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Abstract

This thesis is devoted to the study of some parabolic partial differential equations (PDEs) involving
absorption term or singular natural growth or Hardy potential and singular lower order term. The
thesis emphasizes mostly on the nonlinear evolutive PDEs. The main objective is to obtain the exis-
tence and regularity of solutions to the problem considered with certain Dirichlet boundary conditions
in Sobolev space. Some of the key techniques employed in this thesis to guarantee the existence of
solutions are the weak convergence method, Schauder fixed point theorem, etc. The regularity of the
solutions is also established mostly by using the Gagliardo-Nirenberg inequality. One of the main diffi-
culties that arises in this thesis (general in the parabolic case) is the proof of the strict positivity of the
solution in the interior of the parabolic cylinder, in order to give sense to the weak formulation of the
problems and also used in the convergence passages. The proof of this property use Harnack’s inequality.

Keywords: Nonlinear parabolic equations; Singular parabolic equations ; Weak solution; positive
solution; Existence; Regularity; Absorption term; Lower order term; Natural growth; Hardy potential.
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Résumé

Cette thèse est consacrée à l’étude des équations aux dérivées partielles (EDP’s) non linéaires. Plus
précisément, nous étudions l’existence et la régularité des solutions pour certains problèmes paraboliques
impliquant un terme d’absorption ou un terme singulier avec une croissance naturelle ou un potentiel
de Hardy ou un terme d’ordre inférieur singulier. La thèse met l’accent principalement sur les EDP
évolutives non linéaires. L’objectif principal est d’obtenir l’existence et la régularité des solutions aux
problèmes considérés avec certaines conditions aux limites de Dirichlet dans les espaces de Sobolev et
Lebesgue. Certaines des techniques clés utilisées dans cette thèse pour garantir l’existence de solutions
sont la méthode de convergence faible, le théorème du point fixe de Schauder, etc. La régularité des
solutions est également établie principalement en utilisant l’inégalité de Gagliardo-Nirenberg. L’une des
principal difficultés qui se posent dans cette thèse (généralement dans le cas parabolique) est la preuve
de la stricte positivité de la solution à l’intérieur du cylindre parabolique, afin de donner un sens à
la formulation faible des problèmes, et ainsi que son utilisation dans les passages de convergence. La
preuve de cette propriété est basé sur l’application de l’inégalité de Harnack.

Mots-clés: Équation parabolique non-linéaire; Équation parabolique singulier; Solution faible; So-
lution positive; Existence; Régularité; Terme d’absorption; Terme d’ordre inférieur; Croissance naturelle;
Potentielle de Hardy.
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CONTENTS 9

Ω : open set of RN , N ∈ N∗
∂Ω : boundary topological of Ω
Q the parabolic cylinder Ω× (0, T ), T > 0
Γ the lateral surface ∂Ω× (0, T ), T > 0
x = (x1, x2, x3, ..., xN) : generic point of RN

dx = dx1dx2dx3...dxN : Lebesgue measure on Ω
dσ : area measure on ∂Ω
∇u : the gradient of u i.e ( ∂u

∂x1
, ∂u
∂x2
, ∂u
∂x3
, ..., ∂u

∂xN
)

D(Ω) : space of smooth functions with a support compact in Ω
L∞(Ω) : space of bounded functions in Ω
Lp(Ω) : space of power functions p-th integrable on Ω for the measure dx

‖f‖p = (
∫

Ω
|f(x)|pdx )

1
p

W 1,p(Ω) = {u ∈ Lp(Ω); ∇u ∈ (Lp(Ω))N}
‖u‖1,p = (‖u‖pp + ‖∇u‖pp)

1
p

W 1,p
0 (Ω) : adhesion of D(Ω) in W 1,p(Ω)

W−1,p′(Ω) : dual space of W 1,p
0 (Ω):

Lp(0, T ; Ω) the space of measurable functions u : [0, T ]→ Ω such that

‖u‖Lp(0,T ;Ω) =
(∫ T

0
‖u‖pΩ dt

) 1
p
< +∞,

L∞(0, T ; Ω) : the space of measurable functions such that
‖u‖L∞(0,T ;Ω) = sup[0,T ] ‖u‖Ω < +∞.

div f = ΣN
i=1

∂fi
∂xi

where f = (f1, f2, f3, ..., fN−1, fN)

|E|, meas(E) the Lebesgue measure of subset E of RN

s+ = max(s, 0) the positive part of variable s
s− = min(0, s) the negative part of variable s
q′ = q

q−1
, q > 1, the Hölder conjugate exponent of q

q∗ = Nq
N−q , 1 < q < N, the Sobolev conjugate exponent of q

sign(s) sign of variable s
Tk : Tk(s) = max(−k, min(s, k)), k > 0, s ∈ R the truncation function of level k
Gk : Gk(s) = s− Tk(s) = (|s| − k)+

C, Ci, ci, i = · · · several constants whose value may change from line to line and, sometimes,
on the same line. These values will only depend on the data but they will
never depend on the indexes of the sequences we will introduce
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Chapter 1

Introduction

This phD thesis provides contributions to the fields of Nonlinear Partial Differential Equations. More
specifically, it is concerned with the existence and regularity of solutions to nonlinear parabolic boundary
value problems of Dirichlet type. The general model, from which many interesting particular cases, is
the following: 

∂u
∂t
− div(a(x, t, u,∇u)) + g(x, t, u,∇u) = h(u)f in Q,

u = 0 on Γ,
u0(x, t = 0) = u0(x) in Ω,

(1.1)

where Ω is a bounded domain of RN (N ≥ 2), Q is the cylinder Ω× (0, T ), T > 0, Γ the lateral surface
∂Ω × (0, T ), u0 is a non-negative function belonging to L∞(Ω), and f is non-negative function which
belongs to some Lebesgue space Lm(Q), m ≥ 1. The function a(x, t, u,∇u) : Ω× (0, T )×R×RN → RN

is a Carathéodory function (i.e. it is continuous with respect to u and ∇u for almost (x, t) ∈ Q,
and measurable with respect to (x, t) for every u ∈ R and ∇u ∈ RN). The function g(x, t, u,∇u) :
Ω × (0, T ) × R × RN → R is Carathéodory possibly singular at 0, and h : R+ → R+ is continuous
function possibly singular at s = 0.

In the recent years, there has been an increasing interest in the study of equations with singular lower
order terms. On one hand, the interest in such equations is motivated by their connection in the study of
non-Nowtonian fluids (in particular pseudoplastic fluids), boundary-layers phenomena for viscous fluids
(see [67, 110, 117]), in the Langmuir–Hinshelwood model of chemical heterogeneous catalyst kinetics
(see [12, 94]), in enzymatic kinetics models (see [46]), as well as in the theory of heat conduction in
electrically conducting materials (see [133]), and in the study of guided modes of an electromagnetic
field in the nonlinear medium (see [90]). In the context of laser beam propagation in plasmas, the
corresponding equation involves a nonlinear term depending on ∇u and represents heat balance with
reactant consumption ignored where u is a dimensionless temperature excess (see [90] for more details).
In the particular case when g ≡ 0, h(s) = s−1 appeared was in [80]; there the authors fall into the study
problem as (1.1) while observing the temperature given by the solution u(x, t) of an electrical conductor
which occupies a three dimensional regions. Here f(x, t)u−1 is thought as the rate of generation of heat
where h(s) = s−1 is the resistivity of the conductor.

From a purely mathematical, the problem as in (1.1) has been intensively studied by many authors.
If g ≡ 0 and h ≡ 1 the problem was investigated in [108, 109] in the stationary varational case. For the
variational parabolic case is treated in [108], with u0 ∈ L2(Ω).

10



CHAPTER 1. INTRODUCTION 11

Concerning the non variational elliptic-parabolic case i.e.: If f ∈ L1(Q) or f is a measure see
[14, 16, 18, 19, 32, 104, 125, 126, 140].

If h ≡ 1 and the presence of the lower order term (i.e. g 6= 0) the problem (1.1) has been widely
studied in the literature. More precisely, if g does not depend on the gradient, and f belongs to
Lp
′
(0, T ;W−1,p′(Ω)) existence results for problem (1.1) has been given in [33, 34, 100]. If g does depend

on ∇u, an existence theorem has been proved by Landdes and Mustenov in [101]. Their results are
obtained by means of an approximation of g with bounded functions proving the strong convergence
of the solutions of the approximating problems. All these papers use a sign condition on g (namely
g has the same sign of u), but assume no growth restrinction with respect to u. A different approach
(see, e.g. [123, 17, 115]) to the existence of solutions can be done if f is more regular (for instance
if f ∈ L∞(0, T ;W−1,r(Ω)), with r large enough) and g is bounded with respect to u, in this case it
is possible to prove the existence of bounded solutions of (1.1) without any sign condition on g. The
authors in [59] have proved the existence of a weak solution to problem (1.1), when f ∈ L1(Q) and g
having a natural growth with respect to the gradient and satisfies the sign condition.

Concerning the stationary singular case of problem (1.1), namely or g(0) = +∞/or h(0) = +∞ has
been widely studied. When g ≡ 0 and h(s) = s−γ (γ > 0) the following singular problem{

−∆u = f
uγ

in Ω,
u = 0 on ∂Ω,

(1.2)

where Ω is an open bounded subset of RN , with f is a non-negative function belonging to some Lebesgue
space and γ > 0, has been investigated by many authors. More precisely, existence and uniqueness of
a classical solution u ∈ C2(Ω̄) ∩ C(Ω̄) of (1.2) are proved in [37, 141], when f is a positive Hölder
continuous function in Ω̄ and Ω is a smooth domain. In the same framework, Lazer and Mackenna in
[103] have proved that u ∈ W 1,2

0 (Ω) if and only if γ < 3 and that γ > 1, the solution does not belong to
C1(Ω̄), while in [45], under the weaker assumption that f is only non-negative and bounded, Del Pino
has proved the existence and uniqueness of a positive distributional solution belonging to C1(Ω)∩C(Ω̄).
These results are generalized by Lair and Shaker in [99].

Existence of positive distributional solution with data merely in L1(Ω) has been proved by Boccardo
and Orsina in [25]. The authors show that this solution, if γ < 1, belongs to an homogeneous Sobolev
space larger than W 1,2

0 (Ω), if γ = 1, it belongs to W 1,2
0 (Ω) and, finally if γ > 1, it belongs to W 1,2

loc (Ω).

In the last case, the boundary condition is assumed in a weaker sense i.e., u
γ+1

2 ∈ W 1,2
0 (Ω).

In the general case, many works study the existence, regularity and uniqueness of the following
general singular elliptic problems {

− div(a(x,∇u)) = f
uγ

in Ω,
u = 0 on ∂Ω.

(1.3)

De Cave in [62] has proved that the problem (1.3) admit least one solution u, when 0 ≤ f ∈ L1(Ω)
satisfies the following regularity

i) if γ = 1 then u ∈ W 1,p
0 (Ω);

ii) if γ > 1 then u ∈ W 1,p
loc (Ω) and u(p̃)∗/p∗ ∈ W 1,p

0 (Ω) where p̃ = N(p+γ−1)
N+γ−1

;

MOUNIM EL OUARDY



CHAPTER 1. INTRODUCTION 12

iii) if γ < 1 then u ∈ T 1,p
0 (Ω) and |∇u|p̃ ∈ L1(Ω);

iv) if γ < 1 and 2− γ + γ−1
N
≤ p < N then u ∈ W 1,p̃

0 (Ω).

Also the author has prove that if f ∈ Lm(Ω) with m ≥ 1, then the solution u satisfies the following
summability

v) if γ > 0 and m > N/p then u ∈ L∞(Ω);

vi) if γ ≥ 1 and 1 ≤ m < N/p then u ∈ Ls(Ω), with s = Nm(p+γ−1)
N−pm ;

vii) if γ < 1 and ( p∗

1−γ )′ < m < N/p then u ∈ Ls(Ω), with s = Nm(p+γ−1)
N−pm .

Concerning the uniqueness of solution to problem (1.3) has been addressed in [49].
On the other hand, for the uniform elliptic case, there is a great deal of literature about problems

involving a lower order term, i.e. g 6= 0, we refer reader to see [81], when h(s) = s−γ (γ > 0) and g does
not depend on the gradient. More recently, in presence of general h, existence, regularity and uniqueness
have been addressed in [120, 121]. For the case when the operator is not coercive, we refer the reader to
see [135, 136] and references therein. In the case when the lower order term g exist and possibly singular
in u = 0 (i.e. g(x, t, u,∇u)→ +∞ as u→ 0) and having a natural growth with respect to the gradient,
problem (1.1) has been studied by many authors, we refer reader to see [40, 89, 41, 42, 43, 144], when
h ≡ 1.

Without the aim to be complet, we refer various works treating different aspects of the problems as
(1.2) and (1.3) we refer the reader to see [8, 9, 10, 31, 38, 39, 50, 52, 63, 64, 70, 72, 73, 102, 118, 119]
and reference therein.

Now, let us recall briefly the existing works in the literature and their influence directly in this thesis.
Concerning the singular parabolic case as in the problem (1.1). In recent years, the existence, regularity
and uniqueness of solutions to the nonlinear singular parabolic problems as in (1.1) have been studied
extensively by many authors. When g ≡ 0, p ≥ 2 and h(s) = s−γ(γ > 0), problem (1.1) is treated in
[68]. Here, the authors have proved the existence of a weak solution via an approximation argument
and one of the main tools is a suitable application of the Harnack inequality in order to deduce the
positivity of the approximating sequence. More precisely, De Bonis and De Cave in [68] considered the
following singular parabolic problem

∂u
∂t
− div(a(x, t,∇u)) = f

uγ
in Q,

u = 0 on Γ,
u0(x, t = 0) = u0(x) in Ω,

(1.4)

where Ω is a bounded domain of RN (N ≥ 2), γ > 0, p ≥ 2, and f is a non-negative function which
belongs to some Lebesgue space Lm(Q), m ≥ 1 and u0 ∈ L∞(Ω) such that

∀ω ⊂⊂ Ω, ∃Dω > 0 : u0 ≥ Dω inω.

The authors proved that the problem admit a non-negative weak solution u satisfies the following
regularity

i) if γ < 1 and f ∈ L
p(N+2)

p(N+2)−N(1−γ) (Q), then u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω));

MOUNIM EL OUARDY
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ii) if γ = 1 and f ∈ L1(Q), then u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω));

iii) if γ > 1 and f ∈ L1(Q), then u ∈ Lp(0, T ;W 1,p
loc (Ω)) ∩ L∞(0, T ;Lγ+1(Ω)).

Moreover, if f ∈ Lm(Q) with m ≥ 1, the solution u satisfies the following summability

iv) if γ ≥ 1 and m > N/p+ 1, then u ∈ L∞(Q);

v) if γ ≥ 1 and m ∈ [1, N/p+ 1), then u ∈ L
m(N(p+γ−1)+p(γ+1)

N−pm+p (Q);

vi) if γ < 1 and m > N/p+ 1, then u ∈ L∞(Q);

vii) if γ < 1 and m ∈ [ N(p+2)
p(N+2)−N(1−γ)

, N/p+ 1), then u ∈ L
m(N(p+γ−1)+p(γ+1)

N−pm+p (Q);

viii) if γ < 1 and m ∈ [1, p(N+2)
p(N+2)−N(1−γ)

), then u ∈ Lqm(0, T ;W 1,qm
0 (Ω)) ∩ L

m(N(p+γ−1)+p(γ+1)
N−pm+p (Q),

with qm = m[N(p+γ−1)+p(γ+1)]
N+2−m(1−γ)

.

In the same fashion, De Bonis and Giachetti in [69] have proved the existence of non-negative solution
to the following singular parabolic problems involving p-Laplacian:

∂u
∂t
−∆pu = f(x, t)( 1

uθ
+ 1) in Q,

u = 0 on Γ,
u0(x, t = 0) = u0(x) in Ω.

(1.5)

Here Ω is bounded open subset of RN , N ≥ 2, 0 < T < +∞, θ > 0, p > 1, and f is non-negative
function which belongs to Lr(0, T ;Lm(Ω)), with 1

r
+ N

pm
< 1, and u0(x) ≥ 0 a.e. in Ω. Also, the authors

considered the case when the right-hand side of the above problem depends on the gradient. In this
latest case the model of the right-hand side is F (x, t, u,∇u) = f(x,t)+D|∇u|q

uθ
, with D > 0, 1 < q < p and

f(x, t) as before.
More recently, if g ≡ 0 and in presence of a general h and measure data, existence and uniqueness

have been addressed in [122], under suitable assumptions. In the same sense, Magliocca and Oliva in
[112] have proved the existence of non-negative solutions to parabolic Cauchy-Dirichlet problems with
superlinear gradient terms which are possibly singular. The model equation is

∂u

∂t
−∆pu = g(u)|∇u|q + h(u)f inQ

where Ω is an open bounded subset of RN with N > 2, 0 < T < +∞, 1 < p < N, and q < p is
superlinear. The functions g, h are continuous and possibly satisfying g(0) = +∞ and/or h(0) = +∞,
with different rates, and finally f is a non-negative function which belongs to a suitable Lebesgue space.

When h ≡ 1 and the absorption terms does exist and appear in the problem (1.1) (i.e. g(x, t, u,∇u) 6=
0) and possibly singular at u = 0, the works studying the problems of this type is more limited. Martinez-
Aparacio and Petitta in the first part of [113] have studied the problem (1.1) when a(x, t, u,∇u) =
M(x, t, u)∇u and g does not depend on the gradient. More precisely, the authors considered the
following problems 

∂u

∂t
− div(M(x, t, u)∇u) + g(x, t, u) = f(x, t) in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(1.6)
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where Ω is an open bounded set of RN (N ≥ 3) M(x, t, s) := mij(x, t, s), i, j = 1, ..., N is a symetric
matrix whose coefficient mij(x, t, s) : Ω× (0, T )×R→ R are Carathéodory functions (i.e., mij(., ., s) is
measurable on Ω for every s ∈ R, and mij(x, t, .) is continuous on R for a.e. (x, t) ∈ Ω × (0, T ) ) such
that there exist constants 0 < α ≤ β satisfying

α|ξ|2 ≤M(x, t, s)ξ · ξ, |M(x, t, s)| ≤ β, ∀ (s, ξ) ∈ R× RN , a.e.x ∈ Ω, ∀ t ∈ (0, T ).

f is non-negative function which belongs to L1(Q), κ > 0 and g : Ω × (0, T ) × [0, κ) → R+ is a
Carathéodory function such that

h(s) ≤ g(x, t, s) ≤ ρ(x, t)δ(s), ∀s ∈ [0, κ), a.e.x ∈ Ω, ∀ t ∈ (0, T ),

where ρ ∈ L1(Q) and δ(s), h(s) : [0, κ) → R+ are continuous and increasing real function such that
δ(0) = h(0) = 0 and lim

s→κ−
h(s) = +∞. Finally, u0 is a measurable function such that u0(x) < κ

for a.e. on Ω. Here, the authors have proved that the above problem admits a positive solution u ∈
L2(0, T ;H1

0 (Ω)). In the second part of their work, the authors studied the problem (1.1), when the
absorption term g(x, t, u,∇u) possibly singular at u = 0 and possibly negative having a natural growth
with respect to the gradient. More specifically, the authors have proved the existence of positive solution
u ∈ L2(0, T ;H1

0 (Ω)) to the following problem
∂u

∂t
− div(M(x, t, u)∇u) + g(x, t, u)|∇u|2 = f(x, t) in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(1.7)

where M as before, and f ∈ Lr(0, T ;Lq(Ω)) with 1
r

+ 2
Nq

< 1, q ≥ 1, r ≥ 1 satisfies

mω(f) = essinf{f(x, t) : x ∈ ω, t ∈ (0, T )} > 0, ∀ω ⊂⊂ Ω.

Moreover, the initial data u0 ∈ L∞(Ω) such that

mω(u0) = essinf{f(x, 0) : x ∈ ω} > 0, ∀ω ⊂⊂ Ω.

Concerning the lower order term, g(x, t, u) is Carathéodory function defined on Ω × (0, T ) × (0,+∞)
satisfying for some µ > 0

−µ
s
≤ g(x, t, s) ≤ h(s), for x ∈ Ω, ∀ s > 0, ∀ t ∈ (0, T ),

where h : (0,+∞)→ [0,+∞) is a continuous non-negative function such that

lim
s→0+

∫ 1

s

√
h(t)dt < +∞,

and h(s) is non increasing in a neighborhood of zero. In the same kinds Dall’Aglio et al in [60] have

studied the problem (1.1), when g(x, t, u,∇u) = B |∇u|
p

u
and f ≡ 0, with p > 1, B > 0, and u0 is a

positive function in L∞(Ω) such that u0(x) ≥ C > 0 in Ω. The authors shown that the problem (1.1)
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admits a non-negative weak solution u ∈ Lp(0, T ;W 1,p
0 (Ω)). For the non-homogeneous case (when f 6= 0

and h ≡ 1), we refer the reader to see [15].
In the case when the problem (1.1) involving Hardy potential, there is an extensive literature which

has studied the problems of this kind. If p = 2 and f ≡ 0 then we have a linear heat equation with
potential

∂u

∂t
= ∆u+ v(x)u.

If the potential v belongs to the kato class or Lp (p > N/2) classes, then the Hamiltonian H = −∆ + v
has several good properties and so the linear heat equations with this potential is well understood. If
the potential v does not belong to these classes, such as v = c/|x|2 then the solutions of heat problem
may have critical behavior. As an interesting results was obtained by Baras and Goldstein [13], they
have shown that the following heat problem;

∂u

∂t
= ∆u+ c

|x|2u in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

has no non-negative solutions except u ≡ 0 if c > C∗(N) = ((N − 2)/N)2 and positive weak solution
does exist if c < C∗(N). Thus C∗(N) = ((N − 2)/N)2 is the cut of point for existence of positive
solutions for the heat equation with inverse square potential c/|x|2, where C∗(N) is also the sharp
constant in Hardy’s inequality. The results in [13] have been extended by Cabré and Martel [48],
Goldstein and Zhang [87, 88], Goldstein and Kombe [85], Kombe [96] for the wide class of potentials.
In the same context there are also some related works on nonlinear parabolic problems by Garcia and
Peral [84], Aguilar and Peral [5], Goldstein and Kombe [86]. We refer the reader to see [4, 13, 82, 84,
130, 131, 132] and references therein.

Finally, Problems as (1.1) with degenerate coercivity and h ≡ 1 has been extensively studied in the
past. See for instance [6, 7, 21, 24, 28, 53, 65] in the elliptic case and [29, 75, 66, 107, 124, 127, 129, 143]
in the parabolic case.

Concerning the existence and regularity results for the problems as (1.1), when the operator A is
non-coercive and the term h is singular at s = 0, the first contribution has been given by Croce [54],

when g ≡ 0, A(u) = − div
(
a(x)∇u
(1+|u|)p

)
and h(u) = 1

uγ
. The author has proved the existence of non-

negative solutions of problem (1.1) in the stationary case when p > 1, p−1 ≤ γ ≤ p+ 1 and f ∈ Lm(Ω)
with m ≥ 1. The regularity of the solutions also analyzed. More Recently, Sbai and El Hadfi [135]
generalized the work [54]. The authors studied the problem (1.1) in the stationary case, when g ≡ 0

and A(u) = − div(a(x, u,∇u)) such that a(x, u,∇u) ·∇u ≥ α|∇u|p
(1+|u|)θ(p−1) , p > 1, α > 0 and 0 < θ < 1, the

function h : [0,+∞) → [0,+∞] is continuous bounded outside the origin with h(0) 6= 0 and possibly
singular at s = 0 such that the following condition hold true:

∃C > 0, 0 < γ < 1 s.t. h(s) ≤ C

sγ
∀ s > 0.

They have proved the existence of weak non-negative solution to the problem (1.1) and the regularity
of the solution also analyzed. Durastanti and Oliva [71] have considered the same problem studied in
[135]. The authors have proved the existence and uniqueness of entropy solution in the stationary case
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of the problem (1.1). The regularity of the entropy solution also analyzed. In the presence of the lower
order term (i.e. g 6= 0), but without any growth condition on the gradient i.e. g(x, u,∇u) = g(x, u) and
the operator A is non-coercive, the problem (1.1) has been studied by Sbai and El Hadfi in [136] in the
stationary case.

This thesis is organized as follows. In chapter 2, we give some preliminaries (definitions of classical
spaces, convergence theorems, and injection theorems, and classical integrability lemmas ...) which we
will use later in the following chapters.

Chapter 3: On nonlinear parabolic equations with singular lower order term.
This chapter is devoted to study the problem (1.1), when g ≡ 0, h(u) = u−γ (γ > 0) and a(x, t, u,∇u) =

(a(x, t) + |u|q)∇u. More precisely, we focus on the following nonlinear and singular parabolic problems
∂u

∂t
− div((a(x, t) + |u|q)∇u) = f

uγ
in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(1.8)

where Ω is a bounded open subset of RN , N ≥ 2, Q is the cylinder Ω × (0, T ), T > 0, Γ the lateral
surface ∂Ω× (0, T ), q > 0, γ > 0, and f is non-negative function wich belongs to some Lebesgue space
Lm(Q), m ≥ 1,

u0 ∈ L∞(Ω) and ∀ ω ⊂⊂ Ω, ∃ Dω > 0 : u0 ≥ Dω. (1.9)

Moreover a(x, t) is a measurable function satisfying

0 < α ≤ a(x, t) ≤ β a.e. in Q; (1.10)

where α, β are fixed real numbers such that α < β. we start by identifying the necessary conditions
on the data in order to get existence of weak solutions of (1.8). Then, using the Schauder’s fixed point
Theorem, we shown the existence of non-negative solution for the non-singular problem, for every non-
negative function f depending on the values of q and γ and by the application of Harnack inequality, we
prove that this solution is strictly positive in the interior of the parabolic cylinder. Also, the regularity
of solutions depending on the summability of the function f and the values of q and γ has been obtained.

This work is published in Journal of Elliptic and Parabolic Equations [76]

Chapter 4: Some nonlinear parabolic problems with singular natural growth term

In this chapter, we study the problem (1.1) when a(x, t, u,∇u) = |∇u|p−2∇u, g(x, t, u,∇u) =

b(x, t) |∇u|
p

uθ
and h ≡ 1. More precisely we study the following nonlinear parabolic problems:

∂u
∂t
− div(|∇u|p−2∇u) + b(x, t) |∇u|

p

uθ
= f in Q,

u(x, t) = 0 on Γ,
u(x, 0) = 0 in Ω,

(1.11)
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where Ω is a bounded open subset of RN , N ≥ 2, and Q is the cylinder Ω× (0, T ), T > 0, Γ the lateral
surface ∂Ω× (0, T ), 2 ≤ p < N, 0 < θ < 1, b(x, t) is a measurable function satisfying

0 < α ≤ b(x, t) ≤ β, (1.12)

where α and β are fixed real numbers, and f belongs to some Lebesgue space Lm(Q), m ≥ 1, satisfying
the condition

ess inf{f(x, t) : x ∈ ω, t ∈ (0, t)} > 0 ∀ω ⊂⊂ Ω.

Our aim is to study the impact of the term b(x, t)|∇u|pu−θ (θ > 0) (having a natural growth with respect
to the gradient and singular at u = 0) in the existence of the weak solution of problem (1.11) for the
largest possible classes of the data f. In order to obtain a weak solution, we approximate the problem
(1.11) by another non-singular problem, we make some estimates that will allow us to prove that the
solution of approximated problem converges to the solution of our problem. Also, this solution satisfies
the property of the strict positivity in the interior of the parabolic cylinder. We use this important
property to make a sense of the weak formulation of (1.11) and also in the convergence passage.

This work is published in Journal of Results in Mathematics [78]

Chaptre 5: Existence of positive solutions to nonlinear singular parabolic equations with
Hardy potential
In this chapter, we focalize our attention on the studying of the problem (1.1) when a(x, t, u,∇u) =
a(x, t,∇u), g(x, t, u,∇u) = −µup−1

|x|p , µ > 0 and h(u) = u−γ, γ > 0. More specifically, we study the
following nonlinear parabolic problems involving Hardy potential with a singular lower order term:

∂u
∂t
− div(a(x, t,∇u))− µup−1

|x|p = f
uγ

in Q,

u = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(1.13)

where Ω is a bounded open subset of RN , (N ≥ 3), 2 ≤ p < N, γ, µ > 0, Q = Ω×(0, T ), Γ = ∂Ω×(0, T ),
with T > 0, f is a nononegative function belonging to suitable Lebesgue space, the initial datum
u0 ∈ L∞(Ω) and satisfies the following bound

∀ω ⊂⊂ Ω, ∃Mω > 0 : u0 ≥Mω in ω. (1.14)

Moreover, the function a : Ω× (0, T )×RN −→ RN is a Caratheodory function satisfying the following
conditions: there exist positive constants α, β such that

a(x, t, ξ) · ξ ≥ α|ξ|p, (1.15)

|a(x, t, ξ)| ≤ β|ξ|p−1, (1.16)

[a(x, t, ξ)− a(x, t, ξ′)] · [ξ − ξ′] > 0, (1.17)

for almost every x ∈ Ω, t ∈ (0, T ), for every ξ, ξ′ ∈ RN , with ξ 6= ξ′. The main goal of this chapter
is to analyze the interaction between the Hardy potential and the singular term u−γ in order to get a
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solution for the largest possible class of the datum f . The regularity of the solution is also analyzed.

This work is published in Journal of Pseudo-Differential Operators and Applications
[79]

Chapter 6: Existence and regularity results for a singular parabolic equations with
degenerate coercivity
In this chapter, we are going to study the existence and regularity results of the problem (1.1) when
g(x, t, u,∇u) = |u|s−1u, (s ≥ 1), i.e. we consider the following singular parabolic problems with degen-
erate coercivity and absorption term

∂u

∂t
+ A(u) + |u|s−1u = h(u)f in Q,

u(x, 0) = 0 in Ω,
u = 0 on Γ,

(1.18)

where
A(u) = −div(a(x, t, u,∇u)).

Here Ω is a bounded open subset of RN , (N > p ≥ 2) and 0 < T < +∞, f is non-negative function
that belongs to some Lebesgue space, f ∈ Lm(Q), m ≥ 1 Q = Ω× (0, T ), Γ = ∂Ω× (0, T ), 0 < γ < 1
and s ≥ 1. a(x, t, σ, ξ) : Ω × (0, T ) × R × RN −→ RN is a Carathéodory function (i.e it is continuous
with respect to σ and ξ for almost (x, t) ∈ Q, and measurable with respect to (x, t) for every σ ∈ R and
ξ ∈ RN) satisfying for a.e (x, t) ∈ Q, ∀ ξ, ξ′ ∈ RN :

a(x, t, σ, ξ).ξ ≥ α|ξ|p

(1 + |σ|)θ(p−1)
, (1.19)

|a(x, t, σ, ξ)| ≤ b(x, t) + |σ|p−1 + |ξ|p−1, (1.20)

(a(x, t, σ, ξ)− a(x, t, σ, ξ′)).(ξ − ξ′) > 0 ξ 6= ξ′, (1.21)

where α is positive constant, 0 ≤ θ < 1 and b is a non-negative function and belong to Lp
′
(Q), p′ = p

p−1
.

The function h : [0,∞) −→ R+ is a continuous and bounded function and possibly singular at s = 0
such that

∃ c > 0 such that h(r) ≤ c

rγ
∀r > 0. (h1)

In the study of problem (1.18), there is one to two difficulties, the first one is the fact that, due to hy-
pothesis (1.19) the differential operator A(u) = −div(a(x, t, u,∇u)) is not coercive on Lp(0, T ;W 1,p

0 (Ω)),
when u is large. Due to the lack of coercivity, the classical theory for parabolic operators acting between
spaces in duality (see [108]) cannot be applied. The second difficulty comes from the right-hand side is
singular in variable u. We overcome these difficulties by replacing the operator A by another one defined
by means of truncations, and approximating the singular term by non singular one. We will prove in
Section 3 that problems admits a bounded Lp(0, T ;W 1,p

0 (Ω)) solution by using Schauder’s fixed point
theorem and we prove some a prior estimates for the solution of the approximate problem and finally
we pass to the limit.
This work is published in Journal of Discrete and Continuous Dynamical Systems-S [77]

MOUNIM EL OUARDY



Chapter 2

Preliminaries

In this chapter, we give some basic results that we will often use in the proofs of our results.

1 A review on some basic results of the theory of integration

1.1 Lebesgue and Sobolev spaces.

Let D be an open subset of RN . For 1 ≤ p ≤ +∞, we denote by Lp(D) the space of Lebesgue
measurable functions (in the fact, equivalence classes, since almost everywhere equal functions are
identified) u : D → R such that, if p < +∞,

‖u‖Lp(D) =

(∫
D

|u(x)|pdx
) 1

p

< +∞,

and if p = +∞,
‖u‖L∞ = ess-supx∈D|u(x)|.

For the definition, the main properties and results on Lebesgue spaces we refer to [35, 97]. For a
function u in a Lebesgue space, we set by ∂u

∂xi
(or simply uxi) its partial derivative in the direction xi

defined in the sense of distributions, that is

〈uxi , φ〉 = −
∫
D

uφxidx,

and we denote, in this way, by ∇u = (ux1 ;ux2 ; ...;uxN ) the gradient of the function u.
The Sobolev space W 1,p(D), with 1 ≤ p ≤ +∞, is the space of functions u in Lp(D) such that

∇u ∈ (Lp(D))N , endowed with its natural norm

||u||W 1,p(D) = (‖u‖pLp(D) + ‖∇u‖pLp(D))
1
p ,

while W 1,p
0 (D) will indicate the closure of D(D) (the space of C∞ functions with compact support in

D) with respect to this norm. For 1 ≤ p ≤ +∞ the dual space of Lp(D) can be identified with Lp
′
(D),

where p′ = p
p−1

is the Hölder conjugate exponent of p, and the dual space of W 1,p
0 (D) is denoted by

W−1,p′(D). It is well known that if D is bounded, any element T ∈ W−1,p′(D) can be written, (see
[35]), in the form T = − div(F ) where F ∈ (Lp

′
(D))N .

19



CHAPTER 2. PRELIMINARIES 20

1.2 Basic tools of integration.

We recall here some useful results in the theory of integration.

Lemma 2.1 (Fatou’s lemma [35]). Let {fn} ⊂ L1(D) be a sequence such that

� for each n, fn(x) ≥ 0 a.e. in D,

� supn

∫
D

fn(x) dx < +∞.

Then lim inf
n→+∞

fn ∈ L1(D), and∫
D

lim inf
n→+∞

fn(x) dx ≤ lim inf
n→+∞

∫
D

fn(x) dx.

Definition 2.2. (see [95]) We say that a sequence {fn} ⊂ L1(D) is equi-integrable if for all ε > 0 there
exist a measurable set A ⊂ D of finite measure and a real δ > 0 such that

�

∫
D\A
|fn(x)| dx ≤ ε, for all n ≥ 1,

� ∀E ⊂ D, |E| < δ ⇒ supn

∫
E

|fn(x)| dx ≤ ε.

