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RESUME DE LA THESE 

Au cours de ces dernières années les nanotubes de carbone (CNT) ont suscité un 

intérêt et un engouement grandissants dans le monde de la recherche et développement 

(R&D). Les propriétés physiques exceptionnelles des CNTs tant sur les plans mécaniques que 

thermiques ou électriques placent actuellement ces nano objets à la pointe de l‘innovation. En 

nanotechnologie et particulièrement en NEMS (Nano-Electro-Mechanical-Systems). Cela 

donne actuellement lieu à une intense activité de recherche ayant pour but de poursuivre la 

miniaturisation et tirer profit des nouveaux phénomènes physique apparaissant au niveau 

nanométrique. Les propriétés mécaniques exceptionnelles des CNT en font des candidats 

potentiels pour la constitution des matériaux composites multifonctionnels et ultra-résistants. 

Leurs qualités de transport électronique en font des candidats pour la réalisation de nouvelles 

générations de transistors, de diodes, capteurs, actionneurs, nano oscillateurs, etc. L‘étude 

vibratoire de ce type de structure est primordiale pour leur utilisation en technologie 

miniaturisée et de pointe. 

L‘objectif de cette thèse est de développer des modèles mathématiques et des 

simulations numériques pour les problèmes de vibrations et d‘instabilités dynamiques et 

paramétriques des nanotubes de carbone simples et à écoulement fluide. Ces derniers sont 

classifiés comme mono feuillets (SWCNT) ou multi feuillets (MWNT) selon le nombre de 

tubes de carbone considéré. La modélisation et la simulation numérique des vibrations 

transversales et des instabilités dynamiques et paramétriques ont été élaborées dans ce travail. 

Ces études ont été basées sur la théorie d‘élasticité non locale et les modèles de poutres et 

coques ainsi que sur l‘interaction fluide-structure et de van der Waals. La méthode 

différentielle quadrature a été adaptée pour la résolution numérique en espace vu ses 

avantages numériques. Pour le problème temporel, différentes méthodes ont été utilisées. Le 

comportement vibratoire des nanotubes de carbone a été profondément analysé pour les 

faibles, moyennes et très hautes fréquences. Pour les nanotubes à écoulement fluide, les effets 

de la vitesse d‘écoulement, stationnaire et instationnaire, sur les instabilités dynamiques et 

paramétriques ont été profondément étudiés. Les vibrations propres, vitesses critiques de 

divergence et de flutter ainsi que l‘évolution de la fréquence en fonction de la vitesse 

d‘écoulement ont été déterminées en se basant sur les modèles de poutre et coques et la 

théorie d‘élasticité non locale. Les modes et fréquences complexes ainsi leurs évolutions en 

fonction de la vitesse d‘écoulement ont été déterminés pour différents types de nanotubes de 
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carbone. Vu la sensibilité des paramètres physiques et géométriques des nanotubes de 

carbone, des paramètres incertains suivant différentes lois de probabilité ont été introduits. 

Cela mène à un modèle innovant et scientifiquement prometteur. Les analyses fréquentielle et 

temporelle ont été élaborées en résolvant les équations aléatoires et les processus 

stochastiques résultants. Pour plus de précision, ce travail de thèse s‘articule autour de six 

chapitres. 

Dans le premier chapitre, représentant une introduction générale, les propriétés 

remarquables des nanotubes de carbone et leurs utilisations dans différents domaines ont été 

discutés. Une large étude bibliographique a été présentée afin de couvrir un grand spectre 

d‘études élaborées dans ce domaine. L‘accent a été mis sur les modèles d‘élasticité non locale 

de poutres et de coques utilisés et sur les phénomènes statiques et dynamiques étudiés dans le 

cadre de cette thèse. La quantité des travaux récemment publiés sur ces nanostructures montre 

l‘intérêt et la portée technologique grandissants de ce type de structures et matériaux. 

Le deuxième chapitre présente la modélisation et la simulation numérique du 

comportement vibratoire des nanotubes en carbone soumis aux conditions aux bords 

généralisés. Ces conditions permettent d‘une part d‘unifier le formalisme lié aux conditions 

aux bords et d‘autre part de mieux approximer les conditions aux bords expérimentales.  Une 

analyse analytique du comportement vibratoire des nano tubes  en carbone a été développée et 

présentée. Les résultats obtenus présentent les effets du paramètre non local (e0a) sur les 

fréquences propres et sur la stabilité des modes supérieurs associés. Cela montre qu‘ à partir 

d‘une certaine valeur de (e0a), la structure devient instable par flutter. L‘effet des conditions 

aux bords sur la zone d‘instabilité a aussi été élucidé. L‘analyse vibratoire de ce type de 

structures a été effectuée et les résultats obtenus ont été comparés aux résultats numériques de 

la littérature.  

Dans le troisième chapitre, la modélisation du comportement vibratoire propre à basses, 

moyennes et hautes fréquences des nano tubes en carbone mono feuillets (CNT) a été 

élaborée en se basant sur les modèles de Timoshenko et de Bernoulli et sur la théorie de 

l‘élasticité non locale. De nouveaux modèles pour les fréquences propres et modes associés 

ont été développés pour les moyennes et hautes fréquences. Les modes obtenus, dans ce 

travail, sont numériquement stables à tous les ordres et peuvent être utilisés comme une base 

pour l‘analyse modale dans une large bande de fréquences. Les effets du paramètre non local 

sur les fréquences propres et sur la stabilité des modes supérieurs associés ont été analysés. 
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Le quatrième chapitre traite l‘analyse dynamique des nanotubes en carbone mono et 

multi- feuillets à écoulements fluide. Une formulation mathématique modélisant l‘interaction 

fluide-structure a été obtenue en considérant un fluide stationnaire et instationnaire. Le 

comportement dynamique des nanotubes en carbone a été modélisé par une équation aux 

dérivées partielles complexes et sa résolution numérique nécessite des méthodes bien 

adaptées. Vu les avantages de la méthode quadrature différentielle, cette méthode a été 

adaptée en domaine fréquentiel pour la résolution numérique en espace. Déférents type de 

conditions aux bords ont été considérés et selon la vitesse d‘écoulement, les modes complexes 

et fréquences associées ont été obtenus. Les instabilités dynamiques, représentées par la 

variation des fréquences complexes (1
ière

, 2
ème

, etc) en fonction de la vitesse d‘écoulement, 

ont été profondément analysées. Les effets des paramètres physiques et géométriques des 

nanotubes en carbone sur l‘instabilité par divergence et par flutter due à la vitesse statique du 

fluide ainsi que sur l‘instabilité paramétrique lorsque le fluide est pulsatile ont été analysés. 

Dans le cinquième  chapitre, le modèle de coques non linéaires de Donnell et la théorie 

de l‘élasticité non locale ont été utilisés pour la mise au point de la modélisation et simulation 

numérique des instabilités dynamiques des nanotubes tubes en carbones multi feuillets à 

écoulement fluide interne. La force d‘interaction fluide-structure dans le cas d‘un cylindre 

ainsi que l‘interaction de van der Wall ont été modélisées. Un système d‘équations aux 

dérivées partielles non linéaires modélisant le comportement dynamique des NTC multi-

feuillets à effets d‘interactions a été obtenu. Les fréquences propres pour différentes vitesses 

statique d‘écoulement ainsi que les effets du paramètre non local et de l‘interaction de van der 

Waals ont été obtenues. Les effets du paramètre non local sur les vibrations non linaires des 

NTC ont été explicitement dérivés par le modèle complet de coques. Des nanotubes 

cylindriques mono et multi feuillets à écoulement interne ont été considérés. L‘analyse 

vibratoire linéaire et non linaire ainsi que la propagation d‘onde du système ont été étudiées. 

Les effets de la température et du paramètre non local sur la propagation d‘onde ont été 

analysés. 

Due à la taille des nanotubes en carbone, les paramètres physiques et géométriques sont 

très sensibles. Dans la littérature, des données très dispersées des paramètres ont été utilisées 

par différents auteurs. Cela a stimulé notre choix de considérer des paramètres incertains. Le 

chapitre six a pour objectif d‘élaborer des modèles et simulations numériques pour l‘analyse 

de l‘effet incertitudes des paramètres physiques et géométriques. Vu l‘effet de taille, les 
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paramètres des NTC intervenant dans les modèles utilisés, sont inévitablement non 

déterministes. Ces paramètres sont alors considérés aléatoires et pouvant suivre différentes 

lois de probabilité. Les comportements statiques et dynamiques des NTC sont alors modélisés 

par des équations aléatoires ou processus stochastiques. Bien que l‘effet des paramètres 

aléatoires et propagation des incertitudes soient étudiés pour les structures classiques, très peu 

de travaux ont été publiés pour les nanotubes. Les modèles et simulations, élaborés dans ce 

chapitre, constituent une ébauche, scientifiquement prometteuse, pour l‘analyse aléatoire du 

comportement dynamique des nanotubes. Les méthodes de Monté Carlo, de l‘espérance 

conditionnelle et des polynômes de Chaos généralisés ont été utilisées pour cette fin. La 

méthode des paramètres aléatoires internes, récemment développée par M. Ben Said et L. 

Azrar a été aussi utilisée dans ce chapitre. Cette méthode permet la prise en compte d‘un 

grand nombre de paramètres aléatoires et d‘une excitation aléatoire ayant un nombre arbitraire 

de paramètres. L‘effet des paramètres aléatoires sur les vibrations, le flambage et la stabilité 

dynamique a été analysé. La réponse temporelle a aussi été élaborée pour un large nombre de 

paramètres aléatoires. 

Il est à noter que les méthodes de Monté Carlo et de l‘espérance conditionnelle 

nécessitent un très grand temps de calcul et d‘espace mémoire et que les méthodes des 

polynômes de Chaos ne peuvent être utilisées efficacement que pour très peu de paramètres 

aléatoires. La méthode des paramètres aléatoires internes basés sur les polynômes de chaos 

généraux permet de surmonter cette difficulté et d‘analyser les effets d‘un grand nombre de 

paramètres aléatoires. Les modèles et simulations numériques, présentés dans ce chapitre, 

ouvrent un champ d‘étude prometteur sur les nanostructures. 

Finalement, quelques conclusions ont été présentées dans le septième chapitre afin de 

résumer les principaux résultats développés et définir les perspectives de poursuite des 

travaux de recherche présentés ici. 

 

Mots-clés: Nanostructures, nanotubes de carbone, modélisation, instabilité dynamique, 

paramétrique, vibration, divergence, flutter, poutres, coques, Euler-Bernoulli, Timochenko, 

stochastique, interaction fluide-structure, van der Waals, paramètre aléatoires, Monté Carlo, 

polynôme de Chaos, méthode de quadrature différentielle. 
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ABSTRACT 

In recent years, Carbon NanoTube (CNT), have attracted growing interest and attention 

of many scientists around the world. This stems from their outstanding structural, mechanical, 

thermal, optical and electronic properties. These exceptional properties make the CNTs very 

unique materials with a whole range of promising and practical applications. These nano-

objects are placed at the forefront of innovation in nanotechnology and especially in NEMS 

(Nano-Electro-Mechanical-Systems). This gives rise to an intense research activity leading to 

further miniaturization and taking advantage of physical phenomena occurring at nano levels. 

The exceptional structural, electrical and mechanical properties of CNT make them potential 

candidates for the design of new multifunctional and ultra-resistant composite materials. On 

top of their excellent mechanical properties, CNT possess high electronic transport properties 

that make them potential candidates for the creation of new generations of transistors, diodes, 

sensors, actuators, nano-oscillators etc. The dynamic analysis of these structures is essential 

for their use in miniaturized and advanced technologies. 

The main objectives of this thesis are the development mathematical models and 

numerical simulations for vibration, dynamic and parametric instabilities problems of Carbon 

NanoTubes and CNT conveying fluid. There are two types of carbon nanotube: single walled 

carbon nanotube (SWCNT) and multi-walled carbon nanotubes (MWVNTs). Analytical and 

numerical procedures based on the differential quadrature method are elaborated in this thesis 

for the static and dynamic behaviors of carbon nanotubes. Based on the nonlocal elasticity 

theory and beams and shells models as well as on the fluid-structure and van der Waals 

interactions, mathematical modeling and numerical simulation of transverse vibrations and 

dynamic and parametric instabilities are developed. Due to its numerical advantages, the 

differential quadrature method is adopted for the numerical resolution in space domain. For 

time domain, various methods have been used. Vibration of carbon nanotubes is analyzed at 

low, higher and very higher frequency ranges. Models for eigenfrequencies and associated 

eigenmodes are elaborated based on the nonlocal Euler-Bernoulli and Timoshenko models.  

For the nanotubes conveying fluid, the frequency and time domains are considered. The 

instability analyses have been performed with respect to the considered influencing 

parameters based on analytical and numerical procedures with an emphasis on complex 

modes. The effects of the nonlocal parameter, the fluid pulsation, the fluid viscosity, the 

viscoelastic coefficient and the thermal on the dynamic behaviors of the CNT-fluid system are 
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analyzed. Various types of instabilities such as divergence, flutter and parametric instabilities 

as well as their interactions are analyzed. For the sensitivity analysis of the physical and 

geometrical parameters of carbon nanotubes, random parameters following various 

probability laws are considered. This leads to innovative and promising random models. The 

frequency and time analyses are developed by solving the resulting random equations and 

stochastic process. For more detail, this thesis revolves around six chapters. 

 In the first chapter, representing a general introduction, the remarkable properties of 

carbon nanotubes and their applications in various fields are discussed. A broad literature 

review was given covering a wide range of studies carried out in this area. Emphasis has been 

placed on the nonlocal elasticity theory and the used beams and shells models as well as on 

the static and dynamic behaviors studied in this thesis. The number of recently published 

work on these nanostructures shows clearly the growing interest and technological scope of 

this type of structures and materials. 

The nonlocal and the general boundary conditions effects on the vibration frequencies 

are studied in the second chapter. It was demonstrated that the nonlocal parameter, e0a/L, has 

a strong effect and the clamped-free CNT may flutter at critical values of e0a/L. This 

instability limit can be used as a limit for prediction values of the small length scale. 

This chapter is a journal paper entitled ―Length scale effect analysis on vibration behavior of 

single walled Carbon NanoTubes with arbitrary boundary conditions‖. It is published in 

―Revue de Mécanique Appliquée et Théorique, Vol. 2 pages 475-484, 2011‖. 

 In chapter three, the vibration characteristics of single walled CNT based on the 

nonlocal elasticity, Timoshenko and Euler-Bernoulli beam theories at small, higher and very 

higher levels are studied. The analytical and numerical solutions, based on the differential 

quadrature method, are performed. The higher and very higher frequencies and associated 

eigenmodes are obtained for various boundary conditions. 

This chapter is a journal paper entitled ―Analytical and numerical modeling of higher order 

free vibration characteristics of single walled Carbon NanoTubes‖ submitted to the 

international journal Physica E, 2014 

In chapter four, vibration, dynamic and parametric instabilities of CNT conveying 

pulsating fluid are analyzed based on the nonlocal elasticity, differential quadrature method, 
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fluid interaction and Euler-Bernoulli beam theory. The multimode approach has been 

formulated based on the numerically computed eigenmodes, for dynamic and parametric 

instabilities. The influences of the fluid-velocity, the nonlocal parameter, the viscosity, the 

viscoelastic coefficient as well as the thermal effects on the dynamic behaviors and flow-

induced structural instability of CNTs are studied. Various types of instabilities such as 

divergence, flutter and parametric instabilities and their interactions are investigated. 

This chapter is a journal paper entitled ―Numerical modeling of dynamic and parametric 

instabilities of single-walled carbon nanotubes conveying pulsating and viscous fluid‖ 

submitted to Composite Structures, 2014. 

 In chapter five, the nonlinear Donnell shell model and the nonlocal elasticity theory are 

used for linear and nonlinear free vibration and dynamic instability analyses of multi-walled 

CNTs conveying fluid. The van der Waals (vdW) interactions between two layers of carbon 

nanotube as well as the fluid-shell interaction are investigated. The free vibration and the flow 

velocity-frequency dependence are analyzed with respect to various physical and material 

parameters. The obtained results showed a strong dependence between the fluid-velocity and 

the frequency of MWCNTs. The effect of the van der Waals interaction between tubes is 

discussed and results show that the van der Waals interaction and the length scale effects may 

significantly influence the stability of multi-walled CNT. For the nonlinear free vibration of 

MWCNT, the amplitude-frequency dependences are obtained by harmonic balance method. 

The influences of nonlocal parameters, the vdW force and the thermal effects are discussed. 

A part of this chapter is a journal paper titled ―Dynamics Instability Analysis of Multi-Walled 

Carbon Nanotubes Conveying Fluid‖  

Published in the journal Advanced Materials Research, Vol. 682, pp 153-160, 2013. 

 Chapter six aims to develop numerical models and simulations of the uncertainty effects 

of physical and geometrical parameters. Given the size effect, the parameters associated to 

CNT models are inevitably non deterministic. These parameters are then considered random 

and their uncertainty effects can be approximated by different probability density laws. The 

static and dynamic behaviors of CNTs are then modeled by random equations or stochastic 

processes.  

Note that there is a big lack of literature on the parameters uncertainty effects on the dynamic 

and static behaviors of CNT. Only very few work is available in the open literature. The 
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models and simulations developed in this chapter are an outline, scientifically promising, for 

random analysis of the dynamic behavior of nanotubes. Monte-Carlo, conditional expectation 

methods as well as the internal random coefficients method are used. The internal random 

coefficients method recently developed by Ben Said and L. Azrar; is adopted in this chapter. 

This method allows considering a large number of random parameters and a random 

excitation with an arbitrary number of parameters. The effects of random parameters on 

vibration, buckling and dynamic instability are analyzed. The time responses are also 

developed for a wide number of random parameters. It should be noted that the methods of 

Monte-Carlo and conditional expectation require very large computation time and memory 

space and the methods of polynomials chaos can be used efficiently for very few random 

parameters. The method of internal random coefficients, based on the general polynomials 

chaos, overcomes this problem and is used here to analyze the effects of a large number of 

random parameters. The numerical examples, developed in this chapter, have proved the 

applicability and effectiveness of these methods. 

Chapter six is a journal paper entitled ―Parameters uncertainty effects on the dynamic 

behavior of fluid conveying carbon nanotubes under a random excitation‖ will be submitted to 

an international journal 2014. 

 

Keywords: Nanostructure, carbon nanotube, modeling, dynamic instability, parametric, 

vibration, divergence, flutter, beams, shell, Euler-Bernoulli, Timoshenko, stochastic, fluid-

structure interaction, van der Waals, random parameters, Monte-Carlo, polynomials chaos, 

differential quadrature method. 
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Chapter 1: 

General introduction 
 

1 Carbon NanoTubes presentation 

Carbon NanoTubes have been discovered for the first time in 1991 by Sumio Iijima [1] 

and in 1993 in their single-walled form [2]. Due to their phenomenal mechanical and 

electronic properties, carbon nanotube structures have attracted a great deal of attention from 

both industrial technology and academia. The prediction of characteristics and behaviors 

analyses of these nanomaterials and structures are the most challengeable topics in recent 

years. 

1.1 Description 

There are two types of carbon nanotubes: single-walled nanotubes (SWCNT) and multi-wall 

(MWCTs) (Figure 1.1). The single-walled nanotubes are made of a single graphitic wall, 

while the multi-walled nanotubes comprise graphitic several walls. We can see a multiwall 

nanotube as threading several concentric single-walled nanotubes with the interlayer spacing 

between adjacent nanotubes, approximately equal to the interplants distance of graphite 

(about 0.34 nm). Mono or multi-walled nanotubes, are usually arranged parallel to each other 

according to a two-dimensional array of triangular mesh, and held together by van der Waals 

interactions. Generally, ―most researchers have adopted the equilibrium interlayer spacing 

between adjacent nanotubes (about 0.34 nm) as the representative thickness of SWCNTs 

combined with a Young‘s modulus of about 1 TPa‖.  

CNTs are recently used on reinforcements for various structures, field emission, chemical 

sensing, energy storage, sensors, actuators, transistors, memories and other Nanoelectronic 

devices.  

The discovery of SWCNT and MWCNTs where the walls can be clearly seen (Figure 1.1) 

using an arc-discharge method, has stimulated many research activities in science and 

engineering and many researches are recently focused on the carbon nanostructures and their 

applications. This is due in large part to the small size, low density, high stiffness, high 

strength and excellent electronic properties. 
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A scanning electron microscopy (SEM) image of carbon nanotubes grown by arc-discharge is 

shown in Figure 1.2 (a). The web-like structure consists of nanotube bundles. Every bundle or 

rope in Figure 1.2 (a) is formed by 20–100 single walled nanotubes, as can be seen in the 

high-resolution transmission electron microscope picture in part (b) of the figure. In such a 

bundle the tubes are packed in a two-dimensional hexagonal lattice. (c) Water-assisted CVD-

grown carbon nanotubes of high purity and length. The nanotube mat is shown next to the 

head of a matchstick. (d) A patterned substrate allows the growth of carbon nanotubes in 

predefined places as shown in this SEM picture [3,4]. 

  

 

 

 

 

 

Figure 1.1 High-resolution images of a single-walled and a multiwalled carbon nanotube, [1] 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 High-resolution scanning microscopy images of a single-walled bundles, [3,4,5] 

The diameter and helicity of a defect-free SWNT are uniquely characterized by the vector 

h 1 2C  = ma  + na (m,n)  that connects crystallographically equivalent sites on a two-

dimensional graphene sheet, where a1 and a2 are the graphene lattice vectors and n and m are 
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integers. The carbon nanotube can be obtained by cutting a tiny strip out of a graphene sheet 

and rolling it up into a cylinder. This procedure is shown in (Fig. 1,3). In the laboratory, 

carbon nanotubes grow from carbon plasma by adding metal catalysts. The chiral vector 

dictates the geometric arrangement of the nanotube and there exist three distinct possible 

classifications. The names given for the three classes are armchair, in which n is equal to m; 

zigzag, where m is equal to 0; and helical, in all other cases, as illustrated below in Figure 1.4 

[6]. 

 

 

 

 

 

 

 

 

Figure 1.3 Sketch of the way to make a single-wall carbon nanotube, starting from a graphene 

sheet. The parameters that define the nanotube structure when the sheet is ‗rolled‘ (chiral 

angle θ, chiral vector Ch figure 1.3, basis vectors a1 and a2) are indicated in the figure [6] 

 

 

 

 

 

 

 

 

 

Figure 1.4.Three different SWNT structures; (a) a zig-zag-type nanotube, (b) anarmchair-type 

nanotube, (c) chiral, adapted from reference [6]. 
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The various ways to roll graphene into tubes are therefore mathematically defined by the 

vector of helicity hC , and the angle of helicity θ, as follows: [7] 

h 1 2OA=C  = ma  + na   (1.1)
 

1

a 3 a
a x y

2 2
   and 2

a 3 a
a x y

2 2
   

where a = 2.46Å is the graphene lattice constant [8] and   
2 2

2n m
cos

2 n m mn





   

where n and m are the integers of the vector OA considering the unit vectors a1 and a2. 

The diameter of a tube is related to the chiral vector by 

2 2CC
Ch a

d 3(n m +nm) (1.2)
 

  
 

where  

60

CC
(Graphite) (C )
1.41A a 1.44A    

The chiral angle is allowed to vary between 0 30     ; all other ranges of θ are equivalent 

to this interval because of the hexagonal symmetry of graphene. A chiral angle of 0 and 30  

corresponds to tubes with a particular high symmetry, as we discuss later. They are called 

zigzag ( 0 )    and armchair tubes ( 30 )   .  

1.2  Different forms of CNTs 

Based on the number of layers, CNTs can be divided into two distinct groups. Single-walled 

carbon nanotubes (SWCNTs) are those with a single layer of carbon atoms. Multi-walled 

carbon nanotubes (MWCNTs) have more than one layer and can be thought of as a number of 

concentric SWCNTs where the smaller nanotubes are embedded inside the larger ones. In 

1985 Kroto et al. [9] discovered a new kind of carbon, the so called fullerenes. These are ball-

like molecules which consist of e.g. 60 carbon atoms [10]. Later, similar configurations with a 

different number of atoms were discovered. For the discovery of the fullerenes Kroto, 

Smalley and Curl obtained the Nobel Prize for Chemistry in 1996.  

Figures 1.5 and 1.6 summarize the classifications described above. 
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Figure 1.5 Classification of different carbon nanotube structures 

According to the m, n structural parameters values, SWCNTs can be a metal, semiconductor 

or small-gap semiconductor [11-13]. When n=m, the CNTs are metallic. If n–m, is a multiple 

of three, the CNTs present an extremely small band gap and at room temperature they have 

metallic behavior. For other intermediate values of n–m the behavior is that of a 

semiconductor with a given band gap [13].  

This extreme sensitivity of electronic properties on structural parameters is one of the most 

important aspects of nanotubes that make them very unique. 

 

Figure 1.6 Circumferential vector map of carbon nanotubes and their electronic transport 

properties.  
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Electronic band structure calculations predict that the (n,m) indices determine the metallic or 

semiconducting behavior of SWNTs figure1.5. Zigzag (n,0) SWNTs should have two distinct 

types of behavior: the tubes will be metals when n/3 is an integer, and otherwise 

semiconductors. As ch rotates away from (n,0), chiral (n,m) SWNTs are possible with 

electronic properties similar to the zigzag tubes; that is, when (2n+m)=3 is an integer the 

tubes are metallic, and otherwise semiconducting. The gaps of the semiconducting (n,0) and 

(n,m) tubes should depend inversely on diameter.  

1.3  Mechanical characteristics 

Few even tried experimental investigations, it was found that Young modulus of MWNTs has 

mean value of 1.8 TPa with a variation from 0.40 to 4.15 TPa [14]. Krishnem et al [15] 

observed the vibration of SWNT and obtained the Young‘s modulus ranged from 0.90 to 1.70 

TPa. Wang et al.[16] conducted bending tests on cantilevered tubes using atomic force 

microscopy and calculated the modulus to be of 1.28 TPa. Poncharal et al. [17] observed the 

static and dynamic mechanical deflections of cantilevered MWNTs and a modulus of about 

1.0 TPa is obtained. [18,19]. 

Table 1.1 Values of Young's modulus for different chiralities using molecular dynamic 

simulation [20]. 

(n, m) 
Diameter 

(nm) 

Young‘s 

modulus 

(GPa) 

(n, m) 
Diameter 

(nm) 

Young‘s 

modulus 

(GPa) 

(n, m) 
Diameter 

(nm) 

Young‘s 

modulus 

(GPa) 

Armchair 

(8,8) 

(10,10) 

(12,12) 

(14,14) 

(16,16) 

(18,18) 

(20,20) 

 

10.848 

13.560 

16.272 

18.984 

21.696 

24.408 

27.120 

 

934.960 

935.470 

935.462 

935.454 

939.515 

934.727 

935.048 

Zigzag 

(14,0) 

(17,0) 

(21,0) 

(24,0) 

(28,0) 

(31,0) 

(35,0) 

 

10.960 

13.390 

16.441 

18.789 

21.921 

24.269 

27.401 

 

939.032 

938.553 

936.936 

934.201 

932.626 

932.598 

933.061 

Chiral 

(12,6) 

(14,6) 

(16,8) 

(18,9) 

(20,12) 

(24,11) 

(30,8) 

 

12.428 

13.917 

16.571 

18.642 

21.921 

24.269 

27.165 

 

927.671 

921.616 

928.013 

927.113 

904.353 

910.605 

908.792 
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Table 1.1 Lists the values of Young‘s modulus of armchair, zigzag, chiral SWCNTs with 

different tube diameters. The values of Young‘s modulus are different.  

The Young‘s and shear modulus and Poisson‘s ratio of SWCNTs can be defined as: [21] 

0 0

Nanotube

0

0

P

D h PL
E (1.3)

L D h L

L

  
 



 
 

4 4

0 0 0

Nanotube 0

0

TL D h D h
G , J (1.4)

J 2 2 2

     
      

     




 

c 0

Nanotube c

0

D D
, (1.5)

D


  


 


 

Where P, T, L0, D0, D, h, θ, J0 denote the total force and torque applied, length, diameter 

before and after deformation and wall thickness of SWCNTs, angular displacement, and polar 

moment of area, respectively. 

Experiments are performed with bending by Atomic Force microscopic, AFM, to determine 

the elastic modulus. Coupling an AFM experiments and an electron microscope were used to 

measure the tensile strength of various types of nanotubes (figure 1.7). [22] 

 

 

 

 

 

 

 

 

Figure 1.7 Single walled CNT traction test by the atomic force microscopic Yu et al. [22]. 

References [14, 22] demonstrate that the CNT mechanical and electrical are very hard to 

predict accurately. Due to the lower scale, the predictions are done with a large vibration. 
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These vibrations, that may be considered noise or random, have to be considered in the 

models analysis and simulations. 

1.4   Different utilizations 

Carbon nanotubes have advanced in the general interest and found their way into several 

textbooks. On the electronic states see the books by Javey and Kong [23], Bharat Bhushan 

[24,25] for a recent overview of Integrated Circuits and Systems Rivas et al. [26] used carbon 

nanotube in electrochemical sensors, Stefano Bianco [27], Saito and Zettl [28] and Christofer 

Hierold [29], the application of carbon nanotube in condensed material science. 

Nanoelectronic application devices have been extensively explored since the demonstration of 

the first carbon nanotube transistors [30-33]. 

1.4.1 Nano composites 

Various uses of nanotubes are possible such as in composite structure. An interesting 

application for carbon nanotubes is mechanical reinforcements and composites [15], figure 

1.8. High-quality SWNTs are attractive for transistors. The developments in carbon nanotube 

are supported by recent methods for precise high density CNT film and memory.  

 

Figure 1.8. Selected CNT applications in microelectronics. (A) Flexible TFTs using CNT 

networks deposited by aerosol CVD. (B) CNT-based nonvolatile random access memory 
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(NRAM) cell fabricated by using spin-coating and patterning of a CMOS-compatible CNT 

solution. (C) CMOS-compatible 150-nm vertical interconnects developed by Imec and Tokyo 

Electron Limited. (D) CNT bumps used for enhanced thermal dissipation in high power 

amplifiers. [27] 

Since 2006, worldwide CNT production capacity has increased at least 10-fold, and the 

annual number of CNT-related journal publications and issued patents continues to grow (Fig. 

1.9). [27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Trends in CNT research and commercialization. (A) Journal publications and 

issued worldwide patents per year, along with estimated annual production capacity. (B to E) 

Selected CNT related products: composite bicycle frame, antifouling coatings, printed 

electronics and electrostatic discharge shielding [27] 

1.4.2 Microsystems Applications 

The mechanical, electronic, and thermal properties of nanotubes suggest many applications 

and disruptive technologies. 
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IBM has recently demonstrated a 12 transistor ring oscillator can be fabricated onto the side 

of an individual CNT [34]. An image of the 18 μm long circuit is seen below in Figure 1.10 

with a detail image showing the CNT. 

 

Figure 1.10 IBM produced ring oscillator consisting of 12 transistors built onto the side of an 

individual CNT [34]. The arrangement of the device allows it to test the speed at which the 

CNT based transistors are capable of switching. 

1.4.3 Emission display 

Another application of CNTs is their use as a field emission display material in displays and 

monitors. Samsung has developed a 38 inch working prototype model and in Austin, Texas 

based Applied Nanotech has developed a 22 inch model. The prototype nanotube emission 

display (NED) as seen below in Figure 1.11 was made by Motorola Labs [35]. 

 

 

Figure 1.11 Nanotube emitting display made by Motorola Labs [35].  
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The use of CNTs as field emitters have the potential to make display panels millimeters thin 

and economical to manufacture. A number of review articles on specialized topics have been 

published. 

2. Carbon NanoTubes mathematical modeling 

There are two major computational mathematical procedures available for static and dynamic 

analysis of carbon nanostructures such as Nanorods, nanobeams, nanoplates, nanotubes and 

nanoshells. These procedures are namely the molecular dynamic simulation (MD) and the 

continuum based approaches. 

2.1 . Molecular dynamics 

In the modern nanotechnology age, microscopic analysis methods are indispensable in order 

to generate new functional materials and investigate physical phenomena on a molecular 

level. These methods treat the constituent species of a system, such as molecules and fine 

particles. Macroscopic and microscopic quantities of interest are derived from analyzing the 

behavior of these species. There are several text books in which this technique is presented in 

detail [36-38]. This subsection contains a brief description of the DM method. The temporal 

evolution of particles in interaction is obtained in the molecular dynamic by the numerical 

solution of classical equations of motion. 

(1.6)

(1.7)

( )
( );

( ) ( )











i

i

i i

i

r t
v t

t

v t f t

t m

 

1 2 (1.8)( ) ( , ,...., )





i N

i

f t V r r r
r

 
2

(1.9)
( )

( ) ( ) ( ) ( )
2

      i

i i i

i

f t
r t t r t v t t t

m

 
where ( )ir t and ( )iv t denote the position and the velocity of the ith particle at time t. 

im  is the mass of the i
th

 particle, ( )if t is the force acting on the particle. 

