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Résumé
Les nanoparticules magnétiques ont été largement étudiées pour leurs applications variées,

allant du stockage d’information aux applications biomédicales. Cette multitude de fonctionnalités des
nanoparticules magnétiques est due à leurs tailles nanométriques qui génèrent des phénomènes atypiques.
Dans ce contexte plusieurs travaux théoriques et expérimentaux ont été consacrés à l’exploration des
propriétés magnétiques de ce type de matériaux. Cependant, plusieurs problèmes ne sont pas encore
résolus, en particulier la nature des interactions intra et inter-nanoparticules ainsi que les différentes
morphologies des nanoparticules.

Cette thèse porte sur l’étude des propriétés magnétiques des nanoparticules en fonction de
la température, à l’aide de la simulation numérique Monte et Carlo. Les effets de la dispersion, la
morphologie des nanoparticules, les interactions surface-Cœur intra-nanoparticule et les interactions
entre les nanoparticules ont été étudiés pour différentes tailles. Ainsi pour des nanoparticules cubiques, la
température de critique, l’aimantation rémanente, les champs coercitifs et le cycle Hystérésis, dépendent
fortement, des couplages d’échange, de l’anisotropie magnétique et de la taille des nanoparticules.
De plus la température de compensation prend lieu pour des valeurs bien précises des interactions
magnétiques surface-cœur et entre particules, en bon accord qualitatif avec les travaux expérimentaux.

Mots clés : Nanoparticules magnétiques, nanocubes ,propriétés magnétiques, modèle d’Ising,effets
de taille, diagrammes de phases, simulation Monte Carlo.
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Abstract
Magnetic nanoparticles were widely studied for their varied applications, ranging from information
storage to biomedical applications. This multitude of functionalities of magnetic nanoparticles is due
to their nanometric sizes, which generate atypical phenomena. In this context, several theoretical and
experimental works have been devoted to the exploration of the magnetic properties of this type of
material. However, various problems have not yet been solved, in particular the nature of the intra- and
inter-nanoparticle interactions as well as the different morphologies of the nanoparticles.

This thesis focuses on the study of the magnetic properties of nanoparticles as a function of
temperature, using numerical Monte Carlo simulation. The effects of dispersion, the morphology of the
nanoparticles, the intra-nanoparticle interactions and the interactions between the nanoparticles have
been studied for different sizes. Thus, for cubic nanoparticles, the critical temperature, the residual
magnetization, the coercive fields and the Hysteresis cycle strongly depend on the exchange couplings,
the magnetic anisotropy and the size of the nanoparticles. Moreover, the compensation temperature
takes place for very precise values of magnetic interactions Core-Shell and between particles, in good
agreement, qualitatively, with the experimental works.

Keywords : Magnetic nanoparticles, nanocubes, magnetic properties, Ising model, size effects,
phases diagrams, Monte Carlo simulation.
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Résumé détaillé
Au cours de ces deux dernières décennies, l’étude des matériaux à structures nanométriques a connu

un intérêt grandissant en raison de leurs nombreuses propriétés physiques et applications technologiques,
qui sont en général plus intéressantes que celles des matériaux massifs. Les nanoparticules magnétiques
représentent un secteur d’innovation technologique pour la fabrication des dispositifs nanométriques fonc-
tionnalisés. Elles sont véritablement devenues des briques élémentaires dans l’élaboration des nouvelles
technologies. Ce qui ressort de la plupart des études est que le nanomonde recèle des surprises liées à
l’effet de la taille qui conduit à avoir une augmentation du rapport surface-volume. En effet Leurs struc-
tures atomique et électronique dépendent de leur taille et présentent une évolution intermédiaire entre les
deux états extrêmes de la matière, l’atome et le solide massif, ce qui entrâıne l’apparition de propriétés
physiques (magnétiques, optiques, etc. . . ) très impressionnantes. Le domaine des nanotechnologies peut
se vanter d’être l’un des rares à réunir des scientifiques issus de très nombreux domaines (physiciens,
biologistes, médecins, chimistes etc...).

Vu le progrès de la science, la nanotechnologie est devenue très importante, car elle utilise la
manipulation de la matière à une échelle dans laquelle les matériaux présentent des caractéristiques et
fonctionnalités différentes : Les nanosciences se sont concentrées d’une part sur de nouveaux concepts et
sur la recherche fondamentale à savoir la physique pour générer des nanoparticules avec des nouvelles
fonctionnalités. D’autre part, la chimie pour la génération de nanoparticules avec des propriétés adaptées
via différentes méthodes de synthèse. Les activités de recherche sur les nanoparticules les plus actives
dans le monde comprennent des études fondamentales pour la génération, le traitement, la caractérisation
et la modélisation; recherches sur des nanoparticules magnétiques; études sur les particules métalliques
et composites; études et techniques d’auto-assemblage.

Depuis les travaux pionniers de Frenkel et Dorfman, les propriétés atypiques des nanoparticules
magnétiques n’ont cessé de passionner les scientifiques de tout horizon, les progrès réalisés dans les
approches expérimentales de même que les progrès en simulation numérique liés aux performances crois-
santes des moyens informatiques ont permis des avancées significatives pour caractériser des systèmes
à l’échelle atomique. Les progrès dans ce domaine ont eu un impact technologique majeur pour des
applications très variées, telles que: la spintronic, Le stockage d’information, la biotechnologie, capteurs
magnétiques, le traitement et le diagnostic des maladies. .. et s’étendent à tous les domaines scientifiques.
De plus, la complexité croissante de ces applications entrâıne la conception de nouveaux nanomatériaux
et ainsi l’invention de nouvelles générations de nanoparticules magnétiques en terme de structure, taille
propriétés physiques. Par exemples, les nanoparticules magnétiques monodomaines à anisotropie iniaxi-
ale pourraient permettre de stocker plusieurs petabit 1015 bit par cm2 dans un avenir proche .

Dans le domaine des biotechnologies, les particules magnétiques sont de plus en plus utilisées dans
diverses applications telles que l’hyperthermie magnétique qui est né au sein du domaine biomédical
précisément pour lutter contre le cancer. Face à la Résistance à la mort cellulaire des tumeurs et à la dif-
ficulté de les guérir, en effet les chercheurs ont besion d’innover de nouveaux techniques destructeurs à la
palette de traitements déjà disponibles, tels que la chirurgie, la chimiothérapie, la radiothérapie, etc. alors
Les nanoparticules magnétiques, apparaissent comme des plateformes multifonctionnelles extrêmement
prometteuses. De plus, sous l’action du champ magnétique appliqué, les nanoparticules magnétiques ont
une sensibilité magnétique unique, Elles peuvent être utilisées par exemple en imagerie médicale, comme
agent de contraste permettant de faciliter l’identification de tumeurs, elles peuvent également servir de
vecteurs transportant des médicaments à des endroits spécifiques du corps (drug delivery), ou encore en
hyperthermie magnétique, afin de détruire ou fragiliser des cellules cancéreuses.. En surface, les nanopar-
ticules magnétiques peuvent posséder une excellente biocompatibilité, ce qui convient aux applications
médicales. Alors pour une fonctionnalisation biologique de leurs surfaces, les particules magnétiques
peuvent être recouvertes d’espèces biologiques ou chimiques greffées à leurs surfaces, ce qui leur permet
d’interagir et se lier avec une entité biologique ciblée, offrant ainsi la possibilité d’un ”marquage” d’espèces
biologiques.
Des travaux de recherche récents portant sur des capteurs magnétiques et des nanoparticules ayant des
applications en biomédecine et leur détection par des capteurs magnétiques sous-tendent ces efforts, Il
existe plusieurs types de techniques de détection magnétique, notamment les capteurs spintroniques basés
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sur la magnétorésistance géante (GMR), la magnétorésistance à tunnel (TMR).
Dans la littérature, la majorité des nouvelles technologies dans les différents domaines nécessite de savoir
synthétiser de tels objets. Actuellement, les efforts sont dirigés vers le contrôle de l’élaboration et de
la synthèse de ces nanoparticules de façon à piloter leurs propriétés. Il est alors nécessaire de créer et
optimiser des protocoles de synthèse de manière à avoir des objets de taille nanométrique contrôlée, avec
une multitude des propriétés magnétiques dues à leurs tailles. En plus de la maturité des domaines des
nanotechnologies qui engendrent des matériaux avec des mesures spécifiques, les études expérimentales
apportent aussi des nouveaux défis concernant la synthèse de ces matériaux avec les normes désirées,
et cela nécessite aussi l’accompagnement d’un progrès dans la modélisation de tels systèmes et la car-
actérisation des nanoparticules. En effet, il est indispensable de concevoir et simuler des modèles de
spins permettant de tirer pleinement profit de la richesse des propriétés que recèlent ces modèles, cela va
relativement réduire les couts des synthèses sachant qu’a priori, ces études théoriques vont apporter aux
expérimentateurs une vision claire en terme de contrôle des tailles et des propriétés des systèmes en se
basant sur des résultats théoriques.

En faisant référence à la problématique suscitée ci-dessus et pour contribuer à la formulation de
ces problèmes. Nous pouvons citer les objectifs de cette thèse suivants : Nous proposons d’élaborer des
modèles de spins qui portent sur des nanoparticules magnétiques avec des formes cubiques qu’ils soient en
interaction ou isolés et avec différentes morphologies. L’étude théorique est faite en utilisant les méthodes
de simulation Monte Carlo. Nous allons chercher à explorer les propriétés magnétiques de ce type des
nanoparticules et les manipuler.

L’objectif de cette thèse était d’étudier le comportement des propriétés magnétiques des nanopar-
ticules isolées ou en interaction, Tout au long de cette étude nous avons considéré des nanoparticules
cubiques possédant une anisotropie uniaxiale. Nous avons cherché à contrôler les propriétés magnétiques
d’ensemble des nanoparticules .les effets des différents facteurs ont été considérés qu’ils sont intrinsèques
comme la constante d’anisotropie ou extrinsèques comme la température et le type d’excitation externe.

En premier lieu nous avons présenté les généralités sur le magnétisme et les nanoparticules magnétiques,
nous avons discuté de leurs propriétés générales et magnétiques et leurs intérêt dans le domaine biomédicale,
le stockage d’information et les capteurs magnétiques grâce à ces dites propriétés et leurs structures et
morphologies. Nous avons ensuite présenté et décrit le modèle hamiltonian d’Ising que nous avons utilisé
dans nos travaux .Nous avons également décrit la méthode Monte Carlo .Les fondamentaux concernant
Monte Carlo ont été exposé , allant de principe d’application aux calculs de mesures à l’équilibre en pas-
sant par la mise en œuvre de l’algorithme de Metropolis. Nous allons maintenant résumer les principaux
résultats chapitre par chapitre.

Dans le chapitre 4, nous avons étudié les propriétés magnétiques, les diagrammes de phases
de l’etat fondamentale, à l’examen des diagrammes de phases à l’état fondamental et à l’exploration
de l’aimantation partielle ou totale, de la susceptibilité et de la chaleur spécifique en fonction de la
température et le comportement critique de la simple pérovskite P bV O3 avec spin S = 1/2 qui est un
matériau important utilisé comme composants dans les appareils électronique. L’étude est faite par la
simulation Monte Carlo en utilisant le modèle d’Ising 3D. En balayant sur les différentes valeurs réduites
des interactions d’échange et du paramètre réduit de l’anisotropie magnétique. Il a été montré que les
diagrammes de phases du système dépendent des paramètres mentionnés ci-dessus. Ces résultats cor-
respondent à l’élaboration et à la discussion des phases stables. De plus, la température de transition
déterminée dans cette étude (TN 182K) est en bon accord avec la valeur expérimentale TN = 190K. La
transition de température augmente également avec l’augmentation de la valeur absolue des interactions
de couplage d’échange (Jab, Jc). En outre, en étudiant les effets de la taille du système, nous avons
constaté que le pic de la susceptibilité magnétique augmente lorsque la taille du réseau augmente. Pour
étudier le comportement critique du matériau mis en évidence, nous avons été amenés à calculer les ex-
posants critiques correspondants à la longueur de corrélation, à l’aimantation totale et à la susceptibilité
magnétique.

Dans le chapitre 5, en utilisant la simulation de Monte Carlo, nous avons étudié un nanocube
d’Ising à spin (5/2; 3/2; 5/2) en trois couches. Nous avons étudié les effets des couplages d’échange,
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le paramètre de l’anisotropie, le champ magnétique externe, la taille du rapport d’épaisseur r sur les
propriétés magnétiques et thermodynamiques. Les diagrammes de phases sont obtenus pour différents
couplages d’échanges réduits J2/J1 (interaction σ − σ), J3/J1 (interconnexion entre couches σ − S) et
paramètre réduit d’anisotropie D/J1, où les couplages d’échange entre spins σ et entre les spins S respec-
tivement J1, J2 sont considérés comme ferromagnétiques, tandis que le couplage d’échange intercouche
J3 est considéré comme antiferromagnétique. Selon les résultats, il est démontré que le système peut
afficher le comportement de compensation. Pour le système actuel, on vérifie si le point de compensation
(Tcom) apparâıt dans le système, en fonction de l’existence du couplage d’échange critique J2/J1 et du
paramètre anisotrope D/J1.

Dans le chapitre 6 dans la première section nous avons étudié les effets de taille et les paramètres
de couplage et d’anisotropie sur les propriétés magnétiques des nanoparticules ferromagnétiques d’Ising
spin-1.Le système étudié a la particularité d’être un cube de Rubik composé de nanocubes identiques
.Ceci a été réalisé en utilisant la simulation de Monte Carlo dans le cadre du modèle d’Ising 3D . Il a
été démontré que les diagrammes de phases dépendent des paramètres du système et sont affectés non
seulement par la taille du nanosystème, mais également par sa taille. En effet, en fonction du couplage
d’échange réduit, deux régimes ont été observés où la température critique réduite diminue et augmente,
respectivement. Le système présente les transitions de phases du second ordre à des températures finies.
De plus, On a appliqué un champ magnétique externe et nous étudions les boucles d’hystérésis pour les
basses valeurs sélectionnées de la température. On a constaté que la réponse de l’aimantation à la force du
champ magnétique montre des comportements d’hystérésis avec des boucles simples où le champ coercitif
magnétique réduit s’amincit jusqu’à disparâıtre lorsqu’on passe de t = 0,1 à t = 5. Enfin, la variation
du champ coercitif en fonction des tailles a mis en évidence un phénomène bien connu de nanomatériaux
magnétiques à interactions dipolaires, où le champ coercitif augmente, atteint un maximum puis diminue
à zéro lorsque la taille des nanoparticules diminue. Cependant, dans notre cas, nous n’avons pas trouvé de
champ coercitif réduit à zéro pour les petites tailles. Nous avons attribué ces phénomènes à la structure
et à la nature de notre système. Nous avons trouvé que nous résultats sont qualitativement en accord
avec d’autres travaux.
Dans la deuxième section et dans le même contexte des nanocubes ,on a étudié les propriétés magnétiques
de châıne des nanocubes magnétiques (NCCM) de spin-1 ont été étudiées par les simulations de Monte
Carlo. Les propriétés magnétiques ont été déterminées en faisant un balayage des valeurs des paramètres
du système. Les températures de transition réduites sont établies pour différentes tailles de cube de NCCM
(Lc * Lc * Lc). Il en ressort que la température de transition réduite augmente avec l’augmentation de
la taille du cube (Lc). Comme deuxième résultat, la magnétisation par rapport à l’anisotropie réduite
pour différentes valeurs de l’interaction d’échange réduite, de la taille du NCCM, du champ magnétique
externe réduit ainsi que de la température réduite. Les cycles d’hystérésis magnétique sont trouvés
pour différentes valeurs de température réduite, différentes valeurs d’interaction d’échange ainsi que
pour différentes anisotropies réduites. Le champ magnétique coercitif augmente avec l’augmentation du
couplage d’échange réduit et de l’anisotropie réduite, tandis que le champ coercitif diminue lorsque la
température réduite augmente.

Dans la troisième section, nous avons étudié les propriétés magnétiques d’un nanosystème ayant
une structure de cube de Rubik constitué par des nanocubes de morphologie core/shell, avec spin-1/2
dans le core et spin-3/2 sur le Shell. Ceci est simulé par la méthode Monte Carlo en utilisant le modèle
Ising 3D basées sur un algorithme de Metropolis. Nous avons étudié les effets des paramètres de système
sur les diagrammes de phase pour différentes tailles de système et les comportements d’hystérésis lors de
l’application du champ magnétique externe. On a observé que les couplages d’échange et l’anisotropie
magnétique affectent les diagrammes de phase. L’augmentation des interactions d’échanges positifs en-
tre les spins core et shell, sur un et entre nanocubes d’autre part, a la particularité d’augmenter la
température critique, en favorisant la phase stable (3/2, 1/2). La même phase est également avantagée
par valeurs positives de l’anisotropie magnétique. Pour chaque phase on a présenté la configuration des
spins de notre système étudié. De plus, l’augmentation de la taille du système a pour effet d’augmenter
la température critique, comportement typique observé avec nanosystèmes. L’étude du comportement
par hystérésis a montré que les couplages d’échange et l’anisotropie magnétique contrôlent la coercivité.

Finalement, ce travail démontre qu’il est possible de contrôler l’ordre magnétique dans les NPS
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cubiques en jouant sur les tailles et les nombres des nanoparticules. De plus, les résultats obtenus pourront
servir comme point de comparaison pour des calculs théoriques sur ces types de systèmes afin de mieux
comprendre la relation entre leurs propriétés magnétiques et les facteurs structuraux et de la taille .
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General introduction

Over the past two decades, there has been an increasing interest in the study of nano-structured mate-
rials [1–5] thanks to their many physical properties and technological applications, which are generally
more interesting than those of solid materials. In fact, the magnetic nanoparticles are still a field full of
potentials because of the fact that technological innovations are most likely to be made in this field for the
fabrication of functionalized nano-metric devices. They have truly been seen as the basic stepping stones
to the development of new technologies [1,6], and this fact is what the wide majority of research studies
have proved through finding that the nano-world contains astonishing surprises in terms of the effect of
size; and this, in turn, leads to an increase in the surface-to-volume ratio. Their atomic and electronic
structures depend on their size [7–9]and at the same time present an intermediate evolution between the
two extreme states of matter, the atom and the massive solid. Indeed, this leads to the appearance of
very impressive physical properties (magnetic, optical, etc.) [10–14]. So, the field of nanotechnology is
undoubtedly one of the few sectors able to bring together scientists from many fields (physicists, biolo-
gists, doctors, chemists etc.) [15–18].

Given the progress of science, nanotechnology has become very important because it uses the
manipulation of matter on a scale in which materials have different characteristics and functionalities:
nanosciences have focused on one hand on the research in fundamental physics to study and explore other
phenomena for nanoparticles that will lead to new features. On the other hand, the development and the
synthesis of nanoparticles with properties adapted to the requirements of technological applications via
different synthesis methods.in the same context, one of the most active research activities in the world
has been devoted to the synthesis, fundamental study and modeling of so - called magnetic nanoparti-
cles [19–22].

Since the pioneering works of Frenkel and Dorfman [23], the atypical properties of magnetic
nanoparticles have continued fascinating scientists from all different fields. For instance, the progress
made in both experimental approaches and numerical simulation which is related to the increasing per-
formances of computing resources have led to significant advances in characterizing systems at the atomic
scale. The headway made in this field has had a major technological impact on a wide range of applications
such as: Spintronic [24–26], information storage [27–29], biotechnology [30–33], magnetic sensors [34–36],
disease treatment and diagnosis [37, 38]. Actually, this impact concerns all the scientific fields. In addi-
tion, the increasing complexity of these applications leads to the design of new nano-materials and as a
result this caused the emergence of new generations of the magnetic nanoparticles in terms of structure,
size and physical properties: Monodomain magnetic nanoparticles with iniaxial anisotropy is enabled to
store several petabit (1015 bits per cm2 ) in the near future .

