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Changing land-use patterns are of great importance in environmental studies and critical for 

land use management decision-making over farming systems in arid and semi-arid regions. 

Unfortunately, ground data scarcity or inadequacy in many regions can cause large 

uncertainties during the characterization of phenological changes in arid and semi-arid 

regions, which can hamper tailored decision-making towards the best agricultural 

management practices. Alternatively, state-of-the-art methods for phenological metrics 

extraction and long-time series analysis techniques of multispectral remote sensing imagery 

provide a viable solution. In this context, this thesis aims to assess the relevance of phenology 

data and machine learning algorithms to characterize the changes over farming systems. It also 

investigates the strength and validity of phenology data combined with climate data to 

provide the first pheno-climatic classification of Morocco. To this end, four farming systems 

(FS) (Fallow (FA), Rainfed area, (RA) Irrigated Annual Crop (IAC), and Irrigated Perennial 

Crop (IPC)) in arid areas of Morocco were studied based on 13 phenological metrics (PhM). 

These metrics were derived from large MODIS-NDVI time-series between 2000 and 2020. For 

classification and change analysis purposes, 3 machine learning algorithms and a pixel-based 

change analysis method were investigated. Besides, long time series of climatic data (i.e., 

rainfall data and land surface temperature) and phenological metrics were used to produce the 

first pheno-climatic classification of Morocco at a scale of 500 m. The classification overall 

accuracy over the Beni Mellal-Khenifra region reached 88%, with a kappa coefficient of 0.83 

and values of F1-score greater than 0.76. However, by comparing, the accuracy of the three 

classifiers (i.e., Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour 

(K-NN)), the RF method showed the best performance with an overall accuracy of 0.97 and 

kappa coefficient of 0.96. Variations in FS have been found to be linked well with other 

indicators of local agricultural land management, as well as the historical agricultural drought 

changes over the study area. Results showed a significant dynamism of the plant cover linked 

to the behaviour of farmers who tend to cultivate intensively and to invest in high-income 

crops. More specifically, a relevant variability in fallow and rainfed areas closely linked to the 

weather conditions was found. In addition, a significant lag trends of the start (-6 days), end 

(+3 days) of season was found, and which indicate that the length of the season was related to 

spatio-temporal variability of rainfall. This study has also highlighted the potential of 

Multitemporal moderate spatial resolution data to accurately monitor agriculture and better 

manage land resources. In the meantime, for operationally implementing the use of such work 

in the field, we believe that it is essential to consider the perceptions, opinions, and mutual 

benefits of farmers and stakeholders to improve strategies and synergies whilst ensuring food, 

welfare, and sustainability. 

Keywords: Morocco, Oum Er-Rbia, semi-arid, farming systems, NDVI, phenology, time-series, 

machine learning, pheno-climatic classification. 
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Abstract 

Changing land-use patterns are of great importance in environmental studies and critical for 

land use management decision-making over farming systems in arid and semi-arid regions. 

Unfortunately, ground data scarcity or inadequacy in many regions can cause large 

uncertainties during the characterization of phenological changes in arid and semi-arid 

regions, which can hamper tailored decision-making towards the best agricultural 

management practices. Alternatively, state-of-the-art methods for phenological metrics 

extraction and long-time series analysis techniques of multispectral remote sensing imagery 

provide a viable solution. In this context, this thesis aims to assess the relevance of phenology 

data and machine learning algorithms to characterize the changes over farming systems. It 

also investigates the strength and validity of phenology data combined with climate data to 

provide the first pheno-climatic classification of Morocco. To this end, four farming systems 

(FS) (Fallow (FA), Rainfed area, (RA) Irrigated Annual Crop (IAC), and Irrigated Perennial 

Crop (IPC)) in arid areas of Morocco were studied based on 13 phenological metrics (PhM). 

These metrics were derived from large MODIS-NDVI time-series between 2000 and 2020. For 

classification and change analysis purposes, 3 machine learning algorithms and a pixel-based 

change analysis method were investigated. Besides, long time series of climatic data (i.e., 

rainfall data and land surface temperature) and phenological metrics were used to produce 

the first pheno-climatic classification of Morocco at a scale of 500 m. The classification overall 

accuracy over the Beni Mellal-Khenifra region reached 88%, with a kappa coefficient of 0.83 

and values of F1-score greater than 0.76. However, by comparing, the accuracy of the three 

classifiers (i.e., Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour 

(K-NN)), the RF method showed the best performance with an overall accuracy of 0.97 and 
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kappa coefficient of 0.96. Variations in FS have been found to be linked well with other 

indicators of local agricultural land management, as well as the historical agricultural drought 

changes over the study area. Results showed a significant dynamism of the plant cover linked 

to the behaviour of farmers who tend to cultivate intensively and to invest in high-income 

crops. More specifically, a relevant variability in fallow and rainfed areas closely linked to the 

weather conditions was found. In addition, a significant lag trends of the start (-6 days), end 

(+3 days) of season was found, and which indicate that the length of the season was related to 

spatio-temporal variability of rainfall. This study has also highlighted the potential of 

Multitemporal moderate spatial resolution data to accurately monitor agriculture and better 

manage land resources. In the meantime, for operationally implementing the use of such work 

in the field, we believe that it is essential to consider the perceptions, opinions, and mutual 

benefits of farmers and stakeholders to improve strategies and synergies whilst ensuring food, 

welfare, and sustainability. 

Keywords: Morocco, Oum Er-Rbia, semi-arid, farming systems, NDVI, phenology, time-series, 

machine learning, pheno-climatic classification. 
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 ملخص

تغيير أنماط استخدام الأراضي له أهمية كبيرة في الدراسات البيئية وحاسمة لإدارة استخدام الأراضي في المناطق القاحلة 

فإن ندرة البيانات الأرضية أو عدم كفايتها في العديد من المناطق يمكن أن تسبب شكوكًا كبيرة  الحظ،وشبه القاحلة. لسوء 

مما قد يعيق صنع القرار المصمم تجاه أفضل ممارسات  القاحلة،أثناء توصيف التغيرات الفينولوجية في المناطق القاحلة وشبه 

ستخراج المقاييس الفينولوجية وتقنيات تحليل السلاسل طويلة الأمد توفر أحدث الأساليب لا ذلك،الإدارة الزراعية. بدلاً من 

تهدف هذه الأطروحة إلى تقييم أهمية بيانات  السياق،لصور الاستشعار عن بعد متعددة الأطياف حلاً قابلاً للتطبيق. في هذا 

حث في قوة وصحة بيانات الفينولوجيا بفي أنظمة الزراعة. كما ترات زميات التعلم الآلي لتوصيف التغيعلم الفينولوجيا وخوار

تمت دراسة أربعة أنظمة  الغاية،مناخي للمغرب. تحقيقا لهذه -فينوجنبًا إلى جنب مع البيانات المناخية لتقديم أول تصنيف 

 ((IPC) المعمرةالمنطقة المسقية  و ،(IAC) المنطقة المسقية  (RA) البوريةالمنطقة  ،(FA)  المنطقة المعشوشبة   : زراعية

 2000بين عامي   MODIS-NDVI تم اشتقاق هذه المقاييس من سلاسل زمنية كبيرة لـ .مقياسًا فينولوجيًا 13على أساس 

خوارزميات للتعلم الآلي وطريقة تحليل التغيير المعتمدة على  3تم فحص  التغيير،. لأغراض التصنيف وتحليل 2020و

نية طويلة من البيانات المناخية )أي بيانات هطول الأمطار ودرجة حرارة تم استخدام سلسلة زم ذلك،. إلى جانب البيكسل

متر. بلغت الدقة الكلية للتصنيف  500للمغرب بمقياس مناخي -فينوسطح الأرض( والمقاييس الفينولوجية لإنتاج أول تصنيف 

رت النتائج ديناميكية كبيرة أظه 0.76أكبر من  F1 وقيم درجة 0.83مع معامل كابا  ٪،88على منطقة بني ملال خنيفرة 

للغطاء النباتي مرتبطة بسلوك المزارعين الذين يميلون إلى الزراعة بشكل مكثف والاستثمار في المحاصيل عالية الدخل. 

بظروف الطقس. بالإضافة  والمعشوشبة المرتبطةتم العثور على تنوع وثيق الصلة في المناطق البور  تحديداً،وبشكل أكثر 

والتي تشير إلى أن طول الموسم  (،أيام 3ونهاية الموسم )+ (،أيام 6-العثور على اتجاهات تأخر لبداية الموسم ) تم ذلك،إلى 

كان مرتبطًا بالتباين المكاني والزماني لهطول الأمطار. سلطت هذه الدراسة الضوء أيضًا على إمكانات بيانات الدقة المكانية 

من أجل التنفيذ العملي  ذلك،بدقة وإدارة موارد الأراضي بشكل أفضل. في غضون المعتدلة متعددة الزمان لرصد الزراعة 

نعتقد أنه من الضروري النظر في التصورات والآراء والمزايا المتبادلة للمزارعين  المجال،لاستخدام مثل هذا العمل في هذا 

 .ةوأصحاب المصلحة لتحسين الاستراتيجيات مع ضمان الغذاء والرفاهية والاستدام

 الزمنية،السلاسل  الفينولوجيا،علم  ،NDVI مؤشر الزراعة،نظم  ،قاحلشبه  مناخالربيع،أم  المغرب،: الكلمات المفتاحية

 مناخي-الفينو التصنيف الآلي،التعلم 
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Résumé 

L'évolution des modes d'utilisation des terres est d'une grande importance dans les 

études environnementales et critique pour la gestion de l'utilisation des terres dans les régions 

arides et semi-arides. Malheureusement, la rareté ou l'inadéquation des données au sol dans 

de nombreuses régions peut entraîner de grandes incertitudes lors de la caractérisation des 

changements phénologiques dans les régions arides et semi-arides, ce qui peut entraver la 

prise de décision adaptée vers les meilleures pratiques de gestion agricole. Alternativement, 

les méthodes de pointe pour l'extraction de métriques phénologiques et les techniques 

d'analyse de longues séries temporelles d'images de télédétection multispectrales offrent une 

solution viable. Dans ce contexte, cette thèse vise à évaluer la pertinence des données 

phénologiques et des algorithmes d'apprentissage automatique pour caractériser les 

changements sur les systèmes agricoles. Elle étudie également la force et la validité des 

données phénologiques combinées aux données climatiques pour fournir le premier zonnage 

phéno-climatique du Maroc. À cette fin, quatre systèmes agricoles (jachère (FA), zone pluviale 

(RA), culture annuelle irriguée (IAC), et culture pérenne irriguée (IPC)) dans les zones arides 

du Maroc ont été étudiés sur la base de 13 paramètres phénologiques (PhM). Ces métriques 

ont été dérivées de grandes séries temporelles MODIS-NDVI entre 2000 et 2020. Pour la 

classification et l'analyse des changements, trois algorithmes d'apprentissage automatique et 

une méthode d'analyse des changements basés sur les pixels ont été étudiés. En outre, de 

longues séries chronologiques de données climatiques (c'est-à-dire les données 

pluviométriques et la température à la surface du sol) et de métriques phénologiques ont été 

utilisées pour produire la première classification phéno-climatique du Maroc à une échelle de 

500 m. La précision globale de la classification sur la région de Beni Mellal-Khenifra a atteint 

88 %, avec un coefficient de kappa de 0,83 et des valeurs de score F1 supérieures à 0,76. 

Cependant, en comparant la précision des trois classificateurs (Support vector Machine (SVM), 

la Random Forest (RF) et les K Nearest Neighbor (K-NN)), la méthode RF a montré la meilleure 

performance avec une précision globale de 0,97 et un coefficient de kappa de 0,96. Les 

variations du FS se sont avérées être bien liées à d'autres indicateurs de la gestion locale des 

terres agricoles, ainsi qu'aux changements historiques de la sécheresse agricole dans la zone 

d'étude. Les résultats ont montré un dynamisme significatif de la couverture végétale lié au 
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comportement des agriculteurs qui ont tendance à cultiver de manière intensive et à investir 

dans des cultures à haut revenu. Plus spécifiquement, une variabilité pertinente dans les zones 

de jachère et de culture pluviale étroitement liée aux conditions météorologiques a été trouvée. 

En outre, un décalage significatif entre le début (-6 jours) et la fin (+3 jours) de la saison a été 

constaté, ce qui indique que la durée de la saison est liée à la variabilité spatio-temporelle des 

précipitations. Cette étude a également mis en évidence le potentiel des données 

multitemporelles à résolution spatiale modérée pour surveiller avec précision l'agriculture et 

mieux gérer les ressources foncières. En attendant, pour mettre en œuvre de manière 

opérationnelle l'utilisation de ces travaux sur le terrain, nous pensons qu'il est essentiel de 

prendre en compte les perceptions, les opinions et les avantages mutuels des agriculteurs et 

des parties prenantes pour améliorer les stratégies et les synergies tout en assurant 

l'alimentation, le bien-être et la durabilité. 

Mots-clés : Maroc, Oum Er-Rbia, climat semi-aride, systèmes agricoles, NDVI, 

phénologie, séries temporelles, apprentissage automatique, zonnage phéno-climatique. 
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General introduction 

Phenology is the study of natural cycles and repeating biological processes (Schwartz 

2003). It’s an integral discipline that can extend interactions to the population, community, and 

landscape scales while also providing essential insight into ecology at the individual level. 

(Cleland et al. 2007; Schwartz 2003). Spring season arrival starts a flood of green throughout 

vast swaths of the globe, when plants begin their phenological cycle of growth, reproduction, 

and senescence. Timing of these phenological stages is closely tied to temperature and climate 

through the phenological cycle (White et al. 2009a). Even though it does not seem apparent, 

modest variations in rainfall and temperature can cause significant differences in plant 

development timing. (Atzberger et al. 2013). In addition, the ecological connections that rely 

on the presence of plants might be affected by this temporal change. Phenology information, 

such as farming system type and development stages, has previously been proved as a viable 

alternative for agricultural management methods and identifying crop kinds and yields in the 

agricultural sector(Cui et al. 2019). Many studies have been conducted to investigate the use 

of machine learning methods for agricultural systems monitoring and vegetation cover 

mapping.  Yu et al. (2018) have used KNN and SVM classifiers to evaluate the effects of a new 

method to extract information from neighborhood pixels on the improvement of Land Use 

Land Cover (LULC) classification. Wessel et al. (2018) have focused their study on the 

comparison of the object-based image analysis (OBIA) and pixel-based methods to evaluate 

RF and SVM classifiers in mapping tree species using Sentinel-2 data. Wang et al. (2018) have 

evaluated the performance of Landsat 8, Sentinel-2, and Pléiades-1 data in mapping mangrove 

species over the National Nature Reserve for mangroves in China. Finally, Jin et al. (2016) have 

determined a new approach to classify deforested areas based on phenological metrics and RF 

classification. 

Studying phenology through time series data provides a vibrant alternative to 

traditional static methods (i.e, single date image analysis). They give a cohesive way to 

characterize the dynamic processes occurred through farming systems. In this regard, remote 

sensing provides good opportunities to accurately and repeatedly map this relevant 
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information, as it offers timeliness, global coverage, and objective observation. Nevertheless, 

the task of mapping farming systems is not a straightforward and simple matter since it 

requires specific data and particular analysis techniques. Rapid image acquisition from satellite 

sensors perceive inter- and intra-season phenological patterns, and assess ongoing trends in 

ecosystem responses to climate warming (Zhang et al. 2003). Phenology maps express the 

geographical distribution of the current stages, or phenophases, of plant development at a 

particular point in time. They provide a foundation for evaluating which species interactions 

are most sensitive to temperature, and help us understand how trophic mismatches can affect 

community dynamics, ecosystem services, and species conservation over time (Gill et al. 2019). 

The pursuit of these objectives is presented in four independent research articles that 

fit together into a unified body of work. Chapter 3 works to develop an effective methodology 

for phenological metrics extraction over the Beni Mellal-Khenifra region. It explores the 

effectiveness of using phenological metrics in mapping farming systems over the studied 

region using machine learning algorithms. Chapter 4 aims to evaluate 3 machine learning 

algorithms for mapping farming systems over the Oum Er-Rbiaa (OER) basin. Therefor it 

investigates changes in farming systems over 20 years using a change analysis method. 

Chapter 5 develops a methodology to effectively map and characterize the behaviour of 

farming systems using phenological metrics and trend analysis tests. Using phenological and 

change analysis methodologies developed in the previous chapters, this chapter aims to map 

trends over farming systems for 20 years of coarse resolution satellite observations. 

Finally, data of phenological metrics computed over Morocco, land surface 

temperature, rainfall and topography data were used to establish the first pheno-climatic 

classification of Morocco. Chapter 6 provides more details about the methodology and shows 

results of this pheno-climatic classification.
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Chapter 1: Fundamental backgrounds  

 

 

 

1.1  Phenology 

The term “phenology” was derived from the Greek word “phainō” which means “to 

show” or “to appear” and the word “logos” which mean, “to study”. This term (i.e., 

Phenology) was introduced by the Belgian botanist Charles Morren in 1853 (Hopp 1974; Lieth 

1974). The term “phenology” indicates that phenology has been principally concerned with 

the dates of first occurrence of biological events in their annual cycle. 

The phenology is an integrative discipline and could be defined as the study of the 

timing of recurring biological events, the causes of their timing with regard to biotic and 

abiotic effects, and the interrelation among phases of the same or different vegetation cover 

(Lieth 1974; Schwartz 2013). Phenophases can include vegetative phase, reproductive phase, 

and grain development phase (Wielgolaski 2001). Figure 1 shows an example of wheat crop 

phenophases during a cropping season. 

 

Figure 1:  Illustration of phenological phases of vegetation cover (https://grdc.com.au) 

The number of phenophases to be investigated deeply related to the field of the study, 

https://grdc.com.au/
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observation method and the research applications (Laskin and McDermid 2016; Liang 2019). 

There are many subfield of phenology, the applications adopted within this research are in the 

sub-field of phytophenology, this sub-field interests to the study of plants seasonality (Defila 

and Clot 2001). Many factors affect the development stages of vegetation cover (i.e., 

temperature, photoperiod, moisture). As reported by Menzel et al. (2006) temperature has the 

greatest effect on vegetation seasonality. The quantity of heat remains constant each year, but 

the length of time between phenophases can vary due to variability in weather and 

surrounding ambient temperatures (Laskin et al. 2019; Schwartz 2013). This could be explained 

by the plant requirement in term of amount of accumulated heat energy in order to move from 

a phenological stage to another (Estrella et al. 2007).  

