle de 45°, dans la gamme de fréquences 4000 - 400 cm⁻¹.

Les spectres Raman ont été réalisés à la Faculté des Sciences de Meknès au sein du Laboratoire de spectrométrie des matériaux et archéomatériaux (LASMAR-URAC11). Les mesures ont été entreprises entre 100 et 2000 cm⁻¹ à température ambiante via micro-spectromètre Raman (RM1000) de marque **«Renishaw»**, équipé d'un détecteur CCD, d'un réseau de diffraction de 1800 gr / mm et d'un microscope confocal externe Leica DMLM (**Figure 9**).

La source d'excitation est un laser He – Ne (19 mW) fonctionnant à 632,8 nm. La tache laser a été focalisée sur la surface de l'échantillon en utilisant des objectifs 50x ou 100x. Les spectres Raman ont été recueillis sur de nombreux points de l'échantillon et enregistrés avec une caméra CCD refroidie par un module à effet Peltier.

Figure 8 : Spectromètre JASCO – (FT/IR-4600)

Figure 9 : Spectromètre Renishaw (RM1000)

Références bibliographiques

- [1] Rao, C. N. R., Natarajan, S., & Neeraj, S. J. Solid State Chem. 2000, 152 (1), 302–321.
- [2] Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. J. Am. Chem. Soc. 1982, 104 (4), 1146–1147.
- [3] Moore, P. B., & Shen, J. *Nature*. **1983**, *306* (5941), 356–358.
- [4] Lin, H. Y., Chin, C. Y., Huang, H. L., Huang, W. Y., Sie, M. J., Huang, L. H., Lee, Y. H., Lin, C. H., Lii, K. H., Bu, X., & Wang, S. L. Science . 2013, 339 (6121), 811–813.
- [5] Bell, R. G. In Modelling and Simulation in the Science of Micro- and Meso-Porous Materials; Catlow, C. R. A., Speybroeck, V. Van, Santen, R. A. van, Eds.; Elsevier, 2018; pp 1–25.
- [6] Zhou, W., He, W., Zhang, X., Zhao, H., Li, Z., Yan, S., Tian, X., Sun, X., & Han, X. *Mater. Chem. Phys.* **2009**, *116* (2–3), 319–322.
- [7] Haushalter, R. C., & Mundi, L. A. *Chem*. *Mater.* **1992**, *4* (1), 31–48.
- [8] Assani, A., El Ammari, L., Zriouil, M., & Saadi, M. Acta Crystallogr. Sect. E Struct. *Reports Online* **2011**, 67 (7), i40–i40.
- [9] Nieminen, M., Laurén, A., Hökkä, H., Sarkkola, S., Koivusalo, H., & Pennanen, T. *For. Ecol. Manage.* **2011**, *261* (1), 105–110.
- [10] Cosmidis, J., Benzerara, K., Morin, G., Busigny, V., Lebeau, O., Jézéquel, D., Noel, V., Dublet, G., & Othmane, G. *Geochim. Cosmochim. Acta.* 2014, *126*, 78–96.
- [11] Nizamidin, P., Yimit, A., Abdurrahman, A., & Itoh, K. Sensors Actuators B. 2013, 176, 460–466.
- [12] Ning, Q., Quan, B., & Shi, Y. J. Lumin. 2019, 206, 498–508.
- [13] Sugiawati, V. A., Vacandio, F., Eyraud, M., Knauth, P., & Djenizian, T. *Nanoscale Res. Lett.* **2016**, *11* (1), 365.
- [14] Wu, Y., Wen, S., Chen, K., Wang, J., Wang, G., & Sun, K. Prog. Org. Coatings 2019, 132, 409–416.
- [15] Orlova, A. I., Koryttseva, A. K., Kanunov, A. E., Chuvil'deev, V. N., Moskvicheva, A. V, Sakharov, N. V, Boldin, M. S., & Nokhrin, A. V. *Inorg. Mater.* 2012, 48 (3), 313–317.
- [16] Li, H. X., Martens, J. A., Jacobs, P. A., Schubert, S., Schmidt, F., Ziethen, H. M., & Trautwein, A. X. Stud. Surf. Sci. Catal. 1988, 37, 75–83.
- [17] Timofeeva, M. N., Panchenko, V. N., Hasan, Z., & Jhung, S. H. Appl. Catal. A, Gen. 2013, 455, 71–85.
- [18] Ai, M., & Ohdan, K. J. Mol. Catal. A: Chem. 2000, 159 (1), 19–24.
- [19] Zhang, X., Tang, S., Chen, M., & Wang, J. J. Anal. At. Spectrom. 2012, 27, 466–472.
- [20] Stoch, P., Szczerba, W., Bodnar, W., Ciecinska, M., Stoch, A., & Burkel, E. *Phys*. *Chem*. *Chem*. *Phys*. **2014**, *16*, 19917–19927.
- [21] Earnshaw, A., & Greenwood, N. In *Chemistry of the Elements (Second Edition)*; Greenwood, N. N., Earnshaw, A., Eds.; Butterworth-Heinemann: Oxford, **1997**; pp 473– 546.
- [22] Corbridge, D. E. C. *Phosphorus Chemistry, Biochemistry and Technology, 6 éme Edition*; CRC Press, **2013**.
- [23] Baouab, L., Guerfel, T., & Jouini, A. J. Soc. Alger. Chim. 2008, 18 (2), 127–138.
- [24] Crannell, B. S., Eighmy, T. T., Krzanowski, J. E., Eusden Jr, J. D., Shaw, E. L., & Francis, C. A. Waste Manag. 2000, 20 (2–3), 135–148.
- [25] Byrappa, K. Prog. Cryst. Growth Charact. 1986, 13 (3), 163–196.
- [26] Guyon, P., & Lajzerowicz, J. phys. stat. sol. 1966, 16 (2), 525–530.

