

 Année : 2019 Thèse N° : 138/ST2I

In Memory of my Father

To my Mother

With Love and Eternal Appreciation

4

RÉSUMÉ
Ces dernières années, les modèles de Markov ont couvert plusieurs applications importantes dans la vie
réelle en tant que modèles probabilistes basés sur l'apprentissage automatique. En théorie, le modèle
stochastique de Markov se réfère simplement à représenter des systèmes qui changent de façon aléatoire
où l'état suivant dépend uniquement de l'état actuel. En pratique, la propriété de Markov est de plus en
plus utilisée dans l'analyse de la dynamique des processus stochastiques et de nombreuses variantes ont
été proposées. Dans cette thèse, les modèles de Markov seront utilisés dans trois types d’application
différents pour représenter la diversité et le bénéfice précieux de l’application de cet apprentissage
automatique probabiliste.

D’abord, le modèle de Markov caché (MMC) est utilisé pour constituer un modèle générique pour
l'amélioration de la performance de l’algorithme d'optimisation par essaim de particules (OEP). En effet,
l'analyse du OEP en tant qu'algorithme méta-heuristique basé sur une population stochastique et selon
son comportement stochastique conduit à la construction d'une chaîne de Markov sur les réalisations
du OEP. Ainsi, nous considérons différentes sélections optimales de paramètres selon le changement
d’états de Markov du OEP, et ce en fonction de la classification donnée par le modèle MMC. Nous
proposons ensuite une nouvelle méthode permettant d’optimiser automatiquement les performances
de l’algorithme OEP. L'algorithme OEP est amélioré par la configuration hors ligne et en ligne de ses
paramètres à l'aide de MMC. Tout d'abord, une méthode est conçue spécifiquement pour des classes
particulières d'instances de problèmes, ce qui produit de meilleures performances dans des applications
dans le monde réel. Aussi, il sera conçu pour les mécanismes de contrôle en ligne de l’algorithme OEP
qui adaptent les paramétrages dans l'exécution. Le cas des configurations OEP homogènes et
hétérogènes sont considérées. L'analyse empirique d'un ensemble de plusieurs fonctions de référence
montre des performances remarquables par rapport à d'autres variantes de OEP dans la littérature.

Deuxièmement, l'apprentissage par renforcement est analysé et discuté. L'utilisation du formalisme de
processus décisionnel de Markov (PDM) est apparue dans des applications importantes de prise de
décision dans divers domaines, il est utilisé pour aider à prendre des décisions dans un environnement
stochastique. Cependant, les méthodes classiques de résolution des PDMs surdimensionnés souffrent
du problème de dimensionnalité de Bellman et du manque d'informations dans le modèle. Par
conséquent, une nouvelle méthode de résolution est proposée dans le contexte des algorithmes
d'apprentissage par renforcement en se basant sur un libre-modèle. En fonction de l'algorithme OEP
amélioré, nous établissons des règles de coopération entre les apprenants en renforcement indépendants
afin d'accélérer la convergence vers des solutions optimales. La résolution du processus d'apprentissage
prend en compte deux étapes : l'apprentissage indépendant par un algorithme Q-learning et la stratégie
de partage des valeurs de Q par un algorithme OEP coopératif. Ce Q-learning coopératif basé sur OEP
donne les meilleurs résultats ; cela est dû à l'aspect coopératif de OEP pour améliorer la recherche de la
valeur Q.

Enfin, le transport aérien est choisi comme domaine d'application dans cette thèse en tant
qu'environnement opérationnel dynamique et complexe. Le modèle de processus de décision de
Markov est également appliqué dans ce contexte. Ce modèle stochastique est étudié dans différentes
compagnies aériennes qui rencontrent des problèmes de gestion et d’affectation des ressources des
aéroports et des compagnies aériennes de manière efficace et efficiente. Notre approche proposée traite
les éventuelles perturbations dans le transport aérien. La solution fournie des décisions qui pourraient
être prises au moment de l'horizon de planification des opérations de vol. Ce type de modèle prend en
compte les perturbations stochastiques et permet de gérer les risques potentiels en tenant compte les
éventuelles incertitudes.

Mots clés : Intelligence par essaim ; Optimisation par essaims de particules ; Gestion de risque ;
Apprentissage par renforcement ; Optimisation stochastique ; Apprentissage probabiliste ; Modèle de
Markov caché ; Processus décisionnel de Markov ; Transport aérien.

5

ABSTRACT

In recent years, Markov models have found important applications in real life as a probabilistic
machine-learning-based model. In theory, Markov stochastic model simply refers to represent
randomly changing systems where the next state depends only on the current state. In practice,
the Markov property is increasingly being used in the analysis of the dynamics of stochastic
processes and many variants have been proposed. In this thesis, Markov models will be used
in three different application types to represent the diversity and the valuable profit of using
this probabilistic machine learning.

First, a Hidden Markov model (HMM) is used to constitute a generic model integrated as a
performance enhancement of the particle swarm optimization algorithm (PSO). In fact, the
analysis of the PSO as a stochastic population-based metaheuristic algorithm, and according
to its stochastic behavior, leads to the construct of a Markov chain on PSO achievements. So,
we consider a different optimal selection of parameters during the changed Markov states of
PSO based on the classification given by the HMM model. Then, we propose a new method
that allows optimizing the performance of the PSO algorithm automatically. PSO algorithm is
improved by both offline and online configurations of its parameters using HMM. Firstly, a
method is designed specifically for particular classes of problem instances, which produces
better performances in real-world applications. Secondly, it will be designed for online PSO
algorithm control mechanisms that adapt parameter settings within the execution. The case of
homogeneous and heterogeneous PSO configurations are both considered. Empirical analysis
of a set of several benchmark functions shows remarkable performances in comparison with
other PSO variants from literature.

Second, Reinforcement learning is analyzed and discussed. The use of Markov decision
process (MDP) formalism has found important applications to decision making in various
domains, where it is used to help to make decisions on a stochastic environment. However,
classical methods for solving large MDPs suffer from Bellman's curse of dimensionality, and
lack of model information. Therefore, a new resolution method is proposed in the context of
model-free-based reinforcement learning algorithms. Depending on the enhanced PSO
algorithm, we are building cooperation rules between independent reinforcement learners to
accelerate convergence to optimal solutions. Two stages are considered for resolution in the
learning process: independent learning by Q-learning algorithm and Q-values sharing
strategy by a cooperative PSO algorithm. This PSO-based cooperative Q-learning gives the
best results; this is due to the cooperative aspect of PSO to enhance the Q-value search.

Finally, airline transport is chosen as an application field in this thesis as a challenging
dynamic operational environment. Markov decision process model is also applied in this
context. This stochastic model is investigated in different airline problems dealing with
managing and allocating airport and airline resources effectively and efficiently. Our proposed
approach is dealing with disturbances in airline transport. The provided solution to the
decisions that could be made at the time of the planning horizon of flights operations. This
kind of model takes into account stochastic disturbances, and it can manage the potentially
risks by handling possible uncertainties.

Keywords: Swarm intelligence; Particle Swarm Optimization; Risk management; Reinforcement
learning; Stochastic optimization; Probabilistic learning; Hidden Markov Model; Markov decision
process; Airline transport.

6

ACKNOWLEDGEMENTS

Praise be to Allah who gave me health, strength and patience to conduct this work.

Acknowledgment is a thanks to the many people who directly or indirectly
supported me in this thesis. I apologize to all who are not mentioned in this section

but should be!

Thanks to my parents who helped and supported me during all the years, always
ready to give and ask for nothing.

To my beloved father’s soul EL MOSTAFA AOUN who died during the preparation

of this thesis. He taught me the meaning of life.

To my mother for her unlimited support, love and patience.

To my two sisters, for their continuous support.

To my uncle MOSTAFA who helped me in every possible way, for which I am
eternally grateful.

Special thinks to my supervisor Dr. Abdellatif El Afia for his consistent supervision
and patience, invaluable advice, and guidance throughout the course of this thesis.

I am deeply grateful to all members of the jury for agreeing to read the manuscript
and to participate in the defense of this thesis.

Rabat, December 2018

7

CONTENTS

LIST OF FIGURES .. 12

LIST OF TABLES .. 14

LIST OF ALGORITHMS .. 15

INTRODUCTION ... 16

CHAPTER I : PARAMETERS SETTING OF HOMOGENEOUS PARTICLE SWARM OPTIMIZATION 19

1. Background .. 20
1.1 Nature-inspired algorithms .. 20
1.2 Swarm intelligence ... 21

2. Particle Swarm Optimization Definition .. 23
2.1 PSO Basic algorithm ... 23
2.2 The Parameters of PSO .. 25

2.2.1 Number of iterations .. 26
2.2.2 Swarm size .. 26
2.2.3 Acceleration coefficients: ... 27
2.2.4 Neighborhood Topologies .. 28

2.3 Convergence Analysis of PSO ... 29
2.4 Advantages and Drawbacks ... 30
2.5 PSO improvements .. 31

3. Improved PSO variants from literature.. 32
3.1 Population size ... 33
3.2 PSO topology .. 34
3.3 Inertia weight ... 35
3.4 Acceleration coefficients .. 36

4. PSO parameters setting using HMM .. 37
4.1 The Hidden Markov Model .. 37

4.1.1 Model definition ... 37
4.1.2 Hidden Markov Model Learning evaluation ... 38

4.2 Parameter Tuning (Offline) .. 39
4.2.1 HMM-based tuner Model for PSO .. 40

a. Generation phase ... 41
b. Test phase... 41
c. Performance evaluation phase ... 42

4.2.2 Performance evaluation of HMM-based tuner .. 43
4.3 Automated parameter control by HMM .. 44

4.3.1 A generic model .. 44
a. Markov Chain on Particle Swarm Optimizer .. 44
b. A model for adaptive parameters .. 45
c. PSO hidden states ... 46
d. Model of state classification ... 47
e. Online parameters estimation.. 50

4.3.2 Parameter control of Homogeneous PSO .. 51
a. Control of acceleration coefficients ... 52

a.1 Coefficients update by state .. 52
a.2 HMM adaptation of acceleration factors (HMM-APSO) .. 53

8

b. Control of Population Size .. 54
b.1 Population update strategy by state ... 54
b.2 Generation and elimination of particles .. 56
b.3 HMM control of Population size (HMM-PPSO) ... 57

c. Control of inertia weight .. 58
c.1 Inertia weight control by state .. 59
c.2 HMM control of inertia (HMM-wPSO) .. 59

d. Empirical evaluation ... 60
d.1 Parameters setting .. 60
d.2 Examination of HMM-wPSO with other PSO variants ... 63
d.3 Examination of HMM-PPSO with other PSO variants .. 67
d.4 Examination of HMM-APSO with other PSO variants ... 71
d.5 Comparison of the HMM-based approaches ... 74

5. Conclusion ... 78

CHAPTER II: ONLINE PARAMETERS CONTROL OF HETEROGENEOUS PARTICLE SWARM OPTIMIZATION......... 80

1. Improved PSO variants from literature.. 81

2. parameter control of heterogeneous PSO ... 82
2.1 Self-state identification for PSO ... 83
2.2 Cooperative Multi-swarm .. 86

2.2.1 Sub-swarms constitution .. 86
2.2.2 Multi-swarms cooperation ... 87

a. Master/Slave scheme ... 87
b. Adaptive cooperation ... 88

2.3 Experimentation .. 92
2.3.1 Performance evaluation ... 92
2.3.2 Convergence speed .. 93
2.3.3 Statistical tests .. 94

3. Conclusion ... 95

CHAPTER III: MULTI-AGENT REINFORCEMENT LEARNING BY HMM-BASED PSO 96

1. Intelligent Agents ... 97
1.1 Agent Systems ... 98

1.1.1 Single-agent Systems .. 98
1.1.2 Multi-agent Systems .. 98

1.2 Multi-agent Systems Classifications ... 99
1.3 Multi-agent Learning .. 99

1.3.1 Cooperative Multi-agent Learning Methods .. 99
1.3.2 Team Learning ... 100

a. Homogeneous Team Learning .. 100
b. Heterogeneous Team Learning ... 100
c. Concurrent Learning .. 100

2. Markov decision process ... 101
2.1 Definition of MDP ... 101
2.2 Finite-horizon MDP vs Infinite-horizon MDP .. 102
2.3 BELLMAN’S EQUATION ... 103
2.4 Solution Methods .. 103

2.4.1 Policy Iteration ... 104
2.4.2 Value Iteration .. 105
2.4.3 Other Methods ... 106

2.5 MDP variants .. 106
2.5.1 Time-Dependent Markov Decision Processes .. 106
2.5.2 Multi-Agent Markov Decision Processes .. 108

9

2.5.3 Time-Dependent Multi-Agent Markov Decision Processes .. 110
2.6 Limits of Markov Decision Processes ... 111

2.6.1 Curse of dimensionality .. 111
2.6.2 Memory Requirement .. 111
2.6.3 Stationary Assumption ... 112
2.6.4 Large Markov Decision Processes .. 112

3. Reinforcement Learning fundamentals .. 112
3.1 RL basic model ... 112
3.2 Policy types .. 114
3.3 Action Selection Policies .. 114
3.4 Exploration/Exploitation paradigm... 114
3.5 Q-learning Algorithm ... 115
3.6 Multi-agent Reinforcement Learning ... 116

3.6.1 Benefits of Multi-agent Reinforcement Learning ... 116
a. Parallel Computation ... 117
b. Sharing of Knowledge... 117
c. Robustness .. 117

3.6.2 Recent developments in Multi-agent Reinforcement Learning ... 117
a. Combinational Reinforcement L e a r n i n g ... 117
b. Swarm Reinforcement Learning .. 118

4. PSO Cooperative reinforcement learning based HMM .. 119
4.1 Q-value HMM Sharing swarm Strategies .. 119
4.2 HMM-QPSO algorithm ... 120
4.3 Experimentation .. 122

4.3.1 Experience settings ... 122
4.3.2 Experimental Results .. 123

5. Conclusion .. 124

CHAPTER IV: STOCHASTIC MODEL OF THE GATE ASSIGNMENT PROBLEM ... 126

1. The gate assignment Problem ... 127
1.1 Problematic .. 127
1.2 Problem statement .. 128

1.2.1 Airports Description ... 129
1.2.2 Terminal description and configurations.. 130
1.2.3 Example of Mohammed V airport of Casablanca ... 132

2. Literature review ... 134
2.1 Constraints and Objectives .. 134

2.1.1 Constraints ... 135
2.1.2 Objectives ... 136

2.2 Models of the GAP .. 137
2.2.1 Basic Mathematical Programming model .. 138
2.2.2 Uncertainty managing Models of the GAP ... 139

a. Simulation Approach to GAP .. 140
b. Fuzzy Logic Application ... 140
c. Expert Systems for the GAP .. 141
d. The Gate Re-assignment Problem .. 141

2.2.3 Datasets .. 142

3. Stochastic Proposed Approach of the GAP ... 142
3.1 MDP Model .. 142

3.1.1 Aircraft size constraints model.. 143
3.1.2 Airport Configuration .. 144
3.1.3 MDP parameters .. 145

3.2 Multi-agent MDP Formalism .. 146

10

3.2.1 Multi-agent control mechanism ... 147
3.2.2 Multi-agent MDP model ... 148

3.3 Time-dependent Multi-agent GAP formulation ... 151
3.4 Experiment ... 153

3.4.1 Single Agent model experiment ... 153
3.4.2 Multi-Agent Model experiment.. 155
3.4.3 Time-Dependent Multi-Agent Model experiment ... 157

4. Conclusion .. 159

CHAPTER V: STOCHASTIC MODEL OF THE CREW PAIRING PROBLEM AND A TUNED PSO SOLUTION 160

1. The Crew Pairing Problem ... 161
1.1. Problematic ... 161
1.2. Airline resource planning process ... 162
1.3. Crew Pairing .. 164

1.3.1 PROBLEM DESCRIPTION ... 164
1.3.2 Crew restrictions .. 165
1.3.3 Pairing Generation ... 165
1.3.4 Crew Pairing Optimization ... 166

1.4. Robust Scheduling ... 167

2. Literature review ... 168
2.1 Works from literature .. 169
2.2 Basic Models of literature: ... 170

2.2.1 Deterministic model .. 171
2.2.2 Stochastic model .. 171

3. Tuning resolution Method by PSO .. 172
3.1 Experimental Model and tuning algorithm .. 172

3.1.1 The crew scheduling problem: Crew pairing.. 173
3.1.2 Binary particle swarm optimization ... 173

3.2 Generation of instances and configurations of crew pairing ... 173
3.3 Tuning Test phase .. 174
3.4 Tuning Evaluation phase .. 175

4. Markov decision Process Model of crew pairing ... 177
4.1 Why MDP Model for the crew pairing ... 177
4.2 The MDP Model ... 177
4.3 Experimentation .. 179

5. Conclusion .. 180

CHAPTER VI: A REINFORCEMENT LEARNING MODEL OF THE MAINTENANCE ROOTING PROBLEM 182

1. Aircraft maintenance Problem ... 183
1.1. Problematic ... 184
1.2. Airline Planning Process of maintenance .. 184
1.3. Maintenance Problem description .. 185
1.4. Maintenance types .. 186
1.5. Resources management in maintenance .. 187
1.6. Maintenance tasks .. 188

2. Maintenance Literature ... 189
2.1 General maintenance rooting model ... 189
2.2 Aircraft maintenance studies ... 191

3. Markov decision process Model ... 193
3.1 Flight delays propagation .. 193
3.2 Delays detection from data .. 194
3.3 MDP model data based ... 195

11

3.4 Reinforcement learning model based data ... 196
3.5 Experimentation .. 198

4. CONCLUSIONS ... 199

Conclusion ... 201

References ... 203

Appendix: Thesis publications .. 219

12

LIST OF FIGURES

Figure 1 Flow process of Nature algorithms design ... 20

Figure 2 Different observed swarms ... 22

Figure 3 particle position update .. 24

Figure 4 Effect of population size increase on HMM-APSO [18] 27

Figure 5 Common neighborhood topologies of PSO. .. 28

Figure 6 ring topology (left) and star topology (right) .. 29

Figure 7 Stochastic Particle Trajectory for w = 0.9 and 𝒄𝟏 = 𝒄𝟐 = 2 29

Figure 8 PSO improvement methods ... 31

Figure 9 The graphical model for a hidden Markov model .. 37

Figure 10 Description of the HMM-based tuner. .. 41

Figure 11 Markov Chain of PSO states ... 46

Figure 12 Fuzzy functions of evolutionary factor by particles state 48

Figure 13 HMM classifications .. 51

Figure 14 Comparison on convergence speed on fitness functions 66

Figure 15 Performance comparison with different functions .. 70

Figure 16 Comparison on Benchmark functions. .. 73

Figure 17 HMM based approaches comparison of convergence speed 77

Figure 18 Sub-swarms and possible particle movements .. 86

Figure 19 Sub-swarms and the master/slave interactions .. 87

Figure 20 Sub-swarms and its cooperation diagram .. 89

Figure 21 MsAHMM-PSO Convergence speed comparaison 93

Figure 22 Markov Decision Process .. 101

Figure 23 Elementary example of TMDP ... 107

Figure 24 Representation of probability density function types 107

Figure 25 Centralized control in MMDP .. 109

Figure 26 TMMDP policy representation .. 111

Figure 27 : Reinforcement learning model 113

Figure 28 The AMRLS aggregation design 118

Figure 29 Example of grid world for n=10 .. 123

Figure 30 Comparison of Reinforcement learning algorithms 124

Figure 31 Example of gating at Mohamed V airport ... 127

Figure 32 Area of interest of the gate assignment problem. ... 129

Figure 33 Schematic presentation of an airport .. 130

Figure 34 Airside ground resources optimization at an airport 131

Figure 35 Terminal configurations [181] .. 132

Figure 36 Mohammed V Airport Infrastructure [ONDA]... 133

Figure 37 Mohammed V configuration .. 133

Figure 38 Example of gate disposition ... 143

Figure 39 Graph representation of gates .. 143

13

Figure 40 Centralized control in MMDP .. 147

Figure 41 Agents representation .. 149

Figure 42 Agents distribution and temporal planning .. 152

Figure 43 Initial policy ... 155

Figure 44 given solution ... 155

Figure 45 Transitions and rewards matrixes ... 156

Figure 46 State transition diagram .. 158

Figure 47 probability density functions of µ2 .. 158

Figure 48 The resource planning process in airlines .. 162

Figure 49 Example of flight tree for a flight .. 166

Figure 50 Robustness in air scheduling ... 168

Figure 51 Comparison of default and tuned configurations by cost and runtime
(instance 7). ... 176

Figure 52 typical airline planning scheme ... 185

Figure 53 Maintenance types ... 187

Figure 54 Maintenance Resources management ... 188

Figure 55 Maintenance tasks .. 189

Figure 56 Delay propagation .. 193

Figure 57 Reinforcement learning iterating from data. ... 197

14

LIST OF TABLES

Table 1 Description of Benchmark functions .. 61

Table 2 PSO variants from literature .. 62

Table 3 Results comparisons with other variants of PSO .. 64

Table 4 T-test comparison .. 67

Table 5 Comparison of results ... 68

Table 6 Statistical tests .. 71

Table 7 Results comparisons with the variants of PSO.. 72

Table 8 Statistical tests .. 74

Table 9 Results comparison ... 75

Table 10 Statistical tests .. 78

Table 11 Results comparison ... 92

Table 12 T-test comparison .. 94

Table 13 Data from Hong Kong international airport ... 153

Table 14 Matrix of E(p(s,s')) for numerical example ... 154

Table 15 Stochastic Matrix of 𝝍𝒔, 𝒔′ .. 154

Table 16 Initial policy without disruption ... 156

Table 17 Conflicting assignment in initial policy due to delay 156

Table 18 Optimal policy ... 157

Table 19 Instances of the crew problem ... 174

Table 20 Configuration parameters .. 174

Table 21 Example of one test output .. 175

Table 22 Representation of probabilities for each metric .. 176

Table 23 FLIGHT SCHEDULE... 179

Table 24 Legal pairings ... 180

Table 25 Flights data sample .. 198

Table 26 Propagated delay diminution .. 199

15

LIST OF ALGORITHMS

Algorithm 1: Basic PSO algorithm …….…….…….…….…….…….………… 24
Algorithm 2: Tuning Test …….…….…….…….…….…….………………….. 41
Algorithm 3 : Baum-welch algorithm…….…….…….…….…….……………. 48
Algorithm 4: Viterbi algorithm …………...…….…….…….…….…….……… 49
Algorithm 5 : Expectations-Maximization algorithm ……....…….………….. 50
Algorithm 6: Update by state of acceleration coefficients…….…….…….….. 51
Algorithm 7: HMM-APSO …….…….…….…….…….…….…………………. 53
Algorithm 8: Population size control…….…….…….…….…….…….……… 54
Algorithm 9: Generation and elimination strategy…….…….…….…….…… 55
Algorithm 10: HMM-PPSO …….…….…….…….…….…………………….. 57
Algorithm 11: Adaptive inertia weight control…….…….…….…….…….…. 58
Algorithm 12: HMM-wPSO …….…….…….…….…….…….….……………. 59
Algorithm 13: self-adaptive inertia weight control by particle………..…… 83
Algorithm 14: SelfHMM-APSO algorithm…….…….…….…….…….……… 84
Algorithm 15: SelfHMM-wPSO …….…….…….…….…….…….…………… 84
Algorithm 16: MsHMM-PSO …….…….…….…….…….…….………………. 87
Algorithm 17: Adaptive acceleration update for swarms…….…….…….……. 89
Algorithm 18: Adaptive inertia weight control by swarm…….…….…….…. 90
Algorithm 19: MsAHMM-PSO …….…….…….…….…….…….…………… 90
Algorithm 20 : The Classical Policy Iteration Algorithm…….…….…….….. 104
Algorithm 21 : Value Iteration Algorithm…….…….…….…….…….………. 105
Algorithm 22: Q-learning …….…….…….…….…….…….………………….. 115
Algorithm 23: HMM-QPSO algorithm…….…….…….…….…….…….…….. 121
Algorithm 24 : Algorithm for computing probabilities…….…….………….. 145
Algorithm 25: Delays extraction from DATA…….…….…….…….…….…… 194

16

INTRODUCTION

Swarm intelligence has emerged from the behavior of a group of social animals or
insects that provide insight into metaheuristics [1]. The Swarm movements is a key
hypothesis in the production of the particle swarm optimization algorithm (PSO). It
was first introduced by [2], where, the exchange of information between individuals
of the same varieties supplies an evolutionary advantage. The PSO is a well-known
bioinspired algorithm applied to optimization problems, which basically involves a
machine-learning technique inspired by birds freely flocking in search of food. More
specifically, it contains a number of particles that collectively move in the search space
looking for the global optimum.

The main advantage of working with the PSO is its simplicity: its concept and
capability to be implemented in a small number of lines of code. Moreover, PSO
additionally possesses a short-term memory, which allows the particles to move
through the local best and the global best positions. Other choices, just like genetic
algorithms, tend to be complex and, most of the time, they do not take into account the
past iteration or even the collective emergent performance. As an illustration, in the
genetic algorithm, if a chromosome is not picked, the information covered by that
chromosome is definitely lost. In spite of its good facilities, a common problem with
the PSO, much like other optimization algorithms that are not exhaustive methods, for
example, the brute-force search [3], is that of getting stuck in a local optimum, or
suboptimal solution, in a way that it could work well on one problem but yet fail on
another problem.

Recently, several distinct approaches have appeared to be able to solve much larger
optimization problems effectively. Multiple heuristic techniques have been applied in
a parametric setting before the PSO, such as Genetic Algorithms [4], Ant Colony
Optimization [5], and Tabu Search. In these approaches, there is a selection of
parameters that require to be tuned to have an efficient enhanced algorithm. A number
of these parameters have been studied earlier from diverse aspects. Nevertheless, such
parameters analyses have to be taken into consideration to set up an effective PSO
tuned model. The primary intent behind parameters setting approaches of PSO is to
incite complex global behaviors through local communications by sharing information
between diverse agents and enhancing the learning capacity. Further, it may enable
the swarm to adapt to unexpected variations (such as in the dynamic optimization)
when they are interacting with more agents. Based on the theoretical results of [6] and
[7], the further extension carried out in this thesis, is the analysis of the relationship
between transition probability and parameter setting by the estimation of the

Introduction

17

transition probability with the selection of the optimum parameter set in each state of
PSO based Markov chain. An efficient instrument could be making use of computer
simulations. This approach can maximize the value of adaptive parameters selection
rather than classical approaches which are based on the iteration number.

Markov models have many variants from literature. Each one has a specific utilization
context and applications. Markov Decision Processes provide a mathematical
framework for decision making. MDPs are one tool of artificial intelligence (AI) that
can be used to get optimal action policies under a stochastic domain. They are widely
used for the solving of real-world problems of both planning and control as they are
surprisingly capable of capturing the essence of purposeful activity in a variety of
situations. For those reasons, they have formed the basis on which many important
studies in the field of learning, planning, and optimization have been built. As a result,
several different techniques have been developed for their solution. As a popular
framework for designing agents that interact with their environment, the execution of
actions gives some feedback signals, which indicate how good the actions are. This
learning process enables to solve a specific task through these repeated interactions.
Different solution methods are presented in the literature, as well as different action
selection strategies, which can be used by the agents during the learning process. The
idea is to analyze its weaknesses and show ways to fix them by Reinforcement learning
techniques to cover an interesting class of real-world scenarios. One way could be by
improving cooperation between independent reinforcement learners to a best
cooperative Q-learning algorithms based on the cooperation performances of the PSO
algorithm. In this case, particles can constitute cooperative learners based on their
speed of convergence to an optimal solution.

As an application framework, airline transport constitutes an interesting dynamical
environment to apply the attained results from both optimization and stochastic
approaches presented in this thesis: namely the Markov decision process as a
formulation model and the particle swarm optimization method. More attention in
recent years has been accorded to developing advanced techniques in the context of
air traffic. This is due to the progress of air transport traffic (doubled since the early
1980s). The main objectives are the best allocation and management of airport and
airline resources in the best way effectively and efficiently. Due to the dynamic
stochastic operational environment of air transport, the scheduling problems
nowadays faced by airport and airline managers have led to complex planning
problems that require new models and methods. This is caused by the large variety of
resource modules that have to be considered like terminals, flights, crews, baggage,
etc., and they are highly interdependent. In the real world, stochastic disturbances in
air traffic increased problem complexity. This is more considered in the latest research.

Airline operations are exposed to diverse sources of disruptions like bad weather
conditions, airspace congestion, or some technical breakdowns, etc. In such situations,
the resource schedules could be disrupted, so that these schedules are potential to
become infeasible. Disruptions need fast recovery measures that result in flight delays
or cancellations to recover many resources that are essential for operating flights (see
Clausen et al. [8]). Instead of taking the risk of online disruption management, robust
planning has been considered by some airlines as an efficient way of managing

Introduction

18

possible disruptions in their schedules. New models and methods are given in this
thesis with the objective to deal with those problems.

The contribution of this thesis will be presented in three main points:

Markov model is used to constitute a generic model integrated as a performance
enhancement of the particle swarm algorithm. PSO algorithm is improved by both
offline and online configuration of its parameters using HMM. The Homogeneous case
is addressed in Chapter I and the heterogeneous case of PSO variants is presented in
Chapter II.

In Chapter III, a new solution method of Markov decision process is given based on a
model free approach. Thus, depending on the enhanced PSO algorithm of chapter II,
we assign cooperation rules between independent reinforcement learners to accelerate
convergence to optimal solutions. The proposed new PSO based cooperative Q-
learning gives best results by making use of the cooperative aspect of PSO to enhance
the Q-value search.

Chapter IV, V and VI are dedicated to applications. New methods and resolution
strategies based on the results of the previous chapters are used to solve different
problems of airline transport; primarily, to treat the cases of stochastic disturbances in
the airline traffic.

19

CHAPTER I :
PARAMETERS SETTING OF HOMOGENEOUS

PARTICLE SWARM OPTIMIZATION

In this chapter, Particle Swarm Optimization is introduced and analyzed. Particle
swarm optimization is a stochastic population-based metaheuristic algorithm. It has
been successful in solving a high range of real-world problems. The classical PSO
algorithm can be affected with premature convergence when it comes to more complex
optimization problems; the resolution of PSO can easily be trapped into local optima.
The primary concern is to accelerate the convergence speed and to prevent the local
optima solutions. To defeat these weaknesses and to enhance the overall performances,
a new technique is offered in this chapter building a machine learning technique for
the parameter settings of the homogeneous particle swarm optimization. The
homogeneous PSO has the same search behaviors of all particles, which are assumed
to have been inspired by models of social influence guided by homogeneous
individuals. Each main parameter of PSO is analyzed and enhanced either online
(parameter control) or offline (parameter tuning). An HMM classification is used to
enhance PSO performance. That is, we integrate the Hidden Markov Model (HMM) to
have a stochastic parameter setting mechanism of PSO. The approaches are simulated
and compared by experimental tests to the best-known state of the art.

Chapter I. Parameters setting of homogeneous particle swarm optimization

20

1. BACKGROUND

1.1 NATURE-INSPIRED ALGORITHMS

Biologically Inspired Approaches from Animal groups offer paradigmatic illustrations
of collective phenomena that have repeated interactions between individuals to
generate dynamic behavior and reactions on a scale much bigger when compared to
individuals themselves [9]. Many of the samples surrounding us contain synchronized
movements of fish and birds in a school or a flock, the creation of vortices for bacterial
colonies, the coordinated march of wingless locusts, and the synchronized flashing of
fireflies. Many more cases can be observed around all of us. Greater computational
studies of biological phenomena are affecting our comprehension of various aspects
of computing itself and are changing how we comprehend computing properly. All
those collective behaviors of natural mechanisms are discoveries of the pervasiveness
of swarming in the natural world. Therefore, a huge range of awe-inspiring solutions
supplied by nature is dealing with swarms (or schools, colonies, flocks, etc. [10]; the
common term “swarm” will be employed throughout this thesis). The process of
designing nature-inspired algorithms is depicted in Figure 1.

Figure 1 Flow process of Nature algorithms design

 Swarms from nature represent typical illustrations of systems where aggregated
behaviors are found, creating remarkable, synchronized moves without collision. In
this kind of systems, the behavior of every group member depends on simple built-in
responses, though their result is very complex from a macroscopic perception.

Particularly, Particle systems from nature can reveal a complex behavior if an
algorithm could handle every particle's movement. Algorithms can also consider

Chapter I. Parameters setting of homogeneous particle swarm optimization

21

several conditions present in the environment. By this means, the particles behavior
could be reactive.

Reynolds [11] is the first to have applied a particle system to imitate the collective
behavior of a flock of birds working with a reactive procedure. In the simulation,
particles (symbolizing birds) had a "body" produced from a polygon mesh. The
originality in Reynolds' work was that it took into consideration particles as an element
of the environment. As the behavior of a particle was handled by the algorithm, and
each particle was independent of the rest, the interaction between particles is also
provided. The result exhibited an "emergent" collective behavior that was similar to a
flock of birds. This behavioral rules discovered by Reynolds helped as a beginning
point for the design of PSO. In Reynolds' model, there are three types of behavioral
rules. In decreasing priority order, they are [11]:

- Collision Avoidance: This enables a particle to prevent collisions with their
particular neighbors.

- Velocity Matching: Particle tries to match their neighbors.
- Centering : To keep the particle aggregated.

The Swarm movements is a crucial hypothesis in the production of the particle swarm
optimization algorithm. It also represents the exchange of information between
individuals of the same varieties that supplies an evolutionary advantage [2]. Serious
research in systems where collective phenomena are obtained predisposed the basis
for the development of swarm intelligence, lightly discussed in the next paragraph.

1.2 SWARM INTELLIGENCE

The swarm intelligence (also called collective intelligence) has emerged from the
behavior of a group of social animals or insects that provide insight into metaheuristics
[1]. For example, in the society of insects, there is very modest individual effectiveness,
but various complex activities are performed for their survival. Problems, like getting
and saving foods and picking up materials for future usage, need complete planning
and can be performed by insect groups without any sort of controller or supervisor.
Since the birth of swarm intelligence algorithms in the 1980s, it has continued to be
studied and utilized extensively in domains like biology, industry, economics, and
decision-making.

We call “swarm” in a general meaning to refer to any loosely structured collection of
agents that interact. Some typical example of swarms are the swam of ants and bees;
however, the metaphor of a swarm can be expanded to other systems with an
equivalent structure. A flock of birds represents a swarm which their agents are birds,
car traffic is normally a swarm of vehicles, a crowd at the street is simply a swarm of
humans, an immune system is also a swarm composed of molecules and cells, and a
market is another swarm including economic agents. Though the concept of a swarm
implies a feature of collective movements in space, such as the swarm of a flock of
birds, we have an interest in all kinds of collective behavior, not only spatial motion.

An illustration of a notably successful research algorithm in swarm intelligence is the
particle swarm optimization (PSO), which is a very well-known swarm intelligence

Chapter I. Parameters setting of homogeneous particle swarm optimization

22

algorithm for global optimization over continuous search spaces [12]. From its
foundation in 1995, PSO has seduced the interest of several researchers, generating
many variants of the original algorithm and many parameter automation approaches
for the algorithm.

Swarm intelligence refers to a category of algorithms that imitate natural and artificial
systems made up of many individuals that may coordinate by way of self-organization
and decentralized control. Figure 2 [13] shows examples of observed swarms from
nature, where a. Lane of aphids; b. Swarm of insects; c Lane formation in human
crowds ; d. Collective napping of sea lions; e, f. School of fish.

Figure 2 Different observed swarms [13]

A swarm algorithm works on the collective behaviors that derive from the local
interactions of the individuals amongst each other and with the environment. Some
typical examples of systems operating by swarm intelligence are colonies of birds flock,
fish schools, animal herds, and ants. A standard swarm intelligence system contains
these particular properties [13]:

 It is composed of multiple individuals.

 The individuals are comparatively homogeneous (i.e. they are either all similar
or they are a part of only a few typologies).

 The interactions among the individuals depend on simple behavioral rules that
make use of just local information that the individuals directly share or through
the environment.

 The global behavior of the system comes from the local interactions of
individuals together and with their environment.

The fundamental characteristic of a swarm intelligence system is its capability to work
in a coordinated state without any existence of a coordinator or an exterior controller.
Regardless of the absence of individuals in control of the group, the swarm in its

Chapter I. Parameters setting of homogeneous particle swarm optimization

23

entirety does reveal intelligent behavior. This is the consequence of interactions of
spatially located neighboring individuals working with simple rules.

The swarm intelligence had been applied in many diverse areas from the time it was
initially introduced. The research and applications of swarm intelligence are primarily
interest in flocking and schooling in birds and fish, ant colony optimization, the
clustering behavior of ants, nest-building behavior of wasps and termites, particle
swarm optimization, cooperative behavior in swarms of robots, swarm-based network
management, etc.

2. PARTICLE SWARM OPTIMIZATION DEFINITION

Common well-known bioinspired algorithms applied to optimization problems is
particle swarm optimization (PSO), which basically involves a machine-learning
technique inspired by birds flocking in search of food loosely. More specifically, it
contains a number of particles that collectively move on the search space looking for
the global optimum.

Particle Swarm Optimization (PSO) includes swarming behaviors discovered in flocks
of birds, swarms of bees, or schools of fish, as well as in human social behavior, from
which the concept [14, 15, 16] has appeared as showed in the previous paragraph. PSO
is a population-based optimization tool, which can be implemented and applied
smoothly to deal with many different function optimization problems or the problems
that could be converted to function optimization problems. The principle of PSO is an
end result of combining the ideas shown in the previous paragraph. In a PSO
algorithm, a multitude of solutions to an optimization problem are updated depending
on several forms of interaction between them. This can be rather equivalent to what
occurs in a particle system of the flock of birds; those rules were designed by Reynolds
[11]. Reynolds’s simulation inspired the concepts that affected the update rules in a
PSO algorithm and provided the historical rules of the PSO algorithm. We will give
more details about the PSO model in the following paragraphs.

2.1 PSO BASIC ALGORITHM

Introduced by Kennedy and Eberhart [2], PSO is a metaheuristic algorithm; the
canonical PSO model comprises a swarm of particles, which are initialized with a
population of a random selection of solutions. They move iteratively throughout the
N-dimension problem space to look up the new solutions, where the fitness, f, can be
measured as some qualities measure.

The learning procedure of the standard PSO algorithm is dependent on a particle’s
own experience and the experience of the most effective particle. A swarm of N
particles is defined for an optimization problem of D variables, where each particle is
given a random position in the D-dimensional space being a candidate solution. Every
single particle has its specific trajectory, specifically position 𝑋𝑖 and velocity 𝑉𝑖, and its
movement in the search space is conducted by updating its trajectory at each iteration.

Chapter I. Parameters setting of homogeneous particle swarm optimization

24

All of the particles change their trajectories based on their own experience and the
experience of other particles. All particles possess fitness values that are measured by
the fitness function f to be optimized.

The algorithm consists at each time step of changing the velocity (accelerating) of each
particle toward its pBest (personal best) and gBest (global best) locations (see figure 3).

Figure 3 particle position update

The classical version of PSO adopts global topology where any two particles are
connected, and each particle is informed by the gbest particle [2]. Then, each particle
𝑖 has two vectors: its velocity vector 𝑉𝑖 and its position vector 𝑋𝑖 ; Those vectors are
updated at each iteration t according to Eqs. (1) and (2):

𝑉𝑖(𝑡 + 1) = 𝑤 𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) (1)

 𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (2)

where:

- N number of particles and 𝑖 < 𝑁 a particle index.

- 𝑋𝑖 position vector of particle 𝑖 of dimension D : 𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐷).

- 𝑉𝑖 velocity vector of particle 𝑖 of dimension D : 𝑉𝑖 = (𝑣𝑖
1, 𝑣𝑖

2, … , 𝑣𝑖
𝐷).

- r1 and r2 are two D-dimensional uniformly distributed random vectors
(generated at each iteration) in which every component varies in the interval
[0,1]. Those two vectors are used to maintain the diversity of the population.

- 𝑤 is the inertia weight; its value is typically set up to vary linearly from 1 to near
0 during iterations.

- c1 and c2 are acceleration factors. On the original version, they are set to a value
of 2.

Chapter I. Parameters setting of homogeneous particle swarm optimization

25

The pseudo-code of the particle swarm optimization algorithm is detailed in
Algorithm 1.

Algorithm 1: Basic PSO algorithm

Data: The fitness function, the dimension of the problem D and the

number of particles N

Initialization: Initialize positions of particles (𝑋1, . . . , 𝑋𝑁) ,

velocities (𝑉1, . . . , 𝑉𝑁), the fitness fit , pbest and gbest ; Set t value
to 1 ;

while t ≤ tmax do for i = 1 to N do

 for j = 1 to D do

 Compute the velocity 𝑣𝑖
𝑗
(𝑡) ;

 Compute the position 𝑥𝑖
𝑗
(𝑡) ; end

Evaluate the fitness fiti(t) the particle i ;

if (fiti(t) ≤ f(pbesti)) then

 (pbesti ← 𝑋𝑖(𝑡))&(f(pbesti) ← fiti(t)) end

if (fiti(t) ≤ f(gbest)) then

 (gbest ← 𝑋𝑖(𝑡))&(f(gbest) ← fiti(t)) end

t ← t + 1

end

Result: The position of the best particle in the population gbest

The particle looks for the solutions in the problem space having a range [−𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑎𝑥]
(When the range is not symmetrical, it can be converted to its matching symmetrical
range).

To be able to guide the particles efficiently in the search space, the maximum distance
of particle one movement during a single iteration need to be clamped in between the
maximum velocity [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥] provided by the Equation 3:

𝑣𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝑣𝑖
𝑗
)𝑚𝑖𝑛(|𝑣𝑖

𝑗
 |, 𝑣𝑚𝑎𝑥) (3)

Where : 𝑣𝑚𝑎𝑥 = 𝑝 × 𝑥𝑚𝑎𝑥, with 0.1 ≤ 𝑝 ≤ 1.0 .

Generally 𝑣𝑚𝑎𝑥 is selected as : 𝑣𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥, i.e. p = 1.

More details about PSO parameters and other variants will be covered in the next
paragraphs.

2.2 THE PARAMETERS OF PSO

The basic PSO algorithm is influenced by multiple control parameters, which are the
dimension of the problem, number of particles, inertia weight, acceleration coefficients
namely the cognitive and the social components, neighborhood size, number of

Chapter I. Parameters setting of homogeneous particle swarm optimization

26

iterations, and the random vector values that scale the impact of the acceleration
coefficients. In addition, if velocity constriction is applied, the maximum velocity and
constriction coefficient as well influence the performance of the PSO. The following
paragraph will focus on the analysis of the main PSO parameters which are: number
of iterations, swarm size, acceleration coefficients and neighborhood topologies.

2.2.1 Number of iterations

This parameter is usually configured depending on the following criteria:

- Maximum number of iterations.
- Number of iterations without improvement.
- Minimum objective function error.

The number of iterations to achieve a good solution can be a problem-dependent. Too
little iterations may stop the search too early. A too big number of iterations has the
effect of unnecessary further computational complexity in the case of that the number
of iterations is selected as a stopping condition.

2.2.2 Swarm size

This parameter refers to the number of particles in the swarm: the greater the number
of particles in the swarm, the larger the initial diversity of the swarm. Given that a
good uniform initialization method has to be used to initialize the particles, a large
swarm enables larger areas of the search space to be covered at each iteration. However,
more particles rise the per-iteration computational complexity, and the search
degrades to a parallel random search. It is as well the case that more particles may lead
to fewer numbers of iterations to reach a good solution, in comparison to smaller
swarms.

We experiment the effect of a simple population increase over iterations in order to
analyze the corresponding effect on convergence. Figure 4 represents the effect on
varying population size in PSO. It shows that, by increasing population size with just
random positions and velocities, fitness is ameliorated and improved, but did not get
improved after a certain population size. Hence, as also deduced in [17] for the simple
PSO, the population diversity is ruined when the particles increase. With a large
number of particles, the optimization ability will not be improved; even if we increase
population size, the fitness function is still constant after iteration number: 600 (see
Figure 4). So using fewer particles improves the search ability. In contrast, CPU time
increase fast while the population grows.

Chapter I. Parameters setting of homogeneous particle swarm optimization

27

Figure 4 Effect of population size increase on HMM-APSO [18]

Because population variations have a significant effect on PSO regarding convergence
speed and accuracy. Smaller population size will increase the probability of being
trapped in a local optimum. However, added particles result in the rise of computing
cost. However, it has been revealed in some empirical studies that the PSO possesses
the potential to find optimal solutions with small swarm sizes of 10 to 30 particles [19,
20]. Even in [21], Success has even been attained for fewer than 10 particles. Even
though empirical studies provide a general number of N ∈ [10, 30], the optimal swarm
size is commonly problem-dependent. A simple search space will need a smaller
amount of particles than a rough surface to locate optimal solutions. The best choice
of this parameter is to find a compromise between increasing or decreasing population
and also the way how the population is increased or decreased according to the
problem.

2.2.3 Acceleration coefficients:

The acceleration coefficients, 𝑐1 and 𝑐2, combined with the random vectors 𝑟1 and 𝑟1,
control the stochastic impact of the cognitive and social parts on the entire velocity of
a particle. The constants 𝑐1 and 𝑐2 are also known as trust parameters, where 𝑐1
presents how much self-confidence a particle possesses in itself, when 𝑐2 presents how
much confidence a particle has got in its neighbors. Several combinations of values can
be affected to 𝑐1 and 𝑐2 with different effects:

- If 𝑐1 = 𝑐2 = 0, particles maintain flying at their current speed until finally, they
reach a boundary of the search space (presuming no inertia).

- If 𝑐1 > 0 and 𝑐2 = 0, all of the particles are independent hill-climbers. Every
single particle discovers the best position in its neighborhood by updating the
current best position if the new position is better. Particles conduct a local search.

- If 𝑐2 > 0 and 𝑐1 = 0, the whole swarm is attracted to a one specific point, gbest.
The swarm becomes one stochastic hill-climber. Particles provide their potential
from their cooperative nature, and are most effective when personal (𝑐1) and
social (𝑐2) coexist in a proper balance, i.e. 𝑐1 ≈ 𝑐2 (𝑐1 and 𝑐2 are equal or
approximatively equal).

Chapter I. Parameters setting of homogeneous particle swarm optimization

28

- If 𝑐1 = 𝑐2, particles are driven towards the average of pbest and gbest [22, 21].
Even while many applications work with 𝑐1 = 𝑐2, the proportion amongst these
constants is problem-dependent.

- If 𝑐1 >> 𝑐2 (𝑐2 negligible in front of 𝑐1), each particle is noticeably further
attracted to its own personal best position, leading to excessive wandering.

- If 𝑐2 >> 𝑐1 (𝑐1 negligible in front of 𝑐2), particles are considerably more highly
attracted to the global best position, producing particles to move too rapidly
towards optima.

However, for unimodal problems that have a smooth search space, a higher social
component can be efficient, while complex multi-modal search spaces will find a larger
cognitive component more beneficial. Low values for 𝑐1 and 𝑐2 lead to smooth particle
trajectories, enabling particles to run away from good regions to explore before being
taken back towards good regions. Large values induce more acceleration, with aban
rupt movement towards or past good regions [20].

Commonly, 𝑐1 and 𝑐2 are static, with their optimized values being determined
empirically. Incorrect initialization of 𝑐1 and 𝑐2 may cause divergent or cyclic behavior
[22, 21].

2.2.4 Neighborhood Topologies

An essential component of the PSO algorithm is social information sharing between
the neighborhoods. Common neighborhood topologies are gbest, lbest and the von-
Neumann neighborhood, as displayed in figure 5 (where nodes illustrate particles and
edges depict inter-particle influences). A particle's neighborhood is made up of all the
particles accessible by an edge. Other topologies like figure 6 also given in the
literature (ring and star topologies). The most simple neighbor structure is often the
ring structure. Basic PSO functions with gbest topology, where the neighborhood
includes the whole swarm, and thus all the particles possess the information of the
globally discovered best solution. Every particle is a neighbor of every other particle.
The lbest neighborhood comes with ring lattice topology: each particle produces a
neighborhood composed of itself and its two or more immediate neighbors. The
neighbors may not be near to the generating particle either relating to the objective
function values or the positions; instead, they are selected by their adjacent indices.

Figure 5 Common neighborhood topologies of PSO.

Chapter I. Parameters setting of homogeneous particle swarm optimization

29

On behalf of the von-Neumann neighborhood, each particle has four neighbors on a
two-dimensional lattice that is wrapped on all four sides (torus), and a particle is in
the center of its four neighbors. The possible particle number is limited to four.

According to the tests on many social network structures, PSO using a small
neighborhood seems to perform better on complex problems, while PSO with a large
neighborhood could perform considerably better on simple problems [23, 24].

Figure 6 ring topology (left) and star topology (right)

2.3 CONVERGENCE ANALYSIS OF PSO

Initial empirical analyses of the basic PSO reveal that PSO is an effective optimization
approach. Some research has demonstrated that the basic PSO enhances the
performance of other stochastic population-based optimization algorithms just like
genetic algorithms [21, 25, 26]. The particle follows a convergent trajectory for the
majority of the time steps [20]. Figure 7 is an illustration of such behavior. However, it
was as well shown that the basic PSO has some considerable defects which can cause
stagnation [27].

Figure 7 Stochastic Particle Trajectory for w = 0.9 and 𝒄𝟏 = 𝒄𝟐 = 2

Chapter I. Parameters setting of homogeneous particle swarm optimization

30

Since its start, PSO analysis was of an empirical aspect. There was no vision regarding
how the algorithm definitely worked well or if it was qualified to converge in anyway.

In the beginning, it was clear that (occasionally) particles raised their velocities
extremely fast. This induced the particle swarm to explode [14]. The first way to deal
with this problem was to clamp the maximum permitted velocity to a fixed value.
Empirical studies recommended that a good selection was to set:

 𝑣𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥 (4)

where 𝑥𝑚𝑎𝑥 is the limit of the search range [28].

It is essential to note at this point that in case the trajectory of the particle converges,
it will conduct so towards a value derived from the line around its personal best
position and the global best particle’s position (see equation below). In theory, each
particle in PSO is demonstrated to converge to the weighted average of pbest(i) and
gbest [22]:

lim
𝑡→∞

𝒙𝒊 (𝑡) =
 𝑐1𝑝𝑏𝑒𝑠𝑡𝑖 + 𝑐2𝑔𝑏𝑒𝑠𝑡(𝑡)

𝑐1 + 𝑐2
 (5)

where: c1 and c2 are the acceleration factors of PSO.

The key guarantee for the convergence of the PSO algorithm is the good selection of
its parameters. Special analysis [22, 21, 14, 29] indicates that the convergence and the
overall performances of the PSO are very sensitive to the values of its control
parameters. As an illustration, [29] provided a methodology to determine convergent
behavior and some suggestions to the choices and the acceleration coefficients and the
constriction factor.

Further works from literature given as a conclusion, even though there are some
interesting theoretical results in PSO convergence, empirical work is always required
to tune the parameters of a PSO algorithm to solve any specific problem. The next
paragraphs will address this issue.

2.4 ADVANTAGES AND DRAWBACKS

The main advantage of working with the PSO is its simplicity: its concept and
capability to be implemented in a small number of lines of code. Even more, PSO
additionally possesses a short-term memory (it will be analyzed in the next section),
which allows the particles to move through the local best and the global best positions.
Other choices, just like genetic algorithms (GA), tend to be complex and, the majority
of the time, they do not take into account the past iteration or even the collective
emergent performance. As an illustration, in GA, if a chromosome is not picked, the
information covered by that individual is definitely lost.

The PSO is much like other optimization algorithms that are not exhaustive methods,
for example, the brute-force search [3]. Despite their good facilities, a common problem
with this type of algorithms is that of getting stuck in a local optimum, or suboptimal
solution. As a result, PSO could work well on one problem but yet fail on another
problem.

Chapter I. Parameters setting of homogeneous particle swarm optimization

31

Generally, the primary downsides of PSO could be summarized in the following:

- Swarm Premature convergence: Particles of the swarm try to converge to a singular
point, positioned on a line around the personal best positions and global best. This
point is not necessarily assured for a local optimum [30]. One more purpose could
possibly be the fast amount of information circulation between particles, which causes
producing similar particles. This leads to a decrease in diversity and the risk of being
trapped in local optima is elevated [31].

- Parameter settings dependence: This invokes the high-performance variances for a
stochastic search algorithm [32]. In most cases, there is not any particular set of
parameters for different problems. For instance, through simple observation of
Equation (1), raising the inertia weight w increases the velocity of the particles and
induces more exploration (global search) and less exploitation (local search).
Consequently, selecting the best set of parameters is not a simple task, and it could be
distinct from one problem to another [32].

With a purpose to defeat the PSO trend to get stuck in undesirable solutions and
enhance its convergence, various authors have recommended other adjustments to the
parameter combinations of the PSO algorithm. A review of enhancement methods will
be drawn in the next section.

2.5 PSO IMPROVEMENTS

Three distinct classes of techniques were reported to be improving PSO (figure 8):

 Setting parameters.

 Modifying components of the algorithm

 Pairing the algorithm with other algorithms.

Parameters setting refers to setting the different parameters of PSO just like the
topology, acceleration coefficients, inertia weight, and population size. Modifying
components represents modifications of the velocity or position update rule (which
includes likewise creating new components; changing the manner they are computed).
Combining the algorithm with other algorithms offers hybridization of PSO with other
techniques.

Figure 8 PSO improvement methods

Chapter I. Parameters setting of homogeneous particle swarm optimization

32

Our interest is given to the parameter sitting due to its proven impact on PSO
performances (see the two last paragraphs). The calculation of the movement inside
PSO constantly incorporates several numerical parameters. In the basic case, these
parameters are constant and defined by the user. Several variants have been offered in
this way. In most classical variants, the parameter values depend just on the number
of iterations [33, 4, 34]. Further advanced variants adjust the values depending on the
information that is gathered during the run. A specific area of research is how to
establish an algorithm that is adaptive as possible, to ensure that the user does not
need to tune any component [34, 35, 36]. In the next section, we are interested in PSO
variants, especially, which have improved the overall performance of PSO by using
particular settings of its parameters.

3. IMPROVED PSO VARIANTS FROM LITERATURE

With the purpose to defeat the PSO trend to get stuck in undesirable solutions and
enhance its convergence, many authors have suggested other modifications to the
parameters of the PSO algorithm. Various models that differ in their exploration and
exploitation behaviors are included.

Among the mainly active areas of studies in PSO has been relating to algorithmic
modifications. This has triggered multiple algorithmic variants of the original PSO
algorithm. In this subsection, we will summarize the algorithmic variations that are an
element of the empirical comparison with the proposed approach. In this state of the
art, the analysis of the most effective and promising algorithmic modifications related
to parameters setting has been a challenging task in iterative optimization methods in
recent years [37]. Two distinct methods for setting parameters of an optimization
algorithm could be conceived: parameter tuning and parameter control. Parameter
tuning represents the setting parameters of an algorithm by using just experiments to
some constant values. On the other hand, Parameter control relates to designing
approaches which vary the value of parameters during the execution. Parameter
control techniques are categorized as well into three groups: deterministic, adaptive,
and self-adaptive. In deterministic parameter control, a rule (named time-varying rule)
is developed to determine the value of a parameter depending on the iteration number.
In adaptive parameter control methods, a function is produced that maps some
feedback from the run right into the value of the parameter. In a self-adaptive
parameter control methodology, the parameters are encoded into individuals and are
altered during the execution by the optimization algorithm.

