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Modeling and Analysis of Anisotropic Nonlinear Diffusion Equations Applied to Digital
Images

by Mr. Anas TIARIMTI ALAOUI

For decades, digital images have been considered a crucial instrument in any artificial vision
system. In the meantime, Mathematicians played an essential role in developing theories related to a
broad range of applications such as image restoration and edge detection.

In this context, the present thesis first gives an overview of remarkable research studies of various
diffusion equation-based models in image processing and analysis. Mainly, a behavioral analysis of
the Perona and Malik model is presented and discussed. Then, a new nonlinear diffusion model is
constructed as a parabolic evolution equation, based on the assumption that the diffusion needs to be
anisotropic, nonlinear, and consistent with the digital image structure.

Next, to conduct a theoretical analysis of the proposed model, we adopt a possible strategy com-
bining the iterative method with the monotonicity method. On the one hand, we apply the implicit
iterative method to approximate the evolution problem by elliptic problems. Then, we use a varia-
tional approach to prove, step by step, the existence of weak solutions for each elliptic problem in
an appropriate functional framework involving the Orlicz spaces. On the other hand, we construct an
approximate solution for the evolution problem using the above weak solutions. After that, we show
that a unique weak solution for the evolution problem can be extracted using an energy estimate,
bounded and uniform integrability in L1, and the monotonicity method.

Finally, we consider a consistent and stable scheme to numerically implement our nonlinear dif-
fusion model employing explicit and central finite difference schemes.

Keywords: Edge Detection; Convex Optimization Problem; Anisotropic Nonlinear Diffusion; Im-
age Restoration; Partial Differential Equations; Variational Method; Orlicz Space; Weak solutions.

HTTP://WWW.USMS.AC.MA
https://fstbm.ac.ma
https://fstbm.ac.ma
https://fstbm.ac.ma/departement/mathematique




vii

UNIVERSITÉ SULTAN MOULAY SLIMANE

Résumé
Faculté des Sciences et Techniques

Béni Mellal
Departement de Mathématiques

Docteur en Mathématiques

Modélisation et Analyse des Équations de Diffusion Non Linéaires Anisotropes Appliquées aux
Images Numériques

by Mr. Anas TIARIMTI ALAOUI

Depuis des décennies, les images numériques sont considérées comme un instrument crucial dans
tout système de vision artificielle. Pendant ce temps-là, les mathématiciens ont joué un rôle essentiel
dans le développement de théories liées à une grande variété d’applications telles que la restauration
d’images et la détection des bords.

Dans ce contexte, la présente thèse donne tout d’abord un aperçu des études de recherche remar-
quables de divers modèles basés sur l’équation de diffusion dans le traitement et l’analyse des images.
Principalement, une analyse comportementale du modèle de Perona et Malik est présentée et discutée.
Ensuite, un nouveau modèle de diffusion non linéaire est construit comme une équation d’évolution
parabolique, basée sur l’hypothèse que la diffusion doit être anisotrope, non linéaire et cohérente avec
la structure de l’image numérique.

Ensuite, pour effectuer une analyse théorique du modèle proposé, nous adoptons une stratégie
possible combinant la méthode itérative et la méthode de monotonicité. D’une part, nous appliquons
la méthode itérative implicite pour approximer le problème d’évolution par des problèmes elliptiques.
Puis, nous utilisons une approche variationnelle pour prouver, étape par étape, l’existence de solutions
faibles pour chaque problème elliptique dans un cadre fonctionnel approprié impliquant les espaces
d’Orlicz. D’autre part, nous construisons une solution approximative pour le problème d’évolution
en utilisant les solutions faibles ci-dessus. Par la suite, nous montrons qu’une unique solution faible
pour le problème d’évolution peut être extraite en utilisant une estimation de l’énergie, l’intégrabilité
bornée et uniforme dans L1, et la méthode de monotonicité.

Enfin, nous considérons un schéma cohérent et stable pour implémenter numériquement notre
modèle de diffusion non linéaire en utilisant des schémas de différences finies explicites et centraux.

Mots Clés: Détection des Contours; Problème d’Optimization Convexe; Diffusion Non linéaire
Anisotrope; Restauration d’Images; Équations aux Dérivée Partilles; Méthode variationnelle; Espace
de Orlicz; Solutions Faibles.
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Chapter 1

Introduction

In our modern society, digital images are ubiquitous in our environment, and their existence in our
daily activities substantially influences and impacts different sciences, engineering disciplines, and
technologies. They are incorporated in every observation and investigation system to help analyze,
understand and interpret objects in various settings and at different scales. At tiny scales, images, for
instance, can be produced by electron microscopes scanning the surface using a beam of electrons.
Figure 1.1 (a) shows the scanning electron microscope image of SARS-CoV-21 (round gold objects)
emerging from the surface of cells cultured in the lab. On a regular scale, images can be found
everywhere, for example, telephones, televisions, remote monitoring, scanners, medical imaging (cf.
Figure 1.1 (b)). However, on vast scales, one can use telescopes or space probes to view images. In
particular, humanity can discover distant areas such as the earth’s surface or Mars2 (cf. Figure 1.1
(c)).

(a) (b) (c)

FIGURE 1.1: Digital images at different scales

The human vision system forms and perceives the visual information from the retina (the eye),
passing by the optic nerve to the brain (the central nervous system). It has an extraordinary capacity to
adapt the light’s brightness and possesses highly complex processors to identify, recognize and clas-
sify various images collections. In this context, artificial vision attempts to emulate human vision by
modeling different image processing tasks, including learning, making decisions, and taking actions
based on input image data.

1https://www.flickr.com/photos/niaid/49557785797/in/album-72157712914621487/
2https://photojournal.jpl.nasa.gov/catalog/PIA24546

https://www.flickr.com/photos/niaid/49557785797/in/album-72157712914621487/
https://photojournal.jpl.nasa.gov/catalog/PIA24546
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Besides, computer vision systems have improved alongside machine calculation power during the
last several years. Moreover, the need to develop artificial vision systems for all sorts of imaging areas,
from satellite and X-ray imaging to modern computer-aided CT, MRI, and PET imaging in medical
sciences, has recently gained tremendous importance. These reasons motivated several researchers,
engineers, and mathematicians to develop models and algorithms in image processing and analysis
for more efficient, accurate, and stable artificial vision systems.

In computer vision systems, one can distinguish between two independent levels [42]:

• Low-level vision mainly refers to image processing and analysis, which is related to all sorts
of operations or transformations made onto images or sequences of images to improve their
quality, restore their original content, interpolate their missing parts, optimize their transmis-
sion, identify regions occupied by objects without telling what they are. Image processing and
analysis are becoming increasingly essential in today’s sciences and technology, with many
image processing applications such as contrast enhancement, denoising, deblurring, inpainting,
interpolation, and segmentation.

• The high-level vision that refers to image interpretation is of great importance for artificial
vision systems. Its central goal is to recognize features and identify real-world contexts, such
as face recognition for video surveillance and terrain reading for automatic piloting.

For an artificial vision system to reflect the human vision system ideally, a combination of image
processing and analysis and image interpretation is necessary and required for different tasks, includ-
ing depth perception, motion estimation, and object recognition. In this context, the present study
will focus only on the lower-level vision activities that involve mathematical models based on partial
differential equations (PDEs).

For automatic image processing, one can focus on specific features and structures of interest, such
as edges forming the boundary between two different structures or objects. To this end, one needs
good models for the structures to be detected or processed automatically. Furthermore, what is the
best way to define an edge? For example, does a sudden change of brightness adequately describe an
edge? Overall, what are the proper ways to model, describe and analyze images mathematically? The
choice of the model then is the most fundamental step in image processing and analysis.

Let us now talk about what images are and how they can be represented as mathematical objects.
An image is a function u that maps every point in a Lipschitz domain Ω to some color space F:

u : Ω→ F. (1.1)

We can distinguish between discrete and continuous image domains:

• discrete 2-dimentional images, for example Ω = {1, ..., M} × {1, ..., N}.

• continuous 2-dimentional images, for example Ω = (0, a)× (0, b) ⊂ R2.
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Different color spaces for F:

• Black-and-white images (also binary images): F = {0, 1}.

• Grayscale images with discrete color space with k-bit depth: F =
{

0, ..., 2k − 1
}

.

• Images with continuous gray values: F = [0, 1] or F = R.

• Images with continuous colors: F = [0, 1]3 or F = R3.

The following abstract formulation can represent many problems in image processing and analy-
sis:

(input) u 7−→ (output) T (u) , (1.2)

where T is an image processor or transformation representing a nonlinear operator and T (u) denotes
a critical image or observed features of interest. In this dissertation, we will investigate the following
three critical aspects of image processing and analysis.

• Modeling: What are the suitable mathematical models for u and T?

• Model Analysis: Does T (u) exist, and if so, is it unique?

• Computation and Simulation: How can the models be efficiently computed or simulated?
Which numerical regularization techniques should be introduced to ensure stability and con-
vergence?

As we will see in this study, the image u can be modeled as an element in a functional space (the
Orlicz spaces [3]), and the image processor can be realized by a PDE.

This view governs the structure and organization of this research:
The next chapter (Chapter 2) summarizes the most relevant research on diffusion equations applied

in image processing and analysis, exhibits and interprets the proposed anisotropic nonlinear diffusion
model. It also suggests a possible strategy to investigate the existence and uniqueness of solutions for
the proposed problem.

Chapter 3 investigates a quasilinear second-order elliptic problem by establishing its equivalence
to a variational optimization of an energy functional. In this chapter, the existence and uniqueness of
weak solutions for this boundary-value problem are proven in an appropriate functional space using
a variational approach and the monotonicity of a nonlinear operator.

Chapter 4 establishes the existence and uniqueness of weak solutions for an initial-boundary value
problem of an anisotropic nonlinear diffusion partial differential equation utilizing implicit iterative
and monotonicity methods.

In Chapter 5, a stable and consistent numerical approximation scheme will be considered to im-
plement the proposed anisotropic nonlinear diffusion model.

Finally, Chapter 6 terminates this dissertation with a general conclusion and some perspectives.
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Chapter 2

Image Processing and Analysis Based on
Diffusion Equation Methods

2.1 Introduction

During the last four decades, diffusion equations have been and are still of great importance in image
processing and analysis. Methods based on these equations provided a better interpretation of several
classical methods unified under a mathematical framework. As Weickert [54] has stated, diffusion
equations represent the natural framework for scale-space analysis. Since the eighties, image restora-
tion and edge detection problems have motivated researchers to develop new theories and models that
preserve meaningful features such as edges of objects detected in the image and eliminate irrelevant
information such as noises in the other regions.

This chapter provides the most relevant contributions in image modeling and representation using
the diffusion equation. First, we remind the physical background of the diffusion equation in Section
2.2. Then Section 2.3 exposes the related works concerning diffusion equations filtering in image
processing and analysis displayed in their chronological order of appearance. This section also gives
results [48] of the smoothing-enhancing properties at edge locations of the Perona and Malik (PM)
Model in two dimensions. After that, Section 2.4 presents a new anisotropic nonlinear diffusion
equation [49, 50], where we discuss its properties. Finally, we conclude this chapter in Section 2.4
with a strategy to solve the proposed equation.

2.2 Diffusion as a Physical Process

The physical interpretation of the diffusion process lies in the equilibration of the concentration dif-
ferences. In other words, this process aims at minimizing concentration variations of a substance
without creating or destroying the mass. In this context, two fundamental equations describe this
phenomenon:



6 Chapter 2. Image Processing and Analysis Based on Diffusion Equation Methods

• Fick’s law states that concentration variations∇u produce a substance flux j in the direction of
the negative concentration gradient:

j = −D · ∇u, (2.1)

where D is a positive definite symmetric matrix termed the diffusion tensor, which describes
the speed of the diffusion process.

• The continuity equation expresses that diffusion only transports mass without destroying it or
creating a new one:

∂tu = −∇ · j, (2.2)

with t indicating the time.

Now, by inserting Fick’s law into the continuity equation, we can realize the diffusion equation

∂tu = ∇ · (D · ∇u) . (2.3)

This equation has been used extensively to model many physical transport processes ( The heat equa-
tion is used to model the heat transfer phenomena, for example). In the context of image processing
and analysis, the concentration is identified with the intensity or grey value ( the pixel value in a
digital image) at a particular location.

For the general setting of the diffusion equation and depending on the choice of the diffusivity D,
one can find the standard terminology adopted in the literature (see [10]) to define a whole family of
diffusion processes:

• The diffusion equation is called linear, isotropic, and homogeneous when D ∈ R. Then, the
diffusion is the same in all spatial directions and every location.

• If the diffusivity is space-dependent (D = D(x)), then the process is called an inhomogeneous

diffusion.

• If the diffusivity depends on u (D = D(u)), then the process is called a nonlinear diffusion.

• If the diffusivity D is matrix-valued (not unit matrix), the process is called anisotropic diffusion.
Then, the equation has different diffusivity in different directions of space.

Next, we will exhibit the relevant contributions that relate diffusion equations to image restoration
and edge detection.

2.3 Diffusion Models

At the lowest levels in a visual system’s information processing chain, diffusion-based methods are
one of the approaches used for processing and analyzing image data. Different diffusion models have
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been proposed and investigated, and which can be formally written in the following general form: ∂tu (x; t) = F
(
x, u (x; t) ,∇u (x; t) ,∇2u (x; t)

)
in Ω× (0, T]

u (x; 0) = u0 (x) in Ω,
(2.4)

where F is a second-order differential operator and Ω ⊂ R2 is a Lipschitz domain.
With this evolutionary process, we can construct a family of functions (i.e., images) u (x; t)t>0

that represent successive versions of the initial image u0 (x). Accordingly, over time t, u (x; t) can be
regarded as a simplification of the original image u0 (x). So, we can relate the simplified structures
at large scales t with those that correspond to meaningful details in images at small scales.

According to the choice of the operator F, one can obtain a whole of impressive models that have
been investigated extensively in image processing and analysis during at least the last four decades,
as we will see in the following subsections.

2.3.1 Isotropic Linear Diffusion

The classical approaches in edge detection problems presume that the meaningful pieces of informa-
tion included in an image are identified and delimited by boundaries. These boundaries are deter-
mined wherever there are essential variations in the intensity value of the image. In this regard, we
can identify the boundaries of significant objects in the image by thresholding the gradient magnitude
of the image intensity values. However, with the presence of noises or oscillations in the image, we
can expect some points to have important gradient magnitude values without practical significance in
detecting the actual boundaries of objects. Hence, the need for filtering the image before extracting
the edges is of crucial importance.

In 1983, Witkin [61] introduced a continuous approach as a new multi-scale representation for
filtering one-dimensional signals, namely the scale-space formulation. Back then, he observed that
no new structure is created in a scale-space representation while the scale parameter increases. He
formerly considered this property as a fundamental characteristic of the scale-space formulation. That
is, the number of zero-crossings in the derivatives of any order decreased monotonically with scale.
Later in 1984, Koenderink [33] generalized this scale-space theory to two-dimensional signals and
introduced the notion of causality, which means that no new level surfaces have to be created with
the increasing scale parameter.

For continuous two-dimensional images, the scale-space representation is formally built as fol-
lows: Given an image u0 : Ω ⊂ R2 → R, the scale-space representation u : Ω ×R+ → R is
defined such that the representation at zero scales is equal to the original image

u (x; 0) = u0 (x) for all x ∈ Ω, (2.5)
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and the representations at coarser scales are given by the convolution of the given image u0 with
Gaussian kernels K of increasing width σ =

√
2t.

u (x; t) = K (x; t) ∗ u0 (x) for all x ∈ Ω and for all t ∈ R+, (2.6)

where K : Ω×R∗+ → R is the Gaussian kernel

K (x; t) =
1

4πt
e−
∥x∥2

4t . (2.7)

Besides, Koenderink [33] also pointed out that the scale-space representation is explicitly related to
and must fulfill the heat equation on an infinitely extended image domain

∂u
∂u

(x; t) = ∇ · [∇u (x; t)] = ∆u (x; t) . (2.8)

Nevertheless, using this linear diffusion reveals some drawbacks:

• At a small scale t, the noise is constantly interrupting the detection of object boundaries.

• At a large scale t, the noise is smoothed, and the essential features such as edges are blurred,
making them more challenging to identify. Not to mention that linear diffusion filtering dislo-
cates edges while the scale parameter is increasing, which means that features detected at high
levels do not give suitable locations and have to be traced back to the original image, as Witkin
[61] proposed as a practical solution.

Another problem arises since the set of points where the gradient magnitude is more significant than
a threshold parameter constitutes regions (i.e., thick edges) and not curves (i.e., thin edges). So,
to circumvent this drawback, another condition must be added to the thresholding of the gradient
magnitude, namely the maximum gradient condition, that the set of edge points must satisfy:

• In one dimension, the extraction of the maximum gradient points is obtained by seeking points

(x; t) verifying:

ux (x; t) ̸= 0, uxx (x; t) = 0, and uxuxxx (x; t) < 0. (2.9)

• The maximum gradient condition can be fulfilled in two dimensions using the Marr-Hildreth
edge detection method [39]:

∥∇u (x; t)∥ ̸= 0, and ∆u (x; t) = 0. (2.10)

We can also use the Haralick-Canny edge detection method [26, 11] that defines the edges
as "the set of points for which the gradient magnitude assumes a maximum in the gradient
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direction." Then, by introducing a local orthonormal coordinate system (η, ξ), such that in each
point, the ξ-direction is parallel to the maximal change of the intensity (the gradient direction
of u), and the other is perpendicular to it. So we can define an edge, at any scale t, as the points
on the zero-crossing curves of the second-derivative of u in the ξ-direction

(
u

ξξ

)
for which

the third-derivative u
ξξξ

is strictly negative, which leads to the following differential geometric
definition of an edge:

u
ξξ
=

u2
x1

ux1x1 + 2ux1ux2ux1x2 + u2
x2

ux2x2

u2
x1
+ u2

x2

= 0, (2.11)

u
ξξξ

=
u3

x1
ux1x1x1 + 3u2

x1
ux2ux1x1x2 + 3ux1u2

x2
ux1x2x2 + u3

x2
ux2x2x2(√

u2
x1
+ u2

x2

)3 < 0. (2.12)

Additionally, it should be noted, as Clark stated in his paper [15] that the points satisfying
(2.11) and (2.12) are the authentic edges, and the points satisfying (2.11) with u

ξξξ
> 0 are the

phantom edges, while the latter ones are not the edges at all.

Therefore, we can summarize the image filtering process in the following three combined steps:

1. First, we need to smooth the image u to remove noises and other fluctuations by using linear
isotropic diffusion (or convolution of u0 with a gaussian kernel).

2. Next, we extract the maximum gradient points using the Marr-Hildreth method or the Haralick-
Canny method.

3. Finally, we apply the thresholding condition of the gradient magnitude on these maximum
gradient points.

Unfortunately, using the Haralick-Canny or Marr-Hildreth edge detector reveals some inconve-
nience in blurring the critical structure and dislocating effects in their positions (cf. Figure 2.1).

As we will see in the following subsection, another model has been developed by Perona and
Malik [40] to avoid the shortcomings of linear isotropic diffusion.

2.3.2 Isotropic Nonlinear Diffusion

As observed in the last subsection, applying the isotropic linear diffusion filtering to noisy images
blurs the essential features and cannot preserve edge locations while the scale increases. For this
reason, Perona and Malik (PM) devised in their seminal paper [40] a new concept for the scale-
space representation, and they made the diffusion locally adaptive to the structure of the image by
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FIGURE 2.1: Cameraman test image (256 x 256): First column on the left (Up to down):
Original image; Corrupted image by zero-mean white Gaussian noise with σ2 = 0.05;
Restored image by convolution with Gaussian smoothing kernel with standard deviation
σ2 = 10 and σ2 = 30. Second column on the right: the corresponding edges using the

Canny filter.
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introducing a diffusion function g in the equation (2.8), as shown in the following:

∂u
∂t

= ∇ ·
[

g
(
∥∇u∥2

)
∇u
]

= 2g′
(
∥∇u∥2

)
(∇u ·Hu∇u) + g

(
∥∇u∥2

)
∆u,

(2.13)

where Hu is the Hessian matrix of u. Perona and Malik chose such a process to preserve meaningful
features such as edges while reducing irrelevant information such as noise in homogeneous areas. To
this end, they set the diffusion function g as a function satisfying : g (0) = 1, lim

s→+∞
g (s) = 0

g′ (s) ≤ 0, g (s) > 0 for all s ≥ 0.
(2.14)

Several scientific works develop new adaptive diffusion processes for edge detection or image denois-
ing by considering an appropriate diffusion function g [12, 60, 63, 13, 5, 52, 2, 6, 38, 43, 37]. From
PM [40] perspective, we can define the Nonlinear Scale Space

u : Ω× (0, T]→ R (2.15)

as the family of derived images constructed by the PM nonlinear diffusion (2.13).
Next, we will examine and perform behavioral analysis on the PM equation (2.13) by investigating

the relationship between the smoothing-enhancing properties, Koenderinck’s causality requirement,
and the diffusion function g at specific points such as local extrema or authentic edges [15].

