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CONTRIBUTION A LA REDUCTION DE LA DIMENSIONNALITE ET LA 
CLASSIFICATION DES IMAGES HYPERSPECTRALES EN UTILISANT 

L’INFORMATION MUTUELLE ET LA TEXTURE 

 

Résumé : L’imagerie hyperspectrale de télédétection (IHS) permet d’acquérir des centaines de bandes 

pour la même région. Ainsi, un spectre complet de réflectance est construit pour chaque pixel de la scène. 

Cette grande quantité de données augmente la discrimination des objets à classifier. Cependant, deux défis 

s’imposent : la malédiction de dimensionnalité et le problème de pertinence des bandes nécessaires pour 

distinguer les classes. La problématique consiste à réduire la dimensionnalité des IHS pour augmenter la 

performance de la classification. Dans le cadre du travail de cette thèse, nous avons proposé des méthodes 

originales pour trouver le groupe réduit d’attributs « bandes » les plus informatifs et pertinents à la 

classification des IHS. D’une part, nous avons exploité l’information spectrale en utilisant l’information 

mutuelle normalisée et la probabilité d’erreur dans des approches filtres et Wrapper. Des seuils sont 

introduits pour le contrôle de la redondance utile. D’autre part, nous avons proposé l’utilisation conjointe 

de l’information spectrale-spatiale en ajoutant les caractéristiques de textures des bandes. Le classifieur 

SVM a été retenu pour le développement de nos approches proposées suite à l’évaluation de plusieurs 

classifieurs. Les approches introduites ont été validées en utilisant trois images hyperspectrales réelles 

fournies par le capteur hyperspectral AVIRIS de la NASA et le capteur ROSIS. Ces méthodes proposées 

améliorent la performance de classification avec un faible coût de calcul en comparaison avec les 

méthodes récentes. 

Mots clés : Images hyperspectrales, classification, réduction de dimensionnalité, sélection d’attributs, 

approches filtre-wrapper, information mutuelle normalisée, texture. 

 

 

Abstract: Hyperspectral remote sensing imagery (IHS) allows the acquisition of hundreds of bands for the 

same region. Thus, a complete reflectance spectrum is constructed for each pixel of the scene. This large 

amount of data increases the discrimination of the objects to be classified. However, two challenges are 

faced: the curse of dimensionality and the problem of the relevance of the bands needed to distinguish the 

classes. The problematic is to reduce the dimensionality of IHS in order to increase the classification 

performance. As part of the work of this thesis, we proposed original methods for finding the smallest group 

of attributes «bands» that are most informative and relevant to the classification of IHS. On the one hand, 

we have exploited spectral information by using normalized mutual information and error probability in 

filter and Wrapper approaches. Thresholds are introduced for controlling useful redundancy. On the other 

hand, we proposed the use of both spectral and spatial information by adding the texture characteristics of 

the bands. The SVM classifier was chosen for the development of our proposed approaches based on the 

evaluation of several classifiers. The introduced approaches were validated using three real benchmark 

hyperspectral images provided by the NASA's AVIRIS hyperspectral sensor and the ROSIS sensor. These 

proposed methods improve the classification performance with a reduced processing time compared to 

recent methods. 

Keywords: Hyperspectral images, classification, dimensionality reduction, attribute selection, filter-

wrapper approaches, normalized mutual information, texture. 
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Abstract: Dimensionality reduction is an important preprocessing step of the hyperspectral 
images classification (HSI), it is inevitable task. Some methods use feature selection or extraction 
algorithms based on spectral and spatial information. In this paper, we introduce a new 
methodology for dimensionality reduction and classification of HSI taking into account both 
spectral and spatial information based on mutual information. We characterise the spatial 
information by the texture features extracted from the grey level cooccurrence matrix (GLCM); 
we use Homogeneity, Contrast, Correlation and Energy. For classification, we use support  
vector machine (SVM). The experiments are performed on three well-known hyperspectral 
benchmark datasets. The proposed algorithm is compared with the state of the art methods. The 
obtained results of this fusion show that our method outperforms the other approaches by 
increasing the classification accuracy in a good timing. This method may be improved for more 
performance. 

Keywords: hyperspectral images; classification; spectral and spatial features; grey level 
cooccurrence matrix; GLCM; mutual information; support vector machine; SVM. 
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1 Introduction 

The Hyperspectral images consist to acquire spectra for all 
image pixels, they provide more than a hundred of bands of 
the same region with more detailed information, the rich 
availability of hyperspectral data increases the 
discrimination of spectral signatures compared to 
multispectral images. Thus, it has been used as an important 
mean for food quality evaluation (Wang et al., 2016), plant 
stress (Sytar et al., 2017), land cover analysis and other 
applications (Suruliandi and Jenicka 2015; Nhaila et al., 
2014). However, this large amount of data causes 
difficulties of storage, transmission and possesses new 
challenges in the processing systems due to the curse of 
dimensionality (Scott, 2008). For this purpose, the 
dimensionality reduction of the hyperspectral images 
becomes a priority preprocessing task of classification to 
eliminate the redundant or irrelevant bands by feature 
selection or extraction. 

Several works have been developed in this area to 
explain the need to eliminate the redundant or irrelevant 
bands by feature selection or extraction especially in land 
cover analysis applications. (Sarhrouni et al., 2012) 
proposed a filter strategy based on mutual information for 
band selection tagged (MIBS). A new optimisation based 
framework to select spectral bands from the HSI was 
proposed in Medjahed et al. (2016) using grey wolf 
optimiser (GWO). Both of them are based only on spectral 
information. On the other hand, Zhu et al. (2016) proposed 
an unsupervised hyperspectral band selection by dominant 
set extraction (DSEBS). It consists to use a first-order 
statistic of the local spatial–spectral consistencies to define 
the informative bands and measures the correlation between 
them using the structural correlation. A new approaches are 
constantly appearing (Dong et al., 2017) presents a locally 
adaptive dimensionality reduction metric learning 
(LADRmL) to better assess the similarity between samples. 
But to date, among all these methods, there is no 
contribution in the literature that combines the GLCM 
features with mutual information for band selection in 
hyperspectral classification schemes. Thus, the novelty of 
our method is to propose a new algorithm to combine 
spectral information with the texture characteristics 
extracted from GLCM to enhance the best possible the 
results of HSI classification using the mutual information 
(GLMI). It’s an improved method of the MIBS where just 
spectral information of the images was used based on 
mutual information. 

The effectiveness of our algorithm is assessed in  
terms of dimension reduction and classification accuracy 
using different evaluation metrics on three real-world  
hyperspectral scenes with different dimension and  
feature types captured by NASA’s AVIRIS and ROSIS 
sensors. 
 
 
 
 
 

The rest of this paper is organised as follows. Section 2 
provides an overview of texture based classification 
methods and the related works. In Section 3, we outline the 
proposed methodology using both mutual information and 
texture features. The datasets and experimental results with 
comparison of the state of the art methods are presented and 
discussed in Section 4. Finally Section 5 concludes our 
work. 

2 Overview of texture based classification 
methods 

Texture is an important tool to extract the spatial 
information in images classification. Thus, many 
approaches have been applied for texture analysis according 
to the processing algorithms and can be classified in  
three categories namely, Spectral, Structural and  
Statistical methods (Gonzalez and Woods, 2002) as shown 
in Figure 1. 

Figure 1 Texture classification methods 

 

Spectral methods consist to convert an image from spatial to 
frequency domain and vice-versa using filter response such 
as filter banks. For this, several works have been 
successfully developed in the context of hyperspectral 
image processing (Rajadell et al., 2013; Chen et al., 2014). 
Studies on Structural methods are still limited due to their 
complexity than the statistical ones especially when the 
textures are weakly structured (Qian et al., 2013). Statistical 
methods on the other hand, analyse the spatial distribution  
of grey values based on statistical proprieties of images, 
there are two categories: the model based methods for 
example Markov model (Li et al., 2014) and parameters  
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extraction based methods such as Fractals (Zhao et al., 
2016) or morphological based algorithms (Song et al., 
2014). 

In this study, we used cooccurrence matrix to extract 
texture features. Our main motivation behind this choice is 
due to the fact that it’s one of the most useful as statistical 
methods for images texture analysis since it was proposed 
by Haralick et al. (1973) and Agarwal and Maheshwari 
(2015). The grey level cooccurrence matrix (GLCM)  
has been successfully used to classify texture in many  
HSI applications (Naganathan et al., 2008; Tsai and Lai, 
2013). 

3 Proposed algorithm 

3.1 Novelty of our contribution 

In this work, for dimension reduction and classification  
of hyperspectral images, we reproduce the MIBS algorithm 
recently developed which used only spectral information. 
Then, we improve it by incorporating the spatial 
characteristics of the hyperspectral bands in the selection 
process. The novelty of our contributions in this proposed 
method named (GLMI) resides in the fact that: we use  
both spectral and spatial information using the mutual 
information for dimension reduction prior to the 
classification step. The spatial information is included 
through four texture features extracted from GLCM  
matrix. We use energy, homogeneity, contrast and 
correlation which allow discarding the noisy and irrelevant 
bands. The mutual information is then applied to select the 
optimal set of spectral bands from the used images and 
eliminating the redundant ones based on the texture 
measures. 

The classifier used in this paper is the support vector 
machine (SVM). It is a supervised classifier widely used in 
many data classification works especially hyperspectral 
remote sensing applications (Taghanaki and Javidan, 2014; 
Xia et al., 2016). To approve the effectiveness of our 
method, we will use three well-known HSI from AVIRIS 
and ROSIS sensors. 

The flow chart of the proposed methodology is 
illustrated in Figure 2. The detailed process of this method 
is described in this section. 

3.2 Retained method for texture features  
extraction 

The majority of classification methods use the spectral 
dimension where each pixel is considered as vector  
of attributes and may be used directly as an input  
of the classifier. In our research, we exploit the spatial 
relationship of pixels using the cooccurrence matrix method 
GLCM. It’s considered as the reference of images 
classification. 
 
 
 
 

The size of this matrix is equal to the number of grey 
levels in the image; the distribution depends on the distance 
d between two pixels in four directions : θ 0°, 45°, 90° and 
135°. Figure 3 shows an example of calculation of the 
cooccurrence matrix from 5 × 5 image composed of 3 grey 
levels (0,1,2) in the case of (0,1)d = . 

Figure 2 Flow chart of the proposed methodology 

 

Figure 3 Image 5 × 5 with 3 grey levels and the corresponding 
cooccurrence matrix 

 

From the GLCM created, various features can be extracted, 
in our case, we used the following four: 

• Contrast 

It measures the intensity contrast between two pixels. For a 
constant image, contrast is 0. 

The contrast is calculated through the equation (1). 

( )2Contrast ( , )    
i j

i j P i j= −∑∑  (1) 

• Correlation 

Correlation measures the grey level linear dependence 
between pixels. It’s NaN for a constant image. 

( )( )
Correlation ( , )i j

i j i j

i j
P i j

µ µ
σ σ

− −
=∑∑  (2) 
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• Energy 

The energy E measures the sum of squared elements in the 
GLCM using the equation (3), E = 1 if the image is 
constant. 

Energy ( , )²
i j

P i j=∑∑  (3) 

• Homogeneity 

The homogeneity measures the closeness of the distribution 
of elements in the GLCM diagonal through equation (4). It 
has maximum value when all elements of the image are 
same. 

1Homogeneity ( , )
1 ( )²i j

P i j
i j

=
+ −∑∑  (4) 

where 
P ( , )i j : element i,j of the GLCM 

µ: the mean of the GLCM 
σ: the standard deviation. 

3.3 Retained method for band selection: mutual 
information 

The mutual information MI becomes one of the most 
popular indicators of relevance between HSI bands. It is a 
statistical measure of the similarity between two random 
variables: a reference (in our case the ground truth map) that 
we note A and each band noted B. 

The MI between A and B is given as: 

( ) ( )2
( , ), log ( , )

. ( )
p A BI A B p A B

p A p B
=∑  (5) 

In relation with Shanon entropy, the MI can be equivalently 
expressed as: 

( ) ( ) ( ), ( , )I A B H A H B H A B= + −  (6) 

This expression is illustrated in the following Venn diagram 
(Figure 4). 

Figure 4 Venn diagram (see online version for colours) 

 
 
 
 
 

For our experiments, high value of MI means a large 
similarity between the ground truth map and the band, 
where low MI indicates a small similarity and zero MI 
shows that the two variables A and B are independent. From 
this purpose, many approaches based on MI were proposed. 
The mutual information maximisation (MIM) (Viola & 
Wells, 1997) is the pioneering work in this area, it consists 
to maximise the mutual information value to select the 
relevant bands but it has not the ability to address the 
redundancy between the selected informative bands. To 
overcome this limitation, the MIBS was proposed by 
(Sarhrouni et al., 2012). This method used the selected 
bands to build an estimated ground truth map by averaging 
the latest one with the candidate band. Thresholds are 
introduced to control the redundancy. The selection process 
of this reproduced algorithm is described as follows: 

 

3.4 The new improved algorithm 

The reproduced algorithm MIBS allowed selecting relevant 
bands based on spectral information but It has the limitation 
that it did not take into account the spatial information. To 
overcome this drawback, we propose a new spectral-spatial 
algorithm named (GLMI). In this method, we will use four 
spatial features that characterise the texture extracted via the 
grey level cooccurrence matrix (GLCM) namely energy, 
contrast, homogeneity and correlation then we will combine 
all these characteristics in the same process to improve the 
classification results. We performed our experiments with 
SVM classifier. 

So our proposed selection algorithm is as follows: 
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4 Experimental results 

4.1 The used datasets 

To evaluate the efficiency of the algorithms aforesaid, we 
have chosen to apply them on three challenging 
hyperspectral datasets captured by the airborne 
visible/infrared imaging spectrometer sensor (AVIRIS) and 
the reflective optics system imaging spectrometer sensor 
(ROSIS-03). These datasets are publicly available at 
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Rem
ote_Sensing_Scenes. They have different characteristics in 
terms of feature types and number of bands and classes. 
They are the widely used as benchmarks to test the 
performance of HSI classification algorithms in many 
researches (Kang et al., 2015; Li et al., 2017). 

4.1.1 Indian pines 

The first dataset used in this study is captured by (AVIRIS) 
Sensor for the scene Indiana pines in the North Indiana in 
1992, it contains 224 bands in the wavelength range of  
0.4–2.5 µm with spatial resolution of 20 m pixels. It has 
145 × 145 pixels which are labelled on 16 classes namely: 
Alfalfa, corn-notill, corn-mintill, corn, grass/pasture,  
 
 

grass/tree, grass/pasture-mowed, hay-windrowed, oats, 
soybeans-notill, soybeans-mintill, soybeans-clean, wheat, 
woods, building-grass-tree-drives, stone-steel towers. Two-
thirds of the image are covered by agricultural land and the 
one-third by forest or other built structures. The ground 
truth reference of this dataset is presented in Figure 5(A). 

4.1.2 Salinas 

The second dataset used in this study is Salinas. It is 
gathered by the 224-band AVIRIS over Salinas valley, CA, 
USA. It consists of 217 × 512 pixels and 224 spectral 
reflectance bands in the wavelength range of 0.4–2.5 µm. 
Salinas scene is characterised by high spatial resolution 
(3.7 m pixels). The corresponding ground truth reference is 
given in Figure 5(B). It contains vegetables, bare soils, and 
vineyard fields labelled in sixteen classes namely: broccoli 
green weeds1, broccoli green weeds2, fallow, fallow rough 
plow, fallow smooth, stubble, celery, grapes untrained, soil 
vineyard develop, corn senesced green weeds, lettuce 
romaine 4wk, lettuce romaine 5wk, lettuce romaine 6wk, 
lettuce romaine 7wk, vineyard untrained, vineyard vertical 
trellis. Salinas dataset is known by their highly mixed pixels 
which complicate the classification scenario. 

