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RÉSUMÉ 
Ces dernières années, les modèles de Markov ont couvert plusieurs applications importantes dans la vie 
réelle en tant que modèles probabilistes basés sur l'apprentissage automatique. En théorie, le modèle 
stochastique de Markov se réfère simplement à représenter des systèmes qui changent de façon aléatoire 
où l'état suivant dépend uniquement de l'état actuel. En pratique, la propriété de Markov est de plus en 
plus utilisée dans l'analyse de la dynamique des processus stochastiques et de nombreuses variantes ont 
été proposées. Dans cette thèse, les modèles de Markov seront utilisés dans trois types d’application 
différents pour représenter la diversité et le bénéfice précieux de l’application de cet apprentissage 
automatique probabiliste. 

D’abord, le modèle de Markov caché (MMC) est utilisé pour constituer un modèle générique pour 
l'amélioration de la performance de l’algorithme d'optimisation par essaim de particules (OEP). En effet, 
l'analyse du OEP en tant qu'algorithme méta-heuristique basé sur une population stochastique et selon 
son comportement stochastique conduit à la construction d'une chaîne de Markov sur les réalisations 
du OEP. Ainsi, nous considérons différentes sélections optimales de paramètres selon le changement 
d’états de Markov du OEP, et ce en fonction de la classification donnée par le modèle MMC.  Nous 
proposons ensuite une nouvelle méthode permettant d’optimiser automatiquement les performances 
de l’algorithme OEP. L'algorithme OEP est amélioré par la configuration hors ligne et en ligne de ses 
paramètres à l'aide de MMC. Tout d'abord, une méthode est conçue spécifiquement pour des classes 
particulières d'instances de problèmes, ce qui produit de meilleures performances dans des applications 
dans le monde réel. Aussi, il sera conçu pour les mécanismes de contrôle en ligne de l’algorithme OEP 
qui adaptent les paramétrages dans l'exécution. Le cas des configurations OEP homogènes et 
hétérogènes sont considérées. L'analyse empirique d'un ensemble de plusieurs fonctions de référence 
montre des performances remarquables par rapport à d'autres variantes de OEP dans la littérature. 

Deuxièmement, l'apprentissage par renforcement est analysé et discuté. L'utilisation du formalisme de 
processus décisionnel de Markov (PDM) est apparue dans des applications importantes de prise de 
décision dans divers domaines, il est utilisé pour aider à prendre des décisions dans un environnement 
stochastique. Cependant, les méthodes classiques de résolution des PDMs surdimensionnés souffrent 
du problème de dimensionnalité de Bellman et du manque d'informations dans le modèle. Par 
conséquent, une nouvelle méthode de résolution est proposée dans le contexte des algorithmes 
d'apprentissage par renforcement en se basant sur un libre-modèle. En fonction de l'algorithme OEP 
amélioré, nous établissons des règles de coopération entre les apprenants en renforcement indépendants 
afin d'accélérer la convergence vers des solutions optimales. La résolution du processus d'apprentissage 
prend en compte deux étapes : l'apprentissage indépendant par un algorithme Q-learning et la stratégie 
de partage des valeurs de Q par un algorithme OEP coopératif. Ce Q-learning coopératif basé sur OEP 
donne les meilleurs résultats ; cela est dû à l'aspect coopératif de OEP pour améliorer la recherche de la 
valeur Q. 

Enfin, le transport aérien est choisi comme domaine d'application dans cette thèse en tant 
qu'environnement opérationnel dynamique et complexe. Le modèle de processus de décision de 
Markov est également appliqué dans ce contexte. Ce modèle stochastique est étudié dans différentes 
compagnies aériennes qui rencontrent des problèmes de gestion et d’affectation des ressources des 
aéroports et des compagnies aériennes de manière efficace et efficiente. Notre approche proposée traite 
les éventuelles perturbations dans le transport aérien. La solution fournie des décisions qui pourraient 
être prises au moment de l'horizon de planification des opérations de vol. Ce type de modèle prend en 
compte les perturbations stochastiques et permet de gérer les risques potentiels en tenant compte les 
éventuelles incertitudes. 

Mots clés : Intelligence par essaim ; Optimisation par essaims de particules ; Gestion de risque ; 
Apprentissage par renforcement ; Optimisation stochastique ; Apprentissage probabiliste ; Modèle de 
Markov caché ; Processus décisionnel de Markov ; Transport aérien. 
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ABSTRACT 

In recent years, Markov models have found important applications in real life as a probabilistic 
machine-learning-based model. In theory, Markov stochastic model simply refers to represent 
randomly changing systems where the next state depends only on the current state. In practice, 
the Markov property is increasingly being used in the analysis of the dynamics of stochastic 
processes and many variants have been proposed. In this thesis, Markov models will be used 
in three different application types to represent the diversity and the valuable profit of using 
this probabilistic machine learning.  

First, a Hidden Markov model (HMM) is used to constitute a generic model integrated as a 
performance enhancement of the particle swarm optimization algorithm (PSO). In fact, the 
analysis of the PSO as a stochastic population-based metaheuristic algorithm, and according 
to its stochastic behavior, leads to the construct of a Markov chain on PSO achievements. So, 
we consider a different optimal selection of parameters during the changed Markov states of 
PSO based on the classification given by the HMM model. Then, we propose a new method 
that allows optimizing the performance of the PSO algorithm automatically. PSO algorithm is 
improved by both offline and online configurations of its parameters using HMM. Firstly, a 
method is designed specifically for particular classes of problem instances, which produces 
better performances in real-world applications. Secondly, it will be designed for online PSO 
algorithm control mechanisms that adapt parameter settings within the execution. The case of 
homogeneous and heterogeneous PSO configurations are both considered. Empirical analysis 
of a set of several benchmark functions shows remarkable performances in comparison with 
other PSO variants from literature. 

Second, Reinforcement learning is analyzed and discussed. The use of Markov decision 
process (MDP) formalism has found important applications to decision making in various 
domains, where it is used to help to make decisions on a stochastic environment. However, 
classical methods for solving large MDPs suffer from Bellman's curse of dimensionality, and 
lack of model information. Therefore, a new resolution method is proposed in the context of 
model-free-based reinforcement learning algorithms. Depending on the enhanced PSO 
algorithm, we are building cooperation rules between independent reinforcement learners to 
accelerate convergence to optimal solutions. Two stages are considered for resolution in the 
learning process: independent learning by Q-learning algorithm and Q-values sharing 
strategy by a cooperative PSO algorithm. This PSO-based cooperative Q-learning gives the 
best results; this is due to the cooperative aspect of PSO to enhance the Q-value search.  

Finally, airline transport is chosen as an application field in this thesis as a challenging 
dynamic operational environment.   Markov decision process model is also applied in this 
context. This stochastic model is investigated in different airline problems dealing with 
managing and allocating airport and airline resources effectively and efficiently. Our proposed 
approach is dealing with disturbances in airline transport. The provided solution to the 
decisions that could be made at the time of the planning horizon of flights operations. This 
kind of model takes into account stochastic disturbances, and it can manage the potentially 
risks by handling possible uncertainties. 

Keywords:  Swarm intelligence; Particle Swarm Optimization; Risk management; Reinforcement 
learning; Stochastic optimization; Probabilistic learning; Hidden Markov Model; Markov decision 
process; Airline transport.  
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INTRODUCTION 

 

Swarm intelligence has emerged from the behavior of a group of social animals or 
insects that provide insight into metaheuristics [1]. The Swarm movements is a key 
hypothesis in the production of the particle swarm optimization algorithm (PSO). It 
was first introduced by [2], where, the exchange of information between individuals 
of the same varieties supplies an evolutionary advantage. The PSO is a well-known 
bioinspired algorithm applied to optimization problems, which basically involves a 
machine-learning technique inspired by birds freely flocking in search of food. More 
specifically, it contains a number of particles that collectively move in the search space 
looking for the global optimum. 

The main advantage of working with the PSO is its simplicity: its concept and 
capability to be implemented in a small number of lines of code. Moreover, PSO 
additionally possesses a short-term memory, which allows the particles to move 
through the local best and the global best positions. Other choices, just like genetic 
algorithms, tend to be complex and, most of the time, they do not take into account the 
past iteration or even the collective emergent performance. As an illustration, in the 
genetic algorithm, if a chromosome is not picked, the information covered by that 
chromosome is definitely lost. In spite of its good facilities, a common problem with 
the PSO, much like other optimization algorithms that are not exhaustive methods, for 
example, the brute-force search [3], is that of getting stuck in a local optimum, or 
suboptimal solution, in a way that it could work well on one problem but yet fail on 
another problem. 

Recently, several distinct approaches have appeared to be able to solve much larger 
optimization problems effectively. Multiple heuristic techniques have been applied in 
a parametric setting before the PSO, such as Genetic Algorithms [4], Ant Colony 
Optimization [5], and Tabu Search. In these approaches, there is a selection of 
parameters that require to be tuned to have an efficient enhanced algorithm. A number 
of these parameters have been studied earlier from diverse aspects. Nevertheless, such 
parameters analyses have to be taken into consideration to set up an effective PSO 
tuned model. The primary intent behind parameters setting approaches of PSO is to 
incite complex global behaviors through local communications by sharing information 
between diverse agents and enhancing the learning capacity. Further, it may enable 
the swarm to adapt to unexpected variations (such as in the dynamic optimization) 
when they are interacting with more agents. Based on the theoretical results of [6] and 
[7], the further extension carried out in this thesis, is the analysis of the relationship 
between transition probability and parameter setting by the estimation of the 
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transition probability with the selection of the optimum parameter set in each state of 
PSO based Markov chain. An efficient instrument could be making use of computer 
simulations. This approach can maximize the value of adaptive parameters selection 
rather than classical approaches which are based on the iteration number.   

Markov models have many variants from literature. Each one has a specific utilization 
context and applications. Markov Decision Processes provide a mathematical 
framework for decision making. MDPs are one tool of artificial intelligence (AI) that 
can be used to get optimal action policies under a stochastic domain. They are widely 
used for the solving of real-world problems of both planning and control as they are 
surprisingly capable of capturing the essence of purposeful activity in a variety of 
situations. For those reasons, they have formed the basis on which many important 
studies in the field of learning, planning, and optimization have been built. As a result, 
several different techniques have been developed for their solution. As a popular 
framework for designing agents that interact with their environment, the execution of 
actions gives some feedback signals, which indicate how good the actions are. This 
learning process enables to solve a specific task through these repeated interactions. 
Different solution methods are presented in the literature, as well as different action 
selection strategies, which can be used by the agents during the learning process. The 
idea is to analyze its weaknesses and show ways to fix them by Reinforcement learning 
techniques to cover an interesting class of real-world scenarios. One way could be by 
improving cooperation between independent reinforcement learners to a best 
cooperative Q-learning algorithms based on the cooperation performances of the PSO 
algorithm. In this case, particles can constitute cooperative learners based on their 
speed of convergence to an optimal solution. 

As an application framework, airline transport constitutes an interesting dynamical 
environment to apply the attained results from both optimization and stochastic 
approaches presented in this thesis: namely the Markov decision process as a 
formulation model and the particle swarm optimization method. More attention in 
recent years has been accorded to developing advanced techniques in the context of 
air traffic. This is due to the progress of air transport traffic (doubled since the early 
1980s). The main objectives are the best allocation and management of airport and 
airline resources in the best way effectively and efficiently. Due to the dynamic 
stochastic operational environment of air transport, the scheduling problems 
nowadays faced by airport and airline managers have led to complex planning 
problems that require new models and methods. This is caused by the large variety of 
resource modules that have to be considered like terminals, flights, crews, baggage, 
etc., and they are highly interdependent. In the real world, stochastic disturbances in 
air traffic increased problem complexity. This is more considered in the latest research.  

Airline operations are exposed to diverse sources of disruptions like bad weather 
conditions, airspace congestion, or some technical breakdowns, etc. In such situations, 
the resource schedules could be disrupted, so that these schedules are potential to 
become infeasible. Disruptions need fast recovery measures that result in flight delays 
or cancellations to recover many resources that are essential for operating flights (see 
Clausen et al. [8]). Instead of taking the risk of online disruption management, robust 
planning has been considered by some airlines as an efficient way of managing 
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possible disruptions in their schedules. New models and methods are given in this 
thesis with the objective to deal with those problems. 

 

The contribution of this thesis will be presented in three main points:  

 

Markov model is used to constitute a generic model integrated as a performance 
enhancement of the particle swarm algorithm. PSO algorithm is improved by both 
offline and online configuration of its parameters using HMM. The Homogeneous case 
is addressed in Chapter I and the heterogeneous case of PSO variants is presented in 
Chapter II.  

In Chapter III, a new solution method of Markov decision process is given based on a 
model free approach. Thus, depending on the enhanced PSO algorithm of chapter II, 
we assign cooperation rules between independent reinforcement learners to accelerate 
convergence to optimal solutions. The proposed new PSO based cooperative Q-
learning gives best results by making use of the cooperative aspect of PSO to enhance 
the Q-value search.  

Chapter IV, V and VI are dedicated to applications. New methods and resolution 
strategies based on the results of the previous chapters are used to solve different 
problems of airline transport; primarily, to treat the cases of stochastic disturbances in 
the airline traffic.  
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CHAPTER I :                                
PARAMETERS SETTING OF HOMOGENEOUS 

PARTICLE SWARM OPTIMIZATION  

 

In this chapter, Particle Swarm Optimization is introduced and analyzed. Particle 
swarm optimization is a stochastic population-based metaheuristic algorithm. It has 
been successful in solving a high range of real-world problems. The classical PSO 
algorithm can be affected with premature convergence when it comes to more complex 
optimization problems; the resolution of PSO can easily be trapped into local optima. 
The primary concern is to accelerate the convergence speed and to prevent the local 
optima solutions. To defeat these weaknesses and to enhance the overall performances, 
a new technique is offered in this chapter building a machine learning technique for 
the parameter settings of the homogeneous particle swarm optimization. The 
homogeneous PSO has the same search behaviors of all particles, which are assumed 
to have been inspired by models of social influence guided by homogeneous 
individuals. Each main parameter of PSO is analyzed and enhanced either online 
(parameter control) or offline (parameter tuning). An HMM classification is used to 
enhance PSO performance. That is, we integrate the Hidden Markov Model (HMM) to 
have a stochastic parameter setting mechanism of PSO. The approaches are simulated 
and compared by experimental tests to the best-known state of the art. 
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1. BACKGROUND 

1.1 NATURE-INSPIRED ALGORITHMS 

 

Biologically Inspired Approaches from Animal groups offer paradigmatic illustrations 
of collective phenomena that have repeated interactions between individuals to 
generate dynamic behavior and reactions on a scale much bigger when compared to 
individuals themselves [9]. Many of the samples surrounding us contain synchronized 
movements of fish and birds in a school or a flock, the creation of vortices for bacterial 
colonies, the coordinated march of wingless locusts, and the synchronized flashing of 
fireflies. Many more cases can be observed around all of us. Greater computational 
studies of biological phenomena are affecting our comprehension of various aspects 
of computing itself and are changing how we comprehend computing properly. All 
those collective behaviors of natural mechanisms are discoveries of the pervasiveness 
of swarming in the natural world. Therefore, a huge range of awe-inspiring solutions 
supplied by nature is dealing with swarms (or schools, colonies, flocks, etc. [10]; the 
common term “swarm” will be employed throughout this thesis). The process of 
designing nature-inspired algorithms is depicted in Figure 1. 

 

Figure 1 Flow process of Nature algorithms design 

 Swarms from nature represent typical illustrations of systems where aggregated 
behaviors are found, creating remarkable, synchronized moves without collision. In 
this kind of systems, the behavior of every group member depends on simple built-in 
responses, though their result is very complex from a macroscopic perception.  

Particularly, Particle systems from nature can reveal a complex behavior if an 
algorithm could handle every particle's movement. Algorithms can also consider 
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several conditions present in the environment. By this means, the particles behavior 
could be reactive. 

Reynolds [11] is the first to have applied a particle system to imitate the collective 
behavior of a flock of birds working with a reactive procedure. In the simulation, 
particles (symbolizing birds) had a "body" produced from a polygon mesh. The 
originality in Reynolds' work was that it took into consideration particles as an element 
of the environment. As the behavior of a particle was handled by the algorithm, and 
each particle was independent of the rest, the interaction between particles is also 
provided. The result exhibited an "emergent" collective behavior that was similar to a 
flock of birds. This behavioral rules discovered by Reynolds helped as a beginning 
point for the design of PSO. In Reynolds' model, there are three types of behavioral 
rules. In decreasing priority order, they are [11]: 

- Collision Avoidance: This enables a particle to prevent collisions with their 
particular neighbors. 

- Velocity Matching: Particle tries to match their neighbors. 
- Centering : To keep the particle aggregated. 

The Swarm movements is a crucial hypothesis in the production of the particle swarm 
optimization algorithm. It also represents the exchange of information between 
individuals of the same varieties that supplies an evolutionary advantage [2]. Serious 
research in systems where collective phenomena are obtained predisposed the basis 
for the development of swarm intelligence, lightly discussed in the next paragraph.  

1.2 SWARM INTELLIGENCE  

The swarm intelligence (also called collective intelligence) has emerged from the 
behavior of a group of social animals or insects that provide insight into metaheuristics 
[1]. For example, in the society of insects, there is very modest individual effectiveness, 
but various complex activities are performed for their survival. Problems, like getting 
and saving foods and picking up materials for future usage, need complete planning 
and can be performed by insect groups without any sort of controller or supervisor. 
Since the birth of swarm intelligence algorithms in the 1980s, it has continued to be 
studied and utilized extensively in domains like biology, industry, economics, and 
decision-making.  

We call “swarm” in a general meaning to refer to any loosely structured collection of 
agents that interact. Some typical example of swarms are the swam of ants and bees; 
however, the metaphor of a swarm can be expanded to other systems with an 
equivalent structure. A flock of birds represents a swarm which their agents are birds, 
car traffic is normally a swarm of vehicles, a crowd at the street is simply a swarm of 
humans, an immune system is also a swarm composed of molecules and cells, and a 
market is another swarm including economic agents. Though the concept of a swarm 
implies a feature of collective movements in space, such as the swarm of a flock of 
birds, we have an interest in all kinds of collective behavior, not only spatial motion. 

An illustration of a notably successful research algorithm in swarm intelligence is the 
particle swarm optimization (PSO), which is a very well-known swarm intelligence 
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algorithm for global optimization over continuous search spaces [12]. From its 
foundation in 1995, PSO has seduced the interest of several researchers, generating 
many variants of the original algorithm and many parameter automation approaches 
for the algorithm. 

Swarm intelligence refers to a category of algorithms that imitate natural and artificial 
systems made up of many individuals that may coordinate by way of self-organization 
and decentralized control. Figure 2 [13] shows examples of observed swarms from 
nature, where a. Lane of aphids; b. Swarm of insects; c Lane formation in human 
crowds ; d. Collective napping of sea lions; e, f. School of fish.  

 

Figure 2 Different observed swarms [13]  

A swarm algorithm works on the collective behaviors that derive from the local 
interactions of the individuals amongst each other and with the environment. Some 
typical examples of systems operating by swarm intelligence are colonies of birds flock, 
fish schools, animal herds, and ants. A standard swarm intelligence system contains 
these particular properties [13]:  

 It is composed of multiple individuals. 

 The individuals are comparatively homogeneous (i.e. they are either all similar 
or they are a part of only a few typologies). 

 The interactions among the individuals depend on simple behavioral rules that 
make use of just local information that the individuals directly share or through 
the environment. 

 The global behavior of the system comes from the local interactions of 
individuals together and with their environment. 

The fundamental characteristic of a swarm intelligence system is its capability to work 
in a coordinated state without any existence of a coordinator or an exterior controller. 
Regardless of the absence of individuals in control of the group, the swarm in its 
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entirety does reveal intelligent behavior. This is the consequence of interactions of 
spatially located neighboring individuals working with simple rules. 

The swarm intelligence had been applied in many diverse areas from the time it was 
initially introduced. The research and applications of swarm intelligence are primarily 
interest in flocking and schooling in birds and fish, ant colony optimization, the 
clustering behavior of ants, nest-building behavior of wasps and termites, particle 
swarm optimization, cooperative behavior in swarms of robots, swarm-based network 
management, etc. 

2. PARTICLE SWARM OPTIMIZATION DEFINITION 

 

Common well-known bioinspired algorithms applied to optimization problems is 
particle swarm optimization (PSO), which basically involves a machine-learning 
technique inspired by birds flocking in search of food loosely. More specifically, it 
contains a number of particles that collectively move on the search space looking for 
the global optimum. 

Particle Swarm Optimization (PSO) includes swarming behaviors discovered in flocks 
of birds, swarms of bees, or schools of fish, as well as in human social behavior, from 
which the concept [14, 15, 16] has appeared as showed in the previous paragraph. PSO 
is a population-based optimization tool, which can be implemented and applied 
smoothly to deal with many different function optimization problems or the problems 
that could be converted to function optimization problems. The principle of PSO is an 
end result of combining the ideas shown in the previous paragraph. In a PSO 
algorithm, a multitude of solutions to an optimization problem are updated depending 
on several forms of interaction between them. This can be rather equivalent to what 
occurs in a particle system of the flock of birds; those rules were designed by Reynolds 
[11]. Reynolds’s simulation inspired the concepts that affected the update rules in a 
PSO algorithm and provided the historical rules of the PSO algorithm. We will give 
more details about the PSO model in the following paragraphs. 

2.1 PSO BASIC ALGORITHM 

Introduced by Kennedy and Eberhart [2], PSO is a metaheuristic algorithm; the 
canonical PSO model comprises a swarm of particles, which are initialized with a 
population of a random selection of solutions. They move iteratively throughout the 
N-dimension problem space to look up the new solutions, where the fitness, f, can be 
measured as some qualities measure. 

The learning procedure of the standard PSO algorithm is dependent on a particle’s 
own experience and the experience of the most effective particle. A swarm of N 
particles is defined for an optimization problem of D variables, where each particle is 
given a random position in the D-dimensional space being a candidate solution. Every 
single particle has its specific trajectory, specifically position 𝑋𝑖 and velocity 𝑉𝑖, and its 
movement in the search space is conducted by updating its trajectory at each iteration.  



Chapter I. Parameters setting of homogeneous particle swarm optimization 

24 

 

All of the particles change their trajectories based on their own experience and the 
experience of other particles. All particles possess fitness values that are measured by 
the fitness function f to be optimized.  

The algorithm consists at each time step of changing the velocity (accelerating) of each 
particle toward its pBest (personal best) and gBest (global best) locations (see figure 3).  

 

 

Figure 3 particle position update 

The classical version of PSO adopts global topology where any two particles are 
connected, and each particle is informed by the gbest particle [2]. Then, each particle  
𝑖 has two vectors: its velocity vector 𝑉𝑖  and its position vector 𝑋𝑖 ; Those vectors are 
updated at each iteration t according to Eqs. (1) and (2): 

𝑉𝑖(𝑡 + 1)  =  𝑤 𝑉𝑖(𝑡)  +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡))   +  𝑐2𝑟2(𝑔𝑏𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) (1) 

 𝑋𝑖(𝑡 + 1)  =   𝑋𝑖(𝑡)  + 𝑉𝑖(𝑡 + 1) (2) 

where: 

- N number of particles and 𝑖 < 𝑁 a particle index. 

- 𝑋𝑖 position vector of particle 𝑖 of dimension D : 𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐷). 

- 𝑉𝑖 velocity vector of particle 𝑖 of dimension D : 𝑉𝑖 = (𝑣𝑖
1, 𝑣𝑖

2, … , 𝑣𝑖
𝐷). 

-  r1 and r2  are two D-dimensional uniformly distributed random vectors 
(generated at each iteration) in which every component varies in the interval 
[0,1]. Those two vectors are used to maintain the diversity of the population. 

- 𝑤 is the inertia weight; its value is typically set up to vary linearly from 1 to near 
0 during iterations.  

- c1 and c2 are acceleration factors. On the original version, they are set to a value 
of 2. 
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The pseudo-code of the particle swarm optimization algorithm is detailed in 
Algorithm 1. 

Algorithm 1: Basic PSO algorithm 

Data: The fitness function, the dimension of the problem D and the 

number of particles N 

Initialization: Initialize positions of particles (𝑋1, . . . , 𝑋𝑁) , 

velocities (𝑉1, . . . , 𝑉𝑁), the fitness fit , pbest and gbest ; Set t value 
to 1 ;  

while t ≤ tmax do for i = 1 to N do  

    for j = 1 to D do 

    Compute the velocity 𝑣𝑖
𝑗
(𝑡) ;  

    Compute the position 𝑥𝑖
𝑗
(𝑡) ; end 

Evaluate the fitness fiti(t) the particle i ;  

if (fiti(t) ≤ f(pbesti)) then 

    (pbesti ← 𝑋𝑖(𝑡))&(f(pbesti) ← fiti(t)) end  

if (fiti(t) ≤ f(gbest)) then 

    (gbest ← 𝑋𝑖(𝑡))&(f(gbest) ← fiti(t)) end 

t ← t + 1 

end 

Result: The position of the best particle in the population gbest 

 

The particle looks for the solutions in the problem space having a range [−𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑎𝑥] 
(When the range is not symmetrical, it can be converted to its matching symmetrical 
range).   

To be able to guide the particles efficiently in the search space, the maximum distance 
of particle one movement during a single iteration need to be clamped in between the 
maximum velocity [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥] provided by the Equation 3: 

𝑣𝑖𝑗  =  𝑠𝑖𝑔𝑛(𝑣𝑖
𝑗
)𝑚𝑖𝑛(|𝑣𝑖

𝑗
 |, 𝑣𝑚𝑎𝑥)                                                  (3) 

Where :  𝑣𝑚𝑎𝑥  =  𝑝 × 𝑥𝑚𝑎𝑥, with 0.1 ≤  𝑝 ≤  1.0 . 

Generally 𝑣𝑚𝑎𝑥 is selected as : 𝑣𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥, i.e. p = 1.  

More details about PSO parameters and other variants will be covered in the next 
paragraphs. 

2.2 THE PARAMETERS OF PSO 

The basic PSO algorithm is influenced by multiple control parameters, which are the 
dimension of the problem, number of particles, inertia weight, acceleration coefficients 
namely the cognitive and the social components, neighborhood size, number of 
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iterations, and the random vector values that scale the impact of the acceleration 
coefficients. In addition, if velocity constriction is applied, the maximum velocity and 
constriction coefficient as well influence the performance of the PSO. The following 
paragraph will focus on the analysis of the main PSO parameters which are: number 
of iterations, swarm size, acceleration coefficients and neighborhood topologies. 

 

2.2.1 Number of iterations 

This parameter is usually configured depending on the following criteria: 

- Maximum number of iterations. 
- Number of iterations without improvement. 
- Minimum objective function error. 

The number of iterations to achieve a good solution can be a problem-dependent. Too 
little iterations may stop the search too early. A too big number of iterations has the 
effect of unnecessary further computational complexity in the case of that the number 
of iterations is selected as a stopping condition. 

 

2.2.2 Swarm size 

This parameter refers to the number of particles in the swarm: the greater the number 
of particles in the swarm, the larger the initial diversity of the swarm. Given that a 
good uniform initialization method has to be used to initialize the particles, a large 
swarm enables larger areas of the search space to be covered at each iteration. However, 
more particles rise the per-iteration computational complexity, and the search 
degrades to a parallel random search. It is as well the case that more particles may lead 
to fewer numbers of iterations to reach a good solution, in comparison to smaller 
swarms.  

We experiment the effect of a simple population increase over iterations in order to 
analyze the corresponding effect on convergence. Figure 4 represents the effect on 
varying population size in PSO. It shows that, by increasing population size with just 
random positions and velocities, fitness is ameliorated and improved, but did not get 
improved after a certain population size. Hence, as also deduced in [17] for the simple 
PSO, the population diversity is ruined when the particles increase. With a large 
number of particles, the optimization ability will not be improved; even if we increase 
population size, the fitness function is still constant after iteration number: 600 (see 
Figure 4). So using fewer particles improves the search ability. In contrast, CPU time 
increase fast while the population grows.  
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Figure 4 Effect of population size increase on HMM-APSO [18] 

 

Because population variations have a significant effect on PSO regarding convergence 
speed and accuracy. Smaller population size will increase the probability of being 
trapped in a local optimum. However, added particles result in the rise of computing 
cost. However, it has been revealed in some empirical studies that the PSO possesses 
the potential to find optimal solutions with small swarm sizes of 10 to 30 particles [19, 
20]. Even in [21], Success has even been attained for fewer than 10 particles. Even 
though empirical studies provide a general number of N ∈ [10, 30], the optimal swarm 
size is commonly problem-dependent. A simple search space will need a smaller 
amount of particles than a rough surface to locate optimal solutions. The best choice 
of this parameter is to find a compromise between increasing or decreasing population 
and also the way how the population is increased or decreased according to the 
problem.  

 

2.2.3 Acceleration coefficients:  

The acceleration coefficients, 𝑐1 and 𝑐2, combined with the random vectors 𝑟1 and 𝑟1, 
control the stochastic impact of the cognitive and social parts on the entire velocity of 
a particle. The constants 𝑐1  and 𝑐2  are also known as trust parameters, where 𝑐1 
presents how much self-confidence a particle possesses in itself, when 𝑐2 presents how 
much confidence a particle has got in its neighbors. Several combinations of values can 
be affected to 𝑐1 and 𝑐2 with different effects:  

- If 𝑐1 = 𝑐2 = 0, particles maintain flying at their current speed until finally, they 
reach a boundary of the search space (presuming no inertia).  

- If 𝑐1 >  0 and 𝑐2  = 0, all of the particles are independent hill-climbers. Every 
single particle discovers the best position in its neighborhood by updating the 
current best position if the new position is better. Particles conduct a local search.  

- If 𝑐2 > 0 and 𝑐1 =  0, the whole swarm is attracted to a one specific point, gbest. 
The swarm becomes one stochastic hill-climber. Particles provide their potential 
from their cooperative nature, and are most effective when personal (𝑐1) and 
social ( 𝑐2 ) coexist in a proper balance, i.e. 𝑐1  ≈ 𝑐2  (𝑐1  and 𝑐2  are equal or 
approximatively equal). 
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- If 𝑐1 = 𝑐2, particles are driven towards the average of pbest and gbest [22, 21]. 
Even while many applications work with 𝑐1 = 𝑐2, the proportion amongst these 
constants is problem-dependent.  

- If 𝑐1  >> 𝑐2  (𝑐2  negligible in front of  𝑐1 ), each particle is noticeably further 
attracted to its own personal best position, leading to excessive wandering.  

- If 𝑐2 >> 𝑐1 (𝑐1 negligible in front of 𝑐2), particles are considerably more highly 
attracted to the global best position, producing particles to move too rapidly 
towards optima.  

However, for unimodal problems that have a smooth search space, a higher social 
component can be efficient, while complex multi-modal search spaces will find a larger 
cognitive component more beneficial. Low values for 𝑐1 and 𝑐2 lead to smooth particle 
trajectories, enabling particles to run away from good regions to explore before being 
taken back towards good regions. Large values induce more acceleration, with aban 
rupt movement towards or past good regions [20].  

Commonly, 𝑐1 and 𝑐2  are static, with their optimized values being determined 
empirically. Incorrect initialization of 𝑐1 and 𝑐2 may cause divergent or cyclic behavior 
[22, 21]. 

 

2.2.4 Neighborhood Topologies 

An essential component of the PSO algorithm is social information sharing between 
the neighborhoods. Common neighborhood topologies are gbest, lbest and the von-
Neumann neighborhood, as displayed in figure 5 (where nodes illustrate particles and 
edges depict inter-particle influences). A particle's neighborhood is made up of all the 
particles accessible by an edge. Other topologies like figure 6 also given in the 
literature (ring and star topologies). The most simple neighbor structure is often the 
ring structure. Basic PSO functions with gbest topology, where the neighborhood 
includes the whole swarm, and thus all the particles possess the information of the 
globally discovered best solution. Every particle is a neighbor of every other particle. 
The lbest neighborhood comes with ring lattice topology: each particle produces a 
neighborhood composed of itself and its two or more immediate neighbors. The 
neighbors may not be near to the generating particle either relating to the objective 
function values or the positions; instead, they are selected by their adjacent indices.     

 

Figure 5 Common neighborhood topologies of PSO. 
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On behalf of the von-Neumann neighborhood, each particle has four neighbors on a 
two-dimensional lattice that is wrapped on all four sides (torus), and a particle is in 
the center of its four neighbors. The possible particle number is limited to four. 

According to the tests on many social network structures, PSO using a small 
neighborhood seems to perform better on complex problems, while PSO with a large 
neighborhood could perform considerably better on simple problems [23, 24]. 

 

Figure 6 ring topology (left) and star topology (right) 

2.3 CONVERGENCE ANALYSIS OF PSO 
 

Initial empirical analyses of the basic PSO reveal that PSO is an effective optimization 
approach. Some research has demonstrated that the basic PSO enhances the 
performance of other stochastic population-based optimization algorithms just like 
genetic algorithms [21, 25, 26]. The particle follows a convergent trajectory for the 
majority of the time steps [20]. Figure 7 is an illustration of such behavior. However, it 
was as well shown that the basic PSO has some considerable defects which can cause 
stagnation [27]. 

 

Figure 7 Stochastic Particle Trajectory for w = 0.9 and 𝒄𝟏 = 𝒄𝟐 = 2 
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Since its start, PSO analysis was of an empirical aspect. There was no vision regarding 
how the algorithm definitely worked well or if it was qualified to converge in anyway.  

In the beginning, it was clear that (occasionally) particles raised their velocities 
extremely fast. This induced the particle swarm to explode [14]. The first way to deal 
with this problem was to clamp the maximum permitted velocity to a fixed value. 
Empirical studies recommended that a good selection was to set:  

 𝑣𝑚𝑎𝑥  =  𝑥𝑚𝑎𝑥                                                                     (4)     

where 𝑥𝑚𝑎𝑥 is the limit of the search range [28]. 

It is essential to note at this point that in case the trajectory of the particle converges,  
it will conduct so towards a value derived from the line around its personal best 
position and the global best particle’s position (see equation below). In theory, each 
particle in PSO is demonstrated to converge to the weighted average of pbest(i)  and 
gbest [22]: 

lim
𝑡→∞

𝒙𝒊 (𝑡) =
 𝑐1𝑝𝑏𝑒𝑠𝑡𝑖  +  𝑐2𝑔𝑏𝑒𝑠𝑡(𝑡)

𝑐1 + 𝑐2
                                               (5) 

where:  c1 and c2 are the acceleration factors of PSO.  

The key guarantee for the convergence of the PSO algorithm is the good selection of 
its parameters. Special analysis [22, 21, 14, 29] indicates that the convergence and the 
overall performances of the PSO are very sensitive to the values of its control 
parameters. As an illustration, [29] provided a methodology to determine convergent 
behavior and some suggestions to the choices and the acceleration coefficients and the 
constriction factor.  

Further works from literature given as a conclusion, even though there are some 
interesting theoretical results in PSO convergence, empirical work is always required 
to tune the parameters of a PSO algorithm to solve any specific problem. The next 
paragraphs will address this issue. 

2.4 ADVANTAGES AND DRAWBACKS 

The main advantage of working with the PSO is its simplicity: its concept and 
capability to be implemented in a small number of lines of code. Even more, PSO 
additionally possesses a short-term memory (it will be analyzed in the next section), 
which allows the particles to move through the local best and the global best positions. 
Other choices, just like genetic algorithms (GA), tend to be complex and, the majority 
of the time, they do not take into account the past iteration or even the collective 
emergent performance. As an illustration, in GA, if a chromosome is not picked, the 
information covered by that individual is definitely lost. 

The PSO is much like other optimization algorithms that are not exhaustive methods, 
for example, the brute-force search [3]. Despite their good facilities, a common problem 
with this type of algorithms is that of getting stuck in a local optimum, or suboptimal 
solution. As a result, PSO could work well on one problem but yet fail on another 
problem. 
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Generally, the primary downsides of PSO could be summarized in the following: 

- Swarm Premature convergence: Particles of the swarm try to converge to a singular 
point, positioned on a line around the personal best positions and global best. This 
point is not necessarily assured for a local optimum [30]. One more purpose could 
possibly be the fast amount of information circulation between particles, which causes 
producing similar particles. This leads to a decrease in diversity and the risk of being 
trapped in local optima is elevated [31]. 

- Parameter settings dependence: This invokes the high-performance variances for a 
stochastic search algorithm [32]. In most cases, there is not any particular set of 
parameters for different problems. For instance, through simple observation of 
Equation (1), raising the inertia weight w increases the velocity of the particles and 
induces more exploration (global search) and less exploitation (local search). 
Consequently, selecting the best set of parameters is not a simple task, and it could be 
distinct from one problem to another [32]. 

With a purpose to defeat the PSO trend to get stuck in undesirable solutions and 
enhance its convergence, various authors have recommended other adjustments to the 
parameter combinations of the PSO algorithm. A review of enhancement methods will 
be drawn in the next section. 

2.5 PSO IMPROVEMENTS 

Three distinct classes of techniques were reported to be improving PSO (figure 8):  

 Setting parameters. 

 Modifying components of the algorithm 

 Pairing the algorithm with other algorithms.  

Parameters setting refers to setting the different parameters of PSO just like the 
topology, acceleration coefficients, inertia weight, and population size. Modifying 
components represents modifications of the velocity or position update rule (which 
includes likewise creating new components; changing the manner they are computed). 
Combining the algorithm with other algorithms offers hybridization of PSO with other 
techniques.  

 

Figure 8 PSO improvement methods 
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Our interest is given to the parameter sitting due to its proven impact on PSO 
performances (see the two last paragraphs). The calculation of the movement inside 
PSO constantly incorporates several numerical parameters. In the basic case, these 
parameters are constant and defined by the user. Several variants have been offered in 
this way. In most classical variants, the parameter values depend just on the number 
of iterations [33, 4, 34]. Further advanced variants adjust the values depending on the 
information that is gathered during the run. A specific area of research is how to 
establish an algorithm that is adaptive as possible, to ensure that the user does not 
need to tune any component [34, 35, 36]. In the next section, we are interested in PSO 
variants, especially, which have improved the overall performance of PSO by using 
particular settings of its parameters.   

 

3. IMPROVED PSO VARIANTS FROM LITERATURE 

 

With the purpose to defeat the PSO trend to get stuck in undesirable solutions and 
enhance its convergence, many authors have suggested other modifications to the 
parameters of the PSO algorithm. Various models that differ in their exploration and 
exploitation behaviors are included.  

Among the mainly active areas of studies in PSO has been relating to algorithmic 
modifications. This has triggered multiple algorithmic variants of the original PSO 
algorithm. In this subsection, we will summarize the algorithmic variations that are an 
element of the empirical comparison with the proposed approach. In this state of the 
art, the analysis of the most effective and promising algorithmic modifications related 
to parameters setting has been a challenging task in iterative optimization methods in 
recent years [37]. Two distinct methods for setting parameters of an optimization 
algorithm could be conceived: parameter tuning and parameter control. Parameter 
tuning represents the setting parameters of an algorithm by using just experiments to 
some constant values. On the other hand, Parameter control relates to designing 
approaches which vary the value of parameters during the execution. Parameter 
control techniques are categorized as well into three groups: deterministic, adaptive, 
and self-adaptive. In deterministic parameter control, a rule (named time-varying rule) 
is developed to determine the value of a parameter depending on the iteration number. 
In adaptive parameter control methods, a function is produced that maps some 
feedback from the run right into the value of the parameter. In a self-adaptive 
parameter control methodology, the parameters are encoded into individuals and are 
altered during the execution by the optimization algorithm.  

Besides, parameters control of PSO can be done in the context of the homogeneous or 
heterogeneous swarm. In the first one, all the swarm adopts the same behavior and 
the second refers to multiple behaviors during the same run of the PSO. In this chapter 
we consider the case of homogeneous PSO; the next chapter will deal with the 
heterogeneous one.  
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 In this section, articles that have examined distinct parameters for PSO are reviewed. 
The arrangement of description is chronological and/or hierarchical (to some scope). 
This will serve as a background to introduce the ideas that provide the proposed PSO 
enhancement method. 

The state of art of parameters control of PSO is presented in terms of homogeneous 
PSO swarm. The standard PSO and the majority of its improvements [38] utilize 
homogeneous swarms where every one of the particles adopts specifically the same 
behavior. That is, particles use the same velocity and position update rules. The result 
is that particles have the same exploration and/or exploitation properties. Several 
homogeneous variants have studied the control of the different PSO parameters. 

The parameter control mechanism has many advantages. It can enable to use 
appropriate parameter values in different stages of the search process, to make use of 
the accumulating information to enhance performance in later stages and to liberate 
the user from the charge of selecting parameter values [39]. For each optimization 
problem, a number of these parameter’s values and selection has a big effect on the 
efficiency of the PSO algorithm [40]. Three major tactics can be found in literature, 
which are available to categorize PSO parameters. The first is to vary this parameter 
randomly as a constant value, and the second is that the parameter varies according to 
the iteration number. In the third one, the value of this parameter at each iteration 
changes according to the results acquired by the particles till the current iteration [41], 
where the value of this parameter at each iteration, varies according to the results 
obtained by the particles until this iteration. More details of the parameter setting of 
PSO are presented per parameter as follow: 

3.1 POPULATION SIZE 

Concerning the parameter configuration of PSO population size, a proposed approach 
to enhance the adaptivity of PSO is to vary the population size [42], which should be 
well chosen in order to achieve good results [42]. Some paper has been interested in 
the definition of the best configuration of PSO. For instance, one the one hand, 
concerning the population size, [43] proposed the following formula to set the swarm 
size as a fellow: 

𝑁 = 𝐼𝑛𝑡 (10 +  2 √𝐷)                                                               (6) 

where D is the dimension of the problem, and Int is the integer part function. 

An adaptive approach has been proposed in [42]. The authors defined two strategies 
which are the increasing and decreasing strategies. Moreover, we can notice from the 
literature that adaptive population size approaches have been proposed in other forms 
and other terms (dynamic, incremental, varying population size, etc). For instance, a 
similar idea has been introduced by [17] in which the authors inspired by the notion 
of birth and death of particles in nature to increase and decrease the population size. 
The authors defined three functions (Damping function, Sine function, Sine 
Attenuation function) to update the population. Furthermore, [44] and [45] interested 
especially in the diminution of the worst particles in the population, they found that 
this idea may reduce the computational complexity of PSO. [46] also proposed a 
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strategy of augmentation of the population to enhance the exploration of the algorithm 
and diminution of it for exploitation purposes. Another population size approach has 
been proposed in [46] in which the neighborhood is used to allow varying the size of 
the dynamic population, and has also been integrated into the multi-objective PSO [47]. 
Moreover, population size variation has been applied in some fields such as power 
systems [48]. 

Furthermore, [49] integrated the adaptive population size concept into the learning 
mechanism of PSO. For this purpose, the incremental social learning which aims to 
facilitate the scalability of systems composed of multiple learning agents has been used 
for enhancing the performance of PSO. That is, every time a new agent is added to the 
population, it should learn socially from a subset of the most experienced agents.  

 

3.2  PSO TOPOLOGY 

Additionally, other PSO improvement variants involve the modification of PSO 
topology. In [50], the authors have investigated and tested several social network 
structures for the PSO topology. Moreover, a fully informed particle swarm 
optimization (FIPSO) has been offered based on the learning of the best topology as in 
social networks.  

 In particular, some papers have adopted the learning concept to adjust PSO 
parameters. The parameters that have to be defined are the velocity clamping, the 
inertia weight (w) and the acceleration factors (cognitive attraction and social 
attraction). Thus, a number of methods have been proposed to learn the best values of 
these factors. This problem can be formulated as a learning process in which each 
particle learns from the obtained data and predict the values of the parameters in 
accordance with the history of its values and the values of other particles. 

Another commonly used algorithm is the comprehensive learning which has been 
introduced by [51] and extended by [52]. In this case, each particle learns from another 
particle that is chosen according to a learning probability. This approach offers good 
performance on complex multimodal functions at the expense of the convergence 
speed for unimodal functions. 

The basic idea behind the orthogonal learning PSO proposed by Zhan et al. [53] is to 
determine the best combination of historical values of the particle itself and other 
particles.  

Another approach is the feedback learning which has been introduced by Tang et al. 
[54]. In the mentioned work, the feedback fitness information of each particle 
(described especially by each particle’s history best fitness) is used to determine the 
learning probabilities. These probabilities affect the acceleration parameters of PSO.  

In [55], the learning has been done by different examples instead of one. The 
convergence has been analyzed theoretically by considering a Markov process of the 
PSO algorithm. Also, [56] proposed the fully informed PSO which is based on the 
learning of the best topology as in social networks. 
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3.3 INERTIA WEIGHT  

Inertia weight ω was used to manipulate the effect of the particle’s velocity; it 
consequently impacts global and local search capabilities of the particle inside the 
swarm. A suitable value selection of w could balance global and local search capacities, 
which allows the PSO algorithm to give better performances. A smaller w may fortify 
local search capacities. However, the higher w value may accelerate the convergence 
speed [28]. Due to the importance of this parameter, a variety of diverse approaches 
for selecting the value of inertia weight at each iteration has been proposed.  

In [57], an analysis of the impact of the inertia weight and maximum velocity permitted 
on the overall performance of PSO. A time-varying inertia weight offers a higher 
performance fixing a maximum velocity. 

Furthermore, in [58], the inertia weight was also dynamically adjusted at each time 
step by taking into account the distance between the particles and gBest.  

The classical way to define the inertia weight was proposed by Shi and Eberhart [59]. 
It consists of linearly decreasing w with the iterative generations using a generation 
number. It gives good results. However, some papers proposed other variants of ω. 
For instance, Tang et al. [54] proposed a quadratic decreasing and Zhan et al. [60] chose 
a sigmoid decreasing of this parameter. These time-varying methods of the inertia 
weight are chosen in order to control the exploitation and exploration of PSO. 

Concerning the values that have to be assigned to the inertia weight and acceleration 
parameters, according to [61], the algorithm can converge if the following conditions 
are satisfied: 

0 <  𝑐1 + 𝑐2 <  4      𝑎𝑛𝑑    
𝑐1 + 𝑐2

2
<  𝑤 <  1                                               (7) 

On the other hand, concerning the inertia weight parameters, various adaptive 
strategies have been proposed to adapt it. In [36], a fuzzy system is implemented to 
adapt the inertia weight dynamically.  

Yang et al. [62] defined a strategy in which the inertia weight dynamically changes 
based on the run, and evolution state Different nonlinear variations are tested with 
different modulation index.  

Also, Chatterjee & Siarry [63] presented a nonlinear way for varying the inertia weight 
which employs aggressive, coarse tuning during initial iterations to achieve better 
search of the solution space to quickly arrive near an optimum solution and to apply 
mild, fine-tuning during later iterations gradually.  

