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ABSRACT

We present a concrete and complete study of some classes of orthogonal polynomials of
complex and quaternionic variable and provides different applications in the theory of
integral transforms and spectral analysis of some special magnetic Landau Hamiltonian.
Mainly, their basic properties are derived and then employed to introduce and study cer-
tain new integral transforms for some specific functional Hilbert spaces. Chapter 2 deals
with the univariate polyanalytic complex Hermite polynomials generalizing the monomi-
als. Chapter 3 is devoted to a novel class of orthogonal polyanalytic functions generalizing
the holomorphic Hermite polynomials. The associated functional spaces are of Gelfand–
Shilov type and generalize, somehow, the one introduced by van Eijndhoven and Meyers
in 1990. In Chapter 5, we make use of the quaternionic Hermite polynomials to study differ-
ent classes of slice polyregular Bargmann spaces. The explicit formulas of their reproducing
kernels are given and associated Segal–Bargmann transforms are also studied.
Key-Words: Orthogonal polynomials; integral transforms; Spectral theory; Magnetic Lapla-
cians; Generating functions; Polyanalytics functions; Segal–Bargmann transforms; Quater-
nionic Hilbert spaces.



RÉSUMÉ

Le présent travail porte sur l’analyse mathématique des polynômes orthogonaux à vari-
ables complexe et quaternionique et ses différentes applications, notamment à la théorie
des transformées intégrales et l’analyse spectrale de certains Laplaciens. L’étude concrète
de leurs propriétés nous permet d’introduire des nouvelles transformations intégrales pour
certains espaces de Hilbert de fonctions polyanalytiques. Chapitre 2 traite les polynômes de
Hermite polyanalytique généralisent les monômes . Chapitre 3 est consacré à une nouvelle
classe de fonctions polyanalytiques orthogonales généralisant les polynômes holomorphes
de Hermite. Les espaces fonctionnels associés sont de type Gelfand–Shilov et généralisent,
en quelque sorte, celui introduit par van Eijndhoven et Meyers en 1990. Au Chapitre 5,
nous utilisons les polynômes de Hermite quaternioniques pour étudier différentes classes
d’espaces de Bargmann "S–polyregular". On donne les expressions explicites de leurs noy-
aux reproduisants et on étudie également les transformées de Segal–Bargmann associées.
La description spectrale en tant que sous-espaces propres d’un opérateur S-différentiel de
second ordre impliquant est étudiée. Le dernier chapitre est consacré à des transforma-
tions intégrales, pour les espaces de Bargmann-Fock holomorphes et hyperholomorphes,
obtenue par la composition des transformées classiques.
Mots-clés: Polynômes orthogonaux ; Transformées intégrales ; Théorie spectral; Lapla-
cien magnétique; Fonctions génératrices; Fonctions polyanalytique; Transformées de Segal-
Bargmann ; Espaces de Hilbert quaternioniques.



RÉSUMÉ DE LA THÉSE

On étudie des classes de polynômes orthogonaux ainsi que ses différentes applications à
la théorie des transformées intégrales et l’analyse spectrale de certains opérateurs différen-
tielles de seconde degré. Pour y faire, on divisera ce travail en deux grandes parties

Partie I : Polynômes à variables complexes et applications

Dan un premier temps, on considère les polynômes de Hermite complexes

Hm,n(z, z) = (−1)m+ne|z|
2 ∂m+n

∂zm∂zn

(
e−|z|

2
)

, (1)

et on établit les expressions explicites pour quelques sommations infinies (fonctions généra-
trices classiques et bilinéaires, Formules de Mehler, ...) associes a ces polynômes et qui
jouent un rôle primordial dans la construction des transformées intégrales bidimension-
nelle de type Segal–Bargmann L2(C, e−ν|z|2dλ(z)) avec lui-même et avec l’espace de Bargmann–
Fock généralisé. On caractérise l’image de ses transformées et on les utilisent ensuite avec
ses propriétés pour obtenir les relation avec des transformées classiques telles que la trans-
formée de Fourier fractionnaire et celle de Fourier–Wigner. On introduit ensuite (Chapitre
3), la classe

Iν,α
n (z, z|ξ) = e−αz2−ξz (−∂z + νz)n (eαz2+ξz) (2)

généralisent ainsi les polynômes de Hermite classiques. Nous étudions les propriétés al-
gébriques et analytiques, y compris les relations de récurrence, les équations différentielles
qui vérifient, la formule de Rodrigues et la formule quadratique de type Nielsen ainsi que
la formule explicite en termes de polynômes d’Hermite. On étudie leurs orthogonalité et
nous fournissons également des fonctions génératrices et des représentations intégrales, y
compris la réalisation de ces polynômes en fonction de la transformation de Fourier–Wigner
avec comme fenêtre une fonctions de Hermite. Comme application directes des résultats
obtenus, on démontre qu’une sous classe de ces polynômes est une base de l’espace des
fonctions, f : C→ C, Z-automorphes satisfaisant l’équation fonctionnelle

f (z + k) = e2iπβke2α(z+ k
2 )k f (z),

pour tout z ∈ C and k ∈ Z, et tels que

|| f ||2α,Z :=
∫

C/Z
| f (z)|2e−2α|z|2dxdy < +∞.

Le troisième objectif dans cette partie est l’étude des fonctions spéciales généralisant celles
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définie par

φs
m(z) =

1√
πm!

(
1− s2

2s

)(m+1)/2

e−
1+s2

4s z2
zm (3)

introduites par Van Eijndhoven and Meyer en 1990 et qui forment une base orthogonal d’un
espace de type Bargmann Xs = Hol(C) ∩ L2(C, ωsdλ). Plus précisément, on propose une
nouvelle base de l’espace Hs et on donne une décomposition orthogonal pour cette espace
en terme des espaces Xs,n dont une base orthonormal est donnée par

ψs
m,n(z, z) := Γs

m,ne−
z2
2

(
∇n

ν,α− 1
2
Hm

)
(z), ∇ν,α := −∂z + νz− 2αz. (4)

De plus on donne la forme explicite et compacte du noyau reproduisant de chaque espace
Xs,n ainsi que la transformée de type Segal–Bargmann associée. On exploite ensuite les
bases obtenues pour construire des transformées integrales de type Fourier–fractionaire.

Partie II : Espaces S-polyregular et polynômes à variable quaternionique

Dans le premier chapitre de cette partie (Chapitre 5), on décrit concrètement différents
types des espaces S-polyregular quaternioniques qu’on introduit à l’aide de la dérivée slice.
Il s’agit de SR2

1,n, SR2
2,n et SR2

f ull,n. Dans cette description les polynômes de Hermite
quaternioniques

HQ
m,n(q, q) = m!n!

min(m,n)

∑
j=0

(−1)j

j!
qm−jqn−j

(m− j)!(n− j)!
(5)

joue un rôle crucial. On montre que SR2
1,n et SR2

2,n sont des espaces de Hilbert à noyau
reproduisant qu’on donne explicitement. Son expression fait appeal au polynômes de La-
guerre et le produit star pour les fonctions slice regular. On établit ensuite une décompo-
sition orthogonal pour L2(CI ; e−|ξ|

2
λI) en terme de SR2

2,n Pour y arriver, on commence ce
chapitre en étudiant ces dernières fonctions. A ces espaces, on associe des transformations
de type Segal–Bargmann Bl,n, l = 1, 2 définis sur l’espace de Hilbert (à gauche) des fonc-
tions sur la droite réelle à à valeur quaternioniques. On close ce chapitre en donnant la
réalisation spectrale de ces espaces en tant que sous-espaces spéciaux des espaces propres
d’un opérateur différentiel du second ordre.

La discutons de quelques propriétés de certaines transformations intégrales associées à
des espaces de Hilbert fonctionnels spécifiques sur C et C2 font l’objet du dernier chapitre. Il
s’agit des espaces de Bargmann-Fock et sa version slice-hyperholomorphe. La plus impor-
tante et obtenue comme composition des transformations Segal-Bargmann unidimension-
nelles et bidimensionnelles. On montre qu’elle se réduit à la transformée Segal-Bargmann
unidimensionnelle avec un symbole spécifique ψ1,

Gν f (z, w) =
( ν

π

) 1
2 Cψ1(B

1,ν f )(z, w), (6)
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Entre autres propriétés discutées au Chapitre 6 de la transformation Gν, on détermine son
image ainsi que son inverse à gauche défini sur tout l’espace de Bargmann bidimensionnel.
On étudie aussi la relation avec quelques transformées classiques. Comme conséquence, on
établit la relation entre les espaces de Bargmann–Fock et l’espace slice-hyperholomorphe
laissant invariant les slices.

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
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General description of different topics
discussed in the present dissertation

A. The setting

The topics developed in this document are the author contributions to the mathematical
analysis of complex and quaternionic orthogonal polynomials, as well as approximation
theory, mathematical physics, integral transforms, hypercomplex analysis and concrete
spectral theory of a specific magnetic Landau Hamiltonian, among others. The principal
object is the study of special classes of old and new orthogonal polynomials on the com-
plex plane C as well as on the (non-commutative) division algebra of quaternions H with
concrete applications in complex and hypercomplex analyses, such as the theory of holo-
morphic, polyanalytic, slice regular and S-polyregular Bargmann spaces. Associated Segal–
Bargmann and Fractional Fourier integral transforms. Accordingly, the content of this work
can be divided in two main parts. The first one concerns different generalizations of com-
plex (polyanalytic) Hermite polynomials and their application in complex analysis and in-
tegral transforms. The second part, is devoted to their quaternionic analogue. Interesting
application is given in the context of slice hypercomplex analysis.

Throughout the work, we denote by L2,ν(X); ν > 0 the Hilbert space of all square in-
tegrable functions on X = R, R2 ∼= C, C2 ∼= H with respect to the Gaussian measure
dλν(s) := e−ν|s|2dλ(s), where dλ is the Lebesgue measure on X; λ(s) = dx, λ(s) =

dxzdyz, λ(s) = dxzdyzdxwdyw for s = x ∈ R, s = z = xz + iyz ∈ C ∼= R2, s = (z, w) =

z + wj ∈ C2 ∼= H, respectively. When H is added as subscript, then L2,ν
H (X) means the

considered functions are H-valued. We denote by F 2,ν(X) the Bargmann–Fock space con-
stituted of all holomorphic functions on X, when X = C or X = C2, and belonging to
L2,ν(X),

F 2,ν(X) = Hol(X) ∩ L2,ν(X).

We will also use the notation F 2(X) to mean F 2,ν(X) with ν = 1.

1



CONTENTS

B. Part I: Old and new orthogonal polynomials of complex
variable: Basic properties and applications

B.1. Context, notations and tools

The well known Hermite polynomials (and their different generalizations) have been one
of the most interesting fields for research, since their introduction by Lagrange and Cheby-
shev. They are extensively studied in the mathematics literature and appear in a wide spec-
trum of research domains including engineering sciences, pure and applied mathematics,
and various branches of physics (see for examples [99,107,109] and references therein). The
classical ones on the real line R are defined by ([70,99,107,109])

Hν
n(x) := (−1)neνx2 dn

dxn

(
e−νx2

)
= νmm!

bm
2 c
∑
k=0

(−1)k

k!νk
(2x)m−2k

(m− 2k)!
, (7)

Here and elsewhere after, we use ∂x and ∂/∂x to denote the partial differential operator with
respect to x. Natural extensions to the two real variables can be obtained by considering the
tensor product Hν

m,n(x, y) = Hν
m(x)Hν

n(y) or by replacing the real variable x in Hν
m(x) by

the complex variable z, giving rise to the class of holomorphic Hermite polynomials (see
e.g. [75,107])

Hν
n(z) = (−1)neνz2 dn

dzn (e
−νz2

). (8)

They inherit the most of algebraic properties of Hν
m(x) by analytic continuation. More-

over, they possess further interesting analytic properties. The polynomials Hν
n(z) (with

ν = 1) have been investigated in the study of some analytic function spaces [29,78,113] and
showed to be useful for the coherent states theory [34,52]. Their combinatorics has been
studied in [75]. It is shown in [113] that the associated functions

ψs
m(z) =

(
1− s

πm!
√

s

)1/2( 1− s
2(1 + s)

)m/2

e−
z2
2 Hm(z), (9)

for given fixed 0 < s < 1, satisfy the orthogonal property ([113])∫
C

ψs
n(z)ψs

m(z)e
− 1−s2

2s |z|2e
1+s2

4s (z2+z2)dλ(z) = δn,m, (10)

This is to say that the functions ψs
m(z) form an orthonormal system in the Hilbert space

H 2,s(C) := L2(C, ωsdλ),

where the weight function ωs is given by

ωs(z, z) = e
1+s2

4s (z2+z2)− 1−s2
2s |z|2 .

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
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CONTENTS

Accordingly, we define the Hilbert subspace Xs(C) of holomorphic functions belonging to
H 2,s(C) by

Xs(C) = Hol(C) ∩H 2,s(C). (11)

Another generalization of Hν
m(x) to the whole complex plane is given by the univariate

complex Hermite polynomials (UCHP)

Hν
m,n(z, z) = (−1)m+neνzz ∂m+n

∂zm∂zn

(
e−νzz

)
(12)

and their specific generalization Gm,n(z, z|ξ) considered in [54]. The polynomials Hν
m,n(z, z)

has been introduced by Ito (1952) in the context of complex Markov process [76]. But, it
is only in the last decades that they are widely used in many area of mathematics, like
nonlinear analysis of traveling-wave tube amplifiers, signal processing, singular values of
the Cauchy transform, coherent states theory, combinatorics as well as in distribution of
zeros of the automorphic reproducing kernel function. The curious reader can refer to [7,41,
54–56,72,73,82,103] and references therein for their basic properties and their applications.

Both Hν
m,n(z, z) and Gm,n(z, z|ξ) are special examples of polyanalytic polynomials of one

complex variable for satisfying the generalized Cauchy equation

∂n+1
z Hν

m,n(z, z) = 0 and ∂n+1
z Gν

m,n(z, z) = 0

They play a crucial role in studying some basic properties of polyanalytic functions [4] and
they appear as particular cases of the following general class of polyanalytic polynomials
([42])

Gν,h
m,n(z, z) = (−1)m+neν|z|2−h(z) ∂m+n

∂zm∂zn

(
e−ν|z|2+h(z)

)
, ν > 0, (13)

where h(z) is a given holomorphic polynomial function. Such polynomials appear natu-
rally, when dealing with the spectral theory of a special magnetic Laplacian leaving the
space of mixed automorphic functions invariant [42]. As another special interesting class of
(4.1) are the ones corresponding to the special holomorphic function hα,ξ

0 (z) = αz2 + ξz, for
arbitrary real α and complex number ξ. In fact, we have to consider

Iν,α
n (z, z|ξ) = (−1)neνzz−αz2−ξz ∂n

∂zn

(
e−νzz+αz2+ξz

)
, (14)

for varying n = 0, 1, 2 · · · . Such class of functions can be seen as the polyanalytic gen-
eralization of the holomorphic Hermite polynomials Hn(z) = I0,−1

n (z, z|0) as well as the
monomials I1,0

n (z, z|0) = zn. The consideration of this class is motivated by their impor-
tance in the theory of the automorphic functions on the complex plane with respect to a
given rank–one discrete subgroup Γ = Z of (C,+). More specifically, the particular case of
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ξ = 2iπ(β + k), with β ∈ R and k ∈ Z, leads to

Iν,α,β
n,k (z, z|ξ) := Iν,α

n (z, z|2iπ(β + k)) (15)

which for fixed nonnegative integer n gives rise to an orthogonal basis of the nth L2–eigenspace
of a Schrödinger operator acting on some L2–sections over the strip C/Z of the L2–line bun-
dle L = (C×C)/Z, constructed as the quotient of the trivial bundle over C by considering
the Z–action [58,106].

B.2. Main purposes of part I

• The first aim of this part is the obtainment of closed explicit expressions of some infi-
nite sums involving the UCHP, including bilinear generating functions and Mehler’s
formulas. The acquired ones play crucial role in obtaining some integral kernel trans-
forms. In fact, we employ them to introduce a special two–dimensional integral trans-
form whose kernel function are the exponential generating functions of the UCHP.
Moreover, we identify their images and investigate their basic properties such as the
connection to the classical 2d-Segal–Bargmann transform, to the Wigner transform, as
well as to the 2d-fractional Fourier transform (2d–FrFT) introduced recently by Zayed
[115]. Accordingly, we are able to deduce some interesting properties of the 2d–FrFT.
Another class of 1d integral transforms connecting any two generalized Bargmann–
Fock spaces F 2,ν

n (C) is introduced.

• As second aim, we provide a concrete description of the basic properties of the polyan-
alytic polynomials Iν,α

n (z, z|ξ) in (14). To this end, we begin by discussing their opera-
tional representations, recurrence relations, differential equations they satisfy, orthog-
onality relations, Rodrigues’ formula and quadratic formula of Nielsen type as well
as the explicit formula in terms of Hermite polynomials. We also provide generating
functions and integral representations, including the one involving a Fourier–Wigner
transform with a special window function close to the classical Mehler kernel. In the
course of our investigation, we present two interesting applications. The first one is
related to the concrete description of the spectral theory of some specific second order
differential operator of Laplacian type acting on the Hilbert space L2(C; e−ν|z|2dxdy).
The second application involves the subclass Iα,β

m,n (z, z|ξ) in (3.5) and reproves the fact
that they form a complete orthogonal system of the space L2(C/Z; e−ν|z|2dxdy) of L2–
rank–one automorphic functions.

• The third aim is the study of the special holomorphic Hermite functions ψs
m, in (9),

spanning the like-Bargmann Hilbert space Xs(C), defined through (11). We also pro-
pose an adequate orthogonal complement in H 2,s(C). More precisely, we determi-
nate the Hilbertian decomposition of H 2,s(C) in terms of some reproducing kernel
Hilbert subspaces Xn,s(C), and provide to each one an orthonormal basis of polyana-
lytic functions ψs

m,n, generalizing the ones in (9), so that ψs
m,0 = ψs

m. We also compute
the explicit expression of the corresponding reproducing kernel. As applications, we
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derive the associated Segal–Bargmann integral transforms for the configuration space
L2(R) with range the spaces Xn,s(C). Moreover, we provide two nontrivial 1d- and
2d-fractional like-Fourier transforms for the configuration spaceL2,ν(R) and H 2,s(C),
respectively.

C. Part II: Quaternionic Hermite polynomials, S-polyregular
Bargmann spaces and associated integral transforms

C.1. Notation and preliminaries

In order to generalize the obtained results to the quaternionic context, we begin by consid-
ering the natural quaternionic analogs of the polyanalytic Hermite polynomials Hm,n(z, z).
Indeed, we deal with the quaternionic Hermite polynomials

HQ
m,n(q, q) = m!n!

min(m,n)

∑
j=0

(−1)j

j!
qm−jqn−j

(m− j)!(n− j)!
. (16)

For an systematic study of HQ
m,n(q, q) one can refer to [43]. We will use the polynomials

HQ
m,n(q, q) to define new classes of generalized Bargmann spaces in the context of slice

polyregular functions. To this end, let us recall that the classical Bargmann functional space
F 2 is defined as the phase space on the complex plane consisting of all e−|z|

2
dxdy-square

integrable entire functions. As special generalizations, in the context of polyanalytic func-
tions, are the generalized Bargmann spaces F 2

n of level n = 0, 1, 2, · · · , (see for example
[3,4,59,114]), so that F 2

0 = F 2. The corresponding theory has found remarkable applica-
tions in time-frequency analysis, analysis of higher Landau levels and in the multiplexing
of signals (see [4] and references therein).

A quaternionic counterpart of F 2 was introduced in [9],

F 2,ν
slice(H) = SR(H) ∩ L2,ν

H (CI), (17)

where L2,ν
H (CI) is the Hilbert space of H-valued L2 functions with respect to the Gaussian

measure on an given slice CI = R + RI and SR(H) denotes the space of (left) slice regular
H-valued functions on the quaternions, i.e., H-valued real differentiable functions f on
H ≡ R4 such that

∂I f (x + Iy) :=
1
2

(
∂

∂x
+ I

∂

∂y

)
f |CI (x + yI) (18)

vanishes identically on CI for every I ∈ S = {q ∈ H; q2 = −1}. Where, f |CI denotes the
restriction of f to the slice CI := R + RI. More precisely,

F 2
slice =

{
f (q) =

+∞

∑
j=0

qjcj; cj ∈H,
+∞

∑
j=0

j!|cj|2 < +∞

}
. (19)
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It is shown in [9] that F 2
slice is independent of I and is a reproducing kernel quaternionic

Hilbert space (see also [40] for a quite different proof). The corresponding Segal–Bargmann
transform Bν

H is considered in [40] and maps the Hilbert space L2,ν
H (R) of H-valued func-

tions that are e−νx2
dx-square integrable on the real line onto F 2,ν

slice(H). Its kernel function
arises naturally as the unique extension of its holomorphic counterpart to a slice regular
function. It can also be realized as the generating function of the rescaled real Hermite
polynomials Hν

n(x) in (2.2). This can be seen as special quaternionic analog of the standard
Segal–Bargmann transform (with a slightly different convention from the classical one)

Bd,ν f (z) :=
( ν

π

) 3d
4
∫

Rd
f (x)e−ν

(
x− z√

2

)2

dx, (20)

intertwining the Schrödinger representation and the complex wave representation of the
quantum mechanical harmonic oscillator and plays an important role in quantum optics,
in signal processing and in harmonic analysis on phase space [16,49,68,91,116]. It made the
quantum mechanical configuration space L2,ν

C
(Rd), the Hilbert space of C-valued e−νx2

dx-
square integrable functions on Rd, unitarily isomorphic to the Bargmann–Fock space

F 2,ν(Cd) = Hol(Cd) ∩ L2,ν(Cd, C).

Motivated by the works [3,4,15,59,114] studying and characterizing the polyanaliticity in
the complex setting as well as by Brackx’ works [23,24] studying the k-monogenic functions
with respect to the Fueter operator, it is of interest to look for possible generalizations of
F 2

slice and its associated Segal–Bargmann transform to the context of slice n-polyregular
(SRn) functions with respect to the slice derivative. In fact, we consider two kinds of such
generalizations. These spaces will be called here S-polyregular Bargmann space of level
n of first and second kind, denoted by SR2

1,n and SR2
2,n, respectively. They are natural

extensions ofF 2
slice to the setting of S-polyregular functions and appear as special subspaces

of the Hilbert space
SR2

n := SRn ∩ L2(CI , e−|ξ|
2
dλI),

the space of all S-polyregular functions f : H −→ H subject to the norm boundedness
‖ f ‖CI

< +∞, where ‖·‖CI
is the norm induced by the inner product

〈 f , g〉CI
=
∫

CI

f |CI (q)g|CI (q)e
−|q|2dλI(q). (21)

C.2. Main tasks of part II

• The first main aim in this second part is to introduce and give a concrete descrip-
tion of SR2

1,n and SR2
2,n. This description invokes the quaternionic Hermite poly-

nomials HQ
m,n(q, q), in (16). We prove that SR2

1,n and SR2
2,n are reproducing kernel

quaternionic Hilbert spaces whose reproducing kernels are given explicitly in terms
of stared-Laguerre polynomials. The proof is based essentially on a weak version of
the Identity Principle for S-polyregular functions and on a natural extension of the
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left star product for S-polyregular functions. A basic properties of S-polyregular func-
tions is also given. Moreover, a hilbertian decomposition of L2(CI ; e−|ξ|

2
dλI) in terms

of SR2
2,n are described. It should be noted here that SR2

1,0 and SR2
2,0 reduce further

to F 2
slice in (19).

• Associated Segal–Bargmann transforms B`,n, ` = 1, 2, are then introduced and stud-
ied in some details. They are defined on L2

H(R). Their kernels involve the Hermite
polynomials extended to the quaternions. It should be noted here that for n = 0, the
transform B`,0 is equal to the one considered in [40].

• Another task of this part is to show that the constructed spaces are closely connected
to the concrete L2-spectral analysis of the semi-elliptic (slice) second-order differential
operator

2q = −∂s∂s + q∂s, (22)

where

∂s f (q) =

 ∂Iq f (x + Iqy), if q = x + Iqy ∈H \R;
d f
dx

(x), if q = x ∈ R,
(23)

which can seen as the conjugate of the left slice derivative ∂s that we can define in a
similar way in terms of ∂Iq . In fact, such spaces are realized as special subspaces of the
L2-eigenspaces

F 2
n =

{
f ∈ L2(H; e−|q|

2
dλ); 2q f = n f

}
, (24)

where n = 0, 1, 2, · · · . The L2-spectral description of 2q f = n f was possible by deal-
ing first with the C∞ right-eigenvalue problem 2q f = f µ on H̃ := H \R and then
by extending appropriately the obtained explicit solutions to the whole H. Thereby,
by manipulating the asymptotic behavior of such eigenfunctions, we show that the
spectrum of 2q is purely discrete and consists of the eigenvalues µ = n which occur
with infinite degeneracy.

• We consider the integral transform

Gν f (z, w) =
( ν

π

) 1
2 Cψ1(B

1,ν f )(z, w), (25)

obtained as the composition operator Cψ1 f = f ◦ ψ1 of the 1d-Segal–Bargmann trans-
form B1,ν with the specific symbol ψ1(z, w) = z+iw√

2
. We study its basic properties and

characterize its image. Namely, we show that Gν is a special one-to-one transform
mapping the standard Hilbert space L2,ν(R, C) on the real line into the 2d-Bargmann–
Fock space F 2,ν(C2) onto

A2,ν(C2) :=
{

F ∈ F 2,ν(C2);
(

∂

∂z
+ i

∂

∂w

)
F = 0

}
. (26)

This was possible by realizing this transform in a natural way as the composition of
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the 1d- and 2d-Segal–Bargmann transforms

Gν = B2,ν ◦ B1,ν. (27)

It maps isometrically the standard Hilbert space on the real line into the two-dimensional
Bargmann–Fock space. Moreover, if Proj denotes the orthogonal projection on the
one-dimensional Bargmann–Fock space, we show that the transformRν := (B1,ν)−1 ◦
Proj ◦ (B2,ν)−1 defined on the whole F 2,ν(C2) is a like-left inverse of Gν that can be
expressed in terms of the inverse of B1,ν and a composition operator with a specific
symbol ψ2 : C −→ C2. More explicitly, we have

RνF(x) =
(π

ν

) 1
4
∫

C
F
(

ξ√
2

,−i
ξ√
2

)
e−

ν
2 ξ

2
+
√

2νxξe−ν|ξ|2dλ(ξ). (28)

Further properties of the transform Gν when combined with the rescaled Fourier
transform are also investigated. They give rise to two extremely integral operators
connecting isometrically the Bargmann–Fock space F 2,ν(C) to F 2,ν(C2).

The like-left inverseRν in (28) as well as the quaternionic Segal–Bargmann transform
Bν

H are then employed to introduce and study the integral transform Iν := Bν
H ◦ Rν.

It is defined on the two-dimensional Bargmann–Fock space F 2,ν(C2) with range in
the slice hyperholomorphic Bargmann–Fock space F 2,ν

slice(H) in (17). We show that Iν

reduces further to the integral operator

Iν f (q) =
( ν

π

) ∫
C

f
(

ξ√
2

,
−iξ√

2

)
Kν

H(q, ξ)e−ν|ξ|2dλ(ξ). (29)

where Kν
H(q, ξ) is the reproducing kernel of F 2,ν

slice(H). The image Iν(F 2,ν(C2)) is
identified to be F 2,ν

slice,i(H) the space of slice (left) regular functions on the quater-
nions leaving invariant the slice Ci ' C. Added to Iν, we consider the integral trans-
form J ν := Gν ◦ (Bν

H)−1 from F 2,ν
slice,i(H) into F 2,ν(C2) with image coinciding with

A2,ν(C2). The action of Iν and J ν on the bases and the reproducing kernels are given.
It turns out that these transforms connect the standard basis and the reproducing ker-
nels of these two spaces.

D. Brief description of chapters

Chapter 1: is concerned with some preliminaries on

• Real and complex Hermite polynomials

• Polyanalytic Hermite polynomials

• Coherent states formalism

• Bargmann transform
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• Fourier–Wigner and Wigner transforms

• Fractional Fourier transform

• Polyanalytic functions

• Slice hypercomplex analysis

In Chapter 2, special generating functions and Mehler’s formula for the univariate com-
plex Hermite polynomials (UCHP) are obtained and next employed to introduce and study
some one– and two–dimensional integral transforms of Segal–Bargmann type in the frame-
work of some specific functional Hilbert spaces; including the so-called generalized Bargmann–
Fock spaces that are realized as L2–eigenspaces of a special magnetic Schrödinger operator.

Chapter 3, discusses some algebraic and analytic properties of a general class of orthog-
onal polyanalytic polynomials, including their operational formulas, recurrence relations,
generating functions, integral representations and different orthogonality identities. We es-
tablish their connection and rule in describing the L2–spectral theory of some special second
order differential operators of Laplacian type acting on the L2–Gaussian Hilbert space on
the whole complex plane. We will also show their importance in the theory of the so-called
rank–one automorphic functions on the complex plane. In fact, a variant subclass leads to
an orthogonal basis of the corresponding L2–Gaussian Hilbert space on the strip C/Z.

In chapter 4, we study the orthogonal complement of the Hilbert subspace considered
by van Eijndhoven and Meyers in [113] and associated to holomorphic Hermite polyno-
mials. A polyanalytic orthonormal basis is given and the explicit expressions of the corre-
sponding reproducing kernel functions and Segal–Bargmann integral transforms are given.
The obtained basis are then used to provide a non-trivial 1d and 2-fractional like-Fourier
transform.

Chapter 5, deals with two classes of right quaternionic Hilbert spaces in the context
of slice polyregular functions, generalizing the so-called slice and full hyperholomorphic
Bargmann spaces constricted by means of HQ

m,n. Their basic properties are discussed, the
explicit formulas of their reproducing kernels are given and associated Segal–Bargmann
transforms are also introduced and studied. The spectral description as special subspaces
of L2-eigenspaces of a second order differential operator involving the slice derivative is
investigated.

The last Chapter, we introduce and discuss some basic properties of some integral trans-
forms in the framework of specific functional Hilbert spaces, the holomorphic Bargmann–
Fock spaces on C and C2 and the slice hyperholomorphic Bargmann–Fock space on H. We
study the basic properties of Gν in (27), including the identification of its image and the
determination of a like-left inverse defined on the whole two-dimensional Bargmann–Fock
space. We examine their combination with the Fourier transform which lead to special in-
tegral transforms connecting the two-dimensional Bargmann–Fock space and its analogue
on the complex plane. We also investigate the relationship between special subspaces of the
two-dimensional Bargmann–Fock space and the slice-hyperholomorphic one on the quater-
nions by introducing appropriate integral transforms. We identify their image and their
action on the reproducing kernel.
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Chapter1
Preliminaries

We review briefly in this chapter the basic concepts and fundamental background
needed to develop the next chapters. Mainly, we are concerned with the real Her-
mite polynomials and their generalization to the complex plane, the holomrphic
and poly-analytic Hermite polynomials (Subsections 1.1.1 and 1.1.2). The second
ones lead to interesting classes of functional spaces like the generalized and true
polyanalytic Bargmann spaces (Section 1.6), which can be realized as the phase
spaces of the configuration space L2(R, dx) via generalized Segal–Bargmann or
Fourier–Wigner transforms (Sections 1.3 and 1.4). The definition of the fractional
Fourier transform and their basic properties is recalled in Section 1.5. Section 1.7
is devoted to reviewing some concepts from slice hypercomplex analysis.