Besides, parameters control of PSO can be done in the context of the homogeneous or
heterogeneous swarm. In the first one, all the swarm adopts the same behavior and
the second refers to multiple behaviors during the same run of the PSO. In this chapter
we consider the case of homogeneous PSO; the next chapter will deal with the
heterogeneous one.

Chapter I. Parameters setting of homogeneous particle swarm optimization

33

 In this section, articles that have examined distinct parameters for PSO are reviewed.
The arrangement of description is chronological and/or hierarchical (to some scope).
This will serve as a background to introduce the ideas that provide the proposed PSO
enhancement method.

The state of art of parameters control of PSO is presented in terms of homogeneous
PSO swarm. The standard PSO and the majority of its improvements [38] utilize
homogeneous swarms where every one of the particles adopts specifically the same
behavior. That is, particles use the same velocity and position update rules. The result
is that particles have the same exploration and/or exploitation properties. Several
homogeneous variants have studied the control of the different PSO parameters.

The parameter control mechanism has many advantages. It can enable to use
appropriate parameter values in different stages of the search process, to make use of
the accumulating information to enhance performance in later stages and to liberate
the user from the charge of selecting parameter values [39]. For each optimization
problem, a number of these parameter’s values and selection has a big effect on the
efficiency of the PSO algorithm [40]. Three major tactics can be found in literature,
which are available to categorize PSO parameters. The first is to vary this parameter
randomly as a constant value, and the second is that the parameter varies according to
the iteration number. In the third one, the value of this parameter at each iteration
changes according to the results acquired by the particles till the current iteration [41],
where the value of this parameter at each iteration, varies according to the results
obtained by the particles until this iteration. More details of the parameter setting of
PSO are presented per parameter as follow:

3.1 POPULATION SIZE

Concerning the parameter configuration of PSO population size, a proposed approach
to enhance the adaptivity of PSO is to vary the population size [42], which should be
well chosen in order to achieve good results [42]. Some paper has been interested in
the definition of the best configuration of PSO. For instance, one the one hand,
concerning the population size, [43] proposed the following formula to set the swarm
size as a fellow:

𝑁 = 𝐼𝑛𝑡 (10 + 2 √𝐷) (6)

where D is the dimension of the problem, and Int is the integer part function.

An adaptive approach has been proposed in [42]. The authors defined two strategies
which are the increasing and decreasing strategies. Moreover, we can notice from the
literature that adaptive population size approaches have been proposed in other forms
and other terms (dynamic, incremental, varying population size, etc). For instance, a
similar idea has been introduced by [17] in which the authors inspired by the notion
of birth and death of particles in nature to increase and decrease the population size.
The authors defined three functions (Damping function, Sine function, Sine
Attenuation function) to update the population. Furthermore, [44] and [45] interested
especially in the diminution of the worst particles in the population, they found that
this idea may reduce the computational complexity of PSO. [46] also proposed a

Chapter I. Parameters setting of homogeneous particle swarm optimization

34

strategy of augmentation of the population to enhance the exploration of the algorithm
and diminution of it for exploitation purposes. Another population size approach has
been proposed in [46] in which the neighborhood is used to allow varying the size of
the dynamic population, and has also been integrated into the multi-objective PSO [47].
Moreover, population size variation has been applied in some fields such as power
systems [48].

Furthermore, [49] integrated the adaptive population size concept into the learning
mechanism of PSO. For this purpose, the incremental social learning which aims to
facilitate the scalability of systems composed of multiple learning agents has been used
for enhancing the performance of PSO. That is, every time a new agent is added to the
population, it should learn socially from a subset of the most experienced agents.

3.2 PSO TOPOLOGY

Additionally, other PSO improvement variants involve the modification of PSO
topology. In [50], the authors have investigated and tested several social network
structures for the PSO topology. Moreover, a fully informed particle swarm
optimization (FIPSO) has been offered based on the learning of the best topology as in
social networks.

 In particular, some papers have adopted the learning concept to adjust PSO
parameters. The parameters that have to be defined are the velocity clamping, the
inertia weight (w) and the acceleration factors (cognitive attraction and social
attraction). Thus, a number of methods have been proposed to learn the best values of
these factors. This problem can be formulated as a learning process in which each
particle learns from the obtained data and predict the values of the parameters in
accordance with the history of its values and the values of other particles.

Another commonly used algorithm is the comprehensive learning which has been
introduced by [51] and extended by [52]. In this case, each particle learns from another
particle that is chosen according to a learning probability. This approach offers good
performance on complex multimodal functions at the expense of the convergence
speed for unimodal functions.

The basic idea behind the orthogonal learning PSO proposed by Zhan et al. [53] is to
determine the best combination of historical values of the particle itself and other
particles.

Another approach is the feedback learning which has been introduced by Tang et al.
[54]. In the mentioned work, the feedback fitness information of each particle
(described especially by each particle’s history best fitness) is used to determine the
learning probabilities. These probabilities affect the acceleration parameters of PSO.

In [55], the learning has been done by different examples instead of one. The
convergence has been analyzed theoretically by considering a Markov process of the
PSO algorithm. Also, [56] proposed the fully informed PSO which is based on the
learning of the best topology as in social networks.

Chapter I. Parameters setting of homogeneous particle swarm optimization

35

3.3 INERTIA WEIGHT

Inertia weight ω was used to manipulate the effect of the particle’s velocity; it
consequently impacts global and local search capabilities of the particle inside the
swarm. A suitable value selection of w could balance global and local search capacities,
which allows the PSO algorithm to give better performances. A smaller w may fortify
local search capacities. However, the higher w value may accelerate the convergence
speed [28]. Due to the importance of this parameter, a variety of diverse approaches
for selecting the value of inertia weight at each iteration has been proposed.

In [57], an analysis of the impact of the inertia weight and maximum velocity permitted
on the overall performance of PSO. A time-varying inertia weight offers a higher
performance fixing a maximum velocity.

Furthermore, in [58], the inertia weight was also dynamically adjusted at each time
step by taking into account the distance between the particles and gBest.

The classical way to define the inertia weight was proposed by Shi and Eberhart [59].
It consists of linearly decreasing w with the iterative generations using a generation
number. It gives good results. However, some papers proposed other variants of ω.
For instance, Tang et al. [54] proposed a quadratic decreasing and Zhan et al. [60] chose
a sigmoid decreasing of this parameter. These time-varying methods of the inertia
weight are chosen in order to control the exploitation and exploration of PSO.

Concerning the values that have to be assigned to the inertia weight and acceleration
parameters, according to [61], the algorithm can converge if the following conditions
are satisfied:

0 < 𝑐1 + 𝑐2 < 4 𝑎𝑛𝑑
𝑐1 + 𝑐2

2
< 𝑤 < 1 (7)

On the other hand, concerning the inertia weight parameters, various adaptive
strategies have been proposed to adapt it. In [36], a fuzzy system is implemented to
adapt the inertia weight dynamically.

Yang et al. [62] defined a strategy in which the inertia weight dynamically changes
based on the run, and evolution state Different nonlinear variations are tested with
different modulation index.

Also, Chatterjee & Siarry [63] presented a nonlinear way for varying the inertia weight
which employs aggressive, coarse tuning during initial iterations to achieve better
search of the solution space to quickly arrive near an optimum solution and to apply
mild, fine-tuning during later iterations gradually.

Furthermore, Ting et al. [64] used a similar concept of the adaptive crossover used in
differential evolution algorithm for adapting the inertia weight. For instance, Ding et
al. [65] employed a stochastic local search to adjust the inertia weight in terms of
keeping a balance between the diversity and the convergence speed.

Suresh et al. [35] incorporated two modifications into the classical PSO which are the
modulation of the inertia factor and the modification of the position update. The
purpose of the first one is to adapt the inertia weight over different fitness landscapes.

Chapter I. Parameters setting of homogeneous particle swarm optimization

36

Moreover, Kentzoglanakis & Poole [66] proposed three oscillating inertia weight
functions of time that to be approached with better accuracy, where the value of inertia
weight was adaptively changed during the search process.

 Furthermore, other parameters have been proposed to replace this parameter. For
instance, another coefficient has been proposed and incorporated into velocity by
Eberhart & Shi [67] for the same purpose of the inertia.

Concerning the use of probabilistic approaches, Zhang et al. [41] proposed a Bayesian
PSO in which the inertia weight vector is determined on the basis of the past particle
position by maximizing the posterior probability density function of the weight.

Also, in [68], a dynamically decreased particle velocity limit strategy has been used
instead of the inertia weight. More generally, De Oca et al. [69] presented a study on
the effects of using different schedules (using both time-decreasing and time-
increasing inertia weight strategies).

The setting of the inertia weight can depend on the particle itself as in [70]. That is,
based on the success of particles, each particle affects the adjustment of the inertia
weight. A time-decreasing inertia weight is used to allow the user to tune the
algorithm’s exploration/exploitation capabilities.

3.4 ACCELERATION COEFFICIENTS

Enhanced PSO algorithm can be achieved just by using adapted coefficients 𝑐1 and 𝑐2.
That is, it is known that the accuracy of PSO depends on the selection of the
appropriate values of parameters and their values through the search process (see for
instance [71]).

The most used adaptive strategy of 𝑐1 and 𝑐2 has been formulated by Zhan et al. [60].
It consists in updating its values according to four defined states which are:
exploration, exploitation, convergence and jumping out. Also, Fuzzy approaches have
been used to adapt other PSO parameters such as acceleration factors [60] and the
velocity climbing.

Other papers are interested in the relation between the learning behavior of PSO and
acceleration parameters. For instance, Kamalapur and Patil [72] examined the link
between these parameters and the topology of PSO. Moreover, Subbaraj et al. [73]
interested in choosing the best values of these parameters.

In [74], the acceleration coefficients are dynamically updated through PSO iterations.
Epitropakis et al. [75] studied the effect of the social and cognitive parameters on PSO
convergence and used differential evolution to enhance it. In [76], the learning process
of fitness information is used to control the parameters of PSO.

 On the other hand, [77] proposed four operators which play similar roles as the four
states the adaptive PSO defined in [60]. Their approach is based on the idea of assigning
to each particle one among different operator values based on their rewards.

Chapter I. Parameters setting of homogeneous particle swarm optimization

37

4. PSO PARAMETERS SETTING USING HMM

The configuration of algorithms is one of the main challenges of the PSO metaheuristic;
the reason lies in the fact that the PSO performances depend heavily on the chosen
parameter values. Concerning metaheuristics, their parameters setting can be done in
two ways [78]. The off-line configuration involves the adjustment of parameters before
running the algorithm while the online configuration consists of adjusting the
algorithm parameters while solving the problem (also called automated configuration).
The first problem is known as the ‘parameter tuning problem’ and the second one as
the “parameter control problem”.

In this section, we propose a new method that makes it possible to optimize the
performance of the PSO algorithm automatically. Firstly, a method is designed
specifically for particular classes of problem instances, creating the most likely
significant better performance in real-world applications. Secondly, it will be designed
for online PSO algorithm control mechanisms that adapt parameter settings within the
execution that can produce enhanced performance than the fixed algorithm
configuration techniques. Before giving the proposed PSO parameters setting
technique, the used machine learning, which is the Hidden Markov Model, is
presented.

4.1 THE HIDDEN MARKOV MODEL

4.1.1 Model definition

The full state 𝑆𝑡 of the system rarely uses straight observable once modeling complex
operations in the real world. This is often caused by normal occlusions or imperfect
sensor observations. A Hidden Markov Model (HMM) [79] can model related cases,
as displayed in Figure 9. In this model, the complete system state is regarded as hidden,
and therefore it exists only an access to sensor observations 𝑌𝑡.

Figure 9 The graphical model for a hidden Markov model

The main considered problem is then to estimate 𝑝(𝑆𝑡|𝑌1:𝑡). The value of the hidden
state supplied the sequence of observations about the given point. The process of
inferring the state is the task of the system perception. Instances of such perception
systems are autonomous, obstacle detectors, localization subsystems, etc. In this

Chapter I. Parameters setting of homogeneous particle swarm optimization

38

chapter, we discuss the task of learning a hidden Markov model for dynamic
configuration of particle swarm PSO.

As a definition, A hidden Markov Model (HMM) is a triple 𝜆 = (𝛱, 𝐴, 𝐵) where :

 𝛱 = (𝜋𝑖);

 𝐴=(𝑎𝑖𝑗), 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁]

 𝐵 = (𝑏𝑗𝑘), 𝑃(𝑌𝑡 = 𝑘|𝑆𝑡 = 𝑗), 𝑗 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁].

where:

- S is a set of states,

- Y is a set of observations,

- P is a state transition probability 𝑝(𝑆𝑡+1|𝑆𝑡) that state 𝑆𝑡 will lead to state 𝑆𝑡+1, is
a conditional probability 𝑝(𝑌|𝑆) of observing Y at state S.

Also, with the many observations, the precise value of the hidden state could not be
generally established with certainty. It is typically desired to approximate it and
preserve its complete distribution. This distribution is known as Belief state
𝐵𝑡 𝑝(𝑆𝑡|𝑌1:𝑡).

Its essential property is that the sequence of belief states forms a Markov chain; i.e., the
knowledge of a belief state 𝐵𝑡 captures the full information about the past
observations. Learning algorithms for the HMM model namely, the Viterbi and Baum-
Welch will be presented in the proposed approach.

4.1.2 Hidden Markov Model Learning evaluation

There are different major methods for evaluating a Hidden Markov Model (HMM).

 Likelihood of test data:

In this approach, one will need to retain some test data and calculate the likelihood of
the test sequences by using the forward algorithm.

 Errors Prediction from data:

A significant prediction task relies on the application. For example, the task could be
considering predicting the future. In such a case, the forward algorithm is used to track
the state at t of the HMM and use that to predict the expected observation at some
future time t+k. This is done for all t to calculate the mean error.

 Evaluate the hidden Markov chain structure:

An additional concern is the choice of an appropriate model structure. To be able to
use the HMM model for a given problem, the analyst must speculate primary values
for the entries of the state transition matrix A. In general, one may use 𝑎𝑖𝑗 ≠ 0 for all i

and j. However, according to the particular problem, the analyst may have a good
grasp on the structure of the underlined Markov chain. But the hidden Markov chain
initial structure can be maintained throughout the iterations.

Chapter I. Parameters setting of homogeneous particle swarm optimization

39

Equivalent comments apply to the initial choice of the conditional probabilities of
symbol emission. The probability of observation when in a state can be very low and
probably could be ignored; however, it can affect the whole observation sequence.
These forms of structures could be known from some prior knowledge of the model
and can be forced within the analysis.

Thus, a good initial structure may lead to more accurate and efficient parameter
estimation result for the problem under investigation. In the same direction, we
address PSO based HMM for parameters setting.

4.2 PARAMETER TUNING (OFFLINE)

The tuning approach consists in finding the most suitable configuration of an
algorithm for solving a given problem. Machine learning methods are usually used to
automate this process [80]. They may enable to construct robust autonomous artifacts
whose behavior becomes increasingly expert.

[78] has surveyed the main approaches that can be used for parameters tuning of
optimization algorithms. In [81], the tuning approaches have been classified into four
categories depending on the number of parameters and the number of functions. [82]
has presented the three most used procedures for tuning algorithms which are: Racing
Procedures, ParamILS, and Sequential Model-Based Optimization. The racing
approaches have been well investigated in the past, and many variants have been
proposed (sampling F-Race, iterative, F-Race, tNO-Race, etc). In [83], the authors
showed how the training sample could be classified into positive and negative
examples. This classification may enable us to use a supervised machine learning
method.

Moreover, metaheuristics have been used for tuning metaheuristics. Indeed, the off-
line configuration of the algorithm can be formulated as an optimization which aims
to minimize the objective function. This idea has been introduced for evolutionary
algorithms as meta-evolutionary algorithms. In other terms, an evolutionary algorithm
is used to configure another one. A similar idea of the meta-evolutionary has been
proposed in [84]. That is, the algorithm that has to be tuned can be used to tune the
algorithm itself. The specificity of the paper is that the authors proposed to use a multi-
objective approach. The firefly algorithm has been used to examine the proposed
framework.

The tuning of metaheuristics is related to the generic notion of hyper-heuristics which
consists of finding the most suitable configuration of heuristic algorithms such as local
searches (simulated annealing, tabou search, etc). Machine learning has been used also
to deal with hyper-heuristics [85]. Furthermore, [82] proposed a hyper-heuristic solver
based on a choice function which combines various numbers of strategies to learn the
weighted mixture of heuristics for a given problem class. Also, [86] proposed another
choice function which tends to rank the heuristics according to their ability to properly
solve an instance of the problem and PSO has been used then for the tuning of the
choice function parameters.

Chapter I. Parameters setting of homogeneous particle swarm optimization

40

 The use of machine learning for the tuning problem has been popularized by [87]. It
consists of learning from problem instances. In particular, HMM has been successfully
applied in a number of problems which have similarity with the tuning problem. The
current section will use the hidden Markov model to find the best configuration of the
PSO algorithm based on the estimation of the most likely state. The experiment
consists of finding the best parameter values of the particle swarm optimization
algorithm for a given problem.

4.2.1 HMM-based tuner Model for PSO

Our interest in this article is given to the automated algorithms tuning by machine
learning. This issue can be considered as a special case of tuning metaheuristics.
Solutions of the parameter tuning problem are parameters with maximum utility [88],
where utility is based on definition of algorithm performance, some objective functions
or problem instances. We associate this utility calculation to a metric function m.

In this approach, we consider the case of non-iterative tuners, where we execute the
generation step only once, during initialization, thus creating a fixed set of
configuration vectors. Each of those vectors is then tested during the test phase; then
a final machine learning phase using HMM is to find the best vector in the given set.
Our method of tuning differs from the iterative one, where the set of vectors starts with
a small initial set and creates new vectors iteratively during execution.

The following parameters can define the PSO configuration or parameter tuning
problem of PSO:

Given

 an algorithm 𝐴 with a number 𝑙 ∈ 𝑁 of parameters 𝑝1, . . . , 𝑝𝑙 that affect its
behaviour,

 A space C of possible configurations for the algorithm 𝐴 , where each
configuration 𝑐 ∈ 𝐶 specifies values for A’s parameters where A’s behavior on
a given problem instance is completely specified.

 A set of problem instances I,

 A performance metric 𝑚 that measures the performance of A on instance set I
for a given configuration c ∈ C

 A rank function 𝑟𝑎𝑛𝑘(𝑚) ∈ ℕ over the metric values set, this function orders
the metric values obtained on instance 𝑖 ∈ I for a given configuration c ∈ C.

The objective of our tuner problem is :

To find a configuration c∗ ∈ C that results in optimal performance of A on all instances
set I according to the rank value k returned by the 𝑟𝑎𝑛𝑘() function of the evaluation of
a metric m.

For the algorithm whose performance is to be optimized or also the target algorithm,
we use A(c) to denote target algorithm A under a specific configuration c.

We identify three phases of our tuning problem: Generation phase, test phase, and
evaluation phase.

Chapter I. Parameters setting of homogeneous particle swarm optimization

41

In most cases of tuning algorithms, these three phases can be merged or executed in
parallel as in the iterative tuner, where it starts with a small initial set of parameters
and generates new parameters vectors iteratively during the test phase.

In this approach, every step is performed only one time after its previous step is
finished. So, if a step is executed, it will not be performed again. Our tuning problem
is designed with the following template (see figure 10):

Figure 10 Description of the HMM-based tuner.

a. Generation phase

In this phase, according to the algorithm A to be tuned, and according to the problem
subject to tuning, we generate all required elements for tuning by machine learning.

For parameters generation, this step is about designing the algorithm 𝐴 for a given
application amounts to selecting good values for the parameters. Two main classes of
the configurations are identified in the literature and can be found as in [89]: selection
operators and variation operators. Also, we can distinguish between qualitative and
quantitative parameters.

A configuration c will be a vector of a combination of those operators. Let 𝑁 the
number of generated configurations to test in the test phase: 𝐶 = (𝑐1, . . , 𝑐𝑁), and 𝑇 the
number of generated instances of the considered problem: 𝐸 = (𝑒1, . . , 𝑒𝑇).

b. Test phase

The objective of this test phase is to evaluate all configurations in the set C on instances
I. Then, each result of an execution of a configuration: 𝑐 ∈ 𝐶 on an instance 𝑒 ∈ 𝐸 will
be evaluated and ranked according to some metric 𝑚 (considered as an evaluation test
for performances comparison).

First, we define a Markov process {𝑆𝑘}𝑘∈[1,𝑁] on the simulation test as a stochastic

process which returns a number from 1 to N, where N is the number of evaluated
configurations.

Chapter I. Parameters setting of homogeneous particle swarm optimization

42

We define also observed evaluation values from executions {𝑌𝑘}𝑘∈[1,𝑇]. It indicates to

the observed result of simulations and corresponds to the rank value of the executed
configuration c, or also as defined, the rank value of the process {𝑆𝑘}𝑘∈[1,𝑁].

We define firstly two additional vectors where results from all executions will be
stored, which are the observation sequence O and state sequence Q:

𝑂 = (𝑜1, 𝑜2, … . 𝑜𝑇), 𝑄 = (𝑞1, 𝑞2, … . 𝑞𝑇) , 𝑇 ∈ ℕ (8)

where :

T: number of test runs, also indicates the length of observation sequence O and state
sequence Q.

And:

𝑜𝑖 = 𝑟𝑎𝑛𝑘(𝑚𝑖𝑗) ∈ {𝑌𝑘}𝑘∈[1,𝑇] (9)

𝑞𝑖 ∈ {𝑆𝑘}𝑘∈[1,𝑁], 𝑖, 𝑗 ∈ [1, 𝑇], [1, 𝑁] (10)

𝑚𝑖𝑗 : Metric value by executing configuration 𝑗 on the instance 𝑒𝑖.

𝑜𝑖 : rank of the metric value of executing configuration 𝑐𝑗 on instance 𝑠𝑖, is the rank

order over all configuration of metric value on the instance 𝑒𝑖.

𝑞𝑖 : corresponds to the executed configuration, called state sequence.

The pseudocode of the test phase is depicted in Algorithm 2:

Algorithm 2: Tuning Test

Input: Algorithm 𝑨 , configurations 𝑪 of length N and

instances 𝑰 of length T.

for each instance 𝒔𝒊, 𝒊 from 1 to T do
 for each configuration 𝒄𝒋, 𝒋 from 1 to N do

 Execute instance ei with configuration 𝒄𝒋

 Evaluate the metric value 𝑚𝑖𝑗.

 end

 Evaluate rank values of metrics on instance 𝒆𝒊.

end

return : Observation sequence O, state sequence Q

c. Performance evaluation phase

Evaluation of the best configuration c is done in this thesis with a machine learning
technique, which uses execution data from the test phase to evaluate the best
configuration 𝑐∗ of the algorithm A for the problem, with consideration of all test
instances.

Machine learning algorithms will be able to extract target knowledge (in our case) from
training examples, models of desired behavior drawn from experience. Thus, it is
important that the learner not overfit, that is, not getting information so close to the
training examples. So, we choose the hidden Markov model (HMM) as an adequate
machine learning technique to extract knowledge from all collected data in the test

Chapter I. Parameters setting of homogeneous particle swarm optimization

43

phase. Our motivation beyond the use of HMM is the successful applications in many
fields, which are similar to our problem as detailed in the literature section. The
specificity of HMM is that it can include stochastic information on transitions between
states and also observations to give the most likely state of the parameter values.

According to the best of our knowledge, the HMM algorithm has not been yet
investigated for the tuning problem.

We define the Hidden Markov Model by a triple 𝜆 = (𝛱, 𝐴, 𝐵), where all processes are
defined on a probability space. The triple components are respectively the vector of
the initial state probabilities, the state transition matrix and, the emission matrix.

 𝛱 = (𝜋𝑖);

 𝐴=(𝑎𝑖𝑗), 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁]

 𝐵 = (𝑏𝑗𝑘), 𝑃(𝑌𝑡 = 𝑘|𝑆𝑡 = 𝑗), 𝑗 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁].

We suppose that a configuration c is identified as the state of HMM, then:

 The state {𝑆𝑖}𝑖∈[1,𝑁] takes values from the set 𝐶 = {𝑐𝑖}𝑖∈[1,𝑁]. N is the number of

configurations.

Moreover, for every configuration of the algorithm A, we observe from tests the rank
of each execution, then:

 The observed parameters of this hidden chain {𝑜𝑖}𝑖∈[1,𝑁] take values from the set

of values of a rank function: {1,..,N}.

 The output of the test phase is considered as observation sequences and state
sequence for our HMM. It forms a stream of observed ranks for configurations
set C.

This model will serve to execute the Baum-Welch re-estimation algorithm [90] on the
two output sequences of the test phase: sequence O of ranks and sequence Q of states.
The result will be learned HMM parameters: the state transitions 𝐴= (𝑎𝑖𝑗) and

emissions = (𝑏𝑗𝑘) .

𝑐∗ is the best evaluated configuration; it is given by the formula :

𝑐∗ = 𝑚𝑎𝑥𝑗 (𝑏𝑗1) (11)

The best configuration 𝑐∗ is the configuration that has the maximum probability to
emit rank 1. Especially, it is the most likely configuration to be the best over all
instances.

4.2.2 Performance evaluation of HMM-based tuner

By adapting the formulation of the HMM-based tuner to some defined problem we
can evaluate the effectiveness of our used tuning method. Therefore, we depict some
applications for air transport problem in the second part of this thesis, which is
dedicated to this issue. PSO algorithm is used to solve each model of air transport with
related experimentations to prove the efficiency of the proposed HMM tuner.

Chapter I. Parameters setting of homogeneous particle swarm optimization

44

4.3 AUTOMATED PARAMETER CONTROL BY HMM

The parameter control mechanism has many advantages. It can enable to auto-select,
one of the appropriate parameter values in different stages of the search process, to
make use of the accumulating information to enhance performance in later stages, and
to liberate the user from the charge of selecting parameter values [39]. In this section,
a new generic model for parameter control will be defined according to the analysis of
the PSO behavior search. Then, the proposed control scheme is applied to different
PSO parameters with different PSO search structure. The two cases of PSO structure
will be liable to the generic model: homogeneous and heterogeneous PSO.

4.3.1 A generic model

a. Markov Chain on Particle Swarm Optimizer

As a complex stochastic process, The Particle Swarm Optimizer (PSO) can be analyzed
according to its stochastic behavior. When it comes to this type of investigation, the
majority of the important research on PSO is centered on simulations and empirical
study and only a little is determined by theoretical methodology. In this paragraph,
theoretical results from [6] are described to inspect the stochastic behavior of PSO.

We consider a swarm of N particles on a space S, and 𝑖 is the index of particle and t
the index of iteration; 𝑋𝑖 represents the position and velocity vector of particle 𝑖, 𝑃𝑏𝑒𝑠𝑡𝑖
the personal best position of particle 𝑖, and gbest denotes the global best position.

The state of the PSO defined by [7] includes as many details as possible that are
involved in the process. PSO state has a memory-less property which is also proven
by [6]. The state at time t is defined as :

𝑊(𝑡) = (𝑋(𝑡), pbest(𝑡), V(𝑡), 𝑔𝑏𝑒𝑠𝑡(𝑡)) (12)

The state Markov chain identified of PSO states is stationary (time homogeneous).
𝑊(𝑡) has the information required for the future movements, and varies depending
just on the present state. The influence of the present state on the next states is
independent of the historical state. The execution of PSO is based only on the current
state without including the past history.

Furthermore, to assess the achievement (good results) of the state W, an index for the
state to represent the actual achievement of PSO is additionally defined in [6]. The
achievement can only be position-dependent. This index is strongly related to the
positions and depending on a concept of probability because of stochastic movements
of particles. Likewise, it can be defined by different measures based on particles
positions (because that reflects the achievements). Since the already defined states 𝑊
are merged into a countable number of classes that refers to its achievement, they are
identified as levels. The stochastic process of the levels is defined as :

{𝐿(𝑊(𝑡)), 𝑡 = 1,2… } (13)

Chapter I. Parameters setting of homogeneous particle swarm optimization

45

𝐿(𝑡) constitutes also a Markov chain on PSO levels [6]. Then, it constitutes also a
stationary Markov chain. As a result of this state classification, as t raises, the state may
earn a significantly greater achievement, but it is not guaranteed. If for any particular
sample process, as t raises while the state can't get any noticeable achievement.
Therefore, the future state distribution will not likely be favored even if t is highly
larger. Consequently, it appears enhanced to consider different parameters selection
during different state stages rather than time stage as the earlier research managed.
The transition probability matrix can be denoted by:

P ≡ [𝑝𝑗,𝑘], 𝑗 < 𝑚, 𝑘 < 𝑛 (14)

The fact that the state (level) transition probabilities are independent of t justifies the
fact that parameter selection needs to be a function of state (representing achievement)
rather than a function of iteration.

Based on the theoretical results of [6] and [7], the further extension which is carried
out in this thesis could be the analysis of the relationship between transition
probability and parameter set estimating the transition probability with the selection
of the optimum parameter set in each state. An efficient instrument could be making
use of computer simulations. This approach can maximize the value of adaptive
parameters selection rather than classical approaches which are based on the iteration
number. This will likely constitute a preliminary basis to build in the next paragraph
a generic model for adapting PSO parameters.

b. A model for adaptive parameters

Based on the theoretical results of [6] presented above, it exists a Markov chain on PSO
levels. These levels defined by the degree of achievements of the search which must
be defined related to the position of particles. We define in this section parameters
adaptation in the light of the last paragraph and the results given by the APSO [60].
Some notions are presented before we address our parameters adaptation control by
HMM.

This proposed method uses the same global topology as the standard PSO algorithm.
As recognized, this topology converges quickly; nevertheless, it can simply be trapped
into local optima. While PSO, which has a local topology, it has more chances to find
the global optimum, but by a slow convergence speed [91]. Consequently, global and
local variations of PSO algorithms both possess their advantages and disadvantages.
Considering these matters, a global topology is designed with an adaptive parameter
control of PSO by HMM classification in order to improve the overall performance of
the algorithm. Thus, the developed approach based on HMM aimed to possess
effective global search capability using the associated adaptation strategy, such as local
versions of PSO, preserving good convergence speed as it is a global variant of PSO.

Chapter I. Parameters setting of homogeneous particle swarm optimization

46

c. PSO hidden states

To define our approach for classification of PSO states using a hidden Markov model,
we inspire from the same definition of particle states in APSO, and we use
classification capabilities of HMM to enhance the PSO algorithm.

HMM is a stochastic method where we need to associate several probabilities in the
model definition; Transitions between states are governed by a set of probabilities
named transition probabilities. In a particular state, an observation can be generated
according to the associated probability distribution. These observations are visible in
contrast with their corresponding states which are hidden. After model parameters
definition, a resolution algorithm is used to build the HMM classification process.

The contribution of using HMM inside PSO is to benefit from these features to better
explain PSO behavior and then to better identify the corresponding state at each
iteration. Indeed, HMM can enable most robust estimation of the state based on the
evolutionary factor than the fuzzy classification (HMM can give better results as
shown in [92] even if it is more computationally expensive). That is, in HMM, we can
predict from the evolutionary factors (which correspond to observations in HMM) the
most probable of the four states (which are the hidden states of HMM).

We follow a similar state definition as the one proposed by [60] which is also used by
[58] to enhance PSO adaptivity. It consists of identifying one of four evolutionary states:
exploration, exploitation, convergence, and jumping out in order to enable the
automatic control of acceleration coefficients. The objective is to use HMM to identify
the proper state (class) at each iteration. So, we can generate the Markov Chain of PSO
states as described in figure 11.

Figure 11 Markov Chain of PSO states

PSO parameters are updated according to the classified state at every iteration. Then,
the same as [60] an elitist learning strategy is performed when the evolutionary state
is classified as a convergence state. We take all possible i and j transitions as
mentioned in figure 11 a transition probability of 0.5.

The definition of states (achievement level) is controlled by the value of quantified
population distribution information, called in [60] evolutionary factor f that is
calculated at each iteration. Consider the mean distance of each particle 𝑖 (1 < 𝑖 < 𝑁)
to all the other particles as 𝑑𝑖, and calculate:

𝑓 = |
𝑑𝑔𝑏𝑒𝑠𝑡−𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
| (15)

 where: gbest is the global best particle and

Chapter I. Parameters setting of homogeneous particle swarm optimization

47

𝑑𝑖 =
1

𝑁 − 1
∑ √∑(𝑥𝑖

𝑘

𝐷

𝑘=1

− 𝑥𝑗
𝑘

𝑁

𝑗=1,𝑗≠𝑖

)2 , 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥
1<𝑖<𝑁

(𝑑𝑖) , 𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛
1<𝑖<𝑁

(𝑑𝑖)

The evolutionary factor will be used to define adaptation strategy by HMM in the next
paragraph, adopted from [60] because it reflects the relative position of gBest to the
other particles. Its value is relatively large within the jumping out and exploration state
(because particles are more distant). Then, it becomes smaller in the exploration and
smaller in the convergence state (particles are close to each other around gbest).

The relation between states or strategies and values of the factor 𝑓 is established by a
defuzzification technique (see figure 12)([60]). According to it, PSO parameters are
adjusted. It has a major role in the convergence across iterations.

On the other hand, defuzzification used in APSO takes the only value of the factor 𝑓
in consideration without any use of any past information about previous executed
iterations. The adopted method consist of replacing the defuzzification in APSO by
HMM classification, which uses in addition to the value of 𝑓, all past executions of
iterations to classify and define particle state and then the corresponding strategy. This
will be described in the following paragraph.

d. Model of state classification

In this generic model, we use the probabilistic machine learning method by Hidden
Markov Chain (HMM). That is, HMM is used to have stochastic state control of PSO
at each iteration. The main idea is to assign state selection (defined in the previous
paragraph) inside the particle swarm optimization to HMM. This process is performed
by the Viterbi algorithm that gives the most probable path of states in each PSO
iteration. Also, HMM parameters are calculated and updated at each iteration
according to the change in particle environment.

Therefore, We define the Hidden Markov Model by a triple 𝜆 = (Π, A, B), all processes
are defined on a probability space.

 Π = (πi) The vector of the initial probability distribution over states;

 A=(aij) The state transition matrix, P(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁]

 𝐵 = (𝑏𝑗𝑘) The emission matrix also called the confusion matrix,

 𝑃(𝑌𝑡 = 𝑘|𝑆𝑡 = 𝑗), 𝑗 ∈ [0, 𝑁], 𝑘 ∈ [0,𝑀].

The set of N states {qt}t∈N takes values from the set S = {Si}i∈[1,4], which references

respectively: exploration, exploitation, convergence, and jumping out. The change of
state is reflected by the PSO state sequence Q = q1q2… . qT for example ∶ (q1 =
S2)⇒(q2 = S1)⇒(q3 = S2)⇒…, as deduced by [60]), corresponding to the Markov
Chain in figure 11.

Furthermore, we define corresponding initial transition probabilities, P(St = i|St−1 =
j), i, j ∈ [1,4] . This probability controls all behavior of transition between states of

Chapter I. Parameters setting of homogeneous particle swarm optimization

48

APSO resolution. The initial state probability corresponds to deterministic start in
exploration state:

Π = (πi) = [1 0 0 0] (16)

The observed parameter of this hidden chain is the evolutionary factor f (defined in
[60])) of the APSO as depicted in figure 12.

Figure 12 Fuzzy functions of evolutionary factor by particles state [60]

Observations will be described by the f value membership to subintervals of [0,1]
([0,0.2], [0.2,0.3], [0.3,0.4], [0.4,0.6], [0.6,0.7], [0.7,0.8], [0.8,1]). We divide [0,1] to seven
subintervals, so the set observation 𝑌 = {yi}i∈[1,..,7] will be the number of the

subinterval which belong f. Let 𝑠𝑢𝑏: [0,1] → {1,2, . . ,7} the function that returns the
corresponding interval of f; it corresponds also to the observation.

𝑠𝑢𝑏(𝑓) = 𝛿[0,0.2[(𝑓) + 2𝛿[0.2,0.3[(𝑓)+3𝛿[0.3,0.4[(𝑓) + 4𝛿[0.4,0.6[(𝑓) + 5𝛿[0.6,0.7[(𝑓) (17)

+ 6𝛿[0.7,0.8[(𝑓) + 7𝛿[0.8,1](𝑓)

(𝑤𝑖𝑡ℎ 𝛿[a,b](𝑥) = {
1, 𝑥 ∈ [a, b]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑎, 𝑏 ∈ ℕ , x ∈ ℝ)

Emission probabilities are deduced from the defuzzification process (figure 12) of [60])
as follows:

𝑃 = [

0 0 0 0.5 0.25 0.25 0
0 0.25 0.25 0.5 0 0 0
2/3 1/3 0 0 0 0 0
0 0 0 0 0 1/3 2/3

] (18)

P represents in another way the same probabilities of the defuzzification technique.
More detailed analysis of the relationship between strategies and the diversity of
particles can be found in [60]).

After initializing HMM parameter, Baum-welch algorithm (algorithm 3) is used at
each iteration to estimate and update HMM emission and transition matrix; this allows
HMM to be more adaptive and accurate in the classification step.

Chapter I. Parameters setting of homogeneous particle swarm optimization

49

Algorithm 3: Baum-welch algorithm ([79])

Data: Π,O, A, B, S, Y
Initialisation of forward[4,T] and backward[4,T] matrix

repeat

for i = 1 to 4 do

 forward[𝑆𝑖 , 1] 𝜋𝑖 × 𝑏𝑖,1;
end

 for t = 2 to T do

 for i = 1 to 4 do

 forward[𝑆𝑖,t] ∑
𝑘=1,..,4

forward[i, t − 1] × 𝑎𝑘,𝑖 × 𝑏𝑖,𝑦𝑡

 end

 end

 forward[𝑌𝑡,T] ∑
𝑘=1,..,4

forward[k, T]

 backward[𝑌𝑡,T] ∑
𝑘=1,..,4

backward[k, T]

 for t = 1 to T do

 for i = 1 to 4 do

 backward[𝑆𝑡,t] ∑
𝑘=1,..,4

backward[i, t − 1] × 𝑎𝑘,𝑖 × 𝑏𝑖,𝑦𝑡

 end

 end

 for t = 1 to T do

 for i = 1 to 4 do

 for j = 1 to 4 do

 ξi,j(t) =
forward[𝑖,t]× backward[i,t]× 𝑏𝑖,𝑦𝑡

P(O/(A,B,𝜋))

 end

 end

 λi(t) =
forward[𝑖,t]× backward[s,t]

P(O/(A,B,𝜋))

 end

 for i = 1 to 4 do

 for j = 1 to 4 do

 𝜋𝑖 = λ1(t), 𝑎𝑖𝑗 =
∑

𝑡=1,..,𝑇−1
 ξi,j(t)

λi(t)
, 𝑏𝑖𝑘 =

∑
𝑡=1,..,𝑇∩𝑜𝑡=𝑄𝑘

 ξi,j(t)

∑
𝑡=1,..,𝑇

λi(t)

 end

 end

until no increase of P(O/λ) or no more iterations are possible

Result: (𝜋, 𝐴, 𝐵)

Then, the Viterbi Algorithm is used with the estimated parameters to find the most
probable sequence associated with hidden states given a sequence of observed
states. The Viterbi algorithm does not only accept the most likely state for a given time
instant but also takes a decision based on the whole observation sequence. The
algorithm will find the corresponding Q (state sequence Q = q1q2… . qT) for a given
observation sequence (O = o1o2… . oT) by means of induction (t the iteration number).
It is about to find the highest probability paths for states ([79]). Viterbi algorithm is
given in Algorithm 4 below.

Chapter I. Parameters setting of homogeneous particle swarm optimization

50

Algorithm 4 : Viterbi algorithm [79]

Data: Π,O,A,B,S,Y,T
Initialisation : matrix of Viterbi[4,T]

for i = 1 to 4 do

 Viterbi[𝑖, 1] 𝜋𝑖 × 𝑏𝑖,1;

 State[𝑖,1] 𝑋1;
end

 for t = 2 to T do

 for i = 1 to 4 do

 Viterbi[i,t] max
𝑠′=1,..,4

Viterbi[k, t − 1] × 𝑎𝑘,𝑖 × 𝑏𝑖,𝑦𝑡

 State[i,t] arg𝑚𝑎𝑥𝑠′=1,..,4 Viterbi[k, t − 1] × 𝑎𝑘,𝑖;
 end

 end

 𝑌𝑇 arg𝑚𝑎𝑥𝑘=1,..,4 Viterbi[k, T] ;
 𝑋𝑇 𝑋𝑌𝑡
 for t = T, T-1,... 2 do

 𝑌𝑡−1 = State[𝑌𝑡 ,t]
 end

Result: The state sequence 𝑸𝒛 = (𝑺𝒀𝟏,...., 𝑺𝒀𝒕)

e. Online parameters estimation

Additional online learning for HMM parameters can be integrated into the proposed
model by online Expectation-Maximization algorithm instead of the batch learning
given by Baum-welch algorithm. Also, HMM parameters are calculated and updated
at each iteration according to the change in particles environment. The online
Expectation-Maximization algorithm brings continuous parameters update for the
proposed model.

Considering Online HMM training, this was defined by [93] and [94]. An HMM that
use online learning can independently learn from a new block of data at a time. So,
HMM parameters should be efficiently updated from new data without requiring
access to all training data. In addition, parameters are re-estimated online upon
observing each new sub-sequence [95]. The online EM algorithm for HMM allows
continuous adaptation of HMM parameters along a potentially infinite observation
stream.

An online EM learning is first performed at each iteration to calculate and update
HMM parameters that are re-estimated upon observing each new sub-sequence.

Particles positions and velocities vary over iterations, also impacting the evolutionary
factor. Then, the classification environment for HMM changes during operations.
Online learning of new data sequences allows adapting HMM parameters as new data
becomes available as shown in figure 13 where (𝐷𝑖)𝑖∈[0,𝑛] are data observations and

(𝜆𝑖)𝑖∈[0,𝑛] parameters values updates.

Chapter I. Parameters setting of homogeneous particle swarm optimization

51

Figure 13 HMM classifications

At each iteration t, a new classifier is performed with new updated parameters. We
choose online learning EM algorithm [95] instead of Bach learning (classical Baum-
Welch algorithm [96], because this last one needs to run one all observation sequence
where this is not our case.

The online Expectation-Maximization algorithm (algorithm 5) used for HMM
parameters learning is described as follow:

Algorithm 5 : Expectations-Maximization algorithm

Input : observation sequence O = (o1o2… . oT), states S, initial

parameters set 𝜆0
Output : Estimated parameters 𝜆
For t =1.. Nstep do
E-step – find conditionally optimal hidden trace :

 𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃(𝑂|𝑆, 𝜆𝑖−1)

 Compute likelihood: 𝐿𝑖−1(𝜆)= 𝑃(𝑂|𝑆, 𝜆𝑖−1)
If 𝑖 < 𝑁𝑠𝑡𝑒𝑝 and likelihood not yet converged:

 M-step - find conditionally optimal parameter set 𝜆:
 𝜆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆𝑃(𝑂|𝑆𝑖, 𝜆)
Return optimal parameter set 𝜆

This Algorithm is based on an online version of the Expectation-Maximization
algorithm: the algorithm involves a stochastic version of the E-step and M-step to
include the information through the newly existing observation. This online version of
EM does not require the whole data set to be made available at each iteration.
Regarding simulations that apply tested observations on experimental data [93], the
performance of this algorithm is better than the batch algorithm.

4.3.2 Parameter control of Homogeneous PSO

By integrating the identification of the suitable achievement level of the search process
(hidden state), PSO parameter adaptation will be more suitable if it is adjusted
according to the classified PSO hidden state. The application of this model needs to
analyze first the relationship between different parameter sets estimating the
transition probability with the selection of the optimum parameter set in each state.
This defined model of hidden PSO states and the method of classification and
computing the related transition probabilities will be investigated for application in
PSO for different parameters in the case of homogeneous PSO structure in this chapter.

Chapter I. Parameters setting of homogeneous particle swarm optimization

52

We implement the generic model defined in the previous paragraph in the case of
Homogeneous PSO, also referred to mono swarm. The majority of PSO variants [38]
use homogeneous swarms; every one of the particles assumes to use exactly the same
behavior applying the same velocity and position update rule at the same iteration.
The improvement of PSO will concentrate on parameter control of PSO that all
particles use of the same parameter at each iteration. So that the implementation will
concentrate on the definition of the relationship between the PSO parameter set to be
tuned and the classified PSO hidden state. An empirical study can be the best choice
to identify this relationship.

a. Control of acceleration coefficients

a.1 Coefficients update by state

The HMM classification in the last paragraph will define, at each iteration, one of the
four swarm states: exploration, exploitation, convergence, and jumping out. In
contrast with APSO, HMM perform a stochastic state classification that takes into
account all state history change across iterations (state sequence Q). Therefore, the
HMM classification will be more accurate than the fuzzy logic used by APSO [97].
Furthermore, According to the classified state, PSO parameters are controlled and
updated.

Acceleration coefficients update by state (Algorithm 6) is done by a benchmark
between increasing or decreasing 𝑐1 and 𝑐2 according to the following notion as also
given by [60]. c1 is the cognitive component that measured the degree of self-
confidence of a particle and measures the degree at which it trusts its performance. c2
is the social component that relies on the capability of the swarm to find better
candidate solutions.

The increase of 𝑐1 promotes exploration of local regions and maintaining the diversity
of the swarm. 𝑐2 increases contrariwise helps the swarm to converge towards the
current global best region. So, decreasing 𝑐1 or 𝑐2 gives its opposite influence. From
this fact, we can conclude the algorithm 6, which is inspired by the APSO approach of
adapting 𝑐1 and𝑐2 factors to the population state/strategy.

Algorithm 6: Update by state of acceleration coefficients[60]
Data: Position and acceleration factors

Initialization: positions and acceleration factors c1 and c2;

if state = exploration then Increasing c1 and Decreasing c2 ;
else if state = exploitation then

 Increasing c1 and Slightly Decreasing c2
else if state = jumping out then

 Increasing Slightly c1 and Increasing c2
else if state = convergence then

 Decreasing c1 and Increasing c2
end if

Return c1 and c2

The idea behind exploration state is that increasing 𝑐1 and decreasing 𝑐2 can help
particles explore individually and enhance their own historical best positions, rather

Chapter I. Parameters setting of homogeneous particle swarm optimization

53

than crowd around the current best particle that may be associated with a local
optimum.

In exploitation state, the particles are making use of local information and grouping
toward possible local optimal niches indicated by the historical best position of each
particle.

In the convergence state, the swarm seems to find the globally optimal region, and,
therefore, the influence of 𝑐2 should be emphasized to lead other particles to the
estimated globally optimal region. On the other hand, the value of 𝑐1 should be
decreased to let the swarm converge fast.

In jumping out phase, a large 𝑐2 together with a relatively small 𝑐1 may help to jump
out of local optimum toward a better optimum.

a.2 HMM adaptation of acceleration factors (HMM-APSO)

In this paragraph only acceleration coefficients are controlled by HMM state, other
parameters are static and given by the user at initialization except for the inertia weight,
it is done as follows to balance the global and local search capabilities:

w(f) =
1

1 + 1.5e− 2.6f
∈ [0.4, 0.9]∀ f ∈ [0, 1] (19)

By the HMM-APSO (HMM Adaptive PSO), HMM adaptively controls the variation of
both (𝑐1, 𝑐2) . The HMM-APSO has been introduced in [97]. In this algorithm, we
delegate choosing states of PSO iterations to HMM classification. Transitions between
states is explicated with probability transitions with observations through the
algorithm simulation. The Baum welch algorithm re-estimates HMM parameters for
best classification of states. The Viterbi Algorithm is then used for state classification
of APSO iteration. It is designed to find the most probable sequence of hidden states
given the sequence of observed states. An elitist learning strategy is performed when
the evolutionary state is classified as a convergence state to perturb the particle that
guides the swarm and to enhance the local convergence [60]. According to this
classified state, the control of the variation of both (𝑐1, 𝑐2) is adapted. The algorithm of
HMM-APSO is given below:

Chapter I. Parameters setting of homogeneous particle swarm optimization

54

Algorithm 7: HMM-APSO

Data: The objective function (F)

Initialization: iteration number t=0, positions 𝑋 velocities 𝑉 ,

acceleration factors (c1,c2), HMM parameters (Π,A, B, S, Y), observation

sequence O, state sequence Q, population size N(t);
while (number of iterations t ≤ tmax not met) do

f ← equation.15(𝑋); (Calculate the evolutionary factor)

w ← equation.19 (𝑓) ;(Update the inertia weight)

O[t]← 𝑠𝑢𝑏(𝑓) (Update observation sequence)
O ← 𝑂 ∪ O[t]
(A, B, Π) ← Baum-Welch(Π,O,A, B, S, Y); (Update HMM parameters)

(Q[1],... Q[t])←viterbi(Π,O, A,B, S, Y) ; (Classification of PSO state by HMM
classifier)

(c1,c2) ← algorithm.6(Q[t]); (Update c1 and c2 values)
For i = 1 to (N(t)) do

 Update velocities and positions:

 - Xi(t)← equation.1(Xi(t-1),Vi(t-1)) ;

 - Vi(t)← equation.2(Xi(t-1),Vi(t-1));

 compute f(Xi) ;

 if (f (Xi) ≤ fbest) then

 fbest← f(Xi) ;

 pbest← Xi ;

 end

 if (f (pbest) ≤ fgbest) then

 fgbest←fbest ;

 gbest←Xbest ;

 end

 if state = convergence then

 Elitist learning ([60]);

 end

end

t ← t + 1 ;
end

Return pbest and fbest (the best particle in the population and its

corresponding fitness)

HMM-APSO performances will be investigated by experimentations to proves the
HMM classification priority in parameters control.

In the next section, we will introduce another parameter to be controlled, the
population size control by HMM state classification.

b. Control of Population Size

As discussed above, HMM-APSO is influenced by population variation. So, if HMM
control parameters such as 𝑐1 and 𝑐2 across iterations, it can also be used to control
the number of particles. More precisely the manner how population changes from
iteration to another is based on the state that HMM classification defines.

b.1 Population update strategy by state

As deduced from the first section, smaller population size will increase the probability
of being trapped in a local optimum. However, added particles result in the rise of

Chapter I. Parameters setting of homogeneous particle swarm optimization

55

computing cost. Therefore, better optimization capability is not necessarily gained
with population increase. More profit on optimization performances can be acquired
with a dynamic change and continuous variation like in [17] and [44]. Therefore, our
primary purpose is to adapt a dynamic variation of population change according to
the classified HMM state.

Population size variation is done between two value 𝑁𝑚𝑖𝑛and 𝑁𝑚𝑎𝑥 in T total number
of iterations. Population size is changed according to a changing function 𝑁(𝑡), where
t is the iteration number. We define four functions for varying population size (see F).

 Linear increase function :

𝑁𝑎(𝑡) =
(𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)(𝑡 − 𝑇)

𝑇
+ 𝑁𝑚𝑎𝑥 (20)

 Linear decrease function :

𝑁𝑏(𝑡) =
(𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)(𝑇 − 𝑡)

𝑇
+ 𝑁𝑚𝑖𝑛 (21)

 Sine function :

𝑁𝑐(𝑡) = (𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛).
sin (

t
A)

2
+
𝑁𝑚𝑎𝑥 + 𝑁𝑚𝑖𝑛

2
+ 𝑁𝑚𝑖𝑛 (22)

 Sine Attenuation function :

𝑁𝑑(𝑡) = 𝑁𝑏(𝑡).
sin (

t
A)

3
+
2𝑁𝑏(𝑡)

3
 (23)

These functions are inspired from [17]; A is the amplitude of the sin function.

After state classification by HMM, a population size adaptation is executed according
to the given state at each iteration. Then, to each state, a varying population function
is associated to adapt the variation to the state of particles according to the algorithm
8 below to resume the use of size function by state:

Algorithm 8: Population size control

Data: state, iteration number t, last population size N(t-1);

Initialization: population size ;

if state=exploration then population size ← 𝑁𝑐(t) (Equation (22));
else if state = exploitation then

 N(t) ← 𝑁𝑑(t) (Equation (23))
else if state = jumping out then

 N(t) ← 𝑁𝑎(t) function (Equation (20))
end

else if state = convergence then

 N(t) ← 𝑁𝑏(t) (Equation (21))
end

Return population size N(t)

The following specifications designated in Algorithm 8 by state describes PSO size
adaptation:

Chapter I. Parameters setting of homogeneous particle swarm optimization

56

 In the exploration state: The Sine function 𝑁𝑐 is adopted to fluctuate the swarm
periodically; this helps to re-initialize the particles again, which improves the
swarm diversity for exploration.

 In the exploitation state: The Sine Attenuation function 𝑁𝑑 is used to also
fluctuate the swarm periodically but with reducing the number of worst
particles; this helps to gain more in exploiting capacity.

 In the jumping out state: The Linear increase function 𝑁𝑎is adopted to increase
jump capabilities with a random increase of population to be more distributed
in the search space.

 In the convergence state: The Linear decrease function 𝑁𝑎is adopted to increase
convergence capabilities. Worst particles are continuously eliminated without
any generation to focus the search aptitude on converging.

b.2 Generation and elimination of particles

As a result of applying the population size control, particles are even eliminated or
generated according to the value of comparing 𝑁(t − 1) against 𝑁(t). Elimination and
generation of particles is not new; it has been presented in [43] where it addresses some
rules about how to eliminate and how to generate particles inside tribes of particles. In
our approach, we do not have any notion of separation of particles and we use a global
topology. Unfortunately, the swarm changes its state according to HMM. Then, a
strategy for elimination and generation must be done according to this state. In [43],
the worst particles are eliminated in favor of good tribes. This rule is adopted in any
case of elimination in this approach. We present how particle generation is done in
algorithm 9:

Algorithm 9: Generation and elimination strategy

Data: Population (𝑋, 𝑉), iteration number t;
Initialization: population and velocities

if (𝑁(t) > 𝑁(t − 1)) (generation)
if state = convergence or state = exploitation then;

 for i=𝑁(t − 1) to 𝑁(t)
 𝑋𝑖 ← 𝑥𝑔𝐵𝑒𝑠𝑡 (Copy the best particle’s position).

 𝑉𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (random velocity).
 end

else if state = exploration or state = jumping out then

 for i=𝑁(t − 1) to 𝑁(t)

 𝑋𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (random position).

 𝑉𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (random velocity).
 end

end

else if (elimination)

population ← Quick sort(population) [98]

population ← the best 𝑁(t) particles.
end

Return updated population (𝑋, 𝑉)

Chapter I. Parameters setting of homogeneous particle swarm optimization

57

Particles are ordered according to their fitness value from the worst to the best particle
using Quick sort algorithm [98]. The population is ordered in a pile of particles and
the operation of decreasing is done from the worst side of the pile. So, in case of
population decrease, always the worst particles are eliminated.