Rainfall amounts and the variability of rainfall are two other factors, which affect the 

phenological stages of vegetation cover (Suepa et al. 2016). Low amounts of rainfall affect 

especially vegetation in rainfed area where no irrigation supply is provided. In addition, lack 

of precipitations have also an effect on vegetation cover over other farming systems (i.e., 

irrigated system). This effect could be manifested as the scarcity of water resources and 

succession of drought periods. Length of cropping season is also affected by geographic 

location. Based on hopkin’s law phenological stages varies based on latitude and elevation. 

These variations in length of season are of 4 days per degree latitude or 120 m increase in 

elevation (Hopkins 1918). 

1.2 Remote Sensing Basics 

Remote sensing is the science of deriving information about an object without being in 

physical contact with it (Campbell and Wynne 2011). From a geoscience stand of point, remote 

sensing describes the science of collecting information about targets (object or phenomenon) 

from the Earth’s terrestrial, atmospheric, and aquatic ecosystems using radiation sensors on-

board aerospace ships (Campbell and Wynne 2011). Earlier, remote sensing of objects on earth 

surface started with cameras secured on tethered balloons back in the 1840s for topographic 

mapping. Platforms that are more sophisticated emerged over time (i.e., aircraft and 

spacecraft). The development of these platforms was mainly motivated by the need for 

military surveillance and reconnaissance (Campbell and Wynne 2011). Aerial photography 
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(cameras mounted on airplanes) was brought to existence by World War I, while spacecraft-

based photography (cameras mounted on artificial satellites) started with the emergence of 

space programs in the 1960s (Campbell and Wynne 2011). Hence, remote sensing techniques 

have been used in numerous civil applications related to natural resources monitoring. Remote 

sensing includes the full process of illumination, atmospheric and target interactions, 

information recording by the sensors, and storage and data processing in the ground segment 

(e.g., reception units) (Figure 2). The targets must first be illuminated in order to be detected 

from space. This can be through electromagnetic radiation naturally produced by the sun 

(passive remote sensing) or artificially produced (active remote sensing) based on radar 

instruments (Campbell and Wynne 2011). 

 

Figure 2: Remote sensing process (source: https://www.omnisci.com) 

The electromagnetic radiation, a result of combined electric and magnetic waves, 

comprises multiple regions (Figure 3). The latter are categorized by the wavelength (the 

distance between successive wave crests, measured in Meters), or by the frequency (number 

of cycles of a wave per unit time, measured in Hertz) in what is called the electromagnetic 

spectrum (EMS). This EMS, range from the gamma radiation bands (the shortest wavelength 

and highest frequency) to the radio waves (the longest wavelengths and lowest frequencies). 

However, the radiation that is practical for remote sensing is limited to those regions lying 

between the visible wavelengths and the microwaves. The visible region of the 

electromagnetic spectrum, which occupies wavelengths between 0.4 and 0.7 µm, is the only 

part that is perceptible to the human eyes. Right after the visible region, there is the infrared 

radiation where the associated wavelength lies between 0.7 and 100 µm. The infrared 

https://www.omnisci.com/
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comprises five sub-regions, namely the near infrared (NIR), the short wave infrared (SWIR), 

the mid wave infrared (MWIR), the large wave infrared (LWIR), and the far infrared (FIR) 

(Figure 3). The NIR and MWIR waves (from 0.7 to 3 µm) are used the same way as the visible 

ones as all of them are captured by the sensors as reflected energy. The FIR (from 17 to 100 

µm), on the other hand, is mostly the radiation released from the terrestrial targets as heat 

depending on the target's temperature, and thus recorded as thermal energy (Campbell and 

Wynne 2011). Above 100 µm until 1 m in wavelength, the radiation belongs to the microwave 

region. 

 

Figure 3: The electromagnetic spectrum (Toth and Jóźków 2016) 

The microwave region can be divided into several bands (Ka, K, Ku, X, C, S, L, and P) 

that can be artificially produced and recorded by the radar systems (Figure 3). In the passive 

system, after the radiation reaches the surface, it interacts with the various terrestrial targets. 

Depending on the physical characteristics of the target, the radiation is either reflected towards 

the sensors or absorbed by the targets and later released in longer wavelength as heat 

(Campbell and Wynne 2011). However, during its travel through the atmosphere, the radiation 

interacts with the various atmospheric particles and molecules (aerosols) through the 

scattering and absorption phenomena. Both of these disturb the electromagnetic radiation 

when it travels from the sun towards the terrestrial targets and when it is reflected or emitted 

by these targets towards the sensors in orbit. They specifically take place when the aerosols are 

in the propagation path of the radiation. The radiation is subject to a change of trajectory or 

absorbed by the aerosols. The amount of radiation disturbed or blocked from attending the 

passive sensors depends on the wavelength of the incoming radiation and the density of 

aerosols in the atmospheric column the radiation is traveling through (Campbell and Wynne 

2011). The atmospheric effect generally occurs when the aerosols are about the same or greater 
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size than the wavelength radiation. Aerosols of large sizes such as water droplets are capable 

to influence a wide range of wavelengths. Molecules constituting the atmosphere absorb the 

radiation at specific wavelengths. The absorption phenomenon is mainly caused by ozone, 

carbon dioxide, and water vapor. Each of these molecules absorbs specific radiation 

wavelengths at various regions of the electromagnetic spectrum (Figure 3). The Ozone-

induced absorption mostly blocks the ultraviolet radiation from getting to the earth's surface. 

The carbon dioxide mostly absorbs radiation in the first half of the FIR preventing it from 

escaping the atmosphere. The water vapor presents various absorption windows throughout 

the electromagnetic spectrum. The most significant of these concerns the emitted radiation 

located in the second half of the FIR region and the shorter microwaves. The vast majority of 

remote sensing applications mainly rely on the electromagnetic radiation that belongs to the 

regions, called atmospheric bands, where the absorption is at its minimum. The weather 

applications, on the other hand, make use of both of the aforementioned atmospheric 

distortion phenomena. 

1.3 Remote Sensing of Phenology 

 Despite it is an interdisciplinary field, phenology did not attract much attention before 

the age of satellites (Schwartz 2003). From this viewpoint, detection of phenology from the 

ground seems difficult if not impossible. Numerous platforms have been employed in the 

phenological analysis of vegetation since the early 1970’s (Table 1). Some of these sensors, such 

as the popular Advanced Very High Resolution Radiometer (AVHRR) and Landsat, have 

extensive imagery archives for detecting long-term phenology patterns. The size and aims of 

the research are dictated by the different spatial and temporal resolutions of the numerous 

sensors. To some extent, image fusion has worked as a compromise in bridging this gap. (de 

Moura et al. 2017).The red edge of the electromagnetic spectrum is absorbed by chlorophyll in 

healthy vegetation for photosynthesis, it reflects strongly in the green and even more in near-

infrared regions; this mismatch in reflectance is known as the red edge (Myneni et al. 1995). 

The sensors are sensitive to these wavelengths, and a popular index called the normalized 

difference vegetation index (NDVI) was developed to leverage the differences in the red visible 

and near-infrare (Rouse et al. 1973). Because it is directly related to the total density of healthy 
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vegetation on the planet's surface, the NDVI is frequently employed as a proxy for vegetation 

cover (Tucker 1979; Tucker et al. 1983). By creating a ratio between the red and near‐infrared 

bands, much of the inherent signal variation due to calibration, noise, and atmospheric effects 

are minimized (Xiaoyang Zhang et al. 2003). However, NDVI is limited by saturation in high 

biomass regions such as the tropics, the amount of soil brightness, and is intrinsically 

nonlinear. 

Table 1: Satellite sensors and datasets used for phenological research. 

Platform Sensor Operation Resolution Frequency 

Landsat MSS 1973-1985 79 m 18 days 

 

 

Landsat TM 1984-present 30 m 16 days 

 

Landsat OLI-TIRS 2013-present 30 m 16 days 
Landsat ETM+ 1999-present 30 m 16 days 
Sentinel-2 MSI 2015-present 10-60 m 5 days 

Senti 

NOAA AVHRR 1982-present 8 km twice  

 

 

 

 

monthly 

NOAA AVHRR 1989-present 1 km twice monthly 
SPOT Vegetation 1999-present 1 km 1-2 days 
Terra MODIS 2000-present 250 m, 500 m, 1 km 1-2 days 
Aqua MODIS 2002-present 250 m, 500 m, 1 km 1-2 days 

Schwartz and Reed (1999) worked to refine the observed timing between satellites 

derived Start of Season (SOS) and ground green-up. A fundamental problem described by 

Schwartz et al. (1997) and White et al. (1997) was how to accurately relate satellite observations 

to phenological events: a necessary factor in describing the processes affecting SOS. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) was introduced in 1999 and has 

remained the standard sensor for phenology research ever since. It is mounted on two 

platforms in near polar, sun-synchronous orbit with two daily equatorial crossings each (Terra 

AM and Aqua PM, launched in 2002). 

The advent of remote sensing data provides easy and common solutions to map 

agricultural systems and to characterize crop phenological information at both local and 

regional scales (Hadria et al. 2019; Htitiou et al. 2019a; Htitiou et al. 2020b; Kariyeva and van 

Leeuwen 2012). Several studies have explored the use of phenological metrics for monitoring 

agricultural systems using different data sources and methods (Adole et al. 2018; Lebrini et al. 

2019a). Many studies have confirmed that time series of vegetation indices used to produce 

phenological parameters provides accurate and robust results compared to traditional 
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methods based on single-image processing (Atkinson et al. 2012; Hao et al. 2015; Jönsson et al. 

2018). Indeed, satellite-derived phenological metrics provide the ability to monitor and 

discriminate vegetation cover from local to large scale based on contrasted differences 

observed in the phenological profiles (Atzberger et al. 2013; Bachoo and Archibald 2007; Lieth 

1974; Schwartz 2003; Wessels et al. 2009). Whether it is used to map agricultural systems 

(Alcantara et al. 2012; Qiu et al. 2017), to analyze the response of phenological metrics to 

climate events (Cui et al. 2017) or to extract seasonal cropping patterns (Jönsson et al. 2018), 

remote sensing-derived phenological metrics have improved agricultural monitoring. Because 

of its spatio-temporal continuity, MODIS data provides an excellent opportunity to 

characterize and to monitor the spatiotemporal variability of vegetation (Friedl et al. 2010). 

The high spectral and temporal resolutions and its data availability since 2000 allow 

constructions of useful time series of vegetation indices (VIs) (Akhtar et al. 2017; Suepa et al. 

2016). This high temporal resolution paired with moderate spatial resolution of 250 m is ideal 

for regional and global phenology assessments. MODIS provides a suite of high-quality 

vegetation products that undergo rigorous quality assessments before release. MODIS also 

provides a land surface temperature (LST) product that has been effective in modeling land 

surface phenology. 

An enduring remote sensing problem indirectly solved by MODIS is the issue of 

surface reflectance in the visible and infrared bands being absorbed by cloud cover. Imagery 

contaminated by clouds punctuates the time-series dataset, interrupting the phenological 

sequence. The solution is to group daily imagery into 8- and 16-day composites and average 

the clear NDVI or LST values at each pixel location. These temporal composites work to create 

a trending seasonal curve from which significant phenological metrics can be extracted. These 

metrics predominantly include Start of Season, Large Integral, maximum NDVI, end of 

season, and length of growing season. These are important indicators of phenological trends 

and shifts from climate change, but there is a pressing need to characterize successive stages 

within the continuous progression of plant development(Reed et al. 1994). 

Land surface phenology (LSP) is defined as the seasonal pattern of variation in 

vegetated land surfaces observed using remote sensing (White et al. 2005). The challenges of 

linking species-specific phenophases observed on the ground to satellite imagery are 
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multifarious. The main obstacle being extrapolating observations at the level of individual 

plants across space and determining the scales at which this is possible (Badeck et al. 2004). 
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2.1 Study areas 

2.1.1 Beni Mellal-Khenifra region 

The study area is located in centre of Morocco, with a total area of 28374 km2 that 

represent about 4 % of the national territory (Figure 4). In the Geo-morphological aspect the 

region includes four geographical units; the Atlas Mountains, the foothill area that represents 

the transition between the Mountain and the Tadla plain, the phosphate plateau and the 

irrigated perimeter of Tadla. The study area topography ranges from 300 m above sea level, in 

the plan to 3890 m in the Mountain. About half the region is Mountainous (from 900 to 3890 

m) while the other half consists of plains and plateaus (around 600 m). 

 

Figure 4: Localisation of the Beni Mellal-Khenifra region and the training samples 
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The main agricultural classes present in this region are the irrigated perimeter, the 

rainfed area (no irrigated), the fallow, and the foothill zone (trees and forest). Climate is 

variable from humid in the high Mountains to semi-arid in the plain, with an intense cold 

winter and very hot summers. In addition, the annual average rainfall is characterized by 

significant variations, with a rainfall average amount of 230 mm in the plain and 1000 mm in 

the high Mountains (Marchane et al. 2015; Ouatiki et al. 2019b). The average annual 

temperatures varies between a maximum of 46 °C in August and a minimum of -2°C in 

January (Ouatiki et al. 2017). The agricultural sector is one of the most promising sectors in the 

region and constitutes the main economic activity. The useful agricultural area in the region is 

about 948,397 ha of which 212,000 ha is irrigated (CRI 2015). The region is characterized by a 

large irrigation scheme covering about 100,000 ha and a small and medium hydraulic zone 

(foothill area) with an approximate surface area of 81,787 ha (Lionboui et al. 2016a). 

 

Figure 5: Farming systems encountered in the study area, A) Typical NDVI profile, B) On ground 

view, C) Farming systems illustration. 

In this study, four farming systems types (Figure 5) have been selected to evaluate the 
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effectiveness of phenological metrics in the characterization of changes. The farming systems 

are named, (i) Irrigated Perennial Crop (IPC), (ii) Irrigated Annual Crop (IAC), (iii) Rainfed 

Area (RA), and (iv) Fallow (FA). 

The phenology of IPC farming system is characterized by a permanent vegetative 

activity during the cropping season, and a high biomass production (Figure 5). IAC represents 

a high inter-annual variability with a high amplitude with a rapid growth and senescence 

moments. The IAC farming system described with a high vegetative activity with a maximum 

of NDVI generally in March, low dependency on climate conditions and soil type, and a 

maintained growth cycle from seed to harvest time. RA and FA farming systems are a typical 

semi-arid lands, were the start of vegetative activity depend on the climate conditions, 

especially the first rainfall. Figure 5 gives deep informative illustrations of the four farming 

systems investigated in this study. 

2.1.2 Oum Er-Rbiaa Agency’s Geographical Scop (OER-AGS) 

The study area for chapter 4 and 5 is the Oum Rr-Rbia Agency’s Geographical Scop 

(OER-AGS), in West-central Morocco, between 31°15’-33°22’ N and 5°08’-8°23’ W (Figure 6). 

The OER basin covers an area of 38,000 km2, while its administrative area is around 50,000 

km2. The OER basin is made up of five geographical units form: the Atlas Mountains, the 

foothill areas, the plain, the phosphate plateau and the coastal area (Lebrini et al. 2020). A 

combination of flat and mountain terrains generally characterize The topography of the basin. 

Elevation ranges between 100 m (e.g., in the western and coastal zone) and 3890 m (e.g., in the 

eastern zone) above sea level (Ouatiki et al. 2020) (Figure 6). The OER River sources are located 

in the Mountainous upstream zones and the river covers a distance of 550 km overpassing the 

Tadla Irrigated Perimeter (TIP), the coastal areas, the northern zone of the Doukkala Irrigated 

Perimeter (DIP) and flows into the Atlantic Ocean at the Azemmour city (Lebrini et al. 2020). 

The climate is variable from humid in coastal and mountainous zones to semi-arid in the plains, 

with cold winters and dry summers (Ouatiki et al. 2020). Annual rainfall average varies from 

230 mm to 1000 mm in the plains and the Atlas Mountains, respectively (Boudhar et al. 2020). 

The agricultural season generally occur between September and June, while the most important 

amount of rainfall is received between October and May (i.e., 70 to 80 % of the annual rainfall). 
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The annual temperature varies between a maximum of 46 °C in August and a minimum of -3°C 

in January. The investigated areas are primarily agricultural, with irrigated crops (i.e., cereals, 

sugar beet, and alfalfa) and rainfed area (wheat). The study area dominated also by tree 

cultivations especially, the pomegranate and the citrus, which presents a permanent activity 

during the season (Figure 6). 

The OER-AGS includes 11 dams; the most important of which are Al Massira and Bin 

El Ouidane. In the Tadla plain, lies the Tadla Irrigated Perimeter (TIP). According to the 

Regional Office of Agricultural Development in Tadla (ORMVAT), the productive agricultural 

areas extend over superficies of 259.600 ha, of which 132.396 ha are rainfed and 127.204 ha are 

irrigated (Benabdelouahab et al. 2015). Mobilized irrigation water comes mainly from the Bin 

El Ouidane dam, the floodway from OER River, sources, and pumping. The main agricultural 

areas are irrigated crops, rainfed, and rangeland. The DIP is located in the downstream portion 

of the OER-AGS, at about 130 m in elevation, and represents 96.000 ha, out of 428.000 ha of the 

useful agricultural area in the plain of Doukkala, according to the Regional Office of 

Agricultural Development in Doukkala (ORMVAD). 
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Figure 6: Map of the study area including the major irrigated areas (Tadla and Doukalla irrigated 

perimeters, respectively in red and orange) and the reference data localization: A) Fallow, B) Rainfed 

area C) Irrigated Perennial Crop and D) Irrigated Annual Crop 

2.1.3 National-scale territory 

The study site concerns the total area of Morocco between 21°N and 36°N latitude and 

between 1°W and 17°W longitude.  Its area extends approximately 710 850km2, where 62% is 

located in the pre-Saharan and Saharan area (Figure 7). 



Chapter 2: Data and Methods 

16 

 

 
Figure 7: Geographic location of Morocco 

This particular geographical position gives the area a great bioclimatic diversity. The 

climate varies from humid and sub-humid to Saharan and desert. It also includ arid, semiarid 

and high mountain regions over the Rif, Middle Atlas and High Atlas, where altitudes surpass 

2500m, 3000m and 4000m respectively (Figure 7). The Mediterranean climate of the area is 

characterized essentially by two seasons: a hot and dry summer and a short winter with 

concentrated precipitation (Schilling et al. 2012). The climate is also variable according to 

region and marked by strong annual and inter-annual irregularity. Thus, the yearly average 

temperature reaches 10° C, whereas the average maximum can reach 45° C in the centre of the 

country and 50° C inside the Saharan regions. The minimum annual average temperatures 

vary from 5° C to 15° C according to region, with the absolute minimum of the order of 4° C 

to 0° C in mountainous and neighbouring regions. Precipitation in general diminishes from 

the north toward the south (Gadouali et al. 2020). Over Morocco, the forest zones occupy 12.6% 
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of the area. The grasslands cover more than 54 Mha. In most cases, these lands are of marginal 

use for annual cultivation due to drought and erosion and insufficient soil fertility (Sobrino 

and Raissouni 2000). 

