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Résumé 

 
 

Les insecticides de la famille des néonicotinoïdes ont été découverts en 1980 et mis sur le 

marché depuis les années 1990. Depuis, leur utilisation s’est extrêmement répandue dans le 

monde, notamment en réponse à la résistance croissante des organismes ravageurs aux 

insecticides utilisés. Sous ces dénominations, on trouve les substances actives : thiaméthoxam 

et imidaclopride. Leur caractère systémique leur confère la possibilité d’être présent dans la 

totalité de la plante durant toute sa vie.  

La question des impacts de thiaméthoxam et imidaclopride sur la santé s’impose au regard de 

la contamination généralisée de notre environnement, des plantes, eaux et de l’imprégnation de 

l’alimentation. La présence de ces résidus pose donc un problème de sécurité alimentaire pour 

les consommateurs. Bien que la réglementation impose une teneur maximale en résidus sur la 

base d’études toxicologiques, les consommateurs deviennent aussi plus exigeants et souhaitent, 

qu’ils ont à leur disposition des produits de bonne qualité. 

L’évaluation du risque de contamination des organes végétaux consommés demande une bonne 

caractérisation des transferts de ces produits à l’intérieur de la plante. Cependant, les niveaux 

auxquels ces composés doivent être déterminés sont de plus en plus faibles. Il est donc devenu 

nécessaire de développer des méthodes analytiques capables de détecter et de quantifier ces 

insecticides à de faibles teneurs. 

Les résidus de néonicotinoïdes sont souvent analysés par chromatographie qui nécessite des 

traitements préalables. En revanche, l’analyse par voie électrochimique, s’avère bien adaptée 

aux propriétés physico-chimiques de thiamethoxam et d’imidaclopride. Ainsi, couplée à des 

capteurs électrochimiques, cette méthode s’est imposée comme un outil analytique de choix 

pour l’analyse de résidus de néonicotinoïdes étudiés. 

Ce travail de thèse avait comme objectif le développement des capteurs électrochimiques à base 

d’argent pour l’analyse de résidus de thiaméthoxam et d’imidaclopride. La nouvelle approche 

adoptée a permis de réduire considérablement la taille d’argent par des procédés variés allant 

de l’imprégnation par voie solide, l’électrodéposition ainsi que par voie colloïdale pour la 

synthèse des nanoparticules d’argent stabilisées par un gel de chitosane.  

Ces capteurs ont montré une efficacité considérable pour la détection et la quantification de 

résidus de thiaméthoxam et d’imidaclopride dans les eaux et les aliments. Ils ont été appréciés 

pour l’évaluation de l’écotoxicité de ces néonicotinoïdes dans les plantes biotests 

respectivement ; Zea mays et l’haricot Phaseolus vulgaris L. En effet, ces capteurs ont permis 

la détection et par conséquent, le suivi de transfert de ces insecticides à travers les différents 

tissues de plantes et d’expliquer, notamment, les anomalies observées sur les coupes 

histologiques, la mort cellulaire et l’inhibition de la germination et de la croissance des plantes 

d’une manière générale.  

 

 

Mots-clés : Néonicotinoïdes; thiaméthoxame; imidaclopride; écotoxicité; analyse; capteur 

électrochimique. 

 

 

 

 

 

 

 



 

 

Abstract 

 
 

Insecticides from the neonicotinoid family were discovered in 1980 and have been on the 

market since the 1990s. Since then, their use has become extremely widespread throughout the 

world, particularly in response to the growing resistance of pest organisms to the insecticides 

used. Under these names, we find the active substances: thiamethoxam and imidacloprid. Their 

systemic nature gives them the possibility of being present in the entire plant throughout its life. 

The question of the impacts of thiamethoxam and imidacloprid on health is essential given the 

widespread contamination of our environment, plants, water and the impregnation of food. 

Therefore, the presence of these residues poses a food safety problem for consumers. Although 

the regulations impose a maximum residue content based on toxicological studies, consumers 

are also becoming more demanding and wish that they have good quality products at their 

disposal. 

Assessing the risk of contamination of plant organs consumed requires a good characterization 

of the transfers of these products within the plant. However, the levels at which these 

compounds need to be determined are getting lower. It has therefore become necessary to 

develop analytical methods capable of detecting and quantifying these insecticides at low 

levels. 

Neonicotinoid residues are often analyzed by chromatography which requires prior treatment. 

On the other hand, electrochemical analysis proves to be well suited to the physicochemical 

properties of thiamethoxam and imidacloprid. Thus, coupled with electrochemical sensors, this 

method has established itself as an analytical tool of choice for the analysis of studied 

neonicotinoid residues. 

This thesis work aimed to develop silver-based electrochemical sensors for the analysis of 

thiamethoxam and imidacloprid residues. The new approach adopted has made it possible to 

considerably reduce the size of silver through various processes ranging from impregnation by 

the solid way, to electrodeposition as well as by the colloidal way for the synthesis of silver 

nanoparticles stabilized by a chitosan gel. 

These sensors have shown considerable efficiency for the detection and quantification of 

thiamethoxam and imidacloprid residues in water and food. They were appreciated for the 

evaluation of the ecotoxicity of these neonicotinoids in biotest plants respectively; Zea mays 

and the bean Phaseolus vulgaris L. Indeed, these sensors have allowed the detection and 

therefore the monitoring of the translocation of these insecticides through the different plant 

tissues and to explain, in particular, the anomalies observed in the histological sections, cell 

death and overall inhibition of plant germination and growth. 

 

 

 

Keywords: Neonicotinoids; thiamethoxam; imidacloprid; ecotoxicity; analysis; 

electrochemical sensors. 
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Pesticides, also called phytosanitary products, are chemical substances used for the growth, 

protection and conservation of plants. From the end of the Second World War, these products 

were widely used in the agricultural sector not only to increase production yields but also in 

order to protect plants throughout their development [1, 2]. Pesticides include insecticides, 

herbicides, fungicides, nematicides, plant growth regulators and others are envisioned to kill or 

control the growth of pests, such as insects, rodents, or certain kinds of animals that can harm 

crops, resulting in increased agricultural yield and quality. These compounds are commonly 

grouped on the basis of their pesticidal actions, or on the basis of their chemical nature or 

mode/period of action [3, 4]. Despite their well-known utility, particularly for agricultural 

output and pathogen control, pesticides are today regarded one of the most dangerous types of 

compounds that could cause health risks to human being and affects whole ecosystem [5, 6]. In 

particular, insecticides are regarded to be one of the major stressors influencing stream macro-

invertebrates, as well as basic ecosystem activities [7].  

Neonicotinoids are the most widely used class of insecticides globally for the management of 

insect pests in more than 120 countries [8]. They are used in a wide range of applications, 

including veterinary medicine, urban landscaping, and crop protection in various agricultural 

systems. They can be applied by multiple methods as foliar sprays to aboveground plants, as 

root drenches to the soil or as trunk injections to tree. Among these most used neonicotinoid 

insecticides in Morocco: thiamethoxam (TMX) and imidacloprid (IMD). These compounds are 

used in agriculture to control insect pests, such as Zea mays and bean Phaseolus vulgaris plants 

[9]. However, the relationship to food has evolved, food must be a source of good health for 

the body. Indeed, the food is more praised for its nutritional qualities than for its taste. In the 

same way, the individual is more concerned about the environment, we become sensitive to the 

problems of pollution, and these concerns are also found in political discourse. Thus, the 

consumer wonders about the TMX and IMD residues found in food and in the environment, 

and their impacts on human health. Indeed, the massive use of these compounds has raised 

concerns about their residues. These residues are potentially harmful to human health and can 

be found in different compartments of the environment [10, 11]. According to the Food and 

Agriculture Organization of the United Nations (FAO), neonicotinoids have been assessed as 

"moderately hazardous to humans [12]". Therefore, the residual persistence of TMX and IMD 

neonicotinoids, after any application, must be determined for the environment and public safety. 

In this context, and to properly assess the ecotoxicity, it appears of crucial interest to be able to 

detect and quantify the thiamethoxam and imidacloprid present in the environment in particular 
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water, plant, food and food industries. Therefore, eco-toxicological studies need reliable and 

easy-to-use analytical methods to respond to these major challenges in terms of public health. 

While many techniques such as chromatography or spectrometry are already available, they all 

require complex and expensive equipment and skilled operators [13–15]. In addition, analysis 

times are often extended by sample preparation phases which may include separation and 

purification steps. Electrochemistry then arises as an alternative of choice to offer less 

expensive measurement methods that combine simplicity, speed, sensitivity and specificity [16, 

17]. 

Chemically modified graphite electrodes appear precisely as instruments capable of meeting 

these requirements. In general, their use is simple and they can easily be used for real-time 

measurements. To this end, the modification of the electrodes attracts more and more the 

interest of researchers for the determination of thiamethoxam and imidacloprid because of their 

low cost, their sensitivity and their reliability of the measurements, as well as their ease of use 

[18–21]. 

The work of the thesis is part of this logic and aims to assess, on the one hand, the toxicity of 

thiamethoxam and imidacloprid insecticides by studying their effects on Zea mays and bean 

Phaseolus vulgaris plants respectively, and to on the other hand to develop new silver-based 

electrochemical sensors capable of detecting thiamethoxam and imidacloprid neonicotinoids 

bioaccumulated in Zea mays and bean Phaseolus vulgaris plants as well as which persist in the 

environment, in particular in water and food. It should be noted that metallic silver has 

interesting catalytic properties allowing them ease of reduction and high sensitivity in terms of 

the reduction of thiamethoxam and imidacloprid with a relatively cheaper cost than that of other 

noble materials. 

Thus, this present work proposes a reflection built from elements of the scientific bibliography 

on pesticides, and their consequences on human health: initially, we will question ourselves on 

the definition of thiamethoxam and imidacloprid neonicotinoids, their modes of action, and we 

will see that, although these products are extremely widespread in our environment, toxicity 

and ecotoxicity studies, supposed to guarantee the health safety of the user and the consumer 

by developing of new electrochemical sensors. 

This thesis manuscript is structured around the following five chapters: 

First, we will give an overview of the impact of neonicotinoid pesticides on the different 

environmental compartments. Additionally, we will attempt to illustrate human exposure to 

neonicotinoids throughout biomonitoring and health effects. Then the focus is on the 

electrochemical detection methods of neonicotinoid pesticides which are used recently as well 
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as the strategies used for the remediation of these chemicals into less toxic or neutral 

compounds. 

The second chapter describes the electrocatalytic effect of silver electrode for the reduction of 

thiamethoxam, as well as presents a procedure for the electrochemical determination of 

thiamethoxam in seedlings of Zea mays, after its exposure in the laboratory conditions. This 

chapter also focuses on the evaluation of the insecticidal effect of thiamethoxam on the seedling 

growth and its bioaccumulation in seeds and seedlings of Zea mays using square wave 

voltammetry. 

The third chapter is dedicated to the impregnation of silver particles on the carbon surface by 

two methods in particular the solid way and the electrodeposition. The morphology, distribution 

and size of the synthesized materials were characterized by X-ray diffraction (XRD) and 

scanning electron microscopy (SEM). In addition, the catalytic efficiency of the materials 

obtained for the reduction of thiamethoxam was evaluated using cyclic voltammetry (CV), 

square wave voltammetry (SWV), Tafel curves and by chronoamperometry. 

The fourth chapter deals with the synthesis and characterization of silver nanoparticles 

stabilized by chitosan. The synthesized composite nanomaterials were used to facilitate and 

amplify the signal of graphite electrode in the detection of thiamethoxam. These sensors were 

used successively to evaluate the bioaccumulation of thiamethoxam in various plant in 

particular in extracts tissues of Zea mays and bean Phaseolus vulgaris.  

The fifth chapter discusses the toxicological effect of IMD on bean plants (Phaseolus vulgaris 

L) when used at high concentrations. To this end, bean plants were exposed to increasing 

concentrations of IMD and subsequently the different plant tissues were subjected to various 

analyses. To do this, the detection of imidacloprid was carried out by square voltammetry. The 

effect of imidacloprid was also evaluated on germination, seedlings and photosynthetic 

pigments of beans. 
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I. Introduction  

Neonicotinoids represent a relatively new class of insecticides that have quickly become the 

most widely used class [1] in the world for a variety of urban and agricultural uses [2, 3]. 

Industry crop scientists consider the discovery of neonicotinoid insecticides a milestone in 

agrochemical research that resulted in the most rapidly-growing class of insecticides since the 

commercialization of pyrethroids [4]. The word neonicotinoid means “new nicotine-like 

insecticide” [5, 6]. Historically, neonicotinoid insecticides were viewed as ideal replacements 

for some insecticides (e.g., organophosphates and carbamates) due in part to both their 

perceived low risk to the environment and to non-target organisms. Within the agricultural 

sector, neonicotinoids are preferred over other insecticides for several reasons including their: 

(1) flexibility of application (e.g., spray, injections, or seed treatments) [7–12]; (2) broad-

spectrum insect toxicity; (3) perceived low acute toxicity to non-target aquatic and terrestrial 

organisms [13], and (4) high potency for insects [2, 7, 12, 14–17]. The neonicotinoids have 

significant toxicity to insects but low toxicity to mammals, birds and other higher organisms. 

However, more recent in vitro, in vivo, and ecological field studies indicate that the 

neonicotinoid insecticides can have adverse effects on vertebrate and invertebrate species, as 

well as mammals [18]. The potential toxic effects of neonicotinoids include mainly 

reproductive toxicology, neurotoxicity, hepatotoxicity/ hepatocarcinogenicity, 

immunotoxicity, genetic toxicity [19]. Studies on rats and mice show also that neonicotinoid 

pesticides may pose potential reproductive health risks to humans, especially to children and 

professional populations, as well as may adversely affect the developing brain [19–21]. 

Emerging contaminants, including neonicotinoid insecticides, are by definition currently not 

included in (inter)national routine monitoring programs, thus relevant data/parameters about 

their fate, behavior and ecotoxicological effects are often scarce and not well understood. 

However, these data are necessary to undertake further legal actions to assess associated risk to 

protect terrestrial and aquatic ecosystems and human health. Therefore, the requirement to 

systematically discover the possible health effects of these compounds so as to minimize their 

toxicological side effects has risen sharply. Many detection methods have been engaged in order 

to identify even the trace amounts of these pesticides so as to govern their exposure to peoples. 

To make neonicotinoid insecticides in environment manageable we need to determine the 

associated risk to humans and ecosystems, which in turn requires to critically review the current 

state of the art about processes, parameters, and phenomena influencing their fate in soil-water 

systems in order to reveal existing knowledge gaps. The purpose of this chapter is to give an 

insight into the impact of neonicotinoid pesticides on the environment. Also, attempts to 
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illustrate human exposure to neonicotinoids throughout biomonitoring and health effects. As 

well as, their detection electrochemical methods which are being used recently along with the 

strategies that are used for remediation of these chemicals into less toxic or neutral compounds. 

 

II. Use, efficacy and economic evaluation of neonicotinoids  

Neonicotinoid insecticides are one of the most widely used groups of pesticide to control 

agricultural and domestic insects (e.g., plant hoppers, thrips, some micro-lepidoptera, and other 

coleopteran pests) [22]. They are currently registered in over 120 countries as insecticides 

marketed, representing 25 % of the global insecticide sales in 2014 with a global market value 

of $3.7 billion US dollars (USD) [1, 23]. They are employed for a variety of agricultural and 

non-agricultural applications such as agent for crop protection, urban landscaping and 

veterinary medicine [24]. Several application methods can be applied to use these chemicals 

including soil drench, seed treatments, foliar application by aerial or ground spray equipment, 

chemigation and truck injection trees [25]. They are used in commercial products ranging from 

trade formulation for agricultural products such as cucurbit vegetables, grapes, leafy vegetables, 

fruiting vegetables and nut trees to oral formulation for dog and cats [26]. Furthermore, the 

majority of NEOs are most commonly utilised as seed/soil treatment in agricultural system, 

comprising 80% of the seed treatment global market in 2008 [1]. Clothianidin or thiamethoxam 

coated seeds are applied to approximately 80% of corn (maize) seeds in north America, making 

it the largest market for seed treatment. This market is anticipated to reach $ 10 billion USD 

per year by 2025, with use in China growing by 14%. In the United States, the usage of treated 

seeds has increased threefold in the last decade, with a particularly significant increase in use 

from 2003 to 2011 as a pre-emptive insecticide used as a seed coating for row crops including 

soybeans, corn (maize), wheat, and cotton [27]. 

Though the use of pesticides has offered substantial economic benefits by enhancing the 

production and yield of food and fibbers and the prevention of vector-borne diseases. But their 

use has adversely affected the health of human populations and the environment.  

 

III. Impact of neonicotinoids on soil  

The widespread application of neonicotinoid insecticides led to the occurrence of its residues 

in soil, water, and various environmental samples (atmospheric dust, vegetable and living plants 

and organisms [28–30]). The long-term persistence of NEOs in both soil and water poses 

serious threat not only to the environment but also to human health. A number of research 

studies have shown that NEOs persist in soils for several years after planting treated seeds and 
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can accumulate in the soil after repeated applications. Only 2 to 20% of the active ingredient in 

NEOs applied as seed treatments or granules is absorbed by the crop [31]. Between 80 and 98% 

of the active component is left in the environment, and able to accumulate in soil, be lost as 

dust during planting, or be transferred to surface and/or groundwater (Figure 1) [32, 33]. In soil, 

these drugs may affect the microbial activities  and have impact on microbial population [34]. 

Soil biological properties are involved in organic matter decomposition, nutrient cycling and 

pesticides degradation. Therefore, can sensitively reflect the change of the soil quality, also are 

crucial to ecosystem functioning. On the other hand, soil biological properties are used as 

indicators of its quality than physical chemical properties, as they often show a faster response 

to an environmental impact. In recent years, the soil microbial biomass and enzyme activities 

are frequently recommended for evaluating the effect of pesticides on soil environment and 

characterizing the change and dynamics of its quality [35]. 

 

Figure 1: Fate and impacts of neonicotinoids on soil and aquatic life. 

 

IV. Impact of neonicotinoids on water  

NEOs are highly water-soluble chemicals that have been found in surface water (rivers, 

streams, irrigation channels and puddled water) and groundwater around the world [36, 37]. In 

addition, they also have long half-lives in soil and water, where they are resistant to hydrolysis 

at neutral or acidic pH and under anaerobic conditions; although some of them are subject to 

rapid photodegradation under favourable conditions. For example, imidacloprid insecticide is 

highly soluble in water with a solubility of up 610 mg/L and can persist in natural water for 
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more than one year in temperature between 18 °C and 25 °C [38, 39], potentially causing 

downstream effects. In fact, recent studies indicate that have negative impacts on aquatic 

arthropods [40]. 

Considering the frequency of detection of NEOs in aquatic systems, many recent findings have 

examined at the possible lethal and sublethal effects of NEOs on aquatic species [12, 41] (Figure 

1). Aquatic insects are typically more responsive on NEOs than other aquatic species such as 

fish, crustaceans, molluscs etc., which is reasonable considering their mode of action [12]. 

NEOs have also been demonstrated to decrease feeding rates, mobility, fecundity, 

developmental rates, and growth in aquatic insects, in addition to their effects on mortality [42–

44]. 

The most frequently assessed toxicity endpoint for NEOs was mortality, being reported in 

roughly 70% of studies, generally as mean lethal concentration (LC50). Imidacloprid 

formulation (Admire®) had 48-h LC50 values between 103 and 45 μg/L in Mosquito species 

Aedes aegypti and Aedes taeniorhynchus [45]. Same Mayfly (Epeorus longimanus) larvae were 

acutely sensitive to Admire® as well. The reported 24-h LC50s were 2.1μg/L for both early 

instar and late instar larvae [46, 47]. Similarly, mayfly, Cloeon dipterum and Caenis horaria 

were susceptible to long exposure of imidacloprid insecticide, with reported 28-d LC50s of 0.2 

and 0.3μg/L, respectively [48]. In other hand, sublethal indicators are considered to be more 

sensitive endpoints for low toxicant concentrations, as expected in field conditions. Exposure 

to sublethal NEOs concentrations triggers a stress response in susceptible organisms, resulting 

in sublethal effects including immobilization, altered brain function and behavior in aquatic 

insects. Another important finding was that immobilization of Cloeon. dipterum and Caenis. 

horaria occurred at a concentration of 0.1g/L in both species during the course of a 28-day 

experiment [48], demonstrating a very high sensitivity to chronic exposure to imidacloprid. 

Other sublethal effects observed in chironomids such as immobilization, change in burrowing 

behavior and growth inhibition under imidacloprid application at concentration between 0.3 

and 12.9 μg/L [49], indicating that chironomids are susceptible to imidacloprid insecticide. 

Following exposure to 4 μg/L of technical imidacloprid for 48-h, Overmayer et al. reported 

significant changes in behavior and muscle control of blackfly larvae simulum vittatum [50]. In 

addition to aquatic insect, NEOs insecticides affect negatively crustaceans and molluscs. Acute 

toxicity of NEOs to the most sensitive crustaceans is typically in low μg/L range.  

In aquatic ecosystem, fish are generally less sensitive to NEOs insecticides than others aquatic 

species such as insects or crustaceans, as indicated by the geomean LC50 value of 60 μg/L 

published by sanchez-Bayo and goka [51, 52]. Recently, Vignet, C. et al. investigated and 
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compared the effects of imidacloprid on development and behavior of two fish model species: 

Zebrafish (danio rerio) and Japanese medaka (Oryzias latipes) [53]. In both species, 

imidacloprid showed sublethal effects, but the effects were much stronger in medaka with 

deformities and lesions. For example, in flounder (Paralichthys olivaceus) gill cells, the most 

sensitive effects endpoints were found, with cytotoxicity IC50s (median inhibitory doses) 

ranging from 38.5 to 41.9g/L of technical imidacloprid [54]. Not only mentioned aquatic 

species but also other organisms such as algae/macrophytes and amphibians have been 

evaluated for sensitivity towards NEOs. For instance, Amphibian had an estimated LC50 for 

NEOs of 162.8 μg/L [52]. For algae, the species Desmodesmus subspicatus was the most often 

studied. For macrophyte species, Lemna gibba and Selenastrum carpricornutum exhibited high 

levels of tolerance clothianidin at concentration around 100 μg/L [55]. Based on the available 

data, it is difficult to make a complete assessment of the risk posed by NEOs to aquatic 

organisms. for example, the half-life of NEOs is generally in the range of hours to days, so 

exposure would be acute rather than chronic. 

 

V. Impact of neonicotinoids on plants. 

The NEOs insecticides are commonly used in seed treatment (such as seed dressing or film 

coating) and soil treatment (via broadcast application, mechanical integration, soil drench, or 

soil injection) and are also directly applied to plant foliage for crop protection. Therefore, can 

lead to demolition of micro-fauna and flora of soil and water [56, 57]. These insecticides 

influence or kill plants in variety of mechanism, such as the inhibition of biological processes 

(photosynthesis, mitosis, cell division, enzyme function, root growth, or leaf formation); 

interfering with the production of pigments, proteins or DNA; destroying cell membranes or 

promoting uncontrolled growth (Figure 2) [58]. The abiotic stress was studied trough 

physiological effect of thiamethoxam on zea mays and found that Zea mays was sensitive to 

this insecticide and that germination and growth inhibition were dose dependent [59]. Also, it 

was found that different classes of insecticide (including thiamethoxam, lambda-cyhalothrin 

cum thiamethoxam, fenitrothion and etofenprox) influence on soybean physiologic and 

metabolic actions such as germination, early growth, and antioxidant activities, implying that 

yield and nutrient content also may be altered [60]. 
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Figure 2: Plants responses to neonicotinoids impacts. 

 

Plant root exudates consist of low molecular weight organic metabolites (i. e. organic acids, 

sugars, amino acids, lipids, nucleotides and secondary metabolites) and high molecular weight 

substances especially mucilages and proteins. The chemical components in root exudates, as 

well as their abundances, vary depending on plant species, growth phases, and cultivation 

conditions [61]. Plants could regulate the composition of root exudates in exposure to different 

biotic and abiotic stressors in order to mitigate the detrimental impacts of severe environmental 

conditions [62]. Li, X. et al. studied the effect of dinotefuran insecticide on root exudates of 

Brassica rapa var. chinensis by analysis of the metabolic profiling of plant root exudates, 

physiological activities of plant tissues and uptake behaviours of dinotefuran in plants [63]. The 

results show that dinotefuran is readily absorbed by plant roots and then accumulates in 

vegetable shoots, inducing oxidative stress in plant tissues even at low doses. Recently, 

insecticide-induced oxidative stress has attracted the attention of researchers. Reactive oxygen 

species (ROS) were produced during the metabolism of insecticides such as malathion and 
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imidacloprid, causing oxidative damage [64]. Furthermore, ROS are very susceptible molecules 

that alter protein, lipid, and nucleic acid degradation [65]. In recent time, Shahid, M. et al. 

evaluated the toxicological potential of imidacloprid and thiamethoxam on chickpea as test crop 

[66]. The results indicate that the tested insecticides retard the biological, physiological and 

enzymatic activities and induced the cellular death by oxidative stress in chickpea. Another 

important finding, used RNA-Seq to explore how these two neonicotinoids (imidacloprid and 

thiamethoxam) modify gene expression in soybean thereby lowering plant resistance [67]. As 

a result, the both insecticides treatment downregulated genes involved in plant-pathogen 

interaction, phytohormone pathways, phenylpropanoid pathway, and cell wall biosynthesis. 

The imidacloprid effects on the anabolism and release of C6-green leaf volatiles (GLV) in tea 

plants were investigated [68]. It’s can reduce GLV emission by repressing a crucial GLVs 

synthesis-related gene, influencing plant indirect defence. 

Given their systemic and persistence properties, NEOs insecticides can be taken up by roots 

and then translocated to almost every tissue of the plants, and thus, could not be removed from 

fruits or vegetables by peeling or washing. 

 

VI. Human exposure levels and health effects of neonicotinoids  

1) Human exposure  

Despite widespread use of NEOs, there have been relatively few published studies addressing 

the risks of human exposure. Diet or consumption of contaminated agricultural products is 

believed to be a potential source of human exposure to NEOs. Since NEOs absorbed by plant, 

they are difficult to remove from food, and have been determined in honey, fruits, vegetables, 

cereals, grape berries, and tea leaves [69–73].  