Lemma 2.3. Vitali’s theorem (see [95]) Let {fn} ⊂ L1(D) be a sequence such that fn → f a.e. in D.
Then, the two assertions are equivalent

� fn → f strongly in L1(D),

� {fn} is equi-integrable

We will also use the following technical lemma which can be found in [93].

Lemma 2.4. Let {fn} ⊂ L1(D), and let f ∈ L1(D)

� fn(x) ≥ 0 a.e. in D,

� fn → f a.e. in D,

�

∫
D

fn(x) dx→
∫
D

f(x) dx.

Then fn → f strongly in L1(D).

For an exhaustive treatment on Sbolev spaces we refer to [3] and [36]. We only racall the following
fundamentals facts.
• Sobolev’s inequality: there exists a positive constant S0 depend only on N and p such that ‖φ‖L∞ ≤ S0|Ω|

1
N
− 1
p‖|∇φ|‖Lp(Ω) if p ∈ (N,∞)

∀φ ∈ W 1,p
0 (Ω)

‖φ‖Lp∗ (Ω) ≤ S0‖|∇φ|‖Lp(Ω) if p ∈ (1, N),
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where p∗ is the Sobolev conjugate exponent of p, that is,

p∗ =
Np

N − p
∀ p ∈ [1, N).

In general, W 1,p
0 (Ω) cannot be replaced by W 1,p(Ω) on the previous embedding result. However, this

replacement can be made for a large class of open set Ω, which includes for exemple open sets with
lipschitz boundary. More generally, if Ω satifies a uniform interior cone condition (that is there exists a
fixed cone UΩ(x) of height h an solid angle ω such that each x ∈ Ω is the vertex of a cone UΩ(x) ⊂ Ω̄
and congruent to UΩ), then there exists a positive constants S which depends only on N and p, such
that 

‖φ‖L∞(Ω) ≤ S

ωh
N
p

(
‖φ‖Lp(Ω) + ‖|∇φ|‖Lp(Ω)

)
if p ∈ (N,∞)

∀φ ∈ W 1,p(Ω)
‖φ‖Lp∗ (Ω) ≤ S

ω

(
1
h
‖φ‖Lp(Ω) + ‖|∇φ|‖Lp(Ω)

)
if p ∈ (1, N).

• Rellich Kondrachov’s theorems: the embedding

W 1,p
0 (Ω) ⊂

{
L∞(Ω) if p ∈ (N,∞)
Lq(Ω) ∀ q ∈ [1, p∗) if p ∈ (1, N),

is compact. Moreover, if Ω satifies a uniform interior cone condition, then also the embedding

W 1,p(Ω) ⊂
{
L∞(Ω) if p ∈ (N,∞)
Lq(Ω) ∀ q ∈ [1, p∗) if p ∈ (1, N),

is compact.
• Poincaré’s inequality: there exists a positive constant P which depends only on N, p and Ω, such
that

‖φ‖Lp(Ω) ≤ P‖|∇φ|‖Lp(Ω) ∀φ ∈ W 1,p
0 (Ω).

Accordingly, the quantity ‖|∇ · |‖Lp(Ω) defines as norm on W 1,p
0 (Ω) which equivalent to ‖ · ‖W 1,p(Ω).

We will often use the following result due to G. Stampachia.

Theorem 2.5. (see [140]) Let G : R → R be a Lipschitz function such that G(0) = 0. Then for every
u ∈ W 1,p

0 (D) we have G(u) ∈ W 1,p
0 (D) and ∇G(u) = G′(u)∇u almost everywhere in D.

Theorem 2.6. has an important consequence, that is

∇u = 0 a.e in Ec = {x : u(x) = c},

for every c > 0. Hence, we are able to consider the composition of function in W 1,p
0 (D) with some

useful auxiliary function. One of the most used will be the truncation function at level k > 0, that is
Tk(s) = max(−k,min(k, s)).

Thus, if u ∈ W 1,p
0 (D), we have that Tk(u) ∈ W 1,p

0 (D), and

∇Tk(u) = ∇uχ{u<k}, a.e. on D,

for every k > 0, where χ{u<k} stands for the characteristic function of the set {x ∈ D : |u(x)| < k}.

Remark 2.7. If u is such that its truncation belongs to W 1,p
0 (D), then we can define an approximated

gradient of u defined as the a.e. unique measurable function v : D → RN such that

v = ∇Tk(u)

almost everywhere on the set {|u| ≤ k}, for every k > 0 (see for instance [47]).
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1.3 Spaces of functions Lp(a, b;V ).

Given a real Banach space V, for 1 ≤ p < +∞, for a, b ∈ R, Lp(a, b;V ) is the space of measurable
functions u : [a, b]→ V such that

‖u‖Lp(a,b;V ) =

(∫ b

a

‖u‖pV dt
) 1

p

< +∞,

while L∞(a, b;V ) is the space of measurable functions such that:

‖u‖L∞(a,b;V ) = sup
[a,b]

‖u‖V < +∞.

Of course both spaces are meant to be quotiented, as usual, with respect to the almost everywhere
equivalence. The reader can find a presentation of these topics in [61]. Let us recall that, for 1 ≤ p ≤
+∞, Lp(a, b;V ) is a Banach space, moreover if for 1 ≤ p < +∞ and V ′, the dual space of V, is separable,
then the dual space of Lp(a, b;V ) can be identified with Lp

′
(a, b;V ′).

For our purpose V will mainly be either the Lebesgue space Lp or the Sobolev space W 1,p
0 (Ω), with

1 ≤ p < +∞ and Ω is a bounded open set of RN . Since in this case V is separable we have that
Lp(a, b;Lp(Ω)) = Lp((a, b)×Ω), the ordinary Lebesgue space defined in (a, b)×Ω and Lp(a, b;W 1,p

0 (Ω))
consists of all functions u : Ω → R which belong to Lp((a, b) × Ω) and such that ∇u = (ux1 , · · · , uxN )
belongs to Lp((a, b) × Ω)N (often, for simplicity, we will indicate this space only by Lp((a, b) × Ω);
moreover, (∫ b

a

∫
Ω

|∇u|p dx dt
) 1

p

defines an equivalent norm by Poincaré’s inequality.
Given a function in Lp(a, b;V ) it is possible to define a time derivative of u in the space of vector

valued distributions D′(a, b;V ) which is the space of linear continuous functions from C∞0 (a, b) into V
(see [137]). In fact, the definition is the following:

〈ut, ϕ〉 = −
∫ b

a

uϕt dt, ∀ϕ ∈ C∞0 (a, b),

where the equality is meant in V. In the following, we will also use sometimes the notation ∂u
∂t

instead of
ut and Q = (0, T )×Ω. Now we state two embedding theorems that will play a central role in our work;
the first one is an Aubin-Simon type result that we state in a form general enough to our purpose, while
the second one is the well-known Gagliardo-Nirenberg embedding theorem followed by an important
consequence of it for the evolution case.

Theorem 2.8. (see [139]). Let {un} be a sequence bounded in Lm(0, T ;W 1,m
0 (Ω)) such that ∂un

∂t
is

bounded in L1(Q) + Ls
′
(0, T ;W−1,s′(Ω)) with m, s > 1, then {un} is relatively strongly compact in

L1(Q), that is, up to subsequences, {un} strongly converges in L1(Q) to some function u ∈ L1(Q).

Next, we will introduce the following Gagliardo-Nirenberg inequality and Stampcchia Lemma that
will be used essentially throughout the memory.
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Lemma 2.9. [74, Proposition 3.1] Let v be a function in W 1,h
0 (Ω) ∩ Lρ(Ω), with h ≥ 1, ρ ≥ 1. Then

there exists a positive constant C, depending on N, h, ρ, and σ such that

‖v‖Lσ(Ω) ≤ C‖∇v‖η
(Lh(Ω))N

‖v‖1−η
Lρ(Ω) (2.1)

for every η and σ satisfying

0 ≤ η ≤ 1, 1 ≤ σ < +∞, 1

σ
= η
(1

h
− 1

N

)
+

1− η
ρ

.

An immediate consequence of the previous lemma is the following embedding result:∫
Q

|v|σ ≤ ‖v‖
ρh
N

L∞(0,T ;Lρ(Ω))

∫
Q

|∇v|h, (2.2)

which holds for every function v in Lh(0, T ;W 1,h
0 (Ω)) ∩ L∞(0, T ;Lρ(Ω)), with h ≥ 1, ρ > 1 and σ =

h(N+ρ)
N

.

Lemma 2.10. Let C, λ, k0, µ be real positive numbers, where µ > 1. Let % : R+ −→ R+ be a decreasing
function such that

%(h) ≤ C

(h− k)λ
[%(k)]µ, ∀h > k ≥ k0.

Then %(k0 + d) = 0, where dλ = C[%(k0)]µ−12
µλ
µ−1 .
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Chapter 3

On nonlinear parabolic equations with
singular lower order term

1 Introduction

In this chapter we prove existence and regularity results for a class of nonlinear singular parabolic
equations. More precisely, we are interested in the following nonlinear problem

∂u

∂t
− div((a(x, t) + |u|q)∇u) = f

uγ
in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(3.1)

where Ω is a bounded open subset of RN , N ≥ 2, Q is the cylinder Ω × (0, T ), T > 0, Γ the lateral
surface ∂Ω× (0, T ), q > 0, γ > 0, and f is non-negative function which belongs to some Lebesgue space
Lm(Q), m ≥ 1, the data u0 satisfies

u0 ∈ L∞(Ω) and ∀ ω ⊂⊂ Ω, ∃ Dω > 0 : u0 ≥ Dω in ω. (3.2)

Moreover a(x, t) is a measurable function satisfying

0 < α ≤ a(x, t) ≤ β a.e. Q; (3.3)

where α, β are fixed real numbers.
If γ = 0 many works have appeared concerning the existence and regularity of elliptic equations.

Boccardo In [26] has been studied the existence and regularity results of quasi linear elliptic problem{
−div((a(x) + |u|q)∇u) + b(x)u|u|p−2|∇u|2 = f(x) in Ω,
u = 0 on ∂Ω,

where a(x), b(x) are measurable bounded functions, p, q ≥ 0 and 0 ≤ f ∈ Lm(Ω), 1 ≤ m ≤ N
2
, see also

[114]. In the case parabolic the authors in [116] has been studied the existence and regularity results of

24
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nonlinear problems
∂u
∂t
− div((a(x, t) + |u|q)∇u) + b(x, t)u|u|p−1|∇u|2 = f in Q,

u = 0 on ∂Ω,
u(t = 0) = 0 in Ω,

where a(x, t), b(x, t) are measurable positive bounded functions, p, q > 0 and f belongs to Lm(Q)
for some m ≥ 1. If q = 0, then the operator A(x, t, ξ) = b(x, t)ξ existing in [98] and [68](p = 2)
is linear coercive, monotone and satisfying the growth condition |A(x, t, ξ)| ≤ C(d(x, t) + |ξ|) with
C a positive constant and d ∈ L2(Q), we highlight that our case (q > 0) the required growth of
A(x, t, s, ξ) = (a(x, t) + sq)ξ is more general, handling growths greater then linear case.

In the elliptic framework and when γ > 0 a rich amount of research has been conducted to prove
the existence of solution to singular problems. For example Boccardo and Orsina in [25] proved the
existence and regularity results to problem −∆u = f(x)

uγ
in Ω,

u > 0 on Ω,
u = 0 in Ω,

where γ > 0 and f is a nonnegative function belonging to Lm(Q),m ≥ 1. In the same concept the
authors in [118] proved the existence of solution to problem −∆u = f(x)

uγ
+ µ in Ω,

u > 0 on Ω,
u = 0 in Ω,

with γ > 0, f is a nonnegative function on Ω, and µ is a nonnegative bounded Radon measures on Ω.
Hence Charkaoui and Alaa [44] established the existence of weak periodic solution to singular parabolic
problems 

∂u
∂t
−∆u = f(x)

uγ
in Q,

u = 0 on Γ,
u(., 0) = u(., T ) in Ω,

with γ > 0 and f is a nonnegative integrable function periodic in time with period T. Let us observe
that we refer to [68, 69, 77, 112, 122] for more details on singular parabolic problems.
If γ = 0 and q = 0, the problem (3.1) has been studied in [98]. When q = 0 and γ > 0, the existence
and regularity results of problem (3.1) has been obtained in [68]. The aim of this chapter is to prove
the existence and regularity of solutions of problem (3.1) depending on the summability of the datum f
and the parameters q, γ > 0. As we will see, our growth assumption on the function a(x, t) + |u|q has a
regularization effect on the solution u and its gradient ∇u, allowing in some cases to have finite energy
solution (i.e u ∈ L2(0, T ;H1

0 (Ω)) even if f ∈ L1(Q).
We give now the definition of the weak solution of the problem (3.1) we will use throughout this chapter.

Definition 3.1. If γ ≤ 1, a solution of (3.1) is a function u ∈ L1(0, T ;W 1,1
0 (Ω)) such that

∀ω ⊂⊂ Ω ∃ Cω > 0 : u ≥ Cω in ω × (0, T ), (3.4)

(a(x, t) + uq)∇u ∈ L1(0, T ;L1
loc(Ω)), (3.5)
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and

−
∫

Ω

u0(x)ϕ(x, 0)−
∫ T

0

∫
Ω

u
∂ϕ

∂t
+

∫ T

0

∫
Ω

(a(x, t) + uq)∇u∇ϕ =

∫ T

0

∫
Ω

fϕ

uγ
, (3.6)

∀ϕ ∈ C1
c (Ω× [0, T )).

If γ > 1, a solution of problem (3.1) is a function u ∈ L2(0, T ;H1
loc(Ω)), ur ∈ L1(0, T ;W 1,1

0 (Ω)), for some
r > 1 and u satisfying (3.4)-(3.6).

2 The approximation scheme

Let f be a non-negative measurable function which belongs to some Lebesgue space, let n ∈ N, fn =
f

1+ 1
n
f
, and let us consider the following approximation of problem (3.1)

∂un
∂t
− div((a(x, t) + uqn)∇un) = fn

(un+ 1
n

)γ
in Q,

un(x, t) = 0 on Γ,
un(x, 0) = u0(x) in Ω.

(3.7)

Lemma 3.2. the problem (3.7) has a non-negative solution un ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(Q).

Proof. Let k, n ∈ N, be fixed v ∈ L2(Q) and define w := S(v) to be the unique solution of (see [108])
∂w

∂t
− div((a(x, t) + |Tk(v)|q)∇w) = fn

(|v|+ 1
n

)γ
in Q,

w = 0 on Γ,
w(x, 0) = u0(x) in Ω.

Using w as test function by (3.3) and dropping the non-negative terms, we have

α

∫
Q

|∇w|2 ≤ nγ+1

∫
Q

|w|+ 1

2

∫
Ω

u2
0,

an application of Poincaré inequality on the left hand side and Hölder inequality on the right hand side
and the fact that u0 ∈ L∞(Ω) yields∫

Q

|w|2 ≤ Cnγ+1

(∫
Q

|w|2
) 1

2

+
1

2
||u0||2L2(Ω),

this by Young inequality with ε, implies that∫
Q

|w|2 ≤M,

where M is a positive constant independent of v . So that the ball of radius M is invariant under S.
• Now we prove that S is continuous.
Let us choose a sequence vr → v strongly in L2(Q); then by Lebesgue convergence Theorem :

fn
(|vr|+ 1

n
)γ
→ fn

(|v|+ 1
n
)γ

in L2(Q),
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and the uniqueness of solution for linear problem yields that wr = S(vr)→ w = S(v) strongly in L2(Q).
Therefore, we proved that S is continuous.
As we proved before, we have that:∫

Q

|∇S(v)|2 ≤ C(n, γ, ||u0||L2(Ω)), for every v ∈ L2(Q).

Then, S(v) is relatively compact in L2(Q), and by Shauder’s fixed point Theorem, there exist un,k ∈
L2(0, T ;H1

0 (Ω)) such that S(un,k) = un,k for each n, k fixed. Moreover, un,k ∈ L∞(Q), for all k, n ∈ N.
Indeed, for h ≥ 1 fixed, using Gh(un,k) as test function, we obtain, since un,k+ 1

n
≥ h ≥ 1 on {un,k ≥ h}

1

2

∫
Ω

|Gh(un,k)|2 +

∫
Q

|∇Gh(un,k)|2 ≤
∫
Q

fnGh(un,k) +
1

2

∫
Ω

u2
0.

From now, we can follow the standard technique used for the non-singular case in [11] to get un,k ∈
L∞(Q). Furthermore, the estimate of un,k ∈ L∞(Q) is independent from k ∈ N, then for k large enough
and for n fixed, un ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(Q) is the solution of the following approximate problem
∂un
∂t
− div((a(x, t) + uqn)∇un) = fn

(|un|+ 1
n

)γ
in Q,

un(x, t) = 0 on Γ,
un(x, 0) = u0(x) in Ω.

Since fn
(|un|+ 1

n
)γ
≥ 0. The maximum principle implies that un ≥ 0, and this concludes the proof.

Lemma 3.3. Let un be a solution of (3.7). Then for every ω ⊂⊂ Ω there exists Cω > 0 independent
on n such that un ≥ Cω in ω × (0, T ), ∀n ∈ N.

Proof. Define for s ≥ 0 the function

ψδ(s) =


1 if 0 ≤ s ≤ 1,
1
δ
(1 + δ − s) if 1 ≤ s ≤ δ + 1,

0 if s > δ + 1.

We choose ψδ(un)ϕ as test function in (3.7) with ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(Ω), ϕ ≥ 0 then we have∫ T

0

∫
Ω

∂un
∂t

ψδ(un)ϕ+

∫
Q

(a(x, t) + uqn)∇un∇ϕψδ(un)

=
1

δ

∫
{1≤un≤δ+1}

(a(x, t) + uqn)|∇un|2ϕ+

∫
Q

fn
(un + 1

n
)γ
ψδ(un)ϕ,

thus, dropping the non-negative term 1
δ

∫
{1≤un≤δ+1}(a(x, t) + uqn)|∇un|2ϕ, and letting δ goes to zero, we

obtain ∫ T

0

∫
Ω

∂un
∂t

χ{0≤un<1}ϕ+

∫
Q

(a(x, t) + uqn)∇un · ∇ϕχ{0≤un<1}

≥
∫
Q

fn
(un + 1

n
)γ
ϕχ{0≤un<1}.
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Then for the last inequality we can write as follows∫ T

0

∫
Ω

∂T1(un)

∂t
ϕ+

∫
Q

(a(x, t) + T1(un)q)∇T1(un)∇ϕ

≥
∫
Q

f

2γ(1 + f)
ϕχ{0≤un<1},

for all 0 ≤ ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(Q). Since f

2γ(1+f)
χ{0≤un<1} not identically zero and α ≤ a(x, t) +

T1(un)q ≤ β + 1, then we have∫ T

0

∫
Ω

∂T1(un)

∂t
ϕ+ (β + 1)

∫
Q

∇T1(un).∇ϕ ≥ 0. (3.8)

This yields that vn = T1(un) is a weak solution of the variational inequality
1

β+1
∂vn
∂t
−4vn ≥ 0 in Q,

vn(x, t) = 0 on Γ,
vn(x, 0) = T1(u0(x)) in Ω.

We are going to prove that

∀ ω ⊂⊂ Ω, ∃ Cω > 0 : vn(x, t) ≥ Cω in ω × (0, T ), ∀n ∈ N. (3.9)

Let wn be the solution of the following problem
1

β+1
∂wn
∂t
−4wn = 0 in Q,

wn(x, t) = 0 on Γ,
wn(x, 0) = vn(x, 0) in Ω.

(3.10)

From (3.8) vn is a supersolution of (3.10), we have vn ≥ wn, so that we only have to prove that

∀ ω ⊂⊂ Ω, ∃ Cω > 0 : wn(x, t) ≥ Cω in ω × (0, T ), ∀n ∈ N. (3.11)

Since by (3.2)

∀ ω ⊂⊂ Ω, ∃ dω > 0 : wn(x, 0) = vn(x, 0) ≥ dω in ω × (0, T ), ∀n ∈ N. (3.12)

For the rest of the proof we can argue as Boccardo, Orsina and Porzio in [27] (see pp 414 − 416), we
deduce that there exists Cω > 0 such that wn ≥ Cω in ω × (0, T ), ∀ω ⊂⊂ Ω, since vn ≥ wn, then
T1(un) = vn ≥ Cω in ω × (0, T ), ∀ω ⊂⊂ Ω. As un ≥ T1(un) = vn, then we obtain

un ≥ Cω in ω × (0, T ), ∀ω ⊂⊂ Ω, ∀n ∈ N.

MOUNIM EL OUARDY



CHAPTER 3. ON NONLINEAR PARABOLIC EQUATIONS WITH
SINGULAR LOWER ORDER TERM 29

3 A priori estimates and main results

Case γ < 1.

Lemma 3.4. Let un be a solution of (3.7), with γ < 1 and q > 1− γ. Assume that f ∈ L1(Q), then un
is bounded in L2(0, T ;H1

0 (Ω)).

Proof. For n fixed, we choose ε < 1
n

and using φ(un) = ((un + ε)γ − εγ)(1 − (1 + un)1−(q+γ)) as test
function, then we have∫

Ω

Ψ(un(x, t)) + γ

∫
Q

(un + ε)γ−1(1 + un)1−(q+γ)(a(x, t) + uqn)|∇un|2

+ (q + γ − 1)

∫
Q

((un + ε)γ − εγ)(a(x, t) + uqn)
|∇un|2

(1 + un)q+γ
(3.13)

=

∫
Q

fn
(un + 1

n
)γ

((un + ε)γ − εγ)(1− (1 + un)1−(q+γ)) +

∫
Ω

Ψ(u0),

where Ψ(s) =

∫ s

0

φ(`)d`. Dropping the first and second non-negative terms in the left hand side of

(3.13), since u0 ∈ L∞(Ω) and using (3.3), ε < 1
n

we have

(q + γ − 1)

∫
Q

((un + ε)γ − εγ)(a(x, t) + uqn)
|∇un|2

(1 + un)q+γ

≤
∫
Q

fn
(un + 1

n
)γ

((un +
1

n
)γ − εγ)(1− (1 + un)1−(q+γ)) ≤

∫
Q

f + C, (3.14)

and passing to the limit on ε, we get∫
Q

(αuγn + uq+γn )
|∇un|2

(1 + un)q+γ
≤ C

∫
Q

f + C. (3.15)

By working in {un ≥ 1}, we have∫
{un≥1}

(α + uq+γn )
|∇un|2

(1 + un)q+γ
≤
∫
Q

(αuγn + uq+γn )
|∇un|2

(1 + un)q+γ
,

then it follows from (3.15) that

min(α, 1)

2q+γ−1

∫
{un≥1}

|∇un|2 ≤ min(α, 1)

∫
{un≥1}

1 + uq+γn

(1 + un)q+γ
|∇un|2 ≤ C

∫
Q

f + C.

we can deduce that ∫
{un≥1}

|∇un|2 ≤ C. (3.16)
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Now, we choose (Tk(un) + ε)γ − εγ as a test function with ε < 1
n

in (3.7), by (3.3) and dropping the
nonnegative terms, we get

α

∫
Q

|∇Tk(un)|2

(Tk(un) + ε)1−γ

≤
∫
Q

fn
(un + 1

n
)γ

((Tk(un) + ε)γ − εγ) +
1

γ + 1

∫
Ω

(Tk(u0) + ε)γ+1 − εγ
∫

Ω

u0 (3.17)

≤
∫
Q

f +
1

γ + 1

∫
Ω

(Tk(u0) + ε)γ+1 − εγ
∫

Ω

u0.

Therefore ∫
Q

|∇Tk(un)|2 =

∫
Q

|∇Tk(un)|2

(Tk(un) + ε)1−γ (Tk(un) + ε)1−γ

≤ (k + ε)1−γ
∫
Q

|∇Tk(un)|2

(Tk(un) + ε)1−γ

≤ (k + ε)1−γ
[∫

Q

f +
1

γ + 1

∫
Ω

(Tk(u0) + ε)γ+1 − εγ
∫

Ω

u0

]
.

By the fact that u0 ∈ L∞(Ω) and letting ε goes to zero, implies that∫
Q

|∇Tk(un)|2 ≤ Ck1−γ. (3.18)

Combining (3.16) and (3.18) we obtain∫
Q

|∇un|2 =

∫
{un≥1}

|∇un|2 +

∫
{un≤1}

|∇un|2 ≤ C.

Hence by last inequality we deduce that un is bounded in L2(0, T ;H1
0 (Ω)) with respect to n.

Lemma 3.5. Let un be a solution of problem (3.7), with γ < 1 and q ≤ 1− γ. Suppose that f belong to

L1(Q), then un is bounded in Lr(0, T ;W 1,r
0 (Ω)); with r = N(q+γ+1)

N−(1−(q+γ))
.

Proof. For n fixed, we choose ε < 1
n

and using ψ(un) = (un+ ε)γ− εγ as test function in (3.7), we obtain∫
Ω

Ψ(un(x, t)) + γ

∫
Q

(a(x, t) + uqn)(un + ε)γ−1|∇un|2

=

∫
Q

fn
(un + 1

n
)γ

((un + ε)γ − εγ) +

∫
Ω

Ψ(u0),

where Ψ(s) =

∫ s

0

ψ(`)d`. By removing the first nonnegative terms and using (3.3), u0 ∈ L∞(Ω), since

q ≤ 1− γ < 1, ε < 1
n
< 1 and by the fact that

min(α, 1)(un + ε)q ≤ min(α, 1)(un + 1)q ≤ min(α, 1)(1 + uqn) ≤ α + uqn ≤ a(x, t) + uqn,
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we have

γmin(α, 1)

∫
Q

(un + ε)q+γ−1|∇un|2 ≤ γ

∫
Q

(α + uqn)(un + 1)γ−1|∇un|2

≤
∫
Q

fn
(un + 1

n
)γ

((un + ε)γ − εγ) ≤
∫
Q

f + C.

If q = 1− γ, then un is bounded in L2(0, T ;H1
0 (Ω)) with respect to n.

If q < 1− γ, then applying Sobolev inequality, we have(∫
Q

((un + ε)
q+γ+1

2 − ε
q+γ+1

2 )2∗
) 2

2∗

≤ C

∫
Q

|∇(un + ε)
q+γ+1

2 |2 ≤ C

∫
Q

f + C, (3.19)

letting ε→ 0, then (3.19) implies ∫
Q

u
2∗(q+γ+1)

2
n ≤ C. (3.20)

Therefore, un is bounded in L
N(q+1+γ)
N−2 (Q) with respect to n.

Now, if r < 2 as in the statement of Lemma 3.5, we have by the Hölder inequality∫
Q

|∇un|r =

∫
Q

|∇un|r

(un + ε)(1−(q+γ)) r
2

(un + ε)(1−(q+γ)) r
2

≤
(∫

Q

|∇un|2

(un + ε)1−(q+γ)

) r
2
(∫

Q

(un + ε)(1−(q+γ)) r
2−r

)1− r
2

≤ C

(∫
Q

(un + ε)(1−(q+γ)) r
2−r

)1− r
2

.

Thanks to (3.20), the value of r is such that (1−(q+γ))r
2−r = N(q+γ+1)

N−2
, so that the right hand side of the

above inequality is bounded, and then ∫
Q

|∇un|r ≤M, (3.21)

where M is a positive constant independent of n. Then un is bounded in Lr(0, T ; W 1,r
0 (Ω)) with respect

to n, with r = N(q+γ+1)
N−(1−(q+γ))

as desired.

Remark 3.6. As consequence of both Lemma 3.5, there exists a sub-sequence (not relabeled) and a

function u such that un converge weakly to u in Lr(0, T ;W 1,r
0 (Ω)) (with r = N(q+1+γ)

N−(1−(q+γ))
) and almost

everywhere in Q as n→∞.
In the next lemma we give an estimate of uqn|∇un| in Lρ(Q) for any ρ < N

N−1
.

Lemma 3.7. Let un be a solution of problem (3.7), with γ < 1. Suppose that f ∈ L1(Q), then uqn|∇un|
is bounded in Lρ(Q) for every ρ < N

N−1
.
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Proof. For n fixed, we choose ε < 1
n

and we take as test function ψ(un) = ((T1(un) + ε)γ − εγ)(1− (1 +
un)1−λ), with λ > 1, we have∫

Ω

Ψ(un(x, t)) + γ

∫
Q

(T1(un) + ε)γ−1(1− (1 + un)1−λ)(a(x, t) + uqn)|∇T1(un)|2

+ (λ− 1)

∫
Q

(T1(un) + ε)γ − εγ)(a(x, t) + uq)
|∇un|2

(1 + un)λ

=

∫
Q

fn
(un + 1

n
)γ

((T1(un) + ε)γ − εγ)(1− (1 + un)1−λ) +

∫
Ω

Ψ(u0),

(3.22)

where Ψ(s) =

∫ s

0

ψ(σ)dσ. In the following, we ignore the first and second non-negative terms in the left

hand side of (3.22), using (3.3) and the fact that α + uqn ≥ c0(1 + un)q yield

(λ− 1)c0

∫
Q

((T1(un) + ε)γ − εγ)(1 + un)q−λ|∇un|2

≤
∫
Q

fn
(un + 1

n
)γ

((T1(un) + ε)γ − εγ)(1− (1 + un)1−λ) +

∫
Ω

Ψ(u0).

(3.23)

Letting ε goes to zero and using the fact that u0 ∈ L∞(Ω), then (3.23) becomes∫
{un≥1}

(1 + un)q−λ|∇un|2 ≤
∫
Q

T1(un)(1 + un)q−λ|∇un|2 ≤ C

∫
Q

f + C. (3.24)

Combining (3.18) and (3.24) lead to∫
Q

(1 + un)q−λ|∇un|2 =

∫
{un≥1}

(1 + un)q−λ|∇un|2

+

∫
{un≤1}

(1 + un)q−λ|∇un|2 ≤ C.

Now, let ρ = N(2+q−λ)
N(q+1)−(λ+q)

and using the previous result together with Hölder inequality, we have∫
Q

uqρn |∇un|ρ ≤
∫
Q

(1 + un)
ρ(q+λ)

2
|∇un|ρ

(1 + un)
ρ(λ−q)

2

≤ C

(∫
Q

(1 + un)
ρ(q+λ)

2−ρ

) 2−ρ
2

,

and by Sobolev inequality, we get(∫
Q

uρ
∗(q+1)
n

) ρ
ρ∗

≤ C

(∫
Q

u
ρ(q+λ)

2−ρ
n

) 2−ρ
2

,

the previous choice of ρ implies that ρ∗(q+1) = ρ(q+λ)/(2−ρ), and since λ > 1, we obtain an estimate
of uqn|∇un| in Lρ(Q) for every ρ < N/(N − 1), as desired.

In order to pass to the limit in the approximate equations, the almost everywhere convergence of
the ∇un to ∇u is required, this result will be proved following the same techniques as in [30] (see also
[114]).
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Lemma 3.8. The sequence {∇un} converges to ∇u a.e. in Q.

Proof. Let ϕ ∈ C1
c (Ω), ϕ ≥ 0 independent of t ∈ [0, T ] ϕ ≡ 1 on w ⊂ Suppϕ ⊂⊂ Ω and using

Th(un − Tk(u))ϕ as a test function in (3.7)∫ T

0

∫
Ω

∂un
∂t

Th(un − Tk(u))ϕ+

∫ T

0

∫
Ω

(a(x, t) + uqn)ϕ∇un∇Th(un − Tk(u))

+

∫ T

0

∫
Ω

(a(x, t) + uqn)Th(un − Tk(u))∇un∇ϕ

=

∫ T

0

∫
Ω

fn
(un + 1

n
)γ
Th(un − Tk(u))ϕ. (3.25)

Since w = Suppϕ ⊂⊂ Ω and by Lemma 3.3 we have un ≥ CSuppϕ, then we the above equality becomes

1

2

∫
Ω

T 2
h (un − Tk(u))ϕ+

∫ T

0

∫
Ω

(a(x, t) + uqn)|∇Th(un − Tk(u))|2ϕ

≤ Ch||∇ϕ||L∞ + h||ϕ||L∞
1

Cγ
Suppϕ

∫ T

0

∫
Suppϕ

f +
1

2

∫
Ω

T 2
h (u0 − Tk(u0))ϕ

−
∫ T

0

∫
Ω

(a(x, t) + uqn)∇Th(u)∇Th(un − Tk(u))ϕ+,

(3.26)

by removing the first non-negative term, we obtain∫ T

0

∫
Ω

(a(x, t) + uqn)|∇Th(un − Tk(u))|2ϕ

≤ Ch||∇ϕ||L∞ + h||ϕ||L∞
1

Cγ
Suppϕ

∫ T

0

∫
Suppϕ

f +
1

2
h2meas(Ω)

−
∫ T

0

∫
Ω

(a(x, t) + uqn)∇Th(u)∇Th(un − Tk(u))ϕ.

(3.27)

Since ∇Th(un − Tk(u)) 6= 0 (which implies that un ≤ h+ k), we can easily to pass the limit as n tends
to ∞, thanks to Remark 3.6, in the right hand side of the above inequality, so that

α lim sup
n→∞

∫ T

0

∫
Ω

|∇Th(un − Tk(u))|2 ≤ Ch. (3.28)

Let now s be such that s < r < 2, where r is in the statement of Lemma 3.5∫ T

0

∫
w

|∇un −∇u|s ≤
∫ T

0

∫
Ω

|∇un −∇u|sϕ

=

∫
{|un−u|≤h,u≤k}

|∇un −∇u|sϕ+

∫
{|un−u|≤h,u>k}

|∇un −∇u|sϕ

+

∫
{|un−u|>h}

|∇un −∇u|sϕ.

(3.29)
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From (3.21), we have∫ T

0

∫
Ω

|∇un −∇u|sϕ ≤
∫ T

0

∫
Ω

|∇Th(un − Tk(u))|sϕ

+ ||ϕ||L∞
(
2sM s(meas{u > k})1− r

s + 2sM s(meas{|un − u| > h})1− r
s

)
.

(3.30)

Thus, combining (3.28) and (3.29), we obtain for every h > 0 and every k > 0

lim sup
n→∞

∫ T

0

∫
Ω

|∇un −∇u|sϕ ≤
(

2h

α

∫ T

0

∫
Ω

) s
2

||ϕ||L∞meas(Q)1− s
2

+||ϕ||L∞2sM s(meas{u > k})1− s
r .

(3.31)

Letting h tends to zero and k tends to infinity, we finally that

lim sup
n→∞

∫ T

0

∫
Ω

|∇un −∇u|sϕ = 0, ∀s < 2.

Therefore, up to sub sequence, {∇un} converges to ∇u a.e., and Lemma 3.8 is completely proved.

Now we are in position to prove our existence result given by

Theorem 3.9. Let γ < 1 and f be nonnegative function in L1(Q), then there exists a nonnegative
solution u of problem (3.1) in the sense of Definition 3.1. Moreover, u belong to L2(0, T ;H1

0 (Ω)) if
q > 1− γ and it belongs to Lr(0, T ;W 1,r

0 (Ω)) (with r as in the statement of Lemma 3.5) if q ≤ 1− γ.