2.2 Remote sensing data 

2.2.1 Moderate Resolution Imaging Spectro-radiometer (MODIS) 

Moderate Resolution Imaging Spectro-radiometer (MODIS) was used to characterize 

the spatio-temporal dynamics of phenological metrics. A time series of MOD13Q1 16-day 

composites product at 250 m resolution and MOD13A1 at a spatial resolution of 500m covering 

the study area have been acquired between 2000 and 2020 (23 images per year). MODIS sensor 

is onboard two space-platforms, Terra and Aqua. The orbit of Terra around the Earth is 

scheduled to pass from north to south across the equator at about 10:30 a.m. and p.m. local 

solar time while Aqua passes in the opposite direction from south to north over the equator at 

about 1:30 a.m. and p.m. 

All images have been downloaded through the United States Geological Survey 

(USGS) reverb tool (NASA LP DAAC). MOD13Q1 and MOD13A1 product were calculated 

from the Level-2G daily surface reflectance gridded data (MOD09 and MYD09 8-day 

composites series) using the Constrained View angle-Maximum Value Composite method 

(CV-MVC) (Didan 2015). MODIS-Terra is a near-polar orbiting satellite operated by NASA 

and has many spectral bands, NDVI, EVI, Bleu, NIR, Red, MIR and quality bands (Didan 2015). 

For the overall studied seasons, NDVI layers were used to produce NDVI time series. This 

choice is based on the sensitivity of this index to vegetation canopy variations in areas 

characterized by a low plant density, unlike other indices such as EVI (Enhanced Vegetation 

Index) (Ji and Peters 2007). The study concerns different agricultural production units with 

low (fallow), medium (rainfed) and high (irrigated area) crop density and growth potential. 

Normalization methods is another advantage of this index, which allows the minimization of 

shadow effects, noise related to the atmospheric conditions and the solar angle change 

(Matsushita et al. 2007). NDVI takes advantage of the degree of absorption by chlorophyll in 

the red and the scattering of leaves in the near infrared radiation of which is proportional to 
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vegetative development (Tucker et al. 1983). 

The land cover map originated from Glob Cover (Hadria et al. 2018; Kaptué et al. 2011), 

was served as a mask for the agricultural zones in the study area. This map was developed by 

the Flemish Institute for Technological Research, Belgium (VITO), in the E-AGRI project 

(http://www.e-agri.info). 

2.2.2 Climate Hazards group Infrared Precipitation with Stations (CHIRPS) product 

Rainfall data from Climate Hazards group Infrared Precipitation with Stations 

(CHIRPS) (CHIRPS 2020) available from 1981 has been summed over the OER basin for every 

year within the MOD13Q1 product period. The CHIRPS data are delivered at two spatial 

resolution levels, 0.05 and 0.25°. 

The CHIRPS v2.0 rainfall product is developed by the USGS and CHC in collaboration 

with NASA, USAID, and NOAA (Liu et al. 2019). The dataset was developed to provide 

long-term rainfall data for trend and drought monitoring to support early warning systems 

(such as the FEWS-NET framework). The CHIRPS algorithm combines thermal IR, PMW, 

and RGs rainfall data to produce daily, pentanal, and monthly rainfall estimates at 0.05° x 

0.05° spatial resolution. It works in a three steps estimation process that involves the 

computation of the CHPclim, the CHIRP, and the CHIRPS estimates. First, the CHPclim 

is created based on long-term monthly means from FAO and GHCN rainfall historical 

records, TRMM 2B31 rainfall estimates, CMORPH rainfall estimates, IR, MODIS LST in 

addition to physiographic and geographic information (Liu et al. 2019).  The CHIRPS 

rainfall product is available from 1981 to present at daily, pentanal, and monthly time 

resolutions. With a quasi-global spatial coverage (50°S-50°N), the dataset is provided at 

0.05° x 0.05° (CHIRPSp5) and 0.25° x 0.25° (CHIRPSp25) spatial resolutions. In this research, 

the CHIRPSp5 data with a spatial resolution of 0.05° were used. 

2.2.3 MODIS Land Surface Temperature (LST) 

The LST product used in this research is the land surface temperatures (LST) at 500 m 

spatial resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensors on board Terra satellite. The Land Surface Temperature (LST) 8-day data are retrieved 

http://www.e-agri.info/
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at 1Km pixels by the generalized split-window algorithm. The data were resampled to 500m 

of spatial resolution. The MODIS land surface temperature (LST) is derived from two thermal 

infrared band channels, i.e. 31 (10.78–11.28 μm) and 32 (11.77–12.27 μm) using the split-

window algorithm (Vancutsem et al. 2010) which corrects for atmospheric effects and 

emissivity using a look-up table based on global land surface emissivity in the thermal 

infrared(Vancutsem et al. 2010). The product is comprised of LSTs, quality assessment, 

observation time, view angles, and emissivity. In this work, Terra 8-day Land Surface 

Temperature data was considered. 

2.2.4 Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) 

The Shuttle Radar Topography Mission (SRTM) is an international project supported 

by the National Geospatial-Intelligence Agency (NGA) and NASA in February 2000 (Farr et 

al. 2007). During its 11-day mission 12.3 Tbyte of terrain data were collected covering land 

areas between 56°S and 60°N. Two InSAR instruments were used: a C-band radar provided 

by the Jet Propulsion Laboratory (JPL) and an X-band radar provided by the German and 

Italian space agencies (O'Loughlin et al. 2016). Kinematic GPS, corner reflector arrays, ground 

control points (GCPs) from NGA and JPL, and optical imagery DEMs were used in system 

calibration and accuracy assessment (Farr et al. 2007). Table 7 provide a summarize of the 

dataset used during this thesis research. 

Table 2: Spatial and temporal characteristics of data used in this research 

Feature Product Variable 

name 

Time range 

(MM/YYYY) 

Unit Temporal 

resolution 

Spatial 

resolution 

Climate CHIRPS Rainfall 01/2000 – 12/2020 mm Monthly 5.4km 

MOD11A2 LST 02/2000 – 03/2020 °C 8 days 1km 

Phenology MOD13Q1 NDVI 01/2000 – 12/2020 NDVI 
16 days 

250 m 

MOD13A1 NDVI 01/2000 – 12/2020 NDVI 500 m 

Topography SRTMGL3 DEM 
2000 

m - 
90 m 

SRTMGL3 Slope % - 

2.3 Data time series filtering and phenological metrics extraction 

 Filtering noisy time series of NDVI and phenological metrics extraction has been 

performed with TIMESAT program (Jönsson and Eklundh 2004). TIMESAT is one of the most 

advanced programs and widely used for smoothing time series data and estimating seasonal 
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phenological metrics. There are two essential steps to extract phenological metrics from NDVI 

profiles: First, filtering abnormal values from NDVI profiles to produce smoothed time series, 

and second the application of various algorithms for the computing phenological metrics 

(Table 3). In order to obtain high quality time series and fill the gaps in data TIMESAT 

implements three different smoothing methods, which are Savitzky-Golay (SG) (Chen et al. 

2004), asymmetric Gaussian (AG) (Bachoo and Archibald 2007; Chen et al. 2006) and double 

logistic (DL) (Geng et al. 2014). The AG filtering method is less sensitive to noise than the other 

approaches (Jönsson and Eklundh 2002; Jönsson and Eklundh 2004). The study performed by 

Fu et al. (2018) shows the robustness of this algorithm in smoothing time series and preserving 

the characteristics of NDVI profile, contrary to DL and SG methods. The AG method can 

generate a smoothed NDVI profile while describing minor changes in the NDVI sequence data 

(Gao et al. 2008). Therefore, the AG method was chosen as the time series reconstruction 

method to be used in this study. Table 3 shows the setting used for NDVI time series 

processing in TIMESAT. More details on the filtering approach used and phenological metrics 

extraction for this study could be found in Lebrini et al. (2020). 

Table 3: Input setting for NDVI time series processing in TIMESAT used in this study, as 

recommended by (Eklundh and Jönsson 2015). 

Parameter Description Value 

Spike method 
Two values: 1 for median filter and 2 for 

decomposition by Loess 

1 

Spike value Degree of spike removal. 1.8 

Amplitude cutoff value Data with amplitude below this value are masked. 0.1 

Valid data range Data range of time series to be processed 0-1 

Season parameter The study area contains one cropping season. 1 

Number of envelope 

iterations 
Number of iterations for envelope adaptation 

2 

Adaptation strength Strength of the envelope adaptation. 3 

 

The second step is PhM extraction; such measurements are usually calculated using a 

common method based on value thresholds of the seasonal vegetation amplitude, assuming 

that a particular phenomenon has started when the NDVI values surpass a given threshold 

(Figure 8). Our study has then been carried out by setting the proportion of the seasonal 

amplitude to 10% measured from the left and right minimum values, respectively (Jönsson 

and Eklundh 2004). In general, four PhM were extracted using TIMESAT program for trend 
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analysis. Definitions of PhM used in this study are explicitly defined in Table 4. 

 

Figure 8: Phenological metrics extracted from NDVI time series 

After filtering and reconstructing of NDVI time series for each agricultural season, 

thirteen phenological metrics were extracted using TIMESAT (Figure 8). These phenological 

metrics allowed discrimination between different phenological areas. The definitions of the 

phenological metrics used in this study are explicitly defined in Table 4. 

Table 4: Definition of computed phenological metrics (Eklundh and Jönsson 2015; Reed et al. 1994) 

Phenological metric Phenological definition (for cropping season) 

1) Start of season – time (TSOS) 
Beginning date of photosynthesis activity in the 

vegetation canopy 

2) End of season – time (TEOS) 
End date of photosynthesis activity in the vegetation 

canopy 

3) Start of season – value 

(SOSV) 

NDVI value at the beginning date of photosynthesis 

activity in the vegetation canopy 

4) End of season – value 

(EOSV) 

NDVI value at the end date of photosynthesis activity in 

the vegetation canopy 

5) Length of season (LOS) 
Length of photosynthetic activity during the cropping 

season 

6) Peak of season (PS) 
Maximum level of photosynthetic activity of cropping 

season 

7) Middle value of season Mean value of the times for which the left edge increase to 
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(MVS)  90% and the right edge decrease to 90% 

8) Great integral (GINT) 
Canopy photosynthetic activity across the entire growing 

season 

9) Small integral (SINT) 
Canopy photosynthetic activity between the function 

describing the season and the base level 

10) Amplitude (AMP) 
Maximum increase in canopy photosynthetic activity 

above the baseline 

11) Base level (BSL) The average of the left and the right minimum values 

12) Right derivative 
Rate of decrease at the EOS between the right 10% and 

90% of the amplitude. 

13) Left derivative 
Rate of increase at the SOS between the left 10% and 90% 

of the amplitude. 

The general methodology is summarized in Figure 9. More details are provided within 

chapters of this thesis. 

 
Figure 9:  flowchart of the general methodology of the thesis. 
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3.1 Introduction 

In arid and semi-arid regions, the effects of climate change can be dramatic on agriculture 

whose production depends largely on the quantity and distribution of annual rainfall 

(Almazroui et al. 2017b; DeFries et al. 1999; Dixon et al. 1994). The global changes in land cover 

are at the origin of the disturbances observed in the agricultural cycle. In the semi-arid context, 

successive droughts and floods affect the land cover and the socio-economic development, 

especially in arid and semi-arid regions (Almazroui et al. 2017a; Barakat et al. 2019; Lionboui 

et al. 2014). In these areas, agricultural production depends on the spatio-temporal distribution 

of the rainfall amount (Benabdelouahab et al. 2016; René and Nathalie 2007). Hence, evaluating 

and monitoring land cover is an essential element for global changes (DeFries et al. 1999; Jung 

et al. 2006; Lambin et al. 2001). 

The monitoring of vegetation cover variability during agricultural seasons allows managers 

and policy makers to manage agricultural systems (Löw et al. 2013). In this context, remote 

sensing can provide essential tools to support large scale agricultural monitoring systems 

through vegetation indices. Many studies affirmed that vegetation indices used to produce 

phenological parameters based on time series data provide accurate and robust classification 

https://doi.org/10.1007/s41748-019-00106-z
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results compared to traditional methods that use a single image (Alcantara et al. 2012; Pal and 

Mather 2005). 

Phenological parameters provide information on plants periodicity, as well as the monitoring 

of the appearance and occurrence of phenological events, such as onset, senescence, length of 

season and peak of biomass production (Lieth 1974; Schmidt et al. 2015; Schwartz 2003). 

Remote sensing time series analysis based on NDVI can be one of the most reliable tools for 

mapping and characterizing the vegetative development behaviors among cropping seasons. 

Many studies used phenological parameters extracted along one or several seasons in different 

applications: i) for crop mapping (Arvor et al. 2011; Lessel and Ceccato 2016; Wardlow et al. 

2007), ii) crop yield and agricultural production (Mottaleb et al. 2015; Shahriar et al. 2014; Zhao 

et al. 2017), iii) analyzing the spatio-temporal trends of the vegetation linked to climate 

(Evrendilek and Gulbeyaz 2011; Peng et al. 2013; Vrieling et al. 2011), iv) extracting pheno-

regions and biomass quantification (Diouf et al. 2014; Diouf et al. 2015) and monitoring 

drought dynamics effects on agriculture (McVicar and Jupp 1998; Winkler et al. 2017; Wu et 

al. 2015). 

Phenological observations (e.g. biomass accumulation, peak of greenness, period of leaf 

development) in agriculture provide valuable information to improve yield prediction models 

(Hadria et al. 2006; 2007; Viña et al. 2004). Therefore, it is important to be able to monitor and 

determine accurately the spatio-temporal variability of phenological metrics (e.g. length, start 

and end of the agricultural season) and to analyze their behavior in arid and semi-arid regions. 

This study is crucial in filling the gap of information to monitor agricultural area using 

phenological metrics and to help managers and decision makers to analyse the agricultural 

policies impact and to optimize the land use choices. 

The aim of the present chapter is twofold: 1) spatio-temporal analysis of phenological 

parameters patterns using 4 seasons of NDVI time series obtained from MODIS satellite data, 

2) map the main phenological classes through phenology-based classification approach. 



Chapter 3: Identifying agricultural systems using SVM classification approach based on 

phenological metrics in a semi-arid region of Morocco 

25 

 

3.2 Methods 

Three steps were carried out to map farming systems over the study area using phenological 

metrics extracted from the NDVI time-series data (Figure 10). Concerning this chapter, nine 

phenological metrics, which are start of season, end of season, amplitude value, middle of 

season, peak of season, small integral, large integral, base value of season, and right derivative 

were extracted. The phenological metrics values were extracted for the sampled pixels. These 

values were analyzed using a statistical method to display the distribution of data based on 

the extremes, first quartile, median and third quartile (boxplot) (McGill et al. 1978). The 

boxplots help to make comparisons across phenological parameters in order to analyse the 

behavior of the phenological metrics in terms of agricultural systems. Details on phenological 

metrics extraction are presented in chapter 2. 

 

Figure 10: Schematic diagram illustrating the research methodology adopted in this chapter. 
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3.2.1 Classification of time-series data 

In this chapter, Support Vector Machine (SVM), which is a supervised nonparametric 

statistical technique, was used as a classification method. SVM is a mathematical technique for 

solving the classification problems with a high generalization capability from small training 

samples and a high potentiality for regional characterization study (Shao and Lunetta 2012; 

Vapnik 2006). The open-source R language and software was used to implement the SVM 

classification using the “CARET” package (Jed Wing et al. 2018; R Core Team 2017). Four 

classes were considered, namely irrigated annual crop, irrigated perennial crop, rainfed area 

and fallow (Figure 5). The accuracy assessment was carried out using overall accuracy, 

producer and user accuracy, F1 score, and the Kappa coefficient. 

SVM with Radial Basis Function (RBF) kernel was used due to his robustness and effectiveness 

for remote sensing data classification (Mountrakis et al. 2011). Defining Kernel function 

parameters (g and C) are required to use the SVM method. The optimal choice of these 

parameters was performed using the “CARET” package. The tuning step was performed 

based on 2015/2016 data. Then, the optimal model was defined and used to classify farming 

systems over the study area. 

3.2.2 Field data 

We selected four land cover types: irrigated perennial crop, irrigated annual crop, rainfed area 

and fallow, in order to evaluate the effectiveness of the curve fit for remotely sensed NDVI 

data within the Beni Mellal-Khenifra Region. Farming systems truth data were identified and 

selected within 2016 cropping season (Table 5). For the period from 2012 to 2016, a verification 

step was carried out using ground truth data from field survey and Google Earth images to 

confirm the no-change of the agricultural system type. Type localities consist of 40 irrigated 

annual crop locations containing 210 pixels, 40 irrigated perennial crop locations containing 

301 pixels, 40 rainfed crop locations containing total pixels of 254 and 40 fallow locations 

containing 441 pixels (Table 5). Time series of an arbitrarily selected pixel from each land cover 

type are shown in Figure11. 
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Table 5: Classes and size of the training dataset 

Class name number of training samples (pixel) 

Irrigated annual crop 210 

Irrigated perennial crop 301 

Rainfed area 254 

Fallow 441 

Total 1206 

Irrigated annual crop represents a high degree of inter-annual variability with a high 

amplitude and abrupt growth and senescence. The irrigated perennial crop was selected as 

representative of a high base and weak amplitude. Rainfed crop and fallow were selected as 

representative of typical semi-arid land cover, which depends on climate conditions and may 

not have a pronounced phenology. 

