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Abstract 

The issue of accurately predicting the effective behavior of composite materials has taken the 

attention of many researchers in the last few decades and continues to be in the forefront of 

material research.  Micromechanics have proven to be very powerful in analyzing and predicting 

the effective behavior of composite materials. In the frame of this thesis, various 

micromechanical models have been elaborated in order to investigate the effective behavior of 

different kinds of smart composites such as: piezoelectric, piezomagnetic, magnetoelectroelastic, 

viscoelectroelastic, viscomagnetoelectroelastic as well as shape memory alloys.   

The effective properties of multi-phase magnetoelectroelastic composites have been investigated 

using different micromechanical models. An N-phase Incremental Self Consistent model is 

developed to circumvent the limitation of the Self Consistent predictions. The Self Consistent 

shows limitation for the prediction of some coupling coefficients. Also, the prediction of the Self 

Consistent model is very limited when the void inclusions are considered. The modeling is based 

on the solution of integral equations. The effective N-phase magnetoelectroelastic moduli are 

expressed as a function of magnetoelectroelastic concentration tensors based on the considered 

micromechanical models. The effective properties are obtained for various types, shapes and 

volume fractions of inclusions and compared with the existing results. Note that the effective 

properties of magnetoelectroelastic composites might be greatly affected by the presence of an 

interphase between the matrix and inclusions. To take this effect into account, accurately, a 

micromechanical modeling is developed to investigate the effective properties of 

magnetoelectroelastic composite with multi-coated inclusions and functionally graded 

interphases. The modeling is based on the solution of the integral equations that take into account 

the multi-coated and functionally graded effects and on the magnetoelectroelastic interfacial 

operators that allow expressing the generalized strain jump through the interphase.  Taking into 

account the multi-coated and functionally graded effects in the modeling help in the design of 

new smart composites with higher coupling coefficients. 

Piezoelectric and magnetoelectroelastic composites that contain a polymer phase show a 

significant time dependent behavior and particularly at elevated temperature. A micromechanical 

modeling is developed to investigate the viscoelectroelastic and viscomagnetoelectroelastic 

behaviors of heterogeneous piezoelectric and magnetoelectroelastic composite materials. The 
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modeling is based on generalizing the correspondence principle of linear viscoelasticity to the 

case of viscoelectroelasticity and viscomagnetoelectroelasticity. The viscoelastic correspondence 

principle is combined with Mori-Tanaka micromechanical model. The effective properties are 

predicted in the frequency and time domains based on Carson and Laplace transforms.  

To investigate the nonlinear behavior of smart composites, the shape memory alloys are 

considered. The effective transformation behavior of this kind of composites is investigated 

based on the Mori-Tanaka model that takes the coating effects around the inclusions combined 

with the constitutive equations describing the transformation behavior of shape memory alloy 

materials. The obtained results are compared with one predicted based on the classical Mori-

Tanaka model that does not consider the effect of the coating layer around the inclusion and also 

with the obtained ones based on the finite element method. It is shown that the developed model 

captures the effective transformation behavior better than the one that is based on the classical 

Mori-Tanaka model. As the obtained results do not agree well with the ones predicted based on 

the finite element method the developed methodological approaches need more refinement for 

this kind of nonlinear materials 

 

 

 

Keywords: Smart composites, visco-piezoelectric, visco-magnetoelectroelastic, Shape memory 

alloy, micromechanics. Coating, interfacial operators, functionally graded, Mori-Tanaka, Self 
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Chapter 1 

1. General introduction 

Smart Composite materials such as piezoelectric, piezomagnetic, magnetoelectroelastic, 

magnetostrictif and shape memory alloy composites etc. have attracted the attention of several 

researchers due to their application in many industrial fields such automotive, aerospace, 

biomedical and civil engineering. Their appealing factor is represented by the possibility to 

obtain tailored properties for specific applications and to overcome classical limitations of the 

natural existing ones in term of flexibility, durability and reliability etc. For example, the 

adoption of light and flexible non-piezoelectric polymers in combination with piezoelectric 

ceramics in a multiphase construction leads to a more robust device, capable of conforming to 

complex surface shapes. These smart composites take the advantages of each phase and have 

better physical properties. 

The development that has been doing in smart composite materials that exhibits coupling effects 

aims to reach smart composite with optimized coupling coefficients for sensing, actuation, 

electrical energy harvesting, conversion and storage etc. Figure 1.1 presents the possible 

coupling between the mechanical, electrical, magnetic and thermal fields. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Diagram of different coupling effects that a smart composite might exhibit. 

The complexity of composites (figure 1.2) at the micro level greatly complicates the analysis of 

the behavior of these composites, which is indispensable to design them. Composite materials 
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are examined as heterogeneous materials and the developments done in this area are due to the 

development of the used methods.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Composite materials. 

 

Composite materials with coated reinforcements have taken the attention of many researchers. 

The effective properties of a composite are highly affected by the characteristics and the 

geometry of the interphase between the constituents. Consequently, studying the influence of a 

coating layer on composites may be valuable to better understand the transmission of 

mechanical, electrical and magnetic fields throughout the inclusion toward the matrix for the 

sake of the improvement of the strength and/or magnetoelectric (ME) effect. The increase of the 

strength may be obtained for example via the introduction of a stiff interphase of defined 

thickness as demonstrated by [1] for elastic composites. The ME enhancement is more tricky as 

it implies coupled mechanical, electrical and magnetic properties. The introduction of an active 

interphase allows comprehending the transmission of the different fields from the core towards 

the matrix. Micromechanical studies of composites with coating layers.  

Analyzing and describing the behavior of composite materials could be done through different 

approaches. Phenomenological approach [2] is one way of characterizing composite materials 

which is based on experimental test. In many cases, it is not possible to realize experimental test 
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for all kinds of reinforcement shapes and types due to the volume and the cost of the required 

tests.  

Another approach which is developed since many decades is the micromechanical approach. It 

describes the composites from its microstructure and local behavior. First simple models were 

developed by Voigt [3], Reuss [4] and Hill [5]. Then based on Eshelby [6] inclusion problem 

which allows showing the importance of the concentration stress phenomena, many 

micromechanical models were developed. Micromechanical models based on the Eshelby’s 

inclusion problem take into account much more details about the microstructure which leads to 

accurate prediction of the effective behavior of composite materials. Micromechanical studies of 

composites with coating layers have aroused great interest among many researchers in recent 

years. Different models have been developed to predict the effect of the interphase layer on the 

effective properties of composites materials. Based on the integral equation and on the interfacial 

operators cherkaoui et al. [7, 8, 9] developed a coated inclusion problem to predict the effective 

properties of elastic and thermoelastic composites consisting of ellipsoidal coated inclusion 

embedded in matrix. [10, 11] extended the modeling to investigate the piezoelectric and 

thermopiezoelectric behavior of piezoelectric heterogeneous materials. 

Micromechanical models predict the behavior of composite materials in terms of volume 

fraction, shape, orientation of reinforcements. Also, the effect between the matrix and 

reinforcements cloud be taken into account in the modeling. Another benefit of the 

micromechanical modeling includes the ability of taking into account the failure that might exist 

in composites in micro level such as matrix cracking, fiber matrix debonding and damage. All 

that makes micromechanical modeling as a powerful tool in analyzing and predicting the 

effective behavior of composite materials.   

1.1 Considered smart composites 

In the frame of this thesis a wide multifunctional heterogeneous materials are considered. The 

main aim is to develop mathematical models that allow predicting new composite materials with 

improved coupling effects. An overview of the considered multifunctional materials is presented 

here.  
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1.1.1 Piezoelectric composites 

Piezoelectric composites present an electroelastic (piezoelectric) coupled effect. Piezoelectric 

materials have the property of converting mechanical energy into electrical energy (direct 

piezoelectric effect) and vice versa (converse piezoelectric effect). Piezoelectric composites were 

originally developed for underwater hydrophone applications in the low-frequency range, but 

have also been extended to such other applications as ultrasonic transducers for acoustic imaging 

and medical applications [12].  Piezoelectric ceramics are being investigated for use as sensor or 

actuator elements in smart structures.  

1.1.2 Piezomagnetic composites 

Piezomagnetic composites have magnetoelastic (piezomagnetic) coupled effect. They have the 

property of converting mechanical energy into magnetic energy (direct piezomagnetic effect) and 

vice versa (converse piezomagnetic effect). These materials have a wide range of applications 

such as magneto-mechanical transducers, magnetic sensors and ultrasonic generator [13]. 

1.1.3 Magnetoelectroelastic composites 

Composite materials consisting of piezoelectric phase and piezomagnetic phase are called 

magnetoelectroelastic composites. These kinds of composites present electroelastic, 

magnetoelastic (piezomagnetic) and magnetoelectric coupled effects. The magnetoelectric 

coupled effect is the most important effect exhibited by these composites and it may be absent in 

all the phases and created only by the interaction between the piezoelectric and piezomagnetic 

phase. The magnetoelectric effect gives to these composites the ability to convert an electrical 

energy to magnetic one and vice versa. One example of applications of such materials is 

magnetoelectric sensors in optoelectronics and microwave electronics.   

1.1.4 Viscopiezoelectric composites 

Viscoelectroelastic composites [14] are composites consisting of piezoelectric and viscoelastic 

phases. At elevated temperature heterogeneous piezoelectric composites consisting of 

piezoelectric inclusions and polymer matrix show a time dependent behavior. At normal 

temperature polymers materials have an elastic behavior but at elevated temperature they show a 

significant viscoelastic behavior. The physical and mechanical properties of viscoelastic 

materials change with time and temperature.  The addition of a polymer or any viscoelastic phase 
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to piezoelectric composites affects their behavior. Viscoelectroelastic composites show a 

dissipative behavior which could be used to eliminate vibration and noise. 

1.1.5 Viscomagnetoelectroelastic composites 

Viscomagnetoelectroelastic composites are composites consisting with piezoelectric, 

piezomagnetic and viscoelastic phases. Piezoelectric and piezomagnetic ceramics are brittle 

materials. The addition of a polymer matrix to composites containing piezoelectric and 

piezomagnetic inclusions provides them ductility and protect them from damage. But at elevated 

temperature the polymer matrix shows a significant viscoelastic behavior that affects the whole 

behavior of the composites. The electromagnetic, electroelastic and magnetoelastic coupling 

behaviors of viscoelectroelastic composites change with time and temperature. 

Viscoelectroelastic composites have a dissipative behavior which could be in industrial 

applications such as the elimination of noise and vibration and structures.  

1.1.6 Shape memory alloy composites 

Among the smart composite materials, the shape memory alloy (SMA) composites. They 

represent one of the most interesting materials, more and more adopted in structural engineering.  

SMAs composites are capable to recover their original shape (or to develop large reaction forces 

when they have their recovery restricted) through the imposition of a temperature and/or a stress 

field, due to phase transformations that the material undergoes. SMAs present several particular 

thermomechanical behaviors. The main phenomena related to these alloys are pseudoelasticity, 

shape memory effect, which may be one-way (SME) or two-way (TWSME), and phase 

transformation due to temperature variation. Due to their unique properties, SMAs have attracted 

great interest in various fields of applications ranging from aerospace [15] and naval [16] to 

surgical instruments [17]. 

1.2 Piezoelectricity 

 The phenomenon of piezoelectricity was discovered by Jacques and Pierre Curie brothers in 

1880 [18]. They discovered that some crystals when compressed in certain directions show 

positive and negative charges on some portions of the surface. These charges are proportional to 

the pressure and disappear when it ceases.  Materials that exhibit piezoelectricity have the ability 
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to develop an electric charge when a mechanical stress is applied which is the direct effect. They 

have a converse effect by developing a strain when an electrical field is applied. Thus, 

Piezoelectricity is the linear interaction between mechanical and electrical system. Figure 1.3 

shows the use of piezoelectric sensors and actuators to control the vibration of a laminated beam. 

  

 

 

 

 

 

 

Figure 1.3: Laminated beam with piezoelectric sensors and actuators 

 

The direct piezoelectric effect, the development of an electric charge by the application of a 

mechanical stress, was described as (Nye, 1957)[19]. 

i ijk jkP d                                                                                                                                   (1.1) 

where iP  is the electric polarization (charge per unit area), ijkd  is the piezoelectric coupling 

tensor, and jk  is the applied mechanical stress tensor. The converse effect, the development of 

a mechanical strain by the application of an electric field to the piezoelectric, is described by 

ij ijk kd E                                                                                                                                   (1.2) 

where ij  is the produced strain and by applying the electric field kE . In both cases, the 

piezoelectric coefficients ijkd  are numerically identical. 

It should be noted that the piezoelectric effect is strongly linked to the crystal symmetry. A 

crystal having sufficiently low symmetry produces electric polarization under the influence of 

external mechanical force. Polycrystalline materials in which the crystal axes of the grains are 

randomly oriented exhibit no piezoelectric effect. Piezoelectric polycrystalline ceramics were 

discovered in the 1940s, soon followed by the development of the poling process in which the 

randomly oriented crystal axes are suitably aligned by the application of a strong electric field at 

elevated temperatures. After that discovery, researchers continued to develop better and more 

stable materials. Lead zirconate titanate (PZT) was first introduced in 1954 and has become the 
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most widely used piezoceramic. Today piezoelectric ceramics, or piezoceramics, are used more 

widely than piezoelectric crystals. 

Mechanical stress kl  and electric field lE  are coupled within a piezoelectric solid medium. 

Constitutive equations for a piezoelectric material can be written as [20] 

ij ijkl kl lij l

i ikl kl il l

s d E

D d E

 

 

 

 
                                                                                                                    (1.3) 

where  ,  , E, and D are the stress tensor, strain tensor, electric filed and the electric 

displacement vector, respectively. s, d and   are the elastic compliance tensor, piezoelectric 

tensor and the dielectric tensor, respectively. 

An alternate expression of the constitutive behavior could be given, such as  

ij ijkl kl lij l

i ikl kl il l

c e E

D e E

 

 

 

 
                                                                                                                    (1.4) 

where the piezoelectric tensor 
lije is related to the piezoelectric tensor d through the elastic tensor 

c by the following relationship 

ijk imn mnjke d c

                                                                                                                           

 (1.5) 

1.3 Ferroelectricity 

Ferroelectricity was discovered in 1920 in Rochelle salt by Valasek [21]. Ferroelectric materials 

are materials that exhibit, over some range of temperature, a spontaneous electric polarization 

that can be reversed or reoriented by application of an electric field. Ferroelectric materials 

undergo a structural phase transition from a paraelectric phase to a ferroelectric phase upon 

cooling through the Curie temperature, Tc. Above Tc temperature, the crystal has a 

centrosymmetric structure and has no spontaneous polarization. Bellow Tc, the crystal exhibits 

ferroelectricity and has a structure resulting from the change in the symmetry of the unit cell. 

When an external field is applied in a direction opposite to the polarization, the polarization can 

be reoriented in the direction of the electric field. This process is reversible and is called 

polarization switching. When the polarization is parallel to an applied electric field, the 

switching is done. However, it is not necessary that the polarization is exactly reoriented along 

the electric field direction.  
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The polarization-electric field hysteresis loop obtained in this way is an important characteristic 

of a ferroelectric. Figure 1.4 shows a typical hysteresis loop [22] from which the values of the 

remnant polarization and coercive electric field can be determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Polarization-electric field hysteresis loop measured in a ferroelectric material. Pr is 

the remnant polarization and Ec is the coercive electric field. 

The net polarization of an initially unpolarized ferroelectric material is small. When an electric 

field is applied, there is a linear relationship between switchable polarization and the applied 

electric field. In this case, there is no polarization switching. As the electric field increases, 

however, domains in which the direction of spontaneous polarization is opposite to electric field 

begin to switch to a more energetically favorable direction. The switching process continues until 

all of the domains are aligned in the electric field direction. When the field returns to zero, the 

polarization does not return back to the initial value. The amount of switchable polarization after 

removal of an electric field is called the remnant polarization, Pr. The strength of the electric 

field to switch the opposite polarization domain is called the coercive electric field, Ec. This 

process can be repeated. Ferroelectric materials behave strongly nonlinear when they are under 

high electromechanical loads. The nonlinearity is mainly coming from domain switching which 

is the change of direction of the spontaneous polarization at the microstructure level. 
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1.4 Piezomagnetism 

Piezomagnetism is the linear magnetomechanical effect analogous to the linear 

electromechanical effect. The first experimental observation of piezomagnetism was made in 

1960, in the fluorides of cobalt and manganese [23]. Materials that exhibit a piezomagnetic 

effect have the ability to develop a magnetic field by applying physical stress or strain (direct 

effect), or a physical deformation by applying a magnetic field (converse effect). Thus, 

piezomagnetism is an interaction between the magnetic and mechanical system. 

The direct piezomagnetic effect is described by [19]. 

i ijk jkH                                                                                                                             (1.6) 

where ijk is a third range piezomagnetic tensor.  

The piezomagnetism phenomenon is related to the crystal symmetry and it is shown only by the 

absence of certain symmetry in a crystal structure. Mechanical stress   and magnetic field H  

are coupled within a piezomagnetic solid medium. Constitutive equations for a piezomagnetic 

material can be written as [24] 

ij ijkl kl lij l

i ikl kl il l

c h H

B h H

 

 

 

 
                                                                                                                   (1.7) 

where  ,  , H, and B are the stress tensor, strain tensor, magnetic field and the magnetic 

induction, respectively. c, h and   are the elastic stiffness tensor, piezomagnetic tensor and the 

permeability magnetic tensor, respectively. 

1.5 Magnetoelectric effects 

The magnetoelectric (ME) effect is the generalization of electric polarization by a magnetic field 

and vice versa. This fascinating phenomenon was experimentally observed in 1960 by Astrov 

[25] and predicted by Landau and Lifshitz [26]. It is discovered that a sample of Cr2O3 shows a 

magnetoelectric effect. Magnetoelectric materials have the ability to convert an electrical energy 

into a magnetic one and vice versa. These properties make them very useful for sensors 

transducers, storage devices and medical imaging etc. 
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Figure 1.5: Application of magnetoelectric materials for sensors, transducers, storage devices 

and medical imaging. 

The effects can be linear or/and non-linear with respect to the external fields. In general, this 

effect depends on temperature. The effect can be expressed in the following form [26] 

e

i ij j ij j

m

i ij j ij j

P E H

M H E

 

 

 

 
                                                                                                                 (1.8) 

where P is the electric polarization, M the magnetization; E and H are the electric and magnetic 

field; α, 
m  and 

m are the linear magnetoelectric moduli, dielectric and magnetic susceptibility 

moduli. Materials exhibiting the ME effect can be classified into two classes: single phase and 

composites. The ME effect exhibited by single phase materials is too weak to be practicable 

however magnetoelectroelastic composites consisting of a piezoelectric phase and a 

piezomagnetic phase show significant ME output qualified for potential applications.  

Generally speaking the ME effect presented by composite materials is the results of the 

interaction between the piezoelectric phase and the piezomagnetic phase. Within a 

magnetoelectroelastic materials mechanic stress, electric field and magnetic field are coupled. 

The constitutive equation of a linear magnetoelectroelastic material is given by [27] 

ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

c e E h H

D e E H

B h E H

 

  

  

  

  

  

                                                                                                        (1.9) 
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where the elastic strain kl , electric fields lE , and magnetic fields lH are independent variables 

related to stresses ij , electric displacements iD and magnetic inductions iB . The tensors ijklc , 

lije , lijh , il , il and il are the  elastic, piezoelectric, piezomagnetic, magnetoelectric, dielectric 

and magnetic permeability constants  respectively. 

1.6 Ferromagnetism 

Historically, the term ferromagnet was used for any material that could exhibit spontaneous 

magnetization: a net magnetic moment in the absence of an external magnetic field. Magnetic 

materials respond differently at applied magnetic field. Many properties of ferromagnetic 

materials are analogous to ferroelectric but with corresponding magnetic parameters.  A 

ferromagnetic material undergoes phase transition from a high-temperature phase above Tc that 

does not have a macroscopic magnetic moment (paramagnetic phase) to a low-temperature phase 

below Tc that has spontaneous magnetization even when external magnetic field is switched off. 

Ferromagnets tend to concentrate magnetic flux density, they have spontaneous magnetization, 

which leads to their widespread usage in applications such as, transformer cores, permanent 

magnets, and electromagnets. The magnetization of ferromagnetic materials is a nonlinear 

process. Ferromagnetics are thus known as nonlinear media. A typical hysteresis loop is shown 

in Figure 1.6. 

 

 

 

 

 

 

 

                             Figure 1.6: Hysteresis loop for ferromagnets [28]. 
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The ferromagnet starts in an unmagnetized state and upon increased magnetic field magnetic 

induction rises to the saturation induction, Bs. When the field is reduced to zero, the induction 

decreases to Br, known as remnant field. The reverse field, Hc, required to reduce the induction 

to zero is called the coercivity.  

The characteristic of hysteresis loop determines the suitability of ferromagnetic materials for 

particular application. For example, more square-shaped hysteresis loop, with two stable 

magnetization states, is suitable for magnetic data storage, while a small hysteresis loop that is 

easily cycled between states is suitable for transformer core.  

1.7 Shape memory alloys 

The key characteristic of all SMAs is the occurrence of a martensitic phase transformation. The 

martensitic transformation is a shear dominant diffusionless solid-state phase transformation 

occurring by nucleation and growth of the martensitic phase from a parent austenitic phase 

(Olson and Cohen, 1982)[29]. When an SMA undergoes a martensitic phase transformation, it 

transforms from its high-symmetry, usually cubic, austenitic phase to a low-symmetry 

martensitic phase, such as the monoclinic variants of the martensitic phase in a NiTi SMA. The 

martensitic transformation possesses well-defined characteristics that distinguish it among other 

solid state transformations. 

SMAs exhibit the following macroscopic phenomena not present in traditional materials. 

Shape memory effect (SME) (figure 1.7) [30]: SMAs is loaded below austenitic start 

temperature, A
0s

, while still in the austenitic phase to full transformation to the detwinned 

martensitic state and then unloaded fully retaining the transformation strain.  

Pseudoelasticity (figure 1.8) [30]: SMAs is loaded above austenitic finish temperature, A
0f

, to 

full transformation to the detwinned martensitic state and then unloaded fully transforming back 

to the austenitic state, while recovering all the transformation strain exhibiting hysteresis. 

The shape memory effect is used for actuation while the pseudoelasticity is used for applications 

such as vibration isolation and damping. 
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Figure1.7: Schematic representation of the thermodynamical loading path demonstrating the 

shape memory effect in SMAs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.8: Schematic of a thermomechanical loading path demonstrating pseudoelastic behavior 

of SMAs. 
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The medical applications of SMAs are shown in figure 1.9 [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Laparoscopy tools. The actions of grippers, scissors, tongs and other mechanisms are 

performed by SMA. 

 

1.8 Viscoelastic behaviors 

As the viscoelastic behavior effect will be coupled to multifunctional effects of piezo and 

magneto composites, the viscoelastic behaviors will be reviewed here. 

Some properties of viscoelastic materials are creep, relaxation, absorb energy etc. These 

properties make of them very used in different industrial applications. Among the applications is 

the use for passive control. Also the addition of viscoelastic materials to piezoelectric and 

magnetoelectroelastic materials will provide them beside of their actuation and sensing effect 

with a damping effect. 

Responses of viscoelastic materials depend not only of the current loading, but also histories of 

loadings. Creep and relaxation are examples of viscoelastic responses. Creep is the increase in 

the deformation of materials under a constant stress. Relaxation is when a material is subject to a 

constant strain, the stress continuously decreases with time.  

This section presents the concept of linear viscoelastic materials. There are many common 

models to describe the behavior of linear viscoelastic materials such as the Maxwell, Kelvin-
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Voigt (KV) and Standard Linear Solid (SLS) models etc. The spring-dashpot mechanical analogs 

are commonly used to describe behaviors of the above viscoelastic models. 

Maxwell model 

The mechanical analogy of Maxwell model is shows in figure 1.10. It is a spring and a dashpot 

arranged in series. E0 is the spring constant and  is dashpot constant. 

 

 

 

 

Figure 1.10: Maxwell model. 

 

 The differential equation that describe the behavior of this model is given by [32] 

   
 

0

1 1d t d t
t

dt E dt

 



                                                                                                     (1.10)  

When a constant strain is applied, the solution to (1.10) leads the expression of the relaxation 

modulus ( )E t , one can write 

0 ( )( )

0 0( ) r

tE
t

E t E e E e 


                                                                                                          (1.11) 

where r is the relaxation time defined as 
0

r E

   

When a constant stress is applied, the solution to (1.10) leads to the expression of the creep 

compliance ( )J t , one can write 

0

1
( ) (1 )

t
J t

E 
                                                                                                                          (1.12) 

Kelvin Voigt model 

The mechanical analogy of the (KV) model is shown in figure 1.11. It has a spring and a dashpot 

arranged in parallel.  

 

 

 

 

Maxwell 

 

E0 

 

 
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Figure 1.11: Kelvin Voigt model. 

The governing equation of Kelvin Voigt model is given by [26] 

   
 

0

d t
t E t

dt


                                                                                                             (1.13) 

Applying a constant strain, the relaxation modulus ( )E t  is obtained 

0( ) ( )E t t E                                                                                                                       (1.14) 

where ( )t is Dirac function. 

Applying a constant stress, the creep compliance ( )J t is obtained 

0( )

0

1
( ) (1 )

E
t

J t e
E




                                                                                                                  (1.15) 

Standard Linear Solid 

The mechanical analogy of (SLS) is shown in figure 1.12. It combines a spring and a Maxwell 

model in parallel or a spring and (KV) model and series. 

 

 

 

 

 

 

                       

                                      Figure 1.12:  Standard Linear Solid model. 

 

The governing equation of the Standard Linear model is given by [32] 

   
 

 
1 1

0 0

1
(1 )

t d t d tE E
t

E dt E dt

  


 
                                                                               (1.16) 

 

Kelvin-Voigt  
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Applying a constant strain leads to the expression of the relaxation modulus ( )E t , one can write 

( )

0 1( ) r

t

E t E e E


                                                                                                                    (1.17) 

Applying a constant stress leads to the expression of the creep compliance ( )J t , one can write 

( )
0

1 0 1

1
( ) (1 )c

t
E

J t e
E E E




 


                                                                                                     (1.18) 

where 0

0 1

c

E

E E
 


is the creep time. 

The Boltzman superposition integral [33] 

The above expressions of the creep and relaxation modulus are valid under a constant stress and 

a constant strain.  For general loading condition, the constitutive equations for linear viscoelastic 

materials can be derived based on the Boltzman superposition theory.  

For an arbitrary stress input as illustrated in figure 1.13, the superposition principle is used by 

considering the arbitrary input as multiple step inputs applied at different times.  

 

 

 

  

 

 

 

 

 

Figure 1.13: Creep behavior of an ideal viscoelastic solid. 

 

The total strain at time t is given by 

1 1 2 2

1

( ) ( ) ( ) ........ ( ) ( )
n

n n k k

k

t J t t J t t J t t J t t    


                                          (1.19) 

where 1( )J t   is the creep compliance function and   is the instantaneous stress jump. 

Dividing and multiplying (1.19) by 1k k kt t t   , one can write 

Loadin

g  

Resultant deformation 

S
tress 

S
train
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1

( ) ( )
n

k
k k

k k

t J t t
t


 




  


                                                                                                        (1.20) 

When kt  approaches zero then (1.20) could be rewritten as follow 

0

( ) ( )

t
d

t J t d
d


  


                                                                                                               (1.21) 

Using similar procedure, the expression of ( )t is obtained. One can write 

0

( ) ( )

t
d

t E t d
d


  


                                                                                                             (1.22) 

where ( )E t  is the relaxation function. 

The constitutive equation of linear viscoelastic materials is determined by equation (1.21) and 

(1.22). Equations (1.21) and (1.22) seen simple but they are difficult to be used. To simplify their 

utilization they are expressed in the frequency domain by using the Laplace transform. 

Using the Laplace transform to (1.22) leads to the following expression 

( ) ( ) ( )E                                                                                                                        (1.23) 

where ' ''( ) ( ) ( )E E iE    is the complex modulus. '( )E  and ''( )E   are respectively the real 

part and imaginary parts of the complex moduli and 1i   . 

Using (1.23), one can solve the viscoelastic problem as a special case of the elastic one where the 

elastic moduli are complex and frequency dependent.  

1.9 Extended time dependent constitutive equations 

In this section, the Boltzman integral equation (1.22) is extended to the case of linear 

piezoelectric and magnetoelectroelastic materials. 

The time dependent constitutive equations for viscoelectroelastic materials are given as follow 

[14]. 

0 0

0 0

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

t t

kl l
ij ijkl lij

t t

kl l
i ikl il

d dE
t c t d e t d

d d

d dE
D t e t d t d

d d

  
    

 

  
    

 

   

   

 

 

                                                                                 (1.24) 

Using the condensed notation (Fakri et al. (2003)), equations (1.24) could be written in a 

condensed form where 
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0

( )
( ) ( )

t

Kl
iJ iJKl

dZ
t E t d

d


 


                                                                                              (1.25) 

where 

( ) ( , 1,2,3)

( ) ( 1,2,3; 4)
( )

( ) ( 4; 1,2,3)

( ) ( 4; 4)

ijkl

lij

iJKl

ikl

il

c t J K

e t J K
E t

e t J K

t J K




 
 

 
  

  is the time dependent viscoelectroelastic 

relaxation tensor and  

( 1,2,3)( 1,2,3)

( 4) ( 4)

ijmn

Mn iJ

n i

JM
Z

E M D J

   
   

   
 

are the generalized strain and stress. 

Using the Laplace transform to (1.25) leads to the following expression in the frequency domain 

( ) ( ) ( )iJ iJKl KlE Z                                                                                                              (1.26) 

where  

( ) ' ( ) '' ( )iJKl iJKl iJKlE E iE     is the complex viscoelectroelastic moduli. 

' ( )iJKlE  and '' ( )iJKlE  are respectively the real part and imaginary part of the complex 

viscoelectroelastic moduli and 1i   . 

For viscomagnetoelectroelastic materials, the time constitutive equation is given as follow:  

0 0 0

0 0 0

0 0

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

t t t

kl l l
ij ijkl lij lij

t t t

kl l l
i ikl il il

t t

kl l
i ikl il

d dE dH
t c t d e t d h t d

d d d

d dE dH
D t e t d t d t d

d d d

d dE
B t h t d t d

d d

   
      

  

   
       

  

  
    

 

     

     

   

  

  


0

( )
( )

t

l
il

dH
t d

d


  


  

                                                          (1.27) 

The time dependent constitutive equations (1.24) and (1.27) will be used to predict the effective 

properties of heterogeneous viscoelectroelastic and viscomagnetoelectroelastic composites based 

on various micromechanical modelings. 
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1.10 Review of some micromechanical modelings  

The prediction of mechanical behavior of composite materials requires sophisticated modeling 

tools. Micromechanical modeling offers the opportunity to model materials on a microstructural 

level.  Micromechanical models provide the overall behavior of the composite materials from 

known properties of the individual constituents. Some basic features are common to any 

micromechanical modeling approach:  

A. The geometric definition of a representative volume element (RVE) which possesses the 

essential characteristics of the microstructure.  

B. The constitutive description of the mechanical behavior of each phase and the interaction 

between them.  

C. A homogenization procedure based on the RVE to derive the macroscopic material behavior. 

 The study of micromechanics has been an active research area for many decades and continues 

to be the forefront of analysis of composite materials. Excellent reviews of micromechanics 

could be found in the open literature in Hashin [34], Nemat-Nasser and Hori [35], Milton [36], 

Christensen [37], and Mura [38].  A small review of some micromechanical models is presented 

in the following subsections. 

