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Abstract

Lately, problems involving nonlocal operators have received considerable attention not
only in the field of pure mathematical analysis but also in the real world of applications, as in
thin obstacle problems, crystal dislocation, phase transition, optimization, finance, stratified
materials, anomalous diffusion, quasi-geostrophic flows, multiple scattering, minimal surfaces,
materials science and water waves.

In this thesis we are interested to study some non-local elliptic and parabolic problems.

A prototype of nonlocal operators is the fractional Laplacian operator, which can in fact
be seen as the infinitesimal generator of the stable Lévy process. This is one of the main
motivations behind the study of problems involving nonlocal operators.

Our main objective in this thesis is to extend some well-known results for the local case,
to our non-local case. More precisely, we carry out an investigation of the existence and
regularity of solutions to nonlocal problems elliptic and parabolic of fractional Laplacian type
with a singular nonlinearity, which specifically are singular with respect to the unknown
function. The content of the thesis is as follows. Chapter 1 is devoted to a functional
background necessary to carry analysis of fractional Sobolev spaces. We also give some
technical results necessary for the accomplishment of the work. In Chapter 2, we establish
some existence and regularity results of solutions for a class of nonlocal equations involving
the fractional Laplacian operator with singular nonlinearity and Radon measure data. In
Chapter 3, We study a Lazer-Mckenna-type problem involving the fractional Laplacian and
singular nonlinearity. We investigate the existence, regularity and uniqueness of solutions in
light of the interplay between the nonlinearities and the summability of the datum.

Finally in Chapter 4, we study the existence of solutions for a parabolic problem involving

the fractional Laplacian with singular nonlinearity.

Keywords :
Fractional Sobolev spaces; Fractional Laplacian; Nonlocal problems; Singular terms; Radon

measures; Weak solutions; Energy solutions.



Résumé

Dernierement, les problemes impliquant des opérateurs non locaux ont regu une attention
considérable non seulement dans le domaine de I'analyse mathématique pure mais aussi dans
le monde réel des applications, comme dans les problemes d’obstacles minces, dislocation
cristalline, transition de phase, optimisation, finance, matériaux stratifiés, diffusion anor-
male, flux quasi-géostrophiques, diffusion multiple, surfaces minimales, science des matériaux
et vagues d’eau. Dans cette these, nous nous intéressons a l'étude de certains problemes
elliptiques et paraboliques non locaux.

Un prototype d’opérateurs non locaux est 'opérateur Laplacien fractionnaire, qui peut en
fait étre vu comme le générateur infinitésimal du processus de Lévy stable. C’est I'une des
principales motivations de I’étude des problemes impliquant des opérateurs non locaux.

Notre objectif principal dans cette these est d’étendre certains résultats bien connus pour le
cas local, a notre cas non local. Plus précisément, nous menons une étude sur l’existence
et la régularité de solutions a des problemes non locaux elliptiques et paraboliques de type
Laplacien fractionnaire avec une non-linéarité singuliere, qui sont spécifiquement singuliers
par rapport a la fonction inconnue. Le contenu de la these est le suivant. Le chapitre 1
est consacré a un arriere-plan fonctionnel nécessaire pour effectuer ’analyse des espaces frac-
tionnaires de Sobolev. Nous donnons également quelques résultats techniques nécessaires a
I’accomplissement des travaux. Dans le Chapitre 2, nous établissons des résultats d’existence
et de régularité de solutions pour une classe d’équations non locales impliquant 1'opérateur
fractionnaire Laplacien a non-linéarité singuliere et des données de mesure de Radon. Dans le
Chapitre 3, nous étudions un probleme de type Lazer-Mckenna impliquant le Laplacien frac-
tionnaire et la non-linéarité singuliere. Nous étudions 'existence, la régularité et I'unicité des
solutions a la lumiere de I'interaction entre les non-linéarités et la sommabilité de la donnée.
Enfin au Chapitre 4, nous étudions l'existence de solutions pour un probleme parabolique

impliquant le Laplacien fractionnaire a non-linéarité singuliere.

Mots clés :
Espace de Sobolev fractionnaires, Laplacien fractionnaire, Problemes non locaux, Termes

singuliers, Mesures de Radon, Solutions faibles, Solutions d’énergie.



Notation
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dx

r = (21,22, - ,TN)
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meas(E) = |E|
supp(f)
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=
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: The fractional Sobolev critical exponent , p: =

General notations

Definition

. Open set of RY, N > 1,

: Surface measurement on

. Generic point of RY

. Almost everywhere

: Boundary of €,

: Complement of the set € in RY,

: w strongly included in €2, i.e., W is compact and w C €2,
. Lebesgue measure of E ¢ RY,

: Support of a function f,

:= max(f,0),

:= —min(f,0),

: Tr(s) = max(—k, min(s, k)) Truncation function of level k,

: The Holder conjugate exponent of p,p’ = P

p—1
Np

Np — ps

: An open ball of radius R centered at the origine,
: Gradient of the function u,

. Laplacian of wu,

: p-Laplacian of u,

: Norme in the space X,

: Dual space of X,

. Weak convergence,

: Space of infinitely continuously differentiable functions on €2,
= {f RY — R/f € C(RY), supp(f) is compact and supp(f) C Q},
: Space of Holder continuous fonctions on €2,

= {u:Q — R, u is measurable and / |ulP < oo}
0

= {u:Q — R, uis measurable and 3C > 0; |u(x)| < C a.e. in €, }

10



General notations

Notation Definition
(—A)°u . Fractional Laplacian of u,
)ou : Fractional p-Laplacian of u,
WhP(Q), Wy P(Q), HE(Q), HL (Q) : Sobolev spaces
P(Q), WP (Q), Hy(2), X5(©)  : Fractional Sobolev spaces
(©2)

wer
WrP(Q), Hy, .(Q) . Local fractional Sobolev spaces

11



12



(General introduction

This work is devoted to study, develop and deeply understand a set of problems, tools, or sim-
ply questions framed in the huge field of Partial Differential Equations (PDEs). In particular,
we focus on the study of a class of elliptic and parabolic problems involving the fractional
Laplacian operator with a singular nonlinearity, which specifically are singular with respect
to the unknown function u, of the form u~7, v > 0, therefore tends to infinity at the edge of
the domain 2. This singularity makes that the problems tackled present a certain number of
difficulties, linked to the lack of regularity and therefore of the compactness of the solutions.
Although these difficulties, the study of these problems have been an increasing interest. On
one hand, the interest in such equations is motivated by their applications in the mathematical
modeling of various real world processes, such as the thermo-conductivity [51], the boundary
layer phenomena [32] and the theory non-Newtonian pseudoplastic fluids [64]. On the other
hand, their theoretical study is very interesting from a purely mathematical point of view.
This study was initiated in the pioneering works [38, 81] which constitutes the starting point
of a wide literature about singular semilinear elliptic equations.

The classical Heat equation seems to describe in a satisfactory manner a wide variety of
diffusive problems in Physics. However, the anomalous diffusion that follows non-Brownian
scaling is leading to models governed by fractional Laplacian.

In the last few years, elliptic and parabolic equations involving nonlocal operators has at-
tracted substantial attention. The interest brought to such equations is due to the emer-
gence of this type of nonlocal operators in a wide range of phenomena — the crystal dislo-

cation, thin obstacle problems, Physics, phase transitions, finance, stochastic control, quasi-

13



geostrophic flows, materials science, water waves, anomalous diffusion to name a few (see
e.g. [29, 30, 31, 39, 47, 75, 79, 80, &1, 83] and references therein). We also recall that the
fractional Laplacian operator (—A)® can be viewed as the infinitesimal generator of stable
Lévy processes, see e.g. [13, 28, 80]. For an expository on fractional Laplacian, we refer the
reader to [21, 28, 45] and the references therein.

For all these reasons, we are interested in studying some non-local elliptic and parabolic
problems with term singular. The natural question concerns what changes between the local
versions (s = 1) of the equations and their non-local equivalents. For a number of properties
we find similar results described by 0 < s < 1 but with some interesting variations. These
variations are justified by the nonlocal aspect of the operator involved. We point out that a
non-local operator is such that the value of the image of a function at a given point depends
on other points rather not just a neighbourhood of the chosen point. In other words, if L°
is a nonlocal operator, being u : RY — R a function, and fixing € R”, then the value of
L?u(x) depends on the value of u(y) in other points outside a neighbourhood of z. Contrary
the more typical local operator, where the value of the image of a function at a certain point
depends only on the value of the function close to this point.

Notice also that to have a well-defined Dirichlet problem in a non-local framework, it is not
enough to prescribe the boundary condition at 9€). This is nothing but another consequence
of the nonlocal nature of the operator, since in order to compute the value of (—A)*u at any
point in 2, we need to know the value of u in the whole RY. In other words, the Dirichlet

datum is given in RV\Q and not simply on 5.

Our main objective in this thesis is to extend some well-known results for the local case to
the non-local problems. More precisely, we carry out investigations on the existence and reg-
ularity of solutions to nonlocal problems of elliptic and parabolic type involving the fractional
Laplacian operator with singular non-linearities, including specifically a singularity with re-
spect to the unknown function.

Finally, we briefly summarize the organization of this thesis and the main results contained

in every chapter. The thesis is conformed by four chapters.

In Chapter 1, we give some basic notations and necessary results that we will use in

the accomplishment of the work. We start by presenting the fractional Sobolev spaces, the

14



fractional Laplacian operator and their properties. Taking into account the algebraic char-
acter of our operator, we also present some algebraic inequalities that we will use regularly

throughout this thesis.

Chapter 2 is devoted to investigate the existence and the regularity of solutions for a class
of nonlocal equations involving the fractional Laplacian operator with singular nonlinearity

and Radon measure data. In particular, we will study the following Dirichlet problem

(—A)u = % +p in Q,

u >0 in Q, (1)
u =0 on RM\Q,
where (2 is an open bounded subset in RY, N > 2s, of class C™', s € (0,1), v > 0, f is a
non-negative function on 2, p is a non-negative bounded Radon measure on  and (—A)® is
the fractional Laplacian operator of order 2s.

Our main objective is to extend the results in local case in [66] to our nonlocal case.

Our purpose in this chapter is to consider the problem (1) in the nonlocal framework and
to prove the existence results of solutions to problem (1) with p a bounded Radon measure and
data f € L'(Q2). We use an approximation method that consists in analyzing the sequence of
approximated problems truncating the datum f and the singular term % and approximating
it by smooth functions obtaining non singular problems with L*-data whose approximated
solutions u,, can be obtained by a direct application of the Schauder fixed point theorem. We
faced many difficulties in dealing with the nonlocal problem (1), but the main one is how to
get estimations in appropriate fractional Sobolev spaces. The results contained in this chapter

can be found in [89].

In Chapter 3, we consider the Lazer-Mckenna problem involving the fractional Laplacian
and a singular nonlinearity. We investigate the existence, regularity and uniqueness of solu-
tions in light of the interplay between the nonlinearities and the summability of the datum.

More precisely, we will study the following nonlocal problem

(—A)°u :fif) in

u >0 in 0, (2)
u =0 on RM\Q,

15



where 2 is a bounded domain in RN, N > 2s, of class C**', s € (0,1), v > 0, f € L™(Q),
m > 1, is a non-negative function and (—A)® is the fractional Laplacian operator. Our main
goal in this chapter is to lead the investigations on the existence and regularity of positive
solutions to (2) and establishing some missing results in [18, 31]. The case where v = 1 is
treated in [18, 31]. We study the case where 0 < v < 1 and f € L™(Q) with 1 < m < which
provides infinite energy solutions (see Theorem 3.2.1 bellow) and we prove the existence of
finite energy solutions to problem (2) in the case v > 1 under some suitable assumptions on
the datum f. Further, to show the accuracy of our results we highlight the relationship with
the Lazer-Mckenna condition. We also provide some regularity results for solutions as well
as the uniqueness of finite energy solutions. At the end, we give an appendix which contains
two auxiliary results necessary to the accomplishment of the work. Note that we obtain some
results that extend to non-local problems those obtained in the local case in [11]. As regards
non-local problems, some of our results with a more general data extend also those obtained
in [10, 18].

This thesis ends with Chapter 4 in which we analyze the existence of solutions for the

following parabolic problem involving the fractional Laplacian with singular nonlinearity

u + (—A)°u = f(,t) in Qp :=Q x (0,7),

uYy

u =0 in (RM\Q) x (0, 7), (3)
u(-,0) =wup(-)  ing,

where € is a bounded domain of class C®! in RN, N > 2s with s € (0,1), 7> 0,0 < T < +oo0,
f>0,feL™r), m > 1, is a non-negative function on Qr and uy € L>(Q2) is a non-
negative function on €2 which furthermore locally satisfies a positivity condition on 2. The
existence and regularity of the solutions of (3) are obtained under different assumptions on
the summability of f and on 7. One of the main difficulties which arises in this problem is the
proof of the positivity of the solutions inside the parabolic cylinder to make sense of the weak
formulation of the solutions of the problem. In the proof of this property we only use the
weak comparison principle. The content of this chapter is an extension to non-local problems

of the results proved in [10] for the local case.

e Chapter 2 is the development of the published article [89] :

16



A. Youssfi and G. Ould Mohamed Mahmoud. On singular equations involving fractional
Laplacian. Acta Math. Sci., 40B(5):1289-1315, 2020.

e Chapter 3 is the development of the published article [91] :

A. Youssfi and G. Ould Mohamed Mahmoud. Nonlocal semilinear elliptic problems with sin-
gular nonlinearity. Calc. Var. Partial Differential Equations, 60(153), 2021.

e Chapter 4 is the development of the article [90] :

A. Youssfi and G. Ould Mohamed Mahmoud. Fractional heat equation with singular terms.
Submitted in 2021.
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Chapter 1

Some preliminary tools and basic results

In this chapter, we present the functional setting and some auxiliary results that will play
an important role throughout this thesis. We start by recalling the definition of fractional

Sobolev spaces.

1.1 The fractional Sobolev spaces

In this section we provide some basic facts about fractional Sobolev spaces. We refer to
[0, 45, 44, 21, 72] for more details. Let Q be an open subset in RY and let CQ := R¥\Q. For
any 0 < s < 1 and for any 1 < ¢ < +o0, the fractional Sobolev space W*%(€) is defined as

the set of all functions (equivalence class) w in L(2) such that

lu(z) — u(y)|®
———————dxdy < oc0.
/Q Q |9C_Z/|N+qs

W#4(Q), also known as Aronszajn, Gagliardo or Slobodeckij spaces, is a Banach space when

equipped with the natural norm

1
u(z) — u(y)| ‘
[ullwsai) = (HUI|7;q(Q)+/Q ; drdy | - (1.1)

|z —y|Vre

It can be regarded as an intermediate space between L?(£2) and W?(Q2). Recall that the space
W#(Q) is reflexive for all ¢ > 1 (see [58, Theorem 6.8.4]). We point out that if 0 < s < s’ < 1
then TW*9(Q) is continuously embedded in W*9(Q) (see [15, Proposition 2.1]). Let us define

19



20 CHAPTER 1. SOME PRELIMINARY TOOLS AND BASIC RESULTS

W) as the closure of C5°(2) in W*9(Q) with respect to the norm defined in (1.1) where
Cyo () = {f :RY = R/f € C°(RY), supp(f) is compact and supp(f) C Q}

Here and in the sequel supp(f) stands for the support of the function f. W;*¥(Q) is a Banach
space under the norm |lu|[ys.a().

If Q is bounded and is of class C*', we can give a fractional version of the Poincaré inequality
in Wy(Q2), 1 < g < +o0, whose proof in the case where ¢ = 2 can be found in [8]. For the

convenience of the reader, we are giving the proof here.

Lemma 1.1.1. (Fractional Poincaré-type inequality) Let Q be a bounded open subset of RY
of class C*', 1 < ¢ < 400 and let 0 < s < 1. Then there exists a constant C(N,s,Q) such

that for any ¢ € W3*(Q) one has

o(z) — p(y)|
aon S C(N, s, / dzxdy.
ol ©@ = ( ) ato |z —y[Ntes Y

Proof. Let ¢ € C5°(€2). Observe first that the above inequality holds if ¢ = 0. Assume

that ¢ # 0 and set
. Jo fQ a— y|1§3(+l{z)s|qudy
{wecg‘}g?)w;«éO} fQ lo(x)|adx
We shall prove that A(2) > 0. To do so, we argue by contradiction assuming that A(2) = 0.

AQ) =

Thus, there exists a sequence {p,} of C5°(€2) such that

/\gpn(as)\qu: 1 and / |g0n‘:(v) ‘ﬁi( Ol dxdy — 0 as n — 0.
0 aJo -

It follows that

[onllwea@) < C.

By virtue of [15, Corollary 7.2], there exists a function f and a subsequence of {¢,}, still
indexed by n, such that

¢©n — [ in norm in L4(Q),

©n — [ ae. in Q.

Therefore,

[ = 1 ana = VI, 00
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Applying Fatou’s lemma, we get

/ Mdmdygliminf/ [on(@) = ny)l" dzdy — 0
aJo QJQ

o =yl e o=y

and thus

[ [ LIt 12)

’Q? _ y’NJrQS

Thus, we have f € W*9(Q). On the other hand, in view of (1.2) we can write

[(pn() = f@)) = (enly) — f(y))lqudy

L el ol
—1 90n 9071 y
S 21 |.1' _ N+(Is d dy
LT 1) - ( )|
_ o1 T lpala ) Py )l
= 29 p—T dzdy — 0.

QJQ

Hence, ¢, — fin W*(Q) and so f € W59(Q2). By (1.2), the function f has a constant value

on 2. The only possible value is f = 0 which yields a contradiction with the fact that
[ 1@z =1,
Q

) — q
el < s 0) [ [ D=0 g0y vp e i), (13)
alo |v—ylNte

So, we get

Now, for every ¢ € W(Q), there exists a sequence {p,} of C5°(2) functions such that
©n — @ in norm in W*9(Q).

Applying the inequality (1.3) for ¢, and passing to the limit, we conclude the result. O

Under the same assumptions of Lemma 1.1.1, the Banach space W ?(€2) can be endowed

_ [u(z) — uly)|
v = [ [ e

which is equivalent to |ullwsa). In the case where ¢ = 2, we note W**(Q) = H*(Q2) and
Ws?(Q) = H3(Q). Endowed with the inner product

- e

with the norm

Q=
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H3(Q), || - [|gs()) is a Hilbert space. Now, we define the following spaces
( 0 5() &
e . 2 u(z) — u(y)®
HlOC(Q)—{U,Q%RUEL(K%/I( KWdydx<oo
for every compact K C €
and

X5(Q) = {f € H¥(RM)/f =0 a.e. in CQ},
where from now on CQ := R" \ Q stands for the complementary of Q in RY. Observe that if
2 has a continuous boundary, by [19, Theorem 6] (see also [53, Theorem 1.4.2.2]) we can infer
that X5(Q2) € Hj(2). Indeed, if f € X;5(£2) then, by [19, Theorem 6] there exists a sequence
{pn}n that belongs to C;°(Q2) satisfying

lpn — fllgs@yy — 0 as n — 400

and in particular we obtain

||pn_f|

ms(@) — 0 as n — +o0,

which yields f € Hj(£2). Under the same assumptions of Lemma 1.1.1, the following quantity

1
u(z 2
X5(Q) = (/ ‘N+2 d dr ),

where Q@ = R*M\(CQ x CR), is a norm on X3(Q). It is well known that the pair (X3(Q), || -

[l
| x3()) is a Hilbert space (see [70, Lemma 7]).

1.2 The fractional Laplacian operator

First, consider the Schwartz space S(R™) of rapidly decaying C*™ functions in R", with the
following semi-norm
HQOHS(RN) = Sup I+ ’:C‘ Z ‘Da N = 1727 ceey
z€RN la|<N

where ¢ € S(RY). The fractional Laplacian operator (—A)* of order 2s, is defined as

(—A)’u = a(N, s)P.V./ Mdy,

R |{L‘ _ y|N+2s
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where "P.V.” stands for the integral in the principal value sense and «(NN,s) is a positive

renormalizing constant, depending only on N and s, given by

LT +s) s

a(N,s) =
so that the identity
(=A)u=F H|€*Fu), £€€RN,s€(0,1)and u € S(RY)

holds, where Fu stands for the Fourier transform of u belonging to the Schwartz class S(R™)
(cf. [60]). More details on the operator (—A)® and the asymptotic behaviour of a(N,s) can
be found in [45]. It is worth recalling that for any u and ¢ belonging to H*(R"), we have the
following duality product

[ (-8 upia = 2 [ ()= eole) = o),

2 |l‘—y|N+25

Thus, it can be seen that
(=A)*: HS(RY) — H*(RY)
is a continuous and symmetric operator defined on H*(R").

In the particular case, if u and ¢ belong to H*(R™) with u = ¢ = 0, on CQ, we have

s _aV.s) [ (ulz) —u@) (@) — o) , .
/RN(—A) wpdr = 5 /Q T dydzx,

where Q := R\ (CQ x CQ).

2N
N —2s’
result is a fractional version of the Sobolev inequality which provides a continuous embedding

For N > 2s we define the fractional Sobolev critical exponent 2} = The following

of H3(£2) in the critical Lebesgue space L* (). The proof can be found in [45, 72].

Theorem 1.2.1. (Fractional Sobolev embedding)[/5] Let 0 < s < 1 be such that N > 2s.
Then, there exists a constant S(N, s) depending only on N and s, such that for all f € Cg°(R™)

|2
ot oy < S(N, T dady.
Wy < 5000 [ [ A daty

Remark 1.2.1. In particular, if Q is an open bounded subset in R of class C*' with N > 2s
and 0 < s <1 and f € C3°(Q2) we have

_ 2
110y < SV, 0) [ [ P 0 oy
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Indeed, by [/5, Theorem 5.4] we can write

HS

y)I°
/RN /RN ’x — ’N+2 Ny O d < ||f||Hs (RN) < C||f|
2 \f( ) — fW))?
- ? —d dy.
sl (Q)+C/Q q |r—y|Ntes xray

The result follows then by Theorem 1.2.1 and Lemma 1.1.1.

1.3 Functional analysis and algebraic inequalities

In this section, we recall some well-known results can be founded for instance in [27, 50, 74, 92].
We start by present some estimates in the usual Marcinkiewicz space M?(Q), 0 < ¢ < oo,
which consists of all measurable functions u : €2 — R such that there exists a constant

¢ = c(u) > 0 satisfying

t'meas({z : Ju(z)| > t}) <c,

for every ¢ > 0. Here and in what follows, meas(E) denotes the Lebesgue measure of a mea-
surable subset E of 2. It is worth recalling the following connection between Marcinkiewicz

and Lebesgue spaces

LI(Q) < MUQ) — LI5(9),

for every 1 < ¢ < oo and 0 < e < ¢ —1 (see for instance [53]). We will also use the following

truncation functions Ty and Gy, k > 0, defined for every s € R by

Ty(s) = max{—k; min{k, s} } and Gi(s) = s — Ti(s).
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Figure 1.1: The truncation function Tj(u)

Figure 1.2: The function Gy (u)

We denote by M, (2) the space of all bounded Radon measures on €. The norm of a measure

€ M) is given by [l agio = | il
Q

Definition 1.3.1. We say that the sequence of measurable functions { i, } is converging weakly
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to p in the sense of the measures if

lim w(x)un(z)de:/wdu, Vo € C°(€2).
Q

oo o
Lemma 1.3.1. (Dominated convergence theorem)[”7, Theorem 4.2] Let {f.} be a sequence
of functions in L*(Q) that satisfy
o fu(x) = f(x), a.e. on ),
e there exists a function g € L'(Y), such that for all n, |f.(z)| < |g(z)|, a.e. on .
Then f € L'() and || fo — fllz1) — 0.

Definition 1.3.2. (Equi-integrability)[50, 4.12 Définition.] We say that {f,}, a sequence of
functions of L*(Q), is equi-integrable if :
o Ve > 0, there exist A C Q2 of a finite Lebesque measure, such that for all n > 1

/ |faldx < e
O\A
o Ve >0, 30 > 0, such that Vn > 1 VYE C Q, such that |E| < J, we have

/ |fnldx < €.
E

Theorem 1.3.1. (Vitali’s convergence theorem))[50, 92] Let {f.} be a sequence of functions
of L*(Q) converges almost everywhere to a measurable function f. Then {f,} converges to f

in LY(Q) if and only if {f,} is equi-integrable.

Lemma 1.3.2. (De La Vallé-Poussin)[70, Lemma 6.4] Let 2 be bounded. The sequence { f,,}
is sequentially weakly relatively compact in L*(Q) if and only if

sup [ B(|f, )i < o
n Jo

for some continuous function ® : [0, 4+00) — R, with

P
lim (z) =00
T—o00 I

We also need the following technical algebraic inequalities that will play an important role

throughout this thesis.

