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Résumé

Cette thèse s’inscrit dans la thématique de la sécurité routière pour aborder les ques-
tions liées à l’évolution des moyens de transport, leur gestion et leur sécurité. Les
véhicules d’aujourd’hui sont de plus en plus équipés de divers systèmes (passifs ou
actifs) destinés à améliorer la sécurité, le confort des passagers et l’aide à la conduite.
Cependant, malgré la mise en place de ces dispositifs dans la majorité des véhicules
actuels, une proportion importante des accidents mortels est due à la perte de con-
trôle des véhicules automobiles. Ce constat nous amène à réfléchir sur la fiabilité
des différents composants et sur le besoin potentiel d’améliorer et de développer ces
systèmes de sécurité pour détecter et corriger en temps réel les problèmes liés à la
perte de contrôle et à la stabilité des véhicules automobiles. En s’appuyant sur les
outils existant en mathématiques et en automatique, l’évolution des techniques et des
connaissances actuelles offre de nouvelles solutions pour améliorer et modifier les
systèmes de commande automobile. L’objectif de notre thèse est de synthétiser des
techniques de Commande Tolérante aux Défauts (FTC) qui prennent automatique-
ment en compte l’effet de certains types de défauts pouvant survenir sur les capteurs
ou les actionneurs tout en gardant le véhicule automobile stable et en évitant les sit-
uations de conduite critiques. Ces techniques de commande sont conçues à partir de
données sur les états et les défauts fournies par les observateurs. Le système de la
dynamique latérale du véhicule automobile est globalement représenté par le modèle
flou Takagi-Sugeno (T-S). Cette représentation est largement utilisée dans les prob-
lèmes de commande et d’estimation des systèmes non linéaires. Elle est basée sur
la décomposition du comportement dynamique du système non linéaire en un nom-
bre fixe de régions, et chaque région est caractérisée par un sous-modèle linéaire. Le
comportement général du système est représenté en considérant la contribution de
chaque sous-modèle à l’aide des fonctions d’appartenance. La stabilité du modèle
flou T-S est analysée par l’approche de Lyapunov ; les conditions appropriées pour
la conception des commandes et des observateurs sont fournies sous forme des Iné-
galités Matricielles Linéaires (LMIs), qui peuvent être résolues aisément par des outils
spécifiques (solveurs de LMI).

Mots clés: Véhicule automobile, dynamique latérale, Modèle flou Takagi-Sugeno
(T-S), Estimation de Défaut (FE), Commande Tolérante aux Défauts (FTC).



iii

Abstract

This thesis is part of the road safety topic. It addresses issues related to the evolution
of transport means, their management and their safety. Today, vehicles are increas-
ingly equipped with various systems (passive or active) designed to improve safety,
passenger comfort and driving assistance. Despite installing these devices in most
current vehicles, a significant proportion of fatal accidents are due to the loss of con-
trol of automotive vehicles. This observation leads us to reflect on the reliability of
the various components and the potential need to improve and develop these safety
systems to detect and correct the problems inherent in the loss of control and stability
of automotive vehicles in real-time. Building on existing tools in mathematics and au-
tomation, the evolution of current techniques and knowledge offers new solutions to
improve and modify automotive control systems. The objective of our thesis is to syn-
thesise Fault-Tolerant Control (FTC) techniques that automatically take into account
the effect of some types of faults that may occur on sensors or actuators while keeping
the automotive vehicle stable and avoiding critical driving situations. These control
techniques are designed using state and fault data provided by observers. The lat-
eral dynamics system of the automotive vehicle is globally represented by the Takagi-
Sugeno (T-S) fuzzy model. This representation is widely used in control and estima-
tion problems of non-linear systems. It is based on the decomposition of the dynamic
behaviour of the non-linear system into a fixed number of regions. Each region is char-
acterised by a linear sub-model. The overall behaviour of the system is represented
by considering the contribution of each sub-model using membership functions. The
stability of the T-S fuzzy model is analysed using the Lyapunov approach. The appro-
priate conditions for the design of controls and observers are provided in the form of
Linear Matrix Inequalities (LMIs), which can be solved simply by specific tools (LMI
solvers).

Keywords: Automotive vehicle, lateral dynamics, Takagi-Sugeno (T-S) fuzzy model,
Fault Estimation (FE), Fault-Tolerant Control (FTC).
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General introduction

1 Framework

This work has been carried out during the thesis preparation at the Industrial Tech-
nologies and Services Laboratory (Lab-TSI), Higher School of Technology (EST-Fez)
in order to obtain Doctorate degree from the Doctoral Studies Centre in Engineer-
ing Sciences and Techniques (CED-STI), Faculty of Sciences and Techniques (FST-Fez),
Sidi Mohammed Ben Abdellah University (USMBA), under the direction of Professor
Rachid El Bachtiri.

2 Background and problematic

This thesis entitled "Estimation and control of the lateral dynamics of an automotive
vehicle" is a part of the road safety research area. Works relating to road transport are
the subject of careful attention and present an increasing interest for laboratories, re-
searchers, and automotive manufacturers. Indeed, several national and international
research projects have been carried out to address challenges related to the develop-
ment and evolution of transport means, their management, and their safety.

The automotive vehicle is an indispensable element in improving our daily life,
allowing everyone to move more freely. It is therefore easy to imagine the economic
and commercial stakes involved. Since its appearance in the 19th century during the
industrial revolution, the automotive vehicle has undergone tremendous changes in
all areas; from the improvement of mechanical structures and mechanisms to the rapid
development of energy, microelectronics, computer and communication technologies
during the recent years. The numerous automakers and their capacity for innovation
generate intense technological competition. Nowadays, the transformation of auto-
motive vehicles is important so that they have the characteristics of being electric,
intelligent and networked.

From the road safety point of view, since the introduction of electronics in auto-
motive vehicles at the end of the 20th century, many new systems and devices were
designed to improve safety, passenger comfort, and driver assistance have been incor-
porated in new automotive vehicles. These systems can be divided into two groups:

- Passive safety systems are all automotive vehicle elements that reduce the ef-
fects of an accident and are triggered without control. Among these elements,
we can find Airbags, which are bags containing an expansive gas designed to
inflate extremely quickly in the event of a crash. Their purpose is to protect
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passengers and prevent them from violently hitting some vehicle accessories.
The seat belt that was first introduced and installed on Volvo cars in 1959 is
also a passive safety system (Håland, 2006); it is a device that limits the uncon-
trollable motions of a vehicle’s occupants during an impact and prevents them
from being ejected. Recently, the European Commission aimed to introduce the
E-call system in all vehicles distributed in the European Union (Guilbot, 2014),
which is an automatic emergency call system that allows a crashed vehicle to
contact the emergency services immediately and inform them of its precise lo-
cation, whether its passengers are conscious or not. In general, the vehicle body
structure’s deformation is designed to absorb the maximum amount of energy
during a collision. Thus, the front, rear and side parts of a vehicle are bumpers
that absorb shocks. Also, the dashboard, steering wheel and all controls are
made of shock-absorbing materials to avoid injuring the driver and passengers
in case of impact. Furthermore, the windshields are designed to keep in place
during a collision and crumble to reduce the risk of serious cuts.

- Active safety systems are all equipment that intervene during the use of a vehi-
cle to prevent an accident before it occurs, this equipment is permanently mon-
itored. Therefore, it requires actuators to perform the action and sensors to ad-
just it. Various electronic active safety systems have been developed to assist the
driver. In this aspect, we can cite the Anti-lock Braking System (ABS) (Aly et al.,
2011), which ensures that the wheels do not lock during emergency braking,
especially when driving in low adhesion conditions, to maintain the vehicle’s
steering while avoiding an obstacle. In the case without ABS, loss of control
would be very rapid, not to mention the impossibility of undertaking an avoid-
ance manoeuvre. The Adaptive Cruise Control (ACC) is also an active safety
system (Marsden et al., 2001), it is an advanced version of the cruise control. It
not only allows the vehicle to maintain a fixed speed, but also to control speed
according to the safe distance from the vehicle that precedes it in the same track.
Using radar or laser, the ACC measures the distance to the vehicle in front and
adapts the speed to keep a safe distance. The Electronic Stability Program (ESP)
is another successful active safety system (Farmer, 2004), also known as Elec-
tronic Stability Control (ESC), it works when the vehicle is taking a turn at high
speed or when there is a sudden change in trajectory. This system keeps the vehi-
cle on the road by braking one or more wheels. It can also reduce engine torque
if the driver continues to accelerate. Recently, the Driver Drowsiness Monitoring
System (DDMS) (Saini and Saini, 2014), also known as an anti-sleep system, is
an electronic system that indicates to the driver when it’s time to take a break.
At each moment, the different data are compared in real-time with databases to
detect or not a drop in concentration. The information is usually displayed by
an icon such as a coffee cup, a message or a sound signal.
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There are a dozen other active security systems that we cannot all present. How-
ever, despite the presence of all these systems in the majority of today’s vehicles, a
significant percentage of fatal accidents are due to loss of vehicle stability and con-
trol. This observation leads us to reflect on the reliability of the different components
and the potential need to improve and develop these safety systems to detect and
correct real-time problems related to loss of control and vehicle stability. Taking ad-
vantage of existing tools in linear and non-linear automation, the evolution of current
techniques and knowledge offers new solutions to improve and modify automotive
vehicles’ monitoring and control systems.

The design of such in-vehicle safety control systems requires precise knowledge
of the dynamic parameters and their evolution in real-time. Instrumental sensors can
directly determine these parameters. However, the use of these sensors is subject to
some constraints, namely their lack of reliability, their high cost, the degradation and
loss of signals in particular weather conditions, and, in some cases, the unavailability
of these sensors. Therefore, vehicle parameters can be estimated using only accessible
and available measurements. Furthermore, the vehicle is a complex system subject
to many uncertainties, disturbances, and sometimes faults in actuators, sensors, or
the system itself. It is well-known that conventional control strategies such as PID or
fixed gain cannot adapt when these abnormalities occur. Thus, the controller must be
designed to assist the driver in the presence of uncertainties and disturbances and to
ensure that the vehicle remains stable even when various faults occur. This last task
is commonly referred to as Fault-Tolerant Control (FTC) (Isermann, 2006; Shen et al.,
2017).

3 Objective

Our main objective in this thesis is to propose, develop and apply methods to accu-
rately estimate and control the non-linear system of automotive vehicle lateral dynam-
ics. In addition, Fault-Tolerant Control (FTC) laws are generated using the information
provided by observers, which aim to maintain the automotive vehicle’s stability and
automatically limit the impact of some faults that may occur on sensors or actuators
in order to avoid critical driving situations. Two models of the lateral dynamics of the
automotive vehicle are used in this thesis, the first only takes in consideration lateral
speed and yaw angle as state variables, while the second also takes into account roll
motions (Doumiati et al., 2012; Rajamani, 2011). With these models, the advantage is
related to the simplicity and linearity of the structure. However, the vehicle is gener-
ally subject to strong parametric variations (mass, tyre/ground contact, slip angle, tyre
forces, etc.), making the tyres’ behaviour non-linear (Oudghiri, 2008). Therefore, the
linear model becomes unsuitable for predicting the system’s outputs and for analysing
its behaviour. To overcome this, the solution is to use complete models where the au-
tomotive vehicle is represented globally by Takagi-Sugeno (T-S) fuzzy models. This
representation is widely used in the problems of control and estimation of non-linear
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systems, which consists of a set of linear models linked by an interpolation structure
represented by non-linear membership functions (Takagi and Sugeno, 1985; Wang,
1994; Tanaka et al., 1998; Babuška, 2012; Bede, 2013; Chadli and Borne, 2013; Benza-
ouia and Hajjaji, 2016). The stability of T-S models is analysed using the Lyapunov
function (Tanaka et al., 2003). The appropriate conditions for the design of controllers
and observers are provided as Linear Matrix Inequalities (LMIs), which can be solved
simply by specific tools (LMI toolbox or YALMIP).

4 Thesis structure

The works developed in this thesis are structured in five chapters, as follows:

- Chapter I: This chapter outlines an overview of Fault Detection (FD) and Fault-
Tolerant Control (FTC) techniques. After recalling some terminologies and clas-
sifications of faults, some methods for residue generation and fault isolation are
presented. Then, some important approaches to FTC are discussed, classified
into active and passive methods.

- Chapter II: This chapter presents the basic results of T-S fuzzy models for con-
tinuous systems. First of all, T-S fuzzy models and the process of obtaining them
are described. Then, a set of results concerning the stability of T-S fuzzy systems
is presented. Afterwards, some fuzzy observers and control laws are considered.

- Chapter III: This chapter is devoted to the modelling of automotive vehicle dy-
namics. Initially, the necessary elements for the modelling of the automotive
vehicle are introduced. Then, some models of tyre/ground contact forces are
presented. After that, based on a set of assumptions, some well-known auto-
motive vehicle models are presented. This chapter contains a section on the T-S
fuzzy representation of the nonlinear automotive vehicle system.

- Chapter IV: In this chapter, the problem of fault and state estimation for the
automotive vehicle lateral dynamics system represented by T-S fuzzy model is
addressed. Observers are designed in this chapter to simultaneously estimate
faults and states of the system. First, using a descriptor approach, an observer
is designed to estimate a perturbed system affected by actuator faults. Then,
another method based on the unknown input observer is proposed to estimate
an uncertain vehicle system affected by sensor and actuator faults.

- Chapter V: This chapter is devoted to the application of different fault tolerant
control laws to assist driving. Starting with a H∞ static output-feedback control
that is robust to disturbances. Then, active fault-tolerant control laws are pro-
posed that can automatically compensate for the impact of faults that may occur
in the sensors or actuators of the automotive vehicle’s lateral dynamics system,
with consideration of the roll motion. These laws have the ability to maintain
stability and avoid critical driving situations.
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Chapter I

Overview of fault detection and
fault-tolerant control techniques

I.1 Introduction

With the development of industrial equipment and the abundance of advanced en-
gineering systems in various fields (e.g. finance, aerospace, automotive, bio-medical,
telecommunications, etc.), modern technology systems have become more and more
complex, which means that there is an increased risk that faults will lead to unde-
sirable behaviour. These faults affect a system and change its functional properties;
they can eventually produce degradation of the process performances and sometimes
even lose its stability (Chen and Patton, 2012). Therefore, it is important to consider
the operational safety aspect, not only for systems used in sensitive sectors such as
nuclear power plants, chemical installations and aeronautics in which damage caused
by faults can lead to loss of life, material, economics and environment, but also for any
system used in other fields.

Accordingly, online Fault Detection and Isolation (FDI) play an indispensable role
in any industry-wide process, whatever their security levels and costs. Indeed, early
detection of process faults can help to avoid abnormal progression of events. In this
context, many researchers have dedicated their work to FDI in industrial systems. We
mention the following main books: In (Isermann, 2006), the author presented an in-
troduction to advanced methods for fault detection. He discussed both model-free
fault detection methods, such as limit and trend checking, and model-based methods,
such as Fourier analysis, correlation and wavelets. Whereas, the authors in (Meskin
and Khorasani, 2011) have discussed the design and development of FDI algorithms
based on a geometric approach for driverless vehicles. In (Zhang et al., 2012), the au-
thors examined the theory and technology of fault estimation for dynamic systems;
they provided a comprehensive and systemic framework of fault estimation together
with accommodation for continuous and discrete systems. While in (Chen and Patton,
2012), the authors discussed many important robust approaches to model-based FDI
and their applications. Thus, although online fault detection and monitoring are of
great interest and necessary to improve safety-critical systems’ reliability, they do not
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guarantee safe and reliable functioning. To overcome this restriction, a control strat-
egy called Fault-Tolerant Control (FTC) law is required to achieve the correct opera-
tion and keep an acceptable level of performance (Stetter et al., 2020). FTC’s purpose
is to adjust immediately after a fault occurrence with optimal feedback to ensure that
a small defect in one subsystem does not become a serious fault in the whole system.
For non-critical systems, online fault detection and FTC techniques can improve sys-
tem efficiency, maintainability, availability and reliability (Shen et al., 2017). Hence,
the issue of the FTC has been widely covered in numerous publications. Authors pre-
sented the model-based analysis and design methods for FTC in (Blanke et al., 2006).
They suggested these methods for processes described by analytical models, discrete
event models, or those considered as quantified systems. A demonstration of FTC
techniques and basics for real systems is presented in (Noura et al., 2009). In (Stetter
et al., 2020), authors proposed some innovative FTC methods that can take over uncer-
tainties and share redundant and flexible elements applied to vehicles and automated
processes. Alwi et al. (2011) presented a sliding mode control design that can directly
deal with actuator failures by exploiting redundancy in the aircraft. In (Shen et al.,
2017), authors outlined theoretical developments and practical applications of FTC by
combining adaptive control with other control methods. They applied the obtained
results to complex dynamical systems, including uncertain non-linear systems with
delay. In fact, many scientific articles published in literature deal with FTC and FDI’s
problems, some of which will be quoted throughout this chapter.

This chapter provides an overview of FD and FTC techniques. It includes a sec-
tion with a reminder of some concepts and terminologies related to fault detection
and diagnosis, followed by a part on fault classifications according to their modelling,
location, and time evolution. The third section is dedicated to fault detection and
isolation, mentioning some approaches to residual generation and fault isolation tech-
niques. The fourth section introduces some important FTC approaches classified into
active and passive methods. A chapter conclusion is included in the last section.

I.2 Diagnosis terms and fault classifications

I.2.1 Terminologies

This sub-section will clarify some of the terms needed in the diagnosis area to deepen
our discussion. These terms will be defined based on these references (Isermann and
Ballé, 1997; Ichalal, 2009; Sallem, 2013).

– Fault: is an inadmissible departure of at least one characteristic of the system
from its nominal behaviour, it may affect the sensors, the actuators or the process
itself. Generally, the fault is denoted by f (t).

– Failure: is a functional fault that degrades or prevents the system’s ability to
accomplish its desired function(s). Indeed, it is a dysfunction of the system that
makes the process operate unacceptably from the performance point of view.
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– Malfunction: is the inability of a system to perform its required function (total
shutdown), it is always the result of a failure which is itself the result of a fault:

Fault −→ Failure −→ Mal f unction

– Residual: is a signal designed to be an indicator of functional or behavioural
abnormalities, substantially zero in the absence of faults and not zero in their
presence and is often denoted by r(t).

– Error: is the difference between measured or estimated values of a variable and
a theoretically correct model value.

– Fault detection: is the determination of system faults and the time of their oc-
currence.

– Fault diagnosis: is the determination of the type, nature, and duration of a fault.
The diagnosis of process faults is the interpretation of the installation’s actual
situation based on sensor readings and knowledge of the system.

– Fault isolation: is synonymous with fault diagnosis; it can refer to hardware or
software and consists of finding the source of a fault by isolating the device(s) of
the faulty system.

– Fault identification: is the real-time estimation of the size and behaviour of an
isolated fault.

– Supervision: is the monitoring of the correct operation of a system or activity.
Process supervision can be an advanced control and diagnostic application.

– Protection: signifies that the system’s potentially dangerous behaviour is re-
moved and thus avoid their effects.

– Safety: is the confident and peaceful feeling that results from the sense that we
are free from all danger. Physically, safety is the capacity of a system to present
the minimum risk and not cause trouble to the persons, the equipment or the
environment.

– Reliability: is the probability that a system will function correctly under given
conditions, within a precise perimeter, and over a specific period. During this
correct operation, the system adequately fulfils the required function, so that no
repairs are necessary.

– Fault tolerance: is also known as "fault insensitivity", it is a design technique
that allows a system to operate continuously without breaking down completely
when a fault has occurred.
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I.2.2 Fault classifications

Faults are characterised by a deviation from the system’s regular operation. Gener-
ally, they are classified according to their modelling, their location and their temporal
characteristics.

a. Fault modelling

Depending on its modelling, the faults can occur as additive or multiplicative faults
(see Fig. I.1), due to malfunction or equipment ageing (Noura et al., 2009).

FIGURE I.1: Fault models
a- additive fault; b- multiplicative fault

Additive faults are interference signals that are added to a point in the block dia-
gram. Normally, sensor and actuator faults are modelled as additive faults. However,
component faults are modelled as multiplicative faults that introduce changes in the
correlation of system output signals and modify the system’s dynamic characteristics
(Isermann, 2005).

b. Fault location

As can be seen in Fig. I.2, the faults are generally classified according to their location
into three types (Jain et al., 2018):

FIGURE I.2: Faults in automatic control systems

• Sensor faults: represent the incorrect sensor reading; they are characterised by
an error in measuring a physical parameter, and sensor faults can be total or
partial. A partial sensor fault (loss of precision) produces a signal with more or
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less adequacy with the variable’s real value to be measured, and it appears as a
bias, deviation or decrease of efficiency. However, in the case of a total sensor
fault (blockage), the sensor signal evaluation is impossible. This kind of fault is
often noted by fs.

• Actuator faults: affect the operating part and deteriorate the system’s input sig-
nal. Similar to sensor faults, actuator faults represent partial or total control loss
actions. In the first case, the actuator is characterised by degenerative operation,
i.e. it functions nominally, but its action is barely partial. A loss of energy of-
ten characterises this phenomenon. However, a total control loss means that the
actuator has become unable to control the system, for example, a valve that re-
mains stuck in its initial position or a break/interruption of an electrical thread
connecting the actuator to the system. Actuator faults are noted by fa.

• Plant faults: are the faults that affect the system itself; they represent all other
faults that cannot be characterised as sensor or actuator faults. They reflect a
change in the system’s physical parameters due to structural damage. System
faults cover a large category of situations. Therefore, diagnosis of these types of
faults is considered the most difficult.

c. Time characteristics of faults

Faults can be classified based on their shape and temporal characteristics, as shown in
Fig. I.3, in three different forms (Alrowaie, 2015).

FIGURE I.3: Time evolution of a fault
a- abrupt; b- incipient; c- intermittent

• Abrupt (or hard): this type of fault is characterised by a discontinuous temporal
reaction, which often occurs suddenly due to material damage. It is a grave
fault as it usually affects the controlled system’s performance and/or stability.
Mathematically, it is described as follows:

f (t) =

α, t ≥ t f

0, t < t f

(I.1)
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where t f is the fault occurrence time, f (t− t f ) is the fault’s temporal behaviour
and α is the constant threshold.

• Incipient (or soft): this fault type has a low impact on the system, but it is dif-
ficult to detect it due to its slow temporal evolution. The following relation can
express the development of this kind of fault:

f (t) =

α
(

eβ(t−t f ) − 1
)

, t ≥ t f

0, t < t f

(I.2)

β is a positive constant.

• Intermittent: is a sequence of abrupt faults with the particular characteristic that
the signal returns to its nominal value, it randomly appears and disappears. It is
often difficult to determine whether it is a fault or a disruption.

I.3 Fault detection and isolation

Today’s industrial processes require a high level of availability, reliability, operational
safety, and environmental protection. Hence, a fault diagnosis system is needed to
detect various faults as soon as they occur and then identify them to isolate the faulty
component before affecting the overall system.

In general, when speaking of fault diagnosis for monitoring dynamic systems, it
refers to the FDI procedure, which necessitates obtaining characteristic signals of the
monitored process operation and analysing them to deduce the system status. Sig-
nals are always determined based on the available knowledge of healthy behaviour.
In recent years, the FDI problem has been the subject of a large number of results
and research studies (see, for example, (Patton and Chen, 1997; Lin and Horng, 2006;
Blanke et al., 2006; Isermann, 2006; Alwi et al., 2011; Meskin and Khorasani, 2011;
Chen and Patton, 2012; Patton et al., 2013; Wang et al., 2013; Martinez-Guerra and
Mata-Machuca, 2016; Li, 2016), and the references therein). The classification of FDI
techniques is generally made according to several criteria, including the complexity
of the system, the nature of the available information (quantitative or qualitative), the
FDI implementation online and/or offline, the system dynamics (continuous, discrete
or hybrid), the decision-making structure (centralised, decentralised or distributed),
etc. From the modelling point of view, non-model-based techniques do not require
any form of model information and depend only on system data. These techniques are
also known as "signal-based techniques", they detect faults by testing specific proper-
ties (e.g. frequency analysis) of different measurement signals. On the other hand,
there are techniques based on mathematical models that require a thorough knowl-
edge of the system. These techniques have a wider range of application than signal-
based methods. As illustrated in Fig. I.4 (Danancher et al., 2011), they include two
steps: residuals generation and residuals evaluation using a decision-making scheme
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(Frank, 1996; Yoon and MacGregor, 2000; Isermann, 2005; Oudghiri, 2008; You et al.,
2017). In this thesis, we focus only on model-based FDI methods.

FIGURE I.4: FDI principle scheme

In the remainder of this section, the steps of the model-based FDI methods are
outlined, starting with the residual generation, then fault detection, followed by fault
isolation with its types.

I.3.1 Residuals generation

The residual generation is the first step in the FDI procedure. It is identified as a key
problem in model-based FDI as an information processing procedure. If not designed
correctly, it could lose some fault information. Several strategies have been used for
the residual generation; hardware redundancy is the most traditional, consisting of
doubling sensitive equipment or devices (machines, appliances, instruments, etc.) for
the same vital function. This approach aims to identify, in the case of a fault, its ap-
pearance time and its precise location among all redundant elements. Although this
approach is very successful in several industrial areas, it has the disadvantage of ad-
ditional redundant components that require additional space to support them, plus
the additional cost issue. An alternative approach to residuals generation is based on
analytical redundancy, which uses redundant analytical relationships between the in-
puts and measured outputs of the system to generate residual signals. This approach’s
application necessitates a mathematical model (static or dynamic, linear or non-linear,
deterministic or stochastic) of the supervised system connecting the measured inputs
and outputs. These methods are often referred to as the model-based approach.
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Several model-based residue generation techniques exist in literature (Basseville
et al., 1993; Gertler, 1998; Patton et al., 2013), these include, observer-based approach,
parity equation, and parameter identification & estimation. A comparison of these
three model-based methods can be found in (Chen and Patton, 2012). The success
of state-space models and the extensive use of observers in modern surveillance the-
ory and applications make the FDI observer-based approach the most successful in
this field. Therefore, particular interest will be given to this approach, which involves
using state observers or filters to construct residual signals, which represent the de-
viations between the observed behaviour and the expected reference behaviour when
the system is operating normally. Ideally, a residual should stay at zero in the absence
of faults and move significantly away from zero in the presence of faults (Meskin and
Khorasani, 2011; Methnani, 2012; You et al., 2017).

The residue is an indicator of system failure. For observers, the residue r(.) rep-
resents the difference between the real output y(.) and the estimated one ŷ(.); it is
defined for continuous systems as follows:

r(t) = y(t)− ŷ(t) (I.3)

In practice, the residue is not exactly equal to zero in the absence of faults. This is be-
cause, during the modelling phase, several simplifying assumptions are introduced,
leading to a model that does not accurately represent the real system. Besides, mea-
surements carried out on the system are most often affected by noises. Consequently,
the residual vector is written as follows:

r(t) = ym(t)− ŷ(t) (I.4)

with ym(t) is the measured output of the system.
Observer approaches are widely used in literature about residual generation. In

this context, fault detection for uncertain linear systems is discussed in (Han et al.,
2018). The authors assumed that the residual generator is perfectly realized as de-
signed. This study considered the imprecision and uncertainty on the residual gener-
ator implementation. Authors in (Li et al., 2016) developed a universal residual gen-
erator based on the T-S fuzzy observer via Lyapunov fuzzy functions. An approach
to identify faults by deriving information about fault signals, based on a defined re-
lationship between a fault signal and the observer theory is proposed in (Jeong et al.,
2019). In (Li et al., 2020), the authors examined optimal observation-based fault de-
tection and estimation schemes for T-S fuzzy systems with process faults. The issue
of fault detection based on the sliding-mode observer for a class of T-S fuzzy singular
systems is investigated in (Li and Yang, 2020).

I.3.2 Fault detection

After generating the residuals, the next step in the FDI procedure is the detection,
which determines the presence or absence of a fault. The detection is carried out
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by evaluating the residues that are directly related to variations from inputs (actu-
ator faults, unknown inputs, disturbances) and outputs (measurement noise, sensor
faults). The fault detection process consists of residue evaluation, threshold selection,
and decision making.

The residual is the signal that contains information on the duration and occurrence
of the fault; it is based on the deviation between the measurements and the model’s
calculations. The fault detection method consists of comparing the residual value to
a predefined threshold ιth; if the residue exceeds the threshold value, an alarm is trig-
gered, indicating a fault. The challenge in fault detection is defining the residuals
threshold for detecting any changes without causing false alarms.|r(t)| ≥ ιth =⇒ f (t) 6= 0

|r(t)| < ιth =⇒ f (t) = 0
(I.5)

with f (t) is the fault vector.
Under ideal conditions (no model uncertainties, no noises), the residues are as-

sumed to be zero, and they deviate from zero in the presence of faults.
A high threshold can lead to the risk of not detecting faults. Conversely, a low

threshold can lead to false alarms. For this reason, several research works focus on the
problem of choosing an optimal threshold that is the best compromise between a rate
of non-detection and a minimum rate of false alarms. Some research in this context
proposes methods using an adaptive threshold, including the following (Hashemi and
Pisu, 2011; Yoon and MacGregor, 2000; Zhang et al., 2002; Casavola et al., 2005)

I.3.3 Fault isolation

When a fault is successfully detected, the next step serves to separate the others’ spe-
cific fault. While one residual may be enough to detect a fault, a set of residuals (or
residual vector) is often necessary for fault isolation. In literature (Patton and Chen,
1994, 1991; Chen and Patton, 2012), the following two main types of residues are ob-
tained:

a. Structured residual sets

The set of structured residuals presents residuals sensitive to a sub-set of faults and
robust to others. Let us consider for example a residual vector r(t) ∈ Rnr and a fault
vector f (t) ∈ Rn f . The m elements of r(t) (denoted rm(t)) are sensitive just to the l
elements of the faults (denoted fl(t)):|rm(t)| ≥ ιth =⇒ presence of faults fl(t)

|rm(t)| < ιth =⇒ no faults fl(t) detected
, ∀t (I.6)

where ιth is the predefined threshold.
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Following this procedure, a set of residues is generated to consider all possible
combinations to locate each fault. The residual sensitivities are listed in a binary table
called the theoretical signature table. If a residue is sensitive to a fault, the correspond-
ing box in the table is marked with a "1", and if it is not, with a "0". Once the theoretical
signature table is created, the generated residuals are compared with this table at any
time to trigger the alarm corresponding to the occurrence of a fault on the affected
system component (Gertler, 1992).