1.1 Real and complex orthogonal polynomials of Hermite
type

Orthogonal polynomials have found wide application in various branches of mathematics,
technology and physics. The basic example of single real Hermite polynomials [92,99,107,
109] as well as their different generalizations are well-known in the literature [26,28,66,97,
105], including the generalized Hermite polynomials

Hγ
m(x, α, p) := (−1)mx−αepxγ dm

dxm

(
xαe−pxγ

)
,

see [66]. Further kinds of generalizations to multi-index ones can be found in [17,74,104].

1.1.1 Real Hermite polynomials.

They are defined by

Hn(x) = (−1)nex2 dn

dxn e−x2
(1.1)
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or explicitly by

Hn(x) = n!
bn

2 c
∑

m=0

(−1)m

m!(n− 2m)!
(2x)n−2m. (1.2)

In physics, these polynomials appear as solutions of the Schrödinger equation y
′′ − 2xy

′
+

2my = 0, so that the associated functions hm(x) = ex2/2Hm(x) (called Hermite functions)
are eigensolutions of the quantum harmonic oscillator H = x2− ∂2

x and form an orthogonal
basis of the functional Hilbert space L2(R, e−x2

dx) of square integrable functions on the real
line (see for example [109]) endowed with the inner product is given by the integral

〈 f , g〉 =
∫ ∞

−∞
f (x)g(x)e−x2

dx.

More precisely, we have ∫ ∞

−∞
Hm(x)Hn(x) e−x2

dx =
√

π 2nn! δnm.

Moreover, they enjoy a number of remarkable and interesting properties, like the Runge
addition formula ([77,100])

Hn(x + y) = 2−
n
2 ·

n

∑
k=0

(
n
k

)
Hn−k

(
x
√

2
)

Hk

(
y
√

2
)

, (1.3)

and the identity

Hn+1(x) = 2xHn(x)− H′n(x). (1.4)

While, the exponential generating function reads

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!
. (1.5)

Both (1.3) and (1.5), as well as the the quadratic recurrence formula, (called also Nielsen’s
identity ([92]))

Hm+n(x) = m!n!
min(m,n)

∑
k=0

(−2)k

k!
Hm−k(x)
(m− n)!

Hn−k(x)
(n− k)!

. (1.6)

can be recovered in a easier way by utilizing the operational representation

Hm(x) =
(
− d

dx
+ 2x

)m
· (1) (1.7)
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which, can be seen, a special case of the Burchnall operational formula(
− d

dx
+ 2x

)m
( f ) = m!

m

∑
k=0

(−1)k

k!
Hm−k(x)
(m− k)!

dk

dxk ( f ), (1.8)

by taking f = 1. A fundamental tool for these polynomials is the Mehler’s formula assert-
ing

+∞

∑
n=0

tnHn(x)Hn(y)
2nn!

=
1√

1− t2
exp

(
−t2(x2 + y2) + 2txy

1− t2

)
=: Et(x, y), (1.9)

and obtained by Mehler himself in 1866 [85] (see e.g. also [99]).

1.1.2 Holomorphic and poly-analytic Hermite polynomials

There is many ways to define univariate complex polynomials of Hermite type. The natural
ones arise as the tensor product Hm(x)Hn(y) of the real Hermite polynomials Hm(x) or also
the complex holomorphic Hermite polynomials Hn(z), z = x + iy, x, y ∈ R. Many algebraic
properties of Hn(x) remains valid for Hn(z) by analytic continuation. This is the case of the
identities (1.1), (1.4) and (1.5)-(1.9). However, their orthogonal property reads [113]

∫
R2

Hm(z)Hn(z)e−ax2−by2
dxdy =

π√
ab

2nn!
(

a + b
ab

)n
δm,n

for given 0 < a < b, 1
a = 1 + 1

b . Moreover, the sequence Hn(z); n ≥ 0, form an orthogonal
basis of the standard Bargmann–Fock space F 2

a,b(C) of holomorphic functions on belonging

to L2(C, e−ax2−by2
dxdy), to wit

F 2
a,b(C) := Hol ∩ L2(C, e−ax2−by2

dxdy).

The univariate poly-analytic Hermite polynomials, defined by their Rodrigues’ formula

Hm,n(z, z) = (−1)m+ne|z|
2 ∂m+n

∂zm∂zn

(
e−|z|

2
)

, (1.10)

is a nontrivial generalization of Hn(x) to the complex plane. The relationship to the classical
(physicist) univariate real Hermite polynomials Hreal

m (x) is given by [56,73]

Hm,n (z, z) =
(

1
2

)m+n
m!n!

m

∑
j=0

n

∑
k=0

(−1)k(i)j+k

j!k!

Hreal
m+n−j−k(x)Hreal

j+k(y)

(m− j)!(n− k)!
. (1.11)

Equivalently, they can be defined by means of their exponential operational formula ([73,
Theorem 2.1])

Hm,n(z, z̄) = e−∆C (zmzn) , (1.12)
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∆C := ∂2/∂z∂z being the Laplace-Beltrami operator on C. The explicit expression of Hm,n(z, z̄)
in terms of the generalized Laguerre polynomials L(α)

n (x) reads

Hp,q(z, z) = (−1)min(p,q)(min(p, q))!|z||p−q|ei(p−q) arg(z)L(|p−q|)
min(p,q)(|z|

2)

for z = |z|ei arg(z) (see [72, Eq. (2.3)] where there hm,p means Hp,m in ours), so that for
q = p + k, we get

Hp,p+k(z, z) = (−1)p p!z̄kL(k)
p (|z|2). (1.13)

We can reintroduce Hν
m,n(z; z) by considering the integral representation ([20, Theorem 2.4])

Hν
m,n(z; z) =

( µ

π

)
(−α)m(β)n

∫
C

ξmξ
neν|z|2−µ|ξ|2+α〈ξ,z〉−β〈ξ,z〉dλ(ξ). (1.14)

Here ν = αβ
µ with µ > 0 and α, β ∈ C such that αβ > 0. By taking for example µ = 1 and

α = −β = i, so that ν = αβ/µ = 1, the integral representation (3.5) reduces further to the
one obtained by Ismail [73, Theorem 5.1]. Its proof lies on the following key result∫

C
e−µ|ξ|2+αξ+βξdλ(ξ) =

(
π

µ

)
e

αβ
µ (1.15)

fulfilled for fixed positive real number µ > 0 and two complex numbers α, β ∈ C. Using
this integral representation one can obtain the following exponential generating function
[54,76]

∞

∑
m,n=0

umvn

m!n!
Hν

m,n(z; z) = eν(uz+vz−uv) (1.16)

which can also be obtained by means of (a) of Proposition in [56], to wit

+∞

∑
n=0

zn

n!
Hν

n,m′(w, w) = νm′(w− z)m′eνzw. (1.17)

We conclude this section by recalling the following identity

+∞

∑
n=0

Hν
m,n(z, z)Hν

m′,n(w, w̄)

νnn!
= (−1)m′Hν

m,m′(z− w, z− w)eν〈w,z〉 (1.18)

which is exactly Proposition 3.6 in [56] (when ν = 1). It appears as a particular case of [20,
Theorem 3.1]

Gν
m,m′(t; z, w) :=

+∞

∑
n=0

tn

n!νn Hν
m,n(z, z)Hν

n,m′(w, w) = (−t)m′Hν
m,m′(z− tw, z− tw)eνtwz (1.19)

valid for every t in the unit circle and z, w ∈ C. It should noted here that by taking m = m′
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in (1.18), we recognize the explicit expression of the reproducing kernel of the generalized
Bargmann space of level m, defined as the L2-eigenspace of the self-adjoint magnetic Lapla-
cian

∆ν = − ∂2

∂z∂z
+ νz

∂

∂z
(1.20)

acting on L2,ν(C; e−ν|z|2dλ) and associated to the eigenvalue νm.

1.1.3 Mehler formulas for the UCHP

In [55], two widest generalizations of the classical Mehler’s formula are given for the uni-
variate complex Hermite polynomials, by performing special double summations involving
the special products of Hν

m,n, Hν′
m,n and monomials. The first one is based on the generating

function (1.18) and asserts that [55, Theorem 3.1]

+∞

∑
m,n=0

umHν
m,n(z, z)Hν

m,n(w, w̄)

νm+nm!n!
=

eν〈w,z〉

(1− u)
exp

(
−νu|z− w|2

1− u

)
(1.21)

valid for every u, z ∈ C such that |u| < 1. An interesting application is given when consid-
ering the Cauchy problem

(H)

{
∂
∂t u(t; z) = ∆νu(t; z); (t; z) ∈]0,+∞[×C,
u(t; z) = f (z) ∈ C∞

0 (C),

associated to the self-adjoint magnetic Laplacian ∆ν in (1.20). In fact, the closed explicit
expression of the Heat kernel function Kν(t; z, z0) for the heat solution of (H) is proved to
be given by ([55, Theorem 3.3])

Kν(t; z, z0) =
( ν

π

) eν(t+〈z0,z〉)

1− eνt exp
(
|z− z0|2
eνt − 1

)
; t > 0. (1.22)

The second Mehler’s formula concerns the kernel function

Eν,ν′
u,v (z, w) :=

1
1− νν′uv

exp

(
−

νν′
[
(ν|z|2 + ν′|w|2)uv− uzw− vzw

]
1− νν′uv

)
(1.23)

that can be seen as an analytic extension of the classical Poisson kernel (1.9). In fact, one
proves that Eν,ν′

u,v (z, w) can be expanded in terms of Hν
m,n as follows [55, Theorem 4.1]

Eν,ν′
u,v (z, w) =

∞

∑
m,n=0

umvn

m!n!
Hν

m,n(z; z)Hν′
m,n(w; w) (1.24)

valid for every u, v ∈ C such that uv ∈ R and arbitrary ν, ν′ ∈ R such that νν′uv < 1.
For the particular case ν = ν′ = 1, it leads to the Mehler’s formula for Hm,n(z; z) given by
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Wünsche [120] without proof and recovered by Ismail [73, Theorem 3.3] as a specific case
of his Kibble-Slepian formula [73, Theorem 1.1]. As consequence of (1.24) combined with
the integral representation (3.5), we can derive an interesting self-reciprocity property for
the Hermite polynomials by a like Fourier transform [55, Theorem 4.2]

∫
C

exp
(
−ν′|w|2 − νν′(uzw− vzw)

1− νν′uv

)
Hν′

k,j(w; w)dλ(w) (1.25)

= π(ν′)j+k−1(1− νν′uv)ujvk exp
(

ν2ν′uv
1− νν′uv

|z|2
)

Hν
j,k(z; z).

Added to (1.18), there are other additional interesting bilinear generating functions of
Mehler type (see Chapter 2). As direct applications, we provide remarkable integral trans-
forms connecting L2(R; e−x2

dx) to the 1d-Bargmann-Fock spaceF 2,ν(C) and more generally
to the generalized Bargmann-Fock spaces that are L2-eigenspaces of a magnetic Laplacian
∆ν acting on L2(C; e−ν|z|2dxdy). An integral transform mapping L2(C; e−ν|z|2dxdy) to the
two-dimensional Bargmann-Fock space F 2,ν(C2) is also given. This will be studied in de-
tails in the next chapter.

1.2 Coherent states formalism

Most classical integral transforms in mathematical analysis are subject to a general principle
issued from the reproducing kernel Hilbert space theory (known also as coherent states
transform). Below, we present a brief description of this principle according to [53,69].
Let (HX; ωX) be an infinite dimensional complex functional Hilbert space on X with an
orthonormal basis {en}n with respect to the inner scaler product

〈φ, ψ〉HX
:=
∫

X
φ(x)ψ(x)ωX(x)dx

for given weight measure ωX. In a similar way we consider (HY; ωY) with an orthonormal
basis { fn}n and assume that HY is in addition a reproducing kernel Hilbert space with
reproducing kernel K(y, y′). Associated to the data (HX; ωX; {en}n) and (HY; ωY; { fn}n),
we perform the following kernel function T : X×Y −→ C defined by

T(x, y) :=
∞

∑
n=0

en(x) fn(y).

It is straightforward to check that 〈T(·, y), T(·, y′)〉HX
reduces further to K(y, y′).

Moreover, T(·, y) ∈ HX for every fixed y ∈ Y and therefore the map y 7−→ T(·, y)
defines a quantization of Y intoHX. Thus, we can consider the integral transform

T (φ)(y) :=
∫

X
T(x, y)φ(x)ωX(x)dx =

〈
φ, T(·, y)

〉
HX

for every φ ∈ HX. This transform maps HX onto HY for ‖T(·, y)‖2
HX

= K(y, y) < +∞, and
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satisfies
T (ek) = fk.

Subsequently T (φ) =
∞
∑

n=0
αn fn ∈ HY for every φ =

∞
∑

n=0
αnen ∈ HX. Moreover, it is readily

easy to see that

‖φ‖2
HX

=
∞

∑
n=0
|αn|2 =

∞

∑
n=0
|βn|2 = ‖T (φ)‖2

HY
.

Thereby, T defines an isometric linear transform from HX onto HY and the function x 7−→
〈ϕ, T(x, ·)〉HY

belongs toHX for every ϕ ∈ HY, since

〈ϕ, T(x, ·)〉HY
=

〈
ϕ,

∞

∑
n=0

en(x) fn

〉
HY

=
∞

∑
n=0
〈ϕ, fn〉HY

en(x) = φ(x).

In addition, we have the following integral representation

ϕ(y) =
∫

X
T(x, y) 〈ϕ, T(x, ·)〉HY

ωX(x)dx = T
(
〈φ, T(x, ·)〉HY

)
(y)

for every ϕ ∈ HY. This is equivalent to say that 〈ϕ, T(x, ·)〉HY
is the inverse transform of T .

The next subsection gives as a concrete example of such Coherent states formalism.

1.3 Segal–Bargmann transform

It is a natural unitary operator introduced for the first time by Bargmann [16] and given
through

[B(ϕ)](z) := π−
n
4

∫
Rn

ϕ(x)e−
1
2 (z

2+x2)+
√

2zxdx,

where zx =
n
∑

j=1
zjxj for x = (x1, x2, · · · , xn) and z = (z1, z2, · · · , zn). The integral is taken

on the n-real space Rn with respect to its standard Lebesgue measure dx = dx1 · · · dxn.
The transform B identifies the standard Hilbert space L2(Rn) and the Fock space F 2(Cn),
the space of holomorphic functions F in the n-complex space Cn satisfying the square-
integrability condition

‖F‖2 := π−n
∫

Cn
|F(z)|2 exp(−|z|2) dλ(z) < +∞.

Here dλ(z) denotes the 2n-dimensional Lebesgue measure on Cn given by

dλ(z) =
n

∏
k=1

dλ(zk) =
n

∏
k=1

dxkdyk; z = (x1 + iy1, · · · , xn + iyn).
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The space F 2(Cn) is a Hilbert space with respect to the associated inner product

〈F | G〉 = π−n
∫

Cn
F(z)G(z) exp(−|z|2) dλ(z).

The kernel function of this integral transform is closely related to the generating function
of the multi-dimensional Hermite functions

hm(x) =
n

∏
k=1

hmk(xk)

for varying m = (m1, m2, · · · , mn) ∈Nn, where hmk(xk) the one-dimensional Hermite func-
tion which form an orthogonal basis of L2(Rn).

1.4 The Fourier–Wigner and Wigner transforms.

The notion of Segal-Bargmann transform, introduced in the previous section, is closely con-
nected to the so-called Fourier-Wigner transform V : ( f , g) 7−→ V( f , g) for some specific
fixed (window function) g [49,109]. This transform is important in harmonic analysis, signal
analysis, engineering, and the physical sciences. In fact, it is a basic tool to study the Weyl
transform [49,109,119] and to interpret quantum mechanics as a form of nondeterministic
statistical dynamics [89]. It is also used to study the nonexisting joint probability distribu-
tion of positioned momentum in a given state [119]. It is defined as a windowed Fourier
transform by

V( f , g)(p, q) =
(

1
2π

) d
2 ∫

Rd
ei〈x+ p

2 ,q〉 f (x + p)g(x)dx (1.1)

for every (p, q) ∈ Rd ×Rd and every complex-valued functions f , g, or equivalently by

V( f , g)(p, q) =
(

1
2π

) d
2 ∫

Rd
ei〈y,q〉 f

(
y +

p
2

)
g
(

y− p
2

)
dy. (1.2)

Therefore, it can be seen as the Fourier transform,

V( f , g)(p, q) = F (K f ,g(·|p))(−q),

of the function y 7−→ K f ,g(y|p) belonging to L1(Rd) and defined on Rd by

K f ,g(y|p) = f
(

y +
p
2

)
g
(

y− p
2

)
. (1.3)

It is then a well defined bilinear mapping on L2(Rd)× L2(Rd) thanks to the estimation

|V( f , g)(p, q)| ≤
(

1
2π

) d
2

‖ f ‖L2(Rd) ‖g‖L2(Rd) .
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An interesting result for V is the Moyal’s formula

〈V( f , g),V(ϕ, ψ)〉L2(Cd) = 〈 f , ϕ〉L2(Rd) 〈ψ, g〉L2(Rd) . (1.4)

Subsequently, we have V(L2(Rd)× L2(Rd)) ⊂ L2(Cd). Moreover, it shown in [119] (see also
[38, Proposition 5, p. 2101] that the Fourier-Wigner V can be used to construct orthogonal
bases of L2(Cd) from those of L2(Rd). More precisely, if {ϕk, k ∈ N} is an orthonormal
basis of L2(Rd), then {ϕjk = V(ϕj, ϕk); j, k ∈N} is an orthonormal basis of L2(Cd) with∥∥ϕjk

∥∥
L2(Cd)

=
∥∥ϕj
∥∥

L2(Rd)
‖ϕk‖L2(Rd) . (1.5)

It should be mentioned here that the univariate polyanalytic Hermite polynomials can be
realized as the Fourier-Wigner transform ([7]) of the well-known real Hermite functions

hreal
n (x) = e−

x2
2 Hreal

n (x) on the real line R, namely

Hm,n (z, z) = (−1)n2−(m+n−1)/2e
|z|2

2 V(hreal
m , hreal

n )(
√

2x,
√

2y). (1.6)

This follows using basically the generating functions of hn and hm,n. Subsequently, one
re-derives the known fact that they constitute an orthogonal basis of the Hilbert space
L2(C; e−|z|

2
dxdy) ([72,76]). Another interesting result is the preservation of the tensor prod-

uct [119]. More exactly, if f j, gj ∈ L2(R); j = 1, · · · , n, then the functions f (x) := f1(x1) · · · fn(xn)

and g(x) := g1(x1) · · · gn(xn) belong to L2(Rn) and satisfy

V( f , g)(p, q) =
n

∏
j=1
V( f j, gj)(pj, qj), (1.7)

where V in the right-hand side denotes the one-dimensional Fourier-Wigner transform.
A close transformation to V is the Wigner transform defined for given f , g ∈ L2(Rn) by

W( f , g). More explicitly,

W( f , g)(x, ξ) :=
(

1
2π

) n
2 ∫

Rn
e−iξ.p f

(
x +

p
2

)
g
(

x− p
2

)
dp.

It was introduced by Eugene Wigner in 1932 as a probability quasi-distribution which al-
lows expression of quantum mechanical expectation values in the same form as the aver-
ages of classical statistical mechanics [117]. It is also used in signal processing as a transform
in time-frequency analysis. With close relating to the windowed Gabor transform [30,95].
The corresponding Moyal identity reads

〈W( f1, g1), W( f2, g2)〉 = 〈 f1, f2〉〈g1, g2〉

for all f1, g1, f2, and g2 in L2(Rn).
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1.5 Fractional Fourier transform

Fourier analysis is one of the oldest and special subjects in mathematical analysis that has
great impact on different fields of mathematics, physics and engineering alike. The main
tool in this theory is the Fourier transform on the real line

F f (w) = f̂ (w) :=
∫

R
f (x) e−iωtdt; w ∈ R,

it enters in the resolution some differential equations. Moreover, it is essential for signal
analysis and image processing. Notice for instance that the Hermite functions Hn(x)e−x2/2

are eigenfunctions of F ,
Fhm = imhm.

The so-called fractional Fourier transform, is a special generalization of F . Such trans-
form was first appeared in 1929 by Wiener paper [118] discussing the extension of certain
results of Hermann Weyl, leading to Fourier developments of fractional order. Mainly,
Wiener sets out to find a one–parameter family of unitary integral operators on L2(R),

Kθ ϕ(x) :=
∫ +∞

−∞
Kθ(x, y)ϕ(y)dy,

for which the n–th Hermite function hn(x) = Hn(x)e−x2/2 is a eigenfunction with einθ as
corresponding eigenvalue,

Kθhn(x) = einθhn(x).

The explicit Wiener formula for the kernel function K0 is a limiting case of Mehler’s formula
[85] for the Hermite functions as showed earlier by Hörmander [71]. This transform was
rediscovered later in quantum mechanics by Namias [90] (who was the first to attribute
such concept),

Fα( f )(ω) =
∫ ∞

−∞
Kα(t, w) f (t) dt,

with

Kα(t, w) =


√

1−i cot(α)
2π e−i csc(α)ωt+i cot(α)(w2

2 + t2
2 ) i f α 6= pπ,

δ(t− w) i f α = 2pπ,

δ(t + w) i f α = (2p− 1)π,

where α ∈ R; p is an integer, and δ is the Dirac delta function.
Namias was able to generalize many results of classical Fourier transform to FrFT, based

on the properties of the Hermite orthogonal polynomials. He derived a number of opera-
tional formulas which he used to solve several types of Schrödinger equation. The funda-
mental mathematical foundation concerning the FrFT was developed later by McBride and
Kerr in [84]. Applications of the FrFT are well–known in the context of signal processing
[8,93,102] optics [5,6,93], and fractional differential equations [79]. For a new and brief in-
troduction to the FrFT and its applications see [46]. A detailed overview of the theory of
the fractional FT can be found in [93].
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The kernel can be expanded in terms of Hermite functions as

Kα(t, w) = ∑
n≥0

(−i)
2αn
π

hn(t)hn(w)

||hn||2
.

Therefore, one can the Hermite functions are eigenfunctions of the fractional Fourier trans-
formation whose corresponding eigenvalues are einα; that is

Fα(hn)(w) = einαhn(w).

It is also no difficult to see that Fα satisfies the semi-Group property

FαFθ = Fα+θ.

So that the inverse-FrFT with respect to angle α is the FrFT with angle −α,

(Fα)
−1 = F−α.

While the Parseval’s relation reads

〈Fα( f ),Fα(g)〉 = 〈 f , g〉

and hence the Fα defines an isometric transformation on L2(R).

1.6 Polyanalytic functions

In this section, we review from [15] the interesting results that we need on complex polyan-
alytic functions. A given complex valued function f on a domain Ω of C, f : Ω→ C is said
to be polyanalytic of order n (n ≥ 1) if it satisfies the Cauchy equation(

∂

∂z

)n
f (z) = 0

for every z ∈ Ω.
This is equivalent to the existence of some holomorphic functions fk, k = 0, 1, 2, · · · , n− 1
such that

f (z) =
n

∑
k=0

zn fk(z)

A fundamental tool in this theory is the uniqueness theorem. It states, if f and g are two
polyanalytic functions of order n on a domain Ω that coincide on a sub-domain U of Ω,
then f and g coincide everywhere in Ω.

The analogue of the Fock space in the context of n-analytic functions is the generalized
Fock space defined by

F 2,ν
n := { f polyanalytic of ordre n such that

∫
C
| f (z)|2e−ν|z|2dλ(z) < ∞}.
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These spaces spaces are closely connected to the L2-eigenspaces

E2,ν
n (∆ν) = { f ∈ L2,ν

C
(C); ∆ν f = νn f }, (1.1)

where ∆ν is the magnetic Schrödinger operator in (1.20).

1.7 Slice hypercomplex analysis

There was many attempt to generalize the rich theory of holomorphic functions to the
quaternionic context, the first ones are due to Fueter [51]. However, we review below the
recent one introduced by Gentili and Struppa in [62], by means of slice derivetive and lead-
ing to the new notion of slice hyperholomorphic or slice regular functions on quaternions.
To this end recall, that the non-commutative field of quaternions is defined to be

H = {q = x0 + x1i + x2 j + x3k; x0, x1, x2, x3 ∈ R}

where i, j, k satisfied the multiplication rule: ij = −ji = k, jk = −kj = i, ki = −ik = j. It
should be mentioned here that any quaternionic q formed by real part Re(q) and imaginary
part Im(q), and its conjugate and norm respectively are given by q = Re(q)− Im(q) and

|q| =
√

qq =
√

x2
0 + x2

1 + x2
2 + x2

3

. Notice also that the quaternionic conjugation satisfy the property pq = q p for any p, q
∈H. Moreover, the unit sphere

{q = x1i + x2 j + x3k; x2
1 + x2

2 + x2
3 = 1}

coincides with the set of all imaginary units given by

S = {q ∈H; q2 = −1}.

So that for any non-real quaternion q ∈ H , there exist, and are unique, x, y ∈ R with
y > 0 and I ∈ S such that q = x + yI, namely x = Re(q), I = q−Re(q)

|q−Re(q)| and y = |q− Re(q)|.
Then CI = R+RI for every given I ∈H, define slice H and can be considered as a complex
plane in H passing through 0, 1 and I isomorphic to the complex plane C .

Keep in mind the definition of slice regular function with respect to

∂I f (x + Iy) :=
1
2

(
∂

∂x
+ I

∂

∂y

)
f |CI (x + yI). (1.1)

Then we assert the following:
Series expansion: An H-valued function f is slice regular on BR ⊂ H if and only if it
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has a series expansion of the form:

f (q) =
∞

∑
n=0

qn

n!
∂n

S( f )(0)

where BR = {q ∈H; |q| < R; R > 0}.
Definition 1.7.1. A domain Ω ⊂H is said to be a slice domain (or just s-domain) if Ω ∩R is
nonempty and for all I ∈ S, the set ΩI := Ω ∩ CI is a domain of the complex plane CI . If
moreover, for every q = x+ Iy ∈ Ω, the whole sphere x+ yS := {x+ Jy; J ∈ S} is contained
in Ω, we say that Ω is an axially symmetric slice domain.

Representation Formula: Let f be a slice regular function on an axially symmetric s-
domain Ω ⊆ H. Choose any J ∈ S. Then the following equality holds for all q = x + Iy ∈
Ω :

f (x + yI) =
1
2
(1− I J) f (x + yJ) +

1
2
(1 + I J) f (x− yJ).

Splitting lemma: If f is a slice regular function on U, then for every I ∈ S, and every
J ∈ S, perpendicular to I, there are two holomorphic functions F, G : U ∩CI −→ CI such
that for any z = x + Iy

f I(z) = F(z) + G(z)J.

Identity Principle: Let f : U −→ H be a slice regular function on a slice domain U.
Denote by Z f = {q ∈ U : f (q) = 0} the zero set of f . If there exists I ∈ S such that CI ∩ Z f
has an accumulation point, then f ≡ 0 on U.

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
Concrete Description, Associated Functional Spaces and Integral Transforms

23



Chapter2
Non-trivial 1d and 2d Segal–Bargmann
transforms

Special generating functions and Mehler’s formula for the univariate complex
Hermite polynomials (UCHP) are obtained and next employed to introduce and
study some one– and two–dimensional integral transforms of Segal–Bargmann
type in the framework of some specific functional Hilbert spaces, such as the so-
called generalized Bargmann–Fock spaces that are realized as L2–eigenspaces of
a special magnetic Schrödinger operator.

2.1 Special bilinear generating functions for UCHP

The Segal–Bargmann transform [16,101] has found many applications in quantum optics,
in signal processing and in harmonic analysis on phase space. A nice overview of its prop-
erties and applications is given in [49,91]. Many generalizations have been considered in
the literature such as the Hall’s transforms for compact Lie groups [67,69,88] and the so–
called generalized Segal–Bargmann transform of level n [87,114]. The two–dimensional one
is specified with the formula (with a slightly different convention from the classical one)

B2,νψ(z, w) =
( ν

π

) 3
2
∫

R2
ρν

0

(
x− z√

2

)
ρν

0

(
y− w√

2

)
ψ(x, y)dxdy, (2.1)

where ρν
0(ξ) = e−νξ2

is the analytic continuation to C of the standard Gaussian density on
R. This transform makes the quantum mechanical configuration space L2,ν(C) unitarily iso-
morphic to the phase space F 2,ν(C2). Its kernel function is the tensor product of two copies
of the kernel function of the one–dimensional Segal–Bargmann transform B1,ν. Therefore,
it is the generating function of the tensor product Hν

m(x)Hν
n(y) which form an orthogonal

basis of L2,ν(C). Here Hν
n(x) denotes the nth rescaled real Hermite polynomial

Hν
n(x) := (−1)neνx2 dn

dxn

(
e−νx2

)
. (2.2)

24



CHAPTER 2. NON-TRIVIAL 1D AND 2D SEGAL–BARGMANN TRANSFORMS

The construction of such integral transforms follows a general principle from the repro-
ducing kernel Hilbert space theory (see Section 1.2 for a brief review). In fact, there exists a
unique isometric isomorphism (also called coherent states transform) mapping a given or-
thonormal basis en(x) to another orthonormal basis fn(y) and is given by an integral kernel
transform whose kernel function is given by the un-summed

T(x; y) = ∑
n

en(x) fn(y).

Having a summed formula for T(x; y) will facilitate the study of the mapping properties of
the integral kernel transform on the scale of Lp spaces. Thus, this is that hard part we deal
with in the context of the UCHP. Namely, we prove the following main results.

Theorem 2.1.1. We have the generating function of exponential type

+∞

∑
m=0

ξmHµ
m(x)Hν

m,n(z; z)
m!νm = e−µ(ξ2z2−2xξz)Hµξ2

n

(
z +

ν

2µξ2 z− x
ξ

)
. (2.3)

Proof. We begin by noting that the single real Hermite polynomials Hν
m(x) in (2.2) form an

orthogonal basis of L2,ν(R) with norm given explicitly by

‖Hν
m‖

2
L2,ν(R) =

(π

ν

)1/2
2mνmm!. (2.4)

While the UCHP Hν
m,n(z; z) in (12), for fixed n and varying m, is an orthogonal basis of

the generalized Bargmann–Fock space of level n, F 2,ν
n (C). The square norm of Hν

m,n(z; z) is
given by ∥∥Hν

m,n
∥∥2

L2,ν(C)
=
(π

ν

)
m!n!νm+n. (2.5)

Both Hν
n(x) and Hν

m,n(z, z) are the rescaled version of the real Hermite polynomials Hn and
the complex Hermite polynomials Hm,n (corresponding to ν = 1), respectively. Moreover,
we have

√
ν

mHm(
√

νx) = Hν
m(x) and Hν

m,n (z, z) = ν
m+n

2 Hm,n(
√

νz;
√

νz). (2.6)

Making use of Hm,n(z, z) = e−∆C(zmzn) as well as the well–known generating function
for the real Hermite polynomials ([99, p.187]),

+∞

∑
n=0

ξnHµ
n (x)

n!
= e−µξ2+2µxξ ,
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we obtain

+∞

∑
n=0

tnHµ
n (x)Hm,n(z, z)

n!νn = e−∆C

(
zm

+∞

∑
n=0

(tz/ν)nHµ
n (x)

n!

)
= eµx2

e−∆C

(
zme−µ[ tz

ν −x]2
)

.

