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Abstract

Lately, problems involving nonlocal operators have received considerable attention not

only in the field of pure mathematical analysis but also in the real world of applications, as in

thin obstacle problems, crystal dislocation, phase transition, optimization, finance, stratified

materials, anomalous diffusion, quasi-geostrophic flows, multiple scattering, minimal surfaces,

materials science and water waves.

In this thesis we are interested to study some non-local elliptic and parabolic problems.

A prototype of nonlocal operators is the fractional Laplacian operator, which can in fact

be seen as the infinitesimal generator of the stable Lévy process. This is one of the main

motivations behind the study of problems involving nonlocal operators.

Our main objective in this thesis is to extend some well-known results for the local case,

to our non-local case. More precisely, we carry out an investigation of the existence and

regularity of solutions to nonlocal problems elliptic and parabolic of fractional Laplacian type

with a singular nonlinearity, which specifically are singular with respect to the unknown

function. The content of the thesis is as follows. Chapter 1 is devoted to a functional

background necessary to carry analysis of fractional Sobolev spaces. We also give some

technical results necessary for the accomplishment of the work. In Chapter 2, we establish

some existence and regularity results of solutions for a class of nonlocal equations involving

the fractional Laplacian operator with singular nonlinearity and Radon measure data. In

Chapter 3, We study a Lazer-Mckenna-type problem involving the fractional Laplacian and

singular nonlinearity. We investigate the existence, regularity and uniqueness of solutions in

light of the interplay between the nonlinearities and the summability of the datum.

Finally in Chapter 4, we study the existence of solutions for a parabolic problem involving

the fractional Laplacian with singular nonlinearity.

Keywords :

Fractional Sobolev spaces; Fractional Laplacian; Nonlocal problems; Singular terms; Radon

measures; Weak solutions; Energy solutions.
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Résumé

Dernièrement, les problèmes impliquant des opérateurs non locaux ont reçu une attention

considérable non seulement dans le domaine de l’analyse mathématique pure mais aussi dans

le monde réel des applications, comme dans les problèmes d’obstacles minces, dislocation

cristalline, transition de phase, optimisation, finance, matériaux stratifiés, diffusion anor-

male, flux quasi-géostrophiques, diffusion multiple, surfaces minimales, science des matériaux

et vagues d’eau. Dans cette thèse, nous nous intéressons à l’étude de certains problèmes

elliptiques et paraboliques non locaux.

Un prototype d’opérateurs non locaux est l’opérateur Laplacien fractionnaire, qui peut en

fait être vu comme le générateur infinitésimal du processus de Lévy stable. C’est l’une des

principales motivations de l’étude des problèmes impliquant des opérateurs non locaux.

Notre objectif principal dans cette thèse est d’étendre certains résultats bien connus pour le

cas local, à notre cas non local. Plus précisément, nous menons une étude sur l’existence

et la régularité de solutions à des problèmes non locaux elliptiques et paraboliques de type

Laplacien fractionnaire avec une non-linéarité singulière, qui sont spécifiquement singuliers

par rapport à la fonction inconnue. Le contenu de la thèse est le suivant. Le chapitre 1

est consacré à un arrière-plan fonctionnel nécessaire pour effectuer l’analyse des espaces frac-

tionnaires de Sobolev. Nous donnons également quelques résultats techniques nécessaires à

l’accomplissement des travaux. Dans le Chapitre 2, nous établissons des résultats d’existence

et de régularité de solutions pour une classe d’équations non locales impliquant l’opérateur

fractionnaire Laplacien à non-linéarité singulière et des données de mesure de Radon. Dans le

Chapitre 3, nous étudions un problème de type Lazer-Mckenna impliquant le Laplacien frac-

tionnaire et la non-linéarité singulière. Nous étudions l’existence, la régularité et l’unicité des

solutions à la lumière de l’interaction entre les non-linéarités et la sommabilité de la donnée.

Enfin au Chapitre 4, nous étudions l’existence de solutions pour un problème parabolique

impliquant le Laplacien fractionnaire à non-linéarité singulière.

Mots clés :

Espace de Sobolev fractionnaires, Laplacien fractionnaire, Problèmes non locaux, Termes

singuliers, Mesures de Radon, Solutions faibles, Solutions d’énergie.
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General notations

Notation Definition

Ω : Open set of RN , N ≥ 1,

dx : Surface measurement on Ω

x = (x1, x2, · · · , xN) : Generic point of RN

a.e. : Almost everywhere

∂Ω : Boundary of Ω,

CΩ : Complement of the set Ω in RN ,

ω ⊂⊂ Ω : ω strongly included in Ω, i.e., ω is compact and ω ⊂ Ω,

meas(E) = |E| : Lebesgue measure of E ⊂ RN ,

supp(f) : Support of a function f,

f+ := max(f, 0),

f− := −min(f, 0),

Tk : Tk(s) = max(−k,min(s, k)) Truncation function of level k,

p′ : The Hölder conjugate exponent of p, p′ =
p

p− 1

p∗s : The fractional Sobolev critical exponent , p∗s =
Np

Np− ps
BR : An open ball of radius R centered at the origine,

∇u : Gradient of the function u,

∆u : Laplacian of u,

∆pu : p-Laplacian of u,

‖ · ‖X : Norme in the space X,

X ′ : Dual space of X,

⇀ : Weak convergence,

C∞(Ω) : Space of infinitely continuously differentiable functions on Ω,

C∞0 (Ω) :=

{
f : RN → R/f ∈ C∞(RN), supp(f) is compact and supp(f) ⊂ Ω

}
,

C0,β(Ω) : Space of Hölder continuous fonctions on Ω,

Lp(Ω) := {u : Ω→ R, u is measurable and

∫
Ω

|u|p <∞}

L∞(Ω) := {u : Ω→ R, u is measurable and ∃C > 0; |u(x)| ≤ C a.e. in Ω, }

10



General notations

Notation Definition

(−∆)su : Fractional Laplacian of u,

(−∆)spu : Fractional p-Laplacian of u,

W 1,p(Ω),W 1,p
0 (Ω), H1

0 (Ω), H1
loc(Ω) : Sobolev spaces

W s,p(Ω),W s,p
0 (Ω), Hs

0(Ω), Xs
0(Ω) : Fractional Sobolev spaces

W s,p
loc (Ω), Hs

loc(Ω) : Local fractional Sobolev spaces

11
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General introduction

This work is devoted to study, develop and deeply understand a set of problems, tools, or sim-

ply questions framed in the huge field of Partial Differential Equations (PDEs). In particular,

we focus on the study of a class of elliptic and parabolic problems involving the fractional

Laplacian operator with a singular nonlinearity, which specifically are singular with respect

to the unknown function u, of the form u−γ, γ > 0, therefore tends to infinity at the edge of

the domain Ω. This singularity makes that the problems tackled present a certain number of

difficulties, linked to the lack of regularity and therefore of the compactness of the solutions.

Although these difficulties, the study of these problems have been an increasing interest. On

one hand, the interest in such equations is motivated by their applications in the mathematical

modeling of various real world processes, such as the thermo-conductivity [51], the boundary

layer phenomena [32] and the theory non-Newtonian pseudoplastic fluids [64]. On the other

hand, their theoretical study is very interesting from a purely mathematical point of view.

This study was initiated in the pioneering works [38, 84] which constitutes the starting point

of a wide literature about singular semilinear elliptic equations.

The classical Heat equation seems to describe in a satisfactory manner a wide variety of

diffusive problems in Physics. However, the anomalous diffusion that follows non-Brownian

scaling is leading to models governed by fractional Laplacian.

In the last few years, elliptic and parabolic equations involving nonlocal operators has at-

tracted substantial attention. The interest brought to such equations is due to the emer-

gence of this type of nonlocal operators in a wide range of phenomena – the crystal dislo-

cation, thin obstacle problems, Physics, phase transitions, finance, stochastic control, quasi-

13



geostrophic flows, materials science, water waves, anomalous diffusion to name a few (see

e.g. [29, 30, 31, 39, 47, 75, 79, 80, 81, 83] and references therein). We also recall that the

fractional Laplacian operator (−∆)s can be viewed as the infinitesimal generator of stable

Lévy processes, see e.g. [13, 28, 86]. For an expository on fractional Laplacian, we refer the

reader to [21, 28, 45] and the references therein.

For all these reasons, we are interested in studying some non-local elliptic and parabolic

problems with term singular. The natural question concerns what changes between the local

versions (s = 1) of the equations and their non-local equivalents. For a number of properties

we find similar results described by 0 < s < 1 but with some interesting variations. These

variations are justified by the nonlocal aspect of the operator involved. We point out that a

non-local operator is such that the value of the image of a function at a given point depends

on other points rather not just a neighbourhood of the chosen point. In other words, if Ls

is a nonlocal operator, being u : RN → R a function, and fixing x ∈ RN , then the value of

Lsu(x) depends on the value of u(y) in other points outside a neighbourhood of x. Contrary

the more typical local operator, where the value of the image of a function at a certain point

depends only on the value of the function close to this point.

Notice also that to have a well-defined Dirichlet problem in a non-local framework, it is not

enough to prescribe the boundary condition at ∂Ω. This is nothing but another consequence

of the nonlocal nature of the operator, since in order to compute the value of (−∆)su at any

point in Ω, we need to know the value of u in the whole RN . In other words, the Dirichlet

datum is given in RN\Ω and not simply on ∂Ω.

Our main objective in this thesis is to extend some well-known results for the local case to

the non-local problems. More precisely, we carry out investigations on the existence and reg-

ularity of solutions to nonlocal problems of elliptic and parabolic type involving the fractional

Laplacian operator with singular non-linearities, including specifically a singularity with re-

spect to the unknown function.

Finally, we briefly summarize the organization of this thesis and the main results contained

in every chapter. The thesis is conformed by four chapters.

In Chapter 1, we give some basic notations and necessary results that we will use in

the accomplishment of the work. We start by presenting the fractional Sobolev spaces, the

14



fractional Laplacian operator and their properties. Taking into account the algebraic char-

acter of our operator, we also present some algebraic inequalities that we will use regularly

throughout this thesis.

Chapter 2 is devoted to investigate the existence and the regularity of solutions for a class

of nonlocal equations involving the fractional Laplacian operator with singular nonlinearity

and Radon measure data. In particular, we will study the following Dirichlet problem
(−∆)su =

f(x)

uγ
+ µ in Ω,

u > 0 in Ω,

u = 0 on RN\Ω,

(1)

where Ω is an open bounded subset in RN , N > 2s, of class C0,1, s ∈ (0, 1), γ > 0, f is a

non-negative function on Ω, µ is a non-negative bounded Radon measure on Ω and (−∆)s is

the fractional Laplacian operator of order 2s.

Our main objective is to extend the results in local case in [66] to our nonlocal case.

Our purpose in this chapter is to consider the problem (1) in the nonlocal framework and

to prove the existence results of solutions to problem (1) with µ a bounded Radon measure and

data f ∈ L1(Ω). We use an approximation method that consists in analyzing the sequence of

approximated problems truncating the datum f and the singular term
1

uγ
and approximating

µ by smooth functions obtaining non singular problems with L∞-data whose approximated

solutions un can be obtained by a direct application of the Schauder fixed point theorem. We

faced many difficulties in dealing with the nonlocal problem (1), but the main one is how to

get estimations in appropriate fractional Sobolev spaces. The results contained in this chapter

can be found in [89].

In Chapter 3, we consider the Lazer-Mckenna problem involving the fractional Laplacian

and a singular nonlinearity. We investigate the existence, regularity and uniqueness of solu-

tions in light of the interplay between the nonlinearities and the summability of the datum.

More precisely, we will study the following nonlocal problem
(−∆)su =

f(x)

uγ
in Ω,

u > 0 in Ω,

u = 0 on RN\Ω,

(2)

15



where Ω is a bounded domain in RN , N > 2s, of class C1,1, s ∈ (0, 1), γ > 0, f ∈ Lm(Ω),

m ≥ 1, is a non-negative function and (−∆)s is the fractional Laplacian operator. Our main

goal in this chapter is to lead the investigations on the existence and regularity of positive

solutions to (2) and establishing some missing results in [18, 34]. The case where γ = 1 is

treated in [18, 34]. We study the case where 0 < γ < 1 and f ∈ Lm(Ω) with 1 ≤ m < m which

provides infinite energy solutions (see Theorem 3.2.1 bellow) and we prove the existence of

finite energy solutions to problem (2) in the case γ > 1 under some suitable assumptions on

the datum f . Further, to show the accuracy of our results we highlight the relationship with

the Lazer-Mckenna condition. We also provide some regularity results for solutions as well

as the uniqueness of finite energy solutions. At the end, we give an appendix which contains

two auxiliary results necessary to the accomplishment of the work. Note that we obtain some

results that extend to non-local problems those obtained in the local case in [14]. As regards

non-local problems, some of our results with a more general data extend also those obtained

in [10, 18].

This thesis ends with Chapter 4 in which we analyze the existence of solutions for the

following parabolic problem involving the fractional Laplacian with singular nonlinearity
ut + (−∆)su =

f(x, t)

uγ
in ΩT := Ω× (0, T ),

u = 0 in (RN\Ω)× (0, T ),

u(·, 0) = u0(·) in Ω,

(3)

where Ω is a bounded domain of class C0,1 in RN , N > 2s with s ∈ (0, 1), γ > 0, 0 < T < +∞,

f ≥ 0, f ∈ Lm(ΩT ), m ≥ 1, is a non-negative function on ΩT and u0 ∈ L∞(Ω) is a non-

negative function on Ω which furthermore locally satisfies a positivity condition on Ω. The

existence and regularity of the solutions of (3) are obtained under different assumptions on

the summability of f and on γ. One of the main difficulties which arises in this problem is the

proof of the positivity of the solutions inside the parabolic cylinder to make sense of the weak

formulation of the solutions of the problem. In the proof of this property we only use the

weak comparison principle. The content of this chapter is an extension to non-local problems

of the results proved in [40] for the local case.

• Chapter 2 is the development of the published article [89] :
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A. Youssfi and G. Ould Mohamed Mahmoud. On singular equations involving fractional

Laplacian. Acta Math. Sci., 40B(5):1289-1315, 2020.

• Chapter 3 is the development of the published article [91] :

A. Youssfi and G. Ould Mohamed Mahmoud. Nonlocal semilinear elliptic problems with sin-

gular nonlinearity. Calc. Var. Partial Differential Equations, 60(153), 2021.

• Chapter 4 is the development of the article [90] :

A. Youssfi and G. Ould Mohamed Mahmoud. Fractional heat equation with singular terms.

Submitted in 2021.
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Chapter 1
Some preliminary tools and basic results

In this chapter, we present the functional setting and some auxiliary results that will play

an important role throughout this thesis. We start by recalling the definition of fractional

Sobolev spaces.

1.1 The fractional Sobolev spaces

In this section we provide some basic facts about fractional Sobolev spaces. We refer to

[9, 45, 44, 21, 72] for more details. Let Ω be an open subset in RN and let CΩ := RN\Ω. For

any 0 < s < 1 and for any 1 ≤ q < +∞, the fractional Sobolev space W s,q(Ω) is defined as

the set of all functions (equivalence class) u in Lq(Ω) such that∫
Ω

∫
Ω

|u(x)− u(y)|q

|x− y|N+qs
dxdy <∞.

W s,q(Ω), also known as Aronszajn, Gagliardo or Slobodeckij spaces, is a Banach space when

equipped with the natural norm

‖u‖W s,q(Ω) =

(
‖u‖qLq(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|q

|x− y|N+qs
dxdy

) 1
q

. (1.1)

It can be regarded as an intermediate space between Lq(Ω) and W 1,q(Ω). Recall that the space

W s,q(Ω) is reflexive for all q > 1 (see [58, Theorem 6.8.4]). We point out that if 0 < s ≤ s′ < 1

then W s′,q(Ω) is continuously embedded in W s,q(Ω) (see [45, Proposition 2.1]). Let us define

19



20 CHAPTER 1. SOME PRELIMINARY TOOLS AND BASIC RESULTS

W s,q
0 (Ω) as the closure of C∞0 (Ω) in W s,q(Ω) with respect to the norm defined in (1.1) where

C∞0 (Ω) =
{
f : RN → R/f ∈ C∞(RN), supp(f) is compact and supp(f) ⊂ Ω

}
.

Here and in the sequel supp(f) stands for the support of the function f . W s,q
0 (Ω) is a Banach

space under the norm ‖u‖W s,q(Ω).

If Ω is bounded and is of class C0,1, we can give a fractional version of the Poincaré inequality

in W s,q
0 (Ω), 1 ≤ q < +∞, whose proof in the case where q = 2 can be found in [8]. For the

convenience of the reader, we are giving the proof here.

Lemma 1.1.1. (Fractional Poincaré-type inequality) Let Ω be a bounded open subset of RN

of class C0,1, 1 ≤ q < +∞ and let 0 < s < 1. Then there exists a constant C(N, s,Ω) such

that for any ϕ ∈ W s,q
0 (Ω) one has

‖ϕ‖qLq(Ω) ≤ C(N, s,Ω)

∫
Ω

∫
Ω

|ϕ(x)− ϕ(y)|q

|x− y|N+qs
dxdy.

Proof. Let ϕ ∈ C∞0 (Ω). Observe first that the above inequality holds if ϕ = 0. Assume

that ϕ 6= 0 and set

λ(Ω) = inf
{ϕ∈C∞0 (Ω),ϕ6=0}

∫
Ω

∫
Ω
|ϕ(x)−ϕ(y)|q
|x−y|N+qs dxdy∫

Ω
|ϕ(x)|qdx

.

We shall prove that λ(Ω) > 0. To do so, we argue by contradiction assuming that λ(Ω) = 0.

Thus, there exists a sequence {ϕn} of C∞0 (Ω) such that∫
Ω

|ϕn(x)|qdx = 1 and

∫
Ω

∫
Ω

|ϕn(x)− ϕn(y)|q

|x− y|N+qs
dxdy → 0 as n→∞.

It follows that

‖ϕn‖W s,q(Ω) ≤ C.

By virtue of [45, Corollary 7.2], there exists a function f and a subsequence of {ϕn}, still

indexed by n, such that

ϕn → f in norm in Lq(Ω),

ϕn → f a.e. in Ω.

Therefore, ∫
Ω

|f(x)|qdx = 1 and
|ϕn(x)− ϕn(y)|q

|x− y|N+qs
→ |f(x)− f(y)|q

|x− y|N+qs
a.e in Ω× Ω.
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Applying Fatou’s lemma, we get∫
Ω

∫
Ω

|f(x)− f(y)|q

|x− y|N+qs
dxdy ≤ lim inf

n→∞

∫
Ω

∫
Ω

|ϕn(x)− ϕn(y)|q

|x− y|N+qs
dxdy → 0

and thus ∫
Ω

∫
Ω

|f(x)− f(y)|q

|x− y|N+qs
dxdy = 0. (1.2)

Thus, we have f ∈ W s,q(Ω). On the other hand, in view of (1.2) we can write∫
Ω

∫
Ω

|(ϕn(x)− f(x))− (ϕn(y)− f(y))|q

|x− y|N+qs
dxdy

≤ 2q−1

∫
Ω

∫
Ω

|ϕn(x)− ϕn(y)|q

|x− y|N+qs
dxdy

+2q−1

∫
Ω

∫
Ω

|f(y)− f(x)|q

|x− y|N+qs
dxdy

= 2q−1

∫
Ω

∫
Ω

|ϕn(x)− ϕn(y)|q

|x− y|N+qs
dxdy → 0.

Hence, ϕn → f in W s,q(Ω) and so f ∈ W s,q
0 (Ω). By (1.2), the function f has a constant value

on Ω. The only possible value is f ≡ 0 which yields a contradiction with the fact that∫
Ω

|f(x)|qdx = 1.

So, we get

‖ϕ‖qLq(Ω) ≤ C(N, s,Ω)

∫
Ω

∫
Ω

|ϕ(x)− ϕ(y)|q

|x− y|N+qs
dxdy, ∀ϕ ∈ C∞0 (Ω). (1.3)

Now, for every ϕ ∈ W s,q
0 (Ω), there exists a sequence {ϕn} of C∞0 (Ω) functions such that

ϕn → ϕ in norm in W s,q(Ω).

Applying the inequality (1.3) for ϕn and passing to the limit, we conclude the result.

Under the same assumptions of Lemma 1.1.1, the Banach space W s,q
0 (Ω) can be endowed

with the norm

‖u‖W s,q
0 (Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|q

|x− y|N+qs
dxdy

) 1
q

which is equivalent to ‖u‖W s,q(Ω). In the case where q = 2, we note W s,2(Ω) = Hs(Ω) and

W s,2
0 (Ω) = Hs

0(Ω). Endowed with the inner product

〈u, v〉Hs
0(Ω) =

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy.
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(Hs
0(Ω), ‖ · ‖Hs

0(Ω)) is a Hilbert space. Now, we define the following spaces

Hs
loc(Ω) =

{
u : Ω→ R : u ∈ L2(K),

∫
K

∫
K

|u(x)− u(y)|2

|x− y|N+2s
dydx <∞,

for every compact K ⊂ Ω

}
and

Xs
0(Ω) =

{
f ∈ Hs(RN)/f = 0 a.e. in CΩ

}
,

where from now on CΩ := RN \Ω stands for the complementary of Ω in RN . Observe that if

Ω has a continuous boundary, by [49, Theorem 6] (see also [53, Theorem 1.4.2.2]) we can infer

that Xs
0(Ω) ⊂ Hs

0(Ω). Indeed, if f ∈ Xs
0(Ω) then, by [49, Theorem 6] there exists a sequence

{ρn}n that belongs to C∞0 (Ω) satisfying

‖ρn − f‖Hs(RN ) → 0 as n→ +∞

and in particular we obtain

‖ρn − f‖Hs(Ω) → 0 as n→ +∞,

which yields f ∈ Hs
0(Ω). Under the same assumptions of Lemma 1.1.1, the following quantity

‖u‖Xs
0(Ω) =

(∫
Q

|u(x)− u(y)|2

|x− y|N+2s
dydx

) 1
2

,

where Q = R2N\(CΩ × CΩ), is a norm on Xs
0(Ω). It is well known that the pair (Xs

0(Ω), ‖ ·

‖Xs
0(Ω)) is a Hilbert space (see [76, Lemma 7]).

1.2 The fractional Laplacian operator

First, consider the Schwartz space S(RN) of rapidly decaying C∞ functions in RN , with the

following semi-norm

‖ϕ‖S(RN ) = sup
x∈RN

(1 + |x|k)
∑
|α|≤N

|Dαϕ(x)|, N = 1, 2, ...,

where ϕ ∈ S(RN). The fractional Laplacian operator (−∆)s of order 2s, is defined as

(−∆)su = α(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,
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where ”P.V.” stands for the integral in the principal value sense and α(N, s) is a positive

renormalizing constant, depending only on N and s, given by

α(N, s) =
4sΓ(N

2
+ s)

π
N
2

s

Γ(1− s)

so that the identity

(−∆)su = F−1(|ξ|2sFu), ξ ∈ RN , s ∈ (0, 1) and u ∈ S(RN)

holds, where Fu stands for the Fourier transform of u belonging to the Schwartz class S(RN)

(cf. [60]). More details on the operator (−∆)s and the asymptotic behaviour of α(N, s) can

be found in [45]. It is worth recalling that for any u and ϕ belonging to Hs(RN), we have the

following duality product∫
RN

(−∆)suϕdx =
α(N, s)

2

∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

Thus, it can be seen that

(−∆)s : Hs(RN)→ H−s(RN)

is a continuous and symmetric operator defined on Hs(RN).

In the particular case, if u and ϕ belong to Hs(RN) with u = ϕ = 0, on CΩ, we have∫
RN

(−∆)suϕdx =
α(N, s)

2

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx,

where Q := R2N\(CΩ× CΩ).

For N > 2s we define the fractional Sobolev critical exponent 2∗s =
2N

N − 2s
. The following

result is a fractional version of the Sobolev inequality which provides a continuous embedding

of Hs
0(Ω) in the critical Lebesgue space L2∗s(Ω). The proof can be found in [45, 72].

Theorem 1.2.1. (Fractional Sobolev embedding)[45] Let 0 < s < 1 be such that N > 2s.

Then, there exists a constant S(N, s) depending only on N and s, such that for all f ∈ C∞0 (RN)

‖f‖2
L2∗s (RN )

≤ S(N, s)

∫
RN

∫
RN

|f(x)− f(y)|2

|x− y|N+2s
dxdy.

Remark 1.2.1. In particular, if Ω is an open bounded subset in RN of class C0,1 with N > 2s

and 0 < s < 1 and f ∈ C∞0 (Ω) we have

‖f‖2
L2∗s (Ω)

≤ S(N, s,Ω)

∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|N+2s
dxdy.
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Indeed, by [45, Theorem 5.4] we can write

∫
RN

∫
RN

|f(x)− f(y)|2

|x− y|N+2s
dxdy ≤ ‖f‖2

Hs(RN ) ≤ C‖f‖2
Hs(Ω)

= C‖f‖2
L2(Ω) + C

∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|N+2s
dxdy.

The result follows then by Theorem 1.2.1 and Lemma 1.1.1.

1.3 Functional analysis and algebraic inequalities

In this section, we recall some well-known results can be founded for instance in [27, 50, 74, 92].

We start by present some estimates in the usual Marcinkiewicz space Mq(Ω), 0 < q < ∞,

which consists of all measurable functions u : Ω → R such that there exists a constant

c = c(u) > 0 satisfying

tqmeas({x : |u(x)| > t}) ≤ c,

for every t > 0. Here and in what follows, meas(E) denotes the Lebesgue measure of a mea-

surable subset E of Ω. It is worth recalling the following connection between Marcinkiewicz

and Lebesgue spaces

Lq(Ω) ↪→M q(Ω) ↪→ Lq−ε(Ω),

for every 1 < q <∞ and 0 < ε ≤ q − 1 (see for instance [58]). We will also use the following

truncation functions Tk and Gk, k > 0, defined for every s ∈ R by

Tk(s) = max{−k; min{k, s}} and Gk(s) = s− Tk(s).
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k

-k

Tk(u)

Figure 1.1: The truncation function Tk(u)

Gk(u)

k

-k

Figure 1.2: The function Gk(u)

We denote byMb(Ω) the space of all bounded Radon measures on Ω. The norm of a measure

µ ∈Mb(Ω) is given by ‖µ‖Mb(Ω) =

∫
Ω

d|µ|.

Definition 1.3.1. We say that the sequence of measurable functions {µn} is converging weakly
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to µ in the sense of the measures if

lim
n→∞

∫
Ω

ϕ(x)µn(x)dx =

∫
Ω

ϕdµ, ∀ϕ ∈ C∞0 (Ω).

Lemma 1.3.1. (Dominated convergence theorem)[27, Theorem 4.2] Let {fn} be a sequence

of functions in L1(Ω) that satisfy

• fn(x)→ f(x), a.e. on Ω,

• there exists a function g ∈ L1(Ω), such that for all n, |fn(x)| ≤ |g(x)|, a.e. on Ω.

Then f ∈ L1(Ω) and ‖fn − f‖L1(Ω) → 0.

Definition 1.3.2. (Equi-integrability)[56, 4.12 Définition.] We say that {fn}, a sequence of

functions of L1(Ω), is equi-integrable if :

• ∀ε > 0, there exist A ⊂ Ω of a finite Lebesque measure, such that for all n ≥ 1∫
Ω\A
|fn|dx < ε

• ∀ε > 0, ∃δ > 0, such that ∀n ≥ 1 ∀E ⊂ Ω, such that |E| < δ, we have∫
E

|fn|dx < ε.

Theorem 1.3.1. (Vitali’s convergence theorem))[56, 92] Let {fn} be a sequence of functions

of L1(Ω) converges almost everywhere to a measurable function f . Then {fn} converges to f

in L1(Ω) if and only if {fn} is equi-integrable.

Lemma 1.3.2. (De La Vallé-Poussin)[70, Lemma 6.4] Let Ω be bounded. The sequence {fn}

is sequentially weakly relatively compact in L1(Ω) if and only if

sup
n

∫
Ω

Φ(|fn|)dx <∞,

for some continuous function Φ : [0,+∞)→ R, with

lim
x→∞

Φ(x)

x
=∞.

We also need the following technical algebraic inequalities that will play an important role

throughout this thesis.

Lemma 1.3.3. i)- Let α > 0. For every x, y ≥ 0 one has

(x− y)(xα − yα) ≥ 4α

(α + 1)2
(x

α+1
2 − y

α+1
2 )2.
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ii)- Let 0 < α ≤ 1. For every x, y ≥ 0 with x 6= y one has

x− y
xα − yα

≤ 1

α
(x1−α + y1−α).

iii)- Let 0 < α ≤ 1, then for every x, y ≥ 0 one has

|xα − yα| ≤ |x− y|α.

iv)- Let α ≥ 1, then for every x, y ≥ 0 one has

|xα − yα| ≤ α(xα−1 + yα−1)|x− y|.

v)- Let α ≥ 1, then for every x, y ≥ 0 one has

|x+ y|α−1|x− y| ≤ Cα|xα − yα|,

where Cα is a constant depending only on α.

Proof.

i)- It is proved in [7, Lemma 2.22].

ii)- If x = 0 or y = 0, the inequality trivially follows. Suppose now that

x > y > 0. We have

∃ ξ ∈]y, x[ such that xα − yα = (x− y)αξα−1.

Then,
x− y
xα − yα

=
1

α
ξ1−α ≤ 1

α
(x1−α + y1−α).

By symmetry the desired result follows.

iii)- If α = 1 the inequality is obvious. Assume 0 < α < 1. If x = 0 or y = 0 or x = y,

the inequality is also trivial. Suppose that x > y > 0. Let us define the function

f(t) = (t− 1)α − (tα − 1), for every t > 1. Observing that f(t) > 0, for every t > 1, we

conclude the desired inequality by choosing t =
x

y
> 1.

By x/y symmetry we obtain the desired inequality.
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iv)- If α = 1 the inequality is obvious. Assume α > 1. If x = 0 or y = 0 or x = y, the

inequality is also trivial. Suppose that x > y > 0. We have

∃ ξ ∈]y, x[ such that xα − yα = αξα−1(x− y).

Then,

|xα − yα| ≤ α(xα−1 + yα−1)|x− y|.

By symmetry the desired result follows.

v)- If α = 1 the inequality is obvious. Assume α > 1. If x = 0 or y = 0 or

x = y the inequality is also trivial. Suppose that x > y > 0, we have

xα − yα ≥ (x− y)αyα−1.

