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Introduction

Fixed point theory is one of the pillars of research in functional analysis
that provides diverse mathematical methods, concepts and pertinent tools for the
resolution of many problems that emanate from different branches of mathematics
and distinct fields of sciences and engineering. The advances made in fixed point
theory, over the last 60 years or so, constitute an active and exciting area of study in
modern mathematics serving essentially the study of nonlinear phenomena. In fact,
the existence of solutions for several central problems can be studied throughout
expressing them on an equivalent fixed point problem. Practically speaking, the
operator equation Fx = 0 can be turned to a fixed point equation Tx = x, where
T is a self-mapping with an appropriate domain.

Brower’s fixed point theorem, Banach fixed point theorem and Tarski’s
fixed point theorem, are three decisive results that represent the topological, metric
and the order-theoretic approaches respectively, which are in effect the three funda-
mental directions in fixed point theory. In this study, we are particularly interested
in Metric Fixed Point Theory and its applications.

Stephan Banach, the polish mathematician, proved in his thesis in 1922 the
first relevant metric fixed point theorem which is also known as Banach’s Contrac-
tion Principle. This significant result offers an excellent basis for the development
of metric fixed point theory. Its central subject is involved in proving the existence
and uniqueness of the solutions of diverse mathematical models including varia-
tional inequality problems, nonlinear optimization problems, equilibrium problems,
ordinary differential and partial differential equations, etc. Due to its vast and
significant applicability in pure and applied mathematics, this principle has been
generalized and extended in different approaches and several abstract spaces. In
this regard, a great deal of work has been done. According to Banach’s contraction,
the mapping under consideration is continuous. As a result, it is natural to consider
the following question: Are there any contractive conditions that do not require the
mapping T to be continuous ?

Kannan [62] provided a positive answer to this question in 1968, when
he proved Kannan fixed point theorem’s by defining a new contraction condition.
Following this direction, intensive study in this area has beguan by considering
different new generalizations of contraction mappings, see e.g. Chaterjea [70], Zam-
firescu [75], Reich [64], Ćirić [46] and others. Furthermore, several studies have
been conducted to expand the Banach contraction by introducing various classes
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of auxiliary and control functions, such as the works of Geraghty [41], Hardy and
Rogers [39], Berinde [80], Suzuki [74], Khan et al. [51] and several other researchers.
In 2012, Samet et al.[13] introduced the notion of α-ψ-contractive type mappings by
defining the concept of α-admissibility and using Bianchini-Grandolfi gauge func-
tions, the authors inspected the existence and the uniqueness of fixed points for
such mappings. In 2014, Popescu [59] suggested the concept of triangular α-orbital
admissible as an improvement of the triangular α-admissible notion proposed in
[13].

Recently, Khojasteh et al. [28] pioneered a new approach to the study of
fixed point theory by coining the notion of simulation functions in order to consider
a new type of nonlinear contractions known as Z-contractions. Such notions exhibit
a significant unifying power over several known results. As a result, it is possible to
approach many fixed point problems from a single, common point of view. Many
researchers have improved, generalized and extended the idea of simulation func-
tions in different ways and various metric spaces, see, Roldán-López-de-Hierro et al.
[2], Seong-Hoon Cho [69], b-simulation functions [18], ψ-simulation functions [40],
etc.

As part of the ongoing phase of developing the theory, a new line of research
that deals with the extension of the Banach Contraction Principle to metric spaces
with a partial order has been revealed. The early findings in this direction were due
to Turnici [55], Ran and Reurings [1].

The concept of fuzzy set was initiated by L.A. Zadeh [45] in 1965 as a new
mathematical approach to deal with uncertainty and vagueness associated to the
real-world context. It is based on the generalization of the classical concepts of crisp
set and characteristic function. The theory of fuzzy sets is now well developed as an
essential and practical modeling construct. One of the key issues in fuzzy topology
is to obtain an appropriate and coherent concept of fuzzy metric space. This prob-
lem has been considered by many authors in a number of different ways [83, 58].
Kramosil and Michalek [36] defined fuzzy metric space by generalizing the notion
of probabilistic metric space to the fuzzy setting. Furthermore, George and Veera-
mani [3] modified Kramosil and Michalek’s definition of fuzzy metric space with the
purpose to obtain a Hausdorff topology for this class of fuzzy metric space, which
has a significant applications in quantum mechanics, especially in connection with
both string and ε(∞) theory [53, 52]. Over the last years, there has been an intense
interest in studying the fixed point theory in fuzzy metric spaces. In this direction,
Gregori and Sapena [78] introduced the concept of fuzzy contractive mappings and
obtained some fixed point results. In [19], Mihet proposed the class of ψ-contractive
mappings which is larger than the fuzzy contractive mappings notion given in [78].
Later on, Wardowski presented and studied the concept of H-contractive mappings
[20].

The best proximity theory is another flourishing and influential aspect of
fixed point theory which plays a fundamental role in the study of conditions that en-
sure the existence of optimal approximate fixed point of non-self-mapping T when
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the functional equation Tx = x has no solution. In fact, if T : U −→ V is a
non-self-mapping where U and V are two nonempty subsets of metric space (X, d),
it is crucial to furnish an optimal approximate solution x ∈ U which induces the
minimum error d(x, Tx). Taking into account the fact that d(x, Tx) is at least
d(U, V ), a best proximity point of T is the optimal approximate solution x satisfy-
ing d(x, Tx) = d(U, V ). In a natural way, the best proximity theory is a noteworthy
generalization of fixed point theorem. Precisely, a best proximity point turns out
to be a fixed point if the mapping in question is a self-mapping. Further results of
different type of contractions for the existence of a best proximity point in classical
and fuzzy metric spaces can be found in [25, 76, 29, 15, 37, 22, 17, 54].

The present doctoral thesis comprises five chapters.

Chapter 1 Constitutes a brief review of basic definitions and notions re-
lated to metric spaces and fuzzy metric spaces. It also deals with fundamental
results and concepts which marked the theoretical evolution of fixed point theory.

In Chapter 2, we introduce a new concept of α-admissible almost type
Z-contractions with respect to a simulation function ζ in the setting of complete
metric spaces and we prove some results about the existence and uniqueness of
fixed points for such class of mappings. Further, we establish that several existing
relevant results can be derived from our main results. The presented theorems in
this chapter generalize and extend some well-known theorems ( see e.g. Khojasteh
et al. [28], Samet et al. [67], Karapinar [24], Ćirić [46], Berinde [82], Hardy and
Rogers [39], Kannan [62]).

Chapter 3 is devoted to initiate the concept FZ-contractions involving a new
class of control functions, namely FZ-simulation functions. In the intent to unify
different existing types of contractions in the framework of fuzzy metric spaces. We
prove the existence and uniqueness results for such class of nonlinear contractions.
Our approach generalizes the earlier known concepts of Gregori and Sapena [78],
Mihet [19], Wardowski [20].

In Chapter 4 we define a new type of nonlinear contractions by combin-
ing the ideas of FZ-contractions defined in the previous chapter and the notion of
triangular α-orbital admissible proposed by Popescu [59]. The presented concepts
generalize the contractivity conditions originated by Gopal and Vetro [42], Mishra
et al. [77], Gregori and Sapena [78] and Mihet [19]. We inspect for the existence
and uniqueness of fixed points and also we provide two examples illustrating the
utility of our results.

Chapter 5 deals with another flourishing and influential aspect of fixed point
theory which is the best proximity theory. In this chapter, we introduce a novel
approach to best proximity points theorems on a fuzzy metric backdrop, by defining
new types of proximal FZ-contractions. Notably, α-FZ-contraction, α − ψ-FZ-
contraction and generalized α-FZ-contraction. We discuss the existence of the best
proximity points of such classes of non-self-mappings and we deliver some corollaries
and specify how one can reach more consequences from the obtained theorems.
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Chapter 1

Preliminaries

1.1 Metric spaces

The concept of a metric space was first introduced by the French mathemati-
cian Maurice Fréchet [30] in 1906. This concept provided a firm foundation for many
direction of research in mathematics. First, we begin with some basic definitions.

Definition 1.1.1. [30] Let X be a nonempty set. A mapping d : X ×X → R+ is
said to be a metric on X if the following conditions holds for all x, y, z ∈ X :

(M1) d(x, y) ≥ 0,

(M2) d(x, y) = 0 if and only if x = y,

(M3) d(x, y) = d(y, x)

(M4) d(x, z) ≤ d(y, x) + d(y, z)

A pair (X, d) satisfying the above assumptions is a metric space.

Example 1.1.2. Let X be nonempty set and define for all x, y ∈ X

d(x, y) =

{
1 if x 6= y,
0 if x = y.

Then d is a metric on X and the pair (X, d) is called a discrete metric space.

Example 1.1.3. The real line R endowed with the absolute value metric

d : R× R→ R+

(x, y) 7→ |x− y|.

is called the usual metric space.
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Example 1.1.4. Let X = Rn and a mapping d : Rn × Rn → R+ defined by

d(x, y) =

(
n∑
k=1

(xk − yk)2
) 1

2

for all x = (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Rn. Then d is a metric and the pair (X, d)
is called Euclidean metric space.

Example 1.1.5. Let C([a, b]) be the set of all continuous real valued functions
defined on [a, b]. Define

d(f, g) = sup
t∈[a,b]

|f(t)− g(t)|

Then d is a metric on C([a, b]) and the pair (X, d) is a metric space.

Definition 1.1.6. Let (X, d) be a metric space. For x ∈ X and r > 0 define

B(x, r) = {y ∈ X : d(x, y) < r}

The set B(x, r) is called the open ball with centre x ∈ X and radius r.

Definition 1.1.7. A subset O of a metric space (X, d) is said to be open if given
any point x ∈ O , there exists r > 0 such that B(x, r) ⊆ O.

Proposition 1.1.8. Every open ball B(x, r) is an open set.

Definition 1.1.9. Let (X, d) be a metric space. A sequence {xn} ⊆ X is said to
be convergent to an element x ∈ X if for each ε > 0 there exists N ∈ N such that
d(xn, x) < ε for all n ≥ N , Thus limn→∞ xn = x.

Definition 1.1.10. Let (X, d) be a metric space. A sequence {xn} ⊆ X is said to
be a Cauchy sequence if for every ε > 0 there exists N ∈ N such that d(xn, xm) < ε
for all n,m ≥ N .

Definition 1.1.11. A metric space (X, d) is said to be complete if every Cauchy
sequence {xn} ⊆ X has a limit in X.

Example 1.1.12. The real number line R with the absolute value metric is com-
plete.

Example 1.1.13. The space Rn with the Euclidean metric is complete.

Example 1.1.14. The closed interval [0, 1] with the absolute value metric is com-
plete.
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1.2 Fundamental metric contractions principles

The pioneering Banach contraction principle is a fundamental progress in the
theoretical development of metric fixed point theory.

Definition 1.2.1. [8] Let (X, d) be a metric space and T : X −→ X be a mapping.
T is called contraction mapping if

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X, (1.1)

Where k is a constant such that k ∈ [0, 1).

Theorem 1.2.2. [8] (Banach’s Contraction Principle). Let (X, d) be a com-
plete metric space and T : X −→ X be a contraction mapping. Then T has a
unique fixed point.

According to Banach’s contraction, the mapping under consideration is con-
tinuous. As a result, it is natural to envisage the following question: Are there any
contractive conditions that do not require the mapping T to be continuous?

Kannan [62] in 1968 provided a positive answer to this question by proving
Kannan’s fixed point theorem for the following contractive condition, known as
Kannan’s contraction:

Definition 1.2.3. [62] Let (X, d) be a metric space and T : X −→ X be a mapping.
T is called Kannan contraction mapping if there exists k ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] for all x, y ∈ X (1.2)

Theorem 1.2.4. [62] Let (X, d) be a complete metric space and T : X −→ X be a
Kannan contraction mapping. Then T has a unique fixed point.

Example 1.2.5. [62] Let X = [0, 1] endowed with the ordinary euclidian metric
and define

Tx =


x
4

for x ∈ [0, 1
2
)

x
5

for x ∈ [1
2
, 1]

T is discontinuous at x = 1
2
, thus, Banach’s condition is not satisfied. However, it

satisfies Kannan’s condition by taking k = 4
9
.

Notice that, both contractions Banach mappings and Kannan mappings are
independent. Thus, the Kannan theorem cannot be considered as an extension of
the Banach’s contraction principle.

In 1972, Chatterjea [70] established some results by introducing a new condition
similar to (1.2).
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Theorem 1.2.6. [70] Let (X, d) be a complete metric space and T : X −→ X a
mapping satisfying the following condition

d(Tx, Ty) ≤ %[d(x, Ty) + d(y, Tx)] (1.3)

for all x, y ∈ X where % ∈ [0, 1
2
). Then T has a unique fixed point.

In 1971, Reich [64] obtained a fixed point theorem by considering new contractive
condition as follows

Theorem 1.2.7. [64] Let (X, d) be a complete metric space and T : X −→ X a
mapping satisfying the following condition

d(Tx, Ty) ≤ γd(x, y) + δd(x, Tx) + βd(y, Ty) for all x, y ∈ X

Where γ, δ and β are nonnegative and satisfy γ + δ + β < 1. Then T has a unique
fixed point.

The Banach’s contraction principle can be obtained from the above theorem by
taking γ = δ = 0, while γ = δ and β = 0 yields Kannan’s result.

By combining the conditions (1.1),(1.2) and (1.3). Zamfirescu [75] proved a
remarkable fixed point theorem in 1972.

Theorem 1.2.8. [75] Let (X, d) be a complete metric space and T : X −→ X a
mapping. if there exist a, b and c such that a ∈ [0, 1), 0 ≤ b and c < 1

2
and, at least

one of the following conditions is fulfilled

(Z1) d(Tx, Ty) ≤ ad(x, y),

(Z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(Z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)]

Then T has a unique fixed point.

In [9] Rhoades proved that Zamfirescu’s condition is equivalent to the following
Ćirić contraction mapping

d(Tx, Ty) ≤ hmax{d(x, y),
d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2
}

for all x, y ∈ X, where h ∈ [0, 1).
In their paper [39], Hardy and Rogers [39] obtained a new generalization of the

fixed point theorem due to Reich by defining a new contractive condition covering
several types of the aforementioned conditions.
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Theorem 1.2.9. [39] Let (X, d) be a complete metric space and T : X −→ X a
mapping such that the following condition holds

d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y)

for all x, y ∈ X, where a, b, c, e, f are nonnegative and satisfying (a+b+c+e+f) < 1.
Then T has a unique fixed point.

In 1974, Ćirić [46] considered a new type of generalized contractions, defined by
the following

Definition 1.2.10. [46] Let (X, d) be a metric space and T : X −→ X be a
mapping. T is called quasi contraction mapping if there exists h ∈ [0, 1) such that

d(Tx, Ty) ≤ hmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (1.4)

for all x, y ∈ X. Rhoades [9] showed that Ćirić condition (1.4) is a generalization
of the Zamfirescu result.

Boyd and Wong [12] proved a remarkable generalization of the classical Banach
fixed point theorem in complete metric space by substituting the constant k in (1.1)
with a control function.

Theorem 1.2.11. [12] Let (X, d) be a complete metric space and T : X −→ X a
mapping such that

d(Tx, Ty) ≤ ψ(d(x, y)) (1.5)

for all x, y ∈ X, where ψ : [0,∞) −→ [0,∞) is upper semicontinuous function from
the right (i.e. rn ↘ r ≥ 0 ⇒ limn→∞ supψ(rn) ≤ ψ(r)) and satisfies ψ(t) < t for
all t > 0. Then T has a unique fixed point.

Note that if we take ψ(t) = kt for all t ∈ [0,∞) with k ∈ [0, 1) in (1.5), we
deduce Banach’s fixed point theorem [8].

In [41], Geraghty generalized the Banach’s contraction principle and coined a
new class of contractions mappings called Geraghty contractions, by using the fol-
lowing class of auxiliary functions:

Let S denote the class of all real functions β : [0,∞) −→ [0, 1) satisfying the
following condition

β(tn) −→ 1⇒ tn −→ 0.

Theorem 1.2.12. [41] Let (X, d) be a complete metric space and T : X −→ X be
a mapping. Assume that there exists β ∈ S such that the following condition holds

d(Tx, Ty) ≤ β(d(x, y))d(x, y) (1.6)

for all x, y ∈ X. Then T has a unique fixed point.
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In 2004, Berinde [80, 81] presented the concept of almost contractions ( known
also as weak contractions) and showed that the Kannan [62] and Zamfirescu [75]
operators, in addition to a large class of quasi-contractions are included in the class
of weak contractions. The main results in [80] are the following theorems.

Definition 1.2.13. [80] Let (X, d) be a metric space and T : X −→ X be a
mapping. T is called an (δ, L)-almost contraction if there exist a constant δ ∈ (0, 1)
and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx) for all x, y ∈ X. (1.7)

Remark 1.2.14. It’s worth noting that the almost contraction (1.7) is not sym-
metric. However, since the distance is symmetric, the following dual condition (1.8)
is implicitly included in almost contraction condition (1.7):

d(Tx, Ty) ≤ δd(x, y) + Ld(x, Ty) for all x, y ∈ X. (1.8)

Clearly, Banach contractions (1.1) are properly included in the class of almost
contractions (1.7) with δ = k and L = 0.

The following propositions include additional examples of almost contractions.

Proposition 1.2.15. [80] Let (X, d) be a metric space. Every Kannan’s contraction
(1.2) is an almost contraction.

Proof. From the condition (1.2) and the triangle inequality, we have

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)]

≤ k ([d(x, y) + d(y, Tx)] + [d(y, Tx) + d(Tx, Ty)])

Therefore

(1− k)d(Tx, Ty) ≤ kd(x, y) + 2kd(y, Tx)

Which means

d(Tx, Ty) ≤ k

(1− k)
d(x, y) +

2k

(1− k)
d(y, Tx)

Then, in light of the condition k ∈ [0, 1
2
), (1.7) holds by taking δ = k

(1−k) and

L = 2k
(1−k) .

Proposition 1.2.16. [80] Let (X, d) be a metric space. Every Chatterjea’s con-
traction, i.e. every mapping T : X −→ X satisfying the contractive condition (1.3)
is an almost contraction.

Proposition 1.2.17. [80]Every Zamfirescu contraction, i.e., a mapping T : X −→
X satisfying the conditions in Theorem 1.2.8, is an almost contraction.
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Example 1.2.18. [10] Let X = [0, 1] endowed with the usual metric and define
T : X −→ X by

Tx =


2
3
x for x ∈ [0, 1

2
)

2
3
x+ 1

3
for x ∈ [1

2
, 1]

Then

ı) T is an almost contraction with δ = 2
3

and L = 6 and Fix(T ) = {0; 1}.

) T does not fulfill any of the contraction conditions of Banach, Kannan, Chatter-
jea, Zamfirescu and Ćirić quasi-contraction, since T has two fixed points.

Theorem 1.2.19. [80] Let (X, d) be a complete metric space and T : X −→ X
(δ, L)-almost contraction mapping then

(1) Fix(T ) = {x ∈ X : Tx = x} 6= ∅,

(2) For any x0 ∈ X the Picard iteration {xn}∞n=0 defined by xn+1 = Txn for all
n ∈ N converges to some x∗ ∈ Fix(T ),

(3) The following estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1), n = 0, 1, 2, ...

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn), n = 0, 1, 2, ...

hold, where δ is the constant (1.7).

In order to prove the uniqueness of the fixed point for such class of contraction,
Breinde [80] considered an additional condition,quite similar to (1.7) as seen by the
following theorem.

Theorem 1.2.20. [80] Let (X, d) be a complete metric space and T : X −→ X an
almost contraction mapping for which there exist θ ∈ (0, 1) and some L1 ≥ 0 such
that

d(Tx, Ty) ≤ θd(x, y) + L1d(x, Tx) for all x, y ∈ X.

Then T has a unique fixed point, i.e. Fix(T ) = {x∗}.
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1.3 α-ψ-contractive type mappings

In 2012, Samet, C. Vetro and P.Vetro [13] originated the idea of α-ψ-contractive
type mappings and proved fixed point results for such class of mappings in the
context of complete metric spaces.

Definition 1.3.1. [13] Let Ψ1 be the family of functions ψ : R+ −→ R+ satisfying
the following conditions:

(ψ1) ψ is nondecreasing function.

(ψ2)
∑+∞

n=1 ψn(t) < +∞ for all t > 0, where ψn is the n-th iterate of ψ.

Lemma 1.3.2. [34, 35] If ψ ∈ Ψ1, then the following hold :

(i) (ψn(t))n∈N converges to 0 as n→∞ for all t ∈ R+;

(ii) ψ(t) < t, for any t ∈ R+;

(iii) ψ is continuous at 0;

(iv) the series
∑∞

k=1 ψk(t) converges for all t ∈ R+.

One of the fascinating concepts, α-admissibility was presented by Samet et
al.[13].

Definition 1.3.3. [13] Let T : X −→ X be a self-mapping and α : X×X −→ [0,∞)
be a function. T is said to be α-admissible if

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1 for all x, y ∈ X.

Example 1.3.4. [13] Let X = [0,∞) and define a self mapping T : X −→ X and
the function α : X ×X −→ [0,∞) by Tx =

√
x for all x ∈ X, and

α(x, y) =

{
ex−y if x ≥ y,

0 if x < y.

Then, T is α-admissible.

Example 1.3.5. [13] Let X = (0,∞) and define a self mapping T : X −→ X and
the function α : X ×X −→ [0,∞) by Tx = lnx for all x ∈ X, and

α(x, y) =

{
2 if x ≥ y,
0 if x < y.

Then, T is α-admissible.
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Definition 1.3.6. [13] Let T : X −→ X be a mapping on a metric space (X, d). We
say that T is an α-ψ-contractive mapping if there exist two functions α : X×X −→
[0,∞) and ψ ∈ Ψ1 such that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), for all x, y ∈ X. (1.9)

Remark 1.3.7. Defining α(x, y) = 1 for all x, y ∈ X and ψ(t) = kt for all t > 0
and some k ∈ [0, 1) in the above definition, we derive the well known Banach
contraction.

Theorem 1.3.8. [13] Let (X, d) be a complete metric space. Suppose that T :
X −→ X is an α-ψ-contractive mapping and satisfies the following conditions:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous

Then, T has a fixed point.

Theorem 1.3.9. [13] Let (X, d) be a complete metric space. Suppose that T :
X −→ X is an α-ψ-contractive mapping and satisfies the following conditions:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ X such that Tu = u.

In order to obtain the uniqueness of the fixed point in the above theorems the
authors considered the following additional condition: For all x, y ∈ X, there exist
w ∈ X such that α(x,w) ≥ 1 and α(y, w) ≥ 1.

Example 1.3.10. [13] Let X = R endowed with the usual metric d(x, y) = |x− y|
and T : X −→ X the mapping defined by

Tx =


2x− 3

2
if x > 1,

x
2

if 0 ≤ x < 1,
0 if x < 0.

Clearly, T does not satisfy the Banach contraction principle, since

d(T1, T2) = 2 > d(2, 1) = 1
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T satisfies condition (1.9) with ψ(t) = t
2

for all t ≥ 0 and

α(x, y) =

{
1 if x, y ∈ [0, 1]
0 otherwise.