- [27] Ouillon, R., Pinan-Lucarre, J. P., & Ranson, P. J. Raman Spectrosc. 2000, 31 (7), 605–613.
- [28] Masse, R., & Zyss, J. Mol. Eng. 1991, 1 (2), 141–152.
- [29] Smith, L., Cheetham, A. K., Marchese, L., Thomas, J. M., Wright, P. A., Chen, J., & Gianotti, E. *Catal. Letters* **1996**, *41* (1), 13–16.
- [30] Kaplanová, M., Trojan, M., Brandová, D., & Navrátil, J. J. Lumin. 1984, 29 (2), 199–204.
- [31] Dorozhkin, S. V. Materials. 2009, 2 (2), 399–498.
- [32] Fang, Y., Zhang, J., Xiao, L., Ai, X., Cao, Y., & Yang, H. Adv. Sci. 2017, 4 (5), 1600392.
- [33] Khmiyas, J., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2013, 69 (8), i50.
- [34] Kemnitz, E., Wloka, M., Trojanov, S., & Stiewe, A. Angen. Chem. Inl. Ed. Engl. 1996, 35 (22), 2677–2678.
- [35] Chang, T. Y., Hu, C. L., Yan, D., & Mao, J. G. J. Solid State Chem. 2017, 251, 19–25.
- [36] Gatta, G. D., Masci, S., & Vivani, R. J. Mater. Chem. 2003, 13 (5), 1215–1222.
- [37] Mannasova, A. A., Chernyatieva, A. P., & Krivovichev, S. V. Zeitschrift fur Krist. 2016, 231 (2), 1–5.
- [38] dos Santos, A. M., Brandão, P., Fitch, A., Reis, M. S., Amaral, V. S., & Rocha, J. J. Solid State Chem. 2007, 180 (1), 16–21.
- [39] Yang, D., Lu, Z., Rui, X., Huang, X., Li, H., Zhu, J., Zhang, W., Lam, Y. M., Hng, H. H., Zhang, H., & Yan, Q. *Angew. Chemie Int. Ed.* **2014**, *53* (35), 9352–9355.
- [40] Ahmed, S., & Yi, J. Nano-Micro Lett. 2017, 9 (4), 50.
- [41] Van Wazer, J. R. *Phosphorus and its compounds*; Interscience Publishers: New York, **1958**.
- [42] Sun, L. Z., Sun, W., Ren, W. J., Zhang, J. Y., Huang, Y. X., Sun, Z. M., Pan, Y., & Mi, J. X. J. Solid State Chem. 2014, 212, 48–57.
- [43] Attfield, J. P. *Phosphates: Solid-State Chemistry.Encyclopedia of Inorganic and Bioinorganic Chemistry*; John Wiley & Sons, Ltd, **2011**; pp 1–16.
- [44] Kunov, A. Bulg. Geol. Soc. 2004, 12, 16–17.
- [45] Lii, K. hwa. J. Chem. Soc., Dalt. Trans. 1996, 0 (6), 819-822.
- [46] Moore, P. B. Am. Mineral. **1970**, 55 (1–2), 135–169.
- [47] Nriagu, J. O. Phosphate Minerals: Their Properties and General Modes of Occurrence; Nriagu, J. O., Moore, P. B., Eds.; Springer Berlin Heidelberg, 1984; pp 1–136.
- [48] Zaghib, K., Mauger, A., Goodenough, J. B., Gendron, F., & Julien, C. M. Chem. Mater. 2007, 19 (15), 3740–3747.
- [49] Croce, F., D' Epifanio, A., Hassoun, J., Deptula, A., Olczac, T., & Scrosati, B. *Electrochem. Solid-State Lett.* **2002**, *5* (3), A47–A50.
- [50] Andersson, A. S., Thomas, J. O., Kalska, B., & Häggström, L. *Electrochem. Solid-State Lett.* **2000**, *3* (2), 66–68.
- [51] Marx, N., Croguennec, L., Carlier, D., Wattiaux, A., Le Cras, F., Suard, E., & Delmas, C. *Dalt. Trans.* 2010, 39 (21), 5108.
- [52] Sugiawati, V. A., Vacandio, F., Eyraud, M., Knauth, P., & Djenizian, T. *Nanoscale Res. Lett.* **2016**, *11*, 2–5.
- [53] Shi, Q., Zhang, L., Schlesinger, M. E., Boerio-Goates, J., & Woodfield, B. F. J. Chem. Thermodyn. 2013, 62, 35–42.
- [54] Song, Y., Zavalij, P. Y., Suzuki, M., & Whittingham, M. S. Inorg. Chem. 2002, 41 (22), 5778–5786.
- [55] Taghvaei, A. H., Shokrollahi, H., & Janghorban, K. J. Alloys Compd. 2009, 481 (1–2), 681–686.
- [56] Ai, M. Catal. Today. **1999**, 52 (1), 65–69.
- [57] Górecki, G. Corrosion. **1992**, 48 (7), 613–616.