Several schemes are proposed in literature to design structured residuals (Gertler,
1998; Chen and Patton, 2012; Patton et al., 2013), among them are the following:

Dedicated Observer Scheme (DOS). In this scheme, the idea is to build enough ob-
servers as shown in Fig. I.5 to detect faults, the ith observer is driven by the ith input
and all outputs, then each observer generates a residue insensitive to all faults ex-
cept one. Therefore, the observer receiving a faulty measurement provides a wrong
variable estimate, whereas other observers’ estimates converge to the corresponding
output measurements except on the faulty output. In this structure, all faults can
be detected simultaneously. However, although this structure sometimes gives good
results, its design remains very restricted because it does not achieve desirable perfor-
mance requirements such as robustness against uncertainties and modelling noises.

FIGURE I.5: Dedicated observer scheme to detect and isolate
(a) actuator faults; (b) sensor faults

Generalized Observer Scheme (GOS). In this scheme, the idea is to synthesize sev-
eral observers as seen in Fig. I.6 to be insensitive to a specific fault. If a fault appears,
all state estimates will be erroneous except those from the observer insensitive to this
single fault. In this type of structure, a generalized residual set is introduced that can
only detect a single fault. Despite having degrees of freedom to achieve robustness
against uncertainties and model noises, this approach’s problem remains in the inter-
actions between the sub-systems. Indeed, if these interactions are weak or null, a fault
will only affect the corresponding local observer’s estimation. It is then possible to
isolate the faulty component. On the other hand, if the interactions are high, a fault in
one of the components will affect the other components’ observers.
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FIGURE I.6: Generalized observer scheme to detect and isolate
(a) actuator faults and (b) sensor faults

The structured residual set’s main benefit is that the diagnostic analysis is simpli-
fied to identify which residuals have crossed their thresholds. The threshold test can
be performed separately for each residue, giving a Boolean decision table, and then
the isolation task can be performed using this table.

b. Fixed direction residuals

The fixed direction residuals set is an alternative approach to isolating faults consisting
of generating a residual in the vector form (directional residue vector). The residual
vector is oriented in the residual space’s specific direction to react to a fault that occurs
(see Fig. I.7).

FIGURE I.7: Fixed direction residuals

The vector of fixed directional residuals~r(t), for a fault fi(t), is expressed as fol-
lows:

~r(t| fi) = ηi(t)~υi , i = 1, 2, ..., n (I.7)
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where ~υi is a vector named directional signature of the fault fi in residual space and
ηi(t) is a scalar function that depends on the amplitude of the fault dynamics (Gertler,
1998; Sobhani-Tehrani and Khorasani, 2009).

The problem of fault isolation is identifying the theoretical signature closest to the
real signature obtained by the residual vector calculation. In Fig. I.8, an example of a
fault isolation problem using fixed direction residuals is shown. The actual residual
signatures are represented by black solid lines and the theoretical directional signa-
tures by red dotted lines.

FIGURE I.8: Fault isolation using fixed direction residuals

It can be seen on Fig. I.8 that the real signature r2 is very close to the theoretical
signature of the fault f1. This means the probability that this fault is present on the
system when r2 was calculated. Therefore, r2 does not exactly overlap with the vector
~υ1, perhaps because of the perturbations, which are considered less impact than the
faults. On the other hand, it is harder to evaluate the residue r1 because it is close to
~υ2 and ~υ3 simultaneously.

To summarize, the solvency conditions for generating a structured residual set are
generally more relaxed than those for the directional residual vector, since the design
objective in the latter approach is to generate a residual vector with the fault isolation
condition. In contrast, in the first approach, a set of residuals is generated, and it is
possible to have more design degrees of freedom (Meskin and Khorasani, 2011).

I.4 Fault-tolerant control systems

The FTC systems aim to improve reliability, availability, and safety while ensuring a
permanently satisfactory performance level. For this reason, the control algorithms
must be able to maintain stability and performance regardless of the occurring faults.
The FTC has received tremendous attention from the research community and remains
a widely followed topic of publications in recent decades. One of the first review ar-
ticles in the FTC field was published in 1991 by Stengel (Stengel, 1991), which intro-
duced the basic FTC concepts for continuous dynamical systems and also presented its
applications that include artificial intelligence. In (Blanke et al., 1997), authors treated
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FTC from a wider angle, covering the whole design process from interface engineering
to structural implementation. A literature review on reconfigurable FTC is presented
in (Zhang and Jiang, 2008), where the authors made a brief comparison of the various
existing approaches to active FTC and classified them according to different criteria
including design approaches and implementations. The authors examined the sim-
ilarities and differences between active and passive FTCs from a philosophical and
practical point of view in (Jiang and Yu, 2012), discussing the advantages and lim-
itations of each method. FTC’s strategy based on a bank of observers performing
detection and isolation of sensor faults is presented in (El Youssfi et al., 2018b). This
control is applied to the vehicle lateral dynamics with consideration of roll motions
represented by the T-S fuzzy models. In (Sami and Patton, 2013), a description of a
fault-tolerant tracking control law for non-linear systems based on robust fault esti-
mation, the objective of this control is to compensate both actuator and sensor faults
simultaneously. Generally, hundreds of references in the literature have documented
FTC’s problem, which cannot be fully cited.

I.4.1 Definition of fault-tolerant control systems

A system is said to be fault-tolerant when it can return to its original function with
identical or degraded performances in the event of a failure. In general, a fault-tolerant
system represents a more advanced function than the diagnostic unit. It consists of de-
termining a control strategy that can maintain the nominal objectives, despite a fault’s
occurrence and accommodate it automatically. This type of control has the property
of minimizing or even eliminating the fault effects on the system’s performances to
guarantee its stability and correct operation.

The general scheme of the FTC system is illustrated in the Fig. I.9 (Jain et al., 2018),
it is divided into two blocks. The first is the FDI block, which monitors the system
and provides the supervisor with information on the system status. It performs the
tasks of detection, isolation (location determining) and identification (estimation of
the size and nature) of faults. The second is the supervisor block, which in the event
of a fault, evaluates the previous information and redefines the set-points and changes
to be made to all actuators, sensors or control law (Achbi, 2012).

FIGURE I.9: Fault-tolerant control system principle
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I.4.2 Classification of fault-tolerant control methods

The FTC is generally classified according to two different approaches: The first is the
Passive Fault-Tolerant Control (PFTC). It is a robust control that may be sufficient to
achieve nominal performance in the presence of a low severity fault. The second is
the Active Fault-Tolerant Control (AFTC), which requires an FDI block to detect and
isolate the fault. In the latter, a distinction is made between adaptation, reconfigu-
ration and restructuring according to the quality of performance after the fault. The
diagram in Fig. I.10 illustrates FTC methods classification, based on passive and active
approaches (Stetter et al., 2020).

FIGURE I.10: Classification of FTC approaches

a. Passive fault-tolerant control methods

The PFTC methods are based on the control synthesis that makes the system insensi-
tive to specific known faults. This control is robust against parametric uncertainties
and external disturbances (e.g. H∞ control, sliding-mode control, etc.) and does not re-
quire any online fault information or controller reconfiguration strategy. Under these
control types, the modified system continues to operate with the original controller,
making it a more attractive approach from a computational point of view (Jain et al.,
2018). In practice, the major drawback of these techniques is that in the case of oc-
casional faults, it is not desired to significantly and permanently modify the system
performance to be insensitive to these types of faults. Thus, the PFTC systems gen-
erally guarantee a low level of performance. However, in some applications where
faults are known and restricted, these techniques may be sufficient. For an overview
of robust control methods, the reader can consult (Zhou and Doyle, 1998; Mackenroth,
2013).

b. Active fault-tolerant control methods

Compared to PFTC methods, the AFTC methods are adaptive and react to the fault
occurrence via real-time reconfiguration. AFTCs maintain stability and ensure ade-
quate performance, not only when all control elements are functioning correctly, but
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also in the event of a malfunction of sensors, actuators or other system components
(Kanev, 2004; Jiang and Yu, 2012). These methods strongly require a FDI block to pro-
vide precise and real-time information on possible faults (time of occurrence, type and
magnitude of fault). The general architecture of the AFTC is as shown in Fig. I.9. The
supervision unit’s FDI block uses the system’s measured inputs and outputs to detect
and locate faults. Afterwards, information on the estimated faults is transmitted on-
line to the supervision block. Thus, it is possible to modify the parameters and/or
controller design depending on the mechanism used and the fault type that occurred.
The major disadvantage of active approaches is the limitation of the time available to
recalculate the new control law at each moment of detecting a fault. However, active
FTC methods are more developed in the literature than passive methods because they
offer better performance and the possibility to handle a large class of faults (Kanev,
2004; Du et al., 2015).

As shown in Fig. I.10, AFTC is divided into three different classes: The first is fault
adaptation where only low amplitude faults are taken into account. This class’s control
law is generated by on-line adjustment of the controller parameters and the system
inputs/outputs. The second class is system reconfiguration, which is used if the faulty
parts cannot be adapted. The modification of the system structure characterises it
in order to compensate for the fault. The third class is restructuring, which is the
synthesis of a new control law by changing its structure and parameters. It is necessary
if the control problem has no solution with adaptation and reconfiguration (Blanke
et al., 2006; Jain et al., 2018). Several methods of AFTC are available in literature
(Staroswiecki, 2005; Youmin Zhang and Jin Jiang, 2001; Oudghiri, 2008; Seron et al.,
2008; Ikeda et al., 1993; Patan, 2014). In the following, some active strategies of the
FTC are presented.

Pseudo-Inverse Method (PIM). The PIM was originally proposed for aircraft con-
trol systems in (Caglayan et al., 1988) and developed in (Gao and Antsaklis, 1992). It
is one of the most widely cited methods and has been largely addressed by many re-
searchers in the field of AFTC (Huang and Stengel, 1990; Staroswiecki, 2005; Blanke
et al., 2006). This method is used in linear systems and minimises the deviation be-
tween the faulty system’s closed-loop model and the reference model. Its principle
is to modify the constant feedback gain matrix in the state feedback control law such
that the reconfigured system closely approximates the nominal model.

Let us consider the closed-loop system, where the following state representation
defines the nominal model: ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(I.8)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny are the state, input and output vectors of
the system, respectively. The matrices A, B and C are system matrices in the nominal
case with appropriate dimensions.
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Let us consider the state feedback control law u(t) = −Kx(t), K ∈ Rnu×nx , and
under the assumption that the state vector is known, the closed-loop system isẋ(t) = (A− BK) x(t)

y(t) = Cx(t)
(I.9)

The occurrence of a fault leads to a change of model, and the faulty system is then
represented as follows: ẋ f (t) = A f x f (t) + B f u f (t)

y f (t) = C f x f (t)
(I.10)

with the subscript f indicates the fault situation of the system.
The new reconfigured control law is formulated in the same form as the previous

one:
u f (t) = −KRx f (t) (I.11)

The objective is to find the new feedback gain KR such that the state matrices of
the nominal and faulty systems are approximated.

KR = B+
f

(
A f − A + BK

)
(I.12)

where B†
f denotes the pseudo-inverse of B f .

The resulting input to the faulty system is

u f (t) = −B+
f

(
A f − A + BK

)
x f (t) (I.13)

This approach has the advantage of being simple, which makes it very suitable for
on-line implementation. On the other hand, changes on the system caused by a fault
are computed directly by (I.12). However, no guarantee of closed-loop system stabil-
ity is the main disadvantage of PIM. This method has been developed in (Gao and
Antsaklis, 1991, 1992) by adding constraint such that the closed-loop system remains
stable. However, this additional constraint considerably increases the computation
time. Another major disadvantage of this method is the need to know the faulty sys-
tem’s mathematical model (A f , B f and C f ) to calculate the new gain KR.

Eigenstructure Assignment (EsA). The EsA method for control law reconfiguration
is considered a more powerful approach than PIM. This method was initially intro-
duced in (Andry et al., 1983) and has been the subject of several publications (for
instance, see (Konstantopoulos and Antsaklis, 1996; Sauter et al., 2006)). Its main prin-
ciple is to coincide, via feedback control laws, the eigenstructure (vectors and eigen-
values) of the matrices of nominal and faulty systems in a closed-loop. The EsA tech-
nique synthesizes the feedback gain matrix to make the closed-loop eigenvalues of
the reconfigured system similar to those of the pre-fault system, and at the same time,
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minimizes the 2-norm of the difference between the corresponding eigenvectors. This
method has been developed using both state feedback control (Zhang and Jiang, 2000)
and output feedback control (Konstantopoulos and Antsaklis, 1996).

Considering νi as eigenvectors of the closed-loop system state matrix correspond-
ing to the eigenvalues λi (i = 1, 2, ..., n). The EsA method allows to compute the state
feedback gain matrix KR of the faulty model as a solution of the following optimiza-
tion problem: 

Find KR

such that
(

A f − B f KR
)

ν
f
i = λiν

f
i , i = 1, 2, . . . , n

and ν
f
i = arg min

ν
f
i

∥∥∥νi − ν
f
i

∥∥∥2

Wi

(I.14)

where ∥∥∥νi − ν
f
i

∥∥∥2

Wi
= (νi − ν

f
i )

TWi(νi − ν
f
i ) (I.15)

with Wi is a positively defined weighting matrix serving an additional degree of free-
dom.

This is the least-squares optimization problem, but it does not impose any compu-
tational burden in this approach. Besides, the fact that the computational load does
not seem to be necessary since the solution of the analytical expression (I.14) is avail-
able. Moreover, another benefit of EsA approach is that the performance specifications
are given in terms of the system eigenstructure. The closed-loop system’s eigenstruc-
ture can be accurately determined to perform stability analysis and specified dynamic
performance analysis. However, integrating model mismatch issues and fault diag-
nosis uncertainties into this optimization framework remains an important challenge
(Jain et al., 2018).

Reference model approach. This is often called the following approach. The refer-
ence model approach for AFTC systems is interesting for designing an on-line control
law, in such a way that the performances of the controlled faulty system approximate
as closely as possible to those of a reference model. Classically, this approach considers
the following reference model:ẋr(t) = Arxr(t) + Brr(t)

yr(t) = Crxr(t)
(I.16)

where r(t) corresponds to the reference trajectory signal, xr(t) and yr(t) are the state
and the output of the reference model, respectively.

Considering the open-loop system (I.8), the state feedback control u(t) composed
of the matrices Kr and Kx is given by:

u(t) = Kxx(t) + Krr(t) (I.17)
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Based on the above control gains, the reference model and the closed-loop system
can be written as follows:ẏr(t) = Cr Arxr(t) + CrBrr(t)

ẏ(t) = (CA + CBKx) x(t) + CBKrr(t)
(I.18)

The objective is to match precisely the two models mentioned above ((I.8) and
(I.16)). The following selection allows to obtain a perfect follow-up of the model :Kr = (CB)−1CrBr

Kx = (CB)−1 (Cr Ar − CA)
(I.19)

The solutions (I.19) exist if the system is square (i.e. dim(y(t)) = dim(u(t))) and the
CB matrix is invertible.

When the system matrices are unknown, they can be replaced by estimated ma-
trices (Â, B̂, Ĉ), from the indirect (explicit) method (Bodson and Groszkiewicz, 1997).
This method does not always guarantee the stability of the closed-loop system. To
avoid this problem, the direct (implicit) technique has been used to directly compute
controller gain-matrices (Kr & Kx) from an adaptive method (Tao et al., 2002). An ad-
vantage of using this approach is that it does not require any FDI scheme. However,
this method has a limited ability to adapt to on-line faults due to the necessity of a
perfect faulty model, which introduces difficulties in dealing with uncertainties (Jain
et al., 2018).

Multiple-model approach. The multiple-model approach is also among the impor-
tant methods of AFTC. It allows controlling a non-linear system over a large operating
area divided into several linearized areas around different operating points, making
linear techniques usable in non-linear conditions. In this way, considering a bank of
models, the principle is based on the idea that there is a bank of controllers (calculated
in real time for all possible system situations) for each operating mode. In this method,
each fault scenario can be described by a different model. All system models are im-
plemented in parallel, where each one has its controller as shown in Fig. I.11. The first
controller corresponds to the nominal operation of the system. However, the others
consider the occurrence of a particular fault causing the system to operate outside its
nominal operating range.

The controller’s selection associated to the active operating mode is carried out
by a supervisor, which comprises a set of estimators and a switching logic scheme
as shown in Fig. I.12. At each moment, the estimator closest to the active system is
determined by calculating the errors ei(t) between the estimated outputs yi(t) and the
measured ones y(t) at the moment t. The estimator corresponding to the minimum
error is chosen. The corresponding controller is then applied to the system using a
switching logic with a delay τmin > 0 imposed to prevent fast switching.
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FIGURE I.11: Multiple-model control approach to FTC

FIGURE I.12: Supervisor structure

Many studies have used the multiple model concept for FTC application. In (May-
beck and Pogoda, 1989), a multi-model adaptive controller that tolerates sensor and/or
actuator faults is designed for an approach and landing profile for F-15 short take-off
and landing aircraft. In (Jung et al., 2009), the authors used a fault-tolerant multi-
model adaptive control to apply it to the aircraft. In this study, a switching scheme
and a new decision logic are suggested to improve adaptability in the system’s tran-
sient state dynamics. A design of a fault-tolerant controller with periodic feedback for
autonomous underwater vehicles using a multi-model approach is presented in (Joshi
and Talange, 2016).
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This method is proving to be an exciting tool for modelling and controlling non-
linear systems. For available model systems, switching between multiple models has
the advantage of being very fast and stable. However, the main disadvantage of these
methods is that unrecorded faults can still occur and the number of models can ex-
plode with the number of simultaneous faults considered. Another limitation is the
calculation a priori of the controller gains corresponding to each system situation. To
deal with this limitation, a method based on the principle of interacting multiple mod-
els has been developed for sensor and actuator faults (for more details the reader can
refer to (Yang et al., 2000).

It should be noted that there are other AFTC methods in literature, we do not claim
to cover all them, such as: model predictive control, data-driven approaches, neural
networks, fuzzy logic as well as approaches based on LPV modelling, and so on.

I.5 Conclusion

In this chapter, we have presented an overview of fault detection and fault-tolerant
control techniques. First, we have defined some concepts and terms related to fault
diagnosis and then presented different fault classifications according to their mod-
elling, location, and evolution over time. Next, we described the model-based FDI
method’s steps, starting with the residual generation, followed by fault detection, and
finally fault isolation with their types. Subsequently, FTC systems were studied and
illustrated as an emerging and attractive topic in automatic control. Both passive and
active approaches to the FTC were discussed, as well as their benefits and drawbacks.
Besides, the reasons for the growing interest of researchers in active FTC were sum-
marised. It can also be concluded that the problem with FDI is, on the one hand, to
generate residuals that should be zero in normal operation and sufficiently sensitive
to any fault in the system to be monitored and, on the other hand, to analyse these
residuals to detect the presence of a fault and locate the faulty element. At the end of
this step, a FTC strategy is launched to determine a control scenario that will cancel,
or at least limit, the effects of the faults on the system’s stability and performances.

As mentioned in the general introduction, automakers have, over the last decades,
introduced new safety systems for vehicles, either passive or active. These products
are now commonplace in today’s vehicles and are being investigated to increase ve-
hicle safety. However, in the case of a fault, they can lead to serious situations. This
observation motivates us to study fault detection and fault-tolerant control of auto-
motive vehicle systems. The techniques presented in this chapter will be the subject
of Chapters IV-V of this manuscript, where they are applied to an automotive vehicle
lateral dynamics system.
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Chapter II

Basic concepts on Takagi-Sugeno
fuzzy systems

II.1 Introduction

A real system’s study requires a fundamental step, namely modelling, to obtain a
mathematical representation describing its functioning. Historically, modelling is con-
sidered as the double conjunction between understanding the nature and behaviour
of a system on one side and the appropriate mathematical treatment on the other side
(Jensen, 2007). It aims to establish the relationships that link the system characteristic
variables and accurately represent its behaviour in a specific operational area. The
linear systems modelling has been studied in-depth for a long time (Markovsky et al.,
2006; Schoukens and Pintelon, 2014). Actually, the input-output relations of a linear
system allow building a model approximating its behaviour. This type of model has
been widely studied in different contexts, including estimation, control and diagno-
sis. However, many models can only represent a system’s behaviour around a specific
operating point.

The assumption of linearity is verified only within a limited operating range around
a system equilibrium point. Since real systems are non-linear in nature, control and di-
agnostic systems developed based on linear models provide degraded performance as
soon as one moves away from the equilibrium point. For overcoming this issue, fuzzy
logic theory in automation is famous for designing accommodation techniques and
describing complex non-linear systems’ behaviour. In literature, there are two main
classes of fuzzy models, namely Mamdani models (or fuzzy linguistic models) (Mam-
dani and Assilian, 1975) and Takagi-Sugeno (T-S) fuzzy models (Takagi and Sugeno,
1985; Sugeno and Kang, 1988). This last class is the most popular and is known as
multi-model (Chadli and Borne, 2013). It has been successfully applied in several au-
tomation areas such as identification, control and diagnosis.

The T-S fuzzy models provide a suitable tool for modelling complex and non-linear
systems, allowing any non-linear system, whatever its complexity, to be represented
by a finite number of local linear subsystems within different regions of operation.
Non-linear functions interpolate these subsystems. T-S fuzzy models have the advan-
tage of providing an efficient design strategy for dealing with non-linearities without
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any assumptions about their nature, tolerating model uncertainties and compensate
their effect and reducing the effect of external perturbations. For a broader study of
the T-S fuzzy models, we invite readers to refer to the following books: (Wang, 1994;
Klir and Yuan, 1995; Tanaka and Wang, 2004; Lendek et al., 2011b; Driankov et al.,
2013; Chadli and Borne, 2013; Benzaouia and Hajjaji, 2016).

This chapter is devoted to the presentation of basic results on T-S fuzzy models for
continuous systems. In the first part, we define T-S fuzzy models and present three
methods for obtaining them from a non-linear model, namely methods of parametric
optimisation, linearisation and non-linear sectors. In the third part, we describe the
stability conditions of T-S fuzzy systems. The fourth section studies the observer de-
sign for T-S fuzzy systems. Next, we present an unknown input observer. Finally, we
examine the quadratic stabilisation of T-S fuzzy systems with different control laws,
which are state feedback, static output feedback and estimated state feedback controls.

II.2 Definition and presentation of T-S fuzzy models

The multi-model approach is based on the decomposition of the dynamic behaviour
of the non-linear system into a fixed number of active regions, and a linear sub-model
characterises each region. Fig. II.1 illustrates the principle of the multi-model ap-
proach in a two-dimensional case (Orjuela et al., 2009).

FIGURE II.1: Principle of the multi-model approach

In Fig. II.1, the set of operating points of the system is decomposed into four oper-
ating regions (noted R1, R2, R3 and R4). The total operating region is defined by the
combination of the local regions (R = R1 ∪ R2 ∪ R3 ∪ R4). For each of the local regions,
a linear sub-model can be constructed. The overall behaviour of the non-linear sys-
tem is represented by considering the relative contribution of each sub-model using a
weighting function for each operating region. Then, a multi-model can be considered
as a set of assembled sub-models via an interpolation mechanism.
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Several structures are used to interconnect the different sub-models to generate the
overall output of the multi-model. Two multi-model structures can be distinguished.
The first is the T-S model structure and is the most common in multi-model analysis
and synthesis. The sub-models in this structure are homogeneous, sharing the same
structure and state space. The second is the decoupled multi-model structure. The
sub-models in this structure are heterogeneous, and they have a different structure
and state space. Only the coupled state multi-model (T-S model) is considered in the
remainder of this document. This choice is motivated by the fact that the T-S fuzzy
model representation is the best regarding the constraints imposed for the synthesis of
control laws and observers (robustness/performance). This model is used to approx-
imate the non-linear system of automotive vehicle lateral dynamics and the synthesis
of the control laws and observers in chapters III-V.

Let us consider the following state representation of a non-linear continuous dy-
namic system: ẋ(t) = f (x(t), u(t))

y(t) = g(x(t))
(II.1)

where f (.) and g(.) are continuously varying non-linear functions with appropriate
dimensions. x(t) ∈ Rnx , y(t) ∈ Rny and u(t) ∈ Rnu denote state, output and input
vectors, respectively.

It is sometimes necessary or useful to use a more general form of model that can
take into account, in addition to the previous differential relations, algebraic con-
straints linking the different quantities of the system (Luenberger, 1977). These models
are called descriptor systems and are of the form :E(x(t))ẋ(t) = f (x(t), u(t))

y(t) = g(x(t))
(II.2)

where E(x(t)) ∈ Rnx×nx .
When the matrix E(x(t)) is non-invertible, the system is said to be singular (Dai et al.,
1989). Otherwise, the system is called regular. In this case, it is then possible to return
to the standard form given by a state representation of the form (II.1). However, it
is often advantageous to keep the descriptor form for the analysis or synthesis of a
control law (Taniguchi et al., 2000; Guelton et al., 2008).

The non-linear system (II.1) can be described by a set of "If-Then" fuzzy rules,
which locally represent the linear input-output relations of a non-linear system. The
ith rule is described as follows:

If θ1(t) is Ω1
i and, . . . , and θp(t) is Ωp

i ,

Then

ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t)
i = 1, . . . , m. (II.3)
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where the vectors θj(t), with j = 1, 2, . . . , p are the premise variables which can be
dependent of the state, the input or a combination of both. The sets Ωj

i , with j =

1, 2, . . . , p ; i = 1, 2, . . . , m, where m is the number of rules, are the membership func-
tions of the fuzzy sets. Ai ∈ Rnx×nx , Bi ∈ Rnx×nu and Ci ∈ Rny×nx are the state, the
input and the output matrices, respectively. For each rule, a weight ωi(θ(t)) is at-
tributed which depends on the vector θ(t) =

[
θ1(t), θ2(t), . . . , θp(t)

]
and the choice of

the logical operator.
The logical operator "and" is often chosen as the product:ωi(θ(t)) = ∏

p
j=1 Ωj

i(θj(t))

ωi(θ(t)) ≥ 0
i = 1, . . . , m. (II.4)

The non-linear system (II.1) can be represented by the following:ẋ(t) = ∑m
i=1 hi(θ(t)) (Aix(t) + Biu(t))

y(t) = ∑m
i=1 hi(θ(t))Cix(t)

(II.5)

with:
hi(θ(t)) =

ωi(θ(t))
∑m

i=1 ωi(θ(t))
(II.6)

The membership function hi(θ(t)) (also known as activation function) indicates the
degree of activation of the ith associated local model. It indicates the contribution of
the local model corresponding to the global model. This function allows a gradual
transition from the current model to the neighbouring local models.

The functions hi(θ(t)) have a triangular, sigmoidal or Gaussian form and satisfy
the following convex properties:∑m

i=1 hi(θ(t)) = 1

0 ≤ hi(θ(t)) ≤ 1
(II.7)

II.3 Obtaining T-S fuzzy models

The T-S fuzzy model represents the non-linear system as an interpolation between lo-
cal linear models. Each local model is a valid linear time-invariant dynamic system
around a specified operating point. Therefore, obtaining a fuzzy model is a funda-
mental procedure in this approach. In literature, three main approaches can be found
to get a non-linear model of a system in T-S form. These different approaches are
parametric identification, linearisation and sector non-linearity approach.

II.3.1 Obtaining T-S fuzzy models by identification

The parametric identification method makes it possible to identify the local model
parameters corresponding to the different operating points from inputs and outputs
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data. This method is generally based on minimising the deviation function between
the fuzzy model estimated output and the system measured output (Gasso et al., 1999;
Gasso, 2000). In this case, the problem of identification of the nonlinear model is re-
duced to the identification of the local models (Babuška, 2012). Note that this method
is often used in the case of systems with dynamics that are difficult to describe using
an analytical model. The most commonly used criterion is the criterion that represents
the squared deviation between the two indicated outputs:

J(θ) =
1
2

M

∑
t=1

ε2(t, θ) =
1
2

M

∑
t=1

(
ym(t)− y(t)

)2 (II.8)

Where M is the observation horizon, and θ is the vector of local model and activation
function parameters.

Methods for minimising the criterion J(θ) are based on a limited development of
the criterion J(θ) around a particular value of the parameter vector θ and an iterative
procedure for incrementally modifying the solution. If the iteration index of the search
method is denoted by k and the value of the solution at iteration k is denoted by θ(k),
the update of the estimate is performed as follows:

θ(k + 1) = θ(k)− ηD(k) (II.9)

where η represents an adjustment factor to adjust the speed of convergence to the
solution. D(k) is the search direction in the parameter space. Depending on how D(k)
is calculated, different numerical optimisation methods can be distinguished, the main
ones being: Levenberg-Marquardt algorithm, gradient algorithm, Newton algorithm
and Gauss-Newton algorithm.

II.3.2 Obtaining T-S fuzzy models by linearisation

This method assumes the availability of a non-linear mathematical model of the phys-
ical process, which is linearised around different accurately selected operating points.
Indeed, this linearisation is a Taylor series expansion, which may or may not be equi-
libria.

The purpose is to represent the non-linear system (II.1) as a set of m rules. The
linearization around an arbitrary operating point (xi, ui) ∈ Rnx ×Rnu is as follows:ẋ(t) = Ai(x(t)− xi) + Bi(u(t)− ui) + f̃ (xi, ui)

y(t) = Ci(x(t)− xi) + Di(u(t)− ui) + g̃(xi, ui)
(II.10)

The ith fuzzy model rule (II.10) can be rewritten as follows:ẋ(t) = Aix(t) + Biu(t) + Ri

y(t) = Cix(t) + Diu(t) + Si

(II.11)
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where the matrices and biases of the local linear models are the following:

Ai =
∂ f (x, u)

∂x

∣∣∣x=xiu=ui

, Bi =
∂ f (x, u)

∂u

∣∣∣x=xiu=ui

, Ci =
∂g(x, u)

∂x

∣∣∣x=xiu=ui

, Di =
∂g(x, u)

∂u

∣∣∣x=xiu=ui

Ri = f̃ (xi, ui)− (Aixi + Biui) , Si = g̃(xi, ui)− (Cixi + Diui)

Assuming that local models result from linearization around m operating points (xi, ui),
then the T-S fuzzy models are formulated by:ẋ(t) = ∑m

i=1 hi(θ(t)) (Aix(t) + Biu(t) + Ri)

y(t) = ∑m
i=1 hi(θ(t)) (Cix(t) + Diu(t) + Si)

(II.12)

where hi(θ(t)) and θ(t) are the same defined in the section II.2. Note that number of
local models m depends on the modelling’s desired accuracy, the complexity of the
non-linear system, and the choice of the structure of the activation functions.

This method’s main benefit for obtaining T-S fuzzy models is to preserve the im-
portant properties of the non-linear system at the linearisation points. However, this
method has the drawback that there are no general guidelines for selecting the lineari-
sation points. Besides, depending on the non-linearity, a precise approximation may
require many points, which implies high calculation costs.

II.3.3 Obtaining T-S fuzzy models by sector non-linearity

The sector non-linearity approach provides a T-S representation of a non-linear model.
The idea of using this method for T-S fuzzy modelling was first introduced in the
(Kawamoto et al., 1992) and then extended by (Wang et al., 1996) and (Tanaka and
Ohtake, 2001). It should be noted that this is not an approximation, but the T-S model
obtained is identical to the non-linear model in a compact set of the state space (Ohtake
et al., 2003).