Lemma 1.3.3. i)- Let a > 0. For every x, y > 0 one has

(x_y)(xa_ya) > (a+1)2(IT _yT> :
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ii)- Let 0 < o < 1. For every x, y > 0 with x # y one has

r—Y
T — gy

< é(wla +y 7).
i11)- Let 0 < a < 1, then for every x, y > 0 one has

2% =y < o —yl*
w)- Let o« > 1, then for every x, y > 0 one has

2% — y*| < a(z* "+ y* |z -yl

v)- Let a > 1, then for every x, y > 0 one has
|z +y|* e =yl < Cala® =y,
where Cy, is a constant depending only on a.

Proof.

i)- It is proved in [7, Lemma 2.22].

ii)- If z =0 or y = 0, the inequality trivially follows. Suppose now that
x >y > 0. We have

3¢ €]y, z[ such that 2% — y* = (x — y)al™ .

Then,

r—Y 1 —a 1 —a —a
i S R /]
T —y a

e

By symmetry the desired result follows.

iii)- If @ = 1 the inequality is obvious. Assume 0 < a < 1. f 2 =0ory =0 or x = y,
the inequality is also trivial. Suppose that x > y > 0. Let us define the function
ft)=({t—1)*—(t*—1), for every t > 1. Observing that f(¢) > 0, for every t > 1, we
conclude the desired inequality by choosing ¢t = g > 1.

By z/y symmetry we obtain the desired inequality.
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iv)- If & = 1 the inequality is obvious. Assume a > 1. If x = 0 or y = 0 or z = y, the

inequality is also trivial. Suppose that z >y > 0. We have
3¢ €]y, z[ such that 2% — y* = & H(z —y).

Then,

By symmetry the desired result follows.
v)- If @ =1 the inequality is obvious. Assume v > 1. If z =0 or y =0 or

x = y the inequality is also trivial. Suppose that z > y > 0, we have

o —y* > (z—y)ay* .

Then

a a0 a a+ a a—1 o
Ct(f]?ail _'_ya71> S L Y + Oéi[}ail — T Yy azxr axr Yy S (Oé + 1) )
r—y r—y Tr—y

It follows that
xa_l —|—ya_1 S O{+ ]_gj‘a _ya'
a T—y

As o — 1> 0 we easily get (z +y)* " < (2*71 +1)(2* ' +y* ') which yield the inequality
a—1 a—1 o+ 1 a e}
o+ y[* e —yl < (2777 + ——[2% — 7.

By z/y symmetry we obtain the desired inequality.



Chapter

On singular equations involving fractional

Laplacian1

In this chapter we study the existence and regularity of the solutions for a class of nonlocal
equations involving the fractional Laplacian operator with singular nonlinearity and Radon
measure data. We extend the results obtained in [66] to the same problem involving non-local

fractional Laplacian operator.

2.1 Introduction and main results

Lately, problems involving nonlocal operators and singular terms have recently received con-
siderable attention in the literature. A good amount of investigations have focused on the
existence and/or regularity of solutions to such problems governed by the fractional Laplacian
with a singularity due to a negative power of the unknown or described by a potential, see
for instance, [6, 7, 10, 19, 18, 31] and related papers.

A prototype of nonlocal operators is the fractional Laplacian operator of the form (—A)?,
0 < s < 1, which is actually the infinitesimal generator of the radially symmetric and s-stable
Lévy processes [13]. Fractional Laplacian operators naturally arise from a wide range of ap-

plications. They appear, for instance, in thin obstacle problems [39], crystal dislocation [17],

YA. Youssfi and G. Ould Mohamed Mahmoud. On singular equations involving fractional Laplacian. Acta

Math. Sci., 40B(5):1289-1315, 2020

29
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phase transition [33] and others.
In this chapter, we are interested in the existence and regularity of solutions to the following

Dirichlet problem

. _ J(@) .

(—A)’u = e +pu  in Q,
u >0 in Q, (2.1)
u =0 on RM\Q,

where Q is an open bounded subset in RY, N > 2s, of class C®!, s € (0,1), v > 0, f is a
non-negative function on €2, i is a non-negative bounded Radon measure on 2 and (—A)® is
the fractional Laplacian operator of order 2s defined by
u(xr) —u
(—=A)°u = «a(N,s)P.V. /RN %dy,

where "P.V.” stands for the integral in the principal value sense.

The case s = 1 corresponds to the classical Laplacian operator. If further ;4 = 0, an important
result is due to Lazer-McKenna [(1]. Under regularity assumptions on Q and f, the authors
present an obstruction to the existence of an energy solution. In fact, such a solution lying in
H; () should exists if and only if 4 < 3 while it is not in C'(Q) if v > 1. As far as problem
with L'-data are concerned, the threshold 3 essentially due to the boundedness of the datum

was sharpened in [38] while in [23] the existence of a distributional solution u is proved. In

* /
) , then u € W29(Q)

2
fact, it is proved in [23] that if y < 1 and f € L™(Q), 1 <m < (1

Nm(y+1) . . m . 2
N1 =gy While v € HY(Q) if f € L™(Q) with m = (1_7

where f € L'(Q), if v = 1 then u € H}(Q); while u € H} (Q) if v > 1. We note that in

*

/
where ¢ = ) . In the case
the latter case, the boundary datum is only assumed in a weaker sense than the usual one of
traces, that is uw'T € H} (). Let us point out here that solutions with infinite energy may
exist if v > 1 even for smooth data ([01]).
The nonhomogeneous case (i.e. pu # 0) has been considered. In [66] the authors studied the

existence of weak solutions for the problem

~Au= ff) + . (2.2)

where f € L'(Q) and p is a bounded Radon measure. They prove the existence of a weak

solution u of the problem (2.2) such that u € W,%(Q) for every ¢ < | when v < 1

N —
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11

N with the regularity <Tk(u)>T € Hy(Q),

loc

while if v > 1, u € W,2%(Q) for every ¢ < N]i
T}, being the truncation function at levels £k. Other related singular equations can be found
for instance in [67, 57, 43, 38, 84].

Regarding nonlocal problems, the study of (2.2) with © = 0 was extended in [18, 31] where the
Laplacian is substituted by the fractional Laplacian (—A)7, 0 < s < 1 and p > 1. The authors
obtain some existence and regularity results for the solutions depending on the summability
of the datum f and ~ (splitting in the cases v < 1, v =1, v > 1). Some fractional equations
with measure data are studied in [71, 55, 12].

It is our purpose in this paper, to consider the problem (2.1) in the nonlocal framework and
prove existence results of solutions to problem (2.1) with p a bounded Radon measure and
data f € L*(Q2). We use an approximation method that consists in analyzing the sequence of
approximated problems truncating the datum f and the singular term % and approximating
1 by smooth functions, obtaining non singular problems with L°°-data whose approximated
solutions w,, can be obtained by a direct application of the Schauder fixed point theorem. We
faced many difficulties in dealing with the nonlocal problem (2.1), but the main one is how
to get estimations in appropriate fractional Sobolev spaces.

Observe that in the local setting, if the approximated solutions are such that the sequence
{Vu,}, is uniformly bounded in the Marcinkiewicz space M%(Q), then we conclude that
the sequence {uy, }, is uniformly bounded in the Sobolev spaces W, (Q) for every ¢ <

(see [20]).

However, we underline here that given the fractional structure of the operator of the principal

N -1

part, we can not retrieve the gradient of the approximate solutions and so appears the problem
of getting a priori estimates in some fractional Sobolev spaces. To overcome this difficulty, we
first prove the key result Lemma 2.3.1 (bellow) and use suitable test functions and algebraic
inequalities that enable us to get appropriate a priori estimates in both cases v < 1 and v > 1.
Taking into account that less regular data are involved, the classical notion of finite energy
solution cannot be used. Instead, we shall consider the notion of weak solution whose meaning

is defined as follows.

Definition 2.1.1. Let f € L'(Q) and let i be a non-negative bounded Radon measure. By a
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weak solution of problem (2.1), we mean a measurable function u satisfying
YwCCQ, Je, >0 @ u(z) >c¢, >0, inw

and

(N, s)/ (u(a:)—U(y))(w(x)—w(y))dxdy:/f_¢dx+/¢dﬂ
Q @ v ol

9 |z — y[V+2s
for any ¢ € C3°(92).
We now state our main results. We give the existence and the regularity of weak solutions

according to the values of v > 0.

Theorem 2.1.1. Let Q be an open bounded subset in RY of class C*' with N > 2s and
0<s<l1 LetO<~y<1andlet fe L'(Q). Then the problem (2.1) admits a weak solution

N
u € Wy (Q) for every 1 < g < T and for every s; < s.

Theorem 2.1.2. Let Q be an open bounded subset in RN of class C™' with N > 2s and
0<s<1 Lety>1andletfec L'(Q). Then the problem (2.1) admits a weak solution

i
o for all sy < s. Furthermore, T;Q (u) € Hy(Q) for

loc

N
u € WH(Q) for every 1 < q < I

every k > 0.

We point out that the inclusion W;"(Q) C Wi»%(Q) holds for any sy < s; (see [17]).
Therefore, the range of s; in both Theorem 2.1.1 and Theorem 2.1.2 can be that of the set

of the exponents s; close to s. Indeed, we can consider s; to be such that

< 51 < 8.
— s

So that when s tends to 1 one has also s; tends to 17. In addition, letting s tends to 17 the
operator (—A)?® is nothing but the standard Laplacian. So that the equation in (2.1) becomes

and then the results in both Theorem 2.1.1 and Theorem 2.1.2 covers those obtained in [66].

2.2 Approximated problems : Existence and a comparison principle

Consider the sequence of approximate problems

(=A)up, = ——5= 4+, inQ,
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where f, = T,(f) is the truncation at level n of f and u, is a sequence of bounded non-
negative smooth functions in L'(2) converging weakly to x in the sense of the measures.
We shall prove that for every fixed integer n € N, the problem (2.3) admits a unique weak
solution u,, in the following sense :

a(N.5) / () — () (002) — 00)) /(%_sowdx+ / i,
Q ¢ .

2 |z — y| N2 N E>

for any ¢ € X5(Q).

Lemma 2.2.1. For each integer n € N, the problem (2.3) admits a non-negative weak solution

un, € Hy(Q2) N L>(Q).
Proof. Let n € N be fixed and let v € L*(2). We define the map

S:L*Q) — L*Q),
v — S(v),

where w = S(v) is the weak solution to the following problem

Jn

(—A)Sw = W + fin in Q,
w >0 in §2, (24)
w =0 on RM\Q.

The existence of w can be derived by classical minimization argument. Indeed, since

I
(ol +3)
unique weak solution w € X5 (€2), where

+ p, € L2(Q), we already know (see [34, Lemma 2.1.]) that problem (2.4) has a

X5(Q) = {cp € H*(RY) such that ¢ = 0 a.e in RN\Q},

in the following sense

Oé(N,S)/ (w(fﬁ)—w(y))w(iv)—@(y))dxdy / fn
Q (

2 |z — y| Ve ol +

for any ¢ € Xj(£2). Since Q is regular enough, by [19, Theorem 6] the linear space X;(2) is

) dx—l—/ungpdx,

the completion of C3°(€2) with respect to the norm

1
[ulz) —u)P N

i
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Hence, by density arguments it follows that X3(Q2) C H5(2). Thus, w € Hy(Q2). As regards
the uniqueness of w in Hj(2), we suppose there exist two solutions wy,wy € Hj(2) of (2.4).
Summing up the both equations satisfied by w; and wy respectively, we get (—A)%(w; —wy) =
0. Thus, taking (w; — ws) as a test function in this last equation and then integrating over

RY, we obtain

0 < flun — w0y < /Q | (w1 () — wa(x)) = (wr(y) — w2(y))|2dmdy _o

|z — y[N2
So we get wy(x) = wsy(z), for almost every € Q. Since w; = wy = 0 on RV\Q, we get
wy(z) = wy(x) for almost every x € RY. Furthermore, by the comparison principle [19,
Lemma 2.1] we get w > 0. Now, inserting w as a test function in (2.4) we obtain
N — 2 n
al;s) / (w(z) ”‘;g» dyds = / I gy / Wity dz
2 Jg lz—yl¥* o ([l +3) Q

< n”’“/wdijC(n)/wdx.
Q Q

By the Holder inequality and the Sobolev embedding, we get
lwll gy < C' (07 + C(n)), (2.5)

with C" and C(n, s, N, Q) are independent of v, so that the ball of radius C’(n"** + C(n)) is
invariant under S in Hj(2).

Now, using the Schauder’s fixed point theorem over S to prove the existence and uniqueness
of solution of (2.3), we need to verify the continuity and compactness of S as an operator
from H{(2) to Hy(Q).

First, we go to prove the continuity of S as an operator from L?*(Q2) to L*(Q2). Let us consider

a sequence v, that converges to v in L?(€2), then up to a subsequence, we have
v — v a.e. in €.

Denoting wy, = S(v;) and w = S(v), we have

AV - I
(=)= o (2.6)
(—A)w= I (2.7)

(fo] + %)
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Taking wy(z) —w(z) € X5(2) as test function in (2.6) and (2.7) respectively, then subtracting

term at term the both resulting equations and using Hélder’s inequality we arrive at

oty [ (wel) — wla) — (wily) — w(®)))”
Q

92 ’x _ y’N+28 dyda:

- [ (ol - ol ) o) - ws

(fowl + )7 (ol + ) /

* 1
fo fo N N@T
<ot [ (s o) )

Applying the Sobolev embedding and the Holder’s inequality with the exponents 2 and 27,

we get
* ! 1
QS(N,S) g(/ ( fn fn >(25) )(2§)l
WE — W[ 12 < ———— Q¥ N e .
o = wlaae < 755 o \(uel + 1) (ol + Ly
Since
; f 22 , :
‘ Y < 9D +DED) (2.8)
(ol + 2y (o[ + 4]~
and

Jn Jn

— — 0 a.e. in
(ol + ) (o[ + )

then by the dominated convergence theorem we conclude that
|lwi, — wl| 2y — 0 as k — 4-o00.

So, S is continuous from L*(€2) to L*(2), it follows that S is continuous from H($2) to HE(£2).
Now, we prove that S is compact from H;(€2) to H(£2), let us consider a sequence {vg }ren
such that ||vg[| gz (@) < C, then by the compact embedding H(§2) in L"(Q2) for every 1 < r < 2]

(see [15, Corollary 7.2]), we have

v — v weakly in H{(92),

vp — v in norm in L*(9).

Denoting wy, = S(vx) and w = S(v), by (2.5) we have

| wil gy < C
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where C' is a constant not depending on k, then by the previous compact embedding and by

the continuity of S on L*(2) we get

S(vg) = wy, — w, weakly in Hj(Q2),

S(vg) = wy — S(v) = w, in norm in L*(Q).

So, by the uniqueness of the limit we have w = w. In view of the previous, a similar argument,

we have

AV (s — ) — fn e
(=A)* (wy, — w) Tl + 7~ (ol+ 3

Taking wy — w as a test function in the previous equation, using the Holder’s inequality and

by (2.8), we obtain

04(1\27, S)_“S('Uk) — S(V)lf) < 207 O[S (k) — S(v) | 2(0)-

It follows that
lim ||S(vx) — S(v)]

k—+o00

a3 = 0.

Hence, S is a compact operator from H;(€2) to H;(€2) and therefore by Schauder’s fixed point
theorem there exists u, € Hj(£2) such that u, = S(u,). This means that w, is a weak solution

to the problem

s Jn :
(=A)’u, = (un + 1) + pn in €

U, >0 in €2,

u, =0 on RM\Q.

In addition, since the right hand side of belongs to L*°(2) by [03] we obtain u,, € L*>(2). O

Lemma 2.2.2. (A comparison principle.) The sequence {u, }nen s such that for every subset

w CC 2 there exists a positive constant ¢, independent on n, such that
un(z) > ¢, >0, for every x € w and for every n € N.

Proof. Consider the following problem

(2.9)
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In [18] the authors proved the existence of a weak solution v, of (2.9) such that
Yw CC Q, Jep, >0 @ vy(x) > ¢, >0,

for every x € w and for every n € N. Here the constant ¢, is independent on n. On the other

hand, we have

s In
(_A) Up, (Un + %)'Y
and
(=A)*u, = (unf—l%)V + fn
Then
s B 1 B 1 B
Hence 1 1
(—A) (v, — up) = fn(<“(2:+;i)@::2>ﬁj ) . (2.10)

Since

1 1
n —)' = n —)7 n — Un * < Oa
((u +n) (v +n))(v )T <
we obtain the following inequality

(un + %)7 — (v, + %)7
f"( (o 177(un 1+ 1)

)(Un - un)+ - Mn(vn - un)+ S O
Now, taking (v, — u,)" as test function in (2.10) and then integrating over R, we get
/ (= A)* (0 — 1) (v, — ) < 0.
RN
Observe that for any function g : R¥ — R the following inequality
(9(z) = g (g"(x) = g™ (v)) > (g7 () — g*(v))?
holds true for every x, y € R, where g = max(g,0). Therefore, we obtain

0 < [[(vn — un) ™| %ig(ﬂ) <0

which implies that u, > v, in Q and so
Yw CCQ, Je, >0 1 uy(z) >c¢, >0

for every x € w and for every n € N. m
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Remark 2.2.1. Lemma 2.2.2 shows that the problem (2.3) has a unique solution. Indeed,

T as test

if up and w, are two solutions of problem (2.3), then as above taking (u, — wy)
function in the problem satisfied by (u, — w,), we conclude that u, < w, in Q and again

taking (w, — u,)* as a test function we get w, < u, in Q. Hence, follows u, = w, in <.

2.3 A priori estimates in fractional Sobolev spaces

In order to prove the existence of solutions for problem (2.1), we first need some a priori
estimates on u,. We start by proving the following lemma that we will use in both cases

v<1and~y>1.

Lemma 2.3.1. Let v, € Hj(2) be a sequence that satisfies the following assumptions

1)- The sequence {vy}n is uniformly bounded in L"(Q2), for all r < N2
—2s

2)- For any sufficient small 6 € (0, 1)
P
[ [ )= )~ 0,

|z — yIN“S wy(z)wy (y)

where C' is a constant not depending on n and w, = v, + 1. Then the sequence {v,}, is

N
and for all
-8

uniformly bounded in the fractional Sobolev space W5"(Q) for every q < N

S1 < S.

Proof. We shall prove that the sequence {v,} is uniformly bounded in the fractional Sobolev

and for all s; < s. That is there is a constant C' not

N
space W;"4(Q) for every ¢ < I
depending on n such that

//“’” )l dyde < C, for all ¢ <

|z — y|N+qs N —s

and for all 51 < s. (2.11)

To this aim, let ¢ < 2 which will be chosen in a few lines. We can write

|on (2 |wn wy(y)!?
// |fc’—”y|N+q81 d o |:r—y|N+q51 dute

// |wn () — wn(y)l y (wh(z) —wf
(e () uwn (@) |z — y[EVTE (wn () — wn(y)) (wh(2)wh (y))

(wal2) = wa@)(Wa@un®) o0

(wh (z) — wh(y ))|x—y| N —q(s—s1)
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Pointing out that the quantity in the middle of the product inside the integral can be written

as follows

and using Holder’s inequality, we obtain

[ [ =t

|.T} _ y|N+qs1

U /{ D) . )y\%ij)‘? (@) ’f%fzy;\ﬁz%wzw))dydx]2

X {/fl/{yeg;wn(y)#wn(w)} ( wn(x)(w:(fng y))(w (;); oy )))gq

" (wh (z) = wh(y)) dydz } =R
(wn(2) — waly)) (Wl (x)ul(y)) & — y N7

2 (s —
where § = als = 51) > (. Using Lemma 1.3.3, we get
q

[ [ )=t

o |z—y[Nte
2—q

O (TR 25)
5>2(/ J (Wi9<x>+wi0<y>>wz<x>wg<y)>*qleyﬁ_ﬁ)w

2—q

(//(w" +wn(y)w9(:p))>2qq%)2.

IN
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0+1
Applying the Young inequality with the exponents i

v (2 (y)|?
// |x_y|N+q$1 dydx
q 2—q
2=¢  dydx Bl
1+9 1+9 Y
</ J, (wie <y>) )
2—q

q(1+9) q(21+q9) dydLE 2
(/ / ( )+ wn “’)) rx—erﬁ)
a(1+0) dy e
o —d
</Q“’ <‘”)U|a:— W} )
26-1) C'\ 3 q“*‘” kR
243 (9) (/ Uu— - B}dy) |

Observe that
/ dy B / dy . / dy
o lr—yN-F Qnjz—y|>1 |z —y|N-F# Qnjz—y|<1 |z —y|N-F#

dz |SNL
<0 +/ = 19|+ .
|| <1 12V P & g

and 6 + 1, we have

VAN
[\
(]
NS
all
/N
| Q
—
N

IN
[\]
(V]
N
4L
RS
|
——
N

(2.12)

Here, |S™~!| stands for the Lebesgue measure of the unit sphere in RY. By z/y symmetry,

there exists a constant C', not depending on n, such that

2—gq

//\vn "y e <o / q(1+0)()d N
|3’7_ZJ|N+‘ISl ’ 0 Y '

1+6 N 2N —2q(N —
Now we choose € > 0 in order to get a1 +6) < . That is 0 < al 8). To
2—q N —2s q(N — 2s)
ensure the existence of # we must have 2N — 2¢(N — s) > 0 which yields ¢ < N We then

conclude that (2.11) is fulfilled and the sequence {v,} is uniformly bounded in I/Vsl 1(Q) for

every q < and for all s; < s. O
N —s

2.3.1 The case 7y <1

Lemma 2.3.2. Let u,, € Hj(2) be the solution of the problem (2.3). If 0 <~ < 1, then the

sequence {u,} is uniformly bounded in W5(Q2) for every q < and for all s1 < s.
s

N —
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Proof. Let k& > 1 be fixed. By Lemma 2.5.2 (in Appendix) the function Ty(u,) is an

admissible test function in (2.3). Thus, inserting it in (2.3) we obtain

0(N,5) [ (ta() — 1 (0)(Ti(1(2)) — Tilun(9))
2 /Q o — v dydz

In
_ /Q Ty T+ /Q 1T () d.

By using Proposition 2.5.2 (in Appendix), we get

a(N,s) [ |Te(un(2)) — Ti(un(y))]
2 /Q |z —

2
e dyde < k7| fllpro) + kllpallr @) < CF,

where C' = || f|lz1@) + [|i]lmy@) is @ constant not depending on n. Applying the Sobolev

s( [ mtmw

For the left hand side, observing that on the set {u, > k}, we have Ty (u,) = k, we get

embedding theorem we get

Q?dg;> < Ck.

1 2
ng(meas({un > k}))xE < Ck,
which yields
C
k:N]—VQS .
Thus, the sequence {u,} is uniformly bounded in M %(Q) and then so it is in L"(2), for

meas({u, > k}) <

(2.13)

all r < N 25 Let s1 € (0, s) be fixed. For every > 0 we define the function
—2s
1

Observe that the function ¢ satisfies
d(r) <1and ¢(x) <27 forany 0 < 0 <y < 1.

The function ¢(u,) is an admissible test function in (2.3). So that inserting it as a test

function in (2.3) we obtain

o) [ (1) gD OU)) = )0
Q

2 |l’—y|N+25

[ @)l
o (un+ %)ﬂ/

+ / (€)1 d

< || fllzr@) + [[pnll L1y < C.
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Being ¢ non-decreasing and €2 x ) C @, the integral in the left-hand side can be treated as

follows

’[L’ _ ’N+23

)= 1)) (1) + 1 — () + 1)
/ / T (o) T () £ 17

So that we obtain

wa(y)) (wa(@))? — (wa(y))’ 20
/ / |x—y|N+2s (wa@) (wn()? Y= AV

where we have set w,, = u,, + 1. Therefore, by Lemma 2.3.1 with 0 < # < 7 the sequence

N
{u,} is uniformly bounded in W3"%(2) for every ¢ < N and for all s; < s. O
s

2.3.2 The case 7> 1

Lemma 2.3. 3 Let f € L*(Q) and let u, be the solution of (2.3). For k >0 and v > 1 the
sequence {T (un)}n is uniformly bounded in Hj(S2).

Proof. Let us fix £ > 0. Inserting T} (u,) as a test function in (2.3), we get

o) [ {tnle) = tn TR Ce) = B0,
Q

2 |:L._y|N+2s

_ /Q #Tg(un)dﬁ / 1T () da

+ 1y
< |[fllzr@) + K[| pnll 210y < Cy,

where C = || f]| 1) + k7| 14]| pm, (@) is & constant not depending on n. By applying Proposition
2.5.2 (in Appendix) and Lemma 1.3.3, we have

/ (un(2) — un(9)) (T} (un(z)) — T} (un(y)) dydx
Q

|Q3 _ y|N+2$

s [ () - TN ) = T )
Q

’.’E _ ’N+23

+1

|T un (z)) = T,° (un(y))?
7+1 / dydzx.

|ZE _ |N+25

Therefore, we obtain

S| eS|
SR T * (un()) =T, % (un(y))I*
1T 2 (un) 50 S/Q |z — y[N+2s dydzx
)2 2
<O+ .

