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Résumé : L’ordonnancement des workflows dans les systèmes hétérogènes de type Cloud Computing est 

considéré comme un problème difficile. En conséquence, de nombreux algorithmes ne sont pas efficaces 

pour le traitement de données à grande échelle. En d’autres termes, les algorithmes traditionnels 

n’intègrent pas certains principes de base de Cloud Computing tels que l’élasticité et l’hétérogénéité des 

ressources informatiques. Par conséquent, dans les travaux de cette thèse, nous proposons trois stratégies 

d’ordonnancement et d’allocation des ressources. Premièrement, nous proposons une stratégie 

d’équilibrage de charge qui équilibre d’abord la charge entre les centres de traitement de données 

(datacenters), puis minimise le volume de données échangées. Deuxièmement, nous présentons un 

algorithme nommé DT-MG, qui vise à réduire la consommation d’énergie et à garantir les exigences de 

QoS (Quality of Services) en utilisant la théorie des jeux. Enfin, nous proposons une amélioration de 

l’algorithme HEFT (Heterogeneous Earliest Finish Time) sous la contrainte financière spécifiée par les 

utilisateurs pour bien équilibrer la charge des machines virtuelles et minimiser le temps d’exécution. Pour 

évaluer la performance de nos algorithmes, nous les avons comparés avec d’autres algorithmes 

d’ordonnancement des workflows en utilisant le simulateur Cloudsim. Les résultats rapportés montrent que 

nos algorithmes proposés ont de meilleures performances que les autres algorithmes en termes de tous les 

critères cités précédemment 

Mots clés : Cloud Computing ; Big Data ; Workflows scientifiques ; Équilibrage de charge ; 

Consommation d’énergie ; Ordonnancement des tâches ; Tolérance aux fautes 

 

Abstract: Scientific workflow applications have a complex structure and many discrete tasks; each task 

may include getting data, accessing software, or executing functions. For these reasons, the workflow 

scheduling in cloud computing is considered to be a difficult problem. As a result, over several years, many 

algorithms have been proposed to solve this problem. However, the majority of these traditional algorithms 

may not be efficient for processing large-scale data. In other words, traditional algorithms fail to incorporate 

some basic principles of cloud computing such as the elasticity and the heterogeneity of computing 

resources. As a consequence, this thesis proposes three scheduling algorithms that are capable of answering 

key issues to solve large-scale data scheduling problems. First, we propose a threshold-based load balancing 

algorithm, which first balances the load among datacentres, and afterwards minimizes the overhead of data 

exchanges. Second, we present an efficient algorithm named DT-MG, which aims to reduce the energy 

consumption and to guarantee the quality of service (QoS) requirements using matching game theory. 

Finally, we propose an enhancement of Heterogeneous Earliest Finish Time (HEFT) algorithm under a 

userspecified financial constraint to achieve a well-balanced load across the virtual machines as well as to 

minimize the workflow execution time. To evaluate the performance of our proposed algorithms, we 

compared them with the state-of-the-art workflow scheduling algorithms using CloudSim simulator. The 

reported results show that our proposed algorithms outperform existing scheduling algorithms in terms of all 

previously cited criteria 

Keywords: Cloud computing; Big Data; Scientific workflows; Load balancing; Data placement; Energy 

consumption; Task scheduling; Fault tolerance. 
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Abstract
Cloud computing is a newly emerged computing platform that builds on the latest achieve-

ments of diverse research areas. It has been widely used due to its significant benefits and

its ability to cope with large-scale data such as scientific workflows and big data appli-

cations. Scientific workflows describe a series of computations that enable the analysis

of data in a structured and distributed manner. To run these workflows, the tasks must

be scheduled on computational resources. The scheduling of a task consists of assign-

ing it to a specific resource in order to fulfill a final goal such as minimizing the overall

workflow execution time. Workflow applications have a complex structure and many

discrete tasks; each task may include getting data, accessing software, or executing func-

tions. For these reasons, the workflow scheduling is considered to be a difficult problem.

Then, efficient scheduling algorithms are required for selection of the best suitable re-

sources for workflow execution. As a result, over several years, many algorithms have

been proposed to solve this problem. However, the majority of these traditional algo-

rithms may not be efficient for processing large-scale data. In other words, traditional

algorithms fail to incorporate some basic principles of cloud computing such as the elas-

ticity and the heterogeneity of computing resources. Therefore, a proper solution of the

workflow scheduling problem requires the analysis of tasks and resources, and, most

important, the adaptation of optimization techniques. To achieve these goals, this thesis

proposes three scheduling algorithms that are capable of answering key issues to solve

large-scale data scheduling problem. First, we propose a threshold-based load balancing

algorithm, which first balances the load among datacentres, and afterwards minimizes

the overhead of data exchanges. Second, we present an efficient algorithm named DT-

MG, which aims to reduce the energy consumption and to guarantee the quality of ser-

vice (QoS) requirements using matching game theory. Finally, we propose an enhancement

of Heterogeneous Earliest Finish Time (HEFT) algorithm under a user-specified finan-

cial constraint to achieve a well-balanced load across the virtual machines as well as to

minimize the workflow execution time. To evaluate the performance of our proposed al-

gorithms, we compared them with the state-of-the-art workflow scheduling algorithms

using Cloudsim simulator. The reported results show that our proposed algorithms out-

perform existing scheduling algorithms in terms of all previously cited criteria.

Keywords : Cloud computing; Big Data; Scientific workflows; Load balancing; Data

placement; Energy consumption; Task scheduling; Fault tolerance.

iv



Résumé
Le Cloud Computing est de plus en plus reconnu comme une nouvelle façon d’utiliser,

à la demande, les services de calcul et de stockage de manière transparente et efficace.

L’ordonnancement des workflows, notamment les workflows scientifiques, ainsi que l’alloca-

tion de ressources dans les systèmes hétérogènes de type Cloud Computing, suscitent

une attention croissante avec l’augmentation de la popularité de Cloud Computing. Les

workflows scientifiques ont une structure complexe et de nombreuses tâches discrètes;

chaque tâche peut inclure la saisie de données, l’accès au logiciel, ou des fonctions de

traitement. Pour ces raisons, l’ordonnancement du workflow est considérée comme un

problème difficile. Ainsi, des algorithmes efficaces d’ordonnancement sont nécessaires

pour la meilleure sélection des ressources. En conséquence, de nombreux algorithmes

pour l’ordonnancement dans le cloud computing ont été proposés. Cependant, la plupart

de ces algorithmes ne sont pas efficaces pour le traitement de données à grande échelle.

En d’autres termes, les algorithmes traditionnels n’intègrent pas certains principes de

base de cloud computing tels que l’élasticité et l’hétérogénéité des ressources informa-

tiques. Par conséquent, une solution appropriée du problème d’ordonnancement des

workflows nécessite l’analyse des tâches et des ressources, ainsi que l’adaptation des tech-

niques d’optimisation. Dans les travaux de cette thèse, nous proposons trois stratégies

d’ordonnancement et d’allocation des ressources. Premièrement, nous proposons une

stratégie d’équilibrage de charge qui équilibre d’abord la charge entre les centres de

traitement de données (datacenters), puis minimise le volume de données échangées.

Deuxièmement, nous présentons un algorithme nommé DT-MG, qui vise à réduire la

consommation d’énergie et à garantir les exigences de QoS (Quality of Services) en util-

isant la théorie des jeux. Enfin, nous proposons une amélioration de l’algorithme HEFT

(Heterogeneous Earliest Finish Time) sous la contrainte financière spécifiée par les util-

isateurs pour bien équilibrer la charge des machines virtuelles et minimiser le temps

d’exécution. Pour évaluer la performance de nos algorithmes, nous les avons comparés

avec d’autres algorithmes d’ordonnancement des workflows en utilisant le simulateur

Cloudsim. Les résultats rapportés montrent que nos algorithmes proposés ont de meilleur-

es performances que les autres algorithmes en termes de tous les critères cités précédem-

ment.

Mots-clés : Cloud computing; Big Data; Workflows scientifiques; Équilibrage de charge;

Consommation d’énergie; Ordonnancement des tâches; Tolérance aux pannes.
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Chapter 1

Introduction
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1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Issues and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This chapter introduces the context and the motivation of the research explored in this thesis,

namely resources allocation and workflow scheduling. It starts with the fundamental issues and

objectives behind scheduling large-scale workflows in cloud computing environment. The chapter

thereafter provides a summary of our contributions.

1.1 Context and motivations

Nowadays, we live in a data-driven world where data-intensive applications are bring-

ing fundamental improvements to our lives in many different areas such as business,

science, health care and security, to name a few. This has boosted the growth of the data

volumes (i.e., deluge of Big Data) [1] . Big data is not merely data, rather it has become

a topic, which involves various tools, techniques and frameworks. Big data technolo-

gies are important in providing more accurate analysis, which may lead to more concrete

decision-making resulting in greater operational efficiencies, cost reductions, and lower

risks for business. Organizations that require dynamic information technology infras-

tructure are moving to cloud due to its scalability and flexible pricing models. Cloud

computing and virtualization technology have revolutionized general-purpose comput-

ing applications in the past decade. It provides a wide variety of services to its end users

such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS).
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Cloud computing services are offered with different levels of quality of service to

meet the specific needs of different users. Although many cloud services have similar

features (e.g., storage services, computing services, network services, etc.), they differ

from each other in their non-functional QoS (Quality of Service) such as time, cost, se-

curity, energy consumption, etc. These QoS parameters can be provided as services and

by needs, and it should meet the cloud clients’ requirements defined in the Service Level

Agreements (SLAs). SLAs define the negotiated agreements between service providers

and consumers and include Quality of Service (QoS) parameters, such as task execu-

tion time. For cloud service providers, enforcing such SLAs is imperative. Lack of such

agreements can result in users being moved away from a cloud provider and compro-

mising its growth. However, despite the success of cloud computing for general-purpose

computing, existing cloud computing and virtualization technologies face tremendous

challenges in scheduling large scale data applications. These applications are covering

important aspects of everyday life: health, education, astronomy, research engineering,

etc. and are described by a number of interdependent tasks called workflows. A work-

flow can be described as a set of tasks which is used to complete some business process.

This concept has found best use in scientific and business applications for streamlining

and improving the performance of the underlying processes. The growing complexity

of big data processing problems has raised the use of scientific workflows for perform-

ing complex tasks for specific domain applications. Scientific workflows represent the

automation of a scientific process in which tasks are organized based on their control

and data dependency. The growth of scientific workflows has also spurred significant

research in the areas of generating, planning and executing such workflows in cloud

platforms.

Many scientific applications are defined as a set of ordered tasks that are linked by

data dependencies. A workflow management system is used to define, manage, and

execute these workflow applications on clusters in cloud environments. Main issue in

workflow management system is scheduling because it is very difficult to identify the

available resource from the central pool of resources at runtime [2]. Scheduling, along

with many other issues in cloud computing infrastructures, has been extensively stud-

ied in the past several decades. Many complex applications in e-science and e-business

can be modeled as workflows. Workflow scheduling is the problem of finding a cor-

rect execution sequence for the tasks, i.e., execution that obeys the constraints. In other

words, the main challenges are to ensure deadlines (very important in real-time inter-
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action), budget (pay-per-use cloud model), energy consumption (power saving for data

centers), QoS (to guarantee SLA), and fault-tolerance (rescheduling tasks in case of fail-

ures) for complex workflow applications. In this context, workflow scheduling is defined

as a strategy to decide which (task selection) and where (resource selection) each appli-

cation task should be executed, and it determines how the input/output data files are

exchanged among tasks [3, 4].

As a result, this thesis addresses the problem of scheduling large-scale workflows in

cloud computing environments. It investigates a critical issue in cloud computing sys-

tems, which is to design a simple and efficient scheduling algorithms. Increasing size of

such systems due to their popularity has yielded unprecedented challenges for the design

of such scheduling algorithms. We first develop a detailed taxonomy and a comprehen-

sive survey based on state-of-the art workflow scheduling algorithms. Afterwards, a set

of workflow scheduling algorithms is proposed. They are tailored for the multi-tenant,

elastic, utility-based, and resource-abundant cloud resource model. Furthermore, they

are highly successful in generating schedules that are capable of fulfilling a set of QoS

requirements expressed in terms of execution time, load balancing, energy consumption

and fault-tolerance.

1.2 Issues and objectives

Cloud computing has been developed to remotely store, analyze and process large amount

of data. It has recently been brought into focus in both academic and industrial commu-

nities due to the increasing features that cloud computing provides such as on-demand

computing, elastic scaling, elimination of up-front capital and operational expenses, and

establishing pay-as-you-go business model for information technology services [5, 6].

However, existing cloud computing and virtualization technology face tremendous chal-

lenges. One of the most challenging issues in cloud computing is scheduling large scale

data applications. Scheduling is a fundamental aspect of cloud computing as it allows

application parallelization and improved performance. Scheduling algorithms provide

benefit to both the cloud user as well as the cloud provider. On one hand, scheduling

algorithms can be designed in such a way that they satisfy the QoS (Quality of Service)

constraints imposed by cloud client, and, on the other hand, they can be designed to per-

form load balancing among virtual machines which results into improvement of resource

utilization at cloud provider ends. The overall operating performance of a scheduling
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system is strongly related to the efficiency of its scheduling algorithm [7].

In general, the process of a workflow scheduling in a distributed system consists of

assigning tasks to resources and orchestrating their execution so that the dependencies

between them are preserved. This is an important aspect in the efficient operation of

the cloud, as various task parameters must be considered for an appropriate scheduling.

Scheduling workflows in a heterogeneous context like the cloud is a combinatorial op-

timization problem, where it is impossible to find an optimal global solution by using

simple algorithms. In addition, this problem becomes more difficult in the case where

there are several factors to consider, namely: (1) the different QoS requirements imposed

by users; (2) the heterogeneity environment and elasticity of available cloud services;

(3) the possibility of combining these services to process workflow applications; (4) the

transfer of huge volumes of data (datacenters can be geographically spreaded, which can

be real issue for workflows with large input data). Therefore, the workflow scheduling

problem is considered as an NP-complete optimization problem [8].

Many algorithms have been proposed to schedule large-scale data applications, and

these algorithms somehow differ by scheduling factors and parameters [9, 10, 11, 12,

13, 14]. In addition, most of this algorithms fail to (1) provide a deep analysis of task

interdependencies to fully exploit parallelism, (2) increment computer system utilization,

(3) adapt the number of resources to run each workflow, and (4) incorporate some basic

principles of cloud computing such as the elasticity and heterogeneity of the computing

resources.

The algorithms developed in this thesis will consider these key features, and more im-

portantly, two sub problems will be considered. The first one is the resource provisioning

which consists of selecting and provisioning the compute resources to run all workflow

applications. The second one is task scheduling, in which each task is mapped onto the

best-suited resource. This will allow schedulers to decide how many VMs to lease, of

what type, when to start them and shut them down, and for how long so that the QoS

requirements are met while respecting the precedence constraint between the different

tasks of a workflow and taking into account multiple QoS criteria such as load balancing,

makespan and energy consumption.
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1.3 Contributions

This section outlines the contributions from the overall work of this thesis. We propose

three scheduling strategies. The first strategy is based on graph theory, it first balances the

load between datacenters and afterwards minimizes the overhead of data exchanges. The

second strategy aims at reducing the energy consumption of datacenters and guarantee

the quality of service (QoS) imposed by users without violating the SLA, using matching

game theory. The last strategy aims at improving the task scheduling process in HEFT

(Heterogeneous Earliest Finish Time) algorithm in terms of load balancing across virtual

machines as well as minimizing the makespan of a given workflow application under a

user-specified financial constraint. Our contributions can be summarized as follows:

• In the first strategy, we propose a graph-based model and algorithm for minimizing

big data movement in a cloud environment. It consits of three steps. In the first step,

we analyzed the dependencies between tasks and datasets to cluster the datasets into

different datacenters based on these dependencies. In the second step, we used HPCC

benchmark to quantify each datacenter performance in order to assign a load threshold

for each datacenter based on its speed of processing and storage capacity. In the third

step, we proposed an algorithm to balance the load among datacenters based on the

aforementioned threshold.

• In the second strategy, we propose an algorithm named DT-MG (Many-to-One Match-

ing Game for Tasks Scheduling towards Resources Optimization in Cloud Comput-

ing). The algorithm assigns tasks to datacenters in optimal manner as well as reduces

resource and energy consumption. We have set an upper and lower utilization thresh-

olds, then, we have tried to keep the total CPU utilization of each datacenter between

these thresholds. So, when the datacenter load is above the upper threshold or below

the lower threshold, the system is unbalanced and some tasks have to be migrated.

This strategy includes four phases: tasks scheduling phase using matching game the-

ory; detection of datacenters state phase ( over-utilized or under-utilized); tasks selec-

tion for migration phase; and tasks migration phase.

• In the third strategy, we propose an algorithm named E-HEFT (Enhancement Hetero-

geneous Earliest Finish Time). The main idea of this algorithm is to improve the task

scheduling process in HEFT (Heterogeneous Earliest Finish Time) algorithm. Gener-

ally, the HEFT algorithm achieves high performance and very good tasks execution
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time, but its drawback is that it does not take care of load balancing. Our strategy has

four phases. In the first phase, we specify the load threshold of each machine based

on both processing speed and storage capacity. In the second phase, we define the

datasets dependencies in order to store them into different datacenters based on these

dependencies. In the third phase, we group the tasks of a workflow (DAG) by level,

then we assign a Rank value for each task using the rank function of HEFT algorithm.

Finally, we schedule these tasks on the best machine using matching game theory.

• A core constituent of Big Data frameworks is the scheduler, which is responsible for

scheduling and monitoring the tasks execution, and rescheduling them in case of fail-

ures. As the size of clusters used for parallel and distributed computing increases, fail-

ures are increasingly common during execution of large-scale applications. This makes

fault-tolerance a critical issue for the efficient execution of any application running on

such frameworks. Finally, in this thesis, we intend to reach a better understanding of

fault tolerance mechanism of Hadoop MapReduce despite failures. We then evaluate

the performance of Hadoop MapReduce subjecte to different failures scenarios. Next,

we investigated via simulation the impact of checkpointing, which is a commonly used

mechanism for managing fault tolerance in distributed systems, interval selection on

the performance of Hadoop under various failure probabilities.

1.4 Thesis organization

Following this introduction, the core chapters of this thesis are organized as shown in

Figure 1.1 and are derived from several journal papers, conferences and book chapters

published during the PhD candidature. This manuscript is divided into 6 other chapters

and is structured as follows:

Chapter 2 : Concepts and state of the art

The chapter provides an overview of the literature that covers basic definitions of

cloud computing and a survey on scheduling algorithms for scientific workflows in cloud

environment. It is made of two sections: In the first section, we present the concept of

cloud computing, its service models, its deployment models and its main actors. In the

second section, we introduce the concept of workflow and workflow management sys-

tems, and we present workflow scheduling strategies that have been proposed for cloud

computing platforms in order to systematically and objectively gather and aggregate re-
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Figure 1.1 – Thesis organization.

search evidences about this topic. Then, we present a comparative analysis of the studied

strategies. Finally, we highlight workflow scheduling issues for further research.

Chapter 3 : Graph-based Model and Algorithm for Workload Balancing

We describe load balancing and data placement strategies in heterogeneous cloud en-

vironments. After that, we deal with the problem of task scheduling in cloud computing.

The goal is to optimize multiple QoS metrics, namely load balancing and the overhead

of data exchanges. To do this, we present the graph model for big data movement and

explain the proposed approach together with some illustrative examples. And finally,

we present an experimental evaluation of our proposed algorithm with associated dis-

cussions.

Chapter 4 : Matching Game Based Scheduling Algorithm Towards Energy-efficiency

Chapter 4 investigates the resource allocation problem and the trade-off between re-

source savings and delivered performance in cloud datacenters in order to reduce energy

consumption while meeting the QoS requirements. We first present a short background
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on the matching game theory covering the different classes of games and their appli-

cations, utility function, strategic choice and Nash equilibrium. Then, we present the

architectural framework and system model used in this algorithm. After that, we present

our strategy for tasks scheduling towards resources optimization in cloud computing.

Next, we discuss scheduling performance of our mathematical model and experimental

results on Cloudsim simulator.

Chapter 5 : A Static heuristic Based Scheduling Algorithm for Minimizing Makespan

Chapter 5 presents an enhancement of the Heterogeneous Earliest Finish Time heuris-

tic (HEFT) algorithm. Our scheduling algorithm aims at minimizing the total execution

time of the workflow, which is viewed as a directed acyclic graph (DAG), as well as to

achieve a well-balanced load across all VMs, always obeying both budget and precedence

constraints. We start by presenting the state of the art of heuristic algorithms suitable for

DAG scheduling. Afterwards, we describe the workflow scheduling problem, its formu-

lation and our objective function. Then, we present our proposed algorithm, assess its

applicability and illustrate its performance using Cloudsim simulator.

Chapter 6 : Hadoop Scheduling Performance Under Different Type of Failures

Chapter 6 is dedicated to the failure handling with Hadoop Mapreduce. This chap-

ter begins by presenting a background of Hadoop MapReduce and describing its Fault-

Tolerance mechanism. Then, it discusses in detail the types of failure in MapReduce

systems and surveys the different mechanisms used in the framework for detecting, han-

dling and recovering from these failures. In addition, it describes the Checkpointing

technique as Fault-Tolerance mechanism. After that, it investigates via simulation the

impact of checkpointing interval selection on Hadoop performance under various failure

probabilities. Then, it analyzes the fault tolerance mechanism of Hadoop Mapreduce un-

der different type of failures by generating a series of failure scenarios for certain type of

jobs. Finally, it concludes by a discussion about the open issues and key challenges for

providing efficient fault tolerance in MapReduce-based systems.

In the last part, the conclusion, the summary of our contributions, the perspectives

brought by these contributions and the appendices are presented.
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Chapter 2

Concepts and State-of-the-Art
Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.2.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Background on cloud computing . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Service models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Deployment models . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Workflow scheduling in cloud computing . . . . . . . . . . . . . . . . . 20

2.4.1 Workflow scheduling problem . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Workflow scheduling objectives . . . . . . . . . . . . . . . . . . . 22

2.4.3 Workflow scheduling techniques . . . . . . . . . . . . . . . . . . . 25
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This chapter presents in detail the two areas related to the work of this thesis, which are cloud

computing and workflow applications. To do this, we conduct a SLR (Systematic literature review)

of workflow scheduling strategies that have been proposed for cloud computing platforms. First of

all, we present cloud computing and its various components. Next, we investigate a comparative

analysis of the studied strategies. Then, we highlight the workflow scheduling issues for further

research. The findings of this review provide a roadmap for designing a new workflow scheduling

models in cloud computing. This chapter is derived from:
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– Yassir Samadi, Mostapha Zbakh and Claude Tadonki. "Workflow Scheduling Issues

and Techniques in Cloud Computing: A Systematic Literature Review". Springer In-

ternational Publishing. Cloud Computing and Big Data: Technologies, Applications

and Security, 49, pp.241-263, 2018.

– Yassir Samadi and Mostapha Zbakh."Big Data Processing on Cloud Computing Using

Hadoop Mapreduce and Apache Spark". In K. Munir (Ed.), Cloud Computing Tech-

nologies for Green Enterprises (pp. 224-250). Hershey, PA: IGI Global. doi:10.4018/978-

1-5225-3038-1.ch009.

2.1 Introduction

Cloud computing is one of the most promising contemporary technologies. It promises

to deliver large-scale computational resources over network using a pay as-you-go model

[15, 16]. In this model, cloud providers manage resources to process clients’ tasks. Fur-

thermore, the requested resources can be scaled up and down dynamically [17].

In addition, cloud computing has emerged as a powerful way to transform the IT

industry in order to build and deploy users’ applications. These characteristics attract

an increasing number of enterprises to run their applications on a cloud platform . Al-

though cloud computing provides all these advantages, it faces many challenges in its

development process [18, 19]. According to several surveys, workflow scheduling is one

of the main challenges in cloud computing. The term workflow scheduling refers to the

mapping of tasks onto resources [20].

Scheduling algorithms yield benefit to both the cloud users and providers. They can

be designed to deal with the QoS (Quality of Service) requirements imposed by the cloud

clients as well as to perform load balancing among virtual machines in order to improve

resources utilization. The overall performance of a scheduling system is related to the

efficiency of the scheduling algorithm [7]. The main objective of the scheduling algorithm

is to obtain an optimal value such as the lowest execution cost or time.

An optimization problem can be defined as follows:

min f (x) (2.1)
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Subject to:

x ∈ M = {x | gk(x) ≤ 0, k = 1, 2, · · · , n} (2.2)

f (x) is considered as the objective function, gk(x) can be regarded as the constraint func-

tion. Then, for solving the optimization problem, we can transforme it into minimization

problem as stated above.

In this chapter, we investigate different algorithms of workflow scheduling designed

for cloud computing environment. Next, each algorithm will be analyzed based on

scheduling performance and resources utilization. In our research, we identified 106

papers between 2011 and 2017. Our systematic literature review is organized in four

parts:

• Part 1: Background on cloud computing: We start by describing some background

information concerning cloud computing and its architecture.

• Part 2: Workflow scheduling objectives in cloud computing environment: We present

the main objectives related to workflow scheduling in cloud. We classify the objec-

tives into 5 main categories as follows: Availability, minimum makespan, maximum

resource utilization, security and load balancing.

• Part 3: Workflow scheduling techniques in cloud computing environment: We investi-

gate the different types of scheduling algorithm and discuss their impact on the sched-

ulers’ performance of such environment. We observe that we can classify the schedul-

ing algorithms used in cloud computing into two main categories: dynamic and static

scheduling.

• Part 4: Research directions and workflow scheduling issues in cloud computing envi-

ronment: We present the main issues related to the workflow scheduling in cloud com-

puting. We also present some future research directions for each workflow scheduling

objectives discussed previously in part 2 of our review. In addition, we built a road

map to enhance the scheduling algorithms discussed in part 3.