In China, a total of 528 composite dietary samples were analysed to study the dietary exposure 

of the Chinese adult populations to ten NEOs [74]. Imidacloprid and acetamiprid were the most 

frequently detected NEOs in the majority of the analysed samples (70%). As well as, vegetables 

were the primary contributor of dietary exposure, although exposure via cereals, beverages and 

water must be addressed [74]. NEOs residues were found in foods that are commonly consumed 

in cafeterias in the United States (USCC) and by group of Chinese elementary school children 

living in Hangzhou, China (HZC) [72]. The data indicate that NEOs are ubiquitous in the food 

samples tested for the USCC and HZC experiments. About 79 and 65 % of fruits and vegetables, 

respectively, contained more than one neonicotinoid, while approximately 62 and 38 % of fruits 

and vegetables, respectively, contained more than three NEOs. Thiamethoxam was the most 

commonly identified NEO in fruits and vegetables taken from these two congressional 
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cafeterias, with 53% detection, followed by imidacloprid with 52% detection [72]. In the same 

way, at least one NEO was detected in every fruit and vegetable samples (excluding nectarines 

and tomatoes) and 90% of honey samples, according to Chen et al. [75]. More than one NEO 

was determined in 72 % of fruits, 45% of vegetables and 50% of honey samples, with individual 

NEO concentration ranging from 0.1 to 100 ng/g. Recently in China, a total of 693 honey 

samples from both Apis melifera and Apis cerana, were analysed for five NEOs, including 

Thiamethoxam imidacloprid, acetamiprid, clothianidin and thiacloprid [76]. The 40.8% of the 

samples contained at least one of the five NEOs tested, and the average neonicotinoid 

concentrations detected in all contaminated samples were between 5.42 and 23.9 μg/kg. Also, 

acetamiprid and imidacloprid were the most frequently detected NEO, and based on the ranking 

of residual risk, presented a medium risk for consumers.  

The hydrophilic nature of NEOs, unlike other insecticides, could result in significant exposure 

through ingestion of contaminated drinking water. This is especially common if the water 

sources are near farmlands where NEOs are often used through direct spraying, sowing 

neonicotinoid-treated seeds, or irrigation. Wan et al. determined NEOs residues including 

(acetamiprid, imidacloprid, thiamethoxam, dinotefuran, clothianidin, nitenpyram, thiacloprid, 

flonicamid, imidaclothiz, sulfoxaflor) in 20 raw water samples, 20 finished water samples and 

165 tap water samples which collected during 2018 [77]. They reported that NEOs were found 

in all raw water samples with a median sum concentration of 27.7 ng/L. Moreover, in all tap 

water samples, at least three NEOs were detected with the highest sum concentration of 96.2 

ng/L [77]. Also, it is interesting to note that in all tested group, infant could be the most sensitive 

to NEOs exposure via water ingestion compared to other age groups. These results are on accord 

with an Australia study indicating that 93% of water samples collected from rivers contained at 

least two NEOs with levels about 0.06 – 4.5μg/L [78]. 

 

2) Risk evaluation 

In recent time, in order to evaluate the human exposure to NEOs, several scientists have started 

to investigate methods to identify the concentrations of these chemicals and their metabolites 

in biological samples such as human urine, serum and human hair. In the United States, a 

representative sample of general population 3 year of age and older from 2015-2016, National 

Health and Nutrition Examination Survey (NHANES) was investigated to quantify the urinary 

concentration of NEOs and two metabolites [79]. Suggesting that metabolites are better 

biomarkers of background exposure than the parent compounds with rate detection were 35% 

(N-desmethyl-acetamiprid), 20% (5-hydroxy imidacloprid), 8% (clothianidin), 4% 
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(imidacloprid) and ˂ 0.5% (acetamiprid, thiacloprid). Moreover, compared to other age group 

and ethnic group, young children (3-5 years old) and Asians may experience higher exposure 

to NEOs. The reason for mentioned differences between age and ethnic groups remain unknown 

[79]. More recently, a Chinese study found that NEOs and metabolites were frequently detected 

in paired urine samples (81%-98%) and indoor dust samples (75%- 95%). The most abundant 

chemical detected in urine was 5-Hydroxy-imidacloprid, while N-desmethyl acetamiprid was 

predominant in indoor dust samples, accounting for 56% and 37 % respectively [80].  

Additionally, evidence that proximity to farms increases exposure to NEOs has also highlighted 

by studies that investigate or compared human living around sprayed area and humans living 

in urban versus rural landscapes. In Japan, urine specimens of 46 children (23 males and 23 

females) were collected before, during and after insecticide spraying events. seven NEOs were 

determined in urine samples. In Greece, a study of imidacloprid exposure in urine and hair 

compared concentrations between urban (n = 26) and rural (n =32) populations. As results, rural 

peoples engaged in agriculture were more likely to have a positive detection of target chemical 

in their hair than urban residents [81]. Moreover, the serum can be exploited as a matrix to 

assess human exposure to NEOs and their metabolites, but studies on serum concentration of 

these chemicals are still limited.  

Ingestion (e.g., water, food), inhalation (e.g., dust), and cutaneous exposure, as well as 

occupational and residential use, have all been linked to human exposure to NEOs. However, 

methods for determining damage and evaluating risk from NEOs in environmental and human 

biological samples are remaining in the research stage and also deserve further investigation. 

 

3) Health effects 

Recent epidemiological evidence revealed increasing amounts of NEOs detected in human 

samples, and highlighted human health concerns. The majority of this evidence is limited to 

case reports, which cover a range of observed human health effects from neurological to 

hematological and cardiovascular effects after acute, high-exposure scenarios (Figure 3). 

Human population studies have reported that environmental exposure to NEOs is associated 

with adverse cardiovascular, respiratory and neurological endpoints such as memory loss and 

finger tremor [82–94]. Following acute exposure to NEOs, a study revealed two fatalities and 

eight patients with major effects (severe symptoms that necessitated intubation and critical care) 

as result of imidacloprid exposure [84]. This finding was based on examination of 70 poisoning 

cases reported to the Taiwan National Poison Centre, 46 of which were cases of NEOs ingestion 

alone. The other cases were exposed to various class of pesticide and/or ethanol. Two of the 
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critically ill individuals died of respiratory failure [84]. Also, due to limited number of 

severe/fatal poisoning, no significant association between severity and volume of ingestion, 

route of exposure and intent of exposure was indicated. Consistent with the report case from 

Sri-Lanka [85], the majority of patient with inhalation and dermal poisoning had only mild 

symptoms such as headache, nausea, vomiting, abdominal pain, and diarrhoea. Similarly, 

Forrester reported a serious outcome rate of 2.9%, suggesting NEOs might differ in their levels 

of toxicity to humans. Ocular, dermal, gastrointestinal and neurological were the most 

commonly effects observed [95]. Moreover, a number of case reports have revealed different 

poisoning effects including shortness of breath, coma, low blood pressure and dilated pupils, as 

a result of acute exposure and are presented in table 1.  

 

 

 

Figure 3: Impacts of neonicotinoids on human health. 

 

In Japan, subacute intoxication has been documented as a result of eating certain fruits, 

vegetables, and tea [96]. As well as, finger tremor, fever, decreased short-term memory, general 

weariness, headache, palpitation/chest pain, abdominal pain, muscle soreness/muscle 

weakness/muscle spasm, and cough were among the symptoms described by six patients who 

ingested more than 500g/day of domestic fruits/vegetables and/or tea [96, 97]. Furthermore, 

some researchers focused on pesticide sprayers. Kourea et al. found that the frequency of NEOs 

application was related to the induction of oxidative damage to DNA in the entire blood of 80 

pesticide sprayers [98].
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Table 1: Summary of research on neonicotinoids exposure and adverse human health effects. 

Type of 

Toxicity 

Type of 

Neonicotinoid 

Exposure 

Route 
Symptoms /Presentation Ref 

Acute 

toxicity 

Imidacloprid 

Ingestion 

Drowsiness, disorientation, dizziness, oral and gastroesophageal erosions, 

hemorrhagic gastritis, productive cough, fever, leukocytosis, and 

hyperglycemia. 

[83] 

Mild-to-moderate severity, respiratory failure or coma and death. [84] 

Cyanosis, apnea, and unconsciousness [86] 

Disorientation, drowsiness, dizziness, and palpitations, respiratory effort was 

poor. 
[87] 

Poor respiratory efforts [89] 

Abdominal discomfort, vomiting [99] 

Gastrointestinal symptoms, no corrosive injuries and neurological effects and 

symptoms mimicking cholinergic syndrome. 

Liver injury, moderate initial severity and death 

[100] 

Disorientation, drowsiness, and increased salivation [90] 

Diaphoretic and cyanosed, deterioration of renal function with progressive 

oligoanuria 
[92] 

Drowsiness [101] 

Acetamiprid 

Severe nausea, vomiting, and altered level of consciousness [102] 

Consciousness disturbance (GCS-8), hypotension, nausea, vomiting and 

hyperglycemia 
[88] 
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Nausea and muscle weakness, a single self-limiting seizure, tachycardia, 

hypotension, dyspnea, and thirst 
[91] 

Nausea, vomiting, developed multiple episodes of generalized toniclonic 

seizures and unconscious with poor respiratory efforts 
[103] 

Thiamethoxam Nausea, vomiting, and abdominal pai [104] 

Imidacloprid + 

alcohol 

Mild disorientation, bradycardia, ventricular arrhythmia, and 

cardiopulmonary arrest 
[93] 

Imidacloprid 
Ingestion 

dermal 
Nausea, vomiting, headache and diarrhoea, respiratory failure [85] 

Imidacloprid Inhalation 

Symptoms of gastroenteritis [94] 

Extreme agitation, frothy secretions, cyanosis, diaphoresis, and 

disorientation 
[105] 

Subacute 

toxicity 

Imidacloprid, 

Nitenpyram, 

Acetamiprid, 

Thiacloprid 

ingestion Headache, general fatigue, finger tremor, and short time memory disturbance [96] 

Chronic 

toxicity 

Acetamiprid, N-

desmethyl-

acetamiprid 

- 
Memory loss, finger tremor, headache, general fatigue, palpitation/chest 

pain, abdominal pain, muscle pain/weakness/spasm, and cough 
[106] 
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Imidacloprid, 

Desmethyl-

acetamiprid 

- 

Farmers (both with and without chronic kidney disease with unknown 

etiology (CKDu)) living in CKDu-endemic areas in the NCR of Sri Lanka 

are exposed to lower neonicotinoid concentrations 

[107] 

Imidacloprid 

- 
Weak positive association between autism spectrum disorders and prenatal 

imidacloprid exposure 
[108] 

 
Significant link between residential proximity to agricultural use of 

Imidacloprid and tetralogy of fallot 
[109] 

Ingestion 
Significant association between residential proximity to agricultural use of 

imidacloprid and anencephaly 
[110] 
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In Spain, the respiratory functions of 89 pesticide sprayers and 25 non-spraying control farmers 

were assessed and compared by Hernandez et al. [111]. The findings revealed a correlation 

between the use of NEOs and lung dysfunction (lower total lung capacity, residual volume and 

functional residual capacity). In addition, Marfo et al. reported an association between N-

desmethyl-acetamiprid urinary concentration and increased prevalence of neurologic symptoms 

among symptomatic patients compared to 50 non-symptomatic volunteers [106]. 

Indeed, the limited research that has been conducted appears to indicate long-term potential for 

genotoxicity, cytotoxicity, impaired immune function, reproduction, and birth defects; as well 

as, acute health effects ranging from respiratory, cardiovascular and neurological symptoms. 

 

VII. Remediation 

Increased usage of pesticides, which have become an integral aspect of contemporary 

agriculture, has enabled greatly increased agricultural production. Their continued and 

excessive usage harms farms, creates significant soil pollution, and damages soil quality and 

the environment. NEOs pesticides easily find their way into the soil, water, and will therefore 

soon enter the bodies of plants and animals, and detected in food for human consumption. The 

ubiquitous NEOs are considered one of the most serious environmental pollutants. Their 

toxicity is well documented for its impairment of plant growth and human health. Hence, 

credible and efficient techniques used to remove these substances in soil and water are urgently 

needed to avoid unwanted outcomes. Adsorption, photocatalysis, reduction, and chemical 

oxidation are the most common techniques for remediating contaminated soils and water. 

 

1) In soil  

The effects and fate of pesticides residues in the soil are influence by farming practices, 

application of fertilizer, the soil type, surface and its pH value [112, 113]. Under environmental 

conditions, imidacloprid in soil can be degraded by microorganisms or through photolysis 

sunlight. Mahaparta et al. reported a non-significant dissipation of imidacloprid between sterile 

and non-sterile soils and its degradation will be faster under sunlight and at higher soil moisture 

[114]. The reduction of pesticide contaminants depends on the role of bacteria/fungi. Erguven 

et al. investigated the bioremediation performance of Methylobacterium radiotolerans and 

Microbacterium arthrosphaerae bacteria and their consortia to eliminate imidacloprid. In soil 

test units after 18 days, they found that the bacterial consortium is effective for the 

bioremediation of this insecticide at two volumes of 40 and 80 ml of the consortia [115]. 

Similarly, Ochrobactrum thiophenivorans and Sphingomonas melonis bacteria and consortia 
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were used by Erguven et al. to evaluate the bioremediation of imidacloprid. It was observed 

that each bacterium and their mixes had complete reduction rate for imidacloprid active 

ingredient after 14 days [116]. Recently, Wu et al. reported that Rhodopseudomonas capsulata 

(R. capsulata) remediate imidacloprid residue, improve soil fertility and improved the 

microbial community structure [117]. 

Many physicochemical methods have been applied to degrade acetamiprid neonicotinoids, 

including chemical decomposition, high-temperature incineration and landfilling. Under low 

nutrient stimuli, ensifer adhaerens CGMCC 6315 could degrade acetamiprid efficiently. This 

degradation was via nitrile hydratase pathway [118]. 

In recent years, the application of the photodegradation process to contaminants in the 

environment has attracted a lot of interest. It has several benefits, including high degradation 

efficiency, quick degradation, and used at large concentrations [119]. Li, Y et al. reported that 

ultraviolet B (UVB) played a crucial role in the photodegradation of clothianidin and 

thiamethoxam in soil, while visible and ultraviolet A (UVA) light had insignificant influence 

[120]. In addition, four possible photodegradation products of clothianidin and three of 

thiamethoxan were identified. Similarly, photodegradation phenomenon for clothianidin and 

acetamiprid was reported by Guptaa et al. [121]. For imidacloprid, ultraviolet active (UVA) 

light provides more efficient photodegradation than visible irradiation [122]. Indeed, the 

photodegradation rate of NEOs by monocromatic ultraviolet (UV) light (254 nm) is constant 

depending on the pH value, the properties of the specific compounds, and the presence or 

absence of free radical scavenging agent [123]. 

Phytoremediation utilizes plants to purify or improve polluted soil and water and to mineralize 

compounds into non-toxic end products through biochemical processes initiated by plants 

[124]. Differences in phytoremediation potential among plants are due to the complexity of 

plant physiology and biochemistry, and hence phytoremediation performance is primarily 

dependent on the proper selection of plant species [125]. 

 

2) In water  

In general, NEOs are less persistent in water than in soil, but imidacloprid, clothianidin and 

thiamethoxam are still able to contaminate both surface and ground water, and accumulate in 

the food chain. Thus, remediation of NEOs pollution in water bodies is of crucial importance. 

Significant efforts have been focused on the development of methods for treating these 

substances, including conventional physical techniques (adsorption and filtration with 

developed membrane materials and adsorbent), and physico-chemical strategies like 
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electrocatalytic degradation [126] and photocatalytic degradation [127, 128]. Furthermore, 

chemical selective oxidation methods investigated using powerful oxidant for in situ 

environmental remediation and for water /wastewater treatment [129, 130]. Recently, a 

chemical remediation of imidacloprid whit permanganate was investigated in aqueous solution 

[131]. 

Due to its cost-effective, environmentally sustainable, and promising bioremediation potential, 

constructed wetlands are one of the most often employed mitigation strategies to reduce 

pesticide input into water bodies [132, 133]. Wetland plants have a high development rate and 

a large root system, making them essential components of constructed wetlands [134]. 

According to Main et al., in prairie wetlands, plant communities appear to be significant drivers 

of NEOs abundance and concentration [135]. Additionally, in planted wetland systems, 

imidacloprid, thiamethoxam and acetamiprid were more readily removed, while C. alternifolius 

and C. papyrus were the most effective species in removing NEOs. These findings seem to be 

consistent with other research which detected and quantified the residues of NEOs in different 

wetland plants species. 

The microbial biodegradation of NEOs is considered to be the most effective and ecologically 

friendly in situ repair pathway [136]. Numerous microbes that degrade NEOs have been isolated 

and identified. Bacillus, Mycobacterium, Pseudoxanthomonas, Rhodococcus, Actinomycetes, 

and Stenotrophomonas are among the bacteria that have been discovered [136, 137]. Guo et al. 

isolated an oligotrophic bacterium (Hymenobacter latericoloratus CGMCC 16346) from a 

water environment, this bacterium can survive in apotrophic surface water for a long period on 

a 1/10,000 diluted nutrient medium and degrade imidacloprid [138]. The isolation or 

development of certain bacteria is important for the sustainability of biologically mediated 

environmental degradation of NEOs. However, none of the single bacterial isolates appeared 

able to completely mineralize NEOs insecticides including imidacloprid, thiamethoxam, 

thiacloprid, and clothianidin.  

Despite their effective performance to degrade or eliminate the NEOs in soil and surface 

/groundwater, the remediation strategies of NEOs can lead to toxic degraded-intermediates, 

which more toxic than their parent compounds. However, it is then necessary to develop 

alternatives to NEOs that satisfy certain criteria.  

 

VIII. Electroanalysis of NOEs insecticides  

For the detection of traces residues of NOEs insecticides throughout the year, an appropriate 

methodology and sampling regime is required. Numerous methods have been introduced for 
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this purpose, which can be categorized as chromatographic method, spectroscopic method and 

electrochemical methods. In this chapter, we focus just on recent progress in electrochemical 

sensors and biosensors for NOEs determination in different matrices. 

 

1) Electrochemical sensors for NOEs determination 

Widely developed electrochemical sensors (ECS) are considered as alternative to traditional 

methods for detecting organic, inorganic and biological analytes, due to their fast response time, 

simplicity and low cost. An electrochemical sensor is composed of two principal constituents 

as shown in figure 4; the first one corresponds to the sensing surface that reacts with the desired 

analyte. The second constituent is the transducer which transforms this reaction into a readable 

electronic signal. The development of ECS would be very promising and beneficial. For 

instance, neonicotinoid Insecticide TMX is an electrochemically active molecule due to its 

nitro-group reduction. Various models of electrochemical sensors have been developed to 

improve the sensor performance to enhance electrochemical reduction signal. Also, several 

techniques as voltammetry, amperometry and were used for TMX detection (Figure 5). A wide 

range of materials (metals, metal oxides, alloys, amalgams and their composites) have been 

used to detect NOEs residues in various matrices, due to their good conductivity, large surface 

area and high catalytic properties. 

i) Metal and amalgams metal  

The first metal electrode investigated for detect of NOEs is mercury electrode using direct 

current and differential pulse polarography, based on the reduction behaviour of target 

molecule. A pH ˃5, the differential pulse polarography (DPP) method offers the sensitive trace 

level determination of NOEs providing an adequate recovery and reproducibility [139]. The 

bismuth film modified glassy carbon electrode was employed for the rapid and simple 

voltammetric detection of NOEs. Moreover, the reduction mechanism of this film electrode and 

that of mercury film electrode (MFE) are compared, and the results show that the 

electrochemical reaction is the same at both electrodes [140]. Also, the potato and maize 

samples were used to investigate the analytical applicability of film modified glassy carbon 

substrate. Before each measurement, potato and maize samples were treated due of the matrix 

complexity [140]. The results proved that the bismuth film electrode is potentially interesting, 

useful and inexpensive tool for the determination of NOE, showing a comparable analytical 

applicability to that of MFE. Furthermore, considering its nontoxic metal character, it could be 

applied as a convenient environmentally friendly method [140]. 
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Figure 4: Illustration of the components of electrochemical sensors. 

 

 

 

 

Figure 5: Electrochemical techniques used for NEOs detection. 

 

For the most promising alternative to mercury electrode, due to concerns about its toxicity, we 

find the metal solid amalgam such as renewable silver amalgam-film electrode (Hg(Ag)FE), 
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which introduced for first time to determine organic compound of B1 vitamin using square wave 

voltammetry (SWV) [141, 142]. This electrode has been subsequently developed by Marie 

Putek et al. for the voltammetric determination of NOE by comparing its analytical performance 

against the hanging mercury drop electrode (HMDE) [143]. The voltammetric method 

(Hg(Ag)FE) was found to be the most sensitive for NOE determination. This sensitivity 

depends considerably on the state of electrode surface and supporting electrolyte pH. Moreover, 

the proposed procedure was found to be sensitive and advantageous for sensing NOEs in river 

water and honey samples [143].  

Chorti et al. used a non-toxic mercury meniscus modified silver solid amalgam electrode (m-

AgSAE) for the determination of NOE using direct differential pulse voltammetry (DPV) [144]. 

This electrode demonstrated the lowest determination limit and confirmed a good applicability 

for the direct measurements in real samples, such as drinking and river water. Moreover, m-

AgSAE exhibits a higher sensitivity in comparison with amalgam film electrode. 

Recently, a method of the electrocatalytic detection of NOE at metallic silver electrode was 

developed by Ajermoun et al. [145]. The electrocatalytic activity of silver toward NOE was 

compared with other electrodes such as glassy carbon and carbon paste electrode using cyclic 

voltammetry, Tafel plots and electrochemical impedance spectroscopy. The silver electrode 

showed a significant electrocatalytic activity compared to other electrodes. At the same time, it 

has excellent applicability and sensitivity for determination of target molecule in real samples 

such as tomato and orange juices without separation using solid phase extraction, with the limit 

of detection about 12.4 and 34.8 µmol L-1 and limit of quantification (LOQ) of 41.3 and 115.9 

µmol L-1, respectively [145]. Moreover, a consideration is given to the presence of 

electrochemically active interferents, which generally pose a problem as they can distort the 

results. Metallic silver electrode was tested for determination of TMX in presence of several 

organic compounds including 4-nitroaniline, 2-nitroanaline, 4-nitrophenole and 2,4-

dinitrophenylhydrazine (DNPH). This electrode showed a suitable selectivity towards these 

compounds. As a continuation of previous study and to exploit these results, the 

bioaccumulation of NOE in zea mays plant was followed using metallic silver electrode. After 

10 days of treatment of this plant, NOE analysis was realized in the extract of different part of 

plant (roots, stems and leaves). The acceptable detection and quantification limits were obtained 

[59].  
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ii) Metallic nanoparticle  

During electrochemical measurements of organic and biological compounds (pesticides, dyes, 

pharmaceutical products and emerging pollutants…) on the solid and bare electrode, a problem 

in producing reproducible electrochemical signal is always present. This may be due to the 

adsorption of the reduction products of target molecules at electrode. To minimise this problem, 

the idea of modifying electrode active surface area was introduced to invent and to develop new 

chemically modified electrodes with much better characteristics and advantages. In order, to 

enhance the performance of the electrodes to sensing pesticides residues, many chemical 

modifications have been reported in literature [146–148]. In fact, the use of nanomaterials and 

nanocomposites materials for the preparation of electrodes can grant several advantages in 

electrochemical response, such as a great surface area with nanoscales features that provide 

catalytic properties with improvement of selectivity and sensitivity related to NOE reduction. 

Silver nanoparticles exhibit a superior catalytic activity and high reactivity compared to others 

metal nanoparticles and improve enhancement factor for surface enhanced Raman 

spectroscopy. Silver nanoparticles have appropriate plasmon resonance frequencies and 

absorption characteristics to achieve effective enhancement with visible excitation [149–151], 

also silver nanoparticles were used for metal fluorescence because of their ability to 

significantly enhance the intensity of fluorophore emission [152, 153]. Kumaravel and 

Chandradekaran developed a novel nanosilver/SDS modified glassy carbon electrode for 

electrochemical sensing of NOEs [154], employing cyclic voltammetry, differential pulse 

voltammetry and amperometry. The sodium dodecyl sulphate (SDS) is an anionic surfactant 

with a negative sulphate group at end, which plays an important role in the formation and size 

control of silver nanoparticles on the electrode surface. The sodium dodecyl sulphate SDS 

reacts with surface of glassy carbon which is highly hydrophobic in nature, then the adsorption 

of the surfactant takes place on the surface of electrode. For differential pulse voltammetry, a 

linear range of 0.1 – 9 µmol L-1 and a LOQ of 0.1 µmol L-1 were found. This LOQ is not low 

enough to quantify NOE. When amperometric method was used, linear range from 5 to 25 µmol 

L-1 and LOQ of 2.94 µmol L-1 were mentioned; this result may be due to the adsorption of the 

reactant/product molecules on the electrode surface [154] (Figure 6). This proposed modified 

electrode shows better electrocatalytic activity toward NOE reduction and lower limit of 

detection (0.04 µmol L-1) compared with other electrodes reported in literature. In addition, the 

recovery rate in potato sample is in good agreement with the HPLC method. In the same context 

of the metal-nanoparticles, carbon nanotubes (CNT) are increasingly used as transducer 

materials and have considerably improved the sensors electrochemical response due to their 
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large surface area, electronic and optical properties. The mixture with nanoparticles and 

polymer were used to construct modified electrodes.  

 

 

 

Figure 6: Describe the mechanism of electrochemical detection and the processes adsorption of 

the NEOs at electrode surface. 

 

Parviz Norouzi et al. developed a nanocomposite application of new electrode for NOE 

determination [155]; consists to casting mixture of chitosan, multi-walled carbon nanotube, 

reduced graphene nanosheets and gold nanoparticles on a carbon paste ionic liquid electrode 

(CHI-MWCNT/AuNP/RGNS/CILE) using Fast Fourier transform Coulometric Admittance 

Voltammetry (FFTCAV). The developed electrode exhibits an excellent and reproducible 

sensitivity due to its large surface area and fast electron transfer provided through graphene and 

gold nanoparticles, with a LOD 1.62×10-12 mol L-1. The nanocomposite electrode also poses 

relatively long-term stability for ninety days. Recently, another nanocomposite electrode 

developed by Shangxing Chen and co-works [156], consists of a voltammetric sensing 

platform, which can be used for application in stripping analysis of TMX neonicotinoid in 

agricultural and environmental samples. This technology based on thick-walled Moso biochar 

combined with carbonate minerals dolomite modified glassy carbon electrode (BC-DM / GCE) 

[156]. This electrode showed a good stability and sensitivity to NOE in a wide linear range 

from 0.5 – 35 µg mL-1 with the LOD of 0.22 µg mL-1. Furthermore, good recovery results were 
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obtained in all samples (rice, pear, red soil, spinach, river water, lake water tap water and 

farmland water), indicating that the prepared modified nanocomposite electrode was suitable 

for the detection analyte in environmental real samples. Moreover, the electrode selectivity was 

tested against many pesticides and metal ions, for tenfold amount, most interfering substance 

were Cu2+ ions with the RDS of 2.56%. 