Furthermore, Ting et al. [64] used a similar concept of the adaptive crossover used in 
differential evolution algorithm for adapting the inertia weight. For instance, Ding et 
al. [65] employed a stochastic local search to adjust the inertia weight in terms of 
keeping a balance between the diversity and the convergence speed.  

Suresh et al. [35] incorporated two modifications into the classical PSO which are the 
modulation of the inertia factor and the modification of the position update. The 
purpose of the first one is to adapt the inertia weight over different fitness landscapes.  
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Moreover, Kentzoglanakis & Poole [66] proposed three oscillating inertia weight 
functions of time that to be approached with better accuracy, where the value of inertia 
weight was adaptively changed during the search process. 

 Furthermore, other parameters have been proposed to replace this parameter. For 
instance, another coefficient has been proposed and incorporated into velocity by 
Eberhart & Shi [67] for the same purpose of the inertia.  

Concerning the use of probabilistic approaches, Zhang et al. [41] proposed a Bayesian 
PSO in which the inertia weight vector is determined on the basis of the past particle 
position by maximizing the posterior probability density function of the weight. 

Also, in [68], a dynamically decreased particle velocity limit strategy has been used 
instead of the inertia weight. More generally, De Oca et al. [69] presented a study on 
the effects of using different schedules (using both time-decreasing and time-
increasing inertia weight strategies). 

The setting of the inertia weight can depend on the particle itself as in [70]. That is, 
based on the success of particles, each particle affects the adjustment of the inertia 
weight. A time-decreasing inertia weight is used to allow the user to tune the 
algorithm’s exploration/exploitation capabilities.  

 

3.4 ACCELERATION COEFFICIENTS  

Enhanced PSO algorithm can be achieved just by using adapted coefficients 𝑐1 and 𝑐2. 
That is, it is known that the accuracy of PSO depends on the selection of the 
appropriate values of parameters and their values through the search process (see for 
instance [71]).  

The most used adaptive strategy of 𝑐1 and 𝑐2 has been formulated by Zhan et al. [60]. 
It consists in updating its values according to four defined states which are: 
exploration, exploitation, convergence and jumping out. Also, Fuzzy approaches have 
been used to adapt other PSO parameters such as acceleration factors [60] and the 
velocity climbing. 

Other papers are interested in the relation between the learning behavior of PSO and 
acceleration parameters. For instance, Kamalapur and Patil [72] examined the link 
between these parameters and the topology of PSO. Moreover, Subbaraj et al. [73] 
interested in choosing the best values of these parameters. 

In [74], the acceleration coefficients are dynamically updated through PSO iterations. 
Epitropakis et al. [75] studied the effect of the social and cognitive parameters on PSO 
convergence and used differential evolution to enhance it. In [76], the learning process 
of fitness information is used to control the parameters of PSO.  

 On the other hand, [77] proposed four operators which play similar roles as the four 
states the adaptive PSO defined in [60]. Their approach is based on the idea of assigning 
to each particle one among different operator values based on their rewards. 
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4. PSO PARAMETERS SETTING USING HMM  

 

The configuration of algorithms is one of the main challenges of the PSO metaheuristic; 
the reason lies in the fact that the PSO performances depend heavily on the chosen 
parameter values. Concerning metaheuristics, their parameters setting can be done in 
two ways [78]. The off-line configuration involves the adjustment of parameters before 
running the algorithm while the online configuration consists of adjusting the 
algorithm parameters while solving the problem (also called automated configuration). 
The first problem is known as the ‘parameter tuning problem’ and the second one as 
the “parameter control problem”. 

In this section, we propose a new method that makes it possible to optimize the 
performance of the PSO algorithm automatically. Firstly, a method is designed 
specifically for particular classes of problem instances, creating the most likely 
significant better performance in real-world applications. Secondly, it will be designed 
for online PSO algorithm control mechanisms that adapt parameter settings within the 
execution that can produce enhanced performance than the fixed algorithm 
configuration techniques. Before giving the proposed PSO parameters setting 
technique, the used machine learning, which is the Hidden Markov Model, is 
presented. 

4.1 THE HIDDEN MARKOV MODEL 

4.1.1 Model definition   

The full state 𝑆𝑡 of the system rarely uses straight observable once modeling complex 
operations in the real world. This is often caused by normal occlusions or imperfect 
sensor observations. A Hidden Markov Model (HMM) [79] can model related cases, 
as displayed in Figure 9. In this model, the complete system state is regarded as hidden, 
and therefore it exists only an access to sensor observations 𝑌𝑡.  

 

 

Figure 9 The graphical model for a hidden Markov model 

The main considered problem is then to estimate 𝑝(𝑆𝑡|𝑌1:𝑡). The value of the hidden 
state supplied the sequence of observations about the given point. The process of 
inferring the state is the task of the system perception. Instances of such perception 
systems are autonomous, obstacle detectors, localization subsystems, etc. In this 
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chapter, we discuss the task of learning a hidden Markov model for dynamic 
configuration of particle swarm PSO. 

As a definition, A hidden Markov Model (HMM) is a triple 𝜆 = (𝛱, 𝐴, 𝐵) where :  

 𝛱 = (𝜋𝑖);   

 𝐴=(𝑎𝑖𝑗), 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁] 

 𝐵 = (𝑏𝑗𝑘), 𝑃(𝑌𝑡 = 𝑘|𝑆𝑡 = 𝑗), 𝑗 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁]. 

where: 

- S is a set of states, 

- Y is a set of observations, 

- P is a state transition probability 𝑝(𝑆𝑡+1|𝑆𝑡) that state 𝑆𝑡 will lead to state 𝑆𝑡+1, is 
a conditional probability 𝑝(𝑌|𝑆) of observing Y at state  S. 

Also, with the many observations, the precise value of the hidden state could not be 
generally established with certainty. It is typically desired to approximate it and 
preserve its complete distribution. This distribution is known as Belief state 
𝐵𝑡 𝑝(𝑆𝑡|𝑌1:𝑡). 

Its essential property is that the sequence of belief states forms a Markov chain; i.e., the 
knowledge of a belief state 𝐵𝑡  captures the full information about the past   
observations. Learning algorithms for the HMM model namely, the Viterbi and Baum-
Welch will be presented in the proposed approach.  

 

4.1.2 Hidden Markov Model Learning evaluation 

There are different major methods for evaluating a Hidden Markov Model (HMM). 

 Likelihood of test data: 

In this approach, one will need to retain some test data and calculate the likelihood of 
the test sequences by using the forward algorithm. 

 Errors Prediction from data: 

A significant prediction task relies on the application. For example, the task could be 
considering predicting the future. In such a case, the forward algorithm is used to track 
the state at t of the HMM and use that to predict the expected observation at some 
future time t+k. This is done for all t to calculate the mean error. 

 Evaluate the hidden Markov chain structure: 

An additional concern is the choice of an appropriate model structure. To be able to 
use the HMM model for a given problem, the analyst must speculate primary values 
for the entries of the state transition matrix A. In general, one may use 𝑎𝑖𝑗 ≠ 0 for all i 

and j. However, according to the particular problem, the analyst may have a good 
grasp on the structure of the underlined Markov chain. But the hidden Markov chain 
initial structure can be maintained throughout the iterations.  
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Equivalent comments apply to the initial choice of the conditional probabilities of 
symbol emission. The probability of observation when in a state can be very low and 
probably could be ignored; however, it can affect the whole observation sequence.  
These forms of structures could be known from some prior knowledge of the model 
and can be forced within the analysis. 

Thus, a good initial structure may lead to more accurate and efficient parameter 
estimation result for the problem under investigation. In the same direction, we 
address PSO based HMM for parameters setting. 

4.2  PARAMETER TUNING (OFFLINE) 

The tuning approach consists in finding the most suitable configuration of an 
algorithm for solving a given problem. Machine learning methods are usually used to 
automate this process [80]. They may enable to construct robust autonomous artifacts 
whose behavior becomes increasingly expert.  

[78] has surveyed the main approaches that can be used for parameters tuning of 
optimization algorithms. In [81], the tuning approaches have been classified into four 
categories depending on the number of parameters and the number of functions. [82] 
has presented the three most used procedures for tuning algorithms which are: Racing 
Procedures, ParamILS, and Sequential Model-Based Optimization. The racing 
approaches have been well investigated in the past, and many variants have been 
proposed (sampling F-Race, iterative, F-Race, tNO-Race, etc). In [83], the authors 
showed how the training sample could be classified into positive and negative 
examples. This classification may enable us to use a supervised machine learning 
method. 

Moreover, metaheuristics have been used for tuning metaheuristics. Indeed, the off-
line configuration of the algorithm can be formulated as an optimization which aims 
to minimize the objective function. This idea has been introduced for evolutionary 
algorithms as meta-evolutionary algorithms. In other terms, an evolutionary algorithm 
is used to configure another one. A similar idea of the meta-evolutionary has been 
proposed in [84]. That is, the algorithm that has to be tuned can be used to tune the 
algorithm itself. The specificity of the paper is that the authors proposed to use a multi-
objective approach. The firefly algorithm has been used to examine the proposed 
framework. 

The tuning of metaheuristics is related to the generic notion of hyper-heuristics which 
consists of finding the most suitable configuration of heuristic algorithms such as local 
searches (simulated annealing, tabou search, etc). Machine learning has been used also 
to deal with hyper-heuristics [85]. Furthermore, [82] proposed a hyper-heuristic solver 
based on a choice function which combines various numbers of strategies to learn the 
weighted mixture of heuristics for a given problem class. Also, [86] proposed another 
choice function which tends to rank the heuristics according to their ability to properly 
solve an instance of the problem and PSO has been used then for the tuning of the 
choice function parameters.  
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 The use of machine learning for the tuning problem has been popularized by [87]. It 
consists of learning from problem instances. In particular, HMM has been successfully 
applied in a number of problems which have similarity with the tuning problem. The 
current section will use the hidden Markov model to find the best configuration of the 
PSO algorithm based on the estimation of the most likely state. The experiment 
consists of finding the best parameter values of the particle swarm optimization 
algorithm for a given problem. 

 

4.2.1 HMM-based tuner Model for PSO  

Our interest in this article is given to the automated algorithms tuning by machine 
learning. This issue can be considered as a special case of tuning metaheuristics. 
Solutions of the parameter tuning problem are parameters with maximum utility [88], 
where utility is based on definition of algorithm performance, some objective functions 
or problem instances. We associate this utility calculation to a metric function m.   

In this approach, we consider the case of non-iterative tuners, where we execute the 
generation step only once, during initialization, thus creating a fixed set of 
configuration vectors. Each of those vectors is then tested during the test phase; then 
a final machine learning phase using HMM is to find the best vector in the given set. 
Our method of tuning differs from the iterative one, where the set of vectors starts with 
a small initial set and creates new vectors iteratively during execution. 

The following parameters can define the PSO configuration or parameter tuning 
problem of PSO: 

Given 

 an algorithm 𝐴  with a number 𝑙 ∈ 𝑁  of parameters 𝑝1, . . . , 𝑝𝑙  that affect its 
behaviour, 

 A space C of possible configurations for the algorithm 𝐴 , where each 
configuration 𝑐 ∈  𝐶 specifies values for A’s parameters where A’s behavior on 
a given problem instance is completely specified. 

 A set of problem instances I, 

 A performance metric 𝑚 that measures the performance of A on instance set I 
for a given configuration c ∈ C 

 A rank function 𝑟𝑎𝑛𝑘(𝑚) ∈ ℕ over the metric values set, this function orders 
the metric values obtained on instance 𝑖 ∈ I for a given configuration c ∈ C. 

The objective of our tuner problem is :  

To find a configuration c∗ ∈ C that results in optimal performance of A on all instances 
set I according to the rank value k returned by the 𝑟𝑎𝑛𝑘() function of the evaluation of 
a metric m.  

For the algorithm whose performance is to be optimized or also the target algorithm, 
we use A(c) to denote target algorithm A under a specific configuration c.  

We identify three phases of our tuning problem: Generation phase, test phase, and 
evaluation phase. 
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In most cases of tuning algorithms, these three phases can be merged or executed in 
parallel as in the iterative tuner, where it starts with a small initial set of parameters 
and generates new parameters vectors iteratively during the test phase.  

In this approach, every step is performed only one time after its previous step is 
finished. So, if a step is executed, it will not be performed again. Our tuning problem 
is designed with the following template (see figure 10):  

 

Figure 10 Description of the HMM-based tuner. 

 

a. Generation phase 

In this phase, according to the algorithm A to be tuned, and according to the problem 
subject to tuning, we generate all required elements for tuning by machine learning.  

For parameters generation, this step is about designing the algorithm 𝐴 for a given 
application amounts to selecting good values for the parameters. Two main classes of 
the configurations are identified in the literature and can be found as in [89]: selection 
operators and variation operators. Also, we can distinguish between qualitative and 
quantitative parameters. 

A configuration c will be a vector of a combination of those operators. Let 𝑁  the 
number of generated configurations to test in the test phase: 𝐶 = (𝑐1, . . , 𝑐𝑁), and 𝑇 the 
number of generated instances of the considered problem: 𝐸 = (𝑒1, . . , 𝑒𝑇).   

 

b. Test phase 

The objective of this test phase is to evaluate all configurations in the set C on instances 
I. Then, each result of an execution of a configuration: 𝑐 ∈ 𝐶 on an instance 𝑒 ∈ 𝐸 will 
be evaluated and ranked according to some metric 𝑚 (considered as an evaluation test 
for performances comparison). 

First, we define a Markov process {𝑆𝑘}𝑘∈[1,𝑁]  on the simulation test as a stochastic 

process which returns a number from 1 to N, where N is the number of evaluated 
configurations.  
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We define also observed evaluation values from executions {𝑌𝑘}𝑘∈[1,𝑇]. It indicates to 

the observed result of simulations and corresponds to the rank value of the executed 
configuration c, or also as defined, the rank value of the process {𝑆𝑘}𝑘∈[1,𝑁]. 

We define firstly two additional vectors where results from all executions will be 
stored, which are the observation sequence O and state sequence Q:  

𝑂 =  (𝑜1, 𝑜2, … . 𝑜𝑇),     𝑄 =  (𝑞1, 𝑞2, … . 𝑞𝑇)      , 𝑇 ∈ ℕ                            (8) 

where :  

T: number of test runs, also indicates the length of observation sequence O and state 
sequence Q. 

And:   

𝑜𝑖 = 𝑟𝑎𝑛𝑘(𝑚𝑖𝑗) ∈ {𝑌𝑘}𝑘∈[1,𝑇]                                                              (9) 

𝑞𝑖 ∈ {𝑆𝑘}𝑘∈[1,𝑁],      𝑖, 𝑗 ∈ [1, 𝑇], [1, 𝑁]                                        (10) 

𝑚𝑖𝑗 : Metric value by executing configuration 𝑗 on the instance 𝑒𝑖.  

𝑜𝑖  : rank of the metric value of executing configuration 𝑐𝑗 on instance 𝑠𝑖, is the rank 

order over all configuration of metric value on the instance 𝑒𝑖. 

𝑞𝑖 : corresponds to the executed configuration, called state sequence. 

The pseudocode of the test phase is depicted in Algorithm 2:   

Algorithm 2: Tuning Test  

Input: Algorithm  𝑨 , configurations 𝑪 of length N and 

instances 𝑰 of length T. 

for each instance 𝒔𝒊, 𝒊 from 1 to T do 
        for each configuration 𝒄𝒋, 𝒋 from 1 to N do 

              Execute instance ei with configuration 𝒄𝒋 

              Evaluate the metric value 𝑚𝑖𝑗. 

        end  

        Evaluate rank values of metrics on instance 𝒆𝒊. 

end  

return : Observation sequence O, state sequence Q 

 

c. Performance evaluation phase 

Evaluation of the best configuration c is done in this thesis with a machine learning 
technique, which uses execution data from the test phase to evaluate the best 
configuration 𝑐∗  of the algorithm A for the problem, with consideration of all test 
instances. 

Machine learning algorithms will be able to extract target knowledge (in our case) from 
training examples, models of desired behavior drawn from experience. Thus, it is 
important that the learner not overfit, that is, not getting information so close to the 
training examples. So, we choose the hidden Markov model (HMM) as an adequate 
machine learning technique to extract knowledge from all collected data in the test 
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phase. Our motivation beyond the use of HMM is the successful applications in many 
fields, which are similar to our problem as detailed in the literature section. The 
specificity of HMM is that it can include stochastic information on transitions between 
states and also observations to give the most likely state of the parameter values.   

According to the best of our knowledge, the HMM algorithm has not been yet 
investigated for the tuning problem. 

We define the Hidden Markov Model by a triple 𝜆 = (𝛱, 𝐴, 𝐵), where all processes are 
defined on a probability space. The triple components are respectively the vector of 
the initial state probabilities, the state transition matrix and, the emission matrix.  

 𝛱 = (𝜋𝑖);  

 𝐴=(𝑎𝑖𝑗), 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁] 

 𝐵 = (𝑏𝑗𝑘), 𝑃(𝑌𝑡 = 𝑘|𝑆𝑡 = 𝑗), 𝑗 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁].  

We suppose that a configuration c is identified as the state of HMM, then:  

 The state {𝑆𝑖}𝑖∈[1,𝑁] takes values from the set 𝐶 = {𝑐𝑖}𝑖∈[1,𝑁]. N is the number of 

configurations. 

Moreover, for every configuration of the algorithm A, we observe from tests the rank 
of each execution, then:  

 The observed parameters of this hidden chain {𝑜𝑖}𝑖∈[1,𝑁] take values from the set 

of values of a rank function: {1,..,N}. 

 The output of the test phase is considered as observation sequences and state 
sequence for our HMM. It forms a stream of observed ranks for configurations 
set C. 

This model will serve to execute the Baum-Welch re-estimation algorithm [90] on the 
two output sequences of the test phase: sequence O of ranks and sequence Q of states. 
The result will be learned HMM parameters: the state transitions 𝐴= (𝑎𝑖𝑗)   and 

emissions = (𝑏𝑗𝑘) .  

𝑐∗ is the best evaluated configuration; it is given by the formula :  

𝑐∗ = 𝑚𝑎𝑥𝑗  (𝑏𝑗1)                                                              (11) 

 

The best configuration 𝑐∗ is the configuration that has the maximum probability to 
emit rank 1. Especially, it is the most likely configuration to be the best over all 
instances.  

 

4.2.2 Performance evaluation of HMM-based tuner  

By adapting the formulation of the HMM-based tuner to some defined problem we 
can evaluate the effectiveness of our used tuning method. Therefore, we depict some 
applications for air transport problem in the second part of this thesis, which is 
dedicated to this issue. PSO algorithm is used to solve each model of air transport with 
related experimentations to prove the efficiency of the proposed HMM tuner.  
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4.3 AUTOMATED PARAMETER CONTROL BY HMM 

The parameter control mechanism has many advantages. It can enable to auto-select, 
one of the appropriate parameter values in different stages of the search process, to 
make use of the accumulating information to enhance performance in later stages, and 
to liberate the user from the charge of selecting parameter values [39]. In this section, 
a new generic model for parameter control will be defined according to the analysis of 
the PSO behavior search. Then, the proposed control scheme is applied to different 
PSO parameters with different PSO search structure. The two cases of PSO structure 
will be liable to the generic model: homogeneous and heterogeneous PSO.  

 

4.3.1 A generic model   

a. Markov Chain on Particle Swarm Optimizer 

As a complex stochastic process, The Particle Swarm Optimizer (PSO) can be analyzed 
according to its stochastic behavior. When it comes to this type of investigation, the 
majority of the important research on PSO is centered on simulations and empirical 
study and only a little is determined by theoretical methodology. In this paragraph, 
theoretical results from [6] are described to inspect the stochastic behavior of PSO. 

We consider a swarm of N particles on a space S, and 𝑖 is the index of particle and t  
the index of iteration; 𝑋𝑖 represents the position and velocity vector of particle 𝑖, 𝑃𝑏𝑒𝑠𝑡𝑖 
the personal best position of particle 𝑖, and gbest denotes the global best position. 

The state of the PSO defined by [7] includes as many details as possible that are 
involved in the process. PSO state has a memory-less property which is also proven 
by [6]. The state at time t is defined as :  

𝑊(𝑡)  = (𝑋(𝑡), pbest(𝑡), V(𝑡), 𝑔𝑏𝑒𝑠𝑡(𝑡)  )                                      (12) 

The state Markov chain identified of PSO states is stationary (time homogeneous).   
𝑊(𝑡) has the information required for the future movements, and varies depending 
just on the present state. The influence of the present state on the next states is 
independent of the historical state. The execution of PSO is based only on the current 
state without including the past history. 

Furthermore, to assess the achievement (good results) of the state W, an index for the 
state to represent the actual achievement of PSO is additionally defined in [6]. The 
achievement can only be position-dependent. This index is strongly related to the 
positions and depending on a concept of probability because of stochastic movements 
of particles. Likewise, it can be defined by different measures based on particles 
positions (because that reflects the achievements). Since the already defined states 𝑊 
are merged into a countable number of classes that refers to its achievement, they are 
identified as levels. The stochastic process of the levels is defined as : 

{𝐿(𝑊(𝑡)), 𝑡 = 1,2… }                                                         (13) 
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𝐿(𝑡) constitutes also a Markov chain on PSO levels [6]. Then, it constitutes also a 
stationary Markov chain. As a result of this state classification, as t raises, the state may 
earn a significantly greater achievement, but it is not guaranteed. If for any particular 
sample process, as t raises while the state can't get any noticeable achievement. 
Therefore, the future state distribution will not likely be favored even if t is highly 
larger. Consequently, it appears enhanced to consider different parameters selection 
during different state stages rather than time stage as the earlier research managed.  
The transition probability matrix can be denoted by:  

P ≡ [𝑝𝑗,𝑘], 𝑗 < 𝑚, 𝑘 < 𝑛                                                      (14) 

The fact that the state (level) transition probabilities are independent of t justifies the 
fact that parameter selection needs to be a function of state (representing achievement) 
rather than a function of iteration.  

Based on the theoretical results of [6] and [7], the further extension which is carried 
out in this thesis could be the analysis of the relationship between transition 
probability and parameter set estimating the transition probability with the selection 
of the optimum parameter set in each state. An efficient instrument could be making 
use of computer simulations. This approach can maximize the value of adaptive 
parameters selection rather than classical approaches which are based on the iteration 
number.  This will likely constitute a preliminary basis to build in the next paragraph 
a generic model for adapting PSO parameters. 

 

b. A model for adaptive parameters  

Based on the theoretical results of [6] presented above, it exists a Markov chain on PSO 
levels. These levels defined by the degree of achievements of the search which must 
be defined related to the position of particles. We define in this section parameters 
adaptation in the light of the last paragraph and the results given by the APSO [60]. 
Some notions are presented before we address our parameters adaptation control by 
HMM. 

This proposed method uses the same global topology as the standard PSO algorithm. 
As recognized, this topology converges quickly; nevertheless, it can simply be trapped 
into local optima. While PSO, which has a local topology, it has more chances to find 
the global optimum, but by a slow convergence speed [91]. Consequently, global and 
local variations of PSO algorithms both possess their advantages and disadvantages. 
Considering these matters, a global topology is designed with an adaptive parameter 
control of PSO by HMM classification in order to improve the overall performance of 
the algorithm. Thus, the developed approach based on HMM aimed to possess 
effective global search capability using the associated adaptation strategy, such as local 
versions of PSO, preserving good convergence speed as it is a global variant of PSO.  
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c. PSO hidden states  

To define our approach for classification of PSO states using a hidden Markov model, 
we inspire from the same definition of particle states in APSO, and we use 
classification capabilities of HMM to enhance the PSO algorithm.  

HMM is a stochastic method where we need to associate several probabilities in the 
model definition; Transitions between states are governed by a set of probabilities 
named transition probabilities. In a particular state, an observation can be generated 
according to the associated probability distribution. These observations are visible in 
contrast with their corresponding states which are hidden. After model parameters 
definition, a resolution algorithm is used to build the HMM classification process.  

The contribution of using HMM inside PSO is to benefit from these features to better 
explain PSO behavior and then to better identify the corresponding state at each 
iteration. Indeed, HMM can enable most robust estimation of the state based on the 
evolutionary factor than the fuzzy classification (HMM can give better results as 
shown in [92] even if it is more computationally expensive). That is, in HMM, we can 
predict from the evolutionary factors (which correspond to observations in HMM) the 
most probable of the four states (which are the hidden states of HMM). 

We follow a similar state definition as the one proposed by [60] which is also used by 
[58] to enhance PSO adaptivity. It consists of identifying one of four evolutionary states: 
exploration, exploitation, convergence, and jumping out in order to enable the 
automatic control of acceleration coefficients. The objective is to use HMM to identify 
the proper state (class) at each iteration. So, we can generate the Markov Chain of PSO 
states as described in figure 11.  

 

Figure 11 Markov Chain of PSO states 

PSO parameters are updated according to the classified state at every iteration. Then, 
the same as [60] an elitist learning strategy is performed when the evolutionary state 
is classified as a convergence state. We take all possible i  and j  transitions as 
mentioned in figure 11 a transition probability of 0.5. 

The definition of states (achievement level) is controlled by the value of quantified 
population distribution information, called in [60] evolutionary factor f that is 
calculated at each iteration. Consider the mean distance of each particle 𝑖 (1 < 𝑖 < 𝑁) 
to all the other particles as 𝑑𝑖, and calculate: 

𝑓 =  |
𝑑𝑔𝑏𝑒𝑠𝑡−𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
|                                                                             (15)     

 where: gbest is the global best particle and 
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The evolutionary factor will be used to define adaptation strategy by HMM in the next 
paragraph, adopted from [60] because it reflects the relative position of gBest to the 
other particles. Its value is relatively large within the jumping out and exploration state 
(because particles are more distant). Then, it becomes smaller in the exploration and 
smaller in the convergence state (particles are close to each other around gbest).  

The relation between states or strategies and values of the factor 𝑓 is established by a 
defuzzification technique (see figure 12)([60]). According to it, PSO parameters are 
adjusted. It has a major role in the convergence across iterations.  

On the other hand, defuzzification used in APSO takes the only value of the factor 𝑓 
in consideration without any use of any past information about previous executed 
iterations. The adopted method consist of replacing the defuzzification in APSO by 
HMM classification, which uses in addition to the value of 𝑓, all past executions of 
iterations to classify and define particle state and then the corresponding strategy. This 
will be described in the following paragraph. 

 

d. Model of state classification 

In this generic model, we use the probabilistic machine learning method by Hidden 
Markov Chain (HMM). That is, HMM is used to have stochastic state control of PSO 
at each iteration. The main idea is to assign state selection (defined in the previous 
paragraph) inside the particle swarm optimization to HMM. This process is performed 
by the Viterbi algorithm that gives the most probable path of states in each PSO 
iteration. Also, HMM parameters are calculated and updated at each iteration 
according to the change in particle environment.  

Therefore, We define the Hidden Markov Model by a triple 𝜆 = (Π, A, B), all processes 
are defined on a probability space.   

 Π = (πi) The vector of the initial probability distribution over states; 

 A=(aij) The state transition matrix, P(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁] 

 𝐵 = (𝑏𝑗𝑘)  The emission matrix also called the confusion matrix,  

                     𝑃(𝑌𝑡 = 𝑘|𝑆𝑡 = 𝑗), 𝑗 ∈ [0, 𝑁], 𝑘 ∈ [0,𝑀].  

The set of N states {qt}t∈N takes values from the set S = {Si}i∈[1,4], which references 

respectively: exploration, exploitation, convergence, and jumping out.  The change of 
state is reflected by the PSO state sequence Q =  q1q2… . qT  for example ∶  (q1 =
S2 )⇒(q2 = S1 )⇒(q3 = S2)⇒…, as deduced by [60]), corresponding to the Markov 
Chain in figure 11. 

Furthermore, we define corresponding initial transition probabilities, P(St = i|St−1 =
j), i, j ∈ [1,4] . This probability controls all behavior of transition between states of 
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APSO resolution. The initial state probability corresponds to deterministic start in 
exploration state:  

Π = (πi) = [1 0 0 0]                                                             (16)  

The observed parameter of this hidden chain is the evolutionary factor f (defined in 
[60])) of the APSO as depicted in figure 12. 

 

 

Figure 12 Fuzzy functions of evolutionary factor by particles state [60] 

Observations will be described by the f value membership to subintervals of [0,1] 
([0,0.2], [0.2,0.3], [0.3,0.4], [0.4,0.6], [0.6,0.7], [0.7,0.8], [0.8,1]). We divide [0,1] to seven 
subintervals, so the set observation 𝑌 = {yi}i∈[1,..,7]   will be the number of the 

subinterval which belong f. Let 𝑠𝑢𝑏: [0,1] →  {1,2, . . ,7} the function that returns the 
corresponding interval of f; it corresponds also to the observation.  

𝑠𝑢𝑏(𝑓) = 𝛿[0,0.2[(𝑓) + 2𝛿[0.2,0.3[(𝑓)+3𝛿[0.3,0.4[(𝑓) + 4𝛿[0.4,0.6[(𝑓) + 5𝛿[0.6,0.7[(𝑓)            (17)

+ 6𝛿[0.7,0.8[(𝑓) + 7𝛿[0.8,1](𝑓)                                                                      

(𝑤𝑖𝑡ℎ    𝛿[a,b](𝑥) = {
1, 𝑥 ∈ [a, b]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      𝑎, 𝑏 ∈ ℕ , x ∈ ℝ) 

 

Emission probabilities are deduced from the defuzzification process (figure 12) of [60]) 
as follows:  

𝑃 = [

0 0 0 0.5 0.25 0.25 0
0 0.25 0.25 0.5 0 0 0
2/3 1/3 0 0 0 0 0
0 0 0 0 0 1/3 2/3

]                                  (18) 

P represents in another way the same probabilities of the defuzzification technique. 
More detailed analysis of the relationship between strategies and the diversity of 
particles can be found in [60]). 

After initializing HMM parameter, Baum-welch algorithm (algorithm 3) is used at 
each iteration to estimate and update HMM emission and transition matrix; this allows 
HMM to be more adaptive and accurate in the classification step.  
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Algorithm 3: Baum-welch algorithm ([79]) 

Data: Π,O, A, B, S, Y  
Initialisation of forward[4,T]  and backward[4,T] matrix   

repeat 

for   i = 1 to 4 do 

     forward[𝑆𝑖 , 1]   𝜋𝑖 × 𝑏𝑖,1; 
end 

  for t = 2 to T do 

    for i = 1 to 4 do 

       forward[𝑆𝑖,t]  ∑
𝑘=1,..,4

forward[i, t − 1]  ×  𝑎𝑘,𝑖 ×  𝑏𝑖,𝑦𝑡 

    end 

  end 

       forward[𝑌𝑡,T]  ∑
𝑘=1,..,4

forward[k, T]  

       backward[𝑌𝑡,T]  ∑
𝑘=1,..,4

backward[k, T]  

  for t = 1  to T do 

    for i = 1 to 4 do 

       backward[𝑆𝑡,t]  ∑
𝑘=1,..,4

backward[i, t − 1]  ×  𝑎𝑘,𝑖 ×  𝑏𝑖,𝑦𝑡 

    end 

  end 

  for t = 1 to T do 

    for i = 1 to 4 do 

      for j = 1 to 4 do 

           ξi,j(t) =  
forward[𝑖,t]× backward[i,t]× 𝑏𝑖,𝑦𝑡

P(O/(A,B,𝜋))
 

      end      

    end 

 λi(t) =  
forward[𝑖,t]× backward[s,t]

P(O/(A,B,𝜋))
 

  end 

    for i = 1 to 4 do 

      for j = 1 to 4 do 

          𝜋𝑖 =  λ1(t), 𝑎𝑖𝑗 = 
∑

𝑡=1,..,𝑇−1
 ξi,j(t)

λi(t)
, 𝑏𝑖𝑘 =  

∑
𝑡=1,..,𝑇∩𝑜𝑡=𝑄𝑘

 ξi,j(t)

∑
𝑡=1,..,𝑇

λi(t)
 

      end      

    end 

until no increase of P(O/λ) or no more iterations are possible   

Result:  (𝜋, 𝐴, 𝐵) 
 

Then, the Viterbi Algorithm is used with the estimated parameters to find the most 
probable sequence associated with hidden states given a sequence of observed 
states. The Viterbi algorithm does not only accept the most likely state for a given time 
instant but also takes a decision based on the whole observation sequence. The 
algorithm will find the corresponding Q (state sequence Q = q1q2… . qT) for a given 
observation sequence (O =  o1o2… . oT) by means of induction (t the iteration number).  
It is about to find the highest probability paths for states ([79]). Viterbi algorithm is 
given in Algorithm 4 below. 
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Algorithm 4 : Viterbi algorithm [79] 

Data: Π,O,A,B,S,Y,T 
Initialisation : matrix of Viterbi[4,T]  

for   i = 1 to 4 do 

     Viterbi[𝑖, 1]   𝜋𝑖 × 𝑏𝑖,1; 

     State[𝑖,1]  𝑋1; 
end 

  for t = 2 to T do 

    for i = 1 to 4 do 

       Viterbi[i,t]  max
𝑠′=1,..,4

Viterbi[k, t − 1]  ×  𝑎𝑘,𝑖 × 𝑏𝑖,𝑦𝑡 

       State[i,t]     arg𝑚𝑎𝑥𝑠′=1,..,4 Viterbi[k, t − 1] ×  𝑎𝑘,𝑖; 
    end 

  end 

       𝑌𝑇  arg𝑚𝑎𝑥𝑘=1,..,4 Viterbi[k, T]  ; 
       𝑋𝑇   𝑋𝑌𝑡  
    for t = T, T-1,... 2 do 

      𝑌𝑡−1 = State[𝑌𝑡 ,t]  
    end  

Result: The state sequence 𝑸𝒛 = (𝑺𝒀𝟏,...., 𝑺𝒀𝒕) 

 

 

e. Online parameters estimation 

Additional online learning for HMM parameters can be integrated into the proposed 
model by online Expectation-Maximization algorithm instead of the batch learning 
given by Baum-welch algorithm. Also, HMM parameters are calculated and updated 
at each iteration according to the change in particles environment. The online 
Expectation-Maximization algorithm brings continuous parameters update for the 
proposed model.  

Considering Online HMM training, this was defined by [93] and [94]. An HMM that 
use online learning can independently learn from a new block of data at a time. So, 
HMM parameters should be efficiently updated from new data without requiring 
access to all training data. In addition, parameters are re-estimated online upon 
observing each new sub-sequence [95]. The online EM algorithm for HMM allows 
continuous adaptation of HMM parameters along a potentially infinite observation 
stream. 

An online EM learning is first performed at each iteration to calculate and update 
HMM parameters that are re-estimated upon observing each new sub-sequence. 

Particles positions and velocities vary over iterations, also impacting the evolutionary 
factor. Then, the classification environment for HMM changes during operations. 
Online learning of new data sequences allows adapting HMM parameters as new data 
becomes available as shown in figure 13 where (𝐷𝑖)𝑖∈[0,𝑛] are data observations and 

(𝜆𝑖)𝑖∈[0,𝑛] parameters values updates.  
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Figure 13 HMM classifications 

At each iteration t, a new classifier is performed with new updated parameters. We 
choose online learning EM algorithm [95] instead of Bach learning (classical Baum-
Welch algorithm [96], because this last one needs to run one all observation sequence 
where this is not our case. 

The online Expectation-Maximization algorithm (algorithm 5) used for HMM 
parameters learning is described as follow: 

Algorithm 5 : Expectations-Maximization algorithm  

Input : observation sequence O =  (o1o2… . oT), states S, initial 

parameters set 𝜆0  
Output : Estimated parameters 𝜆  
For t =1.. Nstep do  
E-step – find conditionally optimal hidden trace  : 

         𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃(𝑂|𝑆, 𝜆𝑖−1)  

         Compute likelihood: 𝐿𝑖−1(𝜆)=  𝑃(𝑂|𝑆, 𝜆𝑖−1)   
If 𝑖 <  𝑁𝑠𝑡𝑒𝑝 and likelihood not yet converged:  

       M-step - find conditionally optimal parameter set 𝜆: 
                  𝜆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆𝑃(𝑂|𝑆𝑖, 𝜆)  
Return optimal parameter set 𝜆 

 

This Algorithm is based on an online version of the Expectation-Maximization 
algorithm: the algorithm involves a stochastic version of the E-step and M-step to 
include the information through the newly existing observation. This online version of 
EM does not require the whole data set to be made available at each iteration. 
Regarding simulations that apply tested observations on experimental data [93], the 
performance of this algorithm is better than the batch algorithm.  

4.3.2 Parameter control of Homogeneous PSO   

By integrating the identification of the suitable achievement level of the search process 
(hidden state), PSO parameter adaptation will be more suitable if it is adjusted 
according to the classified PSO hidden state. The application of this model needs to 
analyze first the relationship between different parameter sets estimating the 
transition probability with the selection of the optimum parameter set in each state. 
This defined model of hidden PSO states and the method of classification and 
computing the related transition probabilities will be investigated for application in 
PSO for different parameters in the case of homogeneous PSO structure in this chapter.  
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We implement the generic model defined in the previous paragraph in the case of 
Homogeneous PSO, also referred to mono swarm. The majority of PSO variants [38] 
use homogeneous swarms; every one of the particles assumes to use exactly the same 
behavior applying the same velocity and position update rule at the same iteration. 
The improvement of PSO will concentrate on parameter control of PSO that all 
particles use of the same parameter at each iteration. So that the implementation will 
concentrate on the definition of the relationship between the PSO parameter set to be 
tuned and the classified PSO hidden state. An empirical study can be the best choice 
to identify this relationship. 

 

a. Control of acceleration coefficients  

a.1  Coefficients update by state  

The HMM classification in the last paragraph will define, at each iteration, one of the 
four swarm states: exploration, exploitation, convergence, and jumping out. In 
contrast with APSO, HMM perform a stochastic state classification that takes into 
account all state history change across iterations (state sequence Q). Therefore, the 
HMM classification will be more accurate than the fuzzy logic used by APSO [97]. 
Furthermore, According to the classified state, PSO parameters are controlled and 
updated.   

Acceleration coefficients update by state (Algorithm 6) is done by a benchmark 
between increasing or decreasing 𝑐1 and 𝑐2 according to the following notion as also 
given by [60]. c1  is the cognitive component that measured the degree of self-
confidence of a particle and measures the degree at which it trusts its performance. c2 
is the social component that relies on the capability of the swarm to find better 
candidate solutions.  

The increase of 𝑐1 promotes exploration of local regions and maintaining the diversity 
of the swarm. 𝑐2 increases contrariwise helps the swarm to converge towards the 
current global best region. So, decreasing 𝑐1 or 𝑐2 gives its opposite influence. From 
this fact, we can conclude the algorithm 6, which is inspired by the APSO approach of 
adapting 𝑐1 and𝑐2 factors to the population state/strategy.   

Algorithm 6: Update by state of acceleration coefficients[60] 
Data: Position and acceleration factors  

Initialization: positions and acceleration factors c1 and c2; 

if state = exploration then Increasing c1 and Decreasing c2 ; 
else if state = exploitation then 

 Increasing c1 and Slightly Decreasing c2 
else if state = jumping out then 

 Increasing Slightly c1 and Increasing c2 
else if state = convergence then 

 Decreasing c1 and Increasing c2 
end if 

Return c1 and c2 

 

The idea behind exploration state is that increasing 𝑐1  and decreasing 𝑐2  can help 
particles explore individually and enhance their own historical best positions, rather 
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than crowd around the current best particle that may be associated with a local 
optimum. 

In exploitation state, the particles are making use of local information and grouping 
toward possible local optimal niches indicated by the historical best position of each 
particle. 

In the convergence state, the swarm seems to find the globally optimal region, and, 
therefore, the influence of 𝑐2  should be emphasized to lead other particles to the 
estimated globally optimal region. On the other hand, the value of 𝑐1  should be 
decreased to let the swarm converge fast. 

In jumping out phase, a large 𝑐2 together with a relatively small 𝑐1 may help to jump 
out of local optimum toward a better optimum. 

 

a.2  HMM adaptation of acceleration factors (HMM-APSO) 

In this paragraph only acceleration coefficients are controlled by HMM state, other 
parameters are static and given by the user at initialization except for the inertia weight, 
it is done as follows to balance the global and local search capabilities: 

w(f) =  
1

1 +  1.5e− 2.6f
∈  [0.4, 0.9]∀ f ∈  [0, 1]                                       (19) 

 

By the HMM-APSO (HMM Adaptive PSO), HMM adaptively controls the variation of 
both (𝑐1, 𝑐2) . The HMM-APSO has been introduced in [97]. In this algorithm, we 
delegate choosing states of PSO iterations to HMM classification. Transitions between 
states is explicated with probability transitions with observations through the 
algorithm simulation. The Baum welch algorithm re-estimates HMM parameters for 
best classification of states. The Viterbi Algorithm is then used for state classification 
of APSO iteration. It is designed to find the most probable sequence of hidden states 
given the sequence of observed states. An elitist learning strategy is performed when 
the evolutionary state is classified as a convergence state to perturb the particle that 
guides the swarm and to enhance the local convergence [60]. According to this 
classified state, the control of the variation of both (𝑐1, 𝑐2) is adapted. The algorithm of 
HMM-APSO is given below:  
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Algorithm 7: HMM-APSO  

Data: The objective function (F) 

Initialization: iteration number t=0, positions 𝑋  velocities 𝑉 , 

acceleration factors (c1,c2), HMM parameters (Π,A, B, S, Y),  observation 

sequence O, state sequence Q, population size N(t); 
while (number of iterations t ≤ tmax  not met) do 

f ← equation.15(𝑋); (Calculate the evolutionary factor) 

w ← equation.19 (𝑓) ;(Update the inertia weight) 

O[t]← 𝑠𝑢𝑏(𝑓) (Update observation sequence) 
O ←  𝑂 ∪ O[t]  
(A, B, Π) ← Baum-Welch(Π,O,A, B, S, Y); (Update HMM parameters) 

(Q[1],... Q[t])←viterbi(Π,O, A,B, S, Y) ; (Classification of PSO state by HMM 
classifier)   

(c1,c2) ← algorithm.6(Q[t]); (Update c1 and c2 values) 
For i = 1 to (N(t)) do 

 Update velocities and positions:  

           - Xi(t)← equation.1(Xi(t-1),Vi(t-1)) ;    

           - Vi(t)← equation.2(Xi(t-1),Vi(t-1)); 

 compute f(Xi ) ; 

 if ( f (Xi) ≤ fbest ) then 

  fbest← f(Xi) ; 

  pbest← Xi ; 

 end 

 if ( f ( pbest ) ≤ fgbest ) then 

  fgbest←fbest ; 

  gbest←Xbest ; 

 end 

 if state = convergence then 

  Elitist learning    ([60]);  

 end 

end  

t ← t + 1 ;  
end 

Return pbest and fbest (the best particle in the population and its 

corresponding fitness) 

 

HMM-APSO performances will be investigated by experimentations to proves the 
HMM classification priority in parameters control. 

In the next section, we will introduce another parameter to be controlled, the 
population size control by HMM state classification.   

 

b. Control of Population Size  

As discussed above, HMM-APSO is influenced by population variation. So, if HMM 
control parameters such as 𝑐1 and 𝑐2 across iterations, it can also be used to control 
the number of particles. More precisely the manner how population changes from 
iteration to another is based on the state that HMM classification defines.   

 

b.1  Population update strategy by state  

As deduced from the first section, smaller population size will increase the probability 
of being trapped in a local optimum. However, added particles result in the rise of 
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computing cost. Therefore, better optimization capability is not necessarily gained 
with population increase. More profit on optimization performances can be acquired 
with a dynamic change and continuous variation like in [17] and [44]. Therefore, our 
primary purpose is to adapt a dynamic variation of population change according to 
the classified HMM state. 

Population size variation is done between two value 𝑁𝑚𝑖𝑛and 𝑁𝑚𝑎𝑥 in T total number 
of iterations.  Population size is changed according to a changing function 𝑁(𝑡), where 
t is the iteration number. We define four functions for varying population size (see F). 

 Linear increase function :  

𝑁𝑎(𝑡) =
(𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)(𝑡 − 𝑇)

𝑇
+ 𝑁𝑚𝑎𝑥                                  (20) 

 

 Linear decrease function :  

𝑁𝑏(𝑡) =
(𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)(𝑇 − 𝑡)

𝑇
+ 𝑁𝑚𝑖𝑛                                    (21) 

 Sine function :  

𝑁𝑐(𝑡) = (𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛).
sin (

t
A)

2
+
𝑁𝑚𝑎𝑥  + 𝑁𝑚𝑖𝑛

2
+ 𝑁𝑚𝑖𝑛                 (22) 

 Sine Attenuation function :  

𝑁𝑑(𝑡) = 𝑁𝑏(𝑡).
sin (

t
A)

3
+
2𝑁𝑏(𝑡)

3
                                                (23) 

These functions are inspired from [17]; A is the amplitude of the sin function. 

After state classification by HMM, a population size adaptation is executed according 
to the given state at each iteration. Then, to each state, a varying population function 
is associated to adapt the variation to the state of particles according to the algorithm 
8 below to resume the use of size function by state: 

Algorithm 8: Population size control 

Data: state, iteration number t, last population size N(t-1); 

Initialization: population size ; 

if state=exploration then population size ← 𝑁𝑐(t) (Equation (22)); 
else if state = exploitation then 

 N(t) ← 𝑁𝑑(t) (Equation (23) ) 
else if state = jumping out then 

 N(t) ← 𝑁𝑎(t) function (Equation (20) ) 
end 

else if state = convergence then 

 N(t) ← 𝑁𝑏(t) (Equation (21) ) 
end 

Return population size N(t) 

  

The following specifications designated in Algorithm 8 by state describes PSO size 
adaptation: 
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 In the exploration state: The Sine function 𝑁𝑐 is adopted to fluctuate the swarm 
periodically; this helps to re-initialize the particles again, which improves the 
swarm diversity for exploration. 

 In the exploitation state: The Sine Attenuation function 𝑁𝑑  is used to also 
fluctuate the swarm periodically but with reducing the number of worst 
particles; this helps to gain more in exploiting capacity. 

 In the jumping out state: The Linear increase function 𝑁𝑎is adopted to increase 
jump capabilities with a random increase of population to be more distributed 
in the search space. 

 In the convergence state: The Linear decrease function 𝑁𝑎is adopted to increase 
convergence capabilities. Worst particles are continuously eliminated without 
any generation to focus the search aptitude on converging.  