Now, by utilizing the fact

∂j

∂zj

(
e−(az−b)2

)
= (−1)jaje−(az−b)2

Hj(az− b)

as well as the well–known identity

m

∑
j=0

(
m
j

)
Hj(x)(2ξ)m−j = Hm(x + ξ),

we can rewrite the above sum as

+∞

∑
n=0

tnHµ
n (x)Hm,n(z, z)

n!νn = eµx2
m

∑
j=0

(
m
j

)
zm−j(−1)j ∂j

∂zj

(
e−µ[ tz

ν −x]2
)

=

(√
µt
ν

)m

e−µ
[

t2z2

ν2 −2x tz
ν

] m

∑
j=0

(
m
j

)(
ν
√

µt
z
)m−j

Hj

(√
µt
ν

z−√µx
)

=

(√
µt
ν

)m

e−µ
[

t2z2

ν2 −2x tz
ν

]
Hm

(√
µt
ν

z +
ν

2
√

µt
z−√µx

)
.

Finally, the desired result follows thanks to (2.6).

Remark 2.1.2. The right–hand side of (2.3) defines a new class of polyanalytic polynomials
of Hermite type which form (for special values of ν, ξ and x) an orthogonal basis of the
space of rank one automorphic functions (special sections on C/Z).

Theorem 2.1.3. For every t such that |t| = 1, and z, w ∈ C, we have the special partial Mehler’s
formula

+∞

∑
n=0

tn

n!νn Hν
m,n(z, z)Hν

n,m′(w, w) = (−t)m′Hν
m,m′(z− tw, z− tw)eνtwz. (2.7)

Proof. Notice first that Rodrigues’ formula (12) infers

Hν
m,n(z, z) = (−1)mνneνzz ∂m

∂zm

(
zne−νzz

)
. (2.8)

Subsequently, we can check that

Hν
m,m′(z− ξ, z− ξ) = (−1)meν|z−ξ|2 ∂m

∂zm

(
νm′(z− ξ)m′e−ν|z−ξ|2

)
. (2.9)
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Thus, using successively (2.8) as well as the generating function (2.20), one gets

Gν
m,m′(t; z, w) =

+∞

∑
n=0

tn

νnn!

[
(−1)mνneνzz ∂m

∂zm

(
zne−νzz

)]
Hν

n,m′(w, w̄)

= (−1)meνzz ∂m

∂zm

[
νm′(w− tz)m′eνtzwe−νzz

]
.

Now, if t is assumed to belong to the unit circle, the above identity can be rewritten as

Gν
m,m′(t; z, w) = (−t)m′eνzze−νtw(z−tw)(−1)m ∂m

∂zm

[
νm′(z− tw)m′e−ν|z−tw|2

]
.

In the right–hand side of the previous equality we recognize (2.9). Thus, the expression of
Gν

m,m′(t; z, w) reduces further to the desired result (2.7).

As a consequence of Theorem 2.1.3, we get

+∞

∑
n=0

tn

n!νn Hν
m,n(z, z)Hν

n,m(w, w) = (νt)mm!L(0)
m (ν|z− tw|2)eνtwz, (2.10)

which follows readily by specifying m = m′ in (2.7) and making use of Hν
m,m(ξ, ξ̄) =

(−ν)mm!L(0)
m (ν|ξ|2), where L(γ)

m (x) denotes the generalized Laguerre polynomials. The par-
ticular case of z = w yields the identity

+∞

∑
n=0

tn

n!νn |H
ν
m,n(z, z)|2 = m!(νt)mL(0)

m (ν|1− t|2|z|2)eνt|z|2 (2.11)

for every t in the unit circle and z ∈ C. More particularly, we have

+∞

∑
n=0

|Hν
m,n(z, z)|2

n!νn = m!νmeν|z|2 . (2.12)

Using similar arguments as the ones adopted above, we are able to establish the Mehler’s
formula involving the product umtnHν

m,n(z, z)Hν
n,m′(w, w).

Theorem 2.1.4. For every |t| = 1 and complex numbers u, z, w ∈ C, we have

+∞

∑
m,n=0

umtn

m!n!νn Hν
m,n(z, z)Hν

n,m′(w, w) = (−νt)m′(z− tw− u)m′eνtzw+νu(z−tw). (2.13)

If in addition ν|u| < 1, then we have

+∞

∑
m,n=0

umtn

m!n!νn Hν
m,n(z, z)Hν

n,m(w, w) =
1

(1− νtu)
exp

(
−ν2tu|z− tw|2

1− νtu

)
eνtwz. (2.14)

Proof. Identity (2.13) follows by twice application of the generating function (2.20). We
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provide below a different simple one using (2.7) combined with (2.20). In fact, we have

+∞

∑
m,n=0

umtn

νnm!n!
Hν

m,n(z, z)Hν
n,m′(w, w) =

+∞

∑
m=0

um

m!

(
+∞

∑
n=0

tn

n!νn Hν
m,n(z, z)Hν

n,m′(w, w)

)

= (−t)m′
+∞

∑
m=0

um

m!
Hν

m,m′(z− tw, z− tw)eνtwz

= (−νt)m′(z− tw− u)m′eνu(z−tw)eνtwz

= (−νt)m′(z− tw− u)m′eν(uz+tzw−tuw).

to get

+∞

∑
m,n=0

umtn

m!n!νn Hν
m,n(z, z)Hν

n,m(w, w) =
+∞

∑
m=0

(νtu)mL(0)
m (ν|z− tw|2)eνtwz. (2.15)

In the right–hand side of (2.15), we recognize the well–known generating function for the
Laguerre polynomials, to wit ([99, p. 135]):

∞

∑
n=0

znL(α)
n (x) =

1
(1− z)1+α

exp
(
−xz
1− z

)
; |z| < 1.

Thus, we get

+∞

∑
m,n=0

umtn

νnm!n!
Hν

m,n(z, z)Hν
n,m(w, w) =

1
(1− νtu)

exp
(
−ν2tu|z− tw|2

1− νtu

)
eνtwz.

We conclude this section by noting that the majority of obtained results in the framework
of the UCHP, including the exponential generating function (2.2) as well as the generating
function (2.20), can be re-derived making use of rescaled version of the integral representa-
tion of the UCHP.

Theorem 2.1.5. For the scalar parameters µ > 0 and α, β ∈ C such that αβ > 0 and ν = αβ
µ , we

have

Hν
m,n(z; z) =

( µ

π

)
(−α)m(β)n

∫
C

ξmξ
ne

αβ
µ |z|2−µ|ξ|2+αξz−βξzdλ(ξ). (2.16)

Proof. The proof we present here is direct and uses the integral representation of the Gaus-

sian function e−
αβ
µ |z|2 , ∫

C
e−µ|ξ|2+αξz−βξzdλ(ξ) =

(
π

µ

)
e−

αβ
µ |z|2 . (2.17)

The integral involved in left–hand side of (2.17) converges uniformly in z on every disc
D(0, r) of C. Thus, by differentiating repeatedly both sides of (2.17), with respect to z and z,
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we obtain the integral representation for the Hν
m,n(z; z) given by (3.5).

Remark 2.1.6. The particular case of α = −β = i in the identity (2.17) reads simply

e−
|z|2

µ =
( µ

π

) ∫
C

e−µ|ξ|2+2i<ξzdλ(ξ), (2.18)

and leads to the well–known fact that the Fourier transform reproduces the Gaussian func-
tion. If in addition µ = 1, the integral representation (3.5) reduces further to the one ob-
tained in [73, Theorem 5.1] by making use of the exponential generating function (2.2).

Remark 2.1.7. The right–hand side of (2.14) is not to be confused with the one (Poisson
kernel) obtained in [73, Eq. (3.3)],

+∞

∑
m,n=0

umvn

m!n!
Hm,n(z, z)Hn,m(w, w) =

1
1− uv

exp
(
−uv(|z|2 + |w|2) + uzw + vzw

1− uv

)
. (2.19)

valid for max{|u|, |v|} < 1. Notice also that the formula (2.19) was first given in [120]
without proof and recovered by Ismail as a particular case of the Kibble–Slepian formula
[73, Theorem 1.1]. A simple and direct proof can be found in [55]. In our formula t belongs
to the unit circle, |t| = 1, so that it can be seen as a special extension of (2.19). We show in
Section 4 that (2.19) remains valid to a large class of parameters u, v ∈ C. Thus, we claim
that (2.19) is valid for <(uv) < 1.

Remark 2.1.8. The same observation holds true for (2.13) compared to (2.19). In fact, identity
(2.13) is completely different from (2.19) for |t| = 1 and the non-symmetry in the indices.
This formula can be seen as a special generalization of Proposition 3.4 (a) in [56], to wit

+∞

∑
k=0

uk

k!
Hν

k,n(z, z) = νn(z− u)neνuz, (2.20)

which readily follows from (2.13) by taking there u = 0.

Applications of the obtained results are given in the context of the theory of integral
transforms.

2.2 On the transform T ν

Motivated by the fact that the UCHP form another "non-trivial" orthogonal basis of L2,ν(C)

[7,54,72], one can reproduce a two–dimensional integral transform T ν of Segal–Bargmann
type which is closely connected to B2,ν but with a non-trivial kernel function (different from
the one of B2,ν). In fact, it is defined by

T ν(ψ)(z, w) :=
( ν

π

)3/2 ∫
C

e−ν(z−ξ)(w−ξ)ψ(ξ)dλ(ξ). (2.1)
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Its associated kernel function involves the exponential generating function [56],

∞

∑
m,n=0

umvn

m!n!
Hν

m,n(z; z) = eν(uz+vz−uv). (2.2)

Accordingly, one obtains the following

Theorem 2.2.1. The integral operator T ν in (2.1) defines an isometric isomorphism from L2,ν(C)

onto the two–dimensional Bargmann–Fock space F 2,ν(C2). Its inverse is given by

(T ν)−1 (ϕ)(ξ) =
( ν

π

)3/2 ∫
C2

e−ν(|z|2+|w|2)+ν(zξ+wξ−zw)ϕ(z, w)dλ(z, w). (2.3)

Moreover, we have ∫
C

e−ν(z−ξ)(w−ξ)Hν
m,n(ξ, ξ)dλ(ξ) =

(π

ν

)
νm+nzmwn. (2.4)

Proof. The kernel function of the integral operator T ν in (2.1) is related to the exponential
generating function involving the product of em,n(z, w) = zmwn and Hν

m,n(ξ; ξ). Indeed, we
have

Tν(ξ|z, w) =
( ν

π

)3/2 ∞

∑
m,n=0

νm+nzmwn

m!n!
Hν

m,n(ξ; ξ). (2.5)

for the functions em,n(z, w) = zmwn being an orthogonal basis of the two–dimensional
Bargmann–Fock space F 2,ν(C2) with square norm

‖em,n‖2
L2,ν =

(π

ν

)2 m!n!
νm+n ,

while the polynomials Hν
m,n(ξ; ξ), for varying m and n, constitute an orthogonal basis of the

Hilbert space L2,ν(C) with square norm given by (2.5). The closed formula of Tν(ξ|z, w) in
(2.5) is then obtained by the exponential generating function (2.2) combined with the fact
Hν

m,n(ξ; ξ) = Hν
m,n(ξ; ξ). Accordingly, the proof of Theorem 2.2.1 immediately follows in

virtue of the general principle described in Section 1.2.

Remark 2.2.2. By considering the integral transform T ν, there is non-evidence in asserting
if it is closely connected to the 2d–Bargmann transform B2,ν or not. This is the subject of
Theorem 2.2.5. In fact, we show that the action of the transforms T ν and B2,ν are the same
by making a specific linear change of variable, to wit

T ν ϕ(z, w) = B2,ν ϕ

(
z + w√

2
,

z− w
i
√

2

)
.

Consequently, all properties of T ν can directly be read off from those of B2,ν. However, the
explicit expression of its kernel function is so important to obtain, in an easy way, many
interesting properties of T ν and therefore of B2,ν, which seems to be hard to handle directly
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using B2,ν. This is clear from Theorem 2.4.1, Proposition 2.2.4 and Corollary 2.4.5.

Remark 2.2.3. By non-trivial, we mean the way of constructing the kernel function for our
integral transform T ν. It is constructed using the UCHP, while the one for the standard
2d-Segal–Bargmann transform B2,ν is based on the simple tensor product of the real Her-
mite polynomials Hν

m(x)Hν
m(y) leading to the tensor product of two copies of the one-

dimensional kernel function.

Consider the L2–eigenspaces

F 2,ν
n (C) = { f ∈ L2,ν(C); ∆ν f = νn f } (2.6)

of the magnetic Schrödinger operator ([59,72,87])

∆ν := − ∂2

∂z∂z
+ νz

∂

∂z
.

Taking into account the orthogonal Hilbertian decomposition

L2,ν(C) =
∞⊕

n=0
F 2,ν

n (C),

a quiet natural question arises of whether the image of the nth true–poly–Fock spaceF 2,ν
n (C)

in (2.6) by the transform T ν can be characterized.

Proposition 2.2.4. We have

T ν(F 2,ν
n (C)) = { f (z, w) = wnh(z); h ∈ F 2,ν(C)}. (2.7)

Proof. The assertion of Proposition 2.2.4 readily follows making use of (2.4).

The following result shows that the integral operator T ν is closely related to the two–
dimensional Segal–Bargmann transform in (2.1) as well as to the Wigner transform

Wν( f )(x, y) =
(

1
2π

)1/2 ∫
R

e−iνxt f
(

y +
t
2

, y− t
2

)
dt; f ∈ L2,0(R2). (2.8)

The transform Wν is connected with the phase space formulation of quantum mechanics
and Weyl correspondence [49,96,110]. The exact statement make appeal to the standard
action of the group of 2× 2 matrices M2(C) defined by

g · (z, w) = (az + bw, cz + dw); g =

(
a b
c d

)
∈ M2(C)

on C2 that we extend to functions on C2 by considering Γg f (z, w) := f (g · (z, w)). Below,
we use gi to denote the special 2× 2 matrix

gi :=
(

1 i
1 −i

)
. (2.9)

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
Concrete Description, Associated Functional Spaces and Integral Transforms

31



CHAPTER 2. NON-TRIVIAL 1D AND 2D SEGAL–BARGMANN TRANSFORMS

Notice for instance that gi ∈
√

2U(2), where U(2) is the subgroup of unitary matrices in
M2(C).

Theorem 2.2.5. We have the identities

B2,ν = Γ gi√
2
T ν (2.10)

and

T νWν =

(
1

2ν

)1/2

e−
ν
4 (z+w)2

Γ−igiT
ν
2 . (2.11)

Proof. The proof of B2,ν = ΓgiT ν follows by direct computation starting from

ΓgiT
νψ(z, w) = T νψ (z + iw, z− iw)

and next using the identity

e−ν(U−ξ)(V−ξ) = ρν
0

(
<ξ − U + V

2

)
ρν

0

(
=ξ − U −V

2i

)
.

Indeed, we obtain

ΓgiT
νψ(z, w) =

( ν

π

)3/2 ∫
C

e−ν(z+iw−ξ)(z−iw−ξ)ψ(ξ)dλ(ξ)

=
( ν

π

)3/2 ∫
C

ρν
0 (<ξ − z) ρν

0 (=ξ − w)ψ(ξ)dλ(ξ),

which gives rise to the integral transform B2,ν given by (2.1). To prove (2.11), we rewrite
T νWν as

T ν(Wν( f ))(z, w) =
( ν

π

)3/2 ∫
C

e−ν(z+iw−ξ)(z−iw−ξ)Wν( f )(ξ)dλ(ξ)

=
( ν

π

)3/2 ∫
C

e−νx2+ν(z+w)x−ν(z−iy)(w+iy)Wν( f )(ξ)dλ(ξ)

with ξ = x + iy ∼ (x, y). By the definition (2.8) ofWν and the Gaussian integral formula,
we get

T ν(Wν( f ))(z, w) =

(
1

2ν

)1/2 ( ν

π

)3/2 ∫
R2

f
(

y− t
2

, y +
t
2

)
e−ν(z−iy)(w+iy)+ ν

4 (z+w−it)2
dydt

=

(
1

2ν

)1/2 ( ν

π

)3/2
e

ν
4 (z+w)2

∫
C

f (ξ)e−
ν
2 (−iz−w−ξ)(−iz+w−ξ)dλ(ξ)

=

(
1

2ν

)1/2

e
ν
4 (z+w)2T ν

2 ( f )(−iz− w,−iz + w)
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thanks to the change of variables X = y + t
2 and Y = y− t

2 and the key observation that

e−ν(z−i X+Y
2 )(w+i X+Y

2 )+ ν
4 (z+w−i(X−Y))2

= e
ν
4 (z+w)2

e−
ν
2 (−iz−w−ξ)(−iz+w−ξ).

To conclude, it suffices to see that T ν
2 ( f )(−iz− w,−iz + w) = Γ−i

√
2gi
T ν

2 ( f )(z, w), where
gi is the matrix in (2.9).

Remark 2.2.6. Notice that the formula (2.11) is in some sort the analogue of the one proved
by Shun-Long Luo in [81, Proposition 2].

Remark 2.2.7. Further interesting integral transforms can be derived as special cases of T ν,
such as those obtained by restriction to the diagonal and to the "anti-diagonal" of C2, to wit

Rν
+ψ(z) := T νψ(z, z) =

( ν

π

)3/2 ∫
C

e−ν(z−ξ)(z−ξ)ψ(ξ)dλ(ξ) (2.12)

and
Rν
−ψ(z) := T νψ(z, z) =

( ν

π

)3/2 ∫
C

e−ν|ζ|2ψ(z− ζ)dλ(ζ). (2.13)

2.3 Integral transforms for the true–poly–Fock spaces

Following the same scheme as above, we use Theorem 2.1.1 to provide a direct and simpler
proof of the fact that the generalized Segal–Bargmann transform of level n [114, Theorem
2.5] (see also [87]),

B1,ν
n (φ)(z) :=

( ν

π

)3/4
(

1
2nνnn!

)1/2 ∫
R

ρν
0

(
x− z√

2

)
Hν

n

(
z + z√

2
− x
)

φ(x)dx (2.1)

is an isometric operator linking the space of square integrable functions on the real line
with the so–called true–poly–Fock spaces according to the terminology of Vasilevski [2,114].
Theorem 2.5 in [114] is reproved in [87] and can be reworded as follows

Theorem 2.3.1. The integral operator in (2.1) defines an isometric isomorphism from L2,ν(R) onto
the generalized Bargmann–Fock space F 2,ν

n (C) defined by (2.6). Moreover, we have

B1,ν
n (Hν

m)(z) =
( ν

π

)1/4
(

2m

n!νn

)1/2

Hν
m,n(z, z). (2.2)

Proof. The kernel function associated to the Hilbert space L2,ν(R) and the generalized Bargmann–
Fock space F 2,ν

n (C) is given by

Tν
n(x; z) :=

( ν

π

)3/4
(

1
n!νn

)1/2 +∞

∑
m=0

Hν
m(x)Hν

m,n(z, z)
√

2mνmm!

=
( ν

π

)3/4
(

1
n!νn

)1/2 +∞

∑
m=0

Hν
m(x)Hν

m,n(z, z)
√

2mνmm!
.
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According to the general principle (see Section 1.2) and using the expression of the norms
of Hν

m(x) and Hν
m,n(z; z) given explicitly by (2.4) and (2.5), we recognize the generating

function (2.3). Thus, we get

Tν
n(x; z) =

( ν

π

)3/4
(

1
2nνnn!

)1/2

e−
ν
2 z2+

√
2νxzHν

n

(
z + z√

2
− x
)

. (2.3)

This completes the proof of Theorem 2.3.1.

The next application corresponds to Theorem 2.1.3 and concerns the integral kernel
transform

T ν
n,n′(ψ)(z) :=

(−1)n′ν

π
√

n!n′!νn+n′

∫
C

e−ν|ξ|2+νξzHν
n,n′(ξ − z, ξ − z)ψ(ξ)dλ(ξ). (2.4)

Namely, we have

Theorem 2.3.2. The integral transform T ν
n,n′ is a unitary operator from F 2,ν

n (C) onto F 2,ν
n′ (C) and

its inverse is given by
(
T ν

n,n′

)−1
= T ν

n′,n. Moreover, we have the following integral reproducing
property for the UCHP

T ν
n,n′(Hν

m,n)(z) =
(

n!νn

n′!νn′

)1/2

Hν
m,n′(z, z). (2.5)

Proof. We apply the general principle described in Section 1.2. Indeed, the kernel function
in the integral transform T ν

n,n′ defined by (2.4),

T ν
n,n′(ψ)(z) :=

(
(−1)n′ν

π
√

n!n′!νn+n′

) ∫
C

e−ν|ξ|2+νξzHν
n,n′(ξ − z, ξ − z)ψ(ξ)dλ(ξ)

is in fact the exponential generating function involving the product of Hν
m,n and Hν

m,n′ ,
which for varying m, are special orthogonal bases of the generalized Bargmann–Fock spaces
F 2,ν

n (C) and F 2,ν
n′ (C), respectively. To conclude, we make use of Theorem 2.1.3.

Remark 2.3.3. The particular integral operator T ν
0,n maps isometrically the standard Bargmann–

Fock space F 2,ν(C) onto F 2,ν
n (C). Its inverse is given by

T ν
n,0(ψ)(z) :=

( ν

π

)(νn

n!

)1/2 ∫
C

e−ν|ξ|2+νξz(ξ − z)nψ(ξ)dλ(ξ). (2.6)

Remark 2.3.4. By taking n = n′ in (2.5), one sees that the univariate complex Hermite poly-
nomials Hν

m,n, for varying m and fixed n, is a common set of L2–eigenfunctions of ∆ν and
the integral operator T ν

n := T ν
n,n.
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2.4 Associated 2-d fractional Fourier transform

Using the nature of the kernel function in T ν, one can show that T ν is closely connected to
the 2d–fractional Fourier transform (2d–FrFT) F̃ ν

u,v in [115],

F̃ ν
u,vψ(ξ) =

νe
−νuv
1−uv |ξ|

2

π(1− uv)

∫
C

exp

(
−

ν
(
|ζ|2 − uζξ − vζξ

)
1− uv

)
ψ(ζ)dλ(ζ) (2.1)

for given complex–valued function on the real line provided that the integral exists. More
precisely, we have

Theorem 2.4.1. The transform F̃ ν
u,v is well–defined from L2,ν(C) onto L2,ν(C) for every |u| =

|v| = 1 with <(uv) < 1. Moreover, it satisfies

F̃ ν
u,vψ(ξ) = [T ν]−1(Γu,vT νψ)(ξ) (2.2)

for every ψ ∈ L2,ν(C) and ξ ∈ C, where Γu,v ϕ(z, w) := ϕ(uz, vw).

Remark 2.4.2. Notice that the identity (2.2) will facilitate further the study of the basic prop-
erties of F̃ ν

u,v, including its Plancherel theorem and its inversion formula. It should be
noticed here that 2d–FrFT in (2.1) is completely different from the standard 2d–fractional
Fourier transform based on the product Hm(x)Hm(y) (see [115]). Its kernel is related to the
Mehler?s formula (2.19) for the UCHP by formally taking u = eiα and v = eiβ for given reals
α, β.

We present below a sketched proof of Theorem 2.4.1 and discuss some of its immediate
consequences.

Proof of Theorem 2.4.1. We begin by noticing that [T ν]−1 ◦ Γu,v ◦ T ν is well–defined from
L2,ν(C) onto L2,ν(C) if and only if (u, v) ∈ S1 × S1, S1 = {u ∈ C; |u| = 1}. This is in fact is
equivalent to say that F 2,ν(C2) is invariant by the Γ–action. Moreover, direct computation
shows that [T ν]−1 ◦ Γu,v ◦ T ν is an integral kernel transform

[T ν]−1(Γu,vT νψ)(ξ) =
〈

ψ, Ku,v(·; ξ)
〉

L2,ν(C)
=
∫

C
ψ(ζ)Ku,v(ζ; ξ)e−ν|ζ|2dλ(ζ)

with kernel function given by

Ku,v(ζ; ξ) := 〈G(ζ; Γu,v · ·), G(ξ; ··)〉L2,ν(C2) ,

where G(ξ; z, w) denotes the generating function of the complex Hermite polynomials de-
fined by

G(ξ; z, w) :=
( ν

π

)3/2 ∞

∑
m,n=0

zmwnHν
m,n(ξ, ξ)

m!n!

=
( ν

π

)3/2
eν(zξ+wξ−zw). (2.3)
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Thus, using the orthogonality of the monomials em,n(z, w) = zmwn in L2,ν(C2), we formally
get

Ku,v(ζ; ξ) =
( ν

π

) ∞

∑
m,n=0

(u
ν

)m (v
ν

)n Hν
m,n(ζ, ζ)Hν

m,n(ξ, ξ)

m!n!
. (2.4)

At this stage, one can not use directly the Mehler’s formula in (2.19) (valid for max |u|, |v| <
1) to recover the 2d–FrFT F̃ ν

u,v, unless one can prove an extended Mehler’s formula for
|u| = |v| = 1, except for some spacial values. However, a direct computation, using the
exponential generating function (2.3) as well as the specific integral representation of the
kernel function eνzw (the reproducing property),∫

C
e−ν|ξ|2+ν(zξ+wξ)dλ(ξ) =

(π

ν

)
eνzw, (2.5)

shows that under the condition that uv ∈ R such that <(uv) < 1, we have

Ku,v(ζ; ξ) =
( ν

π

)3 ∫
C

e−ν|w|2+ν(vζw+ξw)

(∫
C

e−ν|z|2+ν(u[ζ−vw]z+[ξ−w])dλ(z)
)

dλ(w)

=
( ν

π

)2 ∫
C

e−ν(1−uv)|w|2+ν(1−uv)
{

v(ζ−uξ)
(1−uv) w+ (ξ−uζ)

(1−uv)w
}

eνuζξdλ(w).

Finally, we get

Ku,v(ζ; ξ) =
ν

π(1− uv)
exp

(
ν

1− uv

{
−uv(|ζ|2 + |ξ|2) + uζξ + vζξ

})
. (2.6)

This completes the proof.

Remark 2.4.3. Starting from the fact that the transform (T ν)−1 ◦ Γu,v ◦ T ν is well–defined for
|u| = |v| = 1 and taking into account the explicit computation we provide above, we claim
that the Poisson kernel (2.19), initially valid for max |u|, |v| < 1, can be extended to the case
|u| = |v| = 1 with <(uv) < 1 by equating the right–hand sides of (2.4) and (2.6).

Remark 2.4.4. The transform F̃ ν
u,vψ(ξ) is a special kind of generalization of the rescaled

Fourier transform in two dimensions F̃ ν defined on L2,ν(C) by

F̃ ν(ϕ)(ξ) :=
( ν

2π

) ∫
C

e
ν
2 (ξ−iu)(ξ−iu)ϕ(u)dλ(u), (2.7)

which is the L2,ν(C)–version of the standard Fourier transform F ν on L2,0(C) with F̃ ν =

M ν
2
F νM− ν

2
. HereMα denotes the multiplication operator (ground state transform)Mα f :=

e−α|z|2 f . In fact, we have

(T ν)−1 ◦ Γ−i,−i ◦ T ν = F̃ ν, (2.8)

which is exactly the classical result obtained by V. Bargmann in [16] for the standard Segal–
Bargmann and the Fourier transforms, thanks to Theorem 2.2.5.
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As immediate consequence, we conclude from (2.4) and (2.2) the following

Corollary 2.4.5. The UCHP form an orthogonal eigenfunction basis of F̃ ν
u,v with

F̃ ν
u,v(Hν

m,n) = umvnHν
m,n. (2.9)

Theorem 2.4.1 is interesting in itself since it allows one to deduce easily some of the
basic properties of F̃ ν

u,v using those of T ν, including the uniqueness theorem, the Plancherel
theorem and the inversion formula for the 2d–FrFT, F̃ ν

u,v.

Corollary 2.4.6. If for given ϕ, ψ ∈ L2,ν(C) we have F̃ ν
u,v ϕ = F̃ ν

u,vψ, then ϕ = ψ.

Corollary 2.4.7. For every ψ ∈ L2,ν(C) we have
∥∥∥F̃ ν

u,vψ
∥∥∥

L2,ν(C2)
= ‖ψ‖L2,ν(C).

Corollary 2.4.8. The inversion formula for F̃ ν
u,v is the 2d–FrFT with the parameters { 1

u , 1
v}, to wit

[F̃ ν
u,v]
−1ψ = F̃ ν

1
u , 1

v
ψ

for every fixed u, v ∈ S1 and every ψ ∈ L2,ν(C2).

Remark 2.4.9. The inversion formula can also be seen as immediate consequence of the semi–
group property F̃ ν

u,v ◦ F̃ ν
u′,v′ = F̃

ν
uu′,vv′ that readily follows from Theorem 2.4.1 since Γu,v ◦

Γu′,v′ = Γuu′,vv′ .
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Chapter3
On a novel class of polyanalytic Hermite
polynomials

We discuss some algebraic and analytic properties of a general class of orthog-
onal polyanalytic polynomials, including their operational formulas, recurrence
relations, generating functions, integral representations and different orthogonal-
ity identities. We establish their connection and rule in describing the L2–spectral
theory of some special second order differential operators of Laplacian type acting
on the L2–Gaussian Hilbert space on the whole complex plane. We will also show
their importance in the theory of the so-called rank–one automorphic functions
on the complex plane. In fact, a variant subclass leads to an orthogonal basis of
the corresponding L2–Gaussian Hilbert space on the strip C/Z.

3.1 Preliminary results

This section incorporates a preliminary study of the polynomials Iν,α
n (z, z|ξ) (abbreviated

sometimes as Iν,α
n ). For the unity of the formulation, we put Iν,α

n = 0 whenever n < 0.
Notice for instance that Iν,α

0 (z, z|ξ) = 1 and

Iν,α
1 (z, z|ξ) = νz− 2αz− ξ. (3.1)

The first result concerns useful operational formulas for Iν,α
n (z, z|ξ).

Proposition 3.1.1. The polynomials Iν,α
n (z, z|ξ) can be realized as

Iν,α
n (z, z|ξ) = e−αz2−ξz (−∂z + νz)n (eαz2+ξz) (3.2)

= e−αz2
(−∂z + νz− ξ)neαz2

. (3.3)

Moreover, the first order differential operators −∂z + Iν,α
1 and ∂z are respectively the corresponding

raising and lowering operators in the sense that we have(
−∂z Iν,α

n + Iν,α
1

)
Iν,α
n = Iν,α

n+1 (3.4)
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and

∂z Iν,α
n = νnIν,α

n−1. (3.5)

Proof. The representation (3.2) as well as (3.3) follow from the Rodrigues’ type formula (14)
making use of the fact

(∂z − νz + ξ)n ( f ) = e−ξz (∂z − νz)n (eξz f ) = eνzz−ξz∂n
z

(
e−νzz+ξz f

)
for sufficiently differentiable function f . Both (14) and (3.2) can be used to establish (3.4). A
direct calculation gives

∂z Iν,α
n = (νz− 2αz− ξ) Iν,α

n − Iν,α
n+1 = Iν,α

1 Iν,α
n − Iν,α

n+1.

This proves (3.4). To establish (3.5), we make use of

∂z (∂z − νz)n h = −νn (∂z − νz)n−1 h, (3.6)

which holds true for any holomorphic function h and in particular for h(z) = eαz2+ξz. There-
fore, we obtain

∂z Iν,α
n = (−1)ne−αz2−ξz∂z

[
(∂z − νz)n eαz2+ξz

]
(3.6)
= νnIν,α

n−1.

The following result gives another interesting representation of the polynomials Iν,α
n .