For population increase, we choose between two types of strategies of generation:
random or duplication are defined. A random one is the easy way as in [43]: according
to a uniform distribution in the search space with help to explore more regions.
Contrariwise, the duplication method contributes to gain more in exploitation because
it increases the density of exploiting particles in a specific region.

b.3 HMM control of Population size (HMM-PPSO)

To do that, as given by the generic model, transitions between states are represented
by transitions probabilities and the Viterbi Algorithm is used for state classification of
APSO iteration. We update the population according to the classified state. The Baum-
welch algorithm updates transition probabilities. We note HMM-PPSO (HMM
Population control for PSO) as the same HMM control strategy applied only for
population variation without c1 and c2 adaptation. It has been taken as a static value
during the run. In addition to HMM classification, the same elitist learning strategy as
in the previous paragraph is performed when the evolutionary state is classified as a
convergence state [60]. According to the classified HMM state, the control of the
variation of the population is adapted to meet the best population size for the search
stage through iterations. The inertia weight is also updated according to equation 19.
The complete HMM-PPSO is depicted below (Algorithm 10):

Chapter I. Parameters setting of homogeneous particle swarm optimization

58

 Algorithm 10: HMM-PPSO

Data: The objective function (F)

Initialization: iteration number t=0, positions 𝑋, velocities 𝑉, acceleration

factors (c1,c2), HMM parameters (Π,A, B, S, Y), observation sequence O,
state sequence Q, population size N(t);

while (number of iterations t ≤ tmax not met) do

w←equation.19 (𝑓) ;(Update the inertia weight)

O[t]← 𝑠𝑢𝑏(𝑓) (Update observation sequence) O ← 𝑂 ∪ O[t]

(A, B, Π) ← Baum-Welch(Π,O,A, B, Π, S, Y); (Update HMM parameters)

(Q[1],... Q[t]) ←viterbi(Π,O, A, B, S, Y) ; (Classification of PSO state
by HMM classifier)

(N(t)) ← algorithm.8(Q[t], t, N(t-1)); (Calculate population size)

(X, V) ← algorithm.9(N(t), X, V, t); (Update population)

For i = 1 to (N(t)) do

 Update velocities and positions:

 - Xi(t)← equation.1(Xi(t-1),Vi(t-1)) ;

 - Vi(t)← equation.2(Xi(t-1),Vi(t-1));

 compute f(Xi) ;

 if (f (Xi) ≤ fbest) then

 fbest← f(Xi) ;

 pbest← Xi ;

 end

 if (f (pbest) ≤ fgbest) then

 fgbest←fbest ;

 gbest←Xbest ;

 end

 if state = convergence then

 Elitist learning [60];

 end

end

t ← t + 1 ;

end

Return pbest and fbest (the best particle in the population and its

corresponding fitness)

c. Control of inertia weight

The balance between global and local search throughout a run is crucial for the success
of an optimization algorithm. Inertia weight is a crucial parameter influencing the PSO
search process. In consequence, according to the state, the inertia weight is controlled.
In this paragraph, a humble attempt to determine a generalized framework for the

Chapter I. Parameters setting of homogeneous particle swarm optimization

59

setting of the inertia weight adaptation and control is depicted and named HMM-
wPSO .

c.1 Inertia weight control by state

The following specifications by state describe PSO inertia weight adaptation according
to the previous HMM classification:

 In the exploration state: Particles are exploring the search space; random values
of inertia weight are attributed at each iteration to guarantee more
diversification in search space sweep. The value of the inertia weight is given
by the formula :

𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑() (24)
Where :

𝑟𝑎𝑛𝑑() : function that returns random values in the interval [0,1].

 In the exploitation state: in this state, inertia weight will vary according to the
distance between particles to guide the exploitation phase. The same formula
defined in APSO is used just for exploitation:

ω(f) =
1

1 + 1.5e− 2.6f
∈ [0.4, 0.9]∀ f ∈ [0, 1] (25)

 In the jumping out state: a maximum value of w is used to increase jump
capabilities in the search space:

𝑤 = 𝑤𝑚𝑎𝑥 (26)

 In convergence state: To increase convergence capabilities, only local search
capabilities are enabled. Then, inertia weight is set to the minimum value :

𝑤 = 𝑤𝑚𝑖𝑛 (27)

Elastic learning as in [60] is also used in the convergence state.

Algorithm 11 summarizes the adaptation approach of 𝑤.

Algorithm 11: Adaptive inertia weight control

Data: Position and inertia weight

Initialization: positions and weight 𝑤
if state = exploration then

 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑();
else if state = exploitation then

 𝑤 = ω(f) =
1

1 + 1.5e− 2.6f
∈ [0.4, 0.9] ∀ f ∈ [0, 1]

else if state = jumping out then

 𝑤 = 𝑤𝑚𝑎𝑥
else if state = convergence then

 𝑤 = 𝑤𝑚𝑖𝑛
end if

Return 𝑤

c.2 HMM control of inertia (HMM-wPSO)

 Our HMM-wPSO algorithm of HMM control of inertia weight will be given in
algorithm 12:

Chapter I. Parameters setting of homogeneous particle swarm optimization

60

Algorithm 12: HMM-wPSO

Data: The objective function (F)

Initialization: iteration number t=0, positions 𝑋, velocities 𝑉, inertia

weight w and HMM parameters (Π,A, B, S, Y), observation sequence O, state

sequence Q, population size N;
while (number of iterations t ≤ tmax not met) do

f ← equation.15(𝑋); (Calculate the evolutionary factor)

w ← equation.19 (𝑓) ;(Update the inertia weight)

O[t]← 𝑠𝑢𝑏(𝑓) (Update observation sequence)

O ← O ∪ O[t]

(A, B, Π) ← Baum-Welch(Π,O,A, B,S, Y); (Update HMM parameters)

(Q[1],... Q[t]) ← viterbi(Π,O, A, B, S, Y) ; (Classification of PSO state
by HMM classifier)

w ← algorithm.11(Q[t]); (Update w value)

For i = 1 to N do

 Update velocities and positions:

 - Xi(t)← equation.1(Xi(t-1),Vi(t-1)) ;

 - Vi(t)← equation.2(Xi(t-1),Vi(t-1));

 compute f(Xi) ;

 if (f (Xi) ≤ fbest) then

 fbest← f(Xi) ;

 pbest← Xi ;

 end

 if (f (pbest) ≤ fgbest) then

 fgbest←fbest ;

 gbest←Xbest ;

 end

 if state = convergence then

 Elitist learning [60];

 end

end

t ← t + 1 ;

end

Return pbest and fbest (the best particle in the population and its

corresponding fitness)

HMM-wPSO gives an online adaptation of inertia w in this pragraph with a machine
learning technique; that is the HMM classification.

d. Empirical evaluation

In this part, tests and validations of the proposed adaptive PSO algorithms based on
HMM for adaptation and parameters control are performed. Experimentations are
done using several benchmark functions by comparing our generic model of PSO to
each parameter adaptation with other PSO’s variants from the literature.

d.1 Parameters setting

For each of the benchmark functions shown in Table 1, we perform thirty executions,
and compare each function, the best and the average value.

The used experimentation machine has i5 processor third generation of 2.5 GHz, with
4 Gb of RAM and 128 Gb of storage.

Chapter I. Parameters setting of homogeneous particle swarm optimization

61

Table 1 Description of Benchmark functions

Benchmark functions Name Type

𝐟 𝟏 = ∑[(𝟏𝟎𝟔)
𝒊−𝟏

𝑫−𝟏⁄ 𝒙𝒊
𝟐]

𝐃

𝐢=𝟏

Elliptic Unimodal

𝐟𝟐 = ∑(| 𝐱𝐢 + 𝟎. 𝟓|)
𝟐

𝐃

𝐢=𝟏

Step Unimodal

𝐟𝟑 = ∑𝐱𝐢
𝟐

𝐃

𝐢=𝟏

Sphere Unimodal

𝐟𝟒 = 𝟏𝟎
𝟔 𝐱𝟏

𝟐 + ∑ 𝐱𝐢
𝟐

𝐃

𝐢=𝟐

Tablet Unimodal

𝐟𝟓 = ∑(∑𝐱𝐢

𝐃

𝐢=𝟏

)𝟐
𝐃

𝐢=𝟏

Quadric Unimodal

𝐟𝟔 = ∑[𝐱𝐢
𝟐 − 𝟏𝟎 𝐜𝐨𝐬 (𝟐 𝛑 𝐱𝐢) + 𝟏𝟎]

𝐃

𝐢=𝟏

Rastrigrin Multimodal

𝐟𝟕 = −𝟐𝟎 𝐞𝐱𝐩(−𝟎. 𝟐 √
𝟏

𝐃
𝐱𝐢
𝟐)

Ackley Multimodal

𝐟𝟖 =
𝟏

𝟒𝟎𝟎𝟎
∑𝐱𝐢

𝟐 − 𝚷 𝐜𝐨𝐬(𝐱𝐢 / √𝐢) + 𝟏

𝐃

𝐢=𝟏

Griewang Multimodal

𝐟𝟗 = ∑𝐱𝐢 𝐬𝐢𝐧(√𝐱𝐢)

𝐃

𝐢=𝟏

Schwefel Multimodal

𝐟𝟏𝟎 = −
𝟏 + 𝐜𝐨𝐬(𝟏𝟐 √𝐱𝟏

𝟐 + 𝐱𝟐
𝟐)

𝟏/𝟐 (𝐱𝟏
𝟐 + 𝐱𝟐

𝟐
) + 𝟐

Drop wave Multimodal

These benchmark functions in table 1 contain both unimodal and multimodal
functions.

The examination of the proposed approach on homogeneous PSO will be carried out
in two phases:

 In the first one, we compare our approach with a number of improved variants
of PSO chosen for the homogenous case of PSO variants. Table 2 below shows
these chosen variants related to each approach. That is, SAPSO proposes a self-
adapting approach while LinWPSO consists of varying inertia weight. In
YSPSO, another parameter has been used which is the constriction factor
instead of the inertia weight. APSO is an Adaptive PSO with a fuzzy
classification of states. CLSPSO consists of using another search strategy to
enhance particles cooperation in PSO. SimPSO consists of using a hybrid
approach instead of adapting the parameters. RandWPSO is a random inertia
weight PSO. LinWPSO consists of Linear decreasing weights PSO. RankPSO is

Chapter I. Parameters setting of homogeneous particle swarm optimization

62

an Adaptive Particle rank, and ChaoPSO is a Chaotic Inertia Weight PSO.
DPPSO is a Dynamic population size based PSO.

Table 2 PSO variants from literature

Algorithm Name Parameters Setting Reference

APSO Adaptive PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [60]

YSPSO PSO with compressibility factor 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [99]

SELPSO Natural selection based PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [100]

DPPSO Dynamic population size based PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [17]

LinWPSO Linear decreasing weights PSO 𝜔𝑚𝑖𝑛 = 0.0001,
𝜔𝑚𝑎𝑥
= 0.1

[101]

CLSPSO Cooperative line search PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [102]

SAPSO Self-adaptive PSO 𝑐1 = 𝑐2 = 2,𝜔𝑚𝑖𝑛 = 0.01,

𝜔𝑚𝑎𝑥 = 0.9

[100]

SecPSO Swarm-core evolutionary PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [103]

AsyLnCPSO Asynchrous PSO 𝑐1𝑚𝑖𝑛 = 𝑐2𝑚𝑖𝑛 = 0.01 ,

𝑐1𝑚𝑎𝑥 = 𝑐2𝑚𝑎𝑥 = 2

[100]

RandWPSO Random inertia weight PSO 𝑐1 = 𝑐2 = 2,𝜔𝑚𝑖𝑛 = 0.01,

𝜔𝑚𝑎𝑥 = 0.9

[101]

SecVibratPSO Order oscillating PSO 𝑐1 = 𝑐2 = 2,𝜔 = 0.9 [104]

SimuAPSO PSO with Simulated Annealing 𝜆 = 0.0001,𝑐1 = 𝑐2 = 2,

 𝜔 = 0.9

[103]

 In the second phase, we compare different variant of our approach to analyze
the effect of each parameter adaptation using our generic adaptation model. In
HMM-APSO, HMM is used just for adapting the acceleration factors as in [97].
In HMM-PPSO, HMM is executed for the control of the population size. In
HMM-Wpso, the generic adaptive model is applied to the inertia weight
adaptation.

Concerning the first compared approaches, we have implemented them using Matlab,
while for the literature variants we have executed their code which is available online
as benchmark functions.

Tests are performed 31 times with the same value of the parameters (if the parameter
value is fixed in the corresponding variant). The used swarm population size is 30 with
a dimension of 30. Population changes is done between 20 and 50 in the case of

Chapter I. Parameters setting of homogeneous particle swarm optimization

63

population size variation as in HMM-PPSO. Each run contains 1000 generation of the
optimization process.

To improve our HMM-based approaches, we compared results obtained for the
benchmark test functions with best known PSO variants from literature. Performance
is qualified following the main measured observations: Comparison on the solution
accuracy, Comparison on the convergence speed and statistical tests.

The use of parametric two-sided tests named t-test (parametric) is performed on
obtained results. Using t-test as an inferential statistical evaluation in the experiments
[105]. Results variance is estimated using the sample execution test sets with Student’s
t-Test that measures if the difference between two means is statistically significant.
Given as:

𝑆2 =
∑ (𝑟𝑖 − �̅�)
𝑁
𝑖=1

𝑁 − 1
 (28)

 Where N number of executions and 𝑟𝑖 the result execution i.

We address the two hypothesizes as:

- Hypothesis H0 is that the compared approach is similar to the other PSO
variants

- Hypothesis H1 is that the compared approach is different from the other PSO
variants.

We perform this statistical test to investigate the given hypotheses. Tests are done with
a significance level of 0.05 between the HMM-based approaches and different
compared approaches of PSO variants. (More detailed explanation of this approach is
given in [60]. For very little P-values (P-value<e-06), it takes 0 as value. Statistical tests
are executed with the statistical toolbox of Matlab. Tables will display the P-values of
each compared variant with additional Rows: 1 (Better), 0 (Same) and −1 (Worse), to
give the number of functions that is compared to the proposed approach, performs
significantly (respectively) better than, almost the same as, and significantly worse
than the compared algorithm.

d.2 Examination of HMM-wPSO with other PSO variants

We perform several runs on the HMM-wPSO and others PSO variants earlier
described.

 solution accuracy

Best and the average value resulted from experimentations are given in table 3 below:

Chapter I. Parameters setting of homogeneous particle swarm optimization

64

Table 3 Results comparisons with other variants of PSO

Functions HMM-
wPSO

PSO APSO ChaoPSO RandWPSO RankPSO SAPSO LinWPSO

𝒇𝟏 Best 35.0045 17556.61 3314.52 744382.6 291814.4 85957.88 36451.55 10694.93

Mean 271.66 71920.9 12697.63 1741984 576666 192511 188337 51398

𝒇𝟐 Best 0 0 0 4.55e-27 0 0 0 0

Mean 0 0 0 1.56e-06 1.22e-07 0 0 0

𝒇𝟑 Best 0.0177 15.3432 0.83768 53.9977 29.3347 14.6594 21.771 17.0416

Mean 0.0569 26.1594 2.2923 81.7409 41.9482 32.5917 29.0454 21.8367

𝒇𝟒 Best 0.0327 36.3069 1.0421 117.1186 70.319 28.4467 34.7361 26.7697

Mean 0.161 48.9845 2.682 221.7902 132.559 68.6518 56.6107 42.4692

𝒇𝟓 Best 13835 1459678 281462 132e+06 113e+06 115e+04 828e+04 173e+04

Mean 56158 103e+05 915e+03 575e+06 265e+06 364e+05 225e+05 102e+05

𝒇𝟔 Best 7.1343 136.7593 28.955 282.7734 253.1783 140.6755 169.8982 120.695

Mean 12.3368 190.6136 62.0158 333.6893 290.8753 228.0515 207.5413 189.3113

𝒇𝟕 Best 0.022324 3.4004 1.7784 5.3846 4.7509 4.1292 4.341 4.1626

Mean 0.37133 4.3781 2.453 6.4555 5.219 5.221 5.1512 4.6914

𝒇𝟖 Best 6.51e-05 0.075818 0.016021 0.41017 0.14908 0.1714 0.064283 0.043456

Mean 0.0147 0.13982 0.030788 0.5108 0.3844 0.20155 0.17696 0.11427

𝒇𝟗 Best 14.5948 17.6234 52.4179 51.5312 72.3369 33.3361 21.5786 11.9212

Mean 25.8097 26.7725 71.5969 155.0976 138.019 47.0875 36.5762 22.14

𝒇𝟏𝟎 Best -1 -1 -1 -0.99946 -0.99999 -1 -1 -1

Mean -0.98725 -0.99362 -0.96812 -0.94191 -0.96172 -0.96812 -0.98087 -1

The proposed approach gives, in most cases, better results than the majority of state of
the art. The solution accuracy is enhanced for both unimodal (Elliptic, Step, Sphere,
Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, Griewang, Schwefel,
Drop wave). For Elliptic function, the HMM-wPSO gives more accuracy in the order
of 103 compared to the other inertia weight variation strategies of PSO variants. For
Step function, this function is simple; the HMM-wPSO has obtained the best solution
0 as almost all the other variants. For Sphere function, the HMM-wPSO gives more
accuracy in the order of 102 compared to the other inertia weight variation strategies
of PSO variants. For Tablet function, the HMM-wPSO gives more accuracy in the order
of 102 compared to the other inertia weight variation strategies of PSO variants. For
Quadric function, the HMM-wPSO gives more accuracy in the order of 103 compared
to the other similar PSO variants. For Ackley function, the HMM-wPSO gives more
accuracy in the order of 10 compared to the other inertia weight variation strategies of
PSO variants. For Rastrigrin function, the HMM-wPSO gives also enhanced accuracy
results in order of 10 compared to the other inertia weight variation strategies of PSO
variants. For Schwefel function, the HMM-wPSO has a little improvement of accuracy
compared to the other chosen PSO variants. For Drop wave function, the HMM-wPSO
provides similar solution results compared to the other inertia weight variation
strategies of PSO variants. Indeed, results presented in bold, it exceeds the majority of
other PSO variants. HMM-wPSO has improved good performances in terms of
solution accuracy.

Chapter I. Parameters setting of homogeneous particle swarm optimization

65

 convergence speed

Convergence speed of HMM-wPSO is shown in the following figures (Figure 13):

(a) (b)

(c) (d)

(e) (f)

Chapter I. Parameters setting of homogeneous particle swarm optimization

66

(g) (h)

(i) (j)

Figure 14 Comparison on convergence speed on fitness functions (a) 𝒇𝟏. (b) 𝒇𝟐. (c) 𝒇𝟑. (d) 𝒇𝟒. (e) 𝒇𝟓. (f) 𝒇𝟔. (g) 𝒇𝟕. (h)

𝒇𝟖. (i) 𝒇𝟗. (j) 𝒇𝟏𝟎

For unimodal functions, HMM-wPSO quickly gives the best solution even before 50
iterations in Elliptic, step and Quadric functions. And before 400 in sphere and tablet.

For other more complex multimodal functions, the line showing the convergence of
HMM-wPSO appears largely under all other PSO variants, which shows the
superiority against the others. This is easily distinguished in Rastrigin, Ackley and
Griewang. HMM-wPSO quickly gives the best solution even before 20 iterations in
Dropwave, and slightly better convergence in Schwefel.

In general, the black line of figure 14 has more convergence speed than other lines. For
all functions, the HMM-wPSO speeds up the optimization across iterations. Then, for
the convergence speed, HMM-wPSO shows its supremacy. We can consider that the
adaptiveness of inertia weight with HMM control gives a huge positive impact on the
convergence speed better than other inertia weight control PSO variants from
literature.

 statistical tests

To prove the performances of our approach, we use a parametric two-sided test named
t-test (parametric), it is performed on obtained results. Tests are done with a

Chapter I. Parameters setting of homogeneous particle swarm optimization

67

significance level of 0.05 between the HMM-wPSO and different compared inertia
weight approaches of PSO variants.

Table 4 T-test comparison

Functions PSO APSO ChaoPSO RandWPSO RankPSO SAPSO LinWPSO

𝒇𝟏 0 0 0 0 0 0 0

𝒇𝟐 0.5560 0.1769 0 0.0734 0.1769 0.6278 0.1510

𝒇𝟑 0 0 0 0 0 0 0

𝒇𝟒 0 0.0093 0 0 0 0 0

𝒇𝟓 0 0 0.0013 0 0.0103 0 0.0158

𝒇𝟔 0 0 0 0 0 0 0

𝒇𝟕 0.8127 0 0 0 0 0.0389 0.3040

𝒇𝟖 0 0 0 0 0 0 0

𝒇𝟗 1 1 0.3275 0.3305 1 1 1

𝒇𝟏𝟎 0 0 0 0 0 0 0

+1 (better) 17 18 19 18 18 17 18

0 (same) 3 2 1 2 2 3 2

-1 (worse) 0 0 0 0 0 0 0

We display in table 4 of P-values on every function of statistical tests with a
significance level of 0.05. Rows “1 (Better),” “0 (Same),” and “−1 (Worse)” give the
number of functions that the HMM-wPSO performs significantly better than, almost
the same as, and significantly worse than other algorithms.

Executing statistical inferred t-test on the thirty executions, clearly, the HMM-wPSO
outperforms the other algorithms and gives a competitive upgrade in PSO
performances. In general, in approximatively 90% of results, HMM-wPSO is better and
in 10% is similar in the case of simple functions like the Step function. So, inertia
adaptation using HMM is confirmed to be a good approach.

The approach of adapting inertia weight based on HMM gives much better statistical
results than most of PSO related variants. The reason may lie in the fact that HMM can
give a more robust and authentic estimation of the four states at each iteration by
benefiting from the complete historical information based on the observed
evolutionary factor through iterations. Also, it combines different dynamic variation
strategies according to each search state.

d.3 Examination of HMM-PPSO with other PSO variants

In order to further evaluate our approach HMM-PPSO, we compare with some related
well-known variants of PSO in the literature as defined in the parameters setting
paragraph.

Chapter I. Parameters setting of homogeneous particle swarm optimization

68

 solution accuracy

Table 5 below shows the comparison of results between these algorithms.

Table 5 Comparison of results

Functions CLS-
PSO

YSPSO PSO SAPSO SimPSO DPPSO APSO HMM-PPSO

𝒇𝟏

Best 85567 646.982 17556.61 3899.11 76023 331.4682 377.5448 28.5207

Mean 627396 2676.93 71920.96 15669.79 295411 877.7602 1038.920 132.2178

𝒇𝟐

Best 0 0 0 0 8.78e-05 1.04e-11 0 0

Mean 1.1e-05 0 0 0 0.052643 7.12e-07 0 0

𝒇𝟑

Best 71.6543 7.3068 15.3432 13.159 108.7304 3.297 0.48545 0.010322

Mean 225.9075 14.448 26.1594 29.648 186.9263 5.3647 2.4973 0.054323

𝒇𝟒

Best 202.1904 22.0672 36.3069 19.0642 283.6052 13.4607 1.1408 0.007489

Mean 402.8212 41.8765 48.9845 84.6 494.3694 24.2636 4.2255 0.047697

𝒇𝟓 Best 205e+6 1705011 1459678 280e+5 4510e+5 160e+05 87133.58 458.8865

Mean 707e+6 6950767 103e+05 940e+5 146e+7 484e+05 893462.6 7585.629

𝒇𝟔

Best 371.2168 109.964 136.7593 184.9184 328.9158 182.9232 37.3897 7.2419

Mean 535.107 182.184 190.6136 246.1648 473.3492 234.3271 57.3572 15.3853

𝒇𝟕 Best 7.3411 3.659 3.4004 4.2541 7.0977 2.3791 1.4562 0.016588

Mean 9.4979 4.4661 4.3781 5.5108 9.0712 2.8154 2.2541 0.4568

𝒇𝟖 Best 0.38083 0.07117 0.075818 0.11752 0.50343 0.026 0.00595 4.51e-05

Mean 0.75682 0.16698 0.13982 0.34062 0.91885 0.10926 0.026352 0.016116

𝒇𝟗

Best 158.36 15.5126 17.6234 38.2425 162.8896 26.1634 33.239 6.5624

Mean 405.2457 24.7067 26.7725 66.7705 456.2188 46.7503 56.3267 16.5693

𝒇𝟏𝟎 Best -1 -1 -1 -1 -0.93624 -0.99988 -1 -1

Mean -0.94403 -0.98972 -0.99362 -0.96092 -0.79288 -0.99474 -0.9856 -0.97326

However, those results improve the HMM classification methodology with adaptive
size. The solution accuracy is enhanced for both unimodal (Elliptic, Step, Sphere,
Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, Griewang, Schwefel,
Drop wave). For unimodal functions, the HMM-PPSO gives more accuracy in a
varying order that can be remarkable especially in the Quadric function, where HMM-
PPSO gives a better solution accuracy at an order of 103 . The results of the Step
function are similar due to its simplicity to find the best solution. On the other hand,
the multimodal functions show more enhanced solution accuracy in the order of 102
for the Griewang function, and relatively better solution in Rastrigrin, Ackley, and
Schwefel. For the Drop wave, results are similar. Therefore, HMM coupled with size
adaptation gives more improved state adaptation to the PSO algorithm.

Chapter I. Parameters setting of homogeneous particle swarm optimization

69

 convergence speed

To illustrate the difference between these algorithms in terms of convergence, we
display in Figure 15 below the evolution of the results during the optimization process
of each one of these algorithms by each fitness function.

(a) (b)

(c) (d)

(e) (f)

Chapter I. Parameters setting of homogeneous particle swarm optimization

70

(g) (h)

Figure 15 Performance comparison with different functions (a) 𝒇𝟑. (b) 𝒇𝟒. (c) 𝒇𝟓. (d) 𝒇𝟔. (e) 𝒇𝟕. (f) 𝒇𝟖. (g) 𝒇𝟗. (h) 𝒇𝟏𝟎

When we interest on the convergence rate for unimodal and multimodal functions,
HMM-PPSO gives the best solution. However, the solution is not obtainable is a
relatively good speed. It converges before 400 iterations in Elliptic, Step and Griewang.
It converges before 200 in Quadric and Dropwave functions. As regards the Rastrigin,
Schwefel and Ackley, the convergence line of HMM-PPSO shows that the HMM-PPSO
remains seeking and improving the solution almost in all iterations.

Thus, it can be noticed that the HMM adaptation improve the convergence visibly, so
HMM-PPSO has a faster convergence rate than other shown PSO variants.

 statistical tests

For further comparison of the algorithms, we have considered the parametric two-
sided test, which is the t-test (parametric). A significance level of 0.05 is considered
between the HMM-PPSO and different compared PSO variants. (The sample is
superior to thirty [106]).

Chapter I. Parameters setting of homogeneous particle swarm optimization

71

Table 6 Statistical tests

Functions HMM-
APSO

HMM-
PPSO

APSO DPPSO CLSPSO YSPSO SAPSO LinWPSO SimPSO

𝒇𝟏 0.2975 0.9019 0 0 0 0.0072 0 0 0

𝒇𝟐 0.1700 0.9635 0 0 0 0 0 0 0

𝒇𝟑 0.7713 0.1855 0.7713 0.0468 0.0024 0.3575 0.0043 0.0095 0

𝒇𝟒 0.6962 0.8364 0 0 0 0 0 0 0

𝒇𝟓 0 0.7960 0 0 0 0 0 0 0

𝒇𝟔 0.309 0.7545 0.0193 0 0 0 0 0 0

𝒇𝟕 0.9211 0.3420 0 0 0 0 0 0 0

𝒇𝟖 0 0.2063 0 0 0 0 0 0 0

𝒇𝟗 0 0.8163 0.1027 0.011 0 0 0 0 0

𝒇𝟏𝟎 0.6246 0.5986 0 0 0 0 0 0 0

+1 (better) 3 0 8 10 9 9 9 9 10

0 (same) 7 10 2 0 1 1 1 1 0

-1 (worse) 1 0 0 0 0 0 0 0 0

Compared with the other algorithms, when performing the statistical inferred t-test on
the thirty executions, visibly the HMM-PPSO outperforms the other algorithms and
gives a good upgrade in PSO performances. In overall, and at approximatively 80%
of the results, HMM-PPSO is better in 20% of results and is similar in the case of some
simple functions like the Step function. So, population adaptation using HMM is also
confirmed to be a good approach. It can be seen that HMM-PPSO outperforms the
other algorithms in terms of the t-test test results.

d.4 Examination of HMM-APSO with other PSO variants

To improve our HMM-APSO approach, we compared results obtained for the
benchmark test functions with best known PSO of the literature.

 solution accuracy

In order to further evaluate our approach, we compare HMM-APSO with well-known
variants of PSO in the literature. For every benchmark function, ten executions are
performed for all variants of PSO. The table below shows the results of the simulations.

Chapter I. Parameters setting of homogeneous particle swarm optimization

72

Table 7 Results comparisons with the variants of PSO

Functions APSO SimuA-
PSO

Sec-
PSO

Rand
WPSO

YSPS
O

SelPS
O

SecVi
bratPS
O

SAPSO LinW
PSO

AsyLn
CPSO

HMM-
APSO

𝒇𝟏 Best 49 115719 4689 9843 1420 16382 275 5095 7067 3765 44

Mean 150 288102 10930 33384 2726 27998 32132 14850 20280 11045 172

𝒇𝟐 Best 0 5.8e-06 1.9e-31 2.1e-12 0 8.6e-10 7.3e-10 0 0 0 0

Mean 0 0.04 9.8e-12 3.6e-05 0 1.8e-05 0.03 0 0 3.1e-30 0

𝒇𝟑 Best 0.01 93.19 20.58 37.7 6.77 36.01 0.8 18.20 17.66 22.89 4.6e-3

Mean 0.05 188.56 38.79 64.09 13.77 63.59 71.05 31.96 40.53 34.58 0.04

𝒇𝟒 Best 0.02 251.36 71.4 110.48 23.72 30.47 17.42 37.21 51.24 21.73 0.02

Mean 0.05 396.21 110.48 246.78 42.31 77.51 199.04 84.79 95.74 44.32 0.07

𝒇𝟓 Best 16435 587e+6 421e+5 102e+6 127e+4 839e+5 107e+6 459e+5 165e+5 131e+5 7644

Mean 67851 210e+7 978e+5 434e+6 843e+4 210e+6 562e+6 166e+6 155e+6 384e+5 49205

𝒇𝟔 Best 8.24 358.22 208.54 293.88 142.44 285.16 221.93 165.66 170.64 193.83 4.31

Mean 16.14 462.02 262.89 322.35 175.84 315.60 344.76 273.31 261.77 291.54 12.41

𝒇𝟕 Best 0.03 6.9436 4.8963 5.403 3.1785 5.665 1.2753 3.8279 4.7261 5.8372 0.03

Mean 0.31 8.6336 5.2716 6.5613 4.2219 6.1951 4.4528 5.2531 5.6829 6.8189 0.33

𝒇𝟖 Best 7.50e-5 0.52 0.15 0.25 0.05 0.27 0.05 0.13 0.14 0.08 1.1e-5

Mean 0.01 0.87 0.25 0.45 0.12 0.41 0.42 0.25 0.31 0.23 0.07

𝒇𝟗 Best -118.35 -7.2+47 -4+158 - -3+34 -1e+30 - -1+231 -1e+22 -3e+47 -118.35

Mean -118.34 -1e+47 -9e+15 - -3e+33 - - -1e+230 -1e+21 -3e+46 -118.34

𝒇𝟏𝟎 Best -1 -0.92 -1 -0.94 -1 -0.99 -0.93 -1 -1 -1 -1

Mean -1 -0.74 -0.96 -0.93 -0.98 -0.95 -0.82 -0.97 -0.96 -0.98 -1

The Results obtained from the mean of all executions show that for almost all the
benchmark functions, HMM-APSO gives the best results when comparing to the other
PSO variants from the literature. The solution accuracy is improved for both unimodal
(Elliptic, Step, Sphere, Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley,
Griewang, Schwefel, Drop wave). For the Step, Sphere and Drop wave functions
HMM-APSO is slightly the best and outperforms with a little difference. The more
noticeable improvements of solution accuracy can be found in an order attaining more
than 102 of best accuracy; it is obtained in Quadric and Sphere functions. For the other
function, the results from HMM-APSO are better than that the compared PSO variants,
and slightly better than the APSO. In general, HMM-APSO gives good accuracy.

 convergence speed

HMM-APSO is compared to other PSO variants in terms of convergence speed. Figure
16 shows the drown convergences lines across iterations:

Chapter I. Parameters setting of homogeneous particle swarm optimization

73

Figure 16 Comparison on Benchmark functions. (a) 𝒇𝟕. (b) 𝒇𝟏𝟎. (c) 𝒇𝟏. (d) 𝒇𝟖. (e) 𝒇𝟓. (f) 𝒇𝟔.

To illustrate the difference between the chosen PSO variants and the proposed
approach in terms of convergence, we display in figure 16 the evolution of the results
during the optimization process of each one of these algorithms by each fitness
function. Considering the convergence rate, we can notice that the HMM adaptation
of acceleration coefficients improve the convergence visibly. HMM-APSO quickly
gives the best solution even before 50 iterations in Drop wave and Quadric functions.
And before 400 in Elliptic function. The convergence is improved in the Ackley and
Rasrtigin functions where their convergence lines continue to show an improved
solution during approximatively all the run time. Thus, we can notice from Figure 16,
that HMM-APSO has a faster convergence rate than other PSO variants

Chapter I. Parameters setting of homogeneous particle swarm optimization

74

 Statistical tests

The statistical tests comparison is drawn in the following table 8:

Table 8 Statistical tests

Functions APSO DPPSO CLSPSO YSPSO SAPSO LinWPSO SimPSO

𝒇𝟏 0 0 0 0.0072 0 0 0

𝒇𝟐 0 0 0 0 0 0 0

𝒇𝟑 0.7713 0.0468 0.0024 0.3575 0.0043 0.0095 0

𝒇𝟒 0 0 0 0 0 0 0

𝒇𝟓 0 0 0 0 0 0 0

𝒇𝟔 0.0193 0 0 0 0 0 0

𝒇𝟕 0 0 0 0 0 0 0

𝒇𝟖 0 0 0 0 0 0 0

𝒇𝟗 0.1027 0.011 0 0 0 0 0

𝒇𝟏𝟎 0 0 0 0 0 0 0

+1 (better) 18 20 19 19 19 19 20

0 (same) 2 0 1 1 1 1 0

-1 (worse) 0 0 0 0 0 0 0

For further comparison of the PSO variants against the HMM-APSO approach, we
have considered a statistical test that is the t-test with a significance level of 0.05 as
shown in the parameters setting of the paragraph above. Visibly, the HMM-APSO
overcomes the other algorithms and leads to a competitive enhancing in PSO
performances. In the totality, in just around 90% of the results, HMM-APSO is better
and in 10% is similar in the case of simple functions like the Step function. So,
acceleration coefficients adaptation using HMM is statistically giving better results
than the compared state of arts.

d.5 Comparison of the HMM-based approaches

In this part, we compare all HMM-based approaches for different PSO parameter
control and adaptation namely: HMM-wPSO, HMM-APSO, and HMM-PPSO. The
online version of the generic model is tested for adapting acceleration coefficient called
Online-HMM-APSO. Another variant called HMM-PSO is added to this comparison
that merges the three approaches in one. HMM-PSO is using the generic adaptation
model to control: inertia weight, acceleration coefficients, and population size. The
empirical study of HMM derivate approaches will be like the previous paragraph
according to the three aspects: solution accuracy, Comparison on the convergence
speed and statistical tests.

Chapter I. Parameters setting of homogeneous particle swarm optimization

75

 Comparison on solution accuracy

Table 9 below shows the solution accuracy comparison of the proposed HMM-based
approaches of PSO related to each parameter control:

Table 9 Results comparison

Function HMM-
APSO

Online-
HMM-
APSO

HMM-
PPSO

HMM-
wPSO

HMM-
PSO

𝒇𝟏 Best 89 44 28.5207 35.0045 16.647

 Mean 145 172 132.2178 271.66 116.24

𝒇𝟐 Best 0 0 0 0 0

 Mean 0 0 0 0 0

𝒇𝟑 Best 0.02 4.6e-3 0.010322 0.0177 0.013

 Mean 0.09 0.04 0.054323 0.0569 0.0484

𝒇𝟒 Best 0.03 0.02 0.007489 0.0327 0.0096

 Mean 0.26 0.07 0.047697 0.161 0.0554

𝒇𝟓 Best 6622 7644 458.8865 13835 425.11

 Mean 51085 49205 7585.629 56158 5215.029

𝒇𝟔 Best 4.89 4.31 7.2419 7.1343 6.2499

 Mean 12.29 12.41 15.3853 12.3368 15.3697

𝒇𝟕 Best 0.05 0.03 0.016588 0.022324 0.051531

 Mean 0.29 0.33 0.4568 0.37133 0.46979

𝒇𝟖 Best 1.32e-4 1.1e-5 4.51e-05 6.51e-05 4.20e-05

 Mean 5.24e-3 0.07 0.016116 0.0147 0.00712

𝒇𝟗 Best -118.35 -118.35 6.5624 14.5948 6.645

 Mean -117.97 -118.34 16.5693 25.8097 14.8617

𝒇𝟏𝟎 Best -1 -1 -1 -1 -1

 Mean -0.97 -1 -0.97326 -0.98725 -0.9851

Concerning the solution accuracy, it has been more enhanced when controlling all
parameters in HMM-PSO. Thus, the HMM-PSO has improved visibly the solution
accuracy for the Elliptic, Tablet, Quadric and Schwefel functions. The improvement is
at the order of 10 at maximum. For the other functions, the results are the same or
slightly different. Results are normally the case of simple functions as Step and
Dropwave. The online learning version gives approximatively the same results as the
batch learning. The one difference is in the CPU time, which is a little improved. When
classing the results of HMM approaches applied to the PSO parameters control, the
HMM-PSO which control all parameters is the best, then the HMM-PPSO which
controls the population size, then the HMM-APSO which controls the acceleration
coefficients, then finally with little difference the HMM-wPSO, which adapts the
inertia weight.

Chapter I. Parameters setting of homogeneous particle swarm optimization

76

 Comparison on convergence speed

We compare HMM proposed approaches based on convergence speed.

(a) (b)

(c) (d)

(e) (f)

Chapter I. Parameters setting of homogeneous particle swarm optimization

77

(g) (h)

(i) (g)

Figure 17 HMM based approaches comparison of convergence speed (a) 𝒇𝟏. (b) 𝒇𝟐. (c) 𝒇𝟑. (d) 𝒇𝟒. (e) 𝒇𝟓. (f) 𝒇𝟔. (g) 𝒇𝟕.

(h) 𝒇𝟖. (i) 𝒇𝟗. (j) 𝒇𝟏𝟎

We can observe that the convergence speed in figure 17 is almost the same for all
HMM-based approaches, with a little improvement for the HMM-PSO (line in black).
When controlling one of the PSO parameters adequately and adaptively, the
convergence speed will be enhanced due to the sensitivity of PSO convergence to each
of its parameters. HMM-PSO gives best results normally due to the adaptively of all
chosen PSO parameters.

 Statistical tests

The hypothesis H0 is that the HMM-PSO is similar to other HMM approaches and we
perform a statistical test to investigate this assertion.

Chapter I. Parameters setting of homogeneous particle swarm optimization

78

Table 10 Statistical tests

Function HMM-wPSO HMM-PPSO HMM-
APSO

𝒇𝟏 1.2697e-04 0.9184 3.5433e-08

𝒇𝟐 1 1 1

𝒇𝟑 0.4995 0.5243 0.6900

𝒇𝟒 3.2375e-04 0.8690 0.0720

𝒇𝟓 0 0.9230 0

𝒇𝟔 0.1338 0.6056 0.1906

𝒇𝟕 0.3172 0.8988 0.1017

𝒇𝟖 0.0122 1.7391e-04 0.0175

𝒇𝟗 2.12e-04 0.1045 4.0143e-05

𝒇𝟏𝟎 0.8323 0.8261 0.9454

+1 (better) 5 1 3

0 (same) 5 9 6

-1 (worse) 0 0 1

According to statistical tests, and in general, the HMM-PSO is better with a little
relative enhancement regarding other HMM variants. HMM approaches wok better
when adapting all parameters together. When classifying the PSO based HMM
approaches according to their statistical test, the better one will be the HMM-PSO that
controls all parameters, then the HMM-wPSO with control the inertia weight, then the
HMM-APSO which controls the acceleration coefficients, and lastly with a little
difference the HMM-PPSO that controls the population size. However, any parameter
adaptation with HMM gives a good result, which is almost similar to the approach of
enhancing all parameters together. This outcomes from the influence of each of the
three chosen parameters control (population size, inertia weight and acceleration
coefficients) to modify and improve PSO search capabilities when it is well adapted
with the PSO state.

5. CONCLUSION

In this chapter, we have integrated the Hidden Markov Model in PSO to learn and
predict the most probable state to control PSO parameters at each iteration. This looks
advantageous from the view that HMM is a robust stochastic classification tool that
takes into account past information about the population to control and adapt the PSO
parameters. The proposed meta-model based HMM has been used in this chapter in
both online and offline parameters setting of the PSO algorithm.

Chapter I. Parameters setting of homogeneous particle swarm optimization

79

In the offline adaptation or also called PSO tuning, we have proposed a novel approach
which uses hidden Markov model to estimate the most likely state of the parameter
values of any metaheuristic algorithm as the PSO algorithm. The proposed tuned PSO
using HMM is a problem dependent. Its application will be done in chapter 5 for the
airline scheduling problem (crew scheduling).

On the other hand, a meta-model of online parameters setting of PSO has been
proposed in this chapter for homogeneous PSO. The adaptation scheme based HMM
has been applied to the three chosen key parameters of PSO that are: the acceleration
coefficients, the inertia weight, and the population size. Then, all those parameters
have been controlled in one algorithm called HMM-PSO. The integrated Hidden
Markov Model in PSO is used to learn and predict the most probable state to control
each of the PSO parameters. This approach looks advantageous from the view that
HMM is a robust stochastic classification tool that takes into account past information
about the population to control and adapt the PSO parameters.

All PSO based HMM proposed variants have been evaluated and compared to the
state art of the literature. The results were promising, and the proposed approach gives
better results than the state of the art of other PSO variants regarding both solution
accuracy and convergence speed. Those results were also demonstrated by advanced
statistical tests which show the priority of HMM control in PSO. The results show also
that PSO is sensitive to its parameters, and gains more enhancements when they are
controlled adequately as in this approach.

The CPU time is influenced negatively in this proposed appsroach despite the gain in
PSO convergence. This is normally due to the additive computation time used by the
machine learning integration in PSO.

In this chapter, the PSO is assumed to be homogeneous, and all particles parameters
are controlled in the same way at each iteration. The next chapter will give to particles
different search behaviors in the same iteration such as the self-adaptation and the
multi-swarm design.

Future research should attempt to apply our approach to other metaheuristics based
population to benefit from the advantages of HMM state classification in parameters
control. Also, the proposed approach needs to be applied to real complex optimization
problems. An extension of this method to heterogeneous PSO is provided in the next
chapter.

80

CHAPTER II:
ONLINE PARAMETERS CONTROL OF

HETEROGENEOUS PARTICLE SWARM

OPTIMIZATION

Parameters control of PSO can also be done in the context of a heterogeneous swarm,
where the particles can adopt multiple behaviors during the same run of the PSO.
Regarding heterogamous particle swarm optimization (PSO), we will make use of the
earlier approach presented in the first chapter, to design a multi-agent behavior of
particles as a means to enhance the diversity of the algorithm or to achieve a trade-off
between exploration and exploitation. A commonly used heterogeneous form of PSO
is based on the idea of considering multi-swarms (multi-populations). It consists of
dividing the whole search space into local subspaces, each of which might cover one
or a small number of local optima, and then separately searches within these subspaces.
Another way to define multi-agent in PSO is to assign different roles to particles. Thus,
different particles can play different roles, and each one of these particles can play
different roles during the search processes. A challenging task within this PSO variant
is how each particle has to decide which role it will assume. In this chapter, we
investigate the integration of the generic model to a different type of heterogeneities,
which can be attributed to particle swarms.

Chapter II. Online parameters control of heterogeneous particle swarm optimization

81

1. IMPROVED PSO VARIANTS FROM LITERATURE

In heterogeneous PSO [107], particles are allowed to take on different search behaviors.
So, their parameters are not necessary properties of the swarm as a whole in the
standard PSO, instantiating them at the individual level, therefore producing
heterogeneity. We call a particle swarm heterogeneous if it has at least two particles
that differ in any of the attributes mentioned above. Hence, at the individual level, we
refer to a particular instantiation of these components, a particle’s configuration.
According to the nature of the distinctions between particles’ configurations, several
sorts of heterogeneity can be identified from the literature.

 We can see that this variant of PSO enhancement method has been presented in the
literature as a specific and separate algorithm known by multi-swarm optimization
[108]. In the proposed variant, the authors have been inspired by the quantum model
of atoms to define the quantum swarm. Also, another grouping approach has been
suggested by [109].

Furthermore, the population has been divided into two swarms in order to introduce
the divide and conquer concept using genetic operators. Another automation
approach which can be used inside PSO is cellular automata (CA). CA can be considered
as an arrangement of FSM. It can be used for instance to split the population of particles
into different groups across cells of cellular automata. Reference [110] has integrated it
in the velocity update to modify the trajectories of particles.

Also, [43] uses the notion of tribes to adapt PSO parameters including also the
adaptation of tribes size by adding and removing particles.

Furthermore, [43] proposed the TRIBES, an adaptive variant of PSO which consists of
changing the particles’ behaviors as well as the topology of the swarm depending on
the performance of the algorithm.

Moreover, [111] defined a cooperative approach to PSO based on dividing the
population into four sub-swarms according to the four states. Furthermore, van den
Bergh and Engelbrecht [30] used the concept of cooperative learning which consists of
using multiple swarms to optimize the various components of the solution vector
cooperatively. This idea is similar to the multi-agent approach which consists of
dividing the particles into agents. Also, this type of control is related to the concept of
cooperative swarms, which have been introduced by [30]. This principle has been
achieved in their paper by using multiple swarms to optimize different components
of the solution vector cooperatively. This idea is similar to the multi-agent approach
which consists of dividing the particles into agents.

This issue can also be treated by clustering approaches as proposed by [112]. Their
approach consists of assigning particles to different promising sub-regions basing on
a hierarchical clustering method, where, at each iteration, particles are grouped into
classes (named clusters), and the particles of each class have a specific role in the
swarm (as in the multi-agent systems).

Chapter II. Online parameters control of heterogeneous particle swarm optimization

82

We can see from the literature that many papers have inspired from some approaches
used in multi-agent systems to define the automated cooperative approach. An
example of using the multi-agent concept in PSO can be found in [113], also in [49].
That is, incremental social learning which is often used to improve the scalability of
systems composed of multiple learning agents has been used to improve the
performance of PSO. Furthermore, [114] proposed a multi-agent approach which
combines simulated annealing (SA) and PSO. We can remark that their idea is related
to the generic notion of hyper-heuristics which consists of finding the most suitable
configuration of heuristic algorithms. Reference [115] has cited the may feature
obtained by using agents in configuring metaheuristics which are distributed
execution, remote execution, cooperation, and autonomy. The using of multi-agent
concepts can be useful to self-organize particles in PSO using simple rules as defined by
[116]. Their main idea was to define six states, which are cohesion, alignment,
separation, seeking, clearance, and avoidance.

In terms of the multi-swarm design of PSO, [117] provided a multi-swarm and multi-
best for the particle swarm optimization algorithm. They randomly split particles into
multi populations. This algorithm updates velocities and positions of particles using
multi-gbest and multi-pbest rather than single gbest and pbest. [118] proposed a novel
variant known as Center PSO; it makes use of an extra particle as a center particle that
controls the search direction of the entire swarm. Also, [119] built a Multi-swarm
cooperative particle swarm optimizer based on a master-slave model; the slave
swarms perform as a single PSO while the master swarm iterates depending on its
knowledge as well the knowledge of the slave swarms.

This issue (the interaction between swarm intelligence and multi-agent systems) has
been given much attention in the last few years in particular by the popularization of
the swarm robotic field. In particular, [120] affirmed the concept of swarm appears
nowadays closely associated with intelligent systems in order to carry out useful tasks.
The author also analyzed qualitatively the impact of automation concepts to define
intelligent swarms. Moreover, [121] have outlined the main characteristics of swarm
robotics and analyzed the collective behavior of individuals in some fields. They
affirmed that finite state machines are one of the most used adequate approaches to
model this behavior. Another commonly used approach for this purpose is
reinforcement learning.

2. PARAMETER CONTROL OF HETEROGENEOUS PSO

Concerning heterogamous particle swarm optimization (PSO), attempts have been
made to formalize the design of such multi-agent behavior of particles as a means to
enhance the diversity of the algorithm or to achieve a trade-off between exploration
and exploitation. A commonly used heterogeneous form of PSO is based on the idea
of considering multi-swarms (multi-populations). It consists of dividing the whole
search space into local subspaces, each of which might cover one or a small number

Chapter II. Online parameters control of heterogeneous particle swarm optimization

83

of local optima, and then separately searches within these subspaces. Another way to
define multi-agent in PSO is to assign different roles to particles. Thus, different
particles can play different roles, and each one of these particles can play different roles
during the search processes. A challenging task within this PSO variant is how each
particle has to decide which role it will assume.

In this chapter, we investigate the integration of the generic model to different types
of heterogeneity that can be attributed to particle swarms, namely: the self PSO and
the multi-swarm PSO with different cooperation rules. After controlling the particles
configuration in the entire swarm level, we intend in this paragraph to control particles
configuration on an individual level as well as in the case of multi swarms level.

2.1 SELF-STATE IDENTIFICATION FOR PSO

We apply the generic model to be associated with each particle movement. A Finite
State Machine (FSM) is applied to model the decision making of an agent with the aim
of guiding particles to move toward different promising sub-regions. To do that,
swarm behavior can be represented as a finite state machine based on very simple
agents and simple interaction rules. That is, a behavior specification defines a set of finite
state machines, called options and a set of predefined behavior routines, called basic
behaviors.

We integrate the HMM model described earlier as a probabilistic FSM [122] to learn
and predict the most probable states of the probabilistic FSM in order to control
particles behavior of PSO. This process is performed through the Viterbi algorithm that
gives the most likely path of states for each particle in each PSO iteration. Each particle
is viewed as automata having four finite states which are exploration, exploitation,
convergence, and jumping-out.

HMM generic model is applied to address the self-state selection as the most common
type of probabilistic FSM. Indeed, HMM has the ability to learn states of our automata
from hidden observation based on the maximum like likelihood estimation [123]. This
learning feature of HMM is used to control the particles individually across PSO
iterations.

We associate to each one particle a Markov chain experiencing several finite states
controlled by an HMM model. HMM associated with a particle can be viewed as a
small machine learning guided by inputs and provides many outcomes that are state
classification across iterations. We inspire from the generic model to adapt HMM
model to fit each particle.

The HMM classification model comprises to determine one of four evolutionary states:
exploration, exploitation, convergence, and jumping out to each particle at each
iteration in order to give automatic intelligent control of the inertia weight. Our
contribution to these works is to use HMM for each particle to recognize the
appropriate state at each iteration. Therefore, we can produce the Markov Chain as
identified.

Chapter II. Online parameters control of heterogeneous particle swarm optimization

84

We define each particle as a machine having different finite states. A particle of PSO can
have many alternative traces for a given input because of the random behavior of the
PSO algorithm. FSM associated with a particle is a little machine that feeds with inputs
and provides many outcomes across iterations. We can say that the particle is
associated with a random process.

During iterations, a particle is a probabilistic FSM related to a state {𝑥𝑖}𝑖∈𝑁 that
generates outcome or also called observation {𝑦𝑖}𝑖∈𝑁.

This definition yields to have at each iteration several groups of particles, each one
plays a defined role according to its identified state machine. So, we can have for
instance 40 particles, in which 20 particles explore throughout the search space, 10
others are exploiting, 7 are converging, and 3 are jumping out. Thus, particles are
divided into sub-swarms with different states. The change of state or role of particles
during iterations is governed by their associated probabilistic FSMs which is defined
by the following formalism for each individual particle:

 Outcomes {𝑦𝑖}, 𝑖 ∈ 𝑁

 State {𝑆𝑖} 𝑖 ∈ Ν

 A = (𝑎𝑖𝑗) The state transition matrix: P (𝑥𝑡 = i | 𝑥𝑡−1 = j) 𝑖, 𝑗 ∈ 𝑁 , t : iteration

 number.

 B = (𝑏jk) The emission probabilities of outcomes: P (𝑆𝑡 = k | 𝑆𝑡 = j) 𝑘, 𝑗 ∈ 𝑁, 𝑡 is

the iteration number.

Our approach consists of finding the most suitable current state by finding the most
probable trace for the given input of states across iterations. This problem constitutes the
same HMM generic model to be resolved at a particle level.