1.10.1 Analytical models 

1.10.1.1 Simple models 

1.10.1.1.1 Voigt approximation 

The first model and the simplest one was introduced by Voigt. According to Voigt the effective 

stiffness of the composite is obtained based on the assumption that the strain is uniform 

throughout the composite. Based on this assumption, the effective stiffness is derived in terms of 

volume fractions and stiffnesses of its constituents.  

( ) ( )eff I M

ijkl I ijkl M ijklC f C f C                                                                                                                    (1.28) 

where If and Mf are the volume fraction of the inclusion and matrix, respectively; ( )I

ijklC and ( )M

ijklC  

are the elastic stiffness constants of the inclusion and matrix, respectively.  
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1.10.1.1.2 Reuss approximation 

Another very simplistic model is the one proposed by Reuss.  According to Reuss the effective 

compliance of the composite is derived based on the assumption that the stress is uniform 

throughout out the composite. Based on this assumption the effective compliance is obtained in 

terms of volume fractions and compliances of its constituents, One can write. 

( ) ( )eff I M

ijkl I ijkl M ijklS f S f S                                                                                                                       (1.29) 

where If and Mf are the volume fraction of the inclusion and matrix, respectively; ( )I

ijklS and ( )M

ijklS  

are the elastic compliance constants of the inclusion and matrix, respectively.  

It was shown by Hill that Reuss and Voigt approximation bound the actual effective moduli. The 

Voigt approximation provides the upper bound and the Reuss approximation provides the lower. 

1.10.1.2 Micromechanical models based on the solution of integral equations 

The micromechanical models presented here are based on the solution of the integral equation 

which is first derived by [39]. 

1.10.1.2.1 Local equations of elasticity and the integral equation 

The constitutive equations of elastic materials is given by  

ij ijkl klC                                                                                                                                 (1.30) 

where   is the stress,  is the strain and c  is the elastic stiffness tensor. 

The following gradient equation is used. 

, ,

1
( )

2
kl k l l ku u                                                                                                                        (1.31) 

The equilibrium equation in the absence of the body force is written as follow 

, 0ij i                                                                                                                                       (1.32) 

Using the compatibility equation and the symmetry of the elastic stiffness tensor one can write 

,ij ijkl k lC u                                                                                                                                (1.33) 

Replacing (1.33) into (1.32) the following partial differential equation is obtained 

, ,( ) 0ijkl k l jC u                                                                                                                            (1.34)  

A homogeneous fictitious media, called “reference media” which has the elastic moduli 0

iJklC , is 

considered. The expression of the local elastic moduli is given by:   
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0( ) ( )ijkl ijkl ijklC r C C r                                                                                                             (1.35)   

where ‘’r’’ is the position vector in the media considered and C is the deviation part. 

Introducing (1.35) into (1.34) leads to partial differential system 

0

, , ,( ) ( ( ) ( )) 0ijkl k lj ijkl k l jC u r C r u r                                                                                             (1.36) 

Now, the elastic Green tensor denoted by '( )G r r , of the reference medium corresponding to 

the response at the position r due to unit force applied at r’. This tensor verifies the following 

partial differential equation.  

0 '

, ( ) ( ) 0ijkl km lj imC G r r r                                                                                                       (1.37) 

The displacement could be expressed as follow  

( ) ( ') ( ') 'm k km

V

u r u r r r dV                                                                                                   (1.38) 

From equation (1.37) and using the fact that , , 'im l im lG G   lead to the following integral equation 

0

, ' '( ) ( ') ( ') 'm ijkl im j l k

V

u r C G r r u r dV                                                                                         (1.39) 

One can see that 

,, ' ' , ' , ' , ',
( )im j l k im j k l k lim j

G u G u G u                                                                                                 (1.40) 

Using (1.40) and the Stock’s theorem, (1.39) becomes 

0 0

, ' . '

0

. ' '

( ) ( ') ( ') ' ' ( ') ( ') ' '

( ') ( ') '

m ijkl im j k l ijkl im k l j

S S

ijkl im k l j

V

u r C G r r u r n dS C G r r u r n dS

C G r r u r dV

    

 

 


                                 (1.41) 

The first integral represents the elastic displacement field in a homogeneous solid with geometry 

and boundary condition similar to the considered solid. This elastic displacement field is denoted 

by 0 ( )u r . 

The second integral represents the static boundary condition and could be written as follow 

0

. '( ) ( ') ( ') ' ' ( ') ' ' ( ') 'd

m ijkl im k l j im ij j im i

S S S

u r C G r r u r n dS G r r n dS G r r T dS                       (1.42) 

Only the displacement boundary conditions are considered, so the second integral equals zero. 

Finally, using (1.36), (1.41) becomes 

0

' . ' , '( ) ( ')( ( ') ( ')) 'm m im ijkl k l j

V

u r u G r r C r u r dV                                                                     (1.43) 
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Or: 

0

' ' , '( ) ( ')( ( ') ( ')) 'm m im ijkl kl j

V

u r u G r r C r r dV                                                                       (1.44) 

Substituting (1.44) into (1.31) leads to the following integral equation 

0

, , ' ' , '

1
( ) ( ( ') ( '))( ( ') ( ')) '

2
mn mn im n ni m ijkl kl j

V

r G r r G r r C r r dV                                           (1.45) 

As before, we can decompose the integral, and moreover, if we assume that it vanishes at the 

boundary, one can find   

0

, ' , ' ' '

1
( ) ( ( ') ( ')) ( ') ( ') '

2
mn mn im nj ni mj ijkl kl

V

r G r r G r r C r r dV                                             (1.46) 

Taking into account the fact that , , 'im l im lG G   and considering  

, ,

1
( ( ') ( '))

2
mnij im nj ni mjG r r G r r                                                                                         (1.47) 

One can get the following integral equation 

0( ) ( ') ( ') 'mn mn mnij ijkl kl

V

r C r r dV                                                                                       (1.48) 

1.10.1.2.2 Solution of the integral equation 

The integral equation is solved based on the work of Eshelby [6]. Consider an infinite media 

with elastic moduli 0

ijklC  which contains a single inclusion “I” of volume IV  and elastic moduli 

IV assumed to be constant inside the volume IV . The inhomogeneity can be simulated by an 

“equivalent inclusion”. Based on these assumption one can write 

0( ) ( ) ( )I I I I

ijkl ijkl ijkl ijklC C C r C r                                                                                          (1.49) 

where ( )I r is the characteristic function of IV  ( ( )I r equals 1 inside the volume IV  and 0 

outside of IV ). The introduction of (1.49) into (1.48) and averaging (1.48) over the volume 

IV lead to 

0 1
( ') ( ') ( ') '

I

I I I

mn mn mnij ijkl klI V V
r r C r r dV dV

V
                                                                (1.50) 
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The exact solution of this equation is difficult to be obtained, an approximation is made by 

replacing ( ')kl r  by its average value I

kl as follows: 

0 1
( ') '

I I

I I I

mn mn mnij ijkl klI V V
r r C dV dV

V
                                                                            (1.51) 

(1.51) could be reformulated in the following form 

0 1I II I I

mn mn mnij ijkl klI
T C

V
                                                                                                            (1.52) 

where ( ') '
I I

II

mnij mnij
V V

T r r dV dV     represents the interaction tensor which depends on the 

properties of the infinite medium and the shape of the inclusion that the infinite medium 

contains.  

1.10.1.2.3 The extended approach 

The above developed equations could be extended to other kinds of materials such piezoelectric 

materials, magnetoelectroelastic materials etc. [40, 41] extended the modeling to the case of 

piezoelectric and thermopiezoelectric materials by using extended fields. The localization 

equation [41] that gives the relationship between the average generalized strain field I

KlZ  in the 

inclusion with the generalized strain field in the infinite medium 0Z is given as follow 

0 1I II I I

Kl Kl iJKl iJMn MnI
Z Z T E Z

V
                                                                                                      (1.53) 

Z is the  generalized strain field given by 

( 1,2,3)

( 4)

mn

Mn

n

M
Z

E M

 
 

 
                                                                                              (1.54) 

in which   is the elastic strain tensor and E is the electric field. 

E  is the electroelastic moduli given by 

t

ijmn nij

iJMn

imn in

c e
E

e 

 
  

  

                                                                                                               (1.55) 
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in which c is the elastic tensor, e the piezoelectric tensor and the dielectric tensor. 

Finally IIT is the condensed notation of the four electroelastic tensors given by 

( ') '
I I

II

iJKl iJKl
V V

T r r dV dV                                                                                                 (1.56) 

where ,( ') , 1,2,3 , 1,2,3,4iJKl JK lir r G with i l and J K       

The explicit expression of ,JK liG is given by Fakri et al. (2003) [40] 

, ,

4 , 4 ,

4,

44,

1
( ( ') ( ')) 1,2,3

2

1
( ( ') ( ')) 4 1,2,3

2

( ') 1,2,3 4

( ') 4 4

jk li jl ki

k li l ki

j li

li

G r r G r r forJ and K

G r r G r r forJ and K

G r r forJ and K

G r r forJ and K

    

     

   

   

 

The tensor IIT  will be used to derive some models for effective properties of the composite. 

1.10.1.2.4 Dilute Model 

Dilute approximation is the next simplistic micromechanics approximation after Voigt and Reuss 

approximations. The key assumption made in dilute approximation model is based on the idea 

that a single inclusion embedded in infinite medium in one RVE. The particles are supposed to 

be very far apart from each other so the interaction between particles could be ignored.  For an 

ellipsoidal particle, this solution has been obtained by [42, 43]. The effective elastic moduli for 

two-phase elastic composites with ellipsoidal inclusion are given by 

( ) : ( )eff M I M Dil M

ijkl ijkl I ijmn ijmn mnklC C f C C A C                                                                                    (1.57) 

where 
DilA  is the concentration tensor that relates the local strain tensor in the inclusion with the 

applied strain on the composite. The Dilute concentration tensor is derived from (1.52) by 

replacing 0C   by the elastic moduli of the matrix MC  and 0  by the applied strain on the 

composite . One can write the relationship that relates the average strain in the inclusions with 

the applied strain on the composite through the Dilute concentration tensor as follow 

I Dil

ij ijkl klA                                                                                                                                (1.58) 
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Where 11
( )Dil II I

mnkl klmn ijkl ijmnI
A I T C

V

   ,  
I I M

ijmn ijmn ijmnC C C    and IIT   is the interaction 

tensor.  

1.10.1.2.5 Self Consistent model 

The Self Consistent method is based on the work of Eshelby [6]. It was originally put forward in 

[44] in the study of the conductivity of composite materials. The application of the method to the 

mechanical behavior of polycrystalline and matrix based composites followed [45, 46, 47]. It 

was extended to the case of multi-site in [48]. [49] generalized the Self Consistent method to 

study the elastoplastic behavior of composite materials.  The essential assumption employed is 

the consideration of a single inclusion embedded within an effective matrix having the effective 

elastic moduli of the composites, and thus the interactions of the inclusions are accounted for. It 

should be noted that the Self Consistent method gives an implicit expression of the effective 

moduli which is computed iteratively. The Self Consistent method has its limitation for 

composites with high volume fraction of inclusion and high modulus contrast between the 

constituents [50]. Also it fails to give correct estimation of composites with void inclusions [51]. 

The effective elastic moduli for two-phase elastic composites with ellipsoidal inclusion are given 

by 

( ) : ( )eff M I M Sc eff

ijkl ijkl I ijmn ijmn mnklC C f C C A C                                                                                    (1.59) 

where ScA  is the concentration tensor that relates the local strain tensor in the inclusion with the 

applied strain on the composite. The Self Consistent concentration tensor is derived from (1.52) 

by replacing 0C   by the effective elastic moduli effC  and 0  by the applied strain on the 

composite . One can write the relationship that relates the average strain in the inclusions with 

the applied strain on the composite through the Self Consistent concentration tensor as follow 

I Sc

ij ijkl klA                                                                                                                              (1.60) 

where
11

( )Sc II I

mnkl klmn ijkl ijmnI
A I T C

V

    and 
I I eff

ijmn ijmn ijmnC C C                       

The Self Consistent model gives an implicit equation of the effective moduli that comes from the 

fact that ScA depends on the effective moduli effC . The effective moduli are predicted iteratively. 

To initialize the iterative process the initial value of the effective moduli is obtained from the 

Voigt model by 
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   eff I M

ijkl I ijkl M ijklC f C f C                                                                                                           (1.61) 

The concentration tensor is initialized by the identity tensor 

ScA I                                                                                                                                     (1.62) 

If these conditions are respected, the iterative algorithm will converge to the effective moduli 

effC . In the numerical applications one sees that there are some cases where there is no 

convergence. To stop the process, a stopping criterion is defined as follow 

1

1

n n

ijkl ijkl

n

ijkl

C C

C







                                                                                                                     (1.63) 

where nC  represents the approximation of the effective moduli at the nth step and  the 

maximum admitted deviation. 

1.10.1.2.6 Mori-Tanaka model 

The Mori-Tanaka model was originally developed by [52]. Since then, the method has been 

successfully applied to many problems in the mechanics and physics of composite materials. The 

method was initially linked with Eshelby’s [6] equivalent inclusion method and a review of 

many applications in this context is given in [53]. [54] re-examined the underlying assumptions 

of the method and reformulated it in a direct approach. The method has also received 

considerable attention from a theoretical standpoint by [55, 56, 57, 58] and has been shown to be 

on strong theoretical footing for the elastic behavior of two-phase composite media.  

The main assumption of this method is the consideration of a single inclusion embedded in an 

infinite matrix subjected to the uniform average matrix strain. This method provides an explicit 

formulation for the calculation of effective properties of composites. Also, it allows one to 

perform homogenization analysis at minimum computational cost. The effective elastic moduli 

for two-phase elastic composites with ellipsoidal inclusion is given by 

( ) : ( )eff M I M MT M

ijkl ijkl I ijmn ijmn mnklC C f C C A C                                                                                    (1.64) 

where 
MTA  is the concentration tensor that relates the local strain tensor in the inclusion with the 

applied strain on the composite. The Self Consistent concentration tensor is derived from (1.50) 

by replacing 0C   by the elastic moduli of the matrix MC  and 0  by the average strain in the 

matrix M .  Then using the flowing relationship  

M M I If f                                                                                                                       (1.65) 



 

28 
 

One can write the relationship that relates the average strain in the inclusion I  with the applied 

strain on the composite   through the Mori-Tanaka concentration tensor as follow 

I MT

ij ijkl klA                                                                                                                               (1.66) 

where 1( )MT II IM
mnkl klmn ijkl ijmnI

f
A I T C

V

    and 
I I M

ijmn ijmn ijmnC C C        

1.10.1.3 Hashin-Shtrikman type variational bounds 

Paul was the first to use the variational bounding techniques of linear elasticity to examine the 

bounds on the moduli of the multiphase materials. Paul [59] obtained the bounds for alloyed 

materials based on the principle of minimum potential and complementary energy. 

Hashin [60] and Hashin Shtrikman [61] attempted to tighten the Paul’s bounds to obtain more 

useful estimates of moduli for isotropic heterogeneous materials.  

 According to Hashin [60], the bounds for the effective elastic moduli are derived by assuming 

that the particles are spherical and that the action of whole heterogeneous material on any one 

inclusion is transmitted through a spherical shell, which lies wholly in the matrix. Hashin and 

Shtrikman [61] further extended their work by involving the elastic polarization tensor, to the 

derivation of upper and lower bounds for the effective elastic moduli of quasi-isotropic and 

quasi-homogeneous multiphase materials of arbitrary phase geometry. When the ratios between 

the different phase moduli are not too large the bounds derived are close enough to provide a 

good estimate for the elastic moduli. For the particulate two phase isotropic materials these 

bounds, lower ( *

1K ) and upper ( *

2K ) can be written as 

* 2
1 1

1

2 1 1 1

31

3 4

f
K K

f

K K K G

 


 

                                                                                               (1.67) 

* 2
1 1

1 1 1

2 1 1 1 1

6( 2 )1
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                                                                                       (1.68) 
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* 1
2 2

2 2 1

1 2 2 2 2

6( 2 )1

5 (3 4 )

f
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 



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                                                                                      (1.70) 

 

where * * * *

2 1 2 1 1 2; ; 1K K G G f f    , K and G are the bulk and shear moduli. 

The shear and bulk modulus are related the Young modulus ( E ) and to Poisson’s ratio ( ) by 

the following relationship 

3(1 2 )

E
K





 ;  

2(1 )

E
G





 

and they are related to Lame’s parameter ( ) by 

(1 )

3
K

 




  ;  

(1 2 )

2
G

 




   

1.10.2 Numerical methods 

The effective properties of composites can be approximately obtained by numerically solving the 

governing equations over RVE associated with appropriate boundary conditions. Numerous 

numerical methods have been employed for resolving the micro fields, such as early finite 

difference methods, boundary element methods, and finite element methods (FEM). There are 

many micromechanics models that deal actually with the composites with the assumption of 

periodic microstructures. The reinforcements are arranged in rectangular, square, hexagonal 

array, or some other pattern of array. The smallest element is taken as RVE with periodic 

boundary conditions. Different RVE undergoes identical deformation when the composite 

medium is subjected to uniform far field loading. These approaches include fast Fourier 

transforms [62], discrete Fourier transforms [63], the transformation field analysis [64], method 

of cells (MOC) developed by Aboudi [65, 66, 67, 68], and RVE-based finite element methods 

[69]. Bellow, assumptions and geometry of the method of cells are presented. 

1.10.2.1 The method of cells 

The method of the unit cell is based upon the approximation that a composite could can by 

approximated by a periodic array. In using this periodicity, it is possible to analyze a single 

representative volume element of the continuum rather than the whole continuum. The 

representative volume element is then used as the building block from which the continuum is 
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constructed, as shown in figure 1.14 a. The representative volume element must meet two 

criteria. First, the element must include enough information to correctly represent the continuum. 

Secondly, the element must be structurally to the composite. These conditions are met by the cell 

structure in figure 1.14 b [67]. The microstructure of the composite is modeled by within each 

representative volume element, attempting to better represent the interaction between the matrix 

and fiber. The matrix is represented by a number of elements inside of each volume cell while 

the reinforcing material is allotted a single element. For the continuous fiber case pursued here, 

the matrix is assigned three elements in the cell. The coordinate system is set up so that the fibers 

are assumed to extend into the global x1 direction.  
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Figure 1.14:  Geometry and unit cell for the method of cells (a) Composite arranged as a 

periodic array of fibers (b) Unit cell for the method of cells. 

The periodic array can then be seen in the x2, x3  plan with a cross sectional view of the element 

shown in figure 1.14 b. Following the Aboudi’s notation for numbering the element, the fiber 

element is designated by β=1 and γ=1. The reaming element (β, γ) = (1, 2), (2, 1) and (2, 2) are 

matrix elements. The length of one side of the element is assumed to be h1+h2 where h1 is the 

width of the fiber. Since the fiber is transversely isotropic (isotropic in h2, h3 plane), the cross 

sectional area of the fiber is then 2

1h . The remaining length can be calculated based on the fiber 

volume fraction of the composite. As show in figure 1.14 b local coordinate systems are  defined 

for each element, the origin of each centered in the element. These local coordinates are 

designated by 2x  and 3x  . 

Using the local coordinate system, the displacements within each element are interpolated 

linearly from the center. It is possible to use a linear displacement since it is the average 

properties of the composite that are being calculated. Following Aboudi’s notation, the 

displacement interpolations inside each element is written: 
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( ) ( ) ( ) ( )

2 3i i i iu w x x                                                                                                        (1.71) 

where 1,2,3i   and ( )

iw  is the displacement of the center of the element. As the displacement 

interpolation is linear, ( )

i

 and ( )

i

 represent the constants coefficients of the linear 

dependence on the subcell coordinates. 

Based on this displacement interpolation, the strain are then calculated as 

 ( ) ( ) ( )1

2
ij i j j iu u                                                                                                          (1.72) 

where   represents partial differentiation with respect to the coordinate noted in the subscript 

and , 1,2,3i j  . The strain tensor is ordered here as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 22 33 12 13 232 2 2ij

                                                                                                        (1.73) 

The stress could be calculated as follow 

   ( ) ( ) ( )

ij ijkl klC                                                                                                                  (174) 

where ( )

ijklC    is the stiffness matrix. 
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1.11 Overview of the dissertation 

This dissertation focuses on investigating the effective behaviors and the effects of 

multifunctional materials such as magnetoelectroelastic composites, piezoelectroelastic 

composites as well as the non-linear transformation behavior of SMA composite materials. 

Different micromechanical models are developed and adapted in order to predict the effective 

behavior of these multifunctional composites.   

In chapter 2, the effective behavior of two-phase and three-phase magnetoelectroelastic 

composites has been investigated by using different micromechanical models such as 

Incremental Self Consistent, Self Consistent, Mori-Tanaka and Dilute. The Self Consistent 

model underestimate the prediction of the effective properties of composite materials at high 

volume fraction of inclusion  and for composites with void inclusions the prediction is limited 

for very low void concentrations. The aim of this chapter is to develop an N-phase Incremental 

Self Consistent model for magnetoelectroelastic materials to correct the anomalies showed by the 

Classical Self Consistent model. The Incremental Self Consistent model showed its efficiency 

for the prediction of the effective behavior at high volume fraction of inclusion as well as for 

composites with void inclusions. N-phase Mori-Tanaka and Dilute models have been developed 

and a comparison between the predictions of different micromechanical models has been done. 

The mathematical modeling is based on the magnetoelectroelastic Green’s tensors that lead to 

the integral equation. The solution of the integral equation, obtained based on the Eshelby 

assumptions, leads to localization equation. Using the localization equation and based on 

different micromechanical approximation the concentration tenors for each micromechanical 

model are derived. Then using the homogenization process the expression of the effective 

behavior of magnetoelectroelastic composites is obtained. Numerical results have been presented 

for two-phase composites and three-phase composites with and without void by emphasizing the 

effect of shape and concentration inclusions [70, 71, 72]. 

 

This chapter is journal article entitled “Modeling of effective properties of multi-phase 

magnetoelectroelastic heterogeneous materials”, published in the international journal 

Computers, Materials & Continua, (2011).  
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In chapter 3, the effective properties of magnetoelectroelastic composites with multicoated 

inclusions and functionally graded interphase are investigated based on different 

micromechanical models. The modeling is developed in the general case of anisotropic 

composites with non homothetic multi-coated ellipsoidal inclusions and functionally graded 

interphases. The integral equation taking into account the continuously varying interphase 

properties as well as the multi-functional coating effects is introduced based on the Green’s 

tensors and interfacial operators. Magnetoelectroelastic composites with functionally graded 

interphases are analyzed and the effective properties are derived. Based on the Mori-Tanaka, Self 

Consistent and Incremental Self Consistent models the numerically predicted effective properties 

of magnetoelectroelastic composites are presented with respect to the volume fractions, shapes of 

the multi-coated inclusions and the thickness of the coatings [73, 74, 75, 76, 77, 78].  

This chapter is a journal article entitled “Micromechanical modeling of magnetoelectroelastic 

composite materials with multi-coated inclusions and functionally graded interphases”, published 

in the International Journal Intelligent Materials Systems and Structures, (2013).  

In chapter 4, a micromechanical modeling is developed to predict the time dependent effective 

properties of viscoelectroelastic composites. The convolution model is adopted and various 

relaxation tensors can be considered. Time dependent and frequency dependent constitutive 

electroelastic equations are used. Two kinds of composites were considered: Two-phase 

viscoelectroelastic composites and multi-coated viscoelectroelastic composites. Using the 

correspondence principle of linear viscoelectroelasticity, the Mori-Tanaka micromechanical 

mean field approach is extended to the Carson domain. Based on the integral equation and on 

viscoelectroelastic interfacial operators the concentration tensors for viscoelectroelastic 

composites are derived. Various viscoelectroelastic models can be used. The effective properties 

are derived in the Carson domain and then are inverted numerically to the time domain by using 

the inverse of Laplace transform. The effective properties are then obtained in frequency and 

time domains. The effect of shape and volume fraction of reinforcements as well as the thickness 

of the coating is shown on the effective.  

This chapter is a journal article entitled “Viscoelectroelastic effective properties of 

heterogeneous and multi-coated piezoelectric materials”, submitted to the International Journal 

Solid and Structures, (2013). 
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In chapter 5, the methodological approach developed in chapter 4 is generalized to predict the 

effective viscomagnetoelectroelastic behavior of magnetoelectroelastic composites. Two kinds of 

composites were considered: Three-phase viscomagnetoelectroelastic composites consisting of a 

polymer matrix and piezoelectric and piezomagnetic inclusions and a three-phase composites 

consisting of piezoelectric inclusions surrounded by piezomagnetic inclusion embedded in a 

polymer matrix.  Generalizing the correspondence principle of linear viscoelectroelasticity to the 

case of magnetoelectroelastic composites, the Mori-Tanaka micromechanical model is extended 

to Carson domain. Based on the integral equation and on viscoelectroelastic interfacial operators 

the concentration tensors for viscomagnetoelectroelastic composites are resulted. The effective 

properties are derived in the Carson domain and then inverted numerically to the time domain by 

using the inverse of the Laplace transform. The effective properties are presented in frequency 

and time domain [79].  

Chapter 5 is a journal article entitled “Viscomagnetoelectroelastic effective properties of 

heterogeneous and multi-coated magnetoelectroelastic materials”, will be submitted to an 

international journal. 

Chapter 6 aims to develop a micromechanical modeling to investigate the nonlinear effective 

properties of shape memory alloy (SMA) composite materials. The SMA composite considered 

here is consisting of elastic inclusions embedded in an SMA matrix. The difficulty of modeling 

these kinds of composites is that SMA matrix undergoes a phase transformation after loading. 

The SMA matrix in the beginning is austenite and then after loading this matrix undergoes a 

phase transformation which leads to the apparition of the martensitic phase. After sufficient 

loading the matrix becomes fully martensitic. To take into account the effect of the apparition of 

the austenitic phase on the inclusion and then on the composites behavior the Mori-Tanaka 

multi-coated micromechanical model is used. The effective transformation behavior of the SMA 

composites is predicted by combining the Mori-Tanaka multi-coated micromechanical model 

with the constitutive equations of SMA materials [80]. 

Finally, Chapter 7 summarizes the important findings of the thesis. Concluding remarks and 

recommendations for future work are presented. 
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Vol. 23, N°3, pp 201-231. 

 Bakkali, A.; Azrar, L.; Aljinaidi, A. A. (2012): Multi-coated magnetoelectroelastic 

composites with functionally graded interphases. MATEC Web of Conferences, Vol. 1, 
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 Bakkali, A.; Azrar, L.; Aljinaidi, A. A. (2013): Micromechanical modeling of 
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Chapter 2 

2. Modeling of effective properties of multi-phase 

magnetoelectroelastic heterogeneous materials  

 

 

 

Abstract 

In this paper an N-phase Incremental Self Consistent model is developed for 

magnetoelectroelastic composites as well as the N-phase Mori-Tanaka and classical Self 

Consistent. Our aim here is to circumvent the limitation of the Self Consistent predictions for 

some coupling effective properties at certain inclusion volume fractions. The anomalies of the 

SC estimates are more drastic when the void inclusions are considered. The mathematical 

modeling is based on the heterogeneous inclusion problem of Eshelby which leads to an 

expression for the strain-electric-magnetic field related by integral equations. The effective N-

phase magnetoelectroelastic moduli are expressed as a function of magnetoelectroelastic 

concentration tensors based on the considered micromechanical models. The effective properties 

are obtained for various types, shapes and volume fractions of inclusions and compared with the 

existing results.  
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2.1 Introduction 

The concept of new multifunctional materials constitutes now a scientific challenge especially 

for smart composites which include magnetoelectroelastic composites. Efforts are currently 

under way to develop materials that have superior properties to those currently existing. This has 

resulted in the development of composite materials that exhibit remarkable properties, which are 

created by the interaction between the constituent phases. There are many advantages to using 

composite materials more than traditional materials, such as the possibility of weight or volume 

reduction in a structure while maintaining a comparable or improved performance level.    

Composite materials consisting of a piezoelectric phase and a piezomagnetic phase show a 

remarkably large magnetoelectric coefficients and large coupling coefficients between elastic, 

electric and magnetic fields, which do not exist in either constituent. The magnetoelectric 

coupling in the composite is created through the interaction between the piezoelectric and the 

piezomagnetic phases. The product property of composites offers great opportunities to design 

new materials that are capable of responding in a desired way to the internal or environment 

changes, which may not be achieved by traditional materials. The coupling effects in 

magnetoelectroelastic composites materials have many uses in many engineering fields such 

aeronautics, automotives and medical imagery. The double coupling effects in piezoelectric 

materials and the triple ones in magnetoelectroelastic are very useful for sensors and actuators.  

The effective properties of piezoelectric composites materials have been investigated by many 

researchers. Dunn and Wienecke (1996, 1997) have given the closed-form expressions for the 

infinite-body Green’s functions for a transversally isotropic piezoelectric medium and the four 

Eshelby tensors for spheroid inclusions in transversally isotropic solids. Dunn and Taya (1993) 

predicted the effective properties using the Dilute, Self Consistent, Mori-Tanaka, and 

Differential micromechanical models.  Fakri, Azrar and El Bakkali (2003) predicted the behavior 

of piezoelectric composite materials and presented the numerical results for the effective 

electroelastic properties in term of phase properties, orientation angles, volume fraction and 

shapes of inclusions. Odegard (2004) proposed a new modeling approach to predict the bulk 

electromechanical properties of piezoelectric composites and compared the obtained results with 

those obtained by the Mori-Tanaka approach and the finite element method. Li (2004) applied 

the Self Consistent approach to predict the effective pyroelectric and thermal expansion 
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coefficients of ferroelectric ceramics taking into account the texture change due to domain 

switching during poling.  

For magnetoelectroelastic composites, Li and Dunn (1998) investigated the 

magnetoelectroelastic coupling effects using the mean field Mori-Tanaka method and presented 

numerical results for fibrous and laminated composites. Wu and Huang (2000) investigated the 

magnetoelectric coupling effect in a fibrous composites with piezoelectric and piezomagnetic 

phases. Based on the eigenstrain formulation and Mori-Tanaka approach, the 

magnetoelectroelastic Eshelby tensors and the effective material properties of the composite are 

obtained explicitly. Li (2000) studied the average magnetoelectroelastic field in a multi-inclusion 

or inhomogeneities embedded in an infinite matrix. Feng, Fang and Hwang (2004) investigated 

the effective properties of composite consisting of piezomagnetic inhomogeneities embedded in 

a non-piezomagnetic matrix by using a unified energy method and the Mori-Tanaka and Dilute 

approaches.  Zhang and Soh (2005) extended the micromechanical Self Consistent, Mori-Tanaka 

and Dilute to study the coupled magnetoelectroelastic composite materials. Srinivas and Li 

(2005) developed a Self Consistent approach to calculate the macroscopic magnetoelectric 

coefficients by emphasizing the effects of shape, volume fraction and orientation distribution of 

particles of both phases.  Lee, Boyd and Lagoudas (2005) developed a finite element analysis 

and micromechanics based averaging of a representative volume element to determine the 

effective dielectric, magnetic, mechanical, and coupled-field properties of an elastic matrix 

reinforced with piezoelectric and piezomagnetic fibers. A special emphasis on the poling 

directions of the piezoelectric and piezomagnetic fibers is done. Srinivas, Li, Zhou and Soh, 

(2006) developed a mean field Mori-Tanaka model to calculate the effective 

magnetoelectroelastic moduli of matrix-based multiferroic composites by emphasizing the 

effects of shape and orientation distribution of second phase particles composites. More recently, 

Fakri and Azrar (2010) developed the Incremental Self Consistent method to 

thermoelectroelastic materials to predict the electro elastic and thermal response of 

piezocomposites with and without voids. 