4v  «a(N,s)
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The proof is then achieved. O

Lemma 2.3.4. Let u,, be the solution of the problem (2.3). If v > 1, then the sequence {u,}

is uniformly bounded in W4 (Q) for every q <

loc

N s and for all s1 < s.

Proof. For every w CC €2, for all ¢ <

and for all s; < s, we shall prove that there

exists a constant C' = C'(q, s1,w), not depending on n, such that

_ q
/ ’un(x) un(y)| dydx < C and / |un|qu < C’7 (2.15)

|z — y|Ntast
We begin by proving the left estimate in (2.15). Let kg > 1 be fixed. Let ¢ < 2 and s1 < s.

Using the fact that u, = Tko(un) + Gy, (u,), we can write

|un (@ ()
// |x—y|N+q51 Ao

/ | islen() o) =T = ColtalOD

|z — y|Ntost

‘Tko un Tko (un (Z/)) ‘q
/ / \x = leﬂsl dydzx

ot / [ [onlen@) OO,

‘ZC _ y‘N—&-qm

Applying the Holder inequality, we get

|un (2 ()|
/ / |I - y|N+qs1 dydx 2—gq
T (U (7)) — T (un(y))]? dydz 2
< 94~ 1 | ko ko //
’ </w/w Iw—le“s Ay |z —y|NP

494~ 1// ‘Gko Un| Gko(““(y))’ d’ydl‘,
X

_ |N+q81

where 5 = 24(s = 1) > 0. Thanks to (2.12), we have

2_
dydzx = o |SN= 1|)
(//w—w ﬂ) =G= ('Q” 7

[ [ttt

|w — y|Ntas

<oy [ [ nlnle) ~TfuF )

T — |N+23

et / / Gy (10 (2)) = G0,

|z — y|[Ntost

which implies

NS
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So, it is sufficient to prove that { Gy, (u,)}n and {Tk, (u,)}, are uniformly bounded in Wi*(Q)
and H;.(2) respectively. We begin by proving that G, (u,) is uniformly bounded in W3"?(2)

and for all s; < s. To do so, for k > ko we take Ti(G,(uy,)) as a test

N
< N

function in (2.3) and use the fact that G, (u,) =0 on {u, < ko}, we obtain

a2, [ (1) = 0 (9)) (G 10 (2))) = TGy )],

|z — y| V2
Tk ( n)
/fn ’ Gko ) g +/MnTk(Gko(“n))dx

f
< k/ L de 4 Kl < Cik,
{un>k0} ( + %)7 ( )

where Cy = ko 7| fll1 @) + [|#llam, @), is @ constant not depending on n. Using the decompo-

sition of w,, as u, = Tk, (u,) + G, (un), we can write

[ L2nle) = oD Gt () = TGl en O
Q

|z —y| N2

|z —y| N+

:/ (T (un () = Tho (un (9))) [Tk (Glro (un () _Tk(GkO(un(y)>>]dydx
Q

i [ (Colinte)) = Gufun O Gl = Tt 1,
Q

|l’ _ y|N+25

Let us observe that since Ty, and Ty (Gy,) are non-decreasing functions, we get
(Tho (un(@)) = Ty (un(Y)))[T5(Gro (un () = T (Gro (un(y)))] 2 0 ace. in Q.

Hence, it follows

/ (un () = un (W) [T (Gro (un())) — Ti(Gro (un(y)))] dyda
Q

|z — y| N
> / (G (n(2)) = Gy (Un(Y)) TGy (n(2))) = TGt (un W]
0 |$ _ y|N+25

In the right-hand side of the above inequality, we decompose Gy, (u,,) as follows Gy, (u,(x)) =
Gr(Gry(un())) + Ti(Gr, (un(z))) and we apply Proposition 2.5.2 (in Appendix) with a =1

obtaining

[ [ Cultnle) = B Culwal@P 5, ¢ B,

r =y T e
Hence, using the fractional Sobolev inequality, we get again the inequality (2.13) for the
function Gy, (u,,) that is

meas({G, (u,) > k}) < Ok 7=
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which implies that {Gy,(uy)}n is uniformly bounded in L"(Q2) for every r < N o5
—2s

Let ¢ be the function defined in (2.14). Observe that for every 0 < 6 < 1 the function ¢

enjoys the following properties

¢(z) <z and ¢(z) < 1.

Inserting ¢(Gy, (u,)) as a test function in (2.3) we get

) | (un (@) = 1 (9)) (@G (1 (2))) = GGy (1)) ) i
Q

92 |:L._y|N+2s

= [ DGR g @66 e
{un>ko} Q

(un + 5)7

TLG n
<[ 2Oy gy
{un>ko} (Un + )

n

il
<[ o + a0

<Cy = ké‘”l|f|lu(m + il @)

Then, writing the decomposition w, = Ty, (u,) + Gy, (u,) and using the fact that Tj, and

(G, ) are non-decreasing functions, we obtain

/] (G 1) (@) = Gy (1) () (#(Gity (10(2))) = #( Gty (a(9))))

2C.
dydz <
|x_y|N+2s yar = alN

which yields

() (wn () — (wa (1))’ e
/ / |x—y|N+28 (@) wn()? V== G sy

where we have set w,, = G, (u,,)+1. Thus, Lemma 2.3.1 ensures that the sequence {Gy, (u,,)}

N
is uniformly bounded in W4 (Q) for all ¢ < I and for all s; < s.

Now, we shall prove that {7}, (u,)}, is uniformly bounded in H;}.(€2). To do so, we insert

loc

T} (uy) as a test function in (2.3) obtaining

a(N, 5) [ () = () (T, (1 (2)) = T3, (un(1))) i
Q

2 |z —y| N

STy (un)

Inkoltn) g / 1T () < Co = ||l + K3 el ey
Q (un + n)
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By Lemma 1.3.3 (item v)) there exists a constant C., > 0, depending only on ~ such that

/ (tn(z) = un(y)) (leo (un(2)) — T, (un(y))> dydz
Q

‘.’L’ _ y‘N+25

|un () — un (W) Ty, (un(x)) — 5 (un(y))|
> /Q/Q dydx

|$ _ y|N+25

e (@) = 0 3)) (T (2) = Tio (4

|Z' _ y|N+2s

X (Tiy (tn () + Ty (un () dydr.

Let now w be a compact subset in 2. By Proposition 2.5.2 (in Appendix) we can write

/ () = T () = T o)),
Q

|Q§' _ y|N+25

1 | T (n () = Tho (0 (9))[* (Tho (i () + Ty (un(y))) "~
- c, /w w |z — y [N+ Ay

Pointing out that by Lemma 2.2.2 we have T, (u,(z)) > min(ko,c,) for every z € w, we

obtain
/ (un(z) — un(y)‘)[T k(yi‘i;(i)) — Ty, (un(y))] dyde
Q =
1 . y—1 |Tk0 (Un(l‘)) - Tko (un(y))|2 T
> a(Z min(ko, ¢,,)) /w/w 1z — g dyd

which proves that {7}, (u,)}n is uniformly bounded in H; ().

We now prove the second estimate in (2.15). For ¢ < N and s; < s, writing
-5

/ upltda < 20! / T () e + 20 / G (1)
< 21| + 257Gy () e

we conclude the result. In fact, for every v > 0 the sequence {u,} is uniformly bounded in

Li(Q) for all 1 < ¢ < O

N —2s’

2.4 Proof of the main results

In this section, we show that in the both cases 7 < 1 and v > 1, the problem (2.1) has a weak

solution obtained as the limit of approximate solutions {uy,}, of the problem (2.3).
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2.4.1 The case v <1

Proof. of Theorem 2.1.1. By virtue of Lemma 2.3.2 and the compact embedding of W;*4(2)
in L'(Q) (see [45, Corollary 7.2]), there exist a subsequence of {u,}, still indexed by n and
a measurable function v € W;"4(€Q) such that

u, — v weakly in W5"4(Q),

u, — v in norm in L*(Q2),

U, — v a.e. in ).
Let u the function such that u = v in Q2 and u = 0 in RV \ . Thus, u,, — u a.e. in R which

implies

[un(@) —ualy)| _, [u(z) — uly)|

|z — y|N+es z — g|Nres & in Q.

Let p > 0 be a small enough real number that we will choose later. For any ¢ € C3°(Q2) we

/Q /Q {(un(x)—ﬁvn(_y)y)‘gvsi(i)—so(y)) deydx

< [ [ — ()|l @l — )™ dyda

‘{L’ — y‘N+(1+P)31 |x — y|PN+(1+P)(25*31)

have

_ _ | (A4p)(1+51—25)—pN
Lip |un (@) — un ()| ]z — y|
< ”D@”Lw(m/ﬂfﬂ YRSt Er dydz.

We need that the term |z — y|pN+(1+p)(23_31) vanishes from within the integral. To get this,
it is sufficient to have (1 + p)(1 4+ s; — 2s) — p/N > 0. To this aim, we consider s; to be very

close of s. Precisely, we impose on s; the condition
max(0,1 —3s) <s—s <1—s.

We point out that with this range of values of s; and with the assumption N > 2s, we easily
get

14+s;—2s>0and N —1—3s;+2s>0.
1+81—2S
N—]_—S1+28‘

Thus, the fact that (1 + p)(1+4 s1 —2s) — pN > 0 is equivalent to 0 < p <

Hence, we get

/Q / [|un(x) _ﬁ”fyf, H'ﬁi? - so(y)@ " s
—Un )|1+p

|, (v
< HDQOHng)dmm(Q) 14p) (1451 —25) pN// 7= g dydzx
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where diam(Q2) stands for the diameter of 2. Now we have to make a choice of p which

N
. This
—s

enables us to use the uniform boundedness of {u,}, in Wy"(Q) for every ¢ <

N
is the case if 1 + p < N . Finally, we choose p to be such that
5

s 1+ s —2s )

O<p< ( ,
PN T No1—5 +2s

Therefore, there is a constant C' > 0 not depending on n such that

Sup// { () — ua(y)) (@) — w(y))]””dydx <c

|x _ |N+25

Consequently by De La Vallée-Poussin and Dunford-Pettis theorems the sequence

{ (un(z) — un(y))(p(z) — ¢(y)) }

|LZ' _ y|N+23

is equi-integrable in L'(Q x Q). Now, taking ¢ € C5°(£2) as a test function in (2.3) we get

a(N,s) [ (un() = ua(®))(p(x) = 0(y)) , b )
2 /Q |z — y|N+2s dydfc—/ﬂ—( 1)Vd +/ngund . (2.16)

n

We split the integral in left-hand side into three integrals as follows

/Q (un () — un(y))(p(x) — @ / / un(@) = W) (P(2) = W) 4 4.

’x_y’NJrQs ‘x_y‘N+2s

+//CQ Uun(z —un_))|gv+(25)—so(y))dydx
/m / U (2 |;_))|§V90+(29;")—s0(y)) dyda

:[1+IQ+I3.

(2.17)

By Vitali’'s lemma we have

R B R e

For the second integral I5 in (2.17), we start noticing that since u,(y) = ¢(y) = 0 for every

y € CQ) we can write

‘(un(w)—un(y))(w(x)—w(y))‘ < [un(@)e()]

_ | N+2s _ 2| N+2s
|z —y| |z =yl

for every (z,y) € Q x C.
Since supp(y) is a compact subset in €2, we have

|z —y| > dy := dist(supp(p), 02) > 0 for every (z,y) € supp(p) x CS.
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Therefore, an easy computation leads to

d +oo d SN—I
| oem s [ oem < 219
ca | —y| a2l 2sdf

As a consequence of the convergence in norm of the sequence {u,} in L'() there exist a

subsequence of {u,} still indexed by n and a positive function g in L'(£2) such that
()] < g() acc. i 2,

which enables us to get

|(un () — un(y)) (p(x) = p(W))| _ l9(x)¢(x)|

a.e. in (x,y) € Q x CQ.

We observe that by (2.18) the function (z,y) — % belongs to L'(Q x C)
xr — S

// / / | ) gz
CcQ |{L‘ - |N+28 supp(p) JCQ |[L’ - |N+28 - 28d28

Thus, by the dominated convergence theorem we have

R

For the third integral I3 in (2.17), we can follow exactly the same lines as above using the

x/y symmetry. We then conclude that

() 0 e) = ) g [ (04 = Uolr) = 10D,
Q

a8 [ — gV

|z — y[N+2s
for all ¢ € C5°(€2). Now, for what concerns the right-hand side of (2.16), by virtue of lemma
3.3.2, for any ¢ € C;°(£2) with Supp ¢ = w, there exists a constant ¢,, > 0 not depending on

n such that

fntp
(un + %)7
obtaining by the dominated convergence theorem

lim f”—gpldx = / f—(pda:
n—oo [o (un —+ E)’Y Q u”y

and in the last term in (2.16), by the convergence of p, to © we have

lim [ (@) (z)dz = / () dp.

n—oo 9]

0<

£l
< 3 e L'(Q)

Finally, passing to the limit as n — +o00, we obtain
a(N,s) [ (u(z) —u(y))(e(r) — oY) / fe /
dedy = | —d d
2 /Q v — y|N 2 v o u’ o ng &

for all p € C5°(€2). Therefore, u is a weak solution of (2.1). O
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2.4.2 The case v >1

Proof. of Theorem 2.1.2. By virtue of Lemma 2.3.4, there exist a subsequence of {u,}, still

indexed by n and a measurable function v € W;14(€2) such that

up, — v in WH4(Q),

loc

n, — U in L}OC(Q),

U, — v a.e. in Q.

So that defining the function u by © = v in Q and u = 0 in R\, one has

up, — u in W),

loc

Uy — U in LIOC(Q),

U, — u a.e. in RY,
21

1.2 (uy) — T,:%rl (u) a.e. in Q.
Then for ¢ € C5°(2), we have
|(un (@) — un (W) (p(2) = )| [(ulz) = u(y))(p(z) = ¢(y))l

[ — [V — [z = |V a.e. in Q.

Inserting ¢ € C;°(Q2) as a test function in (2.3), we have

a(N,s) / (Un (1) — un(y))(p(x) — gp(y»dydx _ / Lﬂdw + / Ol d. (2.19)
Q n

2 |z — y| N o (un +

Let K be a compact subset of {2 such that supp(¢) C K and dist(supp(¢),0K) > 0. The
integral in the left-hand side of the previous equality can be splitted as

(un(2) — ua(y))((z) — un(2) — un(y))(9(2) = 9(y)) , o
/Q dyd /RN /RN dyd

’x_y’NJrQs |£17— |N+23
/ / un () — un(y))(p(r) — w(y))dydx
’l’ _ y’N—i-Qs
/ / (un () — un(y))(p(x) — w(y))dydx
CK | — y|N+2s
/ / U (7 | Up ))|§V90(fv) - <p(y))dydx_
CK xr — +2s

As in the proof of the Theorem 2.1.1, the same ideas allow to obtain

R e e
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iy [ [ Ll ) g, [ prﬁg—wwMW%
y$/*/lM —% %ﬁg @M_/‘/ <%2—mwMWn

We then conclude that

) = o) = ) g, [ () = o) = 000D
Q

|z —y| N2

nh—{glo 0 |x—y|N+25

for all ¢ € C3°(§2). For what concerns the right-hand side of (2.19), it is exactly the same

term in Theorem 2.1.1. Finally, passing to the limit as n — +o00, we obtain

a(N, s)/ (u() — u(y))(p(x) —so(y))dydm:/f_sﬁdwr/@dﬂ,
Q o ¥ “

2 |I’—y|N+25

for all ¢ € C5°(Q2), So u is a weak solution to (2.1). Now, by virtue of lemma 2.3.3, and

Fatou’s lemma, we have

y+1 Y1
T,* ~ T (u(y))P T2 (un(2)) = T, * (un(y))I®
/ / y|N+2s drdy < l}lr_r}jgjf \ |z — y[N+2s dedy < C.
It follows that TkT (u) € Hy(Q2), for every k > 0. O

2.5 Regularity of solutions

Now, we prove some regularities of the solution u of the problem (2.1).

Proposition 2.5.1. Assume that p is a Radon measure, f € L*(Q) and 0 < v < 1. Then
the solution u of the problem (2.1) obtained by approzimation is such that

N
(Q), v (1, )
uwe L"(Q) r e N 2.
s N
“Aul e L'(Q), ¥ (1, )
(Al e @), Vre (1
Proof. We follow closely the lines in [63]. By (2.13) and Theorem 2.1.1, we can apply

Fatou’s Lemma, we conclude that u € L"(Q), for every 1 <r < Now, we will prove

N
N —2s
that |(—A)2u,| is bounded in the Marcinkiewicz space M %(Q) We fix 8 > 0 and for any

positive k > 1, we have

{I(=4)

Nl

u| > 8} = {|(=A)2un| > Buy < kYU{|(=A)2u,| > B u, > k}
C {I(=8)5un| = B un < k} U {uy > K}
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Then
. 1 .
meas({|(=A)2u,| > B, u, < k}) < — [(—A)zu,|*dz.
B {un<k}
By using [63, Corollary 1] and Lemma 2.3.2, we get
S 1 S
meas({|(=A)2u,| > B, u, <k}) < = |(—A)2u,|*dx
6 {un<k}

1 s
<5 [ AT P

- C(N, s) / | T (un) () — Ti(un) (y)]
B2 Q |z — y| V2

2 k
By using (2.13), we have

meas({|(=A)3u,| > }) Sun| > B, un < k}) +meas({u, > k})

AN
3
D
IS}
»
~
0
b

k C
Choosing k = B%, we get
s C
meas({[(—=A)>un| = B}) < -

This implies that |(—A)2u,| is bounded in the Marcinkiewicz space M NL—(Q) So, by the
converges almost everywhere in the proof of Theorem 2.1.1, we can apply Fatou’s Lemma, we

conclude the result. O]

Appendix

In this Appendix we give the functional and technical results we have used in the previous
sections. We start with the following inequality whose proof in the cases where o = 1 can be

found [63]. Here we give a simple proof based on the monotony of the truncation functions.

Proposition 2.5.2. Let o > 1 and let v: RY — R be a positive measurable function. Then

for every k > 0 and for every (z,y) € RY x RY

(Grv@) = Gulow))) (Tr(v(@)* = Ti(v()*) = 0.

Proof. Let z, y € RY be arbitrary. Without loss of generality we can assume that v(z) >

v(y). Since the functions s +— T (s) and s — Gg(s) are non-decreasing on R, we have

Ti(v(2)* = Ti(v(y))™ and Gi(v(x)) = Gi(v(y)).
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Then
(Gr(v(z)) = Ge(v() (T (v(2))* = Ti(v(y))*) = 0.

m
The next result, well known in classical Sobolev spaces, provides a necessary condition for a

function to belong to the fractional Sobolev space W;™*(Q).

Lemma 2.5.1. Let Q be an open set in RY of class C*' with bounded boundary, 1 < p < +oo
and let 0 < s < 1. If u € W*P(Q) with supp(u) is a compact set in 2, then u € WP (Q).

Proof. Let u € W*P(Q) be a function with supp(u) be a compact subset included in 2. Then

there exists an open set w such that
supp(u) C w and @ C .

Then by [45, Corollary 5.5, there exists a sequence {u,}, of functions u, € C;°(RY) such
that

U, — u in norm in W*P(Q2).

Let ¢ € Cg°(w) be such that
p=1on Suppuand 0 < p <1, a.ein w.
It is clear that yu, € C5°(w). Therefore, it sufficient to prove that
ou, — uin W*P(Q).
Using the fact that pu = u on {2, we obtain

/ lou, — ulPde = / lou, — u|Pdr < / |t — ulPdz — 0.
Q 0 Q

For the second part of the norm |[pu, — u||wsrq), we can write it as follows

/ (p(@)un(z) = p(y)un(y)) = (ulz) —ul@))”,

aJo x — y|Nres

_ // p@)un(@) = pW)unly) _ ulw) —ul) ",
ol jr—y " o —y| "

= [ [ 1B = o) pasay
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where we have set

Fo(z.y) = w(w)un(x)—-zfz)un(y) and F(z,y) = y&zl;;%égg'

lz—y| v |z —y| 7

Thus, in order to prove that ou, converges to u in W*P(£), it is sufficient to prove that
up to a subsequence, {F,(x,y)} converges to F(z,y) in norm in LP(£) x ). Since, up to a

subsequence still indexed by n, u, converges almost everywhere to u, we obtain

Fo(z,y) = ple)un(e) - ffp@““(y) L ule) - ffﬁy) = F(z,y) a.e in Q x Q.

lz—y| > lz—y| >

The norm convergence of u,, to u in W*P(Q), yields

un () — gn(y) _, ul@) - g(y)
’3: . y’ +ps +Ps

|z —y| 7

in norm in LP(2 x Q). (2.20)

According to 2.20 and the norm convergence of {u,} in LP(2), there exist a subsequence of

{u,} still indexed by n and two positive functions g in L'(2 x Q) and & in L*(2) such that

| |:(r)_y|N+(ps)| < g(z,y) a.ein Q x Q

and

|un()|P < h(z) a.e in Q.

So that writing

[ (@)un(w) = p(@)un(y) + @@ )un(y) = o (W)un(y)|

Ey(z, )P =
| Fu(, y)] |z — y|N+ps
p

o /DT @Ple) — ew)?

. o=y o=y
we obtain

: L B@)lle) = o)l
Pl )P < 2 gl )] + 2 T (2:21)

We need to prove that the function in the second term in the right-hand side in (2.21) belongs

to L'(2 x Q). To do so we can write

// [hly |!“0_ y|N+pS " vy /!h [/m|xy|<1 |S0|f1_y|£(+2|pdx}dy
+/Q h(y)] [/an—ylzl |80,ix)_;,£(+2‘pdx] dy
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Since ¢ belongs at least to C3(2) and 0 < ¢ < 1, a.e. in w we have

w)llotz) — o)l I
dedy < CP¥ h ——|d
// |ZL‘— |N+ps ray Olzp | (y)l ——— |Z|N+p(5—1) Y
dz
2p/ h(y [/ —] dy
Q| )l anjz|>1 |2V

N-1 N-1
< 2max (Cp 15 |) : 2p|8 |> / |h(y)|dy < 400,
ps Q

lip p(l—s

where Cy;, stands for the Lipschitz constant of ¢ and |SV ™| stands for the Lebesgue measure
of the surface area of the unit N-sphere SV ~! of RY. Applying the dominated convergence

theorem, we conclude our claim and thus follows u € Wy™*(§2). O

Lemma 2.5.2. Let Q be an open set in RY of class C®' with bounded boundary, 1 < p < +o0o
and let 0 < s < 1. Let ¢ : R — R be a uniformly Lipschitz function, with ¢$(0) = 0. Then for
every u € Wy (Q) one has ¢p(u) € W5'(Q2).

Proof. Let us denote by K the Lipschitz constant of ¢ and let u € WP (Q). There exists a
sequence {u,} of C3°(Q2) functions which converges to w in norm in W*?(Q2). That is there

exists ng € N such that for all n € N with n > ng one has
||Un — UHWs,p(Q) < 1.

Defining v,, = ¢(uy,), Gu(z,y) = un(x) — u,(y) and G(z,y) = u(x) — u(y), we can write for

every n > ng

[ [, _ [ [ lnle) s

<Kp/ |t () — un(y) P dady
Q

|z —y| VP
Gz, )"
|93— |N+ps
p—1 17D ’G ) G(ZE y)|p
<K // ]:c—y]Nﬂ” dzxdy

1 |G (x,y)P
+2P~ Kp//w_ |N+psd xdy

= 2" K[y — ullfyn

@ 2K [ullfyn ) < Co
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and

[onllzr(@) < Kllunllzr) < Klun = ullwsr@) + Klfullwsr@) < Ci,

Cy and C are constants not depending on n. Thus, {v,} is uniformly bounded in W*P(Q).
Since by ¢(0) = 0 the function v, is compactly supported in €2, so that by Lemma 2.5.1 we

obtain v, € WJ"(Q2). Now, we prove that
v, — ¢(u) in WP(Q).

Since the sequence {u,} converges to u in norm in W*P(Q), then for a subsequence of {u,},

still indexed by n, we have

U, — U a.e. in .
Then, it follows
Up, = O(uy,) — ¢(u) a.e. in L
Furthermore,

[on = d(W)llLri) = 9(un) = (u)ll o) < Kllun — ull o) = 0.

On the other hand we can write

/ / [(vn(@) = é(w)(@) = (valy) = S 0

|z — y|Vtps

—un(y) _ P(u(x)) — S(uy) [’

N +ps N +ps
\x—m

|z —y|

_ /Q /Q \Fo(z,y) — F(x, y)Pdedy,

F.(z,y) = M and F(z,y) =

lz—y| >

dxdy

where we noted

Oul)) — dluly)

N+ps
[z —yl >

In order to show that v, converges to ¢(u) in W*P(Q), it sufficient to prove that for a
subsequence of {F},(z, y) }n>1, still denoted by {F,(z,y) }n>1, | Ful(®, y) — F (2, y)| zrax0) — 0.