Then

α(xα−1 + yα−1) ≤ xα − yα

x− y
+ αxα−1 =

xα − yα + αxα − αxα−1y

x− y
≤ (α + 1)

xα − yα

x− y
.

It follows that

xα−1 + yα−1 ≤ α + 1

α

xα − yα

x− y
.

As α− 1 > 0 we easily get (x+ y)α−1 ≤ (2α−1 + 1)(xα−1 + yα−1) which yield the inequality

|x+ y|α−1|x− y| ≤ (2α−1 + 1)
α + 1

α
|xα − yα|.

By x/y symmetry we obtain the desired inequality.



Chapter 2
On singular equations involving fractional

Laplacian1

In this chapter we study the existence and regularity of the solutions for a class of nonlocal

equations involving the fractional Laplacian operator with singular nonlinearity and Radon

measure data. We extend the results obtained in [66] to the same problem involving non-local

fractional Laplacian operator.

2.1 Introduction and main results

Lately, problems involving nonlocal operators and singular terms have recently received con-

siderable attention in the literature. A good amount of investigations have focused on the

existence and/or regularity of solutions to such problems governed by the fractional Laplacian

with a singularity due to a negative power of the unknown or described by a potential, see

for instance, [6, 7, 10, 19, 18, 34] and related papers.

A prototype of nonlocal operators is the fractional Laplacian operator of the form (−∆)s,

0 < s < 1, which is actually the infinitesimal generator of the radially symmetric and s-stable

Lévy processes [13]. Fractional Laplacian operators naturally arise from a wide range of ap-

plications. They appear, for instance, in thin obstacle problems [39], crystal dislocation [47],

1A. Youssfi and G. Ould Mohamed Mahmoud. On singular equations involving fractional Laplacian. Acta

Math. Sci., 40B(5):1289-1315, 2020

29
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phase transition [83] and others.

In this chapter, we are interested in the existence and regularity of solutions to the following

Dirichlet problem 
(−∆)su =

f(x)

uγ
+ µ in Ω,

u > 0 in Ω,

u = 0 on RN\Ω,

(2.1)

where Ω is an open bounded subset in RN , N > 2s, of class C0,1, s ∈ (0, 1), γ > 0, f is a

non-negative function on Ω, µ is a non-negative bounded Radon measure on Ω and (−∆)s is

the fractional Laplacian operator of order 2s defined by

(−∆)su = α(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where ”P.V.” stands for the integral in the principal value sense.

The case s = 1 corresponds to the classical Laplacian operator. If further µ = 0, an important

result is due to Lazer-McKenna [61]. Under regularity assumptions on Ω and f , the authors

present an obstruction to the existence of an energy solution. In fact, such a solution lying in

H1
0 (Ω) should exists if and only if γ < 3 while it is not in C1(Ω) if γ > 1. As far as problem

with L1-data are concerned, the threshold 3 essentially due to the boundedness of the datum

was sharpened in [88] while in [23] the existence of a distributional solution u is proved. In

fact, it is proved in [23] that if γ < 1 and f ∈ Lm(Ω), 1 ≤ m <
( 2∗

1− γ

)′
, then u ∈ W 1,q

0 (Ω)

where q =
Nm(γ + 1)

N −m(1− γ)
while u ∈ H1

0 (Ω) if f ∈ Lm(Ω) with m =
( 2∗

1− γ

)′
. In the case

where f ∈ L1(Ω), if γ = 1 then u ∈ H1
0 (Ω); while u ∈ H1

loc(Ω) if γ > 1. We note that in

the latter case, the boundary datum is only assumed in a weaker sense than the usual one of

traces, that is u
γ+1
2 ∈ H1

0 (Ω). Let us point out here that solutions with infinite energy may

exist if γ > 1 even for smooth data ([61]).

The nonhomogeneous case (i.e. µ 6= 0) has been considered. In [66] the authors studied the

existence of weak solutions for the problem

−∆u =
f(x)

uγ
+ µ. (2.2)

where f ∈ L1(Ω) and µ is a bounded Radon measure. They prove the existence of a weak

solution u of the problem (2.2) such that u ∈ W 1,q
0 (Ω) for every q <

N

N − 1
when γ ≤ 1
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while if γ > 1, u ∈ W 1,q
loc (Ω) for every q <

N

N − 1
with the regularity

(
Tk(u)

) γ+1
2 ∈ H1

0 (Ω),

Tk being the truncation function at levels ±k. Other related singular equations can be found

for instance in [67, 57, 43, 38, 84].

Regarding nonlocal problems, the study of (2.2) with µ = 0 was extended in [18, 34] where the

Laplacian is substituted by the fractional Laplacian (−∆)sp, 0 < s < 1 and p > 1. The authors

obtain some existence and regularity results for the solutions depending on the summability

of the datum f and γ (splitting in the cases γ < 1, γ = 1, γ > 1). Some fractional equations

with measure data are studied in [71, 55, 12].

It is our purpose in this paper, to consider the problem (2.1) in the nonlocal framework and

prove existence results of solutions to problem (2.1) with µ a bounded Radon measure and

data f ∈ L1(Ω). We use an approximation method that consists in analyzing the sequence of

approximated problems truncating the datum f and the singular term
1

uγ
and approximating

µ by smooth functions, obtaining non singular problems with L∞-data whose approximated

solutions un can be obtained by a direct application of the Schauder fixed point theorem. We

faced many difficulties in dealing with the nonlocal problem (2.1), but the main one is how

to get estimations in appropriate fractional Sobolev spaces.

Observe that in the local setting, if the approximated solutions are such that the sequence

{∇un}n is uniformly bounded in the Marcinkiewicz space M
N
N−1 (Ω), then we conclude that

the sequence {un}n is uniformly bounded in the Sobolev spaces W 1,q
0 (Ω) for every q <

N

N − 1
(see [20]).

However, we underline here that given the fractional structure of the operator of the principal

part, we can not retrieve the gradient of the approximate solutions and so appears the problem

of getting a priori estimates in some fractional Sobolev spaces. To overcome this difficulty, we

first prove the key result Lemma 2.3.1 (bellow) and use suitable test functions and algebraic

inequalities that enable us to get appropriate a priori estimates in both cases γ ≤ 1 and γ > 1.

Taking into account that less regular data are involved, the classical notion of finite energy

solution cannot be used. Instead, we shall consider the notion of weak solution whose meaning

is defined as follows.

Definition 2.1.1. Let f ∈ L1(Ω) and let µ be a non-negative bounded Radon measure. By a
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weak solution of problem (2.1), we mean a measurable function u satisfying

∀ω ⊂⊂ Ω, ∃cω > 0 : u(x) ≥ cω > 0, in ω

and
α(N, s)

2

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy =

∫
Ω

fϕ

uγ
dx+

∫
Ω

ϕdµ,

for any ϕ ∈ C∞0 (Ω).

We now state our main results. We give the existence and the regularity of weak solutions

according to the values of γ > 0.

Theorem 2.1.1. Let Ω be an open bounded subset in RN of class C0,1 with N > 2s and

0 < s < 1. Let 0 < γ ≤ 1 and let f ∈ L1(Ω). Then the problem (2.1) admits a weak solution

u ∈ W s1,q
0 (Ω) for every 1 < q <

N

N − s
and for every s1 < s.

Theorem 2.1.2. Let Ω be an open bounded subset in RN of class C0,1 with N > 2s and

0 < s < 1. Let γ > 1 and let f ∈ L1(Ω). Then the problem (2.1) admits a weak solution

u ∈ W s1,q
loc (Ω) for every 1 < q <

N

N − s
, for all s1 < s. Furthermore, T

γ+1
2

k (u) ∈ Hs
0(Ω) for

every k > 0.

We point out that the inclusion W s1,q
0 (Ω) ⊂ W s2,q

0 (Ω) holds for any s2 < s1 (see [45]).

Therefore, the range of s1 in both Theorem 2.1.1 and Theorem 2.1.2 can be that of the set

of the exponents s1 close to s. Indeed, we can consider s1 to be such that
s

2− s
≤ s1 < s.

So that when s tends to 1 one has also s1 tends to 1−. In addition, letting s tends to 1− the

operator (−∆)s is nothing but the standard Laplacian. So that the equation in (2.1) becomes

−∆u =
f(x)

uγ
+ µ

and then the results in both Theorem 2.1.1 and Theorem 2.1.2 covers those obtained in [66].

2.2 Approximated problems : Existence and a comparison principle

Consider the sequence of approximate problems
(−∆)sun =

fn
(un + 1

n
)γ

+ µn in Ω,

un > 0 in Ω,

un = 0 on RN\Ω,

(2.3)
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where fn = Tn(f) is the truncation at level n of f and µn is a sequence of bounded non-

negative smooth functions in L1(Ω) converging weakly to µ in the sense of the measures.

We shall prove that for every fixed integer n ∈ N, the problem (2.3) admits a unique weak

solution un in the following sense :

α(N, s)

2

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy =

∫
Ω

fnϕ

(un + 1
n
)γ
dx+

∫
Ω

µnϕdx,

for any ϕ ∈ Xs
0(Ω).

Lemma 2.2.1. For each integer n ∈ N, the problem (2.3) admits a non-negative weak solution

un ∈ Hs
0(Ω) ∩ L∞(Ω).

Proof. Let n ∈ N be fixed and let v ∈ L2(Ω). We define the map

S : L2(Ω) → L2(Ω),

v 7→ S(v),

where w = S(v) is the weak solution to the following problem
(−∆)sw =

fn
(|v|+ 1

n
)γ

+ µn in Ω,

w > 0 in Ω,

w = 0 on RN\Ω.

(2.4)

The existence of w can be derived by classical minimization argument. Indeed, since
fn

(|v|+ 1
n
)γ

+ µn ∈ L∞(Ω), we already know (see [34, Lemma 2.1.]) that problem (2.4) has a

unique weak solution w ∈ Xs
0(Ω), where

Xs
0(Ω) =

{
ϕ ∈ Hs(RN) such that ϕ = 0 a.e in RN\Ω

}
,

in the following sense

α(N, s)

2

∫
Q

(w(x)− w(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy =

∫
Ω

fnϕ

(|v|+ 1
n
)γ
dx+

∫
Ω

µnϕdx,

for any ϕ ∈ Xs
0(Ω). Since Ω is regular enough, by [49, Theorem 6] the linear space Xs

0(Ω) is

the completion of C∞0 (Ω) with respect to the norm

‖u‖Hs(RN ) =

(
‖u‖2

L2(RN ) +

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.
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Hence, by density arguments it follows that Xs
0(Ω) ⊂ Hs

0(Ω). Thus, w ∈ Hs
0(Ω). As regards

the uniqueness of w in Hs
0(Ω), we suppose there exist two solutions w1, w2 ∈ Hs

0(Ω) of (2.4).

Summing up the both equations satisfied by w1 and w2 respectively, we get (−∆)s(w1−w2) =

0. Thus, taking (w1 − w2) as a test function in this last equation and then integrating over

RN , we obtain

0 ≤ ‖w1 − w2‖2
Hs

0(Ω) ≤
∫
Q

|(w1(x)− w2(x))− (w1(y)− w2(y))|2

|x− y|N+2s
dxdy = 0.

So we get w1(x) = w2(x), for almost every x ∈ Ω. Since w1 = w2 = 0 on RN\Ω, we get

w1(x) = w2(x) for almost every x ∈ RN . Furthermore, by the comparison principle [19,

Lemma 2.1] we get w ≥ 0. Now, inserting w as a test function in (2.4) we obtain

α(N, s)

2

∫
Q

(w(x)− w(y))2

|x− y|N+2s
dydx =

∫
Ω

fnw

(|v|+ 1
n
)γ
dx+

∫
Ω

wµndx

≤ nγ+1

∫
Ω

wdx+ C(n)

∫
Ω

wdx.

By the Hölder inequality and the Sobolev embedding, we get

‖w‖Hs
0(Ω) ≤ C ′(nγ+1 + C(n)), (2.5)

with C ′ and C(n, s,N,Ω) are independent of v, so that the ball of radius C ′(nγ+1 + C(n)) is

invariant under S in Hs
0(Ω).

Now, using the Schauder’s fixed point theorem over S to prove the existence and uniqueness

of solution of (2.3), we need to verify the continuity and compactness of S as an operator

from Hs
0(Ω) to Hs

0(Ω).

First, we go to prove the continuity of S as an operator from L2(Ω) to L2(Ω). Let us consider

a sequence vk that converges to v in L2(Ω), then up to a subsequence, we have

vk → v a.e. in Ω.

Denoting wk = S(vk) and w = S(v), we have

(−∆)swk =
fn

(|vk|+ 1
n
)γ

+ µn. (2.6)

(−∆)sw =
fn

(|v|+ 1
n
)γ

+ µn. (2.7)



2.2. APPROXIMATED PROBLEMS : EXISTENCE AND A COMPARISON PRINCIPLE 35

Taking wk(x)−w(x) ∈ Xs
0(Ω) as test function in (2.6) and (2.7) respectively, then subtracting

term at term the both resulting equations and using Hölder’s inequality we arrive at

α(N, s)

2

∫
Q

(
wk(x)− w(x)−

(
wk(y)− w(y)

))2

|x− y|N+2s
dydx

=

∫
Ω

(
fn

(|vk|+ 1
n
)γ
− fn

(|v|+ 1
n
)γ

)
(wk(x)− w(x))dx

≤ ‖wk − w‖L2∗s (Ω)

(∫
Ω

(
fn

(|vk|+ 1
n
)γ
− fn

(|v|+ 1
n
)γ

)(2∗s)
′

dx

) 1

(2∗s)
′

.

Applying the Sobolev embedding and the Hölder’s inequality with the exponents 2 and 2∗s,

we get

‖wk − w‖L2(Ω) ≤
2S(N, s)

α(N, s)
|Ω|

s
N

(∫
Ω

(
fn

(|vk|+ 1
n
)γ
− fn

(|v|+ 1
n
)γ

)(2∗s)
′

dx

) 1

(2∗s)
′

.

Since ∣∣∣∣ fn
(|vk|+ 1

n
)γ
− fn

(|v|+ 1
n
)γ

∣∣∣∣(2∗s)
′

≤ 2(2∗s)
′

n(γ+1)(2∗s)
′

(2.8)

and

fn
(|vk|+ 1

n
)γ
− fn

(|v|+ 1
n
)γ
→ 0 a.e. in Ω,

then by the dominated convergence theorem we conclude that

‖wk − w‖L2(Ω) → 0 as k → +∞.

So, S is continuous from L2(Ω) to L2(Ω), it follows that S is continuous from Hs
0(Ω) to Hs

0(Ω).

Now, we prove that S is compact from Hs
0(Ω) to Hs

0(Ω), let us consider a sequence {vk}k∈N

such that ‖vk‖Hs
0(Ω) ≤ C, then by the compact embedding Hs

0(Ω) in Lr(Ω) for every 1 ≤ r < 2∗s

(see [45, Corollary 7.2]), we have

vk ⇀ v weakly in Hs
0(Ω),

vk → v in norm in L2(Ω).

Denoting wk = S(vk) and w = S(v), by (2.5) we have

‖wk‖Hs
0(Ω) ≤ C
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where C is a constant not depending on k, then by the previous compact embedding and by

the continuity of S on L2(Ω) we get

S(vk) = wk ⇀ w, weakly in Hs
0(Ω),

S(vk) = wk → S(v) = w, in norm in L2(Ω).

So, by the uniqueness of the limit we have w = w. In view of the previous, a similar argument,

we have

(−∆)s(wk − w) =
fn

(|vk|+ 1
n
)γ
− fn

(|v|+ 1
n
)γ
.

Taking wk − w as a test function in the previous equation, using the Hölder’s inequality and

by (2.8), we obtain

α(N, s)

2
‖S(vk)− S(v)‖2

Hs
0(Ω) ≤ 2nγ+1C(Ω)‖S(vk)− S(v)‖L2(Ω).

It follows that

lim
k→+∞

‖S(vk)− S(v)‖Hs
0(Ω) = 0.

Hence, S is a compact operator from Hs
0(Ω) to Hs

0(Ω) and therefore by Schauder’s fixed point

theorem there exists un ∈ Hs
0(Ω) such that un = S(un). This means that un is a weak solution

to the problem 
(−∆)sun =

fn
(un + 1

n
)γ

+ µn in Ω,

un > 0 in Ω,

un = 0 on RN\Ω.

In addition, since the right hand side of belongs to L∞(Ω) by [63] we obtain un ∈ L∞(Ω).

Lemma 2.2.2. (A comparison principle.) The sequence {un}n∈N is such that for every subset

ω ⊂⊂ Ω there exists a positive constant cω, independent on n, such that

un(x) ≥ cω > 0, for every x ∈ ω and for every n ∈ N.

Proof. Consider the following problem
(−∆)svn =

fn
(vn + 1

n
)γ

in Ω,

vn > 0 in Ω,

vn = 0 on RN\Ω.

(2.9)
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In [18] the authors proved the existence of a weak solution vn of (2.9) such that

∀ω ⊂⊂ Ω, ∃cω > 0 : vn(x) ≥ cω > 0,

for every x ∈ ω and for every n ∈ N. Here the constant cω is independent on n. On the other

hand, we have

(−∆)svn =
fn

(vn + 1
n
)γ

and

(−∆)sun =
fn

(un + 1
n
)γ

+ µn.

Then

(−∆)s(vn − un) = fn

(
1

(vn + 1
n
)γ
− 1

(un + 1
n
)γ

)
− µn.

Hence

(−∆)s(vn − un) = fn

(
(un + 1

n
)γ − (vn + 1

n
)γ

(vn + 1
n
)γ(un + 1

n
)γ

)
− µn. (2.10)

Since (
(un +

1

n
)γ − (vn +

1

n
)γ
)

(vn − un)+ ≤ 0,

we obtain the following inequality

fn

(
(un + 1

n
)γ − (vn + 1

n
)γ

(vn + 1
n
)γ(un + 1

n
)γ

)
(vn − un)+ − µn(vn − un)+ ≤ 0.

Now, taking (vn − un)+ as test function in (2.10) and then integrating over RN , we get∫
RN

(−∆)s(vn − un)(vn − un)+dx ≤ 0.

Observe that for any function g : RN → R the following inequality

(g(x)− g(y))(g+(x)− g+(y)) ≥ (g+(x)− g+(y))2

holds true for every x, y ∈ RN , where g+ = max(g, 0). Therefore, we obtain

0 ≤ ‖(vn − un)+‖2
Hs

0(Ω) ≤ 0

which implies that un ≥ vn in Ω and so

∀ω ⊂⊂ Ω, ∃cω > 0 : un(x) ≥ cω > 0

for every x ∈ ω and for every n ∈ N.
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Remark 2.2.1. Lemma 2.2.2 shows that the problem (2.3) has a unique solution. Indeed,

if un and wn are two solutions of problem (2.3), then as above taking (un − wn)+ as test

function in the problem satisfied by (un − wn), we conclude that un ≤ wn in Ω and again

taking (wn − un)+ as a test function we get wn ≤ un in Ω. Hence, follows un = wn in Ω.

2.3 A priori estimates in fractional Sobolev spaces

In order to prove the existence of solutions for problem (2.1), we first need some a priori

estimates on un. We start by proving the following lemma that we will use in both cases

γ ≤ 1 and γ > 1.

Lemma 2.3.1. Let vn ∈ Hs
0(Ω) be a sequence that satisfies the following assumptions

1)- The sequence {vn}n is uniformly bounded in Lr(Ω), for all r <
N

N − 2s
.

2)- For any sufficient small θ ∈ (0, 1)∫
Ω

∫
Ω

|wn(x)− wn(y)|
|x− y|N+2s

|wθn(x)− wθn(y)|
wθn(x)wθn(y)

dydx ≤ C,

where C is a constant not depending on n and wn = vn + 1. Then the sequence {vn}n is

uniformly bounded in the fractional Sobolev space W s1,q
0 (Ω) for every q <

N

N − s
and for all

s1 < s.

Proof. We shall prove that the sequence {vn} is uniformly bounded in the fractional Sobolev

space W s1,q
0 (Ω) for every q <

N

N − s
and for all s1 < s. That is there is a constant C not

depending on n such that∫
Ω

∫
Ω

|vn(x)− vn(y)|q

|x− y|N+qs1
dydx ≤ C, for all q <

N

N − s
and for all s1 < s. (2.11)

To this aim, let q < 2 which will be chosen in a few lines. We can write∫
Ω

∫
Ω

|vn(x)− vn(y)|q

|x− y|N+qs1
dydx =

∫
Ω

∫
Ω

|wn(x)− wn(y)|q

|x− y|N+qs1
dydx

=

∫
Ω

∫
{y∈Ω:wn(y)6=wn(x)}

|wn(x)− wn(y)|q

|x− y| q2N+qs
× (wθn(x)− wθn(y))

(wn(x)− wn(y))(wθn(x)wθn(y))

× (wn(x)− wn(y))(wθn(x)wθn(y))

(wθn(x)− wθn(y))|x− y| 2−q2 N−q(s−s1)
dydx.
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Pointing out that the quantity in the middle of the product inside the integral can be written

as follows

(wθn(x)− wθn(y))

(wn(x)− wn(y))(wθn(x)wθn(y))
=

(
(wθn(x)− wθn(y))

(wn(x)− wn(y))(wθn(x)wθn(y))

) q
2

×
(

(wθn(x)− wθn(y))

(wn(x)− wn(y))(wθn(x)wθn(y))

)1− q
2

and using Hölder’s inequality, we obtain

∫
Ω

∫
Ω

|vn(x)− vn(y)|q

|x− y|N+qs1
dydx

≤
[ ∫

Ω

∫
{y∈Ω:wn(y)6=wn(x)}

|wn(x)− wn(y)|2

|x− y|N+2s

|wθn(x)− wθn(y)|
|wn(x)− wn(y)|(wθn(x)wθn(y))

dydx

] q
2

×
[ ∫

Ω

∫
{y∈Ω:wn(y)6=wn(x)}

(
(wn(x)− wn(y))(wθn(x)wθn(y))

(wθn(x)− wθn(y))

) 2
2−q

× (wθn(x)− wθn(y))

(wn(x)− wn(y))(wθn(x)wθn(y))

dydx

|x− y|N−β

] 2−q
2

,

where β =
2q(s− s1)

2− q
> 0. Using Lemma 1.3.3, we get

∫
Ω

∫
Ω

|vn(x)− vn(y)|q

|x− y|N+qs1
dydx

≤ C
q
2

(∫
Ω

∫
{y∈Ω:wn(y)6=wn(x)}

(
(wn(x)− wn(y))(wθn(x)wθn(y))

[wθn(x)− wθn(y)]

) q
2−q dydx

|x− y|N−β

) 2−q
2

≤
(C
θ

) q
2

(∫
Ω

∫
Ω

(
(w1−θ

n (x) + w1−θ
n (y))wθn(x)wθn(y)

) q
2−q dydx

|x− y|N−β

) 2−q
2

=
(C
θ

) q
2

(∫
Ω

∫
Ω

(
(wn(x)wθn(y) + wn(y)wθn(x))

) q
2−q dydx

|x− y|N−β

) 2−q
2

.
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Applying the Young inequality with the exponents
θ + 1

θ
and θ + 1, we have

∫
Ω

∫
Ω

|vn(x)− vn(y)|q

|x− y|N+qs1
dydx

≤
(C
θ

) q
2

(∫
Ω

∫
Ω

(
w1+θ
n (x) + w1+θ

n (y)

) q
2−q dydx

|x− y|N−β

) 2−q
2

≤ 2
2(q−1)
2−q

(C
θ

) q
2

(∫
Ω

∫
Ω

(
w

q(1+θ)
2−q

n (x) + w
q(1+θ)
2−q

n (y)

)
dydx

|x− y|N−β

) 2−q
2

≤ 2
2(q−1)
2−q

(C
θ

) q
2

(∫
Ω

w
q(1+θ)
2−q

n (x)

[ ∫
Ω

dy

|x− y|N−β

]
dx

) 2−q
2

+2
2(q−1)
2−q

(C
θ

) q
2

(∫
Ω

w
q(1+θ)
2−q

n (y)

[ ∫
Ω

dx

|x− y|N−β

]
dy

) 2−q
2

.

Observe that ∫
Ω

dy

|x− y|N−β
=

∫
Ω∩|x−y|>1

dy

|x− y|N−β
+

∫
Ω∩|x−y|≤1

dy

|x− y|N−β

≤ |Ω|+
∫
|z|≤1

dz

|z|N−β
= |Ω|+ |S

N−1|
β

.

(2.12)

Here, |SN−1| stands for the Lebesgue measure of the unit sphere in RN . By x/y symmetry,

there exists a constant C, not depending on n, such that

∫
Ω

∫
Ω

|vn(x)− vn(y)|q

|x− y|N+qs1
dydx ≤ C

(∫
Ω

w
q(1+θ)
2−q

n (y)dy

) 2−q
2

.

Now we choose θ > 0 in order to get
q(1 + θ)

2− q
<

N

N − 2s
. That is θ <

2N − 2q(N − s)
q(N − 2s)

. To

ensure the existence of θ we must have 2N −2q(N − s) > 0 which yields q <
N

N − s
. We then

conclude that (2.11) is fulfilled and the sequence {vn} is uniformly bounded in W s1,q
0 (Ω) for

every q <
N

N − s
and for all s1 < s.

2.3.1 The case γ ≤ 1

Lemma 2.3.2. Let un ∈ Hs
0(Ω) be the solution of the problem (2.3). If 0 < γ ≤ 1, then the

sequence {un} is uniformly bounded in W s1,q
0 (Ω) for every q <

N

N − s
and for all s1 < s.
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Proof. Let k ≥ 1 be fixed. By Lemma 2.5.2 (in Appendix) the function Tk(un) is an

admissible test function in (2.3). Thus, inserting it in (2.3) we obtain

α(N, s)

2

∫
Q

(un(x)− un(y))(Tk(un(x))− Tk(un(y)))

|x− y|N+2s
dydx

=

∫
Ω

fn
(un + 1

n
)γ
Tk(un)dx+

∫
Ω

µnTk(un)dx.

By using Proposition 2.5.2 (in Appendix), we get

α(N, s)

2

∫
Q

|Tk(un(x))− Tk(un(y))|2

|x− y|N+2s
dydx ≤ k1−γ‖f‖L1(Ω) + k‖µn‖L1(Ω) ≤ Ck,

where C = ‖f‖L1(Ω) + ‖µ‖Mb(Ω) is a constant not depending on n. Applying the Sobolev

embedding theorem we get

1

S

(∫
Ω

|Tk(un)(x)|2∗sdx
) 2

2∗s
≤ Ck.

For the left hand side, observing that on the set {un ≥ k}, we have Tk(un) = k, we get

1

S
k2(meas({un ≥ k}))

2
2∗s ≤ Ck,

which yields

meas({un ≥ k}) ≤ C

k
N

N−2s

. (2.13)

Thus, the sequence {un} is uniformly bounded in M
N

N−2s (Ω) and then so it is in Lr(Ω), for

all r <
N

N − 2s
. Let s1 ∈ (0, s) be fixed. For every x ≥ 0 we define the function

φ(x) = 1− 1

(1 + x)θ
, where 0 < θ ≤ 1. (2.14)

Observe that the function φ satisfies

φ(x) ≤ 1 and φ(x) ≤ xγ for any 0 < θ ≤ γ ≤ 1.

The function φ(un) is an admissible test function in (2.3). So that inserting it as a test

function in (2.3) we obtain

α(N, s)

2

∫
Q

(un(x)− un(y))(φ(un)(x)− φ(un)(y))

|x− y|N+2s
dydx

=

∫
Ω

fn(x)φ(un)

(un + 1
n
)γ

+

∫
Ω

µn(x)φ(un)dx

≤ ‖f‖L1(Ω) + ‖µn‖L1(Ω) ≤ C.
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Being φ non-decreasing and Ω × Ω ⊂ Q, the integral in the left-hand side can be treated as

follows ∫
Q

(un(x)− un(y))(φ(un)(x)− φ(un)(y))

|x− y|N+2s
dydx

≥
∫

Ω

∫
Ω

(un(x)− un(y))

|x− y|N+2s

(un(x) + 1)θ − (un(y) + 1)θ

(un(x) + 1)θ(un(y) + 1)θ
dydx.

So that we obtain∫
Ω

∫
Ω

(wn(x)− wn(y))

|x− y|N+2s

(wn(x))θ − (wn(y))θ

(wn(x))θ(wn(y))θ
dydx ≤ 2C

α(N, s)
,

where we have set wn = un + 1. Therefore, by Lemma 2.3.1 with 0 < θ ≤ γ the sequence

{un} is uniformly bounded in W s1,q
0 (Ω) for every q <

N

N − s
and for all s1 < s.

2.3.2 The case γ > 1

Lemma 2.3.3. Let f ∈ L1(Ω) and let un be the solution of (2.3). For k > 0 and γ > 1 the

sequence
{
T
γ+1
2

k (un)
}
n

is uniformly bounded in Hs
0(Ω).

Proof. Let us fix k > 0. Inserting T γk (un) as a test function in (2.3), we get

α(N, s)

2

∫
Q

(un(x)− un(y))(T γk (un(x))− T γk (un(y))

|x− y|N+2s
dydx

=

∫
Ω

fn
(un + 1

n
)γ
T γk (un)dx+

∫
Ω

µnT
γ
k (un)dx

≤ ‖f‖L1(Ω) + kγ‖µn‖L1(Ω) ≤ C1,

where C1 = ‖f‖L1(Ω) +kγ‖µ‖Mb(Ω) is a constant not depending on n. By applying Proposition

2.5.2 (in Appendix) and Lemma 1.3.3, we have∫
Q

(un(x)− un(y))(T γk (un(x))− T γk (un(y))

|x− y|N+2s
dydx

≥
∫
Q

(Tk(un(x))− Tk(un(y)))(T γk (un(x))− T γk (un(y)))

|x− y|N+2s
dydx

≥ 4γ

(γ + 1)2

∫
Q

|T
γ+1
2

k (un(x))− T
γ+1
2

k (un(y))|2

|x− y|N+2s
dydx.

Therefore, we obtain

‖T
γ+1
2

k (un)‖2
Hs

0(Ω) ≤
∫
Q

|T
γ+1
2

k (un(x))− T
γ+1
2

k (un(y))|2

|x− y|N+2s
dydx

≤ (γ + 1)2

4γ

2

α(N, s)
C1.
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The proof is then achieved.

Lemma 2.3.4. Let un be the solution of the problem (2.3). If γ > 1, then the sequence {un}

is uniformly bounded in W s1,q
loc (Ω) for every q <

N

N − s
and for all s1 < s.