Figure 5 The ground truth maps of the hyperspectral images:  
(A) AVIRIS- Indian pines; (B) AVIRIS-Salinas and  
(C) ROSIS-University of Pavia (see online version  
for colours) 

 

4.1.3 University of Pavia 

In order to further test the proposed algorithm, another 
dataset is used. It’s collected by (ROSIS-03) sensor over 
urban area of engineering school at University of Pavia, 
Italy. The image is a 610 × 340 pixels scene .Its spatial 
resolution is 1.3 m per pixel. Original dataset has 115 
spectral bands in the range 0.43–0.86 µm where 12 bands 
were removed due to the noise. The university area is a low 
density urban area containing a large variety of shapes. The 
corresponding ground truth reference is shown in  
Figure 5(C). It includes nine classes: Asphalt, meadows, 
gravel, trees, painted metal sheets, bare soil, bitumen,  
self-blocking bricks and shadows. 

4.2 Classification and evaluation metrics 

The performance of the proposed method is assessed in 
terms of dimensionality reduction and classification  
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accuracies using several evaluation metrics. Individual class 
accuracy (ICA) which is the correctly classified pixels for 
each class. The overall accuracy (OA) that represents the 
correctly classified pixels over all test samples. The kappa 
coefficient (k) is also used to measure the degree of 
agreement. 

The implementation of the programs was made in the 
scientific programming language ‘Matlab’ using the Libsvm 
package to deal with multiclass problems available at 
www.csie.ntu.edu.tw/cjlin/libsvm. We executed on a PC  
64-b quad-core Duo CPU 2.1Ghz frequency with 3GB of 
RAM. 

For the three real datasets used in these experiments, the 
background class was not considered for classification. The 
classifier used is the SVM with Radial basis function RBF 
as a kernel. To build the classification models, 50% of 
labelled pixels are randomly selected to be used in training 
and the other 50% will be applied for the classification 
testing. 

4.3 Results and discussion 

The experimental results of the aforementioned algorithms 
on the three datasets are deeply presented and discussed in 

this section with the comparison with the state of art 
methods. 

Tables 1–3 give respectively the classification accuracy 
Tx for the Indian Pines, Salinas and Pavia University 
datasets. They show the effect of the number of selected 
bands for different thresholds Th using spectral features by 
mutual information ‘MIBS’ and the proposed method 
‘GLMI’ based on the combination of spectral information 
and the spatial features. 

From Tables 1–3, it’s seen that: 
The use of both spectral and spatial features proposed in 

the new method ‘GLMI’ gives better classification results 
compared with the use of only spectral information 
proposed in ‘MIBS’, for example in the case of Th = –0.01 
with just X = 12 selected bands from Indian Pines dataset, 
the classification accuracy of the first algorithm is 56.3% 
whereas it achieves 64.56% for the proposed method as 
shown in Table 1. For Salinas image, we get 83.55%  
by the first algorithm and 85.51 with the proposed method 
as illustrated in Table 2. Pavia University scene also 
confirms the effectiveness of the proposed method where 
the classification accuracy of the proposed algorithm 
exceeds the MIBS result by 7.97% as represented in  
Table 3. 

Table 1 The classification accuracy results of the reproduced algorithm MIBS and the proposed algorithm GLMI for Indian Pines 
dataset 

  The accuracy (%) of classification for numerous thresholds 

–0.02 –0.01 –0.005 –0.004 0 

MIBS GLMI MIBS GLMI  MIBS GLMI MIBS GLMI MIBS GLMI 

2 47.44 53.61 47.44 53.61 47.44 53.61 47.44 53.61 47.44 53.61 
3 47.87 54.37 47.87 54.37 47.87 54.37 47.87 54.37 48.92 54.37 
4 49.31 54.80 49.31 54.80 49.31 54.80 49.31 54.80     
12 56.30 64.56 56.30 64.56 56.30 63.90 56.30 63.90 
14 57.00 64.76 57.00 64.76 57.00 65.44 57.00 64.93 
18 59.09 66.71 59.09 66.71 59.09 67.47 62.61 67.86 
20 63.08 68.09 63.08 68.09 63.08 68.54 63.55 68.38 
25 66.12 74.00 64.89 74.05 64.89 78.28 65.38 78.39 
35 76.06 78.24 74.72 78.63 75.59 80.77     
36 76.49 78.01 76.60 79.17 76.19 81.39 
40 78.96 79.19 79.29 81.41     
45 80.85 81.90 81.01 82.12 
50 81.63 82.37 81.12 82.86 
53 82.27 82.84 86.03 83.46 
60 82.74 83.99 85.08 84.32 
70 86.95 87.28     
75 86.81 87.08 
80 87.28 86.56                 
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Table 2 The classification accuracy results of the reproduced algorithm MIBS and the proposed algorithm GLMI for Salinas dataset 

  The accuracy (%) of classification for numerous thresholds 

–0.02 –0.01 –0.005 –0.004 0 

MIBS GLMI MIBS GLMI MIBS GLMI MIBS GLMI MIBS GLMI 

2 65.98 66.28 65.98 66.28 65.98 66.28 65.98 66.28 65.98 66.28 
3 77.75 71.07 77.75 71.07 77.75 71.07 77.75 71.07 77.75 71.07 
4 79.52 73.06 79.52 73.06 78.43 73.27 77.75 73.27     
12 83.55 85.51 83.55 85.51 80.81 85.51 77.75 85.66 
14 85.23 86.2 85.23 86.2 80.81 86.2 77.75 85.8 
18 86.25 87.12 86.25 86.54 80.81 86.67 77.75 86.67 
20 86.51 87.59 86.51 87.19 80.81 87.71 77.75 87.31 
25 86.88 89.48 86.88 88.53 80.81 87.71 77.75 87.31 
35 88.42 91.19 88.42 89.39 80.81 87.71     
36 88.47 91.2 88.47 89.39 80.81 87.71 
40 88.97 91.92 88.51 89.39     
45 91.11 94.59 88.54 89.39 
50 91.14 94.81 88.54 89.39 
53 91.77 94.87 88.54 89.39 
60 91.85 95.16 88.54 89.39 
70 92.86 95.43     
75 93.11 95.63 
80 93.19 95.7                 

Table 3 The classification accuracy results of the reproduced algorithm MIBS and the proposed algorithm GLMI for University of 
Pavia dataset 

  The accuracy (%) of classification for numerous thresholds 

–0.02 –0.01 –0.005 –0.004 0 

MIBS GLMI MIBS GLMI MIBS GLMI MIBS GLMI MIBS GLMI 

2 65.47 68.01 65.47 68.01 65.47 68.01 65.47 68.01 66.43 68.01 
3 66.61 75.55 66.61 75.55 66.61 75.55 66.61 75.55 66.43 75.55 
4 66.66 76.87 66.66 76.87 66.66 76.87 66.66 76.87     
12 76.39 84.36 76.39 84.36 76.39 83.47 76.39 83.47 
14 78.18 85.23 78.18 85.23 78.18 84.76 78.18 84.72 
18 81.36 88.3 81.36 88.25 81.36 88.27 81.36 87.7 
20 85.06 89.42 85.06 89.24 85.06 88.66 85.06 87.83 
25 89.08 90.26 89.08 89.48 88.44 88.76 88.44 87.96 
35 91.64 90.27 89.76 89.48 88.44 88.76     
36 91.64 90.27 89.76 89.48 88.44 88.76 
40 91.64 90.27 89.76 89.48     
45 91.64 90.27 89.76 89.48 
50 91.64 90.27 89.76 89.6 
53 91.64 90.27 89.76 90.21 
60 91.64 90.62 89.76 90.86 
70 91.64 93.39     
75 91.64 93.53 
80 91.64 93.53                 
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The threshold affects widely the classification results: 

• First, for high values, in the range of (–0.004 to 0), few 
bands are retained because we do not allow the 
redundancy. The highest accuracies are obtained using 
the proposed algorithm, for example in the case of  
Th = –0.004 with 18 retained bands, the proposed 
method gives 67.86% (for Indian Pines), 86.67% (for 
Salinas) and 87.7% (for Pavia University) which are 
respectively better than ‘MIBS’ by 5.25%, 8.92% and 
6.34%. 

• Second, for medium values, in the range of (–0.005 to  
–0.02) where we permit some redundancy, also the 
proposed method produced the best results. For 
example, in the case of Th = –0.02 with 25 retained 
bands, it achieves 74%, 89.48%, 90.26% using 
respectively Indian, Salinas and Pavia University 

hyperspectral images, where the MIBS gives 66.12%, 
86.88%, 89.08%. 

• Third, for more allowed redundancy, for Th less than  
(–0.02), we did not have interesting results for more 
than 80 selected bands (in Indian Pines and Salinas 
datasets) and 35 retained bands (in University of Pavia). 

Effectively Tables 1–3 show the effectiveness selection of 
most informative features using the four texture features 
extracted from the GLCM namely contrast, correlation, 
homogeneity and energy proposed in this work compared 
with the MIBS based only on spectral features. 

Figures 6–8 also illustrate this positive effect of the 
proposed algorithm, it show the classification results 
obtained for different number of retained bands X in the 
case of Th = –0.02 for respectively Indian Pines, Salinas and 
the University of Pavia datasets. 

Figure 6 Classification accuracy of the MIBS and GLMI for Th = –0.02 when applied to AVIRIS Indian pines dataset (see online version 
for colours) 

 

Figure 7 Classification accuracy of the MIBS and GLMI for Th = –0.02 when applied to AVIRIS Salinas dataset (see online version  
for colours) 
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Figure 8 Classification accuracy of the MIBS and GLMI for Th = –0.02 when applied to ROSIS Pavia University dataset (see online 
version for colours) 

 
 
In the following experiments, we calculate the individual 
classification accuracy (ICA) for each class in the used 
datasets for Th = –0.02 using the proposed algorithm. The 
obtained results are presented in Table 4 for Indian Pines 
scene, in Table 5 for the University of Pavia and in Table 6 
for Salinas dataset. 

Table 4 The Individual classification accuracy ICA (%) of 
each class in Indian Pines dataset obtained using the 
proposed algorithm for Th = –0.02 

Class 
Total 
pixels 

Individual classification accuracy (%)  
for Th = –0.02 

Contrast 
X=40 

Correlation 
X=70 

Energy 
X=80 

Homogeneity
X=70 

1 2009 39.13 78.26 86.96 82.61 
2 3726 68.48 74.06 81.87 79.64 
3 1976 63.79 80.58 80.10 82.97 
4 1394 27.35 58.97 72.65 69.23 
5 2678 76.83 89.02 92.68 90.65 
6 3959 91.62 94.41 96.37 95.81 
7 3579 38.46 61.54 76.92 84.62 
8 11271 95.51 95.51 97.96 95.51 
9 6203 0.00 80.00 80.00 100.00 
10 3278 68.18 80.79 80.37 86.57 
11 1068 82.01 82.25 86.47 88.09 
12 1927 64.82 81.11 85.34 87.30 
13 916 94.17 98.06 98.06 98.06 
14 1070 92.74 95.36 93.04 95.83 
15 7268 47.59 53.01 57.83 63.25 
16 1807 71.74 91.30 93.48 91.30 

 
 
 
 

Table 5 The individual classification accuracy ICA(%) of 
each class in University of Pavia dataset obtained 
using the proposed algorithm for Th = –0.02 

Class 
Total 
pixels 

Classification accuracy (%) for Th = –0.02 

Contrast
X=35 

Correlation 
X=75 

Energy
X=70 

Homogeneity
X=60 

1 6631 90.65 95.45 94.6 94.54 
2 18649 97.12 96.87 96.18 96.17 
3 2099 64.72 78.59 71.51 70.55 
4 3064 90.71 92.81 84.18 83.85 
5 1345 100 99.85 99.85 99.85 
6 5029 79.46 87.06 78.26 78.46 
7 1330 72.58 87.27 85.91 85.61 
8 3682 83.73 89.25 89.68 89.36 
9 947 100 99.38 99.17 99.17 

The first column in the tree tables represents the total 
number of samples in each class of the data. The remainder 
columns show the obtained ICA using the subset of selected 
bands based on the different texture characteristics extracted 
from the GLCM matrix in combination with the mutual 
information. 

As mentioned earlier, we apply our proposed method on 
three well known hyperspectral images from AVIRIS and 
ROSIS sensors. The datasets provide different spatial and 
spectral resolution from agricultural (AVIRIS-Indian and 
Salinas) to urban areas (ROSIS -University of Pavia). 

For AVIRIS Indian Pines data, according to Table 4, it’s 
seen that: 

• The homogeneity offers the best potential to distinguish 
the components of the following classes: woods  
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(class 14 with 95.83%), the three soybeans classes (10, 
11 and 12) and the Oats (class 9 with 100%) even if the 
number of training pixels is fewer (just 10 pixels in the 
last case). The results are illustrated in Figure 9(D). 

• The energy on the other hand, gives best results mainly 
for classes of (alfalfa:1), (grass: 5 and 6), and (hay-
windrowed: 8) where the ICA are respectively: 86.96%, 
92.68%, 96.37%, 97.96%, see Figure 9(C). 

• It’s also seen from the results that the correlation gives 
the maximum classification accuracy of 98.06% for the 
class 13 (Figure 9(B)). 

• The class 15 is the weakly classified with 63.25%. 

Table 6 The Individual classification accuracy ICA(%) of 
each class in Salinas dataset obtained using the 
proposed algorithm for Th = –0.02 

Class 
Total 
pixels 

Individual classification accuracy (%) for 
Th = 0.02 

Contrast 
X=40 

Correlation 
X=80 

Energy 
X=35 

Homogeneity
X=45 

1 2009 99.01 100 99.01 99.3 
2 3726 99.35 100 99.84 99.89 
3 1976 98.48 99.7 97.37 99.39 
4 1394 99.26 99.56 99.71 99.85 
5 2678 98.65 99.92 99.17 100 
6 3959 99.6 99.9 99.95 99.95 
7 3579 99.5 99.78 99.5 99.89 
8 11271 87.46 92.42 84.55 86.18 
9 6203 97.2 99.94 99.77 99.9 
10 3278 94.94 98.29 94.63 96.89 
11 1068 85.39 99.81 95.32 99.06 
12 1927 98.03 99.9 99.48 99.9 
13 916 98.25 98.91 98.69 98.47 
14 1070 97.38 98.69 96.07 97.57 
15 7268 69.94 81.33 57.59 62.76 
16 1807 99.22 99.89 98 99.22 

For AVIRIS Salinas data, from Table 6, we can make the 
following remarks: 

• As in Indian, the homogeneity feature provides the best 
ICA for many classes: (fallow: 4 and 5 with 99.85% 
and 100%) and (celery: 7 with 99.89%) as illustrated in 
Figure 10(D). 

• It’s also seen that the energy gives the maximum ICA 
of 99.95% for the class stubble (6), see Figure 10(C). 

• The correlation on the other hand, gives best results 
mainly for all the lettuce classes (11, 12, 13 and 14 with 
respectively 99.81%, 99.9%, 98.91% and 98.69%), also 
the broccoli classes (1 and 2) are best classified using 
the correlation with ICA = 100%. The vineyard classes 
(15 and 16) with respectively (81.33% and 99.89%). 
The higher ICA for the class (9: soil) of 99.94%  

is also achieved using the correlation feature,  
see Figure 10(B). 

For ROSIS Pavia-University data, according to Table 5, we 
can see that: 

• The correlation gives best ICA mainly for (class trees:4 
with 92.81%), (gravel:3 with 78.59%) and as in Salinas 
dataset, the bare soil (class 6) is best classified using the 
correlation with 87.06%), see Figure 11(B). 

• The contrast on the other hand, has the best ICA mainly 
for the following classes (shadows: 9 with 100%),  
(self-blocking bricks:8 with 83.73%) and (painted metal 
sheets: 5 with 100%), see Figure11(A). Note that last 
classes have an urban nature. 

To summarise this step, concerning the separability of 
classes, we can say that the energy, the homogeneity and the 
correlation features generally disclose the various types 
classes in the agricultural land compared to the contrast that 
gives less efficient results (see maps in Figures 9 and 10). 
Each one performs better for specific class type as 
mentioned in the previous remarks. Whereas, for the urban 
environment, the contrast outperforms the three other 
features (see Figure 11). 