Proof. As we have already said (see Remark 3.6 ), there exists a function u ∈ Lr(0, T ;W 1,r
0 (Ω)), such

that un converges weakly to u in Lr(0, T ;W 1,r
0 (Ω)).

By Lemma 3.3, we have fn
(un+ 1

n
)γ

is bounded in L1(0, T ;L1
loc(Ω)) and Lemma 3.7 gives (a(x, t)+uqn)|∇un|

is bounded in Lρ(Q), ρ < N
N−1

< 2 then div((a(x, t) + uqn)∇un) is bounded Lρ
′
(Q) ⊂ L2(Q) ⊂

L2(0, T ;H−1(Ω)), then we deduce {∂un
∂t
}n is bounded in L1(0, T ;L1

loc(Ω)) + L2(0, T ;H−1(Ω)), using
compactness argument in [139], we deduce that

un −→ u strongly in L1(Q). (3.32)

On the other hand, Lemma 3.7, Lemma 3.8 and Remark 3.6 imply that the sequence uqn|∇un| converges
weakly to uq|∇u| in Lρ(Q) for every ρ < N

N−1
. Hence for every ϕ ∈ C1

c (Ω× [0, T ))

lim
n→∞

∫
Q

(a(x, t) + uqn)∇un · ∇ϕ =

∫
Q

(a(x, t) + uq)∇u · ∇ϕ. (3.33)

For the limit of the right hand of (3.7). Let w = {ϕ 6= 0}, then by Lemma 6.2, one has, for every
ϕ ∈ C1

c (Ω× [0, T )) ∣∣∣∣ fnϕ

(un + 1
n
)γ

∣∣∣∣ ≤ ||ϕ||L∞Cγ
w

f, (3.34)

then by Remark 3.6, (3.34) and dominated convergence theorem, we get

fn
(un + 1

n
)γ
−→ f

uγ
strongly in L1

loc(Q). (3.35)
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Let ϕ ∈ C1
c (Ω × [0, T )) as test function in (3.7), by (3.32), (3.33), (3.34), (3.35) and letting n → +∞,

we obtain ∫
Ω

u0(x)ϕ(x, 0)−
∫
Q

u
∂ϕ

∂t
+

∫
Q

(a(x, t) + uq)∇u.∇ϕ =

∫
Q

f

uγ
ϕ. (3.36)

Hence, we conclude that the solution u satisfies the conditions (3.4), (3.5) and (3.6) of Definition 3.1,
so that the proof of Theorem 3.9 is now completed.

Case γ = 1.

Lemma 3.10. Let un be a solution of problem (3.7), with γ = 1. Suppose that f belongs to L1(Q). Then

un is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ L

N(q+2)
N−2 (Q).

Proof. we use unχ(0,t) as test function in (3.7) and by (3.3), we obtain

1

2

∫
Ω

|un(x, t)|2 + α

∫ t

0

∫
Ω

|∇un|2 +

∫ t

0

∫
Ω

uqn|∇un|2 ≤
∫ t

0

∫
Ω

fn +
1

2

∫
Ω

u2
0,

as fn ≤ f and u0 ∈ L∞(Ω), passing to supremum for t ∈ (0, T ) in the above estimate, we get

1

2
||un||L∞(0,T ;L2(Ω)) + α

∫
Q

|∇un|2 +

∫
Q

uqn|∇un|2

≤
∫
Q

f +
1

2
||u0||2L2(Ω) ≤ C.

(3.37)

This implies that
||un||L∞(0,T ;L2(Ω)) ≤ C and ||un||L2(0,T ;H1

0 (Ω)) ≤ C. (3.38)

In the other hand by Sobolev embedding Theorem and from (3.37), we can get∫
Q

u
(q+2)2∗

2
n ≤ 4S

(q + 2)2

∫
Q

|∇u
q+2

2
n |2 ≤

∫
Q

f +
1

2
||u0||2L2(Ω) ≤ C.

where S the constant of Sobolev embedding, hence the above estimate implies that the boundedness of

un in L
N(q+2)
N−2 (Q). Then the proof of Lemma 3.10 is completed.

Lemma 3.11. Let un be a solution of problem (3.7), with γ = 1. Suppose that f ∈ L1(Q), then uqn|∇un|
is bounded in Lρ(Q) for every ρ < N/(N − 1).

Proof. We take ϕ(un) = T1(un)(1− (1 + un)1−λ), with λ > 1, as test function in (3.7), we obtain∫
Ω

ψ(un) + γ

∫
Q

T1(un)(1− (1 + un)1−λ)(a(x, t) + uqn)|∇T1(un)|2

+ (λ− 1)

∫
Q

T1(un)(a(x, t) + uqn)
|∇un|2

(1 + un)λ

=

∫
Q

fn
un + 1

n

T1(un)(1− (1 + un)1−λ) +

∫
Ω

ψ(u0),
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where ψ(s) =

∫ s

0

ϕ(`)d`. Dropping the non-negative terms, from (3.3) and by the fact that u0 ∈ L∞(Ω),

α + uqn ≥ c0(1 + un)q, we have∫
Q

T1(un)(1 + un)q−λ|∇un|2 ≤ C

∫
Q

f + C.

By working in the set {un ≥ 1} and using the above estimate, we get∫
{un≥1}

(1 + un)q−λ|∇un|2 ≤
∫
Q

T1(un)γ(1 + un)q−λ|∇un|2 ≤ C

∫
Q

f + C. (3.39)

The inequality (3.38) with (3.39), yields∫
Q

(1 + un)q−λ|∇un|2 =

∫
{un≥1}

(1 + un)q−λ|∇un|2 +

∫
{un<1}

(1 + un)q−λ|∇un|2 ≤ C. (3.40)

Now let us fix ρ = N(2+q−λ)
N(q+1)−(λ+q)

, by Hölder’s inequality and (3.40), we have

∫
Q

uqρn |∇un|ρ =

∫
Q

|∇un|ρ

(1 + un)
ρ(λ−q)

2

(1 + un)
ρ(λ+q)

2 ≤ C

(∫
Q

(1 + un)
ρ(q+λ)

2−λ

) 2−λ
2

,

applying Sobolev inequality and using the above estimate, we deduce(∫
Q

uρ
∗(q+1)
n

) ρ
ρ∗

≤ C

(∫
Q

u
ρ(q+λ)

2−λ
n

) 2−λ
2

.

The previous choice of ρ implies that ρ∗(q + 1) = ρ(q+λ)
2−ρ , and since λ > 1, we obtain an estimate of

uqn|∇un| in Lρ(Q) for every ρ < N/(N − 1).

Theorem 3.12. Let γ = 1 and f be a function in L1(Q). Then there exists a solution u in L∞(0, T ;L2(Ω))∩
L2(0, T ;H1

0 (Ω)) ∩ L
N(q+2)
N−2 (Q) of problem (3.1) in the sense of Definition 3.1.

Proof. By Lemmas 3.3, 3.8, 3.10 and 3.11, the proof of Theorem 3.12 is identical to the of one Theorem
3.9.

The strongly singular case γ > 1.

In this case we do not have an estimate on un in L2(0, T ;H1
0 (Ω)), but we can prove that un is bounded

in L2(0, T ;H1
loc(Ω)) such that u

q+γ+1
2 ∈ L2(0, T ;H1

0 (Ω)).

Lemma 3.13. Let un be a solution of the problem (3.7), with γ > 1. Suppose that f belongs to L1(Q),

then u
q+γ+1

2
n is bounded in L2(0, T ;H1

0 (Ω)), and un is bounded in L2(0, T ;H1
loc(Ω)) ∩ L∞(0, T ;Lγ+1(Ω)).

Moreover if q ≤ γ − 1, then uqn|∇un| is bounded in L2(w × (0, T )) for every w ⊂⊂ Ω.
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Proof. Choosing uγnχ(0,t), as test function in (3.7) with (0 < t ≤ T ). Since 0 ≤ uγn
(un+ 1

n
)γ
≤ 1, recalling

that (3.3), the fact that 0 ≤ fn ≤ f and the dropping the non-negative term, we have;

1

γ + 1

∫
Ω

un(x, t)γ+1 + γ

∫ t

0

∫
Ω

uq+γ−1
n |∇un|2

≤
∫ t

0

∫
Ω

fnu
γ
n

(un + 1
n
)γ

+
1

γ + 1

∫
Ω

uγ+1
0 ≤

∫ t

0

∫
Ω

f +
1

γ + 1

∫
Ω

uγ+1
0 .

Since u0 ∈ L∞(Ω) and passing to supremum in t ∈ [0, T ], we obtain

1

γ + 1
||un||L∞(0,T ;Lγ+1(Ω)) + γ

∫
Q

uq+γ−1
n |∇un|2 ≤

∫
Q

f +
1

γ + 1
||u0||γ+1

Lγ+1(Ω), (3.41)

then we get

4

(q + γ + 1)2

∫
Q

|∇u
q+γ+1

2
n |2 =

∫
Q

uq+γ−1
n |∇un|2 ≤

∫
Q

f +
1

γ + 1
||u0||γ+1

Lγ+1(Ω),

hence ∫
Q

|∇u
q+γ+1

2
n |2 ≤ C.

The last inequality and (3.41), imply that u
q+γ+1

2
n is bounded in L2(0, T ;H1

0 (Ω)) and un is bounded in
L∞(0, T ;Lγ+1(Ω)) with respect to n. We choose now ϕ(un) = uγn(1 − (1 + un)1−(q+γ)) as test function,
dropping the non-negative terms, from (3.3), we have

(q + γ − 1)

∫
Q

uγn(α + uqn)
|∇un|2

(1 + un)q+γ
≤
∫
Q

fnu
γ
n

(un + 1
n
)γ

+

∫
Ω

Ψ(u0)

≤
∫
Q

f +

∫
Ω

Ψ(u0),

where Ψ(s) =

∫ s

0

ϕ(`)d`. By working in the set {un ≥ 1} and the fact that u0 ∈ L∞(Ω), we get

∫
{un≥1}

(α + uq+γn )
|∇un|2

(1 + un)q+γ
≤
∫
Q

(αuγn + uq+γn )
|∇un|2

(un + 1)q+γ

≤
∫
Q

f + C,

the above estimate implies

min(α,1)
2q+γ−1

∫
{un≥1}

|∇un|2 ≤ min(α, 1)

∫
{un≥1}

1 + uq+γn

(1 + un)q+γ
|∇un|2

≤ C

∫
Q

f + C,
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then we get ∫
{un≥1}

|∇un|2 ≤ C. (3.42)

Now we take (Tk(un))γ as test function in (3.7), by (3.3), Lemma 3.3 and the fact that
Tk(un)γ

(un+ 1
n

)γ
≤ uγn

(un+ 1
n

)γ
≤ 1, u0 ∈ L∞(Ω) and dropping the nonnegative terms, we obtain

αCγ−1
w

∫ T

0

∫
w

|∇Tk(un)|2 ≤ α

∫
Q

Tk(un)γ−1|∇Tk(un)|2

≤
∫
Q

f +
1

γ + 1

∫
Ω

Tk(u0)γ+1 ≤
∫
Q

f +
1

γ + 1
||u0||γ+1

Lγ+1(Ω),

then we get that ∫ T

0

∫
w

|∇Tk(un)|2 ≤ C ∀w ⊂⊂ Ω. (3.43)

Combining (3.42) and (3.43), we can deduce that∫ T

0

∫
w

|∇un|2 ≤
∫ T

0

∫
w∩{un≥1}

|∇un|2 +

∫ T

0

∫
w

|∇T1(un)|2 ≤ C (3.44)

∀w ⊂⊂ Ω, so that un is bounded in L2(0, T,H1
loc(Ω)), as achieved. Now going back to (3.41), we have∫

{un≥1}
uq+γ−1
n |∇un|2 ≤

∫
Q

uq+γ−1
n |∇un|2 ≤

1

γ

∫
Q

f +
1

γ(γ + 1)
||u0||γ+1

Lγ+1(Ω).

Then we obtain since 2q ≤ q + γ − 1∫ T

0

∫
w

u2q
n |∇un|2 ≤

∫ T

0

∫
w∩{un≥1}

uq+γ−1
n |∇un|2

+

∫ T

0

∫
w

|∇T1(un)|2 ≤ C, ∀w ⊂⊂ Ω,

(3.45)

then the last inequality implies that uqn|∇un| is bounded in L2(w × (0, T )) for every w ⊂⊂ Ω.

Remark 3.14. We note that by virtue of Lemma 3.13 we easily deduce the almost everywhere convergence
of ∇un to ∇u following exactly the same proofs as the one of Lemma 3.8.

Theorem 3.15. Let γ > 1, q ≤ γ − 1 and f be a nonnegative function in L1(Q). Then there exists a
nonnegative solution u ∈ L2(0, T ;H1

loc(Ω)) of problem (3.1) in the sense of Definition 3.1. Moreover

u
q+γ+1

2 ∈ L2(0, T ;H1
0 (Ω)).

Proof. Thanks to Lemmas 3.3, 3.8, 3.13, the proof of Theorem 3.15 is identical to the one of Theorem
3.9.

MOUNIM EL OUARDY



CHAPTER 3. ON NONLINEAR PARABOLIC EQUATIONS WITH
SINGULAR LOWER ORDER TERM 39

4 Regularity results

In this section we study the regularity results of solution of problem (3.1) depending on q, γ > 0 and
the summability of f.

Theorem 3.16. Let γ < 1, f be a nonnegative function in Lm(Q), 1 < m < N
2

+ 1. Then the solution
found in Theorem 3.9, satisfies the following summabilities:

(i) If 2(N+2−q)
N(q+γ+1)+2(2−q) ≤ m < N

2
+ 1, q ≤ 1− γ then u belongs to L2(0, T ;H1

0 (Ω)) ∩ Lσ(Q), where

σ = m
N(q + γ + 1) + 2(γ + 1)

N − 2m+ 2

(ii) If 1 < m < 2(N+2−q)
N(q+γ+1)+2(2−q) , q > 1− γ then u belongs to

Lr(0, T ;W 1,r
0 (Ω)) ∩ Lσ(Q), where

r = m
N(q + γ + 1) + 2(γ + 1)

N + 2−m(1− γ) + q(m− 1)
, σ = m

N(q + γ + 1) + 2(γ + 1)

N − 2m+ 2

Proof. Let un be a solution of (3.7) given by Lemma 3.2, such that un converges to a solution of (3.1).
We choose ϕ(un) = ((un + 1)λ − 1)χ(0,t), (λ > 0) as test function in (3.7), we have∫

Ω

Ψ(un(x, t)) + λ

∫ t

0

∫
Ω

(1 + un)λ−1(a(x, t) + uqn)|∇un|2

≤ C

∫ t

0

∫
Ω

|fn|uλ−γn +

∫
Ω

Ψ(u0),

where Ψ(s) =

∫ s

0

ϕ(`)d`.

From the condition (3.3) and the fact that u0 ∈ L∞(Ω), c0(1 + un)q ≤ α + uqn, and applying Hölder’s
inequality, we obtain ∫

Ω

Ψ(un(x, t)) + λc0

∫ t

0

∫
Ω

(1 + un)λ+q−1|∇un|2

≤ C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+ C.

(3.46)

By the definition of Ψ(s) and ϕ(s), if γ ≤ 1− q ≤ λ, we can write

Ψ(s) ≥ |s|
λ+1

λ+ 1
∀s ∈ R.

From the above estimate and some simplification the inequality (3.46), we can estimate as follows

1

λ+ 1

∫
Ω

[|un(x, t)|
λ+q+1

2 ]
2(λ+1)
λ+q+1 +

4λc0

(λ+ q + 1)2

∫ t

0

∫
Ω

|∇u
λ+q+1

2
n |2

≤ C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+ C.
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Now passing to supremum for t ∈ [0, T ], we get

1

λ+ 1
|||un|

λ+q+1
2 ||

2(λ+1)
λ+q+1

L∞(0,T ;L
2(λ+1)
λ+q+1 (Ω)

+
4λc0

(λ+ q + 1)2

∫
Q

|∇u
λ+q+1

2
n |2

≤ C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+ C.

(3.47)

By Lemma 2.9 (where v = u
λ+q+1

2
n , ρ = 2(λ+1)

λ+q+1
, h = 2), (3.47), we have

∫
Q

[|un|
λ+q+1

2 ]2
N+

2(λ+1)
λ+q+1
N ≤

(
|||un|

λ+q+1
2 ||

2(λ+1)
λ+q+1

L∞(0,T ;L
2(λ+1)
λ+q+1 (Ω)

) 2
N
∫
Q

|∇u
λ+q+1

2
n |2

≤

[
C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+ C

] 2
N

+1

≤ C

(∫
Q

u(λ−γ)m′

n

)( 2
N

+1) 1
m′

+ C,

then, we can obtain ∫
Q

|un|
N(λ+q+1)+2(λ+1)

N ≤ C

(∫
Q

u(λ−γ)m′

n

)( 2
N

+1) 1
m′

+ C. (3.48)

Now choosing λ such that

σ =
N(λ+ q + 1) + 2(λ+ 1)

N
= (λ− γ)m′, (3.49)

then implies that

λ =
N(q + 1) + 2 +Nγm′

Nm′ −N − 2
, σ = m

N(q + γ + 1) + 2(γ + 1)

N − 2m+ 2
.

By virtue of m < N
2

+ 1, then ( 2
N

+ 1) 1
m′
< 1, and combining (3.48) and (3.49) with Young’s inequality,

we obtain ∫
Q

|un|σ ≤ C. (3.50)

The condition m ≥ 2(N+2−q)
N(q+γ+1)+2(2−q) , ensure that λ ≥ 1 − q ≥ γ and going back to (3.46), from (3.49)

and (3.50), we have ∫
Q

|∇un|2 ≤
∫
Q

(1 + un)λ+q−1|∇un|2

≤ C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+ C ≤ C

(∫
Q

uσn

) 1
m′

+ C ≤ C.

(3.51)

The estimate (3.50) and (3.51), implies that un is bounded in L2(0, T ;H1
0 (Ω)) ∩ Lσ(Q) with respect to

n, so u ∈ L2(0, T ;H1
0 (Ω)) ∩ Lσ(Q). Hence the proof of (i) is desired.
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Now we prove (ii)
If γ ≤ λ < 1− q, by definition ϕ(s), Ψ(s), we can get

Ψ(s) ≥ C|s|λ+1 − C,

from the last inequality and going back to (3.46), we have

C

∫
Ω

|un(x, t)|λ+1 + λc0

∫ t

0

∫
Ω

|∇un|2

(1 + un)1−λ−q

≤ C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+

∫
Ω

Ψ(u0) + Cmeas(Ω),

by the fact that u0 ∈ L∞(Ω) and passing to supremum for t ∈ [0, T ], then we get

C||un||λ+1
L∞(0,T ;Lλ+1(Ω))

+ λc0

∫
Q

|∇un|2

(1 + un)1−λ−q

≤ C

(∫
Q

u(λ−γ)m′

n

) 1
m′

+ C.

(3.52)

Let δ ≤ 2, applying Hölder’s inequality, we have∫
Q

|∇un|δ =

∫
Q

|∇un|δ

(1 + un)
δ(1−λ−q)

2

(1 + un)
δ(1−λ−q)

2

≤
(∫

Q

|∇un|2

(un + 1)1−λ−q

) δ
2
(∫

Q

(1 + un)
δ(1−λ−q)

2−δ

) 2−δ
2

≤ C

(
1 +

∫
Q

u(λ−γ)m′

n

) δ
2m′
(

1 +

∫
Q

u
δ(1−λ−q)

2−δ
n

) 2−δ
2

.

(3.53)

Applying Lemma 2.9 (where v = un, ρ = λ+ 1, h = δ) we get∫
Q

u
δ(N+λ+1)

N
n ≤ ||un||

δ(λ+1)
N

L∞(0,T ;Lλ+1(Ω))

∫
Q

|∇un|δ

≤ C

(
1 +

∫
Q

u(λ−γ)m′

n

) δ
Nm′+

δ
2m′
(

1 +

∫
Q

u
δ(1−λ−q)

2−δ
n

) 2−δ
2

.

(3.54)

Let choose λ such that

σ =
δ(N + λ+ 1)

N
= (λ− γ)m′ =

δ(1− λ− q)
2− δ

, (3.55)

then we deduce

λ =
N(q + 1) + 2 +Nγm′

Nm′ −N − 2
, σ = m

N(q + γ + 1) + 2(γ + 1)

N − 2m+ 2
.

r = m
N(q + γ + 1) + 2(γ + 1)

N + 2−m(1− γ) + q(m− 1)
.
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From (3.55), the inequality (3.54), becomes∫
Q

uσn ≤ C

(
1 +

∫
Q

uσn

) δ
Nm′+

δ
2m′+

2−δ
2

.

By virtue of m < 2(N+2−q)
N(q+γ+1)+2(2−q) , ensure that δ

Nm′
+ δ

2m′
+ 2−δ

2
< 1, then applying Young’s inequality

we can deduce that ∫
Q

uσn ≤ C. (3.56)

We combine (3.55) and (3.56) in (3.53), yields∫
Q

|∇un|δ ≤ C. (3.57)

Two last inequalities proved that the sequence un is bounded in Lδ(0, T ;W 1,δ
0 (Ω)) ∩Lσ(Q), and so

u ∈ Lδ(0, T ;W 1,δ
0 (Ω)) ∩ Lσ(Q).

Theorem 3.17. Let γ = 1, f be a nonnegative function in Lm(Q), 1 ≤ m < N
2

+ 1. Then the so-
lution found in Theorem 3.12, satisfy the following summability u ∈ L2(0, T ;H1

0 (Ω)) ∩ Lσ(Q) with

σ = m(N(q+2)+4)
N−2m+2

.

Proof. Let un be a solution of (3.7) given by Lemma 3.2, such that un converges to a solution of (3.1).
Choosing uλnχ(0,t) as test function, with λ ≥ 1, using (3.3) and applying Hölder’s inequality, we have

1

λ+ 1

∫
Ω

|un(x, t)|λ+1 + λ

∫ t

0

∫
Ω

(α + uqn)uλ−1
n |∇un|2

≤ C

(∫
Q

u(λ−1)m′

n

) 1
m′

+
1

λ+ 1

∫
Ω

uλ+1
0 ,

thanks to u0 ∈ L∞(Ω) and dropping the nonnegative term, we get

1

λ+ 1

∫
Ω

|un(x, t)|λ+1 + λ

∫ t

0

∫
Ω

uλ+q−1
n |∇un|2

≤ C

(∫
Q

u(λ−1)m′

n

) 1
m′

+
1

λ+ 1
||u0||λ+1

Lλ+1(Ω)
≤ C

(∫
Q

u(λ−1)m′

n

) 1
m′

+ C,

by simple simplification the above estimate becomes

1

λ+ 1

∫
Ω

[|un(x, t)|
λ+q+1

2 ]
2(λ+1)
λ+q+1 +

4λ

(λ+ q + 1)2

∫ t

0

∫
Ω

|∇u
λ+q+1

2
n |2

≤ C

(∫
Q

u(λ−1)m′

n

) 1
m′

+ C.

Passing to supremum in t ∈ [0, T ], then we obtain

1

λ+ 1
||u

λ+q+1
2

n ||
2(λ+1)
λ+q+1

L∞(0,T ;L
2(λ+1)
λ+q+1 (Ω)

+
4λ

(λ+ q + 1)2

∫
Q

|∇u
λ+q+1

2
n |2

≤ C

(∫
Q

u(λ−1)m′

n

) 1
m′

+ C.

(3.58)
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By Lemma 2.9 (where v = u
λ+q+1

2
n , ρ = 2(λ+1)

λ+q+1
, h = 2 ), we use the same proof as before, we get

∫
Q

|un|
N(λ+q+1)+2(λ+1)

N ≤

[
C

(∫
Q

u(λ−1)m′

n

) 1
m′

+ C

] 2
N

+1

≤ C

(∫
Q

u(λ−1)m′

n

) 1
m′ (

2
N

+1)

+ C.

(3.59)

Choosing λ such that

σ =
N(λ+ q + 1) + 2(λ+ 1)

N
= (λ− 1)m′, (3.60)

then

λ =
N(q + 1) + 2 +Nm′

Nm′ −N − 2
, σ =

m(N(q + 2) + 4)

N − 2m+ 2
.

Thanks to (3.60) and (3.59), implies that∫
Q

|un|σ ≤ C

(∫
Q

|un|σ
) 1

m′ (
2
N

+1)

+ C.

The condition m < N
2

+ 1 ensure that 1
m′

( 2
N

+ 1) < 1 and λ ≥ 1 implies that m ≥ 1, and using Young’s
inequality in the above estimate gives ∫

Q

|un|σ ≤ C, (3.61)

then we deduce that un is bounded in Lσ(Q) and so u belong to Lσ(Q).

Theorem 3.18. Let γ > 1, q > γ − 1 and f be a nonnegative function in Lm(Q),m > 1. then there
exists a solution u of problem (3.1) such that if

max(1, (N+2)(2q−γ+1)
N(q+γ+1)+4(q+1)

) < m < N
2

+ 1, then u belong to Lσ(Q) with

σ = m
N(q + γ + 1) + 2(γ + 1)

N − 2m+ 2
.

Proof. We will take uλnχ(0,t)(λ > 1) as test function in (3.7), as in the case γ = 1 we will follow the proof
of Theorem 3.17, repeating the same passage in order to arrive to the inequality∫

Q

|un|
N(λ+q+1)+2(λ+1)

N ≤ C

(∫
Q

|un|(λ−γ)m′
) 1

m′ (
2
N

+1)

+ C. (3.62)

We now choose λ such that

σ =
N(λ+ q + 1) + 2(λ+ 1)

N
= (λ− γ)m′, (3.63)

i.e λ = N(q+1)+2+Nγm′

Nm′−N−2
, σ = mN(q+γ+1)+2(γ+1)

N−2m+2
. Combining (3.62) and (3.63), implies that∫

Q

|un|σ ≤ C

(∫
Q

|un|σ
) 1

m′ (
2
N

+1)

+ C,
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by virtue of m < N
2

+ 1, then we have 1
m′

( 2
N

+ 1) < 1 and λ > 1 ensure that m > 1, then by Young’s
inequality, we get ∫

Q

|un|σ ≤ C. (3.64)

Hence from (3.64) it follows that un is bounded in Lσ(Q) so that u ∈ Lσ(Q). Next we testing (3.7) by
uγnT1(un − Tk(un)), we have∫

Q

∂un
∂t

uγnT1(un − Tk(un)) + γ

∫
Q

uγ−1
n (a(x, t) + uqn)|∇un|2T1(un − Tk(un))

+

∫
Q∩{k≤un≤k+1}

uγn(a(x, t) + uqn)|∇un|2 =

∫
Q

fn
(un + 1

n
)γ
uγnT1(un − Tk(un)).

(3.65)

Dropping the first and second nonnegative terms in the left hand side of (3.65) and using the assumption
(3.3), we obtain ∫

Q∩{un≥k}
uγn|∇un|2 ≤

1

γα

∫
Q∩{un≥k}

f + C. (3.66)

Thus, thanks to the estimate (3.66), implies that∫
Q∩{un>k}

uqn|∇un| ≤
(∫

Q∩{un>k}
u2q−γ+1
n

) 1
2
(∫

Q∩{un>k}
uγ−1
n |∇un|2

) 1
2

≤
(∫

Q∩{un>k}
u2q−γ+1
n

) 1
2
(

1
γα

∫
Q∩{un>k}

f + C

) 1
2

.

Since un is bounded in Lσ(Q), then 2q − γ + 1 ≤ σ is equivalent to m ≥ (N+2)(2q−γ+1)
N(q+γ+1)+4(q+1)

, hence we get∫
Q∩{un>k}

uqn|∇un| ≤ C

(
1

γα

∫
Q∩{un>k}

f

) 1
2

. (3.67)

Now let ϕ ∈ C1
c (Ω× [0, T )), ϕ ≡ 1 on w × (0, T ), w ⊂⊂ Ω. and E be a measurable subset of Q, from

(3.67) and Lemma 3.13, we can get∫
E∩{w×(0,T )}

uqn|∇un| ≤
∫
E

uqn|∇un|ϕ ≤
∫
Q∩{un>k}

uqn|∇un|ϕ+ kq
∫
E

|∇un|ϕ

≤ C||ϕ||L∞
(∫

Q∩{un>k}
f + C

) 1
2

+ ||ϕ||L∞kqmeas(E)
1
2

(∫
w×(0,T )

|∇un|2
) 1

2

.

Taking the limit as meas(E) tends to zero, k tend to infinity and since uqn|∇un| converge to uq|∇u|
almost everywhere, we easily verify thanks to Vitali’s Theorem that

uqn|∇un| → uq|∇u| strongly in L1(0, T ;L1
loc(Ω)). (3.68)

Therefore, putting together (3.68), Lemma 3.3 and Lemma 3.13, we conclude the proof of Theorem
3.18.

Theorem 3.19. Let γ > 1, q ≤ γ − 1 and f be a non-negative function in Lm(Q), 1 < m < N
2

+ 1.
Then the solution found in Theorem 3.15, satisfies the following summability, u ∈ Lσ(Q), with σ =

mN(q+γ+1)+2(γ+1)
N−2m+2

.

Proof. The proof of Theorem 3.19 is similar to proof of item (i) of Theorem 3.16.
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Chapter 4

Some nonlinear parabolic problems with
singular natural growth term

1 Introduction

This chapter is devoted to the study of the following nonlinear singular parabolic problem:
∂u
∂t
− div(|∇u|p−2∇u) + b(x, t) |∇u|

p

uθ
= f in Q,

u(x, t) = 0 on Γ,
u(x, 0) = 0 in Ω,

(4.1)

where Ω is a bounded open subset of RN , N ≥ 2, and Q is the cylinder Ω× (0, T ), T > 0, Γ the lateral
surface ∂Ω× (0, T ), 2 ≤ p < N, 0 < θ < 1, b(x, t) is a measurable function satisfying

0 < α ≤ b(x, t) ≤ β, (4.2)

where α and β are fixed real numbers, and f belongs to some Lebesgue space Lm(Q), m ≥ 1, satisfying
the condition

ess inf{f(x, t) : x ∈ ω, t ∈ (0, t)} > 0 ∀ω ⊂⊂ Ω.

When the singular lower-order term does not appear (i.e. b(x, t) = 0 in (4.1)), the existence and reg-
ularity results of solutions to problem (4.1) are proved in [92] under the hypothesis f ∈ Lr(0, T ;Lq(Ω)),
r ≥ 1, q ≥ 1. If θ = 0 and b(x, t) ≡ cst, the authors in [83] studied the existence and uniqueness of
solution to nonlinear parabolic problems with natural growth with respect to the gradient

∂u
∂t
− div(a(x, t, u,∇u)) = H(x, t, u,∇u)− div(g(x, t)) in D′(Q),

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where |H(x, t, s, ξ)| ≤ ν|ξ|p + f(x, t), ν is a positive constant, f ≥ 0 belongs to Lr(0, T ;Lq(Ω)) with
q = r′N/p and 1 < r <∞, |g|p′ ∈ Lr(0, T ;Lq(Ω)), and the initial datum u0 ∈ L∞(Ω) satisfies∫

Ω

epM |u0(x)|dx < +∞,
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for M > 0. In the same fashion, the authors shown in [57] the existence of solutions to problem parabolic
∂u
∂t
−∆pu = d|∇u|p + f(x, t) in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where 1 < p < N, f ∈ Lr(0, T ;Lq(Ω)), with q, r > 1 are such that q/r′ ≥ N/p, and the initial datum
u0 ∈ L∞(Ω) satisfies ∫

Ω

(
el|u0| − 1

)2
dx < +∞, for every l ∈ IR.

See also [58, 77, 111]. When b(x, t) = B, θ = 1 and f ≡ 0 the authors in [60] studied the existence of
weak solutions to homogeneous nonlinear and singular parabolic problems as

∂u
∂t
−∆pu+B |∇u|

p

u
= 0 in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

with p > 1, B > 0, and 0 ≤ u0 belonging to L∞(Ω) such that u0 ≥ c > 0 a.e. on Ω. In the case
p = 2, several works studied the existence of solutions for singular parabolic problems. For example,
the authors in [113] proved the existence of solutions to the following parabolic problem

∂u
∂t
− div(M(x, t, u)∇u) + g(x, t, u)|∇u|2 = f(x, t) in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where f ∈ Lr(0, T ;Lq(Ω)) with 1
r

+ 2
Nq

< 1, q ≥ 1, r > 1, and u0 ∈ L∞(Ω), and the function g(x, t, s) :

Q× (0,+∞) → R is a Carathéodory function which is singular at s = 0, and it possibly negative (see
also [69, 112]). In the elliptic case, several works studied existence and regularity results for the singular
case. In [144] the authors proved existence and non existence of solutions to problem{

−∆pu+ g(x, u)|∇u|p = f in Ω,
u = 0 on ∂Ω,

with 1 < p < +∞, g(x, s) positive and singular at s = 0, f ∈ Lq(Ω) (q ≥ 1) satisfying the condition

∃fω > 0, such that f ≥ fω in w, ∀ω ⊂⊂ Ω.

In the case p = 2, Souilah [138] proved existence and regularity results of solutions to the problem{
−div(M(x, u)∇u) + |∇u|2

uθ
= f + λur x ∈ Ω,

u = 0 x ∈ ∂Ω,

where 0 < θ < 1, 0 < r < 2− θ, λ > 0, f ∈ Lm(Ω) (m ≥ 1). The author in [55] proved existence of
solution u ∈ H1

0 (Ω) to the problem{
−div

(
b(x)

(1+|u|)p∇u
)

+B |∇u|
2

uθ
= f in Ω,

u = 0 on ∂Ω,
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where B, p > 0, 0 < θ < 2; f ∈ Lm(Ω) (m ≥ 1). Here, the non existence of solutions u ∈ H1
0 (Ω) is

proved for θ ≥ 2 (see also [27, 134] and references therein).
In the study of problem (4.1), the difficulty comes from the lower-order term: the natural growth

dependence with respect to the gradient and the singular dependence with respect to u. To overcome
this difficulty, we need to approximate the problem (4.1) by another non-singular one.

Now we give the definition of weak solution of problem (4.1).

Definition 4.1. A weak solution to problem (4.1) is a function u in L1(0, T ;W 1,1
0 (Ω)) such that, for

every ω ⊂⊂ Ω, there exists cω such that u ≥ cω > 0 in ω× (0, T ), |∇u|
p

uθ
∈ L1(Q). Furthermore, we have

that

−
∫
Q

u
∂φ

∂t
dx dt+

∫
Q

|∇u|p−2∇u · ∇φ dx dt+

∫
Q

b(x, t)
|∇u|p

uθ
φ dx dt =

∫
Q

fφ dx dt, (4.3)

for every φ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q).

2 Main results

Now we will give our main results of this chapter.