The velocities is given by 
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(1.10)
( ) ( )

( ) ( )
2

  
    i i

i i

i

f t t f t
v t t v t t

m
 

Let us consider the two-dimensional motion of N argon atoms on a network of dimension 

L×L. The potential of interaction u between two atoms in the gas separated by a distance r is 

given by the Lennard –Jones [39] 

12 6

4 (1.11)
    

     
     

u
r r

 


 

where ζ and ε are the Lennard-Jones parameters given by ε = 0.0556 kcal. mole
-1

 and ζ = 0.34 

nm respectively for this case. 

The force exerted on the atom i by atom k is: 

13 7

,

24
2 (1.12)
    
       
     

k j

ki ki ki

du
f

dr r r r

  
 

The equations of motion of the atom i are given by: 

2 2

, , , ,2 2

1 1
; (1.13)

 

 
    i i k i i k

x i k j y i k j

k i k iki ki

d x x x d y y y
a f a f

m r m rdt dt
 

The numerical Verlet algorithm given by equations 

2 2

, 1 , , 1 , , , 1 , , 1 , , (1.14)2 ( ) , 2 ( )          i n i n i n x i n i n i n i n y i na y ax x x t y y t

 

The associated velocities are given by: 

, 1 , 1 , 1 , 1

, , , , (1.15),
2 2

    
 

 

i n i n i n i n

x i n x i n

yx x y
v v

t t
 

The maximum separation in the x direction between two particles is only L/2. Similarly, the 

maximum separation in the y direction between two particles is only L/2. This can be realized 

as follows: 

If ( / 2)ijx L then  ij ijx x L , if ( / 2) ijx L then  ij ijx x L  

If ( / 2)ijy L  then  ij ijy y L , if ( / 2) ijy L then  ij ijy y L
 

To demonstrate how to use molecular dynamics simulation to evaluate the mechanical 

properties of nanocomposites, the work by Adnan et al. [40] using molecular dynamics 
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simulation to investigate the effect of filler size on elastic properties of polyer nanocomposites 

can be followed. The elastic mechanical properties of carbon nanotube can be predicted by 

molecular dynamic approach by Wan and Delale [41]. The vibration of single walled carbon 

nanotube and graphene sheets using molecular dynamic simulation based finite element 

method are studied [42,43]. Sbai et al [44-45] developed modeling and simulation of 

vibrational breathing-like modes in individual multiwalled carbon nanotubes and analyzed the 

size effect on the Raman active modes. The vibration analysis of CNT has been elaborated by 

many authors [46-50]. 

The investigation of dynamic behavior of CNTs has been the subject of numerous 

experimental, molecular dynamic and continuum elastic modeling studies. Since controlled 

experiments and nanoscales are difficult and molecular atom numbers of about 10
9 

by the 

scale and cost of computation, the continuum mechanics methods are often used to investigate 

some physical problems in the nanoscale. 

2.2. Continuum mechanics approaches 

In 1996, Yakobson et al. [51] showed using MD simulations that all the buckling patterns 

displayed by the molecular-dynamics simulations could be predicted by the continuum shell 

model. Subsequently, continuums models have been used to study the mechanical behavior of 

CNTs by a number of researchers and many research work have been published recently 

example in bending, buckling and vibration. Ghasemi et al. [52] studied analytical solution of 

buckling and post-buckling of multi-walled carbon nanotubes conveying fluid.  Nuttawit and 

Variddhi [53] studied the elastic foundation on bending, buckling and vibration of carbon 

nanotube-reinforced composite beams. Zhang et al [54] used nonlocal elasticity to show the 

small-scale effects on buckling of MWCNTs under axial compression and radial pressure 

[55]. The vibration of CNTs conveying fluid is studied by [56-58], the vibration of the nano-

plate [59-61]. Many other research works will be cited in the following sub-sections. 

2.2.1. Local elasticity 

The local elasticity is based on the continuum mechanics and classically used to study the 

behaviors of thin and thick structures as well as the 3D elasticity problems in solid and fluid 

mechanics. Many numerical methods are developed based on the local elasticity theory such 

as finite deference and finite element methods. The local elasticity theory is mainly based on 

the Hook‘s law, the general expression of the strains are given by: 
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( ) (1.16)
1

; 


dtr I
E E

  
 

 

where dI is the identity tensor , ( )tr  the trace of  . Conversely, the relationship expressing 

the stress to strain as a function of the coefficients Lamé ( , )   is: 

2 ( ) (1.17)  dtr I   
 

The relationship between shear modulus, Young‘s modulus, and Poisson‘s ratio is given as: 

(1.18)
2(1 )




E
G


 

The elastic parameters and the Lame‘s coefficients are related by: 

(1.19);
(1 )(1 2 ) 2(1 )

 
  

E E





  
 

The stress and strain tensors relationship can be expressed for isotropic materials by Hooke's 

law in the matrix form: 

(1.20)

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

    
    

    
       

     
     
     
     
        

xx xx

yy yy

zz zz

yz yz

zx zx

xy xy

    

    

    

 

 

 

 

In a case of two-dimensional loading, the constitutive law is found in a simplified and 

condensed form.  

For 2D plane stress problems:  

2
(1.21)

1 0

1 0
1

1 2
0 0

2

 
    
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    
    

    
 

xx xx

yy yy

xy xy

E
 

  

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For 2D plane strain problems: 
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(1.22)

1 0

1 0
(1 )(1 2 )

1 2 2
0 0

2
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yy yy
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E
  

   
 

   

The constitutive relation can be found in many standard books of elasticity or related topics. 

More general formulation are available for orthotropic and composite elastic materials. 

It has to be noted that at small length scales, the use of the classical continuum mechanics or 

local elasticity for the analysis of nanostructures such as carbon nanotubes will lead to 

erroneous results. Therefore, the usage of non-classical continuum theories, including internal 

material and structural length scale parameters are more adapted. 

2.2.2. Nonlocal elasticity modeling  

Elastic high frequency waves show dispersive characteristics which are not considered in 

classical theory of elasticity and also ignore the long range intermolecular forces. Therefore, 

Eringen, proposed a nonlocal theory of micro orphic continua extending his previous works to 

improve the classical continuum mechanics for granular and fibrous solids. 

Based on Eringen‘s theory, the constitutive equation for a linear homogenous nonlocal elastic 

body is given by the following integral equation [62,63]:  

( ) 0
,

( ) (| '|, ) ( ') ( ')

( ') ( ') 2 ( ')

(1.23)

(1.24)

(1.25)

  

 

 
c

kl

f u
kl k l l

cx x x x dv x
klkl

V

x x x
rr kl kl



  

  







1 ( ') ( ')
( ')

' '2
(1.26)

 
  
 
 

du x du xk lx
kl

dx dxl k



 
where σkl, εkl, ρ, fl and ul are the stress tensor, the strain tensor, mass density, body force 

density and displacement vector, respectively. ζ
c
kl(x′) and εkl(x′) are the classical stress and 

strain tensors at any point x′, which is related by the Lamé constants λ and μ, and δ is 

Kronecker delta.. The nonlocal modulus is given by in the following kernel function: 

0
(| ' |, ), (1.27)  

e a
x x

l
     
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where e0 is a constant appropriate to the material, a is internal characteristic length, l is length, 

η is a dimensionless length scale and | ' |x x  is the Euclidean distance between x  and 'x .  

It has to be noted that the stress-strain relation, obtained from this model, is given in an 

integral equation form and not in an algebraic form as in the local theory. Also note that the 

kernel function α depend on the material constants and internal characteristic length. 

When the stress and strain are considered for a nanotube, the classical Hooke‘s law is 

replaced by a nonlocal stress-strain relation given in the following partial differential form: 

2 2 2
(1 ) (1.28)  

c
l

kl kl
  

 

Where 
2

 is the Laplace operator 

The nonlocal elasticity theory has been used by a large number of researches to study size-

effects on the mechanical response of carbon nanotubes. The considered shapes of CNT are 

beams, plates or cylinders. The previous tensors σkl and εkl will be specified for the considered 

nanostructures. 

2.2.3. Beam models 

For slender nanotubes, L/h > 10, the beam model combined with the nonlocal elasticity theory 

can be used. The main used models for slender nanotube are the Euler Bernoulli and 

Timoshenko nonlocal beam theories. 

The performance of any CNT-based nanostructure is dependent on the mechanical properties 

of constituent CNTs such as their vibration frequencies, buckling loads, and deformations 

under different loadings. Vibrations of single and multi-walled nanotubes have been studied 

by many researchers using different beam theories. For multi-walled carbon nanotubes, inner 

and outer tubes are generally modeled as individual elastic beams interacting by van der 

Waals forces.  

2.2.3.1. Euler-Bernoulli 

Based on the Euler-Bernoulli beam theory, the displacement components along the axial x 

and transverse z directions are denoted by xu  and zu respectively: 
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(1.29)( , ) ; 0; ( , )



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where u and w are the middle plane (z=0) components and t is time. The axial strains are: 

2

2
(1.30);

 

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xx

u w

x x
z

 

Based on the nonlocal elasticity theory [62, 63, 68], the nonlocal stress tensors, resultant axial 

force N and moment M are obtained by the following differential equations: 
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The differential equations of the motion of the nonlocal Euler-Bernoulli beam theory are 

given by: 

0

2

0 (1.34)
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A large number of authors are based on this model to study the behavior of CNT. Adali [64] 

studied the vibrational principles for transversely vibrating multiwalled carbon nanotubes 

based on nonlocal Euler-Bernoulli beam model. Natsuki et al. [65], studied the resonant 

vibration of double-walled carbon nanotubes based on Euler–Bernoulli beam model and 

Winkler spring model. Yoon et al. [66] calculated frequencies and associated mode shapes of 

noncoaxial isolated multi-walled carbon nanotubes. Ouakkasse and Azrar [67], used integral 

equation formulation for flutter instabilities of Timoshenko beams under non conservative 

loads. 
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2.2.3.2. Nonlocal Timoshenko model 

The displacement of the Timoshenko beam theory is given by:[61] 

(1.36)( , ) ( , ); 0; ( , )   x y zu u uu x t z x t w x t
 

Where  denotes the rotation of the cross section, u and w are the middle plane (z=0) 

components and t is time. The axial strains and the nonlocal strains are given by: 

(1.37)
1

; ;
2
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xx xx xz xze a E e a G
x x

 
   

Based on these equations, the nonlocal resultant axial force N, moment M and shear force Q  

are obtained by the following differential equations. 
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0 2
(1.39)( )

 
 



xx

xx

N u
N e a EI

xx
2

2

0 2
(1.40)( )

 
 



xx

xx

M
M e a EI

xx



2

2

0 2
(1.41)( )

  
   

  

xx

xx

Q w
Q e a kAG

xx


 

in which 

(1.42), ,    xx xx xz

A A A

N dA M z dA Q ks dA  

Based on the nonlocal Timoshenko beam theory, the equations of motion are given by the 

following partial differential equations: 

2

0 2
(1.43),

 
 

 

Q w
q m

x t
2

2 2
(1.44),

 
 

 

M
Q m

x t



Based on these equation, the moment M and shear force Q  are given by:
 

2 3
2
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A large number of authors are based on this model to study the behavior of CNT under non 

conservative loads Timoshenko beam theory was also applied in the free vibration analysis of 

multi-walled carbon nanotubes [68-71]. 

2.2.4. Nonlocal Plate mode 

Many of the carbon based nanostructure for example nanotube Fullerenes, Nanorings are 

viewed as deformed graphene sheet these kinds of structure can be modeled by the so-called 

nonlocal plate theory. Various plate theories are used in the open literature. In this sub-section 

only the love Kirchhoff plate theory is used. 

Based on the Love-Kirchhoff plate theory, the displacements ux, uy, uz of a plate are given by: 

(1.47)( , , ) ; ( , , ) ; ( , , )
 

 
    x y z

w w
u u u

x y
u x y t z v x y t z w x y t

 

where u, v and w are the displacements in the x, y and z directions respectively. 

The linear strains associated with these displacements are expressed as: 

2 2 2

2 2

(1.48)

1
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Based on the Eringen‘s theories the nonlocal plane stress constitutive relation for a nonlocal 

plate is written as: 

2 2

2 2 2 2

0 (1.49)

/(1 ) /(1 ) 0

( ) /(1 ) /(1 ) 0

0 0 2
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where E, G and υ are the elastic modulus, shear modulus and Poisson‘s ratio respectively. 

Based on these equations the resultants moments are given by the following partial 

differential equations: 
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where 3 2/12(1 )D Eh   denoted the bending rigidity of the plate.  

Equations of motion are given by the following partial differential equations: 

0

0

22

2 2

4 4

0 2 2 2 2 2

2

0 (1.51 )
2
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(1.52)where  ;
 

  
h h

h h
m mdz h dz 

 

and h is the thickness of the plate. 

Classical and first order shear deformable thin plate theories were reformulated by many 

authors. Abdoun et al [72-75] studied the forced vibration analyses of viscoelastic beams, 

plate and shells by an asymptotic numerical method for nanoplates. To cite only few ones, 

Pradhan and Phadikar [76] used the nonlocal theory of elasticity and the Navier‘s approach to 

investigate the vibration of simply supported double-layered graphene sheets. Murmu and 

Pradhan [77] used the nonlocal elasticity theory on the vibration of graphene sheets embedded 

in elastic medium. Jomehzadeh and Saidi [78] and Arash and Wang [79] are also used 

nonlocal elasticity to simulate graphitic sheets. 

2.2.5. Shell model 

Shell models are the most adopted models for nanotubes and particularly for non-slender 

ones, there are various shell models developed for shallow, non-shallow and deep shells. The 

main used shell models will is presented here. 

The vibration and buckling of nanotubes using continuum nonlocal shell model theory are 

studied by many researchers. 

For a general formulation, let us consider a circular cylindrical shell of radius R with the 

cylindrical coordinate system (x, z, θ), the longitudinal coordinate x ∈ [0; L], circumferential 

coordinate θ ∈ [0; 2π] and radial coordinate z ∈ [−h/2; +h/2]. The displacements of an 

arbitrary point of coordinates (x, θ) on the mid-surface of the shell are denoted by u, v and w, 

in the longitudinal, circumferential and radial directions, respectively.  
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The governing equations of motion for a homogeneous isotropic elastic shell, using the linear 

three-dimensional theory of elasticity in cylindrical coordinates can be obtained. For thin 

shells, various models have been observed and applied for the static and dynamic analysis of 

shells. Based on the continuum mechanics these models can be also used to analyze the static 

and dynamic behavior of CNT. 

For the thin shell model, the effects of transverse shear deformations are usually neglected in 

the simplified models. The strain components εx, εθ and γxθ at an arbitrary point of the shell are 

given by: [80] 

2 2
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2
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1 1
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where   is the rotation in the direction perpendicular to the R z plane, and   is the 

rotation in the direction perpendicular to the R x plane.
 

Based on the nonlocal shell theory, the constitutive equations of the carbon nanotube are 

given by the following partial differential equations:  

2 2 2
(1 ) ( ) (1.54 )

0 2
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where E, υ, 0a and e are Young‘s modulus, Poisson‘s ratio of carbon nanotubes, the internal 

characteristic lengths and the constant appropriate to each material respectively. 2 is the 

Laplace operator and xx and  are respectively the normal stress in the x and the y 

directions and x is the shear stress on the x plane of the middle surface. Associated with 

the middle surface deformation are the middle surface force resultants, which are given by: 
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The governing equations of motion of the single-walled carbon nanotubes conveying fluid 

are: 
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where is the flow pressure, this parameters will be explicitly given in next section. 

It should be noted that this model leads to nonlinear partial differential equations some 

simplification shell models will be reviewed here. 

2.2.5.1. Love shell model 

Based on Love‘s model the first approximation assumptions: 

 The shell thickness h is small with respect to the radius of curvature R of the mid-

plane. 

 Strains are small. 

  The transverse normal stress is small. 

 The Kirchhoff–Love kinematic hypothesis, in which it is assumed that the normal to 

the undeformed middle surface remains straight and normal to the mid-surface after 

deformation, and undergoes no thickness stretching.  

According to Love shell model, the strain components εx, εθ and εxθ at an arbitrary point of 

the shell are given by:  

This model has been used in [81], for vibration of single walled CNT and multiwalled 

CNT. Liew and Wang [82] studied wave propagation in carbon nanotubes via elastic shell 

theories. 
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The non-coaxial linear vibration between the carbon chain are studied by Hu et al. [83]. 

Buckling of Carbon Nanotubes is reviewed by Hiroyuki Shima [84], Yan et al. [85] studied 

the small scale effect on the buckling behaviors of triple-walled carbon nanotubes (TWCNTs) 

with the initial axial stress under the temperature field. 

2.2.5.2. Donnell shell model 

For this model, the effects of transverse shear deformations are neglected, the rotations   

and   have the simplified form: 

1
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The strain components εx, εθ and γxθ at an arbitrary point of the shell are given by: [86-90,142] 
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 The governing dynamic equations are given by the following partial differential equations: 
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Simplified Donnell‘s shell theory was used to obtain explicit formulas for the radially 

dominated natural frequencies and mode shapes of double and triple-walled carbon nanotubes 

with various radii and number of tubes [86] and fluid-filled multi-walled carbon nanotubes by 

Yan et al. [87]. Donnell‘s shell theory was also used by Sun and Liu [88, 89] for the vibration 

of multi-walled carbon nanotubes subject to axial and pressure loadings. The small size on 

dispersion characteristics of wave in carbon nanotubes are studied by Xie et al. [90]. 

2.2.5.3. Sanders shell model 

In the Sanders shell theory, these two rotations have the exact and complete form [91] 

1 1
(1.62);
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The strain components εx, εθ and γxθ at an arbitrary point of the shell are given by: 
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 A linearized form of this model has been used in [91] for the buckling behavior of single 

walled CNT. Silvestre et al. [91], Donnell and Sanders shell models are used to study the 

buckling of single-walled carbon nanotubes. 

2.2.5.4. Flugge’s shell model 

For the Flugge‘s shell theory, the constitutive relation between stresses and strains for a 

homogeneous and isotropic material can be expressed by Hooke‘s law by: [83, 85] 
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In this case the resultant force can be written as :
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The vibrations and buckling of nanotubes using continuum nonlocal shell theory are studied 

by many researchers Wang et al [92] used Flügge‘s shell theory to calculate frequencies and 

associated modes of multi-walled carbon nanotubes of different innermost radii. The wave 

propagation of single and multiwalled CNT has been investigated by Wang and Varadan [93] 

The presented shell models are adopted by various authors for static and dynamic behaviors 

of single walled and multi walled CNT. Various numerical methods are developed based on 

these models. A review of the more used ones is given bellow. 

3. Used numerical methods 
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Based on the previous continuum models, various numerical methods have been used of the 

analysis of CNT. A large variety of research works are now available in the open literature on 

the buckling, vibration, thermoelastic behaviors of CNT as well as in fluid–CNT interaction 

and magnetic-CNT interactions. The most used numerical methods are cited here. 

3.1  Finite difference method 

The finite difference method has been widely used for vibration and buckling analysis of 

various structures. Recently Ansari et al. [94,95] studied the sixth-order compact finite 

difference method for free vibration analysis of Euler-Bernoulli beams. Shu et al. [96], 

proposed the free vibration analysis of plates. Karamooz Ravari et al. [97], used the finite 

difference method to analyze the buckling of rectangular nanoplates.  

3.2  Finite Element method 

Finite element method (FEM) is a powerful numerical method for solving structural problems 

in 1-D, 2-D and 3-D domains. Many industrial codes such as ABAQUS, ANSYS, and 

NASTRON etc are elaborated and well used for academic and industrial problems. 

A finite element model based on nonlocal elasticity is also presented by Ansari et al. [98]. 

Vibrations of single and multi-walled carbon nanotubes were studied by many others 

researchers using the frame finite element models in the molecular structural mechanics 

approach [99, 100]. Pisano et al. [101] used the finite element method in 2D nonlocal elastic 

problems and in 2D nonhomogeneous nonlocal elastic problems by Aurora et al. [102]. The 

free vibration analysis of single walled and multiwalled carbon nanotubes are studied in [103-

105]. 

3.3  Meshless method 

Meshless method is in a large expansion and under adaptation to many academic and 

engineering problems. There are various types of Meshless methods that are elaborated for 

numerical solutions of differential and partial differential equations. This method is used by 

many authors such as in hydrodynamics [106], Biomechanics [107,108]. This method is 

reviewed by Nguyen et al [109]. Kiani [110] used this method to solve the flexural vibrations 

of double-walled carbon nanotubes. Ansari and Arjangpay [111] using the meshless local 

Petrov–Galerkin method for studying the vibration and buckling characteristics of single-

walled carbon nanotubes 

http://www.sciencedirect.com/science/article/pii/S0378475408000062
http://www.sciencedirect.com/science/article/pii/S138694771400229X
http://www.sciencedirect.com/science/article/pii/S138694771400229X
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3.4  Difference quadrature method 

The Differential Quadrature method (DQM) is a numerical technique for solving differential, 

and partial differential equations. It is an efficient method for rapid solution in one or multiple 

dimensions. Unlike conventional methods such as Finite Difference and Finite Element 

methods, the DQM requires less grid points and then less computer time and storage to obtain 

acceptable accuracy. Successful applications of the DQM in many engineering problems have 

been demonstrated by numerous researches (see for instance [112,113]). The DQM, akin to 

the conventional integral quadrature method, approximates the derivative of a function at any 

location by a linear summation of all the functional values along a mesh line. The key 

procedure in the DQ application lies in a determination of the weighting coefficients [112].  

As this numerical method will be used for numerical solutions in this thesis, some 

mathematical developments are given here. This method has some numerical advantages 

related to the previous methods. These advantages motivate our choice of this method for 

numerical solutions. 

The continuous solution is approximated by functional values at discrete points. The 

following Chebyshev-Gauss-Lobatto quadrature points are usually used. 

1 1
1 cos for 1,2,3,......, (1.66)
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in which ( )jl y are the Lagrange interpolation polynomials and 
m

ijH  represent the weighting 

coefficients given by [112-113]. 
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The differential quadrature method was first developed by Shu [112,113], the authors used 

this method to solve the linear and nonlinear problems. Krowiak [114] studied analyze the 

vibration of plates. Janghorban and Zare [115] investigated the free vibration analysis of 

functionally graded single walled carbon nanotubes with variable thickness by differential 

quadrature method. Yas and Samadi [116] studied free vibration and buckling of 

nanocomposite Timoshenko beams reinforced by SWCNTs resting on an elastic foundation. 

Nonlinear free vibration analysis of single and multi-walled carbon nanotubes using nonlocal 

Timoshenko beam theory are used in [117,118]. Arani et al. [119] studied nonlinear viscose 

flow induced nonlocal vibration and instability of embedded DWCNC via DQM. 

Based on the presented continuum models and numerical methods, buckling, vibrations, 

parametric instability as well as many order static and dynamic behaviors of CNT have been 

studied. The focus is done here on the main CNT behaviors, studied in this thesis. 

4. Fluid conveying carbon nanotubes 

Carbon nanotubes (CNT) conveying fluid have become ones of the most important structures 

in nanotechnology. They may be used at micro or nano-levels for fluid storage, fluid 

transport, drug delivery, micro-resonator, molecular reactors as well as for many nano-fluidic 

http://www.sciencedirect.com/science/article/pii/S1386947711001603
http://www.sciencedirect.com/science/article/pii/S1386947711001603
http://link.springer.com/search?facet-author=%22A.+Ghorbanpour+Arani%22
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device applications. In such applications, the dynamic characteristics, such as natural 

frequencies, eigenmodes, stability, critical flow velocity and parametric instability zones are 

of considerable interest.  

During the last years, a significant amount of research has been elaborated for the dynamic 

behavior of CNT. 

A reviews paper on pipes conveying fluid and the vibration of CNT and their composites has 

been published by Ibrahim [120, 121] and Gibson et al. [122]. Paidoussis [123] studied the 

vibration and instability of pipe conveying fluid. Amabili [124] studied the nonlinear 

vibrations and stability of shells and plates. The flexural vibrations of microscale pipes 

conveying fluid by considering the size effects of micro-flow and micro-structure is studied 

by Wang et al. [125]. The nonlocal, viscosity and some system parameters effects on the 

stability of CNT conveying pulsation fluid are studied by Liang and Su [126]. 

As the fluid conveying CNT behaviors is mainly studied on the beam and shell theories, the 

considered fluid-structure interaction force models are reviewed here. 

4.1 Fluid-beams interaction forces 

The internal fluid is approximated as a flow, all points of the fluid having a velocity V relative 

to the beam. This is a reasonable approximation for a fully developed turbulent flow profile. 

The inertia force exerted by the internal flow on the pipe, can be written as: [123] 
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where f  is the fluid mass per unit length, V0 is the flow velocity, w is transverse 

displacement. The total acceleration of the fluid mass can be decomposed into a local, 

Coriolis and centrifugal acceleration: 
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This fluid-Beam interaction force model has been used by many authors for tubes conveying 

fluid instability. 
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4.2  Fluid-shell interaction forces 

Shells coupled to the flowing fluids are widely used in engineering. The fluid is considered as 

incompressible and irrotational. The irrotationality property is the condition for the existence 

of a scalar potential function . The potential consists of two components: one due to the 

mean flow associated with the undisturbed flow velocity V in the axial direction, and the 

unsteady component associated with the functionally graded shell motion. The potential

may be written as [124] 

(1.70)  Vx 

The potential of the unsteady component   satisfies the Laplace equation as follows 
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The perturbation pressure exerted on the wall of functionally graded shell is expressed as 
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The interface condition between fluid and shell wall is written as 
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The potential  is expressed as 

( ) ( ) ( )sin( ) ( )1.74 f t x r n     

where n represents the number of circumferential waves. Substituting Eq. (1.74) into Eq. 

(1.71) gives 
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which can be separated into the following Bessel and harmonic differential equations:  
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Utilizing the condition that the potential   must be finite at r = 0, and the interface conditions 

a particular solution of Eq. (1.76) is given by 
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where λm = mπ/L, m represents the number of axial half waves and c is a constant, In is the 

modified Bessel function of the first kind of order n, which is expressed as 
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Utilizing Eqs. (1.73), (1.74) and (1.78), the potential   is expressed as 
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Substituting Eq. (1.79) into Eq. (1.73), the following shell-fluid interaction force is obtained. 
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5. Van der Waals interaction 

As the van der Waals interaction (vdW) is the main interaction force when considering 

multiwalled carbon nanotube an emphasis on this interaction force is presented in this 

subsection. The Van der Waals energy, due to the interatomic interaction, can be described by 

Lennard-Jones‘s pair potential VIJ [127] 

12 6

ijV (d) 4 (1.81)
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where, d  is the distance between interacting atoms.  

The vdW force F is obtained by taking the derivative of the Lennard-Jones pair potential, i.e.

 13 7
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The Lennard-Jones model provides a smooth transition between (a) the attractive force of an 

approaching pair of atoms from a certain distance and (b) the repulsive force when the 

distance of the interacting atoms becomes less than the sum of their contact radii. 

It should be noted that we are only interested in the infinitesimal deformation of CNT. Thus, 

the vdW force can be estimated by the Taylor expansion to the first-order around the 

equilibrium position, i.e. [128] 
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where 0d  is the initial distance between atoms of different tubes. 

The vdW force exerted on any atom on a tube can be estimated by summing all forces 

between the atom and all atoms on the other tube.  

To simplify the calculations, we consider the CNT as a continuum cylindrical shell and note 

that each carbon atom corresponds to the area of 
29a / 4 3 [129]. Thus, the integration of Eq. 

(1.89) over the entire CNT leads to an analytical representation for the initial pressure pij 

caused by the vdW interaction: [128] 
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where a = 1.42 A ˚ is the C–C bond length, Rj is the radius of the j
th

 layer, and the subscripts i 

and j denote the ith and jth layers, respectively. The pressure increment due to the buckling 

jump is given by: 

 
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0 0
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where 
6 7 12

ij ij ijE , E , E  and 
13

ijE are the elliptical integrals defined by: 
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where m is an integer and 
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(1.87)
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The infinitesimal deflection between two layers, the net pressure due to the Van der Waals 

interaction can be expressed as:  
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where ijp  is the initial uniform vdW pressure contribution to the ith layer from the jth layer 

prior to buckling, N is the total number of layers of the multi-walled CNT, and  ijp  is the 

pressure increment that is exerted on the ith layer from the jth layer, N is the total number of 

layers of the multi-walled CNT. As only infinitesimal buckling is considered,  ijp  is assumed 

to be linearly proportional to the buckling deflection between two layers, i.e. 

! 1 1

( , ) ( ) (1.89)
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N N N
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Comparing Eqs. (1.85) and (1.89) we have: 
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Eq. (1.90) furnishes the mathematical expression for the interaction coefficient cij that models 

the vdW forces in a multi-walled CNT, where each tube has been treated as an individual 

cylindrical shell continuum. This refined vdW model captures the effects of all layers, not just 

those between two adjacent layers and allows analyzing the multi walled carbon nanotubes. 

6. Mathematical modeling of static behavior of CNT  

6.1  Buckling of beam’s CNT 

The buckling instability can be resulted from various types of loads such as compressive load, 

thermal load. Elfelsoufi and Azrar [130,131], studied buckling, flutter and vibration analyses 

of beams by integral equation formulations. Sudak studied the column buckling of MWCNTs 

using nonlocal continuum mechanics [132]. Other researchers have used nonlocal elasticity to 

study CNT vibrations [133,134] and the propagation of waves in CNTs [135-137].  

6.1.1 Axial compressive load 

Based on the nonlocal Euler Bernoulli beam theory, the differential equation governing the 

transverse buckling behavior is: 

2 2 2
2

02 2 2
(1.91)( ) 0

      
        

     

d d w d dw d d dw
EI N e a N

dx dx dx dxdx dx dx  

Based on the nonlocal Timoshenko beam theory, the differential system governing the 

transverse buckling behavior is: 
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where N is the axial force. 

6.2   Buckling of cylindrical CNT. 

The buckling and post buckling can be used by many authors for plate and shells. To cite only 

few ones, Azrar et al [138] used an asymptotic-numerical method to compute the post 

buckling behavior of elastic plates and shells. For carbon nanotube, Salehi-Khojin and Jalili 

[139] proposed buckling of boron nitride nanotube reinforced piezoelectric polymeric 

composites subject to combined electro-thermo-mechanical loadings. 

Based on the Donnell shell model, the partial differential equation convening the buckling 

behavior of cylindrical shell is: [85] 
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6.2.1 Thermal loads 

The buckling behavior can also be resulted from thermal load. The constitutive equations of 

the thermal loads using nonlocal shell theory are given by: [85] 
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where T is the temperature field applied to the shell. The constitutive equations of the thermal 

buckling behavior are given by: 
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Analytical and numerical methods can be used to solve the previous equations analyzing the 

buckling behaviors of CNT. Buckling loads and associated buckling modes can be obtained.  

7. Vibration 

The development of electromechanical devices and systems at the micrometer and nanometer 

scale are increases. These developments have led to new families of devices and sensors that 

require consideration electrostatic and viscous damping, viscous fluid damping, van der 

Waals attractive forces, and the size and location of masses, such as vibrating cantilever beam 

mass sensors, piezoelectric beam energy harvesters, carbon nanotube oscillators, and vibrating 

cantilever beam sensors for atomic force microscopes. Thus, with the introduction of these 

sub millimeter systems, the range of applications and factors has been increased resulting in a 

renewed interest in the field of the vibrations of nano and micro systems. 

Modeling and analyzing of nanosystems are ones of the main goals of this thesis. The most 

used models for vibration analysis to CNT are beam models and shell models. 

7.1  Vibration of CNT-Beam 

Based on the nonlocal Euler Bernoulli beam theory, the partial differential equation of the 

transverse vibration behavior under axial load N  is: [69] 
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Based on the nonlocal Timoshenko beam theory, the partial differential system governing the 

natural vibration of CNT under axial load N  are: 
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7.2   Vibration of cylindrical-CNT. 

Based on the linearized Donnell shell model, the partial differential equations convening the 

transverse vibration behavior of cylindrical CNT under axial load N are: [85,90] 
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where p represents the van der Wall force.  ρ is the mass density of carbon nanotube 

 

Analytical and numerical methods can be used to solve the previous partial differential 

equation for vibration behaviors of CNT, natural frequencies and associated eigenmodes can 

be obtained. 

The wave propagation and dispersion have been studied by many authors based on these 

models [90] 

8. Dynamic instability behaviors 

The dynamic instability behaviors can be resulted in structures subjected to non-conservative 

loads such us non conservative charge, wind fluid, sol-structure interaction, fluid structure 

interaction and so on. Based on Euler-Bernoulli beam model and integral equation 

formulation, this behavior has been analyzed by El Felsoufi and Azrar [140,141] and by 

Ouakkasse and Azrar [67] based on Timoshenko beam model. This behavior will be deeply 

analyzed in this thesis based on the fluid-CNT interaction.  

The dynamic deflection and vibration of elastic carbon nanotube structures conveying fluid 

have been an interesting subject to many researchers. This is recently one of the most 
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important subjects in the areas of fluid structure interaction. The pipes conveying fluid are the 

typical structural examples of the structure. There are several excellent and comprehensive 

survey papers, in this topic notably Paidoussis [123], Amabili [124]   

9. Parameters uncertainty 

The prediction of the parameters uncertainty effects and the propagation of the uncertainties 

are presently a big challenge in many engineering problems. When the parameters are 

subjected to significant uncertainties, the accuracy of the predicted results will be inevitably 

altered. 