Figure 9 Ground truth map Indian pines dataset (GT) and the 
produced maps by our proposed algorithm using 
contrast (A), correlation (B), energy (C) and and 
homogeneity (D) (see online version for colours) 

 

The performance of the proposed method is validated in 
comparison with some typically previous researches which 
are mutual information maximisation (MIM) and mutual 
information band selection (MIBS). Both of them are filter 
approaches that use spectral information for dimensionality 
reduction and classification. Other filter is considered in the 
comparison which uses both spectral-spatial information 
named unsupervised hyperspectral band selection by 
dominant set extraction called DSEBS. The SVM classifier 
with RBF kernel is implemented as a supervised classifier 
of the selected bands for these different methods. The SVM 
classification results without dimension reduction are also 
included in the comparison. 

For each of the used datasets, the experiments have  
been made using the same training and testing sets 
randomly chosen with ratio fixed at 1 : 10 for each class. 
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The Overall accuracy (OA) and Kappa coefficient (k) are 
employed as performance evaluation criteria in this step. 
The computational time is also used. Note that the 
comparison has been carried out using 64 retained bands for 
the three datasets. 

Figure 10 Ground truth map of Salinas dataset (GT) and the 
produced maps by our proposed algorithm using 
contrast (A), correlation (B), energy (C) and 
homogeneity (D) (see online version for colours) 

 

Figure 11 Ground truth map of Pavia University Dataset (GT) 
and the produced maps by our proposed algorithm 
using contrast (A), correlation (B), energy (C) and 
homogeneity (D) (see online version for colours) 

 

Table 7 shows the obtained results using our proposed 
algorithm in comparison with the other methods for the 
three datasets. 

Table 7 The overall accuracy OA (%). Kappa coefficient k 
and the running times T(s) of the three datasets 
obtained by different methods using 64 selected 
bands 

  
All 

bands MIM MIBS DSEBS
Proposed

GLMI 

Indian 
Pines  

OA 60.74 71.67 78.36 81.01 81.86 
k 0.5812 0.6978 0.7692 0.7975 0.8065 

Time 42.83 11.58 9.51 10.63 7.47 
 OA 87.31 88.75 89.73 90.36 94.24 
Salinas k 0.8647 0.8800 0.8905 0.8972 0.9386 
 Time 397.47 112.69 100.64 104.96 72.05 
 OA 78.44 82.45 84.83 85.09 90.07 
Pavia k 0.7574 0.8025 0.8294 0.8322 0.8883 
 Time 388 207.81 116.78 174.42 130.16 

From this table, we can make the following remarks: 

• The obtained results using the four algorithms (MIM, 
MIBS, DSEBS and GLMI) with just 64 bands from the 
three used datasets are better than the SVM results 
using all bands. This proves the necessity of dimension 
reduction as a preprocessing step of the hyperspectral 
images classification (HSI) to discard the irrelevant and 
redundant bands that decrease the classification 
accuracy. 

• For the three hyperspectral scenes, both spectral-spatial 
based methods: GLMI and DSEBS significantly 
improve the classification accuracies compared to the 
MIM and MIBS that are based only on spectral 
information with an advantage of our proposed 
algorithm in terms of OA, kappa and also the running 
time. 

• Figure 12 illustrates the OA and Kappa obtained using 
the different methods in all the used datasets. It is 
clearly observed from the OA bars that our proposed 
method outperforms the others with 0.85%, 3.5%, 
10.19% and 21.21% for respectively the DSEBS, 
MIBS, MIM and the SVM without dimension reduction 
when applied to AVIRIS Indian Pines dataset. For 
AVIRIS Salinas scene, also our method achieves better 
OA that exceeds DSEBS by 3.88%, MIBS by 4.51%, 
MIM by 5.49% and the SVM with 6.93%. In ROSIS 
Pavia University image, again our method provides the 
better results and the OA improvements is of 4.98%, 
5,24%, 7.62% and 11.63% for respectively DSEBS, 
MIBS, MIM and SVM. 

• The kappa values illustrated in Figure 12, allow making 
the similar remarks as for the OA. The GLMI 
dominates all the other methods when applied to Indian, 
Salina and the University of Pavia. 
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• Referring to Table 7, concerning the running time of 
both dimension reduction and the classification step, we 
can see that the time increases with the size of the used 
datasets. Generally, the interval of simulation time is 
between: (7.47 s and 42.83 s) for Indian Pines dataset, 
(72.05 s and 397.47 s) in Salinas scene and (130.16 and 
388 s) for the University of Pavia dataset. 

• It is also seen that the classification without dimension 
reduction requires a considerable time in comparison 
with the other methods that discard the irrelevant and 
redundant bands which represents an advantage of DR 
in terms of computational time. The proposed GLMI 
needs the lower running time value in the three 
datasets. 

Figure 12 Performance comparison graphs of the three datasets 
Indian, Salinas and Pavia University using different 
methods in terms of OA and kappa (see online version 
for colours) 

 

5 Conclusion 

The high dimensionality of the Hyperspectral data imposed 
many challenging problems in the processing systems, for 
this, the dimensionality reduction plies an important role 
before the classification. Several works were developed in 
this area but the problematic is always open. In this paper 
we proposed a new filter combining spectral and spatial 
information to reduce the dimensionality of HSI and 
improve the classification results and decrease the 
computational time. The GLCM was retained to extract 
texture features that characterised the spatial information. 
We used in our proposed algorithm: Contrast, Correlation, 
Energy and Homogeneity. 

We applied our proposed algorithm on three challenging 
hyperspectral benchmark datasets captured by AVIRIS and 
ROSIS sensors using the SVM classifier with RBF kernel. 
The experimental results show the effectiveness selection of 
the use of both spectral and spatial features with Mutual 
Information. The comparison with the state of the art 
methods demonstrates that our method can increase the 
classification accuracies in a reasonable running time. 

This method is very interesting to be investigated and 
improved considering its performance. 
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Abstract- The Remote sensing provides a synoptic view of land 

by detecting the energy reflected from Earth's surface. The 

Hyperspectral images (HSI) use perfect sensors that extract more 

than a hundred of images, with more detailed information than 

using traditional Multispectral data. In this paper, we aim to 

study this aspect of communication in the case of passive 

reception. First, a brief overview of acquisition process and 

treatment of Hyperspectral images is provided. Then, we explain 

representation spaces and the various analysis methods of these 

images. Furthermore, the factors influencing this analysis are 

investigated and some applications, in this area, are presented. 

Finally, we explain the relationship between Hyperspectral 

images and Datamining and we outline the open issues related to 

this area. So we consider the case study: HSI A VIRIS 92A V3C. 

This study serves as map of route for integrating classification 

methods in the higher dimensionality data. 

Keywords-component: Hyperspectral images, Passive Sensing, 
Classification, Data minnig. 

I. INTRODUCTION 

Remote sensing with hyperspectral images uses the 
atmospheric transmission of electromagnetic radiation. This 
transmision is particularly high in the areas of visible (400 nm 

700 nm), near infrared (700 nm 1300 nm) and shortwave 
infrared (1300 nm 3000 nm). Other areas are frequently used 
in remote sensing, but for most applications of spectroscopic 
imaging, only these three areas are interesting. 
The principle of remote sensing is based on the observation 
that the Earth's surface and objects react differently to solar 
radiation (passive sensing), depending on the type of materials 
and their physical conditions (humidity, etc ... ). Plants for 
example have different spectral characteristics in the visible 
and near infrared. Thus, this science aims to exploit the 
information contained in the spectral signature to identify 
objects. From this point of view, hyperspectral remote sensing 
is an important revolution. It allows to collect numerous and 
detailed information on the spectral signatures of the objects 
observed. 

A. Definition of Hyperspectral Imaging 

A generic defmition of HSI was made by Kruse [1] 
as:"Hyperspectral imaging consist to acquire spectra for all 
image pixels, where a spectrum is a contiguous measure of the 
wavelength distribution with sufficient resolution to resolve 
the natural variability of the system of interest". 
Hyperspectral sensors pick up the signals in a very broad 
spectrum and different parts of the spectrum can have different 
capacity to distinguish objects of interest: The intrinsic 
spectral distinction of different objects are not necessarily 
identical in the same wavelengths or bands. In some parts of 
the spectrum, the materials may have a much more nuanced 
spectral reflectance than in others. In addition, the complex 
transmISSIon conditions in the atmosphere (Bands 
untransmitter), such as water and absorption of C02 also play 
a role in this phenomenon. 

In the same context of HSI definition, Chang [2] cites three 
main advantages of HSI regarding the multispectral images 
MSI: 

1) The number of bands in HSI is more than a hundred. 

while the multispectral contains just three at ten images. 
2) The bands are regularly spaced in HSI, but those of 

multispectral images are irregularly spaced. 

3) The spectral resolution: (central wavelength divided by 
the width of spectral band) is about a hundred against ten for 

multispectral images. 

B. Acquisition Process and Treatment of HSI 

Usually, the most widely used as a source of illumination is 
the sun so we have the passive remote sensing systems. The 
sensors measure the light reflected (or emitted energy) from 
areas of interest. The data is fmally transmitted to the ground 
for manual analysis (by expert) or automatically. 

1) Acquision Process of HSI 

In general, a remote sensing system can be divided into three 
main components: the scene, the sensors and processing 
algorithms [3]. Modeling scene includes solar lighting (which 
covers the area of solar spectral reflectance), the atmospheric 
transmittance, contiguity effects, shadow effects and clouds. 
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Other problems can be illustrated by the variation of the scene 
perspective when it is observed from different angles. The 
model of the sensors includes radiometric noise sources such 
as shot noise, thermal noise, readout noise of the detector, 
quantization noise and calibration error. The processing 
component comprises atmospheric compensation, various 
linear transformations, and a number of operators used for the 
distribution of data. 

From technical point of view, two approaches are used for 
HSI acquisition [4]. The fust is to acquire a sequence of two 
dimension images at different wavelengths (staring system), 
using variable filter positioned in front of a camera matrix. 
The second approach is to acquire a sequence of images line 
by line, such that for each pixel of a line, a complete spectrum 
is measured (push-broom approach). The spatial dimension is 
acquired by relative movement of the sensor to the object. 

2) Treatment of HSI 

The HSI preprocessing contains four steps: 

a) The image calibration with respect of the sensor 
noise : it varies with the meteorological conditions. Every day, 
an image called (dark image) is taken to obtain data relating to 
sensor noise . To minimize the noise of the sensor the raw 
image undergoes, with this dark image, a processing called 
minimum noise fraction (MNF) [5]. 

b) Correction of geometric distorsion: caused by the 
movement of the platforms under different atmospheric 
disturbances. 

c) Geo-registration of the image: using a triangulation 
method with bilinear resampling [6]: Fifteen to twenty points 
of ground control (GCP: ground control points) are distributed 
inside and outside the bounds and are used to georeference 
each image. 

d) The calibration of the image : respecting the variation 
of the illumination using a method called the empirical 
damping ( empirical line method) [7]. 

II. CASE STUDY: HSI A VIRIS 92A V3C 

NASA uses the "Airborne Visual and Infra-Red Imaging 
Spectrometer" (A VIRIS). It acquires 220 images called bands 
in the spectral range from 0.4 to 2.45 microns. Each band has 
the size of 145x145 pixels. The Ground Truth map used in the 
experiments are acquired from the A VIRIS sensor (A VIRIS 
92A V3C) [8]. Each image is of size 145x145, Two-thirds of 
the stage are covered by agricultural land and one third by 
forests, other building structures can also be seen in the scene. 
Each pixel is labeled as one of the 16 vegetation classes or 
unidentified. Figurel, 

The availability of reference data makes this an excellent 
hyperspectral image source for the realization of experimental 
studies [9]. 
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Fig. I. The Ground Truth map of A VIRIS 92A V3C 

At certain frequencies, the spectral images are known to be 
affected by atmospheric water absorption. Some studies 
eliminate them [9]. Figure 2 shows the spectral reflectance of 
the classes '9', '14' et '16', extracted from the HSI A VIRIS 
92A V3C. The axis x indicates the number of spectral bands 
(1-220), and axis y represents the pixel value in the 
measurement of the different bands. Significant overlap 
between the two classes occurs in some bands due to natural 
variability and similarity of spectral reflectance, A class '9 ' 
for example is " embedded " in the two others . To separate 
them, we must take into account their statistical 
characteristics, such as Means [Figure 2(b)] and standard 
deviation [Figure 2(c)] for each spectral band. In other bands, 
e.g the 60-65 range, these classes overlap broadly. 

Fig. 2. The non-uniform distribution of the information in the HST. 
(a)Samples of spectral responses for three classes of vegetation in AVIRIS 
92AV3C:"16","14" and"9", the statistical characteristics of the spectral 
reflectance values in each spectral band, (b) Means, (c) standard deviation. 

Figure 2 also illustrates that in hyperspectral imaging, 
discriminatory information is not distributed evenly across the 
spectrum. Among all spectral bands, some may contain more 



useful information for classification than others, and therefore 
they have great separability indices. Whereas the measure of 
separability gives an estimated probability of correct 
classification that benefit from the most informative subsets. 

III. REPRESENTATION SPACES OF HYPERSPECTRAL DATA 

One of hyperspectral imagery characteristics is that each 
pixel is defined by a vector whose elements are the different 
spectral components (wavelength) from the captured scene. 
This hyperspectral vector provides not only color information 
but also information regarding the chemical composition of 
the materials in the scene. The hyperspectral image can be 
seen as a data cube where each pixel is a vector of dimension 
equal to the number of bands. The quasi-continuous nature of 
the spectrwn measurement introduces a strong local 
correlation of bands. This inter-band correlation expresses the 
data redundancy. 

A. Image Space 

This is the most intuitive way to represent the data tapes of 
HSI. This is a geographical representation of substances 
reflections of the scene, in the frequency band. The weak point 
of this representation is that the relationship between the bands 
is not apparent [lO], its strong point is that it allows to take 
into account the spatial dependencies pixels. 

B. Spectral Space 

This is a presentation of measures for a pixel, depending 
on wavelengths, its basic idea is to represent the distribution of 
information relating to a point in the field, according to 
wavelength that transmit information necessary to identify the 
contents of a pixel, which is interesting from an economic 
view point. This identifies each pixel independently of their 
neighbors. This representation gives direct interpretations and 
in association with the physical properties of the pixel content. 
In this representation, we can separate a reduced number of 
classes even with a single band. This type of method does not 
take into account the relationships between neighboring 
pixels, so it does not address the texture [8]. 

C. Attributes Space or Features Space 

With a given class of substance, this representation is 
interested in their reflectance in two different bands, and 
generally in a space of dimension equal to the number of 
wavelengths. The advantage of this is that it gives a diagnostic 
on how the reflectance of a pixel are distributed around their 
average, and so the possibility of using data mining algorithms 
[10]. Also the classes whose spectral representation does not 
distinguish can be separated in the attribute space. 

D. Generalization 

A study on HSI may be done by a combination of the three 
aforementioned spaces, in the sense of the use of information 
that can be extracted in each field. Masalmah [11] indicates 
that HSI processing algorithms can be grouped into three 
types: algorithms for spectrum only those of spatial 
processing, and spaciospectral algorithms. Natahlie [12] 
presents an iterative combination of spatial and spectral 
methods in the segmentation of hyper spectral picture. 

IV. ANALYSIS METHODS OF HSI DATA 

Much of the research on HSI aims to find more effective 
ways to make profits for this type of data. Thus, recent 
research methodologies can be classified into two types Zhang 
[13]: The Pure-Pixel methods and Mixed-Pixels methods. This 
is common to all three above representation spaces of 
hyperspectral data. 

A. Pure-Pixels Methods 

These methods are based on the asswnption that each 
pixel of any band is composed of a single substance, and 
consequently it is defmed by a unique signature. These 
methods can be grouped into two categories: Vegetation Index 
methodology and statistical methods. 