 

b.2  Generation and elimination of particles 

As a result of applying the population size control, particles are even eliminated or 
generated according to the value of comparing 𝑁(t − 1) against 𝑁(t).  Elimination and 
generation of particles is not new; it has been presented in [43] where it addresses some 
rules about how to eliminate and how to generate particles inside tribes of particles. In 
our approach, we do not have any notion of separation of particles and we use a global 
topology. Unfortunately, the swarm changes its state according to HMM. Then, a 
strategy for elimination and generation must be done according to this state. In [43], 
the worst particles are eliminated in favor of good tribes. This rule is adopted in any 
case of elimination in this approach. We present how particle generation is done in 
algorithm 9: 

 

Algorithm 9: Generation and elimination strategy 

Data: Population (𝑋, 𝑉), iteration number t; 
Initialization: population and velocities 

if (𝑁(t) > 𝑁(t − 1)) (generation) 
if state = convergence or state = exploitation then; 

   for i=𝑁(t − 1) to 𝑁(t) 
    𝑋𝑖 ← 𝑥𝑔𝐵𝑒𝑠𝑡 (Copy the best particle’s position). 

    𝑉𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (random velocity). 
  end 

else if state = exploration or state = jumping out then 

   for i=𝑁(t − 1) to 𝑁(t) 

 𝑋𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (random position). 

   𝑉𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (random velocity). 
  end 

end 

else if (elimination) 

population ← Quick sort(population) [98] 

population ← the best 𝑁(t) particles. 
end 

Return updated population (𝑋, 𝑉) 
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Particles are ordered according to their fitness value from the worst to the best particle 
using Quick sort algorithm [98]. The population is ordered in a pile of particles and 
the operation of decreasing is done from the worst side of the pile. So, in case of 
population decrease, always the worst particles are eliminated.  

For population increase, we choose between two types of strategies of generation: 
random or duplication are defined. A random one is the easy way as in [43]: according 
to a uniform distribution in the search space with help to explore more regions. 
Contrariwise, the duplication method contributes to gain more in exploitation because 
it increases the density of exploiting particles in a specific region.  

 

b.3  HMM control of Population size (HMM-PPSO) 

To do that, as given by the generic model, transitions between states are represented 
by transitions probabilities and the Viterbi Algorithm is used for state classification of 
APSO iteration. We update the population according to the classified state. The Baum-
welch algorithm updates transition probabilities. We note HMM-PPSO (HMM 
Population control for PSO) as the same HMM control strategy applied only for 
population variation without c1 and c2 adaptation. It has been taken as a static value 
during the run. In addition to HMM classification, the same elitist learning strategy as 
in the previous paragraph is performed when the evolutionary state is classified as a 
convergence state [60]. According to the classified HMM state, the control of the 
variation of the population is adapted to meet the best population size for the search 
stage through iterations. The inertia weight is also updated according to equation 19. 
The complete HMM-PPSO is depicted below (Algorithm 10): 
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 Algorithm 10: HMM-PPSO  

Data: The objective function (F) 

Initialization: iteration number t=0, positions 𝑋, velocities 𝑉, acceleration 

factors ( c1,c2), HMM parameters (Π,A, B, S, Y), observation sequence O, 
state sequence Q, population size N(t); 

while (number of iterations t ≤ tmax not met) do 

w←equation.19 (𝑓) ;(Update the inertia weight) 

O[t]← 𝑠𝑢𝑏(𝑓) (Update observation sequence) O ←  𝑂 ∪ O[t] 

(A, B, Π) ← Baum-Welch(Π,O,A, B, Π, S, Y); (Update HMM parameters) 

(Q[1],... Q[t]) ←viterbi(Π,O, A, B, S, Y) ; (Classification of PSO state  
by HMM classifier)   

(N(t)) ← algorithm.8(Q[t], t, N(t-1)); (Calculate population size) 

(X, V) ← algorithm.9(N(t), X, V, t); (Update population) 

For i = 1 to (N(t)) do 

 Update velocities and positions:  

        - Xi(t)← equation.1(Xi(t-1),Vi(t-1)) ;   

        - Vi(t)← equation.2(Xi(t-1),Vi(t-1)); 

 compute f(Xi ) ; 

 if ( f (Xi ) ≤ fbest ) then 

  fbest← f(Xi) ; 

  pbest← Xi ; 

 end 

 if ( f ( pbest ) ≤ fgbest ) then 

  fgbest←fbest ; 

  gbest←Xbest ; 

 end 

 if state = convergence then 

  Elitist learning [60];  

 end 

end  

t ← t + 1 ;  

end 

Return pbest and fbest (the best particle in the population and its 

corresponding fitness) 

 

c. Control of inertia weight  

The balance between global and local search throughout a run is crucial for the success 
of an optimization algorithm. Inertia weight is a crucial parameter influencing the PSO 
search process. In consequence, according to the state, the inertia weight is controlled. 
In this paragraph, a humble attempt to determine a generalized framework for the 



Chapter I. Parameters setting of homogeneous particle swarm optimization 

59 

 

setting of the inertia weight adaptation and control is depicted and named HMM-
wPSO .  

c.1  Inertia weight control by state 

The following specifications by state describe PSO inertia weight adaptation according 
to the previous HMM classification: 

 In the exploration state: Particles are exploring the search space; random values 
of inertia weight are attributed at each iteration to guarantee more 
diversification in search space sweep. The value of the inertia weight is given 
by the formula : 

𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑()                                       (24) 
Where :  

𝑟𝑎𝑛𝑑() : function that returns random values in the interval [0,1]. 

 In the exploitation state: in this state, inertia weight will vary according to the 
distance between particles to guide the exploitation phase. The same formula 
defined in APSO is used just for exploitation: 

ω(f) =  
1

1 +  1.5e− 2.6f
∈  [0.4, 0.9]∀ f ∈  [0, 1]                               (25) 

 In the jumping out state: a maximum value of w is used to increase jump 
capabilities in the search space: 

𝑤 = 𝑤𝑚𝑎𝑥                                                                           (26) 

 In convergence state: To increase convergence capabilities, only local search 
capabilities are enabled. Then, inertia weight is set to the minimum value :  

𝑤 = 𝑤𝑚𝑖𝑛                                                                          (27)  

Elastic learning as in [60] is also used in the convergence state.  

Algorithm 11 summarizes the adaptation approach of 𝑤. 

Algorithm 11: Adaptive inertia weight control 

Data: Position and inertia weight  

Initialization: positions and weight 𝑤 
if state = exploration then   

 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑(); 
else if state = exploitation then 

 𝑤 = ω(f) =   
1

1 + 1.5e− 2.6f
∈  [0.4, 0.9] ∀ f ∈  [0, 1] 

else if state = jumping out then 

 𝑤 = 𝑤𝑚𝑎𝑥 
else if state = convergence then 

 𝑤 = 𝑤𝑚𝑖𝑛 
end if 

Return 𝑤 

 

c.2  HMM control of inertia (HMM-wPSO )  

 Our HMM-wPSO algorithm of HMM control of inertia weight will be given in 
algorithm 12: 
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Algorithm 12: HMM-wPSO  

Data: The objective function (F) 

Initialization: iteration number t=0, positions 𝑋, velocities  𝑉, inertia 

weight w and HMM parameters (Π,A, B, S, Y), observation sequence O, state 

sequence Q, population size N; 
while (number of iterations t ≤ tmax not met) do 

f ← equation.15(𝑋); (Calculate the evolutionary factor) 

w ← equation.19 (𝑓) ;(Update the inertia weight) 

O[t]← 𝑠𝑢𝑏(𝑓) (Update observation sequence) 

O ← O ∪ O[t]  

(A, B, Π) ← Baum-Welch(Π,O,A, B,S, Y); (Update HMM parameters) 

(Q[1],... Q[t]) ← viterbi(Π,O, A, B, S, Y) ; (Classification of PSO state 
by HMM classifier)   

w ← algorithm.11(Q[t]); (Update w value) 

For i = 1 to N do 

 Update velocities and positions:  

   - Xi(t)← equation.1(Xi(t-1),Vi(t-1)) ;   

          - Vi(t)← equation.2(Xi(t-1),Vi(t-1)); 

 compute f(Xi ) ; 

 if ( f (Xi ) ≤ fbest) then 

  fbest← f(Xi) ; 

  pbest← Xi ; 

 end 

 if ( f ( pbest ) ≤ fgbest ) then 

  fgbest←fbest ; 

  gbest←Xbest ; 

 end 

 if state = convergence then 

  Elitist learning [60];  

 end 

end  

t ← t + 1 ;  

end 

Return pbest and fbest (the best particle in the population and its 

corresponding fitness) 
  

HMM-wPSO gives an online adaptation of inertia w in this pragraph with a machine 
learning technique; that is the HMM classification.  

 

d. Empirical evaluation 

In this part, tests and validations of the proposed adaptive PSO algorithms based on 
HMM for adaptation and parameters control are performed. Experimentations are 
done using several benchmark functions by comparing our generic model of PSO to 
each parameter adaptation with other PSO’s variants from the literature.   

d.1  Parameters setting  

For each of the benchmark functions shown in Table 1, we perform thirty executions, 
and compare each function, the best and the average value.  

The used experimentation machine has i5 processor third generation of 2.5 GHz, with 
4 Gb of RAM and 128 Gb of storage. 
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Table 1 Description of Benchmark functions 

Benchmark functions Name Type 

𝐟 𝟏 = ∑[(𝟏𝟎𝟔)
𝒊−𝟏

𝑫−𝟏⁄  𝒙𝒊
𝟐]

𝐃

𝐢=𝟏

 
Elliptic Unimodal 

𝐟𝟐 = ∑(| 𝐱𝐢 +  𝟎. 𝟓|)
𝟐

𝐃

𝐢=𝟏

 
Step Unimodal  

𝐟𝟑 = ∑𝐱𝐢
𝟐

𝐃

𝐢=𝟏

 
Sphere Unimodal 

𝐟𝟒 =  𝟏𝟎
𝟔 𝐱𝟏

𝟐  +  ∑  𝐱𝐢
𝟐   

𝐃

𝐢=𝟐

  
Tablet Unimodal 

𝐟𝟓 = ∑(∑𝐱𝐢 

𝐃

𝐢=𝟏

  )𝟐
𝐃

𝐢=𝟏

 
Quadric Unimodal 

𝐟𝟔 = ∑[ 𝐱𝐢
𝟐  −  𝟏𝟎 𝐜𝐨𝐬 (𝟐 𝛑 𝐱𝐢)  +  𝟏𝟎]

𝐃

𝐢=𝟏

 
Rastrigrin Multimodal 

𝐟𝟕 = −𝟐𝟎 𝐞𝐱𝐩(−𝟎. 𝟐 √
𝟏

𝐃 
𝐱𝐢
𝟐) 

Ackley Multimodal 

𝐟𝟖 = 
𝟏

𝟒𝟎𝟎𝟎
∑𝐱𝐢

𝟐   − 𝚷 𝐜𝐨𝐬(𝐱𝐢 / √𝐢)  +  𝟏

𝐃

𝐢=𝟏

  
Griewang Multimodal 

𝐟𝟗 = ∑𝐱𝐢 𝐬𝐢𝐧(√𝐱𝐢)

𝐃

𝐢=𝟏

  
Schwefel Multimodal 

𝐟𝟏𝟎 = − 
𝟏 +  𝐜𝐨𝐬(𝟏𝟐 √𝐱𝟏

𝟐 + 𝐱𝟐
𝟐)

𝟏/𝟐 (𝐱𝟏
𝟐  +  𝐱𝟐

𝟐
)  +  𝟐

 
Drop wave Multimodal 

 
These benchmark functions in table 1 contain both unimodal and multimodal 
functions. 

The examination of the proposed approach on homogeneous PSO will be carried out 
in two phases: 

 In the first one, we compare our approach with a number of improved variants 
of PSO chosen for the homogenous case of PSO variants. Table 2 below shows 
these chosen variants related to each approach. That is, SAPSO proposes a self-
adapting approach while LinWPSO consists of varying inertia weight. In 
YSPSO, another parameter has been used which is the constriction factor 
instead of the inertia weight. APSO is an Adaptive PSO with a fuzzy 
classification of states. CLSPSO consists of using another search strategy to 
enhance particles cooperation in PSO. SimPSO consists of using a hybrid 
approach instead of adapting the parameters. RandWPSO is a random inertia 
weight PSO. LinWPSO consists of Linear decreasing weights PSO. RankPSO is 
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an Adaptive Particle rank, and ChaoPSO is a Chaotic Inertia Weight PSO. 
DPPSO is a Dynamic population size based PSO. 

 

Table 2 PSO variants from literature 

Algorithm Name Parameters Setting Reference 

APSO Adaptive PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [60] 

YSPSO PSO with compressibility factor 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [99] 

SELPSO Natural selection based PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9  [100] 

DPPSO Dynamic population size based PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [17] 

LinWPSO Linear decreasing weights PSO  𝜔𝑚𝑖𝑛 = 0.0001,
𝜔𝑚𝑎𝑥
= 0.1 

[101] 

CLSPSO  Cooperative line search PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [102] 

SAPSO Self-adaptive PSO  𝑐1 = 𝑐2 = 2,𝜔𝑚𝑖𝑛 = 0.01, 

𝜔𝑚𝑎𝑥 = 0.9 

[100] 

SecPSO Swarm-core  evolutionary  PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9  [103] 

AsyLnCPSO Asynchrous PSO  𝑐1𝑚𝑖𝑛 = 𝑐2𝑚𝑖𝑛 = 0.01 , 

𝑐1𝑚𝑎𝑥 = 𝑐2𝑚𝑎𝑥 = 2 

[100] 

RandWPSO Random inertia weight PSO 𝑐1 = 𝑐2 = 2,𝜔𝑚𝑖𝑛 = 0.01, 

𝜔𝑚𝑎𝑥 = 0.9 

[101] 

SecVibratPSO Order oscillating PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9  [104] 

SimuAPSO PSO  with  Simulated  Annealing  𝜆 = 0.0001,𝑐1 = 𝑐2 = 2, 

 𝜔 = 0.9 

[103] 

 

 In the second phase, we compare different variant of our approach to analyze 
the effect of each parameter adaptation using our generic adaptation model. In 
HMM-APSO, HMM is used just for adapting the acceleration factors as in [97]. 
In HMM-PPSO, HMM is executed for the control of the population size. In 
HMM-Wpso, the generic adaptive model is applied to the inertia weight 
adaptation.  

 

Concerning the first compared approaches, we have implemented them using Matlab, 
while for the literature variants we have executed their code which is available online 
as benchmark functions.  

Tests are performed 31 times with the same value of the parameters (if the parameter 
value is fixed in the corresponding variant). The used swarm population size is 30 with 
a dimension of 30. Population changes is done between 20 and 50 in the case of 
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population size variation as in HMM-PPSO. Each run contains 1000 generation of the 
optimization process.  

To improve our HMM-based approaches, we compared results obtained for the 
benchmark test functions with best known PSO variants from literature. Performance 
is qualified following the main measured observations: Comparison on the solution 
accuracy, Comparison on the convergence speed and statistical tests. 

The use of parametric two-sided tests named t-test (parametric) is performed on 
obtained results. Using t-test as an inferential statistical evaluation in the experiments 
[105]. Results variance is estimated using the sample execution test sets with Student’s 
t-Test that measures if the difference between two means is statistically significant. 
Given as:  

𝑆2 =
∑ (𝑟𝑖 − �̅�)
𝑁
𝑖=1

𝑁 − 1
                                                               (28) 

 Where N number of executions and 𝑟𝑖 the result execution i. 

We address the two hypothesizes as: 

- Hypothesis H0 is that the compared approach is similar to the other PSO 
variants  

- Hypothesis H1 is that the compared approach is different from the other PSO 
variants. 

We perform this statistical test to investigate the given hypotheses. Tests are done with 
a significance level of 0.05 between the HMM-based approaches and different 
compared approaches of PSO variants. (More detailed explanation of this approach is 
given in [60]. For very little P-values (P-value<e-06), it takes 0 as value. Statistical tests 
are executed with the statistical toolbox of Matlab. Tables will display the P-values of 
each compared variant with additional Rows: 1 (Better), 0 (Same) and −1 (Worse), to 
give the number of functions that is compared to the proposed approach, performs 
significantly (respectively) better than, almost the same as, and significantly worse 
than the compared algorithm.  

 

d.2  Examination of HMM-wPSO with other PSO variants 

We perform several runs on the HMM-wPSO and others PSO variants earlier 
described. 

 solution accuracy  

Best and the average value resulted from experimentations are given in table 3 below: 
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Table 3 Results comparisons with other variants of PSO 

Functions HMM-
wPSO  

PSO APSO ChaoPSO RandWPSO RankPSO SAPSO LinWPSO 

𝒇𝟏 Best 35.0045 17556.61 3314.52 744382.6 291814.4 85957.88 36451.55 10694.93 

Mean 271.66 71920.9 12697.63 1741984 576666 192511 188337 51398 

𝒇𝟐 Best 0 0 0 4.55e-27 0 0 0 0 

Mean 0 0 0 1.56e-06 1.22e-07 0 0 0 

𝒇𝟑 Best 0.0177 15.3432 0.83768 53.9977 29.3347 14.6594 21.771 17.0416 

Mean 0.0569 26.1594 2.2923 81.7409 41.9482 32.5917 29.0454 21.8367 

𝒇𝟒 Best 0.0327 36.3069 1.0421 117.1186 70.319 28.4467 34.7361 26.7697 

Mean 0.161 48.9845 2.682 221.7902 132.559 68.6518 56.6107 42.4692 

𝒇𝟓 Best 13835 1459678 281462 132e+06 113e+06 115e+04 828e+04 173e+04 

Mean 56158 103e+05 915e+03 575e+06 265e+06 364e+05 225e+05 102e+05 

𝒇𝟔 Best 7.1343 136.7593 28.955 282.7734 253.1783 140.6755 169.8982 120.695 

Mean 12.3368 190.6136 62.0158 333.6893 290.8753 228.0515 207.5413 189.3113 

𝒇𝟕 Best 0.022324 3.4004 1.7784 5.3846 4.7509 4.1292 4.341 4.1626 

Mean 0.37133 4.3781 2.453 6.4555 5.219 5.221 5.1512 4.6914 

𝒇𝟖 Best 6.51e-05 0.075818 0.016021 0.41017 0.14908 0.1714 0.064283 0.043456 

Mean 0.0147 0.13982 0.030788 0.5108 0.3844 0.20155 0.17696 0.11427 

𝒇𝟗 Best 14.5948 17.6234 52.4179 51.5312 72.3369 33.3361 21.5786 11.9212 

Mean 25.8097 26.7725 71.5969 155.0976 138.019 47.0875 36.5762 22.14 

𝒇𝟏𝟎 Best -1 -1 -1 -0.99946 -0.99999 -1 -1 -1 

Mean -0.98725 -0.99362 -0.96812 -0.94191 -0.96172 -0.96812 -0.98087 -1 

 

The proposed approach gives, in most cases, better results than the majority of state of 
the art. The solution accuracy is enhanced for both unimodal (Elliptic, Step, Sphere, 
Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, Griewang, Schwefel, 
Drop wave). For Elliptic function, the HMM-wPSO gives more accuracy in the order 
of 103 compared to the other inertia weight variation strategies of PSO variants. For 
Step function, this function is simple; the HMM-wPSO has obtained the best solution 
0 as almost all the other variants. For Sphere function, the HMM-wPSO gives more 
accuracy in the order of 102 compared to the other inertia weight variation strategies 
of PSO variants. For Tablet function, the HMM-wPSO gives more accuracy in the order 
of 102 compared to the other inertia weight variation strategies of PSO variants. For 
Quadric function, the HMM-wPSO gives more accuracy in the order of 103 compared 
to the other similar PSO variants. For Ackley function, the HMM-wPSO gives more 
accuracy in the order of 10 compared to the other inertia weight variation strategies of 
PSO variants. For Rastrigrin function, the HMM-wPSO gives also enhanced accuracy 
results in order of 10 compared to the other inertia weight variation strategies of PSO 
variants. For Schwefel function, the HMM-wPSO has a little improvement of accuracy 
compared to the other chosen PSO variants. For Drop wave function, the HMM-wPSO 
provides similar solution results compared to the other inertia weight variation 
strategies of PSO variants. Indeed, results presented in bold, it exceeds the majority of 
other PSO variants. HMM-wPSO has improved good performances in terms of 
solution accuracy.  
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 convergence speed  

Convergence speed of HMM-wPSO is shown in the following figures (Figure 13): 

 

(a)                                                                             (b) 

 

(c)                                                                             (d) 

 

(e)                                                                             (f)  
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(g)                                                                             (h) 

 
(i)                                                                             (j) 

Figure 14 Comparison on convergence speed on fitness functions (a) 𝒇𝟏. (b) 𝒇𝟐. (c) 𝒇𝟑. (d) 𝒇𝟒. (e) 𝒇𝟓. (f) 𝒇𝟔. (g) 𝒇𝟕. (h) 

𝒇𝟖. (i) 𝒇𝟗. (j) 𝒇𝟏𝟎  

For unimodal functions, HMM-wPSO quickly gives the best solution even before 50 
iterations in Elliptic, step and Quadric functions. And before 400 in sphere and tablet. 

For other more complex multimodal functions, the line showing the convergence of 
HMM-wPSO appears largely under all other PSO variants, which shows the 
superiority against the others. This is easily distinguished in Rastrigin, Ackley and 
Griewang. HMM-wPSO quickly gives the best solution even before 20 iterations in  
Dropwave, and slightly better convergence in Schwefel. 

In general, the black line of figure 14 has more convergence speed than other lines. For 
all functions, the HMM-wPSO speeds up the optimization across iterations. Then, for 
the convergence speed, HMM-wPSO shows its supremacy. We can consider that the 
adaptiveness of inertia weight with HMM control gives a huge positive impact on the 
convergence speed better than other inertia weight control PSO variants from 
literature. 

  statistical tests  

To prove the performances of our approach, we use a parametric two-sided test named 
t-test (parametric), it is performed on obtained results. Tests are done with a 
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significance level of 0.05 between the HMM-wPSO and different compared inertia 
weight approaches of PSO variants.   

Table 4 T-test comparison 

Functions PSO APSO ChaoPSO RandWPSO  RankPSO SAPSO LinWPSO 

𝒇𝟏 0 0 0 0 0 0 0 

𝒇𝟐 0.5560 0.1769 0 0.0734 0.1769 0.6278 0.1510 

𝒇𝟑 0 0 0 0 0 0 0 

𝒇𝟒 0 0.0093 0 0 0 0 0 

𝒇𝟓 0 0 0.0013 0 0.0103 0 0.0158 

𝒇𝟔 0 0 0 0 0 0 0 

𝒇𝟕 0.8127 0 0 0 0 0.0389 0.3040 

𝒇𝟖 0 0 0 0 0 0 0 

𝒇𝟗 1 1  0.3275  0.3305 1 1 1 

𝒇𝟏𝟎 0 0 0 0 0 0 0 

+1 (better) 17 18 19 18 18 17 18 

0 (same) 3 2 1 2 2 3 2 

-1 (worse) 0 0 0 0 0 0 0 

 

We display in table 4 of P-values on every function of statistical tests with a 
significance level of 0.05. Rows “1 (Better),” “0 (Same),” and “−1 (Worse)” give the 
number of functions that the HMM-wPSO performs significantly better than, almost 
the same as, and significantly worse than other algorithms. 

Executing statistical inferred t-test on the thirty executions, clearly, the HMM-wPSO 
outperforms the other algorithms and gives a competitive upgrade in PSO 
performances. In general, in approximatively 90% of results, HMM-wPSO is better and 
in 10% is similar in the case of simple functions like the Step function. So, inertia 
adaptation using HMM is confirmed to be a good approach.  

The approach of adapting inertia weight based on HMM gives much better statistical 
results than most of PSO related variants. The reason may lie in the fact that HMM can 
give a more robust and authentic estimation of the four states at each iteration by 
benefiting from the complete historical information based on the observed 
evolutionary factor through iterations. Also, it combines different dynamic variation 
strategies according to each search state. 

 

d.3 Examination of HMM-PPSO with other PSO variants 

In order to further evaluate our approach HMM-PPSO, we compare with some related 
well-known variants of PSO in the literature as defined in the parameters setting 
paragraph. 
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 solution accuracy  

Table 5 below shows the comparison of results between these algorithms. 

Table 5 Comparison of results 

Functions CLS-
PSO      

YSPSO PSO SAPSO SimPSO DPPSO APSO HMM-PPSO 

𝒇𝟏 

 

Best 85567 646.982 17556.61 3899.11 76023 331.4682 377.5448 28.5207 

Mean 627396 2676.93 71920.96 15669.79 295411 877.7602 1038.920 132.2178 

𝒇𝟐 

 

Best 0 0 0 0 8.78e-05 1.04e-11 0 0 

Mean 1.1e-05 0 0 0 0.052643 7.12e-07 0 0 

𝒇𝟑 

 

Best 71.6543 7.3068 15.3432 13.159 108.7304 3.297 0.48545 0.010322 

Mean 225.9075 14.448 26.1594 29.648 186.9263 5.3647 2.4973 0.054323 

𝒇𝟒 

 

Best 202.1904 22.0672 36.3069 19.0642 283.6052 13.4607 1.1408 0.007489 

Mean 402.8212 41.8765 48.9845 84.6 494.3694 24.2636 4.2255 0.047697 

𝒇𝟓 Best 205e+6 1705011 1459678 280e+5 4510e+5 160e+05 87133.58 458.8865 

Mean 707e+6 6950767 103e+05 940e+5 146e+7 484e+05 893462.6 7585.629 

𝒇𝟔 

 

Best 371.2168 109.964 136.7593 184.9184 328.9158 182.9232 37.3897 7.2419 

Mean 535.107 182.184 190.6136 246.1648 473.3492 234.3271 57.3572 15.3853 

𝒇𝟕 Best 7.3411 3.659 3.4004 4.2541 7.0977 2.3791 1.4562 0.016588 

Mean 9.4979 4.4661 4.3781 5.5108 9.0712 2.8154 2.2541 0.4568 

𝒇𝟖 Best 0.38083 0.07117 0.075818 0.11752 0.50343 0.026 0.00595 4.51e-05 

Mean 0.75682 0.16698 0.13982 0.34062 0.91885 0.10926 0.026352 0.016116 

𝒇𝟗 

 

Best 158.36 15.5126 17.6234 38.2425 162.8896 26.1634 33.239 6.5624 

Mean 405.2457 24.7067 26.7725 66.7705 456.2188 46.7503 56.3267 16.5693 

𝒇𝟏𝟎 Best -1 -1 -1 -1 -0.93624 -0.99988 -1 -1 

Mean -0.94403 -0.98972 -0.99362 -0.96092 -0.79288 -0.99474 -0.9856 -0.97326 

 

However, those results improve the HMM classification methodology with adaptive 
size. The solution accuracy is enhanced for both unimodal (Elliptic, Step, Sphere, 
Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, Griewang, Schwefel, 
Drop wave). For unimodal functions, the HMM-PPSO gives more accuracy in a 
varying order that can be remarkable especially in the Quadric function, where HMM-
PPSO gives a better solution accuracy at an order of 103 . The results of the Step 
function are similar due to its simplicity to find the best solution. On the other hand, 
the multimodal functions show more enhanced solution accuracy in the order of 102 
for the Griewang function, and relatively better solution in Rastrigrin, Ackley, and 
Schwefel. For the Drop wave, results are similar. Therefore, HMM coupled with size 
adaptation gives more improved state adaptation to the PSO algorithm. 
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 convergence speed  

To illustrate the difference between these algorithms in terms of convergence, we 
display in Figure 15 below the evolution of the results during the optimization process 
of each one of these algorithms by each fitness function.  

 

(a)                                                                                                        (b)  

(c)                                                                                                        (d)  

(e)                                                                                                        (f) 
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(g)                                                                                                        (h)  

Figure 15 Performance comparison with different functions (a) 𝒇𝟑. (b) 𝒇𝟒. (c) 𝒇𝟓. (d) 𝒇𝟔. (e) 𝒇𝟕. (f) 𝒇𝟖. (g) 𝒇𝟗. (h) 𝒇𝟏𝟎  

When we interest on the convergence rate for unimodal and multimodal functions, 
HMM-PPSO gives the best solution. However, the solution is not obtainable is a 
relatively good speed. It converges before 400 iterations in Elliptic, Step and Griewang. 
It converges before 200 in Quadric and Dropwave functions. As regards the Rastrigin, 
Schwefel and Ackley, the convergence line of HMM-PPSO shows that the HMM-PPSO 
remains seeking and improving the solution almost in all iterations.  

Thus, it can be noticed that the HMM adaptation improve the convergence visibly, so 
HMM-PPSO has a faster convergence rate than other shown PSO variants.  

 

 statistical tests  

For further comparison of the algorithms, we have considered the parametric two-
sided test, which is the t-test (parametric). A significance level of 0.05 is considered 
between the HMM-PPSO and different compared PSO variants. (The sample is 
superior to thirty [106]).  
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Table 6 Statistical tests 

Functions HMM-
APSO 

HMM-
PPSO 

APSO DPPSO CLSPSO YSPSO SAPSO  LinWPSO SimPSO 

𝒇𝟏  0.2975 0.9019 0 0 0 0.0072 0 0 0 

𝒇𝟐  0.1700  0.9635 0 0 0 0 0 0 0 

𝒇𝟑   0.7713 0.1855 0.7713 0.0468 0.0024  0.3575 0.0043 0.0095 0 

𝒇𝟒  0.6962 0.8364 0 0 0 0 0 0 0 

𝒇𝟓  0 0.7960 0 0 0 0 0 0 0 

𝒇𝟔  0.309 0.7545 0.0193 0 0 0 0 0 0 

𝒇𝟕  0.9211 0.3420 0 0 0 0 0 0 0 

𝒇𝟖  0 0.2063 0 0 0 0 0 0 0 

𝒇𝟗  0 0.8163 0.1027 0.011 0 0 0 0 0 

𝒇𝟏𝟎  0.6246 0.5986 0 0 0 0 0 0 0 

+1 (better) 3 0 8 10 9 9 9 9 10 

0 (same) 7 10 2 0 1 1 1 1 0 

-1 (worse) 1 0 0 0 0 0 0 0 0 

 

Compared with the other algorithms, when performing the statistical inferred t-test on 
the thirty executions, visibly the HMM-PPSO outperforms the other algorithms and 
gives a good upgrade in PSO performances.  In overall, and at approximatively 80% 
of the results, HMM-PPSO is better in 20% of results and is similar in the case of some 
simple functions like the Step function. So, population adaptation using HMM is also 
confirmed to be a good approach. It can be seen that HMM-PPSO outperforms the 
other algorithms in terms of the t-test test results. 

 

d.4 Examination of  HMM-APSO with other PSO variants 

To improve our HMM-APSO approach, we compared results obtained for the 
benchmark test functions with best known PSO of the literature. 

 

 solution accuracy  

In order to further evaluate our approach, we compare HMM-APSO with well-known 
variants of PSO in the literature. For every benchmark function, ten executions are 
performed for all variants of PSO. The table below shows the results of the simulations. 
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Table 7 Results comparisons with the variants of PSO 

Functions APSO SimuA-
PSO 

Sec-
PSO 

Rand
WPSO 

YSPS
O 

SelPS
O 

SecVi
bratPS
O 

SAPSO LinW
PSO 

AsyLn
CPSO 

HMM-
APSO 

𝒇𝟏 Best 49 115719 4689 9843 1420 16382 275 5095 7067 3765 44 

Mean 150 288102 10930 33384 2726 27998 32132 14850 20280 11045 172 

𝒇𝟐 Best 0 5.8e-06 1.9e-31 2.1e-12 0 8.6e-10 7.3e-10 0 0 0 0 

Mean 0 0.04 9.8e-12 3.6e-05 0 1.8e-05 0.03 0 0 3.1e-30 0 

𝒇𝟑 Best 0.01 93.19 20.58 37.7 6.77 36.01 0.8 18.20 17.66 22.89 4.6e-3 

Mean 0.05 188.56 38.79 64.09 13.77 63.59 71.05 31.96 40.53 34.58  0.04 

𝒇𝟒 Best 0.02 251.36 71.4 110.48 23.72 30.47 17.42 37.21 51.24 21.73  0.02 

Mean 0.05 396.21 110.48 246.78 42.31 77.51 199.04 84.79 95.74 44.32 0.07 

𝒇𝟓 Best 16435 587e+6 421e+5 102e+6 127e+4 839e+5 107e+6 459e+5 165e+5 131e+5 7644 

Mean 67851 210e+7 978e+5 434e+6 843e+4 210e+6 562e+6 166e+6 155e+6 384e+5 49205 

𝒇𝟔 Best 8.24 358.22 208.54 293.88 142.44 285.16 221.93 165.66 170.64 193.83 4.31 

Mean 16.14 462.02 262.89 322.35 175.84 315.60 344.76 273.31 261.77 291.54 12.41 

𝒇𝟕 Best 0.03 6.9436 4.8963 5.403 3.1785 5.665 1.2753 3.8279 4.7261 5.8372 0.03 

Mean 0.31 8.6336 5.2716 6.5613 4.2219 6.1951 4.4528 5.2531 5.6829 6.8189  0.33 

𝒇𝟖 Best 7.50e-5 0.52 0.15 0.25 0.05 0.27 0.05 0.13 0.14 0.08 1.1e-5 

Mean 0.01 0.87 0.25 0.45 0.12 0.41 0.42 0.25 0.31 0.23 0.07 

𝒇𝟗 Best -118.35 -7.2+47 -4+158 - -3+34 -1e+30 - -1+231 -1e+22 -3e+47 -118.35 

Mean -118.34 -1e+47 -9e+15 - -3e+33 - - -1e+230 -1e+21 -3e+46 -118.34 

𝒇𝟏𝟎 Best -1 -0.92 -1 -0.94 -1 -0.99 -0.93 -1 -1 -1 -1 

Mean -1 -0.74 -0.96 -0.93 -0.98 -0.95 -0.82 -0.97 -0.96 -0.98 -1 

 

The Results obtained from the mean of all executions show that for almost all the 
benchmark functions, HMM-APSO gives the best results when comparing to the other 
PSO variants from the literature. The solution accuracy is improved for both unimodal 
(Elliptic, Step, Sphere, Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, 
Griewang, Schwefel, Drop wave). For  the Step, Sphere and Drop wave functions 
HMM-APSO is slightly the best and outperforms with a little difference. The more 
noticeable improvements of solution accuracy can be found in an order attaining more 
than 102 of best accuracy; it is obtained in Quadric and Sphere functions. For the other 
function, the results from HMM-APSO are better than that the compared PSO variants, 
and slightly better than the APSO. In general, HMM-APSO gives good accuracy. 

 

 convergence speed  

HMM-APSO is compared to other PSO variants in terms of convergence speed. Figure 
16 shows the drown convergences lines across iterations:   
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Figure 16 Comparison on Benchmark functions. (a) 𝒇𝟕. (b) 𝒇𝟏𝟎. (c) 𝒇𝟏. (d) 𝒇𝟖. (e) 𝒇𝟓. (f) 𝒇𝟔. 

To illustrate the difference between the chosen PSO variants and the proposed 
approach in terms of convergence, we display in figure 16 the evolution of the results 
during the optimization process of each one of these algorithms by each fitness 
function. Considering the convergence rate, we can notice that the HMM adaptation 
of acceleration coefficients improve the convergence visibly. HMM-APSO quickly 
gives the best solution even before 50 iterations in Drop wave and Quadric functions. 
And before 400 in Elliptic function. The convergence is improved in the Ackley and 
Rasrtigin functions where their convergence lines continue to show an improved 
solution during approximatively all the run time. Thus, we can notice from Figure 16, 
that HMM-APSO has a faster convergence rate than other PSO variants 
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 Statistical tests  

The statistical tests comparison is drawn in the following table 8:  

Table 8 Statistical tests 

Functions APSO DPPSO CLSPSO YSPSO SAPSO  LinWPSO SimPSO 

𝒇𝟏  0 0 0 0.0072 0 0 0 

𝒇𝟐  0 0 0 0 0 0 0 

𝒇𝟑  0.7713 0.0468 0.0024  0.3575 0.0043 0.0095 0 

𝒇𝟒  0 0 0 0 0 0 0 

𝒇𝟓  0 0 0 0 0 0 0 

𝒇𝟔  0.0193 0 0 0 0 0 0 

𝒇𝟕  0 0 0 0 0 0 0 

𝒇𝟖  0 0 0 0 0 0 0 

𝒇𝟗  0.1027 0.011 0 0 0 0 0 

𝒇𝟏𝟎  0 0 0 0 0 0 0 

+1 (better) 18 20 19 19 19 19 20 

0 (same) 2 0 1 1 1 1 0 

-1 (worse) 0 0 0 0 0 0 0 

 

For further comparison of the PSO variants against the HMM-APSO approach, we 
have considered a statistical test that is the t-test with a significance level of 0.05 as 
shown in the parameters setting of the paragraph above. Visibly, the HMM-APSO 
overcomes the other algorithms and leads to a competitive enhancing in PSO 
performances. In the totality, in just around 90% of the results, HMM-APSO is better 
and in 10% is similar in the case of simple functions like the Step function. So, 
acceleration coefficients adaptation using HMM is statistically giving better results 
than the compared state of arts.  

 

d.5 Comparison of the HMM-based approaches 

In this part, we compare all HMM-based approaches for different PSO parameter 
control and adaptation namely: HMM-wPSO, HMM-APSO, and HMM-PPSO. The 
online version of the generic model is tested for adapting acceleration coefficient called 
Online-HMM-APSO. Another variant called HMM-PSO is added to this comparison 
that merges the three approaches in one. HMM-PSO is using the generic adaptation 
model to control: inertia weight, acceleration coefficients, and population size. The 
empirical study of HMM derivate approaches will be like the previous paragraph 
according to the three aspects: solution accuracy, Comparison on the convergence 
speed and statistical tests. 
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  Comparison on solution accuracy  

Table 9 below shows the solution accuracy comparison of the proposed HMM-based 
approaches of PSO related to each parameter control:  

Table 9 Results comparison 

Function HMM-
APSO 

Online-
HMM-
APSO 

HMM-
PPSO 

HMM-
wPSO  

HMM-
PSO 

𝒇𝟏 Best 89 44 28.5207 35.0045 16.647 

 Mean 145 172 132.2178 271.66 116.24 

𝒇𝟐 Best 0 0 0 0 0 

 Mean 0 0 0 0 0 

𝒇𝟑 Best 0.02 4.6e-3 0.010322 0.0177 0.013 

 Mean 0.09  0.04 0.054323 0.0569 0.0484 

𝒇𝟒 Best 0.03  0.02 0.007489 0.0327 0.0096 

 Mean 0.26 0.07 0.047697 0.161 0.0554 

𝒇𝟓 Best 6622 7644 458.8865 13835 425.11 

 Mean 51085 49205 7585.629 56158 5215.029 

𝒇𝟔 Best 4.89 4.31 7.2419 7.1343 6.2499 

 Mean 12.29 12.41 15.3853 12.3368 15.3697 

𝒇𝟕 Best 0.05 0.03 0.016588 0.022324 0.051531 

 Mean 0.29  0.33 0.4568 0.37133 0.46979 

𝒇𝟖 Best 1.32e-4 1.1e-5 4.51e-05 6.51e-05 4.20e-05 

 Mean 5.24e-3 0.07 0.016116 0.0147 0.00712 

𝒇𝟗 Best -118.35 -118.35 6.5624 14.5948 6.645 

 Mean -117.97 -118.34 16.5693 25.8097 14.8617 

𝒇𝟏𝟎 Best -1 -1 -1 -1 -1 

 Mean -0.97 -1 -0.97326 -0.98725 -0.9851 

 

Concerning the solution accuracy, it has been more enhanced when controlling all 
parameters in HMM-PSO. Thus, the HMM-PSO has improved visibly the solution 
accuracy for the Elliptic, Tablet, Quadric and Schwefel functions. The improvement is 
at the order of 10 at maximum. For the other functions, the results are the same or 
slightly different. Results are normally the case of simple functions as Step and 
Dropwave. The online learning version gives approximatively the same results as the 
batch learning. The one difference is in the CPU time, which is a little improved. When 
classing the results of HMM approaches applied to the PSO parameters control, the 
HMM-PSO which control all parameters is the best, then the HMM-PPSO which 
controls the population size, then the HMM-APSO which controls the acceleration 
coefficients, then finally with little difference the HMM-wPSO, which adapts the 
inertia weight.   
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 Comparison on convergence speed  

We compare HMM proposed approaches based on convergence speed. 

 
(a)                                                                                     (b) 

 
(c)                                                                                     (d) 

 
(e)                                                                                     (f) 
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(g)                                                                                     (h) 

 
(i)                                                                                     (g) 

Figure 17 HMM based approaches comparison of convergence speed (a) 𝒇𝟏. (b) 𝒇𝟐. (c) 𝒇𝟑. (d) 𝒇𝟒. (e) 𝒇𝟓. (f) 𝒇𝟔. (g) 𝒇𝟕. 

(h) 𝒇𝟖. (i) 𝒇𝟗. (j) 𝒇𝟏𝟎 

We can observe that the convergence speed in figure 17 is almost the same for all 
HMM-based approaches, with a little improvement for the HMM-PSO (line in black). 
When controlling one of the PSO parameters adequately and adaptively, the 
convergence speed will be enhanced due to the sensitivity of PSO convergence to each 
of its parameters. HMM-PSO gives best results normally due to the adaptively of all 
chosen PSO parameters.  

 

 Statistical tests 

The hypothesis H0 is that the HMM-PSO is similar to other HMM approaches and we 
perform a statistical test to investigate this assertion. 
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Table 10 Statistical tests 

Function HMM-wPSO HMM-PPSO HMM-
APSO  

𝒇𝟏 1.2697e-04 0.9184 3.5433e-08 

𝒇𝟐 1 1 1 

𝒇𝟑 0.4995 0.5243 0.6900 

𝒇𝟒 3.2375e-04 0.8690 0.0720 

𝒇𝟓 0 0.9230 0 

𝒇𝟔 0.1338 0.6056 0.1906 

𝒇𝟕 0.3172 0.8988 0.1017 

𝒇𝟖 0.0122 1.7391e-04 0.0175 

𝒇𝟗 2.12e-04 0.1045 4.0143e-05 

𝒇𝟏𝟎 0.8323 0.8261 0.9454 

+1 (better) 5 1 3 

0 (same) 5 9 6 

-1 (worse) 0 0 1 

 

According to statistical tests, and in general, the HMM-PSO is better with a little 
relative enhancement regarding other HMM variants. HMM approaches wok better 
when adapting all parameters together. When classifying the PSO based HMM 
approaches according to their statistical test, the better one will be the HMM-PSO that 
controls all parameters, then the HMM-wPSO with control the inertia weight, then the 
HMM-APSO which controls the acceleration coefficients, and lastly with a little 
difference the HMM-PPSO that controls the population size. However, any parameter 
adaptation with HMM gives a good result, which is almost similar to the approach of 
enhancing all parameters together. This outcomes from the influence of each of the 
three chosen parameters control (population size, inertia weight and acceleration 
coefficients) to modify and improve PSO search capabilities when it is well adapted 
with the PSO state.  

 

5. CONCLUSION  

 

In this chapter, we have integrated the Hidden Markov Model in PSO to learn and 
predict the most probable state to control PSO parameters at each iteration. This looks 
advantageous from the view that HMM is a robust stochastic classification tool that 
takes into account past information about the population to control and adapt the PSO 
parameters. The proposed meta-model based HMM has been used in this chapter in 
both online and offline parameters setting of the PSO algorithm.  
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In the offline adaptation or also called PSO tuning, we have proposed a novel approach 
which uses hidden Markov model to estimate the most likely state of the parameter 
values of any metaheuristic algorithm as the PSO algorithm. The proposed tuned PSO 
using HMM is a problem dependent. Its application will be done in chapter 5 for the 
airline scheduling problem (crew scheduling).  

On the other hand, a meta-model of online parameters setting of PSO has been 
proposed in this chapter for homogeneous PSO. The adaptation scheme based HMM 
has been applied to the three chosen key parameters of PSO that are: the acceleration 
coefficients, the inertia weight, and the population size. Then, all those parameters 
have been controlled in one algorithm called HMM-PSO. The integrated Hidden 
Markov Model in PSO is used to learn and predict the most probable state to control 
each of the PSO parameters. This approach looks advantageous from the view that 
HMM is a robust stochastic classification tool that takes into account past information 
about the population to control and adapt the PSO parameters. 

All PSO based HMM proposed variants have been evaluated and compared to the 
state art of the literature. The results were promising, and the proposed approach gives 
better results than the state of the art of other PSO variants regarding both solution 
accuracy and convergence speed. Those results were also demonstrated by advanced 
statistical tests which show the priority of HMM control in PSO. The results show also 
that PSO is sensitive to its parameters, and gains more enhancements when they are 
controlled adequately as in this approach. 

The CPU time is influenced negatively in this proposed appsroach despite the gain in 
PSO convergence. This is normally due to the additive computation time used by the 
machine learning integration in PSO.   

In this chapter, the PSO is assumed to be homogeneous, and all particles parameters 
are controlled in the same way at each iteration. The next chapter will give to particles 
different search behaviors in the same iteration such as the self-adaptation and the 
multi-swarm design. 

Future research should attempt to apply our approach to other metaheuristics based 
population to benefit from the advantages of HMM state classification in parameters 
control. Also, the proposed approach needs to be applied to real complex optimization 
problems. An extension of this method to heterogeneous PSO is provided in the next 
chapter. 
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CHAPTER II:                                         
ONLINE PARAMETERS CONTROL OF 

HETEROGENEOUS PARTICLE SWARM 

OPTIMIZATION 

 

Parameters control of PSO can also be done in the context of a heterogeneous swarm, 
where the particles can adopt multiple behaviors during the same run of the PSO. 
Regarding heterogamous particle swarm optimization (PSO), we will make use of the 
earlier approach presented in the first chapter, to design a multi-agent behavior of 
particles as a means to enhance the diversity of the algorithm or to achieve a trade-off 
between exploration and exploitation. A commonly used heterogeneous form of PSO 
is based on the idea of considering multi-swarms (multi-populations). It consists of 
dividing the whole search space into local subspaces, each of which might cover one 
or a small number of local optima, and then separately searches within these subspaces. 
Another way to define multi-agent in PSO is to assign different roles to particles. Thus, 
different particles can play different roles, and each one of these particles can play 
different roles during the search processes. A challenging task within this PSO variant 
is how each particle has to decide which role it will assume. In this chapter, we 
investigate the integration of the generic model to a different type of heterogeneities, 
which can be attributed to particle swarms. 
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1. IMPROVED PSO VARIANTS FROM LITERATURE 

 

In heterogeneous PSO [107], particles are allowed to take on different search behaviors. 
So, their parameters are not necessary properties of the swarm as a whole in the 
standard PSO, instantiating them at the individual level, therefore producing 
heterogeneity. We call a particle swarm heterogeneous if it has at least two particles 
that differ in any of the attributes mentioned above. Hence, at the individual level, we 
refer to a particular instantiation of these components, a particle’s configuration. 
According to the nature of the distinctions between particles’ configurations, several 
sorts of heterogeneity can be identified from the literature. 