In nanostructures such as CNT, the physical and geometrical parameters are inevitably 

uncertain. It can be seen from table 1.1 that various values are suggested for the Young 

modulus Moreover, in the open literature, different values are used by various authors for 

CNT parameters adopted in the available models. This dispersion in the CNT parameters 

values is deeply motivating our research work on the parameters uncertainty effects on the 

dynamic behaviors of CNT. 

9.1   Random model 

For a SWCNT in the circular cylindrical shape, the tube section A, inertia moment I, fluid 

mass fm , the tube mass tm are given by: 
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All these parameters may be uncertain; this uncertainty effect can strongly affect the output 

results. These parameters can be assumed to be in the forms: 

0 1 1 0 2 1 0 3 1 0 4 1

1 1
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(1.104)
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1

1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , andf sE R h L c a e V    are the standard deviations and 1 2, ,........, n   are 

the random coefficients that may follow distribution laws. 

Based on these assumptions, all the models presented in this thesis will be stochastic partial 

differential equations. For numerical solution of the resulting stochastic equations, well 

adapted numerical methods are needed. 

9.2 Numerical random methods 

In this subsection, the classical and well used methods are presented 

9.2.1 Monte-Carlo method 

For decades, Monte Carlo has been mainstream technique for random algebraic, differential 

and partial differential equations. This method is often used to solve problems with 

uncertainty parameters [145] as well as to a wide range of stochastic problems. The main 

limitation of this method is that it is very computationally expensive.  

Even with this limitation, the Monte Carlo method is still the most popular numerical method. 

To give a clear overview on this method, let us consider the random differential equation: 

2 1 1 n 1 1 1 n 0 1 1 n 1 1 n (1.105)C ( , ,..., ) U + C ( , ,..., ) U + C ( , ,..., ) U = F(t, , ,..., )           

with initial conditions. 

where 1 1 n, ,...,    are the random parameters. The coefficients jC
 
and the excitation F are 

then random and depending on the random parameters 1 1 n, ,...,    

to solve the random differential equation (1.111) by the Monte Carlo method, let us denote the 

random vector 1 2 n( , ,..., )     and define sequence of observations k1 k2 kn( , ,,..., )k x x x

for k=1 to N, where N is a defined integer and kjx are the random numbers  

For each observation k  let us put  

ik i k (1.106)C =C ( ) and F (t, ) 0,1,2k k i   

The coefficients 
ik kC and F

 
are then deterministic and the random differential equation 

(1.111a) is reduced to a sequence of deterministic differential equations. 

2k 1k 0k k

(1.107)

C  U+C  U+C  U=F (t) for k=1 to N

 initial condition

 

These equation can be solved by classical method such us Runge-Kutta method. 
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The solution of these dynamical systems is denoted by Uk. The mean and the standard 

deviation of the random dynamical system (1.107) is approximated by: 
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9.2.2 Polynomial Chaos 

In the recent years, polynomial chaos expansions have received much attention as a promising 

numerical method in solving random or stochastic differential and partial differential 

equations. 

Polynomial chaos (PC) is a non-sampling-based method to determine evolution of 

uncertainty in dynamical system, when there is probabilistic uncertainty in the system 

parameters. This method was first introduced by Norbert Wiener [147, 148] where Hermite 

polynomials were used to model stochastic processes with Gaussian random variables. This 

method was generalized for various continuous and discrete distributions using orthogonal 

polynomials and the L2 convergence in the corresponding Hilbert functional space. The 

generalized polynomial chaos were introduced leading to the consideration of non-Gaussian 

random variables. [149,150] stochastic finite element methods have been elaborated by many 

authors [151, 152]. More recently, the polynomial chaos expansions have been coupled with 

the component mode synthesis methods for stochastic dynamic problems by Sarsri et al [153].  

 The Monte Carlo and polynomial chaos methods will be used in this thesis for parameters 

uncertainty effects on the dynamic behaviors of CNT. 

  

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Norbert_Wiener
http://en.wikipedia.org/wiki/Hermite_polynomials
http://en.wikipedia.org/wiki/Hermite_polynomials
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Gaussian
http://en.wikipedia.org/wiki/Random
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10. Conclusion 

Based on the above introduction and literature survey, it is seen that CNTs can be used for 

many applications and utilized as the potential building blocks in nano-electro-mechanical 

systems, NEMS. The remarkable properties of carbon nanotubes and their applications in 

various fields are discussed. The number of recently published work on these nanostructures 

shows clearly the growing interest and technological scope of this type of structures and 

materials. 

Different analytical models and numerical simulations and have been described and their 

application to the dynamic behavior of CNTs. An emphasis has been made on the continuum 

models that have excited much interest due to their computational efficiency and ease of use. 

The nonlocal elasticity theory combined with the beam and shell models are deeply described 

as well as the static and dynamic behaviors studied in this thesis 
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Chapter II: 

Length scale effect analysis on vibration behavior of single 

walled Carbon NanoTubes with arbitrary boundary conditions 
 

 

ABSTRACT 

In this paper the small length scale effects on the vibration behaviors of single walled 

Carbon Nano Tubes (CNT) are modeled and numerically evaluated based on the nonlocal 

elasticity theory and the Timoshenko beam model. Generalized boundary conditions are 

considered in order to take into account a more realistic and a wide range of boundary 

conditions. The lower as well as higher natural frequencies and associated eigenmodes can be 

obtained by numerically solving the presented generalized transcendental nonlinear algebraic 

equation. The effect of the used translational and the rotational spring constants on the 

vibration frequencies and mode shapes of the CNT are addressed. It is demonstrated that the 

small scale effect can lead to an unstable behaviors of flutter type for cantilever CNT. The 

coalescence of pair eigenmodes is addressed at critical length scales and these critical values 

are decreased by increasing the mode number. 
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1. Introduction 

Carbon NanoTubes (CNTs) have become one of the most promising material and appear to 

possess extraordinary physical properties. Many applications of CNTs have been reported, 

such as in atomic force microscopes (AFMs), sensors, actuators, resonators, nano oscillators 

and field emission devices. To realize the potential benefits of CNTs a fundamental 

understanding of nano-structured material is required in order to develop reliable constitutive 

models for various design purposes. The modeling for CNT is classified into two main 

categories. The first one is mainly based on atomistic and molecular dynamics simulations. 

The second one is the continuum modeling, including local and nonlocal beam or shell 

theories. Successful works have been concluded with continuum modeling, such as nonlocal 

elasticity and mechanical property investigation of CNTs [1-5]. These papers indicate that the 

small length scales would have significant influences and the nonlocal continuum model can 

effectively capture these influences in the study of nanostructures. 

The Euler-Bernoulli and Timoshenko beams models combined with nonlocal elasticity theory 

are often used for the analysis of CNT beam like flexural motions, but for CNT in which the 

radial and/or circumferential displacements have more or less effects, the nonlocal elastic 

shell theory is more adapted. The wave propagation of single and multi walled CNT has been 

investigated by Wang and Varadan [6] and Mitra and Gopalakrishan [7] based on the nonlocal 

shell theory. An assessment of the continuum beam and shell models in the buckling 

prediction of CNT is provided by Zhang [8] on the basis of molecular dynamic simulation 

results as well as on some published results. It was demonstrated that the accuracy of the 

beam and shell models depends on the CNT‘s aspect ratios (Length/diameter, L/d) and 

diameter. For large aspect ratio (L/d >10) the beam model is largely enough. But for short 

CNT with large diameter the nonlocal shell models are more adapted. 

Vibrations of CNTs are of considerable importance in a number of mechanical devices and 

occur during certain manufacturing processes of nanocomposites. So, there are considerable 

motivation for studying vibration characteristics of CNTs. Gibson et al [1], Benzair et al [9] 

and Civalek et al [10], among others, discussed the free vibration and bending analyses of 

CNTs based on the nonlocal continuum model. Azrar et al [11] developed higher order free 

vibration characteristics of single walled carbon nanoTubes based on the nonlocal 

Timoshenko and Bernoulli beam models. The mathematical development and numerical 

predictions based on these two models have been deeply analyzed with respect to aspect ratios 
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and small length scale Adali [12] and Kucuk et al. [13] elaborated variational principles of 

CNTs based on Bernoulli and Timoshenko models. Pin Lu et al. [14] studied the dynamic 

properties of flexural beam using the nonlocal elasticity model. Yoon et al. [15] developed the 

vibration of double walled short carbon nanotubes of small aspect ratios modeled by the 

Timoshenko model and neglecting the nonlocal effect and using the classical boundary 

conditions. The vibration analyses of classical beams under generalized boundary conditions 

are addressed by Li [16, 17] using the Bernoulli model and by Arboleda-Monsalve et al [18] 

using the Timoshenko model. In this paper the vibration characteristics of CNT under 

arbitrary boundary conditions based on the Timoshenko model and the nonlocal elasticity 

theory are investigated. The main target of the present work is to investigate the length small 

scale and the generalized boundary conditions effects on the eigenfrequencies and 

eigenmodes as well as on the instability of these nanostructures.    

2. Mathematical formulation  

Let us consider a slender single walled carbon nanotube of length L, diameter d and thickness 

h under arbitrary boundary conditions described by translational and rotational springs at both 

ends. This allows describing the more realistic boundary conditions and covering the classical 

boundary conditions by simply specifying the spring constants. The nonlocal elasticity theory 

combined with the Timoshenko beam model is adopted. 

2.1. Constitutive and governing dynamic equations 

Based on the nonlocal elasticity theory, developed by Eringen [2,3], the constitutive equation 

for a linear homogenous nonlocal elastic body is given by the following integral equation: 

( ) (| |, ) ( ) ( ), (2.1)   i j ijkl kl

V

x x x C x dV x   

, ,( ) / 2 (2.2) kl k l l ku u  

in which (| |, )x x  is the nonlocal kernel function, which incorporates the nonlocal effect 

at the reference point x produced by local strain point at the source x‘ into the constitutive 

equations 0 /e a L   in which a and L are internal and external characteristic lengths and e0 is 

a constant appropriate to each material. 
ijklC  is the elastic modulus tensor, ij ijand   are the 

stress and the strain tensors. The nonlocal kernel function   depends on the internal and 

external characteristics lengths. Various approximate models of nonlocal elasticity can be 
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obtained by specifying the kernel function . This leads to a constitutive equation in an 

integral from. For practical reasons, the following differential constitutive equations for one 

dimensional case with Timoshenko hypothesis and small deflection are adopted [2,3]. 

2

2

0 2
( ) , (2.3)
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xx

xx xxe a E
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where ,xx xz  , xx , xz , E and G are the nonlocal stress tensors, axial and transverse shear 

strains, Young modulus and shear modulus respectively. The displacement components along 

the axial x and transverse z directions are denoted byU  and W respectively: 

( , , ) ( , ) ( , ), ( , , ) ( , ) (2.5)  U x z t u x t z x t W x z t w x t   

where  denotes the rotation of the cross section, u and w are the middle plane (z=0) 

components and t is time. The axial strains are:
  

0 0, , , (2.6)
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Based on these equations, the nonlocal resultant axial force N, moment M and shear force Q 

are obtained by the following differential equations. 
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in which , , (2.10)    xx xx xz

A A A

N dA M z dA Q ks dA  

where ks  is the factor of shear depending on the shape of the cross section A. 

The equations of motion for the transversely vibration of CNT is given by: 
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Where ( , )q x t  is the transverse excitation force per unit length. For a constant cross section, 

the mass inertia 
0 2andm m

 
are defined by: 

2
2

0 2; ,
12

A A

h
m dA A m z dA A       

 

where , , andh A  are the mass density of the material, the tube thickness and the cross section 

area respectively. Using the previous equations, the following moment and shear forces are 

obtained. 

3 2
2

0 2 02 2
( ) , (2.13)

   
    

    

w
M EI e a m m q

x x t t

 

3
2

0 0 2
( ) , (2.14)

    
      

     

T w w q
V ksAG e a m

x xx t


 

where I is the second moment depending on the considered shape of the cross section. 

Substituting Eqs. (2.13) and (2.14) into (2.11) and (2.12) one obtains the partial differential 

system governing the dynamic behavior of undamped CNTs. 

2 2 2
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 Recall that the classical local Timoshenko beam model is recovered when the parameter 0e
 

is set to zero. The vibration analysis of the CNT will be based on these equations.  

3. Free vibration modeling 

For linear free vibrations, let us assume that. 

( , ) ( ) , ( , ) ( ) ( , ) 0, (2.16)   i t i tw x t W x e x t x e and q x t   

where  is the natural vibration frequency parameter. The substitution of Eqs. (2.16) into  

(2.15) leads to the following coupled differential equations.  

2 2
2 2
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2
2 2

0 0 2

( ) 0,
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



The coupled differential system (2.17) can be reduced to the following uncoupled fourth order 

differential equations [11].    
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Based on the characteristic equation of (2.18), the following simplified frequency equation is 

obtained when the rotary mass inertia 2m  is neglected [11].
 

1/ 2

2

0 2 2 2

0 0 0

1
, (2.21)

(1 ) (1 ( ) )

  
   

    

EI

m e a
 

 

2

2

0

4
where , 0, , (2.22)

2

 
   

q q p r EI
if p r

p ksAG


 

2
2

2 2

0 0

, (2.23)
1 ( ) )


   e a






Note that α and β depend nonlinearly on the frequency . The associated eigenmodes 

deflection, moment and shear force are given by: 

1 2 3 4( ) sin ( ) cos( ) sinh ( ) cosh ( ) (2.24)   W x A x A x A x A x   
2

4 2 4 2

0 0 0 0 2

( )
( ) ( ( ) ) ( ) (1 ( ) ) (2.25)

 
       

 

T d W x
M x EI Q e a W x Q e a

dx

3
4 2 4 2

0 0 0 0 3

( ) ( )
( ) ( ( ) ) (1 ( ) ) (2.26)

 
       

 

T dW x d W x
V x EI Q e a Q e a

dx dx

where the unknown frequency parameter 
0 /Q A EI   and the arbitrary constants Ai 

are determined by the considered boundary conditions.
 

 

 

 

 

 

Figure 2.1 Beam elastically restrained at both ends. 

For more realistic boundary conditions, the following generalized ones are considered: 
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(0)
(0) 0 (2.27)

(0) (0) 0 (2.28)

 

 

T L

r

T L

t

d W
M K

dx

V K W

( , )
( ) 0 (2.29)

( , ) ( , ) 0 (2.30)

 

 

T R

r

T R

t

d w L t
M L K

dx

V L t K w L t

where , ,L L R R

r t r tK K and K K are the translational and the rotational spring constants at the left 

and right ends of the CNT at x=0 and x=L (see figure 2.1). Equations (2.27-2.30) represent a 

set of generalized boundary conditions. The classical boundary conditions can be simply 

obtained as special cases when the stifnesses of the springs take some extreme values such as 

zero and infinity. For example, the clamped-clamped boundary condition can be easily 

obtained by assuming that at each end the translational and rotational spring constants are 

extremely large. Using equations (2.24-2.26) and the boundary conditions (2.27-2.30), one 

obtains the following algebraic system.

 





 

  

1 2

1 2

1 2 2

1

1 1 2 2

U U

- U - U

U cos( )  U cosh( )  U sinh( )  - cos( )  
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t t

L L

r r

R

t

R R R

t t t

R R R

r r r

K K

K K
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K K K

K K K
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     

   
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     



    

    



1

2

3

4

0

0

0

0h( )  

+ sinh( )R

r

A

A

A

A

K



 

 
    
    
    
    

    
    
    
    
      

 

in which U1, U2 are given by: 

2 2 4 2 4

1 0 0 0 0- (1-(e a) )+( +(e a) ) ;  U Q Q  

2 2 4 2 4

2 0 0 0 0= (1-(e a) )+( +(e a) ) ; U Q Q
 

After some mathematical developments the following nonlinear algebraic transcendental 

equation is obtained: 

F( )=A+Bcos( ) cosh( )+Csin( )sinh( )+Dcos( )sinh( )+E sin( )cosh( )=0 (2.31)n n n n n n n n n          

where:   

2 2 R R 2 2 R R

1 2 r t 2 1 r tA = ((U + )(U  + K K )+(U + )(U + K K )); L L L L

r t r tK K K K   

R L R R R L L L

1 2 r t r t t r r t 1 2

R L R L 2 2 R R L L

r t t r 1 2 r t t 1 2 r

B =2 U U ((K K  - K K + K K - K K )  - U U  )

- (K K  + K K )(U +U )+ K K K  (U - U - 2K ); 

 

   
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R L 2 R L 2 R R L L

r r t t 1 2 1 2 1 2 r t r t

R R L L 2 2

r t r t

C = (K K ( ) - K K )(U - U ) - (U U (U U +(K K + K K ))

+K K K K )( - ) ;



 
 

R L R L 2 R L 2 R L L

t t 1 2 r r r r 1 2 t r t 2 1D=((K - K )(U U + K K ) ((K - K ) U U -K K K )) (U - U ) ;     

R L R L 2

t t 1 4 1 2 r r 2 1

R L 2 R L

r r 1 2 1 2 1 2 t t

E =(K - K )(U U (U -U ) +K K (U - U )) 

+(K - K ) (U U  (U - U ) - (U  - U )K K );

 

  
 

This formulation allows one to get the natural frequencies with respect to the considered 

physical and material parameters. The numerical solutions of this equation are obtained by the 

Newton-Raphson algorithm. It is to be noted that when the small scale parameter e0a=0, the 

characteristic equation is reduced to its classical from with generalized boundary conditions.  

The resulting mode deflection and rotation shapes are given by:    

1 2 3W(x)=G sin( )+G cos( )+G sinh( )+cosh( ); (2.32)x x x x   

11 1 2 22 3(x)=S (G cos( )-G sin( ))-S (G cosh( )-sinh( )); (2.33)x x x x       

where: 

2 2 L R L R L L 2 L R

1 1 2 t t t t 2 r t 2 1 t t 2

L 2 L L R R 2 L L 2 L L

t 2 r t t t 2 r t 1 2 r t

L 2 L 2 2 R

r 1 r 1 t 2

G  = sinh( ) (U (U  + K K ) - K K U  + K K U )- cosh( ) (U (K  + K ) U  

- K U  + K K K ) + K cos( ) (U  + K K ) + U sin(a) (U  + K K )

/ sin( ) (K U2 U  - K U  + K U


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    
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Equations (2.31-2.33) give the mathematical modeling of the free vibration of CNT under 

generalized boundary conditions. The small as well as the higher order natural frequencies and 

associated eigenmodes can be obtained by numerically solving the considered general 

transcendental equation using the Newton Raphson algorithm. The small length scale as well as 

the generalized boundary conditions effects on the eigenfrequencies and eigenmodes can be 

analyzed. 

4. Numerical results and discussions 

Numerical results are presented using effective properties of carbon nanotubes. The following 

geometrical and material properties are used. 

3 9

4
9 -19 2 38 4

9

0

2300 / , 1000 , 0.19, 420 , 1 10 ,

0.34 10 , 7.85 10 , 4,91 10 ,
64

0.877, / , 1.5 10 , 20 ,



 



     

      

     

kg m E Gpa G Gpa d m

d
h m A m I m

ks EI ks AG a m L a

 



 

Based on the above mathematical formulations, various type of boundary conditions can be 

considered by simply choosing the considered stiffness constants , .L L R R

r t r tK K K K
 
In table 2.1, 

the first four eigenvalues associated to different values of the nonlocal parameters e0a/L and 

various stiffnesses of the translational and rotational springs for slender CNT (d/L=10
-4

) are 

presented. These results are compared to those obtained by Lu et al. [14] for clamped and 

clamped-free CNT. For this slender CNT the Bernoulli and Timoshenko models lead to the 

same results. In table 2.2, short CNT (d/L=0.1) is considered and the associated first fourth 

natural frequencies are given. These frequencies are decreasing by increasing the small scale 

effect e0a/L except for clamped free boundary conditions. For C-F CNT, complex eigenvalues 

are obtained at critical values of the scale length e0a/L. For the sake of clarity, curves are 

presented for some cases. Figure 2.2 shows the frequency parameters corresponding to the 

first to the 22
th

 eigenmodes for a cantilever CNT with respect to the nonlocal parameter e0a/L. 

It can be seen that the frequency parameters decrease by increasing of the nonlocal parameter 

e0a/L and increase by increasing of the mode number. Exception is on the first order 

frequency parameter of cantilever CNT which is shown to be slightly increasing with e0a/L. It 

is found from this figure that the nonlocal parameters affect greatly the dynamic properties of 

the cantilever CNT. Therefore, a reasonable choice of the value of the parameter e0a/L is 

crucial to assure the validity of the nonlocal model and the vibration stability of the 

nanostructure. This shows that the instability at higher modes can occur very early than at the 
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first and second with respect to the small scale parameter. It can be seen that the 1
st
 and 2

nd
 

modes shapes coalesce when e0a/L=0.62, and the 3
tr
 and 4

th
 coalesce when e0a/L=0.42. 

Figures 2.3-a, 2.3-b show the variation of the modes 1 and 2 (a) modes 3 and 4 (b) of a C-F 

CNT at various nonlocal parameters e0a/L. Figure 2.4 shows the variations of the 

eigenfrequency parameter associated to the first fourth modes shapes for a CNT with the 

nonlocal parameter e0a/L for various translational and rotational springs. The coalescence of 

pair eigenmodes is addressed at critical length scales and these critical values are decreased 

by increasing the mode number and increased while we get far from cantilever conditions in 

term of the translational and rotational springs 
R R

t rK and K . 

5. Conclusion 

In this paper, the effect of the small scale length parameter on the vibration frequencies and 

associated mode shapes of single walled CNTs with arbitrary boundary conditions is 

addressed. In order to take into account the shear effect the Timoshenko model is used. The 

generalized boundary conditions are considered to account for a more realistic and a large 

wide of boundary conditions. It is demonstrated that the small scale length parameter has a 

prominent effect and particularity for clamped-free CNT. The C-F CNT will flutter at critical 

values of e0a/L. This instability limit can be used as a limit for prediction values of the small 

length scale. This unstable behavior may also be observed for other non-classical boundary 

conditions. Results show that when nonlocal effect increases the frequencies decrease or 

coalesce for certain types of boundary conditions. In such case the dynamic behavior of the 

nanostructure is unstable.  
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Table 2.1 The first four the eigenvalues with different nonlocal parameters e0a/L for various 

stiffnesses of the translational and rotational springs with d/L=10
-4

 

  9

9

10

10

L L

r t

R R

r t

K K

K K

 

 

Clamped-clamped
 

9

3

10

10

L L

r t

R R

r t

K K

K K

 

 

 

9

2

10

10

L L

r t

R R

r t

K K

K K

 

 

 

910

10

L L

r t

R R

r t

K K

K K

 

 
 

910

0

L L

r t

R R

r t

K K

K K

 

 

Clamped-free
 

 
 [14] present present present present present [14] 

e0a/L=0 n=1 

n=2 

n=3 

n=4 

4.7300 

7.8532 

10.9956 

14.1372 

4.7300 

7.8532 

10.9956 

14.1371 

4.6205 

7.2846 

9.5661 

12.1480 

3.8403 

5.8130 

8.6871 

11.7607 

2.7147 

5.3349 

8.3661 

11.4375 

1.8751 

4.6941 

7.8548 

10.995

5 

1.8751 

4.6941 

7.8548 

10.9955 e0a/L=0.2 n=1 

n=2 

n=3 

n=4 

4.2766 

6.0352 

7.3840 

8.4624 

4.2766 

6.0352 

7.3840 

8.4624 

4.2294 

5.9242 

7.1855 

8.0462 

3.7096 

4.9223 

6.3256 

7.5325 

2.6512 

4.5746 

6.2204 

7.4751 

1.8919 

4.1924 

6.0674 

7.3617 

1.8920 

4.1925 

6.0674 

7.3617 e0a/L=0.4 n=1 

n=2 

n=3 

n=4 

3.5923 

4.5978 

5.4738 

6.1504 

3.5923 

4.5978 

5.4738 

6.1504 

3.5809 

4.5690 

5.4499 

6.0832 

3.3855 

3.9731 

4.7951 

5.5193 

2.4973 

3.6659 

4.7391 

5.4654 

1.9543 

3.3456 

4.8370 

5.2399 

1.9543 

3.3456 

4.8370 

5.2399 e0a/L=0.5 n=1 

n=2 

n=3 

n=4 

3.3153 

4.1561 

4.9328 

5.5213 

3.3153 

4.1561 

4.9328 

5.5213 

3.3089 

4.1357 

4.9210 

5.4797 

3.1956 

3.6572 

4.3562 

4.9598 

2.4070 

3.3386 

4.3060 

4.8945 

2.0219 

2.9433 

_ 

_ 

2.0219 

2.9433 

_ 

_  

Table 2.2 The first four order eigenvalues with different nonlocal parameters e0a/L for various 

stiffnesses of the translational and rotational springs with d/L=10
-1
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r t
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9
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9
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R R
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 

 
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0
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r t
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e0a/L=0 n=1 

n=2 

n=3 

n=4 

4.6812 

7.5691 

10.2187 

12.5888 

4.5805 

7.1117 

9.1376 

11.1295 

3.8285 

5.6994 

8.2617 

10.7575 

2.7098 

5.2426 

7.9987 

10.5405 

1.8745 

4.6416 

7.5717 

10.2184 e0a/L=0.2 n=1 

n=2 

n=3 

n=4 

4.2002 

5.7206 

6.6986 

7.3264 

4.1599 
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6.6266 

7.2451 

3.6877 

4.8079 

5.9599 

6.7977 

2.6436 

4.4717 

5.8713 

6.7615 

1.8926 

4.1160 
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6.6811 e0a/L=0.4 n=1 
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n=3 
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3.5029 
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Figure 2.2 Small length scale (e0a/L) effect on the frequency parameters 

/j jQ L L A EI    of a cantilever single walled CNT for j=1, 22 
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Figure 2.3 Modes 1 and 2 (a) modes 3 and 4 corresponding to different nonlocal parameters 

e0a/L of a C-F CNT
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Figure 2.4 Variations of eigenfrequency with parameters QiL with respect to e0a/L associated 

to various values of 
R R

r tK and K of a SWCNT with 
9 1( 10 , / 10 )L L

r tK K d L   
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Chapter III: 

Analytical and numerical modeling of higher order free vibration 

characteristics of single walled Carbon NanoTubes 
 

 

ABSTRACT 

In this paper analytical and numerical investigations of small, higher and asymptotic order 

vibration eigenmodes and natural eigenfrequencies of single walled Carbon Nano Tubes 

(CNT) are elaborated. The analytical modeling is based on the nonlocal elasticity theory and 

two beam models and the numerical simulation is based on the differential quadrature method 

(DQM). As carbon nanotubes are usually submitted to higher frequencies, the investigations 

of their higher order vibration characteristics are prominent. Due to numerical instability, the 

common analytical forms of eigenmodes can be only used for the first twelve modes or so. 

New mathematical models for very higher eigenmodes and associated eigenfrequencies of 

CNT with various boundary conditions are developed based on Timoshenko and Bernoulli 

beam models. The obtained eigenmodes are well conditioned and numerically stable at all 

orders and can be used as a basis for modal analysis at any required frequency range. Based 

on the differential quadrature method the free vibration characteristics are numerically 

obtained at small and higher orders for Timoshenko and Bernoulli models. The analytically 

and numerically obtained results are well compared at small, higher and very higher 

frequency orders. The small scale effects on the lower as well as on the higher natural 

frequencies and eigenmodes are analyzed for various CNT boundary conditions. 
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1. Introduction 

Carbon nanotubes (CNT) are among the most promising new materials for the design and 

development of nanoelectro-mechanical systems (NEMS). This is due on one hand to their 

excellent electronic and mechanical properties; on the other hand to the significant progress 

that has been made in the last few years in modeling and fabrication of carbon nanostructures. 

Vibrations of CNT are of considerable importance in a number of nanomechanical devices 

such as sensors, actuators, higher frequency resonators, nano oscillator and field emission 

devices. Introduced by the use of ultrasonic, microwaves or other higher frequencies, wave 

propagations are widely used for nanotubes dispersion in resin matrix materials of 

nanocomposites. So, there are considerable motivations for studying vibration characteristics 

of CNT at lower and higher frequencies. To the best authors‘ knowledge there is no published 

research work on higher vibrations characteristics of CNT. 

Mechanical behaviors of CNTs including vibrational behavior have been the subject of 

numerous recent studies. A review paper on vibration of CNT and their composites has been 

published by Gibson et al. [1]. Eringen‘s nonlocal elasticity [2,3] allows one to account for 

the small scale effect that is very significant when dealing with micro and nanostructures. 

From the work of Peddieson et al. [4] and Sudak [5], using Eringen‘s nonlocal model, several 

studies have been devoted to different mechanical behaviours of beams, plates and shells on 

the nanoscale. Thus, the nonlocal theory of elasticity has been used to investigate the static 

and dynamic behaviours of nanobeams and CNT by many authors such as Sudak [5], Wang 

and Varadan [6], Benzair et al. [7], Reddy and Pang [8], Zhen and Fang [9], Murmu and 

Pradhan [10], Narendar and Gopalakrishnan [11]. These papers indicate that the small length 

scales would have significant influences and the nonlocal continuum model can effectively 

capture these influences in the study of nanostructures. 

Vibration analysis of both single and double walled carbon nanotubes (SWCNT, DWCNT) 

considering the small-scale effect by the nonlocal continuum mechanics is presented by Wang 

and Varadan [6]. The thermal effect on vibration of CNT has been elaborated by Benzair et al. 

[7]. It was concluded that at low and room temperature the critical axial stress for 

infinitesimal vibration of a SWCNT increases as the value of temperature change increases, 

while at high temperature the critical axial stress decreases as the value of temperature change 

increases. Murmu and Paradhan [10] studied the thermal stability effect on a SWCNT 

embedded in an elastic medium based on nonlocal elasticity theory without considering fluid 
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flow. Narendar and Gopalakrishnan [11] and Cai and Wang [12] showed that only the 

nonlocal elastic Timoshenko beam model is able to predict the decrease in phase velocities of 

wave propagation in a CNT. Adali [13] developed a variational principle for transversely 

vibrating of multi walled CNT based on the nonlocal Euler-Bernoulli beam model and Kucuk 

et al. [14] based on the Timoshenko model. Lu et al. [15] proposed the dynamic properties of 

flexural beams using a nonlocal elasticity model. 

Arash and Ansari [16] used nonlocal shell model for vibration characteristics of single walled 

CNTs with different boundary conditions. Yoon et al. [17] developed the vibration of double 

walled short carbon nanotubes of small aspect ratios modeled by the Timoshenko model and 

neglecting the nonlocal effect. Civalek et al [18] used the nonlocal and Bernoulli beam 

theories for free vibration analysis of microtubules and Loya et al [19] for cracked 

nanobeams. Length scale effect analysis on vibration behavior of single walled Carbon 

NanoTubes with generalized various boundary conditions have been elaborated by Azrar et al 

[20, 21]. Pradhan and Murmu [22], studied the application of nonlocal elasticity and DQM in 

the flapwise bending vibration of a rotating nanocantilever.  Janghorban et al [23] proposed 

the free vibration analysis of functionally graded carbon nanotubes with variable thickness by 

differential quadrature method. Narendar [24] used the differential quadrature based nonlocal 

flap wise bending vibration analysis of rotating nanotube with consideration of transverse 

shear deformation and rotary inertia. Shu developed the differential quadrature ant its 

application in engineering [25]. 

However, so far, high frequency vibrations have not been studied sufficiently and there are no 

reported papers for CNT vibrations at higher orders. Therefore, investigation of higher 

eigenmodes and eigenfrequencies of CNT are of interest from both practical and theoretical 

viewpoints. The aim of this paper is to investigate analytically and numerically the vibration 

characteristics of CNT at higher and very higher frequency orders. The Timoshenko and 

Bernoulli beam models are combined with the nonlocal elasticity theory. New explicit 

relationships of eigenmodes and associated eigenfrequencies are given for various boundary 

conditions at lower and very higher orders. The developed higher order eigenmodes are 

numerically stable. Based on the differential quadrature method, numerical investigations are 

elaborated for small as well as for very higher frequency orders. The small scale and the 

aspect ratio effects on the eigenfrequencies and eigenmodes are analyzed. 
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2. Mathematical formulation  

For the vibration analysis of single walled carbon nanotubes the Timoshenko beam model 

combined with nonlocal beam theory is adopted. The Euler-Bernoulli beam model is also 

used here as a special case. The transverse and rotation eigenmodes as well as the 

corresponding natural frequencies relationships associated to various boundary conditions are 

elaborated at small and at very higher orders.  

The deformations of the considered carbon nanotubes are assumed in the x-z plane and the 

displacement components along the axial x and transverse z directions are denoted byU  and 

W respectively: 

( , , ) ( , ) ( , ), ( , , ) ( , ) (3.1)  U x z t u x t z x t W x z t w x t  

where  denotes the rotation of the cross section, u and w are the middle plane (z=0) 

components and t is time. The axial strains are: 

0 0, , , (3.2)
  

    
  

xx xx xx xz

u w
z

x x x


      

in which xz  denotes the transverse shear strain.  

Note that in large length scales, the classical continuum models are sufficient and give 

accurate computational results for material and structural systems. But, when the length scales 

are of level such as in nano-materials or nano devices the so called nonlocal continuum 

mechanics proposed by Eringen [2,3] are more adapted. Recently, many researchers applied 

Eringen‘s theory to the nano-scales structures such as single walled and multiple walled 

carbon nanotubes and showed that the small length scales have significant influences in the 

stability, static and dynamic behaviors of nanostructures.  