Recently, a free metal carbon nanomaterial was investigated for electrochemical sensing 

applications, based on graphitic carbon nitride, which is a stable layered material of carbon 

nitride framework. The latter reveals structural similarity to graphene (2D layer), with tris-

triazine building units connected with planar amino groups in each layer and weak van der 

Waals force between layers. Due to its unique properties (including stability, semiconductivity, 

unique electronic structure, and easy preparation), it has received much research attention for a 

wide range of applications in various fields, such as hydrogen storage, oxygen reduction 

reaction [157, 158], photocatalytic organics degradation [159, 160], water splitting [161, 162] 

and electrochemical sensing [163–165]. 

Jaysiva Ganesamurthi et al. investigated a robust method based on cobalt oxide nanoparticles 

decorated graphitic carbon nitride nanocomposite (Co3O4@g-C3N4/SPCE) for the 

determination of NOE [166]. The composition and crystalline structure were determined out by 

XPS, FT-IR, XRD and FSEM. The electrocatalytic activity of the Co3O4@g-C3N4/SPCE 

toward NOE was studied using cyclic voltammetry and differential pulse voltammetry. The 

selectivity of proposed electrode was investigated in the presence of nitro-aromatic pesticides 

(such as methyl-parathion, parathion and fenitrothion), and the variation range of recovery 

received in term of current intensity was from -0.004% to -5.8%, revealing an excellent 

selectivity toward NOE analyte. 

iii) Carbon  

For first investigation of electrochemical methods to detect TMX neonicotinoid, in 2004, 

Valeria Guzsvany et al. developed a simple voltammetric method employing glassy carbon 

electrode. The method displayed a limit of detection for NOE about 29.1 µmol L-1 and 

performed to well assess the accuracy of results in potato sample [167]. 

Graphene is the basic building block for graphitic materials of all other interesting 

dimensionalities (0D Fullerenes, 1D nanotube, 3D graphite), it consists essentially of a planar 

monolayer of carbon atoms tightly packed into a two dimensional (2D) hexagonal lattice [168, 

169]. Graphene is attracting enormous interest due to its numerous unexpected properties, 

showing good electrical conductivity, high specific surface area and high-speed electron 
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mobility and high value of its Young’s modulus. In electrochemical field, graphene and 

graphene nanocomposite based sensors have proved its successful application, especially, 

chemically reduced graphene oxide, commonly, has significant structural defects [170, 171] 

and functional groups [172] have beneficial electrochemical applications [173–176]. For NOEs 

insecticides, Veronika Urbanová et al. demonstrated the applicability of graphene oxide 

modified electrode for the determination of NOEs (TMX and imidacloprid). The proposed 

modified electrode exhibits an excellent electrocatalytic activity compared to other electrodes 

reported previously with satisfactory detection limits. It also demonstrated good applicability 

toward determination of TMX with detection limit of 8.3 µmol L-1. Also, the sensor analytical 

utility was successfully tested and the recovery rate found to be around 98 % and 95 % in the 

spiked water and honey samples, respectively [177]. Ana Elisa Ferreira Oliveira et al. proposed 

an electrochemical modified electrode based on glassy carbon modified with reduced graphene 

oxide and β-cyclodextrin (GCE/rGO/ β-CD) as an alternative in the analysis of NOEs 

insecticides (such as imidacloprid, clothianidine and thiamethoxam) in real honey samples. 

They mentioned that the β-CD can form an inclusion complex with the target molecule (NOE), 

increasing the sensitivity when the analyte is included in the cavity of β-CD, due to hydrophobic 

character. The proposed electrochemical approach showed high sensitivity and conductivity 

characteristics of extreme importance in the sensor’s construction. Furthermore, three real 

samples were used to test analytical ability of sensor such as honey, pollen and beeswax. 

However, only determination in honey sample was performed without any pretreatment, 

making the method fast and simple [178].  

iv) Molecularly imprinted polymer MIP 

Molecularly imprinted polymer is synthesized through the technology of molecular imprinting 

via copolymerization of an appropriate monomer and cross-linker in the presence of analyte 

template. MIP extensively used as specific recognition and selective adsorbent of the analyte 

molecule in the design of sensor, due to their high thermal stability, easy preparation, great 

reusability, favourable selectivity and possibility of miniaturization [179, 180]. The principal 

of this approach is mainly based on the change in electrochemical signal resulting from the 

interaction of the target molecule with the cavity, depending to its shape, charge and 

functionality. Many different methods have been utilized to product molecularly imprinted 

electrochemical sensors, such as electrochemical polymerization, self-assembly, in situ 

polymerization and sol-gel technique. Tianjiao Xie and co-works developed a facile method for 

the preparation of molecularly imprinted polymer based on graphene for the sensing of NOEs 
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residue [181]. The innovation of this research lies in the selection of 4-vinylbenzoic acid (VBA) 

as a functional monomer. VBA structurally contains alkenyl group and hydroxyl group, so it 

can react with the template molecule and cross-linking agent, and can be immobilized on the 

graphene surface through π-π interaction. However, it can provide an ultra-thin printing film by 

reducing the addition step involving the alkenyl modifier, which makes the preparation process 

much easier. The proposed sensors showed good sensitivity and binding capacity for NOE, also 

good reproducibility and reusability. Furthermore, the analytical applicability of MIP-GN/GCE 

was applied to the determination of TMX neonicotinoid in brow rice samples with satisfactory 

results. Various type sensors and their features for the determination of NOEs insecticides are 

shown in the table 2. Thereafter, analytical performance parameters of the utilized electrodes 

for TMX neonicotinoid detection are detailed and materials applied in electrode modification 

for its detection are illustrated in the (Figure 7).  

 

 

Figure 7: Schematic illustration of materials applied in electrode modification for NEOs detection.
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Table 2: Summary of the analytical performance data of the electrochemical sensors for NEOs insecticides. 

Electrodes Electrochemical methods 
Linear range 

(µmol L-1) 

Limit of 

detection 

(µmol L-1) 

Real samples Refs 

Dropping mercury electrode (DME) 
Differential Pulse Polarography 

(DPP) 
0.11 – 1.60 0.032 Potato - maize [139] 

Bismuth Film Modified Glassy Carbon Electrode BiFE 

 

Mercury Film Electrode 

Differential Pulse Voltammetry DPV 

 

Differential Pulse Voltammetry DPV 

2.64 – 154 

4.32 – 154 

1.300 

0.890 
Potato - maize [140] 

Silver Amalgam-Film Electrode Hg(Ag)FE 

Hanging Mercury Drop Electrode HMDE 
Square Wave Voltammetry (SWV) 

2.39 – 265 

3.12 – 170 

0.860 

0.860 
Honey [143] 

Silver Solid Amalgam Electrode m-AgSAE 
Differential Pulse Voltammetry 

(DPV) 
- - 

Drinking - river 

water 
[144] 

Metallic Silver Electrode (MSE) Square Wave Voltammetry SWV 10 – 100 5.490 
Tomato - orange 

juices 
[145] 

Metallic Silver Electrode (MSE) Square Wave Voltammetry SWV 50 – 1000 9.580 Zea mays [59] 

Nanosilver/SDS /GCE 

Differential Pulse Voltammetry DPV 

Cyclic Voltammetry (CV) 

Amperpmetry 

0.10 – 9 

0.100 

4.700 

0.880 

Potato [154] 

CHI-MWCNT/AuNP/RGNS/CILE 
Fast Fourier transform Coulometric 

Admittance Voltammetry (FFTCAV) 

0.05×10-3 – 

35×10-3 
6.2×10-6 _ [155] 
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DM-BC/GCE 
Differential Pulse Voltammetry 

(DPV)  
1.74 – 120 0.750 

Spinach River 

water 

Rice Pear Red soil 

Farmland water 

Lake water Tap 

water 

 

[156] 

Glassy Carbon Electrode (GCE) Cyclic Voltammetry (CV) 95.90 – 1714 29.100 Potato [167] 

Graphen Oxide Galssy Carbon Electrode GO/GCE Square Wave Voltammetry (SWV) 10 – 200 8.300 River water honey [177] 

GCE/rGO/β-CD Square Wave Voltammetry (SWV) - 7.450 
Honey, pollen 

beeswax 
[178] 

MIP-GN/GCE Linear Sweep Voltammetry (LSV) 0.50 – 20 0.040 Brown rice [181] 

β-CD-rGO/GCE Linear Sweep Voltammetry (LSV) - 0.270 Brown rice [182] 

Tricresyl Phosphate- Carbon Paste Electrode TCP-CPE Differential Pulse Voltammetry DPV 12.70 – 142 _ River water [183] 
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IX. Conclusion  

This chapter comprehensively summarized the effect of neonicotinoid insecticides on the soils, 

water body and human health. Neonicotinoids are the most widely used pesticides in 

agricultural sectors due to their effective insecticidal properties. its long-term persistence in soil 

and water poses serious threat not only to the environment but also to human health. 

Neonicotinoids application significantly affect the soil bacterial abundance in the short term, 

which reduced the microbial diversity and changed the bacterial community structure, this 

impact depends on insecticides concentration and soil type. While, undergoing biological and 

physicochemical transformations and impacting microbial development, enzymatic activity and 

soil fertility. Furthermore, the potential for leaching or run-off from fields could pose serious 

risks to aquatic ecosystems. 

Because neonicotinoids are commonly applied, widespread human exposure to these 

insecticides can be suggested. Ingestion (e.g., water, food), inhalation (e.g., dust), and cutaneous 

exposure, as well as occupational and residential use, have all been linked to human exposure 

to neonicotinoids. In addition, the ingestion exposure appears to be the most dominated route 

of exposure to evaluate the impact of these chemicals on human health. Furthermore, the present 

evidence from epidemiological studies suggests that neonicotinoids cause acute health effects 

to human health ranging from respiratory, cardiovascular and neurological symptoms. 

For the remediation of neonicotinoids from the environment, various strategies have been 

introduced and applied in recent decades, mainly physicochemical degradation and 

biodegradation. 

Electroanalytical methods offer advantages for determination of neonicotinoid residues due to 

its characteristics including low cost, ease of use, wide dynamic range, and high sensitivity 

compared to other analytical methods. However, there are limited papers concerning usage of 

advanced material and nanomaterial throughout modified electrochemical sensors 

manufacturing for sensing these insecticides.  
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I. Introduction 

The intensive action to protect crops from the use of many organic pesticides has increased in 

recent years. These compounds can be natural or they can be synthetically produced. They may 

belong to any one of the several pesticide classes in particular: organochlorines, carbamates, 

organophosphates, pyrethroids, and neonicotinoids. The great attention was placed on 

neonicotinoid insecticides, such as acetamiprid, imidacloprid, thiacloprid, and thiamethoxam, 

as these all act on the insect nicotinic (acetylcholine) receptor (nAChR) [1, 2]. Actually, 

neonicotinoid insecticides are widely used in agriculture and the seed coating is used all over 

the world to ensure a broad range pest control in several crops, including corn (Zea mays L.) 

[3] in Ontario with over 99 % of maize (corn), 60–80 % of soybean, 95 % of dry bean, 25 % of 

winter wheat and 100 % of canola crop areas planted with a neonicotinoid seed treatment in 

2013 [4]. Neonicotinoids are water-soluble compounds and systemically translocate to plant 

tissues protecting young plants from root-eating insects and, after emergence, also from sucking 

insects – such as leafhoppers and aphids – responsible for the transmission of plant viruses. 

Among these molecules, we focus on thiamethoxam (3- (2-chlorin-1,3-thiazol-5-ylmethyl) -5-

methyl-1,3,5-oxadiazinane 4-ylidene (nitro) amine) broad spectrum of action at low 

concentrations [5–8]. It is the second-largest-selling neonicotinoid, and is registered for 115 

crops, such as vegetables, potatoes, rice, cotton, fruits, tobacco and cereals [9]. Thiamethoxam 

(TMX) is a nitroguanidine neonicotinoid that acts agonistically on nicotinic acetylcholine 

receptors in the insect central nervous system [10]. Due to its intensive use, high water solubility 

(4.1 g L-1 at 25 °C) and stability, residues of TMX persisting in the environment have adverse 

effects [11]. As a result, there is an increasing need to develop a methodology for the 

determination of thiamethoxam in food, agricultural and environmental samples. The need for 

sensitive and selective detectors for this compound is of crucial importance. However, the high 

cost of conventional photometric and chromatographic methods [12–14] indicates a need for 

more sensitive and fast analytical techniques. To meet this need, electrochemistry arises as an 

alternative that combines simplicity, speed, sensitivity, and specificity, using modified 

electrodes [15–19]. The use of these electrodes has registered considerable momentum during 

the last two decades undergoing a not insignificant impulse notably in the field of 

electrocatalysis [18, 20, 21]. 

This chapter described the electrocatalytic effect of metallic silver electrode towards the 

reduction of TMX insecticide, as well as presented a procedure for the cathodic electrochemical 

determination of thiamethoxam in Zea mays seedling following exposure under laboratory 

conditions, and the evaluation of this insecticide effect on plant seedling growth. In addition, 
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this chapter focus on assessment of the bioaccumulation of thiamethoxam in Zea mays seeds 

and seedlings using square wave voltammetry (SWV) after optimization of the experimental 

conditions. 

 

II. Experiment section 

1) Chemicals reagents and instruments 

Thiamethoxam, purchased from Syngenta International, was used to treat the maize seeds 

samples. A stock solution of 5.010-2 mol L-1 thiamethoxam was prepared. Experiments were 

carried out using TMX with several doses (5.010-4, 1.010-3, 5.010-3, 3.410-2, 5.010-2 mol 

L-1). Sodium hydroxide, phosphoric acid, acetic and boric acid were purchased from Merck 

(Darmstadt, Germany), Fluka (St. Gallen, Switzerland), and Riedel de Haen (Seelze, Germany). 

All chemicals employed were of analytical reagent grade. 

The electrochemical measurements were investigated using a potentiostat (model PGZ 100, Eco 

Chemie B.V, Utrecht, the Netherlands) electrochemical analyzer operated via voltamaster 4 

software. The solution was transferred to the conventional three-electrode electrochemical cell 

to analyze the thiamethoxam accumulated in Zea mays plant using metallic silver as a working 

electrode, platinum wire and Ag/AgCl (saturated KCl) as auxiliary and reference electrodes 

respectively. The pH solution was controlled with a pH-meter (SensION™, (pH31)). All 

measurements were carried out at 25°C.  

 

2) Germination and growth tests of Zea mays exposed to TMX 

Seeds germination test was carried out in incubator (22 ± 2 °C) in dark under sterile conditions 

for five days. The seeds were disinfected with sodium hypochlorite solution 10 % (v/v) for ten 

min. Then, washed thoroughly with sterile distilled water. Twenty corn seeds are placed in each 

petri dish (diameter: 9 cm) between two layers of filter paper and regularly soaked with 

adequate treatment solutions during the experiment time. This experiment is repeated three 

times for each treatment. The exposure of the seeds was performed on five treatments (5.010-

4, 1.010-3, 5.0 10-3, 3.410-2, 5.010-2 mol L-1). In parallel, a control sample was prepared 

under the same conditions but soaked with only sterile distilled water. At the end of incubation 

(5 days), the rate of germination was determined and the seeds germinated were transferred in 

plastic pots (diameter 8 cm) containing a mixture of peat and 40 % sand, in order to follow the 

growth of seedlings. The experiment was carried out in a greenhouse with natural photoperiod 

and temperature in continuous exposure to different concentrations of TMX.  At the end of the 
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experiment (10 days), TMX bioaccumulation and histological structure were evaluated and 

biometric parameters were measured: root and plant lengths.  

 

3) Extraction and quantification of TMX in plant 

Before starting the TMX determination in Zea mays plant, we will be presented a preliminary 

voltammetric study to specify the electrochemical reactivity of the silver electrode in the 

electrolytic solution containing only the TMX. 

The extraction of TMX in the plant was carried out according to the method described by 

Gonçalves da Rocha et al., 2012 [22] using only water purified. We extracted TMX in 2g of 

seeds and of each part of the seedlings (roots, stems, and leaves) by grinding with 100 mL of 

ultra-pure water. The resulting residue was sonicated (3 kHz  40 min) and centrifuged (4000 

RPM  10 min). After three extractions (100, 100 and 50 mL), the resulting aqueous phase was 

concentrated with a rotary evaporator at 80 °C, to about 5 mL of water. The concentrated 

volume was brought to 25 mL with water. To ensure the best conditions for the TMX analysis, 

the pH of the solution was controlled by adding the Britton-Robinson pH 10.4 buffer 

components. The solution was transferred to the electrochemical cell for thiamethoxam 

detection in Zea mays plant on the metallic silver electrode using SWV.  

 

4) Histological test  

In order to evaluate the effect of TMX on the structure of root tissues and to understand this 

effect on roots formation and development, a histological study was done through primary root 

cross-sections. After five days of germination, cross-sections were taken at the level of the 

piliferous zone. The green carmino of Mirande double coloration was used in the preparation 

of transversals. Briefly, the root cuts were washed by the sodium hypochlorite for ten minutes, 

in distilled water for 5 min and in acetic acid 1% (v/v) for 3 min. Then, they were colored with 

the green carmino for 5 min. The green carmine of Mirande is a mixture of two dyes: carmine 

alum (9/10) which colors the cell membranes in pink-red, and the iodine green that colors the 

lignified membrane in green. At the end of preparation, the cuts were rinsed with distilled water 

for 2 min. Finally, these histological root cuts were microscopically examined. 

 

III. Results and discusion 

A) Electrochemistry of thiamethoxam insecticide 
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1) Electrochemical behaviour of thiamethoxam  

The TMX electro-reduction was assessed using its cyclic voltammograms (CVs) at GCE, CPE 

and MSE electrodes in BR buffer (pH 10.4) containing 1.0×10−3 mol L−1 of TMX in the range 

from 00 to -1600 mV at a scan rate of 50 mV s−1 (Figure 1). The electrochemical parameters 

toward TMX electro-reduction obtained from (CVs) are summarized in (Table 1). The peak 

potential of TMX reduction at metallic silver electrode (MSE) (−1164 mV) have been decreased 

slightly respect to glassy carbon electrode (GCE) (−1316 mV) and carbon paste electrode (CPE) 

(−1186 mV). While not only the more positive potential shift observed for these electrodes, but 

also the current of cathodic peak increased significantly, so it can be concluded that metallic 

silver electrode is more efficient for TMX electro-reduction. 

 

Figure 1: Cyclic voltammograms of the various electrodes in the potential range 00 to -1600 mV vs 

Ag/AgCl with a scan rate of 50 mV s-1, 1.0×10−3 mol L−1 of TMX in B-R buffer (pH 10.4). 

 

Table 1: Electrochemical characterization of TMX electro-reduction. 

electrode Ep (V) IP (µA cm−2) 

CPE -1.240 10.9 

GCE -1.316 12.19 

MSE -1.164 31.09 
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To evaluate the kinetics of the electrodes, Tafel plots were considered using potentiodynamic 

pseudo-steady state polarization of 1.0×10−3 mol L−1 of TMX in BR buffer (pH 10.4) solution 

at a low scan rate of 20 mV. s−1 and shown in (Figure 2).   

 

 

Figure 2: Tafel plots for TMX reduction on the various electrodes at a scan rate of 20 mV s−1, 

1.0×10−3 mol L−1 of TMX in B-R buffer (pH 10.4). 

 

Table 2: Tafel slopes, exchange current densities, and charge transfer coefficients of various 

electrodes for TMX electro-reduction at a scan rate of 20 mV s−1. 

Electrode Tafel slope (mV.dec–1) a i0 (mA cm−2) α 

CPE -238.74 0.404 1.0041 0.00025 

GCE -272.53 -0.2151 0.998 0.270 

MSE -151.76 -0.1083 0.998 0.536 

 

The kinetic parameters, a, b, i0, α values for TMX electro-reduction by the different three 

electrodes are reported in (Table 2). The kinetic parameters of TMX for three electrodes can be 

calculated by the following expressions [23]: 

 

𝜂 = 𝑎 + 𝑏 𝑙𝑜𝑔|𝑖| 
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log 𝑖0 = −
𝑎

𝑏
 

𝛼 = −
2.303𝑅𝑇

𝑏𝐹
 

 

Where η is the overpotential, i is the current density (mA cm−2), a is the Tafel intercept and b 

is the Tafel slope. 𝑖0 is the exchange current density, α is the charge transfer coefficient, F is 

the Faraday constant (96.487 A s mol−1), R is the gas constant (8.314 J K−1 mol−1), and T is the 

absolute temperature (K). 

Tafel slope is an inherent property of electrocatalytic material. It is determined by the rate-

limiting step of TMX electro-reduction. The determination and interpretation of Tafel slope are 

important for elucidation of the electrocatalytic activity of these electrodes towards TMX. The 

Tafel slope is -272.53, -229.04, and -151.76 mV.dec–1 for GCE, CPE and MSE, respectively. 

The Tafel slope of metallic silver electrode is smaller than that of other electrodes, which 

indicates that the step of TMX electro-reduction on metallic silver electrode is faster than other 

electrodes. The exchange current density is found from Tafel curve by extrapolating the linear 

fitted Tafel line where the over-potential equals zero. The exchange current density of GCE, 

CPE and MSE electrodes are 0.998, 1.004, and 0.998 (mA cm−2), respectively. The charge 

transfer coefficient for metallic silver electrode is higher than that of other electrodes, which 

improved the electron-transfer rate between molecule and the electrode. The higher charge 

transfer coefficient of metallic silver electrode will lead to a faster increment of reaction rate 

with increasing overpotential. The higher charge transfer coefficient and lower Tafel slope 

observed on the metallic silver electrode is a sign of greater electrocatalytic activity.  

Electro-catalytic activity of the electrodes toward TMX electro-reduction was also investigated 

by electrochemical impedance spectroscopy (EIS). The EIS experiments of the TMX in BR 

buffer (pH 10.38) have been performed and serve as initial insights into the electron transfer 

processes at the electrodes. Nyquist plots (imaginary values Zimag versus real values Zreal) were 

obtained both at the open circuit potential and at overpotential value -1100 mV for the three 

electrodes (Figure 3). Lower charge-transfer resistance was observed on the metallic silver 

electrode, indicating the good conductivity of this electrode. These results illustrate the 

electrocatalytic activity of metallic silver electrode for TMX electro-reduction can be attributed 

to the high rate of electron transfer compared with other electrodes. 
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Figure 3: EIS Nyquist plots obtained for MSE, GCE and CPE electrodes in B-R buffer (pH 10.4) 

containing 1.0 ×10−3 mol L−1 of TMX. 

 

The electroanalysis of TMX on the silver electrode was investigated, using square wave 

voltammetry, in electrolytic support containing TMX. Several electrolytes support have been 

tested to evaluate the electrochemical reduction of TMX in particular phosphate buffer solution 

(pH 7.0 and 8.0), acetate buffer (pH 4.0), hydrochloric acid and britton robinson buffer (pH 2.0 

to pH 12.0). The best resolution is obtained using britton robinson (pH 10.4). Figure 4A shows 

a voltammogram of 1.0×10-3 mol L-1 of TMX, recorded in the potential ranging from 00 to -

1500 mV in a britton-robinson (B-R) buffer (pH 10.4). No obvious redox peaks were observed 

(Blank) in the absence of TMX. While in the presence of TMX, a cathodic peak near the 

potential of -1196 mV was observed and is attributed to the reduction of the functional group 

(NO2) of TMX [21]. 

In the literature, Kumaravel and Chandrasekaran, 2012 [18] reported that the nitro group of 

TMX is reduced to give the hydroxylamine functional group. Jan Fischer et al. 2011 [24] also 

reported that, in the alkaline media, the nitro functional group of nitroaromatic compounds 

could easily be transferred to the (NHOH) group corresponding to 4e-. With the same vision, it 

is thought that the same mechanism of electron transfer can be applied in the reduction of TMX. 

The recorded response depends on parameters of the square potential. Indeed, several 

parameters are taken into consideration, namely, the amplitude, the duration of the step and the 

duration of the pulse. All experiments are examined in a B-R buffer (pH 10.4) solution 

containing 1.0×10-3 mol L-1 TMX. Indeed, we find that the intensity of the cathodic current of 
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TMX varies with the parameters studied. The optimal response is obtained at 10 mV, 1 ms and 

50 ms corresponds to the amplitude, the duration of the step and the duration of the pulse, 

respectively. The choice of these optimal values is based on peak intensity, background noise, 

and signal resolution. 

 

 

Figure 4: (A) Square wave voltammetric response of TMX 1.0×10-3 mol L-1 at metallic silver 

electrode in BR buffer pH 10.4. (B) Square-wave voltammetric response of various concentrations of 

TMX at metallic silver electrode in B-R buffer (pH 10.4): (a) 5.0×10-5 m. 

 

After optimization of the square wave potential variables, we proceed by plotting the calibration 

curve. Figure 4B shows that the intensity of the current peak varies linearly with thiamethoxam 

in the concentration range from 5.0×10-5 to 1.0×10-3 mol L-1 according to equation 1: Ipc = 

15047 [TMX] + 4.999 (R² = 0.97). The standard deviation (SD) is calculated after height 

measurements in the electrolytic solution in the absence of TMX according to the Miller et al. 

relation [25]. The calculated value of SD is used to calculate the detection limit (LOD, 3) using 

the signal-to-noise ratio equal to 3. Indeed, its value equal to 9.58×10-6 mol L-1. The precision 

is 2.67 % for a solution containing 3.5×10-4 mol L-1 of TMX. 

 

2) Calibration graphs of TMX in Zea mays seeds and seedlings 

Under the optimized experimental electrochemical conditions, the SWV is applied for the 

determination of TMX in the extract of Zea mays seeds and seedling (roots, stems, and leaves). 

No trace is detected in the three samples of the Zea mays of the control (Figure 5). For this, we 

proceeded by the contamination of the plant by different concentrations of TMX. The results 
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show that, for all three samples of Zea mays, the intensity of the cathodic peak current increases 

linearly as the concentration of TMX increases in the range from 5.0×10-5 mol L-1 to 1.0×10-3 

mol L-1. The detection limits of TMX are 1.504×10-5, 2.240×10-5 and 1.420×10-5 mol L-1 

obtained respectively in roots, stems and leaves. The precision in the samples of the plant does 

not exceed 4.3 % in the plant samples contained 3.5×10-4 mol L-1 of the TMX. 