Non-Enhancement of Local Extrema

One of the essential properties of scale-space, as mentioned earlier, is that there are fewer details at
higher levels than at lower levels of scales [33]. To illustrate this requirement, the critical points, as
defined below, are considered as part of the image structure.

Definition 2.3.1. (Local Extrema) At a certain scale level t.

• A point (x; t) ∈ Ω× (0, T) is said to be a critical point for the real function u if∇u (x; t) = 0.

• At a critical point (x; t), u (x; t) is a strict local maximum(minimum) if the Hessian matrix of
u is negative (positive) definite. In this case, (x; t) is said to be a local maximum (minimum)
point.

Thus, for some fixed scale level t, if a point (x; t) is said to be a local maximum (minimum) for
the PM scale-space representation u, then u must not increase (decrease) while t increases. In this
regard, the following proposition will illustrate this nonenhancement property:
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Proposition 2.3.1. (Non-enhancement of local extrema [48]) While the scale parameter t increases

and at a critical point (x; t) where ∇u = 0.

No new local extrema is generated⇔ sign (ut) = sign (∆u)⇔ g (0) > 0. (2.16)

Proof. At a critical point, we have ∇u = 0. Then, by using the equation (2.13) we obtain

ut = g (0)∆u. (2.17)

Now, let us assume that (x; t) is a local maximum where the Hessian matrix of u is negative definite
and possesses negative eigenvalues α+ and α− as follows:

α
+/− =

1
2

(
∆u±

√
∆u2 − 4 det (Hu)

)
< 0, (2.18)

where det (Hu) is the determinant of the Hessian matrix Hu .
Since

α+ + α− = ∆u < 0. (2.19)

Then, we conclude that:

No new local maximum is created at (x; t)⇐⇒ (ut < 0) and
(
α
+/− < 0

)
(2.19)⇐⇒ (ut < 0) and (∆u < 0) .

Similarly, one proceeds and obtains:

No new local minimum is created at (x; t)⇐⇒ (ut > 0) and (∆u > 0) .

Thus, in either case, we have:

No new local extrema is created at (x; t)⇐⇒ sign (ut) = sign (∆u)
(2.17)⇐⇒ g (0) > 0.

Which completes the proof.

The requirement (2.16) prevents local extrema from being enhanced and thus avoids the creation
of some false structures in the scale-space representation.

Smoothing-Enhancing of PM Diffusion

Perona and Malik illustrated by experiment in their paper [40] that their model filter shows remarkable
results and outperforms the Marr-Hildreth and Canny filters by demonstrating that the edges are not
blurred and remain sharp for a long time. The following reasons can explain this improvement:
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(i) The PM diffusion filtering combines the smoothing of the homogeneous area with the edge
detection operation in the same process.

(ii) The diffusion function g plays at the same time the role of selecting and thresholding the maxi-
mum gradient points.

To explain the first reason (i), we can write, using (2.32), the PM equation as

∂u
∂t

= 2 ∥∇u∥2 g′
(
∥∇u∥2

)
uξξ + g

(
∥∇u∥2

)
∆u

=
[
2 ∥∇u∥2 g′

(
∥∇u∥2

)
+ g

(
∥∇u∥2

)]
uξξ + g

(
∥∇u∥2

)
uηη.

(2.20)

Therefore, in a neighborhood of ∥∇u∥2 = 0, the PM equation is equivalent to

∂u
∂t

= g (0) uξξ + g (0) uηη = g (0)∆u. (2.21)

Thus, at the points where the image has a weak gradient, u locally satisfies (2.21), which means that
the PM model acts as a forward parabolic equation at these points and smooths the homogeneous
area. However, since g is a decreasing function, we can generally assume, for some k > 0, that 2 ∥∇u∥2 g′

(
∥∇u∥2

)
+ g

(
∥∇u∥2

)
> 0 ∥∇u∥2 < k

2 ∥∇u∥2 g′
(
∥∇u∥2

)
+ g

(
∥∇u∥2

)
< 0 ∥∇u∥2 > k.

(2.22)

As a consequence, the PM model can be thought of as a forward-backward parabolic equation. In that
case, the diffusion at edge points can be stopped or reversed, allowing the regions’ boundaries to be
preserved or enhanced.

For now, let us suppose that equation (2.13) has a sufficiently smooth solution u to bring an
explanation to the second reason (ii). To analyze the PM equation’s smoothing-enhancing properties
at edge points, we need to examine the temporal variation of the gradient magnitude of u.

Proposition 2.3.2. The temporal variation of the gradient magnitude of u is defined as follows [48]:(
∥∇u∥2

)
t
=8g′′ [∇u ·Hu∇u]2

+ 4g′
[
3 tr(Hu) (∇u ·Hu∇u)− 2 ∥∇u∥2 det (Hu) + (∇u · Au∇u)

]
+ 2g tr(Au),

(2.23)

where g := g
(
∥∇u∥2

)
, and

Au =

(
∇u · ∇ux1x1 ∇u · ∇ux1x2

∇u · ∇ux1x2 ∇u · ∇ux2x2

)
. (2.24)
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Proof. We have
∇g = ∇g

(
∥∇u∥2

)
= 2g′Hu∇u. (2.25)

By using the PM equation (2.13), we get(
∥∇u∥2

)
t
= 2∇u · ∇ut = 2∇u · ∇ [∇g · ∇u + g∆u] . (2.26)

Then, according to (2.25), we obtain(
∥∇u∥2

)
t
=2∇u · ∇

[
2g′ (∇u ·Hu∇u) + g∆u

]
=2∇u ·

[
2 (∇u ·Hu∇u)∇g′ + 2g′∇ (∇u ·Hu∇u) + ∆u∇g + g∇ (∆u)

]
.

(2.27)

And knowing that

∇ [∇u ·Hu∇u] = J⊤
Hu∇u
∇u + J⊤∇u

Hu∇u

= J⊤
Hu∇u
∇u + H2

u∇u

= 2H2
u∇u + Au∇u,

(2.28)

where J⊤
Hu∇u

is the transpose of the Jacobian matrix of Hu∇u, we get

(
∥∇u∥2

)
t
=2∇u ·

[
4g′′ (∇u ·Hu∇u)Hu∇u + 2g′

(
2H2

u∇u + Au∇u
)

+ 2g′∆uHu∇u + g∇ (∆u)
]

=8g′′ [∇u ·Hu∇u]2

+ 4g′
[
2
(
∇u ·H2

u∇u
)
+ (∇u ·Au∇u) + ∆u (∇u ·Hu∇u)

]
+ 2g∇u · ∇ (∆u) .

(2.29)

Now, according to Cayley–Hamilton theorem the matrix Hu is annihilated by its characteristic poly-
nomial. Which means that

H2
u − tr (Hu)Hu + det (Hu) I = 0, (2.30)

where u is the identity matrix. Then,

∇u ·H2
u∇u = tr (Hu) (∇u ·Hu∇u)− ∥∇u∥2 det (Hu) . (2.31)

Finally, by inserting the equation (2.31) into (2.29), we can obtain (2.23). This finishes completes the
proof.

Now, before describing the smoothing-enhancing properties for PM diffusion, we first represent
the two conditions (2.11) and (2.12) in a more simplified manner (as it is shown in [48]):
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Proposition 2.3.3. The conditions (2.11) and (2.12) are equivalent to:

uξξ =
1

∥∇u∥2 [∇u ·Hu∇u] = 0, (2.32)

uξξξ =
1

∥∇u∥3 [∇u · Au∇u] < 0. (2.33)

Proof. We know that

uξ = ∇u · 1
∥∇u∥∇u = ∥∇u∥ . (2.34)

Since,

uξξ = ∇uξ ·
1
∥∇u∥∇u = ∇ (∥∇u∥) · 1

∥∇u∥∇u (2.35)

and

∇ (∥∇u∥) = 1
∥∇u∥Hu∇u. (2.36)

Then, we obtain the second directional derivative of u in the gradient direction that corresponds to
(2.11):

uξξ =
1

∥∇u∥2 [∇u ·Hu∇u] = 0. (2.37)

On the other hand, we have

uξξξ = ∇uξξ ·
1
∥∇u∥∇u

= ∇
[

1

∥∇u∥2 (∇u ·Hu∇u)

]
· 1
∥∇u∥∇u

=

[
(∇u ·Hu∇u)∇

(
1

∥∇u∥2

)
+

1

∥∇u∥2∇ (∇u ·Hu∇u)

]
· 1
∥∇u∥∇u.

(2.38)

Since,

∇
(

1

∥∇u∥2

)
=
−2

∥∇u∥4 Hu∇u. (2.39)

By using (2.28), we get

uξξξ =
1

∥∇u∥3

[
−2
(
∇u ·Hu∇u
∥∇u∥

)2

+ 2
(
∇u ·H2

u∇u
)
+ (∇u ·Au∇u)

]
. (2.40)
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Finally, by inserting (2.31) into (2.40), we obtain:

uξξξ =
1

∥∇u∥3

[
− 2

(
∇u ·Hu∇u
∥∇u∥

)2

+ 2 tr (Hu) (∇u ·Hu∇u)

− 2 ∥∇u∥2 det (Hu) + (∇u ·Au∇u)

]
.

(2.41)

Now, by considering the condition (2.32) and the fact that Hu is a real symmetric matrix, we can
derive the following:

uξξ = α+ cos2 (φ) + α− sin2 (φ) = 0, (2.42)

where α
+/− are the eigenvalues of Hu and φ is the angle between v and an eigenvector of α+ . Which

leads us to three cases [47]:

1. If α+ = α− = 0, then we have a flat shape, which is a case that has to be excluded.

2. If α+ × α− < 0, then we obtain saddle shapes, that are not considered as edges; This case is
also excluded.

3. If

 α+ = 0, φ ≡ 0 mod (π)

α− = 0, φ ≡ π
2 mod (π)

then we have cylindrical shapes.

Accordingly, the only case that corresponds to edge shapes is the third one, which means that

det (Hu) = α+ × α− = 0. (2.43)

Thus, by considering this result with that of (2.37), we conclude from equation (2.41) that

uξξξ =
1

∥∇u∥3 [∇u ·Au∇u] < 0. (2.44)

Which ends the demonstration.

Since, the matrix Au is negative definite (2.33). Then its eigenvalues µ+ and µ− satisfy

µ+ + µ− = tr (Au) < 0, (2.45)

where tr (Au) is the trace of Au . Moreover, we can express µ
+/− as

µ
+/− =

1
2

(
tr (Au)±

√
tr (Au)

2 − 4 |Au |
)
=

tr (Au)

2
β
+/− (2.46)

such that

β
+/− = 1±

√
1− 4

|Au |
tr (Au)

2 (2.47)
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and  1 ≤ β+ < 2

0 < β− ≤ 1.
(2.48)

On the other hand, since Au is a real symmetric matrix. Then, there exists an orthogonal matrix O
such that

Au =
1
2

tr (Au)OΛO−1 =
1
2

tr (Au)OΛO⊤, (2.49)

where Λ is the real diagonal matrix

Λ =

(
β− 0
0 β+

)
, (2.50)

and the eigenvectors a1 and a2 are the corresponding columns of O.
Now we provide our main result that considers the relationship between the diffusion function g

and the smoothing-enhancing properties of the PM diffusion.

Proposition 2.3.4. At a maximum gradient point where the two conditions (2.32) and (2.33) are met,

we have the following results [48]:

The edge is enhanced by (2.13)⇐⇒
(
∥∇u (x; t)∥2

)
t
> 0

⇐⇒ ∥∇u∥2 g′
(
∥∇u∥2

)
Q (w) + g

(
∥∇u∥2

)
< 0.

(2.51)

The edge is smoothed by (2.13)⇐⇒
(
∥∇u (x; t)∥2

)
t
< 0

⇐⇒ ∥∇u∥2 g′
(
∥∇u∥2

)
Q (w) + g

(
∥∇u∥2

)
> 0.

(2.52)

Where, Q denotes the quadratic form associated to Λ and w = (ξ · a1 ξ · a2)
⊤ is a unit vector such

that:

β− ≤ Q (w) ≤ β+ . (2.53)

Proof. Suppose that the conditions (2.32) and (2.33) are satisfied. We have det (Hu) = 0 and accord-
ing to proposition 2.3.2, we get:(

∥∇u∥2
)

t
= 4g′

(
∥∇u∥2

)
(∇u ·Au∇u) + 2g

(
∥∇u∥2

)
tr (Au) . (2.54)

Substituting (2.49) into the equation (2.54), we find:

(
∥∇u∥2

)
t
=4g′

(
∥∇u∥2

)
∇u ·

(
1
2

tr (Au)OΛO⊤
)
∇u + 2g

(
∥∇u∥2

)
tr (Au)

=2 tr (Au)
[
∥∇u∥2 g′

(
∥∇u∥2

) (
ξ⊤OΛO⊤ξ

)
+ g

(
∥∇u∥2

)]
.

(2.55)
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Then, by putting w = O⊤ξ and Q (w) = w⊤Λw. We obtain:(
∥∇u∥2

)
t
= 2 tr (Au)

[
∥∇u∥2 g′

(
∥∇u∥2

)
Q (w) + g

(
∥∇u∥2

)]
. (2.56)

As long as tr (Au) < 0 (2.45), we conclude that

sign
[(
∥∇u∥2

)
t

]
= − sign

[
∥∇u∥2 g′

(
∥∇u∥2

)
Q (w) + g

(
∥∇u∥2

)]
. (2.57)

Since

∥w∥ =
√
(ξ · a1)

2 + (ξ · a2)
2 =

√
cos2 (θ) + cos2

(π

2
− θ
)
= 1, (2.58)

where θ is the angle between ξ and a1. Then we get

Q (w) = β− cos2 (θ) + β+ sin2 (θ) (2.59)

and
β− ≤ Q (w) ≤ β+ . (2.60)

Which terminates the proof.

Remark 1. if g′ = 0 and g = κ ∈ R, then(
∥∇u∥2

)
t
= 2κ tr (Au) (2.61)

with tr (Au) < 0. In that case, we realize the Heat equation and the edge is smoothed if κ > 0 and is
enhanced if κ < 0.

Remark 2. For every increasing strictly positive (decreasing strictly negative) real function g, the
edges are smoothed (enhanced) during the diffusion process (2.13).

Remark 3. In the one-dimensional case, We consider u : (x; t) ∈ Ω×R+ → u (x; t) ∈ R such that
Ω ⊂ R. Perona and Malik investigated the following diffusion process:

ut =
[

g
(

u2
x

)
ux

]
x

= [ϕ (ux)]x .
(2.62)

If there exists a sufficiently smooth solution u to the above equation, then we have(
u2

x

)
t
= 2ux (ux)t

= 8u4
xu2

xxg′′
(

u2
x

)
+ 4u2

x

(
3u2

xx + uxuxxx

)
g′
(

u2
x

)
+ 2uxuxxxg

(
u2

x

)
.

(2.63)



2.3. Diffusion Models 19

Therefore, at edge location where uxx = 0, uxuxxx < 0, we have:

The edge is enhanced by (2.62)⇐⇒
(

u2
x

)
t
= 2uxuxxx

[
2u2

xg′
(

u2
x

)
+ g

(
u2

x

)]
> 0

⇐⇒ 2u2
xg′
(

u2
x

)
+ g

(
u2

x

)
< 0

⇐⇒ ϕ′ (ux) < 0.

(2.64)

The edge is smoothed by (2.62)⇐⇒
(

u2
x

)
t
= 2uxuxxx

[
2u2

xg′
(

u2
x

)
+ g

(
u2

x

)]
< 0

⇐⇒ 2u2
xg′
(

u2
x

)
+ g

(
u2

x

)
> 0

⇐⇒ ϕ′ (ux) > 0.

(2.65)

Where ϕ is the flux function defined as ϕ (ux) = g
(
u2

x
)

ux.

Now, we can present an explanation to (ii) of (2.3.2) by setting examples for the diffusion function:

Example 1. If we take for example the diffusion functions, proposed by Perona and Malik,

g1 (s) = exp
(
− s

λ2

)
(2.66)

and

g2 (s) =
1

1 + s
λ2

, (2.67)

where λ > 0 is a threshold parameter.

• In one-dimensional case: we have

2u2
xg′1
(

u2
x

)
+ g1

(
u2

x

)
=

[
1− 2

(ux

λ

)2
]

exp
(
−
(ux

λ

)2
)

(2.68)

and

2u2
xg′2
(

u2
x

)
+ g2

(
u2

x

)
=

1−
(ux

λ

)2[
1 +

(ux
λ

)2
]2 . (2.69)

Therefore, for some scale t and at a local maximum point x, we conclude that

|ux (x; t)| > K ⇒
(

u2
x

)
t
(x; t) > 0, (2.70)

|ux (x; t)| < K ⇒
(

u2
x

)
t
(x; t) < 0, (2.71)

where K = λ√
2

if we use the first diffusion function g1 (2.66), and K = λ if we take the second
diffusion function g2 (2.67).

• In two-dimensional case: We have the following results:
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If we use the first diffusion equation g1 (2.66), we have

∥∇u∥2 g′1
(
∥∇u∥2

)
Q (w) + g1

(
∥∇u∥2

)
=

[
1−

(
∥∇u∥

λ

)2

Q (w)

]
exp

(
−
(
∥∇u∥

λ

)2
)

.

(2.72)
Then, we can deduce for some scale t and at a local maximum point x

∥∇u (x; t)∥ > λ√
Q (w)

⇒
(
∥∇u∥2

)
t
(x; t) > 0, (2.73)

∥∇u (x; t)∥ < λ√
Q (w)

⇒
(
∥∇u∥2

)
t
(x; t) < 0. (2.74)

If we use the second diffusion equation g2 (2.67), we have

∥∇u∥2 g′2
(
∥∇u∥2

)
Q (w) + g2

(
∥∇u∥2

)
=

1 + (1−Q (w))
(
∥∇u∥

λ

)2

[
1 +

(
∥∇u∥

λ

)2
]2 . (2.75)

Then, from (2.47) and (2.59) one can derive

1−Q (w) = 1−
(

β− cos2 (θ) + β+ sin2 (θ)
)

= (1− β−) cos2 (θ) + (1− β+) sin2 (θ)

= (1− β−)
(

cos2 (θ)− sin2 (θ)
)

.

(2.76)

Therefore,

• Q (w) = 1⇔ β− = β+ = 1 or θ = π
4 + kπ

2 , k ∈ Z

⇔ (∇u · ∇ux1x1 −∇u · ∇ux2x2)
2 + 4 (∇u · ∇ux1x2)

2 = 0 or θ = π
4 + kπ

2 , k ∈ Z

⇔ Au = (∇u · ∇ux1x1) I = (∇u · ∇ux2x2) I or θ = π
4 + kπ

2 , k ∈ Z,

• Q (w) > 1⇔ θ ∈ ∪k∈Z

]
π
4 + kπ, 3π

4 + kπ
[

,

• Q (w) < 1⇔ θ ∈ ∪k∈Z

]
−π

4 + kπ, π
4 + kπ

[
.