The nonlocal mechanics pretends that the stress tensor at a reference point x in a body 

depends not only on the strain tensor at the point x, as in the classical local elasticity theory, 

but also on the strain tensor at all other points ‘x‘ of this body. Based on this theory, the 

constitutive equation for a linear homogenous nonlocal elastic body is given by the following 

integral equation: [2,3] 

( ) (| |, ) ( ) ( ), (3.3)   i j ijkl kl

V

x x x C x dV x   

, ,( ) / 2 (3.4) kl k l l ku u

in which (| |, )x x   is the nonlocal kernel function , ijklC  is the elastic modulus tensor and 

kl  is the  strain tensor. To use the integral formulation (3.3) the kernel function  has to be 
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known. The nonlocal kernel   depends on the internal and external characteristics lengths 

and its explicit expression is hard to be obtained [2,3]. For practical reasons, the following 

differential constitutive equations for one dimensional case are adopted [2,3]. 

2

2

0 2
( ) , (3.5)


 



xx

xx xxe a E
x


 

2

2

0 2
( ) , (3.6)


 



xz

xz xze a G
x


 

where ,xx xz  , 0e  , a , E and G are the nonlocal stress tensors, a constant appropriate to 

each material, an internal characteristic length, Young modulus and the shear modulus 

respectively. Based on these equations, the nonlocal resultant axial force N, moment M and 

shear force Q are obtained by the following differential equations. 

2
2 0

0 2
( ) , (3.7)


 


xx

N
N e a EA

x


2
2

0 2
( ) , (3.8)

 
 



M
M e a EI

xx



2
2

0 2
( ) ( ), (3.9)

 
  



Q w
Q e a ksAG

xx


 

in which 

, , (3.10)    xx xx xz

A A A

N dA M z dA Q ks dA  

 

Where ks  is the factor of shear depending on the shape of the cross section A. For a constant 

cross section, the mass inertia 0 2,m m
 
are defined by: 

2
2

0 2; , (3.11)
12

    
A A

h
m dA A m z dA A   

 

Where  is the mass density of the material. Based on Timoshenko beam theory, the 

equations of motion are: 

2

0 2
, (3.12)

 
 

 

Q w
q m

x t
2

2 2
, (3.13)

 
 

 

M
Q m

x t



  

Where ( , )q x t  is the transverse excitation force per unit length. Using these equations of 

motion, the following moment and shear force are obtained. 
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3 2
2

0 2 02 2
( ) , (3.14)

   
    

    

w
M EI e a m m q

x x t t

 

3
2

0 0 2
( ) , (3.15)

    
      

     

w w q
Q ksAG e a m

x xx t


Substituting Eqs. (3.14) and (3.15) into (3.12) and (3.13) one obtains the partial differential 

system governing the dynamic behavior of the undamped CNT. 

2 2 2
2

2 02 2 2

2 2 2
2 2

0 0 02 2 2

( ) , (3.16)

( ) ( ) , (3.17)

      
       

     


      
               

w
EI ksAG m e a

xx t x

w q w
ksAG q e a m w e a

x x x t x

 
 



For the sake of comparative study, the Euler-Bernoulli beam equations are given in the 

Appendix A.

 Recall that the local Timoshenko and Bernoulli beam models are recovered when the small 

parameter 0e is set to zero. As the aim of this paper is the development of mathematical 

formulations of the higher vibration eigenmodes and frequencies of the CNT the lower order 

vibration characteristics have been quickly formulated for the sake of clarity. 

3. Analytical analysis 

3.1  Lower orders free vibration characteristics 

For linear free vibrations, let us assume that. 

( , ) ( ) , ( , ) ( ) ( , ) 0, (3.18)   i t i tw x t W x e x t x e and q x t 
 

where is the natural vibration frequency parameter. The substitution of Eq. (3.18) into  

(3.16 -3.17) leads to the following coupled differential equations. 

2 2
2 2

2 02 2

2
2 2

0 0 2

( ) 0,

(3.19)

( ) 0,

    
          

   


  
           

d dW d
EI ksAG m e a

dxdx dx

d dW d W
ksAG m W e a

dx dx dx





  

The differential system (3.19) is reduced to the following uncoupled forth order differential 

equations.    

4 2 4 2

4 2 4 2
0 0 (3.20)

 
      

d W d W d d
p q rW or p q r

dx dx dx dx
where 
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 
2 2

2 2 0 0

0 2

( )
( ) 1 ; (3.21)

 
   

 

e a m
p EI e a m

ksAG




 
2 2

2 2 2 0 0

0 0 0 2

( )
( ) 1 2 ; (3.22)

 
     

 

e a m
q m e a m

ksAG


 

2

2 2

0 1 ; (3.23)
 

  
 

m
r m

ksAG




For separate solutions of the characteristic equation, the general solution of (3.20) can be 

written in the form:  

4

1

( ) (3.24)


 i x

i

i

W x a e


2

2
4

where (3.25)
2

  
i

q q p r

p


 

The associated frequency equation is given by: 

4 2 0; (3.26)   R 

 
2

2 20 2

0( ) 1 ; (3.27)  
m m

e a
ksAG



 2 4 2 2 4

0 2 0 0 0 0 0 2 0 0( ) ( ) ( ( ) ) ; ; ; (3.28)          
EI

e a m m m e a m m R EI
ksAG

  

2 2

2 2 2

2

2 2

4 4
, 4 0 (3.29 )

2 2

4
(3.29 )

    
    


  

q q p r q q p r
if q p r a

p p

q p r
b

p

 

 

The solutions of (3.26) are classically given by: 

2 2

2 2

1 2

4 4
, ; (3.30)

2 2

       
 

 

R R
 

 

When the rotary mass inertia 2m  is neglected, the following simplified frequency equation is 

obtained.

 1/ 2

2

0 2 2 2

0 0 0

1
, (3.31)

(1 ) (1 ( ) )

  
    

     

R EI

m e a
 

 

 
2 2

2 2

0 0

1
, (3.32)

1 ( ) )

 
 
   
 

e a
 



The associated deflection and rotation eigenmodes are given by: 

1 2 3 4( ) sin ( ) cos( ) sinh ( ) cosh ( ) (3.33)   W x a x a x a x a x   

   11 1 2 22 3 4( ) cos( ) sin ( ) cosh ( ) sinh ( ) (3.34)    x S a x a x S a x a x   
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11 2

0

(3.35)
1





where S





 2 2

0 0

22 2 2

0

( ) 1
(3.36)

1 ( )

  




e a
S

e a






in which the arbitrary constants ai are determined by the considered boundary conditions. 

3.1.1  Simply supported case 

For simply supported boundary conditions, the following conditions have to be satisfied at x=0 

and x=L. 

2 2

0 2 00, ( ) 0, (3.37)
  

     
 

d d
W and M EI e a m m W

dx dx


After some mathematical developments, the resulting mode shapes are: 

11( ) sin ( ), ( ) cos( ), / , (3.38)   n n n n n n nW x a x x a S x n L   

 
where an is an arbitrary constant. The associated natural frequencies are given by: 

1/ 22

2 2 2 2

0 0 0

1
if m = 0, , (3.39)

(1 ( / ) ) (1 ( ) ( / ) )

   
    

      
n

n EI

L m n L e a n L




 





2 2 4 2

2 0 2 0 0 0 0 0 2 0

2
2 4 2

0 2 0 0 0 0 0 2 0

1/ 2 4

4 4 4 2 4 40 0 2

0 0 2 0 0 2 0 2 0

0, ( ) ( ) ( / ) ( ( ) )

( ) ( ) ( / ) ( ( ) )

( )
4 ( ) ( ) 2( ) ( ) ( ) 2 ( )

2(

       

         

     
       

     



nif m e a m m n L m e a m m

e a m m n L m e a m m

e a m mn n n n
e a m m e a m m m m

L L L ksAG L

e

 



   

4

20 0 2 0 2)
( / ) (3.40)


 



a m m m m
n L

ksAG ksAG


 

3.1.2 Clamped-Clamped case C-C 

When the two edges of the beam are clamped, the four boundary conditions are 

(0) (0) 0; ( ) ( ) 0, (3.41)    W W L L

 

The resulting mode shapes are given by: 

11

22

( ) cos ( ) cosh ( ) sin ( ) sinh ( ) , (3.42)
  

      
  

n n n n n CC n n

S
W x a x x x x

S
   

 22

11

11

( ) sinh ( ) sin ( ) cos ( ) cosh ( ) , (3.43)
 

      
 

n n n n n CC n n

S
x a S x x x x

S
   
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 22

22 11

cosh ( ) cos( )
, (3.44)

sin ( ) sinh ( )


 



n n

n CC

n n

S L L

S L S L

 

 

where ( n , n ), verify the following transcendental equation:

 

11 22

22 11

2 2cos( ) cosh ( ) sin ( )sinh ( ) 0 (3.45)
 

    
 

n n n n

S S
L L L L

S S
   

Note that n and n  are related and depend nonlinearly onn .
  

3.1.3 Clamped simply-supported case C-S 

For clamped simply supported conditions, one has to verify 

(0) 0; (0) 0; ( ) 0 ( ) 0; (3.46)    W W L and M L

The resulting mode shapes are given by: 

11

22

( ) cos ( ) cosh ( ) sin ( ) sinh ( ) , (3.47)
  

      
  

n n n n n CS n n

S
W x a x x x x

S
   

 22

11

11

( ) sinh ( ) sin ( ) cos ( ) cosh ( ) , (3.48)
 

      
 

n n n n n CS n n

S
x a S x x x x

S
   

 

 
22

22 11

cosh ( ) cos( )
(3.49)

sin ( ) sinh ( )


 



n n

n CS

n n n n

S L L

S L S L

 

   

where ( n , n ), verify the following transcendental equation:

 
22 11tan ( ) tanh ( ) 0 (3.50) n nS L S L 

 

3.1.4 Cantilever beams C-F 

For a cantilever beam, the considered clamped free boundary conditions are: 

(0) 0; (0) 0; ( ) 0 ( ) 0; (3.51)    W Q L and M L

This leads to the following mode shapes: 
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where ( , )n n   verify the following transcendental equation:  
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The natural frequencies corresponding to the considered boundary conditions can be obtained 

by solving numerically the associated transcendental equations. Note that these equations are 

nonlinear on n and have infinite solutions. The numerical solutions are obtained here by the 

Newton-Raphson algorithm. The previous relationships allow one to investigate the lower 

order free vibration characteristics of CNTs and to analyze the small scale effects on it. 

Let us note that the natural frequencies and the corresponding eigenmodes can be 

accurately obtained for small orders (1 to 12) using the previous relationships. But, for higher 

orders (more than 12) the eigenmodes are ill conditioned in the vicinity of (x=L) and can not 

be obtained accurately using the previous equations except for S-S boundary conditions. 

 For CNT, the higher order eigenfrequencies and eigenmodes are of big interest. Nanometer 

scale higher frequency resonators and oscillators are critical components of many nano-

electro-mechanical systems (NEMS). Analytical relationships of higher order frequencies and 

associated eigenmodes are very useful for the design of these emerging materials and devices. 

For accurate solutions at higher orders, the following mathematical models are developed 

herein.  

3.2   Higher orders vibration characteristics  

For simply supported boundary conditions very higher eigenmodes and eigenfrequencies can 

be explicitly obtained. But, for the other boundary conditions, some mathematical 

regularizations are needed in other to get numerically stable eigenmodes. Mathematical models 

are elaborated here for Timoshenko and Euler Bernoulli Beam models. 

3.2.1 Timoshenko model 

3.2.1.1 Clamped-clamped CNT 

The associated mode shape functions of clamped–clamped CNT based on Timoshenko model 

are given by equation (3.42-3.43). It has to be noted that when the order n is large the 

coefficient n  is large too and then the hyperbolic functions become very large when x is 

near to the border L. This leads to ill conditioned eigenmodes. The resulting disturbing effect 

can be overcome by using some approximations for large n. Equation (3.44) is rewritten as 

22 11/ , (3.56)   n CC n CC S S

where  
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( )

22 11

11 22

cos( ) / sin ( )
, (3.57)

sin ( ) / sinh ( )


 
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
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using these equations, the eigenmode given in (3.42) is rewritten as: 

( ) 11

22

( ) cos ( ) sin ( ) sinh ( ) , (3.58)
 
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W x a x x e x

S
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This new form of Wn(x) is an exact solution for the n
th 

mode shape.  

By making some simplifications, Eq. (3.58) can be modified so that it is numerically well-

conditioned for very large n. For this goal, the following mathematical equations are used 
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Based on these equations, the following new deflection and rotation eigenmodes relationships 

are obtained. 
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where

1/ 2
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1 0

1 1 1
1 ( ) (3.62)
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( ) ( )
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n

n
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For large n, n  is large and then n tends to zero. The power series expansion (3.62) can be 

truncated at a required order which leads to an approximate value of n . 

These new relationships are considered here to be the higher order vibrations eigenmodes 

models for clamped-clamped Timoshenko CNT.  

Note that by letting e0=0, the higher order clamped-clamped beam‘s eigenmodes based on 

Timoshenko beam theory are obtained. 
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To get ˆ ( )nW x  and ˆ ( )n x  as well as the associated eigenfrequencies, the coefficients n and 

n  have to be obtained. Using the previous mathematical developments, the transcendental 

equation (3.45) is rearranged as: 

11 22 11 22

22 11 22 11

1 1
2 cos( ) sin ( ) cos ( ) sin ( ) 0 (3.64)
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The numerical solution of this nonlinear algebraic equation allows one to get the higher order 

n  and then the C-C CNT natural frequencies.  

Asymptotic C-C case. 

Based on some mathematical developments the asymptotic eigenmodes and frequencies are 

obtained. For very large n the asymptotic coefficients n  and n  
are explicitly given by: 

1/ 2

2

0 0

1
; ; (3.65)
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
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These new relationships allow one to get n  
at very higher orders without any numerical 

computation. This asymptotic value can be used in equation (3.31) in order to get the 

associated very higher natural frequencies.

 
The very higher other eigenmodes for clamped-clamped CNT are then given by: 
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3.2.2 Clamped-simply supported CNT. 

Based on the same mathematical developments, the Timoshenko higher eigenmodes 

associated to clamped-simply supported CNT are given by the following relationships. 
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Using similar mathematical development as for the C-C case, equation (3.50) is rearranged as:
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For large n, this equation has to be numerically solved to get first the related n  
and n  

and 

then the associated natural frequencies.
 

Asymptotic C-S case.

 

For very higher orders the asymptotic coefficients n are explicitly given by: 

/ ;n n L 
 

The corresponding eigenmodes are : 
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3.2.3 Cantilever CNT. 

Based on the same mathematical manipulations, the following higher eigenmodes associated 

to cantilever CNTs are given by the following relationships. 
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The associated higher order transcendental equation is given by: 
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 For large n, this nonlinear equation is solved here by the Newton Raphson algorithm to get 

the related n and n  and then the C-F CNT eigenfrequencies.
 

Asymptotic C-F case.

 

The asymptotic coefficients n  
and the corresponding asymptotic eigenmodes are explicitly 

given by: 
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 These higher and very higher eignemodes and the associated eigenfrequancy analytical 

relationships allow are one to investigate the vibration characteristics of Timoshenko CNT at 

very large frequency ranges. It has to be noted that in the studied cases, these new higher and 
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very higher eigenmodes are numerically stable and well-conditioned. They can be used as a 

basis for dynamic analysis of CNT at any needed frequency range.  

3.3    Euler-Bernoulli model 

The previous mathematical developments are also adapted here for higher order vibration 

characteristics of Eluler-Bernoulli beams. This leads to new analytical relationships of higher 

order Euler-Bernoulli eigenmodes ˆ E

nW  and associated eigenfrequencies for various CNT 

boundary conditions. The smaller order characteristics are recalled in the appendix. A. 

3.3.1 Clamped-clamped CNT. 

The associated mode shape functions of clamped–clamped CNT based on the Euler-Bernoulli 

model are given by equation (A.3.14). Using the same mathematical procedure as previously 

equation (A.15) is rewritten as:
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Using (81) and Eq. (A.14) the following eigenmodes are obtained 
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This new form of ˆ ( )E

nW x  is an exact form for the nth mode shape.  

Making some mathematical simplifications, Eq. (3.81) can be modified so that it is 

numerically well-conditioned for large n. Let us rewrite: 
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2sin ( ) / /
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
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  
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 
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L
x x

nE nE nE nEE nE nE

nCC nE L LL L
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L L e e e
x

e eL e e

  

  

    


   

 Additionally, equations (3.82) and (3.83) are combined to give the following new deflection 

eigenmodes at higher orders:
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Note that by letting e0=0, the higher order clamped-clamped beam‘s eigenmodes based on 

Euler-Bernoulli beam theory are also obtained.

 
Again, to get ˆ ( )E

nW x  as well as the associated eigenfrequencies, the coefficients nE and nE  

have to be obtained. They can be obtained by numerically solving the C-C transcendental 

equation (A.3.16). For well conditioning at large n, equation (A.3.16) is rearranged as: 

1
2 cos ( ) sin ( )

2

1
cos ( ) sin ( ) 0 (3.85)

2
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L L e
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
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where  

1/ 2
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1 0

1 1 1
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j o X
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


 

     
             

       
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0

1
;

( )

E

e a
 

2

0

1
;

( )

E

n

ne a 

 
   

 

     

The numerical solution of this nonlinear algebraic equation allows one to numerically obtain 

the higher order nE .  

Asymptotic C-C case. 

For very large n, the asymptotic coefficient nE  is, in this case, explicitly given by: 

/ ; (3.86)nE n L 
 

These new relationships allow one to get nE at higher and very higher vibration orders of the 

clamped CNT based on Euler- Bernoulli model. 



 

   
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2
( ) ( ) ( )

3 ( ) ( )( ) ( )
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3.3.2 Clamped-simply supported CNT. 

The Euler-Bernoulli higher eigenmodes associated to clamped-simply supported CNT are 

given by the following relationships. 
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2 ( ) ( ) ( )
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where nE are solutions of the following transcendental equations. 

 tan ( ) tan ( ) 0; (3.89)
   

      
   
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nE nE
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 
   

Asymptotic C-S case.
 

The asymptotic coefficient nE is explicitly given in this case by:
  

(2 1) / 2; (3.90) nE L n 

The associated very higher eigenmode is: 
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3.3.3 Cantilever CNT. 

For the considered clamped-free boundary conditions the higher eigenmodes associated to 

cantilever CNT are given by the following relationships. 
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The associated higher order transcendental equation is given by: 

2

0( ) sin ( )sinh ( ) 2cos( )cosh ( ) 2 0; (3.93)  nE nE nE nE nE nEe a L L L L     
 

 
Asymptotic C-F case.

 

For very large n, the asymptotic coefficient nE is explicitly given by:
  

/ (3.94)nE n L 
 

and the associated eigenmode is:  
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The presented new analytical models for the CNT Timoshenko and Euler-Bernoulli higher 

order eigenmodes and eigenfrequencies allow one to investigate the higher order free vibration 
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characteristics of CNT under the considered boundary conditions. The higher order natural 

frequencies are obtained by numerically solving the presented nonlinear transcendental 

equation associated to the considered boundary conditions using the Newton-Raphson 

algorithm. The small scale length effects on the eigenfrequencies and eigenmodes can be 

analyzed. Based on these new analytical eigenmodes, the modal analysis at higher frequencies 

can be analyzed by selecting the needed eigenmodes and the frequency range under 

considerations. The Timoshenko and the Euler-Bernoulli higher order eigenmodes and 

eigenfrequencies of classical beam can be obtained from these analytical models by simply 

neglecting the small scales parameter e0 (e0=0). 

4. Numerical analysis 

For the assessment of the developed analytical models numerical investigations are also 

elaborated based on the differential quadrature method (DQM). Timoshenko and Euler-

Bernoulli beam models are used for numerical comparisons. This method, akin to 

approximate the derivative of a function at any location by a linear summation of all the 

function values along a mesh line [25]. The procedure the DQ application lies in the 

determination of the weighting coefficients. The continuous solution is approximated by the 

functional values at discrete points. In the present paper Chebyshev-Gauss-Lobatto quadrature 

points are used [25] 

1 1
1 cos for 1,2,3,....... , (3.96)

2 1
i

i
y i N

N


  
    

  
 

where  i
i

x
y

L
and N is the number of grid points in the domain [0, L]. 

For a function f(y), DQ approximation of the m
th

 order derivative at the i
th

 point is given by: 

1

( , ) ( ) ( , ) (3.97 )
N

m m

m

f y t l y f y t a


   

1 1

2 2
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f y f y

f y f yd
C i j N b
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f y f y

   
   
   

     
   
   
   

 

in which ( )ml y are the Lagrange interpolation polynomials and 
m

ijC  represent the weighting 

coefficients given by [25]. 
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The higher derivative m
th

 can be calculated as: 
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1 1
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x x
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The discrete classical boundary conditions at x=0 and x=L using the DQ method can be 

written as: 

1

0

1

1

1

1

0 (3.98 )

0 (3.98 )

0 (3.98 )

0 (3.98 )





 
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 





n
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k k

k

n

n
n

nk k

k

W a

C W b

W c

C W d

where n0 and n1 may be taken as either 1, 2 or 3 and ( )k kW W y . Choosing the values of n0 

and nl can give the following classical boundary conditions: 

n0 =2; n1 =2 simply supported 

n0 =1; n1 =1 clamped-clamped 

n0 =1; n1 =2 clamped-simply supported 

n0 =1; nl =3 clamped-free 

n0 =2; nl =3 free-free 

Applying Equations (3.97) and (3.98) to equations (3.16-3.17), one obtains the following 

ordinary differential system: 
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2 1 2 2
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1 1 1

2 1 2 2
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KAG
, 0 

e a

L
 and ( )k kW W y , ( )  k ky  

The moment and shear force given by equations (3.14) and (3.15) are rewritten as: 

1 2 1

1 1
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 
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 

 

M and Q will be used for the assumed boundary conditions. 

For harmonic motion the ordinary differential system (3.99) can be written in the following 

eigenvalue problem:
 

     2 0 (3.101)K M Z 
 

where  Z denotes the unknown dynamic displacement vector defined by: 

   1 2 1 2 (3.102)   
T

N N

i i i i i iZ W W W  

and [K] and [M] are the stiffness and mass matrices respectively. 

The assumed boundary conditions can also be expressed in a matrix form as: 

     * 0 (3.103)B SK Z K Z 

where    * 1 1, ,  
T

N N

i i i iZ W W and   2 4 1 2 4 1    
T

N N

i i i i i iZ W W W .  BK and 

 SK are 4 4 and 4 (2 4) N  matrices respectively. Similarly, for harmonic motion Eq. 

(3.103) can be rewritten as: 

      * 2 0 (3.104)DK Z K Z M Z        

 

Coupling equations (3.103) and (3.104), the final eigenvalue problem to be numerically 

solved is given by: 

      
1 2 0 (3.105)D B SK K K K M Z


        

where   K and   M are (2 4) (2 4)  N N  matrices respectively 

These matrices are formulated for Timoshenko and Euler-Bernoulli CNT models. The 

previously considered boundary conditions are adopted for numerical comparisons. Based on 
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this numerical procedure, numerical analysis of CNT free vibration at small, higher as well as 

very higher orders is investigated.
 

5. Numerical results and discussions 

In this paper, analytical solutions and numerical ones based on the DQM are obtained for small, 

higher and very higher CNT vibration eigenmodes and associated eigenfrequencies. The 

numerical results are presented using effective properties of carbon nanotubes, Timoshenko and 

Euler-Bernoulli models. The following geometrical and material properties are used. 
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4
9 -19 2 38 4

9

0

2300 / , 1000 , 0.19, 420 , 1 10 ,
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d
h m A m I m

ks EI ks AG a m L a

 





 



     

      

     
 

Let us denote by T E

n NL n NLand  the n
th 

Timoshenko and Bernoulli nonlocal frequency 

respectively and T E

n L n Land  the n
th

 local frequency ones. Wn and WnE denote respectively 

the n
th

 eigenmode obtained by the Timoshenko and Euler-Bernoulli beam models. 

Figures 3.1 show the frequency ratios /T E

n NL n L  and /E E

n NL n L   corresponding to the first 

to the 100
th

 eigenmodes for various boundary conditions and various values of the nonlocal 

parameter e0. These results are obtained by the presented analytical relationships using the 

Newton- Raphson algorithm. For higher modes, these frequencies tend to constant values 

depending on e0. It can be seen that the frequency ratios decrease by increasing of the 

nonlocal parameter e0 and the parameter n and tend to the given asymptotic values. The 

obtained results are similar to those obtained by Reddy and Pang [8]. Their investigation was 

limited to the first modes that are numerically stable. In this paper the developed 

methodological approach is illustrated for small, higher as well as for very higher orders S-S, 

C-C, C-F and C-S CNT. The small length (e0a) effects on the Euler-Bernoulli frequency ratio 

/E E

n NL n L   for the first twelfth modes are presented in Figures 3.2 for S-S, C-C, C-F and C-S 

boundary conditions. These first modes are commonly used by many authors and the same 

results are also obtained by Wang and Varadan [6]. It is clearly shown in these figures that the 

small effect is obvious for higher modes.  

Numerical results, based on the DQ method, are investigated for the considered boundary 

conditions. Small and higher modes orders are considered and the convergence of the results 

is tested with respect to modes number. The obtained results for non-dimensional vibration 
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frequencies computed for different N nodes are shown in Tables 3.1 and 3.2. Exact analytical 

solutions for small orders, obtained from [15], or by our equations (3.45) and (3.55), are also 

given for comparison. Excellent agreement has been achieved between the presented 

analytical solution and the obtained numerical ones. It is seen from table 3.1 that when the 

grid point number reaches N=12 the DQM gives accurate predictions for the first vibration 

frequencies. For higher orders, large number of grid points is needed as presented in table 3.2. 

The presented analytical results are obtained based on the developed analytical relationships 

(3.45, 3.55) and (3.64, 3.77). The convergence of the DQM results to the analytical ones with 

respect to the grid points number N is observed in table 3.2. It has to be noted that the needed 

CPU time for DQM is rapidly increasing by increasing N. Various other numerical tests are 

elaborated for different boundary conditions and showed the assessment of the presented 

analytical relationships as well as the convergence of the DQM predictions with respect to 

grid points number. 

For eigenmodes, regularized and non-regularized (classical) formulations will be used as well 

as the DQM numerical predictions for small and higher orders. Based on the Timoshenko 

beam model, regularized, classical and numerical first eleventh modes Wn (n=1, 2,…, 11) are 

presented in figure 3.3 for e0=0 and C-C case. It is observed that the regularized (3.60) and 

DQM numerical predictions agree very well with the exact classical results (3.42). Based on 

these three procedures, the higher modes Wn (n=12,13,14,15) are plotted in figure 3.4. It is 

shown that the classical modes are numerically unstable in the vicinity of x=L, and this 

disturbing instability is increasing by increasing the mode number. This instability is also 

demonstrated in figure 3.5 for the C-C CNT models eigenmodes with e0=0.2. Based on the 

Bernoulli beam model the developed classical, regularized, and numerical predictions 

obtained by the DQM are used and compared. The obtained results for the 12
th

 to the 15
th

 C-C 

beam eigenmodes (e0=0) are presented in figure 3.6 and show instability behavior near x=L. 

This mode instability is more pronounced when Euler–Bernoulli model is used as clearly 

shown in figure 3.7 for C-C CNT. The instability of higher classical eigenmodes of C-S and 

C-F CNT and beams are also met and not presented here for the sake of brevity. This 

disturbing instability is heavily increasing by increasing the order mode number. These results 

demonstrate clearly the inaccuracy of the classical eigenmode formulations. The regularized 

and numerical DQM higher order modes (12
 th

 to 24
th

) based on Timoshenko model are 

presented in figure 3.8 for C-C beams (e0=0) and in figure 3.9 for the 20
 th

 to 24
th

 C-C CNT, 

(e0=0.4). Figure 3.8 shows that for e0=0 the regularized eigenmodes 12 to 24 are stable and 
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well-conditioned. It is clearly shown that the present regularized relationships give accurate 

predictions for higher order mode shapes. The regularized relationships and the DQM 

predictions are very well compared for various other boundary conditions at different higher 

others. The regularized eigenmodes are well conditioned and stable at all tested case. 

The effect of the internal characteristic parameter e0 on the uncorrected 20
th

 C-C CNT 

Timoshenko eigenmode is presented in figure 3.10. It is demonstrated that for e0=0, W20T is 

hardly unstable and this instability disappears by increasing e0 for 0 to 1. The same stabilizing 

effect is observed for the 20
th

 uncorrected Euler-Bernoulli as presented in figure 3.11. Based 

on the presented corrected eigenmodes, the new 20
th

 C-C CNT eigenmodes corresponding to 

Timoshenko and Bernoulli models are presented in figures 3.12 and 3.13 for various values of 

e0 (e0= 0, 0.2, 0.4, 0.6, 0.8, 1). Different other benchmark tests are investigated and 

demonstrated the well-conditioning and stability of the presented eigenmodes at higher 

orders.  

The aspect ratio d/L effect on the frequency ratio /T E

n NL n L   is presented in figure 3.10 for the 

first to the hundredth eigenmodes of a C-C CNT (e0= 0.33). For slender CNT, the Bernoulli 

and Timoshenko models lead to the same results and a large difference can be observed by 

increasing d/L. The Timoshenko frequencies are decreasing by increasing the aspect ratio d/L. 

For higher modes, the frequencies tend asymptotically to constant values depending on the e0 

and d/L for each considered boundary condition. 

6. Conclusion 

Based on the nonlocal elasticity theory, Timoshenko and Euler-Bernoulli beam models and 

the differential quadrature method the vibration characteristics of single walled CNT are 

modeled for small to very higher eigenmodes. New mathematical relationships for higher and 

very higher eigenmodes and frequencies are elaborated for CNT with various boundary 

conditions. The analytical and DQM numerical results are well compared at small, higher and 

very higher orders. The small scale effect on the frequencies and eigenmodes at small and 

very higher modes is deeply analyzed. The numerical instability problem, limiting the 

classical mode formulations, is overcome. The developed analytical relationships for 

eigenmodes at higher orders are well conditioned and numerically stable and can then be used 

as a basis for modal analysis at any required frequency range. 
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Appendix A 

Based on the Euler-Bernoulli beam model, the associated nonlocal resultant shear force 
EQ

and moment EM are given by [20]:
 3 2 2 4

2

2 0 0 22 2 2 2 2
( ) , ( .3.1)

        
       

         

E E E E
E w w w w

Q m EI e a m m q A
x xx t x t x t

2 2 4
2

0 0 22 2 2 2
( ) , ( .3.2)

   
      

    

E E E
E w w w

M EI e a q m m A
x t x t

where wE is the associated transverse displacement. 

The associated equation of motion based on the Euler-Bernoulli beam theory is given by the 

following fourth order partial differential equation.