The classical Self Consistent model, which is widely used, overestimates the predictions of some 

magnetoelectroelastic composites effective properties for moderate and high concentrations of 

reinforcements and diverges for some coefficients. For magnetoelectroelastic composites with 

void inclusions the predictions are limited for very low void concentrations and are erroneous for 



 

46 
 

volume fraction greater than 10%. The aim of this paper is on one hand to develop an N-phase 

Incremental Self Consistent model for magnetoelectroelastic materials. On the other hand to 

present an accurate model based on the Self Consistent procedure for N-phases coupled materials 

In this work, a micromechanical modeling is used to predict the behavior of multi-phase 

magnetoelectroelastic composites. The nine interaction tensors which are used to predict the 

effective moduli of multi-phase magnetoelectroelastic composites based on various micro 

mechanical approaches such Self Consistent, Mori-Tanaka, Dilute and Incremental Self 

Consistent schemes are derived. Numerical results are obtained for various shapes of inclusions 

and compared with the existing ones.  A mathematical modeling based on the Incremental Self 

Consistent model is developed for multi-phase magnetoelectroelastic composites. It is clearly 

demonstrate in this work that the Incremental Self Consistent model gives more accurate results 

than the classical Self Consistent model.  

2.2 Basic equations 

Let us consider the linear magnetoelectroelastic effect, where the magnetic, electric and elastic 

fields are coupled through the following constitutive equations: 

ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

c e E h H

D e E H

B h E H

 

  

  

  

  

  

                                                                                                          (2.1) 

where the elastic strain kl , electric fields lE , and magnetic fields lH are independent variables 

related to stresses ij , electric displacements iD and magnetic inductions iB . The tensors ijklc , 

lije , lijh , il , il and il are the  elastic, piezoelectric, piezomagnetic, magnetoelectric, dielectric 

and magnetic permeability constants  respectively. Let us note 

that ijkl jikl ijlk jilkc c c c   , lij ljie e and lij ljih h . In the constitutive equations we use - lE  and -

lH  rather than lE and lH  as they will permit the construction of a symmetric matrix of 

constitutive moduli. The following gradient expressions are used: 

, ,

1
( )

2
kl k l l ku u        ,

e

l lE           ,

m

l lH                                                                          (2.2) 

where ku , e  , m are the elastic displacements, electric and magnetic potentials, respectively. 
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The equilibrium equations, in the absence of body forces, electric charge and electric current 

densities, are as follows: 

, 0ij i                   , 0i iD                 , 0i iB                                                                              (2.3) 

In order to make easy the manipulation of these equations, the condensed notations are used. 

These notations are identical to those using the conventional subscripts except that the lower case 

subscripts assume the range of 1-3, while the capital subscripts take the range of 1-5, and the 

repeated capital subscripts are summed over 1-5. With these notations, the generalized strain 

field denoted by MnZ  can be expressed as 

( 1,2,3)

( 4)

( 5)

mn

Mn n

n

M

Z E M

H M

 


  
 

                                                                                               (2.4) 

Note that MnZ  can be derived from the generalized potential field MU given by 

( 1,2,3)

( 4)

( 5)
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e
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m

u M

U M

M








 




                                                                                                    (2.5) 

Similarly, the generalized stress field iJ is given by         

    

( 1,2,3)

( 4)

( 5)

ij

iJ i

i

J

D J

B J

 


  
 

                                                                                                 (2.6) 

The magnetoelectroelastic constants can then be represented as follows:                 

( , 1,2,3)

( 1,2,3; 4)

( 1,2,3; 5)

( 4; 1,2,3)

( 5; 1,2,3)

( 4; 4)

( 4; 5 5; 4)

( 5; 5)
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  
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  

                                                                      (2.7)    

The symmetry of iJMnE can be obtained from those of ijmnc , nije  , nijh  , in  , in  and in . By using 

these shorthand notations, eqs. (2.1) can be rewritten as a single equation as follows: 

 iJ iJMn MnE Z                                                                                                                           (2.8-a) 
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 Note that MnZ , MU , iJ  and iJMnE are not tensors, and they can be conveniently expressed in 

matrix form as follows : 

 

t t

ijmn nij nij

iJMn imn in in

imn in in

c e h

E e

h

 

 

 
 

   
   

                                                                                                   (2.8-b) 

,Mn M nZ U                                                                                                                               (2.8-c) 

The magnetoelectroelastic coefficients can then be represented by the (12×12) matrix E. 

Similarly, Z is a (12×1) vector. Thus, in order to express the equilibrium equations, each 

individual tensor must be transformed by the well known law of tensor transformations. The 

resulting tensors can then be reunified into the form of Eqs.(2.4) to (2.7). Substituting Eqs. (2.2) 

into Eqs.(2.1) and  considering matrix  symmetry, one obtains: 

,iJ iJMn M nE U                                                                                                                           (2.9) 

Introducing Equation (2.9) in the equilibrium equation (2.3), the following partial differential 

equation is obtained: 

, ,( ) 0iJMn M n iE U                                                                                                                         (2.10) 

 2.3 Integral equation formulation 

Let us consider a homogeneous fictitious media called “reference media” which has the 

magnetoelectroelastic moduli
0

iJMnE . The expression of the local magnetoelectroelastic moduli is 

given as follow:         

0( ) ( )iJMn iJMn iJMnE r E E r                                                                                                       (2.11)   

where “r’’ is the position vector in the media considered and E is the deviation part. The 

introduction of this expression into (2.10) leads to  

0

, , ,( ) ( ( ) ( )) 0iJMn M ni iJMn M n iE U r E r U r                                                                                    (2.12)                                         

Now, let us introduce the magnetoelectroelastic Green’s tensors, denoted by ( ')MJG r r , of the 

reference media corresponding to the response at the position r due to a unit point force or 

charge at 'r . These tensors satisfy the following partial differential equation:   
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0

, ( ') ( ') 0iJMn MK in JKE G r r r r                                                                                         (2.13)                                       

This partial differential equation, satisfied by the magnetoelectroelastic Green’s tensors, 

condensed nine partial differential equations. Based on (2.13), and after some mathematical 

manipulations and the consideration of the boundary condition, the expression of the local 

generalized field UM(r) is derived: 

, '

0

,

( ) ( )

( ')( ( ') ( ')) '
i

K K

JK iJMn M n
V

U r U r

G r r E r U r dV

 


                                                                                (2.14) 

Using the fact that ,Kl K lZ U  and considering the condition that the local generalized strain field 

vanishes at the boundaries the expression of the local generalized strain field can be written as:   

  

0( ) ( )

( ')( ( ') ( ')) '

Kl Kl

iJKl iJMn Mn
V

Z r Z r

r r E r Z r dV

 

 
                                                                                 (2.15)  

where  ,( ') ( ')iJKl JK lir r G r r      is a condensed notation of nine tensors. 

This equation is an integral formulation of the generalized strain field ( )KlZ r . To solve this 

equation the equivalent inclusion approach will be used.  

2.4 Averaged field 

Consider an infinite media with magnetoelectroelastic moduli 
0

iJMnE  which contains a single 

inclusion ’’I” of volume 
IV  and magnetoelectroelastic moduli 

I

iJMnE   assumed to be constant 

inside the volume 
IV . The inhomogeneity can be simulated by an “equivalent inclusion”. Based 

on these assumptions, as done by Eshelby (1957) in the elastic case and by Deeg (1980) in the 

electroelastic case, one obtains 

0( ) ( )I I

iJMn iJMn iJMnE E E r                                                                   

Or            ( )I I

iJMn iJMnE E r                                                                                                   (2.16) 

where ( )I r is the characteristic function of 
IV  ( ( )I r equals 1 inside the volume 

IV  and 0 

outside of 
IV ). Based on Eq. (2.15), the average generalized strain field 

I

KlZ  in the considered 

inclusion is given by the following expression:  

0 1
( ') ( ') ( ') '

I

I I I

Kl Kl iJKl iJMn MnI V V
Z Z r r E r Z r dV dV

V
                                                          (2.17) 
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The exact solution of the above integral equation is difficult to be obtained. An approximation is 

then made by replacing ( ')MnZ r  by its average value 
I

KlZ  in the considered inclusion as follows: 

  0 1
( ') '

I I

I I I

Kl Kl iJKl iJMn MnI V V
Z Z r r E Z dV dV

V
                                                                     (2.18) 

This equation can be reformulated in the following form: 

0 1I II I I

Kl Kl iJKl iJMn MnI
Z Z T E Z

V
                                                                                                      (2.19)  

where ( ') '
I I

II

iJKl iJKl
V V

T r r dV dV     represents the condensed notation of the nine interaction 

tensors. These tensors are computed numerically for various shapes of inclusions using the 

Gaussian quadrature integration for the considered inclusion shape. 

2.4.1 Spherical inclusion 

A spherical inclusion with radius “q” is considered. In spherical system attached at the 

inclusion, the vector q becomes                      

1,2,3p pq q p                                                                                                             (2.20)  

where      

sin

sin sin

cos

cos 

  






 



 

q, θ and  are the spherical coordinates of the vector q  defined in the following domains: q[0, 

+[, θ [0, ] and  [0, 2]. 

Application of the Fourier transform to Eq. (2.13) leads to the following expression 

0 ( )iJMn JK n i MKE G q q q                                                                                                                (2.21) 

The introduction of the equation (2.20) into (2.21) leads to the algebraic problem 

0 2( ( ))iJMn n i JK MKE q G q                                                                                                         (2.22)  

Let us introduce a matrix M defined by 

 
0

JM iJMn n iM E                                                                                                                     (2.23-a)  

The inverse of M is given by 

1 2 ( )JK JKM q G q                                                                                                                      (2.23-b) 
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The explicit expression of the matrix M is given by 

t

A B
M

B C

 
  
 

                                                                                                                     (2.23-c) 

Expressions of matrices A, B and C are derived for piezoelectric and piezomagnetic media which 

belong to crystallographic classes of tetragonal symmetry. With spherical coordinate, these 

matrices are expressed as: 

   

 

2 2 2

11 1 22 2 55 3 12 66 1 2 13 55 1 3

2 2 2

12 66 1 2 66 1 22 2 44 3 23 44 2 3

2 2 2

13 55 1 3 23 44 2 3 55 1 44 2 33 3

( ) ( )

( ) ( )

( ) ( )

c x c x c x c c x x c c x x

A c c x x c x c x c x c c x x

c c x x c c x x c x c x c x

    
 

     
 

    

31 15 3 1 31 15 3 1

32 15 2 3 32 15 2 3

2 2 2 2 2 2

15 1 25 2 33 3 15 1 25 2 33 3

( ) ( )

( ) ( )

e e x x h h x x

B e e x x h h x x

e x e x e x h x h x h x

  
 

   
     

  

2 2 2 2 2 2

11 1 22 2 33 3 11 1 22 2 33 3

2 2 2 2 2 2

11 1 22 2 33 3 11 1 22 2 33 3

x x x x x x
C

x x x x x x

     

     

    
  

     

 

where 1 sinx cos  , 2 sin sinx   , and 3x cos  

The expression of 
II

iJKlT in spherical coordinates system is then given by: 

 


2 23

2 2

0 0 0

23
2

4 4

0 0

23
2

5 5

0 0

sin [ ( ) 1,2,3
6

sin ( )
3

sin ( )
3

II

iJKl i l JK i K Jl

II

iJ l i l J

II

iJ l i l J

a
T q G d q G d d K

a
T d q G d

a
T d q G d

  

 

 

       

    

    

  





  

 

 

                                            (2.24) 

2.4.2 Ellipsoidal inclusion 

An ellipsoidal inclusion with a, b, and c as half axes is considered.  The used ellipsoidal 

coordinates are expressed in the principal system of the inclusion: 

R       

1 1

2 2

3 3

R r

a
R r

b

a
R r

c







    and     Q    

1 1

2 2

3 3

Q q

b
Q q

a

c
Q q

a







 

The matrix relationship between Q  and q  is as follows: 
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i it tq Q                                                                                                                                    (2.25)   

With              

1 0 0

0 0

0 0

a

b
a

c



 
 
 
 
 
 
  



 

 

The expression of Q in this coordinate system is then 

1,2,3t tQ Q t               

The final expressions of 
II

iJKlT
 
are similarly given by: 


2 2

2 2

0 0 0

2

2

4 4

0 0

2

2

5 5

0 0

sin [ 1,2,3
6

sin ( )
3

sin ( )
3

II

iJKl lt t iu u JK Kt t iu u Jl

II

iJ l lt t iu u J

II

iJ l lt t iu u J

abc
T Q G d Q G d d K

abc
T d Q G d

abc
T d Q G d

  

 

 

           

      

      

  





  

 

 

                                     (2.26) 

  In this case the matrix M is given by 

 
0

JK iJKl it t lu uM E        and    
1 2 ( )JK JKM Q G q 

 

The explicit expression of the matrix M in ellipsoidal coordinates can be directly obtained by 

replacing x1, x2 and x3 in (2.23-c) by:  

1 sinx cos  ,
2 sin sin

a
x

b
  , 

3

a
x cos

c


 

2.5 Micromechanical models 

2.5.1 N-phase Self Consistent approach 

The Self Consistent model has been originally developed for estimating macroscopic moduli of 

polycrystalline metals (Hershey 1954 [9], Kroner 1958 [10]). The Self Consistent model 

continues to be used by a great number of researchers for estimating homogenized moduli of 

heterogeneous materials including elastic, elastoplastic, viscoplasitic, piezoelectric materials, etc. 

In the one site Self Consistent approach the composite is considered as an inclusion embedded in 

a matrix which takes the properties of the whole composites effE . Based on the equivalent 

inclusion problem of Eshelby, the expression of the concentration tensor SCA  is given by Dunn 

et al [2, 3] and Fakri et al [6] for piezoelectric composites. 
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11
( )SC II I

MnKl KlMn iJKl iJMnI
A I T E

V

                                                                                 (2.27) 

where      
I I eff

iJMn iJMn iJMnE E E      

For magnetoelectroelastic composite materials
SC

MnKlA is the shorthand notation of nine 

concentration tensors defined as functions of the tensor IIT  . This tensor has to be computed first 

and the numerical procedure can be found in [6].  

For an N-phase medium, the effective magnetoelectroelastic moduli effE , predicted by the Self 

Consistent model, is expressed as: 

1

N
eff I I SC

iJKl iJMn MnKl

I

E f E A


                                                                                                     (2.28) 

where 
I

I V
f

V
  is the concentration of the inclusions I. If the first phase (N=1) is taken as the 

matrix (symbol ’m’), the last expression becomes 

2

( )
N

eff m I I m SC

iJKl iJKl iJMn iJMn MnKl

I

E E f E E A


                                                                         (2.29) 

Let us recall that 
1

n
I SC

MnKl MnKl

I

f A I


 , where MnKlI  is the shorthand notation of the four identity 

tensors, 
m

iJMnE corresponds to the magnetoelectroelastic matrix moduli and 
I

iJMnE corresponds to 

the magnetoelectroelastic inclusions moduli. These formulations permit one to predict the 

effective magnetoelectroelastic moduli for the N-phase composites. For a two phase composites, 

the expression of 
eff

iJKlE becomes 

( )eff m I I m SC

iJKl iJKl iJMn iJMn MnKlE E f E E A                                                                               (2.30) 

Note that equations (2.28) and (2.30) give coupled and implicit expression of the effective 

magnetoelectroelastic moduli of the magnetoelectroelastic material. The concentration tensors 

SCA  are functions of effE . This kind of equations is generally solved by iterative methods. A 

detailed algorithm for numerical computation is given in [6]. 
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2.5.2 N-phase Incremental Self Consistent approach 

The development of the N-phase Incremental Self Consistent approach for the 

magnetoelectroelastic heterogeneous materials is one the main theoretical and numerical results 

of this paper. This is due to the fact that the Self Consistent method gives erroneous predictions 

of effective coefficients of composites materials at high concentration of reinforcements.  An 

improvement of SCM, by an incremental way has been developed for piezo composite materials 

by Fakri and Azrar [7] for two phases. In this paper, an extension of the ISC scheme to magneto-

electro-elastic effective properties and its development for N-phase magnetoelectroelastic 

composites are done.  

For N-phase materials, the resulting composite must be characterized by concentrations " "Jf  of 

phases (reinforcements) 0< f 
J
 < 1; J=1, N. 

J

J

f
f

S
   is considered as partial concentration of the phase J and S is the number of steps. At 

the i
th

 step, the volume fraction of the phase J is 
J

i Jf i f  . The concept of the volume 

preservation must be used for computing the finite increment of the total volume fraction of 

reinforcements which will be added at the i
th

 step. This volume preservation can be expressed by 

means of magnetoelectroelastic behaviors of each phase in the following manner: 

After (i-1) steps, the magnetoelectroelastic coefficients of composite can be expressed by means 

of magnetoelectroelastic coefficients of each phase as 

1

1 1

( 1) 1 ( 1)
N N

J M C

J J i

J J

i f E i f E E 

 

 
       

 
                                                                        (2.31) 

where JE  and ME  are the magnetoelectroelastic coefficients of the  phase J and the matrix 

respectively. 1

C

iE   represents the composite magnetoelectroelastic coefficients for the step (i-1). 

At the i-th step in the Self Consistent scheme, the next increment of phase J is 
J

if . It must be 

introduced in an equivalent matrix which has the behavior of the built composite in the last steps. 

So, one can write:   

1

1 1 1 1

1 1
N N N N

J J J C J M

i i i J J

J J J J

f E f E i f E i f E

   

   
           

   
                                          (2.32)                  

where 
J

if is the increment that must be added at the ith step into the equivalent matrix. 
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The substitution of (2.31) into (2.32) leads to the following equation:
 

 
1 1 1 1 1 1

1 1 1 1 ( 1) 1 (2.33)
N N N N N N

J J J J M J M

i i J i J J J

J J J J J J

f f i f E f i f E i f E i f E
     

        
                        

        
     

From this equation, the following formulations are derived: 

1

1 ( 1)
N

J J

i i J J

J

f f i f i f


 
        

 
                                                                                           (2.34) 

   
1 1 1

1 1 ( 1) 1
N N N

J

i J J

J J J

f i f i f
  

   
          

   
                                                                           (2.35)

 

From (2.34) and (2.35) the general expression of the volume fraction 
J

if to be injected at the 

step ‘i’ into the phase J is given by: 

 

1

= 

1 ( 1)

J J
i N

J

J

f
f

i f





  
                                                                                                            (2.36) 

 Expression (2.36) shows that the incremental volume fraction of reinforcements 

J

if continuously increases as a function of the step number ‘i’. It is important to point out that 

the overall properties of the equivalent homogeneous material obtained by this procedure 

depends on the number of steps S. 

 
( ) ( 1) ( 1)

1

( )
N

eff i eff i J I eff i SC

iJKl iJKl i iJMn iJMn MnKl

J

E E f E E A 



                                                                      (2.37) 

with (0)eff ME E
 

Note that the Incremental Self Consistent scheme does not affect the expression of the 

concentration tensors A on which the method is based. So, the formulations used in this study 

and in the traditional Self Consistent method are the same. The two methods differ only in the 

manner of introducing the reinforcements’ concentration. In order to compare the effectiveness 

of the presented approach the Mori Tanaka as well as the dilute approach is presented for N-

phase composites. 

2.5.3 N-phase Mori-Tanaka Approach 

The Mori-Tanaka model has been and continues to be the most widely used approach in the 

micro mechanics dilute heterogeneous materials with ellipsoidal inclusions. The Mori-Tanaka 

mean field approach takes into account the effect of other inhomogeneities by considering a 
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finite concentration of inclusions embedded in an infinite matrix of magnetoelectroelastic moduli 

I

iJKlE and 
m

iJKlE , and gives a straightforward explicit expression of the effective moduli. The 

corresponding concentration tensor MTA  is then given by the solution for a single inclusion 

embedded in an infinite matrix in the same manner as the heterogeneous inclusion problem of 

Eshelby. 

For N phases, the Mori-Tanaka concentration tensor MTA is given as follows: 

1

1

( )
N

MT Dil m i Dil

iJKl iJMn KlMn KlMn

i

A A f I f A 



                                                                                          (2.38) 

To apply this to N phase composites, it is necessary to find 
DilA and 

MTA for each phase [2]. 

Similarly to the Self Consistent approach, the effective behavior of N phase composites can be 

obtained by 

2

( )
N

eff m I I m MT

iJKl iJKl iJMn iJMn MnKl

I

E E f E E A


                                                                                (2.39) 

Note that the matrix phase is explicitly taken into account but only in an average sense. 

2.5.4 N-phase Dilute Approach 

This approach has an equivalent scheme than the above approaches but does not consider any 

interaction between the inhomogeneities. The expression of strain-electro-magnetic fields 
I

KlZ  

of inclusion can be then   derived from that obtained in the Self Consistent approach with the 

difference that in this case, the infinite matrix has magnetoelectroelastic moduli mE  as 

equivalent behavior. The concentration tensor DilA is given [2]  

11
( )Dil II I

MnKl KlMn iJKl iJMnI
A I T E

V

                                                                                      (2.40) 

where, 
I I m

iJMn iJMn iJMnE E E  
  The effective behavior prediction of N phase composites, in this 

case, is expressed as 

 2

( )
N

eff m I I m Dil

iJKl iJKl iJMn iJMn MnKl

I

E E f E E A


  
                                                                     

(2.41) 

The effective magnetoelectroelastic formulations (2.29, 2.37, 2.39 and 2.41) are applicable to a 

wide range of inclusion types, shapes and volume fractions. The coupling elastic-electric-

magnetic effective behaviors can be investigated and optimized with respect to the volume 
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fraction, shape and type of inclusions which may be elastic, piezoelectric or 

magnetoelectroelastic.  

2.6 Numerical results 

2. 6.1 Two phase composites 

The Micromechanical models presented in this paper are used to predict the effective 

magnetoelectroelastic coefficients. These models permit to take into account the effect of phase 

number and concentrations, shape inclusions, as well as its polling orientation. Before 

investigating the three phase composites effective behaviors, the numerical results of the two 

phase composites is first considered.  

Consider a magnetoelectroelastic composite in which the matrix is piezomagnetic (CoFe2O4) and 

the elliptic inclusions are piezoelectric (BaTiO3) having half axes a, b and c. The global 

coordinate system for the matrix is (x1, x2, x3) and the third half axis c is on the polling direction 

x3. The material properties of both phases are transversely isotropic with x3 the axis of 

symmetry. The magnetoelectroelastic characteristics of the two materials, used in this paper, are 

both listed in table 2.1 which are obtained from [20].  

Note that in the two considered phases the magnetoelectric effect does not exist neither in the 

matrix nor in the inclusion. This coupling effect will be induced in magnetoelectroelastic 

composite through the interaction between phases. 

 Numerical results of effective properties for different inclusions shapes based on the Mori-

Tanaka, Dilute, Self Consistent and Incremental Self Consistent approaches are obtained using 

the presented concentration tensors and the obtained numerical results are well compared with 

available numerical ones [11, 12, 20].  

Figure 2.1 shows the magnetoelectric coefficient α33 for fibrous composite (c/a=1000, b=a) with 

respect to the volume fraction predicted by the Mori-Tanaka and Self consistent models. The two 

models predict the same results and 33 is maximized at 45% of inclusion concentration. The 

same results are already obtained by Zhang and Soh [20]. 
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Table 2.1: Material properties of BaTiO3/CoFe2O4 
 

 

 

 

 

 

  

 

 

 

 

Units: elastic constant GPa; dielectric constants C
2
/Nm

2
; magnetic constants Ns

2
/C

2
, 

piezoelectric constants C/m
2
; piezomagnetic constants N/Am; magnetoelectric coefficients 

Ns/VC. 

 

 

 

 

 

 

 

 

 

 

 

BaTiO3 volume fraction 

Figure 2.1: Effective electromagnetic modulus α33 for fibrous composite BaTiO3/ CoFe2O4 

predicted by Mori-Tanaka and Self Consistent models. 

The prediction based on the Incremental Self Consistent method is presented in figure 2.2 at 

different steps (2 to 100). The convergence of the procedure is demonstrated for e33 with respect 

to inclusion volume fraction. It is shown that the Incremental Self Consistent Model improves 

the prediction of the Self Consistent model which is usually criticized for its deficiency at high 

concentrations of inclusions. It is demonstrated that with 10 steps of increments, this method 

gives nearly the same results as with 20, 30, 50, and 100 steps until the concentration 50% of 

spherical BaTiO3. For large concentrations, a good convergence is clearly seen with 50 steps, but 

 C11 C12 C13 C33 C44 

BaTiO3 166 77 78 162 43 

CoFe2O4 286 173 170 269.5 45.3 

 

 e15 e31 e33 κ 11 κ 33 

BaTiO3 11.5 -4.4 18.6 11.2×10
-9

 12.6×10
-9

 

CoFe2O4 0 0 0 0.08×10
-9

 0.093×10
-9

 

 

 h15 h31 h33 µ11 µ33 

BaTiO3 0 0 0 5×10
-6

 10×10
-6

 

CoFe2O4 550 580.3 699.7 -590×10
-6

 157×10
-6
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20 steps give very close results. For the numerical predictions in this paper, the Incremental Self 

Consistent model with 20 steps of the increment is used. 

 

 

 

 

 

 

 

 

 

 

 

BaTiO3 volume fraction 

Figure 2.2: Effective piezoelectric modulus e33 for spherical composite BaTiO3/ CoFe2O4 

predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent models. 

 

 

 

 

 

 

 

 

 

  

 

BaTiO3 volume fraction 

Figure 2.3: Effective electromagnetic modulus α11 for fibrous composite BaTiO3/ CoFe2O4 

predicted by Mori-Tanaka, Dilute, Self Consistent and Incremental Self Consistent models. 
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BaTiO3 volume fraction 

Figure 2.4: Effective magnetic modulus µ11 for fibrous composite BaTiO3/ CoFe2O4 predicted 

by Mori-Tanaka, Dilute, Self Consistent and Incremental Self Consistent models. 

 

In figures 2.3 and 2.4 the electromagnetic coefficient α11 and the permeability coefficient µ11 are 

presented respectively for fibrous composites (a=b, c/a=1000) based on Incremental Self 

Consistent, Self Consistent, Mori-Tanaka and Dilute models. It is clearly shown that the 

predictions given by these models are in good agreement for low volume fractions of inclusions. 

The figure 3 demonstrates that the Self Consistent model is not able to conduct the predictions 

for moderate and higher concentrations and it diverges beyond 40% concentration of inclusions. 

This is the main raison why the Incremental Self Consistent is developed here. This figure shows 

also that the Incremental Self Consistent model improves the prediction of the classical Self 

Consistent one and gives closer results to Mori-Tanaka’s predictions. 

Note also that the effective moduli of the composite predicted by the Dilute model does not take 

the property of the inclusion when the volume faction is close to 1. This is expected because the 

Dilute model is only applicable when the volume fraction of the inclusions is very small. 
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BaTiO3 volume fraction 

Figure 2.5: Effective electromagnetic modulus -α11 for laminated composite BaTiO3/ CoFe2O4 

predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent models. 

In figure 2.5, the electromagnetic coefficient –α11 is presented for laminated 

magnetoelectroelastic composites (a=b and c/a=0.001). In this case the Mori-Tanaka, Self 

Consistent and ISC micromechanical models predict the same results. -11 is maximized at 50% 

of inclusions concentration. These results are well compared with those obtained by [11, 12, 21]. 

 

 

 

 

 

 

 

 

 

BaTiO3 volume fraction 

Figure 2.6: Effective piezoelectric modulus e33 for ellipsoidal composite (a=b, c/a=10) BaTiO3/ 

CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent models. 
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The piezoelectric modulus e33 is presented in figure 2.6 for ellipsoidal inclusions. The results 

obtained by Self Consistent model and Mori-Tanaka and those obtained by ISC model are 

different and particularly in the vicinity of 50%. Experimental results are needed to test the 

accuracy of these predictions. 

 

 

 

 

 

 

 

 

BaTiO3 volume fraction 

Figure 2.7: Effective piezoelectric modulus e31 for spherical composite BaTiO3/ CoFe2O4 

predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent models. 
 

 

 

 

 

 

 

 

 

 BaTiO3 volume fraction 

Figure 2.8: Effective dielectric modulus κ 33 for spherical two- phase composite BaTiO3/ 

CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent models. 
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In figures 2.7 and 2.8, the piezoelectric modulus e31 and the dielectric modulus κ33 are presented 

respectively for magnetoelectroelastic spherical composites (a=b=c). Again the Self Consistent 

model shows an over estimation especially over 20% volume fraction of inclusions.  The ISC 

model improves the prediction of the classical Self Consistent model for high volume fraction of 

inclusions.  

 

 

 

 

 

 

 

 

 

Void volume fraction 

Figure 2.9: Effective piezomagnetic modulus h33 for fibrous composite CoFe2O4/ Void predicted 

by Mori-Tanaka, Self Consistent and Incremental Self Consistent models. 

The effective piezomagnetic coefficients h33 is presented in figure 2.9 for CoFe2O4 matrix with 

fibrous voids (a=b, c/a=1000). It is clearly shown that the prediction given by the classical Self 

Consistent approach is limited for very low void concentration and the model diverges at 12% of 

voids inclusions. On the other hand, it is seen that the Incremental Self Consistent approach 

improves the prediction of the classical Self Consistent approach and conducted far the 

prediction.  

2. 6.2 Three phase composites 

In this subsection, the numerical results for three-phase composite materials are presented. Two 

kinds of three phase composites are investigated. One is consisting of a piezoelectric phase and a 

piezomagnetic phase surrounded by a matrix assumed to be Epoxy whose properties are listed in 

table 2.2. The other is consisting of piezoelectric phase and void phase surrounded by a 

piezomagnetic matrix. These voids are simulated as empty inclusions, which may have several 

h
3

3
 (

N
/A

m
) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

200

300

400

500

600

700

 

 

Incremental Self Consistent

Self Consistent

Mori Tanaka

 



 

64 
 

forms.  Here, Mori-Tanaka, Self Consistent and Incremental Self Consistent micro mechanical 

models are used to predict the behavior of the considered three-phase magnetoelectroelastic 

composites. Numerical results are presented for various shapes and types of inclusions. In all 

presented results, the volume fraction of the matrix is fixed and the volume fractions of 

inclusions are varied. 

Let us note that the Mori-Tanaka method has been already used by Lee, Boyd and Lagoudas [11] 

for three-phase magnetoelectroelastic composites materials. Thus, the numerical results 

presented in this section using the Mori-Tanaka method are the same as those of [11]. 

                                             Table 2.2: Material properties of Epoxy 
 

 

 

 

 

        

 

 

 

  

 

 

 

 

 

 

 

 

CoFe2O4 volume fraction 

Figure 2.10: Effective electromagnetic modulus α33 for fibrous three- phase composite 

Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent, and Incremental Self 

Consistent models with the volume fraction of the matrix fixed at 40%. 
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In figure 2.10, the effective electromagnetic modulus α33 for fibrous three-phase 

magnetoelectroelastic composites (a=b; c/a=1000) is presented with respect to piezomagnetic 

inclusion by using Mori-Tanaka, Self Consistent and Incremental Self Consistent models. As in 

the two phase magnetoelectroelastic composites the convergence of the Incremental Self 

Consistent model is demonstrated. It is shown that the Incremental Self Consistent model with 

10 steps of increments gives nearly the same results as with 20, 30, and 50 steps. 

 

 
 

 

 

 

 

 

 

 

 CoFe2O4 volume fraction 

Figure 2.11: Effective piezomagnetic modulus h33 for fibrous three- phase composite 

Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self 

Consistent models with the volume fraction of the matrix fixed at 40%. 
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 CoFe2O4 volume fraction 

Figure 2.12: Effective piezomagnetic modulus h31 for fibrous three- phase composite 

Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self 

Consistent models with the volume fraction of the matrix fixed at 40%. 