Thus, at a particular scale t and a local maximum point x, we conclude that ∥∇u∥ > λ√
Q(w)−1

θ ∈ ∪k∈Z

]
π
4 + kπ, 3π

4 + kπ
[ =⇒

(
∥∇u∥2

)
t
(x; t) > 0, (2.77)
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 ∥∇u∥ < λ√
Q(w)−1

θ ∈ ∪k∈Z

]
π
4 + kπ, 3π

4 + kπ
[

or

Au = ρI, ρ ∈ R∗−

or

θ ∈ ∪k∈Z

[
−π

4 + kπ, π
4 + kπ

]


=⇒

(
∥∇u∥2

)
t
(x; t) < 0. (2.78)

Consequently, on the whole, we can conclude from the above results that the maximum gradients
points (edges) verifying conditions that lead to

(
∥∇u∥2

)
t
(x; t) > 0 are preserved or enhanced

during the diffusion process. On the other hand, however, edges that do not satisfy conditions that
lead to

(
∥∇u∥2

)
t
(x; t) > 0 are smoothed during the PM diffusion.

Example 2. The second example concerns the Charbonnier diffusion function [13]:

g3 (s) =
1√

1 + s
λ2

, where λ > 0. (2.79)

Then, by using this function in the result of proposition 2.3.4, we get:

∥∇u∥2 g′3
(
∥∇u∥2

)
Q (w) + g3

(
∥∇u∥2

)
=

2 + (2−Q (w))
(
∥∇u∥

λ

)2

2

(√
1 +

(
∥∇u∥

λ

)2
)3 . (2.80)

Then, as long as Q (w) < 2, the Charbonnier diffusion process smooths the edges constantly.

As can be seen from these examples, we can first assume that the diffusion function’s choice
directly impacts the behavior of the PM equation at essential locations like edges. Secondly, we have
seen that this behavior also changes with dimension; that is, at the edge locations and in contrast to
the one-dimensional case, the diffusion behavior in the two-dimensional case depends not only on the
threshold parameter λ but also on a local structure expressed by the matrix Au .

In conclusion, we can presume from the above analysis that the PM equation generalizes and
combines the two classical methods, specifically the edge detection and scale-space theories, in only
one approach. Besides, this combination has allowed the PM equation to be one of the leading
restoration techniques in image processing and analysis.
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Some Theoretical Results around PM Equation

Unfortunately, the PM equation presents some theoretical difficulties due to its forward-backward
nature, as we have seen earlier. In this respect, the nonmonotonicity of the flux function

f (s) =
s

1 +
( s

λ

)2 (2.81)

proposed by Perona and Malik made the existence of solutions hard to prove; for more detailed
information, we refer to [54] and the references therein. In this context, several attempts have been
suggested to provide a mathematical investigation of the PM equation. Kawohl and Kutev [31] proved
in one dimension that the PM equation does not have global weak C2 solutions for initial data that
involve backward diffusion. Kichenassamy [32] provides a new notion of generalized solutions that
are piecewise linear and contain jumps. You et al. [63] analyzed the energy functional leading to
the PM equation as the steepest descent method and proved that such energy has an infinite number
of global minima, which are dense in the image space. So, this makes the process unstable for even
weak perturbations of the initial image.

Under some challenging conditions, the existence and uniqueness of weak solutions for the PM
model have been investigated in the bounded variation space BV (Ω) [4]. In some other functional
frameworks, Wang and Zhou have thoroughly studied in [52] and proved the existence and uniqueness
of weak solutions in the Orlicz space LlogL (Ω) using a new diffusion function

g (s) =


s+(s+1) log(s+1)

s(s+1) for all s > 0

2 for s = 0.
(2.82)

Perona and Malik Regularized models

In case of the need to keep the desired purpose of the forward-backward PM diffusion, one has to
introduce a regularization method to stabilize the PM process and make the problem well-posed.
Catté et al. [12] proposed inserting the regularization directly into the PM equation by replacing the
image gradient in the diffusion function g

(
∥∇u∥2

)
with a smooth version of it Gσ ∗ ∇u, where

Gσ is a smoothing kernel defined as in (2.7) with σ =
√

2t. Catté et al. suggested the following
regularized model: 

∂u
∂t (x; t) = ∇ ·

[
g
(
∥(∇Gσ ∗ u) (x; t)∥2

)
∇u (x; t)

]
u (x; 0) = u0 (x) .

(2.83)

The existence, uniqueness and regularity of a solution for σ > 0 have been proven in [12]. After that,
various studies and analyses for this model were made by Whitaker and Pizer [60] on the regulariza-
tion parameter σ. Moreover, a thorough examination of the impact of the threshold parameter of this
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model has been accomplished by [35].
Another regularized method for the PM equation proposed to restore images using the energy

method. Image restoration is considered a necessary preprocessing step for applications that rely on
image quality, such as segmentation and pattern recognition. Hence, many researchers showed great
interest in using the variational approach [44, 63, 5, 13, 9, 7, 62, 8, 34, 37], which attempts to seek a
solution among the minima of some energy functional, which generally has the form:

min
u

{
F (u) :=

∫
Ω

(
ϕ (|∇u|) + ρ

2
(u− u0)

2
)

dΩ
}

, (2.84)

where

• Ω ⊂ R2 is an open bounded domain,

• u0 and u are the observed and the reconstructed images defined as functions of Ω ⊂ R2 −→ R

that associate each pixel x ∈ Ω to the gray level u (x) or u0 (x),

• ϕ : R+ → R is a nonnegative increasing function with ϕ (0) = 0,

• ρ ∈ R+, is a weighting parameter that enables to adjust the influence of the data term in the
regularizing term.

For a moment, let us assume that a particular smooth function u is a minimizer of F (u). Then, using
variational calculus, one can prove that this function is a solution to the Euler-Lagrange equation

ρ (u− u0) = ∇ ·
[

ϕ′ (|∇u|)
|∇u| ∇u

]
(2.85)

with homogeneous Neumann boundary conditions. Thus, by denoting

g (s) =
ϕ′ (s)

s
for all s > 0, (2.86)

one can regard the above elliptic PDE as a fully implicit time discretization of the PM diffusion
equation; see [45, 57] for more details.

Many variational approaches have been developed during the last thirty years. The most famous
one was the total variation (TV) denoising model suggested by Rudin et al. in their seminal paper
[44]. In addition, several improved nonlinear diffusion models for image restoration derived from TV
model have been proposed in the last twenty years; for more detailed information, we refer to [4, 7,
62, 8, 34, 37] and the references therein.

Furthermore, Weickert [55, 54] has carried out another regularization method for the PM equation
leading to anisotropic nonlinear diffusion, as we will see in the following subsection.
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2.3.3 Anisotropic Nonlinear Diffusion

As Weickert [54] pointed out, the isotropic nonlinear equation handles (2.13) an image feature with
the same amount of blurring in all its directions. For instance, this process is not capable of success-
fully eliminating noises at edge locations (cf. Figure 2.2).

FIGURE 2.2: Image restoration of test image(128 x 128) [54]. TOP LEFT: Test image;
TOP RIGHT: Linear diffusion filter, t = 80. BOTTOM LEFT: Nonlinear isotropic
diffusion filter (Catté et al. model), λ = 3.5, σ = 3, t = 8. BOTTOM RIGHT:

Nonlinear anisotropic diffusion filter, λ = 3.5, σ = 3, t = 8

To illustrate this observation, we can interpret for a moment the diffusion behavior of the following
PM equation at edge locations

∂u
∂t

=
[
2 ∥∇u∥2 g′

(
∥∇u∥2

)
+ g

(
∥∇u∥2

)]
uξξ + g

(
∥∇u∥2

)
uηη. (2.87)
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Therefore, to encourage diffusion along with edges rather than across them, we have to suppose that
the coefficient of uξξ goes to zero, while the coefficient of uηη does not disappear, which means that

lim
s→∞

2sg′ (s) + g (s) = 0 (2.88)

and
lim
s→∞

g (s) > 0. (2.89)

However, condition (2.89) contradicts the hypothesis on which the PM equation is based. Addition-
ally, the above two conditions are not compatible, as it is asserted in [51].

Accordingly, it might be wise to consider the orientation of essential features by using anisotropic
diffusion. Weickert introduced this property in his papers [55, 56] by defining at any point (x1, x2)

in the space Ω, an orientation descriptor D = D
(

Jρ (∇uσ)
)

using the structure tensor, which is
convenient to identify features like corners and T-junctions [54]. In this case, the structure tensor is
defined by

Jρ (∇uσ) := Kρ ∗ (∇uσ ⊗∇uσ) (ρ ≥ 0) , (2.90)

where uσ represent the convolution of u with a Gaussian kernel, and Kρ stands for the Gaussian

Kρ(x) =
1

2πρ2 exp

(
−|x|

2

2ρ2

)
. (2.91)

The diffusion tensor D is obtained using the eigenvectors and eigenvalues of Jρ as follows:

D := f+ (λ+ , λ−) θ+θ⊤
+
+ f− (λ+ , λ−) θ−θ⊤− , (2.92)

where λ
+/− and θ

+/− are respectively the eigenvalues and eigenvectors of the tensor structure Jρ and
f is the function defined as (see [54]): f− (λ+ , λ−) = 1

f+ (λ+ , λ−) = g (λ+) ,
(2.93)

where

g (s) :=

 1 (s ≤ 0)

1− exp
(
−Cm
(s/λ)

)
(s > 0)

(2.94)

with Cm = C4 = 3.31488, λ > 0.
Many research studies adopted this approach using different functions f (see, for example, [16,

25] and the reference therein). In the following, a new anisotropic nonlinear diffusion equation is
provided and discussed.
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2.4 The Proposed Model

This paragraph will discuss the reasons behind the choice of our proposed model. In book chapter
[41], Perona et al. mentioned that the remarkable experimental results are performed using a discrete
scheme that is consistent with the following anisotropic diffusion

∂u
∂t

= ∇ ·
[(

g (|ux1 |) 0
0 g (|ux2 |)

)(
ux1

ux2

)]
. (2.95)

Moreover, as noted earlier, the type (2.13) model uses the gradient magnitude as a local descriptor
operator for the image edge detector. However, digital images present some difficulties in their dis-
crete structure; they are discrete in space and intensity value. Consequently, one may need to adapt
to the digital image structure and generalize the equation (2.95) by considering differential operators
that respond to vertical, horizontal, and diagonal edges. Therefore, motivated by the above reasoning,
we designed a new anisotropic nonlinear diffusion equation with a novel matrix diffusion tensor:

∂u
∂t
−∇ · [D∇u∇u] = 0, (2.96)

where D∇u , the diffusion tensor, is a real symmetric matrix of R2×2 defined as follows:

D∇u =

g (|ux1 |) +
g(|ux12 |)+g(|ux−12 |)

2
g(|ux12 |)−g(|ux−12 |)

2

g(|ux12 |)−g(|ux−12 |)
2 g (|ux2 |) +

g(|ux12 |)+g(|ux−12 |)
2

 , (2.97)

g : R+ → R is a positive function, and

∂x1u := ux1 := ∇u · e1

∂x2u := ux2 := ∇u · e2

∂x12u := ux12 := ∇u · e12 := ∇u · e1+e2

|e1+e2 |
∂x−12u := ux−12 := ∇u · e−12 := ∇u · −e1+e2

|−e1+e2 |
,

with (e1 , e2) is the canonical basis of R2. Besides, the matrix D∇u has two eigenvalues λ
+/− as

follows:

λ
+/− =

1
2

(
g (|ux1 |) + g (|ux2 |) + g (|ux12 |) + g

(∣∣ux−12

∣∣)
±
√
(g (|ux1 |)− g (|ux2 |))

2 +
(

g (|ux12 |)− g
(∣∣ux−12

∣∣))2
)

.
(2.98)
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Since g > 0 and

λ− =
1

2λ+

[
2
(

g (|ux1 |) g (|ux2 |) + g (|ux12 |) g
(∣∣ux−12

∣∣))
+ (g (|ux1 |) + g (|ux2 |))

(
g (|ux12 |) + g

(∣∣ux−12

∣∣)) ].

(2.99)

Then, we deduce that the matrix D∇u is a real symmetric positive definite matrix.

2.4.1 Description of the Proposed Model

Our model’s main objective is to allow strong directional smoothing within the areas where |ux1 |,
|ux2 |, |ux12 |, or

∣∣ux−12

∣∣ is small and prevent blurring boundaries, contours, or corners that separate
neighboring areas, where one or a combination of these differential operators have substantial value.
Some sufficient assumptions have to be made to ensure our nonlinear diffusion meets acceptable
behavior along these lines. Therefore, we can assume, as exhibited by Perona-Malik [40], some
minimal hypotheses on g: g : R+ → R is C1-function such that g (s) > 0, g′ (s) ≤ 0

lim
s→0

g(s) > 0, lim
s→∞

g(s) = 0.
(2.100)

Besides, due to the decreasing positivity of the function g, it is evident that our model’s behavior
(2.96) encourages smoothing along edges in the e1, e2, (e1 + e2), or (−e1 + e2) directions and ceases
across them.

To examine the parabolicity of the proposed model, we may first express the equation (2.96) and
present it as:

Proposition 2.4.1. The equation (2.96) is equivalent to:

∂u
∂t

=∂x1 (g (|ux1 |) ux1) + ∂x2 (g (|ux2 |) ux2)

+ ∂x12 (g (|ux12 |) ux12) + ∂x−12

(
g
(∣∣ux−12

∣∣) ux−12

)
.

(2.101)

Proof. First, it is clear that

∂x1 (g (|ux1 |) ux1) + ∂x2 (g (|ux2 |) ux2) = ∇ ·
[(

g (|ux1 |) 0
0 g (|ux2 |)

)(
ux1

ux2

)]
. (2.102)
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On the other hand, we have

∂x12 (g (|ux12 |) ux12) + ∂x−12

(
g
(∣∣ux−12

∣∣) ux−12

)
= ∇

(
g (|ux12 |)∇u · e1 + e2

|e1 + e2|

)
· e1 + e2

|e1 + e2|
+∇

(
g
(∣∣ux−12

∣∣)∇u · −e1 + e2

|−e1 + e2|

)
· −e1 + e2

|−e1 + e2|

=
1
2

[
∂x1 (g (|ux12 |) (ux1 + ux2)) + ∂x2 (g (|ux12 |) (ux1 + ux2))

− ∂x1

(
g
(∣∣ux−12

∣∣) (−ux1 + ux2)
)
+ ∂x2

(
g
(∣∣ux−12

∣∣) (−ux1 + ux2)
) ]

=
1
2

[
∂x1

((
g (|ux12 |) + g

(∣∣ux−12

∣∣)) ux1

)
+ ∂x2

((
g (|ux12 |) + g

(∣∣ux−12

∣∣)) ux2

)
+ ∂x2

((
g (|ux12 |)− g

(∣∣ux−12

∣∣)) ux1

)
+ ∂x1

((
g (|ux12 |)− g

(∣∣ux−12

∣∣)) ux2

) ]
=

1
2
∇ ·

[(
g (|ux12 |) + g

(∣∣ux−12

∣∣)) (ux1

ux2

)
+
(

g (|ux12 |)− g
(∣∣ux−12

∣∣)) (ux2

ux1

)]

=
1
2
∇ ·



(

g (|ux12 |) + g
(∣∣ux−12

∣∣)) (
g (|ux12 |)− g

(∣∣ux−12

∣∣))
(

g (|ux12 |)− g
(∣∣ux−12

∣∣)) (
g (|ux12 |) + g

(∣∣ux−12

∣∣))
(ux1

ux2

) .

(2.103)

Now, let ϕ : R+ → R be a function such that ϕ′ (s) = sg (s).

Proposition 2.4.2. For a sufficiently smooth function u, it is easy to show that the model (2.101) can

be formulated as
∂u
∂t

= a11ux1x1 + 2a12ux1x2 + a22ux2x2 , (2.104)

where

a11 =

[
ϕ′′ (|ux1 |) +

ϕ′′ (|ux12 |) + ϕ′′
(∣∣ux−12

∣∣)
2

]
,

a12 = a21 =
ϕ′′ (|ux12 |)− ϕ′′

(∣∣ux−12

∣∣)
2

,

a22 =

[
ϕ′′ (|ux2 |) +

ϕ′′ (|ux12 |) + ϕ′′
(∣∣ux−12

∣∣)
2

]
.

(2.105)

Proof. It is easy to make the following algebraic calculations:

∂xi (g (|uxi |) uxi) = ϕ′′ (|uxi |) uxixi , for i = 1, 2, (2.106)

∂x12 (g (|ux12 |) ux12) =
1
2

ϕ′′ (|ux12 |) (ux1x1 + 2ux1x2 + ux2x2) , (2.107)
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and
∂x−12

(
g
(∣∣ux−12

∣∣) ux−12

)
=

1
2

ϕ′′
(∣∣ux−12

∣∣) (ux1x1 − 2ux1x2 + ux2x2) . (2.108)

Therefore, the equation (2.104) is parabolic if and only if ∑
i,j=1,2

ai,jςiς j ≥ 0, for all ς ∈ R2. We

can express the eigenvalues of the matrix
(
aij
)

as follows

α+/− =
1
2

(
a11 + a22 ±

√
(a11 − a22)

2 + 4a2
12

)
. (2.109)

Thus, if ϕ′′ ≥ 0, then the matrix
(
aij
)

is symmetric positive semi-definite. Therefore, we conclude
that our model (2.96) acts as a forward parabolic equation.

Moreover, we may provide another investigation analysis of our model by examining the eigen-
values and the eigenvectors of the matrix D∇u . The matrix D∇u has two eigenvalues λ

+/− with θ
+/−

are the corresponding eigenvectors
θ
+/− =

η
+/−∣∣η
+/−

∣∣ , (2.110)

where

η
+/− =

g (|ux1 |)− g (|ux2 |)±
√
(g (|ux1 |)− g (|ux2 |))

2 +
(

g (|ux12 |)− g
(∣∣ux−12

∣∣))2

g (|ux12 |)− g
(∣∣ux−12

∣∣)
 ,

(2.111)
provided that |ux12 | ̸=

∣∣ux−12

∣∣. We can then expand the first equation of (2.96) into

∂u
∂t

= ∇ ·
[
λ+θ+θ

⊤

+
∇u
]
+∇ ·

[
λ−θ−θ

⊤

−∇u
]

. (2.112)

Accordingly, the diffusion caused by (2.112) is measured by the λ
+/− values and oriented towards

θ
+/− . Specifically, it is clear from the expression of λ

+/− that λ+ ≥ λ− > 0, which means that the
diffusion towards θ+ is privileged over θ− . Furthermore, we can deduce the following results:

• In flat areas: we have

{
|ux1 | = |ux2 | and |ux12 | =

∣∣ux−12

∣∣}⇐⇒ {
|ux1 | = |ux2 | = |ux12 | =

∣∣ux−12

∣∣ = 0
}

.

Which means that, λ+ = λ− = 2g (0) > 0. Then, the diffusion is isotropic, linear, and the
smoothing effect is the same in all directions.

• At straight edges (λ+ > λ− = 0):

For instance, we can assume that ux1 = ux2 and |ux1 | >> 0. Then, we obtain
∣∣ux−12

∣∣ = 0 and

|ux12 | >> 0. Which implies that



30 Chapter 2. Image Processing and Analysis Based on Diffusion Equation Methods

 λ+ = g (0) , θ+ =
(

1√
2
− 1√

2

)⊤
λ− = 0, θ− =

(
− 1√

2
− 1√

2

)⊤
.

Consequently, the diffusion process is anisotropic and oriented along the (−e1 + e2) direction.

• At corners (λ+ ≥ λ− > 0):

According to the characteristics of the function g, the diffusion is anisotropic and oriented along
θ+ and θ− directions.

In fact, the difference (λ+ − λ−)
2 = (g (|ux1 |)− g (|ux2 |))

2 +
(

g (|ux12 |)− g
(∣∣ux−12

∣∣))2 gives
insights into our diffusion model’s anisotropic property. In other words, it indicates the isotropic
diffusion for the zero value and the anisotropic diffusion for larger values.