Algorithm 13: self-adaptive inertia weight control by particle

Data: Position and inertia weight

Initialization: positions and weight 𝐰
if state = exploration then

 𝒘𝒊 = 𝒘𝒎𝒊𝒏 + (𝒘𝒎𝒂𝒙 − 𝒘𝒎𝒊𝒏) ∗ 𝒓𝒂𝒏𝒅();
else if state = exploitation then

 𝒘𝒊 = 𝛚(𝐥) =
𝟏

𝟏 + 𝟏.𝟓𝐞− 𝟐.𝟔𝐥
∈ [𝟎. 𝟒, 𝟎. 𝟗] ∀ 𝐥 ∈ [𝟎, 𝟏]

else if state = jumping out then

 𝒘𝒊 = 𝒘𝒎𝒂𝒙

else if state = convergence then

 𝒘𝒊 = 𝒘𝒎𝒊𝒏

end if

Return 𝒘

According to the classified state, each particle has its associated state and can adapt
individually its parameters. In our case, we apply the FSM state to adapt the inertia
weight called selfHMM-wPSO and the acceleration factors called selfHMM-APSO.
Algorithms for adaptation are the same as defined for the whole swarm but applied
by a particle. The pseudocode is given below:

Chapter II. Online parameters control of heterogeneous particle swarm optimization

85

Algorithm 14: SelfHMM-APSO algorithm

Data: The objective function

Initialization: positions, velocities of particles, accelerations factors

and HMM parameters; Set t value to 0 ;

while (number of iterations t ≤ tmax not met) do

Update HMM parameters by EM process (Algorithm 5) ;

Classification of PSO state by HMM classifier (Algorithm 4) ;

Update 𝐜𝟏 , 𝐜𝟐 and w values according to the corresponding state ;
for i = 1 to number of particles do

compute f ;

Update velocities and positions according to Eqs. (1) and (2) ;

if (f ≤ fbest) then

 fbest ← f ; pbest ← X ;

end

if (f (pbest) ≤ f (gbest)) then

 f(gbest) ← fbest ;

 gbest ← Xbest ;

end

if state = convergence then

 Elitist learning

end

end

t ← t + 1

end

Result: pbest and fbest (the best particle and the best fitness)

Algorithm 15: SelfHMM-wPSO

Data: The objective function (F)

Initialization: iteration t=0, positions 𝐗, velocities V, inertia weight w,

HMM parameters (𝚷,A,B,S,Y), observations 𝐎, states 𝐐, swarm size N;
while (number of iterations t ≤ tmax not met) do

For i = 1 to N do

 O[t]← 𝒍𝒊 (Update observation sequence)

 (A, B, 𝚷) ← Baum-Welch(𝚷,O,A, B, 𝚷, 𝐒, 𝐘); (update HMM probabilities)

 (𝑸𝒊[1],... 𝑸𝒊[t]) ←viterbi(𝚷,O, A, B, 𝚷, 𝐒, 𝐘); (Classification of state)

 𝒘𝒊 ← algorithm.13(𝑸𝒊[t]); (Update w value)
 - Xi(t)← equation.1(Xi(t-1),Vi(t-1)); (Update positions)

 - Vi(t)← equation.2(Xi(t-1),Vi(t-1)); (Update velocities)

 compute f(Xi) ;

 if (f (Xi) ≤ fbest) then - fbest← f(Xi) ;

 - pbest← Xi ; end

 if (f (pbest) ≤ fgbest) then - fgbest←fbest ;

 - gbest←Xbest ; end

 if state = convergence then

 Elitist learning [60]; end

end

t ← t + 1 ;

end

Return pbest and fbest (the best particle and the best fitness)

Chapter II. Online parameters control of heterogeneous particle swarm optimization

86

2.2 COOPERATIVE MULTI-SWARM

In this section, the machine learning algorithm hidden Markov model (HMM) is
applied at an individual level (each particle) to model how the decision making of
particles to choose the adequate sub-swarm to which it will belong. That is, HMM is
used to learn and predict the most likely swarm, corresponding to each particle in
order to control particles behavior of PSO. Hence, for each sub swarm, an associated
role is given: exploration, exploitation, convergence and jumping out. Then, in a
collective level of the swarm, a cooperative design is made to guide the search and
move toward different promising sub-regions.

Each sub-swarm will adapt its own configuration of the parameters of its particles.
Cooperation rules will be defined to ensure the information exchange between subs
warms during the search process.

2.2.1 Sub-swarms constitution

In this approach, the swarm is divided to a sub-swarms in the objective to achieve a
good trade-off between the population diversity and the convergence speed, and
especially good management of the exploration and exploitation of the search process
during execution in order to attain the best possible solution in the minimum number
of iterations. Inspired from the definition of [60] of the evolutionary states for PSO,
each sub swarm will group particles of a specific four evolutionary state that are:
Exploration, exploitation, convergence, and jumping-out.

Then, each particle is viewed as a Markov chain having a state {si}i∈[1,4] . During

iterations, a particle can have a specific state 𝑖 that represents its membership to a
specific swarm i. Also, a particle can change the state from iteration to another and
change consequently its corresponding sub swarm. So, a movement between sub
swarms is indicated by the rows in Figure 18.

Figure 18 Sub-swarms and possible particle movements

Chapter II. Online parameters control of heterogeneous particle swarm optimization

87

To model the associated swarm of a particle, an associated markov chain with state
{Si}i∈[1,4] is defined to each particle. However, the particle state cannot be perceived

directly but only by observing some key parameters across iteration. Hence, a hidden
markov chain is defined for each particle as the generic model.

A real-time state estimation procedure is performed to identify each adequate particle
swarm: exploration, exploitation, convergence, and jumping out. It qualifies an
automatic control of the sub-swarms.

2.2.2 Multi-swarms cooperation

To make use of the multi-swarm design given in the previous paragraphs, it is
mandatory to set a cooperation model to make use of the search capabilities given by
each sub-swarm. Two cooperative designs are chosen: A Master/Slave scheme and
adaptive cooperation scheme.

a. Master/Slave scheme

A master/slave cooperation model is chosen in this approach like in [119], where the
slave swarms perform as a single PSO while the master swarm iterates depending on
its knowledge as well as the knowledge of the slave swarms. In our case, the master
swarm is the swarm associated with the convergence state. Then, the slave swarms
will be those associated with exploration, exploitation and jumping-out states.

Each slave swarm with some 𝑛 particles adapts itself according to its own evolutionary
attached state separately. So, a slave swarm can be viewed as an independent swarm
not connected to the other slaves. For the master swarm, the particles improve
themselves not simply depending on the social knowledge of the master swarm but as
well as that of the slave swarms. This notion is made by additional integrating a new
dimension on the velocity of the particles in its velocity update. The equations for the
velocity update of the master swarm will be:

𝑉𝑖
𝐶(𝑡 + 1) = 𝑤 𝑉𝑖

𝐶(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝐶(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

𝐶 − 𝑋𝑖
𝐶(𝑡)) + 𝑐3𝑟3 (𝑔𝑏𝑒𝑠𝑡

𝑠 − 𝑋𝑖
𝐶(𝑡)) (29)

Where C represents the convergence sub-swarm, 𝑐3is called migration coefficient, 𝑟3
an uniform random sequence in the range [0, 1], 𝑔𝑏𝑒𝑠𝑡𝐶 is the global best of the
convergence swarm and 𝑔𝑏𝑒𝑠𝑡𝑠 is the is the global best of the other slave sub swarms,
in particular: exploration, exploitation and jumping-out.

Figure 19 Sub-swarms and the master/slave interactions

Chapter II. Online parameters control of heterogeneous particle swarm optimization

88

Figure 19 represents a communication scheme between sub-swarms. Then, the global
algorithm of this approach is described in algorithm 16.

Algorithm 16: MsHMM-PSO

Data: The objective function (f)

Initialization: positions X, velocities of particles V, accelerations

factors of all four swarms; Set t value to 0;

while (number of iterations t ≤ tmax not met) do

for i = 1 to the number of particles do

 Decoding specific particle state (viterbi) ;

 Associate particle i to its decoded sub-swarm;

 Update w according to Equation (19) ;

 Update 𝐜𝟏 and 𝐜𝟐 values according to the corresponding state

(algorithm 6) ;

 if convergence swarm

 Update velocities according to convergence Equation

 else Update position according to convergence Equation

 end

 Update positions according to position Equation

 compute f(xi) ;

 For each sub-swarm i:

 if (f (Xi) ≤ fbest) then

 fbest ← f (Xi) ;

 pbest ← Xi ;

 end

 if (f (pbest) ≤ fgbest) then

 fgbest ← fbest ;

 gbest ← Xbest ;

 end

 if sub-swarm = convergence then

 Elitist learning [60];

 End

 end

end

t ← t + 1 ;

end

Return pbest and fbest ;

Result: The solution based on the best particle in the population and

corresponding fitness Value

b. Adaptive cooperation

In this approach, the whole swarm is divided into four sub swarms that can conduct a
heterogeneous search, but also can exchange information between each other, which
can be relevant to explore a much larger space wherever the optimal model
composition values may locate. In the presented multi-swarm cooperation variant, the
population contains four sub-swarms, each with some predefined role. The
sub-swarms maintain particular liaisons, which improves the search capacity. The
cooperation mechanism chosen to be integrated with our generic model has been
firstly introduced in [124]. As shown in Figure 20, this used mechanism is applied to
maintain synchronization and cooperation between the four sub-swarms as identified
by the HMM classification model in order to get the best update of the fitness values.

Chapter II. Online parameters control of heterogeneous particle swarm optimization

89

Figure 20 Sub-swarms and its cooperation diagram

In this general concept, each sub-swarm perform execution of a single PSO, comprising
the update of position and velocity as stated by its own equations, shown in detail
below. Once all the sub-swarms are positioned with the new generation, the global
best is attained from the best local individual of each sub-swarm. The sub-swarm 1
and 2 are considered respectively as exploration and exploitation sub-swarms, and its
positions and velocities are updated according to the original PSO equations (2) and
(3) with the best parameters (inertia weight and accelerations) of the corresponding
state. Additionally, the particle in the sub-swarm 3, identified with a convergence state,
is updated depending on the fitness values and velocities of the particles in the sub-
swarms 1 and 2 (Exploration and exploitation). The velocity of the particle in sub-
swarm 4, identified with a jumping out state, is updated only with a combination of
the velocities of particles of other sub-swarms. Other three control factors that are
provided by the HMM generic model are applied to update the position.

The update equations of the particles in the sub-swarms S1 and S2 (exploration and
exploitation) are defined as follows:

 𝑉𝑖
(1)/(2)(𝑡 + 1) = 𝑤𝑉𝑖

(1)/(2)(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖
(1)/(2)(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

(1)/(2) − 𝑋𝑖
(1)/(2)(𝑡)) (30)

Chapter II. Online parameters control of heterogeneous particle swarm optimization

90

In the convergence sub-swarm S3, the particles can adapt the flight directions by
learning from better particles in the two sub-swarm S1 and S2. Its velocity is updated
as follows:

𝑉𝑖
(3)(𝑡 + 1) = 𝑤 (

𝛾

𝛾1
𝑉𝑖
(1)(𝑡 + 1) +

𝛾

𝛾2
𝑉𝑖
(2)(𝑡 + 1) + 𝑉𝑖

(3)(𝑡)) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖
(3)(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

(3) − 𝑋𝑖
(3)(𝑡)) (31)

where 𝛾1 and 𝛾2 are the fitnesses of current iteration in the sub-swarms 1 and 2
respectively. 𝛾 is the sum fitness of 𝛾1 and 𝛾2 . This represents a fitness monitoring
methodology where the fitness values of the better swarm has more impact on the
current particle.

The update equation of the velocity in sub-swarm 4 is described as follows:

𝑉𝑖
(4)(𝑡 + 1) = 𝑉𝑖

(1)(𝑡 + 1) + 𝑉𝑖
(2)(𝑡 + 1) − 𝑉𝑖

(3)(𝑡 + 1) (32)

The update in the jumping out swarm is designed to look for new areas based on the
differences among the sub-swarms. The update equation can generate more likely
solutions and explore new spaces. The position in sub-swarm 4 is updated as follows:

𝑋𝑖
(4)(𝑡 + 1) = 𝛼1𝑋𝑖

(4)(𝑡) + 𝛼2𝑝𝑏𝑒𝑠𝑡𝑖
(4) + 𝛼3𝑔𝑏𝑒𝑠𝑡 + 𝑉𝑖

(4)(𝑡 + 1) (33)

𝛼1 , 𝛼2 , 𝛼3 ∈ [0,1] are named the impact factors, which manage the impact of the
historical information. In our approach, we calculate 𝛼1 , 𝛼2 , 𝛼3 from the likelihood
given by HMM of the corresponding state: exploration, exploitation, and convergence
respectively. The likelihood of a state is calculated from the historical achievement of
the swarm and gives a quantified probability to each state.

The control mechanism of inertia weight and acceleration factors are done as the same
as in the homogeneous PSO approach, described as follows:

Algorithm 17: Adaptive acceleration update for swarms [60]

Data: Position and accelerations factors

Initialization: positions and accelerations factors 𝐜𝟏 and 𝐜𝟐 ;

if sub-swarm = exploration then Increasing 𝐜𝟏 and Decreasing 𝐜𝟐 ;
else if sub-swarm = exploitation then

 Increasing 𝐜𝟏 and Slightly Decreasing 𝐜𝟐
else if sub-swarm = convergence then

 Decreasing 𝐜𝟏 and Increasing 𝐜𝟐
end

Return 𝐜𝟏 and 𝐜𝟐
Result: Updated acceleration factors

Chapter II. Online parameters control of heterogeneous particle swarm optimization

91

Algorithm 18: Adaptive inertia weight control by the swarm

Data: Position and inertia weight

Initialization: positions and weight 𝐰
if sub-swarm = exploration then

 𝒘𝒊 = 𝒘𝒎𝒊𝒏 + (𝒘𝒎𝒂𝒙 − 𝒘𝒎𝒊𝒏) ∗ 𝒓𝒂𝒏𝒅();
else if sub-swarm = exploitation then

 𝒘𝒊 = 𝛚(𝐥) =
𝟏

𝟏 + 𝟏.𝟓𝐞− 𝟐.𝟔𝐥
∈ [𝟎. 𝟒, 𝟎. 𝟗] ∀ 𝐥 ∈ [𝟎, 𝟏]

else if sub-swarm = convergence then

 𝒘𝒊 = 𝒘𝒎𝒊𝒏

end if

Return 𝐰

The algorithm of the adaptive multi-swarm approach is described in Algorithm 19
below:

Algorithm 19: MsAHMM-PSO

Data: The objective function (f)

Initialization: positions, velocities of particles, accelerations factors

of all four swarms; Set t value to 0;

while (number of iterations t ≤ tmax not met) do

for i = 1 to the number of particles do

 Decoding specific particle state (viterbi) ;

 Associate particle i to its decoded sub-swarm;

 Update w according to Equation (19) ;

 Update 𝐜𝟏 and 𝐜𝟐 values according to the corresponding state

(algorithm 17) ;

 if swarm 1 ou 2

 Update velocities according to Equation of swarm 2

 Update positions according to Equation of swarm 2

 Else if swarm 3

 Update velocities according to Equation of swarm 3

 Update positions according to Equation of swarm 3

 Else if swarm 4

 Update velocities according to Equation of swarm 4

 Update positions according to Equation of swarm 4

 end

 Update positions according to Equation of positions

 compute f(Xi) ;

 For each sub-swarm i:

 if (f (xi) ≤ fbest) then

 fbest ← f (Xi) ;

 pbest ← Xi ;

 end

 if (f (pbest) ≤ fgbest) then

 fgbest ← fbest ;

 gbest ← Xbest ;

 end

 end

end

t ← t + 1 ;

end

Return pbest and fbest ;

Result: The solution based on the best particle in the population and

corresponding fitness Value

Chapter II. Online parameters control of heterogeneous particle swarm optimization

92

2.3 EXPERIMENTATION

The three variants of heterogeneous PSO based HMM presented in the last paragraph
will be evaluated by experimentation, and the corresponding results are given.
Simulations are done on various benchmark functions: unimodal and multi-modal.
Then, results are compared with other related variants from state of the art of PSO.
The parameter setting is the same as the earlier one presented in the homogeneous
PSO section as well as the presentation of the PSO related variants.

2.3.1 Performance evaluation

Firstly, we address the obtained results of all executions to compare the solution
accuracy of our heterogeneous PSOs version based HMM. The best and the average
values resulted from experimentations are given in Table 11 below:

Table 11 Results comparison

Functions APSO PSO SimuA
-PSO

Rand
WPSO

YSPSO SelPSO SAPSO LinW
PSO

MsPSO SelfH
MM-
PSO

MsH
MM-
PSO

MsAH
MM-
PSO

𝒇𝟏 Best 49 13566 115719 460.49 1420 16382 5095 9843 7067 14 6.03 2

Mean 150 24618 288102 5677.4
9

2726 27998 14850 33384 20280 27 38 11

𝒇𝟐 Best 0 5.1e-09 5.8e-06 0.00 0 8.6e-10 0 2.1e-12 0 0 0 0

Mean 0 6.5e-05 0.04 0.0025 0 1.8e-05 0 3.6e-05 0 0 0 0

𝒇𝟑 Best 0.01 26.55 93.19 0.00 6.77 36.01 18.20 37.7 17.66 5.74-6 0.0041 8.11-7

Mean 0.05 50.15 188.56 0.05 13.77 63.59 31.96 64.09 40.53 5.79-5 0.0068 1.34-6

𝒇𝟒 Best 0.02 94.97 251.36 0.14 23.72 30.47 37.21 110.48 51.24 5.74-6 0.0078 3.62-8

Mean 0.05 135.82 396.21 0.94 42.31 77.51 84.79 246.78 95.74 5.01-5 0.0133 2.01-6

𝒇𝟓 Best 16435 629e+5 587e+6 166679
.13

127e+4 839e+5 459e+5 102e+6 165e+5 223 2697 144

Mean 67851 196e+6 210e+7 934189 843e+4 210e+6 166e+6 434e+6 155e+6 941 6684 423

𝒇𝟔 Best 8.24 266.20 358.22 0.29 142.44 285.16 165.66 293.88 170.64 7.53 6.89 0.52

Mean 16.14 307.24 462.02 56.81 175.84 315.60 273.31 322.35 261.77 8.55 14.70 2.87

𝒇𝟕 Best 0.03 4.79 6.9436 0.03 3.1785 5.665 3.8279 5.403 4.7261 0.001 0.001 0.0003

Mean 0.31 5.61 8.6336 0.22 4.2219 6.1951 5.2531 6.5613 5.6829 0.004 0.016 0.0008

𝒇𝟖 Best 7.50e-5 0.17 0.52 0.00 0.05 0.27 0.13 0.25 0.14 1.6-7 1.5e-4 2.8-8

Mean 0.01 0.39 0.87 0.04 0.12 0.41 0.25 0.45 0.31 0.003 2.1e-4 0.0006

𝒇𝟗 Best -118.35 -3e+28 -7.2+47 0.00 -3+34 -1e+308 -1+231 - -1e+220 -118.35 -118.35 -118.35

Mean -118.34 -3e+28 -1e+47 3.83 -3e+33 - -1e+230 - -1e+219 -118.34 -118.34 -118.34

𝒇𝟏𝟎 Best -1 -1 -0.92 -1 -1 -0.99 -1 -0.94 -1 -1 -1 -1

Mean -1 -0.95 -0.74 -0.99 -0.98 -0.95 -0.97 -0.93 -0.96 -1 -1 -1

Chapter II. Online parameters control of heterogeneous particle swarm optimization

93

Table 11 shows the results obtained from the mean of all executions for the benchmark
functions of heterogeneous PSO based HMM approaches which are: SelfHMM-PSO,
MsHMM-PSO, and MsAHMM-PSO. When comparing HMM approaches against the
states of the art of PSO variants, the corresponding results show a good solution
accuracy in overall. The solution accuracy is enhanced for both unimodal (Elliptic, Step,
Sphere, Tablet, Quadric) and multimodal functions (Rastrigrin, Ackley, Griewang,
Schwefel, Drop wave). For Step and Ackley functions results are similar due to the
functions simplicity. For other functions, the performances of the solution accuracy are
largely increased. As for the Sphere and Tablet functions where the order of
improvement attaint more that 105 in the solution accuracy. When comparing
between HMM heterogeneous approaches, MsAHMM-PSO is giving the best of results
in the accuracy.

2.3.2 Convergence speed

In terms of convergence speed, comparisons are illustrated in figure 21.

.

(a) (b)

(c) (d)

Figure 21 MsAHMM-PSO Convergence speed comparaison

Chapter II. Online parameters control of heterogeneous particle swarm optimization

94

As shown in figure 21, the black line that gives the executions of MsAHMM-PSO
results is under all other lines. Subsequently, MsAHMM-PSO provides a quicker
convergence when compared to all diverse used PSO variants from the literature.

Given the exposed effective results of our approach, we can most certainly recognize
that the multi-swarm cooperation based on hidden markov model supplies noticeably
more significant performances for the PSO algorithm regarding the solution accuracy
and the convergence speed.

2.3.3 Statistical tests

A more advanced comparison is performed using a statistical test, in particular
parametric two-sided tests named t-test. The test is executed with a significance level
of 0.05 between the MsAHMM-PSO and other PSO variants. The guidance of how
statistical tests are performed, is described in the experimentation paragraph of the
previous chapter.

Table 12 T-test comparison

Function PSO APSO RandWPSO RankPSO SAPSO LinWPSO MsPSO SelfHMM-
PSO

MsHMM-
PSO

𝒇𝟏 0 0.0078 2.67e-06 0.0065 0 0 0.001 7.1e-07 0.0076

𝒇𝟐 1 1 0.187 1 1 1 0.308 0.198 0.113

𝒇𝟑 0 0.0015 0 0 0 0 0.0001 0.00051 0.061

𝒇𝟒 0 0.0002 0 0 0 0 0.0164 0.0096 0.0043

𝒇𝟓 0 0.0008 3.07e-06 0.0017 0.002 0.0012 0 0 0.0013

𝒇𝟔 0 0.006 0 0.0092 0 0 0.0647 0.0043 0.0022

𝒇𝟕 0 0 0 0 0 0 0.0084 0.0409 0.0054

𝒇𝟖 0 0.007 0 0 0 0 0.194 0.204 0.108

𝒇𝟗 0 0 0 0 0 0 0.219 0.669 0

𝒇𝟏𝟎 0.0018 0.0023 0.872 0.41 0.388 0.0376 0.079 0.0074 0.022

+1 (better) 9 9 8 8 8 8 5 4 4

0 (same) 1 1 2 2 2 2 5 6 6

-1 (worse) 0 0 0 0 0 0 0 0 0

Given the revealed effective results of our approach, we could undoubtedly notice that
the MsAHMM-PSO based cooperation scheme between swarms provides visibly
higher performances to the PSO algorithm in terms of statistical tests. When compared
to state of the art, MsAHMM-PSO gives more than 80% of best results, and less than
20% can be similar. Alternatively, when compared to other heterogeneous PSO
approaches based HMM, namely MsPSO, SelfHMM-PSO and MsHMM-PSO, the
MsAHMM-PSO is approximatively 50% better and 50% similar results. Indeed, the

Chapter II. Online parameters control of heterogeneous particle swarm optimization

95

application of HMM to improve the different type of heterogeneous PSOs has given
good results.

3. CONCLUSION

HMM has been used in this chapter to control parameters of different heterogeneous
cases of PSO. This constitutes a machine learning technique for online control of PSO
search. It looks valuable from the view that HMM is a robust stochastic classification
tool that takes into account past information about the population to control and adapt
the algorithm in a heterogeneous way. Our multi-swarm approach is powered by an
attached hidden Markov chain to each element of the swarm that provides swarm
control of particle during the search process. According to each swarm, acceleration
coefficients and inertia weight are updated. Then, the cooperation between swarms
boosts the search more as in the master/slave cooperation scheme. The proposed
heterogeneous PSO variants give better results than the state of the art of other PSO
variants regarding both solution accuracy and convergence speed. Besides, statistical
tests show good results compared with state of the art. We can deduct from the
obtained results that associating a multi-swarm based machine learning with a
cooperation strategy enhances PSO performances significantly.

The CPU time consumption has increased clearly when experimenting the proposed
approach even more than the previous approach of Chapter 1. The associated machine
learning has more computational effort in the multi-swarm design.

Future research should attempt the use of parallel computing that can significantly
improve the time of simulation calculation due to machine learning CPU time
computing. Also, the proposed approach needs to be evaluated on real complex
optimization problem in different fields of application.

The next chapter will attempt to associate a reinforcement learning strategy to the
multi-swarm design of PSO based HMM proposed in this chapter.

96

CHAPTER III:
MULTI-AGENT REINFORCEMENT LEARNING

BY HMM-BASED PSO

After the online parameters control of PSO based multi-swarm given in the last chapter,
this chapter will use of the good results and performances of a multi-agent system of
the particle swarm optimization in the framework of reinforcement learning. Machine
learning algorithms are usually classified into three main taxonomies: supervised
learning, unsupervised learning and reinforcement learning (RL). RL is a machine
learning approach that is based mostly on trial and error. In RL, an agent explores its
nearby environment by making use of actions and obtaining rewards for these actions.
The main target of the agent is to maximize its utility function that is depending on
rewards. The intent behind this chapter is to present basic background information
regarding RL as a first step to recognize the problem of RL in multi-agent systems to
be used as a resolution methodology of the Markov decision process model. The
Markov Decision Processes give a mathematical platform for decision making. They
are usually intended to solve real-world problems related to planning and control as
they are remarkably able to taking the basis of purposeful activity in a multitude of
situations. For those factors, they have created the principle on which essential
research in the subject of learning, planning, and optimization has been developed. As
a consequence, several diverse methods have been produced for their solution. The
principle of an MDP includes an immense range of models. However, this kind of
generality shows up at a price. The definition gives too minor structure to produce
successful MDP solution techniques. Instead of traditional dynamic programming
resolution techniques, MDP can use reinforcement learning to build its solution. In this
chapter, we start by Markov decision processes (MDP), a popular framework for
designing agents that interact with their environment by performing actions and
obtaining feedback signals revealing how good the actions are, learning how to solve
a specific task by using these repeated interactions. Several solution methods are listed,
along with diverse action selection strategies, which can be made use of by the agents
within the learning process. Subsequently, we evaluate its weaknesses and present
methods to fix them by Reinforcement learning techniques to cover an interesting class
of real-world situations. In this way, we derive from the HMM-PSO algorithm a new
reinforcement learning process to solve a range of decision problems typically known
as sequential decision problems under uncertainty.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

97

1. INTELLIGENT AGENTS

Agents formalism is becoming applied in a large range of applications currently. There
is however no one unique definition of the terminology agent. For example, one
standard definition is provided by Russell and Norvig in [125] they identify an agent
as “anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators”.

Within many various definitions mentioned in the literature all over the years, we can
differentiate the one offered in [126]. This is a rather general definition, but it still
provides the specifications that an agent requires to meet in the context of this thesis;
consequently, this is the one considered in this chapter.

A definition of an agent is a computer system, located in an environment, that is
qualified of variable autonomous action in this environment to be able to satisfy its
determined objectives [126].

By this definition, it is practical to realize that no particular environment is identified,
and neither is the conception of objectives and also how the agents may attain their
objectives. Intelligent agents are explained in [127] as agents that have to perform
robustly in quickly varying, unpredictable, or open environments, where there is a
high chance that actions will likely fail. As mentioned in [128] there are three features
that an intelligent agent has to get in order to satisfy its assigned objectives:

 Reactivity: intelligent agents have the capacity to experience their environment,
and react regularly to alterations that happen in it

 pro-activeness: intelligent agents can express goal-directed behavior by taking
action;

 social ability: intelligent agents are able to interact with other agents.

If it is conceivable to assure that a particular environment is fixed, a goal-directed agent
is specified simply to perform in this environment. However, in the real world, the
environment is not stationary. Circumstances are continuously varying, information
is often not detailed. For this reason, the risk of failure has to be considered. A reactive
system is one that maintains continuous communication and interaction with its actual
environment and replies to variations that arise in it (on time to be a beneficial
response).

Our agents need to be more reactive; additionally, to operate in the direction of long-
term goals. Hence, it is significant to obtain the best balance between reactivity and
proactivity. Nevertheless, a certain amount of goals may only be accomplished
considering the cooperation of other agents, and here social capacity is regarded.
Agents will need to have the ability to have interaction with other agents located in the
actual environment as a way to satisfy their associated objectives.

With the intention to learn from experience, the agents may perform by using
supervised learning. Through the supervised learning, the agent is assigned instances
of state-action pairs, and also knowledge regarding if the action was, in fact, either
correct or incorrect. The goal of supervised learning is to generate a general policy

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

98

from the simulation instances, which is usually adequate to handle hidden cases.
Therefore, supervised learning will involve a ‘teacher’ that can bring properly tagged
instances. In contrary, reinforcement learning could be applied to problems where the
knowledge area is possibly unavailable or expensive to collect [129]. It does not need
past knowledge of right and wrong decisions; as a result, an agent has to actively
explore its own environment to be able to monitor the impact of its own actions,
wherever for each applied action, the agent obtains a mathematical signal implying in
what way this action is appropriate or not. This trial-and-error interaction along with
the environment is much more suited for the types of problems we are dealing with in
this thesis; the upcoming section provides more complete clarification regarding
Markov decision processes models and an offered Reinforcement Learning solution in
the last section.

Agent-based systems concept is significantly applied for conceptualizing, building,
and developing software systems [130]. Agents are autonomous computer programs
which can be made to make use of intelligence to automatically carry out complex
functions. Many of these systems are referred as Multi-agent systems (MASs). A MAS
is a system that comprises several agents that have interaction together in an
environment. This section introduces agent-related principles that allow the
comprehension of MASs.

1.1 Agent Systems

Generally, there are two categories of agent systems: centralized single agent, and
multi-agent systems, as described in [131]. Regarding the centralized agent system, a
single agent is in charge of making all of the decisions in the system, in contrast to the
other agents that react only as slaves. This section examines both the basics of single-
agent systems and multi-agent systems.

1.1.1 Single-agent Systems

When it comes to single-agent systems, the environment’s interaction patterns are
dependent on a single agent (central decision). Whenever exists additional agents
inside the environment, they are regarded as slaves (agents who do not possess goals
and pursue the guidelines of a central process).

1.1.2 Multi-agent Systems

In a Multi-Agent System (MAS), numerous agents have interaction with each other in
an environment. The elements of the environment (just like cells or obstacles in the
maze problem) are regarded as passive agents since they do not require to learn goals,
even while the actors (as an example the robot in a maze problem) who has got goals
inside the environment are regarded as active agents [132].

Usually, the major difference among single-agent systems and multi-agent systems is
the fact the environment’s dynamics are driven by some more than one agent in multi-

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

99

agent systems, while a central agent can determine the environment’s dynamics in a
single agent system [133].

In a common multi-agent of the PSO algorithm, there is an agent per particle. The
composition of the agents (decision systems, learning algorithms or interaction
capacities) can be either heterogeneous or homogeneous.

1.2 Multi-agent Systems Classifications

Based on the character of the multi-agent design, multi-agent systems are often
referred by either cooperative or competitive systems. The objective of agents in
cooperative multi-agent framework is to maximize an ensemble of utility functions
when the objective of competitive agents is to maximize their particular utility [134].

On the other hand, receiving distinct (individual) utility functions would not
necessarily claim competition, specially if these functions do not have any
interdependencies. Once we consider maximizing one utility, it shows up at the charge
of maximizing some other, and then we experience sensible competition.

This chapter is primarily concerned with cooperative multi-agent learning, instead of
competitive learning.

1.3 Multi-agent Learning

The capacity to learn is a primary characteristic of intelligent agents. Various research
analyses in artificial intelligence include the learning conducted by one agent [135]. In
this kind of learning, an agent learns to conduct correctly in an anonymous dynamic
environment [136]. Various methods have been offered for single-agent learning;
nevertheless, in a multi-agent, setting up the learning environment is made up of many
learners. An effective learner needs to consider measuring the existence of diverse
learners in the same environment and the means they impact the dynamics of the
environment [136].

1.3.1 Cooperative Multi-agent Learning Methods

Cooperative multi-agent models are systems in which agents make use of their
particular interaction to cooperatively resolve affected tasks as well as maximizing
some utility functions [137].

In multi-agent systems, agents may cooperatively learn a means to solve huge tasks
that are very difficult for a single agent to learn in an affordable period of time. Hoen
et al. [134] suggested that cooperative multi-agent learning methods can be split up
into two main classes. Primary, team learning where a single learner is liable for
learning the behaviors of the whole team. Secondary, concurrent learning where a
learner for every team member is in charge of learning its behavior.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

100

The literature of team learning has centered on the heterogeneity of the team
individuals, while the study in team learning has centered on the interactions among
concurrent learners [134].

1.3.2 Team Learning

Team learning is a technique to model the learning in a centralized single-agent system.
In team learning, a single learner does apply a single-agent learning algorithm to learn
a group of behaviors for an ensemble of agents. This strategy is an ordinary way to
cooperative multi-agent learning; however, the possibility that a single agent learns
the behaviors of all agents, produces the state space to be highly large. For instance, a
team of n agents in an environment of m states and p actions per state provides a state
space of as multiple as 𝑚𝑛 states and an action space as multiple as 𝑝𝑛 . [134]
categorized team learning right into three partitions: homogeneous, heterogeneous,
and hybrid learnings.

a. Homogeneous Team Learning

In homogeneous learning, a particular single learner finds out a single behavior which
is taken from all other team individuals. This is available if all agents possess the
precise same behavior. The state space of homogeneous learners is often small
considering that all agents have the same behavior [138].

Homogeneous team learning could be utilized in problems where one agent does
better [139], including problems having a large number of agents (swarm robotics).
Additionally, problems that do not involve decomposition are appropriate for
homogeneous team learning [140], just like the standard hunter prey problem or also
the standard particle swarm optimization.

b. Heterogeneous Team Learning

A heterogeneous learner learns a particular behavior for every member of the team.
Often the state space of the learner is significant and expands in complexity with the
rise of the number of agents.

Heterogeneous team learning could be used in problems in which task expertise is
needed, including robotic soccer [139] or to naturally decomposable problems [140],
including air-traffic control systems and distributed decision.

c. Concurrent Learning

In concurrent learning, each agent is a learner and learns concurrently with the
different learners through the multi-agent system. The primary goal, in this case, is to
process the joint state space into m individual spaces. The issue of this kind of
methodology is that the presence of multiple learners simultaneously may impact the
stationary feature of the agents’ environment [134]. In [134], the authors suggested that
there are three most important tendencies in concurrent learning study. First, the study

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

101

that usually analyses the distribution of reward signal between team mates. Then, an
investigation that analyses the cooperative adaptation of agents. Finally, the study on
ways that each team member may model one another.

The next section will provide a well-known model of the agent learning formalism that
is the Markov decision process.

2. MARKOV DECISION PROCESS

2.1 DEFINITION OF MDP

MDPs are one instrument of artificial intelligence (AI) that can be utilized to obtain
optimal action policies within a stochastic area. It gives a mathematical framework for
modeling decision making in conditions where outcomes are partially random and in
part within the control of the decision maker. They came from the analysis of stochastic
optimal control in the 1950s and have remained as of major importance in that area.
Their particular principle has been expanded to develop across the last years to suit a
wider range of problems and has produced a variety of common algorithmic concepts
and theoretical research. In recent times, MDPs are applied in a multitude of areas, just
like automated control, robotics, planning, economics and also manufacturing.

An MDP is a tuple <S, A, P, R> where S is a finite set of states, A is a finite set of actions,
P is a Markov transition model that represents the probability P (s’|s, a) of reaching a
state s’ when executing an action a in state s, and R : S × A → R is a reward function
that provides the reward 𝑅(𝑠, 𝑎) acquired after taking action 𝑎 in state s. An agent’s
policy is defined as a mapping π ∶ S → A. The objective is to find an optimal policy
π ∗ that maximizes the expected discounted future reward for each state s. We adopt
that the MDP has an infinite horizon, and that the future rewards are discounted
exponentially with some discount factor γ ∈ [0, 1). The optimal action value function
provides the expected discounted future reward for any state s when performing an
action 𝑎 and then following the optimal policy.

Figure 22 Markov Decision Process

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

102

A formalized description of an MDP (figure 22) is the tuple (𝑆, 𝐴, 𝑇, 𝑅), where:

S is a finite set of states of the world.

- 𝐴 is a finite set of actions.
- 𝑇: 𝑆 × 𝐴 𝑃 is the transition function of states and P represents the transition

matrix. To each action and state of the world, there is a probabilistic distribution
over states of the world that they can be reached after executing the actions. The
function 𝑇 t (𝑠, 𝑎, 𝑠’) is defined as the probability 𝑝𝑡,𝑠,𝑠′ of reaching state 𝑠′
starting in state s and given the action a and the time t.

- 𝑅: 𝑆 × 𝐴 is a reward function. Each action in each state of the world is
assigned a real number. The function 𝑅𝑡 (𝑠, 𝑎) is defined as the reward of
executing action 𝑎 in state s at time t.

To solve the MDP problem, two main algorithms could be used to compute an optimal
policy: value iteration [141] and policy iteration [142].

For the agent to be capable of maximizing the reward from its interaction with the
environment, it has to be in a position to measure the value of a state and apply a
mapping from states to probabilities of choosing each possible action at each time stage.
This mapping is known as the agent’s policy and is referenced by π, where 𝜋𝑡(𝑠, 𝑎) is
the probability that action 𝑎 will be picked at time t if we are in state s at time t. The
approximated value of a state is described in terms of future rewards that may be
expected. Obviously, the rewards the agent can anticipate to acquire in the future rely
upon what actions it will make. Consequently, its value function is identified with
respect to a specified policy. As a result, the value of state s within policy 𝜋, denoted
𝑉𝜋(𝑆), is the expected return when starting in s and following π afterwards and could
be defined formally as:

𝑉𝜋 = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+𝑎𝑘=0 |𝑠𝑡 = 𝑠} (33)

where 𝐸𝜋{} denotes the expected value provided that the agent uses policy 𝜋 and 𝛾 is
the discount rate which establishes exactly how much we appeal future reward
contrasted to immediate reward.

Once we resolve an MDP, we are searching to attain the optimal policy, which is
usually identified as the policy with an expected return higher than or equal to all
other policies for any of the states. The optimal policy is denoted as 𝜋, and there can
be even more than a single optimal policy. The MDP structure is abstract, adaptable,
and supplies the methods required for the solution of various critical real-life
problems. The overall flexibility of the framework enables it not only to be
implemented for very diverse problems but even in various possibilities. For example,
the time steps can involve arbitrary consecutive stages of decision making and acting.
The actions can easily be any decisions we want, which makes the state consist of
whatever it could be valuable in producing them.

2.2 FINITE-HORIZON MDP VS INFINITE-HORIZON MDP

Finite-horizon MDPs are a category of MDPs in which the performance (maximizing
discounted reward) is needed to be maximized during a finite time horizon [143]. This

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

103

model is often applied when the agent lifetime is known earlier. Commonly, any
discrete-time Markov decision process which usually has a finite number of decision
stages is regarded as a finite-horizon process. Equation 34 explains that the agent
maximizes its anticipated reward for the upcoming N steps.

As opposed to finite-horizon MDPs, infinite-horizon MDPs are appropriate for
continuous tasks just where the behavior proceeds indefinitely, and the reward can be
experienced at any time. The time horizon of infinite-horizon MDPs flows to infinity.
Equation 34 displays that the agent maximizes its own expected reward with no mark
of the endpoint (N step infinity).

𝑉𝜋

(𝑠) = { ∑ 𝑟(𝑠𝑡,𝑎𝑡)

𝑡=0..𝑁

} (34)

Finite-horizon and infinite-horizon problems, and their relations to discounted
rewards can be reviewed in details in [144]. These principles were created from the
MDP search area.

2.3 BELLMAN’S EQUATION

Bellman’s equation of Dynamic programming [141] is applied in sequential decision
problems to compute the maximum expected sum of discounted rewards for every
state (equation 35). In MDP, the Bellman’s formula is utilized to determine the utility
of every state within a provided policy. An MDP of n states possesses a system of n
simultaneous Bellman’s equations, one particular for every single state.

 𝑈𝜋(𝑠) = 𝑅(𝑠) + 𝛾∑𝑇(𝑠, 𝑎, 𝑠′)

𝑠′

𝑈𝜋(𝑠′) (35)

The Bellman’s equation (equation 35) is linear while the Bellman’s equation for optimal
computing policies called Bellman optimality equation is a non-linear equation. The
max function joined with the Bellman optimality equation renders the function a non-
linear one. The max function formulates the process of choosing the action with the
best possible return:

 𝑈∗(𝑠) = 𝑅(𝑠) + 𝛾∑𝑇(𝑠, 𝑎, 𝑠′)

𝑠′

𝑈∗(𝑠′) (36)

Multiple varieties of this function are used in RL to formulate the utility functions of
several RL algorithms.

2.4 SOLUTION METHODS

In this section, the main solution methods are presented to resolve a RL problem. The
classic approaches can be categorized into two principal groups:

 Model-based approaches: make use of an explicit model of the environment to
obtain the optimal policy.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

104

 Model-free approaches: obtain the optimal policy not needing to explicitly offer
the model.

In the next sub-section, Dynamic Programming is introduced, which needs a total and
exact model of the environment and consequently is supposed to be a class of model-
based approaches. The model-free RL-algorithms are a considerably more general
framework for resolving MDP where transitions probabilities are not required to
resolve the problem; reinforcement learning algorithms including Q-Learning will be
provided in the next section.

2.4.1 Policy Iteration

Policy Iteration is a dynamic programming algorithm which usually manipulates the
policy exclusively once used to calculate the optimal policy. It begins by evaluating an
arbitrary policy, and after, makes use of the value function of that policy to get
enhanced policies. This is carried out by taking into consideration a deviation from the
recent policy in state 𝑠 that identify if the policy is to adjust to deterministically select
an action 𝑎 distinct from the last one regarding the 𝜋(𝑠). If the value of this latest policy
is higher than the existing policy 𝜋, then, simply, the policy is effectively improved.
This procedure of producing a new policy that enhances an original policy, by
producing it greedy or almost greedy with respect to the value function is known as
policy improvement. As soon a policy π has been improved utilizing 𝑉𝜋 to produce an
enhanced policy 𝜋′, we can calculate its value function 𝑉𝜋′ and maximize it once again
to produce an even best policy 𝜋′′ wherever every policy is assured to be a strict
progress above the past one. Since a finite MDP has just a finite number of policies,
this process needs to converge to an optimal policy and optimal value function during
a finite number of iterations. This method of interleaving policy evaluation with policy
improvement is identified as policy iteration (algorithm 20) and is a principal
algorithm in the review of MDPs.

Algorithm 20: The Classical Policy Iteration Algorithm

𝝅 any policy

While 𝝅 ≠ 𝝅′

𝝅 ≔ 𝝅′

For all 𝒔 ∈ 𝑺

Compute 𝑽𝝅(𝒔) by solving a system of |𝑺| unknowns

For all 𝒔 ∈ 𝑺

If there exists an action 𝒂 ∈ 𝑨 such that:

𝑹(𝒔, 𝒂) + 𝜸∑𝑻(𝒔, 𝒂, 𝒔′)𝑽𝝅𝒕−𝟏(𝒔′)

𝒔′∈𝑺

> 𝑽𝝅(𝒔)

Then 𝛑′(𝐬):= 𝐚

Else 𝛑′(𝐬):= 𝛑(𝐬)

Return 𝝅

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

105

2.4.2 Value Iteration

Value iteration is one other dynamic programming algorithm that uses a distinct
procedure to attain the optimal policy. Instead of modifying the policy directly It
depends on the direct solution of the Bellman optimality equation. For the task, an
iterative procedure through value functions is designed; therefore it is known as value
iteration [141].

The solution is proceeding by using the state space and affecting to each state the
maximum estimated value depending on the discounted value of its own neighboring
states. This iterative calculation is continuing until the maximum improvement in value
for all states in every sweep is smaller than some predetermined small positive number
denoted as 휀. The smaller the value of 휀 the larger the accuracy of the algorithm is. Value
iteration necessitates every state to be processed just once in every sweep within the
state space and in that way takes away one of the drawbacks of policy iteration that is
policy evaluation, which could call for multiple sweeps throughout the state space. In
fact, many stopping criteria can be regarded to stop the iterations. The more basic one
enables stopping when 𝑉𝑛+1 − 𝑉𝑛 < 휀 ; this triggers the formal pseudocode of the
algorithm follows:

Algorithm 21: Value Iteration Algorithm

Initialize 𝑽𝟎 ∈ 𝑽
n ← 0

 repeat

 For all 𝑠 ∈ 𝑆
 𝑉𝑛+1(𝑠) = max

𝑎∈𝐴
{𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑛(𝑠

′)𝑠′∈𝑆 }

 𝑛 ← 𝑛 + 1
 Until ||𝑉𝑛+1 − 𝑉𝑛|| < 휀

 For all 𝑠 ∈ 𝑆
 π(s) ∈ argmax

𝑎∈𝐴
{𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑛(𝑠

′)𝑠′ }

Return 𝜋,𝑉𝑛

The Value Iteration algorithm is sufficiently flexible and does not necessitate the value
of the states to be calculated in any rigid order nor equally many times to be able to
converge on condition that all states are processed within the sweep [145]. This
provides the flexibility that the values of states can be calculated in any sequence,
applying any values of other states that show up existing; the value of some state can
consequently be processed many times in one sweep. This flexibility, besides its slow
convergence rate, has been the motivation of some works to accelerate its
computations [146]. The majority of these attempts have been centered on one of two
items, either parallelization or prioritizing of calculation in an attempt to decrease
unneeded computation [147].

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

106

2.4.3 Other Methods

A multitude of other agent-based methods are available which could usually be
applied for the resolution of MDPs. These techniques generally show up within two
types, Temporal Difference Learning approaches and Monte Carlo methods. MC
techniques are powered by averaging sample returns for the resolution of problems.
They vary from Dynamic Programming because they do not involve an entire model
of the environment and they do not bootstrap; however, alternatively the estimate for
each state is independent. TD Methods, nevertheless, include qualities from the two
method classes since they do not necessitate a full model of the environment and
additional bootstrap. TD solutions are normally executed in an online and fully
incremental manner. Two popular TD techniques are Q-Learning, and Sarsa [148], our
interest in this chapter is given to the Q-learning approach, which is a new derived
solution approach that will be presented in the next the section 3. Some of the used
variants of MDP models are presented in the following sub-section, before its
application in the next chapters in various airline transport problems.

2.5 MDP VARIANTS

2.5.1 Time-Dependent Markov Decision Processes

In standard previously defined MDPs, transitions and rewards are thought to be
stationary functions; they do not undergo any change during decision epochs. In the
literature, some approaches like [149] define Stochastic Time-Dependent Network
where stochastic transition durations are included, but transition outcomes are
deterministic. A model given by [150] is one of the first models to focus on time as an
independent observable state variable; it is named as Time-dependent Markov
Decision Process.

Time-dependent Markov Decision Process extends the Markov decision process model
where a continuous observable time dimension is contained in the state space. The
added time variable allows a more real representation of large problems with time-
varying transitions or rewards. So TMDP includes problems with the following
properties:

 State transitions are stochastic;

 Time-dependent action durations are stochastic.

 Rewards are Time-dependent.

In the TMDP model, each transition, which arises from making an action, is
decomposed into a set of possible outcomes {µ}. Every single outcome identifies both
a transition duration and a resulting state.

The TMDP model decomposes each transition resulting from the application of action
into a set of possible outcomes {µ}. Each outcome describes a resulting state and
transition duration.

Formally, the TMDP is defined as in [150] by:

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

107

 S: Discrete space state.

 A: Discrete action space.

 M: Discrete set of outcomes, of the form µ = (𝑠′µ, 𝑇µ , 𝑃µ) :

 𝑠′µ∈ S: is the resulting space

 𝑇µ, ∈ {ABS, REL}: identifies the type of the resulting time distribution (if it is

absolute or relative)

 𝑃µ(𝑡’) (If 𝑇µ= ABS): probability density function (pdf) over absolute arrival times

of µ

 𝑃µ(δ) (If 𝑇µ= REL): probability density function over durations of µ

 L: 𝐿(µ|𝑠, 𝑡, 𝑎) is the likelihood of outcome µ given action a, state 𝑠, and time t

 R: 𝑅(µ, 𝑡, 𝛿) is the reward associated to outcome µ at time t with a duration δ

Figure 23 below, it shows a simple graphic representation of TMDP evolution.

Figure 23 Elementary example of TMDP

In TDMDP and at time t, if in a state 𝑠1 agent executes an action 𝑎1, it will generate
outcome µ1 by certain probability 𝐿(µ1|𝑠1, 𝑡, 𝑎1) and an another outcome µ2 by a
probability 𝐿(µ2|𝑠2, 𝑡, 𝑎2). µ2 represents the transition to 𝑠2 and 𝑃µ2 gives the transition

absolute arrival time, while µ1 represents the return to 𝑠1 (failure to leave 𝑠1) with a
duration 𝑃µ1 . Implicitly, a waiting time is inserted before each action in the model.

The likelihood functions L govern possible outcomes in the model. Time distributions
in a TMDP could be either “relative” (REL) or “absolute” (ABS) as shown as an
example in Figure 24.

Figure 24 Representation of probability density function types

The TMDP model can be represented by the Bellman equations below:

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

108

𝑉 (𝑠, 𝑡) = 𝑚𝑎𝑥
𝑎∈𝐴

𝑄(𝑠, 𝑡, 𝑎) (35)

𝑄(𝑠, 𝑡, 𝑎) = ∑ 𝐿(µ|𝑠, 𝑎, 𝑡). 𝑈(µ, 𝑡)

µ∈𝑀

 (36)

𝑈(µ, 𝑡) = ∫ 𝑃µ(𝑡’)[𝑅
∞

−∞

(µ, 𝑡, 𝑡′ − 𝑡) + 𝑉 (𝑠′µ, 𝑡′)]𝑑𝑡′ (37)

(𝑖𝑓 𝑇µ = 𝐴𝐵𝑆)

𝑈(µ, 𝑡) = ∫ 𝑃µ(𝑡’)[𝑅
∞

−∞

(µ, 𝑡, 𝑡′ − 𝑡) + 𝑉 (𝑠′µ, 𝑡′)]𝑑𝑡 (38)

(𝑖𝑓 𝑇µ = 𝑅𝐸𝐿)

Where :

𝑈(µ, 𝑡) : Utility associated to the outcome µ in time t

𝑉 (𝑠, 𝑡) : Time-value function of the immediate action

𝑄(𝑠, 𝑡, 𝑎) : Expected Q time-value through outcomes.

The resolution of this model is performed using Bellman equations 2 representing an
undiscounted continuous-time MDP. At each state, the optimal time-value function is
a piecewise linear function of time, which could be precisely calculated by value
iteration [150]. The TMDP model is more general than semi-Markov decision processes
[144] that have no notion of absolute time. With absolute time included in the state
space, a comprehensive set of domain objectives can be modeled beyond the objective
to minimize expected time, like for example the probability of designing a deadline.
The variable time dimension may represent further quantities; it can consider planning
with the non-linear utilities, or also with continuous resources.

2.5.2 Multi-Agent Markov Decision Processes

Multi-agent Markov decision process (MMDP) is developed by [151] to incorporate
such numerous adaptive agents that interact and compute some given goals. MMDP
has been applied in various domains as well as in air transportation (see [152]).

MMDP is the basis of full observability of the global state by every single agent; it is
designed as a set of interacting learner agents, which are autonomous. These agents
have to learn in order to cooperate and obtain their assigned goal. It can also be either
centralized or decentralized in terms of decision-making main feature [153].

The multi-agent structure (see [151]) supposes having a centralized controller knowing
all information regarding the system (Figure 25), including actions, the global state of
the system, and rewards; thus the controller possesses the decision authority and
keeps information distributed among agents.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

109

Figure 25 Centralized control in MMDP

To adapt the formalism of MDPs to cooperative multi-agent systems, Boutilier et
al.[154] defined the Markov Decision Processes Multi-agent or MMDP (Multiagent
Markov Decision Processes). These allow formalizing sequential decision problems in
cooperative multi-agent systems. This formalism is very close to that of Markov games.
However, only MMDP are modeling cooperative systems. The reward function is
defined widely to all Agents, while stochastic games (Liviu Panait et al.[155]) define a
function for each agent reward.

A MMDP is defined by a tuple <S, A, P, R> as decision making conventional Markov.
However, each action is described by the set of actions of individual agents, and then
we talk about joint action. In addition to the tuple <S, A, P, R>, a variable α is defined.
It corresponds to the number of agents in the system. So we define the MMDP by a
tuple <α, S, A, P, R> such that:

 α : is the number of agents in the system.

 S : corresponds to the set of states s in the system

 A = A1 × · · · × An : defines the set of joint actions of the agents, Ai is the set of
local actions of the agent Agi.

 P is a transition function; it gives the probability P (s, a, s′) of the system goes
into a state s’ when agents run the joint action a ∈ A from state s.

 R defines the reward function. R (s, a, s’) is the reward obtained by the system
when changing from one state s to a state s’ by executing action a.

A MMDP can be seen as a MDP with a large state space and action. The set of agents
is considered as a single agent whose goal is to compute an optimal policy for the MDP
joint. A MMDP can also be considered as a stochastic game with n-player game in
which the reward function is the same for all players. Formalism MMDPs corresponds
to a generalization of MDP multi-agent case and specialization of stochastic n-player
games.

Solving a MMDP is to calculate a joint policy π =< π1, … , πn > where πi is the policy
of a local agent Agi. It defines a function πi : SAi that maps to any system having an

action of the agent Agi. Such a joint policy can be calculated using a standard algorithm

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

110

as Value Iteration (This algorithm still also valid in the general case of decentralized
agents, see [156]).

2.5.3 Time-Dependent Multi-Agent Markov Decision Processes

Multi-Agent notion can as well be combined with real-time value to include time
evolution into the multi-agent system dynamics. A Time-dependent Markov Decision
Process (TMDP) is provided by [150] to give this extension. This model is composed
of stochastic state transitions and as well as stochastic time-dependent action
durations. The actions in the TMDP model are stochastic and time-varying:

𝑎(𝑡) ∼ 𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝑎(𝑡)) (39)

Resulting policies are actions to be performed by agents in every single time sequence.
Then, the real planning window can be widespread to problems under uncertainty
changing with time.

So, in this formulation as in [157], MMDPs consider an assignment centered
decomposition approach, which is intermediate between the join MDP method and
the method of independent agents. The centralized controller is adopted having the
complete relevant information regarding the states of all agents to allocate jobs and
assign jobs and resources to agents determined by a task level value functions
associated with agents. After the jobs are allocated to agents, the particular lower level
actions of agents are driven by the task level value functions until the primary
controller reassigns jobs. Adding time dependence behavior will give a more realistic
representation of the gate assignment problem, inspired by TMDP and coupled with
the MMDP approach providing a new formalism of time-dependent Multi agent MDP.

Based on the two previous definitions of MMDP and TMDP, a new formalism is
defined combining between those approaches. So, it is called Time-Dependent Multi-
Agent Markov decision process TMMDP. This is an MMDP seen as cooperative multi-
agent systems as in [154] or associated with time dependence capabilities as defined
by [150]. MMDP is then extended to take a continuous observable time dimension
contained in the state space. Supposing time variable is common between agents; a
global time is associated to all agents.

A TMMDP is defined by:

 n: Number of agents.

 S: refers to the set of states 𝑠

 A = A1 × · · · × An : The set of joint actions for the agents i is the set of local
actions of the agent Agi.

 M: Discrete set of outcomes, of the form µ = (𝑠′µ, 𝑇µ , 𝑃µ) :

 s′µ∈ S: the resulting space

 Tµ, ∈ {ABS, REL}: identifies the type of the resulting time distribution (absolute

or relative)

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

111

 Pµ(t’) (If T µ = ABS): pdf (probability density function) over absolute arrival

times of µ

 Pµ(δ) (If T µ = REL): pdf over durations of µ

 L: 𝐿(µ|𝑠, 𝑡, 𝑎) is the likelihood of outcome µ given join state 𝑠, time t and join
action 𝑎 =(𝑎1, … , 𝑎𝑛).

 R: 𝑅(µ, 𝑡, 𝛿) Reward attached to outcome µ at time t for all agents with duration
δ.

Figure 26 TMMDP policy representation

The aim of defining TMMDP formalism is to model and solve large real problems of
planning under uncertainty taking into account either cooperative agent property and
time evolution. Resulting policies are actions to be performed by agents in every time
sequence (see Figure 26).

2.6 Limits of Markov Decision Processes

Various concerns limit the utilization of the MDP model and complicate its
implementation. These kinds of limitations are interrelated to time and space
requisites implementing the MDP model. The limitations comprise the curse of
dimensionality, the memory requirement, and the stationary supposition of the
problem model.