 

 

Figure 5: Calibration curves of TMX in (A) seeds, (B) roots, (C) stems and (D) leaves of Zea mays 

extract using SWV method at metallic silver electrode in the concentration range of 5.0×10−5 mol L-1 

to 1.0×10−3 mol L−1 TMX. Inset shows the calibration graph. 

 

B) Physiological effect of thiamethoxam on Zea mays 

1) Thiamethoxam bioaccumulation in Zea mays  

Neonicotinoids are crop protection agents used against sucking pests acting on receptor proteins 

of the insect nervous system. Many reports detail their insecticidal properties [26–29], but 

reports on bioaccumulation and its transfer into plant organs are minimal. In this context, we 
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will confirm the ability of Zea mays plant to accumulate the TMX in seeds and seedlings (roots, 

stem, and leaves) by metallic silver electrode using square-wave voltammetric method (Table 

3). After 8 days of treatment, we find that thiamethoxam accumulated increases proportionally 

with the concentration of thiamethoxam contained in the treatment solutions. At the highest and 

intermediate concentrations (5.00×10-2 and 0.50×10-2 mol L-1), values of 0.022×10-2 and 

0.014×10-2 mol L-1 are detected respectively. These results show that the seeds of Zea mays can 

bioaccumulate TMX during the germination stage.  

The SWV method was also applied for the determination of TMX in seedlings of the plant at 

the metallic silver electrode (MSE), under the optimized instrumental conditions. So, we 

observed that when the plants were exposed to the higher and intermediate concentrations, 

TMX was detected in all the organs and clearly indicating that they could be translocated within 

the plant. TMX accumulation was dose dependent, and the maximum level attained varied in 

each part of the plant (Table 3). Generally, the highest TMX content was in roots, then leaves 

and stem considered as a transitional organ of the TMX towards the aerial part of the plant. 

After exposure of Zea mays to the highest concentration (5.00 ×10-2 mol L-1), TMX content was 

about 0.003×10-2 mol L-1 in the stem, 0.0047×10-2 mol L-1 in leaves and not determined in roots. 

After treatment with the lower concentration (0.05×10-2 mol L-1), no TMX was detected in roots 

and stem, but a value of 0.0004×10-2 mol L-1 was appreciated in the leaves. Previously, it was 

reported that also imidacloprid can be transferred from soil to tomato plants and translocated in 

roots, shoots, leaves, and fruits by monitoring of radioactivity in plant [30]. In another study, it 

was shown that neonicotinoids, such as acetamiprid, thiacloprid, and imidacloprid were 

detected in cotton seed cake by solid-phase extraction technique using HPLC [14]. In a later 

study, TMX was also detected in the potato by voltammetry using a glassy carbon electrode. 

The experiments showed that the voltammetric response depends on the mode of electrode 

surface pretreatment and the polarization mode. The limits of detection and quantitation were 

0.0085 mg/cm3 and 0.028 mg/cm3 respectively [31]. In comparison to our results, the 

applicability of the metallic silver electrode was confirmed for the direct measurements of TMX 

in Zea mays, which present the lower determination limits using SWV voltammetry in 

comparison with the glassy carbon. This method of silver electrode analysis has a high 

sensitivity to TMX and allows for detecting it in the plant even at low concentrations.  
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Table 3: TMX insecticide content in plant organs (seeds, roots, stem and leaves) of Zea mays, after 8 

days of irrigation with TMX at various concentrations ((0.05-5.00)×10-2 mol L-1). 

Concentration 

(×10-2 mol L-1) 

Thiamethoxam concentration in plant organ (×10-2 mol L-1) 

seeds roots stems leaves 

0.05 ND ND ND 0.0004 

0.10 0.004 0.003 0.0009 0.0009 

0.50 0.014 0.035 0.001 0.0022 

3.40 0.017 0.021 0.002 0.0037 

5.00 0.022 _ 0.003 0.0047 

 

2) Effects of TMX on germination and growth process  

The treatment of Zea mays seeds with TMX induced an inhibitory effect on the germination 

process at the highest concentrations (Figure 6 and 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At 5.0 10-3, 3.410-2 and 5.010-2 mol L-1, the rate of germination was 91.65, 41.66, and 38.33 

% respectively. However, the result showed an important positive effect on seeds exposed to 

the lower concentrations (5.010-4 and 1.010-3 mol L-1) in comparison to the control. So, the 

Figure 6: Experiment dose-response curve representing the hormesis effect 

in Zea mays. 
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maximum of the germination rate is obtained using 5.010-4 mol L-1 in treatment indicating that 

this dose of TMX could improve seeds germination of Zea mays.  

A current spectrum is also recorded in the plant treated by different concentrations of 

thiamethoxam (Figure 7). We find that the current intensity increases proportionally with the 

concentration of TMX contained in the treating solutions. The recovery of the extraction of 

TMX from the seeds is decreased. This decrease is explained by the complexity of the plant 

matrix that may contain elements that can prevent the detection of TMX on the silver electrode.  

 

 

Figure 7: TMX effect on Zea mays germination rate, and the current response of treatment 

concentrations detected. 

 

Semra Kilic et al. studied the inhibitory effects of chlorantraniliprole on the biological 

properties of maize seeds [32]. After seven days of the germination, the most devastating 

inhibitory effect on germination parameters of corn seed was the length of the coleoptile (90 

%) at an insecticide concentration of 5.010-4 g Kg-1. Dhanamanjuri et al. [33] studied the effect 

of different pesticides, in particular Captan, Bavistin, Domarck, Blitox and Sitara, on Zea mays 
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plant growth. The result, obtained for this study, indicates that recovery of seeds germination 

and biomass production were slightly influenced. The fungicide Bavistin (Carbendazim) at 

1.010-3 g Kg-1 concentration was the best quantity of the treatments of Zea mays as compared 

to the reference. 

To understand the performance and productivity of plants exposed to insecticides, the analysis 

of plant growth is a necessary step. With this vision, we studied the effect of TMX treatment 

on seedling growth of Zea mays. In figure 8, the effect of TMX is remarkable and similar to 

that observed in germination.  

 

 

Figure 8: The effect of thiamethoxam insecticide on plant and roots lengths of Zea mays grown in peat 

with sand for 10 days, and the current response of various thiamethoxam concentration detected. 

 

Indeed, the plant length of seedlings treated with 5.010-4 and 1.010-3 mol L-1 was 21.63 cm 

and 21.96 cm respectively and therefore lead to an increase with 16.10 % and 17.87 % 

respectively compared to those observed with the control. A negatively affect was observed 

when using 3.410-2 and 5.010-2 mol L-1 which cause a decrease in germination rates to 49.12 

% and 69.07 %. The same phenomenon is observed on the roots by inhibiting the formation of 

primary and lateral roots and it was found that seedling growth was accelerated and inhibited 

at the lowest dose and the highest dose, respectively (Figure 8). The peak intensity of the electric 

current increase with increasing of the TMX quantity in treatment solution from 5.010-4 to 
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5.010-2 mol L-1. The results of the electrochemical analysis are in perfect correlation with those 

of the bioaccumulation of TMX on the one hand and those of the effect on germination and 

growth on the other hand (Table 3 and Figure 6, 7 and 8). 

The research team of Yasemin Coskun et al. showed also that maize growth was significantly 

inhibited by the increase of the concentration of pyriproxyfen, which is in agreement with 

previously published works with thiamethoxam and thiophanate-methyl on wheat seedlings 

[34]. However, it can be generally deduced that the insecticides used in Zea mays agriculture 

lead to the inhibition of plant growth. The TMX has the advantage of promoting growth at low 

concentrations. This result is explained by hormesis. This phenomenon is often dose dependant 

(Figure 6). The originality of our work is to prove experimentally the phenomenon of hormesis 

in maize treated by TMX. It may be observed at subtoxic doses of pesticides or other 

xenobiotics [35, 36]. Hormesis is a stimulatory or positive effect of low stress induced on the 

body by the activation of signaling and regulation pathways independently of cellular damage 

[35]. Several authors have shown, in some plant species, an increase in growth following the 

application of low doses of pesticides [37]. It can be observed, for example, an increase in the 

growth of mays, conventional soybean, Eucalyptus grandis, Pinus L. and Commelia 

benghalensis following the application of glyphosate. These results could be explained by the 

fact that low doses of glyphosate can stimulate photosynthesis, although the causes of this 

increase are not well characterized [38]. These results demonstrate the importance of 

considering the pollutant dose in studies.  

It should be noted that low doses of pesticides could cause the same effects of high doses on 

plants because of their intensive use and thus their accumulation. Studies are therefore 

necessary to understand the mechanisms underlying these responses, by taking into account the 

simultaneous presence of many pollutants of different chemical classes, which leads to the 

complexity of environmental pollution. 

 

3) Effect of TMX on the histological structure of the root in Zea mays  

The results of the histological study showed that exposure to TMX induced a net histological 

modification of the primary root tissue of Zea mays. These cytological modifications were 

materialized by a change in the structure of primary root tissue and in cell size of hypoderm, 

and inhibition of absorbent root hairs formation (Figure 9). All these histological anomalies 

could explain the negative impact caused by TMX treatment on the growth and development 

of plant roots.  
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Figure 9: Transversal cross-sections of primary root of Zea mays showing histological changes 

induced by exposure to TMX treatment. (A) Control, (B) Exposed treatment at 1.0×10-3 mol L-1 dose, 

(C) Exposed treatment at 5.0×10-2 mol L-1 dose. 

 

The result shows clearly the main histological difference between seedlings treated by TMX 

and no-treated ones. In comparison with the control, the root cuts observed by microscopy 

indicate that the effect was dose dependent. At 1.010-3 mol L-1 we observed (Figure 9B):  

✓ Thick pericycle with slightly larger cells of green color (lignification) 

✓ The presence of some absorbent root hairs more or less short compared to the control 

✓ Presence of a hypodermis with a non-thick wall like that of the control 

✓ Presence of 14 protoxylem and 6 meta xylem with 1/6 small 2 to 3 seated outer cells of 

cortical parenchyma of more or less small size with lignification tendency 

However, at 5.010-2 mol L-1, we observed (Figure 9C):  
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✓ Pericycle with rounded cells with a more or less green color (lignification) 

✓ Absence of absorbent root hairs 

✓ Presence of a more developed hypodermis with thick wall 

✓ Presence of 14 protoxylems and 8 meta xylems all of the large size 

✓ Cortical parenchyma cells smaller in size at 2 to 3 seated 

Histological observation confirms this disorder, which is due to the bioaccumulation of TMX 

in roots transferred from the soil, and to the sharp decrease in the number of mitoses in the root 

meristem in the poisoned plant. It is probable that the inhibition of mitotic activity is the main 

cause of the decrease in root growth, and finally of the general growth of the plant [38]. This 

decrease in mitotic activity may be due in part to a decrease in the supply of sucrose to the root 

meristem, following blockage of starch degradation in leaf chloroplasts. 
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IV. Conclusion 

To summarize, the electrochemical study of organic nitro-aromatic thiamethoxam was 

investigated using metallic silver electrode (MSE). The finding showed an excellent 

electrocatalytic performance of MSE toward target compound compared to other electrodes 

such as glassy carbon electrode and paste carbon electrode. In addition, The MSE was used for 

the determination of TMX the extract of the different part (roots, stems, and leaves) of plant 

Zea mays using square-wave voltammetry. The bioaccumulation of TMX in seedling growth 

was proved with the presence of the reduction peak. The current intensity of this peak varied 

linearly with the concentration of TMX bioaccumulated in seedling growth. The accumulation 

of TMX affects the structure of the Zea mays plant by modifying roots, stems, and leaves. The 

result was confirmed by the histological sections, which showed a change in cell size of Zea 

mays especially from the 1.0 × 10−3 mol L−1 concentration of TMX. 
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Chapter III 
 

Impregnation of silver particles on graphite 

for thiamethoxam analysis 
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I. Introduction  

Electrochemistry is essentially a surface and interface science that studies chemical reactions 

which take place at the interface of electrode and electrolyte. Electrodes are the key part in 

electrochemical measurements, thus modification of their size and surface structure offers 

possibilities to create novel electrochemical systems[1, 2]. Carbon and their variety has played 

for a long time an important role in solid electrode development, also favoured by its rich 

surface chemistry which has been exploited to influence surface reactivity[3, 4]. Due to its good 

electrical conductivity, a wide operable potential window in either aqueous or non-aqueous 

solutions, carbon-based materials exhibited a lower over potential and a wider useful 

electrochemical range [5–9]. The modification of carbon electrode has reached considerable 

attention in recent years because it offers a great opportunity to use various modifiers to the 

development of several types of electrodes and devices which aimed at improving the 

sensitivity of the analyses and lowering the detection and quantification limits [10–12].  

Many reports were devoted to analysis the pesticides using carbon electrode [13–16]. Among 

these the neonicotinoids group which considered a new generation of insecticide widely used 

recently in agriculture. Zsigmond Papp, et al. investigated three kinds of modified carbon paste 

electrodes (CPEs) based on tricresyl phosphate, silicone oil, and n-tetradecane, for the detection 

of imidacloprid [17]. Valéria Guzsvány and co-workers applied a bismuth bulk modified carbon 

electrode for the determination of selected nitroguanidine neonicotinoid insecticides 

clothianidin, imidacloprid [18]. Herein we focused on thiamethoxam (EZ)-3-(2-chloro-1,3-

thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene (nitro) amine, which considered a 

most water-soluble broad-spectrum insecticide, widely used for seed treatment, soil and foliar 

[19].  

Recently, research works was studied the use of electrochemical methods for thiamethoxam 

analysis [20–24]. Indeed, Kumaravel et al. developed a nanosilver/SDS modified glassy carbon 

electrode as a sensing probe for the electrochemical determination of TMX with the limit of 

detection of 0.1 µmol L-1 [21]. The direct determination of TMX at a non-toxic mercury 

meniscus modified silver solid amalgam electrode (m-AgSAE) was reported by P. Chorti et al. 

[22], Veronika Urbanová prepared a glassy carbon electrode modified with graphene oxide for 

the electrochemical sensing of insecticides TMX and imidacloprid [23]. Maria Putek et al. 

present the use of a renewable silver-amalgam film electrode (Hg(Ag)FE) for the determination 

of the TMX [24].  

In other hand, electrodes modified by metal particles have attracted attention of researchers for 

the sensing of pesticides due to their unusual physical and chemical properties [25, 26] 
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especially silver particles, based on their ability to support electrocatalytic activity, low toxicity, 

and high demand in sensor applications [27].  

This chapter presented two preparation routes of carbon materials-based silver particles, which 

consist to the solid reaction under nitrogen flow and electrochemical deposition. The 

morphology, distribution and size of silver modified carbon materials were characterized by 

XRD, and SEM. In addition, the catalytic activity of silver particles impregnated and 

electrodeposited on graphite surface in reducing TMX was investigated. The reduction 

mechanism of TMX and effect of experimental conditions were studied using cyclic 

voltammetry, square wave voltammetry, Tafel plots and chronoamperometry.  

 

II. Experimental  

1) Chemicals and reagents 

Thiamethoxam obtained from Syngenta international AG (Basel, Switzerland), silver nitrate 

(AgNO3 p.a 98%), sodium hydroxide, phosphoric acid, acetic acid and boric acid were 

purchased from Merck (Darmstadt, Germany), Fluka (st.gallen, Switzerlan ), Riedel de  Haen 

(seelze, Germany) potassium ferrocyanide [K4(FeCN)6], potassium ferricyanide [K3(FeCN)6] 

were obtained from Loba Chem. These chemicals were used without any purification. Graphite 

was provided from carbon Lorraine (Lorraine, France ref 9900). The Britton-Robinson (B-R) 

buffers electrolytes (pH 10.4) were prepared in the laboratory by mixing 3.556 g of sodium 

hydroxide, 2.178 g of phosphoric acid, 1.334 g of acetic acid, 1.374 g of boric acid in 1 L of 

deionized water. A 1.0×10−3 mol L−1 stock solution was prepared by adding of the 

thiamethoxam mass in Britton-Robinson (B-R) buffers. Graphite was provided from carbon 

Lorraine (Lorraine, France ref 9900). 

 

2) Instruments  

Electrochemical measurements (cyclic voltammetry, linear sweeping voltammetry, 

chronoamperometry, square wave voltammetry and electrochemical impedance spectroscopy) 

were carried out by Voltalab potentiostat (model PGZ 100; Eco Chemie B.V, Utrecht, The 

Netherlands) operated by voltamaster 4 software as an electrochemical system data processing 

software, in conventional three electrodes connection including: silver modified graphite 

carbon (Ag@GrCE) as working electrode, Ag/AgCl/3M KCl reference electrode and platinum 

wire counter electrode.  

The pH measurements were done using a (Radiometer, SENSIONTM, pH31, Leganes Spain) 

was employed for adjusting pH values.  
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X-ray diffractometer (XRD) spectra were performed by (XRD: Cu Ka radiation, XPERT-PRO), 

(Kcu = 1.5406 nm) produced at 30 kV and 25 mA. The diffraction angles were scanned between 

10 and 80 with a step size of 0.02 per second and scan speed of 1°/min. 

SEM images and EDX spectra of the prepared materials were obtained using the JOEL JSM-

IT100 scanning electron microscope with FEG (field emission gun) system equipped with an 

energy dispersive X-ray analyzer at an accelerating voltage of 20 kV. 

Fourier transform infrared (FT-IR) spectra of studied materials were performed in the frequency 

range of 400 to 4000 cm-1 by VORTEX 70 DTGS spectrometer using KBr pallet method. Dried 

Ag@GrC samples (1 mg) were mixed with KBr powder (100 mg) in an agate mortar. The 

mixture was pressed into a pellet under 10 tons load for 2–4 min, and the spectrum was recorded 

immediately. The signal from a pure KBr pellet was subtracted as the background. 

 

III. Results and discussion 

A) Impregnation of silver particles on graphite by solid reaction  

1) Impregnation procedure  

The modification graphite electrode was prepared by thoroughly mixing carbon graphite carbon 

powder and silver nitrate (AgNO3) by different ratio by weight (w/w) in an agate mortar. The 

obtained powders were calcinated at different temperature (200, 300, 400, 500°C) for 12h in 

the kiln under nitrogen atmosphere. The resulting powders were mixed with paraffin oil a 

mortar by exhaustively hand mixing with a pestle and then incorporated into the cavity of 

working electrode (geometric surface area about 0.1295 cm2). The external surface of electrode 

wase smoothed on a paper sheet. Electrical contact was established by a bar of carbon. The 

resulting electrode is hereby denoted as Ag-GrCE. 

 

2) Characterization of synthesis powder  

The formations of the silver nanoparticles on carbon heated at different temperatures were 

studied using X-ray diffraction profile (Figure 1a). For all characterized Ag-CP samples, the 

major characterization peaks (metallic silver nanoparticles) were found at 38.15, 44.27, 64.45 

and 77.34° respectively corresponding to (111), (200), (220) and (311) orientation planes.  

The XRD pattern showed that the silver particles have a crystalline and face-centred cubic 

(FCC) configuration in nature [28, 29]. The intensity of the diffraction peaks increased with 

increasing the calcination temperature from 200 to 400 °C, due to the crystallite size growth 

and better crystallization. The crystallite size of the silver nanoparticles was calculated by the 

Scherrer equation [30]: 
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𝐷 = 𝑘𝜆 𝛽 cos 𝜃⁄                                                                                                 (1) 

 

Where D = average crystallite size, K is shape constant, λ is wavelength of X-ray, β is Full 

Width Half Maximum (FWHM) of refection (in radians) located at 2θ and θ are angle of 

reflection (in radians) was used to relate the crystallite size to the line broadening. 

 

 

Figure 1: (a) XRD pattern of modified Ag-CP heated at different temperature (200°C to 400°C) under 

nitrogen atmosphere, (b-d) W-H plots, (e) crystallite size-microstrain variation of Ag-CP with treatment 

thermal (200 to 400°C). 

 

Table 1 illustrates the average crystallite size calculated for the intense peaks of three samples 

carbon decorated silver particles (Ag-CP). The average crystallite size was found to be about 

14, 16 and 42 nm, for Ag-CP (200 °C), Ag-CP (300 °C) and Ag-CP (400 °C) respectively. 

Silver crystallite size increases with increasing in treatment temperature, this indicates that our 

synthesized material is structured as nanocrystalline.  
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Table 1: Crystal parameters obtained from XRD of Ag-CP (200, 300 and 400°C) samples. 

Samples 2θ of intense peak hkl FWHM (Degree) FWHM (Radian) 
Average cristallite 

size (nm) 
A

g
-C

P
E

 2
0
0
°C

 

37.95 111 0.524 0.00914089 

14.1447882 

 

44.583 200 1.158 0.02021811 

64.44 220 0.364 0.00634978 

77.484 311 1.031 0.01800267 

A
g
-C

P
E

 3
0
0
°C

 

38.156 111 0.462 0.00805933 

16.5669403 
44.342 200 0.434 0.00757089 

64.454 220 0.506 0.00882689 

77.398 311 0.613 0.01069344 

A
g

-C
P

E
 4

0
0
°C

 

38.212 
111 0.273 0.00476233 

42.0206948 

 

44.403 
200 0.368 0.00641956 

64.494 
220 0.407 0.00709989 

77.447 
311 0.103 0.00179678 

 

The Williamson-Hall approach is method to measured lattice microstrain distribution in the 

sample and their effects on peak width. The scherrer equation depicts the line broadening 

(FWHMD) of a bragg reflection in relationship with crystallite size [30]: 

 

𝐹𝑊𝐻𝑀D = 𝑘𝜆 𝐷 cos 𝜃⁄                                                                                   (2) 

 

The lattice strain induced broadening (FWHMε) is given bay Stokes-Wilson formula as[31]: 

 

𝐹𝑊𝐻𝑀𝜀 = 4𝜀 sin 𝜃              (3) 
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Where ε is microstrain. To assess the influence of the simultaneous contributions of crystallite 

size and strain on the widening of the line (β) when both approaches are operational, the W-H 

method is used [32] to evaluate the effect of thermal treatment over silver particles decorated 

graphite carbon: 

 

𝐹𝑊𝐻𝑀β = 𝐹𝑊𝐻𝑀D +  𝐹𝑊𝐻𝑀𝜀           (4) 

 

𝛽 cos 𝜃 =  𝜅𝜆

𝐷
+ 4𝜀 sin 𝜃             (5) 

 

By drawing the straight line in the plot of βcosθ vs 4sinθ, the microstain and can be estimated 

from the slope figure 1b−d. Variations of microstain at various treatment temperatures were 

depicted in the figure 1e. The negative slopes were observed at all treatment temperature (200 

°C to 400 °C) in the corresponding W-H plot, suggest the presence of compressive strain in the 

lattice, which can due to defects, and lattice mismatch. The sample heated at 300 °C reveal 

linearity plot (Figure 1c), on the other hand for others samples (200 °C and 400 °C) nonlinearity 

was observed (Figure 1b, d). This result demonstrated homogeneity in the nanoparticles size 

and the crystallinity order for sample heated at 300 °C. It was found that calcination temperature 

is an important factor in the synthesis of Ag nanoparticles on graphite with specific property as 

(catalytic property). 

Furthermore, figure 2a−e depict the W-H plot of various carbon- silver weight ratio (20, 40, 50, 

60, 80 wt%). The negative slopes were observed for different ratio of CP/Ag (20 to 80 wt%), 

shows good dispersion of Ag nanoparticles over carbon substrate surface area. Especially, for 

sample (60 wt% of Ag) exhibit an excellent homogeneity of particle size was demonstrated by 

good linearity of the βcosθ versus 4sinθ. It is interesting to note that the doping of higher amount 

of Ag and increase of temperature shifting the slope values from negative to positive. 

Figure 3 depicts the nyquist plots of Ag−CPE prepared at different temperatures (200 °C to 400 

°C) in the frequency range from 10−1 to 105 Hz measured at the open-circuit potential with an 

AC perturbation of 5 mV. However, for all modified electrodes, the arcs small at high frequency 

and the vertical lines at low frequency were observed, in term of charge transfer resistance (Rct). 

The Ag-CPE (300 °C) presents lower Rct than that of Ag-CPE (200 °C, 400 °C) (Table 2), 

which means that effective separation of electron–hole pairs and the fastest interfacial charge 

transfer to the electron donor/electron acceptor occurred by incorporation of silver 

nanoparticles on carbon with annealing temperature. The capacitive behavior of 
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electrochemical surface area (ECSA) is difficult to measure accurately, but this can be seen by 

calculating the double layer capacitances (Cdl) that is proportional to ECSA [33, 34].  

 

 

Figure 2: W-H plots (a-e), crystallite size-microstrain variation of Ag-CP with carbon/silver weight 

rapport heated at 300 °C. 

 

            Table 2: EIS parameters of various Ag –CPE electrodes. 

Electrode Rs (Ω cm-2) Rc(Ω cm-2) Cs(mF cm-2) Cdl(mF cm-2) 

Ag-CPE 200°C 41.19 118.4 8.48 38.1 

Ag-CPE 300°C 40.50 69.49 10.26 57.8 

Ag-CPE 400°C 41.79 77.82 1.83 48.1 
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Figure 3: Nyquist plots of Ag−CPE prepared at different temperatures (200 to 400 °C) in 0.1 mol L-1 

KCl solution containing equimolar concentration (5.0×10−3mol L−1) of [FeCN6]3-/4- , Ag/CP = 60 %. 

 

3) Catalytic effect of synthesis powder in reducing thiamethoxam 

Electrochemistry investigation of TMX was performed out in Britton-Robinson buffer (B-R; 

pH = 10.4) containing TMX by cyclic voltammetry (CV). The latter were recorded between -

100 and -1400 mV using different scan rate values depending on experimental purposes. The 

square wave voltammetric parameters include a pulse of 50 mV, a frequency of 25 Hz and 

amplitude modulation of 10 mV. The chronoamperometric tests were carried out at applied 

potential of -1000 mV and deposition time of 3 min. For the EIS measurement, the potential 

amplitude of ± 5 mV and frequency range of 0.01 to 105 Hz were adopted.  

The overpotentials (η) were measured against Ag/AgCl electrode and corrected with respective 

to the reversible hydrogen electrode (RHE) according to the Nernst equation (ERHE= 

EAg/AgCl+0.0591pH+0.198). Double layer capacitance Cdl, was estimated on the basic of CV 

tested between -400 to 700 mV with various scan rates from 20 to 100 mV.s-1, Cdl was 

calculated by plotting the j= ja-jc against scan rate according to equation j=Cdlv [35, 36]. 