 We can see that this variant of PSO enhancement method has been presented in the 
literature as a specific and separate algorithm known by multi-swarm optimization 
[108]. In the proposed variant, the authors have been inspired by the quantum model 
of atoms to define the quantum swarm. Also, another grouping approach has been 
suggested by [109].  

Furthermore, the population has been divided into two swarms in order to introduce 
the divide and conquer concept using genetic operators. Another automation 
approach which can be used inside PSO is cellular automata (CA). CA can be considered 
as an arrangement of FSM. It can be used for instance to split the population of particles 
into different groups across cells of cellular automata. Reference [110] has integrated it 
in the velocity update to modify the trajectories of particles.  

Also, [43] uses the notion of tribes to adapt PSO parameters including also the 
adaptation of tribes size by adding and removing particles. 

Furthermore, [43] proposed the TRIBES, an adaptive variant of PSO which consists of 
changing the particles’ behaviors as well as the topology of the swarm depending on 
the performance of the algorithm. 

Moreover, [111] defined a cooperative approach to PSO based on dividing the 
population into four sub-swarms according to the four states. Furthermore, van den 
Bergh and Engelbrecht [30] used the concept of cooperative learning which consists of 
using multiple swarms to optimize the various components of the solution vector 
cooperatively. This idea is similar to the multi-agent approach which consists of 
dividing the particles into agents. Also, this type of control is related to the concept of 
cooperative swarms, which have been introduced by [30]. This principle has been 
achieved in their paper by using multiple swarms to optimize different components 
of the solution vector cooperatively. This idea is similar to the multi-agent approach 
which consists of dividing the particles into agents. 

This issue can also be treated by clustering approaches as proposed by [112]. Their 
approach consists of assigning particles to different promising sub-regions basing on 
a hierarchical clustering method, where, at each iteration, particles are grouped into 
classes (named clusters), and the particles of each class have a specific role in the 
swarm (as in the multi-agent systems).  
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We can see from the literature that many papers have inspired from some approaches 
used in multi-agent systems to define the automated cooperative approach. An 
example of using the multi-agent concept in PSO can be found in [113], also in [49]. 
That is, incremental social learning which is often used to improve the scalability of 
systems composed of multiple learning agents has been used to improve the 
performance of PSO. Furthermore, [114] proposed a multi-agent approach which 
combines simulated annealing (SA) and PSO. We can remark that their idea is related 
to the generic notion of hyper-heuristics which consists of finding the most suitable 
configuration of heuristic algorithms. Reference [115] has cited the may feature 
obtained by using agents in configuring metaheuristics which are distributed 
execution, remote execution, cooperation, and autonomy. The using of multi-agent 
concepts can be useful to self-organize particles in PSO using simple rules as defined by 
[116]. Their main idea was to define six states, which are cohesion, alignment, 
separation, seeking, clearance, and avoidance.  

In terms of the multi-swarm design of PSO, [117] provided a multi-swarm and multi-
best for the particle swarm optimization algorithm. They randomly split particles into 
multi populations. This algorithm updates velocities and positions of particles using 
multi-gbest and multi-pbest rather than single gbest and pbest. [118] proposed a novel 
variant known as Center PSO; it makes use of an extra particle as a center particle that 
controls the search direction of the entire swarm. Also, [119] built a Multi-swarm 
cooperative particle swarm optimizer based on a master-slave model; the slave 
swarms perform as a single PSO while the master swarm iterates depending on its 
knowledge as well the knowledge of the slave swarms.  

This issue (the interaction between swarm intelligence and multi-agent systems) has 
been given much attention in the last few years in particular by the popularization of 
the swarm robotic field. In particular, [120] affirmed the concept of swarm appears 
nowadays closely associated with intelligent systems in order to carry out useful tasks. 
The author also analyzed qualitatively the impact of automation concepts to define 
intelligent swarms. Moreover, [121] have outlined the main characteristics of swarm 
robotics and analyzed the collective behavior of individuals in some fields. They 
affirmed that finite state machines are one of the most used adequate approaches to 
model this behavior. Another commonly used approach for this purpose is 
reinforcement learning. 

 

2. PARAMETER CONTROL OF HETEROGENEOUS PSO 

  

Concerning heterogamous particle swarm optimization (PSO), attempts have been 
made to formalize the design of such multi-agent behavior of particles as a means to 
enhance the diversity of the algorithm or to achieve a trade-off between exploration 
and exploitation. A commonly used heterogeneous form of PSO is based on the idea 
of considering multi-swarms (multi-populations). It consists of dividing the whole 
search space into local subspaces, each of which might cover one or a small number 
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of local optima, and then separately searches within these subspaces. Another way to 
define multi-agent in PSO is to assign different roles to particles. Thus, different 
particles can play different roles, and each one of these particles can play different roles 
during the search processes. A challenging task within this PSO variant is how each 
particle has to decide which role it will assume. 

In this chapter, we investigate the integration of the generic model to different types 
of heterogeneity that can be attributed to particle swarms, namely: the self PSO and 
the multi-swarm PSO with different cooperation rules. After controlling the particles 
configuration in the entire swarm level, we intend in this paragraph to control particles 
configuration on an individual level as well as in the case of multi swarms level.  

2.1 SELF-STATE IDENTIFICATION FOR PSO 

 

We apply the generic model to be associated with each particle movement. A Finite 
State Machine (FSM) is applied to model the decision making of an agent with the aim 
of guiding particles to move toward different promising sub-regions. To do that, 
swarm behavior can be represented as a finite state machine based on very simple 
agents and simple interaction rules. That is, a behavior specification defines a set of finite 
state machines, called options and a set of predefined behavior routines, called basic 
behaviors.  

We integrate the HMM model described earlier as a probabilistic FSM [122] to learn 
and predict the most probable states of the probabilistic FSM in order to control 
particles behavior of PSO. This process is performed through the Viterbi algorithm that 
gives the most likely path of states for each particle in each PSO iteration. Each particle 
is viewed as automata having four finite states which are exploration, exploitation, 
convergence, and jumping-out.  

HMM generic model is applied to address the self-state selection as the most common 
type of probabilistic FSM. Indeed, HMM has the ability to learn states of our automata 
from hidden observation based on the maximum like likelihood estimation [123]. This 
learning feature of HMM is used to control the particles individually across PSO 
iterations. 

We associate to each one particle a Markov chain experiencing several finite states 
controlled by an HMM model. HMM associated with a particle can be viewed as a 
small machine learning guided by inputs and provides many outcomes that are state 
classification across iterations. We inspire from the generic model to adapt HMM 
model to fit each particle. 

The HMM classification model comprises to determine one of four evolutionary states: 
exploration, exploitation, convergence, and jumping out to each particle at each 
iteration in order to give automatic intelligent control of the inertia weight. Our 
contribution to these works is to use HMM for each particle to recognize the 
appropriate state at each iteration. Therefore, we can produce the Markov Chain as 
identified. 
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We define each particle as a machine having different finite states. A particle of PSO can 
have many alternative traces for a given input because of the random behavior of the 
PSO algorithm. FSM associated with a particle is a little machine that feeds with inputs 
and provides many outcomes across iterations. We can say that the particle is 
associated with a random process. 

During iterations, a particle is a probabilistic FSM related to a state {𝑥𝑖}𝑖∈𝑁  that 
generates outcome or also called observation {𝑦𝑖}𝑖∈𝑁. 

This definition yields to have at each iteration several groups of particles, each one 
plays a defined role according to its identified state machine. So, we can have for 
instance 40 particles, in which 20 particles explore throughout the search space, 10 
others are exploiting, 7 are converging, and 3 are jumping out. Thus, particles are 
divided into sub-swarms with different states. The change of state or role of particles 
during iterations is governed by their associated probabilistic FSMs which is defined 
by the following formalism for each individual particle: 

 Outcomes {𝑦𝑖}, 𝑖 ∈ 𝑁 

 State {𝑆𝑖}  𝑖 ∈ Ν 

 A = (𝑎𝑖𝑗) The state transition matrix: P (𝑥𝑡 = i | 𝑥𝑡−1 = j)  𝑖, 𝑗 ∈  𝑁 , t : iteration 

 number. 

 B = (𝑏jk) The emission probabilities of outcomes: P (𝑆𝑡 = k | 𝑆𝑡 = j) 𝑘, 𝑗 ∈ 𝑁, 𝑡 is 

the iteration number. 

Our approach consists of finding the most suitable current state by finding the most 
probable trace for the given input of states across iterations. This problem constitutes the 
same HMM generic model to be resolved at a particle level. 

 

Algorithm 13: self-adaptive inertia weight control by particle 

Data: Position and inertia weight  

Initialization: positions and weight 𝐰 
if state = exploration then  

 𝒘𝒊 = 𝒘𝒎𝒊𝒏 + (𝒘𝒎𝒂𝒙 − 𝒘𝒎𝒊𝒏) ∗ 𝒓𝒂𝒏𝒅(); 
else if state = exploitation then 

 𝒘𝒊 = 𝛚(𝐥) =  
𝟏

𝟏 + 𝟏.𝟓𝐞− 𝟐.𝟔𝐥
∈  [𝟎. 𝟒, 𝟎. 𝟗] ∀ 𝐥 ∈  [𝟎, 𝟏] 

else if state = jumping out then 

 𝒘𝒊 = 𝒘𝒎𝒂𝒙 

else if state = convergence then 

 𝒘𝒊 = 𝒘𝒎𝒊𝒏 

end if 

Return 𝒘 

 

According to the classified state, each particle has its associated state and can adapt 
individually its parameters. In our case, we apply the FSM state to adapt the inertia 
weight called selfHMM-wPSO and the acceleration factors called selfHMM-APSO. 
Algorithms for adaptation are the same as defined for the whole swarm but applied 
by a particle. The pseudocode is given below:  
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Algorithm 14: SelfHMM-APSO algorithm 

Data: The objective function 

Initialization: positions, velocities of particles, accelerations factors 

and HMM parameters; Set t value to 0 ;  

while (number of iterations t ≤ tmax  not met) do 

Update HMM parameters by EM process (Algorithm 5) ; 

Classification of PSO state by HMM classifier (Algorithm 4) ;  

Update 𝐜𝟏 , 𝐜𝟐 and w values according to the corresponding state ;  
for i = 1 to number of particles do 

compute f ; 

Update velocities and positions according to Eqs. (1) and (2) ; 

if (  f ≤ fbest  ) then  

   fbest ← f ; pbest ← X ; 

end 

if ( f (pbest ) ≤ f (gbest ) ) then 

       f(gbest ) ← fbest ; 

       gbest ← Xbest ; 

end 

if state = convergence then 

    Elitist learning 

end  

end 

t ← t + 1 

end 

Result: pbest and fbest (the best particle and the best fitness) 

 

Algorithm 15: SelfHMM-wPSO  

Data: The objective function (F) 

Initialization: iteration t=0, positions 𝐗, velocities V, inertia weight w, 

HMM parameters (𝚷,A,B,S,Y), observations 𝐎, states 𝐐, swarm size N; 
while (number of iterations t ≤ tmax not met) do 

For i = 1 to N do 

 O[t]← 𝒍𝒊 (Update observation sequence) 

 (A, B, 𝚷) ← Baum-Welch(𝚷,O,A, B, 𝚷, 𝐒, 𝐘); (update HMM probabilities) 

 (𝑸𝒊[1],... 𝑸𝒊[t]) ←viterbi(𝚷,O, A, B, 𝚷, 𝐒, 𝐘); (Classification of state)  

  𝒘𝒊 ← algorithm.13(𝑸𝒊[t]); (Update w value) 
 - Xi(t)← equation.1(Xi(t-1),Vi(t-1)); (Update positions)  

      - Vi(t)← equation.2(Xi(t-1),Vi(t-1)); (Update velocities) 

 compute f(Xi) ; 

 if ( f (Xi ) ≤ fbest ) then   - fbest← f(Xi) ; 

                           - pbest← Xi ;  end  

 if ( f ( pbest ) ≤ fgbest ) then - fgbest←fbest ; 

                      - gbest←Xbest ; end 

 if state = convergence then 

 Elitist learning [60]; end  

end  

t ← t + 1 ;  

end 

Return pbest and fbest (the best particle and the best fitness) 
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2.2 COOPERATIVE MULTI-SWARM  

 

In this section, the machine learning algorithm hidden Markov model (HMM) is 
applied at an individual level (each particle) to model how the decision making of 
particles to choose the adequate sub-swarm to which it will belong. That is, HMM is 
used to learn and predict the most likely swarm, corresponding to each particle in 
order to control particles behavior of PSO. Hence, for each sub swarm, an associated 
role is given: exploration, exploitation, convergence and jumping out. Then, in a 
collective level of the swarm, a cooperative design is made to guide the search and 
move toward different promising sub-regions.  

Each sub-swarm will adapt its own configuration of the parameters of its particles. 
Cooperation rules will be defined to ensure the information exchange between subs 
warms during the search process. 

 

2.2.1 Sub-swarms constitution 

In this approach, the swarm is divided to a sub-swarms in the objective to achieve a 
good trade-off between the population diversity and the convergence speed, and 
especially good management of the exploration and exploitation of the search process 
during execution in order to attain the best possible solution in the minimum number 
of iterations. Inspired from the definition of [60] of the evolutionary states for PSO, 
each sub swarm will group particles of a specific four evolutionary state that are: 
Exploration, exploitation, convergence, and jumping-out. 

Then, each particle is viewed as a Markov chain having a state {si}i∈[1,4]  . During 

iterations, a particle can have a specific state 𝑖 that represents its membership to a 
specific swarm i. Also, a particle can change the state from iteration to another and 
change consequently its corresponding sub swarm. So, a movement between sub 
swarms is indicated by the rows in Figure 18. 

 

 

Figure 18 Sub-swarms and possible particle movements 
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To model the associated swarm of a particle, an associated markov chain with state 
{Si}i∈[1,4] is defined to each particle. However, the particle state cannot be perceived 

directly but only by observing some key parameters across iteration. Hence, a hidden 
markov chain is defined for each particle as the generic model. 

A real-time state estimation procedure is performed to identify each adequate particle 
swarm: exploration, exploitation, convergence, and jumping out. It qualifies an 
automatic control of the sub-swarms. 

 

2.2.2 Multi-swarms cooperation 

To make use of the multi-swarm design given in the previous paragraphs, it is 
mandatory to set a cooperation model to make use of the search capabilities given by 
each sub-swarm. Two cooperative designs are chosen: A Master/Slave scheme and 
adaptive cooperation scheme. 

a. Master/Slave scheme 

A master/slave cooperation model is chosen in this approach like in [119], where the 
slave swarms perform as a single PSO while the master swarm iterates depending on 
its knowledge as well as the knowledge of the slave swarms. In our case, the master 
swarm is the swarm associated with the convergence state. Then, the slave swarms 
will be those associated with exploration, exploitation and jumping-out states.  

Each slave swarm with some 𝑛 particles adapts itself according to its own evolutionary 
attached state separately. So, a slave swarm can be viewed as an independent swarm 
not connected to the other slaves. For the master swarm, the particles improve 
themselves not simply depending on the social knowledge of the master swarm but as 
well as that of the slave swarms. This notion is made by additional integrating a new 
dimension on the velocity of the particles in its velocity update. The equations for the 
velocity update of the master swarm will be: 

𝑉𝑖
𝐶(𝑡 + 1) =  𝑤 𝑉𝑖

𝐶(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝐶(𝑡))  + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

𝐶 − 𝑋𝑖
𝐶(𝑡)) + 𝑐3𝑟3 (𝑔𝑏𝑒𝑠𝑡

𝑠 − 𝑋𝑖
𝐶(𝑡))   (29) 

Where C represents the convergence sub-swarm, 𝑐3is called migration coefficient, 𝑟3 
an uniform random sequence in the range [0, 1], 𝑔𝑏𝑒𝑠𝑡𝐶  is the global best of the 
convergence swarm and 𝑔𝑏𝑒𝑠𝑡𝑠 is the is the global best of the other slave sub swarms, 
in particular: exploration, exploitation and jumping-out. 

 

Figure 19 Sub-swarms and the master/slave interactions 
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Figure 19 represents a communication scheme between sub-swarms. Then, the global 
algorithm of this approach is described in algorithm 16. 

Algorithm 16: MsHMM-PSO   

Data: The objective function (f) 

Initialization: positions X, velocities of particles V, accelerations 

factors of all four swarms; Set t value to 0; 

while (number of iterations t ≤ tmax not met) do 

for i = 1 to the number of particles do 

 Decoding specific particle state (viterbi ) ;  

 Associate particle i to its decoded sub-swarm; 

 Update w according to Equation (19) ; 

 Update 𝐜𝟏  and 𝐜𝟐  values according to the corresponding state 

(algorithm 6) ;  

 if convergence swarm  

           Update velocities according to convergence Equation  

 else Update position according to convergence  Equation  

 end 

 Update positions according to position Equation  

 compute f(xi) ; 

 For each sub-swarm i: 

  if ( f (Xi ) ≤ fbest ) then 

   fbest ← f (Xi) ; 

   pbest ← Xi ; 

  end 

  if ( f ( pbest ) ≤ fgbest ) then 

   fgbest ← fbest ; 

   gbest ← Xbest ; 

  end 

  if sub-swarm = convergence then 

   Elitist learning [60];  

  End 

 end 

end  

t ← t + 1 ;  

end 

Return pbest and fbest ; 

Result: The solution based on the best particle in the population and 

corresponding fitness Value 

 

b. Adaptive cooperation  

In this approach, the whole swarm is divided into four sub swarms that can conduct a 
heterogeneous search, but also can exchange information between each other, which 
can be relevant to explore a much larger space wherever the optimal model 
composition values may locate. In the presented multi-swarm cooperation variant, the 
population contains four sub-swarms, each with some predefined role. The 
sub-swarms maintain particular liaisons, which improves the search capacity. The 
cooperation mechanism chosen to be integrated with our generic model has been 
firstly introduced in [124]. As shown in Figure 20, this used mechanism is applied to 
maintain synchronization and cooperation between the four sub-swarms as identified 
by the HMM classification model in order to get the best update of the fitness values. 
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Figure 20 Sub-swarms and its cooperation diagram 

In this general concept, each sub-swarm perform execution of a single PSO, comprising 
the update of position and velocity as stated by its own equations, shown in detail 
below. Once all the sub-swarms are positioned with the new generation, the global 
best is attained from the best local individual of each sub-swarm. The sub-swarm 1 
and 2 are considered respectively as exploration and exploitation sub-swarms, and its 
positions and velocities are updated according to the original PSO equations (2) and 
(3) with the best parameters (inertia weight and accelerations) of the corresponding 
state. Additionally, the particle in the sub-swarm 3, identified with a convergence state, 
is updated depending on the fitness values and velocities of the particles in the sub-
swarms 1 and 2 (Exploration and exploitation). The velocity of the particle in sub-
swarm 4, identified with a jumping out state, is updated only with a combination of 
the velocities of particles of other sub-swarms. Other three control factors that are 
provided by the HMM generic model are applied to update the position.  

The update equations of the particles in the sub-swarms S1 and S2 ( exploration and 
exploitation) are defined as follows: 

 𝑉𝑖
(1)/(2)(𝑡 + 1) =  𝑤𝑉𝑖

(1)/(2)(𝑡) +  𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 −  𝑋𝑖
(1)/(2)(𝑡))  +  𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

(1)/(2) − 𝑋𝑖
(1)/(2)(𝑡))         (30)
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In the convergence sub-swarm S3, the particles can adapt the flight directions by 
learning from better particles in the two sub-swarm S1 and S2. Its velocity is updated 
as follows: 

𝑉𝑖
(3)(𝑡 + 1) = 𝑤 (

𝛾

𝛾1
𝑉𝑖
(1)(𝑡 + 1) +

𝛾

𝛾2
𝑉𝑖
(2)(𝑡 + 1) + 𝑉𝑖

(3)(𝑡)) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖
(3)(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

(3) − 𝑋𝑖
(3)(𝑡))  (31) 

where 𝛾1  and 𝛾2  are the fitnesses of current iteration in the sub-swarms 1 and 2 
respectively. 𝛾 is the sum fitness of 𝛾1  and 𝛾2 . This represents a fitness monitoring 
methodology where the fitness values of the better swarm has more impact on the 
current particle.   

The update equation of the velocity in sub-swarm 4 is described as follows: 

𝑉𝑖
(4)(𝑡 + 1) =  𝑉𝑖

(1)(𝑡 + 1) + 𝑉𝑖
(2)(𝑡 + 1) − 𝑉𝑖

(3)(𝑡 + 1)                           (32) 

The update in the jumping out swarm is designed to look for new areas based on the 
differences among the sub-swarms. The update equation can generate more likely 
solutions and explore new spaces. The position in sub-swarm 4 is updated as follows: 

𝑋𝑖
(4)(𝑡 + 1) =  𝛼1𝑋𝑖

(4)(𝑡) + 𝛼2𝑝𝑏𝑒𝑠𝑡𝑖
(4) + 𝛼3𝑔𝑏𝑒𝑠𝑡 + 𝑉𝑖

(4)(𝑡 + 1)                   (33) 

𝛼1 , 𝛼2 , 𝛼3  ∈ [0,1]  are named the impact factors, which manage the impact of the 
historical information. In our approach, we calculate 𝛼1 , 𝛼2 , 𝛼3  from the likelihood 
given by HMM of the corresponding state: exploration, exploitation, and convergence 
respectively. The likelihood of a state is calculated from the historical achievement of 
the swarm and gives a quantified probability to each state.  

The control mechanism of inertia weight and acceleration factors are done as the same 
as in the homogeneous PSO approach, described as follows:  

 

Algorithm 17: Adaptive acceleration update for swarms [60] 

Data: Position and accelerations factors 

Initialization: positions and accelerations factors 𝐜𝟏 and 𝐜𝟐 ; 

if sub-swarm = exploration then Increasing 𝐜𝟏 and Decreasing 𝐜𝟐 ; 
else if sub-swarm = exploitation then 

 Increasing 𝐜𝟏 and Slightly Decreasing 𝐜𝟐 
else if sub-swarm = convergence then 

 Decreasing 𝐜𝟏 and Increasing 𝐜𝟐 
end 

Return 𝐜𝟏 and 𝐜𝟐 
Result: Updated acceleration factors 
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Algorithm 18: Adaptive inertia weight control by the swarm 

Data: Position and inertia weight  

Initialization: positions and weight 𝐰 
if sub-swarm = exploration then  

 𝒘𝒊 = 𝒘𝒎𝒊𝒏 + (𝒘𝒎𝒂𝒙 − 𝒘𝒎𝒊𝒏) ∗ 𝒓𝒂𝒏𝒅(); 
else if sub-swarm = exploitation then 

 𝒘𝒊 = 𝛚(𝐥) =  
𝟏

𝟏 + 𝟏.𝟓𝐞− 𝟐.𝟔𝐥
∈  [𝟎. 𝟒, 𝟎. 𝟗] ∀ 𝐥 ∈  [𝟎, 𝟏] 

else if sub-swarm = convergence then 

 𝒘𝒊 = 𝒘𝒎𝒊𝒏 

end if 

Return 𝐰 

 

The algorithm of the adaptive multi-swarm approach is described in Algorithm 19 
below: 

Algorithm 19: MsAHMM-PSO   

Data: The objective function (f) 

Initialization: positions, velocities of particles, accelerations factors 

of all four swarms; Set t value to 0; 

while (number of iterations t ≤ tmax not met) do 

for i = 1 to the number of particles do 

 Decoding specific particle state (viterbi) ;  

 Associate particle i to its decoded sub-swarm; 

 Update w according to Equation (19) ; 

 Update 𝐜𝟏  and 𝐜𝟐  values according to the corresponding state 

(algorithm 17) ;  

 if swarm 1 ou 2 

           Update velocities according to Equation of swarm 2  

      Update positions according to Equation of swarm 2 

 Else if swarm 3 

  Update velocities according to Equation of swarm 3 

       Update positions according to Equation of swarm 3 

 Else if swarm 4 

  Update velocities according to Equation of swarm 4 

       Update positions according to Equation of swarm 4 

 end 

 Update positions according to Equation of positions 

 compute f(Xi) ; 

 For each sub-swarm i: 

  if ( f (xi ) ≤ fbest ) then 

   fbest ← f (Xi) ; 

   pbest ← Xi ; 

  end 

  if ( f ( pbest ) ≤ fgbest ) then 

   fgbest ← fbest  ; 

   gbest ← Xbest ; 

  end  

 end 

end  

t ← t + 1 ;  

end 

Return pbest and fbest ; 

Result: The solution based on the best particle in the population and 

corresponding fitness Value 
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2.3 EXPERIMENTATION  

 

The three variants of heterogeneous PSO based HMM presented in the last paragraph 
will be evaluated by experimentation, and the corresponding results are given. 
Simulations are done on various benchmark functions: unimodal and multi-modal. 
Then, results are compared with other related variants from state of the art of PSO. 
The parameter setting is the same as the earlier one presented in the homogeneous 
PSO section as well as the presentation of the PSO related variants. 

 

2.3.1 Performance evaluation 

Firstly, we address the obtained results of all executions to compare the solution 
accuracy of our heterogeneous PSOs version based HMM. The best and the average 
values resulted from experimentations are given in Table 11 below: 

   

Table 11 Results comparison 

Functions APSO PSO SimuA
-PSO 

Rand
WPSO 

YSPSO SelPSO SAPSO LinW
PSO 

MsPSO SelfH
MM-
PSO  

MsH
MM-
PSO 

MsAH
MM-
PSO    

𝒇𝟏 Best 49 13566 115719 460.49 1420 16382 5095 9843 7067 14 6.03 2 

Mean 150 24618 288102 5677.4
9 

2726 27998 14850 33384 20280 27 38 11 

𝒇𝟐 Best 0 5.1e-09 5.8e-06 0.00 0 8.6e-10 0 2.1e-12 0 0 0 0 

Mean 0 6.5e-05 0.04 0.0025 0 1.8e-05 0 3.6e-05 0 0 0 0 

𝒇𝟑 Best 0.01 26.55 93.19 0.00 6.77 36.01 18.20 37.7 17.66 5.74-6  0.0041 8.11-7  

Mean 0.05 50.15 188.56 0.05 13.77 63.59 31.96 64.09 40.53  5.79-5   0.0068  1.34-6  

𝒇𝟒 Best 0.02 94.97 251.36 0.14 23.72 30.47 37.21 110.48 51.24  5.74-6   0.0078  3.62-8  

Mean 0.05 135.82 396.21 0.94 42.31 77.51 84.79 246.78 95.74 5.01-5  0.0133 2.01-6  

𝒇𝟓 Best 16435 629e+5 587e+6 166679
.13 

127e+4 839e+5 459e+5 102e+6 165e+5 223 2697 144 

Mean 67851 196e+6 210e+7 934189 843e+4 210e+6 166e+6 434e+6 155e+6 941 6684 423 

𝒇𝟔 Best 8.24 266.20 358.22 0.29 142.44 285.16 165.66 293.88 170.64 7.53 6.89 0.52 

Mean 16.14 307.24 462.02 56.81 175.84 315.60 273.31 322.35 261.77 8.55 14.70 2.87 

𝒇𝟕 Best 0.03 4.79 6.9436 0.03 3.1785 5.665 3.8279 5.403 4.7261 0.001 0.001 0.0003 

Mean 0.31 5.61 8.6336 0.22 4.2219 6.1951 5.2531 6.5613 5.6829 0.004  0.016 0.0008 

𝒇𝟖 Best 7.50e-5 0.17 0.52 0.00 0.05 0.27 0.13 0.25 0.14 1.6-7  1.5e-4 2.8-8  

Mean 0.01 0.39 0.87 0.04 0.12 0.41 0.25 0.45 0.31 0.003 2.1e-4 0.0006 

𝒇𝟗 Best -118.35 -3e+28 -7.2+47 0.00 -3+34 -1e+308 -1+231 - -1e+220 -118.35 -118.35 -118.35 

Mean -118.34 -3e+28 -1e+47 3.83 -3e+33 - -1e+230 - -1e+219 -118.34 -118.34 -118.34 

𝒇𝟏𝟎 Best -1 -1 -0.92 -1 -1 -0.99 -1 -0.94 -1 -1 -1 -1 

Mean -1 -0.95 -0.74 -0.99 -0.98 -0.95 -0.97 -0.93 -0.96 -1 -1 -1 
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Table 11 shows the results obtained from the mean of all executions for the benchmark 
functions of heterogeneous PSO based HMM approaches which are: SelfHMM-PSO, 
MsHMM-PSO, and MsAHMM-PSO. When comparing HMM approaches against the 
states of the art of PSO variants, the corresponding results show a good solution 
accuracy in overall. The solution accuracy is enhanced for both unimodal (Elliptic, Step, 
Sphere, Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, Griewang, 
Schwefel, Drop wave). For Step and Ackley functions results are similar due to the 
functions simplicity. For other functions, the performances of the solution accuracy are 
largely increased. As for the Sphere and Tablet functions where the order of 
improvement attaint more that 105  in the solution accuracy. When comparing 
between HMM heterogeneous approaches, MsAHMM-PSO is giving the best of results 
in the accuracy. 

2.3.2 Convergence speed 

In terms of convergence speed, comparisons are illustrated in figure 21.  

.  

 
(a)                                                                             (b) 

 
(c)                                                                             (d) 

Figure 21 MsAHMM-PSO  Convergence speed comparaison 
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As shown in figure 21, the black line that gives the executions of MsAHMM-PSO 
results is under all other lines. Subsequently, MsAHMM-PSO provides a quicker 
convergence when compared to all diverse used PSO variants from the literature. 

Given the exposed effective results of our approach, we can most certainly recognize 
that the multi-swarm cooperation based on hidden markov model supplies noticeably 
more significant performances for the PSO algorithm regarding the solution accuracy 
and the convergence speed. 

 

 

2.3.3 Statistical tests  

A more advanced comparison is performed using a statistical test, in particular 
parametric two-sided tests named t-test. The test is executed with a significance level 
of 0.05 between the MsAHMM-PSO and other PSO variants. The guidance of how 
statistical tests are performed, is described in the experimentation paragraph of the 
previous chapter. 

Table 12 T-test comparison 

Function PSO APSO RandWPSO  RankPSO SAPSO LinWPSO MsPSO SelfHMM-
PSO  

MsHMM-
PSO 

𝒇𝟏 0 0.0078 2.67e-06 0.0065 0 0 0.001 7.1e-07 0.0076 

𝒇𝟐 1 1 0.187 1 1 1 0.308 0.198 0.113 

𝒇𝟑 0 0.0015 0 0 0 0 0.0001 0.00051 0.061 

𝒇𝟒 0 0.0002 0 0 0 0 0.0164 0.0096 0.0043 

𝒇𝟓 0 0.0008 3.07e-06 0.0017 0.002 0.0012 0 0 0.0013 

𝒇𝟔 0 0.006 0 0.0092 0 0 0.0647 0.0043 0.0022 

𝒇𝟕 0 0 0 0 0 0 0.0084 0.0409 0.0054 

𝒇𝟖 0 0.007 0 0 0 0 0.194 0.204 0.108 

𝒇𝟗 0 0 0 0 0 0 0.219 0.669 0 

𝒇𝟏𝟎 0.0018 0.0023 0.872 0.41 0.388 0.0376 0.079 0.0074 0.022 

+1 (better) 9 9 8 8 8 8 5 4 4 

0 (same) 1 1 2 2 2 2 5 6 6 

-1 (worse) 0 0 0 0 0 0 0 0 0 

 

Given the revealed effective results of our approach, we could undoubtedly notice that 
the MsAHMM-PSO based cooperation scheme between swarms provides visibly 
higher performances to the PSO algorithm in terms of statistical tests. When compared 
to state of the art, MsAHMM-PSO gives more than 80% of best results, and less than 
20% can be similar. Alternatively, when compared to other heterogeneous PSO 
approaches based HMM, namely MsPSO, SelfHMM-PSO and MsHMM-PSO, the 
MsAHMM-PSO is approximatively 50% better and 50% similar results. Indeed, the 
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application of HMM to improve the different type of heterogeneous PSOs has given 
good results. 

3. CONCLUSION  

 

HMM has been used in this chapter to control parameters of different heterogeneous 
cases of PSO. This constitutes a machine learning technique for online control of PSO 
search. It looks valuable from the view that HMM is a robust stochastic classification 
tool that takes into account past information about the population to control and adapt 
the algorithm in a heterogeneous way. Our multi-swarm approach is powered by an 
attached hidden Markov chain to each element of the swarm that provides swarm 
control of particle during the search process. According to each swarm, acceleration 
coefficients and inertia weight are updated. Then, the cooperation between swarms 
boosts the search more as in the master/slave cooperation scheme. The proposed 
heterogeneous PSO variants give better results than the state of the art of other PSO 
variants regarding both solution accuracy and convergence speed. Besides, statistical 
tests show good results compared with state of the art. We can deduct from the 
obtained results that associating a multi-swarm based machine learning with a 
cooperation strategy enhances PSO performances significantly. 

The CPU time consumption has increased clearly when experimenting the proposed 
approach even more than the previous approach of Chapter 1. The associated machine 
learning has more computational effort in the multi-swarm design. 

Future research should attempt the use of parallel computing that can significantly 
improve the time of simulation calculation due to machine learning CPU time 
computing. Also, the proposed approach needs to be evaluated on real complex 
optimization problem in different fields of application. 

The next chapter will attempt to associate a reinforcement learning strategy to the 
multi-swarm design of PSO based HMM proposed in this chapter.  
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CHAPTER III:                                        
MULTI-AGENT REINFORCEMENT LEARNING 

BY HMM-BASED PSO 

After the online parameters control of PSO based multi-swarm given in the last chapter, 
this chapter will use of the good results and performances of a multi-agent system of 
the particle swarm optimization in the framework of reinforcement learning. Machine 
learning algorithms are usually classified into three main taxonomies: supervised 
learning, unsupervised learning and reinforcement learning (RL). RL is a machine 
learning approach that is based mostly on trial and error. In RL, an agent explores its 
nearby environment by making use of actions and obtaining rewards for these actions. 
The main target of the agent is to maximize its utility function that is depending on 
rewards. The intent behind this chapter is to present basic background information 
regarding RL as a first step to recognize the problem of RL in multi-agent systems to 
be used as a resolution methodology of the Markov decision process model. The 
Markov Decision Processes give a mathematical platform for decision making. They 
are usually intended to solve real-world problems related to planning and control as 
they are remarkably able to taking the basis of purposeful activity in a multitude of 
situations. For those factors, they have created the principle on which essential 
research in the subject of learning, planning, and optimization has been developed. As 
a consequence, several diverse methods have been produced for their solution. The 
principle of an MDP includes an immense range of models. However, this kind of 
generality shows up at a price. The definition gives too minor structure to produce 
successful MDP solution techniques. Instead of traditional dynamic programming 
resolution techniques, MDP can use reinforcement learning to build its solution. In this 
chapter, we start by Markov decision processes (MDP), a popular framework for 
designing agents that interact with their environment by performing actions and 
obtaining feedback signals revealing how good the actions are, learning how to solve 
a specific task by using these repeated interactions. Several solution methods are listed, 
along with diverse action selection strategies, which can be made use of by the agents 
within the learning process. Subsequently, we evaluate its weaknesses and present 
methods to fix them by Reinforcement learning techniques to cover an interesting class 
of real-world situations. In this way, we derive from the HMM-PSO algorithm a new 
reinforcement learning process to solve a range of decision problems typically known 
as sequential decision problems under uncertainty. 
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1. INTELLIGENT AGENTS 

 

Agents formalism is becoming applied in a large range of applications currently. There 
is however no one unique definition of the terminology agent. For example, one 
standard definition is provided by Russell and Norvig in [125] they identify an agent 
as “anything that can be viewed as perceiving its environment through sensors and 
acting upon that environment through actuators”. 

Within many various definitions mentioned in the literature all over the years, we can 
differentiate the one offered in [126]. This is a rather general definition, but it still 
provides the specifications that an agent requires to meet in the context of this thesis; 
consequently, this is the one considered in this chapter. 

A definition of an agent is a computer system, located in an environment, that is 
qualified of variable autonomous action in this environment to be able to satisfy its 
determined objectives [126]. 

By this definition, it is practical to realize that no particular environment is identified, 
and neither is the conception of objectives and also how the agents may attain their 
objectives. Intelligent agents are explained in [127] as agents that have to perform 
robustly in quickly varying, unpredictable, or open environments, where there is a 
high chance that actions will likely fail. As mentioned in [128] there are three features 
that an intelligent agent has to get in order to satisfy its assigned objectives: 

 Reactivity: intelligent agents have the capacity to experience their environment, 
and react regularly to alterations that happen in it 

 pro-activeness: intelligent agents can express goal-directed behavior by taking 
action; 

 social ability: intelligent agents are able to interact with other agents. 

If it is conceivable to assure that a particular environment is fixed, a goal-directed agent 
is specified simply to perform in this environment. However, in the real world, the 
environment is not stationary. Circumstances are continuously varying, information 
is often not detailed. For this reason, the risk of failure has to be considered. A reactive 
system is one that maintains continuous communication and interaction with its actual 
environment and replies to variations that arise in it (on time to be a beneficial 
response). 

Our agents need to be more reactive; additionally, to operate in the direction of long-
term goals. Hence, it is significant to obtain the best balance between reactivity and 
proactivity. Nevertheless, a certain amount of goals may only be accomplished 
considering the cooperation of other agents, and here social capacity is regarded. 
Agents will need to have the ability to have interaction with other agents located in the 
actual environment as a way to satisfy their associated objectives. 

With the intention to learn from experience, the agents may perform by using 
supervised learning. Through the supervised learning, the agent is assigned instances 
of state-action pairs, and also knowledge regarding if the action was, in fact, either 
correct or incorrect. The goal of supervised learning is to generate a general policy 
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from the simulation instances, which is usually adequate to handle hidden cases. 
Therefore, supervised learning will involve a ‘teacher’ that can bring properly tagged 
instances. In contrary, reinforcement learning could be applied to problems where the 
knowledge area is possibly unavailable or expensive to collect [129]. It does not need 
past knowledge of right and wrong decisions; as a result, an agent has to actively 
explore its own environment to be able to monitor the impact of its own actions, 
wherever for each applied action, the agent obtains a mathematical signal implying in 
what way this action is appropriate or not. This trial-and-error interaction along with 
the environment is much more suited for the types of problems we are dealing with in 
this thesis; the upcoming section provides more complete clarification regarding 
Markov decision processes models and an offered Reinforcement Learning solution in 
the last section. 

Agent-based systems concept is significantly applied for conceptualizing, building, 
and developing software systems [130]. Agents are autonomous computer programs 
which can be made to make use of intelligence to automatically carry out complex 
functions. Many of these systems are referred as Multi-agent systems (MASs). A MAS 
is a system that comprises several agents that have interaction together in an 
environment. This section introduces agent-related principles that allow the 
comprehension of MASs.  

1.1 Agent Systems 

Generally, there are two categories of agent systems: centralized single agent, and 
multi-agent systems, as described in [131]. Regarding the centralized agent system, a 
single agent is in charge of making all of the decisions in the system, in contrast to the 
other agents that react only as slaves. This section examines both the basics of single-
agent systems and multi-agent systems. 

 

1.1.1 Single-agent Systems 

When it comes to single-agent systems, the environment’s interaction patterns are 
dependent on a single agent (central decision). Whenever exists additional agents 
inside the environment, they are regarded as slaves (agents who do not possess goals 
and pursue the guidelines of a central process). 

 

1.1.2 Multi-agent Systems 

In a Multi-Agent System (MAS), numerous agents have interaction with each other in 
an environment. The elements of the environment (just like cells or obstacles in the 
maze problem) are regarded as passive agents since they do not require to learn goals, 
even while the actors (as an example the robot in a maze problem) who has got goals 
inside the environment are regarded as active agents [132]. 

Usually, the major difference among single-agent systems and multi-agent systems is 
the fact the environment’s dynamics are driven by some more than one agent in multi-
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agent systems, while a central agent can determine the environment’s dynamics in a 
single agent system [133]. 

In a common multi-agent of the PSO algorithm, there is an agent per particle. The 
composition of the agents (decision systems, learning algorithms or interaction 
capacities) can be either heterogeneous or homogeneous. 

1.2 Multi-agent Systems Classifications 

Based on the character of the multi-agent design, multi-agent systems are often 
referred by either cooperative or competitive systems. The objective of agents in 
cooperative multi-agent framework is to maximize an ensemble of utility functions 
when the objective of competitive agents is to maximize their particular utility [134]. 

On the other hand, receiving distinct (individual) utility functions would not 
necessarily claim competition, specially if these functions do not have any 
interdependencies. Once we consider maximizing one utility, it shows up at the charge 
of maximizing some other, and then we experience sensible competition. 

This chapter is primarily concerned with cooperative multi-agent learning, instead of 
competitive learning. 

1.3 Multi-agent Learning 

The capacity to learn is a primary characteristic of intelligent agents.  Various research 
analyses in artificial intelligence include the learning conducted by one agent [135]. In 
this kind of learning, an agent learns to conduct correctly in an anonymous dynamic 
environment [136]. Various methods have been offered for single-agent learning; 
nevertheless, in a multi-agent, setting up the learning environment is made up of many 
learners. An effective learner needs to consider measuring the existence of diverse 
learners in the same environment and the means they impact the dynamics of the 
environment [136].  

 

1.3.1 Cooperative Multi-agent Learning Methods 

Cooperative multi-agent models are systems in which agents make use of their 
particular interaction to cooperatively resolve affected tasks as well as maximizing 
some utility functions [137]. 

In multi-agent systems, agents may cooperatively learn a means to solve huge tasks 
that are very difficult for a single agent to learn in an affordable period of time. Hoen 
et al. [134] suggested that cooperative multi-agent learning methods can be split up 
into two main classes. Primary, team learning where a single learner is liable for 
learning the behaviors of the whole team. Secondary, concurrent learning where a 
learner for every team member is in charge of learning its behavior. 
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The literature of team learning has centered on the heterogeneity of the team 
individuals, while the study in team learning has centered on the interactions among 
concurrent learners [134]. 

 

1.3.2 Team Learning 

Team learning is a technique to model the learning in a centralized single-agent system. 
In team learning, a single learner does apply a single-agent learning algorithm to learn 
a group of behaviors for an ensemble of agents. This strategy is an ordinary way to 
cooperative multi-agent learning; however, the possibility that a single agent learns 
the behaviors of all agents, produces the state space to be highly large. For instance, a 
team of n agents in an environment of m states and p actions per state provides a state 
space of as multiple as 𝑚𝑛  states and an action space as multiple as 𝑝𝑛 . [134] 
categorized team learning right into three partitions: homogeneous, heterogeneous, 
and hybrid learnings. 

 

a. Homogeneous Team Learning 

In homogeneous learning, a particular single learner finds out a single behavior which 
is taken from all other team individuals. This is available if all agents possess the 
precise same behavior. The state space of homogeneous learners is often small 
considering that all agents have the same behavior [138]. 

Homogeneous team learning could be utilized in problems where one agent does 
better [139], including problems having a large number of agents (swarm robotics). 
Additionally, problems that do not involve decomposition are appropriate for 
homogeneous team learning [140], just like the standard hunter prey problem or also 
the standard particle swarm optimization.  

 
b. Heterogeneous Team Learning 

A heterogeneous learner learns a particular behavior for every member of the team. 
Often the state space of the learner is significant and expands in complexity with the 
rise of the number of agents. 

Heterogeneous team learning could be used in problems in which task expertise is 
needed, including robotic soccer [139] or to naturally decomposable problems [140], 
including air-traffic control systems and distributed decision. 

 

c. Concurrent Learning 

In concurrent learning, each agent is a learner and learns concurrently with the 
different learners through the multi-agent system. The primary goal, in this case, is to 
process the joint state space into m individual spaces. The issue of this kind of 
methodology is that the presence of multiple learners simultaneously may impact the 
stationary feature of the agents’ environment [134]. In [134], the authors suggested that 
there are three most important tendencies in concurrent learning study. First, the study 
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that usually analyses the distribution of reward signal between team mates. Then, an 
investigation that analyses the cooperative adaptation of agents. Finally, the study on 
ways that each team member may model one another. 

 

The next section will provide a well-known model of the agent learning formalism that 
is the Markov decision process.  

2. MARKOV DECISION PROCESS 

2.1 DEFINITION OF MDP 

MDPs are one instrument of artificial intelligence (AI) that can be utilized to obtain 
optimal action policies within a stochastic area. It gives a mathematical framework for 
modeling decision making in conditions where outcomes are partially random and in 
part within the control of the decision maker. They came from the analysis of stochastic 
optimal control in the 1950s and have remained as of major importance in that area. 
Their particular principle has been expanded to develop across the last years to suit a 
wider range of problems and has produced a variety of common algorithmic concepts 
and theoretical research. In recent times, MDPs are applied in a multitude of areas, just 
like automated control, robotics, planning, economics and also manufacturing.  

An MDP is a tuple <S, A, P, R> where S is a finite set of states, A is a finite set of actions, 
P is a Markov transition model that represents the probability P (s’|s, a) of reaching a 
state s’ when executing an action a in state s, and R : S × A → R is a reward function 
that provides the reward 𝑅(𝑠, 𝑎) acquired after taking action 𝑎 in state s. An agent’s 
policy is defined as a mapping π ∶  S →  A. The objective is to find an optimal policy 
π ∗ that maximizes the expected discounted future reward for each state s. We adopt 
that the MDP has an infinite horizon, and that the future rewards are discounted 
exponentially with some discount factor γ ∈ [0, 1). The optimal action value function 
provides the expected discounted future reward for any state s when performing an 
action 𝑎 and then following the optimal policy.  

 

 

Figure 22 Markov Decision Process 
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A formalized description of an MDP (figure 22) is the tuple (𝑆, 𝐴, 𝑇, 𝑅), where: 

S is a finite set of states of the world. 

- 𝐴 is a finite set of actions. 
- 𝑇: 𝑆 ×  𝐴  𝑃 is the transition function of states and P represents the transition 

matrix. To each action and state of the world, there is a probabilistic distribution 
over states of the world that they can be reached after executing the actions. The 
function 𝑇 t  (𝑠, 𝑎, 𝑠’)  is defined as the probability 𝑝𝑡,𝑠,𝑠′  of reaching state 𝑠′ 
starting in state s and given the action a and the time t. 

- 𝑅: 𝑆 ×  𝐴   is a reward function. Each action in each state of the world is 
assigned a real number. The function 𝑅𝑡 (𝑠, 𝑎)  is defined as the reward of 
executing action 𝑎 in state s at time t. 

To solve the MDP problem, two main algorithms could be used to compute an optimal 
policy: value iteration [141] and policy iteration [142]. 