2.6.1 Curse of dimensionality

Obtaining an optimal policy for an MDP is polynomial in the multitude of states and
actions; nevertheless, the number of states increases exponentially with the number of
state variables, which in turn makes it computationally hard to solve large MDPs [158].
This issue is referred as the curse of dimensionality, which in turn is a critical concern
in MDPs.

2.6.2 Memory Requirement

The modeling of an MDP needs the definition of the state and action spaces. Every
single state/action pair involves a transition probability matrix and a reward function.
The requested memory raises with the growth of the state and action spaces.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

112

2.6.3 Stationary Assumption

In MDP formalism, the transition probabilities and rewards are supposed to be fixed
over time; however, they would possibly not stay the same in the long run. These non-
stationary features can be resolved by incorporating time into the state space or
working with finite horizon MDP model. An additional solution is to incorporate some
additional time depending variables in the state definition.

Multi-agent systems are usually non-stationary environments since many agents
impact the environment at the same time [159]. This produces the learning policies of
the agents to be non-stationary policies. Additionally, the behavior of an agent is
influenced by the behaviors of the various other agents in the same environment [160].

2.6.4 Large Markov Decision Processes

Model-based approaches for large MDPs resolution are affected by the curse of
dimensionality [141]. This is since the state space of large MDPs increases
exponentially due to the number of state variables [161]. Moreover, MDP necessitates
knowledge of transition probabilities of the dynamic system from a single to the
subsequent state, which is in turn not practical to carry out large systems.

Different Reinforcement learning based approaches try to deal with Markov decision
processes limitations when solving with dynamic programming. Several algorithms of
RL have been proposed in the literature such as the well-known Q-learning algorithm.
The next section will draw some RL fundamentals before addressing the proposed
resolution approach in the last section of this chapter.

3. REINFORCEMENT LEARNING FUNDAMENTALS

An RL agent learns by trying actions and obtaining rewards for those actions. In
contrast to the majority of machine learning paradigms, a RL agent attempts the
actions to be able to explore the ones that generate the biggest reward.

Reinforcement learning is appropriate for online learning which includes agents that
learn from interacting with their own environment. In interactive problems, it is hard
and unlikely to grant the agents with all cases of possible behaviors to which they need
to behave. Therefore, supervised learning, which is learning from instances provided
by exterior sources, is not enough for learning from interaction [162].

3.1 RL BASIC MODEL

In RL, a learner interacts with its environment in the following means: the learner
interprets the state of the environment and chooses an action appropriated to the state

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

113

utilizing its own decision-making function (policy). The action is therefore performed,
and the agent gets a positive or a negative reward for its own action. Afterward, details
regarding the reward of the state-action pair are utilized to update the agent policy
(Figure 27).

Figure 27: Reinforcement learning model [148].

The RL model is a 4-tuple associated with the basic fact that the problem model
of RL is often formulated as a Markov decision process. A common RL problem
comprises of [163]:

 A set of states, 𝑆 = {𝑠0, 𝑠1, . . . , 𝑠𝑛−1}.

 A set of actions, 𝐴 = {𝑎0, 𝑎1, . . . , 𝑎𝑚−1}.

 A reward model, 𝑅: 𝑆 × 𝐴 → 𝑅.

 A transition model, 𝑇: 𝑆 × 𝐴 × 𝑆 → [0, 1].

The behavior of a reinforcement learner at any moment in time is identified by a policy
that decides the optimal action to be selected at each state. A policy 𝜋 is a mapping of
environmental states into actions 𝜋 ∶ 𝑆 → 𝐴. A reinforcement learning agent looks for
developing a policy which maximizes the sum of its rewards, 𝑅 = 𝑟0 + 𝑟1 +. . . +𝑟𝑛, for
a problem that has a final state 𝑠𝑛, or a termination condition 𝑐.

The reward indicates that agent experiences are associated with the learning target. A
reward function is a mapping of state/action pairs to numerical rewards S × A→ R.

The value function is a utility function that presents the benefits of selecting a state
overtimes to come. A value of a given state is an evaluation of the summation of
rewards beginning with the given state.

It is essential to notice that the action does not commonly change the state of the
environment. The objective of the agent is to maximize, at each time step t, the expected
discounted gain:

𝑹𝒕 = 𝑬(∑𝜸𝒋𝒓𝒕+𝒋+𝟏

∞

𝒋=𝟏

) (43)

Where 𝛾 ∈ [0, 1) the discount rate and the expectation are taken over the probabilistic
state transitions within the actions selected by the policy of the agent.

The objective of the agent is to maximize its total of rewards (𝑅𝑡) while it is interacting
with the environment.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

114

3.2 POLICY TYPES

The policy that the agent uses has an essential role in the agent achievements to
complete its task. A policy that is unconnected to time and does not involve the agent
to hold memory is regarded as stationary policy, while non-stationary policy needs
the agent to hold a memory. Policies might be categorized depending on the certainty
of actions into two categories:

 Deterministic policies: The deterministic policy identifies a unique action for
every state.

 Stochastic policies: a stochastic policy selects an action 𝑎 from some
distribution with a probability [148].

This thesis focuses on deterministic stationary policy in cooperative independent
learners in Discrete-time MDPs. A discrete-time MDP has a finite number of decision
stages where its overall performance is usually requested to be maximized over a finite
horizon.

3.3 Action Selection Policies

The largely simple action selection policy is the greedy policy, which generally picks
the action with the highest estimated reward to be performed. This policy is an
exploitative policy. However, the objective of the action selection policies is to equalize
among exploration and exploitation. The subsequent action selection policies seek to
make it ensue [148]:

 s-greedy: an action selection policy that picks the majority of the time the
action with the top estimated reward. There is a small probability 𝑠 that an
action can be chosen at random.

 s-soft: an action choice policy that picks the best action with probability 1 − 𝑠
and chooses a random action the remaining time

 Softmax: Softmax designates a weight to every single action as outlined by its
action-value estimate. A random action is picked depending on its weight,
which implies that the worst actions are less likely to be selected. Often,
Boltzmann distribution [164, 165] is designed in Softmax. Given state S, an
agent attempts an action 𝑎 with a probability.

3.4 Exploration/Exploitation paradigm

Unlike supervised learning, a reinforcement learner has to directly explore its own
environment to learn [166]. The trade-off between exploration and exploitation is a
primary issue that appears in Reinforcement learning [167]. This issue is that
exploration and exploitation of actions are linked. Firstly, a RL agent needs to exploit
actions that have been attempted and identified to be greatly rewarded to be able to
maximize its reward summation. Second, to be able to discover greatly rewarded
actions, an agent needs to explore new actions.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

115

In this section, our interest is given to the model free methods, especially the
Q-learning algorithm.

3.5 Q-learning Algorithm

Q-learning is among the best-considered reinforcement learning algorithms that
supply solutions for Markov decision processes. This algorithm features temporal
differences to obtain mappings from state/action pairs to values. These values are
recognized as Q-values and are determined using a utility function, named the Q-
function, that returns the expected utility of choosing a given action in a provided state
and pursuing a fixed policy afterward [168]. The simple fact that Q-learning does not
involve a model of the environment is definitely one of its benefits.

The problem model of the Q-learning algorithm is an MDP model presented earlier
which is made of a set of agents, a set of states S, and a set of actions A [169].

An agent that implements Q-learning requires a number of learning episodes to realize
an optimal solution. An episode is normally a learning period that begins from a
chosen state and terminates once a goal state is found. Within the episode, the agent
selects an action 𝑎 right from the set of actions A of its current state s depending on its
selection policy. The learner later perceives the new state of the environment 𝑠’, and
obtains a reward 𝑅(𝑠, 𝑎) determined by the already executed action. The agent then
upgrades its Q-table according to equation 44. This process repeats till the agent attains
the target state, which will point the ending of the episode.

[𝑠, 𝑎] ← 𝑄[𝑠, 𝑎] + 𝛼(𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′∈𝐴
𝑠′
 𝑄[𝑠′, 𝑎′] − 𝑄[𝑠, 𝑎]) (44)

Where: 𝑅(𝑠, 𝑎) is the reward of executing action 𝑎 in the current state 𝑠, 𝑎´ is the action
executed in the next state 𝑠´ , 𝛼 ∈ [0, 1] is the learning rate, and 𝛾 ∈ [0, 1] is the
discount factor.

The fundamental output of the Q-learning algorithm is a policy π: S → A which
maximizes the sum of its discounted rewards 𝑅 = 𝛾(𝑟0 + 𝑟1 + . . . +𝑟𝑛) for an MDP
that has a final state 𝑠𝑡 , or a termination condition c. Algorithm 22 presents the
pseudo-code of Q-learning.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

116

Algorithm 22: Q-learning

Initialize matrix 𝑸[𝑺, 𝑨] with 0 values

observe initial state s from recorded data

repeat

𝒂 ← 𝝅(𝒔) with 𝝅(𝒔) being the policy to choose actions

perform action 𝒂

observe new state s’ and obtain reward r from the environment

𝑸[𝒔, 𝒂] ← 𝑸[𝒔, 𝒂] + 𝜶(𝑹(𝒔, 𝒂) + 𝜸 𝒎𝒂𝒙𝒂′∈𝑨
𝒔′
 𝑸[𝒔′, 𝒂′] − 𝑸[𝒔, 𝒂])

𝒔 ← 𝒔′

Until 𝑨𝒔 = 𝟎 (s is a terminal state)

3.6 Multi-agent Reinforcement Learning

A Single agent RL approaches are commonly intended to solve stationary
environments. In a multi-agent perspective, many agents influence the environment,
and the actions performed by agents do not rely only on the environment but is also
determined by what the numerous other agents are performing [170].

Moreover, making use of a single-agent reinforcement learning methodology to
sizeable multi-agent systems is ineffective considering that the state and the action
spaces of these kinds of systems are naturally so large. Single-agent method is
improper for distributed problems just like air traffic transport problems [171].

In multi-agent structure, Q-learning can be implemented in an uncomplicated design
to every single agent in a multi-agent system. This can be achieved by attaching a
subscript to determine agents in the Q-function:

𝑄𝑖[𝑠, 𝑎] ← 𝑄𝑖[𝑠, 𝑎] + 𝛼 (𝑅(𝑠, 𝑎𝑖) + 𝛾 𝑚𝑎𝑥𝑎𝑖′∈𝐴𝑠′
 𝑄𝑖[𝑠

′, 𝑎𝑖
′] − 𝑄𝑖[𝑠, 𝑎𝑖]) (46)

Where: 𝑅𝑖(𝑠, 𝑎𝑖) is the reward that agent i obtains for executing an action 𝑎𝑖 in the
current state 𝑠. 𝑎′𝑖 is the action executed by agent 𝑖 in the following state 𝑠’, 𝛾 ∈ [0, 1]
is the discount factor and 𝛼 ∈ [0, 1] is the learning rate.

However, there are two limits for the aforementioned multi-agent Q-learning variant.
First of all, it presumes that each agent chooses its actions individually from the other
agents. Secondary, by using the same maxQ function of a single agent variant of Q-
learning algorithm, it is not valid to be applied for the Value function [160].

In the past few years, various Multi-agent RL (MARL) methods had been offered to
model reinforcement learning for multi-agent systems.

3.6.1 Benefits of Multi-agent Reinforcement Learning

Multi-agent Reinforcement Learning methodology has many strengths over the single-
agent RL methodology. The origin of the strengths of MARL is primarily due to the
multiplicity of agents. The advantages contain: taking advantage of parallel

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

117

computation, sharing of knowledge among agents, robustness and appropriateness for
distributed learning.

a. Parallel Computation

Parallel computing may easily accelerate the learning process of MARL algorithms
once the agents take advantage of the decentralized composition of the task [172]. [173]
suggested an approach for learning to coordinate verbal and non-verbal behaviors in
interactive robots. In this procedure, a hierarchy of multi-agent reinforcement learners
performs verbal and non-verbal actions in parallel. The research studies of [174]
inspected the implementing parallel and distributed systems to MARL. In the
proposed approach of this chapter, reinforcement learners in different units of the
distributed system perform in parallel.

b. Sharing of Knowledge

The presence of multiple agents in the comparable multi-agent system is an
opportunity for information exchange. In MARL, distinct categories of information can
potentially be shared: sharing of sensory data, of episodes, and of learned policies [175].
Sharing of sensory data from one other agent is helpful if the information is relevant
and enough for learning. When sharing of episodes involves sharing of the Q-values
after an amount of episodes, whereas sharing of policies happens at the end of the
learning process. In most cases, sharing of information boosts the learning process, if
it is adequately employed.

c. Robustness

Multi-agent reinforcement system is innately robust considering that when a number
of agents fail, the rest of the agents can carry out their assigned tasks. Reinforcement
learners can easily be designed to react dynamically to undesirable situations. To
illustrate, reinforcement learners that are dispersed in a distributed system can be
informed once a host system is getting turned off; thus they will distribute and
maintain work in another host environment [172].

3.6.2 Recent developments in Multi-agent Reinforcement Learning

In this sub-section, we focus on some main studies on MARL: combinational RL
algorithms and most of the widely known swarm RL algorithms.

a. Combinational Reinforcement Learning

Combinational RL algorithm is a kind of RL algorithm that combines much more than
one RL algorithm to speed up the learning process by making benefit of the power
aspects of each algorithm (Figure 28).

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

118

Figure 28 The AMRLS aggregation design [176] .

Aggregated Multiple Reinforcement Learning System (AMRLS) was offered by [176].
It constitutes a sort of combinational algorithms. This algorithm aggregates Actor-
Critic (AC), Q(λ)-learning and SARSA(λ). AMRLS involves two levels: learning and
aggregation levels. The reinforcement learners can adhere to one of four performance
ways when they are learning: synchronous, asynchronous, parallel or also serial
execution ways. Each learner chooses an action for every state it goes to; after that, it
transmits these actions towards the aggregation level. While in the aggregation level,
the experienced actions for every single state are dynamically aggregated applying
Majority Voting (WMV) or Weighted Borda Count (WBC) aggregation functions.

b. Swarm Reinforcement Learning

The swarm agent-based model is designed for use to model the learning procedure of
cooperative independent learners. The studies like in [177, 178, 179] have made several
works that inspected the inclusion of swarm multi-agent framework in reinforcement
learning.

In [178], a MARL algorithm models the learning procedure of diverse independent
learners. Through this algorithm, the learning procedure of independent cooperative
reinforcement learners occurs in two levels:

 Independent learning stage: each learner works independently utilizing its own
Q-learning algorithm till finishing each one learning episode.

 Q-value sharing stage: learners share their Q-values following a conventional
Q-value update procedure (Q-value sharing process).

The research workers offered three interaction methods for sharing Q-values between
independent learners:

 Best Q-value update procedure: The best Q-value of each state-action pair for
all agents is chosen using the following update rule:

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

119

𝑄𝑖[𝑠, 𝑎] ← 𝑄𝑖
𝑏𝑒𝑠𝑡[𝑠, 𝑎]) (∀𝑖, 𝑠, 𝑎) (45)

 Where i is the agent identification number and 𝑄𝑖
𝑏𝑒𝑠𝑡 best Q-value

The Q-learning algorithm that incorporates this sharing strategy is known as BEST-Q.

 Average Q-value update procedure: Each learner averages each Q-value in its
Q-table with the best Q-value for each state-action pair. The update rule is:

𝑄𝑖[𝑠, 𝑎] ←
𝑄𝑖
𝑏𝑒𝑠𝑡[𝑠, 𝑎] + 𝑄𝑖[𝑠, 𝑎]

2
 (∀𝑖, 𝑠, 𝑎) (46)

 Where i is the agent identification number and 𝑄𝑖
𝑏𝑒𝑠𝑡 best Q-value

The Q-learning algorithm that incorporates this sharing strategy is known as AVE-Q
(Average Q-learning).

In the next section, we are giving a new swarm reinforcement learning algorithm using
the enhanced Particle Swarm Optimization from the last chapter to update and guide
the Q-value optimal search.

4. PSO COOPERATIVE REINFORCEMENT LEARNING BASED HMM

In cooperative Q-learning, diverse independent learners find out the same task
through the whole state space. The learning procedure of cooperative Q-learning often
requires two stages. First, the individual learning stage, where every single learner
independently utilizes its own Q-learning algorithm to progress its solution. Second,
the learning through the interaction stage, where a Q-value sharing strategy is
integrated. A Q-value sharing strategy enables independent learners to share their
particular Q-values and make use of this information to attain new Q-tables. Sharing
of Q-values among reinforcement learners speeds up the learning procedure of
individual learners.

Reinforcement learning Swarm algorithms, such as [179], emerged as an appealing
research sequel that handles the problem of Q-values formal update between diverse
RL agents. In this section, a new swarm based cooperative learning RL is proposed
based on the controlled particle swarm optimization algorithm of the second chapter.

4.1 Q-value HMM Sharing swarm Strategies

The PSO algorithm can incorporate the Particle Swarm Optimization (PSO) process to
get a global optimal solution as provided by [178]. PSO is an optimization method that
repetitively enhances a candidate solution relating to a qualitative measure [18]. PSO
resolves decision problems that have diverse decision variables. As provided in the
previous chapter, PSO as the swarm is a collection of particles that comprise a
candidate solutions. Let D be a decision problem of n decision variables 𝑋 =
 {X1, X2, . . , X𝑛} that minimize an objective function 𝑓, and the size of the swarm as D to

be composed of m particles {𝑝1, 𝑝2, . . , 𝑝𝑚}, then particle 𝑝𝑖 of the swarm at iteration t is

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

120

X𝑖(𝑡) = (𝑥𝑖
1(𝑡), 𝑥𝑖

1(𝑡), . . . , 𝑥𝑖
𝑛(𝑡)) . The following two functions define the candidate

solution of 𝑝𝑖 at the following iteration t + 1:

V𝑖(𝑡 + 1) = 𝑤 V𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − X𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − V𝑖(𝑡)) (47)

 V𝑖(𝑡 + 1) = X𝑖(𝑡) + V𝑖(𝑡 + 1) (48)

Where V𝑖(𝑡) is the velocity vector of 𝑝𝑖 at iteration t, w, 𝑐1 , and 𝑐1 are acceleration
coefficients, 𝑤 inertia weight, 𝑟1, and 𝑟2 are random numbers between 0 to 1, 𝑝𝑏𝑒𝑠𝑡𝑖

 is
the personal best solution of particle 𝑖, and 𝑔𝑏𝑒𝑠𝑡 is the best solution discovered by all
particles.

In PSO based reinforcement learning, the RL problem is modeled as an optimization
problem in which the solution candidate and qualitative measure are respectively the
Q-values and an evaluation function of the Q-values (Q-function) where the HMM
model guides PSO parameters and search behavior as in the previous section. In this
approach, the best Q-values of every single learner and the best global Q-values of all
learners are utilized by each learner to update its Q-table.

The HMM model controls the PSO algorithm; the HMM state classification governs
parameters and search behaviors.

The update of Q-value will be done as well according to the HMM classification as
follows:

𝑄𝑖(𝑠, 𝑎) = 𝛿1𝑄𝑖(𝑠, 𝑎) + 𝛿2𝑄𝑃𝑏𝑒𝑠𝑡𝑖(𝑠, 𝑎) + 𝛿3𝑄𝐺𝑏𝑒𝑠𝑡(𝑠, 𝑎) (49)

In the above function the weights 𝛿𝑘 , 𝑘 ∈ [0,3] are named expertness and express the
function of agent’s relative expertness. In our approach, the formula for assigning a
weight of expressiveness to agent knowledge by learner i, is using also the knowledge
of all agents and controlled by the HMM classification. The weight 𝛿 manage the
impact of the historical information. In our approach, we calculate𝛿1, 𝛿2 and 𝛿3 from
the likelihood given by HMM of the corresponding state: exploration, exploitation,
and convergence respectively. The likelihood of a state is calculated from the historical
achievement of the swarm and gives a quantified probability to each state.

The Q-value update will also be state dependent and controlled by the search
achievements.

4.2 HMM-QPSO ALGORITHM

According to classified state, each particle has it is associated state and can adapt its
parameters individually as well as in the earlier described approach selfHMM-PSO. In
our case, we apply the HMM state to adapt also the search of Q-value as well as inertia
weight and acceleration factors of the PSO algorithm. Algorithms for adaptation are
the same as defined for the whole swarm but applied to adapt the Q-value iteratively.

 First Stage: Q-learning

In the first stage, each learner individually incorporates its individual Q-learning
algorithm to enhance its solution. The problem model of the Q-learning algorithm can

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

121

be described as Markov Decision Process (MDP), which has an agent, a set of states S,
and a set of actions 𝐴𝑖 for each state ∈ 𝑆 .

An agent that applies Q-learning needs a number of learning episodes to find an
optimal solution. An episode is a learning period that starts from a selected state and
ends when a goal state is reached. During an episode, the agent chooses an action a
from the set of actions 𝐴 of its current state s based on its selection policy. The learner
then perceives the new state of the environment 𝑠´, and receives a reward R(s, a) based
on the previously implemented action. The agent then updates its Q-table based on
the Q-function:

𝑄𝑖[𝑠, 𝑎] ← 𝑄𝑖[𝑠, 𝑎] + 𝛼 (𝑅(𝑠, 𝑎𝑖) + 𝛾 𝑚𝑎𝑥𝑎𝑖′∈𝐴𝑠′
 𝑄𝑖[𝑠

′, 𝑎𝑖
′] − 𝑄𝑖[𝑠, 𝑎𝑖]) (50)

where 𝑅𝑖(𝑠, 𝑎𝑖) is the reward that agent i receives for performing action ai in the current

state s, 𝑎𝑖
′ is the action performed by agent 𝑖 in the next state 𝑠’ , 𝛼 ∈ [0, 1] is the

learning rate, and γ ∈ [0, 1] is the discount factor.

This process is repeated until the agent attains the goal state, which represents the end
of the episode. The main end result of the Q-learning algorithm is a policy π : S → A
which maximizes the sum of its rewards 𝑅 = 𝑟0 + 𝛾𝑟1 + . . . + 𝛾

𝑛𝑟𝑛 for an MDP that
has a final state 𝑠𝑡, or a termination condition. The proposed HMM-QPSO algorithm
does not require a model of the environment as [148].

The overall pseudocode of the proposed approach is bellowed:

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

122

Algorithm 23: HMM-QPSO algorithm

Data: The objective function

Initialization: positions, velocities of particles, accelerations factors

and HMM parameters, initial Q values; Set t value to 0 ;

while (number of iterations t ≤ tmax not met) do

Update HMM parameters by EM process (Algorithm 1) ;

Classification of PSO state by HMM classifier (Algorithm 2) ; Update

𝐜𝟏 , 𝐜𝟐 and w values according to the corresponding state ;

for i = 1 to number of particles do

compute f as Q values;

Update 𝑸𝒊[𝒔, 𝒂] by performing Qlearning for one episode for agent i

Update velocities and positions according to Eqs. (47) and (48) ;

if (f ≤ fbest) then fbest → f ; pbest → X ;

end

if (f (pbest) ≤ f (gbest)) then

f (gbest) ← fbest ;

gbest ← Xbest ;

end

if state = convergence then

Elitist learning

End

End

Update 𝑸𝒊[𝒔, 𝒂] by equation.50

t ← t + 1

end

Result: The best Q values for optimal action state selection

The next sub-section will give an experimental study to improve our method.

4.3 EXPERIMENTATION

4.3.1 Experience settings

This section shows the results of the 10 × 10 grid (Figure 29).

The performance of the cooperative Q-learning algorithms based HMM-PSO and other
Q-learning based algorithms were experimentally investigated. In the tests, an
algorithm is thought to acquire convergence once the average number of steps in its
policy enhances by fewer than one move through 200 successive episodes.

In this simulation, five agents learn for the exact number of learning episodes just
before sharing their particular Q-values. The impact of the occurrence of information
sharing influences the overall performance of cooperative learners. The agents share
their very own Q-values after every single learning episode.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

123

Figure 29 Example of grid world for n=10

The number of learning episodes is 1000, the discount factor γ = 0.9 and the learning
rate is α = 0.01, in the Q-learning algorithm (like in [180]). A learning episode
terminates once the learner attains the goal cell or soon after 1000 steps with no getting
to the goal cell.

4.3.2 Experimental Results

The performance of the HMM-PSO based Q-learning algorithm and other Q-learning
algorithms were investigated against each other following experimental models.

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

124

Figure 30 Comparison of Reinforcement learning algorithms

In the experiments (shown in Figure 30), an algorithm is said to have converged when
the average number of moves in its policy improves by less than one move over 200
consecutive episodes. The comparison is shown in the average number of moves per
one episode in a 10 × 10 grid. HMM-QPSO gives the best results.

5. CONCLUSION

In this chapter, the multi-agent design of the particle swarm algorithm, controlled by
a hidden markov model, has been used as a reinforcement learning technique for
markov decision model resolution. The idea of using metaheuristics for reinforcement
learning is not completely new, but the use of online controlled particle swarm by the
supervised machine learning (HMM) enhance the optimal Q values search. The overall
results of the HMM-QPSO suggest that each of the cooperative Q-learning algorithms
performs better than single agent Q-learning when Q-value sharing performed. This
is because learners with less experience incorporate knowledge of more experienced
agents, giving a better average move number than single-agent learning. Also, the
online controlled PSO based cooperative Q-learning gives best results; this is due to
the cooperative aspect of PSO and the HMM integration to enhance the Q-value search.

This chapter presents a preliminary result of the proposed reinforcement learning
method that is the HMM-QPSO. Experiments have been performed on the classical
robotic problem of the optimal path in a labyrinth of 10×10 grid. Even if the result was
notably better than the other Q-learning variants, the approach needs to be compared
using more competitive and complex problems. On the other hand real word

Chapter III. Multi-agent reinforcement learning by HMM-based PSO

125

applications are required to ensure the performances of this proposed RL algorithm.
Chapter 5 will present an application of the HMM-QPSO to an airline transport
problem that is the maintenance rooting problem; the approach is therefore
investigated in an air traffic problem.

126

CHAPTER IV:
STOCHASTIC MODEL OF THE GATE

ASSIGNMENT PROBLEM

With airports being busier and often troubled with insufficient capacity, the efficiency
of the airport's resource usage becomes increasingly more imperative all across the
world. The efficiency can be upgraded by taking under consideration the flight
operations disruptions, which historically were not considered into planning. More
efficient resource utilization will not only smooth airport operation but even require
to predict unwanted disruption and manage its negative effect. The gate assignment
problem is considered one of the vital airport operations, which is typically solved
with no consideration of some random disruptions, such as delays that frequently arise
in the flights schedule. Modeling and study of uncertainties in flight operations which
may enable the possible disruption information to be evaluated in the allocation
planning earlier along with the design of a new type of solution methods are revealed.
It is noticed that when further information from the flight operations is integrated into
the assignment planning process, the number of estimated conflicts in flight operations
can be estimated. This might effects a smoother airport operation at the time of airline
operations. A new approach of dealing with the gate assignment problem is presented
in this chapter based on a stochastic model, that is, the Markov decision process.

The original algorithm of MDPs is considered in this chapter, providing the modeling
background to solve the gate assignment problem under uncertainty. In this offered
resolution methodology, we consider the stochastic aspect as a result of flight delay
and with the consideration of different further constraints of aircraft size in the
assignment. The main aim of this chapter is to provide an adaptive planning model of
GAP; this concerns a planning/learning approach in order to create an effective
approximation of state-dependent uncertainties. That will enable supplying a new
model for the GAP based on MDPs. This work aims to grant to controllers at the airport
a robust priory solution rather than taking the risk of online schedule modifications to
manage uncertainty. The solution of this problem will be a set of optimal decisions that
should be adopted in the matter of traffic disturbance. Primary experimental results
on a sample of real-life data illustrate the feasibility and efficiency of our approach for
managing uncertainty.

Chapter IV. Stochastic model of the gate assignment problem

127

1. The gate assignment Problem

Considerable interest has been given in recent years to the techniques for managing
and allocating airport and airline resources effectively and efficiently in a dynamic
operational environment. This is due to the growth of air transport traffic (doubled
since the early 1980s). The scheduling problems nowadays faced by airport and airline
managers have led to complex planning problems that require new models and
methods. This is firstly caused by the wide range of resource modules that apparently
have to be considered like flights, terminals, crews, baggage etc, and they are highly
interdependent. In the real world, we also have stochastic variations in air traffic that
increase problem complexity, which is more considered in the latest researches.

1.1 Problematic

The major task of an airport is to ensure a smooth flow of flights traffic. Figure 31
depicts an example of gating at Mohamed V airport, where arriving aircraft are
assigned to terminal gates. This is guaranteed by an optimal assignment of aircraft to
their suitable gates. In fact, if not assigned yet, an aircraft will wait obligatorily on the
ramp or even in the air. Such situations are undesirable more than the problem of gate
capacity because of time consumption and also the limited capacity of ramps and
adjacent airspace.

Figure 31 Example of gating at Mohamed V airport

Thus, Airport gates are considered as expensive and scarce resources in air
transportation. Increasing the resource supply by involving a time-consuming and
costly redesign of terminal buildings or ramps is usually not feasible in the short term.
It is therefore of great importance to an airport to exploit the available gates as best as
possible.

Flight gate scheduling problem relates to assigning different aircraft activities (arrival,
departure, and parking) to different aircraft gates. This is, consequently, an essential
concern in the daily operations of an airline. They have a major impact on maintaining
the efficiency of flight schedules and passenger satisfaction. Some of the factors that

Chapter IV. Stochastic model of the gate assignment problem

128

impact the assignment of gates to arriving flights include passenger walking distances,
aircraft size, baggage transfer, aircraft rotation, ramp congestion, and aircraft service
requirements, etc. In the real world, the deterministic solution is infeasible due to the
stochastic aspect of the problem.

In real life applications, the arrival and departure times are not certain, and it is
important to take the uncertainties of these input parameters into account. This is why
one of the most critical challenges of gate scheduling is to build a gate scheduling that
can be robust against stochastic variations of input data; in other words, schedule
flexibility is necessary. The uncertain in gate scheduling can be caused by flight or gate
breakdown, flight earliness or tardiness, emergency flights, severe weather conditions,
errors made by staff or for several other causes. For example, delayed arrival of one
aircraft may generate a series of delayed arrivals for other aircraft that have been
allocated to the same gate. In the worst case, this may result in what is called "domino
effect" and finally require an entire rescheduling; this type of scenario is highly
undesirable.

1.2 Problem statement

The gate allocation problem (GAP) is the task of getting suitable positions to park
aircraft at an airport. In this section, a real-world example is used to clarify the problem.
Mohammed V Airport of Casablanca is used as a case study airport to demonstrate the
scale of this problem, the specifications which have to consider by the currently
utilized systems, and the manner in which the problem is handled.

The problem of assignment to gates is often divided into two parts. The first includes
a monthly schedule. Each month, the airline operators declare a list of flights they
made to plan with the assignment of flights for every day of this month. So, each flight
is associated with a specific gate. Once the first assignment has been made and if a
change of time has occurred, it was necessary to wait for the necessary resources (i.e.,
gates) to be available for the traffic. Those situations of irregularities involve extra
irregular equipment or repair. For the first part of the problem, the resolution time is
not a critical factor. However, the second part of the problem occurs when the planed
schedules are altered because of a non-anticipated events such as the bad weather,
mechanical defects, and late arrivals. Then, the controllers have only a few minutes
reorganize those sort of disruptions; So that the current assignment of flights has to
accommodate all arriving flights. The emergency replaces the goal that needs to be
changed in real time.

The problem of assigning gates to arriving flight is a crucial decision problem in daily
operations at most airports around the world. Heavy competition between airlines and
the rising demands of passengers for higher comfort has produced measures of quality
in decisions at an airport as significant performance indices of airport management.
For this purpose, mathematical modeling of this problem and the application of
advanced operations research and machine learning methods to solve the GAP
problem have been examined largely in the literature. The overall characteristics of
busy international airports generally require serving a large group of different airlines,
a big number of daily flights, and covering several types of aircraft.

Chapter IV. Stochastic model of the gate assignment problem

129

The next subsections will provide a description of an airport, its likely configurations,
and its assigned missions.

1.2.1 Airports Description

We will present and clarify the components that construct an airport, and the activities
that are inherent to it. Airport operations vary from landing aircraft to take-off as
displayed in Figure 32; it depicts the area of interest given by this chapter. Once an
aircraft lands, it taxies into a ramp area and parks at a gate. While the aircraft is
docking at the gate, passengers disembark and board the plane. Whenever the aircraft
is in position to depart, it is taken back and taxies out to a runway. After that, the
aircraft takes off the airport. Involving these operations, this study concerns the
optimization of ramp operations that impact directly on the accommodation of
passengers.

Figure 32 Area of interest of the gate assignment problem.

To acquire a better understanding of the airport functions, certain elements should be
considered. From an operational perspective, an airport is the sum of many operations,
infrastructures, agents, facilities, and equipment needed to enable airlines to take off,
land, supply, maintenance and shelter the aircraft. The operations and sub-operations
that provide the ways for passengers and freight to pass on from area to air modes of
transport; and the sub-operations that offer more enjoyable passage through the
airport (including shops, restaurants, etc.). Nevertheless, to depict an airport today,
the definition is always partial, on account of a set of increasing activities that have
been attaining importance over the years [181].

The configuration of an airport is mainly divided into two different sections, as it is
noticed in Figure 33: the airside and the landside.

Chapter IV. Stochastic model of the gate assignment problem

130

Figure 33 Schematic presentation of an airport

The airside is the part of the airport dedicated to aircraft activities including take-offs
and landings and loading and unloading. The airside consists of all the areas available
to the aircraft and is consisting mainly of [182]:

 Runways: regions for the landing and take-off of aircraft.

 Taxiways: circulation areas related to the runways to other airside services.
Keeping a decisive effect on the capacity of the runway system, they require
to enable aircraft to operate safely and fluently.

 Apron: the part that affords the interchanges among landside and airside
services. They can be categorized as cargo building aprons, passenger
building aprons, general aviation aprons, service, and hangar aprons or long-
term parking aprons and remote aprons.

 Support Services: qualified to offer all the assistance required by the aircraft
to perform their activity.

 All the infrastructures that are necessary for the passengers to cross from the
surface to inside the airplane.

The landside combines all the areas usable for departure, arrival and transit passengers
to arrive and accomplish their goal destination. Indicating that for departure
passengers, it involves all the infrastructures, they are required to use and pass
through to attain their gate; for transit passengers, the ways for them to go to their next
flight; and for arriving passengers. All the areas they need to gather their baggage and
get out of the airport. The access between these two areas is highly controlled by using
the different manner of security monitoring.

1.2.2 Terminal description and configurations

As stated by [183], the terminal’s primary function is to offer a convenient service for
the mode transfer, frontier activities along with the operations needed by the airlines.
Its design supplies the terminal link with the land-side surface transport system,

Chapter IV. Stochastic model of the gate assignment problem

131

commonly making the passengers pass over all the selling stores; apparent
information throughout the series of processes; authorities control and security
monitors; baggage managing system for both local and transfer bags.

In the airside component of an airport, three different airport ground resources
optimization airport controllers have to manage, as depicted in Figure 34:

 Stand and Gate Allocation also called gate assignment

 Ground Routing

 Runway Sequencing

Our key area of focus in this chapter will be the first problem related to gate allocation.

Figure 34 Airside ground resources optimization at an airport

As outlined by [184], the configuration of the terminal building primarily is
determined by the traffic they operate, getting this traffic separated into three parts:
Overall volume of traffic, seasonality of traffic and the ratio of traffic that transfers
between aircraft. According to the configuration, several elements of traffic will have
advantages above the other. There are four basic configurations (see Figure 35):

 Linear: Individual stands are placed all along the terminal building, offering
simplified access from the terminal building to the airplanes. It is used in
airports with low traffic amounts; the planes are parked obliquely in order that
they can easily enter and exit on their own.

 Midfield, both linear or X-shape: the stands are located aside from the terminal.
The transport of the passengers to the terminal is supplied by using buses or
mobile lounges.

 Satellite: every satellite construction is connected to the central terminal by
using corridors or underground passageways.

 Finger piers: gate concourses are supplied to the terminal structure.

Chapter IV. Stochastic model of the gate assignment problem

132

Figure 35 Terminal configurations [184]

In all those configurations, enough space must be supplied to prevent conflicts and
match the preferences of large aircraft.

Throughout the years, the terminal building continues to be in continuous
development and progress matching its demands. Three main considerations were in
the root of these developments: improving aircraft technology, an enormous increase
in passenger traffic and the attempt to boost the quality of service. As was set by the
problematic sub-section 1.1, currently, airports have to maintain a good service quality
and passenger satisfaction; furthermore, they grow into multi-functional facilities
meant to furnish a large variety of services, more than their original features [185].

Multiple operations can be determined in the airport terminal, including Passengers
Arrival, Boarding, Passengers Arrival, Baggage Handling, etc. Due to the passenger’s
progress through the terminal, they are facing those processes they have to pass to
attain the airplane. Every single process outlined in the airport terminal uses several
resources and has got its own constraints or restrictions. In this chapter, we consider
the Gate assignment process, identified as the last phase of the passengers’ experience
through a terminal. This is the last step between the airport and the airplane, where
passengers expect the opening of their particular gate so they can board the plane
using the passport and boarding pass [186]. An example of airport Mohamed V
configuration is addressed in the next sub-section, before the literature section.

1.2.3 Example of Mohammed V airport of Casablanca

In this sub-section, we describe the organization and the different elements of the
infrastructure of Mohammed V international airport, as well as the variety of the
configuration of this airport and its components as shown in Figure 36.

Chapter IV. Stochastic model of the gate assignment problem

133

Figure 36 Mohammed V Airport Infrastructure [ONDA]

Mohammed V Airport consists of the following elements:

 Two terminals for passengers

 A freight terminal

 A control tower

 Two tracks

 63 parking posts

 9 Boarding Gates

The "Airside" side of the airport can be described by a loop whose node is formed by
the runways and which passes through the parking stations of the aircraft. This
schematization is used to illustrate the cyclical treatment performed on aircraft flows
on the platform.

Figure 37 Mohammed V configuration

The configuration of gate areas is closely linked to passenger and cargo terminals. In
Figure 37 of Mohamed V airport, we see that there are several parking systems, which
follow the several configurations as Linear, Finger piers and Midfield. It can be
considered as a hybrid configuration airport.

The next section will describe the literature review of gate assignment problem.

Chapter IV. Stochastic model of the gate assignment problem

134

2. LITERATURE REVIEW

Gate assignment problem focuses mainly on assigning arriving aircrafts serving flights
to available gates, or aircraft stands at the airport while satisfying some constraints
and meeting some objectives.

More interest in recent years is allowed to providing advanced techniques in the air
traffic framework. This is resulting from the increase in air transport traffic [187]. The
main objectives are the best allocation and management of airport and airline
resources in the best way effectively and efficiently. Caused by the dynamic stochastic
operational environment conditions of air transport, the scheduling problems
currently confronted by the airport and airline managers are leading to challenging
and complex planning problems that involve innovative models and solutions. This is
triggered by the significant diversity of resource segments that have to be regarded
including terminals, flights, crews, baggage etc, and most are interdependent. In fact,
stochastic disruptions in air traffic transport raised the complexity of the resolution
models. This is progressively taken into consideration in most recent studies.

The main target of an airport is to guarantee a fluent flights traffic. Optimal assignment
of aircraft must guarantee to make available over time the proper gates. If an aircraft
is not assigned, it will be forced to wait on the ramp very well as in the air. This type
of scenarios are quite undesirable on account of time wasting and let to flight delays.
Also, ramps and airspace are resources with a limited capacity.

Gate flight assignment is an essential task of an airport; it is the primary activity in
airline traffic transport management [188]. Moreover, several airports today have
severe capacity constraints resulting from the increase in air traffic volume. The GAP
can be regarded as such a problem of constraint resource assignment, in which gates
represent resources and aircraft are considered as resource consumers.

As well, GAP is considered to be a challenging and tough problem [189] as it involves
highly inter-dependent resources including gates, crews, and aircraft. Consequently,
serious disruptions in the airport exposed as flight delays result from inadequate
assignment that lowers the client services and generates conflicting flights and
ineffective usage of gate services.

In this section, we will give the possible constraints and objectives of the GAP
formulation, in addition to a survey of different used models, and resolutions methods
from the literature.

2.1 Constraints and Objectives

All of the search methods perform on a search space. In order to produce the
search space, a model of the real problem is generally created. The model
reflects the main features of the real problem that may possibly impact the
solution. The majority of the real world problems are to some extent uncertain.
There are however several modeling techniques that provide the way to
consider the uncertainty in a model in order to attain more accurate solutions.

Chapter IV. Stochastic model of the gate assignment problem

135

The volume of facets of a modeled problem, identified as certain or uncertain,
means the size of the search space. Considerably more complex models are the
origin of much larger and most likely complicated search spaces. Therefore,
building a suitable model with ample details but not so much complicated, is
amongst the most challenging tasks whenever solving an optimization
problem.

Mathematical programming [190] is the most commonly encountered
modeling approach intended for the gate assignment problem. Ahead of
providing an overview of applied GAP models, the next constraints and
objectives are generally mentioned in the relevant literature:

2.1.1 Constraints

These constraints are principally classified as ‘‘soft’’ and “strict” constraints in the
literature (Chun-Hung et al. [189]).

The strict (hard) constraints are inherent to the problem and can be described as
follows:

 Single: Each flight must be assigned to one and only one gate. It means that No
two flights can be assigned to the same gate at the same time

 Feasible: No two flights with overlapping ground times are assigned to the
same gate concurrently, which means that a flight should be assigned to at
most one gate.

Several soft constraints are also considered in the literature for example; those
additional constraints could be associated with the model. The decision
regarding adding soft constraints relies mainly on the specific airport
priorities and the features of the problem the modeler aims for. The
following list comprises some soft constraints outlined in the literature:

 Constraints related to various aspects of gates: just like sizes [191,
192]. This is a severe constraint which often happens in real life. It can
enforce the assignment of specific airline flights to some predefined gates; also,
the assignment of a large aircraft to a particular gate may imply that
neighboring gates can only accept aircraft of a certain size or are even
completely blocked (see Dorndorf et al. [192]. It is covered by the elaborate
model included in this research (see next section).

 The preceding constraint: it implies that a flight may carry no more
than one upcoming flight at the same gate [193]. It makes much
simple the model formulation.

 The time gap constraint: it features a variable for every single pair of
flights, which are successive on the same gate. It is also included in
the objective function to maximize the time gaps amongst allocations.
Maximization of the time gaps in assignment is a fundamental part
of the problem as it enables minor delays on gates to be absorbed.
Further robust solutions are supplied when the constraint is included
in the model as in [191].

Chapter IV. Stochastic model of the gate assignment problem

136

 Fixed minimum buffer time between two allocations as in [194]. It
needs to be put into the model as it grants to the departing aircraft
time to empty the gate. This constraint is generally included in real-
world planning.

 Push back constraints: it focuses on assignments which may lead to
pushing back conflicts in the locations around the gates as provided
by [195].

 The shadowing constraint: it has to do with gates which are unable
to be employed concurrently [196, 191], such as entry to one gate may
possibly block the use of another. The shadow constraints often arise
in real-world situations.

 The towing constraint: it addresses flights which are staying too long
at an airport and are towed aside from the stands. It is generally
modeled by dividing the flights to two or three items: arrival,
departure and parking activity (or simply arrival and departure). It
can be found in [195, 191].

 The passenger walking distance constraint: This constraint had to be
highly common within preliminary stage researchers as [188] when
the walking distance appeared to be a critical facet of the problem.

 The time window constraint: it specifies the time duration where an
aircraft might stay at an airport [193]. If the time window is much
longer when compared to the time an aircraft actually remains at an
airport, it provides a possible assignment delay.

2.1.2 Objectives

Multiple objectives are usually included in the GAP models, and the
objective function is commonly a weighted sum of them. Weights are
established by the modelers to obtain a solution that indicate the main user
concerns. Some papers even compare the results supplied for numerous
weights in the objective function [197] or analyze the Pareto from a multi-
objective formulation [198]. Also, several multi-objectives formulations
with multi-criterion models are considered in [197, 192].

All these objectives can be divided into two big classes: passenger-oriented
and airport-oriented objectives. For example, Teodorovic et al. [199] focus
on total passenger delay and the number of flights cancellations in the case
of irregularity of flights. In turn, Chang [200] considers the distance
passengers have to carry their baggage as an objective in addition to
passenger walking distance. In contrast to previous ones, airport oriented
objectives like total gate preferences, number of aircraft towing procedures
and others can be addressed. A list of typical objectives found in the
literature are presented below:

 Minimize the total walking distance for passengers (Xu and Bailey [201]),

 Minimize the total waiting time of all passengers (Yan and Huo [197]),

 Minimize the number of un-gated aircraft activities (Lim and Wang [188]),

Chapter IV. Stochastic model of the gate assignment problem

137

 Maximize the preferences of assigning certain aircraft to particular gates [198],

 Minimize the current schedule deviation from a reference schedule,

 Minimize gate conflict (Lim and Wang [188]).

 Minimization of the overall change from the originally planned schedule as in
[202, 198]

 Minimization of the time an aircraft must wait for a gate. This constraint relates
to the scenario when there are not enough gates at an airport, or they are
wrongly allocated, and consequently, several arriving aircraft may be delayed
as they need to wait for gates to be available [193].

 Minimization of the number of ungated flights such as [198, 191].

 Minimization of the number of conflicts between flights inside spaces around
gates such in [203].

 Minimization of baggage handling distance [204]. It is carried out
simultaneously with the passenger walking distance minimization.

 Minimization of the total passenger waiting time [194]. Where the total time
that passengers pass at an airport is minimized

 Minimization of the number of towing operations [192, 202]. Every towing
operation is a supplemental movement at an airport which can induce conflicts.
Therefore, it is preferred to reduce the number of towing operations, specifically
at the time of rush hours.

 Maximization of gates occupation time regarded as [205]. It leads to getting as
many flights as possible on every gate.

2.2 Models of the GAP

A gate has been firstly identified by Hamzawi [206] as the area of the
terminal apron designated for the parking of aircraft in order to load and
unload passengers and to accomplish an aircraft ground services including
refueling, baggage handling, cleaning, servicing, etc. Figure 31 displays a
situation scenario from an airport. Two aircraft are observable in Figure 32;
an aircraft has just arrived and is taxiing inside the direction of the assigned
gate. Two other aircraft, apparent in the picture, have already been on its
associated gate. The gate assignment problem is often recognized as a
process of getting suitable places to park aircraft at an airport. This is
certainly an optimization problem and to be able to resolve it a good model
is required initially.

Formulation of the GAP can be carried out under two primary categories:
deterministic models and stochastic models. In the first one, only static
parameters are considered (just like flights arrival/departure, passengers,
etc); this method becomes infeasible regarding stochastic variations, for
example, weather conditions or flight delays. Stochastic GAP models have
actually been examined to consider those variations into the model.

In this sub-section, several mathematical models found in the literature are
discussed, especially stochastic models. First, the basic deterministic

Chapter IV. Stochastic model of the gate assignment problem

138

mathematical model is presented before providing stochastic models from
the literature, as the type of model tackled in the proposed approach.

2.2.1 Basic Mathematical Programming model

The mathematical programming model [207] requires a set of mathematical
relationships that matches existing relations in a real problem. Many kinds
of mathematical programming models are identified in the literature. They
can be either linear programming models or otherwise non-linear
programming models. The constraint and objective function are controlled
by variables.

The traditional methodology for formulation in the literature of this
problem is right from the passenger's perspective in the manner that the
total passenger-walking distance is minimized as given by [201]. The
objective function is in fact to minimize the total passenger walking
distance. Three kinds of passengers are recognized: arriving passengers,
departing passengers, and transfer passengers; with three walking
distances to evaluate: the length between a gate and the arrival hall, the
length between a gate and the departure hall, and the distance that
separates two gates.

The classical formulation of the GAP as a mathematical programming
model is given as follows. We define:

G the set of gates

F the set of aircrafts

𝑍 Objective function value

𝑥𝑖𝑘 decision variable which is equal to 1 when aircraft i is assigned to gate k, and
equal to 0 otherwise

𝑎𝑖 The arrival time of aircraft i

𝑑𝑖 The departure time of aircraft i

𝑝𝑖𝑗 The total number of transfer passengers from aircraft i to aircraft j

𝑝𝑖0 The total number of arriving passengers of aircraft i

𝑝0𝑖 The total number of departing passengers of aircraft i

𝑤𝑘𝑙 The walking distance between gate k and gate l

𝑤𝑘0 The walking distance between gate k and the arrival hall

𝑤0𝑘 The walking distance between the departure hall and gate k

Given the notation defined above, the formulated GAP model that we will be based
on for our study as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑∑∑∑𝑝𝑖𝑗
𝑙∈𝐺𝑘∈𝐺𝑗∈𝐹𝑖∈𝐹

𝑤𝑘𝑙𝑥𝑖𝑘𝑥𝑗𝑙 +∑∑(𝑝𝑖0𝑤𝑘0 +

𝑘∈𝐺

𝑝0𝑖𝑤0𝑘
𝑖∈𝐹

)𝑥𝑖𝑘 (50)

Chapter IV. Stochastic model of the gate assignment problem

139

Subject to:

∑𝑥𝑖𝑘 = 1, ∀𝑖 ∈ 𝐹

𝑘∈𝐺

 (51)

𝑥𝑖𝑘𝑥𝑗𝑘(𝑑𝑗 − 𝑎𝑖)(𝑑𝑖 − 𝑎𝑗) ≤ 0, ∀𝑖, 𝑗 ∈ 𝐹, ∀𝑘 ∈ 𝐺 (52)

𝑥𝑖𝑘 ∈ {0,1}, ∀𝑖 ∈ 𝐹, ∀𝑘 ∈ 𝐺 (53)

The Objective function (50) minimizes the total passenger walking distance.
The quadratic component of the function is the total walking distance for
the transfer passengers while the linear component is for the arriving and
departing passengers. The constraint (51) must have every single aircraft to
be assigned to only one gate. The constraint (52) is a non-linear constraint.
It restricts that no two aircraft are assigned to the same gate at the same
time. The constraint (53) limits all the decision variables to be 0 or 1.

This problem can be solved by taboo search algorithm, to provide an
approximated solution. Various other researches attempted to enhance the
offered heuristic solution by strategies as stochastic neighborhood search
(Hakki et al. [205]). Multiple constraints can be integrated into the
formulation. This category of models known as static GAP model and are
unable to support any change in its parameters. In contrast, the GAP is
always susceptible to uncertainty and could change eventually. Therefore,
static models would not respond to support important variations in the
flight schedule and continue to be infeasible in such a case. The next sub-
section will treat the stochastic models of the GAP.

2.2.2 Uncertainty managing Models of the GAP

However, if the assignment is robust enough, it will help the operators react
to some uncertain events. Therefore, stochastic and robust GAP models
have been studied extensively as well. For example, Hassounah and Steuart
[208] show that planned buffer times could improve schedule punctuality.
Yan and Chang [209] and Yan and Huo [197] use in their static gate
assignment problems a fixed buffer time between two continuous flights
assigned to the same gate in order to absorb the stochastic flight delays.
Yan and Chang [209] also develop a multi-commodity network flow model
as well as Binod et al.[210], who gives additional objectives as minimizing
the fuel burn cost of aircraft taxi by type and expected passenger discomfort.

Shangyao et al. [211] develop a heuristic approach sensitive to stochastic
flight delays embedded in a framework that includes three components, a
stochastic gate assignment model, a real-time assignment rule, and two
penalty adjustment methods.

In [192] mathematical models and (optimal and heuristic) procedures are
proposed to provide solutions with minimum dispersion of idle time
periods for the GAP. More recently, Merve et al. [212] give stochastic

Chapter IV. Stochastic model of the gate assignment problem

140

programming models incorporating robustness measures based on the
number of conflicting flights, idle and buffer times, formulated as large-
scale mixed-integer programming problems and resolved by tabu search.

To handle uncertainty on aircraft schedule, Lim and Wang [188] modeled
GAP as stochastic programming model and transformed it into a binary
programming model that suffers from NP-hardness. They proposed a
hybrid meta-heuristic combining a tabu search and a local search for
resolution. They introduce unsupervised estimation functions without
knowing any information on the real-time arrival and departure time of
aircraft in advance. After that, we will use those functions as an input
parameter for our own model.

More alternative models for the GAP are presented and classified as below.

a. Simulation Approach to GAP

Among the first papers on the GAP, [206] elaborated an interactive
simulation method which in turn simulates arrivals and departures and
affects gates. In fact this method did not involve a mathematical
programming formulation of the problem; it outlined numerous necessary
constraints which were after formally detailed by other research workers.
It particularly attached aircraft-gate size constraint, airline priorities,
maximum gate occupation time, minimization of walking distance and
passenger delays, buffer times between flights allocated to the same gate,
and maximum delay which can be brought about a flight on the gate.

b. Fuzzy Logic Application

The Fuzzy logic methodology [213] is relying on a level of truth instead of
on the traditional true or false logic, also used in stochastic modeling
approaches. The levels of truth are given to uncertain data as a way to attain
the most appropriate reasoning.

Fuzzy logic was used by [214] to build a model integrating the uncertainty
of the GAP. The model considers that the idle times between affectations is
fuzzy. It is among the objectives that was indeed to maximize this idle time
which is weighted in the objective function implementing membership
levels determined by an adjustment function. The relationship between the
design of the adjustment function and the given results were considered,
and it was advised that the shape should be selected regarding the
priorities of a specified airport. The genetic algorithm (GA) was
implemented to resolve the fuzzy model of the GAP. Bringing out both the
fuzzy logic and applying the GA was impressive and offered appealing
results for the basic GAP model. A similar method using fuzzy logic and
bee colony optimization was found in [215].

Chapter IV. Stochastic model of the gate assignment problem

141

c. Expert Systems for the GAP

Expert system [216] is a software system that imitates a decision process as
an expert. Expert systems include rather different operating concepts when
compared to other mentioned approaches. This approach does not make
use of mathematical models, or any objective function or constraints. In fact
standard expert systems implement a knowledge base in the reasoning
procedure. The knowledge base is a pair of if/then rules, structured
regarding a human expert experience.

Expert systems were utilized to solve the GAP as found in [217]. Also, [218]
incorporates a hybridization between a linear programming model and an
expert system. The linear programming model covered just the main
constraints of the GAP. The standard solution attained applying the basic
LP model was altered applying the rules from the expert system.

d. The Gate Re-assignment Problem

The study provided in this chapter centers on the planning of the gate
assignment taking in consideration stochastic disturbances. However, the
plan which is produced earlier generally needs to be re-planned at the time
of the daily operations caused by unexpected cases, such as delays, bad
weather conditions, some emergencies. The problem which takes up on-
line changes in the planning at the time of flight operations is known as the
re-assignment problem, while other approaches are considered robust
when they handle eventual changes. Nevertheless, the re-assignment
problem is, in general, an online model of uncertainties. The re-assignment
problem is commonly resolved online, and, consequently, will involve
models and techniques which are quick to execute.

In [219] a genetic algorithm was offered to solve the re-assignment problem,
where one individual covered one likely method of assigning the flights
which must be re-assigned. The objective was in fact to re-assign the flights
impacted by a delay in order that an extra delay is minimized.