Proof. For every ω ⊂⊂ Ω, for all q <
N

N − s
and for all s1 < s, we shall prove that there

exists a constant C = C(q, s1, w), not depending on n, such that∫
ω

∫
ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx ≤ C and

∫
ω

|un|qdx ≤ C, (2.15)

We begin by proving the left estimate in (2.15). Let k0 ≥ 1 be fixed. Let q < 2 and s1 < s.

Using the fact that un = Tk0(un) +Gk0(un), we can write∫
ω

∫
ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx

=

∫
ω

∫
ω

|Tk0(un(x)) +Gk0(un(x))− Tk0(un(y))−Gk0(un(y))|q

|x− y|N+qs1
dydx

≤ 2q−1

∫
ω

∫
ω

|Tk0(un(x))− Tk0(un(y))|q

|x− y|N+qs1
dydx

+2q−1

∫
Ω

∫
Ω

|Gk0(un(x))−Gk0(un(y))|q

|x− y|N+qs1
dydx.

Applying the Hölder inequality, we get∫
ω

∫
ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx

≤ 2q−1

(∫
ω

∫
ω

|Tk0(un(x))− Tk0(un(y))|2

|x− y|N+2s
dydx

) q
2

×
(∫

Ω

∫
Ω

dydx

|x− y|N−β

) 2−q
2

+2q−1

∫
Ω

∫
Ω

|Gk0(un(x))−Gk0(un(y))|q

|x− y|N+qs1
dydx,

where β =
2q(s− s1)

2− q
> 0. Thanks to (2.12), we have

2q−1

(∫
Ω

∫
Ω

dydx

|x− y|N−β

) 2−q
2

≤ C3 := 2q−1

(
|Ω|+ |S

N−1|
β

) 2−q
2

which implies ∫
ω

∫
ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx

≤ C3

(∫
ω

∫
ω

|Tk0(un(x))− Tk0(un(y))|2

|x− y|N+2s
dydx

) q
2

+2q−1

∫
Ω

∫
Ω

|Gk0(un(x))−Gk0(un(y))|q

|x− y|N+qs1
dydx,
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So, it is sufficient to prove that {Gk0(un)}n and {Tk0(un)}n are uniformly bounded in W s1,q
0 (Ω)

and Hs
loc(Ω) respectively. We begin by proving that Gk0(un) is uniformly bounded in W s1,q

0 (Ω)

for all q <
N

N − s
and for all s1 < s. To do so, for k > k0 we take Tk(Gk0(un)) as a test

function in (2.3) and use the fact that Gk0(un) = 0 on {un ≤ k0}, we obtain

α(N, s)

2

∫
Q

(un(x)− un(y))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))]

|x− y|N+2s
dydx

=

∫
Ω

fnTk(Gk0(un))

(un + 1
n
)γ

dx+

∫
Ω

µnTk(Gk0(un))dx

≤ k

∫
{un>k0}

f

(un + 1
n
)γ
dx+ k‖µn‖L1(Ω) ≤ C1k,

where C1 = k−γ0 ‖f‖L1(Ω) + ‖µ‖Mb(Ω), is a constant not depending on n. Using the decompo-

sition of un as un = Tk0(un) +Gk0(un), we can write∫
Q

(un(x)− un(y))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))]

|x− y|N+2s
dydx

=

∫
Q

(Tk0(un(x))− Tk0(un(y)))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))]

|x− y|N+2s
dydx

+

∫
Q

(Gk0(un(x))−Gk0(un(y)))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))]

|x− y|N+2s
dydx.

Let us observe that since Tk0 and Tk(Gk0) are non-decreasing functions, we get

(Tk0(un(x))− Tk0(un(y)))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))] ≥ 0 a.e. in Q.

Hence, it follows∫
Q

(un(x)− un(y))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))]

|x− y|N+2s
dydx

≥
∫
Q

(Gk0(un(x))−Gk0(un(y)))[Tk(Gk0(un(x)))− Tk(Gk0(un(y)))]

|x− y|N+2s
dydx.

In the right-hand side of the above inequality, we decompose Gk0(un) as follows Gk0(un(x)) =

Gk(Gk0(un(x))) + Tk(Gk0(un(x))) and we apply Proposition 2.5.2 (in Appendix) with α = 1

obtaining ∫
Ω

∫
Ω

|Tk(Gk0(un(x)))− Tk(Gk0(un(y)))|2

|x− y|N+2s
dydx ≤ 2kC1

α(N, s)
.

Hence, using the fractional Sobolev inequality, we get again the inequality (2.13) for the

function Gk0(un) that is

meas({Gk0(un) ≥ k}) ≤ Ck−
N

N−2s
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which implies that {Gk0(un)}n is uniformly bounded in Lr(Ω) for every r <
N

N − 2s
.

Let φ be the function defined in (2.14). Observe that for every 0 < θ < 1 the function φ

enjoys the following properties

φ(x) ≤ x and φ(x) ≤ 1.

Inserting φ(Gk0(un)) as a test function in (2.3) we get

α(N, s)

2

∫
Q

(un(x)− un(y))
(
φ(Gk0(un(x)))− φ(Gk0(un(y)))

)
|x− y|N+2s

dydx

=

∫
{un≥k0}

fnφ(Gk0(un))

(un + 1
n
)γ

dx+

∫
Ω

µn(x)φ(Gk0(un))dx

≤
∫
{un≥k0}

fnGk0(un)

(un + 1
n
)γ
dx+ ‖µn‖L1(Ω)

≤
∫
{un≥k0}

|f |
(un + 1

n
)γ−1

dx+ ‖µn‖L1(Ω)

≤ C2 := k1−γ
0 ‖f‖L1(Ω) + ‖µ‖Mb(Ω).

Then, writing the decomposition un = Tk0(un) + Gk0(un) and using the fact that Tk0 and

φ(Gk0) are non-decreasing functions, we obtain

∫
Ω

∫
Ω

(Gk0(un)(x)−Gk0(un)(y))
(
φ(Gk0(un(x)))− φ(Gk0(un(y)))

)
|x− y|N+2s

dydx ≤ 2C2

α(N, s)

which yields ∫
Ω

∫
Ω

(wn(x)− wn(y))

|x− y|N+2s

(wn(x))θ − (wn(y))θ

(wn(x))θ(wn(y))θ
dydx ≤ C3 :=

2C2

α(N, s)
,

where we have set wn = Gk0(un)+1. Thus, Lemma 2.3.1 ensures that the sequence {Gk0(un)}

is uniformly bounded in W s1,q
0 (Ω) for all q <

N

N − s
and for all s1 < s.

Now, we shall prove that {Tk0(un)}n is uniformly bounded in Hs1
loc(Ω). To do so, we insert

T γk0(un) as a test function in (2.3) obtaining

α(N, s)

2

∫
Q

(un(x)− un(y))
(
T γk0(un(x))− T γk0(un(y))

)
|x− y|N+2s

dydx

=

∫
Ω

fnT
γ
k0

(un)

(un + 1
n
)γ
dx+

∫
Ω

µnT
γ
k0

(un)dx ≤ C4 := ‖f‖L1(Ω) + kγ0‖µ‖Mb(Ω).
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By Lemma 1.3.3 (item v)) there exists a constant Cγ > 0, depending only on γ such that

∫
Q

(un(x)− un(y))
(
T γk0(un(x))− T γk0(un(y))

)
|x− y|N+2s

dydx

≥
∫

Ω

∫
Ω

|un(x)− un(y)||T γk0(un(x))− T γk0(un(y))|
|x− y|N+2s

dydx

≥ 1

Cγ

∫
Ω

∫
Ω

∣∣∣(un(x)− un(y))
(
Tk0(un(x))− Tk0(un(y))

)∣∣∣
|x− y|N+2s

×(Tk0(un(x)) + Tk0(un(y)))γ−1dydx.

Let now ω be a compact subset in Ω. By Proposition 2.5.2 (in Appendix) we can write∫
Q

(un(x)− un(y))[T γk0(un(x))− T γk0(un(y))]

|x− y|N+2s
dydx

≥ 1

Cγ

∫
ω

∫
ω

|Tk0(un(x))− Tk0(un(y))|2(Tk0(un(x)) + Tk0(un(y)))γ−1

|x− y|N+2s
dydx.

Pointing out that by Lemma 2.2.2 we have Tk0(un(x)) ≥ min(k0, cω) for every x ∈ ω, we

obtain ∫
Q

(un(x)− un(y))[T γk0(un(x))− T γk0(un(y))]

|x− y|N+2s
dydx

≥ 1

Cγ
(2 min(k0, cω))γ−1

∫
ω

∫
ω

|Tk0(un(x))− Tk0(un(y))|2

|x− y|N+2s
dydx

which proves that {Tk0(un)}n is uniformly bounded in Hs
loc(Ω).

We now prove the second estimate in (2.15). For q <
N

N − s
and s1 < s, writing∫

ω

|un|qdx ≤ 2q−1

∫
ω

|Tk0(un)|qdx+ 2q−1

∫
ω

|Gk0(un)|qdx

≤ 2q−1kq0|ω|+ 2q−1‖Gk0(un)‖qLq(Ω)

we conclude the result. In fact, for every γ > 0 the sequence {un} is uniformly bounded in

Lq(Ω) for all 1 ≤ q <
N

N − 2s
.

2.4 Proof of the main results

In this section, we show that in the both cases γ ≤ 1 and γ > 1, the problem (2.1) has a weak

solution obtained as the limit of approximate solutions {un}n of the problem (2.3).
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2.4.1 The case γ ≤ 1

Proof. of Theorem 2.1.1. By virtue of Lemma 2.3.2 and the compact embedding of W s1,q
0 (Ω)

in L1(Ω) (see [45, Corollary 7.2]), there exist a subsequence of {un}n still indexed by n and

a measurable function v ∈ W s1,q
0 (Ω) such that

un ⇀ v weakly in W s1,q
0 (Ω),

un → v in norm in L1(Ω),

un → v a.e. in Ω.

Let u the function such that u = v in Ω and u = 0 in RN \Ω. Thus, un → u a.e. in RN which

implies
|un(x)− un(y)|
|x− y|N+2s

→ |u(x)− u(y)|
|x− y|N+2s

a.e. in Q.

Let ρ > 0 be a small enough real number that we will choose later. For any ϕ ∈ C∞0 (Ω) we

have ∫
Ω

∫
Ω

[
(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

]1+ρ

dydx

≤
∫

Ω

∫
Ω

|un(x)− un(y)|1+ρ(‖Dϕ‖L∞(Ω)|x− y|)1+ρ

|x− y|N+(1+ρ)s1

dydx

|x− y|ρN+(1+ρ)(2s−s1)

≤ ‖Dϕ‖1+ρ
L∞(Ω)

∫
Ω

∫
Ω

|un(x)− un(y)|1+ρ|x− y|(1+ρ)(1+s1−2s)−ρN

|x− y|N+(1+ρ)s1
dydx.

We need that the term |x − y|ρN+(1+ρ)(2s−s1) vanishes from within the integral. To get this,

it is sufficient to have (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0. To this aim, we consider s1 to be very

close of s. Precisely, we impose on s1 the condition

max(0, 1− 3s) < s− s1 < 1− s.

We point out that with this range of values of s1 and with the assumption N > 2s, we easily

get

1 + s1 − 2s > 0 and N − 1− s1 + 2s > 0.

Thus, the fact that (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0 is equivalent to 0 < ρ ≤ 1 + s1 − 2s

N − 1− s1 + 2s
.

Hence, we get∫
Ω

∫
Ω

[
|un(x)− un(y)||ϕ(x)− ϕ(y)|

|x− y|N+2s

]1+ρ

dydx

≤ ‖Dϕ‖1+ρ
L∞(Ω)diam(Ω)(1+ρ)(1+s1−2s)−ρN

∫
Ω

∫
Ω

|un(x)− un(y)|1+ρ

|x− y|N+(1+ρ)s1
dydx
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where diam(Ω) stands for the diameter of Ω. Now we have to make a choice of ρ which

enables us to use the uniform boundedness of {un}n in W s1,q
0 (Ω) for every q <

N

N − s
. This

is the case if 1 + ρ <
N

N − s
. Finally, we choose ρ to be such that

0 < ρ < min
( s

N − s
,

1 + s1 − 2s

N − 1− s1 + 2s

)
Therefore, there is a constant C > 0 not depending on n such that

sup
n

∫
Ω

∫
Ω

[
(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

]1+ρ

dydx ≤ C.

Consequently by De La Vallée-Poussin and Dunford-Pettis theorems the sequence{(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

}
is equi-integrable in L1(Ω× Ω). Now, taking ϕ ∈ C∞0 (Ω) as a test function in (2.3) we get

α(N, s)

2

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fnϕ

(un + 1
n
)γ
dx+

∫
Ω

ϕµndx. (2.16)

We split the integral in left-hand side into three integrals as follows∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

∫
Ω

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
Ω

∫
CΩ

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
CΩ

∫
Ω

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

= I1 + I2 + I3.

(2.17)

By Vitali’s lemma we have

lim
n→∞

∫
Ω

∫
Ω

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

∫
Ω

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

For the second integral I2 in (2.17), we start noticing that since un(y) = ϕ(y) = 0 for every

y ∈ CΩ we can write∣∣∣(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

∣∣∣ ≤ |un(x)ϕ(x)|
|x− y|N+2s

for every (x, y) ∈ Ω× CΩ.

Since supp(ϕ) is a compact subset in Ω, we have

|x− y| ≥ d1 := dist(supp(ϕ), ∂Ω) > 0 for every (x, y) ∈ supp(ϕ)× CΩ.
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Therefore, an easy computation leads to∫
CΩ

dy

|x− y|N+2s
≤
∫ +∞

d1

dz

|z|N+2s
≤ |S

N−1|
2sd2s

1

. (2.18)

As a consequence of the convergence in norm of the sequence {un} in L1(Ω) there exist a

subsequence of {un} still indexed by n and a positive function g in L1(Ω) such that

|un(x)| ≤ g(x) a.e. in Ω,

which enables us to get

|(un(x)− un(y))(ϕ(x)− ϕ(y))|
|x− y|N+2s

≤ |g(x)ϕ(x)|
|x− y|N+2s

a.e. in (x, y) ∈ Ω× CΩ.

We observe that by (2.18) the function (x, y)→ |g(x)ϕ(x)|
|x− y|N+2s

belongs to L1(Ω× CΩ)∫
Ω

∫
CΩ

|g(x)ϕ(x)|
|x− y|N+2s

=

∫
supp(ϕ)

∫
CΩ

|g(x)ϕ(x)|
|x− y|N+2s

≤
|SN−1|‖ϕ‖L∞(Ω)‖g‖L1(Ω)

2sd2s
1

.

Thus, by the dominated convergence theorem, we have

lim
n→∞

∫
Ω

∫
CΩ

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

∫
CΩ

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

For the third integral I3 in (2.17), we can follow exactly the same lines as above using the

x/y symmetry. We then conclude that

lim
n→∞

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx,

for all ϕ ∈ C∞0 (Ω). Now, for what concerns the right-hand side of (2.16), by virtue of lemma

3.3.2, for any ϕ ∈ C∞0 (Ω) with Suppϕ = ω, there exists a constant cω > 0 not depending on

n such that

0 ≤
∣∣∣∣ fnϕ

(un + 1
n
)γ

∣∣∣∣ ≤ |f‖ϕ|cγω
∈ L1(Ω)

obtaining by the dominated convergence theorem

lim
n→∞

∫
Ω

fnϕ

(un + 1
n
)γ
dx =

∫
Ω

fϕ

uγ
dx

and in the last term in (2.16), by the convergence of µn to µ we have

lim
n→∞

∫
Ω

ϕ(x)µn(x)dx =

∫
Ω

ϕ(x)dµ.

Finally, passing to the limit as n→ +∞, we obtain

α(N, s)

2

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy =

∫
Ω

fϕ

uγ
dx+

∫
Ω

ϕdµ,

for all ϕ ∈ C∞0 (Ω). Therefore, u is a weak solution of (2.1).
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2.4.2 The case γ > 1

Proof. of Theorem 2.1.2. By virtue of Lemma 2.3.4, there exist a subsequence of {un}n still

indexed by n and a measurable function v ∈ W s1,q
loc (Ω) such that

un ⇀ v in W s1,q
loc (Ω),

un → v in L1
loc(Ω),

un → v a.e. in Ω.

So that defining the function u by u = v in Ω and u = 0 in RN\Ω, one has

un ⇀ u in W s1,q
loc (Ω),

un → u in L1
loc(Ω),

un → u a.e. in RN ,

T
γ+1
2

k (un)→ T
γ+1
2

k (u) a.e. in Ω.

Then for ϕ ∈ C∞0 (Ω), we have

|(un(x)− un(y))(ϕ(x)− ϕ(y))|
|x− y|N+2s

→ |(u(x)− u(y))(ϕ(x)− ϕ(y))|
|x− y|N+2s

a.e. in Q.

Inserting ϕ ∈ C∞0 (Ω) as a test function in (2.3), we have

α(N, s)

2

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fnϕ

(un + 1
n
)γ
dx+

∫
Ω

ϕµndx. (2.19)

Let K be a compact subset of Ω such that supp(ϕ) ⊂ K and dist(supp(ϕ), ∂K) > 0. The

integral in the left-hand side of the previous equality can be splitted as∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
RN

∫
RN

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
K

∫
K

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
K

∫
CK

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
CK

∫
K

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

As in the proof of the Theorem 2.1.1, the same ideas allow to obtain

lim
n→∞

∫
K

∫
K

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
K

∫
K

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.
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lim
n→∞

∫
K

∫
CK

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
K

∫
CK

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

lim
n→∞

∫
CK

∫
K

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
CK

∫
K

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

We then conclude that

lim
n→∞

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx,

for all ϕ ∈ C∞0 (Ω). For what concerns the right-hand side of (2.19), it is exactly the same

term in Theorem 2.1.1. Finally, passing to the limit as n→ +∞, we obtain

α(N, s)

2

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fϕ

uγ
dx+

∫
Ω

ϕdµ,

for all ϕ ∈ C∞0 (Ω), So u is a weak solution to (2.1). Now, by virtue of lemma 2.3.3, and

Fatou’s lemma, we have∫
Ω

∫
Ω

|T
γ+1
2

k (u(x))− T
γ+1
2

k (u(y))|2

|x− y|N+2s
dxdy ≤ lim inf

n→+∞

∫
Ω

∫
Ω

|T
γ+1
2

k (un(x))− T
γ+1
2

k (un(y))|2

|x− y|N+2s
dxdy ≤ C.

It follows that T
γ+1
2

k (u) ∈ Hs
0(Ω), for every k > 0.

2.5 Regularity of solutions

Now, we prove some regularities of the solution u of the problem (2.1).

Proposition 2.5.1. Assume that µ is a Radon measure, f ∈ L1(Ω) and 0 < γ ≤ 1. Then

the solution u of the problem (2.1) obtained by approximation is such that

u ∈ Lr(Ω), ∀ r ∈
(

1,
N

N − 2s

)
.

|(−∆)
s
2u| ∈ Lr(Ω), ∀ r ∈

(
1,

N

N − s

)
.

Proof. We follow closely the lines in [63]. By (2.13) and Theorem 2.1.1, we can apply

Fatou’s Lemma, we conclude that u ∈ Lr(Ω), for every 1 < r <
N

N − 2s
. Now, we will prove

that |(−∆)
s
2un| is bounded in the Marcinkiewicz space M

N
N−s (Ω). We fix β > 0 and for any

positive k ≥ 1, we have

{|(−∆)
s
2un| ≥ β} = {|(−∆)

s
2un| ≥ β un < k} ∪ {|(−∆)

s
2un| ≥ β un ≥ k}

⊂ {|(−∆)
s
2un| ≥ β un < k} ∪ {un ≥ k}.
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Then

meas({|(−∆)
s
2un| ≥ β, un < k}) ≤ 1

β2

∫
{un<k}

|(−∆)
s
2un|2dx.

By using [63, Corollary 1] and Lemma 2.3.2, we get

meas({|(−∆)
s
2un| ≥ β, un < k}) ≤ 1

β2

∫
{un<k}

|(−∆)
s
2un|2dx

≤ 1

β2

∫
RN
|(−∆)

s
2Tk(un)|2dx

≤ C(N, s)

β2

∫
Q

|Tk(un)(x)− Tk(un)(y)|2

|x− y|N+2s
dxdy ≤ C

k

β2
.

By using (2.13), we have

meas({|(−∆)
s
2un| ≥ β}) ≤ meas({|(−∆)

s
2un| ≥ β, un < k}) +meas({un ≥ k})

≤ C
k

β2
+

C

k
N

N−2s

.

Choosing k = β
N−2s
N−s , we get

meas({|(−∆)
s
2un| ≥ β}) ≤ C

β
N
N−s

.

This implies that |(−∆)
s
2un| is bounded in the Marcinkiewicz space M

N
N−s (Ω). So, by the

converges almost everywhere in the proof of Theorem 2.1.1, we can apply Fatou’s Lemma, we

conclude the result.

Appendix

In this Appendix we give the functional and technical results we have used in the previous

sections. We start with the following inequality whose proof in the cases where α = 1 can be

found [63]. Here we give a simple proof based on the monotony of the truncation functions.

Proposition 2.5.2. Let α ≥ 1 and let v : RN → R be a positive measurable function. Then

for every k > 0 and for every (x, y) ∈ RN × RN(
Gk(v(x))−Gk(v(y))

)(
Tk(v(x))α − Tk(v(y))α

)
≥ 0.

Proof. Let x, y ∈ RN be arbitrary. Without loss of generality we can assume that v(x) ≥

v(y). Since the functions s 7→ Tk(s) and s 7→ Gk(s) are non-decreasing on R, we have

Tk(v(x))α ≥ Tk(v(y))α and Gk(v(x)) ≥ Gk(v(y)).



2.5. REGULARITY OF SOLUTIONS 53

Then

(Gk(v(x))−Gk(v(y)))(Tk(v(x))α − Tk(v(y))α) ≥ 0.

The next result, well known in classical Sobolev spaces, provides a necessary condition for a

function to belong to the fractional Sobolev space W s,p
0 (Ω).

Lemma 2.5.1. Let Ω be an open set in RN of class C0,1 with bounded boundary, 1 ≤ p < +∞

and let 0 < s < 1. If u ∈ W s,p(Ω) with supp(u) is a compact set in Ω, then u ∈ W s,p
0 (Ω).

Proof. Let u ∈ W s,p(Ω) be a function with supp(u) be a compact subset included in Ω. Then

there exists an open set ω such that

supp(u) ⊂ ω and ω ⊂ Ω.

Then by [45, Corollary 5.5], there exists a sequence {un}n of functions un ∈ C∞0 (RN) such

that

un → u in norm in W s,p(Ω).

Let ϕ ∈ C∞0 (ω) be such that

ϕ = 1 on Supp u and 0 ≤ ϕ ≤ 1, a.e in ω.

It is clear that ϕun ∈ C∞0 (ω). Therefore, it sufficient to prove that

ϕun → u in W s,p(Ω).

Using the fact that ϕu = u on Ω, we obtain∫
Ω

|ϕun − u|pdx =

∫
Ω

|ϕun − ϕu|pdx ≤
∫

Ω

|un − u|pdx→ 0.

For the second part of the norm ‖ϕun − u‖W s,p(Ω), we can write it as follows∫
Ω

∫
Ω

|(ϕ(x)un(x)− ϕ(y)un(y))− (u(x)− u(y))|p

|x− y|N+ps
dxdy

=

∫
Ω

∫
Ω

∣∣∣∣ϕ(x)un(x)− ϕ(y)un(y)

|x− y|
N+ps
p

− u(x)− u(y)

|x− y|
N+ps
p

∣∣∣∣pdxdy
=

∫
Ω

∫
Ω

|Fn(x, y)− F (x, y)|pdxdy,
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where we have set

Fn(x, y) =
ϕ(x)un(x)− ϕ(y)un(y)

|x− y|
N+ps
p

and F (x, y) =
u(x)− u(y)

|x− y|
N+ps
p

.

Thus, in order to prove that ϕun converges to u in W s,p(Ω), it is sufficient to prove that

up to a subsequence, {Fn(x, y)} converges to F (x, y) in norm in Lp(Ω × Ω). Since, up to a

subsequence still indexed by n, un converges almost everywhere to u, we obtain

Fn(x, y) =
ϕ(x)un(x)− ϕ(y)un(y)

|x− y|
N+ps
p

→ u(x)− u(y)

|x− y|
N+ps
p

= F (x, y) a.e in Ω× Ω.

The norm convergence of un to u in W s,p(Ω), yields

un(x)− un(y)

|x− y|
N+ps
p

→ u(x)− u(y)

|x− y|
N+ps
p

in norm in Lp(Ω× Ω). (2.20)

According to 2.20 and the norm convergence of {un} in Lp(Ω), there exist a subsequence of

{un} still indexed by n and two positive functions g in L1(Ω× Ω) and h in L1(Ω) such that

|un(x)− un(y)|p

|x− y|N+ps
≤ g(x, y) a.e in Ω× Ω

and

|un(x)|p ≤ h(x) a.e in Ω.

So that writing

|Fn(x, y)|p =

∣∣∣ϕ(x)un(x)− ϕ(x)un(y) + ϕ(x)un(y)− ϕ(y)un(y)
∣∣∣p

|x− y|N+ps

≤ 2p−1

∣∣∣un(x)− un(y)
∣∣∣p

|x− y|N+ps
+ 2p−1 |un(y)|p|ϕ(x)− ϕ(y)|p

|x− y|N+ps
,

we obtain

|Fn(x, y)|p ≤ 2p−1|g(x, y)|+ 2p−1 |h(y)||ϕ(x)− ϕ(y)|p

|x− y|N+ps
. (2.21)

We need to prove that the function in the second term in the right-hand side in (2.21) belongs

to L1(Ω× Ω). To do so we can write∫
Ω

∫
Ω

|h(y)||ϕ(x)− ϕ(y)|p

|x− y|N+ps
dxdy =

∫
Ω

|h(y)|
[ ∫

Ω∩|x−y|<1

|ϕ(x)− ϕ(y)|p

|x− y|N+ps
dx

]
dy

+

∫
Ω

|h(y)|
[ ∫

Ω∩|x−y|≥1

|ϕ(x)− ϕ(y)|p

|x− y|N+ps
dx

]
dy
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Since ϕ belongs at least to C1
0(Ω) and 0 ≤ ϕ ≤ 1, a.e. in ω we have∫

Ω

∫
Ω

|h(y)||ϕ(x)− ϕ(y)|p

|x− y|N+ps
dxdy ≤ Cp

lip

∫
Ω

|h(y)|
[ ∫

Ω∩|z|<1

dz

|z|N+p(s−1)

]
dy

+2p
∫

Ω

|h(y)|
[ ∫

Ω∩|z|≥1

dz

|z|N+ps

]
dy

≤ 2 max

(
Cp
lip

|SN−1|
p(1− s)

, 2p
|SN−1|
ps

)∫
Ω

|h(y)|dy < +∞,

where Clip stands for the Lipschitz constant of ϕ and |SN−1| stands for the Lebesgue measure

of the surface area of the unit N -sphere SN−1 of RN . Applying the dominated convergence

theorem, we conclude our claim and thus follows u ∈ W s,p
0 (Ω).

Lemma 2.5.2. Let Ω be an open set in RN of class C0,1 with bounded boundary, 1 ≤ p < +∞

and let 0 < s < 1. Let φ : R→ R be a uniformly Lipschitz function, with φ(0) = 0. Then for

every u ∈ W s,p
0 (Ω) one has φ(u) ∈ W s,p

0 (Ω).

Proof. Let us denote by K the Lipschitz constant of φ and let u ∈ W s,p
0 (Ω). There exists a

sequence {un} of C∞0 (Ω) functions which converges to u in norm in W s,p(Ω). That is there

exists n0 ∈ N such that for all n ∈ N with n ≥ n0 one has

‖un − u‖W s,p(Ω) < 1.

Defining vn = φ(un), Gn(x, y) = un(x) − un(y) and G(x, y) = u(x) − u(y), we can write for

every n ≥ n0∫
Ω

∫
Ω

|vn(x)− vn(y)|p

|x− y|N+ps
dxdy =

∫
Ω

∫
Ω

|φ(un)(x)− φ(un)(y)|p

|x− y|N+ps
dxdy

≤ Kp

∫
Ω

∫
Ω

|un(x)− un(y)|p

|x− y|N+ps
dxdy

= Kp

∫
Ω

∫
Ω

|Gn(x, y)|p

|x− y|N+ps
dxdy

≤ 2p−1Kp

∫
Ω

∫
Ω

|Gn(x, y)−G(x, y)|p

|x− y|N+ps
dxdy

+2p−1Kp

∫
Ω

∫
Ω

|G(x, y)|p

|x− y|N+ps
dxdy

= 2p−1Kp‖un − u‖pW s,p(Ω) + 2p−1Kp‖u‖pW s,p(Ω) ≤ C0
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and

‖vn‖Lp(Ω) ≤ K‖un‖Lp(Ω) ≤ K‖un − u‖W s,p(Ω) +K‖u‖W s,p(Ω) ≤ C1,

C0 and C1 are constants not depending on n. Thus, {vn} is uniformly bounded in W s,p(Ω).

Since by φ(0) = 0 the function vn is compactly supported in Ω, so that by Lemma 2.5.1 we

obtain vn ∈ W s,p
0 (Ω). Now, we prove that

vn → φ(u) in W s,p(Ω).

Since the sequence {un} converges to u in norm in W s,p(Ω), then for a subsequence of {un},

still indexed by n, we have

un → u a.e. in Ω.

Then, it follows

vn = φ(un)→ φ(u) a.e. in Ω.

Furthermore,

‖vn − φ(u)‖Lp(Ω) = ‖φ(un)− φ(u)‖Lp(Ω) ≤ K‖un − u‖Lp(Ω) → 0.

On the other hand we can write∫
Ω

∫
Ω

|(vn(x)− φ(u)(x)− (vn(y)− φ(u)(y))|p

|x− y|N+ps
dxdy

=

∫
Ω

∫
Ω

∣∣∣∣vn(x)− vn(y)

|x− y|
N+ps
p

− φ(u(x))− φ(u(y)

|x− y|
N+ps
p

∣∣∣∣pdxdy
=

∫
Ω

∫
Ω

|Fn(x, y)− F (x, y)|pdxdy,

where we noted

Fn(x, y) =
vn(x)− vn(y)

|x− y|
N+ps
p

and F (x, y) =
φ(u(x))− φ(u(y)

|x− y|
N+ps
p

.

In order to show that vn converges to φ(u) in W s,p(Ω), it sufficient to prove that for a

subsequence of {Fn(x, y)}n≥1, still denoted by {Fn(x, y)}n≥1, ‖Fn(x, y)−F (x, y)‖Lp(Ω×Ω) → 0.