Theorem 4.2. Let 0 < θ < 1. Assume that f is a positive function belonging to Lm(Q), with m > N
p

+1.
Then there exists a function

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q)

solution of problem (4.1) in the sense of Definition 4.1.

Theorem 4.3. Let 0 < θ < 1. Assume that f is a positive function belonging to Lm(Q), with m = N
p

+1.
Then there exists a function

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L

N(p−θ)
N−p (Q)

solution of problem (4.1) in the sense of Definition 4.1.

Theorem 4.4. Let 0 < θ < 1. Assume that f is a positive function belonging to Lm(Q), with

p(N + 2 + θ)

p(N + 2 + θ)−N(1 + θ)
≤ m <

N

p
+ 1.

Then there exists a function
u ∈ Lp(0, T ;W 1,p

0 (Ω))

solution of problem (4.1) in the sense of Definition 4.1. Moreover u ∈ Lσ(Q), where

σ =
m(N(p− 1− θ) + p)

N − pm+ p
.

Theorem 4.5. Let 0 < θ < 1. Assume that f is a positive function belonging to Lm(Q), with

max

(
1,

(p− 1)(N + 2 + θ)

(p− 1)(N + 2 + θ)− (Nθ − 1)

)
< m <

p(N + 2 + θ)

p(N + 2 + θ)−N(1 + θ)
.
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Then there exists a function
u ∈ Lq(0, T ;W 1,q

0 (Ω)) ∩ Lσ(Q)

solution of problem (4.1) in the sense of Definition 4.1, where

q =
m(N(p− 1− θ) + p)

N + 1− (1 + θ)(m− 1)
and σ =

m(N(p− 1− θ) + p)

N − pm+ p
.

Remark 4.6. The condition m > max
(

1, (p−1)(N+2+θ)
(p−1)(N+2+θ)−(Nθ−1)

)
is due to the fact that q must not be

smaller than p − 1 and the choice of m > 1 in the above Theorem. Note that if 0 < θ < 1
N
, then

(p−1)(N+2+θ)
(p−1)(N+2+θ)−(Nθ−1)

< 1.

Theorem 4.7. Let 0 < θ < 1. Assume that f is a positive function belonging to L1(Q). Then there
exists a function

u ∈ Lδ(0, T ;W 1,δ
0 (Ω))

solution of problem (4.1) in the sense of Definition 4.1, where δ = N(p−θ)
N−θ .

Remark 4.8. If p = 2, the results we that obtain are similar to the regularity ones concerning the elliptic
case. More precisely, we refer to [138, Theorem 2.2] for Theorem 4.2, [55, Theorem 1.1] for Theorem
4.4, [138, Theorem 2.3] for Theorem 4.5 and [138, Theorem 2.4] for Theorem 4.7.

3 A priori estimate and preliminary facts

Let n ∈ N. We approximate the problem (4.1) by the following nonlinear and non-singular problem
∂un
∂t
− div(|∇un|p−2∇un) + b(x, t) un|∇u|p

(un+ 1
n

)θ+1 = fn in Q,

un(x, t) = 0 on Γ,
un(x, 0) = 0 in Ω,

(4.4)

where fn = f

1+ 1
n
f

and fn ∈ L∞(Q), such that

||fn||Lm(Q) ≤ ||f ||Lm(Q) and fn → f strongly in Lm(Q), m ≥ 1. (4.5)

The problem (4.4) admits weak solutions un belonging to Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), see [11, 60, 108].

Since the right hand side of (4.4) is non-negative, this implies that un is non-negative.
We are now going to prove some a priori estimates. The next Lemma gives a control of the natural
growth term.

Lemma 4.9. Let un be solutions to problem (4.4).Then it results∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤
∫
Q

f. (4.6)
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Proof. For any fixed h > 0, let us consider Th(un)
h

as a test function in the approximated problem (4.4).
Then, we have ∫ T

0

∫
Ω

∂un
∂t

Th(un)

h
+

1

h

∫
Q

|∇un|p−2∇un∇Th(un)

+

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

Th(un)

h
=

∫
Q

fn
Th(un)

h
.

Therefore ∫
Ω

Sk(un(x, T )) +
1

h

∫
{un≤h}

|∇Th(un)|p

+

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

Th(un)

h
=

∫
Q

fn
Th(un)

h
,

where Sk(y) =
∫ y

0
Tk(`) d`. Observe that Sk(y) ≥ Tk(y)2

2
for every y ≥ 0.

Now, dropping the first and second non-negative terms in the last equality and using (4.2), we obtain

0 ≤
∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

Th(un)

h
≤
∫
Q

fn
Th(un)

h
.

Using the fact that fn ≤ f and Th(un)
h
≤ 1, then∫

Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

Th(un)

h
≤
∫
Q

f.

Letting h tend to 0, we deduce (4.6) by Fatou’s Lemma.

Remark 4.10. In view of Lemma 4.9, from (4.2) and the fact un ≥ 0, we have∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≥ 0, f ∈ L1(Q) one has that

∫
Q

∣∣∣∣b(x, t) un|∇un|p

(un + 1
n
)θ+1
− f

∣∣∣∣ ≤ ∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

+

∫
Q

f ≤ 2

∫
Q

f < C,

where C not depending on n. Hence

b(x, t)
un|∇un|p

(un + 1
n
)θ+1
− f ∈ L1(Q).

We now prove five a priori estimates on un, which are true for every θ ∈ (0, 1).

Lemma 4.11. Let the assumptions of Theorem 4.2 be in force. Then the solution un of (4.4) is
uniformly bounded in Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q).
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Proof. For k > 0, choose Gk(un) as test function in the approximate problem (4.4). We have∫ t

0

∫
Ω

∂un
∂t

Gk(un) +

∫ t

0

∫
Ω

|∇un|p−2∇un∇Gk(un)

+

∫ t

0

∫
Ω

b(x, τ)
un|∇un|p

(un + 1
n
)θ+1

Gk(un) =

∫ t

0

∫
Ω

fnGk(un),

for t ∈ (0, T ]. Let as denoted by Ak,n(t) the following set

Ak,n(t) = {x ∈ Ω : |un(x, t)| > k}.

Dropping the third non-negative term, using integration by part and by Hölder’s inequality in last
equality, we get ∫

Ak,n(t)

|Gk(un(t))|2 + 2

∫ t

0

∫
Ak,n(τ)

|∇Gk(un)|p

≤ C

(∫ t

0

∫
Ak,n(τ)

|Gk(un)|m′
) 1

m′

.

Then

||Gk(un)||2L∞(0,T ;L2(Ak,n(t)) + 2

∫ T

0

∫
Ak,n(t)

|∇Gk(un)|p

≤ C

(∫ T

0

∫
Ak,n(t)

|Gk(un)|m′
) 1

m′

.

(4.7)

Applying Lemma 2.9 (here ρ = 2, h = p and v = Gk(un))∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N

≤ ||Gk(un)||
2p
N

L∞(0,T ;L2(Ak,n(t))

∫ T

0

∫
Ak,n(t)

|∇Gk(un)|p.

Using (4.7) in last inequality, we deduce that∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N ≤ C

(∫ T

0

∫
Ak,n(t)

|Gk(un)|m′
) 1

m′ (
p
N

+1)

. (4.8)

By virtue ofm > N
p

+1, then p(N+2)
Nm′

> 1. Applying Hölder’s inequality with indices
(
p(N+2)
Nm′

, p(N+2)
p(N+2)−Nm′

)
in (4.8), we get ∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N ≤ C

(∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N

) p+N
p(N+2)

×
(∫ T

0

|Ak,n(t)|
) 1

m′ (
p
N

+1)(1− Nm′
p(N+2)

)

.
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Thanks to Young’s inequality with parameter ε, we obtain∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N ≤ εC̄

∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N

+Cε

(∫ T

0

|Ak,n(t)|
) 1

m′ (
p
N

+1)(1− Nm′
p(N+2)

)
p(N+2)
N(p−1)+p

,

where C̄ is a positive constant independent on n. Taking ε = 1
2C̄
, we obtain that

∫ T

0

∫
Ak,n(t)

|Gk(un)|
p(N+2)
N ≤ C

(∫ T

0

|Ak,n(t)|
) 1

m′ (
p
N

+1)(1− Nm′
p(N+2)

)
p(N+2)
N(p−1)+p

.

We not that, if h > k, we have |Gk(un)| > h− k on Ak,n(t) and Ah,n(t) ⊂ Ak,n(t). Hence

∫ T

0

Ah,n(t) ≤ C

(h− k)
p(N+2)
N

(∫ T

0

|Ak,n(t)|
) 1

m′ (
p
N

+1)(1− Nm′
p(N+2)

)
p(N+2)
N(p−1)+p

.

Let %(k) =

∫ T

0

|Ak,n(t)|, then

%(h) ≤ C

(h− k)λ
[%(k)]µ , (4.9)

where λ = p(N+2)
N

> 0 and µ = 1
m′

(
p
N

+ 1
) (

1− Nm′

p(N+2)

)
p(N+2)
N(p−1)+p

. By the fact that m > N
p

+ 1, then

we have µ > 1 and by Lemma 2.10, there exists γ1 > 1 such that

%(γ1) = 0.

Hence there exists a constant C > 0, independent of n such that

‖un‖L∞(Q) ≤ C in Q. (4.10)

Let us un test function in problem (4.4), obtaining

1

2

∫
Ω

un(x, T )2 +

∫
Q

|∇un|p +

∫
Q

b(x, t)
u2
n|∇un|p

(un + 1
n
)θ+1

=

∫
Q

fnun.

Since 0 < α ≤ b(x, t), then we can drop the first and third non-negative terms, we get∫
Q

|∇un|p ≤
∫
Q

fnun.

Applying Hölder’s inequality twice and from (4.5), (4.10), it follows that∫
Q

|∇un|p ≤
∫
Q

fnun ≤ ‖un‖L∞(Q)‖f‖Lm(Q)|Q|
1
m′ ≤ C. (4.11)

As consequence of estimate (4.10) and (4.11), un is uniformly bounded in Lp(0, T ;W 1,p
0 (Ω))∩L∞(Q).
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Lemma 4.12. Let the assumptions of Theorem 4.3 be in force. Then the solution un of (4.4) is

uniformly bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L

N(p+θ)
N−p (Q).

Proof. We test (4.4) by ϕ(un) = ((un + 1)θ+1 − 1), obtaining∫
Ω

Ψ(un(x, T )) + (θ + 1)

∫
Q

|∇un|p(un + 1)θ +

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

(un + 1)θ+1

=

∫
Q

fn
(
(un + 1)θ+1 − 1

)
+

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

,

where Ψ(y) =

∫ y

0

ϕ(`) d`. Observe that ϕ is increasing and positive on [0,+∞), we deduce that∫
Ω

Ψ(un(x, T )) ≥ 0, and from (4.6), we have

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤
∫
Q

f.

Dropping the first non-negative term, recalling (4.2), and by the fact that
1

(un+1)θ+1 ≤ 1
(un+ 1

n
)θ+1 , we deduce

(θ + 1)

∫
Q

|∇un|p(un + 1)θ + α

∫
Q

un|∇un|p ≤
∫
Q

fn(un + 1)θ+1 + C. (4.12)

Applying Hölder’s inequality with indices (m, m′) =
(
N+p
p
, N+p

N

)
, we get

(θ + 1)pp

(θ + p)p

∫
Q

|∇(un + 1)
θ+p
p |p + α

∫
Q

un|∇un|p

≤ C

(∫
Q

(un + 1)
(θ+1)(N+p)

N

) N
N+p

+ C.

(4.13)

Thanks to the Sobolev inequality applied in (4.13), we have(∫
Q

(un + 1)
N(p+θ)
N−p

)N−p
p

=

(∫
Q

(un + 1)
p∗(θ+p)

p

)N−p
N

(4.14)

≤ C

(∫
Q

(un + 1)
(θ+1)(N+p)

N

) N
N+p

+ C.

Being (θ+1)(N+p)
N

< N(p+θ)
N−p , we apply Hölder’s inequality with indices

(
N2(p+θ)

(N2−p2)(θ+1)
, N2(θ+p)
N2(p+θ)−(N2−p2)(θ+1)

)
,

we deduce (∫
Q

(un + 1)
N(p+θ)
N−p

)N−p
N

≤ C

(∫
Q

(un + 1)
N(p+θ)
N−p

) (N−p)(θ+1)
N(p+θ)

+ C. (4.15)
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Note that (N−p)(θ+1)
N(p+θ)

< N−p
N
. Using Young’s inequality in the above estimate, we get∫

Q

(1 + un)
N(p+θ)
N−p ≤ C. (4.16)

Therefore ∫
Q

u
N(p+θ)
N−p

n ≤ C. (4.17)

Let us suppose that un ≥ 1. Then, we come back to (4.13), so we obtain that

α

∫
{un≥1}

|∇un|p ≤ C

(∫
Q

(un + 1)
(θ+1)(N+p)

N

) N
N+p

+ C.

Being (θ+1)(N+p)
N

< N(p+θ)
N−p . We apply again the Hölder inequality with the same indices used in (4.15),

so we get

α

∫
{un≥1}

|∇un|p ≤ C

(∫
Q

(un + 1)
N(p+θ)
N−p

) (N−p)(θ+1)
N(p+θ)

+ C.

Then, from (4.16), it follows that ∫
{un≥1}

|∇un|p ≤ C. (4.18)

It remains to analyse the behaviour of ∇un in {un < 1}. Taking T1(un) as a test function in (4.4), we
get ∫ T

0

∫
Ω

∂un
∂t

T1(un) +

∫
Q

|∇un|p−2∇un∇T1(un)

+

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un) =

∫
Q

fnT1(un).

Therefore, we get from (4.2), that∫
Ω

S1(un(x, T )) +

∫
{un<1}

|∇T1(un)|p + α

∫
Q

un|∇un|p

(un + 1
n
)θ+1

≤
∫
Q

fnT1(un),

where S1(y) =
∫ y

0
T1(`) d`. Observe that S1(y) ≥ T1(y)2

2
for every y ≥ 0.

Dropping the first and third non-negative terms and using (4.5), we obtain∫
{un<1}

|∇un|p =

∫
Q

|∇T1(un)|p ≤
∫
Q

fnT1(un) ≤
∫
Q

f ≤ C. (4.19)

The inequality (4.18) combined with (4.19), implies that∫
Q

|∇un|p =

∫
{un≥1}

|∇un|p +

∫
{un<1}

|∇un|p ≤ C. (4.20)

Then (4.17) and (4.20) imply that un is uniformly bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L

N(p+θ)
N−p (Q) This

completes the proof of Lemma 4.12.
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Lemma 4.13. Let the assumptions of Theorem 4.4 be in force. Then the solution un of (4.4) is
uniformly bounded in Lp(0, T ;W 1,p

0 (Ω)) ∩ Lσ(Q), where

σ =
m(N(p− 1− θ) + p)

N − pm+ p
.

Proof. Taking ψ(un) = ((1 + un)λ − 1)χ(0,t), (with λ ≥ 1 + θ ) as a test function in problem (4.4), we
have ∫

Ω

Ψ(un(x, t)) + λ

∫ t

0

∫
Ω

|∇un|p(1 + un)λ−1

+

∫ t

0

∫
Ω

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

(un + 1)λ

≤
∫
Q

f((un + 1)λ − 1) +

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

,

(4.21)

where

Ψ(s) =

∫ s

0

ψ(z)dz. (4.22)

By using (4.6) in the right hand side and (4.2) in the left hand side in (4.21), we get∫
Ω

Ψ(un(x, t)) + λ

∫ t

0

∫
Ω

|∇un|p(1 + un)λ−1

+ α

∫ t

0

∫
Ω

un|∇un|p

(un + 1
n
)θ+1

(1 + un)λ

≤
∫
Q

f((1 + un)λ − 1) + C.

(4.23)

By the definitions of Ψ(s) and ψ(s), we can get whenever λ > 1

Ψ(s) ≥ sλ+1

λ+ 1
, ∀s ∈ R+. (4.24)

Combining (4.23) and (4.24) and applying Hölder’s inequality with indices (m,m′), we have

1

λ+ 1

∫
Ω

uλ+1
n + λ

∫
Q

|∇un|p(1 + un)λ−1

+ α

∫ t

0

∫
Ω

un|∇un|p

(un + 1
n
)θ+1

(1 + un)λ

≤ C

(∫
Q

((1 + un)λ − 1)m
′
) 1

m′

+ C.

(4.25)

By easy simplifications we can write (4.25) as follows

1

λ+ 1

∫
Ω

uλ+1
n +

∫ t

0

∫
Ω

|∇un|p(1 + un)λ−θ−1
[
λ(1 + un)θ + αun

]
≤ C

(∫
Q

(1 + un)λm
′
) 1

m′

+ C.
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Since λ, α, un ≥ 0, we have λ(1+un)θ+αun ≥ λ. Furthermore, recalling that λ ≥ 1+θ, we can estimate
the last inequality as follows

1

λ+ 1

∫
Ω

[u
λ−1−θ+p

p
n ]

p(λ+1)
λ−1−θ+p +

ppλ

(λ− 1− θ + p)p

∫ t

0

∫
Ω

|∇u
λ−1−θ+p

p
n |p

≤ C

(∫
Q

(1 + un)λm
′
) 1

m′

+ C.

Now passing to the supremum in time for t ∈ (0, T ) in the last inequality, we deduce

1

λ+ 1
‖u

λ−1−θ+p
p

n ‖
p(λ+1)
λ−1−θ+p

L∞(0,T ;L
p(λ+1)
λ−1−θ+1 (Ω))

+
ppλ

(λ− 1− θ + p)p

∫
Q

|∇u
λ−1−θ+p

p
n |p

≤ C

(∫
Q

(1 + un)λm
′
) 1

m′

+ C. (4.26)

Applying Lemma 2.9 (here v = u
λ−1−θ+p

p
n , ρ = p(λ+1)

λ−1−θ , h = p ) and from (4.26), we have∫
Q

[u
λ−1−θ+p

p
n ]p

N+
p(λ+1)
λ−1−θ+p
N ≤ C

(
‖u

λ−1−θ+p
p

n ‖
p(λ+1)
λ−1−θ+p

L∞(0,T ;L
p(λ+1)
λ−1−θ+1 (Ω))

) p
N

×
∫
Q

|∇u
λ−1−θ+p

p
n |p ≤ C

(∫
Q

(1 + un)λm
′
)( p

N
+1) 1

m′

+ C.

Then, we can write the last inequality as follows∫
Q

u
N(λ−1−θ+p)+p(λ+1)

N
n ≤ C

(∫
Q

(1 + un)λm
′
)( p

N
+1) 1

m′

+ C. (4.27)

Choose now λ such that

σ =
N(λ− 1− θ + p) + p(λ+ 1)

N
= λm′, (4.28)

that is

λ =
(m− 1)(N(p− 1− θ) + p)

N − pm+ p
, σ =

m(N(p− 1− θ) + p)

N − pm+ p
.

Combining (4.27) and (4.28), we get∫
Q

uσn ≤ C

(∫
Q

(1 + un)σ
)( p

N
+1) 1

m′

+ C. (4.29)

By virtue of m < N
p

+ 1, we have
(
p
N

+ 1
)

1
m′

< 1 and applying Young’s inequality with indices(
Nm′

N+p
, Nm′

Nm′−(N+p)

)
in (4.29), we deduce that ∫

Q

uσn ≤ C. (4.30)
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The condition m ≥ p(N+2+θ)
p(N+2+θ)−N(1+θ)

ensures that λ ≥ 1 + θ. By the fact that (1 + un)λ−1−θ ≥ 1 and

combining (4.26), (4.30), we get∫
Q

|∇un|p ≤
∫
Q

|∇un|p(1 + un)λ−1−θ ≤ C

(∫
Q

(1 + un)λm
′
) 1

m′

+ C

≤ C

(∫
Q

uλm
′

n

) 1
m′

+ C = C

(∫
Q

uσn

) 1
m′

+ C ≤ C.

This implies ∫
Q

|∇un|p ≤ C. (4.31)

Lemma 4.14. Let the assumptions of Theorem 4.5 be in force. Then the solution un of (4.4) is
uniformly bounded in Lq(0, T ;W 1,q

0 (Ω)) ∩ Lσ(Q), where

q =
m(N(p− 1− θ) + p)

N + 1− (1 + θ)(m− 1)
and σ =

m(N(p− 1− θ) + p)

N − pm+ p
.

Proof. By the definitions of Ψ(s) and ψ(s) in the proof of Lemma 4.13, we also have

Ψ(s) ≥ Csλ+1 − C, ∀s ∈ R+, (4.32)

assuming 0 < λ < 1 + θ. Going back to (4.23) and from (4.32), we get

C

∫
Ω

un(x, t)λ+1 + λ

∫ t

0

∫
Ω

|∇un|p(1 + un)λ−1

+α

∫ t

0

∫
Ω

un|∇un|p(1 + un)λ−1−θ

≤
∫
Q

f(1 + un)λ + Cmeas(Ω) + C.

By the fact that λ(1 + un)θ + αun ≥ λ, and applying Hölder’s inequality with indices (m, m′), the last
inequality can be estimate as follows

C

∫
Ω

un(x, t)λ+1 + λ

∫ t

0

∫
Ω

|∇un|p

(1 + un)1+θ−λ

≤ C

(∫
Q

(1 + un)λm
′
) 1

m′

+ C.

Passing to the supremum in time for t ∈ (0, T ), we have

C‖un‖λ+1
L∞(0,T ;Lλ+1(Ω))

+ λ

∫
Q

|∇un|p

(1 + un)1+θ−λ

≤ C

(∫
Q

(1 + un)λm
′
) 1

m′

+ C.

(4.33)
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Let 1 < q < p. Applying Hölder’s inequality with indices
(
p
q
, p
p−q

)
, we get∫

Q

|∇un|q =

∫
Q

|∇un|q

(1 + un)
(1+θ−λ)q

p

(1 + un)
(1+θ−λ)q

p

≤
(∫

Q

|∇un|p

(1 + un)1+θ−λ

) q
p
(∫

Q

(1 + un)
(1+θ−λ)q
p−q

) p−q
p

. (4.34)

The inequality (4.33), combined with (4.34), implies that∫
Q

|∇un|q ≤ C

((∫
Q

(1 + un)λm
′
) 1

m′

+ 1

) q
p (∫

Q

(1 + un)
(1+θ−λ)q
p−q

) p−q
p

. (4.35)

Applying Lemma 2.9 (here v = un, ρ = λ+ 1, h = q ), we have∫
Q

u
q(N+λ+1)

N
n ≤ ||un||

q(λ+1)
N

L∞(0,T ;Lλ+1(Ω))

∫
Q

|∇un|q.

We improve the above estimate using (4.33) and (4.35), obtaining∫
Q

u
q(N+λ+1)

N
n ≤ C

((∫
Q

(1 + un)λm
′
) 1

m′

+ 1

) q
p

+ q
N

×
(∫

Q

(1 + un)
(1+θ−λ)q
p−q

) p−q
p

. (4.36)

Choose now λ such that

σ =
q(N + λ+ 1)

N
= λm′ =

(1 + θ − λ)q

p− q
, (4.37)

that is equivalent to

λ =
(m− 1)(N(p− 1− θ) + p)

N − pm+ p
, q =

m(N(p− 1− θ) + p)

N + 1− (1 + θ)(m− 1)

and σ =
m(N(p− 1− θ) + p)

N − pm+ p
.

(4.38)

By using (4.37) in (4.36), we deduce∫
Q

uσn ≤ C

(∫
Q

(1 + un)σ
) 1

m′ (
q
p

+ q
N

)+ p−q
p

+ C. (4.39)

By virtue of m < N
p

+ 1, then 1
m′

(
q
p

+ q
N

)
+ p−q

p
< 1. Applying Young’s inequality, we deduce∫

Q

uσn ≤ C. (4.40)

Since λ < 1 + θ (i.e m < p(N+2+θ)
p(N+2+θ)−N(1+θ)

), and using (4.37) in (4.35), we get

∫
Q

|∇un|q ≤

(
C

(∫
Q

(1 + un)σ
) 1

m′

+ C

) q
p (∫

Q

(1 + un)σ
) p−q

p

.
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The above estimate and (4.40) allow to conclude∫
Q

|∇un|q ≤ C. (4.41)

The estimates (4.40) and (4.41) completed the proof of Lemma 4.14.

Lemma 4.15. Let the assumptions of Theorem 4.7 be in force. Then the solution un of (4.4) is bounded

in Lδ(0, T ;W 1,δ
0 (Ω)), where δ = N(p−θ)

N−θ . Moreover, the sequence Tk(un) is bounded in Lp(0, T ;W 1,p
0 (Ω))

for every k > 0.

Proof. By (4.6) and using (4.2), we have

α

2θ+1

∫
{un≥1}

|∇un|p

uθn
≤
∫
{un≥1}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤
∫
Q

f. (4.42)

Let δ any positive real number such that 1 < δ < p. Using Hölder’s inequality with indices
(
p
δ
, p
p−δ

)
,

we obtain ∫
Q

|∇G1(un)|δ =

∫
{un≥1}

|∇un|δ

u
θδ
p
n

u
θδ
p
n ≤ C

[∫
{un≥1}

|∇un|p

uθn

] δ
p
[∫
{un≥1}

u
θδ
p−δ
n

] p−δ
p

.

Using (4.42) in the last inequality, we get∫
Q

|∇G1(un)|δ ≤ C

[∫
{un≥1}

u
θδ
p−δ
n

] p−δ
p

. (4.43)

The choice of δ = N(p−θ)
N−θ implies that δ∗ = δθ

p−δ . By Sobolev’s inequality on the first term of (4.43), we
have (∫

Q

G1(un)δ
∗
) δ

δ∗

≤ C0

∫
Q

|∇G1(un)|δ ≤ C

[∫
{un≥1}

u
θδ
p−δ
n

] p−δ
p

= C

[∫
{un≥1}

uδ
∗

n

] θ
δ∗

≤ C

[∫
{un≥1}

G1(un)δ
∗
] θ
δ∗

+ C,

(4.44)

where C0 is the Sobolev constant. Since θ < 1, the inequality (4.44) implies that G1(un), hence un,
is bounded in Lδ

∗
(Q). From (4.43), it follows the boundedness of G1(un) in Lδ(0, T ;W 1,δ

0 (Ω)). Using
T1(un) as test function in (4.4), we have∫ T

0

∫
Ω

∂un
∂t

T1(un) +

∫
Q

|∇un|p−2∇un∇T1(un) +

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un)

=

∫
Q

fnT1(un) ≤
∫
Q

fn ≤
∫
Q

f.
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Therfore ∫
Ω

S1(un(T )) +

∫
Q

|∇T1(un)|p + α

∫
Q

un|∇un|p

(un + 1
n
)θ+1

T1(un) ≤
∫
Q

fnT1(un),

where S1(un(T )) =
∫ un(T )

0
T1(s) ds. Since un ≥ 0, it easy to se that S1(un(T )) ≥ 0 a.e. in Ω. After

dropping the first and third non-negative terms and using (4.5), the last inequality becomes∫
Q

|∇T1(un)|p ≤
∫
Q

f ≤ C.

We deduce that T1(un) is bounded in Lp(0, T ;W 1,p
0 (Ω)), hence in Lδ(0, T ;W 1,δ

0 (Ω)). Since un = G1(un)+
T1(un), then we deduce that un is bounded in Lδ(0, T ;W 1,δ

0 (Ω)). Moreover, testing (4.4) by Tk(un), it
is follows that Tk(un) is bounded in Lp(0, T ;W 1,p

0 (Ω)) for every k > 0.

Lemma 4.16. Let un be a solution of (4.4). Then for every ω ⊂⊂ Ω, there exists a positive constant
cω such that

un ≥ cω > 0, in ω × (0, T ), for every n ∈ N.

Proof. For s > 0, we define the non decreasing function

H(s) =

∫ 1

s

h̃(σ)dσ =

∫ 1

s

h(σ)dσ − (p− 1) log s,

where h̃(s) = h(s) + p−1
s
, h(s) = 1

sθ
, and we then consider the non increasing function

ψ(s) =

∫ 1

s

e−βH(`)d`.

Observe that lims→0+ ψ(s) = +∞ and lims→+∞ ψ(s) = ψ∞ ∈ [−∞, 0).
Let 0 < φ ∈ C∞c (Ω), and take e−βH(un)φ ∈ Lp(0, T ;W 1,p

0 (Ω)) as a test function in (4.4). Then, we have∫ T

0

∫
Ω

∂un
∂t

φe−βH(un) +

∫
Q

|∇un|p−2∇un · ∇φe−βH(un)

−β
∫
Q

|∇un|ph̃(un)φe−βH(un) +

∫
Q

b(x, t)
un|∇un|2

(un + 1
n
)θ+1

φe−βH(un)

=

∫
Q

fnφe
−βH(un).

Thanks to easy simplification in the last equality, we can write as follows∫ T

0

∫
Ω

∂un
∂t

φe−βH(un) +

∫
Q

|∇un|p−2∇un · ∇φe−βH(un)

+

∫
Q

|∇un|pφe−βH(un)

[
b(x, t)un

(un + 1
n
)θ+1
− βh̃(un)

]
=

∫
Q

fnφe
−βH(un).
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By the fact that s
(s+ε)θ+1 ≤ h(s) ≤ h̃(s), with 0 < ε < 1 and using (4.2), we get∫ T

0

∫
Ω

∂un
∂t

φe−βH(un) +

∫
Q

|∇un|p−2∇un · ∇φe−βH(un)

≥
∫
Q

fne
−βH(un)φ ≥

∫
Q

fn(e−βH(un) − 1)φ.

Let vn := ψ(un), then ∇vn = −eβH(un)∇un, and so we can write the last inequality as follows

−
∫ T

0

∫
Ω

∂vn
∂t

φ−
∫
Q

|∇vn|p−2∇vn · ∇φ ≥
∫
Q

fn(e−βH(ψ−1(vn)) − 1)φ.

Thus, we deduce that vn is subsolution of

∂z

∂t
−∆pz + f(x, t)g(z) = 0, in Q,

with g(s) = e−βH(ψ−1(s)) − 1 for every s ∈ (ψ∞,+∞). The function g(s) satisfies:

(1) g(s)
sp−1 is increasing for s > 0 large.

(2) The Keller-Osserman condition, i.e.,∫ +∞

σ0

(∫ σ

0

g(s) ds

)−1
p

dσ < +∞ for some σ0 > 0.

For the proof of (1) and (2) see [144]. Since f satisfies

ess inf{f(x, t) : x ∈ ω, t ∈ (0, t)} > 0 ∀ω ⊂⊂ Ω,

we can apply Lemma 3.12 in [105] to the previous equation to obtain the existence of Cω,T > 0 such
that

vn ≤ Cω,T ∀x ∈ ω and t ∈ (0, T ).

Therefore, there exists cω > 0 (independent of n) such that

un ≥ ψ(C0) = cω, in ω × (0, T ).

4 Proof of main results

Because the proofs of Theorem 4.2 and Theorem 4.3 are similar too that of Theorem 4.4, and the proof
of Theorem 4.5 is also similar to that of Theorem 4.7, here we only detail the proofs of Theorem 4.4
and Theorem 4.5.
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Proof. of Theorem 4.4. By Lemma 4.13, there exist a subsequence of {un} (still denoted by {un}) and
a measurable function u such that

un ⇀ u weakly in Lp(0, T ;W 1,p
0 (Ω)), (4.45)

un ⇀ u weakly in Lσ(Q). (4.46)

In view of Lemma 4.13 and Remark 4.10, we have that {∂un
∂t
} is bounded in the space Lp

′
(0, T ;W−1,p′(Ω))+

L1(Q). Then, using compactness results (see [139]), we obtain

un −→ u strongly in L1(Q) and a.e. inQ. (4.47)

Let zn = fn− b(x, t) un|∇un|p
(un+ 1

n
)θ+1 . From (4.5) and (4.47), we have zn converges to f + b(x, t) |∇u|

p

uθ
a.e. in Q.

By (4.6), we get ∫
Q

|zn| ≤
∫
Q

fn +

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤ 2

∫
Q

f.

Then by (4.5) and (4.47), and the Dominated Convergence Theorem, we obtain zn strongly converges
in L1(Q). Since un is solution of 

∂un
∂t
−∆pun = zn in Q,

un(x, t) = 0 on Γ,
un(x, 0) = 0 in Ω,

then we can be adopting the approach of [22, Theorem 3.1], we deduce that there exist a subsequence,
still denoted un, such that

∇un −→ ∇u a.e. in Q. (4.48)

From (4.45) we obtain

|∇un|p−2∇un ⇀ |∇u|p−2∇u weakly in
(
Lp
′
(Q)
)N

. (4.49)

Now we prove that

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

−→ b(x, t)
|∇u|p

uθ
strongly in L1(Q).

Let E be a compact subset in Q, we have∫
E

b(x, t)un|∇un|p

(un + 1
n
)θ+1

=

∫
E∩{un≤k}

b(x, t)un|∇un|p

(un + 1
n
)θ+1

+

∫
E∩{un>k}

b(x, t)un|∇un|p

(un + 1
n
)θ+1

≤
∫
E∩{un≤k}

b(x, t)
|∇un|p

uθn
+

∫
E∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

.

By Lemma 4.16, we get∫
E

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤ 1

cθw

∫
E

b(x, t)|∇Tk(un)|p +

∫
E∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

.
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Let ε > 0 be fixed. For k > 1, we use T1(un − Tk−1(un)) as test function in (4.4), obtaining∫ T

0

∫
Ω

∂un
∂t

T1(un − Tk−1(un)) +

∫
Q

|∇un|p−2∇un∇T1(un − Tk−1(un))

+

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un)) =

∫
Q

fnT1(un − Tk−1(un)).

Therefore ∫
Ω

S1(un(T )) +

∫
{k−1≤un≤k}

|∇un|p +

∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un))

=

∫
Q

fnT1(un − Tk−1(un)),

where S1(un(T )) =

∫ un(T )

0

T1(s−Tk−1(s)) ds. It easy to see that S1(un(T )) ≥ 0 a.e. in Ω. Dropping the

first and second non-negative terms, the last equality becomes∫
Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un)) ≤
∫
Q

fnT1(un − Tk−1(un)). (4.50)

Since T1(un − Tk−1(un)) ≥ 0, T1(un − Tk−1(un)) = 0 if un ≤ k − 1, and T1(un − Tk−1(un)) = 1 if
un > k, we have ∫

Q

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un))

=

∫
Q∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un))

+

∫
Q∩{un≤k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un))

=

∫
Q∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

+

∫
Q∩{un≤k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

T1(un − Tk−1(un))

≥
∫
E∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

,

and ∫
Q

fnT1(un − Tk−1(un)) =

∫
Q∩{un≤k−1}

fnT1(un − Tk−1(un))

+

∫
Q∩{k−1<un≤k}

fnT1(un − Tk−1(un)) +

∫
Q∩{un>k}

fnT1(un − Tk−1(un))

=

∫
Q∩{k−1<un≤k}

fnT1(un − (k − 1)) +

∫
Q∩{un>k}

fn

≤
∫
Q∩{k−1<un≤k}

f+

∫
Q∩{un>k}

f =

∫
Q∩{un≥k−1}

f.
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Therefore, from (4.50) and the two later inequalities we obtain∫
E∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤
∫
Q∩{un≥k−1}

f.