3.3 Results and discussions 

3.3.1 NDVI profile analysis 

In this step, NDVI profile responses were represented in Figure 11 at the pixel-level in the 

time-series MODIS data for each agricultural system class which are; the irrigated perennial 

crop (Figure 11-a), the irrigated annual crop (Figure 11-b), the rainfed area (Figure 11-.c) and 

the Fallow (Figure 11-d). The multi-temporal NDVI profile of a specific agricultural system 

reflects its phenological characteristics (e.g., start, end and length of season). 
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Figure 11: NDVI profiles for land surface phenology in the study area a) Irrigated perennial crop b) 

Irrigated annual crop c) Rainfed area d) Fallow 

Figure 11 shows four different categories of profiles, which are characterized by a well-defined 

shape. For each category, the phenological metrics values depend on the NDVI profile size 

and dimensions. Figure 11-a and Figure 11-b are discriminated by their high values of the 

NDVI peak ranges from 0.7 to 0.9, unlike that for Fig. 4.d and partially for Figure 11-c. The 

NDVI profile in Figure 11-a is characterized by its high base value, which indicates a perennial 

crop zone with high and permanent photosynthetic activity. The opposed profiles observed in 

IPC agricultural system were originated from the phenological cycle of certain irrigated 

perennial crops (e.g., pomegranate), which starts the photosynthetic activity in late March and 

reach the maximum on around June (Figure 11-a). The length of the cropping season (LOS) 

lasts longer for Figure 11-a and Figure 11-b where the season length takes more than 8 months, 

in contrast to other two profiles where LOS takes less than 5 months. 

NDVI profiles for the rainfed area (Figure 11-c), and fallow (Figure 11-d) show an important 

internal variability linked to the cropping season climate conditions. Accordingly, all 

phenological parameters in these areas are directly influenced by the local climate fluctuations; 

mainly the water amount available from rainfall events over each season. 

Regarding the start of season criteria, NDVI values in irrigated zones are heterogeneous 

(Figure 11-a, Figure 11-b). This observed heterogeneity is due to the farmer decision about 

sowing dates and the irrigation water supplies moments. Adversely, the start of season in the 

rainfed area, as showed in Figure 11-c and Figure 11-d, is homogeneous due to the crop 
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dependence to the first rainfall event. For the amplitude parameter, as shown in Figure 11-a 

and Figure 11-b, irrigated perennial crop zones are characterized by lowest amplitude values, 

contrary, highest amplitude values are observed in the irrigated annual crops profile. 

3.3.2 Phenological parameters analysis 

The phenological metrics were computed for each pixel on the basis of the NDVI 

profile. The distribution of these metrics was analyzed using boxplot representation to study 

their behavior regarding the agricultural system classes.  

Figure 12-a to Figure 12-i, represent statistics of the studied phenological metrics for 

each phenological classes. The amplitude and small integral metrics confound irrigated 

perennial crops and fallow (Figure 12-a, Figure 12-g). Similarly, the rainfed area and fallow 

classes are not separable when just using the base level and the end of season metrics (Figure 

12-b). The middle of season and the end of season confounded between the irrigated annual 

crops, rainfed area and fallow (Figure 12-f, Figure 12-h). 

 

Figure 12: Boxplot presenting the phenological parameters behaviour in the study area 

Unlike previously cited indicators, the great integral, the start of season, the peak and 
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the length of the season parameters provide valuable information to discriminate between 

surface classes (Figure 12-d, Figure 12-c, Figure 12-e, and Figure 12-i). 

Based on these results, we focused on the spatial analysis of the phenological metrics 

for the 2015/2016 season (Figure 13). The parameters showed high spatial variability and a 

contrasting level of phenological responses. Indeed, according to Jönsson and Eklundh (2002), 

the great integral (GINT) indicates the level of plant biomass production. This production is 

strongly related to water availability in the arid and semi-arid areas (Benabdelouahab et al. 

2015). Similarly, in the irrigated area (irrigated and pumping zone)  the length of the season 

(LOS) parameter takes a longer period compared to the non-irrigated area due to the irrigation 

water supplies during the critical periods of crop development (Figure 12 and Figure 13). Since 

the LOS parameter was calculated based on the difference between the end (Fig. 6.h) and the 

start of the cropping season (Figure 13-c), it plays a key role to observe the length of the 

biomass production period. 
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Figure 13: Seasonality maps of the nine phenological parameters: a) amplitude, b) Base, c) end of 

season, d) Great integral, e) peak, f) middle, g) small integral, h) end of season, i) length of season. The 

background is an RGB image composite of MODIS. 

For the case of irrigated area of the studied zone (Tadla irrigated perimeter, foothill 

area, and pumping area), the values of GINT, LOS, and the Base level are high and range from 

11.2 to 14.4, 256 to 288 days and from 0.4 to 0.6, respectively (Figure 13-b, Figure 13-d, Figure 

13-i). The peak of season parameter indicates the highest level of NDVI values in the irrigated 
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area with values ranging between 0.6 and 0.9 (Figure 13-e). Adversely, the rainfed area and 

fallow zones are characterized by the lowest GINT, LOS, and peak values with less than 6.4, 

208 days and 0.4, respectively, but are more distinguished by amplitude and middle of season 

metrics (Figure 13-a, Figure 13-f). Regarding the short integral metrics (SINT), the high values 

observed correspond to the perennial crops characterized by high biomass production during 

the cropping season (Figure 13-g). As seen by these results, phenological parameters values in 

the rainfed area and fallow zones depend on the cropping season climate conditions. The nine 

phenological parameters are considered as keys parameters to discriminate the different 

phenological zones (Figure 13). 

3.3.3 SVM classification 

The specific objective of this step is to classify, at the overall study zone, the 

discriminated area combining the nine phenological parameters, discussed previously, as 

input to the SVM classifier. The optimal model was selected based on the tuning step of the 

classifier since it ensures the highest accuracy (C= 8 and g =0.274). In order to evaluate the 

accuracy of the classification, a confusion matrix was established by comparing classification 

results with reference data essentially based on ground truth data (Table 6). 

Table 6: Confusion matrix obtained from the SVM classifier for the 2015/2016 agricultural season 

Class 

Producer 

accuracy 

(%) 

User 

accuracy 

(%) 

F1 

score 

Commission 

error 

Omission 

error 

Fallow 

Irrigated annual crop 

Irrigated perennial crop 

Rainfed area  

91.3 

92.59 

92.98 

81.25 

88.42 

86.21 

94.64 

88.64 

0.88 

0.91 

0.95 

0.77 

0.08 

0.02 

0.02 

0.03 

0.09 

0.07 

0.07 

0.19 

 

 
Overall accuracy 88.7% 

Kappa coefficient 0.83 

The confusion matrix results are 88.7% and 0.83 for overall accuracy and kappa 

coefficients, respectively.  For the irrigated annual crop class, it was accurately classified with 

92.59% and 86.21% for producer and user accuracy, respectively (Table 6). Concerning the 

irrigated perennial crop class, it was mapped correctly with 92.98% of producer accuracy that 

has been ranked correctly considering the reference data and user accuracy of 94.64% that has 

been mapped with the classification algorithm (Table 6). For this class, about 6% of the pixels 
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were committed to other classes. Producer accuracy for the Rainfed area class is about 81.25%, 

as long as it is about 88.64% for the user accuracy, i.e. 11.36% of the rainfed area class have 

been classified inaccurately (Table 6). Rainfall area class results show a high omission error 

value of around 0.18. This is justified by the behavior of rainfed crops in relation to the climatic 

conditions of the agricultural season. An extremely dry year will condition the rainfall area to 

behave as a fallow area. Contrary to the good climatic conditions, which allow the rainfed 

areas to have a phenological behavior relatively similar to the irrigated crops. The fallow class 

has accuracy values of 91.30% and 88.42% for the producer and user accuracy, respectively 

(Table 6). 

Phenological parameters extracted in this study showed high spatio-temporal 

heterogeneity over the study area. The contrasting differences between the derived parameters 

could be explained by the complex relationship between the rainfall anomalies and vegetation 

cover. The heterogeneous behavior of the vegetation cover is also influenced by climatic 

conditions, natural resources availability and land use practices such as rainfall amount and 

distribution, amount of irrigation water supply and access mode, soil quality and technical 

itinerary (Benabdelouahab et al. 2016). 

The obtained classification results for the 2014/2015 cropping season was compared to 

the official statistics from the Regional Investment Centre (CRI) to assess the ability of the 

proposed classification method to predict the agricultural system superficies over the region 

(CRI 2015) (Figure 14 and Figure 15). 
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Figure 14: Classification results of the agricultural system classes. The background is a RGB composite 

of MODIS image. 

The total irrigated class superficies is about 414,081 ha compared to 212,000 ha of the 
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irrigated area estimated by CRI (CRI 2015). This gap is due essentially to the no-controlled 

pumping area that is not involved in the official statistics. The pumping area can be detected 

and estimated using the developed classification approach based on phenological remotely 

sensed data. This approach constitutes a relevant way, for local policy makers and managers, 

to monitor and control the irrigated and the rainfed agricultural zones (Lionboui et al. 2016a). 

Furthermore, superficies estimation errors can be also related to the low-resolution of 

the MOD13Q1 data product used in this study. In this case, one pixel can represent a mixture 

of two classes or more due to the short cover type change (Biggs et al. 2006; Boschetti et al. 

2009). The dominant class will be retained, given its influence on the phenological behavior 

for each pixel (Sun et al. 2012). 

Concerning the change in agricultural superficies, the fallow class has raised from 

1,256,000 ha in 2014/2015 to 1,506,000 ha in the 2015/2016 cropping season (Figure 15). The 

increase of fallow superficies observed in the 2013/2014 (1,308,682 ha) and 2015/2016 (1,505,873 

ha) cropping seasons is strongly related to rainfall with an average amount of 232 mm and 128 

mm, respectively. Adversely, the fallow superficies are less than 1,260,000 ha, i.e., 2012/2013 

and 2014/2015 cropping seasons, with an average amount of rainfall higher than 380 mm 

(Figure 15). For the same reason, the rainfed class area has decreased and classified as fallow 

area due to the lack of rainfall during the 2015/2016 cropping season. Irrigated areas are 

partially independent of climatic conditions. Except for the extremely dry years where 

managers can apply restrictions on access to irrigation water(Lionboui et al. 2016a). As a result, 

they give priority to the maintenance of orchards without a production goal and limit the areas 

of annual crops. This is reflected in the stability of the perennial crops superficies, unlike 

annual crops superficies that regress (Figure 15). Farmers in the study area practice 

supplementary irrigation. During a dry year, the farmer using pumping as the main source of 

irrigation will abandon his land or give up cultivation given the very high energy cost. This 

implies a reduction in the superficies of the irrigated annual crops by pumping. This is the 

case of 2015/2016 cropping season with an average of rainfall amount of 128 mm and a 

superficies of 534,081 ha. Adversely, cropping seasons with an average rainfall amount higher 

than 370mm, e.g., 2014/2015 cropping season, reach superficies greater than 580,890 ha (Figure 

15). 
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Figure 15: Area of phenological classes predicted by the SVM classifier shown against average rainfall 

amount in the study area 

Although, the classification of agricultural systems based on phenological parameters 

as an input of the classification algorithm meet the objective to map the main phenological 

classes at large scale (Figure 14). This approach based on the low spatial resolution data can 

be seen as a preliminary step before moving on to higher resolution products. 

Over inter-annual time scales, phenological patterns of rainfed crop areas depend 

strongly on the spatio-temporal fluctuations of rainfall and dry periods. Therefore, the 

phenological analysis provides information to deep our understanding about the spatio-

temporal variability of land surface phenology in arid and semi-arid area on one hand, and on 

the other hand, to improve agricultural system monitoring that allows managers and policy 

makers to optimize the agricultural vocation and land suitability. These fluctuations in rainfall 

amount has a negative impact on agricultural systems, especially in arid and semi-arid region 

like the soil degradation (e.g., soil salinity, nutrient depletion) and the quality and depth of 

groundwater. Furthermore, the proportion of groundwater used for irrigation of croplands, 

increases in parallel with the overall decline in rainfall, which decreases the groundwater 

amount and leads to the degradation of croplands 
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3.4 Conclusion 

This study examines the use of remote sensing data to characterize and map the spatio-

temporal phenological metrics variability through Beni-Mellal-Khenifra region between 2012 

and 2016. Phenology-based classification approach showed a high ability to identify and 

monitor the main agricultural system in the study area. The classification overall accuracy 

reached 88%, with a kappa coefficient of 0.83. The F1-score values for all classes were greater 

than 0.76. Analyzing the results, the rainfed area shows a dependence to the spatio-temporal 

fluctuations of rainfall, this result can be extended in further studies on the characterization of 

drought in agricultural zones. Therefore, the phenological analysis provides information to 

deep our understanding of the spatio-temporal variability of land surface phenology in arid 

and semi-arid area. In perspective, Asses environmental, agronomic and socio-economic 

consequences of phenological changes can improve the awareness of stakeholders to adapt it 

to take decisions to limit the impacts of change on ecosystems and society. The results 

demonstrated the ability of phenological parameters to identify and monitor the main 

agricultural system classes in the study area and to control the illegal pumping zones and the 

irrigated area. 
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4.1 Introduction 

Monitoring farming systems (FS) is a major task, particularly in arid and semi-arid 

regions where water scarcity and droughts are frequent (Benabdelouahab et al. 2020; Gu et 

al. 2007; Winkler et al. 2017). However, large-scale information about agricultural systems 

is essential for land use monitoring and management besides making an informed decision on 

food security and sustainability (Benabdelouahab et al. 2019b; Hentze et al. 2016; Lebrini 

et al. 2019b; Li et al. 2014; Salhi et al. 2020). 

The advent of remote sensing data provides easy and common solutions to map 

agricultural systems and to characterize crop phenological information at both local and 

regional scales (Hadria et al. 2019; Htitiou et al. 2019a; Htitiou et al. 2020b; Kariyeva and van 

Leeuwen 2012). Several studies have explored the use of phenological metrics for 

monitoring agricultural systems using different data sources and methods (Adole et 

al. 2018; Lebrini et al. 2019a). Many studies have confirmed that time series of vegetation 

indices used to produce phenological parameters provides accurate and robust results 

compared to traditional methods based on single-image processing (Atkinson et al. 2012; Hao 

https://doi.org/10.1007/s12517-020-05789-7
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et al. 2015; Jönsson et al. 2018). Indeed, satellite-derived phenological metrics provide the 

ability to monitor and discriminate vegetation cover from local to large scale based on 

contrasted differences observed in the phenological profiles (Atzberger et al. 2013; Bachoo and 

Archibald 2007; Lieth 1974; Schwartz 2003; Wessels et al. 2009). Whether it is used to map 

agricultural systems (Alcantara et al. 2012; Qiu et al. 2017), to analyze the response of 

phenological metrics to climate events (Cui et al. 2017) or to extract seasonal cropping patterns 

(Jönsson et al. 2018), remote sensing-derived phenological metrics have improved agricultural 

monitoring. Because of its spatio-temporal continuity, MODIS data provides an excellent 

opportunity to characterize and to monitor the spatiotemporal variability of vegetation (Friedl 

et al. 2010). The high spectral and temporal resolutions and its data availability since 

2000 allow constructions of useful time series of vegetation indices (VIs) (Akhtar et al. 

2017; Suepa et al. 2016). 

Classification approaches based on remote sensing data are widely used in AS 

monitoring and numerous algorithms have been used to solve complex classification problems 

(Meyer et al. 2018). This includes Random Forest (RF), Support Vector Machine (SVM), 

Artificial Neural Networks (ANN), K-Nearest Neighbor (KNN), and Decision Trees (DT). 

These algorithms are also known as machine learning algorithms, which are data-based 

approaches that learn the relationships between the predictor and response (Breiman 2001). 

Compared to statistical methods, these algorithms are not parametric since they do not depend 

on a theory related to the distribution of the data (Qian et al. 2014). 

Many studies have been conducted to investigate the use of machine learning methods 

for agricultural systems monitoring and vegetation cover mapping.  Yu et al. (2018) have used 

KNN and SVM classifiers to evaluate the effects of a new method to extract information from 

neighborhood pixels on the improvement of Land Use Land Cover (LULC) classification. 

Wessel et al. (2018) have focused their study on the comparison of the object-based image 

analysis (OBIA) and pixel-based methods to evaluate RF and SVM classifiers in mapping tree 

species using Sentinel-2 data. Wang et al. (2018) have evaluated the performance of Landsat 8, 

Sentinel-2, and Pléiades-1 data in mapping mangrove species over the National Nature 

Reserve for mangroves in China. Finally, Jin et al. (2016) have determined a new approach to 

classify deforested areas based on phenological metrics and RF classification. 
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In the context of climate change, water supply is the main driver of crop growth 

variability in arid and semi-arid regions like Morocco (Benabdelouahab et al. 2019a). 

Therefore, to advance the involvement of stakeholders in agricultural management and to 

improve socio-economic conditions in vulnerable areas such as the Oum Er-Rbia Agency’s 

Geographical Scope (OER-AGS), the adoption of a remote sensing derived phenology method 

is prime in facilitating decision-making and has the potential to improve land management 

and yield production in the region (Lionboui et al. 2020). Towards this objective, in this 

chapter, we present an analysis of long-term changes in agricultural systems over the Oum Er-

Rbia Agency’s Geographical Scope (OER-AGS) in Morocco. The study intends to (1) monitor 

and investigate changes in four agricultural systems using phenological metrics of long-term 

remote sensing data (2) investigate the performance of machine learning methods in the 

mapping of agricultural systems at large spatial scale. 

4.2 Methods 

4.2.1 Reference data collection 

Four land cover types were selected: Irrigated Perennial Crop (IPC), Irrigated Annual 

Crop (IAC), rainfed area (RA) and fallow (FA), to evaluate the effectiveness of phenological 

metrics in discriminating farming systems within the OER-AGS and monitoring change over 

the studied period. The reference data for training and validation were collected through 

ground-based fieldwork during the 2015/2016 season (Table 7). Additional reference data were 

collected using high resolution Google Earth images. 

Table 7 : Reference data plots 

Agricultural System class Code Reference data (number 

of Pixels) 

Irrigated annual crop IAC 210 

Irrigated perennial crop IPC 301 

Rainfed area RA 254 

Fallow area FA 441 
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4.2.2 Phenological metrics classification 

In this study, three machine-learning classifiers were used based on CARET package 

within R (Kuhn 2008; R Core Team 2017), which are: Support Vector Machine (SVM), Random 

Forest (RF) and K-Nearest Neighbor (KNN). 

The SVM classification method is a supervised nonparametric technique derived from 

statistical learning theory for solving classification problems (Vapnik 2006). The most 

interesting properties of the SVM classification are the generalization capability from small 

training data and the high potentiality for large scale studies (Shao and Lunetta 2012). The 

principal approach of the SVM classification method is the concept of drawing vectors into a 

multidimensional space which is achieved through a kernel function and then searching for 

the optimal separation plan (i.e., hyperplane) that divides classes (Huang et al. 2010). The 

choice of the separation plan is based on the concept of maximum margin, which represents 

the distance between the hyperplane and the closest samples, these samples are known as the 

support vectors. Several kernel functions are used in the literature. According to Hsu et al. 