Proposition 3.1.2. The polynomials Iν,α
n can be represented as

Iν,α
n =

(
−∂z + Iν,α

1

)n · (1). (3.7)

Subsequently, we have

∂z Iν,α
n = −2αnIν,α

n−1. (3.8)

Proof. Notice first that (3.4) can be rewritten as
(
−∂z + Iν,α

1

)
Iν,α
k = Iν,α

k+1. Therefore, we get(
−∂z + Iν,α

1

)n Iν,α
k = Iν,α

k+n (3.9)

for any arbitrary nonnegative integers n and k. Hence, for k = 0, we obtain
(
−∂z + Iν,α

1

)n ·
(1) = Iν,α

n . This proves (3.7). The proof of (3.8) lies essentially in the fact that

∂z
(
−∂z + Iν,α

1

)n · (1) =
(
−∂z Iν,α

n + Iν,α
1

)n−1
∂z Iν,α

1 = Iν,α
n − 2αn

(
−∂z + Iν,α

1

)n−1 · (1). (3.10)
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Remark 3.1.3. By comparing (3.5) and (3.8), we get ∂z Iν,α
n = −2α

ν ∂z Iν,α
n . Thus for α > 0

and ν = 2α, the corresponding polynomials Iν,ν/2
n are antisymmetric in the sense that

Iν,ν/2
n (z, z) = −Iν,ν/2

n (z, z). Moreover, they depend only on the imaginary part of z.

Combination of (3.4) and (3.8) yields the following

Corollary 3.1.4. The polynomials Iν,α
n satisfy the three term recurrence formula

Iν,α
n+1 = Iν,α

1 Iν,α
n + 2αnIν,α

n−1. (3.11)

Remark 3.1.5. In the proof of Proposition 3.1.1 (resp. Proposition 3.1.2), we made use of the
identity (3.6) (resp. (3.10)). These identities can be handled by induction. They also are par-
ticular cases of the well–established algebraic identity ABn+1 − Bn+1A = λnBn whenever
AB− BA = λId.

It may be of interest to point out that Iν,α
n are also polynomials in ξ with degree n. This

can be seen easily in virtue of the following

Lemma 3.1.6. We have

2α∂ξ Iν,α
n = ∂z Iν,α

n = −2αnIν,α
n−1 (3.12)

and consequently, the following recurrence formula

Iν,α
n+1 = Iν,α

1 Iν,α
n − 2α∂ξ Iν,α

n (3.13)

holds true.

Proof. Direct computation, using the fact that ∂z and ∂z − νz commute, entails

∂z Iν,α
n = −(2αz + ξ)Iν,α

n + (−1)ne−αz2−ξz (∂z − νz)n
(

∂zeαz2+ξz
)

= 2α
{
−zIν,α

n + (−1)ne−αz2−ξz (∂z − νz)n
(

zeαz2+ξz
)}

= 2α(−1)n∂ξ

{
e−αz2−ξz (∂z − νz)n

(
zeαz2+ξz

)}
= 2α∂ξ Iν,α

n .

Insertion of (3.12) in (3.4) yields (3.13).

Remark 3.1.7. The property (3.4) in Proposition 3.1.1 (resp. (3.5) in Proposition 3.1.1 and
(3.12) in Lemma 3.1.6) shows that the considered polynomials Iν,α

n constitute an Appell
sequence with respect to z (resp. z and ξ).

Added to the Rodrigues’ formula (14) defining Iν,α
n , these polynomials admit a second

useful Rodrigues’ formula.

Theorem 3.1.8. We have

Iν,α
n (z, z|ξ) = (−1)ne

−(Iν,α
1 (z,z|ξ))

2

4α
∂n

∂zn

(
e
(Iν,α

1 (z,z|ξ))
2

4α

)
(3.14)
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Proof. We proceed by induction. Obviously, (3.14) holds true for n = 0 and n = 1. In

fact ∂z

(
e
(Iν,α

1 )2

4α

)
= −Iν,α

1 e
(Iν,α

1 )2

4α . Now, assume that (3.14) holds true for every nonnegative

integer k ≤ n, for given fixed n. Since ∂
j
z
(

Iν,α
1

)
= 0 for j = 2, 3, · · · , we get

∂n+1
z

(
e
(Iν,α

1 )2

4α

)
= −Iν,α

1 ∂n
z

(
e
(Iν,α

1 )2

4α

)
+ n∂z

(
−Iν,α

1

)
∂n−1

z

(
e
(Iν,α

1 )2

4α

)
,

so that

(−1)n+1e
−(Iν,α

1 )2

4α ∂n+1
z

(
e
(Iν,α

1 )2

4α

)
= Iν,α

1 (−1)ne
−(Iν,α

1 )2

4α ∂n
z

(
e
(Iν,α

1 )2

4α

)
+ 2αn(−1)n−1e

−(Iν,α
1 )2

4α ∂n−1
z

(
e
(Iν,α

1 )2

4α

)
= Iν,α

1 Iν,α
n + 2αnIν,α

n−1.

Thus, one arrives at the desired result by means of the recurrence formula (3.11).

The previous result shows in particular that the polynomials Iν,α
n should be closely con-

nected to the univariate Hermite polynomials Hn(x). In fact, the following result asserts
that they are essentially the Hn in the variable Iν,α

1 .

Corollary 3.1.9. The explicit expression of Iν,α
n in terms of the classical Hermite polynomials is

given by

Iν,α
n (z, z|ξ) = (−i)nαn/2Hn

(
iIν,α

1
2α1/2

)
= (−i)nαn/2Hn

(
2αz− νz + ξ

2iα1/2

)
, (3.15)

with α 6= 0 and the convention that α1/2 = i
√
|α| if α < 0.

Remark 3.1.10. For the particular case of ν = 2α > 0, the result of Corollary 3.1.9 shows that
Iν,ν/2
m (z, z|ξ) are polynomials in = (z) and simply reads

Iν,ν/2
n (z, z|ξ) = (−i)n

(ν

2

)n/2
Hn

(
2ν=(z) + ξ

i(2ν)1/2

)
. (3.16)

This is in accordance with Remark 3.1.3 The special case of adequate ξ (ξ = 2iπ(β + k)) will
be reconsidered in Section 7 when dealing with rank–one automorphic functions.

The following result gives the expression of Iν,α
n (z, z|ξ) in terms of the tensor product

Hτ
j (x)Hµ

k (y) of the rescaled real Hermite polynomials,

Hτ
k (t) = (−1)neτt2 dn

dtn (e
−τt2

), τ > 0. (3.17)
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Proposition 3.1.11. For ν and α such that 2|α| < ν, we have

Iν,α
n (z, z|ξ) = 1

2n

n

∑
k=0

(−i)k
(

n
k

)
Hν−2α

n−k

(
x− <(ξ)

ν− 2α

)
Hν+2α

k

(
y +

=(ξ)
ν + 2α

)
. (3.18)

Proof. Notice first that by considering the first order differential operators

Aν,α,ξ
x f = −1

2
(∂x − 2(ν− 2α)x + 2<(ξ)) f

and
Bν,α,ξ

y f = −1
2
(
∂y − 2(ν + 2α)y− 2=(ξ)

)
f ,

we clearly have [Aν,α,ξ
x , Bν,α,ξ

y ] = 0. Moreover,

(Aν,α,ξ
x )n · (1) = 1

2n Hν−2α
n

(
x− <(ξ)

ν− 2α

)
and

(Bν,α,ξ
y )n · (1) = 1

2n Hν+2α
n

(
y +

=(ξ)
ν + 2α

)
which readily follows by induction from the fact

(∂t − 2τt + µ) f = eτ(t− µ
2τ )

2

∂t

(
e−τ(t− µ

2τ )
2

f
)

.

Now from Proposition 3.1.2, we have

Iν,α
n =

(
−∂z + Iν,α

1

)n · (1)

=
(

Aν,α,ξ
x − iBν,α,ξ

y

)n
· (1)

=
n

∑
k=0

(−i)k
(

n
k

)(
Aν,α,ξ

x

)n−k
· (1)

(
Bν,α,ξ

y

)k
· (1)

=
1
2n

n

∑
k=0

(−i)k
(

n
k

)
Hν−2α

n−k

(
x− <(ξ)

ν− 2α

)
Hν+2α

k

(
y +

=(ξ)
ν + 2α

)
.

We conclude this section by proving a Nielsen identity for these polynomials, which
consists of expressing Iν,α

n as a weighted sum of a product of the same polynomials. Namely,
we have

Theorem 3.1.12. Nielsen identity for the polynomials Iν,α
n reads

Iν,α
m+n = m!n!

min (m,n)

∑
k=0

(2α)k

k!
Iν,α
m−k

(m− k)!
Iν,α
n−k

(n− k)!
. (3.19)
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Proof. Starting from the Rodrigues formula (14), we can easily see that Iν,α
m+n takes the form

Iν,α
m+n = (−1)meνzz−αz2−ξz∂m

z

(
e−νzz+αz2+ξz Iν,α

n

)
.

Now, by means of the Leibniz formula combined with (14) and

∂k
z Iν,α

m (z, z|ξ) = m!(−2α)k

(m− k)!
Iν,α
m−k, (3.20)

which follows by induction starting from (3.8), we obtain

Iν,α
m+n =

m

∑
k=0

(−1)k
(

m
k

)
Iν,α
m−k∂k

z (Iν,α
n ) = m!n!

min (m,n)

∑
k=0

(2α)k

k!
Iν,α
m−k

(m− k)!
Iν,α
n−k

(n− k)!
.

This completes the proof.

Remark 3.1.13. We recover from (3.19) the three term recurrence formula (3.11) satisfied by
the polynomials Iν,α

n by taking m = 1 with n ≥ 1.

Remark 3.1.14. The most discussed algebraic results concerning the polynomials Iν,α
n , can be

recovered easily by means of the well–known properties of the real Hermite polynomials
Hn(x) thanks to Corollary 3.1.9 or also Proposition 3.1.11. This is the case of the identity
(3.12) as well as Theorem 3.1.12, whose proof can also be handled by means of Corollary
3.1.9 above combined with the standard Nielsen identity for the single real Hermite poly-
nomials, or also using (3.2). The same observation holds true for Theorem 3.2.1 below.
However, the analytic properties of these polynomials are far from to be derived by em-
ploying Corollary 3.1.9 as will be clarified in the following sections (see Sections 3.4,3.5 and
3.6).

3.2 Generating functions

The first generating function we deal with is a exponential one one.

Theorem 3.2.1. The polynomials Iν,α
n satisfy the generating function identity

∞

∑
n=0

tn

n!
Iν,α
n = eαt2+tIν,α

1 . (3.1)

Proof. Notice first that we have

∞

∑
n=0

tn

n!
Iν,α
n = e−αz2−ξz

∞

∑
n=0

(−t)n

n!
(∂z − νz)n

(
eαz2+ξz

)
= e−αz2−ξze−t∂z+νtz

(
eαz2+ξz

)
= e−αz2−ξzeνtz exp (−t∂z)

(
eαz2+ξz

)
.
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Now, in view of Lemma 3.2.5 and making appeal to the usual generating function of the
Hermite polynomials ([99,107]):

∞

∑
k=0

tk

k!
Hk(x) = e−t2+2tx,

it follows

∞

∑
n=0

tn

n!
Iν,α
n = eνtz

(
∞

∑
k=0

(iα1/2t)k

k!
Hk

(
iα1/2z +

iξ
2α1/2

))
= eαt2−(2αz−νz+ξ)t.

This ends the proof.

The next generating function generalizes the previous one. Its proof is based essentially
on Nielsen identity. Namely, we assert

Theorem 3.2.2. We have

∞

∑
m,n=0

umvn

m!n!
Iν,α
m+n = eα(u+v)2+(u+v)Iν,α

1 . (3.2)

Proof. In view of (3.19), we can write the right hand–side of (3.2) as follows

∞

∑
m,n=0

umvn

m!n!
Iν,α
m+n =

∞

∑
m,n=0

umvn
m

∑
k=0

(2α)k

k!
Iν,α
m−k

(m− k)!
Iν,α
n−k

(n− k)!

=
∞

∑
m=0

um
m

∑
k=0

(2αv)k

k!
Iν,α
m−k

(m− k)!

(
∞

∑
n=0

vn−k Iν,α
n−k

(n− k)!

)

=
∞

∑
m=0

um
m

∑
k=0

(2αv)k

k!
Iν,α
m−k

(m− k)!

(
∞

∑
j=0

vj
Iν,α
j

j!

)
.

According to (3.1), this leads to

∞

∑
m,n=0

umvn

m!n!
Iν,α
m+n =

∞

∑
m=0

m

∑
k=0

(2αv)k

k!
um Iν,α

m−k
(m− k)!

eαv2+vIν,α
1 .

Now, by interchanging the order of summation in the double sum,

∞

∑
m=0

m

∑
j=0

Tj,m =
∞

∑
j=0

∞

∑
k=0

Tj,j+k,

it follows

∞

∑
m,n=0

umvn

m!n!
Iν,α
m+n =

∞

∑
k=0

(2αuv)k

k!

∞

∑
j=0

uj Iν,α
j

j!
eαv2+vIν,α

1 .
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Using again (3.1), we obtain

∞

∑
m,n=0

umvn

m!n!
Iν,α
m+n = e2αuveαu2+uIν,α

1 eαv2+vIν,α
1 = eα(u+v)2+(u+v)Iν,α

1 .

Remark 3.2.3. For u = 0 or v = 0, the identity (3.2) reduces further to (3.1).

The third generating function in this section is the following

Theorem 3.2.4. We have the following identity

∞

∑
j=0

n

∑
k=0

(
n
k

)
(iα1/2)j−k ξ j

νj j!
Hn−k(iα1/2z)Hν

j,k(z, z) = eξz Iα,ξ
n (z). (3.3)

Proof. Direct computation making use the Leibniz formula infers

∂n

∂zn (e
−ν|z|2+ξzeαz2

) =
n

∑
k=0

(
n
k

)
∂k

∂zk (e
−ν|z|2+ξz)

∂n−k

∂zn−k (e
αz2

).

By expanding eξz in power series and making use of Definition 8 of the holomorphic Her-
mite polynomials, we get

∂n

∂zn (e
−ν|z|2+ξzeαz2

) =
n

∑
k=0

(
n
k

)
∂k

∂zk

(
∞

∑
j=0

ξ j

j!
zje−ν|z|2

)
(−iα1/2)n−kHn−k(iα1/2z)eαz2

= eαz2
∞

∑
j=0

ξ j

j!νj

(
n

∑
k=0

(
n
k

)
(−iα1/2)n−k ∂k

∂zk (ν
jzje−ν|z|2)

)
Hn−k(iα1/2z)

= (−1)ne−ν|z|2+αz2
∞

∑
j=0

ξ j

j!νj

n

∑
k=0

(
n
k

)
(iα1/2)n−keν|z|2 Hν

j,k(z, z)Hn−k(iα1/2z).

Therefore,

Iα,ξ
n (z) = e−ξz

∞

∑
j=0

n

∑
k=0

(
n
k

)
(iα1/2)n−k (ξ)

j

νj j!
Hn−k(iα1/2z)Hν

j,k(z, z).

The last generating function in this section shows that the polynomials Iν,α
n (z, z|ξ) can

be generated from the ξ–holomorphic Hermite polynomials Hn(ξ) and the polyanalytic
Hermite polynomials Hm,n(z, z). To this end, we use a variant (analytic continuation) of the
generating function of the real Hermite polynomials whichcan be stated as follows.

Lemma 3.2.5. The explicit expression of the k–th z–derivative of eαz2+ξz in terms of the usual
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Hermite polynomials Hk(z) is given by

∂k
zeαz2+ξz = (−i)kαk/2Hk

(
iα1/2z +

iξ
2α1/2

)
eαz2+ξz. (3.4)

Subsequently, we have

eαz2+ξz =
∞

∑
n=0

(−i)n

n!
α

n
2 Hn

(
iξ

2α1/2

)
zn. (3.5)

Theorem 3.2.6. We have the generating function

∞

∑
k=0

(−i)kαk/2

νkk!
Hk

(
iξ

2α1/2

)
Hν

k,m(z, z) = Iν,α
m (z, z|ξ)eαz2+ξz. (3.6)

Proof. The proof follows easily starting from the definition of Iν,α
n and using the expansion

series of the entire function eαz2+ξz as in (3.5). Indeed, we get

Iν,α
n (z, z|ξ) = e−αz2−ξz

∞

∑
m=0

(−i)m

m!
α

m
2 Hm

(
iξ

2α1/2

)
(−1)neν|z|2∂n

z (z
me−ν|z|2)

= e−αz2−ξz
∞

∑
m=0

(
− iα1/2

ν

)m

m!
Hm

(
iξ

2α1/2

)
Hν

m,n(z, z). (3.7)

The last equality follows by observing that the rescaled complex Hermite polynomials
Hν

m,k(z, z) = Gν,0
m,n(z, z) (see (4.1)) can be represented also as Hν

k,m(z, z) = (−1)meν|z|2∂m
z (zke−ν|z|2).

Remark 3.2.7. The identity (3.6) states that the polynomials Iν,α
n (z, z|ξ) appear as the bilinear

generating function of the polynomials Hν
m,n and Hn. This fact can be used to recover the

result of Corollary 3.1.9 giving the explicit expression of Iν,α
n (z, z|ξ) to Theorem 2.1 in [20].

3.3 Orthogonality

We begin by considering the case of ξ = 0.

Theorem 3.3.1. Let ν > 0 and α ∈ R such that 2|α| < ν. Then, the polynomials Iν,α
m (z, z|0)

satisfy the orthogonality property∫
C

Iν,α
m (z, z|0)Iν,α

n (z, z|0)e−ν|z|2+α(z2+z2)dλ(z) =
πνnn!√
ν2 − 4α2

δn,m. (3.1)

Proof. Under the assumption 2|α| < ν and keeping in mind the result of Proposition 3.1.11
as well as the orthogonality of the rescaled real Hermite polynomials Hτ

k from (3.17) in the
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Hilbert space L2(R, e−τt2
dt),∫

R
Hτ

j (t)Hτ
k (t)e

−τt2
dt =

(π

τ

)1/2
2kτkk!,

we get∫
C

Iν,α
m (z, z|0)Iν,α

n (z, z|0)e−ν|z|2+α(z2+z2)dλ(z)

=
∫

C
Iν,α
m (z, z|0)Iν,α

n (z, z|0)e−(ν−2α)x2−(ν+2α)y2
dxdy

=
m

∑
j=0

n

∑
k=0

(−i)j(i)k

2m+n

(
m
j

)(
n
k

)∥∥∥Hν−2α
n−k

∥∥∥2

L2,ν−2α(R)

∥∥∥Hν+2α
k

∥∥∥2

L2,ν+2α(R)
δm−j,n−kδj,k

=
1

2m+n

min(m,n)

∑
k=0

(
m
k

)(
n
k

)∥∥∥Hν−2α
n−k

∥∥∥2

L2,ν−2α(R)

∥∥∥Hν+2α
k

∥∥∥2

L2,ν+2α(R)
δm−k,n−k

=
π√

ν2 − 4α2

n!
2n

n

∑
k=0

(
n
k

)
(ν− 2α)n−k(ν + 2α)kδm,n

=
πνnn!√
ν2 − 4α2

δm,n.

This completes the proof.

Remark 3.3.2. For α = 0 with ν > 0, we recover the classical orthogonality for the monomials
Iν,0
n (z, z|0) = νnzn.

Remark 3.3.3. The proof we have furnished above is also valid for the general case of arbi-
trary ξ under the assumption that 2|α| < ν, but it is more tedious.

Based on the orthogonal property obtained in [113] for the holomorphic Hermite poly-
nomials Hn(z), to wit

∫
R2

Hm(x + iy)Hn(x− iy)e−(1−θ)x2−( 1
θ−1)y2

dxdy =
θ1/2π

1− θ

(
2(1 + θ)

1− θ

)n

n!δm,n, (3.2)

where 0 < θ < 1, we can deduce two orthogonality relations for the polynomials I0,α
n (z, z|0)

corresponding to ν = 0 = ξ according to α > 0 or α < 0. The one for α > 0 reads

∫
R2

I0,α
n (z, z|0)I0,α

m (z, z|0)e−α( 1
θ−1)x2−α(1−θ)y2

dxdy =
θ1/2π

α(1− θ)

(
2α(1 + θ)

1− θ

)n

n!δm,n, (3.3)

since in this case I0,α
n (z, z|0) = (i

√
α)nHn(i

√
αz).

We establish below an orthogonal property for Iν,α
n (z, z|ξ) for arbitrary ν > 0 and ξ ∈ C,

generalizing (3.1) as well as (3.2). To this end, for given reals a, b > 0, we consider the
weight function

ωa,b
ν,α,ξ(z, z) = e−Aa,b

ν,α|z|2−Ba,b
ν,α(z2+z2)+2<(Ca,b

ν,α,ξ z)e−a<(ξ)2−b=(ξ)2

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
Concrete Description, Associated Functional Spaces and Integral Transforms

47



CHAPTER 3. ON A NOVEL CLASS OF POLYANALYTIC HERMITE POLYNOMIALS

where the quantities Aa,b
ν,α, Ba,b

ν,α and Cν,α,ξ
a,b are given by

Aa,b
ν,α :=

(ν− 2α)2a + (ν + 2α)2b
2

Ba,b
ν,α :=

(ν− 2α)2a− (ν + 2α)2b
4

Cν,α,ξ
a,b := a(ν− 2α)<(ξ) + ib(ν + 2α)=(ξ).

Theorem 3.3.4. Let a, b > 0 such that 4αab = a− b. Then, the polynomials Iν,α
n (z, z|ξ) satisfy the

orthogonality property

∫
C

Iν,α
m (z, z|ξ)Iν,α

n (z, z|ξ)ωa,b
ν,α,ξ(z, z)dλ(z) =

π√
ab|ν2 − 4α2|

(
a + b
2ab

)n
n!δm,n. (3.4)

Proof. Theorem 3.2.1 yields

Sν,α,ξ
m,n (u, v|z, z) =

∞

∑
m,n

umvn

m!n!
Iν,α
m (z, z|ξ)Iν,α

n (z, z|ξ)

= eα(u2+v2)+uIν,α
1 (z,z|ξ)+vIν,α

1 (z,z|ξ)

= eα(u2+v2)+[(ν−2α)x−<(ξ)](u+v)−i[(ν+2α)y+=(ξ)](u−v)

= eα(u2+v2)+(u+v)X−i(u−v)Y,

where we have set X = (ν− 2α)x−<(ξ) and Y = (ν + 2α)y + =(ξ) for given z = x + iy.
Now, if we denote the left–hand side of (3.4) by Tν,α

m,n(ξ), then

Tν,α
m,n(ξ) =

1
|ν2 − 4α2|

∫
R2

Iν,α
m (z, z|ξ)Iν,α

n (z, z|ξ)ωa,b
ν,α,ξ(z, z)dXdY

with z = z(X, Y) and z = z(X, Y). Subsequently, we have

∞

∑
m,n=0

umvn

m!n!
Tν,α

m,n(ξ) =
1

|ν2 − 4α2|

∫
R2

Sν,α,ξ
m,n (u, v|z, z)ωa,b

ν,α,ξ(z, z)dXdY

=
eα(u2+v2)

|ν2 − 4α2|

∫
R2

e−aX2+(u+v)X−bY2−i(u−v)YdXdY

=
π√

ab|ν2 − 4α2|
e

4αab+b−a
4ab (u2+v2)e

a+b
2ab uv

=
π√

ab|ν2 − 4α2|
.e

a+b
2ab uv,

The third equality is obtained making use of the well–known Gaussian integral∫
R

e−τy2+ζydy =
(π

τ

)1/2
e

ζ2
4τ ; τ > 0, ζ ∈ C, (3.5)
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while the last equality readily follows since 4αab + b− a = 0. Subsequently, we obtain

Sν,α
m,n(ξ) =

π√
ab|ν2 − 4α2|

(
a + b
2ab

)n
n!δm,n.

This completes our check of (3.4).

Remark 3.3.5. As example of pairs (a, b); a, b > 0 satisfying the condition 4αab = a− b, we
can consider a = (ν − 2α)−1 and b = (ν + 2α)−1. Therefore, we have ν > 2|α| and the
corresponding Aa,b

ν,α, Ba,b
ν,α and Cν,α,ξ

a,b are given by Aa,b
ν,α = ν, Ba,b

ν,α = −α and Cν,α,ξ
a,b = ξ, so that

the orthogonality (3.4) reduces to∫
C

Iν,α
m (z, z|ξ)Iν,α

n (z, z|ξ)e−ν|z|2+α(z2+z2)+2<(ξz)dλ(z) =
πνnn!√
ν2 − 4α2

eν|ξ|2−α
(

ξ2+ξ
2
)

δm,n.

which for ξ = 0 leads to the one obtained in Theorem 3.3.1.

Remark 3.3.6. For ν = 0 = ξ and α > 0, the identity (3.4) reduces further to (3.3) by taking

a =
1

4α

(
1
θ
− 1
)

and b =
1

4α
(1− θ)

with 0 < θ < 1.

3.4 Integral representations

In virtue of Theorem 3.1.8, we obtain the following integral representation of the polyno-
mials Iν,α

n (z, z|ξ).

Proposition 3.4.1. For every ν > 0 and α ∈ R with α 6= 0, we have

Iν,α
n (z, z|ξ) =

(
1

απ

)1/2

2n
∫

R
tne−

1
4α(2t−Iν,α

1 (z,z|ξ))
2

dt. (3.1)

Proof. By means of the explicit formula for the Gaussian integral (3.5), we can write

e
(Iν,α

1 (z,z|ξ))
2

4α =
( α

π

) 1
2
∫

R
e−αt2+tIν,α

1 (z,z|ξ)dt. (3.2)

The integral in the right–hand side converges uniformly on every disc D(0, r) ⊂ C and one
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can repeatedly differentiate it with respect to z. Hence, by (3.14) we obtain

Iν,α
n (z, z|ξ) = (−1)n

( α

π

) 1
2 e−

(Iν,α
1 (z,z|ξ))

2

4α

∫
R

∂n

∂zn e−αt2+tIν,α
1 (z,z|ξ)dt

= (−1)n
( α

π

) 1
2
∫

R
(−2αt)ne

− 1
α

(αt)2−αtIν,α
1 (z,z|ξ)+(

Iν,α
1 (z,z|ξ))

2

4


dt

=

(
1

απ

) 1
2

2n
∫

R
une
− 1

α

(
u−

Iν,α
1 (z,z|ξ)

2

)2

du.

This completes our check of (3.1).

The next result is a consequence of Theorem 3.2.6 combined with the integral represen-
tation of the complex Hermite polynomials.

Theorem 3.4.2. For ν > 0 and a, b ∈ C such that ab > 0, we have

Iν,α
n (z, z|ξ) =

(
ab
νπ

)
eν|z|2−αz2−ξz

∫
C
(bζ)ne−

ab
ν |ζ|2+

a2α
ν2 ζ2− aξ

ν ζeaζz−bζzdλ(ζ). (3.3)

More particularly, we have

Iν,α
n (z, z|ξ) =

( ν

π

)
eν|z|2−αz2−ξz

∫
C
(−νζ)ne−ν|ζ|2+αζ2+ξζe2iν=〈z,ζ〉dλ(ζ). (3.4)

Proof. The result follows by a tedious but straightforward computation. In fact, starting
from Theorem 3.2.6 and using the integral representation of Hν

m,n(z, z) given by Theorem
3.1 in [20], to wit

Hν
m,n(z; z) =

(
ab
νπ

)
(−a)m(b)n

∫
C

ζmζ
neν|z|2− ab

ν |ζ|2+aζz−bζzdλ(ζ) (3.5)

(valid for ν > 0 and a, b ∈ C such that ab > 0), we obtain

Iν,α
n (z, z|ξ) =

(
ab
νπ

)
e−αz2−ξz

∫
C
(bζ)neν|z|2− ab

ν |ζ|2+aζz−bζz

 ∞

∑
m=0

(
−iaα1/2ζ

ν

)m

m!
Hm

(
− iξ

2α1/2

) dλ(ζ)

=

(
ab
νπ

)
eν|z|2−αz2−ξz

∫
C
(bζ)ne−

ab
ν |ζ|2+

a2α
ν2 ζ2− aξ

ν ζeaζz−bζzdλ(ζ).

The particular case of a = b = −ν gives rise to (3.4). This completes the proof.

Remark 3.4.3. The obtained result (3.4) can also be reproved directly. Indeed, by rewriting
e−ν|z|2+αz2+ξz as

e−ν|z|2+αz2+ξz = e−
ν2

ν+α

(
x− ξ

2ν

)2
+(ν+α)

(
iy+ 2αx+ξ

2(ν+α)

)2
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and next using twice the integral representation of the Gaussian function (3.5), we obtain
the integral representation of e−ν|z|2+αz2+βz, to wit

e−ν|z|2+αz2+ξz =
1

4πν

∫
R2

e−
1

4ν2 ((ν−α)t2+(ν+α)s2)+i(yt+xs)+ ξ
2ν (t−is)− iα

2ν2 tsdtds

under the assumption that ν + α > 0 with z = x + iy. It can be rewritten in the form

e−ν|z|2+αz2+ξz =
1

2π

∫
C

e−ν|ζ|2+αζ2+ξζ+2iν=〈z,ζ〉dλ(ζ) (3.6)

making the change ζ = t−is
2ν . Thus (3.4) follows readily by derivation of (3.6).

We conclude this section by realizing the polynomials Iν,α
n (z, z|ξ) as the image of the real

Hermite function hν
n(t) =

√
ν

ne−
ν
2 t2

Hn(
√

νt) by rescaled Fourier–Wigner transform defined
on L2(R) by [39,50,110,119]

Vν( f , g)(x, y) =
( ν

2π

)1/2 ∫
R

eiν(t− x
2 )y f (t)g(t− x)dt

with respect to a special window function g that we determine explicitly. Thus, for f ∈
L2(R) and) z = x + iy we define

Wν
α,ξ( f )(z, z) :=

(−1)n

2n

(
2ν

ν + 2α

)1/2

e
ν
2 |z|2V2ν (Mν

α, f ) (x, y),

where we have set

Mν
α(y) := e−

ξ2
2(ν+2α) exp

(
− ν

ν + 2α

(
(ν− 2α)y2 − 2ξy

))
. (3.7)

More explicitly,

Wν
α,ξ( f )(z, z) =

(−1)n

2n

(
2ν2

(ν + 2α)π

)1/2

e
ν
2 |z|2−αz2−ξze−

ξ2
2(ν+2α) (3.8)

×
∫

R
e2iν(t− x

2 )y exp
(
− ν

ν + 2α

(
(ν− 2α)t2 − 2tξ

))
f (t− x)dt.

Theorem 3.4.4. Let ν and α be such that 2|α| < ν. Then, for every z, we have

Wν
α,ξ(h

2ν
n )(z, z) = Iν,α

n (z, z|ξ).

Proof. Observe first that the polynomials Hν
m,n(z, z) in can be realized as

Hν
m,n(z, z) = (−1)n

√
2

2m+n e
ν
2 |z|2V2ν(h2ν

m , h2ν
n )(x, y); z = x + iy. (3.9)

This follows by straightforward computation using [7, Theorem 3.1 ] as well as the fact that
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hτ
m,n(z, z) := τ(m+n)/2hm,n(τ1/2z, τ1/2z). Now, by Theorem 3.2.6, we get

Iν,α
n (z, z|ξ)eαz2+ξz = (−1)n

√
2

2n e
ν
2 |z|2

∞

∑
k=0

(−i)kαk/2

2kνkk!
Hk

(
iξ

2α1/2

)
V2ν(h2ν

k , h2ν
n )(x, y)

= (−1)n
√

2
2n e

ν
2 |z|2V2ν

(
∞

∑
k=0

(−i)kαk/2

2kνkk!
Hk

(
iξ

2α1/2

)
h2ν

k , h2ν
n

)
(x, y).

Making use of Mehler formula ([85,99]) for the rescaled Hermite functions hτ
n, to wit

∞

∑
k=0

λkhτ
k (X)hτ

k (Y)
2kτkk!