2.4.2 New Adaptive Diffusion Function using Hermite Spline

To construct an adaptive diffusion tensor, the function g is approximated numerically by a cubic
Hermite splines [46] that interpolate numeric data specified at 0 = k0 < k1 < ... < km with m ∈N∗:

g (s) =


pki

P1,ki ki+1
(s) + vki

P2,ki ki+1
(s)

+pki+1
P1,ki+1 ki

(s) + vki+1
P2,ki+1 ki

(s) s ∈
[
ki , ki+1

[
and i ∈ {0, 1, ..., m− 1}

pkm
gkm ,1 (s) + vkm

gkm ,2 (s) s ∈ [km , ∞[ ,

(2.113)

where p· and v· are the coefficients used to define the position and the velocity vector at a specific
point, ki are threshold parameters,

{
Pj,cd

}
is the family of the basis functions composed of polyno-

mials of degree 3 used on the interval [c, d[ such that
P1,cd (s) =

(s−d)2(2s+d−3c)
(d−c)3

P2,cd (s) =
(s−d)2(s−c)

(d−c)2 .

(2.114)

Moreover, we may consider
gkm ,1 (s) =

km
log(km )+2

2s(log(s)+1)−km log(km )
s2

gkm ,2 (s) =
k2

m
log(km )+2

s(log(s)+1)−km (log(km )+1)
s2 .

(2.115)

Various tools can be used to examine the existence of solutions for nonlinear PDEs, such as varia-
tional techniques, compact imbedding theorems,monotonicity method, fixed-point theorems, iterative
methods, and truncation techniques; For more detailed information, we refer to [30, 4, 52, 1, 64, 17,
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14, 34, 25] and the references therein. The following subsection will discuss the strategy used to
prove the existence and uniqueness of weak solutions for the proposed model (2.96).

2.5 Strategies for solving the proposed PDE

To conduct a mathematical analysis of the proposed model, we will adopt the general procedure that
investigates nonlinear PDEs through weak convergence methods [18, 17]. So, let us consider that we
want to solve PDEs under the following abstract form:

P [u] = 0, (2.116)

where P [.] denotes a nonlinear operator, and u is the unknown. Thus, we first need to carefully
choose an appropriate functional space where the problem (2.116) is solvable. Next, an approximation
method can be utilized to extract good approximating problems that are solvable. These problems can
be written as

Pn [un] = 0 (n = 1, 2, ...) , (2.117)

where Pn [.] denotes a nonlinear operator, which is in some way approximates P [.] for a large enough
n, and un is a solution. Different approximation methods can be found in the literature; For instance,
one can apply the Faedo-Galerkin approximations, regularization techniques, iterative methods, or
variational approaches. Finally, we expect the sequence of functions {un}∞

n=1 to converge in a sense
to a solution u for the problem (2.116).

Nevertheless, It should be noted that selecting either the functional framework or the approxi-
mation method to prove the existence of a solution is crucial. On the one hand, with the infinite-
dimensional functional spaces and uniform bounded solutions {un}∞

n=1, we can only confirm the
weak convergence of {un}∞

n=1
(

or a subsequence of {un}∞
n=1
)

to a limit u using the reflexivity
property of the functional space, for example.

un ⇀ u as n→ ∞. (2.118)

On the other hand, the approximation methods mentioned above are not equivalent since they can
generally produce different a priori estimates for approximate solutions for the problem (2.117).

Moreover, some difficulties also arise because of the nonlinearity of the operators; If we can build
approximate nonlinear operators Pn [.] that somehow tend to P [.], it is by no means certain that this
leads to justifying passing to limits within the nonlinearity:

Pn [un]→ P [u] as n→ ∞. (2.119)

Therefore, to overcome these difficulties, we introduce the following strategy to conduct a theoretical
analysis of the proposed model:
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• First of all, we will study, in Chapter 3, the boundary-value problem: ρ (u− u0)− div (D∇u∇u) = 0 in Ω

⟨D∇u∇u, n⟩ = 0 on ∂Ω.
(2.120)

We will demonstrate that this elliptic PDE represents the Euler-Lagrange equation associated
with the minimization problem of the following energy functional:

E (u) =
∫

Ω

([
ϕ (|ux1 |) + ϕ (|ux2 |) + ϕ (|ux12 |) + ϕ

(∣∣ux−12

∣∣)]+ ρ

2
(u− u0)

2
)

dx,
(2.121)

where ρ > 0 and ϕ : R+ → R is a C2 function. We will prove that a solution to the Euler-
Lagrange equation is equivalent to a minimizer of E (u). Then, we will establish the existence
and uniqueness of weak solutions for problem (2.120) using the variational approach and mono-
tonicity property.

• Secondly, we will examine, in Chapter 4, the proposed initial-boundary value problem:
∂u
∂t −∇ · [D∇u∇u] = 0 in Ω× (0, T]

⟨D∇u∇u, n⟩ = 0 on ∂Ω× (0, T]

u (x; 0) = u0 (x) in Ω.

(2.122)

By adopting the implicit iterative method (discretization in time-variable only), we approximate the
nonlinear evolution problem (2.122) through nonlinear elliptic problems. On the one hand, the ex-
istence of solutions for these elliptic problems are proven based on Chapter 3. On the other hand,
the existence of a unique solution for the proposed model (2.122) is proven using the monotonicity
property of the nonlinear operator.

2.6 Conclusion

The following items can summarize this chapter:

1. We have presented the diffusion phenomenon’s physical background and have used standard
terminology to classify different diffusion equations applied in image processing and analysis.

2. We have mentioned the idea of Perona and Malik in combining two approaches, namely scale-
space and edge detection theories, in one model described by a nonlinear isotropic PDE.

3. We have reviewed the anisotropic property established by Weickert concerning the smoothing
along edges rather than across them and have shown its importance in reducing noises at edge
locations.
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4. We have constructed a new nonlinear anisotropic diffusion model in two-dimensional space
based on the digital image structure.

5. We have concluded this chapter with a possible strategy to analyze the proposed model.
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Chapter 3

Quasilinear Second-Order Elliptic Equation
and variational problems

3.1 Introduction

This chapter will investigate the existence and uniqueness of solutions for the following quasilinear
second-order elliptic problem: ρ (u− u0)− div (D∇u∇u) = 0 in Ω

⟨D∇u∇u, n⟩ = 0 on ∂Ω,
(3.1)

where

• Ω is an open bounded domain of R2 with Lipschitz boundary ∂Ω,

• ρ > 0 is a real positive number,

• u0 represents a continuous image,

• D∇u is the diffusion tensor defined in (2.97),

• ⟨., .⟩ denotes the Euclidean scalar product in R2,

• n is the unit outward normal vector on ∂Ω.

In the next section, we will first present the mathematical framework to establish the theoretical
results. Then, we will provide few notations, consider some assumptions, and exhibit preliminary
results needed for the analysis. Next, in Section 3.3, we will consider a new convex variational
problem and discuss its connection to the above quasilinear second-order elliptic PDE. Finally, we
will examine the existence of a unique solution for the above boundary value problem in Section 3.4.
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3.2 Notations, Assumptions, and Preliminary Results

First, we assume that u0 is in L2 (Ω), and we use the following spaceA as a functional framework to
discuss solutions of the boundary-value problem (3.1):

A =

{
u ∈ L2 (Ω) ∩W1,1 (Ω)

∣∣∣∣ ∇u ∈
[

LlogLkm (Ω)
]2
}

, (3.2)

where LlogLkm (Ω) is an Orlicz space (see [3]) defined as

LlogLkm (Ω) :=
{

u : Ω→ R

∣∣∣∣ ∫Ω∩{|u|≥km}
|u| log (|u|) dx < ∞

}
. (3.3)

Next, we supply a few notations and consider some assumptions that will help simplify the theory
in this chapter and the next. To this end, we follow the notations set in [17], and let L be a function,
called the Lagrangian, defined as

L : R2 ×R×Ω→ R, (3.4)

such that
L = L (p, z, x) = L (p1, p2, z, x1, x2) (3.5)

for p ∈ R2, z ∈ R, and x ∈ Ω. Therefore, we denote by p the name of the variable for which we
substitute ∇u, z the variable for which we substitute u (x), and we set

DpL =
(

Lp1 , Lp2

)⊤
DzL = Lz

DxL = (Lx1 , Lx2)
⊤ .

(3.6)

After that, we define a C2 real-valued function ϕ on [0, ∞) by

ϕ (s) =
∫ s

0
rg (r) dr for all s ≥ 0 (3.7)

satisfying the following properties:

ϕ (s) > 0, ϕ′ (s) > 0 for all s > 0

ϕ′′ (s) ≥ 0, sϕ′′ (s) ≤ ϕ′ (s) for all s ≥ 0

ϕ (0) = ϕ′ (0) = 0, ϕ′′ (0) > 0

0 < lim
s→∞

ϕ (s)
s log (s)

< ∞, 0 < lim
s→∞

ϕ′ (s)
log (s)

< ∞

lim
s→∞

ϕ (s)
s

= +∞, lim
s→∞

ϕ′ (s)
s

= 0.

(3.8)
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Therefore, we can deduce from the expression of g (2.113) that

ϕ (s) =


Ci +

3

∑
j=0

Aki ki+1 ,j

j + 2
sj+2 s ∈

[
ki , ki+1

[
, i ∈ {0, 1, ..., m− 1}

Cm + Akm ,1 log (s) + Akm ,2s log (s) s ∈ [km , ∞[ ,

(3.9)

where, for every i ∈ {0, 1, ..., m− 1}, Ci is a constant determined by the continuity of ϕ at ki . In this
case, the values of the coefficients Aki ki+1 ,j can be determined experimentally provided that ϕ satisfies
the above conditions (3.8) on [0, km [. Besides, we may introduce some sufficient conditions on km

and Akm ,. that guarantee the properties of ϕ on [km , ∞[:

km ≥ 1

Akm ,2 > 0

Akm ,1 < km Akm ,2

Akm ,1 ≥ −
km log(km )

2 Akm ,2 .

(3.10)

Finally, we introduce the following lemma that will be used in this chapter and the next:

Lemma 3.2.1. (Monotonicity & Convexity)

Suppose ϕ : R+ → R+ is a C2 convex function. Then for all ξ0 , ξ1 ∈ R2, we have(
D

ξ1
ξ1 −D

ξ0
ξ0

)
· (ξ1 − ξ0) ≥ 0, (3.11)

where D
ξ.

is the symmetric positive definite matrix introduced in (2.97). In this case, the vector field

ξ ∈ R2 7−→ D
ξ
ξ ∈ R2 is called monotone.

Proof. For each t ∈ [0, 1], we put ξt = (1− t) ξ0 + tξ1 . Then, we have

D
ξ1

ξ1 −D
ξ0

ξ0 =
∫ 1

0
d [(ξt · e1) g (|ξt · e1 |) e1 ]

+
∫ 1

0
d [(ξt · e2) g (|ξt · e2 |) e2 ]

+
∫ 1

0
d [(ξt · e12) g (|ξt · e12 |) e12 ]

+
∫ 1

0
d
[(

ξt · e−12

)
g
(∣∣ξt · e−12

∣∣) e−12

]
.

(3.12)
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Since ϕ′′ (s) = g (s) + sg′ (s) ≥ 0, then we conclude

D
ξ1

ξ1 −D
ξ0

ξ0 =
∫ 1

0

[
ϕ′′ (|ξt · e1 |) ((ξ1 − ξ0) · e1) e1

]
dt

+
∫ 1

0

[
ϕ′′ (|ξt · e2 |) ((ξ1 − ξ0) · e2) e2

]
dt

+
∫ 1

0

[
ϕ′′ (|ξt · e12 |) ((ξ1 − ξ0) · e12) e12

]
dt

+
∫ 1

0

[
ϕ′′
(∣∣ξt · e−12

∣∣) ((ξ1 − ξ0) · e−12

)
e−12

]
dt

(3.13)

and (
D

ξ1
ξ1 −D

ξ0
ξ0

)
· (ξ1 − ξ0) =

∫ 1

0

[
ϕ′′ (|ξt · e1 |) ((ξ1 − ξ0) · e1)

2
]

dt

+
∫ 1

0

[
ϕ′′ (|ξt · e2 |) ((ξ1 − ξ0) · e2)

2
]

dt

+
∫ 1

0

[
ϕ′′ (|ξt · e12 |) ((ξ1 − ξ0) · e12)

2
]

dt

+
∫ 1

0

[
ϕ′′
(∣∣ξt · e−12

∣∣) ((ξ1 − ξ0) · e−12

)2
]

dt ≥ 0.

(3.14)

Which completes the proof.

3.3 The Variational Problem

The primary purpose of this section is to prove that any solution to the boundary-value problem (3.1)
represents a minimizer for an energy functional and vice versa. Hence, by using the four directional
derivatives ∂x1 , ∂x2 , ∂x12 , ∂x−12 , we propose the following energy minimization problem:

min
u∈A

E (u) , (3.15)

such that

E (u) =
∫

Ω

([
ϕ (|ux1 |) + ϕ (|ux2 |) + ϕ (|ux12 |) + ϕ

(∣∣ux−12

∣∣)]+ ρ

2
(u− u0)

2
)

dx

=
∫

Ω
L (∇u, u, x) dx.

(3.16)

Before showing the connection of this energy minimization problem to the boundary-value problem
(3.1), we first need to show some growth conditions on L and its derivatives.
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Lemma 3.3.1. Let u and v be two elements of A, and fix an element t ∈ R. The Lagrangian L
satisfies the following growth conditions:

|L (∇u + t∇v, u + tv, x)| ≤ ∑
j=1,2

C1,j

∣∣∣uxj

∣∣∣ (log
(∣∣∣uxj

∣∣∣)+ 1
)

+ ∑
j=1,2

C2,j

∣∣∣vxj

∣∣∣ (log
(∣∣∣vxj

∣∣∣)+ 1
)

+ C3

(
u2 + v2 + u2

0

)
+ C4,

(3.17)

∣∣Lpi (∇u + t∇v, u + tv, x) vxi

∣∣ ≤C |vxi |+ ∑
j=1,2

C1,j

∣∣∣uxj

∣∣∣ log
(∣∣∣uxj

∣∣∣)
+ ∑

j=1,2
C2,j

∣∣∣vxj

∣∣∣ log
(∣∣∣vxj

∣∣∣) for i = 1, 2,
(3.18)

|Lz (∇u + t∇v, u + tv, x) v| ≤ C
[
u2 + u2

0
+ v2

]
(3.19)

for some constants C, C1,j, C2,j, C3, and C4 that may depend on t.

Proof. We have

|L (∇u + t∇v, u + tv, x)| ≤ 4ϕ (|∇u|+ |t| |∇v|) + ρ

2
(u + tv− u0)

2 , (3.20)

∣∣Lpi (∇u + t∇v, u + tv, x) vxi

∣∣ ≤ 3ϕ′ (|∇u|+ |t| |∇v|) |vxi | for i = 1, 2, (3.21)

and

|Lz (∇u + t∇v, u + tv, x) v| = |ρ (u + tv− u0) v| ≤ ρ

2

[
(u2 + u2

0
+ 2 (1 + t) v2

]
. (3.22)

Then, we can distinguish between two cases in (3.20) and (3.21):

• |∇u|+ |t| |∇v| < km :

|L (∇u + t∇v, u + tv, x)| ≤ 4ϕ (km) + ρ
(

2u2 + 2t2v2 + u2
0

)
, (3.23)

∣∣Lpi (∇u + t∇v, u + tv, x) vxi

∣∣ ≤ 3ϕ′ (km) |vxi | for i = 1, 2. (3.24)

• |∇u|+ |t| |∇v| ≥ km :

Since
lim

s→+∞

ϕ (s)
s log (s)

= lim
s→+∞

ϕ′ (s)
log (s)

= Akm ,2 > 0, (3.25)

then for fixed ϵ1, ϵ2 > 0, we may find an l = km such that for all s ≥ l

ϕ (s) ≤ M1s log (s) , ϕ′ (s) ≤ M2 log (s) , (3.26)
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where M1 = ϵ1 + Akm ,2 and M2 = ϵ2 + Akm ,2 . Thus, using Jensen’s inequality (A.9), we can
write

|L (∇u + t∇v, u + tv, x)| ≤4M1 (|∇u|+ |t| |∇v|) log (|∇u|+ |t| |∇v|)

+ ρ
(

2u2 + 2t2v2 + u2
0

)
≤4M1

[
log (2 + 2 |t|) (|∇u|+ |t| |∇v|)

+ ∑
i=1,2

(|uxi | log (|uxi |) + |t| |vxi | log (|vxi |))
]

+ ρ
(

2u2 + 2t2v2 + u2
0

)
.

(3.27)

On the other hand, we also have for i = 1, 2∣∣Lpi (∇u + t∇v, u + tv, x) vxi

∣∣ ≤3M2 log (|∇u|+ |t| |∇v|) |vxi |

≤3M2

[
log (2 + 2 |t|) |vxi |

+ (|∇u|+ |t| |∇v|) log
(
|∇u|+ |t| |∇v|

2 + 2 |t|

)]

≤3M2

[
log (2 + 2 |t|) |vxi |

+ ∑
j=1,2

(∣∣∣uxj

∣∣∣ log
(∣∣∣uxj

∣∣∣)+ |t| ∣∣∣vxj

∣∣∣ log
(∣∣∣vxj

∣∣∣)) ].

(3.28)

Next, we define a weak solution for problem (3.1):

Definition 3.3.1. A function u ∈ A is called a weak solution for problem (3.1) if for any v ∈ A, we
have ∫

Ω
ρ (u− u0) vdx +

∫
Ω

D∇u∇u · ∇vdx = 0. (3.29)

Now, we state the main result for this section:

Theorem 3.3.2. Assume that u ∈ A, then

E (u) = min
w∈A

E (w)⇐⇒ u is a weak solution for problem (3.1).

Proof. First, we suppose that u ∈ A such that E (u) = min
w∈A

E (w). Then we have

u + tv ∈ A (3.30)
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for any v ∈ A and t ̸= 0 sufficiently small. Thus, according to (3.16)

r (t) := E (u + tv) (3.31)

is well defined in an interval near zero. Besides, the difference quotient is expressed as

r (t)− r (0)
t

=
∫

Ω

L (∇u + t∇v, u + tv, x)− L (∇u, u, x)
t

dx

=
∫

Ω
Lt (x) dx,

(3.32)

where
Lt (x) :=

L (∇u + t∇v, u + tv, x)− L (∇u, u, x)
t

for a.e. x ∈ Ω. (3.33)

Moreover, it is obvious to see that

Lt (x) −→ Lp1 (∇u, u, x) vx1 + Lp2 (∇u, u, x) vx2 + Lz (∇u, u, x) v a.e. (3.34)

as t→ 0 and

Lt (x) =
1
t

∫ t

0

d
ds

L (∇u + s∇v, u + sv, x) ds

=
1
t

∫ t

0

[
Lp1 (∇u + s∇v, u + sv, x) vx1 + Lp2 (∇u + s∇v, u + sv, x) vx2

+ Lz (∇u + s∇v, u + sv, x) v
]
ds.

(3.35)

As we return to the results showed in lemma 3.3.1, and knowing that u0 ∈ L2 (Ω) and u, v ∈ A, it is
straightforward to deduce for t ̸= 0 the following

∣∣Lt (x)
∣∣ ≤ C

[
∑

j=1,2

(∣∣∣uxj

∣∣∣ (log
(∣∣∣uxj

∣∣∣)+ 1
)
+
∣∣∣vxj

∣∣∣ (log
(∣∣∣vxj

∣∣∣)+ 1
))

+
(

u2 + v2 + u2
0

) ]
∈ L1 (Ω) .

(3.36)

Therefore, according to Dominated Convergence Theorem, we can conclude that r′ (0) exists and

r′ (0) = lim
t→0

r (t)− r (0)
t

=
∫

Ω

[
Lp1 (∇u, u, x) vx1 + Lp2 (∇u, u, x) vx2 + Lz (∇u, u, x) v

]
dx.

(3.37)



42 Chapter 3. Quasilinear Second-Order Elliptic Equation and variational problems

But, since r is minimized at t = 0 and E is minimized at u, it follows then

∫
Ω

[(
ϕ′ (|ux1 |)
|ux1 |

ux1 +
ϕ′ (|ux12 |)√

2 |ux12 |
ux12 −

ϕ′
(∣∣ux−12

∣∣)
√

2
∣∣ux−12

∣∣ ux−12

)
vx1

+

(
ϕ′ (|ux2 |)
|ux2 |

ux2 +
ϕ′ (|ux12 |)√

2 |ux12 |
ux12 +

ϕ′
(∣∣ux−12

∣∣)
√

2
∣∣ux−12

∣∣ ux−12

)
vx2

+ ρ (u− u0) v

]
dx = 0.