1) Vegetation Index Methods: The vegetation index is 
extracted from the pixel spectrum measured by the HSI, then it 

is compared with the real measurements saved in a library. 

The main problem of the Vegetation Index is that it is difficult 

to construct an index of universal vegetation suitable for most 

hyperspectral data [13] and the variability of spectral 

signatures for the same type of vegetation. 

2) The Statistical Methods: In these methods each band is 
considered as a random variable, in which the statistical 
methods are applied to extract statistics features of the images. 

These methods require dimensionality reduction to reduce the 
computational cost, because of the difficulty to apply the 
statistical models directly on the HSI. One of the most 

important applications of these methods is the detection of 

anomalies. 

B. Mixed-Pixels Methods: 

There are two factors omitted in the approaches of 
Pure- Pixel methods: The complexity of the field (overlapping 
vegetation etc .. ) and the limitation of sensor resolution of HSI. 
These methods are designed to overcome these problems. 
They are classified in two types: linear mixture models, and 
nonlinear mixture models. 

1) Linear mixture models: they present a clear physical 

meaning the proximity of substances. Zhang [13] indicates 
that the nwnber of classes to be retrieved must be lower than 

the number of bands in the HSI. 



2) Nonlinear mixture models: they are used to deal with the 

problem of the limited number of relevant bands; The mixture 
pixels are expressed in a summation of residual errors and 

High-order moments of the spectral components. 

One of their applications is the detection of sub-pixels of 
an HSI. 

V. FACTORS INFLUENCING THE HSI DATA ANALYSIS 

Two main factors influence the analysis of hyperspectral 
imaging data: the number of training pixels, and the definition 
of classes. 

A. Number of Pixels Training 

One of the problems encountered in data mining analysis 
(case of HSI ) is the absence or low number of training pixels 
[14]: 

• This number has an impact on the number of selected 
bands to have better performance. 

• For each number there will be a number of bands 
beyond which the performance degrades. 

• To keep good performances, we have to consider an 
infinite number of training examples. 

Fukunaga [15] shows that the number of training examples 
is linearly dependent on the dimensionality for linear 
classifiers; it depends on the square of the dimensionality for 
the quadratic classifier. Experiments, Lee [16], indicate that 
second order statistics are more discriminatory for high 
dimensional data. 

B. Defining Classes 

The issue of defining classes arises when the ground truth is 
not given, or incomplete, leading to define other classes. We 
briefly report that there are three conditions for an optimal 
class definition [17]: 
1) A class must be Exhaustive. 

2) A class must be separable. 

3) Their values must be Informative. 

VI. ApPLICATIONS OF HSI 

The hyperspectral remote sensing technology has reached 
spectacular advances in acquisition of high dimensional data 
with a higher spectral resolution, thereby increasing the 
discrimination of spectral signatures compared to traditional 
multispectral sensors. Thus, it has been used as an important 
means for Earth observation and exploration, the study of 
plant's stress which reduces the food performance [18], the 
exploration of the Moon, Mars and other planets, and also sort 
mineral and non- mineral waste for recycling [19]. It is an 
economic technology to provide useful and necessary 
information on land resources, both for industrial applications 
and for scientific interests [10] and defense. Hyperspectral 
imaging has also been crucial to help the food processing 
industry [20], detection of contaminants in food processing 
[21]. 

Data mining is also found among the applications of HSI. This 
brings us to the investigation of this relationship in the 
following section. 

VII. RELATIONSHIP BETWEEN HSI AND DATA MINING 

Pattern recognition, has been initiated from the pioneers 
works of Frank Rosenblatt on Perceptrons [22]. It has been 
extended for a long time in other directions and has developed 
into a separate discipline. One of the characteristics of HSI is 
the large amount of data and the high dimensionality of the 
vectors manipulated. This high dimensionality of the data 
provides more capacity of discrimination in classification, but 
also imposes high Cost Calculator and the data modeling 
becomes more complex. This presents a challenge for analysis 
methods and leads to the use of data mining in many tasks as 
attributes selection. Fayyad at at. [23] introduces the data 
processing chain. Thus, we can see that the HSI must undergo 
similar patterns to derive knowledge as a thematic map 
Figure.3 [24]. In what follows, we present the main concepts 
and definitions of data mining in connection with HSI. 

A. Purpose of Data mining 

Consider a set of data vectors with multidimensional 
numerical attributes. By studying the clusters formed by these 
vectors, we can discover some hidden behavior in data. Cheng 
[24] refers to the need to use specific algoritluns to perform 
this task on sub sets, high data dimensionality, and it marks 
the need for dimensionality reduction, taking into the fact that 
if A, B and C are disjoint subsets of data sets and a pattern can 
exist in A and B, but C is independent of A and B, then C is a 
disturbance against the detection of the concerned pattern. The 
interpretation of data in high dimensionality is sensitive, and it 
is preferable to perform pattern recognition in suitable 
dimensions. 

Fig. 3. Data mining Process 

In particular, in the context of classification problems, the 
selection of data can provide an improved accuracy (as 
compared to standard techniques single-sensorlsingle-date 
applied to images), which can be of paramount importance in 
real applications. In hyperspectral imagery, manipulated 
vectors have dimentions that can be treated in terms of 
technique of data mining. 
In data mining, we can differentiate between the Model and 
Pattern. A model is a comprehensive description of the data. 
By against the pattern is a local description that may involve 



some data attributes [25]. the detection of a certain pattern 
between two variables does not imply the existence of a 
causality between them: for example, the existence of a linear 
model between buyers of a type of drink, and buying clothing 
brand is very interesting for marketing perspective, but it we 
can not manipulate a variable by the action on the other. A 
pattern "A" is a more general than a pattern "B" if whenever B 
is realized in the data, "A" also occurs. For example, the 
pattern "At least five types of vegetation exist in the map " is 
more general than the model "At least two types of vegetation 
exist in the map." The use of such a generalization between 
patterns leads to simple algorithms to find all patterns of a 
certain type that occur in the data. The patterns, such as cores, 
are often described as non- parametric, because the model is 
largely driven by data without any parameter in the 
conventional sense. These smoothing techniques (such as 
kernel-based models) are useful for the interpretation of data, 
at least in the case of one or two dimensions. However, no 
model provides an answer to all problems, and local kernel 
based model have weaknesses. In particular, when the number 
of predictor variables increases, number of data points 
required to provide accurate estimates increases exponentially 
(a consequence of the curse of dimensionality). Also, we 
should note that for large dimensions, we lose the 
interpretability of models. 

B. Description Models and Predictive Models 

The descriptive models are sufficient to summarize the data 
in a way to understand the operation of the process. In 
contrast, predictive models specifically intended to enable to 
predict the unknown value of a variable of interest, given the 
other variables. In the context of hyperspectral imagery 
classification, we are interested in the type of nominative 
variables of interest to indicate a class devoid of any digital 
sense. However, there are cases where the predictor variables 
have numerical meaning such as energy consumption over the 
next two years. 

In a predictive model, one variable is expressed in terms of 
another, for example we can predict by past customer 
behavior, the probability of having a new loan. if there is 
quantitative this Application is a regression, if there is 
qualitative then the application is a classification, and it's the 
case of hyperspectral images. 

C. Components of an Algorithm in Data mining 

Given the overall goal in the HSI classification, which is 
patterns matching that represent the classes to be assigned to 
test pixels, especially the pixels that are not labeled, it is 
interesting to indicate that an algorithm in data mining must 
contain five major components [25]: 

1) The Task: visualization, classification, clustering, 
regression, feature selection and so on. 

2) The Model or Structure designs (patterns) determine the 
structural or functional underlying forms that we seek from the 
data. 

3) The score function: in an ideal world, the choice of the 
score function accurately reflects the value (the true expected 
benefit) of a particular predictive model. 

4) Research methods and optimization: the goal of 
optimization and research is to determine parameter values 
that achieve a minimum (or maximum) of the score function. 
The search for the "best" values of the parameters is a 
optimization problems. 

5) Data management strategy 
From the standpoint of synthesis, by combining various 

components in different combinations, we can construct data 
mining algorithms with different properties. 

D. Partial Conclusion 

In this section, we put in a situation the analysis of HSI as an 
action of data mining. Indeed, as we specify below, the HSI 
classification requires the resolution of the problem of 
dimensionality reduction. 

VIII. ISSUES RELATING TO HIS 

The increased number of spectral bands in the hyperspectral 
imaging, allows a priori to increase separability between 
classes, but the accuracy of the statistical estimation decreases 
with the size of the gap leading to have poor classification 
results (the curse of dimensionality) [14]. And several 
approaches to reduce dimensionality of HSI are present in the 
literature. This size reduction is justified by the properties of 
high dimensional spaces but also by large duplication of 
existing information between adjacent spectral bands. To 
address the fact that certain parts of the spectrum will provide 
a much richer descriptor for classification than others, some 
approaches rely on the selection of attributes, others employ 
the extraction of attributes or combination of selection and 
data extraction. 

Dimensionality reduction of HSI is an important 
preprocessing for the data analysis of hyperspectral images 
[26] from the user side. This pretreatment also includes 
technical data extraction as selecting attributes and aims to 
answer the question how to take advantage of reliable and 
efficient way of using hyperspectral data: The large amount of 
data involved in hyperspectral imaging significantly increases 
the time and the complexity of treatment. Effectively reduce 
the amount of data or select the corresponding bands 
associated with a particular application of the data set becomes 
a priority task for the analysis of hyper spectral images [27]. 

IX. CONCLUSION 

The hyperspectral remote sensing is a tremendous leap in 
the field of remote sensing. The increasing availability of 
hyperspectral data has enriched us with better data quality and 
also allow us a much stronger ability to identify substances. 
However, approaches for identifying attributes of hyperspectral 
images are not as successful as we thought. Too many bands 



and a large amount of data not only cause difficulties of data 
storage and transmission, but also news challenges in 
technology processing of hyperspectral image: selection and 
transformation channel; and especially pattern recognition in 
hyperspectral image attributes. The classification with 
Hyperspectral images is a rich technology in terms of 
multidisciplinary applications. But it has charges related to the 
acquisition and image processing in the higher dimensionality, 
with the exigencies of data mining technics. In this paper, we 
are particularly interested in the aspect of data processing. Two 
issues related to the processing of hyperspectral data were 
highlighted: How to eliminate redundancy bands (attributes or 
features) and select or extract the relevant bands. 
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Abstract — The Hyperspectral image (HSI) contains several 
hundred bands of the same region called the Ground Truth (GT). 
The bands are taken in  juxtaposed frequencies, but some of 
them are noisily measured or contain no information. For the 
classification, the selection of bands, affects significantly the 
results of classification, in fact, using a subset of relevant bands, 
these results can be better than those obtained using all bands, 
from which the need to reduce the dimensionality of the HSI. In 
this paper, a categorization of dimensionality reduction methods, 
according to the generation process, is presented. Furthermore, 
we reproduce an algorithm based on mutual information (MI) to 
reduce dimensionality by features selection and we introduce an 
algorithm using mutual information and homogeneity. The two 
schemas are a filter strategy. Finally, to validate this, we consider 
the case study AVIRIS HSI 92AV3C. 

Keywords—Hyperspectrale images; classification; features 
selection;  mutual information; homogeneity  

I.  INTRODUCTION  
 

In the area of HSI classification, an important question that 
often arises is the problem of having too many attributes. In 
other words, the measured attributes are not necessarily all 
needed for an accurate discrimination and the use of the entire 
set of these attributes can lead to a poor classification model. 
Indeed, hyperspectral data are expressed in high-dimensional 
spaces, and in directions containing various noises. This 
explains the curse of dimensionality [1]. This problem is 
compounded by the fact that many attributes can be either 
irrelevant or redundant because they don’t add anything new to 
the result of prior classification. 
In many applications, such as remote sensing with 
hyperspectral images, reduce the number of irrelevant or 
redundant attributes decreases significantly the execution time 
of a learning algorithm. So the problem is to find the right 
group of bands to reduce the dimensionality and classify the 
images. 
 

II. CATEGORIZATION OF DIMENSIONALITY REDUCTION 
METHODS ACCORDING TO ATTRIBUTES  GENERATION PROCESS  

 
According to generating attributes [2], the dimensionality 
reduction can be done either by:  

  Attributes Extraction where we transform the vectors 
of data. 

 Attributes Selection without transformation of the data 
vectors.  

 Selection followed by extraction of attributes. 

A. Dimensionality Reduction by Attributes Selection  
 

The idea of these methods is to find a subset of attributes  
having less wide than the initial one. 

The selection of attributes (also known as subset selection) is 
also described as a process commonly used in the pretreatment 
before the classification step, in which a subset of variables (or 
attributes), from the available data, is selected for the 
application of a learning algorithm. The best subset contains 
the minimum number of dimensions that can lead to higher 
classification accuracy, we discard other irrelevant dimension. 
This is an important pre-processing step and it’s one of two 
ways to avoid the curse of dimensionality (of course the other 
one is the attribute extraction) [2]. 
 
The algorithms for dimensionality reduction generally include 
four basic steps [3], see Figure 1: 
 

1) A procedure for generating the next candidate,  
2) An evaluation fonction to evaluate the current subset,  
3) A stopping criterion to decide  when to stop the search,   
4) A  validation process to choose if we keep the subset or 

not. 
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Fig.1.   Attributes Selection Process with validation [3]  

 

B. Dimensionality Reduction by Attributes Extraction  
 
This approach consists in reducing the dimensionality of 
attributes by transformation of data, in fact, the original space 
is projected into a subspace of lower dimension which 
preserves most of the information. 
So the idea is to transform the measurements, by linear or non-
linear functions, in a preprocessing step, which generally 
entails a reduced set of derived variables which will used as 
the inputs of a classifier [4]. See figure 2. 

 
Fig. 2.  Attributes Extraction  Process, the Feedback corresponds to the 

Iterative research 
 
In the next sections of this article, we will focus on the 
dimensionality reduction with attributes selection. 
 

III. DIMENTIONALITY REDUCTION BY FEATURES SELECTION 
USING MUTUAL INFORMATION 

 
The aim of this section is to provide an application that 
illustrates the filter approach to reduce dimensionality of HSI. 
This is a schema that uses a measure of information, which is 
mutual information, and proceeds by sequential selection 
"forward" [5]. 
We start with a brief reminder of the mutual information, then 
we will focus on its application in HSI dimensionality 
reduction algorithm.  
 

A. Definition and measure of the mutual information  
 

It is a statistical measure of mutual information between the 
reference (ground truth map) that we note A, and each band 
noted  B. 
 ( , ) = ∑ ( , ) ( , )( ). ( )                          (1) 

              
We consider ground truth map and bands as random variables 
and we calculate their interdependence as illustrated in figure 
4 in the section of results and discussion. 

B. Filter approach using mutual information 
In this section we reproduce a "filter approach" based on 
mutual information.   
The basic idea is: the band that has the largest value of mutual 
information with the ground truth, is a good approximation of 
it. Thus the subset of suitable bands is the one that generates 
the closest estimation to the ground truth GT. 
We generate the current estimation by the average of the last 
estimation of the GT with the candidate band [5]. 
 
The first selecting processes “algorithm1” is as follows: 

1) Order the bands according to decreasing value of 
their mutual information with the GT. 

2) Initialize all the bands selected by the band that have 
the largest mutual information value with the GT. 

3) Now, we build an approximation of the GT, denoted 
GT_est. 

4) Calculate MI: MI (GT_est, GT). The last added band 
must increase the final value of IM (GT_est, GT), 
otherwise, it will be rejected from the choices. 

5) Finally, we introduce a threshold to control the 
permitted redundancy. 
 

IV. DIMENTIONALITY REDUCTION BY FEATURES SELECTION  
USING HOMOGENEITÉ AND MUTUAL INFORMATION  

 
In this method, we propose to combine the spectral information 
calculated by the IM, with the inter spatial information 
represented by the homogeneity that characterizes the texture 
bands. 
 