- [58] Ahmed, I., Collins, C. A., Lewis, M. P., Olsen, I., & Knowles, J. C. *Biomaterials* **2004**, 25 (16), 3223–3232.
- [59] Abdurahman, A., Nizamidin, P., & Yimit, A. Mater. Sci. Semicond. Process. 2014, 22, 21–27.
- [60] He, W., Zhou, W., Wang, Y., Zhang, X., Zhao, H., Li, Z., & Yan, S. Mater. Sci. Eng., C. 2009, 29 (4), 1348–1350.
- [61] Pinheiro, A. S., Da Costa, Z. M., Bell, M. J. V, Anjos, V., Dantas, N. O., & Reis, S. T. Opt. Mater. (Amst). 2011, 33 (12), 1975–1979.
- [62] Burgess, J., & Twigg, M. V. *Iron: Inorganic & Coordination Chemistry. Encyclopedia of Inorganic Chemistry*; John Wiley & Sons, Ltd, **2006**.
- [63] Gütlich, P., Gaspar, A. B., & Garcia, Y. Beilstein J. Org. Chem. 2013, 9, 342–391.
- [64] Amthauer, G., & Rossman, G. R. Phys. Chem. Miner. 1984, 11 (1), 37–51.
- [65] Fackler, J. P. *Mixed Valence Compounds.Encyclopedia of Inorganic Chemistry*; John Wiley & Sons, Ltd, **2006**.
- [66] Morozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I., & Van Tendeloo, G. J. Solid State Chem. 2003, 170 (2), 411–417.
- [67] Zima, V., & Lii, K. hwa. J. Chem. Soc., Dalt. Trans. 1998, 0 (24), 4109–4112.
- [68] Trad, K., Carlier, D., Wattiaux, A., Ben Amara, M., & Delmas, C. J. Electrochem. Soc. 2010, 157 (8), A947–A952.
- [69] Lajmi, B., Hidouri, M., Ben Hammouda, A. K., Wattiaux, A., Fournés, L., Darriet, J., & Ben Amara, M. Mater. Chem. Phys. 2009, 113 (1), 372–375.
- [70] Lajmi, B., Hidouri, M., Wattiaux, A., Fournes, L., Darriet, J., & Ben Amara, M. J. Alloys Compd. 2003, 361 (1–2), 77–83.
- [71] Hidouri, M., Wattiaux, A., López, M. L., Pico, C., & Ben Amara, M. J. Alloys Compd. 2010, 506 (2), 569–574.
- [72] Belik, A. A., Azuma, M., Takano, M., & Lazoryak, B. I. Chem. Mater. 2004, 16 (22), 4311–4318.
- [73] Lii, K. H., & Huang, C. Y. Eur. J. solid state Inorg. Chem. 1995, 32 (3), 225–235.
- [74] Belik, A. A., Lazoryak, B. I., Pokholok, K. V., Terekhina, T. P., Leonidov, I. A., Mitberg, E. B., Karelina, V. V., & Kellerman, D. G. *J. Solid State Chem.* 2001, *162* (1), 113–121.
- [75] Lii, K. hwa. J. Chem. Soc. Dalt. Trans 1994, No. 6, 931–935.
- [76] Ouaatta, S., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2017, 73 (6), 893–895.
- [77] David, R., Pautrat, A., Filimonov, D., Kabbour, H., Vezin, H., Whangbo, M. H., & Mentré, O. J. Am. Chem. Soc. 2013, 135 (35), 13023–13029.
- [78] Ouaatta, S., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2015, 71 (10), 1255–1258.
- [79] Lii, K. H., Dong, T. Y., Cheng, C. Y., & Wang, S. lein. J. Chem. Soc., Dalt. Trans., 1993, No. 4, 577–580.
- [80] Bouraima, A., Makani, T., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2016, 72 (8), 1143–1146.
- [81] Korzenski, M. B., Kolis, J. W., & Long, G. J. J. Solid State Chem. 1999, 147 (1), 390– 398.
- [82] Khmiyas, J., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2016, 72 (9), 1260–1262.
- [83] Tang, X., Gentiletti, M. J., Lachgar, A., Morozov, V. A., & Lazoryak, B. I. Solid State Sci. 2001, 3 (1), 143–153.
- [84] Alhakmi, G., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2017, 73, 767–770.

- [85] Lii, K. H., Lee, T. C., Liu, S. N., & Wang, S. L. J. Chem. Soc., dalt. Trans. 1993, No. 7, 1051–1054.
- [86] Edita, D., & Lii, K. H. Inorg. Chem. 1993, 32, 4368–4372.
- [87] Belik, A. A., Izumi, F., Ikeda, T., Okui, M., Malakho, A. P., Morozov, V. A., & Lazoryak,
 B. I. J. Solid State Chem. 2002, 168 (1), 237–244.
- [88] Earnshaw, A., & Greenwood, N. N. In *Chemistry of the Elements (Second Edition)*; Butterworth-Heinemann, **1997**; pp 1173–1200.
- [89] Burgess, J., & Prince, R. H. Zinc: Inorganic & Coordination Chemistry . Encyclopedia of Inorganic Chemistry; 2006.
- [90] Moore, P. B. Am. Mineral. 1971, 56 (11–12), 1955–1975.
- [91] Moore, P. B., & Ito, J. Mineral. Mag. 1979, 43, 227–235.
- [92] Antenucci, D., Fransolet, A. M., Miehe, G., & Tarte, P. Eur. J. Mineral. 1995, 7 (1), 175– 181.
- [93] Leroux, F., Mar, A., Guyomard, D., & Piffard, Y. J. Solid State Chem. **1995**, 117 (1), 206–212.
- [94] Hatert, F., Keller, P., Lissner, F., Antenucci, D., & Fransolet, A. M. *Eur. J. Mineral.* **2000**, *12* (4), 847–857.
- [95] Chaalia, S., Ayed, B., & Haddad, A. J. Chem. Crystallogr. 2012, 42, 941–946.
- [96] Hatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin Franskin, M. J., & Grandjean, F. *Phys. Chem. Miner.* **2004**, *31* (8), 487–506.
- [97] Kacimi, M., Ziyad, M., & Hatert, F. Mater. Res. Bull. 2005, 40 (4), 682–693.
- [98] Richardson, T. J. J. Power Sources 2003, 119–121, 262–265.
- [99] Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W., & Wu, Z. *Chem. Eur. J.* **2015**, *21* (2), 851–860.
- [100] Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C., & El Ammari, L. Acta Crystallogr. Sect. E. 2015, 71, 813–815.
- [101] Assani, A., Saadi, M., Zriouil, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2011, 67 (1), i5.
- [102] Bouraima, A., Assani, A., Saadi, M., Makani, T., & El Ammari, L. Acta Crystallogr. Sect. E. 2015, 71 (5), 558–560.
- [103] Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C., & El Ammari, L. Acta Crystallogr. Sect. E. 2018, 74, 1358–1361.
- [104] Khmiyas, J., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2015, 71 (6), 690–692.
- [105] Saleck, A. O. Synthèse et caractérisation physico-chimique de nouveaux phosphates de magnésium : $(A_2 \text{ ou } B)Mg_2M(PO_4)_3$ (A = Na, Ag; B = Ca, Pb, Sr, Ba; M = Fe, In). Thèse de doctorat. Université Mohammed V.Rabat; **2018**.
- [106] Jebli, S., Badri, A., & Ben Amara, M. Acta Crystallogr. Sect. E. 2016, 72 (12), 1806– 1808.
- [107] Antenuccl, D., Fransolet, A.-M., Miehe, G., & Tarte, P. Eur. J. Mineral. 1995, 7 (1), 175– 182.
- [108] Cooper, M. A., Hawthorne, F. C., Ball, N. A., Ramik, R. A., & Roberts, A. C. Can. Mineral. 2009, 47 (5), 1225–1235.
- [109] Daidouh, A., Durio, C., Pico, C., Veiga, M. L., Chouaibi, N., & Ouassini, A. Solid State Sci. 2002, 4 (4), 541–548.
- [110] Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M., & Delmas, C. Chem. Mater. 2010, 22 (19), 5554–5562.
- [111] Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A., & Piffard, Y. J. Solid State Chem. 1995, 115 (1), 240–246.