In figures 2.11 and 2.12, piezomagnetic coefficients h33 and h31 are presented respectively for 

fibrous three-phase magnetoelectroelastic composite materials. The Incremental Self Consistent 

method improves the classical Self consistent method and gives closer results to Mori-Tanaka 

predictions. 
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CoFe2O4 volume fraction 

Figure 2.13: Effective magnetic modulus µ33 for fibrous three-phase composite Epoxy/BaTiO3/ 

CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent models 

with the volume fraction of the matrix fixed at 40%. 

 
 

 

 

 

 

 

 

 

 

 

CoFe2O4 volume fraction 

Figure 2.14: Effective electromagnetic modulus-α11for laminated three- phase composites 

Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent, and Incremental Self 

Consistent models with the volume fraction of the matrix fixed at 40%. 
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Figure 2.15: Effective electromagnetic modulus -α 33for spherical three- phase composites 

Epoxy/BaTiO3/CoFe2O4 predicted by the Incremental Self Consistent model with the volume 

fraction of the matrix fixed at 50%. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Effective electromagnetic modulus h 33for fibrous three-phase composites 

Epoxy/BaTiO3/CoFe2O4 predicted by the Incremental Self Consistent model with the volume 

fraction of the matrix fixed at 50%. 
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In figures 2.13 and 2.14, the effective magnetic coefficient µ33 and the electromagnetic 

coefficient -α11 are presented respectively for fibrous (a=b; c/a=1000) and laminated (a=b; 

c/a=0.001) three-phase composite materials. For these coefficients it is shown that the three 

micromechanical models predict the same results. Also it is shown that the effective modulus -

α11 takes a maximum value at 30% of the piezomagnetic phase and piezoelectric phase. By 

analyzing the numerical results presented above it is shown that the electromagnetic coefficients 

obtained in two phase composites are higher than the electromagnetic coefficients obtained in 

three-phase composites. This is due to the presence of the elastic matrix in three-phase 

composites. Also it can be explained that in two- phase composites there is more interaction 

between the piezoelectric phase and piezomagnetic phase than in three-phase composites. 

 In figures 2.15, 2.16 three dimension numerical results of a three phase composites 

Epoxy/BaTiO3/ CoFe2O4 are presented to show the phases effects on the effective behavior of 

the composites by using the Incremental Self Consistent approach. Spherical (a=b=c) and fibrous 

(a=b; c/a=1000) inclusions are considered respectively in figures 2.15 and 2.16. The predictions 

are presented for 50% of the matrix and various concentrations of BaTiO3 and CoFe2O4 

inclusions. The variation of the effective magnetoelectric coefficient α33 with respect to the two 

spherical inclusions concentrations is clearly shown. This coefficient may be maximized with 

respect to concentrations of the piezoelectric and piezomagnetic phases. With the epoxy matrix, 

when the two phases, piezomagnetic and piezoelectric, do not coexist the magnetoelectric 

coupling effects are zeros. For the piezomagnetic effective coefficient h33 its variation is linear 

and its maximal value is obtained when the concentration of the piezomagnetic phase CoFe2O4 is 

maximal and vanishes when we have only the piezoelectric phase and the epoxy matrix.  

In figure 2.17, the electromagnetic coefficient α33 is presented for fibrous (a=b; c/a=1000) 

magnetoelectroelastic three-phase composites containing voids (CoFe2O4/BaTiO3/Void). This 

figure demonstrates clearly that the Self Consistent approach can not estimate the effective 

electromagnetic moduli α33 beyond 10% concentration of voids in contrast with the Incremental 

Self Consistent approach which can be used until 60% voids concentration. Also it can be seen 

that below 10% void concentrations the three micromechanical approaches almost give the same 

predictions.  

In figures, 2.18 and 2.19 the piezomagnetic coefficient h33 and the dielectric coefficient κ33 are 

presented respectively for fibrous magnetoelectroelastic three-phase composites containing voids 
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as the third inclusion by using the Incremental Self Consistent and Mori-Tanaka approaches. It is 

seen that the Incremental Self Consistent approach conducted far the prediction until 60% void 

concentration. Also for the effective coefficient h33 the Incremental Self Consistent and the Mori-

Tanaka approaches give different prediction and the prediction obtained by the Incremental Self 

Consistent approach is lower than that obtained by the Mori-Tanaka approach. On the other hand 

the numerical predictions obtained for the effective coefficient κ33 are almost the same.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 Void volume fraction 

Figure 2.17: Effective electromagnetic modulus α 33for fibrous three- phase composites CoFe2O4 

/BaTiO3/Void predicted by Mori-Tanaka and Incremental Self Consistent models with the 

volume fraction of the matrix fixed at 40%. 
 

 

 

 

 

 

α
3

3
 (

N
s 

/V
C

) 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-9

 

 

Mori Tanaka

Self Consistent

Incremental Self Consistent

 



 

71 
 

 

 

 

 

 

 

 

 

 

 

 Void volume fraction 

Figure 2.18: Effective piezomagnetic modulus h33for fibrous three- phase composites CoFe2O4 

/BaTiO3/Void predicted by Mori-Tanaka and Incremental Self Consistent models with the 

volume fraction of the matrix fixed at 40%. 
 

 

 

 

 

 

 

 

 

 

 

 Void volume fraction 

Figure 2.19: Effective electromagnetic modulus κ 33for fibrous three- phase composites CoFe2O4 

/BaTiO3/Void predicted by Mori-Tanaka and Incremental Self Consistent models with the 

volume fraction of the matrix fixed at 40%. 
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3.7 Conclusions 

The Incremental Self Consistent, Self Consistent, Mori-Tanaka, and Dilute micromechanical 

models are elaborated to predict the effective moduli of multi-phase magnetoelectroelastic 

composite materials for different shapes, types and concentration of inclusions. The N-phase 

Incremental Self Consistent model is developed for magnetoelectroelastic effective properties. 

The expression of the effective behavior of the composite obtained by the micro mechanical 

models is written as function of the concentration tensors which are a function of the interaction 

tensors. The interaction tensor depends on the constituent properties and shape of ellipsoidal 

inclusions.  

Numerical results have been presented for two phase composites and three phase composites 

with and without void by emphasizing the effect of shape and concentration inclusions. It is 

shown that the Self Consistent, Mori-Tanaka, and Dilute approaches lead to the same results for 

very low volume fraction of inclusions. However, for moderate and high volume fractions of 

inclusions the Self Consistent showed an over estimating especially over 20% inclusion 

concentration, and gives erroneous results for some coefficients. This drawback is corrected by 

the developed ISC model, which improves the prediction of the Self Consistent model for high 

volume fractions of the inclusions. In addition, it has been demonstrated from the above 

numerical results obtained for three-phase composites consisting of a piezoelectric phase and a 

void phase surrounded by a piezomagnetic matrix that the Incremental Self Consistent approach 

can estimate the properties of the composites for moderate volume fraction of voids. This model 

has been compared to the Mori-Tanaka one which is extensively used. This model will be next 

elaborated for predicting the behavior of disordered aggregates in nonlinear piezoelectric and 

magnetoelectroelastic heterogeneous media.  

3.8 Perspectives 

In this chapter, the effective properties of two-phase and multi-phase magnetoelectroelastic 

composites were investigated based on different micromechanical models. Various N-phase 

micromechanical models were elaborated to predict the effective N-phase magnetoelectroelastic 

moduli for different types, shapes and volume fractions of inclusions. Note that, the effective 

properties of the composite might be greatly affected by the presence of an interphase between 

the matrix and inclusions. Consequently, to enhance the prediction of the effective properties of 
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the composite the type and the structure of the interphase have to be taken into account in the 

modeling. In chapter 3, the multi-coated inclusion and functionally graded interphase concepts 

will be introduced. The multi-coating and functionally graded interphase effects will be taken 

into account by the generalization of the integral equation for N-phase composites and the 

introduction of the magnetoelectroelastic interfacial operators. The effective properties will be 

predicted with respect to the volume fractions, shapes of inclusions and the thickness of the 

coating.     
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Chapter 3 

3. Micromechanical modeling of magnetoelectroelastic 

composite materials with multi-coated inclusions and 

functionally graded interphases 

   

 

  
 

 

Abstract 

In this paper micromechanical modelings of magnetoelectroelastic composites with multi-coated 

inclusions and functionally graded interphases are elaborated. The integral equation taking into 

account the continuously varying interphase properties as well as the multi-functional coating 

effects is introduced based on the Green’s tensors and interfacial operators. 

Magnetoelectroelastic composites with functionally graded interphases are analyzed and the 

effective properties are derived. Based on the Mori-Tanaka, Self Consistent and Incremental Self 

Consistent models the numerically predicted effective properties of magnetoelectroelastic 

composites are presented with respect to the volume fractions, shapes of the multi-coated 

inclusions and the thickness of the coatings. The multi-coating and functionally graded 

interphase concepts can be used to optimize the effective properties of multi-functional 

composites. This can be used to design new multi-functional composite materials with higher 

coupling coefficients.  
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3.1 Introduction 

Smart composites such piezoelectric, piezomagnetic and magnetoelectroelastic composites have 

been increasingly used in recent years due to their applications in actuators, sensors, ultrasonic 

imaging and transducers etc. (Konka, Wahab and Lian, 2012; Gururaja et al., 1985). These smart 

composites take the advantages of each phase and have better physical properties. For example, 

the most interesting behavior of smart composites consisting of piezoelectric and piezomagnetic 

constituents is that the magnetoeletric effect, which is only present in composites but absent in 

constituent phases, is created by the interaction between the constituent phases. Note that the 

overall effective properties of reinforced composite materials may be significantly influenced by 

the properties of the interface between the constituents. Therefore, for accurate predictions of the 

effective properties of composites, the behavior and structures of interfaces have to be 

considered in the modeling and numerical simulation.  The local interaction between the matrix 

and the inclusion and then the overall performance of the whole composites can be influenced by 

the interphase and coating effects. The concept of functionally graded interphase and coated 

inclusions has been introduced to obtain composite materials with competent properties. 

 The effective properties of composite materials consisting of coated inclusions embedded in a 

matrix have been investigated by many researchers. Several works have been done to investigate 

the influence of the thin coating on the effective properties of coated composites. (Nemat-Nasser 

and Hori, 1993; Hori and Nemat-Nasser, 1994) proposed a double inclusion model to predict the 

effective behavior of multiphase composites and then applied by (Li, 2000a) to study the average 

magnetoelectroelastic field in a multi-inclusion or inhomogeneities embedded in an infinite 

matrix. (Cherkaoui et al., 1994, 1995, 1996) studied the effect of the thin coating on the local 

fields and on the effective properties of elastic composites and thermoelastic composites based 

on the Green’s functions techniques and on the interfacial operators. (Li, 2000b) analyzed the 

thermoelastic behavior of composites with functionally graded interphase by the multi-inclusion 

model where the explicit expression of the effective thermoelastic moduli and thermoelastic field 

of the composites are obtained explicitly. (Vieville, Bonnet and Lipinski, 2006) developed some 

theoretical consideration concerning the modeling of effective properties of composite materials 

based on inclusion concept.  (Dinzart and Sabar, 2009) predicted the effective properties of 

piezoelectric composites with thinly coated reinforcements by using the Mori-Tanaka’s mean 

field approach. (Koutsawa et al., 2010) used a micromechanical model to investigate the 
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effective thermo-electro-elastic properties of piezoelectric composites materials containing 

multi-coated inhomogeneities as well as a finite element analysis for two phase piezoelectric 

composite materials. (Berbenri and cherkaoui, 2010) elaborated a micromechanical approach for 

arbitrary multi-coated ellipsoidal elastic inclusions with general eigenstrains.  

The aim of this work is to elaborate micromechanical models for accurate prediction of multi-

functional magnetoelectroelastic composites. Two kinds of composites are considered: one with 

multi-coated inclusions and the other with functionally graded interphases.  

Magnetoelectroelastic composite materials with functionally graded interphases refer to a kind of 

magnetoelectroelastic composite materials with continuously varying properties between the 

matrix and inclusions. However, magnetoelectroelastic composite materials with multi-coated 

inclusions may be seen as a special kind of functionally graded materials with discontinuously 

varying properties between the matrix and inclusions.  This paper is an extension of the 

magnetoelectroelastic modeling recently developed by (Bakkali, Azar and Fakri, 2011) and is 

organized as follow. The concept of functionally graded continuously varying interphase 

properties is first introduced. The considered topology of multi-coated inclusions as well as the 

homogenization process and the localization tensors are derived. The concentration tensors of the 

adapted micromechanical models are explicitly given. Numerical results are presented for multi-

functional composites with multi-coated inclusions and functionally graded interphases based on 

various micromechanical models. To take account of the defect that may exist in the interphase, 

a void layer is considered. Four-phase magnetoelectroelastic composites with various shapes and 

types of inclusions and coatings are analyzed. Various graded model parameters and thickness of 

the interphase are considered and their effects on the predicted effective properties are 

investigated.  

3.2 Multi-phase considered topology 

3.2.1 Composites with functionally graded continuously varying 

interphase properties 

Three phase composites in which the interphase between the matrix and the reinforcements 

varies continuously are considered. As magnetoelectroelastic composites are considered the three 

phases matrix, reinforcement and interphase may be of different properties. A wide variety of 

interphase interactions can be considered and each phase may be elastic piezoelectric, 
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piezomagnetic or even magnetoelectroelastic. As shown in Figure 3.1, phase 1 is the 

reinforcement, phase 3 is the matrix having homogeneous material properties 1E  and 

3E respectively. Phase 2 is the interphase that is assumed to be of spatially varying properties. 

The reinforcements are perfectly bounded, aligned and have ellipsoidal shapes with the 

dimensions a1, b1, c1 and a2, b2, c2. The two ellipsoids are coaxial with 1 1 1

2 2 2

a b c

a b c
   . The 

volume fraction of the matrix is 3f and of the inclusion and interphase are obtained by 

3

1 3(1 )f f   and 3

2 3(1 )(1 )f f    . 

 

 

 

 

 

 

 

 

 

Figure 3.1: A representative volume element of a composite with functionally graded interphase 

between reinforcement 1 and matrix 3. The dimension of the reinforcement and interphase are a1, 

b1, c1 and a2, b2, c2 respectively. 
0
, E

0
 and B

0
 represent the macroscopically applied fields. 

 

For structures with functionally graded materials, many models can be found in the open 

literature. But for inclusion problem, as it is our concern here, very few papers were focused on. 

The mathematical model, used by (Wacker et al., 1998) to describe the variation properties of 

Young’s modulus in the interphase of a fibrous composite, is used here. 

The magnetoelectroelastic moduli 2( )E r of the interphase is taken as a radial function and its 

expression is given by the following relationship: 

2 1 3 31
( ) ( )( )

1

nr
E r E E E




  


                                                                                                              (3.1) 

with 0 1  , 2,3....n  and r represents the normalized radial distance from the inner surface 

of the interphase  ranging from   to 1 0 1r   . Note that 2 3(1)E E  and 2 1( )E E  . The 


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0
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0
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parameter α allows starting the graded effect from the inclusion (α =1), intermediate media 

0 1   or even from a void coating (α =0). For the sake of clarity, the radial variation of a 

material modulus, say the elastic modulus 2

1111( )c r  of the interphase, for α =1, α =0.5 and various 

values of n, is presented in Figure 3.2 for magnetoelectroelastic composites consisting of 

piezoelectric inclusions (BaTiO3) and piezomagnetic matrix (CoFe2O4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radial distance r 

Figure 3.2: Variation of the elastic modulus 2

1111( )c r of the functionally graded interphase, with 

fixed thickness (γ=0.5), in terms of normalized radial distance r and various values of n and α. 

 

As shown in Figure 3.2, the variation of the elastic modulus of the functionally graded interphase 

starts with the elastic modulus 1

1111c where 1

1111c  is the elastic modulus of the inclusion and ends 

with the elastic modulus of the matrix 3

1111c .  

 The averaged magnetoelectroelastic moduli 2E are given by: 

2 2 2

1 1 1

1

2 2 2 2

3

2 2 2 1 1 1

1 3
( ) ( )

4 1
( )

3

a b c

a b c

E E r dxdydz r E r dr

a b c a b c 


  



                                               (3.2) 

After integration, one obtains: 

1
1111c 
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1 3 2 1
2 3

2

3( ) (1 ) 2(1 ) (1 )
( )

1 1 2 3

n n nE E
E E

n n n

   

 

    
    

    
                                                         (3.3) 

The micromechanical modeling, developed bellow, will be applied to predict the effective 

properties of the composite described in this section, with 2E replaced by 2E  . It has to be 

noted that two limiting cases can also be considered. The first one is when  approaches zero and 

then phase one disappears. The second one is when  approaches 1 and then there is no 

interphase between the matrix and the inclusion. 

3.2.2 Multi-Coated composites 

For magnetoelectroelastic composites with multi-coated inclusions the matrix, inclusion and 

coatings may be elastic, piezoelectric, piezomagnetic or magnetoelectroelastic. The topology of 

the considered multi-coated inclusion problem, drawn in Figure 3.3, is described by an inclusion 

of a volume V1 with magnetoelectroelastic moduli 1E  surrounded by (n-1) thin coatings of other 

materials whose behaviors are described by their respective magnetoelectroelastic moduli iE
 
and 

their volumes iV  with {2,3,..... }i n . The multi-coated inclusion is embedded in a homogenous 

media called the matrix whose behavior is described by the magnetoelectroelastic moduli ME and 

the interphases are assumed perfectly bonded. 

The used micromechanical modeling are based on two steps: (i) localization step, which gives 

the relationship between the microscopic field and macroscopic field through the localization 

tensors and (ii) homogenization step, which employs averaging techniques to estimates the 

effective properties of the composites. The derivation of the concentration tensors is based on the 

integral equation and the interfacial operators accounting for coatings effects. 
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Figure 3.3: Topology of the multi-coated inclusion. 
0
, E

0
 and B

0
 represent the macroscopically 

applied fields. 

3.3 Micromechanical modeling 

3.3.1 Constitutive behavior and notations 

The linear magnetoelectroelastic effect is considered, where the magnetic, electric and elastic 

fields are coupled through the following constitutive equations: 

      

ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

c e E h H

D e E H

B h E H

 

  

  

  

  

  

                                                                                              (3.4) 

in which the elastic strain kl , electric fields lE  and magnetic fields lH are independent variables 

related to stresses ij , electric displacements iD and magnetic inductions iB . The tensors ijklc , 

lije , lijh , il , il and il are the  elastic, piezoelectric, piezomagnetic, magnetoelectric, dielectric 

and magnetic permeability constants  respectively. In the constitutive equations we use - lE  and -

lH  rather than lE and lH  as they will permit the construction of a symmetric matrix of 

constitutive moduli. 

Using the condensed notations (Bakkali, Azrar and Fakri, 2011), the field variables take the 

following forms: 

  

( 1,2,3)( 1,2,3)

( 4) ( 4)

( 5) ( 5)

ijmn

Mn n iJ i

n i

JM

Z E M D J

H M B J

 


      
      

                                                  (3.5) 

The magnetoelectroelastic constants can then be represented as follows:    

  

( , 1,2,3)

( 1,2,3; 4)

( 1,2,3; 5)

( 4; 1,2,3)

( 5; 1,2,3)

( 4; 4)

( 4; 5 5; 4)

( 5; 5)

ijmn

nij

nij

imn
iJMn

imn

in

in

in

c J M

e J M

h J M

e J M
E

h J M

J M

J M orJ M

J M










 
  

  

 
 

  

    

  

                                                             (3.6)   
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With these notations the constitutive equations can be written as: 

iJ iJMn MnE Z 
                                                                                                                        (3.7) 

The equilibrium equations, in the absence of body force, electric charge and electric current 

densities, are given by: 

  , 0ij i 
                                      , 0i iD 

                               , 0i iB 
                                   (3.8) 

Using the above condensed notations, the equilibrium equations are written as follow: 

, 0iJ i                                                                                                                                  (3.9) 

Based on the symmetry of the tensors , , , , ,c e h    the following equilibrium partial differential 

equation is obtained:
 

, ,( ) 0iJKl K l iE U                                                                                                                     (3.10) 

3.3.2 Localizations and homogenization 

V is considered as the representative volume of the composite. The average generalized strain 

field Z  and generalized stress field   are related to the local generalized strain field ( )Z r  and 

the local generalized stress field ( )r  by the following average relationships. 

1
( )Kl Kl

V

Z Z r dV
V

                                                                                                            (3.11-a)  

1
( )iJ iJ

V

r dV
V

                                                
                                                              (3.11-b) 

For an n phases’ composite material, the volume average of the local generalized strain ( )Z r  and 

generalized stress ( )r  are given by: 

1

n
i

Kl i Kl

i

Z f Z


                                                                                                                   (3.12-a) 

1

n
i

lK i lK

i

f


                                                                                                                     (3.12-b) 
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where the index ‘i’ denotes the ith phase and if is its corresponding volume fraction. iZ and 

i are considered to be uniform in each phase. Additionally, the overall constitutive behavior of 

the composite and of phase p of the composite can be written as follow: 

eff

iJ iJKl KlE Z                                                                                                                           (3.13-a) 

p p p

iJ iJKl KlE Z                                                                                                                           (3.13-b) 

in which effE is the effective magnetoelectroelastic moduli of the composites. 

In order to make the transition between the local scale (phases) and the global scale (composite) 

the concentration tensors are used and the localization relationships are given as follow: 

 p p

Kl KlMn MnZ A Z                                                                                                                      (3.14-a) 

p p

iJ iJnM nMB                                                                                                                          (3.14-b) 

where A and B  are the fourth order concentration tensors that take into account the properties  

and the volume fraction of each phase as well as the shape of the multi-coated inclusion. 

Substituting (3.14) into (3.12) one gets:  

1

n
p

p KlMn KlMn

p

f A I


                                                                                                                (3.15-a) 

1

n
p

p iJnM iJnM

p

f B I


                                                                                                                  (3.15-b) 

where I  is the shorthand notation of the identity tensors. 

On the other hand, by substituting (3.14) into (3.13), the following concentration tensor B is 

obtained: 

1( )p p P eff

iJmK iJNl NlSv mKSvB E A E                                                                                                          (3.16) 

The substitution of (3.13-b) into (3.12) and the consideration of equations (3.13) and (3.14), lead 

to the following expression of the effective moduli: 
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1

n
eff p P

kLSv p kLIj IjSv

p

E f E A


                                                                                                              (3.17-a) 

1 1

1

( ) ( )
n

eff p P

kLSv p nMSv nMkL

p

E f E B 



                                                                                              (3.17-b) 

3.3.3 Derivation of the concentration tensors 

A homogeneous fictitious media, called “reference media” which has the magnetoelectroelastic 

moduli
0

iJMnE , is considered. The expression of the local magnetoelectroelastic moduli is given by:         

0( ) ( )iJMn iJMn iJMnE r E E r                                                                                                        (3.18) 

where ‘’r’’ is the position vector in the media considered and E is the deviation part. The 

introduction of this expression into (3.10) leads to  

0

, , ,( ) ( ( ) ( )) 0iJMn M ni iJMn M n iE U r E r U r                                                                                     (3.19) 

Using the Green’s function technique, this partial differential equation is transformed into an 

integral equation linking the local generalized strain field ( )KlZ r  with the tensor 0

KlZ .     

0( ) ( ) ( ') ( ') ( ') 'Kl Kl iJKl iJMn Mn
V

Z r Z r r r E r Z r dV                                                       (3.20)    

where V is the volume of the infinite medium,   is the magnetoelectroelastic modified Green’s 

tensor of the reference medium 
0E  whose components are related to those of the 

magnetoelectroelastic Green’s tensor and given by (Bakkali, Azrar and Fakri, 2011):    

,( ') ( ')iJKl JK lir r G r r                                                                                                          (3.21) 

For the multicoated considered problem, represented in figure 3.3, the deviation part is expressed 

by:  

 ( /0)

0

( ) ; 0,1,2,...
n

k k

iJMn iJMn

k

E E r k n 


                                                                                (3.22) 

where  ( )k r  is the characteristic function  of the phase k, occupying the volume kV  , expressed 

by: 

( )k r      
1

0

k

k

if r V

if r V




,                                                                                                        (3.23) 

and ( /0) 0k k

iJMn iJMn iJMnE E E    
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Substituting (3.22) into (3.20) and using the property (3.23), one gets: 

0 ( /0)

0

( ) ( ) ( ') ( ') '
k

n
k

Kl Kl iJKl iJMn Mn
V

k

Z r Z r r r E Z r dV


                                                                     (3.24)  

Using the fact that when k=0, ( /0) 0k

iJMnE  leads to 

0 ( /0)

1

( ) ( ) ( ') ( ') '
k

n
k

Kl Kl iJKl iJMn Mn
V

k

Z r Z r r r E Z r dV


                                                                      (3.25) 

Let us denote by IV  the total volume of the composite inclusion, which consists of an inclusion 

surrounded by (n-1) coatings and kf  is the volume fraction of the phase k. Then one has: 

1

n

I k

k

V V


                                                                                                                             (3.26) 

The average local generalized strain field can be written as: 

1

( ) ( )
n

k k

Mn Mn

k

Z r Z r


                                                                                                                (3.27) 

The substituting (3.27) into (3.25) leads to 

0 ( /0)

1

( ) ( ) ( ') '
k

n
k k

Kl Kl iJKl iJMn Mn
V

k

Z r Z r r r E Z dV


                                                                           (3.28) 

Averaging the generalized local field over the composite inclusion, one gets: 

0 ( /0)

1

1
( ') '

I k

n
I k k

Kl Kl iJKl iJMn Mn
V V

k I

Z Z r r E Z dV dV
V

      
                                                                   

(3.29) 

This equation can be reformulated in the following form: 

0 ( /0)

1

1 n
I Ik k k

Kl Kl iJKl iJMn Mn

kI

Z Z T E Z
V 

                                                                                                    (3.30) 

in which ( ') '

I k

Ik

iJKl iJKl

V V

T r r dV dV      represents the condensed notation of nine 

magnetoelectroelastic interaction tensors. 

Using the fact that 
1

n
I kk
Kl Kl

k I

V
Z Z

V

 leads to: 

0 ( /0) 0

1

1
( ( ) )

n
Ik k kk

KlMn iJKl iJMn Mn Kl

k I k

V
I T E E Z Z

V V

                                                                             (3.31) 
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where KlMnI  is the shorthand notation of the fourth order and the second order identity 

tensors:

1/ 2( ) ( , 1,2,3)

0 ( 1,2,3; 4)

0 ( 1,2,3; 5)

0 ( 4; 1,2,3)

0 ( 5; 1,2,3)

( 4; 4)

0 ( 4; 5 5; 4)

( 5; 5)

km ln kn lm

KlMn

ln

ln

K M

K M

K M

K M
I

K M

K M

K M orK M

K M

   





 


 

  


 
 

 
  


   
  

                       (3.32) 

Denoting by ka  the local concentration tensor relating the average generalized strain in each 

coating with the average generalized strain in the inclusion, one can put: 

 1k k

Mn MnKl KlZ a Z      with      1

MnKl MnKla I                                                                                   (3.33) 

Based on equations (3.31) and (3.33) the following relationship is obtained: 

1

0 ( /0) 0

1

1
( ( ( ) ) )

n
k k Ik k kk
Mn MnPv KlPv iJKl iJRs RsPv Kl

k I k

f
Z a I T E E a Z

f V





 
   

 
                                                      (3.34) 

 The expression of the concentration tensor is then given by: 

1

0 ( /0)

1

1
( ( ( ) ) )

n
k k Ik k kk
MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f
A a I T E E a

f V





 
   

 
                                                                (3.35) 

To complete the localization step, the local concentration tensor 
ka  must be expressed. It can be 

determined if the boundary conditions are taken into account through the interface in the 

composite inclusions. Note that the interfacial operators introduced by (Hill, 1983) constitute an 

efficient mathematical tool to determine the stress and the strain jump through an interface 

between two dissimilar materials. These operators are derived by writing the equations for the 

continuity of displacement and tension across the material interface (hypothesis of perfect 

interface). These interfacial operators are used by (Cherkaoui et al., 1994, 1995, 1996) for elastic 

composites with multi-coated inclusions. 

 A generalized case, of two solids whose magnetoelectroelastic moduli are noted  kE  and 

1kE  separated by an interface with a unit normal N, directed from phase k to phase k+1, is 

considered. The generalized strain jump ( 1k kZ Z  ) across the material interface is given as 

follow (see appendix 3.A for detail): 
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1 1 1 1( ) ( ) ( , )( ) ( )k k k k k k k

Mn Mn iJMn iJRs iJRs RsZ r Z r P E N E E Z r                                                                      (3.36) 

where 1k

iJMnP  is the magnetoelectroelastic interfacial operators of the phase (k+1) which depends 

only on properties of the material phase and on the unit normal N. Equation (3.36) can be 

reformulated as follow: 

1 1 1 ( / 1)( ) ( ( , ) ) ( )k k k k k k

Mn MnRs iJMn iJRs RsZ r I P E N E Z r                                                                             (3.37) 

in which ( / 1) 1k k k k

iJRs iJRs iJRsE E E     

Applying the last equation between phases 1 and 2 in the multi-coated inclusion problem, one 

obtains: 

2 2 2 (1/ 2) 1( ) ( ( , ) ) ( )Mn MnRs iJMn iJRs RsZ r I P E N E Z r                                                                               (3.38) 

Replacing the generalized strain field 1( )Z r  by its mean value 1Z and then averaging over the 

coating volume 2V , the following relationship is obtained: 

2 2 2 (1/ 2) 1( ( ) )Mn MnRs iJMn iJRs RsZ I T E E Z                                                                                              (3.39) 

where 

2

2 2 2 2

2

1
( ) ( , )iJMn iJMn

V

T E P E N dV
V

   

The following localization relationship is then resulted: 

2 (1/ 2) 1

Mn MnRS RsZ W Z                                                                                                                          (3.40) 

where        (1/ 2) 2 2 (1/ 2)( ( ) )MnRs MnRs iJMn iJRsW I T E E    

Introducing a new volume notation: 

1

; 1,..
j

j i

i

V j n


                                                                                                                    (3.41) 

Based on equation (3.38) for the second interface between the composite inclusion of volume 

( 2 1 2V V   ) and magnetoelectroelastic moduli 2E  and the phase 3 of the volume 3V and 

magnetoelectroelastic moduli 3E , then replacing  2 ( )Z r
 by its mean value 2Z and averaging 

all the equation over the coating volume 3V , one can obtain: 

2 2( /3)3 3 3( ( ) )Mn MnRs iJMn iJRs RsZ I T E E Z                                                                                            (3.42) 

in which 

3

3 3 3

3

1
( ) ( , )k

iJMn iJMn

V

T E P E N dV
V

  and 2 2( /3) 3

iJRs iJRs iJRsE E E     
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The averaged generalized strain 2Z in the composite inclusion is given as a function of 1Z and 

2Z as follow: 

    2

2

1 21 2

2 1 2 1 2

1
( )Rs Rs Rs Rs

f f
Z Z r dV Z Z

f f f f





  
                                                                    (3.43) 

Based on the Hooke’s law the term 2 2( /3)

iJRs RsE Z   in equation (3.42) can be rewritten as follow: 

 2 2( /3) (1/3) 1 (2/3) 21 2

1 2 1 2

iJRs Rs iJRs Rs iJRs Rs

f f
E Z E Z E Z

f f f f

     
 

                                                                (3.44) 

The substitution (3.44) into (3.42) leads to: 

3 3 3 (1/3) 1 3 3 (2/3) 21 2

1 2 1 2

( ( ) ) ( ( ) )Mn MnRS iJMn iJRs Rs MnRS iJMn iJRs Rs

f f
Z I T E E Z I T E E Z

f f f f
     

 
                    (3.45)     

This equation can be rewritten as: 

3 (1/3) 1 (2/3) 21 2

1 2 1 2

Mn MnRS Rs MnRS Rs

f f
Z W Z W Z

f f f f
 

 
                                                                                (3.46) 

where (1/3) 3 3 (1/3)( ( ) )MnRs MnRs iJMn iJRsW I T E E    

Using (3.40), this equation can be reformulated as: 

3 (1/3) (2/3) (1/ 2) 11 2

1 2 1 2

( )Mn MnKl MnRS RsKl Kl

f f
Z W W W Z

f f f f
 

 
                                                                         (3.47) 

Explicit expression of the localization tensor ka  can be then formulated as: 

1

MnKl MnKla I  

2 (1/ 2)

MnKl MnKla W  

2
( /3)

3 (1/3) (2/3) (1/ 2)1 2 1
2

1 2 1 2

1

i i

i MnRs RsKl

i
MnKl MnKl MnRS RsKl

i

i

f W a
f f

a W W W
f f f f

f





  
 




     

Using the same mathematical procedure, the expression of the localization tensor 
ka could be 

explicitly given in general case of an interface between phases k and k+1 by: 

 

1
( / )

1
1

1

k
i k i

i MnRs RsKl
k i
MnKl k

i

i

f W a

a

f












                                                                                                      (3.48) 

in which 
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( / ) ( / )( ( ) )i k k k i k

MnRs MnRs iJMn iJRsW I T E E        and  
1

( ) ( , )

k

k k k k

iJMn iJMn

k V

T E P E N dV
V

   

The localization problem is now completely solved by giving explicit relationship of the local 

concentration tensor. The computation of these concentration tensors requires the determination 

of the interaction tensors kT and IkT . The tensor kT  is given by (see appendix 3.B for detail): 

1 1

1

1
( ) ( ) ( ( ) ( ))k k k

k

j

jk k k k k

iJMn iJMn iJMn iJMn

k

f

T E T E T E T E
f

 



  
  


                                                               (3.49) 

where 

 
1

( ) ( )( ') 'k

k k

k k

iJMn iJMn

k

T E E r r dVdV


 

  
    

Note that the tensor kT
 is not affected by the size of the composites inclusion but depends on its 

shape. So, in the specific case of homothetic inhomogeneities, one can obtain: 

1( ) ( ) ( )k kk k k k

iJMn iJMn iJMnT E T E T E 
      

These tensors are evaluated numerically for various shapes of composite inclusion by using the 

Gaussian quadrature integration for the considered inclusion shape (Bakkali, Azrar and, Fakri, 

2011). Based on these interaction and localization tensors various micromechanical models can 

be elaborated. 