 4 2 2 4 2 4
2

0 0 2 0 24 2 2 2 2 2 2 2
( ) , ( .3.3)

      
      

        

E E E E Ew w w w w
EI e a m m q q m m A

x x t x t t x t

For harmonic motion, on gets:

 

   
4 2

2 2 2 2 2 2

2 0 2 0 0 04 2
( ) ( ) ( .3.4)   

E E
Ed W d W

EI m e a m e a m m W A
dx dx

   

 This equation is rewritten as: 
4 2

4 2
0 ( .3.5)  

E E
E E E Ed W d W

p q r W A
dx dx

2 2 2 2 2 2

0 2 2 0 0 0( ) , ( ) , ( .3.6)    E E Ep EI e a m q m e a m r m A   
 

The associated Euler-Bernoulli frequency is simply given by: 

2 4

2 2 2

0 2 0

, ( .3.7)
( ) (1 ( ) )

 
  

  
E E

E E

EI
A

m m e a
 

 

2 2

2 2
4 4

, 0 ( .3.8)
2 2

    
  

E E E E E E E E

E E

E EE E

q q p r q q p r
if p r A

p p
 

 

More simply, for m2=0:  

2 4

2 2

0 0

, ( .3.9)
(1 ( ) )

 
  

 
E

E

EI
A

m e a
 



2 2

2 2

0

1
, ( .3.10)

1 ( )

 
  

 
E E

E

A
e a

 


  

1. Simply supported CNT 

For simply supported boundary conditions, one gets: 

1( ) sin ( ), / , ( .3.11) E

n nE nEW x a x n L A  
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1/ 22

2 2 2

0 0

if m = 0, , ( .3.12)
(1 ( ) ( / ) )

  
   

   

E

n

n EI
A
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
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
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2 2 2 2

0 2 0
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( ( / ) ) (1 ( ) ( / ) )
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2. Clamped-Clamped CNT 

When the two edges of the beam are clamped, the resulting mode shapes are given by: 

2( ) cos ( ) cosh ( ) sin ( ) sinh ( ) , ( .3.14)
  

      
   

E E nE

n nE nE n CC nE nE

nE

W x a x x x x A


   


 cosh ( ) cos( )
, ( .3.15)

sin ( ) sinh ( )


 



nE nE nEE

n CC

nE nE nE nE

L L
A

L L

  

   

where ( nE , nE ) verify the following transcendental equation:

  
2 2cos( ) cosh ( ) sin ( )sinh ( ) 0 ( .3.16)

 
    

 

nE nE

nE nE nE nE

nE nE

L L L L A
 

   
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3.  Clamped simply supported CNT 

For clamped simply supported conditions, the resulting mode shapes are given by: 

2( ) cos ( ) cosh ( ) sin ( ) sinh ( ) , ( .3.17)
  

      
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

   


 

 2 2

cosh ( ) cos ( )
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sin ( ) sinh ( )


 



nE nE nEE

n CS

nE nE nE nE

L L
A
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  

   

where ( nE , nE ) verify the following transcendental equation : 

tan ( ) tanh ( ) 0 ( .3.19) nE nE nE nEL L A   

 

4. Cantilever CNT 

For a cantilever CNT, the clamped free boundary conditions considered are: 

(0)
(0) 0; 0; ( ) 0; ( ) 0; ( .3.20)   

E
E E EdW

W Q L and M L A
dx

The associated Euler-Bernoulli modes are: 
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where ( nE , nE ) verify the following transcendental equation: 
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Simply Supported- Simply Supported  b) Clamped - Clamped 

 

 

  

 

 

 

 

 

 

c) Clamped- free     d) Clamped-Simply Supported 

  

 

 

 

 

 

 

 

 

Figure 3.1 Frequency ratios /T E

n NL n L   and /E E

n NL n L   as a function of the order n, 

corresponding to S-S, C-C, S-C and C-F SWCNT for various values of the nonlocal 

parameter e0  
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Simply Supported- Simply Supported  b) Clamped-clamped 

 

 

 

 

 

 

 

 

 

c) Clamped-Simply Supported                              d)  Clamped-Free 

 

                               

  

 

 

 

 

 

 

Figure 3.2 Small length scale (e0a) effect on the frequency ratio /E E

n NL n L   of a SWCNT  

with L=10 nm 
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Table 3.1 First fourth the frequency parameters 
*T

n NL  for clamped and cantilever nanobeams 

with L/d =10
-4

 obtained numerically by DQM using N nodes 

e0a/L
 

              T

n NL                                      Clamped-clamped
 

n [15] N=8 N=12 N=15 N=20 N=30 

e0a/L=0 

 

n=1 

n=2 

n=3 

n=4 

4.7300 

7.8532 

10.9956 

14.1372 

4.7368 

7.9717 

10.6812 

11.7298 

4.7300 

7.8534   

10.9863   

14.0488 

4.7300 

7.8532 

10.9955   

14.1399 

4.7300 

7.8532 

10.9956 

14.1372 

4.7300 

7.8532 

10.9956 

14.1372 

e0a/L=0.2 

 

n=1 

n=2 

n=3 

n=4 

4.2766 

6.0352 

7.3840 

8.4624 

4.2676 

6.1116 

6.7816 

6.8467 

4.2752 

6.0283 

7.3569 

8.3394 

4.2762 

6.0336 

7.3795 

8.4576 

4.2766 

6.0349 

7.3834 

8.4611 

4.2766 

6.0352 

7.3840 

8.4623 

e0a/L 
               T

n NL                                              Cantilever         
 

n  N=8 N=12 N=15 N=20 N=30 

e0a/L=0 

 

n=1 

n=2 

n=3 

n=4 

1.8751 

4.6941 

7.8548 

10.9955 

1.8761 

4.6107 

7.5400   

11.0158 

1.8751 

4.6939 

7.8489   

11.2010 

1.8751 

4.6941 

7.8549   

10.9990 

1.8751 

4.6941 

7.8548 

10.9955 

1.8751 

4.6941 

7.8548 

10.9955 

e0a/L=0.2 

 

n=1 

n=2 

n=3 

n=4 

1.8920 

4.1925 

6.0674 

7.3617 

1.8986 

4.0877 

5.8157 

7.4646 

1.8928 

4.1880 

6.0690 

7.5376 

1.8917 

4.1940 

6.0656 

7.3703 

1.8920 

4.1922 

6.0679 

7.3616 

1.8919 

4.1925 

6.0672 

7.3619 
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Table 3.2 Higher order frequency parameters T

n NL  obtained analytically and numerically by 

DQM using N nodes 

e0a/L                 T

n NL                                      Clamped-clamped 

e0a/L=0.2 

 

n Analytical, Eq. (64) N=90 N=100 N=110 N=120 

n=60 

n=70 

n=80 

n=90 

n=100 

30.9450 

   33.3880   

35.8834 

 40.9929  

  49.3407 

31.4477 

  37.2244 

  56.7734 

-- 

-- 

30.8290 

  34.5860 

  41.2376 

  63.0971 

-- 

30.9461 

  33.2404 

  37.7929 

  45.2682 

  69.4259 

30.9450 

  33.4059 

  35.8535 

  41.0368 

  49.3112 

                   T

n NL                                        Cantilever 

e0a/L=0.2 

 

n Analytical, Eq. (77) N=90 

 

N=100 

 

N=110 

 

N=120 

 
n=20 

n=30 

n=40 

n=50 

n=60 

17.6497 

 21.6508    

25.0139 

 27.9731  

30.6467 

17.6497           

  21.6509           

  25.0140           

  28.0128           

  -- 

17.6497 

  21.6508 

  25.0139 

  27.9716 

  -- 

17.6497           

  21.6508           

  25.0139           

  27.9732           

  -- 

17.6497 

 21.6508 

 25.0139 

 27.9732 

 30.6470 
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Figure 3.3 Comparison of the first eleventh Timoshenko vibration mode shapes Wn (n=1-11) 

predictions of a C-C CNT mass normalized for e0=0, obtained by equations (3.42) and (3.60) 

and by DQM. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Higher vibration Timoshenko mode shapes Wn (n=12-15) of C-C CNT mass 

normalized for e0=0, obtained by equations (3.42) and (3.60) and by DQM. 
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Figure 3.5 Uncorrected higher vibration Timoshenko mode shapes Wn (n=13-17) of C-C 

CNT mass normalized for e0=0.2, obtained by equations (3.42) and (3.60) and by DQM.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Uncorrected higher vibration Euler-Bernoulli mode shapes WnEB (n=12-15) of C-

C CNT mass normalized for e0=0, obtained by equations (A.14) and (3.84) and by DQM.  
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Figure 3.7 Uncorrected higher vibration Euler-Bernoulli mode shapes WnEB (n=13-17) of C-C 

CNT mass normalized for e0=0.2, obtained by equation (3.82) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Regularized higher vibration Timoshenko mode shapes Wn (n=12 to 24) of C-C 

CNT mass normalized for e0=0, obtained by equation (3.60). 
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Figure 3.9 Regularized and DQM-numerical higher vibration Timoshenko mode shapes Wn 

(n=20-24) of C-C CNT mass normalized for e0=0.4  

  

 

 

 

 

 

 

 

 

 

Figure 3.10 Variation of frequencies ratio /T E

n NL n L   of C-C CNT with different modes n=1 

to 100 for various aspect ratios d/L, (e0=0.33) 
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Chapter IV: 

Dynamic and parametric instabilities numerical modeling of 

multi-walled carbon nanotubes conveying  

pulsating and viscous fluid 
 

 

 

Abstract 
 

The dynamic and parametric instabilities of single-walled carbon 

nanotubes (CNTs) conveying pulsating and viscous fluid embedded in an elastic 

medium are modeled and numerically investigated. The partial differential 

equation of motion based on the nonlocal elasticity theory, Euler Bernoulli 

beam‘s model and fluid-tube interaction is given. Based on the differential 

quadrature method, complex eigenmodes and associated eigenfrequencies are 

investigated with respect to the flow velocity as well as to the other considered 

physical parameters. Multimodal formulation based on real and complex modes 

are presented in the frequency and time domains. Models are elaborated for 

dynamic instabilities such as divergence and flutter as well as for parametric 

instability behaviors. The influences of the nonlocal parameter, the fluid 

pulsation and viscosity, the viscoelastic coefficient and the thermal effects on the 

dynamic behaviors of the CNT-fluid system are analyzed. Instability boundaries 

and interaction between the dynamic and parametric instabilities are 

investigated.  

 

 

This work has been submitted the international Journal: Composite structure, 2014
 

 

Title: Numerical modeling of dynamic and parametric instabilities of single-walled 

carbon nanotubes conveying pulsating and viscous fluid  

Authors: A. Azrar, L. Azrar and A. A. Aljinaidi
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1. Introduction 

Carbon nanotubes (CNT) conveying fluid have become ones of the most important 

structures in nanotechnology. They may be used at micro or nano-levels for fluid storage, 

fluid transport, drug delivery, micro-resonator, molecular reactors as well as for many nano-

fluidic device applications. In such applications, the dynamic characteristics, such as natural 

frequencies, eigenmodes, stability, critical flow velocity and parametric instability zones are 

of considerable interest. During the last years, a significant amount of research has been 

elaborated for the dynamic behavior of CNT. A review paper on vibration of CNT and their 

composites has been published by Gibson et al. [1]. Lee and Chang [2] studied the vibration 

analysis of a viscous fluid conveying single walled carbon nanotube embedded in an elastic 

medium. Wang [3] proposed the vibration analysis of fluid-conveying nanotubes with 

consideration of surface effects. Eringen‘s nonlocal elasticity [4,5] allows one to account for 

the small scale effect that is very significant when dealing with micro and nanostructures. 

Reddy [6] studied the nonlocal theories for bending, buckling and vibration of beams. Duan et 

al [7] proposed the development of analytical vibration solutions for microstructured beam 

model to calibrate length scale coefficient in nonlocal Timoshenko beams. Eringen's small 

length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured 

beam model are studied by Zhang et al [8]. Wang et al [9] proposed the calibration of 

Eringen‘s small length scale coefficient for initially stressed vibrating nonlocal Euler beams 

based on microstructured beam model. The finite element analysis of forced vibration for pipe 

conveying harmonically pulsating fluid has been studied by Seo et al. [10]. Hong et al. [11] 

studied the vibration of a single-walled carbon nanotube embedded in an elastic medium 

under a moving internal nanoparticle. Mirramezani and Mirdamadi [12] analyzed the effects 

of nonlocal elasticity and Knudsen number on fluid–structure interaction in carbon nanotube 

conveying fluid. Baohui et al. [13] used the wave method to investigate the free vibration 

analysis of micropipe conveying fluid. Ghavanloo et al [14] studied the vibration and 

instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic 

Winkler foundation. Wang et al. [15] reported the flexural vibrations of micro scale pipes 

conveying fluid by considering the size effects of micro-flow and micro-structure. Wang and 

Ni [16] proposed a reappraisal of the computational modeling of carbon nanotubes conveying 

viscous fluid. The thermal mechanical vibration and instability of a fluid conveying single 

walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory 
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have been analyzed by Chang [17]. Ansari et al [18] studied the dynamic stability of 

embedded single walled carbon nanotube including thermal environment effects. Vibration 

and dynamic instability analyses of CNT are elaborated in [19,20,21] and the higher order 

free vibration of SWCNTs was deeply analyzed in [21]. The dynamic stability of 

parametrically excited linear resonant beams under periodic axial force has been recently 

studied by Jing et al. [22]. To the authors‘ knowledge, there are no studies in literature on the 

dynamic instability of CNT based on complex modes nor on the dynamic and parametric 

instabilities interactions of these structures. Therefore, numerical and analytical 

methodological approaches are here proposed, proving simplified models as well as 

theoretical and numerical insights into the dynamic and parametric instabilities and on their 

interactions. 

In the present paper, the governing equation of motion is first derived based on the fluid-tube 

interaction, the nonlocal theory and the Euler Bernoulli beams‘ model. A numerical procedure 

based on the differential quadrature method and multimodal formulations have been 

elaborated for the dynamic and parametric instabilities of CNT conveying pulsating and 

viscoelastic fluid. Frequency and time domains are considered and instability analyses have 

been performed with respect to the considered influencing parameters based on analytical and 

numerical procedures with an emphasis on complex modes. The influences of the nonlocal 

parameter, fluid viscosity, viscoelastic coefficient, foundation of the elastic medium, thermal 

environment and static and dynamic velocity effects on the dynamic behaviors of the CNTs-

fluid system are analyzed. Various types of instabilities such as divergence, flutter and 

principal parametric instabilities as well as their interaction are analyzed. 

2. Mathematical modeling 

The flexural vibration of a slender carbon nanotube conveying fluid and subjected to axial 

force, thermal loading, fluid flow and fluid pressure can be modeled based on the Euler-

Bernoulli beam model by the following partial differential equation: 

2

2
(4.1)

 
    

 
t e T f p

Q W
m F F F F

x t
 

where W, Q and mt are the transverse displacement, shear force and mass of the tube per unit 

length respectively. ,e TF F  and
fF are the axial force, the thermal force and the force per unit 

of length induced by fluid flow. pF
  

represents a force due to the axial fluid pressure. The 
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momentum-balance equation for the fluid motion may be described by the Navier-Stokes 

equation: [16, 25] 

2 (4.2)   
dU

P U
dt

 

 

in which  ( ) , ,r xU t U U U is the time dependent fluid velocity in the cylindrical coordinate 

system with components in r, θ and x directions. ρ, P and   are the mass density of the 

internal fluid, the pressure and the viscosity of the flowing fluid.  

The exerted force due to the fluid flow in the nanotube can be obtained from (4.2). At the 

point of the contact between the inside tube and internal fluid, their respective velocity and 

accelerations in the direction of flexural displacement become equal. These relationships thus 

can be written as: [16] 

(4.3)r

dW
U

dt

 

where 

( ) (4.4)
  

  
  

x

dW
U r W

dt t x

 

Substituting equation (4.3) into Eq. (4.2) and using Eq. (4.4) one obtains: 

2 2 2 3 3
2

2 2 3 2
2 (4.5)

        
         

         

r

f f f x x f x

p W W W W W
F A m U U A U

r x tt x x x t


 

in which mf 
 is the mass of the fluid per unit axial length, Af 

is the cross sectional area of the 

internal fluid respectively.  

The axial resultant force due to the thermal loading, FT, and the force due to the axial pressure 

exerted by the fluid, Fp, are given by [25]: 

 

2 2

2 2
, ( ) (4.6)

(1 2 )

 
  

  

x x

T p f

EA T dUW W
F F m L x

dtx x




  

in which E, A, , , xL and Ts represent the Young modulus, tube cross sectional area, length, 

Poisson ratio of the CNT, thermal expansion and the temperature change respectively. 

Based on the Euler-Bernoulli beam theory, the transverse shear force Q and bending moment 

M of the viscoelastic tube are given by [25]: 
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3

3
(4.7)

   
   

   

M W
Q E I

x t x
  

and   xxM z dA  

where   is the viscoelastic coefficient of the tube. 

Based on the nonlocal elasticity theory, the following differential constitutive equation for one 

dimensional case is adopted [4, 5, 17, 19-21]. 

2

2

0 2
( ) , (4.8)


 



xx

xx xxe a E
x


    

where 0 ,  xxe a and xx are the nonlocal parameter, the axial strain and stress on the nanotube 

respectively. Using equation (4.8), the moment M is obtained by the following differential 

equation. 

2 2
2

0 2 2
( ) , (4.9)

 
 

 

M W
M e a EI

x x
 

Combining equations (4.1) and (4.5) to (4.9), the partial differential equation of motion for a 

CNTs conveying fluid and subjected to the considered forces can be written as: 

   

     

   

4 2 2 2

21 1 1 1

1 14 2 2

3 3 4 4 4
2 21 1 1 1 1

0 13 2 2 2 4 3

22
2 1

1 1 0 1 2
2

1 2

2



      
                  

       
         

          


   




x

f x T f f f x

f x f f x T f x

N

j j j

j

UW W W W
EI m U N m L x m m m U

t t x tx x t

W W W W W
A U e a m m m U N m U

x x t x t x x t

W
c W W e a c

x





 

   

 

2
2

4 2 4
2

04 2 2 2

22
2

0 2 2
1 2

4 2 22
2

04 2 2 2

1 (4.10)

, 2,3,.., 1

1



 


 
 
  

   
   

     

 
      

   

     
      

       



 

N
j

j

i i i

i i i

N N
ji

ij i j ij

j j
i j

N N N

N N N
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WW
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t x t t x




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221

2
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1 2
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

 

 
    
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where NT and K are respectively the axial resultant force due to the thermal loading and the 

constant of the elastic medium. Note that the time and space (t, x) dependences are omitted 

for readability purpose. The van der Waals interaction coefficient is given by: 

12 6
13 7

4 4

1001 1120
(4.11)

3 9

 
  
 

ij ij ij jc E E R
a a

 

 

/ 2

/ 20
( ) (4.12)

[1 cos( )]

 



 


m m

ij i j m

ij

d
E R R

K
 

2

4
(4.13)

( )




i j

ij

i j

R R
K

R R
 

 In this paper, a pulsating internal axial flow is considered and the flow velocity is assumed to 

be harmonically fluctuating and to have the following form: 

 0( ) 1 cos( ) (4.14)  xU t U t  

where U0 is the static mean flow velocity,  is the amplitude of the harmonic fluctuation and 

  its frequency.  

The following dimensionless variables and parameters are used: 

2

0

2 2

44

0 0

, , , , , , ,

( )
, , , , , (4.15)

1 2

   
                

  
          

f T

x

f t f t

f f f tx s

T r

f tf

m e a N LW x EI t EI c
w y u LU T

L L m m EI m m L EIL L

m m m m LEA TKL A
k N M V LU s

EI m m EI EIEI m

  

 
 



 

Equation (4.10) is thus transformed into the following dimensionless partial differential 

equation: 
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 

 

 

4 2 2 2 3

21 1 1 1 1

4 2 2 3

2 4 4 4

2 21 1 1 1

2 2 2 4 3

22

2 1

1 1 1 2 2
2 2

1 1 2

2

(4.16 )
 
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           
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    
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, 2,3,..., 1 (4.16 )
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, (4.16 )
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   
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

 

The objective of this paper is to investigate the dynamic and parametric instability behaviors 

as well as their interaction of the CNT-fluid system based on the partial differential equation 

(4.13). The time dependent fluid velocity is considered leading to a PDE with periodically 

varying coefficients. Mathematical formulations based on numerical and analytical 

procedures are elaborated.  

It should be noted that for accurate investigation of the instability of CNT conveying fluid, the 

used modal basis has to be carefully selected. For this aim, the parametric free vibration 

analysis is first deeply studied using numerical and analytical methods with respect to the 

fluid velocity and to the other considered parameters. Complex eigenmodes and 

eigenfrequencies are obtained. Based on the obtained eingenmodes and the Galerkin 

procedure, various modal bases are used for dynamic and parametric instability analyses. 

3. Numerical procedure  

3.1  Differential quadrature method 

For numerical investigations of vibration, dynamic and parametric instability analyses of the 

considered CNT-fluid system, the differential quadrature method (DQM) is adopted here. 

This method, akin to approximate the derivative of a function at any location by a linear 

summation of all the function values along a mesh line [23,24]. The procedure DQ application 

lies in the determination of the weighting coefficients. The continuous solution is 



105 

 

approximated by functional values at discrete points. In the present paper, the following 

Chebyshev-Gauss-Lobatto quadrature points are used. 

1 1
1 cos for 1,2,3,......, (4.17)

2 1


  
    

  
i

i
y i n

N
 

where  i
i

x
y

L
and n is the number of grid points in the domain [0, 1]. 

For a function f(y), DQ approximation of the m
th

 order derivative at the i
th

 point is given by: 

1

( ) ( ) ( ) (4.18)



n

j j

j

f y l y f y

 

1 1
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( ) ( )

( ) ( )
, , 1,2,..., (4.19)
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   
   
   

    
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   
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ijm

n n

f y f y

f y f yd
H i j n
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f y f y

 

in which ( )jl y  are the Lagrange interpolation polynomials and 
m

ijH  represent the weighting 

coefficients given by [24]. 

1

1
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The higher derivative, m
th

, can be calculated as: 
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The discrete classical boundary conditions at y=0 and y=1, using the DQ method, can be 

written as: 

1

0

1

1

1

0 (4.21 )

0 (4.21 )

0 (4.21 )

0 (4.21 )
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H w b

w c

H w d

 

where n0 and nl may be taken as either 1, 2 or 3 and ( )k kw w y . is the transverse 

displacement of tube at point yk. Choosing the values of n0 and nl can give the following 

classical boundary conditions: [24,25] 

simply supported: n0 =2; nl =2 

clamped-clamped: n0 =1; nl =1 

clamped-simply supported: n0 =1; nl =2 

clamped-free: n0 =1; nl =3 

free-free: n0 =2; nl =3 

Applying equations (4.20) and (4.21) to equation (4.16), one obtains the following ordinary 

differential system for i=1,2,…,n. 

 

   

4 1 4 1 2 2 1 1
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This system can be rewritten in the following matrix from. 
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        ( ) ( ) 0 (4.22 )   M w C w K w b  
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0 0 1 0

1 ;

2 ; ; 1

2 ; 2

              

                 

           

N

r

r r r

K V T H V T H V H K H k I H

K V H H V H K V H H K M V y H

C H M H M V H H C M V H H

  

      

    

   1 1 1 2 2 2

1 2 1 2 1 2... , ... ,...., ...
T

N N N

N N Nw w w w w w w w w w  

Note that the matrices C and K dependent on time as well as on some influencing physical 

parameters. Numerical time response can be obtained by numerical methods such as 

Newmark, θ-Wilson, Runge- Kutta, etc. As the matrices K and C depend on the fluid flow 

velocity, considered time dependent, various types of instabilities such as divergence, flutter 

and parametric can occur and then may complicate the dynamic response analysis. For the 

sake of clarity, these types of instabilities are separately formulated. 

3.2   Dynamic instability formulation 

For static fluid velocity 0( ) ( 0), u t V  the differential system (4.22b) is then reduced to 

the following eigenvalue problem by assuming that ( )  w W e  
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       2 0 (4.23)   M C K W  

where  W denotes the unknown dynamic displacement vector defined by: 

   1 1 1 2 2 2

1 2 1 2 1 2... , ... ,...., ... (4.24)
T

N N N

N N NW w w w w w w w w w  

and [K], [M] and [C] are the resulting stiffness, mass and damping matrices respectively. 

The assumed boundary conditions can also be expressed in a matrix form using (4.21) 

      0 (4.25) B B C SK W K W

 

where   1 1 1 1 2 2 2 2

1 2 1 1 2 1 1 2 1, ,....,
T

N N N N

B N N N N N NW w w w w w w w w w w w w   and 

   1 1 1 2 2 2

3 4 2 3 4 2 3 4 1... , ... ,...., ...
T

n n n

S n n nW w w w w w w w w w    BK
 

and  CK are4 4n n  

and 24 ( 4 )n n n    matrices respectively. 

Using this vector decomposition Eq. (4.23) can be rewritten as: 

           2 0 (4.26)    D B S S S S SK W K W C M W

 

Coupling equations (4.25) and (4.26), one gets: 

            
1 2 0 (4.27) 


   S D B C S S SK K K K C M W  

where  SK ,  SM  and  SC  are 2 2( 4 ) ( 4 )n n n n    matrices. 

This frequency dependent relation is rewritten in the following eigenvalue problem form: 

1

,

(4.28)0 0
, ,

0







 


    
       

     

ss h

s h S s

Y Y

WM K
Y

M K C W

 

      
1

 h S D B CK K K K K  

By solving this eigenvalue problem, eigenmodes and associated eigenfrequencies can be 

numerically obtained for various types of boundary conditions. Based on this numerical 

procedure, real and complex eigenmodes and the associated eigenfrequencies can be obtained 

with respect to V0, T and the other relevant physical parameters. As the Galerkin procedure 

will be based on the obtained eigenmodes, two distinct cases are considered here. 

Case 1: Classical real modal basis 

In this case, the free vibration analysis is done by considering V0=T=k=α=β=Mr=0. This will 

lead to natural frequencies and real eigenmodes independent from V0, T, k, β and α. These 
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real modes are classically used in modal vibration analysis of tubes conveying fluid. For 

example, for simply supported case, the eigenmodes ( ) sin( / )jw x j x L  are classically used 

by many authors. This may lead to erroneous results for dynamic instability analysis. 

Case 2: General modal basis 

By considering all parameters, complex eigenfrequencies and eigenmodes are resulted. These 

complex characteristics have been carefully computed for the considered boundary 

conditions. Using the numerically obtained eigenmodes, Galerkin‘s method can be applied for 

dynamic and parametric instability analyses. 

4. Multi-modal formulation 

For multimodal analysis, the CNT deflection can be approximated by N  modes. 

1

( ) ( ); 1,2 (4.29)


 
N

k ki i

i

W Z q k   

Where ( )i iZ and q   are the vector eigenfunctions that depend on the considered physical 

parameters and the generalized coordinates respectively. Equations (4.22-b) and (4.29) lead to 

the following time dependent differential system for j=1 to N. 

0 1

1 1

2

0 1 2 3

1

, ( ) cos( ) , ( )

cos( ) cos ( ) sin( ) , ( ) 0 (4.30)

  

   

 



     

        

 



N N

ki kj i ki kj i

i i

N

ki kj i

i

M Z Z q C C Z Z q

K K K K Z Z q

 

where kjZ  stands complex conjugate of kjZ . 

For the dynamic response, numerical solution of the time dependent system (4.30) can be 

conducted based on a numerical procedure for the considered mode number. The effects of 

the considered parameters can be investigated.  

For a deep analysis of instability behaviors of the considered CNT-fluid system, models of 

dynamic and parametric instability behaviors are formulated hereafter. 

Static fluid case (η=0) 

For the dynamic instability analysis of CNT conveying static fluid velocity, the critical fluid 

velocities and velocity-frequency dependence can be investigated based on equation (4.23). 

The time response at any static velocity level can be obtained by numerically solving the 

following reduced differential system.  
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        0 0 0 (4.31)  r r rM q C q K q

 

where  

   1 1 1 1

1 1 1.... ,...., ....
T

N N

N N Nq q q q q q q  

5. Parametric instability formulation 

The parametric instability behaviors of single walled carbon nanotubes conveying pulsating 

fluid can be investigated at various fixed values of the influencing parameters V0, T, k, μ and 

β. Here, the effects of η and Ω on the system stability are the main focuses at various velocity 

V0 levels. 

The generalized coordinate ( )jq  is assumed to be periodic and is expressed in the form: 

0

( ) sin cos (4.32)
2 2

 




     
     

    


N

j k k

k

k k
q a b  

Based on the multi-modal formulation and substituting Eq. (4.32) into equation (4.30) the 

following algebraic system is obtained 

    0 (4.33)G X  

where [G] is a (2 1) (2 1)  N N  matrix and X is a (2 1)N  vector    0 1 1, , ,..., ,
T

N N
X b a b a b  

For the sake of clarity, the matrix G is given in the appendix A for 5N . The characteristic 

equation of this problem, det ( ) 0,G allows one to get a highly nonlinear algebraic 

relationship on   given the instability boundaries. For the sake of simplicity, the 

characteristic equation is given for some particular simple cases. 

Particular cases 

The stability regions can be obtained based on the algebraic equation (4.33) by considering 

the required modes. Various modes and various harmonic decompositions can be considered 

for the required accuracy. 

One-mode approach 

Based on the one-mode and one-harmonic approach ( 1) N N , the instability boundaries 

can be obtained by solving the following algebraic equation. 
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    
4 2

2
2 2 2 2 2 2

11 1 4 11 2 3 1 41 (H ) 1 (H ) 0 (4.34a)
2 2

       
                    

 

This leads to 

4 2 2 2 4 2

0 2 0 0 2 0+( V + ) + + + 0 (4.34b)          

 

2 2

2 0 0

0

-( V + )
(4.34c)

2

 




 
 

 

where  

2 2 2 4 2

2 0 0 0 2 0( V + ) -4 ( + + )           

3 5 3 52 4 4 1 1

1 6 2 6 3 4

Y Y Y YY Y Y Y Y
Y ; Y ; ; ;

2 2 2 2 4 2 2 4 2
               

 
2

2 2

11

4 2 4 2 2 2 4 2 4

0 11 11 11 11 0

2 2 2 2 2 2 2 2 2 2 2

2 11 11 11 11 11 11

2 4 4 2 4

11 11 11

2 4 2 2 2 2

0 11 11 11 11

- H -1 /16

= (-(1/4) (H ) -(1/4)(H ) +(1/2) H H )V ;

=(1/4)Mr F -(1/4)(H ) +(1/4)H -(1/2)Mr F H +(1/4)(H ) Mr

-(1/4) H +(1/4) H H

(-H H T +(H ) T-H H





 

  

 

 

  4 4 2 2 2

11 11 0+(H ) )V

 

2 2 4 2 4 2 2 4 4 2 4 2 2 2 2 4 2

0 11 11 11 11 0 11 11 11 11 11

2 2 2 4 4 2 2 2 2

11 11 11 11 0 11

2 2 2 2 2 4 4 2 4 2 2 4 2

2 11 11 11 11 11 0 11

 = (-(H ) -(H ) +2 H H )V +2H H T-(H ) T +(-2H H T

+2(H ) T-2H H +2(H ) )V -c

=((1/2)H -(1/2)(H ) -(1/2) H +(1/2) H H )V -(1/4) (H )

+(1/2) Mr

   



    

 2 4 4 2 2 2 2 2 2 2 2 2 2 4

11 11 11 11 11 11 11 11H H +(1/2)H +(1/2)(H ) T -(1/2)H T-(1/4) Mr (H ) -(1/2) H H   

 

Yj are given in the Appendix A. 

Two-modes approach 

Based on the two-modes and one-harmonic approach ( 2, 1) N N , the instability 

boundaries associated to the first two modes can be obtained by solving the following 

algebraic equation. 

8 6 4 2

8 6 4 2 0 0 (4.35)
2 2 2 2

    
          

           
       

 

where the coefficients 0 2 4 6 8, , , ,      are given by: 
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0 11 14 12 13 41 44 43 42

2 12 13 11 14 41 4 1 44 11 4 1 14 41 44 43 42 11 23 21 13 42 34 32 44

11 24 22 13 32 43 34 41 21 14 12 23 42 33 31 44 22 14

=(S S -S S )(S S -S S )

1 1
= (S S -S S )(S m +m S )- (S m +m S )(S S -S S )+(S S -S S )(S S -S S )

4 4

+(S S -S S )(S S -S S )+(S S -S S )(S S -S S )+(S S -





  

   

12 24 31 43 33 41

2 2 1
4 1 14 44 11 4 41 24 11 34 12 33 23 32 44 42 34 24 34 41 32 43

4 1 4
22 14 33 13 34 11 41 14 44 12 13 43 42 21 14 31 13 32

23 11 32 1

S S )(S S -S S )

m1
= m S S +S m S + S (S S -S S ) +S (S S -S S )+S (S S -S S )

16 4

m m m
+S (S S -S S ) + (S +S )(S +S )-S S -S S S (S S -S S )

16 4

S (S S -S







   

2 31 21 31 44 42 33 22 33 41 31 43 22 23 32 33 31 34

21 24 31 34 32 33

2 2 2 2

6 11 41 1 4 14 44 4 1 22 33 23 32 1 4 24 34 1 21 31 4

2 2

8 1 4

S )+S (S S -S S )+S (S S -S S ) +S S (S S -S S )

+S S (S S -S S )

-1 1
= (S +S )m m +(S +S )m m - (S S +S S )m m S S m +S S m

64 16

1
m m

256









  

in which: 

  

  

   

2 4

24 0 22 0 22 22

4 2

31 0 11 11 0 11

2 3 2 3

32 0 21 0 21 0 21 0 21 0 21

1
S = - MrV - Mr +MrV + ;

2

1
S = MrV - Mr-MrV

2

1 1
S = MrV -2MrV +2 MrV + 2MrV -2 MrV

2 4



H F H

F H H

F D H D H

   

   

    
 

  

   

   

2 4

21 0 11 0 11 11

2 3 2 3

22 0 21 0 21 0 21 0 21 0 21

2 3 2 3

23 0 12 0 12 0 12 0 12 0 12

1
S = - MrV Mr +MrV +

2

1 1
S = MrV +2MrV -2 MrV + 2MrV -2 MrV

2 4

1 1
S = MrV +2MrV -2 MrV + 2MrV -2 MrV

2 4

 H F H

F D H D H

F D H D H

   

    

    

 

    

    

2 2 2 2 2 2 2 2 2 4 1 2 2 2 2 2 4

11 0 0 11 0 0 11 11 0 11 0 11

3 3

12 0 0 21 13 0 0 12

2 2 2 2 2 2 2 2 2 4 1 2 2 2 2 2

14 0 0 22 0 0 22 22 0 22 0

1
S = V -2V + 2 V - V +k I +(V -T- K) +(1- V )

2

1 1
S = V - V ; S = V - V

2 2

1
S = V -2V + 2 V - V +k I +(V -T- k) +(1- V

2

   
   
   

H H H H

H H

H H H

       

     

        4

22) H

 

   

  

 

2 3 2 3

33 0 12 0 12 0 12 0 12 0 12

4 2

34 0 22 22 0 22

2 2 2 2 4 1 2 2 2 2 2 4

41 0 11 0 11 11 0 11 0 11

1 1
S = MrV -2MrV +2 MrV + 2MrV -2 MrV

2 4

1
S = MrV - Mr-MrV

2

1
S = 2V -2 V +k I +(V -T- k) +(1- V )

2



F D H D H

F H H

H H H H

    

   

    
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 

2 3 3

42 0 0 21 43 0 0 12

2 2 2 2 4 1 2 2 2 2 2 4

44 0 22 0 22 22 0 22 0 22

3

1 2 2

1 1
S = - V +2V ; S = - V - V

2 2

1
S = 2V -2 V +k I +(V -T- k) +(1- V )

2

,

   
   
   



 

i ij i j

i ii ii

H H

H H H H

F y C Z Z

m I H

     

    



 

For more general cases using more eigenmodes and harmonics, a highly nonlinear algebraic 

equation f(Ω)=det(G)=0 will be resulted and thus has to be numerically solved. 