Further, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Indeed, for x0 = 1, we
get

α(1, T1) = α(1,
1

2
) = 1.

Now, we show that T is α-admissible. Let x, y ∈ X such that α(x, y) ≥ 1, which
means that x, y [0, 1], we have

Tx =
x

2
, T y =

y

2
∈ [0, 1] and α(Tx, Ty) = 1.

All conditions of Theorem 1.3.8 are satisfied. Thus, T has a fixed point.

1.4 Nonlinear contractions via simulation func-

tions

In 2015, Khojasteh et al. [28] presented a new approach to the study of fixed
point theory via the concept of simulation functions and defined a new type of
nonlinear contractions, namely Z-contractions. the authors generalized the Banach
contraction principle and unified several known types of contractions in complete
metric spaces. The idea of simulation functions has been extended and enriched in
various directions and different metric spaces by many researchers.

Definition 1.4.1. [28] The function ζ : [0,∞) × [0,∞) −→ R is said to be a
simulation function, if it satisfies the following conditions:

(S1) ζ(0, 0) = 0;

(S2) ζ(t, s) < s− t for all t, s > 0;

(S3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0
then limn→∞ sup ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z .

Example 1.4.2. [28] Let ζi : [0,∞)× [0,∞) −→ R, i = 1, 2, 3 be defined by

1. ζ1(t, s) = φ̃(s) − φ(t) for all t, s ∈ [0,∞),where φ̃, φ : [0,∞) −→ [0,∞) are
two continuous functions such that φ̃(t) = φ(t) = 0 if and only if t = 0 and
φ̃(t) < t ≤ φ(t) for all t > 0.
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2. ζ2(t, s) = s − ϕ(s) − t for all t, s ∈ [0,∞), where ϕ : [0,∞) −→ [0,∞) is a
continuous function such that ϕ(t) = 0 if and only if t = 0.

3. ζ3(t, s) = s − f(t,s)
g(t,s)

t for all t, s ∈ [0,∞), where f, g : [0,∞) −→ (0,∞) are

continuous functions with respect to each variable such that f(t, s) > g(t, s)
for all t, s > 0.

ζi for i = 1, 2, 3 are simulation functions. For other interesting examples of simula-
tion functions, readers are refereed to [2, 56, 6].

Definition 1.4.3. [28] Let (X, d) be a metric space, T : X −→ X a self-mapping
and ζ ∈ Z. We say that T is a Z-contraction with respect to ζ, if the following
condition is satisfied

ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X.

The Banach contraction is a perfect instance of Z-contraction with respect to
the simulation function defined by ζ(t, s) = ks− t, where k ∈ [0, 1).

Now, we deliver the result proved in [28] as follows.

Lemma 1.4.4. [28] Let T : X −→ X be a Z-contraction with respect to a simula-
tion function ζ ∈ Z on metric space (X, d). Then T provided that has a fixed point,
it is unique.

Definition 1.4.5. [26] A self mapping T on a metric space (X, d) is said to be
asymptotically regular at a point x in X, if

lim
n→∞

d(T nx, T n+1x) = 0

where T n denotes the nth iterate of T at x.

Lemma 1.4.6. [28] Let (X, d) be a metric space and suppose that the self mapping
T : X −→ X is a Z-contraction with respect to a simulation function ζ ∈ Z. Then
T is asymptotically regular at every arbitrary x ∈ X.

Theorem 1.4.7. [28] Let (X, d) be a complete metric space and T : X −→ X be
a Z-contraction with respect to a simulation function ζ ∈ Z. Then T has unique
fixed point in X and for every x0 ∈ X the Picard sequence {xn}, where xn = Txn−1
for all n ∈ N, converges to the fixed point of T .

1.5 Fuzzy metric spaces

Definition 1.5.1. [14] A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous
triangular norm (or continuous t-norm) if it satisfies the following conditions
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(CT1) ∗ is continuous;

(CT2) ∗ is commutative and associative;

(CT3) a ∗ 1 = a for all a ∈ [0, 1];

(CT4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Example 1.5.2. The following instances are classical examples of continuous t-
norm:

a) a ∗ b = a.b Probabilistic t-norm;

b) a ∗ b = min(a, b) Zadeh’s t-norm;

c) a ∗ b = max[0, a+ b− 1] Lukasiewicz’s t-norm;

Definition 1.5.3. (George and Veeramani [3]) The 3-tuple (X,M, ∗) is said to be a
fuzzy metric space ( in the sense of George and Veeramani ) if X is an arbitrary set,
∗ is a continuous t-norm and M is fuzzy set on X2× (0,∞) satisfying the following
conditions :

(GV1) M(x, y, t) > 0,

(GV2) M(x, y, t) = 1 if and only if x = y,

(GV3) M(x, y, t) = M(y, x, t)

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

(GV5) M(x, y, .) : (0,∞)→ (0, 1] is continuous .

for all x, y, z ∈ X and s, t > 0.

The function M(x, y, t) can be thought of as the degree of nearness of x and y
with respect to the variable t.

In Definition 1.5.3, if the triangular inequality (GV 4) is replaced by

(GV 4)
′
: M(x, y, t) ∗M(y, z, s) ≤M(x, z,max{t, s})

for all x, y, z ∈ X and s, t > 0, then the triple (X,M, ∗) is said to be a non-
Archimedean fuzzy metric space, as (GV 4)

′
implies (GV 4), every non-Archimedean

fuzzy metric space is a fuzzy metric space. Furthermore, the ordered triple (X,M, ∗)
is called a strong fuzzy metric space if (GV 4) is replaced by

(GV 4)
′′

: M(x, y, t) ∗M(y, z, t) ≤M(x, z, t)

for all x, y, z ∈ X and t > 0.

Lemma 1.5.4. [49] M(x, y, .) is nondecreasing for all x, y in X.
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Example 1.5.5. [3] Let X = R. Define a ∗ b = ab for all a, b ∈ [0, 1] and the
function M : X ×X × (0,∞)→ [0, 1] by

M(x, y, t) =

[
exp

(
|x− y|
t

)]−1
for all x, y ∈ X, t > 0.

Then (X,Md, ∗) is a fuzzy metric space.

Example 1.5.6. [3] Let (X, d) be a metric space. Define a ∗ b = min(a, b) for all
a, b ∈ [0, 1] and

M(x, y, t) =
ktn

ktn +md(x, y)
, k,m, n ∈ R+

Then (X,M, ∗) is a fuzzy metric space.
Letting k = m = n = 1, we get

M(x, y, t) =
t

t+ d(x, y)

we call this fuzzy metric induced by a metric d the standard fuzzy metric.

Example 1.5.7. ([3, 61, 79]) Let f : X → R+ be a one-to-one function, g : R+ →
[0,∞) be an increasing continuous function and α, β > 0. Define

M(x, y, t) =

(
(min{f(x), f(y)})α + g(t)

(max{f(x), f(y)})α + g(t)

)β
(1.10)

Then (M, .) is a fuzzy metric on X.

In particular, by taking α = β = 1 and f as the identity function, then we
obtain the following examples

1. Let X = R+ and take g as the identity function in (1.10), we have

M(x, y, t) =
min{x, y}+ t

max{x, y}+ t

Then (X,M, ∗) is a fuzzy metric space.

2. Let X = (0,∞) and take g as the zero function (1.10), we have

M(x, y, t) =
min{x, y}
max{x, y}

Then (X,M, .) is a fuzzy metric space.
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Example 1.5.8. [79] Let ϕ : R+ → [0, 1) be an increasing continuous function.
Define ∗ by the t-norm minimum and the function M : X ×X × (0,∞)→ [0, 1] by

M(x, y, t) =

{
1 if x = y
ϕ(t) if x 6= y.

Then (M, ∗) is a fuzzy metric on X.

In particular, by taking ϕ(t) = k ∈ (0, 1) we get the following example

M(x, y, t) =

{
1 if x = y
k if x 6= y.

Here, M is called the discrete fuzzy metric because of its analogy to the standard
discrete metric.

1.6 Topology induced by a fuzzy metric

Definition 1.6.1. [3] Let (X,M, ∗) be a fuzzy metric space. We define the open
ball BM(x, r, t) for t > 0 with centre x ∈ X and radius r , 0 < r < 1 as

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}

Definition 1.6.2. [3] A subset O of a fuzzy metric space (X,M, ∗) is said to be
open if given any point x ∈ O , there exists 0 < r < 1 , and t > 0 such that
B(x, r, t) ⊆ O.

Theorem 1.6.3. [3] Every open ball B(x, r, t) is an open set.

Definition 1.6.4. [3] Let (X,M, ∗) be a fuzzy metric space. Fort > 0, the closed
ball with centre x ∈ X and radius r, 0 < r < 1 t > 0 is defined by

B[x, r, t] = {y ∈ X : M(x, y, t) ≥ 1− r}

Lemma 1.6.5. Every closed ball in a fuzzy metric space is a closed set.

Proposition 1.6.6. [3] Let (X,M, ∗) be a fuzzy metric space, define

τM = {O ⊂ X : x ∈ O if and only if there exist t > 0

and 0 < r < 1 such that B(x, r, t) ⊂ O}

Then τ is a topology on X.

Remark 1.6.7. [3] Since {B(x, 1
n
, 1
n
);n = 1, 2, ...} is a local base at x, the above

topology is first countable.

Theorem 1.6.8. [3] Every fuzzy metric space is Hausdorff.
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Definition 1.6.9. [3] A subset A of a fuzzy metric space (X,M, ∗) is said to be
F-bounded if and only if there exist t > 0 and 0 < r < 1 such that M(x, y, t) > 1−r
for all x, y ∈ A.

Theorem 1.6.10. [3] Every compact subset K of a fuzzy metric space X is F-
bounded.

Remark 1.6.11. Every compact set in a fuzzy metric space is closed and bounded.

Definition 1.6.12. [3] Let (X,M, ∗) be a fuzzy metric space.

1. A sequence {xn} ⊆ X is said to be convergent to a point x ∈ X if an only if
limn→∞M(xn, x, t) = 1 for all t > 0.

2. A sequence {xn} ⊆ X is said to be a Cauchy sequence if and only if for each
ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for
all n,m≥ n0 .

3. A fuzzy metric space in which every Cauchy sequence is convergent is called
a complete fuzzy metric space.

4. A fuzzy metric space in which every sequence has a convergent subsequence
is said to be compact.

1.7 Fuzzy contractive mappings and related fixed

point theorems

Definition 1.7.1. [78] Let (X,M, ∗) be a fuzzy metric space. A mapping T : X →
X is said to be fuzzy contractive mapping if there exists k ∈ (0, 1) such that

1

M(Tx, Ty, t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
. (1.11)

for each x, y ∈ X and t > 0.

Definition 1.7.2. [78] Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in
X is said to be fuzzy contractive mapping if there exists k ∈ (0, 1) such that

1

M(xn+1, xn+2, t)
− 1 ≤ k

(
1

M(xn,n+1 , t)
− 1

)
.

for all t > 0, n ∈ N.

Gregori and Sapena [78] extended the Banach fixed point theorem to fuzzy
contractive mapping by the following theorem.
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Theorem 1.7.3. [78] Let (X,M, ∗) be a fuzzy metric space in which fuzzy contrac-
tive sequence are Cauchy and T : X → X be a fuzzy contractive mapping. Then T
has a unique fixed point.

Let Ψ2 be the class of all functions ψ : (0, 1] → (0, 1] such that ψ is continuous,
non-decreasing and ψ(t) > t, for all t ∈ (0, 1).

Definition 1.7.4. [19] Let (X,M, ∗) be a fuzzy metric space. A mapping T :
X −→ X is said to be fuzzy ψ-contractive mapping if

M(Tx, Ty, t) ≥ ψ(M(x, y, t)) for all x, y ∈ X, t > 0. (1.12)

Definition 1.7.5. [20] Let H be the set of all functions η : (0, 1] −→ [0,∞) which
satisfy the following two conditions:

H1) η transforms (0, 1] onto [0,∞),

H2) η is strictly decreasing.

Definition 1.7.6. [20] Let (X,M, ∗) be a fuzzy metric space and η ∈ H. A sequence
{xn} in X is Cauchy if and only if for each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N
such that η(M(xn, xm, t)) < ε for all n,m ≥ n0

Proposition 1.7.7. [20] Let (X,M, ∗) be a fuzzy metric space and η ∈ H. A
sequence {xn} in X is convergent to x ∈ X if and only if limn→∞ η(M(xn, x, t)) = 0
for all t > 0.

In 2013, Wardowski [20] introduced the concept of fuzzyH-contractive mappings
as generalization of notion of fuzzy contractive mappings given by Gregori and
Sapena [78].

Definition 1.7.8. Let (X,M, ∗) be a fuzzy metric space and η ∈ H. A mapping
T : X → X is said to be fuzzy H-contractive with respect to η ∈ H if there exists
k (0, 1) such that

η(M(Tx, Ty, t)) ≤ kη(M(x, y, t)) for all x, y ∈ X, t > 0. (1.13)

Example 1.7.9. [20] By considering η(t) = 1
t
− 1, t ∈ (0, 1]. Then this Definition

reduces to the definition of fuzzy contraction due to Gregori and Sapena [78].

Theorem 1.7.10. [20] Let (X,M, ∗) be a complete fuzzy metric space and T : X →
X be a fuzzy H-contractive mapping with respect to η ∈ H such that

(w1)
∏k

i=1M(x, Tx, ti) > 0, for all x ∈ X, k ∈ N and any sequence {ti}i∈N) ⊂
(0,∞),ti ↘ 0;

(w2) r ∗ s > 0⇒ η(r ∗ s) ≤ η(r) + η(s), for all r, s ∈ {M(x, Tx, t) : x ∈ X, t > 0};
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(w3) {η(M(x, Tx, ti)) : i ∈ N} is bounded for all x ∈ X and any sequence {ti}i∈N ⊂
(0,∞),ti ↘ 0.

Then T has a unique fixed point x∗ ∈ X and for each x0 ∈ X the sequence {T nx0}n∈N
converges to x∗.

Motivated by the work of Samet et al. [13], Gopal and Vetro [42] initiated the
concept of α-φ-fuzzy contractive mapping and established some theorems which
ensure the existence and uniqueness of a fixed point for such mappings.

Definition 1.7.11. [42] Let (X,M, ∗) be a fuzzy metric space. We say that a
mapping T : X → X is α-admissible if there exists a function α : X × X ×
(0,+∞) −→ [0,+∞) such that for all x, y ∈ X, t > 0

α(x, y, t) ≥ 1⇒ α(Tx, Ty, t) ≥ 1.

Definition 1.7.12. [42] Denote by Φ the class of all functions φ : [0, 1) → [0, 1)
which satisfy the two following conditions:

(φ1) φ is right continuous functions,

(φ2) φ(`) < ` for all ` > 0.

Remark 1.7.13. For every function φ ∈ Φ, we have limn→∞ φ
n(`) = 0 where φn

denotes the nth iterate of φ.

Definition 1.7.14. [42]Let (X,M, ∗) be a fuzzy metric space in the sense of George
and Veeramani. A mapping T : X → X is said to be an α-φ-fuzzy contractive
mapping if there exist two functions α : X ×X × (0,∞)→ [0,∞[ and φ ∈ Φ such
that

α(x, y, t)

(
1

M(Tx, Ty, t)
− 1

)
≤ φ

(
1

M(x, y, t)
− 1

)
(1.14)

for all x, y ∈ X and for all t > 0.

Remark 1.7.15. Taking α(x, y, t) = 1 for all x, y ∈ X and t > 0, and φ(`) = k`
for ` > 0 and some k ∈ (0, 1) in Definition 1.7.14, one can deduce the definition
1.7.1 of fuzzy contractive mapping due to Gregori and Sapena. Hence, every fuzzy
contractive mapping is an α-φ-fuzzy contractive mapping.

In order to unify diverse types of fuzzy contractive mappings, especially those
provided in [78],[19] and [20], Satish Shukla et al. [68] developed a new type of
fuzzy contractive mappings, namely, Z-contractive mappings with the help of the
folowing class of auxiliary function.
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Definition 1.7.16. [68] Let Z be the set of all functions ζ : (0, 1] × (0, 1] −→ R
which satisfy the following condition:

ζ(t, s) > s for allt, s ∈ (0, 1).

Example 1.7.17. The following functions ζ : (0, 1]× (0, 1] −→ R:

(1) ζ(t, s) = s
t
,

(2) ζ(t, s) = 1
s+t

+ t,

(3) ζ(t, s) = ψ(s) with ψ : (0, 1] −→ (0, 1] is a function such that s < ψ(s) for all
s ∈ (0, 1).

belong to the family Z.

From the previous definition it is easy to see that ζ(t, t) > t for all 0 < t < 1.

Definition 1.7.18. [68] Let (X,M, ∗) be a fuzzy metric space and let T : X −→ X
be a self mapping. We say that T is a fuzzy Z-contractive mapping with respect
to some function ζ ∈ Z if

M(Tx, Ty, t) ≥ ζ(M(Tx, Ty, t),M(x, y, t)) with Tx 6= Ty, t > 0.

Example 1.7.19. Any fuzzy contractive mapping, i.e. satisfying (1.11), is Z-
contractive mapping with respect to ζ ∈ Z defined by ζ(t, s) = s

k+(1−k)s for all

t, s ∈ (0, 1).

Example 1.7.20. Any ψ-contractive mapping is Z-contractive mapping with re-
spect to ζ ∈ Z defined by ζ(t, s) = ψ(s) for all t, s ∈ (0, 1).

Here, we must point out the fact that a fuzzy Z-contractive mapping does not
possess necessarily a fixed point, despite the completeness of fuzzy metric space.
The following example confirms this fact.

Example 1.7.21. Let X = N be endowed with the fuzzy metric M(n,m, t) =
min{ n

m
, m
n
} for all m,n ∈ X and t > 0. Hence, (X,M, ∗) is a complete metric

space, where ∗ is the product t-norm. Define T : X → X by Tn = n + 1 for all
n ∈ X. Then T is a fuzzy Z-contractive mapping with respect to the function
ζ ∈ Z defined by ζ(t, s) = s+t

2
for t > s and ζ(t, s) = 1 otherwise. Note that, T is

a fixed point free mapping on X.

The above case, inspired the authors to consider a fuzzy metric space having
an additional property with a view to ensure the existence of fixed point for fuzzy
Z-contractive mapping.
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Definition 1.7.22. [68] We say that the quadruple (X,M, ∗, ζ) has the property
(S), if for every Picard sequence {xn} with initial value x ∈ X, ie. xn = T nx such
that infm>nM(xn, xm, t) ≤ infm>nM(xn+1, xm+1, t) implies that

lim
n→∞

inf
m>n

ζ(M(xn+1, xm+1, t),M(xn, xm, t)) = 1

Now, we deliver the main result established in [68].

Theorem 1.7.23. [68] Let (X,M, ∗) be a complete fuzzy metric space , T : X −→
X be a fuzzy Z-contraction and assume that the quadruple (X,M, ∗, ζ) has the
property (S). Then T has unique fixed point.
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Chapter 2

Admissible Almost Type
Z-Contractions and Fixed Point
Results

The main purpose of this chapter is to introduce a new concept of α-admissible
almost type Z-contraction via simulation functions and prove some fixed point
results for such a new class of nonlinear contractions in the context of complete
metric spaces. Furthermore, we will show that several known fixed point results
and new consequences can be easily deduced in the frameworks of standard metric
spaces and metric spaces endowed with partial order by applying our main theorems.
The presented results generalize, improve and unify several existing results in the
literature including the Banach contraction principle [8], kannan [62], Chatterjea
[70] and Ćirić [46]. This chapter comprises the results from our published paper
[71].

2.1 Admissible almost type Z-contractions

First, we introduce the following concept.

Definition 2.1.1. Let (X, d) be a metric space and ζ ∈ Z. We say that T : X −→
X is an α-admissible almost Z-contraction if there exist α : X ×X −→ [0,∞) and
a constant L ≥ 0 such that

ζ(α(x, y)d(Tx, Ty),M(x, y) + LN(x, y)) ≥ 0 for all x, y ∈ X, (2.1)

where

N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)};

M(x, y) = max{d(x, y),
d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2
}.
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Remark 2.1.2. If T is an α-admissible almost Z-contraction with respect to ζ ∈ Z.
Then

α(x, y)d(Tx, Ty) < M(x, y) + LN(x, y) for all x, y ∈ X.

2.2 Fixed point theorems for admissible almost

Z-contractions

Our first result is the following theorem.

Theorem 2.2.1. Let (X, d) be a complete metric space and let T : X −→ X be an
α-admissible almost Z-contraction with respect to ζ ∈ Z and satisfying the following
conditions:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.

Then there exists z ∈ X such that Tz = z.

Proof. Using condition (ii), there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, let {xn}
be the iterative sequence in X defined by

xn+1 = Txn for all n ∈ N

If xm+1 = Txm for some m ∈ N, then xm is a fixed point of T . Therefore, to continue
our proof, we suppose that xn+1 6= xn for all n ∈ N. Since T is an α-admissible
mapping, we have

α(x0, x1) = α(x0, Tx0) ≥ 1 implies that α(Tx0, Tx1) = α(x1, x2) ≥ 1.

By induction, we obtain that

α(xn, xn+1) ≥ 1, for all n ∈ N. (2.2)

Applying the condition (2.1) with x = xn and y = xn−1 and using (2.2), we get

0 ≤ ζ(α(xn, xn−1)d(Txn, Txn−1),M(xn, xn−1) + LN(xn, xn−1))

= ζ(α(xn, xn−1)d(xn+1, xn),M(xn, xn−1) + LN(xn, xn−1))

< M(xn, xn−1) + LN(xn, xn−1)− α(xn, xn−1)d(xn+1, xn). (2.3)
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where

N(xn, xn−1) = min{d(xn, Txn), d(xn−1, Txn−1), d(xn, Txn−1), d(xn−1, Txn)}
= min{d(xn, xn+1), d(xn−1, xn), d(xn, xn), d(xn−1, xn+1)}
= 0 (2.4)

and

M(xn−1, xn) = max{d(xn, xn−1),
d(xn, Txn) + d(xn−1, Txn−1)

2
,

d(xn, Txn−1) + d(xn−1, Txn)

2
}

= max{d(xn, xn−1),
d(xn, xn+1) + d(xn−1, xn)

2
,
d(xn−1, xn+1)

2
}

≤ max{d(xn, xn−1),
d(xn, xn+1) + d(xn−1, xn)

2
}

≤ max{d(xn, xn−1), d(xn, xn+1)} (2.5)

By (2.3) and taking in account (2.2), (2.4) and (2.5), we derive that

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < max{d(xn, xn−1), d(xn, xn+1)}

for all n ≥ 1.
Now, if max{d(xn, xn−1), d(xn, xn+1)} = d(xn, xn+1) for some n ≥ 1. Then from

the above inequality we get

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < d(xn, xn+1)

which is a contradiction. Therefore

max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn−1) for all n ≥ 1. (2.6)

Hence

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < d(xn, xn−1) for all n ≥ 1. (2.7)

Consequently, we deduce that the sequence {d(xn, xn−1)} is a decreasing of positive
real numbers. Thus, there exists r ≥ 0 such that limn→∞ d(xn, xn−1) = r ≥ 0. We
claim that

lim
n→∞

d(xn, xn−1) = 0 (2.8)

On contrary assume that r > 0. It follows from the inequality (2.7) that

lim
n→∞

α(xn, xn−1)d(xn, xn+1) = r (2.9)
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Now, if we take the sequences {δn = α(xn, xn−1)d(xn, xn+1)} and {τn = d(xn, xn−1)}
and considering (2.9), then limn→∞ δn = limn→∞ τn = r therefore by (S3), we get
that

0 ≤ lim
n→∞

sup ζ(α(xn, xn−1)d(xn, xn+1), d(xn, xn−1) < 0 (2.10)

a contradiction, we deduce that r = 0 and equation (2.8) holds.