3.4 Micromechanical approach and effective properties 

Based on the previous tensors and relationships various micromechanical approaches can be 

adapted. For multi-coated inclusions, the concentration tensors are explicitly given for Self 

Consistent, Mori-Tanaka and Dilute micromechanical approaches. Effective 

magnetoelectroelastic moduli corresponding to considered models can be numerically obtained. 

The expression of the effective moduli of magnetoelectroelastic composites with multi-coated 

reinforcements is given by: 

1

( )
n

eff m k k m k

iJKl iJKl iJMn iJMn MnKl

k

E E f E E A


                                                                                   (3.50) 

where kA is the magnetoelectroelastic localization tensors. 
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From (3.50) it is seen that the determination of the effective moduli of magnetoelectroelastic 

composites with multi-coated reinforcements requires only the evaluation of the localization 

tensors kA . 

3.4.1 Self Consistent approach 

The Self Consistent approach takes into account the interaction between the matrix and the 

multi-coated reinforcements. In the Self Consistent approach the composite is considered as a 

multi-coated inclusion embedded in a matrix which takes the properties of the whole composite. 

For multi-coated inclusions the Self Consistent concentration tensors kA  is evaluated from 

(3.31) by replacing 0E by effE and its expression is given by: 

  

1

( / )

1

1
( ( ( ) ) )

n
k k Ik eff k eff kk
MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f
A a I T E E a

f V





 
   

 
                                                   (3.51) 

   

in which  ( / )k eff k eff

iJMn iJMn iJMnE E E  
 

It has to be noted that kA  depends on the tensor effE  which is not yet known. An iterative 

procedure is then necessary. 

3.4.2 The Incremental Self Consistent approach  

Note that, even if the Self Consistent model is well used in micromechanical analysis, it has 

some limitations. (Fakri, Azrar and Bakkali, 2003) investigated the effective properties of two-

phase piezoelectric composites by using different micromechanical models and it is shown that 

the Self Consistent approach diverges for high volume fraction of inclusions and does not 

conduct far the prediction for piezoelectric composites with void inclusions. An improvement of 

the classical Self Consistent by incremental way was developed for two phase piezo composite 

materials by (Fakri and Azrar, 2010) and recently extended by (Bakkali, Azar and Fakri, 2011) 

for N-phase magnetoelectroelastic composite materials. In this paper, the Incremental Self 

Consistent method (ISCM) is extended to the case of magnetoelectroelastic composites with 

multi-coated inclusions. The ISCM constructed the effective behavior of composites by replacing 

a finite increment of the volume fraction of the homogeneities in a certain effective medium, and 

for each increment the SCM is applied to calculate the effective magnetoelectroelastic properties 

of the composite materials. The expression of the finite volume fraction to be injected in each 

step is given by (Bakkali, Azrar and Fakri, 2011): 
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k

i

1

= 

1 ( 1)

k
n

k

k

f
f

i f





  
                                                                                                              (3.52) 

in which k
k

f
f

S
   is considered as the partial concentration of the considered phase  and S is the 

number of steps. The overall properties of the composites, given by the ICSM, depend on the 

number of steps and it is written as follow: 

( ) ( 1) k ( 1)

i

1

( )
n

eff i eff i k eff i k

iJKl iJKl iJMn iJMn MnKl

k

E E f E E A 



                                                                                       (3.53) 

with (0)eff mE E  

The ICSM does not affect the expression of the concentration tensors kA given by the classical 

Self Consistent method. So, the formulations used in this method and in the classical Self 

Consistent method are the same. The only difference is in the manner of introducing the volume 

fraction of the reinforcements. 

3.4.3 Mori-Tanaka mean field approach 

The Mori-Tanaka mean field approach takes into account the effect of other multi-coated   

inhomogeneities by considering a finite concentration of a multi-coated inclusion embedded in 

an infinite matrix. Similarly to the Self Consistent approach, the expression of the effective 

magnetoelectroelastic composites is given by: 

1

( )
n

eff m k k m k

iJKl iJKl iJMn iJMn MnKl

k

E E f E E A


                                                                                   (3.54) 

where kf denotes the volume fraction of the considered phase.  

The Mori-Tanaka concentration tensors kA  is evaluated from (3.31) by replacing 0E by mE and 

0Z by 
mZ . Its expression is given as follow: 

 

1

( / )

1

( ( ( ) ) )
n

k k Ik m k m kk m
MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f f
A a I T E E a

f V





 
   

 
                                                      (3.55) 

in which ( / )k m k m

iJMn iJMn iJMnE E E     and 1m If f   the volume fraction of the matrix. 
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3.4.4 Dilute approach 

The Dilute approach does not take any kind of interaction between the matrix and the multi-

coated inhomogeneities. For multi-coated inclusions, the concentration tensor related to the 

Dilute approach is given by: 

1

( / )

1

1
( ( ( ) ) )

n
k k Ik m k m kk
MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f
A a I T E E a

f V





 
   

 
                                                       (3.56)

  

 

in which ( / )k m k m

iJMn iJMn iJMnE E E  
 

The multi-coated concentration tensors, elaborated in this paper for magnetoelectroelastic 

composites, allow one to numerically predict the effective properties for a wide range of 

reinforcement types based on the presented micromechanical models. These micromechanical 

models will be used to predict the effective properties of multifunctional composite materials 

with multi-coated inclusions of various types and shapes as well as with functionally graded 

interphases. 

3.5 Numerical results 

Based on the presented micromechanical models wide varieties of numerical tests can be 

elaborated. The effective properties of magnetoelectroelastic composites can be predicted for 

various coating number and types as well as for various inclusion shapes and types. Two types of 

inclusion problems are considered and investigated in two subsections. In the first one, a four-

phase composite consisting of glass inclusions surrounded by void and piezoelectric (BaTiO3) 

interphase layers embedded in a piezomagnetic matrix (CoFe2O4). The consideration of a void 

layer is done in order to take into account the defect that might exist in the interphase and then in 

the composites. The effective properties obtained for magnetoelectroelastic composite with void 

are compared to those obtained for magnetoelectroelastic composite without the void layer. This 

four-phase composite is investigated as an application of multi-coated micromechanical 

modeling. The topology of a representative element of the four-phase composite is described in 

figure 3.4. The reinforcements are perfectly aligned and have ellipsoidal shape with the 

dimensions (a1, b1, c1), (a2, b2, c2) and (a3, b3, c3). The three ellipsoids are coaxial 

with 1 1 1
1 2 3

2 2 2

; ;
a b c

a b c
      and 2 2 2

1 2 3

3 3 3

; ;
a b c

a b c
      . For the considered void coating, the 
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thickness in directions a1 and b1 is taken zeros 1 2( 1; 1)   . The volume fraction of matrix is 

mf and the volume fractions of inclusion and interphases are obtained 

by 1 (1 )mf f   , 2 (1 )(1 )mf f      and 3 (1 )(1 )mf f     with 1 2 3    and 1 2 3    .  

The effective properties of magnetoelectroelastic composites without the void layer are obtained 

by taking 1 2 3( 1)     . In the second subsection, a functionally graded composite consisting 

of piezoelectric inclusions, piezomagnetic matrix and the properties of interphases varying 

continuously between the matrix and inclusion is considered. This composite material is 

described in the topology section. The parameters (n=2) and (α=1), in the mathematical model 

(1) describing the variation of the properties in the interphase, are chosen. The 

magnetoelectroelastic characteristics of the considered phases are listed in Table 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A representative volume element of a four-phase composite.  The dimension of the 

reinforcement and interphases are (a1, b1, c1), (a2, b2, c2) and (a3, b3, c3)   respectively. 
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Table 3.1: Material properties   

 C11 C12 C13 C33 C44 e15 e31 e33 

BaTiO3 166 77 78 162 43 11.5 -4.4 18.6 

CoFe2O4 286 173 170 269.5 45.3 0 0 0 

PZT-5H 126 55 53 117 35.3 17 -6.5 23.3 

Glass 88.8 29.6             29.6             88.8 29.6 0 0 0 

 

 κ 11 κ 33 h15 h31 h33 µ11 µ33 

BaTiO3 11.2×10
-9

 12.6×10
-9

 0 0 0 5×10
-6

 10×10
-6

 

CoFe2O4 0.08×10
-9

 0.093×10
-9

 550 580.3 699.7 -590×10
-6

 157×10
-6

 

PZT-5H 15.1×10
-9 13.0×10

-9 0 0 0 5×10
-6

  5×10
-6

 

Glass 0.056×10
-9

 0.056×10
-9

 0 0 0 1×10
-6

  1×10
-6

 

 

Units: elastic constant GPa; dielectric constants C
2
/Nm

2
; magnetic constants Ns

2
/C

2
, 

piezoelectric constants C/m2; piezomagnetic constants N/Am; magnetoelectric coefficients 

Ns/VC. 

3.5.1 Four-phase magnetoelectroelastic composites 

In this subsection, magnetoelectroelastic composites with and without void interphase layers are 

investigated. The effective properties are predicted for different thicknesses and shapes of the 

void interphase layer. 

In Figures 3.5, the magnetoelectric modulus -α33 is predicted for fibrous magnetoelectroelastic 

composites with and without void interphase layer, using the Mori-Tanaka, Self Consistent and 

Incremental Self Consistent micromechanical models with respect to the volume fraction of the 

multi-coated inclusion 1 2 3(1 )mf f f f    . It can be seen that the presence of void interphase 

influences strongly the effective properties. Also, it is shown that the effective modulus -α33 

decreases when the thickness of the void layer increases. Also, it is seen that the Self Consistent 

model diverges and can predict results only for very small volume fractions of the multi-

inclusions. However, the Incremental Self Consistent model improves the prediction of the 

classical Self Consistent and gives almost the same results as the Mori-Tanaka model. 

In Figure 3.6a, the effective piezoelectric modulus e33 is presented for fibrous 

magnetoelectroelastic composites with different thicknesses of the void layer using Mori-
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Tanaka, Self Consistent and Incremental Self Consistent micromechanical models with respect to 

the volume fraction of the multi-coated inclusion. It is seen that the effective modulus e33 

increases with respect to the total multi-inclusion volume fraction and increases when the 

thickness of the void layer increases. Again, it is shown that the Self Consistent approach 

diverges at high volume fraction of the multi-coated inclusion and the Incremental Self 

Consistent conducts far the prediction and gives the same results as the Mori-Tanaka approach.  

In Figure 3.6b, the effective piezoelectric moduli e33 is presented for magnetoelectroelastic 

composites with fixed thicknesses of interphase layers and different shape of inclusions 

(spheroidal inclusions (a1=b1=c1=1), ellipsoidal inclusions (a1=b1=1; c1=10), fibrous inclusions 

(a1=b1=1; c1=10) and laminated inclusions (a1=b1=1000; c1=1)) by using the Mori-Tanaka 

micromechanical model. The effect of the shape on e33 is shown. It is seen that the shape of 

inclusion affects significantly the effective piezoelectric moduli e33. 

In Figure 3.7a, the effective magnetoelectric modulus α11 is predicted for laminated 

magnetoelectroelastic composites with different thicknesses of the void interphase layer with 

respect to the volume fraction of the multi-coated inclusion. The effective modulus α11 slowly 

decreases with respect to the thickness of the void layer. It is also seen that for α11 with the 

thickness of the void layer 1 2 3( 1; 0.8)     , the Self Consistent, Incremental Self 

Consistent and Mori-Tanaka models predict almost the same results. However, when the 

thickness of the void layer increases, the Self Consistent approach diverges and leads for 

erroneous results for high volume fraction of the multi-coated inclusion.  

In Figure 3.7b, the effective magnetoelectric moduli α 11 is presented for magnetoelectroelastic 

composites with fixed thicknesses of interphase layers and different shape of inclusions by using 

the Mori-Tanaka micromechanical model. The effect of the shape on α 11 is shown. It is seen that 

the shape of inclusion affects significantly the effective magnetoelectric moduli α11. It is also 

seen that α 11 is maximized for laminated composites which is explained by the fact that in 

laminated composites the interaction is more prominent in x1 direction.   

The prediction of the effective elastic modulus c11 for ellipsoidal magnetoelectroelastic 

composites with different thicknesses of the void interphase layer is given in figure 3.8. It seen 

that the presence of the void layer affects the elastic modulus c11. The elastic modulus decreases 

with respect to the thickness of the void layer as well as with the volume fraction of the multi-
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coated inclusion. Again the divergence of the Self Consistent model is observed as well as the 

erroneous prediction of the considered Dilute approach for large volume fractions. 

Three dimension numerical results, for fibrous magnetoelectroelastic composites, predicted by 

Mori-Tanaka model, are presented in figure 3.9. The evolution of the magnetoelectric modulus -

α33 with respect to the thickness of the void interphase layer and to the volume fraction of the 

composite inclusion is presented. It is clearly seen that α33 is strongly affected by the thickness of 

the void interphase layer as well as by the composite inclusions volume fraction. α33 can be 

maximized or minimized with respect to these values. Its maximum is reached when the void 

interphase layer disappears (γ3=1) and fm=0.6 and minimized when the inclusion disappears and 

the void interphase layer takes its place and fm=0.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volume fraction of the multi-coated inclusion 

Figure 3.5: Effective magnetoelectric modulus -α33 of fibrous magnetoelectroelastic composites 

(a1=b1=1; c1=1000) consisting of Glass inclusions surrounded by a piezoelectric (BaTiO3) 

coating and with or without void interphase layer embedded in a piezomagnetic matrix 

(CoFe2O4); β1= β2= β3=0.95. 
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Volume fraction of the multi-coated inclusion 

Figure 3.6a: Effective piezoelectric modulus e33 of fibrous magnetoelectroelastic composites 

consisting of Glass inclusions surrounded by Void and piezoelectric (BaTiO3) coatings 

embedded in a piezomagnetic matrix (CoFe2O4); β1= β2= β3=0.95.  
 

 

 

 

 

 

 

 

 

 

Volume fraction of the multi-coated inclusion 

Figure 3.6b: Effective piezoelectric modulus e33 of magnetoelectroelastic composites consisting 

of Glass inclusions surrounded by Void and piezoelectric (BaTiO3) coatings embedded in a 

piezomagnetic matrix (CoFe2O4); β1= β2= β3=0.95; 1 2 31; 0.7     . 
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Volume fraction of the multi-coated inclusion 

Figure 3.7a: Effective magnetoelectric modulus α11 of laminated magnetoelectroelastic 

composites (a1=b1=1000; c1=1) consisting of Glass inclusions surrounded by void and 

piezoelectric (BaTiO3) coatings embedded in a piezomagnetic (CoFe2O4) matrix; β1= β2= 

β3=0.95. 

 

 

 

 

 

 

 

 

 

 

Volume fraction of the multi-coated inclusion 

Figure 3.7b: Effective magnetoelectric modulus α11 of magnetoelectroelastic composites 

consisting of Glass inclusions surrounded by Void and piezoelectric (BaTiO3) coatings 

embedded in a piezomagnetic matrix (CoFe2O4); β1= β2= β3=0.95; 1 2 31; 0.7     . 
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Volume fraction of the multi-coated inclusion 

Figure 3.8: Effective elastic modulus c11 of ellipsoidal magnetoelectroelastic composites 

(a1=b1=1; c1=10) consisting of Glass inclusions surrounded by void and piezoelectric (BaTiO3) 

coatings embedded in piezomagnetic (CoFe2O4) matrix; β1= β2= β3=0.95. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Effective magnetoelectric modulus -α33 of fibrous magnetoelectroelastic composites 

consisting of Glass inclusions surrounded by void and piezoelectric (BaTiO3) coatings embedded 

in a piezomagnetic (CoFe2O4) matrix. 
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3.5.2 Functionally graded magnetoelectroelastic composite 

In this subsection, functionally graded interphase will be considered. Based on the relationship 

(3.1), various graded model parameters and thickness of the interphase can be easily considered. 

The case n=2 and α=1 is considered in this analysis. 

The magnetoelectric coefficient α33 is predicted, for magnetoelectroelastic fibrous composites 

consisting of piezomagnetic matrix CoFe2O4 and piezoelectric inclusions BaTiO3 with 

functionally graded interphase using the Mori-Tanaka model with respect to the volume fraction 

of the coated inclusion and the thickness of the interphase (1-γ) is presented in figure 3.10.  The 

thickness of the interphase (1-γ) effects on α33 is clearly shown and this coefficient is optimized 

around 1-fm=0.4. Also, it is seen that without the interphase (γ=1) the same results predicted by 

Zhang and Soh (2005) and Bakkali et al. (2011) for two phases magnetoelectroelastic composites 

are obtained. The evolution of the effective modulus α33 starts with the effective properties of the 

piezomagnetic matrix CoFe2O4 and finishes with the effective properties of the piezoelectric 

inclusion surrounded by the functionally graded interphase layer. 

In Figures 3.11 and 3.12, the evolution of the effective modulus α33 with respect to the interphase 

thickness (1-γ) is predicted for laminated and ellipsoidal composites, with fixed volume fraction 

of the matrix fm=0.6, consisting of piezomagnetic matrix CoFe2O4, piezoelectric inclusion 

BaTiO3 and functionally graded interphase. The prediction of α33 is done using the presented Self 

Consistent, Incremental Self Consistent, Mori-Tanka and Dilute micromechanical models. The 

evolution is bounded between two limiting cases. The first one is γ=0 which corresponds to the 

case where the interphase becomes the inclusion and the second one when γ=1 (r=1) in which the 

interphase disappears. It is shown that α33 varies significantly with respect to γ. α33 increases 

with γ because with matrix volume fraction fixed increasing γ means increasing the inclusion 

volume fraction. As the volume fraction of the inclusion increases the interaction between the 

matrix and the inclusion becomes more significant which increases the effective modulus α33. For 

fibrous inclusion and interphase the evolution of the effective modulus α33 with respect to the 

interphase thickness (1-γ), with fixed volume fraction of the matrix (fm=0.6; 0.2), consisting of 

piezomagnetic matrix CoFe2O4, piezoelectric inclusions BaTiO3 and functionally graded 

interphases is presented in figure 3.13. It is shown that in this case the Self Consistent, 

Incremental Self Consistent predict the same results and α33 increases with γ. 
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In Figure 3.14, the coefficient α11 is presented, for magnetoelectroelastic fibrous composites with 

fixed coating thickness γ=0.93 consisting of piezomagnetic matrix CoFe2O4 and piezoelectric 

inclusions BaTiO3 with functionally graded interphase as function of the volume fraction of the 

coated inclusions. The divergence of the Self Consistent and Dilute is again observed. However, 

the Incremental Self Consistent improves the prediction of the classical Self Consistent model 

and gives almost the same results than the Mori-Tanaka model. This coefficient can be optimized 

with respect to γ and 1-fm. 

In figure 3.15, three dimension numerical results are presented for magnetoelectroelastic fibrous 

composites based on the Mori-Tanaka model. The evolution of magnetoelectric modulus α33 with 

respect to the thickness of the interphase and to the volume fraction of the composites inclusion 

is presented. It is seen that α33 varies significantly with the interphase thickness (1-γ) and the 

volume faction of the composites inclusion (1-fm) and this coefficient can be optimized with 

respect to γ and fm. 

 

 

 

 

 

   

 

 

 

 

 

 

 

Volume fraction of the coated inclusion 

Figure 3.10: Effective magnetoelectric modulus α33, of magnetoelectroelastic fibrous composites 

consisting of piezomagnetic matrix CoFe2O4 and piezoelectric inclusions BaTiO3 with 

functionally graded interphase, with respect to volume fraction of the coated inclusion and the 

thickness of the interphases; (n=2, α=1). 
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Thickness of the interphase 

Figure 3.11: Effective magnetoelectric modulus α33, of magnetoelectroelastic laminated 

composites with fixed volume fraction of the matrix (fm=0.6) consisting of piezomagnetic matrix 

CoFe2O4 and piezoelectric inclusions BaTiO3 with functionally graded interphases, predicted by 

Mori-Tanaka, Self Consistent, incremental Self Consistent and Dilute models, as a function of 

the normalized coating thickness (1- γ); (n=2, α=1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

          Thickness of the interphase 

Figure 3.12: Effective magnetoelectric modulus α33, of magnetoelectroelastic ellipsoidal 

composites with fixed volume fraction of the matrix (fm=0.6) consisting of piezomagnetic matrix 

CoFe2O4 and piezoelectric inclusions BaTiO3 with functionally graded interphases, predicted by 

Mori-Tanaka, Self Consistent and Incremental Self Consistent  models, as a function of the 

normalized coating thickness (1- γ). 
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   Thickness of the interphase 

Figure 3.13: Effective magnetoelectric modulus α33, of magnetoelectroelastic fibrous composites 

with fixed volume fraction of the matrix (fm=0.6; 0.2) consisting of piezomagnetic matrix 

CoFe2O4 and piezoelectric inclusions BaTiO3 with functionally graded interphases, predicted by 

Mori-Tanaka, Self Consistent and Incremental Self Consistent  models, as a function of the 

normalized coating thickness (1- γ). 

 
 

 

 

 

 

 

 

 

 

 

 

 

Volume fraction of the coated inclusion 

Figure 3.14: Effective magnetoelectric modulus α11, of magnetoelectroelastic fibrous composites 

consisting of piezomagnetic matrix CoFe2O4 and piezoelectric inclusions BaTiO3 with 

functionally graded interphases of thickness γ=0.93, predicted by Mori-Tanaka, Self Consistent, 

incremental Self Consistent and Dilute models, as a function of the volume fraction of the coated 

inclusion; (n=2, α=1). 
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Figure 3.15: Effective magnetoelectric modulus α33, of magnetoelectroelastic fibrous composites 

consisting of piezomagnetic matrix CoFe2O4 and piezoelectric inclusions BaTiO3 with 

functionally graded interphase, with respect to volume fraction of the coated inclusion 

(inclusion+interphase) and the thickness of the interphases; (n=2, α=1). 
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Consistent, Mori-Tanaka and Dilute models. Mathematical formulations are given in the general 
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are analyzed. The effective properties of magnetoelectroelastic composite consisting of Glass 

inclusions surrounded by void and piezoelectric (BaTiO3) interphase layer embedded in 

piezomagnetic matrix (CoFe2O4) are predicted and then compared to the effective properties of 

the same composite without void phase. Secondly, the effective properties of 

magnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3), piezomagnetic 

matrix (CoFe2O4) where the properties of interphases vary continuously between the matrix and 
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inclusions are predicted. The effective properties are presented with respect to the volume 

fraction, shape, thickness and the functionally graded interphase parameters. It is shown that the 

presence of the void interphase layer influences strongly the effective properties which are well 

predicted by Mori-Tanaka and Incremental Self Consistent models. The interphase thickness and 

shape have also strong effects on the effective properties of the multi-functional composites. The 

multi-coating and functionally graded interphase concepts can be used to optimize the coupling 

multi-functional effective properties. This is of big interest to design new multi-functional 

materials with higher coupling coefficients.  

3.7 Perspectives 

So far, the studied composite materials are considered to have time independent properties. 

Piezoelectric and magnetoelectroelastic composites with polymer matrix show significant time 

dependent properties and particularly at high elevated temperature. This kind of composites, 

besides of their actuation and sensing effect, show a damping effect that could be useful in many 

industrial applications. In chapter 4, micromechanical modelings will be developed to predict the 

viscopiezoelectric behavior of piezoelectric heterogeneous materials. Two kinds of composites 

are going to be investigated: two-phase viscoelectroelastic composites and multi-coated 

viscoelectroelastic composites. The modeling well be based on the correspondence principle of 

linear viscoelectroelasticity combined with Mori-Tanaka micromechanical model. The use of the 

Carson transformation will allow the extension of the micromechanical model to the Carson 

domain. . The conversion from the Carson domain to the time domain of the effective properties 

is going to be made numerically by using the inverse of the Laplace transform. 
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Chapter 4 

4. Viscoelectroelastic effective properties of heterogeneous 

and multi-coated piezoelectric materials 

 

 

 

Abstract 

In this paper, the effective behavior of viscoelectroelastic composites is investigated. By using 

the correspondence principle of linear viscoelectroelasticity, the Mori-Tanaka micromechanical 

mean field approach is extended to the Carson domain. Based on the integral equation and on 

viscoelectroelastic interfacial operators the concentration tensors for viscoelectroelastic 

composites are derived. The effective properties are derived in the Carson domain and then 

inverted numerically to the time domain by using the inverse of the Laplace transform. The 

effective properties are presented in frequency and time domain. The effect of shape and volume 

fraction of reinforcements as well as the thickness of the coating is shown on the effective 

properties.  
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4.1 Introduction 

The effective behavior of piezoelectric composites has been investigated by many researchers 

due to their applications in many industrial fields such as aerospace, aeronautics and automobiles 

etc. through sensors and actuators. Piezoelectric composites with polymer matrix show a 

significant time dependent properties and particularly at elevated temperature.  This kind of 

composites, besides of their actuation and sensing effect, shows a damping effect that could be 

useful in many industrial applications. The investigation of the effective properties of 

viscoelastic composites has been done by many researchers. Brinson and Lin (1998) examined 

the use of different micromechanics method for the determination of the effective composite 

properties when all the phases are viscoelastic. Fisher and Brinson (2001) predicted the effective 

properties of a three-phase viscoelastic composite using the original Mori-Tanaka 

micromechanical model and the extended one that takes the interphase regions between the 

matrix and fibers. The obtained results are compared to the ones obtained by finite element 

analysis. Haberman et al. (2002) used the Self Consistent micromechanical model to predict the 

effective properties of viscoelastic composites consisting of spherical coated inclusion. 

Matzenmiller and Gerlach (2004) used the micromechanical method of cells to investigate the 

effective properties of viscoelastic composites. The micromechanical model equations was 

established and solved based on two approaches: the first one based on the Laplace-

transformation of the time-dependent material functions and the application of the 

correspondence principle of linear viscoelasticity to the governing equations of the 

micromechanical model. In the second approach a numerical time integration scheme is 

developed to compute the convolution integrals. Fei et al. (2004) investigated the influence of the 

gradual interphase on the effective elastic and viscoelastic properties of particulate composites. 

Levesque et al. (2004) developed a theoretical model to predict the nonlinear behavior of 

viscoelastic composites where the matrix is nonlinear viscoelastic.   

The electromechanical behavior of piezoelectric composites has been investigated in several 

works. Dunn and Taya (1993) predicted the effective properties based on different 

micromechanical models.  Fakri et al. (2003, 2010) predicted the piezoelectric and the thermal-

piezoelectric behavior of composite materials and presented the numerical results for the 

effective properties in term of phase properties, orientation angles, volume fraction and shapes of 

inclusions. Odegard (2004) proposed a new modeling approach to predict the bulk 
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electromechanical properties of piezoelectric composites and compared the obtained results with 

those obtained by the Mori-Tanaka approach and the finite element method. Li (2004) applied 

the Self Consistent approach to predict the effective pyroelectric and thermal expansion 

coefficients of ferroelectric ceramics taking into account the texture change due to domain 

switching during poling. Our interest in this work is to investigate the coupled effective behavior 

of viscoelectroelastic composites. Only restricted works have been done on this area. Jiang and 

Batra (2001) investigate the effective properties of viscoelectroelastic composites based of the 

Mori-Tanaka mean field micromechanical. Closed form expressions of the effective moduli were 

given for viscoelectroelastic composites consisting of parallel PZT cylinder of elliptic cross 

section embedded in a viscoelastic matrix. Aldelrahem et al. (2007) proposed an analytical 

model to investigate viscoelastic properties of hybrid composites with shunted piezoelectric 

particles. Muliana and Li (2010) developed a micromechanical modeling and a finite element 

model to investigate the effective time dependent properties of piezoelectric composites 

consisting of PZT fiber and a polymer matrix.  

In this paper, a micromechanical modeling is developed to predict the time and frequency 

dependent effective properties of viscoelectroelastic composites. Two kinds of composites are 

investigated: two-phase viscoelectroelastic composites and multi-coated viscoelectroelastic 

composites. The modeling is based on the correspondence principle of linear 

viscoelectroelasticity combined with Mori-Tanaka micromechanical model. The use of the 

Carson transformation allows the extension of the micromechanical model to the Carson domain. 