- [112] Corbin, D. R., Whitney, J. F., Fultz, W. C., Stucky, G. D., Eddy, M. M., & Cheetham, A. K. *Inorg. Chem.* **1986**, *25* (14), 2279–2280.
- [113] Hidouri, M., Lajmi, B., Wattiaux, A., Fourne, L., Darriet, J., & Amara, M. B. J. Solid State Chem. 2004, 177 (1), 55–60.
- [114] Lii, K. H., & Ye, J. J. Solid State Chem. 1997, 131 (1), 131–137.
- [115] Antenucci, D., Miehe, G., Tarte, P., Schmahl, W. W., & Fransolet, A. M. Eur. J. Mineral. 1993, 5 (2), 207–213.
- [116] Lii, K. H., & Shih, P. F. Inorg. Chem. 1994, 33 (14), 3028–3031.
- [117] Hidouri, M., Wattiaux, A., Fournés, L., Darriet, J., & Amara, M. B. Comptes Rendus Chim. 2011, 14 (10), 904–910.
- [118] Essehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A., & Ehrenberg, H. J. Alloys Compd. 2011, 509 (4), 1163–1171.
- [119] Durio, C., Daidouh, A., Chouaibi, N., Pico, C., & Veiga, M. L. J. Solid State Chem. 2002, 168 (1), 208–216.
- [120] Redhammer, G. J., Tippelt, G., Bernroider, M., Lottermoser, W., Amthauer, G., & Roth, G. Eur. J. Mineral. 2005, 17 (6), 915–932.
- [121] Hatert, F., Rebbouh, L., Hermann, R. P., Fransolet, A. M., Long, G. J., & Grandjean, F. Am. Mineral. 2005, 90 (4), 653–662.
- [122] Hatert, F., Hermann, R. P., Long, G. J., Fransolet, A. M., & Grandjean, F. Am. Mineral. 2003, 88, 211–222.
- [123] Dietrich, V., Pitzschke, D., & Jansen, M. Zeitschrift fur Krist. New Cryst. Struct. 2011, 226, 7–8.
- [124] Strelkov, M. A., Zhizhin, M. G., & Komissarova, L. N. J. Solid State Chem. 2006, 179, 3664–3671.
- [125] Chouaibi, N., Daidouh, A., Pico, C., Santrich, A., & Veiga, M. L. J. Solid State Chem. 2001, 159 (1), 46–50.
- [126] Guesmi, A., & Driss, A. Acta Crystallogr. Sect. C. 2002, 58 (1), i16-i17.
- [127] Smail, R. Ben, & Jouini, T. Acta Crystallogr. Sect. C. 2002, C58, i61-i62.
- [128] Hatert, F. Acta Crystallogr. Sect. C. 2006, 62 (1), i1-i2.
- [129] Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J., & Ben Amara, M. J. Alloys Compd. 2008, 450 (1–2), 301–305.
- [130] Korzenski, M. B., Schimek, G. L., Kolis, J. W., & Long, G. J. J. Solid State Chem. 1998, 139 (1), 152–160.
- [131] Hidouri, M., Lajmi, B., Driss, A., & Ben Amara, M. Acta Crystallogr. Sect. E. 2003, 59 (2), i7–i9.
- [132] Zid, M. F., Driss, A., & Jouini, T. Acta Crystallogr. Sect. E. 2005, 61 (4), i46-i48.
- [133] Kim, J., Kim, H., Park, I., Park, Y. U., Yoo, J. K., Park, K. Y., Lee, S., & Kang, K. Energy Environ. Sci. 2013, 6 (3), 830–834.
- [134] Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M., & Delmas, C. *Inorg. Chem.* 2010, 49 (22), 10378–10389.
- [135] Trad, K., Castets, A., Wattiaux, A., Delmas, C., & Ben Amara, M. J. Solid State Chem. 2018, 265, 12–17.
- [136] Hatert, F. Mineral. Petrol. 2004, 81 (3–4), 205–217.
- [137] Essehli, R., Ben Yahia, H., Maher, K., Sougrati, M. T., Abouimrane, A., Park, J. B., Sun, Y. K., Al Maadeed, M. A., & Belharouak, I. J. Power Sources. 2016, 324, 657–664.
- [138] Bouraima, A., Makani, T., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2017, 73, 890–892.
- [139] David, R., Pautrat, A., Kabbour, H., & Mentré, O. Inorg. Chem. 2016, 55 (9), 4354-4361.
- [140] Chen, Y. Cryst. Res. Technol. 2012, 47 (11), 1185–1189.