By the almost everywhere convergence of vn to φ(u), we have

Fn(x, y) =
vn(x)− vn(y)

|x− y|
N+ps
p

→ φ(u)(x)− φ(u)(y)

|x− y|
N+ps
p

= F (x, y), a.e in Ω× Ω.
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Observe that the norm convergence of un to u in W s,p(Ω) implies

un(x)− un(y)

|x− y|
N+ps
p

→ u(x)− u(y)

|x− y|
N+ps
p

in norm in Lp(Ω× Ω).

So that since

|Fn(x, y)| ≤ K
|un(x)− un(y)|
|x− y|

N+ps
p

the sequence {|Fn(x, y)|p}n is then equi-integrable. Applying Vitali’s theorem we get

‖Fn(x, y) − F (x, y)‖Lp(Ω×Ω) → 0 which in turn implies ‖vn − φ(u)‖W s,p(Ω) as n → +∞.

Since the sequence {vn} belongs to the closed space W s,p
0 (Ω) forces the limit φ(u) to belong

to W s,p
0 (Ω).
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Chapter 3
Nonlocal semilinear elliptic problems with

singular nonlinearity1

In this chapter, we consider the Lazer-Mckenna problem involving the fractional Laplacian and

singular nonlinearity. We investigate the existence, regularity and uniqueness of the solutions

in light of the interplay between the nonlinearities and the summability of the datum. The

study we are conducting extend some results obtained in [14] and [10, 18]. We also analyze

the threshold 3 for integrable the data.

3.1 Introduction

The chapter deals with the existence, regularity and uniqueness of solutions for the following

nonlocal problem 
(−∆)su =

f(x)

uγ
in Ω,

u > 0 in Ω,

u = 0 on RN\Ω,

(3.1)

where Ω is a bounded domain in RN , N > 2s, of class C1,1, s ∈ (0, 1), γ > 0, f ∈ Lm(Ω),

m ≥ 1, is a non-negative function and (−∆)s is the fractional Laplacian operator defined by

(−∆)su = a(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

1A. Youssfi and G. Ould Mohamed Mahmoud. Nonlocal semilinear elliptic problems with singular nonlin-

earity. Calc. Var. Partial Differential Equations, 60(153), 2021.

59
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where ”P.V.” stands for the principal value and a(N, s) is a positive renormalizing constant,

depending only on N and s, given by

a(N, s) =
4sΓ(N

2
+ s)

π
N
2

s

Γ(1− s)

to ensure that

(−∆)su = F−1(|ξ|2sFu), ξ ∈ RN , s ∈ (0, 1) and u ∈ S(RN),

where Fu stands for the Fourier transform of u belonging to the Schwartz class S(RN). More

details on the operator (−∆)s and the asymptotic behaviour of a(N, s) can be found in [45].

In the case of semilinear local problem corresponding to s = 1, the study of singular elliptic

equations was initiated in the pioneering work [38] which constitutes the starting point of a

wide literature about singular semilinear elliptic equations. Let us start recalling the impor-

tant result of Lazer-McKenna [61]. Under regularity assumptions on Ω and if 0 < f ∈ Cα(Ω),

the authors obtained an optimal power related to the existence of finite energy solutions. In

fact, a solution lying in H1
0 (Ω) should exists if and only if γ < 3 while it is not in C1(Ω) if

γ > 1. The threshold 3 is analysed in [88] when the datum f is a positive L1 function defined

on Ω. In that paper [88], the authors provide an extension of the classical Lazer-McKenna ob-

struction. Existence and uniqueness results for (3.1) are obtained in [35] while in [26, 42] the

authors showed that (3.1) has a solution u for every f in L1(Ω) and for every γ > 0 and how

the regularity of this solution u depends on the summability of f and on γ. In the case where

the function f belongs to Lm(Ω) with m ≥ 1, Boccardo and Orsina [23] proved the existence

and regularity of a distributional solution u ∈ W 1,q
0 (Ω) where q =

Nm(γ + 1)

N −m(1− γ)
if 0 < γ < 1

and f ∈ Lm(Ω), 1 ≤ m <
( 2∗

1− γ

)′
, while u ∈ H1

0 (Ω) if f ∈ Lm(Ω) with m =
( 2∗

1− γ

)′
. In

the case where f ∈ L1(Ω), if γ = 1 then u ∈ H1
0 (Ω), while if γ > 1 then u ∈ H1

loc(Ω) and

u
γ+1
2 ∈ H1

0 (Ω). In connection with the problem studied in [23], uniqueness of finite energy

solutions was established in [22] where the main ingredient is the extension of the set of ad-

missible test functions. We will use the same idea in this case of fractional Laplacian. In [14]

the authors proved that if the non-negative function f ∈ Lm(Ω), m > 1, is strictly far away

from zero on Ω (that is there exists a positive constant f0 such that f ≥ f0 > 0 a.e. x ∈ Ω)
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then uα ∈ H1
0 (Ω) for every α ∈

(
(m+ 1)(γ + 1)

4m
,
γ + 1

2

]
if 1 < γ <

3m− 1

m+ 1
. Some related

existence and regularity results for local problems with singular nonlinearity involving reac-

tion or absorption terms are proved in [37, 65, 66]. Let us also mention the contributions in

[3, 33, 54, 59, 67, 69, 87] where related problems involving singular nonlinearities are consid-

ered. It is worth recalling here that singular local semilinear elliptic problems such as (3.1)

arise in various contexts of chemical heterogeneous catalysts [15], non-Newtonian fluids [48]

as well as heat conduction in electrically conducting materials (the term uγ describes the

resistivity of the material), see for instance [51, 64].

Let us now discuss the nonlocal problem (3.1). Recall first that a rich amount of research

work has been done on nonlocal problems of either elliptic or parabolic types, we refer for

instance to [5, 6, 7, 10, 62, 89]. Starting with the case γ = 0, the problem (3.1) with L1-data

was studied in [1, 34, 63] where a general fractional Laplacian operator including (−∆)s is

involved, while for bounded Radon measure data it was investigated in [55, 71]. In the case

where γ > 0, existence and regularity results of solutions to (3.1) were established in [10] when

the datum f is a Hölder continuous function and behaviours basically as
1

distβ(x, ∂Ω)
for some

β such that 0 ≤ β < 2s. Existence and uniqueness results for positive solutions of the problem

(3.1) have been also obtained in [18, 34]. It has been shown in [34] that (3.1) has a weak

solution u ∈ Xs
0(Ω), when 0 < γ ≤ 1 and f ∈ Lm(Ω) with m :=

2N

N + 2s+ γ(N − 2s)
, while

if γ > 1 and f ∈ L1(Ω) then (3.1) has a weak solution u ∈ Hs
loc(Ω) with u

γ+1
2 ∈ Xs

0(Ω). In

the same spirit, the existence of positive solutions have been also established in [18] according

to the range of γ > 0 and to the summability of f . Precisely, in that paper [18] it has been

proven that if γ ≤ 1 and f ∈ L(2∗s)′(Ω), 2∗s :=
2N

N − 2s
and (2∗s)

′ :=
2N

N + 2s
, then (3.1) has a

solution u ∈ Xs
0(Ω) ∩ L(γ+1)2∗s(Ω), while if γ > 1 and f ∈ L1(Ω) then (3.1) has a solution u

such that u
γ+1
2 ∈ Xs

0(Ω).

It is worth pointing out that the interest brought to the fractional Laplacian operator is due

to the wide range of its applications, for instance in thin obstacle problems [39], in crystal

dislocation [47] and in phase transition [83].

In the present paper, our aim is to lead investigations about the existence and regularity of

positive solutions to (3.1) establishing some missing results in [18, 34]. The case where γ = 1

is treated in [18, 34]. We study the case where 0 < γ < 1 and f ∈ Lm(Ω) with 1 ≤ m < m
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which provides infinite energy solutions (see Theorem 3.2.1 bellow) and we prove the existence

of finite energy solutions to problem (3.1) in the case γ > 1 under some suitable assumptions

on the datum f . Further, to show the accuracy of our results we highlight the relationship

with the Lazer-Mckenna condition. We also provide some regularity results for solutions as

well as the uniqueness of finite energy solutions.

3.2 Main results

We start with define the meaning we will give to the solution of the problem(3.1).

Definition 3.2.1. Let f ∈ L1(Ω) be a non-negative function. By a weak solution of the

problem (3.1), we mean a measurable function u satisfying

∀ω ⊂⊂ Ω, ∃cω > 0 : u(x) ≥ cω > 0, in ω (3.2)

and
a(N, s)

2

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fϕ

uγ
dx, (3.3)

for any ϕ ∈ C∞0 (Ω).

Definition 3.2.2. We say that u ∈ Xs
0(Ω) is a finite energy solution of (3.1) if it is a weak

solution u of problem (3.1) which further satisfies (3.3) for every ϕ ∈ Xs
0(Ω).

Remark 3.2.1. By Lemma 3.4.4, if u ∈ Xs
0(Ω) is a weak solution of problem (3.1) (in the

sense Definition 3.2.1), the u is a finite energy solution. In other words if u ∈ Xs
0(Ω) the two

definitions 3.2.1 and 3.2.2 are equivalent.

3.2.1 The case 0 < γ < 1 : Infinite energy solutions

We consider the problem (3.1) under the assumption 0 < γ < 1. We recall that in this

case it is proved in [34] that (3.1) has energy solutions when f ∈ Lm(Ω), where m stands

for the Hölder conjugate exponent of
2∗s

1− γ
, that is m :=

( 2∗s
1− γ

)′
=

2N

N + 2s+ γ(N − 2s)
.

It is in our purpose here to investigate the remaining range of summability of source terms

corresponding to the data f ∈ Lm(Ω) with 1 ≤ m < m. We show that the problem (3.1) has

solutions lying in a fractional Sobolev space larger than Hs
0(Ω).
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Theorem 3.2.1. Let 0 < γ < 1 and let f ∈ Lm(Ω), with 1 ≤ m < m. Then the problem (3.1)

admits a weak solution u ∈ W s1,q
0 (Ω) for all s1 < s with q =

Nm(1 + γ)

N − sm(1− γ)
. Furthermore,

u ∈ Lσ(Ω) where σ =
Nm(1 + γ)

N − 2sm
.

Remark 3.2.2. Note that q < 2 since m < m. Moreover, the exponent σ is well defined.

Indeed, since N > 2s we have

4ms < m(N + 2s) < m
(
N + 2s+ γ(N − 2s)

)
.

As m < m :=
2N

N + 2s+ γ(N − 2s)
, we get 4ms < 2N .

Remark 3.2.3. Observe that the inclusion W s1,q
0 (Ω) ⊂ W s2,q

0 (Ω) holds for any s2 < s1 (see

[45]). So we infer that it is sufficient to choose s1 very close to s that is
s

2− s
≤ s1 < s which

implies that the results in Theorem 3.2.1 recovers those already obtained in [23, Theorem 5.6]

when s→ 1.

Remark 3.2.4. Notice that if γ = 0 the problem (3.1) reduces to (−∆)su = f in Ω,

u = 0 on RN\Ω,
(3.4)

In [63] the authors proved the existence of a unique weak solution u of the problem (3.4) such

that

1. If f ∈ L1(Ω) then u ∈ Lq(Ω) for every q <
N

N − 2s
.

2. If f ∈ Lm(Ω), with 1 < m <
2N

N + 2s
, then u ∈ L

Nm
N−2sm (Ω).

We point out that when 1 < m < m we have a kind of ’continuity’ of the summability of the

solution with respect to γ. If we let γ → 0, the value of σ =
Nm(1 + γ)

N − 2sm
tends to

Nm

N − 2sm
which is exactly the summability of solutions obtained in [63]. However, this ’continuity’ fails

to hold when m = 1 since σ =
N(1 + γ)

N − 2s
tends to

N

N − 2s
but the solutions obtained in [63]

belong to Lq(Ω) for every q <
N

N − 2s
. In fact, the case where γ = 0 can not be considered,

this is mainly due to the inequality (3.20) where we divide by γ.
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3.2.2 The case γ > 1 : Finite energy solutions

Let us recall that Lazer and McKenna [61] proved that the problem −∆u =
f(x)

uγ
in Ω,

u = 0 on ∂Ω,
(3.5)

where the datum f is regular enough (say Hölder continuous) and bounded away from zero

on Ω, admits a unique solution u ∈ H1
0 (Ω) if and only if γ < 3 . In the case where f is a

non-negative function such that f ∈ Lm(Ω) with m > 1 and strictly far away from zero on Ω,

the authors [14] proved that if 1 < γ <
3m− 1

m+ 1
then u ∈ H1

0 (Ω). As regards the case where

the datum f ∈ L1(Ω), the problem 3.5 has only a local solution u ∈ H1
loc(Ω) which does not

belong to H1
0 (Ω) (see [23, Theorem 4.2]). In the case of the fractional Laplacian operator,

J.Giacomoni et al.[10] studied the following problem
(−∆)su =

f(x)

uγ
in Ω,

u > 0 in Ω,

u = 0 in RN \ Ω,

(3.6)

where f is a Hölder continuous function such that f ' 1

distβ(x, ∂Ω)
, with 0 ≤ β < 2s. They

proved that if
β

s
+ γ > 1 then the problem (3.6) admits a unique solution u ∈ Xs

0(Ω) if and

only if 2β+γ(2s−1) < 2s+1. This last inequality implies γ(2s−1) < 2s+1. So that letting

s tends to 1− one can find γ < 3 which is exactly the Lazer-Mckenna condition.

In this section, we investigate the existence of finite energy solutions for (3.1) when γ > 1 and

f ∈ Lm(Ω), with m ≥ 1. We impose some assumptions on the datum f and γ that provide

solutions for (3.1) in Xs
0(Ω). The first result deals with data f strictly far away from zero.

Theorem 3.2.2. Let γ > 1 and s ∈ (0, 1). Assume that f ∈ Lm(Ω), m > 1, is such

that there exists a positive constant f0 satisfying f(x) ≥ f0 > 0 a.e. x ∈ Ω. Then the

problem (3.1) admits a weak solution u ∈ Hs
loc(Ω) such that uα ∈ Xs

0(Ω) for every α ∈(
max

(1

2
,
(γ + 1)(2sm−m+ 1)

4sm

)
,
γ + 1

2

]
. In particular if γ satisfies

(m(2s− 1) + 1)γ < m(2s+ 1)− 1, (3.7)

then u ∈ Xs
0(Ω).
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Remark 3.2.5. Observe that from (3.7) we get max
(1

2
,
(γ + 1)(2sm−m+ 1)

4sm

)
< 1 <

γ + 1

2
, so that α = 1 can be chosen to obtain u ∈ Xs

0(Ω). Furthermore, notice that for

every m > 1 (3.7) reads as

γ(2s− 1) +
γ

m
< 2s+ 1− 1

m
,

which implies γ(2s− 1) < 2s+ 1 and this is exactly the necessary and sufficient condition for

the existence of the unique solution in Xs
0(Ω) obtained in [10, Theorem 1.2 ii)] when β = 0.

We also observe that when s tends to 1−, the condition (3.7) yields 1 < γ <
3m− 1

m+ 1
and

therefore Theorem 3.2.2 reduces to the same result stated in [14, Theorem 3]. Furthermore,

letting m tends to +∞ in the last inequality we get 1 < γ < 3, which can be seen as an

extension of the Lazer-Mckenna condition [61] for obtaining finite energy solutions to strictly

positive L∞-data.

Remark 3.2.6. In the local case corresponding to s = 1, it is known that the threshold
3m− 1

m+ 1
obtained in [14, Theorem 3] is not the optimal one. Using [88, Theorem 1], Oliva

and Petitta [67] proved that the optimal threshold is 3− 2

m
. For the nonlocal problem (3.1),

the situation is somehow different. Notice that for m > 1 if
m− 1

2m
< s < 1 then (3.7) reads

as

γ < h(s) :=
m(2s+ 1)− 1

m(2s− 1) + 1
.

The optimality is lost since s is varying, however we can obtain more information. Observe

that the function h decreases from infinity to
3m− 1

m+ 1
as

m− 1

2m
< s < 1. Setting s̄ := 1− 1

2m
,

one has
m− 1

2m
< s̄ < 1 and h(s̄) = 3 − 2

m
. Thus, for s < s̄ we have h(s̄) = 3 − 2

m
< h(s).

On the other hand, if 0 < s ≤ m− 1

2m
then (3.7) is satisfied for every γ > 1. We conclude

that the range of γ is wide than the one of the local case.

We point out that we can avoid the hypothesis that the source term f is far from zero and

we continue to obtain energy solutions. This is stated in the following theorem.

Theorem 3.2.3. Let γ > 1 and s ∈ (0, 1). Suppose that f ∈ Lm(Ω) with m > 1. Then the

problem (3.1) admits a weak solution u ∈ Hs
loc(Ω) such that uα ∈ Xs

0(Ω) for every

α ∈
(

max
(1

2
,
sm(γ + 1)−m+ 1

2sm

)
,
γ + 1

2

]
. In particular, if 1 < γ < 1 +

m− 1

sm
then

u ∈ Xs
0(Ω).
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Here again, letting s tends to 1− and m tends to +∞ we obtain 1 < γ < 2 which is a

restriction of the Lazer-Mckenna condition to positive Lm-data, m > 1. Notice that the case

where m = 1 can not be considered in the two last theorems, since the range of α will be

empty. However, if we consider data f ∈ L1(Ω) with compact support in Ω we can also obtain

an energy solution. This is stated in the following theorem.

Theorem 3.2.4. Let γ > 1 and s ∈ (0, 1). Suppose that f ∈ L1(Ω) with compact support

in Ω. Then the problem (3.1) admits a weak solution u ∈ Hs
loc(Ω) such that uα ∈ Xs

0(Ω) for

every α ∈
(

1

2
,
γ + 1

2

]
. In particular, u ∈ Xs

0(Ω).

We point out that the Lazer-Mckenna condition vanishes when we deal with positive L1-data

having compact support.

3.2.3 Uniqueness of finite energy solutions

As mentioned in the introduction, the existence of weak solutions for the problem (3.1) lying

Xs
0(Ω) has been proved in [34, Theorem 3.2] when 0 < γ ≤ 1 and f ∈ Lm(Ω). In the case

where γ > 1, the existence of a weak solution u ∈ Xs
0(Ω) to the problem (3.1) is obtained in

the previous theorems 3.2.2, 3.2.3 and 3.2.4. In the following theorem we prove the uniqueness

of finite energy solutions to the problem (3.1).

Theorem 3.2.5. Let γ > 0 and s ∈ (0, 1). Let 0 < f ∈ L1(Ω) be such that the problem

(3.1) admits a finite energy solution u ∈ Xs
0(Ω) (in the sense of Definition 3.2.2). Then u is

unique.

3.3 Proof of main results

3.3.1 Approximated Problems

Consider the sequence of approximate problems
(−∆)sun =

fn
(un + 1

n
)γ

in Ω,

un > 0 in Ω,

un = 0 on RN\Ω,

(3.8)



3.3. PROOF OF MAIN RESULTS 67

where fn = min(f, n). The following results are proved in [18].

Lemma 3.3.1. ([18, Lemma 3.1]) For each integer n ∈ N, the problem (3.8) admits a non-

negative solution un ∈ Xs
0(Ω) ∩ L∞(Ω) in the sense

a(N, s)

2

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fnϕ

(un + 1
n
)γ
dx,

for every ϕ ∈ Xs
0(Ω).

Lemma 3.3.2. ([18, Lemma 3.2]) The sequence {un}n∈N is an increasing and for every subset

ω ⊂⊂ Ω, there exists a positive constant cω, not depending on n, such that

un(x) ≥ cω > 0, for every x ∈ ω and for every n ∈ N.

Lemma 3.3.3. Let γ > 1, f ∈ L1(Ω) and let un ∈ Xs
0(Ω) ∩ L∞(Ω) be a solution of the

problem (3.8). Then the sequence {un} is uniformly bounded in Hs
loc(Ω).

Proof. Taking uγn a test function in (3.8), we obtain∫
Q

(un(x)− un(y))(uγn(x)− uγn(y))

|x− y|N+2s
dydx ≤

2‖f‖L1(Ω)

a(N, s)
. (3.9)

An application of the item i) in Lemma 1.3.3 yields

∫
Q

∣∣∣u γ+1
2

n (x)− u
γ+1
2

n (y)
∣∣∣2

|x− y|N+2s
dydx ≤ (γ + 1)2

2γa(N, s)
‖f‖L1(Ω).

Then by the Sobolev inequality (1.2.1) we get∫
Ω

|un(x)|
(γ+1)

2
2∗sdx ≤

(
S(N, s)

(γ + 1)2

2γa(N, s)

) N
N−2s‖f‖

N
N−2s

L1(Ω).

As
(γ + 1)

2
2∗s > 2, the sequence {un}n is uniformly bounded in L2(Ω). On the other hand,

let ω be a compact subset of Ω. Applying the item v) in Lemma 1.3.3 (recall that γ > 1) and

Lemma 3.3.2 in the left-hand side of the inequality (3.9), we obtain∫
Q

|un(x)− un(y)||uγn(x)− uγn(y)|
|x− y|N+2s

dydx

≥ 1

Cγ

∫
Ω

∫
Ω

|un(x)− un(y)|2|un(x) + un(y)|γ−1

|x− y|N+2s
dydx

≥ 1

Cγ

∫
ω

∫
ω

|un(x)− un(y)|2|un(x) + un(y)|γ−1

|x− y|N+2s
dydx

≥ 1

Cγ
(2cω)γ−1

∫
ω

∫
ω

|un(x)− un(y)|2

|x− y|N+2s
dydx.

This shows that {un}n is uniformly bounded in Hs
loc(Ω).
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Now, let φ ∈ Xs
0(Ω) ∩ L∞(Ω) be the solution (see [63]) of the following problem (−∆)sφ = 1 in Ω,

φ = 0 on RN\Ω.
(3.10)

In order to prove Theorem 3.2.2, we shall prove the following comparison result for the

approximate solutions un. In the proof of this comparison result, we use Lemma 2.7 and

Lemma 2.9 of [73], which require that Ω is a bounded domain which satisfies the condition

of the ball. Such a condition is equivalent (see [11, Lemma 2.2]) to say that Ω is a bounded

domain of class C1,1.

Lemma 3.3.4. (Comparison result) Let γ > 1, θ ∈ (1, 2) and let un be a solution of the

problem (3.8). Then there exists a positive constant T not depending on n such that

un ≥ un :=

[
Tφθ +

1

n
1+γ
2

] 2
1+γ

− 1

n
. (3.11)

Proof. We shall prove that there exists a sub-solution un of the approximate problem (3.8),

that is 
(−∆)sun ≤

fn
(un + 1

n
)γ

in Ω,

un > 0 in Ω,

un = 0 on RN\Ω,

(3.12)

such that un ≥ un. Let un := ψ
2

1+γ
n (x)− 1

n
, where we have set ψn = Tφθ +

1

n
1+γ
2

and T > 0 is

a constant not depending on n and that will be chosen later. We will show that un satisfies

(3.12). Applying the inequality (3.36) with F (t) = t
2

1+γ yields

(−∆)sun(x) = (−∆)s
(
ψ

2
γ+1
n − 1

n

)
(x) = (−∆)s(F ◦ ψn)(x)

≤ F ′(ψn(x))(−∆)sψn(x)− a(N, s)(γ + 1)T 2

2
F ′′(ψn(x))

∫
RN

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy

=
2T

1 + γ
ψ

1−γ
1+γ
n (x)(−∆)s(φθ(x)) +

(γ − 1)T 2

(γ + 1)ψ
2γ
1+γ
n (x)

a(N, s)

∫
RN

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy.

Since θ > 1, the function g(t) = tθ, t > 0, is convex so that one has the identity g(t)− g(t′) ≤

g′(t)(t− t′) which holds true for every t′, t. Using the fact that φ solves (3.10), we get

(−∆)s(φθ(x)) ≤ θφθ−1(x)(−∆)s(φ(x)) = θφθ−1(x), for every x ∈ Ω.
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Then, for every x ∈ Ω we get

(−∆)sun(x)

≤ T

ψ
2γ
1+γ
n (x)

(
2θ

1 + γ
ψn(x)φθ−1(x) +

(γ − 1)T

γ + 1
a(N, s)

∫
RN

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy

)
.

(3.13)

On the other hand, let BR be an open ball with radius R > 0 such that Ω ⊂ BR and set

d1 := dist(∂Ω, ∂BR) > 0. For every x ∈ Ω, we can write∫
RN

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy =

∫
BR\Ω

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy +

∫
RN\BR

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy

+

∫
Ω

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy

= I1(x) + I2(x) + I3(x).

We start by estimating the first integral I1. Since Ω is a bounded domain of class C1,1, by

[73, Lemma 2.7] there exists a positive constant C1, depending only on Ω and s, such that

|φ(x)| ≤ C1δ
s(x) for all x ∈ Ω, where δ(x) := dist(x, ∂Ω). Whence, we get

I1(x) =

∫
BR\Ω

|φθ(x)|2

|x− y|N+2s
dy ≤ C2θ

1

∫
BR\Ω

|δsθ(x)|2

|x− y|N+2s
dy.

Note that for (x, y) ∈ Ω× BR\Ω, we have δ(x) ≤ |x− y|. Thus, we can write passing to the

polar coordinates

I1(x) ≤ C2θ
1

∫
BR\Ω

dy

|x− y|N−2s(θ−1)
dy

≤ C2θ
1

∫
{0≤|z|≤2R}

dz

|z|N−2s(θ−1)

= C2θ
1 |SN−1|

∫ 2R

0

r2s(θ−1)−1dr = C ′1,

with C ′1 =
(2R)2s(θ−1)C2θ

1 |SN−1|
2s(θ − 1)

, where from now on |SN−1| stands for the Lebesgue measure

of the unit sphere in RN . For the second integral I2(x), noticing that

|x− y| ≥ d1 := dist(∂Ω, ∂BR) > 0 for every (x, y) ∈ Ω× (RN\BR),

we can estimate I2 as follows

I2(x) =

∫
RN\BR

|φθ(x)|2

|x− y|N+2s
dy

≤ ‖φ‖2θ
L∞(Ω)

∫
|z|≥d1

dz

|z|N+2s
dy

= ‖φ‖2θ
L∞(Ω)|SN−1|

∫ +∞

d1

dr

r2s+1
= C ′2,
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where C ′2 = ‖φ‖2θ
L∞(Ω)

|SN−1|
2sd2s

1

. We now turn to estimate I3(x). Combining iii) et iv) of Lemma

1.3.3, we obtain

|φθ(x)− φθ(y)|2 ≤ 2θ2|φ(x)− φ(y)|2θ + 8θ2φ2(θ−1)(x)|φ(x)− φ(y)|2. (3.14)

By [73, Lemma 2.9] the function φ is Cβ(Ω) for all β ∈ (0, 2s). In particular and in what

follows we make the choice β ∈ (s,min(1, sθ)). Furthermore, there exists a constant C3 > 0,

depending on Ω, s and β, such that for every x ∈ Ω

|φ(x)− φ(y)| ≤ C3|x− y|β
(
δ(x)

2

)s−β
, (3.15)

for every y ∈ B δ(x)
2

(x), where B δ(x)
2

(x) stands for the open ball of radius
δ(x)

2
centered at x

with δ(x) := dist(x, ∂Ω). Now, using (3.14) we can write for every x, y ∈ Ω

I3(x) =

∫
Ω

|φθ(x)− φθ(y)|2

|x− y|N+2s
dy ≤ 2θ2

∫
Ω

|φ(x)− φ(y)|2θ

|x− y|N+2s
dy

+8θ2

∫
Ω

φ2(θ−1)(x)|φ(x)− φ(y)|2

|x− y|N+2s
dy.

Splitting the second integral on the right-hand side, we obtain

I3(x) ≤ 2θ2

∫
Ω

|φ(x)− φ(y)|2θ

|x− y|N+2s
dy

+8θ2

∫
{y∈Ω:|x−y|≥ δ(x)

2
}

φ2(θ−1)(x)|φ(x)− φ(y)|2

|x− y|N+2s
dy

+8θ2

∫
{y∈Ω:|x−y|< δ(x)

2
}

φ2(θ−1)(x)|φ(x)− φ(y)|2

|x− y|N+2s
dy

:= J1(x) + J2(x) + J3(x).

We shall estimate J1(x), J2(x) and J3(x). For J1(x), we note that by [73, Proposition 1.1]

we have φ ∈ Cs(RN). In addition, there exists a positive constant c3 such that for every x,

y ∈ RN , |φ(x)− φ(y)| ≤ c3|x− y|s. Thus,

J1(x) ≤ 2θ2c2θ
3

∫
Ω

dy

|x− y|N−2s(θ−1)
dy.
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We calculate the integral using the change of variable z = x− y. We have∫
Ω

dy

|x− y|N−2s(θ−1)

=

∫
Ω∩|x−y|>1

dy

|x− y|N−2s(θ−1)
+

∫
Ω∩|x−y|≤1

dy

|x− y|N−2s(θ−1)

≤ |Ω|+
∫
|z|≤1

dz

|z|N−2s(θ−1)
= |Ω|+ |SN−1|

2s(θ − 1)
.

(3.16)

Thus, we obtain

J1(x) ≤ 2θ2c2θ
3

(
|Ω|+ |SN−1|

2s(θ − 1)

)
.

For J2 we use the fact that φ ∈ Cs(RN) and |φ(x)| ≤ C1δ
s(x) for all x ∈ Ω. By (3.16) we get

J2(x) ≤ 8θ2c2
3

(
2sC1

)2(θ−1)
∫

Ω

dy

|x− y|N−2s(θ−1)

≤ 8θ2c2
3

(
2sC1

)2(θ−1)
(
|Ω|+ |SN−1|

2s(θ − 1)

)
.

While for J3(x) we use (3.15) and |φ(x)| ≤ C1δ
s(x) for all x ∈ Ω. We arrive at

J3(x) ≤ 8θ2
(
2β−sCθ−1

1 C3

)2
∫
{y∈Ω:|x−y|< δ(x)

2
}

δ2(sθ−β)(x)

|x− y|N−2(β−s)dy.

The fact that β ∈ (s,min(1, sθ)) and that Ω is bounded, enables us to get

J3(x) ≤

8θ2
(
2β−sCθ−1

1 C3

)2(
diam(Ω)

)2(sθ−β)
∫
{y∈Ω:|x−y|< δ(x)

2
}

dy

|x− y|N−2(β−s)

≤ 4θ2
(
2β−sCθ−1

1 C3

)2(
diam(Ω)

)2s(θ−1) |SN−1|
β − s

,

where diam(Ω) stands for the diameter of Ω. Finally, there exists a constant C ′3 > 0 depending

on Ω, R, N , s, θ and β, such that

I3(x) ≤ C ′3.