Next, we show that {xn} is Cauchy sequence in X. Reasoning by the method
of Reductio ad absurdum. Suppose to the contrary that {xn} is not a Cauchy
sequence. So, there exists ε > 0, for every N ∈ N, there exist n,m ∈ N such that
N < m < n and d(xm, xn) > ε. In account of (2.8), there exists n0 ∈ N such that

d(xn, xn+1) < ε for all n > n0. (2.11)

We can find two subsequences {xnk
} and {xmk

} of {xn} such that mk > nk ≥ n0

and

d(xmk
, xnk

) > ε, for all k. (2.12)

where mk is the smallest index satisfying (2.12). Then

d(xmk−1
, xnk

) ≤ ε for all k, (2.13)

Now, using (2.12), (2.13) and the triangular inequality, we obtain

ε < d(xmk
, xnk

) ≤ d(xmk
, xmk−1) + d(xmk−1, xnk

)

≤ d(xmk
, xmk−1) + ε (2.14)

Letting k →∞ and using Equation (2.8), we derive that

lim
n→∞

d(xmk
, xnk

) = ε (2.15)

Again, using the triangular inequality, we get

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

) for all k. (2.16)

Also, we have

d(xmk+1, xnk+1) ≤ d(xmk+1, xmk
) + d(xmk

, xnk
) + d(xnk

, xnk+1) for all k. (2.17)

By taking the limit as k → ∞ on both sides of (2.16), (2.17) and using (2.8) we
deduce that

lim
n→∞

d(xmk+1, xnk+1) = ε. (2.18)
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By the same reasoning as above, we get that

lim
n→∞

d(xmk
, xnk+1) = lim

n→∞
d(xmk+1, xnk

) = ε. (2.19)

As T is triangular α-orbital admissible, we have

α(xmk
, xnk

) ≥ 1. (2.20)

Moreover, since T is an α-admissible almost Z-contraction with respect to ζ ∈ Z,
we obtain

0 ≤ ζ(α(xmk
, xnk

)d(Txmk
, Txnk

),M(xmk
, xnk

) + LN(xmk
, xnk

))

= ζ(α(xmk
, xnk

)d(xmk+1, xnk+1),M(xmk
, xnk

) + LN(xmk
, xnk

))

< M(xmk
, xnk

) + LN(xmk
, xnk

)− α(xmk
, xnk

)d(xmk+1, xnk+1). (2.21)

Hence

0 < d(xmk+1, xnk+1) ≤ α(xmk
, xnk

)d(xmk+1, xnk+1)

< M(xmk
, xnk

) + LN(xmk
, xnk

) (2.22)

for all k ≥ n1. Where

M(xmk
, xnk

) = max{d(xmk
, xnk

),
d(xmk

, Txmk
) + d(xnk

, Txnk
)

2
,

d(xmk
, Txnk

) + d(xnk
, Txmk

)

2
}

= max{d(xmk
, xnk

),
d(xmk

, xmk+1) + d(xnk
, xnk+1)

2
,

d(xmk
, xnk+1) + d(xnk

, xmk+1)

2
} (2.23)

and

N(xmk
, xnk

)

= min{d(xmk
, Txmk

), d(xnk
, Txnk

), d(xmk
, Txnk

), d(xnk
, Txmk

)}
= min{d(xmk

, xmk+1), d(xnk
, xnk+1), d(xmk

, xnk+1), d(xnk
, xmk+1)} (2.24)

Taking the limit as k → ∞ in (2.23)-(2.24), using (2.8), (2.15), (2.18) and (2.19)
we get

lim
k→∞

M(xmk
, xnk

) = ε (2.25)
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and

lim
k→∞

N(xmk
, xnk

) = 0 (2.26)

From (2.22), (2.25) and (2.26), we derive that
µn = α(xmk

, xnk
)d(xmk+1, xnk+1)→ ε as νn = M(xmk

, xnk
)+LN(xmk

, xnk
)→ ε,

therefore by (S3), we get

0 ≤ lim
k→∞

sup ζ(α(xmk
, xnk

)d(xmk+1, xnk+1),M(xmk
, xnk

) + LN(xmk
, xnk

) < 0

Which is a contradiction. It follows that {xn} is a Cauchy sequence in the
complete metric space (X, d). Therefore, there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0 (2.27)

Furthermore, by the continuity of T , we obtain that

lim
n→∞

d(xn+1, T z) = lim
n→∞

d(Txn, T z) = 0. (2.28)

Taking into account (2.27), (2.28) and the uniqueness of the limit, we deduce
that z is a fixed point of T and Tz = z.

In the next theorem, we substitute the continuity of T by another condition.

Theorem 2.2.2. Let (X, d) be a complete metric space and T : X −→ X be an
α-admissible almost Z-contraction with respect to ζ ∈ Z satisfying the following
conditions:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists z ∈ X such that Tz = z.

Proof. Following the lines of the proof of Theorem 2.2.1, we obtain that the sequence
{xn} defined by xn+1 = Txn for all n ≥ 0 is a Cauchy sequence in X. Since (X, d)
is complete, there exists z ∈ X such that xn → z as n → ∞. By (2.2) and the
condition (iii), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), z) ≥ 1
for all k ∈ N. Using (2.1), we obtain that
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0 ≤ ζ(α(xn(k), z)d(Txn(k), T z),M(xn(k), z) + LN(xn(k), z))

= ζ(α(xn(k), z)d(xn(k)+1, T z),M(xn(k), z) + LN(xn(k), z))

< M(xn(k), z) + LN(xn(k), z)− α(xn(k), z)d(xn(k)+1, T z).

Hence

d(xn(k)+1, T z) ≤ α(xn(k), z)d(xn(k)+1, T z)

< M(xn(k), z) + LN(xn(k), z) (2.29)

where

M(xn(k), z) = max{(d(xn(k), z),
d(xn(k), xn(k)+1) + d(z, Tz)

2
,

d(xn(k), T z) + d(z, xn(k)+1)

2
}

N(xn(k), z) = min{(d(xn(k), xn(k)+1), d(z, Tz), d(xn(k), T z), d(z, xn(k)+1)}

Letting k →∞ in the above equalities, we get that

lim
k→∞

M(xn(k), z) =
d(z, Tz)

2
(2.30)

lim
k→∞

N(xn(k), z) = 0

Suppose that d(z, Tz) > 0. From (2.29), we derive that

d(xn(k)+1, T z) < M(xn(k), z) + LN(xn(k), z)

Now, letting k → ∞ in the above inequality, taking into account (2.30), we
obtain that

d(z, Tz) ≤ d(z, Tz)

2

a contradiction and hence d(z, Tz) = 0, that is z = Tz.

To ensure the uniqueness of a fixed point of a α-admissible almost Z-contraction
with respect to ζ ∈ Z, we shall consider the following condition:

(C) For all x, y ∈ Fix(T), we have α(x, y) ≥ 1.
where Fix(T) denotes the set of fixed points of T .
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Theorem 2.2.3. Adding condition (C) to the hypotheses of Theorem 2.2.1 (resp.
Theorem 2.2.2, we obtain the uniqueness of the fixed point of T .

Proof. We argue by contradiction, suppose that there exist z, z∗ ∈ X such that
z = Tz and z∗ = Tz∗ with z 6= z∗. From assumption (C), we have

α(z, z∗) ≥ 1. (2.31)

Therefore, it follows from equation (2.1) and (S2), that

0 ≤ ζ(α(z, z∗)d(Tz, Tz∗),M(z, z∗) + LN(z, z∗))

= ζ(α(z, z∗)d(z, z∗),M(z, z∗) + LN(z, z∗))

< M(z, z∗) + LN(z, z∗)− α(z, z∗)d(z, z∗). (2.32)

Where

M(z, z∗) = max{d(z, z∗),
d(z, Tz) + d(z∗, T z∗)

2
,
d(z, Tz∗) + d(z∗, T z)

2
}

= max{d(z, z∗),
d(z, z) + d(z∗, z∗)

2
,
d(z, z∗) + d(z∗, z)

2
}

= d(z, z∗) (2.33)

and

N(z, z∗) = min{d(z, Tz), d(z∗, T z∗), d(z, Tz∗), d(z∗, T z)}
= min{d(z, z), d(z∗, z∗), d(z, z∗), d(z∗, z)}
= 0 (2.34)

From (2.32), together with (2.33) and (2.34) we deduce that

0 < d(z, z∗)− α(z, z∗)d(z, z∗)

Using (2.31) it follows that

d(z, z∗) ≤ α(z, z∗)d(z, z∗) < d(z, z∗) (2.35)

Which is a contradiction. Hence z = z∗.

2.3 Consequences and Corollaries

2.3.1 Fixed point results in metric spaces

In this section, we will show that several known fixed point results can be easily
derived from our obtained results.
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Corollary 2.3.1. [24] Let (X, d) be a complete metric space. Suppose that T :
X −→ X is a generalized α-ψ-contractive mapping and satisfies the following con-
ditions:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either, T is continuous, or

(iii)′ if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ X such that Tu = u.

Proof. Taking L = 0 and a simulation function ζEB : [0,∞)× [0,∞) −→ R defined
by ζEB(t, s) = ψ(s) − t for all s, t ∈ [0,∞) where ψ ∈ Ψ1, in Theorem 2.2.3, we
obtain that

α(x, y)d(Tx, Ty) ≤ ψ(M(x, y)), for all x, y ∈ X.

The mapping T is an α-admissible almost Z-contraction with respect to ζEB ∈ Z
and the conclusion follows.

Corollary 2.3.2. Let (X, d) be a complete metric space and T : X −→ X be a
given mapping. Suppose that there exists a function ψ ∈ Ψ1 such that

d(Tx, Ty) ≤ ψ(M(x, y)), for all x, y ∈ X.

Then T has a unique fixed point.

Proof. It suffices to choose the mapping α : X×X −→ [0,∞) such that α(x, y) = 1,
for all x, y ∈ X and L = 0 with ζ = ζEB in Theorem 2.2.3.

Corollary 2.3.3. ( V.Berinde [82] ) Let (X, d) be a complete metric space and
T : X −→ X be a given mapping. Suppose that there exists a function ψ ∈ Ψ1 such
that

d(Tx, Ty) ≤ ψ(d(x, y)), for all x, y ∈ X.

Then T has a unique fixed point.

Corollary 2.3.4. (Ćirić [46]) Let (X, d) be a complete metric space and T : X −→
X be a given mapping. Suppose that there exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kmax{d(x, y),
d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2
}

for all x, y ∈ X. Then T has a unique fixed point.
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Proof. It is enough to choose the mapping α : X×X −→ [0,∞) such that α(x, y) =
1, for all x, y ∈ X and L = 0 with ζC(t, s) = ks− t in Theorem 4.

Corollary 2.3.5. (Hardy and Rogers [39]) Let (X, d) be a complete metric space and
T : X −→ X be a given mapping. Suppose that there exists a constants β, γ, η ≥ 0
with β + 2γ + 2η ∈ (0, 1) such that

d(Tx, Ty) ≤ βd(x, y) + γ[d(x, Tx) + d(y, Ty)] + η[d(x, Ty) + d(y, Tx)]

for all x, y ∈ X. Then T has a unique fixed point.

Corollary 2.3.6. (Banach Contraction Principle [8]) Let (X, d) be a complete met-
ric space and T : X −→ X be a given mapping. Suppose that there exists a constant
k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X

Then T has a unique fixed point.

Corollary 2.3.7. (Kannan [62]) Let (X, d) be a complete metric space and T :
X −→ X be a given mapping. Suppose that there exists a constant k ∈ (0, 1

2
) such

that

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] for all x, y ∈ X

Then T has a unique fixed point.

Corollary 2.3.8. (Chatterjea [70]) Let (X, d) be a complete metric space and T :
X −→ X be a given mapping. Suppose that there exists a constant k ∈ (0, 1

2
) such

that

d(Tx, Ty) ≤ k[d(x, Ty) + d(y, Tx)] for all x, y ∈ X

Then T has a unique fixed point.

2.3.2 Fixed point results in metric spaces endowed with a
partial order

The trend of studying the existence of fixed points in metric space endowed with
a partial order was initiated by Turnici [55]. In 2003, Ran and Reurings [1] proved
the Banach contraction principle in the framework of partially ordered sets and pro-
posed some applications of the obtained result to matrix equations. In this regard,
several generalizations and extension have been appeared (see, e.g. [65],[33],[47]and
[4]).

In this direction, we will illustrate that various existing results and new conse-
quences in a metric space equipped with a partial order can be derived easily by
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using the same approach and technics discussed in our obtained results. First, we
shall collect some basic concepts.

Let (X,�) be partially ordered set and T : X −→ X be a given self-mapping on
(X,�). T is called nondecreasing with respect to � if

x, y ∈ X, x � y ⇒ Tx � Ty.

In similar way, we say that a sequence {xn} ⊂ X is nondecreasing with respect to
� if xn � xn+1 for all n ∈ N. if we further assume that d is a metric on X. We
say that tripled (X,�, d) is regular if for every nondecreasing sequence {xn} ⊂ X
for which xn → x as n −→∞, there exists a subsequence {xn(k)} of {xn} such that
xn(k) � x for all k.

Corollary 2.3.9. Let (X,�, d) be a partially ordered complete metric space and
T : X −→ X a self-mapping on X. Assume that the following conditions are
satisfied:

(i) there exists a simulation function ζ T and a constant L ≥ 0 such that

ζ(d(Tx, Ty),M(x, y) + LN(x, y)) ≥ 0 for all x, y ∈ X with x � y,

where M(x, y) and N(x, y) are defined as in Theorem 2.2.1.

(ii) there exists x0 ∈ X such that x0 � Tx0;

(iii) either, T is continuous or (X,�, d) is regular.

Then T has a fixed point. Further, if for all x, y ∈ X there exists w ∈ X such that
x � w and y � w, then T has a unique fixed point.

Proof. Define the function α : X ×X −→ [0,∞) by

α(x, y) =

{
1 if x � y or x � y,
0 otherwise

Hence, T is an α-admissible almost Z-contraction with respect to ζ ∈ Z, that is,

ζ(α(x, y)d(Tx, Ty),M(x, y) + LN(x, y)) ≥ 0 for all x, y ∈ X,

Considering the condition (i), we have α(x0, Tx0) ≥ 1. In account of the monotone
property of T , we have

α(x0, Tx0) ≥ 1⇔ x0 � Tx0 ⇒ Tx0 ≤ T 2x0 ⇔ α(Tx0, T
2x0) ≥ 1.

Now, if we assume that T is continuous, thus, T satisfies all conditions of Theorem
2.2.1. Therefore, T has a fixed point. Next, if (X,�, d) is regular, let {xn} be a
sequence inX for which α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n −→∞. Since
(X,�, d) is regular, there exists a subsequence {xn(k)} of {xn} such that xn(k) � x
for all k. It follows from the definition of the function α that α(xn(k), x) ≥ 1.
Regarding Theorem 2.2.2, we obtain the existence of a fixed point. The uniqueness
part of the proof follows directly from the suggested hypothesis.
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Corollary 2.3.10. [24] Let (X,�, d) be a partially ordered complete metric space
and T : X −→ X be a nondecreasing mapping with respect to �. Assume that the
following conditions are satisfied:

(i) there exists a function ψ ∈ Ψ1 such that

d(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X with x � y,

(ii) there exists x0 ∈ X such that x0 � Tx0;

(iii) T is continuous or (X,�, d) is regular.

Then T has a fixed point. Further, if for all x, y ∈ X there exists w ∈ X such that
x � w and y � w, then T has a unique fixed point.

Proof. It follows from 2.3.9 taking L = 0 and the simulation function ζ : [0,∞) ×
[0,∞) −→ R defined by ζ(t, s) = ψ(s)− t for all s, t ∈ [0,∞) where ψ ∈ Ψ1.
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Chapter 3

New Types of Nonlinear
Contractions in Fuzzy Metric
Spaces

The main focus of this chapter is to unify diverse existing types of fuzzy contrac-
tive mappings by developing a new approach that is based on a new type of control
functions, namely FZ-simulation functions. We define a new class of nonlinear
contractions called FZ-contractions and we provide some illustrative examples of
the two new notions. The presented examples show that such a class unifies and
generalizes properly several existing concepts in the current literature including the
classes of fuzzy contractive mappings of Gregori and Sapena [78], Mihet [19] and
Wardowski [20]. We establish some fixed point theorems for such type of contraction
mappings in the framework of fuzzy metric spaces. The chapter contains various
instances that demonstrate the generality of our findings and the importance of the
defined concepts.

3.1 A new class of control functions

The following class of control functions has been introduced in our published
paper [72], where we used the term class FZ instead of the present FZ-simulation
functions.

Definition 3.1.1. The function ξ : (0, 1]×(0, 1] −→ R is said to be a FZ-simulation
function, if the following properties hold :

(ξ1) ξ(1, 1) = 0,

(ξ2) ξ(t, s) < 1
s
− 1

t
for all t, s ∈ (0, 1),

(ξ3) if {tn}, {sn} are sequences in (0, 1] such that limn→∞ tn = limn→∞ sn < 1 then
limn→∞ sup ξ(tn, sn) < 0.
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The collection of all FZ-simulation functions is denoted by FZ.

Definition 3.1.2. Let (X,M, ∗) be a fuzzy metric space, T : X −→ X a mapping
and ξ ∈ FZ. Then T is called an FZ-contraction with respect to ξ if the following
condition is satisfied

ξ(M(Tx, Ty, t),M(x, y, t)) ≥ 0 for all x, y ∈ X, t > 0. (3.1)

Example 3.1.3. The class of fuzzy contractive mappings introduced by Gregori
and Sapena [78] is a perfect example of FZ-contraction. It can be expressed easily
from the above definition by taking the FZ-simulation function as

ξ(t, s) = k

(
1

s
− 1

)
− 1

t
+ 1 for all s, t ∈ (0, 1].

where k ∈ (0, 1).

Example 3.1.4. The corresponding FZ-simulation function for the fuzzy ψ-contractive
mapping is defined by

ξ(t, s) =
1

ψ(s)
− 1

t
for all s, t ∈ (0, 1] and ψ ∈ Ψ

Example 3.1.5. The corresponding FZ-simulation function for the fuzzyH-contractive
mapping is defined by

ξ(t, s) =
1

η−1(k.η(s))
− 1

t
for all s, t ∈ (0, 1] and η ∈ H

Example 3.1.6. Let ξi : (0, 1]× (0, 1] −→ R, i = 1, 2, 3 be the functions defined by

1. ξ1(t, s) = φ(1
s
− 1) − 1

t
+ 1 for all s, t ∈]0, 1], where φ : [0,∞) → [0,∞) is a

right continuous function with φ(r) < r, for all r > 0.

2. ξ2(t, s) = (1
s
− 1) −

∫ 1
t
−1

0
f(s)ds for all s, t ∈]0, 1], where f : [0,∞) → [0,∞)

such that
∫ ε
0
f(s)ds > ε, for all ε > 0.

3. ξ3(t, s) = (1
s
−1)−φ̃(1

s
−1)−(1

t
−1), for all s, t ∈]0, 1], where φ̃ : [0,∞)→ [0,∞)

is a right continuous function with φ̃(r) < r, for all r > 0.

ξi for i = 1, 2, 3 are FZ-simulation functions.
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3.2 A fixed point theorem for FZ-contraction type

mappings

Now, we state and prove the fixed point result for this new type of contraction.

Theorem 3.2.1. Let (X,M, ∗) be a complete strong fuzzy metric space and T :
X −→ X be a FZ-contraction with respect to ξ ∈ FZ. Then T has a unique fixed
point.

Proof. Let x0 ∈ X be any arbitrary point. We construct the Picard sequence
{xn} ∈ X defined by

xn = Txn−1 for all n ∈ N.

If there exists some n0 such that xn0 = xn0+1, then xn0 = xn0+1 = Txn0 implies
that xn0 is a fixed point of T and it completes the proof. For this reason, assume
that xn 6= xn+1 for all n ∈ N. First, we prove that limn→∞M(xn, xn+1, t) = 1 for
all t > 0. Arguing by contradiction, suppose to the contrary that there exists some
t0 such that

lim
n→∞

M(xn, xn+1, t0) < 1

On account of (GV 2), we have that M(xn, xn+1, t0) < 1 for all n ∈ N. Setting
x = xn−1 and y = xn. Applying (3.1) and (ξ2), we obtain

0 ≤ ξ(M(Txn−1, Txn, t0),M(xn−1, xn, t0))

= ξ(M(xn, xn+1, t0),M(xn−1, xn, t0))

<
1

M(xn−1, xn, t0)
− 1

M(xn, xn+1, t0)
.

Hence

M(xn−1, xn, t0) < M(xn, xn+1, t0).

Which means that {M(xn−1, xn, t0), n ∈ N} is nondecreasing sequence of positive
real numbers. Therefore, there exists L ≤ 1 such that

lim
n→∞

M(xn−1, xn, t0) = L

We shall show that L = 1, suppose on contrary that L < 1. Define tn =
M(xn, xn+1, t0) and sn = M(xn−1, xn, t0) and taking into account ξ3, we derive that

0 ≤ lim
n→∞

sup ξ(M(xn, xn+1, t0),M(xn−1, xn, t0)) < 0

which leads to contradiction. Therefore L = 1, that is

lim
n→∞

M(xn−1, xn, t0) = 1 (3.2)
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Next, we show that the sequence {xn} is Cauchy. Reasoning by contradiction,
assume that {xn} is not a Cauchy sequence. Consequently, there exists ε ∈ (0, 1),
t0 > 0 and two subsequences {xnk

} and {xmk
} of {xn} such that nk is the smallest

index exceeding mk for which nk > mk ≥ k for all k ∈ N and

M(xmk
, xnk

, t0) ≤ 1− ε, (3.3)

and

M(xmk
, xnk−1, t0) > 1− ε (3.4)

On account of (3.3) and (3.4), the triangular inequality yields

1− ε ≥M(xmk
, xnk

, t0) ≥M(xmk
, xnk−1, t0) ∗M(xnk−1, xnk

, t0)

≥ (1− ε) ∗M(xnk−1, xnk
, t0)

Taking limit as k →∞ and using (3.2), we deduce that

lim
k→∞

M(xmk
, xnk

, t0) = 1− ε (3.5)

Applying the same reasoning as above, we have

1− ε ≥M(xmk
, xnk

, t0)

≥M(xmk
, xmk−1, t0) ∗M(xmk−1, xnk−1, t0) ∗M(xnk−1, xnk

, t0)

and

M(xmk−1, xnk−1, t0) ≥M(xmk
, xnk

, t0)

≥M(xmk−1, xmk
, t0) ∗M(xmk

, xnk
, t0) ∗M(xnk

, xnk−1, t0)

Letting k →∞ in the last inequalities, we obtain

lim
k→∞

M(xmk−1, xnk−1, t0) = 1− ε

Taking the sequences τk = M(xmk
, xnk

, t0) and δk = M(xmk−1, xnk−1, t0) for all
k ∈ N. Applying (ξ3), we derive that

0 ≤ lim
n→∞

sup ξ(M(xmk
, xnk

, t0,M(xmk−1, xnk−1, t0)) < 0

Which is a contradiction. Then, {xn} is a Cauchy sequence in X. The completeness
of (X,M, ∗) ensure the existence of u ∈ X such that limn→∞M(xn, u, t) = 1 for
all t > 0, we shall show that the point u is a fixed point of T . Reasoning by
contradiction, suppose that Tu 6= u, that is M(u, Tu, t) < 1. Applying (3.1) and
ξ2, we get
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0 ≤ lim
n→∞

sup ξ(M(Txn, Tu, t),M(xn, u, t))

≤ lim
n→∞

sup ξ(M(xn+1, u, t),M(xn, u, t))

≤ lim
n→∞

sup(
1

M(xn, u, t)
− 1

M(xn+1, u, t)
).