For the agent to be capable of maximizing the reward from its interaction with the 
environment, it has to be in a position to measure the value of a state and apply a 
mapping from states to probabilities of choosing each possible action at each time stage. 
This mapping is known as the agent’s policy and is referenced by π, where 𝜋𝑡(𝑠, 𝑎) is 
the probability that action 𝑎 will be picked at time t if we are in state s at time t. The 
approximated value of a state is described in terms of future rewards that may be 
expected. Obviously, the rewards the agent can anticipate to acquire in the future rely 
upon what actions it will make. Consequently, its value function is identified with 
respect to a specified policy. As a result, the value of state s within policy 𝜋, denoted 
𝑉𝜋(𝑆 ), is the expected return when starting in s and following π afterwards and could 
be defined formally as: 

𝑉𝜋 = 𝐸𝜋{𝑅𝑡|𝑠𝑡 =  𝑠} =  𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+𝑎𝑘=0 |𝑠𝑡 =  𝑠}                                (33) 

where 𝐸𝜋{} denotes the expected value provided that the agent uses policy 𝜋 and 𝛾 is 
the discount rate which establishes exactly how much we appeal future reward 
contrasted to immediate reward. 

Once we resolve an MDP, we are searching to attain the optimal policy, which is 
usually identified as the policy with an expected return higher than or equal to all 
other policies for any of the states. The optimal policy is denoted as 𝜋, and there can 
be even more than a single optimal policy.  The MDP structure is abstract, adaptable, 
and supplies the methods required for the solution of various critical real-life 
problems. The overall flexibility of the framework enables it not only to be 
implemented for very diverse problems but even in various possibilities. For example, 
the time steps can involve arbitrary consecutive stages of decision making and acting. 
The actions can easily be any decisions we want, which makes the state consist of 
whatever it could be valuable in producing them. 

2.2 FINITE-HORIZON MDP VS INFINITE-HORIZON MDP 

Finite-horizon MDPs are a category of MDPs in which the performance (maximizing 
discounted reward) is needed to be maximized during a finite time horizon [143]. This 
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model is often applied when the agent lifetime is known earlier. Commonly, any 
discrete-time Markov decision process which usually has a finite number of decision 
stages is regarded as a finite-horizon process. Equation 34 explains that the agent 
maximizes its anticipated reward for the upcoming N steps. 

As opposed to finite-horizon MDPs, infinite-horizon MDPs are appropriate for 
continuous tasks just where the behavior proceeds indefinitely, and the reward can be 
experienced at any time. The time horizon of infinite-horizon MDPs flows to infinity. 
Equation 34 displays that the agent maximizes its own expected reward with no mark 
of the endpoint (N step infinity). 

𝑉𝜋
 
(𝑠) =  { ∑ 𝑟(𝑠𝑡,𝑎𝑡)

𝑡=0..𝑁

}                                                            (34) 

Finite-horizon and infinite-horizon problems, and their relations to discounted 
rewards can be reviewed in details in [144]. These principles were created from the 
MDP search area. 

2.3 BELLMAN’S EQUATION 

Bellman’s equation of Dynamic programming [141] is applied in sequential decision 
problems to compute the maximum expected sum of discounted rewards for every 
state (equation 35). In MDP, the Bellman’s formula is utilized to determine the utility 
of every state within a provided policy. An MDP of n states possesses a system of n 
simultaneous Bellman’s equations, one particular for every single state.  

 𝑈𝜋(𝑠) = 𝑅(𝑠) + 𝛾∑𝑇(𝑠, 𝑎, 𝑠′)

𝑠′

𝑈𝜋(𝑠′)                                 (35) 

The Bellman’s equation (equation 35) is linear while the Bellman’s equation for optimal 
computing policies called Bellman optimality equation is a non-linear equation. The 
max function joined with the Bellman optimality equation renders the function a non-
linear one. The max function formulates the process of choosing the action with the 
best possible return: 

 𝑈∗(𝑠) = 𝑅(𝑠) + 𝛾∑𝑇(𝑠, 𝑎, 𝑠′)

𝑠′

𝑈∗(𝑠′)                             (36) 

Multiple varieties of this function are used in RL to formulate the utility functions of 
several RL algorithms. 

2.4 SOLUTION METHODS 

In this section, the main solution methods are presented to resolve a RL problem. The 
classic approaches can be categorized into two principal groups: 

 Model-based approaches: make use of an explicit model of the environment to 
obtain the optimal policy. 
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 Model-free approaches: obtain the optimal policy not needing to explicitly offer 
the model. 

In the next sub-section, Dynamic Programming is introduced, which needs a total and 
exact model of the environment and consequently is supposed to be a class of model-
based approaches. The model-free RL-algorithms are a considerably more general 
framework for resolving MDP where transitions probabilities are not required to 
resolve the problem; reinforcement learning algorithms including Q-Learning will be 
provided in the next section.  

 

2.4.1 Policy Iteration 

Policy Iteration is a dynamic programming algorithm which usually manipulates the 
policy exclusively once used to calculate the optimal policy. It begins by evaluating an 
arbitrary policy, and after, makes use of the value function of that policy to get 
enhanced policies. This is carried out by taking into consideration a deviation from the 
recent policy in state 𝑠 that identify if the policy is to adjust to deterministically select 
an action 𝑎 distinct from the last one regarding the 𝜋(𝑠). If the value of this latest policy 
is higher than the existing policy 𝜋, then, simply, the policy is effectively improved. 
This procedure of producing a new policy that enhances an original policy, by 
producing it greedy or almost greedy with respect to the value function is known as 
policy improvement. As soon a policy π has been improved utilizing 𝑉𝜋 to produce an 
enhanced policy 𝜋′, we can calculate its value function 𝑉𝜋′ and maximize it once again 
to produce an even best policy 𝜋′′ wherever every policy is assured to be a strict 
progress above the past one. Since a finite MDP has just a finite number of policies, 
this process needs to converge to an optimal policy and optimal value function during 
a finite number of iterations. This method of interleaving policy evaluation with policy 
improvement is identified as policy iteration (algorithm 20) and is a principal 
algorithm in the review of MDPs. 

 

Algorithm 20: The Classical Policy Iteration Algorithm 

𝝅 any policy 

While 𝝅 ≠ 𝝅′ 

𝝅 ≔ 𝝅′ 

For all 𝒔 ∈ 𝑺 

Compute 𝑽𝝅(𝒔) by solving a system of |𝑺| unknowns  

For all 𝒔 ∈ 𝑺  

If there exists an action 𝒂 ∈ 𝑨 such that: 

𝑹(𝒔, 𝒂) + 𝜸∑𝑻(𝒔, 𝒂, 𝒔′)𝑽𝝅𝒕−𝟏(𝒔′)

𝒔′∈𝑺

> 𝑽𝝅(𝒔) 

Then 𝛑′(𝐬):= 𝐚 

Else 𝛑′(𝐬):= 𝛑(𝐬) 

Return 𝝅 
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2.4.2 Value Iteration 

Value iteration is one other dynamic programming algorithm that uses a distinct 
procedure to attain the optimal policy. Instead of modifying the policy directly It 
depends on the direct solution of the Bellman optimality equation. For the task, an 
iterative procedure through value functions is designed; therefore it is known as value 
iteration [141]. 

The solution is proceeding by using the state space and affecting to each state the 
maximum estimated value depending on the discounted value of its own neighboring 
states. This iterative calculation is continuing until the maximum improvement in value 
for all states in every sweep is smaller than some predetermined small positive number 
denoted as 휀. The smaller the value of 휀 the larger the accuracy of the algorithm is. Value 
iteration necessitates every state to be processed just once in every sweep within the 
state space and in that way takes away one of the drawbacks of policy iteration that is 
policy evaluation, which could call for multiple sweeps throughout the state space. In 
fact, many stopping criteria can be regarded to stop the iterations. The more basic one 
enables stopping when  𝑉𝑛+1 − 𝑉𝑛 < 휀 ; this triggers the formal pseudocode of the 
algorithm follows: 

 

Algorithm 21: Value Iteration Algorithm 

Initialize 𝑽𝟎  ∈ 𝑽  
n ← 0 

 repeat 

  For all 𝑠 ∈ 𝑆 
    𝑉𝑛+1(𝑠) = max

𝑎∈𝐴
{𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑛(𝑠

′)𝑠′∈𝑆 } 

   𝑛 ←  𝑛 + 1 
  Until ||𝑉𝑛+1 − 𝑉𝑛|| < 휀 

 For all 𝑠 ∈ 𝑆 
  π(s) ∈ argmax

𝑎∈𝐴
{𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑛(𝑠

′)𝑠′ } 

Return 𝜋,𝑉𝑛 
 

The Value Iteration algorithm is sufficiently flexible and does not necessitate the value 
of the states to be calculated in any rigid order nor equally many times to be able to 
converge on condition that all states are processed within the sweep [145]. This 
provides the flexibility that the values of states can be calculated in any sequence, 
applying any values of other states that show up existing; the value of some state can 
consequently be processed many times in one sweep. This flexibility, besides its slow 
convergence rate, has been the motivation of some works to accelerate its 
computations [146]. The majority of these attempts have been centered on one of two 
items, either parallelization or prioritizing of calculation in an attempt to decrease 
unneeded computation [147]. 
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2.4.3 Other Methods 

A multitude of other agent-based methods are available which could usually be 
applied for the resolution of MDPs. These techniques generally show up within two 
types, Temporal Difference Learning approaches and Monte Carlo methods. MC 
techniques are powered by averaging sample returns for the resolution of problems. 
They vary from Dynamic Programming because they do not involve an entire model 
of the environment and they do not bootstrap; however, alternatively the estimate for 
each state is independent. TD Methods, nevertheless, include qualities from the two 
method classes since they do not necessitate a full model of the environment and 
additional bootstrap. TD solutions are normally executed in an online and fully 
incremental manner. Two popular TD techniques are Q-Learning, and Sarsa [148], our 
interest in this chapter is given to the Q-learning approach, which is a new derived 
solution approach that will be presented in the next the section 3. Some of the used 
variants of MDP models are presented in the following sub-section, before its 
application in the next chapters in various airline transport problems.  

2.5 MDP VARIANTS  

 

2.5.1 Time-Dependent Markov Decision Processes 

In standard previously defined MDPs, transitions and rewards are thought to be 
stationary functions; they do not undergo any change during decision epochs. In the 
literature, some approaches like [149] define Stochastic Time-Dependent Network 
where stochastic transition durations are included, but transition outcomes are 
deterministic. A model given by [150] is one of the first models to focus on time as an 
independent observable state variable; it is named as Time-dependent Markov 
Decision Process.  

Time-dependent Markov Decision Process extends the Markov decision process model 
where a continuous observable time dimension is contained in the state space. The 
added time variable allows a more real representation of large problems with time-
varying transitions or rewards. So TMDP includes problems with the following 
properties:  

 State transitions are stochastic; 

 Time-dependent action durations are stochastic. 

 Rewards are Time-dependent. 

In the TMDP model, each transition, which arises from making an action, is 
decomposed into a set of possible outcomes {µ}. Every single outcome identifies both 
a transition duration and a resulting state. 

The TMDP model decomposes each transition resulting from the application of action 
into a set of possible outcomes {µ}. Each outcome describes a resulting state and 
transition duration. 

Formally, the TMDP is defined as in [150] by: 
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 S: Discrete space state. 

 A: Discrete action space. 

 M: Discrete set of outcomes, of the form µ = (𝑠′µ, 𝑇µ , 𝑃µ) : 

 𝑠′µ∈ S: is the resulting space 

 𝑇µ, ∈ {ABS, REL}: identifies the type of the resulting time distribution (if it is 

absolute or relative) 

 𝑃µ(𝑡’) (If 𝑇µ= ABS): probability density function (pdf) over absolute arrival times 

of µ 

 𝑃µ(δ) (If 𝑇µ= REL): probability density function over durations of µ 

 L: 𝐿(µ|𝑠, 𝑡, 𝑎) is the likelihood of outcome µ given action a, state 𝑠, and time t 
  

 R: 𝑅(µ, 𝑡, 𝛿) is the reward associated to outcome µ at time t with a duration δ 

Figure 23 below, it shows a simple graphic representation of TMDP evolution. 

 

 

Figure 23 Elementary example of TMDP 

 

In TDMDP and at time t, if in a state 𝑠1 agent executes an action 𝑎1, it will generate 
outcome µ1 by certain probability 𝐿(µ1|𝑠1, 𝑡, 𝑎1)  and an another outcome µ2  by a 
probability 𝐿(µ2|𝑠2, 𝑡, 𝑎2). µ2 represents the transition to 𝑠2 and 𝑃µ2  gives the transition 

absolute arrival time, while µ1 represents the return to 𝑠1 (failure to leave 𝑠1) with a 
duration 𝑃µ1 . Implicitly, a waiting time is inserted before each action in the model.  

The likelihood functions L govern possible outcomes in the model. Time distributions 
in a TMDP could be either “relative” (REL) or “absolute” (ABS) as shown as an 
example in Figure 24. 

 

Figure 24 Representation of probability density function types 

 

The TMDP model can be represented by the Bellman equations below:  
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𝑉 (𝑠, 𝑡) = 𝑚𝑎𝑥
𝑎∈𝐴

𝑄(𝑠, 𝑡, 𝑎)                                                    (35) 

𝑄(𝑠, 𝑡, 𝑎)  = ∑ 𝐿(µ|𝑠, 𝑎, 𝑡). 𝑈(µ, 𝑡)

µ∈𝑀

                                   (36) 

𝑈(µ, 𝑡)  = ∫ 𝑃µ(𝑡’)[𝑅
∞

−∞

(µ, 𝑡, 𝑡′ −  𝑡)  +  𝑉 (𝑠′µ, 𝑡′)]𝑑𝑡′                     (37) 

( 𝑖𝑓 𝑇µ  =  𝐴𝐵𝑆) 

𝑈(µ, 𝑡)  = ∫ 𝑃µ(𝑡’)[𝑅
∞

−∞

(µ, 𝑡, 𝑡′ −  𝑡)  +  𝑉 (𝑠′µ, 𝑡′)]𝑑𝑡                            (38) 

( 𝑖𝑓 𝑇µ  =  𝑅𝐸𝐿) 

Where : 

𝑈(µ, 𝑡) : Utility associated to the outcome µ in time t 

𝑉 (𝑠, 𝑡) : Time-value function of the immediate action 

𝑄(𝑠, 𝑡, 𝑎) : Expected Q time-value through outcomes. 

The resolution of this model is performed using Bellman equations 2 representing an 
undiscounted continuous-time MDP. At each state, the optimal time-value function is 
a piecewise linear function of time, which could be precisely calculated by value 
iteration [150]. The TMDP model is more general than semi-Markov decision processes 
[144] that have no notion of absolute time. With absolute time included in the state 
space, a comprehensive set of domain objectives can be modeled beyond the objective 
to minimize expected time, like for example the probability of designing a deadline. 
The variable time dimension may represent further quantities; it can consider planning 
with the non-linear utilities, or also with continuous resources. 

 

2.5.2 Multi-Agent Markov Decision Processes 

Multi-agent Markov decision process (MMDP) is developed by [151] to incorporate 
such numerous adaptive agents that interact and compute some given goals. MMDP 
has been applied in various domains as well as in air transportation (see [152]). 

MMDP is the basis of full observability of the global state by every single agent; it is 
designed as a set of interacting learner agents, which are autonomous. These agents 
have to learn in order to cooperate and obtain their assigned goal. It can also be either 
centralized or decentralized in terms of decision-making main feature [153].  

The multi-agent structure (see [151]) supposes having a centralized controller knowing 
all information regarding the system (Figure 25), including actions, the global state of 
the system, and rewards; thus the controller possesses the decision authority and 
keeps information distributed among agents. 
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Figure 25 Centralized control in MMDP 

To adapt the formalism of MDPs to cooperative multi-agent systems, Boutilier et 
al.[154] defined the Markov Decision Processes Multi-agent or MMDP (Multiagent 
Markov Decision Processes). These allow formalizing sequential decision problems in 
cooperative multi-agent systems. This formalism is very close to that of Markov games. 
However, only MMDP are modeling cooperative systems. The reward function is 
defined widely to all Agents, while stochastic games (Liviu Panait et al.[155]) define a 
function for each agent reward. 

A MMDP is defined by a tuple <S, A, P, R> as decision making conventional Markov. 
However, each action is described by the set of actions of individual agents, and then 
we talk about joint action. In addition to the tuple <S, A, P, R>, a variable α is defined. 
It corresponds to the number of agents in the system. So we define the MMDP by a 
tuple <α, S, A, P, R> such that: 

 α : is the number of agents in the system. 

 S : corresponds to the set of states s in the system 

 A =  A1  × · · · ×  An : defines the set of joint actions of the agents, Ai is the set of 
local actions of the agent Agi. 

 P is a transition function; it gives the probability P (s, a, s′) of the system goes 
into a state s’ when agents run the joint action a ∈ A from state s.  

 R defines the reward function. R (s, a, s’) is the reward obtained by the system 
when changing from one state s to a state s’ by executing action a. 

A MMDP can be seen as a MDP with a large state space and action. The set of agents 
is considered as a single agent whose goal is to compute an optimal policy for the MDP 
joint. A MMDP can also be considered as a stochastic game with n-player game in 
which the reward function is the same for all players. Formalism MMDPs corresponds 
to a generalization of MDP multi-agent case and specialization of stochastic n-player 
games. 

Solving a MMDP is to calculate a joint policy π =< π1, … , πn > where πi is the policy 
of a local agent Agi. It defines a function πi : SAi that maps to any system having an 

action of the agent Agi. Such a joint policy can be calculated using a standard algorithm 
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as Value Iteration (This algorithm still also valid in the general case of decentralized 
agents, see [156]). 

 

2.5.3 Time-Dependent Multi-Agent Markov Decision Processes 

 

Multi-Agent notion can as well be combined with real-time value to include time 
evolution into the multi-agent system dynamics. A Time-dependent Markov Decision 
Process (TMDP) is provided by [150] to give this extension. This model is composed 
of stochastic state transitions and as well as stochastic time-dependent action 
durations. The actions in the TMDP model are stochastic and time-varying: 

𝑎(𝑡) ∼  𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝑎(𝑡))                                                   (39) 

Resulting policies are actions to be performed by agents in every single time sequence. 
Then, the real planning window can be widespread to problems under uncertainty 
changing with time.  

So, in this formulation as in [157], MMDPs consider an assignment centered 
decomposition approach, which is intermediate between the join MDP method and 
the method of independent agents. The centralized controller is adopted having the 
complete relevant information regarding the states of all agents to allocate jobs and 
assign jobs and resources to agents determined by a task level value functions 
associated with agents. After the jobs are allocated to agents, the particular lower level 
actions of agents are driven by the task level value functions until the primary 
controller reassigns jobs. Adding time dependence behavior will give a more realistic 
representation of the gate assignment problem, inspired by TMDP and coupled with 
the MMDP approach providing a new formalism of time-dependent Multi agent MDP.  

 

Based on the two previous definitions of MMDP and TMDP, a new formalism is 
defined combining between those approaches. So, it is called Time-Dependent Multi-
Agent Markov decision process TMMDP. This is an MMDP seen as cooperative multi-
agent systems as in [154] or associated with time dependence capabilities as defined 
by [150]. MMDP is then extended to take a continuous observable time dimension 
contained in the state space. Supposing time variable is common between agents; a 
global time is associated to all agents. 

A TMMDP is defined by: 

 n: Number of agents. 

 S: refers to the set of states 𝑠  

 A =  A1  × · · · ×  An : The set of joint actions for the agents i is the set of local 
actions of the agent Agi. 

 M: Discrete set of outcomes, of the form µ = (𝑠′µ, 𝑇µ , 𝑃µ) : 

 s′µ∈ S: the resulting space 

 Tµ, ∈ {ABS, REL}: identifies the type of the resulting time distribution (absolute 

or relative) 
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 Pµ(t’) (If T µ = ABS): pdf (probability density function) over absolute arrival 

times of µ 

 Pµ(δ) (If T µ = REL): pdf over durations of µ 

 L: 𝐿(µ|𝑠, 𝑡, 𝑎) is the likelihood of outcome µ given join state 𝑠, time t and join 
action 𝑎 =(𝑎1, … , 𝑎𝑛).  

 R: 𝑅(µ, 𝑡, 𝛿) Reward attached to outcome µ at time t for all agents with duration 
δ. 

 

 

Figure 26 TMMDP policy representation 

The aim of defining TMMDP formalism is to model and solve large real problems of 
planning under uncertainty taking into account either cooperative agent property and 
time evolution. Resulting policies are actions to be performed by agents in every time 
sequence (see Figure 26). 

2.6 Limits of Markov Decision Processes 

Various concerns limit the utilization of the MDP model and complicate its 
implementation. These kinds of limitations are interrelated to time and space 
requisites implementing the MDP model. The limitations comprise the curse of 
dimensionality, the memory requirement, and the stationary supposition of the 
problem model. 

  

2.6.1 Curse of dimensionality 

Obtaining an optimal policy for an MDP is polynomial in the multitude of states and 
actions; nevertheless, the number of states increases exponentially with the number of 
state variables, which in turn makes it computationally hard to solve large MDPs [158]. 
This issue is referred as the curse of dimensionality, which in turn is a critical concern 
in MDPs.  

 

2.6.2 Memory Requirement 

The modeling of an MDP needs the definition of the state and action spaces. Every 
single state/action pair involves a transition probability matrix and a reward function. 
The requested memory raises with the growth of the state and action spaces.  
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2.6.3 Stationary Assumption 

In MDP formalism, the transition probabilities and rewards are supposed to be fixed 
over time; however, they would possibly not stay the same in the long run. These non-
stationary features can be resolved by incorporating time into the state space or 
working with finite horizon MDP model. An additional solution is to incorporate some 
additional time depending variables in the state definition. 

Multi-agent systems are usually non-stationary environments since many agents 
impact the environment at the same time [159]. This produces the learning policies of 
the agents to be non-stationary policies. Additionally, the behavior of an agent is 
influenced by the behaviors of the various other agents in the same environment [160]. 

 

2.6.4 Large Markov Decision Processes 

Model-based approaches for large MDPs resolution are affected by the curse of 
dimensionality [141]. This is since the state space of large MDPs increases 
exponentially due to the number of state variables [161]. Moreover, MDP necessitates 
knowledge of transition probabilities of the dynamic system from a single to the 
subsequent state, which is in turn not practical to carry out large systems. 

 

Different Reinforcement learning based approaches try to deal with Markov decision 
processes limitations when solving with dynamic programming. Several algorithms of 
RL have been proposed in the literature such as the well-known Q-learning algorithm. 
The next section will draw some RL fundamentals before addressing the proposed 
resolution approach in the last section of this chapter. 

3. REINFORCEMENT LEARNING FUNDAMENTALS 

 

An RL agent learns by trying actions and obtaining rewards for those actions. In 
contrast to the majority of machine learning paradigms, a RL agent attempts the 
actions to be able to explore the ones that generate the biggest reward. 

Reinforcement learning is appropriate for online learning which includes agents that 
learn from interacting with their own environment. In interactive problems, it is hard 
and unlikely to grant the agents with all cases of possible behaviors to which they need 
to behave. Therefore, supervised learning, which is learning from instances provided 
by exterior sources, is not enough for learning from interaction [162]. 

3.1 RL BASIC MODEL  

In RL, a learner interacts with its environment in the following means: the learner 
interprets the state of the environment and chooses an action appropriated to the state 
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utilizing its own decision-making function (policy). The action is therefore performed, 
and the agent gets a positive or a negative reward for its own action. Afterward, details 
regarding the reward of the state-action pair are utilized to update the agent policy 
(Figure 27). 

 

Figure 27: Reinforcement learning model [148]. 

The RL model is a 4-tuple associated with the basic fact that the problem model 
of RL is often formulated as a Markov decision process. A common RL problem 
comprises of [163]: 

 A set of states, 𝑆 =  {𝑠0, 𝑠1, . . . , 𝑠𝑛−1}. 

 A set of actions, 𝐴 =  {𝑎0, 𝑎1, . . . , 𝑎𝑚−1}. 

 A reward model, 𝑅: 𝑆 ×  𝐴 →  𝑅. 

 A transition model, 𝑇: 𝑆 ×  𝐴 ×  𝑆 →  [0, 1]. 

The behavior of a reinforcement learner at any moment in time is identified by a policy 
that decides the optimal action to be selected at each state. A policy 𝜋 is a mapping of 
environmental states into actions 𝜋 ∶  𝑆 →  𝐴. A reinforcement learning agent looks for 
developing a policy which maximizes the sum of its rewards, 𝑅 =  𝑟0  + 𝑟1 +. . . +𝑟𝑛, for 
a problem that has a final state 𝑠𝑛, or a termination condition 𝑐. 

The reward indicates that agent experiences are associated with the learning target. A 
reward function is a mapping of state/action pairs to numerical rewards S × A→ R. 

The value function is a utility function that presents the benefits of selecting a state 
overtimes to come. A value of a given state is an evaluation of the summation of 
rewards beginning with the given state. 

It is essential to notice that the action does not commonly change the state of the 
environment. The objective of the agent is to maximize, at each time step t, the expected 
discounted gain:  

𝑹𝒕  =  𝑬(∑𝜸𝒋𝒓𝒕+𝒋+𝟏

∞

𝒋=𝟏

)                                                     (43) 

 

Where 𝛾 ∈  [0, 1) the discount rate and the expectation are taken over the probabilistic 
state transitions within the actions selected by the policy of the agent.    

The objective of the agent is to maximize its total of rewards (𝑅𝑡 ) while it is interacting 
with the environment. 
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3.2 POLICY TYPES 

The policy that the agent uses has an essential role in the agent achievements to 
complete its task. A policy that is unconnected to time and does not involve the agent 
to hold memory is regarded as stationary policy, while non-stationary policy needs 
the agent to hold a memory. Policies might be categorized depending on the certainty 
of actions into two categories:  

 Deterministic policies: The deterministic policy identifies a unique action for 
every state. 

 Stochastic policies: a stochastic policy selects an action 𝑎  from some 
distribution with a probability [148].  

This thesis focuses on deterministic stationary policy in cooperative independent 
learners in Discrete-time MDPs. A discrete-time MDP has a finite number of decision 
stages where its overall performance is usually requested to be maximized over a finite 
horizon. 

3.3 Action Selection Policies 

The largely simple action selection policy is the greedy policy, which generally picks 
the action with the highest estimated reward to be performed. This policy is an 
exploitative policy. However, the objective of the action selection policies is to equalize 
among exploration and exploitation. The subsequent action selection policies seek to 
make it ensue [148]: 

 s-greedy: an action selection policy that picks the majority of the time the 
action with the top estimated reward. There is a small probability 𝑠 that an 
action can be chosen at random. 

 s-soft: an action choice policy that picks the best action with probability 1 −  𝑠 
and chooses a random action the remaining time 

 Softmax: Softmax designates a weight to every single action as outlined by its 
action-value estimate. A random action is picked depending on its weight, 
which implies that the worst actions are less likely to be selected. Often, 
Boltzmann distribution [164, 165] is designed in Softmax. Given state S, an 
agent attempts an action 𝑎 with a probability. 

3.4 Exploration/Exploitation paradigm 

Unlike supervised learning, a reinforcement learner has to directly explore its own 
environment to learn [166]. The trade-off between exploration and exploitation is a 
primary issue that appears in Reinforcement learning [167]. This issue is that 
exploration and exploitation of actions are linked. Firstly, a RL agent needs to exploit 
actions that have been attempted and identified to be greatly rewarded to be able to 
maximize its reward summation. Second, to be able to discover greatly rewarded 
actions, an agent needs to explore new actions.  
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In this section, our interest is given to the model free methods, especially the 
Q-learning algorithm. 

3.5 Q-learning Algorithm 

Q-learning is among the best-considered reinforcement learning algorithms that 
supply solutions for Markov decision processes. This algorithm features temporal 
differences to obtain mappings from state/action pairs to values. These values are 
recognized as Q-values and are determined using a utility function, named the Q-
function, that returns the expected utility of choosing a given action in a provided state 
and pursuing a fixed policy afterward [168]. The simple fact that Q-learning does not 
involve a model of the environment is definitely one of its benefits. 

The problem model of the Q-learning algorithm is an MDP model presented earlier 
which is made of a set of agents, a set of states S, and a set of actions A [169]. 

An agent that implements Q-learning requires a number of learning episodes to realize 
an optimal solution. An episode is normally a learning period that begins from a 
chosen state and terminates once a goal state is found. Within the episode, the agent 
selects an action 𝑎 right from the set of actions A of its current state s depending on its 
selection policy. The learner later perceives the new state of the environment 𝑠’,  and 
obtains a reward 𝑅(𝑠, 𝑎) determined by the already executed action. The agent then 
upgrades its Q-table according to equation 44. This process repeats till the agent attains 
the target state, which will point the ending of the episode. 

[𝑠, 𝑎] ← 𝑄[𝑠, 𝑎] + 𝛼(𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′∈𝐴
𝑠′
 𝑄[𝑠′, 𝑎′] − 𝑄[𝑠, 𝑎])                            (44) 

Where: 𝑅(𝑠, 𝑎) is the reward of executing action 𝑎 in the current state 𝑠, 𝑎´ is the action 
executed in the next state 𝑠´ , 𝛼 ∈  [0, 1]  is the learning rate, and 𝛾 ∈  [0, 1]  is the 
discount factor. 

The fundamental output of the Q-learning algorithm is a policy π: S → A which 
maximizes the sum of its discounted rewards 𝑅 =  𝛾(𝑟0 + 𝑟1 + . . . +𝑟𝑛) for an MDP 
that has a final state 𝑠𝑡 , or a termination condition c. Algorithm 22 presents the 
pseudo-code of Q-learning. 
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Algorithm 22: Q-learning 

Initialize matrix 𝑸[𝑺, 𝑨] with 0 values  

observe initial state s from recorded data 

repeat  

𝒂 ← 𝝅(𝒔) with 𝝅(𝒔) being the policy to choose actions  

perform action 𝒂 

observe new state s’ and obtain reward r from the environment 

𝑸[𝒔, 𝒂] ← 𝑸[𝒔, 𝒂] + 𝜶(𝑹(𝒔, 𝒂) + 𝜸 𝒎𝒂𝒙𝒂′∈𝑨
𝒔′
 𝑸[𝒔′, 𝒂′] − 𝑸[𝒔, 𝒂]) 

𝒔 ← 𝒔′ 

Until 𝑨𝒔 = 𝟎 (s is a terminal state) 

3.6 Multi-agent Reinforcement Learning 

A Single agent RL approaches are commonly intended to solve stationary 
environments. In a multi-agent perspective, many agents influence the environment, 
and the actions performed by agents do not rely only on the environment but is also 
determined by what the numerous other agents are performing [170]. 

Moreover, making use of a single-agent reinforcement learning methodology to 
sizeable multi-agent systems is ineffective considering that the state and the action 
spaces of these kinds of systems are naturally so large. Single-agent method is 
improper for distributed problems just like air traffic transport problems [171]. 

In multi-agent structure, Q-learning can be implemented in an uncomplicated design 
to every single agent in a multi-agent system. This can be achieved by attaching a 
subscript to determine agents in the Q-function: 

𝑄𝑖[𝑠, 𝑎] ← 𝑄𝑖[𝑠, 𝑎] + 𝛼 (𝑅(𝑠, 𝑎𝑖) + 𝛾 𝑚𝑎𝑥𝑎𝑖′∈𝐴𝑠′
 𝑄𝑖[𝑠

′, 𝑎𝑖
′] − 𝑄𝑖[𝑠, 𝑎𝑖])                     (46) 

Where: 𝑅𝑖(𝑠, 𝑎𝑖) is the reward that agent i obtains for executing an action 𝑎𝑖  in the 
current state 𝑠. 𝑎′𝑖  is the action executed by agent 𝑖 in the following state 𝑠’, 𝛾 ∈  [0, 1] 
is the discount factor and 𝛼 ∈  [0, 1] is the learning rate. 

However, there are two limits for the aforementioned multi-agent Q-learning variant. 
First of all, it presumes that each agent chooses its actions individually from the other 
agents. Secondary, by using the same maxQ function of a single agent variant of Q-
learning algorithm, it is not valid to be applied for the Value function [160]. 

In the past few years, various Multi-agent RL (MARL) methods had been offered to 
model reinforcement learning for multi-agent systems.  

 

3.6.1 Benefits of Multi-agent Reinforcement Learning 

Multi-agent Reinforcement Learning methodology has many strengths over the single-
agent RL methodology. The origin of the strengths of MARL is primarily due to the 
multiplicity of agents. The advantages contain: taking advantage of parallel 
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computation, sharing of knowledge among agents, robustness and appropriateness for 
distributed learning. 

 

a. Parallel Computation 

Parallel computing may easily accelerate the learning process of MARL algorithms 
once the agents take advantage of the decentralized composition of the task [172]. [173] 
suggested an approach for learning to coordinate verbal and non-verbal behaviors in 
interactive robots. In this procedure, a hierarchy of multi-agent reinforcement learners 
performs verbal and non-verbal actions in parallel. The research studies of [174] 
inspected the implementing parallel and distributed systems to MARL. In the 
proposed approach of this chapter, reinforcement learners in different units of the 
distributed system perform in parallel. 

 

b. Sharing of Knowledge 

The presence of multiple agents in the comparable multi-agent system is an 
opportunity for information exchange. In MARL, distinct categories of information can 
potentially be shared: sharing of sensory data, of episodes, and of learned policies [175]. 
Sharing of sensory data from one other agent is helpful if the information is relevant 
and enough for learning. When sharing of episodes involves sharing of the Q-values 
after an amount of episodes, whereas sharing of policies happens at the end of the 
learning process. In most cases, sharing of information boosts the learning process, if 
it is adequately employed. 

c. Robustness 

Multi-agent reinforcement system is innately robust considering that when a number 
of agents fail, the rest of the agents can carry out their assigned tasks. Reinforcement 
learners can easily be designed to react dynamically to undesirable situations. To 
illustrate, reinforcement learners that are dispersed in a distributed system can be 
informed once a host system is getting turned off; thus they will distribute and 
maintain work in another host environment [172]. 

 

3.6.2 Recent developments in Multi-agent Reinforcement Learning 

In this sub-section, we focus on some main studies on MARL: combinational RL 
algorithms and most of the widely known swarm RL algorithms. 

 

a. Combinational Reinforcement Learning 

Combinational RL algorithm is a kind of RL algorithm that combines much more than 
one RL algorithm to speed up the learning process by making benefit of the power 
aspects of each algorithm (Figure 28). 
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Figure 28 The AMRLS aggregation design [176] . 

Aggregated Multiple Reinforcement Learning System (AMRLS) was offered by [176]. 
It constitutes a sort of combinational algorithms. This algorithm aggregates Actor-
Critic (AC), Q(λ)-learning and SARSA(λ). AMRLS involves two levels: learning and 
aggregation levels. The reinforcement learners can adhere to one of four performance 
ways when they are learning: synchronous, asynchronous, parallel or also serial 
execution ways. Each learner chooses an action for every state it goes to; after that, it 
transmits these actions towards the aggregation level. While in the aggregation level, 
the experienced actions for every single state are dynamically aggregated applying 
Majority Voting (WMV) or Weighted Borda Count (WBC) aggregation functions. 

 

b. Swarm Reinforcement Learning 

The swarm agent-based model is designed for use to model the learning procedure of 
cooperative independent learners. The studies like in [177, 178, 179] have made several 
works that inspected the inclusion of swarm multi-agent framework in reinforcement 
learning. 

In [178], a MARL algorithm models the learning procedure of diverse independent 
learners. Through this algorithm, the learning procedure of independent cooperative 
reinforcement learners occurs in two levels: 

 Independent learning stage: each learner works independently utilizing its own 
Q-learning algorithm till finishing each one learning episode. 

 Q-value sharing stage: learners share their Q-values following a conventional 
Q-value update procedure (Q-value sharing process). 

 

The research workers offered three interaction methods for sharing Q-values between 
independent learners: 

 Best Q-value update procedure: The best Q-value of each state-action pair for 
all agents is chosen using the following update rule: 
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𝑄𝑖[𝑠, 𝑎] ← 𝑄𝑖
𝑏𝑒𝑠𝑡[𝑠, 𝑎] ) (∀𝑖, 𝑠, 𝑎)                                                      (45) 

 Where i is the agent identification number and 𝑄𝑖
𝑏𝑒𝑠𝑡 best Q-value  

The Q-learning algorithm that incorporates this sharing strategy is known as BEST-Q. 

 Average Q-value update procedure: Each learner averages each Q-value in its 
Q-table with the best Q-value for each state-action pair. The update rule is: 

𝑄𝑖[𝑠, 𝑎] ←
𝑄𝑖
𝑏𝑒𝑠𝑡[𝑠, 𝑎] + 𝑄𝑖[𝑠, 𝑎]

2
 (∀𝑖, 𝑠, 𝑎)                                       (46) 

 Where i is the agent identification number and 𝑄𝑖
𝑏𝑒𝑠𝑡 best Q-value  

The Q-learning algorithm that incorporates this sharing strategy is known as AVE-Q 
(Average Q-learning). 

In the next section, we are giving a new swarm reinforcement learning algorithm using 
the enhanced Particle Swarm Optimization from the last chapter to update and guide 
the Q-value optimal search.  

4. PSO COOPERATIVE REINFORCEMENT LEARNING BASED HMM 

 

In cooperative Q-learning, diverse independent learners find out the same task 
through the whole state space. The learning procedure of cooperative Q-learning often 
requires two stages. First, the individual learning stage, where every single learner 
independently utilizes its own Q-learning algorithm to progress its solution. Second, 
the learning through the interaction stage, where a Q-value sharing strategy is 
integrated. A Q-value sharing strategy enables independent learners to share their 
particular Q-values and make use of this information to attain new Q-tables. Sharing 
of Q-values among reinforcement learners speeds up the learning procedure of 
individual learners. 

Reinforcement learning Swarm algorithms, such as [179], emerged as an appealing 
research sequel that handles the problem of Q-values formal update between diverse 
RL agents. In this section, a new swarm based cooperative learning RL is proposed 
based on the controlled particle swarm optimization algorithm of the second chapter. 

4.1 Q-value HMM Sharing swarm Strategies 

The PSO algorithm can incorporate the Particle Swarm Optimization (PSO) process to 
get a global optimal solution as provided by [178]. PSO is an optimization method that 
repetitively enhances a candidate solution relating to a qualitative measure [18]. PSO 
resolves decision problems that have diverse decision variables. As provided in the 
previous chapter, PSO as the swarm is a collection of particles that comprise a 
candidate solutions. Let D be a decision problem of n decision variables 𝑋 =
 {X1, X2, . . , X𝑛} that minimize an objective function 𝑓, and the size of the swarm as D to 

be composed of m particles {𝑝1, 𝑝2, . . , 𝑝𝑚}, then particle 𝑝𝑖 of the swarm at iteration t is 
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X𝑖(𝑡) = (𝑥𝑖
1(𝑡), 𝑥𝑖

1(𝑡), . . . , 𝑥𝑖
𝑛(𝑡)) . The following two functions define the candidate 

solution of 𝑝𝑖 at the following iteration t + 1: 

V𝑖(𝑡 + 1) =  𝑤 V𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − X𝑖(𝑡))  + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − V𝑖(𝑡))               (47) 

      V𝑖(𝑡 + 1)  =   X𝑖(𝑡)  +  V𝑖(𝑡 + 1)                                                      (48) 

Where V𝑖(𝑡)  is the velocity vector of 𝑝𝑖  at iteration t, w, 𝑐1 , and 𝑐1  are acceleration 
coefficients, 𝑤 inertia weight, 𝑟1, and 𝑟2  are random numbers between 0 to 1, 𝑝𝑏𝑒𝑠𝑡𝑖

 is 
the personal best solution of particle 𝑖, and 𝑔𝑏𝑒𝑠𝑡 is the best solution discovered by all 
particles. 

In PSO based reinforcement learning, the RL problem is modeled as an optimization 
problem in which the solution candidate and qualitative measure are respectively the 
Q-values and an evaluation function of the Q-values (Q-function) where the HMM 
model guides PSO parameters and search behavior as in the previous section. In this 
approach, the best Q-values of every single learner and the best global Q-values of all 
learners are utilized by each learner to update its Q-table.  

The HMM model controls the PSO algorithm; the HMM state classification governs 
parameters and search behaviors. 

The update of Q-value will be done as well according to the HMM classification as 
follows:  

𝑄𝑖(𝑠, 𝑎) = 𝛿1𝑄𝑖(𝑠, 𝑎) + 𝛿2𝑄𝑃𝑏𝑒𝑠𝑡𝑖(𝑠, 𝑎) + 𝛿3𝑄𝐺𝑏𝑒𝑠𝑡(𝑠, 𝑎)                                             (49) 

In the above function the weights  𝛿𝑘 , 𝑘 ∈ [0,3]  are named expertness and express the 
function of agent’s relative expertness. In our approach, the formula for assigning a 
weight of expressiveness to agent knowledge by learner i, is using also the knowledge 
of all agents and controlled by the HMM classification. The weight 𝛿  manage the 
impact of the historical information. In our approach, we calculate𝛿1, 𝛿2 and 𝛿3 from 
the likelihood given by HMM of the corresponding state: exploration, exploitation, 
and convergence respectively. The likelihood of a state is calculated from the historical 
achievement of the swarm and gives a quantified probability to each state. 

The Q-value update will also be state dependent and controlled by the search 
achievements.  

4.2 HMM-QPSO ALGORITHM 

According to classified state, each particle has it is associated state and can adapt its 
parameters individually as well as in the earlier described approach selfHMM-PSO. In 
our case, we apply the HMM state to adapt also the search of Q-value as well as inertia 
weight and acceleration factors of the PSO algorithm. Algorithms for adaptation are 
the same as defined for the whole swarm but applied to adapt the Q-value iteratively.  

 First Stage: Q-learning 

In the first stage, each learner individually incorporates its individual Q-learning 
algorithm to enhance its solution. The problem model of the Q-learning algorithm can 
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be described as Markov Decision Process (MDP), which has an agent, a set of states S, 
and a set of actions 𝐴𝑖 for each state ∈  𝑆 . 

An agent that applies Q-learning needs a number of learning episodes to find an 
optimal solution. An episode is a learning period that starts from a selected state and 
ends when a goal state is reached. During an episode, the agent chooses an action a 
from the set of actions 𝐴 of its current state s based on its selection policy. The learner 
then perceives the new state of the environment 𝑠´, and receives a reward R(s, a) based 
on the previously implemented action. The agent then updates its Q-table based on 
the Q-function: 

𝑄𝑖[𝑠, 𝑎] ← 𝑄𝑖[𝑠, 𝑎] + 𝛼 (𝑅(𝑠, 𝑎𝑖) + 𝛾 𝑚𝑎𝑥𝑎𝑖′∈𝐴𝑠′
 𝑄𝑖[𝑠

′, 𝑎𝑖
′] − 𝑄𝑖[𝑠, 𝑎𝑖])                (50) 

where 𝑅𝑖(𝑠, 𝑎𝑖) is the reward that agent i receives for performing action ai in the current 

state s, 𝑎𝑖
′  is the action performed by  agent 𝑖  in the next state 𝑠’ , 𝛼 ∈  [0, 1]  is the 

learning rate, and γ ∈ [0, 1] is the discount factor. 

This process is repeated until the agent attains the goal state, which represents the end 
of the episode. The main end result of the Q-learning algorithm is a policy π : S → A 
which maximizes the sum of its rewards 𝑅 =  𝑟0  +  𝛾𝑟1 + . . . + 𝛾

𝑛𝑟𝑛 for an MDP that 
has a final state 𝑠𝑡, or a termination condition. The proposed HMM-QPSO algorithm 
does not require a model of the environment as [148]. 

The overall pseudocode of the proposed approach is bellowed:  
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Algorithm 23: HMM-QPSO algorithm 

Data: The objective function 

Initialization: positions, velocities of particles, accelerations factors 

and HMM parameters, initial Q values; Set t value to 0 ;  

while (number of iterations t ≤ tmax not met) do 

Update HMM parameters by EM process (Algorithm 1) ; 

Classification of PSO state by HMM classifier (Algorithm 2) ; Update 

𝐜𝟏 , 𝐜𝟐 and w values according to the corresponding state ;  

for i = 1 to number of particles do 

compute f as Q values; 

Update 𝑸𝒊[𝒔, 𝒂] by performing Qlearning for one episode for agent i 

Update velocities and positions according to Eqs. (47) and (48) ; 

if (  f ≤ fbest ) then fbest → f ; pbest → X ; 

end 

if ( f (pbest ) ≤ f (gbest ) ) then 

f (gbest ) ← fbest ; 

gbest ← Xbest ; 

end 

if state = convergence then 

Elitist learning 

End 

End 

Update 𝑸𝒊[𝒔, 𝒂] by equation.50 

t ← t + 1 

end 

Result: The best Q values for optimal action state selection 

 

The next sub-section will give an experimental study to improve our method. 

4.3 EXPERIMENTATION 

 

4.3.1 Experience settings 

This section shows the results of the 10 × 10 grid (Figure 29).  

The performance of the cooperative Q-learning algorithms based HMM-PSO and other 
Q-learning based algorithms were experimentally investigated. In the tests, an 
algorithm is thought to acquire convergence once the average number of steps in its 
policy enhances by fewer than one move through 200 successive episodes. 

In this simulation, five agents learn for the exact number of learning episodes just 
before sharing their particular Q-values. The impact of the occurrence of information 
sharing influences the overall performance of cooperative learners. The agents share 
their very own Q-values after every single learning episode.  



Chapter III. Multi-agent reinforcement learning by HMM-based PSO 

123 

 

 

 

Figure 29 Example of grid world for n=10 

The number of learning episodes is 1000, the discount factor γ = 0.9 and the learning 
rate is α = 0.01, in the Q-learning algorithm (like in [180]). A learning episode 
terminates once the learner attains the goal cell or soon after 1000 steps with no getting 
to the goal cell.  

 

4.3.2 Experimental Results 

The performance of the HMM-PSO based Q-learning algorithm and other Q-learning 
algorithms were investigated against each other following experimental models.  
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Figure 30 Comparison of Reinforcement learning algorithms 

In the experiments (shown in Figure 30), an algorithm is said to have converged when 
the average number of moves in its policy improves by less than one move over 200 
consecutive episodes. The comparison is shown in the average number of moves per 
one episode in a 10 × 10 grid. HMM-QPSO gives the best results. 

 

5. CONCLUSION  

 

In this chapter, the multi-agent design of the particle swarm algorithm, controlled by 
a hidden markov model, has been used as a reinforcement learning technique for 
markov decision model resolution. The idea of using metaheuristics for reinforcement 
learning is not completely new, but the use of online controlled particle swarm by the 
supervised machine learning (HMM) enhance the optimal Q values search. The overall 
results of the HMM-QPSO suggest that each of the cooperative Q-learning algorithms 
performs better than single agent Q-learning when Q-value sharing performed. This 
is because learners with less experience incorporate knowledge of more experienced 
agents, giving a better average move number than single-agent learning. Also, the 
online controlled PSO based cooperative Q-learning gives best results; this is due to 
the cooperative aspect of PSO and the HMM integration to enhance the Q-value search.  