By the almost everywhere convergence of v, to ¢(u), we have

Emam:““”‘ﬁﬂ?—»Mw@ﬂ‘ﬂﬁ@>=F@wy weinlx Q.

|z — |z —y| 7
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Observe that the norm convergence of u,, to u in W*P(2) implies

Un(x) — un(y) u(@) — uly) in norm in LP(Q2 x Q).

N+ps N+ps
lz —y| 7 lz —y| 7
So that since
|Fo(z,y)| < K o
|z —y| 7

the sequence {|F,(z,y)|’}, is then equi-integrable. Applying Vitali’s theorem we get
| Fo(z,y) — F(2,9)|lzrox0) — 0 which in turn implies [|v, — ¢(u)||ws»@) as n — +oo.
Since the sequence {v,} belongs to the closed space Wi (£2) forces the limit ¢(u) to belong
to WP (Q). O
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Chapter 3

Nonlocal semilinear elliptic problems with

singular 1r101r1111rlearity1

In this chapter, we consider the Lazer-Mckenna problem involving the fractional Laplacian and
singular nonlinearity. We investigate the existence, regularity and uniqueness of the solutions
in light of the interplay between the nonlinearities and the summability of the datum. The
study we are conducting extend some results obtained in [141] and [10, 18]. We also analyze

the threshold 3 for integrable the data.

3.1 Introduction

The chapter deals with the existence, regularity and uniqueness of solutions for the following

nonlocal problem
(=A)’u = /() in €,

u”
u >0 in €2, (3.1)
u =0 on RM\Q,

where Q is a bounded domain in R, N > 2s, of class C**, s € (0,1), v > 0, f € L™(),

m > 1, is a non-negative function and (—A)? is the fractional Laplacian operator defined by

(—A)°u = a(N, s)P.V./ Mdy

Ry [z — gV

YA. Youssfi and G. Ould Mohamed Mahmoud. Nonlocal semilinear elliptic problems with singular nonlin-

earity. Calc. Var. Partial Differential Equations, 60(153), 2021.

29
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where "P.V.” stands for the principal value and a(N, s) is a positive renormalizing constant,
depending only on N and s, given by

LTE+s) s

allV,5) = x> D(1—s)

to ensure that
(=A)u=F H|¢*Fu), ¢e€RY s€(0,1) and u € S(RY),

where Fu stands for the Fourier transform of u belonging to the Schwartz class S(RY). More

details on the operator (—A)® and the asymptotic behaviour of a(N, s) can be found in [45].

In the case of semilinear local problem corresponding to s = 1, the study of singular elliptic
equations was initiated in the pioneering work [38] which constitutes the starting point of a
wide literature about singular semilinear elliptic equations. Let us start recalling the impor-
tant result of Lazer-McKenna [61]. Under regularity assumptions on Q and if 0 < f € C*(),
the authors obtained an optimal power related to the existence of finite energy solutions. In
fact, a solution lying in Hj () should exists if and only if v < 3 while it is not in C*(€Q) if
v > 1. The threshold 3 is analysed in [$8] when the datum f is a positive L' function defined
on . In that paper [33], the authors provide an extension of the classical Lazer-McKenna ob-
struction. Existence and uniqueness results for (3.1) are obtained in [35] while in [26, 12] the
authors showed that (3.1) has a solution u for every f in L'(2) and for every v > 0 and how

the regularity of this solution u depends on the summability of f and on . In the case where

the function f belongs to L™(2) with m > 1, Boccardo and Orsina [23] proved the existence
Nm(y+1)
N —m(l—-7)
/ 2* /
) , while u € HL(Q) if f € L™(Q) with m = (1 ) . In
-7
the case where f € L*(Q), if ¥ = 1 then u € H}(R), while if v > 1 then u € H..(Q) and

and regularity of a distributional solution u € W;**(Q2) where ¢ = ifo<y<1

*

2
and f € L™(2),1 <m < (1

T € H;(€). In connection with the problem studied in [23], uniqueness of finite energy
solutions was established in [22] where the main ingredient is the extension of the set of ad-

missible test functions. We will use the same idea in this case of fractional Laplacian. In [1/]
the authors proved that if the non-negative function f € L™(2), m > 1, is strictly far away

from zero on Q (that is there exists a positive constant fy such that f > fo > 0 a.e. z € Q)
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(m+1)(y+1) y+1]. 3m—1
fl<y<

4m T2 ' TS T

existence and regularity results for local problems with singular nonlinearity involving reac-

then u® € Hy(S2) for every a € . Some related

tion or absorption terms are proved in [37, (65, 66]. Let us also mention the contributions in
[3, 33, 54, 59, 67, 69, 87] where related problems involving singular nonlinearities are consid-
ered. It is worth recalling here that singular local semilinear elliptic problems such as (3.1)
arise in various contexts of chemical heterogeneous catalysts [15], non-Newtonian fluids [1¥]
as well as heat conduction in electrically conducting materials (the term u” describes the
resistivity of the material), see for instance [51, 64].

Let us now discuss the nonlocal problem (3.1). Recall first that a rich amount of research
work has been done on nonlocal problems of either elliptic or parabolic types, we refer for
instance to [5, 6, 7, 10, 62, 89]. Starting with the case v = 0, the problem (3.1) with L'-data
was studied in [I, 341, 63] where a general fractional Laplacian operator including (—A)*® is
involved, while for bounded Radon measure data it was investigated in [55, 71]. In the case
where v > 0, existence and regularity results of solutions to (3.1) were established in [10] when
the datum f is a Holder continuous function and behaviours basically as ; for some

distP(x,00)

[ such that 0 < 8 < 2s. Existence and uniqueness results for positive solutions of the problem

(3.1) have been also obtained in [18, 34]. It has been shown in [34] that (3.1) has a weak
2N

N +2s 4+ (N —2s)
if v > 1and f € L*(Q) then (3.1) has a weak solution u € H; () with u'T € X5(2). In

solution u € X§(Q), when 0 < v < 1 and f € L™(Q) with m := , while

the same spirit, the existence of positive solutions have been also established in [18] according

to the range of v > 0 and to the summability of f. Precisely, in that paper [1%] it has been
ny 2N 2N

proven that if v <1 and f € L*)(Q), 2! := N2 and (2%)" := N +2s then (3.1) has a

solution u € Xg(Q) N LOMI%E(Q), while if v > 1 and f € LY(Q) then (3.1) has a solution u

such that 'z € X5(92).

It is worth pointing out that the interest brought to the fractional Laplacian operator is due
to the wide range of its applications, for instance in thin obstacle problems [39], in crystal
dislocation [17] and in phase transition [83].

In the present paper, our aim is to lead investigations about the existence and regularity of
positive solutions to (3.1) establishing some missing results in [18, 31]. The case where v = 1

is treated in [18, 31]. We study the case where 0 < v < 1 and f € L™(Q) with 1 <m <m
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which provides infinite energy solutions (see Theorem 3.2.1 bellow) and we prove the existence
of finite energy solutions to problem (3.1) in the case v > 1 under some suitable assumptions
on the datum f. Further, to show the accuracy of our results we highlight the relationship
with the Lazer-Mckenna condition. We also provide some regularity results for solutions as

well as the uniqueness of finite energy solutions.

3.2 Main results

We start with define the meaning we will give to the solution of the problem(3.1).

Definition 3.2.1. Let f € L'(Q) be a non-negative function. By a weak solution of the

problem (3.1), we mean a measurable function u satisfying
Yw CC , Je, >0 @ u(x) >¢, >0, inw (3.2)

and

a(N,S)/ (u(:lr)—U(y))(w(fv)—w(y))dydx:/f_@dx, (3.3)
Q o v

92 |$_y|N+25

for any ¢ € C3°(92).

Definition 3.2.2. We say that u € X;(Q2) is a finite energy solution of (3.1) if it is a weak
solution u of problem (3.1) which further satisfies (3.3) for every ¢ € X§().

Remark 3.2.1. By Lemma 3.4.4, if u € X;(2) is a weak solution of problem (5.1) (in the
sense Definition 3.2.1), the u is a finite energy solution. In other words if u € X;(§2) the two
definitions 3.2.1 and 3.2.2 are equivalent.

3.2.1 The case 0 < 7 <1 : Infinite energy solutions

We consider the problem (3.1) under the assumption 0 < v < 1. We recall that in this

case it is proved in [34] that (3.1) has energy solutions when f € L™(Q), where m stands
2% 25N 2N

for the Holder conjugate exponent of —=— that is m = ( - > = .

1—7 1—7 N +2s + (N — 2s)

It is in our purpose here to investigate the remaining range of summability of source terms
corresponding to the data f € L™(Q2) with 1 < m < m. We show that the problem (3.1) has

solutions lying in a fractional Sobolev space larger than H(§2).
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Theorem 3.2.1. Let 0 < v < 1 and let f € L™(S2), with 1 < m <. Then the problem (3.1)

_ Nm(1
admits a weak solution uw € Wg»(Q) for all sy < s with § = m(l+7) . Furthermore,
N —sm(1—7)
Nm(1+7)
L7(€2) wh =—"
u € L7 () where o N 2em

Remark 3.2.2. Note that ¢ < 2 since m < m. Moreover, the exponent o is well defined.

Indeed, since N > 2s we have

dms < m(N + 2s) < m<N+25—|—7(N— 23)).

2N
A <m:= t4 < 2N.
sm<m N+25+7(N—25)’weg€ ms

Remark 3.2.3. Observe that the inclusion W39(Q2) € W5>4(Q) holds for any ss < s; (see

[/5]). So we infer that it is sufficient to choose s1 very close to s that is < 51 < s which

implies that the results in Theorem 5.2.1 recovers those already obtained in [23, Theorem 5.6]

when s — 1.
Remark 3.2.4. Notice that if v = 0 the problem (5.1) reduces to

(=AYu =f inQ,

. (3.4)
u =0 onRY\Q,

In [05] the authors proved the existence of a unique weak solution u of the problem (5.4) such

that

1. If f € LX) then u € LY(Q) for every q < N 25
—2s

2N m
2. If f € L™(Q), with 1 <m < — then u € Lv~%m (Q).

+ 25’

We point out that when 1 < m < m we have a kind of 'continuity’ of the summability of the
Nm(1+ ) Nm
——— = tends to ————
N —2sm cnas to N —2sm
which is exactly the summability of solutions obtained in [05]. However, this "continuity’ fails
N(1+7)
———~ tends t
N —2s enas 0N—2$

. In fact, the case where v = 0 can not be considered,

solution with respect to . If we let v — 0, the value of 0 =

to hold when m =1 since 0 =

but the solutions obtained in [0.5]

bel to L4(Q2
elong to LI( )forefueryq<N_2S

this is mainly due to the inequality (3.20) where we divide by .
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3.2.2 The case 7> 1 : Finite energy solutions
Let us recall that Lazer and McKenna [61] proved that the problem

Ay = fz) in Q,
uy (3.5)
u =0 on 0f,

where the datum f is regular enough (say Holder continuous) and bounded away from zero
on €2, admits a unique solution v € Hy(f2) if and only if v < 3 . In the case where f is a
non-negative function such that f € L™ () with m > 1 and strictly far away from zero on €2,

3am —1
the authors [11] proved that if 1 < v < m
m+1

then u € Hy(Q). As regards the case where

the datum f € L'(€2), the problem 3.5 has only a local solution u € H}._(2) which does not

loc

belong to Hy(f2) (see [23, Theorem 4.2]). In the case of the fractional Laplacian operator,

J.Giacomoni et al.[10] studied the following problem

(—A)°u :f(x) in Q,

uy

u >0 in €, (3.6)
u =0 in RV \ Q,

where f is a Holder continuous function such that f ~ , with 0 < 8 < 2s. They

1
dist? (. 00)
proved that if g + 7 > 1 then the problem (3.6) admits a unique solution u € X§(?) if and
only if 28 +~(2s—1) < 2s+ 1. This last inequality implies v(2s —1) < 2s+ 1. So that letting
s tends to 17 one can find v < 3 which is exactly the Lazer-Mckenna condition.

In this section, we investigate the existence of finite energy solutions for (3.1) when v > 1 and
f e L™(Q), with m > 1. We impose some assumptions on the datum f and ~ that provide

solutions for (3.1) in X;(€2). The first result deals with data f strictly far away from zero.

Theorem 3.2.2. Let v > 1 and s € (0,1). Assume that f € L™(Q), m > 1, is such
that there exists a positive constant fo satisfying f(x) > fo > 0 a.e. x € Q. Then the

problem (3.1) admits a weak solution v € Hj () such that u® € X3(Q) for every a €

<max(1 (o s )y 53 e

2’ 4sm 2

5 ] . In particular if v satisfies

(m(2s—1)+ 1)y <m(2s+1) —1, (3.7)

then u € X;(Q).
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1 1)(2sm — 1
Remark 3.2.5. Observe that from (3.7) we get max <§, o+ D 4sm m )> <1<
sm
1
%, so that a = 1 can be chosen to obtain uw € X{j(2). Furthermore, notice that for

every m > 1 (3.7) reads as

1
7(28—1)+l<25—|—1——,
m m

which implies v(2s — 1) < 2s+ 1 and this is exactly the necessary and sufficient condition for

the existence of the unique solution in X3(2) obtained in [10, Theorem 1.2 ii)] when § = 0.
dm —1
m+ 1
therefore Theorem 3.2.2 reduces to the same result stated in [1/, Theorem 3]. Furthermore,

We also observe that when s tends to 17, the condition (3.7) yields 1 < v < and

letting m tends to +oo in the last inequality we get 1 < v < 3, which can be seen as an
extension of the Lazer-Mckenna condition [01] for obtaining finite energy solutions to strictly

positive L™ -data.

Remark 3.2.6. In the local case corresponding to s = 1, it is known that the threshold
3m —1

1 obtained in [1/, Theorem 3] is not the optimal one. Using [58, Theorem 1], Oliva
m

2
and Petitta [07] proved that the optimal threshold is 3 — —. For the nonlocal problem (3.1),
m
m— 1

the situation is somehow different. Notice that for m > 1 if < s <1 then (3.7) reads

as
m(2s+1)—1
< h(s) = ———mF——.
7 < hs) m(2s —1)+1
The optimality is lost since s is varying, however we can obtain more information. Observe
3m —1 -1 1
that the function h decreases from infinity to m as <s<1. Settings:=1——,
5 m—+1 2m 5 2m
one has —— < 5 < 1 and h(s) = 3 — —. Thus, for s < § we have h(5) = 3 — — < h(s).
m m
m—1

On the other hand, if 0 < s < then (3.7) is satisfied for every v > 1. We conclude

that the range of v is wide than the one of the local case.

We point out that we can avoid the hypothesis that the source term f is far from zero and

we continue to obtain energy solutions. This is stated in the following theorem.

Theorem 3.2.3. Let v > 1 and s € (0,1). Suppose that f € L™ () with m > 1. Then the

problem (3.1) admits a weak solution w € H} () such that u® € X§(§2) for every

1 1) — 1 1 —1
a € (max(— smiy+1) —m+ ),74_ m then

2’ 2sm 2

]. In particular, if 1 < v < 1+
sm

u e X;5(9).
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Here again, letting s tends to 1~ and m tends to +o0o we obtain 1 < v < 2 which is a
restriction of the Lazer-Mckenna condition to positive L™-data, m > 1. Notice that the case
where m = 1 can not be considered in the two last theorems, since the range of o will be
empty. However, if we consider data f € L'(Q) with compact support in  we can also obtain

an energy solution. This is stated in the following theorem.

Theorem 3.2.4. Let v > 1 and s € (0,1). Suppose that f € L'(Q)) with compact support
in Q. Then the problem (5.1) admits a weak solution uw € Hj, () such that u® € X5(2) for

1 1
every o € < i

5 } . In particular, u € X§(Q).

We point out that the Lazer-Mckenna condition vanishes when we deal with positive L'-data

having compact support.

3.2.3 Uniqueness of finite energy solutions

As mentioned in the introduction, the existence of weak solutions for the problem (3.1) lying
X5(€Q) has been proved in [34, Theorem 3.2] when 0 < v < 1 and f € L™(Q). In the case
where v > 1, the existence of a weak solution u € X{(€2) to the problem (3.1) is obtained in
the previous theorems 3.2.2, 3.2.3 and 3.2.4. In the following theorem we prove the uniqueness

of finite energy solutions to the problem (3.1).

Theorem 3.2.5. Let v > 0 and s € (0,1). Let 0 < f € L'() be such that the problem
(5.1) admits a finite energy solution u € X;(2) (in the sense of Definition 3.2.2). Then u is

unique.

3.3 Proof of main results

3.3.1 Approximated Problems

Consider the sequence of approximate problems

(—A)Y’u, =-——— in{,
(3.8)
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where f,, = min(f,n). The following results are proved in [15].

Lemma 3.3.1. (18, Lemma 3.1]) For each integer n € N, the problem (3.8) admits a non-
negative solution u, € X3(€2) N L*(R2) in the sense

G(N,S)/ (un(m)—un(y))(w(w)—w(y))dydx:/ fop o
Q o ( ’

2 o — 45 o+ 17

for every ¢ € X§(Q).

Lemma 3.3.2. ([18, Lemma 3.2]) The sequence {u, }nen is an increasing and for every subset

w CC 2, there exists a positive constant c,,, not depending on n, such that
Un(x) > ¢, >0,  for every x € w and for every n € N.

Lemma 3.3.3. Let v > 1, f € LY(Q) and let u, € X3(Q) N L>(Q) be a solution of the
problem (3.8). Then the sequence {u,} is uniformly bounded in H;,.(€2).

Proof. Taking u; a test function in (3.8), we obtain

[ Lenle) =t 0300) =) g, A 9)
Q

|z —y|NH2 ~ a(N,s)

An application of the item 7) in Lemma 1.3.3 yields

y+1 y+1 2

un? () —un? (y) ( 2
v+ 1)
dydr < —— 1
/C‘Q |.§C _ y|N+2s yar = 2"}/CL(N, 8) ”fHL ()

Then by the Sobolev inequality (1.2.1) we get

/Q\un( )|(w 22y < (S(st)%)zv %

f”N 25

2* > 2, the sequence {u,}, is uniformly bounded in L?*(€2). On the other hand,

As (v+1)
2

let w be a compact subset of Q2. Applying the item v) in Lemma 1.3.3 (recall that v > 1) and
Lemma 3.3.2 in the left-hand side of the inequality (3.9), we obtain

/|un -l >|||1§+<2>—ux<y>|dydx

__W

2
> _ QCw ’Y 1// |un |N+2 )| dydl[’

This shows that {u,}, is unlformly bounded in H;, (2). O
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Now, let ¢ € X5(2) N L>°(€2) be the solution (see [63]) of the following problem

(—A)¥¢ =1 inQ,

N (3.10)
¢ =0 onRY\Q.

In order to prove Theorem 3.2.2, we shall prove the following comparison result for the
approximate solutions w,. In the proof of this comparison result, we use Lemma 2.7 and
Lemma 2.9 of [73], which require that  is a bounded domain which satisfies the condition
of the ball. Such a condition is equivalent (see [I1, Lemma 2.2]) to say that €2 is a bounded

domain of class C"'.

Lemma 3.3.4. (Comparison result) Let v > 1, 8 € (1,2) and let u,, be a solution of the

problem (3.8). Then there exists a positive constant T not depending on n such that

2
1 I+ 1
Up > U, = {T¢9 + 1—_‘_7} - —. (311)
n-2 n

Proof. We shall prove that there exists a sub-solution u,, of the approximate problem (3.8),

that is F
—A)? < - in €,
e RAY
u, >0 in Q, (3.12)
u, =0 on RM\Q,
such that u, > u,. Let u, :=1n " (z) — —, where we have set ¢, = T¢’ + —— and T > 0 is
n n-z

a constant not depending on n and that will be chosen later. We will show that w,, satisfies

3.12). Applying the inequality (3.36) with F(t) = 757 yields
( ying y y

(—A)u (z) = <—A>s( i 1) (2) = (~ AV (F o ,)(x)

a s 2 0 ) — 0 2
< P ()-8 0nle) - DN oy [ 1 E R,
_ 2T B e (=0T oy [ @) =)
~ Tyt AP ) £ el )|

Since 6 > 1, the function g(t) = t, t > 0, is convex so that one has the identity g(t) — g(t') <
g'(t)(t — t') which holds true for every #', t. Using the fact that ¢ solves (3.10), we get

(—A)*(¢"(2)) < 06"} (2)(=A)*(¢(x)) = 06" (2), for every z € .
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Then, for every = € () we get

(—A)u,(x)
< 125’:(33) <1iev¢n(x)¢“(x) n (VV_Tll)Ta(N’ 5) /RN |¢|ixz;|ﬁéys)| dy>_ (3.13)

On the other hand, let Br be an open ball with radius R > 0 such that €2 C Bgi and set
dy = dist(02,0Bg) > 0. For every x € ), we can write

GO R aC) | S U CO A O] (@) = WP
/. 5 oo 5 Lo y

|z — y|N+2s |z — y|N+2s |z — y|N+2s
L [1P@ =)
Q |5U - Z/|N+25

= I(z) + L(z) + I3(z).

We start by estimating the first integral I;. Since Q is a bounded domain of class C''!, by
[73, Lemma 2.7] there exists a positive constant C;, depending only on €2 and s, such that
|p(x)] < C16°(x) for all x € Q, where d(x) := dist(x,02). Whence, we get

W= [ O o[ BOP,

Brp\a |7 — Y[Vt Brp\a |7 — Y[Vt

Note that for (z,y) € 2 x Bg\(2, we have é(x) < |z — y|. Thus, we can write passing to the
polar coordinates

dy p
lz — y[N-250-D) Yy

hew) <ct [
BR\Q

dz
S 026
1 {0<|z|<2R} |Z|N*25(971)

2R
— 0120|5N—1| / T2$(0—1)—1dr _ C{,
0
(2R)23(9—1)Cl29|SN—1|

2s(6 — 1)
of the unit sphere in R". For the second integral I5(z), noticing that

with C] = , where from now on |S™¥™!| stands for the Lebesgue measure

|z —y| > dy := dist(0Q,0Bg) > 0 for every (z,y) € Q x (RV\Bg),
we can estimate I, as follows

¢? () ?
I(x :/ —
2 () sy [T — [N Y

_ o dr
— lolimls* Y [ =G
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[

) 2ad . We now turn to estimate I3(x). Combining #ii) et iv) of Lemma
saq

where C4 = [|6]%q)
1.3.3, we obtain

¢ (2) = " () < 26°|9(x) — d(y)[** + 80%6* "V (x)[é(x) — o (y)[*. (3.14)

By [73, Lemma 2.9] the function ¢ is C*(Q) for all # € (0,2s). In particular and in what
follows we make the choice 8 € (s, min(1, sf)). Furthermore, there exists a constant C3 > 0,

depending on €2, s and [, such that for every x € Q

)\ 7P
o) - ot < Calo o (222) (3.5

)
for every y € Bsw (x), where Bsw) (z) stands for the open ball of radius % centered at x
2 2

with 0(z) := dist(xz,00). Now, using (3.14) we can write for every z,y € Q

¢6 ¢ 20
/ | ‘N+2s dy < 2‘92/ | |N+23| dy
+892/ ¢29 Y (z) — ¢(y)|2dy.

Il’ - yIN”S

Splitting the second integral on the right-hand side, we obtain

I3(x) <292 ¢z |29
3 |x— |N+25

- _ 2
{yeﬁzlfc—yé@} |x -y

~1) _ 2
{yEQ:|x—y\<@} |(L’ - yl s

We shall estimate J;(x), Jo(z) and J5(z). For Ji(z), we note that by [73, Proposition 1.1]
we have ¢ € C*(R"). In addition, there exists a positive constant cs such that for every ,

ye RN? lp(z) — o(y)| < es|lx — y|°. Thus,

2
<29 /|$—y|N 2s(0—1)




3.3. PROOF OF MAIN RESULTS 71

We calculate the integral using the change of variable z = x — y. We have

dy
qlz— y|N—2s(9—1)

/ dy n / dy
Qnfa—y|>1 |z — y|N-2s(0-1) Qnfr—y|<1 |z — y|V-2s(6-1) (3.16)
dz ‘SN_II
< |22 - Q|+ ——.
=l /Izlgl 2|V =2s0=1) o+ 2s(0 — 1)
Thus, we obtain
Ji(z) < 292029<|Q| - M)
B = 25(0 — 1)
For .J, we use the fact that ¢ € C*(RY) and |¢(z)| < C16%(x) for all z € Q. By (3.16) we get

2 2 (05 \2(0-1) dy
Jo(x) < 86 03(2 Cl) /Q |z — y|N-2s(6-D)

_ SNfl
< s (2°cy)™ 1)(‘9' i ﬁ)

While for J;(z) we use (3.15) and |¢(x)| < C16°(z) for all z € Q. We arrive at
2(s0B)
2 (of—s0—1 1 )2 0 (x)
J3(x) < 80 (2 Cy C’3) / ON z — y|N—2(—5) dy.