Let T0 = min(1, f0) and let us choose T small enough such that

0 < T

[
2θ

1 + γ

(
T‖φ‖θL∞(Ω) + 1)

)
‖φ‖θ−1

L∞(Ω) +
3(γ − 1)T

γ + 1
a(N, s) max(C ′1, C

′
2, C

′
3)

]
≤ T0.

Going back to (3.13), we deduce that for every x ∈ Ω

(−∆)sun(x) ≤ T0

ψ
2γ
1+γ
n (x)

,
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which yields

(−∆)sun(x) ≤ fn(x)

(un + 1
n
)γ
.

Thus, un is a sub-solution of (3.8). Now, we prove that un(x) ≥ un(x) for every x ∈ Ω.

Assume by contradiction that there exists ξ ∈ Ω such that

un(ξ) < un(ξ). (3.17)

Then we have

(−∆)s(un − un)(ξ) = (−∆)sun(ξ)− (−∆)sun(ξ)

≥ fn(ξ)

[
1

(un(ξ) + 1
n
)γ
− 1

(un(ξ) + 1
n
)γ

]
> 0.

It follows from the weak maximum principle [81] that (un − un)(ξ) ≥ 0, which contradicts

(3.17). Therefore, we have

un(x) +
1

n
≥ ψ

2
1+γ
n (x) =

[
Tφθ(x) +

1

n
1+γ
2

] 2
1+γ

.

3.3.2 The case 0 < γ < 1 : Proof of Theorem 3.2.1

In order to prove the existence of solutions for the problem (3.1), we first need to prove some

a priori estimates on un.

3.3.2.1 A priori estimates

Lemma 3.3.5. Let f ≥ 0, f ∈ Lm(Ω), with 1 ≤ m < m :=
2N

N + 2s+ γ(N − 2s)
, and un be

a solution of the problem (3.8). If 0 < γ < 1, then {un} is uniformly bounded in W s1,q
0 (Ω) for

all s1 < s, where q =
Nm(1 + γ)

N − sm(1− γ)
. Moreover, {un} is uniformly bounded in Lσ(Ω), where

σ =
Nm(1 + γ)

N − 2sm
.

Proof. Let n ∈ N, n ≥ 1, and let γ ≤ θ < 1 to be chosen later. Let 0 < ε <
1

n
. By [63,

Proposition 3.], the function (un + ε)θ − εθ is an admissible test function in (3.8). Taking it
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so, it yields ∫
Ω

∫
Ω

(un(x)− un(y))((un(x) + ε)θ − (un(y) + ε)θ)

|x− y|N+2s
dydx

≤ 2

a(N, s)

∫
Ω

fn(un(x) + ε)θ−γdx.

Passing to the limit as ε tends to 0, we obtain∫
Ω

∫
Ω

(un(x)− un(y))(uθn(x)− uθn(y))

|x− y|N+2s
dydx ≤ 2

a(N, s)

∫
Ω

fnun(x)θ−γdx. (3.18)

By the item i) of Lemma 1.3.3, we can minimize the term in the left-hand side of (3.18) as

follows ∫
Ω

∫
Ω

∣∣∣u θ+1
2

n (x)− u
θ+1
2

n (y)
∣∣∣2

|x− y|N+2s
dydx ≤ (θ + 1)2

2a(N, s)θ

∫
Ω

fnu
θ−γ
n dx.

Applying the fractional Sobolev inequality, we obtain∫
Ω

|un(x)|
N(θ+1)
N−2s dx ≤

[
S(N, s)(θ + 1)2

2a(N, s)θ

] N
N−2s

[ ∫
Ω

fnu
θ−γ
n dx

] N
N−2s

. (3.19)

• If m = 1, then the choice θ = γ gives∫
Ω

|un(x)|
N(γ+1)
N−2s dx ≤

[
S(N, s)(γ + 1)2

2a(N, s)γ

] N
N−2s

‖f‖
N

N−2s

L1(Ω). (3.20)

• While if 1 < m < m and γ < θ < 1, an application of Hölder’s inequality in the right-hand

side term of (3.19) with the exponents m and m′ :=
m

m− 1
, gives

∫
Ω

|un(x)|
N(θ+1)
N−2s dx ≤[

S(N, s)(θ + 1)2

2a(N, s)θ

] N
N−2s

‖f‖
N

N−2s

Lm(Ω)

(∫
Ω

|un|(θ−γ)m′dx

) N
m′(N−2s)

.

(3.21)

We now choose θ to be such that
N(θ + 1)

N − 2s
= (θ − γ)m′, that is

θ =
N(m− 1) + γm(N − 2s)

N − 2sm
.

Observe that the assumption m < m implies θ < 1 and since γ > 0 we have γ < θ. This

choice of θ yields
N(θ + 1)

N − 2s
=
Nm(1 + γ)

N − 2sm
= σ.
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Noticing that
N

m′(N − 2s)
< 1 and using (3.21) we deduce the following inequality

∫
Ω

|un(x)|
Nm(1+γ)
N−2sm dx ≤

[
S(N, s)(θ + 1)2

2a(N, s)θ

] Nm
N−2sm

‖f‖
Nm

N−2sm

Lm(Ω) . (3.22)

Thus, from (3.20) and (3.22) we conclude that the sequence {un}n is uniformly bounded in

Lσ(Ω) for σ =
Nm(1 + γ)

N − 2sm
and 1 ≤ m < m.

Now, going back to the inequality (3.18) and following exactly the same lines as above, that

is if m = 1 we choose θ = γ while if 1 ≤ m < m we choose θ =
N(m− 1) + γm(N − 2s)

N − 2sm
< 1.

In both cases, applying the Hölder inequality we obtain∫
Ω

∫
Ω

(un(x)− un(y))(uθn(x)− uθn(y))

|x− y|N+2s
dydx ≤ C, (3.23)

where C is a positive constant not depending on n. Let s1 ∈ (0, s) be fixed and let q =
Nm(1 + γ)

N − sm(1− γ)
. We set θ =

N(m− 1) + γm(N − 2s)

N − 2sm
for 1 ≤ m < m (we note that θ = γ if

m = 1). We note that q ≥ m(1 + γ) > 1 and the assumption m < m implies q < 2. Thus,

observe that N + qs1 can be splitted as follows

N + qs1 =
q

2
N + qs+

2− q
2

N − q(s− s1).

Hence, setting Ω̃ :=
{
y ∈ Ω : un(y) 6= un(x)

}
we can write∫

Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx =

∫
Ω

∫
Ω̃

|un(x)− un(y)|q

|x− y| q2N+qs
× (uθn(x)− uθn(y))

(un(x)− un(y))

×(un(x)− un(y))

(uθn(x)− uθn(y))
× dydx

|x− y| 2−q2 N−q(s−s1)
.

Observe that the quantity in the middle of the product inside the integral can be written as

follows
(uθn(x)− uθn(y))

(un(x)− un(y))
=

(
(uθn(x)− uθn(y))

(un(x)− un(y))

) q
2

×
(

(uθn(x)− uθn(y))

(un(x)− un(y))

) 2−q
2

,

we obtain∫
Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx

=

∫
Ω

∫
{y∈Ω:un(y)6=un(x)}

[
|un(x)− un(y)|q

|x− y| q2N+qs
×
(

(uθn(x)− uθn(y))

(un(x)− un(y))

) q
2
]

×
[(

(uθn(x)− uθn(y))

(un(x)− un(y))

) 2−q
2

× (un(x)− un(y))

(uθn(x)− uθn(y))
× 1

|x− y| 2−q2 N−q(s−s1)

]
dydx.
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Now using Hölder’s inequality with the exponents
2

q
and

2

2− q
, we obtain∫

Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx

≤
[ ∫

Ω

∫
Ω̃

|un(x)− un(y)|2

|x− y|N+2s
× |u

θ
n(x)− uθn(y)|
|un(x)− un(y)|

dydx

] q
2

×
[ ∫

Ω

∫
Ω̃

(uθn(x)− uθn(y))

(un(x)− un(y))
×
(

(un(x)− un(y))

(uθn(x)− uθn(y))

) 2
2−q

× dydx

|x− y|N−β

] 2−q
2

=

[ ∫
Ω

∫
Ω̃

|un(x)− un(y)|2

|x− y|N+2s
× |u

θ
n(x)− uθn(y)|
|un(x)− un(y)|

dydx

] q
2

×
[ ∫

Ω

∫
Ω̃

(
(un(x)− un(y))

(uθn(x)− uθn(y))

) 2
2−q

× (uθn(x)− uθn(y))

(un(x)− un(y))
× dydx

|x− y|N−β

] 2−q
2

,

(3.24)

where we have set β =
2q(s− s1)

2− q
. Then,∫

Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx ≤(∫

Ω

∫
Ω

(un(x)− un(y))(uθn(x)− uθn(y))

|x− y|N+2s
dydx

) q
2

×
(∫

Ω

∫
Ω̃

(
un(x)− un(y)

uθn(x)− uθn(y)

) q
2−q

× dydx

|x− y|N−β

) 2−q
2

.

Using the item ii) of Lemma 1.3.3 and the inequality (3.23), we obtain∫
Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx ≤

C1

(∫
Ω

∫
Ω

(
u
q(1−θ)
2−q

n (x) + u
q(1−θ)
2−q

n (y)

)
× dydx

|x− y|N−β

) 2−q
2

,

where C1 is a positive constant not depending on n. By x/y symmetry, there exists a constant

C2, not depending on n, such that∫
Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx ≤ C2

(∫
Ω

u
q(1−θ)
2−q

n (x)

[ ∫
Ω

dy

|x− y|N−β

]
dx

) 2−q
2

.

Observing that
q(1− θ)

2− q
= σ :=

Nm(1 + γ)

N − 2s
and having in mind (3.16) we get∫

Ω

∫
Ω

|un(x)− un(y)|q

|x− y|N+qs1
dydx ≤ C3,

where C3 is a positive constant not depending on n. Thus, {un} is uniformly bounded in

W s1,q
0 (Ω) for every s1 < s.
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Remark 3.3.1. Note that we can repeat the same lines as in the proof of Lemma 3.3.5 above

with the exponent q instead of q in (3.24), with 1 ≤ q ≤ q. We obtain that {un} is uniformly

bounded in W s1,q
0 (Ω) for all 1 ≤ q ≤ q and for every s1 < s and 1 ≤ m < m.

3.3.2.2 Passage to the limit

Now, under the assumptions of Theorem 3.2.1, we are going to prove the existence of solution

u to (3.1).

Proof. of Theorem 3.2.1.

From Lemma 3.3.5 and by the compact embedding of W s1,q
0 (Ω) into L1(Ω) (see [45, Corollary

7.2] or [44, Theorem 4.54]), there exist a subsequence of {un}n, still indexed by n, and a

measurable function u ∈ W s1,q
0 (Ω) such that

un ⇀ u weakly in W s1,q
0 (Ω),

un → u in norm in L1(Ω),

un → u a.e. in RN .

Then
un(x)− un(y)

|x− y|N+2s
→ u(x)− u(y)

|x− y|N+2s
a.e. in Q.

Let ρ > 0 be a small enough real number that we will choose later. For any ϕ ∈ C∞0 (Ω) we

have ∫
Ω

∫
Ω

[
|(un(x)− un(y))(ϕ(x)− ϕ(y))|

|x− y|N+2s

]1+ρ

dydx

≤
∫

Ω

∫
Ω

|un(x)− un(y)|1+ρ(‖∇ϕ‖L∞(Ω)|x− y|)1+ρ

|x− y|N+(1+ρ)s1

dydx

|x− y|ρN+(1+ρ)(2s−s1)

≤ ‖∇ϕ‖1+ρ
L∞(Ω)

∫
Ω

∫
Ω

|un(x)− un(y)|1+ρ|x− y|(1+ρ)(1+s1−2s)−ρN

|x− y|N+(1+ρ)s1
dydx.

We now choose ρ to be such that (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0. To do so, we consider s1 to

be very close of s. Precisely, we impose on s1 the condition

max(0, 1− 3s) < s− s1 < 1− s.

We point out that with this range of values of s1 and with the assumption N > 2s, we obtain

1 + s1 − 2s > 0 and N − 1− s1 + 2s > 0.
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Thus, the fact that (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0 is equivalent to 0 < ρ ≤ 1 + s1 − 2s

N − 1− s1 + 2s
.

Therefore, we have∫
Ω

∫
Ω

[
|(un(x)− un(y))(ϕ(x)− ϕ(y))|

|x− y|N+2s

]1+ρ

dydx

≤ ‖∇ϕ‖1+ρ
L∞(Ω)diam(Ω)(1+ρ)(1+s1−2s)−ρN

∫
Ω

∫
Ω

|un(x)− un(y)|1+ρ

|x− y|N+(1+ρ)s1
dydx.

(3.25)

Now we have to make a choice of ρ to prove that the right-hand integral in (3.25) is uni-

formly bounded. By Remark 3.3.1 we have the uniform boundedness of {un}n in W s1,q
0 (Ω)

for every 1 ≤ q ≤ q =
Nm(1 + γ)

N − sm(1− γ)
. So it is sufficient to choose ρ such that

1 + ρ ≤ q =
Nm(1 + γ)

N − sm(1− γ)
. Thus, the choice we need for ρ is the following

0 < ρ ≤ min
(N(m− 1) +mγ(N − s) + sm

N − sm(1− γ)
,

1 + s1 − 2s

N − 1− s1 + 2s

)
.

Therefore, there is a constant C > 0, not depending on n, such that

sup
n

∫
Ω

∫
Ω

[
(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

]1+ρ

dydx ≤ C.

Finally, by De La Vallée Poussin and Dunford-Pettis theorems the sequence{(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

}
is equi-integrable in L1(Ω× Ω). Now, inserting ϕ ∈ C∞0 (Ω) as a test function in (3.8) yields

a(N, s)

2

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fnϕ

(un + 1
n
)γ
dx. (3.26)

We split the integral in the left-hand side of (3.26) into three integrals as follows∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
Ω

∫
Ω

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
Ω

∫
CΩ

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
CΩ

∫
Ω

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

= I1 + I2 + I3.

(3.27)



78 CHAPTER 3. NONLOCAL SEMILINEAR ELLIPTIC PROBLEMS WITH SINGULAR NONLINEARITY

By Vitali’s lemma we have

lim
n→∞

∫
Ω

∫
Ω

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
Ω

∫
Ω

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

For the second integral I2 in (3.27), we start noticing that since un(y) = ϕ(y) = 0 for every

y ∈ CΩ we can write∣∣∣(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s

∣∣∣ =
|un(x)ϕ(x)|
|x− y|N+2s

for every (x, y) ∈ Ω× CΩ.

As a consequence of the convergence in norm of the sequence {un} in L1(Ω) there exist a

subsequence of {un} still indexed by n and a positive function g in L1(Ω) such that

|un(x)| ≤ g(x) a.e. in Ω,

which enables us to get

|(un(x)− un(y))(ϕ(x)− ϕ(y))|
|x− y|N+2s

≤ |g(x)ϕ(x)|
|x− y|N+2s

a.e. in (x, y) ∈ Ω× CΩ

and so we can write∫
Ω

∫
CΩ

|g(x)ϕ(x)|
|x− y|N+2s

dydx =

∫
supp(ϕ)

∫
CΩ

|g(x)ϕ(x)|
|x− y|N+2s

dydx

≤ ‖ϕ‖L∞(Ω)

∫
supp(ϕ)

|g(x)|
[ ∫
CΩ

dy

|x− y|N+2s

]
dx.

Since supp(ϕ) is a compact subset in Ω, we have

|x− y| ≥ d2 := dist(supp(ϕ), ∂Ω) > 0 for every (x, y) ∈ supp(ϕ)× CΩ.

Hence passing to the polar coordinates, an easy computation leads to∫
CΩ

dy

|x− y|N+2s
=

∫
{z∈RN :|z|≥d2}

dz

|z|N+2s
=

∫ +∞

d2

∫
v=1

dvdr

r2s+1
=
|SN−1|
2sd2s

2

.

This shows that the function (x, y)→ |g(x)ϕ(x)|
|x− y|N+2s

belongs to L1(Ω× CΩ). Therefore, by the

Lebesgue dominated convergence theorem we obtain

lim
n→∞

∫
Ω

∫
CΩ

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
Ω

∫
CΩ

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.
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By x/y symmetry, the third integral I3 in (3.27) can be treated in the similar way. Finally,

we conclude that

lim
n→∞

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx,

for all ϕ ∈ C∞0 (Ω). Now, for what concerns the right-hand side of (3.26), by virtue of Lemma

3.3.2, for any ϕ ∈ C∞0 (Ω) with supp(ϕ) = ω, there exists a constant cω > 0 not depending on

n such that

0 ≤
∣∣∣∣ fnϕ

(un + 1
n
)γ

∣∣∣∣ ≤ |f‖ϕ|cγω
∈ L1(Ω).

So that by the Lebesgue dominated convergence theorem we get

lim
n→∞

∫
Ω

fnϕ

(un + 1
n
)γ
dx =

∫
Ω

fϕ

uγ
dx.

Finally, passing to the limit in (3.26) as n→ +∞ we obtain

a(N, s)

2

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fϕ

uγ
dx,

for all ϕ ∈ C∞0 (Ω). That is u is a weak solution of (3.1). Furthermore, from (3.20) and (3.22)

we conclude by Fatou’s lemma that u ∈ Lσ(Ω) with σ =
Nm(1 + γ)

N − 2sm
and 1 ≤ m < m.

3.3.3 The case γ > 1 : Proof of Theorem 3.2.2

3.3.3.1 A priori estimates

Lemma 3.3.6. Let 0 < f0 ≤ f ∈ Lm(Ω), m > 1, where f0 is a positive constant. Let γ > 1,

s ∈ (0, 1) and let un be a solution of the problem (3.8). Then the sequence {uαn}n is uniformly

bounded in Xs
0(Ω) for every α ∈

(
max

(1

2
,
(γ + 1)(2sm−m+ 1)

4sm

)
,
γ + 1

2

]
. Furthermore, if

γ satisfies (
m(2s− 1) + 1

)
γ < m(2s+ 1)− 1, (3.28)

then {un}n is uniformly bounded in Xs
0(Ω).

Proof. We shall prove a priori estimates on uαn in Xs
0(Ω) for every α such that

max
(1

2
,
(γ + 1)(2sm−m+ 1)

4sm

)
< α ≤ γ + 1

2
. Let n ≥ 1 and let 0 < ε <

1

n
. For η > 0,
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taking (un + ε)η − εη as a test function in (3.8), we obtain

a(N, s)

2

∫
Q

(un(x)− un(y))((un(x) + ε)η − (un(y) + ε)η)

|x− y|N+2s
dydx

≤
∫

Ω

fn
(un(x) + 1

n
)γ−η

dx.

The passage to the limit in ε yields∫
Q

(un(x)− un(y))(uηn(x)− uηn(y))

|x− y|N+2s
dydx ≤ 2

a(N, s)

∫
Ω

fn
(un(x) + 1

n
)γ−η

dx.

An application of the item i) in Lemma 1.3.3 and the Hölder inequality lead to

∫
Q

|u
η+1
2

n (x)− u
η+1
2

n (y)|2

|x− y|N+2s
dydx

≤ C(η,N, s)‖f‖Lm(Ω)

(∫
Ω

dx(
un(x) + 1

n

)(γ−η)m′

) 1
m′

.

Let η be such that 0 < η ≤ γ. We can use (3.11) to get

∫
Q

|u
η+1
2

n (x)− u
η+1
2

n (y)|2

|x− y|N+2s
dydx

≤ C(η,N, s)‖f‖Lm(Ω)

(∫
Ω

dx(
Tφθ(x) + 1

n
1+γ
2

) 2(γ−η)m′
1+γ

) 1
m′

.

From [19, Lemma 4.2] we know that there exists a positive constant C > 0, depending only

on Ω and s, such that for every x ∈ Ω, φ(x) ≥ Cδs(x), where δ(x) := dist(x, ∂Ω). Using this,

the above inequality reads as∫
Q

|u
η+1
2

n (x)− u
η+1
2

n (y)|2

|x− y|N+2s
dydx ≤ C‖f‖Lm(Ω)

[ ∫
Ω

dx

δ
2s(γ−η)m′

γ+1
θ(x)

] 1
m′

.

Choosing α =
η + 1

2
>

1

2
, we must seek for the range of α that ensures the convergence of the

integral in the right-hand side in the above inequality. If α =
γ + 1

2
the integral obviously

converges. If α <
γ + 1

2
it is sufficient to have

2s(γ + 1− 2α)m′

γ + 1
θ < 1. If it is so, we get θ <

γ + 1

2s(γ + 1− 2α)m′
. In order that θ ∈ (1, 2) exists, it suffices to have 1 <

γ + 1

2s(γ + 1− 2α)m′
.

This yields,
2sm−m+ 1

4sm
(γ + 1) < α. Finally, if max

(1

2
,
(γ + 1)(2sm−m+ 1)

4sm

)
< α ≤
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γ + 1

2
then the sequence {uαn}n is uniformly bounded in Xs

0(Ω).

Furthermore, if the condition (3.28) holds then
(γ + 1)(2sm−m+ 1)

4sm
< 1 and so we can

chose α = 1 obtaining the uniform boundedness of the sequence {un}n in u ∈ Xs
0(Ω).

3.3.3.2 Passage to the limit

Proof. of Theorem 3.2.2.

By Lemma 3.3.6 the sequence {uαn}n is uniformly bounded in Xs
0(Ω) and by the compact

embedding in [45, Corollary 7.2] (see also [44, Theorem 4.54.]), there exists a subsequence

of {uαn}n, still indexed by n, and a function vα ∈ Xs
0(Ω) such that uαn → vα in L1(Ω) and

uαn → vα a.e. in RN . In particular, the sequence {un} is uniformly bounded in L
γ+1
2 (Ω) and as

γ + 1

2
> 1 it is also uniformly bounded in L1(Ω). Thanks to Lemma 3.3.2, the sequence {un}n

is increasing so that by Beppo-Levi’s theorem the function u(x) := lim
n→∞

un(x), for a.e. x ∈ Ω,

belongs to L1(Ω). Since un = 0 on RN \ Ω we can extend u outside of Ω by setting u = 0 on

RN \Ω and then we obtain un → u a.e. in RN . By the uniqueness of the limit we get vα = uα

a.e. in RN . Therefore, uα ∈ Xs
0(Ω) for every max

(1

2
,
(γ + 1)(2sm−m+ 1)

4sm

)
< α ≤ γ + 1

2
.

If the condition (3.28) holds, we can take α = 1 obtaining u ∈ Xs
0(Ω).

Now, inserting ϕ ∈ C∞0 (Ω) as a test function in (3.8) we have

a(N, s)

2

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx =

∫
Ω

fnϕ

(un + 1
n
)γ
dx. (3.29)

The fact that un → u a.e. in RN implies

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
→ (u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
a.e. in RN × RN .

By Lemma 3.3.3, the sequence {un}n is uniformly bounded in Hs
loc(Ω) and so we have

un(x)− un(y)

|x− y|N+2s
2

⇀
u(x)− u(y)

|x− y|N+2s
2

weakly in L2(K ×K) (3.30)

for every K ⊂⊂ Ω. Now we choose the compact K to be such that supp(ϕ) ⊂ K and set

d3 := dist(supp(ϕ), ∂K)) > 0. Using the fact that un(x) = un(y) = 0 for every (x, y) ∈

CΩ × CΩ and ϕ(x) = ϕ(y) = 0 for every (x, y) ∈ CK × CK, we can split the integral in the
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left-hand side of (3.29) as follows∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
RN

∫
RN

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
K

∫
K

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
K

∫
CK

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

+

∫
CK

∫
K

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

= I1
n + I2

n + I3
n.

In order to pass to the limit as n→ +∞ in I1
n, observe that for all ϕ ∈ C∞0 (Ω) ⊂ Hs(Ω), we

have
ϕ(x)− ϕ(y)

|x− y|N+2s
2

∈ L2(Ω× Ω).

Then, by (3.30) we get

lim
n→∞

I1
n =

∫
K

∫
K

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

For the integrals I2
n and I3

n, we follow some ideas as in the the proof of Theorem 3.2.1 claiming

that

lim
n→∞

I2
n =

∫
K

∫
CK

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

and

lim
n→∞

I3
n =

∫
CK

∫
K

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

Indeed, let us start with the second integral I2
n. For every (x, y) ∈ K × CK, using the fact

that ϕ(y) = 0 for every y ∈ CK, we have

|(un(x)− un(y))(ϕ(x)− ϕ(y))|
|x− y|N+2s

≤ |un(x)ϕ(x)|
|x− y|N+2s

+
|un(y)ϕ(x)|
|x− y|N+2s

= |Gn(x, y)|+ |Hn(x, y)|.
(3.31)

We shall prove that the sequence {Hn(x, y)} is uniformly bounded in L1(K × CK). Since

ϕ(x) = 0 on K\supp(ϕ) and un(y) = 0 on CΩ, we obtain∫
K

∫
CK
|Hn(x, y)|dydx =

∫
supp(ϕ)

∫
Ω\K

|un(y)ϕ(x)|
|x− y|N+2s

dydx.
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Since for every (x, y) ∈ supp(ϕ)× CK, |x− y| ≥ d3 := dist(supp(ϕ), ∂K) > 0, we obtain the

following estimation∫
K

∫
CK
|Hn(x, y)|dydx ≤

‖ϕ‖L∞(Ω)|supp(ϕ)|
dN+2s

3

‖un‖L1(Ω).

As the sequence {un} is increasing, then so is {Hn(x, y)} and by Beppo-Levi’s theorem and

the fact that un → u a.e. in RN , we obtain

Hn(x, y)→ u(y)ϕ(x)

|x− y|N+2s
in L1(K × CK).

We deduce that there exist a subsequence of {un}, still indexed by n, and a positive function

h ∈ L1(K × CK) such that

|Hn(x, y)| ≤ h(x, y) a.e. in K × CK. (3.32)

As regards the sequence {Gn(x, y)}, we write∫
K

∫
CK
|Gn(x, y)|dydx =

∫
supp(ϕ)

|un(x)ϕ(x)|
∫
CK

dy

|x− y|N+2s
dx

≤
|SN−1|‖ϕ‖L∞(Ω)‖un‖L1(Ω)

d2s
3 2s

.

As above, the sequence {Gn(x, y)} is increasing and by Beppo-Levi’s theorem and the fact

that un → u a.e. in RN , we obtain

Gn(x, y)→ u(x)ϕ(x)

|x− y|N+2s
in L1(K × CK).

Again we deduce that there exist a subsequence of {un}, still indexed by n, and a positive

function g ∈ L1(K × CK) such that

|Gn(x, y)| ≤ g(x, y) a.e. in K × CK. (3.33)

Combining (3.31), (3.32) and (3.33), we obtain

|(un(x)− un(y))(ϕ(x)− ϕ(y))|
|x− y|N+2s

≤ g(x, y) + h(x, y) ∈ L1(K × CK),

for every (x, y) ∈ K × CK. So that by Lebesgue’s dominated convergence theorem, we get

lim
n→∞

I2
n =

∫
K

∫
CK

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.
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By x/y symmetry, one has

lim
n→∞

I3
n =

∫
CK

∫
K

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx.

Then, we conclude that

lim
n→∞

∫
Q

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx

=

∫
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dydx,

for all ϕ ∈ C∞0 (Ω). As regards the right-hand side of (3.29), we follow the same arguments as

in Theorem 3.2.1 to obtain

lim
n→∞

∫
Ω

fnϕ

(un + 1
n
)γ
dx =

∫
Ω

fϕ

uγ
dx.

Finally, the passage to the limit in (3.29), as n → +∞, shows that u is a weak solution of

(3.1).

3.3.4 The case γ > 1 : Proof of Theorem 3.2.3

3.3.4.1 A priori estimates

Lemma 3.3.7. Assume γ > 1. Let s ∈ (0, 1) and f ∈ Lm(Ω) with m > 1. Let un be a

solution of the problem (3.8). Then the sequence {uαn}n is uniformly bounded in Xs
0(Ω) for

every α ∈
(

max
(1

2
,
sm(γ + 1)−m+ 1

2sm

)
,
γ + 1

2

]
. Furthermore, if γ satisfies

1 < γ < 1 +
m− 1

sm
, (3.34)

then {un}n is uniformly bounded in Xs
0(Ω).

Proof. Before estimating the sequence {uαn}n in Xs
0(Ω), we need to prove that

un(x) ≥ C0δ
s(x), a.e. in Ω, (3.35)

where C0 > 0 is a constant not depending on n and δ(x) := dist(x, ∂Ω). Observe that

0 ≤ f1

(u1 + 1)γ
∈ L∞(Ω). Thus, applying [19, Lemma 4.2] we get

u1(x)

δs(x)
≥ C

∫
Ω

f1(y)

(u1 + 1)γ
δs(y)dy ≥ C

∫
Ω

f1(y)

(‖u1‖L∞(Ω) + 1)γ
δs(y)dy

≥ C0 :=
Cδs(∂K, ∂Ω)

(‖u1‖L∞(Ω) + 1)γ

∫
K

f1(y)dy
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where K is an arbitrary compact in Ω. By Lemma 3.3.2, the sequence {un}n is increasing

and therefore the inequality (3.35) is satisfied.

Now, we shall prove a priori estimates on uαn in Xs
0(Ω) for every α such that

max
(1

2
,
sm(γ + 1)−m+ 1

2sm

)
< α ≤ γ + 1

2
.

Let n ≥ 1 and let 0 < ε <
1

n
. For η > 0, taking (un + ε)η − εη as a test function in (3.8), we

obtain
a(N, s)

2

∫
Q

(un(x)− un(y))((un(x) + ε)η − (un(y) + ε)η)

|x− y|N+2s
dydx

≤
∫

Ω

fn
(un(x) + 1

n
)γ−η

dx.

By Fatou’s lemma we can pass to the limit in ε obtaining∫
Q

(un(x)− un(y))(uηn(x)− uηn(y))

|x− y|N+2s
dydx ≤ 2

a(N, s)

∫
Ω

fn
(un(x) + 1

n
)γ−η

dx.

Then, an application of the item i) in Lemma 1.3.3 and the Hölder inequality respectively

yield ∫
Q

∣∣∣u η+1
2

n (x)− u
η+1
2

n (y)
∣∣∣2

|x− y|N+2s
dydx ≤ C(η,N, s)‖f‖Lm(Ω)

(∫
Ω

dx

u
(γ−η)m′
n (x)

) 1
m′

.