- [141] Ouaatta, S., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2017, 73 (6), 893–895.
- [142] Bouraima, A. Synthèse et caractérisation structurale de nouveaux phosphates à base de cobalt et/ou du fer : PbCo₃(HPO₄)(PO₄)₂, M(A₂)Co₂Fe(PO₄)₃ (M=Sr, Ba, Pb; A= Na, Ag) et A'CoFe(PO₄)₂ (A'= K, Rb). Thèse de doctorat. Université Mohammed V, Rabat; 2017.
- [143] ALHAKMI, G. H. Y. A. Synthèse et caractérisation structurale de nouveaux phosphates à base de métaux de transition (Mn & Fe) et de cations bivalents (Ca, Sr, Ba, Zn, Cd, Pb).Thèse de doctorat. Université Mohammed V, Rabat,; **2017**.
- [144] Alhakmi, G., Assani, A., Saadi, M., & El Ammari, L. MATEC Web Conf. 2018, 149, 01084.
- [145] Xu, Y., Li, X., Feng, W., Li, W., & Zhang, K. Dalt. Trans. 2016, 45, 3983–3991.
- [146] Fuchs, L. H. Science . **1967**, 158 (3803), 910–911.
- [147] Onoda, H., & Sugimoto, K. J. Asian Ceram. Soc. 2017, 5 (2), 123-126.
- [148] Arbib, E. H., Chaminade, J.-P., Darriet, J., & Elouadi, B. Solid State Sci. 2000, 2, 243–247.
- [149] Tas, A. C. J. Am. Ceram. Soc. 2016, 4, 1200–1206.
- [150] Droß, T., & Glaum, R. Acta Crystallogr. Sect. E. 2004, 60, i58-i60.
- [151] Kasuga, T., Yamamoto, K., Tsuzuki, T., Nogami, M., & Abe, Y. *Mater. Res. Bull.* **1999**, *34* (10–11), 1595–1600.
- [152] Ternane, R., Ferid, M., Trabelsi-Ayedi, M., & Piriou, B. Spectrochim. Acta Part A 1999, 55 (9), 1793–1797.
- [153] Mathew, M., Brown, W. E., Austin, M., & Negas, T. J. Solid State Chem. 1980, 35, 69– 76.
- [154] Hamdi, B., El Feki, H., Ben Salah, A., Salles, P., Baules, P., & Savariault, J. M. Solid State Ionics 2006, 177 (17–18), 1413–1420.
- [155] Naddari, T., El Feki, H., Savariault, J. M., Salles, P., & Salah, A. Ben. Solid State Ionics 2003, 158 (1–2), 157–166.
- [156] Badrour, L., Oukerroum, J., Amenzou, H., Bensitel, M., Sadel, A., & Zahira, M. Ann. Chim. Sci. des Matériaux 2001, 26 (6), 131–138.
- [157] Safaei-ghomi, J., Shahbazi-alavi, H., & Nazemzadeh, S. H. Iran. J. Catal. 2018, 8 (1), 9– 16.
- [158] Bevara, S., Achary, S. N., Mishra, K. K., Ravindran, T. R., Sinha, A. K., Sastry, P. U., & Tyagi, A. K. 2017, 19 (8), 6030–6041.
- [159] Fu, J. Mater. Lett. 2014, 118, 84-87.
- [160] Nomura, K., Shoichiro Ikeda, Hideki Masuda, & Hisahiko Einaga. *Chem. Lett.* 1993, 22 (5), 893–896.
- [161] Mentre, O., Abraham, F., Deffontaines, B., & Vast, P. Solid State Ionics 1994, 72 (2), 293–299.
- [162] Katsuhiro Nomura, Shoichiro Ikeda, Kaname Ito, & Hisahiko Einaga. Bull. Chem. Soc. Jpn. 1992, 65, 3221–3227.
- [163] Assani, A., Saadi, M., Zriouil, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2011, 67 (10), i52.
- [164] Gruß, M., & Glaum, R. Zeitschrift fur Krist. 1997, 212 (7), 510–518.
- [165] Zhou, B. C., Yao, Y. W., & Wang, R. J. Acta Crystallogr. Sect. C. 2002, 58 (8), i109– i110.
- [166] Riou, A., Y.Cudennec, & Y.Gerault. Acta Crystallogr. Sect. C. 1987, 43 (1984), 821–823.
- [167] Lightfoot, P., & Cheetham, A. K. Acta Crystallogr. Sect. C. 1988, 44 (8), 1331–1334.
- [168] M.A.Lafontaine, J.M.Grenéche, Y.Laligant, & G.Férey. J. Solid State Chem. **1994**, 108 (1), 1–10.