It follows from f ∈ L1(Q) that∫
E∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

−→ 0 as k −→∞.

Then, there exist k0 > 1 such that∫
E∩{un>k}

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

≤ ε

2
, ∀k ≥ k0, ∀n ∈ N. (4.51)

Moreover, similar to the proof of [60, Proposition 3.4] we obtain Tk(un) −→ Tk(u) strongly in
Lp(0, T ;W 1,p

loc (Ω)). Then, there exits nε, δε such that meas(E) ≤ δε we have

1

cθw

∫
E

b(x, t)|∇Tk(un)|p ≤ ε

2
∀n ≥ nε. (4.52)

The estimates (4.51) and (4.52), implies that b(x, t) un|∇un|p
(un+ 1

n
)θ+1 is equi-integrable. This fact, together with

a.e. convergence of this term to b(x, t) |∇u|
p

uθ
, implies by Vitali’s Theorem that

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

−→ b(x, t)
|∇u|p

uθ
, strongly in L1(Q). (4.53)

Let ϕ ∈ C∞(Q) which is zero in a neighborhood of Γ ∪ (Ω × {T}). Taking ϕ as a test function in
problem (4.4), by (4.5), (4.47), (4.49) and (4.53), we can let n→ +∞ obtaining

−
∫
Q

u
∂ϕ

∂t
+

∫
Q

|∇u|p−2∇u · ∇ϕ+

∫
Q

b(x, t)
|∇u|p

uθ
ϕ =

∫
Q

fϕ.

Thus Theorem 4.4 is proved.

Proof. of Theorem 4.5. By Lemma 4.14, there exists a subsequence of {un} (still denoted by {un}) and
a measurable function u such that

un ⇀ u weakly in Lq(0, T ;W 1,q
0 (Ω)), (4.54)

un ⇀ u weakly in Lσ(Q). (4.55)

In view of Lemma 4.14 and Remark 4.10, we have that {∂un
∂t
} is bounded in the space Ls(0, T ;W−1,s(Ω))

+ L1(Q) with s = q
p−1

, which is sufficient to apply [139, Corollary 4] in order to deduce that

un −→ u strongly in L1(Q) and a.e. inQ. (4.56)

We repeat the same proof as in Theorem 4.4, obtaining

∇un −→ ∇u a.e. in Q. (4.57)
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Using the same proof as in Theorem 4.4, we obtain

b(x, t)
un|∇un|p

(un + 1
n
)θ+1

−→ b(x, t)
|∇u|p

uθ
strongly in L1(Q). (4.58)

Since m > max
(

1, (p−1)(N+2+θ)
(p−1)(N+2+θ)−(Nθ−1)

)
, then q > p − 1. By Lemma 4.14, (4.57) and using Vitali’s

Theorem, we can show
|∇un|p−1 −→ |∇u|p−1 strongly inL1(Q). (4.59)

Let ϕ ∈ C∞(Q) which is zero in a neighborhood of Γ ∪ (Ω × {T}). Taking ϕ as a test function in
problem (4.4), by (4.5), (4.56), (4.58) and (4.59), we can let n→ +∞ obtaining

−
∫
Q

u
∂ϕ

∂t
+

∫
Q

|∇u|p−2∇u · ∇ϕ+

∫
Q

b(x, t)
|∇u|p

uθ
ϕ =

∫
Q

fϕ.
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Chapter 5

Existence of positive solutions to nonlinear
singular parabolic equations with Hardy

potential

1 Introduction

In this chapter, we are interested to prove existence and regularity results for a class of nonlinear singular
parabolic equations involving Hardy potential, as following model

∂u

∂t
− div(a(x, t,∇u))− µu

p−1

|x|p
=

f

uγ
in Q,

u = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(5.1)

where Ω is a bounded open subset of RN , (N ≥ 3), 2 ≤ p < N, γ, µ > 0, Q = Ω×(0, T ), Γ = ∂Ω×(0, T ),
with T > 0, f is a nonnegative function belonging a suitable Lebesgue space, the initial datum u0 ∈
L∞(Ω) and satisfies the following bound

∀ω ⊂⊂ Ω, ∃Mω > 0 : u0 ≥Mω in ω. (5.2)

Moreover, the function a : Ω× (0, T )×RN −→ RN is a Carathéodory function satisfying the following
conditions: there exist positive constants α, β such that

a(x, t, ξ) · ξ ≥ α|ξ|p, (5.3)

|a(x, t, ξ)| ≤ β|ξ|p−1, (5.4)

[a(x, t, ξ)− a(x, t, ξ′)] · [ξ − ξ′] > 0, (5.5)

for almost every x ∈ Ω, t ∈ (0, T ), for every ξ, ξ′ ∈ RN , with ξ 6= ξ′.
Under assumptions (5.3), (5.4) and (5.5), the differential operator defined by

A(u) = − div(a(x, t,∇u)), u ∈ Lp(0, T ;W 1,p
0 (Ω))
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is coercive and monotone operator acting from the space Lp(0, T ;W 1,p
0 (Ω)) into its dual Lp

′
(0, T ;W−1,p′(Ω)).

The simplest example is the one in which the operator A is the p-Laplacian: A(u) = − div(|∇u|p−2∇u).
From a purely mathematical point of view the literature is wide. In the case µ = 0 and γ = 0,

the existence and regularity of problem (5.1) has been studied in [16, 22, 75, 98, 108, 128] under the
different assumptions on the data. If γ = 0, f = 0 and µ > 0 the existence and nonexistence of
solution of problem (5.1) depending the value of µ has been studied by the authors in [84, 131]. When
γ = 0, f 6= 0 and µ > 0, the authors in [4] has been studied the existence and summability of elliptic
problem {

− div(M(x)∇u) + b|u|r−2u = µ
u

|x|2
+ f in Ω,

u = 0 on ∂Ω,

where b > 0, µ > 0, r > 2∗ and f ∈ Lm(Ω), m > 1, M(x) is a matrix satisfies M(x)ξ ·ξ ≥ α|ξ|2; |M(x)| ≤
β with α, β ≥ 0 for all ξ ∈ RN and almost every x ∈ Ω. Baras in [13] studied the existence and
nonexistence of problem 

∂u

∂t
−∆u = v(x)u+ f(x, t) in Q,

u = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where v(x) = c/|x|2, c > 0, v ∈ L∞(Ω\Bε) (where Bε = {x : |x| < ε}), the function v is singular at
the origin and u0, f ≥ 0 satisfies some conditions. In the same contexts Porzio [130] showed that the
problem 

∂u

∂t
− div(a(x, t, u,∇u)) = µ

u

|x|2
+ f in Q,

u = 0 on Γ,
u(x, 0) = u0(x) in Ω,

admits a solution for 0 < µ < %1

(
N−2

2

)2
, where %1 is the coercivity constant of a(x, t, u,∇u), f ∈

Lr(0, T ;Lq(Ω)), with r > 1, q > 1, and the summability of solution also obtained (See also [82, 132]).
When µ = 0 and γ > 0, the problem of existence, regularity and uniqueness (sometimes partial unique-
ness) results of (5.1) have been investigated in different contexts by several authors (see [68, 122, 135, 136]
and references therein). The authors in [68] proved the existence, regularity and uniqueness of solution
to singular parabolic problem 

∂u

∂t
− div(a(x, t,∇u)) =

f

uγ
in Q,

u = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where γ > 0 and 0 ≤ f ∈ Lm(Q), m ≥ 1 and u0 ∈ L∞(Ω) satisfies

∀ω ⊂⊂ Ω,∃ dω > 0 : u0 ≥ dω.

Finally in the elliptic framework when µ > 0, γ > 0 the author in [142] proved the existence of one
positive solution to singular problem

− div(M(x)∇u)− µ u
|x|2 = f

uγ
in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,
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where 0 ∈ Ω, γ > 0, 0 ≤ f ∈ Lm(Ω), 1 < m < N
2

and 0 < µ <
(
N−2

2

)2
. The stationary problem

associated to problem (5.1) has been studied in [2]; the authors proved the existence and regularity
(and partial uniqueness ) results of solution to singular problem{

∆pu = µu
p−1

|x|p + f
uγ

in Ω,

u = 0 on ∂Ω,

where 0 ∈ Ω, γ > 0, 0 < µ ≤
(
N−p
p

)p
and 0 ≤ f ∈ Lm(Ω),m ≥ 1. If µ >

(
N−p
p

)p
, then the problem has

non solution (see [1]), and also the authors proved that if f is a singular measure with respect to the
p-Capacity associated to W 1,p

0 (Ω) the problem has a non-negative solution in suitable sense.
The aim of this chapter1101011 is to analyze the interaction between the Hardy potential and the

singular term u−γ in order to get a solution for largest possible class of the datum f.
The problem (5.1) is related to the following classical Hardy inequality (see [84])

CN,p

∫
RN

|ψ|p

|x|p
dx ≤

∫
RN
|∇ψ|pdx, for all ψ ∈ W 1,p(RN),

where CN,p =
(
N−p
p

)p
is optimal and is not attained. Let’s now give the meaning of the weak solution

to the problem (5.1) we will use throughout this chapter.

Definition 5.1. We will say that a function u ∈ L1(0, T ;W 1,1
loc (Ω)) is a distributional solution of (5.1)

if

|∇u|p−1 ∈ L1(0, T ;L1
loc(Ω)),

|u|p−1

|x|p
∈ L1(0, T ;L1

loc(Ω)) (5.6)

u = 0 on ∂Ω× (0, T ) in weak sense, (5.7)

i.e., some positive power of u belongs to a Sobolev space Lr(0, T ;W 1,r
0 (Ω)), r > 1. Moreover, we require

that
∀ω ⊂⊂ Ω ∃cω > 0 : u ≥ cω in ω × (0, T ), (5.8)

and that

−
∫

Ω

u0(x)ϕ(x, 0)−
∫∫

Q

u
∂ϕ

∂t
+

∫∫
Q

a(x, t,∇u)∇ϕ

=

∫∫
Q

up−1

|x|p
ϕ+

∫∫
Q

f

uγ
ϕ,

(5.9)

for all ϕ ∈ C1
c (Ω× [0, T )).

2 The approximation scheme

Let n ∈ N and fn(x, t) be defined by fn(x, t) = min(f(x, t), n); we will consider the following approxi-
mation of (5.1) 

∂un
∂t
− div(a(x, t,∇un))− µ up−1

n

|x|p + 1
n

=
fn

(|un|+ 1
n
)γ

in Q,

un = 0 on Γ,
un(x, 0) = u0(x) in Ω.

(5.10)
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Lemma 5.2. The problem (5.10) has a non-negative solution belonging to Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q)

for all µ < αCN,p and 2 ≤ p < N.

Proof. Let v ∈ Lp(Q) and we define S : Lp(Q) −→ Lp(Q) such that S(v) = w, with w ∈ Lp(0, T ;W 1,p
0 (Ω))∩

C([0, T ];L2(Ω)) the unique solution of problem
∂w

∂t
− div(a(x, t,∇w))− µ wp−1

|x|p + 1
n

=
fn

(|v|+ 1
n
)γ

in Q,

w = 0 on Γ,
w(x, 0) = u0(x) in Ω.

The existence of solution of above problem assured by [108]. Let us take w as a test function in the
above problem, from (5.3), we have

1

2

∫
Ω

w2(x, t) + α

∫∫
Q

|∇w|p − µ
∫∫

Q

wp

|x|p
≤
∫∫

Q

fnw

(|v|+ 1
n
)γ

+
1

2

∫
Ω

u2
0,

since u0 ∈ L∞(Ω) and by Hardy inequality implies

1

2

∫
Ω

w2(x, t) +

(
α− µ

CN,p

)∫∫
Q

|∇w|p ≤
∫∫

Q

fnw

(|v|+ 1
n
)γ

+
1

2
||u0||2L2(Ω). (5.11)

Dropping the first non-negative term and thanks to Hölder’s inequality, we have(
α− µ

CN,p

)∫∫
Q

|∇w|p ≤ |Q|
1
p′ nγ+1

(∫∫
Q

|w|p
) 1

p

+
1

2
||u0||2L2(Ω).

By application of Poincaré inequality in the right hand side, it hold that

||∇w||pLp(Q) ≤
|Q|p′nγ+1Cp
(α− µ

CN,p
)
||∇w||Lp(Q) +

1

2(α− µ
CN,p

)
||u0||2L2(Ω), (5.12)

where Cp is the Poincaré constant. This implies that

||w||Lp(Q) ≤ R, (5.13)

for some constant R independent of v. So that the ball of radius R is invariant under S. Using Sobolev
embedding Theorem, it is easy to prove that S is both continuous and compact on Lp(Q), so that by
Shauder’s fixed point Theorem there exist un ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q) such that S(un) = un, for
all n ∈ N, 2 ≤ p < N, i.e. un solves

∂un
∂t
− div(a(x, t,∇un))− µ up−1

n

|x|p + 1
n

=
fn

(|un|+ 1
n
)γ

in Q,

un = 0 on Γ,
un(x, 0) = u0(x) in Ω.

Moreover, since fn
(|un|+ 1

n
)γ
≥ 0, taking u−n = min(un, 0) test function in (5.10) and using (5.3), then we

have
1

2

∫
Ω

|u−n |2 + α

∫∫
Q

|∇u−n |p − µ
∫∫

Q

u−n
p

|x|p
≤ 0,

MOUNIM EL OUARDY



CHAPTER 5. EXISTENCE OF POSITIVE SOLUTIONS TO NONLINEAR SINGULAR PARABOLIC
EQUATIONS WITH HARDY POTENTIAL 69

dropping the first nonnegative term and by Hardy inequality, we can get

(α− µ

CN,p
)

∫∫
Q

|∇u−n |p ≤ 0,

as α− µ
CN,p

> 0, then we deduce that ∫∫
Q

|∇u−n |p ≤ 0,

that implies that u−n = 0 a.e and hence un ≥ 0. a.e..

Lemma 5.3. Let un be a solution of (5.10). Then

∀ω ⊂⊂ Ω, ∃ cω > 0 (independent of n) : un ≥ cω in ω × [0, T ], ∀n ∈ N.

Proof. Since un solution of (5.10), then

∂un
∂t
− div(a(x, t,∇un))− µ up−1

n

|x|p + 1
n

=
fn

(|un|+ 1
n
)γ
,

as µ > 0, then we obtain
∂un
∂t
− div(a(x, t,∇un)) ≥ fn

(|un|+ 1
n
)γ
,

this implies that the sequence un is a sub-solution to problem
∂v

∂t
− div(a(x, t,∇v)) =

fn
(|v|+ 1

n
)γ

in Q,

v = 0 on Γ,
v(x, 0) = u0(x) in Ω.

Thanks to Proposition 2.2 in [68], ∃ cω > 0 (independent of n) such that

v ≥ cw in ω × (0, T ), ∀n ∈ N, ∀ω ⊂⊂ Ω,

since un ≥ v, so
un ≥ cω in ω × (0, T ), ∀n ∈ N, ∀ω ⊂⊂ Ω.

3 A priori estimate and main results

Now, we prove some a priori estimates on the sequence of approximated solutions un.

Lemma 5.4. Assume that (5.3)-(5.5) hold true, f ∈ L
p(N+2)

p(N+2)−N(1−γ) (Q). If γ < 1 and µ < αCN,p, then
the sequence un is uniformly bounded in Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L2(Ω)).
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Proof. Take unχ(0,t) as a test function in (5.10) (with 0 < t ≤ T ), from (5.3) and fn ≤ f we have

1

2

∫
Ω

u2
n(x, t) + α

∫ t

0

∫
Ω

|∇un|p − µ
∫ t

0

∫
Ω

upn
|x|p

≤
∫ t

0

∫
Ω

fnu
1−γ
n +

1

2

∫
Ω

u2
0 ≤

∫∫
Q

fu1−γ
n +

1

2

∫
Ω

u2
0,

since u0 ∈ L∞(Ω), thanks to Hölder’s and Hardy inequalities imply that

1

2

∫
Ω

u2
n(x, t) +

(
α− µ

CN,p

)∫ t

0

∫
Ω

|∇un|p

≤ ||f ||
L

p(N+2)
p(N+2)−N(1−γ) (Q)

(∫∫
Q

u
p(N+2)
N

n

)N(1−γ)
p(N+2)

+
1

2
||u0||2L2(Ω).

Passing to the supremum for t ∈ [0, T ]

1

2
||un||2L∞(0,T ;L2(Ω)) +

(
α− µ

CN,p

)∫∫
Q

|∇un|p

≤ ||f ||
L

p(N+2)
p(N+2)−N(1−γ) (Q)

(∫∫
Q

u
p(N+2)
N

n

)N(1−γ)
p(N+2)

+
1

2
||u0||2L2(Ω).

By Lemma 2.9 (here v = un, ρ = 2, h = p), we can write∫∫
Q

|un|
p(N+2)
N ≤ CG||un||

2p
N

L∞(0,T ;L2(Ω))

∫∫
Q

|∇un|p

≤ C

(∫∫
Q

|un|
p(N+2)
N

) (p+N)(1−γ)
p(N+2)

+ C(u0),

since 0 < γ < 1 then (p+N)(1−γ)
p(N+2)

< 1, this implies the sequence un is bounded in L
p(N+2)
N (Q), hence un is

bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) with respect to n.

Lemma 5.5. Assume that (5.3)-(5.5) hold true, γ ≥ 1, µ < αCN,p and f ∈ L1(Q), then

i) If γ = 1, then un is bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)).

ii) If γ > 1, then un is bounded in Lp(0, T ;W 1,p
loc (Ω)) and Tk(un)

γ+p−1
p is bounded in Lp(0, T ;W 1,p

0 (Ω)).

Moreover if α
(

p
γ+p−1

)p
− µ

CN,p
> 0, then u

γ+p−1
p

n is bounded in Lp(0, T ;W 1,p
0 (Ω)) and un is bounded

in L∞(0, T ;Lγ+1(Ω)).

Proof. First case: γ = 1
Choosing unχ(0,t) as a test function in (5.10) (with 0 < t ≤ T ), by (5.3) and the fact that 0 ≤ un

un+ 1
n

≤
1, fn ≤ f, we have

1

2

∫
Ω

u2
n(x, t) + α

∫ t

0

∫
Ω

|∇un|p − µ
∫ t

0

∫
Ω

upn
|x|p

≤
∫ t

0

∫
Ω

fn
un

un + 1
n

+
1

2

∫
Ω

u2
0 ≤

∫ t

0

∫
Ω

f +
1

2
||u0||2L2(Ω),
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thanks to Hardy inequality, there result that

1

2

∫
Ω

u2
n(x, t) +

(
α− µ

CN,p

)∫ t

0

∫
Ω

|∇un|p ≤
∫ t

0

∫
Ω

f +
1

2
||u0||2L2(Ω).

Passing to the supremum for t ∈ [0, T ] and the fact that u0 ∈ L∞(Ω), we get

1

2
||un||2L∞(0,T ;L2(Ω)) +

(
α− µ

CN,p

)∫∫
Q

|∇un|p ≤
∫∫

Q

f +
1

2
||u0||2L2(Ω) ≤ C,

since α − µ
CN,p

> 0, then the sequence un is bounded in Lp(0, T ;W 1,p
0 (Ω)) and in L∞(0, T ;L2(Ω)) with

respect to n. Hence the proof of item i) is achieved.
Second case: γ > 1
Now taking Gk(un) as test function in (5.10), from (5.3) we arrive to

1

2

∫
Ω

|Gk(un(x, T ))|2 + α

∫∫
Q

|∇Gk(un)|p − µ
∫∫

Q

up−1
n Gk(un)

|x|p

≤
∫∫

Q

fnGk(un)

(un + 1
n
)γ

+
1

2

∫
Ω

|Gk(u0(x))|2,
(5.14)

dropping the first nonnegative term and as Gk(un) = 0 if un ≤ k and the fact that Gk(u0(x)) ≤ u0(x),
then

α

∫∫
Q

|∇Gk(un)|p − µ
∫∫

Q

up−1
n Gk(un)

|x|p

≤
∫∫

Q∩{un>k}

fnGk(un)

(un + 1
n
)γ

+
1

2

∫
Ω

|u0(x)|2

≤ 1

kγ−1

∫∫
Q

f +
1

2

∫
Ω

|u0(x)|2 ≤ 1

kγ−1

∫∫
Q

f +
1

2
||u0||2L2(Ω).

(5.15)

Notice that for all a, b ≥ 0 and for all ε > 0, we have

(a+ b)r ≤ (1 + ε)r−1ar + (1 +
1

ε
)r−1br, if r > 1.

For un > k, we have up−1
n Gk(un) = (Gk(un) + k)p−1Gk(un) and p ≥ 2, then from the previous estimate

we reach that

up−1
n Gk(un) ≤ (1 + ε)p−2(Gk(un))p + (1 +

1

ε
)p−2kp−1Gk(un). (5.16)

In view of (5.15) and (5.16), it follows that

α

∫∫
Q

|∇Gk(un)|p − µ(1 + ε)p−2

∫∫
Q

(Gk(un))p

|x|p

≤ µ(1 +
1

ε
)p−2kp−1

∫∫
Q

Gk(un)

|x|p
+

1

kγ−1

∫∫
Q

f +
1

2
||u0||2L2(Ω),

(5.17)

MOUNIM EL OUARDY



CHAPTER 5. EXISTENCE OF POSITIVE SOLUTIONS TO NONLINEAR SINGULAR PARABOLIC
EQUATIONS WITH HARDY POTENTIAL 72

as µ < αCN,p, choosing ε small enough and by Hardy inequality, we get

C(α, ε, µ, CN,p)

∫∫
Q

|∇Gk(un)|p ≤ µkp−1

∫∫
Q

Gk(un)

|x|p
+ C(k, f, ||u0||L2(Ω)). (5.18)

Applying Hölder, Young and Hardy inequalities we conclude that∫∫
Q

|∇Gk(un)|p ≤ C(α, ε, µ, kp−1, CN,p,, f, ||u0||L2(Ω)). (5.19)

Testing now (5.10) by (Tk(un))γ, so that, from (5.3) and (5.19)∫∫
Q

Tk(un)γ−1|∇Tk(un)|p ≤ C(α, k, µ, f, ||u0||L2(Ω)). (5.20)

There hold
pp

(γ + p− 1)p

∫∫
Q

|∇Tk(un)
γ+p−1
p |p ≤ C(α, k, µ, f, ||u0||L2(Ω)),

this implies that the sequence Tk(un)
γ+p−1
p is bounden in Lp(0, T ;W 1,p

0 (Ω)). By Lemma 5.3 and (5.20),
yields that Tk(un) is bounded in Lp(0, T ;W 1,p

loc (Ω)). Collecting the last affirmation with (5.19), assume
that the sequence un is bounded in Lp(0, T ;W 1,p

loc (Ω)). Using uγnχ(0,t) as test function in (5.10) (with
0 < t ≤ T ), from (5.3), u0 ∈ L∞(Ω) and applying Hardy inequality, we get

1

γ + 1

∫
Ω

uγ+1
n (x, t) +

(
α

(
p

γ + p− 1

)p
− µ

CN,p

)∫ t

0

∫
Ω

|∇u
γ+p−1
p

n |p

≤
∫∫

Q

fn +
1

γ + 1

∫
Ω

|u0(x)|γ+1 ≤
∫∫

Q

f +
1

γ + 1
||u0||γ+1

L∞(Ω) ≤ C,

since α
(

p
γ+p−1

)p
− µ

CN,p
> 0, passing to the supremum for t ∈ [0, T ], we deduce that

1

γ + 1
||un||γ+1

L∞(0,T ;Lγ+1(Ω)) +

(
α

(
p

γ + p− 1

)p
− µ

CN,p

)∫∫
Q

|∇u
γ+p−1
p

n |p ≤ C,

this implies that u
γ+p−1
p

n is bounded in Lp(0, T ;W 1,p
0 (Ω)) and un is bounded in L∞(0, T ;Lγ+1(Ω)) with

respect to n. Since the proof of item ii) is achieved.

Theorem 5.6. Assume that (5.3)-(5.5) holds true. If γ < 1, µ < αCN,p and f ∈ L
p(N+2)

p(N+2)−N(1−γ) (Q).
Then, there exists a solution u to problem (5.1) in the sense of Definition 5.1. Moreover u ∈ Lp(0, T ;
W 1,p

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and ∂u
∂t
∈ Lp′(0, T ;W−1,p′(Ω)) + L1(0, T ;L1

loc(Ω)).

Remark 5.7. If µ = 0, then the result of Theorem 5.6 coincide with result of Theorem 1.3 in [68].

Theorem 5.8. Suppose that (5.3)-(5.5) holds true. If γ ≥ 1, µ < αCN,p and f ∈ L1(Q). Then, there
exists a solution u to problem (5.1) in the sense of Definition 5.1 with the following regularity:

a) If γ = 1, then u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and

∂u

∂t
∈ Lp′(0, T ;W−1,p′(Ω)) + L1(0, T ;L1

loc(Ω)).
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b) If γ > 1, then u ∈ Lp(0, T ;W 1,p
loc (Ω)) and Tk(u)

p+γ−1
p ∈ Lp(0, T ;W 1,p

0 (Ω)). If α
(

p
p+γ−1

)p
− µ

CN,p
> 0,

then u
p+γ−1
p ∈ Lp(0, T ;W 1,p

0 (Ω)) and u ∈ L∞(0, T ;Lγ+1(Ω)) and ∂u
∂t
∈ Lp

′
(0, T ;W−1,p′(ω)) +

L1(0, T ;L1(ω)) for all ω ⊂⊂ Ω.

Remark 5.9. If µ = 0, then the result of Theorem 5.8 coincide with result of Theorem 1.3 in [68].

Before giving the proof of Theorems 5.6 and 5.8, we need the following results:

Proposition 5.10. Under the assumptions of Lemmas 5.4 and 5.5 there exists u ∈ Lp(0, T ;W 1,p
loc (Ω))

such that, up to a subsequence, un converges to u a.e. on Q, weakly in Lp(0, T ;W 1,p
loc (Ω)) and strongly

in L1(0, T ;L1
loc(Ω)).

Proof. From Lemmas 5.4 and 5.5 we know that un is bounded in the space Lp(0, T ;W 1,p
loc (Ω)). The last

affirmation and Lemma 5.3 imply the sequence

{
µ up−1

n

|x|p+ 1
n

+ fn
(un+ 1

n
)γ

}
is bounded in L1(0, T ;L1

loc(Ω)).

Hence, let ϕ ∈ C1
c (Ω) then one has that {∂(unϕ)

∂t
} is bounded in Lp

′
(0, T ;W−1,p′(Ω))+L1(Q), which is suf-

ficient to apply [139, Corollary 4] in order to deduce that un converges to a function u ∈ L1(0, T ;L1
loc(Ω))

and un converges to u a.e. in Q.

In the following proposition, we will prove the almost everywhere convergence of the gradient of un.

Proposition 5.11. Let un be a solution of problem (5.10) and assume that f ∈ L
p(N+2)

p(N+2)−N(1−γ) (Q) if
γ < 1 and f ∈ L1(Q) if γ ≥ 1 respectively. Then the sequence Tk(un) strongly converges to Tk(u) in
Lp(0, T ;W 1,p

loc (Ω)) and so, in particular, ∇un converges to ∇u almost everywhere in Q.

Proof. Let n,m ∈ N denote two value of the parameter describing the approximation. Since (5.10) is
non-singular problem, we can take T2k(un − um)ϕ ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q) as a test function in
the difference of the approximating equations solved by un and um, with ϕ ∈ C1

c (Ω) independent of
t ∈ [0, T ] and such that 0 ≤ ϕ ≤ 1, obtaining∫ T

0

∫
Ω

∂(un − um)

∂t
T2k(un − um)ϕ(x)

+

∫ T

0

∫
Ω

(a(x, t,∇un)− a(x, t,∇um))∇(T2k(un − um)ϕ(x))

=

∫ T

0

∫
Ω

(
fn

(un + 1
n
)γ
− fm

(um + 1
m

)m

)
T2k(un − um)ϕ(x)

+

∫ T

0

∫
Ω

µ

[
up−1
n

|x|p + 1
n

− up−1
m

|x|p + 1
m

]
T2k(un − um)ϕ(x).

Observe that ∫ T

0

∫
Ω

∂(un − um)

∂t
T2k(un − um)ϕ(x) =

∫
Ω

∫ T

0

d

dt
(θ2k(un − um))ϕ(x)

=

∫
Ω

θ2k(un − um)(T )ϕ(x),

(5.21)
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where θ2k(t) is the primitive of T2k(t) which vanishes for t = 0, and so we can drop the parabolic term
(5.21) (since it is nonnegative) obtaining∫ T

0

∫
Ω

(a(x, t,∇un)− a(x, t,∇um))∇(T2k(un − um))ϕ(x)

+

∫ T

0

∫
Ω

(a(x, t,∇un)− a(x, t,∇um))∇ϕT2k(un − um)

≤ 2k

∫
Q∩supp(ϕ)

∣∣∣∣ fn
(un + 1

n
)γ
− fm

(um + 1
m

)γ

∣∣∣∣
+

∫ T

0

∫
Ω

µ

[
up−1
n

|x|p + 1
n

− up−1
m

|x|p + 1
m

]
T2k(un − um)ϕ(x).

We denote by

Ak,n = {(x, t) ∈ Q : un ≤ k} and Ak,n,m = {(x, t) ∈ Q : un ≤ k, um ≤ k},

since Ak,n,m ⊂ {(x, t) ∈ Q : |un − um| ≤ 2k}, we have∫∫
Q

(a(x, t,∇un)− a(x, t,∇um)∇(T2k(un − um))ϕ

=

∫∫
{(x,t)∈Q:|un−um|≤2k}

(a(x, t,∇un)− a(x, t,∇um))∇(un − um)ϕ

≥
∫∫

Ak,n,m

(a(x, t,∇Tk(un))− a(x, t,∇Tk(um)))(∇Tk(un)−∇Tk(um))ϕ

=

∫∫
Ak,n

a(x, t,∇Tk(un))∇Tk(un)ϕ−
∫∫

Ak,n,m

a(x, t,∇Tk(un))∇Tk(um)ϕ

−
∫∫

Ak,n,m

a(x, t,∇Tk(um))∇Tk(un)ϕ+

∫∫
Ak,m

a(x, t,∇Tk(um))∇Tk(um)ϕ.

In conclusion, we found that∫∫
Ak,n

a(x, t,∇Tk(un))∇Tk(un)ϕ−
∫∫

Ak,n,m

a(x, t,∇Tk(un))∇Tk(um)ϕ

−
∫∫

Ak,n,m

a(x, t,∇Tk(um))∇Tk(un)ϕ+

∫∫
Ak,m

a(x, t,∇Tk(um))∇Tk(um)ϕ

≤ 2k

∫
Q∩supp(ϕ)

∣∣∣∣ fn
(un + 1

n
)γ
− fm

(um + 1
m

)γ

∣∣∣∣
+

∫ T

0

∫
Ω

µ

[
up−1
n

|x|p + 1
n

− up−1
m

|x|p + 1
m

]
T2k(un − um)ϕ(x)

−
∫∫

Q

(a(x, t,∇un)− a(x, t,∇um))∇ϕ(x)T2k(un − um).

(5.22)

The right-hand side of the previous inequality is infinitesimal for n,m→ +∞ and we denote by r(n,m)
a quantity that goes to zero from n,m→ +∞.
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By using the same proof as Proposition 3.2 in [68], we have∫
Q∩supp(ϕ)

∣∣∣∣ fn
(un + 1

n
)γ
− fm

(um + 1
m

)m

∣∣∣∣ = r(n,m),

and ∫∫
Q∩supp(ϕ)

(a(x, t,∇un)− a(x, t,∇um))∇ϕ(x)T2k(un − um) = r(n,m).

Now, we prove ∫ T

0

∫
Ω

µ

[
up−1
n

|x|p + 1
n

− up−1
m

|x|p + 1
m

]
T2k(un − um)ϕ(x) = r(n,m). (5.23)

First of all we prove that

up−1
n

|x|p + 1
n

is bounded inLh̄(0, T ;Lh̄locΩ), for every 1 < h̄ <
pN

p+ (p− 1)N
. (5.24)

Notice that it results 1 < pN
p+(p−1)N

< p′. As matter of fact, for every compact ω ⊂ Ω it results (thanks

to Hardy inequality and Lemmas 5.4 and 5.5)∫ T

0

∫
ω

∣∣∣∣ u(p−1)
n

|x|p + 1
n

∣∣∣∣h̄ ≤ ∫ T

0

∫
ω

|un|h̄(p−1)

|x|ph̄
=

∫ T

0

∫
ω

|un|h̄(p−1)

|x|h̄(p−1)

1

|x|h̄

≤
(∫ T

0

∫
ω

|un|p

|x|p

) h̄(p−1)
p

∫ T

0

∫
ω

1

|x|h̄
(

p
h̄(p−1)

)′
1− h̄(p−1)

p

≤ C,

where the last integral in the right-hand side is finite since it results

h̄

(
p

h̄(p− 1)

)′
< N ⇔ h̄ <

pN

p+ (p− 1)N
.

Hence, by (5.24) and the convergence a.e. of un to u in Q we deduce that[
up−1
n

|x|p + 1
n

− up−1
m

|x|p + 1
m

]
ϕ(x) ⇀ 0 weakly inLh̄(Q).

Notice that, thanks to the Lebesgue Theorem, it results

T2k(un − um)→ 0 strongly in Ls(Q), for every 1 < s < +∞,

and thus it convergences also in Lh̄
′
(Q) and (5.23) follows.

Then, the rest of the proof, we proceed as Proposition 3.2 in [68], we obtain up to subsequences,
Tk(un)→ Tk(u) in Lp(0, T ;W 1,p

loc (Ω)), and so ∇un → ∇u a.e. in Q.

Proof of Theorems 5.6 and 5.8. If γ < 1, by Lemma 5.4, we have un is bounded in Lp(0, T ;W 1,p
0 (Ω))

and in L∞(0, T ;L2(Ω)). Then, by Lemma 5.3, Proposition 5.10 and Fatou’s Lemma u ∈ Lp(0, T ;W 1,p
0 (Ω))∩

L∞(0, T ;L2(Ω)), and moreover up−1

|x|p ,
f
uγ
∈ L1(0, T ;L1

loc(Ω)) since u satisfies (5.8), in particular

∂u

∂t
∈ Lp′(0, T ;W−1,p′(Ω)) + L1(0, T ;L1

loc(Ω)).
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If γ = 1, thanks to Lemma 5.5, we have un is bounded in

Lp(0, T ;W 1,p
0 (Ω)) and in L∞(0, T ;L2(Ω)),

as before, we get u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and u satisfies (5.8); Moreover

∂u

∂t
∈ Lp′(0, T ;W−1,p′(Ω)) + L1(0, T ;L1

loc(Ω)).