Consequently, we have 1 ≤ M(u, Tu, t), that is M(u, Tu, t) = 1. Which is a con-
tradiction, Thus we conclude that u is a fixed point of T .

Finally, we shall show the uniqueness the fixed point of T . We argue by contra-
diction, suppose that there are two distinct fixed points u, v ∈ X of the mapping
T , then M(u, v, t) < 1 for all t > 0. Applying (3.1) and ξ2, we have

0 ≤ ξ(M(Tu, Tv, t),M(u, v, t))

= ξ(M(u, v, t),M(u, v, t))

< (
1

M(u, v, t)
− 1

M(u, v, t)
) = 0.

A contradiction. Therefore, the fixed point of T is unique. This completes the
proof.

Example 3.2.2. Let X = (0,∞) and M : X ×X × (0,∞) −→ [0, 1] be the fuzzy
metric defined by

M(x, y, t) =
min(x, y)

max(x, y)
for all t ∈ (0,∞), x, y > 0

and denote a∗b = ab for all a, b ∈ [0, 1]. (X,M, ∗) is a complete strong fuzzy metric
space [3]. The mapping T : X −→ X defined by T (x) =

√
x is a FZ-contraction

with respect to the FZ-simulation function

ξ(t, s) =
1√
s
− 1

t
∀t, s ∈ (0, 1]

Note that , all the condition of the previous Theorem are satisfied and T has a
unique fixed point x = 1 ∈ X.

3.3 Consequences

As a result of Theorem 3.2.1, we derive several corollaries in this section, which
can be interpreted as generalizations of different results in the literature.

Corollary 3.3.1. Let (X,M, ∗) be a complete strong fuzzy metric space (X,M, ∗)
and T : X −→ X is mapping such that

1

M(Tx, Ty, t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
. (3.6)

for each x, y ∈ X and t > 0, where k ∈ (0, 1). Then T has unique fixed point.
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Proof. Taking into account Example 3.1.3, the desired result follows from Theorem
3.2.1.

Corollary 3.3.2. Let (X,M, ∗) be a complete strong fuzzy metric space (X,M, ∗),
ψ ∈ Ψ2 and T : X −→ X is mapping such that

M(Tx, Ty, t) ≥ ψ(M(x, y, t)) for all x, y ∈ X, t > 0. (3.7)

for each x, y ∈ X. Then T has unique fixed point.

Proof. Taking into account Example 3.1.4, the desired result follows from Theorem
3.2.1.

Corollary 3.3.3. Let (X,M, ∗) be a complete strong fuzzy metric space (X,M, ∗),
T : X −→ X and η ∈ H such that

ξ(t, s) =
1

η−1(k.η(s))
− 1

t
for all s, t ∈ (0, 1] and η ∈ H

for each x, y ∈ X and t > 0. Then T has unique fixed point.

Proof. In view of Example 3.1.5, the desired result follows from Theorem 3.2.1.
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3.4 Fuzzy ϕ-fixed point results via extended FZ-

simulation functions

Jleli et al. [31] recently initiated the idea of ϕ-fixed points and studied ϕ-fixed
point in metric space, which strengthens the well-known Banach contraction theo-
rem. Afterwards, Sezen et al. [54] defined the notion of fuzzy ϕ-fixed points and
proved some existence and uniqueness results of fuzzy ϕ-fixed point in the setting
of fuzzy metric spaces.

Inspired by the works of Melliani and Moussaoui [72] and Sezen et al. [54],
Hayel et al. [32] introduced a novel type of fuzzy contractive mappings named as
(FZ,F,ϕ)-contractive mappings, which unifies different known types of contractions
such as Gregori and Sapena [78], Mihet [19], Wardowski [20], Melliani and Mous-
saoui [72].

In these sections, we introduce the notion of extended FZ-simulation functions,
which is the first attempt to enlarge and refine the definition of FZ-simulation func-
tions. We provide some properties for such type of control functions and we prove
that the class of extended FZ-simulation functions (denoted also by FZe) includes
properly that of FZ-simulation functions. With the help of this set of functions,
we define a new type of fuzzy contractions mappings termed (FZϕe , F )-contraction
by gathering the ideas of fuzzy ϕ-fixed point and FZe-contraction. Further, we
prove some ϕ-fixed point results and corollaries in complete fuzzy metric spaces.
The obtained results, improve, extend and generalize those given in Gregori and
Sapena [78], Mihet [19], Wardowski [20], Hayel et al. [32], Sezen et al. [54].

Firstly, we recollect some relevant definitions and results in this regard. Let
(X,M, ∗) be a fuzzy metric space, T : X → X be an operator and ϕ : X → (0, 1]
be function. The set of all fixed points of T is denoted by

Fix(T ) := {x ∈ X : Tx = x},

Oϕ will stand for the set of all ones of the function ϕ, i.e.

Oϕ := {x ∈ X : ϕ(x) = 1}.

Definition 3.4.1. [54] Let X be a non-empty set, ϕ : X → (0, 1] a given function.
An element u is said to be a fuzzy ϕ-fixed point of the operator T : X → X if and
only if u is a fixed point of T and ϕ(u) = 1, that is u ∈ Fix(T ) ∩ Oϕ.

Lemma 3.4.2. [38] Let (X,M, ∗) be a fuzzy metric space and {xn} be sequence
in X such that limn→∞M(xn, xn+1, t) = 1 for all t >. Suppose that {xn} is not a
Cauchy sequence, then there exists ε ∈ (0, 1), t0 > 0 and two subsequences {xnk

}
and {xmk

} of {xn} with mk > nk ≥ k for all k ∈ N such that

M(xnk
, xmk

, t0) ≤ 1− ε,
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and M(xnk
, xmk−1,

t0
2

) = 1− ε.

Definition 3.4.3. [32] Let F be the set of functions F : (0, 1]3 → (0, 1] satisfying
the following axioms :

(F1) F (u, v, w) ≤ min{u, v}, for all u, v, w ∈ (0, 1] ;

(F2) F (u, 1, 1) = u, for all u ∈ (0, 1]

(F3) F is continuous.

Example 3.4.4. [32, 54] The following functions F : (0, 1]3 → (0, 1] belong to F :

(1) F (u, v, w) = u.v.w, for all u, v, w ∈ (0, 1] ;

(2) F (u, v, w) = min{u, v}.w for all u ∈ (0, 1];

We point out that the Definition 3.1.1 of FZ-simulation functions was slightly
modified in [32]. The authors considered a large family of function ξ as follows:

Definition 3.4.5. Let ZM be the set of all functions ξ : (0, 1] × (0, 1] −→ R
satisfying the following:

(ξ1)′ ξ(t, s) < 1
s
− 1

t
for all t, s ∈ (0, 1),

(ξ2)′ if {tn}, {sn} are sequences in (0, 1] such that limn→∞ tn = limn→∞ sn < 1 and
sn < tn then limn→∞ sup ξ(tn, sn) < 0.

Remark 3.4.6. [32] Note that FZ ⊂ ZM.

Definition 3.4.7. [32] Let (X,M, ∗) be a fuzzy metric space, ϕ : X → (0, 1] a given
function and F ∈ F . A mapping T : X −→ X is said to be an (FZ,F,ϕ)-contractive
mapping with respect to ξ ∈ ZM if the following condition is satisfied

ξ(F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty)), F (M(x, y, t), ϕ(x), ϕ(y))) ≥ 0 (3.8)

for all x, y ∈ X and t > 0.

Example 3.4.8. [32] Let X = [0, 1] and M : X×X× (0,∞) −→ [0, 1] be the fuzzy
metric defined by

M(x, y, t) =
t

t+ d(x, y)

where d(x, y) = |x− y| for all x, y ∈ X and ∗ is the product t-norm a ∗ b = a.b for
all a, b ∈ [0, 1]. Define a mapping T : X −→ X by

Tx =
x

x+ 1
for all x ∈ X,

and two functions ϕ : X −→ (0, 1] and F : (0, 1]3 −→ (0, 1] by

ϕ(x) = 1 and F (a, b, c) = a.b.c, for all x ∈ X and a, b, c ∈ (0, 1]
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Obviously, we can see that ϕ is continuous and F ∈ F , we have

1

F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))
− 1

=
|Tx− Ty|

t

=
1

(x+ 1)(y + 1)

|x− y|
t

and
1

F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))
− 1

=
|x− y|
t

In particular, for each k ∈ [1
2
, 1) we obtain

k

(
1

F (M(x, y, t), ϕ(x), ϕ(y))
− 1

)
−
(

1

F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))
− 1

)
=

(
k − 1

(x+ 1)(y + 1)

)
|x− y|
t
≥ 0.

Therefore, T is an (FZ,F,ϕ)-contractive mapping with respect to ξ(t, s) = k
(
1
s
− 1
)
−

1
t

+ 1.

Theorem 3.4.9. [32] Let (X,M, ∗) be a complete fuzzy metric space, ϕ : X → (0, 1]
a continuous function and F ∈ F . If T : X −→ X an (FZ,F,ϕ)-contractive
mapping with respect to ξ ∈ ZM. Then Fix(T ) ⊆ Oϕ and T has a unique fixed
point.

Example 3.4.10. [32] Let X = (0,∞) and M be a fuzzy set on X ×X × (0,∞)

defined by M(x, y, t) = min(x,y)
max(x,y)

for all t ∈ (0,∞), x, y > 0 and ∗ the product t-

norm. Then (X,M, ∗) is a complete non-Archimedean fuzzy metric space. Define
the mapping T : X −→ X by

Tx =

{ √
x if x ∈ (0, 1),

1 if x ∈ [1,∞)

and two functions ϕ : X −→ (0, 1] and F : (0, 1]3 −→ (0, 1] by

ϕ(x) =

{
x if x ∈ (0, 1),
1 if x ∈ [1,∞).

By choosing

ξ(t, s) =

{
1 if (t, s) = (1, 1),

1√
s
− 1

t
otherwise .

T is an (FZ,F,ϕ)-contractive mapping with respect to ξ.
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3.5 Extended FZ-simulation functions

Following this direction, we introduce the notion of extended FZ-simulation
functions in order to enlarge, refine and extend the concept of FZ-simulation func-
tions.

Definition 3.5.1. The function e : (0, 1] × (0, 1] −→ R is said to be an extended
FZ-simulation function, if the following properties hold :

(E1) e(t, s) < 1
s
− 1

t
for all t, s ∈ (0, 1),

(E2) if {tn}, {sn} are sequences in (0, 1) such that limn→∞ tn = limn→∞ sn = a < 1
and sn < a then limn→∞ sup e(tn, sn) < 0.

(E3) for some sequence {tn} in (0, 1) we have

lim
n→∞

tn = a ∈ (0, 1], e(tn, a) ≥ 0 =⇒ a = 1.

We denote the collection of all extended FZ-simulation functions by FZe.

Proposition 3.5.2. Every FZ-simulation function is an FZe-simulation function.

Proof. Let ξ : (0, 1]× (0, 1] −→ R be an FZ-simulation function. It is easy to show
that ξ satisfies (E1) and (E2), we shall prove (E3). Reasoning by contradiction, Let
{tn} be a sequence in (0, 1) such that limn→∞ tn = a ≤ 1 and ξ(tn, a) ≥ 0. Assume
that a < 1, and applying (ξ3) with sn = a ∈ (0, 1), we get

lim
n→∞

sup ξ(tn, a) = lim
n→∞

sup ξ(tn, sn) < 0

which yields to a contradiction, hence a = 1.

The converse inclusion is not true, we confirm this by the following example.

Example 3.5.3. Let e : (0, 1]× (0, 1] −→ R be the function defined by

e(t, s) =


1, if t = s = 1

1
ψ(s)
− 1

t
, otherwise.

Clearly, e is not FZ-simulation function, since e(1, 1) 6= 0 and (ξ1) is not satisfied.
Now, we show that e is an extended FZ-simulation function. for all t, s ∈ (0, 1)
we have, e(t, s) = 1

ψ(s)
− 1

t
< 1

s
− 1

t
which proves (E1). if {tn}, {sn} are sequences

in (0, 1) such that limn→∞ tn = limn→∞ sn = a < 1 and sn < a, using the fact
ψ(u) > u, for all u ∈ (0, 1), we have

lim
n→∞

sup e(tn, sn) =
1

ψ(a)
− 1

a
< 0
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Therefore, e satisfies (E2).
Let {tn} be a sequence in (0, 1) such that limn→∞ tn = a ∈ (0, 1], e(tn, a) ≥ 0, we
shall prove that a = 1. Suppose that a < 1, we have

e(tn, a) =
1

ψ(a)
− 1

tn
≥ 0

Taking limit as n→∞, we get that

1

ψ(a)
− 1

a
≥ 0

Hence, ψ(a) ≤ a which contradicts the fact that ψ(u) > u, for all u ∈ (0, 1).
Therefore a = 1 and e is an extended FZ-simulation function.

3.6 Fixed point results for (FZϕ
e , F )-contraction

First, we introduce the following concept of (FZϕe , F )-contraction.

Definition 3.6.1. Let (X,M, ∗) be a fuzzy metric space, ϕ : X → (0, 1] a given
function and F ∈ F . A mapping T is said to be an (FZϕe , F )-contraction. if there
exists e ∈ FZe such that

e(F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty)),N ϕ
F (x, y, t)) ≥ 0 (3.9)

for all x, y ∈ X and all t > 0. Where

N ϕ
F (x, y, t) = min{F (M(x, y, t), ϕ(x), ϕ(y)), F (M(x, Tx, t), ϕ(x), ϕ(Tx)),

F (M(y, Ty, t), ϕ(y), ϕ(Ty))}. (3.10)

Our first main result is the following one.

Theorem 3.6.2. Let (X,M, ∗) be a complete fuzzy metric space, ϕ : X → (0, 1] be
a given function and F ∈ F . Suppose that the following conditions hold :

(i) T : X −→ X is an (FZϕe , F )-contraction with respect to e ∈ FZe

(ii) ϕ is continuous.

Then Fix(T ) ⊆ Oϕ. Moreover, the operator T has a unique fixed point.

Proof. First, we show that Fix(T ) ⊆ Oϕ. Assume that u ∈ X is a fixed point of
T . Applying (3.9) with x = y = u, we obtain

0 ≤ e(F (M(Tu, Tu, t), ϕ(Tu), ϕ(Tu)),N ϕ
F (u, u, t)) (3.11)

= e(F (1, ϕ(u), ϕ(u)),N ϕ
F (u, u, t))
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Where

N ϕ
F (u, u, t)) = min{F (M(u, u, t), ϕ(u), ϕ(u)), F (M(u, Tu, t), ϕ(u), ϕ(Tu)),

F (M(u, Tu, t), ϕ(u), ϕ(Tu))}
= min{F (1, ϕ(u), ϕ(u)), F (1, ϕ(u), ϕ(u)), F (1, ϕ(u), ϕ(u))}
= F (1, ϕ(u), ϕ(u))

We claim that F (1, ϕ(u), ϕ(u)) = 1. Suppose, on the contrary, that
F (1, ϕ(u), ϕ(u)) < 1. Regarding (E1), the inequality (3.11) yields that

0 ≤ e(F (M(Tu, Tu, t), ϕ(Tu), ϕ(Tu)),N ϕ
F (u, u, t))

= e(F (1, ϕ(u), ϕ(u)),N ϕ
F (u, u, t))

<
1

N ϕ
F (u, u, t))

− 1

F (1, ϕ(u), ϕ(u))

=
1

F (1, ϕ(u), ϕ(u))
− 1

F (1, ϕ(u), ϕ(u))

= 0

Which is a contradiction. Then

F (1, ϕ(u), ϕ(u)) = 1

From (F1), we deduce that

F (1, ϕ(u), ϕ(u)) = 1 ≤ min{1, ϕ(u)} ≤ ϕ(u)

Which means that ϕ(u) = 1, and hence, u ∈ Oϕ, and so

Fix(T ) ⊆ Oϕ.

Next, let x0 ∈ X be an arbitrary point and {xn} be the Picard sequence defined
by

xn = T nx0, n ∈ N

If there exists some m ∈ N such that xm = xm+1, then xm is fixed point of T
and it completes the proof. For this reason, assume that xn 6= xn+1 for all n ∈ N,
which means that M(xn, xn+1, t) < 1 for all t > 0.

If there exists some k0 ∈ N such that F (M(xk0 , xk0+1, t), ϕ(xk0), ϕ(xk0+1)) = 1,
then we could deduce from condition (F1) that

F (M(xk0 , xk0+1, t), ϕ(xk0), ϕ(xk0+1)) ≤ min{M(xk0 , xk0+1, t), ϕ(xk0)}

≤M(xk0 , xk0+1, t) < 1
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Which is a contradiction. As consequence,

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) < 1 for all n ∈ N

Since T is an (FZϕe , F )-contraction with respect to e ∈ FZe, we have

0 ≤ e(F (M(Txn, Txn+1, t), ϕ(Txn), ϕ(Txn+1)),N ϕ
F (xn, xn+1, t)) (3.12)

Now, we define ϑn = F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) < 1, n ∈ N, we have

N ϕ
F (xn, xn+1, t)) = min{F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)),

F (M(xn, Txn, t), ϕ(xn), ϕ(Txn)),

F (M(xn+1, Txn+1, t), ϕ(xn+1), ϕ(Txn+1))}
= min{F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1),

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1),

F (M(xn+1, xn+2, t), ϕ(xn+1), ϕ(xn+2))

= min{ϑn, ϑn, ϑn+1}
= min{ϑn, ϑn+1} < 1.

Regarding (E1), the inequality (3.12) yields that

0 ≤ e(F (M(Txn, Txn+1, t), ϕ(Txn), ϕ(Txn+1)),N ϕ
F (xn, xn+1, t))

= e(F (M(xn+1, xn+2, t), ϕ(xn+1), ϕ(xn+2)),min{ϑn, ϑn+1})
= e(ϑn+1,min{ϑn, ϑn+1})

<
1

min{ϑn, ϑn+1})
− 1

ϑn+1

It follows that

min{ϑn, ϑn+1} < ϑn+1

Therefore ϑn < ϑn+1. Then, it follows that the sequence {ϑn} is a nondecreasing
of positive real numbers in (0, 1]. Consequently, there exists l(t) ≤ 1 such that
limn→∞ Fn = l(t) ≥ 1 for all t > 0. We shall prove that l(t) = 1 using the method
of Reductio ad Absurdum. On the contrary, we assume that l(t) < 1 for some
t0 > 0. Denote τn = ϑn+1 and δn = min{ϑn, ϑn+1}, we have

lim
n→∞

τn = lim
n→∞

δn = l(t)

Since {δn} is strictly nondecreasing we have δn < l(t). Regarding (E2), we deduce
that

lim
n→∞

sup e(τn, δn) < 0,
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which is in contradiction with

e(Fn+1,min{ϑn, ϑn+1}) = e(τn, δn) ≥ 0, for all n ∈ N

Accordingly, we obtain that

lim
n→∞

ϑn = F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) = 1 (3.13)

Due to (F1), we have

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) ≤ min{M(xn, xn+1, t), ϕ(xn+1))}

≤ ϕ(xn+1)

and

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) ≤ min{M(xn, xn+1, t), ϕ(xn+1))}

≤M(xn, xn+1, t)

Taking n→∞ and keeping (3.13) in mind, we obtain

lim
n→∞

M(xn, xn+1, t) = 1, for all t > 0. (3.14)

and lim
n→∞

ϕ(xn) = 1. (3.15)

Next, we show that {xn} is Cauchy sequence in X. Arguing by contradiction,
we assume that {xn} is not a Cauchy sequence. Then, there exists ε ∈ (0, 1), t0 > 0
and two subsequences {xnk

} and {xmk
} of {xn} with mk > nk ≥ k for all k ∈ N

such that

M(xnk
, xmk

, t0) < 1− ε. (3.16)

Taking in account Lemma 1.5.4, we have

M(xnk
, xmk

,
t0
2

) < 1− ε. (3.17)

By choosing mk as the smallest index satisfying (3.17), we get

M(xnk
, xmk−1,

t0
2

) ≥ 1− ε. (3.18)

On account of (3.16) and (3.18), the triangular inequality yields

1− ε > M(xnk
, xmk

, t0)

≥M(xnk
, xmk−1,

t0
2

) ∗M(xmk−1, xmk
,
t0
2

)

≥ (1− ε) ∗M(xmk−1, xmk
,
t0
2

)
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Taking the limit of both sides as k →∞, using (3.14) and (T3), we derive that

lim
n→∞

M(xnk
, xmk

, t0) = 1− ε (3.19)

Since T is an (FZϕe , F )-contraction with respect to e ∈ FZe, we have

0 ≤ e(F (M(Txnk−1, Txmk−1, t0), ϕ(Txnk−1), ϕ(Txmk−1)),N
ϕ
F (xnk−1, xmk−1, t0))

= e(F (M(xnk
, xmk

, t0), ϕ(xnk
), ϕ(xmk

)),N ϕ
F (xnk−1, xmk−1, t0))

<
1

N ϕ
F (xnk−1, xmk−1, t0)

− 1

F (M(xnk
, xmk

, t0), ϕ(xnk
), ϕ(xmk

))
.