2.2 Literature review

In this section, we present the method that we have used to choose the relevant ar-

ticles. Systematic reviews provide a way to execute in-depth unbiased literature re-
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views, aggregating scientific value to the results. The objective of a systematic review

is to present a correct assessment regarding a research topic through the application of

a reliable methodology. The methodical survey technique described in this chapter has

been inspired from [21, 22]. The stages of this literature review include creating a re-

view framework, investigating and recording the review results, and exploring research

challenges. Figure 2.1 describes the review technique used in this survey.

Figure 2.1 – Review technique used in this systematic review

2.2.1 Research questions

The present section aims at collecting and investigating all of valuated studies that

have examined workflow scheduling challenges and techniques in cloud computing.

More specifically, the extraction of salient features and methods will be considered, and

their characteristics will be described. The majority of researchers have considered QoS

parameters to design the objective functions. We then address the following research

questions(RQs):

• What is the current status of workflow scheduling in cloud computing?

• What are the main goals of related researches?

• What kind of validation is performed in each paper? Simulation, analytical model, and

experimentation?

• What is the importance of workflow scheduling with increasing use of cloud systems?
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• How much are the existing workflow scheduling algorithms meet the main workflow

scheduling challenges?

• What QoS parameters are accounted for?

• What simulation tools are used for scheduling and what parameters are they consider-

ing?

2.2.2 Data sources

We carried out an electronically based research and considered the following terms:

"workflow scheduling", "scheduling challenges", "scheduling techniques", and "cloud

computing". Notice that we considered the papers published within the period from

2004 to 2017. We chose this publication period because the field of workflow scheduling

in cloud computing has attracted the attention of researchers since 2004. The following

digital libraries were used for searching:

• IEEE eXplore (www.ieeexplore.ieee.org)

• ScienceDirect (www.sciencedirect.com)

• Google Scholar (www.scholar.google.com)

• ACM Digital Library (www.acm.org/dl)

• Springer (www.springerlink.com)

• Wiley Interscience (www.Interscience.wiley.com)

• Taylor and Francis Online (www.tandfonline.com)

2.2.3 Quality assessment

Researches in this field started in 2004, but a thorough improvement occurred after

2009. We limited our investigation to various journals, conferences and workshops that

have the most elevated quality and considered as the most essential resources in this area.

Our search selected 106 potential articles published in peer-reviewed journals and inter-

national conferences. After that, we implement a quality evaluation on the most relevant

papers based on the criteria of inclusion and exclusion to choose appropriate ones. We

manually reduced the number of papers to 70 based on their title, abstract and conclu-

sion. Next, we selected the potential articles focusing only on workflow scheduling in
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cloud computing. At last, we used 41 most pertinent articles for this literature review.

Figure 2.2 displays the distribution of the selected relevant research papers per year. As

can be seen, there is a significant rise in the number of papers on the scope of workflow

scheduling in cloud computing environment from 2011 to 2017; also, most of the selected

papers were published in 2017.
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Figure 2.2 – Number of relevant selected papers per year

2.3 Background on cloud computing

2.3.1 Definition

Based on the National Institute of Standards and Technology (NIST), Cloud computing

is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service provider

interaction [23]. The emergence of cloud computing has made a tremendous impact on the

Information Technology (IT) industry over the past few years. Cloud providers take care

only of the infrastructure management which contains many physical hardwares and

softwares [24]. They aim at providing more powerful and reliable cloud platforms, where

clients seek to reshape their business models to gain benefits from this new paradigm.

15



Indeed, cloud computing offers several benefits and features for that makes it attractive

to businesses. Some of these benefits include self-service provision, elasticity, and pay-as-you-

go. Self-service provision allows cloud consumers to access any on-demand computer

resource. The elasticity offers the opportunity to increase or decrease the consumption of

resources according to the clients’ needs. Finally, pay-as-you-go allows enterprises to pay

only for the resources consumed. Moreover, cloud computing reduces business risks and

maintenance expenses by outsourcing the service infrastructure to the cloud providers

[25]. Figure 2.3 presents the main characteristics, the service and deployment models of

the cloud computing.

Figure 2.3 – Visual model of cloud computing definition.

2.3.2 Main characteristics

Cloud computing provides several features that are different from traditional service

computing. Mell and Grance identified and summarized these features [23], which are:

• On-demand self-service. The notion of self-service on demand is crucial for cloud

users. A user can reserve a set of IT services such as a server and storage network

according to his needs. He can also automatically release resources without requiring

human interaction.
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• Broad network access. All resources must be accessible and available to the user sim-

ply across the network, regardless of the heterogeneous clients’ platforms used (server,

PC, mobile client, etc.).

• Resource pooling. Resources such as network bandwidth, memory, etc. are pooled to

serve multiple users using a multi-tenant model. Most of the cloud providers have a

thousand of servers to enable fast load outs. It is often possible to choose an appropri-

ate geographical area to put the data "near" to users.

• Rapid elasticity. This feature allows users to quickly provision new resources, so that

they can respond to an unexpected rise in load. In other words, the upload of a new

instance of a server is done in a few minutes, shutdown and restart in a few seconds.

All these operations can be carried out automatically using scripts. It is never easy to

foresee the resources that will be needed to set up any computer service, especially

when this need is constantly evolving. Cloud computing thus offers a way to provide

the computing resources needed for an evolution or peak use of a service.

• Measured service. Pay-per-use is a fundamental goal of cloud computing and the

desire of companies that use cloud services. The use of resources and services are au-

tomatically monitored and controlled, providing transparency for both cloud provider

and client. Billing is calculated based on the duration and the quality/quantity of re-

sources used. An off processing unit is not charged.

2.3.3 Service models

Cloud computing can be viewed as a collection of services. NIST (National Institute

of Standards and Technology) defines three models of services for cloud computing as

depicted in Figure 2.4 [23].

2.3.3.1 Software-as-a-Service (SaaS)

The customer is able to use the provider’s applications remotely from the cloud, these

applications are accessible from various client devices. SaaS gives clients complete free-

dom from managing and controlling the underlying cloud infrastructure and the entire

software stack. This service enables users to concentrate on using the features of the

service to achieve their business objectives. Examples of SaaS providers include Sales-
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force.com 1, Rackspace 2 and SAP Business By Design 3.

2.3.3.2 Platform-as-a-Service (PaaS)

The client has the ability to create and deploy on a cloud PaaS infrastructure its own

applications using the provider’s languages and tools. PaaS provides a ready-deployed

software stack that caters to the development and deployment of user’s applications on

a cloud computing environment. Furthermore, it enables developers to completely fo-

cus on application development by eliminating the need for developers to work at the

virtual-level. Examples of PaaS providers include Google App Engine [26], Microsoft

Windows Azure 4 and Salesforce.com 5.

Figure 2.4 – Cloud Service Models.

2.3.3.3 Infrastructure-as-a-Service (IaaS)

It provides access to fundamental resources such as physical machines, virtual ma-

chines, virtual storage, etc. Cloud user does not manage or control the underlying cloud

1http://www.salesforce.com/platform
2http://www.rackspace.com
3www.sap.com/sme/solutions/businessmanagement/businessbydesign/index.epx
4http://www.microsoft.com/azure
5http://www.salesforce.com/platform
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infrastructure but has control over storage, operating systems, and deployed applications

[27]. Cloud user can also choose the main features of network equipment such as load

sharing, firewalls, etc. Examples of IaaS providers include Amazon EC2 6, GoGrid 7 and

Flexiscale 8.

2.3.4 Deployment models

Cloud computing types can be classified in terms of who owns and manages the cloud.

There are four types of cloud computing type as a common distinction including Public

clouds, Private clouds, Hybrid clouds and Community clouds [28]. In Figure 2.5, a gen-

eral overview of cloud deployment models is represented.

Figure 2.5 – Cloud deployment models.

Public cloud:

It allows systems and services to be easily accessible to general public. The cloud in-

frastructure is rendered available to the general public or a large industrial group and is

owned by a company that sells cloud Services.

Private cloud:
6http://www.aws.amazon.com/ec2
7http://www.gogrid.com
8http://www.flexiscale.com
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The Private cloud is an infrastructure that allows systems and services to be accessible

within an organization. It can be managed internally or by a third party, and hosted

internally or externally. It is more secured due to its private nature.

Hybrid cloud:

The Hybrid cloud is a mix of Public cloud and Private cloud. Organizations can perform

very important tasks or sensitive applications on the Private cloud, and use the Public

Cloud for tasks requiring scalability of resources. Hybrid cloud aims at creating a unified,

automated and scalable environment that leverages Public Cloud infrastructure while

maintaining full control over data.

Community cloud:

In a Community cloud, the infrastructure of the cloud can be shared by several organiza-

tions that have similar requirements, thus increasing their scale while sharing the cost.

2.4 Workflow scheduling in cloud computing

2.4.1 Workflow scheduling problem

2.4.1.1 Workflow scheduling definition

A workflow is an organized collection of tasks related to a global processes. It also

defines the order of task to be executed under different conditions, i.e, task synchroniza-

tion and information flow. In workflow scheduling, applications and services can be

decomposed into a sets of smaller components, called subtasks. Different subtasks of a

workflow are assigned to resources to meet a pre-defined objectives. There are various

applications in bioinformatics, astronomy and business enterprise [29] in which a set of

sub tasks is executed in a particular sequence in order to carry out the entire workflow.

Generally, a workflow requires a series of tasks to be executed in a particular fashion,

which have a parent-child relationship. The parent task should be executed before its

child task. A parent task is linked to A child task according to set of rules called con-

straints [30].

In cloud computing, clients submit their tasks through a client terminal to a scheduler

server which works as an intermediate between cloud users and cloud provider. The

scheduler is also in charge of initializing tasks and generating task information table in-

cluding task number, storage space required, task type, etc. Then, the scheduler allocates
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tasks to the appropriate resources for task execution according to the scheduling algo-

rithm. Next, when the execution of tasks is finished, the computational nodes return the

results to the scheduling server, and the data including computing results and operation

information will be sent back to the cloud client. Figure 2.6 illustrates the task scheduling

process.

Figure 2.6 – Workflow scheduling architecture

2.4.1.2 Workflow scheduling problem

Workflows constitute a common model for describing a wide range of scientific appli-

cations in distributed systems [31] [32]. Generally, a workflow is modeled as a directed

acyclic graph (DAG) G = (V, E) with n nodes (or tasks), where ti ∈ V is a task with an

associated computation cost wti ∈ R+, and ei,j ∈ E, i 6= j is a dependency between ti and tj

with an associated communication cost ci,j ∈ R+, case in which ti is said to be the parent

task of tj and tj is said to be the child task of ti. Based on this constraint, a child task

can not be executed until all of its parent tasks are completed. If there is data transmis-

sion from ti to tj, the tj can start only after all the data from ti has been received. A task

which does not have a parent task is called an entry task, denoted tentry, whereas a task

which does not have a child task is called an exit task, denoted texit. Generally, there are

two types of workflow which are simple and scientific workflows. Figure 2.7 indicates

a simple workflow’s DAG. It shows a 12-node DAG, where node 1 is the first task to be

executed, nodes 2 to 11 can only start their execution after task 1 finishes and sends the

data, and node 12 is the last task and can only start its execution after all its parent tasks

finish and send their data. Nodes in the DAG are labeled with their computation cost

(number of instructions) while edges are labeled with their communication cost (bytes to
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transmit).

In addition, there are numerous workflows such as Montage, LIGO, Cyber Shake, SIPHT

and Epigenomics applied in astronomy, earthquake researches and so on, which involve

complex data of different sizes and need higher processing power. Montage [33] is an

astronomy application that was created by the NASA/IPAC Infrared Science Archive as

an open source toolkit that can be used to construct large image mosaics of the sky using

input images in the Flexible Image Transport System (FITS) format. The CyberShake [34]

workflow is a seismology application that calculates Probabilistic Seismic Hazard curves

for geographic sites in the Southern California region.

Figure 2.7 – Example of workflow with 12 nodes

2.4.2 Workflow scheduling objectives

The main objective of the workflow scheduling is to achieve the expected objectives un-

der constraints by dispatching tasks to the appropriate resource for execution. Currently,

the common objectives for workflow scheduling schemes include economic principle,

availability, minimum makespan, maximum resource utilization, security and load bal-

ancing, etc. [35]. The scheduling objectives discussed in this survey is shown in Figure

2.8.

• Cost: The computational nodes may be distributed in multiple locations of the cloud

cluster and the cloud client need to pay a management fees to the cloud provider. Total

cost incurred by workflow execution in cloud can contain many components such as
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Figure 2.8 – Workflow scheduling objectives

compute cost and data transfer cost. Based on [36, 37, 38], the workflow execution cost

has become an important objective in cloud workflow scheduling research.

• Makespan: is the execution time of workflow, which is mainly determined by the exe-

cution time of each task and the communication time between them. In other words, it

is the interval between the start time of the first task and the end time of the last task.

Makespan of a workflow is dominating objective in most scheduling techniques since

the age of cloud computing.

• Load Balancing: It is crucial in large-scale data processing applications, especially in a

distributed heterogeneous context like the cloud. When a workflow scheduling algo-

rithm aims at scheduling tasks in cloud computing, a scheduler should take the load

balancing aspect into consideration to optimize the resource usage and to avoid the

overload of any cloud resources.

• Reliability awareness: It is the probability that task can be completed successfully

within the users’ QoS constraints even if resource or task failures occur. For this pur-

pose, some common approaches such as active replications and backup/restart tech-

niques may be applied in the scheduling algorithms. However, they need to be mind-

ful of the additional costs associated with task replication such as waste of time and

compute resources [39, 40].

• Energy Consumption minimization: The increasing demand of cloud computing mo-

tivates the researchers to make cloud environment more efficient for its users and more
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profitable for the providers. More and more datacenters are being built to cater cus-

tomers’ needs. However, datacenters consume large amounts of energy and this draws

negative attention, which makes energy-efficiency an important concern in cloud com-

puting. Therefore, cloud providers are confronted with great pressures to reduce their

energy consumption. A few algorithms have been recently developed which consider

a combination of contradicting scheduling goals as they try to find a trade-off between

energy consumption performance, and cost. Nevertheless, the authors acknowledge

that the energy optimization is still not applicable in virtual machine abstraction level.

• Security awareness: Attackers may misuse some cloud features and components to

launch specific attacks. So, data security, privacy and governance have become an

important issue when an organization decides to deploy cloud computing solution.

Thus, high quality security services are increasingly critical for processing workflow

applications with sensitive intermediate data. There are many worklfow scheduling

approaches proposed to tackle these security issues [37, 41]. They may handle data

securely by managing sensitive tasks and data in such a way that either resources or

providers with a higher security ranking are used to execute and store them.

• Supporting Service Level Agreement (SLA): The cloud services offered to users con-

sist of a set of components, which may be offered by different providers. SLA is a

document that define the negotiated agreements between service providers and con-

sumers which include the Quality of Service (QoS) parameters, such as execution time.

Thus, supporting Service Level Agreement is one of the major issues in the current so-

lutions of the cloud. Interaction between cloud user and provider to negotiate SLA is

shown in Figure 2.9.

Figure 2.9 – Process of SLA negotiation
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2.4.3 Workflow scheduling techniques

Scheduling techniques have been developed in response to the evolving cloud tech-

nology over the past several years. More information regarding workflows and cloud

resources have become necessary in a scheduling process. This section explores several

workflows scheduling that used algorithms relevant to each of the objectives presented

in the previous section.

2.4.3.1 Cost-aware

Bittencourt et al.[36] presented Hybrid Cloud Optimized Cost scheduling algorithm

for workflow scheduling in hybrid environment, where a private cloud is combined with

a public one, which aims at optimizing the execution cost. The algorithm schedules work-

flows in hybrid cloud by first attempting costless local scheduling using Heterogeneous

Earliest Finish Time (HEFT) algorithm [42]. If the local scheduling cannot meet the dead-

line, it decides which resources should be leased from the public cloud and aggregated to

the private cloud to provide sufficient processing power for executing a workflow within

a given execution time. In the case of selecting resources from the public cloud, authors

take into consideration the relation between the number of parallel jobs being scheduled

and the cores of each processor.

Authors in [43] proposed a trust service-oriented workflow scheduling algorithm. A

trust metric that combines direct trust and recommendation trust is adopted. The weight

of cost is incrementally adjusted until the execution time of all tasks satisfies the deadline.

It is possible to find an optimum solution with the deadline constraint by adjusting the

weights of time and cost effectively. In addition, they provide a balance policies to enable

users specifying different requirements, including time, cost, and trust. A case study was

conducted to illustrate the value of the proposed technique.

In this paper [9], authors presented a cost optimization algorithm for scientific work-

flows scheduling on IaaS (Infrastructure as a Service) clouds such as Amazon EC2. Sci-

entific workflows are modeled as Directed Acyclic Graph (DAG). They assume that tasks

on each workflow are grouped into levels of identical tasks based on mathematical pro-

gramming languages (AMPL and CMPL). They formulated the workflow scheduling as

a mixed integer nonlinear programming problem to solve the scheduling of large scale

scientific applications on hybrid clouds, where the optimization objective is the total cost
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with a deadline constraint.

2.4.3.2 Makespan-aware

Authors in [10] have proposed the Intelligent Water Drops (IWD) algorithm which is

customized for solving job-shop scheduling problems in cloud computing environment.

To increase the diversity of the solution space as well as the quality, five schemes are

proposed. In addition, to improve the original IWD algorithm, an improved algorithm

named the Enhanced IWD is proposed. The optimization objective is the makespan.

Authors demonstrated that the EIWD algorithm can find better solutions for the standard

benchmark instances than the existing makespan-based techniques.

Cloud computing raises new challenges to efficiently allocate resources for the work-

flows and to meet the user’s quality of service requirements. To deal with these chal-

lenges, Lu et al. [44] proposed an adaptive penalty function for the strict constraints

compared with other genetic algorithms. They used co-evolutionary approach to adjust

the cross-over and mutation probability. This helps in accelerating the convergence. This

algorithm is compared with Random, HEFT, PSO and Genetic algorithms using Work-

flowSim simulator on four representative scientific workflows. Experiment results show

that the proposed algorithm produced results better than PSO, GA, HEFT and Random

scheduling algorithms in terms of total execution time and cost.

2.4.3.3 Load-aware

Authors in [45] examined the reasons that cause runtime imbalance and dependency

imbalance in task clustering. Then, a balancing methods are proposed to address the

load balancing problem when performing task clustering for five widely used scientific

workflows. Task clustering is a runtime process, combining multiple short execution time

tasks into a single job, using this process, the scheduling overhead is minimized as well

as the runtime performance is improved. Finally, they analyzed the relationship between

these metric values and the performance of proposed task balancing methods. Simula-

tion results show that the proposed method gives considerable progress over baseline

techniques in terms of load balancing among the set of tasks.

In [11], authors proposed a load balancing scheduling technique for workflows in a

cloud environment. The proposed algorithm works in two phases. It first calculates the
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priorities of all tasks. Then, it selects virtual machines and schedules tasks. The overall

load generated after the execution of current task is also taken into consideration. The

simulated results are compared with the benchmark scheduling heuristic named hetero-

geneous earliest finish time (HEFT) and a variation of the proposed technique. The re-

sults show that the proposed approach remarkably display the performance metrics i.e.,

minimization in makespan and maximization in average cloud utilization.

A balanced scheduler with data reuse and replication for scientific workflows in cloud

computing systems was proposed by Israel Casas et al [46]. They have considered that

the increment of quantity of resources does not guarantee the reduction in execution

time. Next, they proposed a BaRRS algorithm that splits scientific workflows into multi-

ple sub-workflows to balance system utilization via parallelization. BaRRS analyzes the

key application features (e.g., task execution time, dependency patterns and file sizes)

of scientific workflows for adapting the existing data reuse and replication techniques to

cloud systems. They concluded that the optimal number of virtual machines depends on

the workflow characteristics. Experimental results prove the superior performance of the

proposed algorithm compared to the state-of-the-art scheduling techniques.

2.4.3.4 Reliability-aware

Reliability in cloud computing is how a cloud system is able to consistently provide

its services without interruption and failure. However, failures are unavoidable in such

large distributed systems. It is also well studied that cloud resources experience fluctua-

tions in the delivered performance. These challenges make fault tolerance an important

criterion on the scheduling process. Authors in [47] proposed an adaptive and just-in-

time algorithm for scientific workflows scheduling. They used resubmission strategy to

find another suitable process unit to re-execute failed tasks. This algorithm uses both

spot and on-demand instances to reduce cost and provide fault tolerance.

To model the failure characteristics of a cloud environment, authors in [48] developed

a Monte Carlo Failure Estimation (MCFE) algorithm that considers Weibull distributed

failures in cloud. Monte Carlo method can correctly model a complex system and give

results that are near to complex system operations. This approach can also minimize ex-

ecution time by using divide and merge pattern for parallelization. Authors proposed

a Failure-Aware Resource Scheduling (FARS) algorithm that considers the reliability of

task execution while assigning tasks to virtual machines. FARS Algorithm is an extension
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of the famous HEFT algorithm. The proposed algorithm is compared with HEFT using

cloudsim toolkit using makespan as a performance metric. Results show that FARS algo-

rithm performed better than HEFT.

Reliability is widely identified as an increasingly relevant issue in heterogeneous

service-oriented systems because processor failure affects the quality of service. Replication-

based fault-tolerance is a common approach to satisfy application’s reliability require-

ment. In [49], authors dealt with this issue and proposed a heuristic replication for redun-

dancy minimization (HRRM) method. It exhibited a significant improvement in resource

cost reduction and satisfaction of application’s reliability requirement with low time com-

plexity. Experimental results on real parallel applications proved that HRRM algorithm

can generate the minimum redundancy with a short execution time in comparaison with

the state-of-the-art algorithms.

2.4.3.5 Energy-aware

Energy consumption is one of the major challenges in cloud resource allocation pro-

cess. Authors in [50] present a virtual machine (VM) placement scheme which tries to

minimize the energy consumption based on Particle Swarm Optimization (PSO) algo-

rithm. The main advantage of PSO is combining the local and global search methods to

balance the exploration and exploitation. They improve PSO by redefining its parame-

ters, adopting an energy-aware local fitness first strategy to update the particle position

and applying a two-dimensional particle encoding scheme. Finally, this improved PSO is

used to provide optimal VM replacement by considering the energy consumption metric.

In paper [51], authors proposed a new scheduling approach named PreAntPolicy that

consists of a prediction model based on fractals and a scheduler on the basis of an im-

proved ant colony algorithm. This efficient prediction model is developed to assist the

algorithm that decides to turn on/off hosts. It helps to avoid performance and energy

losses, which is triggered by instantaneous peak loads on account of scheduling. In addi-

tion, the scheduler is responsible for resource scheduling while minimizing energy con-

sumption under the Quality-of-Service (QoS) constraints. Experimental results demon-

strate that the proposed approach exhibits excellent energy efficiency and resource uti-

lization.

Traditional research in workflow scheduling mainly focuses on the optimization con-

strained by time or cost without paying attention to energy consumption. Through this
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way, Yassa et al. [12] formalized this problem as a multi-objective optimization problem.

They solved it using both genetic algorithm (GA) and particle swarm optimization (PSO)

algorithm. This approach allows processors to operate in different voltage supply lev-

els by adapting clock frequencies. A compromise between the quality of schedules and

energy is involved by this multiple voltage. Simulation results highlighted the robust

performance of the proposed technique.

2.4.3.6 Security-aware

High quality of security service is increasingly critical for cloud workflow applications.

However, existing scheduling strategies for cloud systems disregard security require-

ments. To address this issue, authors in [37] introduced a security-aware and budget-

aware (SABA) scheduling strategy to minimize the makespan with budget constraint.

This strategy holds an economical distribution of tasks among the available CSPs (Cloud

Service Providers) in the market to provide customers with shorter makespan as well as

security services. Experimental results showed that the proposed scheduling strategy is

highly effective under a wide spectrum of workflow applications. Then, Li et al. [52] pro-

posed a security and cost aware scheduling (SCAS) algorithm for workflow application

to optimize the execution cost with deadline and risk probability constraints in cloud

environment. The proposed approach used the meta-heuristic optimization technique,

particle swarm optimization (PSO), the coding strategy is devised to minimize the total

workflow execution cost while meeting the deadline and risk rate constraints. Results

demonstrated the effectiveness of the proposed algorithm compared to state-of-the-art

algorithms.

Adding security services to applications automatically causes overhead in terms of

execution time. The trade-off between achieving high computing performance and pro-

viding the desired level of security protection imposes a big challenge for workflow

scheduling in cloud computing environment. To solve this problem, Arunarani et al

[13] proposed a security and cost aware scheduling algorithm for heterogeneous tasks in

scientific workflow executed in a cloud. The algorithm is based on the hybrid optimiza-

tion approach, which combines Firefly and Bat algorithms. Experimental results demon-

strated that the proposed algorithm always outperforms the traditional algorithms in

terms of minimizing the total execution cost while meeting the deadline and risk rate

constraints.
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2.4.3.7 SLA-aware

To satisfy the requests of cloud users, services must be provided in accordance with

the required level of quality of service (QoS). QoS is the capability to guarantee a definite

level of performance based on the parameters described by the cloud client in the Service

Level Agreement (SLA). SLA is an authorized agreement that describes QoS in written

form. One of the major challenges in the current cloud platforms is to provide the re-

quired services according to the QoS level expected by the customer. In this paper [53],

authors proposed a SLA-aware PaaS cloud platform called Cloudcompaas. The platform

aimed at providing a high-level metrics which are closer to end-user perception, and a

flexible composition of the requirements of multiple actors in the computational scene.

Moreover, the proposed platform manages the complete resource lifecycle, being able to

sustain heterogeneous utilization patterns. This platform could be dynamically adapted

to correct the QoS violations by using the elasticity feature of the cloud. The simula-

tion result showed that this solution can achieve minimum cost and maximum efficiency,

under highly heterogeneous utilization patterns, for several tested workload profiles.