=
1√

1− λ2
exp

(
−τ(1 + λ2)

2(1− λ2)
(X2 + Y2) +

2τλ

1− λ2 XY
)

(3.10)

valid for |λ| < 1, with τ = 2ν, X = iξ
2(2να)1/2 and λ = −i

(2α
ν

)1/2
, we get

∞

∑
k=0

(−i)kαk/2

2kνkk!
Hk

(
iξ

2α1/2

)
h2ν

k (Y) = e−
ξ2

2.4α

∞

∑
k=0

(
−i
(2α

ν

)1/2
)k

2k(2ν)kk!
h2ν

k

(
iξ

2(2να)1/2

)
h2ν

k (Y)

=

(
ν

ν + 2α

)1/2

e−
ξ2

2(ν+2α) exp

(
−

ν
(
(ν− 2α)Y2 − 2ξY

)
ν + 2α

)

=

(
ν

ν + 2α

)1/2

Mν
α(Y),

where Mν
α is exactly the function given through (3.7) under the assumption that 2|α| < ν.

Therefore, we arrive at

Iν,α
n (z, z|ξ)eαz2+ξz =

(−1)n

2n

(
2ν

ν + 2α

)1/2

e
ν
2 |z|2V2ν

(
Mν

α, h2ν
n

)
(x, y).

The obtained expression reads equivalently as (3.8). This completes the proof.

Remark 3.4.5. For the particular case of α = 0 = ξ and ν = 1/2, the transformWν
α,ξ in (3.8)

reduces further to the Segal–Bargmann transform B from L2(R) onto the Bargmann space

F 2,1/2(C) = Hol(C) ∩ L2(C; e−
|z|2

2 dxdy). In fact, we have

W1/2
0,0 (hn)(z, z) =

(−1)n

2n
√

π
e

ν
4 |z|

2
∫

R
e

i
2 (2t+x)ye−

1
2 (t+x)2

hn(t)dt

=
(−1)n

2n
√

π

∫
R

e−
1
2

(
t2+2tz+ z2

2

)
hn(t)dt

=
(−1)n

2n B(hn)(−z),

so that the result of our Theorem which readsW1/2
0,0 (hn)(z, z) = I1/2,0

n (z, z|0) = (1/2)nzn is
exactly the reproducing property for the monomials by B, B(hn)(−z) = (−1)nzn (see e.g.
[50]).
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3.5 Polyanalyticity and partial differential equations

The introduced polynomials are a special subclass of polyanalytic functions on the com-
plex plane. As counterpart to the Hν

m,n(z, z) which are polyanalytic of order n + 1 and
anti–polyanalytic of order m+ 1, the polyanlyticity and the anti–polyanalyticity of the poly-
nomials Iν,α

n (z, z|ξ) have the same order. This is due to the fact that

∂n+1
z Iν,α

n (z, z|ξ) = 0 = ∂n+1
z Iν,α

n (z, z|ξ),

which can be handled easily using (3.5) and (3.8) keeping in mind the fact Iν,α
0 (z, z|ξ) = 1.

Indeed, by induction we have

∂k
z Iν,α

n (z, z|ξ) = n!νk

(n− k)!
Iν,α
n−k and ∂k

z Iν,α
n =

(−2α)kn!
(n− k)!

Iν,α
n−k (3.1)

for every nonnegative integer k ≤ n. This can also be recovered from (14), since the poly-
analyticity of a complex–valued function f is equivalent to f being of the form

f (z, z) = (−1)neνzz∂n
z

(
e−νzzh

)
for some nonnegative integer n and holomorphic function h (see e.g. [4,15]). Subsequently,
by means of [25] there exist certain holomorphic functions hk; k = 0, 1, · · · , n such that

Iν,α
n (z, z|ξ) = znhn + · · ·+ zh1 + h0. (3.2)

The next result gives the explicit expressions of the holomorphic component hk of Iν,α
n .

Theorem 3.5.1. The polynomials Iν,α
n (z, z|ξ) are connected to the holomorphic Hermite polynomials

by

Iν,α
n (z, z|ξ) = n!

n

∑
k=0

νk

k!
(i)n−kαn−k/2

(n− k)!
Hn−k

(
iα1/2z +

iξ
2α1/2

)
zk (3.3)

Proof. By applying the binomial formula to (3.2) and taking into account (3.4), we obtain

Iν,α
n (z, z|ξ) = (−1)ne−αz2−ξz

n

∑
k=0

(
n
k

)(
∂k

z(e
αz2+ξz)

)
(−νz)n−k

= n!
n

∑
k=0

(i)kαk/2

k!
Hk

(
iα1/2z +

iξ
2α1/2

)
(νz)n−k

(n− k)!
.

Remark 3.5.2. The k–th holomorphic component of Iν,α
n in (3.1) is given by

hk(z) =
(i)n−kαn−k/2

(n− k)!n!
Hn−k

(
iα1/2z +

iξ
2α1/2

)
.
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Added to the generalized Cauchy equation ∂n+1
z = 0 satisfied by Iν,α

n (z, z|ξ), we can
show that these polynomials are common eigenfunctions of the partial differential opera-
tors of Laplacian type defined by

∆ν
α,ξ := −∂z∂z + Iν,α

1 ∂z and ∆̃ν
α,ξ := −∂z∂z + Iν,α

1 ∂z. (3.4)

Theorem 3.5.3. The polynomials Iν,α
n (z, z|ξ) satisfy the partial differential equations

∆ν
α,ξ Iν,α

n (z, z|ξ) = νnIν,α
n (3.5)

and

∆̃ν
α,ξ Iν,α

n (z, z|ξ) = −2αnIν,α
n . (3.6)

Proof. Using (3.5) and (3.9), we get

∆ν
α,ξ Iν,α

n (z, z|ξ) =
(
−∂z + Iν,α

1

)
∂z Iν,α

n
(3.5)
= νn

(
−∂z + Iν,α

1

)
Iν,α
n−1

(3.9)
= νnIν,α

n .

The identity (3.5) can be handled by applying ∂z to both sides of the recurrence relation (3.4)
involving ∂z, and next use (3.5) in Proposition 3.1.1. The identity (3.6) follows by proceeding
in a similar way using (3.8) and (3.9).

Remark 3.5.4. According to the above result, the polynomials Iν,α
n are also eigenfunctions of

−∂2
z ∓ ∂z∂z + Iν,α

1 ∂z ± Iν,α
1 ∂z

associated to the eigenvalue (ν∓ 2α)n. In fact, the first order differential operators ∂z ± ∂z
are lowering operators for the polynomials Iν,α

n , satisfying

(∂z ± ∂z)Iν,α
n (z, z|ξ) = (ν∓ 2α)nIν,α

n−1 (3.7)

Remark 3.5.5. The polynomials Iν,α
n belong to the kernel of the operator ν∂z + 2α∂z.

3.6 Connection to rank–one automorphic functions

In this section, we present an application in the context of the so–called automorphic func-
tions of Landau type with respect to the Z-character χβ(k) = e2iπβk, i.e., the space of all
complex–valued functions satisfying the functional equation

f (z + k) = e2iπβke2α(z+ k
2 )k f (z) (3.1)

for all k ∈ Z and z ∈ C. To this end, let L2(C/Z, e−2α|z|2dxdy) denote the space of f : C −→
C satisfying (3.1) and subject to the norm boundedness on the strip C/Z with respect to the

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
Concrete Description, Associated Functional Spaces and Integral Transforms

54



CHAPTER 3. ON A NOVEL CLASS OF POLYANALYTIC HERMITE POLYNOMIALS

Gaussian measure

|| f ||2α,Z =
∫

C/Z
| f (z)|2e−2α|z|2dxdy < +∞. (3.2)

We denote by 〈·, ·〉α,Z the associated Hermitian scalar product. Then, it is proved in [58]
that the Hermite-like functions

ϕ
ν,α,β
m,n (z, z) = (−i)mHα

m

(
2=m(z) +

π(β + n)
α

)
eα,β

n (z) (3.3)

with =m(z) = z−z
2i , form an orthogonal basis of L2(C/Z, e−2α|z|2dxdy). A different proof of

this result can be given using the first order differential operator A∗2α = −∂z + νz and the
corresponding functions

ψ
ν,α,β
m,n (z, z) := (A∗2α)

m(eα,β
n (z)),

for (m, n) ∈ Z+ ×Z, where eα,β
n (z) = eαz2+2iπ(β+n)z It is contained in the following lemmas

Lemma 3.6.1. We have

ψ
ν,α,β
m,n (z, z) = I

ν
2 ,β
m,n(z, z)eα,ν

n = ϕ
ν,α,β
m,n (z, z), (3.4)

where

Iα,β
m,n (z, z) := I2α,α

m (z, z|2iπ(β + n)) , (3.5)

with α >, β ∈ R, m = 0, 1, 2, · · · , and n ∈ Z+.

Proof. Since A∗2α f = −e2α|z|2∂z

(
e−2α|z|2 f

)
, we get (A∗)m

2α f = (−1)me2α|z|2∂m
z

(
e2α|z|2 f

)
. There-

fore,

(A∗2α)
m(eα,β

n (z)) = (−1)me2α|z|2∂m
z

(
e−2α|z|2eα,β

n (z)
)
= I2α,α,β

m,n (z, z) eα,β
n (z)

Lemma 3.6.2 ([58]). The functions eα,β
n (z) = eαz2+2iπ(β+n)z; n = 0, 1, · · · , form a complete system

of the theta Bargmann-Fock space F 2,2α
Z,β (C) of all complex-valued entire functions satisfying (3.1))

and belonging to L2(C/Z, e−2α|z|2dxdy).

Lemma 3.6.3. The functions ψ
ν,α,β
m,n are eigenfunctions of ∆2α associated to the eigenvalue 2αm.

Proof. The result readily follows by induction. It is clear for m = 0. Next, if ∆2αψ
ν,α,β
k,n =

2αkψ
ν,α,β
k,n is verified for k ≤ m, we use the fact ∆ν = A∗2α A = AA∗2α to get

∆2αψ
ν,α,β
m+1,n = (A∗A)A∗(A∗)m(eα,ν

n ) = A∗(ν + ∆ν)(A∗)m(eα,ν
n ) = ν(m + 1)ψν,α,β

m+1,n
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Lemma 3.6.4. The functions ψ
ν,α,β
m,n satisfy the functional equation (3.1) and are orthogonal in

L2(C/Z, e−2α|z|2dxdy).

Proof. Notice that for f = eαz2+2iπβzF and g = eαz2+2iπβzG satisfying the autoumorphic
equation (3.1), the functions F and G are Z–periodic and we have

〈 f , g〉α,Z =
∫
[0,1]×R

|g(z)|2e−4αy2−4πβydxdy.

Then, the result follows by a tedious but straightforward computations using the explicit
expression of ψ

ν,α,β
m,n given by Lemma 3.6.1 combined with the orthogonality of eα,β

n (see
Lemma 3.6.2).

Remark 3.6.5. The above discussion shows that the polynomials Iα,β
m,n (z, z) in (3.5) character-

ize the orthogonal complement of F 2,2α
Z,β (C) in the Hilbert space L2(C/Z; e−2α|z|2dxdy).
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The orthogonal complement of the Hilbert
space associated to holomorphic Hermite
polynomials

We study the orthogonal complement of the Hilbert subspace considered by van
Eijndhoven and Meyers in [113] and associated to holomorphic Hermite poly-
nomials. A polyanalytic orthonormal basis is given and the explicit expressions
of the corresponding reproducing kernel functions and Segal–Bargmann integral
transforms are provided. The obtained basis are then used to provide a non-trivial
1d-fractional like-Fourier transform.

4.1 Complements on Xs(C)

We begin with the following

Proposition 4.1.1 ([113]). The functions

ψs
m =

1√
πm!

(
1− s2

2s

)(m+1)/2

e−
1+s2

4s z2
zm

constitute an orthonormal basis of the reproducing kernel Hilbert space Xs(C) with kernel given
explicitly by

Ks(z, w) =
1− s2

2πs
e−

1+s2
4s (z2+w2)+ 1−s2

2s zw. (4.1)

Proof. The proof of (4.1) can be handled by invoking the unitary operator Mα f = eαz2
f and

observing that the functions

φs
m(z) =

1√
πm!

(
1− s2

2s

)(m+1)/2

e−
1+s2

4s z2
zm (4.2)
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form an orthonormal basis of Xs(C), so that one concludes for the explicit expression of

Ks(z, w) by performing Ks(z, w) =
+∞
∑

m=0
φs

m(z)φs
m(w) and next using the generating function

of the Hermite polynomials Hn(z) ([99, p. 130]).

Remark 4.1.2. The expression of the reproducing kernel can also be proved in an easy way,
by making appeal to the following general principle. LetH be a separable reproducing ker-
nel Hilbert space (RKHS) on the complex plane and denotes by KH its reproducing kernel
function. If M is a multiplication operator by a function M(z) := eψ(z). Then, H′ = M(H)

is a RKHS whose kernel function is given by

KH
′
(z, w) = eψ(z)KH(z, w)eψ(w). (4.3)

Remark 4.1.3. The space ∪
0<s<1

Xs(C) = S1/2
1/2(C) is the holomorphic Gelfand–Shilov space

extended to C (see [113]).

In the sequel, we consider the integral transform of Segal–Bargmann type

[Bs f ](z) :=
∫

R
Bs(t, z) f (t)dt (4.4)

associated to the kernel function

Bs(t, z) :=
(

1− s2

2πs
√

sπ

)1/2

exp

(
− 1

2s
t2 − 1

2s
z2 +

√
1− s2

s
tz

)
. (4.5)

Then, we assert

Theorem 4.1.4. The transform Bs defines a unitary isometric integral transform from the configu-
ration Hilbert space L2(R) onto Xs(C).

Proof. The kernel function Bs(t, z) in (4.5) can be rewritten as

Bs(t, z) :=
∞

∑
m=0

fm(t)ψs
m(z), (4.6)

where

fm(t) =
e−

t2
2√

2mm!
√

π
Hm(t) (4.7)

is an orthonormal basis of L2(R). Indeed, we have

∞

∑
m=0

fm(t)ψs
m(z) =

(
1− s

π
√

sπ

)1/2

e−
1
2 (t

2+z2)
∞

∑
m=0

(
1− s
1 + s

)m/2 Hm(t)Hm(z)
2mm!

.

The rest of the proof is straightforward making use of Mehler formula for the Hermite
polynomials extended to the complex plane, to wit ([85, p.174, Eq. (18)], see also [99, p.198,
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Eq. (2)])
∞

∑
m=0

λm

2mm!
Hm(t)Hm(z) =

1√
1− λ2

exp
(
−λ2(t2 + z2) + 2λtz

1− λ2

)
(4.8)

valid for every fixed |λ| < 1.

Remark 4.1.5. By means of (4.4) and (4.6), we have [Bs fm](z) = ψs
m(z). Moreover, the inver-

sion formula of Bs is given by

[B−1
s ϕ](t) =

∫
C

ϕ(z)Bs(t, z)ωs(z, z)dλ(z).

Remark 4.1.6. By considering B̃s(t, z) := s1/4Bs(s1/2t, z), we define an integral transform B̃s

from L2(R) onto Xs(C) such that [B̃s fmn](z) = φs
m(z), where φs

m are as in (4.2), since

B̃s(t, z) =
∞

∑
m=0

fm(t)φs
m(z).

4.2 A special orthonormal basis for H 2,s(C)

The multiplication operator Mα : f 7−→ Mα f = eαz2
f defines a unitary operator from

H 2,s(C) onto L2,ν(C). Moreover, it maps isometrically the Hilbert subspace Xs(C) onto
the Bargmann–Fock space F 2,ν(C). Therefore, an orthogonal decomposition of H 2,s(C)

can be deduced easily from the one of L2,ν(C),

L2,ν(C) =
∞⊕

n=0
F 2,ν

n (C),

given in terms of the polyanalytic Hilbert spaces

F 2,ν
n (C) = Ker|H 2,s(C) (∆ν − nνId)

where ∆ν := −∂z∂z + νz∂z and with F 2,ν
0 (C) = F 2,ν(C). See, e.g. [59] for details. In fact,

the consideration of Xn,s(C) := M−αF 2,ν
n (C) leads to the orthogonal decomposition

H 2,s(C) =
∞⊕

n=0
Xn,s(C).

An immediate orthonormal basis of Xn,s(C) is then given by e−αz2
Hν

m,n(z, z) for varying
m, n = 0, 1, 2, · · · , where

Hν
m,n(z, z) := (−1)m+neν|z|2∂m

z ∂n
z

(
e−ν|z|2

)
(4.1)

denotes the rescaled polyanalytic complex Hermite polynomials [55,56,76], generalizing the
monomials νmzm = Hν

m,0(z, z).
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The main aim in this section is to provide another non-trivial orthonormal basis ψs
m,n(z, z)

of H 2,s(C), consisting of polyanalytic functions generalizing ψs
m and such that whose first

elements are the holomorphic functions ψs
m(z) in (4.2), i.e., ψs

m,0(z, z) = ψs
m(z), leading to an

appropriate basis of the space Xn,s(C), for fixed n. The introduction of Xn,s(C) entails the
consideration of the integral transform

[W s
n f ](z, z) =

( ν

π

)(νn

n!

)1/2

e−αz2
∫

C
e−ν|ξ|2+αξ2+νξz(z− ξ)nψ(ξ)dλ(ξ)

as well as of the functions

ψs
m,n(z, z) := Γs

m,ne−
z2
2

(
∇n

ν,α− 1
2
Hm

)
(z), (4.2)

where ∇ν,α := −∂z + νz− 2αz and

Γs
m,n :=

(
1− s

πνnn!m!
√

s

)1/2 ( 1− s
2(1 + s)

)m/2

, (4.3)

Then, we can prove the following

Theorem 4.2.1. The transform W s
n is a unitary integral transform fromXs(C) ontoXn,s(C). More-

over, we have
ψs

m,n(z, z) = W s
n (ψ

s
m)

and hence ψs
m,n(z, z), for varying m = 0, 1, 2, · · · , form an orthonormal basis of Xn,s(C).

Proof. The proof lies essentially on the observation that the unitary operator W s
n can be

rewritten as W s
n = M−αT ν

0,nMα, where T ν
k,n is the integral transform considered in [20, Eq.

(2.17)] and given by

[T ν
k,nψ](z, z) =

(
(−1)nν

π
√

k!n!νk+n

) ∫
C

e−ν|ξ|2+νξzHν
k,n(ξ − z, ξ − z)ψ(ξ)dλ(ξ),

so that W s
n (ψ

s
m) = M−αT ν

0,n(Mαψs
m). Therefore, by means of [20, Theorem 2.12], keeping in

mind the fact that the polynomials Hν
m,n(z, z) =: ∇n

ν,0(z
m) is an orthogonal basis of L2,ν(C)

[56,76], the following

[T ν
0,nψ](z, z) =

(
1

νnn!

)1/2

∇n
ν,0ψ,

holds true for every non-negative integer n and any ψ ∈ L2,ν(C) ∩ Cn(C), where Cn(C) de-
notes the set of all n-fold differentiable functions whose n-th derivative is continuous. The
rest of the second assertion is straightforward since the functions ψs

m form an orthonormal
basis of Xs(C). The explicit expression of ψs

m,n(z, z) follows by direct computation. Indeed,
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we have

M−αT
ν

0,nMα(ψ
s
m) =

(
1

νnn!

)1/2

M−α∇n
ν,0 (Mαψs

m)

=

(
1

νnn!

)1/2

∇n
ν,α (ψ

s
m)

=

(
1

νnn!

)1/2

e
−z2

2 ∇n
ν,α− 1

2

(
e

z2
2 ψs

m

)
,

since
∇ν,a (Mγψ) = Mγ∇ν,a+γψ and ∇n

ν,0 (Mγψ) = Mγ∇n
ν,γψ.

The last equality shows that W s
n (ψ

s
m) = M−αT ν

0,nMα(ψs
m) = ψs

m,n(z, z).

Remark 4.2.2. The inverse of W s
n : Xs(C) −→ Xn,s(C) is given by [W s

n ]
−1 = M−αT ν

n,0Mα,
More explicitly

[W s
n ]
−1ψ(z) =

( ν

π

)(νn

n!

)1/2

e−αz2
∫

C
e−ν|ξ|2+αξ2+νξz(ξ − z)nψ(ξ)dλ(ξ).

The new class of functions in (4.2) generalizes the one studied in [21], and the previous
theorem provides an integral representation of the special functions ψs

m,n(z, z). Moreover,
such functions can be expressed as a special finite sum of the holomorphic Hermite poly-
nomials Hj(z) and the polyanalytic polynomials Ia,b

n (z, z|c) defined in [21] by

Ia,b
n (z, z|c) := (−1)nea|z|2−bz2−cz∂n

z

(
e−a|z|2+bz2+cz

)
(4.4)

for given a > 0, b ∈ R and c ∈ C. More exactly, we assert

Corollary 4.2.3. We have

ψs
m,n(z, z) = m!n!Γs

m,ne−
1
2 z2

n

∑
k=0

(−2)k

k!
Iν,α− 1

2
n−k (z, z|0)
(n− k)!

Hm−k(z)
(m− k)!

, (4.5)

where Γs
m,n is as in (4.3).

Proof. Notice first that using the fact ∇ν,γ f = −eν|z|2−γz2
∂z

(
e−ν|z|2+γz2

f
)

, we get

∇n
ν,γ f = (−1)neν|z|2−γz2

∂n
z

(
e−ν|z|2+γz2

f
)

(4.6)

by mathematical induction. Therefore, identities (4.2) or (4.6) combine with the Leibniz
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formula entail

ψs
m,n(z, z) = (−1)nΓs

m,neν|z|2−αz2
∂n

z

(
e−ν|z|2+(α− 1

2)z2
Hm

)
(z)

= (−1)nΓs
m,neν|z|2−αz2

n

∑
k=0

(
n
k

)
∂n−k

z

(
e−ν|z|2+(α− 1

2)z2
)

∂k
z (Hm) (z).

Thus, one concludes for (4.5) since ∂k
z (Hm) = 0 for k > m and

∂k
z (Hm) =

2km!
(m− k)!

Hm−k(z)

when k ≤ m.

Corollary 4.2.4. The connection to the polyanalytic Hermite polynomials Hν
m,n(z, z) in (4.1) is

given by

ψs
m,n(z, z) = m!Γs

m,ne−αz2
∞

∑
k=0

bm
2 c
∑
j=0

(−1)j ( 2
ν

)m−2j
(

2α−1
2ν2

)k

j!(m− 2j)!k!
Hν

2k+m−2j,n(z, z). (4.7)

Proof. Direct computation, keeping in mind (4.6), shows that

∇n
ν,α− 1

2
Hm = e−(α− 1

2)z2
∞

∑
k=0

(
α− 1

2

)k

k!
(−1)neν|z|2∂n

z

(
z2ke−ν|z|2 Hm

)

= m!e−(α− 1
2)z2

∞

∑
k=0

bm
2 c
∑
j=0

(−1)j ( 2
ν

)m−2j
(

2α−1
2ν2

)k

j!(m− 2j)!k!
Hν

2k+m−2j,n.

This completes the proof since ψs
m,n(z, z) = Γs

m,ne−
1
2 z2∇n

ν,α− 1
2
Hm.

The considered space Xn,s(C) is a reproducing kernel Hilbert space for the point evalu-
ation map in Xn,s(C) being continuous. This, can be recovered easily by means of Remark
4.1.2. Thus, we assert

Theorem 4.2.5. The explicit expression of the reproducing kernel of Xn,s(C) is given by

Ks
n(z, w) =

(
1− s2

2πs

)
(−1)n

n!νn eνzw−α(z2+w2)Hν
n,n(z− w, z− w).

Proof. By means of Remark 4.1.2, the reproducing kernel Ks
n(z, w) of Xn,s(C) obeys (4.3).

Hence, we have Ks
n(z, w) = Mα(z)KF

2,ν(C)(z, w)Mα(w), where KF
2,ν
n (C) is the reproducing

kernel of the generalized Bargmann space F 2,ν
n (C) given by [59]

KF
2,ν
n (C)

n (z, w) =
( ν

π

) (−1)n

n!νn eνzwHν
n,n(z− w, z− w).
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Remark 4.2.6. For n = 0, we recover the reproducing kernel of the Hilbert space Xs(C) in
Proposition 4.1.1.

Corollary 4.2.7. The identity

Hν
n,n(z− w, z− w) = (−1)ne(α− 1

2)(z
2+w2)−νzw∇n,z

ν,α− 1
2
∇n,w

ν,α− 1
2
e−(α− 1

2)(z
2+w2)+νzw,

or equivalently

Hν
n,n(z− w, z− w) = (−1)neν(|z|2+|w|2−zw)∂n

z ∂n
we−ν(|z|2+|w|2+zw),

holds true. The z-variable in ∇n,z
ν,α− 1

2
is to mean that the derivation is done with respect to z.

Proof. The assertion of Corollary 4.2.7 follows by comparing the result of Theorem 4.2.5 to

the fact that the reproducing kernel Ks
n can be rewritten as Ks

n(z, w) =
+∞
∑

m=0
ψs

m,n(z)ψs
m,n(w),

for {ψs
m,n(z, z), m = 0, 1, 2, · · · }, in (4.2), being an orthonormal basis of Xn,s(C).

We conclude this section by giving the explicit expression of the generalized Segal–
Bargmann integral transform for the spaces Xn,s(C). We have to consider the weighted
configuration Hilbert space L2,ν(R), instead of L2(R), of all square integrable C-valued
functions on R with respect to the Gaussian measure e−νx2

dx; ν > 0, for which the rescaled
Hermite polynomials

gν
m(x) =

( ν

π

) 1
4 Hm(

√
νx)√

2mm!
(4.8)

form an orthonormal basis. The associated coherent states transform from L2,ν(R) onto
Xn,s(C) mapping gν

m to ψs
m,n is given by

S s
n f (z) :=

〈
f , Ss

n(., z)
〉
L2,ν(R)

=
∫

R
f (x)Ss

n(x, z)e−νx2
dx,

where the kernel function Ss
n(x, z) is given by

Ss
n(x, z) =

+∞

∑
m=0

gν
m(x)ψs

m,n(z, z).

Theorem 4.2.8. We have

Ss
n(x, z) =

( ν

πs

) 1
4
(

1− s2

2πsνnn!

)1/2

e−
1
2s z2− ν(1−s)

2s x2+ ν
√

2s
s xz Iν,− ν

2
n

(
z, z
∣∣∣ν√2s

s
x

)
. (4.9)

Moreover, the transform S s
n defines an isometric transform from L2,ν(R) onto Xn,s(C).
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Proof. We need only to prove the closed formula (4.9) for Ss
n(x, z). The rest holds true

for general coherent states transformation on the reproducing kernel Hilbert spaces, like
Xn,s(C). Indeed, starting from (4.8) and (4.2), and applying Mehler formula (4.8), the ex-
pression of Ss

n(x, z) reduces further to

Ss
n(x, z) =

( ν

πs

) 1
4
(

1− s2

2πsνnn!

)1/2

e−
z2
2 −

ν(1−s)
2s x2∇nz

ν,α− 1
2

exp

(
−1− s

2s
z2 +

ν
√

2s
s

xz

)
.

By applying the identity (4.6), we get

Ss
n(x, z) =

( ν

πs

) 1
4
(

1− s2

2πsνnn!

)1/2

eν|z|2−αz2− ν(1−s)
2s x2

(−1)n∂n
z

(
e−ν|z|2− ν

2 z2+ ν
√

2s
s xz

)
.

Subsequently,

Ss
n(x, z) =

( ν

πs

) 1
4
(

1− s2

2πsνnn!

)1/2

e−
1
2s z2− ν(1−s)

2s x2+ ν
√

2s
s xz Iν,− ν

2
n

(
z, z
∣∣∣ν√2s

s
x

)
.

4.3 A 1d-fractional like-Fourier transform for L2,ν(R)

In the previous section the space Xn,s(C) is realized as the image of Xs(C) by the integral
transformW s

n or also as the image ofL2,ν(R) by the generalized Segal–Bargmann transform
S s

n . Another realization of Xn,s(C) is by considering the n-th standard Segal–Bargmann
transform [21]

Bν
n ϕ(z) =

(
ν
π

) 3
4

√
2nνnn!

∫
R

e−ν(x− z√
2
)2

Hν
n

(
z + z√

2
− x
)

ϕ(x)dx

from L2,ν(R) onto F 2,ν(C). Indeed, one has to deal with B̃ν
n : L2,ν(R) −→ Xn,s(C),

B̃ν
n f (z, z) = (M−αB

ν
n f ) (z, z).

It is clear that for every fixed n, the functions [B̃ν
n]
−1ψs

m,n form an orthonormal basis of
L2,ν(R). But, there is no clear evidence if they are the same or not. The next result provides
a positive answer. To this end, we give the explicit expression of [B̃ν

n]
−1ψs

m,n in terms of the
generalized Hermite polynomials of Hm(x, y) Gould-Hopper type defined in [36, Eq. (5b),
p. 72] by

Hm(x, y) = m!
bm

2 c

∑
j=0

(−1)jyj

j!
(2x)m−2j

(m− 2j)!
. (4.1)
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Namely, if we let Φs
m stands for

Φs
m(x) =

( νs
πm!2

)1/4
(

s
1 + s

)m/2

e
ν(1−s)

2 x2
Hm

((
ν(1 + s)

2

)1/2

x,
1 + s

2s

)
. (4.2)

then, we can prove the following.

Theorem 4.3.1. The functions [B̃ν
n]
−1ψs

m,n, for varying non-negative integers m and n, are inde-
pendents of n. Moreover, we have [B̃ν

n]
−1ψs

m,n = Φs
m, and they form an orthonormal basis for the

configuration space L2,ν(R).

Remark 4.3.2. Using Hn(x, y) = y
n
2 Hn(xy−

1
2 ), we can rewrite [B̃ν

n]
−1ψs

m,n as

[B̃ν
n]
−1(ψs

m,n)(x) =
( νs

πm!2
)1/4

(
1

2νs

)m/2

e
ν(1−s)

2 x2
Hνs

m (x). (4.3)

Remark 4.3.3. The standard basis of L2,ν(R) is the classical polynomials Hν
m. Here, we

have provide a non-trivial orthogonal basis of L2,ν(R) constituted of the special Hermite

functions e
ν(1−s)

2 x2
Hνs

m (x). This is conform with the general fact that an orthogonal basis of
L2,a(R) can be obtained from the one of L2,b(R), a, b > 0, by the multiplication operator
e

b−a
2 x2

.

For the proof of Theorem 4.3.1 we need to the following lemma.

Lemma 4.3.4. We have

∞

∑
k=0

tk

k!
Hν

2k+m(x) =
1√

1 + 4νt
e

4ν2t
1+4νt x2

H
ν

1+4νt
m (x).

Proof. Using the fact Hν
m+n = Dn

ν (Hν
m), where Dν := −∂x + 2νx, we get

∞

∑
k=0

tk

k!
Hν

2k+m(x) =
∞

∑
k=0

tk

k!
Dm

ν Hν
2k(x) = Dm

ν

 e
4ν2t

1+4νt x2

√
1 + 4νt

 .

The last equality follows by means of the "generating function"

∞

∑
n=0

tn

n!
H2n(x) =

e
4tx2
1+4t

√
1 + 4t

.

Finally, we use the operational formula Dm
ν (eγx2

) = eγx2
Hν−γ

m (x) to obtain

∞

∑
k=0

tk

k!
Hν

2k+m(x) =
1√

1 + 4νt
e

4ν2t
1+4νt x2

H
ν

1+4νt
m (x).
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Proof of Theorem 4.3.1. By definition of B̃ν
n = M−αBν

n, we have

[B̃ν
n]
−1(ψs

m,n) = [Bν
n]
−1 (Mαψs

m,n
)

.