In the field of biotechnology, the magnetic nanoparticles are increasingly used in various applica-
tions such as the magnetic hyperthermia [39–42] which was born within the biomedical field with precisely
the aim to fighting against cancer. Faced with the resistance to cell death of tumors and the difficulty
of curing them, researchers need to innovate new effective and destructive techniques to be added to
the existing variety of already-available treatments, such as surgery, chemotherapy, radiotherapy, etc.
Besides, under the action of the applied magnetic field, the magnetic nanoparticles, which appear as
extremely promising multifunctional platforms, have a unique magnetic sensitivity in the sense that they
not only can be used, for example, in medical imaging [43–46] as a contrast agent to facilitate the iden-
tification of tumors, but also they can serve as vectors carrying drugs to specific areas of the body (drug
delivery) [47–49] . On the surface, the magnetic nanoparticles can have excellent biocompatibility that
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is suitable for medical applications [50,51] see Figure 1. For biological functionalization of their surfaces,
the magnetic particles can be covered with biological or chemical species grafted on their surfaces which
allow them to interact and to bind with a targeted biological entity, and in this way they provide the
possibility of ”marking” of biological species [52,53] .

Recent research on the magnetic sensors and nanoparticles with applications in biomedicine and
their detection by the magnetic sensors crystallizes the huge efforts made in this respect [54, 55]. There
are several types of magnetic detection techniques, including spintronic sensors, which are based on the
giant magneto-resistance (GMR) [56,57], and the tunnel magneto-resistance (TMR) [58,59].

In the literature, the majority of new technologies in the different fields require the miniaturization
of such objects. Currently, efforts are directed towards control of the elaboration and synthesis of these
nanoparticles so as to control their properties. It is then necessary to create and optimize synthesis
protocols in order to have objects of controlled nanometric size, with a multitude of properties magnetic
due to their sizes. In addition to the maturity of the fields of nanotechnology that generate materials
with specific measurements, experimental studies also bring new challenges regarding the synthesis of
these materials with the desired standards, and this also requires the accompaniment of a progress in
the modeling of such systems and the characterization of nanoparticles. Indeed, it is essential to design
and to simulate spin models allowing to take full advantage of the richness of the properties that these
models conceal, it will relatively reduce the costs of syntheses knowing a priori, these theoretical studies
will provide the experimenters a clear vision in terms of size control and properties of the systems based
on theoretical results.

Bearing in mind the problem raised above and as a contribution to the formulation of these prob-
lems, we would like to cite the following as the objectives of our thesis. Firstly, we propose to elaborate
spin models that deal with the magnetic nanoparticles with cubic forms that are either interactive or
isolated and with different morphologies. Secondly, the theoretical study is conducted using Monte Carlo
simulation methods. In order to explore the magnetic properties of this type of nanoparticles and to
manipulate them.

Besides the general introduction, this manuscript consists of two main parts so that we could meet
the different objectives set for this dissertation. The first presents a state of the art with the purpose
of presenting the theories and general properties of the magnetism of nanoparticles that will be used
throughout this thesis. To cover all the necessary points so as to understand the importance of the new
theoretical results obtained, this part consists of three chapters.

In the first chapter, we first introduce the history of magnetism along with its origin to set the
context of our research questions. Then, before our describing the different forms of magnetic energies
and the magnetic interaction that generates these energies, we deal with the different magnetic orders,
each with its definition and properties. Finally, the hysteresis behavior is the last element tackled with.

In the second chapter, which is dedicated to nano-magnetism, we introduce the notion of magnetic
nano-particles along with their properties and the phenomena related to atypical magnetic nanoparticles
vis-à-vis those of the massifs. Afterwards, we pay special attention to the anisotropy of the nanoparticles.
As a closing point of this chapter, we give a brief description of what is called core/shell type morphology
for the magnetic nanoparticles.

The third chapter is devoted to the introduction of Monte Carlo (MC) simulation methods. We
start with an introduction of some models of spins. Then, we present the basics of static MC simulation.
Finally, we describe some algorithms for numerically generating Ising model configurations while focusing
on the Metropolis algorithm.

For the second part, which is entitled ”contributions”, consists of three chapters. The first chapter
which represents the case of a massive system, we study the magnetic properties of perovskite PbVO3.
We through examining the effects of the couplings and size on the magnetization and susceptibility. Fi-
nally, we determine the critical coefficients.
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Figure 1: Scheme of the treatment strategy using magnetic nanoparticles [60]

The seconde chapter treats the case of an isolated magnetic nanocube with the combination of sev-
eral magnetic elements in the form of a sandwich. In fact, the study here is concerned with a nanocube in
multilayer magnetic form :two layers with spin-5/2 and a layer in the middle with spin-3/2 (5/2, 3/2, 5/2)
by concentrating on the anisotropy and coupling problems between the ferromagnetic and antiferromag-
netic layers that can induce hysteresis loop offsets or magnetization reversals in the applied magnetic
fields according to the processes which are sometimes complex. Also, we concentrate on the effect of the
layer thickness on the critical and compensation temperatures .

The third chapter is dedicated to the case of assemblies of nanocubes. In the first section we present
a theoretical study of the magnetic behavior of a set of ferromagnetic nanocubes in the form of a Rubik’s
cube, using the Monte Carlo method. Precisely, based on the Ising model, we simulate this set of the
magnetic nanocubes that all carry spin-1. First, we study the effect of the size and number of nanocubes
on the transition temperature of the system, by establishing phase diagrams for the different coupling
values. Then, we present a transition temperature phase diagram as a function of anisotropy parameter.
After that, we present the hysteresis behavior of the system under the effect of size. The second section
is limited to the study of a spin-1 system in the form of a nanocubes chain, through focusing on the effect
of anisotropy and size on the magnetic behavior of this system. Finally, the third section represents the
study of an assembly of magnetic nanocubes that are in interaction with a core / shell morphology.

This thesis ends with a concluding section where we recall the main results and then present some
perspectives which should constitute an interesting task for future investigations.
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Chapter 1

Magnetism background

1.1 Introduction
Since the dawn of time, magnetism intrigues the peoples and accompanies their history. Among the
Greeks, Aristotle attributes the first scientific discussions on magnetism to the pre-Socratic philosopher
Thales de Millet (600 BC). At the same time, the Chinese worked magnetite and made compasses for
divinatory geomancy, for example to determine the optimal position of tombs and palaces. The discovery
of a worked Olmec hematite suggests that this Central American people could also have used compasses
to orient their temples, nearly a millennium before the Chinese (< 1000 BC). The earliest treatises
mentioning the practical use of magnetism, especially for navigation, date back to medieval times: in
China (Shen Kuo, 1088), in Europe (A Neckam, 1190), then in the Arab world (1232). In 1269, the French
engineer Pierre de Maricourt wrote the first detailed treatise on magnetism, describing in particular the
laws of attraction and magnetic repulsion. From this date, all European explorers use the compass as a
guide in the discovery of unknown regions of the globe, starting with Marco Polo and his brothers during
their travels in China. Christopher Columbus follows suit 200 years later. As for LaPérouse, he will
baptize his flagship ”LaBoussole” in tribute to this tool, which has become indispensable to the sailor.

1.2 Mgnetic orders
Atoms in a massive magnetic material behave like little magnets, characterized by their magnetic mo-
ment. When a magnetic field (H) is applied, these elementary magnets orient themselves according to
the field and the material then acquires a magnetization M = χH (weak field) where χ is the magnetic
susceptibility 1 [62] .

The magnetic moments can be oriented in different ways depending on the magnetic behavior
of the material: diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic or antiferromagnetic see Fig-
ure 1.1 [63]. In the case of the magnetic materials where the atoms don’t interact with their neighbors, we
speak of the non-cooperative magnetism. Atoms have a spontaneous macroscopic magnetization which
is null.
There are two types of non-cooperative magnetism (Diamagnetism and Paramagnetism) :

1.2.1 Diamagnetism
The atoms have a zero permanent magnetic moment and acquire a weak moment induced in the presence
of field. Their magnetization, induced by the field, is very weak and antiparallel to the field. The
magnetic susceptibility χ, that is negative and of the order of 10−5, does not depend on the temperature
as illustrated in Figure 1.2 .

1The magnetic susceptibility χ is a dimensionless propor-
tionality constant that indicates the degree of magnetization
of a material in response to an applied magnetic field [61]

5
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Figure 1.1: The different types of magnetic behaviors [64]

Figure 1.2: In (a) Magnetization as a function of the external magnetic field and in (b) the susceptibility
as a function of temperature in the diamagnetic material.
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Figure 1.3: Magnetization as a function of the external magnetic field is on the left while the susceptibility
as a function of temperature is on the right in the paramagnetic material.

1.2.2 Paramagnetism
The atoms have a non-zero permanent magnetic moment, and align themselves parallel to the applied
field. The susceptibility χ is inversely proportional to the temperature T (Curie’s Law) [65]: χ = C/T ,
with C the Curie constant. χ is positive and of the order of 10−4 − 10−5 see Figure 1.3.

In the presence of interactions, the magnetic moments are spontaneously orientated in the absence
of an external field. There are three types of cooperative magnetic behaviors(Ferromagnetism,Antiferromagnetism
and Ferrimagnetism).

1.2.3 Ferromagnetism
The positive exchange interactions favor the parallel alignment of the magnetic moments of neighboring
atoms. The susceptibility, instead of becoming infinite at 0K as in a paramagnetic order, it becomes
infinite at a characteristic temperature, called Curie Temperature TC (Curie-Weiss Law). Below this
temperature, the interactions dominate the thermal agitation and spontaneous magnetization MS appears
in the absence of applied field.

1.2.4 Antiferromagnetism
Below a critical temperature TN (Neel temperature) an ordered state of the magnetic moments appears.
The moments are aligned in two equal and opposite magnetization subarrays, so that the total resultant
magnetization is zero. Above the temperature of Néel, the thermal agitation leads to a susceptibility
similar to that of a paramagnetic one.

1.2.5 Ferrimagnetism
Antiferromagnetism in which the carriers of moments are not equivalent. There is no further compensation
for the magnetization of two sub-lattices and, below the order temperature TC , spontaneous magnetization
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Figure 1.4: Variation of the inverse of the susceptibility according to the temperature of the different
magnetic behaviors [66]

appears. Above this Curie temperature, the magnetic order is broken by thermal agitation and the
material gradually regains a paramagnetic behavior.

1.3 Magnetic energies
We will now define the different magnetic energy terms used in the complete description of a magnetic
system. The minimization of the total resulting energy makes it possible to predict the stable (funda-
mental) state of the system. We will describe in the following sections the formation of magnetic domains
resulting from the competition of these energy terms.

The main distinction to be made between these energies is the distance they act on: very locally
(short range) and therefore concern the nearest atomic sites, or at long range, they then influence the
entire system. We will first describe the different terms of exchange interaction, then we will talk about
the Zeeman energy of the system responding to the application of a magnetic field. Next, will describe
the dipolar interactions within the system and will eventually describe the different terms falling within
the expression of the magnetic anisotropy energy of the system.

1.3.1 Exchange energy
1.3.1.1 Direct symmetric exchange (isotropic)

That comes from the Coulomb repulsion between two electrons located on neighboring atoms (or on the
same atom), and which becomes dependent on the spin state (up or down) because of the Pauli exclusion
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principle 2. It is a very short-range interaction that is responsible for the alignment of the magnetic
moments and may be used, for example, to obtain a ferromagnetic phase.

The order of magnitude, the sign and the range of the interaction are dependent on the atoms and
the crystallographic structure. Most commonly, in a phenomenological way, this interaction can always
be written in the form:

eex = −1/2µ0
∑

ij
i ̸=j

αij
−→mi

−→mj (1.1)

Where αij are interaction coefficients between magnetic moments.

In the case of 3d transition metals, we see a special case where the orbital momentum µl
3 is

minimized because of the crystalline field of the solid. This is called the extinction of the orbital moment.
The spin-orbit 4 type interaction is then very weak or non-existent. The resulting magnetic moment
therefore corresponds to the only moment of spin 8. The exchange energy is then written:

eexspin = −
∑

ij
i̸=j

Jij
−→
S j

−→
S j (1.2)

where Jij is the exchange constants between two neighboring atoms . This value is also called the
exchange integral because it is proportional to the Orbital overlap 5, and vanishes if the overlap is nonex-
istent. It therefore depends on the distance between atoms and the type of orbitals that contribute to
magnetism. When J > 0, a parallel alignment of the spin moments is favored, leading to a ferromagnetic
configuration, J < 0 gives a configuration antiferromagnetic (when other energy terms are neglected).

The exchange of energy of a magnetic solid taht has a volume V is expressed in continuous form:

Eexvol = AexV Ms((−→∇mx)2 + (−→∇my)2 + (−→∇mz)2) (1.3)

with mx,y,z the reduced component of the magnetic moment in the three directions of space and

Aex the exchange constant of the material considered by J/m (Aex ≈
NJS2

2a
[68] ,with N the number

of nearest neighbors, and S the total quantum number of spin). It is a function of the exchange integral
J, but also of the distance between the moments, of the crystallographic structure of the solid, and the
number of nearest neighbors.

This type of exchange is described as isotropic (or direct) exchange. For cases where the direct
overlap is no longer possible due to the distance of the spins (then closer to the atomic nucleus), an
indirect exchange interaction can maintain a certain magnetic order. by summarizing briefly the theory
of this type of exchange : These two types of exchange interactions (direct and indirect) are called sym-
metrical interactions because energy is defined as the scalar product of two neighboring spins.

2The Pauli exclusion principle, discovered in 1925, states
that no two identical fermions (e.g. electrons) may occupy
the same quantum state. It was discovered before the Quan-
tum mechanics [67]

3the trajectory (called orbital) of each of the electrons
around the nucleus can be seen as a current loop inducing
an orbital magnetic moment

4In quantum mechanics, the spin-orbit interaction qual-
ifies any interaction between the spin of a particle and its
motion

5Orbital overlap, i.e., mutual sharing of one or more elec-
trons, can occur when two atoms are in close proximity to
each other. The bonding resulting from such overlap is re-
ferred to as covalent bonding.
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We will see later that it is also possible to define an exchange of anti-symmetric type, whose the
energy (discrete) will depend on the vector product of two spins.

1.3.1.2 Indirect symmetric exchange

As mentioned above, this type of exchange occurs when the overlap of orbitals is impossible. The mag-
netic order is then realized step by step. Indirect symmetric exchange is at the origin of of various
types of interactions such as super-exchange, connecting the electrons of two magnetic atoms through
hybridization with oxygen orbitals (in the case of insulating magnetic compounds), or the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction.

It is this term RKKY that can explain the exchange interaction in rare-earth magnetic materials.
In these materials, the orbitals responsible for magnetism are 4f orbitals whose spatial expansion is very
small and therefore no direct overlap with neighboring atoms is allowed. The exchange interaction is
therefore done via conduction electrons located on spatially larger bands (s, p and d) which can therefore
move from one atom to another. These electrons are polarized in contact with the field induced by
the electrons of the orbitals 4f and then an indirect exchange interaction with the electrons 4f of the
neighboring sites follows. It has been observed that the sign of this interaction varies with the distance
between the different sites, thus causing an oscillating character of ferromagnetism. This indirect exchange
interaction was then generalized to the multilayer type system connecting the electrons of two magnetic
materials via the conduction electrons of a nonmagnetic metal.

1.3.1.3 Anti-Symmetric Exchange: Interaction of Dzyaloshinskii-Moriya

When the magnetic material is in contact with a highly couplage spin-orbit metal (SOC), and thus does
not exhibit inversion symmetry (interface), the inter-atomic exchange described above can also possess
an anti-symmetric component: the interaction of Dzyaloshinskii-Moriya (DMI). It was introduced by
Dzyaloshinskii in 1958 [69], who advanced the thesis that there was a direct link between the magnetic
configuration of a system and its crystallographic structure. For this, he was interested in the study of
certain compounds, such as α − Fe2O3 hematite, for which, despite their antiferromagnetic configuration
(J < 0), a low permanent magnetic moment was measured at low temperatures. This weak magneti-
zation component has been attributed to the breaking of symmetry within this solid. In 1960,Moriya
later showed how to calculate this type of additional interaction [70]. He has considered it the expression
of a super-exchange interaction by adding a spin-orbit interaction expressed in this crystal structure.
Dzyaloshinskii and Moriya had described this interaction as anisotropic super-exchange before it took
their names; it was as:

eDMI = −
∑

ij

Dij
−→
S i

−→
S j (1.4)

where Dij being the vector DMI. Therefore this energy is minimized for orthogonal spins between
them, this interaction therefore promotes non-collinear alignments of the magnetic moments. This inter-
action can be expressed in bulk materials whose crystalline structure does not have inversion symmetry.
In this case, the effect is noticeable in each of the cells of the lattice. But it can also be expressed in
the case where the interfacing between films breaks the symmetry. In this case, we can usually express
the vector DMI as: −→

D ij = Dij(−→n × −→r ij). With −→r ij the unit vector between the two sites i and j (still
depending on the structure crystalline) and −→n is the normal vector on the magnetic surface. Therefore
This DMI vector is as function as sites considered.

When the DMI dominates the other contbutions, this interaction imposes a direction of rotation
of the spin moments which is fixed according to the considered interface. This leads to chiral magnetic
orders within the structures such as the state of periodic domains in stripes, for which the magnetization
everywhere has the same direction of rotation, or the skyrmionic state.
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1.3.2 Magnetocrystalline anisotropy energy
In a material magnetically ordered , there is an energy that directs the magnetization (localized magnetic
moments) along certain axes defined crystallographic properties, called directions of easy magnetization.
This energy is called magnetocrystalline energy or anisotropy energy .

If we consider a crystal of cubic symmetry, the magnetocrystalline anisotropy energy Ecrist is given
by the following formula:

Ecris = K1(α2
1α2

2 + α2
2α2

3 + α2
3α2

1) + K2α2
1α2

2α2
3 + ... (1.5)

with Ki the constants of crystalline anisotropy which depend on the type of material and the
temperature, and α1,2,3 the cosines of the angles that the magnetization does with the three axes of the
reference linked to the cube.

1.3.3 Zeeman energy

When a magnetic material of moment −→m is subjected to an external magnetic field −→
H , a torque is exerted

by −→
H on the vector −→m , corresponding to a density of energy:

eZ = −µ0
−→m.

−→
H (1.6)

From a microscopic point of view, the magnetic field −→
H acts on the moments µl and µS and reduces the

energy of the configurations for which these moments are oriented in the same direction as the applied
field. In addition, the energy of the moment configurations opposite to the applied magnetic field is
increased. For a volume sample of magnetization −→

M this energy is written thenEZ = −V µ0
−→
M.

−→
H with

V is the volume of the magnetic material.

1.3.4 Dipolar energy
Through the Zeeman interaction term we obtain the expression of dipolar energy between two magnetic
dipoles −→mi and −→mj situated at ri and rj respectively :

Ed(−→r ij) = −−→mj
−→
B i(−→r j) (1.7)

Where :

Bi(−→r j) = µ0

4π

1
r3

ij

[
3(−→mi.

−→r i).−→r i

r2
ij

− −→mi

]
(1.8)

Bi(−→r j) is the magnetic field produced at rj by the dipole mi ,rij =|| −→r ij || , −→r ij = −→r j − −→r i and
µ0 = 4π.10−7.

The equation (1.7) of expression of the dipole-dipole interaction become:

Ed(−→r ij) = µ0

4π

1
r3

ij

[
−→mi.

−→mj − 3(−→mi.
−→r ij).(−→mj)

r2
ij

]
(1.9)

The dipolar energy Ed, or shape energy (or magnetostatic or demagnetizing energies), describes
the interaction between the magnetization distribution in the magnetic material, with the field induced by
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this magnetization. This field is locally opposed to magnetization and is commonly called demagnetizing
field.

This interaction is very dependent on the orientation of the magnetization with respect to the
shape of the system, and is equivalent to anisotropy in the case of particular dimensions. This is called
anisotropy of form. In the case of thin films, for example, the thickness of the material is often less than
its lateral dimensions and the demagnetizing field induces ”magnetic charges” on the interfaces.

1.4 Hysteresis loop
1.4.1 Definition
Hysteresis loop is the response curve of magnetic materials, at through which, they keep the memory
of all their magnetization states previous through the elementary domains. It is J.A.Ewing who has
shown this specific behavior in the case of Iron, and that he called it hysteresis which means delay of
the effect on the cause (here, the magnetization on the field applied) [71, 72]. The hysteresis cycle of a
ferromagnetic material depends on the mobility of the Bloch’s walls 6, itself is a function of magnetic
energies and the applied field. So it can be considered as a characteristic of the material and in any
case a well detailed mathematical model is necessary. Hysteresis is the delay in demagnetization and the
deduction of the characteristic of the magnetic induction B (H) of the magnetic material. So the hystere-
sis cycle is the plot of the induction as a function of the applied external H field as illustrated in Figure 1.5.