(2003) and supported by many other authors (Carrão et al. 2008; Clauss et al. 2016; Duro et al. 

2012), the advantages of the Gaussian Radial Basis Function (RBF ) kernel consist on his 

capability to works in a multidimensional space with minimum parameters configuration 

contrary to other kernels (e.g., linear, polynomial). In this study, the regularization parameter 

C and the kernel parameter λ for the SVM classifier were selected randomly using the tuning 

function in the CARET package. On the other hand, the RF classifier is a machine learning 

algorithm, considered as a special case of bagging approaches (bootstrap aggregation). The 

selection of many bootstrapped samples operation based on training data result with a number 

of trees (ntree) (Breiman 2001). In addition to bootstrap aggregation, each resulted tree is based 

on a random subset which represents two-thirds of the input variables (mtry), the remaining 

one-third that are not present in the calibration subset (i.e., out of bag samples) are used to 

obtain the out-of-bag (OOB) error of predictions (Rodriguez-Galiano et al. 2012). In this study, 

default values are used to train the RF classifier (Breiman 2001). Besides, the mean decrease in 

accuracy was calculated to assess the relative importance of each feature on the prediction for 

all classes. The variable importance is an important output that indicates the weight of a 

feature in the discrimination of a specific class (Pal 2005). Finally, we tested the KNN approach, 
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which is a supervised non-parametric classification technique used frequently in statistical 

applications (Samworth 2012). KNN classification methods consist of the finding of k training 

samples which are closest to training data according to a distance function based on these k 

samples (Sun et al. 2018). Nearest neighbors contribute more in the discrimination of a class 

than distant neighbors In this classification method, the k play an important role in the 

parameterization of the KNN algorithm and the delineation of classes (Qian et al. 2014). 

Regardless of the choice of classifiers, accuracy assessment was performed using the confusion 

matrix to compute the overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), 

kappa coefficient, and F1-score metric.  

Based on the best classification result, AS class changes were mapped over the study 

area. The classification model performed within the 2015/2016 agricultural season has been 

applied to classify AS classes for 2000/2001, 2004/2005, 2008/2009, and 2012/2013 cropping 

seasons. Furthermore, AS maps obtained from 2000/2001 and 2015/2016 cropping seasons 

were used to map changes occurred in this period over the study area, these changes represent 

the dynamics between the principal four classes which are IPC, IAC, RA, and FA. The possible 

change types in the four AS classes comprise 12 classes that represent transition (i.e., from a 

class to another one.) and 4 classes with a static state. 

4.3 Results and discussion 

4.3.1 NDVI profile analysis 

Figure 16 shows the spatiotemporal variation of NDVI values extracted from the 

reference data collected during field survey operations compared to the rainfall average over 

the studied region. A visual analysis of the NDVI temporal profiles shows four different 

patterns associated with each AS class, which are characterized by a well-defined range of 

NDVI values and describe the seasonality of each AS class. IPC class NDVI values range 

between 0.4 and 0.7 during the entire period and are characteristic of the high and permanent 

photosynthetic activity of irrigated perennial crops (Figure 16-B). The use of MODIS data at 

250 m leads to a class mixture at the pixel level, which affects the mean NDVI value. This 

mixture attenuates during the study period due to tree growing extension encouraged by the 
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Green Morocco Plan (GMP). In fact, the dynamic tree-growth generated by the GMP over the 

region justifies the positive trend of the IPC NDVI observed beginning in 2000/2011 and which 

materializes by increases in both the minimum and maximum NDVI values and the length of 

photosynthetic activity through the cropping seasons (Figure 16-B). 

Figure 16: A) Monthly average rainfall; B) NDVI temporal profiles of the four agricultural system 

classes over the study area between 2000 and 2016. 

The irrigated Annual Crop (IAC) NDVI values range from 0.3 to 0.8 with no much 

interannual variability in the maximum NDVI (Figure 16-B). This was expected as the IAC 

receives irrigation water supplies during the growing season. Indeed the average maximum 

NDVI is 0.65 (+/- 0.1).  The small standard deviation indicates the independence of the rainfall 

interannual variation. The rainfed (RA) class NDVI varied from 0.2 to 0.7 for wet seasons (e.g. 

09/2009 – 05/2010) and between 0.2 and 0.4 for dry seasons (09/2006 – 05/2007), with smaller 

maxima than the IPC. The RA time evolution shows significant variation over the studied 

period with an apparent time lag between the maximum precipitation and its maximum 

amplitude. A similar pattern is observed for the FA class though with much less NDVI 

amplitude than that of the RA. 

Figure 17 summarizes the inter-annual variation of the mean, maximum, and 

minimum NDVI values for all AS classes over the study area between 2000/2001 and 2015/2016 

cropping seasons. These results confirm the strong link of the vegetation’s growth response in 
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the RA and FA classes to the temporal variability of rainfall presented in Figure 16-A. 

Concerning the length of the cropping season, it lasts longer for IAC where the mean season 

length is around 7-8 months, compared to the RA and FA classes where the mean season 

length is around five and three months, respectively (Figure 17). The variability in season 

length for the RA and FA classes is a response to seasonal rainfall variability both in frequency 

and in amount during the cropping season. In this case, a short rainy season causes an earlier 

end of the growing season. Regarding the start of season time (TSOS) of the NDVI cropping 

season, there is a significant variation between classes (Figure 17). The mean NDVI values 

presented in Figure 17 reveal an earlier TSOS for IAC class (i.e., between November and 

December) while for RA, TSOS is around the first of January. This delay in the start of season 

time is directly related to the time of occurrence of the first rainfall, which affects the sowing 

dates in rainfed regions. On the other hand, the earlier start of the season in the IAC is due to 

the impact of controlled irrigation frequency. 
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Figure 17: Heat-map of AS classes based on NDVI Maximum, Mean and Minimum values 

4.3.2 Farming systems classification 

The classification provides a better understanding of the spatial patterns of agricultural 

systems in the Oum Er-Rbia Agency’s Geographical Scope (OER-AGS), which are important 

for food production, livelihoods, and food security in this area.  

The classifications of agricultural systems, over the OER-AGS, depicted in Figure 18, 

were produced from the implementation of SVM, RF, and KNN classifiers based on 

phenological metrics. The three classifiers have been evaluated and the results are summarized 

in Table 8. In terms of individual accuracy, significant differences are obtained between the 

three classifiers. RF-based AS classification presented not only higher overall accuracy but also 

a much more balanced producer and user accuracy. 

The RF classifier had a higher accuracy than the SVM and KNN classifier. The overall 

accuracy for RF was 97%, with a kappa value of 0.96 (Table 8). In general, all AS classes 

achieved over 90% user’s accuracy. The RF classifier also produced over 90% producer’s 

accuracy for most AS classes. Using this classifier, the FA class was slightly confused with RA. 

The KNN classifier generated relatively lower overall accuracy than RF classifier, with 95% 

and 0.91 for overall accuracy and kappa value, respectively. For the KNN classification, all 
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classes achieved over 90% user’s accuracy, except for IPC, which had 88%. In terms of 

confusion between classes, the IPC class was confused with IAC. 

 

Figure 18: Agricultural System classification maps over the OER-AGS, a) Random Forest b) K-Nearest 

Neighbor and c) Support Vector Machine. 

Finally, the SVM generated a relatively lower overall accuracy of 94% and a similar 

kappa value of 0.90. The producer’s accuracy for IPC and RA classes was less than 90% while 

the user’s accuracy was superior to 90%. There was confusion between IAC and IPC, RA and 

IAC, and FA and RA. Overall, the Random Forest method resulted in the best classification of 

AS classes. Furthermore, we tested the importance of the phenological metrics in mapping the 

four AS classes over the OER-AGS using the RF algorithm, the results are presented in the 

Figure 18. 
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Table 8: Confusion matrix of the three AS maps classification and accuracy assessment results 

Classifiers RF SVM KNN 

AS Class IAC IPC RA FA IAC IPC RA FA IAC IPC RA FA 

IAC 127 1 0 0 128 5 4 0 121 3 0 0 

IPC 1 48 0 0 1 44 2 0 6 45 0 0 

RA 1 0 45 2 0 0 39 2 2 1 45 2 

FA 0 0 0 15 0 0 0 18 0 0 0 18 

PA 0.98 0.98 0.99 0.90 0.99 0.89 0.86 0.90 0.93 0.91 0.99 0.90 

UA 0.99 0.97 0.93 0.99 0.93 0.93 0.95 0.99 0.97 0.88 0.90 0.99 

F1 0.97 0.95 0.96 0.97 0.96 0.88 0.84 0.99 0.96 0.93 0.97 0.99 

OA 0.97 0.94 0.95 

Kappa 0.96 0.90 0.91 

The result further indicated that the GINT metric had the highest mean decreasing 

accuracy, with the lowest mean decreasing accuracy obtained with the LD metric. For this 

reason, we also measured the importance of each phenological metrics in discriminating 

individual FS classes among the other classes (Figure 19). The results indicate that the GINT 

metric is important in separating FA and RA from the other classes. In addition, the VEOS and 

MIDDLE metrics are important in discriminating IPC and IAC classes, respectively. On the 

other hand, the MIDDLE metric has no significant importance in separating the FA class from 

others while LD has a smaller influence in separating the IPC and IAC classes. However, in 

the RA class, the importance of the TSOS metric is the least significant. 
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Figure 19: Relative importance comparison of each phenological metric using the mean decrease in 

accuracy 

4.3.3 AS area change 

In a context marked by climate change, the challenge is more serious for the arid and 

semiarid regions, like the OER-AGS, where water resources are facing several constraints. The 

interest for spatiotemporal monitoring of the AS area led us to study their changes through 

superficies and AS changes among cropping seasons of 2000/2001, 2004/2005, 2008/2009, 

2012/2013, and 2015/2016 (Figure 20 and Figure 21). 
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Figure 20: Changes in AS classes from 2000 to 2016 over the Tadla irrigated perimeter (left column) 

and Doukkala irrigated perimeter (right column). 

The change detection results reveal an important dynamic between the different AS in 

the studied region. Concerning the IPC superficies, it has increased from 255,589 ha in 2001 to 

342,000 ha in 2016 (26%). To understand this expansion, the transition map between 2000/2001 

and 2015/2016, shows that there has been a marked change in AS classes over the study area. 

During the study period, a large area of IAC class has been converted to IPC, this happened 

near, and around the Tadla Irrigated Perimeter and around the northern part of the Doukkala 
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Irrigated perimeter (Figure 20, Figure 22-A, Figure 22-B). FA and RA classes were also 

transformed to IPC around the Tadla Irrigated Perimeter (Figure 22-A). Concerning the change 

towards IAC class, RA and FA were converted in a wide part of the DIP especially in the south 

part of the perimeter to IAC class (Figure 22-B).  

The transition from RA to FA was observed around the TIP (Figure 22-B). The 

transition to IAC class is originated to the extension of irrigated perimeters, as observed in the 

pumping areas in the northern part of the TIP (Figure 20, Figure 22-A).  The same result was 

observed in the south part of the DIP (Figure 20, Figure 22-B).  The IAC class area has raised 

by about 28.5% from 374,150 ha in 2001 to 552,608 ha in 2016 (Figure 21). 

 

Figure 21: AS area change from 2000 to 2016 

In this area, we observed the extension of IAC and IPC classes, outside irrigated 

perimeters (TIP and DIP), which indicates the development of groundwater pumping in these 

areas. The conversion from FA, RA, and IAC classes to IPC was encouraged by the availability 

of groundwater throughout the year, on one hand, and on the other hand by agricultural 

policies supporting the implementation of new irrigation techniques and high value-added 

crops (Lionboui et al. 2018). In addition, cultivating plants with higher value-added was an 

important orientation of the Moroccan government since the beginning of the Green Morocco 

Plan projects in the OER-AGS, from where the augmentation in IPC and IAC class is observed 

over the studied period. However, the increase of the IPC and IAC areas shown in the results 

may indicate a high pressure applied to the groundwater whose levels drop by 1 to 3 meters 

annually according to the Oum Er-Rbia Watershed Agency. Nevertheless, irregular changes 

in superficies were observed for the RA and FA classes over the studied period (Figure 21). 

RA class decreased from 1,104,687 ha in 2001 to 1,013,299 ha in 2005 (-16%) then increased in 

2009 to 1,127,132 ha (7.6%) and decreased in 2016 to 880,500 ha (-42.1%) (Figure 21). The same 
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statement was observed for the FA class where the superficies is variable between 1,199,051 

ha, 1,127,132 ha and 1,158,369 ha for 2001, 2009 (-6.2%) and 2016 (17.1%) years, respectively 

(Figure 21). The observed fluctuations in superficies of the RA and FA classes are strongly 

related to rainfall amount, which varies with climate and directly affects the extent of the 

cultivated area (Figure 22-A). For a dry season, a major part of the RA class changed into the 

FA class and during a wet season, a portion of the FA class is transformed into RA class (Figure 

22). 

Figure 22: Transition map of AS classes from 2001 to 2016 over the OER-AGS 

On the other side, the result shows the transition from IAC and IPC classes to FA and 

RA (Figure 22-B, Figure 22-C). These transitions are explained by many reasons, particularly 

human-induced soil degradation (e.g., soil salinity, nutrient depletion) and the quality and 

depth of groundwater. GLASOD (Global Assessment of Human-Induced Soil Degradation), 

indicated that 494 million hectares (Mha) of the African countries are degraded, in which 45 

Mha degraded by nutrient depletion and 15 Mha degraded by soil salinity phenomena (Bai et 



Chapter 4: Remote monitoring of agricultural systems using NDVI time series and 

machine learning methods: a tool for an adaptive agricultural policy 

52 

 

al. 2008). The Moroccan territory is concerned by 15.09 % of soil degradation, essentially soil 

salinity and erosion (Bai et al. 2008). As approved by del Barrio et al. (2016), semi-arid zones 

are the most vulnerable. Furthermore, the proportion of groundwater used for irrigation of 

croplands, increases in parallel with the overall decline in rainfall (Lionboui et al. 2016a), such 

type of exploitation decreases the groundwater amount and leads to the degradation of 

croplands. Hence, sustainable water management, in irrigated perimeters and the pumping 

area, is a crucial issue to ensure a stable irrigation water supply and to maintain a sustainable 

relationship between irrigation practices and environment over agricultural systems. 

4.4 Conclusion 

Agriculture is increasingly benefiting from the geo-spatial technologies, which can 

make a substantial contribution to the monitoring and the management of agricultural systems 

as providing accurate information at a large spatial scale. Data on semi-arid AS phenology are 

scarce and somehow difficult to produce, essentially because of lack of sufficient data. For this 

reason, the use of phenological metrics time series appears more efficient. The classification of 

agricultural systems may facilitate better decision making around food production, 

livelihoods, and food security in the OER-AGS. Thereby, phenological metrics of AS classes 

were mapped and studied over the OER-AGS area. Among the three classifiers, the RF 

classifier produced satisfactory accuracies. Mapping changes over the study area revealed 

important results, especially on the dynamics and the effect of regional policy on agricultural 

system changes. The use of satellite phenological metrics to classify AS and map changes over 

the sixteen years proved the ability of phenological metrics in characterizing the 

spatiotemporal changes over a large extent and a relatively long period. The production of 

such results, in the appropriate time and with accurate way is important for decision-makers 

and the management of agricultural practices to help the most vulnerable farms to continue 

their agricultural activities in the context of food insecurity and climate change and even crop 

insurance. However, further studies are still required to analyse trends of phenological metrics 

and to explore their linkages to surface climatic indices.
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5.1 Introduction 

Accurate monitoring of land use changes in arid landscapes and understanding of 

these changes drivers is crucial in arid environment research. Especially, since changes in 

farming systems affect directly socioeconomic as well as environmental sectors. Improving 

global food security will need a good understanding of the behavior of farming systems and 

their responses to climate and human induced factors (Benabdelouahab et al. 2019b; Lionboui 

et al. 2020). In African arid and semi-arid regions, there is a pressing need for characterizing 

the behavior and the distribution of farming systems for better monitoring of agricultural 

lands and thus managing land resources. In this context, accurate management and 

monitoring of farming systems particularly at large scale can substantially benefit from geo-

spatial technologies and remote sensing data (Sishodia et al. 2020). However, on semi-arid 

regions, phenological data are scarce and difficult to produce due to the lack of sufficient 

ground information and limited studies (Lebrini et al. 2020). Therefore, the use of remotely 

sensed Phenological metrics (PhM) may provide viable alternative to costly and time-
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consuming field sampling (Atzberger et al. 2013; Schreier et al. 2020). In addition, the change 

analysis of PhM could provide valuable information that would identify current trends as 

quickly as possible, and would be easily understandable by political authorities as well as by 

land managers to take actions quickly for better control of agricultural lands. In the same 

context, information on vegetation cover provide an insight on changes occurred and could be 

a potential indicator on food security and sustainability (Benabdelouahab et al. 2015; 

Benabdelouahab et al. 2018; Hentze et al. 2016; Li et al. 2014). To this end, the use of remote 

sensing has demonstrated a strong potential for understanding and detecting phenological 

changes because of consistent and frequent coverage (Lu et al. 2004). Data from remote sensing 

satellites provide large and continuous observations that characterize the changes occurred on 

the earth (Coppin P 2004; Lu et al. 2004). Indeed, time-series of satellite data are suitable to 

monitor the spatiotemporal behavior of plant phenology (Htitiou et al. 2020a; Htitiou et al. 

2019b; Salhi et al. 2020). These issues motivate studying changes in farming systems to 

characterize the spatiotemporal variability that occurred over long periods and related to 

different drivers, i.e. short and long term weather events, public policy. 

Many studies have proved the existence of a consistent relationship between 

vegetation indices and weather indices (i.e., temperature, precipitation) (Castro et al. 2009; 

Cleland et al. 2007; Hanamean Jr. et al. 2003; Moulin et al. 1997; White et al. 2009b; Zhou et al. 

2001). During the last decades, scientific community have investigated the impact of land 

management on specific indices (e.g. Normalized Difference Vegetation Index, NDVI) in order 

to link vegetation changes to anthropogenic actions (DeFries et al. 1999). With this in mind, 

many researchers went further in studying changes in vegetation cover, based on satellite 

derived products, by developing techniques and tools for extracting and analyzing PhM, 

especially for monitoring farming systems (Adole et al. 2018; Atzberger et al. 2013; Chandola 

et al. 2010; Lebrini et al. 2019b). They demonstrated the ability of these metrics to monitor and 

differentiate vegetation cover based on the contrasted phenological profiles (Archibald and 

Scholes 2007; Atzberger et al. 2013; Bachoo and Archibald 2007; Schwartz 2003; Wessels et al. 