(3.38)

Which is equivalent to ( after some elementary calculations as in the proof of Proposition 2.4.1)∫
Ω

D∇u∇u · ∇vdx +
∫

Ω
ρ (u− u0) vdx = 0. (3.39)

Finally, we conclude that u is a weak solution for the boundary-value problem (3.1).
Conversely, we suppose that u ∈ A is a weak solution for the boundary-value problem (3.1).

Since the mapping (∇u, u) 7−→ L (∇u, u, x) is convex, then we have

L (∇u, u, x) + DpL (∇u, u, x) · (∇w (x)−∇u (x))

+ DzL (∇u, u, x) (w (x)− u (x)) ≤ L (∇w, w, x) for any w ∈ A.
(3.40)

By integrating over Ω and letting v = w− u, we deduce from (3.29) that

E (u) ≤ E (w) , for all w ∈ A, (3.41)

which concludes the proof.

As presented above, we have demonstrated that resolving the boundary-value problem (3.1) is
equivalent to seeking a minimizer for the energy functional E (u).

The following section will discuss the existence and uniqueness of solutions for the problem (3.1)
using the variational approach and the monotonicity of a nonlinear operator (3.11).

3.4 Existence and Uniqueness

In this section, we investigate at the outset the existence of weak solutions for the Euler-Lagrange
equation (3.1) by minimizing the associated energy functional E (u) as defined in (3.16). To this end,
we will follow three steps described by three lemmas.

First, we need to show the existence of a convergent minimizing sequence in the weak topology:
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Lemma 3.4.1. There exists a minimizing sequence {um}∞
m=1 in A such that

lim
m→∞

E (um) = inf
u∈A

E (u) ≤ E (u) , for all u ∈ A. (3.42)

Furthermore, there exist a subsequence
{

umj

}∞

j=1
of {um}∞

m=1 and a function ũ ∈ L2 (Ω)∩W1,1 (Ω)

such that

umj ⇀ ũ weakly in L2 (Ω) ∩W1,1 (Ω) . (3.43)

Proof. 1. On the one hand, since E is bounded below by zero on A, then it must have a greatest
lower bound inf

u∈A
E (u), and therefore there exists a minimizing sequence {um}∞

m=1 in A such

that

lim
m→∞

E (um) = inf
u∈A

E (u) (3.44)

and
E (um) < E (0) + 1, (3.45)

where E (0) = ρ
2

∫
Ω u2

0
dx. Accordingly, we can get

∫
Ω

u2
mdx =

∫
Ω
(um − u0 + u0)

2 dx

≤ 2
∫

Ω
(um − u0)

2 + 2
∫

Ω
u2

0
dx

≤ 4
ρ
(E (um) + E (0))

≤ 4
ρ
(2E (0) + 1) .

(3.46)

It follows then
sup

m
∥um∥L2(Ω) < ∞. (3.47)

2. On the other hand, by fixing any α > 0, we may find β = km > 0 such that for all s ≥ km ,
ϕ (s) ≥ αs. Then, we deduce the following∫

Ω
|∂xi um| dx =

∫
Ω∩{|∂xi um|<km}

|∂xi um| dx +
∫

Ω∩{|∂xi um|≥km}
|∂xi um| dx

≤ km |Ω|+
1
α

∫
Ω∩{|∂xi um|≥km}

ϕ (|∂xi um|) dx

≤ km |Ω|+
1
α

E (um)

≤ km |Ω|+
1
α
(E (0) + 1) for i = 1, 2.

(3.48)

It follows then
sup

m
∥∂xi um∥L1(Ω) < ∞. (3.49)
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Moreover, for an ϵ > 0 sufficiently small, we let αϵ = E(0)+1
ϵ and choose l ≥ km ≥ 1 such that for

all s ≥ l, we have ϕ (s) > αϵs. Hence

∫
Ω∩{|∂xi um|≥l}

|∂xi um| dx ≤ 1
αϵ

∫
Ω∩{|∂xi um|≥l}

ϕ (|∂xi um|) dx

≤ E (um)

αϵ

≤ E (0) + 1
αϵ

= ϵ for i = 1, 2,

(3.50)

and this is true for all m and arbitrary ϵ > 0. It follows then that

lim
l→∞

sup
m

∫
Ω∩{|∂xi um|≥l}

|∂xi um| dx = 0 for i = 1, 2. (3.51)

We conclude then from (3.47), (3.49), (3.51), the weak compactness in L2 (Ω), and the Uni-

form integrability and weak convergence in L1 (see appendix A.6), that there exists a subsequence{
umj

}∞

j=1
of {um}∞

m=1 and a function ũ ∈ L2 (Ω) ∩W1,1 (Ω) such that

umj ⇀ ũ weakly in L2 (Ω) , (3.52)

∇umj ⇀ ∇ũ weakly in
[

L1 (Ω)
]2

. (3.53)

Which ends the proof.

Next, we will prove that this weak limit ũ is indeed in A.

Lemma 3.4.2. The weak limit ũ satisfies ∇ũ ∈
[
LlogLkm (Ω)

]2
, i.e.,

ũ ∈ A. (3.54)

Proof. Since the function f (s) := s log (s) for s ≥ 1 is increasing and convex, so is the function
f (|s|) for all s ≥ 1. Therefore, we can deduce

f (|∂xi ũ|) ≤ f
(∣∣∣∂xi umj

∣∣∣)+ f ′ (|∂xi ũ|)
(

∂xi ũ− ∂xi umj

)
for i = 1, 2. (3.55)
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For M > 0, we denote by ΩM = Ω ∩ {km ≤ |∂xi ũ| ≤ M}. Then, by integrating the above inequality
(3.55) over ΩM ∩

{∣∣∣∂xi umj

∣∣∣ ≥ km

}
, we obtain

∫
ΩM

f (|∂xi ũ|) dx ≤
∫

Ω∩
{∣∣∣∂xi umj

∣∣∣≥km

} f
(∣∣∣∂xi umj

∣∣∣) dx

+
∫

ΩM∩
{∣∣∣∂xi umj

∣∣∣≥km

} f ′ (|∂xi ũ|)
(

∂xi ũ− ∂xi umj

)
dx

≤
∫

Ω∩
{∣∣∣∂xi umj

∣∣∣≥km

} f
(∣∣∣∂xi umj

∣∣∣) dx

+
∫

Ω∩
{∣∣∣∂xi umj

∣∣∣≥km

} f ′ (|∂xi ũ|) χ{km≤|∂xi ũ|≤M}
(

∂xi ũ− ∂xi umj

)
dx.

(3.56)

Since f ′ (|∂xi ũ|) χ{km≤|∂xi ũ|≤M} ∈ L∞ (Ω), then by letting j→ ∞, we get

∫
ΩM

f (|∂xi ũ|) dx ≤ lim inf
j→∞

∫
Ω∩
{∣∣∣∂xi umj

∣∣∣≥km

} f
(∣∣∣∂xi umj

∣∣∣) dx < ∞. (3.57)

Then by letting M→ ∞, we deduce∫
Ω∩{|∂xi ũ|≥km}

f (|∂xi ũ|) dx < ∞. (3.58)

It follows then ∂xi ũ ∈ LlogLkm (Ω), which implies that

ũ ∈ A. (3.59)

Now that our weak limit ũ is in A, it remains then to prove that ũ is actually a minimizer, i.e.,
E (ũ) = min

u∈A
E (u). Unfortunately, the functional E (.) is not continuous for weak convergence, and

hence we cannot deduce directly from the reasoning above that:

E (ũ) = lim
j→+∞

E
(

umj

)
. (3.60)

So, to overcome this difficulty, we only need to prove that E (.) is (sequentially) weakly lower semi-

continuous on A (see [17] for more details):

E (ũ) ≤ lim inf
j→+∞

E
(

umj

)
, (3.61)

which is the purpose of the following lemma.
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Lemma 3.4.3. E (.) is (sequentially) weakly lower semicontinuous on A, i.e.,

E (ũ) ≤ lim inf
j→+∞

E
(

umj

)
. (3.62)

Proof. Knowing that u0 ∈ L2 (Ω) and

umj ⇀ ũ weakly in L2 (Ω) , (3.63)

we have ∫
Ω
(ũ− u0)

2 dx ≤ lim inf
j→∞

∫
Ω

(
umj − u0

)2
dx. (3.64)

Furthermore, by following the same reasoning as set out in the proof of the last lemma, we know that
ϕ (s) for s ≥ 0 is increasing and convex function. Then, we can easily deduce that∫

Ω
ϕ (|∂aũ|) dx ≤ lim inf

j→∞

∫
Ω

ϕ
(∣∣∣∂aumj

∣∣∣) dx (3.65)

for any a ∈ {x1, x2, x12, x−12}. Therefore, by combining (3.64) with (3.65) we conclude

E (ũ) ≤ lim inf
j→∞

E
(

umj

)
= inf

u∈A
E (u) . (3.66)

Finally, we can state our fundamental existence result theorem:

Theorem 3.4.4. Assuming that u0 ∈ L2 (Ω), there exists a weak solution inA for the boundary-value

problem (3.1).

Proof. According to lemma 3.4.1, there exists a minimizing sequence {um}∞
m=1 in A which has a

subsequence that converges weakly to a function ũ in L2 (Ω) ∩W1,1 (Ω). Besides, thanks to the
convexity of ϕ, we have demonstrated, in lemma 3.4.3, that

E (ũ) ≤ lim inf
j→∞

E
(

umj

)
= inf

u∈A
E (u) . (3.67)

But since the weak limit function ũ happens to be inA due to lemma 3.4.2. It follows then that ũ ∈ A
is a minimizer of the energy functional E (u), i.e.,

E (ũ) = min
u∈A

E (u) . (3.68)

Finally, using the theorem 3.3.2, we conclude that ũ is a weak solution to the boundary-value problem
(3.1). Which completes the proof.

Now, we turn our attention to the uniqueness matter:
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Theorem 3.4.5. The weak solution ũ is unique.

Proof. Assuming there is another weak solution û for (3.1). Then, for every φ ∈ A, we have∫
Ω

ρ (û− u0) φdx +
∫

Ω
D∇û∇û · ∇φdx = 0. (3.69)

Which leads to ∫
Ω

ρ (û− ũ) φdx +
∫

Ω
[D∇û∇û−D∇ũ∇ũ] · ∇φdx = 0. (3.70)

Then, if we choose φ = û− ũ ∈ A, we get∫
Ω

ρ (û− ũ)2 dx +
∫

Ω
[D∇û∇û−D∇ũ∇ũ] · (∇û−∇ũ) dx = 0. (3.71)

Thanks to Lemma 3.2.1, we deduce that∫
Ω

ρ (û− ũ)2 dx = 0. (3.72)

Therefore, û = ũ a.e. in Ω. Thus, the boundary-value problem has a unique solution, which com-
pletes the proof.

3.5 Conclusion

This chapter has first analyzed the quasilinear second-order elliptic problem (3.1) by establishing its
equivalence to the convex energy functional minimization problem (3.15). Next, a direct method in
the calculus of variations has been adopted to show directly the existence of a minimizer of an energy
functional rather than solve the boundary-value problem. Finally, the monotonicity of a nonlinear
operator (lemma 3.2.1) has been exploited to demonstrate the uniqueness of solutions to the boundary-
value problem.
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Chapter 4

Implicit Iterative and Monotone Methods in
a Nonlinear Parabolic Problem

4.1 Introduction

This chapter analyzes the existence and uniqueness of weak solutions for the following anisotropic
nonlinear parabolic initial-boundary value problem:

∂u
∂t −∇ · [D∇u∇u] = 0 in Ω× (0, T]

⟨D∇u∇u, n⟩ = 0 on ∂Ω× (0, T]

u (x; 0) = u0 (x) in Ω,

(4.1)

where

• Ω is an open bounded domain of R2 with Lipschitz boundary ∂Ω,

• T > 0 is a real positive number,

• u0 ∈ L2 (Ω) representing a continuous image,

• D∇u is the diffusion tensor defined in (2.97),

• ⟨., .⟩ denotes the Euclidean scalar product in R2,

• n is the unit outward normal vector on ∂Ω.

First of all, we define weak solutions for problem (4.1) on QT := Ω× (0, T] and we denote

LlogLkm (QT) :=
{

u : Q→ R

∣∣∣∣ ∫ T

0

∫
Ω∩{|u|≥km}

|u| log (|u|) dxdt < ∞
}

.

Definition 4.1.1. A function u : Q
T
→ R is a weak solution for problem (4.1) if the following

conditions are satisfied:

(i) u ∈ C
(
[0, T] ; L2 (Ω)

)
∩ L1 (0, T; W1,1 (Ω)

)
such that ∇u ∈

[
LlogLkm (QT)

]2
.
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(ii) For any φ ∈ C1 (Q
T

)
with φ (., T) = 0, we have

−
∫

Ω
u0 (x) φ (x, 0) dx +

∫ T

0

∫
Ω
[−uφt + D∇u∇u · ∇φ] dxdt = 0. (4.2)

Inspired by [52], this chapter will investigate the existence and uniqueness of weak solutions for
the problem (4.1) according to the following steps:

• First, we will approximate the nonlinear evolution problem (4.1) by nonlinear elliptic problems
using an implicit iterative method (discretization in time-variable only), then we will prove the
existence of a unique weak solution for each elliptic problem adopting a variational approach.
These solutions will constitute approximate solutions for the problem (4.1).

• Next, we will show the uniqueness of solutions for the initial-boundary value problem (4.1)
using the monotonicity of the vector field D∇.∇. : u ∈ R2 → D∇u∇u ∈ R2 (3.11).

• Finally, by passing to the limit in some a priori energy estimates and using again the mono-
tonicity of the above vector field, we will demonstrate the existence of weak solutions for the
problem (4.1).

4.2 Approximate Solutions

Our approach aims to construct a solution to the initial-boundary value problem (4.1) as the limit
of some approximate solutions. Therefore, to get approximate solutions for the problem (4.1), we
discretize the time variable interval [0, T] and denote τ = T

N with N ∈ N∗. Then, We gradually
define from n = 1, 2, ..., N the following elliptic problems: un−un−1

τ −∇ ·
[
D∇un∇un] = 0 in Ω〈

D∇un∇un, n
〉
= 0 on ∂Ω.

(4.3)

Theorem 4.2.1. For each integer n = 1, 2, ..., N, the quasilinear elliptic problem (4.3) has a unique

weak solution in A.

Proof. To solve the equations (4.3) step by step, we only need to prove the existence and uniqueness
of weak solutions of the following elliptic problem:

u1−u0

τ −∇ ·
[
D
∇u1∇u1

]
= 0 in Ω〈

D
∇u1∇u1, n

〉
= 0 on ∂Ω,

(4.4)

where u0 = u0 . So, according to the result set out in chapter 3, this problem has a unique solution u1

in A. Hence, we can show, by induction, that there exists, for every n ∈ {1, 2, ..., N}, a unique weak
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solution un ∈ A such that 
un−un−1

τ −∇ ·
[
D∇un

∇un

]
= 0 in Ω〈

D∇un
∇un , n

〉
= 0 on ∂Ω.

(4.5)

Consequently, for every τ = T
N , the following function uτ is an approximate solution to the

problem (4.1):

uτ (x, t) =

 u0 (x) t = 0

uj (x) t ∈ ((j− 1) τ, jτ] , j ∈ {1, 2, ..., N} .
(4.6)

Now, in order to take the limit as τ → 0, we need to establish some a priori energy estimates for uτ .

4.3 Energy Estimates

The following theorem introduces some uniform energy estimates for uτ . These energy estimates will
allow us to show the existence of a convergent subsequence of {uτ} in the weak sense.

Theorem 4.3.1. For every τ > 0, the approximate solution uτ satisfies the following energy estimate:

∥uτ∥
2
L∞(0,T;L2(Ω)) + ∥uτ∥L1(0,T;W1,1(Ω)) ≤ C

(
1 + ∥u0∥

2
L2(Ω)

)
(4.7)

for some positive constant C. Additionally, the sequence {uτ} satisfies

∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

|∂xi uτ | log (|∂xi uτ |) dxdt ≤ 3
2

M ∥u0∥
2
L2(Ω) (4.8)

for some fixed positive constant M.

Proof. If we multiply (4.5) by a test function φ ∈ C1 (Ω) and integrate by parts, we get the equality

∫
Ω

un − un−1

τ
φdx +

∫
Ω

D∇un
∇un · ∇φdx = 0. (4.9)

Then, by taking φ = un in (4.9) and using un un−1 ≤
u2

n+u2
n−1

2 , we get

1
2

∫
Ω

u2
n dx + τ

∫
Ω

D∇un
∇un · ∇un dx ≤ 1

2

∫
Ω

u2
n−1

dx. (4.10)



52 Chapter 4. Implicit Iterative and Monotone Methods in a Nonlinear Parabolic Problem

For each t ∈ (0, T], we can find j ∈ {1, ..., N} such that t ∈ ((j− 1) τ, jτ]. Then, by adding all the
inequalities (4.10) from n = 1 to n = j, we get

1
2

∫
Ω

u2
j dx + τ

j

∑
n=1

∫
Ω

D∇un
∇un · ∇un dx ≤ 1

2

∫
Ω

u2
0
dx. (4.11)

Then, by the definition of uτ , we obtain for t ∈ ((j− 1) τ, jτ] that

1
2

∫
Ω

u2
τ
(x, t) dx +

∫ jτ

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdδ ≤ 1

2

∫
Ω

u2
0
dx. (4.12)

Since D∇uτ
is a symmetric positive definite matrix, then we have

1
2

∫
Ω

u2
τ
(x, t) dx +

∫ t

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdδ ≤ 1

2

∫
Ω

u2
0
dx (4.13)

and ∫
Ω

u2
τ
(x, t) dx ≤

∫
Ω

u2
0
dx. (4.14)

Therefore, after taking the supremum over (0, T], we deduce that

1
2

sup
0<t≤T

∫
Ω

u2
τ
(x, t) dx +

∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdδ ≤ 1

2

∫
Ω

u2
0
dx (4.15)

and
sup

0≤t≤T

∫
Ω

u2
τ
(x, t) dx ≤

∫
Ω

u2
0
dx. (4.16)

Thus, it follows from (4.15) and (4.16) that

sup
0≤t≤T

∫
Ω

u2
τ
(x, t) dx +

∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdδ ≤

∫
Ω

u2
0
dx +

1
2

sup
0<t≤T

∫
Ω

u2
τ
(x, t) dx

+
∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdδ

≤3
2

∫
Ω

u2
0
dx.

(4.17)

Furthermore, from the definition of D∇uτ
(2.97), and recalling that g (s) = ϕ′(s)

s for all s ≥ 0

0 ≤ ϕ (s) ≤ sϕ′ (s) for all s ≥ 0,
(4.18)
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we can derive the following

D∇uτ
∇uτ · ∇uτ = |∇uτ · e1 | ϕ

′ (|∇uτ · e1 |) + |∇uτ · e2 | ϕ′ (|∇uτ · e2 |)

+ |∇uτ · e12 | ϕ
′ (|∇uτ · e12 |) +

∣∣∇uτ · e−12

∣∣ ϕ′
(∣∣∇uτ · e−12

∣∣)
≥ϕ (|∇uτ · e1 |) + ϕ (|∇uτ · e2 |) + ϕ (|∇uτ · e12 |) + ϕ

(∣∣∇uτ · e−12

∣∣) .

(4.19)

As in (3.48), for a fixed α > 0, we can find β = km > 0 such that for all s ≥ km , ϕ (s) ≥ αs. Then,
we have for i=1,2

∫ T

0

∫
Ω
|∂xi uτ | dxdt ≤ km T |Ω|+ 1

α

∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

ϕ (|∂xi uτ |) dxdt

≤ km T |Ω|+ 1
α

∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

D∇uτ
∇uτ · ∇uτ dxdt

≤ km T |Ω|+ 1
α

∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdt.