Figure 4 exhibits the square wave voltammetry (SWV) plots of the reduction of TMX at 

Ag−CPE prepared at different temperatures (from 200 °C to 400 °C) with Ag/CP = 60% under 

a flow of nitrogen. The modified electrodes Ag−CPE were demonstrated to have remarkable 

electro-catalytic activity towards TMX reduction as compared to unmodified graphite electrode 

(CPE). In addition, the current intensity of TMX reduction at Ag−CPE (200 °C) is 50.55 µA, 

at Ag−CPE (300 °C) is 34.98 µA, and at Ag−CPE (400 °C) is 22.46 µA. The higher peak current 
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was observed using Ag−CP heated at 300 °C, which might due to the interaction between active 

(111) facets of silver and nitro group of thiamethoxam. This electrode improved also the 

catalytic properties for the reduction of thiamethoxam.  

 

 

Figure 4: Square wave voltammetric plots of the reduction of TMX on unmodified electrode (CPE) and 

modified electrodes (Ag−CPE) prepared at different temperatures (200 °C to 400 °C). 

 

The chronoamperometric measurements were employed to evaluate the effect of heated 

temperature of (Ag-CP) on the electroreduction of TMX. The figure 5 represents the current-

time profiles obtained for three modified electrodes using a potential of -1000 mV. As seen, the 

behavior is typical of that expected for a mediated reduction. The current intensity of TMX at 

Ag−CPE (300 °C) is higher than that measured using others electrodes: Ag−CPE (200 °C) and 

Ag−CPE (400 °C), indicating that nanoparticles silver prepared at 300 °C show high catalytic 

performance to reduce TMX. This result confirms the previous results obtained by SWV.  

The corresponding Tafel plots of Ag−CPE (200 °C), Ag−CPE (300 °C) and Ag−CPE (400 °C) 

are shown in figure 6. The fitted Tafel slope of the Ag−CPE (300 °C) was measured to be (-

101.97 mV dec−1), which is lower than Ag−CPE (200 °C) (-126.92 mV dec−1) and Ag−CPE 

(400 °C) (-122.84 mV dec−1), manifesting most favourable electroreduction of TMX while 

better reduction process was observed with Ag−CPE (300 °C) electrode. 
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Figure 5: Chronoamperogramms of thiamethoxam reduction (1.0×10−3 mol L-1) with applied potential 

of -1000 mV at Ag-CPE prepared at different temperature, with Ag/CP = 60%. 

 

 

Figure 6: Corresponding Tafel plots, of different Ag-CPE (200, 300 and 400 °C) in 1.0×10−3 mol L−1 

TXM, Ag/CP = 60%. 

 

To better understand the mechanism of the electrocatalytic activity of Ag−CP heated at 300 °C, 

the Tafel plot relates the overpotential (η) as a function of logarithm of current density (j) was 

investigated by fitting the linear portion of the graph to Tafel equation (η= b logj + a), where b 
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corresponds to the Tafel slope value. To achieve a current density (j) of 10 mA cm-2, Ag-CP 

treated at 300 °C requires a η10 of -101.74 mV, which obviously lower than those of Ag−CP 

treated under a nitrogen atmosphere at 200 °C (-122.76 mV) and 400 °C (-126.84 mV). The 

overpotential obtained with Ag-CPE (300 °C) is lower than those obtained with others electrode 

such as carbon paste electrode (CPE), metallic silver electrode (MSE) and glassy carbon 

electrode (GCE) (Table 3). This suggests a synergic enhancement between carbon and silver 

nanoparticles. The idea of modifying graphite by silver using a heat treatment, which shows 

good results with regard to the catalytic activity of TMX, inspired when see that the unmodified 

graphite electrode shows a poor activity comparing to metallic silver electrode which exhibits 

an acceptable catalytic activity toward TMX reduction. The remarkable activity of Ag−CPE 

can be attributed to (i) small sized, good homogeneity and high dispersion of active metal 

nanoparticles on graphite powder and (ii) synergic effect between host carbon and guest silver 

nanoparticles. 

 

Table 3:Thiamethoxam reduction Tafel parameters of various electrodes. 

Electrode 
Tafel slope 

mV dec-1 
J0 µA cm-2 

Overpotential j = 10 

mA cm-2 
[Refs] 

Ag-CPE 200°C -122.84 1.20 -122.76 This work 

Ag-CPE 300°C -101.82 1.17 -101.74 This work 

Ag-CPE 400°C -126.92 1.19 -126.84 This work 

MSE -151.76 1.00 -151.87 [20] 

GCE -272.53 0.99 -272.12 [20] 

CPE -238.74 0.99 -238.95 [20] 

 

4) Electrochemical behavior of thiamethoxam  

The voltammetric behavior of the TMX at Ag−CPE (300 °C) was investigated in 1.0×10−3 mol 

L−1 B-R as supporting electrolyte. A single irreversible, reduction peak of the TMX was 

observed at quite negative potentials. The peak potential (Ep) and the peak current intensity (Ip) 

varied linearly with log (v) and log v1/2, respectively. This result shows that TMX reduction 

was controlled by a diffusion process. The peak potential exhibited linear dependence with pH 

solutions in the range of pH ≤ 11.50: Epc/V = -0.7683- 0.0326 pH (R2= 0.983). According to 

the Nernst equation E = 0.0592m/n pH (n: number of electrons transferred, m: number of 

protons transferred), we find that the number of electrons transferred was twice as the number 

of protons transferred in electrochemical reduction of TMX [37]. 
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The chronoamperometry was also employed to investigate TMX reduction at Ag−CPE (300 

°C) (Figure 7A). Chronoamperometric measurements of thiamethoxam were done for various 

TMX concentrations. Generally, for an electroactive material (TMX in this case) with a 

diffusion coefficient of D, the current intensity for the electrochemical reaction (at mass 

transport limited rate) is described by the Cottrell equation [38]: 

 

I=nFAD1/2Cb
−1/2t−1/2                (6) 

 

Under diffusional process, a plot of I versus t−1/2 will be linear and D value can be calculated 

(Figure 7B.) The mean value of the D was found to be 1.17×10−6 cm2
 s−1

. 

 

Figure 7: (A) Chronoamperometric measurements for various concentration of TMX (a) correspond to 

1.0×10−5, (b) 5.0×10−5, (c) 1.0×10−4, (d) 5.0×10−4 and (e) 1.0×10−3mol L-1 at Ag−CPE (300 °C) with 

applied potential of -1000 mV. (B): plots of I vs t-1/2 obtained from chronoamperogrammes, (C): plot of 

Ic / IL vs t1/2 of Ag-CPE, Ag/CP =60%. 

 

Chronoamperometry method can also be employed to evaluate the catalytic rate constant k, for 

the reaction between TMX and Ag−CPE (300 °C) according to Galus equation [39]: 

 

IC /IL = π1/2γ1/2 = π1/2(kCbt)
1/2            (7) 

 

Where IC is the catalytic current of TMX at Ag−CPE (300 °C), IL is the limited current in the 

absence of TMX, γ = kCbt, t is the time elapsed, and Cb is the bulk concentration of TMX. 
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Based on the slope of the IC /IL versus t1/2 plot, k can be obtained for a given TMX concentration. 

From the values of the slopes (Figure 7C), the average value of k was found to be 6.7×104 mol−1 

s−1. 

 

5) Thiamethoxam analysis in water  

The square wave voltammetry was used for the determination of thiamethoxam. Indeed, the 

current intensity is sharper and more sensitive at low concentrations. It exhibited a linear 

relationship over the concentration range 1.0×10−4 to 1.0×10−3 mol L−1 of thiamethoxam (Figure 

8). The linear regression equation was obtained to be Ipc(µA) = 16132 [TMX] + 2.9821 (R2 = 

0.9894). The limit of detection (LOD) was 3.6×10−5 mol L−1, based on 3×SDb/S were SDb and 

S represent the standard deviation of the blank for eight repetition and slope of calibration curve 

respectively. The relative standard deviation (RSD) of the modified electrode for eight 

measurements was 2.015 %, suggesting that the precision and reproducibility of the proposed 

detection technique was quite promising (Table 4). High performance in the electrochemical 

process of the proposed electrode can be explained by the dispersion, homogeneity and 

nanoparticles size of the powder (Ag-CP) heated at 300 °C with carbon- silver weight ratio 

(60wt%). In addition, the current of TMX reduction obtained with Ag−CPE retained 83.17 % 

of its initial value after storage for 30 days in the standard conditions. The results suggested 

that Ag−CPE possessed acceptable storage stability. 

 

Table 4: Analytical characteristics obtained for TMX determination using square wave voltammetry 

technique. 

Characteristic   Value 

Linear range / µmol L-1  100 _ 1000 

LOD / µmol L-1  36.04 

LOQ / µmol L-1  120.13 

Correlation coefficient (r)  0.98 

Slope (µA L µmol-1)  16132 

Intercept / µA  2.98 

RSD (%)  2.02 
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The interferences remove is always a challenging work in electrochemical sensing field. So, a 

systematic study of interference of possible coexisting substances in real samples was 

performed to evaluate the selectivity of Ag-CPE in reducing TMX. The results indicated that 

100-fold of 4-nitrophenol, 2-nitroaniline, 4-nitroaniline; 50-fold of 2,4-dinitrophenylhydrazine 

didn't interfere with the SWV signal of 5.0×10-4 mol L-1 TMX (peak current change < ± 5%). 

These results indicated that the modified electrode Ag−CPE heated at 300 °C showed excellent 

selectivity for TMX determination, and could be successfully employed for TMX analysis in 

real samples. 

 

 

Figure 8: SW voltammograms obtained at Ag-CPE (300°C) for different concentrations of 

thiamethoxam (a) 1.0×10−4, (b) 2.0×10−4, (c) 4.0×10−4, (d) 6.0×10−4, (e) 8.0×10−4 and (e) 1.0×10−3mol 

L-1 insert calibration curve, Ag/CP = 60%. 

 

The performance of Ag−CPE heated at 300 °C was evaluated in the determination of 

thiamethoxam in wastewater and ground water samples. The detection of TMX was 

accomplished according to the procedure mentioned in the section of analytic performance. The 

recovery of TMX in the wastewater and groundwater samples were between (89.89 to 99.32 
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%) and (86.82 to 98.08 %) respectively, with the relative standard deviation (RSD) agreeable 

(3 measurements). The results (Table 5) indicated that the recovery of TMX on the modified 

electrode Ag−CPE was satisfactory. 

 

Table 5:Recovery test of added samples. 

Sample 
Added concentration 

[×102 µmol L-1] 

Found concentration 

[×102 µmol L-1] 
Recovery [%] 

RSD n=3 

[%] 

Wastewater 
10 9.93 99.32 7.47 

5 4.49 89.93 1.40 

Groundwater 
10 9.80 98.68 2.76 

5 4.38 87.67 5.42 

 

B) Electrodeposition of silver particles on graphite powder 

1) Electrodeposition procedure and its efficiency for thiamethoxam sensing 

Electrochemistry is a science of surfaces and interfaces that studies the chemical reactions that 

take place at the electrode-electrolyte interface. Electrodes are the main constituents in all 

electrochemical applications. The ability to modify their surface structure allows 

electrochemical systems to evolve. Electrodeposition is simple, controllable, low-cost and time-

saving technique in comparison with other methods, such as physical and chemical vapour 

deposition, hydrogen plasma, hydrothermal and sonochemical methods. Also offer the 

advantage of being able to assembling nanostructured multi-component films. Various features 

of silver electrodeposition on electrode surface to control the composition and morphology of 

incorporated particles in the coatings were reported for electroanalytical applications, such as 

organic compound and heavy metal analysis, via different manufacture and flexibly design of 

silver electrodeposited. Majidi et al. introduced a novel electrochemical sensor based on 

AgNDs supported by graphene nanosheets modified GCE for imidacloprid determination [2]. 

Laghrib et al. determined para-nitroaniline and studied its electrocatalytic reduction using silver 

particles electrodeposited onto carbon-paste electrodes by cyclic voltammetry [40, 41]. An 

electrodeposition of silver amalgam particles (AgAPs) on basal-plane pyrolytic graphite 

electrode (bPGE), and prove on 4-nitrophenol [42]. Feng-Hsuan Cho et al. prepared silver 

dendrites (Ag-Ds) by electrodeposition on a glassy carbon electrode (GCE) and investigated its 

capability in sensing 4-nitrophenol, via surface enhanced raman scattering (SERS) using laser 

excitation at 633 nm [43]. Jia Bi has developed an electrodeposition approach to provide silver 

nanoflowers composed of many silver nanoleaves as sensitive surface enhanced raman 
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scattering sensing substrates [44]. In the same context, the results present by Joaquín Klug et 

al. showed direct interaction between the Myristoylated Alanine-Rich C Kinase Substrate 

(MARCKS) effector domain (ED) and Ag nanoparticles (AgNPs) electrochemicaly deposited 

on the silicon platform as surface enhanced raman scattring substrate [45]. Also, Mehdi 

Baghayeri and co-work adopted an electrochemically deposition of silver nanoparticles on the 

film of a metformin functionalized multi-walled carbon nanotube modified glassy carbon 

electrode (Met-MWCNT/GCE) for entacapone (ENT) determination [46]. Simultaneous 

electrochemical sensing of chloramphenicol and metronidazole are investigated by Haiyun Zhai 

et al. using electrodeposited silver nanoparticles/sulfonated functionalized graphene modified 

glassy carbon electrode (AgNPs/SF-GR/GCE) [47]. The same method was reported by Lorena 

Athie Goulart et al. for analysis of four phenolic compounds using a glassy carbon electrode 

(GCE) modified with electrodeposited silver nanoparticles onto multi-walled carbon nanotubes 

[48]. A glassy carbon electrode (GCE) modified by electrodeposited silver nanoparticles 

AgNPs as an electrochemical nanoaptasensor was used to determine trinitrotoluene [49]. 

Mercury ions were detected by silver nanoparticles as signal reporter selectively 

electrodeposited on glassy carbon electrode modified with DNA-based AuHg amalgam [50]. 

All these modifications were done in order to enhance the electrode sensitivity and others lead 

to high electrocatalytic activity. Tiwari et al. have investigated an electrodeposition technique, 

which provided a suitable route for the synthesis of silver coated nitrogen rich mesoporous 

carbon (Ag/NMC) composite for the electrocatalytic activity towards ORR (oxygen reduction 

reaction) [51]. Agnieszka Brzózka and co-works reported the elecrodeposition of silver 

nanohemisphere (Ag-NHS) and nanowire (Ag-NW) array into nanoporous aluminum oxide 

(AAO) templates where they compared their electrocatalytic properties against silver rod (Ag-

bulk) electrode in an alkaline solution [52]. In our study, due to high importance of 

electrochemical deposition process, the chronoamperometry was employed to deposit silver 

particles onto graphite carbon. Indeed, the chronoamperometry was employed for the 

electrodeposition of silver particles on graphite electrode, in the electrolyte (volume 25 mL) of 

Britton-Robinson pH 2.0 containing 8.0×10-4 mol L-1 of silver nitrate. For this procedure, we 

use an electrode cavity (0.13 cm2) and a graphite bar to finding the electrical contact. The 

prepared electrode carefully washed by distilled water and transferred into a cell (25 mL 

volume) containing thiamethoxam in Britton-Robinson pH 10.4. The square wave voltammetry 

was reported in the range from -400 mV to -1400 mV. This obtained modified electrode, 

denoted as Ag@GrCE, was used for thiamethoxam determination. 
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The electrocatalytic capacity of the Ag@GrCE toward electrocatalysis of TMX reduction was 

evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The cyclic 

voltammograms show a cathodic peak at -1186 mV and -1083 mV on graphite carbon electrode 

(GrCE) and graphite modified with electrodeposited silver particles (Ag@GrCE) respectively 

(Figure 9a). Under identical conditions, square wave voltammetry (SWV) confirms the same 

behavior of thiametoxam. In fact, a reduction peak is observed at -1186 mV and -1083 mV on 

GrCE and Ag@GrCE respectively (Figure 9b). Therefore, the Ag@GrCE presents great 

enhanced current response of the reduction peak, which due to the enhanced in surface 

conductivity with the presence of silver particles. Moreover, the peak potential shifted ~100 

mV positively in the TMX reduction potential, which due to the electrocatalytic activity of 

silver particles [53]. 

 

 

Figure 9: (a) Cyclic voltammetric response, (b) square wave voltammetric response of 1.0×10-3 mol L-

1 TMX respectively at electrodeposited silver particles on graphite carbon electrode (Ag@GrCE) and 

graphite carbon electrode (GrCE) in R-B buffer pH 10.4. 

 

2) Optimization of electrodeposition conditions 

For deposit of the silver particles onto carbon with catalytic properties, it is essential to optimize 

the parameters influencing the detection of thiamethoxam by the SWV (deposition time, 

concentration of silver in electrolyte, solution pH and applying potential …). The effect of the 

deposition time of silver particles on the SWV response of TMX was investigated in a solution 

of B-R buffer (pH 10.4) containing 1.0×10-3 mol L-1 of TMX in the potential range from -0.4 to 

-1.4V. The maximum peak current was obtained with 4 min (Figure 10a), more this time, the 

peak current values decrease.  
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The applying potential is an important parameter in chronoamperometric measurements. For 

the right choice of this potential, several potentials were tested (Figure 10b) to have a good 

electrodeposition of silver particles on graphite surface. The Ag@GrCE electrode prepared at 

applied potential of -400 mV shows higher sensitivity toward TMX sensing. 

 

 

Figure 10: Influence of the experimental parameters, on chrononoamperometric electrodeposition: (a) 

the electrodeposition time, (b) the applying potential and (c) the amount of AgNO3 on the reduction peak 

current of 1.0×10-3 mol L-1 TMX. Square wave voltammograms measurement were performed in B-R 

buffer (pH 10.4). 

 

The amount of silver on the electrode surface is also necessary to assess the electrochemical 

determination of thiamethoxam. Therefore, it was optimized by varying the concentration of 

AgNO3 in range from 1.0×10-4 to 1.0×10-3 mol L-1 of AgNO3 in B-R buffer pH 2.0 with the 

evaluation of its effect on response of TMX. Under optimized parameters, applying potential 

of -400 mV for 4 min, the 8.0×10-4 mol L-1 of AgNO3 shows the highest peak intensity. 

However, high concentration of AgNO3 shows low response of TMX (Figure 10c). This 

behaviour was attributed to the formation of a large number of small clusters randomly 

distributed on the GrC electrode surface [54]. The electrodeposition parameters were as 
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follows: 4 min, 8.0×10-4 mol L-1, pH 2.0 and -400 mV for deposition time, concentration of 

silver in electrolyte, solution pH and applying potential, respectively. 

 

3) Physicochemical characterization of electrodeposit powder 

The surface morphology of the Ag@GrCE was investigated by scanning electronic microscope 

(SEM). The image revealed that carbon had two-dimensional flat morphology exhibits a 

homogeneous and compact layer with small particles and full coverage (Figure 11a). To 

confirm the presence of the silver particles, the EDX was used. In EDX analysis, figure 11b 

shows the peaks in silver region confirming the presence of elemental silver [55]. To confirm 

this result, XRD pattern silver/ graphite were obtained as illustrate in figure 11c.  

 

 

Figure 11: (a) SEM image of Ag@GrCE (b) EDS spectrum of Ag@GrCE (c) XRD spectrum of the 

Ag@GrCE. 
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The four diffraction peaks are observed at 2θ of 38.15, 44.19, 64.41 and 77.32, which can be 

designated respectively to diffraction from the planes (111), (200), (220) and (311) of the face 

centred structure of Ag(0), (JCPD, file No. 4-0183) [56]. 

The electroactive surface area (ESA) has been estimated using cyclic voltammetry of solution 

containing 1.0×10-2 mol L-1 of [Fe(CN)6]
3-/4- containing 0.1 mol L-1 KCl at different scan rates 

(ν) ranging from 0.005 V s-1 to 0.3 V s-1 according to Randles-Sevcik equation 8. 

 

Ip = 2.69×105×n3/2×A×D1/2×C×ν1/2                                            (8) 

 

Both the peak currents (Ip) of the GrCE and Ag@GrCE were proportional to the square root of 

scan rate (Figure 12a-b). Considering D = 7.6 10-6 cm2 s-1 and n=1 for a 1.0×10-2 mol L-1 of 

[Fe(CN)6]
3-/4- and from the slopes values of the straight lines. The ESA of GrCE and Ag@GrCE 

were obtained are 1.08 ×10-4 cm2 and 2.25×10-4 cm2 respectively. The electroactive surface area 

of Ag@GrCE increased approximately by 48.04% compared to the GrCE, demonstrating the 

enhancing conductivity of modified electrode. 

To calculate the heterogeneous electron transfer (ET) rate k°, the Nicholson method was used 

from the peak-to-peak separation ΔEp of the cyclic voltammogram. As shown in Figure 12a-b, 

the ΔEp is increased with scan rate, indicating a quasi-reversible nature of reaction, using 

following equation 9 [57]: 

 

Ψ = k°[πnDνF / RT]-1/2                                                        (9) 

 

Where ψ is the dimensionless kinetic parameter, n is number of electrons transferred, D is the 

diffusion coefficient, F faradic constant, R the gas constant, T the temperature of solution and 

ν the scan rate. In practice, the kinetic parameter ψ is calculated from ΔEp for one step, one 

electron process at a set temperature 298 k, using an appropriate practical function (equation 

10) [58]: 

Ψ = (-0.628 + 0.021ΔEp) / (1-0.0071ΔEp)                               (10) 

 

The heterogeneous electron transfer (ET) rate constant k° was determined from the slope of ψ-

[πnDF / RT]-1/2 ν-0.5 dependence corresponding to equation 2 as shown in Figure 12a-b, while 

the operating curve determined according to this approach is limited to ΔEp occurred in the 

interval ˃ 212 mV. A method devised by Kochi and Klinger permits the use of much large dEp 

for k° evaluation following equation 11 [59]: 
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K° = 2.18[Dαnν / RT]-1/2Exp[-(α2Nf / RT) ΔEp]                        (11) 

 

The ET rate k° was calculated to correspond to 8.84×10-4 cm s-1 and 1.09×10-3cm.s-1 for both 

electrode GrCE and Ag@GrCE respectively using the above equations. The results suggesting 

that the electron transfer reaction was easily transferred on the surface modified silver particles. 

For explain the effect of electrodeposition potential onto formation of the silver particles, the 

surface properties of the different electrodes prepared were investigated using electrochemical 

impedance spectroscopy (EIS). Also, to evaluate the electron-transfer kinetic of the modified 

electrode by silver particles, solution of 0.1 mol L-1 KCl containing 1.0×10-2 mol L-1 of 

[Fe(CN)6]
3-/4- was used. The nyquist diagrams of Ag@GrCE prepared at different applied 

potentials (-300 mV, -400 mV and -500 mV) and GrCE were recorded in the range of 100 Hz 

to 100 MHz (Figure 12c). Indeed, the dielectric and insulating properties of the 

electrode/electrolyte interface depend on the charge transfer resistance Rct, which corresponds 

to the diameter of the semicircle observed at high frequencies in Nyquist diagrams. All 

Ag@GrCE showed a higher electron transfer kinetic compared of unmodified electrode 

prepared GrCE (Figure 12c). The Rct of the Ag@GrCE (-400 mV) was measured to be (72.09 

ohm cm2), which is lower than Ag@GrCE (-300 mV; 120.3 ohm cm2) and Ag@GrCE (-500 

mV; 89.31 ohm cm2). The Ag@GrCE (-400 mV) presented an excellent electronic property, 

forming a fast electron conduction pathway between the electrode and the electrochemical 

probe when compared with others electrodes. 

Following EIS characterization and to investigate the functional groups of modified graphite, 

FT-IR measurements were recorded at the range 4000- 400 cm-1. The spectra obtained for silver 

particles electrodeposited on graphite electrode applying various deposition potentials (-300, -

400 and -500 mV) are given in figure 13. A broad band at 3444 cm-1 is attributed to the –O-H 

group into the external surface of graphite carbon. The two bands at 2921 and 2855 cm-1 in the 

higher frequency region of spectra correspond to C-H stretching mode, while the two shoulder 

peaks at 1632 and 1580 cm-1 can be ascribed to aromatic C=C and C-C or C-O groups, which 

exists on a sample of silver-graphite carbon (Ag@GrC) surface as functional groups prepared 

applying a potential of -500 mV.  
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Figure 12: Cyclic voltammetry scan rate studies for [Fe(CN)6] 3-/4- at (a) GrCE and (b) Ag@GrCE 

Inset: ψ versus [πDFnν/RT]-1/2; and Ip (µA) versus ν1/2. (c) The Nyquist diagrams of the impedance (Zim 

vs. Zre) for Ag@GrCE prepared at different applied potentials (-300 mV, -400 mV and -500 mV) and 

GrCE, other condition: 0.01 mol L-1 K3[Fe(CN)6] and 0.1 mol L−1 KCl solutions. 

 

 

Figure 13: IR spectra of modified graphite carbon based on electrodeposited silver particles (Ag-GrC) 

prepared applying various potentials (-300, -400 and -500 mV). 

 

The spectra of the Ag@GrC samples prepared applying -400 and -300 mV obtained are similar 

to that Ag@GrC prepared at -500mv surface, with the exception that all the bands shift to low 

wave numbers, which suggest that some changes of the environment of silver particle deposited 

on the surface of graphite carbon. No new covalent bonding between the graphite carbon and 
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Ag particles were formed. Which may be explained by silver particles immobilized and electron 

density of graphite carbon higher leading to weak O-H, C-H and C=C bands. 

 

4) Reactional mechanism of thiamethoxam on electrodeposit powder  

i) Scan rate effect 

The electrochemical mechanism of electrode process studied by the relationship between the 

peak current and potential scan rate. The scan rate effect on the reduction of 5.0 × 10−2 mol L-1 

thiamethoxam at the silver particles deposited onto graphite electrode was investigated by 

cyclic voltammetry. With the increase of the scan rate, the reduction peak currents of TMX 

enhanced and peak potentials shifted to more negative values of potential. There is no reverse 

peak obtained for all the cyclic voltammetric scans, which shows that TMX undergo irreversible 

reduction on electrodeposited silver particles modified graphite electrodes (Figure 14a).  

The linear relationship between cathodic peak current of TMX (Ic) and scan rate (ν) plot is 

shown in the inset of figure 14b, where the linear equation is Ip = 0.0239 +1.420 ν, R2=0.966. 