Based on these relationships, the dynamic and parametric instability analyses can be 

numerically investigated. The effects of the considered physical parameters on the divergence, 

flutter and parametric instability zones as well as the associated time response can be 

numerically analyzed.  

6. Analytical procedure 

For the sake of accuracy and comparison, analytical procedures are elaborated for some 

simple cases. As various parameters such as fluid velocity, thermal effect, tube viscoelasticity 

and fluid velocity and viscosity are considered, the free dynamic behaviors of the CNT can be 

affected by all these parameters. To easily handle the effect of these parameters, it is 

important to obtain some associated analytical relationships. To this aim, the transverse 

displacement is assumed of the form:  

( , ) ( ) (4.36)  iW y w y e   

The complex characteristic equation associated to the main governing equation (4.16a), for a 

static fluid velocity ( 0),  is given for, ( ) ,yw y e
 by: 

    2 2 4 2 3 2 2 2 2

0 0 0 0

2

0

1 ( ) 2 ( )

2 0 (4.37)

          

  

         

   

r r

r

i V T i V M V V T i M k

M V k
 

For four distinct solutions of (4.37), the general solution associated to (4.16a) can be written 

in the form:  

31 2 4

1 2 3 4( ) (4.38)
     

i yi y i y i yw y A e A e A e A e  

where the arbitrary constants Ai  are determined by the considered boundary conditions. 

It should to be noted that the resulting frequencies and eigenmodes depend on the considered 

parameters such as V0, k, α, etc and on the temperature T. This will lead to complex 
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eigenfrequencies and eigenmodes that may be deeply changed with respect to these 

parameters.  

For simply supported and clamped CNT, the associated eigenmodes are given by: 

1 2 3 4

1 2 3 4( ) (4.39)
   

    j j j ji y i y i y i y

j y A e A e A e A e

where  

3 4 1

2 3 4

4 1 1 3 3 4

2 1

3 4 4 2 2 3

( ) ( ) ( )
;

( ) ( ) ( )

j j j

j j j

i i i

j j j j j j

i i i

j j j j j j

e e e
A A

e e e

  

  

     

     

    
 

    
 

2 4 1

2 3 4

4 1 1 2 2 4

3 1

3 4 4 2 2 3

( ) ( ) ( )
;

( ) ( ) ( )

j j j

j j j

i i i

j j j j j j

i i i

j j j j j j

e e e
A A

e e e

  

  

     

     

    
 

    
 

4 1 2 3( )A A A A     

in which i j i j   and 
2i j i j   for clamped and simply supported boundary conditions 

respectively. The resulting transcendental equation is thus given by: 

1 2 3 4 1 3 2 4

2 3 1 4

( ) ( ) ( ) ( )

2 1 4 3 2 4 3 1

( ) ( )

1 4 2 3 (4.40)

( )( ) ( )( )

( )( ) 0

   

 

         
   

     
 

j j j j j j j j

j j j j

j j j j j j j j

j j j j

e e e e

e e

       

   

       

   
 

It has to be noted that equations (4.37) and (4.40) have to be simultaneously numerically 

solved in order to get the frequency and eigenmodes at required flow velocity levels. A 

numerical iterative-incremental procedure based on the Newton-Raphson algorithm has been 

elaborated for that goal. The simplified as well as the complex eigenmodes can be obtained 

based on this semi-analytical methodological approach. 

Simplified case  

The analytical formulation is more simple for α=β=Mr=0. In this case, equation (4.37) is 

reduced to: 

   2 2 4 2 2 2 2 2

0 01 ( ) ( ) 0 (4.41)             V T V T k k
 

and its solutions are : 


 


 

2 2 2 2 2 2

0 0

1 2 1 3 4 32 2 2 2

0 0

( ) ( )
; ; ;

2 1 ( ) 2 1 ( )

V T k V T k

V T V T

   
     

 

         
     

   
 

where:     
2

2 2 2 2 2 2

0 0( ) 4 1 ( )V T k V T k              

Equation (4.40) is also reduced to: 
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1 3 1 3 1 3 1 3( ) ( ) ( ) ( )2 2

1 3 1 3 1 3( ) ( ) ( ) ( ) ( ) 8 0 (4.42)
                  

       
i i i i

F e e e e
 

The mode shapes ( )j y  can be thus classically for the considered boundary conditions by:
 

1 1 3 3

1 2 3 4( ) (4.43)
   


 

   j j j ji y i y i y i y

j y A e A e A e A e
 

For more simplification k=0, in this case, equation (4.16a) can be written as: 

   
4 2

2 2 2

4 2
1 ( ) 0 (4.44)    c c

d w d w
V T V T

dy dy
 

 2 2if 1 ( ) 0cV T    

 
 

24 2
2 2

4 2 2 2
0 (4.45)

1 ( )
 




  

 

c

c

V Td w d w

dy dy V T
 

The general solution associated to (4.45) can be written in the form:  

1 2 3 4( ) sin( ) cos( ) (4.46)    w y A A y A y A y  

For the clamped boundary condition, the transcendental equation is given by: 

sin tan 0 (4.47)
2 2 2

  


    
     

    
 

The solutions of equation (4.47) are given by: 

 2 8.986;15.451;21.808; 28.132; 34.442;... (4.48)  n n or    

And the associated mode shapes are given by: 

(cos( )-1) (cos( )-1)
( ) A 1- y+ sin( )-cos( ) (4.49)

- +sin( ) - +sin( )

 
  

 
w y y

  
 

   
 

For the simply supported boundary condition, the transcendental equation is given by: 

 4 sin 0 (4.50)   

The solutions are given by: 

n n    

and the associated mode shapes are given by: 

( ) sin( ) (4.51)w y A y  

The critical flow velocity is given by: 

 
 

2 2

2 2

1
(4.52)

1

 



c

T T
V

 

 
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A multimodal dynamic analysis can be elaborated based on the analytical modes ( )j y  by 

assuming: 

1

( , ) ( ) ( ) (4.53)



N

j j

j

w y y q    

Substituting Eqs. (4.14) and (4.39) into the main governing equation (4.16a) and integrating 

over [0, 1], the following second-order ordinary differential system is obtained. 

       

  

      

2 2

0 0

2 2 2 2

0 0 0

2 2 2 2

0 0

2 1 cos( ) 2 1 cos( )

1 2 cos( ) cos( ) sin( ) sin( )

1 cos( ) 1 1 2 cos( ) cos( ) 0 (4.54)

           
  

            


          


r r r r r

r r

r

A B q C M V D M B M V E q

V T k M V B M V F

kA V E V C q

       

        

       

 

where , , , ,A B C D E and F are matrices with elements given by: (s, r=1,2,…,N). 

1

0
sr r sA dy   , 

1

0

r
sr s

d
D dy

dy


  , 

2
1

20

r
sr s

d
B dy

dy


  , 

3
1

30

r
sr s

d
E dy

dy


  , 

4
1

40

r
sr s

d
C dy

dy


  , 

2
1

20

r
sr s

d
F y dy

dy


   

It should be stated that when the modal basis is available analytically, the dynamic and 

parametric instability analyses can be investigated based on the same procedures developed in 

the previous sections. 

7. Numerical results and discussion 

Let us note that due to the fluid velocity the dynamic instability will occur at increased static 

velocity V0. This will lead to divergence and flutter instabilities. Then, even if the viscosities 

of the fluid and tube are disregarded, the complex eigenmodes and frequencies may occur. 

This paper will focus on complex eigenmodes and on the coupling dynamic and parametric 

instabilities with respect to static velocity and dynamic pulsation fluid. For the sake of clarity, 

the one-mode and two-modes approaches are used for the analysis. Based on these 

approaches, the first and second natural frequencies, critical flow velocity and stability 

regions are obtained. The time responses are computed for various instability regions. 

For numerical analysis, the following material and geometrical parameters of CNT-fluid 

system are used. The Young‘s modulus of carbon nanotube is assumed to be E=1TPa with an 

effective thickness about h=0.34 nm. The diameter d, the mass density ρc and the aspect ratio 

L/d of SWCNT are 1nm, 2300 kg/m
3
, and 10 respectively. The fluid inside the nanotube is 
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assumed to be the water with the mass density ρf   and viscosity ϑ are 1000 kg/m3 and 

1.12x103 Pa respectively [2]. Two cases of the low and high temperature are considered. At 

low and room temperature, the thermal expansion coefficients αx=-1.6e-6 K
-1

 and at high 

temperature αx=1.1e-6.K
-1

  

For comparison and validation of the presented numerical and analytical methodological 

approaches numerical results are presented in tables 4.1 and 4.2. The finite difference method 

(FDM) has been also used and programed here for numerical comparison. The details of this 

classic numerical approach have been omitted here. Numerical results of the three first natural 

frequencies of simply supported and clamped boundary conditions CNT are given for various 

values of V0. Numerical results are obtained based on the DQM for point numbers N=7, 10, 

15 and on the FDM for N=15, 50, 100 and presented in tables 4.1 and 4.2. The analytical 

results obtained based on equations (4.32, 4.35) are also given for convergence test. It is 

demonstrated that the DQM converges for 15 points while the finite difference method needs 

largely more discretization points (N=100) to converge. 

Complex eigenmodes will be classically induced by the fluid and solid viscosities and 

particularly by the static fluid velocity V0. The tube viscoelasticity is generally too small and 

thus can be neglected. To clarify the fluid viscosity and velocity effects on the CNT vibration 

behaviors, numerical results of the obtained eigenmodes are presented. 

Figures 4.1 and 4.2 present real and imaginary parts of the first mode shape, mass normalized, 

of a simply supported CNT for                    as well as the classical simplified 

mode '' sin( x/L) ''.  Note that, for these small values of   , sin( x/L)  is good enough for the 

real part of the first mode. The imaginary part, neglected by this classical mode, is not zero 

even for      as the fluid viscosity is considered. At large   , the shape of the real part 

changes and the imaginary part is highly increased as shown in figure 4.2. The first mode of a 

clamped CNT at various values of    is presented in figure 4.3. It is demonstrated that for 

small values of     (                the real part is almost unchanged but there is an 

imaginary part that is considerably increasing with   . To show the effect of     on the first 

modes a large range of values of     is considered and real and imaginary parts of the first, 

second and third eigenmodes are presented in figures 4.4, 4.5 and 4.6 for a clamped CNT 

              These figures show that there is a transition of the real part of the 

first mode to the second one and that the imaginary parts of all modes become very significant 

when the static velocity    exceeds a critical value. To show the coalescence behavior at a 
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critical fluid velocity   , the first and second modes are presented in figure 4.7 for clamped 

case. 

The transition from mode to mode and the growing of imaginary parts with respect to V0 can 

be explained by the frequency-velocity dependence curves giving the dynamic instability 

behavior of the CNT-fluid system. This dynamic behavior is investigated here based on the 

one and two-real-mode as well as on the complex modes approaches.  Figure 4.8 

demonstrates the divergence and flutter instability types for the considered simply supported 

and clamped CNT based on one-real mode, two-real modes and one-complex mode 

approaches. The real frequency parts decreases with increasing of the flow velocity V0 up to 

the divergence instability (ω=0). The critical values of V0 for the divergence instability 

associated to complex-mode are V0= 3.14 for the considered simply supported CNT and 

V0=6.28 for the clamped CNT (T=0, α=0). The critical values of the flutter instability are 

V0=6.38 and V0=9.01 for S-S and C-C CNT respectively.  

It should to be stated that a one-real mode approach leads to erroneous results for flutter 

analysis but good enough for divergence detection. The predictions obtained for the dynamic 

instability analysis based on the two-real-modes and the one-complex mode approaches are 

very close for simply supported case but leads to different values for clamped case for large 

values of V0.  

The temperature effect on the dynamic instability of a clamped CNT predicted by a one 

complex-mode approach is presented in figure 4.9 and only small effects are observed.  

The effects of the static fluid velocity V0, the viscosity β, the viscoelastic parameter α, the 

nonlocal parameter μ and the thermal coefficient effect Ts on real and imaginary parts of the 

first, second and third frequencies of cantilever CNTs conveying fluid are presented in figure 

4.10. This effect is more significant at higher velocities. 

A parametric study with respect to all considered physical and material parameters can be 

easily done by the presented methodological approaches. 

Figures 4.11 and 4.12 demonstrate the effects of the static fluid velocity V0, the viscosity β, 

the viscoelastic parameter α, the nonlocal parameter μ and the thermal coefficient effect sT  

on the instability boundaries in the principal parametric resonance based on the one- real-

mode approach. In figure 4.11 the instability areas, origins of parametric instability are 

reduced with increase in fluid viscosity β and the viscoelastic coefficient α. It should be noted 

that a larger flow velocity V0 leads to a large instability region. In figure 4.12, the effects of 
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the nonlocal parameter  and the thermal coefficient sT are presented. The parametric 

resonance regions move significantly backwards by increasing the nonlocal parameter  and 

slightly upwards by increasing sT .  

The one and two-modes based parametric instability regions of the CNT with different values 

of the static flow velocity V0 of a simply supported and clamped CNT are presented in figures 

4.13, 4.14 respectively. The influences of the nonlocal parameter on the parametric frequency 

are presented in figure 4.13. The difference between the one and two modes predictions in 

stability regions are presented in figure 4.15. It is observed that the critical parametric 

frequency and dimensionless pulsation amplitude η associated to bifurcations point are 

increased when two-modes are used. The fluid viscosity β effect is demonstrated in figures 

4.16. Moreover comparison between the real and the complex mode approaches are given in 

figure 4.17. It demonstrated that for fixed V0 the parametric instability regions are shifted to 

the higher parametric frequency when the complex modes are used. For a general 

representation, figure 4.18 shows the parametric instability regions of the clamped CNT in 

three dimensions (Ω, V0, η) based on one complex-mode. The evolutions of the parametric 

instability frequencies and the associated bifurcation points for different viscous parameter β 

are shown in figure 4.19. These analyses allow determining the stability boundaries and zones 

with respect to the static fluid velocity V0 and to the other physical parameters.  

To clearly demonstrate the dynamic behaviors in these regions, time responses are presented 

in figure 4.20 for SS CNT and in figure 4.21 for CC- CNT based on the one-real mode and 

two-real modes approaches. These figures show the time responses associated to various 

values of Ω for fixed values of V0. It is observed that the dynamic response is very sensitive 

to the static velocity V0 as well to the parameters η and Ω. The stability and instability 

behaviors are clearly demonstrated with respect the parametric instability zones. 

8. Conclusion 

Vibration, dynamic and parametric instabilities of CNT conveying pulsating fluid are 

analyzed based on the nonlocal elasticity fluid interaction and Euler-Bernoulli beam theory. A 

numerical methodological approach based on the differential quadrature method has been 

formulated. For comparisons in some simple cases a semi analytical procedure has been also 

developed. The multimode approach has been formulated based on the numerically computed 

eigenmodes, for dynamic and parametric instabilities. For simplified models a one-real mode, 
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a two-real mode and one-complex mode approaches have been developed for both types of 

instabilities. The inaccuracy of the one-real mode approach is demonstrated. The influences of 

the internal fluid velocity, the nonlocal parameter, the viscosity, the viscoelastic coefficient as 

well as the thermal effects on the dynamic behaviors and flow-induced structural instability of 

CNTs are studied. Various types of instabilities such as divergence, flutter and parametric 

instability and their interactions are investigated. 

 

References 

[1] R.F Gibson, E.O, Ayorind and Y.F Wen, Vibration of carbon nanotubes and their 

composites: A review, Composites Sciences and Technology 67, pp. 1-28, 2007. 

[2] H. L. Lee and W. J. Chang, Vibration analysis of a viscous fluid conveying single walled 

carbon nanotube embedded in an elastic medium, J. Physica E 41, 529-532, 2009. 

[3] L. Wang, Vibration analysis of fluid-conveying nanotubes with consideration of surface 

effects. J. Physica E 43, 437–439, 2010. 

[4] A.C. Eringen, On differential equation of nonlocal elasticity and solution, J. Appl. Phys. 

54, pp. 4703-4710, 1983. 

[5] A.C. Eringen and DGB Edelen, On nonlocal elasticity, Int. J. Eng. Science10, pp. 233–

248, 1972 

[6] J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. 

Science 45, pp. 288–307, 2007 

[7] W. H. Duan, N. Challamel, C. M. Wang, and Z. Ding, Development of analytical vibration 

solutions for microstructured beam model to calibrate length scale coefficient in nonlocal 

Timoshenko beams, J. Appl. Phys. 114, 104312, 2013 

[8] Z. Zhang, N. Challamel, and C. M. Wang, Eringen's small length scale coefficient for 

buckling of nonlocal Timoshenko beam based on microstructured beam model 

Citation: J. Appl. Phys. 114, 114902, 2013 

[9] C. M. Wang, Z. Zhang, N. Challamel and W. H. Duan, Calibration of Eringen‘s small 

length scale coefficient for initially stressed vibrating nonlocal Euler beams based on 

microstructured beam model, J. Phys. D: Appl. Phys. 46, 345501, 2013   

[10] Y. S. Seo, W. B. Jeong, S. H. Jeong, J. S. Oh and W. S. Yoo, Finite element analysis of 

forced vibration for pipe conveying harmonically pulsating fluid, J. JSEM, Series C,Vol 48, 

No.4, 2005. 

[11] Z. Hong, D. Qing-Tian and L. Shao-Hua, Vibration of a single-walled carbon nanotube 

embedded in an elastic medium under a moving internal nanoparticle, J. Applied 

Mathematical Modelling 37, 6940–6951, 2013. 



121 

 

[12] M. Mirramezani and H. R. Mirdamadi, Effects of nonlocal elasticity and Knudsen 

number on fluid–structure interaction in carbon nanotube conveying fluid, J. Physica E 44 

2005–2015, 2012. 

[13] L. Baohui, G. Hangshan, L. Yongshou and Y. Zhufeng, Free vibration analysis of 

micropipe conveying fluid by wave method, J. Results in Physics 2, 104–109, 2012. 

[14] E. Ghavanloo, F. Daneshmand and M. Rafiei , Vibration and instability analysis of 

carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, J. 

Physica E 42, 2218–2224, 2010. 

[15] L. Wang, H.T. Liu, Q. Ni and Y. Wu, Flexural vibrations of microscale pipes conveying 

fluid by considering the size effects of micro-flow and micro-structure, J. of Engineering 

Science 71, 92–101, 2013. 

[16] L. Wang and Q. Ni, A reappraisal of the computational modeling of carbon nanotubes 

conveying viscous fluid, J. Mechanics Research Communications 26, 833-837, 2009. 

[17] T. P. Chang, Thermal–mechanical vibration and instability of a fluid-conveying 

single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity 

theory, Applied Mathematical Modelling 36, 1964–1973, 2012. 

[18] R. Ansari, R. Gholami and S. Sahmani, Dynamic stability of embedded single walled 

carbon nanotube including thermal environment effects, J. Scientia Iranica F 19, 919-925, 

2012. 

[19] A. Azrar, L. Azrar, A. A. Aljinaidi and M. Hamadiche, Dynamics instability analysis of 

multi-walled carbon nanotubes conveying fluid. J. Advanced Materials Research Vol. 682, 

153-160, 2013. 

[20] A. Azrar, L. Azrar and A. A. Aljinaidi, Length scale effect analysis on vibration behavior 

of single walled Carbon NanoTubes with arbitrary boundary conditions. Revue de Mécanique 

Théorique et Appliquée, Vol. 2, 475- 485, 2011. 

[21] A. Azrar, L. Azrar and A. A. Aljinaidi, Analytical and numerical modeling of higher 

order free vibration characteristics of single walled Carbon NanoTubes, submitted to J. 

Physica E, 2014. 

[22] L. Jing, F. Shang-Chun, L. Yan and G. Zhan-She, Dynamic stability of parametrically 

excited linear resonant beams under periodic axial force, J. Chin. Phys. B Vol.21, No. 11 

110401, 2012. 

[23] C. Shu, Differential Quadrature and its Application in Engineering, Spinger, London, 

2000. 

[24] Z. Zong and Y. Zhang, Advanced Differential Quadrature Methods, Chapman & 

Hall/CRC, Taylor & Francis Group, 2009. 

[25] M. P. Paidoussis, Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol.1, 

Academic Press, 1998. 



122 

 

Appendix A 
G= 

 

2 6

1
Y

2
Y

 
0 0 





1

3

1

2

 

Y

Y

 
2

1

4
Y

 
0 0 0 2

1

4
Y

 
0 0  

0 
2 4

2

6

1 1

2 2

1
+Y

4



 

Y Y

M

 1 3

5

1 1
(
2 4

1
Y )

2



 

Y Y  
0 0 

2

4

1

4

1

2



 

Y

Y

 
1

3

1
(
2

3
)

4



 

Y

Y

 

0 0 2

1

4
Y

 
0  

0 
1 3

5

1 1
(
2 4

1
Y )

2



 

Y Y  4 6

2

1
+Y

2

1

4
 

Y

M

 
0 0 

1

3

1
(
2

3
)

4
 

Y

Y

 4

2

1

2

1

4


Y

Y

 
0 0 0 2

1

4
Y

  

1Y  0 0 
2

2

6

1

4

+Y 

Y

M

 
5Y  0 0 

 

4

1

2
Y

 
1

3

(

)



 

Y

Y
 0 0  

2Y  0 0 5Y  2 6

2

3
+Y

4

 

Y

M

 
0 0 





1

3 

Y

Y

 
4

1

2
Y

 
0 0  

0 
4

2

1

2

1

4


Y

Y

 
1

3

1

2

1
)

4
 

Y

Y

 
0 0 

2 6

2

1
+Y

2

9

4
 

Y

M

 
5

3
Y

2
 

 
0 0 4

1

2
Y

 
1

3

(

5
)

4



 

Y

Y

 

 

0 
3

1

1
(
4

1
)

2
 

Y

Y

 
4

1

2
Y

 
0 0 5

3
Y

2


 
2 6

2

1
+Y

2

9

4
 

Y

M

 

0 0 
 1

3

5
)

4
 

Y

Y

 

4

1

2
Y

  

0 0 0 4

1

2
Y

 1

3

1
(

2

) 

Y

Y

 
0 0 2 6

2

1
+Y

2

4 

Y

M

 
52 Y   0 0  

2

1

2
Y

 
0 0 3 1

1

2
Y Y

 
4

1

2
Y

 
0 0 52 Y  

2 6

2

1
+Y

2

4 

Y

M

 
0 0  

0 2

1

4
Y

 
0 0 0 4

1

2
Y

 1

3

1
(
2

3
)

4
 

Y

Y

 
0 0 2

1

2
Y

 
5

5
Y

2
 

  

0 0 2

1

2
Y

 
0 0 

1

3

1
(

2

3
)

4



 

Y

Y

 
4

1

2
Y

 
0 0 5

5
Y

2


 
2 6

2

1
+Y

2

25

4
 

Y

M

 

 

            

 

 

 

 

 



123 

 

where iY are given by : 
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Table 4.1 Resonant frequencies of a simply supported SWCNT for   = 0, 2, 4 and (μ = 0, 

β=0, α = 0, Ts=0) 

V0 ω DQM Finite difference method Analytical 

V0=0 

 N=7 N=10 N=15 N=15 N=50 N=100  

ω1 3.1490 3.1415 3.1416    3.1359 3.1411  3.1415 3.1416 

ω2 5.9207 

5.9207 

6.2783 6.2832     6.2374     6.2791     6.2822 6.2832 

ω3 7.8871 9.6355 9.4247     9.2705     9.4108     9.4213 9.4248 

V0=2 
ω1 2.7513 2.7523 2.7520    2.7453  2.7514  2.7519 2.7520 

ω2 6.1219 6.1207 6.1219     6.0747     6.1175     6.1206 6.1218 

ω3 9.5479 9.3227 9.3205     9.1647     9.3065     9.3171 9.3204 

V0=4 

ω1 1.9439- 

1.9439i 

1.9473 + 

1.9473i 

1.9464 - 

1.9464i 

1.9474 + 

1.9474i 

1.9465 - 

1.9465i 

1.9464 + 

1.9464i 

1.9463 - 

1.9463i 

ω2 5.5630 5.5421 5.5468  5.4930 5.5418  5.5454 5.5467 

ω3 9.2757 8.9954 8.9869     8.8243     8.9722     8.9832 8.9868 

 

Table 4.2 Resonant frequencies of a clamped-clamped SWCNT for   = 0, 4, 7 and (μ = 0, 

β=0, α = 0, Ts=0) 

V0 ω DQM Finite difference method Analytical 

V0=0 

 N=7 N=10 N=15 N=15 N=50 N=100  

ω1 4.7498 4.7299 4.7300 4.6875 4.7261 4.7291 4.7300 

ω2 7.6435 7.8483 7.8532 7.6999 7.8390 7.8496 7.8532 

ω3 9.3753 11.1148 10.9956 10.6334 10.9615 10.9871 10.9956 

V0=4 
ω1 4.1809 4.1349 4.1354 4.0896 4.1313 4.1344 4.1354 

ω2 7.1085 7.4487 7.4543 7.2959 7.4397 7.4506 7.4543 

ω3 8.9864 10.8456 10.6968 10.3267 10.6621 10.6880 10.6968 

V0=7 

ω1 1.989+

1.9899i 

2.2783+ 

2.2783i 

2.2769+ 

2.2769i 

2.2975+ 

2.2975i 

2.2789+ 

2.2789i 

2.2774+ 

2.2774i 

2.2769+ 

2.2769i 

ω2 5.4779 6.3596 6.3697 6.1767 6.3523 6.3654 6.3697 

ω3 7.8852 10.230 9.9951 9.5971 9.9581 9.9857 9.9949 
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Figure 4.1 Real and imaginary parts of the first complex mode shape mass normalized of a 

simply-supported SWCNT at different dimensionless small flow velocities V0, (β=0.01, α=0, 

μ=0.1, Ts=0.1, k=0.5) 

 

 

 

 

 

 

 

Figure 4.2 Real and imaginary parts of the first complex mode shape mass normalized of a 

simply-supported SWCNT at different dimensionless flow velocities V0, (β=0.01, α=0, μ=0.1, 

Ts=0.1, k=0.5) 

 

 

 

 

 

 

 

Figure 4.3 Real and imaginary parts of the first complex mode shape mass normalized of a 

clamped SWCNT at different dimensionless small flow velocities V0, (β=0, α=0, Ts=0, k=0) 
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Figure 4.4 Real and imaginary parts of the first complex mode shapes mass normalized of a 

clamped SWCNT at different dimensionless flow velocities V0, (β=0, α=0, Ts=0, k=0) 

 

 

 

 

 

 

 

 

Figure 4.5 Real and imaginary parts of the second complex mode shapes mass normalized of 

a clamped SWCNT at different dimensionless flow velocities V0, (β=0, α=0, μ=0, Ts=0, k=0) 

 

  

 

  

 

 

 

 

Figure 4.6 Real and imaginary parts of the third complex mode shapes mass normalized of a 

clamped SWCNT at different dimensionless flow velocities V0, (β=0, α=0, μ=0, Ts=0, k=0) 
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Figure 4.7 Real and imaginary parts of the first and second complex mode shapes mass 

normalized of a clamped SWCNT at a flow velocities V0=9, (β=0, α=0, μ=0, Ts=0, k=0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Real and imaginary parts of dimensionless frequency ω as a function of flow static 

velocity V0 for clamped and simply supported SWCNT based on one-complex-mode one and 

two-real mode approaches. 
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Figure 4-9 Variation of dimensionless frequency of a CC-SWCNT with flow velocity for 

different temperature changes in high temperature (e0a/L= 0.05, K=0 MPa), based on the 

complex mode. 
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Figure 4.10 Real and imaginary dimensionless first, second and third frequency of a cantilever 

SWCNT with flow velocity for different physical parameters. 
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Figure 4.11 One-mode based instability regions of the CNT with different values of the 

viscous parameter β and viscoelastic coefficient α for a simply supported SWCNT. 

 

 

 

 

 

 

 

Figure 4.12 One-mode based instability regions of the CNT with different values of the 

nonlocal parameter μ and the thermal coefficient Ts for simply supported SWCNT. 

 

 

 

 

 

 

 

 

 

Figure 4.13 One-mode and two-modes based instability regions of a simply-supported 

SWCNT with different values of the static velocity V0, (μ = 0, β = 0, α=0, T=0, k=0) 
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Figure 4.14 One-mode and two-modes based instability regions of a clamped SWCNT with 

different values of the static velocity V0, (μ = 0, β = 0, α = 0, T=0, k=0) 

 

 

 

 

 

 

 

 

 

Figure 4.15 One-mode and two-modes based instability regions of a clamped SWCNT with 

different values of the static velocity V0, β = 0.1, (μ = 0, α = 0, T=0, k=0) 

 

 

 

 

 

 

 

Figure 4.16 Two-modes based instability regions of the SWCNT with different values of the 

fluid viscosity β for simply supported (Left) and clamped (Right) boundary conditions for μ = 

0.1, α = 0.001 
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Figure 4.17 Instability regions of a clamped SWCNT with different values of the static 

velocity V0 based in various modal approaches, β=0.1 and (μ = 0, α = 0, T=0, k=0) 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 One-complex mode based parametric instability regions of a clamped SWCNT 

with respect to the static velocity V0 for different values of β, (μ = 0, α = 0, T=0, k=0) 
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Figure 4.19 Parametric instability bifurcation points for different values of β 

 

 

 

 

 

 

 

Figure 4.20 One real-mode time responses for μ = 0.1, β = 0.01, V0= 2, α = 0.001, Ts=20, 

η=0.1 and different values of Ω (Ω/2=7, 7.5, 8) for a simply supported SWCNT. 

 

 

 

 

 

 

 

 

Figure 4.21 Two-mode time responses for μ = 0.1, β = 0.01, V0= 4, α = 0.001, Ts=20, η=0.14 

and different values of Ω for a C-C- SWCNT. 
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Chapiter V: 

Shells based dynamics instability and nonlinear vibration 

analysis of multi-walled carbon nanotubes conveying fluid 

 
 

 

Abstract:  

The dynamic instability and the nonlinear vibration of conveying fluid multi-walled carbon 

nanotubes (MWCNT) are analyzed. Based on the nonlocal elasticity theory, Donnell‘s shell 

model, potential flow theory and the van der Waals interaction between walls, the governing 

partial differential equations are formulated. Using the Galerkin procedure, the time and 

harmonic formulation for the transverse response of each wall are explicitly given. For linear 

analysis, the free vibration and the dynamic instability behavior are investigated for 

multiwalled CNT with respect to the considered parameters.  The small scale parameter and 

the internal fluid interaction effects on the dynamic behaviors of the MWCNT-fluid system as 

well as the instabilities induced by the fluid velocity are investigated.  

Using the harmonic balance method the nonlinear amplitude-frequency responses are 

obtained and the effects of the influencing parameters on this behavior are analyzed. 
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1. Introduction 

Cylindrical shells conveying fluid are found in numerous industrial and engineering 

applications. Therefore, the dynamics of shells containing flow fluid has been studied 

extensively. For thin shells containing fluid, dynamic instability are major problems due to 

many different loads, including fluid flow. Fluid flows inside carbon nanotubes (CNTs) have 

become an attractive research topic in recent years, and a great deal of literature has been 

published on topics such as the noncoaxial vibration of fluid-filled multi walled-carbon 

nanotubes, Yan et al [1]. Soltani et al [2] proposed nonlinear free and forced vibration 

analysis of a single walled carbon nanotube using shell model. There are three major 

categories for simulating the mechanical properties of the CNTs: experience, molecular 

dynamic simulation (MDS) and continuum mechanics. Considering the limited application of 

the MDS, continuum modeling is considered to be an appropriate method of investigating the 

mechanical properties of CNTs. The theory of nonlocal elasticity, Eringen [3,4], allows 

accounting for the small scale effect that is very significant when dealing with micro and 

nanostructures. He et al [5] and Yan et al [6] studied pressure dependence of the instability of 

multiwalled carbon nanotubes conveying fluids. Wang [7] and Yan et al [8] studied the 

dynamical behavior of carbon nanotubes conveying fluid. Chang and Liu [9] used small scale 

effect on flow induced instability of double walled carbon nanotubes. Wang et al [10] 

proposed the coupling vibration of fluid-filled carbon nanotubes. Dong et al [11] used the 

wave propagation in fluid-filled multi-walled carbon nanotubes embedded in elastic matrix. 