To tackle the resource allocation problem within a datacenter that runs different types

of application workloads, particularly non-interactive and transactional applications. Garg

et al. [54] proposed a scheduling technique which considers SLA-based VM management

with mix workload. The proposed method predicts the CPU utilization of transactional

applications using the Artificial Neural Network (ANN) model. During the under-load

of transactional applications, the CPU cycles are stolen and allocated to the batch jobs.

This technique does not only maximize the resource utilization and profit, but also en-

sures that the QoS requirements are met as specified in SLA.

In 2013, Wang et al. [14] proposed an adaptive scheduling algorithm for a hybrid

cloud under the desired QoS constraints. They exploited runtime estimation and several

fast scheduling strategies for near-optimal resource allocation, which results in high re-

source usage rate and low computation time in the private cloud. They argued that to

maintain QoS in a hybrid cloud, private cloud resources should be maximally utilized

which will also reduce usage cost in public cloud. The results showed that the perfor-

mance of their algorithm is superior in terms of task waiting time, task execution time

and task finish time compared with FIFO and FAIR scheduler using CloudSim simulator.

Summarization of these techniques is presented in Table 2.1.
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Name of Nature of Optimization Optimization Tool used
algorithm algorithm model criteria
HCOC [36] Single objective Heuristic Cost Real cloud

TWFS [43] Multi-objective Service-oriented cost and Simulation
deadline

Malawski et al [9] Bi-criteria Hybrid HO Deadline Real cloud
and cost

EIWD [10] Single objective Meta-heuristic Makespan Simulation

DCGA [44] Bi-criteria Genitic Deadline WorkflowSim
algorithm and Cost simulator

Chen et al [45] Single objective Heuristic and Load balancing WorkflowSim
task clustering simulator

Madhu et al [11] Bi-criteria Heuristic Load balancing Real cloud
and makespan

BaRRS [46] Multi-objective Exponential Execution time Real cloud
graph based and monetary cost

Poola et al [47] Multi-objective Heuristic Makespan, CloudSim
cost and simulator

fault tolerance
FARS [48] Bi-criteria Monte Carlo Reliability CloudSim

method and makespan simulator
HRRM [49] Bi-criteria Heuristic Cost and Real cloud

reliability
PreAntPolicy [51] Single objective Prediction Energy CloudSim

model simulator
DVFS-MODPSO [12] Multi-objective Meta-heuristic Energy, cost Real cloud

and PSO based and makespan
SABA [37] Bi-criteria Heuristic Makespan Real cloud

and security
SCAS [52] Bi-criteria Meta-heuristic Security Real cloud

2 and PSO based and cost
FFBAT [13] Bi-criteri Hybrid Security CloudSim

optimization and cost simulator
Cloudcompaas [53] Bi-criteria Dynamic Cost and Real cloud

scheduling efficiency
Garg et al [54] Multi-objective Static Resource utilization CloudSim

scheduling and QoS simulator
Wang et al [14] Multi-objective Heuristic waiting time CloudSim

and makespan simulator

Table 2.1 – Summarization of existing workflow scheduling algorithms.
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2.4.4 Workflow scheduling issues

Large-scale scientific workflow applications come up with increasing demands of re-

sources. As the resource demands by large-scale applications deployed on the cloud

increase, workflow scheduling in a cloud environment is becoming a challenging task.

In addition, most of existing scheduling techniques on the cloud are conducted for rela-

tively simple scenarios. For instance, optimizing cost and time from user’s point of view

with satisfying the users’ QoS requirements is considered the main goal of these tech-

niques. Furthermore, resources provided are fixed and unchangeable during the process

of scheduling. There are also some challenges to make workflow scheduling on the cloud

more consistent with the real world scenarios.

1. Dynamic cloud computing environment: The majority of workflow scheduling al-

gorithms are conducted in static cloud environment with fixed parameters such as

the number of virtual machine and network bandwidth. However, cloud comput-

ing is a dynamic environment with variation of CPU frequency during the work-

flow execution. In addition, it is considered as an embodiment of the scalability

which enables users to get precise amount of needed resource to execute tasks in

an economical way. Therefore, an adaptive scheduling solution should be more

effective in solving a real-world problems.

2. Integrated architecture: The second challenge is to integrate the workflow man-

agement system with cloud cluster. We require a workflow management system

that acquires computing resources, managing resources, dispatch tasks, monitors

process, and tracking of resource for effective utilization. A workflow engine should

be designed with strong functionality to deal with large-scale tasks. Also, it must be

user-friendly in which the user can define required parameters easily for workflow

scheduling.

3. Reliability: Despite the attractive features of cloud platform (in terms of scalabil-

ity, dynamicity, and low cost), the inherent unreliability of this system has caused

great threat to the applications due to failures that may occur during the task exe-

cution. Many existing studies on workflow scheduling on the cloud aims at either

optimizing the deadline or the cost, ignoring the necessity for reliability. Therefore,

in large-scale distributed systems, the scheduling of an application must also ac-

count for reliability. Low reliability of cloud will increase scheduling failure rate,

thus the makespan and cost will both increase. Two important issues need to be
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considered in order to enable reliable workflow scheduling: (i) how to evaluate the

reliability of a resource and (ii) how to perform reliable scheduling based on the

reliability information of resources. Thus, considering the reliability of the cloud

workflow scheduling is a challenge in the future research.

4. Security: In QoS challenges, researchers have paid less attention on security as-

pect than others such as makespan and cost. Privacy protection and data security

are vital problems to be solved in scheduling cloud workflows. Therefore, it is of

paramount importance to focus on security challenge, which consequently improve

the degree of trustworthiness of candidate resources. In addition, security can fur-

ther improve the robustness and flexibility of workflow scheduling approaches to

design an effective solution. Thus, how to protect private data in a cloud may be

an issue worth studying.

5. Big data management and workflow scheduling: Currently, massive amount of

data are carried by cloud platforms. In addition, workflow applications are more

data intensive. So, the data resource management, data follow and data transfer

between storage and computing resources are the main bottleneck. It is very crucial

to find an efficient way to manage data needed by the workflows.

6. Support for interactive workflows: An interactive workflow [55] is used to con-

trol user navigation, perform view play, and interact with the user through clicking

on buttons and hyperlinks. Unlike scientific workflows [56], which can be applied

with a complex static scheduling to minimize the makespan [57], interactive work-

flows are involved with human interactions and mainly consider factors such as

response time, stability and security, etc. Since most existing techniques focus on

scientific workflows, so it is necessary to focus on other types of workflows which

are widely existed in practical applications.

2.5 Conclusion

In recent years, workflow scheduling has evolved to become a critical factor that can

significantly affect the performance of cloud computing platforms. This crucial issue is

addressed by many researchers. In this chapter, we have presented the cloud comput-

ing, a relatively recent paradigm which builds on an economic model based on the actual

consumption of users. It has been quickly adopted by many companies to run their ap-
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plications. We have explored various research challenges in the cloud. One of these

challenges is the scheduling of workflows, which is an essential part of workflow man-

agement systems. In addition, we have performed a systematic literature review of the

existing algorithms related to this topic. A description and discussion of these algorithms

is also included and it aims at providing further details and understanding of prominent

techniques as well as further insight into the fields’ future directions. Through extensive

literature survey, it has been found that there are many algorithms for workflow schedul-

ing, and these algorithms somehow differ in scheduling factors and parameters.

However, the existing algorithms fail to either meet the users’ Quality of Service (QoS)

requirements such as minimizing the execution time, satisfying the budget constraint of

an application, or to incorporate some basic principles of cloud computing such as the

elasticity and heterogeneity of the computing resources. To deal with these problems, in

the next chapters, we present our contributions on workflow scheduling in cloud com-

puting based on the following objectives: workload balancing, energy consumption and

makespan.
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Chapter 3

Graph-based Scheduling Algorithm for

Workload Balancing
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This chapter proposes a threshold-based load balancing algorithm, which first balances the

load between datacenters, and afterwards minimizes the overhead of data exchanges. The proposed

approach includes three phases. First, dependencies between the datasets are identified. Second, the

load threshold of each datacenter is specified based on both processing speed and storage capacity.

Third, the load balancing between datacenters is maintained through the threshold parameter.

The heterogeneity of the datacenters together with the dependencies between the datasets are both
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taken into account. The algorithm is evaluated with Matlab on various well-known scientific

workflows of different sizes. The results show that our algorithm performs better than state-of-

the-art algorithms. This chapter is derived from:

– Yassir Samadi, Mostapha Zbakh and Claude Tadonki. "Graph-based Model and Al-

gorithm for Minimizing Big Data Movement in a Cloud Environment". International

Journal of High Performance Computing and Networking. 2018, Inderscience pub-

lisher.

– Yassir Samadi and Mostapha Zbakh and Claude Tadonki. "Threshold-based load bal-

ancing algorithm for Big Data on a Cloud environment". In Proceedings of the 2nd

international Conference on Big Data, Cloud and Applications, 2017, March, p. 18).

ACM. Tetuan, Morocco.

3.1 Introduction

The amount of digital data is growing at an exponential rate due to the increase of

global sources of data (social networks, Internet of Things, etc.). The quantitative ex-

plosion of digital data has forced researchers and developers to find new ways of see-

ing and analyzing the world. The main concern is to discover new orders of magni-

tude concerning acquisition, searching, sharing, storing and analyzing data. These huge

amount of data should be analyzed and processed efficiently for different purposes in

a minimum delay. Several solutions are available to deal with the requirements of big

data [1, 58]. Among these solutions, there are distributed data processing tools such as

Hadoop MapReduce [59] and Apache Spark [60]. They are mainly used for processing

big data, and they work on the principles of parallel computing. So, cloud computing

facilitates movement big data, with the main motivation being the need for greater com-

puting capacity and storage.

Cloud computing is a collection of technologies and service models [23] in which the

use and the delivery of computing resources such as processing capacity, storage and

memory space are all based on the Internet network [61]. This technology can generate

considerable economic benefits [62], knowing that on-demand resources are easy to con-

figure and develop on the Internet, where they are easily accessible. Since many years,

computer scientists have tried to improve the performance of computers and other IT

tools that are used every day. For this purpose, data partitioning and load balancing
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have been implemented as important components of cloud computing. On such a het-

erogeneous platform, task execution time mainly depends on the machine performance.

Heterogeneity between two machines can come from the characteristics of the machines,

but also come from applications that are executed on these machines. In cloud comput-

ing environment, multiple datacenters are usually heterogeneous; each datacenter has

its own characteristics and features such as storage capacity and processing speed [63].

Due to the difference between these characteristics, it is inefficient to have all datacenters

processing or storing the same amount of data [64].

To achieve good performance and scalability, efficient balancing of the workloads

onto distributed and heterogeneous datacenters is necessary. Load balancing in cloud

computing improves the performance of the executed tasks on a geographically dis-

tributed datacenters through multi-datacenters scheduling of clients’ requests. Load bal-

ancer [65] is a term commonly used to describe load sharing technologies which receives

queries from different clients, or even multiple queries from the same client. Further-

more, in cloud computing environment, a workflow is divided into small tasks, which

are assigned to different datacenters in order to achieve a better response time [66]. When

a task requires processing data from a geographically distributed datacenters, migration

or replication of data becomes a challenge and can yield a significant slowdown on the

task execution time, mainly with a huge amount of data [67].

To address the aforementioned problems, this chapter proposes an efficient algorithm

to improve the load balance among datacenters while reducing the overhead of data

exchanges between these datacenters [68]. Technically, in order to reduce data movement

between datacenters, we identify the dependencies between the datasets. If two or many

tasks use the same datasets, they should be assigned to the same datacenter. In order to

improve the load balancing among datacenters, we assign a load threshold that should

not be exceeded in each datacenter based on its processing speed and storage capacity.

Therefore, a given datacenter will process more tasks than another datacenter with a

lower processing speed.

The remaining content of this chapter is organized as follows: Section 3.3 presents

the formulation and our motivation of the studied problem. Section 3.4 explains the

proposed approach together with some illustrative examples. Section 3.5 contains the

experimental results of our algorithm and associated discussions. Finally, in section 3.6,

we draw the conclusion and identify some potential future works.
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3.2 Overview of scheduling algorithms

In this section, we discuss some proposed algorithms related to load balancing and

data placement strategies. In [69], authors have proposed an algorithm to improve the

performance of MapReduce in heterogeneous environments by balancing the load be-

tween slow and fast nodes. The proposed algorithm is implemented with Hadoop Dis-

tributed File System (HDFS). The datasets were distributed and stored on several het-

erogeneous nodes according to their computation capacities. The result of the proposed

approach gives a better performance compared to other load balancing decisions. How-

ever, this approach focuses only on the load balancing in a heterogeneous cluster and it

considers only processing speed. Nevertheless, there are another important factors, that

we should take into account, which could affect the MapReduce performance such as the

storage capacity and the cost of each node in a heterogeneous cluster.

The work in [70] presents a solution to reduce the data movement among geograph-

ically distributed datacenters in order to efficiently schedule scientific workflows. In the

proposed approach, two strategies are implemented. The first one is an initial data place-

ment strategy to resolve the input data transfer problem based on the dependency and

the size of the datasets. The second one is a multilevel task replication strategy for reduc-

ing the intermediate data transfers that are generated during runtime stage. To demon-

strate the effectiveness of the initial data placement strategy, the results are compared

with a random strategy where initial datasets are randomly placed in the available dat-

acenters. To check the effectiveness of the multilevel task replication strategy, the results

are compared with "No Task Replication" and "One Level Task Replication" strategies

[71]. This approach gives better results via the reduction of data movement up to 15%.

However, the load of data processing became unbalanced.

Authors in [72] have proposed a genetic-based algorithm to find the best strategy for

moving data among datacenters that can reduce data movement while maintaining load

balance. The approach uses a genetic algorithm that minimizes the search time to find

an optimal strategy of moving data. Simulation results are compared with the k-means

algorithm [73]. The latter, shows that there is no significant difference in the number

of data movements between the two approaches. However, in terms of load balancing,

there is a large difference between them, in such a way that the proposed approach gives

better results than the k-means algorithm.
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To find the minimum cost of data aggregation from geographically distributed dat-

acenters on a single datacenter, a graph model approach of geo-distributed datacenters

has been proposed [74]. The approach considers a system of geographically distributed

datacenters as a directed complete graph. Each node in the graph represents a data-

center. These nodes are connected via high-speed links that represent the edges of the

graph. Each link is given a weight, which is the cost of transferring data from one node

to another. The result of the simulation shows that the proposed approach gives good re-

sults in terms of minimizing the cost of data aggregation among distributed datacenters.

However, this approach does not take into account datacenter characteristics except for

the cost of storing data. There are other factors that can affect the cost of data aggrega-

tion between geographically distributed datacenters such as the storage capacity and the

speed of data processing of each datacenter.

The main drawback of these approaches is that they do not deal with data movement

and load balancing problems at the same time which can negatively affect the system per-

formance. Authors in [72] have treated both problems. However, the size of the datasets

is not taken into account, which does not guarantee that the volume of data movement

is reduced accordingly. In some cases, a large dataset may have low dependency but its

size will be the dominant factor which can lead to lengthen the data transfer time.

In a cloud computing environment, the data processing capacity of each datacenter

can vary from one datacenter to another. Datacenters at high speed must be loaded more

than datacenters at low speed. Hence, the efficient use of cloud computing systems re-

quires that the load between nodes should be well-balanced. When the load changes

unpredictably during the execution process, a load balancing strategy is required. Fur-

thermore, in scientific workflows, huge volumes of data might be migrated from one

datacenter to another geographically distributed. So, a large amount of bandwidth con-

sumption is done because of data migration between datacenters which can deteriorate

the system performance. Therefore, if two or more datasets are always used together

by many tasks, they must be stored at the same location for reducing the frequency of

data movement. Thus, an efficient algorithm to migrate data between geo-distributed

datacenters is needed. The major motivation of our work is to simultaneously combine

load balancing and the management of large-scale data movement in a cloud computing

environment, in order to improve the performance of such systems.
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3.3 Problem formulation

3.3.1 Problem statement

Cloud computing platform is generally composed of several datacenters (DC) located

in different sites. In addition, many instances may be used at the same time to run tasks

which may require many datasets. We assume that a cloud cluster is built with a fixed

number of interconnected datacenters. Without any loss of generality, we denote the set

of datacenters as DC = {DC1, DC2, · · · , DCn}, where n is the total number of datacenters

in a cloud cluster.

Set D = {d1, d2, · · · , dm}, where m is the number of datasets. We also assume that

each dataset di has two attributes (Ti, Si), where Ti is the set of tasks that use di, and Si

is the size of di. A workflow application is composed of several tasks which may require

one or multiple input datasets at runtime stage.

3.3.2 Graph model for large-scale data movement

Our approach represents a workflow application as a Directed Acyclic Graph (DAG),

G = (Ds ∪ T, E), where Ds is the set of existing datasets, T is the set of tasks, and E is

the set of edges {ei,j, (1 6 i, j 6 m)}. Each edge ei,j = (di, dj) has a weight, which

corresponds to the number of tasks that require dataset di and dj at the same time

as shown in Figure 3.1. This weight is equal in both directions for a pair of datasets.

Furthermore, the size of datasets might not be the same.

The data movement problem can be defined by first taking the set of datasets and

tasks as input, and then finding the dependencies between datasets, and after that, stor-

ing them on the set of datacenters based on these dependencies. The data movement

strategy aims to reduce the frequency of data migration. The load balancing problem can

be defined by quantifying each datacenter in terms of storage capacity and speed of data

processing, in order to assign datasets for each datacenter based on its capacity.

3.4 The graph-based proposed approach

In this section, we propose an algorithm to solve the above mentioned problems. The

algorithm has three steps. In the first step, we analyze the dependencies between tasks
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Figure 3.1 – Graph model of dependency between the set of datasets

and datasets in order to assign datasets into different datacenters based on these depen-

dencies. In the second step, we specify the load threshold of each datacenter based on

its processing speed and storage capacity. In the third step, we balance the load among

datacenters based on the load threshold.

3.4.1 Finding datasets dependencies

A data placement strategy is dedicated to efficiently store datasets into datacenters

in order to reduce the data movement during the runtime stage. In cloud computing

environment, the infrastructure is hidden to users [75], hence, the system decides where

to store data. In our strategy, we initially adapt a dependency matrix to represent the

affinity between the set of datasets.

Cloud workflows can be complex, the execution of one task might require many

datasets. Furthermore, one dataset might also be required by many tasks. We say that

two datasets di and dj are dependent on each other if there are tasks that require both

di and dj. The dependency degree is the total number of tasks that use both di and dj

simultaneously. Mathematically, the dependency degree between the set of datasets is

formulated as follows:

Wi,j = dependency_degreei,j = card(Ti ∩ Tj) (3.1)
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Ti is the set of tasks that use di and Tj is the set of tasks that use dj. The dependency

matrix is defined by: DM = {Wi,j; (1 6 i, j 6 m)}. The elements in the diagonal of the

matrix DM show the number of tasks that use this dataset. DM is a symmetric matrix of

dimension n× n where n is the total number of existing datasets.

We store datasets that have the highest dependency degree in the same datacenter

based on the total number of tasks that use these datasets as shown in formula 3.2.

Max(Wi,j) (3.2)

Where Wi,j = card(Ti ∩ Tj)

We proceed as follows :

• First of all, we create a dependency matrix through counting and making in each

(DMi,j) the value of tasks’ number that use di and dj at the same time.

• Then, for placing the dependent datasets with each others, we specify the set of dataset

that have the maximum dependency degree.

• We assign the same index for these datasets on L vector. We denote the vector of indices

as L in which we put the same value for dependent datasets as shown in algorithm 1.

• After that, we exclude these datasets from the initial set of datasets (D) in order not to

treat them again.

• Next, in the same way we find the next maximum dependency degree for the rest of

datasets and assign to them the same index on the L vector, and so forth.

• We obtain the L vector in which the dependent datasets have the same index as shown

in Figure 3.2.

• Finally, we store the datasets that have the same index in L vector in the same datacen-

ter.

Algorithm 1 represents the pseudo code of datasets dependencies algorithm while

Table 3.1 displays all the denotations of our algorithms.

As an example, we assume that we have four datasets (d1, d2, d3 and d4), and we have

three datacenters (dc1, dc2 and dc3). We have also three tasks to be processed (t1, t2 and

t3), t1 requires d1, d2 and d3, t2 requires d2 and d3, t3 requires d1 and d4. Based on formula
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D Set of datasets
T Set of tasks
di Dataset
Mouv Number of datasets movement among datacenters
L List of dependent datasets
tk Task
DM Dependency Matrix
NCD List of non-clustered datasets
Max Maximum value of dependency matrix DM
NDS Number of datasets
I Set of the indices
DCT List of datacenters threshold
SDC Data center’s storage capacity
d_size Size of dataset
dd Set of deppendent datasets
DCU List of storage capacity of each datacenter that can be used
DCI List initial of storage capacity of each datacenter that can be used
LDS List of datasets size
ndc New datacenter
M Set of datacenters with initial list of datasets
DCA List of datacenters’ average usage rate

Table 3.1 – Summary of the main notations used in the chapter.

3.1, the dependency matrix DM can be presented as follows:

DM =



d1 d2 d3 d4

d1 2 1 1 1

d2 1 2 2 0

d3 1 2 2 0

d4 1 0 0 1


We calculate the L vector (Figure 3.2) based on dependency matrix. In other way,

we put the same index in the L vector for datasets that have the maximum value in the

dependency matrix and so on.

Based on the dependency matrix DM, datasets d2 and d3 have the maximum value

in the matrix which is 2. So, we put the index 1 in the L vector for these datasets. Then,

we move to the next value in the matrix which equals 1 that represents the dependency

between datasets d1 and d4 and we increment the index in L vector by 1. So, we put the

index 2 in the L vector for datasets d1 and d4 as shown in Figure 3.2.

44



Algorithm 1: Datasets dependencies algorithm
Input: D = (d1, d2, · · · dn): Set of datasets

T = (t1, t2, · · · tm): Set of tasks
DMi,j : Initalized dependency matrix

Output: L : Vector of depedent datasets
mouv : Nbr of datasets movement.

1 Step I: creation of dependency matrix (DMi,j)

2 for each di in D do
3 for each dj in D do
4 for each tk in T do
5 if tk needs (di and dj then
6 DMi,j)++

7 Step II: assigning the same index for the dependent datasets in L vector
8 Max = 0, h = 0 ,mouv = 0 // h: index attributed for each dependent datasets
9 while (min(NCD) == 0) do

10 // NCD(i)==0 means that di is not clustred yet.
11 h← h + 1
12 for each di in D do
13 for each dj in D do
14 if (NCD(i) and NCD(j)) == 0 and Max ≤ DMi,j then
15 Max ← DMi,j

16 I = zeros(1, NDS)
17 I(i)← 1 and I(j)← 1

18 for each di in D do
19 if (I(i) == 1) then
20 L(i)← h //assigning the same index for the dependent datasets.
21 NCD(i)← h

22 Step III: Counting datasets movement among datacenters.
23 for i from 1 to NDS do
24 for i from 1 to NDS do
25 if ((NCD(i) 6= NCD(j)) and DMi,j ≥ 1) then
26 mouv← mouv + 1

27 return L and mouv.

From the values of the L vector, we conclude that we should store d2 and d3 in the

same datacenter as well as d1 and d4. The number of data movement in this example is

equal to 1; therefore, we should move dataset d1 to the datacenter that contains datasets

d2 and d3 to execute task t1.
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Figure 3.2 – List of dependent datasets

3.4.2 Threshold assignment

The threshold represents the storage percentage that each datacenter should not ex-

ceed. We will attribute a differential load threshold for each datacenter. In practice, each

machine on the cloud does not necessarily have the same characteristics. With differen-

tial load threshold’s type, each datacenter will take a different load threshold based on

its storage capacity and data processing speed. Our allocation relies on the processing

speed, but respects the storage capacity constraint.

For quantifying and evaluating the performance of each datacenter, we conside<red

the HPC Challenge (HPCC) 1, which is a useful computer benchmarking tool. It con-

sists of seven separate workloads building on the success of the TOP500 list Linpack

HPL based workload 2. The HPC Challenge (HPCC) benchmark suite is designed to

give a picture of overall supercomputer performance including floating-point computer

power, memory subsystem performance and global network issues 3. For example, HPC

Challenge measures the performance of the system’s processors, network bandwidth,

memory, and network latency. Authors in [76] showed that HPC Challenge benchmark

provides a better understanding of an application performance on the computing sys-

tems and it is a better indicator of how high-end computing systems will perform across

a wide spectrum of real-world applications.

In our work, we first used the HPL (High-Performance Linpack Benchmark) [77] mea-

surement as a performance value to know the real datacenter performance on the HPCC

benchmark. Second, we recorded the execution time of each datacenter based on the

output of HPL benchmark. Third, the shortest execution time is used as a reference to

normalize the execution time measurements, in such a way that we attributed randomly

the highest threshold to the datacenter that has the shortest execution time. Then, the

normalized values are used to assign an appropriate load threshold for each datacenter.

1http://icl.cs.utk.edu/hpcc/
2https://www.top500.org/lists/
3http://icl.cs.utk.edu/hpcc/pubs/
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As a simple example in Table 3.2, we assume that we have three datacenters on which

we run HPC Challenge benchmark. The column "Response time based on HPC Chal-

lenge" represents the obtained results. The execution time of datacenters 1, 2 and 3 are

60, 30 and 90, respectively. The execution time of datacenter 2 is the shortest. Therefore,

the normalized value of datacenter 2 is set to 1, which becomes a reference used to de-

termine the normalized values of the remaining datacenters. The normalized values of

the datacenters 1 and 3 equal the ratio of the response time of these datacenters to the

response time of the reference datacenter (datacenter 2). Thus, the normalized values of

datacenters 1 and 3 are (60/30=2) and (90/30=3) respectively. Based on column "Nor-

malized Values", we attribute randomly the highest threshold for the datacenter 2, which

is 60% in this example. Then, we divide the threshold of the highest speed datacenter

(datacenter 2) on the normalized values of datacenters 1 and 3. Thus, the thresholds of

datacenters 1 and 3 are (60%/2= 30%) and (60%3=20%) respectively as shown in Table

3.2.