To derive the effective properties we have gone through two steps: the derivation of the 

concentration tensor step which is based on the solution of the integral equation for two-phase 

viscoelectroelastic composites and on the solution of the integral equation that takes into account 

the multi-coating effects and viscoelectroelastic interfacial operators for multi-coated 

viscoelectroelastic composites, the homogenization step which is based on averaging techniques 

to investigate the macroscopic behavior of the composites. The conversion from the Carson 

domain to the time domain of the effective properties is made numerically by using the inverse 

of the Laplace transform. Parametrical studies are done by presenting the effective properties in 

term of shape, volume fraction of the reinforcements and thickness of the coating. 
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4.2 Constitutive equations for linear electroviscoelastic materials 

For linear homogeneous piezoelectric materials, the constitutive equations that relate the electric 

and elastic fields are given by: 

ij ijkl kl lij l

i ikl kl il l

c e E

D e E

 

 

 

 
                                                                                                                      (4.1)    

where  ,  , E, and D are the stress tensor, strain tensor, electric filed and the electric 

displacement vector, respectively. c, e and   are the elastic stiffness tensor, piezoelectric tensor 

and the dielectric tensor, respectively.                                              

Using the condensed notation (Fakri et al. 2003) [9] the variable field takes the following form: 

( 1,2,3)( 1,2,3)

( 4) ( 4)

ijmn

Mn iJ

n i

JM
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E M D J

   
   

   

                                                                             (4.2)                                                            

The above equations were used for linear independent time properties of homogeneous 

piezoelectric materials. This work deals with the viscoelectroelastic behavior of polymer 

piezoelectric composites. This kind of composites shows time dependent properties. One of the 

most widely used models for viscoelasticity in materials is the Baltzman convolution low. The 

time dependent constitutive model of piezoelectric homogeneous material is obtained by 

generalizing the Blotzmann principle for linear viscoelastic materials, one can write: 

0 0

0 0
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                                                                                        (4.3)                                                        

Where ,c e and  are the associated relaxation tensors. 

Using the condensed notation the time dependent constitutive model takes the following form: 

0
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( ) ( )
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iJ iJKl
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t E t d

d


 


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where  
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is the time dependent viscoelectroelastic relaxation tensor,  and Z are the generalized stress and 

strain respectively. 

The convolution integral (4) gives a mathematical equation that relates the generalized stress   

to the generalized strain Z  through the viscoelectroelastic generalized relaxation tensor ( )E t . 

The constitutive equation (3) is given in the time domain. To convert its form the time domain to 

the frequency domain the following harmonic deformation and electrical field are considered: 

( ) ( ) ; ( ) ( )i t i t

mn mn m mt e E t E e                                                                                      (4.5) 

Replacing (4.5) into (4.3) and using the following changing variable, u t   , one can find  
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                                                                           (4.6) 

Considering ( ) ( ) ; ( ) ( )i t i t

ij ij i it e D t D e      and using (4.6), the following frequency 

integral equations are obtained: 
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                                                                                                (4.7) 

Like in viscoelasticity, viscoelectroelastic problem can be formally reduced to electroelastic one 

by using Carson transform. The Carson transform of a time dependent function is given by: 

 
0

( ) ( )

t

tsf s s f t e dt                                                                                                                     (4,8)  

where s is the Carson variable.        

Taking s i , equation (4.7) could be written as follow 
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where 
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Using the condensed notation, the constitutive equation in Carson domain is given by 

( ) ( ) ( )iJ iJKl Kls E s Z s                                                                                                               (4.10)  

in which 

  
( ) ( )

( )
( ) ( )

ijkl lij

iJKl

ikl il

c s e s
E s

e s s

 
  
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Equation (4.10) shows the analogy between the linear viscoelectroelasticity problem and linear 

electroelastic problem. The role played by ( )E s in linear viscoelectroelasticity is the same role 

played by the electroelastic moduli E in linear electroelasticity. 

The equilibrium equations, in the absence of body force, electric charge, are given in the 

frequency domain by: 

, ,( ) 0 ( ) 0ij i i is D s  
                                                                                                        (4.11) 

Using the above condensed notations, the equilibrium equations are written as follow: 

, ( ) 0iJ i s                                                                                                                                 (4.12) 

Based on the symmetry of the tensors , ,c e  the following equilibrium partial differential 

equation is obtained: 

, ,( ( ) ( )) 0iJKl K l iE s U s                                                                                                                 (4.13) 

4.3 Localization and effective electroviscoelastic properties 

Considering V as the representative volume element of an N-phase composite. The averaged 

stress and strain over the composite are given by: 

1

( ) ( )
n

i

Kl i Kl

i

Z s f Z s


                                                                                                                     (4.14-a)                                       

1

( ) ( )
n

i

lK i lK

i

s f s


                                                                                                                (4.14-b)                                                                                                      

 where the index ‘i’ denotes the ith phase and if is its corresponding volume fraction. ( )iZ s and 

( )i s are considered to be uniform in each phase. 

 Based on the same mathematical development presented in Fakri et al. (2003, 2010) and Bakkali 

et al (2011, 2012 and 2013), the local field variables ( )iZ s and ( )i s  in the ith-phase are related 
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to global fields ( )Z s and ( )s applied to the composite through the concentration tensors A and 

B respectively by:  

( ) ( ) ( )p p

Kl KlMn MnZ s A s Z s                                                                                                        (4.15-a)                                                                                                 

( ) ( ) ( )p p

iJ iJnM nMs B s s                                                                                                          (4.15-b)                                                                               

The overall constitutive viscoelectroelastic behavior of the composite and of the phase p can be 

written as follow: 

( ) ( ) ( )eff

iJ iJKl Kls E s Z s                                                                                                            (4.16-a)                                                                                                    

( ) ( ) ( )p p p

iJ iJKl Kls E s Z s                                                                                                           (4.16-b)                                                                                         

The introduction of (4.16-b) into (4.14-b) and the use of (4.15-a) lead to the expression of the 

effective viscoelectroelastic moduli in the transformed domain: 

1

( ) ( ) ( )
n

eff p P

kLSv p kLIj IjSv

p

E s f E s A s


                                                                                                  (4.17)                                                                                    

 From (4.17) it is clearly seen that the prediction of the effective moduli relies on the calculation 

of the concentration tensor A  which could be approximated by using different micromechanical 

models. Based on this relationship, various micromechanical models can be applied to two-phase 

and multi-coated viscoelectroelastic materials. This condensed relationship gives the effective 

properties of the considered heterogeneous and multi-coated materials in the Carson or frequency 

domain. The effective viscoelectroelastic moduli in time domain can be obtained by using the 

inverse of Laplace transform, given by: 

 
( )1

( ) e
2

i eff
eff stiJKl
iJKl

i

E s
E t ds

i s






 

 

                                                                                              (4.18) 

Let us note that the tensor ( )eff

kLSvE s  depends implicitly on s and then it is impossible to evaluate 

the integral (4.18) analytically. Various studies focus on the investigating of the viscoelastic 

response of composites in Lapace or Carson domain instead of time domain due to the 

difficulties in accurately and efficiently evaluating the integral (4.18). In this paper, the inversion 

of the viscoelectroelastic moduli from the Carson domain to the physical domain (time domain) 

is done numerically by using the mutli-precision algorithm developed in [2].  This multi 

precision algorithm is already used by [15] to invert the effective properties of carbon Nanotube-

Reinforced Polymer Composites from the Carson domain to the time domain. 
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Once ( )eff

iJKlE t is calculated then the overall viscoelectroelastic behavior of the composite in time 

domain can be given as follow: 

0

( )
( ) ( )

t

eff Kl
iJ iJKl

dZ
t E t d

d


 


                                                                                                 (4.19)  

Where  and Z are the generalized averaged viscoelectroelastic strain and stress over the 

composite. 

4.4 Two-phase viscoelectroelastic composites       

This section deals with two-phase viscoelectroelastic composites consisting with a viscoelastic 

matrix and piezoelectric inclusions. The derivation of the localization equation goes through the 

solution of the viscoelectroelastic integral equation and then the Mori-Tanaka mean field 

approach is used to derive the concentration tensor.                           

4.4.1 Localization equation and The Mori-Tanaka mean field approach 

Considering a homogeneous fictitious media called “reference media” which has the 

viscoelectroelastic moduli
0 ( )iJMnE s . The expression of the local viscoelectroelastic moduli is 

given as follow: 

0( , ) ( ) ( , )iJMn iJMn iJMnE r s E s E r s                                                                                            (4.20) 

where “r’’ is the position vector in the media considered and E is the deviation part. The 

introduction of this expression into (4.13) leads to 

0

, , ,( ) ( , ) ( ( , ) ( , )) 0iJMn M ni iJMn M n iE s U r s E r s U r s                                                                      (4.21) 

The viscoelectroelastic Green tensor of the reference media is related to the reference medium by 

the following equation: 

0 ' '

,( ) ( , ) ( ) 0iJMn MK in JKE s G r r s r r                                                                                         (4.22) 

Using (4.21), (4.22) and after some mathematical manipulations, the same integral equation 

derived by Fakri et al. (2003)[10] for linear piezoelectric composite materials, is obtained here in 

Carson domain for viscoelectroelastic composite materials: 

0( , ) ( , ) ( ', )( ( ', ) ( ', )) 'Kl Kl iJKl iJMn Mn
V

Z r s Z r s r r s E r s Z r s dV                                              (4.23) 

where ,( ', ) ( ', )iJKl JK lir r s G r r s     is a condensed notation of four tensors. 
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To solve this integral equation, the same procedure used by Fakri et al. (2003)[10] is followed 

which leads to the following localization equation: 

0 01
( ) ( ) ( ( )) ( ) ( )I II I I

Kl Kl iJKl iJMn MnI
Z s Z s T E s E s Z s

V
                                                                          (4.24) 

where 0( ( )) ( ', ) '
I I

II

iJKl iJKl
V V

T E s r r s dV dV     represents the condensed notation of the 

viscoelectroelastic interaction tensors. These tensors are computed numerically [3, 10 and 11] for 

various shapes of inclusions using the Gaussian quadrature integration for the considered 

inclusion shape. 

The Mori-Tanaka mean field approach, besides of its ease of implementation, is well known to 

be the best in precision.  The main assumption of the Mori-Tanaka Mean field approach is the 

consideration that the infinite reference medium has the properties of the matrix. So, to have the 

expression of the Mori-Tanaka concentration tensor, the generalized strain field 0 ( )Z s  and the 

viscoelectroelastic moduli 0 ( )E s  of the reference medium in equation (4.24) are replaced 

respectively by the generalized strain field ( )mZ s  and the viscoelectroelastic moduli ( )mE s  of 

the matrix. So, one can write the expression of the s-dependent concentration tensor as follow: 

1( ) ( ( ( ) ( ))MT II m Im
MnKl KlMn iJKl iJMnI

f
A s I T E s E s

V

                                                                                  (4.25) 

in which ( ) ( ) ( )I I m

iJMn iJMn iJMnE s E s E s      

4.5 Multi-coated viscoelectroelastic composites 

The aim of this section is to generalize the previous mathematical developments to the case of 

multi-coated viscoelectroelastic composites. The derivation of the localization equation goes 

through the solution of the multi-coated viscoelectroelastic integral equation and the use of the 

viscoelectroelastic interfacial operator. The concentration tensors are derived based on the Mori-

Tanaka mean field approach. 

4.5.1 Localization equation and the Mori-Tanaka mean field approach 

In this subsection the integral equation (4.23) is extended for multi-coated viscoelectroelastic 

composites by expressing the deviation part as follow: 
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 ( /0)

0

( ) ( ) ( ) ; 0,1,2,... (4.26)
n

k k

iJMn iJMn

k

E s E s r k n 


  

 

where  ( )k r  is the characteristic function  of the phase k, occupying the volume kV  , expressed 

by: 

1
( )

0

kk

k

if r V
r

if r V



 


,                                                                                                         (4.27) 

and ( /0) 0( ) ( ) ( )k k

iJMn iJMn iJMnE s E s E s    

Using (4.26) the following integral equation is obtained: 

0 ( /0)

1

( , ) ( , ) ( ', ) ( ) ( ', ) '
k

n
k

Kl Kl iJKl iJMn Mn
V

k

Z r s Z r s r r s E s Z r s dV


                                                   (4.28) 

Considering IV  the total volume of the composite inclusion, which consists of an inclusion 

surrounded by (n-1) coatings and kf  is the volume fraction of the phase k. One can write: 

1

n

I k

k

V V


                                                                                                                                 (4.29) 

The average local generalized strain field can be written as: 

1

( , ) ( ) ( )
n

k k

Mn Mn

k

Z r s Z s r


                                                                                                      (4.30) 

Substituting (4.30) into (4.28) and averaging over the volume of the composite inclusion, one 

can find the following localization equation: 

0 0 ( /0)

1

1
( ) ( ) ( ( )) ( ) ( )

n
I Ik k k

Kl Kl iJKl iJMn Mn

kI

Z s Z s T E s E s Z s
V 

                                                                    (4.31) 

where 
0( ( )) ( ', ) '

I k

Ik

iJKl iJKl

V V

T E s r r s dV dV    represents the condensed notation of the 

viscoelectroelastic interaction tensor. 

Using the fact that 
1

( ) ( )
n

I kk
Kl Kl

k I

V
Z s Z s

V

 leads to: 

0 ( /0) 0

1

1
( ( ( )) ) ( ) ( )

n
Ik k kk

KlMp iJKl iJMp Mp Kl

k I k

V
I T E s E Z s Z s

V V

                                                              (4.32) 

where KlMnI  is the shorthand notation of the fourth order and the second order identity tensors: 
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1/ 2( ) ( , 1,2,3)

0 ( 1,2,3; 4)

0 ( 4; 1,2,3)

( 4; 4)

km lp kp lm

KlMp

lp

K M

K M
I

K M

K M

   



 


 
 

 
  

                                     (4.33) 

To complete the localization step, the viscoelectroelastic interfacial operators are introduced 

which give the generalized strain jump field across an interface between two different phases by 

the following equation: 

1 1 1 1
( , ) ( , ) ( , )( ) ( , )( ) ( ) ( )k k k K k k k

Mn Mn iJMn iJRs iJRs Rs
Z r s Z r s P E N E E Z r ss s s   

                                                 (4.34) 

The concentration tensors were derived for multi-coated magnetoelectroelastic composites by 

Bakkali et al. (2012) based on the solution of the integral equation and the magnetoelectroelastic 

interfacial operators. Here, the same procedure is followed and the expression of the 

concentration tensors in Carson domain is given by the following generalized relationship: 

1

0 ( /0)

1

1
( ( ( ) ) )( ) ( ) ( ) ( ) ( )

n
k k Ik k kk

MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f
A a I T E E a

f V
s s s s s





  
 
 
 
                                        (4.35) 

where  
ka  is the local localization tensor and its expression is given by : 

1 1
( / )

1 1

( ) ( ) ( ) / ( )
k k

k i k i

MnKl i MnRs RsKl i

i i

a s f W s a s f
 

 

                                                                               (4.36-a) 

 And ( / ) ( / )( ) ( ( ( )) ( ))i k k k i k

MnRs MnRs pJMn pJRsW s I T E s E s    and 1 ( )MnKl MnKla s I                                 (4.36-b) 

Note that various micromechanical approaches can be obtained based on the presented 

concentration tensors (4.35) in the Carson domain. In this paper we restrict ourselves to Mori-

Tanaka mean field and Dilute approaches. 

 To obtain the expression of the Mori-Tanaka mean field approach localization tensors, the 

generalized strain field 0 ( )Z s and the viscoelectroelastic moduli 0 ( )E s  of the reference medium  

in (4.32) are replaced respectively by the generalized strain field ( )mZ s and the 

viscoelectroelastic moduli ( )mE s   in the matrix. The following frequency dependent localization 

tensor is then obtained: 

1

( ) ( / )

1

( ( ( ) ) )( ) ( ) ( ) ( ) ( )
n

k MT k Ik M k m kk m

MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f f
A a I T E E a

f V
s s s s s





  
 
 
 
                                     (4.37) 

in which ( / ) ( ) ( ) ( )k m k m

iJRs iJRs iJRsE s E s E s     and 1m If f   is the volume fraction of the matrix. 
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For the Dilute approach, one has to replace, the generalized strain field 0 ( )Z s and the 

viscoelectroelastic moduli 0 ( )E s  of the reference medium in (4.32) are replaced respectively by 

the average generalized strain field ( )Z s applied over the composite and the viscoelectroelastic 

moduli ( )mE s   in the matrix. The following frequency dependent localization tensor is then 

obtained: 

1

( ) 0 ( / )

1

1
( ( ( ) ) )( ) ( ) ( ) ( ) ( )

n
k Dil k Ik k m kk

MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f
A a I T E E a

f V
s s s s s





  
 
 
 
                                    (4.38) 

in which ( / ) ( ) ( ) ( )k m k m

iJRs iJRs iJRsE s E s E s   .   

Based on the developed methodological approach the frequency dependent effective coefficients 

are given by: 

( )

1

( ) ( ) ( ( ) ( )) ( )
n

eff m p m P MT

kLSv kLSv p kLIj kLIj IjSv

p

E s E s f E s E s A s


                                                         (4.39) 

This relationship allows one to investigate the viscoelectroelastic frequency dependent behavior 

of the newly created viscoelectroelastic composite. This hybrid behavior can be numerically 

analyzed with respect to the shape, volume fractions inclusions. For the time dependent effective 

coefficients the inverse of Laplace transform is applied to ( )effE s . The used numerical inversion 

procedure is given by [2]:  

1

1

1
( , ) ( )exp( ) Re exp( ( )) ( ( ))(1 ( ))

2

M
eff eff eff

kLSv kLSv k kLSv k k

k

r
E t M E r rt ts E s i

M
   





 
     

 
                 (4.40) 

with 
2

5

M
r

t
 , k

k

M


   and ( ) ( cot( ) 1)cot( )k k k k k         

( , )eff

kLSvE t M is approximated by (4.40). It is has only a free parameter M, which is the number of 

terms to be summed. By this way the frequency and time dependent viscoelectroelastic 

coefficients are obtained for two-phase and multi-coated composites.  

4.6Numerical results 

Based on the previous mathematical modelings, the effective properties of two kinds of 

viscoelectroelastic composites are investigated. The first one is a two-phase composite consisting 

of piezoelectric inclusions (PZT-7A) embedded in a viscoelastic matrix (LaRC-SI). The second 

one is a three-phase viscoelectroelastic composite consisting of Glass inclusions surrounded by 
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(PZT-7A) coating embedded in a viscoelastic matrix (LaRC-SI). The topology of a 

representative volume element of the three-phase composite is described in figure 1. As shown in 

Figure 1, phase 1 is the Glass inclusion, phase 2 is the piezoelectric coating and phase three is the  

viscoelastic matrix having homogeneous material properties 1E , 2E and 3E  respectively. The 

reinforcements are perfectly aligned and have ellipsoidal shapes with the dimensions (a1, b1, c1) 

and (a2, b2, c2). The two ellipsoids are coaxial with 1 1 1

2 2 2

a b c

a b c
    .  

The variation of the volume fraction of the inclusion 1f  and the coating 2f  are given as function 

of the volume fraction of the matrix and the thickness of the piezoelectric coating ‘ ’ as follow. 

3

1 3(1 )f f   , 3

2 3(1 )(1 )f f                                                                                            (4.41) 

Note that, there are two limiting cases. When 0  , Glass inclusions disappear and the effective 

properties of a viscoelectroelastic composites consisting of (PZT-7A) inclusions embedded in 

viscoelastic matrix (LaRC-SI) are obtained and when 1   the coatings disappear and the 

effective properties of a viscoelastic composites consisting of Glass inclusions embedded in 

viscoelastic matrix (LaRC-SI) are obtained. 

 

 

 

 

 

 

Figure 4.1: A representative volume element of a three-phase composite.  The dimension of the 

inclusion and the coating are (a1, b1, c1), (a2, b2, c2) respectively. 

4.6.1 Two-phase composites 

In this subsection, effective properties of the considered two-phase composite are presented in 

the frequency and in time domain. (PZT-7A) is considered to have independent time properties. 

Also, its properties are considered to remain constant with variation of temperature. At elevated 


0
, E

0
 

Matrix ( 3E ) 

coating 1E  

Inclusion ( 1E ) 
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temperature (LaRC-SI) shows a significant viscoelastic response. The creep compliance of the 

matrix in time domain 
0 ( )M t  may be represented by the power low model [15] 

0 0 1( ) nM t D D t                                                                                                                          (4.42) 

where D0 is the initial elastic compliance, and D1 and n are experimentally determined 

parameters. For simplicity, the Poisson’s ratio of the matrix is assumed unchanged. The Carson 

transform of Eq. (4.42) gives 

1
0 0

!
( )

n

D n
M s D

s
                                                                                                                        (4.43) 

The Young modulus ( )E s  is taken as the inverse of 0 ( )M s . Variables values of 0D , 1D  and n at 

T= 213°c are given in table 2 [15]. The dielectric constant of (LaRC-SI) [18] are considered to be 

constant (κ 11/ κ 0= κ 22/ κ 0= κ 33/ κ 0=2.8) with 12

0 8.854187816 10    (C2
/Nm

2
). The properties 

of PZT-7A and Glass materials are given in table 4.1. 
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(b) 

Figure 4.2: Storage (b) and loss (a) part of the Yong moduli of LaRC-SI 

 

 

Table 4.1: PZT. 7A properties 

 C11 C12 C13 C33 C44 e15 e31 e33 κ 11 κ 33 

PZT-7A     148 

 

   6.2    4.2 

 

   131 

 

   25.4 

 

 9.2 

 

 -2.1 

 

 9.5 

 

4.071×10
-9

 2.0798×10
-9

 

Glass 88.8 29.6             29.6             88.8 29.6 0 0 0 0.056×10
-9

 0.056×10
-9

 

 

Units: elastic constant GPa; dielectric constants C
2
/Nm

2
; piezoelectric constants C/m

2
. 

 

Table 4.2: Viscoelastic properties of LaRC-SI (power low model (T=231°c)) 

1

0( )D Gpa
 

1 1

1( )D Gpa hour 
 n 

0  

0.375 0.051606 0.4103 0.367 
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4.6.1.1 Frequency domain 

In this study, PZT-7A in considered as inclusions embedded in a viscoelastic matrix LaRC-SI. 

The resulting new composite will have a viscopiezoelectric behavior. The associated coefficients 

are frequency or time dependent and their behavior will be investigated. 

In figures 4.3 and 4.4, the storage and loss part of the elastic modulus c11 are presented 

respectively for a viscoelectroelastic composite with respect to the shape of inclusions and the 

frequency (1/ )hour . The volume fraction 40% of inclusions is considered. The inclusion shape 

effects on the storage and loss part of the elastic modulus c11 of the composite are presented. 

In figures 4.5 and 4.6, the storage and loss part of the piezoelectric modulus e31 are presented 

respectively for a viscoelectroelastic composite with respect to the shape of inclusions and the 

frequency. Although the piezoelectric inclusions are assumed to have independent time 

properties, it is shown that the effective piezoelectric modulus e31 varies with the frequency and 

particularly for fibrous inclusion. This modulus is strongly affected by the viscoelastic behavior 

of the matrix. Also it is shown that the storage and the loss part of e31 are strongly affected by the 

shape of inclusions and there is a frequency range in which the loss part can be optimized. 

The storage and loss part of the dielectric modulus κ33 are presented in figures 4.7 and 4.8 for a 

viscoelectroelastic composite with respect to the shape of inclusions and the frequency. The 

viscoelectroelastic frequency dependence effects are presented. 

In figures 4.9 and 4.10, storage and loss map of elastic and piezoelectric effective properties are 

presented for a fibrous viscoelastic composite with respect to the volume fraction of the 

inclusions and fixed value of frequency. It is seen that the loss part of the effective moduli is 

maximized at some fiber volume fraction regions. 
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Figure 4.3: Effective storage elastic modulus Real(c11) for a viscoelectroelastic composite, with 

various shapes of inclusions, consisting of piezoelectric inclusions (PZT-7A) embedded in a 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

Figure 4.4: Effective loss elastic modulus Image(c11) for a viscoelectroelastic composite, with 

various shapes of inclusions, consisting of piezoelectric inclusions (PZT-7A) embedded in 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  
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Figure 4.5: Effective storage piezoelectric modulus Real(e31) for a viscoelectroelastic composite, 

with various shapes of inclusions, consisting of piezoelectric inclusions (PZT-7A) embedded in 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

Figure 4.6: Effective loss piezoelectric modulus Image(e31) for a viscoelectroelastic composite, 

with various shapes of inclusions, consisting of piezoelectric inclusions (PZT-7A) embedded in 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  
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Figure 4.7: Effective storage dielectric modulus Real(κ 33) for a viscoelectroelastic composite, 

with various shaps of inclusions, consisting of piezoelectric inclusions (PZT-7A) embedded in 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

Figure 4.8: Effective loss dielectric modulus Image(κ 33) for a viscoelectroelastic composite, 

with various shapes of inclusions, consisting of piezoelectric inclusions (PZT-7A) embedded in 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  
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Figure 4.9: Storage and loss map of elastic moduli of a fibrous viscoelectroelastic composite 

with respect to the volume faction of the inclusion and with fixed value of 

frequency 0.05(1/ )hour  .  

 

Figure 4.10: Storage and loss map of piezoelectric moduli of a fibrous viscoelectroelastic 

composite with respect to the volume faction of the inclusion and with fixed value of 

frequency 0.05(1/ )hour  . 
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4.6.1.2 Time domain 

Based on the inverse Laplace transform the effective time dependent coefficients are obtained for 

various inclusion shapes and types. 

Effective relaxation time dependent moduli c11 and c22 are presented in figure 4.11 for a fibrous 

viscoelectroelastic composite consisting of piezoelectric inclusion (PZT-7A) embedded in a 

(60%) viscoelastic matrix (LaRC-SI). c11 and c22 of the composite are compared to those of the 

matrix. The effect of the composite on the effective relaxation moduli is shown. 

In figures 4.12, 4.13 and 4.14, effective piezoelectric moduli e15, e33 and e31 are predicted, for a 

fibrous viscoelectroelastic composite consisting of piezoelectric inclusions (PZT-7A) embedded 

a viscoelastic matrix (LaRC-SI). Various volume factions of inclusions are considered.  It is seen 

that e15 decreases with time but e33 and e31 increase with time. Also the effect of the variation of 

the volume fraction is shown on the effective properties. Even the piezoelectric moduli of 

inclusions are considered to be time independent it is shows that the effective piezoelectric 

moduli of the composites are time dependent. That means, these coefficients are affected by the 

time dependent behavior of the viscoelastic matrix. Also one can see from the figures that e15 and 

e31 are more affected by the viscoelastic behavior of the matrix than e33. e33 varies very slightly 

with time. 

In figure 4.15, three dimension numerical results are presented for a fibrous viscoelectroelastic 

composite. The evolution of e31 with respect to time and the shape of inclusion (c/a) is presented. 

It is seen that e31 varies significantly as the shape of the inclusion varies. Also it is seen that e31 

always increases with time for different shapes of inclusion. 
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Figure 4.11: Elastic relaxation moduli c11 and c12 of the matrix and effective elastic relaxation 

moduli c11 and c12 for a fibrous viscoelectroelastic composite consisting of piezoelectric 

inclusions (PZT-7A) embedded a viscoelastic matrix (LaRC-SI) with fixed volume fraction of 

the matrix fm=0.6.  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Effective piezoelectric modulus e15 for a fibrous viscoelectroelastic composite 

consisting of piezoelectric inclusions (PZT-7A) embedded in a viscoelastic matrix (LaRC-SI) 

with fixed volume fraction of the matrix fm=0.6.  
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Figure 4.13: Effective piezoelectric modulus e33 for a fibrous viscoelectroelastic composite 

consisting of piezoelectric inclusions (PZT-7A) embedded in a viscoelastic matrix (LaRC-SI) 

with fixed volume fraction of the matrix fm=0.6.  
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Figure 4.14: Effective piezoelectric modulus e31 for a fibrous viscoelectroelastic composite 

consisting of piezoelectric inclusions (PZT-7A) embedded in a viscoelastic matrix (LaRC-SI) 

with fixed volume fraction of the matrix fm=0.6.  
. 
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Figure 4.15: Effective piezoelectric modulus e31 for a viscoelectroelastic composite consisting of 

piezoelectric inclusions (PZT-7A) embedded a viscoelastic matrix (LaRC-SI) with fixed volume 

fraction of the matrix fm=0.6.  

4.6.2 Three-phase composites 

In this subsection, the effective properties of a three-phase composite consisting of glass 

inclusion surrounded by piezoelectric PZT-7A layer embedded in a LaRC-SI viscoelastic matrix  

are obtained in frequency and in time domain. The shape and coating thickness effects on the 

effective properties are investigated. 

4.6.2.1 Frequency domain 

The frequency dependence storage and loss part of the effective piezoelectric modulus e31 are 

presented in figures 4.16 and 4.17 for a fibrous viscoelectroelastic composites consisting of 

Glass inclusions surrounded by piezoelectric coating layer embedded in viscoelastic matrix for 

various thicknesses of the piezoelectric coating layer. It is seen that e31 is strongly affected by the 

frequency as well as by the thickness of the coating layer.  

In figures 4.18 and 4.19, the storage and loss part of e33 are presented for a fibrous 

viscoelectroelastic composites consisting of Glass inclusions surrounded by piezoelectric coating 

layer embedded in viscoelastic matrix with respect to frequencies and the thickness of the 

piezoelectric coating layer. It is seen that e33 is strongly affected by the thickness of the coating 

as well as by the viscoelastic behavior of the matrix. 
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In figures 4.20 and 4.21, storage and loss map of elastic and piezoelectric effective properties are 

presented for the three-phase composite with respect to the volume fraction of the inclusion and 

fixed value of frequency and thickness of the coating layer. It is seen that the loss part of the 

effective moduli is maximized at some fiber volume fraction regions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Effective piezoelectric modulus Real(e31)  for a fibrous viscoelectroelastic 

composites consisting of Glass inclusions surrounded by piezoelectric coating layer (PZT-7A) 

embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  
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Figure 4.17: Effective piezoelectric modulus Image(e31)  for a fibrous viscoelectroelastic 

composites consisting of Glass inclusions surrounded by piezoelectric coating layer (PZT-7A) 

embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Effective piezoelectric modulus Real(e33)  for a fibrous viscoelectroelastic 

composites consisting of Glass inclusions surrounded by piezoelectric coating layer (PZT-7A) 

embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  
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Figure 4.19: Effective piezoelectric modulus Image(e33)  for a fibrous viscoelectroelastic 

composites consisting of Glass inclusions surrounded by piezoelectric coating layer (PZT-7A) 

embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

 

Figure 4.20: Storage and loss map of elastic moduli, of a fibrous viscoelectroelastic composite 

consisting of Glass inclusions surrounded by piezoelectric coating layer (PZT-7A) embedded in 

a viscoelastic matrix (LaRC-SI),  with respect to the volume faction of reinforcements and with 

fixed value of frequency 0.05(1/ )hour  and fixed thickness of the coating 0.8  . 
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Figure 21: Storage and loss map of piezoelectric moduli, of a fibrous viscoelectroelastic 

composite consisting of Glass inclusions surrounded by piezoelectric coating layer (PZT-7A) 

embedded in a viscoelastic matrix (LaRC-SI),  with respect to the volume faction of 

reinforcements and with fixed value of frequency 0.05(1/ )hour  and fixed thickness of the 

coating 0.8  . 

4.6.2.2 Time domain 

The time dependent effective piezoelectric moduli e31 and e33 are presented in figures 4.22 and 

4.23 for a fibrous viscoelectroelastic composites consisting of Glass inclusions surrounded by 

piezoelectric coating layer embedded in a viscoelastic matrix with respect to time and thickness 

of the piezoelectric coating layer. It is shown that e31 and e33 are affected by the viscoelastic 

behavior of the matrix and increases with time. One can deduce from figure that e31 is more 

affected by the viscoelastic behavior of the matrix than e33. e33 seems to vary slightly with time.  

The evolution e31 is shown with respect to the shape of inclusion (c1/a1) and time for a fibrous 

viscoelectroelastic composite consisting of Glass inclusions surrounded by piezoelectric coating 

layer embedded in viscoelastic matrix is shown in figure 4.24 for fixed thickness of the coating 

layer and fixed volume fraction of the matrix. The inclusion shape effect on e31 with respect to 

time is shown. 
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Figure 4.22: Effective piezoelectric modulus e31 for a fibrous viscoelectroelastic composite 

consisting of Glass inclusions surrounded by piezoelectric layer (PZT-7A) embedded in a 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Effective piezoelectric modulus e33 for a fibrous viscoelectroelastic composite 

consisting of Glass inclusions surrounded by piezoelectric layer (PZT-7A) embedded in a 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6).  
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Figure 4.24: Effective piezoelectric modulus e31 of a fibrous viscoelectroelastic composite 

consisting of Glass inclusions surrounded by piezoelectric layer (PZT-7A) embedded in a 

viscoelastic matrix (LaRC-SI) with fixed volume fraction of the matrix (fm=0.6) and fixed 

thickenss of the coating layer ( 0.8  ).  