Hu et al [12] proposed the nonlocal shell model for elastic wave propagation in single and 

double-walled carbon nanotubes. Wang and Ni [13] discussed vibration and instability of 

carbon nanotubes conveying fluid. Yan et al [14] studied nonlocal effect on axially 

compressed buckling of triple-walled carbon nanotubes under temperature field. Vibrational 

analysis of fluid-filled carbon nanotubes using the wave propagation approach has been 

proposed by Natsuki et al [15]. The effect of small size on dispersion characteristics of wave 

in carbon nanotubes has been studied by Xie et al [16]. Azrar et al [17, 18] developed higher 

order free vibration analyses of single walled carbon nanotubes with various boundary 

condition types. Azrar et al [19] discussed the nonlinear vibration analysis of actively loaded 

sandwich piezoelectric beams with geometric imperfections. Amabili et al [20-22] studied the 

nonlinear vibration and stability of circular cylindrical shells conveying flowing fluid. 

https://www.deepdyve.com/lp/elsevier/nonlinear-vibration-analysis-of-actively-loaded-sandwich-piezoelectric-gI4cJes0VX?articleList=%2Fsearch%3Fquery%3Dthe%2Beffect%2Bof%2Bstatic%2Bloading%2Band%2Bimperfections%2Bon%2Bthe%2Bnonlinear
https://www.deepdyve.com/lp/elsevier/nonlinear-vibration-analysis-of-actively-loaded-sandwich-piezoelectric-gI4cJes0VX?articleList=%2Fsearch%3Fquery%3Dthe%2Beffect%2Bof%2Bstatic%2Bloading%2Band%2Bimperfections%2Bon%2Bthe%2Bnonlinear
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In this paper, the small scale effects on the flow-induced instability of MWCNTs based on 

Donnell‘s shell model are investigated. The influences of the van der Waals interactions 

between walls, the flow velocity and the nonlocal parameter on the natural frequencies are 

obtained by numerically solving the elaborated transcendental nonlinear algebraic equation. 

The critical flow velocity as well the divergence and flutter instability behaviors are 

investigated for CNT with various number of walls.    

2. Mathematical formulation 

Let us consider a multiwalled carbon nanotube of length L, innermost radius RI, outermost 

radius Ro, diameter d and thickness h. The cylindrical coordinate system (x, ,z) is considered 

where  0;x L is the longitudinal,  0;2  is the circumferential and  / 2; / 2z h h  is the radial 

coordinates respectively. The fluid inside the inner tube is assumed to be ideal incompressible 

and the flow is driven by pressure. Based on the nonlocal shell and van der Waals models the 

governing partial differential equations will be given. 

2.1   Nonlocal shell model 

Based on the nonlinear Donnell shell theory, the strain tensors at each cylindrical wall are 

given:   

2 2
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,
22

z
u w wi i i i
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x x x
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 
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2
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(5.1)
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  
     

z
u v w w wi i i i i i

and
x

R x R x xi i

    

where Ri is the radius, ,i iu v and iw are displacements in the (x, ,z) directions respectively of 

the i
th

 wall. Based on the nonlocal theory, the temperature effects are introduced through the 

stress-strain relationship and the constitutive equations of CNTs are [2] 

2 2 2 1
(1 ) ( ) (5.2 )

0 2 11
    



EEi i i
e a T axx xx


      
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2 2 2 2
(1 ) ( ) (5.2 )

0 2 11
    
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EEi i i
e a T bxx


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2 2 2
(1 ) (5.2 )

0
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e a c

x x
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where 0, , andE a e  are Young‘s modulus, Poisson‘s ratio of carbon nanotubes, the internal 

characteristic lengths and the constant appropriate to each material respectively. 
2  is the 

Laplace operator and xx and  are respectively the normal stress in the x and the y 

directions and x is the shear stress on the x  plane of the middle surface, T is the 

temperature change, 1 and 2  are the thermal expansion coefficients in the axial and the 

circumferential directions, respectively. The force and moment resultants, which now include 

temperature effects, are given by: 

/ 2 / 2 / 2

/ 2 / 2 / 2
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the substituting of Eq (5.3) into Eq. (5.2) leads to the following nonlinear partial differential 

equations 
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mechanical loads, and ,M TN N   are the membrane force caused by the thermal loads. The 

nonlinear governing equations of motion of the multi-walled carbon nanotubes are: 

.
1 1
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where pi is the van der Waals force,  is the mass density of the carbon nanotubes. 
i

xQ  and 

iQ  are the equivalent static shearing stresses of the i
th

 wall respectively. 
0

MN  express the pre-

stress caused by mechanical loads, 
0 0,xT TN N  are the pre-stress caused by the thermal loads 

and ( , )if x y  is the stress function. 

2.2    Linear dynamic instability formulations 

For the dynamic instability analysis with respect to the flow velocity, this partial differential 

system (5.6) has to be solved. For the sake of simplicity, only equations related to the 

transverse displacement are retained. The dynamic governing equations of N-layered WCNTs 

conveying fluid are then reduced to the following partial differential system: 
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For convenience, non-dimensional parameters and the following variables are used. 
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The following coupled differential equations are then obtained. 
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Where ( , )ip x   is the interaction on tube i due tube j and the van der Waals interaction 

coefficients 
ijc  are given by: [1] 

12 6
1001 112013 7

(5.10)
4 2 11 4 2 5

3 9
 
 
 
  

c E E Rij ij ij j
a V R a V Rs r r s r r

 

 
 

where the subscripts i and j denoted the i
th

 and j
th

 layers, respectively, and 
7 13andij ijE E  are the  
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elliptical integrals given by:

  
4

/2
( ) (5.11)

0 2/2
( )[1 cos( )]


  



R Rd i jm m
E R R and Kij i j ijm

R RK i jij





The resulting flow pressure   is given by: 

22 2 2
( ) 0 01 1 12 , (5.12)

2 2( )

  
   

   

 
  
   

  
 

V Vw w wI k Rf n i

k I k R V x V xs n r ri



 

For the dynamic instability analysis, the PDE (5.9) has to be solved with respect to given flow 

velocity V0, small scale parameter and other physical and material parameters. The transverse 

displacement of the j
th

 tube is assumed to be in the form: 

( )
cos( ) (5.13)


j j

i kx
w A e n




 

where the amplitudes Aj verify the following amplitude frequency relationship: 

 

 

2
(1 )2 2
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2
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To determine the nontrivial solutions of Ai, the following characteristic equation has to be 

solved. 

2 2 2
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5)

 

This formulation allows one to get the natural frequencies i (i=1, 2,…, N) for N walled CNT 

with respect to the considered physical and material parameters. The dynamic instability 
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behavior related to the flow velocity can be investigated based on the presented 

methodological approach.

 

2.3   Reduced nonlinear dynamic formulation 

By neglecting the axial and the circumferential displacement (u,v) a reduced partial 

differential system on the transverse displacements w in each wall is resulted. From Eqs. (5.5-

5.7), the following nonlinear partial deferential system is obtained. 

 
2 2 2

4 2

0 2 2 2

2 2 22 2 2 2

2 2 2 2 2 2 2 2
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The multiwalled is assumed to be filled with a moving fluid in the inner cylinder. Based on 

some mathematical developments, the flow pressure  given by: [4] 

2 2 2
1

21 1 1

2 2

1

.
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in which f  is the mass density of the fluid, 
nI is the modified Bessel function of order n, 

prime (‘) is the derivative with respect to the spatial variable and V0 is the uniform mean flow 

velocity of conveying fluid. The total forces can be given: 

0 2 2 0 1

,2
.
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where cij the van der Waals interaction coefficients. For the dynamic instability analysis, the 

PDE (5.16) has to be solved with respect to given flow velocity V0, small scale parameter e0 

and other physical and material parameters.  

It is noted that the pre-stressed boundary conditions are not satisfied locally at the two end 

sections. It is easy to demonstrate that the boundary conditions are globally satisfied when an 

integration of equation (5.18). The transverse displacement of the j
th

 tube is assumed to be in 

the form [2]

 2
2 2( ) sin ( ) sin ( ) ( ) sin ( ) (5.26)

4
 i i i

i

m x m xn
w A t n A t

L R L

 


where m, n denoted the axial and the circumferential wave number, and A(t) is the time-

dependence amplitude of the vibration. Substituting Eq. (5.26) into Eq. (5.7) and solving for 

particular solution, we have: 

(5.27)
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The Galerkin method is applied to project equation (5.29), where equations (5.26) and (5.27) 

are used and equating the result to zero, one has: 

2

0 0
( , ) ( , ) 0 (5.30) 
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After some mathematical developments and neglecting the viscous velocity effects, the 

following highly nonlinear differential equations for unknown functions i (t)  in the non-

dimensional form, are obtained: 
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are the vibration amplitudes defined by: 

i i(t)= A (t)/h  

It has to be noted that equation (5.32) is highly nonlinear differential system and its solution 

necessitates well adopted methods of course in time domain, this system can be solved by 

classical methods such as Runge-Kutta or Newmark methods. The time response can then be 

obtained with respect to the considered parameters. But, in frequency domain a hard analysis 

is resulted in order to get the nonlinear frequency-amplitude dependence and in internal 

responses with respect to the influencing parameters. 

The corresponding linear frequencies can readily be evaluated by neglecting the nonlinear 

terms in equation (5.30) and taking ( ) sin ( )i it Y t  
 
where Yi is represent the amplitudes of 

the tubes, as 

b b
; (5.41)
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For nonlinear vibration analysis, the first order harmonic leads to the following nonlinear 

algebraic system. 
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3 Numerical results and discussions 

For numerical results, the used physical and material parameters are as follows: the wall 

thickness. 0.34 ,h nm  the mass density of the tube is
3

s 2.3g / cm ,   the mass density of the 

fluid 

 is
3

f 1g / cm , the Poison‘s ratio 0.19, the effective bending stiffness 0.85 ,D eV in 

plan stiffness 2360 / ,Eh J m and the parameters used in the van der Waals interaction 

coefficient are:  

1.42 , 3.4 , 2.968    a A A meV  and the radius 1 (i -1)h, i=1,2,..., N iR R . 
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In this paper, the developed methodological approach is illustrated for multi-walled CNTs and 

the effect of various physical and material parameters on the dynamic instability can be 

obtained linear dynamic analysis.  

Comparisons of the numerically obtained free vibration frequencies for a three WCTs and the 

associated amplitude ratios A1/A2 are listed in table 5.1 for e0=0 the some results presented in 

[1] than those are obtained. The first sixth natural frequencies of a six-walled carbon nanotube 

with and without nonlocal effect are presented in table 5.2 with different wave numbers n and 

m. It is observed that these frequencies decrease by increasing the innermost radius R1 even 

for 0e a 0 . The effects of the various other parameters such as n, m and the van der Waals 

parameters can be easily analyzed. The dynamic instability can be investigated with respect to 

the fluid velocity V for CNT with a chosen number of walls and the frequency-velocity 

dependence can be obtained for CNT with different numbers of walls. For a double walled 

CNT, the effect of the wave number m is shown in figure 5.1 and the effect of van der Waals 

interaction in figure 5.2 for R1=11.9 nm and the ratio L/R2=12. It is observed, in figure 5.1, 

that the instability type is first the divergence and the signed is flutter. By increasing V, the 

divergence and flutter instabilities occur and m has a strong effect on this instabilities. For the 

van der Waals effect, it is observed in figure 5.2 that the divergence and flutter critical 

velocities are increased by the van der Waals parameter. The small scale effect on the 

frequency-velocity dependence is presented in figure 5.3 for e0a =0 and e0a=0.4nm. 

Increasing this parameter leads to a decrease of the natural frequencies as well as the critical 

divergence and flutter velocities as clearly presented in figure 5.3. The flow velocity effect is 

also shown in this figure. It is observed that this damping has no effect on the divergence 

critical velocity.  

At low and room temperature, the used thermal expansion coefficients α1=-1.6e-6, α2=-0.5e-6, 

and at high temperature α1=1.1e-6, α2=0.8e-6. The amplitude-frequency response curves of 

the nonlinear free vibration of DWCNT are shown in figure 5.4. It can be seen that the 

amplitude- frequency curves of the inner and outer tubes are similar at lower frequencies and 

the difference can be discriminated at high frequencies. Figure 5.5 shows the influences of the 

mass of fluid and van der Waals force on the nonlinear free vibration frequencies. It can be 

seen that these curves tend to the case that without vdW force and the nonlinear free vibration 

frequencies of DWCNTs decrease with the increase of the mass of fluid. The thermal and 

nonlocal effects on the amplitude versus the frequency of the DWCNTs for R1=3.4 nm, 



145 

 

(m,n)=(1,8) and V=1e
3
 ms

-1
 are shown in figure 5.6. It is demonstrated the nonlinear 

frequencies decrease by increasing of the nonlocal parameter and temperature.  

Figure 5.7 shows nonlinear the free vibration response of double walled carbon nanotube with 

different axial wave numbers and n=1, L/Ro=10, RI=3.4nm. The non-dimensional vibration 

frequency ω/ω1 is employed in which ω1 denoted linear free vibration frequency of innermost 

tube. It is demonstrated that m has a strong on the back bone curve. For m=1, 4, 5, in fact 

usual in nonlinear vibration analysis of shell and beam with initial geometrical imperfect [19] 

the effects of the other physical and geometrical parameter of the other physical and 

geometrical parameter on this under critical behaviors is investigated.  

In figure 5.8, the amplitudes frequency response are shown for several values of the nonlocal 

parameter and m=5. The dynamical behavior shows softening type non-linearity for all the 

nonlocal parameter range explored. It is interesting to note that the maximum amplitude of 

oscillation varies with the nonlocal parameter. It can be seen that the increase of the non-local 

parameter will increase the nonlinearity of vibration. Figure 5.9 shows the influence of the 

number of walls on large amplitudes-vibration frequency. It is seen that the amplitude and 

frequency of all tubes are similar to each other. The increase of the number of the walls 

results in a less nonlinear vibration response due to the influence of the vdw interaction. The 

influence of the circumferential wave number on the large amplitudes on vibration frequency 

for single and double walled carbon nanotubes with different circumferential wave number 

are shown in figures (5.10, 5.11). A strong effect parameter is observed.  Figure 5.12 shows 

the influence of the fluid velocity on the large amplitudes vibration frequency response. It can 

be seen that the increase of the fluid velocity results in a less nonlinear vibration response. 

4 Conclusion 

This paper presents the dynamic instability analysis of multiwalled CNTs conveying fluid 

based on the nonlinear Donnell shell model. The partial differential model taking into 

account, the van der Waals interaction as well as the fluid-shell interaction is presented. Based 

on the transverse displacement at each wall, coupled nonlinear partial differential system is 

resulted. The dynamic instability modeling is presented in space and frequency domains. 

Based on the Galerkin procedure a highly nonlinear differential system is formulated in time 

domain. These presented formulations allow one to investigate the free vibration, the dynamic 

instability behavior with respect to the fluid velocity as well as the free nonlinear vibration 

behaviors with respect to the considered material and physical parameters. The free vibration 
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and flow velocity-frequency dependence are analyzed with respect to various physical and 

material parameters. The obtained results showed a strong dependence between the fluid 

velocity and the frequency of MWCNTs. The effect of the van der Waals interaction between 

tubes is discussed and results show that the van der Waals interaction and the small scale 

effects may significantly influence the stability of multiwalled CNT. It has to be noted that the 

nonlinear free vibration frequencies of double walled CNTs are deeply affected by 

temperature, fluid mass and velocity and the van der Waals interaction.  

For the nonlinear free vibration, simply supported multi-walled carbon nanotubes conveying 

fluid are considered. The amplitude frequency dependence associated on the nonlinear free 

vibration MWCNT are obtained by harmonic balance method. The influences of nonlocal 

parameters, the vdW force and the thermal effects are discussed. Softening effect leading to 

under critical behaviors are obtained. The effects of the considered parameters on this under 

critical behavior are investigated. 
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Table 5.1 Linear resonant frequencies of a three WCNTs, L=10 m R3, e0=0. 

 

 

Table5.2 Linear resonant frequencies of a Six WCNTs, L=10 m R6. 

 

 

 

  

With fluid 
01000, V =0 f

 

Variables Present 

(10
12

Hz) 

[1] Present [1] Present 

(10
12

Hz) 

[1] Present [1] 

R1 m n 1/R2 1  
1  A1/A2 A1/A2 

2  
2  A1/A2 A1/A

2 3.4 1 5 10 5.1859 5.186 1.0590 1.059 1.5519 1.5518 -0.5560 -0.556 

3.4 4 5 10 5.2067 5.207 1.0579 1.058 1.5545 1.5544 -0.5617 -0.562 

3.4 1 5 20 5.1849 5.185 1.0590 1.059 1.5517 1.5516 -0.5557 -0.556 

3.4 1 8 20 5.7720 5.772 1.0338 1.034 1.6173 1.6173 -0.6891 -0.689 

6.8 1 5 20 2.3054 2.305 1.0302 1.030 1.3981 1.3980 -0.3722 -0.372 

With fluid (x10
12 

Hz), V0=0 

 R1 m n 1  2  
3  

4  5  
6  

e0=0 

3.4 1 5 4.9116

 

 

7.1004

 

11 .772

 

16.621

 

20.631

 

23.224

 
3.4 4 5 4.9164

 

 

7.1109

 

11.779

 

16.625

 

20.633

 

23.225

 
6.8 1 5 2.5455

 

 

5.3883

 

10.675

 

15.858

 

20.081

 

22.799

 
6.8 4 5 2.5506 5.3994 10.683 15.863 20.083 22.800 

e0=0.33 

3.4 1 5 4.9039 7.0942 11.7690 16.6180 20.6284 23.2217 

3.4 4 5 4.9086 7.1047 11.7760 16.6224 20.6308 23.2228 

6.8 1 5 2.5442 5.3878 10.6745 15.8580 20.0808 22.7991 

6.8 4 5 2.5493 5.3989 10.6824 15.8624 20.0828 22.7996 



149 

 

 

 

 

 

 

 

 

 

Figure 5.1 Real and imaginary frequency parts with respect to the fluid velocity V of a double 

WCNTs (L/R2=12, n=2) and e0a=0 for different wave numbers m. 

 

 

 

 

 

 

Figure 5.2 Real and imaginary frequency parts with respect to the dimensionless fluid velocity 

V of a DWCNTs (L/R2=12, n=2) and e0a=0. Dotted lines, model without vdW, solid lines, 

model with vdW. 

 

 

 

  

 

 

Figure 5.3 Real and imaginary frequency parts with respect to the dimensionless velocity V 

and e0a=0 and e0a=4nm. Dotted lines, model with damping, solid lines, without damping of 

double WCNTs (L/R2=12, n=2, m=1). 
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Figure 5.4 Nonlinear amplitude-frequency curves associated to free vibrations of DWCNTs 

for the case R1=6.8nm, (n,m)=(1,5),  L=20R1 for ρf=0, V0=0, e0=0 and T=0k 

 

 

 

 

 

 

 

Figure 5.5 Amplitude frequency backbone curves with and without fluid and vdW interaction 

for R1=3.4 nm, (m,n)=(1,8) and V=1e
3
 ms

-1 

 

 

 

 

 

 

 

Figure 5.6 Thermal and nonlocal parameter effects on the nonlinear amplitude versus the 

frequency of the DWCNTs for R1=3.4 nm, (m,n)=(1,8), V=1e
3
 ms

-1
 and T=40K 
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Figure 5.7 Axial wave number effects on the large amplitude frequency response associated to 

the free vibration of DWCNT with n=1, L/Ro=10, RI=3.4nm. 

 

 

 

 

 

 

Figure 5.8 Nonlocal parameter effects on the large amplitudes frequency response associated 

to the free vibration of DWCNT with m=5, n=1, L/Ro=10, RI=3.4nm. 

 

 

 

 

 

 

 

Figure 5.9 Layers number effects on the large amplitudes frequency response associated to the 

free vibration of MWCNT with L/Ro=10, RI=3.4nm. 
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Figure 5.10 Circumferential wave number effect on large amplitude frequency response for 

DWCNT with L/Ro=10, RI=3.4nm. 

 

 

 

 

 

 

 

 

Figure 5.11 Fluid velocity effect on the large amplitude frequency response for DWCNT with 

L/Ro=10, RI=3.4nm, m=1; n=1; ρf=1e3; e0=0.3; T=40; 
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Chapiter VI: 

Parameters uncertainty effects on the dynamic behavior of 

fluid conveying carbon nanotubes under a random excitation 
 

 

Abstract 

 

 The influence of parameters uncertainties on the dynamic behavior of 

carbon nanotubes conveying fluid and subjected to a random harmonic 

transverse excitation is elaborated. The parameters are assumed to be random 

and may follow Gaussian, exponential and uniform distribution laws. Based on 

the nonlocal Bernoulli beam model, several random parameters are considered. 

The resulted coefficients depend nonlinearly on the random coefficients and the 

number of considered random parameters 10, the resulting stochastic problem 

needs powerful stochastic methods to get accurate results. Frequency and time 

domains are considered and various stochastic methodological approaches are 

adopted for numerical analysis. For the space domain, the differential quadrature 

method is used. This leads to a random differential system that needs to be 

solved using stochastic procedures.  

To shed some light on the parameters uncertainly effects on the behaviors of 

CNT, frequency domain as well as one mode and multimodal time domain 

formulations are used. Monte Carlo and an internal random coefficient method 

based on the general polynomial chaos are used herein for the dynamic analysis. 

 

 

This work is under finalization 

Title: Parameters uncertainty effects on the dynamic behavior of fluid conveying carbon 

nanotubes under a random excitation  

Authors: A. Azrar, M. Bensaid, L. Azrar and A. A. Aljinaid  
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1. Introduction 
In recent years, Carbon NanoTubes (CNT) have been considered good candidates for 

many refined nanoscaled technologies and devices due to their impressive mechanical and 

electrical properties. In Nanoscale design, the prediction of geometrical and physical 

parameters or properties and particularly the prediction of the uncertainty effects of these 

parameters and its propagation are presently the main challenges. During the fabrication 

process or experimental measurements, it is difficult to control and predict, accurately, the 

physical and geometrical parameters. The values of these parameters are then subjected to 

significant uncertainties and thus the performance of the designed nano structures is 

inevitably altered.  

In fact, uncertainties are inherent in measuring/testing, understanding, and modeling of these 

downscale nanostructures. Efficient numerical models are required for the behavior analysis 

of these small scale structures accounting for parameters uncertainties. This deeply motivates 

the present study on the effects of the parameters uncertainty on the dynamic and static 

behaviors of Carbon NanoTubes. 

In the open literature; the most available models; namely the continuum elasticity and 

molecular dynamics are used to simulate nano behaviors in either the frequency or time 

domains. However, the main limitation of the available approaches is that the proposed CNT 

models are deterministic. The nanostructure is described with predefined values of its 

mechanical, electrical and geometrical parameters. At this down scale, the impact of 

parameters uncertainty can be increasingly significant and needs to be taken into account.  

Uncertainties in model parameters or inputs are characterized by their probability density 

functions (pdfs). For uncertainty analysis, the propagation of these pdfs through the model 

equations and the final pdfs of the model outputs have to be investigated. A number of 

techniques are available for uncertainty sensitivity and propagation such as Monte Carlo 

procedure [1], perturbation method, sensitivity analysis methods [2] and polynomial chaos 

[3,4] among others. Monte Carlo (MC) method has been the mainstream uncertainty 

quantification technique for decades. It is the most used method and is valid for a wide range 

of problems. However, it is very computationally expensive since it requires a large number 

of simulations using the full model. 

An alternative approach is based on the expansion of the response in terms of a series of 

polynomials that are orthogonal with respect to mean value operations. Polynomial chaos was 

first introduced by Wiener [5] where Hermite polynomials were used to model stochastic 
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processes with Gaussian random variables. It is noted that a number of other expansions have 

been proposed in the literature for representing non-Gaussian process [6]. Recent review 

papers by Schueller and Pradlwarter [7] and by Stefanou [8] summarized the assessment of 

the past and current status of the procedure for stochastic structural analysis. The potential and 

applicability of various available methods are assessed. 

For random variables and stochastic processes, Polynomial Chaos (PC) representations are 

infinite series of Hermite polynomials of standard Gaussian random variables with 

deterministic coefficients. These series converge in mean square to the functions they replace, 

provided these functions are in L2. For numerical computation, the infinite series are truncated 

leading to a PC based approximation. This polynomial representation provides a framework 

suitable for computational simulation and then widespread in mathematical and numerical 

analysis of many engineering problems. Various problems have been solved based on this 

approximation such as solution of stochastic differential equations [9], linear structural 

dynamics [3,4], nonlinear random vibration [10,11]; soil–structure interaction [12], structural 

reliability [13], etc. The accuracy of the PC approximation has been evaluated by Field and 

Grigoriu [14]. Note that in these studies, only few terms random coefficients are used in the 

PC approximations.  

Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal 

polynomials are studied by Laxmi-Behera and Chakraverty [15]. Adhikari et al [16] studied 

the axial vibration of nonlocal rods using finite element method. M Abu-Hilal [17] proposed 

the vibration of beams with general boundary conditions due to a moving random load.  

In structural mechanics, several methods are currently available to solve a large number of 

problems involving uncertain quantities. In the last decades, the stochastic finite element 

method (SFEM) was used for solving the dynamic response of structures with stochastic 

parameters [3,6,8,12]. For large and decomposed structures, the component mode synthesis 

method has been coupled with polynomial chaos expansions at first and second orders to 

compute the frequency transfer functions of stochastic structures by Sarsri et al [18] and their 

time response by Sarsri and Azrar [19]. This coupling procedure is well adapted to large 

structures that can be decomposed in simple ones with few random coefficients. 

The polynomial chaos methods are well suited for the random dynamical systems with a very 

few number of random coefficients. If the number of random variables increases; the main 

limitation of the chaos methods is that the number of unknowns to be determined for solving 

the random systems increases very rapidly with the degree of the classical polynomial chaos 

javascript:void(0)
http://scholar.google.com/citations?user=PeDviZAAAAAJ&hl=fr&oi=sra
http://link.springer.com/article/10.1007/s00419-002-0228-7
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needed for accurate solutions. This limitation makes impossible the use of the polynomial 

chaos of higher degrees for systems with a large number of random variables. The CPU time 

and memory required may be prohibitive. 

An alternative approach called Internal Random Coefficient Method; (IRCM), has been 

recently developed by Ben Said et al [20]. This method is based on generalized polynomial 

chaos and the superposition principle. It can be used to solve random differential equations 

with a large number of random parameters following various distribution laws and an 

excitation decomposed in an arbitrary number of random coefficients. The random parameters 

may be linear or non-linear.  

There two main motivations of the present work. The first one if that there are very few 

research works on the dynamic behavior of nano tubes with random parameters. In nano 

scale, the physical and geometrical parameters are inevitably uncertain. For efficient 

numerical procedures predicting the behaviors of CNT; the uncertainties have to be taken into 

account. The second motivation is that the mathematical modeling used for CNT, depends on 

too many parameters that are nonlinearly dependent on each other. The order of non-linearity 

can be up to six and the number of the random parameters can be up to 10 or even more. This 

kind of problems cannot be accurately handled by the classical polynomial chaos. This kind of 

problems is giving a field of applications to the internal random coefficient method (IRCM). 

In this chapter, the random partial differential equations modeling the dynamic behavior 

of CNT conveying fluid and subjected to a random excitation is presented. Based on the 

differential quadrature method, random algebraic systems are formulated for the free and 

random harmonically forced vibrations. Using the numerically obtained deterministic 

eigenmodes, a multimodal random formulation is resulted in time domain. The internal 

random coefficient method is adapted here to the obtained random differential equation. For 

numerical results, the Monte-Carlo and the IRCM are used. The used parameters are assumed 

to follow uniform; Gaussian and exponential distribution laws with variances of orders 2%; 

5% and 10%. The obtained results are compared to the deterministic prediction in order to 

demonstrate the uncertainty effects on the elaborated numerical results. 



157 

 

2. Mathematical formulation 

2.1  Modeling 

The flexural vibration of a slender carbon nanotube conveying fluid and subjected to random 

transverse excitation, fluid flow and fluid pressure can be modeled by the following partial 

differential equation based on the nonlocal Euler-Bernoulli beam model: 

 

     

4 2 2 2 3 3
2

4 2 2 3 2

4 4 4 2
2 22
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in which ( , )W x t  is the transverse displacement, V is the static mean flow velocity and ( , )q x t

the random transverse excitation. 0, ,E c e a
 
and mt are the Young modulus, viscoelastic 

coefficient of the tube, nonlocal parameter and the mass of the tube respectively. mf is the 

mass of the fluid per unit axial length, Af 
and   are the cross sectional area and the viscosity 

of the internal fluid respectively. These parameters are considered to be random coefficients, 

following some distribution laws. As the main focus of this work is the parameter uncertainty 

effect on the dynamic response of CNT, the used parameters and their dependences are 

explicitly given. The tube section A, inertia moment I, fluid mass mf, the tube mass mt are 

given by: 
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The following material and geometrical parameters are assumed to be random parameters 

following arbitrary distribution laws:  

0

0 1 0 2 0 3 0 4

1

0 5 0 6 0 7 0 0 8

0 9 0 10 0 11

(1 ); (1 ); (1 ); (1 )

(1 ); (1 ); (1 ); (1 ) (6.3)

(1 ); (1 ); (1 );

       

       

      
f s

E R h L

c a e

f s

f s V

E E R R h h L L

c c a a e e

V V H



 

       

         

          

where j , j=1 to11 are the reduced considered random variables and   is the ratio  
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where  0, , , , , , , , , , , .
t

j f sX X E R h L c a e V    and SD is the standard deviation. 

It should be noted that the considered coefficients 
2, , , , , ,f f t fc E I m V m m A V and 

2

0( ) ( )f te a m m  are nonlinear random coefficients and the higher order of nonlinearity is six. 

This higher nonlinearity order may make strong the uncertainty effects of these parameters. 

In addition to the parameters uncertainty effects a random excitation q(x,t) is considered. The 

partial differential equation (6.1) is thus a stochastic partial differential equation and its 

solution necessitates well adapted numerical methods. 

2.2  Quick uncertainly quantification. 

Before elaborating solution procedures of eq. (6.1), a quick uncertainly quantification 

procedure can be established. There are various methods for uncertainly quantification and the 

classical ones are reliability analysis methods based on the probability of structural failure [2]. 

Mostly, the forward uncertainty propagation is analyzed by evaluating the lower order 

moments, means and variance of the output. This procedure will be elaborated based on the 

mainly used methods: Monte-Carlo simulation and general polynomial chaos expansion.  

Note that as the components of the parameters vector X can follow arbitrary distribution laws, 

the probability density function of the vector is not known. In addition, the considered 

coefficients are highly nonlinearly dependent and thus their probability density function is 

also not known. Monte-Carlo methods can be used to get an approximation of the lower order 

moments of the considered coefficients. This can give a quick uncertainty quantification of 

these coefficients. 

2.3  Differential Quadrature discretization. 

For numerical solution, the differential quadrature method is used the space domain. Based on 

this method and after space discretization, the partial differential equation (6.1) can be written 

in the following differential system: 
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The detail of this development is given in the appendix A. The system (6.5) can thus be 

rewritten in the following matrix form: 
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

   

  
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n
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n n ik k

k

m V A m V EI c
C H H e a H H

L L L L

w w w w Q q t q t q t H H I



 

where 
j

ikH  are given in appendix A.

 

Note that the matrices [M], [C] and [K] depend nonlinearity on the considered random 

coefficients and are then random matrices.  

For dynamic analysis, the frequency and time domains are considered and the focus is first on 

the frequency domain. 

3. Frequency domain  

3.1  Frequency-excitation system 

For the frequency analysis, the solution is assumed to be    ( )  i tW t W e  and the excitation

   ( )  i tQ t Q e . The system (6) is then reduced to: 

          2 (6.7)    M W i C W K W Q

The numerical solution of this system leads to the frequency-amplitude relation for the 

considered excitation amplitude and physical parameters. As the system (6.7) is a random 

system, stochastic methods have to be elaborated for numerical solution. 
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3.2  Eigenproblem 

For the analysis of eigenmodes and associated eigenfrequencies, the problem (6.7) is reduced 

to the following eigenvalue problem:  

      
1

1

,

(6.8)0 0
, ,

0





 


    
        

     

ss h

h S D B C

s h S s

Y Y

WM K
Y K K K K K

M K C W





The detail of this transformation and matrices are given in the appendix B. 

As the matrices ,s hM K and SC are random matrices, this leads to a random eigenvalue 

problem. To get the mean and standard derivation of eigenfrequencies and eigenmodes, well 

adapted methods are necessary. 

 In this analysis, the Monte-Carlo method is first used. The numerical solution of equations 

(6.7) and (6.8) allows one to get amplitude-frequency dependence as well as the eigenvalues 

and eigenvectors associated to given boundary conditions and physical parameters. The 

frequency velocity ( )V  dependence can be analyzed with respect to the considered 

random coefficients.  

3.3 Simplified frequency amplitude response 

For a simplified frequency-amplitude response, the one mode frequency analysis is first 

considered. Deterministic eigenmodes, obtained from (6.8) by considering 0,Xj are used. 

The matrix problem (6.7) is then reduced to a simple algebraic one by considering a selected 

eigenmode. 

Let us assumed that the excitation is decomposed into a deterministic a random harmonic 

parts given by: 1 10 11( ) cos( ) cos( )   f t f t f t  
 

 
where 

10 cos( )f t is the harmonic deterministic part and 11f  is the random part. 
 

The random parameter is written as 11 11 n nf f  . 

 where 10f  and 11nf  are deterministic parameters and n is the associated random part.  