(4.20)

On the other hand, we can write from (4.14)

∫
Ω
|uτ (x, t)| dx ≤ 1

2

(
|Ω|+

∫
Ω

u2
0
dx
)

. (4.21)

Therefore, we conclude from (4.17), (4.20) and (4.21) that

∥uτ∥
2
L∞(0,T;L2(Ω)) + ∥uτ∥L1(0,T;W1,1(Ω)) ≤ C

(
1 + ∥u0∥

2
L2(Ω)

)
(4.22)

for some positive constant C depending on km , T, |Ω|, and α.
Besides, for an ϵ > 0, we can choose β = km ≥ 1 such that for all s ≥ km , s log (s) ≤ Mϕ (s)

where M = ϵ + 1
Akm ,2

and Akm ,2 is the positive constant defined in (3.10). Then we have

∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

|∂xi uτ | log (|∂xi uτ |) dxdt ≤ M
∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

ϕ (|∂xi uτ |) dxdt

≤ M
∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdt for i = 1, 2.

(4.23)

Thus, we deduce from (4.17) that

∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

|∂xi uτ | log (|∂xi uτ |) dxdt ≤ 3
2

M ∥u0∥
2
L2(Ω) . (4.24)

It follows then
∇uτ ∈

[
LlogLkm (QT)

]2
. (4.25)
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Which completes the proof.

Now, we intend to use the energy estimate (4.7) to pass to the limit as τ → 0 and prove the
existence of a weak solution for problem (4.1).

4.4 Existence and Uniqueness of weak solutions

The first step is to employ the energy estimate (4.7) to obtain a subsequence of {uτ} that converges
weakly in some functional spaces to a limit u, which we expect it to satisfy (4.2).

Lemma 4.4.1. There exist a subsequence of {uτ} (for simplicity, we also denote it by {uτ}), and u
in L1 (0, T; W1,1 (Ω)

)
∩ L∞ (0, T; L2 (Ω)

)
such that

uτ ⇀ u, weakly_* in L∞
(

0, T; L2 (Ω)
)

(4.26)

uτ ⇀ u, weakly in L1
(

0, T; W1,1 (Ω)
)

(4.27)

and

∇u ∈
[

LlogLkm (QT)
]2

. (4.28)

Proof. As in (3.42), we can choose αϵ = 2
ϵ ∥u0∥L2(Ω) and l ≥ km ≥ 1 such that for all s ≥ l, we

have ϕ (s) > αϵs. Thus

∫ T

0

∫
Ω∩{|∂xi uτ |≥l}

|∂xi uτ | dxdt ≤ 1
αϵ

∫ T

0

∫
Ω∩{|∂xi uτ |≥l}

ϕ (|∂xi uτ |) dxdt

≤ 1
αϵ

∫ T

0

∫
Ω∩{|∂xi uτ |≥km}

D∇uτ
∇uτ · ∇uτ dxdt

≤ 2
αϵ

∫
Ω

u2
0
dx

= ϵ for i = 1, 2,

(4.29)

and this is true for all τ and arbitrary ϵ > 0. It follows then that

lim
l→∞

sup
τ

∫ T

0

∫
Ω∩{|∂xi uτ |≥l}

|∂xi uτ | dxdt = 0 for i = 1, 2. (4.30)

Therefore, from the energy estimates (4.7), and according to the weak compactness in L2 (Ω), and the
uniform integrability and weak convergence in L1 (Ω) (see appendix A.6), we can find a subsequence
of {uτ} (for simplicity, we also denote it by uτ ) such that [18]

uτ ⇀ u, weakly_* in L∞
(

0, T; L2 (Ω)
)

(4.31)
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uτ ⇀ u, weakly in L1
(

0, T; W1,1 (Ω)
)

, (4.32)

where
u ∈ L1

(
0, T; W1,1 (Ω)

)
∩ L∞

(
0, T; L2 (Ω)

)
. (4.33)

On the other hand, since

∇uτ ∈
[

LlogLkm (QT)
]2

. (4.34)

Then, by following the same argumentation as in lemma 3.4.2, we can easily show that

∇u ∈
[

LlogLkm (QT)
]2

. (4.35)

So, it remains to prove that u is just a weak solution for the problem (4.1). The next step is to
show that ξτ := D∇uτ

∇uτ is bounded in
[
L2 (QT)

]2, so that we can extract a subsequence of ξτ that

converges weakly in
[
L2 (QT)

]2 to a particular vector-valued function ξ. Then, we will prove that ξ

is equal almost everywhere to D∇u∇u in QT through the monotonicity condition (3.11).

Lemma 4.4.2. The sequence {ξτ} is bounded in
[
L2 (QT)

]2 and thus there exists a subsequence,

also denoted by {ξτ}, and ξ in
[
L2 (QT)

]2 such that

ξτ ⇀ ξ weakly in
[

L2 (QT)
]2

. (4.36)

Additionally, the vector-valued function ξ satisfies

ξ · ∇u ∈ L1 (QT) (4.37)

∫
Ω

u0 (x) φ (x, 0) dx +
∫ T

0

∫
Ω

uφt dxdt =
∫ T

0

∫
Ω

ξ · ∇φdxdt (4.38)

for each φ ∈ C1 (Q
T

)
with φ (., T) = 0, and

ξ = D∇u∇u, a.e. in QT . (4.39)

Proof. 1. From the expression of D∇uτ
, we can derive the following

|ξτ | =
∣∣∣∣ ∂x1uτ

|∂x1uτ |
ϕ′ (|∂x1uτ |) e1 +

∂x2uτ

|∂x2uτ |
ϕ′ (|∂x2uτ |) e2

+
∂x12uτ

|∂x12uτ |
ϕ′ (|∂x12uτ |) e12 +

∂x−12uτ∣∣∂x−12uτ

∣∣ϕ′ (∣∣∂x−12uτ

∣∣) e−12

∣∣∣∣
≤ϕ′ (|∂x1uτ |) + ϕ′ (|∂x2uτ |) + ϕ′ (|∂x12uτ |) + ϕ′

(∣∣∂x−12uτ

∣∣)
≤4ϕ′ (|∂x1uτ |+ |∂x2uτ |) .

(4.40)
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Given ϵ > 0, we may find l = km such that

ϕ′ (s) ≤ M log (s) for all s ≥ km , (4.41)

where M =
(

ϵ + Akm ,2

)
. Thus, we can distinguish two cases:

• If |∂x1uτ |+ |∂x2uτ | < km then

|ξτ |
2 ≤

(
4ϕ′ (km)

)2 . (4.42)

• If |∂x1uτ |+ |∂x2uτ | ≥ km then

|ξτ | ≤ 4M log (|∂x1uτ |+ |∂x2uτ |) (4.43)

|ξτ |
2 ≤ (4M)2 (|∂x1uτ |+ |∂x2uτ |) log (|∂x1uτ |+ |∂x2uτ |)

≤ (4M)2

[
|∂x1uτ | log (|∂x1uτ |) + |∂x2uτ | log (|∂x2uτ |)

+ log (2) (|∂x1uτ |+ |∂x2uτ |)
]

.

(4.44)

Then, according to (4.7) and (4.8), {ξτ} is bounded in
[
L2 (QT)

]2, which means that we can find a
subsequence of {ξτ} (denote it also by {ξτ}) and a function ξ ∈

[
L2 (QT)

]2 such that

ξτ ⇀ ξ weakly in
[

L2 (QT)
]2

. (4.45)

2. Next, we demonstrate that ξ · ∇u ∈ L1 (QT). To this end, we will proceed as above:

For |∂x1uτ |+ |∂x2uτ | ≥ km , we have

|ξτ | exp
(
|ξτ |
4M

)
≤4M (|∂x1uτ |+ |∂x2uτ |) log (|∂x1uτ |+ |∂x2uτ |)

≤4M
[
(|∂x1uτ | log (|∂x1uτ |) + |∂x2uτ | log (|∂x2uτ |))

+ log (2) (|∂x1uτ |+ |∂x2uτ |)
]
.

(4.46)

Since s 7→ s exp (s) (s ≥ 0) is increasing and convex, then as in the proof of Lemma 3.4.2, we
deduce that∫ T

0

∫
Ω∩{|∂x1 u|+|∂x2 u|≥km}

|ξ| exp
(
|ξ|
4M

)
dxdt ≤

lim inf
τ→0

∫ T

0

∫
Ω∩{|∂x1 uτ |+|∂x2 uτ |≥km}

|ξτ | exp
(
|ξτ |
4M

)
dxdt < ∞.

(4.47)
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Then, thanks to (A.5) we get

∫ T

0

∫
Ω
|ξ · ∇u| dxdt ≤

∫ T

0

∫
Ω
|ξ| |∇u| dxdt

≤
∫ T

0

∫
Ω
|ξ| (|∂x1u|+ |∂x2u|) dxdt

≤km

∫ T

0

∫
Ω∩{|∂x1 u|+|∂x2 u|<km}

|ξ| dxdt

+
∫ T

0

∫
Ω∩{|∂x1 u|+|∂x2 u|≥km}

|ξ| exp
(
|ξ|
4M

)
dxdt

+ 4M

[ ∫ T

0

∫
Ω∩{|∂x1 u|≥km}

|∂x1u| log (|∂x1u|) dxdt

+
∫ T

0

∫
Ω∩{|∂x2 u|≥km}

|∂x2u| log (|∂x2u|) dxdt

]
< ∞.

(4.48)

It follows then ξ · ∇u ∈ L1 (QT).

3. For each φ ∈ C1 (Q
T

)
with φ (., T) = 0, we take φ (x, nh) as a test function in (4.5)∫

Ω

un (x)− un−1 (x)
τ

φ (x, nh) dx +
∫

Ω
D∇un

∇un · ∇φ (x, nh) dx = 0 for n ∈ {1, 2, ..., N} .
(4.49)

By summing n from 1 to N, we obtain

−1
τ

∫
Ω

u0 (x) φ (x, 0) dx +
N−1

∑
n=0

∫
Ω

un (x)
φ (x, nh)− φ (x, (n + 1) τ)

τ
dx

+
N

∑
n=1

∫
Ω

D∇un
∇un · ∇φ (x, nh) dx = 0.

(4.50)

From the definition of uτ (4.6), we have

N−1

∑
n=0

∫
Ω

un (x)
φ (x, nh)− φ (x, (n + 1) τ)

τ
dx = −

N−1

∑
n=0

∫ (n+1)τ

nh

∫
Ω

uτ (x, t)
φt (x, t)

τ
dxdt

= −1
τ

∫ T

0

∫
Ω

uτ (x, t) φt (x, t) dxdt.

(4.51)
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Therefore

−
∫

Ω
u0 (x) φ (x, 0) dx−

∫ T

0

∫
Ω

uτ (x, t) φt (x, t) dxdt +
∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇φdxdt

+
N

∑
n=1

∫ nh

(n−1)τ

∫
Ω

D∇un
∇un · [∇φ (x, nh)−∇φ (x, t)] dxdt = 0.

(4.52)

Letting τ tends to zero, we get

∫
Ω

u0 (x) φ (x, 0) dx +
∫ T

0

∫
Ω

uφt dxdt =
∫ T

0

∫
Ω

ξ · ∇φdxdt. (4.53)

4. Now, we will show that ξ = D∇u∇u a.e. in QT . So, we let v ∈ L1 (QT) with∫ T

0

∫
Ω∩{|∂xi v|≥km}

|∂xi v| log (|∂xi v|) dxdt < ∞ for i = 1, 2. (4.54)

We sum up the inequalities (4.11)

1
2

∫
Ω

u2
τ
(T) dx +

∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇uτ dxdt ≤ 1

2

∫
Ω

u2
0
dx. (4.55)

Since we have from Lemma 3.2.1 that∫ T

0

∫
Ω

(
D∇uτ

∇uτ −D∇v∇v
)
· (∇uτ −∇v) dxdt ≥ 0. (4.56)

Then, we obtain

1
2

∫
Ω

u2
τ
(T) dx +

∫ T

0

∫
Ω

D∇uτ
∇uτ · ∇vdxdt +

∫ T

0

∫
Ω

D∇v∇v · ∇uτ dxdt

−
∫ T

0

∫
Ω

D∇v∇v · ∇vdxdt ≤ 1
2

∫
Ω

u2
0
dx.

(4.57)

Letting τ → 0 and noting that ∫
Ω

u2 (T) dx ≤ lim inf
τ→0

∫
Ω

u2
τ
(T) dx, (4.58)

we obtain

1
2

∫
Ω

u2 (T) dx +
∫ T

0

∫
Ω

ξ · ∇vdxdt +
∫ T

0

∫
Ω

D∇v∇v · ∇udxdt

−
∫ T

0

∫
Ω

D∇v∇v · ∇vdxdt ≤ 1
2

∫
Ω

u2
0
dx.

(4.59)

By using φ = u in (4.53), we get

1
2

∫
Ω

u2 (T) dx +
1
2

∫
Ω

u2
0
dx =

∫ T

0

∫
Ω

ξ · ∇udxdt. (4.60)
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Combining (4.59) with (4.60), we have

∫ T

0

∫
Ω
(ξ −D∇v∇v) · (∇v−∇u) dxdt ≤ −

∫
Ω

u2 (T) dx. (4.61)

Now, set v = u + λw for any λ > 0, w ∈W1,2 (QT), we derive from the above inequality

∫ T

0

∫
Ω

(
ξ −D∇(u+λw)

∇ (u + λw)
)
· ∇wdxdt ≤ 0. (4.62)

By letting λ→ 0 and using Lebesgue’s dominated convergence theorem, we obtain

∫ T

0

∫
Ω
(ξ −D∇u∇u) · ∇wdxdt ≤ 0 for all w ∈W1,2 (QT) . (4.63)

Replacing w by −w, we deduce

∫ T

0

∫
Ω
(ξ −D∇u∇u) · ∇wdxdt = 0 for all w ∈W1,2 (QT) . (4.64)

It follows then
ξ = D∇u∇u a.e. in QT . (4.65)

Which completes the proof.

Finally, we state our main theorem:

Theorem 4.4.3. Assuming that u0 ∈ L2 (Ω), a unique weak solution exists for the initial-boundary

value problem (4.1).

Proof. 1. In the beginning, we establish the uniqueness of solutions for the problem (4.1). For this
purpose, we suppose that the problem (4.1) has two weak solutions u and v. Then we obtain
the following:

∂(u−v)
∂t −∇ · [D∇u∇u−D∇v∇v] = 0 in QT

⟨D∇u∇u−D∇v∇v, n⟩ = 0 on ∂Ω× (0, T]

(u− v) (x; 0) = 0 in Ω.

(4.66)

By multiplying the first equation of the above problem by (u− v) and integrating over Ω and [0, t],
we get

1
2

∫
Ω
(u− v)2 (t) dx +

∫ t

0

∫
Ω
[D∇u∇u−D∇v∇v] · ∇ (u− v) dxdδ = 0 (4.67)

for every t ∈ (0, T]. Since the second term of the above equation is nonnegative (thanks to Lemma
3.2.1), it follows then u = v a.e. in QT .

2. Now we turn our attention to the question of existence:
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According to lemma 4.4.1 there exist a subsequence of {uτ} and u such that

uτ ⇀ u, weakly_* in L∞
(

0, T; L2 (Ω)
)

(4.68)

uτ ⇀ u, weakly in L1
(

0, T; W1,1 (Ω)
)

(4.69)

and
∇u ∈

[
LlogLkm (QT)

]2
. (4.70)

Besides, we deduce from lemma 4.4.2 that

−
∫

Ω
u0 (x) φ (x, 0) dx +

∫ T

0

∫
Ω
[−uφt + D∇u∇u · ∇φ] dxdt = 0 (4.71)

for any φ ∈ C1 (Q
T

)
with φ (., T) = 0.

Now, it remains to prove that u ∈ C
(
[0, T] , L2 (Ω)

)
. If we choose φ ∈ C∞

0 (QT) in (4.53), we
obtain ∫ T

0

∫
Ω

uφt dxdt =
∫ T

0

∫
Ω

ξ · ∇φdxdt. (4.72)

Since ξ ∈
[
L2 (QT)

]2, we conclude that ut ∈ L1 (0, T; H−1 (Ω)
)

where H−1 (Ω) is the dual space
of W1,2

0 (Ω). Since

u =
∫ t

0
uδdδ + u0 and u0 ∈ L2 (Ω) ↪→ H−1 (Ω) , (4.73)

it follows then that u ∈ C
(
0, T; H−1 (Ω)

)
.

Besides, for every τ > 0, let vτ (x, t) = u (x, t + τ) be the weak solution for the problem (4.1)
satisfying vτ (x; 0) = u (x, τ).

Then wτ (x, t) = u (x, t + τ)− u (x, t) satisfies
∂wτ
∂t −∇ ·

[
D∇vτ
∇vτ −D∇u∇u

]
= 0 in Ω× (0, T]〈

D∇vτ
∇vτ −D∇u∇u, n

〉
= 0 on ∂Ω× (0, T]

wτ (x; 0) = u (x, τ)− u0 (x) in Ω.

(4.74)

For each t0 ∈ [0, T], we may choose wτ as a test function in the first equation of the problem (4.74)
over [0, t0]

1
2

∫
Ω

w2
τ
(x, t0) dx +

∫ t0

0

∫
Ω

(
D∇vτ
∇vτ −D∇u∇u

)
· (∇vτ −∇u) dxdt ≤ 1

2

∫
Ω

w2
τ
(x, 0) dx.

(4.75)
Thanks to Lemma 3.2.1, we deduce∫

Ω
|u (x, t0 + τ)− u (x, t0)|2 dx ≤

∫
Ω
|u (x, τ)− u0 (x)|2 dx. (4.76)
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Now, in order to prove that u ∈ C
(
[0, T] , L2 (Ω)

)
, we need to prove

lim sup
τ→0+

∫
Ω
|u (x, τ)− u0 (x)|2 dx = 0. (4.77)

We suppose that (4.77) is not true. Then there exist a positive number η and a sequence {hi} with
hi → 0 as i→ ∞ such that

lim
hi→0+

∫
Ω
|u (x, hi)− u0 (x)|2 dx ≥ η. (4.78)

From the estimate (4.13), we have∫
Ω
|u (x, hi)|2 dx ≤

∫
Ω
|u0 (x)|2 dx. (4.79)

Then, from (4.78) we get

lim inf
hi→0+

(∫
Ω
|u0 (x)|2 dx−

∫
Ω

u0 (x) u (x, hi) dx
)
≥ η

2
. (4.80)

From (4.79), we conclude that {u (x, hi)} is a bounded sequence in L2 (Ω). Then we may find a
subsequence (denote it also by {u (x, hi)}) such that there exists a function ũ0 ∈ L2 (Ω) such that

u (x, hi) ⇀ ũ0 weakly in L2 (Ω) . (4.81)

Since u ∈ C
(
0, T; H−1 (Ω)

)
, it follows that

u (x, hi) ⇀ u0 weakly in H−1 (Ω) . (4.82)

Therefore we must have ũ0 = u0 and since u ∈ C
(
0, T; H−1 (Ω)

)
, it follows that

u (x, hi) ⇀ u0 weakly in L2 (Ω) , (4.83)

which is contradictory with (4.80).
Therefore, we conclude that (4.77) is true and u ∈ C

(
[0, T] , L2 (Ω)

)
. This completes the proof.

4.5 Conclusion

This chapter principally investigates a new anisotropic nonlinear diffusion partial differential equation
related to image processing and analysis. The existence and uniqueness of weak solutions for this
problem have been proven in a particular functional space and under sufficient conditions satisfied
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by ϕ. First, we have applied an implicit iterative method (discretization in time-variable only) to
approximate the nonlinear evolution problem by nonlinear elliptic problems. Next, we have utilized
the variational approach to show the existence of weak solutions for each elliptic problem. Finally,
we used some energy estimates and the monotonicity of a nonlinear operator to establish the existence
and uniqueness of weak solutions for the evolution problem (4.1).
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Chapter 5

Numerical Approximation Method and
Application

5.1 Introduction

This chapter aims to construct a fully discrete approximation to the problem (4.1) using a consistent
and stable numerical method. According to proposition 2.4.1, problem (4.1) is equivalent to

∂u
∂t = ∂x1 (g (|ux1 |) ux1) + ∂x2 (g (|ux2 |) ux2)

+∂x12 (g (|ux12 |) ux12) + ∂x−12

(
g
(∣∣ux−12

∣∣) ux−12

)
in Ω× (0, T]

⟨D∇u∇u, n⟩ = 0 on ∂Ω× (0, T]

u (x; 0) = u0 (x) in Ω,

(5.1)

where

• Ω = (0, a)× (0, b) ⊂ R2 with Lipschitz boundary ∂Ω,

• T > 0 is a real positive number,

• u0 is the initial data,

• g is the function introduced in section 2.4.2,

• D∇u is the diffusion tensor defined in (2.97),

• ⟨., .⟩ denotes the Euclidean scalar product in R2,

• n is the unit outward normal vector on ∂Ω.