This chapter presents a preliminary result of the proposed reinforcement learning 
method that is the HMM-QPSO. Experiments have been performed on the classical 
robotic problem of the optimal path in a labyrinth of 10×10 grid. Even if the result was 
notably better than the other Q-learning variants, the approach needs to be compared 
using more competitive and complex problems. On the other hand real word 
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applications are required to ensure the performances of this proposed RL algorithm. 
Chapter 5 will present an application of the HMM-QPSO to an airline transport 
problem that is the maintenance rooting problem; the approach is therefore 
investigated in an air traffic problem. 
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CHAPTER IV:                                        
STOCHASTIC MODEL OF THE GATE 

ASSIGNMENT PROBLEM 

With airports being busier and often troubled with insufficient capacity, the efficiency 
of the airport's resource usage becomes increasingly more imperative all across the 
world. The efficiency can be upgraded by taking under consideration the flight 
operations disruptions, which historically were not considered into planning. More 
efficient resource utilization will not only smooth airport operation but even require 
to predict unwanted disruption and manage its negative effect. The gate assignment 
problem is considered one of the vital airport operations, which is typically solved 
with no consideration of some random disruptions, such as delays that frequently arise 
in the flights schedule. Modeling and study of uncertainties in flight operations which 
may enable the possible disruption information to be evaluated in the allocation 
planning earlier along with the design of a new type of solution methods are revealed. 
It is noticed that when further information from the flight operations is integrated into 
the assignment planning process, the number of estimated conflicts in flight operations 
can be estimated. This might effects a smoother airport operation at the time of airline 
operations. A new approach of dealing with the gate assignment problem is presented 
in this chapter based on a stochastic model, that is, the Markov decision process. 

The original algorithm of MDPs is considered in this chapter, providing the modeling 
background to solve the gate assignment problem under uncertainty. In this offered 
resolution methodology, we consider the stochastic aspect as a result of flight delay 
and with the consideration of different further constraints of aircraft size in the 
assignment. The main aim of this chapter is to provide an adaptive planning model of 
GAP; this concerns a planning/learning approach in order to create an effective 
approximation of state-dependent uncertainties. That will enable supplying a new 
model for the GAP based on MDPs. This work aims to grant to controllers at the airport 
a robust priory solution rather than taking the risk of online schedule modifications to 
manage uncertainty. The solution of this problem will be a set of optimal decisions that 
should be adopted in the matter of traffic disturbance. Primary experimental results 
on a sample of real-life data illustrate the feasibility and efficiency of our approach for 
managing uncertainty. 
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1. The gate assignment Problem  
 

Considerable interest has been given in recent years to the techniques for managing 
and allocating airport and airline resources effectively and efficiently in a dynamic 
operational environment. This is due to the growth of air transport traffic (doubled 
since the early 1980s). The scheduling problems nowadays faced by airport and airline 
managers have led to complex planning problems that require new models and 
methods. This is firstly caused by the wide range of resource modules that apparently 
have to be considered like flights, terminals, crews, baggage etc, and they are highly 
interdependent. In the real world, we also have stochastic variations in air traffic that 
increase problem complexity, which is more considered in the latest researches. 

1.1 Problematic 

The major task of an airport is to ensure a smooth flow of flights traffic. Figure 31 
depicts an example of gating at Mohamed V airport, where arriving aircraft are 
assigned to terminal gates. This is guaranteed by an optimal assignment of aircraft to 
their suitable gates. In fact, if not assigned yet, an aircraft will wait obligatorily on the 
ramp or even in the air. Such situations are undesirable more than the problem of gate 
capacity because of time consumption and also the limited capacity of ramps and 
adjacent airspace. 

 

Figure 31 Example of gating at Mohamed V airport 

Thus, Airport gates are considered as expensive and scarce resources in air 
transportation. Increasing the resource supply by involving a time-consuming and 
costly redesign of terminal buildings or ramps is usually not feasible in the short term. 
It is therefore of great importance to an airport to exploit the available gates as best as 
possible.  

Flight gate scheduling problem relates to assigning different aircraft activities (arrival, 
departure, and parking) to different aircraft gates. This is, consequently, an essential 
concern in the daily operations of an airline. They have a major impact on maintaining 
the efficiency of flight schedules and passenger satisfaction. Some of the factors that 
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impact the assignment of gates to arriving flights include passenger walking distances, 
aircraft size, baggage transfer, aircraft rotation, ramp congestion, and aircraft service 
requirements, etc. In the real world, the deterministic solution is infeasible due to the 
stochastic aspect of the problem. 

In real life applications, the arrival and departure times are not certain, and it is 
important to take the uncertainties of these input parameters into account. This is why 
one of the most critical challenges of gate scheduling is to build a gate scheduling that 
can be robust against stochastic variations of input data; in other words, schedule 
flexibility is necessary. The uncertain in gate scheduling can be caused by flight or gate 
breakdown, flight earliness or tardiness, emergency flights, severe weather conditions, 
errors made by staff or for several other causes. For example, delayed arrival of one 
aircraft may generate a series of delayed arrivals for other aircraft that have been 
allocated to the same gate. In the worst case, this may result in what is called "domino 
effect" and finally require an entire rescheduling; this type of scenario is highly 
undesirable. 

1.2 Problem statement  

The gate allocation problem (GAP) is the task of getting suitable positions to park 
aircraft at an airport. In this section, a real-world example is used to clarify the problem. 
Mohammed V Airport of Casablanca is used as a case study airport to demonstrate the 
scale of this problem, the specifications which have to consider by the currently 
utilized systems, and the manner in which the problem is handled.  

The problem of assignment to gates is often divided into two parts. The first includes 
a monthly schedule. Each month, the airline operators declare a list of flights they 
made to plan with the assignment of flights for every day of this month. So, each flight 
is associated with a specific gate. Once the first assignment has been made and if a 
change of time has occurred, it was necessary to wait for the necessary resources (i.e., 
gates) to be available for the traffic. Those situations of irregularities involve extra 
irregular equipment or repair. For the first part of the problem, the resolution time is 
not a critical factor. However, the second part of the problem occurs when the planed 
schedules are altered because of a non-anticipated events such as the bad weather, 
mechanical defects, and late arrivals. Then, the controllers have only a few minutes 
reorganize those sort of disruptions; So that the current assignment of flights has to 
accommodate all arriving flights. The emergency replaces the goal that needs to be 
changed in real time. 

The problem of assigning gates to arriving flight is a crucial decision problem in daily 
operations at most airports around the world. Heavy competition between airlines and 
the rising demands of passengers for higher comfort has produced measures of quality 
in decisions at an airport as significant performance indices of airport management. 
For this purpose, mathematical modeling of this problem and the application of 
advanced operations research and machine learning methods to solve the GAP 
problem have been examined largely in the literature. The overall characteristics of 
busy international airports generally require serving a large group of different airlines, 
a big number of daily flights, and covering several types of aircraft. 
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The next subsections will provide a description of an airport, its likely configurations, 
and its assigned missions. 

1.2.1 Airports Description 

We will present and clarify the components that construct an airport, and the activities 
that are inherent to it. Airport operations vary from landing aircraft to take-off as 
displayed in Figure 32; it depicts the area of interest given by this chapter. Once an 
aircraft lands, it taxies into a ramp area and parks at a gate. While the aircraft is 
docking at the gate, passengers disembark and board the plane. Whenever the aircraft 
is in position to depart, it is taken back and taxies out to a runway. After that, the 
aircraft takes off the airport. Involving these operations, this study concerns the 
optimization of ramp operations that impact directly on the accommodation of 
passengers.  

 

Figure 32 Area of interest of the gate assignment problem.  

To acquire a better understanding of the airport functions, certain elements should be 
considered. From an operational perspective, an airport is the sum of many operations, 
infrastructures, agents, facilities, and equipment needed to enable airlines to take off, 
land, supply, maintenance and shelter the aircraft. The operations and sub-operations 
that provide the ways for passengers and freight to pass on from area to air modes of 
transport; and the sub-operations that offer more enjoyable passage through the 
airport (including shops, restaurants, etc.). Nevertheless, to depict an airport today, 
the definition is always partial, on account of a set of increasing activities that have 
been attaining importance over the years [181].  

The configuration of an airport is mainly divided into two different sections, as it is 
noticed in Figure 33: the airside and the landside.  
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Figure 33 Schematic presentation of an airport 

The airside is the part of the airport dedicated to aircraft activities including take-offs 
and landings and loading and unloading. The airside consists of all the areas available 
to the aircraft and is consisting mainly of [182]:  

 Runways: regions for the landing and take-off of aircraft.  

 Taxiways: circulation areas related to the runways to other airside services. 
Keeping a decisive effect on the capacity of the runway system, they require 
to enable aircraft to operate safely and fluently.  

 Apron: the part that affords the interchanges among landside and airside 
services. They can be categorized as cargo building aprons, passenger 
building aprons, general aviation aprons, service, and hangar aprons or long-
term parking aprons and remote aprons.  

 Support Services: qualified to offer all the assistance required by the aircraft 
to perform their activity.  

 All the infrastructures that are necessary for the passengers to cross from the 
surface to inside the airplane.  

The landside combines all the areas usable for departure, arrival and transit passengers 
to arrive and accomplish their goal destination. Indicating that for departure 
passengers, it involves all the infrastructures, they are required to use and pass 
through to attain their gate; for transit passengers, the ways for them to go to their next 
flight; and for arriving passengers. All the areas they need to gather their baggage and 
get out of the airport. The access between these two areas is highly controlled by using 
the different manner of security monitoring.  

1.2.2 Terminal description and configurations  

As stated by [183], the terminal’s primary function is to offer a convenient service for 
the mode transfer, frontier activities along with the operations needed by the airlines. 
Its design supplies the terminal link with the land-side surface transport system, 
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commonly making the passengers pass over all the selling stores; apparent 
information throughout the series of processes; authorities control and security 
monitors; baggage managing system for both local and transfer bags.  

In the airside component of an airport, three different airport ground resources 
optimization airport controllers have to manage, as depicted in Figure 34:  

 Stand and Gate Allocation also called gate assignment 

 Ground Routing 

 Runway Sequencing 

Our key area of focus in this chapter will be the first problem related to gate allocation. 

 

Figure 34 Airside ground resources optimization at an airport 

As outlined by [184], the configuration of the terminal building primarily is 
determined by the traffic they operate, getting this traffic separated into three parts: 
Overall volume of traffic, seasonality of traffic and the ratio of traffic that transfers 
between aircraft. According to the configuration, several elements of traffic will have 
advantages above the other. There are four basic configurations (see Figure 35):  

 Linear: Individual stands are placed all along the terminal building, offering 
simplified access from the terminal building to the airplanes. It is used in 
airports with low traffic amounts; the planes are parked obliquely in order that 
they can easily enter and exit on their own. 

 Midfield, both linear or X-shape: the stands are located aside from the terminal. 
The transport of the passengers to the terminal is supplied by using buses or 
mobile lounges.  

 Satellite: every satellite construction is connected to the central terminal by 
using corridors or underground passageways.  

 Finger piers: gate concourses are supplied to the terminal structure. 



Chapter IV. Stochastic model of the gate assignment problem 

132 

 

 

 

Figure 35 Terminal configurations [184] 

In all those configurations, enough space must be supplied to prevent conflicts and 
match the preferences of large aircraft.  

Throughout the years, the terminal building continues to be in continuous 
development and progress matching its demands. Three main considerations were in 
the root of these developments: improving aircraft technology, an enormous increase 
in passenger traffic and the attempt to boost the quality of service. As was set by the 
problematic sub-section 1.1, currently, airports have to maintain a good service quality 
and passenger satisfaction; furthermore, they grow into multi-functional facilities 
meant to furnish a large variety of services, more than their original features [185].  

Multiple operations can be determined in the airport terminal, including Passengers 
Arrival, Boarding, Passengers Arrival, Baggage Handling, etc. Due to the passenger’s 
progress through the terminal, they are facing those processes they have to pass to 
attain the airplane. Every single process outlined in the airport terminal uses several 
resources and has got its own constraints or restrictions. In this chapter, we consider 
the Gate assignment process, identified as the last phase of the passengers’ experience 
through a terminal. This is the last step between the airport and the airplane, where 
passengers expect the opening of their particular gate so they can board the plane 
using the passport and boarding pass [186]. An example of airport Mohamed V 
configuration is addressed in the next sub-section, before the literature section. 

1.2.3 Example of Mohammed V airport of Casablanca 

In this sub-section, we describe the organization and the different elements of the 
infrastructure of Mohammed V international airport, as well as the variety of the 
configuration of this airport and its components as shown in Figure 36. 
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Figure 36 Mohammed V Airport Infrastructure [ONDA] 

Mohammed V Airport consists of the following elements: 

 Two terminals for passengers 

 A freight terminal 

 A control tower 

 Two tracks 

 63 parking posts 

 9 Boarding Gates 

The "Airside" side of the airport can be described by a loop whose node is formed by 
the runways and which passes through the parking stations of the aircraft. This 
schematization is used to illustrate the cyclical treatment performed on aircraft flows 
on the platform. 

 

Figure 37 Mohammed V configuration 

The configuration of gate areas is closely linked to passenger and cargo terminals. In 
Figure 37 of Mohamed V airport, we see that there are several parking systems, which 
follow the several configurations as Linear, Finger piers and Midfield. It can be 
considered as a hybrid configuration airport.  

The next section will describe the literature review of gate assignment problem. 
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2.  LITERATURE REVIEW  

 

Gate assignment problem focuses mainly on assigning arriving aircrafts serving flights 
to available gates, or aircraft stands at the airport while satisfying some constraints 
and meeting some objectives.  

More interest in recent years is allowed to providing advanced techniques in the air 
traffic framework. This is resulting from the increase in air transport traffic [187]. The 
main objectives are the best allocation and management of airport and airline 
resources in the best way effectively and efficiently. Caused by the dynamic stochastic 
operational environment conditions of air transport, the scheduling problems 
currently confronted by the airport and airline managers are leading to challenging 
and complex planning problems that involve innovative models and solutions. This is 
triggered by the significant diversity of resource segments that have to be regarded 
including terminals, flights, crews, baggage etc, and most are interdependent. In fact, 
stochastic disruptions in air traffic transport raised the complexity of the resolution 
models. This is progressively taken into consideration in most recent studies.  

The main target of an airport is to guarantee a fluent flights traffic. Optimal assignment 
of aircraft must guarantee to make available over time the proper gates. If an aircraft 
is not assigned, it will be forced to wait on the ramp very well as in the air. This type 
of scenarios are quite undesirable on account of time wasting and let to flight delays. 
Also, ramps and airspace are resources with a limited capacity.  

Gate flight assignment is an essential task of an airport; it is the primary activity in 
airline traffic transport management [188]. Moreover, several airports today have 
severe capacity constraints resulting from the increase in air traffic volume. The GAP 
can be regarded as such a problem of constraint resource assignment, in which gates 
represent resources and aircraft are considered as resource consumers.  

As well, GAP is considered to be a challenging and tough problem [189] as it involves 
highly inter-dependent resources including gates, crews, and aircraft. Consequently, 
serious disruptions in the airport exposed as flight delays result from inadequate 
assignment that lowers the client services and generates conflicting flights and 
ineffective usage of gate services. 

In this section, we will give the possible constraints and objectives of the GAP 
formulation, in addition to a survey of different used models, and resolutions methods 
from the literature.  

2.1 Constraints and Objectives 

All of the search methods perform on a search space. In order to produce the 
search space, a model of the real problem is generally created. The model 
reflects the main features of the real problem that may possibly impact the 
solution. The majority of the real world problems are to some extent uncertain. 
There are however several modeling techniques that provide the way to 
consider the uncertainty in a model in order to attain more accurate solutions. 
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The volume of facets of a modeled problem, identified as certain or uncertain, 
means the size of the search space. Considerably more complex models are the 
origin of much larger and most likely complicated search spaces. Therefore, 
building a suitable model with ample details but not so much complicated, is 
amongst the most challenging tasks whenever solving an optimization 
problem. 

Mathematical programming [190] is the most commonly encountered 
modeling approach intended for the gate assignment problem. Ahead of 
providing an overview of applied GAP models, the next constraints and 
objectives are generally mentioned in the relevant literature: 

 

2.1.1 Constraints 

These constraints are principally classified as ‘‘soft’’ and “strict” constraints in the 
literature (Chun-Hung et al. [189]).  

The strict (hard) constraints are inherent to the problem and can be described as 
follows: 

 Single: Each flight must be assigned to one and only one gate. It means that No 
two flights can be assigned to the same gate at the same time  

 Feasible: No two flights with overlapping ground times are assigned to the 
same gate concurrently, which means that a flight should be assigned to at 
most one gate. 

Several soft constraints are also considered in the literature for example; those 
additional constraints could be associated with the model. The decision 
regarding adding soft constraints relies mainly on the specific airport 
priorities and the features of the problem the modeler aims for. The 
following list comprises some soft constraints outlined in the literature:  

 Constraints related to various aspects of gates: just like sizes [191, 
192]. This is a severe constraint which often happens in real life. It can 
enforce the assignment of specific airline flights to some predefined gates; also, 
the assignment of a large aircraft to a particular gate may imply that 
neighboring gates can only accept aircraft of a certain size or are even 
completely blocked (see Dorndorf et al. [192]. It is covered by the elaborate 
model included in this research (see next section). 

 The preceding constraint: it implies that a flight may carry no more 
than one upcoming flight at the same gate [193]. It makes much 
simple the model formulation.  

 The time gap constraint: it features a variable for every single pair of 
flights, which are successive on the same gate. It is also included in 
the objective function to maximize the time gaps amongst allocations. 
Maximization of the time gaps in assignment is a fundamental part 
of the problem as it enables minor delays on gates to be absorbed. 
Further robust solutions are supplied when the constraint is included 
in the model as in [191].  
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 Fixed minimum buffer time between two allocations as in [194]. It 
needs to be put into the model as it grants to the departing aircraft 
time to empty the gate. This constraint is generally included in real-
world planning. 

 Push back constraints: it focuses on assignments which may lead to 
pushing back conflicts in the locations around the gates as provided 
by [195].  

 The shadowing constraint: it has to do with gates which are unable 
to be employed concurrently [196, 191], such as entry to one gate may 
possibly block the use of another. The shadow constraints often arise 
in real-world situations.  

 The towing constraint: it addresses flights which are staying too long 
at an airport and are towed aside from the stands. It is generally 
modeled by dividing the flights to two or three items: arrival, 
departure and parking activity (or simply arrival and departure). It 
can be found in [195, 191].  

 The passenger walking distance constraint: This constraint had to be 
highly common within preliminary stage researchers as [188] when 
the walking distance appeared to be a critical facet of the problem.  

 The time window constraint: it specifies the time duration where an 
aircraft might stay at an airport [193]. If the time window is much 
longer when compared to the time an aircraft actually remains at an 
airport, it provides a possible assignment delay. 

 

2.1.2 Objectives  

Multiple objectives are usually included in the GAP models, and the 
objective function is commonly a weighted sum of them. Weights are 
established by the modelers to obtain a solution that indicate the main user 
concerns. Some papers even compare the results supplied for numerous 
weights in the objective function [197] or analyze the Pareto from a multi-
objective formulation [198]. Also, several multi-objectives formulations 
with multi-criterion models are considered in [197, 192]. 

All these objectives can be divided into two big classes: passenger-oriented 
and airport-oriented objectives. For example, Teodorovic et al. [199] focus 
on total passenger delay and the number of flights cancellations in the case 
of irregularity of flights. In turn, Chang [200] considers the distance 
passengers have to carry their baggage as an objective in addition to 
passenger walking distance. In contrast to previous ones, airport oriented 
objectives like total gate preferences, number of aircraft towing procedures 
and others can be addressed. A list of typical objectives found in the 
literature are presented below:  

 Minimize the total walking distance for passengers (Xu and Bailey [201]),  

 Minimize the total waiting time of all passengers (Yan and Huo [197]), 

 Minimize the number of un-gated aircraft activities (Lim and Wang [188]), 
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 Maximize the preferences of assigning certain aircraft to particular gates [198], 

 Minimize the current schedule deviation from a reference schedule, 

 Minimize gate conflict (Lim and Wang [188]). 

 Minimization of the overall change from the originally planned schedule as in 
[202, 198]  

 Minimization of the time an aircraft must wait for a gate. This constraint relates 
to the scenario when there are not enough gates at an airport, or they are 
wrongly allocated, and consequently, several arriving aircraft may be delayed 
as they need to wait for gates to be available [193].  

 Minimization of the number of ungated flights such as [198, 191].  

 Minimization of the number of conflicts between flights inside spaces around 
gates such in [203].  

 Minimization of baggage handling distance [204]. It is carried out 
simultaneously with the passenger walking distance minimization.  

 Minimization of the total passenger waiting time [194]. Where the total time 
that passengers pass at an airport is minimized 

 Minimization of the number of towing operations [192, 202]. Every towing 
operation is a supplemental movement at an airport which can induce conflicts. 
Therefore, it is preferred to reduce the number of towing operations, specifically 
at the time of rush hours.  

 Maximization of gates occupation time regarded as [205]. It leads to getting as 
many flights as possible on every gate. 

2.2 Models of the GAP 

A gate has been firstly identified by Hamzawi [206] as the area of the 
terminal apron designated for the parking of aircraft in order to load and 
unload passengers and to accomplish an aircraft ground services including 
refueling, baggage handling, cleaning, servicing, etc. Figure 31 displays a 
situation scenario from an airport. Two aircraft are observable in Figure 32; 
an aircraft has just arrived and is taxiing inside the direction of the assigned 
gate. Two other aircraft, apparent in the picture, have already been on its 
associated gate. The gate assignment problem is often recognized as a 
process of getting suitable places to park aircraft at an airport. This is 
certainly an optimization problem and to be able to resolve it a good model 
is required initially.  

Formulation of the GAP can be carried out under two primary categories: 
deterministic models and stochastic models. In the first one, only static 
parameters are considered (just like flights arrival/departure, passengers, 
etc); this method becomes infeasible regarding stochastic variations, for 
example, weather conditions or flight delays. Stochastic GAP models have 
actually been examined to consider those variations into the model. 

In this sub-section, several mathematical models found in the literature are 
discussed, especially stochastic models. First, the basic deterministic 
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mathematical model is presented before providing stochastic models from 
the literature, as the type of model tackled in the proposed approach. 

 

2.2.1 Basic Mathematical Programming model 

The mathematical programming model [207] requires a set of mathematical 
relationships that matches existing relations in a real problem. Many kinds 
of mathematical programming models are identified in the literature. They 
can be either linear programming models or otherwise non-linear 
programming models. The constraint and objective function are controlled 
by variables.  

The traditional methodology for formulation in the literature of this 
problem is right from the passenger's perspective in the manner that the 
total passenger-walking distance is minimized as given by [201]. The 
objective function is in fact to minimize the total passenger walking 
distance. Three kinds of passengers are recognized: arriving passengers, 
departing passengers, and transfer passengers; with three walking 
distances to evaluate: the length between a gate and the arrival hall, the 
length between a gate and the departure hall, and the distance that 
separates two gates. 

The classical formulation of the GAP as a mathematical programming 
model is given as follows. We define:  

G       the set of gates 

F       the set of aircrafts 

𝑍       Objective function value 

𝑥𝑖𝑘       decision variable which is equal to 1 when aircraft i is assigned to gate k, and 
equal to 0 otherwise 

𝑎𝑖         The arrival time of aircraft i 

𝑑𝑖         The departure time of aircraft i 

𝑝𝑖𝑗        The total number of transfer passengers from aircraft i to aircraft j 

𝑝𝑖0       The total number of arriving passengers of aircraft i 

𝑝0𝑖       The total number of departing passengers of aircraft i 

𝑤𝑘𝑙      The walking distance between gate k and gate l 

𝑤𝑘0     The walking distance between gate k and the arrival hall 

𝑤0𝑘     The walking distance between the departure hall and gate k 

Given the notation defined above, the formulated GAP model that we will be based 
on for our study as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍 = ∑∑∑∑𝑝𝑖𝑗
𝑙∈𝐺𝑘∈𝐺𝑗∈𝐹𝑖∈𝐹

𝑤𝑘𝑙𝑥𝑖𝑘𝑥𝑗𝑙 +∑∑(𝑝𝑖0𝑤𝑘0 +

𝑘∈𝐺

𝑝0𝑖𝑤0𝑘
𝑖∈𝐹

)𝑥𝑖𝑘       (50) 
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Subject to: 

∑𝑥𝑖𝑘 = 1, ∀𝑖 ∈ 𝐹

𝑘∈𝐺

                                                         (51)  

𝑥𝑖𝑘𝑥𝑗𝑘(𝑑𝑗 − 𝑎𝑖)(𝑑𝑖 − 𝑎𝑗) ≤ 0, ∀𝑖, 𝑗 ∈ 𝐹, ∀𝑘 ∈ 𝐺             (52)  

𝑥𝑖𝑘 ∈ {0,1},   ∀𝑖 ∈ 𝐹, ∀𝑘 ∈ 𝐺                                                (53)  

 

The Objective function (50) minimizes the total passenger walking distance. 
The quadratic component of the function is the total walking distance for 
the transfer passengers while the linear component is for the arriving and 
departing passengers. The constraint (51) must have every single aircraft to 
be assigned to only one gate. The constraint (52) is a non-linear constraint. 
It restricts that no two aircraft are assigned to the same gate at the same 
time. The constraint (53) limits all the decision variables to be 0 or 1. 

This problem can be solved by taboo search algorithm, to provide an 
approximated solution. Various other researches attempted to enhance the 
offered heuristic solution by strategies as stochastic neighborhood search 
(Hakki et al. [205]). Multiple constraints can be integrated into the 
formulation. This category of models known as static GAP model and are 
unable to support any change in its parameters. In contrast, the GAP is 
always susceptible to uncertainty and could change eventually. Therefore, 
static models would not respond to support important variations in the 
flight schedule and continue to be infeasible in such a case. The next sub-
section will treat the stochastic models of the GAP. 

 

2.2.2 Uncertainty managing Models of the GAP 

However, if the assignment is robust enough, it will help the operators react 
to some uncertain events. Therefore, stochastic and robust GAP models 
have been studied extensively as well. For example, Hassounah and Steuart 
[208] show that planned buffer times could improve schedule punctuality. 
Yan and Chang [209] and Yan and Huo [197] use in their static gate 
assignment problems a fixed buffer time between two continuous flights 
assigned to the same gate in order to absorb the stochastic flight delays. 
Yan and Chang [209] also develop a multi-commodity network flow model 
as well as Binod et al.[210], who gives additional objectives as minimizing 
the fuel burn cost of aircraft taxi by type and expected passenger discomfort. 

Shangyao et al. [211] develop a heuristic approach sensitive to stochastic 
flight delays embedded in a framework that includes three components, a 
stochastic gate assignment model, a real-time assignment rule, and two 
penalty adjustment methods.  

In [192] mathematical models and (optimal and heuristic) procedures are 
proposed to provide solutions with minimum dispersion of idle time 
periods for the GAP. More recently, Merve et al. [212] give stochastic 
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programming models incorporating robustness measures based on the 
number of conflicting flights, idle and buffer times, formulated as large-
scale mixed-integer programming problems and resolved by tabu search.  

To handle uncertainty on aircraft schedule, Lim and Wang [188] modeled 
GAP as stochastic programming model and transformed it into a binary 
programming model that suffers from NP-hardness. They proposed a 
hybrid meta-heuristic combining a tabu search and a local search for 
resolution. They introduce unsupervised estimation functions without 
knowing any information on the real-time arrival and departure time of 
aircraft in advance. After that, we will use those functions as an input 
parameter for our own model.  

More alternative models for the GAP are presented and classified as below. 

 

a. Simulation Approach to GAP 

Among the first papers on the GAP, [206] elaborated an interactive 
simulation method which in turn simulates arrivals and departures and 
affects gates. In fact this method did not involve a mathematical 
programming formulation of the problem; it outlined numerous necessary 
constraints which were after formally detailed by other research workers. 
It particularly attached aircraft-gate size constraint, airline priorities, 
maximum gate occupation time, minimization of walking distance and 
passenger delays, buffer times between flights allocated to the same gate, 
and maximum delay which can be brought about a flight on the gate. 

 

b. Fuzzy Logic Application 

The Fuzzy logic methodology [213] is relying on a level of truth instead of 
on the traditional true or false logic, also used in stochastic modeling 
approaches. The levels of truth are given to uncertain data as a way to attain 
the most appropriate reasoning. 

Fuzzy logic was used by [214] to build a model integrating the uncertainty 
of the GAP. The model considers that the idle times between affectations is 
fuzzy. It is among the objectives that was indeed to maximize this idle time 
which is weighted in the objective function implementing membership 
levels determined by an adjustment function. The relationship between the 
design of the adjustment function and the given results were considered, 
and it was advised that the shape should be selected regarding the 
priorities of a specified airport. The genetic algorithm (GA) was 
implemented to resolve the fuzzy model of the GAP. Bringing out both the 
fuzzy logic and applying the GA was impressive and offered appealing 
results for the basic GAP model. A similar method using fuzzy logic and 
bee colony optimization was found in [215]. 
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c. Expert Systems for the GAP 

Expert system [216] is a software system that imitates a decision process as 
an expert. Expert systems include rather different operating concepts when 
compared to other mentioned approaches. This approach does not make 
use of mathematical models, or any objective function or constraints. In fact 
standard expert systems implement a knowledge base in the reasoning 
procedure. The knowledge base is a pair of if/then rules, structured 
regarding a human expert experience. 

Expert systems were utilized to solve the GAP as found in [217]. Also, [218] 
incorporates a hybridization between a linear programming model and an 
expert system. The linear programming model covered just the main 
constraints of the GAP. The standard solution attained applying the basic 
LP model was altered applying the rules from the expert system. 

 

d. The Gate Re-assignment Problem 

The study provided in this chapter centers on the planning of the gate 
assignment taking in consideration stochastic disturbances. However, the 
plan which is produced earlier generally needs to be re-planned at the time 
of the daily operations caused by unexpected cases, such as delays, bad 
weather conditions, some emergencies. The problem which takes up on-
line changes in the planning at the time of flight operations is known as the 
re-assignment problem, while other approaches are considered robust 
when they handle eventual changes. Nevertheless, the re-assignment 
problem is, in general, an online model of uncertainties. The re-assignment 
problem is commonly resolved online, and, consequently, will involve 
models and techniques which are quick to execute. 

 

In [219] a genetic algorithm was offered to solve the re-assignment problem, 
where one individual covered one likely method of assigning the flights 
which must be re-assigned. The objective was in fact to re-assign the flights 
impacted by a delay in order that an extra delay is minimized. 

Paper [204] gives an extension of that offered in [219], where a genetic 
algorithm with a uniform crossover which rarely leads to infeasible 
solutions was provided. 

In [220] a mathematical integer programming model of the re-assignment 
problem was provided. The objective of the model is to decrease the total 
deviation from the firstly planned schedule. An exact solution is given on-
line every time there was a need for re-assigning a flight influenced by a 
delay. Positive computation times and good improvement when compared 
to re-assignment worked by hand had been reported. 

A related approach was provided in [221], where also a mathematical 
integer programming model using as objective the minimization of the 
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walking distance of transferring passengers, once re-assignment procedure 
is performed. The model was resolved exactly just for the flights affected 
by manifesting delays. Several additional mathematical models of 
reassignment were reported in [222]. 

 

2.2.3 Datasets 

The provided literature uses numerous sorts of datasets. Some authors 
arbitrarily generated the input datasets [193] even while others produced 
them employing real datasets like [197]. A number of the authors regarded 
just a part of a real dataset (as they deal only with delayed flights as in [221] 
or with flights and gates at one particular airport [191]) once they assumed 
it is acceptable to implement it. Smaller sized datasets were commonly 
much easier to solve, employed to validate the effectiveness of new 
methods and models as in the proposed approach. 

3. STOCHASTIC PROPOSED APPROACH OF THE GAP 
 

Various GAP models and techniques are identified in the literature. Static 
as well as stochastic models are developed. Working with methods with an 
exact solution can be more suitable. However, [223] states that these kinds 
of exact methods are actually ineffective to resolve real problems. This is 
because flights in static models are allocated to gates depending on the 
expected flight schedule using fixed parameters. Nonetheless, in real 
operations, stochastic disruptions occur frequently, leading to real-time 
adjustments of gate assignments and flight delays. Consequently, 
stochastic methods have been widely motivated in recent researches.  

Consequently, to build a significantly better gate flight assignment 
approach, it has to include in the model the possibilities of stochastic flight 
delays that may arise in real operations. 

When it comes to stochastic environments, Markov Decision Processes 
(MDPs) [142] have confirmed to be effective in optimal decision making. 
Other derived version of MDPs like the multi-agent Markov decision 
process [154] and the time-dependent Markov Decision Process are also 
developed to manage some challenges in the standard GAP based MDP 
introduced. Three MDP based models are presented in this section. 

3.1  MDP MODEL 

Markov decision processes (MDPs) are a discrete time stochastic control 
process that can be used to model a sequential decision making with 
uncertainty. MDP Takes into account reward of the current decision and 
future opportunities. In this approach, an agent also considered as decision 
maker is interacting with the world (the environment decision). At each 
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time period 𝑡 of the planning horizon, the system state 𝑠 provides the agent 
with all the information necessary for choosing an action 𝑎. As a result of 
executing action 𝑎 with system state 𝑠, the agent receives a reward 𝑟 and 
the system change to the next state 𝑠’ with a definite probability. 

We use an MDP to represent the problem of gate assignment. Our 
formulation will be more an airport-oriented approach. However, this does 
not prevent having the possibility of a passenger-oriented approach with 
MDP formulation. We made a choice to focalize on the airport-oriented 
point of view in this thesis. We define some preliminary requirements 
before giving the MDP model of the GAP.  

 

3.1.1 Aircraft size constraints model  

 

Figure 38 Example of gate disposition 

An airport disposition, as in Figure 38, can be represented by a graphical 
schema. Figure 39 gives an example of gates representation in an airport; it 
can be represented as a constrained graph having as constraints distances 
between gates, which will represent a constraint on aircrafts size to assign 
to each gate. (see Figure 39)  

 

Figure 39 Graph representation of gates 

Let 𝐺 = (𝑉, 𝐸) be an undirected graph, where 𝑉 = {𝑣1, 𝑣2,  … , 𝑣𝑛} the set of vertices  

𝐸 = {(𝑣𝑖, 𝑣𝑗)/𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} is the set of edges. 

𝑀 = (𝑚𝑖,𝑗)
𝑛∗𝑛: Symmetric compatibility matrix defined as: 
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 n represents the number of vertices of the graph. 

 𝑚𝑖,𝑗  with 𝑖 ≠ 𝑗 is a quantitative constraint representing the minimum required 
distance separation between two vertices 𝑣𝑖 and 𝑣𝑗 . 

 𝑚𝑖,𝑗  = 0 Means that there is no constraint between vertices 𝑣𝑖 and 𝑣𝑗 . 

Let: 𝑓 : 𝑉 → 𝐶 a function that associates to each one of vertices a certain value 𝑐 of C. 
With 𝐶 = {1, … , 𝑘}.  

So, the constraints to consider on this graph between every 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 are:  

1

2
𝑚𝑖,𝑗 (𝑓(𝑣𝑖) + 𝑓(𝑣𝑗)) ≤ 𝑚𝑖,𝑗

2                                          (54) 

 

 

3.1.2 Airport Configuration 

In the GAP we have to optimally assign flights to gates with respect of  
‘‘strict’’ and some ‘‘soft’’ constraints that we mentioned in the literature 
section. We try here to respect these constraints under stochastic conditions 
that occur with flights disturbance and causes what we call flight conflicts 
defined as when two flights with overlapping ground times are assigned 
to the same gate.  

We define: 

Set of Gates: A = {a1, a2,···, an}, Where n is the number of gates  

Set of aircraft S = {s1, s2,···, sm}, Where m is the number of aircraft.  

For each aircraft si (1 ≤ i ≤ m): 

 ai: scheduled arriving time; 

 di: scheduled departure time; 

 a′i: real arriving time; 

 d′i: real departure time; 

 

b: buffer time between two consecutive aircraft assigned to the same gate. In other 
words, the gate is locked for serving aircraft si in [a′i − b, d′i + b]; 

Definition: Gate Conflict [188] : 

Two aircrafts si and sj have gate conflict if both the following two conditions hold: 

 Aircraft 𝑠𝑖 and 𝑠𝑗 are assigned to the same gate; 

 There is an overlap between the two-time durations during which the aircraft 
will lock the gate, ([𝑎′𝑖 − 𝑏, 𝑑′𝑖 + 𝑏] ∩ [𝑎′𝑗 − 𝑏, 𝑑′𝑗 + 𝑏] ≠ ∅) 
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Our approach does not take into consideration as variables the arriving and 
departure time; those variables are only used to calculate the conflict 
probability introduced later.  

 

3.1.3 MDP parameters  

We consider the flight arrivals as a stochastic process for the MDP. It takes 
its values from the state space. Then, as outlined by the previous chapter, 
MDP models will require to define the following four elements:  

 A finite set of states S: This is given by a set of aircrafts S. 

 A finite set of actions A: Each action corresponds to assign a gate a to a 
flight  s . If there is no best flight, the action consists of keeping the gate 
assigned to the flight. 

 Transition probability: it reflects the stochastic aspect of our problem. We 
define transition probability as fellow :  

 
𝑇𝑠,𝑠′(𝑎) = 𝜓𝑠,𝑠′                                                  (55) 

 

With ψs,s′ is the probability of having the two flights s and s’ in conflict if 

they are assigned to the same gate. This probability includes the 
possibilities of disturbances that make s and s’ in conflict.  

Lim and Wang [188] introduced an estimation function to estimate the 
expected value of the probability of the gate conflict between flight i and j. 
they calculate (p(i, j)) : the expected probability of gate conflict for flights 
which are assigned to the same gate. 

We use the algorithm 24 to compute ψs,s′ based on E(p(i, j)). 

  Reward function: is defined as follow :  

𝑅(𝑠, 𝑎) = −∑𝜌𝑠,𝑠′𝜎𝑠,𝑠′

𝑠,𝑠′

+ 𝑃𝑟𝑒𝑓(𝑠, 𝑎)                                            (56) 

ρs,s′: a weight associated with the constraint mi,j cited earlier. 

ds,s′ =
1

2
(f(s) + f(s′)) : Minimum distance separation between flights 𝑠 and 

𝑠’ in the ground, and f a function that associate to each flight a scale of size 
for the used aircraft; for example, f has a value from one to 5 according to 
the size of the aircraft.  

Thus: 

{
𝜎𝑠,𝑠′ = 0 𝑖𝑓 𝑚𝑎,𝜋(𝑠′). 𝑑𝑠,𝑠′ ≥ (𝑚𝑎,𝜋(𝑠′))

2

𝜎𝑠,𝑠′ = (𝑚𝑎,𝜋(𝑠′) − 𝑑𝑠,𝑠′)
−1

 𝑒𝑙𝑠𝑒
                                         (57) 

Pref(s, a): Preference value for choosing the action a for the flight s. 
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Hence, the reward function gives a penalty for the flight that does not 
respect the aircraft size constraints and a bonus to flights corresponding to 
air company preferences. 

 

Let D = (ds,s′)
n∗n  a matrix where ds,s′ minimum distance separation 

between flights s and s’. 

We suppose as an initial solution of our algorithm the solution of the 
determinist problem without delay consideration (initial schedule). Delay 
probabilities can be calculated from the history of past flights or using some 
other estimation techniques that will be discussed in the next paragraph.  

 

Algorithm 24 : Algorithm for computing probabilities 

Let the probability 𝝍𝐬,𝐬′ . 

For s:=1 to n do 

sum:=0 

For 𝐬’:=1 to n do 

sum:=sum+𝑬(𝒑(𝒔, 𝒔′)) 

 For 𝐬’ ≔ 𝟏 to n do 

𝝍𝐬,𝐬′ : = 𝑬(𝒑(𝒔, 𝒔′)/𝐬𝐮𝐦 

End 

End 

 

The transition probability does not depend on a, so the solution Vπ can be 
simplified as follow: 

𝑉𝜋 =
𝑅𝜋

𝐼−𝛾𝑃
 [224]                                              (58) 

To find a solution to our problem, we have to use the policy iteration 
algorithm. We implement this algorithm using Matlab in order to evaluate 
this approach of resolution. 

3.2 MULTI-AGENT MDP FORMALISM 

 

Multi-agent systems (SMA) are a branch of Distributed Artificial 
Intelligence. Their applications are wide: humanities, game theory, 
economics, and real-world applications such as air traffic control, 
networking, and robotics. SMA approaches are interested in interactions 
between autonomous entities. This situation is mostly studied in SMA as 
the cooperation that involves complex mechanisms.  

In SMA, we can have agents that collaborate to achieve their assigned goals; 
so, interaction with other agents is crucial. Reinforcement learning is a 
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promising technique for creating agents that co-exist (Yanco et al. [225]), 
but the mathematical framework that justifies it is inappropriate for multi-
agent environments. The theory of Markov Decision Processes (MDP’s) 
(Howard [142]), which underlies much of the recent work on reinforcement 
learning, assumes that the agent’s environment is stationary and as such 
contains no other adaptive agents. The theory of games (von Neumann et 
al. [226]) is explicitly designed for reasoning about multi-agent systems. 
Markov games (see e.g., Van Der Wal [227]) are an extension of the game 
theory to MDP-like environments. Multi-Agent Markov Decision Processes 
(MMDP) allows us to widen the MDP view to include multiple adaptive 
agents with interacting or competing goals (Michael L. Littman [151]). Many 
applications have been done with MMDP, even in the field of air transportation see 
[152]. 

 

3.2.1 Multi-agent control mechanism  

MMDP problem is formulated as a set of autonomous learners interacting 
agents. These agents must learn to coordinate and to cooperate to achieve 
their goal. Thus, this approach combines two areas: distributed to the 
aspects of the interaction between agents and techniques of machine 
learning (Machine Learning) associated with a point of view for 
decentralized decision-making aspects (Peter Stone et al. [153]).  

So, we use the formalism of Markov decision processes in the multi-agent 
framework (Michael L. Littman [151]). We assume having a centralized 
controller who has all information about the system (Figure 40), such as the 
global state of the system, actions, and rewards, and even distributes 
individual commands; therefore, the controller has the decision power and 
maintains the information shared between agents.  

 

Figure 40 Centralized control in MMDP 
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We add real-time values to agent concept, to include time evolution into 
the multi-agent system dynamics. A Time-dependent Markov Decision 
Process (TMDP) is proposed by [150] to provide this extension. This model 
consists of stochastic state transitions and stochastic time-dependent action 
durations. The actions in the TMDP model are stochastic and time-varying: 

𝑎(𝑡) ∼  𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝑎(𝑡))                                                    (59) 

Resulting policies are actions to be performed by agents in every time 
sequence. Then, we can enlarge the real planning window to problems 
under uncertainty changing with time.  

So, we consider in our formulation an assignment-based decomposition 
approach that is intermediate between the joint MDP approach and the 
independent agent approach. We assume a centralized controller that has 
relevant information about the states of all agents to assign tasks and 
allocates tasks and resources to agents based on task-level value functions 
of agents. Once the tasks are assigned to agents, the lower-level actions of 
agents are decided by the task-level value functions until the tasks are 
reassigned by the central controller. We call such domains with multiple 
tasks and multiple agents Multi-agent Assignment MDPs (MMDPs). Then, 
adding time dependence behavior will give a more real representation of 
our problem. Also, we are inspired by TMDP coupled with the MMDP 
approach, to provide a new formalism of time-dependent Multi agent MDP. 
This approach will help us to have real-time policies to apply in every case 
of disturbance for the GAP problem. 

 

3.2.2 Multi-agent MDP model  

There are many contributions in the literature that are trying to deal with 
uncertainty (see literature section). With the same target of building a 
robust mechanism that can absorb flights disturbance, we develop this 
approach based multi-Agent Markov Decision Process. Our choice for this 
technical background to model the problem can be considered as the 
preferred alternative due to its capabilities of stochastic decision 
optimization on a discrete time Markov chain. Intelligent agents are 
gaining wide acceptance as a useful and a powerful tool for solving 
complex problems and seems to be a promising alternative. Also, the 
advantages of multi-agent reasoning include distribution of processing, 
support for the more flexible peer-to-peer model, decentralization of 
control, the reduction of network bandwidth use, etc. 

Using this theory, the centralized controller (see Figure 41) will have in 
advance a solution composed of all decisions that can be made during the 
planning horizon of flights assignment or allocation to gates. So, with 
MMDP, no need for real-time optimization because we assume having 
predefined solutions for all possible cases of disturbances. Thus, for a given 
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gate allocation combination, the solution gives the best decision of gate 
assignment to make.  

 

Figure 41 Agents representation 

Before extending the model of GAP to be time-dependent, an earlier 
formulation like in [228] of the gate assignment problem with MMDP is 
presented. The model is given by a tuple <K,S, A, P, R> as a follow (see 
Figure 41):  

The State S =  S1  × · · · × SK is a vector giving the diverse feasible 
combinations of flights indexed by its assignment position Si = (s1, … , sk), 
where k is number of gates and si ∈  V. V represents the set of flights to be 
allocated to gates during the planning horizon (one day in general).  

The set of actions A = A1  × · · · × AK describes the set of joint actions for the 
agent, Ai gives the set of local actions of the agent i. For every single agent, 
performing a ∈  A𝑖, will match an action of allocation a flight 𝑎 ∈ 𝑉 to the 
gate i. 

Therefore, each agent is in charge of handling a particular gate, and a ∈ Ai 
for agent i considers that there is a set of feasible flights to be affected to 
gate i. Ai  ⊂ 𝑉  that are appropriated to be allocated to gate i. This 
supposition is regarded as a feasibility constraint that describes the possible 
assignment.  

Defining: Ai,𝑡 set of feasible flights for the gate 𝑖 at a discrete time t. Then:  

Ai = ∑ Ai,𝑡
𝑡

    ,     (𝑖 ≤ 𝑘)                                                    (60) 

P (s, s′, a) gives the probability of transition as : 

𝑃:  𝑆 ×  𝑆 ×  𝐴 → [0, 1]                                                  (61) 

It represents the probability of the going from state 𝑠 into another state 𝑠’ 
when agents perform a joint action a ∈  𝐴 . This probability is viewed as the 
possibility of modifying assignment combination from 𝑠  to 𝑠’  resulting 
from executing a re-assignment action.  