- [169] Hughes, J. M., Drexler, J. W., Campana, C. F., & Malinconico, M. L. Am. Mineral. 1988, 73, 181–186.
- [170] Kozlyakova, E., Danilovich, I., Volkov, A., Zakharov, K., Dimitrova, O., Belokoneva, E., Shvanskaya, L., Zvereva, E., Chareev, D., Volkova, O., & Vasiliev, A. J. Alloys Compd. 2018, 744, 600–605.
- [171] Weil, M. Acta Crystallogr. Sect. E. 2004, 600, i139-i141.
- [172] Dwibedi, D., Gond, R., Dayamani, A., Araujo, R. B., Chakraborty, S., Ahuja, R., & Barpanda, P. *Dalt. Trans.* **2017**, *46* (1), 55–63.
- [173] Oyama, G., Nishimura, S., Suzuki, Y., Okubo, M., & Yamada, A. Chem. Electro. Chem 2015, 2 (7), 1019–1023.
- [174] Wei, S., Boisse, M. De, Oyama, G., Nishimura, S., & AtsuoYamada. Chem. Electro. Chem 2016, 3, 209–213.
- [175] Gao, J., Zhao, P., & Feng, K. Chem. Mater. 2017, 29 (3), 940–944.
- [176] Essehli, R., Belharouak, I., Yahia, H. Ben, Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z., & Sun, Y. *Dalt. Trans.* **2015**, *44*, 7881–7886.
- [177] Wen, M., Liu, X., Zhao, Y., Liu, S., Liu, H., Dong, Y., Kuang, Q., & Fan, Q. J. Solid State Electrochem. 2017, 22, 891–898.
- [178] Liu, D., & Palmore, G. T. R. ACS Sustain. Chem. Eng. 2017, 5 (7), 5766–5771.
- [179] Wang, X., Zhang, H., Xu, Y., Chen, C., Yuan, H., & Wang, Y. RSC Adv. 2016, 6, 67986– 67991.
- [180] Ben Yahia, H., Shikano, M., Tabuchi, M., & Belharouak, I. *Inorg. Chem.* **2016**, *55* (9), 4643–4649.
- [181] Dwibedi, D., Gond, R., & Barpanda, P. Chemestry Mater. 2019, 31 (18), 7501–7509.
- [182] Walczak, K., Kulka, A., & Molenda, J. Solid State Sci. 2018, 87, 21–26.
- [183] Hidouri, M., Wattiaux, A., Fournés, L., Darriet, J., & Amara, M. B. C. R.Chimie. 2011, 14, 904–910.
- [184] Hadouchi, M., Abderrazzak, A., Saadi, M., Saadoune, I., Lahmar, A., Bouyanfif, H., Marssi, M. El, & Ammari, L. El. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2854.
- [185] Hadouchi, M., Assani, A., Saadi, M., Lahmar, A., Marssi, M. El, Sajieddine, M., & Ammari, L. El. J. Supercond. Nov. Magn. 2018, 3, 2–11.
- [186] Farrugia, L. J. J. Appl. Crystallogr. 2012, 45 (4), 849–854.
- [187] Hauptman, H. Science . **1986**, 233 (4760), 178–183.
- [188] Sheldrick, G. M. Acta Crystallogr. Sect. A. 2008, 64 (1), 112–122.
- [189] Prince, E., & Boggs, P. T. Int. Tables Crystallogr. 2006, C.Ch.8.1, 678-688.
- [190] Sheldrick, G. M. Acta Crystallogr. Sect. C. 2015, 71, 3-8.
- [191] Brandenburg, K. DIAMOND. Crystal Impact GbR. Bonn, Germany. 2006.
- [192] Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849-854.
- [193] Rodríguez-Carvajal, J. Phys. B Phys. Condens. Matter. 1993, 192 (1-2), 55-69.
- [194] Bruker. DIFFRAC.EVA Version 3.0 User Manual.Bruker AXS,Karlsruhe,Germnay 2013.
- [195] Le Bail, A., Duroy, H., & Fourquet, J. L. Mater. Res. Bull. 1988, 23 (3), 447–452.
- [196] Petrícek, V., Dušek, M., & Palatinus, L. Zeitschrift fur Krist. 2014, 229 (5), 345-352.
- [197] Le Polles, G., Videau, J., Olazcuaga, R., & Couzi, M. J. Solid State Chem. **1996**, 127 (2), 341–349.
- [198] Hatert, F. J. Solid State Chem. 2008, 181 (5), 1258–1272.
- [199] Rondeux, M., & Hatert, F. Am. Mineral. 2010, 95 (5-6), 844-852.
- [200] Hatert, F., Antenucci, D., Fransolet, A. M., & Liégeois-Duyckaerts, M. J. Solid State Chem. 2002, 163 (1), 194–201.
- [201] Makreski, P., Jovanovski, G., Gajović, A., Biljan, T., Angelovski, D., & Jaćimović, R. J. Mol. Struct. 2006, 788, 102–114.
- [202] Frost, R. L. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60 (7), 1439–1445.