B = µ0(H + M) = µ0(1 + χ)H = µH (1.10)

Where µ0 represents the magnetic permeability of of free space .

1.4.2 Curve of first magnetization
When applying a magnetic field outside this material, the magnetic domains whose orientation is close
to that of H increase at the expense of those whose orientation is opposite to that of H. The Bloch’s
walls are moving therefore in the material. Each cycle of hysteresis is defined by 4 parameters. We will
define each of these parameters by referring to the curve (Figure 1.5):

• Saturation field(HS)
When applying a external magnetic field on this material, Magnetic domains whose orientation is
close to that of H increase at the expense of those whose orientation is opposite to that of H. The
Bloch’s walls are moving therefore in the material. At the limit, when the external magnetic field
reaches a critical value HS , the single crystal consists of only one domain ferromagnetic whose
orientation is the same as that of H.

• Saturation magnetization(MS)
The saturation magnetization MS represents the maximum value reached when the applied magnetic
field is strong (see Figure 1.5) All the magnetic moments are then aligned in the direction of the
applied field and we observe a saturation on the magnetization curve.

• Remanence magnetization (Mr)
When the intensity of the H field decreases to zero, the magnetic domains tend to reappear (AB
curve, Figure 1.5) however, since the displacement of Bloch’s walls is not instantaneous because of
magnetic anisotropy; a non-zero magnetization Mr manifests in the material (point B, Figure 1.5
). This value Mr is called remanent magnetization.

6the boundary between two domains in a magnetic mate-
rial marked by a layer wherein the direction of magnetization
is assumed to change gradually from one domain to the other
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Figure 1.5: Magnetization curve (hysteresis cycle) of a ferromagnetic material (ABCDEFA)(in dotted
lines). Curvature of the M (H) curve for a material initially demagnetized (or first magnetization curve) in
a continuous line (OA). Different quantities characterize a magnetically tick: the saturation magnetization
Ms, the coercive field Hc and the remanent magnetization Mr

• Coercive field (HC)
We must actually apply a magnetic field opposite to that of the field of the first magnetization
so that the magnetization is zero (curve BC, Figure 1.5). The value of the field which generates
this zero magnetization corresponds to the coercive field. The value of this field allows again to
distinguish the large classes of ferromagnetic materials. Indeed, a soft material will have a low
coercive field value (typically < 1mT ), while it will be very high for a hard material (> 60mT ).

The shape of this cycle depends on the nature of the material, the processes of magnetization ,
induction and the geometry of the sample. Finally, this cycle deforms according to flow and fre-
quency conditions.

The area of the hysteresis cycle represents the energy expended per unit volume of the material,
to reorient the magnetic moments of the domains and move the Bloch’s walls, during a complete
cycle of variation of external magnetic field. This energy dissipates in the form of heat.

1.4.3 Magnetic Hysteresis Loops for Soft and Hard Materials
1.4.3.1 Soft Magnetic Materials

Soft magnetic materials (see Figure 1.6) are those in which the coercive field is low . For these materials,
when the external field varies, no obstacle is opposed to the displacement of the Bloch’s walls and the
reorientation of the magnetic domains, in other words these materials have few defects in their crystal
structure, as well as reduced anisotropy. They are characterized by a very high permeability, a High
saturation magnetization Ms, low coercive field and low losses by hysteresis (low surface area of the
hysteresis loop). A soft magnetic material is used when it has to canalize a variable magnetic flux at high
frequencies. The magnetic material must react quickly and frankly to small variations of the inductor
field without undergoing heating or without its reaction being too sensitive to the field frequency. For
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Figure 1.6: Loop of Soft material presented on the left and cycle of the Hard material illustrated on the
right [73]

this purpose soft magnetic materials are used in cores (or magnetic circuits) of transformers, motors and
generators, in precision inductances of electronic circuits, magnetic screens.

1.4.3.2 Hard Magnetic Materials

Hard magnetic materials (see Figure 1.6)are those characterized by high a coercive field, a high remanent
magnetization and wide hysteresis cycle. In these materials, we try to hinder as much as possible the
reorientation of the magnetic moments in the Weiss domains 7, as well as the displacement of the walls of
Bloch see . This is why eutectoid steels in the quenched state (martensitic structure) are frequently used
to produce permanent magnets. Thus a permanent magnet of good quality will be characterized by a
high value of the magnetic anisotropy necessary for the persistence of a important part of the spontaneous
magnetization (remanent) and the high value of coercive field.We use hard magnetic materials when the
magnetic field generated by the material remains obligatorily stable over time and remains if possible high,
and it is the same in the presence of parasitic external magnetic fields. They are used in permanent mag-
nets, lifting magnets, loudspeaker cores, low power electric motors, magnetic lenses for cathode ray tubes.

7Weiss domain or magnetic domain, is a region of a mate-
rial in which the magnetic moments are oriented in the same
direction, the magnetization is therefore uniform.f



Chapter 2

Nanomagnetism

2.1 Magnetic properties of nanoparticles
The major difference between the nanoparticles and their bulk materials is the number of atoms as-
sociated. For nanoparticles moste of atoms are located at the surface Figure 2.1, For example: fcc-Co
nanoparticles with diameter around 1.6nm with a lattice constant 0.36nm, will have about 200 atoms and
60 of them will be at the surface [7]. As a result the reduction of the size of materials on the nanometric
scale exhibit new physical and magnetic properties different from that of bulk materials see Figure 2.2.

Two main magnetic contributions manipulate the magnetic behavior of a single nanoparticle. The
first one is due to atoms located at the surface of a particle as we mentioned in the general introduction,
the second one is the magnetic behavior due to the finite-size of a particle. It is a commonly accepted
assumption to represent a nanoparticle as a combination of the core (where, the spins are ordered below
a critical temperature, and magnetic behavior is the same as in bulk) and the shell (where the spins are
disordered even at the lowest temperature). The magnetic behavior of the core and shell is quite difierent,
leading to the competition resulting in a final magnetic state of a nanoparticle. For smaller particles the
surface efiects become dominant due to the larger number of spins at the surface, while in case of large
particles, the magnetic behavior of the core is dominant.

2.1.1 Magnetic domains
Ferromagnetic materials are often structured in magnetic domains called Weiss domains separated by
bloch walls Figure 2.3. if the energetic cost of the formation of the walls is small compared to the energy
difference between the mono-domain state and the multidomain state ,then a multidomain structure is
energetically favorable.More the size of magnetic object is small, more it will tend to be monodomain.
Below a critical size, the existence of a wall is no longer energetically favorable and the magnetic material
has a new magnetic structure named macrospin. Indeed the transition to the single domain state is
obviously a size dependent effect, which can be probed by a number of experimental techniques. Figure
2.5 qualitatively illustrates the dependence of the coercivity field Hc on the particle size. Below a critical
size (which depends on the material) the Hc is zero and a superparamagnetic behavior (see below) is
observed, which indicates the single domain magnetization state. The peak around the critical size is
broad due to the particles size distribution. The critical size at which a particle becomes single domain
is a result of competition between exchange coupling and magnetostatic energy, and therefore depends
on the geometry, anisotropy, and saturation magnetic moment MS of the particle. For a magnetic sphere
with a cubic cell, the first estimate of this critical size was proposed by Kittel [8] by comparing the
energy needed to create a bloch wall and the reduction of magnetostatic energy by creating domains. If
the anisotropy is weak, the critical radius Figure 2.4 beyond which the nanoparticle is multidomains is
then written:

Rc ≈ 9σω

4πM2
s

(2.1)

15
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Figure 2.1: Surface to volume ratio of silicon nanoparticles versus radius. [74]
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Figure 2.2: An assessment of the different size effects on the magnetic behavior of a transition metal in
the massive state and at the nanoscale.

Figure 2.3: Magnetic domains are regions in a crystal with different directions of the magnetizations,
they must by necessity be separated by domain walls [75]



CHAPTER 2. NANOMAGNETISM 18

Figure 2.4: Schema of a spherical nanoparticle which, according to its radius, follows (a) a single domain
configuration R < Rc or (b) multidomain R > Rc [77]

where σω = 4
√

AK is the energy of the surface of a bloch wall and Ms is the saturation magne-
tization, A = JexS2/a is the exchange stiffness constant and Jex the exchange integral and a the lattice
parameter of the cubic lattice. Typically, Rc is 15 nm for iron and 58 nm for cobalt.However according
to Brown [76], this approach does not ensure the existence of a single domain and does not allow an
accurate evaluation of the critical radius.Indeed kittel compared the energy of a monodomain particle
to that of a multidomain particle with very specific structures.its approach therefore does not take into
account any other possible structure that could have a different energy. Kittel has therefore proved that
it is possible for a particle to be a single domain beyond a certain radius, but he has not found a radius
beyond which the particle is necessarily monodomain.Using a formalism borrowed from micromagnetism,
Brown first calculated a radius R0 below which the monodomain state is the one of lower energy.

R0 = 3.6055

√
2A

4πM2
s

(2.2)

Then he calculated two critical rays beyond which the state of lower energy is necessarily multido-
main. In the case of a weak main constant of K1 anisotropy:

R1 = 4.5292
√

2A√
4πM2

s − 5.6150K1
(2.3)

In the case of a stronger K2 anisotropy constant:

R2 =
9
√

2A(K + 8πM2
s )

8(3σ − 2)M2
s

(2.4)

With σ = 0.785398.

Gubin [29] provides RC ,R0,R1 and R2values for different materials:
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Figure 2.5: Schematic illustration of the coercivity-size relations of small particles [9].

Table 2.1: kittel and brown critical radius values of different materials

. Ms(emu/cm3) K(104erg/cm3) A(erg/cm) RC(nm) R0(nm) R1(nm) R2(nm)
Co 1430 430 1 58.1 15.1 51.4 146
Fe 1710 45 1 13.1 8.4 11 116.5
Ni 483 4.5 1 52.1 29.8 39.1 412.9

Nevertheless, it has been shown that these critical rays can vary according to the temperature and
the external field [78]

2.1.2 Magnetic anisotropy of nanoparticles
For a single domain of nanoparticle the effective magnetic anisotropy is the resultant of magnetocrystalline
, shape and surface anisotropy energies [79].

2.1.2.1 Magnetocrystalline anisotropy

For single domain nanoparticles with uniaxial anisotropy, the magnetocrystalline anisotropy energy is
written:

Eu = KuV sin2θ (2.5)

Where Ku the effective uniaxial anisotropy constant, V the volume of the particle, and θ the angle
between the magnetization and the axis of symmetry. his expression describes two minimum energies
(θ = 0etπ) separated by an energy barrier KuV .

2.1.2.2 Anisotropy of shape

In addition to the magnetocrystalline anisotropy, shape anisotropy can be induced in the case of non
spherical monodomain particles. The discontinuity of the magnetization on the surface of the particles
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leads to the creation of a demagnetizing field. In the case of an ellipsoidal particle [80] the shape anisotropy
energy is:

Ef = 1
2µ0V (NxM2

x + NyM2
y + NzM2

z ) (2.6)

where µ0 the permeability in vacuum, V is the volume of the particle, Mx,y,z the components of the
magnetization and Nx,y,z the demagnetizing field factors, relative to the axes x,y and z of the ellip-
soid.Demagnetizing field factors verify equality Nx +Ny +NZ = 1 For a spherical single domain nanopar-
ticle, the shape anisotropy energy is zero.

2.1.2.3 Surface anisotropy

For a single domain nanoparticule particle, also the anisotropy energy depends on the surface interactions.
As the size of the particles decreases, the surface magnetic contributions may become larger than those
of the nanoparticles themselves. The surface anisotropy energy will then be dominant with respect to
magnetocrystalline and shape anisotropy energies. For a spherical particle of diameter d, the effective
anisotropy constant Keff follows the empirical law:

Keff = Kv + S

V
Ks = Kv + 6

d
Kss (2.7)

with Kv the volume anisotropy constant,v the volume of the particle , S the surface of the particle
, Ks the surface anisotropy constant.The anisotropic energy of Ea particle Ea is defined by:

Ea = Keff V (2.8)

Effective anisotropy is therefore sensitive to particle size variation through the second term of the
equation2.8. Since nanoparticles are rarely independent, other contributions to effective anisotropy may
be added, such as dipolar interactions between nanoparticles or with the dispersion medium [81].

2.1.3 Superparamgnetism
If the nanoparticle is sufficiently small, it becomes monodomain and its magnetization is then uniform.
If this nanoparticle possesses a uniaxial anisotropy, in the absence of an external magnetic field, its mag-
netization can be in two stable orientations parallel to the axis of anisotropy. From an energy point of
view, these two orientations are separated by a barrier ∆E = Keff V . When the temperature gets high
enough that KBT ∼ ∆E. The magnetization of the nanoparticle can pass from one magnetization to
another spontaneously. For the Neel-Brown model, the nanoparticle is considered fixed in space and has
a uniaxial anisotropy. The exchange constant J is assumed to be very large in front of thermal energy
KBT so that atomic spin fluctuations are neglected and therefore the magnetization norm is constant.
The reversal of magnetization is done by the uniform rotation. Finally, the energy barrier due to the
anisotropy is supposed to be very large in front of the thermal energy. Therefore the system spends most
of its time in one of the two minimums of energy.Then according to this model, if the system is in a
metastable state at t = 0, the probability that it is still in the same state at time t is e−t/τ where τ t is
the relaxation time following an Arrhenius law 1:

τ = τ0e
Keff V

KB T (2.9)

where τ0 ∼ 10−11 − 10−9s .Thus, the magnetic moment carried by the nanoparticle is returned
more rapidly than the temperature is high. If the nanoparticle is sufficiently large, if its anisotropy is suf-
ficiently high, or the temperature is low enough, then τ becomes longer than the experimental measuring
time τm . We can then measure the magnetization of the nanoparticle and determine its orientation. We
then say that the magnetic moment is blocked. On the contrary, if the nanoparticle is sufficiently small,

1In chemical kinetics, the Arrhenius law makes it possible
to describe the variation of the speed of a chemical reaction

as a function of temperature.
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or the temperature becomes rather high, then τ may be shorter than the measuring time, and although
the nanoparticle has a non-zero magnetization, the measured average magnetization will be zero. These
behavior is the superparamagnetic regime. As with standard paramagnetism, thermal noise randomly
alters the orientation of the magnetic moment. In the case of a nanoparticle, the magnetic moment is
worth several thousands Bohr magneton and that is why we speak of superparamagnetism.

The temperature that defines the boundary between two regimes is called the blocking tempera-
ture noted TB . We can find an analytical expression for TB from the equation 2.9 and we put τm = τ(TB) :

TB = Keff V

KBLog(τm

τ0
)

(2.10)

These formulas are valid only for an isolated monodomain nanoparticle. In a set of nanoparticles,
it is known that the dipolar interactions modify the blocking temperature [82, 83]. Also, in a sample of
nanoparticles not all have exactly the same size. The whole is polydisperse (in opposition to monodis-
perse). There is a distribution of rays, which then produces a distribution of blocking temperatures.

2.1.4 The effect of surface
The surface effects of nanoparticles is considered as a main element that paly a major role in magnetic
properties of nanoparticles . This influence of surface is due to a strong increase of the surface-to-volume
ration of atoms, relative to the bulk. When the size of the nanoparticle decreases the ratio increases.
However The reduction of the total number of the nearest neighbors around a single atom of surface
and the lack of translational symmetry at the particle boundaries can introduce frustration and spin
disorder. Therefore, the competition between both magnetic orders will lead to the magnetic ground
state of a nanoparticle which will be difierent from the simple assumption of a single domain with a
perfect magnetic ordering corresponding to the bulk solid.

2.2 Core/shell morphology
Nanoparticles with core/shell morphology are nanostructres that have the core are and shell wich may
be composed of several nanomaterials( the nanometer particle size regime ranging from 20 to 200 nm) is
depicted in. These nanostructure morphology include a core surrounded by a shell. The core and shell
can be made by inogrganic materials (silicia ,metal..) or organic. Also the core/shell nanostructure can
be composed of more than two materials. Core/shell nanoparticles are multifunctional materials with
unique properties that can be obtained from either core or shell material and can be altered by changing
either the constituting materials or the ratio between core and shell [84].

Thanks to the new synthesis techniques, it is currently possible to prepare core/shell nanoparticles
with different shapes. As a result thes shapes have attracted more attention because of their unique and
novel properties. As it is illustrated in the Figures 2.6, there is a diversity of core/shell nanoparticles
shapes. The most common ones is the spherical (Figure 2.6.(a)) and cubic(Figure 2.6.(c)) shapes .Other
differents core/shell are formed differently than that of spherical shape .Figure 2.6.(d) shows a moveable
core particle within a uniformed hollow shell particle .Multiple small core coated by shell are nanoparti-
cles that have a single shell maaterial is coated onto many small core partioles together (Figure 2.6.(e)).
nanomatryushk nanostructures are nanoparticles with cencentric nanoshells of alternative coating of di-
electric core and metal shell material onto each other (Figure 2.6.(f)) [85].

2.2.1 Classification of Core/Shell Nanoparticle
There are a wide varieties of core /shell nanoparticles available with their wid rang of application .depend-
ing on their material nature, core/shell nanoparticles coulde be classified into four main several groups
(Figure 2.7):
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Figure 2.6: Different shapes of core/shell nanoparticles [86]
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Figure 2.7: Types of core/shell nanoparticles [86]

• inorganic /inorganic.

• inorganic/organic.

• organic/inorganic.

• Organic/organic.



Chapter 3

Models and Methods

3.1 Introduction
The physics of condensed matter is particularly interested in the study of phase transitions (magnetic,
superconducting, superfluid, ferroelectric, etc.) that appear in physical systems formed of a very large
number of strongly coupled particles. These transitions make it possible to highlight the various con-
figurations of the system under consideration, to explore the domains of existence and to determine its
critical behavior [87].

Exchange interactions tend to align or anti-align particles (spins) to minimize the exchange en-
ergy of the system. They make it more difficult to calculate the partition function, but also, favor the
appearance of a spontaneous local or global magnetic order below a certain temperature, called Curie
temperature for ferromagnetic systems and Néel temperature for antiferromagnetic and ferrimagnetic
systems. In 1929, Heisenberg showed that these interactions are due to a combined effect of Coulomb’s
repulsion and Pauli’s expulsion principle [88]. In sum, the interactions designated within its systems are
an intrinsic property and therefore can not be ignored or considered as a mere disturbance, as is the case
in diluted media, and this is precisely the difficulty of their study. Two possibilities are thus possible to
study the properties of infinite or semi-infinite physical systems:

• The first is to consider all the interactions of the system and to determine the partition function,
solving the Schrödinger equation of quantum mechanics. The calculation of the partition function
consists of summing a very large number of states. At the thermodynamic limit, this number is
infinite and the sum becomes difficult to calculate. Models for which partition functions are exact
analytic expressions are rare.

• This leads to the second possibility of neglecting the irrelevant details of the interactions between
the particles of the system by adopting a theoretical model. Theoretical models are in fact the
simplified representations, at the microscopic scale, of the physical systems (with N particles in
interactions) making it possible to analyze them, to explain them and to predict some macroscopic
aspects.

Several models have been introduced by theoretical physicists to study the magnetic phase tran-
sitions of ordered and disordered complex systems. Among these models, the most standard are: The
model of Heisenberg [88], Ising [89], Blume-Capel [90] or Baxter-Wu [91], etc. which can be modified
according to the needs of a study. However, these models, in addition to being used to describe the mag-
netic systems for which they were originally designed, are also used in the description of other systems
such as multi-component fluids and ternary alloys [92].

Another aspect that must imperatively be addressed is the digital aspect, because the theoretical
models previously described, are analyzed numerically and use numerical methods or approximations.
Rightly today, because of continuous advances in computer technology, digital modeling and simulation
could be considered as a third lever for scientific inquiry after pure theory and experimentation. Indeed,
the tools of numerical modeling and simulation of different structures of materials and their properties,

24



CHAPTER 3. MODELS AND METHODS 25

Figure 3.1: The simplified process of research in modeling and numerical simulation

Figure 3.2: Moore’s law from 1970 to 2010. Exponential growth of processors [93]
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on different scales are very useful and valuable for the development of materials and their applications.
Since they offer acceptable accuracy in predicting the properties of materials, they are widely used for:

• Interpret experimental results.