Which implies that

N ϕ
F (xnk−1, xmk−1, t0) < F (M(xnk

, xmk
, t0), ϕ(xnk

), ϕ(xmk
)) (3.20)

Where

N ϕ
F (xnk−1, xmk−1, t0) = min{F (M(xnk−1, xmk−1, t0), ϕ(xnk−1), ϕ(xmk−1)),

F (M(xnk−1, Txnk−1, t0), ϕ(xnk−1), ϕ(Txnk−1)),

F (M(xmk−1, Txmk−1, t0), ϕ(xmk−1), ϕ(Txmk−1))}
= min{F (M(xnk−1, xmk−1, t0), ϕ(xnk−1), ϕ(xmk−1),

F (M(xnk−1, xnk
, t0), ϕ(xnk−1), ϕ(xnk

),

F (M(xmk−1, xmk
, t0), ϕ(xmk−1), ϕ(xmk

))

Now, if N ϕ
F (xnk−1, xmk−1, t0) = F (M(xmk−1, xmk

, t0), ϕ(xmk−1), ϕ(xmk
)), hence

(3.20) becomes

F (M(xmk−1, xmk
, t0), ϕ(xmk−1), ϕ(xmk

)) < F (M(xnk
, xmk

, t0), ϕ(xnk
), ϕ(xmk

))

Passing to the limit as k → ∞ in the above inequality, using (3.14), (3.15), (F2)
and taking into account the continuity of F yields

F (1, 1, 1) = 1 ≤ F ( lim
k→∞

M(xnk
, xmk

, t0), 1, 1)

= lim
k→∞

M(xnk
, xmk

, t0)

and then limk→∞M(xnk
, xmk

, t0) = 1, which contradicts the inequality (3.16). In
similar way, if we consider

N ϕ
F (xnk−1, xmk−1, t0)) = F (M(xnk−1, xnk

, t0), ϕ(xnk−1), ϕ(xnk
))

Then, again we obtain a contradiction. Therefore, we must have

N ϕ
F (xnk−1, xmk−1, t0) = F (M(xnk−1, xmk−1, t0), ϕ(xnk−1), ϕ(xmk−1)).
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Then, (3.20) gives rise to

lim
k→∞

M(xnk−1, xmk−1, t0) ≤ F ( lim
k→∞

M(xnk
, xmk

, t0), 1, 1)

= lim
k→∞

M(xnk
, xmk

, t0)

= 1− ε (3.21)

By the triangular inequality, we have

M(xnk−1, xmk−1, t0) ≥M(xnk−1, xnk
, t0
2

) ∗M(xnk
, xmk−1,

t0
2

)

Letting k →∞ in the last inequality and using (3.14) and (3.14), we get

lim
k→∞

M(xnk−1, xmk−1, t0) ≥ 1 ∗ (1− ε) = 1− ε. (3.22)

From (3.21) and (3.22), we derive that

lim
k→∞

M(xnk−1, xmk−1, t0) = 1− ε. (3.23)

On the other hand, by (3.14), (3.18) and regarding (F2), we have

lim
k→∞

F (M(xnk
, xmk

, t0), ϕ(xnk
), ϕ(xmk

)) = F (1− ε, 1, 1)

= 1− ε

In particular, it follows from (3.20),(F1) and (3.16), that

N ϕ
F (xnk−1, xmk−1, t0) < F (M(xnk

, xmk
, t0), ϕ(xnk

), ϕ(xmk
)),

≤ min{M(xnk
, xmk

, t0), ϕ(xnk
)}

≤M(xnk
, xmk

, t0)

< 1− ε

Take the sequences αk = F (M(xnk
, xmk

, t0), ϕ(xnk
), ϕ(xmk

)) and
βk = N ϕ

F (xnk−1, xmk−1, t0)) for all k ∈ N. From the above observations, we conclude
that limk→∞ αk = limk→∞ βk = 1−ε and βk < 1−ε. Thus, we can Apply the axiom
(E2) to these sequences, as consequence

0 ≤ lim
k→∞

sup e(αk, βk) < 0.

Which is a contradiction. Thus, we deduce that {xn} is a Cauchy sequence. Since
(X,M, ∗) is a complete fuzzy metric space, there exists u ∈ X such that

lim
n→∞

M(xn, u, t) = 1. (3.24)

Due to continuity of ϕ, (8) and (17), we derive that

ϕ(u) = 1 (3.25)
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Therefore, u ∈ Oϕ. Next, we shall show that u is a fuzzy ϕ-fixed point of T .
Arguing by contradiction. Suppose that M(u, Tu, t) < 1 for some t > 0. Define the
sequences

µ = F (M(u, Tu, t), 1, ϕ(Tu)) , άn = F (M(xn+1, Tu, t), ϕ(xn+1), ϕ(Tu))

and β́n = N ϕ
F (xn, u, t)) for all n ∈ N

Using (F1), we obtain

µ = F (M(u, Tu, t), 1, ϕ(Tu)) ≤min{M(u, Tu, t), 1}
=M(u, Tu, t)

<1 (3.26)

Taking the limit as n→∞ and using the continuity of F

lim
n→∞

άn = F (M(xn+1, Tu, t), ϕ(xn+1), ϕ(Tu))

= F (M(u, Tu, t), 1, ϕ(Tu))

= µ

On the other hand,

β́n = N ϕ
F (xn, u, t)) = min{F (M(xn, u, t), ϕ(xn), ϕ(u),

F (M(xn, Txn, t), ϕ(xn), ϕ(Txn)),

F (M(u, Tu, t), ϕ(u), ϕ(Tu))}
= min{F (M(xn, u, t), ϕ(xn), 1),

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1),

F (M(u, Tu, t), ϕ(u), ϕ(Tu))}.

As F is continuous, we have

lim
n→∞

F (M(xn, u, t), ϕ(xn), 1) = F (1, 1, 1) = 1

lim
n→∞

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) = F (1, 1, 1) = 1

Particulary, there exists n0 ∈ N such that for all n ≥ n0 we have

β́n = F ((M(u, Tu, t), 1, ϕ(Tu)) = µ

and {άn}n≥n0 ⊂ (0, 1] is a sequence converging to µ < 1, such that for all n ≥ n0,

e(άn, µ) = e(άn, β́n)

= e(F (M(xn+1, Tu, t), ϕ(xn+1), ϕ(Tu)),N ϕ
F (xn, u, t))})

= e(F (M(Txn, Tu, t), ϕ(Txn), ϕ(Tu)),N ϕ
F (xn, u, t))})

≥ 0.
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Regarding (E3), the last inequality yields that µ = 1. which contradicts (3.26).
As a consequence M(u, Tu, t) = 1, which means that u is a fuzzy ϕ-fixed point of
T .

As a final step, we shall show the uniqueness of fuzzy ϕ-fixed point of T . We
argue by contradiction, suppose that there are two distinct ϕ-fixed points u, v ∈ X
of the mapping T . Then M(u, v, t) < 1 for all t > 0. Since we have Fix(T ) ⊆ Oϕ,
it follows that ϕ(u) = ϕ(v) = 1. Now, using 3.9, we have

0 ≤ e(F (M(Tu, Tv, t), ϕ(Tu), ϕ(Tv)),N ϕ
F (u, v, t)) (3.27)

Where

N ϕ
F (u, v, t)) = min{F (M(u, v, t), ϕ(u), ϕ(v)), F (M(u, Tu, t), ϕ(u), ϕ(Tu)),

F (M(v, Tv, t), ϕ(v), ϕ(Tv))}
= min{F (M(u, v, t), 1, 1), F (1, 1, 1), F (1, 1, 1)}
= F (M(u, v, t), 1, 1)

= M(u, v, t)

Regarding (E1), the inequality (3.27) yields that

0 ≤ e(F (M(Tu, Tv, t), ϕ(Tu), ϕ(Tv)),N ϕ
F (u, v, t))

= e(F (M(u, v, t), 1, 1),M(u, v, t))

= e(M(u, v, t),M(u, v, t))

<
1

M(u, v, t)
− 1

M(u, v, t)
= 0

A contradiction, thus u = v. Therefore, the fuzzy ϕ-fixed point of T is unique. This
completes the proof.

Corollary 3.6.3. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X.
Suppose that there exists some e ∈ FZe such that for all x, y ∈ X, t > 0

e(M(Tx, Ty, t),min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}) ≥ 0

Then T has a unique fixed point.

Proof. The result follows by defining F (a, b, c) = a.b.c for all a, b, c ∈ (0, 1] and
ϕ(x) = 1 for all x ∈ X in Theorem 3.6.2.

Corollary 3.6.4. Let (X,M, ∗) be a complete fuzzy metric space, and let T : X −→
X be a given mapping. Suppose that there exists some ψ ∈ Ψ such that for all
x, y ∈ X, t > 0

M(Tx, Ty, t) ≥ ψ(min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)})

Then T has a unique fixed point.
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Proof. Define e : (0, 1] × (0, 1] −→ R by e(t, s) = 1
ψ(s)
− 1

t
for all s, t ∈ (0, 1],

F (a, b, c) = a.b.c for all a, b, c ∈ (0, 1] and ϕ(x) = 1 for all x ∈ X. by proposition
1, one can see that e is an extended simulation function. The result follows from
Theorem 3.6.2.

Corollary 3.6.5. Let (X,M, ∗) be a complete fuzzy metric space, and let T : X −→
X be a given mapping and η ∈ H such that

η(F ((M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))) ≤ kη(N ϕ
F (x, y, t))

x, y ∈ X, t > 0 where k ∈ (0, 1). Then T has a unique ϕ-fixed point.

Proof. The result follows by defining e : (0, 1]× (0, 1] −→ R by e(t, s) = 1
η1(kη(s))

−
1
t

for all s, t ∈ (0, 1] in Theorem 3.6.2.

Corollary 3.6.6. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be a given mapping. Assume that

1

F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))
− 1 ≤ φ

(
1

N ϕ
F (x, y, t)

− 1

)
for all x, y ∈ X and t > 0, where φ : [0,∞) −→ [0,∞) with φ(t) < t, for all t > 0
and φ(0) = 0. Then T has a unique fuzzy ϕ-fixed point.

3.7 Best Proximity point results

In this section, some best proximity results in fuzzy metric spaces are deduced
from our main results .

Let U and V be two nonempty subsets of a fuzzy metric space (X,M, ∗) and
T : A −→ B a non-self-mapping.
The following notations will be used in the sequel.

U0 = {u ∈ U : M(u, v, t) = M(U, V, t) for some v ∈ V };

V0 = {v ∈ V : M(u, v, t) = M(U, V, t) for some u ∈ U}.

where

M(U, V, t) = sup{M(u, v, t) : u ∈ U, v ∈ V };

The set of all best proximity points of non-self-mapping T : U −→ V will be denoted
by

Best(T ) = {u ∈: M(u, Tu, t) = M(U, V, t)}.
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Definition 3.7.1. [54] Let X be a non-empty set, ϕ : X → (0, 1] a given function
and T : U −→ V a non-self mapping. An element u∗ ∈ U is said to be a fuzzy
ϕ-best proximity point of T if and only if u∗ is a best proximity point of T and
ϕ(u∗) = 1.

Definition 3.7.2. Let U and V be two nonempty closed subsets of a fuzzy metric
space (X,M, ∗). We say that the operator T : U → V is an (FZϕe , F )-fuzzy
proximal contraction with respect to e ∈ FZe, if there exist a function ϕ : X →
(0, 1], F ∈ F , such that

{
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒ e(F (M(u, v, t), ϕ(u), ϕ(v)),N ϕ
F (x, y, t)) ≥ 0

(3.28)
for all u, v, x, y ∈ U and t > 0. Where

N ϕ
F (x, y, t) = min{F (M(x, y, t), ϕ(x), ϕ(y)), F (M(x, u, t), ϕ(x), ϕ(u)),

F (M(y, v, t), ϕ(y), ϕ(v))}.

Theorem 3.7.3. Let U and V be two nonempty subsets of a complete fuzzy metric
space (X,M, ∗) such that U0 is nonempty and ϕ : X → (0, 1], F ∈ F . Suppose that
T : U → V is an (FZϕe , F )-fuzzy proximal contraction with respect to e ∈ FZe.
Suppose also

(i) U0 is closed with respect to the topology induced by M

(ii) T (U0) ⊆ V0;

(ii) ϕ is continuous

Then T has a unique fuzzy ϕ-best proximity point, that is, there exists x∗ ∈ U such
that Best(T ) ∩ Oϕ = {x∗}.

Proof. First, we show that Best(T ) ⊆ Oϕ. Assume that ρ ∈ U is a best proximity
point of T , which means that M(ρ, Tρ, t) = M(U, V, t). Applying (3.28) with
σ = u = v = x = y, we have

0 ≤ e(F (1, ϕ(σ), ϕ(σ)),N ϕ
F (σ, σ, t))

Where

N ϕ
F (σ, σ, t)) = min{F (M(σ, σ, t), ϕ(σ), ϕ(σ)), F (M(σ, σ, t), ϕ(σ), ϕ(σ)),

F (M(σ, σ, t), ϕ(σ), ϕ(σ))}
= F (1, ϕ(σ), ϕ(σ))
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We shall indicate that F (1, ϕ(σ), ϕ(σ)) = 1. Reasoning by contradiction, Suppose
that F (1, ϕ(σ), ϕ(σ)) < 1 and using (E1), we derive

0 ≤ e(F (M(ρ, ρ, t), ϕ(ρ), ϕ(ρ)),N ϕ
F (σ, σ, t))

= e(F (1, ϕ(σ), ϕ(σ)),N ϕ
F (σ, σ, t))

<
1

N ϕ
F (σ, σ, t)

− 1

F (1, , ϕ(σ), ϕ(σ))

=
1

F (1, , ϕ(σ), ϕ(σ))
− 1

F (1, , ϕ(σ), ϕ(σ))

= 0

Which is a contradiction. Therefore,

F (1, ϕ(σ), ϕ(σ)) = 1

By (F1), we obtain

F (1, ϕ(σ), ϕ(σ)) = 1 ≤ min{1, ϕ(σ)} ≤ ϕ(σ)

which yields ϕ(σ) = 1, and then Best(T ) ⊆ Oϕ.
Next, let x0 ∈ X be an element in U0. Taking into account that Tx0 ∈ T (U0) ⊆

V0 we can find x1 ∈ U0 such that M(x1, Tx0, t) = M(U, V, t). Since Tx1 ∈ T (U0) ⊆
V0, so that there exists x2 ∈ U0 such that M(x2, Tx1, t) = M(U, V, t). Recursively,
a sequence {xn} ⊂ U0 can be constructed as follows

M(xn+1, Txn, t) = M(U, V, t) for all n ∈ N. (3.29)

If xk = xk+1 for some k ∈ N, then

M(xk, Txk, t) = M(xk+1, Txk, t) = M(U, V, t)

Therefore, xk is the required best proximity point and the proof is completed. Due
to this reason, for the rest of the proof, we assume that xn 6= xn+1 for all n ∈ N,
that is M(xn, xn+1, t) < 1 for all t > 0.

Now, if there exists some n0 ∈ N such that F (M(xn0 , xn0+1, t), ϕ(xn0), ϕ(xn0+1)) =
1, the condition (F1) yields that

1 = F (M(xn0 , xn0+1, t), ϕ(xn0), ϕ(xn0+1)) ≤ min{M(xn0 , xn0+1, t), ϕ(xn0)}

≤M(xn0 , xn0+1, t) < 1

A contradiction. Accordingly, we deduce that

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) < 1 for all n ∈ N

Next, we denote γn = F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) < 1, n ∈ N. We have

0 ≤ e(F (M(xn+1, xn+2, t), ϕ(xn+1), ϕ(xn+2)),N ϕ
F (xn, xn+1, t)) (3.30)
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Where

N ϕ
F (xn, xn+1, t)) = min{F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)),

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)),

F (M(xn+1, xn+2, t), ϕ(xn+1), ϕ(xn+2))}
= min{γn, γn, γn+1}
= min{γn, γn+1} < 1.

Using the property (E1), we deduce that

0 ≤ e(F (M(xn+1, xn+2, t), ϕ(xn+1), ϕ(xn+2)),N ϕ
F (xn, xn+1, t))

= e(γn+1,min{γn, γn+1})

<
1

min{γn, γn+1})
− 1

γn+1

which yields γn < γn+1. Therefore, we deduce that {γn} is an increasing sequence
of non-negative real numbers in (0, 1]. Thus, there exists h(t) ≤ 1 such that
limn→∞ γn = h(t) ≥ 1 for all t > 0. In particular, as {γn} is strictly increas-
ing, then h(t) < γn. We shall prove that h(t) = 1 for all t > 0. Suppose, on
contrary, that h(t) < 1 for some t > 0. If we choose the sequences $n = γn+1 and
θn = min{γn, γn+1}, we have limn→∞$n = limn→∞ θn = h(t) and θn < h(t), by the
condition (E2), we derive that

lim
n→∞

sup e($n, θn) < 0,

which contradicts Equation (3.30). Accordingly, we deduce that

lim
n→∞

γn = F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) = 1 for all t > 0. (3.31)

Moreover, using (F1) we get

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) ≤ min{M(xn, xn+1, t), ϕ(xn+1))}

≤ ϕ(xn+1)

and

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) ≤ min{M(xn, xn+1, t), ϕ(xn+1))}

≤M(xn, xn+1, t)

Which implies

lim
n→∞

ϕ(xn) = 1 and lim
n→∞

M(xn, xn+1, t) = 1,∀t > 0. (3.32)

As a next step, we shall prove that the sequence {xn}. Reasoning by contra-
diction, assume that {xn} is not a Cauchy sequence. Then, there exists ε ∈ (0, 1),
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t0 > 0 and subsequences {xnk
} and {xmk

} of {xn}, so that for mk > nk ≥ k we
have

M(xnk
, xmk

, t0) < 1− ε. (3.33)

By Lemma 1, we have

M(xnk
, xmk

,
t0
2

) < 1− ε. (3.34)

If we choose mk as the least natural number satisfying (3.31), we have

M(xnk
, xmk−1,

t0
2

) ≥ 1− ε. (3.35)

Taking into account (3.33) and (3.35), we deduce that

1− ε ≥M(xnk
, xmk

, t0)

≥M(xnk
, xmk−1,

t0
2

) ∗M(xmk−1, xmk
,
t0
2

)

> (1− ε) ∗M(xmk−1, xmk
,
t0
2

)

Letting k →∞ and using (3.30), we get

lim
n→∞

M(xnk
, xmk

, t0) = 1− ε (3.36)

Let us denote

rk = F (M(xnk
, xmk

, t), ϕ(xnk
), ϕ(xmk

)) and

sk = N ϕ
F (xnk−1, xmk−1, t)) for all k ∈ N

Since T is an (FZϕe , F )-fuzzy proximal contraction and

M(xnk
, Txnk−1, t)) = M(xmk

, Txmk−1, t)) = M(U, V, t)

for all k ∈ N. So, by (3.28) we have

0 ≤ e(F (M(xnk
, xmk

, t), ϕ(xnk
), ϕ(xmk

)),N ϕ
F (xnk−1, xmk−1, t))

<
1

N ϕ
F (xnk−1, xmk−1, t))

− 1

F (M(xnk
, xmk

, t), ϕ(xnk
), ϕ(xmk

))

Hence

N ϕ
F (xnk−1, xmk−1, t)) < F (M(xnk

, xmk
, t), ϕ(xnk

), ϕ(xmk
)) (3.37)
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Where

N ϕ
F (xnk

, xmk
, t)) = min{F (M(xnk−1, xmk−1, t), ϕ(xnk−1), ϕ(xmk−1)),

F (M(xnk−1, xnk
, t), ϕ(xnk−1), ϕ(xnk

)),

F (M(xmk−1, xmk
, t), ϕ(xmk−1), ϕ(xmk

))}

By following a similar reasoning to that in the proof of Theorem 3.6.2, one can
show that

lim
k→∞

sk = lim
k→∞

M(xnk−1, xmk−1, t0) = 1− ε and

lim
k→∞

rk = lim
k→∞

F (M(xnk
, xmk

, t), ϕ(xnk
), ϕ(xmk

)) = 1− ε

Particularly, it follows from (3.37), (F1) and (3.33), that

sk < F (M(xnk
, xmk

, t), ϕ(xnk
), ϕ(xmk

))

≤ min{M(xnk
, xmk

, t), ϕ(xnk
)}

≤M(xnk
, xmk

, t)

< 1− ε

On account of the above observations, we deduce that limk→∞ rk = limk→∞ sk =
1− ε and sk < 1− ε. Regarding the axiom E2, we obtain

0 ≤ lim
k→∞

sup e(rk, sk) < 0.

Which is a contradiction. This contradiction proves that {xn} is a Cauchy sequence.
Since U0 is closed subset of the complete fuzzy metric space (X,M, ∗), there exists
x∗ ∈ U0 such that

lim
n→∞

M(xn, x
∗, t) = 1. (3.38)

By the continuity of ϕ, (3.32) and (3.38), we have

ϕ(x∗) = 1. (3.39)

As T (U0) ⊆ V0 and x∗ ∈ U0, there exists ω ∈ U0 such that

lim
n→∞

M(w, Tx∗, t) = M(U, V, t). (3.40)

Now, we shall prove that x∗ = w, reasoning by contradiction. Suppose that
M(x∗, w, t) < 1 for some t > 0. Define

a = F (M(x∗, w, t), 1, ϕ(w)) , ŕn = F (M(xn+1, w, t), ϕ(xn+1), ϕ(w))

and śn = N ϕ
F (xn, x

∗, t)) for all n ∈ N
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Using (F1), we obtain

a = F (M(x∗, w, t), 1, ϕ(w)) ≤ min{M(x∗, w, t), 1}
= M(x∗, w, t) < 1 (3.41)

Taking the limit as n→∞ and using the continuity of F

lim
n→∞

ŕn = lim
n→∞

F (M(xn+1, w, t), ϕ(xn+1), ϕ(w))

= F (M(x∗, w, t), 1, ϕ(w))

= a

On the other hand,

śn = N ϕ
F (xn, x

∗, t)) = min{F (M(xn, x
∗, t), ϕ(xn), ϕ(x∗),

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)),

F (M(x∗, w, t), ϕ(x∗), ϕ(w))}
= min{F (M(xn, x

∗, t), ϕ(xn), 1),

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)),

F (M(x∗, w, t), ϕ(x∗), ϕ(w))}

Due to the continuity of F , we have

lim
n→∞

F (M(xn, x
∗, t), ϕ(xn), 1) = F (1, 1, 1) = 1

lim
n→∞

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) = F (1, 1, 1) = 1

As consequence, there exists n0 ∈ N such that

śn = F (M(x∗, w, t), 1, ϕ(w)) = a, n ≥ n0.

In particular, {ŕn}n≥n0 ⊂ (0, 1] is a sequence converging to a < 1 and such that for
all n ≥ n0,

e(ŕn, a) = e(ŕn, śn) = e(F (M(xn+1, w, t), ϕ(xn+1), ϕ(w)),N ϕ
F (xn, x

∗, t))) ≥ 0

by means of (3.28). The previous inequality with the axiom (E3) ensure that a = 1.
This contradicts (3.41). Hence

M(x∗, w, t) = 1,

In other words, x∗ = w and by considering (3.40), we derive that

M(x∗, Tx∗, t) = M(U, V, t)
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By (3.39), we conclude that x∗ is a fuzzy ϕ-best proximity point of T .
Finally, we shall show the uniqueness of the fuzzy ϕ-best proximity point of

T , that is, Best(T ) ∩ Oϕ is singleton. We argue by contradiction, suppose that
x∗, w∗ ∈ X are two distinct fuzzy ϕ-best proximity fixed points of the mapping T .
Then M(x∗, w∗, t) < 1 for all t > 0. Hence

M(x∗, Tx∗, t) = M(A,B, t) and M(w∗, Tw∗, t) = M(A,B, t)

Since T is an (FZϕe , F )-fuzzy proximal contraction with respect to e ∈ FZe

0 ≤ e(F (M(x∗, w∗, t), ϕ(x∗), ϕ(w∗)),N ϕ
F (x∗, w∗, t)) (3.42)

Where

N ϕ
F (x∗, w∗, t)) = min{F (M(x∗, w∗, t), ϕ(x∗), ϕ(w∗)), F (M(x∗, x∗, t), ϕ(x∗), ϕ(x∗)),

F (M(w∗, w∗, t), ϕ(w∗), ϕ(w∗))}
= min{F (M(x∗, w∗, t), 1), F (1, 1, 1), F (1, 1, 1)}
= F (M(x∗, w∗, t), 1, 1)

Then, using the property (E1), we have

0 ≤ e(F (M(x∗, w∗, t), ϕ(x∗), ϕ(w∗)),N ϕ
F (x∗, w∗, t))

<
1

F (M(x∗, w∗, t), ϕ(x∗), ϕ(w∗))
− 1

N ϕ
F (x∗, w∗, t)

=
1

F (M(x∗, w∗, t), 1, 1)
− 1

F (M(x∗, w∗, t), 1, 1)

= 0

Which leads to a contradiction. Hence M(x∗, w∗, t) < 1, which implies x∗ = w∗.
This completes the proof.