2009). Consequently, remote sensing-derived PhM have improved agricultural monitoring 

whether it is to map farming systems (Alcantara et al. 2012; Qiu et al. 2017), to analyze the 
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dependence of vegetation cover to climate events (Cui et al. 2017) or to characterize the 

behavior of vegetation cover from different data sources (Jönsson et al. 2018). 

Indeed, the use of Moderate resolution Imaging Spectroradiometer (MODIS) data 

provides an opportunity to characterize the spatiotemporal variability of vegetation cover at 

large scale (Bai et al. 2019; Lebrini et al. 2019a). It allows the construction of time series of 

vegetation indices (VIs) (e.g., NDVI, EVI…), by taking advantages of the combination of 

accurate reflectance, frequent coverage, moderate spatial resolution and the relatively long 

period of data availability since 2000 (Suepa et al. 2016). 

In the scope of farming systems monitoring, different algorithms have been used. This 

includes Random Forest (RF) Wang et al. (2018), Support Vector Machine (SVM) Wessel et al. 

(2018), Artificial Neural Networks (ANN), and K-Nearest Neighbor (KNN) Yu et al. (2018). It 

is worthwhile noting that all of the above-mentioned algorithms are considered as machine 

learning algorithms, which are based on the automatic learning from dataset to find the 

relationships between the predictor and the response (Breiman 2001). Among all of them, the 

Random Forest (RF) (Breiman 2001) which will provide powerful classification of farming 

systems. It has several advantages including the ability of running efficiently on large volume 

of input variables, resisting to noise or over-fitting, being relatively robust concerning outliers, 

and requiring fewer parameters (James et al. 2014; Jin et al. 2016). These advantages makes of 

this algorithm the best choice for running out the classifications of farming systems. 

At present, many studies based on limited observations over some irrigated zones in 

the Oum Er-Rbia (OER) basin are conducted, but fewer focused on large scale analysis. 

Investigating the changes in farming systems at large scale in the OER basin will have a far-

reaching impact on agricultural sector development and how the system is adapting or not to 

climate changes. In this context, the present chapter sought to (i) use phenological metrics 

derived from twenty years of NDVI MODIS datasets (i.e., 2000-2019) to map and monitor 

changes in selected farming systems over a large arid-to-semi-arid region in Morocco (i.e., OER 

basin); (ii) Investigate trends in selected farming systems at large scale in the study area to 

evaluate how the systems are adapting or not to changes? ; and (iii) Provide information on 

farming systems changes for stakeholders to adopt more accurate and efficient strategies. 
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5.2  Methods 

5.2.1 Random Forest classification and change analysis 

To characterize the main cropping systems, the ground data used in this research were 

collected through ground truthing exercises over farming systems during the 2018-2019 

cropping season. The collected data were reported using a GPS receiver, with a positional error 

of less than 2 m to generate data for classification training and accuracy assessments for 

2018/2019 dataset. The reference points were collected in a way to represent the full variety of 

farming systems elements in the study area. Accuracy assessment of other classification result 

was performed using similar or near similar ancillary data from MODIS and Google Earth 

images and high-resolution aerial photographs. The land cover map originated from Glob 

Cover, was used to mask the agricultural zones over the study area (Hadria et al. 2018; Lebrini 

et al. 2020). A summary of the ground data is given in Table 9. 

Table 9: Ground truthing data 

Farming system class Number of polygons 
Training area 

(Ha) 

Irrigated Perennial Crop 

(IPC) 
80 1626.71 

Irrigated Annual Crop 

(IAC) 
105 1889.12 

Rainfed Area (RA) 160 3617.76 

Fallow (FA) 125 2661.06 

Total 470 9794.65 

To classify farming systems over the OER basin, supervised Random Forest (RF) 

classifier was used based on CARET package within R (R Core Team 2017). The RF is a non-

parametric machine learning classifier that combines a random selection of training subsets of 

data with an ensemble of trees. Recent studies reveled the effectiveness of the RF classifier in 

remote sensing field, including land phenology mapping (Belgiu and Drăguţ 2016; Breiman 

2001; Hao et al. 2015; Immitzer et al. 2012). For measuring the accuracies of the classification 

results using the RF classifier, Truth data were split into two sets of training (80%) and testing 

(20%) samples using a spatial cross-validation approach with 5 folds from the CAST package 

in R (Meyer et al. 2018). This spatial cross validation help to make sure that the truth sample 
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of the same field will be either in the test or in the training data in order to avoid over-fitting. 

The accuracy assessment was done by calculation of many accuracy metrics for the 

classifications results, including overall accuracy (OA), Kappa coefficient, producer's accuracy 

(PA), user's accuracy (UA) and F1-score. The classification of 2000/2001 was generated using 

“predict” function from CARET package in R (R Core Team 2017) . In order to increase the 

reliability and validity of our RF classification model and as an additional check of the 

resultant information of study-area-specific classification accuracy, a second accuracy 

assessment was performed for the 2000/2001 classification map using the same methods as in 

the accuracy assessment for the 2018/2019 classification map. In order to update testing 

polygons based on 2000/2001 situation. We have used the testing polygons from the 2018/2019 

data and plotted them against smoothed NDVI profile from MODIS data and google earth 

images. From the MODIS time series we investigate the correspondence between NDVI profile 

of each testing polygon and the farming system. From imagery, we have added needed 

polygons to perform the accuracy assessment. Furthermore, FS maps obtained from the 

2000/2001 and 2018/2019 classification result were used to map changes occurred over the 

study area. The transition between FS classes revealed by comparing the classification results 

was used to extract unchanged FS during the study period. In order to have significant and 

robust results of the further trend analysis, we opted to compute trend on unchanged farming 

systems resulted from the change analysis step. Figure 23 shows a detailed flowchart of the 

adopted methodology in this study. 
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Figure 23: Overview of the methodology adopted in this study. 

5.2.2 Variability and trend analysis 

From the annual PhM previously retrieved, we calculated their per-pixel temporal 

mean and coefficient of variation (CV). In order to assess the spatial distribution of PhM 

showing improvement (positive change) or degradation (negative change), we employed the 

non-parametric Mann-Kendall (MK) trend test (Kendall 1975) to determine trends on PhM 

over the OER basin between 2000 and 2019 (Lebrini et al. 2019a). 

The Z statistic follows the standard normal distribution with zero mean and unit 

variance under the null hypothesis of no trend. A positive Z value indicates an upward trend 
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whereas a negative value indicates a downward trend. Probability (p) represents the measure 

for evidence to reject the Null hypothesis and positive p values show a negative trend whereas 

positive p shows a positive trend. We calculated the MK trend test separately for every pixel 

for start and end of season, length of season, and great integral over the OER basin. These 

parameters are crucial indicators of seasonal productivity. The Mann-Kendall statistical trend 

Z was determined as follow: 

𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑘)
𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1  , 𝑤ℎ𝑒𝑟𝑒 𝑗 > 𝑘   (1) 

Where n is the length of time series data, Xk and Xj are the observation at k and j 

time, respectively. 

and 

𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑘) = {

 1      𝑖𝑓   (𝑋𝑗 − 𝑋𝑘) > 0

  0      𝑖𝑓   (𝑋𝑗 − 𝑋𝑘) = 0

−1      𝑖𝑓   (𝑋𝑗 − 𝑋𝑘) < 0

   (2) 

The probability linked to the Mann-Kendall statistic ‘S’ and the selected n-data were 

determined to quantify the level of significance of the trend. The VAR(S) was calculated and 

then the normalized test statistic Z was computed using the following equations: 

𝑉𝑎𝑟(𝑆) =
1

18
(𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑓𝑡(𝑓𝑡 − 1)(2𝑓𝑡 + 5)𝑡 )   (3) 

Where t varies over the set of tied ranks and ft is the number of times that the rank t 

appears (i.e. frequency). The equation used to calculate the Mann-Kendall significance Z-score 

is as follows: 

𝑍 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
                   𝑓𝑜𝑟 𝑆 > 0

     0                        𝑓𝑜𝑟 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
                 𝑓𝑜𝑟 𝑆 < 0

   (4) 

Where, Var(S) is the variance of the data set and n is the number of data points. 

The equation used to estimate Theil-Sen (TS) median trend is: 
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𝑇𝑆 = 𝑀𝑒𝑑𝑖𝑎𝑛(
𝑋𝑗−𝑋𝑘

𝑡𝑗+𝑡𝑘
)   (5) 

This robust non-parametric trend operator is highly recommended for assessing the 

rate of change in time-series data. It is calculated by determining the slope between every 

pairwise combination and then finding the median value. Using the Mann-Kendall test and 

Theil-Sen median trend analysis, the trends in PhM were described accordingly, the 

significance level of the changes in NDVI trends was determined using the Z-score at p-value 

below 0.1 significance level. 

5.3 Results and discussions 

5.3.1 NDVI and rainfall time series analysis 

Given the importance of the NDVI in monitoring vegetation cover, the spatio-temporal 

variation of this index was assessed based on reference data collected from fieldwork over 

farming systems types between 2000/2001 and 2018/2019 cropping seasons and the average 

rainfall over the OER basin for the same period (Figure 24). 

A visual analysis of the temporal NDVI values shows different patterns associated with 

each farming system type. These patterns were characterized by a specific range of NDVI 

values and represent the seasonality and the growth cycle of each farming system. The NDVI 

values for IPC range between 0.45 and 0.9, which is an indicator of the permanent 

photosynthetic activity of perennial systems (Figure 24). The studied irrigated tree crops are 

generally carried out in intensive systems. Owing to their received quantities of water and 

their long life cycle, this farming system shows a unique character of persistence during the 

growing season from 2000 to 2019. The IAC class has some identical patterns to the IPC 

farming system, like water supply and the high value of production. The IAC farming system 

shows NDVI values that range from 0.3 to 0.8. The NDVI values start increasing in September 

and decrease in May of each agricultural season. Their variability in length of the growing 

season is mainly related to sowing’s timing, the management of agricultural land, and other 

plant physiological disease problems. 
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For the RA farming system, the NDVI values varied from 0.2 to 0.7 for wet seasons and 

between 0.2 and 0.4 for dry seasons (i.e., 2006/2007 and 2008/2009 cropping seasons). In 

general, their NDVI response to rainfall is systematic. Indeed, agricultural lands in the RA 

farming system are entirely dependent on rainfall, which varies in amount from one year to 

the next and directly affects agricultural productivity. Indeed, in semi-arid regions, this 

relationship between rainfall and NDVI has been demonstrated in numerous researches 

(Barbosa et al. 2019; Davenport and Nicholson 1993; Lotsch et al. 2003). Thereby, the RA 

farming system shows high variability in terms of the start, end of season, and the length of 

season. This variability is linked to the strong dependency of this farming system on the 

climatic conditions especially the rainfall amount. The vegetative activity begins earlier in the 

case of a wet season and later for a dry season, and the same pattern could be observed for the 

end of the vegetative activity. A similar pattern could be observed in the FA farming system 

where the climatic conditions have more effects on the vegetative activity. These effects of 

rainfall could be well spotted in the 2009/2010 cropping season over FA and RA farming 

systems, we can observe precisely the start of the vegetative activity after receiving an 

important amount of rainfall (Figure 24). Through the coming pages, the paper explores more 

the behavior of farming systems using trend analysis techniques. 
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Figure 24: NDVI variability over the four farming systems over the OER basin between 2000 and 2019. 

NDVI presents the average values extracted from reference data; rainfall were retrieved from CHIRPS 

(CHIRPS 2020) over the OER basin. 

5.3.2 Spatial Patterns of Phenological Metrics 

To mutually characterize PhM behavior (i.e, TSOS, TEOS, LOS, and GINT) and their 

variability, we combined them with their coefficients of variation (CV), which is used as a 

measure of reliability, into the bivariate maps shown in Figure 6. These bivariate maps provide 

simultaneously a spatial representation of (1) where high or low variability in PhM are 

expressed for each farming system, and (2) the risk involved in the future management and 
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seeding in these farming systems. This combination of factors can assist in developing 

knowledge about which farming systems can be cultivated in an average year all with 

considering that in such regions, farming systems choices are largely based on the potential 

for attaining good yields, and the risk of season failure (Vrieling et al. 2013). 

Figure 25-D, shows that areas located inside the irrigated perimeters with a start of the 

season (TSOS) that occurred between February and June generally have a CV below 0.1. 

Encouraged by the availability of irrigation water throughout the year, farmers in these areas 

are diversifying and intensifying their agriculture, thus putting a larger area under crops with 

high added value, whatever their water consumption (Lionboui et al. 2016b). Outside the 

irrigated perimeters, especially the center of the study area, strong variability is apparent (i.e., 

variability above 0.2). This high variability is more accentuated by moving towards the 

mountainous zones. Farmers prefer not to invest excessively in these zones, in order to avoid 

the risks associated with drought related mainly to the less stability of TSOS and therefore the 

rainfall amount and distribution. Areas outside the irrigated perimeters with TSOS between 

August and September have CV values between 0.1 and 0.3 for practically all locations. 

Nonetheless, the declining availability of water during the studied period causes a decrease in 

productivity and leads farmers to opt for crops that require less water but offer good margins, 

in order to maximize their profits and avoid the risk of season failure. Other regions outside 

the irrigated perimeters with a TSOS between 242 and 365 day of year have a CV below 0.15. 

Since these areas may present a low-risk investment opportunity, they could be a good choice 

for the implementation of new farming systems. Towards the western part of the basin, low 

variability is apparent (Figure 25-D). 
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Figure 25: Bivariate map showing simultaneously the great integral (A), length (B), end (C), and the 

satrt (D) of season and their coefficients of variation. High resolution coresponding figures are 

provided with the supplementary materials. 

On the other hand, areas located outside the irrigated perimeters with an end of season 

(TEOS) occurred between the DOY 33 and 177 express two degrees of variability, the first with 

a CV below 0.15 the second with a CV above 0.35. The majority of area, that has TEOS between 

178 and 241, has a low variability with CV below 0.15. Inside the irrigated perimeters, low 

variability is expressed with a CV below 0.15 for areas having the TEOS between 178 and 241 

and between 242 and 273. The high variability in term of CV observed for the TSOS and TEOS 

could be related to the dependence of the start of cropping season to climatic condition, in 

rainfed farming systems the season could not start without the first rainfall. Adversely, the 

end of cropping season depends on the climatic conditions but also depend on the 

physiological properties of the plant and its persistence (Figure 25-C). 
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Considering the phenological metric LOS, the results of this research show that the 

variability is inversely proportional to the value of length of the season, without regard to 

particulars or exceptions. Hence, the areas with a LOS value below 160 days have generally a 

CV value above 0.35 and the areas with a LOS value between 160 and 192 days have CV values 

between 0.15 and 0.35 especially in the center of the study area. However, these areas may 

express a deficit in agricultural production during years with low rainfall amount. The low 

variability is mostly located inside the irrigated perimeters where the LOS is above 224 days. 

These zones shows a CV values are below 0.15. Various areas in the western part of the basin 

also show a high CV values which are above 0.28 (Figure 25-B). 

Finally, by combining the fourth phenological metric, explored during this study with 

its CV values (GINT), our results can help in the characterization of the biomass variability of 

farming systems encountered in this study area (Figure 25-A). The areas having a GINT values 

below 4 have a CV values above 0.35. These zones are generally rainfed area and fallow, where 

climatic conditions take effect. Generally, these areas are not recommended for the seeding of 

plants with high values of production. Instead, areas of GINT values above 8 have a CV values 

between 0.15 and 0.25. This moderate variability in biomass productivity could be considered 

as normal, knowing the differences in crop types over the irrigated parameters (i.e. alfalfa, 

sugar beet, wheat…). Other zones in the OER basin remain with low to moderate biomass 

productivity with high variability of GINT metric. 

5.3.3 Determination of unchanged farming systems area 

The RF classification offers a powerful algorithm to classify the spatial patterns of 

farming systems in the study area. In this study, the classification of farming systems, were 

produced from the implementation of the Random Forest (RF) classifier based on PhM. In 

terms of the individual accuracy, the results presents higher overall accuracy and much more 

balanced producer/user accuracy. The overall accuracy for RF was 97% and 93%, with a kappa 

value of 0.95 and 0.91, for 2018/2019 and 2000/2001 copping seasons, respectively. In general, 

all farming system classes achieved over 90% user’s accuracy. The RF classifier also produced 

over 90% producer’s accuracy for most farming system classes. The change detection results 

from 2000–2019 reveal an important dynamic between the different FS in the studied region. 
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The transition between FS from 2000/2001 to 2018/2019, shows that there has been a marked 

change in FS classes over the study area (Figure 26). To evaluate trends over the study area, 

we only considered the unchanged classes during the studied period. 

 

Figure 26: Change map of farming systems over the OER basin from 2000 to 2019. The diagonal of the 

square represents the unchanged classes of farming systems. 

5.3.4 Trend analysis results 

This research further analyzed the inter-annual trends for the four PhM (i.e., SOST, 

TEOS, LOS, and GINT). The Mann-Kendall test was used to identify significant trends at 90% 

confidence level and Sen’s slope estimator was applied to compute the magnitude of trends 

for the period between 2000 and 2019 alternated between increasing and decreasing trends 

over the study area. For the start of season (TSOS).Figure 27 displays its trends obtained using 

Mann Kendall and sen’s slope tests. Positive and negative values refer to delayed and 

advanced dates of TSOS. 

Most areas in the OER basin did not show a significant trend during the past twenty 

years for TSOS, LOS, and GINT metrics (p > 0.1). Contrary, the TEOS shows a significant trend 

over most part of the study area (p < 0.1). In this section the signficant trend pixels are only 

considered for description and analysis. A significant negative TSOS trends was discovered 
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across small parts of Doukkala irrigated perimeter, Tadla irrigated perimeter, and in parts of 

the rainfed area. For the pixels with negative trends, over irrigated perimeters, sen’s slope 

gives an average decrease in TSOS of approximately -0.2 day/year, outside the irrigated 

perimeters; the TSOS shows a decrease between -0.2 and -0.4 day/year. The early start of 

agricultural season in these zones could explain these results. Especially the irrigated annual 

crops where we found different crop types and irrigation systems. Hence, this implies that 

over the studied period of 20 years TSOS has delayed with more than 6 day (-6 day/20 years). 

Other regions of the OER basin showed a non signficant trend. These regions are not 

interpreted since the significance level is above 0.1. 

 

Figure 27: Start of season time (TSOS) trend: Sen’s slope values (A); Mann-Kendall Z (B); and p value 

intervals (C). 