- [203] Zhai, S., Lin, C. C., & Xue, W. Vib. Spectrosc. 2014, 70, 6–11.
- [204] Rghioui, L., Benarafa, L., Guédira, F., Zaydoun, S., Lorriaux, A., & Wallart, F. J. Mater . Env. . Sci . 2015, 6 (11), 3015–3021.
- [205] Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L., & Zhou, Z. Dalt. Trans. 2015, 44 (10), 4526–4532.
- [206] Nejjar, R., Rghioui, L., Benarafa, L., Knidiri, M., Lorriaux, A., & Wallart, F. *Spectrochim. Acta Part A* . **2002**, *58* (13), 2951–2960.
- [207] Lafuente, B., Downs, R. T., Yang, H., & Stone, N. *The power of databases: The RRUFF project. Highlights in Mineralogical CrystallographyHighlights in Mineralogical Crystallography*; **2015**; pp 1–30.
- [208] Belsky, A., Hellenbrandt, M., Karen, V., & Luksch, P. Acta Crystallogr. Sect.B. 2002, 58 (3–1), 364–369.
- [209] Faber, J., & Fawcett, T. Acta Crystallogr. Sect.B. 2002, B58 (3-1), 325-332.
- [210] Spek, A. L. Acta Crystallogr. Sect. D. 2009, 65, 148-155.
- [211] Schmidt, R., Eisenmann, B., Kniep, R., Ensling, J., Gütlich, P., & Seidel, R. Zeitschrift für Naturforsch. B. 1990, 45 (9), 1255–1261.
- [212] Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2010, 66, i74.
- [213] El Ammari, L., & Elouadi, B. Acta Crystallogr. Sect. C. 1989, 45, 1864–1867.
- [214] Jensen, T. R., Hazell, R. G., Nørlund Christensen, A., & Hanson, J. C. J. Solid State Chem. 2002, 166 (2), 341–351.
- [215] Ji, L. N., Ma, H. W., Li, J. B., Liang, J. K., Sun, B. J., Liu, Y. H., Zhang, J. Y., & Rao, G. H. J. Solid State Chem. 2007, 180 (8), 2256–2261.
- [216] Harrison, W. T. A., Gier, T. E., Stucky, G. D., Broach, R. W., & Bedard, R. A. Chem. Mater. 1996, 8 (1), 145–151.
- [217] Calvo, C. Can. J. Chem. 1965, 43 (2), 436–445.
- [218] Whitaker, A. Acta cryst 1975, B31, 2026–2035.
- [219] Wu, W.-Y., Liang, X.-Q., & Li, Y.-Z. Acta Crystallogr. Sect. E. 2005, 61 (6), i105–i107.
- [220] Grey, I. E., Keck, E., Kampf, A. R., Mumme, W. G., Macrae, C. M., Gable, R. W., Glenn, A. M., & Davidson, C. J. *Mineral. Mag.* 2017, *81* (2), 329–338.
- [221] Hemon, A., & Courbion, G. J. Solid State Chem. 1990, 164 (1), 164–168.
- [222] Jakeman, R. J. B., & Cheetham, A. K. J. Am. Chem. Soc. 1988, 110 (4), 1140–1143.
- [223] Tordjman, I., Durif, A., Averbuch-Pouchot, M. T., & Guitel, J. C. Acta Crystallogr. Sect.B. 1975, 31 (4), 1143–1148.
- [224] Elliott, P., Giester, G., Libowitzky, E., & Kolitsch, U. Am. Mineral. 2010, 95 (2–3), 397–404.
- [225] Jensen, T. R., Hazell, R. G., Vosegaard, T., & Jakobsen, H. J. Inorg. Chem. 2000, 39 (10), 2026–2032.
- [226] Stephens, J. S., & Calvo, C. Can. J. Chem. 1967, 45 (20), 2303–2316.
- [227] Alhakmi, G., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2015, 71 (2), 154–156.
- [228] Whang, D., Hur, N. H., & Kim, K. Inorg. Chem. 1995, 34 (12), 3363–3366.
- [229] Riou, A., Cudennec, Y., & Gerault, Y. Acta Crystallogr. Sect. C. 1987, 43, 194–197.
- [230] Halenius, U., Hatert, F., Pasero, M., & Mills, S. J. Eur. J. Mineral. 2018, 30 (2), 403-408.
- [231] Kraus, W., & Nolze, G. J. Appl. Crystallogr. 1996, 29 (3), 301–303.
- [232] Frost, R. L., Xi, Y., Scholz, R., Belotti, F. M., & Lopez, A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 106, 216–223.
- [233] Litasov, K. D., & Podgornykh, N. M. J. Raman Spectrosc. 2017, 48 (11), 1518–1527.
- [234] Llusar, M., Badenes, J. A., García, A., Gargori, C., Galindo, R., & Monrós, G. Ceram. Int. 2011, 37 (2), 493–504.

- [235] Belik, A. A., Malakho, A. P., Pokholok, K. V., Lazoryak, B. I., & Khasanov, S. S. J. Solid State Chem. 2000, 150 (1), 159–166.
- [236] Bosacka, M., Błonska-Tabero, A., Filipek, E., Luxova, J., & Sulcova, P. J Therm Anal Calorim 2017, 130, 95–101.
- [237] Porter, S. H., Xiong, J., Avdeev, M., Merz, D., Woodward, P. M., & Huang, Z. Inorg. Chem. 2016, 55 (12), 5772–5779.
- [238] Saad, Y., Hidouri, M., Álvarez-Serrano, I., Veiga, M. L., Wattiaux, a., & Amara, M. B. J. Alloys Compd. 2014, 584, 625–630.
- [239] Lightfoot, P., & Cheetham, A. K. J. Chem. Soc. Dalt. Trans. 1989, No. 9, 1765–1769.
- [240] Gruß, M., & Glaum, R. Zeitschrift für Krist. 1997, 212, 510-518.
- [241] Glaum, R. Zeitschrift für Krist. 1993, 205, 69–83.
- [242] S.Boudin, A.Grandin, A.Leclaire, M.M.Borel, & B.Raveau. J. Solid State Chem. 1995, 115, 140–145.
- [243] Bruker. SAINT.Bruker AXS Inc., Madison, Wisconsin, USA. 2012.
- [244] Krause, L., Herbst-Irmer, R., Sheldrick, G. M., & Stalke, D. J. Appl. Crystallogr. 2015, 48, 1–8.
- [245] Bruker. SADABS.Bruker AXS Inc., Madison, Wisconsin, USA. 2001.
- [246] Y.Senga, & Kawahara, A. Acta Crystallogr. Sect.B. 1980, 36, 2555–2558.
- [247] Effenberger, H. J. Solid State Chem. 1999, 142 (1), 6-13.
- [248] Stojanović, J., Đordević, T., & Karanović, L. Acta Crystallogr. Sect. C. 2008, 64, 191– 194.
- [249] Yang, L., Powell, D. R., & Houser, R. P. Dalt. Trans. 2007, No. 9, 955–964.
- [250] Badri, A., Hidouri, M., Ló Pez, M. L., Pico, C., Wattiaux, A., & Amara, B. J. Solid State Chem. 2011, 184 (4), 937–944.
- [251] Anderson, J. B., & Kostiner, E. J. Solid State Chem. 1981, 39, 29–34.
- [252] Khmiyas, J., Assani, A., Saadi, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2015, 71, 55–57.
- [253] Karanović, L., Sutović, S., Poleti, D., Đordević, T., & Pačevski, A. Acta Crystallogr. Sect. C. 2010, 66, i42–i44.
- [254] Assani, A., Saadi, M., Zriouil, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2010, 66, i86–i87.
- [255] Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. van, & Verschoor, G. C. J. Chem. Soc. Dalt. Trans 1984, 1349–1356.
- [256] Jha, B., & Singh, D. N. Fly Ash Zeolites ,Advanced Structured Materials, 1st ed.; Springer Singapore, 2016; Vol. 78.
- [257] Filaretov, A. A., Rusakov, D. A., Simonov, S. V, Khasanov, S. S., & Komissarova, L. N. *Russ. J. Inorg. Chem.* 2009, 54 (11), 1750–1762.
- [258] Jeffrey, G. A., & Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag Berlin Heidelberg, 1991; Vol. 53.
- [259] Assani, A., Saadi, M., Zriouil, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2012, 68, i66.
- [260] Assani, A., Saadi, M., Zriouil, M., & El Ammari, L. Acta Crystallogr. Sect. E. 2012, 68, i30.
- [261] Graeber, E. J., & Rosenzweig, A. Am. Mineral. 1971, 56 (11–12), 1917–1933.
- [262] Hata, M., & Marumo, F. *Mineral. J.* **1983**, *11* (7), 317–330.
- [263] Sudarsanan, K., Young, R. A., & Donnay, J. D. H. Acta Crystallogr. Sect.B. 1973, 29, 808–814.
- [264] Catti, M., Ferraris, G., & Filhol, A. Acta Crystallogr. Sect.B. 1977, 33, 1223–1229.
- [265] Rao, C. N. R., & Biswas, K. Decomposition of Precursor Compounds. Essentials of Inorganic Materials Synthesis; John Wiley & Sons, Inc, 2015; pp 23–32.
- [266] Byrappa. K, & Yoshimura .M. In Handbook of Hydrothermal Technology (Second Edition), Hydrothermal Technology for Nanotechnology—A Technology for Processing of Advanced Materials; **2013**; pp 615–762.
- [267] Byrappa, K., & Yoshimura, M. In *Handbook of Hydrothermal Technology, A Technology* for Crystal Growth and Materials Processing; **2001**; pp 1–52.
- [268] C.Helgeson, H. Amercian J. Sci. 1969, 267, 729–804.
- [269] Rabenau, A. Angew. Chem. Int. Ed. Engl. 1985, 24 (12), 1026–1040.
- [270] Bruker. ApexII.Bruker AXS Inc., Madison, Wisconsin, USA. 2012.