Corollary 3.7.4. Let U and V be two nonempty subsets of a complete fuzzy metric
space (X,M, ∗) such that U0 is nonempty, ϕ : X → (0, 1] and F ∈ F .{

M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒ F (M(u, v, t), ϕ(u), ϕ(v)) ≥ ψ(N ϕ
F (x, y, t)) (3.43)

(i) U0 is closed with respect to the topology induced by M

(ii) T (U0) ⊆ V0;

(ii) ϕ is continuous
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Then T has a unique fuzzy ϕ-best proximity point, that is, there exists x∗ ∈ U such
that Best(T ) ∩ Oϕ = {x∗}.

η(F ((M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))) ≤ kη(N ϕ
F (x, y, t))

x, y ∈ X, t > 0 where k ∈ (0, 1). Then T has a unique ϕ-fixed point.

Remark 3.7.5. It is clear that several consequences can be expressed as a corol-
laries of our main results by defining the function e in proper.
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Chapter 4

Fixed Point Results for
α-η-FZ-Contractions Type
Mappings

The main purpose of this chapter is to generalize the concept of FZ-contraction
mappings by introducing two classes of mappings, generalized α-η-FZ-contractions
and modified α-η-FZ-contractions, based on the notion of α-admissible function
with respect to η. We prove some fixed point results for such mappings in the
framework of fuzzy metric spaces. We provide various deduced results and two ex-
amples to clarify the utility of our results. The presented concepts in this chapter
enrich, extend and generalize different types of contraction mappings in the current
literature, essentially the contractive conditions initiated by Gopal and Calogero
vetro [42], Mishra et al. [77], Gregori and Sapena [78], Mihet [19] and Melliani et
al. [72].

4.1 Introduction and Preliminaries

Gopal and Vetro [42] recently developed the idea of α-φ-fuzzy contractive
mapping, which was inspired by the work of Samet et al. [13]. In 2016, Mishra, Vetro
and Kumam [77] proved certain fixed point theorems which provide a generalization
of several interesting results in the literature. Then they came up with the concept
of a modified α-φ-fuzzy contractive mapping by using the following notion of α-
admissibility.

Definition 4.1.1. [77] Let (X,M, ∗) be a fuzzy metric space, and let α, η : X ×
X × (0,+∞) −→ [0,+∞) be two functions. A mapping T : X → X is said to be
an α-admissible with respect to η if for all x, y ∈ X

α(x, y, t) ≥ η(x, y, t)⇒ α(Tx, Ty, t) ≥ η(Tx, Ty, t) for all t > 0.
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Remark 4.1.2. Setting η(x, y, t) = 1 for all x, y ∈ X in the previous definition,
we deduce the Definition 1.7.11. Additionally, If α(x, y, t) = 1 for all x, y ∈ X and
t > 0, then T is said to be η-subadmissible.

Definition 4.1.3. [77] Let (X,M, ∗) be a fuzzy metric space in the sense of George
and Veeramani. A mapping T : X → X is said to be a modified α-φ-fuzzy con-
tractive mapping if there exist three functions α, η : X ×X × (0,∞)→ [0,∞[ and
φ ∈ Φ such that, for all x, y ∈ X and for all t > 0, we have

α(x, y, t) ≥ η(x, y, t)⇒
(

1

M(Tx, Ty, t)
− 1

)
≤ φ

(
1

N(x, y, t)
− 1

)
where N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}.

Remark 4.1.4. Note that If we take η(x, y, t) = 1 and N(x, y, t) = M(x, y, t), then
this definition reduces to definition of an α-φ-fuzzy contractive mapping given in
[42].

In the line with [60], we use the concept of α-orbital admissible mappings
and triangular α-orbital admissible mappings in the following form.

Definition 4.1.5. Let T : X −→ X be a mapping and α : X ×X −→ [0,∞) be a
function. Then T is said to be α-orbital admissible with respect η if

α(x, Tx, t) ≥ η(x, Tx, t) =⇒ α(Tx, T 2x) ≥ η(Tx, T 2x, t).

Moreover, T is called a triangular α-orbital admissible with respect to η if it satisfies
the following conditions

(A1) T is α-orbital admissible with respect to η ;

(A2) α(x, y, t) ≥ η(x, y, t) and α(y, Ty, t) ≥ η(y, Ty, t)⇒ α(x, Ty, t) ≥ η(x, Ty, t).

Remark 4.1.6. Note that if we take η(x, y, t) = 1, then Definition 4.1.5 reduces to
the definition of triangular α-orbital admissible mapping (resp, α-orbital admissible
mapping).

4.2 Generalized α-η-FZ-contractions

In this direction we introduce the following concepts.

Definition 4.2.1. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X
is said to be an α-η-FZ-contraction, if there exist two functions α, η : X × X ×
(0,∞)→ [0,∞) such that, for all x, y ∈ X and for all t > 0, we have

α(x, y, t) ≥ η(x, y, t)⇒ ξ(M(Tx, Ty, t),M(x, y, t)) ≥ 0. (4.1)
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Remark 4.2.2. Setting α(x, y, t) = η(x, y, t) = 1 for all x, y ∈ X, t > 0 in (4.1),
then this definition reduces to the Definition (3.1.2) of FZ-contraction mappings.

Definition 4.2.3. Let (X,M, ∗) be a fuzzy metric. A mapping T : X → X
is said to be a generalized α-η-FZ-contraction if there exist two functions α, η :
X ×X × (0,∞)→ [0,∞) such that, for all x, y ∈ X and for all t > 0, we have

α(x, y, t) ≥ η(x, y, t)⇒ ξ(M(Tx, Ty, t), N(x, y, t)) ≥ 0 (4.2)

where N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}.

Remark 4.2.4.

� If α(x, y, t) = η(x, y, t) = 1 for all x, y ∈ X, t > 0 and N(x, y, t) = M(x, y, t),
then this definition reduces to the Definition (3.1.2) of FZ-contraction, thus
it will imply the definition of the fuzzy contractive mapping considered by
Gregori and Sapena [78].

� If φ ∈ Φ and we define ξ(t, s) = φ
(
1
s
− 1
)
− 1

t
+ 1 for all s, t ∈ (0, 1], then

this definition reduces to Definition (4.1.3) of modified α-φ-fuzzy contractive
mapping given in by Mishra, Vetro and Kumam [77].

Our first main result is the following theorem.

Theorem 4.2.5. Let (X,M, ∗) be a complete fuzzy metric space in the sense of
George and Veeramani and let T : X −→ X be a generalized α-η-FZ-contraction
with respect to ξ ∈ FZ satisfying the following conditions:

(i) T is triangular α-orbital admissible with respect to η;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

Proof. Using condition (ii), there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t).
Define a sequence {xn} in X by

xn+1 = Txn for all n ∈ N

If xm+1 = Txm for some m ∈ N, then T has a fixed point. Therefore, to continue
our proof, we suppose that xn+1 6= xn for all n ∈ N. Since T is an α-admissible
mapping with respect to η, we have

α(x0, x1, t) = α(x0, Tx0, t) ≥ η(x0, Tx0, t) = η(x0, x1, t) implies that

α(x1, x2, t) = α(Tx0, Tx1, t) ≥ η(Tx0, Tx1, t) = η(x1, x2, t).
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Recursively, we get that

α(xn, xn+1, t) ≥ η(xn, xn+1, t), for all n ∈ N. (4.3)

Regarding that T is a generalized α-η-FZ-contraction, if we consider in (4.2) x = xn
and y = xn−1, we get

0 ≤ ξ(M(Txn, Txn−1, t), N(xn, xn−1, t))

= ξ(M(xn+1, xn, t), N(xn, xn−1, t))

<
1

N(xn, xn−1, t)
− 1

M(xn+1, xn, t)
.

Hence

1

M(xn+1, xn, t)
<

1

N(xn, xn−1, t)

which is equivalent to

N(xn, xn−1, t) < M(xn+1, xn, t) (4.4)

where

N(xn, xn−1, t) = min{M(xn, xn−1, t),M(xn, Txn, t),M(xn−1, Txn−1, t)}
= min{M(xn, xn−1, t),M(xn, xn+1, t),M(xn−1, xn, t)}
= min{M(xn, xn+1, t),M(xn−1, xn, t)} (4.5)

Now if min{M(xn, xn+1, t),M(xn−1, xn, t)} = M(xn, xn+1, t) then

M(xn, xn+1, t) < M(xn+1, xn, t)

Which is a contradiction. It follows that

min{M(xn, xn+1, t),M(xn−1, xn, t)} = M(xn−1, xn, t)

By (4.4), we obtain that

M(xn−1, xn, t) < M(xn, xn+1, t) for all n ∈ N

Hence, we deduce that the sequence {M(xn, xn+1, t)} is a nondecreasing of positive
real numbers in [0, 1]. Thus, there exists l(t) ≤ 1 such that limn→∞M(xn, xn−1, t) =
l(t) ≥ 1 for all t > 0. We claim that

lim
n→∞

M(xn, xn−1, t) = 1 (4.6)

On contrary assume that l(t0) < 1 for some t0 > 0. Now, if we take the sequences
{τn = M(xn, xn+1, t0) and {δn = M(xn−1, xn, t0)} and considering (ξ3), we obtain
the contradiction
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0 ≤ lim
n→∞

sup ξ(M(xn, xn+1, t0),M(xn−1, xn, t0)) < 0

Which yields limn→∞M(xn, xn+1, t) = 1 for all t > 0.
Next, we show that {xn} is Cauchy sequence in X. Reasoning by contradiction,

assume that {xn} is not a Cauchy sequence. Then, there exists ε ∈ (0, 1), t0 > 0
and two subsequences {xnk

} and {xmk
} of {xn} with mk > nk ≥ k for all k ∈ N

such that

M(xnk
, xmk

, t0) ≤ 1− ε. (4.7)

Taking in account Lemma 1.5.4 we derive that

M(xnk
, xmk

,
t0
2

) ≤ 1− ε. (4.8)

By choosing mk as the smallest index satisfying (4.8), we have

M(xnk
, xmk−1,

t0
2

) > 1− ε. (4.9)

On account of (4.7),(4.9) and the triangular inequality, we obtain

1− ε ≥M(xnk
, xmk

, t0)

≥M(xnk
, xmk−1,

t0
2

) ∗M(xmk−1, xmk
,
t0
2

)

> (1− ε) ∗M(xmk−1, xmk
,
t0
2

)

Taking limit as k →∞ and using (4.6), we derive that

lim
n→∞

M(xnk
, xmk

, t0) = 1− ε (4.10)

Furthermore, since T is triangular α-orbital admissible with respect to η, we
have

α(xnk−1, xmk−1, t0) ≥ η(xnk−1, xmk−1, t0). (4.11)

Using the fact that T is a generalized α-η-FZ-contraction mapping with respect to
ξ ∈ FZ, we obtain that

0 ≤ ξ(M(Txnk−1, Txmk−1, t0), N(xnk−1, xmk−1, t0))

= ξ(M(xnk
, xmk

, t0), N(xnk−1, xmk−1, t0))

<
1

N(xnk−1, xmk−1, t0)
− 1

M(xnk
, xmk

, t0)
.
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Which implies that

N(xnk−1, xmk−1, t0) < M(xnk
, xmk

, t0) (4.12)

Where

N(xnk−1, xmk−1, t0) = min{M(xnk−1, xmk−1, t0),M(xnk−1, Txnk−1, t0),

M(xmk−1, Txmk−1, t0)}
= min{M(xnk−1, xmk−1, t0),M(xnk−1, xnk

, t0),

M(xmk−1, xmk
, t0)}. (4.13)

Taking the limit as k →∞ in (4.12) and using (4.6), we get

lim
k→∞

N(xnk−1, xmk−1, t0) = min{ lim
k→∞

M(xnk−1, xmk−1, t0), 1, 1}

≤ lim
k→∞

M(xnk
, xmk

, t0)

= 1− ε (4.14)

By the triangular inequality, we have

M(xnk−1, xmk−1, t0) ≥M(xnk−1, xnk
, t0
2

) ∗M(xnk
, xmk−1,

t0
2

) (4.15)

Again, taking the limit as k → ∞ in the last inequality and using (4.6) and (4.9),
we get

lim
k→∞

M(xnk−1, xmk−1, t0) ≥ 1− ε. (4.16)

From (4.14) and (4.15), we derive that

lim
k→∞

N(xnk−1, xmk−1, t0) = 1− ε. (4.17)

Taking the sequences sk = N(xnk−1, xmk−1, t0) and tk = M(xmk
, xnk

, t0), then
limk→∞ sk = limk→∞ tk = 1− ε. Applying (ξ3), we get

0 ≤ lim
k→∞

sup ξ(M(xmk
, xnk

, t0), N(xnk−1, xmk−1, t0)) < 0

which is a contradiction. Hence, {xn} is a Cauchy sequence. Since (X,M, ∗) is
a complete fuzzy metric space, there exists u ∈ X such that

lim
n→∞

M(xn, u, t) = 1. (4.18)

As T is continuous, we derive that

lim
n→∞

M(xn+1, Tu, t) = lim
n→∞

M(Txn, Tu, t) = 1 (4.19)

and by the uniqueness of the limit, we conclude that u is fixed point of T , that
is Tu = u.
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Theorem 4.2.6. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be a generalized α-η-FZ-contraction with respect to ξ ∈ FZ satisfying the following
conditions:

(i) T is triangular α-orbital admissible with respect to η;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) if {xn} is a sequence in X such that α(xn, xn+1, t) ≥ η(xn, xn+1, t) for all
n ∈ N, t > 0 and xn → x ∈ X as n → ∞, then there exists a subsequence
{xn(k)} of {xn} such that α(xn(k), x, t) ≥ η(xn(k), x, t) for all k ∈ N and t > 0.

Then there exists u ∈ X such that Tu = u.

Proof. Following the lines of the proof of Theorem 4.2.5, we obtain that the sequence
{xn} defined by xn+1 = Txn for all n ≥ 0 is a Cauchy sequence in X. Since (X,M, ∗)
is complete, there exists u ∈ X such that xn → u as n→∞. By the condition (iii),
there exists a subsequence {xn(k)} of {xn} such that α(xn(k), u, t) ≥ η(xn(k), u, t) for
all k ∈ N,t > 0. Applying (4.2), we obtain that

0 ≤ ξ(M(Txn(k), Tu, t), N(xn(k), u, t))

= ξ(M(xn(k)+1, Tu, t), N(xn(k), u, t))

Where

N(xn(k), u, t) = min{M(xn(k), u, t),M(xn(k), Txn(k), t),M(u, Tu, t)}
= min{M(xn(k), u, t),M(xn(k), xn(k)+1, t),M(u, Tu, t)} (4.20)

As k →∞, we get

lim
k→∞

N(xn(k), u, t) = min{1, 1,M(u, Tu, t)}

= M(u, Tu, t)

Suppose that Tu 6= u. Then M(u, Tu, t) < 1. Now by choosing the sequences {τk =
M(xn(k)+1, Tu, t)} and {σk = N(xn(k), u, t)}. On account of the above observations,
we have limk→∞ τk = limk→∞ σk < 1.
Applying the property (ξ3), it follows that

0 ≤ lim
k→∞

sup ξ(M(xn(k)+1, Tu, t), N(xn(k), u, t)) < 0 (4.21)

which is a contradiction. Thus we have M(u, Tu, t) = 1, which is equivalent to
Tu = u.
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To ensure the uniqueness of a fixed point of a generalized α-η-FZ-contraction
with respect to ξ ∈ Z, we will consider the following condition:

(U) For all x, y ∈ Fix(T), we have α(x, y, t) ≥ η(x, y, t).
where Fix(T) denotes the set of fixed points of T .

Theorem 4.2.7. Adding condition (U) to the hypotheses of Theorem 4.2.5 (resp.
Theorem 4.2.6), we obtain the uniqueness of the fixed point of T .

Proof. We argue by contradiction, suppose that u, v ∈ X are two distinct fixed
points of the mapping. Then M(u, v, t) < 1 for all t > 0. From assumption (U),
we have

α(u, v, t) ≥ η(u, v, t). (4.22)

Therefore, it follows from equation (4.2) and (ξ2), that

0 ≤ ξ(M(Tu, Tv, t), N(u, v, t))

= ξ(M(Tu, Tv, t),min{M(u, v, t),M(u, Tu, t),M(v, Tv, t)})
= ξ(M(u, v, t),min{M(u, v, t), 1, 1})
= ξ(M(u, v, t),M(u, v, t))

<
1

M(u, v, t)
− 1

M(u, v, t)
= 0. (4.23)

Which is a contradiction. Therefore, the fixed point of T is unique. This completes
the proof.

4.3 Examples and Consequences

Example 4.3.1. Let X = [0,∞) endowed with the fuzzy metric M : X × X ×
(0,∞) −→ [0, 1) defined by M(x, y, t) = t

t+|x−y| for all x, y ∈ X, t > 0 and ∗ the

t-norm given by a ∗ b = a.b for all a, b ∈ [0, 1]. We define T : X −→ X by

Tx =


x2

6
if x, y ∈ [0, 1]

3
2

otherwise

and α, η : X ×X × (0,∞) −→ [0,∞) by

α(x, y, t) =

{
2 + xy if x, y ∈ [0, 1]

0 otherwise

η(x, y, t) =

{
1 + xy if x, y ∈ [0, 1]

6 otherwise
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Let (x, y) ∈ X × X, from the definition of α and η, we have that α(x, y, t) ≥
η(x, y, t) for all t > 0 iff x, y ∈ [0, 1]. Suppose that α(x, Tx, t) ≥ η(x, Tx, t) therefore
x, Tx ∈ [0, 1], and hence Tx, TTx ∈ [0, 1], which implies that α(Tx, T 2x, t) ≥
η(Tx, T 2x, t). Thus T is α-orbital admissible with respect to η. Suppose that
α(x, y, t) ≥ η(x, y, t) and α(y, Ty, t) ≥ η(y, Ty, t) for all t > 0, then x, y, Ty ∈
[0, 1] which implies that α(x, Ty, t) ≥ η(x, Ty, t). Hence T is triangular α-orbital
admissible with respect to η.

Clearly, for any x0 ∈ [0, 1] we have α(x0, Tx0, t) ≥ η(x0, Tx0, t) for all t > 0.
Next, let {xn} be a sequence such that α(xn, xn+1, t) ≥ η(xn, xn+1, t) for all n ∈ N
and xn → x ∈ X as n→∞. Hence {xn} ⊆ [0, 1] and then x ∈ [0, 1], which implies
that α(xn, x, t) ≥ η(xn, x, t).

Now, we show that T is a generalized α-η-FZ-contraction mapping, i.e. we
have to prove that (4.2) is satisfied. We define ξ : (0, 1]× (0, 1] −→ R by ξ(t, s) =
1
3
(1
s
− 1) − 1

t
+ 1. let (x, y) ∈ X ×X such that α(x, y, t) ≥ η(x, y, t) for all t > 0.

From the definition of α and η we have x, y ∈ [0, 1], then Tx = x2

6
and Ty = y2

6
.

Since

1

M(Tx, Ty, t)
− 1 =

t+ |Tx− Ty|
t

− 1

=
|x2 − y2|

6t

≤ |x− y|
3t

≤ 1

3t
max{|x− y|, |x− Tx|, |y − Ty|}

=
1

3
(

1

N(x, y, t)
− 1)

We define ξ : (0, 1] × (0, 1] −→ R by ξ(t, s) = 1
3
(1
s
− 1) − 1

t
+ 1. It follows that

ξ(M(Tx, Ty, t), N(x, y, t)) ≥ 0.

Therefore, T satisfies all the hypothesis of Theorem 4.2.6 and x = 0, x = 3
2

are
fixed points of T .
Note that, T is not a fuzzy contractive mapping (see Definition 1.7.1) in the sense
of Gregori and Sapena [78]. Indeed, by choosing x = 1 and y = 3

2
, there is no

k ∈ (0, 1) satisfying

1

M(Tx, Ty, t)
− 1 =

|Tx− Ty|
t

=
8

6t

≤ k

2t
= k(

1

M(x, y, t)
− 1)

Now, we derive several corollaries which can be expressed easily from our main
result.
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Corollary 4.3.2. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be an α-admissible. Assume that there exists a FZ-simulation mapping ξ such that
for all x, y ∈ X and t > 0,

α(x, y, t) ≥ 1⇒ ξ(M(Tx, Ty, t), N(x, y, t)) ≥ 0 (4.24)

where N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}. And suppose that the
following assertions hold:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1;

(iii) either, T is continuous, or if {xn} is a sequence in X such that α(xn, xn+1, t) ≥
1 for all n ∈ N, t > 0 and xn → x ∈ X as n → ∞, then there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x, t) ≥ 1 for all k ∈ N and
t > 0.

Then T has a fixed point. Furthermore, if for all x, y ∈ Fix(T) and for all t > 0,
we have α(x, y, t) ≥ 1, then T has a unique fixed point.

Proof. The result follows by defining η(x, y, t) = 1 for all x, y ∈ X and t > 0 in
Theorem 4.2.7.

Corollary 4.3.3. Let (X,M, ∗) be a complete fuzzy metric space, T : X −→ X
and α, η : X × X × (0,∞) −→ [0,∞) be a mappings. Assume that there exists a
function ψ ∈ Ψ2 such that, for all x, y ∈ X and t > 0,

α(x, y, t) ≥ η(x, y, t)⇒M(Tx, Ty, t) ≥ ψ(N(x, y, t))

where N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}. Furthermore we sup-
pose that :

(i) T is triangular α-orbital admissible with respect to η;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) either T is continuous mapping or, if {xn} is a sequence in X such that
α(xn, xn+1, t) ≥ η(xn, xn+1, t) for all n ∈ N, t > 0 and xn → x ∈ X as n →
∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x, t) ≥
η(xn(k), x, t) for all k ∈ N and t > 0.

(v) for all x, y ∈ Fix(T) and t > 0, we have α(x, y, t) ≥ η(x, y, t).

Then T has a unique fixed point.
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Proof. Define ξ : (0, 1]× (0, 1] −→ R by

ξ(t, s) =
1

ψ(s)
− 1

t
for all s, t ∈ (0, 1].

Since ξ ∈ FZ the desired results follow from Theorem 4.2.7.