Moreover, a plot of the cathodic peak current versus the square root of scan rate (ν 1/2) yielded 

a straight line in the range of 10 to 400 mV s-1 (Figure 14c) according to the equation Ip (µA) = 

0.0267+ 1.17 ν1/2 (V1/2 s1/2) (R2 = 0.994). To confirm the TMX reduction control process, we 

rely on the slope value of linear plot between log (scan rate) and log (peak current) (Figure 

14d). This slope value was found to be about 0.55, which very close to theoretical value (0.5) 

for the diffusion-controlled reaction [60, 61].  

Therefore, the result indicates that the electro-catalytic reduction of thiamethoxam at the 

Ag@GrCE was a typically diffusion-controlled electron transfer mechanism. As for an 

irreversible electrochemical reaction, the Ep,c is determined by the following equation 12 [62].  

 

𝐸𝑝, 𝑐 = 𝐸° −
𝑅𝑇

𝛼𝑛𝐹
ln (

𝛼𝑛𝐹

𝑅𝑇𝐾
) − (

𝑅𝑇

𝛼𝑛𝐹
) ln (𝜐)                                   (12) 

 

E° is formal redox potential, k is the standard heterogeneous rate constant of electron transfer, 

n is electron transfer number involved in rate determining step, υ is scan rate, R is the gas 

constant, T is the absolute temperature, and F is the Faraday constant. According to the linear 

relationship of Ep,c versus ln υ, the value of αn is defined according the slope (RT/αnF) of the 

fitted line to be -0.0353. Usually, α is simulated to be between 0.3 to 0.7 in totally irreversible 

electrode process [63–65], then, the value of the electron transfer number n must to be around 

3, and α is 0.3. The reduction of aromatic nitro compound R-NO2 to hydroxylamine R-NHOH 
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in aqueous media take place via four electrons. In alkaline medium, this reduction has been 

highlighted; essentially a 1e- reversible reduction is observed, followed by 3e- irreversible 

reduction [66–68]. In the present case, the studying peak correspond to second step three 

electrons and four-proton of nitro group TMX electro-reduction at Ag@GrCE in the alkaline 

media, because the 1e- reversible reduction of RNO2
- is very small under these conditions, 

which can have illustrated as shown in scheme 1:  

 

 
 

           Scheme 1: mechanism of electroreduction of organic nitro-group TMX in alkaline media. 
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Figure 14: (a) Cyclic voltammograms recorded with carbon paste electrode modified electrodeposited 

silver particles in B-R buffer pH 10.4 containing 5.0×10-2 mol L-1 TMX at different scan rates. (b) The 

plot of cathodic peak current versus scan rate. (c) The Ic vs square root of scan rate. (d) The relationship 

between the logarithm of the peak currents versus the logarithm of scan rate. 

 

Consequently, the electrochemical mechanism consists of a mixture of diffusion and 

adsorption-controlled processes depending on the scan rate [69–72]. The adsorption capacity 

(Г) for the reduction of thiamethoxam was determined to be 3.76×10-2 mol cm-2, from the slope 

of the linear plot of Ip vs scan rate following equation 13: 

 

Ip = n2F2AГv/4RT                                                           (13) 

 

Where n is the number of electrons involved in the reaction; A is the geometric surface area of 

the electrode (0.1256 cm2); v is scan rate; R, F and T have their normal meaning.  
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ii) Chronoamperometric study 

Chronoamperometric method was used to evaluate the catalytic performance of proposed 

electrode toward the electro reduction of thiamethoxam (Figure 15).  

 

 

Figure 15: The plots of Ic vs. t−1/2 (s−1/2) obtained from chronoamperograms of TMX concentrations (a) 

1.0×10−5, (b) 2.5×10−5, (c) 2.5×10−4 and (d) 1.0×10−3 mol L-1 with a potential step at −1100 mV in BR 

buffer (pH 10.4). 

 

The diffusion coefficient (D) was found to be about 1.55×10-2 cm2 s−1 from the slope of the Ic 

vs t−1/2 plot for different TMX concentrations  recorded at potential of -1100 mV, and employing 

the following Cottrell equation 14 [73]: 

 

I=n.F.A.D1/2.C.π−1/2.t−1/2                                                        (14) 

 

The rate constant of the electrocatalytic thiamethoxam reduction on Ag@GrCE was also 

determined using obtained chronoamperograms and the Galus equation 15 [74–76]: 

 

Ic/Ib = π1/2 (k.C.t)1/2                                                            (15) 

 

Where C is the concentration of thiamethoxam in bulk solution, t is elapsed time, k is catalytic 

rate constant, Ib and IC are the currents in the absence and presence of thiamethoxam, 

respectively. Therefore, Galus plots were made between Ic/Ib and t1/2 for various concentrations, 

the mean value of the rate constant (k) was obtained to be about 1.67×104 mol L−1 s−1. 
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5) Thiamethoxam analysis in orange and tomato juices samples 

Square wave voltammetry was recorded under optimum instrumental setting: pulse 50 mV, 

amplitude modulation 10 mV, pH solution (10.4) and duration 1 mint. Square wave 

voltammetry responses of various concentrations of thiamethoxam in B-R buffer at Ag@GrCE 

are shown in figure 16a. The cathodic peak current increased with increasing of TMX 

concentration ranging from 5.0×10-6 to 1.0×10-3 mol L-1. The calibration plots illustrated good 

linear relationship between the peak current and the concentration of TMX (inset graph in figure 

16a). The linear regression is depicted by following equation. Ic(µA) = 57647[TMX] + 8.9179 

with correlation coefficient of 0.9804. The limit of detection (LOD) and quantification (LOQ) 

were determined to be 1.92×10-6 and 6.34×10-6 mol L-1 respectively, calculated by equations 

LOD= 3×σ/s and LOQ = 10×σ/s where σ is the standard deviation of the blank and s is the slope 

of the calibration curve [77]. This value of detection limit is lower than that reported for a 

sensor-based graphene oxide [23] and glassy carbon electrode [78].  

For evaluating the repeatability of this electrode, the TMX detection was performed 8 times 

repeatedly with an identical electrode. The relative standard deviations were 2.46 % and 4.37 

% for 5.0×10-4 mol L-1 and 8.0×10-5 mol L-1, respectively, showing a satisfactory repeatability 

of the Ag@GrCE. The storage stability of the modified electrode was also evaluated by 

measuring square wave voltammetry responses after storing the modified electrode for 2 weeks. 

The peak current slightly decreased of 10 % of the original response, showing an acceptable 

stability of the Ag@GrCE. 
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Figure 16: (a) Responses of square-wave voltammetry to increasing concentration of TMX (a: 5.0×10-

6, b: 8.0×10-6 c: 1.0×10-5, d: 2.0×10-5, e: 4.0×10-5, f: 8.0×10-5, g: 1.0×10-4, h: 2.0×10-4, i: 5.0×10-

4, j: 8.0×10-4 mol L-1), with corresponding linear regression. All measurements were performed in B-

R buffer (pH 10.4) with electrodeposited Ag-particles modified GrCE. (b) Interferences study of different 

concentrations of nitro-organic species (1.0×10-5, 1.0×10-4 and 5.0×10-4 mol L-1) on the reduction 

signal of 5.0×10-4 mol L-1 TMX. 

 

The selectivity of proposed electrode for the detection of thiamethoxam was examined in the 

presence of several nitro aromatics compounds (with different concentrations 1.0×10-5, 1.0×10-

4 and 5.0×10-4 mol L-1) such as 4-nitrophenol (4-NP), 2-nitroaniline (2-NA), 4-nitroaniline (4-

NA) and 2,4-dinitrophenylhydrazine (2,4-DNPH). Britton-robinson buffer solution (pH 10.4) 
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containing 5.0×10-4 mol L-1 TMX was used (Figure 16b). The presence of these species did not 

show significant change in cathodic current intensity of TMX. The signal change observed was 

less than 5%, which indicates that organic species did not interfere the detection of TMX. 

Therefore, the proposed electrochemical sensor presents good selectivity toward TMX. 

In order to evaluate its practical application, the electrodeposited silver particles on graphite 

electrode was employed to analyze TMX in orange and tomato juices samples. To do 

experiment, 25 mL of juice samples containing B-R buffer (pH 10.4) were tested. The 

concentration of TMX was found is lower than the LOD. So, both orange and tomato juices 

were contaminated with three knowing amounts of TMX. The recovery factor ranged from 

95.82% to 103.28% for juice tomato sample and between 90.17% and 97.001% for juice orange 

sample with coefficients of variation lower than 4.01% (Table 6). These values belong the range 

70–130% that fixed by the Environmental Protection Agency (EPA) [79]. From these 

measurements, it is obvious that developed electrode can be suitable for analysis of TMX in 

real samples. 

 

Table 6: Recovery test of in orange and tomato samples. 

Sample 
Added concentration 

[×102 µmol L-1] 

Found concentration 

[×102 µmol L-1] 
Recovery [%] 

RSD n=3 

[%] 

Orange juice 

10 9.70 97.00 1.02 

5 4.70 93.71 1.30 

1 0.91 90.17 3.30 

Tomato juice 

10 10.3 103.28 4.01 

5 4.37 92.07 0.91 

1 0.95 95.82 3.58 

 

 

IV. Conclusion 

In conclusion, a thermal solid reaction under nitrogen flow and electrodeposition process for 

the synthesis of silver particles modified graphite materials were discussed. The morphology 

and structured characterisation of prepared modified carbon materials revealed the formation 

of silver nanocrystalline and microparticles uniformly distributed on the carbon graphite 

material. Electrochemical measurement showed that silver microparticles modified graphite 

electrode shows enhanced current. In addition, the electrocatalytic activity of modified 

electrode was investigated for electroreduction of thiamethoxam insecticide. Furthermore, 
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under the best experimental conditions, the square wave voltammetry method was used to 

determine thiamethoxam with lower limit of detection in B-R buffer pH 10.4. Furthermore, the 

presented electrodes were successfully displayed excellent catalytic property toward 

thiamethoxam analysis in water samples and in orange and tomato juices. Finally, the analytical 

performance of as-prepared electrodes toward determining TMX in term of limit of detection 

was compared. It was found that the electrodeposition of silver shows a lower limit of detection 

than that obtained with silver impregnation, which reflect the improve of electrochemical 

sensing of our electrode as predicted. 
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I. Introduction  

Nanomaterials (NMs) have sizes in the range of 1–100 nm, which have become one of the most 

fascinating materials in the past ten years [1–3]. They possess strong size- and shape-

dependence chemical and physical properties, which are quite different from those of their 

corresponding bulk materials, mainly because of quantum effect [4]. The past decade have 

witnessed progressive advances in the synthesis, characterization, and application of a variety 

of NMs, including gold nanoparticles (Au NPs) [5], gold nanodots (Au NDs) [6, 7], quantum 

dots (QDs) such as CdSe and CdTe [8, 9], magnetic nanoparticles (MNPs) [10, 11], titanium 

dioxide nanoparticles (TiO2 NPs) [12], silica nanoparticles (Si NPs) [13], carbon quantum dots 

(C–dots) [14, 15], graphene [16, 17], metal nanoclusters (NCs) [18], and so on. The as-

synthesized NMs have been widely employed in many fields because of their unique size- and 

shape-dependence optical (e.g., surface plasmon resonance (SPR), surface enhanced Raman 

scattering (SERS), and fluorescence), electronic, magnetic, and catalytic properties, which 

make them ideal candidates as signaling elements for being sensitive biosensors [19–21]. In 

general, most NMs are prepared through bottom-up or top-down approaches; “bottom-up” 

approaches involve the self-assembly of small sized structures into larger structures and “top-

down” approaches are production of nanoscale structures from large materials [22]. 

Among the NMs, nanoparticles (NPs) have attracted a great attention because of the incredible 

electrical, magnetic, thermal, and catalytic characteristics that are generated when their particle 

size is miniaturized [23]. Their contributions to health, electronics, manufacturing, 

environment, agriculture, and different biomedical industries have been reported [24, 25]. They 

can be generally divided into metal-based, metal oxide-based, and carbon-based NPs. Recently, 

metal nanoparticles are the main scientific interest and play an important role in many different 

aspects, including catalysis [26], sensing [27], biomedicine [28] optics [29] and electronics [30]. 

Particularly, silver nanoparticles (Ag-NPs) have been used to improve the performance of a 

variety of instruments due to their considerable physicochemical features [26, 31]. As well as, 

because of their low cost and better conductivity than noble metals (e.g., Pd, Au, and Pt), Ag-

NPs are a promising candidate for various electrochemical sensors to detect nitro-aromatic 

chemicals[32–34]. In addition, Ag-NPs behaved as a nanoelectrocatalyst, resulting for a more 

effective electron-transfer mechanism during electrocatalysis. They are a well-known 

electrocatalyst for nitro-aromatic compound reduction [35, 36]. Electrochemical sensors, such 

as AgNP-based electrochemical sensors, are considered promising for detecting organic 

pollutants with sufficient sensitivity and selectivity compared with optical sensors.65 

Additionally, they are less time-consuming and easier to set up. The direct detection of targeted 
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analytes makes electrochemical sensors feasible for in situ studies. Moreover, electrochemical 

sensors can monitor changes in analyte concentration with time. 

AgNPs could be incorporated into electrodes through different in situ and ex situ approaches 

(Figure 1). The in-situ approach depends on the electrochemical deposition of AgNPs at 

electrode surfaces through the electrochemical reduction of Ag+ ion with subsequent nucleation, 

aggregation and coalescence of metallic particles (Figure 1A). Electrochemical deposition is 

considered the most frequently used method for electrode modification [37, 38]. The ex situ 

approaches include drop casting, spin coating, sticking, transfer sticking, and carbon paste 

modification. The drop casting technique depends on the placement of AgNPs directly on 

electrode surfaces with subsequent drying for solvent evaporation.[39] (Figure 1B). In the spin 

coating technique (Figure 1C), AgNPs are directly placed on the surface of a stirring electrode 

attached to the centre of the spin coater via a vacuum system [40]. In the sticking technique 

(Figure 1D), the electrode is dipped in an AgNP suspension mixed with electrolytes for a certain 

time[39]. Similarly, the transfer sticking technique is accomplished by dipping the electrode in 

an AgNP suspension only, which is then transferred to the electrolyte for the stripping process 

(Figure 1E). The modified electrode could be prepared by incorporating a paste, formed using 

AgNPs, paraffin oil, and graphite, into the electrode [41]. Notably, gold, glassy carbon, and 

graphite electrodes were mainly used for electrode modification with AgNPs. 

This chapter described a direct chemical reduction method for the synthesis of silver 

nanoparticles and their catalytic effect toward electroreduction of TMX insecticide was 

investigated. The silver ions Ag+ are stabilized by chitosan so the nanoparticles could be kept 

from agglomerating during the synthesis and reduced by NaBH4. The electrochemical 

characterisation of modified electrode was performed using cyclic voltammetry (CV), and 

electrochemical impedance spectroscopy (EIS). Finally, the electroanalytic activity of synthesis 

material was investigated against the electroreduction of TMX insecticide using square wave 

voltammetry (SWV). 

 

II. Experimental section  

1) Chemicals and instruments  

The britton-robinson buffer (RB) pH 10.4 was used as the supporting electrolyte for 

electrochemical studies. It was prepared from phosphoric acid, boric acid, acetic acid and 

sodium hydroxide, whose were provided by Riedel de Haen (Seelze, Germany), Fluka (St. 

Gallen, Switzerland) and Merck (Darmstadt, Germany) with analytical reagent grade. 
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Figure 1: Electrode modification using AgNPs through electrochemical deposition (A), drop casting 

(B), spin coating (C), sticking (D), transfer sticking (E), and carbon paste (F), with subsequent AgNP 

stripping. 

 

All electrochemical measurements were performed in a classic three-electrode cell using an 

analyser potentiostat voltalab (model PGZ 100, Eco Chemie B.V, Utrecht, The Netherlands) 

equipped with voltamaster 4. software. A carbon paste electrode (CPE) modified with chitosan-

AgNPs was utilised as the working electrode, an Ag/AgCl (KCl, 3 M) electrode as the reference 

electrode, and Pt wire as the counter electrode.  

 

2) Analytical procedure 

i) Synthesis of silver-chitosan nanoparticles 

The suspension of AgNPs-chitosan material was prepared as reported in our previous work 

[42]: 0.10 g of chitosan was dissolved in 10 mL of 2% acetic acid and the mixture was stirred 

overnight to obtain a homogeneous solution. Next, 10 mL of this solution, 1 mL of 10 mmol 

L−1 AgNO3 and 0.8 mg of NaBH4 were mixed and slowly stirred at this temperature for 1 hour. 

The colour change in the solution (from colourless to yellow) indicates the formation of silver 

nanoparticles. 
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ii) Preparation of electrode 

The carbon paste electrode was immersed in the as-prepared colloidal solution of chitosan-nano 

silver for an optimized accumulation time about 12 min under slight stirring. The as-modified 

electrode was rinsed with distilled water and then exposed under dark condition with standard 

temperature around (20 ± 2). 

 

iii) Plant samples preparation 

Thiamethoxam was extracted from 2 g of tissue (roots and leaves) of Zea mays and bean 

Phaseolus vulgaris L. plants by grinding with 100 mL of ultra-pure water. 

The resulting residue was sonicated (3 kHz ×40 min) and centrifuged (1792 ×g ×10 min). After 

three extractions (100, 100, and 50 mL), the water was removed via rotary evaporation at 80 

°C, to about 5 mL of water [43]. The concentrated volume was brought to 25 mL with water.  

The pH of the solution was controlled by adding Britton–Robinson pH 10.4 buffer components. 

The solution was transferred to the electrochemical cell for TMX analysis using SWV. 

 

iv) Electrochemical measurements 

Cyclic voltammetry (CV) measurements were carried out in 0.1 mol L-1 B-R (pH 10.4) 

containing 1.0×10-3 mol L-1 TMX with the potential range between -0.40 V and -1.40 V. For 

square wave voltammetry (SWV) measurements, experimental parameters were as follows: the 

scan range was from -0.40 V to -1.40 V, the scan rate, pulse amplitude, step and duration were 

10 mV s-1, 50 mV, 10 mV, and 1s, respectively. For impedance spectroscopy a sinusoidal AC 

potential with 5 mV was applied in a frequency range between 0.1–100 kHz. All experiment 

results in this study were the average of three parallel experiments unless otherwise stated. 

 

III. Results and discussion  

1) Characterization of synthesis nanoparticles  

According to our previous research [42], the chitosan stabilized silver-nanoparticles material 

was a subject of many characterisation technics including UV–vis spectroscopy (UV–vis) and 

XRD, SEM and FT-IR. The finding demonstrates that the synthesis of colloidal chitosan-

AgNPs with particle sizes between (35–45 nm). A typical XRD pattern of the synthesized 

chitosan-Ag NPs was found to possess a face-centered cubic (FCC) lattice. The presence of Ag 

NPs was confirmed by four Bragg reflections at 2 = 37.36, 44.47, 64.80, and 77.44, which 

correspond to the (111), (200), (220), and (311) plans, respectively. In addition, the SEM image 

illustrated that the nanoparticles are relatively uniform and seemed like quasi-spheres. 
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Furthermore, infrared spectrometry is used to confirm the interaction between silver and 

chitosan. 

 

2) Electrochemical responses of synthesis nanoparticles  

Cyclic voltammetry (CV) was recorded for three electrodes in 5.0 ×10-3 mol L-1 [Fe(CN)6]
4-

/[Fe(CN)6]
3- prepared with 0.1 mol L-1 of KCl in a range of potential from -0.2V to 0.6 V (Figure 

2A). The significance of this study was to explore the best electrode with enhanced electron 

transfer properties. all electrodes present cathodic and anodic peaks. In terms of reversibility, 

the peak-to-peak separation potential (ΔEp) were calculated to be 156 mV, 186.1 mV and 

258.42 mV for CHI-AgNPs / CPE, CHI / CPE and CPE respectively. The [Fe(CN)6]
4- / 

[Fe(CN)6]
3- redox couple seemed reversible at the CHI-AgNPs / CPE electrode, with a peak 

currents ratio of Ipa/Ipc= 0.99 or nearly 1.0 for a reversible process, and a peak separation of 156 

mV indicating fast electron transfer at electrode. 

In addition, in term the nano-silver modified electrode shows an enhancement in term of current 

response a potential shift of 60 mV compared to unmodified (graphite) electrode. In other hand, 

the obtained results indicate good electron transfer and large surface area formed by silver 

nanoparticles stabilised with chitosan for easy diffusion of electrolytes to the active site of the 

electrode, and easy flow of electron due to the redox reaction of the Ag nanoparticles at the 

electrode. 

The electroactive surface area (ESA) has been estimated using cyclic voltammetry of at 

different scan rates (ν) ranging from 0.005 V s-1 to 0.1 V s-1 according to Randles-Sevcik Eq. 

(1):  

 

Ip = 2.69105n3/2AD1/2Cν1/2                                                           (1) 

 

Both the peak currents (Ip) of the CHI-AgNPs / CPE, CHI / CPE and CPE were proportional 

to the square root of scan rate (not shown). Considering D = 7.6 10-6 cm2 s1 and n = 1 for a 5.0 

×10-3 mol L-1 of [Fe(CN)6]3-/4- and from the slopes values of the straight lines. The ESA of CHI-

AgNPs / CPE, CHI / CPE and CPE were obtained are 3.24 ×10-4 cm2, 2.42 × 10-4 cm2 and 2.25 

× 10-4 cm2 respectively. When compared to CPE, the electroactive surface area of CHI-AgNPs 

/ CPE enhanced by about 30.55 %, exhibiting the improved conductivity of modified electrode. 
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Figure 2: (A) cyclic voltammograms obtained at scan rate of 10 mV/s-1 (B) Nyquist plots of CPE, 

CHI/CPE, and CHI-AgNPs/CPE in a 0.1 M KCl solution containing the redox couples of 5 mM 

[Fe(CN)6]4-/[Fe(CN)6]3-. 

 

For investigating the performance of electrode materials in electrochemistry, the determination 

of the heterogeneous electron transfers rate constant k°, is crucial. The rate constant indicates 

the speed of electron transfer between an electroactive species and an electrode surface, as well 

as whether the electrode material influences the overall rate of the electrochemical reaction. It 

can also be used to estimate the allotrope of the material in question [44]. The procedure of 

Nicholson [45] can be used to determine k° by using a working curve Ψ-(ΔEp × n) accompanied 

by an Ψ-v1/2 plot (Eq. 2) in a quasi-reversible system, where Electron transfer rate is comparable 

with diffusion rate, results in a ΔEp rise with scan rate (v) [45]: 

 

Ψ = K°[RT/пnFD]0.5 v-0.5                                                          (2) 

 

Where Ψ is the dimensionless kinetic parameter, ν the scan rate, D is the diffusion coefficient, 

F faradic constant n is number of electrons transferred, R the gas constant, and T the temperature 

of solution. from the ΔEp of the cyclic voltammogram for one electron transfer, the empirically 

determined working function [46] , was used to calculate ψ for a given ∆Ep:  

 

Ψ = (-0.628 + 0.021∆Ep)/(1 – 0.0071∆Ep)                                           (3) 

The Nicholson approach is only applicable for assessing quasi-reversible reaction with ∆Ep < 

220 mV. Hence, an explicit expression for k°, Eq. (4) demonstrated by Klingler and Kochi [47] 

was used for larger ∆Ep. 
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K° = 2.18[DβnvF/RT]1/2exp[-(β2nF/RT) ΔEp]                                      (4) 

 

Equation 4 was rearranged in the following form: 

 

Ψ = 2.18[β/п]0.5exp[-(β2F/RT)ΔEp]                                                 (5) 

 

The Eq. 4 and 5 were used together to estimate values from the ΔEp experimental data, 

regardless of the scan rate used. From the slope of the plot Ψ- [пDnF/(RT)]-1/2 v-1/2, the kinetic 

parameter k° could be easily assessed.  

The ET rate k was estimated to correspond to 4.77×10-4 cm s-1, 4.12×10-4 cm s-1 and 2.00×10-4 

cm s-1 for CHI-AgNPs / CPE, CHI / CPE and CPE electrodes respectively. The results 

suggesting that the electron transfer reaction was easily transferred on the surface modified 

silver nanoparticles. Furthermore, the nanomaterial components provide an abundance of active 

sites and faster electronic transduction to electroactive species across the surface of the 

developed sensing platform. 

For a fundamental understanding of the charge transfer mechanism, the immobilisation growth 

and the impedance changes at the electrode/analyte interfacial surfaces, EIS was carried. Figure 

2B shows the Nyquist plots obtained for the CPE and CHI / CPE and CHI-AgNPs / CPE 

electrodes in 5.0 ×10-3 mol L-1 [Fe(CN)6]4- / [Fe(CN)6]3- prepared with 1.0 mol L-1 of KCl 

electrolyte. The large semi-circle indicates a relatively high charge transfer resistance (Rct) 

caused by the insulating properties of the electrode-electrolyte interface. The values of the 

equivalent circuit elements are mentioned in table 1. The Rct value of the CPE was ≈1220 Ohm 

cm2, and the Rct values of the CHI / CPE and CHI-AgNPs / CPE electrodes decreased with 

surface modification and were equal to 407.4, and 102.5 Ohm cm2, respectively, indicating a 

higher electron transfer rate for the redox probe at CPE decorated silver nanoparticles surface 

in comparison to unmodified electrode. 

Table 1: Impedance data acquired for CPE and chitosan – nanosilver modified electrodes in 5 mM 

[Fe(CN)6]4-/[Fe(CN)6]3- at a stable potential of 1.0 V (vs Ag|AgCl). 

Electrode Rs / Ohm cm2 Rct / Ohm cm2 C / nF cm-2 

CPE 53.52 1220 232.1 

Cs / CPE 47.1 407.4 437.5 

Cs-AgNPs / CPE 69.46 102.5 347.6 
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It can be concluded from CV and EIS data that the silver nanoparticles are successfully 

immobilized to CPE which offers a large electroactive surface area, excessive binding 

groups/sites that promote adsorption of target analyte species, and efficient charge transfer 

features. 

 

3) Electrochemical behaviour of thiamethoxam 

The SWV method was used to examine electrochemical behaviour of TMX at CPE, CHI / CPE 

and CHI-AgNPs / CPE in 0.1 B-R (pH = 10.4). In figure 3, a reduction peak of TMX appeared 

around -1.15V, -1.10V and -1.04V at CPE, CHI /CPE and CHI-AgNPs / CPE respectively. 

  

 

Figure 3: Square wave voltammetric response of 1.0×10-3 mol L-1 TMX respectively at CHI-AgNP/CPE, 

CHI/CPE and CPE in R–B buffer pH 10.4. 