ROYAUME DU MAROC جامعة محمد الخامس - الرباط - RABAT - الرباط - Faculté des sciences كلية العلوم

CENTRE D'ETUDES DOCTORALES - SCIENCES ET TECHNOLOGIES

Résumé

Les travaux réalisés dans le cadre de cette thèse portent sur l'élaboration, la caractérisation et la valorisation de nouveaux phosphates de cation mono, bi et trivalent.

Par réaction de diffusion à l'état solide nous avons pu isoler sous forme de monocristaux les nouveaux phosphates $A_2Zn_2Fe(PO_4)_3$ avec (A=Na, Ag) de type Alluaudite, $MZn_2Fe_4(PO_4)_6$ avec (M = Zn, Cd) de type Howardevansite et CaZn_2Fe(PO_4)_3. Aussi, nous avons réussi la synthèse des monocristaux relatifs aux nouveaux phosphates $AgSr_4Cu_{4.5}(PO_4)_6$ et SrFe(HPO_4)(PO_4) par la méthode hydrothermale. La détermination structurale de ces phases a été entreprise en exploitant les données de diffraction des rayons-X (DRX) sur monocristal. Nous avons, également élaboré les phosphates $AgSr_4Cu_{4.5}(PO_4)_6$, $Na_2Zn_2Fe(PO_4)_3$, CaZn_2Fe(PO_4)_3 et CdZn_2Fe_4(PO_4)_6 sous forme pulvérulente par diffusion à l'état solide. Ces dernières phases ont été examinées par microscopie MEB-EDS et par spectroscopie vibrationnelle Raman et Infrarouge.

Mots-clefs: Phosphate, Alluaudite, Howardevansite, synthèse hydrothermale, synthèse par diffusion à l'état solide, diffraction de rayons X, structure cristalline.

Abstract

The work carried out within the framework of this thesis deals with the elaboration, the characterization and the valorization of new mono, bi and trivalent cation phosphates.

By solid state diffusion reaction we have been able to isolate as single crystals the new Alluaudite-type phosphates $A_2Zn_2Fe(PO_4)_3$ with (A = Na, Ag), $MZn_2Fe_4(PO_4)_6$ with (M = Zn, Cd) Howardevansite-type and $CaZn_2Fe(PO_4)_3$. Also, we succeeded in the synthesis of single crystals related to the new phosphates $AgSr_4Cu_{4.5}(PO_4)_6$ and $SrFe(HPO_4)(PO_4)$ by the hydrothermal method. The structural determination of these phases was undertaken by exploiting single-crystal X-ray diffraction (XRD) data. We have also synthesized the phosphates $AgSr_4Cu_{4.5}(PO_4)_6$, $Na_2Zn_2Fe(PO_4)_3$, $CaZn_2Fe(PO_4)_3$ and $CdZn_2Fe_4(PO_4)_6$ in powder form by solid state diffusion. These phases were examined by SEM-EDS microscopy, Raman and Infrared vibrational spectroscopy

Key Words: Phosphate, Alluaudite, Howardevansite, hydrothermal synthesis, solid state diffusion synthesis, X-ray diffraction, crystal structure.

Année universitaire : 2019/2020

☑ Faculté des Sciences, avenue Ibn Battouta, BP. 1014 RP, Rabat –Maroc
☎ 00212 (05) 37 77 18 76 = 00212(05) 37 77 42 61; http://www. fsr.um5.ac.ma