Corollary 4.3.4. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be a modified α-φ-fuzzy contractive mapping satisfying the following conditions:

(i) T is triangular α-orbital admissible with respect to η;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) either T is continuous, or if {xn} is a sequence in X such that α(xn, xn+1, t) ≥
η(xn, xn+1, t) for all n ∈ N, t > 0 and xn → x ∈ X as n → ∞, then there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x, t) ≥ η(xn(k), x, t) for
all k ∈ N and t > 0.

Then T has a fixed point. Furthermore, if for all x, y ∈ Fix(T) and for all t > 0,
we have α(x, y, t) ≥ η(x, y, t), then T has a unique fixed point.

Proof. Follows from Theorem 4.2.7 by taking ξ(t, s) = φ(1
s
− 1) − 1

t
+ 1 for all

s, t ∈ (0, 1].

Corollary 4.3.5. Let (X,M, ∗) be a complete fuzzy metric space. Let T : X −→ X
and α : X ×X × (0,∞) −→ [0,∞) be a mappings. Assume that there exists φ ∈ Φ
such that, for all x, y ∈ X and t > 0,

α(x, y, t) ≥ 1⇒
(

1

M(Tx, Ty, t)
− 1

)
≤ φ

(
1

N(x, y, t)
− 1

)
where N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}. Suppose that the fol-
lowing conditions are satisfied:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1;

(iii) T is continuous mapping or if {xn} is a sequence in X such that α(xn, xn+1, t) ≥
1 for all n ∈ N, t > 0 and xn → x ∈ X as n→∞, then there exists a subse-
quence {xn(k)} of {xn} such that α(xn(k), x, t) ≥ 1 for all k ∈ N and t > 0.

Then T has a fixed point. Furthermore, if for all x, y ∈ Fix(T) and for all t > 0,
we have α(x, y, t) ≥ 1, then T has a unique fixed point.

Proof. Follows from Theorem 4 by taking η(x, y, t) = 1 for all x, y ∈ X and t > 0,
and ξ(t, s) = φ(1

s
− 1)− 1

t
+ 1 for all s, t ∈ (0, 1].
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Corollary 4.3.6. Let (X,M, ∗) be a complete fuzzy metric space, T : X −→ X
and α, η : X × X × (0,∞) −→ [0,∞) be a mappings. Assume that there exists a
function ϕ : [0,∞) −→ [0,∞) with ϕ(λ) > 0 for all λ > 0 and ϕ(0) = 0, such that
for all x, y ∈ X and t > 0,

α(x, y, t) ≥ η(x, y, t)⇒(
1

M(Tx, Ty, t)
− 1

)
≤
(

1

N(x, y, t)
− 1

)
− ϕ

(
1

N(x, y, t)
− 1

)
where N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)}. Furthermore we sup-
pose that :

(i) T is triangular α-orbital admissible with respect to η;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) either T is continuous mapping or, if {xn} is a sequence in X such that
α(xn, xn+1, t) ≥ η(xn, xn+1, t) for all n ∈ N, t > 0 and xn → x ∈ X as n →
∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x, t) ≥
η(xn(k), x, t) for all k ∈ N and t > 0.

(v) for all x, y ∈ Fix(T) and t > 0, we have α(x, y, t) ≥ η(x, y, t).

Then T has a unique fixed point.

Proof. Follows from Theorem 4.2.7 by taking ξ(t, s) =
(
1
s
− 1
)
− ϕ

(
1
s
− 1
)
− 1

t
+ 1

for all s, t ∈ (0, 1].

Corollary 4.3.7. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
a mapping satisfying

ξ(M(Tx, Ty, t), N(x, y, t)) ≥ 0 (4.25)

with respect to a FZ-simulation function ξ ∈ FZ. Then T has a unique fixed
point.

4.4 Modified α-η-FZ-contractions

Definition 4.4.1. Let (X,M, ∗) be a fuzzy metric space in the sense of George
and Veeramani. A mapping T : X → X is said to be a modified FZ-contraction if
there exist two functions α, η : X ×X × (0,∞)→ [0,∞) such that, for all x, y ∈ X
and for all t > 0, we have

α(x, Tx, t)α(y, Ty, t) ≥ η(x, Tx, t)η(y, Ty, t)

⇒ ξ(M(Tx, Ty, t), N(x, y, t)) ≥ 0 (4.26)

where N(x, y, t) = min {M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}} .
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Remark 4.4.2.

� If ψ ∈ Ψ2 and we define ξ : (0, 1]× (0, 1] −→ R by ξ(t, s) = 1
ψ(s)
− 1

t
for all s, t ∈

(0, 1] as FZ-simulation function, then this definition reduces to definition of
modified α-η-ψ-fuzzy contractive mapping [73], i.e.

α(x, Tx, t)α(y, Ty, t) ≥ η(x, Tx, t)η(y, Ty, t)⇒M(Tx, Ty, t) ≥ ψ(N(x, y, t))

Theorem 4.4.3. Let (X,M, ∗) be a complete fuzzy metric space in the sense of
George and Veeramani and let T : X −→ X be a modified FZ-contraction with
respect to ξ ∈ FZ satisfying the following conditions:

(i) T is triangular α-orbital admissible with respect to η;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) if {xn} is a sequence in X such that α(xn, xn+1, t) ≥ η(xn, xn+1, t) for all n ∈
N, t > 0 and xn → x ∈ X as n→∞, then there exists a subsequence {xn(k)}
of {xn} such that α(xn(k), x, t) ≥ η(xn(k), x, t) and α(x, Tx, t) ≥ η(x, Tx, t) for
all k ∈ N and t > 0.

Then T has a fixed point.

Proof. Following the same reasoning in Theorem 4.2.5, we get that

α(xn, xn+1, t) ≥ η(xn, xn+1, t), for all n ∈ N. (4.27)

it follows that

α(xn, xn+1, t)α(xn−1, xn, t) ≥ η(xn, xn+1, t)η(xn−1, xn, t), (4.28)

for all t > 0 and n ∈ N. Regarding that T is a modified FZ-contractive mapping,
if we consider in (4.26) x = xn and y = xn−1, we get

0 ≤ ξ(M(Txn, Txn−1, t),N(xn, xn−1, t))

= ξ(M(xn+1, xn, t),N(xn, xn−1, t))

<
1

N(xn, xn−1, t)
− 1

M(xn+1, xn, t)
.

Hence

1

M(xn+1, xn, t)
<

1

N(xn, xn−1, t)

which is equivalent to

N(xn, xn−1, t) < M(xn+1, xn, t) (4.29)
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where

N(xn, xn−1, t) = min{M(xn, xn−1, t),max{M(xn, Txn, t),M(xn−1, Txn−1, t)}}
= min{M(xn, xn−1, t),max{M(xn, xn+1, t),M(xn−1, xn, t)}}
= M(xn−1, xn, t) (4.30)

By (4.28), we get

M(xn−1, xn, t) < M(xn, xn+1, t) for all n ∈ N

Hence, we deduce that the sequence {M(xn, xn+1, t)} is a nondecreasing of positive
real numbers in [0, 1]. Thus, there exists s(t) ≤ 1 such that limn→∞M(xn, xn−1, t) =
s(t) ≥ 1 for all t > 0. We claim that

lim
n→∞

M(xn, xn−1, t) = 1 (4.31)

On contrary assume that s(t0) < 1 for some t0 > 0. Now, if we take the
sequences {τn = M(xn, xn+1, t0) and {δn = M(xn−1, xn, t0)} and considering (ξ3),
we obtain the contradiction

0 ≤ lim
n→∞

sup ξ(M(xn, xn+1, t0),M(xn−1, xn, t0)) < 0

Which yields limn→∞M(xn, xn+1, t) = 1 for all t > 0. Next, we show that {xn}
is Cauchy sequence in X. Reasoning by contradiction, assume that {xn} is not a
Cauchy sequence. Then, there exists ε ∈ (0, 1), t0 > 0 and two subsequences {xnk

}
and {xmk

} of {xn} with mk > nk ≥ k for all k ∈ N such that

M(xnk
, xmk

, t0) ≤ 1− ε. (4.32)

Taking in account Lemma 1.5.4, we derive that

M(xnk
, xmk

,
t0
2

) ≤ 1− ε. (4.33)

By choosing mk as the smallest index satisfying (4.32), we have

M(xnk
, xmk−1,

t0
2

) > 1− ε. (4.34)

On account of (4.31),(4.33) and the triangular inequality, we have

1− ε ≥M(xnk
, xmk

, t0)

≥M(xnk
, xmk−1,

t0
2

) ∗M(xmk−1, xmk
,
t0
2

)

> (1− ε) ∗M(xmk−1, xmk
,
t0
2

)
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Taking limit as k →∞ and using (4.30), we derive that

lim
n→∞

M(xnk
, xmk

, t0) = 1− ε (4.35)

Since we have

α(xnk−1, Txnk−1, t0)α(xmk−1, Txmk−1, t0) ≥ η(xnk−1, Txnk−1, t0)η(xmk−1, Txmk−1, t0).

and using the fact that T is an admissible modified FZ-contraction mapping with
respect to ξ ∈ FZ, we obtain that

0 ≤ ξ(M(Txnk−1, Txmk−1, t0),N(xnk−1, xmk−1, t0))

= ξ(M(xnk
, xmk

, t0),N(xnk−1, xmk−1, t0))

<
1

N(xnk−1, xmk−1, t0)
− 1

M(xnk
, xmk

, t0)
.

Which implies that

N(xnk−1, xmk−1, t0) < M(xnk
, xmk

, t0), (4.36)

where

N(xnk−1, xmk−1, t0) = min{M(xnk−1, xmk−1, t0),

max{M(xnk−1, Txnk−1, t0),M(xmk−1, Txmk−1, t0)}}
= min{M(xnk−1, xmk−1, t0),

max{M(xnk−1, xnk
, t0),M(xmk−1, xmk

, t0)}}. (4.37)

By (4.30), we have

lim
k→∞

max{M(xnk−1, xnk
, t0),M(xmk−1, xmk

, t0)} = max{1, 1}

= 1. (4.38)

Taking the limit as k →∞ in (4.36) and using (4.38), we get

lim
k→∞

N(xnk−1, xmk−1, t0) = min{ lim
k→∞

M(xnk−1, xmk−1, t0), 1}

≤ lim
k→∞

M(xnk
, xmk

, t0)

= 1− ε. (4.39)

By the triangular inequality, we have

M(xnk−1, xmk−1, t0) ≥M(xnk−1, xnk
, t0
2

) ∗M(xnk
, xmk−1,

t0
2

) (4.40)
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Again, taking the limit as k →∞ in the last inequality and using (4.30) and (4.33),
we get

lim
k→∞

M(xnk−1, xmk−1, t0) ≥ 1− ε. (4.41)

From (4.40) and (4.38), we derive that

lim
k→∞

N(xnk−1, xmk−1, t0) = 1− ε. (4.42)

Taking the sequences sk = N(xnk−1, xmk−1, t0) and tk = M(xmk
, xnk

, t0), then
limk→∞ sk = limk→∞ tk = 1− ε. Applying (ξ3), we get

0 ≤ lim
k→∞

sup ξ(M(xmk
, xnk

, t0),N(xnk−1, xmk−1, t0)) < 0.

Which is a contradiction. Hence, {xn} is a Cauchy sequence. Since (X,M, ∗) is
a complete fuzzy metric space, there exists u ∈ X such that

lim
n→∞

M(xn, u, t) = 1.

From the condition (iii), {xn} is a sequence inX such that α(xn, xn+1, t) ≥ η(xn, xn+1, t)
for all n ∈ N, t > 0 and xn → u ∈ X as n → ∞, then there exists a subsequence
{xn(k)} of {xn} such that α(xn(k), u, t) ≥ η(xn(k), u, t) and α(u, Tu, t) ≥ η(u, Tu, t)
for all k ∈ N and t > 0. Hence

α(xn(k), Txn(k), t)α(u, Tu, t) ≥ η(xn(k), Txn(k), t)η(u, Tu, t)

0 ≤ ξ(M(Txn(k), Tu, t),N(xn(k), u, t))

= ξ(M(xn(k)+1, Tu, t),N(xn(k), u, t))

<
1

N(xn(k), u, t)
− 1

M(xn(k)+1, Tu, t)

It follows that

N(xn(k), u, t) < M(xn(k)+1, Tu, t) (4.43)

where

N(xn(k), u, t) = min{M(xn(k), u, t),max{M(xn(k), Txn(k), t),M(u, Tu, t)}}
= min{M(xn(k), u, t),max{M(xn(k), xn(k)+1, t),M(u, Tu, t)}}

Letting k →∞ in (4.42), we get

lim
k→∞

N(xn(k), u, t) = 1 ≤M(u, Tu, t)

Therefore, M(u, Tu, t) = 1, which is equivalent to Tu = u. This completes the
proof.
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4.5 Corollaries and Examples

By defining α(x, y, t) = 1 for all x, y ∈ X and all t > 0, we obtain the following
result

Corollary 4.5.1. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be η-subadmissible a mapping. satisfying the following conditions:

1 ≥ η(x, Tx, t)η(y, Ty, t)⇒ ξ(M(Tx, Ty, t),N(x, y, t)) ≥ 0

where N(x, y, t) = min {M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}} .

(i) there exists x0 ∈ X such that 1 ≥ η(x0, Tx0, t);

(ii) if {xn} is a sequence in X such that 1 ≥ η(xn, xn+1, t) for all n ∈ N, t > 0
and xn → x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn}
such that 1 ≥ η(xn(k), x, t) and 1 ≥ η(x, Tx, t) for all k ∈ N and t > 0.

Then T has a fixed point.

Example 4.5.2. Let X = [0,∞) endowed with the fuzzy metric M : X × X ×
(0,∞) −→ [0, 1) defined by M(x, y, t) = e−

|x−y|
t for all x, y ∈ X, t > 0 and ∗ the

t-norm given by a ∗ b = a.b for all a, b ∈ [0, 1]. We define T : X −→ X by

Tx =


x2

4
if x, y ∈ [0, 1]

3x2 + 1 otherwise

and α, η : X ×X × (0,∞) −→ [0,∞) by α ≡ 1,

η(x, y, t) =

{
1
4

if x, y ∈ [0, 1]
9 otherwise

Define ξ : (0, 1]× (0, 1] −→ R by ξ(t, s) = 1√
s
− 1

t
. Let (x, y) ∈ X ×X, from the

definition of α and η, we have that 1 ≥ η(x, y, t) for all t > 0 iff x, y ∈ [0, 1]. Suppose
that 1 ≥ η(x, y, t), then x, y,∈ [0, 1], since we have for all x ∈ [0, 1] Tx ∈ [0, 1] it
follows that 1 ≥ η(Tx, Ty, t). Hence T is η-subadmissible.

Clearly, for any x0 ∈ [0, 1] we have 1 ≥ η(x0, Tx0, t) for all t > 0. Next, let {xn}
be a sequence such that 1 ≥ η(xn, xn+1, t) for all n ∈ N and xn → x ∈ X as n→∞.
Hence {xn} ⊆ [0, 1] and then x ∈ [0, 1], which implies that 1 ≥ η(xn, x, t).

Now, we have to prove that (4.26) is satisfied. Let (x, y) ∈ X × X such that
1 ≥ η(x, Tx, t)η(y, Ty, t) for all t > 0. From the definition of α and η we have
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x, y ∈ [0, 1]. On the other hand, since

1

M(Tx, Ty, t)
=

1

e−
|Tx−Ty|

t

=
1

e−
|x2−y2|

4t

≤ 1

e−
|x−y|

2t

≤ 1√
M(x, y, t

It follows that ξ(M(Tx, Ty, t), N(x, y, t)) ≥ 0. As all conditions of corollary 4.5.1
are fulfilled, then T has a fixed point, here x = 0 is a fixed point to T .

By defining η(x, y, t) = 1 and ξ : (0, 1] × (0, 1] −→ R by ξ(t, s) = 1
ψ(s)
−

1
t

for all s, t ∈ (0, 1] in Theorem 4.4.3, we have the following corollary.

Corollary 4.5.3. Let (X,M, ∗) be a complete fuzzy metric space, T : X −→ X
and α, η : X × X × (0,∞) −→ [0,∞) be a mappings. Assume that there exists a
function ψ ∈ Ψ such that, for all x, y ∈ X and t > 0,

α(x, Tx, t)α(y, Ty, t) ≥ 1⇒M(Tx, Ty, t) ≥ ψ(N(x, y, t)) (4.44)

where N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}. Furthermore we
suppose that :

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ η(x0, Tx0, t);

(iii) if {xn} is a sequence in X such that α(xn, xn+1, t) ≥ η(xn, xn+1, t) for all
n ∈ N, t > 0 and xn → x ∈ X as n → ∞, then there exists a subsequence
{xn(k)} of {xn} such that α(xn(k), x, t) ≥ η(xn(k), x, t) for all k ∈ N and t > 0.

Then T has a fixed point.
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Chapter 5

Best Proximity Problems For
Proximal FZ-Contractions

The best proximity theory is another expanding and prominent aspect of fixed
point theory which plays a fundamental role in the investigation of conditions that
guarantee the existence of an optimal approximate fixed point when the functional
equation Tx = x has no solution. Indeed, a non-self mapping T : U −→ V does
not possess necessarily a fixed point, where U and V are two nonempty subsets of a
classical metric space (X, d). It is of fundamental importance to provide an optimal
approximate solution x ∈ U that produces the least amount of error d(x, Tx).
Taking into account the fact that d(x, Tx) is at least d(U, V ), a best proximity
point of T is the optimal approximate solution x satisfying d(x, Tx) = d(U, V ).
Best proximity theory is a fascinating generalization of fixed point theorems. In
fact, if the mapping in question is a self-mapping, the best proximity point turned
out to be a fixed point in a natural way.

In the present chapter, following this line of research interest, we present a
simulation functions approach to best proximity point problems in fuzzy metric
spaces. We initiate new concepts of α-ψ-FZ-contraction, α-FZ-contraction and
generalized α-FZ-contraction. We discuss the existence of the best proximity point
of such classes of non-self-mappings involving control functions in the structure of
complete fuzzy metric spaces. The presented results generalize and extend various
existing results in the literature.

5.1 Best proximity point results for α-ψ-FZ-contraction

type mappings

Let U and V be two nonempty subsets of a fuzzy metric space (X,M, ∗). We
will employ the following notations:

U0(t) = {u ∈ U : M(u, v, t) = M(U, V, t) for some v ∈ V },
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V0(t) = {v ∈ V : M(u, v, t) = M(U, V, t) for some u ∈ U},
where

M(U, V, t) = sup{M(u, v, t) : u ∈ U, v ∈ V }.

First, we introduce the following concepts.

Definition 5.1.1. Let U and V be two non-empty subsets of fuzzy metric space
(X,M, ∗) and α : X × X × (0,∞) → [0,∞). We say that T : U → V is an
α-proximal admissible if{

α(x, y, t) ≥ 1,
M(u, Tx, t) = M(v, Ty, t) = M(U, V, t)

⇒ α(u, v, t) ≥ 1. (5.1)

for all u, v, x, y ∈ X and t > 0.

Definition 5.1.2. Let U and V be two non-empty subsets of fuzzy metric space
(X,M, ∗) and α : X × X × (0,∞) → [0,∞). We say that T : U → V is an
α-FZ-contraction with respect to ξ ∈ FZ if T is an α-proximal admissible, such
that 

α(x, y, t) ≥ 1
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒ ξ(M(u, v, t),M(x, y, t)) ≥ 0 (5.2)

for all u, v, x, y ∈ U and t > 0.

Definition 5.1.3. Let U and V be two nonempty subsets of fuzzy metric space
(X,M, ∗), α : X ×X × (0,∞)→ [0,∞) and ψ ∈ Ψ2. We say that T : U → V is an
α-ψ-FZ-contraction with respect to ξ ∈ FZ if T is an α-proximal admissible such
that 

α(x, y, t) ≥ 1
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒ ξ(M(u, v, t), ψ(M(x, y, t))) ≥ 0 (5.3)

for all u, v, x, y ∈ U and t > 0.

Remark 5.1.4. Note that Definition 5.1.3 cannot be reduced to Definition 5.1.2,
since ψ(t) = t does not belong to Ψ2.

Definition 5.1.5. Let U and V be two non-empty subsets of fuzzy metric space
(X,M, ∗) and α : X×X×(0,∞)→ [0,∞). We say that T : U → V is a generalized
α-FZ-contraction with respect to ξ ∈ FZ if T is an α-proximal admissible, such
that 

α(x, y, t) ≥ 1
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒ ξ(M(u, v, t)),R(x, y, t)) ≥ 0 (5.4)

for all u, v, x, y ∈ U and t > 0, where

R(x, y, t) = min{M(x, y, t),
M(x, u, t)M(y, v, t)

M(x, y, t)
}.
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Our first main result is the following theorem.

Theorem 5.1.6. Let U and V be non-empty subsets of a complete fuzzy metric
space (X,M, ∗), α : X × X × (0,∞) → [0,∞), ψ ∈ Ψ and ξ ∈ FZ is non-
increasing with respect to its second argument. Assume that T : U −→ V is an
α-ψ-FZ-contraction with respect to ξ and

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x0, Tx0, t) = M(U, V, t) and α(x0, x1, t) ≥
1 for all t > 0,

(v) T is continuous.

Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. Due to the condition(iv), there exists x0, x1 ∈ U such that α(x0, x1, t) ≥ 1
and

M(x1, Tx0, t) = M(U, V, t)

Regarding (iii), we deduce that Tx1 ∈ V0 hence there exists x2 ∈ U such that

M(x2, Tx1, t) = M(U, V, t).

Since α(x0, x1, t) ≥ 1 and T is an α-proximal admissible, it follows that α(x1, x2, t) ≥
1. Recursively, a sequence {xn} ⊂ U0 can be defined as follows

α(xn, xn+1, t) ≥ 1 for all n ∈ N, (5.5)

and M(xn+1, Txn, t) = M(U, V, t) for all n ∈ N. (5.6)

If there exists n0 ∈ N such that xn0+1 = xn0 , we obtain

M(xn0 , Txn0 , t) = M(xn0+1, Txn0 , t) = M(U, V, t),

which means that xn0 is a best proximity point of T . Therefore, to continue our
proof, we assume that xn 6= xn+1 for all n ∈ N. Making use of (5.5) and (5.6), we
obtain that

M(xn, Txn−1, t) = M(xn+1, Txn, t) = M(U, V, t), for all n ∈ N.
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Regarding that T is an α-ψ-FZ-contraction with respect to ξ ∈ FZ, together with
(5.5), (5.6) and (ξ2), we obtain that

0 ≤ ξ(M(xn, xn+1, t), ψ(M(xn−1, xn, t)))

<
1

ψ(M(xn−1, xn, t))
− 1

M(xn, xn+1, t)
.