A. Definition and measurement of the homogeneity  
 

Texture analysis refers to the characterization of regions in an 
image by their texture content. Some of the most commonly 
used texture measures are derived from the Grey Level Co-
occurrence Matrix (GLCM). In our case we will use the 
Homogeneity. 
This statistic  measures the closeness of the distribution of 
elements in the GLCM to the GLCM diagonal. 
 = ∑ ∑ ( ) ∗ ( , )          (2) 



 
The homogeneity value increases if the pixels values of the 
images are more similar. It has maximum value when all 
elements are same. 
 

B. Proposed Algorithm  
 

In this algorithm2, we will subjoin, to the mutual information 
used previously in algorithm1, one of the image texture 
characteristics which is the homogeneity extracted from the 
Grey Level Co-occurrence Matrix (GLCM). 
So the selection process is : 
 

1) Calculate  the Grey Level Co-occurrence Matrix of 
the bandes and the GT.  

2) Extract the texture feature of bands which is 
homogeinité. See figure 5 in the next section. 

3) Order the bands according to decreasing value of 
their homogeneity values. 

4) Initialize all the bands selected by the band that have 
the largest homogeneity  value with the GT. 

6)  Construct an approximation of the GT, denoted 
GT_est. 

7) Calculate MI: MI (GT_est, GT). The last added band 
must increase the final value of IM (GT_est, GT), 
otherwise, it will be rejected from the choices. 

8) Finally, we introduce a threshold to control the 
permitted redundancy. 

 

V. RESULTS AND DISCUSSION  

A. Case Study  
The Ground Truth map used in the experiments, of the two 

algorithms aforesaid, is Acquired from AVIRIS sensor 
(AVIRIS92AV3C) [6], it contains 220 images. Each band has 
the size of 145x145 pixels, two thirds of this image are covered 
by agricultural land and one third by forests. Pixels are labeled 
as one of the 16 vegetation classes or unidentified. See figure 3. 

Due to the availability of reference data, this hyperspectral 
image is an excellent source for the realization of experimental 
studies. 50% labeled pixels are randomly selected to be used in 
training, and the other 50% will be used for the classification 
testing [7]. The classifier used is SVM [8] [9] [10]. 

 
Fig. 3.  The Ground Truth map of  AVIRIS 92AV3C 

 

B. Results 
 

 The figure 4 illustrate the mutual information of the 
AVIRIS with the Ground Truth map, where we can 
see for example the noisy bands: 155 or 220. This 
explain the necessity to reduce the dimensionality of 
the HSI and to eliminate some bands. 

Fig. 4.  Mutual information of AVIRIS with the Ground Truth map 
 

 The plot of homogeneity feature of the 220 bands is 
shown in figure 5. By this statistic, we can also 
allocate the no informative bands affected by 
atmospheric effects for example, so we have to 
reduce dimensionality. 

 Fig. 5.   Homogeneity of the different bands the Ground Truth map 
 Now, we will apply the algorithms of process1 and 

process2, presented in the previous section, on the 
AVIRIS92AV3C to reduce the dimensionality and its 
classification.  
 

The table I gives the classification results using the selection 
by mutual information ( process1 ) for different thresholds Th 
to control redundancy. 



TABLE I.    RESULTS OF ALGORITHM 1: REDUNDANCY  CONTROL FOR 
DIFFERENT VALUES OF THRESHOLD (TH) 

 
The following table presents the different results obtained by 
using the algorithm 2, we can see the effectiveness selection of 
this algorithm, and the positive effect of the use of the 
extracted information “the homogeneity”. 

TABLE II.  RESULTS OF ALGORITHM 2: REDUNDANCY CONTROL BASED 
ON M I  AND HOMOGENEITY FOR DIFFERENT VALUES OF   TH  

C. Analysis and discussion  
 

According to the tables, we can see that: 
To increase the rate of classification, we allowed some 

redundancy by using negatives thresholds. 
For high thresholds values, in the range of (-0.0035 to 0), 

few bands are selected because there is no redundancy, for 
example, with Th=0, just two bands are retained and the 
second method prevails because the accuracy is better than 
using the first one. 

If we allowed some redundancy, for medium thresholds    
(-0.01 to -0.004), the classification rate increases. This is a 
very interesting region where we note a good behavior of the 
two methods specially the second, by using the homogeneity 
feature of bands, for less than 35 bands. 

Now if we permit more redundancy, it’s the case of         
Th= -0.02, we obtain the same accuracy with more retained 
bands, and we can’t have interesting results for the reason that 
the redundancy becomes useless as it appears  in table2 for 
more than 70 bands. 

 
Finally, these simulations shows that both of the features 

selection methods, described in the previous section, give a 
good results  but each one has its  particularity. For example if 
the number of retained bands is less than 36, the combination 
of spectral and spatial features “ algorithm2” prevails. 

 

VI. CONCLUSION   
 

 

In this paper, we presented the problem of inefficiency and 
the redundancy of attributes in Hyperspectral images and the 
necessity to reduce their dimensionality by saving their 
propriety regarding to the multispectral images. For this, 
reduction dimensionality methods has been illustrated into two 
categories: by selection or feature extraction. In the first step 
we reproduced an algorithm based on feature selection by 
using mutual information to select bands able to classify the 
pixels of the Grouth truth, then we proposed a second 
algorithm that integrate the homogeneity feature with the 
mutual information. The use of homgeneity allows to improve 
results for some values of thresholds. These proposed 
processes are a Filter strategy and were applied by using 
Hyperspectral dataset  AVIRIS 92AV3C.  

The selection was be effectively done to reduce 
dimentionality and classify the HIS, we can say that the the 
useful redundancy was conserved by using several thresholds. 

The simplicity of theses algorithms allows them to be used 
for fast applications with medium performances and to be 
investigated and improved.   
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Abstract 

Nowadays, the hyperspectral remote sensing imagery HSI becomes an important tool to observe the Earth’s surface, detect the 

climatic changes and many other applications. The classification of HSI is one of the most challenging tasks due to the large 

amount of spectral information and the presence of redundant and irrelevant bands. Although great progresses have been made on 

classification techniques, few studies have been done to provide practical guidelines to determine the appropriate classifier for 

HSI. In this paper, we investigate the performance of four supervised learning algorithms, namely, Support Vector Machines 

SVM, Random Forest RF, K-Nearest Neighbors KNN and Linear Discriminant Analysis LDA with different kernels in terms of 

classification accuracies. The experiments have been performed on three real hyperspectral datasets taken from the NASA’s 

Airborne Visible/Infrared Imaging Spectrometer Sensor AVIRIS and the Reflective Optics System Imaging Spectrometer ROSIS 

sensors. The mutual information had been used to reduce the dimensionality of the used datasets for better classification 

efficiency. The extensive experiments demonstrate that the SVM classifier with RBF kernel and RF produced statistically better 

results and seems to be respectively the more suitable as supervised classifiers for the hyperspectral remote sensing images. 
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1. Introduction 

In the last decades, the acquisition of images with higher spectral resolution becomes possible using the 

hyperspectral remote sensing imagery HSI, the large amount of information that contains makes it useful in many 
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applications including environmental studies, military, the study of plant’s stress and especially land cover analysis 

[1] [2]. For HSI classification, several algorithms have been developed in the literature and can be divided into two 

main groups, namely, supervised and unsupervised methods. The supervised classification techniques require the 

availability of a subset of the ground truth to use for training whereas in the unsupervised techniques, no prior 

definitions of the classes are used. In this work, we investigate the reliability of four well-known supervised learning 

algorithms, namely, Support Vector Machines SVM, Random Forests RF, K-Nearest Neighbors KNN and Linear 

Discriminant Analysis LDA with different kernels to determine their performance in terms of classification 

accuracies. The main motivation behind this choice is due to the following two reasons: (i) these methods provide, in 

the literature, good performances in many applications in different areas and especially in remote sensing [3] [4] [5], 

(ii) no study has been made to compare the classification performance of these four algorithms to determine the most 

adapted for the hyperspectral images. 

The classification of HSI suffers from many problems for both supervised and unsupervised learning [6]. In the 

case of supervised classification methods, Huges phenomenon [7] called the curse of dimensionality; complicates the 

learning system leading to have poor classification model. It is due to the large spectral information with limited 

number of training samples and the presence of irrelevant and redundant bands. To overcome these challenges, it is 

necessary to use dimension reduction DR techniques as a pre-processing step of the HSI classification; they consist 

to transform the image from a high order to a lower dimension by eliminating the irrelevant bands without losing 

useful information [8] [9] [10]. The DR can be done either by feature extraction or feature selection or by selection 

followed by extraction. The feature selection based methods are the most commonly used [11]; they can be classified 

into two categories namely filter or wrapper approaches in terms of dependency of the evaluation step on the 

classification algorithm. In this study, we will use the filter approach for feature selection based on mutual 

information to reduce the dimension of the used datasets to getting better classification efficiency.   

The rest of this paper is organized as follows: In the next section, we explain the used band selection method for 

dimensionality reduction based on mutual information and we briefly present the four supervised classifiers retained 

for this study. Section 3, presents the datasets and discusses the experimental results. Finally, section 4 concludes our 

work. 

2. Methodology 

 To deal with the aforesaid challenges of hyperspectral images classification, this work aims to make two 

contributions: First, confirm the power and the validity of the mutual information to select the relevant bands as a 

pre-processing step of HSI classification and improve its accuracy. Second, investigate and compare the 

performance of the four supervised classifiers in terms of classification efficiency and help to determine the more 

suitable for HSI classification. The block diagram of this methodology is shown in the following figure 1. The 

detailed process of this study is presented in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Block diagram of the methodology 
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2.1. Feature selection by mutual information   

The hyperspectral images provide more than hundred bands of the same region, but some of them are redundant 

and don’t contain relevant information. These attributes lead to have a poor classification model. In this study, we 

will use a filter approach based on mutual information to overcome this problem and select the reduced group of 

bands in order to improve the classification accuracy. 

Within informative theory researches [12], Shannon entropy denoted by H(X) is used in order to measure the 

quantity of information contained in a random variable X as presented in the equation (1). With p(X) is the 

probability density function of X. 

 ( )  ∑  ( )      ( )                                                                                (1) 

 

The entropy will be used in our case to quantify the amount of information contained in a band (X) of the 

hypersperctral image. The relation between entropy and the mutual information MI can be formulated as below:  

 

 (   )   ( )   ( )   (   )                                                                        (2) 

 

As defined in (2), the MI calculates the difference between the dependent and joint distributions of the entropy to 

estimate the statistical dependence of two bands X and Y. The MI is also expressed as:   

 

 (   )  ∑  (   )     
 (   )

 ( ) ( )                                                                                      (3) 

 

With p(X,Y) is the joint probability density function of  band X and band Y. So our feature selection algorithm 

using the mutual information is based on four steps:  

 

 First, compute the MI between the ground truth and each band of the original hyperspectral dataset. 

 Second, we initialize the selected bands by the one that have the largest MI with the ground truth. 

 Third, an approximated reference map called (G-est) is built by the average of the last one with the candidate 

band. 

 Fourth, The added band is retained if it increases the last value of the MI between the Ground Truth GT and the 

approximated reference G_est: MI(GT,G-est) otherwise, it will be rejected. 

2.2. Supervised classification methods 

In this subsection, we give a brief review of the principle of the four supervised classification algorithms used in 

this study. Each technique adopts a learning algorithm to identify a model that fits the relationship between the 

attributes and class labels of the input hyperspectral images. 

 

A. Support Vector Machines SVM 

Support vector machines SVM is a supervised machine learning paradigm, it has been widely used in 

classification of hyperspectral remote sensing images and has provided good results in many works [13][14]. SVM 

is of two types linear and nonlinear depending on the hyperplane defined for the classification, the nonlinear SVM is 

performed using kernel function K. 

The general principle of the SVM is to find the optimal hyperplane that separates samples belonging in two 

classes by maximizing the distance between the margins.  

In certain cases, linear classifier fails to find an optimal hyperplane, this forced us to use nonlinear type, and in 

this case, the data are mapped into a higher dimensional space using Kernel function which must fulfill Mercer’s 

conditions. Refer to [15] for more details. The kernels used in this study are linear, radial basis function RBF and 

sigmoid. 
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B. K-Nearest Neighbor K-NN 

K-Nearest Neighbor KNN is a non-parametric learning algorithm; it is one of the most useful as supervised 

classifier that keeps all the training data to make decision based on similarity measure. It has been successfully 

applied on hyperspectral images classification [16]. 

Let    be the labled training data of n points and X are the new unlabeled points.  

    *(     ) (     )         (     )+  The general procedure of the KNN classifier may be 

summarized in these steps: 

 Find the distance between every point in the training data    and the new point X. In this step, various metrics can 

be used to determine this distance such as: Euclidean, standardized Euclidean, mahalanobis, cityblock, 

chebychev distance etc. The popular one is the Euclidean distance that we use in this study.  

 Sort these distances in ascending order. 

 Return the k points in    that are closest to the new point X. 

 

For    : The case of nearest neighbor algorithm 1NN, the new point gets the class label of the nearest neighbor.  

For    : The case of K-Nearest Neighbors KNN, the new point is classified by voting the most frequent neighbor. 

The choice of optimal value of k is critical. In general, the accuracy value increases with a large value of k 

because it reduces the overall noise but the computational cost and time also increase. In this study we perform the 

KNN classifier using different values of k: 1, 3, 5 and 7. 

 

C. Linear Discriminant analysis LDA 

Linear discriminant analysis LDA is also known as the Fisher discriminant analysis named for its developer R.A. 

Fisher. It is sample but gives good models as more complex methods. When applied on hyperspectral images 

classification, this algorithm aims to find a linear combination of features to separate the classes of the dataset. 

Indeed, this approach maximizes the between class variance to the within class variance ratio to ensure maximum 

separability. For a full theoretical description, the reader is referred to [17]. In this study two types of LDA were 

used which are linear and diaglinear: 

 Linear: (default) estimates one covariance matrix for all classes. 

 Diag-linear: uses the diagonal of the linear covariance matrix. 

 

D.  Random Forests RF 

Random forests RF [18] is one of the ensemble learning algorithms popularly used in many kinds of data science 

problems [19]. As its name suggests, this classifier consists to construct a multitude of decision tree DCT for 

training. Its main idea is that a group of “weak learners” can come together to form a “strong learner”.  

The RF is a combination of one of the supervised classifiers called “decision tree” which corresponds to our 

weak learner. In decision tree, we have high variance and high bias but RF overcomes these problems and creates a 

balance between these two errors. 

The general steps for performing a random forest are listed below: 

- Build the random forest: 

 Select “m” features from the total features “F”. 

 For    : Calculate the nodes “n” and their daughters using the best split point. 

 Repeat these two steps until having “d” nodes and the target as the leaf node. 

 Repeat the aforesaid steps until having a forest with “k” trees.  

 

-  Random forest prediction: 

 Store the predicted results using the created decision trees and the best features. 

 Use the majority voting for each predicted target. 

 The final prediction of the RF algorithm is the high voted predicted target. 
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3. Experiments results and discussion 

3.1. Datasets description 

For experiments, three datasets will be used in this study, from two types of airborne hyperspectral sensors which 

are publicly available at [20]. These datasets have different characteristics in terms of number of bands and classes 

and features type.  

 

A. Indian Pines   

 The first dataset used in this study is acquired by the 224-band Airborne Visible/Infrared Imaging Spectrometer 

Sensor AVIRIS over the Indian Pines in North-western Indiana. It has 145x145 pixels and 224 bands in the 

wavelength range of 0.4-2.5 µm with spatial resolution of 20 m pixels. This scene is widely used in many works 

related to HSI analysis. It includes sixteen classes. The Color composite and the corresponding ground truth 

reference of this dataset are presented in Fig. 2a. 

 

B. Salinas  

The second dataset is Salinas. It is captured by the 224-band AVIRIS over Salinas valley, CA, USA. It consists 

of 217x512 pixels and 224 spectral reflectance bands in the wavelength range of 0.4 to 2.5 µm. Salinas scene is 

characterized by high spatial resolution (3.7 m pixels). The color composite and the corresponding ground truth 

reference are given in Fig. 2b. It contains also sixteen classes and it is known by its complicated classification 

scenario due to their highly mixed pixels. 