Datacenters Response time based Normalized Values Differential Threshold
on HPC Challenge (s)

1 60 2 30%
2 30 1 60%
3 90 3 20%

Table 3.2 – Allocation of differential thresholds for each datacenter

3.4.3 Load balancing

Each datacenter is now initialized with a load threshold. For balancing the load among

datacenters of the whole cluster, we proceed as follows:

• The load of each datacenter is defined by the sum of the size of the datasets currently

stored in this datacenter.

• We make a descending sort for the list of dependent datasets in terms of size.

• We carry out a special descending sort for the list of datacenters in term of storage

capacity by prioritizing those that do not contain any dataset.

• For each dependent datasets, we look for a datacenter that has a threshold higher than

the size of the dependent datasets.

• When datasets are stored, we check the load of datacenters, or the usage rate of their
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resources, to verify that they do not exceed their threshold.

• If the threshold is not exceeded, we continue to store the rest of datasets.

• When the threshold is exceeded, we migrate the smallest dataset among the set of de-

pendent datasets that have saturated the datacenter to another one with a low work-

load.

Algorithm 2 shows the pseudo code of load balancing among datacenters.

Algorithm 2: Load balancing algorithm
Input: DC = (dc1, · · · , dcn): Set of datacenters

D = (d1, d2, · · · dn): Set of datasets
DCT : List of datacenters threshold
SDC : datacenter’s storage capacity
LDS : List of datasets size
L : List of dependent datasets

Output: M, Sdt: Std of the set of datacenters.
1 Attribute a load threshold for each datacenter.
2 Step I: Specify the storage capacity that can be used for each datacenter
3 for each dc in DC do
4 DCU(dc)← SDC(dc) ∗ DCT(dc)/100

5 Descending sort of the dependent of datasets.
6 Special descending sort of datacenters.
7 Step II: Storing the set of dependent datasets into the same datacenter
8 for each (dd in L vector) do
9 while (( dc in DC) and (the set of dd are not stored yet )) do

10 if ( ∑
dc∈ L

(LDS(dd(dc))) < DCU(dc)) then

11 storing the list of depedent datasets into datacenter M(dc).
12 DCU ← DCU(dc)− ( ∑

d∈ L
LDS(dd(d))

13 if ( ∑
d∈ L

LDS(dd(d)) > DCT(DC)) then

14 Transfer the smallest dataset from the list of depedent datasets that has
saturated the datacenter to another datacenter with a low workload

15 Step III: Compute the standard deviation of the set of datacenters (M)
16 for each dc in DC do
17 DCA← DCU(dc)/DCI(dc)
18 Std(DCA)

19 return M and Std.

As a simple example shown in Table 3.3, we assume that we have four datacenters
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with different characteristics and ten datasets with different sizes. For simplicity, we

also assume that the storage capacity of each datacenter is 100 GB. We attribute a load

threshold to each datacenter based on step 2 "Threshold assignment" of our proposed

approach.

We assume that the result of datasets dependencies algorithm is as follows: each list

contains the datasets that have the same index in L vector. So, the first list contains

datasets d1 and d2 . The second list contains d3, d4 and d5 . The third list contains d6 and

d7 . In the last list, we have datasets d8, d9 and d10.

– L1 = {d1, d2}

– L2 = {d3, d4, d5}

– L3 = {d6, d7}

– L4 = {d8, d9, d10}

Before applying our load balancing Algorithm, we store the list of datasets in the set of

datacenters. For example we store the first list in DC1, second list in DC2, third List in

DC3 and fourth list in DC4 as shown in Figure 3.3.

Datacenters Datacenters’ load Datasets The size of different
thresholds Datasets (GB)

DC1 60%
Dataset1 10
Dataset2 14
Dataset3 20

DC2 64%
Dataset4 10
Dataset5 30
Dataset6 14

DC3 70%
Dataset7 38
Dataset8 18
Dataset9 21

DC4 50% Dataset10 11

Table 3.3 – Characteristics of small Cloud with four datacenters and ten datasets

It appears that the datacenter DC4 is more over-loaded than other datacenters. In

order to overcome this problem, we apply our load balancing algorithm. We first do a

descending sort of the list of dependent datasets in terms of size. After that, we carry

out a special descending sort of the list of datacenters in terms of storage capacity by

prioritizing those that do not contain any dataset. Then, we assign the list of depen-
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Figure 3.3 – Initial placement of datasets

dent datasets with highest size (second list) to the datacenter that has the highest storage

capacity (DC3) and so forth. Figure 3.4 shows that the load of datacenters became well-

balanced.

Figure 3.4 – Clustering the dependent datasets into datacenters based on load balancing algorithm

According to this example, once the datasets have been distributed within different

datacenters, the analysis of resources’ usage level of datacenters has been carried out

before applying our load balancing algorithm. We notice that the load among datacenters

is unbalanced. In fact, the aim of our work is to ensure the set of datacenters are not over-

loaded, or even in an idle state while minimizing data movement. As shown in Figure

3.5, datacenters DC2 and DC4 are more loaded in comparison with other datacenters.

So, before storing datasets in datacenters, we carry out a descending sort of the list of

datasets and a special sort of the list of datacenters as mentioned in subsection 3.4.3.

Thus, an accurate load balancing of data distribution among datacenters is obtained on

the cluster as shown in Figure 3.6.

50



 0

 20

 40

 60

 80

 100

DC1 DC2 DC3 DC4

%
re

ss
o
u
rc

es

Datacenters

Maximum threshold(%)
resource usage

Figure 3.5 – Initial data placement
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Figure 3.6 – Load balancing between datacenters

3.5 Experimental evaluation

3.5.1 Experimental settings

To carry out the evaluation as objective as possible, we first consider a randomly gen-

erated scientific workflows. A random workflow graph generator was implemented to
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generate DAGs with various characteristics specified by several input parameters, in-

cluding: (1) number of tasks in the graph; (2) number of input datasets; (3) range of

execution time for the tasks; (4) range of data size for input datasets and output datasets;

(5) maximum dependency degree between datasets and tasks in the graph. All of the

experiments are implemented in Matlab R2009b and tested on an Intel(R) Core(TM) Dual

i5-4200M CPU 2.50 GHz with 4G RAM. We carried out the simulation on 20 datacenters

as the total number of datacenters that we can use in this experiment. We limited the

amount of storage that the datacenters had available during the experiment in range [500

GB, 620 GB]. The sizes of input datasets are set by the range [1GB, 20GB]. Such parameters

configuration may not be realistic in the real world but the only aim of this configuration

is to demonstrate the quantitative nature of our work. We generate randomly the number

of datasets as input of each task on the workflow. Each task can take a maximum of 10

datasets as input. We can control the complexity of the simulation by changing the num-

ber of datasets. Every dataset will be used by a random number of tasks. We can also

control the complexity of the relationships between datasets and tasks by changing the

range of this random number. To prevent biasing to a particular strategy, we ran 10 tests

under the same configuration and took the average value as the final result. Then, the

simulation software calculated the total data movement amount on the datasets layout.

3.5.2 Performance metrics

Our proposed approach aims at balancing the load between datacenters as well as to

reduce the overhead of data exchanges. Therefore, to evaluate the performance of our

algorithms we used the following two metrics:

3.5.2.1 Total data movements

The traditional way to evaluate the performance of a workflow system is to record and

compare the execution time. However, in our work we count the total data movement

instead. Note that to obtain the execution time, we need the processor speed, band-

width, data management and scheduling strategies as well as other parameters. Since

the main objective of the data placement algorithms is reducing the total amount of data

transferred, we directly take the number of datasets that are actually moved during the

runtime stage as a measurement to evaluate the performance of our algorithms. Next, we

compare the experimental results with Genetic [72] and k-means algorithms [73] which
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serve as a benchmarking references. In a cloud computing environment, if the total data

movement has been reduced, the execution time will be reduced accordingly. Further-

more, the cost of data transfer will decrease too.

3.5.2.2 Index of load balancing

The next set of experiments test the quality of the clustering in terms of accuracy and

standard deviation. Standard deviation is related to how much variation from the aver-

age (mean) is caused by clustered data. In our case, the standard deviation is the square

root of variance of the storage capacity used in each datacenter.

3.5.3 Performance evaluation

Each computation was performed ten times. Thus, the average result values of running

10 different types of workflows with the same parameters are reported in this paper for

both data dependency and load balancing algorithms.

We ran the test workflows on 20 datacenters. We used different numbers of datasets

in the range of [40, 120] as shown in Figure 3.7a. We can see that when the number

of datasets increases, the data movement becomes more complex and its total number

increases too. Figure 3.7b shows the data movement among datacenters when we run

workflows on different numbers of datacenters.

From the results shown in Figure 3.7, we can observe obvious advantages of our data

placement strategy (GM) compared to other strategies GA and k-means [72, 73] in terms

of total data movement. When we increase the number of datasets, data movement in-

creases too as shown in Figure 3.7a. However, it can be seen that our approach (GM)

is always better than the other strategies. Our approach caused 100.33 movements of

datasets on average whereas the GA and k-means algorithms produce 125.22 and 129.55

datasets movements on average, respectively. Our algorithm reduces the amount of data

movement by 19.87% and 22.55% in comparison with GA and k-means algorithms, re-

spectively. In the second experiment, we fixed the total number of datasets to 100 and

we varied the number of datacenters within range [5, 20] as shown in Figure 3.7b. From

this figure, we observe that all data placement strategies continuously increase the total

amount of transferred data among datacenters with the increase of the number of data-

centers (from 5 to 20 with 5 as the increment). This is because of the increasing number of

datacenters which means that the original input datasets are distributed more sparsely, so
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Figure 3.7 – Data movement among datacenters with different number of datasets and datacenters

a specific dataset may be placed on a wrong datacenter with a relatively higher probabil-

ity, thus more data movement is required. The results show that our algorithm is better

than GA and k-means algorithms in reducing data movement at different numbers of

datacenters. On average, compared with GA and k-means algorithms, 18.8% and 21.12%

amount of data movement have declined respectively.

We attribute the efficiency of our proposed strategy to the following reasons: First,

our strategy clusters the input datasets according to their dependency and then places
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the clustered data on more powerful datacenters with higher priority (subject to stor-

age limitation). Therefore our strategy helps: (1) to aggregate the datasets that are re-

quired by the same tasks, so when tasks are scheduled, no required datasets or just a

few are necessary to transfer from some datacenters to another ones; (2) to more likely

store datasets in datacenters with higher computation capability, which makes power-

ful datacenter processes more data/tasks, and hence shortens the whole execution time.

Second, our strategy takes data size into consideration when calculating the weight of

dependencies, therefore it transfers less volume of data compared to other strategies.

Figure 3.8 shows the average standard deviation of running 10 test workflows with

different number of datasets on 20 datacenters. We could conclude from the result that

our algorithm (GM) can effectively balance the load among datacenters compared to the

K-means algorithm and has almost the same result with GA algorithm mainly in the case

of large number of datasets. It is well known that the K-means algorithm is a standard

clustering algorithm. Datasets are relatively concentrated in few datacenters which leads

to let a lot of datacenters to be idle [78]. This is the reason that the index of load balancing

of K-means algorithm is very high.
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Figure 3.8 – Standard deviation of workload among datacenters with different number of datasets

The next experiment is undertaken to measure the CPU time consumption for cluster-

ing the datasets into the set of datacenters. The CPU time consumption is timed as "how

long it is necessary for the clustering algorithm to converge". Given that the datasets are

of fixed volume, CPU time consumption is related directly to the speed of the clustering
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operation.

Our algorithm compares data in O(n3) times in each iteration, so it takes a lot of time

to converge in comparison with K-means and Genetic algorithms as shown in Table 3.4.

The traditional K-means and genetic algorithms converge easily to a local optimum, so

the index of load balancing is worse than our approach as shown in Figure 3.8.

CPU time consumption(s)
Algorithm Best Worst Average

GM 46.15 53.425 49.18
K-means 34.896 38.963 36.987

GA 27.245 31.621 29.63

Table 3.4 – CPU time consumption for clustering the datasets into the set of datacenters

3.5.4 Discussion

In K-means clustering [60], the datasets are placed based on the dependency between

them and the target datacenter. But it can happen that many datasets have high de-

pendency on one datacenter. This might result in a noticeable unbalanced load among

datacenters. In the data placement strategy based on Genetic Algorithm, the placement

strategy is represented as a gene. Initially, they consider that each datacenter is assigned

a single dataset. After the mutation step, the correctness of the gene is checked to verify

if it is in accordance with the fitness function or not. That means some gene code may

be invalid or unacceptable, which can overload some datacenters [79]. When one data-

center is overloaded, K-means clustering and Genetic Algorithms need to reallocate the

datasets to other datacentres. The reallocation will cause extra data movement, and will

also delay the execution of the workflow.

In our proposed approach, we specify the load threshold of each datacenter based

on both the processing speed and the storage capacity. We placed the datasets based on

these thresholds, which can effectively balance the load and reduce the number of data

movement among datacenters compared to other algorithms.

3.6 Conclusion

In this chapter, we addressed the problems of big data movement and load balanc-

ing among datacenters in a cloud environment. We first proposed an algorithm based
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on dependency matrix for storing datasets that have a maximum dependencies in the

same datacenter. Then, we used HPC Challenge benchmark to quantify each datacenter

performance, in order to estimate a load threshold for each datacenter, taking into con-

sideration its processing speed and its storage capacity. To improve the distribution of

the load among datacenters, we proposed a threshold-based load balancing algorithm.

The results show that our approach gives good results in both load balancing and data

movement among datacenters.

The increasing demand of cloud computing motivates researchers to make cloud

environments more efficient for its users and more profitable for the providers. More

and more datacenters are being built to cater customers’ needs. However, datacenters

consume large amounts of energy, and this draws negative attention. Therefore, cloud

providers are confronted with great pressures to reduce the energy consumed by data-

centers. To address this issue, we introduce, in the next chapter, an energy-efficiency ap-

proach to deal with the energy consumption problem. This approach reduces the amount

of active nodes required to process a heterogeneous workload without degrading the ser-

vice level in order to reduce the energy consumption by datacenters at the runtime stage.
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Chapter 4

Matching Game Based Scheduling for

Energy Efficiency
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In this chapter, we propose an energy-aware allocation algorithm named DT-MG, which aims

at reducing energy consumption and maximizing the efficiency of the available resources. First,

we use the Matching Game Theory model for assigning tasks to datacenters. Then, we study the

optimal usage of the resources by migrating all tasks of the physical machines under sub-regime

to another ones, followed by their systematic switch to standby mode. Experimental results show

that our proposed approach reduces the energy consumption and the number of task migration

while maintaining the offered service level in comparison with some existing techniques. This

chapter is derived from:

– Yassir Samadi, Mostapha Zbakh and Claude Tadonki. "DT-MG: Many-to-One Match-

ing Game for Tasks Scheduling towards Resources Optimization in Cloud Comput-

ing". International Journal of Computers and Applications. 2018. Taylor and Francis

publisher.

4.1 Introduction

Cloud computing is a newly emerged computing platform that builds on the latest

achievements of diverse research areas [23]. On a cloud computing platform, resources

are provided as services and by needs, so it should meet the cloud clients’ requirements

defined in Service Level Agreement (SLA). The cloud clients are interested in reducing

the overall execution time of their tasks. From the cloud computing point of view, pro-

viding a short response time for parallel jobs being executed on thousands of machines

raises a significant scheduling challenge. Many problems about scheduling tasks on het-

erogenous systems are NP-hard [80], and many meta-heuristic algorithms have been pro-

posed to solve it. The problem of task scheduling in cloud computing can be considered

as assigning optimally a set of tasks to the available resources to meet the cloud clients’

requirements.

Generally in cloud computing, a file is split into many small blocks which are stored

on servers [81]. For fault tolerance, all blocks are replicated and distributed on the clus-

ter. To process the file, the scheduler divides a job into several tasks, each of which is

assigned to a server in order to simultaneously process a block of files [82]. In this mode,

all tasks can run in parallel to accelerate the execution of the whole job. Furthermore,

if a task reads its block from the local server disk, it is called data-local; otherwise, the
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task is called data-remote if it retrieves a copy of its block from a remote datacenter. Data

transfer in cloud computing has a significant impact on system performance such as in-

creased execution cost and time. In addition, it is difficult to manually assign tasks to

heterogeneous computing resources [83, 84]. The increasing demand of cloud comput-

ing motivates researchers to make cloud environments more efficient for its users and

more profitable for the providers. More and more datacenters are being built to cater

customers’ needs. However, datacenters consume large amounts of energy, and this is a

serious concern. Hence, cloud providers are confronted with great pressures to reduce

the energy consumed by datacenters. To address this issue, efficient algorithms to reduce

energy consumption and to guarantee quality of service (QoS) are needed [85].

In order to provide an energy-performance trade-off, authors in paper [86] have pro-

posed a heuristic technique. It maximizes the sum of the Euclidean distances of the cur-

rent allocations to the optimal point at each server. In case of a lower resource utilization,

the idle power is not effectively amortized and hence the energy per transaction will be

high. On the other hand, high resource utilization leads to performance degradation

which causes high energy consumption due to longer execution time.

Kim et al. [87] have proposed an algorithm for reducing power consumption in VM

allocation process. They modeled a real-time service as a real-time virtual machine re-

quest based on Dynamic Voltage and Frequency Scaling (DVFS) algorithm. They claimed

that their algorithm could reduce the power consumption, which in turn decrease the

electricity cost. However, contrary to us, they have not considered the SLA violation.

Authors in paper [88] found that using proper resouce allocation policy can signifi-

cantly reduce the total energy and financial costs. They attempted to analyze how various

allocation policies affect energy consumption as well as CPU load on a real cloud envi-

ronment based on dynamic website loads. They defined an architectural framework for

energy-efficient cloud computing. The proposed energy-aware allocation policy provides

resources to cloud clients in a way that it reduces energy consumption of the datacen-

ter while delivers the negotiated Quality of Service (QoS). The experiment results have

demonstrated that the proposed model offers significant cost savings and demonstrates

high potential for the improvement of energy efficiency.

The main drawback of all aforementioned studies is that they consider either energy

consumption or SLA violation as their main objective and develop their solutions based

on that. Unlike them, our goal is to reduce the number of active machines and decline
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the energy consumption as well as meet the QoS requirements using novel multi-criteria

algorithm. Another weakness of the aforementioned studies is the inability to handle

multiple system resources other than CPU whereas our approach considers many impor-

tant factors including CPU, RAM and storage capacity. In addition, the workload on the

cluster machines is usually either lower or higher than their computing capability, which

makes them either under-loaded or over-loaded [89]. The waste of resources due to many

under-loaded machines is an important factor for service providers. It is also a concern

for green cloud computing to save energy [90]. Authors in [91] have demonstrated that

an important improvement can be achieved using 20% of resources less to do the same

work. In other side, the over-loaded machines may cause a poor application performance

and violate the Service Level Agreements (SLAs) [92]. Hence, efficient resource allocation

strategies are needed to maintain the load well-balanced among the cluster machines as

well as to meet the QoS requirements of cloud clients.

To deal with the aforementioned problems, we proposed an algorithm that efficiently

assigns tasks to the set of machines (PMs) to minimize the overhead of task migration

and fully use the available resources [93]. In other words, the main idea of our approach

is to develop a new load balancing algorithm that manages assigning tasks to physical

machines (PMs) in optimal manner, then reduces energy consumption by the set of PMs

using Matching Game theory [94].

The rest of the chapter is organized as follows: Section 4.2 introduces a backgound

on matching game theory. Section 4.3 presents the architectural framework and system

model used in this chpater. Section 4.4 presents the problem formulation and our ob-

jective function. Section 4.5 proposes a load balancing technique for tasks scheduling

towards resources optimization in cloud computing. Section 4.6 details the performance

evaluation of our approach. Section 4.7 concludes this chapter by highlighting our con-

tributions.

4.2 Background on matching game theory

Generally in game theory, there are three types of matching problems: one-to-one

matching problem (the stable marriage problem), many-to-one matching problem (the

college admission problem), and many-to-many matching problem (the firm worker prob-

lem). In this chapter, we are interested by the many-to-one matching problem, but we will

present, first, a variant of one-to-one matching problem as necessary background for our
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idea.

The Stable Marriage problem (SM) was introduced and studied by Gale and Shapley

[95]. In the marriage model there are two finite and disjoint sets M and W, let them be

men and women. M = {m1, m2, . . . , mn} is the set of men. W = {w1, w2, . . . , wp} is the

set of women. Together they form a set of actors A = M ∪W. Each man has a complete

preference ordering over the set W ∪ {u}, and each woman has a complete preference

ordering over M ∪ {u}, where u denotes the possibility of remaining unmarried. The

goal is to match the men with the women so that there are no two people of opposite

sex who would both rather marry each other than their current partners. Preferences

can be represented by a rank order lists of the form P(mi) = {w5, w3, . . . , mi}, meaning

that man mi favors w5 the most as its partner, w3 the next [w5 >mi w3] and so on, until

at some point he prefers to be unmatched (i.e. matched to himself). The symbols >mi

and >wi indicate the preference orderings of man mi and women wi, respectively. An

agent’s preferences are called strict if he or she is not indifferent between any two distinct

potential assignments [96].

Definition 4.2.1 An outcome of the marriage problem is defined by a function µ : M ∪W →
M ∪W ∪ {u}, such that w = µ(m) if and only if µ(w) = m. That is, an outcome matches

agents on one side to agents on the other side, or to themselves, and if w is matched to m, then m

is matched to w. Agents’ preferences over outcomes are determined solely by their preferences for

their own mates at those outcomes [97].

Definition 4.2.2 (Blocking pair): Given a marriage P, a pair (m, w), where m is a man and w

is a woman, is a blocking pair if and only if m and w are not partners in P, but m prefers w to

M(m) and w prefers m to M(w).

Definition 4.2.3 (Stable Marriage): Marriage P is stable if and only if it has no blocking pairs.

In the marriage model, a stable matching is efficient and the set of (pairwise) stable matchings

equals the core of the game whose rules can be matched if and only if both agents from opposite

sides agree.

Theorem 4.2.1 For every marriage problem, there exists a stable matching.

Proof 1 The proof of this theorem was constructed by means of a Deferred Acceptance Algorithm

[95].
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4.3 Green cloud architecture

4.3.1 Architectural framework

Figure 4.1 – Green cloud architecture [98]

A datacenter, which is home to the computation power and storage, is central

to cloud computing and contains thousands of devices like servers, which are intercon-

nected through a network with a number of switches and routers [99]. Cloud providers

aim to drive the design of the next generation datacenters by collecting them as networks

of virtual services, so that clients can access and deploy their applications from any-

where in the world on demand at competitive costs [100]. We assume that the network

infrastructure provides enough bandwidth to avoid queueing delays in the intermedi-

ate network nodes. In cloud computing, resources are shared among a large number

of tenants through the datacenter network. Each tenant may run multiple applications,

thus requesting a large amount of resources. Therefore, the number of servers leased by

each tenant is large. Figure 4.1 shows the high-level architecture for supporting energy-

efficient service allocation in a green cloud computing infrastructure [98] considered in

this paper. The architecture contains basically four main entities:

• Users: Users submit service requests from anywhere in the world to the cloud data-

center to be processed.
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• Green Service Allocator: Acts as an interface between cloud infrastructure and users.

• Virtual Machines: In order to meet accepted requests, multiple VMs can be dynami-

cally started and stopped on a single physical machine.

• Physical Machines: The datacenter comprises multiple computing servers that provide

resources to meet service demands.

Resource allocation in cloud datacenters is a complex process that requires matching of a

large amount of software and hardware with a large number of requests without violat-

ing the SLA. In this paper, we consider the creation and allocation of virtual machines in

cloud datacenter as a part of the task, requiring a well-defined amount of resources such

as CPU, memory, storage, etc. from the datacenter.

4.3.2 System model

In this chapter, the target system is an IaaS environment represented by a large-scale

datacenter consisting of N heterogeneous hosts or physical machines, where each host,

denoted as p, is characterized by the following parameters:

• N_CPU (p): Number of physical cores of p.

• P_CPU (p) : CPU performance of p (in Million Instruction per second MIPS).

• RAM (p) : RAM capacity of p.

• SC (p) :Storage capacity of p.

• Cost(p) : Cost per hour of p.

• OS (p): Type of the operating system running on p.

• HC (p): Has specific characteristics (like GPU ...).

Each physical machine p hosts a set of VMs with the corresponding virtual machine

monitor (VMM). The percentage of CPU utilization is used to judge whether a VM has

enough resources available for a service.

Multiple independent users submit requests for provisioning of M heterogeneous

VMs to execute their tasks which are characterized by:

• RAM (t) : Amount of RAM required by task t.

• R_PP (t): Required processing power by task t defined in MIPS.
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• DS (t) : Disk storage required by task t.

• OS (t): Type of the operating system required by task t.

• NC (t) : Need a specific characteristics (like GPU, ...).

Figure 4.2 – System model [101]

The proposed system encompasses two controllers; Global Controller (GC) and Local

Controller (LC) as shown in Figure 4.2, which is a modified version of the model de-

scribed in [101]. LC acts as Virtual Machine Manager (VMM) for each PM and monitors

resource (CPU) utilization continuously. Furthermore, it identifies the under-loaded and

ove-rloaded PMs during execution based on our algorithm (DT-MG) as well as decides

when and which tasks have to be migrated. On the other hand, GC resides on a mas-

ter host and retrieves information from LC to maintain the overall view of the resources

utilization and to enable dynamic scheduling. Based on the decision of the LC, the GC

generates migration command to perform task placement.