• Develop new materials, difficult to test experimentally, such as nanomaterials and determine their
physical and chemical properties.

• Determine the properties of materials under extreme conditions (temperature, pressure, etc.) that
are experimentally inaccessible.

• Determine the properties of complex systems that are unmanageable by microscopic mathematical
models.

• Compare the theory of experimentation and suggest doing tests to save money (in cases where
calculations are easier and faster) and time as well as for the validation of the theory.

The simplified process of research in numerical modeling and simulation of a Part and the interest
of numerical models on the other hand are indexed in Figure 3.1: The researcher must translate the theo-
retical knowledge (TK) into the calculation model code (CMC). In the translation process, the terms and
relationships of the researcher’s TK are operationalized as the concrete structural relationships, variables
and initial conditions of the CMC. CMC can be any type of mathematical or computational approach
and requires full specificity before it works..

Modeling tools such as modern methods of electronic structure, mean field approximation, effective
field approximation, and Monte Carlo simulations have proven to be the product of decades of intense
research, stimulated by at least two equally important factors: First, the powerful digital algorithms that
form essential elements of digital physics tools, including modern electronic structure codes. Some of
these algorithms are the most popular and are ranked in the top 10 algorithms of the 20th century [94],
as listed in the following Table 3.1:

1946 : The Metropolis Algorithm
1947 : Simplex Method
1950 : Krylov Subspace Method
1951 : The Decompositional Approach to Matrix Computations
1957 : The Fortran Optimizing Compiler
1959 : QR Algorithm
1962 : Quicksort
1965 : Fast Fourier Transform
1977 : Integer Relation Detection
1987 : Fast Multipole Method

Table 3.1: Top 10 algorithms of the 20th century

The second factor is the dramatic increase in material capabilities and storage of modern com-
puter systems through the miniaturization of microelectronic devices. Moore’s law in 1965 predicted an
exponential growth in computing power (see Figure 3.2) when microelectronic devices smaller than the
sublithographic range would be produced.

For example, in 2013, Tianhe-2, the supercomputer located in Guangzhou, People’s Republic of
China, at the National University of Defense Technology, was ranked fastest in the world with a record of
33.86 petaflops ( 1015 Flops, floating-point operation per second or flops or flop / s is a unit of measure
for the speed of a computer system.) [95]

In this chapter, we are interested in the numerical simulation models and methods that we will
apply in the study of spin model systems. First, we recall the difference between classical spin and
quantum spin. Next, we describe Ising’s model as a model of classical spins. Finally, we analyze the
approximation methods, in particular the Monte Carlo method associated with the Metropolis algorithm.
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3.2 Quantum and classical pins
The spin models depend essentially on the degrees of freedom and the atomic interactions observed in the
system under consideration. There are several spin models, they can be of quantum or classical nature:

• The classical spin models are the discrete spin models, that is to say, the spins can only take finite
values. This is the case of the Ising model [89,96] and the Potts model [97,98].

• On the other hand, quantum spin models are continuous spin models; spin can theoretically take
an infinite number of values, forming a continuous set. Very often, they are designated by classical
vectors.
Among the quantum spin models, we can cite: The XY model with 2D unit vectors, the classical
Heisenberg model with 3D unit vectors [99], the Baxter models [100], etc.

3.2.1 Ising model
In 1920, W. Lenz proposed to one of his students, Ernst Ising, a simple spin model to qualitatively
explain ferromagnetic-paramagnetic phase transitions in a one-dimensional magnetic system [96]. Ising
developed and solved exactly by the method of the transfer matrix (elementary calculus) this model that
now bears his name and presented it in his thesis in 1925 [89].

The Ising model is defined as an extremely efficient simple model for studying phase transitions,
in particular in magnetic systems, quantitatively and qualitatively. It is based on the representation of
the studied system in the form of a fixed network of particles having a Si magnetic moment, discernible
and subjected to exchange and external field interactions. The Hamiltonian who describes the model is:

H = −J
∑

<i,j>

Si ∗ Sj − h
∑

i

Si (3.1)

Where, the first term is the summation on the interactions between near neighbor spins. J is the
exchange interaction constant between the spins Si and Sj of sites i and j of the network.

if:

• J > 0the interaction is ferromagnetic,

• J < 0the interaction is antiferromagnetic,

• J = 0there is no interaction between Si and Sj

The second term of the Hamiltonian is that of the summation on the interaction of each spin Si of the
lattice with the external magnetic field applied, h.If:

• h > 0 the spin Si is aligned parallel to h,

• h < 0 the spin Si is aligned antiparallel to h,

• h = 0 No external magnetic field is applied

It is known that ferromagnetism results from the interaction between the electronic spins of atoms.
Considering that the magnetic moment is applied to each atomic spin, this interaction does not come
from the coupling between the magnetic dipoles but rather from the exchange interaction which involves
the Pauli exclusion principle and the electrostatic repulsion between the two. electrons. Thus, it can
be expected that two electrons of parallel spins have an energy of less than two electrons of antiparallel
spins. This difference in electrostatic energy results in the imposition of the coupling between the spins
with an exchange interaction denoted J , as described above.

The resolution of the Ising model, originally, was performed in a 1D system, and later, the 2D
Ising model was analytically solved in a null field, in the sense of the exact calculation of the energy
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free by Lars Onsager, in 1944 [101]. Today, this model is easily solvable to 3D. At 1D, the magnetic
susceptibility remains finite at any non-zero temperature, so the one-dimensional Ising model does not
show a phase transition [102]. At 2D, the existence of a phase transition is manifested by a singular
behavior of the thermodynamic functions or their derivatives. In 1955, Lee Yang confirms this phase
transition by calculating the heat capacity and magnetization when the external field is zero.

The resolution of the Ising model to 3D is realized only by approximate solutions. Many approaches
have been developed to study the magnetic properties of 3D systems and to determine magnitudes such
as magnetization, susceptibility, specific heat, energy, critical temperature, critical exponents and phase
transitions.

Among these approaches, we quote: the average field approximation, the effective field theory and
the Monte Carlo method. We develop the basic concepts of Monte Carlo methods in the following section.

3.3 Monte Carlo simulations
The Monte Carlo method was developed by J. Von Neumann, S. Ulma and N. Metropolis by the end of
the second world war to study the diffusion of neutrons in a fissile material, that is, within the framework
of the Manhattan project (a secret project initiated by the Department of Defense of the United States
for the research on the manufacture of the atomic bomb). N. Metropolis et al [103] carried out computer
simulation of a simple liquid (hard disks moving in 2D) using probabilistic methods and thus proposed
the name of ”Monte Carlo ” in reference to the famous casino in Monaco.
Other researchers, Alder and Wainwright [104], in their turn, carried out the simulation of hard spheres by
focusing on the solid-liquid phase transition and observed the convergence of properties towards equilib-
rium. Monte Carlo simulations were then exported to several domains other than physics: In economics,
Monte Carlo simulation techniques are used to model phenomena with a high degree of uncertainty of
initial data such as the calculation of risk capital. In industry, the problems of space exploration and oil.
In mathematics, to evaluate multidimensional integrals in the case of complicated bounds. In physics, to
determine the thermodynamic, magnetic, transport properties, etc systems. The Monte Carlo simulation
techniques follow a common regime whatever the field of application:

• Define an initial dataset.

• Establish a random process to generate the initial data according to a probability distribution.

• Calculate the quantities according to a deterministic framework, once the equilibrium is reached.

• Collect the results.

3.3.1 Principle of Monte Carlo simulation
Monte Carlo simulation is a numerical technique that, in equilibrium thermodynamics, allows the es-
timation of the average of a multidimensional integral. The first simulations were performed in the
canonical ensemble and subsequently extended to the other statistical ensembles. The average of a phys-
ical quantity,G, in the canonical set is given by the relation:

< Q >=
∑

i Qie
−βEi∑

i e−βEi
(3.2)

Where ,e−βEi is the Boltzmann factor, that is, the probability density of the canonical ensemble
. β = 1

KBT
with KB , the Boltzmann constant. T is the temperature of the system. Ei is the potential

energy.

In practice, the following considerations should be emphasized:
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1. The simulation starts initially at almost zero temperature, in the ordered phase of an initial magnetic
configuration.

2. A random sequence of accessible states (Markov chain) is generated in the space of the system
configurations.

3. We sample by favoring the regions of this space where the Boltzmann factor is the highest (Metropo-
lis algorithm).

4. The probability of a particular configuration of potential energy Ei is then proportional to e−βEi .
In other words, the acceptance of a configuration of the Markov chain is weighted by a frequency
proportional to the Boltzmann factor.

5. The probability of a particular configuration of potential energy Ei is then proportional to e−βEi

A property of equilibrium is then obtained as a simple average on the accepted configurations.

In sum, the principle of Monte Carlo simulation is based on the following basic ideas:

The choice of the sample
The thermal Monte Carlo method consists in choosing a sample, that is to say, a finite set that contains
the dominant (stable) states. This operation is called: The important sample: It is based on the Markov
chain. The process of the Markov chain consists in generating a series of configurations where the
thermodynamic and structural properties are obtained by calculating the averages of the concerned
quantities according to the Boltzmann distribution under the following terms:

1 A very large number of configurations are generated.

2 The passage of the system between two accessible states during the simulation is done randomly.

3 The probability of finding the system in a given state is equal to the weight of that state in the real
system.

4 If Boltzmann’s weight is large, it is taken as the probability of passage. It seems then necessary to
define the rule of transition from a state to another: This is the simulation dynamics. In the Monte
Carlo simulation, It is governed by the master equation3.3 that gives the probability variation for
each state:

dpa

dt
=

∑
b

{Pb(t) ∗ W (b −→ a) − Pa(t) ∗ W (a −→ b)} (3.3)

where,
Pa(b) is the probability that the system is in the state a(b).

W (a −→ b) is the probability of passage (transition) between a and b.W (a −→ b) must satisfy the
following condition: ∑

a

W (a −→ b) = 1 (3.4)

5 When a particle leaves a state, the probability of that state decreases. However, when It reaches
this state the probability of this state increases
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The idea is to favor states where Pa(b) has high values compared to those where they are close to
zero; because it is difficult to calculate the average of a physical quantity G in an infinite set. Indeed,
this calculus leads to inaccuracies because of the large number of degrees of freedom of the system. By
considering a sample, F = {a1, a2, ..., aN } containing N states a, the estimate of the quantity Q (given
in equation 3.2) of the canonical statistical set is the ratio:

QF =

∑N
i=1(Qa,i

Pa,i
) ∗ e−βEa,i

∑N
j=1( 1

Pa,j
) ∗ e−βEa,j

(3.5)

When N → ∞, the estimate of the quantity G becomes equivalent to its average, QF =< Q >.
The states in the sample are not equiprobable, but distributed according to the distribution of probability:

Pa,i,j = e−βEk,i,j /Z (3.6)

Z is the partition function.

Therefore, to improve the estimate, GF , we choose this probability distribution. This is the most
well-known form of the important sample.

QF = 1
N

N∑
i=1

Qk,i (3.7)

Which is better than when all states are equiprobable.

The completion of the Markov process requires two additional conditions, namely, ergodicity and
detailed balance.

Ergodicity
The ergodicity condition is that during the Markov process, the system can, at a given state, to pass, by
any state after a long time. If, for example, all the transition probabilities from a given state are zero,
then the ergodicity is violated. As a result, in equilibrium, the average value of a statistically calculated
quantity is equal to the average of a very large number of measurements taken in time. The first value is
that which can be measured experimentally. The ergodic hypothesis is therefore fundamental for a good
connection between theory and experience.

The detailed balance
It ensures that the system is in equilibrium and remains there by the Boltzmann distribution and not by
another. The particles that leave the equilibrium are replaced by an equal number of those that arrive
there. This translates into the equation3.8:

∑
a

Pa ∗ W (a −→ b) =
∑

b

Pb ∗ W (b −→ a) (3.8)
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From equation 3.4, we obtain afterwards:

∑
a

Pa ∗ W (a −→ b) = Pa =
∑

b

Pb ∗ W (b −→ a) (3.9)

For any set of probabilities of transitions that satisfies equation 3.9, the Pa distribution constitutes
a state of equilibrium from the transitions observed in the (stationary) Markov process. Unfortunately,
satisfying this equation does not guarantee to reach Pa from any state of the system [105]. This can
easily be demonstrated by considering that W (b −→ a) are the elements of Markov matrix M.

We write:

qb(t + 1) =
∑

a

W (a −→ b) ∗ qb(t) (3.10)

In matrix form:

Q(t + 1) = M ∗ Q(t) (3.11)

When the Markov process reaches equilibrium, we find:

Q(∞) = M ∗ Q(∞) (3.12)

If the process reaches a limit cycle:

Q(∞) = Mn ∗ Q(∞) (3.13)

Where, n is the size of the cycle.
Under these conditions, it appears that equation 3.9 does not guarantee equilibrium. To overcome this
difficulty, we impose the condition of the detailed balance, taken from 3.8, which has the advantage of
eliminating the limit cycle:

Pa ∗ W (a −→ b) = Pb ∗ W (b −→ a) (3.14)

If the process reaches a limit cycle:

At equilibrium Q(t) tends to Pa(b) when t tends to infinity Real systems obey the detailed balance.

From equation 3.14, we can write:

W (a −→ b)
W (b −→ a) = Pb

Pa
= e−β(Eb−Ea) (3.15)
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This shows that the Boltzmann distribution is the distribution observed at equilibrium. Thus,
equations 3.5 and 3.14 are mandatory conditions that determine the choice of the transition probability
W (a −→ b)

Acceptance
When switching from one state to another, an acceptance report must be defined. It makes it possible
to find the good probabilities of transition from any Markov process. The condition W (a −→ b) ̸= 0 is
allowed. It always satisfies the detailed balance whatever its value. By posing the transition probability as:

W (a −→ b) = π(a −→ b) ∗ R(a −→ b) (3.16)

Where, π(a −→ b) is the probability of selection; probability that the algorithm generates state
b from a. R(a −→ b), the probability of acceptance of this configuration change. The acceptance is
arbitrary between 0 and 1. If R(a −→ b) = 0, for all transitions, then W (a −→ b) = 1. This gives us a
total freedom of choice of the selection probability:

W (a −→ b)
W (b −→ a) = π(a −→ b) ∗ R(a −→ b)

π(b −→ a) ∗ R(b −→ a) (3.17)

With,R(a −→ b)
R(b −→ a) ∈ [0, +∞[, while π(a −→ b) and π(b −→ a) can take any values. To avoid that

the algorithm is slow, we choose the acceptance close to 1. The best algorithm fits well π(a −→ b) and
puts R(a −→ b) ≃ 1.

3.3.2 Implementation of the Metropolis Algorithm
The Metropolis algorithm is very general. It can be applied to any model for which it is possible to
generate random numbers and to associate there variations of energy. Ising’s model meets these criteria.
This algorithm is based on a stochastic Markovian stationary dynamics [106], defined above. From
an initial configuration, a, characterized by the Boltzmann factor e e−βEa , a stochastic displacement
of a particle is carried out in order to generate a new configuration b, a factor of Boltzmann e−βEb .
This displacement is carried out with the transition probability, W (a −→ b) . Each configuration thus
created by this process belongs to a finite set of states called: The state space of the system. Once the
system is in equilibrium, the probability of passage W (a −→ b) must be the same as W (b −→ a). The
Metropolis algorithm allows to determine the most suitable transition probability. The implementation
of the algorithm of Metropolis follows the following steps:

1. From an initial configuration a of energy Ea, a new configuration is created randomly.

2. Each new configuration is tested to see if it should be rejected or accepted, in order to obtain the
new configuration b of energy Eb (to remember).

3. Once the random displacements are carried out, one calculates the variation of energy ∆E = Eb−Ea.

If ∆E < 0, the new configuration b is accepted. If ∆E > 0, we generate a number randomly, r,
between 0 and 1.Si r < e−β∆E , the new configuration is accepted, otherwise the new configuration
is rejected and the process is repeated until b is obtained. This procedure is represented in Figure
3.3.
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4. To see the balance we follow a physical quantity, like the magnetization or energy. After equilib-
rium, it stabilizes, only fluctuations remain. In in some cases the system remains trapped in a local
minimum of energy. To avoid it we start from different initial configurations

In the case of the Ising model, state b is generated from state a. by choosing at random in the
network, a single spin, k, to return (the flip). The two states therefore differ by spin reversal, k. The
difference in energy, ∆E = Eb − Ea, in the absence of the external magnetic field is calculated from the
expression of the Hamiltonian given in equation

Eb − Ea = −J
∑

<ij>

Sb
i Sb

j + J
∑

<ij>

Sa
i Sa

j = −J
∑

<ik>

Sa
i (Sb

k − Sa
k) (3.18)

If Sa
k = 1 then Sb

k = −1 and Sb
k − Sa

k = −2

If Sa
k = −1 then Sb

k = 1 and Sb
k − Sa

k = 2

then

Sb
k − Sa

k = −2Sa
k (3.19)

And

Eb − Ea = 2J
∑

<ij>

Sa
i Sa

k = 2JSa
k

∑
i

Sa
i (3.20)

3.3.3 Mesures et erreurs
Once the system has reached equilibrium, the quantities most interested can be measured. The simula-
tion program must run for a long enough time to reach this equilibrium, as we have already stated in the
ergodic condition. This time corresponds to the steps or steps Monte Carlo (Monte Carlo steps, in En-
glish). The equilibrium can be identified by following the evolution of a magnitude such as magnetization
or entropy (The entropy is maximal at equilibrium). For the Ising model, the Metropolis algorithm is
used to calculate the thermodynamic quantities such as, magnetization, magnetic susceptibility or specific
heat, by converging the system not to not towards a situation of equilibrium.

• The total magnetization of the state a is given by:

Ma =
∑

i

Sa
i (3.21)

We use, the difference of magnetization:

∆M = Mb − Ma =
∑

i

Sb
i − Sa

i = Sb
k − Sa

k = 2Sa
k (3.22)

hence

Mb = ∆M + Ma = Ma + 2Sb
k (3.23)
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Figure 3.3: Flow diagram of a Monte-Carlo simulation with Metropolis algorithm [107]
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• Magnetic susceptibility:

χ = N

β
(< M2 > − < M >2) (3.24)

Where, N is the total number of spins corresponding to the size of the network.

• The specific heat:

Cv = β2

N
(< E2 > − < E >2) (3.25)

There are two types of errors: statistical errors and systematic errors.

• Statistical error: This is the error on the average. In the Ising model, it results from thermal fluctu-
ations. To obtain reliable results, an average must be taken on steps much larger than the number
on which the Monte Carlo states are correlated. This becomes more difficult near the critical point
due to a critical slowdown. If we suppose that the magnetizations Mi are independent, the best
estimate of the statistical error is given by:

σ =

√
1
n

∑n
i=0(Mi − M)2

n − 1 =
√

1
1 − n

(M2 − (M)2) (3.26)

The exact expression of σ is written:

σ =

√1 + 2τ

∆t
1 − n

∗ (M2 − (M)2) (3.27)

Where ∆t is the time interval between two measurements and τ is the correlation time (time re-
quired for the system to go from one state to another, very different from the first one). If ∆t ≫ τ ,
we find the previous equation.
Often ∆t ≪ τ , where:

σ =
√

2τ

tmax
∗ (M2 − (M)2) (3.28)

With n = tmax/∆t.σ does not depend on ∆t , so there is freedom of choice.

• Systematic errors: The sources of systematic errors in the simulation of the Ising model are the fact
of:
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– Wait for balance only for a short time.
– Do not run the system long enough after the balance

There is no general method for estimating these errors.

In addition to the Metropolis algorithm, there are two other algorithms of turnaround of a single
spin by step, which are also widely used nowadays. These are the ”hot-bath” and ”glauber” algo-
rithms [108]. These algorithms are sometimes called, update algorithms: In the model of Potts (whose
Monte Carlo simulation is similar to that of Ising), at low temperature, the Metropolis algorithm is no
longer effective. To overcome this difficulty, we use the hot-bath algorithm.

Notes: When implementing the Metropolis algorithm, the knowledge a number of practical details
is an asset to get a code that works correctly:

• Initial configuration: It must not influence the final configuration. However, the balance can be
reached more quickly if a good initial setup is chosen.