On the other hand, we found significant positive trend for the TEOS across large parts 

of the OER basin and in a part of the Tadla irrigated perimeter. However, we found significant 

negative trend in the rainfed and fallow farming systems (Figure 28). 
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Figure 28: Spatial distribution of end of cropping season time (TEOS) trend. Maps A, B, and C 

represent sen’s slope values, Kendall Z, and p-value intervals, respectively. 

For the pixels with positive trends, Sen’s slope gives an average increase in TEOS above 

0.2 day/year, in the TIP and between 0 and 0.2 in rainfed area. The TEOS shows a decrease 

between 0 and -0.2 days/year in numerous part of the OER basin, especially in the southern 

part. These results could be explained by the satisfaction of plants requirements in the irrigated 

zones, where in other area the negative trend is essentially linked to climatic conditions and 

the poor land management. This signify that over the studied period of 20 years TEOS has 

changed with more than 3 days/20 year, in irrigated area and with -3 days/20 years in rainfed 

and fallow areas. 

After the trend analysis of the TEOS metric, we directed our studies towards the 

analysis of trends in length of season (LOS) (Figure 29) to investigate the link between TEOS 

and TSOS with the LOS, since the LOS is the result of the difference between TEOS and TSOS. 

The results show a significant positive trend in LOS over the south parts of Doukkala and in 

north parts of Tadla irrigated perimeters. In addition, we found significant negative trend in 

the rainfed and fallow farming systems. 
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For the pixels with positive trends, Sen’s slope gives an average increase in LOS above 

0.1 day/year, in the Tadla irrigated perimeter and approximately between 0 and 0.1 days/year 

in DIP. The LOS shows a decrease between 0 and -0.1 day/year in numerous part of the OER 

basin. This signify that over the studied period of 20 years LOS has changed with more than 

1.6 days/20 year, in irrigated areas and with -1.6 days/20 year in rainfed and fallow areas. 

 

Figure 29: Spatial distribution of length of season (LOS) trend. Maps A, B, and C represent sen’s slope 

values, Kendall Z, and p-value intervals, respectively. 

Comparing these results with trends in TSOS and TEOS indicates that increases in 

TEOS and decrease in TSOS dates are mostly responsible for the positive LOS trends in 

irrigated perimeters of Doukkala and Tadla. Negative LOS trends in the rainfed area and 

fallow farming systems is related to a delay in TSOS dates and an early TEOS. 

Finally, considering the GINT metric, the trend of this index was obtained using Mann-

Kendall and Theil-Sen median trend tests (Figure 30). We found significant positive trends 

over large farming systems. These areas are specially located in the irrigated perimeters of 

Tadla and Doukkala, in addition to some zones with improved agricultural management 

practices. 
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Figure 30 : Spatial Spatial distribution of great integral (GINT) trend. Maps A, B, and C represent sen’s 

slope values, Kendall Z, and p value intervals, respectively. 

Generally, significant positive trends are located in the western and eastern part of the 

OER basin. The central region is dominated by insignificant negative trends, while stable 

farming systems are dispersed over the study area. Irrigated perimeters show an increase in 

GINT with 0.2 /year, while the rainfed area shows an increase between 0 and 0.1/year. 

Generally, the trend results reveal an important variation between the different FS in the 

studied region. 

In this study, we have demonstrated that the phenological pattern of vegetation cover 

across different farming systems and across different regions over the last 20 years have an 

important implication in the vegetation dynamics and climate changes. It provides an insight 

of the vegetation cover status of a region affected by climate risks. In our knowledge, this study 

is the first to demonstrate the ability of annual Phenological Metrics (PhM) and RF modelling 

to map and characterize changes over the major farming systems in Morocco. The use of 

TIMESAT for NDVI time series processing and analysis has provided a more comprehensive 

investigation of the NDVI behavior from a phenological perspective. As far as we know, this 
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study is the only one that has explored the phenological farming systems variability over 

North Africa at 250m spatial resolution. 

Overall, The accuracies obtained in this study for the cassification of farming systems 

were reliable and consistent with those revealed for other MODIS-based land-cover 

classifications (Alcantara et al. 2012; Qiu et al. 2017). For comparison, the resulted overall 

accuracies of the RF classifications obtained over the OER basin scale (i.e., 90-96%) is similar 

to that obtained using MODIS time-series for mapping cropping intensity in China at a 

regional scale (i.e., 92%; (Qiu et al. 2017)). On the side of classification performance, the 

confusion between rainfed area and fallow, which was the main source of error, reflects the 

strong similarity between these two farming systems especially when the climatic conditions 

are critical. Consequently, our findings have confirmed the advantage of using a combination 

of PhM from MODIS time-series and RF classifier to discriminate between farming systems 

(Nitze et al. 2015). In addition to the influence of climate conditions on phenological changes, 

changes in crop type was also an important determinant in phenological changes and trends 

in the OER basin. For this reason in this study, we have used a mask layer to mask only 

unchanged area and eject the effect of annual land use change over farming systems. 

In terms of PhM variability and trends, our study revealed substantial variability over 

the studied PhM. Generally, TSOS and TEOS shows high and low variability inside and 

outside the irrigated perimeters, respectively (Figure 26). The TSOS inside irrigated perimeters 

displayed early onset trends than other zones, which could be resulted due to the sowing date 

and irrigation (Figure 26). On the other hand, delayed TEOS could be explained by the 

variability of harvest time and, biological factors, and climatic conditions occurred during the 

cropping season. These delays and early onsets in time of occurrence between TSOS and TEOS 

were translated to a longer cropping season over the irrigated perimeters (Figure 27). The 

remarkable shift expressed by GINT and LOS over the irrigated perimeters is the result of an 

intensification plan and a change of agricultural practices with the encouragement of farmers 

to plant perennial crops. The question raised here is how much are sustainable the water and 

soil resources to support this mode of production under the growing pressure applied? 

Our study has also revealed that annual variability outside the irrigated perimeters, 

especially in the center of the study area, where fallow and rainfed farming systems extend, is 
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strong. This high variability can be justified by the changes in rainfall amount and distribution 

received over these regions during the cropping season and the changes on the agricultural 

production potentiel. As identified by Ouatiki et al. (2019a) climatic stations located in these 

regions experienced a significant decreasing trend and receive a low rainfall amount during 

the season. Other factors leading to the high variability of PhM in these regions were the 

depletion of groundwater and the quality of agricultural management, since these regions 

considered as rainfed and fallow areas, where the accessibility to irrigation supplies is absent 

(Lebrini et al. 2020). A similar situation is observed in the variability of GINT metric (Figure 

30-A), the same regions experience a high variability and low values of GINT, which signify a 

low biomass production and an unbalanced field for agricultural planning. Regarding the 

trend results, GINT increased during the studied period by 0.1/year in the most area of the 

basin, while for certain regions of FA and RA it decrease by -0.1/year (Figure 30). Therefore, 

we believe that all this factors affect the productivity of these two farming systems, which are 

translated in the short cropping season and the low biomass production (Figure 25-A and 

Figure 25-B, respectively). 

The wide spatial distribution of annual variability of PhM found in this study is reliable 

with the outcomes from previous studies (Luo and Yu 2017; Vrieling et al. 2013; Yuan et al. 

2019). For instance, Vrieling et al. (2013) identified that a higher variability of Length of 

Growing Period (LGP); represented here in our study by the Length of Season metric (LOS) is 

generally found in arid and semi-arid areas, with coefficients of variation above 0.25 ( i.e., LOS 

in our study varied from 0.15 to 0.35). This slight difference between our both studies could be 

referenced to the higher spatial resolution of MODIS data (i.e., 250 m). Contrary, in the 

irrigated perimeters where land receive important amount of water and fertilizer, the 

variability of PhM remained lower. Further, the variability in crop types may had some 

influence on the variability of PhM. However, this hypothesis is most unlikely probable as our 

study focused only on unchanged farming systems of the OER basin. 

Weather extremes and consecutive droughts in this region had strongly affected the 

vegetation cover dynamics and resulted in adaptations of farming system management in 

response to climatic variation. Socio-economic policies and improving farm practices were also 

a dominant drivers of farming systems change in addition to climate conditions. These factors 
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could all have affected the variability of the start, the end and the productivity of the cropping 

season, resulting in phenological changes over time. A good example of agricultural planning 

that made great changes in the agricultural sector in Morocco is the Green Morocco Plan  

strategy, which has aimed to encourage tree-growing extension that led to a high variability 

over some parts of the perennial farming system. 

Notably, our finding showed that the variability of PhM are varied and related to 

farming system types. The results from this study are expected to constitute a background to 

other research about droughts monitoring and desertification studies in arid regions. The PhM 

datasets and the trends results could be integrated with climate data to perform an estimation 

of crop water requirement and offer a tool for managers and stakeholders to make decisions 

for the extension of agricultural areas according to the available water resources in a context 

of water stress. 

5.4 Conclusion 

Finally, variation in phenological metrics over FS was estimated at the OER basin level 

during 2000–2019 seasons using MODIS NDVI data and trend analysis tests. Our study finding 

are the following: 

(1) Over irrigated perimeters (TIP and DIP) mean LOS GINT, and TEOS showed a low 

variability. On the other hand, moderate variability was observed for the mean TSOS during 

the studied period. Contrary to irrigated zones, PhM over rainfed and fallow farming systems 

showed a high variability. This variability over RA and FA is justified by the irregularity of 

rainfall amounts received over these farming systems. 

(2) Trends over farming systems are not uniform at the OER basin level. Most areas in 

the OER basin did not show a significant trend during the past 20 years for TSOS, LOS, and 

GINT metrics (p > 0.1). Contrary to the TEOS where significant trend was observed (p < 0.1). 

TSOS shows early onset over the IPC and IAC (i.e., 0.2 days/year), while over RA and FA is 

delayed by -0.2 days/year, especially in the center of the basin. Other regions of the FA and 

RA shows extended TSOS by 0.2 days/year. TEOS shows early onset (i.e., -0.4 days/year) over 

the FA, RA, and part of the IPC. Other regions of the basin showed a TEOS extended by 0.2 



Chapter 5: Mapping and Characterization of Phenological Changes over Various Farming 

Systems in Arid and Semi-arid Region using Multitemporal moderate spatial resolution 

data 

74 

 

days/year. LOS generally slightly increased over the farming systems except particular zones 

of the FA and did not advance markedly during the study period. GINT increased during the 

studied period by 0.1/year in the most area of the basin, while for certain regions of FA and 

RA it decrease by -0.1/year. 

The investigation of changes on PhM over twenty years (19 cropping seasons) proved 

the ability of these metrics to characterize the spatiotemporal changes over the OER basin. 

Nevertheless, the need to take into accounts the perceptions and opinions of local populations 

is essential in order to reduce the process of vegetation cover degradation and better manage 

natural resources. 
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Morocco based on phenological and 
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6.1 Introduction 

Global changes like increasing food demand, population growth and degradation of 

arable land are a few challenges agriculture has to face (Nath et al. 2015). While agricultural 

practices have to be accurate to achieve constant yields, a sustainable use of resources and 

management schemes are becoming increasingly important to ensure a long-term food 

security (Spiertz 2009). In this context, studies on large vegetative area extent and systems are 

important to the sustainable productivity of these zones (Yang et al. 2007). The phenology of 

vegetation cover and its connection to climate is a key to understand ongoing global climate 

and land surface changes (Immitzer et al. 2012). Hence, phenology is usually influenced by 

many biotic and biotic factors such as soil temperature, solar illumination, precipitation and 

topography (Atzberger et al. 2013; Chapman et al. 2018). Besides, phenology has been studied 

using observation from multi satellite sensors. In this context, the advent of remote sensing 

data provides continuous spatial and temporal coverage to map and characterize phenological 

information at both local and regional scales (Boschetti et al. 2009; Lebrini et al. 2021). Further, 

Researchers have been able to define and quantify seasonal occurrences of plant phenological 

profiles using time series acquired from remote sensing image data  (Pan et al. 2015). In 

comparison to older approaches based on single-image processing, several studies have 

demonstrated that time series of vegetation indices used provide accurate and robust 

information on vegetation cover (Buitre et al. 2019; Chen et al. 2004; Lebrini et al. 2019b). 

Classification or zoning, also known as regionalization, is a sort of geographic 
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categorization that generalizes and maps terrain patterns in defined classes or zones (Adole et 

al. 2018; Bac-Bronowicz and Grzempowski 2018). In addition, regionalization produces a set 

of classes that reduce the complexity of a landscape to more manageable and understood 

patterns. For example, the world has been subdivided into climatic data in the köppen-Geiger 

classification (Beck et al. 2018). 

Few studies have addressed the issues of pheno-climatic classification. Gu et al. (2010) 

have used a time series of MODIS NDVI data combined with a digital elevation model to 

produce a new pheno-class map for the United States. The study generated 40 pheno-classes 

characterized with similar phenological and topographic information. In the study of White et 

al. (2005) AVHRR time series of NDVI data between 1982 and 1999 combined with climatology 

data were used to generate a pheno-region zones where regions with a minimal probability of 

non-climatic forcing are represented. For this purpose, they have developed a global pheno-

region database. Henebry and de Beurs (2013) used MODIS cumulative time series from 2002 

to 2006 to derive 15 phenological ecoregions based on clustering the similarities between data. 

They used a cumulative MODIS time series of 22 images based on 23 composite per year. 

Pheno-climatic classification, which characterizes and stratifies regions based on 

similar phenological and climatic patterns provide a tool for defining agricultural potential 

and climatic conditions prevails within a defined region. Furthermore, it improve the choice 

of production and facilitate the design of coherent agricultural development projects with 

regard to the pheno-climatic potential of the territories. In this chapter, we use the term 

“pheno-climatic classes” to describe the regions identified by similar phenological and climatic 

patterns. 

The main goal of this chapter is to introduce a new pheno-climatic classification of 

Morocco that identifies regions with similar phenological and climatic patterns based on land 

surface phenological metrics (timing and productivity metrics), elevation gradients, slope and 

climate data. The production of such pheno-climatic classification help as a tool for monitoring 

sensitive environment and for making accurate decision related to phenology and climate 

issues. 
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6.2  Methods 

This study focused on the production of a pheno-climatic classification of Morocco 

using phenological metrics derived from NDVI-MODIS data (MOD13A1), CHIRPS rainfall 

product, MODIS Land Surface Temperature product (MOD11A2) and digital elevation model 

(Chapter 2, Table 2). The use of topographic variable data, such as the digital elevation model 

(DEM) produces major classification enhancements as was proved by previous research (Lu 

and Weng 2007; Manandhar et al. 2009). Therefore, shuttle radar topography mission (SRTM) 

one-arc second DEM tiles were resampled to a 500 m spatial resolution by the bilinear 

interpolation. Digital elevation model and slope used in this chapter are shown within Figure 

31. 

 

 

Figure 31: Topographical features used for the pheno-climatic classification of Morocco. a) Digital 

elevation model; b) Slope. 

 Concerning phenology data, we focused on timing and productivity phenological 

metrics to produce the pheno-climatic classification, these metrics are insightful about 

occurrence and development stages of vegetation cover (Zeng et al. 2020). Hence, median 

value of amplitude, base value, left derivative, large integral, length of season, middle value 

of season, right derivative, and small integral were used. Data used cover a study period of 21 

years spanning from 2000 to 2021 (Chapter 2, Table 2).  
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The pheno-climatic classification methodology consisted of three steps. First, satellite 

data pre-processing and resampling to spatial resolution of 500m. Second, eight phenological 

metrics were derived from MOD13A1 product. TIMESAT software was used to calculate 

phenological metrics (See chapter 1). Third, the dataset was normalized and introduced as an 

input for an unsupervised learning classification based on K-means and random forest 

algorithms. More details on time series filtering and phenology extraction were provided in 

Chapter 2. 

6.2.1 Data normalization 

Because of the large variability of the units and ranges of data (e.g., the data for length 

of season ranges from 0 to 224 day and the data for the DEM ranges from 0 to 4050 m), data 

normalization was necessary to allow these datasets to be comparable (i.e., in a similar scale). 

This also resulted in a more even contribution of each input data layer into the classification 

process. All input variables were transformed to comparable units using a z-score: 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥−𝑥

𝜎
 (6) 

where  𝑥,  𝑥 ,  and  𝜎  represent  each  data  value,  dataset mean,  and  dataset standard  

deviation, respectively. 

6.2.2 Pheno-climatic classes derivation using Random Forest and K-means 

classification. 

The use of supervised classification or regression learning mode for predicting classes 

or values is frequent. Although, we confronted situations where unsupervised learning mode 

is needed to cluster raw data (Dehariya et al. 2010). When there is a lack of labelled data or it 

is difficult to categorize data based on ground truth labels (i.e., training data), classification 

using unsupervised learning provide a prominent alternative for unsupervised learning 

processes. 

Classification method used for this study consisted on the combination of the 

unsupervised and supervised machine-learning algorithms K-means and Random Forest (RF), 

respectively.  The RF is a non-parametric machine learning classifier that combines a random 

selection of training subsets of data with an ensemble of trees (Jin et al. 2018; Lebrini et al. 
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2020). Details of the random forest algorithm are provided within Chapter 5. However, the 

unsupervised K-means algorithm is a widely used clustering technique that classifies all pixels 

based on iterative recalculation of the cluster means (Reza et al. 2019). The K-means algorithm 

is an algorithm for placing data points in a multi-dimensional space into a defined number of 

clusters noted K where vector of mean values parameterizes each cluster (Venkata et al. 2020). 

The goal of K-means is to reduce the variability within the cluster. The summation of squares 

distances termed as errors, between each pixel and its assigned cluster centre is minimized 

and declared as objective function (Equation 7). 

J = ∑ ∑ ‖𝑥𝑖
(𝑗)
− 𝐶𝑗‖

2
𝑛
𝑖=1

𝑘
𝑗=1     (7) 

Where ‖𝑥𝑖
(𝑗)
− 𝐶𝑗‖

2
is a selected distance measure between data point 𝑥𝑖

(𝑗)
and cluster centre 𝐶𝑗. 

Since the number of classes created by K-means is a user specified input we tested 

different numbers of K parameters (e.g., 5, 10, and 15) to determine the optimum number of 

pheno-climatic classes. 