On the other hand, from Corollary 4.2.4, we have

(
Mαψs

m,n
)
(z) = Γs

m,nm!
∞

∑
k=0

bm
2 c
∑
j=0

(−1)j ( 2
ν

)m−2j
(

2α−1
2ν2

)k

j!(m− 2j)!k!
Hν

2k+m−2j,n(z, z).

Subsequently, one can apply [20, Theorem 5.1],

[Bν
n]
−1(Hν

m,n)(x) = [γs
m,n]

−1Hν
m(x), γs

m,n :=
( ν

π

)1/4
(

2m

νnn!

)1/2

,

as well as Lemma 4.3.4 to get

[B̃ν
n]
−1(ψs

m,n)(x) =
2mΓs

m,n

νmγs
m,n

m!
bm

2 c
∑
j=0

(
− ν2

2

)j

j!(m− 2j)!

 ∞

∑
k=0

(
2α−1
4ν2

)k

k!
Hν

2k+m−2j(x)


=

(
1 + s

2

)1/2 2mΓs
m,n

νmγs
m,n

e
ν(2α−1)
ν+2α−1 x2

m!
bm

2 c
∑
j=0

(
− ν2

2

)j

j!(m− 2j)!
H

ν2
ν+2α−1
m−2j (x).

In the last equality we recognize the identity [36, Eq. (6), p. 72 ]

Hm(x, y) = m!
bm

2 c

∑
j=0

(1− y)j

j!
Hm−2j(x)
(m− 2j)!

. (4.4)

Thus, we obtain

[B̃ν
n]
−1(ψs

m,n)(x) =
( νs

πm!2
)1/4

(
s

1 + s

)m/2

e
ν(1−s)

2 x2
Hm

((
ν(1 + s)

2

)1/2

x,
1 + s

2s

)
.

This completes the proof.

Remark 4.3.5. The first assertion in Theorem 4.3.1 can be reworded as follows: for every
non-negative integers m, j and k, we have

ψs
m,j = B̃ν

j ◦ [B̃ν
k ]
−1(ψs

m,k).

We conclude this section by considering a 1d-fractional like-Fourier transform forL2,ν(R).
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To this end, we set

Ps,t(x, y) =
(

νs
π(1− t2)

)1/2

e
ν
2 (x2+y2)e

−νs
(

(1+t2)(x2+y2)−4xy
2(1−t2)

)
(4.5)

for 0 < s < 1 and |t| < 1.

Theorem 4.3.6. The integral transform

(Fs,t f )(y) =
∫

R
f (x)Ps,t(x, y)e−νx2

dx

defines a 1d-fractional like-Fourier transform for L2,ν(R). Moreover, we have

Fs,tΦs
m = tmΦs

m and Fs,tt′ = Fs,t ◦ Fs,t′ .

Proof. Recall from Theorem 4.3.1 that the functions Φs
m in (4.2) form an orthonormal basis

of L2,ν(R). Using (4.3), the corresponding Poisson kernel
+∞
∑

m=0
tmΦs

m(x)Φs
m(y) can be shown

to be given by (4.5),

+∞

∑
m=0

tmΦs
m(x)Φs

m(y) = Ps,t(x, y). (4.6)

This readily follows making appeal to the classical Mehler formula (4.8). Therefore, the
identity Fs,tΦs

m = tmΦs
m is immediate from (4.6). Now, using Fs,tΦs

m = tmΦs
m, we can easily

prove that Fs,tt′ = Fs,t ◦ Fs,t′ .
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Chapter5
S-polyregular Bargmann spaces

We introduce two classes of right quaternionic Hilbert spaces in the context of slice
polyregular functions, generalizing the so-called slice and full hyperholomorphic
Bargmann spaces. Their basic properties are discussed, the explicit formulas for
their reproducing kernels are given and associated Segal–Bargmann transforms
are also introduced and studied. The spectral description as special subspaces of
L2-eigenspaces of a second order differential operator involving the slice deriva-
tive is investigated.

5.1 S-polyregular functions

5.1.1 The real skew algebra of quaternions

The elements of the division algebra of quaternions H are 4-component extended com-
plex numbers of the form q = x0 + x1i + x2j + x3k ∈ H, where x0, x1, x2, x3 ∈ R and
the imaginary components i, j, k satisfy the Hamiltonian computation rules i2 = j2 =

k2 = ijk = −1; ki = −ik = j. According to this algebraic representation, the quater-
nionic conjugate is defined to be x0 − x1i − x2 j − x3k = <(q) − =(q), where <(q) = x0

and =(q) = x1i + x2 j + x3k. Here and elsewhere after q denotes the algebraic conjugate
of the quaternion q ∈ H. Then, we have pq = q p for p, q ∈ H, and the modulus of q is
defined to be |q| =

√
qq. The polar representation is given by q = reIθ, where r = |q| ≥ 0,

θ ∈ [0, 2π[, and I belongs to the set of imaginary units S, which can be identified with
the unit sphere S2 = {q ∈ =H; |=(q)| = 1} in =H = Ri + Rj + Rk. The representation
q = reIθ is not unique unless q is not real. Another interesting representation of q ∈ H is
given by q = x + Iy for some real numbers x and y and imaginary unit I ∈ S. It is unique
for any q ∈ H̃ = H \ R by requiring y > 0. Thus, H can be seen as the infinite union
of the slices CI := R + RI. The last representation was crucial in developing the theory
of quaternionic slice regular functions that has been introduced by Gentili and Struppa in
their seminal work [62]. Since then, they have been object of intensive research and the
corresponding hypercomplex analysis has been developed. It has found many interesting
applications in operator theory, quantum physics, Schur analysis and different branches of
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differential geometry. See for instance [11,12,61,63] and references therein.

5.1.2 S-polyregular functions and first properties.

The solution of the Cauchy–Riemann equation ∂I f|CI
= 0 on H, involving the slice deriva-

tive

∂I f (x + Iy) :=
1
2

(
∂

∂x
+ I

∂

∂y

)
f |CI (x + yI) (5.1)

leads to the left power series

ϕ(x + Iy) =
+∞

∑
j=0

(x + Iy)jαj(I), (5.2)

with infinite convergent radius, where αj are seen as functions αj : I 7−→ αj(I) on S with
values in H. If in addition αj(I) are constants on S, we recover the standard space of slice
regular functions [61,62]. A natural generalization is that of S-polyregular functions.

Definition 5.1.1. A quaternionic-valued function f on a domain Ω ⊂H such that Ω∩R 6= ∅
is said to be (left) slice polyregular (S-polyregular) of level n (order n + 1), if it is a real
differentiable in Ω and its restriction fΩI is polyanalytic in ΩI := Ω ∩ CI for every I ∈ S,

in the sense that the function ∂I
n+1

f : ΩI −→ H vanishes identically on ΩI . We denote by
SRn(Ω) the corresponding right quaternionic vector space.

Topologically, the space SRn(Ω) is endowed with the natural topology of uniform con-
vergence on compact sets in Ω, so that it turns out to be a right vector space over the non-
commutative field H. We provide below some of their basic properties that we need to
develop the rest of the present chapter for the case Ω = H. Thus, one can easily prove the
following elementary characterization for the elements in SRn := SRn(H) in terms of the
elements of SR. Whose proof is immediate and lies essentially on the characterization of
polyanalytic functions in complex setting [4,15].

Proposition 5.1.2. For every f ∈ SRn, there exist some ϕk ∈ SR, k = 0, 1, · · · , n, such that

f (q, q) =
n

∑
k=0

qk ϕk(q).

The following result is a second characterization of S-polyregular functions.

Theorem 5.1.3. A function f belongs to SRn if and only if there exists ϕ0 ∈ SR such that

f (q, q) = ϕ0(q) +
n

∑
j=1

n−j

∑
k=0

(−1)k qj+k

j!k!
∂s

j+k
f (q).

Proof. By Proposition 5.1.2, any f ∈ SRn is of the form f (q, q) =
n
∑

k=0
qk ϕk(q) for some
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ϕk ∈ SR, k = 0, 1, · · · , n. Therefore, ∂s
k

f = 0 whenever k > n, and

∂s
k

f =
n

∑
j=0

∂s
k
(qj)ϕj =

n

∑
j=k

j!
(j− k)!

qj−k ϕj

when k ≤ n. By considering the particular cases k = n, k = n− 1, k = n− 2 and k = n− 3,
one can claim the following

(n− k)!ϕn−k =
k

∑
s=0

(−1)s qs

s!
∂s

n−k+s
f

for k < n, which can be proved by induction. Equivalently, we write

ϕj =
1
j!

n−j

∑
s=0

(−1)s qs

s!
∂s

j+s
f (q); j ≥ 1. (5.3)

Therefore, the expression of f becomes

f (q, q) = ϕ0(q) +
n

∑
j=1

n−j

∑
k=0

(−1)k qj+k

j!k!
∂s

j+k
f (q).

Remark 5.1.4. The component functions in Proposition 5.1.2, of a given S-polyregular func-
tion f , are given in terms of f and its successive derivatives (see Equation (5.3)).

Thanks to these characterizations (Proposition 5.1.2 and Theorem 5.1.3) many interest-
ing analytic properties of S-polyregular functions can be derived from their analogs of the
slice regular functions. However, one must be careful since (as is the case for complex
polyanalytic functions) several known properties for SR prove false when applied to SRn.
For example, S-polyregular functions may even vanish on an accumulation set. This is
the case of 1− qq which is a nonzero S-polyregular on H but vanishes on the closed set
{q ∈H, |q| = 1}.

Similarly to the complex setting, the first order differential operator ∂s − q, will play a
crucial rule in this theory. By considering the differential transformation

[Hn(F)](q) := (∂s − q)n(F)(q),

one proves the following.

Theorem 5.1.5. Let F be a given S-regular function. Then, the functions Hn(F), n = 0, 1, 2, · · · ,
are S-polyregular and form an orthogonal system in L2(CI ; e−|q|

2
dλI).

Proof. Notice first that

Hn(F) =
n

∑
j=0

(−1)j
(

n
j

)
qj∂

n−j
s F. (5.4)
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Therefore, we have
∂

n
sHnF = (−1)nn!F.

Hence, HnF is clearly S-polyregular of order n, for F being slice regular. This is also clear
from (5.4) according to Proposition 5.1.2. Consequently, using the fact that ∂s − q is the
formal adjoint operator of ∂s when acting on the Hilbert space L2(CI ; e−|q|

2
dλI), one can

prove that (∂s − q)F is orthogonal to F when F is slice regular in L2(CI ; e−|q|
2
dλI). More

generally, if n > m, we have ∂
n−m
s (F) = 0 and therefore

〈Hn(F),Hm(F)〉 =
〈

F, ∂
n
sHm(F)

〉
= (−1)mm!

〈
F, ∂

n−m
s (F)

〉
= 0.

Thus,Hn(F), n = 0, 1, 2, · · · , form an orthogonal system in L2(CI ; e−|q|
2
dλI).

Remark 5.1.6. By specifying F(q) = Fm(q) = qm, we recover the quaternionic Hermite poly-
nomials HQ

m,n. Indeed,

[Hn(Fm)](q) = (−1)me|q|
2
∂n

s (e
−|q|2qm) = HQ

m,n(q, q).

Theorem 5.1.7. The following assertions hold true.

(i) The space SR2
n := SRn∩ L2(CI ; e−|q|

2
dλI) is spanned by the polynomials HQ

j,n, j = 0, 1, 2, · · · .
Moreover, we have

SR2
n =

n

∑
k=0
Hk(SR2

0).

(ii) A function f belongs to SR2
n ∩Ker(2q− nId) if and only if there exists some F ∈ SR2

0 such
that f = Hn(F).

Proof. Let f ∈ SR2
n and recall that HQ

j,k(x+ Iy, x− Iy) is an orthogonal basis of L2(CI ; e−|q|
2
dλI)

(see [43, Theorem 4.2]). Thus, we can expand f |CI as

f |CI (x + Iy) =
∞

∑
j=0

∞

∑
k=0

HQ
j,k(x + Iy, x− Iy)αjk(I)

for some quaternionic sequence αjk(I) ∈H satisfying the growth condition

∞

∑
j=0

∞

∑
k=0

j!k!|αjk(I)|2 < +∞.

Now since f is a polynomial in q of degree n (for f being in SRn), we conclude that αjk(I) =
0 for every k > n, so that

f |CI =
n

∑
k=0

∞

∑
j=0

HQ
j,k(q, q)αjk(I). (5.5)
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Therefore,

f |CI =
n

∑
k=0

∞

∑
j=0
Hk(qj)αjk(I) =

n

∑
k=0
Hk

(
∞

∑
j=0

qjαjk(I)

)
=

n

∑
k=0
Hk(Fk),

where Fk stands for Fk =
∞
∑

j=0
qjαjk(I), which clearly belongs to SR2

0. This completes the

proof of (i). To prove (ii), we need only to establish the "only if". Thus, for f ∈ SR2
n ∩

Ker(2q − n), we assert that 2q f = n f is equivalent to have

n

∑
k=0

∞

∑
j=0

kHQ
j,k(q, q)αjk(I) =

n

∑
k=0

∞

∑
j=0

nHQ
j,k(q, q)αjk(I)

thanks to (5.5) combined with 2qHQ
j,k(q, q) = kHQ

j,k(q, q) (see [43]). By identification, we get
αjk(I) = 0 for every k 6= n. This completes the proof.

The following result is a Splitting Lemma for the S-polyregular functions generalizing
the standard one for the slice regular functions.

Proposition 5.1.8 (Splitting lemma for S-polyregular functions). If f is a S-polyregular func-
tion, then for every I ∈ S, and every J ∈ S perpendicular to I, there are two polyanalytic functions
F, G : CI −→ CI such that for any q = x + Iy, we have

f |CI (q) = F(q) + G(q)J.

Remark 5.1.9. The proof of Proposition (5.1.8) readily follows from Proposition 5.1.2 and the
standard Splitting Lemma ([61]) for the slice regular functions applied to each component
function ϕk. It can also be handled using sliceness. In fact, each slice function f on H (not
necessarily regular) can be split as

f |CI (x + Iy) = F(x + Iy) + G(x + Iy)J

, where J ⊥ I (see e.g. [64]). Then, f is polyregular of order n if and only if F and G are
polyanalytic of order nF and nG, respectively, with n = max{nF, nG}.

An analogue of the Identity Principle for the S-polyregular functions can also be ob-
tained. To this end, we begin by recalling the standard one for the slice regular functions
on slice domains.

Definition 5.1.10 ([61]). A domain U ⊂H such that U ∩R 6= ∅ is said to be slice, if for every
arbitrary I ∈ S the set UI := U ∩ LI is a domain of the complex plane CI := R + RI.

Lemma 5.1.11 ([61]). Let f : U −→ H be a slice regular function on a slice domain U. Denote
by Z f = {q ∈ U; f (q) = 0} the zero set of f . If there exists I ∈ S such that CI ∩ Z f has an
accumulation point, then f ≡ 0 on U.

This principle is no longer valid for S-polyregular functions as shown by the counterex-
ample 1− qq. However, we can provide a weak version of such uniqueness theorem.
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Proposition 5.1.12 (Identity Principle for S-polyregular functions). Let f be a S-polyregular
function in SRn such that f is identically zero on a sub-domain Ω ⊂ CI for some I ∈ S. Then f is
identically zero on the whole H.

Proof. By Proposition 5.1.2, we can write f ∈ SRn as f (q) =
n

∑
k=0

qk ϕk(q) with ϕk ∈ SR.

Now, by the assumption that f |Ω ≡ 0 with Ω is a subdomain of some slice CI , we obtain

n!ϕn|Ω(x + Iy) = ∂I
n
(

n

∑
k=0

(x− Iy)k ϕk|Ω(x + Iy)

)
≡ 0.

Repeating this procedure, we conclude that ϕk|Ω ≡ 0 for every k = n, n− 1, · · · , 1, 0. There-
fore, ϕk ≡ 0 on the whole H by Lemma 5.1.11. This implies that f ≡ 0 on H.

Remark 5.1.13. Other powerful uniqueness theorems as well as additional properties for
the S-polyregular functions can be obtained. They will be the subject of a forthcoming
investigation.

5.1.3 Star product for S-polyregular functions.

Recall first that the left ?L
s -product for left slice regular functions is defined by

( f ?L
s g)(q) =

∞

∑
n=0

qn

(
n

∑
k=0

akbn−k

)
(5.6)

for given convergent series f (q) =
∞

∑
n=0

qnan and g(q) =
∞

∑
n=0

qnbn on H. This is in fact the

product of two formal series with coefficients in a ring [48]. The performed series in (5.6) is
convergent on H and is a slice regular function [60]. This product is introduced to overcome
the fact that the pointwise product of left slice regular functions is not necessarily a left slice
regular function, but it is a S-polyregular function under further assumptions (see [57] for
details). For interesting results on the left ?L

s -product, one can refer to [13,61] and references
therein. To solve analogue problem in the context of left S-polyregular functions, a natural
extension of the ?L

s -product can be defined by considering

( f ?L
sp g)(q, q) = ∑

j=0,1,··· ,m
k=0,1,··· ,n

qj+k(ϕj ?
L
s ψk)(q) (5.7)

for given f (q, q) =
m

∑
j=0

qj ϕj(q) ∈ SRm and g(q, q) =
n

∑
k=0

qkψk(q) ∈ SRn. We define in a

similar way the right star product for right S-polyregular functions f (q, q) =
m

∑
j=0

ϕj(q)qj
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and g(q, q) =
n

∑
k=0

ψk(q)qk as follows

( f ?R
sp g)(q, q) = ∑

j=0,1,··· ,m
k=0,1,··· ,n

(ϕj ?
R
s ψk)(q)qj+k. (5.8)

Thus, one can easily check the following

Lemma 5.1.14. For every f ∈ SRm and g ∈ SRn, we have

(i) f ?L
sp g = g ?R

sp f , where f (q) = f (q) denotes the algebraic conjugation.

(ii) f ?L
sp g = g ?L

sp f if the coefficients of any components slice regular functions ϕj and ψk
commute.

Proof. Assertion (i) follows by taking the algebraic conjugate in (5.7) and next using the
well-established fact ϕj ?L

s ψk = ψk ?
R
s ϕj for slice regular functions ϕj and ψk. The second

assertion is immediate by comparing f ?L
sp g and g ?L

sp f .

A characterization for two S-polyregular functions to commute with respect to the ?L
sp-

product can be obtained, generalizing the one given in [13] for CJ-preserving slice regular
functions.

Definition 5.1.15 ([13,32]). Let J ∈ S. A slice regular function ϕ is said to be CJ-preserving if
both F and G in its stem function, ϕ = I(F + iG) are CJ-valued.

Definition 5.1.16. A S-polyregular function f (q, q) =
n
∑

k=0
qk ϕk(q) is said to be CJ-preserving,

for given J ∈ S, if their components slice regular functions ϕk are CJ-preserving.

Lemma 5.1.17. If f and g are two S-polyregular CJ-preserving functions for given J ∈ S, then
f ?L

sp g = g ?L
sp f .

Proof. The proof follows by making use of the fact that for CJ-preserving functions ϕ and
ψ, the ?L

s -product satisfies ϕ ?L
s ψ = ψ ?L

s ϕ (see [13]).

As basic example of computation with such ?L
sp-product, we explicit the one of the fol-

lowing function

Sk(p, p; q, q) :=
(
|p− q|2L

?sp

)k?L
sp

,

with |p− q|2L
?sp

:= (p− q) ?L
sp (p− q) = hq(p) ?L

sp hq(p), where we have set hq(p) = p− q.

Namely, we assert the following.

Lemma 5.1.18. For every k = 1, 2, · · · , and p, q ∈H, we have

Sk(p, p; q, q) =
k

∑
j=0

(−1)j
(

k
j

)
pk−jhk?L

s
q (p)qj. (5.9)
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Proof. The proof can be handled by induction. Indeed, direct computation shows that for
k = 1, 2, we have

S1(p, p; q, q) = p(p− q)− (p− q)q = phq(p)− hq(p)q

and

S2(p, p; q, q) =
(

phq(p)− hq(p)q
)
?L

sp
(

phq(p)− hq(p)q
)

= p2h2?L
s

q (p)− ph2?L
s

q (p)q− ph2?L
s

q (p)q + h2?L
s

q (p)q2

= p2h2?L
s

q (p)− 2ph2?L
s

q (p)q + h2?L
s

q (p)q2.

Now, assume that (5.1.19) holds true for fixed k. Then, we have

Sk+1(p, p; q, q) = Sk(p, p; q, q) ?L
sp S1(p, p; q, q)

=
k

∑
j=0

(−1)j
(

k
j

)(
pk−jhk?L

s
q (p)qj

)
?L

sp
(

phq(p)− hq(p)q
)

=
k

∑
j=0

(−1)j
(

k
j

)
pk+1−jh(k+1)?L

s
q (p)qj

−
k

∑
j=0

(−1)j
(

k
j

)
pk−jh(k+1)?L

s
q (p)qj+1.

Making the change of indices in the second sum in the right-hand side and using the well-
known identity (k

j) + ( k
j−1) = (k+1

j ), we get

Sk+1(p, p; q, q) = pk+1h(k+1)?L
s

q (p) + (−1)k+1h(k+1)?L
s

q (p)qk+1

+
k

∑
j=1

(−1)j
((

k
j

)
+

(
k

j− 1

))
pk+1−jh(k+1)?L

s
q (p)qj

=
k+1

∑
j=0

(−1)j
(

k + 1
j

)
pk+1−jh(k+1)?L

s
q (p)qj.

This competes the proof.

Accordingly, it is clear that the following assertions hold true.

(i) The function p 7−→ Sk(p, p; q, q) is left S-polyregular for every fixed q.

(ii) The function q 7−→ Sk(p, p; q, q) is right S-polyregular for every fixed p.

(iii) We have Sk(p, p; q, q) = Sk(q, q; p, p) for every p, q ∈H.
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The next result concerns the function on H×H defined by

L(γ,S1)
?n (p, q) := L(γ)

?n (S1(p, p; q, q)) = L(γ)
?n

(
|p− q|2L

?sp

)
, (5.10)

where L(γ)
?n is essentially the generalized Laguerre polynomial L(γ)

n ([99]) but with respect to
the ?L

sp-product. It will be used to obtain the explicit expression of the reproducing kernels
for the S-polyregular Bargmann spaces (see Section 5.2).

Lemma 5.1.19. The function L(γ,S1)
?n in (5.10) satisfies the properties (i), (ii) and (iii) above.

Proof. The proof readily follows since L(γ)
?n is a finite linear expansion of the functions Sk(p, p; q, q)

with real coefficients. More precisely, we have

L(γ)
?n (S1(p, p; q, q)) =

n

∑
k=0

Γ(γ + n + 1)
Γ(n− k + 1)Γ(γ + k + 1)

(−1)k

k!
Sk(p, p; q, q),

where Γ denotes the classical gamma function.

In the next sections, we introduce two classes of infinite dimensional right quaternionic
reproducing kernels Hilbert spaces that will be considered as the quaternionic analog of
complex polyanalytic Bargmann spaces.

5.2 S-polyregular Bargmann spaces

The well-known analytic Hilbert spaces on the complex plane have been generalized to
various contexts such as the quaternion setting (see for example [9,37,64? ]). Thus, the idea
of generalizing the true-polyanalytic Bargmann spaces ([4,59,114]) to the slice polyregular
case is rather natural. This is the aim of the present section. To this end, let SR2

1,n denote
the space of all convergent series

f (q, q) =
n

∑
k=0

∞

∑
j=0

qkqjαjk; αj,k ∈H,

on H, belonging to the right H-vector space SR2
n := SRn ∩ L2(CI0 , e−|ξ|

2
dλ), for some

I0 ∈ S.
The particular case of n = 0 gives rise to the slice Bargmann space F 2

slice considered in
[9], for which the monomials em(q) := qm constitute an orthogonal basis. In contrast to
what one can think, the monomials ej,k(q, q) := qjqk does not form an orthogonal system in
SR2

n as showed by 〈
ej,0, ej+k,k

〉
CI

=
∥∥ej+k

∥∥2
CI

= π(j + k)!.

Thus, motivated by Theorem 5.1.7, we will make use of the univariate quaternionic Hermite
polynomials HQ

j,k, instead of monomials ej,k, to describe SR2
n.
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Proposition 5.2.1. A function f belongs to SR2
1,n if and only it can be expanded as follows

f (q, q) =
n

∑
k=0

+∞

∑
j=0

HQ
j,k(q, q)αj,k

for some quaternionic constants αj,k satisfying the growth condition

+∞

∑
j=0

j!|αj,k|2 < +∞

for every k = 0, 1, · · · , n.

Proof. The direct implication follows making use of [43, Proposition 3.8], expressing the
monomials qkqj in terms of HQ

r,s,

qmqn = m!n!
min(m,n)

∑
k=0

HQ
m−k,n−k(q, q)

k!(m− k)!(n− k)!
. (5.1)

The orthogonality 〈
HQ

m,n, HQ
j,k

〉
CI

= πm!n!δm,jδn,k (5.2)

of HQ
r,s shows that the condition ‖ f ‖CI

< +∞ becomes equivalent to

‖ f ‖2
CI

=
n

∑
k,k′=0

+∞

∑
j,j′=0

αj,k

〈
HQ

j,k, HQ
j′,k′

〉
CI

αj′,k′

=
n

∑
k=0

+∞

∑
j=0
|αj,k|2

∥∥∥HQ
j,k

∥∥∥2
< +∞.

The argument for obtaining the inverse implication is Theorem 5.1.7.

Definition 5.2.2. The right quaternionic vector space SR2
1,n, generalizing the slice hyper-

holomorphic Bargmann space F 2
slice, is called S-polyregular Bargmann space of first kind

and level n (ordre n).

Another interesting subspace to deal with is the following

SR2
2,k :=

{
+∞

∑
j=0

HQ
j,k(q, q)cj; cj ∈H,

+∞

∑
j=0

j!|cj|2 < +∞

}
.

Definition 5.2.3. The right quaternionic vector space SR2
2,k is called here S-polyregular Bargmann

space of second kind and (exact) level k.
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Theorem 5.2.4. The spaces SR2
1,n and SR2

2,k are Hilbert spaces with orthogonal basis {HQ
j,k; k =

0, 1, · · · , n; j = 0, 1, · · · } and {HQ
j,k; , j = 0, 1, · · · }, respectively. Moreover, we have

SR2
1,n =

n⊕
k=0

SR2
2,k. (5.3)

Proof. As for n = 0, it is not difficult to see that the considered spaces are closed subspaces of
the Hilbert space L2(CI ; e−|q|

2
dλI), and therefore they are right quaternionic Hilbert spaces.

Now, for fixed nonnegative integer k, the polynomials HQ
j,k, j = 0, 1, 2, · · · , form an orthog-

onal system with respect to the gaussian measure and generate SR2
2,k. Their linear inde-

pendence is equivalent to their completion. In fact, for a given g =
+∞
∑

j=0
HQ

j,kcj ∈ SR2
2,k, the

condition that
〈

f , HQ
`,k

〉
= 0, for every ` = 0, 1, 2, · · · , implies that c` = 0 and therefore g is

identically zero on H, for
〈

f , HQ
`,k

〉
CI

= cj

∥∥∥HQ
`,k

∥∥∥2

CI
. Thus, {HQ

j,k, j = 0, 1, · · · } is orthogonal

basis of SR2
2,k. The assertion that {HQ

j,k, k = 0, 1, · · · , n, j = 0, 1, · · · } form an orthogonal

basis of SR2
1,n follows in a similar way. It is also an immediate consequence decomposition

which (5.3) readily follows since for given f ∈ SR2
1,n, we have

f =
n

∑
k=0

+∞

∑
j=0

HQ
j,kαj,k =

n

∑
k=0

gk,

where

gk :=
+∞

∑
j=0

HQ
j,kαj,k.

are clear in SR2
2,k. In addition, the family {gk, k = 0, 1, · · · , n} is orthogonal, since for k 6= k′,

we have

〈gk, gk′〉CI
=

(
+∞

∑
j,j′=0

αj,kαj′,k′δj,j′
∥∥∥HQ

j,k

∥∥∥2

CI

)
δk,k′ = 0.

Moreover,

‖ f ‖2
CI

=
n

∑
k=0
‖gk‖2

CI
= π

n

∑
k=0

+∞

∑
j=0

j!k!|αj,k|2. (5.4)

In order to show that the considered Hilbert spaces SR2
1,n and SR2

2,k possess reproduc-
ing kernels, we need the following.

Lemma 5.2.5. For every fixed q ∈H, the evaluation map δq f = f (q, q) is a continuous linear form
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on the Hilbert spaces SR2
1,n and SR2

2,k. Moreover, we have

| f (q, q)| ≤ 1√
π

e
|q|2

2 ‖ f ‖CI
. (5.5)

for every f ∈ SR2
1,n and therefore for every f ∈ SR2

2,k.

Proof. Let g ∈ SR2
2,k such that g =

+∞
∑

j=0
HQ

j,kcj. Using the Cauchy-Schwartz inequality and

the expression of the square norm of g, ‖g‖2
CI

= πk!
+∞

∑
j=0

j!|cj|2, we get

|g(q, q)| ≤

+∞

∑
j=0

|HQ
j,k(q, q)|2

π j!k!

 1
2

‖g‖CI
. (5.6)

The series in the right-hand side of (5.6) is absolutely convergent on B(0, r0) for every fixed
r0 and is independent of g. This follows making use of the following upper bound (see [43,
Corollary 4.3]): ∣∣∣HQ

n+k,n(q, q)
∣∣∣ ≤ (n + k)!

k!
|q|k e

|q|2
2 . (5.7)

More explicitly, by means of [20, Eq. (3.8)], we have

+∞

∑
j=0

|HQ
j,k(q, q)|2

π j!k!
=

e|q|
2

π
. (5.8)

This proves that

|g(q, q)| ≤ 1√
π

e
|q|2

2 ‖g‖CI
. (5.9)

Now, for f ∈ SR2
1,n, we have f =

n

∑
k=0

gk with gk ∈ SR2
2,k. Therefore, we obtain

| f (q, q)|2 ≤
n

∑
k=0
|gk(q, q)|2 ≤

n

∑
k=0

1
π

e|q|
2 ‖gk‖2 ≤ 1

π
e|q|

2 ‖ f ‖2
CI

by means of (5.4) and (5.9). This completes the proof.

The previous Lemma combined with the quaternionic version of the Riesz’ representa-
tion theorem [111, Theorem 1] ensures the existence of the reproducing kernels of SR2

1,n and
SR2

2,k. The next result gives their explicit expressions in terms of the Laguerre polynomial
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L(γ)
?n and the special convergent series

e[a,b]
∗ :=

+∞

∑
n=0

akbk

k!
.

Theorem 5.2.6. The reproducing kernels of SR2
1,n and SR2

2,k are given respectively by

K1,n(p, q) =
1
π

e[p,q]
∗

L
?sp L(1)

?n (|p− q|2L
?sp

) (5.10)

and

K2,k(p, q) =
1
π

e[p,q]
∗

L
?sp L?k(|p− q|2L

?sp
). (5.11)

Shortly, we have

f (p, p) = 〈K1,n(p, ·), f 〉CI
and g(p, p) = 〈K2,k(p, ·), g〉

CI

for every f ∈ SR2
1,n and g ∈ SR2

2,k.

Proof. For SR2
2,k, the computation of K2,k(p, q) can be done by performing

K2,k(p, q) =
1

πk!

+∞

∑
j=0

HQ
j,k(q, q)HQ

k,j(p, p)

j!
,

since {HQ
j,k; j = 0, 1, · · · } is an orthogonal basis of SR2

2,k (see Theorem 5.2.4) and HQ
k,j = HQ

j,k.
For real q = x or for p, q belonging to the same slice CI , the result follows by means of

1
π j!