• Degrees of freedom: There are several ways to update degrees of freedom Freedom in the program.
They may be chosen at random or according to a Random permutation, which can be updated.
However, a simple sequential order fixed is also allowed. In network models, we can also update
first the even sites, then all the odd sites, which is the usual choice in the vectorized codes.

• Boundary conditions: Different boundary conditions can be used:

• Periodic boundary conditions: The system is periodically repeated in all directions to imitate an
infinite system.

• Free boundary conditions: These are used to describe the systems finished like nanoparticles.

• Random numbers: They are generated by pseudo-random number generators (RNGs), which can
produce uniform distributed numbers whose values are very difficult or even impossible to predict
using any deterministic rule. The quality of a RNG is measured by the difficulty of deriving the
deterministic rule underlying their generation, the absence of correlations and a very long time. It
is very important for a RNG to produce results reproducible for testing purposes and also portable
between different computing platforms

• The effects of network size: Finite size effects. The networks considered in the Monte Carlo sim-
ulations, as digital tools limited by the memory of the computer, must have a finite size while the
macroscopic properties are generally targeted. To take the limit of a size to infinity, one calculates,
usually, an average for several different sizes of the network, then extrapolates the average to an
infinite size.

The magnetic properties can be easily determined by normalizing the parameters of the Hamilto-
nian as a function of a parameter chosen upstream. The system parameters are then reduced parameters.
This technique makes it possible to describe qualitatively the magnetic properties of the material studied
as well as to predict phenomena such as the magnetic stability of the material, the phase transitions
and the magnetic compensation. As part of our research, we used the Ising model combined with the
Monte Carlo method to study the magnetic properties of spin models, in this case magnetic nancucubes
assemblies and single nanocubes.
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Chapter 4

Calculated Magnetic Properties of
the Compound PbV O3

4.1 Introduction
From viewpoints of basic physics and application, multiferroics (MF) seem to be an interesting class of
materials.The three or two (anti)ferroelectricity, (anti)ferromagnetism, and ferroelasticity are observed
in the same phase in multiferroics.

In 1960–1970, (anti)ferroelectricity, (anti)ferromagnetism, and ferroelasticity were investigated,
though they did not attract much interest because of the difficulties in manufacturing good samples and
the very weak coupling between different order parameters. Because of the advanced preparation and
characterization techniques multiferroics have seen a revival of interest in the last years [109]. Also, there
are prospects of new features important for technical applications [110,111].

Simple perovskite-like compounds ABO3 (A ∈ {Pb, Bi}; B ∈ {V, Co}) lately were synthesized un-
der high-temperature and high-pressure conditions in thin film and bulk forms; their electric and magnetic
properties were examined and are considered two of the promising MF candidate materials [112–114].
The structural and electronic conditions in these compounds appear to favor a large desirable coupling
between a ferroelectricity and a cooperative magnetism [115]. The result of large A and B atomic distor-
tions in these materials is sizeable ferroelectric polarizations and peculiar magnetic properties [116,117].
The PbMO3 perovskites exhibit an interaction between the Pb–6s,6p lone-pair hybrids and the transition-
metal MO3 perovskite framework [118]. The AVO3 (A = Sr, Ba, and Pb)-type perovskite-based oxide
compounds are very convenient, among which the prototype PbV O3 shows unusual behaviors at high
pressure [119–122]. The compounds AV O3 are considered to have many potential applications in do-
mains such as multiferroic arrangements, high-temperature solid oxide fuel cells, and high TN super-
conductivity [121]. Without being affected by their potential importance, relevant investigations on the
AV O3 compounds are relatively rare. Tetragonal PbVO3 has drawn much attention as a promising MF
candidate material [123–127]. Antiferromagnetic (AF) insulator state with the C-type AF ordering is
the most stable state for the two bulk PbV O3 and BiCoO3 referring to the electronic structure cal-
culations [123, 127–129]. Vanadium oxide PbV O3 newly produced [109, 110, 127] presents remarkable
ferroelectric properties becoming a subject of intense studies, both theoretical and experimental within
the ferroelectric community. In this paper, we have studied the magnetic properties of compound PbV O3
by Monte Carlo simulation. With this method, we have obtained the diagram phases which are discussed
and interpreted; the magnetizations, the susceptibly, the specific heat, and the critical temperature are
analyzed and determined. We finished with calculation of the critical exponents.

4.2 Theoretical model and method
Our aim in this section is to determine the model and method of compound PbV O3. The crystal structure
of simple perovskite PbV O3 is an undistorted tetragonal composite whose space group is P4mm. The
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Figure 4.1: Structure of compound PbV O3 in the left and the magnetic structure in the right (2, 2, 2)

parameters of this compound are a = b = 3.8039 and c = 4.6768Å as determined in [112]. The atomic
positions are presented in (see Figure 4.1). The distribution of charges in this compound is given by
Pb+2V +2O−3 . It is clear that Pb and O ions are not having a magnetic moment . As a result, the
magnetic moment of this compound comes from the V ion with moment spin S = 1/2.

The magnetic structure of our system consists of two simple cubic sublattices with the classical
Ising model described by the following Hamiltonian:

H = −Jab

∑
⟨i,j⟩

σA
i σB

j − Jc

∑
⟨⟨i,k⟩⟩

SiSj − H(
N/2∑
i=1

σA
i +

N/2∑
j=1

σB
j ) (4.1)

Where

• ⟨i, j⟩ denote the first neighbors between σA
i , σB

j

• ⟨⟨i, k⟩⟩ designed the second neighbors between σi − σk (A–A or B–B)

• Jab is the first exchange coupling interactions between σA
i − σB

j and Jab = −337k [113]

• Jc is the second exchange coupling interactions between σi − σk and Jc = +38k [113].

• H stands for an external magnetic field.

The magnetic properties and the critical behavior of PbV O3 are established and determined using
the Monte Carlo method in combination with the Metropolis algorithm, for systems with linear size L.
Cyclic boundary conditions on the lattice were imposed, and the configurations were generated by se-
quentially traversing the lattice and making single-spin flip attempts. The flips are accepted or rejected
according to a heat-bath algorithm under the Metropolis scheme. Our data were generated with 3 ∗ 105

Monte Carlo steps per spin, discarding the first 2 ∗ 104 Monte Carlo configurations. Starting from dif-
ferent initial conditions, we performed the average of each parameter and estimated the Monte Carlo
simulations, averaging over many initial conditions.

With this simulation method, we calculated the total magnetizations (M), energy (E) of the
system, the magnetic susceptibilities (χ), the specific heat (Cv) and the critical behaviors which are as
follows:
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• The internal energy per site:
ET = ⟨H⟩

L3 (4.2)

• The partial and total magnetizations of the system are given by:

MA =
2

∑N/2
i=1 σA

i

L3 (4.3)

MB =
2

∑N/2
i=1 σB

i

L3 (4.4)

MT otal = |MA − MB |
L3 (4.5)

• The magnetic susceptibilities and specific heat are given respectively by:

χ = β

L3

(
⟨M2

T ot⟩ − ⟨MT ot⟩2)
(4.6)

Cv = β

L3

(
⟨E2⟩ − ⟨E⟩2)

(4.7)

• The critical behaviors of the observable quantities are given by:

χmax(L) ∼ L

γ

υ (4.8)

Cvmax(L) ∼ L

α

υ (4.9)

where β = 1
KBT

and KB is the Boltzmann constant, which is taken equal to its unit value in this
work.

4.3 Results and discussions
4.3.1 Ground-State Phase Diagrams (T=0 K)
In this part of the study, the phase diagrams, which are illustrated in Figure 4.2, generated from our com-
pound are going to be analyzed and discussed. Once more, it is necessary to indicate that we are inspired
and motivated by PbV O3 compound for a fixed and thermodynamic limit size, N = L∗L∗L = 24∗24∗24
spins and S(V +4) = 1/2.
First of all, the illustration of the corresponding groundstate diagrams in the plane (Jab, Jc) in the absence
of the external magnetic field (H = 0.0) is made to demonstrate the influence that the exchange coupling
on the stable states (see Figure 4.2.a). This figure shows that the stable phases are phase (−1/2, −1/2),
phase (+1/2, +1/2), phase (−1/2, +1/2), and phase (+1/2, −1/2).

We plot Figures 4.2b, c to determine the stable configurations as the second and complementary
facet of the analysis of the phase diagram. In Figure 4.2.b, it is deduced that phase (−1/2, −1/2), phase
(+1/2, +1/2), phase (−1/2, +1/2) and phase (+1/2, −1/2) are the stable states. Also, in Figure 4.2.c,
the stable phases are phase (−1/2, −1/2) and phase (+1/2, +1/2).
It is crucially important to indicate that the phase diagrams have been studied at null temperature while
the magnetic properties shall be investigated at the non-null temperature in the following subsection.
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Figure 4.2: Ground-state phase diagrams displaying different stable phases in different phase diagrams:
in a) the plane (Jab, Jc) for H = 0.0 and ∆ = 0.0;b) in the plane (H, Jab) for Jc = 1.0 and ∆ = 0.0 ;c) in
the plane (H, J) for Jab = +1.0, ∆ = 0.0
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Figure 4.3: Partial (MA; MB)-total magnetizations as a function of temperature for various sizes: L =
8, 12, 16, 20, and 24, for Jab = −337K and Jc = +38K of PbV O3

4.3.2 Monte Carlo Results (T ̸= 0)
In this section we investigated the PbV O3 compound using Monte Carlo simulation with the application
of the Metropolis algorithm in the framework of the threedimensional Ising model. The results obtained
by this method are organized as follows:

Figure 4.3 displays the variation of the magnetization as a function of the temperature for the
different values of the system size (L = 8, 12, 16, 20 and 24). It is evident that the system size goes
through the variation from 8 to 24 for the values of the exchange coupling Jab = −337K and Jc = +38K.
Put in another way, the main observation made here is that for the smaller sizes (L = 8 and 16) of the
compound, the magnetization is in the condition of constancy and non-zero above the Curie temperature;
however, for the other sizes (L = 20 and 24), we have concluded that the magnetization decreases by the
increasing temperature until it vanishes at the Neel temperature TN ≃ 182K. Moreover, it is observed
that the second-order transition is present because of the continuity of the magnetization and this ob-
servation is important for determining the critical exponents. This transition temperature determined in
this study is a good agreement with experimental value TN = 190K [112].

In the same line, Figure 4.4a,b these figures illustrated the peaks of the specific heat and the
susceptibility, too. From these figures, we have observed that the peaks increase when the system size
increases. More importantly, the peaks of the thermal magnetic susceptibility are located at the transition
temperature whose determined value is TN ≃ 182K as said before.

In the same context, we presented in this part of work the variation of the transition temperature
versus the exchange coupling interactions, Figure 4.5a–f illustrated the impact of the exchange coupling
interactions (Jab, Jc) on the transition temperature. In Figure 4.5.a–c are plotted different values of Jab

with Jc fixed, and in Figure 4.5.d–f is illustrated Jab fixed and Jc varied. From these figures, we deduced,
when the absolute values of the exchange coupling interactions increase, the transition temperature
increases too. Finally, we do the calculation of the critical exponents α, γ , and ν by first taking a
logarithm to calculate the critical exponent ν from the slope (1/ν) of the linear fit as illustrated in
Figure 4.6.a. By using the value of the critical exponent ν and taking the logarithm of (4.8) and (4.9),
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Figure 4.4: a)Susceptibility and b) specific heat as
a function of temperature for various sizes: L =
8, 12, 16, 20, and 24; for Jab = −337K and Jc =
+38K of PbV O3

we determine the critical exponents γ and α from the slopes (γ/ν) and (α/ν) of the linear fits as shown
in Figure 4.6.b, c. The critical exponents obtained are ν = 0.66, γ = 1.26, and α = 0.28. By comparing
with the universal values of the 3D Ising model ν = 0.632, γ = 1.23, and α = 0.104 [130], our critical
exponents are near to them.

4.4 Conclusion
In conclusion, we obtained results by means of the investigation made into the PbVO3 compound with
spin S = 1/2 which is an important material used as components in electronic devices. These results
are the elaboration and discussion of the stable phases, the examination of the ground-state phase di-
agrams is made, and the partial– total magnetization, susceptibility and specific heat as a function of
the temperature have been explored. Furthermore the transition temperature determined in this study
(TN ≃ 182K) is in good agreement with experimental value TN = 190K Also the temperature transition
increases with the increasing of the absolute value of the exchange coupling interactions (Jab, Jc). Finally,
the critical exponents have been determined. This has been achieved essentially by using Monte Carlo
simulations (MCS) within the framework of the Ising model. We have succeeded in determining the
magnetic properties of compound PbV O3



CHAPTER 4. CALCULATED MAGNETIC PROPERTIES OF THE COMPOUND PBV O3 44

Figure 4.5: Variation of the transition temperature as a function of the exchange coupling interactions
(Jab, Jc)
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Figure 4.6: Critical exponents for values of the exchange coupling Jab = −337K and Jc = +38K of PbV O3
in the absence of the external magnetic. a Log–log plot of the maxima of d(ln < m >)/d(1/KBT ) as a
function of the system size L. b Log–log plot of the maxima of the susceptibility versus the system size
L. c Log–log plot of the maxima of the specific heat versus the system size L.



Chapter 5

Effect of thickness size on magnetic
behavior of layered Ising nanocube
with Spins (5/2,3/2, 5/2):Monte
Carlo simulations.

5.1 Introduction
Magnetic nanoparticles (MNs) are undoubtedly of great interest to researchers because of their magnetic
and morphological properties [1]. MNs have potential nanotechnological and industrial applications in
the following domains: information storage [28, 131], biomedical applications [132], shielding [133], sen-
sors [134, 135] and magneto-resistive devices [136]. The nanoparticles constituted by combining two or
more magnetically coupled structures [21, 41, 137–142] (layers, core-shell...) leads to enormous applica-
tions because of the numerous physical and magnetic phenomena that occur. It is noteworthy, that each
substructure may exhibit a different thermal behavior for its magnetization such as compensation points,
i. e., temperatures below the critical point for which the total magnetization is zero while the individual
substructures remain magnetically ordered [143,144].

In today’s climate of intensive nanotechnology research, several types of nanoparticles with com-
bined magnetic substructures have been successfully synthesized such as nanocubes, nanowires, and
nanofilms.

Well obviously experimental research progress of these magnetic nanoparticles is complete fewer
opportunities without detailed theoretical investigations. In the same context many theoretical studies
have been devoted to investigate the magnetic properties of magnetic nanoparticle by using different
types of methods: Monte Carlo (MC) [145,146] and micro-magnetic simulations [147]. A number of this
was earmarked for the study of phase diagrams of compensation points. Particularly Layered [148, 149]
magnetic systems seeing that it presents well the phenomenon of point of compensation and other like
such as the giant magnetoresistance [150, 151] and the magnetocaloric effect [152–154] have important
technological applications. In the same context there is also immense theoretical interest in investigat-
ing the magnetic properties of these kind of systems, to better understand the interactions between the
characteristic behaviors of two- and three magnetic layers. Diaz et al confirmed that the compensation
effect is favored by weaker interplanar couplings and by a more pronounced intraplanar coupling asym-
metry studying a Ferrimagnetic 1/2-spin Ising bilayers by using Monte Carlo simulations [148]. Jiang
et al have explored the magnetic properties of the ferromagnetic nanoparticles on a body-centered cubic
lattice based on a classical Heisenberg spin Hamiltonian in which S=3/2 and σ=5/2 spins are distributed
in the two interpenetrating square sublattices. They have discussed the occurrence of a compensation
temperature in the system and its conditions. They also noticed the fact that compensation temperature
of system vary as the particle size increases, and it becomes relatively independent of particle size when
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Figure 5.1: Trilayred Nanocube with: green color indicates layer with spin 3/2 and two others with red
color for spin 5/2.

the particle size is increased further [155]. Yuksel et al have investigated the phase diagrams and ther-
mal and magnetic properties of a ferrimagnetic nanoparticle which is defined on a simple cubic lattice
with a ferromagnetic spin-3/2core which is interacting antiferromagnetically with a ferromagnetic spin-1
shell layer. More recently Lv [156] and Kanyoushi [157] have investigated the phase diagrams and the
thermal variations of total magnetization for Ising bilayer. Other works have focused on magnetic trilay-
ers [158,159] and multilayers [160].

We utilized the Monte Carlo simulations to investigate what phenomena may be obtained in the
Ising trilayers nanocube consisting of the two layers with spin-5/2 and one in the middle with spin-3/2.
We examined the effects of exchange couplings, anisotropic parameter, and the thickness of the nanocubes
layers on the behavior of critical, compensation temperatures, the phase diagram, and hysteresis loops.

This work is organized as follows. In section 5.2 , we define the model and present the method.
The simulation results and discussion are presented in section 5.3, and finally we give our conclusions in
section 5.4.

5.2 Theoretical model and method
Here, we considered a single nanocube system containing three alternating ferromagnetic layers. The
middle one noted L1 is described by coupled spins S = 3/2 with thickness tS while the two other layers
noted L2 are described by coupled spins σ = 5/2 with thickness tσ for each one. Spins are assumed
to interact ferromagnetically inside layers while the spins between two adjacent layers are interracting
antifroemagnetly (interlayers). We note the thickness ratio r = tσ

tS
. The Hamiltonian which governs the
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system studied is expressed by:

H = −J1
∑
⟨i,j⟩

SiSj − J2
∑
⟨k,l⟩

σkσl − J3
∑

⟨m,n⟩

Smσn − D
∑

i

((σi)2 + (Si)2) − H
∑

i

(σi + Si) (5.1)

Where Si and Sj are nearest-neighbours, spins of sites i and j represent the layer L1 while σk and σl

represent thus of layers L2. σm and σn denote interlayer spins of the following adjacent layers. J1 and
J2 are exchange couplings between nearest neighbors of spins belonging to the L1 and L2 respectively.
J3 is exchange coupling interactions of nearest-neighbor spins are between consecutive adjacent layers .
D is the magnetic anisotropy parameter, and H is the external magnetic field acting on all spins. The
Hamiltonian (5.1) is solved numerically. In the following, we used normalized parameters: J2/J1, J3/J1,
D/J1 and H/J1.

To compute the thermodynamic quantities, we used the Metropolis algorithm in the context of the
Ising model. The lattice was considered with free boundary conditions, and the simulation was performed
for different lattice sizes. The program ran a sufficient for an amount of time using 18.105 Monte Carlo
steps (MCS) per spin, and the equilibrium was reached after 105 MCS steps per site. The magnetizations
per site of L1 and L2 can be calculated by:

M1 = 1
N1

N1∑
i=1

Si (5.2)

M2 = 1
N2

N2∑
i=1

σi (5.3)

While the total magnetization per site is:

MT = M1N1 + M2N2

N
(5.4)

The magnetic susceptibility per site of the magnetic nanoparticle is defined as:

χ = β(< M2
T > − < MT >2) (5.5)

Where β = 1
KBT

We could obtain the compensation temperature Tcom by looking for the point of intersection
between the absolute values of the magnetizations of the layers by using:

(M1(Tcom)) = −(M2(Tcom)) (5.6)

With Tcom < Tc.

5.3 Results and discussions
In Figure 5.2, we represented total and partial magnetizations as functions of the reduced temperature
and investigated the effect of the anisotropy parameter D/J1 on phase diagrams of interest. We have
found that for selected values -0.3, 0.0 and 0.3 of D/J1, magnetizations decrease continuously until
vanishing at a specific point before reaching the critical one. That denotes the phenomenon of magnetic
compensation (see Figure 5.2.a). In fact, this phenomenon appears generally in the ferrimagnetic order
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Figure 5.2: Effect of the anisotropy parameter D/J1 on the temperature dependencies of (a) total mag-
netization MT , (b) Layer spin-3/2 and Layers spin-5/2 magnetizations M1 , M2 For J2/J1 =0.3, J3/J1
= -0.5 and H/J1 =0. (c) Phase diagram of the system in (Tc ,Tcom − J2/J1) plane for D/J1 = -0.3 ,0,0.3
and for the same parameters.
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when the magnetization is plotted versus the temperature. The specific point in Figure 5.2.a is called
by the compensation point; it corresponds to the intersection between a magnetization curve and the
temperature axis and indicates the compensation temperature value. It is seen in (Figure 5.2.c) that
the compensation temperature increases proportionally with D/J1. Diaz and Branco reported a similar
behavior when studying spin-1/2 Ising system containing three layers [149]. It is worth noting that the
magnetic compensation is useful in the control of the magnetic stability of some magnetic systems used
in spintronics.