6.3  Results and Discussions 

6.3.1 Climate data analysis 

Generally, the study area is characterized by a Mediterranean climate with hot dry 

summer and cold wet winter with concentrated precipitation, it includes also arid and 

semiarid climate in Saharan region. The spatial distribution of rainfall from 2000 to 2020 is 

shown in Figure 32. Overall, the study area is characterized by a high variability of rainfall 

from south to north and from east to west. High amounts of rainfall are observed in the north 

part of Morocco and along of the Atlas Mountains. Over these regions, the rainfall amounts 

varies between 700 mm and 1100 mm. Rainfall between 300 mm and 600 mm is observed over 

lowlands areas. In the northwest part of the country the rainfall varies from 200 mm to 300 

mm, other parts in the east also have the same values. Rainfall amounts start decreasing from 

northwest to northeast regions, values between 100 and 200 mm are observed in the eastern 

part and some presaharian regions. Going south, the rainfall amount observed is less than 100 
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mm. Over the past twenty years, latitudinal representation of rainfall shows a high seasonal 

variability with distinct periods (Figure 32). The same remarks are observed for longitudinal 

representation of rainfall as shown in Figure 32. High amounts of rainfall are observed around 

latitude 35°N. Hence, a strong contrast characterize the variability of rainfall. Observed rainfall 

amounts reach their maximum above 35°N and start decreasing to reach minimum values 

bellow 25°N. On the other hand, high amounts of rainfall are concentrated between longitudes 

10°W and 1°W. 

 

Figure 32: Rainfall distribution and variability over Morocco. a) Total annual median distribution of 

rainfall; b) latitudinal variability; c) Longitudinal variability. 

The median annual LST was found to vary across the country during the study period, 

as shown in Figure 33. Overall, LST values varies between -3°C and 55°C. Low temperature 

values are observed in the north part of the country and over mountainous areas. In addition, 

lowlands situated to the west of the Atlas Mountains shows high degrees of surface 

temperature. However, high temperature values are extended over the southern and eastern 

parts of Morocco. Along to the Atlantic coastal area of Morocco from Tangier to Laguira cities, 

surface temperature is comprised between 23°C and 35°C. However, on the Mediterranean 

coastal area, temperature values are around 20°C and 26°C.  

The incursion of extratropical weather systems from Europe and the Atlantic Ocean, 

brings colder air and cloudiness, which results in a declining temperature gradient from north 
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to south that is also influenced by the Atlas Mountains. This variability in temperature is due 

essentially to Morocco's proximity to the Atlantic Ocean and the vast area of Moroccan Sahara 

that affect the LST variability over the country (Verner et al. 2018). Consequently, two 

phenomena occur and influence the seasonality of temperatures, either when sirocco (i.e, 

Chergui wind) blows from the east creating heatwaves, or when cold damp air blows from the 

northwest, creating a cold wave or cold spell. However, these phenomena do not last for more 

than two to five days on average. In addition, vegetation cover has a strong effect on LST 

variability. Similar results about the effect of heatwaves, vegetation cover, and oceanic 

oscillation on LST variability was studied and confirmed by Yan et al. (2020). The study carried 

out by Yan et al. (2020) confirmed that Over North America, the El Nino and La Nina were the 

main drivers for the periodical highest and lowest LST, respectively. The same study report 

that the status of vegetation on the surface directly affects the amount of solar radiation 

received by the surface, and the vegetation also affects the change of LST through climate 

regulation during the growth process. 

 

Figure 33: Land surface temperature distribution and variability over Morocco. a) Median 8 day 

distribution of LST; b) latitudinal variability of LST; c) Longitudinal variability of LST. 

6.3.2 Phenological data analysis 

In this section, we present 3 phenological metrics from all derived metrics based on 

NDVI time series. Computed metrics at pixel level are presented in Figure 34. Over Morocco, 

amplitude of season values are spanning between 0 in Saharan regions and 0.73 in regions 

https://en.wikipedia.org/wiki/Sirocco
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with a pronounced phenological activity. As observed in Figure 34, regions with high values 

of AOS are generally in area with strong variability of phenological phases during the season. 

These regions have values of AOS between 0.5 and 0.73. However, area with perennial 

vegetation are characterized with small values of AOS, these zones have values between 0.3 

and 0.5. These areas are generally located in the Atlas Mountains and foothill areas where 

perennial forest cover is persistent. AOS values below 0.3 characterize zones with low 

vegetative development during the season. Pixels where no phenological activity occurred are 

replaced with 0. Concerning large integral metric (GINT), it is considered as a key metric, 

which characterize the quantity of biomass produced during a cropping season. Figure 34 

shows GINT distribution over Morocco for the studied period. GINT values are comprised 

between 0 and 17. High values of GINT are situated in the north and the northwest of Morocco. 

However low values are located to the south and the southeast of the country (Figure 34). As 

result, GINT shows a high spatial variability and a contrasting level of phenological responses 

over the studied area. These differences are generally related to the agricultural activity since 

the Utile Agricultural Area (UAA) of the country is situated within this zone (El Mekki and 

Ghanmat 2015). In addition, forest cover make this contrast perceivable, the presence of forest 

cover along the Atlas and Rif Mountains makes of this zone a basin of biomass production 

(Chebli et al. 2018). The pheno-climatic classification of Morocco could not been achieved 

without implies of timing metrics, Length of Season (LOS) is an essential metric calculated 

based on Start of Season Time and End of Season Time metrics (SOST and EOST). Figure 34 

shows the spatial distribution of LOS metric over Morocco. Long seasons are observed over 

the Atlas and Rif mountains, these zones have already described as arras with presence of 

forest canopy. Over these areas, LOS reach a maximum of 224 days. However, lands with 

agricultural activity presents a LOS values around 100 days. Over agricultural zones LOS 

highly depend on the irrigation scheme adopted and the rainfall amounts received. Generally, 

LOS values over rangeland and rainfed area depend on the distribution and the amounts of 

rainfall, this result was already confirmed by the study of Lebrini et al. (2019b). LOS values 

decrease where no phenological activity occurred, this is the case of the south of Morocco 

where LOS values are near 0 (Figure 34). 
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Figure 34: Examples of Phenological metrics; a) Amplitude of season; b) Large integral; c) Length of 

season. 

6.3.3 Pheno-climatic classification of Morocco 

In this section, we presents the result of the pheno-climatic classification of Morocco. 

The pheno-climatic classification consisted on 6 classes, which have similar climatic and 

phenological behaviour. The resulted pheno-climatic classes were labelled based on computed 

statistics on climatic and phenological features (Table 11). In addition, Google Earth images 

were used to visually validate the outputs of the pheno-climatic classification. Table 10 shows 

statistics on derived pheno-climatic classes. Over Morocco, SSDH (i.e., Sandy Stony land – 

Dry, Hot) is the largest class with an area of 439651 Km2, which represents 61.86% of the total 

area of Morocco. LPMH (i.e., Low Productive, annual/grassland vegetation-Moist, Hot) and 

HPMW (i.e., High Productive, annual/grassland vegetation-Moist, Warm) classes represents 

both similar contribution to the total area of Morocco with 9.67% and 8.11%, respectively. 

PSDH (i.e., Pre-Saharan vegetation - Dry, Hot) class represents 9.67%. However, the DPHuC 

(i.e., Dense Perennial vegetation – Humid, Cold) and SPHuC (i.e., Sparse Perennial vegetation 

– Humid, Cold) classes are the smallest classes with a total contribution to the pheno-climatic 

classification of Morocco with 5.88% and 6.03%, respectively (Table 10). 

Table 10: Superficies of pheno-climatic classes 
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Phenological 

classes 

Significance Area (km2) Percentage (%) 

PSDH Pre-Saharan vegetation - Dry, Hot 68788 9.67 

LPMH Low Productive, annual/grassland 

vegetation-Moist, Hot 

59803 8.41 

SSDH Sandy Stony land – Dry, Hot 439651 61.86 

HPMW High Productive, annual/grassland 

vegetation-Moist, Warm 

57695 8.11 

DPHuC Dense Perennial vegetation – Humid, 

Cold 

41831 5.88 

SPHuC Sparse Perennial vegetation – Humid, 

Cold 

42872 6.03 

 

Table 11 shows the mean values of CHIRPS data, land surface temperature and great 

integral metric over each pheno-climatic class. These data were used as support for the 

labelling process of the phenoclimatic classes as indicated in above. We have considered 

rainfall and surface temperature data as indicator for the climate aspect. 3 climate classes were 

considered which are, dry, moist, and humid for rainfall and hot, warm, and cold for surface 

temperature. However, concerning phenological aspect, the classes were labelled based on 

productivity, perennial/annual cover, and nature of the soil (presence/absence of vegetation 

cover). During this last step, Google earth images were used to support decisions on class 

labelling (Table 11). 

Table 11: Mean values of rainfall, land surface temperature and large integral metric by pheno-

climatic classes. 

Pheno-

climatic 

Classes 

CHIRPS (mm) LST (°C) GINT 

PSDH 250.80 31.66 2.30 

LPMH 284.92 33.64 3.59 

SSDH 98.54 38.39 1.46 

HPMW 431.52 32.31 6.18 

DPHuC 560.44 27.34 7.57 

SPHuC 441.83 26.30 3.33 

Figure 35, shows the result of the pheno-climatic classification of Morocco. DPHuC 

class is generally situated in the northern part of the country, it is observed along the Atlas 

and Rif Mountains. Small portion of this class is also observed in the eastern part, this area is 

the irrigated perimeter of Triffa in the northeast of Morocco, which is known by their perennial 
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crops, especially citrus trees (Htitiou et al. 2019a). Besides, SPHuC class has similar climatic 

patterns to DPHuC except the phenological characteristics. SPHuC shows the presence of 

sparse perennial vegetation cover and not a perennial one. These differences could be 

explained by the variability of altitude, slope, and the situation of this area in the east part of 

the Atlas Mountains where few rainfall event occur. In addition, the nature of the soil 

composition could be a key factor, which could affect the productivity and the perennial 

pattern of vegetation cover over this area. HPMW class represents a great portion of the UAA 

(i.e., Utile Agricultural Area) of Morocco. These zones are knowns by their agricultural 

activity, especially with the irrigation potential and the favourable soil composition (El Mekki 

and Ghanmat 2015). 
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Figure 35: Pheno-climatic classes of Morocco, PSDH: Pre-Saharan vegetation - Dry, Hot; LPMH: Low 

Productive, annual/grassland vegetation-Moist, Hot; SSDH: Sandy Stony land – Dry, Hot; HPMW: 

High Productive, annual/grassland vegetation-Moist, Warm; DPHuC: Dense Perennial vegetation  - 

Humid, Cold; SPHuC: Sparse Perennial vegetation – Humid, Cold 

Based on climatic and phenology data, LPMH is considered as a low productive area 

with moist and hot climate. This result was confirmed by truth data images. Google earth data 

and previous knowledge over the study area, shows that rainfed area and grassland are 

located within this zone. Generally, vegetation cover in this area depend on the amounts of 

rainfall received and especially the spatiotemporal fluctuations of rainfall events. Finally, 

PSDH and SSDH are two classes characterizing Saharan land. Both classes have similar climate 

conditions. However, on the phenological aspect, SPDH class present a fragmented vegetation 

cover. This vegetation cover is mostly formed with scattered concentrations of grasses, shrubs, 

and trees (Figure 35). 

6.4 Conclusion 

Landscape monitoring is increasingly benefiting from the geo-spatial technologies, which can 

make a substantial contribution to the monitoring and the management of vegetation cover as 

providing accurate information at a large spatial scale. For this reason, the use of phenological 

metrics time series appears more efficient. This study introduces a new pheno-climatic 

classification of Morocco based on phenology and climate characteristics.  

The new pheno-climatic classification map was generated based on thirteen phenological 

metrics, rainfall and land surface temperature data. The use of satellite phenological metrics 

and climatic features proved the ability of these features to map and characterize the pheno-

climatic classes of Morocco over a large extent and a relatively long period.  

The pheno-climatic classification presented within this study may facilitate better decision 

making around food production, livelihoods, and food security at national scale. The 

production of such results, in the appropriate time and with accurate way is important for 

researcher and policy makers. In addition, it can be used to further explore changes in agro-

ecological patterns in response to environmental changes and variability.  
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The new pheno-class map may also provide  a value as a national-scale support for other 

research and applications related to land surface assessment and monitoring, including 

agricultural and drought monitoring, ecological modelling of the impact of global changes on 

biodiversity, and biogeochemical modelling. The generated pheno-climatic classification 

provide a support for research because it provides information about the magnitude, timing, 

and spatial variability of biological phenomena. However, we believe that the new pheno-

climatic classification map described in this study will be useful for multiple purposes. 
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General conclusion 
 

 

 

Plants' life cycles are precisely adjusted to the seasonality of the ecosystems in which 

they live. Differences in the timing of their phenology will result from natural variations in 

climate and weather. However, abiotic impacts, could also have effects on the timing of their 

phenology. Late start of season or advanced end of season provides convincing evidences that 

there is and impact of climate change on vegetation cover (Baldi et al. 2008; White et al. 2009b). 

Agriculture sector is increasingly benefiting from the geo-spatial technologies, which can 

make a substantial contribution to the monitoring and the management of agricultural systems 

as providing accurate information at a large spatial scale. Data on semi-arid farming systems 

phenology are scarce and somehow difficult to produce, essentially because of lack of 

sufficient data. For this reason, the use of phenological metrics time series appears more 

efficient. The classification of agricultural systems may facilitate better decision making 

around food production, livelihoods, and food security. Within this thesis research, a reliable 

remote sensing approach was developed to monitor phenological dynamics at large scale with 

applications in farming systems management. In addition, phenological metrics were used 

besides climate data to provide a new pheno-climatic classification of Morocco. 

The overall motivation of this research was to develop an approach based on 

phenology-based data and machine learning algorithms for monitoring farming systems over 

semi-arid areas, and to assess the spatial patterns of major pheno-climatic classes at national 

scale. The research objectives were as follows: 

1. Assesses the performance of phenological metrics in the discrimination of 

farming systems using support vector machine classification over Beni Mellal-Khenifra region. 

2. Compare the performance of phenological metrics and three machine-learning 

algorithms (i.e., Support vector Machine, random Forest, and K nearest neighbour) in the 

characterization of changes over farming systems over OER basin. 
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3. The use of Random Forest algorithm and phenological metrics to map trends 

over unchanged farming systems over OER basin. 

4. Explore the importance of phenology and climate data to provide a new pheno-

climatic classification of Morocco using unsupervised machine learning. 

In the third chapter, this thesis examines the use of remote sensing data to characterize 

and map the spatio-temporal phenological metrics variability through Beni-Mellal-Khenifra 

region between 2012 and 2016. Phenology-based classification approach showed a high ability 

to identify and monitor the main agricultural system in the study area. The classification 

overall accuracy reached 88%, with a kappa coefficient of 0.83. The F1-score values for all 

classes were greater than 0.76. Analysing the results, the rainfed area shows a dependence to 

the spatio-temporal fluctuations of rainfall, this result can be extended in further studies on 

the characterization of drought in agricultural zones. Therefore, the phenological analysis 

provides information to deep our understanding of the spatio-temporal variability of land 

surface phenology in arid and semi-arid area. The results demonstrated the ability of 

phenological parameters to identify and monitor the main agricultural system classes in the 

study area and to control the illegal pumping zones and the irrigated area. 

In the fourth chapter, phenological metrics of AS classes were mapped and studied 

over the OER-AGS area. Among the three classifiers, the RF classifier produced satisfactory 

accuracies. Mapping changes over the study area revealed important results, especially on the 

dynamics and the effect of regional policy on agricultural system changes. The use of satellite 

phenological metrics to classify AS and map changes over the sixteen years proved the ability 

of phenological metrics in characterizing the spatiotemporal changes over a large extent and 

a relatively long period. 

In the fifth chapter, variation in phenological metrics over FS was estimated at the OER 

basin level during 2000–2019 seasons using MODIS NDVI data and trend analysis tests. Our 

study finding are the following: 

(1) Over irrigated perimeters (TIP and DIP) mean LOS GINT, and TEOS showed a low 

variability. On the other hand, moderate variability was observed for the mean TSOS during 

the studied period. Contrary to irrigated zones, PhM over rainfed and fallow farming systems 



General conclusion 

90 

 

showed a high variability. This variability over RA and FA is justified by the irregularity of 

rainfall amounts received over these farming systems. 

(2) Trends over farming systems are not uniform at the OER basin level. Most areas in 

the OER basin did not show a significant trend during the past 20 years for TSOS, LOS, and 

GINT metrics (p > 0.1). Contrary to the TEOS where significant trend was observed (p < 0.1). 

TSOS shows early onset over the IPC and IAC (i.e., 0.2 days/year), while over RA and FA is 

delayed by -0.2 days/year, especially in the center of the basin. Other regions of the FA and 

RA shows extended TSOS by 0.2 days/year. TEOS shows early onset (i.e., -0.4 days/year) over 

the FA, RA, and part of the IPC. Other regions of the basin showed a TEOS extended by 0.2 

days/year. LOS generally slightly increased over the farming systems except particular zones 

of the FA and did not advance markedly during the study period. GINT increased during the 

studied period by 0.1/year in the most area of the basin, while for certain regions of FA and 

RA it decrease by -0.1/year. 

In the last chapter, we presents a new pheno-climatic classification of Morocco. This 

classification was generated based on thirteen phenological metrics, rainfall and land surface 

temperature data. The use of satellite phenological metrics and climatic features proved the 

ability of these features to map and characterize the pheno-climatic classes of Morocco over a 

large extent and a relatively long period. The pheno-climatic classification presented within 

this study may facilitate better decision making around food production, livelihoods, and food 

security at national scale. The production of such results, in the appropriate time and with 

accurate way is important for researcher and policy makers. In addition, it can be used to 

further explore changes in agro-ecological patterns in response to environmental changes and 

variability. 

In perspective, while this thesis illustrates a number of substantial research 

contributions, there remains a large number of potential applications and some specific issues 

that require further analysis. Asses environmental, agronomic and socio-economic 

consequences of phenological changes can improve the awareness of stakeholders to adapt it 

to take decisions to limit the impacts of change on ecosystems and society. 

The production of such results, in the appropriate time and with accurate way is 

important for decision-makers and the management of agricultural practices to help the most 



General conclusion 

91 

 

vulnerable farms to continue their agricultural activities in the context of food insecurity and 

climate change and even crop insurance. Nevertheless, the need to take into accounts the 

perceptions and opinions of local populations is essential in order to reduce the process of 

vegetation cover degradation and better manage natural resources. 

To conclude, the research objectives pretended in this thesis were successfully realized 

and a pheno-climatic classification of Morocco has been developed. The extensibility to 

observe past and present phenological patterns serves as a powerful tool for characterizing 

dynamics over farming systems, and provides a strategy that can aid management decisions 

at present and in the future.
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