Let us choose 0 < η ≤ γ. The inequality (3.35) implies

∫
Q

∣∣∣u η+1
2

n (x)− u
η+1
2

n (y)
∣∣∣2

|x− y|N+2s
dydx ≤

C(η,N, s)C
(η−γ)s
0 ‖f‖Lm(Ω)

(∫
Ω

dx

δ(γ−η)sm′(x)

) 1
m′

.

Now, choosing α =
η + 1

2
one has

1

2
< α ≤ γ + 1

2
and then∫

Q

|uαn(x)− uαn(y)|2

|x− y|N+2s
dydx ≤

C(η,N, s)C
(η−γ)s
0 ‖f‖Lm(Ω)

(∫
Ω

dx

δ(γ−2α+1)sm′(x)

) 1
m′

.

Observe that the integral in the right-hand side of the above inequality converges if and only

if (γ − 2α + 1)sm′ < 1, that is
sm(γ + 1)−m+ 1

2sm
< α. Therefore, the sequence {uαn} is

uniformly bounded in Xs
0(Ω), for every α ∈

(
max

(1

2
,
sm(γ + 1)−m+ 1

2sm

)
,
γ + 1

2

]
.

In particular, if (3.34) holds then
sm(γ + 1)−m+ 1

2sm
< 1 and so {un} is uniformly bounded

in Xs
0(Ω).
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3.3.4.2 Passage to the limit

Proof. of Theorem 3.2.3. We use similar arguments as in the proof of Theorem 3.2.2 obtaining

that u := lim
n→∞

un is a weak solution to (3.1) and uα ∈ Xs
0(Ω) for every

max
(1

2
,
sm(γ + 1)−m+ 1

2sm

)
< α ≤ γ + 1

2
.

Furthermore, if (3.34) holds then
sm(γ + 1)−m+ 1

2sm
< 1 and so u ∈ Xs

0(Ω).

3.3.5 The case γ > 1 : Proof of Theorem 3.2.4

Proof. of Theorem 3.2.4. Let γ > 1 and let un be a solution of (3.8). Let 0 < ε <
1

n
, n ≥ 1.

For η > 0, taking (un + ε)η − εη as a test function in (3.8), we follow the same lines in the

proof of Lemma (3.3.7). We obtain

∫
Q

∣∣∣u η+1
2

n (x)− u
η+1
2

n (y)
∣∣∣2

|x− y|N+2s
dydx ≤ C(η,N, s)

∫
supp(f)

f

uγ−ηn

dx.

Now, let us choose 0 < η ≤ γ and set α =
η + 1

2
, we get

∫
Q

∣∣∣uαn(x)− uαn(y)
∣∣∣2

|x− y|N+2s
dydx ≤ C(η,N, s)

∫
supp(f)

f

u
γ−(2α−1)
n

dx.

Applying Lemma 3.3.2, we obtain

∫
Q

∣∣∣uαn(x)− uαn(y)
∣∣∣2

|x− y|N+2s
dydx ≤ C(η,N, s)

c
γ−(2α−1)
supp(f)

‖f‖L1(Ω).

It follows that {uαn} is uniformly bounded in Xs
0(Ω) for every α ∈

(
1

2
,
γ + 1

2

]
.

Arguing as above, it’s easy to see that u := lim
n→∞

un is a weak solution of (3.1) and uα ∈ Xs
0(Ω)

for every α ∈
(

1

2
,
γ + 1

2

]
.

3.3.6 Uniqueness : Proof of Theorem 3.2.5

Proof. In order to prove the uniqueness of finite energy solutions, we assume that there exist

two weak solutions u1 and u2 ∈ Xs
0(Ω) to (3.1). By Lemma 3.4.4 the weak solutions u1 and

u2 both satisfy (3.38). By [63, Proposition 3] we have (u1 − u2)+ ∈ Xs
0(Ω), hence (u1 − u2)+
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is an admissible test function in (3.38). Taking it so in the difference of formulations (3.38)

solved by u1 and u2 we arrive at

∫
Q

(
(u1(x)− u2(x))− (u1(y)− u2(y))

)(
(u1 − u2)+(x)− (u1 − u2)+(y)

)
|x− y|N+2s

dydx

=
2

a(N, s)

∫
Ω

f(x)

(
1

uγ1
− 1

uγ2

)
(u1 − u2)+(x)dx.

Observe that for any function g : RN → R the following inequality

(g(x)− g(y))(g+(x)− g+(y)) ≥ (g+(x)− g+(y))2

holds true for every x, y ∈ RN . It follows that

‖(u1 − u2)+‖2
Xs

0(Ω) = 0,

which gives u2 ≥ u1. By the u1/u2 symmetry we obtain u1 = u2.

3.4 Some regularity results

We point out that if f ∈ Lm(Ω) with m ≥ m :=
( 2∗s

1− γ
)′

=
2N

N + 2s+ γ(N − 2s)
, then fol-

lowing the same lines as in the proof of [18, Lemma 3.4] we can prove that the sequence {un}n
of non-negative solutions of the problem (3.8) is uniformly bounded in Xs

0(Ω). Furthermore,

testing by a C∞0 (Ω)-function in (3.8) one can pass to the limit and obtain that u := lim
n→∞

un is

a weak solution for the problem (3.1) in the sense of Definition 3.2.1. In this section we give

some further summability results of this weak solution u.

Lemma 3.4.1. Suppose that 0 < γ < 1. Let u be the weak solution of (3.1) corresponding

to f ∈ Lm(Ω) with m ≥
( 2∗s

1− γ
)′

=
2N

N + 2s+ γ(N − 2s)
. If

( 2∗s
1− γ

)′ ≤ m <
N

2s
, then

u ∈ Lσ(Ω) where σ =
Nm(γ + 1)

N − 2sm
.

Proof. Let un ∈ Xs
0(Ω) ∩ L∞(Ω) be a solution of the problem (3.8). Inserting uθn, θ > 1, as

a test function in (3.8) we get∫
Q

(un(x)− un(y))(uθn(x)− uθn(y))

|x− y|N+2s
dydx ≤ 2

a(N, s)

∫
Ω

fnu
θ−γ
n (x)dx.
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Applying the item i) in Lemma 1.3.3 in the right-hand side and Hölder’s inequality in the left

hand-side, we get∫
Q

|un(x)
θ+1
2 − un(y)

θ+1
2 |2

|x− y|N+2s
dydx ≤ C1‖f‖Lm(Ω)

(∫
Ω

u(θ−γ)m
′

n (x)dx

) 1

m
′

.

where C1 =
(θ + 1)2

2θa(N, s)
. Applying fractional Sobolev’s inequality, we obtain

∫
Ω

|un(x)|
N(θ+1)
N−2s dx ≤ C2‖f‖

N
N−2s

Lm(Ω)

(∫
Ω

u(θ−γ)m
′

n (x)dx

) N

m
′
(N−2s)

,

with C2 = (S(N, s)C1)
N

N−2s . Now we choose θ > 1 in order to get
N(θ + 1)

N − 2s
= (θ− γ)m′, that

is

θ =
N(m− 1) + γm(N − 2s)

N − 2sm
.

Observe that θ > 1 and

N(θ + 1)

N − 2s
=
Nm(γ + 1)

N − 2sm
.

In addition the assumption m <
N

2s
implies

N

m′(N − 2s)
< 1. Then it follows

∫
Ω

|un(x)|
Nm(1+γ)
N−2sm dx ≤ C

m(N−2s)
N−2sm

2 ‖f‖
Nm

N−2sm

Lm(Ω) .

By Fatou’s Lemma, we obtain u ∈ Lσ(Ω) with σ =
Nm(γ + 1)

N − 2sm
.

Remark 3.4.1. In the particular case where m =
(
2∗s
)′

, we obtain u ∈ L(1+γ)2∗s(Ω) which is

exactly the result stated in [18, Proposition 3.8]. While if s = 1 the exponent of summability

σ =
Nm(γ + 1)

N − 2sm
coincides with the one given [23, Lemma 5.5] in the local case.

Lemma 3.4.2. (Limit case : Exponential summability) Assume that γ > 0. Let f ∈ L
N
2s (Ω)

and let u be the weak solution of the problem (3.1) given by Theorem 3.2.3 if γ > 1 or given

by [34, Theorem 3.2.] if 0 < γ ≤ 1. Then there exists λ > 0 such that eλ
N(1+γ)
N−2s

u ∈ L1(Ω).

Proof. Let us start with the case γ > 1. For λ > 0, we consider the locally Lipschitz function

t→ ψ(t) = (eλt − 1)
γ+1
2 . Let un ∈ Xs

0(Ω) ∩ L∞(Ω) be a non-negative solution of the problem

(3.8). Since ψ(0) = 0 and we can take ψ′(un)ψ(un) as a test function in (3.8). As γ > 1, the
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function ψ is convex so that according with [63, Proposition 4.] we arrive at

a(N, s)

2

∫
Q

|ψ(un)(x)− ψ(un)(y)|2

|x− y|N+2s
dydx

≤
∫

Ω

ψ′(un)ψ(un)(−∆)sun(x)dx

=

∫
Ω

fn
(un + 1

n
)γ
ψ′(un)ψ(un)dx.

Using the Sobolev inequality, we obtain

‖ψ(un)‖2
L2∗s (Ω)

≤ 2S(N, s)

a(N, s)

∫
Ω

f

uγn
ψ′(un)ψ(un)dx.

Using the elementary inequality
ea − 1

a
≤ ea for every a > 0, we get

ψ′(un)ψ(un)

uγn
≤ γ + 1

2
λγ+1eλ(γ+1)un ≤ C(γ)λγ+1ψ2(un) + C(λ, γ),

where we have set C(γ) = 2γ
γ + 1

2
and C(λ, γ) = λγ+1C(γ). Then, using Hölder’s inequality

we obtain

‖ψ(un)‖2
L2∗s (Ω)

≤ 2S(N, s)C(γ)λγ+1

a(N, s)

∫
Ω

fψ2(un) + C(λ, γ,Ω)‖f‖
L
N
2s (Ω)

≤ 2S(N, s)C(γ)λγ+1

a(N, s)
‖f‖

L
N
2s (Ω)
‖ψ(un)‖2

L2∗s (Ω)

+C(λ, γ,Ω)‖f‖
L
N
2s (Ω)

.

Choosing λ > 0 to be such that
2S(N, s)C(γ)‖f‖

L
N
2s (Ω)

λγ+1

a(N, s)
< 1, we deduce that

∫
Ω

eλ
N(1+γ)
N−2s

undx ≤ C,

where C is a constant not depending on n. Applying Fatou’s lemma, we conclude the result.

We turn now to the case γ ≤ 1. We consider the convex and locally Lipschitz function

t → ψ(t) = e
γ+1
2
λt − 1 and we insert ψ′(un)ψ(un) as a test function in (3.8). Again by [63,

Proposition 4.] and the Sobolev inequality we obtain

‖ψ(un)‖2
L2∗s (Ω)

≤ 2S(N, s)

a(N, s)

∫
Ω

f

uγn
ψ′(un)ψ(un)dx.
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Since 0 <
γ + 1

2
≤ 1, we can apply the inequality in the item iii) in Lemma 1.3.3 obtaining

ψ′(un)ψ(un)

uγn
≤ γ + 1

2
λ

e
γ+1
2
λun

(
eλun − 1

) γ+1
2

uγn
.

Noticing that u
γ+1
2

n ≤ uγn on the subset {un ≤ 1} := {x ∈ Ω : un(x) ≤ 1}, we can write

∫
Ω

f

uγn
ψ′(un)ψ(un)dx ≤ γ + 1

2
λ

∫
{un≤1}

fe
γ+1
2
λun

(
eλun − 1

) γ+1
2

u
γ+1
2

n

dx

+
γ + 1

2
λ

∫
{un>1}

fe
γ+1
2
λun
(
eλun − 1

) γ+1
2 dx.

Using the elementary inequality
ea − 1

a
≤ ea, which holds for every a > 0, in the first integral

in the right-hand side of the previous inequality, we obtain∫
Ω

f

uγn
ψ′(un)ψ(un)dx ≤ γ + 1

2
λ
γ+3
2

∫
{un≤1}

fe(γ+1)λun

+
γ + 1

2
λ

∫
{un>1}

fe(γ+1)λundx

≤ γ + 1

2
λ
γ+3
2 e(γ+1)λ

∫
Ω

fdx

+
γ + 1

2
λ

∫
Ω

f(ψ(un) + 1)2dx.

Using the fact that (ψ(un) + 1)2 ≤ 2(ψ(un)2 + 1), we get∫
Ω

f

uγn
ψ′(un)ψ(un)dx ≤ γ + 1

2
λ
γ+3
2 e(γ+1)λ

∫
Ω

fdx

+(γ + 1)λ

∫
Ω

f(ψ2(un) + 1)dx

≤
(γ + 1

2
λ
γ+3
2 e(γ+1)λ + (γ + 1)λ

)∫
Ω

fdx

+(γ + 1)λ

∫
Ω

fψ2(un)dx.

An application of Hölder’s inequality with the exponents
N

N − 2s
and

N

2s
gives

‖ψ(un)‖2
L2∗s (Ω)

≤ S(N, s)

a(N, s)
(γ + 1)

(
λ
γ+3
2 e(γ+1)λ + 2λ

)
|Ω|

N−2s
N ‖f‖

L
N
2s (Ω)

+
2S(N, s)(γ + 1)

a(N, s)
λ‖f‖

L
N
2s (Ω)
‖ψ(un)‖2

L2∗s (Ω)
.
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Therefore, choosing λ > 0 such that λ <
a(N, s)

2S(N, s)(γ + 1)‖f‖
L
N
2s (Ω)

we obtain

∫
Ω

eλ
N(1+γ)
N−2s

undx ≤ C,

where C is a constant not depending on n, and by Fatou’s lemma we conclude the result.

Remark 3.4.2. Recall that the inequality ex ≥ xk

k!
holds for every x > 0 and k ∈ N. Thus,

we conclude that u ∈ Lr(Ω) for every r <∞.

Appendix

We start by proving the following lemma which we have used in the proof of Lemma 3.3.4.

Lemma 3.4.3. Let F (x) = xr, 0 < r < 1, for every x > 0. Then for every function

v : RN →]0,+∞[ that satisfies∫
RN

∫
RN

|v(x)− v(y)|2

|x− y|N+2s
dydx <∞,

we have

(−∆)s(F ◦ v)(x) ≤

F ′(v(x))(−∆)sv(x)− F ′′(v(x))

r
a(N, s)

∫
RN

(
v(x)− v(y)

)2

|x− y|N+2s
dy.

(3.36)

Proof. Following [36, Lemma 2.3.], we can use Taylor’s formula obtaining for every (x, y) ∈

RN × RN

F (v(y))− F (v(x)) = F ′(v(x))(v(y)− v(x)) +R(F ), (3.37)

where

R(F ) =

∫ v(y)

v(x)

(v(y)− t)F ′′(t)dt

= (v(y)− v(x))2

∫ 1

0

(1− s)F ′′(v(x) + s(v(y)− v(x)))ds.

On the other hand, since the function F ′′ is increasing we have

(1− s)v(x) ≤ v(x) + s(v(y)− v(x))

⇒ F ′′((1− s)v(x)) ≤ F ′′(v(x) + s(v(y)− v(x))).
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Hence, it follows

−R(F ) ≤ −(v(y)− v(x))2

∫ 1

0

(1− s)F ′′((1− s)v(x))ds

= −(v(y)− v(x))2F ′′(v(x))

∫ 1

0

(1− s)r−1ds.

Then, from (3.37) we obtain

F (v(x))− F (v(y)) ≤ F ′(v(x))(v(x)− v(y))− F ′′(v(x))

r
(v(y)− v(x))2.

Dividing both sides of this inequality by |x− y|N+2s and then integrating with respect to the

variable y we arrive at

a(N, s)P.V.

∫
RN

F (v(x))− F (v(y))

|x− y|N+2s
dy ≤ F ′(v(x))a(N, s)P.V.

∫
RN

(v(x)− v(y))

|x− y|N+2s
dy

−F
′′(v(x))

r
a(N, s)P.V.

∫
RN

(v(y)− v(x))2

|x− y|N+2s
dy,

which proves (3.36).

In the following result we extend the space of admissible test functions in (3.3).

Lemma 3.4.4. Let u ∈ Xs
0(Ω) be a solution of the problem (3.1) taken in the sense of

Definition 3.2.1 with f ∈ L1(Ω). Then for every φ ∈ Xs
0(Ω) we get

fφ

uγ
∈ L1(Ω) and

a(N, s)

2

∫
Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dydx =

∫
Ω

fφ

uγ
dx. (3.38)

Proof. Take an arbitrary φ ∈ Xs
0(Ω). By [49, Theorem 6] there exists a sequence {ϕn}n ⊂

C∞0 (Ω) such that ϕn → φ in norm in Hs(RN). Writing (3.3) with ϕn ∈ C∞0 (Ω) we obtain

a(N, s)

2

∫
Q

(u(x)− u(y))(ϕn(x)− ϕn(y))

|x− y|N+2s
dydx =

∫
Ω

fϕn
uγ

dx, (3.39)

in which we shall pass to the limit as n tends to +∞. Starting with the left-hand side of

(3.39), we consider the following two functions

Fn(x, y) =
(ϕn(x)− ϕn(y))

|x− y|N+2s
2

and F (x, y) =
(φ(x)− φ(y))

|x− y|N+2s
2

.

Notice that the convergence ϕn → φ in norm in Hs(RN) implies that the sequence {Fn(x, y)}n
converges to F (x, y) in L2(R2N) and, up to a subsequence if necessary, we can assume that
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{Fn(x, y)}n converges almost everywhere in R2N . As u ∈ Xs
0(Ω) we have

(u(x)− u(y))

|x− y|N+2s
2

∈

L2(R2N) implying

lim
n→∞

∫
Q

(u(x)− u(y))(ϕn(x)− ϕn(y))

|x− y|N+2s
dydx

=

∫
Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dydx.

For the term in the right-hand side of (3.39), we first note that thanks to [63, Proposition

3.] the two functions (ϕn − ϕk)+ and (ϕn − ϕk)− are both admissible test functions in (3.3).

Taking them so we obtain∫
Ω

f

uγ
(ϕn − ϕk)+(x)dx

=
a(N, s)

2

∫
Q

(u(x)− u(y))
(
(ϕn − ϕk)+(x)− (ϕn − ϕk)+(y)

)
|x− y|N+2s

dydx

and ∫
Ω

f

uγ
(ϕn − ϕk)−(x)dx

=
a(N, s)

2

∫
Q

(u(x)− u(y))
(
(ϕn − ϕk)−(x)− (ϕn − ϕk)−(y)

)
|x− y|N+2s

dydx.

Then, summing up both the two equalities we have∫
Ω

f

uγ

∣∣∣ϕn − ϕk∣∣∣dx
=
a(N, s)

2

∫
Q

(u(x)− u(y))
(
|ϕn(x)− ϕk(x)| − |ϕn(y)− ϕk(y)|

)
|x− y|N+2s

dydx

≤ a(N, s)

2

∫
Q

|u(x)− u(y)|
∣∣∣(ϕn(x)− ϕk(x))− (ϕn(y)− ϕk(y))

∣∣∣
|x− y|N+2s

dydx

and then the Hölder inequality implies∫
Ω

∣∣∣fϕn
uγ
− fϕk

uγ

∣∣∣dx ≤ a(N, s)

2
‖u‖Xs

0(Ω)‖ϕn − ϕk‖Xs
0(Ω).

Thus, we deduce that
{fϕn
uγ

}
n

is a Cauchy sequence in L1(Ω). Since ϕn converges to ϕ a.e.

in Ω, the sequence
{fϕn
uγ

}
n

converges to
fφ

uγ
∈ L1(Ω) in norm in L1(Ω). So that the passage

to the limit as n tends to infinity in (3.39) yields

a(N, s)

2

∫
Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dydx =

∫
Ω

fφ

uγ
dx,

for every φ ∈ Xs
0(Ω).
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Chapter 4
Fractional heat equation with singular terms1

In this chapter we consider the nonlocal heat equation involving singular terms. Our aim in

this chapter is to analyze the existence of solutions for this problem. In light of the interplay

between the summability of the data and the nonlinearity some results are proven. Some of

them extend those obtained in [40] for the local case.

4.1 Introduction

We are interested in the existence and regularity of solutions of the following initial-boundary

value problem 
ut + (−∆)su =

f(x, t)

uγ
in ΩT := Ω× (0, T ),

u = 0 in (RN\Ω)× (0, T ),

u(·, 0) = u0(·) in Ω,

(4.1)

where Ω is a bounded domain of class C0,1 in RN , N > 2s with s ∈ (0, 1), γ > 0, f ≥ 0,

f ∈ Lm(ΩT ), m ≥ 1, is a non-negative function on ΩT , u0 ∈ L∞(Ω) is a non-negative function

on Ω which further satisfies

∀ω ⊂⊂ Ω ∃dω > 0, such that u0 ≥ dω. (4.2)

The operator (−∆)s is the fractional Laplacian operator defined by

(−∆)su(x, t) = P.V.

∫
RN

u(x, t)− u(y, t)

|x− y|N+2s
dy,

1Submitted in 2021

95
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where ”P.V.” stands for the integral in the principal value sense.

The classical Heat equation seems to describe in a satisfactory manner a wide variety of

diffusive problems in Physics. However, the anomalous diffusion that follows non-Brownian

scaling is leading to models governed by fractional Laplacian. In the last few years, elliptic

and parabolic equations involving nonlocal operators has attracted substantial attention. The

interest brought to such equations is due to the emergence of this type of nonlocal operators

in a wide range of phenomena – the crystal dislocation, thin obstacle problems, Physics,

phase transitions, finance, stochastic control, quasi-geostrophic flows, anomalous diffusion to

name a few (see e.g. [30, 39, 47, 75, 81, 83] and references therein). We also recall that the

fractional Laplacian operator (−∆)s can be viewed as the infinitesimal generator of stable

Lévy processes, see e.g. [13, 28, 86]. For an expository on fractional Laplacian, we refer the

reader to [21, 28, 45] and the references therein.

As a prelude to study the initial-boundary value problem (4.1), it is worth recalling some

latest important known results about this kind of parabolic problems (local/nonlocal) with

singular terms. Let us star discussing the local case (i.e. s = 1). The initial-boundary value

problem corresponding to (4.1) was studied in [40, 68]. The authors in [40] have considered

the following problem 
ut −∆pu =

f(x, t)

uγ
, in ΩT = Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0(·) in Ω,

(4.3)

where p ≥ 2, 0 ≤ f ∈ Lm(ΩT ) with m ≥ 1. Assuming that 4.2 is fulfilled, they proved the

existence of a solution u of problem (4.3) such that

• If 0 < γ ≤ 1 and f ∈ Lm0(ΩT ), with m0 =
p(N + 2)

p(N + 2)−N(1− γ)
, then u ∈

Lp(0, T ;W 1,p
0 (Ω)).

• If 0 < γ < 1 and f ∈ Lm(ΩT ) with 1 ≤ m <
p(N + 2)

p(N + 2)−N(1− γ)
, then

u ∈ Lq0(0, T ;W 1,q0
0 (Ω)) with q0 =

m[N(p+ γ − 1) + p(γ + 1)]

N + 2−m(1− γ)
,

• If γ > 1 and f ∈ L1(ΩT ) then u ∈ Lp(0, T ;W 1,p
loc (Ω)) and u

p+γ−1
p ∈ Lp(0, T ;W 1,p

0 (Ω)).

Some other related local parabolic equations with singular terms are studied in [17, 25, 41].
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Let us now discuss the nonlocal problem (4.1). In [2, 85] the authors studied (4.1) with a

general fractional Laplacian operator including (−∆)s in the case where γ = 0 and (f, u0) ∈

(L1(ΩT )×L1(Ω)). In [2] the authors proved the existence of a weak solution and the existence

of a non-negative entropy one, while in [85] the authors proved the existence and uniqueness

of renormalized solutions.

Regarding parabolic problems involving the fractional Laplacian with singular terms, some few

variants have been investigated. We refer to [52] where the authors considered the following

problem 
ut + (−∆)su =

1

uγ
+ f(x, t), u > 0 in Ω× (0, T ),

u = 0 on (RN\Ω)× (0, T ),

u(·, 0) = u0(·) in RN .

(4.4)

Under some suitable assumptions on the data f and u0 and using the semi-discretization

in time coupled with the implicit Euler method, they proved the existence and uniqueness

of a weak solution to the problem (4.4). Lately, in [4] the existence and nonexistence of

positive solutions were obtained for the problem (4.1) with the singular term λ
up

δ2s(x)
, δ(x) :=

dist(x, ∂Ω) λ, p > 0, instead of
f

uγ
. It is worth recalling that the case nonlocal elliptic

counterpart of (4.1) have been studied in [10, 18, 34].

In this paper, we will be concerned with the nonlocal problem (4.1) that involves the fractional

Laplacian. Our aim is to prove the existence and regularity of the positive weak solutions of

the problem (4.1). Two remarks concerning the difficulties in dealing with problem (4.1) are

in order. First of all, observe that since γ > 0 the second term is singular so that classical

existence results can not be applied even if f is smooth enough. To overcome this problem, we

will consider approximate problems in which we ’cut’ by means of truncatures the singularity

in order to get smooth source terms. This makes it possible to use Schauder’s fixed point

theorem obtaining approximate solutions. On the other hand, the other important difficulty

that arises in problem (4.1) is the proof of the strict positivity of the solution in the interior

of the parabolic cylinder. This is the reason why we impose the hypothesis (4.2) to make

sense of the notion of weak solution of the problem (4.1). Thus, since we will construct weak

solutions as limit of approximate solutions we need to prove an analogous inequality to (4.2)

for the approximate solutions (Lemma 3.3.2). Let us recall that in the classical case (s=1),
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the positivity of the approximate solutions inside the parabolic cylinder has been obtained

in [24] by comparing the approximate solutions to those of a suitable homogeneous problem

which are Hölder continuous on every w × [0, T ), w ⊂⊂ Ω, and on which a classical form of

Harnack’s inequality ([16, Theorem 5]) is then applied. Inspired by [46, Theorem 1.1] (page

93), the authors [40] proved the intrinsic form of the Harnack inequality. Combined with the

idea in [24], they obtain the positivity of the approximate solutions.

Coming to our non-local problem (4.1), we follow the idea of [24] to show the positivity

of the approximate solutions inside the parabolic cylinder without using neither the Hölder

continuity for solutions of auxiliary homogeneous problems nor any form of Harnack inequality

as it was the case in [24] and [40].

The idea we use consists in involving the smallest eigenvalue of the fractional Laplacian (see

e.g. [77, Proposition 4] and [78, Proposition 9]) together with its associate eigenfunction

to build an homogeneous problem with suitable initial datum whose solution (which is by

construction locally bounded from below) is comparable with the approximate solutions of

the problem by means of the weak comparison principle.

4.2 Functional setting and main results

As in the classical case, we define the corresponding parabolic spaces as the following :

Lq(0, T ;W s,q
0 (Ω)) =

{
u ∈ Lq(Ω× (0, T )), ‖u‖Lq(0,T ;W s,q

0 (Ω)) <∞
}
,

L2(0, T ;Xs
0(Ω)) =

{
u ∈ L2(RN × (0, T )), ‖u‖L2(0,T ;Xs

0(Ω)) <∞
}
,

where

‖u‖Lq(0,T ;W s,q
0 (Ω)) =

(∫ T

0

∫
Ω

∫
Ω

|u(x, t)− u(y, t)|q

|x− y|N+qs
dxdydt

) 1
q

,

‖u‖L2(0,T ;Xs
0(Ω)) =

(∫ T

0

∫
Q

|u(x, t)− u(y, t)|2

|x− y|N+2s
dxdydt

) 1
2

,

with its dual spaces Lq
′
(0, T ;W−s,q′(Ω)) and L2(0, T ;X−s(Ω)) respectively. We also define

L2(0, T ;Hs
loc(Ω)) =

{
u ∈ L2(K × (0, T )), s.t.

∫ T

0

∫
K

∫
K

|u(x, t)− u(y, t)|2

|x− y|N+2s
dxdydt <∞,

for every compact K ⊂ Ω

}
.
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We shall consider the notion of weak solution whose meaning is defined as follows.

Definition 4.2.1. Let f ∈ L1(ΩT ). By a weak solution of problem (4.1), we mean a measur-

able function u ∈ C([0, T ], L1
loc(Ω)) satisfying

∀ω ⊂⊂ Ω, ∃cω > 0 : u(x, t) ≥ cω > 0, in ω × [0, T )

and

−
∫

ΩT

uϕtdxdt−
∫

Ω

u0(x)ϕ(x, 0)dx+
1

2

∫
QT

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dxdydt

=

∫
ΩT

fϕ

uγ
dxdt,

for any ϕ ∈ C∞0 (Ω× [0, T )). Here, QT = Q× (0, T ) and Q := R2N\(CΩ× CΩ).

We now state our main results. We give the existence and the regularity of weak solutions

according to the values of γ > 0 and the summability of the datum f .

Theorem 4.2.1. Let γ = 1. Assume that (f, u0) ∈ L1(ΩT ) × L∞(Ω), with f ≥ 0 and

the condition (4.2) is fulfilled. Then the problem (4.1) admits at least one weak solution

u ∈ L2(0, T ;Xs
0(Ω)) ∩ L∞(0, T ;L2(Ω)).

Theorem 4.2.2. Let 0 < γ < 1. Assume that u0 ∈ L∞(Ω) satisfies the condition (4.2) and

f ≥ 0 is such that

i) f ∈ L
2

γ+1

(
0, T ;L

(
2∗s
1−γ

)′
(Ω)
)

,

or

ii) f ∈ Lm(ΩT ) with

m :=
2(N + 2s)

2(N + 2s)−N(1− γ)
.

Then the problem (4.1) has at least one weak solution u ∈ L2(0, T ;Xs
0(Ω))∩L∞(0, T ;L2(Ω)).

Remark 4.2.1. We point out that since γ < 1 we have( 2∗s
1− γ

)′
=

2N

2N − (1− γ)(N − 2s)
< m <

2

γ + 1
.

Then the two spaces L
2

γ+1

(
0, T ;L

(
2∗s
1−γ

)′
(Ω)
)

and Lm(ΩT ) cannot be compared. The case γ = 1

cannot be considered since in (4.16) we use the Hölder inequality with the exponent
2

γ + 1
and
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2

1− γ
. Note that the range of the values of s is the same for both γ = 1 and γ < 1. Therefore,

there is, in some sense, ”continuity” of the summability of the solution with respect to γ. If γ

tends to 1, then m tends to 1 and
2

γ + 1
and

( 2∗s
1− γ

)′
=

2N

2N − (1− γ)(N − 2s)
tend at the

same time to 1, so that f will belong to L1(ΩT ).