Let us consider the state representation of a non-linear dynamic system as (II.1).
The goal is to determine global sector such that a1x(t) ≤ ẋ(t) ≤ a2x(t), with ẋ(t) =

f (x(t), u(t)) representing a non-linear system. Figure II.2-(a) represents the global sec-
tor non-linearity approach (Wang et al., 1996). Here, the T-S fuzzy models can be ac-
curately derived. However, it is sometimes hard to find global sectors for non-linear
systems. Then, local non-linear sectors can be considered (Tanaka and Wang, 2004).
This assumption is logical since the variables of physical systems are always bounded.
Figure II.2-(b) illustrates the local sector non-linearity where the fuzzy model can ac-
curately represent the non-linear system in the local area −d < x(t) < d.

The sector non-linearity approach makes it possible to associate the T-S models
for a non-linear system according to the distribution of non-linearities obtained. The
linking membership functions are calculated using Lemma 1.
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FIGURE II.2: Global(a) and local(b) Sector non-linearities

The approach by sector non-linearity offers advantages regarding precision and
knowledge of the membership functions that ensure the LTI local models’ interconnec-
tion. Indeed, this method does not introduce approximation errors, and the number
of local models is reduced compared to the linearisation method. It should be noted
that reducing the number of LTI models decreases the number of constraints related to
stability and/or stabilisation. To better understand, the following example illustrates
the approach by sector non-linearity to obtain T-S fuzzy models.

Example. II. 1 Let the following non-linear system (Chadli and Coppier, 2013):
ẋ1(t) = −x1(t) + sin(x2(t))x2(t) + u(t)

ẋ2(t) = 2x1(t)− 3x2(t) + x2
1(t)u(t)

y(t) = x3
1(t)

(II.13)

The non-linear system (II.13) can be rewritten as follows: ẋ(t) = A(x(t))x(t) + B(x(t))u(t)

y(t) = C(x(t))x(t)
(II.14)

where x(t) =
[

xT
1 (t) xT

2 (t)
]T

, and

A(x(t)) =

[
−1 sin(x2(t))
2 −3

]
, B(x(t)) =

[
1

x2
1(t)

]
, C(x(t)) =

[
x2

1(t) 0
]

The system (II.14) presents the following two non-linearities:

θ1(x(t)) = sin(x2(t)), θ2(x(t)) = x2
1(t) (II.15)
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Note that θ1(x(t)) is bounded regardless of the value of x(t) in the state space, in contrast
to θ2(x(t)) which can only be bounded on a limited compact. So let’s assume that x1(t) is
bounded on [−γ, γ], with γ > 0. Thus the two non-linearities can be rewritten as follows:θ1(x(t)) = M1(x(t))× 1 + M2(x(t))× (−1)

θ2(x(t)) = N1(x(t))× γ2 + N2(x(t))× 0
(II.16)

where M1(x(t)) + M2(x(t)) = 1

N1(x(t)) + N2(x(t)) = 1
(II.17)

Therefore, the membership functions can be calculated in the following way:

M1(x(t)) =
θ1(x(t)) + 1

2
, M2(x(t)) = 1−M1(x(t))

N1(x(t)) =
θ2(x(t))

γ2 , N2(x(t)) = 1− N1(x(t))
(II.18)

The non-linear system (II.14) can be precisely represented using the sector non-linearity ap-
proach by the following 4-rules fuzzy system:

If θ1(x(t)) is M1 and θ2(x(t)) is N1, Then

ẋ(t) = A1x(t) + B1u(t)

y(t) = C1x(t)
(II.19)

If θ1(x(t)) is M1 and θ2(x(t)) is N2, Then

ẋ(t) = A2x(t) + B2u(t)

y(t) = C2x(t)
(II.20)

If θ1(x(t)) is M2 and θ2(x(t)) is N1, Then

ẋ(t) = A3x(t) + B3u(t)

y(t) = C3x(t)
(II.21)

If θ1(x(t)) is M2 and θ2(x(t)) is N2, Then

ẋ(t) = A4x(t) + B4u(t)

y(t) = C4x(t)
(II.22)

with the following local matrices :

A1 =

[
−1 1
2 −3

]
, A2 =

[
−1 1
2 −3

]
, A3 =

[
−1 −1
2 −3

]
, A4 =

[
−1 −1
2 −3

]

B1 = B3 =
[
1 γ2

]T
, B2 = B4 =

[
1 0

]T
, C1 = C3 =

[
γ2 0

]
, C2 = C4 =

[
0 0

]
Hence, the equivalent T–S fuzzy system of non-linear system (II.13) is:ẋ(t) = ∑4

i=1 hi(θ(t)) (Aix(t) + Biu(t))

y(t) = ∑4
i=1 hi(θ(t))Cix(t)

(II.23)
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where the T-S fuzzy system activation functions are the following:

h1(θ(t) = M1(θ(t))× N1(θ(t)), h2(θ(t) = M1(θ(t))× N2(θ(t))

h3(θ(t) = M2(θ(t))× N1(θ(t)), h4(θ(t) = M2(θ(t))× N2(θ(t))
(II.24)

The simulation results of the non-linear system and its corresponding T-S fuzzy model for
u(t) = 2 are presented in Fig. II.3. It is clear that the T-S fuzzy model (II.23) represents well
the nonlinear system (II.13) in the region [−γ, γ], with γ > 0.

0 2 4 6 8 10 12 14 16 18 20

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIGURE II.3: States of the non-linear model and of its corresponding
T-S fuzzy model

II.4 Stability analysis

The stability concept is a key factor in studying the dynamic systems’ behaviour and
synthesising their control laws. Thus, the dynamic system’s stability problem remains
a subject of great attention by automation engineers. The stability is often related to
the systems studied, their environments, specifications, and desired performances.

Several works present stability notions that solve several practical system study
cases summarised and discussed extensively in (Leine, 2010). The best known is the
Lyapunov stability, introduced by the Russian mathematician Alexander Lyapunov in
1892 (Mawhin, 2005). His contribution consists of a qualitative characterisation of sta-
bility by studying dynamic systems’ trajectories, using auxiliary functions nowadays
called Lyapunov functions. This method is based on the idea that if a function with the
energy form is dissipated in time, it tends towards an equilibrium point (Wen, 1990;
Najim et al., 2004). Therefore, the Lyapunov method is a distance measure between
the state variables and the equilibrium point. In the following, some definitions and
theorems relating to stability will be presented based on these references (Khalil and
Grizzle, 2002; Zak, 2003; Sastry, 2013; Bhiri, 2017). Then, the stability conditions of the
T-S models will be discussed.
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II.4.1 Stability definitions and theorems

Let us consider time-invariant autonomous systems, which are described by the fol-
lowing differential equation: ẋ(t) = f (x, t)

x(t0) = x0

(II.25)

Definition. II. 1 (Equilibrium point) The state x∗ is said to be an equilibrium point of the
system (II.25), if x(t1) = x∗ implies x(t) = x∗ for any t ≥ t1. Or simply that the state x∗

checks the equation f (x∗) = 0.

Definition. II. 2 (Intuitive definition of stability) When a dynamic system is slightly dis-
turbed with respect to its equilibrium point and remains close to it. The equilibrium point is
then said to be stable.

As an illustrative example, let us take a ball on a spherical surface, as shown in Fig. II.4
(Danglot et al., 2018). The ball is stable in the left-hand case, where if it moved away
from its equilibrium position under a slightly disturbing action; it remains close to its
equilibrium position. But the ball is unstable in the right-hand case, meaning that if it
moved away from its equilibrium position under a slightly disturbing action; it moves
away from its initial position.

FIGURE II.4: Stable and unstable equilibria

The mathematical expression of this intuitive definition of stability is given by the
following definition.

Definition. II. 3 (Lyapunov stability) The equilibrium point x∗ is said to be stable if ∀ε > 0
and ∀t0 > 0, there exists a function δ(ε, t0) > 0 such as:

||x0 − x∗|| < δ =⇒ ||x(t)− x∗|| < ε, ∀t ≥ t0 (II.26)

In other words, Stability in the sense of Lyapunov means that the trajectory x(t), with
the initial condition x0 = x(t0), must remain close to the equilibrium point x∗, for
any t ≥ t0. For this, the solutions x(t) must remain within the region bounded by
||x(t)− x∗|| < ε , i.e. remain in a "tube" of radius ε around the trajectory x(t) = x∗

(see Fig. II.5).
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FIGURE II.5: Concept of stability in the sense of Lyapunov

Definition. II. 4 The equilibrium point x∗ is said to be attractive if there is ρ > 0 such that:

||x0 − x∗|| < δ =⇒ lim
t→∞
||x(t)− x∗|| = 0 (II.27)

The attractiveness means that if the state is initialized close to the equilibrium state,
then this initial state’s trajectory will converge to the equilibrium state over time.

Definition. II. 5 (Asymptotic stability) The equilibrium point x∗ is asymptotically stable if it
is stable and attractive.

The asymptotic stability implies the existence of proximity to the equilibrium point,
such that for any initial condition belonging to this proximity, the state x(t) converges
towards x∗ when time tends to infinity (see Fig. II.6).

FIGURE II.6: Concept of asymptotic stability in the sense of Lyapunov

Definition. II. 6 (Global asymptotic stability) If the condition of asymptotic stability is satis-
fied in all Rn, then the equilibrium point is globally asymptotically stable.

Definition. II. 7 (Lyapunov candidate) Any defined positive and continuous function V(x)
is called candidate of Lyapunov.

Definition. II. 8 (Lyapunov function) A Lyapunov function is a Lyapunov candidate having
the following property: V̇(x, t) ≤ 0 ∀x 6= 0

V̇(x, t) = 0 i f x = 0
(II.28)

In the following, we present some theorems that are essential for studying a dynamic
system’s stability.
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Theorem. II. 1 (Lyapunov stability) Let x∗ = 0 an equilibrium point of the system (II.25)
and I ⊂ Rn a proximity of this equilibrium point. If there is a Lyapunov function V(x, t)
defined on I satisfying V(x, t) ≤ 0, ∀x ∈ I 6=0, then the equilibrium point x∗ is stable in the
Lyapunov sense.

Theorem. II. 2 (Asymptotic stability) Let x∗ = 0 an equilibrium point of the system (II.25)
and I ⊂ Rn a proximity of this equilibrium point. If there is a Lyapunov function V(x, t)
defined on I satisfying in addition V(x, t) < 0, ∀x ∈ I 6=0, the equilibrium point x∗ is then
asymptotically stable.

Note that Theorems II.1 and II.2 give sufficient conditions to ensure the Lyapunov
sense stability and asymptotic stability, respectively. The non-existence of a Lyapunov
function for a dynamic system does not mean that the latter is unstable (Bhiri, 2017).

It should be noted that the conditions of these two theorems are only true in prox-
imity around the equilibrium point x∗. In the case where the field of attraction is the
whole state space Rn, the equilibrium point x∗ will be said to be globally asymptot-
ically stable. Then, the property of the non-radial boundaryitude must be added to
the conditions of Theorem. II.2 to ensure global asymptotic stability. The following
theorem summarises these conditions.

Theorem. II. 3 (Global asymptotic stability) Let x∗ = 0 an equilibrium point of the system
(II.25) and the function, such as:

V(0) = 0 and V(x) > 0, ∀x ∈ R 6=0 (II.29)

||x|| → 0 =⇒ V(x)→ ∞ (II.30)

V̇(x) < 0, ∀x ∈ R 6=0 (II.31)

then x∗ is globally asymptotically stable.

The condition (II.29) guarantees the non-radial boundary of the function V on R.

II.4.2 Stability of T-S models

The stability of continuous non-linear systems represented by the T-S fuzzy models
has been the subject of several studies, initially inspired by techniques developed in
the linear field (Boyd et al., 1994; Tanaka et al., 1998). In general, the stability anal-
ysis of T-S fuzzy models is carried out using the Lyapunov method. In this context,
the choice of Lyapunov’s function is crucial to obtain solutions. Normally, there is
no systematic way to find these functions. Several forms of Lyapunov functions are
proposed in the literature (Tanaka et al., 1996; Wang et al., 1996; Tanaka et al., 2003;
Chadli et al., 2000; Bernal and Husek, 2005; Mozelli et al., 2009; Nguyen et al., 2016),
depending on the nature and complexity of the system.
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a. Quadratic Lyapunov function

A quadratic Lyapunov function is of the following shape:

V(x(t)) = xT(t)Px(t) (II.32)

with P = PT is a positive definite matrix.
The quadratic Lyapunov function is used to study a system’s stability, which is

called quadratic stability. The method based on this type of function consists of search-
ing for the P matrix. The use of a Lyapunov quadratic function can introduce a certain
degree of conservatism. However, it is numerically efficient because it leads to convex
optimisation problems, and the resulting control laws are of reasonable complexity
from a practical point of view.

b. Non-quadratic Lyapunov function

A non-quadratic Lyapunov function is of the following shape:

V(x(t)) =
m

∑
i=1

hi(θ(t))x(t)TPix(t) (II.33)

where Pi = PT
i is a positive definite matrix and hi(θ(t)) are activation functions satis-

fying the conditions (II.7).
The non-quadratic Lyapunov function is a global function including the quadratic

case (Pi = P, i = 1, . . . , m). The synthesis technique based on this type of Lyapunov
function may have a valuable advantage compared to that based on the quadratic
function. It considers the variation in speed of the decision variables, which reduces
conservatism and gives more relaxed stability conditions. However, this function re-
duces the overall stability of the non-linear system as it allows to analyse of the stabil-
ity of each local sub-model separately.

In addition to quadratic and non-quadratic functions, there are other Lyapunov
functions such as piecewise quadratic functions, polynomial functions and functions
defined by path integrals. These functions will not be covered in this manuscript, but
the reader can refer to these references.

II.4.3 Quadratic stability of T-S fuzzy systems

Let us consider the open-loop T-S fuzzy model below:

ẋ(t) =
m

∑
i=1

hi(θ(t))Aix(t) (II.34)

where hi(θ(t) are the activation functions defined in section II.2 and verify the condi-
tions (II.7).

The stability of the T-S fuzzy model (II.34) is guaranteed if conditions, in the form
of Linear Matrix Inequalities (LMIs) of the following theorem, are fulfilled.
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Theorem. II. 4 (Tanaka et al., 1998) The equilibrium of the T-S fuzzy system described in
(II.34) is asymptotically stable if there is a common positive definite matrix P such that:

AT
i P + PAi < 0, f or i = 1, 2 . . . , m (II.35)

Proof. II. 1 Let the following quadratic function:

V(x(t)) = xT(t)Px(t), with P > 0 (II.36)

The time derivative of V(x(t)) is given as follows:

V̇(x(t)) = ẋT(t)Px(t) + xT(t)Pẋ(t) (II.37)

= xT(t)
m

∑
i=1

hi(θ(t))AT
i Px(t) + xT(t)P

m

∑
i=1

hi(θ(t))Aix(t) (II.38)

= xT(t)
m

∑
i=1

hi(θ(t))
(

AT
i P + PAi

)
x(t) (II.39)

The open loop system (II.34) converges to zero if V̇(x(t)) < 0 (i.e. if (II.35) are satisfied).

The existence of P > 0 depends on the following two conditions:

- Stability of each local model. The eigenvalues of each matrix Ai must belong to
the left half-plane of the complex plane (i.e. each Ai must be a Hurwitz matrix).

- Availability of a Lyapunov function common to the r local models. For this, the
sum ∑m

i=1 Ai must be a Hurwitz matrix. The proof can be obtained by summing
the LMIs (II.35).

The second condition allows a quick test since if there are two matrices such that their
sum Ai + Aj is not stable, it means that there no symmetric matrix P > 0 that satisfies
the LMIs (II.35). Lemma 2 provides a systematic method to test the non-existence of a
common symmetrical matrix P > 0.

II.5 Observers for T–S fuzzy systems

In many practical systems, the state variables are sometimes not available and cannot
be measured, and sometimes they can be measured by instrumental sensors. How-
ever, some constraints are related to using these sensors, such as unreliability, high
cost, degradation, loss of signals in certain weather conditions and sometimes unavail-
ability of these sensors. To overcome these challenges, system states can be estimated
using only accessible and available measurements.

An observer is designed to reconstruct the state vector of a system from the known
inputs, outputs and the dynamic model of the system. In this section, the observer de-
sign methods for T-S fuzzy systems are discussed. Before starting the observer design
procedure, it is always necessary to ensure that system states can be estimated from
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the input and output information. The observability of a system is the property that
indicates if the states can be estimated only from the knowledge of the input and out-
put signals.

The necessary and sufficient condition of observability is called the Kalman crite-
rion for observability. The following definition gives it.

Definition. II. 9 (Meda-Campaña et al., 2020) The T-S fuzzy system described by (II.5) is
fuzzy observable if its associated observability matrix, given as follows

O =
[
CT

i (Ci Ai)
T (Ci A2

i )
T . . . (Ci A

nx−1
i )T

]T
∈ R(nx×ny)nx

has a full rank for any valid value of the fuzzy weights included in the fuzzy system, i.e., a T-S
fuzzy system is fuzzy observable if rank(O) = nx.

In this section, steps to design observers for continuous fuzzy systems are pre-
sented. First, a T-S fuzzy observer structure is proposed, which is a sum of local
Luenberger-type observers. The observer with unknown inputs is then studied. The
convergence of the estimation error to zero is given by solving a Lyapunov function,
which can be formulated as a convex optimisation problem in LMI terms, which has
well-established methods and tools for its resolution.

II.5.1 Observer synthesis for T-S fuzzy systems

Let us consider the following non-linear dynamic system represented by T-S fuzzy
models: ẋ(t) = ∑m

i=1 hi(θ(t)){Aix(t) + Biu(t)}

y(t) = ∑m
i=1 hi(θ(t))Cix(t)

(II.40)

with x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny are the state vector, the input vector
and the output vector of the system, respectively. Ai, Bi and Ci are appropriate di-
mensional matrices that describe the system dynamics. hi(θ(t)) are the activation
functions of the local models and θ(t) represents the decision variables that can be
state-dependent, output-dependent and/or input-dependent. Here it is assumed that
θ(t) are only dependent on measurable variables.

Like all observer designs, fuzzy observers are required to satisfy

x(t)− x̂(t)→ 0, when t→ ∞

where x̂(t) represents the state estimated by the fuzzy observer.
In order to design a fuzzy observer, each local model is associated with a local

observer, and it is assumed that each pair (Ai, Ci) is observable. The overall observer
is the sum of local observers weighted by activation functions identical to those used
in the fuzzy system (II.40) (Palm and Driankov, 1999).
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The following structure defines the fuzzy observer ˙̂x(t) = ∑m
i=1 hi(θ(t)){Ai x̂(t) + Biu(t) + Li(y(t)− ŷ(t))}

ŷ(t) = ∑m
i=1 hi(θ(t))Ci x̂(t)

(II.41)

where ŷ(t) ∈ Rny is the estimated output vector and Li ∈ Rnx×ny are the gains of local
observers. The activation functions hi(θ(t)) are the same as those of the fuzzy system
(II.40) and have the same properties (II.7).

The state estimation error is defined as follows:

ex(t) = x(t)− x̂(t) (II.42)

The state estimation error dynamic is given by:

ėx(t) = ẋ(t)− ˙̂x(t) (II.43)

=
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t)){Ai − LiCj}ex(t) (II.44)

=
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))Ãijex(t) (II.45)

The objective is to determine the gains Li, such that the estimation error ex(t) con-
verges to zero. The following theorem proposes a fundamental result for establishing
the stability of (II.45).

Theorem. II. 5 (Tanaka et al., 1998) The estimation error dynamic (II.45) is asymptotically
stable, if there exist Q = QT > 0, and Li, i = 1, 2, . . . , r, such that

ÃT
ii Q + QÃii < 0 , i = 1, 2, . . . , m (II.46)

(Ãij + Ãji)
TQ + Q(Ãij + Ãji) ≤ 0 , j = i + 1, i + 2, . . . , m (II.47)

with : Ãij = Ai − LiCj

Proof. II. 2 Let us consider the following quadratic Lyapunov function

V(ex(t)) = eT
x (t)Qex(t), with Q > 0 (II.48)

The derivative of V(ex(t)) is given as follows

V̇(ex(t)) = ėT
x (t)Qex(t) + eT

x (t)Qėx(t) (II.49)

=
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))eT
x (t)

(
ÃT

ijQ + QÃij

)
ex(t) (II.50)

using Lemma 3, the conditions (II.46)-(II.47) which ensure that V̇(ex(t)) < 0 are obtained.

The following example shows the construction of an observer using the conditions of
Theorem. II.5.
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Example. II. 2 Let us consider the same non-linear system of Example 1. To make the models
locally observable, let us assume that C(x(t)) =

[
x2

1(t) 1
]
. The equations governing the

global observer are as follows: ˙̂x(t) = ∑4
i=1 hi(θ(t)){Ai x̂(t) + Biu(t) + Li(y(t)− ŷ(t))}

ŷ(t) = ∑4
i=1 hi(θ(t))Ci x̂(t)

(II.51)

To construct the observer gains Li, the conditions (II.46)-(II.47) are transformed into LMIs
using the change of variables Ni = QLi. Afterward, the feasibility problem of these LMIs is
solved using the LMI toolbox of MATLAB software. Then, the observation gains are as follows:

L1 =

[
0, 0290
0, 4254

]
, L2 =

[
−0, 0102
0, 5582

]
, L3 =

[
0, 0496
−0, 2067

]
, L4 =

[
0, 0300
−0, 0912

]

Assume that u(t) = 0 and consider the initial conditions x0 =
[
0, 9 0, 5

]T
and x̂0 =

[
0, 8 0, 2

]T
.
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FIGURE II.7: Time evolution of estimation error e(t)

The evolution of the estimation error of the system over time is illustrated in the Fig. II.7.
It can be seen that the estimation error clearly converges to zero (see Fig. II.7), which indi-

cates a good agreement between the measured and estimated states over time.

To reduce the conservatism of the conditions (II.46)-(II.47) and to obtain more relaxed
results, the authors in (Liu and Zhang, 2003) proposed the following theorem, which
is similar to the Theorem. II.(5) with the inclusion of additional decision variables.

Theorem. II. 6 (Liu and Zhang, 2003) The estimation error dynamic (II.45) is asymptotically
stable, if there exist matrices Ni, Q, Yij, where Q is symmetrical positive definite, Yii are
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symmetrical, Yji = YT
ij , i 6= j, i, j = 1, 2, . . . , m, satisfy the following LMIs:

AT
i Q + QAi + CT

i NT
i + NiCi < Yii , i = 1, 2, . . . , m (II.52)

(Ai + Aj)
TQ + Q(Ai + Aj) + CT

j NT
i + NiCj + CT

i NT
j + NjCi ≤ Yij + YT

ij , (II.53)

j = i + 1, i + 2, . . . , m
Y11 Y12 . . . Y1r

∗ Y22 . . . Y2r
...

...
. . .

...
∗ ∗ . . . Yrr

 < 0 (II.54)

The gains of the fuzzy observer (II.51) are obtained by:

Li = Q−1Ni (II.55)

II.5.2 Unknown inputs fuzzy observer

Classical state estimation methods can no longer be applied when a system is under
unknown inputs. These unknown inputs are typically caused by modelling errors,
sensor faults, disturbances, or noises on the system’s state or output. In this con-
text, several works in the literature used unknown input observer to estimate either
state alone or state and also unknown inputs (Tan and Edwards, 2002; Akhenak et al.,
2004b; Chadli et al., 2008; El Youssfi et al., 2019b, 2020b). The synthesis of this type of
observers is carried out using different techniques, particularly those that require the
elimination of unknown inputs and those that use the sliding mode (Chadli, 2010b;
Akhenak et al., 2007). In the following, two different cases are examined. The first is
where only the system state is affected by unknown inputs. The second case is where
unknown inputs simultaneously affect both system state and output.

a. Unknown inputs only affect the system state

Let us consider a non-linear system affected by unknown inputs, represented by the
following T-S fuzzy models:ẋ(t) = ∑m

i=1 hi(θ(t)){Aix(t) + Biu(t) + Eiv(t) + Di}

y(t) = Cx(t)
(II.56)

where v(t) ∈ Rnv is the unknown inputs vector assumed to be bounded, Ei ∈ Rnx×nv

are influence matrices of unknown inputs. Di ∈ Rnx represents a vector dependent on
the operating point. hi(θ(t)) are the activation functions and have the same properties
(II.7).

Assumption. II. 1 Matrix Ei ∈ Rnx×nv is full rank (i.e. rank(Ei) = nv with nv < ny).
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Let us consider the following unknown inputs observer structure:η̇(t) = ∑m
i=1 hi(θ(t)){Niη(t) + Miu(t) + Gi + Liy(t)}

x̂(t) = η(t)− Hy(t)
(II.57)

where Ni ∈ Rnx×nx , Mi ∈ Rnx×nu and Li ∈ Rnx×ny are local observer gains, Gi ∈ Rnx

are constant vectors and H ∈ Rnx×ny is a transformation matrix. These matrices must
be determined to ensure asymptotic convergence of the estimated state x̂(t) to the real
state x(t).

By considering the state estimation error (II.42) and the estimated state (II.57), the
expression of the error becomes:

ex(t) = (I + HC)x(t)− η(t) (II.58)

By deriving (II.58) over time and posing H̄ = I + HC, we obtain the following
error dynamics:

ėx(t) =
m

∑
i=1

hi(θ(t))
[

H̄Aix(t) + H̄Biu(t) + H̄Eiv(t) + H̄Di

]
−

m

∑
i=1

hi(θ(t))
[

Niη(t) + Miu(t) + Gi + Liy(t)
] (II.59)

which can also be written as follows:

ėx(t) =
m

∑
i=1

hi(θ(t))
[

Nie(t) + (H̄Ai − Ni H̄ − LiC)x(t)

+ (H̄Bi −Mi)u(t) + H̄Eiv(t) + H̄Di − Gi

] (II.60)

by setting Qi = Ni H + Li, the error dynamics ėx(t) becomes as follows:

ėx(t) =
m

∑
i=1

hi(θ(t))
[

Nie(t) + (H̄Ai − Ni −QiC)x(t)

+ (H̄Bi −Mi)u(t) + H̄Eiv(t) + H̄Di − Gi

] (II.61)

If the following conditions are verified:

H̄Ei = 0 (II.62)

Ni = H̄Ai −QiC (II.63)

Mi = H̄Bi (II.64)

Gi = H̄Di (II.65)

Then, the dynamics of the state estimation error is reduced to:

ėx(t) =
m

∑
i=1

hi(θ(t))Nie(t) (II.66)
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The asymptotic convergence conditions of the state estimation (II.57) towards the T-S
fuzzy model state (II.56) are given by the following theorem.

Theorem. II. 7 (Akhenak et al., 2003b) The state estimation error between the T-S fuzzy
model with unknown inputs (II.56) and the fuzzy observer (II.57) converges asymptotically
to zero, if all pairs (Ai, C) are observable and if there is a symmetrical matrix X > 0, such that
the following conditions are fulfilled for all i = 1, 2, . . . , m

NT
i XT + XNi < 0 (II.67)

Qi = Ni H − Li (II.68)

H̄ = I + HC (II.69)

Ni = H̄Ai −QiC (II.70)

H̄Ei = 0 (II.71)

Mi = H̄Bi (II.72)

Gi = H̄Di (II.73)

Using the equation (II.63), inequality (II.67) becomes:

(H̄Ai −QiC)TXT + X(H̄Ai −QiC) < 0 (II.74)

Inequality (II.74) is non-linear regarding the variables Qi and X. The approach to
solving all the constraints (II.67)-(II.73) is detailed in (Akhenak, 2004).

b. Unknown inputs affect both the system state and output

Let us consider a non-linear system affected by unknown inputs, represented by the
following T-S fuzzy models:ẋ(t) = ∑m

i=1 hi(θ(t)){Aix(t) + Biu(t) + Eiv(t) + Di}

y(t) = Cx(t) + Fv(t)
(II.75)

where F ∈ Rny×nv is influence matrix of unknown inputs on the system output.
Considering the fuzzy observer (II.57), the parameters Ni, Li, Mi, Gi and H should

be determined in order to ensure asymptotic convergence of the estimated state x̂(t)
to the real state x(t).

From the estimation error definition (II.42) and replacing x̂(t) by its expression
given by (II.57), the expression of the error becomes :

ex(t) = (I + HC)x(t)− η(t) + HFv(t) (II.76)

By using the same previous steps, the time derivative of (II.76) is given as follows:

ėx(t) =
m

∑
i=1

hi(θ(t)) {Nie(t) + (H̄Ai − Ni −QiC)x(t) + (H̄Bi −Mi)u(t)

+(H̄Ei −QiF)v(t) + H̄Di − Gi}+ HFv̇(t)

(II.77)
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with: H̄ = I + HC and Qi = Ni H + Li.
If the following conditions are satisfied:

HF = 0 (II.78)

H̄Ei = QiF (II.79)

Ni = H̄Ai −QiC (II.80)

Mi = H̄Bi (II.81)

Gi = H̄Di (II.82)

Then, the dynamic of the state estimation error takes the form of (II.66). The following
theorem gives the conditions of asymptotic convergence of the state estimation (II.57)
towards the T-S fuzzy model state (II.75).

Theorem. II. 8 (Akhenak et al., 2004a) The state estimation error between the fuzzy model
with unknown inputs (II.75) and the fuzzy observer (II.57) converges asymptotically to zero,
if all pairs (Ai, C) are observable, the matrix F is full row-column and if there is a symmetrical
matrix X > 0, such that the following conditions are fulfilled for all i = 1, 2, . . . , m.