4.4 Task migration and machine selection problem

4.4.1 Problem formulation

The key challenges that we address in this chapter are:
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(i) How to efficiently schedule tasks on machines (PMs) in order to meet cloud clients

requirements?

(ii) How to optimally solve the trade-off between resource savings and delivered per-

formance?

(iii) How to determine when, which, and where to migrate tasks in order to minimize

energy consumption as well as minimizing the migration overhead and ensuring

SLA?

Therefore, to formally model the studied problem, we propose a novel approach

based on a framework of College Admissions Game, also known as Many-to-one Matching

Game. The College Admissions problem, as introduced in [102], models the interactions

between a set of students wishing to apply to a set of colleges. Each of these colleges

has a fixed quota on the number of students that it can admit. Considering the likely

conflicting preferences of the students, it is worth investigating how to efficiently as-

sign students to colleges, satisfying as best as possible their respective preferences. The

Matching game theory is a promising approach to implement tasks scheduling in cloud

computing environments [103]. For our purpose of designing a tasks scheduling method

in cloud computing context, we formulate a college admissions game, referred to as task

scheduling admissions game, which is defined by the following three components:

1. The set T = {t1, t2, · · · , tN} of tasks acting as students.

2. The set D = {p1, p2, · · · , pM} of physical machnies acting as colleges, each p having

a certain quota qp on the maximum number of tasks that it can simultaneously

execute.

3. Preference relations for tasks and physical machines allowing them to build prefer-

ences over one another.

4.4.2 Objective function and feasibility constrains

Our aim is to reduce energy consumption in a cloud environment. To achieve this, we

will efficiently schedule tasks on physical machines (PMs) to minimize the number of

tasks migration and to fully use the available resources. We will then reallocate tasks on

PMs and spread the load over the available machines in such a way that under-loaded

PMs can be used to host some tasks of the over-loaded ones. At the same time, our

approach aims to maximize the use of the cloud resources by freeing up resources that

67



can sit idling and yet drawing power and putting the under-loaded PMs into some form

of sleep/power-saving mode while maximizing the utilization of the used ones. The

PMs that are powered down when not used will be powered back on only when it is

absolutely necessary. Maximizing resource utilization provides various benefits such as

the rationalization of maintenance, IT service customization, QoS and reliable services.

Therefore, we will assign each task to PM on which resource consumption for executing

the task is explicitly or implicitly minimized without violating contractual Service Level

Agreements (SLAs). SLAs define the negotiated agreements between service providers

and consumers and include Quality of Service (QoS) parameters, such as task execution

time. This implies that there is a trade-off between the quality of task scheduling and the

resource consumption. The main objective of our approach is to deal with this trade-off

by balancing these two performance metrics. In other words, we will minimize resource

consumption as low as possible while meeting QoS requirements.

A cloud provider has to consider user requirements and datacenters characteristics to

look for the best tasks allocation. The problem of minimizing the energy consumption of

a datacenter (D) can be formulated as:

Minimize EC(D) (4.1)

Subject to:

∑
ti ∈ dj

RAM(ti) ≤ RAM(pj) (4.2)

∑
ti ∈ pj

(SI(ti) + OI(ti)) ≤ SC(pj) (4.3)

The associated constraints are given in Eq. 4.2 and 4.3. Constraint 4.2 ensures that the

total amount of RAM required by all tasks running on datacenter pj does not exceed its

memory capacity. Constraint 4.3 guarantees that the total disk space needed by all tasks

assigned to pj should not exceed its storage capacity.

4.5 Energy-aware allocation using Game Theory

In this section, we propose a load balancing algorithm named DT-MG. The main idea

of this algorithm is to set up a lower threshold and an upper threshold and keep the total

CPU utilization in-between. When the load on a machine is below (resp. above) the
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lower (resp. upper) threshold, then the load is unbalanced and therefore some tasks have

to be migrated. When the use of CPU goes below the lower threshold on a given PM, then

all its tasks have to be migrated and afterwards the PM is disabled to save idle resource

consumption. This is a kind of dynamic resources consolidation. On the other hand, if

the actual CPU load goes beyond the upper threshold, which is the maximum CPU use

rate, some tasks have to be migrated to avoid SLA violation.

Our approach is consisted of four procedures as shown in Figure 4.3 , which are ex-

plained in more details in the next sections.:

1. Designing the basic task scheduling.

2. Detecting under-loaded/over-loaded physical machines.

3. Selecting tasks to migrate.

4. Choosing the best migration targets.

Figure 4.3 – DT-MG mechanism running on all physical machines.
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4.5.1 Tasks scheduling procedure

4.5.1.1 Task Scheduling as a College Admissions Problem

We define a finite set of tasks T = {t1, t2, · · · , tN} and a finite set of physical machines

D = {p1, p2, · · · , pM}. Each task t ∈ T induces a transitive preference relation denoted

as >t over D, i.e p1 >t p2 means d1 is preferred to p2 for the execution of task t. Each

physical machine p ∈ D induces a transitive preference relation denoted as >p over T ∪
{∅}, i.e t1 >p t2 means t1 is preferred to t2 on p. By convention, ∅ >p t means p prefers

doing nothing than running t. In addition, the capacity of each physical machine p ∈
D, which is denoted as qp ∈ Z+, is the maximum number of tasks that it can execute

concomitantly. We assume that ∑
p

qp ≥ |T|, so that every task can expect to have one

match. The solution is a stable many-to-one matching between physical machines and

tasks that satisfies the quota constraint and the preference relations.

Definition 4.5.1 (Many-to-One Matching): Let T be set of tasks and D a set of physical ma-

chines. A many-to-one matching from T to D is a function µ, µ : T ∪ D → D ∪ P(T), where

P(T) is the set of subsets of T, specified as follows:

1. (task allocation): ∀t ∈ T, µ(t) = p means task t is allocated to the physical machine p.

2. (alternative allocations): ∀p ∈ D, µ(p) ∈ P(T).

3. (quota constraint): ∀p ∈ D, |µ−1(p)| ≤ qp.

4. (matching constraint): t ∈ µ(µ(t))

The matching µ indicates for each task the physical machine on which it will be

launched. For a given physical machine, it provides the set of tasks that can execute

(will be used for tasks migration).

Definition 4.5.2 (Stable matching): A given matching µ is stable if the following rules are

satisfied:

1. @t ∈ T such that ∅ >µ(t) t.

2. ∀t ∈ T, @p ∈ D such that (t ∈ µ(p)) ∧ (p >t µ(t)) ∧ (|µ−1(p)| ≤ qp − 1) .

3. ∀t1, t2 ∈ T, ∀p ∈ D, if (t1 >p t2) ∧ (µ(t2) = p)) then µ(t1) = p

The first rule is obvious. The second rule says that for a given task, there shouldn’t be
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an under-loaded eligible physical machine with a better preference than the chosen one.

The third rules states that for a given task, any other task that is preferred to him on its

allocated physical machine should run there too.

4.5.1.2 Preference lists

To assign each task to an appropriate physical machine, we rely on the preference lists

of both tasks and physical machines.

Preference lists for the tasks:

This phase consists in creating a preference lists of physical machines PL(ti) for each

task ti on T. This list contains the set of potentially interesting physical machines which

are put in an ascending order according to their processing power, cost per unit of time,

memory and storage capacities. So, physical machine having the best values for these

parameters depending on the user requirements gets the highest rank.

We can calculate the processing power (PP) [101] of each physical machine using

formula (4.4).

PP(pj) = N_CPU(pj) ∗ P_CPU(pj) (4.4)

Where N_CPU(dj) is the number of cores of physical machine pj, and P_CPU(pj) is

the CPU performance of each core in pj (in Million Instruction per second MIPS).

Based on formula (4.4) we can calculate the expected execution time of a given task ti on

a given physical machine pj using equation (4.5) :

ET(ti) =
NI(ti)

PP(pj)
(4.5)

Where NI(ti) is the number of instructions of task ti (in Millions of instructions MI).

The processing cost (PC) of a task ti executed on physical machine pj can be calculated

using formula (4.6):

PC(ti) = Cost(pj) ∗ ET(ti) (4.6)

Where Cost(pj) is the cost per hour for pj.

So, each task builds its preference list PL(ti) based on its compatibility with the fea-

tures of the physical machine. The list is sorted by the processing power (PP), the cost
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per hour, etc. For a task ti, a physical machine pj will be eligible if the following con-

straints are verified:

RAM(pj) ≥ RAM(ti) (4.7)

SC(pj) ≥ DS(ti) (4.8)

NC(ti) ≤ HC(pj) (4.9)

ET(ti) ≤ DET(ti) (4.10)

PC(ti) ≤ Budget(ti) (4.11)

Eq. (4.10) means that the execution time of a task ti on a physical machine pj should

be less than the desired execution time of the task ti. Eq. (4.11) means that the processing

cost of a task ti on a physical machine pj should be less than the cloud client’s budget

dedicated for this task.

Preference lists for the physical machines:

The preference list of physical machine pj is a set of tasks PL(pj), where each task

has a load that does not exceeds its capacity. These tasks are sorted in ascending orders

according to different parameters. In the proposed strategy, the tasks are initially pri-

oritized according to their impact on the use of the physical machine in terms of CPU,

RAM, etc. Thus, the key factor for prioritizing tasks is their CPU utilization ratio.

Each physical machine selected to run a task ti calculates its CPU utilization ratio

(UR) [104] using formula (4.12).

UR(ti, pj) =
CPU(ti)

PP(pj)
(4.12)

Where CPU(ti) is the quantity of MIPS required by the task ti and PP(pj) is the pro-

cessing power of a physical machine pj. For a physical machine pj, a task ti will be eligible

if the following constraints are verified:

UR(ti, pj) ≤ 1 (4.13)

DS(ti) ≤ SC(pj)− ∑
tk ∈ pj

DS(tk) (4.14)
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RAM(ti) ≤ RAM(pj)− ∑
tk ∈ pj

RAM(tk) (4.15)

4.5.1.3 Proposed algorithm for task scheduling

So far, we have modeled our problem as a many-to-one matching game where the

players are the tasks and the physical machine. Each task has the right to choose one

physical machines. By contrast, the physical machines can host one or more tasks up to

its quota qp. As a solution, we present the matching algorithm as shown in algorithm 3

based on the deferred acceptance algorithm introduced in [95]. Figure 4.4 presents the

Algorithm 3: Pseudo code of Task-PM matching algorithm
Input: Tasks’ preference lists (PLs).

1 PMs’ preference lists (PLs).
2 while (∃ a free task ti that still has a physical machine pj to propose to) do
3 Task ti proposes to all physical machines on its preference list.
4 if (qp ≥ 0) then
5 ti is assigned to the waiting list of pj

6 else
7 Compare ti with the current tasks on the waiting list for
8 the physical machine pj and reject the task that has least preference.

9 The rejected tasks re-apply to their next best choice.
10 Each physical machine update its waiting list based on its preference list, and

rejects the rest.
Output: Every ti is on a waiting list of one of the set of physical machine,

and,thus, we have convergence to a stable matching.

flowchart of the proposed algorithm.

4.5.2 Detection of physical machines (PMs) state procedure

According to the study [105], the resource consumption of a physical machine can be

divided into 6 levels, an idle state and five levels of CPU utilization at running state as

shown in Figure 4.5. The CPU utilization threshold depends on hardware architecture

and may differ on different cloud systems. Based on the hardware commonly found in

PMs and our research model, a 70% CPU utilization threshold is considered an appropri-

ate cutoff point [106]. For the sake of simplicity, we shall use 70% CPU utilization as the

default upper threshold (UPTH) and 20% CPU utilization as the default lower threshold

(LOTH) for the rest of the paper. In other words, when the CPU load of a PM is below
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Figure 4.4 – Flowchart of Task-PM matching algorithm

than lower threshold (LOTH), we tend to power down this PM and migrate all its tasks to

another PM with low overhead based on the preference lists as shown in section 4.5.1.2.

On the other hand, when the CPU load of a PM exceeds the upper threshold (UPTH),

some tasks of this PM should be migrated to balance the load among PMs and to reduce

the risk of SLA violation.

The percentage of CPU load is used to specify whether a physical machine has enough

resources available to execute clients’ tasks. [104].

The load of a physical machine pj can be calculated as the total computational length

of all tasks running on pj divided by its processing power PP(pj), as shown in formula

(4.16).

Load(pj) =
∑ti∈pj

CL(ti)

PP(pj)
(4.16)
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Figure 4.5 – Levels of PM’ CPU utilization [105]

Where CL(ti) is the computational length of a task ti (in Millions of Instructions MI).

By calculating Load(pj), we can detect if the state of pj is over-loaded or under-loaded.

4.5.3 Tasks selection procedure

The question that naturally arises is when a task migration should take place. So, as

mentioned before and based on load percentage, a migration may be initiated whenever

a physical machine detects that it is:

• Over-loaded compared to upper threshold (UPTH), i.e. the CPU load of some physical

machines is close to 100% that creates a risk of SLA violation.

• Under-loaded compared to lower threshold (LOTH), which is not efficient in terms of

resource consumption.

As aforementioned if the CPU load of a physical machine falls below the lower thresh-

old(LOTH) we migrate all tasks to another machine and then switch it to low-power

mode (i.e. sleep, hibernation) in order to eliminate the idle power consumption. On the

other hand, if the CPU load exceeds the upper threshold (UPTH), some tasks have to be

migrated from this machine to balance the load among physical machines.

Algorithm 4 presents our pseudo-code for tasks selection procedure running on over-

loaded physical machines (PMs). It sorts the list of tasks in decreasing order of the CPU

utilization. Then, it repeatedly looks through the list of tasks and finds the best task to

migrate from the over-loaded PM. The best task is the one that satisfies two conditions:
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First, by migrating it, the load of the PM falls to a new value below upper threshold

(UPTH). Second, the difference between the upper threshold(UPTH) and the new CPU

load percentage is the minimum across the values provided by all tasks on this PM. If

there is no such task, the algorithm selects the task with the highest computational length,

adds it to the list of tasks to be migrated, and removes it from the initiated list of tasks.

The algorithm continues until the load of the physical machine goes below UPTH.

Algorithm 4: Tasks Selection() Procedure runs on over-loaded physical machines
Input: D: set of physical machines
Output: migrationList

1 taskList← Sorted list of tasks in descending order based on computational
length.

2 while (load(pj) > UPTH) do
3 Max ← (UPTH − LOTH) ∗ α; 0 < α < 1
4 bestDi f f ← Max
5 for each ti in taskList do
6 load’(pj)← load(pj)− load(ti)

7 if load’(pj) < UPTH then
8 if bestDi f f > UPTH − load’(pj) then
9 bestTasks← ti

10 bestDi f f ← UPTH − load’(pj)

11 else if (bestDi f f = Max) then
12 bestTasks← ti

13 break

14 load(pj)← load’(pj)

15 Add bestTasks to migrationList
16 Remove selected tasks from taskList

17 return migrationList.

4.5.4 Tasks migration procedure

Target physical machine selection is the most critical step in task migration phase.

Wrong physical machine selection may increase the number of task migration as well as

the resource wastage [107].So, for each active task to be migrated, our approach calculates

the expected execution time and the task migration cost on each destination machine in

its preference list. Then, it picks the one of maximum gain. We calculate the expected ex-

ecution time of each migrated task on each machine pj in its preference list using formula
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(4.5) and the task migration cost using (4.17) :

MC(ti) = Cost(pj) ∗ ETpj(ti) + CBW ∗ CL(ti) (4.17)

Where MC(ti) is the migration cost of task ti. Cost(pj) is the cost per hour for the

destination PM pj. ETpj(ti) is the expected execution time for the task ti on pj. CBW is

bandwidth cost among the hosted machine and destination machine and CL(ti) is the

computational length of a task ti (in Millions of Instructions -MI).

If there are multiple physical machines available for receiving the migrated tasks in

its preference list, the one with minimal migration cost and minimal execution time will

be chosen to host the task. Algorithm 5 presents the pseudo code of task migration proce-

dure. It tries to find best physical machines with sufficient capacity to host the migrated

tasks.

Algorithm 5: Task migration procedure

1 /* Running on under-loaded PMs. */
2 for each tj in under-loaded node pj do
3 for each pj in preference_list of a task ti do
4 if load(pj) + load(ti) < UPTH then
5 Migrate ti to the node pj

6 load’(pj)← load(pj) + load(ti)

7 Turn of pj

8

9 /* Running on over-loaded PMs. */
10 Tasks Selection Procedure(),
11 for each tj in migrationList do
12 for each pj in preference_list of a task ti do
13 if load(pj) + load(ti) < UPTH then
14 Migrate ti to the node pj

15 load’(pj)← load(pj) + load(ti)

16 break

17 /* exit procedure */
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4.5.5 Convergence of our approach

In this chapter, we have used matching game theory to design and analyze a distributed

load balancing (DT-MG) mechanism for energy-efficiency in cloud datacenter. This match-

ing problem with aggregating stated preferences becomes a non-cooperative game be-

tween the set of physical machines (PMs). In this section we demonstrate that our pro-

posed approach (Tasks Migration Procedure) always converges to a pure Nash equilib-

rium.

Nash equilibrium is the most important concept in game theory, which is a static

stable strategy vector that has chosen by each player in the game and no player can

benefit by unilaterally changing his or her strategy while the other players’ strategies

remain unchanged [108].

Definition 4.5.3 The DT-MG reaches a Nash equilibrium when none of the migration procedures

were able to unilaterally find a better PM for their extra load.

Definition 4.5.4 (potential function): We define the potential function F of datacenter at a

given time using the number of well-loaded PMs and the number of active PMs [109], which

equals:

F ,
nbr o f well¯loaded PMs

nbr o f active PMs
(4.18)

We demonstrate that the potential function F is strictly increasing with a maximum

value and thus, the approach must consequently stop at some point.

Theorem 4.5.1 DT-MG always admits a pure Nash equilibrium.

Proof 2 We assume that the potential function increases strictly after each successful migration.

A migration may be initiated whenever a PM is over-loaded compared to upper threshold (UPTH)

or under-loaded compared to lower threshold (LOTH). In addition, a successful migration occurs

in three cases:

• An over-loaded physical machine (PM) finds a better machine (in the set of active PMs) to host

its extra load. In this case, the state of the over-loaded PM converts to the well-loaded. The

number of well-loaded PMs increments. Thus, F increases.

• An over-loaded physical machine (PM) is not able to find a better machine to host its extra

load, it thus turns on an idle physical machine (PM). Then, the number of both well-loaded and

active PMs increments. Thus, F increases.
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• An under-loaded physical machine (PM) migrates all tasks to another PM and goes to idle state.

The number of active PMs decrements, and F again increases.

The potential function F is strictly increasing, and it has bounded to one. Therefore, the game

converges after a limited number of successful steps to a pure Nash equilibrium.

In our approach, we try to find the best task ti among all tasks on over-loaded node

PMj to migrate. The best task is the one that satisfies two conditions: First, by migrating

it, the load of the PM falls to a new value below upper threshold (UPTH). Second, the

difference between the upper threshold (UPTH) and the new CPU utilization percentage

is the minimum across the values provided by all tasks on PMj. If there is no such task,

the algorithm selects the task with the highest computational length, adds it to the list of

tasks to be migrated, and removes it from the initiated list of tasks.

For each task ti to be migrated that already assigned to PMj, we then try to find out

a best new host. That is, among all the other nodes PMs (except PMj itself) with enough

remaining capacity to accept ti, we select the PM that can yield the minimal migration

cost and minimal execution time as the best node PM to host the migrated task.

With N tasks to be scheduled on M PMs, assuming the average number of assigned

tasks on a node PM is K, then, the time complexity of algorithm 4 is O(KM) ∼ O(N).

Considering the two loops in algorithm 5, the total time complexity is O(N2).

4.6 Performance analysis

4.6.1 Data center settings

Cloud computing is an open platform which consists of multiple distributed data-

centers. A datacenter constructs all kinds of resource pools by virtualizing physical

resources, and encapsulates resources into services. Cloud users submit their requests

through a variety of cloud applications established by cloud service providers. Subse-

quently, user requests are submitted to the datacenter in the form of tasks. Then, accord-

ing to the scheduling strategies and the monitored state of resources, datacenter sched-

ules each task into the appropriate PM.

As the target system is a generic cloud computing environment, it is essential to evalu-

ate it on a large-scale virtualized datacenter infrastructure. However, carrying out exper-

iments on a real cloud platform would be very expensive and difficult, especially when it
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is necessary to reproduce the experiment with the same conditions to compare different

algorithms. Therefore, a simulation has been chosen as a way to evaluate the proposed

algorithm. We used CloudSim 3.03, which is an extensible simulator which aims to en-

able modeling and simulation of cloud-based systems [110, 111]. In contrast to another

simulation toolkits (e.g. SimGrid, GangSim), it permits the modeling of virtualized envi-

ronments, supporting on demand resources provisioning and their management.

We have simulated one datacenter composed of 800 heterogeneous physical machines

(PMs), half of which are HP ProLiant ML110 G5 and the other half consists of HP ProLiant

ML110 G4. The characteristics of the PMs in terms of power consumption are given in

Table 4.1 [112]. The PMs comprise of 2500, 2000, 1000 and 500 MIPS accordingly. There

are 1000 VMs of different types on the datacenter: Medium Instance (2 600 MIPS, 0.9 GB);

Extra Large Instance (2 500 MIPS, 3.8 GB); Small Instance (1 200 MIPS, 1.5 GB) and Micro

Instance (250 MIPS, 600 MB). The amount of tasks in experiments is 500, 1000 and 1500.

nodes (PMs) 0% 20% 40% 60% 80% 100%
HP G4
(Watt)

86 92.6 99 106 112 117

HP G5
(Watt)

93.7 101 110 121 129 135

Table 4.1 – Power Consumption by the Selected PMs at Different Load Levels in Watts

As input data, we have used PlanetLab data on the CPU traces collected from more

than 1000 VMs running on almost five hundred different locations around the world

[113]. The data have been collected every five minutes during the period from the 03rd

May to 20th of April 2011. The characteristics of the data for each day are shown in Table

4.2.

4.6.2 Performance metrics

In order to compare the efficiency of our proposed approach, we have used four met-

rics to evaluate its performance.

(a) Energy consumption (kWh): The first performance metric is called the total en-

ergy consumption which can be calculated based on the CPU load of each physical ma-

chine (PM) on the datacenter as shown in Table 4.1 [88] .

(b) Number of Task migration: The second metric is the total number of task migra-

tion which computes the number of migrated tasks during the execution process.
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Date Num. of
VMs

Mean
(%)

St. dev. (%)

03/03/2011 1052 12.31 17.09
06/03/2011 898 11.44 16.83
09/03/2011 1061 10.70 15.57
22/03/2011 1516 9.26 12.78
25/03/2011 1078 10.56 14.14
03/04/2011 1463 12.39 16.55
09/04/2011 1358 11.12 15.09
11/04/2011 1233 11.56 15.07
12/04/2011 1054 11.54 15.15
20/04/2011 1033 10.43 15.21

Table 4.2 – Workload data characteristics (based on CPU utilization) [113]

(c) SLA violation: Cloud service providers should ensure the satisfaction of applica-

tion demands, namely meeting the requirement of client’s quality of service (QoS). QoS

requirements are commonly formalized in the form of SLA, which can be determined in

terms of such characteristics as minimum throughput or maximum response time deliv-

ered by the deployed system [114].

The third performance metric is the percentage of SLA violation which describes how

many times the allocated resources are less than the required resources. An SLA vio-

lation occurs when a given PM cannot provide the amount of Million Instructions per

Second (MIPS) that is requested. We have measured the SLA violation with two aspects:

i) SLA violation time per active host (SLATAH) which is the time when the CPU load

of a machine is near to 100%; and ii) performance degradation due to migrations (PDM)

that occurs due to tasks migration during the load balancing process or switching off

under-loaded machines [115]. Those two aspects can be described in Eq. (4.19) and (4.20)

[116].

SLATAH =
1
M

M

∑
i=1

Tpj

T′pj

(4.19)

PDM =
1
Q

M

∑
j=1

Cpj

Cti

(4.20)

Where Tpj is the SLA violation time on physical machine pj. T
′
pj

is the active time of

the physical machine pj and M is the overall physical machines (PMs) in the datacenter

(D). Cpj is an estimate of performance degradation of pj caused by migrations and Cti is

the total CPU capacity requested by a task ti during its lifetime.
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There is also a combined metric that encompassed both SLATAH and PDM metrics. It is

called SLAV and it is the main metric to measure SLA violation. It is calculated as (4.21).

SLAV = SLATAH ∗ PDM (4.21)

(d) Energy and Service level agreement Violation (ESV): This metric combines both

energy consumption and SLA violation metrics [101]:

ESV = Energy ∗ SLAV (4.22)

We have compared our proposed algorithm (DT-MG) with seven other algorithms,

which are:

(1) Non-Power Aware (NPA): It does not apply any energy optimization. In this policy

all nodes operate at 100% CPU usage and consume maximum power all the time.

(2) Dynamic voltage and frequency scaling (DVFS): It is a commonly-used power-management

technique where the clock frequency of a processor is decreased to allow a correspond-

ing reduction in the supply voltage. This reduces power consumption, which can lead to

significant reduction in the energy required to run a job [117].

(3) Static Threshold and Minimum Migration Time (ThrMmt): It uses a static Upper

Threshold for detecting over-loaded nodes and Minimum Migration Time for selecting

tasks to be migrated. [101].

(4) Median Absolute Deviation and Minimum Migration Time (MadMmt): In this tech-

nique the overload threshold is calculated dynamically using median absolute deviation

and, then, it selects a task to migrate which has the least computational length as it will

be migrated faster [118].

(5) Median Absolute Deviation and Random Selection (MadRs): This technique uses

the median absolute deviation to detect the over-loaded PMs and migrates tasks randomly

without applying any rules [101].

(6) Utilization and Minimum Correlation (UMC): It takes both machine utilization and

machine correlation with VM for choosing a suitable machine to host the migrated tasks.