Paper [204] gives an extension of that offered in [219], where a genetic
algorithm with a uniform crossover which rarely leads to infeasible
solutions was provided.

In [220] a mathematical integer programming model of the re-assignment
problem was provided. The objective of the model is to decrease the total
deviation from the firstly planned schedule. An exact solution is given on-
line every time there was a need for re-assigning a flight influenced by a
delay. Positive computation times and good improvement when compared
to re-assignment worked by hand had been reported.

A related approach was provided in [221], where also a mathematical
integer programming model using as objective the minimization of the

Chapter IV. Stochastic model of the gate assignment problem

142

walking distance of transferring passengers, once re-assignment procedure
is performed. The model was resolved exactly just for the flights affected
by manifesting delays. Several additional mathematical models of
reassignment were reported in [222].

2.2.3 Datasets

The provided literature uses numerous sorts of datasets. Some authors
arbitrarily generated the input datasets [193] even while others produced
them employing real datasets like [197]. A number of the authors regarded
just a part of a real dataset (as they deal only with delayed flights as in [221]
or with flights and gates at one particular airport [191]) once they assumed
it is acceptable to implement it. Smaller sized datasets were commonly
much easier to solve, employed to validate the effectiveness of new
methods and models as in the proposed approach.

3. STOCHASTIC PROPOSED APPROACH OF THE GAP

Various GAP models and techniques are identified in the literature. Static
as well as stochastic models are developed. Working with methods with an
exact solution can be more suitable. However, [223] states that these kinds
of exact methods are actually ineffective to resolve real problems. This is
because flights in static models are allocated to gates depending on the
expected flight schedule using fixed parameters. Nonetheless, in real
operations, stochastic disruptions occur frequently, leading to real-time
adjustments of gate assignments and flight delays. Consequently,
stochastic methods have been widely motivated in recent researches.

Consequently, to build a significantly better gate flight assignment
approach, it has to include in the model the possibilities of stochastic flight
delays that may arise in real operations.

When it comes to stochastic environments, Markov Decision Processes
(MDPs) [142] have confirmed to be effective in optimal decision making.
Other derived version of MDPs like the multi-agent Markov decision
process [154] and the time-dependent Markov Decision Process are also
developed to manage some challenges in the standard GAP based MDP
introduced. Three MDP based models are presented in this section.

3.1 MDP MODEL

Markov decision processes (MDPs) are a discrete time stochastic control
process that can be used to model a sequential decision making with
uncertainty. MDP Takes into account reward of the current decision and
future opportunities. In this approach, an agent also considered as decision
maker is interacting with the world (the environment decision). At each

Chapter IV. Stochastic model of the gate assignment problem

143

time period 𝑡 of the planning horizon, the system state 𝑠 provides the agent
with all the information necessary for choosing an action 𝑎. As a result of
executing action 𝑎 with system state 𝑠, the agent receives a reward 𝑟 and
the system change to the next state 𝑠’ with a definite probability.

We use an MDP to represent the problem of gate assignment. Our
formulation will be more an airport-oriented approach. However, this does
not prevent having the possibility of a passenger-oriented approach with
MDP formulation. We made a choice to focalize on the airport-oriented
point of view in this thesis. We define some preliminary requirements
before giving the MDP model of the GAP.

3.1.1 Aircraft size constraints model

Figure 38 Example of gate disposition

An airport disposition, as in Figure 38, can be represented by a graphical
schema. Figure 39 gives an example of gates representation in an airport; it
can be represented as a constrained graph having as constraints distances
between gates, which will represent a constraint on aircrafts size to assign
to each gate. (see Figure 39)

Figure 39 Graph representation of gates

Let 𝐺 = (𝑉, 𝐸) be an undirected graph, where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} the set of vertices

𝐸 = {(𝑣𝑖, 𝑣𝑗)/𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} is the set of edges.

𝑀 = (𝑚𝑖,𝑗)
𝑛∗𝑛: Symmetric compatibility matrix defined as:

Chapter IV. Stochastic model of the gate assignment problem

144

 n represents the number of vertices of the graph.

 𝑚𝑖,𝑗 with 𝑖 ≠ 𝑗 is a quantitative constraint representing the minimum required
distance separation between two vertices 𝑣𝑖 and 𝑣𝑗 .

 𝑚𝑖,𝑗 = 0 Means that there is no constraint between vertices 𝑣𝑖 and 𝑣𝑗 .

Let: 𝑓 : 𝑉 → 𝐶 a function that associates to each one of vertices a certain value 𝑐 of C.
With 𝐶 = {1, … , 𝑘}.

So, the constraints to consider on this graph between every 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 are:

1

2
𝑚𝑖,𝑗 (𝑓(𝑣𝑖) + 𝑓(𝑣𝑗)) ≤ 𝑚𝑖,𝑗

2 (54)

3.1.2 Airport Configuration

In the GAP we have to optimally assign flights to gates with respect of
‘‘strict’’ and some ‘‘soft’’ constraints that we mentioned in the literature
section. We try here to respect these constraints under stochastic conditions
that occur with flights disturbance and causes what we call flight conflicts
defined as when two flights with overlapping ground times are assigned
to the same gate.

We define:

Set of Gates: A = {a1, a2,···, an}, Where n is the number of gates

Set of aircraft S = {s1, s2,···, sm}, Where m is the number of aircraft.

For each aircraft si (1 ≤ i ≤ m):

 ai: scheduled arriving time;

 di: scheduled departure time;

 a′i: real arriving time;

 d′i: real departure time;

b: buffer time between two consecutive aircraft assigned to the same gate. In other
words, the gate is locked for serving aircraft si in [a′i − b, d′i + b];

Definition: Gate Conflict [188] :

Two aircrafts si and sj have gate conflict if both the following two conditions hold:

 Aircraft 𝑠𝑖 and 𝑠𝑗 are assigned to the same gate;

 There is an overlap between the two-time durations during which the aircraft
will lock the gate, ([𝑎′𝑖 − 𝑏, 𝑑′𝑖 + 𝑏] ∩ [𝑎′𝑗 − 𝑏, 𝑑′𝑗 + 𝑏] ≠ ∅)

Chapter IV. Stochastic model of the gate assignment problem

145

Our approach does not take into consideration as variables the arriving and
departure time; those variables are only used to calculate the conflict
probability introduced later.

3.1.3 MDP parameters

We consider the flight arrivals as a stochastic process for the MDP. It takes
its values from the state space. Then, as outlined by the previous chapter,
MDP models will require to define the following four elements:

 A finite set of states S: This is given by a set of aircrafts S.

 A finite set of actions A: Each action corresponds to assign a gate a to a
flight s . If there is no best flight, the action consists of keeping the gate
assigned to the flight.

 Transition probability: it reflects the stochastic aspect of our problem. We
define transition probability as fellow :

𝑇𝑠,𝑠′(𝑎) = 𝜓𝑠,𝑠′ (55)

With ψs,s′ is the probability of having the two flights s and s’ in conflict if

they are assigned to the same gate. This probability includes the
possibilities of disturbances that make s and s’ in conflict.

Lim and Wang [188] introduced an estimation function to estimate the
expected value of the probability of the gate conflict between flight i and j.
they calculate (p(i, j)) : the expected probability of gate conflict for flights
which are assigned to the same gate.

We use the algorithm 24 to compute ψs,s′ based on E(p(i, j)).

 Reward function: is defined as follow :

𝑅(𝑠, 𝑎) = −∑𝜌𝑠,𝑠′𝜎𝑠,𝑠′

𝑠,𝑠′

+ 𝑃𝑟𝑒𝑓(𝑠, 𝑎) (56)

ρs,s′: a weight associated with the constraint mi,j cited earlier.

ds,s′ =
1

2
(f(s) + f(s′)) : Minimum distance separation between flights 𝑠 and

𝑠’ in the ground, and f a function that associate to each flight a scale of size
for the used aircraft; for example, f has a value from one to 5 according to
the size of the aircraft.

Thus:

{
𝜎𝑠,𝑠′ = 0 𝑖𝑓 𝑚𝑎,𝜋(𝑠′). 𝑑𝑠,𝑠′ ≥ (𝑚𝑎,𝜋(𝑠′))

2

𝜎𝑠,𝑠′ = (𝑚𝑎,𝜋(𝑠′) − 𝑑𝑠,𝑠′)
−1

 𝑒𝑙𝑠𝑒
 (57)

Pref(s, a): Preference value for choosing the action a for the flight s.

Chapter IV. Stochastic model of the gate assignment problem

146

Hence, the reward function gives a penalty for the flight that does not
respect the aircraft size constraints and a bonus to flights corresponding to
air company preferences.

Let D = (ds,s′)
n∗n a matrix where ds,s′ minimum distance separation

between flights s and s’.

We suppose as an initial solution of our algorithm the solution of the
determinist problem without delay consideration (initial schedule). Delay
probabilities can be calculated from the history of past flights or using some
other estimation techniques that will be discussed in the next paragraph.

Algorithm 24 : Algorithm for computing probabilities

Let the probability 𝝍𝐬,𝐬′ .

For s:=1 to n do

sum:=0

For 𝐬’:=1 to n do

sum:=sum+𝑬(𝒑(𝒔, 𝒔′))

 For 𝐬’ ≔ 𝟏 to n do

𝝍𝐬,𝐬′ : = 𝑬(𝒑(𝒔, 𝒔′)/𝐬𝐮𝐦

End

End

The transition probability does not depend on a, so the solution Vπ can be
simplified as follow:

𝑉𝜋 =
𝑅𝜋

𝐼−𝛾𝑃
 [224] (58)

To find a solution to our problem, we have to use the policy iteration
algorithm. We implement this algorithm using Matlab in order to evaluate
this approach of resolution.

3.2 MULTI-AGENT MDP FORMALISM

Multi-agent systems (SMA) are a branch of Distributed Artificial
Intelligence. Their applications are wide: humanities, game theory,
economics, and real-world applications such as air traffic control,
networking, and robotics. SMA approaches are interested in interactions
between autonomous entities. This situation is mostly studied in SMA as
the cooperation that involves complex mechanisms.

In SMA, we can have agents that collaborate to achieve their assigned goals;
so, interaction with other agents is crucial. Reinforcement learning is a

Chapter IV. Stochastic model of the gate assignment problem

147

promising technique for creating agents that co-exist (Yanco et al. [225]),
but the mathematical framework that justifies it is inappropriate for multi-
agent environments. The theory of Markov Decision Processes (MDP’s)
(Howard [142]), which underlies much of the recent work on reinforcement
learning, assumes that the agent’s environment is stationary and as such
contains no other adaptive agents. The theory of games (von Neumann et
al. [226]) is explicitly designed for reasoning about multi-agent systems.
Markov games (see e.g., Van Der Wal [227]) are an extension of the game
theory to MDP-like environments. Multi-Agent Markov Decision Processes
(MMDP) allows us to widen the MDP view to include multiple adaptive
agents with interacting or competing goals (Michael L. Littman [151]). Many
applications have been done with MMDP, even in the field of air transportation see
[152].

3.2.1 Multi-agent control mechanism

MMDP problem is formulated as a set of autonomous learners interacting
agents. These agents must learn to coordinate and to cooperate to achieve
their goal. Thus, this approach combines two areas: distributed to the
aspects of the interaction between agents and techniques of machine
learning (Machine Learning) associated with a point of view for
decentralized decision-making aspects (Peter Stone et al. [153]).

So, we use the formalism of Markov decision processes in the multi-agent
framework (Michael L. Littman [151]). We assume having a centralized
controller who has all information about the system (Figure 40), such as the
global state of the system, actions, and rewards, and even distributes
individual commands; therefore, the controller has the decision power and
maintains the information shared between agents.

Figure 40 Centralized control in MMDP

Chapter IV. Stochastic model of the gate assignment problem

148

We add real-time values to agent concept, to include time evolution into
the multi-agent system dynamics. A Time-dependent Markov Decision
Process (TMDP) is proposed by [150] to provide this extension. This model
consists of stochastic state transitions and stochastic time-dependent action
durations. The actions in the TMDP model are stochastic and time-varying:

𝑎(𝑡) ∼ 𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝑎(𝑡)) (59)

Resulting policies are actions to be performed by agents in every time
sequence. Then, we can enlarge the real planning window to problems
under uncertainty changing with time.

So, we consider in our formulation an assignment-based decomposition
approach that is intermediate between the joint MDP approach and the
independent agent approach. We assume a centralized controller that has
relevant information about the states of all agents to assign tasks and
allocates tasks and resources to agents based on task-level value functions
of agents. Once the tasks are assigned to agents, the lower-level actions of
agents are decided by the task-level value functions until the tasks are
reassigned by the central controller. We call such domains with multiple
tasks and multiple agents Multi-agent Assignment MDPs (MMDPs). Then,
adding time dependence behavior will give a more real representation of
our problem. Also, we are inspired by TMDP coupled with the MMDP
approach, to provide a new formalism of time-dependent Multi agent MDP.
This approach will help us to have real-time policies to apply in every case
of disturbance for the GAP problem.

3.2.2 Multi-agent MDP model

There are many contributions in the literature that are trying to deal with
uncertainty (see literature section). With the same target of building a
robust mechanism that can absorb flights disturbance, we develop this
approach based multi-Agent Markov Decision Process. Our choice for this
technical background to model the problem can be considered as the
preferred alternative due to its capabilities of stochastic decision
optimization on a discrete time Markov chain. Intelligent agents are
gaining wide acceptance as a useful and a powerful tool for solving
complex problems and seems to be a promising alternative. Also, the
advantages of multi-agent reasoning include distribution of processing,
support for the more flexible peer-to-peer model, decentralization of
control, the reduction of network bandwidth use, etc.

Using this theory, the centralized controller (see Figure 41) will have in
advance a solution composed of all decisions that can be made during the
planning horizon of flights assignment or allocation to gates. So, with
MMDP, no need for real-time optimization because we assume having
predefined solutions for all possible cases of disturbances. Thus, for a given

Chapter IV. Stochastic model of the gate assignment problem

149

gate allocation combination, the solution gives the best decision of gate
assignment to make.

Figure 41 Agents representation

Before extending the model of GAP to be time-dependent, an earlier
formulation like in [228] of the gate assignment problem with MMDP is
presented. The model is given by a tuple <K,S, A, P, R> as a follow (see
Figure 41):

The State S = S1 × · · · × SK is a vector giving the diverse feasible
combinations of flights indexed by its assignment position Si = (s1, … , sk),
where k is number of gates and si ∈ V. V represents the set of flights to be
allocated to gates during the planning horizon (one day in general).

The set of actions A = A1 × · · · × AK describes the set of joint actions for the
agent, Ai gives the set of local actions of the agent i. For every single agent,
performing a ∈ A𝑖, will match an action of allocation a flight 𝑎 ∈ 𝑉 to the
gate i.

Therefore, each agent is in charge of handling a particular gate, and a ∈ Ai
for agent i considers that there is a set of feasible flights to be affected to
gate i. Ai ⊂ 𝑉 that are appropriated to be allocated to gate i. This
supposition is regarded as a feasibility constraint that describes the possible
assignment.

Defining: Ai,𝑡 set of feasible flights for the gate 𝑖 at a discrete time t. Then:

Ai = ∑ Ai,𝑡
𝑡

 , (𝑖 ≤ 𝑘) (60)

P (s, s′, a) gives the probability of transition as :

𝑃: 𝑆 × 𝑆 × 𝐴 → [0, 1] (61)

It represents the probability of the going from state 𝑠 into another state 𝑠’
when agents perform a joint action a ∈ 𝐴 . This probability is viewed as the
possibility of modifying assignment combination from 𝑠 to 𝑠’ resulting
from executing a re-assignment action.

The probability P is integrating the complete stochastic information about
assignment of gates including stochastic delays as well as additional
disturbances that impact gate assignment and computed as a probability of
occurrence. This probability utilizes other estimation techniques to build
the probabilistic model of GAP under possible disruptions.

Chapter IV. Stochastic model of the gate assignment problem

150

The way how transition probabilities are defined is essential for building
the robustness of the GAP based MMDP model. The state transition
stochastic matrix P defines all likely possible state transition probabilities
(𝑝𝑖𝑗):

𝑃 = [

𝑝11 𝑝12 … 𝑝1𝑛
𝑝11 𝑝11 … 𝑝2𝑛
… … … …
𝑝𝑛1 𝑝𝑛2 … 𝑝𝑛𝑛

] (62)

Where:

∑𝑝𝑖𝑗 = 1

𝑛

𝑗=1

(𝑖 = 1,2, … , 𝑛), 𝑝𝑖𝑗 ≥ 0(𝑖, 𝑗 = 1,2, … , 𝑛)

Various statistical estimation methods could be applied to calculate state transition
probabilities described above. The method as in [229] is applied using statistical data
of state transition. Actions corresponding to flights combination are identified, and the
arising states are collected from data. The collected values from observed data are:
k1(𝑎) that corresponds to the case without disruption on state s1 performing an action
a, and k12 (a) that corresponds to the case of disruption observed between state s1 and
state s2 performing an action a. Therefore the transition probability between 𝑠1 and 𝑠2
performing an action a is estimated from observed data as :

𝑝(𝑠1, 𝑠2, 𝑎) =
𝑘12(𝑎)

𝑘1(𝑎)
⁄ (63)

 R (s, 𝑎, s’) corresponds to the reward acquired once transiting from a state 𝑠 to a state
𝑠’ performing an action 𝑎. This involves costs as negative reward or positive reward as
the benefits of each reassignment.

R is thought as: 𝑅: 𝑆 × 𝑆 × 𝐴 → 𝑅

Where its function is defined as:

𝑅(𝑠, 𝑎, 𝑠′) = −𝜆𝛿𝑠𝑠′𝑝(𝑠, 𝑎, 𝑠
′) + 𝛾(1 − 𝛿𝑠𝑠′)𝑝(𝑠, 𝑎, 𝑠

′) (64)
Where:

 𝛿𝑠𝑠′ = 1 if 𝑠 = 𝑠′ and 0 otherwise

 𝜆 Penalty unit

 𝛾 Recompense unit

 The main task of a decision maker is to compute a policy as:

𝜋: 𝑆 → 𝐴 (65)

A state-action sequence of decisions that maximize the expected total
reward is denoted as 𝜋∗, and corresponds to the policy optimal. V*(s) gives
the maximum cumulative reward attained by the optimal policy beginning
with states. Therefore, the optimal decision in a state s is to choose an action
𝑎 maximizing the sum of the immediate reward 𝑅(𝑠, 𝑎, 𝑠’) and the value V*
of the immediate successor state, discounted by γ (where 0 ≤γ< 1) :

𝜋∗(𝑠) = 𝑎𝑟𝑔 max 𝑎[𝑅(𝑠, 𝑎) + γV
∗(p(s, a))] (66)

Chapter IV. Stochastic model of the gate assignment problem

151

The solution concerns obtaining an optimal stationary policy π ∗ that
maximize for each state s and for all agents the expected discounted future
reward. π ∗ contains the optimal decisions to make in every gate
considering the assignment state.

MMDP model representing the GAP problem is solved using the value
iteration function determined by Howard algorithm (see [142]).

3.3 TIME-DEPENDENT MULTI-AGENT GAP FORMULATION

The real interest is given to sequential decision problems. The theoretical
aspect based on MDPs gives the best well-known tool to model and solve
them, giving optimal results. However, real-world problems have
additional and specific behavior, which is time dependence. MDP reflects
only fixed time steps between decision epochs, which can be easily
modeled as iteration steps. This property does not reflect the real evolution
of problems like the subject of gate assignment. To bypass this limitation,
Time-dependent MDP (TMDP) has been proposed in those models (see the
previous section). The transition between states is not instantaneous but
proceeds in a specific time t. Also in TMDP, the time is always observable;
optimal policies give to the agent the best moment to make a decision or
execute an action due to the state of the system.

Inspired by other occurrences like the truck dispatching system where
decisions about truck assignments and destinations are made in real-time
[230], choosing to benefit from temporal aspect and to project it to gate
assignment problem. Therefore, the rewards associated with action
outcomes in the time-dependent frameworks will be represented as time-
dependent functions including more real evolution information of the
problem.

Based on the same approach as the previous model, this sub-section
presents another model with Multi-Agent reasoning but including the time
evolution aspect of the gate assignment problem. The considered Time-
dependent Multi–agent Markov Decision Problem is illustrated in Figure
42.

Chapter IV. Stochastic model of the gate assignment problem

152

Figure 42 Agents distribution and temporal planning

Let K is the Number of agents; it also corresponds to the number of gates.
Taking the same actions definition from the previous model, the set of
actions A = A1 × · · · × AK defines the set of joint actions of agents, being
also for every agent i assigning a flight 𝑎 ∈ 𝑉 to a gate I, 𝑉 is the set of flights.

Additional temporal information will be included first in the Discrete set
M set of outcomes, of the form µ = (𝑠′µ, 𝑇µ , 𝑃µ) :

 𝑠′µ∈ S: the resulting state space

 S = S1 × · · · × SK gives different possible combinations of flights 𝑎 ∈ 𝑉.
 𝑇µ, ∈ {ABS, REL}: Type of the time distribution (absolute or relative).

- If 𝑇µ = 𝐴𝐵𝑆, 𝑃µ(𝑡’) will be a pdf over absolute arrival times of µ and

corresponds to distribution time associated to some gates assignment
configuration action.

- If 𝑇µ = REL, 𝑃µ(δ): pdf will be over durations of µ that corresponds to the

duration needed to establish the assignment configuration action.
 L: 𝐿(µ|𝑠, 𝑡, 𝑎) is the likelihood of outcome µ given statthe e of gate assignment 𝑠,

time t and action of next assignment to execute 𝑎 =(𝑎1, … , 𝑎𝑛), 𝑎𝑖 ∈ 𝑉.
 R: 𝑅(µ, 𝑡, 𝛿) is the reward for the outcome µ at time t with duration δ,

corresponding to reward of spending 𝛿 duration at time t with airport
assignment action µ . The reward includes as the previous model two
components :
- A benefit from the gate assignment outcome µ.
- A penalty to assignment outcomes µ that causing a possible disturbance at

time t and with duration 𝛿.

The purpose of defining TMMDP formalism of the GAP is to model and solve large
real GAP planning under uncertainty taking into account either cooperative aspect of

Chapter IV. Stochastic model of the gate assignment problem

153

the problem and property of time evolution. Resulting policies are actions to be
performed by agents in every time sequence.

3.4 EXPERIMENT

Experiment on each of the defined approaches is addressed in this section. It presents
the main results obtained after tests performed over several instances of gate
assignment problem.

3.4.1 Single Agent model experiment

We conduct a computational study to test the effectiveness of the
implemented algorithm. We use real data from Hong Kong International
Airport (given in [188]) to conduct our experimentation.

We consider for illustration 3 gates and 6 aircraft to assign in the time
window from 11 am to 5 pm, as shown in figure 13.

Table 13 Data from Hong Kong international airport

Flight Arrival Departure Route Airline

CA101/102 11:25 12:45 Beijing-Hong Kong-Beijing Air China

LH738/739 11:30 13:10 Frankfurt-Hong Kong-Frankfurt Lufthansa

TG600/601 11:45 12:45 Bangkok-Hong Kong-Bangkok Thai Airway

JL710/702 13:15 15:00 Osaka-Hong Kong-Osaka Japan Airlines

BR869/870 14:25 15:30 Taipei-Hong Kong-Taipei EVA Air

SQ862/861 14:20 16:00 Singapore-Hong Kong-Singapore Singapore Airlines

Therefore, early arrivals or flight delays frequently arise in real-time
operation. Depending to the schedules of two flights assigned to the same
gate, although there is no overlap of time durations when they occupy the
gate, there can be a possible conflict between the two flights as a result of
an early arrival or a flight delay. As an example in the table above, the first
flight has not been in conflict in the planning of the scheduled arrival and
departure time, but the second one became delayed and developed into
conflict with the first one. After JL710/702 flight arrives at Hong Kong
International Airport, it will be obligated to wait on the ramp or merely in
the air. Consequently, considering the real-time flight disturbance, we will
need to look at the arrival time and departure time of a flight as random
parameters instead of deterministic forms, in order to design a robust
airport gate planning to secure the system from uncertainty in operation.

We give first the values of E(p(s, s′)) calculated by Lim and Wang [188] as

follows:

Chapter IV. Stochastic model of the gate assignment problem

154

𝐸(𝑝(𝑠, 𝑠′)) =
max{𝑒(𝑠, 𝑠′)} − 𝑒(𝑠, 𝑠′)

max{𝑒(𝑠, 𝑠′)} − min{𝑒(𝑠, 𝑠′)}
 (67)

With: e(s, s′) is an estimation function to estimate the expected value of the
probability of the gate conflict between flight s and s’ only based on the
scheduled time gap between the two flights without considering the

historical data. Table 14 gives 𝐸(𝑝(𝑠, 𝑠′)) values.

Table 14 Matrix of E(p(s,s')) for numerical example

Using the algorithm given in table 15 we can calculate a stochastic matrix
associated with:

Table 15 Stochastic Matrix of 𝝍𝒔,𝒔′

In addition to this method, we can also estimate conflict probability by
either using simple inference estimation by interval, or as cited in the
literature [231], we can estimate those probabilities by a Monte Carlo
method.

As the initial policy, we adopt the solution given by the deterministic
approach of the problem based on linear programming. We take random
values of input parameters such as reward values. We try to evaluate by
experimenting the feasibility of the proposed resolution algorithm.

The initial policy is not feasible because of delay related to Flight
LH738/739 (figure 43), and we have a conflict in the assignment. So we take
this solution as initial policy in policy iteration algorithm and we try the
resolution.

Chapter IV. Stochastic model of the gate assignment problem

155

Figure 43 Initial policy

The solution given by our approach (figure 44) can handle this type of
disturbance and gives a robust solution to flight delays.

Figure 44 given solution

To evaluate performances of this approach, we have simulated with one
hundred flights and twenty gates, and the results were promising with a
time execution not up to 30 seconds.

The promising benefits of applying the Bellman theory are to have a robust
assignment policy that can be adopted in the case of stochastic flight delays,
which causes conflict in the assignment. We experiment within this
approach by a simulation of the related policy iteration algorithm. It gives
a solution in acceptable resolution time.

3.4.2 Multi-Agent Model experiment

Computational analysis is done to test the efficiency of the used Multi-
Agent MDP approach, and utilizing a simple data example to conduct
experimentations.

For simplification, data includes two gates and three aircraft to allocate in
a discrete window of time between 𝑇0 and 𝑇3.

𝑉𝑖 ∈ 𝑉 , is set of flights and for 𝑖 = 0 it match a vacant assignment gate.

As a sample, in this experimental instance exist three possible states:

𝑠1 =(𝑉1, 𝑉2), 𝑠2 =(𝑉3, 𝑉0), 𝑠3 =(𝑉0, 𝑉3). Two agents are affiliated to the two
gates, therefore actions are: 𝑎1 =(𝑉1, 𝑉2), 𝑎2 =(𝑉3, 𝑉0), 𝑎3 =(𝑉0, 𝑉3).

As an initial policy as in table 16, the solution provided first by a
deterministic approach to the problem from literature is used. Simple
values are used as input parameters only for simulation. The preliminary
policy is : 𝜋0 = (𝑎2, 𝑎1, 𝑎1).

Chapter IV. Stochastic model of the gate assignment problem

156

Table 16 Initial policy without disruption

 𝑻𝟎 𝑻𝟏 𝑻𝟐

Agent 1 Gate 1

Agent 2 Gate 2

It is designed regarding observations, transition probabilities, and rewards
are shown in figure 45.

Figure 45 Transitions and rewards matrixes

With 𝜆 = 𝛾 = 1.

𝑝(𝑠1, 𝑠1, 𝑎2) = 75% expresses a probability of disruption performing action 𝑎2 on 𝑠1,
which corresponds to the situation in Table 17 (𝑉1 is delayed and still allocated to gate
1 that 𝑉3 cannot be re-assigned, which results in conflict):

Table 17 Conflicting assignment in initial policy due to delay

 𝑻𝟎 𝑻𝟏 𝑻𝟐

Agent 1 Gate 1

Agent 2 Gate 2

Simple experimentation is done to demonstrate the feasibility of the suggested
resolution method.

𝑉1

𝑉2

𝑉3

𝑉
1

𝑉
2

𝑉3 Conflict

Chapter IV. Stochastic model of the gate assignment problem

157

The initial policy is not possible as a result of a delay of the flight 𝑉1 (Table 18), which
causes a conflict in gate allocation. Therefore this solution is used as an initial policy
in the policy iteration algorithm; then the algorithm is performed.

After the execution of the value iteration algorithm in MatLab, the provided solution
offers another order in gate assignment, optimal policy is 𝜋∗ = (𝑎3, 𝑎1, 𝑎1) identified as
in table 18:

Table 18 Optimal policy

 𝑻𝟎 𝑻𝟏 𝑻𝟐

Agent 1 Gate 1

Agent 2 Gate 2

Table 18 shows that the proposed approach can give a solution that is more
robust to delays. Compared with the sample agent MDP in [228], this
approach is more representative of the problem structure because of the
Multi-agent distribution of processing, that simplify its conception. Also,
MMDP gives gate assignment configurations in multi-dimensional policies
instead of having in MDP a single gate to flight assignment.

However, MMDP model gives only fixed time steps between decision
epochs (iteration steps), which does not reveal the real evolution of gate
assignment, where the time is different from the iteration step and always
observable. Next sub-section gives an experiment with time dependency.

3.4.3 Time-Dependent Multi-Agent Model experiment

In this sub-section, experimentation is conducted on the Time-Dependent
Multi-Agent MDP modeled earlier.

For simplification, every action possesses a single outcome. Hence actions
and outcomes can be directly recognized (𝑎𝑖 ↔ 𝜇𝑖) and actions thought to
be deterministic with regard to the discrete component of the state. This is
expressed as:

∀𝑖 Such that 𝑎𝑖 is feasible in state 𝑠, 𝐿(𝜇𝑖|𝑠, 𝑡, 𝑎𝑖) = 1

A real data from six flights of Hong Kong international airport is used, as
in Table 13; three gates are dedicated to those flights.

A Gate conflict is detected between flights LH738/739 and SQ862/861 due
to some disturbance.

Starting with a specific state of the system 𝑠1 corresponding to the airport
gate assignment: 𝑠1 =(CA101/102, LH738/739, TG600/601)

Moreover, exploiting other possible actions is done to apply adaptive
assignment to arriving flights representing a change in gate configuration.

 𝑎1 =(BR869/870, JL710/702, SQ862/861)

𝑉1

𝑉2 𝑉3

Chapter IV. Stochastic model of the gate assignment problem

158

 𝑎2 =(BR869/870, SQ862/861, JL710/702)
 𝑎3 =(JL710/702, SQ862/861, JL710/702)

Figure 46 below shows the state transition corresponding diagram.

Figure 46 State transition diagram

Just for simplification, all outcomes have the parameter 𝑇µ = 𝐴𝐵𝑆 . So,

outcomes with durations are not considered. The probability density
functions 𝑃µ are the defined for every outcome (see as example Figure 47).

Figure 47 probability density functions of µ𝟐

This probability includes stochastic information related to action execution.
Rewards are given in a way to score every action of assignment in the
airport.

So, implementing the resolution algorithm, the value iteration algorithm
gives an exact resolution [150]. The given solution consists of time-
dependent policy choosing outcome µ2 that avoids the disturbance
situation. Then, the solution given by this approach is robust and handles
flight delays. The fact of including the information about the possible
disturbances improve more the GAP solution quality.

Chapter IV. Stochastic model of the gate assignment problem

159

4. CONCLUSION

The proposed MDP model aims to constitute a robust mechanism that will
give a time valuated approach dealing with disturbances in every time
sequence. The provided solution is all of the decisions at every time that
could be performed at the time of the planning horizon of flights
assignment. This kind of model takes into account real-time optimization
because it assumes to have a solution at every time which manages
disturbances.

Experimentations on this approach using real sample data by simulation of
the associated value iteration algorithm provides the best feasible solution
that the deterministic model.

The aim behind this reflection is to offer to controllers at the airport a robust
time valuated solution that takes into consideration possibilities of gate
conflict, even if may take more time for resolution, it can manage the risk
of disturbances in gate assignment. Also; Markov decision processes and
its variants as proposed in this chapter, provide a suitable modeling tool
for the gate assignment problem. The model flexibility of MDP and its
stochastic behavior can imitate possible disturbances in the flight traffic.
Otherwise, a reinforcement multi-agent learning approach, like the HMM-
QPSO, which is given in chapter 2, can also be used to solve the problem as
a perspective and an extension to this work.

As an additional perspective, this reflection about this type of model can be
more extended to consider other real constraints of gate assignment.

160

CHAPTER V:
STOCHASTIC MODEL OF THE CREW

PAIRING PROBLEM AND A TUNED PSO

SOLUTION

Several complex scheduling problems are considered as challenging chore
in The airline industry; this includes a multitude of operational decision
and problems and deals with a significant amount of very interdependent
resources. In this chapter, we consider the problem of crew pairing, where
the crew have to be allocated to flights in a schedule with a minimal cost.
The objective behind crew pairing is to determine a set of pairings or also
known as Tours of Duty designed for a crew group to minimize the
planned cost of executing a flight schedule.

The primary objective that aims to guarantee optimal allocation of crews to
flights, should select the set of pairings with a minimal planning cost. The
frequently applied algorithms suppose having no disruptions in planning
operations. Nevertheless, airline operations usually experience stochastic
disturbances that must be considered to be able to minimize the real
operating cost. Most recently, impressive interest has been directed at
robust crew scheduling with the attention of the stochastic character of
disruptions such as bad weather conditions or maybe technical
breakdowns. The purpose is to use stochastic information to obtain more
robust solutions that got higher withstand disruptions. This sort of
resolution methodology is necessary since we can proactively consider the
impact of particular scheduling decisions. By finding out more robust
schedules, cascading delay impact is reduced. In this chapter, a stochastic
model of the crew pairing problem is provided based on multi-agent
Markov decision process; hence, the problem would be processed as
selecting the optimal policy to work with in stochastic situations of
disruptions. We also perform a computational study to make sure of the
validity of our proposed model. Additionally, to the stochastic model of
crew pairing, a resolution method is proposed as an application to the PSO
tuned method by HMM as an application to the first chapter.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

161

1. THE CREW PAIRING PROBLEM

The purpose of this section is to present an insight into the manpower of
airline planning generally. The focus will be on the components most useful
for the particular problem of crew pairing for airlines. Before starting crew-
scheduling problem resolution, series of planning problems have to be
solved in airline scheduling: first of all, decisions in the schedule design
problem identify the schedule of flights the airline manages. Every flight
has to be described by an origin, destination, departure date, departure
time and then a duration. Supposed the set of flights in the schedule, a
solution of fleet assignment model establishes which aircraft type executes
every flight. The goal is to maximize profit with respect to the number of
available aircraft and additional resource constraints. After that, the aircraft
routing problem searches for a minimal cost assignment of available
aircraft for flights. A routing is allocated to every individual aircraft in a
way that every single flight is included in specifically one routing. Routings
have to fulfill maintenance constraints. Once aircraft types are assigned to
flights, the aircraft routing problem is usually solved for every aircraft type
independently. In an identical method to the aircraft routing problem, the
crew pairing problem (or also called Tour-of-Duty planning problem TOD)
which usually includes building sequences of flights to crew the flight
schedule and assigns crew to flights in a minimal cost. A set of generic crew
pairings is built being subject to various rules in order that every flight is
covered precisely once. Within the supposition that the crew is only
permitted to operate a single aircraft type (that is commonly the case for
pilots, for instance) the crew pairing problem can likewise be solved
independently for each aircraft type. All of the flights in the given schedule
during the planning horizon are partitioned into sequences of flights. In
every single sequence of flights that a crew member can fly, it is known as
a Tour-of-Duty (ToD) or pairing, referred to as rostering in the recent airline
planning problems. The built pairings are assigned, along with other types
of activities, to the actual crew, in conformity with the qualifications and
already assigned activities, known as pre-assignments, of the crew. The
goal is to find feasible assignments that minimize costs taking into
consideration perturbations in planning. A problematic is addressed before
providing details of the planning process and crew pairing as follow.

1.1. PROBLEMATIC

Airline scheduling is associated with numerous complexities, integrating a
network of flights, several aircraft types, air traffic control limitations, finite
numbers of gates, environmental regulations, rigorous safety preferences,
a numerous of crew work guidelines and complex payment components,

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

162

and dynamic situations of the environment where passenger requirements
are uncertain, and pricing tactics are complicated.

Airline operations are subjected to diverse sources of disruptions like
airspace congestion, bad weather conditions, or some technical
breakdowns, etc. In many of these situations, the resource schedules could
possibly be disrupted, so that these are potential to become infeasible.
Disruptions require fast recovery measures that result in flight delays or
cancellations to recover many resources that are necessary for operating
flights (see [8]). Rather than taking the risk of online disruption
management, robust planning has been considered by some airlines as an
effective way of handling possible disruptions in their schedules.

The availability of crew is certainly one of the critical triggers of delays in
the airline operations. This can be especially true if the crew switch from
one aircraft to one other at the time of a duty period, most importantly if
there exists a minimal ground time in between flights. In the event of the
arriving flight that has become delayed for whatever reason, in that case
both equally that aircraft and the next aircraft that on which the crew is
swapping will leave late in time. This is a kind of delay propagation that
can trigger more severe disturbances in the operational flight schedule. Our
proposed methodology attempts to manage this problematic.

1.2. AIRLINE RESOURCE PLANNING PROCESS

In large airlines, the planning and scheduling of aircraft and crews is a
highly difficult process and is consequently commonly split up into many
planning phases. The planning process is detailed in Figure 48, which
displays the logical sequential sequence of these phases, where the solution
from one stage uses the data for the next. In fact, The four stages are
typically assigned to four distinct divisions which simultaneously work on
their part of the resource planning problem. Each one of these divisions
communicate to be able to adapt their plans to each other and to update
each other with variations. The first work of plans for a given planning
period may be updated several times until the last plans are fixed and
published. In the operational phase, these plans may still be altered. To
illustrate, if a flight may be canceled or delayed and crew may report sick.
Airlines deal with these problems by having some buffer resources (for
example stand-by crew) and by using robustness of the plans as one of the
problems to be optimized

Figure 48 The resource planning process in airlines

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

163

Each stage of the planning process (see figure 48) is described as follow :

 Timetable construction: First of all, the timetable is designed. Its
objective is to meet the goals of the marketing division with the
available fleets and with constraints on the network, such as the time
slots available for the airline at distinct airports. The result of this
process is an amount of flight legs (as non-stop flights) which the
airline chooses to perform.

 Fleet assignment: Second, the resolution of the assignment of aircraft
to the flight legs is made. The estimated income of a given flight leg
is determined by the size of the aircraft attached to the leg. Likewise,
some aircraft would possibly not have the ability to maneuver from
some airports. The main concern is to guarantee the feasibility of the
timetable provided the available fleet. If this is unattainable, the
timetable has to be modified definitely. Provided feasibility the
objective is to maximize the expected income decreased by
operating costs [232].

 Crew pairing: Third, pairings are built. A pairing is, in fact, a
sequence of flight legs for some crew member beginning and
finishing at the equal crew base. The crew member will often be
operating on these legs; however, a pairing may as well include
what is named deadheads, when the crew member is not operating
yet is just moved as a passenger. Legs are normally gathered in and
known as duty periods, which are split up by lay-overs or also
named overnight stops. In short and medium transport problems a
pairing may contain one as long as five duty periods. In long
transport problems, longer pairings are generally allowed. Legal
pairings have to satisfy a considerable amount of governmental
regulations and collective arrangements which differ from airline to
airline.

 Crew assignment: Fourth, it is about to delegate pairings to named
persons. This problem is referred as the crew assignment or recently
as the rostering problem. The objective is to cover all pairings along
with working preferences, vacations etc., also constraints like work
rules and regulations have to be satisfied. Additionally, crew costs
are to be minimized. If the crew is remunerated a fixed salary, the
problem aims to maximize the employment of crew so that to
minimize the number of crew members.

After fuel costs, crew costs represent the major immediate operating cost of
airlines. The crew costs rely upon the quality of the solution to the pairing
problem in addition to the assignment problem, however, since it is not
possible to replace with poor pairings in the assignment problem, it is
appropriate to expect that cost savings in the pairings problem will result
in cost savings in total crew costs. The next section presents the crew
pairing.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

164

1.3. CREW PAIRING

In general, a crew scheduling problem is split up into two problems. The
first is crew pairing, and the other is crew assignment. Primary crew
pairing problem is resolved, and good pairings are determined by
providing flight schedule as an input. Subsequent to solving crew pairing
problem, crews are allocated to each of these pairings. To build a good
complete solution, the input data as crew pairings should have superior
quality. A high quality of input data will not mean proper results although
with poor input data practical solution is unattainable. For this reason, crew
pairing is one of the most crucial stages of airlines planning even more than
the crew scheduling problem.

1.3.1 PROBLEM DESCRIPTION

Prior to detailing the problem a couple of definitions need to be provided.
A flight leg is a single nonstop flight. A duty period is mainly an operating
day of a crew that includes a sequence of flight legs with short rest periods.
Likewise, the duty begins with a brief period and terminates with a debrief
period. A pairing is a sequence of duties, and every pairing starts and
terminates at the same crew base. In a pairing there exists an overnight rest
between every single duty. Crew base is a city in which crews are stationed.
To shift a crew from one base to another base, a pairing may include crews
as passengers, and this sort of flight is called deadhead. Generally,
deadheads employed to transport a crew wherever they are required to
cover a flight or to go back to their residence base.

Commonly, the provided timetable which is usually the schedule of a
month to the crew pairing problem may include daily, weekly and monthly
flights. The crew pairing problem might also be described as daily, weekly
and monthly problem to manage all types of flights in the timetable. The
daily problem considers that all flights are flown each day. Every single
pairing is flown by a different crew, and it begins daily. Additionally, in a
daily problem, a flight cannot show up much more than on one occasion in
a pairing. To consider flights that are not functioning every single day of
the week, an altered version of the daily problem can be used, and it is
known as a weekly problem. There are likewise other flights distinct from
daily and weekly flights in the regular monthly schedule. Airlines may
possibly change a number of its flights that were previously in the timetable.
In this situation, a monthly problem is helpful to find crew schedule for
covering up flights during a transition among older and newer flight
schedule. In our research, the only daily problem is regarded.

In the crew pairing problem, the objective is to find a set of pairings from
all likely pairings. When choosing pairings, all flights should be covered
precisely once, and cost of the all picked pairings must be maintained at the
minimum. Also chosen pairings must be legal depending on the required
regulations.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

165

The problem is commonly separated into two distinctive phases: pairing
generation, and pairing optimization. Whereas pairing generation is simple,
even for comparatively small instances millions of legal pairings may be
generated. This big size problem produces a difficult to determine a
comparatively small set of legal pairings with a minimum cost that covers
all the flight legs in the schedule.

Applied Models for the crew pairing problem including deterministic and
stochastic models will be illustrated in the next section of literature.

1.3.2 Crew restrictions

The crew scheduling problem concerns setting crew members to flights.
Crew scheduling at airlines encounters two sorts of restrictions. First of all,
general restrictions on operating and flying time which usually applied for
all crew members; the second sort of restrictions is applied to individual
crew members or particular flights. For instance, those restrictions can be
some particular language requirements on specified flights or also the
unavailability of certain crew because of vacations.

To be legal, pairings have to follow governmental rules and collective
agreements, functional considerations, and contractual rules that
determine the structure and cost of legal duty periods and pairings, such
as:

 Each crew pairing begins at one crew base with a briefing of 60 minutes and
terminates at the same crew base with a de-briefing of 30 minutes.

 The minimum duration of a night rest is 10 hours.

 The maximal number of flying hours in a duty is 8.

 The maximum duration of a duty with flying tasks is 10 hours.

There are likewise other obligations besides pairing and duty rules just as
crew base constraints. For every crew base, there exist several values of the
total volume of flying hours that may be assigned to the crew. By working
with this rule, it is guaranteed that crews at different bases will all have
about the equal volume of flight hours for every single work month. In this
study, we assume pairings are generated according to those rules and
regulations. The next sub-section describes how pairing generation is
performed.

1.3.3 Pairing Generation

In pairing generation step, all likely duty periods are generated soon after the
generation of duties. All possible pairings are generated by incorporating these duties.
In duty generation, for every flight leg, a tree is built as their root node given by that
flight leg. The root node has children that symbolize every single possible linking flight
legs. At each consecutive level inside the tree, every single node has a child for nearly
every possible connection. The depth of the tree could be established by the maximum

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

166

permitted number of flights during a duty. By way of depth-first-search procedure,
going to every node of the tree, all feasible duty periods are determined. Each route
coming from the root node to some of its descendants in the tree denotes a duty period.
Workable duty periods are primary checked to make sure that they are legal according
to the legal restrictions. If a duty is legal, its own cost is computed [233].

Figure 49 Example of flight tree for a flight

Pairings could also be identified by pursuing the precise same procedure.
In such a case, a tree is built for all duty and duty periods are symbolized
by nodes in the tree (see Figure 49). Likewise once again all feasible pairings
are examined to not break regulation rules but exclusively the rules that are
unable to be used in duties since all applicable rules are previously
inspected when generating duties. One of many instances of those rules is
the fact a pairing should begin and end at the same crew base. Additionally
a pairing may not include a flight multiply. Therefore, any duty cannot be
pursued by another duty containing an equal flight with the first one. When
a pairing is legal therefore its cost is as well computed.

1.3.4 Crew Pairing Optimization

Crew pairing realizes minimum cost generic strings of duties that start and
finish at crew bases. Through this problem feasible pairings are evaluated
with regards to the costs of layovers (overnight stays on outstations), time
away from the base and various other incremental costs. Pairings are built
from duty periods which are usually mainly shifts or a day’s work. Duties
have to start from where a prior duty ended, except if dead-heading (crew
carried as passengers) is utilized. The crew pairing problem is crucial from
a reserve crew scheduling perception since it establishes how detrimental
uncovered crew-related delays could be, within conditions of cancellation
because of crew absence and just how uncovered delays might propagate
throughout the schedule.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

167

A solution to a pairing problem is a number of pairings so that all flights in
the planning horizon are covered as many times as required. We will
represent this as a fully dated solution as it identifies particular days for the
process of the pairings. This problem is not attacked straight, as the number
of flight legs inside a planning horizon of one month is, for instance,
multiple thousands. Instead, a sequence of three problems of which the first
two are estimated of the fully dated problem is solved.

The supposition of the daily problem is that the timetable is the same every
day, and practically all research on crew pairing treated this problem. The
implied supposition is that a good daily solution is the most difficult
component of the problem. Additional presumptions may be found
including the timetable that repeats itself every single week. In this chapter,
we consider the daily problem. A solution to the daily problem includes a
number of pairings so that every leg is covered during one day. From this
solution, it is possible to build a fully dated solution which usually repeats
itself daily.

1.4. ROBUST SCHEDULING

Besides disruption control on the day of operations, the situation of
disruptions could also be taken into consideration at the time of the
schedule construction. This is known as robust scheduling. The objective of
robust scheduling is to build schedules which stay feasible and close to
optimal cost within different modifications of the working environment.

Measures of the robustness of a schedule have been tackled in the literature.
The work in [234] differentiates two facets of robustness: stability and
flexibility. While stable schedules are most likely to stay feasible and near-
cost optimal in a varying functioning environment, flexible schedules can
be effectively designed to a varying operating environment. Robust
schedules also can be stable and flexible simultaneously. In the airline
subject, this involves that a schedule is stable given that it is still feasible at
reasonable costs with no kind of manual adjustments to the schedules. A
schedule is flexible if in the event of disruption recovery actions are likely
to be able to reestablish the operational feasibility of the schedule while not
noticeably raising costs. In the situation of crew and aircraft schedules,
reactionary delays may be regarded as a manual recovery action as well as
an automatic consequence if no manual recovery is performed. Thus the
number and duration of reactionary delays is a primary measure of the
stability and flexibility of airline schedules. Further measures of the
stability of a schedule are the amount of disruptions which are unable to be
automatically fixed by the reactionary delay. Supplemental measures for
the flexibility of a schedule are the costs of recovery as well as the impact
on other schedules as found in [235].

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

168

Figure 50 Robustness in air scheduling [235]

Figure 50 summarizes the robust measures in air transport, displaying the
relationship between disruptions for aircraft and crew schedules. Further
sources of prime delays and further recovery actions can be taken into
consideration. In our approach, we try out to build a more stable model of
crew pairing.

The different approaches dealing with crew pairing optimization problem
are defined in the next section.

2. LITERATURE REVIEW

Crew planning and scheduling problem is the designation of the number
of crew with particular skills and assignment of the crew to satisfy the
demand to ensure that total cost is minimized when regulatory and legal
restrictions are attained. The crew scheduling is an NP-hard constrained
combinatorial optimization problem, and therefore, it cannot be exactly
solved in an affordable computational time. Also, crew scheduling is easily
influenced by disturbances like delays or mechanical failure. This makes
the resolution more and more complicated when considering the stochastic
events that cause distributions.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

169

2.1 WORKS FROM LITERATURE

In the literature of airline scheduling, the crew scheduling problem has
been usually split into crew pairing and crew rostering [236]. Our focus is
granted to the crew pairing problem, which is described as selecting
pairings in a way that all flight legs are covered at minimum cost. Authors
in [237] have examined the major differences in terms of crew categories,
fleet types, network structures, rules and regulations, regularity of flight
timetables, and cost structures.

Usually, the aircraft routing problem is solved prior to the crew-pairing
problem, although the two problems are interdependent. However, pairing
construction and pairing assignment can be done in a single step, see
Claude et al. [238], provide solution techniques based on simple tree search
with a column generation and shortest-path algorithms.

Generally, the crew pairing problem is resolved in two stages: first the
generation of all legal pairings and their associated costs calculated. Then
the best subset of these pairings is selected to cover all the flight legs. [239,
240] proposed a smart enumeration and compact storage schemes for
pairings to be of moderate size.

The main challenge in this problem is that there is not any general method
to work well with all kinds of nonlinear cost functions and constraints [241].
Meanwhile, this problem goes to a complicated problem when the number
of inputs increases.

The crew pairing problem is commonly modeled as a set partitioning
problem [242]. Most of crew scheduling models observed in the literature
are thought to be deterministic in a stationary environment. Several
approaches deal with major difficulty in solving crew pairing that is a large
number of pairings, which render it hard to solve exactly.

[243] provided a linear cost structure to solve the daily crew pairing
problem applying a heuristic method for branching based on graph theory
to deal with large size problems. In [244], they chose a nonlinear cost
structure to each pairing cost to solve the crew pairing problem by column
generation with branch and bound approach. Formulated in [245] as an
integer nonlinear multicommodity network flow problem, crew pairing
has been solved as a set partitioning problem.

A new pricing scheme for the column generation approach is proposed by
[246]. [247] used a new deterministic formulation of the daily problem with
a nonlinear cost structure for each pairing.

[248] implemented the set partitioning model with additional constraints
and [249] proposed an integer programming model for the crew pairing
problem making use of CPLEX for resolution.

Most of this extensive variety of deterministic models have developed an
improvement in finding better crew schedules; however, crew scheduling
and air transport in general frequently have to deal with disruptions. In

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

170

several approaches, disruptions are regarded as a divided problem of crew
recovery or also called disruption management [8]. The objective is to
rectify the broken pairings so that the total process can return to the original
schedule successfully within a minimum period.

[250] applied a FIFO procedure to assign crew members to new flight
aircraft schedules. [251] evolved a heuristic-based search algorithm for the
recovery problem. [252] offered an integer programming model for the
problem with LP relaxations.

Recently, [253] considered the flight aircraft and crew rescheduling
problems simultaneously instead of sequentially. The objective is to
minimize the complete cost produced by flight delays and cancellations
and crew schedule adjustments.

Recovery plans could result in additional costs called reactionary, which is
usually larger than planned costs. Recent approaches from literature
addressed this problem by robust crew scheduling, where potential
disruptions are already included throughout the scheduling operation.

An approach to integrate stability into crew schedules has been given by
[254] using the expected costs computed by simulations of standalone
pairings. This approach limits delay propagations between pairings.
Another bi-criteria approach is given by [255] to resolve the robust crew
pairing problem by taking into account the stability features of crews
switching aircraft.

[256] makes use of a non-robustness indicator for iterative aircraft routing
and crew scheduling. [257] elaborates a crew pairing model with non-linear
stochastic recourse to evaluate probable delay propagations among both of
crews and aircraft.

Also in [258], a stochastic model is built with delay propagation integrating
an indicator for the stability of airline crew and aircraft schedules. The
formulation has been divided into linear problems connected by the
objective function.

A further robust formulation in [259] where authors suppose that flight and
connection times are random and vary within an interval. The resolution is
performed applying a Lagrangian relaxation to detach the nonlinear terms
in the sub-problem contributing to a new robust formulation of the shortest
path problem having resource constraints.

2.2 BASIC MODELS OF LITERATURE:

In this sub-section, two main models of crew pairing found in the literature
are presented, namely, one deterministic model and another stochastic
model.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

171

2.2.1 Deterministic model

A crew schedule is a set of pairings that partitions the legs to be flown by a
singular fleet. Crew scheduling problems are solved by generating pairings
and solving an integer program. The daily crew scheduling problem is
solved within the supposition that each leg is flown every single day.

The crew scheduling problem is generally modeled as a set partitioning
problem the deterministic crew pairing problem is identified as follow
[260]:

min∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 (68)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑃𝑥 = 𝑒 (69)

𝑥𝑗 ∈ {0,1} 𝑓𝑜𝑟 𝑗 = 1,2,… , 𝑛

The right-hand side vector e is a vector with m entries equal to one. Every
single row of the matrix P represents a flight leg, and every single column
symbolizes a legal pairing. The cost vector c is so that 𝑐𝑗 is the cost related

with the jth column or pairing. The binary decision vector 𝑥 is so that 𝑥𝑗 is

a 0-1 variable related to the 𝑗𝑡ℎ pairing. If a column j is designated 𝑥𝑗 = 1 ,

otherwise and 𝑥𝑗 = 0 . The matrix P is created as follows:

𝑝𝑖𝑗 = {
1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑙𝑒𝑔 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑝𝑎𝑖𝑟𝑖𝑛𝑔 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (70)

Further constraints on the crew-scheduling problem named the “crew base
constraints” may be requested at times. These constraints limit the total
number of flying hours that a crew can use away from its base location to
be inside specified bounds. These constraints significantly restrict the
allocation of available crews between flights and lead to the difficulty of
dealing with the crew scheduling problem. So that to resolve this issue, the
proposed approach in the next section will try to enhance the resolution of
the deterministic problem and reduce its complexity by a tuned PSO based
resolution.

2.2.2 Stochastic model

This method manages the assignments of the crew during the planning
phase to keep reducing the cost of the crew when establishing more robust
solutions by discovering pairings that are less sensitive to disturbance
planning. Late costs supplied in the deterministic objective function reflect
how delays impact constraints on flight legs.