In the sequel, we will first introduce an explicit and central finite difference scheme. Next, we will
provide a new diffusion function based on cubic Hermite splines defined by specific parameters (see
(2.113)) that can be determined using an automatic direct search algorithm. Finally, we will illustrate
some experiments on different actual brain Magnetic Resonance Imaging (MRI) scans.
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5.2 Explicit and Central Finite Difference Method

This part estimates an approximate solution in particular points
(
xi, yj; tn

)
of the domain Ω× [0, T].

To this end, we denote by

• tn = nδt the time step where n ≥ 0 and 0 < δt ≤ T,

• xi = iδ, yj = jδ the mesh points where 0 ≤ i ≤ N+1, 0 ≤ j ≤ M+1, and 0 < δ ≤ min (a, b),

• un
i,j the finite difference approximation of u

(
xi, yj; tn

)
.

Furthermore, we approximate the differential operators ∂x1 , ∂x2 , ∂x12 , ∂x−12 , and ∂t using the following
explicit and central finite difference schemes:

ux1

(
xi, yj; tn

)
=

u
(

xi+ 1
2
, yj; tn

)
− u

(
xi− 1

2
, yj; tn

)
δ

+O
(

δ2
)

(5.2)

ux2

(
xi, yj; tn

)
=

u
(

xi, yj+ 1
2
; tn

)
− u

(
xi, yj− 1

2
; tn

)
δ

+O
(

δ2
)

(5.3)

ux12

(
xi, yj; tn

)
=

u
(

xi+ 1
2
, yj+ 1

2
; tn

)
− u

(
xi− 1

2
, yj− 1

2
; tn

)
√

2δ
+O

(
δ2
)

(5.4)

ux−12

(
xi, yj; tn

)
=

u
(

xi− 1
2
, yj+ 1

2
; tn

)
− u

(
xi+ 1

2
, yj− 1

2
; tn

)
√

2δ
+O

(
δ2
)

(5.5)

ut
(
xi, yj; tn

)
=

u
(
xi, yj; tn+1

)
− u

(
xi, yj; tn

)
δt

+O (δt) . (5.6)
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We assume δ = 1 and denote by

gn
Ni,j

= g
(∣∣∣∆Nun

i,j

∣∣∣)
gn

Ei,j
= g

(∣∣∣∆Eun
i,j

∣∣∣)
gn

Si,j
= g

(∣∣∣∆Sun
i,j

∣∣∣)
gn

Wi,j
= g

(∣∣∣∆Wun
i,j

∣∣∣)
gn

NEi,j
= g

(∣∣∣∣∆NE un
i,j√

2

∣∣∣∣)
gn

SEi,j
= g

(∣∣∣∣∆SE un
i,j√

2

∣∣∣∣)
gn

SWi,j
= g

(∣∣∣∣∆SW un
i,j√

2

∣∣∣∣)
gn

NWi,j
= g

(∣∣∣∣∆NW un
i,j√

2

∣∣∣∣)

with



∆Nun
i,j = un

i,j+1 − un
i,j

∆Eun
i,j = un

i+1,j − un
i,j

∆Sun
i,j = un

i,j−1 − un
i,j

∆Wun
i,j = un

i−1,j − un
i,j

∆NEun
i,j = un

i+1,j+1 − un
i,j

∆SEun
i,j = un

i+1,j−1 − un
i,j

∆SWun
i,j = un

i−1,j−1 − un
i,j

∆NWun
i,j = un

i−1,j+1 − un
i,j,

(5.7)

where g is the function defined in section 2.4.2. Then, we approximate the problem (5.1) using the
above discretization and obtain the following discrete nonlinear diffusion filter:

un+1
i,j = un

i,j + δt

[
gN ∆Nu + gE∆Eu + gS∆Su + gW∆Wu

+
gNE∆NEu + gSE∆SEu + gSW∆SWu + gNW∆NWu

2

]n

i,j
,

(5.8)

where u0
i,j is the initial data, 1 ≤ i ≤ N, 1 ≤ j ≤ M, and n ≥ 0. Furthermore, we use the discrete

Neumann boundary condition:

un
0,j = un

1,j, un
N+1,j = un

N,j , for 1 ≤ j ≤ M

un
i,0 = un

i,1, un
i,M+1 = un

i,M , for 1 ≤ i ≤ N

un
0,0 = un

1,1, un
N+1,0 = un

N,1

un
0,M+1 = un

1,M, un
N+1,M+1 = un

N,M.

(5.9)

The discrete scheme (5.8) can be reformulated and represented as :

Un+1 = Q (Un)Un ∀n ∈N, (5.10)

where Un ∈ RMN is the M× N column vector of (un) such that

Un =
(

un
1,1 un

1,2 . . . un
1,M un

2,1 . . . un
2,M . . . un

i,1 . . . un
i,j . . . un

i,M . . . un
N,1 . . . un

N,M

)⊤
(5.11)
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and Q (Un) is a block tridiagonal matrix defined as

Q (Un) =



An
1 + Cn

1 Bn
1 0 · · · 0

Cn
2 An

2 Bn
2

0 . . . . . . . . . . . . ...
. . . . . . . . .

... . . . . . . . . . . . . 0
Cn

N−1 An
N−1 Bn

N−1

0 · · · 0 Cn
N An

N + Bn
N


(5.12)

where An
i , Bn

i , and Cn
i are M×M-matrices defined for i ∈ {1, 2, . . . , N} as

An
i =



(
βn

i,1 + 2αgn
Si,1

)
2αgn

Ni,1
0 · · · 0

2αgn
Si,2

βn
i,2 2αgn

Ni,2

0 . . . . . . . . . . . . ...
. . . . . . . . .

... . . . . . . . . . . . . 0
2αgn

Si,M−1
βn

i,M−1 2αgn
Ni,M−1

0 · · · 0 2αgn
Si,M

(
βn

i,M + 2αgn
Ni,M

)


,

(5.13)

Bn
i = α



(
2gn

Ei,1
+ gn

SEi,1

)
gn

NEi,1
0 · · · 0

gn
SEi,2

2gn
Ei,2

gn
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with α = δt
2 and βn

i,j = 1− δt

(
gN + gS + gE + gW +

gNE+gSE+gSW+gNW
2

)n

i,j
.

According to [54], filter (5.10) yields a unique sequence (Un)n∈N on every initial image U0.
Indeed, due to the continuity of the function g, Un depends continuously on U0 for every finite n.
Besides, filter (5.8) satisfies the following maximum-minimum principle under a specific condition,
which describes a stability property for the discrete scheme(5.8).

Theorem 5.2.1. (Discrete extremum principle)

For an iteration step δt satisfying

0 < δt <
1

6 max
s∈R+

g (s)
, (5.16)

the scheme (5.8) satisfies:

min
i,j

u0
i,j ≤ un

i,j ≤ max
i,j

u0
i,j (5.17)

for all 1 ≤ i ≤ N, 1 ≤ j ≤ M and n ∈N.

Proof. For all 1 ≤ i ≤ N, 1 ≤ j ≤ M, and n ∈N, we have:

un+1
i,j =δt
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+
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(5.18)

Since 0 < δt <
1

6 max
s∈R+

g (s) and g > 0, the following inequality holds:
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It follows then
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Similarly, we have
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Consequently, the result (5.17) is true for n = 1 because

min
i,j

u0
i,j < u1

i,j < max
i,j

u0
i,j. (5.22)

Therefore, by induction, it is easy to prove the result (5.17). Which completes the proof.

5.3 Experimental Procedures and Results

5.3.1 Experimental Procedures

This subsection is devoted to comparing our model (5.8),(5.9), as an image denoising algorithm, with
the ones proposed by Perona and Malik (PM) [40], Charbonnier et al. (C) [13], Wang and Zhou
(W-Z) [52] and Maiseli (M) [37]. All the experiments are conducted under Windows 10 and Matlab
2018b, running on a laptop with an Intel® Core™ i7-10510U (8 MB cache, 4 Core, up to 4.9 GHz),
16 GB memory (LPDDR3, Dual-channel, 2133 MHz), and 512 GB storage (PCIe, SSD, 3× 4). The
experiments were done on three actual MRI scans (Figure 5.1) affected by different σ2-values of zero-
mean white Gaussian noise and restored using our filter (5.8) with the boundary-initial conditions
(5.9), provided that the proposed diffusion function g (see (2.113)) satisfies the assumptions ((2.100),
(3.5), (3.8)).

We also used the discrete diffusion filter suggested by Perona and Malik [40] with the following
diffusion functions:

• Perona and Malik diffusion function [40]:

g (s) =
1

1 +
( s

k
)2 , k > 0. (5.23)

• Charbonnier et al. diffusion function [13]:

g (s) =
1√

1 +
( s

k
)2

, k > 0. (5.24)
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(a) (b) (c)

FIGURE 5.1: Brain MRI scans (512 x 512): (a) Patient30: Sagittal T1 of a 30 years old
female patient [20]. (b) Patient50: Coronal T2 of a 50 years old female patient [21]. (c)

Patient55: Axial T2 of a 55 years old patient [22].

• Wang and Zhou diffusion function [52]:

g (s) =
1

s + 1
+

log (s + 1)
s

s ≥ 0. (5.25)

• Maiseli diffusion function [37]:

g (s) =


1

1+
(

s
k1

)2 s < k1

1√
1+
(

s
k2

)2
s ≥ k1 ,

(5.26)

where k1 and k2 are positive constants.

Besides, in order to evaluate the quality of the restored images from the above different image denois-
ing methods, we used two image quality metrics:

• Peak Signal-to-Noise Ratio (PSNR) [23]:

PSNR = 10 log10

(
2552MN

∥u− I∥2
2

)
, (5.27)

where I is the original or the uncorrupted image, and u is the distorted or the restored image.
PSNR is one of the oldest image quality metrics evaluating an image’s signal strength relative
to noise, which is always positive. We evaluate the PSNR metric by using the Matlab 2018b
built-in function "psnr." However, due to its limitations and its failure in some circumstances as
an adequate image quality model [53], we used another metric that significantly correlates with
human visual perception.
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• Structural SIMilarity Index (SSIM) [65]:

SSIM =
(2µu µI + c1) (2σuI + c2)(

µ2
u + µ2

I
+ c1

) (
σ2

u + σ2
I
+ c2

) , (5.28)

where c1 and c2 are tuning parameters. µu , σ2
u , and σuI stand for the mean, variance, and

covariance, respectively. It is a method for measuring the similarity between a degraded image
and a perfect one, and it is bounded between zero and one. For a good similarity between the
original and the restored images, we need higher values of SSIM-index. We evaluate the SSIM
metric by using the Matlab 2018b built-in function "ssim."

In the following, to quantify the quality of the restored images, we use IQM to denote one of the
two quality metrics: PSNR or SSIM. The iterations are stopped when the IQM value reaches the
maximum.

The image denoising process using the proposed model (5.8) can be implemented as shown in
Algorithm 1, denoted by the function MaxIQM (): First, we consider I as one of the three original
brain MRI scans (Figure 5.1) and generate in it a Gaussian white noise with zero-mean and σ2-value,
using the Matlab 2018b built-in function "imnoise." Next, the initial value u0 is set to be the noisy
image in the while-loop. After that, a while-loop is executed, where our filter is used to build a new
image with a new IQM value in each iteration. Finally, when the stopping criterion is confirmed, we
obtain the restored image with the corresponding iteration.

On the other hand, as introduced in section 2.4.2, the diffusion function g is constructed using
cubic Hermite splines, determined by specific parameters {k0 , k1 , p0 , p1 , v0 , v1} (m = 1). Hence,
how can we select the most appropriate parameters that indicate our model’s best possible adaptive
diffusion function?

The following optimization problem can give a possible answer to this question:max
z

IQM (z)

subject to z ∈ S,
(5.29)

where IQM : R6 → R+ such that z = (δt, k1 , p0 , p1 , v0 , v1).
S ⊂ R

m
is a feasible decision space defined by box constraints, and z ∈ S is the decision vector.

Then, a solution z1 ∈ S is better than another solution, z2 ∈ S if and only if IQM (z1) > IQM (z2).
Unfortunately, we do not have an explicit expression that relates the decision vector z to IQM. Thus
we seek the best possible solution z that maximizes locally our objective IQM using a Direct-Search
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input : I.

output : u, iter, IQM.

1 Initialize: I;

2 u0 ← imnoise
(

I, ”gaussian”, 0, σ2);
3 IQM0 ← PSNR

(
I, u0) (or SSIM

(
I, u0));

4 u← u0;

5 iter ← 0;

6 IQM← IQM0;

7 n← 0;

8 while true do

9 ∆N un ← [zeros (1, M) ; (un (1 : N − 1, :)− un (2 : N, :))];

10 ∆S un ← [(−∆N un (2 : N, :)) ; zeros(1, M)];

11 ∆E un ← [(un (:, 2 : M)− un (:, 1 : M− 1)) zeros (N, 1)];

12 ∆W un ← [zeros (N, 1) (−∆E un (:, 1 : M− 1))];

13 ∆NE un ← [∆E un (1, 1 : M− 1) 0 ; (un (1 : N − 1, 2 : M)− un (2 : N, 1 : M− 1)) ∆N un (2 : N, M)];

14 ∆SW un ← − [∆N un (2 : N, 1) ∆NE un (2 : N, 1 : M− 1) ; 0 ∆E un (N, 1 : M− 1)];

15 ∆SE un ← [(un (2 : N, 2 : M)− un (1 : N − 1, 1 : M− 1)) ∆S un (1 : N − 1, M) ; ∆E un (N, 1 : M− 1) 0];

16 ∆NW un ← − [0 ∆E un (1, 1 : M− 1) ; ∆S un (1 : N − 1, 1) ∆SE un (1 : N − 1, 1 : M− 1)];

17 gn
α
← gn

α
(|∆α un|) , α ∈ Λ1 = {N, E, S, W};

18 gn
β
← gn

β

( ∣∣∣∆β
un
∣∣∣

√
2

)
, β ∈ Λ2 = {NE, SE, SW, NW};

19 un+1 ← un + δt

 ∑
α∈Λ1

gn
α

∆α un + ∑
β∈Λ2

gn
β
∆

β
un

2

;

20 IQMn+1 ← PSNR
(

I, un+1) (or SSIM
(

I, un+1));
21 if (IQMn+1 > IQM) then

22 IQM← IQMn+1;

23 iter ← n + 1;

24 u← un+1;

25 else

26 Break;

27 end

28 n← n + 1;

29 end

Algorithm 1: Proposed image denoising algorithm.
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Algorithm 5.2 that solves the following problem:

max
z

IQM (z)

subject to g (s) > 0 s ≥ 0
g′ (s) ≤ 0 s ≥ 0
g (s) + sg′ (s) ≥ 0 s ≥ 0

0 < δt <
1

6g (0)
.

(5.30)

In brief, while respecting the requirements of the above optimization problem, our algorithm 5.2
modifies the parameters of z, so the IQM value increases. This process recurs consecutively until the
IQM value reaches a local maximum. Each parameter is a decimal number that comprises digits and
precision. Moreover, as depicted in the flowchart of Figure 5.2, the instructions of the algorithm are
described as follows:

1. The process begins by initializing the decision vector z (i), their precision pr, and a test image
I.

2. Next, {u, iter, IQM} are computed using MaxIQM() (defined by algorithm 1).

3. Finally, a nested loop (While-For) is used to determine the local optimal decision vector zop,
iterop, IQMop, and uop(the restored image). At each iteration, FindingOptimum() changes
the parameter z (i) under the constraints of 5.30, and accepts the new parameter value in case
of a better IQM.

5.3.2 Experimental Results

Several tests have been performed using Algorithm 5.2 on the images in Figure 5.1 to obtain the best
possible parameters, as shown in Tables 5.3, 5.4, 5.5, and 5.6.

Tables 5.1 and 5.2 show quantitative results on actual images, corrupted with various white Gaus-
sian noises, filtered by different filters. From Table 5.1, it is clear that the PSNR value of the restored
images via the proposed method has, in most cases, higher values with slight differences over the
Maiseli and Wang-Zhou methods. However, as shown in Table 5.2, when it comes to the SSIM-
index, the proposed method reveals impressive results against the Wang-Zhou and Maiseli methods.

From a visual comparison, Figures 5.3, 5.4, and 5.5 show that the denoising process using SSIM-
index removes noises more efficiently and preserves basic image features better than using PSNR.
Additionally, the images obtained using PSNR are more affected by blocky artifacts than those
achieved by SSIM-index. Finally, it can be seen from images related to SSIM-index in Figures 5.3,
5.4, and 5.5 that the Wang and Zhou method, Maiseli method, and the proposed method remove noise
more effectively and generate sharper edges than those of Charbonnier et al. and Perona and Malik.
In addition, these three schemes remain flat areas smoother and cleaner with less noticeable artifacts.
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START z, I, pr MaxIQM() IQM, u, iter WHILE

Is z an
optimum ?

START LOOP

i = 1

i = i + 1 i ≤ 6 END LOOP

i, pr , I, u0, z, IQM

FindingOptimum()

u, z, iter, IQM

END WHILE

uop, zop, iterop, IQMop

END

Yes

No

False

True

FIGURE 5.2: Optimal image denoising algorithm
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TABLE 5.1: PSNR values of the images in Figure 5.1 affected by different σ2-values
of zero-mean white Gaussian noise and restored from different methods with their cor-

responding iteration number.

Noisy Perona-Malik [40] Charbonnier et al. [13] Wang-Zhou [52] Maiseli [37] Proposed

σ2 PSNR PSNR Iter PSNR Iter PSNR Iter PSNR Iter PSNR Iter

Patient30
0.005 23.4349 33.2195 19 33.0492 8 34.0154 15 33.9567 8 34.0486 9
0.010 20.6756 31.0058 22 30.9157 12 31.7695 20 31.7113 11 31.7889 13
0.015 19.1190 29.9431 70 29.6214 14 30.3924 24 30.3565 17 30.4188 24

Patient50
0.005 23.6170 31.1280 2 31.0768 3 31.4137 12 31.4998 3 31.4370 5
0.010 20.7956 29.0150 3 28.9615 5 29.3396 16 29.3553 5 29.3499 6
0.015 19.1148 27.6709 4 27.6651 4 28.0386 30 27.9866 18 28.0518 29

Patient55
0.005 24.0017 30.9334 14 30.6366 6 31.8453 12 31.8617 8 31.7777 15
0.010 21.2623 29.0902 57 28.4924 9 29.4402 16 29.4208 14 29.4188 22
0.015 19.5904 27.9457 80 27.0896 11 27.9935 36 27.9027 18 27.9465 39

TABLE 5.2: SSIM values of the images in Figure 5.1 affected by different σ2-values of
zero-mean white Gaussian noise and restored from different methods with their corre-

sponding iteration number.

Noisy Perona-Malik [40] Charbonnier et al. [13] Wang-Zhou [52] Maiseli [37] Proposed

σ2 SSIM SSIM Iter SSIM Iter SSIM Iter SSIM Iter SSIM Iter

Patient30
0.005 0.3425 0.9237 21 0.9219 13 0.9367 19 0.9339 16 0.9384 14
0.010 0.2425 0.8976 28 0.8958 17 0.9144 26 0.9100 22 0.9167 20
0.015 0.1962 0.8778 28 0.8766 21 0.8972 31 0.8923 26 0.9001 24

Patient50
0.005 0.4405 0.8601 8 0.8594 9 0.8763 14 0.8757 12 0.8767 12
0.010 0.3287 0.8148 54 0.8046 14 0.8263 21 0.8275 21 0.8276 21
0.015 0.2696 0.7871 88 0.7658 15 0.7900 25 0.7912 26 0.7918 25

Patient55
0.005 0.3858 0.8994 20 0.8943 14 0.9230 17 0.9209 20 0.9268 21
0.010 0.2903 0.8543 23 0.8500 18 0.8842 26 0.8838 30 0.8893 29
0.015 0.2404 0.8400 100 0.8142 21 0.8512 30 0.8513 30 0.8570 37

TABLE 5.3: The best possible parameters for the proposed diffusion function used to
calculate PSNR.