 

C. University of Pavia 

The University of Pavia dataset is a 610x340 pixels scene gathered by the Reflective Optics System Imaging 

Spectrometer (ROSIS-03) sensor over urban area of engineering school at University of Pavia, Italy. Its spatial 

resolution is 1.3 m per pixel. Original dataset has 115 spectral bands in the range 0.43-0.86 µm where 12 bands were 

removed due to the noise. The color composite and the corresponding ground truth reference are shown in Fig. 2c. It 

includes nine classes.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.The three-band color composite and the corresponding Ground Truth map of the hyperspectral images; (a) Indian Pines; (b) Salinas and 

(c) University of Pavia 

3.2. Classification and evaluation metrics 

To classify the above mentioned datasets using the four supervised classifiers, 50% of the pixels of each class are 

randomly chosen as training data and 50% for the test. The selected bands using the mutual information are used as 

input data for the classifiers. The parameters values of the classifiers are experimentally chosen using the cross 

validation algorithm. All the tests are implemented using the scientific programming language MATLAB. 

In order to compare the performance of the classifiers, different coefficients of evaluation can be calculated from 

the Confusion Matrix. Among the most used in the literature, we have chosen sensitivity, specificity and precision 

calculated using the following formulas: 

            
  

     
                                                                      (4) 

(a) (b) (c) 
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                                                                      (5) 

 

           
  

     
                                                                       (6) 

 

Where TP is true positive, TN is true negative, FP is false positive and FN is false negative. 

Two other popular measures widely used in hyperspectral remote sensing imagery for comparing different 

classifiers were used in this study, namely the overall accuracy OA and the kappa coefficient k. The OA is 

calculated as the ratio of total number of correctly classified pixels to the total number of test pixels, where the 

kappa coefficient is used to measure the agreement between classified and truth values. The computational time is 

also used 

3.3. Results and discussion 

 The first step in this study was to select the relevant bands from the datasets which contain 224 bands for Indian 

Pines and Salinas and 103 bands for Pavia University. This step was done using a filter method based on mutual 

information. Subsequently, we applied the four supervised classifiers with different kernels on the selected features. 

The experimental results using the three datasets are summarized and respectively shown in Fig. 3a, Fig.3b and 

Fig.3c. From these figures, it is seen that most of the classification algorithms perform well and give good accuracy 

rate that exceeds 60% with just 30 selected bands. It is also clear that the SVM with RBF kernel outperforms the 

other methods in terms of classification accuracy that achieves 87.28% for Indian Pines, 93.2% for Salinas and 

91.65% for Pavia University, followed by RF and KNN. LDA-linear does not perform as well as SVM-RBF, SVM-

linear, RF and KNN with different values of k, but produces better accuracy than sigmoid kernel of SVM and LDA-

diaglinear which perform poorly for the three datasets. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Comparative performances in terms of classification accuracy and bands selection for (a) Indian Pines; (b) Salinas and (c) University of 

Pavia 

 

From these figures, we can also observe that the accuracy rate values show a little change beyond 80 selected 

bands for Indian and Salinas because the most informative bands are already selected and more added bands may 

(c) 

(a) (b) 
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decrease the accuracy rate, see Fig. 3a and Fig. 3b. For Pavia University also we remark a constant behavior for all 

the learning algorithms up to just 35 selected bands since it contains 103 bands which proves the benefit of 

dimension reduction using mutual information on hyperspectral images, see Fig. 3c. 

In order to compare the performances of the different classifiers, a variety of evaluation metrics is calculated and 

is presented in Tables 1, 2 and 3.  

For Indian Pines dataset, it is verified that the best classification performances are obtained by the SVM-RBF 

classifier for 80 selected bands where we get 93.06% in sensitivity, 99.51% in specificity, 94.42% in precision, 

93.27% in OA and kappa coefficient of 0.9282%. For KNN-1 and RF also provide good performance as can be seen 

in Table 1 where for example the kappa coefficient is respectively 0.9045% and 0.8910% and precision of 

respectively 91.33% and 91.68%. LDA classifier with linear and diag-linear kernels performs poorly compared to 

the other methods as show the results in Table 1. Concerning the computational time, we can see that The SVM-

RBF and RF need lower time to provide the highest accuracies.  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

The ground truth and the best classified maps of Indian Pines for each classifier by considering the different 

kernels are shown in Fig. 4a, 4b, 4c, 4d and 4e. By visual inspection, the SVM-RBF gives the best classified map 

Fig. 4b and on the other hand, the worst one is obtained using the LDA classifier as illustrated in Fig. 4e. which 

confirm the results in table 1. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. The Ground truth of Indian Pines and the best classified maps for 80 selected bands using SVM, RF, KNN and LDA 

 

In the same way, we trained our classifiers on the dataset 2 (Salinas) as can be seen in Table 2. The results 

indicate the better performance of SVM-RBF and RF compared to the other methods, in a good timing, especially 

LDA-diaglinear and SVM-sigmoid that performs poorly with overall accuracy of 51,52%  against  93.44% for 

SVM-RBF and 91.30% for SVM-linear. KNN with different values of k also performs well and gives good results 

but not as well as RF and SVM-RBF, see Table 2. 

Table 1. Performances comparison of supervised classification methods using different evaluation metrics in Indian Pines dataset 

 

  Sensitivity (%) Specificity (%) Precision (%) OA (%) Kappa Time(s) 

SVM 

RBF 93.06 99.51 94.42 93.27 0.9282 34.17 

Linear 80.35 98.44 85.39 79.01 0.7761 37.80 

Sigmoid 22.66 95.75 20.01 45.72 0.4210 50.34 

RF 85.01 99.25 91.68 89.78 0.8910 48.44 

DA 
Linear 

Diag-

linear 

77.86 

44.79 

97.87 

95.76 

69.55 

36.58 

69.49 

38.90 

0.6745 

0.3483 

2.86 

1.13 

KNN 

K=1 

K=3 

K=5 

K=7 

90.32 

84.78 

80.87 

77.90 

99.35 

99.09 

98.93 

98.81 

91.33 

89.43 

87.64 

85.82 

91.05 

87.52 

85.27 

83.68 

0.9045 

0.8669 

0.8428 

0.8260 

78.37 

80.55 

81.89 

84.53 

 

(a) Ground truth (b) SVM-RBF (c) RF (d) KNN-1 (e) LDA-linear 
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Again the ground truth and the best classified map of Salinas for each classifier are shown in Fig. 5a, 5b, 5c, 5d 

and 5e. The least good classified map is obtained using LDA-linear method with OA of 89.56 % and kappa 

coefficient equal to 0.8886%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The Ground truth of Salinas and the best classified maps of 80 selected bands using SVM, RF, KNN and LDA 

 

Finally, the same experiments are performed for dataset 3. Fig. 6 and Table 3 summarize the obtained results 

using different classifiers and kernels with variety of metric distances. From these results, it is obvious that SVM-

RBF and RF classifiers provide good performances of classification with advantage in terms of running time. The 

KNN also gives good results but it requires a high value of execution time. The LDA on the other hand is the faster 

but it performs poorly.  

 

Fig. 6a, 6b, 6c, 6d and 6e show the Ground truth of University of Pavia and the best classified maps. As before, 

for dataset 1 and 2, the top classified map is provided by SVM-RBF (see Fig.6) whereas the least good one is 

obtained using LDA-linear. 

 

 

Table 2. Performances comparison of supervised classification methods using different evaluation metrics in Salinas dataset 
 

  Sensitivity (%) Specificity (%) Precision (%) OA (%) Kappa Time(s) 

SVM 

RBF 97.12 99.50 97.41 93.44 0.9300 273.28 

Linear 95.68 99.34 96.15 91.30 0.9072 354.14 

Sigmoid 31.74 96.50 27.95 51.52 0.4829 1109.70 

RF 98.56 99.78 98.60 97.09 0.9690 256.86 

DA 
Linear 

Diag-

linear 

93.87 

78.05 

99.23 

98.09 

93.26 

69.22 

89.56 

72.68 

0.8886 

0.7085 

18.04 

5.15 

KNN 

K=1 

K=3 

K=5 

K=7 

98.28 

96.48 

96.00 

95.56 

99.71 

99.44 

99.39 

99.35 

98.24 

96.41 

95.99 

95.50 

96.07 

92.50 

91.89 

91.28 

0.9580 

0.9200 

0.9135 

0.9070 

2032.16 

2190.36 

2485.35 

2519.85 

 
 

 

(a) Ground truth (b) SVM-RBF (c) RF (d) KNN-1 (e) LDA-linear 



 Hasna Nhaila et al. / Procedia Computer Science 00 (2019) 000–000  9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The Ground truth of University of Pavia and the best classified maps of 80 selected bands using SVM, RF, KNN and LDA 

 

Partial conclusion 

 

To summarize the presented experimental results shown in (Fig. 3, 4, 5 and 6) and (Tables 1, 2 and 3); First, it is 

clear that the feature selection based on mutual information had good effect to get better performance using the 

different classification methods from 30 to 80 selected bands for Indian Pines and Salinas datasets where the 

accuracy rate exceeds 94%. For Pavia University, we achieve 91.65 with just 35 selected bands. On the other hand, 

it is obvious that the best classifier is SVM with RBF kernel, followed by RF and KNN (k=1) against the other 

algorithms especially LDA with diag-linear kernel that provides the lower results in the three hyperspectral datasets. 

From the inspection of the computational time, it is seen that the SVM-RBF and RF need a reduced time to provide 

high performances. 

4. Conclusion 

In this paper, a comparative study of four supervised classifiers has been presented. The classification methods 

used are Support Vector Machine SVM with (RBF, linear and sigmoid) kernels, Random Forest RF, Discriminant 

Analysis DA with (linear and diag-linear) kernels, and K-Nearest Neighbors with (k=1, 3, 5 and 7). On the other 

hand, to address Huges phenomenon and reduce the dimensionality of the used datasets, a filter method based on 

mutual information have been used to select the more informative bands from the used hyperspectral datasets. 

Table 3. Performances comparison of supervised classification methods using different evaluation metrics in Pavia 
University dataset 

 

  Sensitivity (%) Specificity (%) Precision (%) OA (%) Kappa Time(s) 

SVM 

RBF 88.59 98.84 90.07 91.91 0.9090 262.52 

Linear 75.17 97.80 68.74 85.48 0.8367 291.08 

Sigmoid 64.78 96.36 59.46 76.38 0.7343 529.15 

RF 93.83 99.32 95.35 95.50 0.9493 269.33 

DA 
Linear 

Diag-

linear 

78.92 

65.46 

96.84 

94.16 

73.62 

60.42 

75.47 

54.76 

0.7241 

0.4911 

8.12 

3.5 

KNN 

K=1 

K=3 

K=5 

K=7 

91.97 

88.41 

86.98 

86.40 

99.01 

98.61 

98.46 

98.39 

91.75 

89.51 

88.75 

88.62 

93.19 

90.79 

89.87 

89.51 

0.9234 

0.8964 

0.8860 

0.8819 

3435.95 

3521.30 

3714.08 

3886.08 

 

(a)Ground truth (b) SVM-RBF (c) RF (e) LDA-linear (d) KNN-1 
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The algorithms have been evaluated using three hyperspectral remote sensing datasets from the NASA’s AVIRIS 

and ROSIS airborne hyperspectral sensors, these datasets had different characteristics in terms of features type and 

number of bands and classes. 

The experimental results confirm the effectiveness of dimension reduction as a pre-processing step of 

classification using mutual information; also the tests show that the SVM with RBF kernel presents the high 

performance and seems to be the more effective as supervised classifier for hyperspectral images classification 

followed by RF in comparison with the other cases.  

For the performances evaluation of each classifier, several metrics have been calculated which are sensitivity, 

specificity, precision, overall accuracy OA, kappa coefficient k and the computational time. All of them affirm that 

the SVM-RBF provided the maximum performances and the LDA is the least good that performs poorly in 

comparison with the other methods as it is shown in the classified maps.  

Our future objective is to make further investigation in this topic to improve the present results using the 

unsupervised classifiers and dimensionality reduction methods by both feature selection and extraction. This article 

can be a guide or reference for the new researchers to choice the adequate classifier of Hyperspectral images as 

needed.  
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Abstract—Feature selection is one of the most important 
problems in hyperspectral images classification. It consists to 
choose the most informative bands from the entire set of input 
datasets and discard the noisy, redundant and irrelevant ones. In 
this context, we propose a new wrapper method based on 
normalized mutual information (NMI) and error probability 
(PE) using support vector machine (SVM) to reduce the 
dimensionality of the used hyperspectral images and increase the 
classification efficiency. The experiments have been performed on 
two challenging hyperspectral benchmarks datasets captured by 
the NASA’s Airborne Visible/Infrared Imaging Spectrometer 
Sensor (AVIRIS). Several metrics had been calculated to evaluate 
the performance of the proposed algorithm. The obtained results 
prove that our method can increase the classification 
performance and provide an accurate thematic map in 
comparison with other reproduced algorithms. This method may 
be improved for more classification efficiency.  

Keywords— Feature selection, hyperspectral images, 
classification, wrapper, normalized mutual information, support 
vector machine.  

I. INTRODUCTION  

With the recent development on hyperspectral sensors 
technologies, the hyperspectral images (HSI) become more 
available and widely employed in many applications in 
different domains such as food industry [1], military [2], 
agriculture mapping and especially land cover analysis [3]. 

In real world applications, hyperspectral images are 
represented by more than a hundred of bands of the same 
observed region. In the classification schemes, this large 
amount of spectral information increases the discrimination 
between classes. Unfortunately, it possesses many challenges in 
treatment and processing time due to the presence of redundant, 
irrelevant bands and the limited number of training samples. 
This problem is known as curse of dimensionality [4]. 
Subsequently, the dimension reduction (DR) becomes a crucial 

preprocessing step of HSI classification. The DR may be done 
either by selection, extraction or selection followed by 
extraction [5]. Several works had been done in this context [2], 
[6]. In this study, we use feature selection methods that can be 
divided into two main categories: filter and wrapper according 
to the relationship between the feature selection method and the 
induction algorithm (classifier).  In this study we use the 
wrapper approach. 

The rest of this article is organized as follows. The next 
section presents the related works of HSI dimensionality 
reduction using feature selection. In section 3, we explain the 
proposed algorithm based on both normalized mutual 
information NMI and error probability PE with SVM classifier. 
The used datasets and discussion about experiments are 
presented in section 4. Finally, section 5 concludes our work.   

II. RELATED WORK  

Dimensionality reduction using feature selection is an 
important step in hyperspectral images classification. It consists 
to reduce the complexity of input data by selecting the main 
informative features. Among the feature selection methods 
presented in the literature, mutual information (MI) based 
algorithms are the most popular in many HSI applications. For 
this, several approaches have been proposed. In [7], maximum 
relevance minimum redundancy algorithm (MRMR) was 
proposed to select good features according to the maximal 
statistical dependency criterion based on mutual information. 
Guo in [8] used MI to select bands for hyperspectral image 
fusion. And in his work [9], he proposed a fast feature selection 
scheme based on a greedy optimization strategy. Additionally, 
in [10], a novel unsupervised clustering is applied on HSI based 
on the similarity measure and histogram. Following this works, 
in [11], a wrapper algorithm using mutual information and 
inequality of Fano was proposed. In [12], combined mutual 
information with homogeneity feature extracted from Grey 
Level Co-occurrence Matrix (MIH) was used to select features 



from the HSI. New algorithms are constantly appearing; In 
[13], a hierarchical band selection approach by constructing a 
spectral partition tree based on mutual information was 
proposed. In our work, we propose a new wrapper algorithm 
(WNMIPE) based on normalized mutual information NMI and 
error probability PE with support vector machine SVM to 
reduce the dimensionality of the used hyperspectral datasets to 
increase the classification efficiency. Performance evaluation 
of the proposed method is performed on two hyperspectral 
datasets: Indian Pines and Salinas provided by the NASA's 
AVIRIS sensor. The proposed algorithm is compared with 
three other reproduced feature selection methods. 