If m < m, we no longer find solutions in L2(0, T ;Xs
0(Ω)) but in a larger space depending on

m and s1 < s.

Theorem 4.2.3. Let 0 < γ < 1. Assume that 0 ≤ f ∈ Lm(ΩT ), with 1 ≤ m < m, and that

u0 ∈ L∞(Ω) satisfies the condition (4.2). Then the problem (4.1) admits at least one weak

solution u ∈ Lq(0, T ;W s1,q
0 (Ω)) ∩ L∞(0, T ;L1+γ(Ω)), for every s1 < s with

q =
m(γ + 1)(N + 2s)

N + 2s− sm(1− γ)
.

Moreover u ∈ Lσ(ΩT ), where

σ =
m(γ + 1)(N + 2s)

N − 2s(m− 1)
.

Remark 4.2.2. We can easily check that q ≥ m(γ + 1) > 1 and σ ≥ m(γ + 1) > 1. Observe

that m < m is equivalent to q < 2 which implies L2(0, T ;Xs
0(Ω)) ⊂ Lq(0, T ;W s1,q

0 (Ω)). The

condition q < 2 is needed in (4.27). Thus, in Theorem 4.2.3 the case γ = 1 is not allowed

since it yields q = 2m ≥ 2 which contradicts q < 2. Furthermore, the case γ = 0 is also not

allowed, since the choice of the test function depends on γ by which we divide in (2.8).

If m = 1, the ”continuity” with respect to γ is broken down since q tends to 2 when γ tends

to 1 and the solution belongs to the larger space L2(0, T ;Hs1
0 (Ω)) than L2(0, T ;Xs

0(Ω)).

Remark 4.2.3. The case γ = 0 corresponding to the problem

ut + (−∆)su = f. (4.5)

was studied in [63]. The authors proved the existence of a unique weak solution u of the

problem (4.5) satisfying

1. if f ∈ L1(ΩT ) then u ∈ Lq(ΩT ) for every q <
N + 2s

N
(see [63, Theorem 28]),

2. if f ∈ Lm(ΩT ), with 1 < m <
2N

N + 2s
, then u ∈ L

Nm
N−2sm (ΩT ) (see [63, Theorem 24]).
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Theorem 4.2.3 provides a solution u ∈ Lσ(ΩT ) with σ =
m(γ + 1)(N + 2s)

N − 2s(m− 1)
. if γ tends to zero,

the value of σ tends to
m(N + 2s)

N − 2s(m− 1)
<

Nm

N − 2sm
. Thus, even if m > 1 the solution may not

belong to L
Nm

N−2sm (ΩT ), while if m = 1 the value of σ tends to
N + 2s

N
, this fact is in contrast

with the result in [63, Theorem 28] since if f ∈ L1(ΩT ) the solution of ut + (−∆)su = f does

not belong to L
N+2s
N (ΩT ) but to Lq(ΩT ) for every q <

N + 2s

N
. This explains the fact that

γ > 0 in Theorem 4.2.3.

We deal now with the case γ > 1. Here again we can not find solutions in L2(0, T ;Xs
0(Ω)), if

we look for L2(0, T ;Hs(Ω)) estimates, we can only get them in L2(0, T ;Hs
loc(Ω)).

Theorem 4.2.4. Let γ > 1. Assume that 0 ≤ f ∈ L1(ΩT ) and that u0 ∈ L∞(Ω)

satisfies the condition (4.2). Then the problem (4.1) admits at least one weak solution

u ∈ L2(0, T ;Hs
loc(Ω)) ∩ L∞(0, T ;L1+γ(Ω)), such that u

γ+1
2 ∈ L2(0, T ;Xs

0(Ω)).

Remark 4.2.4. Since Ω is bounded, the conclusion in Theorem 4.2.4 remains true for every

f ∈ Lm(ΩT ), with m ≥ 1.

To give a meaning to the initial condition in the problem (4.1), we shall prove that the weak

solutions obtained in the previous results are continuous in time.

Proposition 4.2.1. Let γ > 0 and suppose that f ∈ L1(ΩT ). Let u be the weak solution of

the problem (4.1) given by Theorem 4.2.1, Theorem 4.2.2, Theorem 4.2.3 and Theorem 4.2.4.

Then u ∈ C([0, T ];L1
loc(Ω)).

Notations In the sequel, for any open subset ω, the notation ω ⊂⊂ Ω means that ω ⊂ Ω

and ω is compact. We denote by χ(0,τ) the characteristic function of (0, τ) in (0, T ] and

Ωτ := Ω× (0, τ). For any measurable subset E of Ω, |E| stands for the Lebesgue measure of

E.
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4.3 Approximated Problems : Existence and Positivity

Consider the sequence of approximate problems
(un)t + (−∆)sun =

fn(x, t)

(un + 1
n
)γ

in ΩT = Ω× (0, T ),

un = 0 on (RN\Ω)× (0, T ),

un(·, 0) = u0(·) in Ω,

(4.6)

where fn = min(f, n). We shall prove that for every fixed integer n ∈ N, the problem (4.6)

admits a non-negative solution un.

Lemma 4.3.1. For each integer n ∈ N, the problem (4.6) admits a non-negative solu-

tion un ∈ L2(0, T ;Xs
0(Ω)) ∩ L∞(ΩT ) with (un)t ∈ L2(0, T ;X−s(Ω)) satisfying for every

ϕ ∈ L2(0, T ;Xs
0(Ω))∫ T

0

∫
Ω

un)tϕdxdt+
1

2

∫ T

0

∫
Q

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
Ω

fnϕ

(un + 1
n
)γ
dxdt.

(4.7)

Proof. Let n ∈ N be fixed and let v ∈ L2(ΩT ). We define the map

S : L2(ΩT ) → L2(ΩT ),

v 7→ S(v),

where w = S(v) is the unique solution to the following problem
wt + (−∆)sw =

fn(x, t)

(|v|+ 1
n
)γ

in Ω× (0, T ),

w = 0 in (RN\Ω)× (0, T ),

w(·, 0) = u0(·) on Ω.

Since 0 ≤ fn
(|v|+ 1

n
)γ
∈ L∞(ΩT ) ⊂ L2(0, T ;X−s(Ω)) and 0 ≤ w(·, 0) = u0(·) ∈ L∞(Ω), then

by [63, Theorem 26.], we have the existence and uniqueness of 0 ≤ w ∈ L2(0, T ;Xs
0(Ω)) ∩

C([0, T ];L2(Ω)) with wt ∈ L2(0, T ;X−s(Ω)), that is w satisfies for every ϕ ∈ L2(0, T ;Xs
0(Ω))∫ T

0

∫
Ω

wtϕdxdt+
1

2

∫ T

0

∫
Q

(w(x, t)− w(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
Ω

fnϕ

(|v|+ 1
n
)γ
dxdt.

(4.8)
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Furthermore by [63, Corollary 3.] we have w ∈ L∞(ΩT ). Testing in (4.8) by the function w,

we get∫ T

0

∫
Ω

wtwdxdt+
1

2

∫ T

0

∫
Q

(w(x, t)− w(y, t))2

|x− y|N+2s
dydxdt =

∫ T

0

∫
Ω

fnw

(|v|+ 1
n
)γ
dxdt.

Then∫
Ω

w2(x, T )dx+

∫ T

0

∫
Q

(w(x, t)− w(y, t))2

|x− y|N+2s
dydxdt ≤ 2n1+γ

∫ T

0

∫
Ω

wdxdt+

∫
Ω

u2
0(x)dx.

Dropping the positive part and applying the Hölder inequality and then Lemma 1.1.1 with

q = 2, we obtain∫ T

0

‖w‖2
Xs

0(Ω)dt ≤ (T |Ω|)
1
2 2n1+γ

(∫ T

0

‖w‖2
L2(Ω)dt

) 1
2

+ ‖u0‖2
L∞(Ω)|Ω|

≤
(
T |Ω|C(N, s,Ω)

) 1
2
2n1+γ

(∫ T

0

‖w‖2
Xs

0(Ω)dt

) 1
2

+ ‖u0‖2
L∞(Ω)|Ω|.

If follows that

‖w‖2
L2(0,T ;Xs

0(Ω)) =

∫ T

0

‖w‖2
Xs

0(Ω)dt ≤ C1 := C1(n, s,N, γ, T,Ω, u0), (4.9)

where the constant C1 is not depending on v. Thus, the ball of radius C1 is invariant under

the map S in L2(0, T ;Xs
0(Ω)). Now we shall prove that the map S is continuous and compact

from L2(0, T ;Xs
0(Ω)) to itself. First, we start proving the continuity of S as an operator

from L2(ΩT ) to L2(ΩT ). Let {vk} be a sequence such that ‖vk − v‖L2(ΩT ) → 0. Then up to

a subsequence still indexed by k, the sequence vk converges almost everywhere to v in ΩT .

Denoting wk = S(vk) and w = S(v), we can write
(wk − w)t + (−∆)s(wk − w) =

fn(x, t)

(|vk|+ 1
n
)γ
− fn(x, t)

(|v|+ 1
n
)γ

in Ω× (0, T ),

(wk − w)(x, t) = 0 in (RN\Ω)× (0, T ),

(wk − w)(x, 0) = 0 on Ω.

(4.10)

Taking wk(x)− w(x) as a test function in (4.10) and using Hölder’s inequality, we obtain

1

2

∫
Ω

(wk(x, T )− w(x, T ))2dx+
1

2

∫ T

0

∫
Q

|(wk(x, t)− w(x, t))− (wk(y, t)− w(y, t))|2

|x− y|N+2s
dydxdt

=

∫
ΩT

(
fn(x, t)

(|vk|+ 1
n
)γ
− fn(x, t)

(|v|+ 1
n
)γ

)
(wk − w)dxdt

≤ ‖wk − w‖L2(ΩT )

(∫
Ω

(
fn(x, t)

(|vk|+ 1
n
)γ
− fn(x, t)

(|v|+ 1
n
)γ

)2

dxdt

) 1
2

.
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Dropping the positive term and applying Lemma (1.1.1) with q = 2, we obtain

‖wk − w‖L2(ΩT ) ≤ 2C(N, s,Ω)

(∫
ΩT

(
fn(x, t)

(|vk|+ 1
n
)γ
− fn(x, t)

(|v|+ 1
n
)γ

)2

dxdt

) 1
2

.

Since ∣∣∣∣ fn(x, t)

(|vk|+ 1
n
)γ
− fn(x, t)

(|v|+ 1
n
)γ

∣∣∣∣2 ≤ 22n2(γ+1)

and
fn(x, t)

(|vk|+ 1
n
)γ
− fn(x, t)

(|v|+ 1
n
)γ
→ 0 a.e. in ΩT as k → +∞,

by the dominated convergence theorem, we get

‖wk − w‖L2(ΩT ) → 0 as k → +∞.

Hence, S is continuous from L2(ΩT ) to L2(ΩT ). Now, we prove the compactness of S :

L2(ΩT )→ L2(ΩT ). Let us {vk} be a sequence such that ‖vk‖L2(ΩT ) ≤ C, where C is a positive

constant independent on k and set wk = S(vk). We shall prove that wk has a subsequence

{wk} that converges in L2(ΩT ). As wk is the solution of the problem
(wk)t + (−∆)swk =

fn(x, t)

(|vk|+ 1
n
)γ

in Ω× (0, T ),

wk = 0 in (RN\Ω)× (0, T ),

wk(·, 0) = u0(·) on Ω,

(4.11)

we can take it as a test function in (4.11) and using (4.9), we obtain

‖wk‖2
L2(0,T ;Xs

0(Ω)) =

∫ T

0

‖wk‖2
Xs

0(Ω)dt ≤ C1,

where C1 is a constant not depending on vk. This implies that {wk}k is uniformly bounded

with respect to k in L2(0, T ;Xs
0(Ω)) and therefore {(−∆)swk} is uniformly bounded with

respect to k in L2(0, T ;X−s(Ω)). From the equation (4.11), it follows that {(wk)t} is uniformly

bounded in L2(0, T ;X−s(Ω)). Then by the compact embedding L2(0, T ;Xs
0(Ω)) in L2(ΩT )

(see [82, Corollary 4]), there exist a subsequence of {wk}k, still indexed by k, and a measurable

function w such that wk strongly converge to w in L2(ΩT ). Hence, S is a compact operator

from L2(ΩT ) to L2(ΩT ) and therefore by Schauder’s fixed point theorem there exists a non-

negative function un ∈ L2(0, T ;Xs
0(Ω)) ∩ L∞(ΩT ) and (un)t ∈ L2(0, T ;X−s(Ω)) such that

un = S(un). This ends the proof.
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Lemma 4.3.2. Let un be a solution of (4.6). Then the sequence {un}n∈N is increasing and

for every subset ω ⊂⊂ Ω there exists a positive constant cω, not depending on n, such that

un(x, t) ≥ cω > 0, for every (x, t) ∈ ω × [0, T ), ∀n ∈ N. (4.12)

Proof. We first prove that the sequence {un}n is increasing. Let un and un+1 be two solutions

to the following problems respectively
(un)t + (−∆)sun =

fn(x, t)

(un + 1
n
)γ

in ΩT = Ω× (0, T ),

un = 0 on (RN\Ω)× (0, T ),

un(·, 0) = u0(·) in Ω

and 
(un+1)t + (−∆)sun+1 =

fn+1(x, t)

(un+1 + 1
n+1

)γ
in ΩT = Ω× (0, T ),

un+1 = 0 on (RN\Ω)× (0, T ),

un+1(·, 0) = u0(·) in Ω.

Subtracting the two equations, taking (un−un+1)+ as a test function and using the following

inequality

(g(x, t)− g(y, t))(g+(x, t)− g+(y, t)) ≥ (g+(x, t)− g+(y, t))2

which holds true for every x, y ∈ RN , t ∈ R, we arrive at∫
ΩT

(un − un+1)t(un − un+1)+dxdt+
1

2

∫
QT

|(un − un+1)+(x, t)− (un − un+1)+(y, t))|2

|x− y|N+2s
dydxdt

≤
∫

ΩT

(
fn(x, t)

(un + 1
n
)γ
− fn+1(x, t)

(un+1 + 1
n+1

)γ

)
(un − un+1)+dxdt

≤
∫

ΩT

fn+1

(
(un+1 + 1

n+1
)γ − (un + 1

n
)γ

(un + 1
n
)γ(un+1 + 1

n+1
)γ

)
(un − un+1)+dxdt ≤ 0.

Pointing out that (un − un+1)+(x, 0) = 0, we get∫
ΩT

(un − un+1)t(un − un+1)+dxdt =
1

2

∫ T

0

∫
Ω

d

dt

(
(un − un+1)+

)2

dxdt

=
1

2

∫
Ω

(
(un − un+1)+(x, T )

)2

dx ≥ 0.

Therefore,

0 ≤ ‖(un − un+1)+‖2
L2(0,T ;Xs

0(Ω)) =

∫
QT

|(un − un+1)+(x, t)− (un − un+1)+(y, t))|2

|x− y|N+2s
dydxdt ≤ 0,
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which implies that the sequence {un}n is increasing with respect to n.

We now turn to prove the inequality (4.12). Starting as in [24], we need in a first time to

prove the for every open ball Br(x0) included in Ω there exists a positive constant C(x0, r)

depending on x0 and r but not on n such that

un(x, t) ≥ C(x0, r), ∀(x, t) ∈ Br/2(x0)× [0, T ), ∀n ∈ N. (4.13)

Consider the compact subset K := B3r/4(x0). By the initial condition (4.2) on u0 there is a

constant dK such that

u0(x) ≥ dK , for all x ∈ K.

This implies

un(x, 0) = u0(x) ≥ dK , ∀(x, t) ∈ K × {0}. (4.14)

Let v be the non-negative solution (see [63, Theorem 26]) of the following problem
vt + (−∆)sv = 0 in ΩT = Ω× (0, T ),

v(x, t) = 0 on (RN\Ω)× (0, T ),

v(x, 0) = v0 in Ω,

where

v0(x) =

 dK if x ∈ K,

0 if x ∈ Ω\K.

By the weak comparison principle, (see [6, Lemma 2.2] or [8, Lemma 2.9]), we obtain

un(x, t) ≥ v(x, t), for all (x, t) ∈ RN × (0, T ).

Let Ω′ := B3r/4(x0) be the open ball and define the function

g(x, t) =

 v(x, t) if (x, t) ∈ (Ω\Ω′)× (0, T ),

0 if (x, t) ∈ (RN\Ω)× (0, T ).

It’s easy to see that v is the solution of the problem
vt + (−∆)sv = 0 in Ω′ × (0, T ),

v(x, t) = g on (RN\Ω′)× (0, T ),

v(x, 0) = v0 in Ω′.
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On the other hand, let w be the solution (see [63, Theorem 26]) of the following problem
wt + (−∆)sw = 0 in Ω′ × (0, T ),

w(x, t) = 0 on (RN\Ω′)× (0, T ),

w(x, 0) = v0 in Ω′.

Using the fact that g(x, t) ≥ 0 on (RN\Ω′) × (0, T ) and again by the weak comparison

principle, (see [6, Lemma 2.2] or [8, Lemma 2.9]), we get

v(x, t) ≥ w(x, t), for all (x, t) ∈ RN × (0, T ).

Now, let φ1 ∈ Xs
0(Ω′) ∩ L∞(Ω′) be the (eigenfunction) solution (see e.g. [77, Proposition 4]

and [78, Proposition 9]) of the following eigenvalue problem (−∆)sφ = λφ in Ω′,

φ = 0 on RN\Ω′.

corresponding to the smallest eigenvalue λ1. So that defining z(x, t) =
dK

‖φ1‖L∞(Ω′)
e−λ1tφ1(x),

we observe that the function z is a solution to the following problem
zt + (−∆)sz = 0 in Ω′ × (0, T ),

z(x, t) = 0 on (RN\Ω′)× (0, T ),

z(x, 0) =
dK

‖φ1‖L∞(Ω′)
φ1(x) in Ω′.

Since z(x, 0) ≤ w(x, 0) on Ω′, applying again the weak comparison principle (see [6, Lemma

2.2] or [8, Lemma 2.9]), we obtain

w(x, t) ≥ z(x, t), for all (x, t) ∈ RN × (0, T ).

Which in particular implies

w(x, t) ≥ dK
‖φ1‖L∞(Ω′)

e−λ1tφ1(x), ∀(x, t) ∈ Ω′ × (0, T ).

From [19, Lemma 4.2], we know that there exists a positive constant C1 > 0, depending on Ω′,

such that for every x ∈ Ω′, one has φ1(x) ≥ C1

(
δ′(x)

)s
, where δ′(x) = dist(x, ∂Ω′). Therefore,

we have

w(x, t) ≥ C1
dK

‖φ1‖L∞(Ω′)
e−λ1T

(
δ′(x)

)s
, for all (x, t) ∈ Ω′ × (0, T ).
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Taking into the account the above comparisons, we obtain

un(x, t) ≥ C1
dK

‖φ1‖L∞(Ω′)
e−λ1T

(r
4

)s
, for all (x, t) ∈ Br/2(x0)× (0, T ).

Now, having in mind (4.14) for t = 0 we conclude that for every (x, t) ∈ Br/2(x0)× [0, T )

un(x, t) ≥ C(x0, r) := min

(
dKC1

‖φ1‖L∞(Ω′)
e−λ1T

(r
4

)s
, dK

)
.

Let now ω ⊂⊂ Ω be an arbitrary open set. We know that ω is covered by a finite number m

of open balls Br1/2(x1), Br2/2(x2), · · · , Brm/2(xm), that is

ω ⊂
m⋃
j=1

Brj/2(xj).

Therefore, applying (4.13) to every ball Brj/2(xj) and choosing

cω = min
1≤j≤m

(
C(xj, rj/2)

)
.

We easily conclude (4.12).

4.4 Proof of main results

4.4.1 Proof of Theorems 4.2.1 and 4.2.2

In order to prove the existence of solutions for the problem (4.1), we first need some a priori

estimates on un.

4.4.1.1 A priori estimates in fractional Sobolev spaces

Lemma 4.4.1. Let γ = 1 and (f, u0) ∈ (L1(ΩT ) × L∞(Ω)). Let un be a solution of (4.6),

then the sequence {un} is uniformly bounded in L2(0, T ;Xs
0(Ω)) ∩ L∞(0, T ;L2(Ω)).

Proof. Using un(x, t)χ(0,τ)(t), τ ∈ (0, T ], as a test function in (4.7), we get∫ τ

0

∫
Ω

(un)tundxdt+
1

2

∫ τ

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt ≤

∫
ΩT

f(x, t)un
(un + 1

n
)
dxdt.

Then we have∫
Ω

u2
n(x, τ)dx+

∫ τ

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt ≤ 2‖f‖L1(ΩT ) + ‖u0‖2

L∞(Ω)|Ω|.
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Taking the supremum of the left term on [0, T ], we get

sup
0≤τ≤T

∫
Ω

u2
n(x, τ)dx+

∫ T

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt ≤ 2‖f‖L1(ΩT ) + ‖u0‖2

L∞(Ω)|Ω|,

which implies that the sequence {un}n is uniformly bounded in L2(0, T ;Xs
0(Ω)) ∩

L∞(0, T ;L2(Ω)).

Lemma 4.4.2. Let 0 < γ < 1 and u0 ∈ L∞(Ω). Let un be a solution of (4.6). Then,

i) if f ∈ L
2

γ+1 (0, T ;L

(
2∗s
1−γ

)′
(Ω)),

or

ii) if f ∈ Lm(ΩT ), with m =
2(N + 2s)

2(N + 2s)−N(1− γ)
,

the sequence {un} is uniformly bounded in L2(0, T ;Xs
0(Ω)) ∩ L∞(0, T ;L2(Ω)).

Proof. Taking un(x, t)χ(0,τ)(t) as a test function in (4.7), by similar arguments in the previous

lemma, we obtain

sup
0≤τ≤T

∫
Ω

u2
n(x, τ)dx+

∫ T

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt ≤ 2

∫
ΩT

fu1−γ
n dxdt+ ‖u0‖2

L∞(Ω)|Ω|.

(4.15)

i) Since f ∈ L
2

γ+1 (0, T ;L

(
2∗s
1−γ

)′
(Ω)), we apply the Hölder inequality twice obtaining∫

ΩT

fu1−γ
n dxdt ≤

∫ T

0

(∫
Ω

|f(x, t)|
(

2∗s
1−γ

)′
dx

) 1(
2∗s
1−γ

)′(∫
Ω

|un(x, t)|2∗sdx
) 1−γ

2∗s
dt

=

∫ T

0

‖f‖
L

(
2∗s
1−γ

)′
(Ω))

‖un‖1−γ
L2∗s (Ω))

dt

≤
(∫ T

0

‖f‖
2

1+γ

L

(
2∗s
1−γ

)′
(Ω)

dt

) 1+γ
2
(∫ T

0

‖un‖2
L2∗s (Ω)

dt

) 1−γ
2

.

(4.16)

An application of the Sobolev embedding in the last term on the right-hand side in (4.16)

yields∫
ΩT

fu1−γ
n dxdt ≤

(
S(N, s)

) 1−γ
2 ‖f‖

L
2

γ+1 (0,T ;L

(
2∗s
1−γ

)′
(Ω))

[ ∫ T

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt

] 1−γ
2

.

Using Young’s inequality we deduce from (4.15)

sup
0≤τ≤T

∫
Ω

u2
n(x, τ)dx+

∫ T

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt ≤ C,

where C is a positive constant which does not depend on n.
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ii) As f ∈ Lm(ΩT ), applying the Hölder inequality in the first term on the right hand-side

in (4.15), we get

sup
0≤τ≤T

∫
Ω

u2
n(x, τ)dx+

∫ T

0

∫
Q

|un(x, t)− un(y, t)|2

|x− y|N+2s
dydxdt

≤ 2‖f‖Lm(ΩT )

[ ∫
ΩT

u(1−γ)m′

n dxdt

] 1
m′

+ ‖u0‖2
L∞(Ω)|Ω|.

(4.17)

On other hand, by the Hölder inequality with the exponents
N

N − 2s
and

N

2s
and applying

the Sobolev embedding, we can write∫
ΩT

|un|
2(N+2s)

N dxdt =

∫
ΩT

|un|2|un|
4s
N dxdt

≤
∫ T

0

[ ∫
Ω

|un(x, t)|
2N
N−2sdx

]N−2s
N
[ ∫

Ω

|un(x, t)|2dx
] 2s
N

dt

=

∫ T

0

[ ∫
Ω

|un(x, t)|2dx
] 2s
N

‖un‖2
L2∗s (Ω))

dt

≤ S(N, s)

[
sup

0≤t≤T

∫
Ω

|un(x, t)|2dx
] 2s
N
∫ T

0

∫
Q

(un(x, t)− un(y, t))2

|x− y|N+2s
dydxdt.

(4.18)

So that by (4.17) we get∫
ΩT

|un|
2(N+2s)

N ≤ S(N, s)

(
2‖f‖Lm(ΩT )

(∫
ΩT

u(1−γ)m′

n dxdt

) 1
m′

+ ‖u0‖2
L∞(Ω)|Ω|

)N+2s
N

≤ S(N, s)2
2s
N

((
2‖f‖Lm(ΩT )

)N+2s
N
(∫

ΩT

u(1−γ)m′

n

)N+2s
Nm′

+

(
‖u0‖2

L∞(Ω)|Ω|
)N+2s

N
)
.

Pointing out that (1 − γ)m′ =
2(N + 2s)

N
and

N + 2s

Nm′
=

1− γ
2

< 1, we use the Young

inequality to obtain ∫
ΩT

|un|
2(N+2s)

N dxdt ≤ C,

where C is a positive constant not depending on n. Therefore, by (4.17) we conclude that

{un} is uniformly bounded in L2(0, T ;Xs
0(Ω)) ∩ L∞(0, T ;L2(Ω)).

4.4.1.2 Passing to the limit

Proof. of Theorem 4.2.2 and Theorem 4.2.1.

Since by Lemma 4.4.2 and Lemma 4.4.1, the sequence {un} is uniformly bounded in the

reflexive space L2(0, T ;Xs
0(Ω)), there exist a subsequence of {un}n, still indexed by n, and
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a measurable function u ∈ L2(0, T ;Xs
0(Ω)) such that un ⇀ u weakly in L2(0, T ;Xs

0(Ω)).

On other hand, by the Poincaré inequality (Lemma 1.1.1) the increasing sequence {un} is

uniformly bounded in L2(ΩT ) ⊂ L1(ΩT ), so that by Beppo-Levi’s theorem un converges to

a function v in norm in L1(ΩT ) and (for a subsequence if necessary) a.e. in Ω × (0, T ). As

L2(0, T ;Xs
0(Ω)) ⊂ L2(ΩT ) we have the identification u = v a.e. in Ω × (0, T ). In addition,

since un = u = 0 on CΩ × (0, T ), we obtain un → u for a.e. (x, t) ∈ RN × (0, T ). Hence

follows

un(x, t)− un(y, t)

|x− y|N+2s
2

→ u(x, t)− u(y, t)

|x− y|N+2s
2

a.e. in Q× (0, T ).

Testing by an arbitrary function ϕ ∈ C∞0 (Ω× [0, T )) in (4.7) we get

−
∫

ΩT

unϕtdxdt−
∫

Ω

un(x, 0)ϕ(x, 0)dx+
1

2

∫
QT

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫
ΩT

fnϕ

(un + 1
n
)γ
dxdt.

(4.19)

It is clear that

lim
n→∞

∫
ΩT

unϕtdxdt =

∫
ΩT

uϕtdxdt

and

lim
n→∞

∫
Ω

un(x, 0)ϕ(x, 0)dx =

∫
Ω

u0(x)ϕ(x, 0)dx.

Define

Fn(x, y, t) =
un(x, t)− un(y, t)

|x− y|N+2s
2

and F (x, y, t) =
u(x, t)− u(y, t)

|x− y|N+2s
2

.

Since {un} is uniformly bounded in L2(0, T ;Xs
0(Ω)), then so is {Fn(x, y, t)}n in L2(Q×(0, T ))

which implies that for a subsequence Fn ⇀ F in L2(Q× (0, T )). On the other hand, observe

that for every ϕ ∈ C∞0 (Ω× [0, T )) ⊂ L2(0, T ;Xs
0(Ω)), we have

ϕ(x, t)− ϕ(y, t)

|x− y|N+2s
2

∈ L2(Q× (0, T )).

Thus, we have

lim
n→∞

∫
QT

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt =∫

QT

(u(x)− u(y))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt,
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for all ϕ ∈ C∞0 (Ω × [0, T )). As regards the last term on the right-hand side in (4.19) we use

Lemma 4.3.2. Whence, for any ϕ ∈ C∞0 (Ω× [0, T )) with supp(ϕ) ⊂ ω × [0, T ), there exists a

constant cω > 0, not depending on n, such that

0 ≤
∣∣∣∣ fnϕ

(un + 1
n
)γ

∣∣∣∣ ≤ ‖ϕ‖L∞(ΩT )|f |
cγω

∈ L1(ΩT ),

so that by the dominated convergence theorem we obtain

lim
n→∞

∫
ΩT

fnϕ

(un + 1
n
)γ
dxdt =

∫
ΩT

fϕ

uγ
dxdt.

Finally, passing to the limit as n→ +∞ we get

−
∫

ΩT

uϕtdxdt−
∫

Ω

u0(x)ϕ(x, 0)dx+
1

2

∫
QT

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dxdydt

=

∫
ΩT

fϕ

uγ
dxdt,

for all ϕ ∈ C∞0 (Ω× [0, T ). So u is a weak solution of (4.1).

4.4.2 Proof of Theorem 4.2.3

4.4.2.1 A priori estimates in fractional Sobolev spaces

Lemma 4.4.3. Assume that 0 < γ < 1 and (f, u0) ∈ (Lm(ΩT )×L∞(Ω)) with 1 ≤ m < m :=
2(N + 2s)

2(N + 2s)−N(1− γ)
. Let un be a solution of (4.6). Then the sequence {un} is uniformly

bounded in Lq(0, T ;W s1,q
0 (Ω)) ∩ L∞(0, T ;L1+γ(Ω)) for every s1 < s with

q =
m(γ + 1)(N + 2s)

N + 2s− sm(1− γ)
.

Moreover, {un}n is uniformly bounded in Lσ(ΩT ), with σ =
m(γ + 1)(N + 2s)

N − 2s(m− 1)
.