4.7 Conclusion 

In this work, a micromechanical modeling is developed to predict viscoelectroelastic effective 

properties of piezoelectric composites. Two kinds of composites are investigated. One is 

consisting of piezoelectric inclusions embedded in a viscoelastic matrix. The other one is 

consisting of Glass inclusions surrounded with a piezoelectric coating layer embedded in a 

viscoelastic matrix. The piezoelectric and Glass material properties are considered to be time 

independent. The modeling is based on the correspondence principle and the Mori-Tanka mean 

field approach. The effective properties are first derived in Carson frequency domain and then 

inverted numerically to time domain by using the inverse of Laplace transform. The numerical 

results are presented both in frequency and time domain. The effect of volume fraction and shape 

of inclusions as well as the thickness of the coating layer is shown on the effective properties. It 

is shown from the numerical results that even if the piezoelectric coefficients of the piezoelectric 

material are assumed to be time independent, the effective piezoelectric moduli of composites 

shows time dependence. This is explained by the fact that the viscoelastic behavior of the matrix 

affects the whole behavior of the composite.  
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4.8 Perspectives 

The mathematical methodology developed for viscoelectroelastic composites will be generalized in 

chapter 5 to investigate the behavior of materials with fourth functionality visco-magneto-electro-elastic. 

The aim will be to predict new materials with optimized active and damping properties. The modeling is 

going to be developed for two kinds of viscomagnetoelectroelastic composites: multi-phase and 

multi-coated viscomagnetoelectroelastic composites. Applying the Carson transform to the 

constitutive equation allows the extension of the classical Mori-Tanaka model to the Carson 

domain. The effective properties will first be derived in the Frequency domain and the converted 

numerically the time domain based on Laplace transform. The numerical results will be 

presented with respect to time, frequency, shape, volume fraction of reinforcements as well as to 

the coated thickness.  
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Chapter 5 

5. Modeling and prediction of viscomagnetoelectroelastic 

effective properties of heterogeneous materials 

 

 

Abstract 

In this paper, the effective properties of new active-passive multifunctional 

viscomagnetoelectroelastic composite materials are modeled and numerically predicted. The use 

of the correspondence principle of linear viscomagnetoelectroelasticity and the Carson transform 

allow the extension of the Mori-Tanaka micromechanical model to the Carson domain.  Based 

on the viscomagnetoelectroelastic integral equations and the interfacial operators the 

concentration tensors are derived for multi-phase and multi-coated viscomagnetoelectroelastic 

composites. The effective properties are derived in the Carson domain and then inverted 

numerically to the time domain using the inverse of the Laplace transform. The effective 

properties are obtained in both frequency and time domains. The obtained hybrid coupling 

coefficients can be used for active and passive properties. The multifunctional effect can be 

enhanced by a proper choice of the shape and volume fraction of reinforcements as well as by 

coating thickness. 
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 5.1 Introduction 

Smart composites have attracted the attention of many researchers due to their unique properties 

obtained by combining two different active materials. The magnetoelectric effect has attracted 

attention due its several application broadband magnetic field probes, electronic packaging, 

acoustic devices, hydrophones, medical ultrasonic imaging, sensors, and actuators [1-5]. 

Piezoelectric and piezomagnetic materials are usually brittle and they are susceptible to fracture. 

The addition of a polymer phase to the magnetoelectroelastic composites will give to the 

composite ductility and formability [6]. At elevated temperature these kinds of composites have 

a time dependent behavior due to the polymer phase that has a strong viscoelastic behavior at 

elevated temperature. The viscoelastic and viscoelectroelastic behaviors of composite materials 

have been investigated by many researchers.  

For viscoelastic composites, [7] examined the use of different micromechanics method to 

determine the effective composite properties when all the phases are viscoelastic. The effective 

properties of a three-phase viscoelastic composite predicted by [8] using the original Mori-

Tanaka micromechanical model and the extended one that takes into account the interphase 

regions between the matrix and fibers. The Self Consistent micromechanical model was used by 

[9]   to predict the effective properties of viscoelastic composites consisting of spherical coated 

inclusions. The effective properties of viscoelastic composites was investigated based on the 

micromechanical method of cells in [10]. The effect of the gradual interphase on the effective 

elastic and viscoelastic properties of particulate composites was investigated in [11]. A 

theoretical model was developed in [12] to investigate the nonlinear behavior of nonlinear 

viscoelastic composites. [13] investigated the effective properties of a carbon nanotube-

reinforced polymer composites by using the Mori-Tanaka micromechanical model combined 

with correspondence principle. 

For viscoelectroelastic composites, the effective properties of viscoelectroelastic composites 

were investigated in [14] based on the Mori-Tanaka mean field micromechanical approach 

coupled with the correspondence principle. Closed form expressions of the effective moduli were 

given for viscoelectroelastic composites consisting of parallel PZT cylinder of elliptic cross 

section embedded in a viscoelastic matrix. An analytical model was proposed in [15] to 

investigate viscoelastic properties of hybrid composites with shunted piezoelectric particles. [16] 

developed a micromechanical modeling and a finite element model to investigate the effective 
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time dependent properties of piezoelectric composites consisting of PZT fiber and a polymer 

matrix.  The viscopiezoelectric effective properties of piezoelectric heterogeneous materials are 

predicted in both time and frequency domains in [17] based on the correspondence principle 

combined with the Mori-Tanaka micromechanical model. 

The aim of this work is to generalize the methodological approach presented in [17] for the 

prediction of the effective viscomagnetoelectroelastic behavior of heterogeneous 

magnetoelectroelastic composites. The modeling is developed for two kinds of 

viscomagnetoelectroelastic composites: multi-phase and multi-coated viscomagnetoelectroelastic 

composites. Applying the Carson transform to the constitutive equation allows the extension of 

the classical Mori-Tanaka model to the Carson domain. The derivation of the concentration 

tensors of multi-phase viscomagnetoelectroelastic composites is based on the solution of the 

integral equation. For multi-coated viscomagnetoelectroelastic composites the multi-coated 

inclusion effect and the viscomagnetoelectroelastic interfacial operators are accounted for. Once 

the concentration tensors are derived, the homogenization process is used to express the effective 

behavior of composites. The obtained effective properties are in the Carson domain and the 

conversion to the time domain is done numerically based on the Laplace transform inversion. 

The numerical results are presented with respect to time, frequency, shape, volume fraction of 

reinforcements as well as to the coated thickness.  

5.2 Constitutive equations for linear viscomagnetoelectroelastic materials 

For linear magnetoelectroelastic materials, the magnetic, electric and elastic fields are coupled 

through the following constitutive equations: 

ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

c e E h H

D e E H

B h E H

 

  

  

  

  

  

                                                                                                       (5.1) 

where the elastic strain kl , electric fields lE  and magnetic fields lH are independent variables 

related to stresses ij , electric displacements iD and magnetic inductions iB . The tensors ijklc , 

lije , lijh , il , il and il are the  elastic, piezoelectric, piezomagnetic, magnetoelectric, dielectric 

and magnetic permeability constants  respectively. In the constitutive equations we use - lE  and -
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lH  rather than lE and lH  as they will permit the construction of a symmetric matrix of 

constitutive moduli. 

This work deals with the viscomagnetoelectroelastic behavior of polymer magnetoelectroelastic 

composites at fixed temperature. These kinds of composites show time dependent properties due 

to polymer phase that have a strong time-dependent behavior at elevated temperature. The time 

dependent constitutive model of magnetoelectroelastic homogeneous material is obtained by 

generalizing the Blotzmann principle for linear viscoelastic materials. One can write: 

0 0 0

0 0 0

0 0

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

t t t

kl l l
ij ijkl lij lij

t t t

kl l l
i ikl il il

t t

kl l
i ikl il

d dE dH
t c t d e t d h t d

d d d

d dE dH
D t e t d t d t d

d d d

d dE
B t h t d t d

d d

   
      

  

   
       

  

  
    

 

     

     

   

  

  


0

( )
( )

t

l
il

dH
t d

d


  


  

                                                           (5.2) 

Using the condensed notation [18, 21], one can write the time constitutive model in the following 

form 

0
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    (5.4) 

are the time dependent viscomagnetoelectroelastic relaxation tensor, Z and  are the generalized 

stress and strain respectively. 
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The convolution integral (5.3) gives a mathematical equation that relates the generalized stress 

  to the generalized strain Z  through the viscomagnetoelectroelastic relaxation function ( )E t .  

For frequency analysis, let us consider the following time harmonic generalized strain  

( ) ( ) i t

Kl KlZ t Z e                                                                                                                   (5.5) 

Substituting (5.5) into (5.3) and using the following changing variable u t   , one can find  

0

( ) ( ) ( )

t

i t i u

iJ iJKl Klt i e E u e duZ                                                                                             (5.6) 

This leads to the following harmonic generalized stress tensor 

( ) ( ) i t

iJ iJt e                                                                                                                    (5-7-a) 

0

( ) ( ) ( )

t

i u

iJ iJKl Kli E u e duZ                                                                                             (5.7-b)  

Viscomagnetoelectroelastic problem can be formally reduced to a magnetoelectroelastic one by 

using the Carson transform. The Carson transform of a time dependent function is given by: 

0

( ) ( )

t

tsf s s f t e dt                                                                                                                   (5.8) 

in which s is the Carson variable. 

By taking s i , equation (5.7) could be written as following 

( ) ( ) ( )iJ iJKl Kls sE s Z s                                                                                                             (5.9) 

where ( ) ( )s s    , 
0

( ) ( )

t

suE s s E u e du   and ( ) ( )Z s s Z   

Equation (5.9) shows the analogy between the linear viscomagnetoelectroelastic problem and 

linear magnetoelectroelastic problem. The role played by ( )E s in linear 

viscomagnetoelectroelasticity is the same role played by the magnetoelectroelastic moduli E in 

linear magnetoelectroelasticity. 

The equilibrium equations, in the absence of body force, electric charge and electric current 

densities, are given in the frequency domain by: 

, , ,( ) 0 ( ) 0 ( ) 0ij i i i i is D s B s                                                                           (5.10) 

Using the above condensed notations, the equilibrium equations are written as follow: 

, ( ) 0iJ i s                                                                                                                                 (5.11) 
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Based on the symmetry of the tensors , , , , ,c e h    the following equilibrium partial differential 

equation is obtained: 

, ,( ( ) ( )) 0iJKl K l iE s U s                                                                                                                (5.12) 

5.3 Multi-phase viscomagnetoelectroelastic composites 

This section deals with N-phase viscomagnetoelectroelastic composites. The Mori-Tanaka mean 

field concentration tensors are derived based on the solution of the viscomagnetoelectroelastic 

integral equation. 

5.3.1 Localization equation  

Considering a homogeneous fictitious media called “reference media” which has the 

viscomagnetoelectroelastic moduli
0 ( )iJMnE s . The expression of the local 

viscomagnetoelectroelastic moduli is given as follow: 

0( , ) ( ) ( , )iJMn iJMn iJMnE r s E s E r s                                                                                            (5.13) 

where “r’’ is the position vector in the considered media and E is the deviation part. The 

introduction of this expression into (5.12) leads to 

0

, , ,( ) ( , ) ( ( , ) ( , )) 0iJMn M ni iJMn M n iE s U r s E r s U r s                                                                      (5.14) 

The viscomagnetoelectroelastic Green tensor of the reference media is related to the reference 

medium by the following equation: 

0 ' '

,( ) ( , ) ( ) 0iJMn MK in JKE s G r r s r r                                                                                    (5.15) 

Using (5.14), (5.15) and after some mathematical manipulations, the same integral equation 

derived by [18] for linear magnetoelectroelastic composite materials, is obtained here in the 

Carson domain for viscomagnetoelectroelastic composite materials. 

0( , ) ( , ) ( ', )( ( ', ) ( ', )) 'Kl Kl iJKl iJMn Mn
V

Z r s Z r s r r s E r s Z r s dV                                              (5.16) 

where ,( ', ) ( ', )iJKl JK lir r s G r r s     is a condensed notation of nine tensors. 

To solve this integral equation, the same procedure used by [18] is flowed. An infinite medium is 

considered with viscomagnetoelectroelastic moduli 
0 ( )iJMnE s  which contains a single inclusion 

’’I” of volume 
IV  and viscomagnetoelectroelastic moduli ( )I

iJMnE s   assumed to be constant 
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inside the volume 
IV . Based on these assumptions, the derivation part in (5.16) is expressed as 

follow: 

( , ) ( ) ( )I I

iJMn iJMnE r s E s r                                                                                                     (5.17) 

in which 0( ) ( ) ( )I I

iJMn iJMn iJMnE s E s E s   and ( )I r is the characteristic function of 
IV . 

Using (5.17) and averaging (5.16) over the inclusion volume lead to the expression of the local 

generalized viscomagnetoelectroelastic strain in the inclusion. 

0 1
( ) ( ) ( ', ) ( ) ( ') ( ', ) '

I

I I I

Kl Kl iJKl iJMn MnI V V
Z s Z s r r s E s r Z r s dV dV

V
                                   (5.18) 

Replacing ( ', )MnZ r s  by its average value ( )I

KlZ s  in the considered inclusion leads to the 

following localization equation: 

0 01
( ) ( ) ( ( )) ( ) ( )I II I I

Kl Kl iJKl iJMn MnI
Z s Z s T E s E s Z s

V
                                                                          (5.19) 

where 0( ( )) ( ', ) '
I I

II

iJKl iJKl
V V

T E s r r s dV dV     represents the condensed notation of the nine 

viscomagnetoelectroelastic interaction tensors. These tensors are computed numerically [18] for 

various shapes of inclusions using the Gaussian quadrature integration for the considered 

inclusion shape. After the derivation of the localization equation (5.19) many micro mechanical 

models could be used to derive the concentration tensors. In this work the Mori-Tanaka 

micromechanical model is used to derive the viscomagnetoelectroelastic concentration tensor for 

multi-phase viscomagnetoelectroelastic composites. 

5.3.2 N-phase Mori-Tanaka model  

The main assumption of the Mori-Tanaka Mean field approach is the consideration that the 

infinite reference medium has the properties of the matrix and the generalized strain 0 ( )Z s  in the 

infinite medium equal the average generalized strain in the matrix ( )mZ s . So, to have the 

expression of the Mori-Tanaka concentration tensor, the generalized strain field 0 ( )Z s  and the 

viscomagnetoelectroelastic moduli 0 ( )E s  of the reference medium in equation (5.19) are 

replaced respectively by the generalized strain field ( )mZ s  and the viscomagnetoelectroelastic 

moduli ( )mE s  of the matrix. Using these assumptions one can write. 

( ) ( ) ( )I I m

Mn MnKl KlZ s A s Z s                                                                                                               (5.20) 
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in which 11
( ( ( )) ( ))I II m I

MnKl KlMn iJKl iJMnI
A I T E s E s

V

    and ( ) ( ) ( )I I m

iJMn iJMn iJMnE s E s E s      

The expression of the averaged generalized strain applied over the composite is given by 

2

( ) ( ) ( )
n

m I

m I

I

Z s f Z s f Z s


                                                                                                    (5.21) 

Using (5.20) and (5.21), one can derive the expression that relates the local generalized strain in 

the inclusion with the applied generalized strain over the composite.  

1

2

( ) ( )( ( )) ( )
N

I I I

Sj KlSj m KlMn I MnKl Mn

I

Z s A s f I f A s Z s



                                                                   (5.22) 

Form (5.22), one can write the expression of the Mori-Tanaka concentration tensor for multi-

phase viscomagnetoelectroelastic composites. 

1

2

( ) ( )( ( ))
N

MT I I

SjMn KlSj m KlMn I MnKl

I

A s A s f I f A s 



                                                                           (5.23) 

Using the homogenization processes, the effective properties for multi-phase 

viscomagnetoelectroelastic composites is given  

2

( ) ( ) ( ( ) ( )) ( )
N

eff m I I m MT

iJKl iJKl iJMn iJMn MnKl

I

E s E s f E s E s A s


                                                              (5.24) 

5.4 Multi-coated viscomagnetoelectroelastic composites 

This section deals with multi-coated viscomagnetoelectroelastic composites. The derivation of 

the localization equation goes through the solution of the multi-coated 

viscomagnetoelectroelastic integral equation and the use of the viscomagnetoelectroelastic 

interfacial operators. The Mori-Tanaka mean field approach is used to derive the concentration 

tensors. 

5.4.1 Localization equation  

Here, Equation (5.16) is extended for multi-coated viscomagnetoelectroelastic composites by 

expressing the deviation part as follow: 

 ( /0)

0

( ) ( ) ( ) ; 0,1,2,... (5.25)
n

k k

iJMn iJMn

k

E s E s r k n 


  

 

where  ( )k r  is the characteristic function and 
( /0) 0( ) ( ) ( )k k

iJMn iJMn iJMnE s E s E s  
 

Using (5.25) the following integral equation is obtained: 
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0 ( /0)

1

( , ) ( , ) ( ', ) ( ) ( ', ) '
k

n
k

Kl Kl iJKl iJMn Mn
V

k

Z r s Z r s r r s E s Z r s dV


                                                    (5.26) 

Considering IV  the total volume of the composite inclusion, which consists of an inclusion 

surrounded by (n-1) coatings and kf  is the volume fraction of the phase k. One can write: 

1

n

I k

k

V V


                                                                                                                                 (5.27) 

The average local generalized strain field can be written as: 

1

( , ) ( ) ( )
n

k k

Mn Mn

k

Z r s Z s r


                                                                                                      (5.28) 

Substituting (5.28) into (5.26) and averaging (5.26) over the volume of the composite inclusion, 

one can find the following localization equation: 

0 0 ( /0)

1

1
( ) ( ) ( ( )) ( ) ( )

n
I Ik k k

Kl Kl iJKl iJMn Mn

kI

Z s Z s T E s E s Z s
V 

                                                                      (5.29) 

where 
0( ( )) ( ', ) '

I k

Ik

iJKl iJKl

V V

T E s r r s dV dV    represents the condensed notation of the 

viscomagnetoelectroelastic interaction tensor. 

Using the fact that 
1

( ) ( )
n

I kk
Kl Kl

k I

V
Z s Z s

V

 leads to: 

0 ( /0) 0

1

1
( ( ( )) ) ( ) ( )

n
Ik k kk

KlMp iJKl iJMp Mp Kl

k I k

V
I T E s E Z s Z s

V V

                                                              (5.30) 

where KlMnI  is the shorthand notation of the fourth order and the second order identity tensors: 

     

1/ 2( ) ( , 1,2,3)

0 ( 1,2,3; 4)

0 ( 1,2,3; 5)

0 ( 4; 1,2,3)

0 ( 5; 1,2,3)

( 4; 4)

0 ( 4; 5 5; 4)

( 5; 5)

km lp kp lm

KlMp

lp

lp

K M

K M

K M

K M
I

K M

K M

K M orK M

K M

   





 


 
  


 
 

 
  


   
  

                          (5.31) 

Denoting by 
ka  the local concentration tensor relating the average generalized strain in each 

coating with the average generalized strain in the inclusion, one can put: 
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1( ) ( ) ( )k k

Mn MnKl KlZ s a s Z s   with  
1

MnKl MnKla I                                                                        (5.32)     

Using (5.32) and (5.30), the following relationship is obtained 

1

0 ( /0) 0

1

1
( ) ( ) ( ( ( ( )) ) ( )) ( )

n
k k Ik k kk
Mn MnPv KlPv iJKl iJRs RsPv Kl

k I k

f
Z s a s I T E s E a s Z s

f V





 
   

 
                           (5.33)                                                         

To derive the expression of the local concentration tensor 
ka  the viscomagnetoelectroelastic 

interfacial operators are introduced which give the generalized strain jump field across an 

interface between two different phases by the following equation [18, 19, 20]: 

1 1 1 1
( , ) ( , ) ( , )( ) ( , )( ) ( ) ( )k k k K k k k

Mn Mn iJMn iJRs iJRs Rs
Z r s Z r s P E N E E Z r ss s s   

                                                (5.34) 

Using (5.34) and following the same procedure done by Bakkali et al. (2013)[19, 20, 21] to 

derive the concentration tensors for multi-coated magnetoelectroelastic composites, the 

expression of the local localization tensor is obtained as follow: 

1 1
( / )

1 1

( ) ( ) ( ) / ( )
k k

k i k i

MnKl i MnRs RsKl i

i i

a s f W s a s f
 

 

     and  ( / ) ( / )( ) ( ( ( )) ( ))i k k k i k

MnRs MnRs pJMn pJRsW s I T E s E s    (5.35) 

5.4.2 Multi-coated Mori-Tanaka model  

To obtain the expression of the Mori-Tanaka mean field approach localization tensors, the 

generalized strain field 0 ( )Z s and the viscomagnetoelectroelastic moduli 0 ( )E s  of the reference 

medium  in (5.30) are replaced respectively by the generalized strain field ( )MZ s and the 

viscomagnetoelectroelastic ( )mE s   in the matrix. The following relationship is obtained: 

1

( / )

1

( ( ( ) ) )( ) ( ) ( ) ( ) ( )
n

MT k Ik M k m kk m

MnKl MnPv KlRs iJKl iJRs RsPv

k I k

f f
A a I T E E a

f V
s s s s s





  
 
 
 
                             (5.36) 

in which ( / ) ( ) ( ) ( )k m k m

iJRs iJRs iJRsE s E s E s     and 1m If f   is the volume fraction of the matrix. 

Similarly to the N-phase Mori-Tanaka model, the effective behavior of multi-coated 

viscomagnetoelectroelastic composites can be obtained by 

2

( ) ( ) ( ( ) ( )) ( )
N

eff m I I m MT

iJKl iJKl iJMn iJMn MnKl

I

E s E s f E s E s A s


                                                           (5.37) 

(5.24) and (5.37) give the effective behavior of N-phase and multi-coated 

viscomagnetoelectroelastic in Carson domain. The effective behavior could be inverted to the 

time domain based on the numerical inversion of Laplace transform. 
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( )1

( ) e
2

i eff
eff stiJKl
iJKl

i

E s
E t ds

i s






 

 

                                                                                                 (5.38) 

As the expression of ( )eff

kLSvE s  is of complicated form, it is difficult to evaluate the integral in 

(4.38) analytically. A numerical algorithm in this case is needed. In this paper, the inversion of 

the viscomagnetoelectroelastic moduli from the Carson domain to the physical domain (time 

domain) is done numerically by using the mutli-precision algorithm developed in [22].  

The effective constitutive viscomagnetoelectroelastic behavior of the composite in the time 

domain is then given by: 

0

( )
( ) ( )

t

eff Kl
iJ iJKl

dZ
t E t d

d


 


                                                                                                 (5.39) 

where  and Z are the generalized averaged viscomagnetoelectroelastic strain and stress over the 

composite. 

5.5 Numerical results 

5.5.1 Three-phase viscomagnetoelectroelastic composites 

This subsection deals with three-phase viscoelectroelastic composites consisting of viscoelastic 

matrix (LaRC-SI) in which piezoelectric (BaTiO3) and piezomagnetic inclusions (CoFe2O4) are 

embedded. The creep compliance of the matrix in time domain 
0 ( )M t  may be represented by the 

power low model [13] 

0 0 1( ) nM t D D t                                                                                                                        (5.40) 

where D0 is the initial elastic compliance, and D1 and n are experimentally determined 

parameters. For simplicity, the Poisson’s ratio of the matrix is assumed unchanged. The Carson 

transform of Eq. (40) gives 

1
0 0

!
( )

n

D n
M s D

s
                                                                                                                         (5.41) 

The Young modulus ( )E s  is taken as the inverse of 0 ( )M s . Variables values of 0D , 1D  and n at 

T= 213°c are given in table 4.1 [13]. The dielectric and magnetic permeability coefficients of 

(LaRC-SI) are considered to be constant (κ 11/ κ 0= κ 22/ κ 0= κ 33/ κ 0=2.8) 
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with
12

0 8.854187816 10    (C
2
/Nm

2
) and (µ11= µ22= µ33=.1×10

-6
). The properties of BaTiO3 

and CoFe2O4 (table 4.2) are assumed to be time independent and remain constant with variation 

of temperature.  

 Table 5. 1: Piezoelectric and piezomagnetic material properties 

 C11 C12 C13 C33 C44 e15 e31 e33 

BaTiO3 166 77 78 162 43 11.5 -4.4 18.6 

CoFe2O4 286 173 170 269.5 45.3 0 0 0 

 κ 11 κ 33 h15 h31 h33 µ11 µ33 

BaTiO3 11.2×10
-9

 12.6×10
-9

 0 0 0 5×10
-6

 10×10
-6

 

CoFe2O4 0.08×10
-9

 0.093×10
-9

 550 580.3 699.7 -590×10
-6

 157×10
-6

 

 

Units: Elastic constant GPa; dielectric constants C
2
/Nm

2
; magnetic constants Ns

2
/C

2
, 

piezoelectric constants C/m2; piezomagnetic constants N/Am; magnetoelectric coefficients 

Ns/VC. 

 

Table 5. 2: Viscoelastic properties of LaRC-SI 

1

0( )D Gpa  1 1

1( )D Gpa hour   n 
0  

0.375 0.051606 0.4103 0.367 

 

5.5.1.1 Frequency domain 

In figures 5.1, 5.2, 5.3 and 5.4 the storage and loss part of effective piezomagnetic moduli h33(ω) 

and h31(ω) are presented for a three-phase magnetoelectroelastic composite with respect to the 

shape of inclusions and frequency (1/ )hour . It is shown that even the piezoelectric and 

piezomagnetic phases are supposed time independent, the effective piezomagnetic moduli varies 

with frequency. This means that they are affected by the viscoelastic behavior of the matrix. The 

fiber inclusions have a strong affect for these coefficients than the laminated, spherical and 

ellipsoidal inclusions. Also it is seen that the piezomagnetic moduli are strongly affected by the 

shape of inclusions and their storage part have a maximum value at some frequencies. 

The storage and loss part of the effective magnetoelectric modulus α11(ω) are presented in 

figures 5.5 and 5.6  for a three-phase magnetoelectroelastic composite with respect to the shape 



 

157 
 

of inclusions and frequency (1/ )hour . Note that the magnetoelectric moduli are absent in all 

the phase and it is created by the interaction between the piezomagnetic and piezoelectric phases. 

It seen that α11(ω) is affected by the viscoelastic behavior of the matrix. Also, it is shown that the 

magnetoelectric moduli are strongly affected by the shape of the inclusion. α11 is prominent for 

laminated composites. 

 

 

 

 

 

 

 

 

  

Figure 5.1: Effective storage piezomagnetic modulus Real (h33(ω)) for a 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) and 

piezomagnetic inclusions (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed 

volume fractions: 60% of the matrix, 20% of the piezoelectric phase and 20% of the 

piezomagnetic phase.  
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Figure 5.2: Effective loss piezomagnetic modulus Image (h33(ω)) for a 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) and 

piezomagnetic inclusions (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed 

volume fractions: 60% of the matrix, 20% of the piezoelectric phase and 20% of the 

piezomagnetic phase.  

 

 

 

 

 

 

 

 

 

Figure 5.3: Effective storage piezomagnetic modulus Real (h31(ω)) for a 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) and 

piezomagnetic inclusions (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed 

volume fractions: 60% of the matrix, 20% of the piezoelectric phase and 20% of the 

piezomagnetic phase.  
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Figure 5.4: Effective loss piezomagnetic modulus Image (h31(ω)) for a 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) and 

piezomagnetic inclusions (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed 

volume fractions: 60% of the matrix, 20% of the piezoelectric phase and 20% of the 

piezomagnetic phase. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Effective storage magnetoelectric modulus Real (α11(ω)) for a 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) and 

piezomagnetic inclusions (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed 

volume fractions: 60% of the matrix, 20% of the piezoelectric phase and 20% of the 

piezomagnetic phase.  
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Figure 5.6: Effective loss magnetoelectric modulus Image (α11(ω)) for a 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) and 

piezomagnetic inclusions (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed 

volume fractions: 60% of the matrix, 20% of the piezoelectric phase and 20% of the 

piezomagnetic phase.  

 

5.5.1.2 Time domain  

In figures 5.7, 5.8 and 5.9 the effective moduli h31(t) and α33(t) and α11(t) are presented 

respectively for a three-phase fibrous viscomagnetoelectroelastic composite. The presented 

effective properties show a time dependent behavior. Also, it is shown that the piezomagnetic 

modulus h31 and the magnetoelectric moduli α33 and α11 decrease with time. The effect of phase 

constituent volume fractions on the effective properties is shown. 
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Figure 5.7: Effective piezomagnetic modulus h31(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) and piezomagnetic inclusions 

(CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with different volume fractions of phase 

constituents. 

 

 
 
 

 

 

 

 

 

 

 

Figure 5.8: Effective magnetoelectric modulus α33(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) and piezomagnetic inclusions 

(CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with different volume fractions of phase 

constituents. 
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Figure 5.9: Effective magnetoelectric modulus α11(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) and piezomagnetic inclusions 

(CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with different volume fractions of phase 

constituents. 

 

5.5.2 Coated viscomagnetoelectroelastic composites 

This subsection deals with coated viscomagnetoelectroelastic composites consisting with 

piezoelectric (BaTiO3) inclusion surrounded by piezomagnetic matrix (CoFe2O4) embedded in a 

viscoelastic matrix (LaRC-SI). The Topology of a representative volume element of the coated 

composite is described in figure 5.1.  

 

 

 

 

 

 

Figure 5.11: A representative volume element of a coated composite.  The dimension of the 

inclusion and the coating are (a1, b1, c1), (a2, b2, c2) respectively. 
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As shown in Figure 5.1, phase 1 is the piezoelectric inclusion, phase 2 is the piezomagnetic 

coating and phase three is the  viscoelastic matrix having homogeneous material properties 
1E , 

2E and 
3E  respectively. The reinforcements are perfectly aligned and have ellipsoidal shapes 

with the dimensions (a1, b1, c1) and (a2, b2, c2). The two ellipsoids are coaxial 

with 1 1 1

2 2 2

a b c

a b c
    . The variation of the volume fraction of the inclusion and the coating is 

given as function of the volume fraction of the matrix and the thickness of the piezomagnetic 

coating  as follow. 

3

1 3(1 )f f   , 3

2 3(1 )(1 )f f    .   

5.5.2.1 Frequency domain 

In figures 5.12 and 5.13, the storage and loss part of the effective piezomagnetic modulus h31(ω) 

is presented for a fibrous viscomagnetoelectroelastic composite consisting of piezoelectric 

inclusion surrounded by piezomagnetic coating embedded in a viscoelastic matrix with respect to 

the frequencies and the coating thickness. It is shown that h31(ω) is affected by the viscoelastic 

behavior of the matrix. Also, h31(ω) is strongly affected by the thickness of the coating. The loss 

part of h31(ω) can be maximized at certain frequency values.  