{ye|e—y|<=~

The fact that § € (s, min(1, sf)) and that 2 is bounded, enables us to get

Jg(di) S
8(2°°CY1Cy)” (diam(€)) '™ /
{yelo—y|<2@) [T =
25(0-1) [S™ ]
B—s’
where diam/(Q) stands for the diameter of 2. Finally, there exists a constant C > 0 depending
on €2, R, N, s, 8 and (3, such that

dy
y|N2(5-5)

< 46 (2550071 C5)* (diam (<))

Let Ty = min(1, fy) and let us choose T small enough such that

20 3(y—-1)T

0 6—1
0 <T|+——= (Tl 7@y + D)8l 1<) + v +1

T (N, 5) max(CY, €4, C)

< Tp.

Going back to (3.13), we deduce that for every = € 2
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which yields

s fa()
(—A)*u,(z) < m

Thus, u, is a sub-solution of (3.8). Now, we prove that u,(x) > u,(z) for every x € Q.

Assume by contradiction that there exists & € 2 such that

un(€) <, (§)- (3.17)
Then we have

(=A)(un —1,)(§) = (=8)un(§) = (=4)"u, (&)

1 1
= 1n(6) Lun(@ T %)v] =0

It follows from the weak maximum principle [31] that (u, — u,)(§) > 0, which contradicts

(3.17). Therefore, we have

) + 3 2 08 0) = [16) + 1|

3.3.2 The case 0 < v <1 : Proof of Theorem 3.2.1

In order to prove the existence of solutions for the problem (3.1), we first need to prove some

a priori estimates on u,,.

3.3.2.1 A priori estimates

2N
N +2s4y(N —2s)"
a solution of the problem (3.8). If 0 < v < 1, then {u,} is uniformly bounded in W"*(2) for

Lemma 3.3.5. Let f >0, f € L™(Q), with 1 <m <m = and u, be

Nm(1
all sy < s, where q = m(l +7) . Moreover, {u,} is uniformly bounded in L°(2), where
N —sm(1—7)
5= Nm(1+7)
- N -—2sm ’

1
Proof. Let n € N, n > 1, and let v < 6 < 1 to be chosen later. Let 0 < ¢ < —. By [03,
n

0

Proposition 3.], the function (u, + )’ — €’ is an admissible test function in (3.8). Taking it
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S0, it yields

// (@) — Unly ))((Un(a:)+5)9_(u”<y>+€)9)dydx

|l’ _ |N+25

NS /fnun )+5)0 Tdx.

Passing to the limit as ¢ tends to 0, we obtain

tn (%) — 1 (y)) (un (7) — 1 () 2 g
// |z — y|N2 e < NS /Qf"““(m) dr. (3.18)

By the item i) of Lemma 1.3.3, we can minimize the term in the left-hand side of (3.18) as

follows
)|
—un (Y 0 + 1)? o
|m — dydx < / frou, Vdx.

Applying the fractional Sobolev inequality, we obtain

N
N,s)(0+1) N-2s
[ s [P ra] ™.
o If m = 1, then the choice 6§ = v gives
N(v+1) S(N,s)(y+ 1) b -
. s dx < - 3.20
[ ¥ o < | FEA O (3.20)

e While if 1 <m <m and v < 0 < 1, an application of Holder’s inequality in the right-hand

m
side term of (3.19) with the exponents m and m' := — gives
m —

[ @ <
Q
N
S(N,s)(0+1)2| 7= S e

N@@+1)
N — 2s

(3.21)

We now choose 6 to be such that = (0 — v)m/, that is
N(m — 1) +ym(N — 2s)

0 —
N — 2sm

Observe that the assumption m < m implies § < 1 and since v > 0 we have v < 6. This

choice of 6 yields
N@+1) Nm(l+~v)
N-2s  N-—2sm
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N
Noticing that ————— < 1 and using (3.21) we deduce the following inequality
m/(N — 2s)
Nm
Nm(147) S(N,s)(0 +1)2|~-2m = _Nm_
o(@)| Nz dz < 25*”. 3.22
[ o)) ¥ a0 < | SO T g (3:22)
Thus, from (3.20) and (3.22) we conclude that the sequence {u,}, is uniformly bounded in
Nm(1
L7 () for o = ]\Tfni—;;n? and 1 <m <m.

Now, going back to the inequality (3.18) and following exactly the same lines as above, that
N(m —1) +ym(N — 2s) <1
N — 2sm ’

is if m = 1 we choose 6 = v while if 1 < m < ™ we choose 0 =

In both cases, applying the Holder inequality we obtain

//@M@—%@M%@%wmm@m<c (3.23)
aJao |z — o |

y‘N+2s

where C' is a positive constant not depending on n. Let s; € (0,s) be fixed and let § =
Nm(1 N(m —1 N —2
ML+ e et g = Y= 1) +m( s)
N —sm(1 —7) N —2sm
m = 1). We note that § > m(1 + ) > 1 and the assumption m < 7 implies § < 2. Thus,

for 1 <m < m (we note that 0 = ~ if

observe that N + gs; can be splitted as follows
N +Gs; = gN+§s+ ?N—G(s— s1).
Hence, setting  := {y € Q:u,(y) # un(x)} we can write
/ / |un (2 / / [un (@) = un ()7 (@) = ui(y))
|9U—y|N+qs1 |x—y| iNtas (un(z) — un(y))

un(2) = un(y)) dydz
(ug(m) —ul(y) |z — g TV

Observe that the quantity in the middle of the product inside the integral can be written as

follows B .
(W (2) —uly))  ((ul(x) —ul()\? _ [ (ul(x) —al(y)\ 7
<%m—w@»‘Q%w—%@J XQ%w—%@Q ’

we obtain

L/‘ ) = )7
Q | T — |N +gs1

o (G)
) [(<un<m>-—/u <y>>) () — w(y) 1 ]dydx,

(un () — un(y)) (uf(x) —uf(y) |z — y|2 2_IN_g(s—s1)
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2
Now using Holder’s inequality with the exponents — and 57 we obtain

q —q
|un (1) = un(y)|?
/ / y|N+q81 dydx

[ [ -

(S]]

([0 () ) oo
[t i

(LA () - g ]

29(s —
where we have set § = M Then,
—dq
q
Q |x - ?J|N+qs1

[MS]]

( / / Un (2 —u’; _))(’?;ffi)—ui(y)) dydm)

(LG e )

Using the item #i) of Lemma 1.3.3 and the 1nequa1ity (3.23), we obtain

[ [ o), o

o — gV

2—q
Q(l q9) Q(l qG) dyd:l) 2
<//( ™)+ “”) PR ﬂ) ’

where ] is a positive constant not depending on n. By x/y symmetry, there exists a constant

(5, not depending on n, such that

2—q

// ‘uTx—le”“)’ ! dx<02</ [/ |:v—y|N 5}&) R

0 Nm(1
Observing that (2 _) =0 = # and having in mind (3.16) we get
—7 — 9

// Ix—y|N+q81 “dyds < Oy

where Cj is a positive constant not depending on n. Thus, {u,} is uniformly bounded in

W5H1(Q) for every s; < s. O
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Remark 3.3.1. Note that we can repeat the same lines as in the proof of Lemma 3.3.5 above
with the exponent q instead of G in (5.24), with 1 < q <G. We obtain that {u,} is uniformly

bounded in W3"4(Q) for all 1 < q <G and for every s; < s and 1 < m <.

3.3.2.2 Passage to the limit

Now, under the assumptions of Theorem 3.2.1, we are going to prove the existence of solution
u to (3.1).

Proof. of Theorem 3.2.1.

From Lemma 3.3.5 and by the compact embedding of W;(Q) into L*(Q) (see [45, Corollary
7.2] or [11, Theorem 4.54]), there exist a subsequence of {u,},, still indexed by n, and a

measurable function u € W;?(Q) such that

u, — u weakly in W57(Q),
u, — u in norm in L'(Q2),
u, — u a.e. in RY.

Then

(@) = un(y) _ u(@) — uy)
‘x_y‘N+2s |$—y|N+25

a.e. in Q.

Let p > 0 be a small enough real number that we will choose later. For any ¢ € C3°(2) we

[ [ [Jnbe) = aidtet) =t " e

‘LC _ ‘N+23

have

//|un — )"Vl L@z — y[) dydz

|I‘ y|N+(1+p S1 ‘I‘ — y‘pN+(1+p)(23_sl)

_ L) e | (1Ep) (1 51-25) —pN
149 |un(@) — un(y)| """z — y|
S “V@HLOO(Q)/Q/Q |$—y|N+(1+p)81 dydl'

We now choose p to be such that (1 + p)(1 + s; —2s) — pN > 0. To do so, we consider s to

be very close of s. Precisely, we impose on s; the condition
max(0,1 —3s) <s—s <1—s.
We point out that with this range of values of s; and with the assumption N > 2s, we obtain

1+s81—2s>0and N —1—35;+2s>0.



3.3. PROOF OF MAIN RESULTS 7

1 -2
Thus, the fact that (1 + p)(1+4 s1 —2s) — pN > 0 is equivalent to 0 < p < N _—:‘? " f25'
Therefore, we have
|(un (@) = ua () (p(2) — ()]
N2 dydx

|un () — un(y) "7
|z — y [V

< HVSD\!2lp(a)dmm(9)(1+p)(1+51_25)_’”N/ dydz.

QJo
Now we have to make a choice of p to prove that the right-hand integral in (3.25) is uni-

formly bounded. By Remark 3.3.1 we have the uniform boundedness of {u,}, in W;"?(Q)

Nm(1
for every 1 < ¢ < q = N m( (—; ) 3 So it is sufficient to choose p such that
—sm(l —v
Nm(1
1+p<g= m(l+7) . Thus, the choice we need for p is the following
N —sm(1—~)

O<p§mm<N(m—1)—|—m7(N—s)+sm 1+ s —2s >

N —sm(1 —7) "N —1—s1+2s/

Therefore, there is a constant C' > 0, not depending on n, such that

Slip/g/g {(un(fv)—rtn(y))(@(x)—so(y))]l”dydxga

T — y|N+25

Finally, by De La Vallée Poussin and Dunford-Pettis theorems the sequence

{ (un(z) — un(y))(p(z) — ¢(y)) }

|z —y| N2

is equi-integrable in L'(Q x ). Now, inserting ¢ € C$°(R) as a test function in (3.8) yields

a(N,s)/ (un(:c)—un(y))(w(l“)—w(y))dydx:/( In? gy (3.26)
0 Q

2 ‘x_y‘N-FQS un_l__)'y

n

We split the integral in the left-hand side of (3.26) into three integrals as follows

/ (un(z) — un(y))(p(x) — gp(y))dydx

Il’ yIN“S
// Un () — U, ))(@(fﬂ)—so(y))dydx
|QZ'— |N+2s
(un () —un y))(p(r) —o(y)) . 3.27

/ / al) ~ ))(@(w)—w(y))dydx
co |ﬂ7— y|hre

:[1+[2—|—[3.
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By Vitali’'s lemma we have

hm// up (@ —un ))(w(m)—w(y))dydx

n—o00 |N+25

// |x ) (@(i)s_ w(y))dydw_

For the second integral I, in (3.27), we start noticing that since u,(y) = ¢(y) = 0 for every

y € CS) we can write

(un(x)—un(y))(sf)(ﬂf)—sf)(y))‘ |un ()0 ()]

|x_y|N+2s |ZE— |N+2

for every (z,y) € Q x CSL.

As a consequence of the convergence in norm of the sequence {u,} in L'(2) there exist a

subsequence of {u,} still indexed by n and a positive function g in L'(£2) such that
lun ()| < g(z) a.e. in Q,

which enables us to get

|(un () = un () (p(x) = pW)] _ l9(z)p(2)]

’x_y’N+2s - ’x_y’NJrQs

a.e. in (x,y) € Q x CQ

and so we can write

d dx
// |{L‘— |N+2s /supp /CQ |ZL‘— |N+2

dy
<ol [ ool Jao
@ supp(p) cQ |ZL' - y|N+28

Since supp(p) is a compact subset in €2, we have
|z —y| > dy := dist(supp(p),02) > 0 for every (z,y) € supp(p) x C.

Hence passing to the polar coordinates, an easy computation leads to

/ dy _/ /*Oo/ dvdr | SN
ca |v —y|N T (2€RN:|2|>do} |2|N+2s |N+28 r2stl 2sd3®

This shows that the function (x,y) — % belongs to L'(€2 x CQ). Therefore, by the
x

Lebesgue dominated convergence theorem we obtain

hm// (un(2) — up y))(w(x)—w(y))dydx

n—00 ‘x— ‘N+23

D)) - o)
T B
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By x/y symmetry, the third integral I3 in (3.27) can be treated in the similar way. Finally,

we conclude that

(tn(2) = nW)(P@) = W) ) 1o

,}H{}O o |z — y|N+2s
_ [ o) =)~ )
0 |ZL‘ _ y|N+2$ )

for all ¢ € C3°(€2). Now, for what concerns the right-hand side of (3.26), by virtue of Lemma
3.3.2, for any ¢ € C;°(£2) with supp(¢) = w, there exists a constant ¢, > 0 not depending on
n such that

0<

fn(P < ‘fH(,O‘ c Ll(Q)

(un+ 1) =

So that by the Lebesgue dominated convergence theorem we get

lim f"—(pdx:/f—(pdx.
o uw

Finally, passing to the limit in (3.26) as n — +o00 we obtain

a(MS)/ (U(x)—U(y))(@(x)—w(y))dydx:/f_@dw
Q o u

92 |$_y|N+23

for all ¢ € C3°(£2). That is u is a weak solution of (3.1). Furthermore, from (3.20) and (3.22)
Nm(1+7)

N e and 1 <m < m. O

we conclude by Fatou’s lemma that u € L7(€2) with o =

3.3.3 The case v > 1 : Proof of Theorem 3.2.2

3.3.3.1 A priori estimates

Lemma 3.3.6. Let 0 < fo < f € L™(QQ), m > 1, where fy is a positive constant. Let v > 1,

s € (0,1) and let u, be a solution of the problem (3.8). Then the sequence {u },, is uniformly

1 1)(2sm — 1 1
bounded in X;(2) for every o € (max <§, O+ D@sm —m + )>, 7;— ] . Furthermore, if

4sm
v satisfies

(m(23 1)+ 1>7 <m(2s+1) -1, (3.28)
then {up }n is uniformly bounded in X§(2).

Proof. We shall prove a priori estimates on u;, in X;(€2) for every a such that
1 _

e (_7 (v +1)(2sm m+1)) ca< y+1
2 4sm

1
. Letn>1andlet 0 <e < —. Forn > 0,
n



80 CHAPTER 3. NONLOCAL SEMILINEAR ELLIPTIC PROBLEMS WITH SINGULAR NONLINEARITY

taking (u, +¢)7 — €" as a test function in (3.8), we obtain

(%) [ () = o) o)~ a0 4N
Q

2 |x_y|N+23

< | ey o

n

The passage to the limit in e yields

/ (un(2) — un(y)) (up(z) — “W))dydg; <
Q

’ZL’ _ y|N+23

2 fTL
a(N, s) /g (n (@) + )77

An application of the item ¢) in Lemma 1.3.3 and the Holder inequality lead to

un’ (2) —wn® (3)]?
/ Iw—le“S e

dx w
< C(’T],N7 S)Hf“Lm(Q) </Q (U (.’L') + l)(’)’—n)m,) '

Let n be such that 0 < n <. We can use (3.11) to get

dx.

n+1

jun’ () — un® (y)?
/ ’33 — y|N+2s dydz

dx w7
< 0(77, N?S)Hf”Lm(Q)(/Q 2(vn)m’> ’
<T¢9<x> + %—>

From [19, Lemma 4.2] we know that there exists a positive constant C' > 0, depending only
on  and s, such that for every x € Q, ¢(x) > C°(x), where 0(z) := dist(x, 0f2). Using this,

the above inequality reads as

nt+1 nt1 1

un® () —un® (y)|° dx m
/Q ‘:B _ y\N“S dydx < OHfHLm(Q) o W

1 1
Choosing a = 1 ;— > — 5 We must seek for the range of o that ensures the convergence of the
1
integral in the right-hand side in the above inequality. If o = % the integral obviously
2s(y + 1 — 2a)m’

6 < 1. If it is so, we get 0 <

v+ 1
2s(y+1—2a)m’

1 1)(2sm — 1
(v +1) < «. Finally, if max(é, (y+1)@2sm —m + )> < a<

converges. If a < 7 it is sufficient to have

v+1
2s(y + 1 —2a)m/
This yields, 22— m+1

v+1
. In order that 6 € (1,2) exists, it suffices to have 1 <

4sm 4sm
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v+1 a1 .. s
—— then the sequence {u; },, is uniformly bounded in Xj(2).

(y+1)(2sm —m+1)
4sm
chose av = 1 obtaining the uniform boundedness of the sequence {u,}, in u € X;(). O

Furthermore, if the condition (3.28) holds then < 1 and so we can

3.3.3.2 Passage to the limit

Proof. of Theorem 3.2.2.

By Lemma 3.3.6 the sequence {uj}, is uniformly bounded in X;(€2) and by the compact
embedding in [15, Corollary 7.2] (see also [11, Theorem 4.54.]), there exists a subsequence
of {u®},, still indexed by n, and a function v, € X3(Q) such that u® — v, in L'(Q) and
u® — v, a.e. in RY. In particular, the sequence {u,} is uniformly bounded in LWTH(Q) and as
rtl > 1 it is also uniformly bounded in L*(Q2). Thanks to Lemma 3.3.2, the sequence {u,, },
is increasing so that by Beppo-Levi’s theorem the function u(z) := 7}1_)1120 un(x), for a.e. x € Q,

belongs to L'(€2). Since u, = 0 on RY \ © we can extend u outside of Q by setting u = 0 on

RN\ Q and then we obtain u, — u a.e. in RY. By the uniqueness of the limit we get v, = u®
1 1 —
_,(7+ )(2sm m+1)> ca<tl
2 4sm
If the condition (3.28) holds, we can take a = 1 obtaining u € X ().

a.e. in RY. Therefore, u® € X3(Q2) for every max (

Now, inserting ¢ € C5°(£2) as a test function in (3.8) we have

a(N, s)/ (un() = wn()(0(x) = 0W) 70 / (fn_Sde (3.29)
Q Q

2 |z — y|N+2s Up + )7

The fact that u, — u a.e. in RY implies

(un() — un(y))(p(z) — (y)) . (u(x) —u(y))(p(x) — v(y)) wo in RV x RY
‘x_y|N+25 ’x_y’NJrQs o :

By Lemma 3.3.3, the sequence {u,}, is uniformly bounded in H; () and so we have

un () —un(y) — ufz) —uly)
N+2s |ZL‘ _y %

|z —y| ™

weakly in L*(K x K) (3.30)

for every K CC Q. Now we choose the compact K to be such that supp(¢) C K and set
ds = dist(supp(p),0K)) > 0. Using the fact that u,(x) = u,(y) = 0 for every (z,y) €
CQ x C and p(z) = ¢(y) = 0 for every (x,y) € CK x CK, we can split the integral in the
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left-hand side of (3.29) as follows
/umm—w@mwm—wwhw$

|LE _ |N+2s

/RN /RN b _r;n_yi)évﬁ(i) — (p(y))dydx
/ / un(r) = un ()20 = 9 9)

|l’ _ |N+23

e e
[ [ ) et~ o,

|ZE _ y|N+2s

=)+ 12+ 12
In order to pass to the limit as n — +o0 in I}, observe that for all ¢ € C5°(Q) C H*(Q), we

have

[z —y|
Then, by (3.30) we get
| y)(e(x) = o(y))
nh_}r{)lof / / \:c g dydzx.

For the integrals I2 and I2, we follow some ideas as in the the proof of Theorem 3.2.1 claiming

that
2 ) (@) — oY)
T
and
s y))(p(x) — p(y))
nh_)IgoI / / |:1c— N2 dydzx.

Indeed, let us start with the second integral I2. For every (z,y) € K x CK, using the fact

that ¢(y) = 0 for every y € CK, we have
[(un(@) = un(y))((@) = W) _ Jun(@)o(@)] | un(y)o(z)
|z — y| Ve T e gV gV (3.31)
= |Gu(@,y)| + [Ha(z, y)]-

We shall prove that the sequence {H,(z,y)} is uniformly bounded in L'(K x CK). Since
o(x) =0 on K\supp(p) and u,(y) = 0 on CS2, we obtain

|un (y)
H,(x,y)|dydx —/ / d dz.
/ / ‘ | supp(p) JQ\K ‘:U - y‘N+2S
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Since for every (x,y) € supp(¢) x CK, |x — y| > ds := dist(supp(y), 0K) > 0, we obtain the

following estimation

[ oo () [ sUPP(0)|
/ / l’ , Y |dyd < dN+23 ||unHL1(Q)-
3

As the sequence {u,} is increasing, then so is {H,(z,y)} and by Beppo-Levi’s theorem and

the fact that u, — u a.e. in RY, we obtain

u T) .
H,(z,y) — % in L'(K x CK).

We deduce that there exist a subsequence of {u,}, still indexed by n, and a positive function

h € L'(K x CK) such that
|H,(z,y)] < h(z,y) a.e. in K x CK. (3.32)

As regards the sequence {G,,(x,y)}, we write

dy
@olldyds = [ Jue@)] [ s
/ / supp(p) CK |JZ - y|N+25

|SN71|||90||L°°(Q)HunHLl(Q)
- d%2s

As above, the sequence {G,(z,y)} is increasing and by Beppo-Levi’s theorem and the fact

that u, — u a.e. in RY, we obtain

u\xr xXr .
Gl y) = % in LYK x CK).

Again we deduce that there exist a subsequence of {u,}, still indexed by n, and a positive

function g € L'(K x CK) such that
|G (z,9)| < g(z,y) a.e. in K x CK. (3.33)

Combining (3.31), (3.32) and (3.33), we obtain
|(un () — un(y))(p(x) = ©(y))|

[ — [V < g(z,y) + h(z,y) € L'(K x CK),

for every (z,y) € K x CK. So that by Lebesgue’s dominated convergence theorem, we get

lim 12 = // )(w(ﬁ)—w(y))dydx.

n—00 |{L‘—y|N+2s
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By z/y symmetry, one has

lim 1 — / / ’ ) (’s;%)s—sﬁ(y))dydx.

n—o0
Then, we conclude that

(un(z) — un(y))(p(x) — QO(y))dyd;p

,}520 o |z — y|V+2s
:/ (u(r) — u(y))(p(z) — w(y))dydx
0 |.§L’ _ y|N+2s )

for all p € C3°(£2). As regards the right-hand side of (3.29), we follow the same arguments as
in Theorem 3.2.1 to obtain

lim f"—(pldx:/f—(pdx.
o u’

Finally, the passage to the limit in (3.29), as n — +o0o, shows that u is a weak solution of

(3.1). O

3.3.4 The case 7 > 1 : Proof of Theorem 3.2.3

3.3.4.1 A priori estimates

Lemma 3.3.7. Assume v > 1. Let s € (0,1) and f € L™(Q) with m > 1. Let u, be a

solution of the problem (3.8). Then the sequence {uy}n is uniformly bounded in X5(Q2) for

1 sm(7+1)—m+1) 7+1}

6 -
every o <max (2, Y

. Furthermore, if v satisfies

Y

—1
S (3.34)
Ssm

then {up}n is uniformly bounded in XG(2).