Proposed

σ2 δt k1 p0 pk1
v0 vk1

Patient30
0.005 0.14731 4.37351 1.13131 0.86851 -0.00001 -0.15601
0.010 0.15631 2.68581 1.06001 0.87661 -0.00021 -0.15701
0.015 0.14721 2.68711 0.84211 0.67931 -0.00101 -0.15601

Patient50
0.005 0.18831 3.87641 0.88501 0.70731 -0.00001 -0.00061
0.010 0.24821 4.91501 0.66801 0.58141 -0.00001 -0.02571
0.015 0.14721 1.70631 0.74111 0.57931 -0.00001 -0.14821

Patient55
0.005 0.14731 3.67421 1.03131 0.57671 -0.00021 -0.15591
0.010 0.14731 3.58521 0.86541 0.56361 -0.00001 -0.15601
0.015 0.10151 3.64241 0.83071 0.56871 -0.00001 -0.15601
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TABLE 5.4: The best possible parameters for the proposed diffusion function used to
calculate SSIM.

Proposed

σ2 δt k1 p0 pk1
v0 vk1

Patient30
0.005 0.14731 3.58591 1.12901 0.77571 -0.00101 -0.15501
0.010 0.14651 3.48321 1.13121 0.77841 -0.00001 -0.17611
0.015 0.14721 3.45081 1.13201 0.76951 -0.00011 -0.17471

Patient50
0.005 0.14711 2.68461 1.04221 0.77941 -0.00021 -0.15631
0.010 0.14721 2.60841 1.03391 0.66971 -0.00011 -0.15601
0.015 0.14831 2.68631 1.05321 0.66851 -0.00101 -0.15601

Patient55
0.005 0.14731 3.58611 1.13111 0.56851 -0.00001 -0.15601
0.010 0.14731 3.57621 1.13111 1.13111 -0.00011 -0.15601
0.015 0.13931 3.58751 1.13111 0.56861 -0.00001 -0.15521

TABLE 5.5: The best possible parameters for different diffusion functions used to cal-
culate PSNR.

Perona-Malik Charbonnier el al. Wang-Zhou Maiseli

σ2 δt K δt K δt δt K1 K2

Patient30
0.005 0.24961 84.47201 0.24631 70.57291 0.24001 0.24011 0.28231 8.38981
0.010 0.24951 104.36341 0.23211 70.29221 0.24111 0.24041 0.28231 8.18761
0.015 0.14551 94.47301 0.24051 70.58301 0.23311 0.23831 0.28231 6.19131

Patient50
0.005 0.24991 553.83011 0.24201 202.58391 0.23311 0.24901 30.01511 21.99781
0.010 0.24991 524.54311 0.24021 159.68481 0.23321 0.23541 27.42691 18.31031
0.015 0.24991 473.95011 0.24451 279.60871 0.16111 0.14441 0.28231 8.51031

Patient55
0.005 0.24951 94.47301 0.24951 71.39501 0.23311 0.24741 0.28231 6.00191
0.010 0.24971 64.68911 0.24011 70.67491 0.24341 0.14951 0.28231 8.39261
0.015 0.14911 88.44791 0.24111 70.59201 0.13731 0.14641 0.28231 8.31861

TABLE 5.6: The best possible parameters for different diffusion functions used to cal-
culate SSIM.

Perona-Malik Charbonnier el al. Wang-Zhou Maiseli

σ2 δt K δt K δt δt K1 K2

Patient30
0.005 0.24971 94.47991 0.24211 69.58341 0.24411 0.22541 0.28231 5.08241
0.010 0.24921 103.47301 0.24411 71.59401 0.24141 0.23711 0.28231 4.85231
0.015 0.24961 124.66331 0.24141 70.58391 0.24411 0.23561 0.28231 4.97171

Patient50
0.005 0.24321 184.59611 0.24211 81.39391 0.24861 0.22961 0.28231 5.29161
0.010 0.24111 70.59391 0.24111 69.69521 0.23321 0.24941 0.28231 3.68091
0.015 0.24711 70.49311 0.24211 79.57381 0.23331 0.23751 0.28231 3.91881

Patient55
0.005 0.24771 93.47311 0.24021 55.70261 0.24111 0.22341 0.28231 3.40061
0.010 0.24971 112.47421 0.23281 60.59351 0.21991 0.24831 0.28231 2.95851
0.015 0.24961 67.48391 0.24201 60.57301 0.23211 0.22811 0.28231 3.98981
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(a) Original (b) Noisy

(c) PM-Restored-PSNR (d) PM-Restored-SSIM

(e) C-Restored-PSNR (f) C-Restored-SSIM

(g) WZ-Restored-PSNR (h) WZ-Restored-SSIM

(i) M-Restored-PSNR (j) M-Restored-SSIM

(k) P-Restored-PSNR (l) P-Restored-SSIM

FIGURE 5.3: Visual comparison on actual MRI scan of Patient30 corrupted by zero-
mean white Gaussian noise with σ2 = 0.015 and restored from various methods.
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(a) Original (b) Noisy

(c) PM-Restored-PSNR (d) PM-Restored-SSIM

(e) C-Restored-PSNR (f) C-Restored-SSIM

(g) WZ-Restored-PSNR (h) WZ-Restored-SSIM

(i) M-Restored-PSNR (j) M-Restored-SSIM

(k) P-Restored-PSNR (l) P-Restored-SSIM

FIGURE 5.4: Visual comparison on actual MRI scan of Patient50 corrupted by zero-
mean white Gaussian noise with σ2 = 0.015 and restored from various methods.



78 Chapter 5. Numerical Approximation Method and Application

(a) Original (b) Noisy

(c) PM-Restored-PSNR (d) PM-Restored-SSIM

(e) C-Restored-PSNR (f) C-Restored-SSIM

(g) WZ-Restored-PSNR (h) WZ-Restored-SSIM

(i) M-Restored-PSNR (j) M-Restored-SSIM

(k) P-Restored-PSNR (l) P-Restored-SSIM

FIGURE 5.5: Visual comparison on actual MRI scan of Patient55 corrupted by zero-
mean white Gaussian noise with σ2 = 0.015 and restored from various methods.
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5.4 Conclusion

We have established a consistent and stable numerical scheme for the denoising process and have
used the cubic Hermite spline to approximate the best possible diffusion function using a direct search
algorithm. Furthermore, we have proved that our method can provide better results than others in the
SSIM-index.

Eventually, It is worth pointing out that the experimental results depend on various factors such
as the choice of the numerical approximation method, the characteristics of the diffusion function,
and the initialized parameters’ values and their precision; Which means that one could achieve better
results while choosing different numerical methods, another diffusion function, or several values of
the initialized parameters. Thus, it would be challenging to devise an algorithm that estimates global
optimum with the best adaptive diffusion function and numerical approximation method.
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Chapter 6

Conclusion

Since 1980, the appearance of different forms of diffusion equations models in image processing and
analysis has had a tremendous impact on the technological advancement of artificial vision systems
that involves digital images. This thesis has provided a new model that belongs to the general class
of anisotropic nonlinear diffusion equations.

First, we have surveyed the most remarkable research studies in the literature concerning the
(non)linear and (an)isotropic diffusion filtering in image processing and analysis. Then, we have
directly analyzed the Perona-Malik diffusion equation behavior in two-dimensional space by investi-
gating the temporal variation of the gradient magnitude of the image at the edge points. Eventually,
we have presented and interpreted a new anisotropic nonlinear diffusion model and have suggested a
possible strategy to investigate the existence and uniqueness of solutions for the proposed model.

Next, we have introduced a quasilinear second-order elliptic problem and have examined it by
showing at first the existence of a minimizer in an appropriate functional space that involves Or-
licz spaces via a variational approach. Then, we have demonstrated the uniqueness of solutions by
employing the monotonicity property of a nonlinear operator.

After that, we have presented an initial boundary value problem as an anisotropic nonlinear diffu-
sion partial differential equation. In the beginning, we used an implicit iterative method (discretization
in time-variable only) to approximate the nonlinear evolution problem by nonlinear elliptic problems.
Then, we have employed the variational approach to show the existence and uniqueness of weak solu-
tions for each elliptic problem. Lastly, we have used an energy estimate and a monotonicity property
of a nonlinear operator to confirm the existence of unique weak solutions for the evolution problem.

Finally, we have considered the numerical approximation method, namely the explicit finite dif-
ference method, to implement different nonlinear diffusion models. We have proved that our scheme
is a consistent and stable numerical model. Then, we have illustrated some experiments on different
actual brain Magnetic Resonance Imaging (MRI) scans and have shown that the proposed model has
impressive results compared to others in terms of the Structural SIMilarity Index (SSIM).

Nevertheless, we assume that there are many new results that we need to seek, especially those
that are likely to consist of a straightforward extension of the proposed model. Moreover, we can list
some of the future work as perspectives:
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• At the theoretical level, we aim to examine the stability and regularity of the weak solution of
the initial-boundary value problem (4.1).

• It is of great interest at the numerical level if we study and apply other numerical approximation
methods on the proposed model (4.1), such as the additive operator splitting method and the
fast explicit diffusion method developed by Weickert in [59, 58], Krylov subspace spectral [24],
finite element method, or Mixed Finite Element Method [28, 27].
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Appendix A

Mathematical tools

In this Appendix, we recall some mathematical tools used in this thesis, such as inequalities, func-
tional spaces, convergence, and compactness theorems.

A.1 Matrices

• we write A =
(
aij
)

to mean an n× n matrix with (i, j)th entry aij.

• tr (A) = trace of the matrix A.

• det (A) = determinant of the matrix A.

• A⊤ = transpose of the matrix A.

A.2 Geometry

• R2 = 2-dimensional real Euclidean space, R = R1.

• e1 = (1, 0)⊤ and e2 = (0, 1)⊤ are the standard coordinate vector.

• An element x in R2 is defined as x = (x1, x2)
⊤.

• Ω is an open subset of R2, ∂Ω = boundary of Ω, Ω = Ω ∪ ∂Ω = closure of Ω.

• |Ω| = surface area or measure of Ω.

A.3 Derivatives

• Assume u : Ω→ R, x ∈ Ω.

• ∂u
∂xi

(x) = lim
h→0

u (x + hei)− u (x)
h

, provided this limit exists.

• we write uxi or ∂uxi to denote ∂u
∂xi

.
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• a vector of the form α = (α1, α2, . . . , αn)
⊤, where each component αi is a nonnegative integer,

is called a multiindex of order

|α| = α1 + α2 + . . . + αn. (A.1)

• Given a multiindex α, we define

∂αu (x) =
∂|α|u (x)

∂xα1
1 . . . ∂xαn

n
. (A.2)

• ∇u = (ux1 , ux2)
⊤ = gradient vector of u.

• Hu =

(
ux1x1 ux1x2

ux2x1 ux2x2

)
= Hessian matrix.

• Assume f : R2 → R2 is a function such that each of its first-order partial derivatives exists on
R2. Then, we define the Jacobian matrix of f as

Jf =

( f1(x)
∂x1

f1(x)
∂x2

f2(x)
∂x1

f2(x)
∂x2

)
. (A.3)

• ∇ · f = ∂ f1(x)
∂x1

+ ∂ f2(x)
∂x2

= divergence of f.

A.4 Inequalities

• Cauchy’s inequality:

ab ≤ a2

2
+

b2

2
(a, b ∈ R) . (A.4)

• For all a ≥ 0 and b ≥ 1, we have

ab ≤ a exp (a) + b log (b) . (A.5)

Proof. If b ≤ exp (a) then ab ≤ a exp (a) ≤ a exp (a) + b log (b).
If exp (a) < b then a < log (b), which means ab < b log (b) < a exp (a) + b log (b).

• Cauchy-Schwarz inequality

|x · y| ≤ |x| |y|
(

x, y ∈ R2
)

. (A.6)
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• A function f : Rn → R is called convex provided

f (tx + (1− t) y) ≤ t f (x) + (1− t) f (y) (x, y ∈ Rn, 0 ≤ t ≤ 1) . (A.7)

• Assume f : Rn → R is convex. Then

f (y) ≥ f (x) +∇ f (x) (y− x) (x, y ∈ Rn) . (A.8)

• Jensen’s Inequality[29]: For a real-valued convex function φ, numbers s1, s2, . . . , sn in its
domain, and positive weights αi, Jensen’s inequality can be stated as:

φ


n

∑
i=1

αisi

n

∑
i=1

αi

 ≤
n

∑
i=1

αi φ (si)

n

∑
i=1

αi

. (A.9)

A.5 Function Spaces

• C (Ω) = {u : Ω→ R | u continuous}.

• C
(
Ω
)
= {u ∈ C (Ω) |u is uniformly continuous on bounded subsets of Ω}.

• Ck (Ω) = {u : Ω→ R | u is k-times continuously differentiable}.

• Ck (Ω) = {u ∈ Ck (Ω) | ∂αu is uniformly continuous on bounded subsets of Ω, for all |α| ≤ k
}

.

• C∞ (Ω) = {u : Ω→ R | u infinitely differentiable} =
∞⋂

k=0

Ck (Ω).

• C∞
c (Ω) = {u ∈ C∞ (Ω) | with compact support}.

A.5.1 Lebesgue Spaces

• Lp =
{

u : Ω→ R | u is Lebesgue measurable, ∥u∥Lp(Ω) < ∞
}

, where

∥u∥Lp(Ω) :=
(∫

Ω
|u|p dx

) 1
p

(1 ≤ p < ∞) . (A.10)

• L∞ =
{

u : Ω→ R | u is Lebesgue measurable, ∥u∥L∞(Ω) < ∞
}

, where

∥u∥L∞(Ω) := ess sup
Ω
|u| . (A.11)
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• If Ω is also bounded. Then, for 1 ≤ p ≤ q ≤ ∞, the embedding Lq (Ω) ⊂ Lp (Ω) is
continuous.

A.5.2 Sobolev Spaces

• fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. Wk,p (Ω) consists of all locally integrable
functions u : Ω → R such that for each multiindex α with |α| ≤ k, ∂αu exists in the weak
sense and belongs to Lp (Ω).

• if p = 2, we write
Hk (Ω) = Wk,2 (Ω) (k = 0, 1, . . .) . (A.12)

• if u ∈Wk,p (Ω), we define its norm to be

∥u∥Wk,p(Ω) :=



 ∑
|α|≤k

∫
Ω
|∂αu|p dx

 1
p

(1 ≤ p < ∞)

∑
|α|≤k

ess sup
Ω
|∂αu| (p = ∞) .

(A.13)

• We denote by Wk,p
0 (Ω) the closure of C∞

c (Ω) in Wk,p (Ω).

• We denote by H−1 (Ω) the dual space of H1
0 (Ω) = W1,2

0 (Ω).

• We have the following chain of imbeddings

H1
0 (Ω) ↪→ L2 (Ω) ↪→ H−1 (Ω) . (A.14)

A.5.3 Orlicz Spaces

• Let φ be a real-valued function defined on [0, ∞) satisfying

– φ (0) = 0, φ (s) > 0 if s > 0, lim
s→∞

φ (s) = ∞,

– φ is nondecreasing,

– φ is right continuous.

Then, the real-valued function ϕ, defined on [0, ∞) by

ϕ (s) =
∫ s

0
φ (r) dr, (A.15)

is called an N-function. It is proved that any N-function is continuous, strictly increasing, and
convex [3].
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• Let ϕ be an N-function and ϕ∗ a function satisfying

ϕ∗ (t) = max
t≥0

(st− ϕ (s)) . (A.16)

Then ϕ∗ is also an N-function, and it is called the polar function.

• An N-function ϕ is said to satisfy ∆2-condition near infinity if there exists s0 > 0 and a positive
constant M such that for every s > s0

ϕ (2s) ≤ Mϕ (s) . (A.17)

• Let Ω be a bounded domain and ϕ be an N-function

– The Orlicz space Lϕ (Ω) is the set of all (equivalence classes modulo equality a.e. in Ω
of) measurable functions u (x) defined on Ω and satisfying∫

Ω
ϕ (|u (x)|) dx < ∞. (A.18)

– The Orlicz class is a linear space if and only if ϕ satisfies ∆2-condition near infinity.

– The Orlicz space Lϕ (Ω) is a Banach space endowed with the norm

∥u∥Lϕ(Ω) = inf
{

k :
∫

Ω
ϕ

(
|u (x)|

k

)
dx ≤ 1

}
, (A.19)

(this norm is due to Luxemburg [36]).

A.5.4 Spaces Involving Time

Let X be a real Banach space, with norm ∥ ∥ and T > 0 be a fixed time.

• The space
Lp (0, T; X) (A.20)

consists of all strongly measurable functions u : [0, T]→ X with

∥u∥Lp(0,T;X) :=
(∫ ⊤

0
∥u (t)∥p dt

) 1
p

< ∞ (A.21)

for 1 ≤ p < ∞ and

∥u∥L∞(0,T;X) := ess sup
0≤t≤T

∥u (t)∥ < ∞. (A.22)

• The space
C ([0, T] ; X) (A.23)
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consists of all continuous functions u : [0, T]→ X with

∥u∥C(0,T;X) := max
0≤t≤T

∥u (t)∥ < ∞. (A.24)

A.6 Convergence and Compactness

We denote by Ω an open bounded subset of R2. Assume 1 ≤ p < ∞ and q := p
p−1 .

• Let {um}∞
m=1 , u ∈ Lp (Ω). We say um converges to u in Lp (Ω), written

um → u in Lp (Ω) , (A.25)

provided
lim

m→∞
∥um − u∥Lp(Ω) = 0. (A.26)

• A sequence {um}∞
m=1 ⊂ Lp (Ω) converges weakly to u ∈ Lp (Ω), written

um ⇀ u weakly in Lp (Ω) , (A.27)

provided ∫
Ω

umvdx →
∫

Ω
uvdx as m→ ∞, (A.28)

for each v ∈ Lq (Ω).

• Assume um ⇀ u weakly in Lp (Ω). Then

{um}∞
m=1 is bounded in Lp (Ω),

and

∥u∥Lp(Ω) ≤ lim inf
m→∞

∥um∥Lp(Ω) . (A.29)

• Weak compactness in Lp (Ω): Assume 1 < p < ∞ and the sequence {um}∞
m=1 satisfies

sup
m
∥um∥Lp(Ω) < ∞. (A.30)

Then there exist a subsequence
{

umj

}∞

j=1
and u ∈ Lp (Ω) such that

umj ⇀ u weakly in Lp (Ω) . (A.31)

• In the case p = ∞, we say that
{

umj

}∞

j=1
⊂ L∞ (Ω) converges weakly star to u ∈ L∞ (Ω),

written
umj ⇀ u weakly_∗ in Lp (Ω) , (A.32)
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provided (A.28) holds for all v ∈ L1 (Ω).

• Uniform integrability and weak convergence in L1 (Ω) [19]: Assume {um}∞
m=1 be a sequence

of functions in L1 (Ω) satisfying

sup
m
∥um∥L1(Ω) < ∞. (A.33)

Suppose also
lim
l→∞

sup
m

∫
Ω∩{|um|≥l}

|um| dx = 0. (A.34)

Then there exist a subsequence
{

umj

}∞

j=1
and u ∈ L1 (Ω) such that

umj ⇀ u weakly in L1 (Ω) . (A.35)

A.7 Convergence Theorems for integrals

• Fatou’s lemma: Let Ω ⊂ R2 be measurable and let {um}∞
m=1 be nonnegative and measurable

functions. Then ∫
Ω

lim inf
m→∞

umdx ≤ lim inf
m→∞

∫
Ω

umdx. (A.36)

• Lebesgue’s Dominated Convergence: Let Ω ⊂ R2 be measurable, let {um}∞
m=1 be integrable

functions and
um → u a.e.. (A.37)

Suppose also

|um| ≤ v a.e., (A.38)

for some integrable function v. Then∫
Rn

umdx →
∫

Rn
udx. (A.39)
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