Figure 5.3.(a-c) shows the effect of the thickness ratio r = tσ

tS
on the temperature dependencies

of total magnetization MT for J2/J1=0.2 ,0.45 and 0.8 , J2/J1=-0.5, H/J1=0 and D/J1=0. The com-
pensation temperature have been observed at low values of J2/J1 = 0.2, see Figure 5.3.a which increases
with increasing the thickness ratio r. Also, we show that for all values of J2/J1 the total magnetization
MT increases as we increase the thickness ratio r. Below J2/J1=0.8 a antiferromagnetic order have been
appeared. The Figure 5.3.(d-f) presents the magnetic susceptibility χ of the nanocubes for J2/J1=0.2
,0.45 and 0.8 , J2/J1=-0.5, H/J1=0 and D/J1=0. For J2/J1=0.2, we see tow peaks of the magnetic
susceptibility χ in Figure 5.3.d, the first and second peaks are corresponding to the compensation and
critical temperatures. For J2/J1 > 0.45 the compensation of the total magnetization disappear and the
magnetic susceptibility χ presents one peak which corresponding to the critical temperature. The cal-
culated critical temperature concur with result reported by N. De La Espriella et all [161] in studying
magnetic behavior of a mixed Ising system (3/2; 5/2) on a square lattice.

The effect of J2/J1 and the thickness ratio r on compensation and critical temperatures for
D/J1 = −0.3, 0, 0.3 and for the same parameters for layered nanocube are plotted in Figure 5.3.g, the
system presents a compensation temperature below J2/J1 = 0, 45. For J2/J1 > 0.45 the critical tem-
perature increases with increasing the thickness ratio r, but For J2/J1 < 0.45 to the compensation and
critical temperatures increase with decreasing the thickness ratio r. The point (0.45-6) corresponding to
tricritical point in the Phase diagram of the system in (Tc, Tcom − J2/J1). The critical temperatures of
nanocube found are closed to their of Ising bilayer system consisting of the mixed (3/2; 5/2) reported by
M Keskin [162].

Figure 5.4.a shows the total hysteresis loops for different values of thickness ratio r when fixed
T/J1 = 1, J2/J1 = 1, J3/J1 = −0.5, and D/J1 = 1. Under the influence of thickness ratio r, the total
area of the hysteresis loop of nanocube systems increases with increasing the thickness ratio r, we found
that the total hysteresis loop depends of the thickness of spin-5/2, also a fixed hysteresis loop have been
observed for the partial hysteresis loop of buffer layer (spin 3/2) (see Figure 5.4.b), suggesting that the
magnetization in this system governed by spin-5/2 layered. It is found that the hysteresis loop showing
ferromagnetic behavior for all values of thickness ratio r.

The magnetic hysteresis loops behavior that we researched is of great importance for memory
storage device development, high frequency device application, and academic study [163]. The resulting
reduced total-partial hysteresis loops for several values of reduced anisotropy D/J1 is determined in Fig-
ure 5.5.From these figures, we observed that the total system exhibits the triple loop when D/J1=-1.5
while the sublattices S and σ present the single loop. We can conclude that the appearance of the triple
loop in the total system is due to the combination of the both sublattice S and σ. when D/J1 = −1 the
hysteresis loop of total system changes and becomes a single loop and its area increase, also for sublattice
S while the area of the sublattice σ decrease ,which comes from the variation in the hysteresis loops of
the sublattice S. by increasing D/J1 (for D/J1=0 and 1) the single loop the triple hysteresis loop still
exists in the system, also we can notice the existence of the magnetization plateaus in the hysteresis
loops, meanwhile the sublattice S and sigma present a rectangular shape like the hysteresis behaviors
in the ferromagnetic system. The area of the loop increases obviously, the same for S sublattice, while
the area of σ sublattice is nearly unchanged. By describing the effect of anisotropy on coercivity and
remanence of the system: increasing the reduced anisotropy parameter D/J1 the coercivity of the system
increases slightly at first, then increase abusively in continuous density, while the remanence remains
virtually unchanged.

The Figure 5.6 illustrates the impact of the reduced exchange coupling interaction (between spin-
5/2) J2/J1 of on the total and partial hysteresis loops with fixed J3/J1 = −0.5, T/J1 = 2 and D/J1 = 0.
From This figure we can see that the shape of the hysteresis loops take a conspicuous change by increasing
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Figure 5.3: (a-c) Effect of the thickness ratio r = tσ

tS
on the temperature dependencies of the total

magnetization MT and (d-f) and magnetic susceptibility χ of the nanocube for J2/J1 = 0.2 ,0.45 and 0.8
, J3/J1 =-0.5, H/J1 =0 and D/J1 =0 (g) Phase diagram of the system in (Tc, Tcom − J2/J1) plane for
r = 0.4, 1 et 2.6 for the same parameters.
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Figure 5.4: (a) Total (b) layer with spin-3/2 and layers with spin-5/2 magnetizations versus magnetic
field calculated for different values thickness ratio r showing ferromagnetic hysteresis loops .
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Figure 5.5: (a-d) Total(bleu line) , (e-h) both of layer with spin 3/2(green line) and layers with spins 5/2
(red line) magnetizations versus magnetic field calculated at T/J1 =2 for different values of anisotropy
parameter D/J1 showing ferrimagnetic hysteresis loop.
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Figure 5.6: (a-d) Total(bleu line) , (e-h) both of layer with spin 3/2(green line) and layers with spins
5/2 (red line) magnetizations versus magnetic field calculated at T/J1 =2 for different values of exchange
coupling interaction J2/J1 showing ferrimagnetic hysteresis loop.



CHAPTER 5. MAGNETIC BEHAVIOR OF LAYERED ISING NANOCUBE 56

Figure 5.7: (a-d) Total (e-h) layer with spin 3/2 and layers with spins 5/2 magnetizations versus magnetic
field calculated for different values of temperature T/J1 showing ferromagnetic hysteresis loops.

J2/J1 from 0.1 to 1.0. that is The system may turn from the single hysteresis loop (J2/J1=0.1) into the
triple hysteresis loops (J2/J1=0.25), conversely for the values of J2/J1 > 0.25 the hysteresis cycle of
the system amounts to behaving in the same way as at the beginning it is to say: from the triple
hysteresis loop (J2/J1 > 0.25) into the single hysteresis loops also magnetization plateaus begin to
appear in the hysteresis loops. It can be seen that the total area of the hysteresis loops and remanence
increase. Whereas the coercivity of the system first remain almost invariable from J2/J1 = 0.1 to 0.25,
thereafter for (J2/J1 > 0.25) the coercivity exponentially increases.The obtained hysteresis loops are in
a good agreement, quantitatively, with experimental results of FeCo alloy nanocubes reported by X. W.
Wei [164]

Figure 5.7 shows the hysteresis loops for different values of T/J1, when J2/J1 =1 , J3/J1=-0.5 and
D/J1=0 .We noticed that the coercive field decreases with the increasing of the reduced temperature ,from
our simulated system, we found that the hysteresis loop may disappear at the reduced transition tem-
perature (T/J1=11), suggesting that the system expresses the supermagnetic phase. In Figure 5.7.(d,h)
corresponding to T/J1=11, it is clearly shown that the area of the hysteresis loop, the coercivity and
the remanence decrease with increasing T/J1, which is due to being weakened by the temperature. It is
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Figure 5.8: (a-d) Total (e-h) layers with spins 5/2 and layer with spin 3/2 magnetizations versus magnetic
field calculated at T/J1 = 2 for different values of inter layers exchange coupling interaction J3/J1 showing
ferrimagnetic hysteresis loops .

worth mentioning that the hysteresis loop can express the step effect of low temperatures. For example,
as shown in Figure 5.7 (a,e) corresponding to T/J1=5, it can be noted the existence of magnetization
plateaus in the hysteresis loops for different values of the external magnetic field T/J1.

Figure 5.8 show the total and partial magnetization versus the applied external magnetic filed
H/J1 for different values of J3/J1 with fixed T/J1=2 , D/J1=-0.2, J2/J1=0.5 .Pour J3/J1 =-0.6 the
partial magnetization hysteresis cycles show a ferromagnetic behavior even if the J3/J1 is negative. This
returns to the competition between the ferromagnetic J2/J1 and the negative J3/J1 couplings. According
to the coupling values, a barrier value of negative J3/J1, below this value the ferromagnetic behavior
exists. To varying J3/J1 from -0.6 to -1 the loops of layers 5/2 retains the shape of a rectangle, but apart
from -2 there is a slight change so that the cycle becomes shifted for layer it exhibits a single loop, but
from J3/J1 = -2 it begins to form double loops under-triangles. This is due to the change of layers 1/2
states. We can say that the interlayer’s interaction has an influence on layers 3/2 of middle more than
those of 5/2.

5.4 Conclusion
We have studied a Single Ising nanocube system containing three alternated ferromagnetic layers .The
studied system is described by spins (5/2;3/2;5/2). The interactions between pairs of spins of the same
layer (L1-L1 or L2-L2 bonds) are ferromagnetic while the interactions between pairs of atoms of different
layers (S −σ) are antiferromagnetic . The study is carried out through Monte Carlo simulations. We have
investigated the magnetic and thermodynamic properties the system.the effects of anisotropy parameter
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D/J1 , temperature T/J1 , inter layers exchange coupling interaction J3/J1 and exchange coupling in-
teraction J2/J1 on the hysteresis loops are deterimned. We verified the occurrence of a compensation
phenomenon and determined the compensation temperatures, as well as the critical temperatures of the
model for a range of values of the Hamiltonian parameters and thickness ratio r. We present phase
diagrams and a detailed discussion about the conditions for the occurrence of the compensation phe-
nomenon. Our results are in a good agreement, quantitatively, with some theoretical and experimental
results.



Chapter 6

Case of assemblies systems of
nanocubes

6.1 Ferromagnetic Nanoparticles of Ising Spin-1 with a Rubik’s
Cube Structure: Monte Carlo Simulations.

6.1.1 Introduction
In recent years, magnetic nanostructure systems such as nanocubes [2, 3, 165, 166], nanodots [167–169],
nanofilms [170], nanowires [105, 171–173], dendrimers [174–177], nanotubes [178, 179], and nanospheres
[180] attracted the interest of researchers whether they are theoreticians or experimenters. This growing
interest in these systems is mainly due to the importance given to the nanotechnologies and industrial
applications in the following domains: information storage [27, 28], biomedical applications [181–183],
shielding [184], sensors [185], permanent magnets [135], and magnetoresistive devices [186]. However,
many theoretical studies have been devoted to investigating the magnetic properties of various types
of magnetic nanoparticle systems mentioned above by using different types of methods such as Monte
Carlo (MC) [143, 144, 144, 145], mean field approximation (MFA) [187, 188], effective field theory (EFT)
[106,189,190], Green function formalism [191], cluster variation method (CVM) [192,193], or micromag-
netic simulations [147].

Nanocubes as one of the different shapes of nanoparticles have attracted an important part of the-
oretical and experimental studies. Nevertheless, more researches have been devoted to the synthesis of
cubic nanoparticles with several methods during the last few years such as (iron/iron oxide core/shell [194],
wustite-spinel (core)/(shell) [195], Fe [196], Fe1 − xO /Fe3−δO4 (core/shell) [197], and Ni [198] CoxFe3-
xO4 [199] Ag [200,201].

Moreover, the spin systems permit the representing of these molecular materials in simple 2D or 3D
models in order to study them theoretically by the aforementioned methods. In this connection, several
studies on nanocubic spin systems have been carried out, but particularly on single nanoparticles. Due
to the size of these nanosystems, several unusual thermal and magnetic properties which appear different
from those of bulk systems have been obtained.

For the present work, its singularity is to study a spin-1 ferromagnetic 3D (multi-nanoparticles)
system composed of several nanocubes under the form of a Rubik’s cube. From this structure, interesting
magnetic properties comparable to those observed in magnetic nanoparticles with dipolar interactions
and non-collinearity of spins have emerged. These phenomena are due to the size effects. The outline
of the remaining parts of this work is as follows: In Section 2, we describe the Hamiltonian model and
the method used. In Section 3, we present results and discussions. Finally, in Section 4, we present the
conclusion.

59
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Figure 6.1

6.1.2 Theoretical model and method
Here, we considered the Rubik’s cube as the structural model for the studied system. As shown in Fig-
ures 6.2.a, the model contains nidentical nanocubes of size Lnc grouped in a cubic nanosystem of size Lc.
Each nanotube is described by mcoupled spins S = 1 which are assumed to interact ferromagnetically
inside nanocubes as well as between two adjacent nanocubes (see Figure 6.2.b). The Hamiltonian which
governs the system studied is expressed by:

H = −J1
∑
⟨i,j⟩

SiSj − J2
∑
⟨l,f⟩

SlSf − ∆
∑

i

(Si)2 + H
∑
⟨i⟩

Si (6.1)

Where Si and Sj are nearest-neighbor spins of sites i and j while Sl and Sf denote the nanocube
side-last spin and the side-first spin of the following adjacent nanocube, respectively. J1 and J2 are
exchange couplings between nearest neighbors, respectively, of spins belonging to a nanocube and of
consecutive adjacent nanocubes in any direction x, y, or z. ∆ is the magnetic anisotropy parameter, and
H is the external magnetic field acting over all spins Si. We solved numerically the Hamiltonian (6.1) in
order to investigate the size effects and magnetic properties in the ferromagnetic nanoparticles of Ising
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Figure 6.2: a) Rubik’s cube as a group of identical nanocubes. b) Ferromagnetic arrangement in
nanocubes
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spin-1. For a theoretical study, we used in the following normalized parameters ρ = J1/J2, δ = ∆/J2,
and h = H/J2.

To compute thermodynamic quantities, we have used the Metropolis algorithm in the context of
the Ising model. We have considered the system lattice with free boundary conditions and performed
the simulation for different lattice sizes. The program was turned long enough, and the equilibrium was
reached after 12.105 MC steps per site. The total magnetization is expressed by:

M = 1
N

|
∑

i

Si | (6.2)

Where N = (n ∗ m) is the total number of spins in all the lattice.

The magnetic susceptibility is given as:

χ = N

KBT
(⟨M2⟩ − ⟨M⟩2) (6.3)

KB is the Boltzmann’s constant set to unity.

The relation links the magnetization and the susceptibility:

χ = ∂M

∂H
|H=0 (6.4)

H is the external magnetic field.

6.1.3 Results and discussions
In this section, we present the results of our work, which consists of the study of size effects and mag-
netic properties of the ferromagnetic nanosystem of spin-1. We have first investigated system parameter
effects on the phase diagrams for different sizes of the lattice. Then, we have analyzed the hysteresis
loops behavior. Finally, we have studied the size effects on the coercive field. The quality of the results
obtained is largely attributed to the nature and structure of the studied system.

To show the effects of the system parameters on magnetic stability regions where spins are ordered,
we present two types of phase diagrams in the (Lnc, tc = Tc/J2), (Lc, tc), and (δ, tc) planes. From Eq.
(3), we plotted the reduced critical temperature tc as functions of Lnc and Lc, respectively, for varying
ρ and as a function of δ. In Figures 6.3, the phase diagram Lnc − tc is plotted for selected values δ = 0.1
and h = 0.0 with sizes Lc = 3 and Lnc = 3, 4, 5, 6, and 7. The variation of the critical temperature dis-
plays a dual behavior due to the competition between the reduced exchange coupling effect and the size
effect of nanocubes. First of all, we can see that for ρ > 0.63, the reduced critical temperature increases
proportionally both to the exchange coupling and the nanocube size, which is a characteristic feature of
ferromagnetic nanoparticles. However, for ρ > 0.63, the reduced critical temperature increases with the
exchange coupling but decreases when the nanocube size increases. At ρ = 0.63, the size effect is blocked;
the reduced critical temperature is constant for any nanocube size. The linear fits denote the set of critical
points of second-order phase transitions. Thus, we show in Figures 6.4 the magnetic susceptibility versus
the temperature for ρ = 0.63, δ = 0.1, and h = 0.0 with sizes Lc = 3 and Lnc = 3, 4, 5, 6, and 7. It is
found that the peak of the susceptibility increases with the nanocube size, giving the critical temperature
tc = 21.20 which agrees with Figures 6.3. The phase diagram Lc − tc in Figures 6.5 representing the
variation of the reduced critical temperature as a function of the total nanosystem size is plotted for
δ = 0.1, h = 0.0, and ρ = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 with sizes Lnc = 3 and Lc = 2, 3, 4, and 5. In
spite of ρ values around 0.63, the increase of the reduced exchange coupling and the nanosystem size
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Figure 6.3: Reduced critical temperature as a function of the nanocube size for different values of the
exchange coupling ρ. The constant linear fit corresponds to ρ = 0.63
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Figure 6.4: Magnetic susceptibility versus the reduced temperature for ρ = 0.63, δ = 0.1, and h = 0.0
with sizes Lc = 3 and Lnc = 3, 4, 5, 6, and 7
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Figure 6.5: Reduced critical temperature as a function of the nanosystem size Lc for different values of
the exchange coupling around ρ = 0.63

induces one of the reduced critical temperatures simultaneously, meaning that contrary to the first case,
the nanosystem size effect does not compete with the reduced exchange coupling effect. These two effects
favor the extension of the magnetic stability region.

The effect of the reduced magnetic anisotropy is presented in the diagram of the (δ, tc) plane, where
the dependence of the critical temperature to δ is brought out (Figures 6.6) for parameters ρ = 0.1
and h = 0.0 with selected sizes Lc = 3 and Lnc = 3 and 5. We can see that the critical temperature
increases when δ increases from negative to positive values. Critical temperatures are lightly higher for
Lnc = 3 than for Lnc = 5 in agreement with Figures 6.3 and Figures 6.5. Otherwise, they are lower
and constant for negative low values of the reduced magnetic anisotropy; this phenomenon was observed
before in another work [199]. The set represents a fit of second-order phase transition points, while in
the present case, we did not observe first-order transition lines but, according to references [199], they
can be predicted for the studied nanosystem.

Now, we apply an external magnetic field and we investigate the hysteresis loops for selected low
values of the temperature. Thus, we show first in Figures 6.7 the total magnetization versus the reduced
magnetic field for t = 0.1, 0.3, and 0.5. It is found that the response of the magnetization to the magnetic
field shows hysteresis behaviors with single loops where the reduced magnetic coercive field gets thinner
till it disappears when moving from t = 0.1 to t = 5. This behavior reveals the dependence of the
coercive field in terms of the critical temperature and was also found in previous works [49–51]. Then,
we have investigated size effects on the coercive field when setting the temperature to t = 0.3. For this
purpose, we present two graphs in Figure 6.8 showing the variation of the coercive field, respectively, as
a function of the nanocube size, Lnc (Figure 6.8).a) and the nanosystem size, Lc (Figure 6.8.b). For the
first case, we have found a continuous increase of the coercive field when the nanocube size decreased,
with a constant sequence between nanocube sizes 5 and 6. This is similar to a multi-domain state of
magnetic nanomaterials with dipolar interactions [199,202,203]. However, for the second case, when fixing
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Figure 6.6: Reduced critical temperature versus the reduced magnetic anisotropy δ = ∆/J1 for sizes
Lc = 3 and Lnc = 3 and 5
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Figure 6.7: Total magnetization versus the reduced external magnetic field for ρ = 0.1, δ = 0.1, Lc = 3,
and Lnc = 10
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the nanocube size to Lnc = 3 and decreasing the nanosystem size from Lc = 10 to Lc = 2, we observe
a coercivity behavior which increases up to a maximum reaching at Lc = 4 and then decreases. But
now, this situation reminds the conversion from a multidomain state to a single-domain state observed
in magnetic nanomaterials. Note that a like superparamagnetic phase was not found at low nanosystem
sizes. We assume that these phenomena are due to the Rubik’s cube structure and to the nanometric
character of the studied system.