The probability P is integrating the complete stochastic information about 
assignment of gates including stochastic delays as well as additional 
disturbances that impact gate assignment and computed as a probability of 
occurrence. This probability utilizes other estimation techniques to build 
the probabilistic model of GAP under possible disruptions. 
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The way how transition probabilities are defined is essential for building 
the robustness of the GAP based MMDP model. The state transition 
stochastic matrix P defines all likely possible state transition probabilities 
(𝑝𝑖𝑗): 

𝑃 = [

𝑝11 𝑝12 … 𝑝1𝑛
𝑝11 𝑝11 … 𝑝2𝑛
… … … …
𝑝𝑛1 𝑝𝑛2 … 𝑝𝑛𝑛

]                                                  (62) 

Where:  

∑𝑝𝑖𝑗 = 1

𝑛

𝑗=1

(𝑖 = 1,2, … , 𝑛), 𝑝𝑖𝑗 ≥ 0(𝑖, 𝑗 = 1,2, … , 𝑛) 

Various statistical estimation methods could be applied to calculate state transition 
probabilities described above. The method as in [229] is applied using statistical data 
of state transition. Actions corresponding to flights combination are identified, and the 
arising states are collected from data. The collected values from observed data are: 
k1(𝑎) that corresponds to the case without disruption on state s1 performing an action 
a, and  k12 (a) that corresponds to the case of disruption observed between state s1 and 
state s2 performing an action a. Therefore the transition probability between 𝑠1 and 𝑠2 
performing an action a is estimated from observed data as : 

𝑝(𝑠1, 𝑠2, 𝑎) =
𝑘12(𝑎)

𝑘1(𝑎)
⁄                                                   (63) 

 R (s, 𝑎, s’) corresponds to the reward acquired once transiting from a state 𝑠 to a state 
𝑠’ performing an action 𝑎. This involves costs as negative reward or positive reward as 
the benefits of each reassignment.  

R is thought as:  𝑅: 𝑆 × 𝑆 × 𝐴 →  𝑅 

Where its function is defined as:  

𝑅(𝑠, 𝑎, 𝑠′) = −𝜆𝛿𝑠𝑠′𝑝(𝑠, 𝑎, 𝑠
′) + 𝛾(1 − 𝛿𝑠𝑠′)𝑝(𝑠, 𝑎, 𝑠

′)                              (64) 
Where: 

 𝛿𝑠𝑠′ = 1 if 𝑠 = 𝑠′ and 0 otherwise 

 𝜆 Penalty unit 

 𝛾 Recompense unit 

 The main task of a decision maker is to compute a policy as: 

𝜋: 𝑆 → 𝐴                                                                       (65) 

A state-action sequence of decisions that maximize the expected total 
reward is denoted as 𝜋∗, and corresponds to the policy optimal. V*(s) gives 
the maximum cumulative reward attained by the optimal policy beginning 
with states. Therefore, the optimal decision in a state s is to choose an action 
𝑎 maximizing the sum of the immediate reward 𝑅(𝑠, 𝑎, 𝑠’) and the value V* 
of the immediate successor state, discounted by γ ( where 0 ≤γ< 1) : 

𝜋∗(𝑠) = 𝑎𝑟𝑔 max 𝑎[𝑅(𝑠, 𝑎) + γV
∗(p(s, a))]                                                 (66) 
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The solution concerns obtaining an optimal stationary policy π ∗  that 
maximize for each state s and for all agents the expected discounted future 
reward. π ∗  contains the optimal decisions to make in every gate 
considering the assignment state. 

MMDP model representing the GAP problem is solved using the value 
iteration function determined by Howard algorithm (see [142]). 

3.3 TIME-DEPENDENT MULTI-AGENT GAP FORMULATION 

 

The real interest is given to sequential decision problems. The theoretical 
aspect based on MDPs gives the best well-known tool to model and solve 
them, giving optimal results. However, real-world problems have 
additional and specific behavior, which is time dependence. MDP reflects 
only fixed time steps between decision epochs, which can be easily 
modeled as iteration steps. This property does not reflect the real evolution 
of problems like the subject of gate assignment. To bypass this limitation, 
Time-dependent MDP (TMDP) has been proposed in those models (see the 
previous section). The transition between states is not instantaneous but 
proceeds in a specific time t. Also in TMDP, the time is always observable; 
optimal policies give to the agent the best moment to make a decision or 
execute an action due to the state of the system.  

Inspired by other occurrences like the truck dispatching system where 
decisions about truck assignments and destinations are made in real-time 
[230], choosing to benefit from temporal aspect and to project it to gate 
assignment problem. Therefore, the rewards associated with action 
outcomes in the time-dependent frameworks will be represented as time-
dependent functions including more real evolution information of the 
problem.  

Based on the same approach as the previous model, this sub-section 
presents another model with Multi-Agent reasoning but including the time 
evolution aspect of the gate assignment problem. The considered Time-
dependent Multi–agent Markov Decision Problem is illustrated in Figure 
42. 
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Figure 42 Agents distribution and temporal planning 

Let K is the Number of agents; it also corresponds to the number of gates. 
Taking the same actions definition from the previous model, the set of 
actions A = A1  × · · · × AK defines the set of joint actions of agents, being 
also for every agent i assigning a flight 𝑎 ∈ 𝑉 to a gate I, 𝑉 is the set of flights. 

Additional temporal information will be included first in the Discrete set 
M set of outcomes, of the form µ = (𝑠′µ, 𝑇µ , 𝑃µ) : 

 𝑠′µ∈ S: the resulting state space  

 S =  S1  × · · · ×  SK gives different possible combinations of flights 𝑎 ∈ 𝑉. 
 𝑇µ, ∈ {ABS, REL}: Type of the time distribution (absolute or relative).  

- If  𝑇µ = 𝐴𝐵𝑆, 𝑃µ(𝑡’)  will be a pdf over absolute arrival times of µ and 

corresponds to distribution time associated to some gates assignment 
configuration action. 

-  If 𝑇µ  = REL, 𝑃µ(δ): pdf will be over durations of µ that corresponds to the 

duration needed to establish the assignment configuration action. 
 L: 𝐿(µ|𝑠, 𝑡, 𝑎) is the likelihood of outcome µ given statthe e of gate assignment 𝑠, 

time t and action of next assignment to execute 𝑎 =(𝑎1, … , 𝑎𝑛), 𝑎𝑖 ∈ 𝑉.  
 R: 𝑅(µ, 𝑡, 𝛿)  is the reward for the outcome µ at time t with duration δ, 

corresponding to reward of spending 𝛿  duration at time t with airport 
assignment action  µ . The reward includes as the previous model two 
components :  
- A benefit from the gate assignment outcome µ. 
- A penalty to assignment outcomes µ that causing a possible disturbance at 

time t and with duration 𝛿. 
 

The purpose of defining TMMDP formalism of the GAP is to model and solve large 
real GAP planning under uncertainty taking into account either cooperative aspect of 
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the problem and property of time evolution. Resulting policies are actions to be 
performed by agents in every time sequence.  

3.4 EXPERIMENT  

 

Experiment on each of the defined approaches is addressed in this section. It presents 
the main results obtained after tests performed over several instances of gate 
assignment problem. 

 

3.4.1 Single Agent model experiment  

We conduct a computational study to test the effectiveness of the 
implemented algorithm. We use real data from Hong Kong International 
Airport (given in [188]) to conduct our experimentation.  

We consider for illustration 3 gates and 6 aircraft to assign in the time 
window from 11 am to 5 pm, as shown in figure 13. 

Table 13 Data from Hong Kong international airport 

Flight Arrival Departure Route Airline 

CA101/102 11:25  12:45 Beijing-Hong Kong-Beijing Air China 

LH738/739 11:30 13:10 Frankfurt-Hong Kong-Frankfurt  Lufthansa 

TG600/601 11:45  12:45 Bangkok-Hong Kong-Bangkok  Thai Airway 

JL710/702 13:15  15:00 Osaka-Hong Kong-Osaka  Japan Airlines 

BR869/870 14:25   15:30 Taipei-Hong Kong-Taipei  EVA Air 

SQ862/861 14:20 16:00 Singapore-Hong Kong-Singapore  Singapore Airlines 

 

Therefore, early arrivals or flight delays frequently arise in real-time 
operation. Depending to the schedules of two flights assigned to the same 
gate, although there is no overlap of time durations when they occupy the 
gate, there can be a possible conflict between the two flights as a result of 
an early arrival or a flight delay. As an example in the table above, the first 
flight has not been in conflict in the planning of the scheduled arrival and 
departure time, but the second one became delayed and developed into 
conflict with the first one. After JL710/702 flight arrives at Hong Kong 
International Airport, it will be obligated to wait on the ramp or merely in 
the air. Consequently, considering the real-time flight disturbance, we will 
need to look at the arrival time and departure time of a flight as random 
parameters instead of deterministic forms, in order to design a robust 
airport gate planning to secure the system from uncertainty in operation. 

We give first the values of E(p(s, s′)) calculated by Lim and Wang [188] as 

follows:  
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𝐸(𝑝(𝑠, 𝑠′)) =
max{𝑒(𝑠, 𝑠′)} − 𝑒(𝑠, 𝑠′)

max{𝑒(𝑠, 𝑠′)} − min{𝑒(𝑠, 𝑠′)}
                                                (67) 

With: e(s, s′) is an estimation function to estimate the expected value of the 
probability of the gate conflict between flight s and s’ only based on the 
scheduled time gap between the two flights without considering the 

historical data. Table 14 gives 𝐸(𝑝(𝑠, 𝑠′)) values. 

Table 14 Matrix of E(p(s,s' )) for numerical example  

  

Using the algorithm given in table 15 we can calculate a stochastic matrix 
associated with: 

Table 15 Stochastic Matrix of 𝝍𝒔,𝒔′  

 

In addition to this method, we can also estimate conflict probability by 
either using simple inference estimation by interval, or as cited in the 
literature [231], we can estimate those probabilities by a Monte Carlo 
method. 

As the initial policy, we adopt the solution given by the deterministic 
approach of the problem based on linear programming. We take random 
values of input parameters such as reward values. We try to evaluate by 
experimenting the feasibility of the proposed resolution algorithm. 

The initial policy is not feasible because of delay related to Flight 
LH738/739 (figure 43), and we have a conflict in the assignment. So we take 
this solution as initial policy in policy iteration algorithm and we try the 
resolution. 
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Figure 43 Initial policy 

The solution given by our approach (figure 44) can handle this type of 
disturbance and gives a robust solution to flight delays.  

 

 

Figure 44 given solution 

To evaluate performances of this approach, we have simulated with one 
hundred flights and twenty gates, and the results were promising with a 
time execution not up to 30 seconds. 

The promising benefits of applying the Bellman theory are to have a robust 
assignment policy that can be adopted in the case of stochastic flight delays, 
which causes conflict in the assignment. We experiment within this 
approach by a simulation of the related policy iteration algorithm. It gives 
a solution in acceptable resolution time. 

 

3.4.2 Multi-Agent Model experiment  

Computational analysis is done to test the efficiency of the used Multi-
Agent MDP approach, and utilizing a simple data example to conduct 
experimentations.  

For simplification, data includes two gates and three aircraft to allocate in 
a discrete window of time between 𝑇0 and 𝑇3.  

𝑉𝑖 ∈ 𝑉 , is set of flights and for 𝑖 = 0 it match a vacant assignment gate. 

As a sample, in this experimental instance exist three possible states:  

𝑠1 =(𝑉1, 𝑉2), 𝑠2 =(𝑉3, 𝑉0), 𝑠3 =(𝑉0, 𝑉3). Two agents are affiliated to the two 
gates, therefore actions are: 𝑎1 =(𝑉1, 𝑉2), 𝑎2 =(𝑉3, 𝑉0), 𝑎3 =(𝑉0, 𝑉3).  

As an initial policy as in table 16, the solution provided first by a 
deterministic approach to the problem from literature is used. Simple 
values are used as input parameters only for simulation. The preliminary 
policy is : 𝜋0 = (𝑎2, 𝑎1, 𝑎1).  
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Table 16 Initial policy without disruption 

 𝑻𝟎 𝑻𝟏 𝑻𝟐 

Agent 1 Gate 1    

Agent 2 Gate 2    

 

It is designed regarding observations, transition probabilities, and rewards 
are shown in figure 45. 

 

 

Figure 45 Transitions and rewards matrixes 

With 𝜆 = 𝛾 = 1. 

𝑝(𝑠1, 𝑠1, 𝑎2) = 75% expresses a probability of disruption performing action  𝑎2 on 𝑠1, 
which corresponds to the situation in Table 17 (𝑉1 is delayed and still allocated to gate 
1 that 𝑉3 cannot be re-assigned, which results in conflict ):  

 

Table 17 Conflicting assignment in initial policy due to delay 

 𝑻𝟎 𝑻𝟏 𝑻𝟐 

Agent 1 Gate 1    

Agent 2 Gate 2    

 

Simple experimentation is done to demonstrate the feasibility of the suggested 
resolution method. 

𝑉1 

𝑉2 

𝑉3 

𝑉
1
 

𝑉
2
 

𝑉3 Conflict 
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The initial policy is not possible as a result of a delay of the flight 𝑉1 (Table 18), which 
causes a conflict in gate allocation. Therefore this solution is used as an initial policy 
in the policy iteration algorithm; then the algorithm is performed. 

After the execution of the value iteration algorithm in MatLab, the provided solution 
offers another order in gate assignment, optimal policy is 𝜋∗ = (𝑎3, 𝑎1, 𝑎1) identified as 
in table 18: 

 

Table 18 Optimal policy 

 𝑻𝟎 𝑻𝟏 𝑻𝟐 

Agent 1 Gate 1    

Agent 2 Gate 2    

 

Table 18 shows that the proposed approach can give a solution that is more 
robust to delays. Compared with the sample agent MDP in [228], this 
approach is more representative of the problem structure because of the 
Multi-agent distribution of processing, that simplify its conception. Also, 
MMDP gives gate assignment configurations in multi-dimensional policies 
instead of having in MDP a single gate to flight assignment. 

However, MMDP model gives only fixed time steps between decision 
epochs (iteration steps), which does not reveal the real evolution of gate 
assignment, where the time is different from the iteration step and always 
observable. Next sub-section gives an experiment with time dependency. 

 

3.4.3 Time-Dependent Multi-Agent Model experiment  

In this sub-section, experimentation is conducted on the Time-Dependent 
Multi-Agent MDP modeled earlier.  

For simplification, every action possesses a single outcome. Hence actions 
and outcomes can be directly recognized (𝑎𝑖  ↔  𝜇𝑖) and actions thought to 
be deterministic with regard to the discrete component of the state. This is 
expressed as: 

∀𝑖 Such that 𝑎𝑖 is feasible in state 𝑠, 𝐿(𝜇𝑖|𝑠, 𝑡, 𝑎𝑖)  =  1 

A real data from six flights of Hong Kong international airport is used, as 
in Table 13; three gates are dedicated to those flights.  

A Gate conflict is detected between flights LH738/739 and SQ862/861 due 
to some disturbance.  

Starting with a specific state of the system  𝑠1 corresponding to the airport 
gate assignment: 𝑠1 =(CA101/102, LH738/739, TG600/601) 

Moreover, exploiting other possible actions is done to apply adaptive 
assignment to arriving flights representing a change in gate configuration. 

  𝑎1 =(BR869/870, JL710/702, SQ862/861) 

𝑉1 

𝑉2 𝑉3 
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  𝑎2 =(BR869/870, SQ862/861, JL710/702) 
  𝑎3 =(JL710/702, SQ862/861, JL710/702) 

Figure 46 below shows the state transition corresponding diagram. 

 

Figure 46 State transition diagram 

Just for simplification, all outcomes have the parameter  𝑇µ = 𝐴𝐵𝑆 . So, 

outcomes with durations are not considered. The probability density 
functions 𝑃µ are the defined for every outcome (see as example Figure 47).  

 

Figure 47 probability density functions of µ𝟐 

This probability includes stochastic information related to action execution. 
Rewards are given in a way to score every action of assignment in the 
airport. 

So, implementing the resolution algorithm, the value iteration algorithm 
gives an exact resolution [150]. The given solution consists of time-
dependent policy choosing outcome  µ2  that avoids the disturbance 
situation. Then, the solution given by this approach is robust and handles 
flight delays. The fact of including the information about the possible 
disturbances improve more the GAP solution quality. 
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4. CONCLUSION 

 

The proposed MDP model aims to constitute a robust mechanism that will 
give a time valuated approach dealing with disturbances in every time 
sequence. The provided solution is all of the decisions at every time that 
could be performed at the time of the planning horizon of flights 
assignment. This kind of model takes into account real-time optimization 
because it assumes to have a solution at every time which manages 
disturbances. 

Experimentations on this approach using real sample data by simulation of 
the associated value iteration algorithm provides the best feasible solution 
that the deterministic model. 

The aim behind this reflection is to offer to controllers at the airport a robust 
time valuated solution that takes into consideration possibilities of gate 
conflict, even if may take more time for resolution, it can manage the risk 
of disturbances in gate assignment. Also; Markov decision processes and 
its variants as proposed in this chapter, provide a suitable modeling tool 
for the gate assignment problem. The model flexibility of MDP and its 
stochastic behavior can imitate possible disturbances in the flight traffic. 
Otherwise, a reinforcement multi-agent learning approach, like the HMM-
QPSO, which is given in chapter 2, can also be used to solve the problem as 
a perspective and an extension to this work.  

As an additional perspective, this reflection about this type of model can be 
more extended to consider other real constraints of gate assignment. 
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CHAPTER V:                                        
STOCHASTIC MODEL OF THE CREW 

PAIRING PROBLEM AND A TUNED PSO 

SOLUTION 

Several complex scheduling problems are considered as challenging chore 
in The airline industry; this includes a multitude of operational decision 
and problems and deals with a significant amount of very interdependent 
resources. In this chapter, we consider the problem of crew pairing, where 
the crew have to be allocated to flights in a schedule with a minimal cost. 
The objective behind crew pairing is to determine a set of pairings or also 
known as Tours of Duty designed for a crew group to minimize the 
planned cost of executing a flight schedule. 

The primary objective that aims to guarantee optimal allocation of crews to 
flights, should select the set of pairings with a minimal planning cost. The 
frequently applied algorithms suppose having no disruptions in planning 
operations. Nevertheless, airline operations usually experience stochastic 
disturbances that must be considered to be able to minimize the real 
operating cost. Most recently, impressive interest has been directed at 
robust crew scheduling with the attention of the stochastic character of 
disruptions such as bad weather conditions or maybe technical 
breakdowns. The purpose is to use stochastic information to obtain more 
robust solutions that got higher withstand disruptions. This sort of 
resolution methodology is necessary since we can proactively consider the 
impact of particular scheduling decisions. By finding out more robust 
schedules, cascading delay impact is reduced. In this chapter, a stochastic 
model of the crew pairing problem is provided based on multi-agent 
Markov decision process; hence, the problem would be processed as 
selecting the optimal policy to work with in stochastic situations of 
disruptions. We also perform a computational study to make sure of the 
validity of our proposed model. Additionally, to the stochastic model of 
crew pairing, a resolution method is proposed as an application to the PSO 
tuned method by HMM as an application to the first chapter. 
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1. THE CREW PAIRING PROBLEM 

 

The purpose of this section is to present an insight into the manpower of 
airline planning generally. The focus will be on the components most useful 
for the particular problem of crew pairing for airlines. Before starting crew-
scheduling problem resolution, series of planning problems have to be 
solved in airline scheduling: first of all, decisions in the schedule design 
problem identify the schedule of flights the airline manages. Every flight 
has to be described by an origin, destination, departure date, departure 
time and then a duration. Supposed the set of flights in the schedule, a 
solution of fleet assignment model establishes which aircraft type executes 
every flight. The goal is to maximize profit with respect to the number of 
available aircraft and additional resource constraints. After that, the aircraft 
routing problem searches for a minimal cost assignment of available 
aircraft for flights. A routing is allocated to every individual aircraft in a 
way that every single flight is included in specifically one routing. Routings 
have to fulfill maintenance constraints. Once aircraft types are assigned to 
flights, the aircraft routing problem is usually solved for every aircraft type 
independently. In an identical method to the aircraft routing problem, the 
crew pairing problem (or also called Tour-of-Duty planning problem TOD) 
which usually includes building sequences of flights to crew the flight 
schedule and assigns crew to flights in a minimal cost. A set of generic crew 
pairings is built being subject to various rules in order that every flight is 
covered precisely once. Within the supposition that the crew is only 
permitted to operate a single aircraft type (that is commonly the case for 
pilots, for instance) the crew pairing problem can likewise be solved 
independently for each aircraft type. All of the flights in the given schedule 
during the planning horizon are partitioned into sequences of flights. In 
every single sequence of flights that a crew member can fly, it is known as 
a Tour-of-Duty (ToD) or pairing, referred to as rostering in the recent airline 
planning problems. The built pairings are assigned, along with other types 
of activities, to the actual crew, in conformity with the qualifications and 
already assigned activities, known as pre-assignments, of the crew. The 
goal is to find feasible assignments that minimize costs taking into 
consideration perturbations in planning. A problematic is addressed before 
providing details of the planning process and crew pairing as follow.   

1.1. PROBLEMATIC 

 

Airline scheduling is associated with numerous complexities, integrating a 
network of flights, several aircraft types, air traffic control limitations, finite 
numbers of gates, environmental regulations, rigorous safety preferences, 
a numerous of crew work guidelines and complex payment components, 
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and dynamic situations of the environment  where passenger requirements 
are uncertain, and pricing tactics are complicated. 

Airline operations are subjected to diverse sources of disruptions like 
airspace congestion, bad weather conditions, or some technical 
breakdowns, etc. In many of these situations, the resource schedules could 
possibly be disrupted, so that these are potential to become infeasible. 
Disruptions require fast recovery measures that result in flight delays or 
cancellations to recover many resources that are necessary for operating 
flights (see [8]). Rather than taking the risk of online disruption 
management, robust planning has been considered by some airlines as an 
effective way of handling possible disruptions in their schedules.   

The availability of crew is certainly one of the critical triggers of delays in 
the airline operations. This can be especially true if the crew switch from 
one aircraft to one other at the time of a duty period, most importantly if 
there exists a minimal ground time in between flights. In the event of the 
arriving flight that has become delayed for whatever reason, in that case 
both equally that aircraft and the next aircraft that on which the crew is 
swapping will leave late in time. This is a kind of delay propagation that 
can trigger more severe disturbances in the operational flight schedule. Our 
proposed methodology attempts to manage this problematic. 

1.2. AIRLINE RESOURCE PLANNING PROCESS 

In large airlines, the planning and scheduling of aircraft and crews is a 
highly difficult process and is consequently commonly split up into many 
planning phases. The planning process is detailed in Figure 48, which 
displays the logical sequential sequence of these phases, where the solution 
from one stage uses the data for the next. In fact, The four stages are 
typically assigned to four distinct divisions which simultaneously work on 
their part of the resource planning problem. Each one of these divisions 
communicate to be able to adapt their plans to each other and to update 
each other with variations. The first work of plans for a given planning 
period may be updated several times until the last plans are fixed and 
published. In the operational phase, these plans may still be altered. To 
illustrate, if a flight may be canceled or delayed and crew may report sick. 
Airlines deal with these problems by having some buffer resources (for 
example stand-by crew) and by using robustness of the plans as one of the 
problems to be optimized  

 

Figure 48 The resource planning process in airlines 
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Each stage of the planning process (see figure 48) is described as follow :  

 Timetable construction: First of all, the timetable is designed. Its 
objective is to meet the goals of the marketing division with the 
available fleets and with constraints on the network, such as the time 
slots available for the airline at distinct airports. The result of this 
process is an amount of flight legs (as non-stop flights) which the 
airline chooses to perform. 

 Fleet assignment: Second, the resolution of the assignment of aircraft 
to the flight legs is made. The estimated income of a given flight leg 
is determined by the size of the aircraft attached to the leg. Likewise, 
some aircraft would possibly not have the ability to maneuver from 
some airports. The main concern is to guarantee the feasibility of the 
timetable provided the available fleet. If this is unattainable, the 
timetable has to be modified definitely. Provided feasibility the 
objective is to maximize the expected income decreased by 
operating costs [232]. 

 Crew pairing: Third, pairings are built. A pairing is, in fact, a 
sequence of flight legs for some crew member beginning and 
finishing at the equal crew base. The crew member will often be 
operating on these legs; however, a pairing may as well include 
what is named deadheads, when the crew member is not operating 
yet is just moved as a passenger. Legs are normally gathered in and 
known as duty periods, which are split up by lay-overs or also 
named overnight stops. In short and medium transport problems a 
pairing may contain one as long as five duty periods. In long 
transport problems, longer pairings are generally allowed. Legal 
pairings have to satisfy a considerable amount of governmental 
regulations and collective arrangements which differ from airline to 
airline. 

 Crew assignment: Fourth, it is about to delegate pairings to named 
persons. This problem is referred as the crew assignment or recently 
as the rostering problem. The objective is to cover all pairings along 
with working preferences, vacations etc., also constraints like work 
rules and regulations have to be satisfied. Additionally, crew costs 
are to be minimized. If the crew is remunerated a fixed salary, the 
problem aims to maximize the employment of crew so that to 
minimize the number of crew members. 

After fuel costs, crew costs represent the major immediate operating cost of 
airlines. The crew costs rely upon the quality of the solution to the pairing 
problem in addition to the assignment problem, however, since it is not 
possible to replace with poor pairings in the assignment problem, it is 
appropriate to expect that cost savings in the pairings problem will result 
in cost savings in total crew costs. The next section presents the crew 
pairing. 
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1.3. CREW PAIRING 

In general, a crew scheduling problem is split up into two problems. The 
first is crew pairing, and the other is crew assignment. Primary crew 
pairing problem is resolved, and good pairings are determined by 
providing flight schedule as an input. Subsequent to solving crew pairing 
problem, crews are allocated to each of these pairings. To build a good 
complete solution, the input data as crew pairings should have superior 
quality. A high quality of input data will not mean proper results although 
with poor input data practical solution is unattainable. For this reason, crew 
pairing is one of the most crucial stages of airlines planning even more than 
the crew scheduling problem.  

 

1.3.1 PROBLEM DESCRIPTION 

Prior to detailing the problem a couple of definitions need to be provided. 
A flight leg is a single nonstop flight. A duty period is mainly an operating 
day of a crew that includes a sequence of flight legs with short rest periods. 
Likewise, the duty begins with a brief period and terminates with a debrief 
period. A pairing is a sequence of duties, and every pairing starts and 
terminates at the same crew base. In a pairing there exists an overnight rest 
between every single duty. Crew base is a city in which crews are stationed. 
To shift a crew from one base to another base, a pairing may include crews 
as passengers, and this sort of flight is called deadhead. Generally, 
deadheads employed to transport a crew wherever they are required to 
cover a flight or to go back to their residence base. 

Commonly, the provided timetable which is usually the schedule of a 
month to the crew pairing problem may include daily, weekly and monthly 
flights. The crew pairing problem might also be described as daily, weekly 
and monthly problem to manage all types of flights in the timetable. The 
daily problem considers that all flights are flown each day. Every single 
pairing is flown by a different crew, and it begins daily. Additionally, in a 
daily problem, a flight cannot show up much more than on one occasion in 
a pairing. To consider flights that are not functioning every single day of 
the week, an altered version of the daily problem can be used, and it is 
known as a weekly problem. There are likewise other flights distinct from 
daily and weekly flights in the regular monthly schedule. Airlines may 
possibly change a number of its flights that were previously in the timetable. 
In this situation, a monthly problem is helpful to find crew schedule for 
covering up flights during a transition among older and newer flight 
schedule. In our research, the only daily problem is regarded. 

In the crew pairing problem, the objective is to find a set of pairings from 
all likely pairings. When choosing pairings, all flights should be covered 
precisely once, and cost of the all picked pairings must be maintained at the 
minimum. Also chosen pairings must be legal depending on the required 
regulations.  
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The problem is commonly separated into two distinctive phases: pairing 
generation, and pairing optimization. Whereas pairing generation is simple, 
even for comparatively small instances millions of legal pairings may be 
generated. This big size problem produces a difficult to determine a 
comparatively small set of legal pairings with a minimum cost that covers 
all the flight legs in the schedule. 

Applied Models for the crew pairing problem including deterministic and 
stochastic models will be illustrated in the next section of literature.  

 

1.3.2  Crew restrictions 

The crew scheduling problem concerns setting crew members to flights. 
Crew scheduling at airlines encounters two sorts of restrictions. First of all, 
general restrictions on operating and flying time which usually applied for 
all crew members; the second sort of restrictions is applied to individual 
crew members or particular flights. For instance, those restrictions can be 
some particular language requirements on specified flights or also the 
unavailability of certain crew because of vacations.  

To be legal, pairings have to follow governmental rules and collective 
agreements, functional considerations, and contractual rules that 
determine the structure and cost of legal duty periods and pairings, such 
as: 

 Each crew pairing begins at one crew base with a briefing of 60 minutes and 
terminates at the same crew base with a de-briefing of 30 minutes. 

 The minimum duration of a night rest is 10 hours. 

 The maximal number of flying hours in a duty is 8. 

 The maximum duration of a duty with flying tasks is 10 hours. 

There are likewise other obligations besides pairing and duty rules just as 
crew base constraints. For every crew base, there exist several values of the 
total volume of flying hours that may be assigned to the crew. By working 
with this rule, it is guaranteed that crews at different bases will all have 
about the equal volume of flight hours for every single work month. In this 
study, we assume pairings are generated according to those rules and 
regulations. The next sub-section describes how pairing generation is 
performed. 

 

1.3.3 Pairing Generation  

In pairing generation step, all likely duty periods are generated soon after the 
generation of duties. All possible pairings are generated by incorporating these duties. 
In duty generation, for every flight leg, a tree is built as their root node given by that 
flight leg. The root node has children that symbolize every single possible linking flight 
legs. At each consecutive level inside the tree, every single node has a child for nearly 
every possible connection. The depth of the tree could be established by the maximum 
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permitted number of flights during a duty. By way of depth-first-search procedure, 
going to every node of the tree, all feasible duty periods are determined. Each route 
coming from the root node to some of its descendants in the tree denotes a duty period. 
Workable duty periods are primary checked to make sure that they are legal according 
to the legal restrictions. If a duty is legal, its own cost is computed [233].  

 

Figure 49 Example of flight tree for a flight 

Pairings could also be identified by pursuing the precise same procedure. 
In such a case, a tree is built for all duty and duty periods are symbolized 
by nodes in the tree (see Figure 49). Likewise once again all feasible pairings 
are examined to not break regulation rules but exclusively the rules that are 
unable to be used in duties since all applicable rules are previously 
inspected when generating duties. One of many instances of those rules is 
the fact a pairing should begin and end at the same crew base. Additionally 
a pairing may not include a flight multiply. Therefore, any duty cannot be 
pursued by another duty containing an equal flight with the first one. When 
a pairing is legal therefore its cost is as well computed. 

 

1.3.4 Crew Pairing Optimization 

Crew pairing realizes minimum cost generic strings of duties that start and 
finish at crew bases. Through this problem feasible pairings are evaluated 
with regards to the costs of layovers (overnight stays on outstations), time 
away from the base and various other incremental costs. Pairings are built 
from duty periods which are usually mainly shifts or a day’s work. Duties 
have to start from where a prior duty ended, except if dead-heading (crew 
carried as passengers) is utilized. The crew pairing problem is crucial from 
a reserve crew scheduling perception since it establishes how detrimental 
uncovered crew-related delays could be, within conditions of cancellation 
because of crew absence and just how uncovered delays might propagate 
throughout the schedule.  
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A solution to a pairing problem is a number of pairings so that all flights in 
the planning horizon are covered as many times as required. We will 
represent this as a fully dated solution as it identifies particular days for the 
process of the pairings. This problem is not attacked straight, as the number 
of flight legs inside a planning horizon of one month is, for instance, 
multiple thousands. Instead, a sequence of three problems of which the first 
two are estimated of the fully dated problem is solved.  

The supposition of the daily problem is that the timetable is the same every 
day, and practically all research on crew pairing treated this problem. The 
implied supposition is that a good daily solution is the most difficult 
component of the problem. Additional presumptions may be found 
including the timetable that repeats itself every single week. In this chapter, 
we consider the daily problem. A solution to the daily problem includes a 
number of pairings so that every leg is covered during one day. From this 
solution, it is possible to build a fully dated solution which usually repeats 
itself daily.  

1.4. ROBUST SCHEDULING  

Besides disruption control on the day of operations, the situation of 
disruptions could also be taken into consideration at the time of the 
schedule construction. This is known as robust scheduling. The objective of 
robust scheduling is to build schedules which stay feasible and close to 
optimal cost within different modifications of the working environment. 

Measures of the robustness of a schedule have been tackled in the literature. 
The work in [234] differentiates two facets of robustness: stability and 
flexibility. While stable schedules are most likely to stay feasible and near-
cost optimal in a varying functioning environment, flexible schedules can 
be effectively designed to a varying operating environment. Robust 
schedules also can be stable and flexible simultaneously. In the airline 
subject, this involves that a schedule is stable given that it is still feasible at 
reasonable costs with no kind of manual adjustments to the schedules. A 
schedule is flexible if in the event of disruption recovery actions are likely 
to be able to reestablish the operational feasibility of the schedule while not 
noticeably raising costs. In the situation of crew and aircraft schedules, 
reactionary delays may be regarded as a manual recovery action as well as 
an automatic consequence if no manual recovery is performed. Thus the 
number and duration of reactionary delays is a primary measure of the 
stability and flexibility of airline schedules. Further measures of the 
stability of a schedule are the amount of disruptions which are unable to be 
automatically fixed by the reactionary delay. Supplemental measures for 
the flexibility of a schedule are the costs of recovery as well as the impact 
on other schedules as found in [235]. 
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Figure 50 Robustness in air scheduling [235] 

Figure 50 summarizes the robust measures in air transport, displaying the 
relationship between disruptions for aircraft and crew schedules. Further 
sources of prime delays and further recovery actions can be taken into 
consideration. In our approach, we try out to build a more stable model of 
crew pairing. 

The different approaches dealing with crew pairing optimization problem 
are defined in the next section. 

2.  LITERATURE REVIEW 

 

Crew planning and scheduling problem is the designation of the number 
of crew with particular skills and assignment of the crew to satisfy the 
demand to ensure that total cost is minimized when regulatory and legal 
restrictions are attained. The crew scheduling is an NP-hard constrained 
combinatorial optimization problem, and therefore, it cannot be exactly 
solved in an affordable computational time. Also, crew scheduling is easily 
influenced by disturbances like delays or mechanical failure. This makes 
the resolution more and more complicated when considering the stochastic 
events that cause distributions. 
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2.1 WORKS FROM LITERATURE 

In the literature of airline scheduling, the crew scheduling problem has 
been usually split into crew pairing and crew rostering [236]. Our focus is 
granted to the crew pairing problem, which is described as selecting 
pairings in a way that all flight legs are covered at minimum cost. Authors 
in [237] have examined the major differences in terms of crew categories, 
fleet types, network structures, rules and regulations, regularity of flight 
timetables, and cost structures. 

Usually, the aircraft routing problem is solved prior to the crew-pairing 
problem, although the two problems are interdependent. However, pairing 
construction and pairing assignment can be done in a single step, see 
Claude et al. [238], provide solution techniques based on simple tree search 
with a column generation and shortest-path algorithms. 

Generally, the crew pairing problem is resolved in two stages: first the 
generation of all legal pairings and their associated costs calculated. Then 
the best subset of these pairings is selected to cover all the flight legs. [239, 
240] proposed a smart enumeration and compact storage schemes for 
pairings to be of moderate size.  

The main challenge in this problem is that there is not any general method 
to work well with all kinds of nonlinear cost functions and constraints [241]. 
Meanwhile, this problem goes to a complicated problem when the number 
of inputs increases. 

The crew pairing problem is commonly modeled as a set partitioning 
problem [242]. Most of crew scheduling models observed in the literature 
are thought to be deterministic in a stationary environment. Several 
approaches deal with major difficulty in solving crew pairing that is a large 
number of pairings, which render it hard to solve exactly. 

[243] provided a linear cost structure to solve the daily crew pairing 
problem applying a heuristic method for branching based on graph theory 
to deal with large size problems. In [244], they chose a nonlinear cost 
structure to each pairing cost to solve the crew pairing problem by column 
generation with branch and bound approach. Formulated in [245] as an 
integer nonlinear multicommodity network flow problem, crew pairing 
has been solved as a set partitioning problem. 

A new pricing scheme for the column generation approach is proposed by 
[246]. [247] used a new deterministic formulation of the daily problem with 
a nonlinear cost structure for each pairing.  

[248] implemented the set partitioning model with additional constraints 
and [249] proposed an integer programming model for the crew pairing 
problem making use of CPLEX for resolution. 

Most of this extensive variety of deterministic models have developed an 
improvement in finding better crew schedules; however, crew scheduling 
and air transport in general frequently have to deal with disruptions. In 
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several approaches, disruptions are regarded as a divided problem of crew 
recovery or also called disruption management [8]. The objective is to 
rectify the broken pairings so that the total process can return to the original 
schedule successfully within a minimum period.  

[250] applied a FIFO procedure to assign crew members to new flight 
aircraft schedules. [251] evolved a heuristic-based search algorithm for the 
recovery problem. [252] offered an integer programming model for the 
problem with LP relaxations. 

Recently, [253] considered the flight aircraft and crew rescheduling 
problems simultaneously instead of sequentially. The objective is to 
minimize the complete cost produced by flight delays and cancellations 
and crew schedule adjustments.  

Recovery plans could result in additional costs called reactionary, which is 
usually larger than planned costs. Recent approaches from literature 
addressed this problem by robust crew scheduling, where potential 
disruptions are already included throughout the scheduling operation. 

An approach to integrate stability into crew schedules has been given by 
[254] using the expected costs computed by simulations of standalone 
pairings. This approach limits delay propagations between pairings. 
Another bi-criteria approach is given by [255] to resolve the robust crew 
pairing problem by taking into account the stability features of crews 
switching aircraft.  

[256] makes use of a non-robustness indicator for iterative aircraft routing 
and crew scheduling. [257] elaborates a crew pairing model with non-linear 
stochastic recourse to evaluate probable delay propagations among both of 
crews and aircraft. 

Also in [258], a stochastic model is built with delay propagation integrating 
an indicator for the stability of airline crew and aircraft schedules. The 
formulation has been divided into linear problems connected by the 
objective function. 

A further robust formulation in [259] where authors suppose that flight and 
connection times are random and vary within an interval. The resolution is 
performed applying a Lagrangian relaxation to detach the nonlinear terms 
in the sub-problem contributing to a new robust formulation of the shortest 
path problem having resource constraints. 

2.2 BASIC MODELS OF LITERATURE:  

 

In this sub-section, two main models of crew pairing found in the literature 
are presented, namely, one deterministic model and another stochastic 
model. 
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2.2.1 Deterministic model 

A crew schedule is a set of pairings that partitions the legs to be flown by a 
singular fleet. Crew scheduling problems are solved by generating pairings 
and solving an integer program. The daily crew scheduling problem is 
solved within the supposition that each leg is flown every single day. 

The crew scheduling problem is generally modeled as a set partitioning 
problem the deterministic crew pairing problem is identified as follow 
[260]:  

min∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

                                                               (68) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑃𝑥 = 𝑒                                                 (69) 

𝑥𝑗 ∈ {0,1}  𝑓𝑜𝑟 𝑗 = 1,2,… , 𝑛 

The right-hand side vector e is a vector with m entries equal to one. Every 
single row of the matrix P represents a flight leg, and every single column 
symbolizes a legal pairing. The cost vector c is so that 𝑐𝑗 is the cost related 

with the jth column or pairing. The binary decision vector 𝑥 is so that 𝑥𝑗 is 

a 0-1 variable related to the 𝑗𝑡ℎ pairing. If a column j is designated 𝑥𝑗  =  1 , 

otherwise and 𝑥𝑗  =  0 . The matrix P is created as follows: 

𝑝𝑖𝑗 = {
1     𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑙𝑒𝑔 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑝𝑎𝑖𝑟𝑖𝑛𝑔 𝑗
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    

                 (70) 

Further constraints on the crew-scheduling problem named the “crew base 
constraints” may be requested at times. These constraints limit the total 
number of flying hours that a crew can use away from its base location to 
be inside specified bounds. These constraints significantly restrict the 
allocation of available crews between flights and lead to the difficulty of 
dealing with the crew scheduling problem. So that to resolve this issue, the 
proposed approach in the next section will try to enhance the resolution of 
the deterministic problem and reduce its complexity by a tuned PSO based 
resolution. 

  

2.2.2 Stochastic model 

This method manages the assignments of the crew during the planning 
phase to keep reducing the cost of the crew when establishing more robust 
solutions by discovering pairings that are less sensitive to disturbance 
planning. Late costs supplied in the deterministic objective function reflect 
how delays impact constraints on flight legs. 

Assuming that disturbances are observable with cost recovery, the 
disturbance is modeled as a rise in the time of flight operations, just like 
ground time and air time. These times are a random vector ξ(ω), where ω is 
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a random element in some space Ω. Each ω represents a scenario of 
disruption. Moreover, for each ω there is a different use. Ω is finite and each 
cardinal ω happens with probability 𝑝𝜔. 

The formulation of the stochastic program will, therefore: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 +𝑄(𝑥)                                                 (71) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶   𝐴𝑥 + 𝑏                                                    (72) 

𝑥 ∈ {0,1}, 𝑥 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

 

c: vector that represents the single expected cost of flying in a pairing 
without consideration of other pairings. This is the cost of the link without 
considering delays due to switching between aircraft crews.  

Ax = b: Limits of coverage and also other constraints of the crew.  

𝑄 (𝑥)  = ∫ 𝑅𝜔 𝑄 (𝑥,𝜔)𝑃 (𝑑𝜔)                                     (73)
𝜔

  

Where: 𝑄  is expected future actions due to disruptions in the original 
schedule value.  

This formulation is a standard two-stage stochastic program recourse (as in 
[257]). 

Also, [261] formulate a stochastic model with delay propagation measuring 
for the crew pairing problem. They propose a decomposition strategy to be 
able to solve the model by iterative crew scheduling and aircraft routing 
adapted from [256]. 

[262] proposes recovery policies in a random environment for the crew 
problem based on semi-Markov process. 

3. TUNING RESOLUTION METHOD BY PSO 

 

The aim of this section is to adapt the formulation of the HMM-based tuner 
to the crew scheduling problem. Therefore, we depict the classical crew 
pairing model, and we describe the PSO algorithm used to solve this model. 
This resolution constitutes a direct application of the tuning method 
described in the first chapter. 

3.1 EXPERIMENTAL MODEL AND TUNING ALGORITHM 

We describe both the model to resolve and the algorithm tuned for 
resolution. 
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3.1.1 The crew scheduling problem: Crew pairing 

The objective of the crew scheduling problem is to determine a minimum-
cost set of pairings so that every flight leg is assigned a qualified crew and 
every pairing satisfies the set of applicable work rules. 

In particular, crew pairing is very often considered as the first part of the 
airline crew scheduling procedure. 

The crew pairing problem can mostly be formulated as a set covering 
problem (SCP) or set partitioning problem (SPP). The SPP formulation can 
be expressed as follows [260]: 

𝑚𝑖𝑛 ∑ 𝑐𝑗 𝑥𝑗
𝑗 ∈ 𝑃 

                                                              (74) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

{
 

 
∑ 𝑎𝑖𝑗  𝑥𝑗
𝑗 ∈ 𝑃

 =  1 ∀ 𝑖 ∈  𝐹

𝑥𝑗 ∈ {0,1}   ∀ 𝑗 ∈  𝑃

                                                (75) 

 

The description of the parameters is detailed in [260], as well as in the 
previous section. 

 

3.1.2 Binary particle swarm optimization 

The binary PSO (BPSO) algorithm was introduced by [263] to enable PSO 
to operate in discrete and binary search spaces. It follows the same 
approach of the canonical PSO. Each particle i adjusts its velocity 𝑣𝑖 and 
position 𝑥𝑖  in each generation t according to the following formula: (the 
description of PSO parameters can be found for instance in [263] 

{
 
 

 
 𝑣 𝑖

𝑗(𝑡 + 1)  =  𝑤 𝑣𝑖
𝑗(𝑡)  +  𝑐1 𝑟1 (𝑝𝑖

𝑗(𝑡)  −  𝑥𝑖
𝑗(𝑡) )  

+ 𝑐2𝑟2. (𝑝𝑔
𝑗(𝑡)  −  𝑥𝑖

𝑗(𝑡)

𝑣 𝑖
𝑗(𝑡 + 1)  =  𝑠𝑖𝑔(𝑣𝑖

𝑗(𝑡))  =
1

1 + 𝑒−𝑣𝑖
𝑗(𝑡)

                                                (76) 

{
𝑥𝑖
𝑗(𝑡 + 1)  = 1  𝑖𝑓 𝑟𝑎𝑛𝑑𝑖  ≤  𝑠𝑖𝑔(𝑣 𝑖

𝑗(𝑡 + 1))

𝑥𝑖
𝑗(𝑡 + 1)  =     0    𝑒𝑙𝑠𝑒

                                                (77) 

 

3.2 GENERATION OF INSTANCES AND CONFIGURATIONS OF CREW PAIRING 
 

Instance generation is an important issue in the tuning problem. In this 
study, we have generated problem instances manually as following (table 
20):  
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Table 19 Instances of the crew problem 

Instance 1 2 3 4 5 6 7 

Flight leg 10 14 20 20 35 40 49 

Number of pairing 8 8 10 20 8 20 8 

 

Concerning the definition of configurations, as presented in the literature 
section, various approaches have been proposed to define PSO parameters. 
In this paragraph, we have adopted a number of commonly used values to 
define the possible configurations of the PSO algorithm. On the one hand, 
for population size, we consider the work in [264] to define the first and last 
configuration (100 and 10). The other one is the most adopted in the 
literature. On the other hand, for the acceleration factors, the difference 
between these configurations corresponds to the degree of exploration and 
exploitation. That is, the first configuration enhances the exploration of the 
algorithm at the expense of rapid convergence while the second one gives 
a better ability to exploitation. The last one presents a trade-off between 
exploration and exploitation [265]. In the two first propositions, we have 
respected the proposition that 𝑐1 + 𝑐2 <  4 as in [61] and for the last one, we 
have adopted 𝑐1 + 𝑐2 >  4 as proposed in [266]. 

Table 20 Configuration parameters 

Parameter values 1 2 3 

Population size 100 50 10 

(𝒄𝟏, 𝒄𝟐) (2.5, 0.5) (0.5, 2.5) (2.05, 2.05) 

 

We examine all possible combinations of these parameters of table 21 (nine 
configurations) which are: [(100, (2.5, 0.5)), (100, (0.5, 2.5)), (100, (2.05, 2.05)), 
(50, (2.5, 0.5)), (50, (0.5, 2.5)), (50, (2.05, 2.05)), (10, (2.5, 0.5)), (10, (0.5, 2.5)), 
(10 ,(2.05, 2.05))]. 

 

3.3 TUNING TEST PHASE 

After defining configuration and instances of the crew problem, tuning 
simulations of the configurations over instances are executed according to 
Algorithm 2 which is defined in chapter 1. 