In the case γ > 1, in view of Lemma 5.5, we have that u
p+γ−1
p

n is bounded in Lp(0, T ;W 1,p
0 (Ω)), while un

is bounded in
Lp(0, T ;W 1,p

loc (Ω)) and in L∞(0, T ;Lγ+1(Ω)).

Then
u ∈ Lp(0, T ;W 1,p

loc (Ω)) and u
p+γ−1
p ∈ Lp(0, T ;W 1,p

0 (Ω)),

in particular, u = 0 on ∂Ω× (0, T ) in weak-sense and

∂u

∂t
∈ Lp′(0, T ;W−1,p′(w)) + L1(0, T ;L1

loc(Ω)), for all w ⊂⊂ Ω.

Using Lemma 5.3, Proposition 5.10 and Fatou’s Lemma deduce that u satisfies the condition (5.8). Now
we fix ϕ ∈ C1

c (Ω × [0, T )), by Lemma 5.4 and Lemma 5.5, we have the boundedness of the sequence
un in the space Lp(0, T ;W 1,p

loc (Ω)) and from (5.4), implies that the sequence a(x, t,∇un) is bounded
in Lp

′
(ω × (0, T )) for all ω ⊂⊂ Ω. As supp(ϕ) is a compact subset of Ω × [0, T ), then a(x, t,∇un) is

bounded in Lp
′
(supp(ϕ)) and up−1

n

|x|p+ 1
n

is bounded in L1(supp(ϕ)). From Propositions 5.10 and 5.11, we

have un → u a.e. in Q and ∇un → ∇u a.e. in Q and by Vitali’s Theorem we obtain

lim
n→+∞

∫∫
Q

a(x, t,∇un)∇ϕ =

∫∫
Q

a(x, t,∇u)∇ϕ ∀ϕ ∈ C1
c (Ω× [0, T )), (5.25)

and

lim
n→+∞

∫∫
Q

up−1
n

|x|p + 1
n

ϕ =

∫∫
Q

up−1

|x|p
ϕ ∀ϕ ∈ C1

c (Ω× [0, T )). (5.26)

Concerning the passage of limit of term in the right of the approximating problem (5.10), since supp(ϕ)
is a compact subset of Ω × [0, T ), thanks to Lemma 5.3, there exists a constant csupp(ϕ) > 0 such that
un ≥ csupp(ϕ), then ∣∣∣∣ fn

(un + 1
n
)γ
ϕ

∣∣∣∣ ≤ f

cγsupp(ϕ)

||ϕ||L∞(Q),

for every (x, t) ∈ supp(ϕ), since it is a.e. convergent to f
uγ
ϕ for n −→ +∞, by Lebesgue Theorem,

implies that

lim
n→+∞

∫∫
Q

fn
(un + 1

n
)γ
ϕ =

∫∫
Q

f

uγ
ϕ ∀ϕ ∈ C1

c (Ω× [0, T )). (5.27)

By Proposition 5.10, we have

lim
n→+∞

∫∫
Q

un
∂ϕ

∂t
=

∫∫
Q

u
∂ϕ

∂t
, ∀ϕ ∈ C1

c (Ω× [0, T )). (5.28)
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Take now ϕ ∈ C1
c (Ω × [0, T )) as a test function in problem (5.10), by the convergences results (5.25),

(5.26), (5.27), (5.28) and letting n −→ +∞, we get

−
∫

Ω

u0(x)ϕ(x, 0)−
∫∫

Q

u
∂ϕ

∂t
+

∫∫
Q

a(x, t,∇u)∇ϕ− µ
∫∫

Q

up−1

|x|p
ϕ =

∫∫
Q

f

uγ
ϕ.

4 Regularity results

In this section we study the regularity of solutions of problem (5.1) depending on µ, γ > 0 and the
summability of f.

The case γ ≥ 1

Theorem 5.12. Let γ ≥ 1 and suppose that f belongs to Lm(Q) with 1 < m < N
p

+ 1. If

0 < µ < αCN,p
(Np−N + p)(m− 1) +Nγm

N − pm+ p
×(

p(N − pm+ p)

N(p+ γ − 1)m− p(p− 2)(m− 1)

)p
,

then the solution u of (5.1) found in Theorem 5.8 satisfies the following summability u ∈ Lσ(Q), where

σ = m
N(p+ γ − 1) + p(γ + 1)

N − pm+ p
.

Proof. Let now choosing upδ−p+1
n χ(0,t) as test function in (5.10), δ > p+γ−1

p
and 0 < t < T, then we get∫ t

0

∫
Ω

∂un
∂t

upδ−p+1
n + (pδ − p+ 1)

∫ t

0

∫
Ω

upδ−pn a(x, t,∇un).∇un

≤ µ

∫ t

0

∫
Ω

upδn
|x|p

+

∫ t

0

∫
Ω

fn
(un + 1

n
)γ
upδ−p+1
n ,

from (5.3), it follows that

1

pδ − p+ 2

∫
Ω

upδ−p+2
n (x, t) + α(pδ − p+ 1)

∫ t

0

∫
Ω

upδ−pn |∇un|p

≤ µ

∫ t

0

∫
Ω

upδn
|x|p

+

∫ t

0

∫
Ω

fnu
pδ−p+1−γ
n +

1

pδ − p+ 2

∫
Ω

upδ−p+2
0 .

Thanks to u0 ∈ L∞(Ω) and upδ−pn |∇un|p = 1
δp
|∇uδn|p, the last inequality becomes

1

pδ − p+ 2

∫
Ω

[uδn]
pδ−p+2

δ +
α(pδ − p+ 1)

δp

∫ t

0

∫
Ω

|∇uδn|p

≤ µ

∫ t

0

∫
Ω

(uδn)p

|x|p
+

∫ t

0

∫
Ω

fnu
pδ−p+1−γ
n +

1

pδ − p+ 2
||u0||pδ−p+2

L∞(Ω) ,
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applying Hardy and Hölder’s inequalities, yields

1

pδ − p+ 2

∫
Ω

[uδn]
pδ−p+2

δ +

(
α(pδ − p+ 1)

δp
− µ

CN,p

)∫ t

0

∫
Ω

|∇uδn|p

≤ ||f ||Lm(Q)

(∫∫
Q

u(pδ−p+1−γ)m′

n

) 1
m′

+ C.

Passing to supremum for t ∈ (0, T ) we have

1

pδ − p+ 2
||uδn||

pδ−p+2
δ

L∞(0,T ;L
pδ−p+2

δ (Ω))
+

(
α(pδ − p+ 1)

δp
− µ

CN,p

)∫∫
Q

|∇uδn|p

≤ ||f ||Lm(Q)

(∫∫
Q

u(pδ−p+1−γ)m′

n

) 1
m′

+ C.

(5.29)

Since un ∈ L∞(Q) ∩ Lp(0, T ;W 1,p
0 (Ω)), then in view to Lemma 2.9 (with ρ = pδ−p+2

δ
, h = p, v = uδn)

and by (5.29), we get∫∫
Q

(uδn)p
N+

pδ−p+2
δ

N ≤ CG||uδn||
p(pδ−p+2)

Nδ

L∞(0,T ;L
pδ−p+2

δ (Ω))

∫∫
Q

|∇uδn|p

≤ C

(∫∫
Q

u(pδ−p+1−γ)m′

n

)( p
N

+1) 1
m′

+ C,

hence ∫∫
Q

u
p(Nδ+pδ−p+2)

N
n ≤ C

(∫∫
Q

u(pδ−p+1−γ)m′

n

)( p
N

+1) 1
m′

+ C. (5.30)

Choosing now δ such that

σ =
p(Nδ + pδ − p+ 2)

N
= (pδ − p+ 1− γ)m′, (5.31)

this equivalent to

δ =
Nm(p+ γ − 1)− p(p− 2)(m− 1)

p(N − pm+ p)
, σ = m

N(p+ γ − 1) + p(γ + 1)

N − pm+ p
.

Collecting (5.30) with (5.31), we conclude that∫∫
Q

uσn ≤ C

(∫∫
Q

uσn

)( p
N

+1) 1
m′

+ C. (5.32)

By virtue of m < N
p

+ 1, then ( p
N

+ 1) 1
m′

< 1, since δ > p+γ−1
p

gives m > 1 and applying Young’s
inequality implies that ∫∫

Q

uσn ≤ C, (5.33)

this last estimate yields that the sequence un is bounded in Lσ(Q), and so u ∈ Lσ(Q).
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Theorem 5.13. Let γ ≥ 1 and f ∈ Lm(Q) with m ≥ N
p

+ 1. Then the solution of problem (5.1) found

in Theorem (5.8) satisfies the following regularity:

If λ ≥ γ and αλpp

(λ+p−1)p
− µ

CN,p
> 0, then u

λ+p−1
p ∈ Lp(0, T ;W 1,p

0 (Ω)) and u ∈ L∞(0, T ;Lλ+1(Ω)).

Proof. Choosing uλnχ(0,t) with λ > 0 as test function in (5.10)

1

λ+ 1

∫
Ω

uλ+1
n (x, t) + λ

∫ t

0

∫
Ω

uλ−1
n a(x, t,∇un) · ∇un

= µ

∫ t

0

∫
Ω

uλ+p−1
n

|x|p
+

∫ t

0

∫
Ω

fnu
λ
n

(un + 1)γ
+

1

λ+ 1

∫
Ω

|u0(x)|λ+1.

From (5.3) and the fact that 1
(un+1)γ

≤ 1
uγn
, u0 ∈ L∞(Ω) we have

1

λ+ 1

∫
Ω

uλ+1
n (x, t) + λα

∫ t

0

∫
Ω

|∇un|puλ−1
n

≤ µ

∫ t

0

∫
Ω

uλ+p−1
n

|x|p
+

∫ t

0

∫
Ω

fnu
λ−γ
n +

|Ω|
λ+ 1

||u0||λ+1
L∞(Ω).

By Hardy inequality the later inequality implies

1

λ+ 1

∫
Ω

uλ+1
n (x, t) +

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫ t

0

∫
Ω

|∇u
λ+p−1
p

n |p

≤
∫ t

0

∫
Ω

fnu
λ−γ
n + C.

Passing to supremum for t ∈ [0, T ] we get

1

λ+ 1
||un||λ+1

L∞(0,T ;Lλ+1(Ω))
+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫∫
Q

|∇u
λ+p−1
p

n |p

≤
∫∫

Q

fnu
λ−γ
n + C,

applying Hölder inequality we conclude that

1

λ+ 1
||un||λ+1

L∞(0,T ;Lλ+1(Ω))
+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫∫
Q

|∇u
λ+p−1
p

n |p

≤ C

(∫∫
Q

u(λ−γ)m′

n

) 1
m′

+ C.

(5.34)

Using Sobolev inequality and by the above estimate, we get(∫∫
Q

u
N(λ+p−1)
N−p

n

) p
p∗

≤ C

∫∫
Q

|∇u
λ+p−1
p

n |p ≤ C

(∫∫
Q

u(λ−γ)m′

n

) 1
m′

+ C.
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By m ≥ N
p

+ 1 we have m′ ≤ N+p
N

, then for all λ ≥ γ, we get (λ− γ)m′ ≤ (λ−γ)(N+p)
N

≤ N(λ+p−1)
N−p . Thus

choosing λ such that αλpp

(λ+p−1)p
− µ

CN,p
> 0. Using Hölder’s inequality in the later estimate, we have

(∫∫
Q

u
N(λ+p−1)
N−p

n

) p
p∗

≤ C

(∫∫
Q

u
N(λ+p−1)
N−p

n

) (N−p)(λ−γ)
N(λ+p−1)

+ C. (5.35)

Since p
p∗

= N−p
N

> (N−p)(λ−γ)
N(λ+p−1)

, then by Young inequality we deduce that∫∫
Q

u
N(λ+p−1)
N−p

n ≤ C. (5.36)

By the fact that (λ− γ)m′ < N(λ+p−1)
N−p , (5.36) and using Hölder inequality in (5.34), we obtain

1

λ+ 1
||un||λ+1

L∞(0,T ;Lλ+1(Ω))
+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫∫
Q

|∇u
λ+p−1
p

n |p

≤ C

(∫∫
Q

u
N(λ+p−1)
N−p

n

) (N−p)(λ−γ)
N(λ+p−1)

+ C ≤ C.

Since λ ≥ γ,
(

αλpp

(λ+p−1)p
− µ

CN,p

)
> 0 and the later estimate we deduce that the sequence u

λ+p−1
p

n is

uniformly bounded in Lp(0, T ;W 1,p
0 (Ω)) and un is bounded L∞(0, T ;Lλ+1(Ω)) with respect to n for all

λ ≥ γ, so u
λ+p−1
p ∈ Lp(0, T ;W 1,p

0 (Ω)) and u ∈ L∞(0, T ;Lλ+1(Ω)) for all λ ≥ γ. This completed the proof
of Theorem 5.13.

The case γ < 1

Theorem 5.14. Let γ < 1, and suppose that f ∈ Lm(Q),m ≥ 1 and

0 ≤ µ < αCN,p
(m− 1)[N(p− 1) + p] +Nmγ

N − pm+ p
×(

p(N − pm+ p)

(m− 1)[(N − p)(p− 1) + p] +N(mγ + p− 1)

)p
.

(5.37)

Then

(i) If p(N+2)
p(N+2)−N(1−γ)

≤ m < N
p

+ 1, then the solution u of (5.1) found in Theorem 5.6, satisfies the

following regularity u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lσ(Q), with σ = mN(p+γ−1)+p(γ+1)

N−pm+p
.

(ii) If 1 ≤ m < p(N+2)
p(N+2)−N(1−γ)

, then there exists a weak solution u of problem (5.1) such that u ∈
Lq(0, T ;W 1,q

0 (Ω)) ∩ Lσ(Q), with

q = m
N(p+ γ − 1) + p(γ + 1)

N + 2−m(1− γ)
and σ = m

N(p+ γ − 1) + p(γ + 1)

N − pm+ p
.
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(iii) If m ≥ N
p

+ 1 and 0 < µ < αCN,p, then the solution u of (5.1) found in Theorem 5.6 satisfies the

following regularity u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q).

Proof. Taking ϕ(un) = ((un + a)λ − aλ)χ(0,t) as a test function in (5.10), 0 < a < 1
n
, λ > 0 and using

the ellipticity condition (5.3) we have∫ t

0

∫
Ω

∂un
∂t

ϕ(un) + λα

∫ t

0

∫
Ω

(un + a)λ−1|∇un|p

≤ µ

∫ t

0

∫
Ω

up−1
n (un + a)λ

|x|p
+

∫ t

0

∫
Ω

fn|(un + a)λ − aλ|
(un + 1

n
)γ

.

By the fact that 1
(un+ 1

n
)γ
≤ 1

(un+a)γ
and up−1

n (un + a)λ ≤ (un + a)λ+p−1, we obtain∫
Ω

Ψ(un(x, t)) + λα

∫ t

0

∫
Ω

(un + a)λ−1|∇un|p

≤ µ

∫ t

0

∫
Ω

(un + a)λ+p−1

|x|p
+

∫ t

0

∫
Ω

fn(un + a)λ−γ +

∫
Ω

Ψ(u0),

where Ψ(s) =

∫ s

0

ϕ(`)d`. Since (un + a)λ−1|∇un|p = pp

(λ+p−1)p
|∇(un + a)

λ+p−1
p |p, then the last estimate

becomes ∫
Ω

Ψ(un(x, t)) +
λαpp

(λ+ p− 1)p

∫ t

0

∫
Ω

|∇(un + a)
λ+p−1
p |p

≤ µ

∫ t

0

∫
Ω

((un + a)
λ+p−1
p )p

|x|p
+

∫ t

0

∫
Ω

f(un + a)λ−γ +

∫
Ω

Ψ(u0).

(5.38)

Since u0 ∈ L∞(Ω), applying Hölder and Hardy inequalities, we find that∫
Ω

Ψ(un(x, t)) +

(
λαpp

(λ+ p− 1)p
− µ

CN,p

)∫ t

0

∫
Ω

|∇(un + a)
λ+p−1
p |p

≤ ||f ||Lm(Q)

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C.

If λ ≥ 1, by definition of ϕ(un) and Ψ(un), we reach that

Ψ(s) ≥ |s|
λ+1

λ+ 1
, ∀s ∈ R. (5.39)

Therefore we obtain that

1

λ+ 1

∫
Ω

uλ+1
n (x, t) +

(
λαpp

(λ+ p− 1)p
− µ

CN,p

)∫ t

0

∫
Ω

|∇(un + a)
λ+p−1
p |p

≤ ||f ||Lm(Q)

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C.
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Observing that uλ+1
n (x, t) =

(
u
λ+p−1
p

n (x, t)

) p(λ+1)
λ+p−1

, then the last inequality becomes

1

λ+ 1

∫
Ω

[u
λ+p−1
p

n ]
p(λ+1)
λ+p−1 +

(
λαpp

(λ+ p− 1)p
− µ

CN,p

)∫ t

0

∫
Ω

|∇(un + a)
λ+p−1
p |p

≤ ||f ||Lm(Q)

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C.

Now passing to the supremum for t ∈ (0, T ), we obtain

||u
λ+p−1
p

n ||
p(λ+1)
λ+p+1

L∞(0,T ;L
p(λ+1)
λ+p+1 (Ω))

+

∫∫
Q

|∇(un + a)
λ+p−1
p |p

≤ C

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C. (5.40)

From (5.40) and applying Lemma 2.9 (with ρ = p(λ+1)
λ+p−1

, h = p, v = u
λ+p−1
p

n ), we have∫∫
Q

[u
λ+p−1
p

n ]p
N+

p(λ+1)
λ+p−1
N ≤ CG||u

λ+p−1
p

n ||
p
N
× p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω)

∫∫
Q

|∇u
λ+p−1
p

n |p

≤ C

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C,

where C = C(α, λ,m, p, µ, CN,p, CG, ||u0||L∞(Ω)). Thus we get∫∫
Q

u
N(λ+p−1)+p(λ+1)

N
n ≤ C

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C.

Letting a→ 0, we reach that∫∫
Q

u
N(λ+p−1)+p(λ+1)

N
n ≤ C

(∫∫
Q

u(λ−γ)m′

n

) 1
m′

+ C, (5.41)

choosing λ such that

σ =
N(λ+ p− 1) + p(λ+ 1)

N
= (λ− γ)m′, (5.42)

this equivalent to

λ =
(m− 1)(N(p− 1) + p) +Nmγ

N − pm+ p
and σ = m

N(p+ γ − 1) + p(γ + 1)

N − pm+ p
.

From (5.42), the estimate (5.41) becomes∫∫
Q

uσn ≤ C

(∫∫
Q

uσn

)( p
N

+1) 1
m′

+ C.
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The condition p(N+2)
p(N+2)−N(1−γ)

≤ m < N
p

+ 1, ensure that λ ≥ 1 and ( p
N

+ 1) 1
m′
< 1, and thanks to Young

inequality we deduce that ∫∫
Q

uσn ≤ C. (5.43)

From (5.37) and, by the fact that and |∇un|p ≤ (un + a)λ−1|∇un|p (a > 0, λ ≥ 1) going back to (5.40)
and using (5.42), (5.43) yield that∫∫

Q

|∇un|p ≤
∫∫

Q

(un + a)λ−1|∇un|p ≤ C

(∫∫
Q

uσn

)( p
N

+1) 1
m′

+ C ≤ C. (5.44)

Then by estimates (5.43) and (5.44) we deduce that the sequence un is bounded in Lp(0, T ;W 1,p
0 (Ω))

and in Lσ(Q) with respect to n, and so u ∈ Lp(0, T ;W 1,p
0 (Ω) ∩ Lσ(Q). Hence the proof of item (i) is

achieved.
Now we prove item (ii). Let now taking γ < λ < 1 and by definition of ϕ(un) and Ψ(un), we can get

Ψ(s) ≥ C|s|λ+1 − C ∀s ∈ R. (5.45)

From (5.45) and going back to (5.38), we have

C

∫
Ω

Ψ(un(x, t)) + αλ

∫ t

0

∫
Ω

(un + a)λ−1|∇un|p

≤ µ

∫ t

0

∫
Ω

(un + a)λ+p−1

|x|p
+

∫ t

0

∫
Ω

fn(un + a)λ−γ +

∫
Ω

Ψ(u0) + C|Ω|.

We proceed as before, we obtain that

C||u
λ+p−1
p

n ||
p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+

(
λαpp

(λ+ p− 1)p
− µ

CN,p

)∫∫
Q

|∇(un + a)
λ+p−1
p |p

≤ C

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C.

(5.46)

Thanks to Lemma 2.9 and repeat the above process, it hold that∫∫
Q

u
N(λ+p−1)+p(λ+1)

N
n ≤ C

(∫∫
Q

u(λ−γ)m′

n

)( p
N

+1) 1
m′

+ C. (5.47)

Let now choosing λ such that

σ =
N(λ+ p− 1) + p(λ+ 1)

N
= (λ− γ)m′, (5.48)

this yields that

σ = m
N(p+ γ − 1) + p(γ + 1)

N − pm+ p
and λ =

(m− 1)(N(p− 1) + p) +Nmγ

N − pm+ p
.
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Since λ < 1, then m < p(N+2)
p(N+2)−N(1−γ)

< N
p

+ 1, and ( p
N

+ 1) 1
m′

< 1, from (5.47), (5.48) and thanks to
Young inequality it hold that ∫∫

Q

uσn ≤ C. (5.49)

By (5.37), then we have λαpp

(λ+p−1)p
− µ

CN,p
> 0. Let 1 < q < p, applying Hölder’s inequality and from

(5.46), we get ∫∫
Q

|∇un|q =

∫∫
Q

|∇un|q

(un + a)
q(1−λ)
p

(un + a)
q(1−λ)
p

≤
(∫∫

Q

|∇un|p

(un + a)1−λ

) q
p
(∫∫

Q

(un + a)
q(1−λ)
p−q

) p−q
p

≤

[
C

(∫∫
Q

(un + a)(λ−γ)m′
) 1

m′

+ C

] q
p (∫∫

Q

(un + a)
q(1−λ)
p−q

) p−q
p

,

(5.50)

we take q such that
q(1− λ)

p− q
= (λ− γ)m′, (5.51)

this equivalent to q = mN(p+γ−1)+p(γ+1)
N+2−m(1−γ)

. Using (5.51) in (5.50) and letting a→ 0, we hold that

∫∫
Q

|∇un|q ≤

(
C

(∫∫
Q

uσn

) 1
m′

+ C

) q
p (∫∫

Q

uσn

) p−q
p

.

From (5.49) it follows that ∫∫
Q

|∇un|q ≤ C. (5.52)

Therefore estimates (5.49) and (5.52) imply that the sequence un is bounded in Lq(0, T ;W 1,q
0 (Ω)) and

in Lσ(Q) with respect to n, and so u ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ Lσ(Q).

Now we give the proof of item (iii). Taking Gk(un)χ(0,t) as a test function in (5.10) for t ∈ (0, T ),
we have ∫ t

0

∫
Ω

∂un
∂t

Gk(un) +

∫ t

0

∫
Ω

a(x, t,∇un)∇Gk(un)

−µ
∫ t

0

∫
Ω

up−1
n

|x|p + 1
n

Gk(un) ≤
∫ t

0

∫
Ω

fnGk(un)

(un + 1
n
)γ
.

(5.53)

We observe that the function Gk(un) is different from zero only on the set Ak,n = {(x, t) ∈ Q : un(x, t) >
k}, and that, on this set, we have un + 1

n
≥ k ≥ 1. Note that∫ t

0

∫
Ω

a(x, t,∇un)∇Gk(un) =

∫∫
Ak,n

a(x, t,∇un)∇un

≥ α

∫∫
Ak,n

|∇un|p = α

∫ t

0

∫
Ω

|∇Gk(un)|p
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and ∫ t

0

∫
Ω

∂un
∂t

Gk(un) =
1

2

∫∫
Ak,n

∂

∂t
(un − k)2 =

1

2

∫∫
Ak,n

∂

∂t

(
(un − k)+

)2

=
1

2

∫
Ω

Gk(un(x, t))2 − 1

2

∫
Ω

G2
k(u0),

applying Hardy inequality and using the fact that Gk(un) ≤ un in the set Ak,n, we can write∫ t

0

∫
Ω

up−1
n Gk(un)

|x|p + 1
n

=

∫∫
Ak,n

up−1
n Gk(un)

|x|p + 1
n

≤
∫∫

Ak,n

upn
|x|p

≤ 1

CN,p

∫∫
Ak,n

|∇un|p =
1

CN,p

∫∫
Ak,n

|∇Gk(un)|p ≤ 1

CN,p

∫ t

0

∫
Ω

|∇Gk(un)|p.

Inequality (5.53) becomes

1

2

∫
Ω

G2
k(un) +

(
α− µ

CN,p

)∫ t

0

∫
Ω

|∇Gk(un)|p

≤
∫ t

0

∫
Ω

fGk(un) +
1

2

∫
Ω

G2
k(u0).

Passing to the supremum in t ∈ (0, T ), we get

1

2
||Gk(un)||2L∞(0,T ;L2(Ω)) +

(
α− µ

CN,p

)∫∫
Q

|∇Gk(un)|p

≤
∫∫

Q

fGk(un) +
1

2

∫
Ω

G2
k(u0).

From now on, we can follow the standard technique used for the non-singular case in [11], we deduce
there exist a constant C∞ independent of n such that

||un||L∞(Q) ≤ C∞. (5.54)

Now taking un as a test function in (5.10), by (5.3) and Hardy inequality, we have

1

2

∫
Ω

u2
n(x, T ) +

(
α− µ

CN,p

)∫∫
Q

|∇un|p ≤
∫∫

Q

fu1−γ
n +

1

2

∫
Ω

u2
0.

Since u0 ∈ L∞(Ω) and by (5.54) and Hölder’s inequality,we have

1

2

∫
Ω

u2
n(x, T ) +

(
α− µ

CN,p

)∫∫
Q

|∇un|p

≤ ||un||1−γL∞(Q)

∫∫
Q

f +
1

2
||u0||2L2(Ω)

≤ ||un||1−γL∞(Q)||f ||Lm(Q)|Q|1−
1
m +

1

2
||u0||2L2(Ω) ≤ C.
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As 0 ≤ µ < αCN,p, and by the last estimate, we obtain∫∫
Q

|∇un|p ≤ C, (5.55)

where C is a positive constant independent of n. Hence the proof of Theorem 5.14 is completed.

In the following Theorem we are interesting to prove regularity of u solution of (5.1) when the datum
f belong to Lr(0, T ;Lq(Ω)), with r, q > 1.

Theorem 5.15. Under the hypothesis (5.3)-(5.5), if 0 < γ < 1 and 0 ≤ µ < αMCN,p, with

M =
Nq(r(p+ γ − 1)− (p− 2))−Nr + pq(r − 1)

Nr − pq(r − 1)
×

(
p[Nr − pq(r − 1)]

Nqr(p+ γ − 1) + (p− 2)[N(r − q)− pq(r − 1)]

)p
,

f ∈ Lr(0, T ;Lq(Ω)) with q and r be real numbers such that

r > 1, q > 1; p ≤ N

q
+
p

r
≤ min{θ1, θ2},

where

θ1 =
N

r
+ p and θ2 =

N

r

(
1− p

2

)
+
Np+ 2p+N(γ − 1)

2
.

Then there exists a weak solution u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lδ(Q) to problem (5.1) with

δ =
qr(N + p)(γ + 1) +N(p− 2)(pr − q + r)

Nr − pq(r − 1)
.

Remark 5.16. If γ, µ→ 0, then the result of Theorem 5.15 coincides with classical regularity results for
parabolic problems with coercivity (see [22, Theorem 1.1]).

Proof. Let now testing (5.3) by ϕ(un) = ((un + a)λ − aλ)χ(0,t), 0 < a < 1
n
, λ > 0 and repeating the

same passage of proof of item (i) of Theorem 5.14 in order to arrive to the following inequality

1

λ+ 1

∫
Ω

uλ+1
n (x, t) +

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫ t

0

∫
Ω

|∇(un + a)
λ+p−1
p |p

≤
∫ t

0

∫
Ω

f(un + a)λ−γ + C.

Passing to supremum for t ∈ [0, T ], we obtain

c0||un||λ+1
L∞(0,T ;Lλ+1(Ω))

+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫∫
Q

|∇(un + a)
λ+p−1
p |p

≤
∫∫

Q

f(un + a)λ−γ + C.

(5.56)
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Setting vn = u
λ+p−1
p

n and I =

∫∫
Q

f(un + a)λ−γ, formula (5.56) can be rewritten as

c0||vn||
p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)∫∫
Q

|∇vn|p ≤ I + C. (5.57)

Using Hölder’s inequality twice, for all q > 1 and r > 1 we get

I ≤
∫ T

0

(∫
Ω

f q
) 1

q
(∫

Ω

v
p(λ−γ)
λ+p−1

q
q−1

n

) q−1
q

≤ ||f ||Lr(0,T ;Lq(Ω))

[∫ T

0

(∫
Ω

v
p(λ−γ)
λ+p−1

q
q−1

n

) q−1
q

r
r−1

] r−1
r

= Cf

[∫ T

0

||vn||
p(λ−γ)r

(λ+p−1)(r−1)

L
p(λ−γ)q

(λ+p−1)(q−1) (Ω)

] r−1
r

.

(5.58)

Let us define η ∈ (0, 1) such that

(λ+ p− 1)(q − 1)

p(λ− γ)q
= η

(
1

p
− 1

N

)
+ (1− η)

λ+ p− 1

p(λ+ 1)
. (5.59)

Thus, by the Lemma 2.9, applied to

σ =
p(λ− γ)q

(λ+ p− 1)(q − 1)
and ρ =

p(λ+ 1)

λ+ p− 1
, (5.60)

we have

||vn||
p(λ−γ)r

(λ+p−1)(r−1)

L
p(λ−γ)q

(λ+p−1)(q−1) (Ω)

≤ CG||vn||
(1−η)

p(λ−γ)r
(λ+p−1)(r−1)

L
p(λ+1)
λ+p−1 (Ω)

||∇vn||
η

p(λ−γ)r
(λ+p−1)(r−1)

Lp(Ω) . (5.61)

Integrating on time we obtain[∫ T

0

||vn||
p(λ−γ)r

(λ+p−1)(r−1)

L
p(λ−γ)q

(λ+p−1)(q−1) (Ω)

] r−1
r

≤ ||vn||
(1−η)

p(λ−γ)
(λ+p−1)

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

[∫ T

0

||∇vn||
η

p(λ−γ)r
(λ+p−1)(r−1)

Lp(Ω)

] r−1
r

.

(5.62)

If η < 1, applying the Young inequality with exponents

λ+ 1

(1− η)(λ− γ)
and

λ+ 1

1 + γ + η(λ− γ)
,

we deduce [∫ T

0

||vn||
p(λ−γ)r

(λ+p−1)(r−1)

L
p(λ−γ)q

(λ+p−1)(q−1) (Ω)

] r−1
r

≤ ε||vn||
p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+ Cε

[∫ T

0

||∇vn||
η

p(λ−γ)r
(λ+p−1)(r−1)

Lp(Ω)

] r−1
r

λ+1
1+γ+η(λ−γ)

.

(5.63)
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Letting ε = c0
2Cf

and collecting (5.57), (5.58) and (5.63), we have

c0||vn||
p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)
||∇vn||pLp(Q)

≤ c0

2
||vn||

p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+ CfCε

[∫ T

0

||∇vn||
η

p(λ−γ)r
(λ+p−1)(r−1)

Lp(Ω)

] r−1
r

λ+1
1+γ+η(λ−γ)

+ c1.

(5.64)

Now we choose λ satisfying
ηp(λ− γ)r

(λ+ p− 1)(r − 1)
= p, (5.65)

such that λ > γ > 0, r > 1 and 0 ≤ µ <
αλppCN,p
(λ+p−1)p

. From (5.65), it hold that

c0

2
||vn||

p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)
||∇vn||pLp(Q)

≤ CfCε||∇vn||
p(r−1)
r

λ+1
1+γ+η(λ−γ)

Lp(Q) + c1.

(5.66)

Since, from (5.65)
rη(λ− γ) = (λ+ p− 1)(r − 1)

we have

β = r−1
r
× λ+1

1+γ+η(λ−γ)
= (r−1)(λ+1)

r(1+γ)+rη(λ−γ)
= (r−1)(λ+1)

r(1+γ)+(λ+p−1)(r−1)

= (r−1)(λ+1)
(r−1)(λ+1)+r(1+γ)+(r−1)(p−2)

< 1,

and so

c0

2
||vn||

p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+

(
αλpp

(λ+ p− 1)p
− µ

CN,p

)
||∇vn||pLp(Q)

≤ CfCε||∇vn||pβLp(Q) + c1,

(5.67)

with β < 1. If η = 1, choosing λ as in (5.65), (5.63) becomes (5.67) with β = r−1
r
< 1. Thus from (5.67)

immediately follows

||vn||
p(λ+1)
λ+p−1

L∞(0,T ;L
p(λ+1)
λ+p−1 (Ω))

+ ||∇vn||pLp(Q) ≤ c2. (5.68)

Thanks to Lemma 2.9, we obtain
‖vn‖Lσ(Q) ≤ c3,

where σ = p
N+

p(λ+1)
λ+p−1

N
. Recalling the definition of vn we thus have proved that

||un||Lδ(Q) ≤ c3, (5.69)
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where c3 is a positive constant independent of n, and

δ = σ
λ+ p− 1

p
=
N(λ+ p− 1) + p(λ+ 1)

N
. (5.70)

From (5.59) and (5.65), we deduce that

λ+ 1 =
Nq[r(p+ γ − 1)− (p− 2)]

Nr − pq(r − 1)
, (5.71)

which implies, by (5.71)

δ =
qr(N + p)(γ + 1) +N(p− 2)(qr − q + r)

Nr − pq(r − 1)
.

we now have to check that λ ≥ 1 and that η, defined in (5.59), belong to (0, 1). After easy calculations,
we obtain that λ ≥ 1 if and only if

p <
N

q
+
p

r
≤ N

r

(
1− p

2

)
+
Np+ 2p+N(γ − 1)

2

while the condition η ≤ 1 hold is satisfied and only if

N

q
+
p

r
<
N

r
+ p.

The condition η ≥ 0 is automatically satisfied if λ ≥ 1.
It remains to prove the estimate in Lp(0, T ;W 1,p

0 (Ω)). By (5.56), (5.58), (5.68) and λ ≥ 1, we obtain∫∫
Q

|∇un|p ≤
∫∫

Q

|∇un|p(un + a)λ−1 ≤ c2, (5.72)

then the sequence un bounded in Lp(0, T ;W 1,p
0 (Ω)), and so u ∈ Lp(0, T ;W 1,p

0 (Ω)). The estimates (5.69)
and (5.72) completed the proof of Theorem 5.15.
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Chapter 6

Existence and regularity results for a
singular parabolic equations with

degenerate coercivity

1 Introduction

In this final chapter, we study the existence and regularity results of double nonlinear parabolic problems
with absorption term and with singular lower order term, whose the model example is the following:

∂u

∂t
+ A(u) + |u|s−1u = h(u)f in Q,

u(x, 0) = 0 in Ω,
u = 0 on Γ,

(6.1)

where
A(u) = −div(a(x, t, u,∇u)).