Assuming that disturbances are observable with cost recovery, the
disturbance is modeled as a rise in the time of flight operations, just like
ground time and air time. These times are a random vector ξ(ω), where ω is

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

172

a random element in some space Ω. Each ω represents a scenario of
disruption. Moreover, for each ω there is a different use. Ω is finite and each
cardinal ω happens with probability 𝑝𝜔.

The formulation of the stochastic program will, therefore:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 +𝑄(𝑥) (71)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝐴𝑥 + 𝑏 (72)

𝑥 ∈ {0,1}, 𝑥 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

c: vector that represents the single expected cost of flying in a pairing
without consideration of other pairings. This is the cost of the link without
considering delays due to switching between aircraft crews.

Ax = b: Limits of coverage and also other constraints of the crew.

𝑄 (𝑥) = ∫ 𝑅𝜔 𝑄 (𝑥,𝜔)𝑃 (𝑑𝜔) (73)
𝜔

Where: 𝑄 is expected future actions due to disruptions in the original
schedule value.

This formulation is a standard two-stage stochastic program recourse (as in
[257]).

Also, [261] formulate a stochastic model with delay propagation measuring
for the crew pairing problem. They propose a decomposition strategy to be
able to solve the model by iterative crew scheduling and aircraft routing
adapted from [256].

[262] proposes recovery policies in a random environment for the crew
problem based on semi-Markov process.

3. TUNING RESOLUTION METHOD BY PSO

The aim of this section is to adapt the formulation of the HMM-based tuner
to the crew scheduling problem. Therefore, we depict the classical crew
pairing model, and we describe the PSO algorithm used to solve this model.
This resolution constitutes a direct application of the tuning method
described in the first chapter.

3.1 EXPERIMENTAL MODEL AND TUNING ALGORITHM

We describe both the model to resolve and the algorithm tuned for
resolution.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

173

3.1.1 The crew scheduling problem: Crew pairing

The objective of the crew scheduling problem is to determine a minimum-
cost set of pairings so that every flight leg is assigned a qualified crew and
every pairing satisfies the set of applicable work rules.

In particular, crew pairing is very often considered as the first part of the
airline crew scheduling procedure.

The crew pairing problem can mostly be formulated as a set covering
problem (SCP) or set partitioning problem (SPP). The SPP formulation can
be expressed as follows [260]:

𝑚𝑖𝑛 ∑ 𝑐𝑗 𝑥𝑗
𝑗 ∈ 𝑃

 (74)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{

∑ 𝑎𝑖𝑗 𝑥𝑗
𝑗 ∈ 𝑃

 = 1 ∀ 𝑖 ∈ 𝐹

𝑥𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝑃

 (75)

The description of the parameters is detailed in [260], as well as in the
previous section.

3.1.2 Binary particle swarm optimization

The binary PSO (BPSO) algorithm was introduced by [263] to enable PSO
to operate in discrete and binary search spaces. It follows the same
approach of the canonical PSO. Each particle i adjusts its velocity 𝑣𝑖 and
position 𝑥𝑖 in each generation t according to the following formula: (the
description of PSO parameters can be found for instance in [263]

{

 𝑣 𝑖

𝑗(𝑡 + 1) = 𝑤 𝑣𝑖
𝑗(𝑡) + 𝑐1 𝑟1 (𝑝𝑖

𝑗(𝑡) − 𝑥𝑖
𝑗(𝑡))

+ 𝑐2𝑟2. (𝑝𝑔
𝑗(𝑡) − 𝑥𝑖

𝑗(𝑡)

𝑣 𝑖
𝑗(𝑡 + 1) = 𝑠𝑖𝑔(𝑣𝑖

𝑗(𝑡)) =
1

1 + 𝑒−𝑣𝑖
𝑗(𝑡)

 (76)

{
𝑥𝑖
𝑗(𝑡 + 1) = 1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑖 ≤ 𝑠𝑖𝑔(𝑣 𝑖

𝑗(𝑡 + 1))

𝑥𝑖
𝑗(𝑡 + 1) = 0 𝑒𝑙𝑠𝑒

 (77)

3.2 GENERATION OF INSTANCES AND CONFIGURATIONS OF CREW PAIRING

Instance generation is an important issue in the tuning problem. In this
study, we have generated problem instances manually as following (table
20):

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

174

Table 19 Instances of the crew problem

Instance 1 2 3 4 5 6 7

Flight leg 10 14 20 20 35 40 49

Number of pairing 8 8 10 20 8 20 8

Concerning the definition of configurations, as presented in the literature
section, various approaches have been proposed to define PSO parameters.
In this paragraph, we have adopted a number of commonly used values to
define the possible configurations of the PSO algorithm. On the one hand,
for population size, we consider the work in [264] to define the first and last
configuration (100 and 10). The other one is the most adopted in the
literature. On the other hand, for the acceleration factors, the difference
between these configurations corresponds to the degree of exploration and
exploitation. That is, the first configuration enhances the exploration of the
algorithm at the expense of rapid convergence while the second one gives
a better ability to exploitation. The last one presents a trade-off between
exploration and exploitation [265]. In the two first propositions, we have
respected the proposition that 𝑐1 + 𝑐2 < 4 as in [61] and for the last one, we
have adopted 𝑐1 + 𝑐2 > 4 as proposed in [266].

Table 20 Configuration parameters

Parameter values 1 2 3

Population size 100 50 10

(𝒄𝟏, 𝒄𝟐) (2.5, 0.5) (0.5, 2.5) (2.05, 2.05)

We examine all possible combinations of these parameters of table 21 (nine
configurations) which are: [(100, (2.5, 0.5)), (100, (0.5, 2.5)), (100, (2.05, 2.05)),
(50, (2.5, 0.5)), (50, (0.5, 2.5)), (50, (2.05, 2.05)), (10, (2.5, 0.5)), (10, (0.5, 2.5)),
(10 ,(2.05, 2.05))].

3.3 TUNING TEST PHASE

After defining configuration and instances of the crew problem, tuning
simulations of the configurations over instances are executed according to
Algorithm 2 which is defined in chapter 1.

Before running tests, and given a maximum running time for the PSO
iterations number, we define two metrics to be used for performance
evaluation:

 Metric 1: defined as the cost at termination.

 Metric 2: defined as the running time.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

175

The tuning approach is tested over these two metrics. Also, a comparison
of running tests is made by a ranking function corresponding to mean
executions of a specific instance with a specific configuration. Then, the
instances can have metric values, based on information regarding cost and
running time on the crew scheduling problem instances.

Tests are performed twenty times on each configuration. Moreover,
instance and mean values of the metrics are retained and ranked according
to the order of each configuration performance on an instance. Algorithm
2 of the test phase is executed multiple times to obtain sufficient data for
the next phase.

Table 22 gives an example of the results obtained from one test phase
execution on instance 7:

Table 21 Example of one test output

Configuration Metric 1 Rank of Metric 1 Metric 2 Rank of Metric
2

1 391 4 0.50 6

2 244 1 0.53 9

3 289 3 0.49 1

4 301 8 0.49 2

5 293 5 0.51 7

6 339 9 0.50 5

7 298 6 0.50 3

8 244 1 0.50 4

9 300 7 0.51 8

This execution shown in the table above is executed twenty times, and
ranks are considered as a stream data of observation sequences and states
of HMM.

3.4 TUNING EVALUATION PHASE

We consider all execution data from the previous phase as an input for this
evaluation phase. As mentioned before, tuning is performed according to
two metrics which are the running time and the termination cost.

The stream data of ranks for the two metrics are considered as observation
sequence for HMM, and corresponding configurations for each rank are
states of HMM.

So, we execute Baum-welch algorithm on the data of the test phase. We
drop the results of the tuning in Table 23.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

176

Table 22 Representation of probabilities for each metric

configuration Metric 1 Metric 2

1 0.75 0.12

2 0.76 0.10

3 0.77 0.10

4 0.79 0.06

5 0.75 0.10

6 0.82 0.18

7 0.80 0.07

8 0.77 0.15

9 0.79 0.09

Table 23 shows the probabilities of each configuration to be the best (rank
one) for the two metrics: cost and run time. Maximum probability of rank
one for tuning by metric 1 of run time is given by configuration 6, and
maximum probability of rank one for tuning by metric 2 of costs is
configuration 6 also.

Figure 51 Comparison of default and tuned configurations by cost and runtime (instance 7).

Furthermore, as in [267], we adopt a graphical comparison between the
HMM-based tuner and the classical PSO (non tuned) as depicted in Figure
52. That is, after testing obtained best configuration for each metric and
comparing to a default configuration (Figure 51), the configuration given
by our tuning method gives greatest results in terms of cost and time. So,
HMM can successfully tune PSO metaheuristic for the crew problem.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

177

4. MARKOV DECISION PROCESS MODEL OF CREW PAIRING

Many contributions in the literature are trying to deal with uncertainty (see
the literature paragraph). With the same target of building a robust
mechanism that can absorb flight disturbance, we develop this approach
based on multi-Agent Markov Decision Process.

4.1 WHY MDP MODEL FOR THE CREW PAIRING

Schaefer et al. [268] talk about the possibility of modeling robust crew
scheduling under uncertainty based on a Markov decision process (MDP)
but assume that is intractable. As Schaefer describes, the state of the system
gives every aspect of the system that is relevant for operational decisions.
Thus, this state contains information about the current status and the
current operating environment such as weather, congestion, etc. The first
stage consists of the planning period, where we have the initial crew
schedule. Operational decisions are made in subsequent stages. The
number of stages is quite large since the planning horizon is the same as
the planning time and the state of the system can change within minutes.
Also, the action space consists of all possible, feasible decisions such as
canceling flights, rerouting planes and passengers, rescheduling crews, and
so on. So, the number of states and actions is so much big, which justifies
why this approach is intractable and can engender a precious resolution
time. Regarding how much the problem is critical and the fact that it does
not allow a wait time for a decision establishing in every stage, an online
resolution would not happen without serious risk.

Based on those critics of MDP formulation, we try here to give another
formulation of pairing problem in crew scheduling. We distinguish first
between the planning horizon and planning time. Therefore, the approach
given below has prior solution and does not wait until the online
mechanism.

4.2 THE MDP MODEL

This theory gives as a solution to a centralized controller, in advance, all
decisions that can be made during the planning horizon of legs assignment
to pairings. So, with MMDP, no need to real-time optimization because we
assume having predefined solution that is the best possible that can handle
disturbances.

We consider as a stochastic process for the MDP, the flight arrivals as in the
previous chapter. It takes its values from the state space. The corresponding
solution is defined by a policy given by resolving the following MMDP.

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

178

With this purpose, we formulate the pairing assignment problem as a tuple
<K,S, A, P, R> where :

The set of states S = { s1 ,… , sN} where S gives all flight legs object of our
problem, they form the set of flights to be covered. A flight leg is defined
as an airport to airport flight segment that starts at a specific departure time
and connects two stops of a flight. A state si ∈ S is a flight leg characterized
by departure and arrival time between two stations.

The set of actions A = A1 × · · · × AN would be the set of all possible
pairings, N is the number of pairings. A pairing is defined as a sequence of
flight legs or segments that begin and end at a crew base.

A pairing Al = {al1, … , alN} where Al ∈ A and ai ∈ {0,1} , ai = 0 if the
pairing l covers the leg i and 0 otherwise, in other words, ai defines if the
agent Agi will cover the leg i.

At a state si , possible actions are those pairings that can cover the leg i.

Al is a possible action in state si if ali = 1.

Also every agent Ag, can cover only one and unique leg.

The transition function gives the probability P (s, a, s′) of the system
transition to a state s’ when agents run the joint action a ∈ A from state s.
It corresponds to a probability of changing the assignment combination
from s to s’ resulting from executing a reassignment action. That means the
probability of reassigning the pairing a to the leg s′ while it was assigned
to s.

We assume that the probability P includes the completely stochastic
information for the pairing assignment problem. It aggregates possibilities
of disturbances such as stochastic flight delay or also other probabilistic
disturbances that affect pairing assignment. The computation of this
probability uses other techniques to form a probabilistic model of crew
disturbances.

R (s, a, s’) is the reward obtained by the system when changing from one
state s to a state s’ by executing the action a. This includes negative costs
and positive benefits of every reassignment.

We need so to evaluate policies in order to have the optimal policy and
solve the MDP problem. The two main algorithms used for resolution are:
value iteration (Bellman[141]) and policy iteration (Howard [142]).

We define the value function Vπ: S → , which represents the expected
objective value obtained following policy π from each state in S. Vπ is given
as follows [142] :

 Vπ(s) = R(s,π(s)) + γ∑ T(s,π(s), s′)Vπ(s
′)s′∈S (78)

At least one optimal policy exists, and all optimal policies have the same
value function 𝑉∗[142]:

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

179

 𝑉∗(𝑠) = max
𝑎∈𝐴

 (𝑅(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠, 𝑎, 𝑠′) 𝑉∗(𝑠′)𝑠′∈𝑆) (79)

(78) and (79) are called Bellman equations, where γ (0 < γ < 1) is a discount
factor that is used to give more or less importance to future rewards. This
factor is required to consider an infinite horizon discounted model
(Kaelbling et al. [166]) in which the number of iterations is in principle
infinite. However, the discount factor γ implies the convergence in a
polynomial number of steps (Givan[269]). Over iterations, the initial policy
is successively improved until an optimal one.

To solve the MMDP associated with the pairing problem, we use the value
function based on Howard algorithm (Howard [142]).

According to Howard [142], this algorithm is guaranteed to converge.

Then, the solution is about finding an optimal stationary policy π ∗ for all
agents that maximize the expected discounted future reward for each
state s . The π ∗ includes optimal decisions to make regarding the
assignment state. The optimal policy gives the set of optimal pairing to
select. It can be regarded as optimal actions to take for pairing assignment.

4.3 EXPERIMENTATION

We conduct a computational study to test the effectiveness of the
implemented algorithm. We use sample data from [240]

Table 23 FLIGHT SCHEDULE

Table 24 shows a flight schedule of six flight legs to be flown every day of
the month. A row in the flight schedule represents a single flight leg
defined by single flight number from one to six.

Just for illustration, only some simple rules are used to classify legal
pairings such as the number of duties in a pairing, the overnight rest (OR)
between duties and the total flying time of a pairing. Thus, legal paring are
described as follows (table 25):

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

180

Table 24 Legal pairings

The problem is first solved as a set partitioning problem (SSP) [239] to have
an initial policy according to a given cost associated with every pairing
assignment. The initial policy would be: pairings one and five. This solution
is optimal under the assumption of no disturbances and deterministic
resolution.

If we assume now having disturbance as delay in leg 3, and we have a
serious possibility of disturbances between leg 3 (arrives at 10:00) and 6
(departure at 11:00) included in the chosen pairing 5. So, if we choose this
policy, it will be a missed connection between 3 and 6. This probability is
included in our model as a transition probability between state 3 and 6
executing action 5.

Now we use the Howard algorithm of policy iteration [142] on the initial
policy. The result of resolution including potential probabilities of
distortions is pairings two and six. This is a better policy that can handle
disturbances between legs 3 and 6. The delayed flight leg in this new
resolution is isolated between two nights so the delay cannot propagate or
influence the scheduling.

Thus, the use of this MMDP approach allows to prevent disturbances in
advance, and construct a robust resolution method.

5. CONCLUSION

In this work, crew pairing problem is modeled as a Markov Decision
Processes (MDP). This approach aims to constitute a robust mechanism that
can absorb disturbances. Thus, the risk of taking real-time optimization can
be avoided as maximum as historical data is analyzed. The given priori
solution is the set of pairings that can handle the best disturbances in flight
operations. So, we do not take into account real-time optimization.

The experimentation on this approach by simulation of the related policy
iteration algorithm gives the best feasible solution.

The objective behind this reflection is to give to controllers at the airport a
robust priory solution instead of taking the risk of online schedule

Chapter V. Stochastic model of the crew pairing problem and a tuned PSO solution

181

modifications to handle uncertainty. Even if it takes more time to resolution,
it can exclude online treatment of optimization.

On the other hand, the experiments using the tuned PSO by HMM was
promising as a resolution method for a deterministic model of the gate,
where, the resolution complexity has been reduced. Otherwise, HMM-
QPSO can also be used as a perspective to solve the proposed MDP model
of the crew pairing using a reinforcement learning approach.

As perspective, more computational methods can be integrated to compute
effective transition probabilities and other input parameters for this
proposed approach. Also, more real constraints, restrictions and real data
have to be considered.

182

CHAPTER VI:
A REINFORCEMENT LEARNING MODEL OF

THE MAINTENANCE ROOTING PROBLEM

In airline scheduling, a multitude of operational decision and planning
problems need to be solved. We consider the problem of aircraft
maintenance routing (AMR) as a crucial component in flight operation.
Aircraft maintenance routing is of basic significance to the safe and efficient
operations of an airline. However, the timely efficiency of the airline flight
schedule is susceptible to various factors during daily operations. Air
traffic often undergoes some random disruptions that expose maintenance
routing to random flight delays, which have to be considered to ensure safe
and operational flight schedule.

The temporal Performance of the airline flight schedule is predisposed to
different factors during daily operations. Maintenance routing as an
important critical component of the flight schedule might be the subject of
random flight delays because of numerous factors as hard weather
conditions, airspace congestion, extended ground holding, etc. Flight
operations can be severely disturbed without considering such events.

A robust approach will help to prevent such unwanted situations of missed
maintenance checks. A decision support system data based on dealing with
the maintenance disturbances problem is developed targeting to assist
policy makers in handling disturbances. A Markov Decision process model
was selected in this thesis to remedy this problem and design the
maintenance needs of an aircraft taking past data information into account.
Maintenance actions are modeled with stochastic state transitions. This can
offer the opportunity to solve the maintenance routing problem
deliberating and handling flight disturbances through computational tests
on real data of a Moroccan airline company.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

183

1. AIRCRAFT MAINTENANCE PROBLEM

The maintenance of an aircraft and its elements is a necessary and
rigorously controlled duty to guarantee the safety of an aircraft and its
operations. Also, the aircraft maintenance is considered among the main
direct operating costs for an airline and constitutes an important factor in
providing a greater service quality. Maintenance, consequently, should be
executed at the minimum possible cost, offer the best level of service and
provide competitive delivery times without reducing quality and safety. To
attain these objectives, commercial aviation maintenance is arranged in an
organized and well-structured maintenance program of scheduled tasks.

Effective decision making of large maintenance systems is determined by
several independent sources of information and is thereby complex. The
current state situation of every device, daily, weekly and monthly plans of
maintenance, the state profile of the machine, maintenance costs, etc. The
system level control is the most practical to generate decisions during the
maintenance once having envisioned the information about the aircraft,
regarding departments and various other information as inputs. These
inputs are matched against production preferences which are established
by the company. In order to increase productivity, rise stability and
responsiveness, the maintenance operations in larger and complex airline
activities have to be facilitated by control, design and good management.

Delays and disruptions were a frequent concern during the achievement of
maintenance checks, keeping a significant operational impact on the overall
airline performance. It was also noticed that this issue was primarily due to
the complexity of managing the resources and the incidence of unplanned
maintenance tasks. It was also observed that the used approaches were not
as successful as wanted. Therefore, it is recommended to solve the problem
from a distinct and more effective perspective than all those previously
applied. However, due to the large multitude of flights planned every day,
that may easily attain thousands and thousands for a major airline.

To be able to considerably better realize the aircraft maintenance process
and to describe the effect and the relevance of this study, this section
provides the maintenance problem as contextualized, explaining the role of
the airline and the issues it has been working on. The importance and
significance of aircraft maintenance for airlines are due to the technical
character of the subject, and the important rules that are outlined with the
overall structure of aircraft maintenance. This section gives and identifies
the problem and its context.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

184

1.1. PROBLEMATIC

The most challenging issue in the AMR problem is that before an aircraft
goes in into a heavy maintenance check, a complete plan is identified
indicating all the scheduled maintenance tasks to execute and identifying
the needed resources for achieving them. However, during the execution
of the maintenance check, especially at the time of the inspection stage,
damage and failures are identified that have to be fixed by programming
further maintenance activities that are not regarded in the first plan. These
unscheduled tasks stop the planning and charge of the whole maintenance
service as they require additional resources and force adjustments to the
initial plan, causing disruptions throughout the execution of the service,
which for most cases leads to delays by the end of the maintenance check.
In contrast, delays can also cause a disruption in the overall airline planning
and therefore, a perturbation in the execution of scheduled maintenance
checks. Delays can trigger a supplementary operational cost of
maintenance services were not associated with only one company. When
disturbances produce, it is difficult to realize the planned maintenance task.
The controller at the airline has to establish another maintenance routing
depending on airline policy, to lower the negative impact of these
perturbations.

The large mass data existing for the airline regarding previously past-
executed plans and operations have an important factor to examine and
avoid that kind of maintenance routing failures. The target of our research
is on enhancing the robustness of a planned schedule by redistributing
these maintenance possibilities, while simply building limited adjustments
to the originally-planned maintenances. Our objective is to minimize the
overall likely number of maintenance failures. Operationally, this supplies
a large chance of having the ability to disturb tails to guarantee
maintenance feasibility without additional disruption to the planned
maintenance checks.

1.2. AIRLINE PLANNING PROCESS OF MAINTENANCE

To start the planning process, the airline establishes its schedule of daily
flights for a time period, such as a quarterly schedule. Offered the set of
flights, the fleet assignment problem can be solved, assigning every single
flight a certain aircraft type. Right after fleeting is done, the schedule could
be decomposed by fleet type and for every single fleet type, the crew
scheduling problem and maintenance routing problems are then resolved.
This planning process is described in figure 52.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

185

Figure 52 typical airline planning scheme

During maintenance routing, the lines of flight considered as flight legs are
built. These legs are then utilized to create feasible aircraft rotations for
maintenance checks.

1.3. MAINTENANCE PROBLEM DESCRIPTION

Ahead of solving the aircraft maintenance routing, an airline schedule is
created. It is absolutely built as being a set of flight legs that the airline
makes to fly. Then, it is about to identify allocated resources to the fly
schedule properly. The airline needs to specify equipment types just like a
Boeing 757, etc, and then each leg is assigned to an aircraft having
constraints satisfied. This is known as the fleet assignment. The latter is
supplied to the aircraft maintenance routing process so that each individual
aircraft can be allocated particular routes between those provided for its
special type, with the full satisfaction of maintenance constraints.

Aircraft maintenance must be planned, started performing and controlled
as outlined by prescribed procedures and standards, achieving extremely
specific and rigid requirements, seeking to maximize system performance
at the minimum cost [270]. [271] clarifies that aircraft maintenance is
organized as a systematic and scheduled program that is mutually
authorized by the aeronautical authorities and manufacturers of aircraft
and parts. The maintenance program definitely identifies how, and when,
every specific scheduled maintenance task needs to be performed. The
achievement of this program avoids damage, and deterioration of an
aircraft and its components, conserving the typical levels of reliability and
guaranteeing aircraft safety [272].

It was noticed that even though the usage of information systems for
controlling resources and handling the process, once the volume of
unscheduled maintenance tasks begins increasing above the level
originally predicted, handling the service turns extremely difficult, since
one change may impact the execution of different tasks or the availability
of resources for several other activities. The whole maintenance process
gets into a crucial alert, because of that immediate issues resolution can
malfunction the problem even more. For this intent, this approach is
provided in this chapter.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

186

1.4. MAINTENANCE TYPES

[273] mentions that a maintenance plan contains three primary components:

 Aircraft inspections which consist of repeated routine inspections,
minor checks, and tests;

 Scheduled maintenance that includes systems servicing, replacing
parts, routine overhauls, and particular inspections;

 Unscheduled maintenance, targeting to solve unpredicted failures,
generally noticed from inspections.

Maintenance regulations and constraints require for example that all
aircraft undergo maintenance after flying a certain number of hours. Every
aircraft involves several types of aircraft maintenance as checks. The checks
are known as A, B, C, and D that change in their frequency, scope, and
timeframe. Among these types of checks, just type A are considered as
routine maintenance that needs to be frequently done (every sixty-five
flight hours) and inspects all the main systems. B checks are performed
every 300 to 600 flight hours and involve a visual examination and
lubrications. Level C and D maintenance checks are commonly classified as
heavy maintenance and are usually carried out about once every one to
four years because of the high associated workload. The C and D sorts of
checks take more than 24 hours and are simply modeled by reducing the
number of available aircraft. Therefore, A and B checks are integrated into
maintenance routing model, and their maintenance constraints are
incorporated. When a check is not performed inside the specified period,
the aircraft is not allowed to fly. Hence the importance and criticality of
satisfying those maintenance requirements.

Likewise, maintenance is mainly separated into two main strategies (as in
figure 53):

 Preventive maintenance: this approach of maintenance is performed
usually based on maintenance manuals in certain time periods
described by the original aircraft producer. The preventive
maintenance keeps the aircraft and helps prevent defects from arising.

 Corrective maintenance: When a deficiency is definitely discovered,
the executed maintenance is called corrective maintenance. The
purpose of corrective maintenance is to place the aircraft on condition
again.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

187

Figure 53 Maintenance types

The particular maintenance routing problem is to find a routing of the
aircraft that will meet the short-term procedure maintenance prerequisites
(Checks type A and B).

1.5. RESOURCES MANAGEMENT IN MAINTENANCE

Within the heavy maintenance, many resources are in continuous
connection: aircraft, ground services, parts and materials, tools and
equipment, technical details and workers. [274] recognizes operators,
equipment, documentation, and tasks as the primary communicating
components in aircraft maintenance systems and mention that these
components communicate over time with each other and with an amount
of exterior circumstances. [275] additionally discuss that aircraft
maintenance is a complicated system, where staff performs diverse tasks
with critical time limitations, small feedback and environmental and
working conditions that are sometimes difficult. Figure 54 depicts the
interactions and interdependence concerning the different resources
included in main checks.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

188

Figure 54 Maintenance Resources management

As a result of the large variety of distinct resources associated with the achievement of
heavy maintenance and, moreover, due to the complicated interconnection among
them, the planning, supply, and control of all resources should be properly handled.
A deficiency in the supply of one resource can impact the control of the others and
consequently impact the whole maintenance services. [276] states that maintenance
planning is important to reduce aircraft downtime while keeping positive efficiency
and inventory costs since it handles the execution of maintenance tasks, work
synchronization, tools and the supply of needed parts..

1.6. MAINTENANCE TASKS

Scheduled maintenance tasks (see Figure 55) are generally appointed accurately since
they, and their preferences, are plainly identified in the maintenance program.
Therefore, in the distinction of the short-term program, it is conceivable to forecast and
plan the resources included and every single activity that should be performed. In this
context, [277] clarifies that planned maintenance function is expected and regular, and
consequently can be generated with a reasonable level of precision. However,
additional highlights considering that their scheduling can call for calculating aircraft
utilization and required maintenance periods much before the maintenance check that
generally causes a sub-utilization of the aircraft and the various other resources.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

189

Figure 55 Maintenance tasks

In addition, inside a scheduled maintenance system, unscheduled and
unexpected activities, typically called non-routine tasks, occur at the time
of the operation of aircraft. As [277] claims, unpredicted behavior out of
specification normally happens but is hard to predict. Also in [278], the
authors stated that in fact about a half of most of the maintenance activities
are unexpected and unscheduled occurrences.

The next section will describe the most relevant maintenance approaches
from literature.

2. MAINTENANCE LITERATURE

The main objective of this section is to review the literature of the aviation
industry, mainly focused on aircraft maintenance. Before addressing the
different approaches from the literature, the most common maintenance
model of aircraft maintenance rooting is presented.

2.1 GENERAL MAINTENANCE ROOTING MODEL

Before giving our model approach and formulation, we provide first light
on the most commonly used model of maintenance routing. We will base
on this approach to describe our own method in the next section.

As mentioned before in the literature, there are two different ways to model
the maintenance routing. The first is a network-based model, while the
second type is the string based model. The approach described in this
chapter is a string based model as introduced first time by [279] and
adopted by many types of research as in [280]. The choice of this model is

Chapter VI. A reinforcement learning model of the maintenance rooting problem

190

for its convenience to integrate disturbance management. Mainly because
delays propagate through the aircraft routes, it is hard to make use of
network-based models to monitor delay propagation. Thus, a routing
string based model is considerably more suitable. Thus, a routing string
based model is considerably more suitable. Such type of model, a
formulation for robust aircraft maintenance routing with the aim to reduce
overall estimated propagated delay, is provided in the next section. A
string is a sequence of connected flight legs that start and finish at
maintenance stations (probably distinct).

Let S be the set of feasible strings, 𝐹 be the set of daily flight legs, F+ be the
set of flight legs originating at a maintenance station, and F- be the set of
flight legs terminating at a maintenance station. We denote the set of
ground variables (including the overnight or wraparound arcs to ensure
that the flight schedule can repeat daily) as G, the set of strings ending with
flight leg i as S, and the set of strings beginning with flight leg i as S. We
have one binary decision variable x for each feasible string s. We have
ground variables denoted by y, which are used to count the number of
aircraft on the ground at maintenance stations. Let 𝑎𝑖𝑠 s equal 1 if flight leg
i is in string s, and equal 0 otherwise. Ground variables 𝑦𝑖,𝑑

+ equal the

number of aircraft on the ground before flight leg i departs, and ground
variables 𝑦𝑖,𝑑

− equal the number of aircraft on the ground after flight leg i

departs; ground variables 𝑦𝑖,𝑎
− equal the number of aircraft on the ground

before flight leg i arrives, and ground variables 𝑦𝑖,𝑎
+ equal the number of

aircraft on the ground after flight leg i arrives. 𝑟𝑠 is the number of times
string s crosses the count time, a point in time when aircraft are counted,
𝑝𝑔 is the number of times ground arc g crosses the count time, and N is the

number of planes available.

The String model is as follows:

min ∑c𝑠x𝑠
s∈S

 (80)

Subject to:

∑a𝑖𝑠x𝑠
s∈S

= 1 ∀ i ∈ F, (81)

∑ x𝑠 − 𝑦𝑖,𝑎
− + 𝑦𝑖,𝑑

+

s∈S𝑖
+

= 0 ∀ i ∈ F+, (82)

−∑ x𝑠 − 𝑦𝑖,𝑎
− + 𝑦𝑖,𝑎

+

s∈S𝑖
−

= 0 ∀ i ∈ F−, (83)

∑r𝑠x𝑠
s∈S

+∑p𝑔y𝑔
s∈G

≤ 𝑁 (84)

 y𝑔 ≥ 0 ∀ g ∈ G,

x𝑠 ∈ {0,1} ∀ s ∈ S

Chapter VI. A reinforcement learning model of the maintenance rooting problem

191

The objective (80) concerns the minimization of the expected total full cost
of the selected strings. Constraints (81) guarantees that each flight leg is in
exactly one string as cover constraints. Constraints (82) and (83) ensure the
flow balance constraints between the number of aircraft arriving at and
departing from a specific location. Constraint (84) is considered as the
counting constraint that ensure the total number of aircraft being used at
the count time will not surpass the number of aircraft in the fleet.
Constraints (83) and (84) make that the number of aircraft on the ground is
non-negative and the number of aircraft allocated to a string to be 0 or 1,
since variable y is a sum of binary x variables.

2.2 AIRCRAFT MAINTENANCE STUDIES

Generally solved following the fleet assignment, maintenance routing
problem is to identify how an specific aircraft is maintained within the
rotation of overall maintenance constructed as checks [281].

Two main types of maintenance routing models are found in the literature
[282]. First called Flight-Based Formulation Models and the second is
considered as String-Based Models.

As a flight-based model, [281 presents the aircraft maintenance routing
problem using a mathematical programming formulation, and it is viewed
as an asymmetric traveling salesman problem. In a simplified connection
network, arcs symbolize possible connections, and nodes symbolize flight
segments. The goal is to maximize the profit resulting from constructing
specific connections, referred to as through value. The presented model can
capture several maintenance considerations. It is solved with a Lagrangian
relaxation procedure and provides near-optimal solutions.

In [283], the rotation of aircraft planning problem as a mathematical integer
programming for some European airline. The objective function is defined
to decrease the risk induced by the total delay, which is supplied by two
factors: one by distinct flight connections and another by using the total
path made by flight legs. the problem is solved using a Lagrangian
relaxation approach.

Network flow models are offered in [284] to deal with the aircraft
maintenance routing problem in case of single type maintenance. This
model constructs a number of maintenance arcs without having overnight
arcs. It begins at the end of every day at a station and finishes at the start of
the exact same station timeline. The objective function is 0 since it only
regards the maintenance routing problem just as a feasibility problem. The
Solution is a set of arcs utilized in the optimal rotation recognized as a Euler
tour. Therefore, a polynomial time algorithm is applied to determine the
arcs sequence. Two model developments have also been supplied in [284]

Chapter VI. A reinforcement learning model of the maintenance rooting problem

192

to generate the profit or cost of the maintenance routing problem by
forming certain operational arcs on the time-space network.

A collection of algorithmic solutions are listed in [285] and [286]. They
considered a configuration where one-day trips are fixed. An algorithm of
polynomial time is supplied for obtaining a three-day maintenance Euler
tour once there is determined one in a flight network.

Also, [287] gives another formulation of the operational aircraft
maintenance routing problem, that incorporates a set-partitioning where
decision variables symbolize feasible aircraft routes. This formulation
contains maintenance of resource availability constraints, and two sets of
equivalent resource constraints are made in this model. To solve the
problem, a branch-and-price algorithm is used with changed branch-on-
follow-on rule.

The second type of models, String-Based Model was proposed in [279] to
solve the aircraft maintenance routing problem for a single maintenance
type. A group of connected flights determines a string, which match some
conditions. This group needs to start and finish at maintenance stations
having a maintenance check in the end. The group should meet
maintenance feasibility and the flow balance. The minimization of the cost
of the selected route strings is the objective function.

A model for dealing with the weekly schedule is given by [288] with two
types of maintenance. Primarily, a set of one-day trips is built; then a time-
space network is constructed on those trips. The model constitutes a flight
segment where included by just a single trip side constraint for two types
of maintenance.

Many researchers have targeted on resolving over than one optimization
problem simultaneously. This produces better incomes and reduces the
cost for the airlines. The aircraft maintenance routing problem has been also
associated with different integrated scheduling problems.

In [289], A multi-commodity fleet assignment model is provided based on
a set of constraints for maintenance routing. The two types of maintenance
have been considered in their approach, namely the long and short
maintenances.

Several works present the integrated planning for maintenance routing
associated with crew pairing problems. Like in [290], the aircraft
maintenance routing problem is seen as a feasibility problem where the
crew cost is the majority in the total cost of the integrated problem.

A standard integrated model for the crew pairing and the maintenance
routing problems was provided in [291]. This model ensures maintenance
feasibility. The cost of maintenance routing is taken into consideration
explicitly in this model.

An extended crew pairing model was offered in [292] to solve the combined
maintenance routing problem and crew pairing.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

193

Researchers are starting to give more consideration to potential delays and
disruptions in the routing problems of airline transport. In a previous work
[293], historical data as problem instances are used to tune and improve the
parameters of resolution algorithms in airline transport. Other works have
been applied Markov process in the same field of airline transport as a
robust model to handle possible disturbances like in [152] and [294].
Another approach is given by [280] based String model tried to reduce
delay propagation in the maintenance routing by intelligently routing
aircraft. This problem was formulated as a mixed integer programming
problem with stochastic generated inputs.

Serval approaches and formulations for maintenance routing problems
have been well addressed in the literature. Each one has its advantages and
drawbacks. Our approach uses another different manner to model and to
resolve this problem, based on historical data to extract more robust
solutions. Our data-driven method relies on a constrained Markov process
model. Theoretical backgrounds about our chosen methodology will be
described in the next section.

3. MARKOV DECISION PROCESS MODEL

3.1 FLIGHT DELAYS PROPAGATION

As mentioned before, a leg is a non-stop flight from an origin to a
destination with specified departure and arrival instances. Moreover, a
string is a sequence of connected flight legs that begins and ends at
maintenance stations.

As shown in Figure 56 below, a delay in the flight leg 𝑓1, it will be 𝑓’1 and
causes departure delay for the next flight 𝑓2 in the same string that is using
the same aircraft (to be 𝑓’2) if there is not enough minimum turn time (MTT)
between these two flights.

Figure 56 Delay propagation

Delay that arises when the aircraft used for a flight leg is delayed on its
prior flight leg. This delay can be propagated to influence overall aircraft’s
routing.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

194

Due to the fact that every aircraft routing is a sequence of flight legs flown
by a single aircraft, an arrival delay can lead to a departure delay if there is
not sufficient slack between two successive flight legs in the routing. This
is called delay propagation; this event leads to many disruptions in air
traffic, regarding crews, passengers as well as maintenance routing.

3.2 DELAYS DETECTION FROM DATA

Maintenance strings are composed of flight legs. Then, each propagated
delay is a feature of maintenance routing. Therefore, while historical values
for propagated delay can be calculated for every flight leg in current
routings, no like values are readily available for routings that have not
really been earlier realized. Nevertheless, just because independent arrival
delay is not a function associated with routing, independent arrival delay
can be computed for each flight leg monitoring actual routings of every
single aircraft. Total propagated delays of flight legs in any routing will
then be constructed from historical aircraft data, as described following in
the algorithm 25. Previous work has given a similar notion of delay
propagation in [280].

Let TAD be the total arrived delay, IAD is the independent arrive delay and
PD in the propagated delay.

Algorithm 25: Delays extraction from DATA

Input: Strings S, flight legs F, Flights data history DATA(𝑻𝑨𝑫, 𝑺𝒍𝒂𝒄𝒌)

for each 𝒊, 𝒋 ∈ 𝑭 from DATA

𝑷𝑫𝒊𝒋 = 𝒎𝒂𝒙(𝑻𝑨𝑫𝒊 − 𝑺𝒍𝒂𝒄𝒌𝒊𝒋, 𝟎)

end for

for each 𝒊 ∈ 𝑭 from DATA

𝑰𝑨𝑫𝒋 = 𝑻𝑨𝑫𝒋 − 𝑷𝑫𝒊𝒋

end for

for each 𝒔 ∈ 𝑺

 for each 𝒊, 𝒋 ∈ 𝒔

 if (𝒊 is the first)

 𝑻𝑨𝑫 = 𝑰𝑨𝑫

 Else if

𝑷𝑫𝒊𝒋 = 𝐦𝐚𝐱(𝑻𝑨𝑫𝒊 − 𝑺𝒍𝒂𝒄𝒌𝒊𝒋, 𝟎)

𝑻𝑨𝑫𝒋 = 𝑰𝑨𝑫𝒋 + 𝑷𝑫𝒊𝒋

 end if

 end for

end for

Output : PD, TAD and 𝑰𝑨𝑫 of each String s.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

195

3.3 MDP MODEL DATA BASED

After determining the propagated delay for each flight legs in a string of
legs, we can address our data-driven model based on those calculated
values from data in the previous paragraph. So, the problem of uncertainty
will be addressed in the context of Markov processes. The choice of MDP
context is due to its flexible concept for stochastic and dynamic
optimization problems. It differs from the model in paragraph 3 from the
side that takes into account possible disruptions in flight operations caused
by delays.

We define model components and variables at the light of the basic model
given in paragraph 3. The use of MDPs requires defining its components.
Five main features describe the constrained MDP formulation: state space,
action space, state transition probabilities, global constraints and rewards.

We suppose as the assumption that the system behaves with well-known
states and actions, and the use of available data is to compute the transition
trajectories or also other rewards. The Objective is to find a solution as a
stationary maintenance routing that succeeds to undergo uncertainties.

We consider as a stochastic process for the MDP, the flight arrivals as in the
previous chapter. It takes its values from the state space.

A finite constrained Markov decision process is a 5-tuple {𝑋,𝑈, 𝑃, 𝑅,𝐷}, as
formal description, it is represented as fellow [295] :

- X is a finite set of possible finite states; it matches the set of flight legs 𝑖.

- U is a finite set of possible actions, each action u corresponds to assign a flight
leg 𝑥 ∈ 𝑋 a to a string 𝑠 ∈ 𝑆. If there is no best leg to assign, the action consists of
retaining the leg assigned to the already affected leg 𝑥. Hence, the action set fits
as set of possible strings to affect to state (legs).

- We denote U𝑥 ⊂ U as set of possible strings to affect to a leg 𝑥.

- R ∶ X × U Is a real-valued reward function. It is the value of reward
received when executing action 𝑢 in state 𝑥. We note R (x, 𝑢).

- Reward function is defined as follow:

o 𝑅(x, 𝑢) = −ρ. c𝑢(𝑥) − ρ
′. 𝑇𝐴𝐷𝑥(u) (85)

o Where: c𝑢(𝑥) a cost of assigning a leg 𝑥 to a string 𝑢. 𝑇𝐴𝐷𝑥(u) defines an
associated cost to total arrived delay of flight leg 𝑥 (as state) in a string u
(as action). Its values are extracted from history in order to give a penalty
to assignments leading to a total delay. ρ and ρ′ are two weights
associated to delay cost and affectation cost respectively

- T: X × U T is the transition function as a probability distribution of
undergoing actions over the next states. It reflects the data-driven aspect of our
problem. Hence, we define the transition probability from the previously
computed delays data as: To each action and state of the environment, the
function T (x, a, x’) is defined as the probability px,x′(𝑢) that the system is in state

Chapter VI. A reinforcement learning model of the maintenance rooting problem

196

𝑥 ∈ 𝑋 goes to state x′ ∈ 𝑋 when the agent chooses action 𝑢 from actions space 𝐴.
It is a probability of leg assignment changing from a string (action) to another.

𝑇𝑥,𝑥′(𝑢) =
PD𝑥,𝑥′(u)

PD(u)
 (86)

- It is a probability of having a propagated delay between two flight legs 𝑥 and 𝑥′.
So, a transition will force an assignment changing if a propagated delay is
detected.

- The set D called a set of feasible constraints; it defines a cost conditioned
constraint on policies. Constraints (80), (81) and (82) are defined as feasible
constraints for the CMDP.

- We identify a policy 𝜋 as a mapping from 𝑋 to 𝑈 , giving for every state 𝑠 a
corresponding action 𝑢 = 𝜋(𝑥) to be performed in state 𝑥.

As a constrained Markov decision process, 𝜋∗ is the optimal policy for
constraint costs D. The resolution consists of finding a policy that
maximizes the total reward subject to constraint D. This model can be better
than others from the literature like [279] in terms of incorporating
propagated delays as stochastic measures. This will help to avoid and plan
in advance a robust solution that can handle possible disturbances.
Experimentation in the next sub-section will show how this model can be
more robust based on past data.

3.4 REINFORCEMENT LEARNING MODEL BASED DATA

Reinforcement learning is determined by measuring the rewards provided
by the Markov Decision Process and selecting actions depending on a
particular policy. An episode indicates a running of the system where an
agent uses actions from a primary state till it attains a final state. In this
approach, the same formalism as in the previous paragraph is taken into
consideration to build the reinforcement learning approach.

The first feature of machine learning is the fact that it can handle offline or
online learning, as well as a combination between the two just like this
approach. Two mechanisms are working simultaneously in this data-
driven approach, an online model part for gathering data needed to build
the model. The latter will be built in an offline learning part giving the
corresponding robust resolution of the maintenance rooting. The process is
explained in Figure 57.

Chapter VI. A reinforcement learning model of the maintenance rooting problem

197

Figure 57 Reinforcement learning iterating from data.

When looking at the maintenance rooting problem, we have a training
dataset that increases over time. This dataset gradually continues to get too
sizeable and therefore too costly to analyze or to store. The reinforcement
learning model specifically matches our requirements in the maintenance
problem, as the agent is the airline controller making changes to the
maintenance schedule via actions and with those actions, it eventually
varies, for enhanced or even worse, the maintenance issue, which in turn is
the state of the environment. Eventually, the air traffic controller requires
to maximize some long-term reward, or else minimize a cost function.
Reinforcement learning can also be suitable for online learning [151].

Before building the corresponding reinforcement learning model, some
measurements from data are made to extract the evaluation parameters
causing disruptions. It is identified as delays in the flight schedule.

The resolution algorithm used is the HMM-QPSO of chapter 2.

Delays related Information extracted by the algorithm 25 will be
incorporated to calculate the reward of actions to determine the best action
with the minimum delay.

We used the HMM-QPSO of chapter 2, as a variant of the Q-learning
algorithm. It is a model-free reinforcement learning algorithm. The HMM-
QPSO algorithm needs to identify the encoded state, possible actions, and
it has to calculate the reward between two succeeding states applying some
reward function. Hence, for the maintenance rooting problem, the
formalism is the same as the MDP with the addition of delay reward in the
reward function as:

R (s, a, s’) is the reward obtained when altering from one state s to a state s’
by executing action a. It corresponds to reassigning a flight leg to a pairing.
This includes negative costs and positive benefits of every reassignment.

In our case, if pairing p flies leg i between x and x’, an immediate reward 𝑟𝑖
is generated. Its defined as the negative cost of propagated delay:

𝑟𝑖 = −𝑃𝐷𝑖(𝑝) (87)

Then, the total accumulated reward R for a single episode can trivially be
expressed as the sum of all of the obtained rewards:

Chapter VI. A reinforcement learning model of the maintenance rooting problem

198

𝑅 = ∑ 𝑟𝑖

0≤𝑖≤𝑛

 (88)

An episode constitutes a single run of the system in which an agent takes
actions from an initial state until it reaches a terminal condition.

3.5 EXPERIMENTATION

We accomplish a computational study to examine the efficiency of the used
methodology. We make use of real trial records data to conduct our
experimentation.

This analysis is performed on a data set consisting of flight delay records
of a Moroccan airline (RAM) provided by a database given by OpenFlights
[296]. Records are related to flight legs grouped in maintenance routes
considered in the model as strings. For example for the Moroccan airline
company RAM, it has about 240 routes.

The data are used to calculate delays related to measures as in the algorithm
25 and other model parameters such as transition probabilities and rewards.

Table 26 shows a small sample of used flight legs for experimentation.

Table 25 Flights data sample

From To Company Distance Duration

RAK TLS RAM(AT) 975 02:27

RBA CMN RAM(AT) 67 00:38

RBA ORY RAM(AT) 1116 02:43

ROB CMN RAM(AT) 1882 04:15

ROB FNA RAM(AT) 254 01:00

RUH CAI RAM(AT) 1000 02:30

SIN AUH RAM(AT) 3655 07:48

SSG CMN RAM(AT) 2298 05:05

SSG LBV RAM(AT) 232 00:57

SVO CMN RAM(AT) 2635 05:46

All flights belong to a specific maintenance string. We suppose as an initial
solution of our algorithm the solution without delay consideration (the

Chapter VI. A reinforcement learning model of the maintenance rooting problem

199

original routing). The resolution has been performed with Matlab based on
MDP toolbox [297].

The solution consists of constructing a delay robust maintenance routing.
Using the proposed methodology, we compute the propagated delay rate
of the CMDP optimal policy compared to the initial routing (calculated by
the original formulation). Table 27 shows how the new solution is more
beneficial in terms of propagated delay.

Table 26 Propagated delay diminution

Strings Original PD New PD Delay decrease rate

S1 341 219 35.7%

S2 369 306 17%

S3 203 134 33.9%

S4 316 200 36.7%

S5 187 64 65.7%

The new solution gives a clearly best solution in terms of delay propagation.
The decrease rate varies in our solution from 17% to more than 65%, with a
promising average rate of 35.7%. This leads to more robust maintenance
routing planning.

4. CONCLUSIONS

Using a Markov decision process model based on historical data to resolve
the maintenance routing problem, a Markov decision problem model has
been established with input parameters based on flights data. Aimed to
construct a model that can handle possible uncertainties in maintenance
routing. This approach calculates from historical data the propagated delay,
the source of disturbances in maintenance routing, which are given as input
to the MDP model. This model constitutes a preliminary attempt to model
the maintenance routing incorporating the past recorded data. This method
looks advantageous in terms of taking into account previous executions of
the routing solution to build more robust ones. Simulation of the MDP on
some simple real data gives promising results in terms of reducing the
propagated delays on the maintenance strings.

Otherwise, the used HMM-QPSO, as a variant of reinforcement learning,
can be a model-free algorithm of maintenance rooting. The HMM-QPSO
algorithm can identify the encoded state, possible actions, and it calculates
the reward between two succeeding states applying the defined reward

Chapter VI. A reinforcement learning model of the maintenance rooting problem

200

function instead of calculation transition probabilities as Dynamic
programming resolution algorithms. This resolution method for the MDP
gives more competitive results for the maintenance routing based on
historical data.

Future research will attempt to apply the proposed approach to bigger data
sets in order to evaluate its limits. Besides, this method can be extended to
other problems in airline transport and establish integrated planning of
maintenance routing with other air transport planning.

201

Conclusion

Markov Model as a stochastic state space model involves random transitions between
states where the probability of the jump is only dependent upon the current state,
rather than any of the previous states. This simple formalism in the context of
probabilistic machine learning has been a key to many variants used in this thesis in
three different aspects: performance enhancement of the PSO algorithm based HMM,
a new multi-agent Reinforcement learning resolution method and finally modeling
and resolution in the field of airline transport.

HMM has been used in this thesis to control and adapt PSO key parameters in both
online and offline configuration techniques. This constitutes a machine learning
technique for the control PSO search. It looks valuable from the view that HMM is a
robust stochastic classification tool that takes into account past information about the
population to control and adapt the algorithm. Our Proposed PSO variants based on
the attached hidden Markov chain provides the best particles swarm control of
parameters during the search. According to each swarm, acceleration coefficients and
inertia weight are updated. Experimental results have established very competitive
performances in comparison to several chosen PSO variants. We can deduce from the
obtained results that associating a PSO to a probabilistic machine learning strategy
enhances PSO performances significantly.

In terms of reinforcement learning, Markov decision processes constitute a promising
formulation of sequential decision problems under uncertainty. Its classical resolution
methods converge slower to optimal solutions in large state space problems than small
state space problems. A new resolution method has been proposed based on the
cooperation between particles of the enhanced PSO. Learners modeled as particles
cooperate to accelerate the learning process using a sharing of knowledge procedures.
The enhanced PSO is formed in this method by independent Q-learners as particles
that share their personal Q-values by following a sharing strategy after performing

Conclusion

202

some episodes learning independently. The given results of experimentations were
promising and give better performances than the classical resolution methods.

To make use of the obtained results in practice, three key problems of airline transport
have been chosen for resolution by these non-conventional resolution methods. A
Markov decision process is applied for modeling. Investigated results reflect MDP as
a promising new mathematical framework for decision making. With the advances in
resolution strategies that enhanced their solution performances as those presented in
this thesis, MDPs can be widely used for the solving of real-world problems of both
planning and control as they are surprisingly capable of capturing the essence of
purposeful activity in a variety of situations.

Future research and perspectives should attempt to use parallel computing to improve
time performances during simulation, which can handle the consumed additional
CPU time computing cost of machine learning. It can be applied to both approaches of
PSO enhancement and Reinforcement resolution methods. In terms of modeling,
future axes will attempt to incorporate more real constraints of airline transport
presented models, also, generalizing those methods to other problems in airline
transport, which can be more advantageous.

203

References

[1] J. Sun, C.-H. Lai, and X.-J. Wu, Particle swarm optimisation: classical and quantum perspectives. Crc
Press, 2016.

[2] J. Kennedy and R. . Eberhart, “Particle swarm optimization,” Proceedings of IEEE international
conference neural networks, vol. IEEE, pp. 1942–8, 1995.

[3] J. Schaeffer, P. Lu, D. Szafron, and R. Lake, “A re-examination of brute-force search,” in Proceedings
of the AAAI Fall Symposium on Games: Planning and Learning, 1993, pp. 51–58.

[4] N. Durand and J.-M. Alliot, “Genetic crossover operator for partially separable functions,” in GP
1998, 3rd annual conference on Genetic Programming, 1998, pp. pp–xxxx.

[5] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the
traveling salesman problem,” Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1, pp. 53–
66, 1997.

[6] C.-W. Chou, J.-H. Lin, C.-H. Yang, H.-L. Tsai, and Y.-H. Ou, “Constructing a markov chain on
particle swarm optimizer,” in Innovations in Bio-Inspired Computing and Applications (IBICA), 2012
Third International Conference on. IEEE, 2012, pp. 13–18.

[7] C.-W. Chou, J.-H. Lin, and R. Jeng, “Markov chain and adaptive parameter selection on particle
swarm optimizer,” International Journal on Soft Computing, vol. 4, no. 2, p. 1, 2013.

[8] J. Clausen, A. Larsen, J. Larsen, and N. J. Rezanova, “Disruption management in the airline
industry-concepts, models and methods,” Computers & Operations Research, vol. 37, no. 5, pp. 809–
821, 2010.

[9] R. Bouffanais, Design and control of swarm dynamics. Springer, 2016.

[10] D. J. Sumpter, Collective animal behavior. Princeton University Press, 2010.

[11] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in ACM SIGGRAPH
computer graphics, vol. 21, no. 4. ACM, 1987, pp. 25–34.

[12] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Transactions on
power systems, vol. 9, no. 1, pp. 136–146, 1994.

[13] A. E. Hassanien and E. Emary, Swarm intelligence: principles, advances, and applications. CRC Press,
2016.

[14] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a
multidimensional complex space,” IEEE transactions on Evolutionary Computation, vol. 6, no. 1, pp.
58–73, 2002.

References

204

[15] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm intelligence. Elsevier, 2001.

[16] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global minimizers through
particle swarm optimization,” IEEE Transactions on evolutionary computation, vol. 8, no. 3, pp. 211–
224, 2004.

[17] S. Sun, G. Ye, Y. Liang, Y. Liu, and Q. Pan, “Dynamic population size based particle swarm
optimization,” in Advances in Computation and Intelligence, ser. Lecture Notes in Computer Science,
L. Kang, Y. Liu, and S. Zeng, Eds. Springer Berlin Heidelberg, 2007, vol. 4683, pp. 382–392. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-74581-5_42

[18] O. Aoun, M. Sarhani, and A. E. Afia, “Particle swarm optimisation with population size and
acceleration coefficients adaptation using hidden markov model state classification,” International
Journal of Metaheuristics, vol. 7, no. 1, pp. 1–29, 2018.

[19] F. Bergh and A. P. Engelbrecht, “Effects of swarm size on cooperative particle swarm optimisers,”
in Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc., 2001, pp. 892–899.

[20] J. Fulcher, “Computational intelligence: an introduction,” in Computational intelligence: a
compendium. Springer, 2008, pp. 3–78.

[21] F. Van Den Bergh et al., “An analysis of particle swarm optimizers,” Ph.D. dissertation, University
of Pretoria South Africa, 2001.

[22] F. Van den Bergh and A. P. Engelbrecht, “A study of particle swarm optimization particle
trajectories,” Information sciences, vol. 176, no. 8, pp. 937–971, 2006.

[23] J. Kennedy and R. Mendes, “Population structure and particle swarm performance,” in
Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, vol. 2. IEEE, 2002, pp.
1671–1676.

[24] J. KENNEDY, S. WORLDS, and M. MINDS, “Effects of neighborhood topology on particle swarm
perform ance: proceedings of the congress on evolutionary computation,” S, vol. 1, pp. 1931–1938.

[25] A. Ismail and A. P. Engelbrecht, “Global optimization algorithms for training product unit neural
networks,” in Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International
Joint Conference on, vol. 1. IEEE, 2000, pp. 132–137.