NT
i XT + XNi < 0 (II.83)

H̄ = I + HC (II.84)

Qi = Ni H − Li (II.85)

Ni = H̄Ai −QiC (II.86)

H̄Ei = QiF (II.87)

HF = 0 (II.88)

Mi = H̄Bi (II.89)

Gi = H̄Di (II.90)

Similar to the Theorem. II.7, the approach to solve all the constraints (II.83)-(II.90) is
specified in (Akhenak, 2004).

c. Estimation of unknown inputs

Many works have been done to estimate unknown inputs in linear dynamical systems
(Maquin et al., 1994; Stotsky and Kolmanovsky, 2001; Akhenak et al., 2007). In (Ed-
wards et al., 2000; Akhenak et al., 2003a), authors have suggested methods based on
sliding-mode observers to detect and estimate sensor faults. However, authors in (Liu
and Peng, 2002) introduced the estimation of unknown inputs of a linear dynamical
system under disturbances with a Luenberger observer. The idea is based on correct
state estimation. Since if the asymptotic convergence conditions are satisfied, the state
estimation error tends to zero, which allows us to replace x(t) by x̂(t) and v(t) by v̂(t)
in the fuzzy T-S model equation (II.75): ˙̂x(t) = ∑m

i=1 hi(θ(t)){Ai x̂(t) + Biu(t) + Eiv̂(t) + Di}

ŷ(t) = Cx̂(t) + Fv̂(t)
(II.91)
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The observer (II.91) can be rewritten in the following form:[
˙̂x(t)
ŷ(t)

]
=

[
∑m

i=1 hi(θ(t)){Ai x̂(t) + Biu(t) + Di}
Cx̂(t)

]
+ Wv̂(t) (II.92)

where

W =

[
∑m

i=1 hi(θ(t))Ei

F

]
Assuming that the matrix W is a full row-column matrix. The estimation of unknown
input is computed using the pseudo-inverse of matrix W as follows:

v̂(t) = (WTW)−1WT

[
˙̂x(t)−∑m

i=1 hi(θ(t)){Ai x̂(t) + Biu(t) + Di}
y(t)− Cx̂(t)

]
(II.93)

The estimation of the unknown input can also be done simply if the matrix F is full
rank, using the following expression:

v̂(t) = (FT F)−1FT(y(t)− Cx̂(t)) (II.94)

II.6 Stabilisation of the T-S fuzzy systems

The fuzzy controller design for the T-S fuzzy systems has been extensively studied
in recent years and is generally based on Lyapunov’s approach. This approach is
inspired by the fact that if a system’s energy is continuously dissipated, then the sys-
tem will reach an equilibrium point. The control laws’ development techniques based
on Lyapunov’s theory involve finding a positive definite symmetrical matrix and its
associated quadratic function that guarantees some conditions under the LMI form.
Several works have been published in this field (Wang et al., 1996; Tanaka et al., 1998,
2001; Chadli, 2010a; Wang et al., 2018; El Youssfi et al., 2020a). These research works,
which have been mainly based on control methods found in literature have addressed
control based on state feedback, on static output feedback and estimated state feed-
back, both with/without uncertainties and/or disturbances.

II.6.1 Stabilisation by state feedback control

To stabilise T-S fuzzy systems, a commonly used control law based on the Parallel Dis-
tributed Compensation (PDC) concept (Wang et al., 1996). The principle is to generate
a compensator for each rule of the T-S fuzzy model. Then the PDC is made up of linear
state feedbacks blended using the same non-linear functions hi(θ(t)) as the T-S fuzzy
model (II.40) (Lendek et al., 2011a). This type of control is of the following form:

u(t) = −
m

∑
i=1

hi(θ(t))Kix(t) (II.95)

where Ki ∈ Rnu×nx are the controller gains.
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By substituting (II.95) in the T-S fuzzy model (II.40), the closed-loop system be-
comes as follows:

ẋ(t) =
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))Gijx(t) (II.96)

with Gij = Ai − BiKj.
The stability conditions of (II.96) are achieved using the following Lyapunov func-

tion:
V(x(t)) = xT(t)Px(t), P > 0 (II.97)

The time derivative of the Lyapunov function over the trajectory of the system (II.96),
is given as follows:

V̇(x(t)) =
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))xT(t){GT
ij P + PGij}x(t) (II.98)

The following theorem provides the conditions for stabilising the T-S fuzzy system
(II.40) via the reconstructed control law (II.95).

Theorem. II. 9 (Tanaka et al., 1998) The closed-loop T-S fuzzy system described by (II.96) is
asymptotically stable, if there is a positive defined symmetrical matrix P such that

GT
ii P + PGii < 0, i = 1, 2, . . . , m (II.99)(
Gij + Gji

)T P + P
(
Gij + Gji

)
≤ 0, i < j (II.100)

for any i, j = 1, 2, . . . , m, except pairs (i, j) such that hi(θ(t))hj(θ(t)) = 0.

The determination of the gains Ki(i = 1, 2, . . . , m) of the control law then requires
the transformation of the conditions of the Theorem. II.9 into an equivalent problem
under the form of LMIs which convex optimisation tools can solve (Hindi and Boyd,
1998). This transformation corresponds to simple changes of variables X = P−1 and
Yi = KiP−1 by multiplying right and left by the matrix X the inequalities (II.99)-
(II.100).

So the inequalities (II.99)-(II.100) can be rewritten as LMIs based on the variables
X and Yi as follows:

XAT
i −YT

i BT
i + AiX− BiYi < 0, i = 1, 2, . . . , m (II.101)

XAT
i −YT

j BT
i + AiX− BiYj + XAT

j −YT
i BT

j + AjX− BjYi < 0, i < j (II.102)

Then, the fuzzy controller gains are obtained by:

Ki = YiX−1 (II.103)

The stability conditions of the Theorem. II.9 are quite conservative because they as-
sume that all cross subsystems are stable. This conservatism can be reduced by ap-
plying the relaxation Lemma 4, which only requires that the dominant subsystems are
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stable with an additional condition. In this context, other relaxing theorems based on
the Theorem. II.9 can be found in these references (Tanaka et al., 1998; Liu and Zhang,
2003; Kruszewski et al., 2008; Tanaka et al., 2001; Chadli et al., 2000).

II.6.2 Stabilisation by observer-based controller

Often in real-world control problems, system states are not always fully accessible.
In such cases, it is necessary to design the controller using other methods, such as
observer-based control designs. This part of the sub-section presents observer-based
control design methods involving state estimation for T-S fuzzy systems. Many au-
thors have studied the case of observer-based control and have formulated stability
requirements for the augmented system (Tanaka and Taniguchi, 1999; Wang et al.,
2019a; Tuan et al., 2019). In what follows, we describe the observer-based stabilisation
briefly for T-S fuzzy systems.

Let us consider the T-S fuzzy model (II.40) and the fuzzy observer (II.41). The
structure of the observer-based controller is as follows:

u(t) = −
m

∑
i=1

hi(θ(t))Ki x̂(t) (II.104)

where Ki ∈ Rnu×nx are the gains of the controller.
The time derivative of the estimation error ex(t) = x(t)− x̂(t) is obtained as (II.45),

which is reproduced here for convenience:

ėx(t) =
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t)){Ai − LiCj}ex(t) (II.105)

The closed-loop system using the observer-based fuzzy control law is written as fol-
lows:

ẋ(t) =
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))
{
(Ai − BiKj)x(t) + BiKjex(t)

}
(II.106)

By combining the dynamics of the estimation error (II.105) and that of the state (II.106),
the following augmented system is obtained:

˙̄x(t) =
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))Āij x̄(t) (II.107)

where

x̄(t) =

[
x(t)
ex(t)

]
, and Āij =

[
Ai − BiKj BiKj

0 Ai − LiCj

]
The problem with the combination of the observer and the closed-loop system is

to determine gains Li and Ki, (i = 1, 2, . . . m), such that the augmented system (II.107)
is asymptotically stable. The asymptotic stability conditions are presented in the fol-
lowing theorem.
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Theorem. II. 10 (Tanaka and Wang, 2004) The system (II.107) is asymptotically stable, if
there exist symmetric matrices P > 0 and Q > 0, and matrices Xi and Yi, (i = 1, 2, . . . , m),
such that the following LMIs are satisfied

AiP− BiXi + PAT
i − XT

i BT
i < 0, i = 1, 2, . . . , m (II.108)

AiP− BiXj + AjP− BjXi + PAT
i − XT

j BT
i + PAT

j − XT
i BT

j ≤ 0, i < j (II.109)

QAi −YiCi + AT
i Q− CT

i YT
i < 0, i = 1, 2, . . . , m (II.110)

QAi −YiCj + QAj −YjCi + AT
i Q− CT

j YT
i + AT

j Q− CT
i YT

j ≤ 0, i < j (II.111)

The control and the observer gains are achieved in the following way:

Ki = XiP−1

Li = Q−1Yi
(II.112)

Note that Theorem. II.10 allows us to design the observer and the controller sep-
arately, ensuring the stability of the closed-loop system, referred to as the separation
concept (Ma et al., 1998). It is also worth mentioning that conditions of Lemma 4 can
be included for more relaxing results.

II.6.3 Stabilisation by static output-feedback control

Another method to design the controller without requiring access to system state vari-
ables is one that uses static feedback. Several literature works have focused on the de-
sign of static output feedback control for T-S fuzzy systems, e.g. (Fang et al., 2006; Kau
et al., 2007; Huang and Nguang, 2007; Jeung and Lee, 2014; El Youssfi et al., 2020a).
Note that the static output feedback control is the most suitable, as it can be easily
implemented at a lower cost.

Let us consider the static output feedback control of the following type:

u(t) = −
m

∑
i=1

hi(θ(t))Fiy(t) (II.113)

where Fi ∈ Rnu×ny are the control gains.
By inserting (II.113) in the model (II.40), with Ci = C, ∀i = 1, 2, . . . , r, the following

closed-loop T-S fuzzy system is obtained:

ẋ(t) =
m

∑
i=1

m

∑
j=1

hi(θ(t))hj(θ(t))Hijx(t) (II.114)

with Hij = Ai − BiFjC.
Here, Theorem. II.9 is still valid, then the synthesis of the static output feedback
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control law can be achieved easily by substituting Gij by Hij. Therefore, system stabil-
ity conditions are as follows:

HT
ii P + PHii < 0, i = 1, 2, . . . , m(
Hij + Hji

)T P + P
(

Hij + Hji
)
≤ 0, i < j

(II.115)

These conditions are non-linear and cannot be linearised using the traditional change
of variables, which is the main challenge of stabilisation by static output feedback
control. To overcome this difficulty while assuming that C is a full-column row matrix,
the authors in (Chadli et al., 2002) proposed a linear formulation of the conditions
(II.115).

Theorem. II. 11 (Chadli et al., 2002) The T-S fuzzy system (II.114) is asymptotically stable,
if there exist symmetric matrix P > 0, and matrices Q and Xi, (i = 1, 2, . . . , m), such that the
following conditions are satisfied

AiP− BiXiC + PAT
i − CTXT

i BT
i < 0, i = 1, 2, . . . , m

AiP− BiXjC + AjP− BjXiC + PAT
i − CTXT

j BT
i + PAT

j − CTXT
i BT

j ≤ 0, i < j

CP = QC

(II.116)

The control gains are obtained as follows:

Fi = XiY−1 (II.117)

The constraints obtained by Theorem. II.11 are linear and can be easily implemented.
Numerically, these constraints can be simply solved using available tools.

II.7 Conclusion

In this second chapter, a brief outline of T-S fuzzy systems has been described. After
defining the T-S fuzzy models, this chapter presented the different techniques to ob-
tain a T-S fuzzy model, particularly the non-linearity sector approach, which allows
obtaining a T-S fuzzy model from non-linear system equations. A reminder of the nec-
essary results concerning the stability of a class of non-linear systems represented by
the T-S fuzzy model is presented. Some results for the synthesis of fuzzy observers,
particularly for the unknown input observers for the T-S fuzzy model, are presented.
In the last part of this chapter, the results on sufficient conditions for stabilising the
T-S fuzzy model are obtained using different control laws, including control law by
reconstructed state feedback, estimated state and static output. For a complete state of
the art on the T-S approach, the reader may refer to the references (Wang, 1994; Tanaka
and Wang, 2004; Lendek et al., 2011a; Chadli and Borne, 2013; Driankov et al., 2013;
Benzaouia and Hajjaji, 2016).
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Most of the results presented can be extended to other T-S models, such as systems
in descriptor form. These synthesis problems will be discussed in more detail and
applied to the non-linear vehicle lateral dynamics system in the following chapters.
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Chapter III

Automotive vehicle modelling and
lateral mode analysis

III.1 Introduction

Intending to predict or study the vehicle’s behaviour in various situations and mod-
ifying the design if necessary, there is a method that involves its modelling, which
means finding a mathematical representation describing this system. The modelling
procedure typically leads to a set of differential equations derived from the mechan-
ical laws. The development of computer tools makes modelling the essential step in
the study phase. In recent years, the modelling of automotive vehicles for control pur-
poses has been the subject of extensive scientific research, citing, for example, (Genta,
1997; Rajamani, 2005; Karnopp, 2013; Schramm et al., 2014; Abdullah et al., 2016; Di-
eter et al., 2018). These books include modelling of several elements such as chassis,
suspension, shock absorber, brakes, wheels, steering, engine, and so on, taking into ac-
count the influence of tyre/ground contact forces. Automotive vehicles are complex
systems composed of many mechanical, electronic, electromechanical and other ele-
ments. In general, these elements have non-linear characteristics, and their behaviour
can change over time and in different driving situations.

In the literature, a vehicle’s behaviour is frequently described along several axes, as
indicated in several references (e.g. Young and Reid (1993); Genta (1997); Rill (2011);
Rajamani (2012); El Majdoub et al. (2012)). However, its principle is still based on
analysing the wheels’ forces in longitudinal, lateral and vertical directions. The stud-
ies are made to model the vehicle in order to develop robust observers, embedded
estimators, driving assistance or individual or combined control strategies of these
three modes.

The automotive vehicle is a highly non-linear system, and the tire/road contact
description is far from obvious. Indeed, the models used are either too simplified and
neglect several phenomena whose actions can be necessary or complex and challeng-
ing to identify all the model’s parameters. This necessitates the determination of a
nominal dynamic model that is useful for simulating the behaviour, observation and
control of the automotive vehicle. A nominal model is based on assumptions about



56 Chapter III. Automotive vehicle modelling and lateral mode analysis

the vehicle structure and its environment. These assumptions reduce the model’s com-
plexity while keeping it accurate to reality. The possibility to treat different parts of
the vehicle separately reduces the number of state variables and results in a nominal
model. In this thesis, the focus is on lateral control assistance. Therefore, only the
lateral mode modelling of the automotive vehicle is addressed.

In the rest of this chapter, we outline some of the necessary elements for modelling
the automotive vehicle. Afterwards, different vehicle models are presented, includ-
ing the single-track model and the roll model. Then, special attention is given to the
modelling of lateral forces in order to represent them by the T-S fuzzy model. The
penultimate section is devoted to the state representation of the vehicle’s two lateral
dynamics models, the first one without considering roll motion and the second one
with it.

III.2 Automotive vehicle components and motions

The comprehension of the automotive vehicle’s motions, its main components and
the wheel/ground contact forces are key factors that allow for better modelling of the
automotive vehicle. This section characterises and defines the motions and the main
constituent parts of the automotive vehicle.

FIGURE III.1: Automotive vehicle components
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III.2.1 Automotive vehicle components

The automotive vehicle is a set of mechanical and electronic components connected by
several links to ensure the chassis motion and the passengers’ comfort. These elements
include, as shown in Fig. III.1, the engine, the chassis, the ground linkage system,
which itself contains the wheels, the trains, the steering and the suspension. Each
device has a specific role that must be understood for modelling reasons.

The automotive vehicle components are described below, including the chassis,
drive trains, suspension mechanism, and steering system.

a. Chassis

The chassis consists, as shown in Fig. III.1, of a lower part called "the body", which
carries the drive-train, the front and rear axles, the dashboard, the seats, the boot and
the tank, and an upper part called "the frame" which supports the roof, the fixed win-
dows, the doors and the bonnets. It is a solid body designed to absorb the forces
caused by frequent or exceptional use and absorb impact energy by deforming in
an organised manner to preserve the passenger compartment. The chassis is con-
sidered a suspended mass, each extremity attached to a wheel by a suspension sys-
tem. The chassis body is subject to the wheel/ground interaction forces transmitted
by the ground linkage system and the vehicle’s aerodynamic interaction forces with
the wind, which occur mainly in the longitudinal direction, except in crosswind sit-
uations. The vehicle reference mark is assumed to be the same as that of the chassis
body, which explains why vehicle motion is partly determined by the chassis body’s
translational and rotational movements.

b. Front and rear axles

All the elements linking the wheels to the chassis can be divided into front and rear
axles (see Fig. III.2). The front axle consists of the mechanical components that ensure
the suspension and steering of the front wheels, and the rear axle consists of all the
components that ensure the suspension and steering of the rear wheels.

The geometry of the train contributes enormously to good road holding both straight
and curved roads. The trains are characterised on the one hand by their kinematics
determining the position and orientation of the wheel in relation to the ground, which
conditions the wheel/ground interaction effort, and on the other hand by their elas-
tokinetics determining the position and orientation of the chassis relative to the train,
which is ensured by elastic connecting blocks.

c. Suspension mechanism

The suspension mechanism is an essential part of any vehicle. It consists of a spring-
damper assembly located behind each wheel (see Fig. III.3). Its principle is to isolate
the vehicle from the vibrations and stresses caused by track irregularities by elimi-
nating unwanted motion frequencies, and consequently, to improve driver comfort.
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FIGURE III.2: Automotive vehicle’s front and rear axles

Suspension systems can be divided according to the different control modes used into
conventional passive suspensions, semi-active suspensions that use mechanical prin-
ciples to adjust the suspension effort according to road behaviour, and more recently,
fully controlled active suspensions have appeared, which require high energy input,
making them more challenging to install on the vehicle.

Many different types of mechanically independent suspension have been tried out
over the years, including, as shown in Fig. III.3 (Živković et al., 2020), the McPherson
suspension, double-wishbone suspension and multi-arm suspension. In practice, their
use depends mainly on the load to be transported, the manufacturing costs and the
vehicle type.

FIGURE III.3: Suspension system types
a) McPherson, b) double-wishbone, c) multi–link

The "spring and damper" part of the suspension is presented by a system consist-
ing of a spring of stiffness ki and a damper of damping coefficient fvi and dry friction
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fsi , as shown in the diagram in Fig. III.4 (Khan et al., 2016).

FIGURE III.4: Suspension model

d. Steering system

FIGURE III.5: Rack and pinion steering system

The vehicle’s steering system operates through the combination of several mechan-
ical elements. The latter’s joint action enables the driver to intervene in the direction
that he wishes to give to his vehicle’s trajectory. In practice, this enables him to nego-
tiate curves and turns safely. A conventional steering system consists, as shown in Fig
III.5 (Khan et al., 2016), of:

– Steering wheel.

– Steering column.

– Rack and pinion, which transforms the steering wheel rotation into a translation
in order to turn the steered wheels.
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– Tie rods, which transfer the force from the rack to the stub axles.

– Stub axles where the wheel is fixed.

The steering wheel’s action in the vehicle’s steering system is essential because
it transforms the driver’s small effort into a steering effort. The power steering sys-
tem facilitates the driver’s manoeuvres by assisting the torque applied to the steering
wheel.

III.2.2 Automotive vehicle motions: translations and rotations

FIGURE III.6: Different vehicle motions

An automotive vehicle moves according to six Degrees of Freedom (Kiencke and
Nielsen, 2000), which is a set of three translations and three rotations (Fig. III.6). The x-
axis translation indicates the vehicle’s longitudinal movement. The lateral movement
is on the y-axis. The z-axis translation characterises the bodywork’s vertical move-
ment, reflecting the chassis movement via its suspension. Rotation around the z-axis
represents the angular yaw movement ψ of the vehicle, which determines its direc-
tion. Rotation around the x-axis defines the roll angle φ, which is mainly felt when
the vehicle moves through a curve or changes track. Lastly, rotation around the y-axis
describes the pitch angle θ of the vehicle experienced during acceleration and braking
operations. The parameter β is the slip angle, which is the angle between the vehicle
heading and the speed vector ~V.

As this thesis’s main objective is to design robust and fault-tolerant control laws
for the system of the lateral dynamics of an automotive vehicle, only the planar study
of motions is discussed, vertical movements are not addressed.
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III.3 Automotive vehicle dynamics

In motion, automotive vehicles modelled as a rigid body have 6-DoF. In this section,
the vehicles are assumed to have only a plane motion parallel to the road surface. The
objective is to establish the equations for automotive vehicle dynamics whose only
the lateral, roll and yaw motions are considered. It will then be assumed that the
vehicle does not perform any pitching motion. Thus, many publications can be found
in literature dealing with planar modelling of the automotive vehicle (Sheikholeslam
and Desoer, 1992; Lu and Hedrick, 2005; Hamersma and Els, 2014; Knapczyk and
Kucybała, 2016).

The four-wheel automotive vehicle model is presented below, which then leads
to a more simplified bicycle model. Afterwards, the roll model is described, which
introduces the roll behaviour, taking into account the suspension kinematics. For con-
venience, the parameters used in this section can be found and explained in the list of
symbols at the beginning of the document.

III.3.1 Four-wheel automotive vehicle model

The four-wheel model, widely referred to as the two-track model, is mostly used in lit-
erature to study and control the vehicle’s longitudinal and lateral dynamic behaviour
(Furukawa et al., 1989; Wang and Qi, 2001; Zhao et al., 2018). It is a 3-DoF model which
has the advantage of displaying all four wheels; it includes the yaw rate ψ̇ and both
longitudinal and lateral motions. The z-axis movement is not taken into account, and
the roll and pitch movements are neglected.

Figure III.7 illustrates the various variables and parameters related to the auto-
motive vehicle’s planar dynamics. In this model, the following simplifications are
applied:

– Rear steering angles are approximately zero: δr1 ≈ 0 and δr2 ≈ 0

– The direction of the rear tyres is the same as that of the vehicle.

– Front steering angles are assumed to be equal: δ f = δ f1 = δ f2

The application of the fundamental principle of dynamics to the vehicle’s mass mv

in parts, longitudinally, laterally and around the vertical axis z through the CG, ne-
glecting pitching and suspension, produces the following equations (Doumiati et al.,



62 Chapter III. Automotive vehicle modelling and lateral mode analysis

FIGURE III.7: Four-wheel vehicle model

2012):

β̇ =
1

mvvv

{
F̄y

r cos(β)− F̄x
r sin(β) + F̄y

f cos(δ f − β) + F̄x
f sin(δ f − β)

}
− ψ̇ (III.1)

ψ̈ =
1
Iz

{(
l f F̄y

f −
a
2

Fx
f

)
cos(δ f ) +

(
l f F̄x

f +
a
2

Fy
f

)
sin(δ f )− lr F̄y

r −
a
2

Fx
r

}
(III.2)

ax =
1

mv

{
F̄x

f cos(δ f )− F̄y
f sin(δ f ) + F̄x

r

}
(III.3)

v̇x = ax + vyψ̇ (III.4)

ay =
1

mv

{
F̄y

f cos(δ f ) + F̄x
f sin(δ f ) + F̄y

r

}
(III.5)

v̇y = ay − vxψ̇ (III.6)

v̇v =
1

mv

{
F̄x

f cos(δ f − β)− F̄y
f sin(δ f − β) + F̄x

r cos(β) + F̄y
r sin(β)

}
(III.7)

where Iz is the moment of inertia around the vertical axis and for the sake of simplicity:

F̄x,y
f = Fx,y

f 1 + Fx,y
f 2 , F̄x,y

r = Fx,y
r1 + Fx,y

r2

Fx,y
f = Fx,y

f 1 − Fx,y
f 2 , Fx,y

r = Fx,y
r1 − Fx,y

r2

(III.8)

Note that the subscript/exponent " f " denotes front tyres and "r" denotes rear tyres,
and the subscript "i" is replaced by "1" for left tyres and "2" for right tyres of the vehicle
(e.g. Fy

r1 is the lateral force of the right-left rear wheel).
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From Fig. III.7, the velocity of each wheel in its rolling direction can be obtained as
follows (Osborn and Shim, 2006; Kiencke and Nielsen, 2000):

vw
f 1 =

(
vx −

a
2

ψ̇
)

cos(δ f ) +
(
vy + l f ψ̇

)
sin(δ f ) (III.9)

vw
f 2 =

(
vx +

a
2

ψ̇
)

cos(δ f ) +
(
vy + l f ψ̇

)
sin(δ f ) (III.10)

vw
r1 = vx −

a
2

ψ̇ (III.11)

vw
r2 = vx +

a
2

ψ̇ (III.12)

Then, the slip angle for all four wheels and the slip angle β at the CG can be calcu-
lated as follows:

α f 1 = δ f − arctan

vy + l f ψ̇

vx −
aψ̇

2

 (III.13)

α f 2 = δ f − arctan

vy + l f ψ̇

vx +
aψ̇

2

 (III.14)

αr1 = − arctan

 vy − lrψ̇

vx −
aψ̇

2

 (III.15)

αr2 = − arctan

 vy − lrψ̇

vx +
aψ̇

2

 (III.16)

β = arctan
(

vy

vx

)
(III.17)

III.3.2 Single-track model

The single-track half-vehicle model, also known as the bicycle model, was developed
in (Segel, 1956). It is one of the most widely used models to describe the behaviour of
the vehicle’s lateral dynamics, mainly to evaluate side-slip angles and study lateral ac-
celerations ay as well as rotation about the vertical axis z (Corno et al., 2015; Rajamani,
2011). It can be seen as a simplification of the four-wheel model, where it is assumed
that there is only one wheel for each train, as shown in Fig. III.8, by projecting the
two wheels of the train on the central axis of the vehicle (Ungoren et al., 2004). The
resulting wheel will have a steering angle equivalent to the steering angle of the two
wheels.

In this model, the rear steering angle is zero, vertical motions are ignored, and roll
motion is not considered. The simplified model of the bicycle is used in many indus-
trial applications such as ESP, and it has only two degrees of freedom corresponding
to lateral and yaw movements. The simplified lateral dynamics model "bicycle" is
inspired from equations (III.2)-(III.1), considering the left/right forces of a train are
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FIGURE III.8: Half-vehicle model

identical. The result is then obtained as follows:
β̇ =

2
mvvv

{
Fy

r cos(β)− Fx
r sin(β) + Fy

f cos(δ f − β) + Fx
f sin(δ f − β)

}
− ψ̇

ψ̈ =
2
Iz

{
l f

(
Fy

f cos(δ f ) + Fx
f sin(δ f )

)
− lrFy

r

}
(III.18)

Under the hypothesis of small angles, the equation system (III.18) becomes:
β̇ =

2
mvvv

(
Fy

r + Fy
f

)
− ψ̇

ψ̈ =
2
Iz

(
l f Fy

f − lrFy
r

) (III.19)

and the front and rear tyre side-slip angles are obtained as follows:

α f = δ f − β− l f
ψ̇

vx
(III.20)

αr = −β + lr
ψ̇

vx
(III.21)

The bicycle model can be used, for example, to study the vehicle’s cornering stabil-
ity as a function of grip potential, the state in which the system is in, and the steering
control applied to the wheel (Mammar and Koenig, 2002). The objective is then to de-
fine the necessary control law to be applied to the vehicle to remain within the stability
zone.

A strategy for stabilising the automotive vehicle’s lateral behaviour is to use the
chassis moment around the CG as a control variable (Oudghiri et al., 2007). The ABS
generate this by applying braking torques to each wheel with different magnitudes.
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In this case, the yaw motion equation in (III.19) becomes as follows:

ψ̈ =
2
Iz

(
l f Fy

f − lrFy
r

)
+

1
Iz

Mz (III.22)

with Mz is the moment around the vehicle’s CG.

III.3.3 Automotive vehicle roll dynamics

The suspension system generates roll and pitch movements. These movements affect
the essential characteristics of vehicle dynamics and should be addressed. In this sub-
section, the focus is on the roll movement. Roll is a lateral sway. It is simply the fact
that the automotive vehicle inclines about the X-axis when cornering or under lateral
wind forces’ action. For example, when a vehicle takes a left turn at high speed, it will
put more weight on the right wheels outside the turn. Then, as it comes out of the turn,
the left wheels will be used instead (Wallentowitz, 2014). The presence of anti-roll bars
can mitigate this phenomenon. These connect two opposing axles, thus levelling the
suspensions. This minimises mass transfer and improves driving comfort. If a vehicle
takes too much roll, the wheels are no longer located in the axis perpendicular to the
road, the contact between the ground and the tyre becomes less good. Figure III.9
shows a schematic diagram of the different mechanisms governing the rolling motion
(Jin et al., 2019).

FIGURE III.9: Schematic description of roll dynamics (rear view)

As shown in Fig. III.9, the vehicle is considered to be a two-mass system, consisting
of a sprung mass ms and an unsprung mass mu. The roll dynamics are caused solely
by the sprung mass. The vehicle roll motion concerning the road is produced by the
inertial force caused by the lateral acceleration msay, which generates the moment
msayhφ around the roll axis. A gravity force component msg sin(φ) also adds to the
roll moment for a significant roll angle. The roll dynamics of the vehicle body can be
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defined depending on the torque equilibrium in the roll axis by the following equation
(Ding and Massel, 2005):

φ̈ =
mshφ

Ix
ay +

msghφ

Ix
sin(φ)−

Cφ

Ix
φ̇−

Kφ

Ix
φ (III.23)

This 1-DoF model represents only the roll motion of a vehicle. It is also called the
roll plane model. It is used to study the lateral load transfer due to the rolling motion.

III.4 Model of lateral forces

The tyre is a very complex component, which is subject to high forces and temperature
variations. It is subject to external forces and moments along the longitudinal, lateral
and vertical axes. Physical models of forces are accurate and precise but too compli-
cated to be used to construct control systems for automotive vehicles. In this thesis,
only the models of the lateral forces Fy will be presented.

Literature is rich in theoretical developments and tyre behaviour analyses (see for
example Livingston and Brown Jr (1969, 1970); Dugoff et al. (1970); Bakker et al. (1989);
Gim and Nikravesh (1990); Pacejka et al. (1996)). The model most commonly used by
tyre manufacturers and automakers is the Pacejka model, discussed in detail in the
following subsection.

III.4.1 Magic formula of Pacejka

To identify lateral forces, the model most commonly used by tyre manufacturers and
automakers is the Pacejka model (Pacejka and Bakker, 1992; Pacejka et al., 1996; Pace-
jka and Besselink, 1997; Pacejka, 2006). It is a semi-empirical model constructed from
experimental data by identifying and interpolating parameters and the tyre’s phys-
ical models. It is also known as the "magic formula" based on a sin(arctan), which
provides an excellent approximation of the force curves (see Fig. III.10 and Fig.III.11).