In figures 5.14, 5.15, 5.16 and 5.17, the storage and loss part of magnetoelectric moduli are 

presented a fibrous viscomagnetoelectroelastic composite consisting of piezoelectric inclusion 

surrounded by piezomagnetic coating embedded in a viscoelastic matrix with respect to the 

frequencies and the coating thickness. It is shown that the magnetoelectric moduli are strongly 

affected by the thickness of the coating. Also, it is shown that α11 and α33 are affected by the 

viscoelastic behavior of the matrix. The loss part of the magnetoelectric modulus α11 is 

maximized at certain frequency values. 
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Figure 5.12: Effective storage piezomagnetic modulus Real (h31(ω)) for a fibrous 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) surrounded 

by piezomagnetic coating layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with 

fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Effective loss piezomagnetic modulus Image (h31(ω)) for a fibrous 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) surrounded 

by piezomagnetic coating layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with 

fixed volume fraction of the matrix (fm=0.6).  
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Figure 5.14: Effective storage magnetoelectric modulus Real (α33(ω)) for a fibrous 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) surrounded 

by piezomagnetic coating layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with 

fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Effective loss magnetoelectric modulus Image (α33(ω)) for a fibrous 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) surrounded 

by piezomagnetic coating layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with 

fixed volume fraction of the matrix (fm=0.6).  

 

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

-4

-3

-2

-1

0
x 10

-10



 

 

=0.85

=0.9

=0.95

R
eal (α

3
3
 (N

s/V
C

)) 

 

Im
ag

e (α
3
3

 (N
s/V

C
)) 

 

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-10



 

 

=0.85

=0.9

=0.95



 

166 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Effective storage magnetoelectric modulus Real (α11(ω)) for a fibrous 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) surrounded 

by piezomagnetic coating layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with 

fixed volume fraction of the matrix (fm=0.6).  

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Effective loss magnetoelectric modulus Image (α11(ω)) for a fibrous 

viscomagnetoelectroelastic composite consisting of piezoelectric inclusions (BaTiO3) surrounded 

by piezomagnetic coating layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with 

fixed volume fraction of the matrix (fm=0.6).  
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5.5.2.2 Time domain  

In figures 5.18, 5.19, 5.20 and 5.21, the effective moduli h31(t), h33(t), α33(t) and α11(t) are 

presented for a fibrous viscomagnetoelectroelastic consisting of piezoelectric inclusions 

surrounded by piezomagnetic coating embedded in viscoelastic matrix with respect to time and 

the coating thickness.  It is shown that the effective moduli are affected by the viscoelastic 

behavior of the matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: Effective piezomagnetic modulus h31(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) surrounded by piezomagnetic coating 

layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the 

matrix (fm=0.6).  
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Figure 5.19: Effective piezomagnetic modulus h33(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) surrounded by piezomagnetic coating 

layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the 

matrix (fm=0.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Effective piezomagnetic modulus α33(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) surrounded by piezomagnetic coating 

layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the 

matrix (fm=0.6).  
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Figure 5.21: Effective piezomagnetic modulus α11(t) for a fibrous viscomagnetoelectroelastic 

composite consisting of piezoelectric inclusions (BaTiO3) surrounded by piezomagnetic coating 

layer (CoFe2O4) embedded in a viscoelastic matrix (LaRC-SI) with fixed volume fraction of the 

matrix (fm=0.6).  

5.6 Conclusion 

In this work, the effective properties of viscomagnetoelectroelastic composites are modeled and 

numerically investigated. The modeling is developed for multi-phase and multi-coated 

viscomagnetoelectroelastic composites.  The effective properties are first derived in the Carson 

domain and then inverted numerically to the time domain. For multi-phase composites a 

composite consisting with piezoelectric and piezomagnetic inclusion separated by a viscoelastic 

matrix is considered and for multi-coated composites a composite consisting with piezoelectric 

inclusions surrounded by piezomagnetic coatings embedded in viscoelastic matrix is considered. 

The effective properties of the considered composites are presented both in time and frequency 

domain with respect to the shape, volume fraction of reinforcement and thickness of the coating. 

It is shown, even the piezoelectric and piezomagnetic phase properties are assumed to be time 

independent, the effective piezomagnetic and magnetoelectric moduli are time dependent. The 

obtained active-passive multifunctional properties can be optimized with respect to the shape, 

type and the volume fraction of the reinforcements as well as with the coating concept. 

 

 

0 10 20 30 40 50 60
-4.655

-4.65

-4.645

-4.64

-4.635

-4.63

-4.625

-4.62

-4.615

-4.61

-4.605
x 10

-14

Time (hour)

 

 

=0.9

α
1

1
 (N

s/V
C

) 



 

170 
 

5.7 Perspectives 

Form chapter 2 to 5 the linear behavior of the magnetoelectroelastic, viscopiezoelectric and 

viscomagnetoelectroelastic composites was investigated. In chapter 6, the nonlinear behavior of 

shape memory alloy composites will be investigated.  The aim will be to extend the previous 

methodological approach to the case of the nonlinear behavior of shape memory alloy 

composites. The modeling will be based on the combination of the Mori-Tanaka model and the 

coating concept with the constitutive equations describing the transformation behavior of shape 

memory alloy materials. 
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Chapter 6 

6. Micromechanical modeling of SMA composite materials 

 

Abstract 

The aim of this work is the extension of the previous methodological approaches to 

multifunctional materials with a nonlinear behavior. The shape memory alloys have been 

selected. The Mori-Tanaka model and coating concept will be used for phase transformation 

modeling. 

 

6.1 Introduction 

SMA materials have been taking the attention of many researchers and engineers due to their 

application from aerospace and naval to surgical instrument and medical implants and fixtures. 

This kind of composites may have the desired properties and sometimes a unique overall 

response under a thermo-mechanical loading. Many researchers have studied the effective 

transformation behavior of composites made by the addition of shape memory alloy inclusions to 

an elastic or an elasto-plastic matrix. Some micro mechanical models have been used to 

investigate the thermo-mechanical behavior of shape memory alloy materials. 

A study on the numerical implementation of SMA constitutive thermomechanical response based 

on the return mapping algorithm is presented in [1]. [2] developed A micromechanical modeling 

to predict the effective behavior of composite with ductile matrix and shape memory alloy 

reinforcement. The thermoelectroelastic behavior of a four phase composite consisting of PZT, 

SMA, NPZT inclusions embedded in a polymer matrix is investigated in [3] based on the 

equivalence energy principle and the Mori-Tanaka micromechanical model. [4-5] predicted the 

transformation behavior of porous shape memory alloy materials based on micromechanical 

averaging techniques. A micromechanical modeling for polycrystalline shape memory alloys is 

developed in [6].  
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In this work the effective transformation behavior of SMA composite materials in which elastic 

inclusions are embedded in SMA matrix will be investigated.  Note that the SMA matrix in the 

beginning is fully austenitic but after loading the matrix undergoes a phase transformation which 

results in the apparition of the martensitic phase. After sufficient loading the matrix becomes 

fully martensitic. To take into account this phase transformation the Mori–Tanaka coated 

micromechanical model developed in [7-8] is used. The modeling of SMA composites is splitted 

into two parts: The micro mechanical modeling is used to calculate the effective properties of the 

SMA composite and then the constitutive model that describes the transformation behavior of the 

SMA matrix is presented. To describe the effective transformation behavior the two models are 

combined. 

6.2 Micromechanical modeling 

The micromechanical modeling developed in this section is for three-phase composites made by 

inclusions surrounded by a coating layer embedded in a matrix. The properties of the matrix, 

inclusion and the coating layer are different. The Mori-Tanaka micro mechanical model is used 

in this paper to investigate the effective moduli of the composites. Generally, micromechanics 

are based on two steps: (i) localization step, which gives the relationship between the 

microscopic filed and macroscopic field through the localization tensors and (ii) homogenization 

step which employs averaging techniques to estimates the effective properties of the composite. 

The derivation of the concentration tensors is based on the integral equation that takes into 

account the coating effect and on the interfacial operators.  

The topology of the coated inclusion embedded in a matrix is described below in figure 6.1 by an 

inclusion occupying the volume VI with elastic moduli IL  . Surrounding this elastic inclusion by 

a coating layer with a volume VC and whose property described by the tangent moduli CL . The 

whole coated inclusion is embedded in an infinite matrix whose property described by the 

tangent moduli ML . The interface between the inclusion- coating and coating-matrix are assumed 

to be perfect.  
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Figure 6.1: The topology of the coated inclusion.   and  represent the macroscopic applied 

field. 

 

6.2.1 Constitutive behavior 

The local constitutive behavior that represents the SMA composites is given as follow:    

( )tr

ij ijkl kl kll                                                                                                                        (6.1-a) 

or  

( )tr

ij ijkl kl kl klS T                                                                                                              (6.1-b) 

where  

ijkll  :  is the tangent moduli; ijklS : is the elastic moduli; kl : is the thermal expansion. 

e tr

kl kl kl     is the total rate strain  in which 
e

kl , 
tr

kl represents respectively the rate elastic strain 

and the rate transformation strain.  

For the elastic inclusions the tangent moduli ( )ijkll r becomes the elastic moduli and the rate 

transformation is equal to zero. 

The total strain rate ( )kl r  and the particle velocity iv  are related through the kinematic 

relations: 

, ,

1
( )

2
kl k l l kv v                                                                                                                         (6.2) 

The quasi static equilibrium equation with no body forces is written as follow:  

, 0ij j                                                                                                                                       (6.3) 

VI 

VC 

Matrix 

(L
M

) 

Coating 

(L
C
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Inclusion 

(L
I
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Form (6.1), (6.3) can be written as follow: 

,( ( )) 0tr

ijkl kl kl jl                                                                                                                       (6.4) 

The symmetry properties of 
ijkll leads to this expression 

, ,( ( ) 0tr

ijkl k l kl jl v                                                                                                                      (6.5) 

The transformation strain is given as function of state variables.  

6.2.2 Localization and homogenization 

Let us consider V as the representative volume element of the composite. The average strain rate 

E  and stress rate  are related to the local strain rate and stress rate by the average relations of 

Hill- Mandel (Hill, 1963).  

1
( )kl kl

V

E r dV
V

                                                                                                                   (6.6-a)  

1
( )kl kl

V

r dV
V

                                                
                                                                    (6.6-b) 

For composite materials the volume average of ( )kl r and ( )kl r  can be written as follow: 

1

n
i

kl i kl

i

E f 


                                                                                                                           (6.7-a) 

1

n
i

kl i kl

i

f


                                                                                                                            (6.7-b) 

where the subscript ‘i’ denotes the i-th phase and if is the corresponding volume fraction. 
i and 

i are uniform in each phase.  

Additionally, the overall constitutive behavior of the composite can be written as follow: 

( )eff tr

kl klij ij ijL E E                                                                                                                        (6.8) 

In which effL is the effective tangent moduli of the composite and 
t

ijE the macroscopic 

transformation strain rate that the composite undergoes. 

In order to make the transition between the local scale (phases) and the global scale (composite) 

the concentration tensors are introduced. The localization relationships are given as follow: 

p p p

kl klij ij klA E a                                                                                                                         (6.9-a) 

p p p

kl klij ij klB b                                                                                                                         (6.9-b) 
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where A and B  are the fourth order concentration tensors that take into account heterogeneity of 

the tangent moduli while a and b are the corresponding second order tensors to take into account 

the heterogeneity of the transformation strain rate inside the material. Substituting (6.9-a) and 

(6.9-b) respectively into (6.7-a) and (6.7-b) lead to  

1

n
p

klij klij

p

A I



     

and        
1

0
n

p

kl

p

a


                                                                                       (6.10-a) 

1

n
p

klij klij

p

B I



     

and        
1

0
n

p

kl

p

b


                                                                                       (6.10-b) 

where I is the fourth order identity tensor. 

On the other hand, by substituting (6.9-a) and (6.9-b) into (6.1) and then using (6.8), the 

concentration tensor B can be easily obtained as: 

p p P eff

ijmk ijkl klsv svmkB l A L                                                                                                                  (6.11-a) 

( )p p P tr p p p tr p

ij ijmn mnpq pq ijmn mn ijmn mnb l A E l a l                                                                                        (6.11-b) 

Substituting (6.1) into (6.7) and considering of equations (6.8) and (6.9), lead to the expression 

of the effective moduli as: 

1

n
eff p P

klsv p klij ijsv

p

l f l A


                                                                                                                  (6.12-a) 

1 1

1

( ) ( )
n

eff p P

klsv p klij ijsv

p

l f l B 



                                                                                                      (6.12-b) 

6.3 The effective transformation behavior of an SMA composite 

The SMA composites investigated in this work are composites in which elastic inclusions are 

embedded in SMA matrix. The matrix in the beginning is fully austenitic and after a loading is 

applied on the composite a new phase which is martensitic appears. After sufficient loading the 

matrix becomes fully martensitic. The complexity of this work comes from how to develop a 

micro mechanical modeling combined with SMA constitutive model that take into account the 

localization of the new phase that appears when the matrix undergoes transformation. To 

investigate the effective transformation behavior of the considered composite the cutting plane 

algorithm developed by Qidwai and Lagoudas (2000) is combined with the Mori-Tanaka 

micromechanical model that takes into account the coating effect around the inclusion. 
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6.3.1 SMA transformation behavior 

In this subsection, the transformation strain is given as function of state variables [1]. The 

evolution of the transformation strain is related to the martensitic volume fraction by the 

following relationship:  

ttr                                                                                                                                      (6.15) 

where   is the martensitic volume fraction and 
t

 is the direction tensor defined as 

3 '
0

2

0

t

t r

t r

H if

H if


















  
 


                                                                                                 (6.16) 

in which, H is the maximum uniaxial transformation, t r  is the transformation strain at the 

reversal of phase transformation, ' represents the deviatoric part of the stress tensor and 

1

3
   ' ( )tr I , 

3

2
  ' ,  

3

2
  t r t r                                                                  (6.17) 

Constraints on the evolution of the martensitic volume fraction are given by 

0, ( , , ) 0, 0

0, ( , , ) 0, 0

T

T

   

   

    

    
                                                                                                 (6.18) 

Where ( , , )T  is the transformation function. T is temperature. The inequalities (6.18) are 

called the transformation condition. For 0  , then 0  and elastic response is obtained. On 

the other hand, the forward-phase transformation (austenite to martensite) is characterized by 

0  and 0   while reverse-phase transformation is characterized by 0   and 0  . 

6.3.2 Numerical implementation of the constitutive transformation 

behavior  

The cutting plane algorithm for SMA constitutive models given in [8] is presented here.   

1. Let  k=0, (0)

1n n   , (0)

1

t t

n n   , (0)

1n nS S  , (0)

1n n    

2. Calculate the elastic prediction and evaluate the transformation condition 

 
( ) ( ) ( )

1 1 1 1 1 0 1( ( ) )k k k t k

n n n n n nS T T           
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( )

1 1 1, ,k k k

n n nT   
     

( )

1 0k

nIf  
 

Exit 

Else 

Forward or reverse transformation. 

3. Compute the increment of the martensitic volume fraction and transformation strain. 

( )
( ) 1

1 ( ) ( ) ( ) ( )

1 1 1 1: :

k
k n

n k k k k

n n n nS  

 


   


 

       

( ) ( ) ( )

1 1 1

t k k k

n n n      
 

4. Update martensitic volume fraction and transformation strain 

( 1) ( ) ( )

1 1 1

k k k

n n n  

    
 

( 1) ( ) ( )

1 1 1

t k t k t k

n n n  

    
 

        Let k=k+1 and go to 2  

6.3.3 Numerical implementation of the micromechanical transformation 

behavior  

In this subsection, the cutting plane algorithm is combined with the Mori-Tanaka model that 

takes into account the coating layer around the inclusion.  

5. Let  k=0, (0)

1n n   , (0)

1

t t

n n   , (0)

1n nS S  , (0)

1n n    

6. Calculate the elastic prediction and evaluate the transformation condition 
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( ) ( )

1 1 1 1

M M k M k

n n n nA E a     
    

( ) ( ) ( ) ( )

1 1 1 1 1 0 1( ( ) )M k M k M M k t k

n n n n n nS T T           
 

( ) ( )

1 1 1, ,k M k k

n n nT   
     

( )

1 0k

nIf  
 

Exit 

Else 

Forward or reverse transformation. 

7. Compute the increment of the martensitic volume fraction and transformation strain. 

( )
( ) 1

1 ( ) ( ) ( ) ( )

1 1 1 1: :

k
k n

n k M k k k

n n n nS  

 


   


 

       

( ) ( ) ( )

1 1 1

t k k k

n n n      
 

8. Update martensitic volume fraction and transformation strain 

( 1) ( ) ( )

1 1 1

k k k

n n n  

    
 

( 1) ( ) ( )

1 1 1

t k t k t k

n n n  

    
 

9. Update of the volume fractions of constituents  

1

1(1 ) k

c I nf f  

   the volume fraction of the coating layer 

1

1(1 )(1 )k

M I nf f  

    the volume fraction of the matrix. 

        Let k=k+1 and go to 2  

6.4 Numerical results 

Below the numerical results obtained by the Mori-Tanaka that takes the coating layer into 

account combined with the constitutive model that describes the transformation behavior of the 

matrix are presented. The obtained results are compared to the results obtained by using the two-

phase Mori-Tanaka model that does not take the coating layer into account and those obtained 

the finite element method. 
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          Figure 6.2: Effective stress strain of the considered shape memory alloy composite. 

 

It is shown that the three-phase Mori-Tanaka model that takes into account the coating layer 

around the inclusion captures the effective transformation behavior of the SMA composite better 

than the two phase Mori-Tanka model. The obtained results based on the developed model still 

need more mathematical and numerical developments for agreement with the ones obtained 

based on the finite element method. 

6.4 Conclusion 

In this work, the effective transformation behavior of shape memory alloy composites has been 

investigated. The considered composite is consisting of a shape memory alloys matrix reinforced 

by elastic inclusions. The transformation behavior of the composite is predicted based on the 

Mori-Tanaka model and the concept of the coated inclusions combined with the constitutive 

equations describing the transformation behavior of shape memory alloy materials. The obtained 

results are compared with those obtained based on the finite element method.  
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Chapter 7 

7. Summary and conclusion 

The use of smart composite materials such as piezoelectric, piezomagnetic, 

magnetoelectroelastic and shape memory alloy composites etc. continue to grow in many 

industrial fields: biomedical, automotive, aerospace, civil engineering and many other industries. 

Because of the potential of smart composite materials for novel application, it is of great interest 

to develop efficient models predicting accurately the effective behavior of these kinds of 

composites with respect to shape and types of reinforcements. These models will be helpful to 

design new multifunctional materials with optimized properties. Contributions have been made 

in this dissertation toward these goals.  

7.1 Summary of the results 

Micromechanical models were developed to predict the effective behavior of different kinds of 

smart composite materials such as: magnetoelectroelastic composites, piezoelectric composites, 

shape memory alloy composites. 

In chapter 2, the effective behavior of magnetoelectroelastic composites is investigated based on 

various micromechanical models. The modeling is developed for N-phase magnetoelectroelastic 

composites and the numerical results are presented for two-phase and three-phase 

magnetoelectroelastic composites. It is shown that Self Consistent micromechanical model 

underestimates the prediction of the effective moduli at high volume fraction of inclusions. Also, 

for magnetoelectroelastic composites with void inclusion the prediction of the Self Consistent 

model is limited for small volume fraction of inclusions. To overcome the underestimation and 

anomalies presented by the classical Self Consistent an N-phase Incremental Self Consistent is 

developed. This model has shown its efficiency for high volume fraction of inclusions and also 

for magnetoelectroelastic composites with void inclusions. An N-phase Mori-Tanaka and Dilute 

model have been developed to predict the effective properties for two-phase and three-phase 

magnetoelectroelastic composite with and without voids. 

Note that the effective properties of composite materials may be influenced by the presence of an 

interphase between the matrix and  inclusions. For efficient prediction of the effective properties 
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the type and the structure of the interphase have to be taken into account in the modeling. 

Chapter 3 investigates the effective properties of magnetoelectroelastic composites with multi-

coated and functionally graded interphases based on different micromechanical models: 

Incremental Self Consistent, Self Consistent, Mori-Tanaka and Dilute.  The modeling has been 

developed for the general case of anisotropic materials and ellipsoidal inclusions with 

nonhomothetic coatings. For the case of functionally graded interphase the formulation is given 

for the case of anisotropic materials and ellipsoidal inclusions with homothetic growing. The 

developed micromechanical modeling consists of two steps: the localization step which is based 

on the solution of the integral equation and on the interfacial operators, and the homogenization 

step which is based on the averaging techniques. Two kinds of magnetoelectroelastic composite 

materials are analyzed. The effective properties of magnetoelectroelastic composite consisting of 

glass inclusions surrounded by void and piezoelectric interphase layer embedded in 

piezomagnetic matrix are predicted and then compared to the effective properties of the same 

composite without void phase. Secondly, the effective properties of magnetoelectroelastic 

composite consisting of piezoelectric inclusions, piezomagnetic matrix where the properties of 

interphases vary continuously between the matrix and inclusions are predicted.  The effect of 

shape of reinforcements, thickness of the interphase and functionally graded interphase 

parameters are shown on the effective properties. 

The effective viscoelectroelastic behavior of piezoelectric composites is investigated in chapter 

4. The modeling is developed for two-phase piezoelectric composite consisting of piezoelectric 

inclusions embedded in a viscoelastic matrix and for multi-coated piezoelectric composite 

consisting of multi-coated piezoelectric inclusions embedded in a viscoelastic matrix. Based on 

the linear correspondence principle of piezoelectricity the Mori-Tanaka micromechanical model 

is extended to the Carson domain.  The effective properties are first derived in Carson domain 

and then inverted numerically to the time domain. For numerical results, two kinds of composites 

are investigated. One is consisting of piezoelectric inclusions embedded in a viscoelastic matrix. 

The other one is consisting of glass inclusions surrounded with a piezoelectric coating layer 

embedded in a viscoelastic matrix. The piezoelectric and glass material properties are considered 

to be time independent. The numerical results are presented both in frequency and time domain. 

The effects of volume fraction and shape of inclusions as well as of the thickness of the coating 

layer are shown on the effective properties. It is clearly shown  from the numerical results that 
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even if the piezoelectric coefficients of the piezoelectric material are assumed to be time 

independent, the effective piezoelectric moduli of composites show time dependence. This is 

explained by the fact that the viscoelastic behavior of the matrix affects the whole behavior of 

the composite.  

In chapter 5, the effective viscomagnetoelectroelastic behavior of magnetoelectroelastic 

composites is investigated. The modeling is developed for multi-phase magnetoelectroelastic 

composites consisting with piezoelectric and piezomagnetic inclusions embedded in a 

viscoelastic matrix and for multi-coated magnetoelectroelastic composites consisting of 

multicoated magnetoelectroelastic inclusions embedded in a viscoelastic matrix. Based on the 

correspondence principle of linear magnetoelectroelasticity, the Mori-Tanaka model is extended 

to the Carson domain. For multi-phase composites, a composite consisting of piezoelectric and 

piezomagnetic inclusions embedded in a viscoelastic matrix is considered. For multi-coated 

composites a composite consisting of piezoelectric inclusions surrounded by piezomagnetic 

coatings embedded in viscoelastic matrix is considered. The effective properties of the 

considered composites are presented with respect to time, frequency as well as shape and volume 

fraction of the reinforcement. It is shown that even the piezoelectric and piezomagnetic phase 

properties are assumed to be time independent, the effective piezomagnetic and magnetoelectric 

moduli of the composite are time dependent.  

From the work done in chapters 4 and 5 one can see that the time dependent behavior could be 

introduced to piezoelectric and magnetoelectroelastic composites by adding viscoelastic phases 

to the composite materials. This leads to new hybrid multifunctional materials that will be of 

great interest for active and passive controls as well as to sensing and actuating multifunctional 

materials. 

The nonlinear behavior of shape memory alloy composite materials is investigated in chapter 6. 

The effective properties of shape memory alloy composites consisting of elastic inclusions 

embedded in a shape memory alloy matrix. The transformation behavior of the matrix is taken 

into account by using the Mori-Tanaka coated micromechanical model. The martensitic phase 

that appears after sufficient loading on the composite is considered as a coating layer around the 

inclusion. This martensitic coating layer grows until the matrix which is initially austenitic 

disappears and takes its place. The transformation effective behavior of the considered composite 
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is predicted by combining the constitutive equations of shape memory alloy materials with the 

coated Mori-Tanaka model. The results obtained  by the coated Mori-Tanaka model is compared 

with the ones obtained by the Mori-Tanaka model that does not consider the martensitic phase as 

a coating layer around the inclusion. It is shown that the coated Mori-Tanaka model captures the 

effective behavior of the composite better than the simple Mori-Tanka model. However by 

comparing the obtained results with the ones obtained based on the finite element method it is 

seen that the results obtained by the coated Mori-Tanaka model still does not coincide with the 

ones obtained by the finite element method.  

7.2 Directions for future works 

 Multi-site approach 

The micromechanical models developed in this dissertation are called mono-site 

micromechanical models which do not take into account the interactions between inclusions but 

the reinforcement are supposed to be far from each other so that the interaction between them is 

neglected. An alternative micromechanical formulation cloud be developed based on the multi-

site formulation of the micromechanical models. The multi-site formulation allows taking into 

account the morphology and the topology of reinforcements.  

 Improved interface effects 

The developed multi-coated micromechanical models in this thesis are based on the solution of 

the integral equation and the on the interfacial operators. This developed micromechanical 

models give good results only for thin coatings. To overcome this limitation an alternative 

approach could be used based on the Green functions techniques and the concept of the interior 

and exterior-point Eshelby tensors for an ellipsoidal inclusion embedded in an infinite matrix.  

 Nonlinear effective properties 

In chapter 6, the Mori-Tanaka micromechanical model is combined with the constitutive 

behavior of shape memory alloys materials. It is shown that the obtained results based on the 

Mori-Tanaka model still do not coincide with the ones obtained based on the finite element 

method. It is known that the Incremental Self Consistent is more adapted for nonlinear behavior 

of composite materials. For future work the Incremental Self Consistent will be combined with 
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the constitutive behavior of shape memory alloy materials to predict the effective transformation 

behavior of the considered shape memory alloy composites. 

 Nonlinear time dependent behaviors 

In chapter 4 and 5, the linear viscoelastic behavior of the polymer phase is considered. For future 

work the nonlinear behavior of the viscoelastic polymer will be considered and micromechanical 

modelings will be developed to investigate the nonlinear time dependent behavior of various 

composites materials. 

 Nano composite effective properties 

In the work of this thesis, the micromechanical modelings are developed for composite materials 

where the reinforcements are considered to be at a micro level. In a future work we intend to 

investigate the effective properties of composite materials reinforced with nano inclusions. For 

nano composites the inclusions are separated in two regions: the core inclusions and the 

interphase layer that separates the core inclusions from the matrix. The interphase properties 

have to be determined at atomistic scale. Once the interphase properties are determined then the 

developed micromechanical models in this these cloud be used to investigate the effective 

properties of nano composites. 
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Appendix 3.A 

Consider an interface between two homogenous magnetoelectroelastic medium made of two 

different phases whose magnetoelectroelastic moduli are denoted by E
k+1

 and E
k
. In the context 

of continuum mechanics, the interface is assumed to be mathematical surface across whish 

material properties change discontinuously. With the perfect bounding assumption, the 

continuity of the generalized potential field MU , the interfacial tension, electric displacement and 

magnetic induction are expressed as: 

 

  0M M MU U U                                                                                                                 (3A.1) 

 

  ( ) 0iJ J iJ iJ JN N                                                                                                         (3A.2) 

where the normal unit vector is given by: 

( 1,2,3)

1 ( 4)

1 ( 5)

j

J

n J

N J

J




 
 

                                                                                                     (3A.3) 

in which nj is the outward unit normal of the interface. 

At an arbitrary point r(xi) of the interface, the compatibility condition  ,i i j jdu u dx , 

,

e e

j jd dx  and ,

m m

j jd dx  added to the continuity of the displacement, electric and magnetic 

potential field along the boundary impose the relations:  , 0i j ju dx    , , 0e

j jdx     and 

, 0m

j jdx    . Since 0j jn dx  , the displacement, electric and magnetic potential gradient are 

proportional to the unit normal ,i j i ju n    , ,

e e

j jn     and ,

m m

j jn      where i , e and 

m  are the proportionality vector and scalars.  

The generalized strain field jump is expressed as: 

  Mn M NZ N                                                                                                                         (3A.4) 

The magnitude of the jump M is defined by: 
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( 1,2,3)

( 4)

( 5)

m

e

M

m

M

M

M



 






  

 

                                                                                                    (3A.5) 

The continuity equation (3A.2) leads to 

1 1( ) 0k k k k

iJMn Mn iJMn Mn JE Z E Z N                                                                                                       (3A.6) 

Which is equivalent to    1 ( 1/ )k k k k

iJMn Mn J iJMn Mn JE Z N E Z N    where ( 1/ ) 1k k k k

iJMn iJMn iJMnE E E    . By 

introducing the Christoffel’s matrix *

iMK  (*=k+1 or k) defined by: 

* *

iM iJMn J NK E N N                                                                                                                     (3A.7) 

The magnitude of the jump M  is given by: 

1 11 ( 1/ ) ( / 1) 1k k k k k k k k

M iM iJRs Rs J iM iJRs Rs JK E Z N K E Z N
                                                                        (3A.8) 

The generalized strain field jump is evaluated in terms of the generalized strain field on both 

sides of the interface via a pair of equivalent formulae expressed as: 

1 1 1 ( / 1)

1 ( / 1) 1

( , )

( , )

k k k k k k k

Mn Mn iJMn iJRs Rs

k k k k k k k

Mn Mn iJMn iJRs Rs

Z Z P E N E Z

Z Z P E N E Z

   

  

  

  
                                                                                  (3A.9) 
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Appendix 3.B 

Consider an infinite media with magnetoelectroelastic moduli 
0

iJMnE  which contains a single 

composite inclusion of volume 1k  and magnetoelectroelastic moduli 1k

iJMnE 
 assumed to be 

constant inside the volume 1k .   

 

 

 

 

 

Figure 3.B.1: representative volume element of the infinite magnetoelectroelastic media 

containing a single composite inclusion. 

 

The generalized strain field is given, as follow: 

1 1

1

( /0)0( ) ( ') 'k k

k
Kl Kl iJKl iJMn MnZ r Z r r E Z dV 



 


                                                        (3.B.1) 

 where 1kZ  is the uniform generalized strain inside the composite inclusion,  is the modified 

magnetoelectroelastic Green’s tensor of the reference media of magnetoelectroelastic 

moduli
0

iJMnE .  

The generalized strain field ( )KlZ r by ( )kZ r  where r approaches the interface from the outside 

of the composite inclusion is defined by: 
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
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
                                                     (3.B.2) 

Similarly, the generalized strain field inside the composite inclusion is defined by: 

1 1

1
1

( /0)1 0 1( ) ( ') 'k k

k
k

k k
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Since 1

1

k

kr 

 ,  1

1

1( ') ' k

k

k

iJKl iJKlr r dV T 






   is uniform, so that: 
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Kl Kl Kl iJKl iJMn MnZ r Z Z T E E Z                                                               (3.B.4) 

Form (3.B.2) and (3.B.4) one obtains: 
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1k , 1kZ 
, 1kE   
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On the other hand, the generalized strain  ( )kZ r  and 1( )kZ r  can be linked using the 

magnetoelectroelastic interfacial operators see Eq. (3.36), so that: 

1 1( /0)1 0 0( ) ( ) ( , ) k kk k

Mn Mn iJMn iJRs RsZ r Z r P E N E Z                                                                    (3.B.6) 

From (3.B.5) and (3.B.6) one can write: 
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By integrating (3.B.7) over the volume kV , one obtains: 
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Using the fact that  1k k kV    , we can write: 
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Due to the uniformity of the tensors 
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We obtain: 
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By substituting (3.B.10) into (3.B.8), one gets:                           

1 10 0 0 0 0
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Finally, according to the definition of the tensor 1kT   the following relationship is obtained: 
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