Here Ω is a bounded open subset of RN , (N > p ≥ 2) and 0 < T < +∞, f is a non-negative function
that belong to some Lebesgue space, f ∈ Lm(Q), m ≥ 1 Q = Ω × (0, T ), Γ = ∂Ω × (0, T ), 0 < γ < 1
and s ≥ 1. a(x, t, σ, ξ) : Ω × (0, T ) × R × RN −→ IRN is a Carathéodory function (i.e it is continuous
with respect to σ and ξ for almost (x, t) ∈ Q, and measurable with respect to (x, t) for every σ ∈ R and
ξ ∈ RN) satisfying for a.e (x, t) ∈ Q, ∀ ξ, ξ′ ∈ RN :

a(x, t, σ, ξ).ξ ≥ α|ξ|p

(1 + |σ|)θ(p−1)
, (6.2)

|a(x, t, σ, ξ)| ≤ b(x, t) + |σ|p−1 + |ξ|p−1, (6.3)

(a(x, t, σ, ξ)− a(x, t, σ, ξ′)).(ξ − ξ′) > 0 ξ 6= ξ′, (6.4)

where α is positive constant, 0 ≤ θ < 1 and b is a non-negative function and belong to Lp
′
(Q),

p′ = p
p−1

. The singular sourcing term h : [0,∞) −→ [0,∞] is a continuous, bounded outside the origin
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with h(0) 6= 0 and such that the following propertied hold true

(h1) ∃c > 0 such that h(s) ≤ c

sγ
∀s > 0.

In the non-singular case (i.e. h ≡ 1) in [75, 143] existence and regularity results for nonlinear
parabolic equations in divergence form depending on the summability of f have been proved when the
absorption term |u|s−1u (s ≥ 1) doesn’t appear, we recall that under uniform ellipticity, that is when
θ = 0, the existence and regularity solutions was obtained in [20, 56, 91]. When the term |u|s−1u exists,
several works study the existence and regularity of solution of problem (6.1) ( see [23, 106], and reference
therein ).

Finally, concerning the singular model case the authors in [68] studied existence and regularity of
problem 

∂u

∂t
−∆pu = f(x,t)

uγ
in Q,

u(x, 0) = u0(x) in Ω,
u = 0 on Γ,

with γ > 0, p ≥ 2, f > 0, f ∈ Lm(Q), m ≥ 1 and u0 ∈ L∞(Ω). In [122] the authors studied the existence
and uniqueness solution of problem

∂u

∂t
−∆pu = h(u)f + µ in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u = u0 in Ω× {0},

where p > 2 − 1
N+1

, u0 is a non-negative function, µ is a non-negative bounded Radon measure on
Ω × (0, T ), f is a non-negative function in L1(Ω × (0, T )), and h is a positive continuous function
possibly blowing up at the origin.

In the elliptic case the authors in [63], studied existence a solution of (6.1), whereA(u) = −div(a(x,∇u)),
f = µ and h continuous positive function outside the origin such that lims→0+ h(s) = +∞. In [62] the
authors proving existence and regularity of (6.1), where A(u) = −∆pu and h(u) = 1

uγ
with γ > 0.

See as well [81, 118, 136]. If (6.2) hold true, the differential operator A(u) is not coercive as u becomes
large. This shows that the classical methods (see [108] ) can’t be applied to prove the existence of
solution to problem (6.1) even if the data h(u)f is sufficiently regular.

We overcome this difficulty by replacing operator A(u) by another one defined by means of trunca-
tions and using Shouder’s fixed point Theorem, our objective is to look for the existence of solution to
problem (6.1), for different summabilities of the datum.

The main tool we use is an a prior estimate for solutions of approximate equations with non degen-
erate coercivity ( which thus have solution ) and then we pass to the limit to find a solutions.
We first define the notion of a weak solution to (6.1) as follows:

Definition 6.1. We say that u ∈ Lp(0, T ;W 1,p
0 (Ω)) is a weak solution to problem (6.1), if a(x, t, u,∇u) ∈

L1(Q), |u|s−1u ∈ L1(Q) and h(u)f ∈ L1(Q), and the equality

−
∫ T

0

∫
Ω

u
∂ψ

∂t
dxdt+

∫ T

0

∫
Ω

a(x, t, u,∇u)∇ψdxdt (6.5)

+

∫ T

0

∫
Ω

|u|s−1uψdxdt =

∫ T

0

∫
Ω

h(u)fψdxdt,
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holds for every ψ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q).

2 Some technical lemmas and main results

In order to prove the main results of this chapter, we need to the following lemmas.
Let a, b, λ and p be a positive real numbers with p > 1. Let us define

ϕ(s) =

{
eλs − 1 if s ≥ 0,
−e−λs + 1 if s < 0.

(6.6)

Note that the function ϕ has the same sign as its argument. Furthermore, we have

Lemma 6.2. [51, Lemma 2.1] If λ >
(

2a
b

)
+ p, then we have

aϕ′(s)− b|ϕ(s)| ≥ a

2
eλs ∀s ≥ 0, (6.7)

ϕ(s) ≥
[
ϕ

(
s

p

)]p
∀s ≥ 0, (6.8)

∃d ≥ 0 and M > 0 such that

ϕ(s) ≤M

[
ϕ

(
s

p

)]p
, ϕ′(s) ≤M

[
ϕ

(
s

p

)]p
∀s ≥ d, (6.9)

|ϕ(s)| ≥ |s| ∀s ∈ IR. (6.10)

Lemma 6.3. [51, Lemma 6.1] Let φ be the function defined by

φ(σ) =

∫ σ

0

ϕ(s)ds, (6.11)

where ϕ defined in (6.6). Then there exist a constant C0 > 0 such that

φ(s) ≥ C0

[
ϕ

(
s

p

)]p
∀s ≥ 0, p ≥ 2. (6.12)

Now we state the mains results.

Theorem 6.4. Under the assumptions (6.2)- (6.4) and h satisfies (h1). If f ∈ Lm(Q) with m > N
p

+ 1,

then there exists a bounded weak solution u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) to problem (6.1).

Remark 6.5. The results of Theorem 6.4 coincide with regularity results of [143].

Theorem 6.6. Under the assumptions (6.2)-(6.4) and h satisfies (h1). If f ∈ Lm(Q) with m = N
p

+ 1,

Then there exists a solution u to problem (6.1) such that u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lr(Q). With 2 ≤ r <

+∞.

Remark 6.7. The result of Theorem 6.6 has been obtained in [107].
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Theorem 6.8. Under the assumptions (6.2)-(6.4) and h satisfied (h1). If f ∈ Lm(Q) with

p(N + 2 + θ(p− 1))

p(N + 2 + θ(p− 1))−N [θ(p− 1) + 1− γ]
≤ m <

N

p
+ 1

and s ≥ 1, then there exist a solution u to problem (6.1) such that u ∈ Lp(0, T ;W 1,p
0 (Ω))∩Lr(Q), where

r =

{
(m−1)[p(N+1−s)−Nθ(p−1)]+N(s+1−m(1−γ))

N−pm+p
s > p(1+mγ)+N(p−1)(1−θ)

N−pm+p
,

m[N(p+γ−1)+p(γ+1)−Nθ(p−1)]
N−pm+p

s ≤ p(1+mγ)+N(p−1)(1−θ)
N−pm+p

.

Theorem 6.9. Under the assumptions (6.2)-(6.4) and h satisfied (h1). If f ∈ Lm(Q) with

1 ≤ m <
p(N + 2 + θ(p− 1))

p(N + 2 + θ(p− 1))−N [θ(p− 1) + 1− γ]

and s ≥ 1, then there exist a solution u to problem (6.1) such that Lq(0, T ;W 1,q
0 (Ω)) ∩ Lr(Q), where

q =
m[N(p+ γ − 1) + p(γ + 1)−Nθ(p− 1)]

N + 2−m(1− γ)− θ(p− 1)(m− 1)

and r is defined in Theorem 6.8.

Remark 6.10. If θ = 0, then the result of Theorem 6.8 coincide with result case (b) of item (iii) of
Theorem 4.1 in [68], and the result of Theorem 6.9 coincide with result of Theorem 4.2 in [68].

In the following theorem we will see the impact of the term |u|s−1u on the regularity of solution u

of problem (6.1) when the data f ∈ Lm(Q), with 1 < m < p(N+2+θ(p−1))
p(N+2+θ(p−1))−N [θ(p−1)+1−γ]

.

Theorem 6.11. Under the assumptions (6.2)-(6.4) and h satisfied (h1), f ∈ Lm(Q) with

1 < m <
p(N + 2 + θ(p− 1))

p(N + 2 + θ(p− 1))−N [θ(p− 1) + 1− γ]
.

(i) If s ≥ 1+θ(p−1)−mγ
m−1

, then there exist a solution u of problem (6.1) with u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩

L(s+γ)m(Q).

(ii) If 1+θ(p−1)−mpγ
mp−1

< s < 1+θ(p−1)−mγ
m−1

, then there exist a solution u of problem (6.1) with the regularity

u ∈ Lq(0, T ;W 1,q
0 (Ω)), where q = pm(s+γ)

1+θ(p−1)+s
, moreover u ∈ Lr(Q), where

r =

{
(s+ γ)m s ≥ p(N+1+mγ)−N(1+θ(p−1))

N−pm+p
,

pm(s+γ)[N+1+(m−1)s+mγ]
N [1+θ(p−1)+s]

s < p(N+1+mγ)−N(1+θ(p−1))
N−pm+p

.

Remark 6.12. If θ = 0 and γ → 0, then the result of Theorem 6.11 coincide with result of Theorem 2.2
and Theorem 2.3 in [106].
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3 A priori estimates

For n ∈ IN, let Tk(s) = max(−k,min(s, k)), we will consider the following approximation of (6.1)
∂un
∂t
− div a(x, t, Tn(un),∇un) + |un|s−1un = hn(un)fn in Q,

un(x, 0) = u0(x) = 0 in Ω,
un = 0 on Γ.

(6.13)

where fn = Tn(f) and fn ∈ C∞0 (Q), such that

||fn||Lm(Q) ≤ ||f ||Lm(Q) and fn −→ f strongly in Lm(Q).

Moreover, define h(0) = lims→0 h(s), we set

hn(s) =

{
Tn(h(s)) for s > 0,
min(n, h(0)) otherwise.

Lemma 6.13. Let a satisfy (6.2), (6.3) and (6.4). Then the approximating problem (6.13) has a
non-negative solution un ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q) for all n ∈ IN fixed and 2 ≤ p < N.

Proof. Let n ∈ IN and v ∈ Lp(Q) be fixed. We know that the following class of doubly degenerate
nonlinear singular parabolic problem

∂w

∂t
− div a(x, t, Tn(w),∇w) + |w|s−1w = hn(v)fn in Q,

w(x, 0) = u0(x) = 0 in Ω,
w(x, t) = 0 on Γ,

(6.14)

has a unique solution w ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) such that wt ∈ L1(Q)+ Lp

′
(0, T ;W−1,p′(Ω)), see

[108]. Moreover, since the datum hn(v)fn bounded, we have that w ∈ L∞(Q) and there exists a positive
constant d, independents of v and w (but possibly depending in n), such that ||w||L∞(Q) ≤ d. Our aim
is to prove the existence of fixed point of the map S : Lp(Q) −→ Lp(Q), where S(v) = w, and w the
weak solution of problem (6.14). Again, thanks to the regularity of the datum hn(v)fn, we can take
((1 + |w|)θ(p−1)+1 − 1)sign(w) as test function in (6.14), we obtain∫ T

0

∫
Ω

wt((1 + |w|)θ(p−1)+1 − 1)sign(w)dxdt

+(θ(p− 1) + 1)

∫
Q

a(x, t, Tn(w),∇w) · ∇w(1 + |w|)θ(p−1)dxdt

+

∫
Q

|w|s((1 + |w|)θ(p−1)+1 − 1)dxdt

=

∫ T

0

∫
Ω

hn(un)fn((1 + |w|)θ(p−1)+1 − 1)sign(w)dxdt
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By (6.2) and by classical integration by parts formulas, we have

1

θ(p− 1) + 2

∫
Ω

((1 + |w(x, T )|)θ(p−1)+2 − |w(x, T ))dx

− |Ω|
θ(p− 1) + 2

+ α(θ(p− 1) + 1)

∫
Q

|∇w|pdxdt

≤
∫ T

0

∫
Ω

wt(1 + |w|)θ(p−1)+1sign(w)dxdt

+ (θ(p− 1) + 1)

∫
Q

a(x, t, Tn(w),∇w) · ∇w(1 + |w|)θ(p−1)dxdt.

The term on the right of the last equality is estimated as follows∫
Q

hn(un)fn(1 + |w|)θ(p−1)+1sign(w)dxdt ≤ n2

∫
Q

(1 + |w|)θ(p−1)+1dxdt

≤ n22θ(p−1)|Q|+ n22θ(p−1)

∫
Q

|w|θ(p−1)+1dxdt,

and so, dropping the positive term and using Hölder’s inequality, we obtain∫
Q

|∇w|pdxdt ≤ n22θ(p−1)|Q|+ n22θ(p−1)

∫
Q

|w|θ(p−1)+1dxdt

≤ 1

α(θ(p− 1) + 1)

(
n22θ(p−1)|Q|+ |Ω|

θ(p− 1) + 2

)
+
n22θ(p−1)|Q|1−

θ(p−1)+1
p

α(θ(p− 1) + 1)

(∫
Q

|w|pdxdt
) θ(p−1+1)

p

≤ C1 + C2

(∫
Q

|w|pdxdt
) θ(p−1)+1

p

,

where C1 = 1
α(θ(p−1)+1)

(
n22θ(p−1)|Q|+ |Ω|

θ(p−1)+2

)
, C2 = n22θ(p−1)|Q|1−

θ(p−1)+1
p

α(θ(p−1)+1)
.

By Poincaré inequality and applying Young’s inequality with ε, we obtain

1

Cp
p

∫
Q

|w|pdxdt ≤ C1 + εC2

∫
Q

|w|pdxdt+ Cε,

take ε = 1
2C2C

p
p

in last inequality, we have∫
Q

|w|pdxdt ≤ 2Cp
p(C1 + Cε),

where Cp the constant of Poincaré. Which implies(∫
Q

|w|pdxdt
) 1

p

≤ C3, (6.15)
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where C3 =
(
2Cp

p(C1 + Cε)
) 1
p , for some constant C3 independent of v and w (possible depending on n).

We are going to prove that S is both continuous and compact on B. (B is a ball of Lp(Q) of
radius C3). B is invariant for S. Let vr be a bounded sequence in B. We will show that there exists
a subsequence of wr that is strongly convergent in Lp(Q). Taking ((1 + |wr|)θ(p−1)+1 − 1)sign(wr) as a
test function in the problem solved by wr, that is the following

∂wr
∂t
− diva(x, t, Tn(wr),∇wr) + |wr|s−1wr = hn(vr)fn in Q,

wr(x, t) = 0 on Γ,
wr(x, 0) = u0(x) = 0 in Ω.

We have ∫ T

0

||∇wr||Lp(Ω)dt ≤ C1 + C2

(∫
Q

|wr|pdxdt
) θ(p−1)+1

p

,

with C1 is defined before and independent of r. Since the ball of Lp(Q) is invariant for S, we have wr
belong to B and so, from the last inequality, we obtain that wr is bounded in Lp(0, T ;W 1,p

0 (Ω)).

|a(x, t, Tn(wr),∇wr)|p
′ ≤ (b(x, t) + |wr|p−1 + |∇wr|p−1)p

′

≤ 22p′−2|b(x, t)|p′ + 22p′−2|wr|p + 2p−1|∇wr|p

⇒
∫ T

0

∫
Ω

|a(x, t, wr,∇wr)|p
′ ≤ 22p′−2||b(x, t)||p

′

Lp′ (Q)
+ 22p′−2||wr||pLp(Q)

+2p−1||wr||pLp(0,T ;W 1,p
0 (Ω))

< +∞.

We have wr bounded in Lp(0, T ;W 1,p
0 (Ω)), then (wr)t is bounded in dual space Lp

′
(0, T ;W−1,p′(Ω)) +

L1(Q) see [139] implies that wr is relatively strongly compact in L1(Q); thus, there exists a subsequence
of wr that almost everywhere converge to some limit function w ∈ L1(Q).

Now, we recall that wr is bounded in L∞(Q) with ||w||L∞(Q) ≤ d, where d is a positive constant
independent of r. Thus, since there exists a subsequence of wr that converge a.e. to w, this allows to
use Lebesgue Theorem to ensure that this subsequence of wr converges strongly to w in Lp(Q), and
so S is compact. Now we prove that S is continuous. Let vr be a sequence of functions converging to
v in Lp(Q), and let wr := S(vr). vr −→ v strongly in Lp(Q), implies that vr −→ v a.e in Q, hence
hn(vr)fn converges to hn(v)fn a.e in Q and by the dominated convergence theorem one has that hn(vr)fn
converge strongly to hn(v)fn in Lp(Q). Hence, by uniqueness, one deduce that wr := S(vr) converges
to w := S(v) in Lp(Q). This gives the continuity of S. So that by Shouder’s fixed point Theorem, un
will exist in B such that un = S(un), i.e., such that un solves (6.13). In particular, we will have that
un ∈ Lp(0, T ;W 1,p

0 (Ω)) with (un)t ∈ Lp
′
(0, T ;W−1,p′(Ω)) + L1(Q) for all n ∈ IN and 2 ≤ p < N and,

since the right hand side of (6.13) is non-negative, that un is non-negative.

Lemma 6.14. Assume that the hypotheses (6.2)-(6.4) hold true and the datum f is a function in Lm(Q).
If m > N

p
+ 1, then for every solution un of (6.13) there exists a positives constants C∞, C0 independent

of n, such that

‖un‖L∞(Q) ≤ C∞,

‖un‖Lp(0,T ;W 1,p
0 (Ω)) ≤ C0.
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Proof. Let Gk(s) = s− Tk(s), for all s ∈ IR and k > 0. We define the following function

H(s) =

∫ s

0

1

(1 + |σ|)θ
dσ, s ∈ IR.

For a solution un of problem (6.13) we set v = ϕ(Gk(H(un))), where k > 0 and ϕ is defined by (6.6).
Observe that v has the same sign as un and belong to Lp(0, T ;W 1,p

0 (Ω)). Let as denoted by Ak,n(t) the
following set

Ak,n(t) = {x ∈ Ω : |H(un(x, t))| > k} .

A straight forward computation gives

∇v = ϕ′(Gk(H(un)))
∇un

(1 + |un|)θ
χAk,n ,

where χAk,n stands for the characteristic function of the set Ak,n.
By definitions of H and Ak,n(t), we deduce that un ≥ H(un) and un ≥ k in the set Ak,n(t).
Now, choosing v as a test function in (6.13), we have for all τ ∈ (0, T ]∫ τ

0

∫
Ω

∂un
∂t

ϕ(Gk(H(un)))dxdt+

∫ τ

0

∫
Ω

a(x, t, Tn(un),∇un) · ∇vdxdt

+

∫ τ

0

∫
Ω

|un|s−1unvdxdt ≤
∫ τ

0

∫
Ω

hn(un)fnvdxdt.

Hence ∫ τ

0

∫
Ak,n(t)

∂φ

∂t
(Gk(H(un)))(1 + |un|)θdxdt

+

∫ τ

0

∫
Ak,n(t)

a(x, t, Tn(un),∇un) · ∇un
(1 + |un)θ

ϕ′dxdt

+

∫ τ

0

∫
Ak,n(t)

|un|s−1unvdxdt ≤
∫ τ

0

∫
Ak,n(t)

h(un)fn|v|dxdt,

where ϕ′ = ϕ′(Gk(H(un))). In the set Ak,n(t), v has the same sign as un i.e

∫ τ

0

∫
Ak,n(t)

|un|s−1unvdxdt ≥ 0

and the fact of h is bounded in (0,+∞), then∫ τ

0

∫
Ak,n(t)

∂φ

∂t
(Gk(H(un)))(1 + |un|)θdxdt

+

∫ τ

0

∫
Ak,n(t)

a(x, t, Tn(un),∇un) · ∇un
(1 + |un)θ

ϕ′dxdt

≤ ||h||L∞((0,+∞))

∫ τ

0

∫
Ak,n(t)

|fn||v|dxdt.
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Note that on the set Ak,n(t) one has (1 + |un(x, t)|) > (k(1− θ) + 1)
1

1−θ . thus by (6.2) we obtain

(k(1− θ) + 1)
θ

1−θ

∫ τ

0

∫
Ak,n(t)

∂φ

∂t
(Gk((1 + |un|)1−θ))dxdt

+ α

∫ τ

0

∫
Ak,n(t)

|∇un|p

(1 + |un|)θp
ϕ′(Gk(H(un)))dxdt

≤ ||h||L∞((0,+∞))

∫ τ

0

∫
Ak,n(t)

|fn||v|dxdt.

Observe that since k > 0, we have∫ τ

0

∂φ

∂t
(Gk(H(un(x, t))))dxdt =

∫
Ak,n(τ)

φ(Gk(H(un(x, τ))))dx

−
∫
Ak,n(τ)

φ(Gk(H(un(x, 0))))dx =

∫
Ak,n(τ)

φ(Gk(H(un(x, τ))))dx.

Using (6.12) we obtain

C0(k(1− θ) + 1)
θ

1−θ

∫
Ak,n(τ)

|wk|pdx

+ α

∫ τ

0

∫
Ak,n(t)

|∇un|p

(1 + |un|)pθ
ϕ′(Gk(H(un)))dxdt

≤ ||h||L∞((0,+∞))

∫ τ

0

∫
Ak,n(t)

|fn||v|dxdt,

where wk = ϕ
(
|Gk(H(un))|

p

)
. Now, for all s ≥ 0 we have∣∣∣∣ϕ′(sp

)∣∣∣∣p = |λeλ
s
p |p = λp−1|λeλs| = λp−1|ϕ′(s)|,

which implies

|∇wk|p = λp−1

(
1

p

)p |∇un|p

(1 + |un|)pθ
ϕ′(|Gk((1 + |un|)1−θ)|).

Therefore, we can write

C4

∫
Ak,n(τ)

|wk|pdx+ C5

∫ τ

0

∫
Ak,n(t)

|∇wk|pdxdt ≤ Ch

∫ τ

0

∫
Ak,n(t)

|fn||v|dxdt,

where C4 = C0(k(1− θ) + 1)
θ

1−θ , C5 = αpp

λp−1 and Ch = ||h||L∞((0,+∞)).
Let t1 ∈ (0, T ] be arbitrary and which will be chosen later. For all t ∈ (0, t1], we have

C6

(
||wk||pLp(0,t1;Lp(Ak,n(t))) + ||∇wk||pLp(Ak,n(t))

)
≤
∫ t1

0

∫
Ak,n(t)

|fn||v|dxdt, (6.16)
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with c6 = min{C4,C5}
Ch

. Now we estimate the integral in the right hand side of (6.16). By (6.9) we have∫ t1

0

∫
Ak,n(t)

|fn||v|dxdt

=

∫ t1

0

∫
Ak+d,n(t)

|fn||v|dxdt+

∫ t1

0

∫
Ak,n(t)\Ak+d,n(t)

|fn||v|dxdt

≤M

∫ t1

0

∫
Ak+d,n(t)

|fn||wk|pdxdt+

∫ t1

0

∫
Ak,n(t)\Ak+d,n(t)

|fn||v|dxdt

≤M

∫ t1

0

∫
Ak,n(t)

|fn||wk|pdxdt+ ϕ(d)

∫ t1

0

∫
Ak,n(t)

|fn|dxdt.

(6.17)

Applying Hölder inequality twice, we obtain∫ t1

0

∫
Ak,n(t)

|fn||wk|pdxdt

≤

(∫ t1

0

∫
Ak,n(t)

|fn|mdxdt

) 1
m
(∫ t1

0

∫
Ak,n(t)

|wk|
pm
m−1dxdt

)m−1
m

≤

(∫ t1

0

∫
Ak,n(t)

|f |mdxdt

) 1
m
(∫ t1

0

∫
Ak,n(t)

|wk|
pm
m−1dxdt

)m−1
m

≤ ||f ||Lm(Q)

(∫ t1

0

∫
Ak,n(t)

|wk|
pm
m−1dxdt

)m−1
m

. (6.18)

Since we are going to chose m large enough, we can define ν1 ∈ (0, 1) as

1

m
+

N

pm
= 1− ν1.

Let as also define
m̄ =

pm

m− 1
, ν =

pν1

N
, and m̂ = m̄(1 + ν). (6.19)

Combining (6.17) and (6.18), we obtain

∫ t1

0

∫
Ak,n(t)

|fn||wk|pdxdt ≤ ||f ||Lm(Q)

(∫ t1

0

∫
Ak,n(t)

|wk|
pm
m−1dxdt

)m−1
m

= ||f ||Lm(Q)

(∫ t1

0

∫
Ak,n(t)

|wk|m̄dxdt

) p
m̄

= ||f ||Lm(Q)

(∫ t1

0

∫
Ak,n(t)

|wk|
m̂

1+ν dxdt

) p(1+ν)
m̂

= Cf

(∫ t1

0

∫
Ak,n(t)

|wk|
m̂

1+ν dxdt

) p(1+ν)
m̂

,
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where Cf = ||f ||Lm(Q). Applying Hölder’s inequality in last inequality, we have∫ t1

0

∫
Ak,n(t)

|fn||wk|pdxdt

≤ Cf

∫ t1

0

(∫
Ak,n(t)

|wk|m̂dx

) 1
1+ν
(∫

Ak,n(t)

dx

) ν
1+ν

dt


p(1+ν)
m̂

≤ Cf

(∫ t1

0

∫
Ak,n(t)

|wk|m̂dxdt

) p
m̂
(∫ t1

0

∫
Ak,n(t)

dxdt

) pν
m̂

= Cf

(∫ t1

0

∫
Ak,n(t)

|wk|m̂dxdt

) p
m̂ (∫ t1

0

|Ak,n(t)|dt
) pν

m̂

= Cf

(∫ t1

0

∫
Ak,n(t)

|wk|m̂dxdt

) p
m̂

Θ(k)
pν
m̂ . (6.20)

Here, Θ(k) stands for the function

Θ(k) =

∫ t1

0

|Ak,n(t)|dt.

Define δ̂ = 1
1+ν

m−1
m

. Since m > 1 and ν > 0, it’s not hard to check that 0 < δ < 1. Furthermore

1
m̂

= δ̂
(

1
p
− 1

N

)
+ 1−δ̂

p
.

Thus, by using the Lemma 2.9 ( here ρ = p, h = p, σ = m̂, v = wk), we have

||wk||pLm̂(0,t1;Lm̂(Ak,n(t)))
≤ Cgn

(∫ t1

0

||∇wk||δ̂m̂Lp(Ak,n(t))||wk||
(1−δ̂)m̂
Lp(Ak,n(t))dt

) p
m̂

≤ Cgn||wk||(1−δ̂)pL∞(0,t1;Lp(Ak,n(t)))

(∫ t1

0

||∇wk||δ̂m̂Lp(Ak,n(t))dt

) p
m̂

.

Applying Young’s inequality we get

||wk||pLm̂(0,t1;Lm̂(Ak,n(t)))

≤ Cgn(1− δ̂)||wk||pL∞(0,t1;Lp(Ak,n(t))) + Cgnδ̂

(∫ t1

0

||∇wk||δ̂m̂Lp(Ak,n(t))dt

) p

m̂δ̂

.

By (6.18) and the definition of δ̂, we obtain m̂δ̂ = p and thus we get

||wk||pLm̂(0,t1;Lm̂(Ak,n(t)))
≤ Cδ̂||wk||

p
V ((0,t1)×Ak,n(t)), (6.21)

where
||wk||pV ((0,t1)×Ak,n(t)) = ||wk||pL∞(0,t1;Lp(Ak,n(t))) + ||∇wk||pLp(0,t1;Lp(Ak,n(t)))

and Cδ̂ = max{Cgn(1− δ̂), Cgnδ̂}. Hence∫ t1

0

∫
Ak,n(t)

|fn||wk|dxdt ≤ Cf ||wk||pLm̂(0,t1;Lm̂(Ak,n(t)))
Θ(k)

pν
m̂

≤ CfCδ̂Θ(k)
pν
m̂ ||wk||V ((0,t1)×Ak,n(t)),

(6.22)
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where Cf = ||f ||Lm(Q). On the other hand, the second term in the right hand side in (6.17) satisfies

∫ t1

0

∫
Ak,n(t)

|fn|dxdt ≤

(∫ t1

0

∫
Ak,n(t)

|fn|mdxdt

) 1
m
(∫ t1

0

∫
Ak,n(t)

dxdt

)m−1
m

≤ ||f ||Lm(Q)

(∫ t1

0

|Ak,n(t)|dt
)m−1

m

= CfΘ(k)
p(1+ν)
m̂ , (6.23)

where Cf = ||f ||Lm(Q). Using (6.16), (6.21) and (6.22), we get

C6||wk||pV ((0,t1)×Ak,n(t))

= C6

(
||wk||pL∞(0,t1;Lp(Ak,n(t))) + ||wk||pLp(0,t1;Lp(Ak,n(t)))

)
≤
∫ t1

0

∫
Ak,n(t)

|fn||ϕ|dxdt

≤M

∫ t1

0

∫
Ak,n(t)

|fn||wk|dxdt+ ϕ(d)

∫ t1

0

∫
Ak,n(t)

|fn|dxdt

≤MCδ̂CfΘ(k)
pν
m̂ ||wk||pV ((0,t1)×Ak,n(t)) + ϕ(d)CfΘ(k)

p(1+ν)
m̂ ,

hence
C6||wk||pV ((0,t1)×Ak,n(t))

≤MCδ̂CfΘ(k)
pν
m̂ ||wk||pV ((0,t1)×Ak,n(t)) + ϕ(d)CfΘ(k)

p(1+ν)
m̂ .

We choose now t1 small enough in order to get

MCfCδ̂t
pν
m̂
1 |Ω|

pν
m̂ < C6. (6.24)

We can conclude that
||wk||pV ((0,t1)×Ak,n(t)) ≤ C7Θ(k)

p(1+ν)
m̂ ,

where C7 =
Cfϕ(d)

C6 −MCfCδ̂t
pν
m̂
1 |Ω|

pν
m̂

, then, by (6.20) we get

||wk||Lm̂(0,t1;Lm̂(Ak,n(t))) ≤ Cδ̂C7Θ(k)
p(1+ν)
m̂ . (6.25)
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Let h > k. Observe that on the set Ah,n(t) one has Gk(H(un)) > h− k. Thus,

||wk||Lm̂(0,t1;Lm̂(Ak,n(t)))

=
∣∣∣∣∣∣ϕ(Gk(H(un))

p

)∣∣∣∣∣∣p
Lm̂(0,t1;Lm̂(Ak,n(t)))

≥
∣∣∣∣∣∣Gk(H(un))

p

∣∣∣∣∣∣p
Lm̂(0,t1;Lm̂(Ak,n(t)))

=
(

1
p

)p
||Gk(H(un))||p

Lm̂(0,t1;Lm̂(Ak,n(t)))

=
(

1
p

)p(∫ t1

0

∫
Ak,n(t)

(Gk(H(un)))m̂dxdt

) p
m̂

≥
(

1
p

)p(∫ t1

0

∫
Ah,n(t)

(Gk(H(un)))m̂dxdt

) p
m̂

≥
(

1
p

)p(∫ t1

0

∫
Ah,n(t)

(h− k)m̂dxdt

) p
m̂

≥
(

1
p

)p
(h− k)p

(∫ t1

0

|Ah,n(t)|dt
) p

m̂

=
(

1
p

)p
(h− k)pΘ

p
m̂ (h),

which to get with (6.24) yield

Θ(h) ≤ M ′

(h− k)m̂
Θ(k)1+ν , ∀h > k ≥ 1,

where M ′ = (ppCδ̂C7)
m̂
p . Note that

ν > 0⇐⇒ 1 +
N

p
< m.

Therefore, by Lemma 2.10 with Θ = %, there exists a positive constant γ1 > 1, independent of n, such
that %(γ1) = 0, which means that

|un| ≤ (γ1(1− θ) + 1)
1

1−θ − 1, a.e. in Ω× [0, t1].

Iterating this procedure successively in the sets Ω × [t1, 2t1], Ω × [2t1, 3t1], · · · , Ω × [mt1, T ], where
T −mt1 ≤ t1, ( notice that the process works since in all these sets (6.24) is verified ), we conclude that
there is a constant C∞, not depending on n, such that

‖un‖∞ ≤ C∞, a.e. in Q = Ω× (0, T ).

Let us un a test function in problem (6.13) and using (6.2), definition of hn we obtain

1
2

∫
Ω

un(x, τ)2dx+ α

∫ τ

0

∫
Ω

|∇un|p

(1 + |un|)θ(p−1)
dxdt

+

∫ T

0

∫
Ω

|un|s+1dxdt ≤
∫ T

0

∫
Ω

h(un)fnundxdt,
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hence

α

∫ τ

0

∫
Ω

|∇un|p

(1 + |un|)θ(p−1)
dxdt+

∫
Q

|un|s+1dxdt ≤
∫ T

0

∫
Ω

h(un)fnundxdt.

By the fact that h bounded in (0,+∞), ||un||L∞ ≤ C∞ and using last inequality we obtain

α

(1 + C∞)θ(p−1)

∫
Q

|∇un|pdxdt ≤ ||un||L∞(Q)||h||L∞((0,+∞))||f ||Lm(Q)|Q|
1
m′ .

Then ∫
Q

|∇un|pdxdt+

∫
Q

|un|s+1dxdt ≤ C8, (6.26)

where C8 = C∞(1+C∞)θ(p−1)

α
||h||L∞((0,+∞))||f ||Lm(Q)|Q|

1
m′ independent of n.

Proof of Theorem 6.4. By Lemma 6.14 we have the sequence {un} is bounded in L∞(Q)∩Lp(0, T ;W 1,p
0 (Ω)).

Then, there exist a function u ∈ L∞(Q) ∩ Lp(0, T ;W 1,p
0 (Ω)) and a subsequence, still denoted by {un},

such that
un ⇀ u weakly inLp(0, T ;W 1,p

0 (Ω))

un ⇀ u weakly* inL∞(Q) for σ∗(L∞(Q), L1(Q)).

Moreover the sequence {∂un
∂t
}n is bounded in L1(Q) +Lp

′
(0, T ;W−1,p′(Ω)), using compactness argument

in [139], we obtain that
un −→ u strongly in L1(Q). (6.27)

Hence
un −→ u a.e in Q (6.28)

Now, adapting the approach of [22, Theorem 3.1], then there exists a subsequence (still denoted {un})
such that

∇un −→ ∇u a.e in Q. (6.29)

From (6.27), (6.28) and (6.3) and the continuity of a(x, t, ., .), using Vitali’s Theorem, we obtain

a(x, t, Tn(un),∇un) ⇀ a(x, t, u,∇u) weakly Lp
′
(Q). (6.30)

We shall now prove that |un|s−1un −→ |u|s−1u and hn(un)fn −→ h(u)f strongly in L1(Q). Let E be a
measurable subset of Q. By Hölder’s inequality and (6.26) we have∫

E

|un|sdxdt ≤
(∫

E

|un|s+1dxdt

) s
s+1

|E|
1
s+1 ≤ C

s
s+1

8 |E|
1
s+1 <∞.