 

A clear shift in potential at the silver nanoparticles modified electrode (with 75mV) suggests 

an electrocatalytic activity of silver nanoparticles towards electroreduction of nitro group 

compound TMX. In addition, in terms of current density, the CHI-AgNPs / CPE electrode 

showed a significant improvement in the sensing of our analyte. These results can be explained 

not only because of the electrocatalytic capacity of silver but also because of the large 

electroactive specific surface area which was enhanced by the surface modification with 

chitosan, as well as the synergistic effect between chitosan and silver nanoparticles enable the 

composite material have tremendous benefits in electroanalysis and electrocatalysis. 
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Cyclic voltammetry was used to evaluate the effect of scan rate on the reduction of 1.0×10-3 

mol L-1 thiamethoxam at CHI-AgNPs / CPE. Figure 4A illustrates the correlation of scan rate 

with the peak currents (Ip) and potential peak (Ep) of TMX, which probed by varying scan rates 

from 5 to 100 Mv s-1. As the scan rate raised, the cathodic peak potential (Ep) shifted to more 

negative values, which is characteristic of an irreversible process.  

 

 

 

Figure 4: (A) Cyclic voltammograms recorded at different scan rates using the CHI-AgNP/CPE in B-

R buffer at pH 10.4 containing 1.0×10-3 mol L-1 TMX, (B) graphs of cathodic peak currents vs the square 

root of scan rate, (C) graphs of log(I) vs log(v). 

 

The plot of the cathodic peak current versus square root of scan rate (ν) was established, 

yielding a linear regression with a correlation factor of R2 = 0.991 that suggest the likelihood 

of the diffusion-control process (Figure 4B.). However, the slope value of log (Ip) versus log 

(v) was found to be 0.388, (Figure 4C), suggesting that the reduction process is governed by 

diffusion. This conclusion was supported by recording successive cycles of the cyclic 

voltammogram (instead of just one). The Ip value remained relatively steady for the second and 

subsequent cycles, showing that the electrode surface was not covered by adsorption. 

The number of electrons (n) transferred during the electrochemical reduction of TMX was 

estimated using Laviron’s equation, that describes irreversible electrode processes [48]. The 

value of αn can be deducted from the slope of the Ep vs. log v curve and was calculated to be 
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0.8. for n= 1.60 and α= 0.5, where n is stoichiometric number of the electron involved in the 

electrode reaction and α is the transfer coefficient. 

The influence of pH on cathodic peak current (Ip) and cathodic peak potential (Ep) in B-R buffer 

containing 1.0×10-3 mol L-1 of TMX was studied using SWV (Figure 5A). The peak positions 

are clearly influenced by pH, as they shifted to more negative values as pH increased. This 

behavior indicates that protons are involved in the electrochemical reaction of TMX [49].  

 

 

Figure 5: SWVs of CHI-AgNPs modified CPE electrode in B-R buffer solutions with different pH values, 

in the presence of 1.0×10-3 mol L-1. 

 

The relationship between Ep and pH can be expressed as Ep (V) = -0.0604 pH – 0.601 (R2 = 

0.985) (Figure 5B). The slope was close to the theoretical value (-0.059 V / pH), indicating that 

the electroreduction of THM on CHI-AgNPs / CPE involved an equal number of electrons and 

protons [50]. The electron transfers number (n) is computed as 2, implying that two electrons 

and two protons are involved in the TMX reduction on the modified electrode. 

 

To the best of our knowledge, the reduction of the nitro group typically occurs in two steps; 

through the reduction of the nitro group to hydroxylamine (Eq. (6)), followed by the reduction 

of the hydroxylamine to amine (Eq.(7)) [51]: 

 

R_NO2 + 4e- + 4H+ ↔ R_NHOH-                                                 (6) 

 

R_NHOH + 2e- + 2H+ ↔ R_NH2 + H2O                                          (7) 
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In this case, the analyzing peak corresponds to the second step of nitro group TMX electro-

reduction at CHI-AgNPs / CPE, which involves two electrons and two protons. 

Furthermore, chronoamperometric measurements were performed by setting the working 

electrode potential at -1000 mV for various concentration of thiamethoxam. For an electroactive 

compound TMX with a diffusion coefficient of D, the current observed for the electrochemical 

reaction at the mass transport limited condition is described by the Cottrell equation [52].  

 

 

 

Figure 6: (A) The plots of Ic vs. t-1/2 (s-1/2) obtained from chronoamperograms of TMX concentrations 

(a) blank, (b) 5.0×10-5, (c) 1.0×10-4, (d) 5.0×10-4 and (e) 1.0×10-3 mol L-1 with a potential step at -1000 

mV in B-R buffer (pH 10.4), inset the plot of the slopes of the straight lines against the TMX 

concentrations, and (B) The plots of Icat/Ib vs. t1/2 (s1/2). 

 

Figure 6A illustrates the experimental plots of Ip versus t−1/2 with the best fits for different 

concentrations of TMX employed. The slopes of the resulting straight lines were then plotted 

versus the TMX concentration (inset of figure 6A), from whose slope and Cottrell equation, 

TMX’s D value was estimated to be 5.94×10−6 cm2 s−1. In the electrochemical detection of 

TMX, the D value reflects the amount of TMX flowing through the electrode's surface. the high 

D value indicates that more TMX may flow across the electrode surface per unit of time, 

resulting in a greater reduction current and an improved electrochemical signal. 

According to the Galus approach [53], chronoamperometry may be used to determine the 

catalytic rate constant (k) for the reaction between TMX and CHI-AgNPs / CPE. In this 

approach, there is an estimation relating the ratio of catalytic and limited current (Icat/IL) and 

the catalytic rate constant (k) as Eq. 8:  

 

Icat/IL = π1/2(kCbt)
1/2                                                          (8) 
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where Icat is the catalytic current of TMX at CHI-AgNPs / CPE, IL is the limited current in the 

absence of TMX, Cb is the bulk concentration of TMX and t is the time elapsed. The plots of 

Icat/IL versus t1/2 were constructed (Figure 6B) and from the values of slopes, the average value 

of k was found to be 2.15 102 M−1 s−1. The D and k values determined by chronoamperometry 

show that the CHI-AgNPs/CPE surface has high catalytic performance for TMX. 

 

4) Calibration plots, limit of detection and interference study 

The TMX determination was realized at modified electrode CHI-AgNPs / CPE in the under the 

optimal conditions using SWV technique. Figure 7 shows the SWV responses of TMX with the 

series of different concentrations, illustrating an increase in the current response of TMX 

reduction with increasing concentrations in B-R. buffer (pH 10.4). 

The CHI-AgNPs / CPE appeared sensitive, up to micromolar concentrations of TMX. This 

might be due to the large surface area of the nanoscale Ag NPs and the matrix's good 

conductivity. Additionally, Nitro (-NO2), as a powerful electron withdrawing group, leads 

aromatic ring of nitro-group compounds to electron deficiency. Consequently, the H-bonding 

is susceptible to form between OH of chitosan-AgNPs and NO2 of TMX due to the high 

electronegativity of oxygen atom of NO2 [54, 55]. Furthermore, the Ag NPs provided larger 

surface area with surface electronic interaction of exposed Ag (111) facet with analyte 

molecules resulting in enhanced electron-transfer kinetics and improvement in the reduction 

current of molecule target. The plot of peak current versus TMX concentration consisted of two 

linear segments with slopes of 51274 and 5371 μA Mol L-1 in the concentration ranges of 4.0 

to 1.0 × 102 μMol L-1 and 1.0 × 102 to 1.0 × 103 μMol L-1, respectively (inset figure 7). Kinetic 

limitation is perhaps most likely to attribute for the decrease in sensitivity (slope) of the second 

linear segment. 

The limits of detection (LOD) and quantification (LOQ) were calculated using the equations 

3σ/b and 10σ/b, respectively, where σ is the standard deviation of the curve intercept and b is 

the slope of the analytical curve. The values obtained for the LOD and LOQ were 9.32 × 10-7 

mol L-1 and 3.10 × 10-6 mol L-1, respectively. The analytical performance of the CHI-AgNPs / 

CPE was compared to others advanced materials and nanomaterials-based electrodes 

previously published, as shown in table 2. So, our proposed sensor demonstrated the advantage 

in terms of simplicity of synthesis, a relatively low LOD and a wide linear range which can be 

a benefit for future practical application in development portable devices. 
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Figure 7: SWV voltammograms of TMX recorded with the CHI-AgNP/CPE at different levels of 

concentrations in B-R buffer at pH 10.4: a) 4.0×10-6 mol L-1; b) 6.0×10-6 mol L-1; c) 8.0×10-6 mol L-1; 

d) 1.0×10-5 mol L-1; e) 2.0×10-5 mol L-1; f) 4.0×10-5 mol L-1, g) 6.0×10-5 mol L-1, h) 8.0×10-5 mol L-1, i) 

1.0×10-4 mol L-1, j) 2.0×10-4 mol L-1, k) 4.0×10-4 mol L-1, l) 6.0×10-4 mol L-1, m) 8.0×10-4 mol L-1, n) 

1.0×10-3 mol L-1. Inset calibration curves for TMX constructed using the CHI-AgNP/CPE. Results for n 

= 3 measurements. 

 

The selectivity of the modified electrode CHI-AgNPs / CPE was investigated by analysing the 

thiamethoxam with different doses of several nitro-aromatic compounds, such as 4-nitrophenol, 

4-nitroaniline, 2-nitroanailine, simultaneously electrolyte (Figure 8). Compared with the 

current intensity of thiamethoxam, decrease in response signal with estimated relative standard 

deviation of 5% was observed thus confirming an acceptable selectivity of AgNPS modified 

electrode toward TMX. Finally, the reproducibility of proposed sensor was estimated at eight 

different electrodes and the relative standard deviation (RSD) of 1.5% showing good electrode-

to-electrode reproducibility. 
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Table 2: Recovery test of TMX insecticide in extracts tissues of zea mays and bean Phaseolus vulgaris. 

Plant Tissue 

Add 

concentration 

(mol L-1) 

Found 

concentration 

(mol L-1) 

Recovery (n=3) 

Zea maize 

Roots 

1.0×10-4 6.5×10-5 65.46% 

5.0×10-4 3.1×10-4 62.70% 

leaves 

1.0×10-4 8.3×10-5 82.76% 

5.0×10-4 4.2×10-4 84.85% 

Bean Phaseolus 

vulgaris L. 

Roots 

1.0×10-4 7.0×10-5 70.35% 

5.0×10-4 2.7×10-4 54.06% 

Leaves 

1.0×10-4 8.7×10-5 86.98% 

5.0×10-4 4.0×10-4 80.33% 

 

 

Figure 8: Interference’s study of different concentrations of nitro-organic species (1.0×10-5, 1.0×10-4 

and 5.0×10-4 mol L-1), such as 4-nitrophenol, 4-nitroanailine, and 2-nitroaniline on the electroreduction 

signal of 5.0×10-4 mol L-1 TMX. 

 

5- Thiamethoxam analysis in Zea mays and bean phaseolus vulgaris L. 

To evaluate the applicability of the proposed method, it was employed to determine TMX 

insecticide in plant tissues (roots, leaves) extracts of two plant species including Zea mays and 
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bean phaseolus vulgaris L. The extracts were analysed by SWV. The calibration curve of each 

tissue was established by adding known amounts of TMX insecticide to control extract (samples 

preparation was mentioned in the experimental section). The recovery percent obtained 

revealed the capability of our sensors for detection of TMX insecticide directly in different 

tissues of plants. The obtained results are shown in table 3. 
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Table 3: Comparison of the sensing performance for TMX of various electrodes. 

FFTCAV: Fast Fourier Transform Coulometric Admittance Voltammetry 
GCE/rGO/β-CD: glassy carbon electrode modified with reduced graphene oxide and cyclodextrin 

Nanosilver/SDS /GCE: nanosilver/SDS modified glassy carbon electrode. 

DM-BC/GCE: carbonate minerals dolomite - moso bamboo glassy carbon electrode. 

MIP-GN/GCE: molecularly imprinted polymers-based graphene  

CHI-MWCNT/AuNP/RGNS/CILE: chitosan, multi-walled carbon nanotube, reduced graphene nanosheets and gold nanoparticles on a carbon paste ionic 

liquid electrode 

 
 

 

.

Electrochemical 

techniques 
Electrodes 

Limit of 

detection (µmol 

L-1) 

Limit of 

quantification (µmol 

L-1) 

Linear 

range (µmol 

L-1) 

Refs 

DPV 

CV 

Amperometry 

Nanosilver/SDS /GCE 

0.100 

4.700 

0.880 

0.40 

15.91 

0.88 

0.10 - 9 [56] 

SWV 
Graphen Oxide Galssy Carbon Electrode 

GO/GCE 
8.300 - 10 - 200 [57] 

SWV GCE/rGO/β-CD 7.450 - - [58] 

LSV MIP-GN/GCE 0.040 - 0.50 - 20 [59] 

LSV β-CD-rGO/GCE 0.270 - - [60] 

FFTCAV CHI-MWCNT/AuNP/RGNS/CILE 6.2×10-6 - 
0.05×10-3 – 

35×10-3 
[61] 

SWV CHI-AgNPs / CPE 0.932 3.10 4-1.0×103 
This 

work 
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IV. Conclusion  

We presented here, for the first time, the use of silver nanoparticles stabilised chitosan for the 

electroanalysis determination of TMX insecticide. Compared with graphite and chitosan 

modified graphite electrodes the proposed electrode exhibited improved electrochemical 

performance. Our developed voltammetric approach was based on the irreversible 

electrochemical reduction of TMX on the CHI-AgNPs / CPE electrode surface. In addition, the 

electrochemical behavior of TMX was investigated and the mechanism for its electrochemical 

reduction was postulated. In the wide concentration range studied, TMX insecticide 

demonstrated good linearity over the surface of the CHI-AgNP / CPE. Compared with others 

sensors-based nanomaterials the proposed electrode presents an acceptable LOD and a wide 

linear range which can be a benefit for future practical application in development portable 

devices. Furthermore, the analytical performance of present electrochemical method for real 

applications was successfully investigated through the detection of TMX in plant tissues 

extracts. Therefore, it can be concluded that the present electrode and the electrochemical 

method proposed here can be considered as an effective, sensitive and environment friendly 

device for TMX insecticide determination in real environmental samples. 
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Phytotoxic effect of the insecticide imidacloprid 

in plant of Phaseolus vulgaris L. 
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I. Introduction 

Common bean (Phaseolus vulgaris L.) considered one of the most important legumes and food 

sources in the world [1]. It is a major source of calories, fibres, lipids and proteins in many 

developing countries throughout the world [2]. In Eastern Africa and Latin America, this plant 

accounts for 65% of total protein consumption and 32% of energy intake [3]. In addition, it is 

estimated that about 26 million tons of beans were produced worldwide in 2016 [4], which is 

an economically, nutritionally, and socially important crop in developing countries [5]. One of 

the major factors affecting the production of common bean in the world is that a wide range of 

destructive pathogens attack the crop and result in severe damage. One of these is a geminivirus 

spread by whitefly (bemisia tabaci) called bean golden mosaic virus (BGMV). This pathogen 

produces serious foliar yellow mosaic symptoms, retarded growth, seeds and pods deformation 

and flowers abortion. Therefore, an annual loss ranging between 90,000 and 280,000 tons of 

grain [6]. Generally, due to pest and disease attack the yield of any agricultural harvest can be 

severely reduced [7]. In order, to minimize the loss of culture yield and to satisfy the global 

food demand, the application of insecticides has become a common agricultural practice and 

preferred to control the insect pest, due to their ease to use, less cost and enhanced effectiveness 

[8]. Imidacloprid is considered one of the most active neonicotinoid insecticides applied against 

the insect pests [9], such as whiteflies, aphids, leafhoppers, scale insects and some members of 

Diptera, Coleoptera and Lepidoptera [10, 11]. It is mostly used in foliar spray, seed treatment 

and soil application [12–14]. However, the non-rational and injudicious utilization of 

insecticides causes its persistence for several months or even years in soil, water and plant 

matter [15]. On the other hand, the residues of imidacloprid destruct the fertility of the soil [16, 

17]. cause toxicity to plants which led to retarded growth, reduced photosynthetic pigments [18, 

19], physiological activities [20], whereas, increase the risk to non-target plants, vertebrates and 

invertebrate [21, 22]. The studies noted that IMD with high doses could cause oxidative stress, 

lower photosynthetic efficiency and active enzymatic and non-enzymatic antioxidants and 

resulting in bioaccumulation of residues of IMD in plant tissues [23–25]. In the same context, 

many researchers reported that pesticides can adversely affect the growth of non-target host 

plants by inducing the accumulation of reactive oxygen species (ROS) [26–29]. The RSO has 

been found to decrease plant growth and membrane stability, eventually trigger plant cell death 

[30]. However, in relation to its accumulation, distribution and toxicological effect in the 

environment and non-target organisms, IMD as a worldwide used insecticide raises 

environmental and human health concerns. Ge and co-works investigated the accumulation and 

dissipation behaviour of imidacloprid in rice. They reported that IMD could be uptake by rice 
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from soil and easily translocated into shoots from roots [31]. IMD could be translocated into 

other tissues (stems, leaves and fruits …) after root uptake, through the xylem [32]. Bonmatin 

et al. summarized the exposure and environmental fate of IMD in soil, sediment and plants [15]. 

Juraske and co-authors studied the IMD uptake and persistence using soil irrigation and foliar 

spray way in tomato plants [33]. The uptake and accumulation of IMD in various plants, 

including maize, tomato, apple tree, sunflower grapevine and grape grown have been 

documented [31–35]. The results noted that IMD appears to be readily absorbed and 

subsequently accumulated in the aerial part of the plants. However, the effect of IMD on the 

growth of plants as well as its accumulation and translocation behavior in plant tissues remain 

unclear. 

Therefore, there is a requirement to develop an easy, fast, highly sensitive and selective method, 

which should be suitable for on-site sensing of IMD. At present, several analytical techniques 

have been developed and used for very low-level detection of IMD, including HPLC High-

pressure liquid chromatography (HPLC) [36–39], gas chromatographic–mass spectrometric 

(GC-MS) [40] liquid chromatography–mass spectrometry (LC-MS) [37, 41–43]. However, 

these analytical methods are time consuming and expensive, require professional operators, and 

the availability of these expensive instruments in laboratories is limited. Electrochemical 

detection is one of the most promising alternatives to the conventional methods, with many 

advantages such as low cost, straight-forward, fast response, high selectivity, great sensitivity, 

and less expensive equipment [44–48]. Bulk materials and nanomaterials are widely used for 

the development of user-friendly electrochemical sensors, due to their features such as high 

electrical conductivity, electrocatalytic properties, and good chemical and thermal stability [49–

51]. 

Considering the above-mentioned problems related to the application of imidacloprid 

insecticide in the cultivation of common bean. The present study was therefore intended to 

examine the toxicological effect of the IMD insecticide on seed germination, seed vigour, plant 

growth, and photosynthetic pigment contents of the common bean. The bioaccumulation and 

translocation of the IMD in the common bean tissues was followed by square wave voltammetry 

using metallic silver electrode. The analytical and calibration parameters (Slope, correlation 

coefficient, linear range, detection limit and relative standard deviation) were calculated. 
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II. Experimental section 

1) Reagents and materials 

All chemicals used were of analytical reagent grade, sodium hydroxide (98%), phosphoric acid 

(85%), acetic (99.8%) and boric (99.5%) acids were purchased from Merck (Darmstadt, 

Germany), Fluka (St Gallen, Switzerland), and Riedel de Haen (Seelze, Germany). Common 

bean (Phaseolus vulgaris L Family Fabaceae) seeds were purchased from the local market in 

Khouribga City, Morocco. The commercial formulation of imidacloprid pesticide (Granular) 

was purchased from (Bayer CropScience (China) Co., Ltd, Hangzhou, China) and its detailed 

information was illustrated in table 1. The electrochemical measurements were performed using 

a potentiostat (model PGZ 100, Eco Chemie BV, Utrecht, The Netherlands) electrochemical 

analyzer operated using Voltamaster 4 software, equipped with a three electrodes cell 

comprising a metallic silver electrode (MSE) as a working electrode, Ag/AgCl (saturated KCl) 

and platinum wire as a reference and auxiliary electrodes respectively. 

 

Table 1: The main physico-chemical characteristics of imidacloprid insecticide. 

Active ingredient Imidacloprid 

Chemical name 
1-[(6-chloro-3-pyridinyl)-methyl]-N-

nitro-2-imidazolidinimine) 

Chemical class Neonicotinoids 

Formulation Granule 

Octanol-water partition coefficient (log Kow) 0.57 

Dissociation constant (pKa) at 25°C No dissociation 

Water solubility (g/L) 0.61 

Recommended dose (mg/ml) 500 

 

2) Germination and toxicity test 

The seed germination test was carried out in an incubator (22 ± 2 ° C) under sterile conditions 

in darkness. After seeds were disinfected with sodium hypochlorite solution 10% (v/v) for 5 

min and washed thoroughly with distilled water. The treated and untreated seeds by IMD were 

drained out and kept for germination during 6 days. Twenty seeds were kept between two layers 

of filter paper in each petri dish (diameter: 9.0 cm) and regularly soaked with adequate treatment 

solutions during the experiment time. The experiments were done in three replicates for each 

treatment. The number of germinated seeds was counted and the seeds were considered 

germinated when the radical protruding through the seed coat or least 2mm in length [52]. 
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In order to evaluate the toxicological effect and insecticide efficiency. The definitive test helps 

in determining the effect measures, concentration-response curve, and effective concentration 

(EC50) value with a 95% confidence interval and standard error. The seeds were treated with 

five concentrations of imidacloprid (5.0 × 10−3, 3.4 × 10−2, 4.0 × 10−2, 4.5 × 10−2, 5.0 × 10−2 

mol L-1). Control without insecticide was kept. The number of germinated seeds was counted 

and the EC50 value was also calculated using a non-linear regression dose-response [53].  

 

3) Monitoring of seedling growth 

The seeds germinated were taken to grow in the controlled conditions for 21 days in the plastic 

pots (diameter 9.5 cm) containing a mixture of peat and 40% sand. The growth of seedlings 

was then followed. The experiment was carried out in a greenhouse condition (11h photoperiod 

/ 13h dark cycle). The average temperatures were 28.5 and 20.0 °C for day and night, 

respectively. At the end of the experiment (21 days), IMD bioaccumulation and biometric 

parameters were measured: root and plant lengths and number of leaves and nods were counted. 

In addition, the Vigour index of seed was calculated according to the equation [54]. 

 

𝑆𝑉𝐼 = germination percentage × 𝑃𝑙𝑎𝑛𝑡 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 

 

4) IMD Extraction and quantification in plant  

IMD was extracted by grinding with 100 ml of ultra-pure water 2g of vegetable tissues (roots, 

stems and leaves) [55]. The obtained homogenous extract was sonicated for 40 min at 3kHz 

and centrifuged for 10 min at 1792 g. The extraction was repeated three times (100, 100, and 

50 mL), and the obtained supernatant was concentrated to about 5 mL using a rotary evaporator 

at 80 °C. The concentrated volume was brought to 25 mL with water. To ensure the best 

conditions for the IMD analysis, the pH of the solution was controlled by adding Britton–

Robinson pH 11.4 buffer. The solution was transferred to the electrochemical cell. The IMD 

detection in different tissues of the bean plant was performed after extraction on the metallic 

silver electrode using square wave voltammetry. 

 

5) Chlorophyll measurement  

The chlorophyll analysis was done by the determination of chlorophyll-a and chlorophyll-b and 

total chlorophyll contents, following the method proposed by Arnon 1949 [56]. Fresh leaves 

(1g) were extracted in 4 mL of 80% (v/v) acetone. The obtained homogenous samples were 

then centrifuged for 30 min at 1500 g and 4 °C. After centrifugation, the supernatant was 
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transferred to a cuvette. The absorbance of the supernatant was measured at 645 nm and 663 

nm using a UV–Vis spectrophotometer. The contents of Chlorophyll a, b and total chlorophyll 

were calculated according to Jeffrey and Humphrey method as follow: 

 

Chla = 12.7 OD663 – 2.69 OD645, 

Chlb = 22.9 OD645 – 4.68 OD663, 

Chlt = Chla +Chlb = 20.22 OD645 + 8.02 OD663. 

 

Were Chla and Chlb are the contents of chlorophyll-a and chlorophyll-b respectively, Chlt is the 

content of total chlorophyll. 

 

6) Statistical analysis 

All the data were analyzed using GraphPad Prism 8 software (GraphPad Software Inc., USA) 

to generate analysis of variance (ANOVA) and significant differences among treatment means 

were identified by Tukey's HSD (honest significant difference) test at the significance level of 

5%. All values were presented as mean ± SE of three replicate experiments (n=3) of each 

treatment. 

 

III. Results and discussion 

1) Electrochemical behaviour of IMD on MSE  

i) Electrocatalytic performance testing 

The electrochemical behavior of imidacloprid was investigated in a BR buffer (pH 11.6) using 

glassy carbon electrode (GCE), carbon paste electrode (CPE) and metallic silver electrode 

(MSE).  The cyclic voltammetric responses (Figure 1) shows the presence of a reduction peak 

of imidacloprid on the three used electrodes. No oxidation peak was present, indicating that the 

reaction was irreversible. In addition, a reduction peak shift of imidacloprid to -1130 mV was 

observed only at silver electrode. This explains the catalytic effect of silver in catalyzing the 

reduction of the imidacloprid compared to others electrodes. Silver is more easily coordinated 

with oxygen atoms than with carbon unsaturation. With these systems, they form covalent 

bonds and demonstrate a significant σ-Lewis acid character. When silver metal complexes 

coordinate with the π system of unsaturation, they reduce the electron density. This helps to 

increase the electrophile character of the unsaturation. The systems thus activated become more 

sensitive and the activation energy of this transformation is decreased [57].  
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Figure 1: Cyclic voltammograms of the various electrodes in the potential range 00 to −1600 mV vs 

Ag/AgCl electrode with a scan rate of 20 mV s-1, 1.0×10−3 mol L−1 of imidacloprid in BR buffer (pH 

11.60). 

To evaluate this catalytic effect of silver with respect to the reduction of imidacloprid, a 

chronoamperometry study is also started under the same conditions. Figure 2 represents the 

current-time profiles recorded at the three used electrodes, by applying a potential of -1000 mV. 

This potential is selected from the voltammograms already recorded at MSE, CPE and GCE. 

As seen, the higher cathodic current of the imidacloprid reduction was reached on metallic 

silver electrode in comparison with that measured on carbon paste and glassy carbon electrode. 

As previously reported by cyclic voltammetric measurements, the chronoamperometric results 

confirm that silver surface exhibited greater catalytic activity to reduction of imidacloprid. 