Note that, 11 cos( )nf t  may be considered as a kind of load noise. This decomposition 

allows analyzing the departure form an ideally perfect harmonic excitation and its effect on 

the forced response can be analyzed. 
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The solution 1( )q t  is assumed in the form 
1( ) cos( ) sin( )   q t A t B t where A and B are 

random function depending on the Ω, 10 11,f f  as well as on the considered physical and 

geometrical parameters. The following random algebraic system is then resulted: 

2
10 110 2 1

2

1 0 2

(6.9)
0

       
     

      

A f fC C C

BC C C

where 2 1 1 1 1 1 0 1 1 1, , , , , and  C Mw w C Cw w C Kw w w  is a selected deterministic 

eigenmode. 

For clamped-clamped boundary conditions and using the same deterministic CNT parameters 

given in numerical results, the following scalar products are numerically obtained 

2 4

1 1

1 1 1 12 4

3

1 1

1 13

,  = 1.9938e-03; , = -2.2422e-02; , =1.0454e+00; 

,  = -2.6291e-14; ,  =1.9368e-12;

 

 

 

 

w w
w w w w

x x

w w
w w

x x
 

This random algebraic system can be solved by Monte Carlo or generalized polynomial chaos 

for the considered parameters  

4. Time domain 

For time domain analysis, the differential system (6.9) can be solved by numerical method 

such as, New Mark or θ-Wilson methods combined to stochastic procedures. But, as the 

system dimension is large this will necessitates a huge amount of computation time.  For this 

reason the modal analysis is preferred here. The deterministic eigenmodes are used as a modal 

basis decomposition. 

4.1 Multimodal formulation 

The response is ( , )W x t  assumed in the following form: 

1

( , ) ( ) ( ) (6.10)



N

i i

i

W x t w x q t

where ( )iw x are deterministic eigenmodes.

 
Based on this decomposition, the differential system (6.6) is transformed into the following 

reduced matrix problem: 
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          2 1 0 ( ) (6.11)  C q C q C q F t

where the components of the matrices  2C , 1C , 0C and the vector  ( )F t  are given by: 

For i=1 to N and j=1 to N. 

   

 

  

 

2
2

2 0 2

4 2 3
2

1 04 2 3

4 2 3
22 2

0 0 4 2 3

2
2

0 2

, ,

, 2 , , 2 , ;

, , , ; (6.12)

( , )
( ) ( , ), , ;

 
     

   
   

  

  
   

  


 



i

ij f t i j j

i i i i

ij j f j j f j

i i i

ij f j f j j

j j j

w
C m m w w e a w

x

w w w w
C c EI w m V w A w m V e a w

xx x x

w w w
C EI m V e a w m V w AV w

x x x

q x t
F t q x t w e a w

x





 

4.2 One-mode analysis  

For the sake of clarity, the one mode is first considered. In this case, the random differential 

system (6.11) is reduced to the following simplified random differential equation. 

211 1 111 1 011 1 1( ) ( ) ( ) ( ) (6.13)  C q t C q t C q t f t  

where 

   

 

  

 

2
2 1

211 1 1 0 12

4 2 3
21 1 1 1

111 1 1 1 0 14 2 3

4 2 3
22 21 1 1

011 0 1 1 14 2 3

2
2

1 1 0 12

, ,

, 2 , , 2 , ;

, , , ; (6.14)

( , )
( ) ( , ), , ;

 
     

   
   

  

  
   

  


 



f t

f f

f f

w
C m m w w e a w

x

w w w w
C c EI w m V w A w m V e a w

xx x x

w w w
C EI m V e a w m V w AV w

x x x

q x t
f t q x t w e a w

x





 

This simplified equation can be handled by the Monte Carlo simulation and also by the 

conditional expectation method. It is well known, as also tested here, that the Monte Carlo 

and conditional expectation methods generally need a huge amount of computational effort to 

obtain converged results. Another procedure to handle this problem is the classical 

polynomial chaos [21]. But, as the number of random parameter is large, this procedure will 

not provide accurate results. 

Let us note that for the considered problem, we have 10 random variables with a nonlinearity 

of order six. It should be noted that with this order of nonlinearity and the number of random 
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coefficients, the polynomial chaos necessitate a very large CPU time and memory spaces for 

acceptable accuracy. For this reason, the newly developed method called Internal Random 

Coefficient Method (TRCM) is adopted here. An overview of this method is given bellow. 

4.3 Internal random coefficient method 

Let us consider the differential equation (6.13) with the deterministic boundary conditions 

where the multi- indices are dropped: 

2 1 1 1 0 1 1

1 10 1 10

( ) ( ) ( ) ( )
(6.15)

(0) (0)

  


 

C q t C q t C q t f t

q q and q q
 

For more generality, the excitation 1( )f t  is supposed to be a random excitation and its 

expression is given in the following form: 

0 112
( ) ( ) ( ) (6.16)


 

n

j j j jj
f t a a g t

where      and     are deterministic constants and    is a deterministic function, 1 2 11, ,.....  

are the associated to system parameters, for 12j j are used for the random excitation. The 

random variables ξj are supposed pair wise independent random variables having a 

distribution function with respect to the Lebesgue measure denoted by fj with zero mean and 

one for standard deviation. 

Based on the internal random coefficients methods, introduced by Ben-Said et al [21], the 

random coefficients of equation (6.15) are rewriting in the following form:     

0 1 0 0 0

1 1 1 1 1

2 1 2 2 2

( ) ( ) (6.17 )

( ) ( ) (6.17 )

( ) ( ) (6.17 )

 

 

 

E X a

E X b

E X c

C C

C C

C C

 

 

 

where E(Ci) is the mean and ζi is the standard deviation of the random coefficient Ci. 

Using these new expressions, the initial value problem (6.15) is reduced to the following 

simplified random differential equation: 

 
1

2 1

0 10 6

( , )
( ) ( ) ( ) (6.18)

 
   

i
n

i i i j j j jii j

d U t X
E C X a a g t

dt
    

The random variables Xi are gathered on the random vector X
1
 by: 

 1

0 1 2, , (6.19)X X X X

Noted by f 
1
 the distribution function with respect to the Lebesgue measure associated to the 

random vector X
1
, this distribution function is explicitly given from the distribution function 

associated to the random variables (j)1≤ j ≤5. by Ben Said et all [21], 
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The random variables j, appearing in the right hand side of the stochastic equation (6.15), are 

gathered on the random vector X
2
 by: 

 2

3 ,....., (6.20) nX    

Using the independence of the random variables j, this random vector has the distribution 

function with respect to the Lebesgue measure noted by f
2
 and defined by: 

2 2 2

3
( ) ( ) (6.21)

n

k kx f xf

 

The random vector    X
1
 and X

2
 are gathered in the random vector X by: 

 1 2, (6.22)X X X

Let f be the distribution function with respect to the Lebesgue measure associated to the 

random vector X. This distribution is given using the independence between the random 

vector X
1
 and X

2
 by: 

1 1 2 2 1 2( ) ( ) ( ) (6.23)f x dx x x dx dxf f  

  
        denotes the set of square-integrable functions with respect to the weight measure f: 

   n-2

2 n-2 2

R
R : ( ) ( ) (6.24)  f H H x f x dxL

with the following associated inner product: 

n-2R
, ( ) ( ) ( ) (6.25)  H G H x G x f x dx  

Let us consider the polynomial chaos associated to the random vector X. These polynomials 

are be noted by: 

 , (6.26) k k N

The set of these polynomials satisfies the orthogonal conditions:  

, (6.27)  k i k ki 

where: 

, (6.28)  k k k

The solution U(t, X) of the stochastic differential equation (6.18) is a stochastic process 

depending on t and X. The decomposition of this solution according to the polynomials chaos 

basis, is given by: 

0
( ) ( ) (6.29)( , )


 k kk

X u tU t X

Using the M
th

 first terms of the series (6.29), the process         can be approximated by:  
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0
( ) ( ) (6.30)( , )




M

M k kk
X u tU t X

Inserting these expressions in equation (6.18) the following random differential equation is 

resulted: 

 
2 1 1

0 10 0 6

( )
( ) ( ) ( ) ( ) (6.31)

  
     

i
M nk

i i i k j j j jik i j

d u t
E C X X a a g t

dt
   

Projecting this equation with respect to 
1  for l=0 to M, leads to: 

 
2 1 1

1 0 1 10 0 6

( )
( ) , ( ), ( ) (6.32)

  
       

i
M nk

i i i k j j j jik i j

d u t
E C X a a g t

dt
   

For a compact formulation the square matrices T
i
 of order (M+1) and the time dependent 

vector Di of dimension (M+1) are introduced for all integers k, l [0, M] by: 

 

   

1

1

1 0 0 1 16

, ( ) , (6.33)

, ( ) (6.34)


   

  

i i k kl i i k

n

j l j j jj

k l E C X

t a a g t

T

D

  

 
 

The differential system (6.31) is rewritten in the following compact form, for l [0, M] as: 

   
2

10 0

( )
, (6.35)

 
 

i
M k

i ik i

d u t
k l t

dt
T D  

This method is first used here to solve the simplified random differential equation (6.15). It 

will be extended next for the reduced random differential systems of kind (6.11) and in the 

next work to the more general random system (6.6). 

5. Numerical results and discussion  

For numerical results, a CNT conveying fluid with the following parameters is considered. 

0

12 -9 -9 -8 3

0 0 0 0 0 0

-10 1 3 3

0 0 0 0 0

10  Pa; 0.510 m; 0.3410 m; 10 m,  13.620; 1.1210  Pa;

0.4210 m; 23.8, 1000kg/m ; 2300kg/m ; 500 /

     

    

          
f s

f s

E R h L c a e V

E R h L c

a e V m s

  



 

           

The random variables , 1,2,...,j j n  are assumed to follow various distribution laws with 

the ratio ζ given in (6.4). It is assumed here that all the considered variables have the same 

ratio .X  Three different ratios, 2%, 5% and 10% are considered in the performed numerical 

analysis. 

5.1. Dynamic instability analysis. 

In this work, we restrict ourselves to the use of Monte-Carlo method. The random parameters 

are assumed to follow simultaneously uniform, normal and exponential distribution laws. 
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For the dynamic instability analysis, the frequency-fluid velocity relationship is analyzed 

when the excitation is neglected. For this analysis the random variables are assumed to be 

exponential, uniform and normal centered variables with 2%, 5%j and 10%   for j=1,5 

5.2. Fluid velocity buckling problem case 0  

The eigenvalue problem (6.8) can reduced to the fluid velocity buckling eigenvalue problem 

by assuming that ω=0. The following eigenproblem is resulted. 

    2 (6.36)   ela c geoK W V K W
 

Where
 

2

cV  is the buckling fluid velocity, and ,ela geoK K
 
the stiffness and geometric matrices, 

are given by: 

 

 

4

4

2

0 4 2

2 2 2

;

;



  
          
  

ela

f f

geo

EI
K H

L

m me a
K H H

L L L

 

The numerical solution of the random eigenvalue problem (6.36) allows one to get the 

buckling fluid velocity and associated eigenmodes respectively for the considered random 

coefficients and boundary conditions. The Monte Carlo method is used and j  
are assumed to 

be uniform, normal and exponential simultaneously and the random coefficients are with

2%, 5% , 10%.j   The Monte Carlo is used here with 500 random numbers.  

Table 6.1 shows the critical buckling fluid velocity associated to clamped boundary 

conditions for different laws. It is demonstrated from this table that for small deviation, the 

obtained expectations are very close to the deterministic variances. The output results for the 

critical loads are in the confidence interval [mean(Vi)(1-ζ(Vi)), mean(Vi)(1+ζ(Vi))] with an 

approximate probability. The effects of the input random coefficients ζj are presented. The 

accuracy of the obtained results can be improved by increasing the number of random 

numbers.  

5.3.  Dynamic instability analysis 

For the dynamic instability analysis, the random eigenvalue problem (6.8) is solved for 

different values of the fluid speed V by means of the Monte Carlo method. The numerical 

solution of this problem allows one to get the natural frequencies and the associated 



167 

 

eigenmodes for different values of the deterministic fluid velocity. For V=0, the obtained 

results correspond to the free vibration characteristics. Table 6.2 presents the numerical 

results obtained by Monte Carlo method with N=1000 random numbers. The first three 

natural frequencies are given where the random parameters follow uniform, normal and 

exponential laws with the input ζx =2%, 5% and 10%. Deterministic results (ζx =0) are 

presented for comparison. 

The mean, variance and the corresponding ratio ζ(ωi) are presented for the input ζi =2%, 5% 

and 10%. It has to be noted that more random numbers are needed for large input variances. 

For the dynamic instability, the frequency velocity curves are needed at a large range of the 

velocity. This leads to a very large amount of computation with the Monte-Carlo method. 

Figure 6.1 shows the deterministic curve and the mean value of the first frequency with 

respect to the velocity when the random parameters follow the uniform distribution low with 

ζx =2% and 5%. Only 500 random numbers are used. It is demonstrated that the mean values 

agree well with the deterministic values and the confidence interval obtained by the bounds 

increases by increasing the input ζi. It is also demonstrated that near the critical buckling 

velocity more random numbers are needed and near the flutter critical velocity a very large 

number of random numbers is needed for accurate results. As the amount of computation is 

huge, we restrict ourselves here to the presented results. It should be noted that the used 

number of random number is not enough for the flutter behavior. The obtained results can be 

improved by using parallel computation or using a supercomputer. These huge computations 

show clearly the limitation of the Monte-Carlo method and then the great need to develop 

alternative methods. 

5.4. Frequency-Amplitude response 

For the frequency-amplitude analysis, the one mode case is first considered. The simplified 

equation (6.8) is first analyzed; the Monte-Carlo and conditional procedures are used. The 

mean and standard deviation of the of displacement response in time for CC-CNT by IRCM, 

chaos, conditional and Monte-Carlo methods are presented in figures (6.5 to 6.8). It is 

demonstrated that a good accuracy is observed between these methods. It is observed from 

these figures that for higher deviation coefficient ζj the magnitude of the means displacement 

response decreases but the associated standard deviation are increases. 

The Monte-Carlo method can be used efficiently for small systems for which few CPU time is 

needed. This is demonstrated for the amplitude frequency analysis based on one mode. The 
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forced harmonic responses with respect to the first mode are presented in figures 6.2 and 6.3 

when the random parameters follow uniform, exponential and normal distribution laws. The 

Monte-Carlo method with 500 random numbers is used. The variance effects are presented in 

figure 6.2 for uniform law. The deterministic frequency response is presented to show clearly 

the random parameters effects. This effect is clearly demonstrated and the dispersion of the 

results increases by increasing the input variance ζi. Figure 6.3 shows the mean and the 

variance results when the input random coefficients follow normal, uniform and exponential 

distribution laws with ζi =5%. 

It should be noted that the same analysis can be done by considering the other modes. 

Response curves can be then obtained in the vicinity of the 2
nd

 and 3
rd

 and so on resonances. 

More generally, the multi-modal analysis can be done by considering the frequency problem 

(6.6).  

5.5. Time response 

For the time response only the one mode time response equation (6.12) is solved. For 

numerical analysis, the Monte-Carlo and conditional methods as well as the Internal Random 

Coefficient Method are used. The obtained results are presented in figures 6.4 to 6.7 for ζj 

=5% and 20%. The very large variation 20% is selected in order to show the effectiveness of 

the IRCM even for large variation. 

Let us recall that 10 random variables are used. With this number of variables and the non-

linearity of order 6, presented by the coefficients, higher order of polynomial chaos is needed. 

This problem can not be handled accurately with the classical polynomial chaos. The results 

obtained by the IRCM with general polynomial chaos of order 7 are accurate as clearly 

presented in figures 6.4 to 6.7 and even for large variance ζj =20%. 

Figures 6.4 and 6.5 show the mean values of q1(t) with respect to time for ζj=5% and ζj=20%. 

The deterministic response is presented for comparison as well as results obtained by the 

Monte Carlo method with 1000 random numbers by the conditional method and by the IRCM 

with polynomial of order 7. The agreement between the obtained results is demonstrated. The 

standard deviation of q1(t) with respect to time is presented in figures 6.6 and 6.7. The 

agreement is observed with results obtained by the three stochastic methods. 

It has to be mentioned that for numerical solutions, the Runge-Kutta method and Matlab 

computing codes are elaborated and programed. Monte-Carlo and conditional methods need 
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too much computation time in comparison to the IRCM that needs only few minutes in a 

simple laptop computer.  

The Monte-Carlo method, conditional method and particularly the IRCM will be used to solve 

the multi-modal time problem (6.10) and the more general time program (6.5) in the next 

work. 

6. Conclusion 

Methodological approaches based on the differential quadrature method, Monte-Carlo and 

generalized polynomial chaos for random differential equation with an arbitrary number of 

random parameters with different types of distribution laws are developed. These parameters 

can be linear or nonlinear. The obtained results, based on generalized polynomial chaos and 

Monte-Carlo methods, are compared with deterministic ones. A good accuracy is observed 

between these results 

Note that the Monte-Carlo method used for the eigenvalue problems and for the dynamic 

instability needs too much time even if only 500 and 1000 random numbers are used. For 

small systems, based on the one mode formulation, this method can be used with reasonably 

CPU time. 

As the number of random parameters (10) and the order of nonlinearity is high (6), the IRCM 

is more adapted. This method needs some mathematical developments, but very few CPU 

time and memory space are required. This method will be extended to random differential 

systems as well as to large algebraic systems. 
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Appendix A 

Differential quadrature method 

Based on the DQM, the continuous solution is approximated by functional values at discrete 

points. In the present paper, Chebyshev-Gauss-Lobatto quadrature points are used 

1 1
1 cos for 1,2,3,......, ( 1)

2 1


  
     

  
i

i
y i n A

N

where  i
i

x
y

L
and n is the number of grid points in the domain [0, 1]. 

For a function f(y), DQ approximation of the m
th

 order derivative at the i
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in which ( )jl y are the Lagrange interpolation polynomials and 
m

ijH  represent the weighting 

coefficients given by [21]. 
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The higher derivative, m
th

, can be calculated as: 
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The discrete classical boundary conditions at y=0 and y=1, using the DQ method, can be 

written as: 
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where n0 and nl may be taken as either 1, 2 or 3 and ( )k kW W y . Choosing the values of n0 

and n1 can give the following classical boundary conditions: [23] 

simply supported: n0 =2; n1 =2 

clamped-clamped: n0 =1; n1 =1 

clamped-simply supported: n0 =1; n1 =2 

clamped-free: n0 =1; n1 =3 

free-free: n0 =2; n1 =3 

Applying equations (A-3) and (A-4) to equations (1), one obtains the following ordinary 

differential system for i=1,2,3,…,n. 
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Appendix B 

For static fluid velocity 0( ) ( 0), u t V  the differential system (A-5b) is then reduced to 

assuming ( )  w W e and   0Q  the following eigenvalue problem is resulted from (4) 

       2 0 ( 1)   M C K W B   

where  W denotes the unknown dynamic displacement vector defined as: 

   1 2 ( 2) 
T

nW w w w B  

and [K], [M] and [C] are the resulting stiffness, mass and damping matrices respectively. 

The assumed boundary conditions can also be expressed in a matrix form using (A-4) 

      0 ( 3)  B B C SK W K W B  

where   1 2 1
T

B n nW w w w w and   3 4 2 .
T

S nW w w w  BK and CK are4 4 and  

4 ( 4) n  matrices respectively, the similar approach Eq. (18) can be written as: 

           2 0 ( 4)    D B S S S S SK W K W C M W B   

Coupling equations (B-3) and (B-4), one gets: 
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where  SK ,  SM  and  SC  are ( 4) ( 4)  n n  matrices respectively. 

This relation is rewritten in the following eigenvalue problem form: 
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Table 6.1 Critical flow velocity buckling associated CC-CNT with uniform, normal, 

exponential laws and N=500  

Uniform, N=500 random numbers 

V V1 V2 V3 

ζi=0 2.8245e+03 3.5487e+03 4.1542e+03 

 Mean(V1) SD(V1) ζ(V1) Mean(V2) SD(V2) ζ(V2) Meam(V3) SD(V3) ζ(V3) 

ζi=2% 2.8242e3 7.0452e1 2.4946% 3.5486e3 8.8807e1 2.5026% 4.1550e3 1.0948e2 2.6349% 

ζi=5% 2.8364e3 1.7277e2 6.0912% 3.5660e3 2.1988e2 6.1660% 4.1798e3 2.7377e2 6.5498% 

ζi=10% 2.7957e3 3.3060e2 11.825% 3.5186e3 4.2321e2 12.028% 4.1355e3 5.2940e2 12.801% 

Normal, N=500 random numbers 

 

 

 

 

V V1 V2 V3 

ζi=0 2.8245e+03 3.5487e+03 4.1542e+03 

 Mean(V1) SD(V1) ζ(V1) Mean(V2) SD(V2) ζ(V2) Meam(V3) SD(V3) ζ(V3) 

ζi=2% 2.8242e3 6.9330e1 2.4549% 3.5469e3 8.7291e1 2.4611% 4.1510e3 1.0776e2 2.5960% 

ζi=5% 2.8245e3 1.7010e2 6.0223% 3.5509e3 2.1465e2 6.0449% 4.1618e3 2.6550e2 6.3795% 

ζi=10% 2.8128e3 3.4207e2 12.161% 3.5242e3 4.2864e2 12.163% 4.1228e3 5.2511e2 12.737% 

Exponential, N=500 random numbers 

V V1 V2 V3 

ζi=0 2.8245e+03 3.5487e+03 4.1542e+03 

 Mean(V1) SD(V1) ζ(V1) Mean(V2) SD(V2) ζ(V2) Meam(V3) SD(V3) ζ(V3) 

ζi=2% 2.8267e3 6.3117e1 2.2329% 3.5507e3 8.1983e1 2.3089% 4.1562e3 1.0420e2 2.5071% 

ζi=5% 2.8171e3 1.5970e2 5.6690% 3.5371e3 2.0655e2 5.8395% 4.1403e3 2.5974e2 6.2735% 

ζi=10% 2.8395e3 3.2571e2 11.471% 3.5684e3 4.2040e2 11.781% 4.1858e3 5.1897e2 12.398% 
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Table 6 2 Predictions of the first dimensionless frequencies associated CC-CNT with random 

coefficients following uniform, normal, exponential laws used on the Monte-Carlo method 

with 1000 random numbers. 

Normal, N= 1000 random numbers 

ω ω1 ω2 ω3 

ζi=0 8.6006e+10 2.0772e+11 3.4924e+11 

 Mean(ω1) SD(ω1) ζ(ω1) Mean(ω2) SD(ω2) ζ(ω2) Mean(ω3) SD(ω3) ζ(ω3) 

ζi=2% 8.5934e10    3.5645e9    4.1479% 2.0754e11    8.1235e9    3.9142% 3.4895e11    1.3280e10    3.8056% 

ζi=5% 8.6714e10    8.8370e09    10.191% 2.0924e11    2.0000e10    9.5582% 3.5181e11    3.2647e10    9.2795% 

ζi=10% 8.7840e10    1.9131e10    21.779% 2.1095e11    4.2833e10    20.305% 3.5422e11    6.9542e10    19.633% 

Uniform, N= 1000 random numbers 

ω ω1 ω2 ω3 

ζi=0 8.6006e+10 2.0772e+11 3.4924e+11 

 Mean(ω1) SD(ω1) ζ(ω1) Mean(ω2) SD(ω2) ζ(ω2) Mean(ω3) SD(ω3) ζ(ω3) 

ζi=2% 8.5977e10    3.6557e9    4.2519% 2.0764e11       8.1544e9 3.9272% 3.4912e11    1.3069e10    3.7433% 

ζi=5% 8.6295e10    9.0249e9    10.458% 2.0819e11    2.0148e10    9.6776% 3.5000e11    3.2410e10    9.2600% 

ζi=10% 8.8335e10    1.9225e10    21.764% 2.1214e11    4.2911e10    20.228% 3.5615e11    6.9028e10    19.382% 

Exponential, N= 1000 random numbers 

ω ω1 ω2 ω3 

ζi=0 8.6006e+10 2.0772e+11 3.4924e+11 

 Mean(ω1) SD(ω1) ζ(ω1) Mean(ω2) SD(ω2) ζ(ω2) Mean(ω3) SD(ω3) ζ(ω3) 

ζi=2% 8.6223e10    3.4307e9    3.9789% 2.0820e11    7.7796e9    3.7365% 3.5003e11    1.2651e10    3.6144% 

ζi=5% 8.6298e10    8.7298e9    10.116% 2.0830e11    1.9965e10    9.5847% 3.5028e11    3.2563e10    9.2963% 

ζi=10% 8.6953e10    1.6332e10    18.782% 2.0940e11    3.7659e10    17.984% 3.5203e11    6.1810e10    17.558% 

 

 

 

 

 

 

 

 

Figure 6.1 Mean ± the standard deviation of first dimensionless frequency of a CC-CNT with 

dimensionless deterministic flow velocity: the random parameters follow the uniform 

probability density with ζx=2% and 5% 
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Figure 6.2 Mean ± the standard deviation of the displacement response norm with respect the 

frequency associated the first mode. 

 

 

 

 

 

 

Figure 6.3 Mean ± the standard deviation and the expected value of of the displacement 

response norm with respect the frequency associated the first mode. 

 

 

 

 

 

 

 

Figure 6.4 Means displacement response of q1(t) for CC-CNT, based on one mode ζj=5%, 

uniform law. 
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Figure 6.5 Means displacement response q1(t) for CC-CNT, based on one mode ζj=20%, 

uniform low 

 

Figure 6.6 Standard deviation of displacement response of q1(t) for CC-CNT, based on one 

mode ζj=5%, uniform law. 

 

Figure 6.7 Standard deviation of displacement response of q1(t) for CC-CNT, based on one 

mode ζj=20%, uniform law 
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Chapter VII 

GENERAL CONCLUSION AND PERSPECTIVES 

 

1. General conclusion 

Studying the dynamic instability behaviors of carbon nanotubes (CNT) is the focus of this 

thesis. These structures have attracted attention because of their exceptional physical, 

chemical, mechanical, optical and electrical characteristics.  The mastery of the static and 

dynamic instability behaviors of this type of structure is of great interest for miniaturized and 

advanced NEMS technology.  

Several methods and models which were used in the literature for the study and analysis of 

nano-structures are introduced in the first chapter of this thesis. Mathematical models and 

numerical simulation for vibration problems, dynamic and parametric instabilities of single 

carbon nanotubes and carbon nanotube conveying fluid are developed in this thesis. Single 

walled carbon nanotube (SWCNT) and multi-walled carbon nanotubes (MWVNTs) are 

considered. Analytical and numerical simulations based on the differential quadrature method 

are used in this thesis to study the dynamic behaviors of carbon nanotubes. The effects of the 

nonlocal parameter, the fluid pulsation, viscosity, the viscoelastic coefficient and the thermal 

on the dynamic behaviors of the CNT-fluid system are analyzed. Various types of instabilities 

such as divergence, flutter and parametric instabilities as well as their interactions are 

analyzed. The sensitivity of the physical and geometrical parameters of carbon nanotubes, 

according to random parameters following different probability laws is investigated. The 

frequency and time analyses are elaborated by solving random algebraic and differential 

equations using various stochastic methods.  

In the first chapter, representing a general introduction, the remarkable properties of carbon 

nanotubes and their applications in various fields are discussed. A broad literature review has 

made to cover a wide range of studies carried out in this area. Emphasis has been placed on 

the nonlocal elasticity theory and beams and shells models used as well as on the static and 

dynamic phenomena studied in this thesis. 

In the second chapter, the small length scale parameter and the general boundary conditions 

effects on the vibration frequencies are studied. It was demonstrated that the clamped-free 



179 

 

CNT will flutter at critical values of (e0a/L). This instability limit can be used as a limit of 

predicted values of the small length scale. Presented below is a list of main conclusions of this 

chapter: 

 Analytical modeling and numerical simulation are elaborated for the dynamic 

instability analysis of CNT. 

  The small length scale parameter and the generalized boundary conditions effects on 

the resonant frequencies are analyzed.  

 The C-F CNT can flutter at critical values of (e0a/L). This instability limit can be used 

as a limit of predicted values of the small length scale. 

In chapter three, the higher vibration characteristics of single walled CNT based on the 

nonlocal elasticity, Timoshenko and Euler-Bernoulli beam theories are analytically and 

numerically investigated. Below is a list of conclusions that are made in this chapter: 

 The differential quadrature method has been adapted for the vibration analysis of 

CNT. 

 The small as well as the very higher eigenmodes and the associated eigenfrequencies 

are developed for various boundary conditions. 

 New mathematical models for higher and very higher eigenmodes and frequencies are 

elaborated for CNT with various boundary conditions. 

 The small scale length has a stabilizing effect on some few first modes. 

 The developed eigenmodes at higher orders are numerically stable and can then be 

used as a basis for modal analysis at any desired frequency range. 

 In chapter four, dynamic and parametric instabilities of CNT conveying pulsating fluid are 

analyzed based on the nonlocal elasticity, differential quadrature method, fluid interaction and 

Euler-Bernoulli beam theory. The multimodal approach has been formulated based on the 

numerically computed eigenmodes, for dynamic and parametric instabilities. The influences 

of the internal fluid velocity, the nonlocal parameter, the viscosity, the viscoelastic coefficient 

as well as the thermal effects on the dynamic behaviors and flow-induced structural instability 

of CNTs are studied. Various types of instabilities such as divergence, flutter and parametric 

instability and their interactions are investigated.  Below is a list of conclusions that are made 

in this chapter: 

 Mathematical modeling and methodological approaches are developed for the 

dynamic and parametric instability analyses of CNT conveying fluid. 
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 The differential quadrature method has been adapted to dynamic instability of the 

CNT conveying fluid. 

 Complex modes are computed and analyzed with respect to the fluid velocity. 

  The principal parametric instability regions are numerically determined and discussed 

based on one and two real modes approaches as well as on complex modes. 

 The influences of physical, material parameters on the flow-induced structural 

instability of CNTs are studied. 

  Various types of instabilities such as divergence, flutter and parametric instability are 

investigated with respect to fluid velocity. 

In chapter five, the linear and nonlinear free vibration and dynamic instability analysis of 

multi-walled CNTs conveying fluid based on the nonlocal elasticity and Donnell shell model 

are investigated. The van der Waals interactions between layers of carbon nanotube as well as 

the fluid-shell interaction are modeled. The free vibration and flow velocity-frequency 

dependence are analyzed with respect to various physical and material parameters. The 

obtained results showed a strong dependence between the fluid velocity and the frequency of 

MWCNTs. The effect of the van der Waals interaction between tubes is discussed and results 

show that the van der Waals interaction and the small length scale effects may significantly 

influence the stability of multiwalled CNT. For the nonlinear free vibration, the amplitude-

frequency dependence associated to the nonlinear free vibration of MWCNT is obtained by 

harmonic balance method. The influences of nonlocal parameters, the vdW force and the 

thermal effects are discussed. The following conclusions from this chapter can be made. 

 Mathematical modeling and methodological approach are developed for nonlinear 

vibration and the dynamic instability analysis of MWCNT conveying fluid based on a 

shell model.  

 The influence of nonlocal parameter, the temperature, the number of tubes, the fluid 

velocity and the circumferential wave numbers on the nonlinear vibration are 

examined. 

 It is demonstrated that the increase of the axial wave numbers will decrease the 

nonlinearity vibration effect. 

 The increase of the nonlocal parameter will increase the nonlinearity vibration effect. 
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 The increase of the fluid velocity results in a less nonlinear vibration response effect 

 The increase of the number of the walls results in a less nonlinear vibration response 

effect due to the influence of the vdW interaction 

 The amplitude and frequency of all tubes are similar to each other. 

Chapter six aims to develop models and simulations for the sensitivity analysis of CNT, 

physical and geometrical parameters. Given the size effect, the parameters associated to CNT 

models are inevitably non deterministic. These parameters are considered random and can be 

approximated by different probability laws. The static and dynamic behaviors of CNTs are 

then modeled by random equations or stochastic processes. Below is a list of conclusions that 

are made in this chapter: 

 Models are elaborated for parameters uncertainty effects on the dynamic behavior of 

CNT.  

 Various distribution laws are considered. 

 Monte-Carlo, conditional expectation methods as well as the Internal Random 

Coefficients Method are adapted and numerically used.  

 The effects of random parameters on vibration, buckling and dynamic instability are 

analyzed.  

 The time responses are also developed for a wide number of random parameters.  

 The models and simulations, developed in this chapter, are an outline, scientifically 

promising, for random analysis of the dynamic behavior of nanotubes.  
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2. Perspectives 

 Elaboration of the differential quadrature method for plates and shells.  

 Elaboration of dynamic stability analysis of nanoplates based on the nonlocal 

elasticity.  

 Elaboration of dynamic stability analysis of multiwalled spherical carbon 

nanostructures.  

 Dynamic instability of carbon nanotubes conveying nanofluid. 

 Numerical simulation based on the Molecular Dynamics for: 

- Dynamic analysis of CNT 

- Dynamic analysis of CNT conveying fluid. 

 Parameters uncertainty effects on static and dynamic behaviors of: 

- Carbon nano plate 

- Carbon nano spheres 

- Multiwalled CNT 

 Development of stochastic methodological approaches for structural problems such as 

vibration, buckling and post buckling of the tubes and shells. 