They have also proposed VM-based dynamic threshold (VDT) algorithm for detecting under-

loaded hosts and Local Regression (LR) technique for detecting the over-loaded hosts [119].

(7) Modified Best Fit Decreasing (MBFD): It presents an energy-aware resource alloca-

tion policy for efficient datacenters management in cloud computing. It used a static

upper and lower thresholds for detecting the over-loaded and under-loaded hosts. Then,

82



a Minimization of Migration policy (MM) is used to migrate the minimum number of tasks.

After that, a Modified Best Fit Decreasing (MBFD) algorithm is applied to assign each mi-

grated task to a host that gives the least increase of power consumption [88].

For ThrMmt, MadMmt and MadRs benchmarks, they use the Power Aware Best Fit

Decreasing (PABFD) technique to select the best PMs to host the migrated tasks. PABFD

[101] prepares first a list of migrated tasks. Then, it sorts the migrated tasks in descending

order in terms of their CPU requirements. Finally, it allocates each migrated task to a

host providing the least increase of energy consumption without exceeding the upper

threshold.

4.6.3 Simulation Results

First of all, we have tested our approach by calculating the number of physical ma-

chines (PMs) switched off as shown in Table 4.3. The energy consumption of a datacenter

is mainly caused by running PMs, thus our approach try to minimize the number of PMs

which are in use in order to reduce the energy consumption. The simulation was done on

80 PMs with different number of cloudlets in range [500-3000]. The results show that our

approach minimizes the number of PMs turned on which can lead to reduce the energy

consumption.

Num of
cloudlets

Num of PMs
switched off

500 13
1000 10
1500 8
2000 6
2500 3
3000 2

Table 4.3 – Number of PMs switched off.

Figure 4.6 compares the energy consumption (in kWh) by different algorithms diss-

cused in this paper. As depicted in Figure 4.6, the energy consumption by our approach

DT-MG is much less in comparison with other techniques whereas the NPA technique

consumes the most. More precisely, our approach (DT-MG) leads to 50% reductions in

energy consumption compared to the NPA technique and almost up to 20% on average

compared to other techniques with different numbers of submitted tasks (cloudlets).

Figure 4.7 shows the number of task migration during the simulation, while Figure
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Figure 4.6 – Energy consumption

4.8 shows the percentage of performance degradation due to task migration.
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Figure 4.7 – Number of task migration

It is clearly visible from Figure 4.7 that our approach DT-MG performs greatly better

than other techniques, which only migrates 120 times on average for 1500 tasks compared

to 140 times done by UMC (the best one of the five techniques). Figure 4.8 shows that our

approach DT-MG and MadMmt technique have the smallest rate of performance degra-

dation due to task migration, mainly when the number of tasks is large. The reason of this

behavior is that when the number of tasks is small our approach consolidates the load
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Figure 4.8 – Performance Degradation due to Migration

of PMs by switching off under-loaded PMs, thus, the number of task migration increases

which can lead to degrade the datacenter performance. However, when the number of

tasks increases, the performance degradation by our approach is reduced, because the

majority of the PMs will be well-loaded. To quantify, the percentage of performance

degradation due to task migration caused by our approach (DT-MG) is 0.8% with 1500

tasks, whereas the minimum of all other method is 1.01%, resulting 21% reduction.

This observation can be described by the fact that our approach allocates tasks to

PMs based on both tasks and machines preference lists which can reduce the number of

tasks migration. Furthermore, our approach manages efficiently the cloud resources by

switching off the under-loaded machines.

The histogram obtained by plotting SLA violation time per active host (SLATAH) is

shown in Figure 4.9. It affirms better performance of the proposed approach in terms

of SLA violation per active host. DT-MG has smaller SLATAH compared to other tech-

niques; therefore, the percentage of time that active PMs experienced CPU utilization

near to 100% in DT-MG approach, is less with 6.72% in avergae than other techniques

with different numbers of submitted tasks.

SLA violation is one of the key indicators of QoS, so, an approach having low SLA

violation ensures the desired QoS. The results presented in Figure 4.10 show that our pro-

posed approach has the small values of SLA violation which is 1.02% with 500 tasks, 2.5%

for 1000 tasks and 6% with 1500 tasks, resulting 44% reduction in SLA violation on aver-
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Figure 4.9 – SLA Violation Time Per Active Host
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Figure 4.10 – SLA Violation

age with 1500 tasks. This is the main achievement of our appraoch, that is, it efficiently

manages datacenter resources, and as an outcome, SLA violation reduced significantly. If

tasks are assigned to the right PMs then there will be less migrations number, which will

reduce SLA violation as well.

ESV is a combination of both SLAV and energy consumption metrics. It presents a

tradeoff picture between our proposed approach and the other approaches discussed in

this paper. Based on the results shown on Figures 4.6 and 4.10, both energy and SLA
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violation were reduced, which implies that ESV will also be reduced. As a result, we

have achieved the Energy and SLA trade-off. As depicted in Figure 4.11, the results for

DT-MG approach regarding ESV metric is much less in comparison with MBFD, PABFD

and UMC policies. More precisely, the minimum ESV value obtained by our proposed

approach (DT-MG) with 1500 tasks is 70.06 while the minimum of all other approaches is

90.69 for UMC technique, which can lead to 22.75% reduction.
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Figure 4.11 – The ESV metric

4.6.4 Statistical analysis

Policy Mean of ESV(×10) 95% Confidence Interval p-value
DT-MG 69.89 (69, 70.792) p− value > 0.05
UMC 90.73 (90.19, 91.27) p− value > 0.05

PABFD 140.32 (139.53, 141.11) p− value > 0.05
MBFD 210.32 (209.77 210.86) p− value > 0.05

Table 4.4 – Comparison algorithms using one-Sample T-test regarding ESV metric

In this section, we present a statistical analysis based on ESV metric. We have

conducted One-sample T-test to compare DT-MG approach with other three techniques

regarding the mean values of the ESV metric along with 95% confidence intervals (Table

4.4). From the results, all p-values are greater than the significance level 0.05 implying

that the distribution of the data are not significantly different from the normal distribu-

tion. According to Shapiro-Wilk’s normality test, the values of the ESV metric produced
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Policy 1 (ESV ×10) Policy 2 (ESV ×10) Difference (×10−2) p-value
DT-MG (70.06) UMC (90.69) -0.208 (-0.225, -0.196) p− value < 0.001
DT-MG (70.06) PABFD (140.66) -0.706 (-0.717, -0.695) p− value < 0.001
DT-MG (70.06) MBFD (210.6) -1.401 (-1.414, -1.389) p− value < 0.001
UMC (90.69) PABFD (140.66) -0.504 (-0.512, -0.496) p− value < 0.001
UMC (90.69) MBFD (210.6) -1.188 ( -1.197, -1.179) p− value < 0.001

PABFD (140.66) MBFD (210.6) -0.692 (-0.705, -0.680) p− value < 0.001

Table 4.5 – Comparison algorithms using paired Samples T-test

by the selected algorithm follow a normal distribution with the p− value > 0.05. From

the presented results, we can conclude that our approach is much less, in terms of ESV,

in comparison with MBFD, PABFD and UMC policies, which means that the Energy and

SLA trade-off has been achieved. More precisely, the mean value of ESV of our approach

(DT-MG) is 69.89 with 95% CI (69.005, 70.792), whereas the minimum mean value of ESV

of all other policies is 90.73 for UMC policy with 95% CI (90.194, 91.271), resulting 22.97%

reduction.

Table 4.5 presents the results of four paired T-test for all aforementioned policies. If

the p-value is greater than 0.05, then we must accept the null hypothesis, otherwise we

must reject the null hypothesis. Our null hypothesis is: "There is no significant difference

in the performance between two policies regarding ESV metric". From Table 4.5 we find

that the p-value is significantly smaller than 0.05 for ESV metric. Therefore, we could

conclude that there is significant difference between these algorithms with p− value <

0.001. More precisely, the mean of the differences for DT-MG and UMC policies is -0.208

with 95% CI: (-0.225, -0.196). The mean of the differences for DT-MG and PABFD policies

is -0.706 with 95% CI: (-0.717, -0.695). The mean of the differences for DT-MG and MBFD

policies is -1.401 with 95% CI: (-1.414, -1.389). This means that the DT-MG policy leads to

a statistically significant lower value of the ESV metric in comparison with UMC, PABFD

and MBFD policies.

4.7 Conclusion

In this chapter, we have proposed a load balancing algorithm (DT-MG) for reducing

the energy consumption and using efficiently the available resources while delivering

the negotiated level of Quality of Service (QoS). DT-MG assigns tasks to machines using

matching game theory in order to reduce the overhead of task migrations. Then, it de-

88



fines an upper and lower utilization thresholds and maintains the total CPU utilization

of the machines between these thresholds. The experiment results have shown that our

proposed algorithm (DT-MG) outperforms existing energy-aware algorithms discussed

in this chapter. Our algorithm reduced the energy consumption by 50%, 40% and 20%

when compared to NPA, DVFS and other techniques, respectively. It also showed a 44%

reduction in SLA vioaltion on average compared to the state of the art algorithms.

As we have said before, an efficient task scheduling is critical for achieving high per-

formance in cloud computing environment. In addition, an optimal scheduling of tasks

in cloud computing is a difficult optimization problem, and many algorithms have been

proposed to solve it. Among the scheduling algorithms for heterogeneous computing en-

vironments, the Heterogeneous Earliest Finish Time (HEFT) algorithm has been shown to

produce shorter execution time more often than other comparable algorithms. However,

the HEFT algorithm does not deal with the load balancing among the set of machines.

Therefore, the key idea of the next chapter is to enhance the process of scheduling tasks in

HEFT algorithm, by applying the matching game model used in this chapter to achieve a

well-balanced load across the machines as well as to minimize the makespan of a given

workflow application.
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Chapter 5

A Static Heuristic Scheduling for Min-

imum Makespan
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In this chapter, we propose an enhancement of Heterogeneous Earliest Finish Time (E-HEFT)

algorithm under a user-specified financial constraint to achieve a well-balanced load across the

virtual machines while minimizing the makespan of a given workflow application. In order to

evaluate the performance of the algorithm, we compare it with some other existing scheduling
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algorithms. Experimental results show that our algorithm outperforms the selected algorithms on

reducing the makespan and improving the load balance among virtual machines. This chapter is

derived from:

– Yassir Samadi, Mostapha Zbakh and Claude Tadonki. "E-HEFT: Enhancement Hetero-

geneous Earliest Finish Time algorithm for Task Scheduling based on Load Balancing

in Cloud Computing". To appear in the 2018 International Conference on High Perfor-

mance Computing & Simulation (HPCS 2018). IEEE. Orléans, France.

5.1 Introduction

Cloud clients are consuming and producing a huge volume of data that should be

analyzed and processed, thus being considered as data-intensive experiments. This large

volume of data can be found in many areas like astronomy [120], high-energy physics

[121] and bio-informatics [122], etc. Hence, scientists need to analyze terabytes of data

either from existing data resources or collected from physical devices. In order to manage

the execution of these complex experiments, scientific workflows can be a prominent

solution. A scientific workflow [123] describes the automation of scientific or general

process and the set of rules (dependencies). In other words, scientific workflows are sets

of elementary tasks and their dependencies. In addition, a given client is interested in

reducing the makespan. So, the scheduler should efficiently fully utilize the available

resources and make sure that the load is globally well balanced.

In a scheduling algorithm, scientific workflow can be viewed as a directed acyclic

graph (DAG), where nodes (or tasks) represent the computation and edges represent

the communication between them. The scheduler assigns a weight for each node in the

DAG, which represents the computation cost, and assigns weights for edges correspond-

ing to communication cost between nodes. In addition, scientific workflow applications

have many computations and tasks that generate many intermediate large datasets with

dependencies among them. So, the scheduler should also take care of precedence con-

straints between the set of tasks. As a result, over several years, a number of heuris-

tic algorithms suitable for DAG scheduling on heterogeneous resources have been sug-

gested [124] that attempt to strike a good balance between running time, complexity and

schedule quality [125], but still a lot of work needs to be done to make scheduling more

effective. The Heterogeneous Earliest Finish Time heuristic (HEFT) [42] has been one of

the most often cited and used, with the advantage of simplicity and generating generally
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good schedules with a short makespan. However, HEFT algorithm lacks load balancing

among the machines of the cluster. In this chapter, we extend our previous works pre-

sented in chapters 3 and 4, and propose an enhancement of HEFT algorithm. In other

words, our scheduling algorithm aims to minimize the total execution time of tasks as

well as to achieve a well-balanced load across all VMs in cloud environment, always

obeying both budget and precedence constraints imposed by the DAG. That is, there are

two objectives considered here. The first one is the minimization of the tasks execution

time. The second one is to evenly distribute the workload among the virtual machines of

the entire cluster.

In order to reduce the total execution time of a workflow, we propose a scheduling

approach that takes into account the variety and heterogeneity of virtual machines in a

cloud computing cluster (e.g. different bandwidths, transfer rates, and processing ca-

pacities) [126]. It also takes into account the data distribution and data constraints all

together within the same solution, i.e. tasks and data transfers are scheduled together

by the E-HEFT. Thus, the scheduler defines the distribution of tasks and data among the

virtual machines so as to minimize the total execution time and data transfers. Then, our

scheduling algorithm is simulated using the CloudSim simulator [111, 127]. To evalu-

ate the performance of the enhanced algorithm, a comparative study is done with some

state-of-the-art algorithms.

The rest of the chapter starts with a review of heuristic algorithms for DAG schedul-

ing in section 5.2. In section 5.3, we describe the mathematical formulation of the stud-

ied problem and our objective function. Section 5.4 presents in details the steps of our

proposed algorithm. Section 5.5 assesses the applicability of our proposed solution and

illustrates its performance using Cloudsim simulator. Section 5.6 outlines the conclusion.

5.2 Heuristic algorithms for DAG scheduling

5.2.1 State-of-the-art

In this section, we discuss different works related to task scheduling in cloud com-

puting. Tasks scheduling or resources mapping for workflows has been investigated

extensively in the literature in the past decade [128].

Many task scheduling algorithms have been proposed to minimize the workflow
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makespan in heterogeneous environment such as Opportunistic Load Balancing (OLB)

[129], Minimum Execution Time (MET) [130] and Heterogeneous Earliest Finish Time

(HEFT) [42]. OLB randomly assigns each task to the machine that is expected to be avail-

able, regardless of the estimated execution time on that machine [131]. This algorithm

aims to keep all machines as busy as possible. One advantage of OLB is its simplicity.

However, OLB does not consider the expected execution time of a task, the mappings it

finds can result in very poor makespan. In contrast to OLB, Minimum Execution Time

(MET) assigns each task to the machine with the best expected execution time, regardless

of the machine’s availability [129, 130]. MET aims at giving each task to its best machine.

This can cause a severe load imbalance across machines. Earliest Finish Time (HEFT) al-

gorithm aims to minimize the overall execution time of a DAG application in a heteroge-

neous environment. While being effective at optimizing makespan, the HEFT algorithm

does not consider the budget constraint and load balancing among the machines of the

cluster when making scheduling decisions. In [132], Chase et al. constructed an analytical

model to quantify the network performance of workflows using cloud-based computing

resources. They designed a critical-greedy algorithm to minimize the workflow end-

to-end delay by defining a global budget level (GBL) parameter and preassigning tasks

using the budget-level execution cost. However, this algorithm is designed for homoge-

neous cloud environments, where the communication time between tasks is assumed to

be zero, which is not the case on heterogeneous cloud systems.

In addition to a single scheduling optimization metric, task scheduling problem be-

comes more challenging when two QoS metrics (i.e., time, cost and load balance) are con-

sidered simultaneously. In [133], authors have studied the problem of budget-constrained

schedules of bag-of-tasks problems on clouds. They have presented a scheduler used to

calculate the execution cost and performance of a workflow on multiple different clouds

under budget-constraints and offer viable options to the user. They have focused on a

statistical method for estimating costs. However, they have not considered the problem

of load balancing. Another multi-objective algorithm named Revised Discrete Particle

Swarm Optimization (RDPSO) was proposed by Wu et al. [134]. The algorithm either op-

timizes cost or makespan based on the budget and deadline constraints. For evaluating

cost, the data transmission costs and the computation costs are taken into account. Dif-

ferent sets of workflows are used for experimentation, and comparisons are made with

the standard PSO and the BRS(Best Resource Selection) algorithms. This multi-objective

model is efficient and the results show that the RDPSO algorithm can lead to much more
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cost savings and reduce the makespan than PSO and BRS algorithms.

A common drawback of the aforementioned approaches is that they do not consider

the load balancing among the machines of the cluster. Our proposed E-HEFT algorithm

covers all of these deficits, achieves a well-balanced load across the machines and mini-

mizes the makespan of a given workflow under a user-specified budget constraint.

5.2.2 Heterogeneous Earliest Finish Time algorithm

Among the scheduling algorithms for heterogeneous system, the Heterogeneous Ear-

liest Finish Time (HEFT) algorithm has been one of the most frequently cited and used

because of both its simplicity and good performance [42]. HEFT is a natural extension

of the classical list scheduling algorithm for homogeneous systems to cope with hetero-

geneity. It outperforms other comparable algorithms in terms of minimization of the

execution time.

There are two phases for the algorithm. The prioritizing phase for giving a priority

to each task and the machine selection phase for selecting a suitable machine that min-

imizes the execution time. If two or more tasks have an equal priority, then the task is

selected randomly. The last phase is repeated until all tasks are scheduled on suitable

machines. This algorithm has relatively low complexity and is very efficient when com-

pared to other algorithms. Thus, HEFT assigns first a weight to each node and edge of

the DAG based on the average computation and communication costs, respectively [135].

Ranku represents the length of the longest path from task ti to the exit node, including its

computational length. It is recursively defined as:

ranku(ti) = W i + max
tj∈succ(ti)

(ci,j + ranku(tj)) (5.1)

Where succ(ti) is the set of immediate successors of the task ti, ci,j is the average com-

munication cost of edge ej
i , and W i is the average execution cost for task ti. Then, the

graph is traversed upwards and ranku value is assigned to all nodes. For the exit task,

ranku(texit) = Wexit. Tasks are then scheduled, in descending order of their rank value, on

the machine which gives the smallest estimated finish time.
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5.3 Mathematical formulation of the studied problem

5.3.1 System model

Recall that the problem we are interested in this chapter is performing the tasks of

a workflow in a cloud computing environment while taking into account the quality of

service criteria, namely the overall execution time.

Figure 5.1 – System model of workflow application scheduling on cloud Computing.

As illustrated in Figure 5.1, there are three layers in the system model for the work-

flow scheduling problem in cloud environment [132]: (1) the task graph layer which is

comprised of tasks with precedence constraints, (2) the resource graph layer which rep-

resents a network of virtual machines, (3) and the cloud infrastructure layer consisting of

a set of data centers connected by network links. According to [31], the problem of task

scheduling in heterogeneous systems is finding a proper assignment of tasks to machines

in order to optimize some performance metrics such as resources utilization, load balanc-

ing and execution time. A popular representation of a scientific workflow application is

the directed acyclic graph (DAG): G(T, E), where T = {t1, t2, · · · , tn} is the set of tasks

and E is the set of directed edges between tasks. An edge ej
i of the form (ti, tj) of graph

G represents the precedence constraint between these tasks, case in which ti is said to be

the parent task of tj and tj is said to be the child task of ti. Based on this constraint, a

child task can not be executed until all of its parent tasks are fully executed. If there is
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data transmission from ti to tj, the tj can start only after all the data from ti have been

received. A task without parent is called an entry task, denoted tentry, whereas a task

without child is an exit task, denoted texit. A sample workflow is shown in Figure 5.2.

Figure 5.2 – An example of workflow application.

The data exchanged between the virtual machines are represented by a n ∗ n matrix

which is denoted by Dout, where Dout[i, j] represents the amount of transmitted data from

the virtual machine VM(ti) that executes the task ti to the virtual machine VM(tj) that

executes the task tj. We assume that the size of the output data Dout
ti

produced by task

ti is known in advance. Let β be a matrix of dimension m ∗ m representing the band-

width between the different virtual machines that execute the workflow tasks. β[i, j] is

the bandwidth between the virtual machines VMi and VMj. Note that this matrix is not

necessarily symmetric. Indeed, the bandwidth between VMi and VMj is not necessarily

the same as that between VMj and VMi. Figure 5.3 shows an example of resources graph

with transfer speeds (bandwidth) between different virtual machines of a cloud environ-

ment. The transfer time between two virtual machines executing the tasks ti and tj, that

is VM(ti) and VM(tj), is determined by the amount of transferred data and bandwidth

between these virtual machines. Note that the transfer time between two tasks running
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on the same VM equals 0. The transfer time TT is calculated as:

TT(ti, tj) =
Dout[i, j]

β[i, j]
(5.2)

Let ET be a n ∗m matrix, where ET(ti, VMj) is the estimated execution time of the task ti

on the virtual machine VMj. The real execution time of a task on a given virtual machine

also depends on the amount of its input and output data.

Figure 5.3 – Architectural model.

5.3.2 Objective function

Our objective function aims at minimizing the overall makespan of a workflow while

maintaining the loand balancing. First of all we define ST(ti) and FT(ti) which are the

earliest starting time and the earliest finishing time of task ti, respectively. For the entry

task tentry:

ST(tentry) = 0 (5.3)

FT(tentry) = ET(tentry, VMj)) (5.4)

We recursively calculate ST and FT for the rest of tasks in the graph starting from the

entry task. To calculate the earliest finishing time of task ti, all its parents tasks (prede-

cessors) must be scheduled taking into account the transfer time as shown in equations

5.5 and 5.6:

FT(ti) = ST(ti) + min
VMi
{ET(ti, VMi)} (5.5)

ST(ti) = max
tj∈pred(ti)

{FT(tj) + TT(tj, ti)} (5.6)
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Where pred(ti) is the set of predecessors of the task ti.

We propose a scheduler S defined by a set of resources, a set of tasks to schedule, the total

execution time, and the total execution cost, S = (T, R, ET(ti, VMi), PC(ti, VMi)) where:

• T = {t1 · · · tn} is the set of tasks compose the Workflow W.

• R = {VM1 · · ·VMm} is the set of virtual machines.

• ET(ti, VMi) is the total execution time of the task ti on VMi.

• PC(ti, VMi):(Processing cost) is the total execution cost of the task ti on VMi, which

equals:

PC(ti, VMi) = Cost(VMi) ∗ ET(ti, VMi) (5.7)

Where Cost(VMi) is the cost of data processing per hour in the virtual machine VMi, and

ET(ti, VMi) is the execution time of the task ti on VMi.

The objective function of the overall execution time can be defined as follows:

Makespan = min{FT(texit)} (5.8)

Subject to:

∑
ti∈T

PCti ≤ Budget(W) (5.9)

∀t ∈ T | ∃! VMi ∈ R , µ(ti) = VMi (5.10)

∑
ti∈rj

RAM(ti) ≤ RAM(VMi) (5.11)

∑
ti∈rj

IS(ti) + OS(ti) ≤ SC(VMi) (5.12)

The associated constraints are given in Eq. 5.9 to 5.12. Where IS(ti) is the input size

of a task ti, OS(ti) is the output size of a task ti and SC(VMi) is the storage capacity of

VMi.

Constraint 5.9 ensures that the workflow processing cost must be less or equal to the

budget dedicated to this workflow.

Constraint 5.10 ensures that each task is scheduled on a single virtual machine. Where

µ is a matching function between the set of tasks and the set of virtual machines, which

indicates for each task the machine on which it will be launched.
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Constraint 5.11 ensures that the total RAM required by all tasks running on VMi

should be less than the available RAM on this virtual machine.

Constraint 5.12 ensures that the total disk space (input size and output size) required

by all tasks assigned to VMi should be less than the storage capacity available on VMi.

5.4 E-HEFT: Enhancement Heterogeneous Earliest Finish Time

algorithm

The algorithm is consisted of four phases. In the first phase, we specify the load thresh-

old of each machine based on both processing speed and storage capacity. In the second

phase, we define the datasets dependencies in order to cluster the datasets into different

datacenters based on these dependencies. In the third phase, we group the set of tasks by

level on the graph, then we assign a value (Rank) for each task based on the Rank func-

tion of the HEFT algorithm. Finally, we schedule these tasks on its best machine based

on Matching Game theory.

5.4.1 Attribution of VMs threshold phase

The threshold represents the utilization storage percentage for each machine that

should not be exceeded. We will attribute a threshold for each machine on the cluster

based on its storage capacity and data processing speed. For quantifying and evaluating

the performance of each machine, we set up the HPC Challenge (HPCC). It is a bench-

mark designed to give a picture of overall computer performance including floating point

computer power, memory subsystem performance and global network issues. It consists

of seven separate workloads building on the success of the TOP500 list Linpack HPL

based workload 1.

In this chapter, we first use the HPL (High-Performance Linpack Benchmark) [77]

measurement as a performance value to know the real datacenter performance on the

HPCC benchmark. Then, we record the execution time of each machine based on the

output of HPL benchmark. After that, the shortest execution time is used as a reference

to normalize the execution time measurements, in such a way we attribute randomly

the highest threshold to the machine that has the shortest execution time. Then, the

1https://www.top500.org/lists/
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normalized values are used to distribute an appropriate threshold to each machine on the

cluster. Thus that a high-speed machine will handle tasks more than low-speed machine.

5.4.2 Datasets dependencies specification phase

In our strategy, we initially adapt a dependency matrix to represent the affinity be-

tween the datasets. Cloud workflows can be complex, the execution of one task might

require many datasets. Furthermore, one dataset might also be required by many tasks.