Indeed, the performance of the metallic silver electrode towards imidacloprid reduction reached 

80 % compared to carbon paste and glassy electrodes.  

In addition, the electrochemical impedance spectroscopy was used to evaluate the catalytical 

properties of metallic silver in catalyzing the reduction of imidacloprid. These measurements 

are made in a BR buffer (pH 11.6) containing 5.0×10−4 mol L−1 of imidacloprid. The charge 

transfer resistance of the MSE (7.50 kohm cm2) is obviously smaller than that obtained with 

CPE (8.07 kohm cm2) and GCE (10.70 kohm cm2), which suggests a faster charge-transfer of 

metallic silver electrode during the process of the reduction of imidacloprid. The Bode-phase 

angle plots clearly show that the minimum phase angle was observed at metallic silver electrode 
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compared with the two others electrodes. From the Bode plot (θ (phase angle) vs log f 

(frequency)), it is shown that on MSE, relaxation process shifts to different phase angles and at 

higher frequencies. This result indicates the facility to reduce imidacloprid at silver surface 

[58]. 

 

Figure 2: Chronoamperograms obtained of imidacloprid at potential step of −1000 mV, 1.0 ×10−3 mol 

L−1 of imidacloprid in BR buffer (pH 11.60). 

 

ii) Reduction process of imidacloprid at metallic silver electrode 

As we know, the reduction of imidacloprid is based on its nitro group. Generally, the 

electrochemical reduction of nitro compounds in alkaline media is done through two stages 

[59]. The electroactive nitro group of the imidacloprid captures four electrons in the first step 

to give the corresponding hydroxylamine derivative and two electrons in the second reduction 

step in order to be transformed in the corresponding amine according to the following 

mechanism: 
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                Scheme 2: The stage mechanism for reduction of imidacloprid 

In this work, the interaction between imidacloprid and silver surface was recorded using various 

parameters extracted from cyclic voltammetry and chronoamperommetry techniques. 

 

iii) Cyclic voltammetric study 

The influence of pH on the cathodic peak potential of imidacloprid is studied using cyclic 

voltammetry. Indeed, for pH values below 11 (pKa of imidacloprid), we observe a linear 

variation of imidacloprid reduction potential as a function of the pH according to the equation: 

Epc = -0.0388 pH – 0.7698, with a coefficient of determination of R2 = -0.9364. While for pH 

higher than 11, the peak potential remains constant. This result indicates that the reduction of 

imidacloprid undergoes an equal number of electron and proton transfer process. The results 

show that the intensity of the cathodic current of imidacloprid increases linearly as a function 

of the pH, where it reaches the maximum in BR buffer (pH 11.60). 

The effect of the scan rate on the cathodic peak current and potential of the reduction of 

imidacloprid was investigated at MSE in the range from 20 to 600 mV s−1 (Figure 3a). The 

cathodic peak potentials, as well as the corresponding peak currents, vary with the scan rate. 

Almost a linear variation of peak currents with scan rates is observed suggesting that the 

reduction process is adsorption controlled. The non-zero intercept can be also explained by non-

neglected diffusion process after adsorption to the electrode surface. In addition, figure 3b 

depict Log sweep rate (Logυ) versus the Log of cathodic peak current (Log Ipc) curves for the 

reduction of imidacloprid, where ip being the peak current expressed in µA and υ being the 

potential sweep rate in V s−1. From the slope (0.4026) found is lower nearly to the theoretically 

obtained value of 1.0. Therefore, the reduction of imidacloprid is controlled also by diffusion 
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[60, 61]. This study indicates that the electro-catalytic behavior of imidacloprid at metallic 

silver electrode was controlled by the charge transfer kinetics.  

 

Figure 3: Electrocatalytic reduction of 1.0×10−3 mol L−1 imidacloprid in BR buffer (pH 11.60) at 

various scan rates using metallic silver electrode. (A) CVs of (MSE) in BR buffer at pH 11.60. Inset: (B) 

(log Ip) against (log υ), (C) Ep (V) versus v (V/s), (D) Ep (V) versus imidacloprid concentration CImd 

(mol.L-1) and (E) plot of peak potential (Epc) vs log scan rate (log(v)) for the reduction of imidacloprid. 
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On the other hand, figure 3c shows the peak potential shifted towards the negative potential 

with the increase of scan rate according to the following equation (Equation 1): Ep (V) = -

1.1417 – 0.2675v, R2 = -0.997, which confirms the irreversibility of the electrode process [62]. 

The linear relationship between the peak potentials and the concentrations were found in the 

range from 4.0×10−5 mol L−1 to 1.0×10−3 mol L−1 of imidacloprid (Figure 3d). The slight 

negative shift in the peak potential with the increase in concentration is due to the imidacloprid 

adsorption on metallic silver surface [63]. This effect was more pronounced for a higher 

imidacloprid concentration. In all cases, the difference in the value of |Ep − Ep/2| is much higher 

than the value required for a reversible process (59/n mV at 373 K) [64], indicating, in the range 

of the working conditions used in this work, that the imidacloprid reduction is controlled by 

both diffusion and charge transfer kinetics. 

The transfer coefficient (α) and number of electrons transferred in the rate determining step (n) 

were determined using the Tafel slope (b) was obtained from the plot of peak potential (Epc) 

vs log scan rate (log υ) using the following equation [65]. 

 

Epc/AgCl = (b/2) log υ + constant                                            (2) 

 

The reduction peak potential of imidacloprid is linearly proportional to log υ with a slope value 

of -0.1454 V/AgCl as shown in (Figure 3e). Based on equation (2), the calculated Tafel slope 

value (b) is -0.2908 V. From the slope value (b), the transfer coefficient (α) and a number of 

electron transferred in the rate determining step (na) are estimated using the equation (3) [66]. 

 

y = 2.303 RT/ α naF                                                              (3) 

 

where y is Tafel slope (b), α is transfer coefficient, n is number of electrons transferred in the 

rate determining step and R, T, F are gas constant, temperature, and Faraday constant 

respectively. A value of -0.2054 for αnc is calculated using the above equation indicative of the 

overall four electrons process involved for the imidacloprid reduction and the first electron 

transfer is the rate determining step. 

Under these conditions, the electrochemical process consists of a mixture of diffusion and 

adsorption-controlled processes, depending on the scan rate [67–70]. In addition, from the slope 

of the linear plot of Ip versus scan rate υ the surface concentration of the electroactive species 

(Г) can be calculated to be about -1.0785×10−3 mol cm−2 according to the following equation 

[71]. 
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 Ip = n2F2AГv/4RT                                                            (4) 

 

iv) Chronoamperometric study 

The catalytic performance of the metal silver electrode, toward the reactivity of imidacloprid, 

was also studied by chronoamperometry. The kinetics of the imidacloprid reduction was 

evaluated using the following Galus (Eq. 5) and Cottrell (Eq. 6) equations [72–74]. In Galus 

equation, Icathodic is the catalytic current of the imidacloprid reduction at metallic silver electrode 

and Iblank is the limited current in the analytical witness. 

 

    Icathodic/Iblank = π1/2 (k.C.t)1/2                                                   (5) 

        I=n.F.A.D1/2.C.π−1/2.t−1/2                                                        (6) 

 

The slops of the linear curves of Icathodic/Iblank vs. t1/2 and I vs. t−1/2, obtained from the 

chronoamperograms for different imidacloprid concentrations recorded at -1000 mV, were 

employed for the calculation of the kinetics parameters. From Galus equation, the mean value 

of catalytic rate constant (k) was obtained to be approximately 5.9×103 mol L−1 s−1. By the 

Cottrell equation, the diffusion coefficient was obtained about 7.2×10−6 cm2 s−1 for the diffusion 

of imidacloprid on metallic silver electrode. 

 

2) Effect on seeds germination  

The effect of the IMD concentration on the germination rate of Phaseolus vulgaris seeds was 

studied. The control shows a very high germination rate with a value of 95%. In the treated 

samples, the results clearly show that the germination rate is inversely proportional to the 

concentration of pesticide in the medium (Figure. 4A). Consequently, the concentrations 0.5 × 

10−2, 3.4 × 10−2 and 5.0 × 10−2 mol L-1 significantly induced a reduction of this rate to 35.00 %, 

36.66 % and 66.66 % respectively. In addition, the seed vigour index was also affected (Figure 

4B), with a decrease of 52.00 %, 55.26 % and 88.53 %, respectively. High concentrations of 

IMD exerted an inhibitory effect on the germination process. Indeed, the effective concentration 

(EC50) obtained for a good yield is 7.82 × 10−3 mol L−1. This result can be explained on the 

one hand by the increasing sensitivity - decreasing tolerance of Phaseolus vulgaris to toxic 

chemical compounds [75]. On the other hand, the systemic nature of IMD and its 

bioaccumulation in tissues.  
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Figure 4: Toxic effect of imidacloprid on seeds germination of Phaseolus vilgarus, (A) indicate the 

germination rate, (B) represents the seedling vigor index. (*) indicate significant difference (p ≤ 0.05) 

as compared to the control. 

 

Our results are in agreement with previous studies that have reported that imidacloprid 

insecticide adversely affects the germination and early growth of various cultures, for example, 

sweet corn [76], leek [77], and white cabbage [78]. Recently, Fioresi. V. S. et al. reported that 

the high dose of imidacloprid significantly reduced (p ≤ 0.01) the seed germination and root 

growth of onion [79]. On the other hand, Neonicotinoids, such as imidacloprid, have an 

electronegative pharmacophore (N-nitroimine substituent =NNO2), located in their 

nitroguanidine moiety. therefore, many studies considered imidacloprid as clastogen [80–83] 

and its genotoxic action has been principally ascribed to the induction of chromosomal adhesion 

and micronuclei. In addition, the IMD effects may also vary from one plant species to another. 

 

3) Effect on plant morphology 

At the end of the treatment, the highest IMD concentrations 0.1×10−2, 0.5×10−2, 3.4×10−2 and 

5.0×10−2 mol L−1 significantly (p ≤ 0.05) affected all the biometric parameters of the plant, 

namely; seedling length, number of leaves and number of nodes (Figure 5). Therefore, the 

results obtained proved that there is a significant inhibition of the growth and development of 

the bean plant. this negative effect could be explained by the reduction in the capacity of the 

plant to exploit the medium and obtain the nutrients necessary for normal growth, which led to 

various symptoms of phytotoxicity, such as the inhibition of the apical growth of the plant 

(Figure 5C), followed by a drop in biometric parameters, in particular in the highest 

concentrations, due to the reduced availability of iron, magnesium, potassium and sodium under 
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IMD toxicity [84]. Similar results were obtained by Sharma et al. studying the insecticide IMD 

against the plant Brassica juncea L. [85]. 

Our results are also consistent with all the studies cited and reported in the literature, suggesting 

the toxicity of IMD accumulation residues at higher doses for plant species, taking into account 

the situation of non-target organisms. Similar behaviour of pesticide application reported by 

many studies on the physiology and yield of other agricultural plants, such as tomato treated 

with abamectin and cartap [86], Picea sitchensis exposed to dimethoate, malathion and with 

primicarb [87]. In addition, higher doses of various pesticides inhibited the overall growth of 

different plant species, such as zea maize [88–90], soybeans [91], tomatoes [92] and chickpeas 

[93]. 

 

 

Figure 5: Morphological measurements of plants exposed to different doses of IMD. (A) plant length 

and (B) number of leaves. Asterisk (*) indicates significant difference *p ≤ 0.03, ** p ≤ 0.002 *** p ≤ 

0.0002 **** p ≤ 0.0001 as compared to the control. 
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4) Effect on plant physiology 

The content of photosynthetic pigments (chlorophyll) plays a crucial role in the production of 

organic molecules such as proteins and carbohydrates and promoting growth through the natural 

photosynthesis process [94, 95].  

The effect of imidacloprid on total chlorophyll was examined in leaves of Phaseolus vulgaris 

L. seedlings (Table 2). A constant decrease in photosynthetic pigments was observed with 

increasing insecticide dose (especially Chla). The weakest answer in terms of Chla was observed 

at 5.0×10-2 mol L-1 of IMD, while the contents of Chlb and total chlorophyll show similar 

paterns to that of Chla. In fact, at a high dose of IMD, Chla, Chlb and total chlorophyll were 

reduced to percentages of 95.26 %, 80.44 % and 82.15 %, respectively, relative to the control. 

The effect of imidacloprid on total chlorophyll was examined in leaves of Phaseolus vulgaris 

L. seedlings (Table 2). A constant decrease in photosynthetic pigments was observed with 

increasing insecticide dose (especially chla). The weakest answer in terms of Chla was observed 

at 5.0×10-2 mol L-1 of IMD, while the contents of Chlb and total chlorophyll show values similar 

to that of Chlt. This decline in chlorophyll under imidacloprid stress could be due to the 

increased enzyme chlorophyllase activity which resulted in chlorophyll degradation associated 

whit a disruption of chloroplast structure [96–98]. In subsequent studies, it has been shown that 

chemicals, in general, such as pesticides negatively affect metabolic enzymes involved in the 

formation of photosynthetic pigments [99].  

 

Table 2: Concentration of chlorophyll a, b and total chlorophyll in Phaseolus vilgarus leaves after 

exposure to different doses of IMD. Each value is the mean of three replications ± standard error. 

Concentration 

(×10-2 mol L-1) 

Chlorophyll a ± SE 

(n=3) 

Chlorophyll b ± SE 

(n=3) 

Total chlorophyll ± SE 

(n=3) 

Control 0.0422 ± 0.0117 0.0312 ± 0.0085 0.0734 ± 0.0202 

0.05 0.0193 ± 0.0036 0.0146 ± 0.0015 0.0339 ± 0.0088 

0.10 0.0198 ± 0.00003 0.0072 ± 0.0006 0.0270 ± 0.0006 

0.50 0.0071 ± 0.0003 0.0077 ± 0.0011 0.0149 ± 0.0032 

3.42 0.0085 ± 0.0039 0.0061 ± 0.0052 0.0146 ± 0.0013 

5.00 0.0020 ± 0.0002 0.011 ± 0.0001 0.0131 ± 0.0003 

 

5) Apoptosis induction  

The toxicity of IMD was assessed in the common bean plant Phaseolus vulgaris L, by epidermal 

infiltration of the insecticide into the leaves. Image software J was used to visualize the 



 

153 

hypersensitive response (HR). The results obtained show that from the second day of infiltration 

(2 dpi), the IMD treatment induced necrotic lesions on the leaves which increase in size as a 

function of time and concentration, it is the phenomenon of programmed cell death (PCD). 

Control leaves inoculated with distilled water did not show necrosis (Figure 6). 4 days post 

infiltration (4 dpi), the damaged area (necrotic area) increased to 3.36%, 9.16% and 10.58% of 

the total leaf area with an infiltrated concentration of 0.5×10−2, 3.4 × 10−2 and 5.0 × 10−2 mol L-

1 respectively, while the rest of the leaf is unaffected. PCD is a process whose activity is 

genetically controlled and in which cells that have become unnecessary are specifically 

eliminated from the body. It is essential for maintaining homeostasis and occurs naturally in all 

multicellular organisms, during embryogenesis, development and in response to biotic or 

abiotic stresses, thus making it possible to eliminate infected cells or damaged. This so-called 

hypersensitive cell death thus leads to rapid and localized death of the cells surrounding the site 

of infection by an avirulent pathogen [100]. The hypersensitive response is usually 

accompanied by the generation of oxidizing agents and the activation of plant defence 

responses. 

The macroscopic changes related to hypersensitive cell death were most pronounced in fully 

developed leaves, leading to the interconnection between plant development and defence [101]. 

Recent advances in plant immunity research have led to a better understanding of the 

involvement of plant growth regulators such as ABA, auxins, gibberellins, cytokinin and 

brassinosteroids. These plant regulators coordinate agonistic and antagonistic links between 

defence and development pathways [102, 103]. 
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Figure 6: Induction of necrosis and cell death in Phaseolus vulgaris leaves at different doses of 

imidacloprid, infiltration observed under bright field at two days post infiltration (dpi), 3 dpi and 4 dpi. 

 

6) Uptake and Translocation of imidacloprid in plant tissues 

The detection and the quantification of IMD bioaccumulated by the common bean Phaseolus 

vilgarus L. were carried out by electrochemical method. The calibration curves were presented 

in figure 7. The current intensity increases linearly with the increase of the IMD bioaccumulated 

in the different plant tissues the common bean Phaseolus vilgarus L. The analytical and 

calibration parameters are presented in table 3.  
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Figure 7: (A-D) The calibration curves of the IMD in vegetable tissues (seeds, roots, stem, and leaves) 

of common bean plant. 

 

The analysis consists in applying a square wave voltammetry with a metallic silver electrode. 

The mean recovery (n = 3) for five different concentrations of plant samples spiked with IMD 

is obtained from various plant tissues (Table 4). The results revealed that IMD is detected in 

the roots, stem and leaves. This shows that the insecticide can be absorbed from the soil and 

transferred to the aerial parts of the treated plant via a translocation process. The concentrations 

detected in the plant are proportional to the concentrations of the treatment.  
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Table 3: Calibration and analytical parameters for various concentration of IMD in vegetable tissues 

(seeds, roots, stem, and leaves) of common bean plant. 

 

Calibration parameters Analytical parameters 

Slope 

(L.µmol-1) 
Intercept R2 

Limit of 

detection 

(µmol. L-1) 

Linear range 

(µmol L-1) 
RSD (%) 

Seeds 1.1777 445978 0.985 1.62 5.00 to 500 2 

Roots -0.2939 299543 0.986 3.76 5.00 to 500 3.38 

stems -1.7088 384868 0.990 1.68 5.00 to 500 4.56 

leaves 1.233 386677 0.984 1.27 5.00 to 500 3.17 

 

However, they vary depending on the organs and tissues. Indeed, the translocation factor (TF) 

was applied to accurately compare the ability of the plant to transfer pesticide to parts of the 

plant [104]. It is calculated as follows [105]:  

 

TFstems = Cstems /Croots     and      TFleaves = Cleaves / Croots. 

 

Figure 8 presents the translocation factor (TF) variation with IMD's concentration applied to 

bean plant samples. The TF of the stems were larger than one (˃1) for low doses of IMD, 

demonstrating the high capability of the bean to translocate IMD from roots to stems. In 

contrast, for the applied dose of 5.00×10−3 mol L−1, a decrease in the (TFstems) (˂1) with 

increasing IMD concentration was observed (from 0.81 to 0.53), indicating the poor 

translocation ability of the high concentration of the IMD from roots to stems (Figure 8A). At 

low applied concentrations (Figure 8B), the translocation of IMD from roots to leaves (TFleaves) 

is similar to the translocate IMD from roots to stems.  

Generally, the pesticide uptake, accumulation and translocation behaviour in vegetables are 

related to their physicochemical characteristics [106]. IMD (logKow = 0.57 and water solubility 

of 0.61 g L−1) is absorbed by plant roots and significantly accumulated into the shoots system 

then translocated acropetally via the xylem sap [15], starting by its absorption through the root 

hair from the soil with the water uptake system, to be next passed via the cortex, the root 

epidermis and endodermis to the root xylem [107]. 
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Figure 8: Translocation of IMD in Phaseolus vulgaris plant expressed by translocation factor (TF). (A) 

TFstems and (B) TFleaves. 

 

Table 4: IMD insecticide content in vegetable tissues (seeds, roots, stem, and leaves) of phaseolus 

vilgarus after exposed to various concentrations (0.05–5.00) ×10−2 mol L−1. 

Concentration 

(×10-2 mol L-

1) 

Imidacloprid concentration in vegetable tissues ± SE (×10-2 ± ×10-4mol L-1) 

(n=3) 

seeds roots stems leaves 

0.05 0.0017±0.006 0.0011±0.004 0.0011±0.003 0.0011±0.005 

0.10 0.0019±0.005 0.0018±0.002 0.0018±0.003 0.0013±0.002 

0.50 0.0021±0.015 0.0029±0.001 0.0023±0.001 0.0016±0.001 

3.40 0.0028±0.010 0.0045±0.010 0.0028±0.004 0.0049±0.015 

5.00 0.0044±0.005 0.0054±0.190 0.0029±0.006 0.0061±0.008 

 

The IMD uptake results and translocation pattern obtained in this research is consistent with 

that of maize [15], cabbage [108], rice [31] and other compounds of neonicotinoid insecticides 

(thiamethoxam in zea maize and rice) [15, 31, 87]. According to our results, we can suggest 

that the bioaccumulation of pesticides by plants could have a negative effect both on the quality 

of agricultural products and on the health of consumers following their consumption. 

 

IV. Conclusion 

The metallic silver electrode was used as a sensing electrode for the determination of 

imidacloprid. The chosen sensor demonstrates good electro-catalytic activity towards the 

imidacloprid reduction. The reduction potential of the selected neonicotinoid insecticide is 

lower on metallic silver electrode compared to  
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the glassy carbon electrode (GCE) and carbon paste electrode (CPE). Cyclic voltammetry (CV), 

chronoamperometry, electrochemical impedance spectroscopy techniques were used for study 

some kinetic parameters of the process. The fundamental electrochemical parameters including 

the electroactive surface coverage (Г), the transfer coefficient (α), the catalytic rate constant (k) 

and the diffusion coefficient (D) have been determined. Moreover, square wave voltammetry 

was used in detecting imidacloprid at MSE electrode. Under optimum conditions, this electrode 

presented good linear relationship from 1.0×10−5 mol L−1 to 1.0×10−3 mol L−1 of IMD. 

Meanwhile, detection limit and quantification limit were found to be 6.9×10-6 mol L−1 and 

2.3×10-5 mol L−1 respectively. The analytical utility of the proposed method was tested in 

tomato and orange samples with satisfactory results. 

Imidacloprid effect on seed germination, growth and photosynthetic pigments in common bean 

(Phaseolus vulgaris L.) was studied. The utilization of imidacloprid with high doses can inhibit 

bean (Phaseolus vulgaris L.) growth, affect pigments synthesis, promote oxidative stress and 

disrupt antioxidant enzymes for bean development. 

However, the length of roots, plant, the number of leaves and nods were reduced significantly 

at high applied concentration. Furthermore, IMD bioaccumulation and subsequent translocation 

in bean were investigated. The results show that imidacloprid can be taken up by the plant roots 

from contaminated soil and subsequently translocated to other vegetable tissues (stems, leaves).
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The use of pesticides, with the aim of protecting crops from various threats to alter their 

nutritional quality but also agricultural yields, makes it necessary to monitor pesticide residue 

levels in consumer products, plants and the environment in a general way. Thus, due to the low 

levels of pesticides authorized by the regulations, analytical techniques allowing the 

determination and quantification of pesticides at very low concentration levels are necessary to 

study their ecotoxicity. 

The work presented in this thesis focuses on two insecticides from the neonicotinoids family: 

thiamethoxam and imidacloprid. They are widely used in Morocco for the protection of plants 

and by individuals or companies to fight against insects harmful to human and animal health. 

However, these products are not released unexpectedly on the market, they are governed by a 

marketing authorization, resulting from ten years of research in toxicology and ecotoxicology. 

These researches make it possible to define a maximum dose of use for a product, supposed to 

guarantee food safety for the consumer, and a lower risk related to their use for the applicator. 

The work presented in this thesis has two objectives: The first objective concerns the study of 

the effect of thiamethoxam and imidacloprid on the growth of Zea mays and Phaseolus vulgaris 

L. bean plants, while the second objective is dedicated to the development of electrochemical 

sensors for the determination and quantification of thiamethoxam and imidacloprid 

bioaccumulated in Zea mays and Phaseolus vulgaris L. bean plants and also in waters and foods. 

The effect of thiamethoxam and imidacloprid on the growth of Zea mays and bean Phaseolus 

vulgaris L. plants respectively was operated under laboratory conditions. The study focuses on 

the effect on germination, stem length and leaf size and colour after exposure to the insecticide. 

In addition, histological tests were performed to appreciate the abnormalities observed. 

The second aim of this work concerns the development of a method for analyzing 

thiamethoxam and imidacloprid residues in water, food and plants after an extraction step. This 

purpose was relatively ambitious insofar as it was initially necessary to develop an 

electrochemical analysis method and to characterize the device at the metrological level for the 

analysis of the insecticides in question. To do this, electrochemical sensors based on metallic 

silver have been developed by solid reaction, electrochemical deposition and colloidal methods 

in the presence of the chitosan. These sensors have the advantage of being able to be 

miniaturized and therefore of allowing portability which, for such precise detection techniques, 

is rarely possible. 

The present study is devoted to a first step to study the electro-catalytic performance of the 

silver electrode in reducing thiamethoxam and imidacloprid using cyclic voltammetry, and 

square wave voltammetry.  
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In order to improve the analytical and catalytic efficiency of silver, we have thought of 

minimizing the dimensions of silver by impregnating it on the surface of the graphite electrode. 

Indeed, the deposition of silver particles was operated by two voices, in particular by dry 

process and by electrodeposition. 

The electrodeposition disperses the silver on the active sites of the graphite in the form of 

microparticles. Indeed, the heterogeneity of the surface allows the sensor to adsorb more of the 

insecticides studied and promote their analysis at less negative potential. While the 

impregnation by the solid way under nitrogen atmosphere forms a heterogeneous surface 

containing a phase of silver nanocrystallites and another amorphous phase. The sensor obtained 

is not sufficiently sensitive but it has catalytic properties in terms of the reduction of 

thiamethoxam and imidacloprid. 

Furthermore, we opted for the synthesis of silver nanoparticles stabilized by a chitosan gel in 

order to better miniaturize the size of silver on the surface of the graphite electrode. The size of 

the nanoparticles formed is assessed by spectroscopy. The elaborate sensor intervenes doubly; 

as a catalyst due to the presence of silver nanoparticles and as an amplifier due to the presence 

of chitosan which promotes the chemisorption of a greater quantity of molecules on the surface 

of the sensor. This allows to amplify the electrical signal and therefore offers high sensitivity 

for the determination of thiamethoxam and imidacloprid. 

In order to complete this thesis work, it would be necessary to test the method developed on a 

cereal matrix. These tests will make it possible to validate the overall analytical protocol, or on 

the contrary, to highlight the need to continue the optimization study. Indeed, the 

electrochemical sensors have shown their analytical performance after the optimization of the 

experimental conditions, namely the accumulation time, the pH and the parameters of the 

square wave voltammetry. These and other conditions together will allow the sensor to achieve 

the primary objective, namely, to use this method for the analysis of thiamethoxam and 

imidacloprid residues in waters and foods and also for the study and monitoring of their 

bioaccumulation in tissues of Zea mays and bean Phaseolus vulgaris L. 

 