Proof. Before estimating the sequence {uf},, in X;(€2), we need to prove that

up(x) > Cyd®(z), a.e. in (3.35)
where Cy > 0 is a constant not depending on n and 6(z) := dist(x,09). Observe that
0< ——— (ur + N 1) € L>(€2). Thus, applying [19, Lemma 4.2] we get

l'
>c/ 5*(y)d >c/ & d
(@) m+1 )y |mmm (v)dy
casakfan ,/
fily

> (Cp =
=7 (Jull=o
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where K is an arbitrary compact in 2. By Lemma 3.3.2, the sequence {u,}, is increasing
and therefore the inequality (3.35) is satisfied.
Now, we shall prove a priori estimates on w;, in X (€2) for every a such that

1 1) — 1 1
nrlax(—,sm(ij )—m+ )<0z§i.
2 2sm 2

1
Let n > 1 and let 0 < e < —. For n > 0, taking (u,, +¢)7 — " as a test function in (3.8), we
n

obtain

o9) | () = oIl 4o~ a4
Q

2 |z —y| N2

Séumwﬁa%ﬂx

By Fatou’s lemma we can pass to the limit in £ obtaining

(un (@) = un(y))(u;(x) = wi(y)) 2 fu
/Q |z — y|N+2s dydxr < a(N, s) /Q (un(z) + %)«,_ndm

Then, an application of the item ¢) in Lemma 1.3.3 and the Holder inequality respectively

yield

1

dx m’
dydx < C(n, N m —_ .
|t < G N Ml ([ )

Let us choose 0 < n < ~. The inequality (3.35) implies

un® () — un® (y)
dydz <
/Q |z — y|N+2s v =

dz
(n—=)s -
0(77; N, S)CO HfHLm(Q)(/Q 5(7—7])5771’(1-))

1 1 1
+ 0nehas§<a<’y+

g (2 (y)]?
/ \x—y\N” dyde =

~ dx m
n—")s
C(n, N, $)C" || fll e ( /Q 5(72a+1)3m'(a:)) '

Observe that the integral in the right-hand side of the above inequality converges if and only
m(y+1)—m+1

n+1 n+1 )2

1
7

and then

Now, choosing a = i

if (v —2a+ 1)sm’ < 1, that is i < «. Therefore, the sequence {ug} is

1 1) — 1 1
uniformly bounded in X(€2), for every a € (max <§, sy +2 )—m+ ), 7;— ] :
sm

1) — 1
In particular, if (3.34) holds then sm( +2 Jom+
sm

in X§(€2). O

2sm

< 1 and so {u,} is uniformly bounded
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3.3.4.2 Passage to the limit

Proof. of Theorem 3.2.3. We use similar arguments as in the proof of Theorem 3.2.2 obtaining

that v := lim u, is a weak solution to (3.1) and u® € Xj(2) for every
n—oo

1 _
maX<_7sm(fy—|—1) m—|—1><&§’y_—i—1.
2 2sm

Furthermore, if (3.34) holds then

sm(y+1)—m+1
2sm

<1 and so u € X;(Q). O

3.3.5 The case 7 > 1 : Proof of Theorem 3.2.4

1

Proof. of Theorem 3.2.4. Let v > 1 and let u,, be a solution of (3.8). Let 0 <e < —, n > 1.
n

For n > 0, taking (u, + ¢)" — €" as a test function in (3.8), we follow the same lines in the

proof of Lemma (3.3.7). We obtain

/
. dydng(n,N,s)/ —
/Q |,I - y|N+2 supp(f) U?L K

1
Now, let us choose 0 < <~ and set a = %, we get

dzx.

2
/ Un () = uy (y) dyds < Clo, N )/ I
5 yar = U1, 1V, S (a1 4T
Q |z — y| N2 supp(f) Un (22—1)
Applying Lemma 3.3.2, we obtain
(@) — )|
Ugl‘ —Uﬁy C(n7N7S>
/ — e dr < — e ol e
o lr=yl Csupp(f)
o - . . s 1 v+1
It follows that {u;} is uniformly bounded in X(2) for every a € > 5|
Arguing as above, it’s easy to see that v := lim wu, is a weak solution of (3.1) and u® € X;(12)
n—o0
1 v+1
fi el=z,— O
or every o (2, 5 }

3.3.6 Uniqueness : Proof of Theorem 3.2.5

Proof. In order to prove the uniqueness of finite energy solutions, we assume that there exist
two weak solutions u; and uy € X3(€2) to (3.1). By Lemma 3.4.4 the weak solutions u; and

uy both satisfy (3.38). By [63, Proposition 3] we have (u; —uz)* € X§(Q), hence (u; — ug)™
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is an admissible test function in (3.38). Taking it so in the difference of formulations (3.38)

solved by u; and us we arrive at

(1 (@) = wa(a)) = (1) = way)) ) (1 = wa)* (@) = (01 = w2) ()

dyd
o |z — y|N+2s yax
2 11 .
= ——— — = — — dzx.
v 1) o o
Observe that for any function g : RY — R the following inequality
(9(@) —9) (g™ (2) =g (¥)) = (9" (z) — 9" (y))
holds true for every z, y € RY. It follows that
[(ur — uz) ™| %(S(Q) =0,
which gives uy > uy. By the uy/uy symmetry we obtain uy = us. O
3.4 Some regularity results
We point out that if f € L™(Q) with m > m := ( 2 )/ = 2N then fol
P T M —q7 N+2s+9(N-2s)
lowing the same lines as in the proof of [18, Lemma 3.4] we can prove that the sequence {uy}n

of non-negative solutions of the problem (3.8) is uniformly bounded in X;j(£2). Furthermore,
testing by a C5°(€2)-function in (3.8) one can pass to the limit and obtain that v := lim w,, is
n—oo

a weak solution for the problem (3.1) in the sense of Definition 3.2.1. In this section we give

some further summability results of this weak solution w.

Lemma 3.4.1. Suppose that 0 < v < 1. Let u be the weak solution of (3.1) corresponding

2% 2N 2% N
t L™(Q ith > 5 = 0 5 < — th
ofe€ (82) wi m_(l—fy) N +2s+ (N — 2s) f(l—y) _m<28’ n
N 1
u € L7(Q) where o = %

Proof. Let u, € X3(Q) N L>®(R) be a solution of the problem (3.8). Inserting u’, 6 > 1, as

a test function in (3.8) we get

[ k) =) =) g < 2 g
Q B o " |

|z — y| e a(N, s)
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Applying the item 7) in Lemma 1.3.3 in the right-hand side and Hélder’s inequality in the left
hand-side, we get

\un ) =, (y) L0 1,
|$ — y[Nras dydz < C1| fllzme) ; ( Ydz ) .

0+ 1)
where C = u Applying fractional Sobolev’s inequality, we obtain
20a(N, s)
. N
/ ’un(x (J;s)dx‘ < CQHf [ijm25 </ (O—~)m ( )dl‘)m (N_QS)’
Q Q
N +1
with Cy = (S(N, s)Cl)ﬁ. Now we choose § > 1 in order to get % = (6 —~)m/, that
—2s
is
5 N(m —1) +ym(N —2s)
N N — 2sm '
Observe that # > 1 and
N@+1)  Nm(y+1)
N-2s  N-—2sm
o : N N .
In addition the assumption m < — implies ———— < 1. Then it follows
2s m/'(N — 2s)
m(N—2s) Nm
[ @ e < 55 1
Q
N 1
By Fatou’s Lemma, we obtain u € L7(2) with o = M O
N —2sm

Remark 3.4.1. In the particular case where m = (2*)/, we obtain u € L% (Q) which is

s

exactly the result stated in [18, Proposition 3.8]. While if s = 1 the exponent of summability
_ Nm(y+1)

coincides with the one given [25, Lemma 5.5] in the local case.
N —2sm

Lemma 3.4.2. (Limit case : Exponential summability) Assume that v > 0. Let f € L%(Q)
and let u be the weak solution of the problem (3.1) given by Theorem 5.2.3 z'f7 > 1 or given
by [/, Theorem 3.2.] if 0 < v < 1. Then there exists X > 0 such that ¢ N ¢ LY(Q).

Proof. Let us start with the case v > 1. For A > 0, we consider the locally Lipschitz function
t— () = (eM 1)WT+1. Let u, € Xj5(2) N L>(£2) be a non-negative solution of the problem
(3.8). Since ¥(0) = 0 and we can take ¥'(u, )¢ (u,) as a test function in (3.8). As vy > 1, the
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function ¢ is convex so that according with [63, Proposition 4.] we arrive at
a(N, n
S/WU Clun)W)F 0,
|z — y‘N+2s

< / 0 ()0 (1) (— )t ()

= L "(u u .
_/Q(Un—|—l)7w( ) (uy)dx.

n

Using the Sobolev inequality, we obtain

2S(N,s) [ f ,
19 ()l 22 () < aNs) o u_lw (un )Y (up)de.

a

e
Using the elementary inequality < e for every a > 0, we get

V(un)b(un) v+ 10 aestyu, < C(IN T2 () + C(A, ),

U, -2
1
where we have set C(v) = pyp and C(\,7) = N*C (7). Then, using Hélder’s inequality
we obtain
QS(N s)C( )ﬂ“
25(N, 3)0(7)/\'”1
< *
< BT 1, I ) B
FOAT DIl
25(N, )OI, 3 V7"
Choosing A > 0 to be such that < 1, we deduce that

a(N, s)

N(1+7v)
/ AN Uy < C,
0

where C' is a constant not depending on n. Applying Fatou’s lemma, we conclude the result.
We turn now to the case v < 1. We consider the convex and locally Lipschitz function
t— Y(t) = e’ M _ 1 and we insert Y (un)(uy,) as a test function in (3.8). Again by [63,

Proposition 4.] and the Sobolev inequality we obtain

() oy < o [ rtunotun)ds

Q Un
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. +1 . I . SN .
Since 0 < 77 < 1, we can apply the inequality in the item #i7) in Lemma 1.3.3 obtaining

y+1

w)\un( Aup, ) 2
, €2 e 1
V) (un) _ 7+1, |

uy, - 2 uy,

v+l

Noticing that u,®> < u) on the subset {u, <1} :={z € Q: u,(x) < 1}, we can write

v+1

2L Ny o :
f v+1 A G
/ = (un) Y (up)dr < —A/ — dx
Q 2 {un<1}

2
Un
Y41

v ‘

1 1
41 i )x/ fe%A“” (M —1) % da.
{un>1}

-1
Using the elementary inequality < e, which holds for every a > 0, in the first integral

in the right-hand side of the previous inequality, we obtain

TH+1 - n
/ vw Un un)dx <l - ; / fe(’Y-‘rl))\
{un<1}

ek / FelrtDXun g,
2 {un>1}

’Y + 1)\%&-3 (+1)A / fd;l?

1
+i)\/f (u,) + 1)*dz.

Using the fact that (¢ (u,) +1)* < 2(1(u,)* + 1), we get

1.4
f 77D (Un)¢(un)d$ < i — A ;36 ’Y+1)>\/ fdx
Q Un 2 Q

+(7+1))\/Qf(¢2(un)+1)dx

< (7_+1y-;*e(7+1)x+ (v + 1)A> / fdx
Q

2
+(v + 1))\/Qf¢2(un)dx

N .
and — gives
— 2s 2s

An application of Holder’s inequality with the exponents N
S(N, s) 443
)0 < S ('y+1)()\ ; ewmw)

25(N, 8)(y + 1) )

L35 (Q)
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a(N, s)
25(N, s)(y + 1)||f||L%(Q)

N(4v)
/ NNz Uy < C,
0

Therefore, choosing A > 0 such that A < we obtain

where C' is a constant not depending on n, and by Fatou’s lemma we conclude the result. [
ok

Remark 3.4.2. Recall that the inequality e* > — 1

holds for every x > 0 and k € N. Thus,

we conclude that uw € L"(2) for every r < oco.

Appendix
We start by proving the following lemma which we have used in the proof of Lemma 3.3.4.

Lemma 3.4.3. Let F(z) = 2", 0 < r < 1, for every x > 0. Then for every function
v : RY —]0, +-o0[ that satisfies

|2
——————dydxr < o0,
// |as— |N+2 Y

we have
(=A)*(Fov)(z) <
"ol o(z) — v 2 (3.36)
F'(v(x))(—A)*v(z) — WCL(N,S - ( ‘i_ )_ y‘N(EJQ)S) dy.
Proof. Following [30, Lemma 2.3.], we can use Taylor’s formula obtaining for every (z,y) €
RY x RY
F(o(y)) — F(u(z)) = F'(v(z))(v(y) — v(z)) + R(F), (3.37)
where

v(y)
R(F) = / L ) —OF

= (v(y) - v(x))2/0 (1 =) F"(v(z) + s(v(y) — v(x)))ds.

On the other hand, since the function F” is increasing we have

(1 =s)v(z) <wv(z)+s(o(y) —v(z))
= F'((1 = s)v(x)) < F'(v(x) + 5(v(y) — v(2))).
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Hence, it follows

1

R(F) s—@@»—w@f/kl—ﬁF%u—swu»w

= —(0() — @) PP (w(e) [ (1= 9 s

Then, from (3.37) we obtain

F(v(z))

r

F(v(z)) = F(u(y)) < F'(v(2))(v(z) = v(y)) — (v(y) —v(x))*”.

y|N+28

Dividing both sides of this inequality by |z — and then integrating with respect to the

variable y we arrive at

F(o(z)) = F(v(y)) ,
. dnyFw@»dNﬁﬂﬂ[A

_F'(v(2))

r

() ~v)

N ‘ill' _ y‘N+2s

() = v(2))?

o -y

Mmgpvf

RN

mmgpv/

RN
which proves (3.36). O

In the following result we extend the space of admissible test functions in (3.3).

Lemma 3.4.4. Let v € X(() be a solution of the problem (3.1) taken in the sense of
fo

Definition 3.2.1 with f € L*(Q). Then for every ¢ € X5(Q) we get o c LY(Q) and
a(N,s) [ (u(x) —uy))(o(z) — ¢(y)) _ [ [
5 /Q 7 = g dydx = /Q Edw. (3.38)

Proof. Take an arbitrary ¢ € X;(€2). By [19, Theorem 6] there exists a sequence {p,}, C
Co°(€2) such that ¢, — ¢ in norm in H*(R"Y). Writing (3.3) with ¢, € C5°(Q2) we obtain

amg/@mmwwmww%wmmwmz/fﬁw, (3.39)
0 Q

9 |z — y|V+2s u

in which we shall pass to the limit as n tends to +o00. Starting with the left-hand side of

(3.39), we consider the following two functions

(9(x) = ¢(y))

N+2s :
2

F.(z,y) = (on(2) = ffz(sy)) and F(z,y) =

v —y| = |z — |

Notice that the convergence ¢, — ¢ in norm in H*(RY) implies that the sequence {F},(x, y)},

converges to F(z,y) in L*(R?*") and, up to a subsequence if necessary, we can assume that



3.4. SOME REGULARITY RESULTS 93

(u(z) — u(y))

{F,(z,y)}» converges almost everywhere in R*". As u € X3(Q) we have W €
r—y| 2

12 (RQN) implying
(u(z) = u(®)n() = 200)

lim

n—00 |;1;‘ — y|N+23

[ ) o) — o)
Q |z —y| N+ '

For the term in the right-hand side of (3.39), we first note that thanks to [63, Proposition
3.] the two functions (p, — ¢x)* and (¢, — px)~ are both admissible test functions in (3.3).

Taking them so we obtain

[ L (o= o @i

_ a(N,s) / (u(x) — u(y)) ((n — r)T(2) = (0n — 2x) T (1))
Q

2 |z —y| N2

dydzx

and f
| L= o (oo
ColNes) [ () —u(p) (e~ 90)(0) ~ (pu—00) ) |
== /Q T dydz.

Then, summing up both the two equalities we have

/i

o u’

(N, s) / (u(x) = u(y)) (leal@) = ou(@)] = [oaly) = ee)
Q

- 2 |:v _y|N+2s

QOn—(,Dk‘dI

) dydx

) | [u(@) = u()l|(#ale) = o1(@) = (aly) = 1) s
Q

<
2 |z —y| N

and then the Hélder inequality implies
/ f Pn _ f Pk
ol u uY

Thus, we deduce that {f_@in} is a Cauchy sequence in L'(€). Since ¢, converges to ¢ a.e.
u n

fson} Jo

in €2, the sequence {7 converges to ~— € LY(2) in norm in L*(€2). So that the passage
u u

to the limit as n tends to infinity in (3.39) yields
a(N,s) [ (u(x) —u)(¢(@)—oW) [ [
/Q dydx = /Q o dx,

2 |ZL‘—y|N+28

dx < a’(]\;?‘s)

[ ul Xg(Q)HSOn — @] X5(9)-

for every ¢ € Xj(Q). O
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Chapter I

Fractional heat equation with singular terms

1

In this chapter we consider the nonlocal heat equation involving singular terms. Our aim in
this chapter is to analyze the existence of solutions for this problem. In light of the interplay
between the summability of the data and the nonlinearity some results are proven. Some of

them extend those obtained in [10] for the local case.

4.1 Introduction

We are interested in the existence and regularity of solutions of the following initial-boundary

value problem

u + (—A)°u = f(z, ) in Q7 :=Q x (0,7),

u =0 in (RM\Q) x (0,7), (4.1)
u(+,0) =uo(") in Q,

where € is a bounded domain of class C*' in RY, N > 2s with s € (0,1), v > 0, f > 0,

f e L™Qr), m > 1, is a non-negative function on Qr, up € L*(£2) is a non-negative function

on €2 which further satisfies
Yw CcC Q  3Jd, > 0, such that ug > d,,. (4.2)

The operator (—A)?® is the fractional Laplacian operator defined by

—A) — PV.
(~afute.) =PV, [ ey,

ISubmitted in 2021
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where "P.V.” stands for the integral in the principal value sense.

The classical Heat equation seems to describe in a satisfactory manner a wide variety of
diffusive problems in Physics. However, the anomalous diffusion that follows non-Brownian
scaling is leading to models governed by fractional Laplacian. In the last few years, elliptic
and parabolic equations involving nonlocal operators has attracted substantial attention. The
interest brought to such equations is due to the emergence of this type of nonlocal operators
in a wide range of phenomena — the crystal dislocation, thin obstacle problems, Physics,
phase transitions, finance, stochastic control, quasi-geostrophic flows, anomalous diffusion to
name a few (see e.g. [30, 39, 47, 75, 81, 83] and references therein). We also recall that the
fractional Laplacian operator (—A)® can be viewed as the infinitesimal generator of stable
Lévy processes, see e.g. [13, 28, 80]. For an expository on fractional Laplacian, we refer the
reader to [21, 28, 15] and the references therein.

As a prelude to study the initial-boundary value problem (4.1), it is worth recalling some
latest important known results about this kind of parabolic problems (local/nonlocal) with
singular terms. Let us star discussing the local case (i.e. s = 1). The initial-boundary value
problem corresponding to (4.1) was studied in [10, 68]. The authors in [10] have considered

the following problem

u — Ay = , inQr=Qx(0,7),
u =0 on 09 x (0,7, (4.3)
u(-,0) = wuo(+) in €,
where p > 2,0 < f € L™(Qr) with m > 1. Assuming that 4.2 is fulfilled, they proved the
existence of a solution u of problem (4.3) such that

N +2
e If 0 < v < 1 and f € L™(Qp), with mg = PN +2) then u €

pP(N+2)=N1—7)
LP(0, T5 Wy ™ (€2)).

elf0<y<land fe L™Qr) withl<m<

p(N + 2)
p(N+2)—N(1-7)

, then

m[N(p+~y—1)+p(y+1)]
N+2—-—m(1—7) ’

ue L0, T; Wy™(Q)) with ¢ =

o Ify>1and f e L' Q) then u € LP(0, T; WP(Q)) and u” 7 € LP(0,T; WP ().

loc

Some other related local parabolic equations with singular terms are studied in [17, 25, 41].
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Let us now discuss the nonlocal problem (4.1). In [2, 85] the authors studied (4.1) with a
general fractional Laplacian operator including (—A)® in the case where v = 0 and (f, ug) €
(L*(Q7) x L(£2)). In [2] the authors proved the existence of a weak solution and the existence
of a non-negative entropy one, while in [$5] the authors proved the existence and uniqueness
of renormalized solutions.
Regarding parabolic problems involving the fractional Laplacian with singular terms, some few
variants have been investigated. We refer to [52] where the authors considered the following
problem
u + (—A)°u = % + f(z,t), u>0 1inQx(0,7),
u =0 on (RM\Q) x (0,7), (4.4)
u(-,0) = ug(+) in RY.

Under some suitable assumptions on the data f and uy and using the semi-discretization
in time coupled with the implicit Euler method, they proved the existence and uniqueness
of a weak solution to the problem (4.4). Lately, in [!] the existence and nonexistence of

i(z) =

positive solutions were obtained for the problem (4.1) with the singular term >\(523—($)’
dist(xz,00) A, p > 0, instead of % It is worth recalling that the case nonlocal elliptic
counterpart of (4.1) have been studied in [10, 18, 34].

In this paper, we will be concerned with the nonlocal problem (4.1) that involves the fractional
Laplacian. Our aim is to prove the existence and regularity of the positive weak solutions of
the problem (4.1). Two remarks concerning the difficulties in dealing with problem (4.1) are
in order. First of all, observe that since 7 > 0 the second term is singular so that classical
existence results can not be applied even if f is smooth enough. To overcome this problem, we
will consider approximate problems in which we 'cut’ by means of truncatures the singularity
in order to get smooth source terms. This makes it possible to use Schauder’s fixed point
theorem obtaining approximate solutions. On the other hand, the other important difficulty
that arises in problem (4.1) is the proof of the strict positivity of the solution in the interior
of the parabolic cylinder. This is the reason why we impose the hypothesis (4.2) to make
sense of the notion of weak solution of the problem (4.1). Thus, since we will construct weak
solutions as limit of approximate solutions we need to prove an analogous inequality to (4.2)

for the approximate solutions (Lemma 3.3.2). Let us recall that in the classical case (s=1),
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the positivity of the approximate solutions inside the parabolic cylinder has been obtained
in [24] by comparing the approximate solutions to those of a suitable homogeneous problem
which are Holder continuous on every w x [0,7), w CC €2, and on which a classical form of
Harnack’s inequality ([16, Theorem 5]) is then applied. Inspired by [16, Theorem 1.1] (page
93), the authors [10] proved the intrinsic form of the Harnack inequality. Combined with the
idea in [24], they obtain the positivity of the approximate solutions.

Coming to our non-local problem (4.1), we follow the idea of [21] to show the positivity
of the approximate solutions inside the parabolic cylinder without using neither the Holder
continuity for solutions of auxiliary homogeneous problems nor any form of Harnack inequality
as it was the case in [24] and [10].

The idea we use consists in involving the smallest eigenvalue of the fractional Laplacian (see
e.g. [77, Proposition 4] and [78, Proposition 9]) together with its associate eigenfunction
to build an homogeneous problem with suitable initial datum whose solution (which is by
construction locally bounded from below) is comparable with the approximate solutions of

the problem by means of the weak comparison principle.

4.2 Functional setting and main results
As in the classical case, we define the corresponding parabolic spaces as the following :

LU0, T; Wa () = {“ € L1 x (0,T)), llull zaswyoe) < OO}’

L*(0,T; X5()) = {u € L*(RY x (0,7)), llullr20.r:x;30) < oo},

1
Juz y, D ‘
2]l ago.rswe ey = (/ // |x - y|N+ dxdydt |

1

Ju(z y, O :
s dxdydt
[Jwll 22 0,T;X§(9)) (/ / |x—y|N+2 Y ,

with its dual spaces L7 (0, T; W~=*7 (Q)) and L*(0,T; X *(Q)) respectively. We also define

where

o Ju(z y, DI
L*(0,T; H;;.(Q)) {u € L*(K x (0,7)),s.t. / / / ]x—y]N+2 dxdydt < oo,

for every compact K C €
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We shall consider the notion of weak solution whose meaning is defined as follows.

Definition 4.2.1. Let f € L'(Qr). By a weak solution of problem (4.1), we mean a measur-
able function u € C([0,T), L;,.()) satisfying

Vw CcC Q, Je, >0 @ u(z,t) >¢, >0, inwx[0,7T)

and

_ /Q ) wpydzdt — /Q uo(z)(x,0)dx + % / T (u(x,t) — U(\Z t_));‘i%,st) —¢(y;1)) dudydt

:/ f—gpdmdt,
Qp U’

for any ¢ € C°(Q x [0,T)). Here, Qr = Q x (0,T) and Q := R*¥\(CQ x CN).

We now state our main results. We give the existence and the regularity of weak solutions

according to the values of v > 0 and the summability of the datum f.

Theorem 4.2.1. Let v = 1. Assume that (f,uo) € L'(Qr) x L=(2), with f > 0 and
the condition (4.2) is fulfilled. Then the problem (4.1) admits at least one weak solution
u € L*(0,T; X5(Q)) N L>®(0,T; L*(Q2)).

Theorem 4.2.2. Let 0 < v < 1. Assume that ug € L™ () satisfies the condition (4.2) and
f >0 is such that

i) feL (O,T;L<12—Zv)/((2)),
or
i) | e L™(Qp) with

2(N + 2s)
C2(N+28) = N(1—7)

Then the problem (/.1) has at least one weak solution u € L*(0,T; X5(Q)) N L>*(0,T; L*(2)).

Remark 4.2.1. We point out that since v < 1 we have

( 2; )’ 2N e 2
= m< —.
1—7 2N — (1 —)(N — 2s) v+1

2 25 )’ __
Then the two spaces LA+1 (0, T, L(ﬁ) (Q)> and L™ () cannot be compared. The case y = 1

cannot be considered since in (4.16) we use the Holder inequality with the exponent 1 and
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2
T Note that the range of the values of s is the same for both v =1 and v < 1. Therefore,

-7
there is, in some sense, “continuity” of the summability of the solution with respect to ~v. If ~y
2% N/ 2N
tends to 1, then m tends to 1 and and ( 2 ) = tend at the
+1 1—7 2N — (1 —~)(N — 2s)

same time to 1, so that f will belong to L'(Qr).