+∞

∑
k=0

HQ
j,k(z, z)HQ

k,j(w, w)

k!
=

(−1)j

π j!
ezwHQ

j,j(z− w, z− w)

=
1
π

ezwLj(|z− w|2) (5.12)

which is an immediate consequence of Theorem 2.3 in [20], stating that

+∞

∑
j=0

tj

j!
Hk,j(z, z)Hj,k′(w, w) = (−t)k′Hkk′(z− tw, z− tw)etzw

is true for every |t| = 1 and z, w ∈ C, combined with the fact that HQ
k,k(ξ, ξ̄) = (−1)kk!Lk(|ξ|2),

where Lk = L(1)
k is the classical Laguerre polynomial of degree k.

Now, for given fixed non-real q, let Iq be in S such that q ∈ CIq . The functions

ϕ : p 7−→ K2,k(p, q) (5.13)
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and

ψ : p 7−→ 1
π

e[p,q]
∗

L
?sp L?k(|p− q|2L

?sp
) (5.14)

are clearly S-polyregular by the definition of the ?sp-product (see (5.7)) and Lemma 5.1.19.
Moreover, they coincide on the slice CIq by means of (5.12). Thus, by invoking the Identity
Principle for S-polyregular functions (Proposition 5.1.12), we conclude that φ ≡ ψ on the
whole H, for arbitrary q ∈H. Therefore, we have

K2,k(p, q) =
1
π

e[p,q]
∗

L
?sp L?k(|p− q|2L

?sp
)

for p, q ∈H. This completes our check for (5.11).

To conclude for Theorem 5.2.6, it suffices to observe that since SR2
1,n =

n⊕
k=0

SR2
2,k, we

have

K1,n(p, q) =
n

∑
k=0
K2,k(p, q).

Hence, in virtue of
n

∑
k=0

L(γ)
k (x) = L(γ+1)

n (x) (see [99, Eq. 12, p. 203]), we get

K1,n(p, q) =
n

∑
k=0

1
π

e[p,q]
∗

L
?sp L?k(|p− q|2L

?sp
)

=
1
π

e[p,q]
∗

L
?sp L(1)

?n (|p− q|2L
?sp

).

Remark 5.2.7. The restriction of K2,k to Ci ×Ci coincides with the reproducing kernel of the
true-polyanalytic Bargmann space [14,20,59]. Indeed, we have

K2,k|Ci×Ci(z, w) =
1
π

ezwLk(|z− w|2),

so that for k = 0, we recover the one of the classical Bargmann space
1
π

ezw.

Remark 5.2.8. The expression of K1,n(p, q) can be rewritten in the equivalent form

K1,n(p, q) =
1
π

L(1)
?n (|p− q|2L

?sp
)

L
?sp e[p,q]

∗ , (5.15)

thanks to (ii) of Lemma 5.1.14. The same observation holds true for K2,k(p, q).

Remark 5.2.9. The operator f 7−→ Pk f given by Pk f (p, p) = 〈K2,k(p, ·), f 〉
CI

, defined on the

whole H, defines a sort of extended orthogonal projection of L2(CI ; e−|q|
2
dλI) onto SR2

2,k.
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More explicitly, it reads

Pk f (p, p) =
1
π

∫
CI

e[p,q]
∗

L
?sp L?k(|p− q|2L

?sp

) f (q, q)e−|q|
2
dλI(q) (5.16)

for arbitrary p ∈H, which we can rewrite also as

Pk f (p, p) =
1
π

∫
CI

L?k(|p− q|2R
?sp

)
R
?sp e[q,p]

∗ f (q, q)e−|q|
2
dλI(q) (5.17)

by means of (ii) in Lemma 5.1.14.

We conclude this section with the following result giving an orthogonal hilbertian de-
composition of the Hilbert space L2(CI ; e−|q|

2
dλI).

Theorem 5.2.10. We have

L2(CI ; e−|q|
2
dλI) =

+∞⊕
k=0

SR2
2,k.

Proof. Notice first that such decomposition is equivalent to say that the orthogonal comple-
ment of

⊕
k≥0

SR2
2,k in L2(CI ; e−|q|

2
dλI) is {0}. To this end, we claim that

T(t|q) :=
∫

CI

1
(1− t)

e[q,ξ]
∗

L
?sp exp

(
− t

1− t
|q− ξ|2L

?sp

)
f (ξ)e−|ξ|

2
dλ(ξ) = 0 (5.18)

holds for every f ∈
(⊕

k≥0

SR2
2,k

)⊥
, every t ∈]0, 1[ and every fixed q ∈ H. In fact, this

follows readily making use of the generating function for the Laguerre polynomials ([99,
Eq. (14), p. 135])

∞

∑
k=0

tkL(α)
k (ξ) =

1
(1− t)α+1 exp

(
tξ

t− 1

)
.

Indeed,

T(t|q) =
∫

CI

e[q,ξ]
∗

L
?sp

(
+∞

∑
k=0

tkL?k(|w− q|2L
?sp

)

)
f (ξ)e−|ξ|

2
dλ(ξ)

=
∞

∑
k=0

tk
∫

CI

e[q,ξ]
∗

L
?sp L?k(|ξ − q|2L

?sp

)e−|ξ|2 f (ξ)dλ(ξ)

= 0.

The limit t −→ 1− in (5.18) yields an integral involving the Dirac δ-function at the point
q ∈ H. From that, the left-hand side of (5.18) reduces further to e[q,ξ]

∗ f (ξ)e−|ξ|
2
. Therefore,

f (q) = 0 for every q ∈H.
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5.3 Segal–Bargmann transforms for S-polyregular Bargmann
spaces

In this section, we introduce a family of suitable Bargmann’s type transforms defined on
the right quaternionic Hilbert space L2

H(R; dt), consisting of all square integrable H-valued
functions with respect to the inner product

〈 f , g〉R :=
∫

R
f (t)g(t)dt.

Their images will be the S-polyregular Bargmann spaces defined and studied in the previ-
ous section. To this end, we define the kernel functions B`,n(x; q), ` = 1, 2, on R×H to be
the bilinear generating functions

B2,k(x; q) =
+∞

∑
j=0

hj(t)HQ
j,k(q, q)∥∥hj

∥∥
R

∥∥∥HQ
j,k

∥∥∥
CI

(5.1)

and

B1,n(x; q) =
n

∑
k=0

B2,k(x; q), (5.2)

where hj(t) denotes the j-th real Hermite function associated to the real Hermite polynomial
Hj(t),

hj(t) = (−1)je
t2
2

dj

dtj (e
−t2

) = e−
t2
2 Hj(t). (5.3)

We recall that the real Hermite functions form an orthogonal basis of L2
H(R; dt), with square

norm given by ∥∥hj
∥∥2

R
= 2j j!

√
π. (5.4)

Thus, we assert

Theorem 5.3.1. For every t ∈ R and q ∈H, the kernel function B2,k is given bythe closed formula

B2,k(t; q) :=
(

1
π

) 3
4 1√

2kk!
exp

(
− t2 + q2

2
+
√

2qt

)
Hk

(
q + q√

2
− t
)

. (5.5)

Moreover, the function B2,k;q : t 7−→ B2,k(t; q) belongs to L2
H(R; dt) for every fixed q ∈ H, and we

have ∥∥B2,k;q
∥∥

R
=

1√
π

e
|q|2

2 . (5.6)
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Proof. The explicit expression of the kernel function B2,k(t; q) can be obtained by [43, Theo-
rem 5.7]. For the second assertion, fix q = x + Iy in H and write the modulus of the kernel
function B2,k(t; q) as

|B2,k(t; q)|2 =

(
1
π

) 3
2 1

2kk!

∣∣∣∣e− t2
2 −

x2
2 +

y2
2 +Ixy+

√
2tq
∣∣∣∣2 ∣∣∣Hk(

√
2x− t)

∣∣∣2
=

(
1
π

) 3
2 1

2kk!
e−t2−x2+y2+2

√
2xt
∣∣∣Hk(
√

2x− t)
∣∣∣2 .

Therefore, it follows that

∥∥B2,k;q
∥∥2

R
=

(
1
π

) 3
2 1

2kk!
ex2+y2

∫
R

e−(t−
√

2x)2 |Hk(t−
√

2x)|2dt

=

(
1
π

) 3
2 1

2kk!
e|q|

2
∫

R
e−u2 |Hk(u)|2du

=

(
1
π

) 3
2 1

2kk!
e|q|

2
∫

R
|hk(u)|2du

=

(
1
π

) 3
2 1

2kk!
e|q|

2 ‖hk‖2
R

=
1
π

e|q|
2
.

Remark 5.3.2. By comparing (5.6) to (5.8), we conclude that
∥∥B2,k;q

∥∥
R
=
√

Kk(q, q) for every
q ∈H.

Associated to the kernel function B2,k given through (5.1) (or also (5.5)), we are able
to introduce a unitary integral transform (of Bargmann type) mapping isometrically the
configuration space L2

H(R; dt) onto the constructed S-polyregular Bargmann space SR2
2,k.

In fact, we have to consider

[B2,kφ](q) := 〈B2,k(·; q), φ〉
R

.

More explicitly,

[B2,kφ](q) :=
(

1
π

) 3
4 1√

2kk!

∫
R

e−
t2+q2

2 +
√

2qtHk

(
q + q√

2
− t
)

φ(t)dt

for a given function φ : R → H, provided that the integral exists. The following result
shows that B2,k is well-defined on L2

H(R; dt). Namely, we have

Lemma 5.3.3. For every quaternion q ∈H and every φ ∈ L2
H(R; dt), we have

|[B2,kφ](q, q)| ≤ 1√
π

e
|q|2

2 ‖φ‖R .
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Proof. The proof readily follows by applying the Cauchy-Schwartz inequality. In fact, we
obtain

|B2,kφ(q, q)| ≤
∫

R
|B2,k(t; q)||φ(t)|dt ≤

∥∥B2,k;q
∥∥

R
‖φ‖R . (5.7)

In view of (5.6), the inequality (5.7) reduces further to

|B2,kφ(q, q)| ≤ e
|q|2

2
√

π
‖φ‖R .

Theorem 5.3.4. The transform B2,k defines a Hilbert space isomorphism from L2
H(R; dt) onto

SR2
2,k.

Proof. Notice first that the Segal–Bargmann transform B2,k maps the orthogonal basis hj

of L2
H(R; dt) to the orthogonal basis HQ

j,k(q, q) of the S-polyregular Bargmann space SR2
2,k.

More precisely, we have

[B2,k(hj)](q, q) =
(

1
π

) 1
4
√

2j
√

k!
HQ

j,k(q, q).

Then, one can conclude since B2,k is continuous (by Lemma 5.3.4).

5.4 Spectral realization of the S-polyregular Bargmann spaces

5.4.1 Discussion.

In this section, we show that the S-polyregular Bargmann space SR2
2,n (and therefore SR2

1,n)
is closely connected to the concrete L2-spectral analysis of the slice differential operator 2q

in (22). To this end, we begin by considering the C∞-spectral properties of 2q which requires
to solve two problems. The first one is connected to the uniqueness problem of the polar
representation q = reIθ of the slice representation q = x + Iy, of given q ∈ H. This can be
resolved by restricting q to H̃ = H \R and next extend, somehow, the obtained results to
the whole H. The second problem is related to the notion of the slice derivative given by
(23) which makes 2q not necessarily elliptic. To see this, notice that ∂s can be rewritten in
the following unified form

∂s =
1
2

(
(1 + χR(q))

∂

∂x
− (1− χR(q)) Iq

∂

∂y

)
, (5.1)
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so that the operator 2q reads

2q = −
1
4

{
(1 + χR(q))

2 ∂2

∂x2 + (1− χR(q))
2 ∂2

∂y2

}
(5.2)

+
1
2
(1 + χR(q))

(
x

∂

∂x
+ y

∂

∂y

)
+

Iq

2
(1− χR(q))

(
x

∂

∂y
− y

∂

∂x

)
.

It can be seen as a family of second order differential operators on R2 labeled by S. Accord-
ingly, for every fixed Iq ∈ S, the operator 2q is not elliptic nor uniform elliptic. However, it
is semi-elliptic since the eigenvalues of the corresponding matrix

−1
4

(
(1 + χR(q))

2 0
0 (1− χR(q))

2

)

are clearly non-positives (but not necessary negatives).
In ordre to provide, a spectral realization of the S-polyregular Bargmann spaces, intro-

duced in Section 5.2, we begin by studying the right eigenvalue problem of 2q in (5.2) when
acting on the C∞- as well as on the L2-quaternionic-valued functions on H̃, and next extend
the obtained expressions to the real line.

Notice that R is a negligible Borel measurable set with respect to the gaussian measure
on H, and therefore∫

H
f (q)e−|q|

2
dλ(q) =

∫
H̃

f (q)e−|q|
2
dλ(q)

=
∫

R+∗×]0,2π[×S
f (reIθ)e−r2

rdrdθdσ(Iq), (5.3)

where dr (resp. dθ) denotes the Lebesgue measure on positive real line (the unit circle) and
dσ(I) stands for the standard area element on S. This observation will be used systemati-
cally when discussing square integrability of the appropriate extension on the whole H.

5.4.2 C∞-right-eigenvalue problem.

Let µ be a fixed quaternionic number and consider the right eigenvalue problem 2q f = f µ

for f belonging to the right quaternionic vector space C∞(H) of all quaternionic-valued
functions that are C∞ on the whole H ' R4. Thus, associated to µ, we define the C∞-
eigenspace

E∞
µ (H, 2q) :=

{
f ∈ C∞(H); 2q f = f µ

}
. (5.4)

Notice for instance that E∞
µ (H, 2q) is not necessarily a quaternionic right vector space. But,

it is a Cµ-right vector space, where Cµ := {p ∈ H, pµ = µp} is the set of all quaternion
numbers commuting with µ. We have Cµ = H when µ is real and Cµ is Cµ otherwise.

The first main result of this section concerns the explicit characterization of the elements
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of E∞
µ (H, 2q). Such description involves the Kummer’s function defined by

M
(

a
c

∣∣∣∣x) =
∞

∑
j=0

(a)j

(c)j

xj

j!
, (5.5)

for given a ∈ H and x, c ∈ R, c 6= 0,−1,−2, · · · , where (a)j denotes the rising factorial
(a)j = a(a + 1) · · · (a + j− 1) with (a)0 = 1. Namely, we have

Theorem 5.4.1. A C∞-quaternionic-valued function f on H is a solution of 2q f = f µ on H̃ if and
only if it can be expanded as

f (|q|eIqθ) = ∑
j∈Z

q(1+sgn(j)) |j|2 q(1−sgn(j)) |j|2 M

(
−µ− (1− sgn(j)) j

2
|j|+ 1

∣∣∣∣|q|2
)

γI
µ,j (5.6)

for some quaternionic-valued functions Iq 7→ γI
µ,j on S with values in Cµ. Here sgn denotes the

signum function.

Proof. Let f : H −→H be a C∞-quaternionic-valued function which is solution of 2q f = f µ

on H̃. Then, f̃ = f |
H̃

satisfies ∆q f̃ = f̃ µ, where ∆q denotes the restriction of the slice
differential operator 2q in (22) to H̃. It takes the form

∆q = −
1
4

(
∂2

∂x2 +
∂2

∂y2

)
+

1
2

(
x

∂

∂x
+ y

∂

∂y

)
+

I
2

(
x

∂

∂y
− y

∂

∂x

)
. (5.7)

Its expression in polar coordinates q = reIθ, with r > 0, 0 ≤ θ ≤ 2π and I ∈ S, is given by
the following

∆q = −
1
4

(
∂2

∂r2 +

[
1
r
− 2r

]
∂

∂r
+

∂2

r2∂θ2 − 2I
∂

∂θ

)
and its action, on any C∞ function (r, θ) −→ eI jθaI

j (r) on [0, 2π[×[0,+∞[, is given by

∆q(eI jθaI
j (r)) = −

eInθ

4r2

[
r2 ∂2

∂r2 + (1− 2r2)r
∂

∂r
+ (2jr2 − j2)

]
aI

j (r). (5.8)

Now, since f̃ ∈ C∞(H̃) and its restriction f̃ (reIθ) to CI is in addition periodic with respect
to θ, one can expand it in Fourier series as

f̃ (reIθ) = ∑
j∈Z

eI jθaI
j (r), (5.9)

where the functions (r, I) 7−→ aI
j (r) are C∞ on [0,+∞[×S. Therefore, by inserting (5.9) in

the right-eigenvalue problem ∆q f̃ = f̃ µ taking into account (5.8), we see that[
r2 ∂2

∂r2 + (1− 2r2)r
∂

∂r
+ (2jr2 − j2)

]
aI

j (r) = −4r2aI
j (r)µ (5.10)
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holds for every integer j and fixed r and I. Now, by the changes of variable t = r2 > 0 and
of function aI

j (r) = tαbj(t, I), we get

tb
′′
j (·, I) + (2α + 1− t)b

′
j(·, I) +

1
t

(
α− j

2

)(
α +

j
2
− t
)

bj(·, I) = −bj(·, I)µ. (5.11)

For the ansatz α = |j|/2, we recognize the left-quaternionic version of the confluent hyper-
geometric differential equation

tb
′′
j (·, I) + (c− t)b

′
j(·, I) = bj(·, I)a (5.12)

satisfied by bj(·, I) on ]0,+∞[, with c = |j|+ 1 and a = −µ− jχZ−(j) = −µ− (1− sgn(j)) j
2 ∈

H. Its first solution is given by Kummer’s function M
(

a
c

∣∣∣∣t) for c = |j|+ 1 being a pos-

itive integer, the second (linearly independent) solution is given by Tricomi’s logarithmic
function [112, p. 21] (see also [1, p. 504])

U
(

a
|j|+ 1

∣∣∣∣t) :=
(|j| − 1)!

Γ(a)
Sa

j (t) +
(−1)|j|+1

|j|!Γ(a− |j|)

{
M
(

a
|j|+ 1

∣∣∣∣t) ln t

+
+∞

∑
k=0

(a)k
(|j|+ 1)k

(ψ(a + k)− ψ(1 + k)− ψ(|j|+ 1 + k))
tk

k!

}
,

where ψ(x) denotes the logarithmic derivative of the gamma function, ψ(x) = Γ′(x)/Γ(x),
and Sa

j (t) is the finite sum given by

Sa
j (t) :=

+∞

∑
k=0

(a− |j|)k
(1− |j|)k

tk−|j|

k!

and interpreted as 0 when j = 0. Thus, the only solution of (5.12) that can be extended to a
A C∞ function at t = 0 is given by

bj(t, I) = M

(
−µ− (1− sgn(j)) j

2
|j|+ 1

∣∣∣∣t
)

γI
µ,j

for some quaternionic constants γI
µ,j ∈ Cµ (viewed as functions on S). Therefore, the corre-

sponding f , whose restriction to H̃ are solutions of the right-eigenvalue problem ∆q f̃ = f̃ µ,
are given by

f (reIθ) = ∑
j∈Z

r|j|ejIθ M

(
−µ− (1− sgn(j)) j

2
|j|+ 1

∣∣∣∣r2

)
γI

µ,j.

They can rewritten as in (5.6). Such expression is well-defined as a C∞ function on the whole
H.
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Remark 5.4.2. The extension of the solution of differential equation (5.12) at the regular sin-
gular point 0 corresponds to the extension of the solution of the right-eigenvalue problem
∆q f = f µ on H̃ to the whole H.

Remark 5.4.3. The quaternionic Cµ-right-vector space E∞
µ (H, 2q) is generated by the func-

tions

ψµ,j(q) := q(1+sgn(j)) |j|2 q(1−sgn(j)) |j|2 M

(
−µ− (1− sgn(j)) j

2
|j|+ 1

∣∣∣∣|q|2
)

(5.13)

for varying j ∈ Z. The expansion of any f ∈ E∞
µ (H, 2q) in terms of ψµ,j(q) involves slice

right coefficients γI
µ,j ∈ Cµ.

5.4.3 L2-right-eigenvalue problem.

In the sequel, we are interested in giving a concrete description of L2-eigenspaces of the
right-eigenvalue problem 2q f = f µ. To this end, we define

F 2
µ :=

{
f ∈ L2(H; e−|q|

2
dλ); 2q f = f µ

}
, (5.14)

as well as
F̃ 2

µ :=
{

f ∈ L2(H̃; e−|q|
2
dλ); ∆q f̃ = f̃ µ

}
, (5.15)

where L2(H; e−|q|
2
dλ) denotes the right quaternionic Hilbert space of all quaternionic-valued

square integrable functions on H with respect to the inner product

〈 f , g〉H :=
∫

H
f (q)g(q)e−|q|

2
dλ(q) (5.16)

with dλ(q) = dx0dx1dx2dx3 being the Lebesgue measure on H ' R4. We define in a similar
way L2(H̃; e−|q|

2
dλ) and

〈
f̃ , g̃
〉

H̃
. Thus, the following lemmas are fundamentals for our

investigation of the L2-eigenspaces F 2
µ.

Lemma 5.4.4. With the same notations as above, we have the following results.

(i) It holds
SpecL2(H;e−|q|2 dλ)

(2q) ⊂ SpecL2(H̃;e−|q|2 dλ)
(∆q),

where Spec denotes the spectrum of the prescribed operator.

(ii) The space F 2
µ is a L2-subspace of E∞

µ (H̃, ∆q) and we have

F 2
µ ⊂ F̃ 2

µ = L2(H̃; e−|q|
2
dλ) ∩ E∞

µ (H̃, ∆q). (5.17)

Proof. The first assertion holds true since for every f ∈ L2(H; e−|q|
2
dλ), we have f̃ ∈

L2(H̃; e−|q|
2
dλ) with ‖ f ‖H =

∥∥∥ f̃
∥∥∥

H̃
. The second assertion is an immediate consequence of

the ellipticity of ∆q seen as a second order differential operator on R×R∗ (see [45,86]).

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
Concrete Description, Associated Functional Spaces and Integral Transforms

89



CHAPTER 5. S-POLYREGULAR BARGMANN SPACES

The second key lemma concerns the elementary functions

ϕµ,j(q) := ψµ,j(q)αI
j

associated to given αI
j ∈ Cµ, where q = x + Iy ∈H and ψµ,j are as in (5.13).

Lemma 5.4.5. The following results hold true.

(i) The functions ϕµ,j are pairwise orthogonal in the sense that
〈

ϕµ,j, ϕµ,k
〉
= 0 whenever j 6= k.

(ii) The functions ϕµ,j belong to L2(H; e−|q|
2
dλ) if and only if µj = µ+ j is a nonnegative integer.

(iii) Let µj = 0, 1, 2, · · · . Then, the square norm of ϕµj,j in L2(H; e−|q|
2
dλ) is given by

∥∥∥ϕµj,j

∥∥∥2

H
= π

µj!(|j|!)2

(µj + j)!

∫
S
|αI

j |2dσ(I). (5.18)

Proof. The first assertion follows by direct computation using polar coordinates, q = reIθ.
Indeed, in these coordinates, the Lebesgue measure dλ becomes the product of the standard
measures rdr on R+ and the Lebesgue measure dθ on the unit circle times the standard area
element dσ(I) on S, the two-dimensional sphere of imaginary units in H. Therefore, for
every αI

j ∈H, we have〈
ϕµj,j, ϕµk,k

〉
=
∫

H̃
ψµj,j(q)α

I
j ψµk,k(q)αI

ke−|q|
2
dλ(q)

=
∫ ∞

0
r|j|+|k|+1

∫
S

αI
j Rj,k(I)αI

ke−r2
dσ(I)dr, (5.19)

where Rj,k(I) stands for

Rj,k(I) := M
(
−µj
|j|+ 1

∣∣∣∣r2
)(∫ 2π

0
e(k−j)Iθdθ

)
M
(
−µk
|k|+ 1

∣∣∣∣r2
)

.

The use of the well-known fact
∫ 2π

0 e(k−j)Iθdθ = 2πδj,k completes our check of (i). Now, by
the change of variable t = r2 we obtain

〈
ϕµj,j, ϕµk,k

〉
= π

(∫
S
|αI

j |2dσ(I)
)(∫ ∞

0
tj
∣∣∣∣M(

−µj
|j|+ 1

∣∣∣∣t)∣∣∣∣2 e−tdt

)
δj,k. (5.20)

Therefore, to prove the second assertion, we make use of the asymptotic behavior

M
(

a
c

∣∣∣∣t) ∼ etta−c

Γ(a)

for t large enough and a 6= 0,−1,−2, · · · , that follows from the Poincaré-type expansion
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[108, Section 7.2]

M
(

a
c

∣∣∣∣t) ∼ etta−c

Γ (a)

∞

∑
k=0

(1− a)k(c− a)k
k!

t−k.

Indeed, if µj 6= 0, 1, 2, · · · , then the nature of the integral involved in the right-hand side of
(5.20) is equivalent to

1
|Γ(−µj)|2

∫ ∞

0
t−(2<(µj)+|j|+2)etdt

which is clearly divergent. Thus, we necessarily have µj = 0, 1, 2, · · · . In this case, the
involved Kummer’s function is the generalized Laguerre polynomial ([99, Eq. (1), p. 200])

M
(
−µj
|j|+ 1

∣∣∣∣t) =
µj!

(|n|+ 1)µj

L(j)
µj (t) (5.21)

which satisfies the following orthogonality property [99, Eq. (4), p. 205 - Eq. (7), p. 206]∫
R+

L(α)
j (t)L(α)

k (t)tαe−tdt =
Γ(α + j + 1)

Γ(j + 1)
δj,k. (5.22)

More precisely, starting from (5.20), the explicit computation yields

∥∥∥ϕµj,j

∥∥∥2

H
= π

(
µj!

(|j|+ 1)µj

)2(∫ ∞

0
(L(j)

µj (t))
2tje−tdt

)
×
(∫

S
|αI

j |2dσ(I)
)

= π
µj!(j!)2

(µj + j)!

(∫
S
|αI

j |2dσ(I)
)

.

This completes the proof of (ii) and (iii).

Remark 5.4.6. If µ is a fixed nonnegative integer µ = n, then ψµj,jα
I
j belongs to L2(H; e−|q|

2
dλ)

if and only if j ≥ −n, unless the corresponding αI
j is zero. In this case, the square norm of

ψn,j (in (5.13)) is given by

∥∥ψn,j
∥∥2

H
= π

n!(j!)2

(n + j)!
Area(S), (5.23)

where Area(S) denotes the surface area of S.

The next result shows in particular that the spectrum of 2q acting L2(H; e−|q|
2
dλ) is

purely discrete and reduces to the quantized eigenvalues known as Landau levels.

Theorem 5.4.7. The space F 2
µ is nontrivial if and only if µ = n = 0, 1, 2, · · · . In this case, a

nonzero quaternionic-valued function f belongs to F 2
n(H) if and only if it can be expanded as

f (q) =
+∞

∑
j=−n

qj M
(
−n
|j|+ 1

∣∣∣∣|q|2)Cj(I), (5.24)
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where the quaternionic constants Cj(I) satisfy the growth condition

‖ f ‖2
H = π

+∞

∑
j=−n

n!(j!)2

(n + j)!

(∫
S
|Cj(I)|2dσ(I)

)
< +∞. (5.25)

Proof. Fix µ ∈ H and assume that there is a nonzero f ∈ L2(H; e−|q|
2
dλ) solution of 2q f =

f µ. Then, the realization (5.17) and the proof of Theorem 5.4.1 show that f̃ := f |
H̃

admits
the expansion

f̃ (|q|eIqθ) = ∑
j∈Z

ψµj,j(q)γ
I
µ,j.

The orthogonality of the (ψµj,j)j (see (i) of Lemma 5.4.5) infers that

∥∥∥ f̃
∥∥∥2

H̃
= ∑

j∈Z

∥∥∥ψµj,jγ
I
µ,j

∥∥∥2

H

=
π

Area(S) ∑
j∈Z

(∫
S
|γI

µj,j|
2dσ(I)

)∥∥∥ψµj,j

∥∥∥2

H
.

Therefore, since the nonzero function f belongs to F 2
µ, we have necessarily

∥∥∥ψµj,j

∥∥∥2

H
is finite

for every j such that ∫
S
|γI

µ,j|2dσ(I) 6= 0.

Now, (ii) of Lemma 5.4.5 readily implies that µ is necessary of the form µ = n = 0, 1, 2, · · · ,
and j ≥ −n. In such case, the γI

µ,j =: Cj(I) are arbitrary in H = Cµ for µ being real.
Moreover, we have

‖ f ‖2
H = π

+∞

∑
j=−n

n!(j!)2

(n + j)!

∫
S
|Cj(I)|2dσ(I).

This yields the growth condition (5.25) and the proof is completed.

The following result describes the fact that the elements of F 2
n can be expanded as series

of the quaternionic Hermite polynomials HQ
j,n(q, q).

Corollary 5.4.8. The space F 2
n contains the quaternionic Hermite polynomials (HQ

n+j,n)j defined by
(16). Moreover, every element f belonging to F 2

n can be expanded as

f (q) =
+∞

∑
j=−n

(−1)j j!
(n + j)!

HQ
n+j,n(q, q)Cj(I) (5.26)

for some slice quaternionic constants Cj(I) displaying the growth condition (5.25).

Proof. This lies in the fact that the involved confluent hypergeometric function is connected
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to the quaternionic Hermite polynomials through

qjM
(
−n
|j|+ 1

∣∣∣∣|q|2) =
(−1)n j!
(n + j)!

HQ
n+j,n(q, q), (5.27)

see Lemma 3.2 in [43]. Therefore, the expression of f (q) given through (5.24) reduces further
to (5.26) with the same growth condition (5.25).

5.4.4 Connection to S-polyregular Bargmann spaces of first kind.

By Corollary 5.4.8, the space F 2
n can be realized as the space of the convergent series

+∞

∑
j=0

(−1)n j!
j!

HQ
j,n(q, q)Cj(Iq)

on H, where (Cj(Iq))j are certain quantities in ∈H such that

π
+∞

∑
j=−n

n!(j!)2

(n + j)!

(∫
S
|Cj(Iq)

2dσ(I)
)
< +∞.

It reduces further to SR2
2,n when the Cj(Iq) are assumed to be constant functions on S,

Cj(Iq) = Cj. In particular, by taking n = 0, the previous growth condition reads simply as

πArea(S)
+∞

∑
j=0

j!|Cj|2 < +∞.

Comparing this to the sequential characterization of the slice hyperholomorphic Bargmann
space F 2

slice given by Proposition 3.11 in [9], we see that F 2
slice ⊂ F 2

0 .

5.5 Full S-polyregular Bargmann spaces

Motivated by Theorem 4.2 in [43] asserting that the quaternionic Hermite polynomials
(HQ

j,k)j,k form a slice basis of the Hilbert space L2(H; e−|q|
2
dλ), equipped with the scalar

product

〈 f , g〉H =
∫

H
f (q)g(q)e−|q|

2
dλ(q), (5.1)

we define SR2
n, f ull to be the space of S-polyregular functions (of level n) spanned by the

quaternionic Hermite polynomials HQ
j,n, for varying j = 0, 1, 2, · · · , and belonging to L2(H; e−|q|

2
dλ).

Then, we have
〈 f , g〉H =

∫
S
〈 f , g〉CI

dσ(I)
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and subsequently, the space SR2
n, f ull can be described as the right quaternionic vector space

consisting of the convergent series

+∞

∑
j=0

HQ
j,n(q, q)Cj(Iq)

on H, with Cj : S −→H, and such that

πn!
∞

∑
j=0

∫
S
|Cj(I)|2dσ(I) < +∞.