Hence, the sequence {|un|s} is equi-integrable and then so is {|un|s−1un}. Using (6.26), (6.27) and Vilali’s
Theorem, we obtain |u|s−1u ∈ L1(Q) and

|un|s−1un −→ |u|s−1u strongly in L1(Q). (6.31)

Let ψ ∈ Lp(0, T ;W ,p
0 (Ω)) ∩ L∞(Ω) as a function test in (6.6), we obtain

−
∫
Q

unψtdxdt+

∫
Q

a(x, t, Tn(un),∇un) · ∇ψdxdt
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+

∫
Q

|un|s−1unψdxdt =

∫
Q

hn(un)fnψdxdt. (6.32)

We are left to pass to the limit in the non-linear lower order term involving h. If h(0) < ∞ we use
Lebesgue’s dominated convergence theorem and we easily pass n to the limit. From now, we assume
that h(0) =∞. Let ψ be a non-negative function in Lp(0, T ;W ,p

0 (Ω)) ∩ L∞(Ω) as a test function in the
weak formulation (6.32)) we have

−
∫
Q

unψtdxdt+

∫
Q

a(x, t, Tn(un),∇un) · ∇ψdxdt

+

∫
Q

|un|s−1unψdxdt =

∫
Q

hn(un)fnψdxdt,

using (6.3) and Young inequality, we obtain∫
Q

hn(un)fnψdxdt ≤
1

p

∫
Q

|un|pdxdt+
1

p′

∫
Q

|ψt|p
′
dxdt

+

∫
Q

(b(x, t) + |Tn(un)|p−1 + |∇un|p−1) · ∇ψdxdt

+1
s

∫
Q

|un|sdxdt+
1

s′

∫
Q

|ψ|s′dxdt

≤ 1
p
||un||Lp(Q) + 1

p′
||ψt||Lp′ (Q) + 2p

′−1

p′
||b||Lp′ (Q) + 22p′−1

p′
||un||Lp(Q)

+22p′−1

p′
||un||Lp(0,T ;W 1,p

0 (Ω)) + 1
p′
||∇ψ||Lp′ (Q) + 1

s
||un||Ls(Q) + 1

s′
||ψ||Ls′ (Q).

Then ∫
Q

hn(un)fnψdxdt ≤ C, (6.33)

hence {hn(un)fn} is bounded in L1(Q). We fix δ > 0 and we decompose the right hand side of (6.32) in
the following way ∫

Q

hn(un)fnψdxdt =

∫
Q∩{un≤δ}

hn(un)fnψdxdt

+

∫
Q∩{un>δ}

hn(un)fnψdxdt, (6.34)

without losing generality we may assume the parameter δ /∈ {β : |{un(x, t) = β}| > 0} which is at most
countable set. The second term in (6.34) passes to the limit again by the Lebesgue Theorem as

hn(un)fnψχ{un>δ} ≤ sup
s∈[δ,∞)

[h(s)]fψ ∈ L1(Q), (6.35)

we get

lim
n→∞

∫
Q∩{un>δ}

hn(un)fnψdxdt =

∫
Q∩{u>δ}

h(u)fψdxdt.

First of all we apply the Fatou Lemma and (6.33) in order to deduce that∫
Q

h(u)fψdxdt ≤ lim
n→∞

inf

∫
Q

hn(un)fnψdxdt ≤ C,

MOUNIM EL OUARDY



CHAPTER 6. EXISTENCE AND REGULARITY RESULTS FOR A SINGULAR PARABOLIC
EQUATIONS WITH DEGENERATE COERCIVITY 105

hence h(u)f ∈ L1(Q). This allows to apply once again the Lebesgue Theorem as δ → 0 obtaining

lim
δ→0

lim
n→∞

∫
Q∩{un>δ}

hn(un)fnψdxdt =

∫
Q∩{u>0}

h(u)fψdxdt. (6.36)

We also observe that h(u)f ∈ L1(Q) gives that the set {u = 0} is contained in the set {f = 0} up to
set of zero Lebesgue measure. This means that∫

Q∩{u>0}
h(u)fψdxdt =

∫
Q

h(u)fψdxdt, (6.37)

and the proof is done once we have shown that the first term in the right hand side of (6.34) converges
to zero a.s.,resp., n −→ +∞ and δ −→ 0. To this aim we define

Vδ =


1 if ` ≤ δ,
2δ−`
δ

if δ < ` < 2δ,
0 if ` ≥ 2δ.

Take Vδ(un)ψ as a test function in (6.13), we get∫
Q

∂un
∂t

Vδ(un)ψdxdt+

∫
Q

a(x, t, Tn(un),∇un) · ∇(Vδ(un)ψ)dxdt

+

∫
Q

|un|s−1unVδ(un)ψdxdt =

∫
Q

hn(un)fnVδ(un)ψdxdt.

Using integration by parties and definition of Vδ, we have∫ T

0

∫
Q

∂un
∂t

Vδ(un)ψdxdt = −
∫
Q

Φ(un)ψtdxdt,

where Φ(`) =

∫ `

0

Vδ(t)dt.

∫
Q
a(x, t, Tn(un),∇un).∇(Vδ(un)ψ)dxdt =

∫
Q
a(x, t, Tn(un),∇un).∇ψVδ(un)dxdt

+

∫
Q
a(x, t, Tn(un),∇un).∇Vδ(un)ψdxdt =

∫
Q
a(x, t, Tn(un),∇un).∇ψVδ(un)dxdt

−1
δ

∫
{δ<un<2δ}

a(x, t, Tn(un),∇un).∇unψdxdt

≤
∫
Q
a(x, t, Tn(un),∇un).∇ψVδ(un)dxdt.

Hence ∫
Q

hn(un)fnVδψdxdt =

∫
Q∩{un≤δ}

hn(un)fnVδψdxdt

+

∫
Q∩{δ<un<2δ}

hn(un)fnVδψdxdt.
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Then we using the above estimates, we get∫
Q∩{un≤δ}

hn(un)fnVδψdxdt ≤ −
∫
Q

Φ(un)ψtdxdt

+

∫
Q

a(x, t, Tn(un),∇un) · ∇ψVδ(un)dxdt+

∫
Q

|un|s−1unVδ(un)ψdxdt.

Using that Vδ is bounded and φ is continue we deduce that Φ(un)ψt → Φ(u)ψt and |un|s−1unVδ(un)ψ →
|u|s−1uVδψ strongly in L1(Q) and a(x, t, Tn(un),∇un)Vδ(un)→ a(x, t, u,∇u)Vδ(u) weakly in Lp

′
(Q)N as

n tends to infinity. This implies that

limn→∞ sup

∫
Q∩{un≤δ}

hn(un)fnψdxdt ≤ −
∫
{u=0}

Φ(u)ψtdxdt

+

∫
{u=0}

a(x, t, u,∇u) · ∇ψVδ(u)dxdt+

∫
{u=0}

|u|s−1uVδ(u)ψdxdt,

then

lim
n→∞

sup

∫
Q∩{un≤δ}

hn(un)fnψdxdt = 0. (6.38)

Hence (6.37), (6.38) implies that

lim
n→∞

∫
Q

hn(un)fnψdxdt =

∫
Q

h(u)fψdxdt. (6.39)

Let n −→∞ in (6.32), by (6.27), (6.30), (6.31) and (6.39) we get

−
∫
Q

uψtdxdt+

∫
Q

a(x, t, u,∇u) · ∇ψdxdt

+

∫
Q

|u|s−1uψdxdt =

∫
Q

h(u)fψdxdt.

Moreover, decomposing any ψ = ψ+ − ψ−, and using that (6.39) is linear in ψ, we deduce that (6.39))
holds for every ψ ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q).
We treated h(s) unbounded as stands to 0, as regards bounded function h the proofs is easier and

the only difference deals with the passage to the limit in the right hand side of (6.32). We can avoid
introducing δ and we can substitute (6.35) with

0 ≤ hn(un)fn ≤ ||h||L∞(Ω)f.

Using the same argument above we have that hn(un)fn −→ h(u)f strongly in L1(Ω) as n tends to infinity.
Then we can conclude as in case of an unbounded h. The proof of Theorem 6.4 is completed.

Lemma 6.15. Assume that hypotheses (6.2)-(6.4) hold true, h satisfies (h1) and the datum f ∈ Lm(Q)
with m = N

p
+ 1. Then for every solution un of (6.13) there exists a positive constants C14, C15 such

that
||un||Lp(0,T ;W 1,p

0 (Ω)) ≤ C15, (6.40)

||un||Lr(Q) ≤ C14, (6.41)

with 2 ≤ r < +∞.
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Proof of Lemma 6.15. Let λ be a real positive number which will be determined lately. For t ∈ (0, T ],
using ψ(un) = ((1 + |un|)λ − 1)sign(un)χ(0,t), as a test function in problem (6.13), we have∫ t

0

∫
Ω

∂u

∂t
ψ(un)dxdτ + λ

∫ t

0

∫
Ω

a(x, t, Tn(un),∇un) · ∇un(1 + |un|)λ−1dxdτ

+

∫ t

0

∫
Ω

|un|s((1 + |un|)λ − 1)dxdτ =

∫ t

0

∫
Ω

hn(un)fn((1 + |un|)λ − 1)dxdτ.

Using (6.2) and the fact that ((1 + |un|)λ − 1) ≥ |un|λ and by definition of hn we obtain∫
Ω

Ψ(un(x, t))dx+ αλ

∫ t

0

∫
Ω

|∇un|p

(1 + |un|)θ(p−1)
(1 + |un|)λ−1dxdτ

+

∫ t

0

∫
Ω

|un|s+λdxdτ ≤
∫ t

0

∫
Ω

h(un)fn|(1 + |un|)λ − 1|dxdτ, (6.42)

where

Ψ(`) =

∫ `

0

ψ(σ)dσ. (6.43)

By definition of ψ(`) and Ψ(`), we get whenever λ > 1,

Ψ(`) ≥ |`|
λ+1

λ+ 1
, ∀` ∈ IR. (6.44)

Combining (6.42), (6.44) and h bounded in (0,+∞) we have

1
λ+1

∫
Ω

|un(x, t)|λ+1dx+ αλ

∫ t

0

∫
Ω

|∇un|p(1 + |un|)λ−1−θ(p−1)dxdτ

+

∫ t

0

∫
Ω

|un|λ+sdxdτ ≤ ||h||L∞((0,+∞))

∫ t

0

∫
Ω

|fn||(1 + |un|)λ − 1|dxdτ

≤ ||h||L∞((0,+∞))||fn||Lm(Q)

(∫ t

0

∫
Ω

|(1 + |un|)λ − 1|m′dxdτ
) 1

m′

≤ ||h||L∞((0,+∞))||f ||Lm(Q)

(∫ t

0

∫
Ω

|(1 + |un|)λ − 1|m′dxdτ
) 1

m′

(6.45)

Hence
1

λ+1

∫
Ω

|un(x, t)|λ+1dx

+ αλp
λ−1−θ(p−1)+p

∫ t

0

∫
Ω

|∇|un|
λ+(1−θ)(p−1)

p |pdxdτ

≤ ||h||L∞((0,+∞))||f ||Lm(Q)

(∫ t

0

∫
Ω

|(1 + |un|)λ − 1|m′dxdτ
) 1

m′

(6.46)

If λ ≥ 1 + θ(p− 1), we get

C9||un||λ+1
L∞(0,T ;Lλ+1(Ω))

+ C10

∫
Q

|∇|un|
λ+(1−θ)(p−1)

p |pdxdt

≤ C11

(∫
Q

|un|λm
′
dxdt

) 1
m′

+ C11,

(6.47)
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where C9 = 1
λ+1

, C10 = αλpp

(λ+(1−θ)(p−1))p
and C11 = ||h||L∞((0,+∞))||f ||Lm(Q)2

λ max(1, |Q| 1
m′ ). Setting

vn = |un|
λ+(1−θ)(p−1)

p , then we have |un| = v
p

λ+(1−θ)(p−1)
n . Using (6.47), we get

C9||vn||
(λ+1)p

λ+(1−θ)(p−1)

L∞(0,T ;L
λ+(1−θ)(p−1)

p(λ+1) (Ω))

+ C10

∫
Q

|∇vn|pdxdt

≤ C11

(∫
Q

v
λpm′

λ+(1−θ)(p−1)
n dxdt

) 1
m′

+ C11.

(6.48)

By Lemma 2.9 ( here h = p, ρ = p(λ+1)
λ+(1−θ)(p−1)

) and using (6.48), we obtain∫
Q

|vn|σdxdt ≤ C||vn||
pρ
N

L∞(0,T ;Lρ(Ω))

∫
Q

|∇vn|pdxdt

≤ C

[
C11

C9

(∫
Q

v
λpm′

λ+(1−θ)(p−1)
n dxdt

) 1
m′

+ C11

C9

] p
N

×

[
C11

C10

(∫
Q

v
λpm′

λ+(1−θ)(p−1)
n dxdt

) 1
m′

+ C11

C10

]

≤ C

[
C12

(∫
Q

v
λpm′

λ+(1−θ)(p−1)
n dxdt

) 1
m′

+ C12

] 1
m′ (

p
N

+1)

≤ C13

(∫
Q

v
λpm′

λ+(1−θ)(p−1)
n dxdt

) 1
m′ (

p
N

+1)

+ C13,

where C12 = C max
(
C11

C9
, C11

C10

)
and C13 = C2

p
NC

p
N

+1

12 . By virtue of m = N
p

+ 1, and σ > λpm′

λ+(1−θ)(p−1)
, we

have 1
m′

(
p
N

+ 1
)

= 1 and λpm′

σ[λ+(1−θ)(p−1)]
< 1, applying Hölder’s inequality we get

∫
Q

|vn|σdxdt ≤ C13

(∫
Q

|vn|σdxdt
) λpm′

σ(λ+(1−θ)(p−1))

|Q|1−
λpm′

σ(λ+(1−θ)(p−1))

hence applying Young’s inequality with ε, we have∫
Q

|vn|σdxdt ≤ ε

∫
Q

|vn|σdxdt+ Cε,

take ε = 1
2
, we get ∫

Q

|vn|σdxdt ≤ C14, (6.49)

where C14 = 2Cε. Then we get ∫
Q

|un|rdxdt ≤ C14, (6.50)

with r = σ × λ+(1−θ)(p−1)
p

= mN(1−θ)(p−1)+p
N+p−pm . To ensure λ ≥ 1 + θ(p− 1) this needs r ≥ p(N+2

N
+ θ(p−1)

N
).

Thus, if r ≥ p(N+2
N

+ θ(p−1)
N

), is proved. If 2 ≤ r ≤ p(N+2
N

+ θ(p−1)
N

), it is classical since Q is bounded.
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By (6.46), (6.49), (6.50) and λ ≥ 1 + θ(p− 1), we get∫
Q

|∇un|pdxdt ≤
∫
Q

|∇un|p(1 + |un|)λ−1−θ(p−1)dxdt ≤ C15. (6.51)

Lemma 6.16. Let s ≥ 1. Assume that hypothesis (6.2) − (6.4) hold, h satisfies (h1) and f ∈ Lm(Q)
with

p(N + 2 + θ(p− 1))

p(N + 2 + θ(p− 1))−N [θ(p− 1) + 1− γ]
≤ m <

N

p
+ 1.

Then for every solution un of (6.13), there exists positive constants C23 and C24 independent of n such
that

||un||Lp(0,T ;Lp(Ω)) ≤ C24, ||un||Lr(Q) ≤ C23,

where r is defined in Theorem 6.8.

Lemma 6.17. Let s ≥ 1. Assume that hypothesis (6.2)-(6.4) hold, h satisfies (h1) and the datum
f ∈ Lm(Q) with

1 ≤ m <
p(N + 2 + θ(p− 1))

p(N + 2 + θ(p− 1))−N [θ(p− 1) + 1− γ]
.

Then for every solution un of (6.13), there exists positive constants C23 and C25 independent of n such
that

||un||Lq(0,T ;Lq(Ω)) ≤ C25, ||un||Lr(Q) ≤ C23,

where q and r are defined in Theorem 6.9.

Proof of Lemmas 6.16, 6.17. For t ∈ (0, T ], taking ϕ(un) = ((1 + |un|)δ+1 − 1)χ(0,t)× sign(un), δ > 0 as
test function in problem (6.13), using (6.2) and (h1), we have∫

Ω

ψ(un(x, t))dx+ α(δ + 1)

∫ t

0

∫
Ω

|∇un|p

(1 + |un)θ(p−1)−δ dxdτ

+

∫ t

0

∫
Ω

|un|s+δ+1dxdτ ≤ C16

∫ t

0

∫
Ω

|fn||un|δ+1−γdxdτ,

(6.52)

where ψ(`) =

∫ `

0

ϕ(y)dy. By definition of ϕ(`) and ψ(`), we also have if 0 < δ < θ(p− 1)

C17|`|δ+2 − C26 ≤ ψ(`), ∀` ∈ R.

By using the last inequality, Hölder’s inequality in (6.52), we obtain

C17

∫
Ω

|un(x, t)|δ+2dx+ α(δ + 1)

∫ t

0

∫
Ω

|∇un|p

(1 + |un)θ(p−1)−δ dxdτ

+

∫ t

0

∫
Ω

|un|s+δ+1dxdτ ≤ C27

[
1 +

(∫ t

0

∫
Ω

un|(δ+1−γ)m′dxdτ

) 1
m′
]
,
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where C27 positive constant depend only C16, C26, ||f ||Lm(Q) and meas(Ω). Passing to the supremum in
t ∈ [0, T ], we get

C17||un||δ+2
L∞(0,T ;Lδ+2(Ω))

+ C18

∫
Q

|∇un|p

(1 + |un)θ(p−1)−δ dxdt

+

∫
Q

|un|s+δ+1dxdt ≤ C27

[
1 +

(∫
Q

|un|(δ+1−γ)m′dxdt

) 1
m′
] (6.53)

where C18 = α(δ + 1). Let 1 < q < p, applying Hölder’s inequality and by last inequality, we have∫
Q

|∇un|qdxdt =

∫
Q

|∇un|q(1 + |un|)
q(θ(p−1)−δ)

p

(1 + |un|)
q(θ(p−1)−δ)

p

dxdt

(∫
Q

|∇un|p

(1 + |un|)θ(p−1)−δ dxdt

) q
p
(∫

Q

(1 + |un|)
q(θ(p−1)−δ)

p−q dxdt

) p−q
p

≤ C19

[
1 +

(∫
Q

|un|(δ+1−γ)m′dxdt

) 1
m′
] q
p (

1 +

∫
Q

|un|
q(θ(p−1)−δ)

p−q dxdt

) p−q
p

,

(6.54)

where C19 is a positive constant depend only C16, C17, C18, C27 and meas(Q).
By Lemma 2.9 (where v = un, ρ = δ + 2, h = q) and using (6.53), (6.54), we obtain∫

Q

|un|
q(N+δ+2)

N dxdt ≤ ||un||
q(δ+2)
N

L∞(0,T ;Lδ+2(Ω))

∫
Q

|∇un|qdxdt

≤ C20

(
1 +

∫
Q

u(δ+1−γ)m′

n dxdt

) q
pm′+

q
Nm′

(
1 +

∫
Q

|un|
q(θ(p−1)−δ)

p−q dxdt

) p−q
p

.

Let now Choosing δ and such that

σ =
q(N + δ + 2)

N
= (δ + 1− γ)m′ =

q(θ(p− 1)− δ)
p− q

, (6.55)

that is

δ =
p(N + 2)−Nθ(p− 1)−Nm′(1− γ)

Nm′ −N − p
,

σ =
m[N(p+ γ − 1) + p(γ + 1)−Nθ(p− 1)]

N − pm+ p
,

q =
m[N(p+ γ − 1) + p(γ + 1)−Nθ(p− 1)]

N + 2− θ(p− 1)(m− 1)−m(1− γ)
.

using (6.55) in last inequality, we get∫
Q

|un|σdxdt ≤ C20

(
1 +

∫
Q

|un|σdxdt
) q

Nm′+
q
pm′+

p−q
p

.
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By virtue of m < N
p

+ 1, we have p−q
q

+ q
pm′

+ q
Nm′

< 1 and applying Young’s inequality, then we deduce
that ∫

Q

|un|σdxdt ≤ C21. (6.56)

If s > p(1+mγ)+N(p−1)(1−θ)
N−pm+p

, then s+ δ + 1 > σ, by (6.53), (6.55), (6.56), Hölder’s inequality and Young’s
inequality, we get ∫

Q

|un|s+δ+1dxdt ≤ C22, (6.57)

where s+ δ + 1 = (m−1)[p(N+1−s)−Nθ(p−1)]+N(s+1−m(1−γ))
N−pm+p

. The estimates (6.56) and (6.57), implies∫
Q

|un|rdxdt ≤ C23. (6.58)

The condition m < p(N+2+θ(p−1))
p(N+2+θ(p−1))−N [θ(p−1)+1−γ]

, ensure that δ − θ(p− 1) < 0, then by (6.54), (6.55) and

(6.56), we can get ∫
Q

|∇un|qdxdt ≤ C25. (6.59)

By the definitions of ϕ(`) and ψ(`), we can get whenever δ > 0

|`|δ+2

δ + 2
≤ ψ(`), ∀` ∈ R.

Going back to (6.52), By the above estimate , Hölder’s inequality, some simplification and passing to
supermum for t ∈ (0, T ), we get

C28|||un|
δ+p−θ(p−1)

p ||
L∞(0,T ;L

p(δ+2)
δ+p−θ(p−1) (Ω))

+ C29

∫
Q

|∇|un|
δ+p−θ(p−1)

p |pdxdt

+

∫
Q

|un|s+δ+1dxdt ≤ C16||f ||Lm(Q)

(∫
Q

|un|(δ+1−γ)m′dxdt

) 1
m′

,

(6.60)

where C28 = 1
δ+2

, C29 = α(δ+1)pp

(α+p−θ(p−1))p
.Now applying Lemma 2.9 (where v = |un|

δ+p−θ(p−1)
p , ρ = p(δ+2)

δ+p−θ(p−1)
,

h = p), from (6.60) and we use the same argument as before, we obtain∫
Q

|un|σdxdt ≤ C30;

∫
Q

|un|rdxdt ≤ C31. (6.61)

In the case δ ≥ θ(p− 1) (i.e m ≥ p(N+2+θ(p−1))
p(N+2+θ(p−1))−N [θ(p−1)+1−γ]

), combining (6.60), (6.61), we deduce that∫
Q

|∇un|pdxdt ≤ C24. (6.62)

The estimates (6.58), (6.59),(6.61) and (6.62) completed the proof of Lemma 6.16 and Lemma
6.17.
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Lemma 6.18. Assume that hypothesis (6.2)-(6.4) hold, h satisfies (h1) and f ∈ Lm(Q) with

1 < m <
p(N + 2 + θ(p− 1))

p(N + 2 + θ(p− 1))−N [θ(p− 1) + 1− γ]
.

Then for every solution un of (6.13), there exists positive constants c4, c5, c8 and c9 independent of n
such that

(i) If s ≥ 1+θ(p−1)−mγ
m−1

, then

||un||Lp(0,T ;Lp(Ω)) ≤ c5,

||un||L(s+γ)m(Q) ≤ c4.

(ii) If 1+θ(p−1)−mpγ
mp−1

< s < 1+θ(p−1)−mγ
m−1

, then

||un||Lq(0,T ;Lq(Ω)) ≤ c9,

||un||Lr(Q) ≤ c8,

where q and r are defined in Theorem 6.11.

Proof of Lemma 6.18. For t ∈ (0, T ), let ϕ(un) = ((1 + |un|)s(m−1)+mγ−1)sing(un)χ(0,t) as test function
in (6.13),by (6.2) and the condition (h1), we have∫

Ω
ψ(un(x, t))dxdτ + α(s(m− 1) +mγ)

∫ t

0

∫
Ω

|∇un|p

(1 + |un|)θ(p−1)−s(m−1)−mγ+1
dxdτ

+

∫ t

0

∫
Ω
|un|s((1 + |un|s(m−1)+mγ)− 1)dxdτ ≤ c0

∫ t

0

∫
Ω
|f ||un|s(m−1)+mγ−γdxdτ,

(6.63)

where ψ(`) =

∫ `

0

ϕ(σ)dσ, ∀` ∈ R. Since c1|`|1+s(m−1)+mγ − c2 ≤ ψ(`), ∀` ∈ R, where c0, c1, c2 are tree

positive constants. By last inequality, Hölder’s inequality and passing to the supremum in t ∈ (0, T ),
we get

c1||un||1+s(m−1)+mγ

L∞(0,T ;L1+s(m−1)+mγ(Ω))
+ c3

∫
Q

|∇un|p

(1 + |un|)θ(p−1)−s(m−1)−mγ+1
dxdt

+

∫
Q

|un|(s+γ)mdxdt ≤ c2measΩ + c0||f ||Lm(Q)

(∫
Q

|un|(s+γ)mdxdt

) 1
m′

,

where c3 = α(s(m− 1) +mγ). Using Young’s inequality with ε, we have

c1||un||1+s(m−1)+mγ

L∞(0,T ;L1+s(m−1)+mγ(Ω))
+ c3

∫
Q

|∇un|p

(1 + |un|)θ(p−1)−s(m−1)−mγ+1
dxdt

+

∫
Q

|un|(s+γ)mdxdt ≤ c2measΩ + Cε + ε

∫
Q

|un|(s+γ)mdxdt.
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Taking ε = 1
2

in last inequality, implies that

c1||un||1+s(m−1)+mγ

L∞(0,T ;L1+s(m−1)+mγ(Ω))
+ c3

∫
Q

|∇un|p

(1 + |un|)θ(p−1)−s(m−1)−mγ+1
dxdt

+

∫
Q

|un|(s+γ)mdxdt ≤ c4, (6.64)

where c4 is a positive constant depend of c0, c2,measΩ, ||f ||Lm(Q).

If s ≥ 1+θ(p−1)−mγ
m−1

, then θ(p− 1)− s(m− 1)−mγ + 1 ≤ 0, from (6.64) we get∫
Q

|∇un|pdxdt ≤
∫
Q

|∇un|p

(1 + |un|)θ(p−1)−s(m−1)−mγ+1
dxdt ≤ c5, (6.65)

where c5 = c4
c3
. The estimates (6.64) and (6.65) completed the proof of item (i).

(ii) If 1+θ(p−1)−mpγ
mp−1

< s < 1+θ(p−1)−mγ
m−1

, then θ(p− 1)− s(m− 1)−mγ + 1 > 0, let 1 < q < p, applying
Hölder’s inequality, we get∫

Q

|∇un|qdxdt =

∫
Q

|∇un|q(1 + |un|)
(θ(p−1)−s(m−1)−mγ+1)q

p

(1 + |un|)
(θ(p−1)−s(m−1)−mγ+1)q

p

dxdt

≤
(∫

Q

|∇un|p

(1 + |un|)θ(p−1)−s(m−1)−mγ+1
dxdt

) q
p

×
(∫

Q

(1 + |un|)
(θ(p−1)−s(m−1)−mγ+1)q

p−q dxdt

) p−q
p

,

then by (6.64), we get∫
Q

|∇un|qdxdt ≤ c6

(∫
Q

(1 + |un|)
(θ(p−1)−s(m−1)−mγ+1)q

p−q dxdt

) p−q
p

. (6.66)

We now choose q in order to have

(θ(p− 1)− s(m− 1)−mγ + 1)q

p− q
= (s+ γ)m. (6.67)

The last equality implies that

q =
p(s+ γ)m

1 + θ(p− 1) + s
. (6.68)

By Lemma 2.9 ( where v = un, ρ = 1 + s(m− 1) +mγ , h = q and σ = q(N+ρ)
N

), from(6.64) and (6.66),
we obtain ∫

Q

|un|σdxdt ≤ C||un||
(1+s(m−1)+mγ)q

N

L∞(0,T ;L1+s(m−1)+mγ(Ω))

∫
Q

|∇un|qdxdt ≤ c7. (6.69)

If s ≥ p(N+1+mγ)−N(1+θ(p−1))
N−pm+p

, then (s+ γ)m ≥ σ; if s < p(N+1+mγ)−N(1+θ(p−1))
N−pm+p

, then (s+ γ)m < σ.
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The estimates (6.64) and (6.69) yields ∫
Q

|un|rdxdt ≤ c8. (6.70)

Using (6.64) and (6.67) in (6.66), we get ∫
Q

|∇un|qdxdt ≤ c9. (6.71)

4 Proof of main results

Proof of Theorem 6.6, Theorem 6.8, Theorem 6.9 and Theorem 6.11. Because the proof of Theorem 6.6,
Theorem 6.9 and Theorem 6.11 is similar to that of Theorem 6.8. Now we give the proof Theorem 6.8.

By Lemma 6.16 we have the sequence {un} is bounded in Lr(Q) ∩ Lp(0, T ;W 1,p
0 (Ω)). Then there

exist a function u ∈ Lr(Q) ∩ Lp(0, T ;W 1,p
0 (Ω)) and sub-sequence, still denoted by {un}, such that

un ⇀ u weakly in Lp(0, T ;W 1,p
0 (Ω)), (6.72)

un ⇀ u weakly in Lr(Q). (6.73)

From (6.33), (6.72) and (6.73) we have the sequence {∂un
∂t
} = div a(x, t, Tn(un),∇un) + (hn(un)fn −

|un|s−1un) is bounded in the space Lp
′
(0, T ;W−1,p′(Ω)) + L1(Q), using the compactness argument in

[139], we obtain that
un −→ u strongly in L1(Q). (6.74)

Hence
un −→ u a.e. in Q. (6.75)

Now, we adapting the approach of [22, Theorem 3.1] there exists a subsequence (still denoted by {un})
such that

∇un −→ ∇u a.e. in Q. (6.76)

From (6.75), (6.76) and (6.3), using Vitali’s Theorem, we obtain

a(x, t, Tn(un),∇un) −→ a(x, t, u,∇u) weakly in Lp
′
(Q). (6.77)

We shall now prove that |un|s−1un −→ |u|s−1u and hn(un)fn −→ h(u)f strongly in L1(Q). Indeed, let
φi be a sequence of increasing, positive uniformly bounded C∞(Q) functions, such that

φi(s) −→


1 if s ≥ δ,
0 if |s| < δ.
−1 if s ≤ −δ.

choosing φi(un) as a test function in (6.13), we get∫
Q

|un|s−1unφi(un)dxdt ≤
∫
Q

h(un)fnφi(un)dxdt

≤ ||h||L∞((0,+∞))

∫
Q

fφi(un)dxdt.
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The limit on i implies∫
{(x,t)∈Q:|un(x,t)|>δ}

|un|sdxdt ≤ ||h||L∞((0,+∞))

∫
{(x,t)∈Q:|un(x,t)|>δ}

fdxdt. (6.78)

We are going to use this inequality to show that if E is any measurable subset of Q, then

lim
|E|−→0

∫
E

|un|sdxdt = 0

uniformly with respect to n. Using (6.78), for any δ > 0 we have∫
E

|un|sdxdt ≤ δs|E|+
∫
E∩{(x,t)∈Q:|un(x,t)|>δ}

|un|sdxdt

≤ δs|E|+ ||h||L∞((0,+∞))

∫
{(x,t)∈Q:|un(x,t)|>δ}

fdxdt.

The fact f ∈ L1(Q) allows us to say that for any given ε > 0, there exist δε such that

||h||L∞((0,+∞))

∫
{(x,t)∈Q:|un(x,t)|>δε}

fdxdt ≤ ε.

In this way ∫
E

|un|sdxdt ≤ δsε |E|+ ε||h||L∞((0,+∞)),

and so

lim
|E|−→0

∫
E

|un|sdxdt ≤ ε||h||L∞((0,+∞)) ∀ε > 0,

we thus proved that lim|E|−→0

∫
E

|un|sdxdt = 0 uniformly with respect to n. Vitali’s Theorem and (6.75)

implies that
|un|s−1un −→ |u|s−1u strongly in L1(Q). (6.79)

Using the same argument ones of the Theorem 6.4, we get

hn(un)fn −→ h(u)f strongly in L1(Q). (6.80)

Let now φ ∈ C∞(Q), which is zero in neighborhood of Γ ∪ (Ω × {T}). Inserting φ as test function in
(6.13), we get

−
∫
Q

un
∂φ

∂t
dxdt+

∫
Q

a(x, t, Tn(un),∇un) · ∇φdxdt

+

∫
Q

us−1
n unφdxdt =

∫
Q

hn(un)fnφdxdt.

let n −→ +∞ in last inequality, by (6.74), (6.77), (6.79) and (6.80), we get

−
∫
Q

u
∂φ

∂t
dxdt+

∫
Q

a(x, t, u,∇u) · ∇φdxdt

+

∫
Q

us−1uφdxdt =

∫
Q

h(u)fφdxdt.

MOUNIM EL OUARDY



Conclusion and Perspectives

In this thesis, we have proved the existence and regularity of solutions to certain singular parabolic
problems with strong nonlinearities. More precisely, In the first step, we have approximated the singular
problems considered by another-ones non-singular, and based on the classical results that exist in the
parabolic PDEs and the application of the fixed point theorem we have proved the existence of a weak
solution to the approximate problems. In the second step, we have proved some prior estimates for
the weak solutions to the approximate problems, also we have shown an important property of these
solutions that is the strict positivity in the interior of the parabolic cylinder, which gives meaning to
a weak formulation of problems, also this property used in the proofs of convergences of the singular
terms. In the thirty steps, we have used the estimates obtained in the second step and also we used the
classical results of compacity, which permit passing to the limit in the approximate problems, and then
we obtain the solution of the problems considered. In the last step, we have localized our attention to the
study of the regularity of the solution and its gradient, which depends on the parameters (γ, θ, µ, s,m...)
and the summability of the data f. To achieve this regularity we have used the Gagliardo-Nirenberg
inequality.

For the perspective, we are now working on creating a new mathematical model that takes into
account the different aspects. More precisely, we are interested in studying the singular parabolic
problems with convection and reaction terms. the simple models are the following:

∂u
∂t
−∆pu = − div(|u|p−1uE(x, t)) + f

uγ
in Q,

u = 0 on Γ,
u0(x, t = 0) = u0(x) in Ω,

(6.81)

and 
∂u
∂t
−∆pu = |∇u|q + f

uγ
in Q,

u = 0 on Γ,
u0(x, t = 0) = u0(x) in Ω.

(6.82)

Another perspective is the study of the existence and regularity of solutions to certain singular
parabolic problems in fractional concepts.
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[18] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right hand side measures, Commun. in
partial diff. equations, 17 (3-4), 641-655 (1992).
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