Consequently, we have

M(xn−1, xn, t) < ψ(M(xn−1, xn, t)) < M(xn, xn+1, t)

Which means that {M(xn, xn+1, t)} is a nondecreasing sequence of positive real
numbers in (0, 1]. Then, there exists l(t) ≤ 1 such that limn→∞M(xn, xn+1, t) =
l(t) ≥ 1 for all t > 0. We shall prove that l(t) = 1. Reasoning by contradiction,
suppose that l(t0) < 1 for some t0 > 0. Now, if we take the sequences {τn =
M(xn, xn+1, t0) and {δn = M(xn−1, xn, t0)} and considering (ψ1), (ξ3) and that ξ is
non-increasing with respect to its second argument, we get

0 ≤ lim
n→∞

sup ξ(M(xn, xn+1, t0), ψ(M(xn−1, xn, t0)))

≤ lim
n→∞

sup ξ(M(xn, xn+1, t0),M(xn−1, xn, t0))

< 0,

A contradiction. Which yields

lim
n→∞

M(xn, xn+1, t) = 1 for all t > 0. (5.7)

Next, we show that the sequence {xn} is Cauchy. Reasoning by contradiction,
suppose that {xn} is not a Cauchy sequence. Then, there exists ε ∈ (0, 1), t0 > 0
and two subsequences {xnk

} and {xmk
} of {xn} with nk > mk ≥ k for all k ∈ N

such that

M(xmk
, xnk

, t0) ≤ 1− ε. (5.8)

Taking in account Lemma 1.5.4 we derive that

M(xmk
, xnk

,
t0
2

) ≤ 1− ε. (5.9)

By choosing mk as the smallest index satisfying (5.9), we have

M(xmk
, xnk−1,

t0
2

) > 1− ε. (5.10)

On account of (5.8),(5.10) and the triangular inequality, we have

1− ε ≥M(xmk
, xnk

, t0)

≥M(xmk
, xnk−1,

t0
2

) ∗M(xnk−1, xnk
,
t0
2

)

> (1− ε) ∗M(xnk−1, xnk
,
t0
2

)
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Taking limit as k → ∞ in both sides of the above inequality and using (5.8), we
derive that

lim
n→∞

M(xmk
, xnk

, t0) = 1− ε (5.11)

On other hand, we have

M(xmk−1, xnk−1, t0) ≥M(xmk−1, xmk
,
t0
3

) ∗M(xmk
, xnk

,
t0
3

) ∗M(xnk
, xnk−1,

t0
3

)

and

M(xmk
, xnk

, t0) ≥M(xmk
, xmk−1,

t0
3

) ∗M(xmk−1, xnk−1,
t0
3

) ∗M(xnk−1, xnk
,
t0
3

)

imply that

lim
n→∞

M(xmk−1, xnk−1, t0) = 1− ε. (5.12)

Furthermore, since T is triangular weak-α-admissible and taking into account (5.5),
we deduce that

α(xn, xm, t) ≥ 1 for all n,m ∈ N with n > m. (5.13)

So that,

α(xmk
, xnk

, t0) ≥ 1 and (5.14)

M(xmk
, Txmk−1, t0) = M(xnk

, Txnk−1, t0) = M(U, V, t0) for all k ∈ N. (5.15)

Regarding the fact that T is an α-ψ-FZ-contraction with respect to ξ ∈ FZ,
making use of (5.13) and (5.14), we have

0 ≤ ξ(M(xmk
, xnk

, t0), ψ(M(xmk−1, xnk−1, t0))) for all k ∈ N.

From (5.11) and (5.12) we see that the sequences {µk = M(xmk
, xnk

, t0) and {νk =
M(xmk−1, xnk−1, t0)} have the same limit 1 − ε < 1, taking into account that ξ is
non-increasing with respect to its second argument, by the property ξ3 we conclude
that

0 ≤ lim
n→∞

sup ξ(µk, ψ(νk))

≤ lim
n→∞

sup ξ(µk, νk)

< 0.

Which is a contradiction. Therefore, {xn} is a Cauchy sequence in U . Since U is
closed subset of a complete fuzzy metric space (X,M, ∗), there exists z ∈ U such
that

lim
n→∞

M(xn, z, t) = 1. (5.16)
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As T is continuous, we conclude that Txn converges to Tz, thus

lim
n→∞

M(Txn, T z, t) = 1. (5.17)

Due to the continuity of the fuzzy metricM , we haveM(xn+1, Txn, t)→M(z, Tz, t).
From (5.6), we deduce

M(U, V, t) = lim
n→∞

M(xn+1, Txn, t) = M(z, Tz, t).

Which means that, z ∈ U is a best proximity point of non-self mapping T .

In the next theorem, we replace the continuity hypothesis of T in Theorem
5.1.6 by the following condition :

(H) : if {xn} is a sequence in U such that α(xn, xn+1, t) ≥ 1 for all n ∈ N, t > 0
and xn → x ∈ U as n → ∞, then there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), x, t) ≥ 1 for all k ∈ N and t > 0.

Theorem 5.1.7. Let U and V be non-empty subsets of a complete fuzzy metric
space (X,M, ∗) and α : X × X × (0,∞) → [0,∞), ψ ∈ Ψ2 and ξ ∈ FZ is non-
increasing with respect to its second argument. Assume that T : U −→ V is an
α-ψ-FZ-contraction with respect to ξ ∈ FZ and

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x1, Tx0, t) = M(U, V, t) and α(x0, x1, t) ≥
1 for all t > 0,

(v) (H) holds.

Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. Following the lines of the proof of Theorem 5.1.6, we deduce that there exists
a Cauchy sequence {xn} in U0 which converges to z ∈ U0. Since T (U0) ⊆ V0, we
have Tz ∈ V0 and then

M(a1, T z, t) = M(U, V, t) for some a1 ∈ U0.

By the condition (H), there exists a subsequence {xn(k)} of {xn} such that

α(xnk
, z, t) ≥ 1 for all k ∈ Nt > 0. (5.18)
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Regarding that T is an α-proximal admissible and

M(a1, T z, t) = M(xnk+1, Txnk
, t) = M(U, V, t) (5.19)

we obtain that α(xnk+1, a1, t) ≥ 1. Hence

0 ≤ ξ(M(a1, xnk+1, t), ψ(M(z, xnk
, t))) for all k ∈ N.

Applying the property (ξ2), it follows that

M(z, xnk
, t) < ψ(M(z, xnk

, t)) < M(a1, xnk+1, t)

which yields limk→∞M(a1, xnk+1, t) = 1. Then a1 = z, from (5.19) we derive that
M(z, Tz, t) = M(U, V, t). This completes the proof.

5.2 Best proximity theorems for generalized α-

FZ-contractions

Theorem 5.2.1. Let U and V be non-empty subsets of a complete fuzzy metric
space (X,M, ∗) and α : X ×X × (0,∞) → [0,∞). Assume that T : U −→ V is a
generalized α-FZ-contraction with respect to ξ ∈ FZ and

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x1, Tx0, t) = M(U, V, t) and α(x0, Tx0, t) ≥
1 for all t > 0,

(v) T is continuous.

Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. Using the condition (iv), there exists x0, x1 ∈ U such that α(x0, x1, t) ≥ 1
and M(x1, Tx0, t) = M(U, V, t). Regarding (iii), we have Tx1 ∈ V0 which yields
that there exists x2 ∈ U such that

M(x2, Tx1, t) = M(U, V, t).

Since α(x0, x1, t) ≥ 1 and T is an α-proximal admissible, it follows that α(x1, x2, t) ≥
1. We recursively construct the sequence {xn} ⊂ U0 as follows

α(xn, xn+1, t) ≥ 1, (5.20)
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and M(xn+1, Txn, t) = M(U, V, t) for all n ∈ N. (5.21)

Supposing that there exists some m0 ∈ N such that xm0+1 = xm0 . Hence,

M(xm0 , Txm0 , t) = M(xm0+1, Txm0 , t) = M(U, V, t),

Which means that xm0 is a best proximity point of T and the proof is finished.
Therefore, to continue our proof, we assume that xn 6= xn+1 for all n ∈ N. Making
use of (5.20) and (5.21), we obtain

M(xn, Txn−1, t) = M(xn+1, Txn, t) = M(U, V, t) for all n ∈ N (5.22)

Regarding that T is a generalized α-FZ-contraction with respect to ξ ∈ FZ

0 ≤ ξ(M(xn, xn+1, t),R(xn−1, xn, t)) (5.23)

where

R(xn−1, xn, t) = min{M(xn−1, xn, t),
M(xn−1, xn, t)M(xn, xn+1, t)

M(xn−1, xn, t)
}

= min{M(xn−1, xn, t),M(xn, xn+1, t)}

Now, if
min{M(xn, xn+1, t),M(xn−1, xn, t)} = M(xn, xn+1, t)

Applying (ξ2), we get that

0 ≤ ξ(M(xn, xn+1, t),R(xn−1, xn, t))

<
1

R(xn−1, xn, t)
− 1

M(xn, xn+1, t)
, (5.24)

Thus

R(xn−1, xn, t) = M(xn, xn+1, t) < M(xn, xn+1, t) (5.25)

Which is a contradiction. Consequently,

R(xn−1, xn, t) = min{M(xn, xn+1, t),M(xn−1, xn, t)} = M(xn−1, xn, t)

By (5.24), we obtain that

M(xn−1, xn, t) < M(xn, xn+1, t) for all n ∈ N

Hence, we deduce that {M(xn, xn+1, t)} is a nondecreasing sequence of positive real
numbers in (0, 1]. Thus, there exists s(t) ≤ 1 such that limn→∞M(xn, xn+1, t) =
s(t) ≥ 1 for all t > 0. We shall prove that s(t) = 1. Reasoning by contradiction,
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suppose that s(t0) < 1 for some t0 > 0. Now, if we take the sequences Tn =
M(xn, xn+1, t0) and Sn = M(xn−1, xn, t0) and considering (ξ3), we obtain

0 ≤ lim
n→∞

sup ξ(Tn,Sn) < 0,

A contradiction. Therefore,

lim
n→∞

M(xn, xn+1, t) = 1 for all t > 0. (5.26)

Next, we show that the sequence {xn} is Cauchy. Reasoning by contradiction,
assume that {xn} is not a Cauchy sequence. Then, there exists ε ∈ (0, 1), t0 > 0
and two subsequences {xnk

} and {xmk
} of {xn} with nk > mk ≥ k for all k ∈ N

such that

M(xmk
, xnk

, t0) ≤ 1− ε. (5.27)

Taking in account Lemma 1.5.4, we derive that

M(xmk
, xnk

,
t0
2

) ≤ 1− ε. (5.28)

By choosing mk as the smallest index satisfying (5.28), we have

M(xmk
, xnk−1,

t0
2

) > 1− ε. (5.29)

Making use of (5.27),(5.29) and the triangular inequality, we get

1− ε ≥M(xmk
, xnk

, t0)

≥M(xmk
, xnk−1,

t0
2

) ∗M(xnk−1, xnk
,
t0
2

)

> (1− ε) ∗M(xnk−1, xnk
,
t0
2

)

Passing to the limit k →∞ in both sides of the above inequality and using (5.26),
we derive that

lim
n→∞

M(xmk
, xnk

, t0) = 1− ε (5.30)

On other hand,

M(xmk−1, xnk−1, t0) ≥M(xmk−1, xmk
,
t0
3

) ∗M(xmk
, xnk

,
t0
3

) ∗M(xnk
, xnk−1,

t0
3

)

and

M(xmk
, xnk

, t0) ≥M(xmk
, xmk−1,

t0
3

) ∗M(xmk−1, xnk−1,
t0
3

) ∗M(xnk−1, xnk
,
t0
3

)
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imply that

lim
n→∞

M(xmk−1, xnk−1, t0) = 1− ε. (5.31)

Furthermore, since T is triangular weak-α-admissible, we deduce that

α(xn, xm, t) ≥ 1 for all n,m ∈ N with n > m. (5.32)

Thus

α(xmk
, xnk

, t0) ≥ 1 and (5.33)

M(xmk
, Txmk−1, t0) = M(xnk

, Txnk−1, t0) = M(U, V, t0) for all k ∈ N. (5.34)

Regarding the fact that T a generalized α-FZ-contraction with respect to ξ ∈ FZ
and using (5.33)-(5.34), we obtain that

0 ≤ ξ(M(xmk
, xnk

, t0),R(xmk−1, xnk−1, t0)) for all k ∈ N. (5.35)

Where

R(xmk−1, xnk−1, t0) = min{M(xmk−1, xnk−1, t0),

M(xmk−1, xmk
, t0)M(xnk−1, xnk

, t0)

M(xmk−1, xnk−1, t0)
}

Letting k →∞ in the above equality and using (5.26), we deduce that

lim
k→∞
R(xmk−1, xnk−1, t0) = min{ 1

1− ε
, 1− ε}

= 1− ε

Taking the sequences µk = M(xmk
, xnk

, t0) and νk = R(xmk−1, xnk−1, t0) for all
k ∈ N. Applying ξ3, we derive that

0 ≤ lim
n→∞

sup ξ(µk, νk) < 0, (5.36)

Which is a contradiction. Then, {xn} is a Cauchy sequence in U . Since U is closed
subset of a complete fuzzy metric space (X,M, ∗), there exists z ∈ U such that

lim
n→∞

M(xn, z, t) = 1. (5.37)

As T is continuous, we obtain that Txn converges toTz, thus

lim
n→∞

M(Txn, T z, t) = 1. (5.38)

Due to the continuity of the fuzzy metricM , we haveM(xn+1, Txn, t)→M(z, Tz, t).
in view of (5.22), we get

M(U, V, t) = lim
n→∞

M(xn+1, Txn, t) = M(z, Tz, t). (5.39)

Thus, z ∈ U is a best proximity point of non-self mapping T .
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5.3 Best proximity results for α-FZ-contractions

Theorem 5.3.1. Let U and V be non-empty subsets of a complete fuzzy metric
space (X,M, ∗), α : X×X× (0,∞)→ [0,∞) and ξ ∈ FZ. Assume that T : U −→
V is an α-FZ-contraction with respect to ξ and

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x0, Tx0, t) = M(U, V, t) and α(x0, x1, t) ≥
1 for all t > 0,

(v) T is continuous or (H) holds.

Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. following the same arguments as those given in the proof of Theorem 5.2.1,
we know that there exists a Cauchy sequence {xn} in U which converges to z ∈ U .
Further

lim
n→∞

M(xn, z, t) = 1 for all n ∈ Nt > 0. (5.40)

If T is continuous,then

lim
n→∞

M(Txn, T z, t) = 1 for all n ∈ Nt > 0. (5.41)

Taking into account (5.6), (5.40) and (5.41) we obtain that

M(U, V, t) = lim
n→∞

M(xn+1, Txn, t) = M(z, Tz, t).

Which means that, z ∈ U is a best proximity point of non-self mapping T .
Now, suppose that (H) holds. Since T (U0) ⊆ V0, we have Tz ∈ V0 and then

M(a1, T z, t) = M(U, V, t) for some a1 ∈ U0.

By the condition (H), there exists a subsequence {xn(k)} of {xn} such that

α(xnk
, z, t) ≥ 1 for all k ∈ Nt > 0. (5.42)

Regarding that T is an α-proximal admissible and

M(a1, T z, t) = M(xnk+1, Txnk
, t) = M(U, V, t) (5.43)
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we obtain that α(xnk+1, a1, t) ≥ 1. Hence

0 ≤ ξ(M(a1, xnk+1, t),M(z, xnk
, t)) for all k ∈ N.

Applying the property (ξ2), it follows that

M(z, xnk
, t) < M(a1, xnk+1, t)

which yields limk→∞M(a1, xnk+1, t) = 1. Then a1 = z, from (5.19) we derive that
M(z, Tz, t) = M(U, V, t). This completes the proof.

Remark 5.3.2. Note that Theorem 5.3.1 cannot be deduced by combining Theo-
rem 5.1.6 and Theorem 5.2.1, since the function ψ(t) = t does not belong to Ψ2.
Moreover, in Theorem 5.1.6 and 5.1.7, we have an additional condition that ξ is
non-increasing in its second argument.

5.4 Consequences

In this section, we shall illustrate that several consequences of the existence
results can be easily concluded from our main results.

Corollary 5.4.1. Let U and V be nonempty subsets of a complete fuzzy metric
space (X,M, ∗), α : X ×X × (0,∞)→ [0,∞), ψ ∈ Ψ2. Assume that T : U −→ V
is an α-admissible proximal mapping such that

α(x, y, t) ≥ 1
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒M(u, v, t) ≥ ψ(M(x, y, t))

for all u, v, x, y ∈ U and t > 0. Suppose also

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x0, Tx0, t) = M(U, V, t) and α(x0, x1, t) ≥
1 for all t > 0,

(v) T is continuous or (H) holds.

Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. Define ξ : (0, 1]× (0, 1] −→ R by

ξ(t, s) =
1

ψ(s)
− 1

t
for all s, t ∈ (0, 1].

Since ξ ∈ FZ the desired results follow from Theorem 5.3.1.
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Corollary 5.4.2. Let U and V be nonempty subsets of a complete fuzzy metric
space (X,M, ∗), α : X ×X × (0,∞) → [0,∞), η ∈ H. Assume that T : U −→ V
is an α-admissible proximal mapping such that

α(x, y, t) ≥ 1
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒ η(M(u, v, t)) ≤ kη(M(x, y, t)),

for all u, v, x, y ∈ U and t > 0. Suppose also

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x0, Tx0, t) = M(U, V, t) and α(x0, x1, t) ≥
1 for all t > 0,

(v) T is continuous or (H) holds.

Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. It follows from Theorem 5.3.1 using the FZ-simulation function ξ(t, s) =
1

η−1(k.η(s))
− 1

t
for all s, t ∈ (0, 1].

Corollary 5.4.3. Let U and V be nonempty subsets of a complete fuzzy metric
space (X,M, ∗), α : X × X × (0,∞) → [0,∞). Assume that T : U −→ V is an
α-admissible proximal mapping such that

α(x, y, t) ≥ 1
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

⇒
(

1

M(u, v, t)
− 1

)
≤ φ

(
1

M(x, y, t)
− 1

)

for all u, v, x, y ∈ U and t > 0, where φ : [0,∞) −→ [0,∞) with φ(t) < t for all
t > 0 and φ(0) = 0. Suppose also

(i) T is triangular weak-α-admissible,

(ii) U is closed with respect to the topology induced by M ,

(iii) T (U0) ⊆ V0,

(iv) there exists x0, x1 ∈ U such that M(x0, Tx0, t) = M(U, V, t) and α(x0, x1, t) ≥
1 for all t > 0,

(v) T is continuous or (H) holds.
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Then there exists z ∈ U such that M(z, Tz, t) = M(U, V, t) for all t > 0, that is, T
has a best proximity point z ∈ U .

Proof. Follows from Theorem 5.3.1 by taking ξ(t, s) = φ(1
s
− 1) − 1

t
+ 1 for all

s, t ∈ (0, 1].

5.5 Application to fixed point theory

In this section, as an application of the obtained theorems, we will deduce some
new fixed point results in the context of fuzzy metric spaces.
First, note that if 

U = V = X
M(u, Tx, t) = M(U, V, t)
M(v, Ty, t) = M(U, V, t)

It follows that Tx = u and Ty = v. Consequently, taking U = V = X in Theorem
5.3.1, we get the following fixed point result

Corollary 5.5.1. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be a mapping satisfying

α(x, Tx, t) ≥ 1⇒ ξ(M(Tx, Ty, t),M(x, y, t)) ≥ 0

and assume that

(i) T is triangular weak-α-admissible,

(ii) there exists x0, x1 ∈ U such that α(x0, x1, t) ≥ 1 for all t > 0,

(iii) T is continuous, or (H) holds.

Then T has a fixed point.

Corollary 5.5.2. Let (X,M, ∗) be a complete fuzzy metric space and T : X −→ X
be a mapping satisfying

α(x, Tx, t) ≥ 1⇒ ξ(M(Tx, Ty, t),R(x, y, t)) ≥ 0

where

R(x, y, t) = min{M(x, y, t),
M(x, u, t)M(y, v, t)

M(x, y, t)
}.

and assume that

(i) T is triangular weak-α-admissible,

(ii) there exists x0, x1 ∈ X such that α(x0, Tx0, t) ≥ 1 for all t > 0,

(iii) T is continuous.
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Then T has a fixed point point.

Proof. The result follows by taking U = V = X in Theorem 5.2.1.

Remark 5.5.3. We must point to the fact that, by defining the control function ξ
and the admissible mapping α(x, y) in a proper way, it is possible to particularize
and derive a number of varied consequences. We skip making such a number of
corollaries since they seem clear.
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Conclusion, Research Scope and
Perspectives

In this study, we introduced new types of nonlinear contractions and established
new fixed point results in different contexts. First, we defined the class of admissible
almost type Z-contractions in complete metric space by combining the ideas of ad-
missible functions and simulation functions and proved some fixed point results for
such type of mappings. Furthermore, we showed that the defined concept generalize
several existing and known concepts of contractions in the literature, including the
famous Banach contraction mappings. Additionally, we discussed several results
which can be obtained as consequences of our main theorems in the framework of
metric spaces and metric spaces endowed with a partial order.

In the framework of fuzzy metric spaces, we proposed a novel approach to the
study of fixed point theory by introducing a new type of control functions. On
the basis of the same class, we defined a new type of fuzzy contraction mappings,
FZ-contractions, with the purpose to unify, enrich and cover different existing
types of contractions in the fuzzy metric spaces backdrop. Moreover, we proved the
existence and uniqueness of fixed point for the newly defined contractions. Some
illustrative examples are presented to clarify the unifying power of our concepts.
Indeed, motivated by the work of Melliani and Moussaoui [72], Hayel et al.[32]
presented new kind of fuzzy contractive mappings named as (FZ,F,ϕ)-contractive
mappings. Following this direction, we introduced the notion of extended FZ-
simulation functions, which is intended to enlarge and refine the definition of FZ-
simulation functions. Then, we conceived the idea of (FZϕe , F )-contraction and
established some ϕ-fixed point results in complete fuzzy metric spaces. The obtained
results, improve, extend and generalize those given by Gregori and Sapena [78],
Mihet [19], Wardowski [20], Hayel et al. [32], Sezen et al. [54]. In the same lines,
we established the notions of generalized α-η-FZ-contractions and modified α-η-
FZ-contractions, based on the notion of α-admissible function with respect to η.
We proved some fixed point results for such mappings in the framework of fuzzy
metric spaces. The presented concepts enrich, extend and generalize different types
of contraction mappings in the current literature, in particular, the contractive
conditions initiated by Gopal and Calogero vetro [42], Mishra et al. [77], Gregori
and Sapena [78], Mihet [19] and Melliani et al. [72].

Finally, we presented a simulation function approach to best proximity point
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problems in fuzzy metric spaces. We initiated some new types of proximal fuzzy con-
traction, α-ψ-FZ-contraction, α-FZ-contraction and generalized α-FZ-contraction,
we discussed the existence results of best proximity point of such classes of non-
self mappings involving control functions in the structure of complete fuzzy metric
spaces. The obtained results, enrich, generalize and extend various notions to the
case of non-self mappings.

The study discussed in this dissertation offers a number of directions for future
works. On the one hand, the newly introduced concepts can be fertile groundwork
of further generalizations and extensions to different settings. For instance, our ob-
tained results in the structure of fuzzy metric spaces, can be further studied in the
frame of partially ordered fuzzy metric spaces, complex-valued fuzzy metric spaces,
fuzzy b-metric spaces and generalized fuzzy metric spaces. Moreover, further exten-
sions can be provided to L-fuzzy mappings and fuzzy neutrosophic soft mappings.
Other attractive areas of research are the study of the existence and uniqueness of
common fixed point and coincidence points of two operators. Thus, It would be
important to see how the given results concerning FZ-contractions can be used to
obtain new findings in this regard.
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