The general form of the "magic formula" is given by the following equation:Y(x) = D sin {C arctan [Bx− E (Bx− arctan(Bx))]}+ Sv

x = X + Sh

(III.24)

where Y and X represent output and input, respectively (e.g. lateral force and slip
angle). The different parameters and their meanings involved in the formula (III.24)
are given in Tab. III.1 and Fig. III.10. According to Schramm et al. (2014), the following
relationships are valid:

C = 1±
(

1− 2
π

arcsin
(ys

D

))
(III.25)

E =
Bxm − tan

( π

2C

)
Bxm − arctan(Bxm)

, i f C > 1 (III.26)
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FIGURE III.10: Macro coefficients of the Pacejka model

TABLE III.1: Magic formula parameters

Parameters Interpretation
B Stiffness factor (slope at the origin)
D peak value (maximum of the adhesion curve)
C form factor (to adjust the shape of the curve)
E curvature factor

BCD slope of the characteristic curve at zero slip (stiffness)
Sv vertical shift of the curvature from the origin
Sh horizontal shift of the curvature from the origin

Expression of the lateral forces of each wheel without taking into account the effect
of longitudinal slip σx is given by the following formula (Dandach, 2014):Fy(x) = Dy sin

{
Cy arctan

[
Byx− Ey

(
Byx− arctan(Byx)

)]}
+ Sy

v

x = α + Sy
h

(III.27)
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where α represents the tyre slip. The constant parameters with subscript or exponent
y appearing in this equation are given as follows:

Dy = Fz(a1Fz + a2)(1− a3υ2) (III.28)

By =
a4

CyDy
sin
(

2 arctan
(

Fz

a5

))
(1− a6|υ|) (III.29)

Cy = a0 (III.30)

Ey = (a7Fz + a8)
(
1−

(
a9υ + a10 sign(α + Sy

h)
))

(III.31)

Sy
h = a11Fz + a12 + a13υ (III.32)

Sy
v = a14Fz + a15 + υ

(
a16Fz2 + a17Fz

)
(III.33)

With the variable υ represents the camber angle, the parameters ai depend on the
structures and road conditions as well as on the state of the tyre. These parameters are
identified empirically, and the role of each parameter is illustrated in Tab. III.2 (Garcia,
2013).

TABLE III.2: Pacejka lateral force parameters

Parameters Mission
a0 Form factor
a1 Load effect on the coefficient of lateral friction
a2 Coefficient of lateral friction
a3 Camber effect on the coefficient of lateral friction
a4 Stiffness change with slip
a5 Stiffness/load progressivity change
a6 Effect of camber on stiffness
a7 Curvature variation with load
a8 Curvature factor
a9 Effect of load on horizontal displacement
a10 Horizontal displacement at : Fz = 0 & υ = 0
a11 Effect of camber on horizontal displacement
a12 Vertical displacement
a13 Vertical displacement at : Fz = 0
a14 Effect of camber on vertical displacement versus load
a15 Effect of camber on vertical displacement
a16 Curvature variation with camber
a17 Displacement of the curvature

For a constant load, the relationship between the lateral force and slip angle is ini-
tially linear as shown in Fig. III.11, with a constant slope determined by the cornering
stiffness Cα. This region of handling is called the linear operating region. As the slip
angle grows, eventually, the force starts to saturate due to limited friction on the road,
entering the non-linear region. In this area, we can talk about a possible skidding risk.
The wheel slip is related to the variables (δ f , β, ψ̇) by static equations, as illustrated in
equations (III.20)-(III.21).



III.5. Vehicle T-S fuzzy model representation 69

-25 -20 -15 -10 -5 0 5 10 15 20 25

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

FIGURE III.11: Lateral force versus slip angle for different values of
vertical loads Fz (calculated by Pacejka formula)

III.4.2 Linear model of lateral forces

Experimental results show that the lateral force Fy is proportional to small values of
the slip angle (|α| < 2◦) as shown in Fig. III.11. The camber angle υ is neglected.
Each vehicle tyre has small values of "α" under normal driving conditions (far from
the saturation region) where the lateral acceleration does not exceed the threshold of
3.93 m/s2 (Gillespie, 1992; Milliken et al., 1995; Jazar, 2017; Lechner, 2002). Under such
conditions, the lateral forces are approximately linear functions of the slip angle with
a slope equal to the cornering stiffness Cα. Therefore, it is common to use this linear
approximation for the tyre forces:

Fy(α) = Cαα (III.34)

where the coefficient Cα is called the lateral force coefficient or cornering stiffness, its
unit is [N.rad−1] and depends on the adhesion of the road surface and the vertical load
of the tyre (Gillespie, 1992, chap. 6).

Tyres are highly non-linear over the threshold mentioned above and eventually
saturate with subsequent degradation in force capacity (see Fig. III.11). Due to the
neglect of force saturation, the tyre forces tend to be overestimated by the linear model,
especially when tyre slip is significant. The limiting potential of linear models has
been studied in detail in (Lechner, 2002).

III.5 Vehicle T-S fuzzy model representation

In this section, we approximate the non-linear model of the automotive vehicle dy-
namics given earlier, by T-S fuzzy representation (Takagi and Sugeno, 1985).
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It is widely recognised that one of the most critical components of an automo-
tive vehicle is the tyre, as it is the only point of contact with the road. All the forces
necessary to control an automotive vehicle’s motion are transmitted through the tyre,
making the tyre-road interface an important source of dynamic stimulation of the au-
tomotive vehicle. Therefore, a detailed understanding of tyre behaviour is necessary
to develop safe, comfortable and durable vehicles.

The challenge of achieving a correct automotive model is that the tyre/road con-
tact forces are highly non-linear and difficult to model. The method based on T-S fuzzy
models is proposed in several works (e.g. El Hajjaji et al. (2006); Oudghiri et al. (2008);
Dahmani et al. (2013); Jin et al. (2017); Tuan and El Hajjaji (2018); El Youssfi et al.
(2018c, 2020a,b)). As mentioned in Chapter II, it is a very interesting mathematical
representation of non-linear systems that allows representing any non-linear system,
whatever its complexity, by a simple structure based on linear models interpolated by
positive and bounded non-linear functions. Besides, this method has a simple form
with valuable properties that make it easily exploitable from a mathematical point of
view, allowing the extension of some results from the linear field to non-linear sys-
tems.

The lateral tyre/road contact forces are assumed to be proportional to the slip an-
gle, but this approximation is only valid for a small slip angle |α| < 0, 02 rad (Varrier,
2013). In contrast, a non-linear model must be considered for an increasing slip. To
overcome this issue, the idea is to describe the two lateral forces’ behaviour (front and
rear) by a set of T-S fuzzy rules.

To obtain the T-S fuzzy model, two slip regions are considered: a low slip region
and a high slip region (Dahmani et al., 2015b). Then, the front and rear cornering
forces can be approximated by the following four-rule system:

If |α f | is M f1 , Then Fy
f = C f1(µ)α f

If |α f | is M f2 , Then Fy
f = C f2(µ)α f

If |αr| is Mr1 , Then Fy
r = Cr1(µ)αr

If |αr| is Mr2 , Then Fy
r = Cr2(µ)αr

(III.35)

where C fi and Cri , with i = 1, 2, represent the stiffness coefficients of the front and rear
wheels, respectively. They depend on the road friction coefficient µ and the vehicle
parameters. The variables α f and αr are, as shown in Fig. III.8, the slip angles of the
front and rear tyres, respectively. They are given by the equations (III.20)-(III.21).

The overall forces are then approximated by: Fy
f = λ f1(α f )C f1(µ)α f + λ f2(α f )C f2(µ)α f

Fy
r = λr1(αr)Cr1(µ)αr + λr2(αr)Cr2(µ)αr

(III.36)
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which can be rewritten as follows:Fy
f = ∑2

i=1 λ fi(α f )C fi(µ)α f

Fy
r = ∑2

i=1 λri(αr)Cri(µ)αr

(III.37)

where λ fi(α f ) and λri(αr), with i = 1, 2, are bell-shaped membership functions
associated with the sets M fi and Mri , respectively. They are of the following form:

λ fi(α f ) =
ω fi(α f )

∑2
i=1 ω fi(α f )

λri(αr) =
ωri(αr)

∑2
i=1 ωri(αr)

(III.38)

with:

ω fi(α f ) =
1(

1 +
∣∣∣∣ |α f | − c fi

a fi

∣∣∣∣)2b fi
, ωri(αr) =

1(
1 +

∣∣∣∣ |αr| − cri

ari

∣∣∣∣)2bri (III.39)

Several works in literature assume that angles α f and αr have similar values, then
fuzzy rules can be suggested based only on α f . This hypothesis allows us to reduce
the number of membership functions and parameters to be identified. However, this
assumption remains conventional since, in the real case, these angles have different
values. Therefore, they are considered separately here.

The parameters of the fuzzy model membership functions (a fi , ari , b fi , bri , c fi and
cri , and the tyre stiffness coefficients (C fi and Cri ) are obtained using an identifica-
tion procedure based on the Levenberg-Marquardt algorithm in combination with the
least-squares method (El Hajjaji et al., 2006). This procedure based on the minimisa-
tion of the quadratic deviation between the non-linear expressions of the lateral forces
given by the magic formula (III.27) and the approximated forces (III.37).

The numerical values for the stiffness coefficients and membership function pa-
rameters are reported in Tab. III.3.

TABLE III.3: Values of stiffness coefficients and membership function
parameters

C f1 86477 a f1 0, 0969 b f1 1, 4407 c f1 −0, 0130
C f2 0794 a f2 0, 1298 b f2 0, 7962 c f2 0, 0753
Cr1 50696 ar1 0, 5384 br1 1, 8307 cr1 0, 2941
Cr2 0383 ar2 0, 7068 br2 2, 5565 cr2 1, 2334

A comparison between Pacejka’s non-linear model and T-S fuzzy model of the
front and rear lateral forces, for a road friction coefficient µ = 0.7, is depicted in
Fig. III.12. It can be clearly seen that the T-S fuzzy model (III.37) follows the non-linear
model (III.27) accurately for the two lateral forces (front and rear). The curves of the
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FIGURE III.12: Difference between the lateral forces obtained by the
non-linear system and those obtained by the T-S fuzzy model (for a

road friction coefficient µ = 0, 7)

membership functions λ fi(α) and λri(α) are computed over the considered range of
slip angle and are presented in Fig. III.13.

III.5.1 State representation of vehicle lateral dynamics without roll motion

By substituting in the non-linear equations of the simplified model of the automotive
vehicle lateral dynamics (bicycle model), the front and rear lateral forces by their fuzzy
expressions (III.37), and taking into account the equations of front and rear tyre side-
slip angles (III.20)-(III.21), the equation system (III.19) can be re-written for small angle
β (to consider vv ≈ vx) as follows:

β̇ =
2

mvvx

4
∑

i=1
hi(α f , αr)

[
−σiβ +

ρi

vx
ψ̇ + νiδ f

]
− ψ̇

ψ̈ =
2
Iz

4
∑

i=1
hi(α f , αr)

[
ρiβ−

τi

vx
ψ̇ + l f νiδ f

] (III.40)

with:
σ1 = C f1 + Cr1 , σ2 = C f1 + Cr2 , σ3 = C f2 + Cr1 , σ4 = C f2 + Cr2

ρ1 = lrCr1 − l fC f1 , ρ2 = lrCr2 − l fC f1 , ρ3 = lrCr1 − l fC f2 , ρ4 = lrCr2 − l fC f2

τ1 = l2
fC f1 + l2

rCr1 , τ2 = l2
fC f1 + l2

rCr2 , τ3 = l2
fC f2 + l2

rCr1 , τ4 = l2
fC f2 + l2

rCr2

ν1 = ν2 = C f1 , ν3 = ν4 = C f2
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FIGURE III.13: Representative curves of membership functions

The membership functions hi(α f , αr) are given as follows:

h1(α f , αr) = λ f1(α f )× λr1(αr) (III.41)

h2(α f , αr) = λ f1(α f )× λr2(αr) (III.42)

h3(α f , αr) = λ f2(α f )× λr1(αr) (III.43)

h4(α f , αr) = λ f2(α f )× λr2(αr) (III.44)

Then, the equation system of the lateral dynamics of the automotive vehicle (III.40)
can be represented by the following state representation:

ẋ(t) =
4

∑
i=1

hi(α f , αr)
[
Aix(t) + B f iδ f (t)

]
(III.45)

The state vector is defined by the following:

x =
[

β ψ̇
]T

and the matrices that describe the dynamics of the system are:

Ai =


−2

σi

mvvx
2

ρi

mvv2
x
− 1

2
ρi

Iz
−2

τi

Izvx

 , B f i =


2

νi

mvvx

2
l f νi

Iz



Under the front wheel steering angle shown in Fig. III.14 and the main values of
the vehicle parameters shown in Tab. III.4 (Rahimi and Naraghi, 2018). The simulation
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FIGURE III.14: Steering angle given by driver

TABLE III.4: Parameters for the vehicle simulation

Parameter mv Iz l f lr
Value 1712 2488 1, 18 1, 77

runs for linear, non-linear, and fuzzy models of the vehicle lateral dynamics system.
The results of the comparison are displayed in Fig. III.15.

It is clear from Fig. III.15 that the T-S fuzzy model follows with a good approxima-
tion the non-linear model of the vehicle’s lateral dynamics throughout the trajectory.
However, for a considerable slip angle, the linear model deviates from it. This demon-
strates the T-S fuzzy representation’s ability to describe the non-linear behaviour of
the vehicle’s lateral dynamics.

The following sub-section deals with the 3-DoF model, representing the yaw, lat-
eral and roll motions of an automotive vehicle and its T-S fuzzy representation.

III.5.2 State representation of vehicle lateral dynamics with roll motion

The model presented here is used in most of our work and corresponds to the vehicle’s
lateral and roll dynamics. It is obtained by considering the well-known single-track
model (bicycle) represented in sub-section III.3.2 with consideration of 1-DoF corre-
sponding to the roll motion (illustrated in sub-section III.3.3). So this model consists
of 3-DoF representing the yaw, lateral and roll motions (see figure III.16) (Ryu et al.,
2007; Zhao and Liu, 2014).

Under the assumption of small angles, the 3-DoF model with consideration of the
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FIGURE III.15: Side-slip angle and yaw rate variations

bank angle of the road can be described by the following differential equations (Ki-
dane et al., 2006; Dahmani et al., 2015b):

β̇ =
2

mvvx

(
Fy

r + Fy
f

)
+

mshφ

mvvx
φ̈− msg

mvvx
ϕ− ψ̇

ψ̈ =
2
Iz

(
l f Fy

f − lrFy
r

)
φ̈ =

msvvhφ

Ix

(
β̇ + ψ̇

)
+

msghφ

Ix
(φ + ϕ)−

Kφ

Ix
φ−

Cφ

Ix
φ̇

(III.46)

with:
Ix = Ix + msh2

φ

where ψ, φ and ϕ are yaw, roll and road bank angles, respectively. For a detailed
explanation of the parameters appearing in this model of the lateral and roll dynamics
of the automotive vehicle, refer to the list of symbols.

By replacing in the non-linear model of the automotive vehicle lateral dynamics,
with consideration of roll motion, the front and rear lateral forces by their fuzzy ex-
pressions (III.37), and taking into account the equations of the lateral slip angles of the
front and rear tyres (III.20)-(III.21), the system of equations (III.46) can be rewritten as
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FIGURE III.16: Automotive vehicle lateral and roll dynamics model

follows:

β̇ =
2(1 + κ)

mvvx

4
∑

i=1
hi(α f , αr)ϑi +

rs/vhφΛ
vx

φ−
rs/vhφCφ

vx Īx
φ̇− rs/vg

vx Īx

(
Mh2

φ − Īx

)
ϕ− ψ̇

ψ̈ =
2
Iz

4
∑

i=1
hi(α f , αr)vi

φ̈ =
2rs/vhφ

Īx

4
∑

i=1
hi(α f , αr)ϑi + Λφ−

Cφ

Īx
φ̇ +

Mghφ

Īx
ϕ

(III.47)

In order to reduce the size of the equations, the parameters included are as follows:

ϑi = −σiβ +
ρi

vx
ψ̇ + νiδ f , vi = ρiβ−

τi

vx
ψ̇ + l f νiδ f , Λ =

msghφ − Kφ

Īx

M = ms(1− rs/v), Īx = Ix + Mh2
φ, rs/v =

ms

mv
, κ = rs/v

msh2
φ

Īx

with membership functions hi(α f , αr) and parameters δi, ρi, τi and νi are identical to
those defined in the previous sub-section.
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Then, the equation system (III.47) of the lateral dynamics of the automotive vehi-
cle, with consideration of roll motion, can be represented by the following state repre-
sentation:

ẋ(t) =
4

∑
i=1

hi(α f , αr)
[
Aix(t) + B f iδ f (t) + Bϕ ϕ(t)

]
(III.48)

The state vector is defined by the following:

x =
[

β φ ψ̇ φ̇
]T

and the matrices that describe the dynamics of the system are:

Ai =



−2
(1 + κ)σi

mvvx

rs/vhφ

(
msghφ − Kφ

)
vx Īx

2
(1 + κ)ρi

mvv2
x
− 1 −

rs/vhφCφ

vx

0 0 0 1

2
ρi
Iz

0 −2
τi

vx Iz
0

−2
rs/vhφσi

Īx

msghφ − Kφ

Īx
2

rs/vhφρi

vx Īx
−

Cφ

Īx



B f i =



2
(1 + κ)νi

mvvx

0

2
l f νi

Iz

2
rs/vhφνi

Īx


, Bϕ =



− rs/vg
vx Īx

(
Mh2

φ − Īx

)
0

0

Mghφ

Īx


The model of the lateral dynamics of the automotive vehicle with consideration of roll
movement has been widely discussed and has been the subject of many publications.
Among these, the following bibliographic references use T-S fuzzy models: (Rabhi
et al., 2009; Daraoui et al., 2012; Oudghiri et al., 2014; Dahmani et al., 2015a, 2013,
2015b; Aouaouda et al., 2014a, 2015; El Youssfi et al., 2017, 2018a,b,c, 2019b; El Youssfi
and El Bachtiri, 2020).

III.6 Conclusion

In this third chapter, the automotive vehicle’s movements and main components are
first characterised and defined. Then, the automotive vehicle dynamics models are
discussed. In the beginning, the four-wheel vehicle model, which, with a set of as-
sumptions, leads to a more simplified bicycle model. Then, the roll dynamics model.
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Afterwards, two lateral force models are presented. The first one is based on the Pace-
jka magic formula, it is accurate and more realistic, but it requires the empirical deter-
mination of many factors and constants. The second one is simple linear but overes-
timates the forces. Furthermore, to avoid the non-linearity of the lateral forces, a T-S
fuzzy representation of the tyre model is considered. This approximation allowed us
to obtain a T-S fuzzy model representing the automotive vehicle’s lateral dynamics
with/without taking into account roll motion.
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Chapter IV

Fault/state estimation for
automotive vehicle lateral dynamics

IV.1 Introduction

Driver errors or bad reflexes cause most accidents. For this reason, automotive in-
dustries and researchers in this area have worked hard to develop and produce in-
telligent, reliable, relaxed, and safe vehicles (Bishop, 2000; Christensen and Bastien,
2015; Hussain and Zeadally, 2018). Since the 1970s, many solutions have been pro-
posed to introduce and develop advanced passive security devices like airbags and
driver-assisted active security devices such as ACC, ABS, and ESP (Rajamani, 2005;
Jarašūniene and Jakubauskas, 2007; Falcone et al., 2007; Winner et al., 2014; Cham-
raz and Balogh, 2018). These depend on the service provided by electronic systems
for various vehicle activities in dangerous driving situations. In case of deviation in
an undesirable direction, the computer makes immediate decisions to respond with
appropriate corrective actions to ensure the vehicle’s stability.

The processes mentioned above are mainly monitored with known and unknown
entries. Their operation and effectiveness need detailed knowledge of the automotive
vehicle dynamics parameters (Plancke, 2009; El Youssfi et al., 2018a, 2019b). These pa-
rameters’ measurements sometimes do not provide complete system details because
of some state measurements’ unavailability. Furthermore, the number of sensors is
reduced due to cost reasons and can sometimes be also unavailable.

The idea is to use a software sensor, called an observer, able to reconstruct the un-
measurable and measurable states accurately from measurable ones. Thus, it should
build unknown inputs of the system from the model and calculated parameters. Dif-
ferent estimation techniques have been applied in this context to solve problems of
observer design. Among these techniques, the classical Luenberger observer, which
uses static gain synthesis to make the observer states converge to the real system states
and stabilise the estimation error (Monot et al., 2018; Van Dong et al., 2019). Never-
theless, disturbances in the system often lead to lousy reconstruction and instability.
In (Katzfuss et al., 2016; Reina and Messina, 2019), Kalman filter has been used, which
is robust to measurement noise. In (Liu et al., 2018; El Youssfi et al., 2018a), a sliding



80 Chapter IV. Fault/state estimation for automotive vehicle lateral dynamics

mode observer is used to achieve asymptotic convergence of the state estimation error
to zero despite uncertainties in the input and non-linearities.

These observers may not be practical when the system dynamics are subject to the
influence of unknown inputs. Usually, these unknown inputs come from faults, mod-
elling errors, disturbances or noise. The problem of designing observers for standard
and descriptor systems with unknown inputs has received considerable attention in
recent years (Mammar et al., 2006; Hashemi et al., 2017; Nguyen et al., 2019b,a; Du
et al., 2019; El Youssfi et al., 2019b, 2020b). These observers allow reconstruction of
system states even in the presence of unknown inputs, and are often involved in di-
agnosis, for the detection and estimation of faults affecting the system. Two types of
observers are developed in this chapter for the purpose of simultaneously estimating
the automotive vehicle lateral dynamics system states and the faults that affect it. The
first one allows to estimate faults/states of T-S fuzzy descriptor systems under the in-
fluence of actuator faults and external disturbances. This observer will be used to de-
sign a fault-tolerant control law for descriptor systems in the next chapter. These types
of systems appear in a variety of physical systems such as power systems, electrical
circuits, vehicle systems and many other systems that can be modelled by dynamic
equations (Yuan and Zhang, 2010). These systems, also known as differential alge-
braic systems or singular systems, are much tighter than the state-space expression to
represent real independent parametric perturbations (Taniguchi et al., 2000). While,
the second observer is the unknown input observer for estimating faults/states of T-S
fuzzy standard uncertain systems in the presence of sensor/actuator faults.

Our main objective in this chapter is to accurately estimate faults and states of
the automotive vehicle lateral dynamics in the presence of uncertainties, disturbances
and/or faults. The model used to explain the lateral movements of the automotive ve-
hicle is the bicycle model shown in Fig III.8. The asymptotic stability of the estimation
error is ensured by Lyapunov’s method. Its sufficient conditions are provided in the
form of Linear Matrix Inequalities (LMIs), which can be resolved using LMI optimisa-
tion techniques. The results are improved using some lemmas (see Appendix).

This chapter is structured in the following way: Second section deals with the
fault/state estimation method, using descriptor approach, for T-S fuzzy system of an
automotive vehicle under varied disturbances and actuator faults. The third section
is devoted to fault/state estimation by an unknown input observer for uncertain T-S
fuzzy system of an automotive vehicle with simultaneous sensor and actuator faults.
These two sections are divided into the following sub-sections: the first one presents
a brief description of the problem. Then, the second presents the design of the ob-
server to estimate the system states and faults jointly. Then, the stability analysis of
the estimation error appeared in the third sub-section. At the end of each section,
an application to the automotive vehicle lateral dynamics is given. The conclusion is
included in the last section.
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IV.2 Fault/state estimation approach using descriptor approach

Using the descriptor approach, this section addresses the problem of fault and state
estimation of an automotive vehicle’s lateral dynamics represented by the T-S fuzzy
model affected by faults and actuator disturbances.

IV.2.1 Issue description

In practice, automotive vehicle lateral dynamics can be affected by faults and/or dis-
turbances, considered as additional inputs, such as actuator fault. To cope with this
problem, actuator faults and appropriate disturbances must therefore be implemented.
Using the descriptor approach in this section, the observer mentioned above is used to
estimate fault/state for the automotive vehicle lateral dynamics system, represented
by the T-S fuzzy model, affected by both actuator faults and disturbances.

Consider the following T-S fuzzy descriptor system fitted to the vehicle system
(III.40): Eẋ(t) =

4
∑

i=1
hi(α f , αr)

[
Aix(t) + B f i(δ f (t) + f (t)) + Did(t)

]
y(t) = Cx(t)

(IV.1)

where x(t), δ f (t) and y(t) are descriptor state, input and output vectors, respectively.
f (t) and d(t) are actuator faults and external disturbances, respectively. The matrices
Ai, Bi, C and Di are known matrices with suitable dimensions. Matrix E may be rank
deficient, i.e., rank(E) = re ≤ nx.

Using the descriptor approach and considering the actuator fault f (t) as an addi-
tional state, an extended system can be written as follows:Ē ˙̄x(t) =

4
∑

i=1
hi(α f , αr)

[
Āi x̄(t) + B̄iδ f (t) + D̄id(t) + F̄ ḟ (t)

]
y(t) = C̄x̄(t)

(IV.2)

where

Ē =

[
E 0
0 I

]
, Āi =

[
Ai B f i

0 0

]
, B̄i =

[
B f i

0

]
, D̄i =

[
Di

0

]
, F̄ =

[
0
I

]
, C̄ =

[
C 0

]
The regularity and non-impulsiveness of a singular continuous system play im-

portant roles in analysing the singular system. Therefore, it is essential to develop
conditions that guarantee that the nominal singular system is regular and impulse-
free and not only stable.

Definition. IV. 1 (Dai et al., 1989; Yuan and Zhang, 2010) The matrix pencil (E,
m
∑

i=1
hi Ai)

is regular if det(sE−
m
∑

i=1
hi Ai) is not identically zero.
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Definition. IV. 2 (Dai et al., 1989; Yuan and Zhang, 2010) The matrix pencil (E,
m
∑

i=1
hi Ai)

is impulse-free if deg(det(sE−
m
∑

i=1
hi Ai)) = rank(E).

Definition. IV. 3 System (IV.1) is admissible if it is regular, impulse-free and stable.

The fault f (t) and the state x(t) can be estimated by employing the augmented
system x̄(t). The challenge then is to design an observer for the system (IV.2). It
should be noted that working with the augmented system (IV.2) which contains the
system states as well as an auxiliary fault states vector instead of system (IV.1) help us
to estimate the fault afterwards and not only to detect it. Estimating and detecting the
fault gives us the possibility to easily build up a fault-tolerant control (in Chapter V).
This is not allowed with system (IV.1).

Before going on, the following assumptions are considered in the remainder of this
section.

Assumption. IV. 1 System (IV.1) is assumed to be admissible.

Assumption. IV. 2 (Jia et al., 2015) Ē and C̄ matrices satisfy the conditions of rank according
to the following:

rank

[
Ē
C̄

]
= nx (IV.3)

Remark. IV. 1 Note that the constructed observer (IV.4) necessitates the conditions of As-
sumption. IV.2.

IV.2.2 Observer design

In this part, the design of an observer estimating the state system and actuator faults
is considered. So, let us consider the following observer:

η̇(t) =
4
∑

i=1
hi(α f , αr)

[
TĀi ˆ̄x(t) + TB̄iδ f (t) + Li(y(t)− ŷ(t))

]
ˆ̄x(t) = η(t) + Hy(t)

ŷ(t) = C̄ ˆ̄x(t)

(IV.4)

where η(t) and ˆ̄x(t) are the observer states and the estimated states, respectively. ŷ(t)
is the estimated output. T, H and Li are matrices to be determined.

Remark. IV. 2 The observer structure (IV.4) used in this study is widely used in physical
applications, and many works show its capability not only to detect the faults, but also to
estimate their amplitude (Rodrigues et al., 2014; Wang et al., 2015, 2019b). Furthermore,
using the observer structure (IV.4) imply looking for gains T, H, and Li which is different to
the traditional ones, and this give some flexibility to the observer structure. Moreover, looking
for the variables T, H, and Li together need some simplification and assumptions.
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IV.2.3 Stability analysis

Let us define the error between the augmented system (IV.2) and the observer (IV.4)
as follows:

ēx(t) = x̄(t)− ˆ̄x(t) (IV.5)

= (I − HC̄)x̄(t)− η(t) (IV.6)

According to references (Aouaouda et al., 2013; Bouarar et al., 2013; Kharrat et al.,
2018; Wang et al., 2015; Rodrigues et al., 2014), Assumption. IV.2 means that there are
non-singular matrices T and H, such that

TĒ + HC̄ = I (IV.7)

So, estimation error can be described as follows:

ēx(t) = TĒx̄(t)− η(t) (IV.8)

The dynamics of the estimation error is expressed by the following

˙̄ex(t) =TĒ ˙̄x(t)− η̇(t) (IV.9)

˙̄ex(t) =
4

∑
i=1

hi(α f , αr)
{
(TĀi − LiC̄) ēx(t) + TD̄id(t) + TF̄ ḟ (t)

}
(IV.10)

and the fault estimation error is defined as follows

e f (t) = C f ēx(t) (IV.11)

where C f =
[
0 I

]
.

Under Assumption. IV.1, the following theorem presents a sufficient condition that
satisfies the asymptotic convergence of the fuzzy observer (IV.4) to the augmented
system (IV.2).

Theorem. IV. 1 (El Youssfi et al., 2021c) Under Assumption. IV.2, the fuzzy observer (IV.4)
asymptotically converges to the system (IV.2), if there exist two positive scalars γ1 and γ2, and
positive symmetric matrix P, and matrices X, Yi, such that the following inequality is satisfied
for i=1,. . . ,4. Ξi PD1i + XD2i PF1 + XF2

∗ −γ1 I 0
∗ ∗ −γ2 I

 < 0 (IV.12)

where
Ξi = PA1i +AT

1iP + XA2i +AT
2iX

T −YiC̄− C̄TYT
i + CT

f C f (IV.13)
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The gains of observers can be determined as follows

Li = P−1Yi (IV.14)

Proof. IV. 1 The proof is divided in two part, one part is dedicated on how to obtain the ma-
trices T and H and second part is the proof of Theorem. IV.1.

From equation (IV.7), one can write

[
T H

] [Ē
C̄

]
= I (IV.15)

By using Lemma 8, we can get the solution of (IV.15) as

[
T H

]
=

[
Ē
C̄

]†

+ W

I −
[

Ē
C̄

] [
Ē
C̄

]†
 (IV.16)

where W is an arbitrary matrix with appropriate dimensions.
From equation (IV.16), the matrices T and H are respectively obtained asT = ∆† M + W

{
I − ∆∆†}M

H = ∆†N + W
{

I − ∆∆†}N
(IV.17)

with ∆, M and N are given by

∆ =

[
Ē
C̄

]
, M =

[
I
0

]
, N =

[
0

I(ny)

]

In order to proof Theorem. IV.1, we select the Lyapunov functional described as follows

V(ēx(t)) = ēT
x (t)Pēx(t) (IV.18)

where P is a symmetrical positive matrix defined with an adequate dimension.
The derivative of V(ēx(t)) a long the trajectory of ēx(t) corresponds to

V̇(ēx(t)) = ēT
x (t)P ˙̄ex(t) + ˙̄eT

x (t)Pēx(t) (IV.19)

Considering real positive scalars γ1 > 0 and γ2 > 0. The fault estimation error e f (t) is
robust against external disturbances and fault variations (Wang et al., 2015), i.e.