This is exactly the sequential characterization of L2-eigenspace F 2
n . The particular case of

n = 0 corresponds to the full hyperholomorphic Bargmann space

F 2
f ull := SR ∩ L2(H; e−|q|

2
dλ) (5.2)

defined as the right quaternionic Hilbert space of all slice regular functions that are e−|q|
2
dλ-

square integrable on H. This lies on the fact that F 2
f ull is the space of functions f (q) =

∞
∑

j=0
qjCj(I) satisfying

‖ f ‖2
H = π

+∞

∑
j=0

j!
(∫

S
|Cj(I)|2dσ(I)

)
< +∞.

More generally, it is not difficult to prove that the spaces SR2
n, f ull are right quaternionic

Hilbert spaces. We call them here the full S-polyregular Bargmann spaces of second kind of
level n. The quaternionic Hermite polynomials HQ

j,n, for varying j = 0, 1, 2, · · · , constitute
an orthogonal "slice" basis of it.
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Chapter6
Composition of Segal–Bargmann
transforms

We introduce and discuss some basic properties of some integral transforms in the
framework of specific functional Hilbert spaces, the holomorphic Bargmann–Fock
spaces on C and C2 and the slice hyperholomorphic Bargmann–Fock space on H.
The first one is a natural integral transform mapping isometrically the standard
Hilbert space on the real line into the two-dimensional Bargmann–Fock space. It is
obtained as composition of the one and two dimensional Segal–Bargmann trans-
forms and reduces further to an extremely integral operator that looks like a com-
position operator of the one-dimensional Segal–Bargmann transform with a spe-
cific symbol. We study its basic properties, including the identification of its image
and the determination of a like-left inverse defined on the whole two-dimensional
Bargmann–Fock space. We examine their combination with the Fourier trans-
form which lead to special integral transforms connecting the two-dimensional
Bargmann–Fock space and its analogue on the complex plane. We also investigate
the relationship between special subspaces of the two-dimensional Bargmann–
Fock space and the slice-hyperholomorphic one on the quaternions by introduc-
ing appropriate integral transforms. We identify their image and their action on
the reproducing kernel.

6.1 On composition of Segal–Bargmann transforms

The kernel function of the d-dimensional Segal–Bargmann transform Bd,ν in (20) is the ana-
lytic continuation to Cd of the standard Gaussian density on Rd. It is given by

Aν
d(z, x) = cν

de−ν
(

x− z√
2

)2

(6.1)

95



CHAPTER 6. COMPOSITION OF SEGAL–BARGMANN TRANSFORMS

with z2 := z2
1 + z2

2 + · · ·+ z2
d for z = (z1, · · · , zd) ∈ Cd. Then, the integral transform in (25)

acts on L2,ν(R, C) by

Gν f (z, w) :=
( ν

π

) 1
2
∫

R
f (x)Aν

1

(
z + iw√

2
, x
)

dx. (6.2)

The following result shows that the transform Gν can be realized in a natural way by means
of the Segal–Bargmann transforms Bd,ν; d = 1, 2, according to the following diagram

L2,ν(R, C) B
1,ν
//

Gν &&

F 2,ν(C)

B2,ν
��

F 2,ν(C2)

Theorem 6.1.1. The above diagram is commutative, in the sense that we have Gν = B2,ν ◦ B1,ν on
L2,ν(R, C). Moreover, Gν defines an isometric operator mapping the Hilbert space L2,ν(R, C) into
the Bargmann–Fock space F 2,ν(C2).

Proof. For every given ϕ ∈ L2,ν(R, C), the function B2,ν ◦ B1,ν(ϕ) is clearly a holomorphic
function on C2 and belongs to L2,ν(C2, C). Moreover, B2,ν ◦ B1,ν defines an isometric op-
erator from L2,ν(R, C) into F 2,ν(C2) since B2,ν and B1,ν are. To conclude for the proof of
Theorem 6.1.1, we only need to show that the diagram is commutative. Thus, for every
given z, w ∈ C and x, y ∈ R, we have

B2,ν ◦ B1,ν f (z, w) =
∫

R2

∫
R

f (t)Aν
2((z, w), (x, y))Aν

1(x + iy, t)dtdxdy

= cν
2cν

1

∫
R2

∫
R

f (t)e
−ν

{(
x− z√

2

)2
+
(

y− w√
2

)2
+
(

t− x+iy√
2

)2
}

dtdxdy

(∗)
=
(π

ν

)
cν

2

∫
R

f (t)Aν
1

(
z + iw√

2
, t
)

dt. (6.3)

The transition (∗) follows by direct computation, making appeal of the Fubini’s Theorem as
well as the explicit formula for the Gaussian integral. The proof of the theorem is completed
by comparing the right-hand side of (6.3) to (6.2).

The next result identifies the image of L2,ν(R, C) by the one-to-one transform Gν, and
characterizes it as the kernel kerF2,ν(C2)(Dz,w) of the first-order differential operator

Dz,w :=
∂

∂z
+ i

∂

∂w

acting on F 2,ν(C2). More precisely, we assert the following

Theorem 6.1.2. Keep notations as above and defineA2,ν(C2) as in (26),A2,ν(C2) := kerF2,ν(C2)(Dz,w).
Then, we have

(i) A2,ν(C2) is a closed subspace of F 2,ν(C2).
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(ii) The functions eν
m(z, w) := (z + iw)m form an orthogonal basis of the Hilbert spaceA2,ν(C2).

(iii) A2,ν(C2) = Gν(L2,ν(R, C)).

Proof. Notice first that by the definition in (25) and the fact that

B1,ν(Hν
m)(ξ) =

( ν

π

)1/4√
2

m
νmξm,

the action of Gν on the rescaled Hermite polynomials in (2.2) is given by

Gν(Hν
m)(z, w) =

( ν

π

) 1
2 B1,ν(Hν

m)

(
z + iw√

2

)
= cν

1νm(z + iw)m. (6.4)

Subsequently, the image Gν(L2,ν(R, C)) is then spanned by the functions eν
m(z, w) := (z +

iw)m, since the polynomials Hν
k form an orthogonal basis of L2,ν(R, C). Accordingly, the

proof of (i) readily follows and then A2,ν(C2) is a Hilbert space for the scalar product in-
duced from F 2,ν(C2), while (iii) is an immediate consequence of (ii). Moreover, the func-
tions eν

k(z, w) satisfy Dz,weν
k(z, w) = 0 and form an orthogonal system in the Hilbert space

A2,ν(C2). To conclude for (ii), we should prove completeness of eν
k(z, w) inA2,ν(C2). To this

end, let F ∈ F 2,ν(C2) such that Dz,wF = 0 and
〈

F, eν
k
〉

L2,ν(C2,C)
= 0 for all k and show that F

is then identically zero on C2. Indeed, by expanding F as series F(z, w) =
+∞
∑

m,n=0
am,nzmwn ∈

F 2,ν(C2), we show that

〈F, eν
k〉L2,ν(C2,C) =

k

∑
j=0

(
k
j

)
(−i)jak−j,j

∥∥ek−j
∥∥2

L2,ν
C

(C)

∥∥ej
∥∥2

L2,ν
C

(C)
,

where ej(ξ) = ξ j. Hence
〈

F, eν
k
〉

L2,ν(C2,C)
= 0, for every k = 0, 1, · · · , implies that

(π

ν

)2 k!
νk

k

∑
j=0

(−i)j ak−j,j = 0. (6.5)

Moreover, we can show that the condition Dz,wF = 0 is equivalent to that

am+1,n = −i
(

n + 1
m + 1

)
am,n+1

for all m, n = 0, 1, · · · , which by induction infers

am,n = in
(
(m + n)!

m!n!

)
am+n,0, m = 0, 1, · · · ; n = 1, · · · . (6.6)

Inserting this in (6.5), it yields ak,0 = 0 for all k and therefore am,n = 0 for all m, n by means
of (6.6). This infers the required result.
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Remark 6.1. The space A2,ν(C2) is of interest in itself. It is the phase space in 2-complex
dimension that is unitary isomorphic to the configuration space L2,ν(R, C). Moreover, the
transform Gν is a coherent state transform from L2,ν(R, C) onto A2,ν(C2), in the sense that
its kernel function can be recovered as a bilinear generating function of the orthonormal
bases of the Hilbert spaces L2,ν(R, C) and A2,ν(C2).

Remark 6.2. The assertion (iii) in Theorem 6.1.2 shows that B2,ν(F 2,ν(C)) = A2,ν(C2). This
is in fact contained in (6.4). Indeed, for em(ξ) = ξm, we have

B2,ν (em) (z, w) =
( ν

π

) 1
2
(

1
2

)m
2

eν
m(z, w).

Remark 6.3. The inverse transform of Gν is defined from A2,ν(C2) onto L2,ν(R, C) and is
clearly given by (B1,ν)−1 ◦ (B2,ν)−1 and coincides with the restriction to A2,ν(C2) of Rν

introduced below.

Now, let us consider the transform Rν from F 2,ν(C2) into L2,ν(R, C) defined by the
following commutative diagram

F 2,ν(C2) Rν
//

(B2,ν)−1

��

L2,ν(R, C)

L2,ν(R2, C)
Proj

// F 2,ν(C),

(B1,ν)−1

OO

where Proj stands for the orthogonal projection from L2,ν
C
(C) onto the standard Bargmann–

Fock space F 2,ν(C) and given by (see e.g. [116])

Proj f (ξ) =
( ν

π

) ∫
C

f (ζ)eνξζe−ν|ζ|2dλ(ζ). (6.7)

The following result gives an integral representation of the operatorRν := (B1,ν)−1 ◦ Proj ◦
(B2,ν)−1. It involves of the inverse of B1,ν and the composition operator Cψ2 F = F ◦ ψ2 with
the symbol function ψ2 : C −→ C2 given by

ψ2(ξ) :=
(

ξ√
2

,−i
ξ√
2

)
. (6.8)

Theorem 6.1.3. The transform Rν defined on the whole F 2,ν(C2) looks like a left inverse of Gν.
Moreover, we have

RνF =
(π

ν

) 1
2
(B1,ν)−1(Cψ2 F) (6.9)

for every F ∈ F 2,ν(C2) which explicitly reads,

RνF(x) =
(π

ν

) 1
4
∫

C
F
(

ξ√
2

,−i
ξ√
2

)
e−

ν
2 ξ

2
+
√

2νxξe−ν|ξ|2dλ(ξ). (6.10)
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Proof. For every f ∈ L2,ν(R, C), the functionB1,ν f belongs to the one-dimensional Bargmann–
Fock space F 2,ν(C) and therefore Proj(B1,ν f ) = B1,ν f , so that Rν ◦ Gν = idL2,ν(R,C). This
shows that Rν is a left inverse of Gν. Moreover, making use of the integral representation
of the orthogonal projection (6.7) and of

(B2,ν)−1F(ζ) = cν
2

∫
C2

F(z, w)e−
ν
2 (z

2+w2)+ ν√
2
(ζ[z−iw]+ζ[z+iw])e−ν(|z|2+|w|2)dλ(z, w)

for ζ ∈ C and F ∈ F 2,ν(C2), we get

Proj(B2,ν)−1F(ξ) = cν
2

∫
C2

e−
ν
2 (z

2+w2)F(z, w)I(ξ, z, w)e−ν(|z|2+|w|2)dλ(z, w),

where for ξ, z, w ∈ C we have

I(ξ, z, w) :=
( ν

π

) ∫
C

e−ν|ζ|2+ ν√
2
(ζ[z−iw]+ζ[z+iw+

√
2ξ])dλ(ζ)

= e
ν
2 (z

2+w2)+νξ
(z−iw)√

2 .

Therefore, by the reproducing property for the two-dimensional Bargmann–Fock space
F 2,ν(C2), we obtain

Proj(B2,ν)−1F(ξ) = cν
2

∫
C2

F(z, w)eν
(

ξ√
2

z− iξ√
2

w
)

e−ν(|z|2+|w|2)dλ(z, w)

=
(π

ν

) 1
2 F
(

ξ√
2

,−i
ξ√
2

)
for

Kν
2 ((u, v), (z, w)) =

( ν

π

)2
eν(uz+vw) (6.11)

being the reproducing kernel of F 2,ν(C2).

6.2 Connecting holomorphic and slice hyperholomorphic
Bargmann–Fock spaces

The slice hyperholomorphic quaternionic Bargmann–Fock space F 2,ν
slice(H), considered in

[9], is a quaternionic counterpart of the holomorphic Bargmann–Fock space F 2,ν(C). It is
defined to be the right H-vector space of all slice left regular functions on H, F ∈ SR(H),
subject to the norm boundedness ‖F‖2

F2,ν
slice(H)

< +∞. This norm is associated with the inner
product

〈F, G〉F2,ν
slice(H)

=
∫

CI

GI(q)FI(q)e−ν|q|2dλI(q), (6.1)

where for given I ∈ S = {I ∈ H; I2 = −1}, the function FI = F|CI denotes the restriction
of F to the slice CI := R + IR and dλI(q) = dxdy for q = x + yI. It was shown in [9] that
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F 2,ν
slice(H) does not depend on the choice of the imaginary unit I and is a reproducing kernel

Hilbert space, whose the reproducing kernel is given by

Kν
H(q, p) =

( ν

π

)
eν[q,p]
∗ :=

( ν

π

) +∞

∑
m=0

νmqm pm

m!
; p, q ∈H. (6.2)

This space is closely connected to L2,ν
H (R), the Hilbert space of all L2 and H-valued func-

tions on the real line with respect to the Gaussian measure. In fact, F 2,ν
slice(H) can be realized

as the image of L2,ν
H (R) by considering the quaterenionic Segal–Bargmann transform [40]

Bν
H f (q) := cν

1

∫
R

f (x)e−ν
(

x− q√
2

)2

dx. (6.3)

Its inverse transform mapping F 2,ν
slice(H) onto L2,ν

H (R) is given by

(Bν
H)−1F(x) = cν

1

∫
CI

FI(q)e−
ν
2 q2+

√
2νxqe−ν|q|2dλI(q). (6.4)

Examples of slice hyperholomorphic functions in F 2,ν
slice(H) can also be obtained from the

one of the standard Bargmann–Fock space on C by the extension lemma below.

Lemma 6.1 ([33,61]). Let ΩI = Ω∩CI ; I ∈ S, be a symmetric domain in CI with respect to the

real axis such that ΩI ∩R is not empty and
∼
Ω = ∪

x+yJ∈Ω
x + yS be the symmetric completion

of ΩI . For every holomorphic function F : ΩI −→H, the function Ext(F) defined by

Ext(F)(x + yJ) :=
1
2
[F(x + yI) + F(x− yI)] +

J I
2
[F(x− yI)− F(x + yI)]; J ∈ S,

extends F to a regular function on
∼
Ω. Moreover, Ext(F) is the unique slice regular extension

of F.

This lemma can be extended to the context of the two-dimensional Bargmann–Fock
space F 2,ν(C2) on C2. This lies on the simple idea that consists of considering an appro-
priate restriction operator from F 2,ν(C2) into F 2,ν(C) and next apply the extension Lemma
6.1. For example, one can consider

Iν : F 7−→ F ◦ ψ2 7−→ Ext(F ◦ ψ2)

from F 2,ν(C2) into a specific subspace of F 2,ν
slice(H), where ψ2 : C −→ C2 is the one defined

in (6.8). The following result shows that the transform Iν is in fact realized by the following
commutative diagram

F 2,ν(C2) Iν
//

Rν

��

F 2,ν
slice(H)

L2,ν(R, C)
inj

// L2,ν
H (R)

Bν
H

OO

Old and New Orthogonal Polynomials of Complex and Quaternionic Variable:
Concrete Description, Associated Functional Spaces and Integral Transforms

100



CHAPTER 6. COMPOSITION OF SEGAL–BARGMANN TRANSFORMS

where Bν
H is the quaternionic Segal–Bargmann transform in (6.3) and Rν is the transform

given by (6.9).

Theorem 6.2.1. The transform Bν
H ◦ Rν coincides with Iν and acts on F 2,ν(C2) by

Bν
H ◦ RνF(q) =

( ν

π

) ∫
C

F
(

ξ√
2

,
−iξ√

2

)
Kν

H(q, ξ)e−ν|ξ|2dλ(ξ), (6.5)

where Kν
H(q, ξ) is the reproducing kernel of F 2,ν

slice(H) as given by (6.2).

For the proof, we will make use of the identity principle for slice regular functions

Lemma 6.2 ([33,61]). Let F be a slice regular function on a slice domain Ω and denote by ZF
its zero set. If ZF ∩ CI has an accumulation point in ΩI for some I ∈ S, then F vanishes
identically on Ω.

Proof. On the one hand, the function Bν
H ◦ RνF is slice regular by construction. On the

other hand, one can show easily that the function ξ 7−→ F
(

ξ√
2
, −iξ√

2

)
belongs to the one-

dimensional Bargmann–Fock space F 2,ν(C) for every F ∈ F 2,ν(C2), therefore, its extension
given by Lemma 6.1, is slice regular and belongs to F 2,ν

slice(H). Moreover, by means of the
reproducing property for the elements in F 2,ν

slice(H), we obtain the following identity

IνF(q) =
( ν

π

) ∫
C

F
(

ξ√
2

,
−iξ√

2

)
Kν

H(q, ξ)e−ν|ξ|2dλ(ξ). (6.6)

To conclude that Bν
H ◦ RνF and IνF are identically the same, we need only to prove it for

their restrictions on Ci ' C and then apply the identity principle for the slice left regular
functions (Lemma 6.2). To this end, we begin by rewriting the transforms Bν

H andRν as

Bν
H f (q) =

〈
f , Sν(q, ·)

〉
L2,ν(R,C)

=
∫

R
f (x)Sν(q, x)e−νx2

dx

and

RνF(x) =
〈
Cψ2 F, Sν(·, x)

〉
L2,ν

C
(C)

=
∫

C
F(ξ)Sν(ξ, x)e−ν|ξ|2dλ(ξ),

where Sν denotes the generating function of the rescaled Hermite polynomials Hν
m given by

Sν(q, x) =
( ν

π

) 1
2
+∞

∑
m=0

(
νm

m!

) 1
2 qmHν

m(x)
‖Hν

m‖L2,ν(R,C)

=
( ν

π

) 3
4 e−

ν
2 q2+

√
2νqx. (6.7)

Such kernel function satisfies

〈Sν(q, ·), Sν(ξ, ·)〉L2,ν(R,C) =
( ν

π

) +∞

∑
m=0

νmqmξ
m

m!
=:
( ν

π

)
eν[q,ξ]
∗ = Kν

H(q, ξ).
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Thus, for every F ∈ F 2,ν(C2) and q ∈ Ci ' C, we have

Bν
H ◦ RνF(q) =

〈
Cψ2 F, 〈Sν(q, ·), Sν(··, ·)〉L2,ν(R,C)

〉
L2,ν

C
(C)

=
( ν

π

) ∫
C

F
(

ξ√
2

,
−iξ√

2

)
eν[q,ξ]
∗ e−ν|ξ|2dλ(ξ) (6.8)

=
( ν

π

) ∫
C

F
(

ξ√
2

,
−iξ√

2

)
eνqξe−ν|ξ|2dλ(ξ)

= F
(

q√
2

,
−iq√

2

)
=: IνF(q),

since (ν/π)eνqξ is the reproducing kernel of F 2,ν(C) and ξ 7−→ F
(

ξ√
2
, −iξ√

2

)
∈ F 2,ν(C). The

proof is completed.

The following result identifies Iν(F 2,ν(C2)) as the specific subspace of slice regular
functions in F 2,ν

slice(H) leaving the slice Ci invariant,

F 2,ν
slice,i(H) := {F ∈ F 2,ν

slice(H); F(Ci) ⊂ Ci}.

Its sequential characterization reads

F 2,ν
slice,i(H) =

{
F(q) =

+∞

∑
m=0

qmcm; cm ∈ Ci,
+∞

∑
m=0

m!
νm |cm|2 < +∞

}
.

Theorem 6.2.2. The transform Iν maps F 2,ν(C2) onto F 2,ν
slice,i(H) and its action on the reproduc-

ing kernel Kν
2((u, v), (z, w)) in (6.11) is given by

Iν(Kν
2(·, (z, w)))(q) = Kν

H

(
q,

z + iw√
2

)
. (6.9)

Proof. Let F(z, w) =
+∞
∑

m,n=0
am,nem,n(z, w) ∈ F 2,ν(C2), where em,n(z, w) = zmwn. By means of

Theorem 6.2.1, we have IνF = Bν
H ◦ RνF ∈ F 2,ν

slice(H). Moreover, for every q ∈H, we have

Iν(em,n)(q) = Ext(Cψ2em,n)(q) = qm+n(−i)n2−
m+n

2

since Cψ2em,n(ξ) = (−i)n2−
m+n

2 ξm+n. Therefore

Iν( f )(q) =
+∞

∑
j=0

qj

(
j

∑
k=0

(−i)k2−
j
2 aj−k,k

)
=

+∞

∑
j=0

qjbj,

where the coefficients bj =
j

∑
k=0

(−i)k2−
j
2 aj−k,k belong to Ci. This shows that Iν(F 2,ν(C2)) ⊂
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F 2,ν
slice,i(H). For the inverse inclusion, let F ∈ F 2,ν

slice,i(H) and let f ∈ L2,ν
H (R) such that

F = Bν
H f . Now, since F(Ci) ⊂ Ci we get f0 ∈ L2,ν(R, C) and therefore f0 = RνF0 for some

F0 ∈ F 2,ν(C2). Thus, F = Bν
H ◦ RνF0 = IνF0.

Formula (6.9) for arbitrary fixed (z, w) ∈ C2 immediately follows from the identity prin-
ciple (Lemma 6.2) for the left slice regular functions. Indeed, the left slice regular functions

q 7−→ Iν(Kν
2(·, (z, w)))(q) = Ext

(
ξ 7−→ Kν

2

((
ξ√
2

,− iξ√
2

)
, (z, w)

))
(q) (6.10)

and

q 7−→ Kν
H

(
q,

z + iw√
2

)
=
( ν

π

)
e

ν
[
q, z+iw√

2

]
∗ (6.11)

coincide on the slice Ci, therefore, their difference is identically zero on the whole H.

Remark 6.4. For F(q) = ∑+∞
m=0 qmcm ∈ F 2,ν

slice,i(H), i.e., with cm ∈ Ci and ∑+∞
m=0

m!
νm |cm|2 < +∞,

then the function f0 = RνF0 involved in the above proof is given by

f0(x) =
+∞

∑
m=0

‖em‖L2,ν(C,C)

‖Hν
m‖L2,ν(R,C)

cmHν
m(x) ∈ L2,ν(R, C).

Moreover, we have ‖ f0‖L2,ν(R,C) = ‖F‖L2,ν(C,C).

The last result of this section concerns the following integral transform

J ν := Gν ◦ (Bν
H)−1

mapping F 2,ν
slice,i(H) into the two-dimensional Bargmann–Fock space F 2,ν(C2) and sug-

gested by the commutative diagram

F 2,ν
slice,i(H)

J ν
//

(Bν
H)−1

��

A2,ν(C2)

L2,ν(R, C)

Gν

88
.

Theorem 6.2.3. The image of J ν coincides with A2,ν(C2) in (26), and its action on any f ∈
F 2,ν

slice,i(H) is given by

J νF(z, w) =
( ν

π

) 1
2 F
(

z + iw√
2

)
. (6.12)

Moreover, for every fixed ξ ∈ C, we have

J ν (Kν
H(·, ξ)) (z, w) = Kν

2

((
ξ√
2

,
−iξ√

2

)
, (z, w)

)
, (6.13)
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where Kν
H(q, ξ) and Kν

2 ((u, v), (z, w)) are the reproducing kernel of F 2,ν
slice(H) and F 2,ν(C2) given

by (6.2) and (6.11) respectively.

Proof. Below, we identify C and Ci. The restriction of (Bν
H)−1 to F 2,ν

slice,i(H) has as image

L2,ν(R, C) which is contained in L2,ν
H (R). This readily follows by proceeding in a similar

way as in Theorem 6.1.2 since the rescaled Hermite polynomials Hν
m is an orthogonal basis

of L2,ν(R, C). Thus, by Theorem 6.1.2, we obtain

Gν ◦ (Bν
H)−1(F 2,ν

slice,i(H)) = Gν(L2,ν(R, C)) = A2,ν(C2).

This can also be reproved since

J ν(em)(z, w) =

(
z + iw√

2

)m
= em(z, w) (6.14)

which immediately follows from the formula (6.13), whose the proof can be handled by
direct computation. Indeed, for given F ∈ F 2,ν

slice,i(H), we have F(Ci) ⊂ Ci and (Bν
H)−1F =

(B1,ν)−1Fi, where (B1,ν)−1 is the inverse of the one-dimensional Segal–Bargmann transform
and Fi is the restriction of F to the slice Ci. Then, the proof is completed making use of the

definition of Gν f (z, w) =
(

ν
π

) 1
2 Cψ1(B1,ν f )(z, w).

Remark 6.5. The restriction of Iν = Bν
H ◦Rν toA2,ν(C2) is the inverse of J ν := Gν ◦ (Bν

H)−1

for satisfying J ν ◦ Iν = IdA2,ν(C2).

In the section, we investigate further properties of the integral transform Gν when com-
bined with the Fourier transform and connecting one and two-dimensional Bargmann–
Fock spaces. We also discuss possible generalization to d-complex space Cd.

6.3 Further new integral transforms

We consider the rescaled Fourier transform F̃ ν
∓ defined on L2,ν(R, C) by F̃ ν

∓ =Mν/2F ν
∓M−ν/2,

where Mα denotes the ground state transform Mα f := e−α|z|2 f , and F ν is the standard
Fourier transform on L2,0(R, C) = L2(R, dx) with

F ν
∓(ϕ)(x) :=

( ν

2π

) 1
2
∫

R
ϕ(u)e∓νixudx.

More explicitly, F̃ ν
∓ acts on L2,ν(R, C) as a bounded linear operator by

F̃ ν
∓(ϕ)(x) :=

( ν

2π

) 1
2
∫

R
ϕ(u)e

ν
2 (x∓iu)2

dλ(u). (6.1)

Thanks to the well-known Plancherel’s Theorem, it turns out that the Fourier transform F̃ ν
∓

maps unitary L2,ν(R, C) onto itself. Accordingly, we can consider the following commuta-
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tive diagrams

F 2,ν(C)
T ν

1,∓ //

(B1,ν)−1

��

A2,ν(C2)

L2,ν(R, C)
F̃ ν
∓

// L2,ν(R, C)

Gν

OO
and F 2,ν(C2)

T ν
2,∓ //

Rν

��

F 2,ν(C)

L2,ν(R, C)
F̃ ν
∓

// L2,ν(R, C)

B1,ν

OO
.

The transform T ν
1,∓ := Gν ◦ F̃ ν

∓ ◦ (B1,ν)−1 (resp. T ν
2,∓ := B1,ν ◦ F̃ ν

∓ ◦ Rν) maps F 2,ν(C)

onto A2,ν(C2) (resp. F 2,ν(C2) onto F 2,ν(C)). Their explicit formulas reduced further to
elementary composition operators involving the symbols ψ1(z, w) = z+iw√

2
and ψ2(ξ) =

1√
2
(ξ,−iξ), and the reducible representation of the unitary group U(1) := {θ ∈ C; |θ| = 1}

defined by Γθ ϕ(ξ) := ϕ(θξ).

Theorem 6.3.1. The action of T ν
1,∓ and T ν

2,∓ are given, respectively, by

T ν
1,∓ = B2,ν|F2,ν(C) ◦ Γ∓i =

( ν

π

) 1
2 C∓iψ1 (6.2)

on F 2,ν(C), and

T ν
2,∓ = Γ∓i ◦ Proj ◦ (B2,ν)−1 =

(π

ν

) 1
2 C∓iψ2 (6.3)

on F 2,ν(C2). Moreover, we have T ν
2,∓ ◦ T ν

1,± = IdF2,ν(C) and T ν
2,∓ ◦ T ν

1,∓ = Γ−1 IdF2,ν(C).

Proof. Recall first that the expression of (B1,ν)−1 given by

(B1,ν)−1 f (x) = 〈 f , Sν(·, x)〉L2,ν
C

(C)
,

where Sν is the kernel function associated to the rescaled Hermite polynomials Hν
m and

given by (6.7). Therefore, by Fubini’s Theorem, we get

F̃ ν ◦ (B1,ν)−1( f )(x) =
( ν

2π

) 1
2
∫

C
f (ξ)

(∫
R

e
ν
2 (x∓iu)2

Sν(ξ, u)du
)

e−ν|ξ|2dλ(u).

Straightforwardly, we obtain

( ν

2π

) 1
2
∫

R
e

ν
2 (x∓iu)2

Sν(ζ, u)du = Sν(∓iζ, x).

Hence

F̃ ν ◦ (B1,ν)−1 f (x) = 〈Γ∓i f , Sν(·, x)〉L2,ν
C

(C)
= (B1,ν)−1 ◦ Γ∓i f (x). (6.4)
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Consequently, the transform T ν
1,∓ = Gν ◦ F̃ ν

∓ ◦ (B1,ν)−1 reduces further to

T ν
1,∓ f (z, w) = B2,ν ◦ B1,ν((B1,ν)−1 ◦ Γ∓i f )(z, w) = B2,ν f (∓iz,∓iw)

by means of Theorem 6.1.1, as well as to

T ν
1,∓ =

( ν

π

) 1
2 Cψ1 ◦ B

1,ν(B1,ν)−1 ◦ Γ∓i =
( ν

π

) 1
2 Γ∓i ◦ Cψ1 =

( ν

π

) 1
2 C∓iψ1

on F 2,ν(C). Moreover, by Theorem 6.1.3 and (6.4), the action of T ν
2,∓ := B1,ν ◦ F̃ ν ◦ Rν on

F 2,ν(C2) reads

T ν
2,∓ =

(π

ν

) 1
2 B1,ν ◦ F̃ ν

∓ ◦ (B1,ν)−1Cψ2 =
(π

ν

) 1
2

Γ∓i ◦ Cψ2 =
(π

ν

) 1
2 C∓iψ2 .

We also have

T ν
2,∓ := B1,ν ◦ F̃ ν

∓ ◦ Rν

= B1,ν ◦ F̃ ν
∓ ◦ (B1,ν)−1 ◦ Proj ◦ (B2,ν)−1

= Γ∓i ◦ Proj ◦ (B2,ν)−1.

Finally, from (6.2) and (6.3), we obtain

T ν
2,∓(T ν

1,∓ f )(ξ) = C∓iψ2(C∓iψ1 f )(ξ)

= C∓iψ1 f
(
∓iξ√

2
,
∓ξ√

2

)
= f (−ξ)

as well as

T ν
2,∓(T ν

1,± f )(ξ) = C∓iψ2(C±iψ1 f )(ξ)

= C±iψ1 f
(
∓iξ√

2
,
∓ξ√

2

)
= f (ξ).

6.4 The case of high dimensions

We conclude this chapter by discussing the generalization to d-complex space Cd. This is
possible for d = 2k by considering the integral transform Gν

k mapping isometrically the
standard Hilbert space L2,ν(R, C)) into the Bargmann–Fock space F 2,ν(C2k

) defined by in-
duction

Gν
k := B2k,ν ◦ B2k−1,ν ◦ · · · ◦ B2,ν ◦ B1,ν.
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We claim that for every f ∈ L2,ν(R, C) and Z = (z1, · · · , z2k) ∈ C2k
we have

Gν
k f (Z) = cν

2kCψkB
1,ν f (Z) = cν

2kB1,ν f (ψk(Z))

where Cψk denotes the composition operator with the special symbol

ψk(Z) :=
1

2
k
2

2k−1−1

∑
m=0

im(z2m+1 + iz2m+2).

The computations hold true for k = 1 and k = 2.
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