[26] R. Brits, A. P. Engelbrecht, and F. Van den Bergh, “A niching particle swarm optimizer,” in
Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, vol. 2. Singapore:
Orchid Country Club, 2002, pp. 692–696.

[27] F. van den Bergh and A. P. Engelbrecht, “A new locally convergent particle swarm optimiser,” in
Systems, Man and Cybernetics, 2002 IEEE International Conference on, vol. 3. IEEE, 2002, pp. 6–pp.

[28] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in International
conference on evolutionary programming. Springer, 1998, pp. 591–600.

[29] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter
selection,” Information processing letters, vol. 85, no. 6, pp. 317–325, 2003.

[30] F. van den Bergh and A. Engelbrecht, “A cooperative approach to particle swarm optimization,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239, 2004.

[31] M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for single objective continuous
space problems: a review,” 2017.

[32] K. Premalatha and A. Natarajan, “Hybrid pso and ga for global maximization,” Int. J. Open
Problems Compt. Math, vol. 2, no. 4, pp. 597–608, 2009.

[33] J. van den Akker, C. Kemenade, and J. Kok, “Evolutionary 3d-air traffic flow management,” 1998.

[34] P. Siarry, Metaheuristics. Springer, 2016.

References

205

[35] K. Suresh, S. Ghosh, D. Kundu, A. Sen, S. Das, and A. Abraham, “Inertia-adaptive particle swarm
optimizer for improved global search,” in 2008 Eighth International Conference on Intelligent Systems
Design and Applications, vol. 2. IEEE, 2008, pp. 253–258.

[36] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on, vol. 1. IEEE, 2001, pp. 101–106.

[37] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”
IEEE Transactions on evolutionary computation, vol. 3, no. 2, pp. 124–141, 1999.

[38] A. P. Engelbrecht, Fundamentals of computational swarm intelligence. John Wiley & Sons, 2006.

[39] G. Karafotias, M. Hoogendoorn, and E. algorithm), “Parameter control in evolutionary algorithms:
Trends and challenges,” IEEE Transactions on Evolutionary Computation, vol. 19, pp. 167 – 187, 2015.

[40] A. Carlisle and G. Dozier, “An off-the-shelf pso,” in in: Proceeding of Workshop on Particle Swarm
Optimization, Indianapolis, USA, Jannuary 2001 2001, pp. 1–6.

[41] L. Zhang, Y. Tang, C. Hua, and X. Guan, “A new particle swarm optimization algorithm with
adaptive inertia weight based on bayesian techniques,” Applied Soft Computing, vol. 28, p. 138-149,
2015.

[42] D. Chen and C. Zhao, “Particle swarm optimization with adaptive population size and its
application,” Applied Soft Computing, vol. 9, no. 1, pp. 39 – 48, 2009. [Online]. Available: http://-
www.sciencedirect.com/science/article/pii/S1568494608000318

[43] M. Clerc, Particle swarm optimization, I. scientific and technical encyclopaedia, Eds. Hoboken: Wiley,
2006.

[44] C. Lei, “The study on dynamic population size improvements for classical particle swarm
optimization,” in Computer Science and Network Technology (ICCSNT), 2011 International Conference
on, vol. 1, Dec. 2011, pp. 430–433.

[45] B. Soudan and M. Saad, “An evolutionary dynamic population size pso implementation,” in
International Conference on Information and Communication Technologies: From Theory to Applications,
2008. ICTTA 2008. 3rd, April 2008, pp. 1–5.

[46] N. Lynn and P. N. Suganthan, “Distance based locally informed particle swarm optimizer with
dynamic population size,” in Proceedings of the 18th Asia Pacific Symposium on Intelligent and
Evolutionary Systems-Volume 2. Springer, 2015, pp. 577–587.

[47] W.-F. Leong and G. G. Yen, “Pso-based multiobjective optimization with dynamic population size
and adaptive local archives,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 38, no. 5, pp. 1270–1293, 2008.

[48] F. Ma and X.-B. Chen, “Application of varying population size particle swarm optimization
algorithm to agc of power systems,” in The Sixth World Congress on Intelligent Control and Automation,
2006. WCICA 2006., vol. 1, 2006, pp. 3310–3314.

[49] M. de Oca, T. Stutzle, K. Van den Enden, and M. Dorigo, “Incremental social learning in particle
swarms,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 2, pp.
368–384, April 2011.

[50] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm
performance,” in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3.
IEEE, 1999, pp. 1931–1938.

[51] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions,” Evolutionary Computation, IEEE
Transactions on, vol. 10, no. 3, pp. 281–295, 2006.

[52] X. Yu and X. Zhang, “Enhanced comprehensive learning particle swarm optimization,” Applied
Mathematics and Computation, vol. 242, pp. 265–276, 2014.

References

206

[53] Z. Zhan, J. Zhang, Y. Li, and Y. Shi, “Orthogonal learning particle swarm optimization,” IEEE
Trans. Evol. Comput., vol. 15, pp. 832–847, 2011.

[54] Y. Tang, Z. Wang, and J. an Fang, “Feedback learning particle swarm optimization,” Applied Soft
Computing, vol. 11, pp. 4713–4725, 2011.

[55] H. Huang, H. Qin, Z. Hao, and A. Lim, “Example-based learning particle swarm optimization for
continuous optimization,” Information Sciences, vol. 128, p. 125-138, 2012.

[56] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,”
IEEE transactions on evolutionary computation, vol. 8, no. 3, pp. 204–210, 2004.

[57] C. Yang, W. Gao, N. Liu, and C. Song, “Low-discrepancy sequence initialized particle swarm
optimization algorithm with high-order nonlinear time-varying inertia weight,” Applied Soft
Computing, no. 0, pp. –, 2015. [Online]. Available: http://www.sciencedirect.com/science/-
article/pii/S1568494615000058

[58] G. Ardizzon, G. Cavazzini, and G. Pavesi, “Adaptive acceleration coefficients for a new search
diversification strategy in particle swarm optimization algorithms,” Information Sciences, vol. 299,
pp. 337–378, 2015.

[59] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in Procedding of the IEEE World
Congess of Computational Intelligence, pp. 69–73, 1997.

[60] Z.-H. Zhan, J. Zhang, Y. Li, and H.-H. Chung, “Adaptive Particle Swarm Optimization,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp. 1362–1381, Dec.
2009.

[61] R. Perez and K. Behdinan, “Particle swarm approach for structural design optimization,”
Computers and Structures, vol. 85, pp. 1579–88, 2007.

[62] X. Yang, J. Yuan, J. Yuan, and H. Mao, “A modified particle swarm optimizer with dynamic
adaptation,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1205–1213, 2007.

[63] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle
swarm optimization,” Computers & Operations Research, vol. 33, no. 3, pp. 859–871, 2006.

[64] T. Ting, Y. Shi, S. Cheng, and S. Lee, “Exponential inertia weight for particle swarm optimization,”
in International Conference in Swarm Intelligence. Springer, 2012, pp. 83–90.

[65] J. Ding, J. Liu, K. R. Chowdhury, W. Zhang, Q. Hu, and J. Lei, “A particle swarm optimization
using local stochastic search and enhancing diversity for continuous optimization,”
Neurocomputing, vol. 137, pp. 261–267, 2014.

[66] K. Kentzoglanakis and M. Poole, “Particle swarm optimization with an oscillating inertia weight,”
in Proceedings of the 11th Annual conference on Genetic and evolutionary computation. ACM, 2009, pp.
1749–1750.

[67] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm
optimization,” in Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, vol. 1. IEEE,
2000, pp. 84–88.

[68] A. O. Adewumi and M. A. Arasomwan, “On the performance of particle swarm optimisation with
(out) some control parameters for global optimisation,” International Journal of Bio-Inspired
Computation, vol. 8, no. 1, pp. 14–32, 2016.

[69] M. A. M. De Oca, T. Stutzle, M. Birattari, and M. Dorigo, “Frankenstein’s pso: a composite particle
swarm optimization algorithm,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp.
1120–1132, 2009.

[70] M. Taherkhani and R. Safabakhsh, “A novel stability-based adaptive inertia weight for particle
swarm optimization,” Applied Soft Computing, vol. 38, pp. 281–295, 2016.

[71] A. Khare and S. Rangnekar, “A review of particle swarm optimization and its applications in solar
photovoltaic system,” Applied Soft Computing, vol. 13, pp. 2997–3006, 2013.

References

207

[72] S. M. Kamalapur and V. H. Patil, “Impact of acceleration coefficient strategies with random
neighborhood topology in particle swarm optimization,” International Journal of Emerging
Technologies in Computational and Applied Sciences, vol. 3, no. 1, pp. 37–42, 2012.

[73] P. Subbaraj, R. Rengaraj, S. Salivahanan, and T. Senthilkumar, “Parallel particle swarm
optimization with modified stochastic acceleration factors for solving large scale economic
dispatch problem,” International Journal of Electrical Power & Energy Systems, vol. 32, no. 9, pp. 1014
– 1023, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/-
S0142061510000566

[74] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients,” IEEE Transactions on evolutionary
computation, vol. 8, no. 3, pp. 240–255, 2004.

[75] M. Epitropakis, V. Plagianakos, and M. Vrahatis, “Evolving cognitive and social experience in
particle swarm optimization through differential evolution: A hybrid approach,” Information
Sciences, vol. 216, pp. 50–92, 2012.

[76] S. S. Jadon, H. Sharma, J. C. Bansal, and R. Tiwari, “Self adaptive acceleration factor in particle
swarm optimization,” in Proceedings of Seventh International Conference on Bio-Inspired Computing:
Theories and Applications. Springer India, 2013, vol. 1, pp. 325–340.

[77] C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization
problems,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 3, pp.
627–646, 2012.

[78] Y. Hamadi, “Autonomous search,” in Combinatorial Search: From Algorithms to Systems. Springer,
2013, pp. 99–122.

[79] L. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,”
Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb 1989.

[80]M. Birattari and J. Kacprzyk, Tuning metaheuristics: a machine learning perspective. Springer, 2009, vol.
197.

[81] A. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, “Parameter control in evolutionary
algorithms,” in Studies in Computational Intelligence. Springer Verlag, 2007, vol. 54, no. 54, pp. 19 –
46.

[82] H. H. Hoos, “Automated algorithm configuration and parameter tuning,” in Autonomous search.
Springer, 2012, pp. 37–71.

[83] S. L. Epstein and S. Petrovic, “Learning a mixture of search heuristics,” in Autonomous Search.
Springer, 2012, pp. 97–127.

[84] X.-S. Yang, S. Deb, M. Loomes, and M. Karamanoglu, “A framework for self-tuning optimization
algorithm,” Neural Computing and Applications, vol. 23, no. 7-8, pp. 2051–2057, 2013.

[85] J. Swan, J. Woodward, E. Ozcan, G. Kendall, and E. Burke, “Searching the hyper-heuristic design
space,” Cognitive Computation, vol. 6, no. 1, pp. 66–73, 2014. [Online]. Available: http://-
dx.doi.org/10.1007/s12559-013-9201-8

[86] B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, and F. Paredes, “Parameter tuning of a
choice-function based hyperheuristic using particle swarm optimization,” Expert Systems with
Applications, vol. 40, pp. 1690 – 1695, 2013.

[87] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective, ser. Studies in Computational
Intelligence, J. Kacprzyk, Ed. Springer, 2006, vol. 197.

[88] E. Yeguas, M. V. Luzón, R. Pavón, R. Laza, G. Arroyo, and F. Dáz, “Automatic parameter tuning
for evolutionary algorithms using a bayesian case-based reasoning system,” Applied Soft Computing,
vol. 18, pp. 185–195, 2014.

References

208

[89] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing. Springer Science & Business
Media, 2003.

[90] R. Durbin, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, ser.
Biological Sequence Analysis: Probabalistic Models of Proteins and Nucleic Acids. Cambridge
University Press, 1998. [Online]. Available: https://books.google.co.ma/books?id=R5P2GlJvigQC

[91] Y.-j. Gong and J. Zhang, “Small-world particle swarm optimization with topology adaptation,” in
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, ser. GECCO ’13.
New York, NY, USA: ACM, 2013, pp. 25–32. [Online]. Available: http://doi.acm.org/10.1145/-
2463372.2463381

[92] S. Sahebi, F. Oroumchian, and R. Khosravi, “Applying and comparing hidden markov model and
fuzzy clustering algorithms to web usage data for recommender systems,” in ADIS European
Conference on Data Mining, 2008.

[93] N. Di Mauro, F. Esposito, S. Ferilli, and T. Basile, “Avoiding order effects in incremental learning,”
in AI*IA 2005: Advances in Artificial Intelligence, ser. Lecture Notes in Computer Science, S. Bandini
and S. Manzoni, Eds. Springer Berlin Heidelberg, 2005, vol. 3673, pp. 110–121. [Online]. Available:
http://dx.doi.org/10.1007/11558590_12

[94] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: an incremental learning algorithm for
supervised neural networks,” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 31, no. 4, pp. 497–508, Nov. 2001. [Online]. Available: http://dx.doi.org/-
10.1109/5326.983933

[95] O. Cappé, “Online em algorithm for hidden markov models,” Journal of Computational and Graphical
Statistics, vol. 20, no. 3, 2011.

[96] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the
statistical analysis of probabilistic functions of markov chains,” The annals of mathematical statistics,
pp. 164–171, 1970.

[97] O. Aoun, M. Sarhani, and A. El Afia, “Hidden markov model classifier for the adaptive particle
swarm optimization,” in The XI Metaheuristics International Conference (MIC), Agadir, Morocco, 7-
10 June 2015 2015.

[98] R. Sedgewick, “Implementing quicksort programs,” Commun. ACM, vol. 21, no. 10, pp. 847–857,
Oct. 1978. [Online]. Available: http://doi.acm.org/10.1145/359619.359631

[99] L.-l. LIU and X.-b. GAO, “An adaptive simulation of bacterial foraging algorithm,” Basic Sciences
Journal of Textile Universities, vol. 4, p. 022, 2012.

[100] W. Jiang, Y. Zhang, and R. Wang, “Comparative study on several pso algorithms,” in Control
and Decision Conference (2014 CCDC), The 26th Chinese, May 2014, pp. 1117–1119.

[101] Z. Wu, “Optimization of distribution route selection based on particle swarm algorithm,”
International Journal of Simulation Modelling (IJSIMM), vol. 13, no. 2, 2014.

[102] G. Zeng and Y. Jiang, “A modified pso algorithm with line search,” in Computational Intelligence
and Software Engineering (CiSE), 2010 International Conference on, Dec 2010, pp. 1–4.

[103] S. W. C. H. G. Wang, “Dream effected particle swarm optimization algorithm,” JOURNAL OF
INFORMATION &COMPUTATIONAL SCIENCE, vol. 11, no. 15, p. 5631, 2014. [Online]. Available:
http://manu35.magtech.com.cn/Jwk_ics/EN/abstract/article_2638.shtml

[104] H. Jianxiu and Z. Jianchao, “A two-order particle swarm optimization model [j],” Journal of
Computer Research and Development, vol. 11, p. 004, 2007.

[105] G. E. Box, J. S. Hunter, and W. G. Hunter, Statistics for experimenters: design, innovation, and
discovery. Wiley-Interscience New York, 2005, vol. 2.

References

209

[106] J. Derrac, S. Garcá, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,”
Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[107] A. P. Engelbrecht, “Heterogeneous particle swarm optimization,” in International Conference on
Swarm Intelligence. Springer, 2010, pp. 191–202.

[108] T. Blackwell, J. Branke et al., “Multi-swarm optimization in dynamic environments,” in
EvoWorkshops, vol. 3005. Springer, 2004, pp. 489–500.

[109] S. Mirjalili, A. Lewis, and A. S. Sadiq, “Autonomous particles groups for particle swarm
optimization,” Arabian Journal for Science and Engineering, vol. 39, no. 6, pp. 4683–4697, 2014.

[110] Y. Shi, H. Liu, L. Gao, and G. Zhang, “Cellular particle swarm optimization,” Inf. Sci., vol. 181,
no. 20, pp. 4460–4493, Oct. 2011. [Online]. Available: http://dx.doi.org/10.1016/j.ins.2010.05.025

[111] J. Zhang and X. Ding, “A multi-swarm self-adaptive and cooperative particle swarm
optimization,” Engineering applications of artificial intelligence, vol. 24, no. 6, pp. 958–967, 2011.

[112] S. Yang and C. Li, “A clustering particle swarm optimizer for locating and tracking multiple
optima in dynamic environments,” IEEE Transactions on Evolutionary Computation, 2010.

[113] M. A. M. De Oca, T. Stützle, K. Van den Enden, and M. Dorigo, “Incremental social learning in
particle swarms,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 41,
no. 2, pp. 368–384, 2011.

[114] M. Aydin, “Coordinating metaheuristic agents with swarm intelligence,” Journal of Intelligent
Manufacturing, vol. 23, no. 4, pp. 991–999, 2012. [Online]. Available: http://dx.doi.org/10.1007/-
s10845-010-0435-y

[115] D. M. Diaz, “Agent-based configuration of (metaheuristic) algorithms,” Ph.D. dissertation,
Humboldt University of Berlin, 2005.

[116] B. Bengfort, P. Y. Kim, K. Harrison, and J. A. Reggia, “Evolutionary design of self-organizing
particle systems for collective problem solving,” in Swarm Intelligence (SIS), 2014 IEEE Symposium
on. IEEE, 2014, pp. 1–8.

[117] J. Li and X. Xiao, “Multi-swarm and multi-best particle swarm optimization algorithm,” in
Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on. IEEE, 2008, pp. 6281–
6286.

[118] Y. Liu, Z. Qin, Z. Shi, and J. Lu, “Center particle swarm optimization,” Neurocomputing, vol. 70,
no. 4-6, pp. 672–679, 2007.

[119] B. Niu, Y. Zhu, X. He, and H. Wu, “Mcpso: A multi-swarm cooperative particle swarm
optimizer,” Applied Mathematics and computation, vol. 185, no. 2, pp. 1050–1062, 2007.

[120] G. Beni, “From swarm intelligence to swarm robotics,” in Swarm robotics. Springer, 2004, pp. 1–
9.

[121] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from the
swarm engineering perspective,” Swarm Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[122] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and R. C. Carrasco, “Probabilistic
finite-state machines-part ii,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27,
no. 7, pp. 1026–1039, 2005.

[123] R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov models: estimation and control. Springer
Science & Business Media, 2008, vol. 29.

[124] N. J. Cheung, X.-M. Ding, and H.-B. Shen, “Optifel: A convergent heterogeneous particle swarm
optimization algorithm for takagi–sugeno fuzzy modeling,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 4, pp. 919–933, 2014.

References

210

[125] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson Education
Limited,, 2016.

[126] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent research and development,”
Autonomous agents and multi-agent systems, vol. 1, no. 1, pp. 7–38, 1998.

[127] G. Weiss, Multiagent systems: a modern approach to distributed artificial intelligence. MIT press, 1999.

[128] S. A. Rahal, D. Mokeddem, N. Bensaid, J. Bigus, J. Bigus, H. Bjurn, L. Champciaux, M. Cote,
K. Decker, V. Lesser et al., “Intelligent agents: Theory and practice, the knowledge engineering
review.” Information Technology Journal, vol. 6, no. 1, pp. pp–456, 1998.

[129] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary algorithms for reinforcement
learning,” Journal of Artificial Intelligence Research, vol. 11, pp. 241–276, 1999.

[130] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Organisational abstractions for the analysis
and design of multi-agent systems,” in International Workshop on Agent-Oriented Software
Engineering. Springer, 2000, pp. 235–251.

[131] P. Stone and M. Veloso, “Layered learning,” in European Conference on Machine Learning.
Springer, 2000, pp. 369–381.

[132] P. Mathieu, Y. Secq et al., “Environment updating and agent scheduling policies in agent-based
simulators.” in ICAART (2), 2012, pp. 170–175.

[133] A. Kabysh, V. Golovko, and A. Lipnickas, “Influence learning for multi-agent system based on
reinforcement learning,” International Journal of Computing, vol. 11, no. 1, pp. 39–44, 2014.

[134] P. J. Hoen, K. Tuyls, L. Panait, S. Luke, and J. A. La Poutre, “An overview of cooperative and
competitive multiagent learning,” in Proceedings of the First international conference on Learning and
Adaption in Multi-Agent Systems. Springer-Verlag, 2005, pp. 1–46.

[135] B.-N. Wang, Y. Gao, Z.-Q. Chen, J.-Y. Xie, and S.-F. Chen, “A two-layered multi-agent
reinforcement learning model and algorithm,” Journal of Network and Computer Applications, vol. 30,
no. 4, pp. 1366–1376, 2007.

[136] Y. Shoham, R. Powers, T. Grenager et al., “If multi-agent learning is the answer, what is the
question?” Artificial Intelligence, vol. 171, no. 7, pp. 365–377, 2007.

[137] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using deep
reinforcement learning,” in International Conference on Autonomous Agents and Multiagent Systems.
Springer, 2017, pp. 66–83.

[138] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the art,” Autonomous
Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 387–434, 2005.

[139] T. Balch, “Behavioral diversity in learning robot teams,” Georgia Institute of Technology, Tech.
Rep., 1998.

[140] E. Bonabeau, D. d. R. D. F. Marco, M. Dorigo, G. Théraulaz, G. Theraulaz et al., Swarm
intelligence: from natural to artificial systems. Oxford university press, 1999, no. 1.

[141] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton University Press, 1957.

[142] R. A. Howard, Dynamic Programming and Markov Processes. Cambridge, MA: MIT Press, 1960.

[143] D. White, “Finite horizon markov decision processes with uncertain terminal payoffs,”
Operations research, vol. 43, no. 5, pp. 862–869, 1995.

[144] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, ser. Wiley
Series in Probability and Statistics. Wiley, 1994. [Online]. Available: https://books.google.co.ma/-
books?id=tsiiQgAACAAJ

[145] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement learning with less data
and less time,” Machine learning, vol. 13, no. 1, pp. 103–130, 1993.

References

211

[146] D. Bertsekas, “Distributed dynamic programming,” IEEE transactions on Automatic Control,
vol. 27, no. 3, pp. 610–616, 1982.

[147] D. Wingate and K. D. Seppi, “Efficient value iteration using partitioned models.” in ICMLA.
Citeseer, 2003, pp. 53–59.

[148] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT press Cambridge, 1998,
vol. 135.

[149] M. P. Wellman, K. Larson, M. Ford, and P. R. Wurman, “Path planning under time-dependent
uncertainty,” in In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, 1995, pp. 532–539.

[150] J. A. Boyan and M. L. Littman, “Exact solutions to time-dependent mdps,” in in Advances in
Neural Information Processing Systems. MIT Press, 2000, pp. 1026–1032.

[151] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in IN
PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE
LEARNING. Morgan Kaufmann, 1994, pp. 157–163.

[152] O. Aoun and A. El Afia, “A robust crew pairing based on multi-agent markov decision
processes,” in Complex Systems (WCCS), 2014 Second World Conference on, Nov 2014, pp. 762–768.

[153] J. v. d. Wal, “Stochastic dynamic programming : successive approximations and nearly optimal
strategies for markov decision processes and markov games / j. van der wal,” 1981, includes
indexes.

[154] C. Boutilier, “Planning, learning and coordination in multiagent decision processes,” in In
Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge (TARK96, 1996,
pp. 195–210.

[155] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the art,” Autonomous
Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 387–434, Nov. 2005.

[156] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of decentralized
control of markov decision processes,” Mathematics of operations research, vol. 27, no. 4, pp. 819–840,
2002.

[157] S. Proper and P. Tadepalli, “Solving multiagent assignment markov decision processes,” in
Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume
1, ser. AAMAS ’09. Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2009, pp. 681–688. [Online]. Available: http://dl.acm.org/-
citation.cfm?id=1558013.1558107

[158] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman, “Taming the curse of dimensionality:
Discrete integration by hashing and optimization,” in International Conference on Machine Learning,
2013, pp. 334–342.

[159] M. Mahmud and S. Ramamoorthy, “Learning in non-stationary mdps as transfer learning,” in
Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems.
International Foundation for Autonomous Agents and Multiagent Systems, 2013, pp. 1259–1260.

[160] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic games,” Journal of
machine learning research, vol. 4, no. Nov, pp. 1039–1069, 2003.

[161] C. Daoui, M. Abbad, and M. Tkiouat, “Exact decomposition approaches for markov decision
processes: A survey,” Advances in Operations Research, vol. 2010, 2010.

[162] A. G. Barto and T. G. Dietterich, “Reinforcement learning and its relationship to supervised
learning,” Handbook of learning and approximate dynamic programming. John Wiley and Sons, Inc, 2004.

[163] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,” in Reinforcement Learning.
Springer, 2012, pp. 579–610.

References

212

[164] K. Rawlik, M. Toussaint, and S. Vijayakumar, “Path integral control by reproducing kernel
hilbert space embedding.” in IJCAI, 2013, pp. 1628–1634.

[165] W. V. de Abreu, A. C. Gonçalves, and A. S. Martinez, “Analytical solution for the doppler
broadening function using the kaniadakis distribution,” Annals of Nuclear Energy, vol. 126, pp. 262–
268, 2019.

[166] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially
observable stochastic domains,” Artif. Intell., vol. 101, no. 1-2, pp. 99–134, May 1998.

[167] J. Andreanus and A. Kurniawan, “Sejarah, teori dasar dan penerapan reinforcement learning:
Sebuah tinjauan pustaka,” Jurnal Telematika, vol. 12, no. 2, pp. 113–118, 2018.

[168] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[169] J. Brunnström and K. Kaminski, “Exploring deep reinforcement learning algorithms for
homogeneous multi-agent systems,” 2018.

[170] M. Fang, F. C. Groen, H. Li, and J. Zhang, “Collaborative multi-agent reinforcement learning
based on a novel coordination tree frame with dynamic partition,” Engineering Applications of
Artificial Intelligence, vol. 27, pp. 191–198, 2014.

[171] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow management,” in
Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems. ACM,
2007, p. 255.

[172] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent
reinforcement learning,” IEEE Transactions on Systems, Man, And Cybernetics-Part C: Applications and
Reviews, 38 (2), 2008, 2008.

[173] H. Cuayáhuitl, I. Kruijff-Korbayová, and N. Dethlefs, “Nonstrict hierarchical reinforcement
learning for interactive systems and robots,” ACM Transactions on Interactive Intelligent Systems
(TiiS), vol. 4, no. 3, p. 15, 2014.

[174] R. Kraemer, G. Whiteman, and B. Banerjee, “Conflict and astroturfing in niyamgiri: The
importance of national advocacy networks in anti-corporate social movements,” Organization
Studies, vol. 34, no. 5-6, pp. 823–852, 2013.

[175] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in
Proceedings of the tenth international conference on machine learning, 1993, pp. 330–337.

[176] J. Jiang, M. S. Kamel, and L. Chen, “Aggregation of multiple reinforcement learning algorithms,”
International Journal on Artificial Intelligence Tools, vol. 15, no. 05, pp. 855–861, 2006.

[177] H. Iima and Y. Kuroe, “Swarm reinforcement learning algorithms based on particle swarm
optimization,” in Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on.
IEEE, 2008, pp. 1110–1115.

[178] ——, “Swarm reinforcement learning method based on an actor-critic method,” in Asia-Pacific
Conference on Simulated Evolution and Learning. Springer, 2010, pp. 279–288.

[179] B. H. Abed-Alguni, D. J. Paul, S. K. Chalup, and F. A. Henskens, “A comparison study of
cooperative q-learning algorithms for independent learners,” Int. J. Artif. Intell., vol. 14, no. 1, pp.
71–93, 2016.

[180] P. Crook and G. Hayes, “Learning in a state of confusion: Perceptual aliasing in grid world
navigation,” Towards Intelligent Mobile Robots, vol. 4, 2003.

[181] D. T. McRuer, D. Graham, and I. Ashkenas, Aircraft dynamics and automatic control. Princeton
University Press, 2014, vol. 740.

[182] A. Norin, “Airport logistics: modeling and optimizing the turn-around process,” Ph.D.
dissertation, Linköping University Electronic Press, 2008.

[183] A. Kazda and R. E. Caves, Airport design and operation. Emerald Group Publishing Limited, 2010.

References

213

[184] T. Reynolds, R. Neufville, P. Beloboba, and A. Odoni, “Airport systems, planning, design and
management,” 2013.

[185] N. J. Ashford, S. Mumayiz, and P. H. Wright, Airport engineering: planning, design, and
development of 21st century airports. John Wiley & Sons, 2011.

[186] S. Kalakou, “Performance evaluation of passenger-related processes at an airport with a
simulation model acknowledgments,” Lisbon, Portugal: Instituto Superior Técnico, 2012.

[187] B. Pearce, “The state of air transport markets and the airline industry after the great recession,”
Journal of Air Transport Management, vol. 21, pp. 3–9, 2012.

[188] A. Lim and F. Wang, “Robust airport gate assignment,” in Tools with Artificial Intelligence, 2005.
ICTAI 05. 17th IEEE International Conference on, Nov 2005, pp. 8 pp.–81.

[189] C.-H. Cheng, S. C. Ho, and C.-L. Kwan, “The use of meta-heuristics for airport gate assignment,”
Expert Syst. Appl., vol. 39, no. 16, pp. 12430–12437, Nov. 2012.

[190] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint programming. Elsevier, 2006.

[191] U. M. Neuman and J. A. Atkin, “Airport gate assignment considering ground movement,” in
International Conference on Computational Logistics. Springer, 2013, pp. 184–198.

[192] U. Dorndorf, F. Jaehn, and E. Pesch, “Modelling robust flight-gate scheduling as a clique
partitioning problem,” Transportation Science, vol. 42, no. 3, pp. 292–301, Aug. 2008.

[193] A. Lim, B. Rodrigues, and Y. Zhu, “Airport gate scheduling with time windows,” Artif. Intell.
Rev., vol. 24, no. 1, pp. 5–31, Sep. 2005. [Online]. Available: http://dx.doi.org/10.1007/s10462-004-
7190-4

[194] S. H. Kim, E. Feron, and J.-P. Clarke, “Airport gate assignment that minimizes passenger flow
in terminals and aircraft congestion on ramps,” in AIAA Guidance, Navigation, and Control Conference,
2010, p. 7693.

[195] V. Prem Kumar and M. Bierlaire, “Multi-objective airport gate assignment problem in planning
and operations,” Journal of advanced transportation, vol. 48, no. 7, pp. 902–926, 2014.

[196] Y. Nikulin and A. Drexl, “Theoretical aspects of multicriteria flight gate scheduling:
deterministic and fuzzy models,” Journal of Scheduling, vol. 13, no. 3, pp. 261–280, 2010.

[197] S. Yan and C.-M. Huo, “Optimization of multiple objective gate assignments,” Transportation
Research Part A: Policy and Practice, vol. 35, no. 5, pp. 413 – 432, 2001.

[198] A. Drexl and Y. Nikulin, “Multicriteria airport gate assignment and pareto simulated
annealing,” IIE Transactions, vol. 40, no. 4, pp. 385–397, 2008.

[199] D. Teodorovic and S. Guberinic, “Optimal dispatching strategy on an airline network after a
schedule perturbation,” European Journal of Operational Research, vol. 15, no. 2, pp. 178 – 182, 1984.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/0377221784902078

[200] C. Chang, Flight Sequencing and Gate Assignments at Airport Hubs. University of Maryland at
College Park, 1994.

[201] J. Xu and G. Bailey, “The airport gate assignment problem: Mathematical model and a tabu
search algorithm,” in Proceedings of the 34th Annual Hawaii International Conference on System Sciences
(HICSS-34)-Volume 3 - Volume 3, ser. HICSS ’01. Washington, DC, USA: IEEE Computer Society,
2001, pp. 3032–.

[202] U. Dorndorf, F. Jaehn, and E. Pesch, “Flight gate scheduling with respect to a reference
schedule,” Annals of Operations Research, vol. 194, no. 1, pp. 177–187, 2012.

[203] S. H. Kim, E. Feron, and J.-P. Clarke, “Assigning gates by resolving physical conflicts,” in AIAA
Guidance, Navigation, and Control Conference, 2009, p. 5648.

References

214

[204] X.-B. Hu and E. Di Paolo, “An efficient genetic algorithm with uniform crossover for the multi-
objective airport gate assignment problem,” in Multi-objective memetic algorithms. Springer, 2009, pp.
71–89.

[205] H. M. Genç, O. K. Erol, I. Eksin, M. F. Berber, and B. O. Güleryüz, “A stochastic neighborhood
search approach for airport gate assignment problem,” Expert Syst. Appl., vol. 39, no. 1, pp. 316–
327, Jan. 2012.

[206] S. G. Hamzawi, “Management and planning of airport gate capacity: a microcomputer-based
gate assignment simulation model,” Transportation Planning and Technology, vol. 11, no. 3, pp. 189–
202, 1986.

[207] H. P. Williams, Model building in mathematical programming. John Wiley & Sons, 2013.

[208] M. Hassounah and G. N. Steuart, “Demand for aircraft gates,” ransportation Research Record, n
1423, pp.26-33, 1993.

[209] S. Yan and C.-M. Chang, “A network model for gate assignment,” Journal of Advanced
Transportation, vol. 32, no. 2, pp. 176–189, 1998.

[210] B. Maharjan and T. I. Matis, “Multi-commodity flow network model of the flight gate
assignment problem,” Computers & Industrial Engineering, vol. 63, no. 4, pp. 1135 – 1144, 2012.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360835212001799

[211] S. Yan and C.-H. Tang, “A heuristic approach for airport gate assignments for stochastic flight
delays,” European Journal of Operational Research, vol. 180, no. 2, pp. 547 – 567, 2007.

[212] M. Seker and N. Noyan, “Stochastic optimization models for the airport gate assignment
problem,” Transportation Research Part E: Logistics and Transportation Review, vol. 48, no. 2, pp. 438 –
459, 2012.

[213] K. Tanaka, “An introduction to fuzzy logic for practical applications,” 1997.

[214] D.-x. Wei and C.-y. Liu, “Fuzzy model and optimization for airport gate assignment problem,”
in Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on,
vol. 2. IEEE, 2009, pp. 828–832.

[215] M. Dell’Orco, M. Marinelli, and M. G. Altieri, “Solving the gate assignment problem through
the fuzzy bee colony optimization,” Transportation Research Part C: Emerging Technologies, vol. 80,
pp. 424–438, 2017.

[216] G. M. Marakas, Decision support systems in the 21st century. Prentice Hall Upper Saddle River, NJ,
2003, vol. 134.

[217] G.-S. Jo, J.-J. Jung, and C.-Y. Yang, “Expert system for scheduling in an airline gate allocation,”
Expert systems with applications, vol. 13, no. 4, pp. 275–282, 1997.

[218] Y. Cheng, “A knowledge-based airport gate assignment system integrated with mathematical
programming,” Computers & Industrial Engineering, vol. 32, no. 4, pp. 837–852, 1997.

[219] Y. Gu and C. A. Chung, “Genetic algorithm approach to aircraft gate reassignment problem,”
Journal of Transportation Engineering, vol. 125, no. 5, pp. 384–389, 1999.

[220] L. Tang, S. Jiang, and J. Liu, “Rolling horizon approach for dynamic parallel machine
scheduling problem with release times,” Industrial & Engineering Chemistry Research, vol. 49, no. 1,
pp. 381–389, 2009.

[221] B. Maharjan and T. I. Matis, “An optimization model for gate reassignment in response to flight
delays,” Journal of Air Transport Management, vol. 17, no. 4, pp. 256–261, 2011.

[222] M. Pternea and A. Haghani, “Mathematical models for flight-to-gate reassignment with
passenger flows: State-of-the-art comparative analysis, formulation improvement, and a new
multidimensional assignment model,” Computers & Industrial Engineering, vol. 123, pp. 103–118,
2018.

References

215

[223] T. Obata, “Quadratic assignment problem: evaluation of exact and heuristic algorithms,” 1979.

[224] J.-Y. Greff, L. Idoumghar, and R. Schott, “AnglaisApplication of markov decision processes to
the frequency assignment problem,” AnglaisJournal on Applied Artificial Intelligence, vol. 18, no. 8,
pp. 761–773, 2004, article dans revue scientifique avec comité de lecture. internationale. A04-R-208
|| greff04a A04-R-208 || greff04a.

[225] H. Yanco and L. A. Stein, “An adaptive communication protocol for cooperating mobile robots,”
in Proceedings of the Second International Conference on Simulation of Adaptive Behavior. MIT Press, 1993,
pp. 478–485.

[226] H. W. Kuhn and A. W. Tucker, “John von neumann’s work in the theory of games and
mathematical economics,” Bulletin of the American Mathematical Society, vol. 64, pp. 100–122, 05 1958.

[227] J. v. d. Wal, “Stochastic dynamic programming: successive approximations and nearly optimal
strategies for markov decision processes and markov games / j. van der wal,” 1981, includes
indexes.

[228] O. Aoun and A. El Afia, “Application of multi-agent markov decision processes to gate
assignment problem,” in Information Science and Technology (CIST), 2014 Third IEEE International
Colloquium in, Oct 2014, pp. 196–201.

[229] J. Wang, S. Hou, Y. Su, J. Du, and W. Wang, “Markov decision process based multi-agent
system applied to aeroengine maintenance policy optimization,” in Fuzzy Systems and Knowledge
Discovery, 2008. FSKD ’08. Fifth International Conference on, vol. 3, Oct 2008, pp. 401–408.

[230] G. S. Bastos, L. E. Souza, F. T. Ramos, and C. H. Ribeiro, “A single-dependent agent approach
for stochastic time-dependent truck dispatching in open-pit mining,” in Intelligent Transportation
Systems (ITSC), 2011 14th International IEEE Conference on. IEEE, 2011, pp. 1057–1062.

[231] D. Jacquemart and J. Morio, “Conflict probability estimation between aircraft with dynamic
importance splitting,” Safety Science, vol. 51, no. 1, pp. 94–100, 2013.

[232] O. Ö. Özener, M. Ö. Matoglu, G. Erdogăn, M. Haouari, and H. Sözer, “Solving a large-scale
integrated fleet assignment and crew pairing problem,” Annals of Operations Research, vol. 253, no. 1,
pp. 477–500, 2017.

[233] A. Kasirzadeh, M. Saddoune, and F. Soumis, “Airline crew scheduling: models, algorithms, and
data sets,” EURO Journal on Transportation and Logistics, vol. 6, no. 2, pp. 111–137, 2017.

[234] A. Scholl et al., “Robuste planung und optimierung: Grundlagen, konzepte und methoden;
experimentelle untersuchungen,” Darmstadt Technical University, Department of Business
Administration, Economics and Law, Institute for Business Studies (BWL), Tech. Rep., 2000.

[235] V. Dück, “Increasing stability of aircraft and crew schedules,” Ph.D. dissertation, PhD thesis,
University Paderborn, 2010.

[236] S. Yan and Y. Tu, “A network model for airline cabin crew scheduling,” European Journal of
Operational Research, vol. 140, no. 3, pp. 531–540, 2002-08-01T00:00:00.

[237] E. Andersson, E. Housos, N. Kohl, and D. Wedelin, “Crew pairing optimization,” in Operations
Research in the Airline Industry, ser. International Series in Operations Research & Management
Science, G. Yu, Ed. Springer US, 1998, vol. 9, pp. 228–258.

[238] C. P. Medard and N. Sawhney, “Airline crew scheduling from planning to operations,”
European Journal of Operational Research, vol. 183, no. 3, pp. 1013 – 1027, 2007.

[239] J. Hu and E. L. Johnson, “Computational results with a primal–dual subproblem simplex
method,” Operations Research Letters, vol. 25, no. 4, pp. 149–157, 1999.

[240] B. Gopalakrishnan and E. Johnson, “Airline crew scheduling: State-of-the-art,” Annals of
Operations Research, vol. 140, no. 1, pp. 305–337, 2005.

References

216

[241] B. Crawford, C. Castro, and E. Monfroy, “A hybrid ant algorithm for the airline crew pairing
problem,” in Proceedings of the 5th Mexican International Conference on Artificial Intelligence, ser.
MICAI’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 381–391.

[242] C. Barnhart, E. L. Johnson, G. L. Nemhauser, and P. H. Vance, Crew Scheduling. Boston, MA:
Springer US, 1999, pp. 493–521. [Online]. Available: https://doi.org/10.1007/978-1-4615-5203-
1_14

[243] H. D. Chu, E. Gelman, and E. L. Johnson, “Solving large scale crew scheduling problems,”
European Journal of Operational Research, vol. 97, no. 2, pp. 260–268, 1997.

[244] P. H. Vance, A. Atamturk, C. Barnhart, E. Gelman, E. L. Johnson, A. Krishna, D. Mahidhara,
G. L. Nemhauser, and R. Rebello, “A heuristic branch-and-price approach for the airline crew
pairing problem,” preprint, 1997.

[245] G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, M. M. Solomon, and F. Soumis,
“Crew pairing at air france,” European journal of operational research, vol. 97, no. 2, pp. 245–259, 1997.

[246] A. Makri and D. Klabjan, “A new pricing scheme for airline crew scheduling,” INFORMS
Journal on Computing, vol. 16, no. 1, pp. 56–67, 2004.

[247] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser, “Airline crew scheduling: A new
formulation and decomposition algorithm,” Operations Research, vol. 45, no. 2, pp. 188–200, 1997.

[248] R. Borndörfer, U. Schelten, T. Schlechte, and S. Weider, “A column generation approach to
airline crew scheduling,” in Operations Research Proceedings 2005. Springer, 2006, pp. 343–348.

[249] F. Zeghal and M. Minoux, “Modeling and solving a crew assignment problem in air
transportation,” European Journal of Operational Research, vol. 175, no. 1, pp. 187–209, 2006.

[250] D. Teodorovic and G. Stojkovic, “Model to reduce airline schedule disturbances,” Journal of
Transportation Engineering, vol. 121, no. 4, pp. 324–331, 1995.

[251] G. Wei, G. Yu, and M. Song, “Optimization model and algorithm for crew management during
airline irregular operations,” Journal of Combinatorial Optimization, vol. 1, no. 3, pp. 305–321, 1997.

[252] L. Lettovsky, E. L. Johnson, and G. L. Nemhauser, “Airline crew recovery,” Transportation
Science, vol. 34, no. 4, pp. 337–348, 2000.

[253] M. Stojkovic and F. Soumis, “An optimization model for the simultaneous operational flight
and pilot scheduling problem,” Management Science, vol. 47, no. 9, pp. 1290–1305, 2001.

[254] A. J. Schaefer, E. L. Johnson, A. J. Kleywegt, and G. L. Nemhauser, “Airline crew scheduling
under uncertainty,” Transportation Science, vol. 39, no. 3, pp. 340–348, 2005.

[255] M. Ehrgott and D. M. Ryan, “Constructing robust crew schedules with bicriteria optimization,”
Journal of Multi-Criteria Decision Analysis, vol. 11, no. 3, pp. 139–150, 2002.

[256] O. Weide, D. Ryan, and M. Ehrgott, “An iterative approach to robust and integrated aircraft
routing and crew scheduling,” Computers & Operations Research, vol. 37, no. 5, pp. 833–844, 2010,
disruption Management.

[257] J. W. Yen and J. R. Birge, “A stochastic programming approach to the airline crew scheduling
problem,” Transportation Science, vol. 40, no. 1, pp. 3–14, 2006.

[258] V. Dück, L. Ionescu, N. Kliewer, and L. Suhl, “Increasing stability of crew and aircraft
schedules,” Transportation research part C: emerging technologies, vol. 20, no. 1, pp. 47–61, 2012.

[259] D. Lu and F. Gzara, “The robust crew pairing problem: model and solution methodology,”
Journal of Global Optimization, vol. 62, no. 1, pp. 29–54, 2015.

[260] C. Barnhart, E. Johnso, G. Nemhauser, and P. Vance, “Crew scheduling,” European Journal of
Operational Research, pp. 493–521, 1997.

[261] V. Duck, L. Ionescu, N. Kliewer, and L. Suhl, “Increasing stability of crew and aircraft
schedules,” Transportation Research Part C: Emerging Technologies, vol. 20, no. 1, pp. 47 – 61, 2012,

References

217

special issue on Optimization in Public Transport, Special issue on Optimization in Public
Transport, International Symposium on Transportation and Traffic Theory (ISTTT), Berkeley,
California, July 18-20, 2011.

[262] J. M. Rosenberger, A. J. Schaefer, D. Goldsman, E. L. Johnson, A. J. Kleywegt, and G. L.
Nemhauser, “A stochastic model of airline operations,” Transportation Science, vol. 36, no. 4, pp.
357–377, Nov. 2002.

[263] J. Kennedy and R. . Eberhart, “A discrete binary version of the particle swarm optimization,”
Proceeding of the conference on System, Man, and Cybernetics, vol. 4, pp. 104–109, 1997.

[264] A. Eiben and S. Smit, “Parameter tuning for configuring and analyzing evolutionary
algorithms,” Swarm and Evolutionary Computation, vol. 1, pp. 19 – 31, 2011.

[265] A. Ratnweera, S. Halgamuge, and H. Watson, “Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients,” IEEE Trans. Evol. Comput., vol. 8, pp. 240 –
255, 2004.

[266] D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimization,” in Swarm
Intelligence Symposium, 2007. SIS 2007. IEEE. IEEE, 2007, pp. 120–127.

[267] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stuetzle, “Paramils: an automatic algorithm
configuration framework,” Journal of Artificial Intelligence Research, vol. 36, no. 1, pp. 267–306, 2009.

[268] A. J. Schaefer, E. L. Johnson, A. J. Kleywegt, and G. L. Nemhauser, “Airline crew scheduling
under uncertainty,” Transportation Science, Tech. Rep., 2001.

[269] R. Givan, S. Leach, and T. Dean, “Bounded-parameter markov decision process,” Artif. Intell.,
vol. 122, no. 1-2, pp. 71–109, Sep. 2000.

[270] O. Candell, R. Karim, and P. Söderholm, “eMaintenance-information logistics for maintenance
support,” Robotics and Computer-Integrated Manufacturing, vol. 25, no. 6, pp. 937–944, 2009.

[271] G. Radnoti and S. Carr, Profit strategies for air transportation. McGraw-Hill New York, NY, 2002.

[272] A. Al-Garni, M. Tozan, and W. Abdelrahman, “Graphical techniques for managing field
failures of aircraft systems and components,” Journal of Aircraft, vol. 46, no. 2, pp. 608–616, 2009.

[273] S. Duffuaa and A. Andijani, “An integrated simulation model for effective planning of
maintenance operations for saudi arabian airlines (saudia),” Production Planning & Control, vol. 10,
no. 6, pp. 579–584, 1999.

[274] K. A. Latorella and C. G. Drury, “A framework for human reliability in aircraft inspection,” in
Proceedings of the Seventh FAA Meeting on Human Factors Issues in Aircraft Maintenance and Inspection.
Federal Aviation Administration, Washington, DC, 1992.

[275] K. A. Latorella and P. V. Prabhu, “A review of human error in aviation maintenance and
inspection,” International Journal of industrial ergonomics, vol. 26, no. 2, pp. 133–161, 2000.

[276] M. Masmoudi and A. Hat, “Fuzzy uncertainty modelling for project planning: application to
helicopter maintenance,” Ïnternational Journal of Production Research, vol. 50, no. 13, pp. 3594–3611,
2012.

[277] C. Friend, Aircraft maintenance management. Longman Publishing Group, 1992.

[278] P. Samaranayake and S. Kiridena, “Aircraft maintenance planning and scheduling: an
integrated framework,” Journal of Quality in Maintenance Engineering, vol. 18, no. 4, pp. 432–453,
2012.

[279] C. Barnhart, N. L. Boland, L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and R. G. Shenoi,
“Flight string models for aircraft fleeting and routing,” Transportation Science, vol. 32, no. 3, pp.
208–220, 1998. [Online]. Available: http://dx.doi.org/10.1287/trsc.32.3.208

[280] S. Lan, J.-P. Clarke, and C. Barnhart, “Planning for robust airline operations: Optimizing aircraft
routings and flight departure times to minimize passenger disruptions,” Transportation Science,

References

218

vol. 40, no. 1, pp. 15–28, 2006. [Online]. Available: http://pubsonline.informs.org/doi/abs/-
10.1287/trsc.1050.0134

[281] L. Clarke, E. Johnson, G. Nemhauser, and Z. Zhu, “The aircraft rotation problem,” Annals of
Operations Research, vol. 69, no. 0, pp. 33–46, 1997. [Online]. Available: http://dx.doi.org/10.1023/-
A:1018945415148

[282] Z. Liang and W. A. Chaovalitwongse, The Aircraft Maintenance Routing Problem. Boston, MA:
Springer US, 2009, pp. 327–348. [Online]. Available: http://dx.doi.org/10.1007/978-0-387-88617-
6_12

[283] M. Junger, M. Elf, and V. Kaibel, “Rotation planning for the continental service of a european
airline,” in Mathematics-Key Technology for the Future. Springer, 2003, pp. 675–689.

[284] “A network-based model for the integrated weekly aircraft maintenance routing and fleet
assignment problem,” Transportation Science, vol. 47, no. 4, pp. 493–507, Nov. 2013. [Online].
Available: http://dx.doi.org/10.1287/trsc.1120.0434

[285] R. Gopalan and K. T. Talluri, “The aircraft maintenance routing problem,” Operations Research,
vol. 46, no. 2, pp. 260–271, 1998. [Online]. Available: http://pubsonline.informs.org/doi/abs/-
10.1287/opre.46.2.260

[286] K. T. Talluri, “The four-day aircraft maintenance routing problem,” Transportation Science,
vol. 32, no. 1, pp. 43–53, 1998. [Online]. Available: http://dx.doi.org/10.1287/trsc.32.1.43

[287] A. Sarac, R. Batta, and C. M. Rump, “A branch-and-price approach for operational aircraft
maintenance routing,” European Journal of Operational Research, vol. 175, no. 3, pp. 1850 – 1869, 2006.
[Online]. Available: //www.sciencedirect.com/science/article/pii/S0377221705004807

[288] C. Sriram and A. Haghani, “An optimization model for aircraft maintenance scheduling and re-
assignment,” Transportation Research Part A: Policy and Practice, vol. 37, no. 1, pp. 29–48, 2003.

[289] C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser, and G. Sigismondi,
“The fleet assignment problem: Solving a large-scale integer program,” Mathematical Programming,
vol. 70, no. 1, pp. 211–232, 1995.

[290] D. Klabjan, E. L. Johnson, G. L. Nemhauser, E. Gelman, and S. Ramaswamy, “Airline crew
scheduling with time windows and plane-count constraints,” Transportation Science, vol. 36, no. 3,
pp. 337–348, 2002. [Online]. Available: http://dx.doi.org/10.1287/trsc.36.3.337.7831

[291] J.-F. Cordeau, G. Stojkovic, F. Soumis, and J. Desrosiers, “Benders decomposition for
simultaneous aircraft routing and crew scheduling,” Transportation Science, vol. 35, no. 4, pp. 375–
388, 2001. [Online]. Available: http://dx.doi.org/10.1287/trsc.35.4.375.10432

[292] A. M. Cohn and C. Barnhart, “Improving crew scheduling by incorporating key maintenance
routing decisions,” Operations Research, vol. 51, no. 3, pp. 387–396, 2003. [Online]. Available:
http://pubsonline.informs.org/doi/abs/10.1287/opre.51.3.387.14759

[293] O. Aoun, M. Sarhani, and A. El Afia, “Investigation of hidden markov model for the tuning of
metaheuristics in airline scheduling problems,” IFAC-PapersOnLine, vol. 49, no. 3, pp. 347–352,
2016.

[294] O. Aoun and A. El Afia, “Using markov decision processes to solve stochastic gate assignment
problem,” in Logistics and Operations Management (GOL), 2014 International Conference on, June 2014,
pp. 42–47.

[295] E. Altman, Constrained Markov decision processes. CRC Press, 1999, vol. 7.

[296] J. Patokallio. Database for flight logging, mapping, stats, and sharing. http://openflights.org.
OpenFlights. http://OpenFlights.org.

[297] I. Chadès, M.-J. Cros, F. Garcia, and R. Sabbadin, “Markov decision processes (mdp) toolbox,”
URL http://www. inra. fr/mia/T/MDPtoolbox/42, 2009.

219

Appendix:
Thesis publications

Journals

1. Aoun, Oussama, Malek Sarhani, and Abdellatif El Afia (2018). “Hidden
markov model classifier for the adaptive particle swarm optimization”, In
Recent Developments in Metaheuristics, pp. 1-15. Springer.

2. Abdellatif El Afia, Malek Sarhani and Aoun Oussama (2019). “A Probabilistic
Finite State Machine Design of Particle Swarm Optimization”, In Bioinspired
Heuristics for Optimization, pp. 185-201. Springer.

3. Aoun, Oussama and Abdellatif El Afia (2018). "Time-Dependence in Multi-
Agent MDP Applied to Gate Assignment Problem", INTERNATIONAL
JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS.
Vol. 9(2), pp. 331-340. SCIENCE & INFORMATION SAI ORGANIZATION
LTD 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND

4. Aoun, Oussama and Abdellatif El Afia (2018). "Particle swarm optimisation
with population size and acceleration coefficients adaptation using hidden
Markov model state classification", International Journal of Metaheuristics. Vol.
7(1), pp. 1-29. Inderscience Publishers (IEL). .

5. Oussama Aoun, Malek Sarhani, and Abdellatif El Afia (2016). “Investigation of
hidden markov model for the tuning of metaheuristics in airline scheduling
problems”. IFAC-PapersOnLine, 49(3), 347-352

6. Abdellatif El Afia, Malek Sarhani and Aoun Oussama (2017). "Hidden markov
model control of inertia weight adaptation for Particle swarm optimization",
IFAC-PapersOnLine. Vol. 50(1), pp. 9997-10002. Elsevier

Conferences

1. Aoun Oussama and Abdellatif El Afia (2018). "Self Inertia Weight Adaptation
for the Particle Swarm Optimization", In Proceedings of the International

Appendix

220

Conference on Learning and Optimization Algorithms: Theory and
Applications, LOPAL 2018, Rabat, Morocco, May 2-5, 2018, pp. 8:1-8:6.

2. Abdellatif El Afia and Aoun Oussama (2017). "Data-driven based aircraft
maintenance routing by markov decision process model", In Proceedings of
the 2nd international Conference on Big Data, Cloud and Applications, BDCA
2017, Tetouan, Morocco, March 29-30, 2017. , pp. 74:1-74:6

3. Aoun Oussama and Abdellatif El Afia (2014). Using Markov decision
processes to solve stochastic gate assignment problem", In International
Conference on Logistics and Operations Management (GOL), June, 2014 , pp.
42-47.

4. Aoun Oussama and Abdellatif El Afia (2014). "Application of multi-agent
Markov decision processes to gate assignment problem", In Information
Science and Technology (CIST), 2014 Third IEEE International Colloquium in.,
Oct, 2014. , pp. 196-201

5. Aoun Oussama and Abdellatif El Afia (2014). "A robust crew pairing based on
Multi-agent Markov Decision Processes", In Second World Conference on
Complex Systems (WCCS), Nov, 2014. , pp. 762-768