‖e f (t)‖2 ≤
√

γ2
1‖d(t)‖2 + γ2

2‖ ḟ (t)‖2 (IV.20)

So, defining the following criterion function

J =
∫ t

0

[
eT

f (τ)e f (τ)− γ1dT(τ)d(τ)− γ2 ḟ T(τ) ḟ (τ)
]
dτ (IV.21)
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It is known from different works in literature that (IV.20) and (IV.21) are equivalent. So, under
zero initial condition, we have:

J ≤
∫ t

0

[
eT

f (τ)e f (τ)− γ1dT(τ)d(τ)− γ2 ḟ T(τ) ḟ (τ)
]
dτ + V(ēx(t))−V(ēx(0)) (IV.22)

J ≤
∫ t

0

[
V̇(ēx(τ)) + eT

f (τ)e f (τ)− γ1dT(τ)d(τ)− γ2 ḟ T(τ) ḟ (τ)
]
dτ (IV.23)

J ≤
∫ t

0
ΩT(τ)ΠiΩ(τ)dτ (IV.24)

where

Ω(t) =

ēx(t)
d(t)
ḟ (t)

 , Πi =

PTAi + AT
i TTP− PLiC̄− C̄T LT

i P PTD̄i PF̄
∗ −γ1 I 0
∗ ∗ −γ2 I


Taking into account the exchange of variables PW = X and PLi = Yi, and the following

expressions:

TĀi = A1i + WA2i (IV.25)

TD̄i = D1i + WD2i (IV.26)

TF̄ = F1 + WF2 (IV.27)

Then, by using Schur complement, we obtain (IV.12). So, if conditions (IV.12) are satisfied,
that means J < 0. This implies that the fuzzy observer (IV.4) is asymptotically converged to
the system (IV.2) with the performance (IV.20). This accomplished the proof.

Remark. IV. 3 Theorem. IV.1 is provided with two setting parameters, namely γ1 > 0 and
γ2 > 0 which reflect the effect of noise and fault derivative on the fault estimation error,
respectively. The problem is how these parameters can be combined to give a feasible solution
for the LMIs (IV.12). The easiest way to solving this problem is to proceed by trial and error.

Remark. IV. 4 The proposed observer (IV.4) is different to that used in (Wu and Dong, 2016;
Bouattour et al., 2009; Do et al., 2018), because the authors assume that ḟ (t) ≈ 0. This
assumption is outdated in this study. Furthermore, it deals with the problem of estimating
time-varying faults f̂ (t) which is simplicity computed by f̂ (t) = C f ˆ̄x(t).

Remark. IV. 5 It should be noted that, the design technique applied in this study overcome
the equality problem used in the results of (Kharrat et al., 2018).

IV.2.4 Numerical illustration and simulation results

In order to demonstrate the effectiveness of the proposed observer in estimating fault/state
of the lateral dynamics system without consideration of roll motion, some simulations
have been performed using Matlab software. For that, the longitudinal velocity is
taken as constant vx = 25 m/s, the steering angle is shown in Fig. IV.1 is considered,
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and the parameters’ values are listed in the Tab. III.4. It should be mentioned that the
simulated results are obtained assuming that the yaw moment is zero (Mz(t) = 0).
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FIGURE IV.1: Steering angle profile given by the driver

The numerical values of the faulty system matrices of the automotive vehicle lat-
eral dynamics are as follows:

A1 =

[
−10, 5597 −0, 9435

7, 8176 −16, 2867

]
, A2 =

[
−6, 0290 −1, 4598
−63, 5932 −8, 1492

]

A3 =

[
−5, 9721 −0, 4982
69, 4073 −10, 3087

]
, A4 =

[
−1, 4413 −1, 0145
−2, 0035 −2, 1712

]

B f 1 = B f 2 =

[
5, 4347
72, 9608

]
, B f 3 = B f 4 =

[
0, 8470
11, 3712

]

C =
[
0 1

]
, D1 = D2 = D3 = D4 =

[
0.5
0.5

]
, E =

[
1 0
0 1

]

Remark. IV. 6 In the general case, matrix E is supposed to be singular non invertible. A
special case of E equal to an identity is introduced in this application.

By using Matlab LMI Toolbox (Gahinet et al., 1994; Erkus and Lee, 2004) and choosing
γ1 = 0, 2, γ2 = 0, 15, Theorem. IV.1 optimization problem can be easily solved. We
obtain the following observer gains and matrices:

L1 =

 3, 1638
−3, 0785
10, 4204

 , L2 =

−59, 7551
−7, 1105
15, 3116

 , L3 =

35, 5790
5, 1189
2, 9669

 , L4 =

−27, 3335
1, 0953
7, 8577
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T =

0, 9577 0 −0, 0423
0, 1800 1, 0000 0, 1800
0, 0324 0 1, 0324

 , H =

−0, 0423
0, 1800
0, 0324


Considering the unknown disturbance d(t) with band-limited white noise and the

fault f (t) of the following form:

f (t) =


0, 023t− 0, 1 0 ≤ t < 5

0, 05 5 ≤ t < 10

0, 05 sin(3t) t ≥ 10

(IV.28)

Figures IV.2 and IV.3 display the response of the system states and their estimates un-
der the influence of actuator fault f (t) and Fig. IV.4 shows the actuator fault scenario
f (t) and its estimation.
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FIGURE IV.2: Time evolution of side-slip angle and its estimated (left)
Estimation error (right)

It is clear from all figures IV.2-IV.4 that the estimate converges closely with the
measurement, both for actuator faults and system states. This shows the proposed
observer’s ability to accurately estimate the system parameters or even faults, despite
the presence of external disturbances.

It can be seen from Figures IV.2 and IV.3 that, after the system fails, the vehicle
loses its performance and its states have reached unacceptable values. This problem
can be overcome by applying a fault-tolerant control law (see Chapter V).
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FIGURE IV.3: Time evolution of yaw rate and its estimated (left) Esti-
mation error (right)
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FIGURE IV.4: Time evolution of fault and its estimated (left) Estimation
error (right)

IV.3 Fault/state estimation using unknown input observer

This section deals with an unknown input observer’s design by considering a prop-
erty of the time derivatives of membership functions for an automotive vehicle lateral
dynamics represented by the T-S fuzzy model with uncertainties.
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IV.3.1 Issue description

Automotive vehicle lateral dynamics may show unexpected dangerous behaviour in
the presence of unusual external conditions such as lateral wind force, the varia-
tion of the road adhesion coefficient, and others. So to deal with this problem, sen-
sor/actuator faults and appropriate uncertainties have to be implemented.

Let us consider the following uncertain system with sensor/actuator faults:ẋ(t) =
4
∑

i=1
hi(α f , αr)

[
(Ai + ∆Ai(t))x(t) + (B f i + ∆B f i(t))δ f (t) + F1i f (t)

]
y(t) = Cx(t) + F2 f (t)

(IV.29)

where x(t), y(t) and δ f (t) denote state, output and input vectors, respectively. hi(α f , αr)

are the membership functions which are defined in Chapter III. Ai, Bi and C are state,
input and output matrices, respectively. f (t) are faults assigned to both actuator and
sensors. F1i and F2 are constant matrices with compatible dimensions. ∆Ai(t) and
∆B f i(t) are matrices functions that represent time-varying parameter uncertainties af-
fecting the state and the input, respectively, and are constructed as follows:

∆Ai(t) = E∆Ãi(t), ∆B f i(t) = E∆B̃ f i(t), (IV.30)

where E is a full column rank matrix.
Based on the uncertainties form (IV.30), the T-S fuzzy model (IV.29) can be rewrit-

ten as follows:ẋ(t) =
4
∑

i=1
hi(α f , αr)

[
Aix(t) + Biu(t) + Eωi(t) + F1i f (t)

]
y(t) = Cx(t) + F2 f (t)

(IV.31)

with:
ωi(t) = Ãi(t)x(t) + B̃ f i(t)δ f (t) (IV.32)

The augmented system formed by the system (IV.31) and the fault dynamics can be
described as follows:

˙̄xa(t) =
4
∑

i=1
hi(α f , αr)

[
Āi x̄a(t) + B̄iu(t) + Ēω̄i(t)

]
y(t) = C̄x̄a(t)

(IV.33)

where

x̄a(t) =

[
x(t)
f (t)

]
, ω̄i(t) =

[
ωi(t)
ḟ (t)

]
, Āi =

[
Ai F1i

0 0

]
, B̄i =

[
Bi

0

]
, Ē =

[
E 0
0 I

]
, C̄ =

[
C F2

]
Before proceeding to the design of the augmented system observer (IV.33), to estimate
states and faults in the coming subsection, the following assumptions are necessary.
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Assumption. IV. 3 (Vu and Do, 2018) The matrices C̄ and Ē are full row and full column
rank, respectively.

An effective way to further reduce conservatism is to select the fuzzy Lyapunov func-
tion dependent on the weighting (Zhao et al., 2012), i.e.

P =
m

∑
i=1

hi(ξ(t))Pi > 0 (IV.34)

Since the time derivative of (IV.34) needs that of hi(ξ(t)), the following assumption is
taken into consideration.

Assumption. IV. 4 (Tanaka et al., 2003)|ḣk(ξ(t))| ≤ ak

ak ≥ 0
(IV.35)

Remark. IV. 7 Assumption. IV.4 means that the state variables describing the membership
functions have bounded variations, and the parameters ak are upper bounds on the derivative
of the membership functions. Note that in most practical applications, membership functions
in priors usually depend on one or two state variables (Jadbabaie, 1999).

IV.3.2 Unknown input observer design

There are several practical problems in automotive vehicle production in the real
world that prevent the use of sensors, especially lateral velocity and yaw rate sen-
sors, which include high cost, signal degradation or loss under some circumstances
and others. The observer theory can be used to overcome this problem. The block di-
agram shown in Fig. IV.5 presents the concept of the unknown input observer, where
δ f (t) is the input, f (t) is the fault signal, x̂(t) and f̂ (t) are the state and fault estima-
tion, respectively, and y(t) is the system output.

This subsection aims to design an unknown input observer to simultaneously es-
timate the system states and the sensor/actuator faults under uncertainties affecting
both state and input matrices.

Let us consider the following observer that has the same structure as the previous
T-S fuzzy system:ż(t) =

4
∑

i=1
hi(α f , αr)

[
Niz(t) + Giu(t) + Liy(t)

]
ˆ̄xa(t) = z(t)− Hy(t)

(IV.36)

where Ni, Gi, Li and H are the observer parameters to be determined. z(t) and ˆ̄xa(t)
are the observer states and the estimate of the augmented system, respectively.



IV.3. Fault/state estimation using unknown input observer 91

FIGURE IV.5: Scheme of the approach for state/fault estimation

IV.3.3 Stability analysis

Let us define the estimation error between the faulty augmented system (IV.33) and
the observer (IV.36) as follows:

ex(t) = x̄a(t)− ˆ̄xa(t) (IV.37)

Putting:
M = I + HC̄ (IV.38)

Error (IV.37) can be rewritten as follows:

ex(t) = Mx̄a(t)− z(t) (IV.39)

The dynamics of the estimation error ex(t) is written as follows:

ėx(t) = M ˙̄xa(t)− ż(t) (IV.40)

Substituting ˙̄xa(t) and ż(t) by their expressions (IV.33) and (IV.36) respectively, we
obtain:

ėx(t) =
4

∑
i=1

hi(α f , αr)
[
(MĀi − LiC̄− Ni HC̄)x̄a(t) + (MB̄i − Gi)u(t) + MĒω̄i(t)− Ni ˆ̄xa(t)

]
(IV.41)
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Adding and subtracting Ni x̄a(t), we get:

ėx(t) =
4

∑
i=1

hi(α f , αr)
[
(MĀi − LiC̄− Ni M)x̄a(t) + (MB̄i − Gi)u(t) + MĒω̄i(t) + Niex(t)

]
(IV.42)

If the following conditions are met:

MĀi − LiC̄− Ni M = 0 (IV.43)

MB̄i − Gi = 0 (IV.44)

MĒ = 0 (IV.45)

Then (IV.42) becomes as follows:

ėx(t) =
4

∑
i=1

hi(α f , αr)Niex(t) (IV.46)

The following theorem presents the conditions for the estimation error dynamics (IV.46)
to be asymptotically stable.

Theorem. IV. 2 (Vu and Do, 2018) Under assumptions 3-4 and for a given positive constant
ak, the observer (IV.36) tends asymptotically to the augmented system (IV.33) if there exist
positive symmetric matrices Pj and matrices Ni, Gi, Li, H, such that the following conditions
are satisfied for i, j = 1, . . . , 4.

M = I + HC̄ (IV.47)

MĀi − LiC̄− Ni M = 0 (IV.48)

Gi = MB̄i (IV.49)

MĒ = 0 (IV.50)
4

∑
k=1

akPk + NT
i Pj + PjNi < 0 (IV.51)

Proof. IV. 2 Let us consider the following Lyapunov function candidate

V(ex(t)) =
4

∑
i=1

hi(α f , αr)eT
x (t)Piex(t) (IV.52)

where Pi = PT
i > 0.

The time derivative of (IV.52) is as follows

V̇(ex(t)) =
4

∑
i=1

ḣi(α f , αr)eT
x (t)Piex(t) +

4

∑
i=1

hi(α f , αr)
{

ėT
x (t)Piex(t) + eT

x (t)Pi ėx(t)
}

(IV.53)
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Using Assumption. IV.4, we can write

V̇(ex(t)) ≤
4

∑
i=1

hi(α f , αr)

{
4

∑
k=1

akeT
x (t)Pkex(t) + ėT

x (t)Piex(t) + eT
x (t)Pi ėx(t)

}
(IV.54)

Substituting (IV.46) into (IV.54), gives

V̇(ex(t)) ≤
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)eT
x (t)

{
4

∑
k=1

akPk + NT
i Pj + PjNi

}
ex(t) (IV.55)

Then, if condition (IV.51) of Theorem. IV.2 holds, then V̇(t) < 0. This means that the estima-
tion error ex(t) tends asymptotically to zero.

Remark. IV. 8 The Lyapunov function (IV.52) is well defined to study the stability of T-S
fuzzy systems (Tanaka et al., 2003).

IV.3.4 Transformation into LMI using Finsler’s lemma

According to Theorem. IV.2, it is difficult to find the matrices Ni and Pj with the given
coefficient ak to check the condition (IV.51). However, to overcome this challenge,
Theorem. IV.7 illustrates the procedure of transforming (IV.51) into a linear matrix in-
equality, based on Finsler’s lemma, that Matlab LMI Toolbox will easily solve.

Theorem. IV. 3 (El Youssfi et al., 2021b) For a given positive scalar ak, the states and faults
of the system (IV.33) are estimated asymptotically with the observer (IV.36) if there exist the
matrices V, Ȳ, Q̄i and positive symmetric matrix Pi such that the following conditions hold
for i, j = 1, . . . , 4.  m

∑
k=1

akPk + γ(Πi + ΠT
i ) Θij

∗ −V −VT

 < 0 (IV.56)

where

Πi = VR̄i − Q̄iC̄ + ȲS̄i (IV.57)

Θij = Pj − γV + R̄T
i VT − C̄TQ̄T

i + S̄T
i ȲT (IV.58)

R̄i = (I + ΨC̄)Āi (IV.59)

S̄i = ΦC̄Āi (IV.60)

Ψ = −Ē(C̄Ē)+ (IV.61)

Φ = I − (C̄Ē)(C̄Ē)+ (IV.62)

(C̄Ē)+ = ((C̄Ē)T(C̄Ē))−1(C̄Ē)T (IV.63)
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The existence of V, Ȳ, and Q̄i satisfies the correctness of equations (IV.64)-(IV.65). Further-
more, the linearity of our matrix inequality formulation is guaranteed.

Y = V−1Ȳ (IV.64)

Qi = V−1Q̄i (IV.65)

So, the observer gains can be derived as follows:

H = Ψ + YΦ (IV.66)

Ni = MĀi −QiC̄ (IV.67)

Gi = MB̄i (IV.68)

Li = Qi(I + C̄H)−MĀi H (IV.69)

Proof. IV. 3 According to IV.38 and IV.45, we can write:

H(C̄Ē) = −Ē (IV.70)

By using the same notation given in Lemma 6, where X = H, W = C̄Ē and Y = −Ē, the
general solution of (IV.70) according to Assumption. IV.3 and Lemma 6 is:

H = Ψ + YΦ (IV.71)

where Ψ = −Ē(C̄Ē)+, Φ = I − (C̄Ē)(C̄Ē)+ and Y is an arbitrary matrix of compatible
dimension.

Let us put
Qi = Li + Ni H (IV.72)

Substituting (IV.72) into (IV.43), we obtain

Ni = MĀi −QiC̄ (IV.73)

According to (IV.72) and (IV.73), we get

Li = Qi(I + C̄H)−MĀi H (IV.74)

By combining (IV.38) with (IV.73) and replacing H with its expression (IV.71), the following
formula can be given:

Ni = R̄i + YS̄i −QiC̄ (IV.75)

where
R̄i = (I + ΨC̄)Āi, S̄i = ΦC̄Āi
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The estimation error ex(t) tends asymptotically to zero if the right side of the inequality (IV.54)
is less than zero. Then, we can write

ēT
x P̄ik ēx < 0 (IV.76)

where

P̄ik =

 4
∑

k=1
akPk Pi

Pi 0

 , ēx =

[
ex(t)
ėx(t)

]
(IV.77)

From (IV.46), we have

Ωēx = 0, with Ω =
[

Ni −I
]

and ΩΩ⊥ = 0 (IV.78)

Ω⊥ is the orthogonal complement of Ω.
According to (IV.76)-(IV.78) and based on Finsler’s Lemma 7, the following condition is

satisfied  4
∑

k=1
akPk Pi

Pi 0

+

[
U
V

] [
Ni −I

]
+

[
NT

i

−I

] [
UT VT

]
< 0 (IV.79)

which is equivalent to this inequality 4
∑

k=1
akPk + UNi + NT

i UT Pj −U + NT
i VT

∗ −V −VT

 < 0 (IV.80)

It should be noted that equation (IV.80) is a Bilinear Matrix Inequality (BMI). However,
the obtained condition can not be solved since it could provide a non-unique solution. Further-
more, we can not provide any simulation test since the obtained condition does not have any
constant matrix. So, new development is needed.

Equation (IV.80) can be transformed into a LMI by considering U = γV and the variable
change N̄i = VNi. Now, by replacing Ni by its expression in (IV.75), equation (IV.80) can be
rewritten as follows:  4

∑
k=1

akPk + Π̄i + Π̄T
i Θ̄ij

∗ −V −VT

 < 0 (IV.81)

where

Π̄i = UR̄i −UQiC̄ + UYS̄i (IV.82)

Θ̄ij = Pj −U + R̄T
i VT − C̄TQT

i VT + S̄T
i YTVT (IV.83)

By substituting U = γV, Ȳ = VY and Q̄i = VQi, the inequality of the linear matrix (IV.56)
can be determined. This completes the proof.
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In Theorem. IV.3, we have tackled free slack variables as a method to improve the
result. Consequently, the matrix V has been involved as slack to obtain less conser-
vative results and get good states/fault estimation for automotive vehicle lateral dy-
namics.

Remark. IV. 9 The given γ is determined according to Finsler’s Lemma 7. The choice of γ is
made arbitrarily so that the conditions of Theorem. IV.3 are feasible and take into account the
quality of simulation results.

IV.3.5 Relaxed unknown input observer

In this subsection, relaxing stability conditions of the estimation error (IV.37) are pre-
sented. Based on the Lyapunov function approach and the introduction of some re-
laxed variables, sufficient conditions for the unknown input observer design are for-
mulated as Linear Matrix Inequalities (LMIs).

The following theorem provides the conditions for the asymptotic stability of the
estimation error in (IV.37).

Theorem. IV. 4 (El Youssfi et al., 2020b) Under assumptions 3-4 and for a given positive
constant ak, the observer (IV.36) tends asymptotically to the augmented system (IV.33) if there
exist positive symmetric matrices Pj and matrices Ni, Gi, Li, H, such that the following con-
ditions are satisfied for i, j = 1, . . . , 4 and i < j.

M = I + HC̄ (IV.84)

MĀi − LiC̄− Ni M = 0 (IV.85)

Gi = MB̄i (IV.86)

MĒ = 0 (IV.87)
4

∑
k=1

akPk + NT
i Pi + PiNi < Λii (IV.88)

2
4

∑
k=1

akPk + NT
i Pj + PjNi + NT

j Pi + PiNj ≤ Λij + ΛT
ij (IV.89)

Λ11 Λ12 Λ13 Λ14

∗ Λ22 Λ23 Λ24

∗ ∗ Λ33 Λ34

∗ ∗ ∗ Λ44

 < 0 (IV.90)

Proof. IV. 4 Following the same steps of proof 2 and applying Lemma 4 on (IV.55), we obtain

V̇(t) ≤
4

∑
i=1

h2
i (α f , αr)eT

x (t)

{
4

∑
k=1

akPk + NT
i Pi + PiNi

}
ex(t)

+
4

∑
i=1

4

∑
j>i

hi(α f , αr)hj(α f , αr)eT
x (t)

{
2

4

∑
k=1

akPk + NT
i Pj + PjNi + NT

j Pi + PiNj

}
ex(t)

(IV.91)
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If conditions in (IV.88), (IV.89) and (IV.90) are satisfied, this means that V̇(t) < 0 and this
completes the proof.

The result in Theorem. IV.4 provides an improved extension of the work presented
in (Vu and Do, 2018). The results of our study are less conservative, thanks to the
relaxation matrices involved via Lemma 4. Moreover, if we put Λij = 0, we obtain the
same conditions as (Vu and Do, 2018). Thus, the proposed theorem is a general case.

As with Theorem. IV.2, in Theorem. IV.4 it is difficult to find the matrices Ni and Pj

with the given coefficient ak to verify the conditions (IV.88)-(IV.90). However, to over-
come this challenge, the following theorem illustrates the procedure for transforming
(IV.88)-(IV.90) into linear matrix inequalities that the Matlab LMI Toolbox will easily
solve.

Theorem. IV. 5 (El Youssfi et al., 2020b) For a given positive scalar ak, the states and faults
of the system (IV.33) are estimated asymptotically with the observer (IV.36) if there exist the
matrices Ni, Gi, Li, H, R, Ȳ, Q̄i and positive symmetric matrix Pi such that the following
linear matrix inequalities hold for i, j = 1, . . . , 4 and i < j.[

∆ii Pi − Z + Γi

∗ −Z− ZT

]
< 0 (IV.92)

∆ij + ∆ji Pj − Z + Γi Pi − Z + Γj −Z1

∗ −Z− ZT −Z −Z2

∗ ∗ −Z− ZT −Z1 − ZT

∗ ∗ ∗ −Z2 − ZT
2

 ≤ 0 (IV.93)


Λ11 Λ12 Λ13 Λ14

∗ Λ22 Λ23 Λ24

∗ ∗ Λ33 Λ34

∗ ∗ ∗ Λ44

 < 0 (IV.94)

where

∆ij =
m

∑
k=1

akPk −Λij + ZR̄i + R̄T
j ZT + ȲS̄i + S̄T

j ȲT − C̄TQ̄T
i − Q̄jC̄ (IV.95)

Γi = R̄T
i ZT + S̄T

i ȲT − C̄TQ̄T
i (IV.96)

R̄i = (I + ΨC̄)Āi (IV.97)

S̄i = ΦC̄Āi (IV.98)

Ψ = −Ē(C̄Ē)+ (IV.99)

Φ = I − (C̄Ē)(C̄Ē)+ (IV.100)

(C̄Ē)+ = ((C̄Ē)T(C̄Ē))−1(C̄Ē)T (IV.101)
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The existence of Z, Ȳ, and Q̄i satisfies the correctness of the following equations

Y = Z−1Ȳ (IV.102)

Qi = Z−1Q̄i (IV.103)

Furthermore, the linearity of our matrix inequality formulation is guaranteed and the observer
gains are obtained as follows:

H = Ψ + YΦ (IV.104)

M = I + HC̄ (IV.105)

Ni = MĀi −QiC̄ (IV.106)

Gi = MB̄i (IV.107)

Li = Qi(I + C̄H)−MĀi H (IV.108)

Proof. IV. 5 Following the same procedure as the proof 3 up to equation (IV.75).
If conditions (IV.88) in Theorem. IV.II.52 are hold. By applying Lemma 5, we obtain di-

rectly the following 4
∑

k=1
akPk −Λii + NT

i ZT + ZNi Pi − Z + NT
i ZT

∗ −Z− ZT

 < 0 (IV.109)

By replacing Ni by its expression (IV.75), conditions (IV.92) are obtained.
The conditions (IV.93) are obtained by using Lemma 5 twice. In the first step, we define

variables indicated in Lemma 5 as follows

Θijk = 2
4

∑
k=1

akPk + NT
j Pi + PiNj −Λij −ΛT

ij (IV.110)

if conditions (IV.89) hold, that means is equivalent to the following conditions[
Θijk + NT

i ZT + ZNi Pj − Z + NT
i ZT

∗ −Z− ZT

]
< 0 (IV.111)

In the second step, the condition (IV.111) can be written as follows

Θ̃ijk + ÑT
j P̃i + P̃iÑj < 0 (IV.112)

where

Θ̃ijk =

2
4
∑

k=1
akPk −Λij −ΛT

ij + NT
i ZT + ZNi Pj − Z + NT

i ZT

∗ −Z− ZT


Ñj =

[
Nj 0
0 0

]
, P̃i =

[
Pi 0
0 0

]
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Applying the Lemma 5, we obtain the following conditions[
Θ̃ijk + ÑT

j Z̃T + Z̃Ñj P̃i − Z̃ + ÑT
j Z̃T

∗ −Z̃− Z̃T

]
< 0 (IV.113)

where

Z̃ =

[
Z Z1

Z Z2

]
Replacing Ni by its expression (IV.75) and taking into account the Ȳ = ZY and Q̄i = ZQi,
give the linear matrix inequalities (IV.92)-(IV.94). This complete the proof.

Remark. IV. 10 The bounds on the time derivative of the membership functions must be cho-
sen in advance. The main drawback of this method is that it is not obvious how to choose these
bounds in a systematic way other than by using trial and error methods (Jadbabaie, 1999). So,
the choice of ak is made arbitrarily so that the conditions of previous theorems are feasible and
take into account the quality of simulation results.

Remark. IV. 11 Compared with some works in the literature (Zhang et al., 2018; Gómez-
Peñate et al., 2019; Martínez-García et al., 2020), which just focus on sensor faults or actuator
faults, we have concentrated in this study on the problem of estimating actuator and sensor
faults together.

IV.3.6 Numerical illustration and simulation results

In order to demonstrate the effectiveness of the proposed observer in estimating the
sensor/actuator faults and states of the lateral dynamics system without consideration
of roll motion, some simulations have been performed using Matlab software. For
that, the same vehicle system employed in sub-section IV.2.4 is used here.

Assuming that the fault f (t) affecting the actuator and the outputs of the system
is of the following form:

f (t) =


0, 46t− 2 0 ≤ t < 5

1 5 ≤ t < 10

sin(3t) t ≥ 10

(IV.114)

The numerical values of the faulty uncertain system matrices of the automotive vehicle
lateral dynamics (IV.31) are as follows: The numerical values of the matrices appearing
in the faulty uncertain system of the automotive vehicle lateral dynamics (IV.31) are
as follows (for Ai and B f i are the same as the previous section):

C =

[
1 0
0 1

]
, F21 = F22 = F23 = F24 =

[
0.5
0.5

]
, E =

[
0.1
0.1

]
, F2 =

[
0

0.5

]
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FIGURE IV.6: Time evolution of fault and its estimates (left) Estimation
errors (right)

Solving the LMIs of previous theorems, using the LMI toolbox of Matlab (Gahinet
et al., 1994; Erkus and Lee, 2004), we recover the following observer gains displayed
in Tab. IV.1 by selecting a1 = 2, 5, a2 = 0, 4, a3 = 1, 5 and a4 = 0, 3.

The automotive vehicle lateral dynamics system was simulated by choosing the
following initial conditions:

x(0) =
[
0 0

]T
, ẑ(0) =

[
−0, 8 0, 8 0

]T

Figure IV.6 shows in its left part the fault scenario f (t) and its estimations, using dif-
ferent methods, and in its right part the evolution of the estimation errors.

The automotive vehicle lateral dynamics system was simulated by including the
fault shown in red in Fig. IV.6. It is clear that the estimation by the observer’s gains
obtained by Theorem. IV.5 converges very quickly to the fault, just after its appear-
ance, against the result obtained by Theorem. IV.3 which itself presents some rapidity
compared to Theorem 2 of (Vu and Do, 2018). This can be seen in the estimation er-
rors’ evolution (dotted green converges rapidly to zero compared to dotted blue and
subsequently to solid red).

The left-hand sides of figures IV.7 and IV.8 show respectively the side-slip angle
β(t) and yaw rate ψ̇(t) with their estimates, by different approaches, under influence
of sensor/actuator faults f (t) and their right-hand sides show the evolution of the
estimation errors.

The two figures IV.7 and IV.8 clearly show a relaxed estimation of the states de-
spite uncertainties and faults. It is noticeable that the gains obtained by Theorem. IV.5
present the quickness and efficiency compared to Theorem. IV.3 which itself represents
certain swiftness compared to the gains obtained by Theorem 2 of (Vu and Do, 2018),
when estimating the states of the vehicle lateral dynamics system. This is clearly vis-
ible in the evolution of the estimation errors (dotted green converges rapidly to zero
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TABLE IV.1: Gains obtained by different theorems

Gains Theorem. IV.3 Theorem. IV.5

N1

−4, 7452 0, 0001 0, 0000
−0, 0001 −7, 2483 5, 0060
0, 0000 5, 0060 −14, 7573

 −32, 8643 −1, 5653 −0, 7827
36, 0558 −24, 4520 −6, 1569
−71, 4496 22, 2424 −1, 0171


N2

−4, 7452 0, 0001 0, 0000
−0, 0003 −5, 6193 1, 7482
0, 0003 1, 7482 −8, 2417

 −32, 8643 −1, 5653 −0, 7827
−47, 3571 −14, 9468 −6, 1569
95, 3763 3, 2319 −1, 0171


N3

−4, 7452 0, 0001 0, 0000
−0, 0001 −6, 0539 2, 6173
0, 0000 2, 6173 −9, 9798

  −32, 8643 −1, 5653 −0, 7827
85, 4924 −19, 6536 −6, 1569
−170, 3228 12, 6456 −1, 0171


N4

−4, 7452 0, 0001 0, 0000
−0, 0001 −4, 4250 −0, 6406
−0, 0000 −0, 6406 −3, 4641

 −32, 8643 −1, 5653 −0, 7827
2, 0795 −10, 1484 −6, 1569
−3, 4969 −6, 3648 −1, 0171


L1

 0, 0000 −0, 0000
7, 7267 0, 9864
−15, 4534 −1, 9729

  0, 0000 −0, 0000
3, 6359 −1, 6491
−7, 2717 3, 2981


L2

 0, 0000 −0, 0000
−63, 6351 0, 9864
127, 2701 −1, 9729

  0, 0000 −0, 0000
−54, 5971 −1, 6491
109, 1942 3, 2981


L3

 0, 0000 −0, 0000
69, 3351 0, 9864
−138, 6703 −1, 9729

  0, 0000 −0, 0000
65, 7837 −1, 6491
−131, 5675 3, 2981


L4

−0, 0000 −0, 0000
−2, 0266 0, 9864
4, 0533 −1, 9729

  0, 0000 −0, 0000
7, 5508 −1, 6491
−15, 1015 3, 2981


H

−1, 0000 0
−0, 0136 0
0, 0271 −2, 0000

 −1, 0000 0
−2, 6491 0
5, 2981 −2, 0000


G1

[
−0, 0000 72, 8871 −145, 7741

]T [
−0, 0000 58, 5640 −117, 1280

]T

G2
[
−0, 0000 72, 8871 −145, 7741

]T [
−0, 0000 58, 5640 −117, 1280

]T

G3
[
−0, 0000 11, 3597 −22, 7193

]T [
−0, 0000 9, 1274 −18, 2547

]T

G4
[
−0, 0000 11, 3597 −22, 7193

]T [
−0, 0000 9, 1274 −18, 2547

]T
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FIGURE IV.7: Time evolution of side-slip angle and its estimates (left)
Estimation errors (right)
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FIGURE IV.8: Time evolution of yaw rate and its estimates (left) Estima-
tion errors (right)

compared to dotted blue and subsequently to solid red).
As mentioned in Remark. IV.11, some works in the literature focus either on actua-

tor or sensor faults and not both simultaneously. So in this study, both types of faults
are investigated. However, this study’s limitations are reflected in the fact that an
identical fault affects the actuator and the sensors at the same time, which is unusual
in real systems, including the automotive vehicle lateral dynamics system.