6.1.4 Conclusion
In this work, we have studied size effects on magnetic properties of the ferromagnetic nanoparticles of Ising
spin- 1 by using Monte Carlo simulation with the Ising model. The studied system has the particularity
to be a Rubik’s cube consisting of identical nanocubes. It has been shown that phase diagrams depend
on the system parameters and are affected as well as by the nanosystem size than only by the nanocube
size. Indeed, depending on the reduced exchange coupling, two regimes have been observed where the
reduced critical temperature decreases and increases, respectively. Moreover, the variation of the coercive
field as a function of sizes has shown a well-known phenomenon of magnetic nanomaterials with dipolar
interactions, where the coercive field increases, reaches a maximum, and then decreases to zero with
decreasing nanoparticle size. However, in our case, we have not found the coercive field reduced to zero
for low sizes. We attributed these phenomena to the structure and the nature of our system.
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Figure 6.8: Coercive field versus sizes: a) of the nanocubes Lnc , b) of the nanosystem (Rubik’s cube) Lc
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Figure 6.9: Schematic representation of a nanocubic Chain Model with magnetic moment spin S = 1 and
the number of cube equal N = 5 the size of cube (Lc ∗ Lc ∗ Lc)

6.2 Magnetic properties of Nanocubic Chain Model (NCCM):
Monte Carlo Study.

6.2.1 Introduction
Magnetic nanoparticle assemblies have been the subject of immense scientific activity over the last
decade [120, 204, 205]. Magnetic nanoparticles have interesting properties in the scientific world, es-
pecially in the area of Spintronics and new technology- namely magnetic storage media and memory
devices [206–209]. The importance of the magnetic nanoparticle is attributed to the fact that they rep-
resent a critical link between current technologies and future applications, due to their small size, large
surface-to-volume ratio and size-dependent properties like superparamagnetism [210]. Today’s focus has
shifted towards biomedical applications and functional materials [211–213]. From the view point of bio-
physics, magnetic particles can be considered as a model system for studying the polar organization of
microtubules or generate spontaneous helical superstructures reminiscent of DNA molecules [214–216].
The experimental and theoretical studies have done recently in this area of magnetic. Messina, R. et al.,
they are shown that the attraction and assembly of parallel magnetic chains is the result of a delicate
interplay of dipole–dipole interactions and short range excluded volume correlations [217]. Material en-
gineering and emerging applications in lithography and biomedicine are studied by Yuping Bao et al.,
they are concluded with a succinct discussion of the pharmacokinetics pathways of iron oxide nanopar-
ticles in the human body-an important and required practical consideration for any in vivo biomedical
application, followed by a brief outlook of the field [218]. Synthesis, alignment, and magnetic proper-
ties of monodisperse Nickel nanocubes are treated by Alec P et al., they are established that the nickel
nanocubes have over 4 times enhancement in magnetic saturation compared to spherical superparamag-
netic nickel nanoparticles [198].
Herein we reported the magnetic properties of NCCM via The Monte Carlo study. Thank to this method
we achieved a several results like: the critical temperature, the effect of the anisotropy on the magneti-
zation, the impact of the temperature and anisotropy on hysteresis loop.
The organization of this work is as follows: in section 2, we presented the model and method. Results
are shown and discussed in section 3. The final section is reserved for all in all (conclusion).



CHAPTER 6. CASE OF ASSEMBLIES SYSTEMS OF NANOCUBES 71

6.2.2 Theoretical model and method
This section is devoted to present the model of our system and the method used for determine the
magnetic properties of NCCM. First of all, we have considered the NCCM as displayed in Figure 6.9.
Each site on the figure is occupied by an Ising spins S = 1. The interaction in the cube is expressed by
J1, and the interaction between two cubes is noted by J2. The Hamiltonian was described this CCM was
given by this equation:

H = −J1
∑
⟨i,j⟩

SiSj − J2
∑
⟨i,j⟩

SiSj − ∆
N∑

i=1
(Si)2 − H

N∑
i=1

(Si) (6.5)

This Hamiltonian is composed of the following parameters: ⟨i, j⟩ correspond to the closest neigh-
bors between Si − Sj . J1 and J2, which are the parameters of the equation, represent the exchange
coupling in the cube and inter-cubes or between cubes respectively, ∆ denotes an anisotropy applied on
all the system spins as well as H stands for an external magnetic field.

This subsection treats also the method employed for establishing the magnetic properties of the
CCM. We applied a standard sampling method to simulate the Hamiltonian given by (6.5) who is Monte
Carlo Simulations with the application of Metropolis algorithm. Cyclic free conditions on the lattice were
imposed and were generated by sequentially traversing the lattice and making single-spin flip attempts.
The acceptation or rejection is made according to a heat-bath algorithm under the Metropolis approxi-
mation. Our data was established with 106 Monte Carlo steps per spin, discarding the first 104 Monte
Carlo steps. Starting from different initial conditions, we executed the average of each parameter and
estimate the Monte Carlo simulations, averaging over many initial conditions. Our program calculates
the following parameters, namely:
The internal energy per site is determined as:

The magnetization per site is determined as:

M = 1
N

|
∑

i

Si | (6.6)

Where N is the total number of spins in all the lattice.

The magnetic susceptibility is given as:

χ = N

KBT
(⟨M2⟩ − ⟨M⟩2) (6.7)

KB is the Boltzmann’s constant set to unity.

The relation links the magnetization and the susceptibility:

χ = ∂M

∂H
|H=0 (6.8)

H is the external magnetic field.

6.2.3 Results and discussions
The goal set behind this section is to study and elaborate the magnetic properties of the NCCM by
The Monte Carlo study. We analyzed and treated the magnetic properties of the NCCM. We used,
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Figure 6.10: (a) Magnetic susceptibility as a function of temperature for various cube size: Lc =
4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, in (b) the reduced transition temperature as a function of cubic size
for J2/J1 = 1, ∆/J1 = 0.02 and N = 6.
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Figure 6.11: Magnetization in (a) and magnetic susceptibility in (b) as a function of temperature for
various cube number:N = 2, 3, 4, 5 and 6 for J2/J1 = 1, ∆/J1 = 0.02 and Lc = 6.

J2/J1,T/J1, ∆/J1 and H/J1 as the reduced parameters. By this method, we achieved several results are
given in the following paragraphs.

Figure 6.10(a) illustrated the variation of the magnetic susceptibility as a function of the temper-
ature for the different values of the cube size (Lc = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13) with the reduced
exchanges coupling (J2/J1 = 1.0), the reduced anisotropy (∆/J1 = 0.02) and the number’s cube (N = 6).
From this figure, we noticed that the effect of cube size on the magnetization is observed. In other words
the reduced transition temperature increases when the size of NCCM increases. On the other side, the
all magnetic susceptibilities are situated at the reduced transition temperature Tc/J1 as presented in
the table below (Table:6.1). We can say that this system belongs to the second order transition family
because we observed the continuity of the magnetization at transition temperature.

Size 3 4 5 6 7 8 9 10 11 12 13
Tc/J1 1.15 1.27 1.31 1.36 1.4 1.42 1.44 1.45 1.47 1.48 1.49

Table 6.1: The variation of reduced transition temperature versus cube size

From the Figure 6.10.(c), we observed that the reduced transition temperature increases with the
increases of size as said before.

Figure 6.11(a-b) presented the variation of total magnetization and magnetic susceptibility as a
function of the temperature for the different values of cube number (N = 2, 3, 4, 5 and 6) with the reduced
exchanges coupling (J2/J1 = 1.0), the reduced anisotropy (∆/J1 = 0.02) and the cube size (Lc = 6). We
concluded that the impact of cube number on the magnetization is not observed. In other words, the all
magnetic susceptibilities are situated at same the reduced transition temperature even if the number’s
cube increases.
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Figure 6.12: (a-d): Magnetization versus reduced anisotropy for various reduced exchange coupling in
(a), in (b) for various reduced external field, in (c) for various cube size and in (d) for various reduces
temperature with number of cube (N = 6).

We plotted the Figure 6.12(a-d) to illustrate the total magnetization versus the reduced anisotropy
at the fixed cube number N = 6. In the first step, we presented them in Figure 6.12.a with the differ-
ent values of the reduced exchange coupling (J2/J1 = −0.1, −0.2, −0.4, −0.6, −0.9 and −1.0forH/J1 =
0.0, T/J1 = 1.0) and as a result we concluded that despite the act of varying the coupling J2/J1, the
reduced anisotropy for ∆/J1 < −3.5 does not exert any influence on the total magnetization of the
NCCM. Contrastively, the total magnetization shown an abrupt change when −3.5 < ∆/J1 < −1 and
kept a constant value when ∆/J1 > −1 which is equal Ms = 1.

Equally important, the effect made the reduced anisotropy ∆/J1 on the total magnetization for the
different values of the reduced external magnetic field (H/J1 = 0.0, 0.5, 0.6, 0.7and0.9), and for different
values of cube size (Lc = 4, 5, 6, 7, 8and9) with the reduced exchange coupling interaction J2/J1 = 0.1 is
traced in Figure 6.12(b-c). The magnetization of different cube size increases with increasing the reduced
anisotropy and reduced external field until reached their saturation Ms = 1. For a high value of cube
size and the reduced external field the magnetization increases quickly such as given in Figure 6.12(b-c).
Figure 6.12.d. illustrated, the total magnetization versus the reduced anisotropy of different reduced
temperatures T/J1 = 0.5, 1, 1.5, 2 and 3 with J2/J1 = 0.1 , H/J1 = 0.0, Lc = 6 and N = 6. The
magnetization doesn’t achieved the saturation value when the reduced temperature increases.

As the end section of this article, the effect of the reduced exchange coupling, the reduced tempera-
ture and the reduced anisotropy on the magnetic hysteresis loop is elucidated in Figure 6.13(a-c)). Indeed,
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Figure 6.13: The total magnetization hysteresis loop for different reduced exchange coupling (J2/J1=-2,
0, 2, 4,5 and 6) in (a), for different reduced temperatures (T/J1=0.3, 0.6, 0.9, 1.2 and 1.36) in (b) and
for different reduced anisotropy (D/J1 = −4, −2, 0, 4 and 6) in (c).

Figure 6.13.a shown clearly the effect that the reduced exchange coupling has applied on the magnetic
hysteresis cycle that is the coercive field increases with increasing of the reduced exchange coupling. From,
the Figure 6.13.b, we concluded that the coercive field decreases with the increasing of the reduced tem-
perature and it was despaired at the reduced transition temperature (T/J1 = 1.36) [146,174,219,220]. For
the different values of the reduced anisotropy with T/J1 = 8 and J2/J1 = 5 as illustrated in Figure 6.13.c.
This figure allows us to conclude that the coercive field increases when the anisotropy increasing.

6.2.4 Conclusion
The magnetic properties of the NCCM have investigated by the Monte Carlo simulations. The reduced
transitions temperatures are established for different cube size of NCCM (Lc∗Lc∗Lc). The result achieved
is that the reduced transition temperature increases with the increases of the cube size (Lc). As second
results, the magnetization versus the reduced anisotropy for different values of the reduced exchange
interaction, size of the NCCM, the reduced external magnetic field as well as the reduced temperature.
The magnetic hysteresis cycle are found for different reduced temperature value, for different reduced
exchange interaction value as well as for different reduced anisotropy. The magnetic coercive field increases
with increasing of the reduced exchange coupling and the reduced anisotropy while the coercive field
decreases when increases the reduced temperature.
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6.3 Effects of size for an assembly of Core-Shell nanoparticles
with the cubic structure: Monte Carlo simulations.

6.3.1 Introduction
Recent technological tendencies have motivated [6] the invention of new magnetic material properties,
which requires that the known materials be structured in all three dimensions at various scale lengths to
exploit these magnetic properties due to their nanoscale structure [4,5]. In the last decade, the magnetic
nanoparticles have been a main subject for several theoretical and experimental investigations thanks
to of their potential nanotechnological and industrial applications in the following domains : informa-
tion storage [27, 29], biomedical applications [132, 221, 222], shielding [223] , sensors [185], permanent
magnets [135] and magneto-resistive devices [186]. Particularly in the domain of information storage,
the possibility to control the coercivity in magnetic nanomaterials has led, particularly in the domain
of information storage, to many significant technological applications. The magnetic nanoparticles are
promising candidates for a further increase in the density of the magnetic storage devices.

On the other hand, many theoretical studies have been devoted to investigating the magnetic prop-
erties of various types of the magnetic nanoparticle systems such as nanocubes [144, 146, 147, 165, 193],
nanorods [168], nanofilms [170, 187, 224], nanowire [171, 225], dendrimer [174–177] , nanotube [189, 226],
nanospheric [180, 191] and skyrmion [227]. These studies use the following different types of methods:
Monte Carlo (MC), Mean Field Approximation (MFA), Effective Field Theory (EFT), Green function
formalism, Cluster Variation Method (CVM) and Micromagnetic Simulations.

The magnetic nanoparticles with the core-shell morphology have received particular attention be-
cause of their physical properties, which are highly dependent on the structure of the core-shell and the
interface exchange [228]. During the last few years, numerous works have been devoted to the investiga-
tion and to the synthesis of the nanoparticles that consist of core-shell architecture in order to understand
their thermodynamic and magnetic properties. For example, Iron/Iron oxide Core/Shell have been syn-
thesized [194], and Abedini et al [229] , in turn, have been synthesized using Fe/Ni nanoparticles in the
core/shell structure by Radiolytic Reduction Method. Rafique et al [230] reported that the magnetic
properties and effects of NaOH on the formation of FeCo alloy nanostructures were assembled, and Lu
et al [231] studied, in turn, the magnetic properties of the size-controlled CoNi alloy nanoparticles. This
growing interest in these systems with cubic shapes is mainly due to the beneficial effects (as a lower
surface spin disorder, higher crystallinity and higher magnetic moments) of the cubic shape [232, 233]
compared with those of the spherical shape. Recently, it has been found that cubic nanoparticles have a
higher degree of crystallization, and larger single crystal and higher saturation magnetization compared
to spherical nanoparticles of the same size [234]. However, due to the combination of their characteristics
such as (i) their cubic shape and core-shell structure; (ii) the high coercivity and (iii) magnetization
saturation, they are considered promising candidates as heat mediators for in vivo hyperthermia and
MRI applications [199].

Magnetism of an assembly of particles differs from that of a single particle. Particularly, because
the giant magnetic moment of a particle radiates a dipolar magnetic field which is felt at a greater dis-
tance by the moment of the other particles. Furthermore, at high concentrations, the particles can be
in direct magnetic interaction (ferromagnetic) because of their proximity. This implies that the macro-
scopic properties of the assembly (coercive field, blocking temperature ...) vary depending on the metal
concentration and the particle size and to a lesser extent on the size distribution [235–237].

In our study, we propose to investigate an assembly of Ising Ferromagnetic / antiferromagnetic
core-shell nanoparticles with a cubic shape, using Monte Carlo simulations. For this spin system, we
aim to study the effects of the interface exchange and interparticle coupling exchange, as well as of
the anisotropy parameter and size effects on the critical temperature and the coercive field. From this
structure, a number of interesting magnetic properties as compared to those observed in the magnetic
nanoparticles with dipolar interactions and non-colinearity of spins have emerged. These phenomena are
due to the side effects.
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The outline of the remaining parts of the paper is as follows: In section 2 we described the Hamil-
tonian model and the method used. In section 3, we presented the results achieved along with the
discussion. Finally, in section 4 we present the conclusion.

6.3.2 Theoretical model and method
We considered the assembly of cubic nanoparticles as the structural model for the studied system. As
shown in Figure 6.14 , the model contains n-identical nanocubes of Size L3 with L = 2Ls + Lc. Three
regions describe each nanocube: a ferromagnetic core with side Lc, a ferromagnetic shell of thickness Ls
and a ferromagnetic core-shell interface that is constituted by the core (shell) spins having its nearest
neighbours on the shell (core). The sites of the core are occupied by coupled spins σ = 1/2. The spins
S = 3/2 occupy those of the Shell and are assumed to interact inside nanocubes and between two adjacent
nanocubes. The Hamiltonian method, which governs the system studied, is expressed by:

H = −J1

N∑
⟨i,j⟩

σiσj − J2

N∑
⟨k,l⟩

σkSl − J3

N∑
⟨m,n⟩

SmSn − J4

N∑
⟨h,p⟩

ShSp − D

N∑
i

(Si)2 + H

N∑
⟨i,j⟩

(σi + Sj) (6.9)

Where, σi and σj are the nearest-neighbours, the spins of sites i and j represent the core. While
Sh and Sp denote the nanocube’s side-last spin and the side-first spin of the following adjacent nanocube.
J1 and J3 are the exchange couplings between the nearest-neighbours of the spins which belong to the
core and shell of each nanocube. J2 and J4 are exchange couplings interactions between the nearest-
neighbours spins across the core-shell interface of the nanocube and consecutive adjacent nanocubes in
any direction x, y or z. D is the magnetic anisotropy parameter, and H is the external magnetic field
that acts on all the spins Sj and σi. The Hamiltonian (1) is solved numerically.In the following, we used
normalized parameters: J2/J1, J3/J1, J4/J1, D/J1 and H/J1.

To compute the thermodynamic quantities, we have used the Metropolis algorithm within frame-
work of the context of the Ising model. The lattice is considered with free boundary conditions, and the
program was performed for different lattice sizes. The program runs a sufficient amount of time using
18.105 Monte Carlo steps (MCS), and the equilibrium is reached after 12.105 MCS steps per site.
The total magnetization is expressed by:

M = 1
N

|
∑

i

Si | (6.10)

Where N is the total number of spins in all the lattice.

The magnetic susceptibility is given as:

χ = N

KBT
(⟨M2⟩ − ⟨M⟩2) (6.11)

KB is the Boltzmann’s constant set to unity.

The relation links the magnetization and the susceptibility:

χ = ∂M

∂H
|H=0 (6.12)
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Figure 6.14: Structure of an assembly of cubic nanoparticles Core-Shell
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H is the external magnetic field.

6.3.3 Results and discussions
The effect of the core-shell interaction (J2/J1) on the critical temperature (Tc/J1) is presented in Fig-
ure 6.15.a, for the sizes Lc = 6 and Ls = 2 with the different values of the exchange coupling of the
core-shell: J2/J1(−3 ≤ J2/J1 ≤ 3) and J4/J1 positive. This figure represents a paramagnetic (3/2, 1/2)
and (3/2, −1/2) (see figure.3.c and in Figure 6.15.b) phases. The dotted line represents the first order
transition between (3/2,1/2) and (3/2,-1/2). We remark from this that the transition temperature in-
creases when the | J2/J1 | increases. The phase diagram shows a symmetric behavior for the positive and
negative values of the core-shell interaction (J2/J1). The critical temperature (Tc/J1) takes a minimum
of the value (Tc/J1 = 4.2) in case of the absence of J2/J1 = 0. Furthermore, the positive values J2/J1
favor the (3/2, 1/2) phase (see Figure.3.c). For the negative values, the phase (3/2, −1/2) is favoured.
The spins of the shell and those of the core interact antiferromagnetically.

Figure 6.16.a shows the phase diagram in the plane Tc/J1 − J4/J1 of the system with sizes Lc = 6
and Ls = 2 with different values of the core-shell coupling exchange J4/J1 (−3 ≤ J4/J1 ≤ −3). This
figure contains two ordered phases -phase (1), phase (2)- and the paramagnetic phase. The phase (1)
corresponds to the nanocubes that are in the antiferromagnetic order;that’s, in this phase, the spins of
one nanocube are up and the spins of the adjacent nanocube are down (see Figure 6.16.b) . In phase
(2), all the nanocubes are, as Figure 6.16.c shows, in the ferromagnetic order and this means that all the
spins of the nanocubes are in the same orientation. In the case of the weak interparticle interaction, the
contribution of this interaction decreases, and then the critical temperature decreases to a minimum value
of Tc/J1 (for J4/J1 = 0, Tc/J1 = 4.48). We observe that the interparticle interaction | J4/J1 | increases
as the critical temperature, between the ordered phases and the paramagnetic phase, increases symmet-
rically for the positive and negative values of J4/J1 . A similar phase has been plotted in refs [156,238].
The high critical temperatures Tc/J1 are due to the contribution of the interactions between the different
constituents of system (σiσj , σlSk, SmSn, ShSp).

Figure 6.17 shows the phase diagram in the plane Tc/J1 − D/J1 of the system studied with the
sizes Lc=6 and Ls=2. It exhibits phases (1/2, 1/2), (3/2, 1/2) and the paramagnetic phase. Negative
values of D/J1 promote the spin-1/2 , and concurrently the critical temperatures become constant and
minimum Tc = 1.1/J1. When D/J1 increases the critical temperature increases continuously from the
negative values of D/J1 to the positive values of D/J1. The dotted line presents the transition phase
between (1/2, 1/2) and (3/2, 1/2) phases because the large positive value of D/J1 promotes the spin-3/2.