The novelty of our contribution is the use of the normalized 
mutual information in a wrapper approach for hyperspectral 
images dimensionality reduction and classification using 
support vector machines. The second novelty is the use of error 
probability with NMI as evaluation criteria for redundancy 
control of selected bands. 

III. METHODOLOGY 

This work proposes a new wrapper methodology to select 
the most informative bands from the used hyperspectral 
datasets. It is based on three steps: 

 Computing the normalized mutual information NMI as 
described in the next section. 

 Using the wrapper approach with SVM as induction 
algorithm to construct the reduced subset of bands. 

 Applying the error probability PE as an evaluation 
criterion to improve the classification performance. 

A.  Normalized mutual information 

In the context of hyperspectral images, the mutual 
information is the statistical measure of similarity between the 
reference (ground truth in our case) noted G and each band 
noted B. 

The mutual information between G and B is given as: 

 �(�, �) = ∑ �����(�, �)
�(�,�)

�(�).�(�)
 

In relation with Shannon entropy, the MI gives a measure of 
dependence by calculating the difference between the 
independent and joint distributions of the entropy as defined in 
equation 2:    

 ��(�, �) = �(�) + �(�) − �(�, �) 

If the ground truth and the band are independent (the case of 
noisy bands for example), their joint distribution is equal to the 
sum of their individual distribution. The MI takes values from 
zero (independent variables) and +∞ (largest information 
shared between the variables). When applying on 
hyperspectral images, the MI can be limited by the total 
amount of information in images and becomes hard to 
interpret due to the unbounded range of values. To solve this, 
we use one of the various measures of the normalized mutual 

information NMI defined as the ratio of the entropy of G and 
B on the joint entropy between G and B as in equation 3: 

 ���(�, �) =
�(�)��(�)

�(�,�)
 

The required probabilities for	�(�), �(�) and �(�, �) are 
estimated using a histogram of the intensity distribution 
values. The normalization of mutual information scales values 
of mutual information in a bounded range [0, 1] with:  

 Value 1 means a perfect correlation between the 

ground truth map and the band. 

 Low values indicate a small similarity. 

 Zero shows that the two variables G and B are 

independent. 

B. Error probability 

To control the redundancy in our wrapper scheme, we use 
the error probability PE proposed in [14] [11] and expressed as 
follows:  


�(�\�)

������
≤ �� ≤

�(�\�)

����
 

 We compute the normalized mutual information between 
the ground truth G and the subset of candidate bands B with 
�� is the number of classes in the used dataset. This concept 
can be formulated as:  

 �� ≤
�(�)��(�,�)��

������
=

�(�\�)��

������
		 

 In our selection process, since N� and H(G) are constant, 
when I(G, B)	 is maximal then PE  becomes minimal. So the 
candidate band that minimizes the error probability has a high 
similarity with the ground truth and minimum redundancy 
with the already selected bands and it will be added at the 
selected subset if not it will be discarded. 

C. Proposed algorithm  

Our main idea in this proposed method is that the candidate 
band B is a good approximation of the ground truth G if it had 
a higher value of normalized mutual information. Since our 
algorithm is a wrapper scheme, this band must decrease the 
computed ��  to increase the classification accuracy. So our 
algorithm is seen as an incremental wrapper based subset 
selection (IWSS) [15] using normalized mutual information. 

Noting that the induction algorithm used for the 
classification is the support vector machine SVM with RBF 
kernel. It is one of the most useful as supervised classifier 
which provided good results in many hyperspectral images 
classification works [16][17].  

The complete selection process of our proposed method is 
as follows: 

 

 



Algorithm 
Input: hyperspectral dataset  

G: Ground truth,  
B: dataset Bands 
T: Training samples 

Output:  
S: Selected set of bands. 

1 (Initialisation)  
 � ← �������	���	��	�����	��������	(�����) 
 � ← �����	��	��������	�����	“�����	���” 
 � ← �ℎ�	������	��	�����	��	��	�������� 
 �ℎ ← �ℎ���ℎ���	��	�������		����������  
2 (Computation of normalized mutual information MI between 
G and each band B) using equation 3. 
For �: ∈ �, �������	���(�, ��) 
3 (Selection process) 
Select the first band �� that maximizes	���(�, ��) 
�� = �����������(�)		  

Set � ← �\{��	}	; 	� ← {��	}	; 	������ = ����(��)  
Compute ��∗  : 	�� ← ��∗	;  
while [�] < �	��	 

�� = ��������∈(���)���(�) 

 Set 						����� = 	�����(�)  
Compute PE 
 if �� ≤ ��∗ − �ℎ			�ℎ��	�� ← ��∗	���	� ← � ∪ {��	}	; 
else � ← �/{��	}	; 
end if 
end while 
5 (Output) S is the set of selected bands. 

IV.  EXPERIMENTS 

A. Datasets description 

In this paper, two challenging hyperspectral benchmark 
datasets are used for experiments from Airborne 
Visible/Infrared Imaging Spectrometer Sensor (AVIRIS). 
These datasets have been previously used in other researches 
[18-19] and are publicly available at 
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remot
e_Sensing_Scenes. They have different characteristics in terms 
of dimensions and features type. 

1) Indian Pines dataset 
The first dataset used in this study is acquired over the 

Indian Pines in North-western Indiana. It has 145x145 pixels 
and 224 bands in the wavelength range of 0.4-2.5 µm with 
spatial resolution of 20 m pixels. The Color composite and the 
corresponding ground truth reference of this dataset are 
presented respectively in (a) and (b) in Figure 1. It contains 16 
classes which are listed in the same figure. 

2) Salinas  dataset 
The second dataset used in this article is Salinas. It is 

captured over Salinas valley, CA, USA. It consists of 217x512 
pixels and 224 spectral reflectance bands in the wavelength 
range of 0.4 to 2.5 µm. Salinas scene is characterized by high 
spatial resolution (3.7 m pixels). The Color composite and the 
corresponding ground truth reference of this dataset are 
presented respectively in (a) and (b) in Figure 2. It contains also 
16 classes which are listed in the same figure. 

Fig. 1. The Color composite and the corresponding ground truth with class 
labels for Indian Pines dataset 

 
Fig. 2. The Color composite and the corresponding ground truth with class 
labels for Salinas dataset 

B. Classification and comparison methods 

The performance of the proposed algorithm is evaluated in 
terms of dimension reduction and classification accuracy. In all 
experiments, we use Support Vector Machine SVM which is a 
supervised classifier widely used in real world applications of 
HSI. Radial basis function RBF was chosen as the kernel. The 
experiments had been compiled in Matlab interface using the 
Libsvm package to deal with multiclass problems available at 
www.csie.ntu.edu.tw/cjlin/libsvm. We executed tests on a PC 
64-b quad-core Duo CPU 2.1Ghz frequency with 3GB of 
RAM. 

To develop the classification models, the number of 
samples used for training and testing are made randomly. Three 
cases have been considered in our study: 10%, 25% and 50% of 
pixels from each data were used for training and the remaining 
samples respectively of 90%, 75% and 10% were used to test 
the models. 



In order to validate the obtained results of our proposed 
method (WNMIPE), we compare it to other two filter 
approaches including maximum relevance minimum 
redundancy algorithm (MRMR) and the mutual information 
with homogeneity tagged (MIH) [12]. Also a wrapper 
algorithm using mutual information and inequality of fano 
tagged (WMIF) [11] is considered in the comparison.  

C. Results and discussion 

The experimental results of the proposed approach on 
Indian Pines and Salinas datasets are presented in this section 
and are assessed using four evaluation metrics. Individual 
Class Accuracy (ICA) which represents the correctly classified 
pixels for each class, Average Accuracy (AA) which is the 
average of classification accuracy for all classes, Overall 
Accuracy (OA) which refers to the correctly classified pixels 
over all test samples and the Kappa coefficient (k) of 
agreement [20]. 

Table I and II show the classification results in terms of 
AA, OA and Kappa coefficient obtained by the proposed 
method for respectively the Indian Pines and Salinas datasets. 

TABLE I.  AA(%), OA(%) AND KAPPA COEFFICIENT OBTAINED  BY THE 

PROPOSED METHOD FOR THE INDIAN PINES DATASET USING 49 SELECTED 

BANDS WITH THREE TRAINING SETS.  

 10% training 25% training 50% training 

AA 81.10 81.17 81.61 

OA 87.61 88.58 90.29 

Kappa 0.8679 0.8782 0.8964 

 
The first step was to select the relevant bands from these 

datasets that contain 224 bands.  

TABLE II.  AA(%), OA(%) AND KAPPA COEFFICIENT OBTAINED  BY THE 

PROPOSED METHOD FOR SALINAS  DATASET USING 37 SELECTED BANDS WITH 

THREE TRAINING SETS.  

 10% training 25% training 50% training 

AA 96.46 97.44 97.90 

OA 92.55 94.44 95.56 

Kappa 0.9206 0.9407 0.9526 

 
From tables I and II, we can make the following remarks: 

 Our band selection method provides satisfactory results 
of classification with overall accuracy that achieves 
87.61%, 88.58% and 90.29% for respectively 10%, 
25% and 50% as training samples in the Indian pines. 
For Salinas, we obtain 92.55%, 94.44% and 95.56%, 
with 10%, 25% and 50% of training pixels. 

 The results are obtained with just 49 selected bands for 
Indian Pines and 37 bands for Salinas, which prove the 
effectiveness of our algorithm in terms of 
dimensionality reduction and the selection of relevant 
bands.  

 The results also show the effect of the number of 
training samples used for classification. We can see 

that all the metrics (AA, OA and kappa) increases with 
the size of the training sets for both Indian Pines and 
Salinas datasets.  

 The use of SVM classifier, allowed getting high 
classification accuracies even with few training 
samples as in the case of 10% where the OA and kappa 
achieves respectively 87.61% and 0.8679 for Indian 
Pines. For Salinas, we get 92.55% in OA and 0.9506 in 
kappa coefficient. 

In the following experiments, the proposed method is 
compared with two filter band selection algorithms: MRMR 
and MIH and with a wrapper method based on mutual 
information. All methods are tested using the same training 
and testing sets of 50% with SVM-RBF classifier. The 
obtained results are illustrated in table III for Indian Pines 
dataset and in table IV for Salinas scene.   

The first column in table III and IV represents the total 
number of samples in each class of the datasets. The remainder 
columns represent the obtained results of the different methods 
used in the comparison with the results of our proposed 
algorithm in the last column. The rows represent the ICA of 
each class of the scenes. The last rows contains respectively 
AA, OA and Kappa coefficient. 

TABLE III.  CLASSIFICATION ACCURACY FOR INDIAN PINES DATASET 

USING DIFFERENT REPRODUCED METHODS WITH 60 SELECTED BAND  

Class 
Filter approach Wrapper approach 

MRMR MIH WMIF WNMIPE 

1 54 47.83 82.61 73.91 82.61 

2 1434 76.57 71.41 69.60 83.26 

3 834 60.91 78.90 66.43 83.21 

4 234 71.79 60.68 67.52 72.65 

5 497 93.09 84.55 88.62 91.87 

6 747 96.93 90.78 92.46 95.81 

7 26 00.00 46.15 69.23 69.23 

8 489 98.78 95.10 98.37 96.33 

9 20 00.00 60.00 70.00 80.00 

10 968 65.08 76.65 75.62 86.36 

11 2468 89.95 81.04 87.28 87.76 

12 614 76.22 81.11 87.30 83.39 

13 212 99.03 96.12 98.06 98.06 

14 1294 98.30 94.74 95.83 96.29 

15 380 56.02 48.80 46.99 62.65 

16 95 91.30 93.48 93.48 91.30 

AA 70.11 77.63 80.04 85.05 

OA 83.95 88.47 83.42 93.34 

Kappa 0.8288 0.8770 0.8231 0.9290 



TABLE IV.  CLASSIFICATION ACCURACY FOR SALINAS DATASET USING 

DIFFERENT REPRODUCED METHODS WITH 37 SELECTED BAND  

Class 
Filter approach Wrapper approach 

MRMR MIH WMIF WNMIPE 

1 2009 99.20 99.50 97.71 100 

2 3726 99.95 99.89 99.78 100 

3 1976 96.36 98.89 98.99 99.90 

4 1394 99.26 99.85 99.71 99.56 

5 2678 96.09 99.62 99.47 100 

6 3959 99.65 99.95 99.95 99.85 

7 3579 99.33 99.72 99.61 99.83 

8 11271 89.98 85.63 96.40 91.76 

9 6203 99.45 99.84 99.32 99.94 

10 3278 86.27 95.36 95.91 98.72 

11 1068 86.52 98.13 97.19 100 

12 1927 99.79 99.69 99.58 100 

13 916 97.82 98.91 98.69 99.13 

14 1070 92.90 97.20 93.08 99.44 

15 7268 44.44 60.09 53.60 78.27 

16 1807 98.66 98.89 98.22 100 

AA 92.85 95.70 94.83 97.90 

OA 88.71 91.40 90.31 95.56 

Kappa 0.8795 0.9083 0.8967 0.9526 

 

 For Indian Pines dataset, it is seen from table III that 
the proposed method gives better results than the other 
methods with 85.05% of AA, 93.34% of OA and 
0.9290 of Kappa. The proposed WNMIPE exceeds 
(e.g. in terms of OA) the MRMR with 9.39% the 
WMIF with 9.92% and the MIH with 4.87%, the latter 
method combined the mutual information with 
homogeneity feature for band selection. 

 The effectiveness of our proposed method with Indian 
dataset is more illustrated in figure 3 which shows the 
ground truth in (a) and the classified maps obtained 
using the different methods in (b), (c), (d) and (e) for 
the proposed algorithm. We can see that our method 
provides the best classified map which confirms the 
benefit of using the wrapper scheme with NMI and PE 
to select the relevant bands and eliminate the redundant 
ones for better classification efficiency. 

 For Salinas dataset, from table IV, we can see that the 
proposed method WNMIPE outperforms the other 
methods in terms of AA, OA and Kappa. For example, 
The ICA of the grapes_untrained, which is the class 
number 8, increases from 85.63% to 91.76% with the 
proposed algorithm. The ICA of class 11 named 
lettuce_romaine_4wk  increases from 86.52% to 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Indian Pines dataset: (a) Ground truth map; and classified maps with 
Overall accuracy OA (in parentheses) obtained for 60 selected bands by the 
reproduced  (b) MRMR (83.95), (c) MIH (88.47), (d) WMIF (83.42) and (e) 
proposed WNMIPE (93.34). 

which demonstrate the advantage of our method in 
better finding the optimal set of selected bands to 
classify the classes of the dataset. 

 The classified maps of Salinas dataset using the 
proposed method and the three reproduced algorithms 
are shown in Figure 4. It is seen that the best classified 
map is obtained using our proposed method (e). It is 
obvious that it is very close to the ground truth shown 
in sub-figure (a) which proves the efficiency of our 
algorithm since a reduced set with just 37 bands is 
sufficient to discriminate all the classes of the scene. 

 Partial conclusion 

 The analysis of the presented results demonstrates that the 
proposed algorithm can significantly improve the classification 
accuracies compared to the other reproduced methods for both 
Indian Pines and Salinas datasets. Note that the filter methods 
make the band selection step using the mutual information 
independently of the classifier system which produces low 
results than the wrapper methods. 
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Fig. 4. Salinas dataset: (a) Ground truth map; and classified maps with 
Overall accuracy OA (in parentheses) obtained for 37 selected bands by the 
reproduced (b) MRMR (88.71), (c) MIH (91.40), (d) WMIF (90.31) and (e) 
proposed WNMIPE (95.56). 

 The MRMR gives the lowest results. The MIH even it is 
a filter approach, it gives better classification results than 
WMIF because it incorporates the spatial information presented 
with the homogeneity feature to select the relevant band but not 
as well as our proposed method that produced the best results in 
terms of AA, OA and Kappa coefficient for both Indian Pines 
and Salinas hyperspectral scenes. The proposed wrapper 
formed by the combination of the NMI and PE allows selecting 
relevant bands and eliminating redundant ones for better 
classes’ discrimination and classification efficiency.     