Before running tests, and given a maximum running time for the PSO 
iterations number, we define two metrics to be used for performance 
evaluation: 

 Metric 1: defined as the cost at termination. 

 Metric 2: defined as the running time. 
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The tuning approach is tested over these two metrics. Also, a comparison 
of running tests is made by a ranking function corresponding to mean 
executions of a specific instance with a specific configuration. Then, the 
instances can have metric values, based on information regarding cost and 
running time on the crew scheduling problem instances. 

Tests are performed twenty times on each configuration. Moreover, 
instance and mean values of the metrics are retained and ranked according 
to the order of each configuration performance on an instance. Algorithm 
2 of the test phase is executed multiple times to obtain sufficient data for 
the next phase. 

Table 22 gives an example of the results obtained from one test phase 
execution on instance 7: 

Table 21 Example of one test output 

Configuration Metric 1 Rank of Metric 1 Metric 2 Rank of Metric 
2 

1 391 4 0.50 6 

2 244 1 0.53 9 

3 289 3 0.49 1 

4 301 8 0.49 2 

5 293 5 0.51 7 

6 339 9 0.50 5 

7 298 6 0.50 3 

8 244 1 0.50 4 

9 300 7 0.51 8 

 

This execution shown in the table above is executed twenty times, and 
ranks are considered as a stream data of observation sequences and states 
of HMM. 

3.4 TUNING EVALUATION PHASE 

We consider all execution data from the previous phase as an input for this 
evaluation phase. As mentioned before, tuning is performed according to 
two metrics which are the running time and the termination cost. 

The stream data of ranks for the two metrics are considered as observation 
sequence for HMM, and corresponding configurations for each rank are 
states of HMM. 

So, we execute Baum-welch algorithm on the data of the test phase. We 
drop the results of the tuning in Table 23.  
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Table 22 Representation of probabilities for each metric 

configuration Metric 1 Metric 2 

1 0.75 0.12 

2 0.76 0.10 

3 0.77 0.10 

4 0.79 0.06 

5 0.75 0.10 

6 0.82 0.18 

7 0.80 0.07 

8 0.77 0.15 

9 0.79 0.09 

 

Table 23 shows the probabilities of each configuration to be the best (rank 
one) for the two metrics: cost and run time. Maximum probability of rank 
one for tuning by metric 1 of run time is given by configuration 6, and 
maximum probability of rank one for tuning by metric 2 of costs is 
configuration 6 also. 

 

 

Figure 51 Comparison of default and tuned configurations by cost and runtime (instance 7). 

Furthermore, as in [267], we adopt a graphical comparison between the 
HMM-based tuner and the classical PSO (non tuned) as depicted in Figure 
52. That is, after testing obtained best configuration for each metric and 
comparing to a default configuration (Figure 51), the configuration given 
by our tuning method gives greatest results in terms of cost and time. So, 
HMM can successfully tune PSO metaheuristic for the crew problem. 
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4. MARKOV DECISION PROCESS MODEL OF CREW PAIRING 

 

Many contributions in the literature are trying to deal with uncertainty (see 
the literature paragraph). With the same target of building a robust 
mechanism that can absorb flight disturbance, we develop this approach 
based on multi-Agent Markov Decision Process.  

4.1 WHY MDP MODEL FOR THE CREW PAIRING 

Schaefer et al. [268] talk about the possibility of modeling robust crew 
scheduling under uncertainty based on a Markov decision process (MDP) 
but assume that is intractable. As Schaefer describes, the state of the system 
gives every aspect of the system that is relevant for operational decisions. 
Thus, this state contains information about the current status and the 
current operating environment such as weather, congestion, etc. The first 
stage consists of the planning period, where we have the initial crew 
schedule. Operational decisions are made in subsequent stages. The 
number of stages is quite large since the planning horizon is the same as 
the planning time and the state of the system can change within minutes. 
Also, the action space consists of all possible, feasible decisions such as 
canceling flights, rerouting planes and passengers, rescheduling crews, and 
so on. So, the number of states and actions is so much big, which justifies 
why this approach is intractable and can engender a precious resolution 
time. Regarding how much the problem is critical and the fact that it does 
not allow a wait time for a decision establishing in every stage, an online 
resolution would not happen without serious risk.   

Based on those critics of MDP formulation, we try here to give another 
formulation of pairing problem in crew scheduling. We distinguish first 
between the planning horizon and planning time. Therefore, the approach 
given below has prior solution and does not wait until the online 
mechanism.  

4.2 THE MDP MODEL  

This theory gives as a solution to a centralized controller, in advance, all 
decisions that can be made during the planning horizon of legs assignment 
to pairings. So, with MMDP, no need to real-time optimization because we 
assume having predefined solution that is the best possible that can handle 
disturbances.  

We consider as a stochastic process for the MDP, the flight arrivals as in the 
previous chapter. It takes its values from the state space. The corresponding 
solution is defined by a policy given by resolving the following MMDP. 
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With this purpose, we formulate the pairing assignment problem as a tuple 
<K,S, A, P, R> where :  

The set of states S = { s1 ,… , sN} where S gives all flight legs object of our 
problem, they form the set of flights to be covered. A flight leg is defined 
as an airport to airport flight segment that starts at a specific departure time 
and connects two stops of a flight. A state  si ∈ S is a flight leg characterized 
by departure and arrival time between two stations. 

The set of actions A =  A1  × · · · × AN  would be the set of all possible 
pairings, N is the number of pairings. A pairing is defined as a sequence of 
flight legs or segments that begin and end at a crew base.  

A pairing Al = {al1, … , alN}  where Al ∈ A  and  ai ∈ {0,1}  ,  ai = 0  if the 
pairing l covers the leg i and 0 otherwise, in other words,  ai defines if the 
agent Agi will cover the leg i.  

At a state  si , possible actions are those pairings that can cover the leg i. 

Al is a possible action in state  si if ali = 1. 

Also every agent Ag, can cover only one and unique leg. 

The transition function gives the probability P (s, a, s′)  of the system 
transition to a state s’ when agents run the joint action a ∈  A from state s. 
It corresponds to a probability of changing the assignment combination 
from s to s’ resulting from executing a reassignment action. That means the 
probability of reassigning the pairing a to the leg s′ while it was assigned 
to s. 

We assume that the probability P includes the completely stochastic 
information for the pairing assignment problem. It aggregates possibilities 
of disturbances such as stochastic flight delay or also other probabilistic 
disturbances that affect pairing assignment. The computation of this 
probability uses other techniques to form a probabilistic model of crew 
disturbances. 

R (s, a, s’) is the reward obtained by the system when changing from one 
state s to a state s’ by executing the action a. This includes negative costs 
and positive benefits of every reassignment. 

We need so to evaluate policies in order to have the optimal policy and 
solve the MDP problem. The two main algorithms used for resolution are: 
value iteration (Bellman[141]) and policy iteration (Howard [142]).  

We define the value function  Vπ: S →   , which represents the expected 
objective value obtained following policy π from each state in S. Vπ is given 
as follows [142] : 

 Vπ(s) = R(s,π(s)) + γ∑ T(s,π(s), s′)Vπ(s
′)s′∈S                        (78) 

At least one optimal policy exists, and all optimal policies have the same 
value function 𝑉∗[142]: 
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  𝑉∗(𝑠) = max
𝑎∈𝐴

 (𝑅(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠, 𝑎, 𝑠′) 𝑉∗(𝑠′)𝑠′∈𝑆 )                     (79) 

(78) and (79) are called Bellman equations, where γ (0 < γ < 1) is a discount 
factor that is used to give more or less importance to future rewards. This 
factor is required to consider an infinite horizon discounted model 
(Kaelbling et al. [166]) in which the number of iterations is in principle 
infinite. However, the discount factor γ  implies the convergence in a 
polynomial number of steps (Givan[269]). Over iterations, the initial policy 
is successively improved until an optimal one.  

To solve the MMDP associated with the pairing problem, we use the value 
function based on Howard algorithm (Howard [142]).  

According to Howard [142], this algorithm is guaranteed to converge. 

Then, the solution is about finding an optimal stationary policy π ∗ for all 
agents that maximize the expected discounted future reward for each 
state  s . The π ∗  includes optimal decisions to make regarding the 
assignment state. The optimal policy gives the set of optimal pairing to 
select. It can be regarded as optimal actions to take for pairing assignment. 

4.3 EXPERIMENTATION  

We conduct a computational study to test the effectiveness of the 
implemented algorithm. We use sample data from [240] 

Table 23 FLIGHT SCHEDULE 

 

 

Table 24 shows a flight schedule of six flight legs to be flown every day of 
the month. A row in the flight schedule represents a single flight leg 
defined by single flight number from one to six. 

Just for illustration, only some simple rules are used to classify legal 
pairings such as the number of duties in a pairing, the overnight rest (OR) 
between duties and the total flying time of a pairing. Thus, legal paring are 
described as follows (table 25):  
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Table 24 Legal pairings 

 

The problem is first solved as a set partitioning problem (SSP) [239] to have 
an initial policy according to a given cost associated with every pairing 
assignment. The initial policy would be: pairings one and five. This solution 
is optimal under the assumption of no disturbances and deterministic 
resolution. 

If we assume now having disturbance as delay in leg 3, and we have a 
serious possibility of disturbances between leg 3 (arrives at 10:00) and 6 
(departure at 11:00) included in the chosen pairing 5. So, if we choose this 
policy, it will be a missed connection between 3 and 6. This probability is 
included in our model as a transition probability between state 3 and 6 
executing action 5.  

Now we use the Howard algorithm of policy iteration [142] on the initial 
policy. The result of resolution including potential probabilities of 
distortions is pairings two and six. This is a better policy that can handle 
disturbances between legs 3 and 6. The delayed flight leg in this new 
resolution is isolated between two nights so the delay cannot propagate or 
influence the scheduling. 

Thus, the use of this MMDP approach allows to prevent disturbances in 
advance, and construct a robust resolution method. 

5. CONCLUSION 

 

In this work, crew pairing problem is modeled as a Markov Decision 
Processes (MDP). This approach aims to constitute a robust mechanism that 
can absorb disturbances. Thus, the risk of taking real-time optimization can 
be avoided as maximum as historical data is analyzed. The given priori 
solution is the set of pairings that can handle the best disturbances in flight 
operations. So, we do not take into account real-time optimization.  

The experimentation on this approach by simulation of the related policy 
iteration algorithm gives the best feasible solution. 

The objective behind this reflection is to give to controllers at the airport a 
robust priory solution instead of taking the risk of online schedule 
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modifications to handle uncertainty. Even if it takes more time to resolution, 
it can exclude online treatment of optimization. 

On the other hand, the experiments using the tuned PSO by HMM was 
promising as a resolution method for a deterministic model of the gate, 
where, the resolution complexity has been reduced. Otherwise, HMM-
QPSO can also be used as a perspective to solve the proposed MDP model 
of the crew pairing using a reinforcement learning approach. 

As perspective, more computational methods can be integrated to compute 
effective transition probabilities and other input parameters for this 
proposed approach. Also, more real constraints, restrictions and real data 
have to be considered. 
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CHAPTER VI:                                                 
A REINFORCEMENT LEARNING MODEL OF 

THE MAINTENANCE ROOTING PROBLEM 

In airline scheduling, a multitude of operational decision and planning 
problems need to be solved. We consider the problem of aircraft 
maintenance routing (AMR) as a crucial component in flight operation. 
Aircraft maintenance routing is of basic significance to the safe and efficient 
operations of an airline. However, the timely efficiency of the airline flight 
schedule is susceptible to various factors during daily operations. Air 
traffic often undergoes some random disruptions that expose maintenance 
routing to random flight delays, which have to be considered to ensure safe 
and operational flight schedule.  

The temporal Performance of the airline flight schedule is predisposed to 
different factors during daily operations. Maintenance routing as an 
important critical component of the flight schedule might be the subject of 
random flight delays because of numerous factors as hard weather 
conditions, airspace congestion, extended ground holding, etc. Flight 
operations can be severely disturbed without considering such events.  

A robust approach will help to prevent such unwanted situations of missed 
maintenance checks. A decision support system data based on dealing with 
the maintenance disturbances problem is developed targeting to assist 
policy makers in handling disturbances. A Markov Decision process model 
was selected in this thesis to remedy this problem and design the 
maintenance needs of an aircraft taking past data information into account. 
Maintenance actions are modeled with stochastic state transitions. This can 
offer the opportunity to solve the maintenance routing problem 
deliberating and handling flight disturbances through computational tests 
on real data of a Moroccan airline company. 
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1.  AIRCRAFT MAINTENANCE PROBLEM  

 

The maintenance of an aircraft and its elements is a necessary and 
rigorously controlled duty to guarantee the safety of an aircraft and its 
operations. Also, the aircraft maintenance is considered among the main 
direct operating costs for an airline and constitutes an important factor in 
providing a greater service quality. Maintenance, consequently, should be 
executed at the minimum possible cost, offer the best level of service and 
provide competitive delivery times without reducing quality and safety. To 
attain these objectives, commercial aviation maintenance is arranged in an 
organized and well-structured maintenance program of scheduled tasks.  

Effective decision making of large maintenance systems is determined by 
several independent sources of information and is thereby complex. The 
current state situation of every device, daily, weekly and monthly plans of 
maintenance, the state profile of the machine, maintenance costs, etc. The 
system level control is the most practical to generate decisions during the 
maintenance once having envisioned the information about the aircraft, 
regarding departments and various other information as inputs. These 
inputs are matched against production preferences which are established 
by the company. In order to increase productivity, rise stability and 
responsiveness, the maintenance operations in larger and complex airline 
activities have to be facilitated by control, design and good management.  

Delays and disruptions were a frequent concern during the achievement of 
maintenance checks, keeping a significant operational impact on the overall 
airline performance. It was also noticed that this issue was primarily due to 
the complexity of managing the resources and the incidence of unplanned 
maintenance tasks. It was also observed that the used approaches were not 
as successful as wanted. Therefore, it is recommended to solve the problem 
from a distinct and more effective perspective than all those previously 
applied. However, due to the large multitude of flights planned every day, 
that may easily attain thousands and thousands for a major airline. 

To be able to considerably better realize the aircraft maintenance process 
and to describe the effect and the relevance of this study, this section 
provides the maintenance problem as contextualized, explaining the role of 
the airline and the issues it has been working on. The importance and 
significance of aircraft maintenance for airlines are due to the technical 
character of the subject, and the important rules that are outlined with the 
overall structure of aircraft maintenance. This section gives and identifies 
the problem and its context. 
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1.1. PROBLEMATIC 

The most challenging issue in the AMR problem is that before an aircraft 
goes in into a heavy maintenance check, a complete plan is identified 
indicating all the scheduled maintenance tasks to execute and identifying 
the needed resources for achieving them. However, during the execution 
of the maintenance check, especially at the time of the inspection stage, 
damage and failures are identified that have to be fixed by programming 
further maintenance activities that are not regarded in the first plan. These 
unscheduled tasks stop the planning and charge of the whole maintenance 
service as they require additional resources and force adjustments to the 
initial plan, causing disruptions throughout the execution of the service, 
which for most cases leads to delays by the end of the maintenance check. 
In contrast, delays can also cause a disruption in the overall airline planning 
and therefore, a perturbation in the execution of scheduled maintenance 
checks. Delays can trigger a supplementary operational cost of 
maintenance services were not associated with only one company. When 
disturbances produce, it is difficult to realize the planned maintenance task. 
The controller at the airline has to establish another maintenance routing 
depending on airline policy, to lower the negative impact of these 
perturbations.  

The large mass data existing for the airline regarding previously past-
executed plans and operations have an important factor to examine and 
avoid that kind of maintenance routing failures. The target of our research 
is on enhancing the robustness of a planned schedule by redistributing 
these maintenance possibilities, while simply building limited adjustments 
to the originally-planned maintenances. Our objective is to minimize the 
overall likely number of maintenance failures. Operationally, this supplies 
a large chance of having the ability to disturb tails to guarantee 
maintenance feasibility without additional disruption to the planned 
maintenance checks. 

1.2. AIRLINE PLANNING PROCESS OF MAINTENANCE  

To start the planning process, the airline establishes its schedule of daily 
flights for a time period, such as a quarterly schedule. Offered the set of 
flights, the fleet assignment problem can be solved, assigning every single 
flight a certain aircraft type. Right after fleeting is done, the schedule could 
be decomposed by fleet type and for every single fleet type, the crew 
scheduling problem and maintenance routing problems are then resolved. 
This planning process is described in figure 52.  
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Figure 52 typical airline planning scheme 

During maintenance routing, the lines of flight considered as flight legs are 
built. These legs are then utilized to create feasible aircraft rotations for 
maintenance checks.  

1.3. MAINTENANCE PROBLEM DESCRIPTION 

Ahead of solving the aircraft maintenance routing, an airline schedule is 
created. It is absolutely built as being a set of flight legs that the airline 
makes to fly. Then, it is about to identify allocated resources to the fly 
schedule properly. The airline needs to specify equipment types just like a 
Boeing 757, etc, and then each leg is assigned to an aircraft having 
constraints satisfied. This is known as the fleet assignment. The latter is 
supplied to the aircraft maintenance routing process so that each individual 
aircraft can be allocated particular routes between those provided for its 
special type, with the full satisfaction of maintenance constraints. 

Aircraft maintenance must be planned, started performing and controlled 
as outlined by prescribed procedures and standards, achieving extremely 
specific and rigid requirements, seeking to maximize system performance 
at the minimum cost [270]. [271] clarifies that aircraft maintenance is 
organized as a systematic and scheduled program that is mutually 
authorized by the aeronautical authorities and manufacturers of aircraft 
and parts. The maintenance program definitely identifies how, and when, 
every specific scheduled maintenance task needs to be performed. The 
achievement of this program avoids damage, and deterioration of an 
aircraft and its components, conserving the typical levels of reliability and 
guaranteeing aircraft safety [272].  

It was noticed that even though the usage of information systems for 
controlling resources and handling the process, once the volume of 
unscheduled maintenance tasks begins increasing above the level 
originally predicted, handling the service turns extremely difficult, since 
one change may impact the execution of different tasks or the availability 
of resources for several other activities. The whole maintenance process 
gets into a crucial alert, because of that immediate issues resolution can 
malfunction the problem even more. For this intent, this approach is 
provided in this chapter. 
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1.4. MAINTENANCE TYPES 

[273] mentions that a maintenance plan contains three primary components:  

 Aircraft inspections which consist of repeated routine inspections, 
minor checks, and tests;  

 Scheduled maintenance that includes systems servicing, replacing 
parts, routine overhauls, and particular inspections;  

 Unscheduled maintenance, targeting to solve unpredicted failures, 
generally noticed from inspections. 

Maintenance regulations and constraints require for example that all 
aircraft undergo maintenance after flying a certain number of hours. Every 
aircraft involves several types of aircraft maintenance as checks. The checks 
are known as A, B, C, and D that change in their frequency, scope, and 
timeframe. Among these types of checks, just type A are considered as 
routine maintenance that needs to be frequently done (every sixty-five 
flight hours) and inspects all the main systems. B checks are performed 
every 300 to 600 flight hours and involve a visual examination and 
lubrications. Level C and D maintenance checks are commonly classified as 
heavy maintenance and are usually carried out about once every one to 
four years because of the high associated workload. The C and D sorts of 
checks take more than 24 hours and are simply modeled by reducing the 
number of available aircraft. Therefore, A and B checks are integrated into 
maintenance routing model, and their maintenance constraints are 
incorporated. When a check is not performed inside the specified period, 
the aircraft is not allowed to fly. Hence the importance and criticality of 
satisfying those maintenance requirements.  

Likewise, maintenance is mainly separated into two main strategies (as in 
figure 53): 

 Preventive maintenance: this approach of maintenance is performed 
usually based on maintenance manuals in certain time periods 
described by the original aircraft producer. The preventive 
maintenance keeps the aircraft and helps prevent defects from arising. 

 Corrective maintenance: When a deficiency is definitely discovered, 
the executed maintenance is called corrective maintenance. The 
purpose of corrective maintenance is to place the aircraft on condition 
again. 
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Figure 53 Maintenance types 

The particular maintenance routing problem is to find a routing of the 
aircraft that will meet the short-term procedure maintenance prerequisites 
(Checks type A and B). 

  

1.5. RESOURCES MANAGEMENT IN MAINTENANCE 

Within the heavy maintenance, many resources are in continuous 
connection: aircraft, ground services, parts and materials, tools and 
equipment, technical details and workers. [274] recognizes operators, 
equipment, documentation, and tasks as the primary communicating 
components in aircraft maintenance systems and mention that these 
components communicate over time with each other and with an amount 
of exterior circumstances. [275] additionally discuss that aircraft 
maintenance is a complicated system, where staff performs diverse tasks 
with critical time limitations, small feedback and environmental and 
working conditions that are sometimes difficult. Figure 54 depicts the 
interactions and interdependence concerning the different resources 
included in main checks.  
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Figure 54 Maintenance Resources management 

As a result of the large variety of distinct resources associated with the achievement of 
heavy maintenance and, moreover, due to the complicated interconnection among 
them, the planning, supply, and control of all resources should be properly handled. 
A deficiency in the supply of one resource can impact the control of the others and 
consequently impact the whole maintenance services. [276] states that maintenance 
planning is important to reduce aircraft downtime while keeping positive efficiency 
and inventory costs since it handles the execution of maintenance tasks, work 
synchronization, tools and the supply of needed parts..  

1.6. MAINTENANCE TASKS  

Scheduled maintenance tasks (see Figure 55) are generally appointed accurately since 
they, and their preferences, are plainly identified in the maintenance program. 
Therefore, in the distinction of the short-term program, it is conceivable to forecast and 
plan the resources included and every single activity that should be performed. In this 
context, [277] clarifies that planned maintenance function is expected and regular, and 
consequently can be generated with a reasonable level of precision. However, 
additional highlights considering that their scheduling can call for calculating aircraft 
utilization and required maintenance periods much before the maintenance check that 
generally causes a sub-utilization of the aircraft and the various other resources.  
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Figure 55 Maintenance tasks 

In addition, inside a scheduled maintenance system, unscheduled and 
unexpected activities, typically called non-routine tasks, occur at the time 
of the operation of aircraft. As [277] claims, unpredicted behavior out of 
specification normally happens but is hard to predict. Also in [278], the 
authors stated that in fact about a half of most of the maintenance activities 
are unexpected and unscheduled occurrences. 

The next section will describe the most relevant maintenance approaches 
from literature. 

2. MAINTENANCE LITERATURE  

 

The main objective of this section is to review the literature of the aviation 
industry, mainly focused on aircraft maintenance. Before addressing the 
different approaches from the literature, the most common maintenance 
model of aircraft maintenance rooting is presented. 

2.1 GENERAL MAINTENANCE ROOTING MODEL  

Before giving our model approach and formulation, we provide first light 
on the most commonly used model of maintenance routing. We will base 
on this approach to describe our own method in the next section.  

As mentioned before in the literature, there are two different ways to model 
the maintenance routing. The first is a network-based model, while the 
second type is the string based model. The approach described in this 
chapter is a string based model as introduced first time by [279] and 
adopted by many types of research as in [280]. The choice of this model is 
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for its convenience to integrate disturbance management. Mainly because 
delays propagate through the aircraft routes, it is hard to make use of 
network-based models to monitor delay propagation. Thus, a routing 
string based model is considerably more suitable. Thus, a routing string 
based model is considerably more suitable. Such type of model, a 
formulation for robust aircraft maintenance routing with the aim to reduce 
overall estimated propagated delay, is provided in the next section. A 
string is a sequence of connected flight legs that start and finish at 
maintenance stations (probably distinct). 

Let S be the set of feasible strings, 𝐹 be the set of daily flight legs, F+ be the 
set of flight legs originating at a maintenance station, and F- be the set of 
flight legs terminating at a maintenance station. We denote the set of 
ground variables (including the overnight or wraparound arcs to ensure 
that the flight schedule can repeat daily) as G, the set of strings ending with 
flight leg i as S, and the set of strings beginning with flight leg i as S. We 
have one binary decision variable x for each feasible string s. We have 
ground variables denoted by y, which are used to count the number of 
aircraft on the ground at maintenance stations. Let 𝑎𝑖𝑠 s equal 1 if flight leg 
i is in string s, and equal 0 otherwise. Ground variables 𝑦𝑖,𝑑

+  equal the 

number of aircraft on the ground before flight leg i departs, and ground 
variables 𝑦𝑖,𝑑

−  equal the number of aircraft on the ground after flight leg i 

departs; ground variables 𝑦𝑖,𝑎
−  equal the number of aircraft on the ground 

before flight leg i arrives, and ground variables 𝑦𝑖,𝑎
+  equal the number of 

aircraft on the ground after flight leg i arrives. 𝑟𝑠 is the number of times 
string s crosses the count time, a point in time when aircraft are counted, 
𝑝𝑔 is the number of times ground arc g crosses the count time, and N is the 

number of planes available.  

The String model is as follows: 

min ∑c𝑠x𝑠
s∈S

                                                                   (80) 

Subject to: 

∑a𝑖𝑠x𝑠
s∈S

= 1              ∀ i ∈  F,                                     (81) 

∑ x𝑠 − 𝑦𝑖,𝑎
− + 𝑦𝑖,𝑑

+

s∈S𝑖
+

= 0              ∀ i ∈  F+,               (82) 

−∑ x𝑠 − 𝑦𝑖,𝑎
− + 𝑦𝑖,𝑎

+

s∈S𝑖
−

= 0              ∀ i ∈  F−,               (83) 

∑r𝑠x𝑠
s∈S

+∑p𝑔y𝑔
s∈G

≤ 𝑁                                              (84) 

 y𝑔 ≥ 0             ∀ g ∈  G,                                               

x𝑠 ∈ {0,1}             ∀ s ∈ S                                             
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The objective (80) concerns the minimization of the expected total full cost 
of the selected strings. Constraints (81) guarantees that each flight leg is in 
exactly one string as cover constraints. Constraints (82) and (83) ensure the 
flow balance constraints between the number of aircraft arriving at and 
departing from a specific location. Constraint (84) is considered as the 
counting constraint that ensure the total number of aircraft being used at 
the count time will not surpass the number of aircraft in the fleet. 
Constraints (83) and (84) make that the number of aircraft on the ground is 
non-negative and the number of aircraft allocated to a string to be 0 or 1, 
since variable y is a sum of binary x variables. 

2.2 AIRCRAFT MAINTENANCE STUDIES  

Generally solved following the fleet assignment, maintenance routing 
problem is to identify how an specific aircraft is maintained within the 
rotation of overall maintenance constructed as checks [281].  

Two main types of maintenance routing models are found in the literature 
[282]. First called Flight-Based Formulation Models and the second is 
considered as String-Based Models. 

As a flight-based model, [281 presents the aircraft maintenance routing 
problem using a mathematical programming formulation, and it is viewed 
as an asymmetric traveling salesman problem. In a simplified connection 
network, arcs symbolize possible connections, and nodes symbolize flight 
segments. The goal is to maximize the profit resulting from constructing 
specific connections, referred to as through value. The presented model can 
capture several maintenance considerations. It is solved with a Lagrangian 
relaxation procedure and provides near-optimal solutions. 

In [283], the rotation of aircraft planning problem as a mathematical integer 
programming for some European airline. The objective function is defined 
to decrease the risk induced by the total delay, which is supplied by two 
factors: one by distinct flight connections and another by using the total 
path made by flight legs. the problem is solved using a Lagrangian 
relaxation approach. 

Network flow models are offered in [284] to deal with the aircraft 
maintenance routing problem in case of single type maintenance. This 
model constructs a number of maintenance arcs without having overnight 
arcs. It begins at the end of every day at a station and finishes at the start of 
the exact same station timeline. The objective function is 0 since it only 
regards the maintenance routing problem just as a feasibility problem. The 
Solution is a set of arcs utilized in the optimal rotation recognized as a Euler 
tour. Therefore, a polynomial time algorithm is applied to determine the 
arcs sequence. Two model developments have also been supplied in [284] 
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to generate the profit  or cost of the maintenance routing problem by 
forming certain operational arcs on the time-space network.  

A collection of algorithmic solutions are listed in [285] and [286]. They 
considered a configuration where one-day trips are fixed. An algorithm of 
polynomial time is supplied for obtaining a three-day maintenance Euler 
tour once there is determined one in a flight network.  

Also, [287] gives another formulation of the operational aircraft 
maintenance routing problem, that incorporates a set-partitioning where 
decision variables symbolize feasible aircraft routes. This formulation 
contains maintenance of resource availability constraints, and two sets of 
equivalent resource constraints are made in this model. To solve the 
problem, a branch-and-price algorithm is used with changed branch-on-
follow-on rule.  

The second type of models, String-Based Model was proposed in [279] to 
solve the aircraft maintenance routing problem for a single maintenance 
type. A group of connected flights determines a string, which match some 
conditions. This group needs to start and finish at maintenance stations 
having a maintenance check in the end. The group should meet 
maintenance feasibility and the flow balance. The minimization of the cost 
of the selected route strings is the objective function.  

A model for dealing with the weekly schedule is given by [288] with two 
types of maintenance. Primarily, a set of one-day trips is built; then a time-
space network is constructed on those trips. The model constitutes a flight 
segment where included by just a single trip side constraint for two types 
of maintenance.  

Many researchers have targeted on resolving over than one optimization 
problem simultaneously. This produces better incomes and reduces the 
cost for the airlines. The aircraft maintenance routing problem has been also 
associated with different integrated scheduling problems. 

In [289], A multi-commodity fleet assignment model is provided based on 
a set of constraints for maintenance routing. The two types of maintenance 
have been considered in their approach, namely the long and short 
maintenances.  

Several works present the integrated planning for maintenance routing 
associated with crew pairing problems. Like in [290], the aircraft 
maintenance routing problem is seen as a feasibility problem where the 
crew cost is the majority in the total cost of the integrated problem.  

A standard integrated model for the crew pairing and the maintenance 
routing problems was provided in [291]. This model ensures maintenance 
feasibility. The cost of maintenance routing is taken into consideration 
explicitly in this model.  

An extended crew pairing model was offered in [292] to solve the combined 
maintenance routing problem and crew pairing.  
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Researchers are starting to give more consideration to potential delays and 
disruptions in the routing problems of airline transport. In a previous work 
[293], historical data as problem instances are used to tune and improve the 
parameters of resolution algorithms in airline transport. Other works have 
been applied Markov process in the same field of airline transport as a 
robust model to handle possible disturbances like in [152] and [294]. 
Another approach is given by [280] based String model tried to reduce 
delay propagation in the maintenance routing by intelligently routing 
aircraft. This problem was formulated as a mixed integer programming 
problem with stochastic generated inputs. 

Serval approaches and formulations for maintenance routing problems 
have been well addressed in the literature. Each one has its advantages and 
drawbacks. Our approach uses another different manner to model and to 
resolve this problem, based on historical data to extract more robust 
solutions. Our data-driven method relies on a constrained Markov process 
model. Theoretical backgrounds about our chosen methodology will be 
described in the next section. 

3. MARKOV DECISION PROCESS MODEL  

3.1 FLIGHT DELAYS PROPAGATION 

As mentioned before, a leg is a non-stop flight from an origin to a 
destination with specified departure and arrival instances. Moreover, a 
string is a sequence of connected flight legs that begins and ends at 
maintenance stations.  

As shown in Figure 56 below, a delay in the flight leg 𝑓1, it will be 𝑓’1 and 
causes departure delay for the next flight 𝑓2 in the same string that is using 
the same aircraft (to be 𝑓’2) if there is not enough minimum turn time (MTT) 
between these two flights.  

 

 

Figure 56 Delay propagation 

Delay that arises when the aircraft used for a flight leg is delayed on its 
prior flight leg. This delay can be propagated to influence overall aircraft’s 
routing. 
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Due to the fact that every aircraft routing is a sequence of flight legs flown 
by a single aircraft, an arrival delay can lead to a departure delay if there is 
not sufficient slack between two successive flight legs in the routing. This 
is called delay propagation; this event leads to many disruptions in air 
traffic, regarding crews, passengers as well as maintenance routing.  

3.2 DELAYS DETECTION FROM DATA 

Maintenance strings are composed of flight legs. Then, each propagated 
delay is a feature of maintenance routing. Therefore, while historical values 
for propagated delay can be calculated for every flight leg in current 
routings, no like values are readily available for routings that have not 
really been earlier realized. Nevertheless, just because independent arrival 
delay is not a function associated with routing, independent arrival delay 
can be computed for each flight leg monitoring actual routings of every 
single aircraft. Total propagated delays of flight legs in any routing will 
then be constructed from historical aircraft data, as described following in 
the algorithm 25. Previous work has given a similar notion of delay 
propagation in [280]. 

Let TAD be the total arrived delay, IAD is the independent arrive delay and 
PD in the propagated delay.  

Algorithm 25: Delays extraction from DATA  

Input: Strings S, flight legs F, Flights data history DATA(𝑻𝑨𝑫, 𝑺𝒍𝒂𝒄𝒌) 

for each 𝒊, 𝒋 ∈ 𝑭 from DATA 

𝑷𝑫𝒊𝒋  =  𝒎𝒂𝒙(𝑻𝑨𝑫𝒊  −  𝑺𝒍𝒂𝒄𝒌𝒊𝒋, 𝟎) 

end for 

for each 𝒊 ∈ 𝑭 from DATA 

𝑰𝑨𝑫𝒋 = 𝑻𝑨𝑫𝒋 − 𝑷𝑫𝒊𝒋 

end for 

for each 𝒔 ∈ 𝑺  

 for each 𝒊, 𝒋 ∈ 𝒔 

  if (𝒊 is the first) 

   𝑻𝑨𝑫 = 𝑰𝑨𝑫 

  Else if 

𝑷𝑫𝒊𝒋 = 𝐦𝐚𝐱(𝑻𝑨𝑫𝒊 − 𝑺𝒍𝒂𝒄𝒌𝒊𝒋, 𝟎) 

𝑻𝑨𝑫𝒋 = 𝑰𝑨𝑫𝒋 + 𝑷𝑫𝒊𝒋 

  end if 

 end for 

end for 

Output : PD, TAD and 𝑰𝑨𝑫 of each String s. 
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3.3  MDP MODEL DATA BASED 

After determining the propagated delay for each flight legs in a string of 
legs, we can address our data-driven model based on those calculated 
values from data in the previous paragraph. So, the problem of uncertainty 
will be addressed in the context of Markov processes. The choice of MDP 
context is due to its flexible concept for stochastic and dynamic 
optimization problems. It differs from the model in paragraph 3 from the 
side that takes into account possible disruptions in flight operations caused 
by delays. 

We define model components and variables at the light of the basic model 
given in paragraph 3. The use of MDPs requires defining its components. 
Five main features describe the constrained MDP formulation: state space, 
action space, state transition probabilities, global constraints and rewards.  

We suppose as the assumption that the system behaves with well-known 
states and actions, and the use of available data is to compute the transition 
trajectories or also other rewards. The Objective is to find a solution as a 
stationary maintenance routing that succeeds to undergo uncertainties.  

We consider as a stochastic process for the MDP, the flight arrivals as in the 
previous chapter. It takes its values from the state space. 

A finite constrained Markov decision process is a 5-tuple {𝑋,𝑈, 𝑃, 𝑅,𝐷}, as 
formal description, it is represented as fellow [295] : 

- X is a finite set of possible finite states; it matches the set of flight legs 𝑖. 

- U is a finite set of possible actions, each action u corresponds to assign a flight 
leg 𝑥 ∈ 𝑋 a to a string 𝑠 ∈ 𝑆. If there is no best leg to assign, the action consists of 
retaining the leg assigned to the already affected leg 𝑥. Hence, the action set fits 
as set of possible strings to affect to state (legs).  

- We denote U𝑥 ⊂ U as set of possible strings to affect to a leg 𝑥.  

- R ∶  X ×  U    Is a real-valued reward function. It is the value of reward 
received when executing action 𝑢 in state 𝑥. We note R (x, 𝑢). 

- Reward function is defined as follow:  

o 𝑅(x, 𝑢) = −ρ. c𝑢(𝑥) − ρ
′. 𝑇𝐴𝐷𝑥(u)                                                                      (85) 

o Where: c𝑢(𝑥) a cost of assigning a leg 𝑥 to a string 𝑢. 𝑇𝐴𝐷𝑥(u) defines an 
associated cost to total arrived delay of flight leg 𝑥 (as state) in a string u 
(as action). Its values are extracted from history in order to give a penalty 
to assignments leading to a total delay. ρ  and ρ′  are two weights 
associated to delay cost and affectation cost respectively 

- T: X × U  T is the transition function as a probability distribution of 
undergoing actions over the next states. It reflects the data-driven aspect of our 
problem. Hence, we define the transition probability from the previously 
computed delays data as: To each action and state of the environment, the 
function T (x, a, x’) is defined as the probability px,x′(𝑢) that the system is in state 
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𝑥 ∈ 𝑋 goes to state x′ ∈ 𝑋 when the agent chooses action 𝑢 from actions space 𝐴. 
It is a probability of leg assignment changing from a string (action) to another. 

𝑇𝑥,𝑥′(𝑢) =
PD𝑥,𝑥′(u)

PD(u)
                                                      (86) 

- It is a probability of having a propagated delay between two flight legs 𝑥 and 𝑥′. 
So, a transition will force an assignment changing if a propagated delay is 
detected. 

- The set D called a set of feasible constraints; it defines a cost conditioned 
constraint on policies. Constraints (80), (81) and (82) are defined as feasible 
constraints for the CMDP. 

- We identify a policy 𝜋  as a mapping from 𝑋  to 𝑈 , giving for every state 𝑠  a 
corresponding action 𝑢 = 𝜋(𝑥) to be performed in state 𝑥.  

As a constrained Markov decision process, 𝜋∗ is the optimal policy for 
constraint costs D. The resolution consists of finding a policy that 
maximizes the total reward subject to constraint D. This model can be better 
than others from the literature like [279] in terms of incorporating 
propagated delays as stochastic measures. This will help to avoid and plan 
in advance a robust solution that can handle possible disturbances. 
Experimentation in the next sub-section will show how this model can be 
more robust based on past data. 

 

3.4 REINFORCEMENT LEARNING MODEL BASED DATA 

Reinforcement learning is determined by measuring the rewards provided 
by the Markov Decision Process and selecting actions depending on a 
particular policy. An episode indicates a running of the system where an 
agent uses actions from a primary state till it attains a final state. In this 
approach, the same formalism as in the previous paragraph is taken into 
consideration to build the reinforcement learning approach. 

The first feature of machine learning is the fact that it can handle offline or 
online learning, as well as a combination between the two just like this 
approach. Two mechanisms are working simultaneously in this data-
driven approach, an online model part for gathering data needed to build 
the model. The latter will be built in an offline learning part giving the 
corresponding robust resolution of the maintenance rooting. The process is 
explained in Figure 57. 
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Figure 57 Reinforcement learning iterating from data. 

When looking at the maintenance rooting problem, we have a training 
dataset that increases over time. This dataset gradually continues to get too 
sizeable and therefore too costly to analyze or to store. The reinforcement 
learning model specifically matches our requirements in the maintenance 
problem, as the agent is the airline controller making changes to the 
maintenance schedule via actions and with those actions, it eventually 
varies, for enhanced or even worse, the maintenance issue, which in turn is 
the state of the environment. Eventually, the air traffic controller requires 
to maximize some long-term reward, or else minimize a cost function. 
Reinforcement learning can also be suitable for online learning [151]. 

Before building the corresponding reinforcement learning model, some 
measurements from data are made to extract the evaluation parameters 
causing disruptions. It is identified as delays in the flight schedule. 

The resolution algorithm used is the HMM-QPSO of chapter 2. 

Delays related Information extracted by the algorithm 25 will be 
incorporated to calculate the reward of actions to determine the best action 
with the minimum delay. 

We used the HMM-QPSO of chapter 2, as a variant of the Q-learning 
algorithm. It is a model-free reinforcement learning algorithm. The HMM-
QPSO algorithm needs to identify the encoded state, possible actions, and 
it has to calculate the reward between two succeeding states applying some 
reward function. Hence, for the maintenance rooting problem, the 
formalism is the same as the MDP with the addition of delay reward in the 
reward function as: 

R (s, a, s’) is the reward obtained when altering from one state s to a state s’ 
by executing action a. It corresponds to reassigning a flight leg to a pairing. 
This includes negative costs and positive benefits of every reassignment.  

In our case, if pairing p flies leg i between x and x’, an immediate reward 𝑟𝑖 
is generated. Its defined as the negative cost of propagated delay: 

𝑟𝑖 = −𝑃𝐷𝑖(𝑝)                                                  (87) 

Then, the total accumulated reward R for a single episode can trivially be 
expressed as the sum of all of the obtained rewards:  



Chapter VI. A reinforcement learning model of the maintenance rooting problem 

198 

 

𝑅 = ∑ 𝑟𝑖

0≤𝑖≤𝑛

                                                (88) 

An episode constitutes a single run of the system in which an agent takes 
actions from an initial state until it reaches a terminal condition. 

3.5 EXPERIMENTATION 

We accomplish a computational study to examine the efficiency of the used 
methodology. We make use of real trial records data to conduct our 
experimentation. 

This analysis is performed on a data set consisting of flight delay records 
of a Moroccan airline (RAM) provided by a database given by OpenFlights 
[296]. Records are related to flight legs grouped in maintenance routes 
considered in the model as strings. For example for the Moroccan airline 
company RAM, it has about 240 routes.   

The data are used to calculate delays related to measures as in the algorithm 
25 and other model parameters such as transition probabilities and rewards.  

Table 26 shows a small sample of used flight legs for experimentation. 

 

Table 25 Flights data sample 

From To Company Distance Duration 

RAK TLS RAM(AT) 975 02:27 

RBA CMN RAM(AT) 67 00:38 

RBA ORY RAM(AT) 1116 02:43 

ROB CMN RAM(AT) 1882 04:15 

ROB FNA RAM(AT) 254 01:00 

RUH CAI RAM(AT) 1000 02:30 

SIN AUH RAM(AT) 3655 07:48 

SSG CMN RAM(AT) 2298 05:05 

SSG LBV RAM(AT) 232 00:57 

SVO CMN RAM(AT) 2635 05:46 

 

All flights belong to a specific maintenance string. We suppose as an initial 
solution of our algorithm the solution without delay consideration (the 
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original routing). The resolution has been performed with Matlab based on 
MDP toolbox [297]. 

The solution consists of constructing a delay robust maintenance routing. 
Using the proposed methodology, we compute the propagated delay rate 
of the CMDP optimal policy compared to the initial routing (calculated by 
the original formulation). Table 27 shows how the new solution is more 
beneficial in terms of propagated delay.  

Table 26 Propagated delay diminution 

Strings Original PD New PD Delay decrease rate 

S1 341 219 35.7% 

S2 369 306 17% 

S3 203 134 33.9% 

S4 316 200 36.7% 

S5 187 64 65.7% 

 

The new solution gives a clearly best solution in terms of delay propagation. 
The decrease rate varies in our solution from 17% to more than 65%, with a 
promising average rate of 35.7%. This leads to more robust maintenance 
routing planning.  

4. CONCLUSIONS 

 

Using a Markov decision process model based on historical data to resolve 
the maintenance routing problem, a Markov decision problem model has 
been established with input parameters based on flights data. Aimed to 
construct a model that can handle possible uncertainties in maintenance 
routing. This approach calculates from historical data the propagated delay, 
the source of disturbances in maintenance routing, which are given as input 
to the MDP model. This model constitutes a preliminary attempt to model 
the maintenance routing incorporating the past recorded data. This method 
looks advantageous in terms of taking into account previous executions of 
the routing solution to build more robust ones. Simulation of the MDP on 
some simple real data gives promising results in terms of reducing the 
propagated delays on the maintenance strings.  

Otherwise, the used HMM-QPSO, as a variant of reinforcement learning, 
can be a model-free algorithm of maintenance rooting. The HMM-QPSO 
algorithm can identify the encoded state, possible actions, and it calculates 
the reward between two succeeding states applying the defined reward 
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function instead of calculation transition probabilities as Dynamic 
programming resolution algorithms. This resolution method for the MDP 
gives more competitive results for the maintenance routing based on 
historical data. 

Future research will attempt to apply the proposed approach to bigger data 
sets in order to evaluate its limits. Besides, this method can be extended to 
other problems in airline transport and establish integrated planning of 
maintenance routing with other air transport planning. 
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Markov Model as a stochastic state space model involves random transitions between 
states where the probability of the jump is only dependent upon the current state, 
rather than any of the previous states. This simple formalism in the context of 
probabilistic machine learning has been a key to many variants used in this thesis in 
three different aspects: performance enhancement of the PSO algorithm based HMM, 
a new multi-agent Reinforcement learning resolution method and finally modeling 
and resolution in the field of airline transport. 

 

HMM has been used in this thesis to control and adapt PSO key parameters in both 
online and offline configuration techniques. This constitutes a machine learning 
technique for the control PSO search. It looks valuable from the view that HMM is a 
robust stochastic classification tool that takes into account past information about the 
population to control and adapt the algorithm. Our Proposed PSO variants based on 
the attached hidden Markov chain provides the best particles swarm control of 
parameters during the search. According to each swarm, acceleration coefficients and 
inertia weight are updated. Experimental results have established very competitive 
performances in comparison to several chosen PSO variants. We can deduce from the 
obtained results that associating a PSO to a probabilistic machine learning strategy 
enhances PSO performances significantly.  

 

In terms of reinforcement learning, Markov decision processes constitute a promising 
formulation of sequential decision problems under uncertainty. Its classical resolution 
methods converge slower to optimal solutions in large state space problems than small 
state space problems. A new resolution method has been proposed based on the 
cooperation between particles of the enhanced PSO. Learners modeled as particles 
cooperate to accelerate the learning process using a sharing of knowledge procedures. 
The enhanced PSO is formed in this method by independent Q-learners as particles 
that share their personal Q-values by following a sharing strategy after performing 
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some episodes learning independently. The given results of experimentations were 
promising and give better performances than the classical resolution methods.  

To make use of the obtained results in practice, three key problems of airline transport 
have been chosen for resolution by these non-conventional resolution methods. A 
Markov decision process is applied for modeling. Investigated results reflect MDP as 
a promising new mathematical framework for decision making. With the advances in 
resolution strategies that enhanced their solution performances as those presented in 
this thesis, MDPs can be widely used for the solving of real-world problems of both 
planning and control as they are surprisingly capable of capturing the essence of 
purposeful activity in a variety of situations.  

 

Future research and perspectives should attempt to use parallel computing to improve 
time performances during simulation, which can handle the consumed additional 
CPU time computing cost of machine learning. It can be applied to both approaches of 
PSO enhancement and Reinforcement resolution methods. In terms of modeling, 
future axes will attempt to incorporate more real constraints of airline transport 
presented models, also, generalizing those methods to other problems in airline 
transport, which can be more advantageous. 
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