If m < m, we no longer find solutions in L?(0,T; X3(£2)) but in a larger space depending on

m and s; < s.

Theorem 4.2.3. Let 0 < v < 1. Assume that 0 < f € L™(Qr), with 1 < m < m, and that
uy € L>(Q) satisfies the condition (4.2). Then the problem (j.1) admits at least one weak
solution u € LU(0,T; Wg () N L>2(0,T; L*™(2)), for every s; < s with

m(y+ 1)(N + 2s)
N+2s—sm(l—7)

q:

Moreover uw € L°(Qr), where

~ m(y +1)(N +2s)
7= N —2s(m —1)

Remark 4.2.2. We can easily check that g > m(y+1) > 1 and 0 > m(y+ 1) > 1. Observe
that m < is equivalent to § < 2 which implies L*(0,T; X5(Q)) C LI(0,T; W5 %(Q)). The
condition § < 2 is needed in (4.27). Thus, in Theorem 4.2.3 the case v = 1 is not allowed
since it yields ¢ = 2m > 2 which contradicts § < 2. Furthermore, the case v = 0 is also not
allowed, since the choice of the test function depends on v by which we divide in (2.8).

If m = 1, the "continuity” with respect to v is broken down since q tends to 2 when ~ tends

to 1 and the solution belongs to the larger space L*(0,T; HS' () than L*(0,T; X5(12)).

Remark 4.2.3. The case v = 0 corresponding to the problem
up + (—A)°u = f. (4.5)

was studied in [05]. The authors proved the existence of a unique weak solution u of the
problem (4.5) satisfying

N + 2s
N

1. if f € L*(Qr) then u € LY(Qr) for every q < (see [0, Theorem 28]),

N m
, then u € L¥-%m (Qr) (see [0, Theorem 24]).
s

2
2.4 L™(Q ith 1 _—
if f € (Qr), wi <m<N+2
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(N +2
Theorem 4.2.3 provides a solution u € L7 () with o = mly + DV + 29)
N —2s(m—1)

m(N + 2s) - Nm
N —2s(m—1) N —2sm

m N +2
belong to LN]—V%m(QT), while if m = 1 the value of o tends to %

with the result in [0.5, Theorem 28] since if f € L'(Qr) the solution of u; + (—A)*u = f does
s N+2
not belong to L%(QT) but to LY(Qy) for every q < ;\Lf i

v > 0 in Theorem }.2.5.

. if v tends to zero,

the value of o tends to

. Thus, even if m > 1 the solution may not

, this fact is in contrast

This explains the fact that

We deal now with the case v > 1. Here again we can not find solutions in L*(0, T; X3(92)), if
we look for L*(0,T; H*(f2)) estimates, we can only get them in L*(0,T; H; .(Q)).

Theorem 4.2.4. Let v > 1. Assume that 0 < f € L'(Qr) and that uy € L®(Q)
satisfies the condition (4.2). Then the problem (/.1) admits at least one weak solution
we L2(0,T; He (Q) N L0, T; L*(Q)), such that u'z € L*(0,T; X5(Q)).

Remark 4.2.4. Since ) is bounded, the conclusion in Theorem /J.2.4 remains true for every

f e L™Qr), withm > 1.

To give a meaning to the initial condition in the problem (4.1), we shall prove that the weak

solutions obtained in the previous results are continuous in time.

Proposition 4.2.1. Let v > 0 and suppose that f € L*(Qr). Let u be the weak solution of
the problem (/}.1) given by Theorem 4.2.1, Theorem J.2.2, Theorem 4.2.3 and Theorem /.2.}.
Then u € C([0,T]; L,.(Q)).

Notations In the sequel, for any open subset w, the notation w CC {2 means that w C 2
and @ is compact. We denote by x(o-) the characteristic function of (0,7) in (0,77 and
Q, :=Q x (0,7). For any measurable subset E of Q, |F| stands for the Lebesgue measure of

E.
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4.3 Approximated Problems : Existence and Positivity

Consider the sequence of approximate problems

(un)t + (—A)%uy, (1{:(i7£> in Qr =Q x(0,7),
W, =0 on (RM\Q) x (0,T), (4.6)
un(-,0) = uo(") in €,

where f,, = min(f,n). We shall prove that for every fixed integer n € N, the problem (4.6)

admits a non-negative solution u,,.

Lemma 4.3.1. For each integer n € N, the problem (/.6) admits a non-negative solu-
tion u, € L*(0,T;X5(Q) N L>®(Qr) with (u,); € L*(0,T; X *(Q)) satisfying for every
p € L2(0,T; X;5(9))

[ [t} [ [ el Nl 0 0

// f”“) o Ty

Proof. Let n € N be fixed and let v € L*(Q7). We define the map

S : L2(QT) — L2(QT),
v — S(v),

where w = S(v) is the unique solution to the following problem

s fa(®, 1)
wy + (—A)*w (ol + 5) in Q x (0,7),
w =0 in (RM\Q) x (0,7),
w(+,0) = wup(-) on ).

fn
(o[ + %)

by [63, Theorem 2. ], we have the existence and uniqueness of 0 < w € L*(0,T; X5(Q)) N
C([0,T); L*(Q)) with w, € L*(0,T; X *(£2)), that is w satisfies for every ¢ € L*(0,T; X5(52))

/ /wtwda:dt +3 / / @,1) |z j)?)jﬁgst) - SO(y’t))al?Jdﬂﬂdt 48)

//’v{"w dudt.

Since 0 < —"—— € L®(Qp) € L*(0,T; X *(Q)) and 0 < w(-,0) = ug(-) € L=(£2), then
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Furthermore by [63, Corollary 3.] we have w € L*(Qr). Testing in (4.8) by the function w,

/ /wtwdxdt—l— / / |x— |N+2 dydxdt / / (ol + da:dt
Then
/ (x,T) dx—i—/ / | |N+2 b, 1)) dyda:dt<2n1+7/ /wdxdt—i—/uo( )dz.
L = Q

Dropping the positive part and applying the Holder inequality and then Lemma 1.1.1 with

we get

q = 2, we obtain
T
/

If follows that

T
\mmmmm@yiénw

where the constant C is not depending on v. Thus, the ball of radius C' is invariant under

1

T 2
< it ([ lldt)” + Juollo

(TIQ\C(N s Q)) 2n1ﬂ</0T| X

d§-ﬂwmmﬂm

%(S(Q)dt S C(1 = Cl(n,s,N,%T,Q,uo), (49)

the map S in L(0, T; X3(Q2)). Now we shall prove that the map S is continuous and compact
from L?(0,T; X5(9)) to itself. First, we start proving the continuity of S as an operator
from L*(Qr) to L*(Qr). Let {vx} be a sequence such that |lvy — v||r2(0.) — 0. Then up to
a subsequence still indexed by k, the sequence v, converges almost everywhere to v in (.
Denoting wy, = S(vg) and w = S(v), we can write

8 AT I AT
o=t AN =) = G Ty ey MO

in (RM\Q) x (0,7), “410)
on §2.

(wr — w)(z,1)
(wy —w)(x,0)

I
oo,—\

Taking wy(x) — w(x) as a test function in (4.10) and using Holder’s inequality, we obtain

1 k(1) 2, 1)) — (wi(y, 1) — wly, 1))
s [ ) wte /‘/i e ) = (000w
_ folw,t)  falmt) oo
—/QT ((|U,€|+%)7 (|v|+%)v)< k )dxdt

<ot (S~ iegy) )

N =
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Dropping the positive term and applying Lemma (1.1.1) with ¢ = 2, we obtain

=l <2005 ([ (e - f"w)vfdxdt) .

oe + )7 (ol +7)

D=

Since
2

< 92p20+1)

fu(z,t) fu(z,t)

‘WM+%W (fo + %)

and

fn(xat) fn($,t> .
(los] + 2 (o[ + L) — Oae in Qras k — +oo,

by the dominated convergence theorem, we get

|wi, — w2y — 0 as k — +o0.

Hence, S is continuous from L*(Q7) to L?(Qr). Now, we prove the compactness of S :
L*(Qr) — L*(Qr). Let us {v;} be a sequence such that ||vg||r2(q,) < C, where C'is a positive
constant independent on k and set wy = S(v). We shall prove that wy has a subsequence

{wy,} that converges in L?(Q27). As wy, is the solution of the problem

s _ fn(x7t) in %
(wk)t + (_A) Wi = (’Uk‘ n %)’Y Q (O7T)7
wr =0 in (RM\Q) x (0,7), (4.11)
wk(-, O) = Uo() on Q,

we can take it as a test function in (4.11) and using (4.9), we obtain

T
‘|wk‘|i2(07T;XS(Q)) - /0 ||wkH,2xg(Q)df < (h,

where C] is a constant not depending on vy. This implies that {wy} is uniformly bounded
with respect to k in L*(0,T; X3(Q2)) and therefore {(—A)*wy} is uniformly bounded with
respect to kin L*(0,7; X *(£2)). From the equation (4.11), it follows that {(wy)} is uniformly
bounded in L*(0,7; X *(Q2)). Then by the compact embedding L?(0,T; X3(Q2)) in L*(Qr)
(see [82, Corollary 4]), there exist a subsequence of {wy, }, still indexed by k, and a measurable
function w such that wy, strongly converge to w in L*(Qr). Hence, S is a compact operator
from L*(Q7) to L*(Qr) and therefore by Schauder’s fixed point theorem there exists a non-
negative function u, € L*(0,7T; X3(Q)) N L=(Qr) and (u,); € L*(0,T; X *(2)) such that
u, = S(uy). This ends the proof. O
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Lemma 4.3.2. Let u, be a solution of (4.6). Then the sequence {u,}nen is increasing and

for every subset w CC €2 there exists a positive constant c,,, not depending on n, such that
up(x,t) > ¢, >0, for every (z,t) € wx [0,T), ¥n € N. (4.12)

Proof. We first prove that the sequence {u,, }, is increasing. Let u,, and u,; be two solutions

to the following problems respectively

(up)t + (—A)°u, = % in Qr =Q x(0,7),
u, =0 on (RM\Q) x (0,7),
un(,0) = wup(+) in Q
and
(un—i—l)t + (—A)Sunﬂ M in QT = x (O,T),
(un—i-l + n+1)7
Ups1 =0 on (RM\Q) x (0,7,
Unt1(-,0) = ug(+) in Q.

Subtracting the two equations, taking (u, —u,11)" as a test function and using the following
inequality

(g(z,t) — gy, ) (g (z,t) — g (g, 1) > (g7 (x,t) — g " (y,1))?

which holds true for every z, y € RY, t € R, we arrive at

1 n — Un + t) — n — Un + t 2
/ (un _ Un+1)t(un _ U/n+1)+dxdt + 5/‘ |(U U +1) (‘7“7 ) (u U +1) (y7 ))‘ dydl‘dt
Qr

|l‘ _ y|N+2s
< fn(xa t) . fn+1(l’ t) ) (un - un+1)+dl'dt

< /QT ((un + I (upsr + 555)7

Uny1 + —5)7 — (up + 2)7
< / fnJrl (( = 1n+1> ( n) >('U/n - Un+1>+d$dt <0.
Qr (un + ) (un-i-l + n+1)’y

T

Pointing out that (u, — u,.1)" (z,0) = 0, we get

1 2
/Q (U — Up1)e(Up — Upir) Tdadt = 5/ /dt un+1)+> dxdt
2
- %/ ((un — un+1)+(a:,T)) dx > 0.

Therefore,

|(tn = g )" (2, 1) = (tn — i) * (1, 1))

[z — |V dydxdt < 0,

0 < 11t — 1) oo ooy = /

T
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which implies that the sequence {u,}, is increasing with respect to n.

We now turn to prove the inequality (4.12). Starting as in [21], we need in a first time to
prove the for every open ball B,(z) included in 2 there exists a positive constant C(xg,r)

depending on zy and r but not on n such that
Uy (z,t) > Clxo,7), Y(2,t) € Byjo(z0) X [0,T), VneNlN (4.13)

Consider the compact subset K := Bs,/4(x). By the initial condition (4.2) on ug there is a
constant dx such that

uo(x) > dg, for all x € K.

This implies

un(z,0) = ug(x) > dg, V(x,t) € K x{0}. (4.14)
Let v be the non-negative solution (see [63, Theorem 26]) of the following problem
v+ (—A)Y°v = in Qr =Q x (0,7,
v(z,t) =0 on (RM\Q) x (0,7),
v(z,0) =wvy in{,
where
if v € K,
if z € Q\K.
ee [0,

By the weak comparison principle, ( Lemma 2.2] or [%, Lemma 2.9]), we obtain

Un(z,t) > v(z,t), forall (z,t) € RN x (0,7).
Let Q' := Bs,/4(z) be the open ball and define the function

vz, t) it (z,t) € () x (0,7),

g(x7t) = )
0 if (z,t) € (RM\Q) x (0, 7).

It’s easy to see that v is the solution of the problem

v+ (=A% =0 inQx(0,7),
=g on (RM\Q)x (0,7),

v(x,t)
v(z,0) =wvy in Q.
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On the other hand, let w be the solution (see [63, Theorem 26]) of the following problem

wi+ (—A)’w =0  inQ x(0,7),
w(x,t) =0 on (RV\Q) x (0,7),
w(z,0) =wvy inQ.
Using the fact that g(z,t) > 0 on (RV\Q') x (0,7) and again by the weak comparison

principle, (see [0, Lemma 2.2] or [¢, Lemma 2.9]), we get
v(x,t) > w(x,t), forall (z,t) € RY x (0,T).

Now, let ¢1 € X5(Q") N L>®(Q') be the (eigenfunction) solution (see e.g. [77, Proposition 4]
and [78, Proposition 9]) of the following eigenvalue problem
(—A)°¢ =X in Y,
¢ =0 onRM\Q.

d
corresponding to the smallest eigenvalue ;. So that defining z(z,t) = We"\ltgbl(x),
1| oo (o
we observe that the function z is a solution to the following problem
2+ (—A)Pz =0 in Q' x (0,7),
z(z,t) =0 on (RM\Q) x (0,7),
d
2(2,0) = —>2——¢(z) inQ.
[f1]] Lo ()

Since z(x,0) < w(z,0) on ', applying again the weak comparison principle (see [0, Lemma

2.2] or [3, Lemma 2.9]), we obtain
w(x,t) > z(x,t), for all (z,t) € RY x (0,T).

Which in particular implies

d
w(z,t) > —2 e Nlg (2), Y(x,t) e Q x(0,T).
1011 £ow o)
From [19, Lemma 4.2], we know that there exists a positive constant C; > 0, depending on €',

such that for every z € (', one has ¢1(z) > C;(0'(z))", where §'(z) = dist(z,0Q'). Therefore,
we have

d s
w(z,t) > Cl—Ke_’\lT(é'(x)) ,  forall (z,t) € Q' x (0,7).
[[full L= (o)
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Taking into the account the above comparisons, we obtain

wn(2,1) > Cld_Ke—m(Z)i for all (z,t) € B, s(z0) x (0,T).
1] oo () 4

Now, having in mind (4.14) for ¢ = 0 we conclude that for every (z,t) € B, 2(xo) x [0,T")
dxC s
kC1 e—AlT(g) ,dK>-

[f1]] oo ()
Let now w CC 2 be an arbitrary open set. We know that @ is covered by a finite number m

tn(w,t) > C(z0,7) := min <

of open balls Br1/2<l’1), Br2/2(x2)7 T Brm/2(xm)7 that is

w C U Brj/g(l‘j).

J=1

Therefore, applying (4.13) to every ball B, j»(x;) and choosing

¢, = min (C’(;Ej,rj/Q)).

1<j<m

We easily conclude (4.12). O

4.4 Proof of main results

4.4.1 Proof of Theorems 4.2.1 and 4.2.2

In order to prove the existence of solutions for the problem (4.1), we first need some a priori

estimates on u,,.

4.4.1.1 A priori estimates in fractional Sobolev spaces

Lemma 4.4.1. Let v = 1 and (f,up) € (L'(Qr) x L®(Q)). Let u, be a solution of (4.6),
then the sequence {uy} is uniformly bounded in L*(0,T; X5(2)) N L>(0,T; L*(9)).

Proof. Using u,(x,t)X(0,(t), 7 € (0,T], as a test function in (4.7), we get

t 2
/ /un Jittnddt + 5 / / o Tx— &Z(Qy’ D gydear < [ L1200 o T dud

Qp (un +

Then we have

Un (2, 1) — u,(y,t))?
/ “d‘”/ / |m—y|N+2 dydzdt < 2| || zaap) + [uo][Fe )2
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Taking the supremum of the left term on [0, T, we get

Un (2,1) — un(y,t))?
sup /u T, T da:—i—/ / e |N+(25 t) dydxdt < 2| fllLr e + ||u0||%oo(Q)|Q|7

0<r<T
which implies that the sequence {u,}, is uniformly bounded in L?*(0,T;X3(Q)) N
L>=(0,T; L*(2)).

Lemma 4.4.2. Let 0 < v <1 and ug € L>(Y). Let u, be a solution of (4/.6). Then,
o, 1)
i) if f e 170,12 (75) (),

or

2(N + 2s)
2(N +2s) — N(1—+~)’

the sequence {u,} is uniformly bounded in L*(0,T; X5(Q)) N L>*(0,T; L*(2)).

i) if f € L™(Qy), with m =

Proof. Taking u,(z,t)x (0, (t) as a test function in (4.7), by similar arguments in the previous
lemma, we obtain

n(2,1) = un(y, 1))*
sup /u $Td£L‘+/ / = Tx—y&*(i ) dydedt <2 | fu,dedt + ||uol| 7w 0y

0<r<T Qr
(4.15)

i) Since f € L%(O, T; L(l%) (Q)), we apply the Holder inequality twice obtaining

T ' —1 1
Y )BT [aoriar)
[ oy g/o </Q|f(x,t)\ dr /Q\ S )Edr) ot

T
_ vl dt 4.16
Ly Ll (4.16)

+v 1—y

5T 1
([, >’<mdt> ([ hualis) *

An application of the Sobolev embedding in the last term on the right-hand side in (4.16)

yields

1=y

n (2, 1) = un(y, 1)) 2
ful-dzdt < (S(N,$) = If {/)/Qix %g))@Mﬁ .
Qr LW+1(0TL = w Q) |z =y

Using Young’s inequality we deduce from (4.15)

n(2,1) = un(y, 1))
sup /u deer/ / u TCC— &fi ) dydxdt < C,

0<r<T

where C' is a positive constant which does not depend on n.
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it) As f € L"(Qr), applying the Holder inequality in the first term on the right hand-side

n (4.15), we get

|Un Un(yu )|
su us (z, 7)dx + dydxdt
OSTSPT/ (#:7) / / |$ - |NJr2 Y

(4.17)
SWﬂbmm{A lvmmwﬂ TTERe
T

N
On other hand, by the Holder inequality with the exponents and 25 and applying
s

N —2s
the Sobolev embedding, we can write

/ |un|2(N+2s)dxdt :/ |un|2|un|%dxdt
QT QT N—2s 2s
r 2N TN ~
S/ [/|Un(x,t)|N25dx1 [/]un(x,t)|2dx} dt
0 Q Q
T ) 22 ,
:/O [/Q|un(x,t)| dx] IR "

n(2,t) = un(y,t))?
< S(N, oz, t)|2d //“‘” ) dydzdt.
<5030 gup, [ fte ) I} g

(4.18)

So that by (4.17) we get

1 N+2s
N

2(N+25) e m’
[t saNa(wmmmﬂ(Lz&” mw) +Wﬂ%mﬁw
T T

N+2s N+2s N+2s

ﬂNsmﬁ<Qmmmmﬂ) (Aqﬁﬂmj +(ﬁmﬁwmm0 )-

2(N + 2 N+2 1-—
Pointing out that (1 — v)m' = AN +25) and +_,S = T < 1, we use the Young
N Nm 2

[
Qr

where C' is a positive constant not depending on n. Therefore, by (4.17) we conclude that

{u,} is uniformly bounded in L*(0, T; X3(Q)) N L>(0, T; L*(2)). O

inequality to obtain

4.4.1.2 Passing to the limit

Proof. of Theorem 4.2.2 and Theorem 4.2.1.
Since by Lemma 4.4.2 and Lemma 4.4.1, the sequence {u,} is uniformly bounded in the

reflexive space L?(0,T; X5(12)), there exist a subsequence of {uy,},, still indexed by n, and
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a measurable function u € L*(0,T; X5(2)) such that u, — u weakly in L*(0,T; X5(Q)).
On other hand, by the Poincaré inequality (Lemma 1.1.1) the increasing sequence {u,} is
uniformly bounded in L*(Q7) C L*(Qr), so that by Beppo-Levi’s theorem u, converges to
a function v in norm in L'(Q7) and (for a subsequence if necessary) a.e. in  x (0,T). As
L*(0,T; X5(2) € L*(r) we have the identification u = v a.e. in Q x (0,T). In addition,
since u, = u = 0 on CQ2 x (0,T), we obtain u,, — u for a.e. (z,t) € RY x (0,T). Hence

follows

N+2s N+2s

jz =yl
Testing by an arbitrary function ¢ € C5°(2 x [0,7)) in (4.7) we get

— /QT Upprdxdt — /Qun(x, 0)e(x,0)dx + 1 /T (un(,t) uTiy’—t?y)éVﬁ(Z’ t) — SO(y’t))dyda;dt

2
- / I .
Qr (un + ﬁ)’y

It is clear that

(4.19)

lim Upprdxdt = / upedzdt
QT QT

n—0o0
and
lim un(x,0)<p(x,0)dx:/uo(a:)gp(x,O)dx.
Define
Up (T, 1) — un(y, u(x,t) —uly,t
Fu(eyt) = O =000 g pp g = W00 000
[z —y| = |z —y|

Since {u,} is uniformly bounded in L?(0, T; X$(€2)), then so is {F,,(z,y,t)}» in L*(Q x (0,T))
which implies that for a subsequence F,, — F in L*(Q x (0,T)). On the other hand, observe
that for every ¢ € C3°(2 x [0,T)) C L*(0,T; X3(9)), we have

o(z,t) — ¢(y,1) € L*(Q x (0,7)).

N+2s
lz —yl >

Thus, we have

lim (un(7,1) — un(y, 1) (p(z,1) — 0(y,t))
n—00 Qr ‘ZK — y‘N+25

/ (u(x) — u(y))(e(z,t) — S0<y’i))dydzzcdt,

|£I§' _ y|N+2s

dydxdt =
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for all p € C°(Q2 x [0,7)). As regards the last term on the right-hand side in (4.19) we use
Lemma 4.3.2. Whence, for any ¢ € C5°(2 x [0,T)) with supp(¢) C w x [0,T), there exists a
constant ¢, > 0, not depending on n, such that

fnp
(un + )7

n

_ Ioll=@nls]
Y

0< <
Cuw

c L'(Qp),

so that by the dominated convergence theorem we obtain

im [ —C et / 12 gt
Qp U’

n—00 Qr (un -+ 5)7

Finally, passing to the limit as n — +o00 we get

_/ Ugﬁtdl‘dt—/UQ(i)QO(IL",O)d$+1/ (u(x’t)_U(y’t))((p(x’t)_(p(y’t))dq:dydt
Qp Q Qr

2 ‘x_y‘N+25
:/ I 40 dt,
Qp W

for all ¢ € C5°(Q2 x [0,T). So u is a weak solution of (4.1). O

4.4.2 Proof of Theorem 4.2.3

4.4.2.1 A priori estimates in fractional Sobolev spaces

Lemma 4.4.3. Assume that 0 < v <1 and (f,uo) € (L™ () x L=(Q)) with1 < m <m =
2(N + 2s)

2(N +2s) = N(1—~)

bounded in LI(0, T; W5%(Q)) N L>®(0,T; L*(Q)) for every sy < s with

Let u,, be a solution of (4.6). Then the sequence {u,} is uniformly

m(y+ 1)(N + 2s)
N +2s—sm(l —7)

q:

m(y+ 1)(N + 2s)
N —2s(m—1) °

Moreover, {uy}, is uniformly bounded in L°(Q27), with o =

1
Proof. Let y <6 <1,0<¢ < and let 7 € (0,7]. Taking <(un(q:, t)+e)f — €9>X(0,7)(t) as

a test function in (4.7), we have

//un (un + €) —5]dazdt

L7 [ {0n) -t O+ = 1004 1) 1

|.T _ y|N+23

fx, t)up (up (2, ) + )’V dadt.
Qp
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Letting € tends to zero, we get

0 0

|JZ _ |N+25

fn 0- Wd:):dt+— / ol (x

As this inequality holds true for every 7 € [0, T], we can pass to the supremum on the left-hand

side obtaining

0 0
sup /|Un x, 7_ |9+1dx +/ / un €, t un<y’t))(un<$’t) u"(y’t))dydmdt

9+10<7‘<T |ZE— |N+25

ful~ 7dxdt—l——| | I 0||0+1
Qr 0+
(4.20)

Then an application of Lemma 1.3.3 yields

|
2
0 —1— 1 9+1 —Un” (Y,
su un(z, dx dydzxdt
0<T£T/ | 7)| \x — y|N+2s Y

9+1 / o 0+ 1) 0 1
< ful™da dt+— o1

2

<> | fuldxdt + iL |||u H@Jrl
0 o,

_ max([0,2)

- 0

( ful™dxdt + Hu0]|9+1 )
Qrp

. . . 0+1 .
In the previous inequality, the term ——— > 1, can be dropped. On one hand, an application

20

N 2. and % gives

/ |“n|wdxdt :/ Iun|26+1|un o
Qr o,

g/ (/ |un(x7t)|2szdx> [/|un(x,t)|9+1dx} dt
0 Q Q

T g ®
:/ ||un%||iz,; [/ |un(x,t)|9+1dx} dt.