So, we say that the datasets di and dj have a dependency if there are tasks that will use

them together. The dependency degree is the total number of tasks that use both di and

dj. We use dependencyij to denote the dependency between the datasets di and dj and

the quantity of this dependency is the number of tasks that use both di and dj . It can be

calculated by counting the tasks in common between the task sets of di and dj, which are

denoted as Ti and Tj.

dependencyij = card(Ti ∩ Tj) (5.13)

The dependency matrix is defined by: DM = {dependencyi,j, (1 6 i, j 6 n)}. For

the elements in the diagonal of DM, each value means the number of tasks that will use

this dataset. DM is a symmetric matrix of dimension m ∗m, where m is the total number

of existing datasets. We store the datasets that have the highest dependency degree in

the same datacenter based on the total number of tasks that use these datasets as shown

in formula 5.14.

Max(dependencyij) (5.14)

As an example in Figure 5.4 (left side), we assume that we have four datasets (d1, d2,

d3 and d4), and we have also five tasks to be processed (t1 to t5), the dependency matrix

DM is shown in Figure 5.4 (right side).

5.4.3 Tasks sorting phase

The objective of this phase is to define the different levels of a given workflow (DAG).

Therefore, tasks belonging to the same level can be execute concurrently. This is because

two tasks at the same level do not exchange data (or they are not linked by precedence

constraints). Then, a weight is assigned to each node and edge of the graph, depending

on processing length of each task in all cluster’s machines and communication length
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Figure 5.4 – An example of dependecy matrix.

between tasks. Then, the graph is traversed upwards and a value (rank) is assigned to

each node at each level. The first level and the last level contain respectively the exit task

texit and the entry task tentry. Tasks are sorting in descending order in the list based on

their rank value.

For calculating rank value to give priority for each task to be executed, we use the

rank function of the HEFT algorithm. Algorithm 6 shows the pseudo code of the ranking

method of HEFT algorithm.

Algorithm 6: HEFT ranking algorithm

1 for each task ti in the graph (DAG) do
2 calculate average execution time on all VMs
3 if task ti is the last task then
4 rank value of ti = its average execution time

5 else
6 ranku(ti) = W i + max

tj∈succ(ti)
(ci,j + ranku(tj))

5.4.4 Virtual machine selection phase

The final phase of the proposed approach is to choose an "optimal" virtual machine to

run each of the workflow tasks. We use game theory [97], which is a theoretical approach

of the game that provides an appropriate solid mathematical tools to study the consid-

ered issue and to allocate resources to the tasks on the basis of low cost, load balancing

and improved tasks execution time. So far, we have modeled the problem of virtual ma-

chines selection as a many-to-one matching game where the players are the tasks and the

102



VMs. Each task has the right to choose one VM. By contrast, the VMs can host one or

more task respecting the maximum number of quota qvm.

This choice based on the preferences list for all tasks and virtual machines. The pref-

erence lists of each task on the workflow PL(ti) = {VMj∗, · · · , } contains the set of VMs,

which are selected like potential sites. The elements in preference list PL(ti) are put in an

ascending order according to the processing power of the machines, their cost processor,

memory and storage capacities. So that the machine having the best values of these pa-

rameters depending on the requirement of the client has the highest rank. On the other

hand, The preference list of the jth virtual machine VMj is PL(VMj) = {ti∗, · · · , }. These

tasks are sorted in ascending orders according to different parameters as we have seen

in chapter 4. The tasks are initially prioritized according to the impact of these tasks on

the use of the virtual machine in terms of CPU, RAM, etc, such that one having least im-

pact has highest rank. Thus, the key factor for prioritizing tasks is their CPU utilization

ratio. As a solution of virtual machines selection phase we used the matching algorithm

as shown in algorithm 7 based on the deferred acceptance algorithm introduced in [? ],

which is a well-known approach to solving the standard matching games.

Algorithm 7: Task-VM matching algorithm
Input: Tasks’ preference lists, VMs’ preference lists .

1 while (∃ a free task ti that still has a VMj to propose to) do
2 Task ti proposes to all VMs on its preference list.
3 if (qvmj ≥ 0) then
4 ti is assigned to the waiting list of VMj

5 else
6 Compare ti with the current tasks on the waiting list for the VMj and

reject the task that has least preference.

7 The rejected tasks re-apply to their next best choice.
8 Each VM update its waiting list based on its preference list, and rejects the

rest.
Output: Every ti is on a waiting list of one of the VMs, and,thus, we have

convergence to a stable matching.

An overview of our approach is given by algorithm 8 which includes all the afore-

mentioned phases.
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Algorithm 8: Task scheduling algorithm
Input: Workflow W, set of virtual machines VMs

1 Attribute a threshold for each virtual machine.
2 Defining datasets dependencies by using the dependency matrix.
3 Read the DAG
4 Break W into set of levels L by traversing the DAG upward.
5 K ← 1 ; // first level
6 while (K ≤ L) do
7 for each task in level k do
8 Apply HEFT ranking algorithm (algorithm 6)

9 Sort the tasks in a scheduling list by descending order of ranku values
10 Check tasks and virttual machines Preferences Lists(PL)
11 Assign task ti to the best virtual machine VM based on preferences list.
12 Apply Task-VM matching algorithm (algorithm 7)
13 Remove ti from the level K
14 K ← K + 1

15 return Set of VMs with the mapping tasks.

5.5 Experiment result and analysis

In this section, we present the experiments conducted in order to evaluate the perfor-

mance of the proposed E-HEFT algorithm. Performance metrics, experimental setup and

results are shown in the following subsections.

5.5.1 Experimental setting

To evaluate a workflow scheduling algorithm, we should measure its performance on

some sample workflows. So, there is a need for a good simulator for experimental pur-

poses. One such a simulator is CloudSim [127], which has been widely adopted for the

modeling and the evaluation of cloud-based solutions. Particularly, CloudSim provides

a generic broker modeled as a class named DataCenterBroker, we extended this class to

support DAG-structured workflows and to model the behavior of this component and

its particular placement policies. On the other hands, CloudSim is an extensible sim-

ulation toolkit that enables modeling and simulation of cloud computing systems and

application provisioning environments. The Cloudsim could implement generic applica-

tion provisioning techniques that can be extended easily with limited efforts. According

to the implementation using Cloudsim, the VMs are considered as the cloud resources
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and Cloudlets as tasks/jobs. We ran our experiment on one datacenter that contains 20

VMs, and the configuration of virtual machine is shown in Table 5.1. All experiments are

performed on a Pentium(R) Dual-Core processor with a speed of 2.8GHz and memory of

16GB.

Table 5.1 – Initial parameters of virtual machine
parameters of virtual machine Value

Number of VM cores 4
Mips of each core 2000MI

RAM 1GB

In order to make the results more realistic, it is important to conduct experiments us-

ing workload traces from a real system. Bharathi et al. [136] investigate the characteriza-

tions of six realistic workflows from diverse scientific applications, two of which are used

in our experiments, which are Montage for astronomy and CyberShake for earthquake

science. Montage [33] is an astronomy application that was created by the NASA/IPAC

Infrared Science Archive as an open source toolkit that can be used to construct large im-

age mosaics of the sky using input images in the Flexible Image Transport System (FITS)

format. The CyberShake [34] workflow is a seismology application that calculates Proba-

bilistic Seismic Hazard curves for geographic sites in the Southern California region. Four

different sizes of these workflows are chosen, small (around 30 tasks), medium (around

100 tasks), large (1000 tasks) and x-large (10000 tasks). Figure 5.5 shows the approximate

structure of a small instance of each workflow used in our experiments. For each work-

flow, tasks with the same color belong to the same type. It can be seen that these two

workflows have different structures, data and computational requirements.

5.5.2 Competitive algorithms and performance metrics

We compared our E-HEFT algorithm with the Heterogeneous Earliest Finish Time

(HEFT) [42] and MinMin Task Scheduling Heuristic (MinMin-TSH) [137]. The MinMin-

TSH algorithm is a widely-used scheduling algorithm. This is a task-based greedy algo-

rithm that allocates each ready-to-run task to a machine based only on the local informa-

tion of that task. There are two phases in MinMin-TSH algorithm. In the first phase, it

finds the resource with minimum execution time of all tasks. Then, in the second phase,

it selects the task with minimum execution time among all the tasks and schedules it on

that resource. The same procedure is repeated by MinMin-TSH algorithm until all tasks
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(a) Montage

(b) CyberShake

Figure 5.5 – The structure of two realistic scientific workflows.

are scheduled. We have chosen MinMin-TSH [137] and HEFT [42] algorithms because

they produce efficient schedules and have been used as baselines in many related works.

Our scheduling algorithm aims at minimizing the total execution time of the tasks as

well as achieving a well-balanced load across all VMs. Hence, we have used two metrics

to evaluate our scheduling algorithm, which are the total execution time (makespan) and

the degree of imbalance (DI).

• Makespan:is the maximum needed time to complete the execution of all tasks.

makespan = max
i∈{1,···k}

{FT(ti
exit)} (5.15)

Where ti
exit , i ∈ {1, · · · k} are tasks that don’t have any precedence constraints, so they

can run in parallel to complete the execution of the entire workflow.

• Degree of imbalance (DI): to measure degree of imbalance (DI) of all virtual machines

on the cluster, we use the following formula:

DI =
Lmax − Lmin

Lavg
(5.16)
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Where L is a load of a VM on the cluster, and equals:

L =
tasklength(VMj)

C(VMj)
(5.17)

Where tasklength(VMj) is the total length of tasks submitted to the VMj and C(VMj) =

penumj ∗ pemipsj is the capacity of a VMj, with penumj is the number of processors in VMj

and pemipsj is the million instructions per second of all processors in VMj.

5.5.3 Experimental results with simulaion

The makespan results (the average of 5 executions) for the Montage and Cybershake

workflows are shown in Figures 5.6 and 5.7, while Figure 5.8 shows the comparison of

degree of imbalance between E-HEFT, HEFT and MinMin-TSH algorithms.
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Figure 5.6 – Average makespan of the three algorithms based on Montage workflow.

According to the experimental results in Figures 5.6 and 5.7, it can be seen that the

total running time of scientific workflows lengthens when the number of submitted tasks

increases. It is clearly evident from the graphs plotted in Figures 5.6 and 5.7 that E-HEFT

is more efficient when compared with other two algorithms based on both workflows.

According to Montage workflow, our proposed algorithm (E-HEFT) outperforms HEFT

and MinMin-TSH algorithms in terms of the average makespan of the submitted tasks

by 21.37%, and 28.98%, respectively as shown in Figure 5.6. On the other hand, The E-

HEFT showed an average improvement of 26.07% compared to HEFT and 21.93% com-
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Figure 5.7 – Average makespan of the three algorithms based on CyberShake workflow.

pared to MinMin-TSH based on Cybershake workflow as shown in Figure 5.7. It is worth

mentioning that makespan is closely pertinent to the volume of data movement for data

intensive workflow. So, we can state that those improvements variations are mainly due

to the volume of data that is transferred among activities in each workflow. Compared

with two other algorithms, our algorithm incurs less data movement during the work-

flow execution thanks to the datasets dependencies specified in the second phase of our

algorithm.
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From Figure 5.8, it can be seen that our algorithm (E-HEFT) can effectively balance the

load among all virtual machines and has a lesser degree of imbalance when compared

with two other algorithms. This is due to the attribution of load threshold to the VMs as

specified in the first phase of our algorithm.

5.6 Conclusion

In this chapter, we have proposed an enhancement of the Heterogeneous Earliest Fin-

ish Time algorithm (E-HEFT) for achieving tasks scheduling with load balancing among

virtual machines and minimum execution time. The algorithm attributes a utilization

threshold to each VM that it should not exceed. Then, it stores the dependent datasets

on the same datacenter. Next, tasks are sorted based on their rank value using HEFT al-

gorithm. Finally, matching game theory is used to select the suitable virtual machines to

execute the submitted tasks. To evaluate the performance of our algorithm, we compared

it with some existing techniques based on the execution time (i.e., makespan) and degree

of imbalance (DI). Experimental results show that our algorithm not only balances the

load, but also takes less time to execute tasks compared to the two other algorithms.

Efficient task scheduling is essential for achieving good system performance mainly

in distributed systems such as Hadoop MapReduce. Hadoop MapReduce is considered

as one of the most well-used distributed platforms for processing large-scale data in

cloud environment. The scheduler in Hadoop manages and monitors the scheduling

of tasks. In addition, if a failure takes place, Hadoop reschedules the failed tasks. This

makes fault tolerance a critical issue for the efficient execution of any application run-

ning on Hadoop in order to ensure the quality of service (QoS) and to meet the end-users

expectations. In the next chapter, we intend to lead a better understanding of such fault

tolerance mechanism despite failures. Towards this direction, we will analyze the perfor-

mance of many representative Hadoop MapReduce applications, with different execu-

tion parameters under different failure scenarios. We will also present different options

to inject failures into MapReduce applications in order to simulate real world failures.
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Chapter 6

Hadoop Scheduling Under Different

Types of Failure
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In this chapter, we aim at understanding the fault tolerance mechanism of Hadoop MapRe-

duce with different execution parameters and under different failure scenarios. Next, we will

analyze the impact of checkpointing interval selection, which is a fault tolerance technique, on the

performance of Hadoop. Hence, two different scenarios have been simulated. The first consists

in analyzing the performance of Hadoop in the presence of different types of failure (task failure,

TaskTracker failure and NameNode failure). The second consists in investigating the impact of

checkpointing interval selection on the performance of Hadoop under various failure probabilities.

This chapter is derived from:
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– Yassir Samadi, Mostapha Zbakh and Claude Tadonki. "Performance comparison be-

tween Hadoop and Spark frameworks using HiBench benchmarks". Concurrency and

Computation: Practice and Experience. 2017; e4367.

https://doi.org/10.1002/cpe.4367.

– Yassir Samadi and Mostapha Zbakh. "The impact of checkpointing interval selection

on the scheduling performance of Hadoop framework". To appear in ICMCS 2018: The

6th International Conference on Multimedia Computing and Systems. IEEE, Rabat,

Morocco.

6.1 Introduction

Nowadays, the technology of cloud computing has been extensively used by many

enterprises such as Facebook and Google, to name a few. By using the MapReduce

framework, these enterprises can process enormous volumes of data on a large clusters.

MapReduce is the most popular distributed paradigm thanks to its features such as fault

tolerance for processing of large-scale data [138, 139], Hadoop is considred as a widely

used implementation of MapReduce, it provides an open-source solution for process-

ing with big data 1. Hadoop framework contains two important components which are

MapReduce and Hadoop Distributed File System (HDFS) [140, 141, 142]. The main payoff

of the distributed computing platforms like Hadoop MapReduce is that they hide com-

plex configurations in libraries and let the developers focusing only on their applications.

Hadoop is one of the most well-known distributed platforms for processing large-scale

data, which attracts researchers’ attention to improve its existing features such as fault

tolerance and to develop new functionalities as well [143]. Due to the growing volume of

data at a dynamical rate by nature, the system will experience more failures. Authors in

[144] claim that running a complex tasks on a Hadoop cluster may trigger many software

failures. In addition, several reasons my cause a task failures on the scheduler of Hadoop

such as bugs, missing data, etc.

Fault tolerance [145] is the case when a system is capable of providing the expected

services despite the presence of faults that may cause errors in the system itself. Fault

tolerance includes methods and techniques to ensure the availability of resources on dis-

tributed systems. In other words, by applying the fault tolerance mechanism, we can get

1http://Hadoop.apache.org
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back the damaged data or the faild tasks to the last normal state before the accident. Fault

tolerance on distributed systems is essential to ensure the performance of tasks process-

ing. When considering the nature of distributed systems such as cloud computing which

contains hundreds (and even thousands) of servers, virtual machines, routers, etc. fail-

ures can occur with a high probability. In case of its absence, the system might face

failures which can deteriorate the system performance and violate QoS requirements.

Therefore, an efficient fault tolerance techniques are required to prevent failures.

Several studies have been dedicated to improve the performance of distributed sys-

tems under failures. Authors in [146], have claimed that the main reason of failures is the

lack of information sharing about failures between nodes (e.g., bugs, TaskTracker failure,

etc.) after analyzing the performance of Hadoop under failure. Then, they have pre-

sented a RCMP strategy that performs efficient task re-computation in case of failures for

big data analytics. It just re-executes the failed tasks instead of replicates data. However,

RCMP only focuses on Input/Output heavy jobs, so we cannot apply this strategy on all

kinds of Hadoop jobs. Jin et al. [147] proposed a stochastic performance model to study

how node failures influence MapReduce applications. They considered the best-case sce-

nario and the worst-case scenario under the assumption that the inter-arrival time of

node failures follows exponential distribution to estimate the expected execution time of

tasks. The simulation results show that MapReduce job with three replicas can achieve

better performance than that with one replica, because when there is more data repli-

cas in different nodes, the amount of data migration will be reduced when rescheduling

jobs at failure time. In [148], authors presented a fault tolerance technique called (BeTL)

adopted on the top of Hadoop framework. They proposed to send the meta-data to mas-

ter as checkpoint and they come up with a solution to deal with the instability of the

generation spills. Experiment results show that BeTL technique gives results better than

Hadoop with 6% in case of no failure detected and 4% to 51% in the presence of fail-

ures. However, a node failure cannot be well handled since the intermediate data are not

replicated at runtime.

Although Hadoop has adopted an efficient fault tolerance mechanism for dealing

with many types of failures, it still experiences a lot of failures because of the nature of

the cloud computing. Generally in Hadoop, the detection of node failures takes place

after an interval of 10 min, which is the default interval for Hadoop to declare a node is

dead. Then, the failed tasks wil be re-executed on other available nodes. The re-execution

of failed tasks may cause an increase of the job execution time which can affect negatively
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the performance of the scheduler on Hadoop. Generally speaking, there are two kinds

of fault tolerant techniques used in Hadoop framework which are replication and check-

pointing. As for replication, each dataset will be replicated on the cluster and used as a

backup, 3 replicas by default. So, a secondary node is necessary. Either the two nodes

run simultaneously or the secondary node keeps on stand by until the primary node fails

over, the resource should be doubled to meet the requirement of fault tolerance. Another

solution is checkpointing [149], which is an efficient fault tolerant approach as it enables

the failed tasks to be resumed from just a previous consistent state and not from scratch.

During the checkpointing, an application is responsible for writing its current state pe-

riodically at regular intervals to a local disk during the runtime stage, so in case if this

application failed to run, it resumed from the last valid state rather than from the scratch.

Although the checkpointing is considered as one of the most efficient fault tolerance

technique, unnecessary frequent checkpoint might deteriorate the system performance.

Consequently, the checkpointing interval, i.e., the amount of time between two consec-

utive chekpoints, must be selected taking into account the failure probability, as well as

the nature of the workload. Towards this direction, this chapter intends to provide a

better understanding of Hadoop fault tolerance mechanism by quantifying the impact

of failures on MapReduce applications. In particular, we analyze the performance of

Hadoop with presence of different types of failures (task failure, TaskTracker failure and

NameNode failure) [150]. Next, we discuss various approaches to inject failures into a

MapReduce jobs and evaluate the performance penalty depending on the type of failure

injection, the frequency of failure, the function being affected by the failure, and vari-

ous system and application parameters. We then investigate via simulation the impact

of checkpointing interval selection on the performance of Hadoop under various failure

probabilities in order to demonstrate that choosing the optimal checkpointing interval

has an influence on task performance.

This chapter begins by presenting background of Hadoop MapReduce in section 6.2.

Section 6.3 briefly discusses the fault tolerance mechanism of Hadoop MapReduce as

well as the checkpointing technique. In section 6.4, simulations are conducted to analyze

the fault tolerance mechanism of Hadoop Mapreduce under different type of failures as

well as the impact of checkpointing interval selection on the performance of Hadoop.

Section 6.5 presents the conclusion and our future work.
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6.2 Overview of Hadoop MapReduce

6.2.1 Definition

MapReduce [138, 151] is a programming paradigm for distributed computing based

on Java, introduced by Google to process large volumes of data. The model is relatively

simple. To maximize potential parallelism, it consists of two important stages. The first

one (Map) is the name of a high-level function. It applies a given function to each item

of a list and returns a list of pairs in the form of (key,value). The result of this phase is

stored on a local disk and it does not stored on HDFS (Hadoop Distributed File System).

The second stage (Reduce) is the name of a high-level function that applies a given func-

tion to all elements of a list and returns a single list. Input data is split into "small" units

(64 MB by default) [152], each being treated in parallel by a Map function. The result of

the treatment is sorted by key to form data units for the Reduce function. The output of

map phase is grouped by key and transferred from the mappers to the reducers (shuf-

fling phase). Next, the reducer takes the input as (K, List(v)) and generates the output

as (K, V). Then, the output data is written to HDFS. It is possible to distribute data pro-

cessing because MapReduce programs are inherently designed to be executed in parallel.

Figure 6.1 depicts the phases that MapReduce follows to execute the jobs. MapReduce

framework operates on < key, value > pairs as shown bellow:

map(key1, val1)← list(key2, val2)

reduce(key2, list(val2))← list(key3, val3)

Figure 6.1 – MapReduce Programming Model
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In this chapter, we focus on the open-source MapReduce implementation, Hadoop 2.

Hadoop uses master/slave scheduling mode. In this architecture, there is a master node

which is the JobTracker and several worker nodes which are TaskTrackers. JobTracker

receives requests from MapReduce clients and assigns them to the available TaskTrackers

for execution. TaskTracker, in his trun, tracks the execution of MapReduce tasks running

locally and sends statuses update to the JobTracker.

Hadoop consists of the following main components: (1) JobTracker, which is respon-

sible for assigning tasks, (2) TaskTracker, which is responsible for tasks execution, (3)

NameNode, which is a master server that manages the file system namespace and regu-

lates access to files by the clients, and (4) DataNode, which manages the storage attached

to the hosting nodes. The JobTracker and NameNode daemons run on the Hadoop mas-

ter node, while the TaskTracker and DataNode daemons run on the slave nodes. Figure

6.2 shows a simplified overview of Hadoop.

Figure 6.2 – Intercations between Hadoop components

6.2.2 Type of failures in Hadoop MapReduce

The occurrence of failures in distributed systems such as Hadoop may happen due

to several reasons [153]. Google has announced that there are several nodes that fail ev-

ery day in Google cluster and Hadoop is bit familiar with the Google file system (GFS).

Hadoop distributed file system (HDFS) tends to be highly fault tolerant. Generally speak-

ing, there are three types of failure in Hadoop MapReduce: task failure, TaskTrackers

(workers node) failure and JobTracker (master node) failure:

2http://Hadoop.apache.org
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• Task Failures: In Hadoop, a master node tracks the status of each task running on the

cluster by creating associated data structures. The task failure on Hadoop is caused by

the component’s failure on which the task is belonging to. A task failure can happen

when a map or a reduce phase is interrupted. There are several reasons to have a task

failure. Among these reasons, there are bad records, contention, media corruption,

and bugs. For instance, in Figure 6.3, the map task of Job3 exceeded its maximum

number of scheduling attempts which was the cause of the fail of all reduce tasks. As

a consequence of this map task failure, the entire job3 failed.

Figure 6.3 – Example of Hadoop MapReduce task failure

• TaskTracker failures: A TaskTracker failure occurs when it stops accepting tasks from

the JobTracker. There are several reasons to have a TaskTracker failure such as hard

disk failure, memory errors, etc.

• JobTracker Failures: The failure of JobTracker is the most serious failure mode because

the JobTracker is a single point of failure in Hadoop [154]. So, in this case the entire job

fails. Moreover, the state of the current task is lost.

Table 6.1 summarized the aforementioned type of failures.

6.3 Fault tolerance techniques

In this section, we define the fault tolerance mechanism. We present the fault toler-

ance technique adopted by Hadoop to deal with failures as well as the fault tolerance

technique based on checkpointing.
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Source of failure Cause of failure Loss
bad records,

Task media corruption, Task
and bugs
hardware failures,

e.g. memory errors,
TaskTracker hard disk failures, Task set

or overheating CPUs
JobTracker Crashing node Entire job

Table 6.1 – Type of failures in Hadoop MapReduce

6.3.1 Definition

Fault tolerance allows a system to work properly without losing data even if some

components failed [155]. In other words, fault tolerance is a strategy used for detecting

and identifying faults when they occur on a system, then it aims at recovering failed tasks

without any damage or data lost. There exists a lot of unpredicted events that can be

appeared at runtime. Hence, achieving 100% of fault tolerance is a hard task. However,

the main objective of fault tolerance techniques is to avoid frequent failures. Without loss

of generality, in distrbuted systems, there exists two kinds of fault tolerance techniques,

which are:

• Reactive fault tolerance: This policy reduces the effect of failures during the task exe-

cution by using checkpointing to tolerate the fault effectively when a failure occurs.

• Proactive fault tolerance: This policy aims at predicting faults before they actually

happen by analyzing resources such as tasks and VMs. Therefore, this policy allow to

avoid faults in advance.

6.3.2 Fault tolerance in Hadoop MapReduce

Node and task failures are prone to happen during a MapReduce job execution pro-

cess. When a task failure occurs, slave node (worker) sends a heartbeat message to in-

form the master of the task failure. To efficiently deal with failures, the master node, in

his turn, will re-execute the failed tasks on any healthy node as soon as possible. The task

re-execution can increase the job execution time and waste resources. As an example, a

task with a makespan of 120s, its makespan can go to 600s if a TaskTracker failure occurs,

and 900s if a DataNode fails [146]. Moreover, as we have said before, the main reason of
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failures is that nodes do not share information about failures between each other, which

can lead to fail all tasks of the job [156].

In the case if TaskTracker occurs, the master (JobTracker) relies on periodical commu-

nication with all workers to detect worker (TaskTracker) failures. Authors in [145] have

demonstrated that a JobTracker detects the failure of TaskTrackers with delay due to the

communication nature between JobTracker and TaskTrackers. Theoretically, TaskTrack-

ers send heartbeat messages to JobTracker (NameNode) every 3 second. The JobTracker

in his turn checks the availability of TaskTrackers every 200 second. If it passed about

10 minutes without any response from the TaskTracker, so it is declared dead. Next,

the JobTracker re-executes the failed tasks (running on the dead TaskTracker) on another

TaskTrackers according to their availability.