Proof. Let γ ≤ θ < 1, 0 < ε <
1

n
and let τ ∈ (0, T ]. Taking

(
(un(x, t) + ε)θ − εθ

)
χ(0,τ)(t) as

a test function in (4.7), we have∫ τ

0

∫
Ω

(un)t[(un + ε)θ − εθ]dxdt

+
1

2

∫ τ

0

∫
Q

(un(x, t)− un(y, t))((un(x, t) + ε)θ − (un(y, t) + ε)θ)

|x− y|N+2s
dydxdt

≤
∫

ΩT

f(x, t)un(un(x, t) + ε)θ−γdxdt.
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Letting ε tends to zero, we get

2

θ + 1

∫
Ω

|un(x, τ)|θ+1dx +

∫ τ

0

∫
Q

(un(x, t)− un(y, t))(uθn(x, t)− uθn(y, t))

|x− y|N+2s
dydxdt

≤ 2

∫
ΩT

fnu
θ−γ
n dxdt+

2

θ + 1

∫
Ω

uθ+1
0 (x)dx.

As this inequality holds true for every τ ∈ [0, T ], we can pass to the supremum on the left-hand

side obtaining

2

θ + 1
sup

0≤τ≤T

∫
Ω

|un(x, τ)|θ+1dx +

∫ T

0

∫
Q

(un(x, t)− un(y, t))(uθn(x, t)− uθn(y, t))

|x− y|N+2s
dydxdt

≤ 2

∫
ΩT

fuθ−γn dxdt+
2|Ω|
θ + 1

‖u0‖θ+1
L∞(Ω).

(4.20)

Then an application of Lemma 1.3.3 yields

θ + 1

2θ
sup

0≤τ≤T

∫
Ω

|un(x, τ)|θ+1dx +

∫ T

0

∫
Q

∣∣∣u θ+1
2

n (x, t)− u
θ+1
2

n (y, t)
∣∣∣2

|x− y|N+2s
dydxdt

≤ (θ + 1)2

2θ

∫
ΩT

fuθ−γn dxdt+
(θ + 1)|Ω|

2θ
‖u0‖θ+1

L∞(Ω)

≤ 2

θ

∫
ΩT

fuθ−γn dxdt+
|Ω|
θ
‖u0‖θ+1

L∞(Ω)

. ≤ max(|Ω|, 2)

θ

(∫
ΩT

fuθ−γn dxdt+ ‖u0‖θ+1
L∞(Ω)

)
.

(4.21)

In the previous inequality, the term
θ + 1

2θ
> 1, can be dropped. On one hand, an application

of the Hölder inequality with
N

N − 2s
and

N

2s
gives

∫
ΩT

|un|
(θ+1)(N+2s)

N dxdt =

∫
ΩT

|un|2
θ+1
2 |un|

4s
N
θ+1
2 dxdt

≤
∫ T

0

(∫
Ω

|un(x, t)|2∗s
θ+1
2 dx

)N−2s
N
[ ∫

Ω

|un(x, t)|θ+1dx

] 2s
N

dt

=

∫ T

0

‖u
θ+1
2

n ‖2
L2∗s

[ ∫
Ω

|un(x, t)|θ+1dx

] 2s
N

dt.

Taking the supremum on [0, T ] and applying the Sobolev embedding, we obtain

∫
ΩT

|un|
(θ+1)(N+2s)

N ≤ S(N, s)

(
sup

0≤t≤T

∫
Ω

|un(x, t)|θ+1dx

) 2s
N
∫
QT

∣∣∣u θ+1
2

n (x, t)− u
θ+1
2

n (y, t)
∣∣∣2

|x− y|N+2s
dydxdt.
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By (4.21) we have∫
ΩT

|un|
(θ+1)(N+2s)

N dxdt ≤ S(N, s)

(
max(|Ω|, 2)

θ

)N+2s
N
(∫

ΩT

fuθ−γn dxdt+ ‖u0‖θ+1
L∞(Ω)

)N+2s
N

≤ S(N, s)2
2s
N

(
max(|Ω|, 2)

θ

)N+2s
N
((∫

ΩT

fuθ−γn dxdt

)N+2s
N

+ ‖u0‖
(θ+1)N+2s

N

L∞(Ω)

)
.

(4.22)

If m = 1 then we take θ = γ in the previous estimation. So we obtain∫
ΩT

|un|
(γ+1)(N+2s)

N dxdt ≤ S(N, s)2
2s
N

(
max(|Ω|, 2)

γ

)N+2s
N
(
‖f‖

N+2s
N

L1(ΩT )+‖u0‖
(γ+1)(N+2s)

N

L∞(Ω)

)
. (4.23)

On the other hand, by (4.21) we easily have

‖un‖L∞(0,T ;Lγ+1(Ω)) ≤
2 max(|Ω|, 2)

γ + 1

[
‖f‖L1(ΩT ) + ‖u0‖γ+1

L∞(Ω)

]
. (4.24)

We now consider the case m > 1. Let γ < θ < 1. Using (4.22) and applying the Hölder

inequality, we obtain∫
ΩT

u
(θ+1)(N+2s)

N
n dxdt ≤ C1‖f‖

N+2s
N

Lm(ΩT )

[ ∫
ΩT

um
′(θ−γ)

n dxdt

]N+2s
Nm′

+ C1‖u0‖
(θ+1)(N+2s)

N

L∞(Ω) ,

where C1 = S(N, s)2
2s
N

(
max(|Ω|, 2)

θ

)N+2s
N

. We can choose γ < θ < 1 to be such that

(θ + 1)(N + 2s)

N
= m′(θ − γ).

That is

θ =
(N + 2s)(m− 1) +Nmγ

N − 2s(m− 1)
.

Notice that the condition θ < 1 is equivalent to m < m; while γ < θ is always fulfilled. Since
N + 2s

Nm′
< 1, applying Young’s inequality with ε > 0, we get

∫
ΩT

u
(θ+1)(N+2s)

N
n dxdt ≤ C1‖f‖

N+2s
N

Lm(ΩT )

(
ε

∫
ΩT

u
(θ+1)(N+2s)

N
n dxdt+ C(ε)

)
+ C1‖u0‖

(θ+1)(N+2s)
N

L∞(Ω) .

Choosing ε small enough such that εC1‖f‖
N+2s
N

Lm(ΩT ) < 1 and using the fact that

σ :=
m(γ + 1)(N + 2s)

N − 2s(m− 1)
=

(θ + 1)(N + 2s)

N
,
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we get ∫
ΩT

|un|σdxdt ≤ C, (4.25)

where C is a positive constant which does not depend on n.

It remains to prove that {un} is uniformly bounded in L∞(0, T ;Lγ+1(Ω)). By (4.21) we have

sup
0≤τ≤T

∫
Ω

uθ+1
n (x, τ)dx ≤ max(|Ω|, 2)

θ

(∫
ΩT

fuθ−γn dxdt+ ‖u0‖θ+1
L∞(Ω)

)
≤ max(|Ω|, 2)

θ

(
‖f‖Lm(ΩT )‖un‖

σ
m′
Lσ(ΩT ) + ‖u0‖θ+1

L∞(Ω)

)
.

Since γ < θ and by (4.25) we conclude that {un} is uniformly bounded in L∞(0, T ;Lγ+1(Ω)).

Finally, we conclude that in both cases, that is 1 ≤ m < m, the sequence {un} is uniformly

bounded in Lσ(ΩT ), σ :=
m(γ + 1)(N + 2s)

N − 2s(m− 1)
and in L∞(0, T ;Lγ+1(Ω)). Thus, by (4.20), we

have ∫ T

0

∫
Q

(un(x, t)− un(y, t))(uθn(x, t)− uθn(y, t))

|x− y|N+2s
dydxdt ≤ C, (4.26)

where C is a positive constant which does not depend on n.

Now, we shall prove that the sequence {un} is uniformly bounded in a suitable fractional

Sobolev space. Let s1 ∈ (0, s), be fixed and let 1 < q < 2 that will be chosen later. Applying

Hölder’s inequality, we get

∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|q

|x− y|N+qs1
dydxdt

=

∫ T

0

∫
Ω

∫
{y∈Ω:un(y,t)6=un(x,t)}

|un(x, t)− un(y, t)|q

|x− y|N+qs1
× uθn(x, t)− uθn(y, t)

un(x, t)− un(y, t)
× un(x, t)− un(y, t)

uθn(x, t)− uθn(y, t)

≤
(∫ T

0

∫
Ω

∫
{y∈Ω:un(y,t) 6=un(x,t)}

|un(x, t)− un(y, t)|2

|x− y|N+2s
× uθn(x, t)− uθn(y, t)

un(x, t)− un(y, t)
dydxdt

) q
2

×
(∫ T

0

∫
Ω

∫
{y∈Ω:un(y,t)6=un(x,t)}

(
un(x, t)− un(y, t)

uθn(x, t)− uθn(y, t)

) 2
2−q

× uθn(x, t)− uθn(y, t)

un(x, t)− un(y, t)
× dydxdt

|x− y|N−β

) 2−q
2

,

(4.27)
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where β =
2q(s− s1)

2− q
. Then∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|q

|x− y|N+qs1
dydxdt

≤
(∫ T

0

∫
Ω

∫
Ω

(un(x, t)− un(y, t))(uθn(x, t)− uθn(y, t))

|x− y|N+2s
dydxdt

) q
2

×
(∫ T

0

∫
Ω

∫
{y∈Ω:un(y,t)6=un(x,t)}

(
un(x, t)− un(y, t)

uθn(x, t)− uθn(y, t)

) q
2−q

× dydxdt

|x− y|N−β

) 2−q
2

.

By the inequality (4.26) and Lemma 1.3.3, we get∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|q

|x− y|N+qs1
dydxdt ≤ C1

(∫ T

0

∫
Ω

∫
Ω

u
q(1−θ)
2−q

n (x, t) + u
q(1−θ)
2−q

n (y, t)

|x− y|N−β
dydxdt

) 2−q
2

.

By x/y symmetry, there exists a constant C2, not depending on n, such that∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|q

|x− y|N+qs1
dydxdt ≤ C2

(∫ T

0

∫
Ω

u
q(1−θ)
2−q

n (x, t)

(∫
Ω

dy

|x− y|N−β

)
dxdt

) 2−q
2

.

Since Ω is bounded, then there exists a constant R > 0, such that Ω ⊂ BR, where BR, is the

ball of radius R, so, an easy computation leads to∫
Ω

dy

|x− y|N−β
≤
∫ R

0

dz

|z|N−β
≤ |S

N−1|
β

Rβ,

where |SN−1| stands for the Lebesgue measure of the unit sphere in RN . We now choose q to

be such that
q(1− θ)

2− q
= σ :=

m(γ + 1)(N + 2s)

N − 2s(m− 1)
,

that is

q =
m(γ + 1)(N + 2s)

N + 2s− sm(1− γ)
.

We point out that q < 2 is equivalent to m < m; while q > 1 is always fulfilled. Then we get∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|q

|x− y|N+qs1
dydxdt ≤ C2

(
|SN−1|
β

Rβ

∫
ΩT

uσn(x, t)dxdt

) 2−q
2

≤ C3,

where C3 is a positive constant which does not depend on n. Thus, {un} is uniformly bounded

in Lq(0, T ;W s1,q
0 (Ω)) for every s1 < s.

Remark 4.4.1. Notice that by (4.25) the sequence {un} is uniformly bounded in Lr(Ω)

for every 1 ≤ r ≤ σ, then as is the same lines of the proof of the previous Lemma 4.4.3

with the exponent q instead of q in 4.27, we can obtain that {un} is uniformly bounded in

Lq(0, T ;W s1,q
0 (Ω)) for all 1 < q ≤ q and for every s1 < s and 1 ≤ m < m.
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4.4.2.2 Passing to the limit

Proof. of Theorem 4.2.3.

By virtue of Lemma 4.4.3 the sequence {un} is uniformly bounded in the reflexive space

Lq(0, T ;W s1,q
0 (Ω)), then there exist a subsequence of {un}n still indexed by n and a measurable

function u ∈ Lq(0, T ;W s1,q
0 (Ω)) such that un ⇀ u weakly in Lq(0, T ;W s1,q

0 (Ω)). Let’s reason

as above, the sequence {un} is increasing and uniformly bounded in L1(ΩT ), so that by

Beppo-Levi’s theorem un → u in norm in L1(ΩT ) and a.e. in Ω× (0, T ) and since un = 0 on

CΩ×(0, T ), extending u by zero outside Ω, we get un → u for a.e (x, t) ∈ RN×(0, T ). Let now

ρ > 0 be a small enough real number that we will choose later. For any ϕ ∈ C∞0 (Ω× [0, T ))

we have∫ T

0

∫
Ω

∫
Ω

[
|(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))|

|x− y|N+2s

]1+ρ

dydxdt

≤
∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|1+ρ(‖Dϕ‖L∞(ΩT )|x− y|)1+ρ

|x− y|N+(1+ρ)s1

dydxdt

|x− y|ρN+(1+ρ)(2s−s1)

≤ ‖Dϕ‖1+ρ
L∞(ΩT )

∫ T

0

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|1+ρ|x− y|(1+ρ)(1+s1−2s)−ρN

|x− y|N+(1+ρ)s1
dydx.

We need an adequate choice of ρ to assure that (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0. To this aim,

we consider s1 to be very close to s. Precisely, we impose on s1 the condition

max(0, 1− 3s) < s− s1 < 1− s.

We point out that with this range of values of s1 and with the assumption N > 2s, we obtain

1 + s1 − 2s > 0 and N − 1− s1 + 2s > 0.

Thus, the fact that (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0 is equivalent to 0 < ρ ≤ 1 + s1 − 2s

N − 1− s1 + 2s
.

Hence, we get∫ T

0

∫
Ω

∫
Ω

[
|(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))|

|x− y|N+2s

]1+ρ

dydxdt

≤ ‖Dϕ‖1+ρ
L∞(ΩT )diam(Ω)(1+ρ)(1+s1−2s)−ρN

∫
Ω

∫
Ω

|un(x, t)− un(y, t)|1+ρ

|x− y|N+(1+ρ)s1
dydxdt,

(4.28)

where diam(Ω) stands for the diameter of Ω. Now we make the adequate choice of ρ to prove

that the right-hand integral in (4.28) is uniformly bounded. By Remark 4.4.1 we have the
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uniform boundedness of {un}n in Lq(0, T ;W s1,q
0 ) for every 1 < q ≤ q =

m(γ + 1)(N + 2s)

N + 2s− sm(1− γ)
.

So it is sufficient to choose ρ such that 1 + ρ ≤ q =
m(γ + 1)(N + 2s)

N + 2s− sm(1− γ)
. Finally, we choose

ρ to be such that

0 < ρ ≤ min
((N + 2s)(m− 1) +mγ(N + s) + sm

N + 2s− sm(1− γ)
,

1 + s1 − 2s

N − 1− s1 + 2s

)
.

Therefore, there is a constant C > 0 which does not depend on n such that

sup
n

∫ T

0

∫
Ω

∫
Ω

[
(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s

]1+ρ

dydxdt ≤ C.

Therefore, by De La Vallée-Poussin and Dunford-Pettis theorems the sequence{(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s

}
is equi-integrable in L1(Ω × Ω × (0, T )). Now, taking ϕ ∈ C∞0 (Ω × [0, T )) as a test function

in (4.7) we get

−
∫

ΩT

unϕtdxdt−
∫

Ω

un(x, 0)ϕ(x, 0)dx+
1

2

∫
QT

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫
ΩT

fnϕ

(un + 1
n
)γ
dxdt.

(4.29)

For the third integral on the left-hand side of (4.29), we split it into three integrals as follows∫ T

0

∫
Q

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
Ω

∫
Ω

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

+

∫ T

0

∫
Ω

∫
CΩ

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

+

∫ T

0

∫
CΩ

∫
Ω

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

= I1 + I2 + I3.

(4.30)

The almost everywhere convergence of {un} to u allows us to get for every ϕ ∈ C∞0 (Ω× [0, T ))

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
→ (u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
a.e. in Q×(0, T ).
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Then by Vitali’s lemma we have

lim
n→∞

∫ T

0

∫
Ω

∫
Ω

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
Ω

∫
Ω

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt.

For the second integral I2 in (4.30), we start noticing that since un(y, t) = ϕ(y, t) = 0 for

every (y, t) ∈ CΩ× (0, T ) we can write∣∣∣(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s

∣∣∣ =
|un(x, t)ϕ(x, t)|
|x− y|N+2s

= |Gn(x, y, t)| in (x, y, t) ∈ Ω×CΩ×(0, T ).

We need to prove that the sequence {Gn(x, y, t)}n is uniformly bounded in L1(Ω×CΩ×(0, T )).

Since supp(ϕ) is a compact subset in Ω, we have

|x− y| ≥ d1 := dist(supp(ϕ), ∂Ω) > 0 for every (x, y) ∈ supp(ϕ)× CΩ.

Therefore, an easy computation leads to∫ T

0

∫
Ω

∫
CΩ

|un(x, t)ϕ(x, t)|
|x− y|N+2s

dydxdt =

∫ T

0

∫
supp(ϕ)

|un(x, t)ϕ(x, t)|
(∫

CΩ

dy

|x− y|N+2s

)
dxdt

≤
|SN−1|‖ϕ‖L∞(ΩT )‖un‖L1(ΩT )

2sd2s
1

,

where |SN−1| stands for the Lebesgue measure of the unit sphere in RN . On the other hand,

since {un} is increasing then so is {Gn(x, y, t)}n. Hence Beppo-Levi’s theorem and the almost

everywhere converge of un to u yield

Gn(x, y, t)→ u(x, t)ϕ(x, t)

|x− y|N+2s
in L1(Ω× CΩ× (0, T )).

Which implies

lim
n→∞

∫ T

0

∫
Ω

∫
CΩ

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
Ω

∫
CΩ

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt.

As regards the third integral I3 in (4.30), we can follow exactly the same lines as above using

the x/y symmetry. We then conclude that

lim
n→∞

∫
QT

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫
QT

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt,
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for all ϕ ∈ C∞0 (Ω × [0, T )). Now for what concerns the first, the second integrals and the

right-hand side of (4.29), we follow the same arguments as in the proof of Theorem 4.2.2.

Finally, passing to the limit as n→ +∞, we get

−
∫

ΩT

uϕtdxdt−
∫

Ω

u0(x)ϕ(x, 0)dx+
1

2

∫
QT

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dxdydt

=

∫
ΩT

fϕ

uγ
dxdt,

for all ϕ ∈ C∞0 (Ω× [0, T )). This shows that u is a weak solution of (4.1).

4.4.3 Proof of Theorem 4.2.4

4.4.3.1 A priori estimates in fractional Sobolev spaces

Lemma 4.4.4. Suppose that γ > 1 and (f, u0) ∈ L1(ΩT ) × L∞(Ω). Let un be a solution of

(4.6). Then the sequence {un} is uniformly bounded in L2(0, T ;Hs
loc(Ω))∩L∞(0, T ;Lγ+1(Ω)).

Moreover {u
γ+1
2

n }n is uniformly bounded in L2(0, T ;Xs
0(Ω)).

Proof. Taking uγn(x, t)χ(0,τ)(t), τ ∈ (0, T ], as a test function in (4.7) and then the supremum

on [0, T ] in the left-hand side, we get

2

γ + 1
sup

0≤τ≤T

∫
Ω

uγ+1
n (x, τ)dx +

∫ T

0

∫
Q

(un(x, t)− un(y, t))(uγn(x, t)− uγn(y, t))

|x− y|N+2s
dydxdt

≤ 2‖f‖L1(ΩT ) +
2|Ω|
γ + 1

‖u0‖γ+1
L∞(Ω).

(4.31)

Using the item i) of Lemma 1.3.3, we get

sup
0≤τ≤T

∫
Ω

uγ+1
n (x, τ)dx +

2γ

γ + 1

∫
QT

|u
γ+1
2

n (x, t)− u
γ+1
2

n (y, t)|2

|x− y|N+2s
dydxdt

≤ (γ + 1)‖f‖L1(ΩT ) + |Ω|‖u0‖γ+1
L∞(Ω).

(4.32)

It follows that {un} and {u
γ+1
2

n }n are uniformly bounded in L∞(0, T ;Lγ+1(Ω)) and

L2(0, T ;Xs
0(Ω)) respectively.

We now prove that {un} is uniformly bounded in L2(0, T ;Hs
loc(Ω)). Since {un}n is uniformly

bounded in L∞(0, T ;Lγ+1(Ω)) ⊂ L2(0, T ;Lγ+1(Ω)) and since γ > 1, we conclude that {un}n
is uniformly bounded in L2(0, T ;L2(Ω)) = L2(ΩT ) and in particular in L2(K × (0, T )), for
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every compact K ⊂ Ω. On the other hand, by (4.31) we can write∫ T

0

∫
K

∫
K

(un(x, t)− un(y, t)))(uγn(x, t)− uγn(y, t)))

|x− y|N+2s
dydxdt ≤ 2‖f‖L1(ΩT ) +

2|Ω|
γ + 1

‖u0‖γ+1
L∞(Ω),

for every compact K ⊂ Ω. Applying the item v) of Lemma 1.3.3, we have

∫ T

0

∫
K

∫
K

|un(x, t)− un(y, t))|2|un(x, t) + un(y, t)|γ−1

|x− y|N+2s
≤ 2Cγ

(
‖f‖L1(ΩT ) + |Ω|‖u0‖γ+1

L∞(Ω)

)
.

Using Lemma 4.3.2, we get∫ T

0

∫
K

∫
K

|un(x, t)− un(y, t))|2

|x− y|N+2s
dydxdt ≤ 22−γCγ

cγ−1
K

(
‖f‖L1(ΩT ) + |Ω|‖u0‖γ+1

L∞(Ω)

)
. (4.33)

The lemma is then proved.

4.4.3.2 Passing to the limit

Proof. of Theorem 4.2.4.

By virtue of Lemma 4.4.4, we have {u
γ+1
2

n } is uniformly bounded in L2(0, T ;Xs
0(Ω)) ⊂ L2(ΩT ),

this implies that the increasing sequence {un} is uniformly bounded in L1(ΩT ). Then,

by Beppo Levi’s theorem there exists a measurable function u ∈ L1(ΩT ) such that un →

u a.e. in ΩT . Since un = 0 on (RN\Ω)× (0, T ), extending u by zero outside of Ω we conclude

that un → u a.e. in RN × (0, T ) with u = 0 on (RN\Ω)× (0, T ).

Using Fatou’s lemma in the two estimates (4.33) and (4.32), we obtain u ∈ L2(0, T ;Hs
loc(Ω)))∩

L∞(0, T ;Lγ+1(Ω)) and u
γ+1
2 ∈ L2(0, T ;Xs

0(Ω)).

Testing by an arbitrary function ϕ ∈ C∞0 (Ω× [0, T )) in (4.7) we get

−
∫

ΩT

unϕtdxdt −
∫

Ω

un(x, 0)ϕ(x, 0) +
1

2

∫
QT

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫
ΩT

fnϕ

(un + 1
n
)γ
dxdt.

(4.34)

Let K be a compact subset of Ω such that supp(ϕ) ⊂ K and dist(∂K, ∂Ω) > 0. As a

consequence of un(x, t) = un(y, t) = 0 for every (x, y, t) ∈ CΩ × CΩ × (0, T ) and ϕ(x, t) =

ϕ(y, t) = 0 for every (x, y, t) ∈ CK × CK × (0, T ), we can split the third integral on the
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left-hand side of (4.34) into three integrals as follows∫ T

0

∫
Q

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
RN

∫
RN

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
K

∫
K

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

+

∫ T

0

∫
K

∫
CK

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

+

∫ T

0

∫
CK

∫
K

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

= I1 + I2 + I3.

(4.35)

The almost everywhere convergence of {un} to u allows us to get for every ϕ ∈ C∞0 (Ω× [0, T ))

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
→ (u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
a.e. in Q×(0, T ).

We follow the same ideas as in the proof of Theorem 4.2.2 for the first integral I1, obtaining

lim
n→∞

∫ T

0

∫
K

∫
K

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
K

∫
K

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt.

For the integrals I2 and I3 in (4.35), we follow the same ideas as in the proof of Theorem

4.2.3, we get

lim
n→∞

∫ T

0

∫
K

∫
CK

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
K

∫
CK

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt,

lim
n→∞

∫ T

0

∫
CK

∫
K

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫ T

0

∫
CK

∫
K

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt
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which yields

lim
n→∞

∫
QT

(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt

=

∫
QT

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dydxdt.

For what concerns the first, the second integrals and the right-hand side of (4.34), we follow

the same arguments as in the proof of Theorem 4.2.2. Finally, passing to the limit as n→ +∞,

we obtain

−
∫

ΩT

uϕtdxdt−
∫

Ω

u0(x)ϕ(x, 0)dx+
1

2

∫
QT

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2s
dxdydt

=

∫
ΩT

fϕ

uγ
dxdt,

for all ϕ ∈ C∞0 (Ω× [0, T )). Therefore, u is a weak solution of (4.1).

4.4.4 Proof of Proposition 4.2.1

Proof. of Proposition 4.2.1.

Let ϕ ∈ C∞0 (Ω) and let Ω′ be an open subset of Ω supp(ϕ) ⊂ Ω′ ⊂⊂ Ω. Let now η ∈

Xs
0(Ω′) ∩ L∞(Ω′) be the unique positive solution (see [63, Theorem 12 and Theorem 13] of

the following problem  (−∆)sη = 1 in Ω′,

η = 0 in RN\Ω′.
(4.36)

Following the lines in [4], we shall show that {unη}n is a Cauchy sequence in C([0, T ], L1(Ω)).

Indeed, let us fix n > m > 1. It is easy to see that the function wn,m := un − um ≥ 0 solves

the problem
(wn,m)t + (−∆)swn,m =

fn(x, t)

(un + 1
n
)γ
− fm(x, t)

(um + 1
m

)γ
in ΩT = Ω× (0, T ),

wn,m = 0 in (RN\Ω)× (0, T ),

wn,m(·, 0) = 0 in Ω,

Using η(x)χ[0,τ ](t) ∈ L2(0, T ;Xs
0(Ω)), τ ∈ (0, T ], as a test function in the formulation of

solution (4.7) of the problem (4.6) solved by un and um respectively and then subtracting the

two equations we obtain∫
Ωτ

(wn,m)tη(x)dxdt+

∫
Ωτ

(−∆)swn,m(x, t)η(x)dx ≤
∫

ΩT

∣∣∣∣ fn(x, t)

(un + 1
n
)γ
− fm(x, t)

(um + 1
m

)γ

∣∣∣∣η(x)dxdt.
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Thus, the symmetry of (−∆)s and (4.36) yield∫
Ωτ

(wn,m)tη(x)dxdt+

∫
Ωτ

wn,m(x, t)dxdt ≤
∫

ΩT

∣∣∣∣ fn(x, t)

(un + 1
n
)γ
− fm(x, t)

(um + 1
m

)γ

∣∣∣∣η(x)dxdt.

Dropping the non negative term, it follows that∫
Ω

|un − um|(x, τ)η(x)dx ≤
∫

ΩT

∣∣∣∣ fn(x, t)

(un + 1
n
)γ
− fm(x, t)

(um + 1
m

)γ

∣∣∣∣η(x)dxdt.

Since supp(η) ⊂ Ω′, by Lemma 4.3.2 we have∣∣∣∣fn(x, t)η(x)

(un + 1
n
)γ

∣∣∣∣ ≤ ∣∣∣∣‖η‖L∞(Ω)f

cγΩ′

∣∣∣∣ ∈ L1(ΩT ).

Using the fact that un → u a.e. in Ω, we conclude by the Lebesgue dominated convergence

theorem that the sequence

{
fnη

(un + 1
n
)γ

}
n

converges to
fη

uγ
in L1(ΩT ) and so

sup
τ∈[0,T ]

∫
Ω

|un − um|(x, τ)η(x)dx→ 0, as n,m→ +∞,

Thus, {unη}n is a Cauchy sequence in C([0, T ];L1(Ω)). Let δ′(x) := dist(x, ∂Ω′). Going back

to [19, Lemma 4.2] we conclude that

η(x) ≥ c(Ω′)(δ′)s(x), ∀x ∈ Ω′.

Particularly, for every x ∈ supp(ϕ) ⊂ Ω′ one has

η(x) ≥ c(ϕ, s) := c(Ω′)
(
dist(supp(ϕ), ∂Ω′)

)s
.

So that, we obtain

sup
τ∈[0,T ]

∫
Ω

|un − um|(x, τ)|ϕ|dx = sup
τ∈[0,T ]

∫
supp(φ)

|un − um|(x, τ)η(x)
|ϕ|
η
dx

≤ ‖ϕ‖∞
c(ϕ, s)

sup
τ∈[0,T ]

∫
Ω

|un − um|(x, τ)η(x)dx.

Therefore, for every φ ∈ C∞0 (Ω)

sup
τ∈[0,T ]

∫
Ω

|un − um|(x, τ)|ϕ|dx→ 0, as n,m→ +∞.

This shows that {unφ}n is a Cauchy sequence in C([0, T ];L1(Ω)) for every φ ∈ C∞0 (Ω) and

so u ∈ C([0, T ];L1
loc(Ω)). Moreover∫

Ω

u(x, t)ϕ(x)dx→
∫

Ω

u0(x)ϕ(x)dx as t→ 0.



Conclusion and Outlook

Conclusion

In this thesis, we have provided existence, regularity and uniqueness of solutions for nonlocal

elliptic and parabolic problems of fractional Laplacian type with a singular nonlinearity, which

specifically are singular with respect to the unknown function.

We have succeeded to extend some well-known results for the local case, to the non-local

one. Despite the difficulties encountered because of the difference between the local case and

the non-local case we needed to develop the methods used in the local case and using some

algebraic inequalities.

We have also improved some results in the non-local case by bringing in more general data.

Outlook

We give some perspectives and open questions encountered during the accomplishment of this

work in the same order as the chapters of this thesis.

In Chapter 2, we have established some existence and regularity results of solutions for a non-

local elliptic problem involving the fractional Laplacian operator with singular nonlinearity

and Radon measure data. It is interesting to generalize the results to the more general case

of the fractional p-Laplacian operator.

In Chapter 3 we mentioned in Remark 3.2.6 that the threshold in our result extends the one

obtained in the local case in [14]. However, unlike what is proved in [67], we have observed
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that this threshold is not optimal. The open question that arises here is whether we are able

to reach the optimality of this threshold. We also hope to perform some results with measure

data.

As regards Chapter 4, we have studied the existence of solutions for a parabolic problem

involving the fractional Laplacian with singular nonlinearity. It is interesting to extend the

results to more general data and general operators as for instance the fractional p-Laplacian

operator.
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