0 Q

Taking the supremum on [0, 7] and applying the Sobolev embedding, we obtain

of the Holder inequality with

041 041 2

2s 2 2
s N Un (ilf, t) — Un (y7 t)
/ |un|(0+1)4§VN+2) ( sup / |t (z, 1) |9+1d$) / AT dydzdt.
Qr T |:B - y| s

0<t<T
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By (4.21) we have

N+2s N+2s

1 s Q 2 N
/ || S )d:cdt < S(N, )(M> ( fue Ydxdt + HuOHGJrl )
QT 9 QT

N+2s N+2s

Q],2 N (0+1)N+25
< S(N,s)2% (%) (( g fui‘”dxdt> + [[uoll oo ) )
T

If m =1 then we take # = v in the previous estimation. So we obtain

(4.22)

N+2s

(1 +29) max(|Q2],2)) ¥ 25 T(V+25)
/Q [t | dxdt < S(N,s)2~ <f Hf||L1 QT)+||u0||Loo B . (4.23)
T

On the other hand, by (4.21) we easily have

2max(|€],2)

[tn | Lo 073201 (2)) < S+l

[Hfllu or) + ol 1 g } (4.24)

We now consider the case m > 1. Let v < 6 < 1. Using (4.22) and applying the Holder

inequality, we obtain

N+2s

(9+1)(N+25)

(60+1)(N+2s) N+2s m’(@— ) Nm/
/ﬂ wn R dadt < Oyl /ﬂ WO Ndgdt| "+ Crllwollpmdy
T T

N+25

. We can choose v < 0 < 1 to be such that

where Cy = S(N, 5)2% (W)

0

0+ 1)(N + 2s)

N =m/(6 —~).

That is

(N +2s)(m—1)+ Nmfy'

0:
N —2s(m —1)

Notice that the condition 6 < 1 is equivalent to m < m; while v < 6 is always fulfilled. Since
N + 2s
Nm/

/ un N drdt < G fll o, (6/ un N dxdt + C(e)) + Cilluoll ey -
Qr Qp

< 1, applying Young’s inequality with € > 0, we get

+2s

Nt2s
Choosing € small enough such that C1||f|| (g, < 1 and using the fact that

o m(y+ 1)(N + 2s) _ (04 1)(N + 2s)

N —2s(m—1) N
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we get

/ |un|"dzdt < C, (4.25)
Qr

where C' is a positive constant which does not depend on n.

It remains to prove that {u,} is uniformly bounded in L**(0,7; L"*1(2)). By (4.21) we have

W0+t max(|€], 2) 0 0+1
sup /Q (x,7)dx < — . Jug Vdxdt + [|uo [ % g

0<7<T

max(|Q], 2) 2,
< —p 11l ey Nl 72y + luoll T8y ) -

Since v < # and by (4.25) we conclude that {u,} is uniformly bounded in L>(0,T; L"*(Q)).
Finally, we conclude that in both cases, that is 1 < m < m, the sequence {u,} is uniformly

1)(N +2
bounded in L°(Qr), 0 = m](\:jQS)((m j1)5> and in L>(0,T; L"*Y(Q)). Thus, by (4.20), we

have

/T/ (un (@, t) = un(y, 1)) (up (2, 1) — uf(y, t>)dyd:cdt <C, (4.26)
0 J@

|l‘ _ y|N+2s

where C' is a positive constant which does not depend on n.

Now, we shall prove that the sequence {u,} is uniformly bounded in a suitable fractional
Sobolev space. Let s; € (0,s), be fixed and let 1 < G < 2 that will be chosen later. Applying
Holder’s inequality, we get

|un un(y> )‘q
/l// Lt
Jun(,8) = un(y, |7 up(x,t) —ud(y, 1) un(z,t) —un(y, t)
- N1gst X X 9
0 Q J{yeQun (y,t)Zun(z,t)} |SL‘ - y’ Um(l‘, t) - un(y= t) u (1‘7 t) - un<y7 t)

q
< o Jo Jryeun )yt @) |z — y|NF2s Up (2, 1) — un(y, t)

! un(@,) —un(y, )\ 27 up(a,t) —up(y,t) ~ dydedt \ =
. Bl t) iy ) wad) —unly ) Jr-yNP)
0 Q J{yeQun (y,t)#un(z,t)} n\"» n\Y> n\4, n\Y, r—=Yy
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where § = g Then

|tn (2, 1) — un(y, t)|7
/ / / [z — [V dydzxdt
T _ 0 .0

< ([ [ et = e A0 = 00, )

o JaJa |z — y|N+2s

T un(x7t> — un(y7t> 2 dyd&?dt B
X ; ; X ——5 )

0 Q J{yeQun (y,t)#Zun(x,t) } un(x, t) - un(ya t) ’.CL’ - y’

By the inequality (4.26) and Lemma 1.3.3, we get

[SIS]]

|un(@,t) — un(y, t)|? un o (2, 1) + ua>" (y,1) 2
/ // |x— hEE dydzdt < Cy o — N7 dydxdt .

By z/y symmetry, there exists a constant 02, not dependmg on n, such that

(2, 8) — tn (3, £)]7 / / -0 / dy =
dydzdt < 22T (2t — 7 \dxdt) .
/ // |$ — y|Ntas ydedt < G 0 Qu (%) olr—y/N-" ’

Since 2 is bounded, then there exists a constant R > 0, such that 2 C Bg, where Bp, is the

ball of radius R, so, an easy computation leads to

R N—-1
/ dyN S/ (fvz <5l
ole—yNr T Jy [2NF a8

where |SY ™| stands for the Lebesgue measure of the unit sphere in RY. We now choose g to

be such that
g(1—10) m(y +1)(N +2s)

=0

2—7q O N-—-2s(m—1) '

that is
_ m(y +1)(N + 2s)
N 425 —sm(l—7)
We point out that § < 2 is equivalent to m < m; while ¢ > 1 is always fulfilled. Then we get

2—q

7 N-1 2
/ // e |x |;Li§§/, t)] dydxdt§02<|55 |Rﬂ/ ug(x,t)dxdt) < G5,
— Qp

where Cj is a positive constant which does not depend on n. Thus, {u,} is uniformly bounded

in L7(0, T; Wg%(Q)) for every s; < s. O

Remark 4.4.1. Notice that by (/.25) the sequence {u,} is uniformly bounded in L"(2)
for every 1 < r < o, then as is the same lines of the proof of the previous Lemma /.4.3
with the exponent q instead of G in /.27, we can obtain that {u,} is uniformly bounded in

LU0, T; W3 (QQ)) for all 1 < q <G and for every s; < s and 1 < m <.
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4.4.2.2 Passing to the limit

Proof. of Theorem 4.2.3.

By virtue of Lemma 4.4.3 the sequence {u,} is uniformly bounded in the reflexive space
LI(0,T; W5%(Q)), then there exist a subsequence of {u, },, still indexed by n and a measurable
function u € L¥(0,T; Wit 7(Q)) such that u, — u weakly in L7(0,T; W5%(Q)). Let’s reason
as above, the sequence {u,} is increasing and uniformly bounded in L'(Q7), so that by
Beppo-Levi’s theorem u,, — u in norm in L'(Q7) and a.e. in Q x (0,7) and since u,, = 0 on
CQx (0,T), extending u by zero outside Q, we get u, — u for a.e (z,t) € RY x (0,T). Let now
p > 0 be a small enough real number that we will choose later. For any ¢ € C5°(2 x [0,7))

we have

/OT [ [Kun(x,t)-un<y,t>><so<x,t)—w(y,t>>|  dydeat

|z —y| N+

< / / / [un(a,8) = wnly, O+ (| Dl e =y dydedt
Jo JalJa

|z — y|N++0)s1 |z — y[PNH(+p)(25—51)

< || Del|}* T [t (2, ) — up (y, 1) || — y|(1+p)(1+51—23)7de N
> PllL=r) o JalJa |x — y|N+(1+p)S1 Yax.

We need an adequate choice of p to assure that (1 + p)(1 + s; —2s) — pN > 0. To this aim,
we consider s; to be very close to s. Precisely, we impose on s; the condition

max(0,1 —3s) <s—s; <1—s.
We point out that with this range of values of s; and with the assumption N > 2s, we obtain

1+s81—2s>0and N —1—35;+2s>0.

1+ s —2s

Thus, the fact that (1 1 —25)—pN >0i ivalent to 0 < p < .
us, the fact that (1 + p)(1+ s1 —2s) — pN > 0 is equivalent to /)_]\7_1_514_2S

Hence, we get

/T// P(un(aﬁ,t)—Un(yat))(@(xat)_¢(y>t>)‘]l+pdydxdt
0 QJQ

|l’ _ y|N+25

(4.28)

_ 1+p
14p : (14-p) (1451 —25)—pN un(,t) — un(y, t)|
= HDgpHL""(QT)dum(Q> ’ 1 g /Q/Q |z — y|N++o)s dyddt,

where diam(§2) stands for the diameter of 2. Now we make the adequate choice of p to prove

that the right-hand integral in (4.28) is uniformly bounded. By Remark 4.4.1 we have the
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_ . (N 42
uniform boundedness of {u,}, in LI(0,T; W5"?) for every 1 < ¢ < g = ijj?i_)im (le _Si).
m(y+ 1)(N + 2s)

N +2s —sm(1—7)

So it is sufficient to choose p such that 1+ p <G =

. Finally, we choose

p to be such that

(N+2s)(m—1)+my(N+s)+sm 1+ —2s )

0<p< ( ,
p = N +2s —sm(1l—7) N—1-51+2s

Therefore, there is a constant C' > 0 which does not depend on n such that

Sup/T// {(un(%t)—un(y,t))(w(wyt)—w(y,t))]wdyd:cdtgC.

’JT _ y’NJrQs

Therefore, by De La Vallée-Poussin and Dunford-Pettis theorems the sequence

{ (UN(xvt) — un(y7t))<90(x7t) B Qp(ya t)) }

|z —y| N2
is equi-integrable in L'(2 x Q x (0,7)). Now, taking ¢ € C5°(Q2 x [0,T)) as a test function

in (4.7) we get

- /Q gt = /Q n(z, 0)p(, 0)da + / T (un(,t) “Tiy’_tl)év‘i(i’ D =2 D) g it

2
- / I .
Qp (un + _)Fy

n

(4.29)
For the third integral on the left-hand side of (4.29), we split it into three integrals as follows

/T / (un(,t) = wnly, D) (P, 1) =y D)y
0 JQ

|z — y|N+2s

_ / [ W‘”’”_“ﬁy’_tzj)|§3‘l(i’t)_“’(y’”) dydnd

.\ / [] <un<x7t>—u7<y,t;>|§i<i,t>—w(y,t» - (430)
o JaJca T —

g (un (2, 1) — un(y, 1) (p(z, 1) — (y, 1))
—l—/o /CQ/Q dydzxdt

|z — y|NV+2s
=0+ 1+ Is.

The almost everywhere convergence of {u, } to u allows us to get for every ¢ € C5°(Q2x[0,7T))

(un(@,t) — un(y, ) (p(2,1) — (y, 1), (u(@,t) —uly,t))(p(z,t) — ¢(y,t))
|z — y|N+2s |z — y|N+2s

a.e. in @x(0,7).
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Then by Vitali’s lemma we have

i [ [ [ ) o Mol = 000 gy

n—00 |£L‘ _ |N+28

/ // u(z,t) —uy,_))y(ls;%st)—so(yi))dydxdt_

For the second integral I in (4.30), we start noticing that since u,(y,t) = ¢(y,t) = 0 for

every (y,t) € CQL x (0,T) we can write

(un (2, 1) — un(y, 1)) (p(x, 1) — o(y, 1) ‘ _ Iun(rc ez, t)]
|z — y|V+2s y|N+2s

= |Gu(z,y,t)| in (z,y,1) € AxCAx(0,T).

We need to prove that the sequence {G,(x,y, t)}n is uniformly bounded in L'(Q2xCQx (0, T)).

Since supp(y) is a compact subset in €2, we have
|z —y| > dy := dist(supp(p),0) > 0 for every (z,y) € supp(p) x CSQ.
Therefore, an easy computation leads to

/ // |x—y|N+25 dydxdt e |un(x t)p(z,t)] Ty dxdt

|5N 1|||90||L°° o) llunll i@
- 25d3° ’

where |S™ ™| stands for the Lebesgue measure of the unit sphere in R". On the other hand,
since {u,} is increasing then so is {G,(z,y,t)},. Hence Beppo-Levi’s theorem and the almost

everywhere converge of u,, to u yield

Gy, ) — MDD L6 o eq x (0,7)).

‘ZC _ ‘N+2

Which implies

. (un (2, t) — un(y, 1)) (p(2, 1) — 9(y, 1))
lim / //CQ dydzdt

n—00 |l’— |N+25

/ [ = e

As regards the third integral I3 in (4.30), we can follow exactly the same lines as above using

the x/y symmetry. We then conclude that

i [ a0~ wa ) (o) — oy 1) )

n—oo Jo. |z — y|N+2s

:/ (@, D) —uly, ))(@(z.t) = (0, 1) ) 1.

|£L' _ y|N+23
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for all ¢ € C3°(2 x [0,7")). Now for what concerns the first, the second integrals and the
right-hand side of (4.29), we follow the same arguments as in the proof of Theorem 4.2.2.

Finally, passing to the limit as n — +o00, we get

_/ wpydadt — / ug(@@(:l:,(])dm#—%/ (u(z,t) —u(y,t))(p(z,t) — (p(y’t»da:dydt

|z — y|V+2s
= fﬁdwdt,
Qp U’
for all ¢ € C5°(Q2 x [0,7")). This shows that u is a weak solution of (4.1). O

4.4.3 Proof of Theorem 4.2.4

4.4.3.1 A priori estimates in fractional Sobolev spaces

Lemma 4.4.4. Suppose that v > 1 and (f,ug) € L*(Qr) x L=(Q). Let u, be a solution of

(4.6). Then the sequence {u,} is uniformly bounded in L*(0,T; H; (Q))NL>(0,T; L"t(Q)).
LH

Moreover {u,® }, is uniformly bounded in L*(0,T; X5()).

Proof. Taking u) (x,t)x0-)(t), 7 € (0,7, as a test function in (4.7) and then the supremum
on [0, 7] in the left-hand side, we get

2 sup /QUZ—H(.%,T)dI‘ +/OT/Q (Un(.T,t) B un(y,t))(ulb(as,t) - ux(y’t))dydl'dt

v+ 1o<r<r |z — y|N+2s
2|Q| v+1
< 2l @n + 7 luolli o)
(4.31)
Using the item i) of Lemma 1.3.3, we get
2 ’YTI WTH 2
n 7t - Wn 7t
sup /UZL-H(ZE,T)d% +—=1 / Jun (2,1) l]ff 5 . )l dydzdt
0<7<T Jo v+1Jgr |z — y[ N+ (4.32)

< (7 + DlIf L@ + 190l }E -

It follows that {u,} and {u;?+1 }n are uniformly bounded in L*°(0,7T; L' () and
L*(0,T; X5(S2)) respectively.

We now prove that {u,} is uniformly bounded in L*(0,T; H; .()). Since {u,}, is uniformly
bounded in L>=(0,T; L"™(Q)) c L*(0,T; L"™(Q)) and since v > 1, we conclude that {u,},
is uniformly bounded in L*(0,T; L*(Q)) = L*(Q27) and in particular in L*(K x (0,7)), for
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every compact K C . On the other hand, by (4.31) we can write

/T / / (un(@,t) = un(, D) 0ia (2 = GO s < o) fllpan + 22k ol
0 KJK - ' 7 N

|z — y|Nt2s L (Q)?

for every compact K C Q. Applying the item v) of Lemma 1.3.3, we have

T U, ZL‘,t - un(y:t 2 Up .I',t + un(y7t -t
[ [ ez D0 DT < oe, (11 + 90l )
0 KJK ‘x y‘

Using Lemma 4.3.2, we get

un(, 1) = tn(y, 1)) 22—70
///’ |£E_ |N-£2 & dydzrdt < o ”f”LlQT)-I—|Q|||UO||7+1 . (4.33)

K

The lemma is then proved. O

4.4.3.2 Passing to the limit

Proof. of Theorem 4.2.4.

By virtue of Lemma 4.4.4, we have {u,:TH} is uniformly bounded in L*(0,T; X§(Q2)) C L*(Qr),
this implies that the increasing sequence {u,} is uniformly bounded in L'(Q7). Then,
by Beppo Levi’s theorem there exists a measurable function v € L'(Qg) such that wu, —
u a.e. in Qp. Since u,, = 0 on (RV\Q) x (0,T), extending u by zero outside of {2 we conclude
that u, — u a.e. in RY x (0,7) with u = 0 on (RV\Q) x (0,7).

Using Fatou’s lemma in the two estimates (4.33) and (4.32), we obtain u € L*(0,T; Hj .(2)))N
L0, T; L(Q)) and 'z € L2(0,T; X ().

Testing by an arbitrary function ¢ € C5°(2 x [0,7)) in (4.7) we get

_/ wpprddt _/un(x70)¢(x,0)+%/ (un(2,1) = unly, ))2(@,1) = (WD) i

|x _ y|N+2s
_ / Lﬁdmt
Qp ( Up + n)
(4.34)

Let K be a compact subset of © such that supp(p) C K and dist(0K,0Q) > 0. As a

consequence of u,(x,t) = u,(y,t) = 0 for every (z,y,t) € CQ x CQ x (0,T) and p(z,t) =
o(y,t) = 0 for every (z,y,t) € CK x CK x (0,T), we can split the third integral on the
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left-hand side of (4.34) into three integrals as follows

/ / un x, t un(yat))(go(xat) - @(y’t))dyd:cdt

|$ _ y|N+2s

_ / / / (un(z,t) — un(y,t))(p(z,t) — Sp(y’t))dydxdt
; . ’x_y’NJrQs

:/T// (un(x,t)—Un(y,t))(@(fat)_W(yvt))dydxdt
0 JKJK o=y

] e e olet) = 00 g g

(4.35)

P[] ket el ) = 00

=L+ 1+ Is.

The almost everywhere convergence of {u,} to u allows us to get for every p € C5°(2x[0,7))

(un(2,t) — un(y, ) ((x,t) — 9(y,8)) |, (ulz,t) —uly,t))(p(x,t) — o(y,1))
|z — y|N+2s |z — y|N+2s

a.e. in Qx(0,7).

We follow the same ideas as in the proof of Theorem 4.2.2 for the first integral I;, obtaining

hm/ // (tn(,t) —un(y,t))(so(w,t)—w(y,t))dydxdt

n—00 |I—y|N+2S

[ [ ] (et s e 008

For the integrals I» and I3 in (4.35), we follow the same ideas as in the proof of Theorem

4.2.3, we get

T (un (2, 1) — un(y, 1) (p(z, 1) — [y, 1))
i f L e

/ / / — |§;’t_))(|i(fz:) — ol t))dyd:zdt,
. /T / / (un(z,t) — uT(y, t))‘@(x, 1) — o(y, t))dydzdt
e r — y|N+2s
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which yields
(un(2,t) — un(y, ) (p(x, 1) — p(y,1))

nh_g)lo o [z — [V dydxdt
t) — t t) — t
By (L BTG O P
. |z —y|V+

For what concerns the first, the second integrals and the right-hand side of (4.34), we follow
the same arguments as in the proof of Theorem 4.2.2. Finally, passing to the limit as n — o0,

we obtain

_/ woydrdt — / Uo(l’)(p(l’,(])dl‘ + %/ (u(x,t) — u(y,t))(gp(m,t) — So(y’t))da:dydt
Qr Q T

|z —y| N2

:/ f—(pda:dt,
p U7

for all ¢ € C5°(Q x [0,T)). Therefore, u is a weak solution of (4.1). O

4.4.4 Proof of Proposition 4.2.1

Proof. of Proposition 4.2.1.
Let ¢ € C3°(Q2) and let ' be an open subset of Q supp(p) C Q' CC Q. Let now 7 €
Xo() N L*(Q') be the unique positive solution (see [63, Theorem 12 and Theorem 13] of
the following problem
(=A)’n =1 in €, (4.36)
n =0 inRY\Q.
Following the lines in [4], we shall show that {u,n}, is a Cauchy sequence in C([0, T], L'(2)).

Indeed, let us fix n > m > 1. It is easy to see that the function w,, ,, = u, — u,, > 0 solves

the problem

oy @) falwt) o
(nn et B o = 0 ST ™ Qg gy 20T
Wy =0 in (RM\Q) x (0,7),
wn,m('; 0) =0 n Q,

Using n(2)xp(t) € L*(0,T;X5(Q)), 7 € (0,7], as a test function in the formulation of
solution (4.7) of the problem (4.6) solved by u,, and wu,, respectively and then subtracting the

two equations we obtain

/QT (Wn,m )en(x)dadt + /QT(_A)Swn,m(I,t)n(x)dx - /

Qp

L5t o)
(tn + l)7 (U, + L)V

n m

n(x)dxdt.
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Thus, the symmetry of (—A)® and (4.36) yield

[ @z + [ vt ytear < [
T T QT

Dropping the non negative term, it follows that

IR fulet)  falen)
/Qm (@, () S/QT

(un + l>7 (um + L)7
Since supp(n) C &, by Lemma 4.3.2 we have

Julm, t)n(
(up —l—%

flet) ) |
e T e (G

m

‘n(m)dmdt.

'HUHL () ’ Ll(QT).
cl

Using the fact that u,, — u a.e. in {2, we conclude by the Lebesgue dominated convergence
fan fn .

—_— in L'(Qr) and so

(tn + 1) - (Qr)

sup / (U, — U | (2, T)N(2)d2 — 0, as n,m — +o0,

T€[0,7]1 JQ

Thus, {u,n}, is a Cauchy sequence in C([0,T]; L*(2)). Let §'(x) := dist(z, ). Going back

theorem that the sequence { } converges to —

to [19, Lemma 4.2] we conclude that
n(x) > c(V)(8)(x), Vre.
Particularly, for every = € supp(¢) C €' one has
() 2 clp,s) i= (@) (dist(supp(s), 0) )

So that, we obtain

s [ =l lelde = s [ o) EL
< bl /|un (2, 7))
P TE[OT]

Therefore, for every ¢ € C5°(Q2)

sup / [y, — up|(x, T)|p|dx — 0, as n,m — +o0.
T€[0,T] JQ

This shows that {u,¢}, is a Cauchy sequence in C([0,T]; L'(R)) for every ¢ € C5°(2) and
sou € C([0,TY); L;,.(2)). Moreover

/ u(z, dm—>/u0 x)dx as t — 0.



Conclusion and Outlook

Conclusion

In this thesis, we have provided existence, regularity and uniqueness of solutions for nonlocal
elliptic and parabolic problems of fractional Laplacian type with a singular nonlinearity, which
specifically are singular with respect to the unknown function.

We have succeeded to extend some well-known results for the local case, to the non-local
one. Despite the difficulties encountered because of the difference between the local case and
the non-local case we needed to develop the methods used in the local case and using some
algebraic inequalities.

We have also improved some results in the non-local case by bringing in more general data.

Outlook

We give some perspectives and open questions encountered during the accomplishment of this
work in the same order as the chapters of this thesis.

In Chapter 2, we have established some existence and regularity results of solutions for a non-
local elliptic problem involving the fractional Laplacian operator with singular nonlinearity
and Radon measure data. It is interesting to generalize the results to the more general case
of the fractional p-Laplacian operator.

In Chapter 3 we mentioned in Remark 3.2.6 that the threshold in our result extends the one

obtained in the local case in [11]. However, unlike what is proved in [(7], we have observed
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that this threshold is not optimal. The open question that arises here is whether we are able
to reach the optimality of this threshold. We also hope to perform some results with measure
data.

As regards Chapter 4, we have studied the existence of solutions for a parabolic problem
involving the fractional Laplacian with singular nonlinearity. It is interesting to extend the
results to more general data and general operators as for instance the fractional p-Laplacian

operator.
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