IV.4 Conclusion

In this chapter, we have addressed the problem of fault and state estimation for an
automotive vehicle lateral dynamics represented by T-S fuzzy model. In the first
part of this chapter, an observer was designed, using descriptor approach, to esti-
mate the fault/state for vehicle system affected by both actuator faults and various
disturbances. In the second part, an observer with unknown inputs was proposed to
estimate the fault/state of an uncertain system of vehicle affected by sensor/actuator
faults. In general, convergence of the estimation error to zero is studied with the Lya-
punov approach, which is reformulated as an LMIs problem. The simulations on the
lateral dynamics system of an automotive vehicle were performed and the results ob-
tained highlight the effectiveness of the proposed approaches for fault/state estima-
tion.

In the next chapter, based on observers’ information, robust control laws against
faults are designed to overcome the performance deterioration caused by these faults.
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Chapter V

Fault-tolerant control for
automotive vehicle lateral dynamics

V.1 Introduction

Nowadays, the concern to improve passenger safety has led to increasingly efficient
automotive vehicle control systems (ESP, ABS, TCS, ACC, etc.). Conventional con-
trol in the current automotive vehicle can hardly achieve all the objectives in case of
disturbances or faults that can degrade its behaviour or even destabilise it. For this
reason, the introduction of robustness against disturbances and the consideration of
the possible occurrence of faults in the control laws used for automotive vehicle dy-
namics control systems has become indispensable. These types of controls are known
as Fault-Tolerant Controls (FTCs) (Rodrigues, 2005; Oudghiri, 2008; Bezzaoucha, 2013;
Zhang, 2017). As discussed in the first chapter, this type of control can be classified
into passive or active approaches. Passive approaches use robust control techniques
to ensure that the closed-loop system remains insensitive to some faults with constant
controllers and without online fault information on the system. They are designed to
keep the system reliable in terms of its stability and performance in the nominal and
predefined fault cases (Kanev, 2004; Noura et al., 2009; Picó and Adam, 2015; Stetter
et al., 2020). Active approaches differ from passive methods by using fault detection
and diagnosis unit and an online synthesis of the controller (Amin and Hasan, 2019).
Several works have been published concerning the robust control of automotive ve-
hicle dynamics represented by the T-S fuzzy model. Among them, we cite these ref-
erences and those that contain (Aouaouda et al., 2014b; Oudghiri et al., 2014; Ichalal
et al., 2016; El Youssfi et al., 2019a; El Youssfi and El Bachtiri, 2020).

As discussed in the introduction of the previous chapter, driver assistance systems
depend on the service provided by the electronic systems for various vehicle activities
in critical driving situations. If the vehicle deviates in an undesirable direction, the
computer makes immediate decisions to respond with corrective actions to ensure the
stability of the automotive vehicle. The synthesis of controllers inspired by control
techniques found in the literature has been actively considered in recent years, and
many studies have been published in this area (Wang and Longoria, 2009; Rajamani,
2011; El Youssfi et al., 2017, 2021a). The states of the automotive vehicle system are not
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always fully measurable. Therefore, it is necessary to design a controller using other
methods. Note that the most appropriate control is based on static output feedback
because, at a lower cost, it can be easily implemented. Besides, stabilisation through
static output feedback control of vehicle dynamics systems is rarely studied, although,
in practice, it is important and useful (Jing et al., 2016; El Youssfi et al., 2020a). How-
ever, this type of control remains passive and is sensitive to various faults.

On the other hand, the dependence of the driver assistance system control on ac-
tuator and sensor components is becoming increasingly complex. The automotive
vehicle dynamics system can typically be exposed to the actuator and/or the sensor
faults. It is well known that conventional control strategies are unable to adjust when
these faults occur. So, fault-tolerant control laws must be designed to ensure the rigor-
ous stability of the system, even in case of faults. Several works concerning this type
of control have been published in the literature, including (Oudghiri, 2008; Aouaouda
et al., 2013; Hernandez-Alcantara et al., 2018).

In this chapter, our objective is to design fault-tolerant relaxant control laws to
ensure the stability of the automotive vehicle lateral dynamics, limit the effect of faults
either at the actuator or sensor side and compensate for the impact of disturbances.
The stability of the T-S fuzzy model is studied using the Lyapunov function. The
appropriate conditions for controller and observer design are given as Linear Matrix
Inequalities (LMIs) that can be solved easily by specific tools (Matlab LMI toolbox or
YALMIP) (Gahinet and Apkarian, 1994; Lofberg, 2004). The model of the automotive
vehicle used in this chapter is the so-called "bicycle" model with an additional degree
of freedom corresponding to roll motion.

V.2 H∞ static output-feedback control for automotive vehicle
lateral dynamics

In this section, a H∞ static output-feedback control law robust against external dis-
turbances is proposed to improve the automotive vehicle’s lateral stability and drive
performance and avoid skidding in critical conditions.

V.2.1 Issue description and static output-feedback control design

Let us consider the T-S fuzzy model of automotive vehicle lateral dynamics, including
roll motion, described in Chapter III, as affected by external disturbances. Thus, the
T-S fuzzy system (III.48) becomes:

ẋ(t) =
4
∑

i=1
hi(α f , αr)

[
Aix(t) + B f iu(t) + Eid(t)

]
y(t) =

4
∑

i=1
hi(α f , αr)

[
Cyix(t) + Fid(t)

]
z(t) =

4
∑

i=1
hi(α f , αr) [Czix(t) + Diu(t)]

(V.1)
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where x(t) and y(t) are state and measured output of the system, respectively. In ve-
hicle lateral motion control, it is not only the handling but also the vehicle stability
should be addressed. Thus, controlled output z(t) is considered. d(t) is external dis-
turbances. u(t) is an assistant steering angle added to the driver’s steering angle. Ai,
B f i, Ei, Fi, Di, Cyi and Czi are constant matrices with compatible dimensions.

The vehicle side-slip angle and roll angle are generally difficult to measure with
inexpensive sensors. In this section, the vehicle yaw rate ψ̇, roll rate φ̇ and lateral
acceleration ay are taken as measured outputs.

Let us consider the following control law expression based on static output-feedback:

u(t) = −
4

∑
i=1

hi(α f , αr)Giy(t) (V.2)

where Gi are the control gains.
By replacing (V.2) in (V.1), the perturbed system of automotive vehicle lateral dy-

namics can be rewritten as follows:
ẋ(t) =

4
∑

i=1

4
∑

j=1

4
∑

k=1
hihjhk[Āijkx(t) + B̄ijkd(t)]

z(t) =
4
∑

i=1

4
∑

j=1

4
∑

k=1
hihjhk[C̄ijkx(t) + D̄ijkd(t)]

(V.3)

where

Āijk = Ai − B f iGjCyk, B̄ijk = Ei − B f iGjFk,

C̄ijk = Czi − DiGjCyk, D̄ijl = −DiGjFk

hi = hi(α f , αr), hj = hj(α f , αr), hk = hk(α f , αr)

To simplify equations in the remainder of this section, these simplifications are con-
sidered:

Ā =
4

∑
i=1

4

∑
j=1

4

∑
k=1

hihjhk Āijk, B̄ =
4

∑
i=1

4

∑
j=1

4

∑
k=1

hihjhkB̄ijk,

C̄ =
4

∑
i=1

4

∑
j=1

4

∑
k=1

hihjhkC̄ijk, D̄ =
4

∑
i=1

4

∑
j=1

4

∑
k=1

hihjhkD̄ijk

(V.4)

V.2.2 Main results

In this subsection, sufficient stability conditions for the closed-loop system and the
design of H∞ static output-feedback control are given.

Theorem. V. 1 (Chaibi et al., 2019) Consider a scalar γ > 0, the closed-loop T-S fuzzy system
(V.3) is asymptotically stable and satisfies the H∞ performances if there exist symmetric matrix
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P > 0, and matrices U and V, such that the following LMI is satisfied.

Λ =


−U −UT Λ12 UB̄ 0
∗ Λ22 VB̄ C̄T

∗ ∗ −γ2 I D̄T

∗ ∗ ∗ −I

 < 0, with

Λ12 = P + UĀ−VT

Λ22 = VĀ + ĀTVT
(V.5)

Proof. V. 1 Let us consider the following matrix:

Σ =

0 P 0
P C̄TC̄ C̄TD̄
0 D̄TC̄ −γ2 I + D̄TD̄

 (V.6)

By using the Schur complement, (V.5) is equivalent to the following:

Σ + sym(XTYZ) < 0 (V.7)

where
X = I, Y =

[
UT VT 0

]T
, Z =

[
−I Ā B̄

]
Selecting Z⊥ =

Ā B̄
I 0
0 I

 and applying Lemma 10. Through some manipulations, we obtain:

[
Ā B̄
I 0

]T [
0 P
P 0

] [
Ā B̄
I 0

]
+

[
C̄TC̄ C̄TD̄
D̄TC̄ D̄TD̄− γ2 I

]
< 0 (V.8)

which is similar to [
PĀ + ĀTP PB̄

B̄TP 0

]
+

[
C̄TC̄ C̄TD̄
D̄TC̄ D̄TD̄− γ2 I

]
< 0 (V.9)

Let us consider the following Lyapunov function

V(x(t)) = xT(t)Px(t) (V.10)

Its derivative can be written as follows:

V̇(x(t)) = ẋT(t)Px(t) + xT(t)Pẋ(t) (V.11)

If (V.9) holds, it can be easily checked that

V̇(x(t)) + zT(t)z(t)− γ2dT(t)d(t) < 0 (V.12)

Integration of inequality (V.12) on both sides from 0 to ∞ gives∫ ∞

0

[
V̇(x(t)) + zT(t)z(t)− γ2dT(t)d(t)

]
dt = V(x(∞))−V(x(0)) +

∫ ∞

0

[
zT(t)z(t)− γ2dT(t)d(t)

]
dt < 0

(V.13)
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Thus, under a zero initial condition, we have∫ ∞

0
zT(t)z(t)dt < γ2

∫ ∞

0
dT(t)d(t)dt (V.14)

The proof is completed.

In the following theorem, new LMI conditions are presented to guarantee the asymp-
totic stability of the closed-loop T-S fuzzy system (V.3) with the H∞ static output-
feedback control.

Theorem. V. 2 (El Youssfi et al., 2020a) Consider a scalar γ > 0, the closed-loop fuzzy system
(V.3) is asymptotically stable and satisfies the H∞ performances, if for known scalar parameter
α there exist symmetrical positive matrices P and R and other matrices U, V, W, M, and Ni,
such that the following LMIs hold.[

Ξiii ∆iii

∗ Ω

]
< 0, i = 1, . . . , 4 (V.15)


Ξiij + Ξiji + Ξjii ∆iij ∆iji ∆jii

∗ Ω 0 0
∗ ∗ Ω 0
∗ ∗ ∗ Ω

 < 0, i, j = 1, 2, . . . , 4, i 6= j (V.16)



Ξijk + Ξikj + Ξjik + Ξjki + Ξkij + Ξkji ∆ijk ∆ikj ∆jik ∆jki ∆kij ∆kji

∗ Ω 0 0 0 0 0
∗ ∗ Ω 0 0 0 0
∗ ∗ ∗ Ω 0 0 0
∗ ∗ ∗ ∗ Ω 0 0
∗ ∗ ∗ ∗ ∗ Ω 0
∗ ∗ ∗ ∗ ∗ ∗ Ω


< 0 (V.17)

i = 1, 2, j = 2, 3, k = 3, 4

where

Ξijk =


−U −UT P + UAi −VT + B f i NjCyk UEi + B f i NjFk 0
∗ sym{VAi + B f i NjCyk} VEi + B f i NjFk CT

ziW
T + CT

yk NT
j DT

i

∗ ∗ −γ2 I FT
k NT

j DT
i

∗ ∗ ∗ I −W −WT



∆ijk =


0 UB f i − B f i M

CT
yk NT

j VB f i − B f i M

FT
k NT

j 0

0 WDi − Di M

 , Ω =

[
−R 0

0 α2R− αM− αMT

]

Furthermore, the static output-feedback control gain matrices are given by

Gi = M−1Ni, i = 1, 2, . . . , 4 (V.18)

Proof. V. 2 . Assume that the inequality (V.15) holds, that means that I −W −WT < 0 and
α2R− αM− αMT < 0 (with α2R > 0), which guarantees the non singularity of the matrices
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M and W. From (V.15)-(V.17), we have

4

∑
i=1

4

∑
j=1

4

∑
k=1

hihjhkΨijk < 0 (V.19)

where

Ψijl =

[
Ξijl θijl

∗ Γ

]
(V.20)

From Lemma 12 and the exploitation of the Schur complement, the inequality (V.19) ensures
that

Ψ̄ijk = Ξijk +


0

CT
yk NT

j

FT
k NT

j

0

 R−1


0

CT
yk NT

j

FT
k NT

j

0


T

+


UB f i − B f i M
VB f i − B f i M

0
WDi − Di M

 (MT R−1 M)−1


UB f i − B f i M
VB f i − B f i M

0
WDi − Di M


T

< 0 (V.21)

By using Lemma 11 and defining Nj = MGj, we can check that (V.21) is equivalent to

Ψ̄ijk = Ξijk +


UB f i − B f i M
VB f i − B f i M

0
WDi − Di M




0
CT

ykGT
j

FT
k GT

j

0


T

+


0

CT
ykGT

j

FT
k GT

j

0




UB f i − B f i M
VB f i − B f i M

0
WDi − Di M


T

< 0 (V.22)

By replacing Ξijk by its expression, we obtain the following inequality:

¯̄Ψijk =


−U −UT P + UAi −VT + UB f iGjCyk UEi + UB f iGjFk 0
∗ sym{VAi + VB f iGjCyk} VEi + VB f iGjFk CT

ziW
T + CT

ykGT
j DT

i WT

∗ ∗ −γ2 I FT
k GT

j DT
i WT

∗ ∗ ∗ I −W −WT

 < 0

(V.23)

In view of the fact that −(V − X)X−1(V − X)T ≤ 0, X > 0 implies −VX−1VT ≤ −V −
VT + X.

Pre-post multiplying both sides of (V.23) by diag{I, I, I, W−1} and its transpose, and
replacing Ā, B̄, C̄ and D̄ by their expressions in (V.4), we get the inequality in (V.5). This
completes the proof.

V.2.3 Numerical illustration and simulation results

A test illustrating a critical driving situation is performed under MATLAB software to
show the efficiency of the H∞ static output-feedback control for perturbed automotive
vehicle lateral dynamics system (III.46) represented by T-S fuzzy model (V.1). The
parameters of the vehicle are shown in Tab. V.1 (Rahimi and Naraghi, 2018).

TABLE V.1: Parameters for vehicle simulation

Parameter mv ms vx Ix Iz lr l f h Cφ Kφ

Value 1712 1592 25 614 2488 1, 77 1, 18 1, 00 6000 48000
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By solving LMIs (V.15)-(V.17), we obtain for α = 1 the lower bound of the H∞ level
γmin = 0, 0801 and the following controller gains:

G1 =
[
−0, 0076 −0, 5990 −0, 1254

]
, G2 =

[
−0, 0079 −0, 6767 −0, 1253

]
G3 =

[
−0, 0088 −0, 5064 −0, 1536

]
, G4 =

[
−0, 0091 −0, 5885 −0, 1510

]
The simulations are carried out with the front steering angle profile given in Fig. V.1.

In this scenario, a critical driving situation is induced at time t = 10s to test the pro-
posed control law.
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FIGURE V.1: Front wheel steering angle δ f (t) [rad]

By applying the front wheel steering angle shown in Fig. V.1 and the control law
(V.2) to the system (V.1), we obtain the system responses shown in Fig. V.2. Figure
V.3 shows the performance of the proposed algorithm to eliminate disturbances. We
choose d(t) = 0.5 sin(2πt) in these simulations.

It can be seen from Fig. V.2 that the proposed control law is able to maintain and
improve the stability and safety of the automotive vehicle under difficult driving con-
ditions. It can also be noted that the external disturbances have been successfully
rejected.

From Fig. V.3, it can be seen that the attenuation disturbance performances are
satisfactory, and the H∞ requirement on (V.14) is achieved.

The results presented in this section belong to the so-called passive fault-tolerant
control techniques where their fault tolerance capability is limited to low amplitude
faults. While in the following sections, active fault-tolerant control strategies are pre-
sented.

V.3 Sensor fault-tolerant control for automotive vehicle lateral
dynamics

This section deals with the sensor fault-tolerant control approach for the T-S fuzzy
system of automotive vehicle lateral dynamics with roll motion consideration (repre-
sented in Section III.5). This technique is based on a bank of Luenberger observers to
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FIGURE V.2: System responses without (black dotted) and with (red)
control
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FIGURE V.3: Disturbance attenuation performance with H∞ control

switch between them, which allows to detect the fault and adapt the control law to
minimise the impact of the faults while keeping the vehicle stability and the nominal
performances.

V.3.1 H∞ observer-based control

Consider the perturbed T-S fuzzy model of the lateral dynamics of the automotive
vehicle, including roll motion, described in (V.1), with matrices Fi(i = 1, . . . , 4) and
Di(i = 1, . . . , 4) being zero. An observer-based control law is considered that shares
the same membership functions as (V.1):

u(t) = −
4

∑
i=1

hi(α f , αr)Ki x̂(t) (V.24)
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where x̂(t) is the estimated state and Ki are the controller gains to be determined.
Let us take the following T-S fuzzy observer:

˙̂x(t) =
4
∑

i=1
hi(α f , αr)

[
Ai x̂(t) + B f iu(t) + Li(y(t)− ŷ(t))

]
ŷ(t) =

4
∑

i=1
hi(α f , αr)Cyi x̂(t)

(V.25)

where ŷ(t) is the estimated output and Li are the observer gains to be determined.
As a result, the closed loop of T-S fuzzy system (V.1) becomes as follows:

ẋ(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)
[
(Ai − B f iKj)x(t) + B f iKje(t) + Eid(t)

]
(V.26)

where e(t) = x(t)− x̂(t) is the estimation error.
The time derivative of the estimation error can be written as follows:

ė(t) =
4

∑
i=1

4

∑
j=1

hj(α f , αr)hi(α f , αr)
[
(Ai − LiCyj)e(t) + Eid(t)

]
(V.27)

From (V.26)-(V.27), we can write:

ẋa(t) =
4

∑
i=1

4

∑
j=1

hj(α f , αr)hi(α f , αr)
[
Āijxa(t) + Ēi(t)d(t)

]
(V.28)

where:

xa(t) =

[
x(t)
e(t)

]
, Āij =

[
Ai − B f iKj B f iKj

0 Ai − LiCyj

]
, Ēi =

[
Ei

Ei

]

The asymptotic stability of the T-S fuzzy augmented system (V.28) is outlined in the
following theorem.

Theorem. V. 3 (Lin et al., 2005) The asymptotic stability of the T-S fuzzy augmented system
(V.28) with H∞ performance is guaranteed for γ attenuation via the control law (V.24), if there
exist matrices P = PT > 0, Q = QT > 0, Xi, Yi, Γij and Λij with Γii and Λii are symmetrical,
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such that the following LMIs are verified for i = 1, . . . , 4 and i < j:

PAT
i + AiP + XT

i BT
f i + B f iXi + γ−2EiET

i − Γii < 0 (V.29)

AT
i Q + QAi + CT

yiY
T
i + YiCyi −Λii < 0 (V.30)

P(Ai + Aj)
T + (Ai + Aj)P + XT

i BT
f j + B f jXi + XT

j BT
f i + B f iXj + γ−2(EiET

j + EjET
i )

− Γij − ΓT
ij ≤ 0 (V.31)

(Ai + Aj)
TQ + Q(Ai + Aj) + CT

yiY
T
j + YiCyj + CT

yjYi + YjCyi −Λij −ΛT
ij ≤ 0 (V.32)

Γ11 Γ12 Γ13 Γ14 PCT
zi

∗ Γ22 Γ23 Γ24 PCT
zi

∗ ∗ Γ33 Γ34 PCT
zi

∗ ∗ ∗ Γ44 PCT
zi

∗ ∗ ∗ ∗ −I

 < 0 (V.33)


Λ11 Λ12 Λ13 Λ14

∗ Λ22 Λ23 Λ24

∗ ∗ Λ33 Λ34

∗ ∗ ∗ Λ44

 < 0 (V.34)

The controller and observer gains are determined by:

Ki = XiP−1 (V.35)

Li = Q−1Yi (V.36)

Proof. V. 3 The demonstration can be found in (Lin et al., 2005).

V.3.2 Fault-tolerant control strategy

The detection and isolation of faults are important before they have a significant im-
pact on vehicle performances. In this subsection, a fault-tolerant control model for the
automotive vehicle lateral dynamics system is presented, based on the detection and
isolation block to sequester the healthy sensors from the faulty ones.

This method uses three observers as shown in Fig. V.4, each of them linked to the
output of one sensor. The purpose of the "Decision & switching" block is to analyse
the residual signals to detect faults and identify the faulty sensors. Then, using the
switching system, the state variables are reconstructed from the output of a healthy
sensor. The system output vector includes lateral acceleration, yaw rate and roll rate
sensors. Then three observer-based controllers can be conceived.

Let Cn
yi(n = 1, 2, 3) be the nth row of the matrix Cyi. Under the observability as-

sumption of each pair (Ai, Cn
yi), the state can be estimated via first, second or third

output. Sensor faults are modelled as additive signals to the output:

y(t) = Cyix(t) + F f (t) (V.37)

where f (t) represents the faults and the matrix F represents the fault location (e.g.
F =

(
1 0 0

)T
if only the first sensor is faulty).
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FIGURE V.4: Block diagram of sensor fault-tolerant control

The control law becomes as follows:

u(t) = −
4

∑
i=1

hi(α f , αr)Ki x̂n(t) (V.38)

with x̂n(t) is the estimated state via a healthy sensor and has the following form:
˙̂xn(t) =

4
∑

i=1
hi(α f , αr)

[
Ai x̂n(t) + B f iu(t) + Ln

i (y
n(t)− ŷn(t))

]
ŷn(t) =

4
∑

i=1
hi(α f , αr)Cn

yi x̂(t)
(V.39)

V.3.3 Numerical illustration and simulation results

As a demonstration of the efficiency of the fault-tolerant control based on the observer
bank, some simulations have been performed using the lateral dynamics model of the
automotive vehicle with roll motion consideration and MATLAB software. For that,
the same vehicle system employed in sub-section V.2.3 is used here.

By solving stability conditions (V.29)-(V.34) using the LMI Toolbox (Gahinet et al.,
1994; Erkus and Lee, 2004), we obtain the lower bound of the H∞ level γmin = 0, 217
and the following gains:

K1 =
[
2, 1535 09053 −0, 9338 0, 1111

]
, K2 =

[
1, 9532 0, 7878 −0, 7801 0, 0988

]
K3 =

[
2, 4498 1, 1420 −1, 1955 0, 1405

]
, K4 =

[
2, 1993 0, 9942 −1, 0026 0, 1250

]

L1
1 =


−0, 0513
0, 0287
−0, 0534
−0, 1434

 , L1
2 =


−0, 0488
0, 0312
−0, 0303
−0, 0684

, L1
3 =


−0, 0479
0, 0295
−0, 0771
−0, 1041

 , L1
4 =


−0, 0450
0, 0323
−0, 0507
−0, 0167





114 Chapter V. Fault-tolerant control for automotive vehicle lateral dynamics

L2
1 =


63, 5756
−18, 9325
15, 8397

131, 9472

 , L2
2 =


70, 4725
−20, 8292
16, 1965

148, 0536

, L2
3 =


42, 7156
−13, 2024
11, 6816
82, 9924

 , L2
4 =


49, 6125
−15, 0992
12, 0384
99, 0988



L3
1 = 103.


0, 5120
−0, 1962
−1, 9744
0, 0094

 , L3
2 = 103.


0, 4635
−0, 1734
−1, 6900
0, 0111

, L3
3 = 103.


0, 4166
−0, 1585
−1, 6412
0, 0087

 , L3
4 = 103.


0, 3682
−0, 1358
−1, 3569
0, 0103


In this study the simulations are done without and with the proposed approach to

show its efficiency. The three sensors are assumed to be under the impact of faults
shown in Fig. V.5. The simulation results for the system states of automotive vehicle
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FIGURE V.5: Signals added to sensor outputs

lateral dynamics with consideration of roll motion are displayed in Fig. V.6 without
using any switch block and in Fig. V.7 with using switching block.

FIGURE V.6: Estimated and measured vehicle response without FTC
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It can be seen in Fig. V.6, that between 10 s and 14, 5 s, the vehicle performance de-
grades to unacceptable values just after only one sensor becomes faulty. Furthermore,
a bad estimation of the states in this range is remarked.

FIGURE V.7: Estimated and measured vehicle response with FTC

It can be seen in Fig. V.7, that when the control law is based on three observers
bank with the switching block, the vehicle system remains stable throughout the sim-
ulation without losing its performance despite the presence of faults on its sensors.
This demonstrates the effectiveness of the fault-tolerant control strategy applied.

Figure V.8 shows the performance of our algorithm in eliminating disturbances. In
these simulations, disturbances are of the following sinusoidal form d(t) = sin(2πt).
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FIGURE V.8: Disturbance attenuation performance with H∞ fault-
tolerant control

From Fig. V.8, it can be seen that the attenuation disturbance performance is satis-
factory and H∞ requirement is reached, so the added disturbances have been success-
fully rejected.
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Remark. V. 1 The approach proposed in this section is an improvement over the one used in
(Oudghiri et al., 2008; El Youssfi et al., 2017, 2018b; Abzi et al., 2020), because authors use
a two-degree-of-freedom vehicle model and assume that two faults cannot appear at the same
time. This assumption is outdated in this study. Moreover, this approach addresses the problem
of fault-tolerant control for lateral acceleration and yaw rate sensors as well as roll rate sensor.

In this section, a sensor fault-tolerant active control technique is proposed for au-
tomotive vehicle lateral dynamics system. As discussed in the first chapter, faults
can also affect the actuators, so the following section is devoted to the actuator fault-
tolerant active control.

V.4 Actuator fault-tolerant control for automotive vehicle lat-
eral dynamics

This section presents fault-tolerant control methods for the automotive vehicle lateral
dynamics system. These approaches focus on actuator faults, which requires knowl-
edge of system parameters and occurring faults. For this reason, observers appropri-
ate for simultaneous estimation of system states and actuator faults are required. This
section breaks down into two sub-sections: the first presents a fault-tolerant control
method based on the tracking error, and the second technique is based on the descrip-
tor approach.

V.4.1 Observer and tracking based fault-tolerant control

In this sub-section and after designing a faulty T-S fuzzy model for the automotive
vehicle lateral dynamics system. A fuzzy observer is shaped to estimate system states
and actuator faults. Subsequently, a fault-tolerant control law is developed based on
the information provided by this observer.

a. Faulty system description and observer design

Let us consider the following faulty system of automotive vehicle lateral dynamics:
ẋ f (t) =

4
∑

i=1
hi(α f , αr)

[
Aix f (t) + B f i

(
u

FTC
(t) + f (t)

)]
y f (t) =

4
∑

i=1
hi(α f , αr)Cyix f (t)

(V.40)

where x f (t) and y f (t) are state and output vectors of the faulty system, respectively.
uFTC(t) is control law to be designed later, it is considered to be equivalent to a fault-
tolerant control law added to the front wheel steering angle given by the driver. f (t)
is actuator fault.
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Let us consider the following overall fuzzy observer, which shares the same mem-
bership functions as the T-S fuzzy system (V.40).

˙̂x f (t) =
4
∑

i=1
hi(α f , αr)

[
Ai x̂ f (t) + B f i

(
u

FTC
(t) + f̂ (t)

)
+ Li

(
y f (t)− ŷ f (t)

)]
ŷ f (t) =

4
∑

i=1
hi(α f , αr)C f i x̂ f (t)

˙̂f (t) =
4
∑

i=1
hi(α f , αr)Gi

(
y f (t)− ŷ f (t)

) (V.41)

where x̂ f (t), ŷ f (t) and f̂ (t) are respectively the state vector, output vector and fault
vector estimates. Li and Gi are the observer gains to be determined.