When a JobTracker fails, MapReduce will restart the master node. After restarting

a JobTracker, all jobs that were running on this node are stopped and need to be re-

submitted. This kind of rescheduling method is simple but often increases the task exe-

cution time and the processing cost. In Figure 6.4, we show a big picture of the default

fault tolerance mechanism on MapReduce.

Figure 6.4 – Fault Tolerance Mechanism in Hadoop.

6.3.3 Fault tolerance based on checkpointing technique

In order to deal with failures, provide a good service performance, and meet the qual-

ity of services (QoS) requirements, we should design an effective and efficient fault tol-

erance mechanism. In most current cloud platforms, checkpointing [157], which periodi-

cally saves the state of an application to a local storage, and replication, which replicates

data on different node of the cluster, are considered the most used fault tolerance mech-

anisms. In this chapter, we only discuss the fault tolerance based on checkpointing tech-

nique. Checkpoint is an operation that stores the current state of computation in a stable

storage. In distributed systems such as Hadoop MapReduce, checkpointing technique

allows working nodes to prevent the progress of failures. In other words, if a failure oc-
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curs, the system will resume the failed tasks from the last chekpointing which reduces

the overhead of computations.

Each set of parallel local checkpoints incurs a checkpointing overhead (CP), which

is considered to be a linear function of the job’s parallel service time. We get the check-

pointing overhead by counting the total number of checkpoints on the longest runtime

stage without failures. Specifically, it is defined as:

CP = CPF ∗ S (6.1)

Where CPF is the factor checkpointing overhead of a job whereas S is the parallel ser-

vice job’s time. ∆T represents the checkpointing interval during the runtime stage af an

application, which can have a value in ]0, 1[. So, we compute the number of checkpoints

NCP that each job performs at runtime based on the checkpointing interval:

NCP =

(
1

∆T

)
− 1 (6.2)

As a sample example, we consider that the checkpointing interval ∆T = 0.25 and the

parallel service time of a job is S=1, the number of checkpoints will be NCP = 4-1=3

and a checkpoint will be created after the 30%, 60% and 90% of the job’s service time is

completed. In this case, the parallel service time S of a job indicates only its computational

work and does not include checkpointing overhead. Consequently, we assume in other

case that the checkpointing overhead factor equals CPF = 0.05, so the total execution time

of the same job will equal T = S + NCP ∗ CPF, that is T = 1.15.

Fault tolerance in distributed systems such as Hadoop MapReduce is usually achieved

via application directed checkpointing, which is more practical, system-independent and

easier to implement. For instance, there are two imprtant components in MapReduce,

which are: (1) the JobTracker, which is responsible for managing jobs, and (2) TaskTrack-

ers, which are slave nodes responsible for executing tasks assigned from the JobTracker

as we have seen in section 6.2.1. The master and worker nodes communicate with each

other by exchanging a heartbeat messages. The master node sends periodically a heart-

beat message for each worker nodes (TaskTrackers) to check whether it still alive or note

during the runtime stage. At the same time, each TaskTracker sends its current status to

the master node (JobTracker). In case of failure, the TobTracker then will assign failed

map/reduce tasks to an idle TaskTracker depending on its capacity. In case if the Job-
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Tracker do not receive a response from a TaskTracker during the heartbeat interval due

to a failure, it will declare this node as failed. To guarantee the availability and reliability

of resources on the cluster, the master node (JobTracker) will re-execute the failed tasks

running on the failed nodes on another available worker nodes.

Checkpointing is the most widely adopted fault tolerance technique in large-scale

distributed systems, such as Hadoop MapReduce [149] because it ultimately yields good

performance. However, we should efficiently choose the checkpointing interval (i.e. the

time between two consecutive checkpoints). In order to run efficiently an application,

the checkpointing interval should be assigned taking into account the application nature

and its parameters, the failure probability as well as the system features on which this

application is running. Infrequent checkpointing may lead to greater recovery time and

thus poorer performance. So, selecting an appropriate checkpointing interval is not a

trivial task. Towards this direction, we conduct in this chapter a simulation study to

show how the checkpointing interval selection can affect the system performance.

6.4 Experiment setup and result analysis

6.4.1 Experimental setup

For our experiments, we deployed a Hadoop cluster using 5 nodes. Each node is a

virtual machine with 3 core and 2 gigabytes memory, see Table 6.2 for reference. We run

Hadoop 2.7.4 with the default configuration in Centos Linux. One node in the cluster

acts as a master node and the rest act as slave nodes (workers). The master node is

reserved for JobTracker and NameNode, the rest of nodes run DataNode and TaskTracker

processes. TaskTrackers were configured with 8 slots for running map tasks and 4 slots

for reduce tasks. At the level of Hadoop Distributed File System (HDFS), a chunk size of

128 MB is used. We set a replication factor of 2 for input/output data.

6.4.2 Failure injection tool

To evaluate the fault-tolerance in Hadoop MapReduce, several things should be speci-

fied such as defining faults to investigate, injecting these faults into a MapReduce system,

and analyzing the impact of these faults on the system performance. To do this, we have

implemented MapReduce Benchmark Suite (MRBS) which is a fault injection tool devel-
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Parameters Values
Operating System Centos 7.2, 64 bit
Hadoop Version Hadoop-2.7.4
Hadoop Installation mode Cluster
Master 1
Slaves 4
Hadoop replication factor 2 (is the number of times the block

of data would get replicated)
CPU 3 cores
Memory 2 GB
Disk (SSD) 40 GB

Table 6.2 – Parameters of Hadoop cluster

oped by Sangroya et al [158].

MRBS [159] is a performance and dependability benchmark suite for MapReduce sys-

tems which includes a variety of benchmarks that covers a large range of application do-

mains as well as execution scenarios. The tool generates automatic fault load and injects

it in MapReduce environment at different rates. In addition, it provides a means to ana-

lyze the efficiency of fault-tolerance capability of Hadoop cluster. Figure 6.5 presents the

process of fault tolerance evaluation using MRBS benchmark.

Figure 6.5 – Fault tolerance evaluation with MRBS benchmark.

Fault Injection: The injection of a fault in a MapReduce system with MRBS is treated

differently depending on the type of fault considered. To mimic failures, we simply fol-

low one of the following scenarios:

• A Node Crash Injection: To inject a node crash fault, we shut down a node or by using

Linux kill command to terminate the TaskTracker and DataNode daemon processes
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running on the node.

• A Task Process Crash Injection: To inject this fault, we kill he process running a task on

a node.

• A Task Software Fault Injection: We implement this fault by generating an exception

on a map task or a reduce task.

Workload: The workloads emulated by MRBS are selected to represent a range of

loads, from the compute-intensive to the data-intensive. It consists of five benchmarks

on different domains: recommendation systems, business intelligence, bioinformatics, text pro-

cessing, and data mining. In our experiment we have used data-intensive Text Processing

workload. The Text Processing consists of a standard application of MapReduce used, for

example, to analyze the logs of search engines and websites [158]. A random generated

text files of different sizes are used as input data of the benchmark.

In this chapter, two different scenarios have been simulated. The first one consists in

analyzing the performance of Hadoop with presence of different types of failure (task fail-

ure, TaskTracker failure and NameNode failure) (subsection 6.4.3). The second one con-

sists in investigating the impact of checkpointing interval selection on the performance

of Hadoop under various failure probabilities (subsection 6.4.4).

6.4.3 The impact of failures on Hadoop performance

In this section, we evaluate the fault tolerance of Hadoop MapReduce by using MRBS

benchmark. In the first experiment we run 5-nodes Hadoop cluster with Text Processing

workload of size 10GB. We have used two MapReduce applications which are:

• WordCount: It is an application with a heavy Map phase and a light reduce phase

[160]. Map outputs a < word, 1 > key-value pair for each word in an input file. Reduce

combines the count for each word producing a < word, result > pair.

• Sort: It sorts the text input data [161]. A large amount of intermediate data are pro-

duced which leads to a heavy reduce phase.

Figure 6.6 presents job response time for WordCount and Sort jobs with injection of

different failures. The x-axis represents different type of failures whereas the y-axis is

the total response time of jobs. From Figure 6.6, we observe that the impact level on the

response time of the MapReduce jobs depends on the type of failure. The "None" bars

represent the case when MapReduce jobs run without injected failures, the WordCount
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job spent about 970 second whereas the sort job took about 760 second. Concerning a "Kill

Node" failure, one node on the cluster was stopped at runtime stage. When a node failure

happens, the failed node will be removed from the cluster. We observe that the response

time of WordCount job was not affected when a node failure occurs, which demonstrates

that CPU intensive applications (WordCount) can be recovered by Hadoop with one node

failure without any additional time. For the "Network-Slow" fault, network-packets were

decelerated. For a task failure, we call "system.exit()" function on the application code. In

the "Packet-Drop" fault, we drop some packets at many nodes. Task failure "system.exit()"

has the worst impact on WordCount as shown in Figure 6.6. For Sort job, which is a

network-intensive application, Network-Slow and Packet-Drop have an impact on job

response time.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

N
one

K
ill node

N
etw

ork slow

system
.exit()

Packet drop

R
es

p
o

n
se

 t
im

e 
(s

)

Failure type

Word Count
Sort

Figure 6.6 – Job response time for Word Count and Sort under different failure types.

In the second experiment we run 5-nodes Hadoop cluster using WordCount job with

different sizes; for job 1 we use 1GB, for job 2 we use 5Gb and for Job 3 we use 10GB.

Figure 6.7 presents Hadoop cluster availability with different number of node faults. The

x-axis represents the number of killed nodes, whereas the y-axis is the percentage of

operational time of the Hadoop cluster. To provide the availability of the Hadoop cluster

with a percentage of 85%, Hadoop will allow only one node failure for the execution of

job3, but Hadoop can allow until three node failures in case of the execution of job1 in

a 5-nodes cluster. Briefly, if the size of input data of the MapReduce application is not

large, Hadoop can treat faults with suitable availability level.
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Figure 6.7 – Hadoop cluster availability with different number of node faults.

In the third experiment we run 5-node Hadoop cluster using WordCount job of size

10GB and we apply different split-sizes ranging from 16MB to 512MB. Figure 6.8 presents

the average WordCount response time for different split-sizes under two task failure rates

of 11% and 25%, and without failure. Figure 6.9 presents the slowdown or the additional
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Figure 6.8 – The impact of task failures on WordCount job

execution time of WordCount under two task failure rates of 11% and 25%. From Figure

6.8, we see that when the task failure rate increases, the job response times increase too.

The best job response time is achieved when the split-size equals 128MB with presence
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and absence of failures. The reason of that is the block size equals the size of the default

HDFS block used in our cluster (128MB). When the split size become larger than 128MB,

the job response time increases. The reason of this is that the HDFS blocks that have

a large size require an additional mappers to collect data that are generally situated on

more than one node, hence increasing task execution time. In summary, from the results

presented in Figures 6.8 and 6.9, we conclude that when the split-size is larger than the

default HDFS bolck size, the same percentage of task failures could cause a greater impact

on the task execution time since only few nodes will re-execute the failed tasks while

many nodes remain unemployed.
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Figure 6.9 – Slowdown percentage of WordCount job caused by task failures.

6.4.4 The impact of checkpointing interval on Hadoop performance

In this section, we provide a further comprehensive performance analysis of Hadoop

for an attempt to shed light on the relation between the checkpointing interval and failure

probability with respect to the characteristics of the workload.

In this scenario, we evaluate both the total number of executed tasks that did not

exceed its deadline as well as the results’ precision of the executed tasks. Therefore, we

have introduced a OSP metric, which is the overall system performance, and equals:

OSP = TGR ∗ ARP (6.3)
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Where TGR is the guarantee ratio of the entire job. It is the average number of tasks,

which are arrived at the central scheduler at the runtime stage, that meet their deadline.

ARP represents the average precision results of the finished tasks. Here TGR is defined

as:

TGR =
TG

TA
(6.4)

Where TG is the total number of guaranteed tasks and TA is the total number of tasks

that arrived to the scheduler. According to the service level agreement (SLA) contract,

it is supposed that both TGR and ARP are important factors and have almost the same

impact for the OSP metric.

In the first simulation, we ran Wordcount program with failure probability FP=1 (a

failure will be definitely occurred at runtime stage) in order to show the effect of check-

pointing for decreasing the job execution time. Figure 6.10 shows that the makespan of

the Wordcount program increases with the increase of checkpointing interval and vice

versa. When the checkpointing interval equals (∆T = 3), the Wordcount program ex-

perienced the largest makespan. This is due to the time delay caused by TaskTracker

for sending information about failures or free slots to the JobTracker in case of a longer

checkpointing interval. In other case, if the checkpointing interval is very small, the mas-

ter node will be overloaded as demonstrated in our next simulation. In other words,

when the checkpointing interval becomes shorter, the exchanged messages between the

TaskTracker and the JobTracker become more frequent. Consequently, choosing the best

checkpointing interval value is required to mitigate the load of the master node.

In Wordcount program, tasks spend the most of their execution time in the reduce

phase. Hence, we should assign a big checkpointing interval to the reduce phase. We

have adapted the checkpointing interval value at the runtime stage depending on map

and reduce phases as shown Figure 6.10. Then, we have tested the Wordcount program

with the following values (M=1, R =3), M for map and R for reduce. In this case, the

Wordcount program has smaller makespan compared with the case when map and re-

duce have the same checkpointing interval value (M=3 and R =3).

In the second simulation, we use all the possible combinations of the following value

of checkpointing intervals and failure probabilities:

• CPI = {0.1, 0.2, 0.3, 0.4, 0.5}

• FP = {0, 0.25, 0.5, 0.75, 1}
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Figure 6.10 – Makespan and messages number with different checkpointing intervals when execut-
ing the Wordcount application

Figure 6.11 shows the performance of Hadoop MapReduce, with respect to the OSP in-

dicator metric, under different combinations of failure probabilities and checkpointing

intervals. It can be observed that large checkpointing intervals gave better performance

when failure probabilities are low. However, when the failure probability increases,

smaller checkpointing intervals yield a higher level of OSP. For all failure probabilities,

the worst value of overall system performance is given when the checkpointing becomes

more frequently which may increases the makespan of the jobs. Thus, this shows that
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checkpointing does not need to be very frequent in order to achieve good performance

even in the case where a failure always occurs at a runtime stage.

6.5 Conclusion

In distributed heterogeneous systems, failures are always present due to the large

volume of processed data. Most of big companies and developers use Hadoop MapRe-

duce, and, like other distributed systems, it needs to be tested against different types of

failures. In this chapter, we exposed and analyzed Hadoop MapReduce fault tolerance

mechanism through generating and executing representative fault cases. Then, we ana-

lyzed the relation between the checkpointing interval and failure probability, with respect

to the characteristics of the workload based on the defined overall system performance

(OSP) metric. We conducted our experiments based on MRBS benchmark that allows

to characterize a fault load, generate it, and inject it in a Hadoop cluster. In summary,

even though we did not experiment with a large amount of input data, from the ob-

tained results, we observed that slowdowns are modest even with relatively high failure

rate, which demonstrates that Hadoop provides reasonable resistance to failures. Fur-

thermore, Hadoop has different behaviors to deal with failures depending on different

parameters such as: type of job, type of failure, and also the HDFS block size. In addition,

our experiments showed that the checkpointing interval value is an essential factor to
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the task execution on Hadoop. In particular, for higher failure probabilities and smaller

service times, checkpointing should be more frequent, in order to achieve good perfor-

mance. However, unnecessary frequent checkpointing may degrade the system perfor-

mance, therefore, the selected value of checkpointing interval should be above a particu-

lar threshold. In our future work, we intend to propose a new failure-aware scheduling

strategy that predicts the occurrence probability of failures before assigning tasks to the

virtual machines. This strategy aims at minimizing the recovery time of failed tasks,

which can lead to decrease the execution time.
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Overall conclusion and perspectives

Cloud computing has introduced a new business model of consuming the comput-

ing resources based on "pay as you go" which allows enterprises to pay only for the

consumed resources. This model reduces business risks and maintenance expenses by

outsourcing the service infrastructure to the cloud providers. On the other hand, the tra-

ditional model of software license acquisition deployed on the servers of the clients re-

quires many operations such as updates and configurations, thus generating significant

costs. Hence, cloud computing has emerged to reduce these additional costs and diffi-

culties by executing tasks on centralized third-party servers and storage utilities. Cloud

clients can use the computing resources without the management of the underlying in-

frastructure, which is the responsibility of the cloud providers. Thanks to these cloud

benefits, enterprises have been migrating their applications towards cloud computing.

Clouds offer an environment for solving problems involving large-scale data. They

provide on-request access to a virtually infinite pool of resources, which can be effec-

tively arranged to suit diverse application needs. In addition, resources can be scaled

in and out anytime to suit the present application needs and QoS prerequisites. How-

ever, there are a lot of issues and problems related to cloud computing that can slow its

growth and even compromise its future. One of the main issues of cloud computing is

to optimally schedule tasks on datacenters. While the cloud’s popularity is increasing,

tasks scheduling and resources allocation attract the attention of researchers to propose

efficient scheduling algorithms. Generally, task scheduling is considered as assigning

tasks to the available resources taking into account the characteristics and constraints

of the tasks. Furthermore, cloud resources should be used efficiently without affecting

cloud service parameters. Hence, cloud users are facing the problem of choosing the best

resources to use.

This thesis tended to increment our knowledge about tasks scheduling problem and

propose new strategies to optimize the scheduling and the allocation of resources in cloud

computing. We have proposed three scheduling strategies, which contribute to identify

the drawbacks of some scheduling algorithms and to introduce innovative techniques

to deal with these issues. The first scheduling strategy balances the load between dat-
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acenters and afterwards minimizes the overhead of data exchanges. The second strat-

egy reduces the energy consumption and maximizes the efficiency of the available re-

sources. The last strategy minimizes the makespan of a given workflow and maintains a

well-balanced load across the virtual machines of the cluster. The first strategy has three

phases, named respectively, finding datasets dependencies phase, threshold assignment phase

and load balancing phase. The second strategy contains in its turn four procedures, named

respectively, tasks scheduling procedure, detection of physical machines state procedure, tasks

selection procedure and tasks migration procedure. The third strategy contains four phases,

named respectively, attribution of VMs threshold phase, datasets dependencies specification

phase, task sorting phase and virtual machine selection phase. Finally, we have addressed

the fault tolerance mechanism of Hadoop MapReduce by analyzing the performance of

Hadoop in the presence of different type of failures as well as investigating the impact of

checkpointing interval selection on the performance of Hadoop.

In this thesis, we have simulated the previous three strategies using Cloudsim sim-

ulator to study their behaviors. In addition, we have compared the obtained results

with the state-of-the-art algorithms for workflow scheduling such as genetic algorithm,

HEFT (Heterogeneous Earliest Finish Algorithm). We have also compared our algo-

rithms with other algorithms that are already implemented on Cloudsim simulator such

as ThrMmt (Static Threshold and Minimum Migration Time) and UMC (Utilization and

Minimum Correlation). As a performance metrics, we have used total data movements,

index of load balancing, energy consumption, number of task migration, SLA violation

and makespan. For testing the fault tolerance mechanism of Hadoop MapReduce, we

have conducted our experiments based on MRBS benchmark using overall system per-

formance (OSP), slowdown and response time as performance metrics.

Our proposed scheduling strategies allow to reduce the energy consumption of data-

centers, minimize the execution time, decrease the overhead of data exchanges and main-

tains a well-balanced load among all machines on the cluster. Concerning the fault toler-

ance mechanism of Hadoop, we conclude that Hadoop provides a reasonable resistance

to failures. In addition, Hadoop has different behaviors to deal with failures depending

on different parameters, namely type of job, type of failure, and also the HDFS block size.

Following the work presented in this thesis, new research activities can be launched to

improve our work. The perspectives that we propose can therefore be oriented towards

the following directions:

133



• Regarding the scheduling of workflows based on matching game theory, we have only

considered the energy consumed by the processors to compute the total energy con-

sumption. We intend to generalize the model by taking into account other sources of

energy consumption such as hard disks activities.

• In our proposed scheduling algorithm E-HEFT (Enhancement Heterogeneous Earliest

Finish Time), we plan to consider the execution cost as another objective function for

scheduling to become a multi-objective optimization problem.

• When a resource constraint occurs, a cloud provider may choose to delegate the tasks

to other providers in order to avoid SLA violation and maintain the scalability, which

is one of the most important aspect of cloud computing. This scenario lead to a new

research direction in SLA management. In addition, the inter-clouds aspect may cause

a problem for the implementation of our proposed algorithms in a distributed hetero-

geneous environment. Hence, we plan to extend our algorithms to inter-clouds.

• In the last chapter of our thesis, we have analyzed the behavior of Hadoop under dif-

ferent type of failures. Our ongoing work intend to extend this work by proposing

a new model to determine the probability of failures before assigning tasks to virtual

machines. Next, we will use our proposed algorithm E-HEFT (Enhancement Hetero-

geneous Earliest Finish Time) that takes into account the reliability of task execution

while assigning tasks to virtual machines.
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Appendix A

Cloudsim simulator

As the target system of our work is a generic cloud computing environment, it is

essential to evaluate it on a large-scale virtualized infrastructure. However, performing

benchmarking experiments in repeatable, dependable, and scalable environment using a

real cloud platform would be very expensive and difficult, especially when it is necessary

to reproduce the experiment with the same conditions to compare different algorithms.

Therefore, a simulation has been chosen using CloudSim simulator as a way to evaluate

our proposed algorithms.

A.1 Definition

CloudSim, project developed by the Melbourne CLOUDS Laboratory in Australia, is

an extensible simulator which aims to enable modeling and simulation of cloud-based

systems [110]. Particularly, CloudSim provides a generic broker modeled as a class

named DataCenterBroker, we have extended this class to support DAG-structured work-

flows and to model the behavior of this component and its particular placement policies.

In contrast to another simulation toolkits (e.g. SimGrid, GangSim), it permits the mod-

eling of virtualized environments, supporting on demand resources provisioning and

their management. In addition, it enables developers to focus only on the investigation

of the specific system design issues, without worrying about the low level details related

to the cloud infrastructures and services. About implementing Cloudsim, the VMs are

considered as the cloud resources and Cloudlets as tasks/jobs [111].
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A.2 CloudSim architecture

Figure A.1 presents a multi layered design of the CloudSim architecture as well as its

software framework. The CloudSim architecture provides in the first layer (User Code)

the modeling of the different entities of a cloud such as datacenter, physical machines

and virtual machines. The next layer is the CloudSim which is made up of many funda-

mental classes developed in java such as Datacenter Broker, Datacenter characteristics,

VMM Allocation Policy, Cloud Coordinator, Cloudlet Scheduler, VM Scheduler, Host,

VM, etc. This layer manages the execution of the core entities (Virtual Machines, Hosts,

Data centers, applications) during the simulation period.

Figure A.1 – CloudSim architecture [110]

A.3 Cloud modeling

Each cloud is composed of a set of datacenters, which in their turn contains a set of

hosts. In addition, each host is composed of a set of virtual machines. To simulate a

given algorithms in a cloud computing environment, one class that contains the function

Main() should be defined, with the parameters of the cloud’s components such as the

number of datacenter, hosts, VM and their characteristics like RAM, CPU, MIPS and
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bandwidth 1. The following scripts describe an example of the implementation of some

cloud components in CloudSim simulator.

The configuration of the Virtual machine on this example is:

1 /*--VM description--*/

2 int vm_id = 1; //vm id

3 int vm_mips = 500; //Million of Intruction Per Second

4 long vm_size = 2500; //image size (MB)

5 int vm_ram = 1024; //vm memory (MB)

6 long vm_bw = 10000; //vm bandwidth (10 Mbit/s)

7 int vm_pes = 2; //number of cpus

8 String vmm = "Xen"; //VM monitor name

9

10 /*-- creation of VMs--*/

11 Vm vm1 = new Vm(vm_id, brokerId, mips, vm_pes, vm_ram, vm_bw, vm_size, vmm

, new CloudletSchedulerTimeShared());

And the configuration of the host is:

12 /*-- creation of hosts--*/

13 List<Host> host_List = new ArrayList<Host>();

14 List<Pe> pe_List = new ArrayList<Pe>();

15 int host_mips = 10000;

16 pe_List.add(new Pe(0, new PeProvisionerSimple(mips))); //need to store Pe

id and MIPS Rating

17 int host_Id=0;

18 int host_ram = 4096; //host memory (MB)

19 long host_storage = 10000000; //host storage (10 GB)

20 int host_bw = 10000;

21

22 hostList.add(

23 new Host(

24 host_Id,

25 new RamProvisionerSimple(host_ram),

26 new BwProvisionerSimple(host_bw),

27 host_storage,

28 pe_List,

29 new VmSchedulerSpaceShared(pe_List)

30 )

31 );

1https://graal.ens-lyon.fr/~ecaron/m2rts/2015/blogbazm/
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And finally the configuration of the datacenter:

32 /*-- Create datacenter --*/

33 String arch = "x86"; // system architecture

34 String os = "Linux"; // operating system

35 String vmm = "Xen";

36 double time_zone = 10.0; // the time zone

37 double cost = 3.0; // the cost of processing

38 double costPerMem = 0.05; // the cost of ram memory

39 double costPerStorage = 0.001; // the cost of storage

40 double costPerBw = 0.0; // the cost of bandwidth

41 LinkedList<Storage> storage_List = new LinkedList<Storage>(); //without

adding SAN devices by now

42

43 DatacenterCharacteristics characteristics = new DatacenterCharacteristics(

arch, os, vmm, host_List, time_zone, cost, costPerMem, costPerStorage

, costPerBw);

44

45 Datacenter datacenter = null;

46 try {

47 datacenter = new Datacenter(name, characteristics, new

VmAllocationPolicySimple(host_List), storage_List, 0);

48 } catch (Exception e) {

49 e.printStackTrace();

50 }
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