V. CONCLUSION  

The main aim of this paper is to propose a new wrapper 
approach for dimensionality reduction and land cover 
classification of hyperspectral images. The algorithm is based 
on the feature selection using normalized mutual information 
NMI and error probability PE with SVM classifier. In the 
selection process, each candidate band had to check two 
criteria: increases the classification rate and minimizes the 
probability error to be added in the selected set. 

The experiments had been performed on two challenging 
hyperspectral benchmark datasets with different characteristics   
captured by the NASA’s AVIRIS hyperspectral sensor. The 
obtained results for tree sets of training samples (10%, 25% and 
50%) had been assessed using several classification metrics 
(ICA, AA, OA and Kappa coefficient), all of them prove that 
the proposed method can improve the classification accuracies 
when compared to the state of the art methods and provide 
accurate classified map. 

The classification results using the SVM-RBF classifier 
achieves 85.05% of AA, 93.34% of OA and 0.9290 of Kappa 
for Indian dataset. For Salinas scene, we get 97.90% of AA, 
95.56% of OA and 0.9526 of Kappa coefficient. 

In overall, we can say that the proposed method is an 
effective tool for HSI classification with reduced number of 
bands which can be further optimized and improved for 
example to explore the unlabeled pixels and using unsupervised 
approaches.   
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Abstract. Band selection is a great challenging task in the classification of
hyperspectral remotely sensed images HSI. This is resulting from its high spectral
resolution, the many class outputs and the limited number of training samples. For
this purpose, this paper introduces a new filter approach for dimension reduction
and classification of hyperspectral images using information theoretic (normalized
mutual information) and support vector machines SVM. This method consists to
select a minimal subset of the most informative and relevant bands from the input
datasets for better classification efficiency. We applied our proposed algorithm on
twowell-known benchmark datasets gathered by theNASA’sAVIRIS sensor over
Indiana and Salinas valley in USA. The experimental results were assessed based
on different evaluation metrics widely used in this area. The comparison with the
state of the art methods proves that our method could produce good performance
with reduced number of selected bands in a good timing.

Keywords: Dimension reduction � Hyperspectral images � Band selection
Normalized mutual information � Classification � Support vector machines

1 Introduction

Recently, the hyperspectral imagery HSI becomes the principal source of information
in many applications such as astronomy, food processing, Mineralogy and specially
land cover analysis [1, 2]. The hyperspectral sensors provide more than a hundred of
contiguous and regularly spaced bands from visible light to near infrared light of the
same observed region. These bands are combined to produce a three dimensional data
called a hyperspectral data cube. Thus, an entire reflectance spectrum is captured at
each pixel of the scene. This large amount of information increases the discrimination
between the different objects of the scene. Unfortunately, we face many challenges in
storage, time treatment and especially in the classification schemes due to the many
class outputs and the limited number of training samples which is known as the curse of
dimensionality [3]. Also the presence of irrelevant and redundant bands complicates the
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learning algorithms. To overcome these problems, the dimensionality reduction
(DR) techniques based on feature selection or extraction become an essential prepro-
cessing step that significantly enhances the classification performance. This article will
focus on feature selection methods which include filter and wrapper approaches
depending on the use of the learning algorithm in the selection process. Our proposed
method is a filter approach.

The rest of this paper is organized as follows: Sect. 2 presents the related works of
feature selection based methods for dimension reduction of hyperspectral images. In
Sect. 3, we describe the proposed approach. Section 4 presents the datasets and dis-
cusses the experimental results in comparison with the state of the art methods. Finally,
some conclusions of our work are drawn in Sect. 5.

2 Related Works

Feature selection approaches have attracted increasing international interest in the last
decades. Thus, various methods have been proposed to overcome the HSI classification
challenges. The maximal statistical dependency based on mutual information MRMR
was used in [4] to select good features for HSI classification. In [5], a greedy opti-
mization strategy was applied to select features from HSI data. In their work [6],
authors proposed an adaptive clustering for band selection. Additionally, in [7], an
unsupervised method for band selection by dominant set extraction DSEBS was pro-
posed using the structural correlation. On the other hand, in [8], the Gray Wolf
Optimizer GWO was used to reformulate the feature selection as a combinatorial
problem based on class separability and accuracy rate by modeling five objective
functions.

New methods are still appearing in the literature. In [9], a new method for
dimension reduction of Hyperspectral images GLMI was proposed using GLCM fea-
tures and mutual information. In [10], authors proposed a semi supervised local Fisher
discriminant analysis using pseudo labels samples for dimensionality reduction of HSI.
In our work, we propose a new filter approach called NMIBS based on information
theoretic, we use the normalized mutual information with the support vector Machi-
nes SVM to address the curse of dimensionality problem in HSI classification.

To confirm the effectiveness of our proposed approach, experiments are carried out
on the NASA’s AVIRIS Indian Pines and Salinas hyperspectral datasets with com-
parison to several techniques of band selection and classification of hyperspectral
images.

3 Methodology

The main aim of this work is to improve the classification performance of hyperspectral
images by introducing a new filter approach for band selection. It consists to select the
optimal subset of relevant bands and remove the noisy and redundant ones using the
normalized mutual information NMI.
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According to the general principle of feature selection methods [11], our algorithm
comprises four main steps:

• The generation procedure of the candidate bands using sequential feature selection
starting with an empty set.

• The evaluation function to judge the goodness of the current subset. In this step, we
measure the information and dependence using NMI.

• The stopping criterion to decide when to stop the search. It depends on the number
of iterations and the features to be selected.

• The validation procedure to test the effectiveness of the retained subset of bands. In
this step, we applied the SVM classifier on tow real world benchmark datasets and
compare the obtained results with the state of the art methods.

The remainder of this section gives a brief explanation of the band selection using
normalized mutual information, the definition of Support vector machine and presents
the complete selection process of the proposed algorithm.

3.1 Normalized Mutual Information for Band Selection

Mutual information has been widely studied and successfully applied in hyperspectral
remote sensing imagery to select the optimal subset of features [4, 5, 9]. It measures the
dependence between two random variables which are, in our case, the ground truth
noted GT and each candidate band of the input datasets noted B. In this work, we will
use the normalized mutual information given as:

NMI GT ;Bð Þ ¼ H GTð ÞþH Bð Þ
H GT ;Bð Þ ð1Þ

This measure represents the ratio of the entropy of the ground truth GT and each
band B on the joint entropy between GT and B. It is higher when we have a good
similarity between the bands. Low value means a small similarity and zero value shows
that the bands are independent which allows eliminating the noisy bands. The NMI will
be used in the generation and evaluation steps of our proposed methodology see the
proposed algorithm in the following subsection.

3.2 Support Vector Machines

The Support Vector Machines SVM is applied in the validation step of our proposed
method to generate the classified maps using the selected bands. It is one of the most
useful as supervised classifier in many works related to hyperspectral remotely sensed
images applications [12, 13]. Its principle consists to construct an optimal hyperplane
of two classes by maximizing the distance between the margins. SVM is adopted in our
work since it is able to work with a limited number of training samples. In our
experiments, we use the radial basis function RBF as a kernel to map the input data to a
higher dimensional space. Three cases of training sets (10%, 25% and 50%) are ran-
domly constructed to train the classifier to show the impact of the training samples size
on the classification rate.
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3.3 Proposed Algorithm

The complete selection process of our proposed methodology is as follows:
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In this algorithm, to generate the optimal subset of reduced bands, we initialize the
selected bands by the one that have the largest NMI with the ground truth, then an
approximated reference map called GTest is built by the average of the last one, firstly
named GTest0 with the candidate band. The current band is retained if it increases the
last value of NMI(GT, GTest) used as the evaluation function, otherwise, it will be
rejected. The threshold Th is introduced to control the permitted redundancy. The
stopping criterion is tested depending on the number of bands to be selected k and the
number of iterations z. Finally, the validation step is achieved using the SVM classifier
to produce the classified maps as an output of this algorithm. Several evaluations
metrics are then calculated based on the confusion matrix for the comparison with
various other techniques.

4 Experimental Results and Discussion

4.1 Datasets Description

In order to evaluate the performances of the proposed approach, the experiments are
conducted on two challenging hyperspectral datasets widely used in the literature [14,
15] and freely available in [16]. The first one was captured over Indian pines region in
Northwestern Indiana. The second was gathered over Salinas Valley in South Cali-
fornia in USA. Both of them are collected by the NASA’s Airborne Visible/Infrared
Imaging Spectrometer Sensor AVIRIS. Table 1 shows the different characteristics of
these datasets. The Color composite and the corresponding ground truth reference with
classes are respectively presented in (a) and (b) in Fig. 1.

4.2 Parameters Setting and Performance Comparisons

The proposed method is compared with various feature selection methods including
Mutual information maximization MIM [17], MRMR [4] and GWO [8]. The SVM
classification using all bands without dimension reduction is also included in the
comparison.

All the experiments are compiled in the scientific programming language Matlab on
a computer with quad-core Duo, 64-b, CPU 2.1 Ghz frequency with 3 GB of RAM.
The libsvm package available at [18] was used to get the SVM multiclass classifier with
RBF kernel. The proposed algorithm stops when the preferred number of selected
bands is achieved. The hyperspectral input datasets are randomly divided into training
and testing sets, we consider three cases with ratio of 1:10, 1:4, 1:2.

Table 1. Characteristics of the hyperspectral images used in this work.

Number of
bands

Number of
classes

Size of the
images

Wavelength
range

Spatial
resolution

Indian 224 16 145 � 145 0.4–2.5 µm 20 m pixels
Salinas 224 16 217 � 512 0.4–2.5 µm 3.7 m pixels
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4.3 Results and Discussion

The experimental results on Indian Pines and Salinas datasets using the proposed
approach are presented in this subsection. The classification performances are accessed
using two evaluation metrics widely used in the hyperspectral remotely sensed images
applications which are: the Average Accuracy AA and the Overall Accuracy OA.
The AA measures the average of classification accuracy for all classes; it’s calculated
as the ratio of the sum of each class accuracy on the number of classes. Whereas, the
OA shows the number of correctly predicted pixels over all the test samples. The
computational time is also calculated.

Tables 2 and 3 show the Overall accuracy obtained for respectively Indian and
Salinas datasets. The first column in each table represents the number of the selected
bands. The remainder columns show the obtained OA using different percentage of
training samples, we use 10%, 25% and 50%.

Fig. 1. The Color composite and the corresponding ground truth with class labels for: (a) Indian
Pines and (b) Salinas dataset.

Table 2. The Overall Accuracy obtained using the proposed algorithm on Indian Pines datasets
for different number of selected bands and training sets.

Number of selected bands 10% training 25% training 50% training

10 55.2 56.72 57.33
20 59.65 61.28 62.76
30 68.23 71.61 73.98
40 72.06 77.29 81.93
50 74.00 79.65 84.84
60 76.41 83.63 88.63
70 77.60 84.56 90.24
80 77.83 84.55 90.74
90 80.90 86.98 93.90
100 80.83 87.25 93.48
All bands 60.74 69.42 75.72
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From these results, we can make three main remarks:
First, it is obvious that the number of pixels used for training affect the accuracy

rate, the OA increases with the size of the training sets in both Indian and Salinas
images. For example, with 70 selected bands in Indian Pines scene, we get 77.60%,
84.55% and 90.24% for respectively 10%, 25% and 50% as training sets, see Table 2.
For Salinas, we obtain OA of respectively 92.59%, 93.23% and 93.59%, see Table 3.
The classified maps obtained for these values are illustrated in Fig. 2 for Indian Pines
and in Fig. 3 for Salinas scene.

Second, the combination of normalized mutual information and SVM classifier in
our proposed methodology produces good classification results even with limited
number of training pixels. In the case of 10% as training set, with just 40 selected bands
from 224, the OA achieves 72.06% using Indian Pines dataset and 90.66% on Salinas
image.

Third, it is clear that the use of a subset of relevant bands gives better classification
results than using all bands. In Indian Pines, see Table 2, the OA using all bands is
equal to 75,72% whereas it achieves 90.24% with reduced subset of 70 bands.

Table 3. The Overall Accuracy obtained using the proposed algorithm on Salinas datasets for
different number of selected bands and training sets.

Number of selected bands 10% training 25% training 50% training

10 80.35 81.36 81.81
20 88.13 88.54 88.90
30 89.84 90.27 90.58
40 90.66 91.29 91.63
50 91.80 92.41 92.79
60 92.26 92.86 93.27
70 92.59 93.23 93.59
80 92.65 93.28 93.80
90 92.62 93.36 93.91
100 92.65 93.48 94.08
All bands 87.31 88.77 90.02

Fig. 2. The ground truth map of Indian Pines dataset (a) and the classified maps using the
proposed approach with different training sets: 50% (b), 25% (c) and 10% in (d).
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In Salinas, we get 87.31% using all bands against 90.66% with just 40 selected bands
which confirm the effectiveness of our proposed methodology to select a reduced set of
optimal bands and discard the redundant and noisy ones that decrease the classification
rate.

In the next experiments, the proposed approach is compared with other methods
defined in the literature using only 10% as a training set. The obtained results are
presented in Table 4 and evaluated using AA, OA and the running time.

It is seen that our algorithm outperforms the other methods in a good timing. The
lower results are obtained by the SVM classification using all bands which confirm the
importance of dimension reduction as a preprocessing step of HSI classification to
remove the irrelevant bands.

Fig. 3. The ground truth map of Salinas dataset (a) and the classified maps using the proposed
approach with different training sets: 50% (b), 25% (c) and 10% in (d).

Table 4. The Average Accuracy AA(%), Overall Accuracy OA(%) and computational time
(s) obtained by the proposed algorithm in comparison with different methods on Indian Pines and
Salinas datasets.

Methods Indian Pines dataset Salinas dataset
AA OA Time AA OA Time

All bands 42.67 60.74 42.83 91.45 87.31 397.47
MIM 56.06 73.54 12.05 93.54 88.91 126.24
MRMR 58.70 75.70 24.87 93.56 89.67 151.55
Gwo-J1 67.82 71.28 170.3 94.46 89.07 1166
Gwo-J2 62.57 67.44 1.7 94.68 89.25 1.05
Gwo-J3 64.10 70.29 0.48 94.89 89.41 5.34
Gwo-J4 73.89 73.67 250 97.37 95.38 1221
Gwo-J5 70.43 70.65 197 95.50 90.80 1198
Proposed NMIBS 70.41 77.90 8.77 96.47 92.54 84.67
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Furthermore, we can see from Table 4 that the running time increases with the size
of the used datasets. The classification without dimension reduction needs a significant
time compared to the other feature selection methods.

The MIM method outperforms the SVM using all bands but it gives the lower
performance in comparison with the other dimension reduction methods (MRMR,
GWO and the proposed NMIBS) because it selects bands based only on mutual
information maximization without treatment of redundancy between the selected
bands.

Gwo-J4 exceeds our methods by 3% but it requires much more time of 250 s
against just 8.77 s for our method. In Salinas dataset, the running time of Gwo-J4 is
1121 s against only 84.67 s using our proposed method.

5 Conclusion

In this paper, we proposed a new method for band selection to address the curse of
dimensionality challenge in hyperspectral images classification. The Normalized
Mutual information was adopted to generate and evaluate the selected features using a
filter approach. The validation was done using the supervised classifier SVM with RBF
kernel.

The experiments were performed on two well-known benchmark datasets collected
by the NASA’s AVIRIS hyperspectral sensor. Various sets of training and testing
samples were randomly constructed to run the proposed algorithm with ratio of 1:10,
1:4 and 1:2. The obtained results were accessed using evaluation metrics widely used in
this area.

The comparison with other methods defined in the literature shows the effectiveness
of our approach. In overall, we can say that the major advantages of our proposed
method is that it is sample, fast and gives a satisfactory results as more complicated
methods which we need in the real world applications.
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