The output error between faulty T-S fuzzy systems (V.40) and T-S fuzzy observer
(V.41) is given as follows

ey(t) = y f (t)− ŷ f (t) (V.42)

=
4

∑
i=1

hi(α f , αr)Cyi(x f (t)− x̂ f (t)) (V.43)

=
4

∑
i=1

hi(α f , αr)Cyiex(t) (V.44)

where ex(t) = x f (t)− x̂ f (t) is the state estimation error. Its dynamics can be written
as follows

ėx(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)
[
(Ai − LiCyj)ex(t) + B f ie f (t)

]
(V.45)

where e f (t) = f (t)− f̂ (t) is the fault estimation error.
Let us consider the tracking error et(t) defined as follows:

et(t) = x(t)− x f (t) (V.46)

where x(t) is the state vector of the faultless system.
The time derivative of the tracking error (V.46) can be written as follows:

ėt(t) =
4

∑
i=1

hi(α f , αr)
[

Aiet(t) + B f i(u(t)− u
FTC

(t))− B f i f (t)
]

(V.47)

b. Observer-based fault-tolerant control design

A fault-tolerant control is suggested to disregard the fault influence and maintain the
stability of the faulty automotive vehicle lateral dynamic system. The proposed con-
trol procedure is outlined in Fig. V.9, (Ichalal et al., 2010).
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FIGURE V.9: Observer-based fault-tolerant control scheme

Let us consider the following control law

u
FTC

(t) = −
4

∑
i=1

hi(α f , αr)Fi
(
x(t)− x̂ f (t)

)
+ u(t)− f̂ (t) (V.48)

where Fi are the control gains.
By replacing the equation (V.48) in (V.47), we get the following:

ėt(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)
[
(Ai + B f iFj)et(t) + B f iFjex(t)− B f ie f (t)

]
(V.49)

Assuming that ḟ (t) = 0, the dynamics of the fault estimation error e f (t) is as follows

ė f (t) = −
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)GiCyjex(t) (V.50)

Let us consider the following augmented system:

˙̄e(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)Āij ē(t) (V.51)

with ē =

et(t)
ex(t)
e f (t)

, and Āij =

Ai + B f iFj B f iFj −B f i

0 Ai − LiCyj B f i

0 −GiCyj 0


The observer-based fault-tolerant control (V.48) stabilizes the faulty system (V.40)

and the observer (V.41) estimates state and fault of the T-S fuzzy system (V.40), if the
conditions of the following theorem are fulfilled.
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Theorem. V. 4 (El Youssfi and El Bachtiri, 2020) The state ē(t) of the augmented system
(V.51) converges asymptotically to zero if there exist positive scalar ρ, symmetrical matrices
P > 0, Q2 > 0, Y > 0, and Υii, as well as other matrices with appropriate dimensions Ui, Vi,
and Υij. such that the following conditions are satisfied for i = 1, 2, 3, 4, and i < j.

∆ii < Υii (V.52)

∆ij + ∆ji ≤ Υij + ΥT
ij (V.53)

Υ11 Υ12 Υ13 Υ14

∗ Υ22 Υ23 Υ24

∗ ∗ Υ33 Υ34

∗ ∗ ∗ Υ44

 < 0 (V.54)

where

∆ij =

AiP + PAT
i + B f iVj + VT

j BT
f i B f iX̄j 0

∗ −2ρY ρI
∗ ∗ Q2Āi + ĀT

i Q2 −UiC̄yj − C̄T
yjU

T
i

 (V.55)

with X̄j =
[
Vj −Z

]
, and Y =

[
P 0
0 Z

]
Observer and control gains are calculated from the following:

Fi = ViP−1, Ēi =

[
Li

Gi

]
= Q−1

2 Ui (V.56)

Proof. V. 4 The gains Li, Gi and Fi are calculated by analysing the system stability outlined
in differential equation (V.51) by using the Lyapunov method with a quadratic function.

Let us select the following quadratic Lyapunov function

V(ē(t)) = ēT(t)Qē(t) (V.57)

where Q is a positive definite matrix divided as follows

Q =

[
Q1 0
0 Q2

]

The time derivative of V(t) = V(ē(t)) can be expressed as follows

V̇(t) =ēT(t)Q ˙̄e(t) + ˙̄eT(t)Qē(t) (V.58)

=
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)ēT(t)
(

QĀij + ĀT
ijQ
)

ē(t) (V.59)
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The predefined matrix Āij can be rewritten as follows:

Āij =

[
Ai + B f iFj B f i F̄j

0 Āi − ĒiC̄yj

]
(V.60)

where

F̄j =
[

Fj −I
]

, Āi =

[
Ai B f i

0 0

]
, C̄yi =

[
Cyi 0

]
, and Ēi =

[
Li

Gi

]

The formula (V.59) is negative if the following conditions are satisfied

V̇(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)Λij < 0 (V.61)

with

Λij =

[
Q1Ai + AT

i Q1 + Q1B f iFj + FT
j BT

f iQ1 Q1B f i F̄j

B f i F̄T
j Q1 Q2Āi + ĀT

i Q2 −Q2ĒiC̄yj − C̄T
yjĒ

T
i Q2

]
(V.62)

using the lemma of congruence, we have

Λij < 0⇐⇒ XΛijXT < 0 (V.63)

with: X =

[
Q−1

1 0
0 Y

]
, Y =

[
Q−1

1 0
0 Z

]
, and Z = ZT > 0

Then, the inequality (V.61) can be rewritten as follows:[
AiQ−1

1 + Q−1
1 AT

i + B f iFjQ−1
1 + Q−1

1 FT
j BT

f i B f i F̄jY

YB f i F̄T
j YSijY

]
< 0 (V.64)

The negativity of (V.64) enforces that
Sij < 0

where Sij = Q2Āi + ĀT
i Q2 −Q2ĒiC̄j − C̄T

j ĒT
i Q2

which can be analysed using the following property

(Y + ρS−1
ij )TSij(Y + ρS−1

ij ) ≤ 0⇐⇒ YSijY ≤ −ρ(Y + YT)− ρ2S−1
ij (V.65)

Accordingly, (V.64) can then be delineated as followsAiQ−1
1 + Q−1

1 AT
i + BiFjQ−1

1 + Q−1
1 FT

j BT
i Bi F̄jY 0

∗ −2ρY ρI
∗ ∗ Q2 Āi + ĀT

i Q2 −Q2ĒiC̄j − C̄T
j ĒT

i Q2

 < 0

(V.66)

Using Lemma 9, and with some manipulations, we can obtain easily (V.52)-(V.54). This
completes the proof.
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Remark. V. 2 Notice that in this study, the resolution of the LMIs of Theorem V.4 and the
computation of the observer and the controller gains are performed in one step.

c. Numerical illustration and simulation results

A numerical test is done by considering the fault-tolerant control law (V.48) to show
the effectiveness of the proposed approach in neglecting actuator fault effects on the
performance of our system. The simulations are performed with the front steering
angle profile given in Fig. V.1, which is in the form of a sequence of right and left turns
between instants 10 s and 15 s representing a severe driving situation.

The resolution of the LMIs of Theorem V.4, using the LMI toolbox (Gahinet et al.,
1994; Erkus and Lee, 2004), and selecting ρ = 0, 612, gives the following gains:

F1 =
[
8, 5603 −0, 5456 −2, 8434 −0, 2578

]
, F2 =

[
16, 8392 −1, 2540 −6, 8566 −0, 6293

]
F3 =

[
30, 8589 −2, 2266 −11, 9023 −1, 0710

]
, F4 =

[
8, 7415 −0, 4866 −2, 9362 −0, 2454

]

L1 =


0, 0429 56, 0255 −6, 0486
0, 0013 1, 1625 −68, 3723
0, 0946 −9, 4038 4, 6495
1, 0117 6, 4926 −8, 6963

 , L2 =


0, 0403 −56, 1168 18, 0389
0, 0007 −18, 2472 −64, 1047
0, 0919 5, 8916 50, 8970
1, 0117 51, 4663 −8, 3851



L3 =


0, 0419 111, 4690 −39, 0730
0, 0012 19, 3850 −61, 2003
0, 0981 −14, 9635 −46, 2076
1, 0117 −44, 8045 −8, 1695

 , L4 =


0, 0375 −0, 6634 −14, 9859
0, 0003 −0, 0201 −56, 9327
0, 0954 0, 4388 0, 0871
1, 0116 0, 1221 −7, 8583


G1 =

[
−0, 0284 84, 2490 96, 1124

]
, G2 =

[
−0, 0294 34, 1801 105, 3823

]
G3 =

[
−0, 0287 50, 7472 −8, 3714

]
, G4 =

[
−0, 0305 0, 6835 0, 8977

]
The simulations in this study are done with the proposed approach to show its effec-

tiveness. The actuator is assumed to be under the fault impact shown in Fig. V.10. The
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FIGURE V.10: Actuator fault and its estimated

time evolution of the actuator fault f (t) and its estimation f̂ (t) is shown in Fig. V.10.
It can be noticed that the estimated fault follows nearly the added fault, which shows
the good efficiency of the proposed observer to estimate the fault.
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The response of the system states simultaneously with its estimates in the pres-
ence of actuator fault and with the application of the mentioned approach is shown in
Fig. V.11.
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FIGURE V.11: Estimated and measured vehicle response with FTC

In Fig. V.11, simulations of the faulty system state in the presence of the proposed
fault-tolerant control show significantly that the vehicle remains stable throughout
the simulation without losing its performance despite the presence of actuator faults,
demonstrating the success of the proposed method.

d. Discussion

In this subsection, a fault-tolerant control scheme is proposed to reform states of the
automotive vehicle lateral dynamics system when it becomes faulty at the actuator
part. The mentioned strategy is based on using a reference model and the information
provided by the T-S fuzzy observer. This control law is developed to reduce the devia-
tion of the faulty system from the reference; it uses steering angle, estimation error and
tracking error. The stability of the whole system is studied in one step with Lyapunov
theory and by solving LMI constraints. The automotive vehicle simulations demon-
strate that the designed fault-tolerant control is very efficient and can be adapted to
specific driving situations.

V.4.2 Observer-based fault-tolerant control using descriptor approach

By considering descriptor system and observer given in Section IV.2 of Chapter IV, this
sub-section addresses the problem of actuator fault-tolerant control design of the per-
turbed automotive vehicle lateral dynamics system (IV.1) using descriptor approach.
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Remark. V. 3 In Chapter IV, the aim is to design control-free observers for the lateral dynam-
ics system of the automotive vehicle. It requires that the system be stable at the beginning, so
a stable two-degree-of-freedom model is considered. However, an additional degree of freedom
corresponding to roll motion will be considered in the present to expand the application range
of the proposed controls.

a. H∞ Fault-tolerant control design

The objective is to develop a control based on the fault and state information recon-
structed by the observer (IV.4) for the augmented system (IV.2).

Let us consider the following control scheme

uFTC(t) = −
4

∑
i=1

hi(α f , αr)Ki x̂(t)− f̂ (t) (V.67)

where Ki represents the controller gain matrices to be determined.
As a result, the closed loop of T-S descriptor system (IV.2) becomes as follows

Eẋ(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)
[

Aix(t)− BiKj x̂(t)− Bi f̂ (t) + Bi f (t) + Did(t)
]

(V.68)
After some simple handling, (V.68) becomes as follows:

Eẋ(t) =
4

∑
i=1

4

∑
j=1

hi(α f , αr)hj(α f , αr)
[
(Ai − BiKj)x(t) + BiKjex(t) + Bie f (t) + Did(t)

]
(V.69)

Let us consider the following definition.

Definition. V. 1 (Lin et al., 2005) Considering real positive scalar γ3 > 0, and defined posi-
tive matrix Q. The H∞ norm of the fuzzy system (IV.2) is defined as follows∫ ∞

0
zT(s)Qz(s)ds ≤ γ2

3

∫ ∞

0
dT(s)Qd(s)ds (V.70)

The observer-based fault-tolerant control (V.67) and observer (IV.4) stabilize and
observe the state of the T-S descriptor system (IV.2), if the following theorem is satis-
fied.

Theorem. V. 5 (El Youssfi et al., 2021c) For positive scalar parameters γp > 0, (∀p =

1, 2, 3), the control law (V.67) and the observer (IV.4) stabilize and observe the T-S descrip-
tor system states (IV.2), if there exist symmetric matrices R > 0, P > 0, Q > 0, and other
matrices U, X, Zi, Yi (∀i = 1, . . . , r), as well as known scalar parameters λq, (∀q = 1, 2, 3),
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such that the following LMIs hold for all i, j = 1, 2, 3, 4 and i < j.[
Ῡii −Θii λ1Γi + Z̄T

i

−λ1U − λ1UT

]
< 0 (V.71)Ῡij + Ῡji −Θij −ΘT

ij λ2Γi + Z̄T
j λ3Γj + Z̄T

i

−λ2U − λ2UT 0
∗ ∗ −λ3U − λ3UT

 ≤ 0 (V.72)


Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗ Θ33 Θ34

∗ ∗ . . . Θ44

 < 0 (V.73)

where

Ῡij =


Ωi 0 RDi 0
∗ Ξi PD1i + XD2i PF1 + XF2

∗ ∗ −γ1 I − γ2
3Q

∗ ∗ ∗ −γ2 I

 , Γi =


−RBi

0
0
0

 , Z̄T
i =


Zi[

ZT
i U

]T

0
0


with

Ωi = RAi + AT
i R + CT

ziQCzi

Ξi = PA1i +AT
1iP + XA2i +AT

2iX
T −YiC̄− C̄TYT

i + CT
f C f

The controller and observer gain matrices can be determined through the following:

Ki = U−1Zi (V.74)

Li = P−1Yi (V.75)

Proof. V. 5 Let be the Lyapunov function candidate in the following format

V̄(t) = V(t) + Ve(t) (V.76)

where Ve(t) = V(ēx(t)) given by the equation (IV.18) and V(t) is given as follows:

V(t) = (Ex(t))TRx(t), R > 0 (V.77)

The time derivative of V(t) is calculated as

V̇(t) = xT(t)REẋ(t) + (Eẋ(t))TRx(t) (V.78)

By replacing (IV.2) in (V.78), the following expression is obtained

V̇(t) = 2xT(t)R
[
(Ai − BiKj)x(t) + BiKjex(t) + Bie f (t) + Did(t)

]
(V.79)
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Thus, by defining the following criterion function

J2 = J1 +
∫ t

0
{z(τ)TQz(τ)− γ2

3dT(τ)Qd(τ)}dτ (V.80)

Under zero initial condition, we have

J2 ≤ J1 +
∫ t

0
{z(τ)TQz(τ)− γ2

3dT(τ)Qd(τ)}dτ + V̄(t)− V̄(0) (V.81)

≤ J1 +
∫ t

0
{z(τ)TQz(τ)− γ2

3dT(τ)Qd(τ) + ˙̄V(τ)}dτ (V.82)

≤
∫ t

0
{ΩT(τ)ΠΩ(τ) + V̇(τ) + z(τ)TQz(τ)− γ2

3dT(τ)Qd(τ)}dτ (V.83)

By substituting (V.79) in (V.81), it gives

J2 ≤
∫ t

0
{ΦT(τ)ΥΦ(τ)}dτ (V.84)

where

Υ =


Ω RB̄K̃ RD̄ 0
∗ Ξ PD̄1 + XD̄2 PF1 + XF2

∗ ∗ −γ1 I − γ2
3Q 0

∗ ∗ ∗ −γ2 I

 , Φ(t) =


x(t)
ēx(t)
d(t)
ḟ (t)

 (V.85)

with Ω =
4
∑

i=1
µiΩi, Ξ =

4
∑

i=1
µiΞi, K̄ =

4
∑

i=1
µiKi, K̃ =

[
K̄ I

]
Using Lemma B.4, the following expression can be given.

Υ =
4

∑
i=1

h2
i (α f , αr)Υii +

4

∑
i=1

4

∑
i<j

hi(α f , αr)hj(α f , αr)(Υij + Υji) (V.86)

Then, the control law (V.67) and the observer (IV.4) stabilise and observe, respectively, the
states of the system (IV.2), if the following conditions are fulfilled.

Υii < 0 i = 1, 2, 3, 4

Υij + Υji < 0 1 ≤ i < j ≤ 4
(V.87)

According to Lemma B.4, there exist matrices Θii = ΘT
ii and Θij, such that the following

conditions are satisfied.

Υii < Θii i, j = 1, 2, 3, 4

Υij + Υji ≤ Θij + ΘT
ij 1 ≤ i < j ≤ 4

(V.88)
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Furthermore, Υij matrices can be re-written as follows:

Υij = Ῡij + sym

{
Γi

[
Kj

[
Kj I

]
0 0

]
︸ ︷︷ ︸

Λj

}
(V.89)

By substituting (V.89) in (V.88), the following inequalities are obtained.

Ῡii −Θii + sym {ΓiΛi} < 0 i = 1, 2, 3, 4

Ῡij + Ῡji −Θij −ΘT
ij + sym

{
ΓiΛj + ΓjΛi

}
≤ 0 1 ≤ i < j ≤ 4

(V.90)

Using Lemma B.9 and replacing UKi by Zi, the LMIs (V.71)-(V.73) of Theorem V.5 are achieved.
This completes the proof.

Remark. V. 4 The LMIs (V.71)-(V.72) are given with the parameters λq, (q = 1, 2, 3) known
a priory. In the literature, these parameters are obtained using a numerical optimisation algo-
rithm, such as the "fminsearch" function in the MATLAB optimisation toolbox. In this study,
the variables λq, (q = 1, 2, 3) are chosen arbitrarily in order to obtain feasibility and increase
system performance, where the effect of optimising these parameters leads to a more efficient
result.

b. Numerical illustration and simulation results

In order to demonstrate the effectiveness of the proposed fault-tolerant control law,
some simulations have been performed using MATLAB software. The same vehicle
system used throughout this chapter is employed here.

Using MATLAB LMI toolbox and choosing the following parameter values γ1 =

0, 3, γ2 = 5, and γ3 = 0, 05, the optimization problem of Theorem V.5 can be conve-
niently resolved. The following controller and observer gains are obtained.

K1 =
[
0, 4920 0, 3553 0, 0638 0, 0480

]
, K2 =

[
0, 4670 0, 3499 0, 0492 0, 0489

]
K3 =

[
0, 2160 0, 1412 0, 0016 0, 0155

]
, K4 =

[
0, 1033 0, 0720 0, 0237 0, 0043

]

L1 =


0, 2579 0, 0167
−0, 5838 −0, 0072
−0, 1494 0, 4071
36, 9352 18, 8010
−0, 8739 4, 6831

 , L2 =


0, 8765 0, 1099
0, 0920 −0, 0570
−0, 0783 0, 4202
−0, 0011 21, 6544
28, 8426 2, 3968



L3 =


0, 4807 −0, 0101
−0, 5811 0, 0023
−0, 1759 1, 0642
37, 2438 18, 7868
−29, 6901 3, 5937

 , L4 =


1, 0687 0, 0830
0, 0932 −0, 0479
−0, 1050 1, 0481
0, 3582 21, 6384
0, 0410 1, 3056


To illustrate the ability of the proposed control to eliminate the fault effects on the

system performances, two fault scenarios are studied. The first fault f1(t) is chosen as
an intermittent that occurs during an extreme change of direction between the instants
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10.5 s and 14.5 s. While the second fault f2(t) is chosen as a strong sinusoidal variation
from instant 4 s. The evolution of these two faults f1(t) and f2(t) as well as their es-
timates are shown in Fig. V.12 and Fig. V.14, respectively. The response of the system
states with the application of the control law (V.67) and their estimates under the in-
fluence of the two actuator faults f1(t) and f2(t), respectively, are shown in Fig. V.13
and Fig. V.15.
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FIGURE V.12: Fault f1(t) and its estimated
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FIGURE V.13: System state responses when a fault f1(t) occurs using
the proposed control

It is clear from all figures V.12-V.15 that the estimation converges closely with the
measurement for actuator faults and system states. This shows the ability of the sug-
gested observer to accurately estimate the system parameters and even the faults, de-
spite the presence of external disturbances.

It can be seen from Fig. V.13 and Fig. V.15, respectively, that after the system be-
comes faulty by f1(t) or f2(t) and with the implementation of the proposed control
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FIGURE V.14: Fault f2(t) and its estimated
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FIGURE V.15: System state responses when a fault f2(t) occurs using
the proposed control

law, the automotive vehicle lateral dynamics system stays stable throughout the sim-
ulation without losing its performance despite the presence of actuator faults. This
demonstrates the validity of the suggested control law.

c. Discussion

In this sub-section, the fault-tolerant control problem for the automotive vehicle lat-
eral dynamics system using the descriptor approach is addressed. First of all, the
augmented system (IV.2) and the observer (IV.4) from Chapter IV have been used
here to simultaneously estimate the system states and the actuator faults. Based on
the information provided by the observer, a robust control against actuator faults is
designed in order to overcome the performance deterioration caused by these faults.
The proposed approach is reformulated as linear matrix inequalities (LMIs) problem.
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Simulation results highlight the effectiveness of the proposed approach in estimating
faults and states as well as constructing a fault-tolerant control law capable of main-
taining the stability of the system despite the presence of faults and rapidly varying
external disturbances.

V.5 Conclusion

In this chapter, different control laws have been proposed for the automotive vehi-
cle lateral dynamics system, with consideration of roll motion, represented by the T-S
fuzzy model. Firstly, a H∞ control method based on static output-feedback is elabo-
rated. This is a disturbance robust passive control that uses the information provided
by the system output. Then, using the information provided by the observers, control
strategies and laws are designed to overcome the performance deterioration caused by
faults and make our system relatively insensitive to faults either at the sensor or actu-
ator sides. In each section, the overall system’s stability is studied using the quadratic
Lyapunov function, and the appropriate conditions for the existence of these control
laws are analysed. Their conceptions are expressed in the form of Linear Matrix In-
equalities (LMIs). The simulation results highlight in each section the effectiveness
and the ability of the proposed control laws to maintain the stability of the system in
a critical driving situation and in the presence of faults and external disturbances.
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General conclusion

This thesis issue was the application of theoretical results of state/fault estimation and
Fault-Tolerant Control (FTC) to the non-linear system of automotive lateral dynamics.
The latter has been represented using Takagi-Sugeno (T-S) fuzzy models. An overview
of Fault Detection (FD) and FTC techniques has been proposed in the first chapter
in order to provide the context for our contribution. First, we have recalled some
terminologies and classifications of faults. Then, we have described some approaches
to residue generation and fault isolation. After that, some important specific FTC
methods were discussed and classified into active and passive ones.

A T-S fuzzy model is a well-adapted tool for the modelisation of non-linear sys-
tems, allowing them to be represented by a finite number of local linear sub-systems
in different regions of operation. As we have seen in the second chapter, fundamental
results of the T-S fuzzy model for continuous systems have been presented. Initially,
a definition of this type of system and the process to obtain it were offered. After that,
a set of definitions and theorems concerning the stability concept was pointed out.
In addition, stability analysis of T-S fuzzy models using the Lyapunov method was
documented. Furthermore, the design of observers for T-S fuzzy systems has been
introduced. Finally, we have reported some results on the quadratic stabilisation of
T-S fuzzy systems with different control laws, including state feedback, static output
feedback and estimated state feedback.

The third chapter was dedicated to the modelling of the lateral dynamics of the
automotive vehicle. In a first step, we have presented some components necessary
to the modelling of the vehicle, as well as its main movements. Next, a four-wheel
model was introduced, which, based on a set of assumptions, leads to a simplified
extended bicycle model for describing the lateral motion. Then, we have introduced
an additional degree of freedom associated with rolling to have a model of the lat-
eral dynamics that considers the kinematics of the suspension. After that, two lateral
force models have been presented. The first one is based on the magic formula of
Pacejka, it is accurate and more realistic, but it requires the empirical determination
of many factors and constants. The second one is simple linear but overestimates the
forces. To cope with this situation, a T-S fuzzy representation of the tire model was
included. This approximation allowed us to obtain T-S fuzzy models representing
the lateral dynamics of the automotive vehicle with/without taking into account roll
motion. These models can be used to design steering control systems for lateral trajec-
tory maintenance. They can also be extended for use in yaw stability control, rollover
control and other vehicle control applications.
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In the fourth chapter, significant initial contributions of this thesis to state/fault
estimation have been introduced. It includes two observer-based methods developed
for the automotive vehicle lateral dynamics system. The first one uses the descriptor
approach to simultaneously estimate the states and actuator faults that affect a per-
turbed vehicle system. The second is the unknown input observer that can simultane-
ously estimate the states and faults of an uncertain vehicle system affected by sensor
and actuator faults. The simulation results obtained highlight the effectiveness of the
proposed approaches for state/fault estimation.

In the fifth and last chapter, the main contributions of the thesis have been devel-
oped. We have proposed three different control laws for the automotive vehicle lateral
dynamics system, with the consideration of roll motion, in order to compensate for the
effects of faults and for driving assistance. In a first step, we have employed an H∞

control based on static output-feedback, which is a disturbance-robust passive control
that uses the information provided by the system output. Then, we have implemented
an active FTC strategy to compensate for sensor faults. In this approach, a fault de-
tection and identification block consisting of an observer bank and a decision block
was used to select the appropriate control law to maintain the correct lateral behavior
of the automotive vehicle. Lastly, we have developed active FTC laws for actuator
faults that require a good knowledge of the vehicle parameters and the faults that
occur. For this purpose, we have used appropriate observers for the simultaneous es-
timation of system states and actuator faults. Two methods have been studied in this
context. The first one is based on the tracking error, and the second on the descriptor
approach developed in the fourth chapter. The simulation results obtained by these
different strategies have shown that it is possible to maintain the correct behaviour of
an automotive vehicle despite the presence of disturbances, sensor or actuator faults.

The work carried out is a significant advance and can be a good starting point for
any analysis and control of the automotive vehicle dynamic system. However, there
are still many avenues to explore. In brief, here are some perspectives that would be
interesting for future work:

– Develop a fault-tolerant control algorithm based on adaptive event triggering for
autonomous vehicle lateral dynamics in non-secure communication networks
and integration of tracking control and direct yaw moment control to achieve
better lateral dynamic performance.

– Consider an uncertain vehicle dynamics model by accounting for the network-
induced communication delay, which is a continuous time-varying function with
a known upper bound.

– Concerning the vehicle model, it is very interesting to consider a complete model
with more freedom degrees, including lateral dynamics, longitudinal dynamics,
and even suspension dynamics.
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It would also be very interesting to validate these different control algorithms on an
industrial simulator using real measurements and subsequently on an automotive ve-
hicle.
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Appendix

System and LMI analysis lemmas
The objective of this appendix is to present some lemmas useful for the analysis of

T-S systems and LMIs.

Lemma 1 (Morere, 2001) Let f (z(t)) : R → R a function bounded on [−z2, z1], with
(z1, z2) ∈ R2+. Then, there exist two functions N1(z(t)) ≥ 0 and N2(z(t)) ≥ 0 such
as:  f (z(t)) = αN1(z(t)) + βN2(z(t))

N1(z(t)) + N2(z(t)) = 1
(91)

with α and β are two scalars.

Proof 1 Assuming that the function f (z(t)) is bounded such that α ≤ f (z(t)) ≤ β, it is
therefore possible to write:

f (z(t)) = αN1(z(t)) + βN2(z(t)) (92)

with:

α = min
z∈[−z2,z1]

( f (z(t))), β = max
z∈[−z2,z1]

( f (z(t)))

N1(z(t)) =
f (z(t))− α

β− α
, N2(z(t)) =

β− f (z(t))
β− α

(93)

Lemma 2 (Boyd et al., 1994) Determining if a matrix P > 0 verifying (II.35) does not exist
is equivalent to finding not all null Qi matrices such that:Qi ≥ 0, ∀i = 1, . . . , r

∑m
i=1
(
Qi AT

i + AiQi
)
≥ 0

(94)

Lemma 3 (Tanaka and Sano, 1994) Let Xij be matrices of the appropriate dimensions.

r

∑
i=1

r

∑
j=1

hi(z(t))hj(z(t))Xij < 0 (95)
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is verified if the two following conditions are fulfilled

Xii < 0, i = 1, 2, ..., r (96)

Xij +Xji ≤ 0, i, j = 1, 2, ..., r; i < j (97)

Lemma 4 (Xiaodong and Qingling, 2003; Bede, 2013) Let the matrices Xij and the condition
be

r

∑
i=1

r

∑
j=1

hi(z(t))hj(z(t))Xij =
r

∑
i=1

h2
i (z(t))Xii

+
r

∑
i=1

r

∑
i<j

hi(z(t))hj(z(t))
(
Xij +Xji

)
< 0

(98)

Equation (98) is true if there exists matrices Yii and Yij such that the following conditions are
fulfilled:

Xii < Yii, i = 1, 2, ..., r (99)

Xij +Xji ≤ Yij + YT
ij , i, j = 1, 2, ..., r; i < j (100)

Y11 Y12 . . . Y1r

∗ Y22 . . . Y2r
...

...
. . .

...
∗ ∗ . . . Yrr

 < 0 (101)

Lemma 5 (Bede, 2013) Let A, Υ, P, and Θ be matrices with proper sizes. The following two
inequalities are equivalent:

Θ + ATP + PA < 0 (102)[
ATΥT + ΥA + Θ P− Υ + ATΥT

∗ −Υ− ΥT

]
< 0 (103)

Lemma 6 (Bærentzen et al., 2012) Consider the matrix W ∈ Rn×m, with n ≥ m, and matrix
Y ∈ Rn×k, the matrix X with the form

X = YW+ + U(I −WW+)

is a solution of XW = Y when the condition YW+W = Y holds. U ∈ Rk×m is an arbitrary
matrix and W+ is the Moore-Penrose pseudo-inverse of W which is denoted

W+ = (WTW)−1WT

Lemma 7 (Finsler’s Lemma) (de Oliveira and Skelton, 2001) Let ζ ∈ Rn, Z ∈ Rn×n and
Σ ∈ Rm×n with rank(Σ) < n and (Σ)⊥ such that ΣΣ⊥ = 0. Then, the following conditions
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are equivalent:

ζTZζ < 0, ∀ζ 6= 0 : Σζ = 0 (104)

ΣT
⊥ZΣ⊥ < 0 (105)

∃µ ∈ R : Z− µΣTΣ < 0 (106)

∃Q ∈ Rn×m : Z + QΣ + ΣTQT < 0 (107)

Lemma 8 (Wang et al., 2015) For the matrices Q, G and Z with suitable dimensions.

Q = ZG† + S
[

I − GG†
]

(108)

is the general solution to the following equation

QG = Z (109)

with S is an arbitrary matrix. In this paper, the sign † indicates the pseudo-inverse of a matrix.

Lemma 9 (Chang et al., 2015) For appropriately dimensioned matrices S, R, and W, and
scalar λ. The inequality

S + RA + ATRT < 0 (110)

is achieved if the following condition is satisfied[
S λR + ATWT

∗ −λW− λWT

]
< 0 (111)

Lemma 10 (Gahinet and Apkarian, 1994) Given a symmetric matrix Σ ∈ Rp×p and two
matrices X, Z of column dimension p, there exists a matrix Y such that the LMI

Σ + sym{XTYZ} < 0 (112)

holds if and only if the following two projection inequalities with respect to Y are satisfied:

X⊥
T

ΣX⊥ < 0, Z⊥
T

ΣZ⊥ < 0. (113)

where X⊥ and Z⊥ are arbitrary matrices whose columns form a basis of the null spaces of X
and Z, respectively.

Lemma 11 (Jeung and Lee, 2014) For a positive definite matrix R ∈ Rn×n, matrices X and
Y with appropriate dimensions, the following inequality holds:

XTY + YTX ≤ XTRX + YTR−1Y
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Lemma 12 (Jeung and Lee, 2014) For a positive definite matrix R ∈ Rn×n, a square matrix
X ∈ Rn×n, and a scalar α, the following inequality holds:

−XTR−1X ≤ α2R± αX± αXT
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