The total magnetization behavior as a function of the temperature is presented in Figure 6.18.a
for the different values of the shell size Ls = 2, 3, 4, 6, 8 with the fixed size of the core Lc = 2. We observe
both a second order phase transition for all a shift at T/J1 = 2.96 for Ls = 2.As the value of Ls increases,
the critical temperature also increases and the shift gradually disappears. 6.18.b shows the magnetic
susceptibility as a function of the temperature. The peaks of the susceptibilities, which correspond to
the critical temperature, clearly shows the increase of Tc/J1when Ls increases.

Figure 6.19.a shows remanent and saturation magnetizations (Mr and Ms) as function of sizes
!Ls = 2, 3, 4, 5, 6 with fixed Lc and for two values of temperatures T/J1 = 1, 4. For T/J1 = 1 For
T/J1 = 1, we notice that the variations of the remanent and saturation magnetization are unchanged
when the size Ls increases. Thus, the values of the magnetizations experience a slight increase of
(Ls = 2; Mr = Ms = 1.46) up to (Ls = 6; Mr = Ms = 1.48), and from Ls, the magnetization be-
comes almost constant:Mr = Ms = 1.48. Consequently, the effect of Ls on the magnetization is almost
negligible at T/J1 = 1.However, for T/J1 = 4, the behavior of the saturation magnetization (Ms) as
a function of Ls is identical to that of the case T/J1 = 4 but with lower values. This shows the effect
of the temperature on the saturation magnetization. In fact, the higher the temperature increases, the
more Ms decreases. The same effect of the temperature is noticed on the remanent magnetization (blue
line). Figure 6.19.b illustrates the effect of the size Ls on the critical temperature Tc/J1. Indeed, when
Ls increases, the Tc/J1 values increase logarithmically.
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Figure 6.15: (a) Phase diagram in the plane Tc/J1 versus J2/J1. Square points indicate critical tempera-
tures between the (3/2, −1/2), (3/2, −1/2) phases and the paramagnetic phase(b) Simulation snapshot of
spin systems of Ls = 2 and Lc = 6 at T/J1 = 1 and J2/J1 = −3 , the lattice of spins shows a transversal
cut of the whole system of nanocubes and spin vectors are represented by colored arrows where the color
scales linearly with the z component of the vector to highlight spin textures, it is show (3/2, −1/2) for
J4/J1 = 2.
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Figure 6.16: (a) Phase diagram in the plane Tc/J1 − J4/J1.Square points indicate critical temperatures
between phase (1), phase (2) and the paramagnetic phase. (b − c) Simulations snapshots of spin systems
of Ls = 2 and Lc = 6 at T/J1 = 1 , the lattice of spins shows a transversal cut of the whole system of
nanocubesand spin vectors are represented by colored arrows where the color scales linearly with the z
component of the vector to highlight spin textures .(b) schematic of phase (1) for J4/J1 = −1.4 and (c)
of phase (2) for J4/J1 = 2.
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Figure 6.17: Phase diagram displaying the reduced critical temperature, Tc/J1 versus the reduced
anisotropy D/J1. Square points indicate second-order phase transition points. They limit (1/2, 1/2),
(1/2, 3/2) phases from the paramagnetic phase.
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Figure 6.18: Total Magnetization as a function of temperature for different Ls values with fixed Lc.
Magnetization and Tc/J1 as a function of Ls. (b) Magnetic susceptibility as a function of temperature
for various Ls values with fixed Lc.

Figure 6.20.a shows the temperature dependence of magnetization obtained for the different Lc
values with the fixed Ls. It is seen that magnetization decreases when Lc increases because the core
spin increases (σ = 1/2) and they vanish at the critical temperature by presenting a second-order phase
transition. Figure 6.20.b shows, in turn, the magnetic susceptibility as a function of the temperature.
The maximum of the peak of the susceptibility corresponds to the critical temperature which shifts to
higher temperature when Lc increases. Figure 6.21.a shows the remanent and saturation magnetization
as a function of the size of Lc = 2, 4, 6, 8, 10 with the fixed Ls and for the two values of temperatures
T/J1 = 1 and 4. When the size of Ls increases, the remanent and saturation magnetization decreases.
Figure 6.21.b illustrates the effect of the size Lc on the critical temperature Tc/J1, and thus when Ls
increases, the Tc/J1 values increase.

Figures 6.22.(a-b) show the hysteresis loops as a function of the size of the shell (Ls) with a fixed
size of the core (Lc), for the two temperatures: (a) T/J1 = 1 and (b) T/J1 = 4. We note that the
remanent and saturation magnetization increase slightly with the increase in Ls and become gradually
narrower when T/J1 increases [194]. Figures 6.23(a-b), we study the effect of the size of the core (Lc)
on the hysteresis loops for the two temperatures: (a) T/J1 = 1 and (b) T/J1 = 4. We observe that the
remanent and saturation magnetization show an obvious decrease, simultaneously with the increase in
Lc. This behavior is due to the dominance of the spins-1/2 over the spins-3/2 rate, and this fact leads
to the decrease in Mr.

In Figures 6.24(a-b), we have studied the effect of the interparticle interaction J4/J1 on the hys-
teresis loops behavior for different values of J4/J1. It is obvious that the shape of the hysteresis loops of
the core and shell becomes narrower as J4/J1 decreases. in comparison to positive values J4/J1, when
J4/J1 takes a negative values, the hysteresis loops shefted to positive values of H/J1. As we increasing
J4/J1, the coercivity increases symmetrically for both negative and positive of J4/J1 and presenting a
minimum at J4/J1 = 0 (see In Figures 6.24.c ).
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Figure 6.19: Remanent and saturation magnetizations as a function of Ls for temperatures T/J1 = 1
and T/J1 = 4 with fixed Lc. For T/J1 = 1, remanent and saturation magnetizations are illustrated
by the black and red lines, respectively, and for T/J1 = 4, they are presented in blue and green line,
respectively.(b) The critical temperature Tc/J1 as a function of different values of Ls with fixed Lc.
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Figure 6.20: (a)magnetization as a function of temperature for different Lc values with fixed Ls. Magne-
tization and Tc as a function of Ls (b) magnetic susceptibility as a function of temperature for various
Lc values with fixed Ls.
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Figure 6.21: Remanent and saturation magnetizations as a function of Lc for temperaturesT/J1 = 1 and
T/J1 = 4 with fixed Ls (black line) show remanent magnetization with T/J1 = 1 (red line) saturation
magnetization with T/J1 = 1(blue line) remanent magnetization with T/J1 = 4 ( green line) saturation
magnetization with T/J1 = 1. (b) critical temperatures Tc/J1 as a function of the different value of Lc
with fixed Ls.

Figure 6.22: Hysteresis loops as a function of Ls with fixed Lc, (a) T/J1=1 and (b) T/J1=4.
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Figure 6.23: Hysteresis loops as a function of Lc with fixed Ls, (a) T/J1 = 1 and (b) T/J1 = 4

The influence of the magnetic anisotropy on the hysteresis behavior is shown in In Figures 6.25.a),
which presents the variation of the total magnetization versus the external magnetic field, for different
values of the reduced magnetic anisotropy, D/J1 = −3, 0 and 3. It appears that the central loop width
of the hysteresis curve increases proportionally with D/J1. We show in Figures 6.25.b the effect of D/J1
on the coercivity. We can see that the coercivity Hc/J1 increases continuously from negative to positive
values of D/J1. In fact, low negative values of D/J1 tend to vanish the magnetization and as a conse-
quence, low fields are needed to demagnetize the system; contrary to the case of high negative values
and positive values of D/J1, where coercive fields becomes higher. In particular, for negative values of
D/J1, the Hc/J1 becomes constant and minimum Hc/J1 = 0.5, because D/J1 promote the (1/2, 1/2)
phase. On the other hand, with large positive values of D/J1, the Hc/J1 becomes constant and maximum
Hc/J1 = 0.87 , because D/J1 promotes the (3/2, 1/2) phase. The results show that as the anisotropy
D/J1 increases as Hc/J1 increases. This behavior is reported by N. Hachem et al [239] and agrees with
Figure 6.17.

Now, the effect of the exchange coupling J2/J1on the hysteresis behavior is investigated. In Figure
6.26.a, the hysteresis loops are plotted for different values of J2/J1 = ±3, ±2 and ±1. We can see that
when J2/J1 takes negative values, the remnant and saturation magnetizations decrease, on the other
hand, for positives values of J2/J1, the remnant and saturation magnetizations are constant, while, the
width of the hysteresis curves increases. This behavior is explicit in Figure 6.26.b, presenting the coer-
cive field as a function of the exchange coupling J2/J1. Two regions are observed: The first, going from
J2/J1 = −3 to 1, where the coercive field decreases until the minimum value Hc/J1 = 1/2. Figure 6.15.a
is in a good agreement with Figure 6.26.b.

6.3.4 Conclusion
In this work, we have used Monte Carlo Simulations based on an adapted Metropolis algorithm, to study
magnetic properties of a core-shell nanosystem having a Rubik’s cube structure. We have investigated
system parameters effects on phase diagrams for different system sizes and the hysteresis behaviors when
applying the external magnetic field. We have observed that, both, the exchange couplings and the
magnetic anisotropy affect phase diagrams. The increase of positive exchange interactions between spins
core and shell, on one hand and between nanocubes on the other hand, has the particularity to increase the
critical temperature, favoring the stable phase (3/2, 1/2). The same phase is also advantaged by positive
values of the magnetic anisotropy. Furthermore, the increase of the system size has the effect to increase
the critical temperature, which is a typical behavior observed with nanosystems. The hysteresis behavior
investigation has shown that, exchange couplings and the magnetic anisotropy control the coercivity.
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Figure 6.24: Hysteresis loops (a) core and (b) shell as a function of H/J1, for Lc = 6 and Ls = 2, (c)
J4/J1-dependent coercivity

Figure 6.25: (a) Hysteresis loops as a function of D/J1, for Lc = 6 and Ls = 2, (b) D/J1-dependent
coercivity.
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Figure 6.26: (a) Hysteresis loops as a function of J2/J1, for Lc = 6 and Ls = 2, (b) J2/J1-dependent
coercivity



General conclusion

The aim of this thesis is the study of the behavior of the magnetic properties of isolated and inter-
acting nanoparticles. Throughout this study, we have considered the cubic nanoparticles with uniaxial
anisotropy. We have sought to control the overall magnetic properties of the nanoparticles. The effects
of different factors have been considered intrinsic as the constant of anisotropy or extrinsic as the tem-
perature and type of external excitation.

First, we have presented the generalities on magnetism and magnetic nanoparticles along with
the discussion of the general magnetic properties of the magnetic nanoparticles and their prominence in
the biomedical field, the storage of information and the magnetic sensors. These magnetic nanoparticles
derive that importance from the above-mentioned properties and from their structures and morphologies.
Then, we have given the description of both the Ising Hamiltonian model that we have used in our work
and that of the Monte Carlo method. It is worth-mentioning that the fundamentals for Monte Carlo
have been discussed starting from the principle of application to the measurement calculations balance
through the implementation of the Metropolis algorithm.

In the following, we summarize the main results and the possible perspectives of each chapter:

In the fourth chapter, we have studied the magnetic properties, the phase diagrams of the fun-
damental state, the examination of the phase diagrams in the ground state and the exploration of the
partial and total magnetization, the susceptibility and specific heat as a function of temperature and the
critical behavior of simple perovskite PbV O3 with spin S = 1/2 which is an important material used as
a component in electronic devices. The study has been conducted by Monte Carlo simulation using the
Ising 3D model. By scanning the different reduced values of the exchange interactions and the reduced
parameter of the magnetic anisotropy, it has been shown that the phase diagrams of the system depend
on the parameters mentioned above. These results correspond to the development and discussion of
stable phases. Additionally, the transition temperature determined in this work (TN = 182K) is in good
agreement with the experimental value, TN = 190K. The temperature transition also increases along
with the increasing absolute value of the exchange coupling interactions. (Jab, Jc). Further, by studying
the effects of the system size, we have found that the peak of the magnetic susceptibility increases as
the size of the network increases. To study the critical behavior of the material highlighted, we have
calculated the critical exponents corresponding to the correlation length, the total magnetization and the
susceptibility magnetic.

In the fifth chapter, using Monte Carlo simulation, we studied a trilayer spin (5/2;3/2;5/2) Ising
nanocube. We have investigated the effects of the exchange couplings, the parapetre of anisotropy, the
external magnetic field, the thickness ratio size r on the magnetic and thermodynamic properties. The
phase diagrams are obtained for different reduced exchange couplings J2/J1 ( σ − σ interaction), J3/J1
(σ − S interlayer intercation) and reduced parameter of anisotropy D/J1 , where the exchange couplings
between spins σ and between spins S respectivly J1,J2 are considered ferromagnetic while the interlayer
exchange coupling J3 is considered antiferromagnetic. According to the results, it is demonstrated that
the system can exhibit the compensation behavior. For the present system, it is found whether the
compensation point (Tcom) appears in the system, depending on the existence of the critical exchange
coupling J2/J1 and anisotropic parameter D/J1. Decreasing J2/J1 and D/J1 will be beneficial to the
compensation behavior, whereas increasing J2/J1 and D/J1 will promote the increase of the transition
temperature (TC). The phase diagram that present the TC and Tcom as a function of the reduced ex-
change coupling J2/J1 for different ratio thickness size r , we remark an inverse behavior concerning
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transition temperature, in which there is a critical value of J2/J1 = 0.45. if (J2/J1 > 0.45) we found
that by increasing the ration thickness r ,the transition temperation TC also increases. In contrary when
(J2/J1 < 0.45) increasing the ration thickness size r, TC decreases. The combination of more than one
magnetic element constituting a nanocube influences its magnetic behavior.

The sixth Chapter treat the case of the nanoparticles assemblies. In the first section we have
studied the size effects and the coupling and anisotropy parameters on the magnetic properties of the
ferromagnetic nanoparticles of Ising spin-1. It is already known that the studied system has the particu-
larity of being a Rubik’s cube that is composed of identical nanocubes This has been done using Monte
Carlo simulation as part of the Ising 3D model. It has been shown that the phase diagrams depend
on the parameters of the system and are affected not only by the size of the nano-system, but also by
its size. Indeed, depending on the reduced exchange coupling, two regimes have been observed where
the reduced critical temperature decreases and increases, respectively. The system presents second-order
phase transitions at finite temperatures. Furthermore, an external magnetic field has been applied and we
have studied the hysteresis loops for the selected low values of the temperature. then, It has been found
that the response of the magnetization to the strength of the magnetic field shows hysteresis behaviors
with simple loops where the reduced magnetic coercive field gets thinner and thinner till it is disappeared
when going from t = 0,1 to t = 5. Finally, the variation of the coercive field as a function of size has
revealed a well-known phenomenon of magnetic nano-materials with dipolar interactions, where the co-
ercive field increases to reach the maximum and then decreases to zero when the size of the nanoparticles
decreases. However, in our case, we have not found a coercive field reduced to zero for small sizes. We
have attributed these phenomena to the structure and nature of our system. However, we have found
that our results are qualitatively in agreement with other works.

In the seconde section, we have studied, in the same context of the nanocubes, the magnetic
properties of the magnetic nanocubes chain (NCCM) of spin-1 using Monte Carlo simulations. The
magnetic properties have been determined by scanning the values of the system parameters. The reduced
transition temperatures have been established for the different sizes of NCCM cube (Lc ∗ Lc ∗ Lc). It has
been clear that the reduced transition temperature increases along with the increasing cube size (Lc).The
coercive magnetic field increases with the increasing reduced exchange coupling and reduced anisotropy,
while the coercive field decreases as the reduced temperature increases.

As for the third section, we investigated the magnetic properties of a nano-system with a Rubik’s
cube structure that consists of core/shell morphology nano-cubes, with spin-1/2 in the core and spin-3/2
on the Shell. This has been simulated by Monte Carlo method using the Ising 3D model based on a
Metropolis algorithm. We have studied the effects of the system parameters on the phase diagrams for
the different system sizes and hysteresis behaviors when we have applied the external magnetic field. It
has been observed that the exchange couplings and magnetic anisotropy affect the phase diagrams. The
increase of the positive exchange interactions between the core and shell spins, on the one hand, and
between the nano-cubes, on the other hand, has the particularity of increasing the critical temperature,
along with favoring the stable phase (3/2, 1/2). The same phase is also favored by the positive values
of the magnetic anisotropy. For each phase, we have presented the configuration of the spins of our
studied system. Moreover, the increase in the size of the system has caused the increase in the critical
temperature, and as a result a typical behavior has been observed with the nano-systems. The study of
the hysteresis behavior has shown that both the exchange coupling and the magnetic anisotropy control
the coercivity.

Finally, this work has demonstrated that it is possible to control the magnetic order in cubic NPs
by varying the sizes and numbers of the nanoparticles. In addition, the results obtained can serve as a
point of comparison for the theoretical calculations on these types of systems to better understand the
relationship between their magnetic properties and their structural and size factors.

As perspectives and to complete our work, other forms of assemblies of nanoparticles such as
nanosphere, nanotubes could be modeled by the Monte Carlo method. Thus other properties such as
electrical properties could be explored in other research works. In addition we plan to introduce other
terms in the Hamiltonians namely the dipolar interaction and the interaction of Dzyaloshinskii-Moriya
to explore other atypical properties caused by the nanostructure systems.
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Résumé  

 
    Les nanoparticules magnétiques ont  été  largement  étudiées pour leurs applications variées, allant 

du stockage d’information aux applications biomédicales. Cette multitude de fonctionnalités des 

nanoparticules magnétiques est due à leurs tailles nanométriques qui  génèrent des phénomènes 

atypiques. Dans ce contexte plusieurs travaux théoriques et expérimentaux ont  été consacrés à 

l’exploration des propriétés magnétiques de ce type de matériaux. Cependant, plusieurs problèmes ne 

sont pas encore résolus, en particulier la nature des interactions intra et inter-nanoparticules ainsi que 

les différentes morphologies des nanoparticules. 

Cette thèse porte sur l’étude des propriétés magnétiques des nanoparticules en fonction de la 

température,  à l’aide de la simulation numérique Monte et Carlo. Les effets de la dispersion, la 

morphologie des nanoparticules, les interactions surface-Cœur intra-nanoparticule et les interactions 

entre les nanoparticules ont été étudiés pour différentes tailles. Ainsi pour des nanoparticules cubiques, 

la température de critique, l’aimantation rémanente, les champs coercitifs et le cycle Hystérésis, 

dépendent fortement, des couplages d’échange, de l’anisotropie magnétique et de la taille des 

nanoparticules. De plus la température de compensation prend lieu pour des valeurs bien précises des 

interactions magnétiques surface-cœur et entre particules, en bon accord qualitatif avec les travaux 

expérimentaux. 

 

Mots-clefs : Nanopaticules magnétiques; Nanocubes ; Propriétés magnétiques ;Modèle d’Ising; Effets 

de taille ; Diagrammes de phases ; Simulation Monte Carlo. 

Abstract  

 
Magnetic nanoparticles were widely studied for their varied applications, ranging from information 
storage to biomedical applications. This multitude of functionalities of magnetic nanoparticles is due to 
their nanometric sizes, which generate atypical phenomena. In this context, several theoretical and 
experimental works have been devoted to the exploration of the magnetic properties of this type of 
material. However, various problems have not yet been solved, in particular the nature of the intra- and 
inter-nanoparticle interactions as well as the different morphologies of the nanoparticles.  
 
This thesis focuses on the study of the magnetic properties of nanoparticles as a function of temperature, 
using numerical Monte Carlo simulation. The effects of dispersion, the morphology of the nanoparticles, 
the intra-nanoparticle interactions and the interactions between the nanoparticles have been studied for 
different sizes. Thus, for cubic nanoparticles, the critical temperature, the residual magnetization, the 
coercive fields and the Hysteresis cycle strongly depend on the exchange couplings, the magnetic 
anisotropy and the size of the nanoparticles. Moreover, the compensation temperature takes place for 
very precise values of magnetic interactions Core-Shell and between particles, in good agreement, 
qualitatively, with the experimental works.  
 

Key Words : Magnetic nanoparticles ;  Nanocubes; Magnetic properties ; Ising Model ; Size 

effect ; Diagram phases ; Monte Carlo simulations. 
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